5-Year Post Development CUHP

Summary of Unit Hydrograph Parameters Used By Program and Calculated Results (Version 2.0.1)

_				Uni	t Hydrograg	oh Paramet	ers and Res	sults			Excess	Precip.		Storm H	ydrograph	
					W50		W75	Time to					Time to		Total	Runoff per
				W50	Before	W75	Before	Peak		Volume	Excess	Excess	Peak	Peak Flow	Volume	Unit Area
Catchment Name/ID	User Comment for Catchment	СТ	Ср	(min.)	Peak	(min.)	Peak	(min.)	Peak (cfs)	(c.f)	(inches)	(c.f.)	(min.)	(cfs)	(c.f.)	(cfs/acre)
A1		0.097	0.131	25.0	4.03	13.0	2.84	6.7	85	164,729	0.57	94,676	35.0	31	94,308	0.68
B1		0.092	0.139	18.2	3.44	9.5	2.43	5.7	95	134,310	0.58	77,837	30.0	29	77,220	0.80
B2		0.093	0.113	33.3	4.40	17.3	3.11	7.3	35	90,351	0.56	50,405	35.0	12	50,284	0.48
B3		0.109	0.171	35.1	6.09	18.2	4.30	10.2	159	431,607	0.31	135,184	35.0	37	135,109	0.31
C1		0.089	0.205	15.3	3.91	7.9	2.76	6.5	238	281,797	0.64	181,072	30.0	76	180,336	0.97
D1		0.092	0.115	17.3	3.03	9.0	2.14	5.1	66	88,318	0.67	59,557	30.0	24	58,560	0.99
D2		0.084	0.229	15.9	4.30	8.3	3.04	7.2	229	282,777	0.87	246,138	30.0	98	245,292	1.26
E1		0.114	0.151	26.8	4.61	13.9	3.25	7.7	155	321,618	0.41	131,675	35.0	47	131,227	0.53
F1		0.107	0.097	32.8	3.94	17.1	2.78	6.6	48	122,440	0.47	56,968	35.0	16	56,751	0.48
F2		0.088	0.198	21.9	4.83	11.4	3.41	8.1	145	245,533	0.75	184,862	35.0	60	183,986	0.89
F3		0.092	0.087	20.4	2.87	10.6	2.03	4.8	30	46,609	0.68	31,862	30.0	11	31,302	0.88
F4		0.121	0.121	41.5	5.37	21.6	3.79	8.9	58	186,981	0.36	67,763	35.0	17	67,675	0.34
G1		0.096	0.093	25.2	3.31	13.1	2.34	5.5	37	73,072	0.59	43,083	30.0	14	42,758	0.68
G2		0.107	0.067	37.3	3.43	19.4	2.42	5.7	19	54,958	0.47	25,571	35.0	7	25,468	0.43
H1		0.109	0.078	39.3	3.85	20.4	2.72	6.4	25	75,177	0.31	23,258	35.0	6	23,195	0.27
H2		0.092	0.101	20.5	3.09	10.6	2.18	5.2	42	67,337	0.67	45,076	30.0	16	44,528	0.88
H3		0.094	0.058	19.2	2.36	10.0	1.67	3.9	15	21,816	0.64	13,878	30.0	5	13,432	0.87
H4		0.095	0.111	22.8	3.45	11.9	2.44	5.7	57	100,370	0.61	61,173	30.0	21	60,592	0.76

Printouts for Unit Hydrographs

flow in cfs

	flow in cfs																	
time in minutes	A1	81	82	B3	C1	D1	D2	E1	1	52	£	F4	61	62	H1	H2	НЗ	H4
5	77.33	93.25	30.09	102.59	220.53	65.84	199.90	128.93	44.36	115.64	29.50	42.62	37.03	18.62	23.03	42.42	14.61	55.54
10	82.78	86.57	34.71	158.92	211.37	57.29	212.53	153.31	47.44	142.37	26.77	58.18	35.84	18.73	24.44	38.99	12.72	53.96
15	70.87	64.60	32.47	154.15	146.87	42.55	148.71	136.86	43.94	117.23	20.78	56.54	30.18	17.61	23.25	30.20	9.82	43.13
20	57.63	49.16	28.07	139.10	107.74	32.08	108.63	110.77	37.50	92.72	16.66	52.59	24.96	15.66	21.07	24.25	7.67	35.72
25	47.82	39.67	24.21	116.79	80.83	25.68	83.75	93.90	32.69	72.89	13.46	46.34	20.75	13.62	18.22	19.53	6.26	28.56
30	39.89	30.81	21.23	103.58	53.91	19.28	58.88	77.26	28.57	61.39	11.05	41.06	17.44	12.21	16.48	16.06	5.00	24.34
35	34.20	21.94	18.25	90.37	40.79	13.08	41.89	67.52	24.45	50.16	8.64	37.09	14.97	10.80	14.74	12.59	3.73	20.17
40	28.51	17.08	16.20	78.14	31.82	10.94	33.60	57.77	21.87	38.93	6.23	33.12	12.50	9.45	13.00	9.12	2.78	16.00
45	22.81	14.12	14.45	70.52	22.85	8.81	25.30	48.03	19.44	28.50	5.21	29.15	10.02	8.61	11.70	7.55	2.35	11.83
50	17.12	11.17	12.70	62.89	13.88	6.68	17.01	38.28	17.01	24.76	4.40	26.80	7.55	7.77	10.67	6.39	1.93	10.13
55	15.14	8.21	10.96	55.26	4.91	4.55	8.72	30.20	14.58	21.02	3.60	24.47	6.69	6.93	9.63	5.24	1.51	8.74
60	13.25	5.26	9.21	47.63	0.00	2.41	0.43	26.95	12.15	17.28	2.80	22.14	5.86	6.09	8.60	4.08	1.09	7.35
65	11.35	2.30	7.46	40.01		0.28	0.00	23.70	9.73	13.53	1.99	19.80	5.04	5.25	7.56	2.92	0.66	5.96
70	9.45	0.00	6.57	32.38		0.00		20.45	8.85	9.79	1.19	17.47	4.21	4.41	6.53	1.77	0.24	4.57
75	7.55		5.99	29.45				17.20	8.04	6.05	0.39	15.14	3.39	3.73	5.49	0.61	0.00	3.18
80	5.65		5.41	26.90				13.96	7.23	2.30	0.00	12.80	2.56	3.45	4.78	0.00		1.79
85	3.76		4.83	24.36				10.71	6.42	0.00		11.25	1.74	3.17	4.43			0.40
90	1.86		4.24	21.82				7.46	5.61			10.48	0.92	2.89	4.09			0.00
95	0.00		3.66	19.28				4.21	4.80			9.70	0.09	2.61	3.74			
100			3.08	16.73				0.96	3.99			8.92	0.00	2.33	3.40			
105			2.50	14.19				0.00	3.18			8.14		2.05	3.05			
110			1.91	11.65					2.37			7.37		1.77	2.71			
115			1.33	9.11					1.57			6.59		1.49	2.36			
120			0.75	6.57					0.76			5.81		1.21	2.02			
125			0.16	4.02					0.00			5.03		0.93	1.67			
130			0.00	1.48								4.25		0.65	1.33			
135				0.00								3.48		0.37	0.98			
140												2.70		0.09	0.64			
145												1.92		0.00	0.29			
150												1.14			0.00			
155												0.37						
160												0.00						

Printouts for Storm Hydrographs

n n		flow in cfs																	
5 7 8 8 9 7 0 9 9 9 9 9 5 0.00 <																			
5 7 8 8 9 7 0 9 9 9 9 9 5 0.00 <	inut																		
B C	E L																		
5 0.00 0.	nei	_	_		~	_	_	~	_	_			_	-	~	_	~	~	
10 0.8 0.9 0.30 0.31 0.41 0.40 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.31 0.51 0.55 0.51 0.55 0.50 0.5	Ē					-								-	-				
15 2.22 4.09 1.30 1.44 1.112 2.79 1.33 1.11 0.57 5.20 2.54 1.35 1.25 1.28 1.27 0.28 0.33 1.27 0.28 0.33 1.27 0.28 1.28 1.21 1.28 1.21 1.28 1.23 1.28 1.23 1.24 1.28 1.23 1.24 1.28 1.24 1.28 1.24 1.28 1.24 1.23 1.44 1.23 1.24 1.24 1.24 1.23 1.44 1.21 1.23 1.44 1.21 1.23 1.24 1.23 1.24																			
20 6.74 9.87 9.83 5.52 26.84 9.82 1.04 1.05 4.47 1.28 4.00 1.28 4.00 1.28 4.00 1.28 4.00 1.28 4.00 1.28 4.00 1.28 4.00 1.28 4.00 1.28 4.00 1.28 4.00 1.28 4.00 1.28 4.00 1.28 4.00 1.28 4.00 1.20 4.25 1.20 4.25 1.20 4.25 4.25 1.20 4.25 1.20 4.25 1.20 4.25 1.20 4.25 1.20 4.25 1.20 4.25 1.20 1.20 4.25 1.20 1.20 4.25 1.20 4.20 1.20 4.20 1.20 4.20 1.20 4.20 1.20 4.20 1.20 4.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20							-												
30 30.8 26.46 11.46 31.46 75.66 21.18 89.74 25.67 12.22 54.88 65.75 55.07 12.07 12.05 55.37 55.97 15.97 42.07 12.26 12.08 55.95 55.95 55.95 55.95 55.95 55.95 55.95 55.95 55.95 55.95 55.95 55.95 55.95 55.95 55.95 55.95 55.95 55.95 12.07 13.55 85.65 65.95 12.27 12.25 13.85 13.95 85.05 65.07 12.07 14.01 13.05 85.05 65.07 12.02 14.01 14.07 14.05 14.05 14.01 14.																			
38 30.7 66.77 12.02 38.88 66.79 12.82 80.71 42.78 13.93 43.80 20.15 43.90 20.15 43.90 20.15 43.90 20.15 43.90 13.90 43.90 13.90 43.90 13.90 43.80 43.	25	20.87	22.60	7.93	17.10	59.49	18.93	77.51	25.66	9.83	42.33	8.75	7.68	9.89	4.07	3.28	12.38	4.00	15.21
40 7.38 7.28 11.45 3.59 7.47 7.27 15.34 5.380 7.97 15.02 15.05 7.80 15.24 6.27 7.28 15.35 15.80 15.35 15.80 15.35 15.80 15.35 15.80 15.35 15.80 15.35 15.80 15.35 15.80 15.35 15.80 15.35 15.80 15.35 15.80 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 15.35 11.34 3.90 14.34 3.55 15.35 <th15.35< th=""> <th15.35< th=""></th15.35<></th15.35<>																			
46 2431 19.22 10.38 32.86 44.66 15.46 62.66 11.81 10.85 5.97 5.07 11.82 3.58 15.68 55 13.77 13.39 9.08 2.595 63.65 91.21 2.555 12.42 63.55 15.88 15.86 64.71 15.80 65.6 41.47 7.55.4 46.6 10.08 5.97 5.44 40.30 8.67 2.39 12.20 10 17.15 2.86 12.3 2.55 13.62 12.44 4.50 13.14 6.50 4.30 5.51 1.94 9.21 11.17 5.3 6.89 1.85 1.62 6.00 2.31 1.61.6 1.60 2.31 1.64 1.52 1.31 4.50 1.32 3.51 1.14 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.																			
90 91.78 165.5 98.2 92.65 36.36 46.80 10.08 30.7 13.90 60 17.19 12.20 8.45 24.37 26.55 91.81 37.60 25.31 10.42 51.81 12.40 7.70 4.50 3.65 4.91 3.85 6.51 1.51.2 10.80 4.17 7.85 6.51 1.91 1.91 1.70 1.32 4.57 1.33 6.80 4.17 3.85 6.81 1.91 1.70 1.32 4.57 1.33 4.60 4.17 3.85 6.81 1.91 7.45 2.23 1.31 1.45 5.97 3.90 3.41 5.51 1.52 7.41 8.30 5.07 5.73 1.38 1.56 1.18 2.76 1.32 2.24 2.48 3.95 1.57 5.33 3.60 3.60 3.65 1.19 1.14 5.44 1.14 5.44 3.33 2.24 2.24 2.35 1.35 1.35 1.35 <td></td>																			
55 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.97 13.08 6.97 13.17 13.57 8.85 4.91 4.30 6.77 2.10 66 17.13 17.24 12.34 9.59 7.77 4.57 11.31 6.80 1.31 6.80 3.31 5.91 1.74 8.22 71 17.34 8.53 6.86 1.88 10.52 7.91 3.23 8.91 4.22 3.23 9.91 4.22 2.23 1.23 9.91 4.24 2.24 2.84 3.95 1.75 1.65 70 4.50 1.53 1.84 1.58 1.84 5.24 7.34 3.39 6.02 2.44 3.55 1.83 5.44 3.55 1.84 5.44 3.55 1.84 5.57 3.54 1.44 3.44 1.83 1.84 1.84 1.84 1.84 1.84																			
60 17.19 12.08 8.45 24.29 22.69 12.81 27.60 13.24 9.76 7.70 4.50 13.11 0.60 4.17 3.65 6.51 13.44 9.76 7.45 20.39 13.65 6.51 13.44 9.76 7.45 20.39 13.65 6.51 13.44 9.76 7.45 20.39 13.55 6.50 23.71 15.54 4.60 3.71 5.56 15.2 7.41 8.80 80 50.7 5.76 15.33 13.11 3.85 15.76 13.26 13.21 13.02 13.23 13.85 13.85 13.85 13.85 13.85 13.84 13.77 5.70 13.04 2.20 6.52 3.22 2.44 3.35 0.88 5.10 110 6.58 4.49 4.47 14.40 9.02 7.57 13.44 1.45 5.11 1.45 5.11 1.45 5.11 1.51 1.52 1.14 4.47 1.46																			
65 51.2 108.1 79.4 72.2 22.36 81.2 32.84 92.73 45.7 11.31 65.0 45.17 15.4 17.4 82.2 75 11.79 8.53 6.89 18.85 16.60 71.5 88.0 25.1 37.4 15.2 7.41 82.2 76 11.79 8.53 6.89 10.82 6.97 30.4 5.97 6.07 5.76 15.22 12.11 3.89 16.78 6.98 6.91 3.12 4.82 2.34 2.48 3.35 1.07 5.57 91 5.50 5.57 13.24 1.08 1.48 1.017 5.07 1.30 2.06 5.56 3.52 2.36 2.44 2.03 2.33 6.63 3.52 2.36 2.44 4.35 1.07 3.88 3.69 105 5.52 3.91 4.43 1.066 4.61 3.41 8.81 1.42 4.80 1.14 2.06 2.2																			
75 11.79 8.53 6.89 18.50 16.26 6.00 23.71 15.4 7.9 9.21 13.21 8.30 3.60 3.17 5.76 15.28 7.41 85 9.57 6.07 5.76 15.23 13.35 11.11 3.89 15.58 11.48 5.49 15.66 2.36 2.34 3.35 2.63 2.44 3.35 0.85 5.67 3.52 2.63 2.44 3.55 0.86 5.16 3.52 2.36 2.24 3.35 0.74 4.47 100 5.52 3.91 4.43 10.66 9.00 2.49 1.75 7.57 4.53 1.38 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
80 1062 7.22 6.30 17.83 14.85 19.76 11.24 6.69 20.11 12.28 8.91 4.82 3.27 2.93 4.89 3.95 1.07 5.37 90 8.59 5.20 5.33 13.56 11.42 3.34 15.88 11.48 5.46 6.11 13.00 2.06 6.35 2.36 2.24 2.38 2.04 2.38 1.08																			
8 9.97 6.07 5.76 15.28 11.11 3.89 16.78 12.86 6.11 18.18 5.278 8.12 4.36 2.94 2.68 3.95 1.07 5.87 90 8.59 5.20 5.33 13.66 11.42 3.34 15.58 11.48 5.49 1.300 2.06 2.51 2.33 2.31 2.33 0.74 4.47 100 5.52 3.91 4.43 10.06 3.44 1.166 1.66 1.55 7.33 4.21 9.81 1.45 5.11 1.88 1.74 1.86 0.57 2.99 110 4.54 4.43 1.66 1.54 1.54 1.54 1.54 1.54 1.64 4.44 15 3.61 3.43 3.82 3.81 1.32 1.55 1.51 1.54 1.64 0.44 2.91 15 3.61 3.43 3.54 3.74 1.33 3.54 1.51 1.54																			
90 8.99 5.20 5.35 11.42 3.34 15.86 1.24 13.90 2.66 7.34 3.93 2.63 2.44 3.35 0.88 5.16 100 6.58 4.29 4.75 11.49 9.92 2.75 13.45 8.73 4.63 11.65 5.77 3.04 2.14 2.00 2.33 0.63 3.69 105 5.52 3.14 4.43 10.66 9.00 2.49 12.15 7.33 4.21 9.81 1.45 5.11 2.58 1.86 2.14 1.83 1.74 0.40 0.57 2.99 115 3.10 3.43 3.28 9.90 7.88 2.17 10.60 4.61 3.41 8.10 1.24 4.29 1.76 1.69 1.63 1.74 0.49 2.07 123 1.39 3.28 3.29 1.21 1.51 1.24 0.29 1.34 1.35 1.24 1.34 1.35 1.24 <td></td>																			
95 765 476 507 1238 1098 1348 1017 507 1340 658 352 236 211 283 0.64 436 105 552 391 443 1066 900 249 1215 733 421 9.01 1.45 5.11 258 1.98 1.85 2.03 0.63 3.69 110 454 3.64 4.12 9.86 8.55 2.30 1.12 5.44 3.80 8.73 1.33 4.64 2.14 1.88 1.44 0.49 2.27 120 3.19 3.2 7.34 2.10 9.44 3.30 7.35 6.26 0.91 3.63 1.23 1.88 1.28 0.38 0.77 1.35 1.99 1.51 1.55 1.52 1.61 0.46 2.99 130 2.11 1.84 2.57 6.30 3.83 1.12 1.42 1.63 3.42 0.44 1.34																			
100 6.58 4.29 4.75 11.49 9.92 2.75 13.46 8.75 4.63 11.66 5.77 3.04 2.14 2.00 2.33 0.63 3.69 105 5.52 3.91 4.44 10.66 9.81 1.45 5.11 12.88 1.98 1.45 1.85 2.00 0.52 2.29 115 3.70 3.43 3.83 9.09 7.88 2.17 10.60 4.61 3.41 8.10 1.24 4.29 1.76 1.69 1.63 1.74 0.49 2.27 125 2.62 2.47 3.05 7.36 5.48 1.52 7.54 2.39 2.55 6.6 0.91 3.63 1.23 1.88 1.82 1.64 1.39 1.13 1.38 1.38 1.38 1.38 1.38 1.33 1.31 1.32 0.84 0.42 1.63 0.39 0.31 1.33 1.33 1.31 1.33 1.33 1.23 </td <td></td>																			
195 5.52 3.91 4.43 10.66 9.00 2.49 1.215 7.33 4.21 9.81 1.45 5.11 2.58 1.98 1.86 0.57 2.99 115 3.70 3.43 3.83 9.09 7.88 2.17 10.60 4.61 3.41 8.10 1.24 4.29 1.76 1.69 1.63 1.74 0.49 2.27 120 3.19 3.19 3.52 8.32 7.31 2.00 9.84 3.37 3.02 7.55 6.26 0.91 3.63 1.38<																			
115 3.70 3.43 3.83 9.99 7.88 2.17 10.60 4.61 3.41 8.10 1.24 4.29 1.76 1.69 1.63 1.74 0.49 2.27 120 3.19 3.19 3.52 8.32 7.31 2.00 9.84 3.37 3.02 7.53 1.15 3.97 1.15 1.163 1.161 0.46 2.09 130 2.11 1.84 2.57 6.30 3.83 1.12 5.34 1.80 2.09 4.21 1.23 0.99 0.27 1.34 135 1.91 3.77 2.67 0.82 3.79 1.42 1.65 3.82 0.64 2.80 0.80 0.80 1.05 0.44 0.15 0.44 0.15 0.44 0.15 0.44 0.15 0.44 0.15 0.44 0.15 0.44 0.15 0.44 0.15 0.44 0.15 0.44 0.16 0.44 0.16 0.41 0.57 0.23 2.01 0.41 0.57 0.44 0.06 0.38 0.66 <td< td=""><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			-	-	-														
120 319 312 322 832 731 200 9.84 337 302 7.53 115 397 1151 155 152 161 0.46 209 125 262 2.47 3.05 7.36 5.48 1.22 7.54 2.39 2.55 6.26 0.91 3.63 1.23 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.32 0.99 0.27 1.34 135 1.69 1.37 1.01 4.28 1.08 0.74 2.57 0.62 1.41 1.53 3.82 0.54 2.96 0.80 1.05 1.05 0.80 0.76 0.20 1.04 141 1.34 3.35 1.21 0.42 1.78 0.90 0.31 2.32 0.51 0.74 0.83 0.44 0.11 0.55 150 0.67 0.37 0.89 1.83 0.51 0.20 0.44 0.42	110	4.54	3.64	4.12	9.86	8.35	2.30	11.26	5.94	3.80	8.73	1.33	4.64	2.14	1.83	1.74	1.86	0.53	2.52
125 262 247 3.05 7.36 5.48 1.52 7.54 2.39 2.55 6.26 0.91 3.63 1.23 1.38 <t< td=""><td>115</td><td>3.70</td><td>3.43</td><td>3.83</td><td>9.09</td><td>7.88</td><td>2.17</td><td>10.60</td><td>4.61</td><td>3.41</td><td>8.10</td><td>1.24</td><td></td><td>1.76</td><td>1.69</td><td>1.63</td><td>1.74</td><td>0.49</td><td>2.27</td></t<>	115	3.70	3.43	3.83	9.09	7.88	2.17	10.60	4.61	3.41	8.10	1.24		1.76	1.69	1.63	1.74	0.49	2.27
130 2.11 1.84 2.57 6.30 3.83 1.12 5.34 1.80 2.09 4.91 0.70 3.29 0.99 1.21 1.23 0.99 0.77 1.34 135 1.69 1.37 2.11 5.27 0.62 0.62 1.66 1.33 1.82 0.58 0.54 0.56 0.68																			
135 1.69 1.37 2.11 5.27 2.67 0.82 3.79 1.42 1.65 3.82 0.54 2.66 0.80 1.05 1.09 0.76 0.20 1.06 140 1.35 1.02 1.70 4.28 1.82 0.60 2.64 1.31 2.32 0.31 2.32 0.64 0.89 0.95 0.58 0.11 0.64 150 0.86 0.52 1.07 2.50 0.80 0.29 1.19 0.71 0.64 1.75 0.23 2.01 0.44 0.55 0.57 0.37 0.38 0.33 0.34 0.76 0.52 0.31 0.17 0.24 0.04 0.51 0.24 0.34 0.33 0.34 0.73 0.09 1.12 0.19 0.24 0.34 0.13 0.02 0.22 0.16 0.33 0.34 0.33 0.34 0.33 0.34 0.33 0.34 0.35 0.11 0.15 0.18 0.32 <td></td>																			
140 1.35 1.02 1.70 4.28 1.82 0.60 2.64 1.13 1.23 2.98 0.42 2.63 0.64 0.89 0.95 0.58 0.15 0.84 145 1.08 0.74 1.34 3.35 1.11 0.42 1.78 0.90 0.87 2.00 0.31 2.32 0.51 0.74 0.82 0.44 0.11 0.65 155 0.67 0.37 0.89 1.83 0.51 0.20 0.79 0.56 0.52 1.31 0.17 1.71 0.32 0.45 0.57 0.24 0.04 0.04 0.23 0.33 0.34 0.73 0.99 1.12 0.19 0.24 0.34 0.13 0.04 0.23 0.33 0.34 0.73 0.99 1.12 0.19 0.24 0.34 0.13 0.02 0.16 170 0.31 0.04 0.28 0.00 0.00 0.00 0.03 0.07 0.01			-	-															
145 1.08 0.74 1.34 3.35 1.21 0.42 1.78 0.90 0.87 2.30 0.31 2.32 0.51 0.74 0.82 0.44 0.11 0.65 150 0.67 0.37 0.89 1.83 0.51 0.20 0.74 0.32 0.44 0.57 0.23 0.24 0.69 0.33 0.80 0.53 165 0.51 0.25 0.74 1.42 0.29 0.14 0.47 0.43 0.42 0.98 0.13 1.41 0.25 0.33 0.45 0.18 0.04 0.13 0.08 0.29 0.14 0.47 0.43 0.42 0.98 0.13 1.41 0.25 0.33 0.44 0.13 0.03 0.02 0.16 175 0.40 0.51 0.98 0.33 0.43 0.12 0.15 0.13 0.11 0.15 0.12 0.15 0.02 0.16 0.13 0.10 0.10 0.12																			
150 0.86 0.52 1.17 2.50 0.80 0.29 1.19 0.71 0.64 1.75 0.23 2.01 0.41 0.59 0.69 0.33 0.08 0.50 155 0.67 0.37 0.89 1.83 0.51 0.20 0.79 0.56 0.52 1.31 0.17 1.71 0.32 0.45 0.24 0.25 0.11 155 0.41 0.42 0.42 0.40 0.41 0.13 0.21 0.14 0.13 0.21 0.15 0.13 0.11 0.15 0.13 0.14 0.13 0.12 0.15 0.33 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>									-										
160 0.51 0.25 0.74 1.42 0.29 0.14 0.47 0.43 0.42 0.98 0.13 1.41 0.25 0.33 0.45 0.18 0.04 0.29 155 0.40 0.16 0.62 1.18 0.13 0.08 0.23 0.34 0.73 0.09 1.12 0.19 0.24 0.34 0.13 0.03 0.04 0.22 0.33 0.04 0.24 0.34 0.13 0.03 0.04 0.02 0.16 0.02 0.16 0.02 0.16 0.17 0.01 0.35 0.01 0.01 0.01 0.01 0.19 0.22 0.36 0.04 0.55 0.11 0.15 0.33 0.00 0.01 0.11 0.15 0.03 0.01 0.01 0.11 0.11 0.14 0.13 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00			0.52	1.07		0.80	0.29	1.19	0.71								0.33	0.08	
165 0.40 0.16 0.62 1.18 0.13 0.08 0.23 0.33 0.34 0.73 0.09 1.12 0.19 0.24 0.34 0.13 0.03 0.22 170 0.31 0.09 0.51 0.98 0.03 0.04 0.08 0.25 0.28 0.04 0.05 0.11 0.15 0.19 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.14 0.18 0.22 0.35 0.08 0.12 0.15 0.03 0.00 0.00 0.00 0.00 0.01 0.14 0.13 0.01 0.24 0.05 0.01 0.13 0.01 0.03 0.00 0.00 0.00 0.00 0.03 0.01 0.04 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00	155	0.67	0.37	0.89	1.83	0.51	0.20	0.79	0.56	0.52	1.31	0.17	1.71	0.32	0.45	0.57	0.24	0.06	0.38
170 0.31 0.09 0.51 0.98 0.03 0.04 0.08 0.25 0.28 0.52 0.06 0.83 0.15 0.18 0.25 0.09 0.02 0.16 175 0.23 0.04 0.42 0.82 0.00 0.01 0.00 0.19 0.22 0.36 0.04 0.55 0.11 0.15 0.19 0.05 0.01 0.11 180 0.12 0.00 0.29 0.56 0.00 0.00 0.14 0.13 0.01 0.24 0.06 0.10 0.13 0.01 0.02 0.15 0.03 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.09 0.15 0.02 0.01 0.00 0.00 0.03 0.07 0.01 0.02 0.01 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td></td>																			
175 0.23 0.04 0.42 0.82 0.00 0.01 0.00 0.19 0.22 0.36 0.04 0.55 0.11 0.15 0.19 0.05 0.01 0.11 180 0.17 0.01 0.35 0.67 0.00 0.00 0.00 0.14 0.13 0.02 0.35 0.08 0.12 0.15 0.03 0.00 0.00 0.00 0.00 0.01 0.14 0.13 0.01 0.24 0.06 0.10 0.13 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.00 0.11 0.06 0.00 0.19 0.44 0.08 0.01 0.00 0.00 0.03 195 0.05 0.00 0.15 0.30 0.00 0.00 0.02 0.05 0.00 0.11 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 <td></td>																			
180 0.17 0.01 0.35 0.67 0.00 0.00 0.14 0.18 0.23 0.02 0.35 0.08 0.12 0.15 0.03 0.00 0.00 185 0.12 0.00 0.29 0.56 0.00 0.00 0.10 0.14 0.13 0.01 0.02 0.03 0.06 0.10 0.13 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.06 0.11 0.00 0.00 0.00 0.03 0.00																			
185 0.12 0.00 0.29 0.56 0.00 0.00 0.10 0.14 0.13 0.01 0.13 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.03 0.01 0.02 0.03 0.04 0.08 0.11 0.00 0.00 0.03 195 0.05 0.00 0.15 0.33 0.00 0.00 0.05 0.09 0.02 0.00 0.15 0.02 0.07 0.09 0.00 0.01 0.00 0.00 0.05 0.09 0.02 0.00 0.05 0.00 0.01 0.01 0.02 0.01 0.02 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00																			
190 0.08 0.00 0.23 0.46 0.00 0.00 0.07 0.11 0.06 0.00 0.19 0.08 0.11 0.00 0.00 0.00 195 0.05 0.00 0.19 0.38 0.00 0.00 0.05 0.09 0.02 0.00 0.15 0.00 0.00 0.00 0.01 200 0.02 0.00 0.11 0.24 0.00 0.05 0.00 0.01 0.05 0.00 <td></td>																			
195 0.05 0.00 0.19 0.38 0.00 0.00 0.05 0.09 0.02 0.00 0.15 0.02 0.07 0.09 0.00 0.00 0.01 200 0.02 0.00 0.15 0.30 0.00 0.00 0.03 0.07 0.00 0.01 0.05 0.08 0.00 0.00 0.00 205 0.01 0.00 0.11 0.24 0.00 0.00 0.01 0.00 0.00 0.01 0.00 <td></td>																			
205 0.01 0.00 0.11 0.24 0.00 0.00 0.02 0.05 0.00 0.00 0.04 0.06 0.00	195	0.05									0.02	0.00	0.15	0.02		0.09	0.00	0.00	0.01
210 0.00 0.08 0.18 0.00 0.00 0.01 0.01 0.00 0.00 0.03 0.05 0.00 0.00 0.00 215 0.00 0.06 0.14 0.00																			
215 0.00 0.06 0.14 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.04 0.00 0.00 0.00 220 0.00 0.00 0.04 0.10 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.02 0.00 0.02 0.03 0.04 0.00 0.00 0.00 225 0.00 0.00 0.01 0.00 <td></td>																			
220 0.00 0.00 0.04 0.10 0.00 0.00 0.02 0.00 0.02 0.00																			
225 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 230 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.00 235 0.00 <td></td>																			
230 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 235 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 240 0.00 <td></td>																			
235 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 240 0.00																			
245 0.00																			
250 0.00				0.00			0.00	0.00	0.00				0.02	0.00	0.00	0.01		0.00	0.00
255 0.00																			
260 0.00																			
265 0.00																			
270 0.00																			
	275	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Summary of Unit Hydrograph Parameters Used By Program and Calculated Results (Version 2.0.1)

_				Uni	t Hydrograg	oh Paramet	ers and Res	sults			Excess	Precip.		Storm H	ydrograph	
					W50		W75	Time to					Time to		Total	Runoff per
				W50	Before	W75	Before	Peak		Volume	Excess	Excess	Peak	Peak Flow	Volume	Unit Area
Catchment Name/ID	User Comment for Catchment	СТ	Ср	(min.)	Peak	(min.)	Peak	(min.)	Peak (cfs)	(c.f)	(inches)	(c.f.)	(min.)	(cfs)	(c.f.)	(cfs/acre)
A1		0.096	0.134	24.4	4.01	12.7	2.83	6.7	87	164,729	1.93	317,756	40.0	101	316,720	2.22
B1		0.091	0.141	17.8	3.42	9.2	2.42	5.7	98	134,310	1.82	243,813	35.0	97	241,630	2.62
B2		0.092	0.115	32.5	4.38	16.9	3.09	7.3	36	90,351	1.79	161,555	40.0	42	161,041	1.70
B3		0.089	0.250	19.5	5.26	10.2	3.72	8.8	285	431,607	1.88	813,554	40.0	295	807,930	2.48
C1		0.088	0.210	14.7	3.88	7.6	2.74	6.5	247	281,797	1.91	539,141	35.0	238	535,192	3.07
D1		0.092	0.116	17.1	3.02	8.9	2.14	5.0	67	88,318	2.03	179,570	35.0	70	176,587	2.88
D2		0.083	0.230	15.8	4.30	8.2	3.04	7.2	231	282,777	2.25	634,968	35.0	252	632,818	3.24
E1		0.113	0.150	26.5	4.56	13.8	3.23	7.6	157	321,618	1.75	563,176	40.0	178	561,356	2.01
F1		0.106	0.096	32.4	3.90	16.9	2.76	6.5	49	122,440	1.81	221,916	40.0	59	221,037	1.75
F2		0.088	0.199	21.7	4.82	11.3	3.40	8.0	146	245,533	2.12	520,116	40.0	171	517,601	2.53
F3		0.091	0.088	20.1	2.86	10.5	2.02	4.8	30	46,609	2.04	95,234	35.0	33	93,473	2.56
F4		0.090	0.168	22.4	4.39	11.7	3.10	7.3	108	186,981	2.06	385,413	40.0	125	383,174	2.42
G1		0.095	0.095	24.6	3.29	12.8	2.33	5.5	38	73,072	1.94	142,048	40.0	44	140,977	2.18
G2		0.106	0.067	36.8	3.40	19.2	2.41	5.7	19	54,958	1.81	99,609	45.0	24	99,196	1.58
H1		0.107	0.078	38.6	3.80	20.1	2.69	6.3	25	75,177	1.49	111,730	45.0	28	111,424	1.33
H2		0.092	0.102	20.2	3.08	10.5	2.18	5.1	43	67,337	2.03	136,549	35.0	48	134,796	2.57
H3		0.093	0.059	18.9	2.36	9.8	1.66	3.9	15	21,816	1.99	43,454	35.0	16	42,019	2.60
H4		0.094	0.113	22.3	3.44	11.6	2.43	5.7	58	100,370	1.96	197,106	35.0	65	195,054	2.34

Printouts for Storm Hydrographs

	flow in cfs																	
-																		
minutes																		
Ë																		
e																		
time in	A1	81	B2	83	1	D1	D2	펍	臣	E	£	5	G1	G2	Ŧ	H2	H3	¥
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	0.94	1.68	0.52	4.22	4.78	1.15	5.37	0.48	0.27	2.45	0.53	1.71	0.48	0.11	0.13	0.73	0.23	0.79
15	3.15	5.42	1.79	15.33	15.49	3.64	18.05	1.65	0.90	8.65	1.69	5.85	1.57	0.37	0.45	2.35	0.73	2.57
20	8.70	11.45	4.00	34.16	32.52	8.58	40.38	7.60	3.38	20.68	4.00	14.14	4.16	1.40	1.40	5.60	1.74	6.52
25	28.66	29.50	10.41	82.19	78.37	24.79	95.14	38.37	14.16	53.76	11.42	39.02	13.48	5.86	4.98	16.26	5.32	20.51
30	74.80 97.97	79.47	28.38	209.96	197.61	59.58 70.07	206.21	118.53	40.66	125.47	27.36	93.76	34.55	16.72	18.14	39.34	13.13	51.86
35 40	100.64	97.08 91.72	39.09 42.26	293.34 295.27	238.03 217.83	65.95	252.18 236.84	167.02 178.04	54.90 58.95	167.34 170.90	32.93 31.93	122.79 124.89	43.48 43.95	22.15 23.88	25.18 27.51	47.62 46.23	15.60 14.96	64.71 64.17
40	95.76	81.74	41.60	270.79	188.54	59.25	209.67	171.37	58.16	160.16	29.55	117.59	41.86	23.95	27.62	40.23	13.70	60.43
50	88.61	71.93	39.52	241.02	158.77	52.39	182.92	159.94	55.68	145.90	26.81	107.63	38.81	23.14	26.37	38.80	12.35	55.33
55	80.64	61.06	36.70	210.38	128.15	44.77	154.98	145.85	52.10	131.63	23.79	97.40	35.39	21.94	24.69	34.43	10.81	49.97
60	73.72	51.53	33.93	181.32	108.02	38.53	133.43	134.19	48.66	118.30	21.04	88.02	32.46	20.78	23.06	30.45	9.45	45.14
65	67.40	45.18	31.76	156.70	93.56	34.56	118.85	123.94	46.04	106.27	18.72	79.39	29.76	19.73	21.51	27.09	8.44	40.65
70	57.62	37.36	28.86	133.61	72.90	28.24	97.25	107.68	41.56	90.84	15.78	67.48	25.37	18.01	19.61	22.80	7.03	34.05
75	48.65	30.42	25.90	111.95	54.03	22.66	76.20	90.77	36.98	77.55	13.35	57.62	21.48	16.38	17.89	19.26	5.84	28.96
80	41.32	23.90	22.84	92.09	37.59	17.26	56.56	75.87	32.23	65.51	11.01	48.88	18.30	14.67	16.16	15.88	4.69	24.47
85	35.33	18.17	19.94	74.04	27.23	12.61	40.76	64.74	27.82	54.76	8.95	41.21	15.71	13.05	14.51	12.91	3.68	20.55
90	30.19	13.24	17.37	58.22	21.17	8.92	31.25	55.66	23.97	45.42	7.12	34.55	13.49	11.51	12.93	10.27	2.78	17.14
95	25.62	9.81	15.52	44.14	17.61	6.75	25.52	47.90	21.14	36.94	5.47	28.49	11.50	10.09	11.40	7.89	2.02	14.01
100 105	21.38 17.42	7.91 6.73	14.06 12.77	33.30 27.35	15.21 13.68	5.47 4.57	21.73 19.13	40.83 34.26	18.87 16.87	29.27 22.78	4.09	22.92 17.88	9.66 7.94	8.92 8.04	9.98 8.89	5.89 4.60	1.52 1.23	11.11 8.49
105	17.42	5.95	11.60	27.55	12.61	3.96	19.13	28.05	15.05	18.35	2.68	17.88	6.34	7.30	8.07	3.81	1.23	6.49
115	10.62	5.43	10.50	23.08	11.96	3.50	16.10	28.03	13.36	15.62	2.08	13.80	4.94	6.63	7.37	3.28	0.89	5.17
120	8.32	5.07	9.45	19.57	11.75	3.23	15.37	16.77	11.75	13.81	2.05	9.95	3.86	6.02	6.74	2.90	0.79	4.39
125	6.31	3.83	8.12	15.88	8.79	2.37	11.92	11.58	10.02	11.03	1.55	7.84	2.90	5.36	6.08	2.19	0.58	3.35
130	4.73	2.80	6.80	11.73	6.09	1.72	8.39	8.10	8.35	8.30	1.14	5.91	2.18	4.72	5.44	1.60	0.42	2.49
135	3.52	2.07	5.52	8.70	4.24	1.26	6.01	5.78	6.72	6.17	0.83	4.41	1.63	4.12	4.82	1.17	0.31	1.84
140	2.61	1.55	4.31	6.55	2.89	0.93	4.27	4.12	5.15	4.58	0.63	3.26	1.22	3.56	4.24	0.88	0.23	1.34
145	1.91	1.13	3.21	4.92	1.91	0.66	2.93	2.90	3.70	3.47	0.47	2.44	0.90	3.00	3.67	0.66	0.17	0.99
150	1.39	0.81	2.32	3.64	1.29	0.47	2.00	2.02	2.57	2.64	0.35	1.86	0.66	2.45	3.11	0.50	0.13	0.75
155	1.04	0.58	1.76	2.65	0.79	0.33	1.33	1.36	1.85	1.99	0.26	1.41	0.49	1.91	2.56	0.37	0.09	0.57
160	0.80	0.40	1.36	1.97	0.41	0.22	0.80	0.91	1.35	1.51	0.20	1.08	0.37	1.40	2.02	0.28	0.07	0.44
165 170	0.62	0.26	1.05	1.39	0.15	0.13	0.40	0.69	0.98	1.15	0.14	0.84	0.29	0.96	1.49	0.20	0.05	0.34
170	0.49	0.14 0.06	0.81 0.63	0.91 0.53	0.02	0.07	0.13	0.54 0.43	0.70	0.85	0.10	0.63 0.45	0.23	0.68	1.00 0.66	0.14 0.09	0.03	0.25 0.18
180	0.37	0.00	0.03	0.33	0.00	0.02	0.00	0.43	0.35	0.38	0.03	0.43	0.18	0.36	0.00	0.05	0.02	0.18
185	0.19	0.02	0.39	0.08	0.00	0.00	0.00	0.25	0.26	0.21	0.01	0.18	0.09	0.26	0.33	0.02	0.00	0.07
190	0.12	0.00	0.32	0.00	0.00	0.00	0.00	0.18	0.20	0.09	0.00	0.09	0.06	0.19	0.24	0.00	0.00	0.04
195	0.07	0.00	0.26	0.00	0.00	0.00	0.00	0.12	0.17	0.02	0.00	0.03	0.03	0.13	0.18	0.00	0.00	0.01
200	0.03	0.00	0.21	0.00	0.00	0.00	0.00	0.07	0.13	0.00	0.00	0.00	0.02	0.10	0.13	0.00	0.00	0.00
205	0.01	0.00	0.16	0.00	0.00	0.00	0.00	0.04	0.10	0.00	0.00	0.00	0.00	0.08	0.10	0.00	0.00	0.00
210	0.00	0.00	0.12	0.00	0.00	0.00	0.00	0.01	0.08	0.00	0.00	0.00	0.00	0.06	0.07	0.00	0.00	0.00
215	0.00	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.05	0.06	0.00	0.00	0.00
220	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.04	0.05	0.00	0.00	0.00
225	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.03	0.04	0.00	0.00	0.00
230	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.03	0.00	0.00	0.00
235 240	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.00	0.00
240	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00
245	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
255	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
265	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Printouts for Unit Hydrographs

flow in cfs

ş	now in cis																	
time in minutes	A1	81	82	83	C1	D1	D2	E1	11	52	33	F4	61	62	H1	H2	H3	H4
5	79.48	95.51	30.93	212.33	229.82	66.81	201.50	131.02	45.09	117.17	29.92	92.63	37.90	18.89	23.57	43.06	14.85	56.70
10	84.67	87.92	35.54	282.68	215.27	57.76	213.46	154.59	47.98	143.83	27.05	104.96	36.56	18.95	24.84	39.42	12.85	54.86
15	71.63	65.18	33.09	218.45	147.65	42.75	148.95	137.43	44.32	117.53	20.92	85.95	30.43	17.77	23.57	30.43	9.89	43.38
20	58.21	48.97	28.30	170.33	107.98	32.20	108.75	111.17	37.59	92.99	16.68	69.02	25.18	15.74	21.25	24.29	7.66	35.92
25	47.87	39.61	24.48	132.75	78.94	25.61	83.53	93.98	32.85	72.85	13.48	54.84	20.77	13.71	18.39	19.57	6.27	28.68
30	40.08	30.32	21.34	107.50	49.89	19.02	58.31	77.43	28.63	61.37	11.00	46.28	17.51	12.26	16.59	16.00	4.96	24.34
35	34.09	21.04	18.21	82.24	39.94	13.05	41.79	67.50	24.41	49.89	8.52	38.16	14.92	10.82	14.79	12.42	3.65	20.00
40	28.10	16.93	16.26	57.04	30.26	10.85	33.38	57.58	21.90	38.40	6.04	30.04	12.33	9.48	12.98	8.85	2.77	15.66
45	22.11	13.83	14.43	48.62	20.58	8.66	24.98	47.65	19.41	28.45	5.18	21.93	9.74	8.62	11.74	7.51	2.33	11.51
50	16.99	10.74	12.59	40.20	10.90	6.46	16.57	37.72	16.92	24.63	4.35	18.95	7.50	7.76	10.67	6.32	1.89	10.06
55	15.00	7.64	10.76	31.78	1.22	4.26	8.16	30.14	14.43	20.80	3.52	16.25	6.63	6.90	9.60	5.12	1.46	8.61
60	13.00	4.55	8.92	23.36	0.00	2.07	0.00	26.83	11.95	16.97	2.70	13.54	5.77	6.04	8.53	3.93	1.02	7.17
65	11.00	1.45	7.15	14.94		0.00		23.53	9.65	13.14	1.87	10.83	4.91	5.18	7.46	2.74	0.58	5.72
70	9.01	0.00	6.53	6.53				20.22	8.82	9.32	1.04	8.13	4.04	4.32	6.39	1.55	0.15	4.27
75	7.01		5.92	0.00				16.91	7.99	5.49	0.22	5.42	3.18	3.72	5.32	0.36	0.00	2.82
80	5.01		5.31					13.60	7.16	1.66	0.00	2.72	2.31	3.43	4.76	0.00		1.38
85	3.02		4.70					10.29	6.33	0.00		0.01	1.45	3.15	4.41			0.00
90	1.02		4.09					6.98	5.50			0.00	0.59	2.86	4.05			
95	0.00		3.47					3.67	4.67				0.00	2.57	3.69			
100			2.86					0.36	3.84					2.29	3.34			
105			2.25					0.00	3.01					2.00	2.98			ļ
110			1.64						2.18					1.71	2.62			L
115			1.03						1.35					1.43	2.27			L
120			0.41						0.52					1.14	1.91			L
125			0.00						0.00					0.85	1.55			
130														0.57	1.19			───┤
135														0.28	0.84			┝───┤
140														0.00	0.48			───┤
145															0.12			───┤
150															0.00			<u> </u>

Grandview Reserve Master Development Drainage Plan Project No.: 191897.01

Appendix C

SWMM Model Pre Development 5 Year

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012) _____ SWMM Pre Development 5 Year ********* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***** Analysis Options ****** Flow Units CFS Process Models: Rainfall/Runoff NO RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method KINWAVE Starting Date 01/01/2005 00:00:00 Ending Date 01/01/2005 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:05:00 Routing Time Step 30.00 sec ******* Volume Volume Flow Routing Continuity acre-feet 10^6 gal ---------Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 0.000 0.000 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 3.918 12.024 External Outflow 12.024 3.918 Flooding Loss 0.000 0.000 Evaporation Loss 0.000 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (%) -0.002

SWMM Model Pre Development 5 Year ********* All links are stable.

Routing Time Step Summary ******

Minimum Time Step	:	30.00 sec
Average Time Step	:	30.00 sec
Maximum Time Step	:	30.00 sec
Percent in Steady State	:	0.00
Average Iterations per Step	:	1.00
Percent Not Converging	:	0.00

Node Depth Summary

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL	0ccu	rrence	Max Depth
Node	Туре	Feet	Feet	Feet	days	hr:min	Feet
10	JUNCTION		0.00	6975.00	0	00:00	0.00
20	JUNCTION	0.00	0.00	6982.00		00:00	0.00
21	JUNCTION	0.00	0.00	6953.00	0	00:00	0.00
22	JUNCTION	0.00	0.00	6936.00	0	00:00	0.00
23	JUNCTION	0.08	0.31	6945.31	0	00:35	0.30
24	JUNCTION	0.10	0.44	6934.44	0	00:40	0.44
30	JUNCTION	0.00	0.00	6985.00	0	00:00	0.00
40	JUNCTION	0.00	0.00	6918.00	0	00:00	0.00
41	JUNCTION	0.00	0.00	6888.00	0	00:00	0.00
42	JUNCTION	0.10	0.48	6911.48	0	00:35	0.48
50	JUNCTION	0.00	0.00	6945.00	0	00:00	0.00
60	JUNCTION	0.00	0.00	6942.00	0	00:00	0.00
61	JUNCTION	0.00	0.00	6893.00	0	00:00	0.00
62	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
63	JUNCTION	0.00	0.00	6882.00	0	00:00	0.00
64	JUNCTION	0.11	0.48	6900.48	0	00:35	0.48
65	JUNCTION	0.17	0.69	6880.69	0	00:36	0.69
66	JUNCTION	0.24	0.89	6868.89	0	00:40	0.89
70	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
71	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
72	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00
73	JUNCTION	0.11	0.43	6902.43	0	00:35	0.42

	SWMM Model	Pre Deve	lopmen	t 5 Year			
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.11	0.48	6872.48	0	00:35	0.47
85	JUNCTION	0.06	0.30	6874.30	0	00:35	0.30
PondC	JUNCTION	0.00	0.00	6956.00	0	00:00	0.00
PondA	JUNCTION	0.00	0.00	6949.00	0	00:00	0.00
PondB	JUNCTION	0.11	0.44	6911.44	0	00:41	0.43
PondE	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
PondG	JUNCTION	0.11	0.42	6900.42	0	00:36	0.42
PondH	JUNCTION	0.11	0.47	6866.47	0	00:36	0.47
PondF	JUNCTION	0.24	0.89	6866.89	0	00:41	0.88
PondD	JUNCTION	0.10	0.48	6881.48	0	00:37	0.47
Outfall2	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4	OUTFALL	0.00	0.00	6865.00	0	00:00	0.00
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
31	OUTFALL	0.00	0.00	6953.00	0	00:00	0.00
51	OUTFALL	0.00	0.00	6920.00	0	00:00	0.00
74	OUTFALL	0.00	0.00	6897.00	0	00:00	0.00
67	OUTFALL	0.00	0.00	6865.50	0	00:00	0.00

Node Inflow Summary *********

			Maximum	Maximum			Lateral	
Total	Flow							
			Lateral	Total	Time of	Max	Inflow	
Inflow	Balance							
			Inflow	Inflow	0ccurr	ence	Volume	
Volume	Error							
Node		Туре	CFS	CFS	days hr	:min	10^6 gal	10^6
gal	Percent							
10		JUNCTION	13.03	13.03	00	0:35	0.304	
0.304	0.000							
20		JUNCTION	4.33	4.33	00	0:35	0.085	
0.085	0.000							
21		JUNCTION	1.66	1.66	00	0:40	0.0573	
0.0573	0.000							

		SWMM Mod	el Pre Dev	velopment	5 Yez	ar	
22		JUNCTION	11.85	11.85	0	00:40	0.274
0.274	0.000	50110112011	11105	11105	Ũ	00110	01271
23		JUNCTION	0.00	5.99	0	00:35	0
0.142	0.000				Ţ		-
24		JUNCTION	0.00	11.85	0	00:40	0
0.274	0.000						
30		JUNCTION	9.95	9.95	0	00:35	0.179
0.179	0.000						
40		JUNCTION	8.12	8.12	0	00:35	0.162
0.162	0.000						
41		JUNCTION	22.23	22.23	0	00:40	0.522
0.522	0.000						
42		JUNCTION	0.00	8.12	0	00:35	0
0.162	0.000						
50		JUNCTION	32.34	32.34	0	00:35	0.593
0.593	0.000						
60		JUNCTION	9.70	9.70	0	00:35	0.226
0.226	0.000						
61		JUNCTION	16.46	16.46	0	00:40	0.453
0.453	0.000						
62		JUNCTION	3.65	3.65	0	00:35	0.0858
0.0858	0.000		40.00				0.045
63		JUNCTION	12.98	12.98	0	00:40	0.345
0.345	0.000		0.00	42.25	•	00.05	
64	0.000	JUNCTION	0.00	13.35	0	00:35	0
0.311	0.000		0.00	26.04	~	00.20	0
65	0.000	JUNCTION	0.00	26.04	0	00:36	0
0.657	0.000		0 00	16 46	0	00.40	0
66	0 000	JUNCTION	0.00	16.46	0	00:40	0
0.453 70	0.000	JUNCTION	5.57	5.57	0	00:35	0.135
0.135	0.000	JUNCTION	1.1	5.57	U	00.55	0.135
71	0.000	JUNCTION	3.87	3.87	0	00:35	0.101
0.101	0.000	JUNCTION	5.07	5.07	0	00.55	0.101
72	0.000	JUNCTION	0.00	3.87	0	00:35	0
0.101	0.000	50110111011	0.00	5.07	Ū	00.55	Ŭ
73	0.000	JUNCTION	0.00	3.87	0	00:35	0
0.101	0.000	50110112011	0.00	5.07	Ũ	00.35	Ū
80		JUNCTION	1.85	1.85	0	00:35	0.0476
0.0476	0.000				-		
81		JUNCTION	5.37	5.37	0	00:35	0.124
0.124	0.000						
82		JUNCTION	1.92	1.92	0	00:35	0.0398
0.0398	0.000						
83		JUNCTION	8.07	8.07	0	00:35	0.185
0.185	0.000						
84		JUNCTION	0.00	7.22	0	00:35	0
0.172	0.000						

		SWMM Model	Pre Dev	velopment 5	5 Yea	ar	
85		JUNCTION	0.00	1.92	0	00:35	0
0.0398	0.000						
PondC		JUNCTION	0.00	9.95	0	00:35	0
0.179	0.000				-		_
PondA		JUNCTION	0.00	13.03	0	00:35	0
0.304	0.000						•
PondB		JUNCTION	0.00	17.56	0	00:41	0
0.416	0.000		0 00	22.24	0	00.25	~
PondE	0.000	JUNCTION	0.00	32.34	0	00:35	0
0.593	0.000		0 00	0 42	~	00.20	~
PondG	0.000	JUNCTION	0.00	9.42	0	00:36	0
0.236 PondH	0.000		0 00	17.11	0	00:36	0
0.397	0.000	JUNCTION	0.00	1/.11	0	00:30	0
PondF	0.000	JUNCTION	0.00	42.32	0	00:41	0
1.11	0.000	JUNCTION	0.00	42.52	U	00.41	Ø
PondD	0.000	JUNCTION	0.00	30.00	0	00:38	0
0.685	0.000	JUNCTION	0.00	50.00	0	00.00	0
Outfall2		OUTFALL	0.00	17.56	0	00:41	0
0.416	0.000	OUTTALL	0.00	17.50	U	00.41	U
Outfall1		OUTFALL	0.00	13.03	0	00:35	0
0.304	0.000	00117122	0.00	19109	Ũ	00155	Ū
Outfall4		OUTFALL	0.00	17.11	0	00:36	0
0.397	0.000				-		-
Outfall3		OUTFALL	0.00	30.00	0	00:38	0
0.685	0.000						
31		OUTFALL	0.00	9.95	0	00:35	0
0.179	0.000						
51		OUTFALL	0.00	32.34	0	00:35	0
0.593	0.000						
74		OUTFALL	0.00	9.42	0	00:36	0
0.236	0.000						
67		OUTFALL	0.00	42.32	0	00:41	0
1.11	0.000						

No nodes were flooded.

Outfall Node	SWMM Flow Freq Pcnt	Model Pre Avg Flow CFS	Development Max Flow CFS	5 Year Total Volume 10^6 gal
Outfall2	67.36	3.82	17.56	0.416
Outfall1	55.28	3.40	13.03	0.304
Outfall4	59.31	4.14	17.11	0.397
Outfall3	60.56	7.00	30.00	0.685
31	50.97	2.17	9.95	0.179
51	51.53	7.12	32.34	0.593
74	58.61	2.49	9.42	0.236
67	65.97	10.41	42.32	1.110
System	58.70	40.55	169.75	3.918

Link Flow Summary *********

Link	Туре	Maximum Flow CFS	Time of Max Occurrence days hr:min		Veloc	Full	Max/ Full Depth
100	DUMMY	 13.03	0	00:35			
200	DUMMY	4.33	0	00:35			
201	DUMMY	1.66	0	00:40			
202	CONDUIT	5.95	0	00:36	10.09	0.00	0.04
204	DUMMY	11.85	0	00:40			
205	CONDUIT	11.83	0	00:41	11.82	0.01	0.06
300	DUMMY	9.95	0	00:35			
400	DUMMY	8.12	0	00:35			
401	CONDUIT	8.03	0	00:37	8.38	0.02	0.10
402	DUMMY	22.23	0	00:40			
500	DUMMY	32.34	0	00:35			
601	DUMMY	16.46	0	00:40			
602	CONDUIT	16.42	0	00:41	6.99	0.07	0.1
603	DUMMY	9.70	0	00:35			
604	DUMMY	3.65	0	00:35			
605	CONDUIT	13.32	0	00:36	11.62	0.01	0.07
606	DUMMY	12.98	0	00:40			
607	CONDUIT	26.04	0	00:36	12.42	0.02	0.09
700	DUMMY	5.57	0	00:35			
701	DUMMY	3.87	0	00:35			
702	DUMMY	3.87	0	00:35			
703	CONDUIT	3.86	0	00:36	4.80	0.01	0.08
801	DUMMY	1.85	0	00:35			

	SWMM Mode	el Pre D	evelop	oment 5	Year		
802	DUMMY	5.37	0	00:35			
803	CONDUIT	7.18	0	00:36	6.34	0.01	0.07
804	DUMMY	1.92	0	00:35			
806	DUMMY	8.07	0	00:35			
805	CONDUIT	1.91	0	00:37	4.00	0.01	0.06
301	DUMMY	9.95	0	00:35			
101	DUMMY	13.03	0	00:35			
206	DUMMY	17.56	0	00:41			
501	DUMMY	32.34	0	00:35			
704	DUMMY	9.42	0	00:36			
807	DUMMY	17.11	0	00:36			
608	DUMMY	42.32	0	00:41			
403	DUMMY	30.00	0	00:38			

Conduit Surcharge Summary ***********

No conduits were surcharged.

Analysis begun on: Fri Apr 10 17:42:01 2020 Analysis ended on: Fri Apr 10 17:42:01 2020 Total elapsed time: < 1 sec EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012) _____ NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***** Analysis Options ****** Flow Units CFS Process Models: Rainfall/Runoff NO RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method KINWAVE Starting Date 01/01/2005 00:00:00 Ending Date 01/01/2005 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:05:00 Routing Time Step 30.00 sec ****** Volume Volume Flow Routing Continuity acre-feet 10^6 gal _ Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 0.000 0.000 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 193.874 63.177 External Outflow 193.874 63.177 Flooding Loss 0.000 0.000 Evaporation Loss 0.000 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (%) -0.000

•	Time Step Summary			
Minimum	Time Step	:	30.00	sec
Average	Time Step	:	30.00	sec
Maximum	Time Step	:	30.00	sec
Percent	in Steady State	:	0.00	
Average	Iterations per Step	:	1.00	
Percent	Not Converging	:	0.00	

Node Depth Summary

		Average Depth		Maximum HGL		of Max rrence	Reported Max Depth
Node	Туре	Feet	Feet		-	hr:min	Feet
10	JUNCTION	0.00	0.00		0	00:00	0.00
20	JUNCTION	0.00	0.00	6982.00		00:00	0.00
21	JUNCTION	0.00	0.00	6953.00		00:00	0.00
22	JUNCTION	0.00	0.00	6936.00	0	00:00	0.00
23	JUNCTION	0.08	0.31	6945.31	0	00:35	0.30
24	JUNCTION	0.13	0.58	6934.58	0	00:40	0.58
30	JUNCTION	0.00	0.00	6985.00	0	00:00	0.00
40	JUNCTION	0.00	0.00	6918.00	0	00:00	0.00
41	JUNCTION	0.00	0.00	6888.00	0	00:00	0.00
42	JUNCTION	0.10	0.48	6911.48	0	00:35	0.48
50	JUNCTION	0.00	0.00	6945.00	0	00:00	0.00
60	JUNCTION	0.00	0.00	6942.00	0	00:00	0.00
61	JUNCTION	0.00	0.00	6893.00	0	00:00	0.00
62	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
63	JUNCTION	0.00	0.00	6882.00	0	00:00	0.00
64	JUNCTION	0.11	0.48	6900.48	0	00:35	0.48
65	JUNCTION	0.17	0.69	6880.69	0	00:36	0.69
66	JUNCTION	0.24	0.89	6868.89	0	00:40	0.89
70	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
71	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
72	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00

	SWMM 5	Year Outp	out Ex 9	9-21-20			
73	JUNCTION	0.11	0.43	6902.43	0	00:35	0.42
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.11	0.48	6872.48	0	00:35	0.47
85	JUNCTION	0.06	0.30	6874.30	0	00:35	0.30
PondC	JUNCTION	0.00	0.00	6956.00	0	00:00	0.00
PondA	JUNCTION	0.00	0.00	6949.00	0	00:00	0.00
PondB	JUNCTION	0.13	0.58	6911.58	0	00:40	0.58
PondE	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
PondG	JUNCTION	0.11	0.42	6900.42	0	00:36	0.42
PondH	JUNCTION	0.11	0.47	6866.47	0	00:36	0.47
PondF	JUNCTION	0.24	0.89	6866.89	0	00:41	0.88
PondD	JUNCTION	0.10	0.48	6881.48	0	00:37	0.47
31	JUNCTION	0.00	0.00	6953.00	0	00:00	0.00
51	JUNCTION	0.00	0.00	6920.00	0	00:00	0.00
67	JUNCTION	0.00	0.00	6865.50	0	00:00	0.00
74	JUNCTION	0.00	0.00	6897.00	0	00:00	0.00
051	JUNCTION	0.00	0.00	6950.00	0	00:00	0.00
052	JUNCTION	0.00	0.00	6924.00	0	00:00	0.00
0S3	JUNCTION	0.00	0.00	6930.00	0	00:00	0.00
0S4	JUNCTION	0.00	0.00	6905.00	0	00:00	0.00
Outfall2	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4	OUTFALL	0.00	0.00	6865.00	0	00:00	0.00
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00

Node Inflow Summary *********

	-1		Maximum	Maximum		Lateral	
Total	Flow		Lateral	Total	Time of Max	Inflow	
Inflow	Balance					_	
Volume	Error		Inflow	Inflow	Occurrence	Volume	
Node		Туре	CFS	CFS	days hr:min	10^6 gal	10^6
gal	Percent						
			42.02	12.02	0 00.25	0.004	
10		JUNCTION	13.03	13.03	0 00:35	0.304	

SWMM 5 Year Output Ex 9-21-20

		SWMM 5	Year Outp	out Ex 9-2	1-20		
0.304	0.000						
20	0.000	JUNCTION	4.33	4.33	0	00:35	0.085
0.085 21	0.000	JUNCTION	1.66	1.66	0	00:40	0.0573
0.0573	0.000	JUNCTION	1.00	1.00	0	00.40	0.0575
22	0.000	JUNCTION	11.85	11.85	0	00:40	0.274
0.274	0.000				Ū		••=
23		JUNCTION	0.00	5.99	0	00:35	0
0.142	0.000						
24		JUNCTION	0.00	21.23	0	00:40	0
0.452	0.000						
30		JUNCTION	9.95	9.95	0	00:35	0.179
0.179	0.000		0.40				
40	0.000	JUNCTION	8.12	8.12	0	00:35	0.162
0.162 41	0.000		22.23	<u></u>	0	00.40	0.522
41 0.522	0.000	JUNCTION	22.23	22.23	0	00:40	0.522
42	0.000	JUNCTION	0.00	8.12	0	00:35	0
0.162	0.000	50110112011	0.00	0.12	Ũ	00.33	Ū
50		JUNCTION	32.34	32.34	0	00:35	0.593
0.593	0.000						
60		JUNCTION	9.70	9.70	0	00:35	0.226
0.226	0.000						
61		JUNCTION	16.46	16.46	0	00:40	0.453
0.453	0.000				-		
62	0.000	JUNCTION	3.65	3.65	0	00:35	0.0858
0.0858	0.000		12 00	12.00	~	00.40	0.245
63 0.345	0.000	JUNCTION	12.98	12.98	0	00:40	0.345
64	0.000	JUNCTION	0.00	13.35	0	00:35	0
0.311	0.000	JONCTION	0.00	19.99	0	00.55	Ū
65		JUNCTION	0.00	26.04	0	00:36	0
0.657	0.000						
66		JUNCTION	0.00	16.46	0	00:40	0
0.453	0.000						
70		JUNCTION	5.57	5.57	0	00:35	0.135
0.135	0.000				_		
71	0.000	JUNCTION	3.87	3.87	0	00:35	0.101
0.101 72	0.000		0 00	2 97	0	00.75	0
0.101	0.000	JUNCTION	0.00	3.87	0	00:35	0
73	0.000	JUNCTION	0.00	3.87	0	00:35	0
0.101	0.000	JONCTION	0.00	5.07	0	00.55	0
80		JUNCTION	1.85	1.85	0	00:35	0.0476
0.0476	0.000						-
81		JUNCTION	5.37	5.37	0	00:35	0.124
0.124	0.000						
82		JUNCTION	1.92	1.92	0	00:35	0.0398

SWMM 5 Year Output Ex 9-21-20

		SWMM 5	9 Year Out	put Ex 9-2	21-20		
0.0398	0.000						
83		JUNCTION	8.07	8.07	0	00:35	0.185
0.185	0.000				_		_
84		JUNCTION	0.00	7.22	0	00:35	0
0.172	0.000		0.00	1 02	0	00.25	0
85	0.000	JUNCTION	0.00	1.92	0	00:35	0
0.0398 PondC	0.000		0 00	9.95	0	00:35	0
0.179	0.000	JUNCTION	0.00	9.95	0	00:35	0
PondA	0.000	JUNCTION	0.00	13.03	0	00:35	0
0.304	0.000	SOUCTION	0.00	19.05	0	00.55	0
PondB	0.000	JUNCTION	0.00	26.96	0	00:40	0
0.594	0.000			_0.120	· ·		· ·
PondE		JUNCTION	0.00	32.34	0	00:35	0
0.593	0.000						
PondG		JUNCTION	0.00	189.42	0	00:36	0
29.3	0.000						
PondH		JUNCTION	0.00	17.11	0	00:36	0
0.397	0.000						
PondF		JUNCTION	0.00	42.32	0	00:41	0
1.11	0.000						
PondD		JUNCTION	0.00	30.00	0	00:38	0
0.685	0.000		0.00	0.05	•	00.05	
31	0.000	JUNCTION	0.00	9.95	0	00:35	0
0.179 51	0.000		0 00	02 24	0	00:35	٥
10.4	0.000	JUNCTION	0.00	93.34	0	00:35	0
67	0.000	JUNCTION	0.00	231.47	0	00:40	0
30.4	0.000	SOUCTION	0.00	231.47	0	00.40	0
74	0.000	JUNCTION	0.00	189.42	0	00:36	0
29.3	0.000				· ·		· ·
0S1		JUNCTION	67.00	67.00	0	00:00	10.8
10.8	0.000						
0S2		JUNCTION	59.00	59.00	0	00:00	9.53
9.53	0.000						
0S3		JUNCTION	61.00	61.00	0	00:00	9.86
9.85	0.000						
0S4		JUNCTION	180.00	180.00	0	00:00	29.1
29.1	0.000	0.175.0.1		05.04			
Outfall:		OUTFALL	0.00	85.96	0	00:40	0
10.1	0.000		0 00	00.00	0	00.25	0
Outfall:		OUTFALL	0.00	80.03	0	00:35	0
11.1	0.000		0 00	341.05	0	00:36	0
Outfall4 41.2	+ 0.000	OUTFALL	0.00	241.02	U	00.00	0
41.2 Outfall:		OUTFALL	0.00	30.00	0	00:38	0
0.685	0.000	JULI ALL	0.00	50.00	0	00.00	0
0.005	0.000						

Node Flooding Summary *********

No nodes were flooded.

Outfall Loading Summary **********

	Flow Freq	Avg Flow	Max Flow	Total Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
Outfall2	100.00	62.68	85.96	10.120
Outfall1	100.00	68.88	80.03	11.121
Outfall4	100.00	255.45	341.05	41.246
Outfall3	60.56	7.00	30.00	0.685
System	90.14	394.01	536.81	63.172

DUMMY

DUMMY

CONDUIT

Link Flow Summary

601 602

603

Link	Туре	Maximum Flow CFS	0ccu	of Max nrrence hr:min	Maximum Veloc ft/sec	Max/ Full Flow	Max/ Full Depth
100	DUMMY	13.03	0	00:35			
200	DUMMY	4.33	0	00:35			
201	DUMMY	1.66	0	00:40			
202	CONDUIT	5.95	0	00:36	10.09	0.00	0.04
204	DUMMY	11.85	0	00:40			
205	CONDUIT	21.20	0	00:40	14.13	0.01	0.08
300	DUMMY	9.95	0	00:35			
400	DUMMY	8.12	0	00:35			
401	CONDUIT	8.03	0	00:37	8.38	0.02	0.10
402	DUMMY	22.23	0	00:40			
500	DUMMY	32.34	0	00:35			

0 00:40

0 00:41

0 00:35

6.99

0.07

0.18

16.46

16.42

9.70

	SWMM	5 Year Out	:put B	Ex 9-21-20			
604	DUMMY	3.65	0	00:35			
605	CONDUIT	13.32	0	00:36	11.62	0.01	0.07
606	DUMMY	12.98	0	00:40			
607	CONDUIT	26.04	0	00:36	12.42	0.02	0.09
700	DUMMY	5.57	0	00:35			
701	DUMMY	3.87	0	00:35			
702	DUMMY	3.87	0	00:35			
703	CONDUIT	3.86	0	00:36	4.80	0.01	0.08
801	DUMMY	1.85	0	00:35			
802	DUMMY	5.37	0	00:35			
803	CONDUIT	7.18	0	00:36	6.34	0.01	0.07
804	DUMMY	1.92	0	00:35			
806	DUMMY	8.07	0	00:35			
805	CONDUIT	1.91	0	00:37	4.00	0.01	0.06
301	DUMMY	9.95	0	00:35			
101	DUMMY	13.03	0	00:35			
206	DUMMY	26.96	0	00:40			
501	DUMMY	32.34	0	00:35			
704	DUMMY	189.42	0	00:36			
807	DUMMY	17.11	0	00:36			
608	DUMMY	42.32	0	00:41			
403	DUMMY	30.00	0	00:38			
41	DUMMY	9.95	0	00:35			
42	DUMMY	93.34	0	00:35			
43	DUMMY	231.47	0	00:40			
44	DUMMY	189.42	0	00:36			
45	DUMMY	180.00	0	00:00			
46	DUMMY	67.00	0	00:00			
47	DUMMY	59.00	0	00:00			
48	DUMMY	61.00	0	00:00			

No conduits were surcharged.

Analysis begun on: Mon Sep 21 16:32:27 2020 Analysis ended on: Mon Sep 21 16:32:27 2020 Total elapsed time: < 1 sec

SWMM Model Pre Development 100 Year

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012) _____ SWMM 100 Year Pre Development ******* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***** Analysis Options ****** Flow Units CFS Process Models: Rainfall/Runoff NO RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method KINWAVE Starting Date 01/01/2005 00:00:00 Ending Date 01/01/2005 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:05:00 Routing Time Step 30.00 sec ****** Volume Volume Flow Routing Continuity acre-feet 10^6 gal ---------Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 0.000 0.000 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 26.931 82.644 External Outflow 82.609 26.919 Flooding Loss 0.000 0.000 Evaporation Loss 0.000 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (%) 0.043

SWMM Model Pre Development 100 Year ****** Link 608 (1)

Routing Time Step Summary ******

Minimum Time Step	:	30.00	sar
•	•		
Average Time Step	:	30.00	sec
Maximum Time Step	:	30.00	sec
Percent in Steady State	:	0.00	
Average Iterations per Step	:	1.04	
Percent Not Converging	:	0.00	

Node Depth Summary

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL	0ccu	rrence	Max Depth
Node	Туре	Feet	Feet	Feet	days	hr:min	Feet
	JUNCTION			6975.00			
	JUNCTION	0.00	0.00	6982.00		00:00	0.00
	JUNCTION	0.00	0.00	6953.00		00:00	0.00
	JUNCTION	0.00	0.00	6936.00		00:00	0.00
23	JUNCTION	0.21	0.59	6945.59	0	00:45	0.58
24	JUNCTION	0.36	1.43	6935.43	0	00:45	1.42
30	JUNCTION	0.00	0.00	6985.00	0	00:00	0.00
40	JUNCTION	0.00	0.00	6918.00	0	00:00	0.00
41	JUNCTION	0.00	0.00	6888.00	0	00:00	0.00
42	JUNCTION	0.24	1.05	6912.05	0	00:40	1.05
50	JUNCTION	0.00	0.00	6945.00	0	00:00	0.00
60	JUNCTION	0.00	0.00	6942.00	0	00:00	0.00
61	JUNCTION	0.00	0.00	6893.00	0	00:00	0.00
62	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
63	JUNCTION	0.00	0.00	6882.00	0	00:00	0.00
64	JUNCTION	0.27	1.04	6901.04	0	00:45	1.03
65	JUNCTION	0.43	1.52	6881.52	0	00:45	1.52
66	JUNCTION	0.61	2.08	6870.08	0	00:50	2.08
70	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
71	JUNCTION	0.00	0.00	6908.00	0	00:00	
	JUNCTION	0.00	0.00	6904.00		00:00	
	JUNCTION	0.27	0.94	6902.94		00:45	0.94

	SHIMM Model	Dea Dave	lonmont	- 100 Voon			
80	SWMM Model				~	00.00	0.00
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.32	1.19	6873.19	0	00:45	1.18
85	JUNCTION	0.15	0.64	6874.64	0	00:40	0.64
PondC	JUNCTION	0.00	0.00	6956.00	0	00:00	0.00
PondA	JUNCTION	0.00	0.00	6949.00	0	00:00	0.00
PondB	JUNCTION	0.39	1.43	6912.43	0	00:46	1.42
PondE	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
PondG	JUNCTION	0.27	0.94	6900.94	0	00:46	0.94
PondH	JUNCTION	0.32	1.18	6867.18	0	00:46	1.18
PondF	JUNCTION	0.61	2.08	6868.08	0	00:51	2.08
PondD	JUNCTION	0.25	1.05	6882.05	0	00:42	1.05
Outfall2	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4	OUTFALL	0.00	0.00	6865.00	0	00:00	0.00
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
31	OUTFALL	0.00	0.00	6953.00	0	00:00	0.00
51	OUTFALL	0.00	0.00	6920.00	0	00:00	0.00
74	OUTFALL	0.00	0.00	6897.00	0	00:00	0.00
67	OUTFALL	0.00	0.00	6865.50	0	00:00	0.00

Node Inflow Summary *********

			Maximum	Maximum		Lateral	
Total	Flow						
	_		Lateral	Total	Time of Max	Inflow	
Inflow	Balance					_	
	_		Inflow	Inflow	Occurrence	Volume	
Volume	Error	-	050	656		1016]	1015
Node	Doncont	Туре	CFS	CFS	days hr:min	10^6 gal	10^6
gal	Percent						
10		JUNCTION	13.03	13.03	0 00:35	0.304	
0.304	0.000						
20		JUNCTION	4.33	4.33	0 00:35	0.085	
0.085	0.000						
21		JUNCTION	20.74	20.74	0 00:50	0.794	
0.794	0.000						

		SWMM Mode	el Pre Dev	elopment	100 Ye	ar	
22		JUNCTION	140.35	140.35	0	00:45	3.79
3.79	0.000						
23		JUNCTION	0.00	23.90	0	00:45	0
0.879	0.000						
24		JUNCTION	0.00	140.35	0	00:45	0
3.79	0.000				•		
30	0.000	JUNCTION	110.70	110.70	0	00:40	2.47
2.47 40	0.000	JUNCTION	40.00	40.00	0	00:40	1.03
1.03	0.000	JUNCTION	40.00	40.00	0	00.40	1.05
41	0.000	JUNCTION	114.87	114.87	0	00:45	3.31
3.31	0.000	5011011011	111107	111.07	Ũ	00.15	5.51
42		JUNCTION	0.00	40.00	0	00:40	0
1.03	0.000						
50		JUNCTION	157.99	157.99	0	00:40	3.76
3.76	0.000						
60		JUNCTION	49.45	49.45	0	00:45	1.43
1.43	0.000						
61		JUNCTION	86.73	86.73	0	00:50	2.87
2.87	0.000		40.40	10 10	•	00.45	0 544
62	0,000	JUNCTION	18.42	18.42	0	00:45	0.544
0.544 63	0.000	JUNCTION	67.82	67.82	0	00:45	2.19
2.19	0.000	JUNCTION	07.02	07.02	0	00.45	2.19
64	0.000	JUNCTION	0.00	67.87	0	00:45	0
1.97	0.000	Soliciton	0.00	07.07	Ũ	00.45	0
65	0.000	JUNCTION	0.00	135.62	0	00:45	0
4.16	0.000						
66		JUNCTION	0.00	86.73	0	00:50	0
2.87	0.000						
70		JUNCTION	28.46	28.46	0	00:45	0.853
0.853	0.000						
71		JUNCTION	20.06	20.06	0	00:45	0.641
0.641	0.000						
72	0.000	JUNCTION	0.00	20.06	0	00:45	0
0.641	0.000		0.00	20.00	0	00.45	0
73 0.641	0.000	JUNCTION	0.00	20.06	0	00:45	0
80	0.000	JUNCTION	21.89	21.89	0	00:45	0.659
0.659	0.000	SOUCTION	21.05	21.05	0	00.45	0.055
81	0.000	JUNCTION	27.12	27.12	0	00:45	0.786
0.786	0.000		_,	_/ •	Ū		
82		JUNCTION	9.51	9.51	0	00:40	0.252
0.252	0.000						
83		JUNCTION	40.86	40.86	0	00:45	1.17
1.17	0.000						
84		JUNCTION	0.00	49.01	0	00:45	0
1.44	0.000						

05		SWMM Model					0
85 0.252	0.000	JUNCTION	0.00	9.51	0	00:40	0
PondC	0.000	JUNCTION	0.00	110.70	0	00:40	0
2.47	0.000	JUNCTION	0.00	110.70	0	00:40	0
PondA	0.000	JUNCTION	0.00	13.03	0	00:35	0
0.304	0.000	JUNCTION	0.00	17.02	0	00.55	0
PondB	0.000	JUNCTION	0.00	164.21	0	00:46	0
4.66	0.000	JUNCTION	0.00	104.21	Ū	00.40	U
PondE	0.000	JUNCTION	0.00	157.99	0	00:40	0
3.76	0.000	5011012011	0.00	237 133	Ŭ	00110	Ũ
PondG		JUNCTION	0.00	48.48	0	00:45	0
1.49	0.000				· ·		•
PondH		JUNCTION	0.00	99.16	0	00:45	0
2.87	0.000						
PondF		JUNCTION	0.00	221.11	0	00:46	0
7.02	0.000						
PondD		JUNCTION	0.00	154.35	0	00:45	0
4.34	0.000						
Outfall2		OUTFALL	0.00	164.21	0	00:46	0
4.66	0.000						
Outfall1		OUTFALL	0.00	13.03	0	00:35	0
0.304	0.000						
Outfall4		OUTFALL	0.00	99.16	0	00:45	0
2.87	0.000						
Outfall3		OUTFALL	0.00	154.35	0	00:45	0
4.34	0.000						
31		OUTFALL	0.00	110.70	0	00:40	0
2.47	0.000				_		_
51		OUTFALL	0.00	157.99	0	00:40	0
3.76	0.000		0.00	40.40		00.45	•
74		OUTFALL	0.00	48.48	0	00:45	0
1.49	0.000		0.00	221 14	0	00.40	0
67 7 02	0.000	OUTFALL	0.00	221.11	0	00:46	0
7.02	0.000						

No nodes were flooded.

Outfall Node	SWMM Mo	del Pre De	evelopment	100 Year
	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CFS	CFS	10^6 gal
Outfall2	76.53	37.73	164.21	4.665
Outfall1	55.28	3.40	13.03	0.304
Outfall4	67.08	26.46	99.16	2.867
Outfall3	67.92	39.52	154.35	4.336
31	53.89	28.39	110.70	2.472
51	58.47	39.76	157.99	3.757
74	67.08	13.78	48.48	1.494
67	74.31	58.49	221.11	7.022
System	65.07	247.53	962.28	26.917

Link Flow Summary *********

			0ccu	irrence	Veloc	Full	Full
Link	Туре	CFS	days	hr:min	ft/sec	Flow	Depth
100	DUMMY	13.03	0	00:35			
200	DUMMY	4.33	0	00:35			
201	DUMMY	20.74	0	00:50			
202	CONDUIT	23.89	0	00:46	15.49	0.01	0.08
204	DUMMY	140.35	0	00:45			
205	CONDUIT	140.32	0	00:46	24.86	0.09	0.20
300	DUMMY	110.70	0	00:40			
400	DUMMY	40.00	0	00:40			
401	CONDUIT	39.84	0	00:42	13.30	0.10	0.21
402	DUMMY	114.87	0	00:45			
500	DUMMY	157.99	0	00:40			
601	DUMMY	86.73	0	00:50			
602	CONDUIT	86.65	0	00:51	11.22	0.36	0.42
603	DUMMY	49.45	0	00:45			
604	DUMMY	18.42	0	00:45			
605	CONDUIT	67.80	0	00:45	19.12	0.05	0.15
606	DUMMY	67.82	0	00:45			
607	CONDUIT	135.63	0	00:46	20.33	0.08	0.19
700	DUMMY	28.46	0	00:45			
701	DUMMY	20.06	0	00:45			
702	DUMMY	20.06	0	00:45			
703	CONDUIT	20.04	0	00:46	7.87	0.08	0.19
801	DUMMY	21.89	0	00:45			

	SWMM Mode	el Pre Deve	lopr	ment 100	Year		
802	DUMMY	27.12	0	00:45			
803	CONDUIT	48.96	0	00:46	11.36	0.06	0.17
804	DUMMY	9.51	0	00:40			
806	DUMMY	40.86	0	00:45			
805	CONDUIT	9.46	0	00:42	6.45	0.04	0.13
301	DUMMY	110.70	0	00:40			
101	DUMMY	13.03	0	00:35			
206	DUMMY	164.21	0	00:46			
501	DUMMY	157.99	0	00:40			
704	DUMMY	48.48	0	00:45			
807	DUMMY	99.16	0	00:45			
608	DUMMY	221.11	0	00:46			
403	DUMMY	154.35	0	00:45			

Conduit Surcharge Summary ***********

No conduits were surcharged.

Analysis begun on: Fri Apr 10 13:11:18 2020 Analysis ended on: Fri Apr 10 13:11:18 2020 Total elapsed time: < 1 sec

SWMM 100 Year Output EX 9-21-20

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012) _____ NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***** Analysis Options ****** Flow Units CFS Process Models: Rainfall/Runoff NO RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method KINWAVE Starting Date 01/01/2005 00:00:00 Ending Date 01/01/2005 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:05:00 Routing Time Step 30.00 sec ****** Volume Volume Flow Routing Continuity acre-feet 10^6 gal _ Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 0.000 0.000 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 272.651 836.701 External Outflow 836.646 272.634 Flooding Loss 0.000 0.000 Evaporation Loss 0.000 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (%) 0.007

SWMM 100 Year Output EX 9-21-20 Highest Flow Instability Indexes Link 205 (1) Link 608 (1) Link 206 (1) ****** Routing Time Step Summary ****** Minimum Time Step 30.00 sec : Average Time Step : 30.00 sec Maximum Time Step : 30.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 1.03 Percent Not Converging 0.00 :

Node Depth Summary *********

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL	0ccu	rrence	Max Depth
Node	Туре	Feet	Feet	Feet	days	hr:min	Feet
10	JUNCTION	0.00	0.00	6975.00	0	00:00	0.00
20	JUNCTION	0.00	0.00	6982.00	0	00:00	0.00
21	JUNCTION	0.00	0.00	6953.00	0	00:00	0.00
22	JUNCTION	0.00	0.00	6936.00	0	00:00	0.00
23	JUNCTION	0.28	0.97	6945.97	0	00:45	0.97
24	JUNCTION	0.45	1.91	6935.91	0	00:45	1.91
30	JUNCTION	0.00	0.00	6985.00	0	00:00	0.00
40	JUNCTION	0.00	0.00	6918.00	0	00:00	0.00
41	JUNCTION	0.00	0.00	6888.00	0	00:00	0.00
42	JUNCTION	0.24	1.05	6912.05	0	00:40	1.05
50	JUNCTION	0.00	0.00	6945.00	0	00:00	0.00
60	JUNCTION	0.00	0.00	6942.00	0	00:00	0.00
61	JUNCTION	0.00	0.00	6893.00	0	00:00	0.00
62	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
63	JUNCTION	0.00	0.00	6882.00	0	00:00	0.00
64	JUNCTION	0.27	1.04	6901.04	0	00:45	1.03
65	JUNCTION	0.43	1.52	6881.52	0	00:45	1.52
66	JUNCTION	0.61	2.08	6870.08	0	00:50	2.08
70	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
71	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00

	SWMM 100	Year Out	put EX	9-21-20			
72	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00
73	JUNCTION	0.27	0.94	6902.94	0	00:45	0.94
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.32	1.19	6873.19	0	00:45	1.18
85	JUNCTION	0.15	0.64	6874.64	0	00:40	0.64
PondC	JUNCTION	0.00	0.00	6956.00	0	00:00	0.00
PondA	JUNCTION	0.00	0.00	6949.00	0	00:00	0.00
PondB	JUNCTION	0.48	1.91	6912.91	0	00:45	1.90
PondE	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
PondG	JUNCTION	0.27	0.94	6900.94	0	00:46	0.94
PondH	JUNCTION	0.32	1.18	6867.18	0	00:46	1.18
PondF	JUNCTION	0.61	2.08	6868.08	0	00:51	2.08
PondD	JUNCTION	0.25	1.05	6882.05	0	00:42	1.05
31	JUNCTION	0.00	0.00	6953.00	0	00:00	0.00
51	JUNCTION	0.00	0.00	6920.00	0	00:00	0.00
67	JUNCTION	0.00	0.00	6865.50	0	00:00	0.00
74	JUNCTION	0.00	0.00	6897.00	0	00:00	0.00
051	JUNCTION	0.00	0.00	6950.00	0	00:00	0.00
052	JUNCTION	0.00	0.00	6924.00	0	00:00	0.00
0S3	JUNCTION	0.00	0.00	6930.00	0	00:00	0.00
0S4	JUNCTION	0.00	0.00	6905.00	0	00:00	0.00
Outfall2	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4	OUTFALL	0.00	0.00	6865.00	0	00:00	0.00
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00

Node Inflow Summary

-----------_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -----Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow **Occurrence** Volume Volume Error Node CFS CFS days hr:min 10^6 gal 10^6 Туре Percent gal _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -----

		SWMM 10	00 Year Ou	tput EX 9-	21-20)	
10		JUNCTION	66.80	66.80	0	00:45	1.92
1.92	0.000						
20		JUNCTION	48.76	48.76	0	00:40	1.18
1.18	0.000						
21		JUNCTION	20.74	20.74	0	00:50	0.794
0.794	0.000						
22		JUNCTION	140.35	140.35	0	00:45	3.79
3.79	0.000						
23		JUNCTION	0.00	68.56	0	00:45	0
1.97	0.000				_		_
24		JUNCTION	0.00	249.20	0	00:45	0
6.26	0.000		440 70	440 70	•		0.47
30	0.000	JUNCTION	110.70	110.70	0	00:40	2.47
2.47	0.000		40.00	40.00	0	00.40	1 02
40	0 000	JUNCTION	40.00	40.00	0	00:40	1.03
1.03 41	0.000	JUNCTION	114.87	114.87	0	00:45	3.31
3.31	0.000	JUNCTION	114.07	114.07	U	00.45	2.21
42	0.000	JUNCTION	0.00	40.00	0	00:40	0
1.03	0.000	JUNCTION	0.00	40.00	0	00.40	0
50	0.000	JUNCTION	157.99	157.99	0	00:40	3.76
3.76	0.000	5011011011	137.33	197,099	Ũ	00.10	5.70
60		JUNCTION	49.45	49.45	0	00:45	1.43
1.43	0.000				÷		
61		JUNCTION	86.73	86.73	0	00:50	2.87
2.87	0.000						
62		JUNCTION	18.42	18.42	0	00:45	0.544
0.544	0.000						
63		JUNCTION	67.82	67.82	0	00:45	2.19
2.19	0.000						
64		JUNCTION	0.00	67.87	0	00:45	0
1.97	0.000						
65		JUNCTION	0.00	135.62	0	00:45	0
4.16	0.000						
66		JUNCTION	0.00	86.73	0	00:50	0
2.87	0.000				•		0.050
70	0.000	JUNCTION	28.46	28.46	0	00:45	0.853
0.853	0.000		20.00	20.00	0	00.45	0 641
71	0.000	JUNCTION	20.06	20.06	0	00:45	0.641
0.641 72	0.000		0 00	20.06	Q	00.15	0
72 0 641	0 000	JUNCTION	0.00	20.06	0	00:45	0
0.641 73	0.000	JUNCTION	0.00	20.06	0	00:45	0
0.641	0.000	JUNCITON	0.00	20.00	U	00.45	0
80	0.000	JUNCTION	21.89	21.89	0	00:45	0.659
0.659	0.000	JUNCTION	21.07	21,02	0	50.75	0.055
81	0.000	JUNCTION	27.12	27.12	0	00:45	0.786
0.786	0.000				Ũ		0.,00

		SIMMM 10	0 Year Oi	utput EX 9	9-21-20	•	
82		JUNCTION	9.51	9.51	0	, 00:40	0.252
0.252	0.000	5011012011	5151	5.51	Ū	00110	01292
83		JUNCTION	40.86	40.86	0	00:45	1.17
1.17	0.000						
84		JUNCTION	0.00	49.01	0	00:45	0
1.44	0.000						
85		JUNCTION	0.00	9.51	0	00:40	0
0.252	0.000						
PondC		JUNCTION	0.00	110.70	0	00:40	0
2.47	0.000						
PondA		JUNCTION	0.00	66.80	0	00:45	0
1.92	0.000						
PondB	0.000	JUNCTION	0.00	317.41	0	00:45	0
8.22	0.000		0 00	157 00	0	00.40	0
PondE	0 000	JUNCTION	0.00	157.99	0	00:40	0
3.76 PondG	0.000		0.00	643.48	0	00:45	0
97.6	0.000	JUNCTION	0.00	043.40	0	00.45	0
PondH	0.000	JUNCTION	0.00	99.16	0	00:45	0
2.87	0.000	JUNCTION	0.00	55.10	Ū	00.45	0
PondF	0.000	JUNCTION	0.00	221.11	0	00:46	0
7.02	0.000	5011012011	0.00		Ŭ	00110	Ū
PondD		JUNCTION	0.00	154.35	0	00:45	0
4.34	0.000						
31		JUNCTION	0.00	110.70	0	00:40	0
2.47	0.000						
51		JUNCTION	0.00	374.99	0	00:40	0
38.8	0.000						
67		JUNCTION	0.00	864.52	0	00:46	0
105	0.000						
74		JUNCTION	0.00	643.48	0	00:45	0
97.6	0.000				-		
0S1	0.000	JUNCTION	413.00	413.00	0	00:00	66.7
66.7	0.000		200 00	280.00	0	00.00	45 0
0S2	0 000	JUNCTION	280.00	280.00	0	00:00	45.2
45.2 0S3	0.000	JUNCTION	217.00	217.00	0	00:00	35.1
35	0.000	JUNCTION	217.00	217.00	0	00.00	22.1
0S4	0.000	JUNCTION	595.00	595.00	0	00:00	96.1
96.1	0,000	5011011	555.00	555.00	Ŭ	00.00	50.1
Outfall		OUTFALL	0.00	597.41	0	00:45	0
53.4	0.000	00117122	0.00	557112	Ū	00115	Ū
Outfall		OUTFALL	0.00	479.80	0	00:45	0
68.6	0.000						
Outfall		OUTFALL	0.00	1335.77	0	00:45	0
146	0.000						
Outfall	13	OUTFALL	0.00	154.35	0	00:45	0
4.34	0.000						

Node Flooding Summary **********

No nodes were flooded.

Outfall Loading Summary ***********

Outfall Node	Flow Freq Pcnt	Avg Flow CFS	Max Flow CFS	Total Volume 10^6 gal
Outfall2	100.00	330.89	597.41	53.430
Outfall1	100.00	424.90	479.80	68.605
Outfall4	100.00	905.71	1335.77	146.242
Outfall3	67.92	39.52	154.35	4.336
System	91.98	1701.02	2567.34	272.613

Link Flow Summary

Link	Туре	Maximum Flow CFS	0ccu	of Max Irrence hr:min	Maximum Veloc ft/sec	Max/ Full Flow	Max/ Full Depth
100	DUMMY	66.80	0	00:45			
200	DUMMY	48.76	0	00:40			
201	DUMMY	20.74	0	00:50			
202	CONDUIT	68.51	0	00:45	21.36	0.04	0.14
204	DUMMY	140.35	0	00:45			
205	CONDUIT	248.90	0	00:45	29.30	0.16	0.27
300	DUMMY	110.70	0	00:40			
400	DUMMY	40.00	0	00:40			
401	CONDUIT	39.84	0	00:42	13.30	0.10	0.21
402	DUMMY	114.87	0	00:45			
500	DUMMY	157.99	0	00:40			
601	DUMMY	86.73	0	00:50			
602	CONDUIT	86.65	0	00:51	11.22	0.36	0.42

	SWMM	100 Year (Dutput	EX 9-21-	20		
603	DUMMY	49.45	0	00:45			
604	DUMMY	18.42	0	00:45			
605	CONDUIT	67.80	0	00:45	19.12	0.05	0.15
606	DUMMY	67.82	0	00:45			
607	CONDUIT	135.63	0	00:46	20.33	0.08	0.19
700	DUMMY	28.46	0	00:45			
701	DUMMY	20.06	0	00:45			
702	DUMMY	20.06	0	00:45			
703	CONDUIT	20.04	0	00:46	7.87	0.08	0.19
801	DUMMY	21.89	0	00:45			
802	DUMMY	27.12	0	00:45			
803	CONDUIT	48.96	0	00:46	11.36	0.06	0.17
804	DUMMY	9.51	0	00:40			
806	DUMMY	40.86	0	00:45			
805	CONDUIT	9.46	0	00:42	6.45	0.04	0.13
301	DUMMY	110.70	0	00:40			
101	DUMMY	66.80	0	00:45			
206	DUMMY	317.41	0	00:45			
501	DUMMY	157.99	0	00:40			
704	DUMMY	643.48	0	00:45			
807	DUMMY	99.16	0	00:45			
608	DUMMY	221.11	0	00:46			
403	DUMMY	154.35	0	00:45			
41	DUMMY	110.70	0	00:40			
42	DUMMY	374.99	0	00:40			
43	DUMMY	864.52	0	00:46			
44	DUMMY	643.48	0	00:45			
45	DUMMY	595.00	0	00:00			
46	DUMMY	413.00	0	00:00			
47	DUMMY	280.00	0	00:00			
48	DUMMY	217.00	0	00:00			

No conduits were surcharged.

Analysis begun on: Mon Sep 21 16:37:19 2020 Analysis ended on: Mon Sep 21 16:37:19 2020 Total elapsed time: < 1 sec SWMM 5 Year Post Development

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

Analysis Options *********

<u> </u>	
Flow Units	CFS
Process Models:	
Rainfall/Runoff	NO
RDII	NO
Snowmelt	NO
Groundwater	NO
Flow Routing	YES
Ponding Allowed	NO
Water Quality	NO
Flow Routing Method	KINWAVE
Starting Date	01/01/2005 00:00:00
Ending Date	01/02/2005 06:00:00
Antecedent Dry Days	0.0
Report Time Step	00:05:00
Routing Time Step	

******	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	39.629	12.914
External Outflow	23.957	7.807
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	15.654	5.101
Continuity Error (%)	0.045	

Routing Time Step Summary *********			
Minimum Time Step	:	30.00	sec
Average Time Step	:	30.00	sec
Maximum Time Step	:	30.00	sec
Percent in Steady State	:	0.00	
Average Iterations per Step	:	1.01	
Percent Not Converging	:	0.00	

Node Depth Summary ********

66

Average Maximum Maximum Time of Max Reported Depth Depth HGL **Occurrence** Max Depth Node Type Feet Feet Feet days hr:min Feet ----10 JUNCTION 0.00 0.00 6975.00 0 00:00 0.00 20 0.00 0.00 6982.00 00:00 0.00 JUNCTION 0 21 0.00 JUNCTION 0.00 6953.00 0 00:00 0.00 0.00 22 JUNCTION 0.00 6936.00 0 00:00 0.00 23 0.04 0.75 6945.75 0.74 JUNCTION 0 00:30 24 JUNCTION 0.21 1.17 6935.17 0 00:30 1.16 30 0.00 0.00 0.00 JUNCTION 6985.00 0 00:00 31 JUNCTION 0.17 0.20 6953.20 0 02:23 0.20 0.59 67 JUNCTION 0.16 6866.09 0 01:57 0.59 40 JUNCTION 0.00 0.00 6918.00 0 00:00 0.00 41 0.00 0.00 JUNCTION 6888.00 0 00:00 0.00 42 0.03 0.82 6911.82 0.81 JUNCTION 0 00:30 50 JUNCTION 0.00 0.00 6945.00 0 00:00 0.00 51 JUNCTION 0.03 0.21 6920.21 0 01:12 0.21 60 JUNCTION 0.00 0.00 6942.00 0 00:00 0.00 61 JUNCTION 0.00 0.00 6893.00 0 00:00 0.00 62 0.00 JUNCTION 0.00 6908.00 0 00:00 0.00 63 0.00 0.00 6882.00 0 00:00 0.00 JUNCTION 0.03 64 JUNCTION 0.66 6900.66 0 00:35 0.66 65 JUNCTION 0.05 1.10 6881.10 0 00:35 1.10

0.08

JUNCTION

1.71

6869.71

0

00:35

1.71

		SWMM 5 Year	r Outpu	t			
70	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
71	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
72	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00
73	JUNCTION	0.03	0.55	6902.55	0	00:35	0.54
74	JUNCTION	0.02	0.24	6897.24	0	01:15	0.24
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.04	0.80	6872.80	0	00:30	0.79
85	JUNCTION	0.02	0.48	6874.48	0	00:30	0.47
Outfall2	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4	OUTFALL	0.16	0.59	6865.59	0	01:57	0.59
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
PondB	STORAGE	5.89	6.37	6917.37	0	01:30	6.37
PondC	STORAGE	4.70	5.56	6961.56	0	02:23	5.56
PondA	STORAGE	4.01	4.67	6953.67	0	01:46	4.67
PondD	STORAGE	5.54	6.51	6887.51	0	02:25	6.51
PondE	STORAGE	4.04	4.77	6927.77	0	01:12	4.77
PondF	STORAGE	5.76	6.73	6872.73	0	02:02	6.73
PondG	STORAGE	0.11	1.20	6901.20	0	01:15	1.20
PondH	STORAGE	4.49	5.12	6871.12	0	02:09	5.12

Node Inflow Summary **********

_____ -----

			Maximum	Maximum		Lateral	
Total	Flow		Lateral	Total	Time of Max	Inflow	
Inflow	Balance		Inflow	Inflow	Occurrence	Volume	
Volume	Error		THEFT	INIIOW	occurrence	VOLUME	
Node		Туре	CFS	CFS	days hr:min	10^6 gal	10^6
gal	Percent						
10	0.000	JUNCTION	30.72	30.72	0 00:35	0.705	
0.705 20	0.000	JUNCTION	29.46	29.46	0 00:30	0.578	
0.578	0.000						
21		JUNCTION	12.02	12.02	0 00:35	0.376	

			SWMM 5 Yea	r Output			
0.376 22	0.000	JUNCTION	92.76	92.76	0	00:30	2.04
2.04 23	0.000	JUNCTION	0.00	40.92	0	00:30	0
0.954	0.000				U		0
24 2.96	0.000	JUNCTION	0.00	93.26	0	00:30	0
30		JUNCTION	77.99	77.99	0	00:30	1.38
1.38 31	0.000	JUNCTION	0.00	1.52	0	02:23	0
0.925 67	0.000	JUNCTION	0.00	23.06	0	01:57	0
2.4	-0.000				U		
40 0.438	0.000	JUNCTION	24.15	24.15	0	00:30	0.438
41		JUNCTION	98.47	98.47	0	00:30	1.83
1.83 42	0.000	JUNCTION	0.00	24.15	0	00:30	0
0.438 50	-0.000	JUNCTION	46.88	46.88	0	00:35	0.982
0.982	0.000				U		0.982
51 0.69	0.000	JUNCTION	0.00	18.70	0	01:12	0
60		JUNCTION	16.28	16.28	0	00:35	0.424
0.424 61	0.000	JUNCTION	60.11	60.11	0	00:35	1.38
1.38 62	0.000	JUNCTION	11.36	11.36	0	00:30	0.234
0.234	0.000						
63 0.975	0.000	JUNCTION	42.32	42.32	0	00:30	0.975
64	0,000	JUNCTION	0.00	26.88	0	00:35	0
0.659 65	0.000	JUNCTION	0.00	69.12	0	00:35	0
1.63 66	0.000	JUNCTION	0.00	60.11	0	00:35	0
1.38	0.000				-		
70 0.32	0.000	JUNCTION	13.78	13.78	0	00:30	0.32
71	0,000	JUNCTION	6.55	6.55	0	00:35	0.191
0.191 72	0.000	JUNCTION	0.00	6.55	0	00:35	0
0.191 73	0.000	JUNCTION	0.00	6.55	0	00:35	0
0.191	0.000						
74 0.51	-0.000	JUNCTION	0.00	9.05	0	01:15	0
80		JUNCTION	5.68	5.68	0	00:35	0.173

Page 4

			SWMM 5 Yea	ar Output			
0.173	0.000						
81		JUNCTION	16.24	16.24	0	00:30	0.333
0.333	0.000						
82		JUNCTION	5.21	5.21	0	00:30	0.1
0.1	0.000						
83		JUNCTION	20.93	20.93	0	00:30	0.453
0.453	0.000						
84		JUNCTION	0.00	21.67	0	00:30	0
0.507	0.000						
85		JUNCTION	0.00	5.21	0	00:30	0
0.1	0.000						
Outfall2	2	OUTFALL	0.00	34.45	0	01:30	0
2.22	0.000						
Outfall1		OUTFALL	0.00	5.43	0	01:46	0
0.441	0.000						
Outfall4	ŀ	OUTFALL	0.00	35.27	0	01:51	0
3.71	0.000						
Outfall3	3	OUTFALL	0.00	2.52	0	02:25	0
1.43	0.000						
PondB		STORAGE	0.00	134.27	0	00:31	0
3.91	0.047						
PondC		STORAGE	0.00	77.99	0	00:30	0
1.38	0.005						
PondA		STORAGE	0.00	30.72	0	00:35	0
0.705	0.012						
PondD		STORAGE	0.00	120.96	0	00:30	0
2.27	0.003						
PondE		STORAGE	0.00	46.88	0	00:35	0
0.982	0.118						
PondF		STORAGE	0.00	129.20	0	00:35	0
3.01	0.014						
PondG		STORAGE	0.00	20.07	0	00:35	0
0.51	0.116						
PondH		STORAGE	0.00	47.25	0	00:32	0
1.06	0.001						

No nodes were flooded.

				_				
of Max	Maximum	Average	Avg	Evap	Exfil	Maximum	Max	Time
		Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	
Occurrenc		4000 (10	- 11				- 11	
Storage hr:min	CFS	1000 ft3	Full	Loss	Loss	1000 ft3	Full	days
	crs							
PondB		241.825	30	0	0	296.729	37	0
01:30	34.45							
PondC	1 50	111.256	19	0	0	174.130	30	0
02:23 PondA	1.52	53.736	15	0	0	79.797	22	0
01:46	5.43	551750		Ū	Ū			Ū
PondD		192.634	28	0	0	287.984	41	0
02:24 PondE	2.52	56.473	16	0	0	85.437	24	0
01:11	18.70	50.475	10	U	U	03.437	24	0
PondF		235.289	29	0	0	351.325	44	0
02:02	16.38					24 222	-	
PondG 01:15	9.05	2.647	0	0	0	31.290	6	0
PondH		88.617	17	0	0	127.653	25	0
02:09	4.21							

SWMM 5 Year Output

tal
ume
gal
223
441
709
434
806

SWMM 5 Year Output

Link Flow Summary *********

		Maximum	Time of Max		Maximum	Max/	Max/
		Flow	0ccu	irrence	Veloc	Full	Full
Link	Туре	CFS	days	hr:min	ft/sec	Flow	Depth
100	DUMMY	30.72	0	00:35			
200	DUMMY	29.46		00:30			
201	DUMMY	12.02	0	00:35			
202	CONDUIT	40.84		00:31	18.27	0.02	0.11
203	CONDUIT	1.52	0	02:24	6.34	0.00	0.05
204	DUMMY	92.76	0	00:30			
205	CONDUIT	93.43	0	00:31	22.09	0.06	0.17
300	DUMMY	77.99		00:30			
400	DUMMY	24.15	0	00:30			
401	CONDUIT	23.53	0	00:32	11.46	0.06	0.16
402	DUMMY	98.47		00:30			
500	DUMMY	46.88	0	00:35			
601	DUMMY	60.11	0	00:35			
602	CONDUIT	60.09	0	00:35	10.17	0.25	0.34
603	DUMMY	16.28	0	00:35			
604	DUMMY	11.36	0	00:30			
605	CONDUIT	26.88		00:35	14.61	0.02	0.09
606	DUMMY	42.32	0	00:30			
607	CONDUIT	69.12	0	00:31	16.65	0.04	0.14
700	DUMMY	13.78	0	00:30			
701	DUMMY	6.55	0	00:35			
702	DUMMY	6.55	0	00:35			
703	CONDUIT	6.54	0	00:36	5.62	0.03	0.11
801	DUMMY	5.68	0	00:35			
802	DUMMY	16.24		00:30			
803	CONDUIT	21.49	0	00:32	8.87	0.03	0.11
804	DUMMY	5.21	0	00:30			
806	DUMMY	20.93	0	00:30			
805	CONDUIT	5.08	0	00:32	5.42	0.02	0.09
808	CONDUIT	23.06	0	01:57	2.25	0.00	0.06
800	CONDUIT	8.95	0	01:25	2.34	0.00	0.02
600	CONDUIT	18.26	0	01:17	5.75	0.00	0.03
101	DUMMY	5.43	0	01:46			
206	DUMMY	34.45	0	01:30			
301	DUMMY	1.52	0	02:23			
501	DUMMY	18.70	0	01:12			
704	DUMMY	9.05	0	01:15			
807	DUMMY	4.21	0	02:09			
608	DUMMY	16.38	0	02:02			
403	DUMMY	2.52	0	02:25			

SWMM 5 Year Output

No conduits were surcharged.

Analysis begun on: Mon Apr 13 19:10:46 2020 Analysis ended on: Mon Apr 13 19:10:46 2020 Total elapsed time: < 1 sec

SWMM 5 Year Output 9-21-20

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012) _____ NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***** Analysis Options ****** Flow Units CFS Process Models: Rainfall/Runoff NO RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method KINWAVE Starting Date 01/01/2005 00:00:00 Ending Date 01/02/2005 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:05:00 Routing Time Step 30.00 sec ****** Volume Volume Flow Routing Continuity acre-feet 10^6 gal _ Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 0.000 0.000 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 949.387 309.372 External Outflow 930.375 303.177 Flooding Loss 0.000 0.000 Evaporation Loss 0.000 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 6.548 20.095 Continuity Error (%) -0.114

Routing Time Step Summary ***********

:	30.00 sec
:	30.00 sec
:	30.00 sec
:	0.00
:	1.00
:	0.00
	:

Node Depth Summary *********

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL	0ccu	rrence	Max Depth
Node	Туре	Feet	Feet	Feet	days	hr:min	Feet
10	JUNCTION	0.00	0.00	6975.00	0	00:00	0.00
20	JUNCTION	0.00	0.00	6982.00	0	00:00	0.00
21	JUNCTION	0.00	0.00	6953.00	0	00:00	0.00
22	JUNCTION	0.00	0.00	6936.00	0	00:00	0.00
23	JUNCTION	0.04	0.75	6945.75	0	00:30	0.74
24	JUNCTION	0.21	1.17	6935.17	0	00:30	1.16
30	JUNCTION	0.00	0.00	6985.00	0	00:00	0.00
31	JUNCTION	0.17	0.20	6953.20	0	02:23	0.20
67	JUNCTION	1.87	1.97	6867.47	0	01:59	1.97
40	JUNCTION	0.00	0.00	6918.00	0	00:00	0.00
41	JUNCTION	0.00	0.00	6888.00	0	00:00	0.00
42	JUNCTION	0.03	0.82	6911.82	0	00:30	0.81
50	JUNCTION	0.00	0.00	6945.00	0	00:00	0.00
51	JUNCTION	0.71	0.71	6920.71	0	00:32	0.71
60	JUNCTION	0.00	0.00	6942.00	0	00:00	0.00
61	JUNCTION	0.00	0.00	6893.00	0	00:00	0.00
62	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
63	JUNCTION	0.00	0.00	6882.00	0	00:00	0.00
64	JUNCTION	0.03	0.66	6900.66	0	00:35	0.66
65	JUNCTION	0.05	1.10	6881.10	0	00:35	1.10
66	JUNCTION	0.08	1.71	6869.71	0	00:35	1.71
70	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00

	SWMM 5	Year (Output 9-	21-20			
71	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
72	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00
73	JUNCTION	0.03	0.55	6902.55	0	00:35	0.54
74	JUNCTION	1.36	1.40	6898.40	0	01:15	1.40
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.04	0.80	6872.80	0	00:30	0.79
85	JUNCTION	0.02	0.48	6874.48	0	00:30	0.47
051	JUNCTION	0.45	0.45	6953.05	0	00:00	0.45
0S3	JUNCTION	0.71	0.71	6923.51	0	00:00	0.71
0S4	JUNCTION	1.21	1.21	6901.01	0	00:00	1.21
0S2	JUNCTION	0.42	0.42	6924.42	0	00:00	0.42
Outfall2	OUTFALL	0.42	0.42	6910.42	0	03:03	0.42
Outfall1	OUTFALL	0.45	0.45	6947.45	0	01:12	0.45
Outfall4	OUTFALL	1.87	1.97	6866.97	0	01:59	1.97
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
PondB	STORAGE	6.42	6.96	6917.96	0	02:52	6.96
PondC	STORAGE	4.70	5.56	6961.56	0	02:23	5.56
PondA	STORAGE	5.16	6.43	6955.43	0	02:35	6.43
PondD	STORAGE	5.57	6.66	6887.66	0	02:07	6.65
PondE	STORAGE	3.99	4.85	6927.85	0	01:03	4.85
PondF	STORAGE	5.76	6.72	6872.72	0	02:04	6.72
PondG	STORAGE	0.11	1.20	6901.20	0	01:15	1.20
PondH	STORAGE	4.38	5.01	6871.01	0	02:39	5.01

Node Inflow Summary **********

			Maximum	Maximum		Lateral	
Total	Flow						
Inflow	Balance		Lateral	Total	Time of Max	Inflow	
IIIIIOW	Darance		Inflow	Inflow	Occurrence	Volume	
Volume Node	Error	Turno	CFS		dave barmin	1006 201	1000
gal	Percent	Туре	CF3	CFS	days hr:min	10^6 gal	10^6
10 0.705	0.000	JUNCTION	30.72	30.72	0 00:35	0.705	

		SWMM	5 Year Ou	utput 9-21-	-20		
20		JUNCTION	29.46	29.46	0	00:30	0.578
0.578	0.000						
21		JUNCTION	12.02	12.02	0	00:35	0.376
0.376	0.000						
22		JUNCTION	92.76	92.76	0	00:30	2.04
2.04	0.000						
23	0.000	JUNCTION	0.00	40.92	0	00:30	0
0.954 24	0.000	JUNCTION	0.00	93.26	0	00:30	0
2.96	0.000	JUNCTION	0.00	95.20	U	00.50	0
30	0.000	JUNCTION	77.99	77.99	0	00:30	1.38
1.38	0.000	5011012011		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ũ	00.50	1150
31		JUNCTION	0.00	1.52	0	02:23	0
0.925	0.000						
67		JUNCTION	0.00	201.42	0	01:59	0
147	0.000						
40		JUNCTION	24.15	24.15	0	00:30	0.438
0.438	0.000						
41		JUNCTION	98.47	98.47	0	00:30	1.83
1.83	0.000			24.45	~		<u> </u>
42	0.000	JUNCTION	0.00	24.15	0	00:30	0
0.438 50	-0.000	JUNCTION	46.88	46.88	0	00:35	0.982
0.982	0.000	JUNCTION	40.00	40.00	U	0.55	0.962
51	0.000	JUNCTION	0.00	85.04	0	01:03	0
50	0.000	5011012011	0100	05101	Ũ	02105	0
60		JUNCTION	16.28	16.28	0	00:35	0.424
0.424	0.000						
61		JUNCTION	60.11	60.11	0	00:35	1.38
1.38	0.000						
62		JUNCTION	11.36	11.36	0	00:30	0.234
0.234	0.000						
63		JUNCTION	42.32	42.32	0	00:30	0.975
0.975	0.000		0 00		0	00.25	0
64 0 650	0.000	JUNCTION	0.00	26.88	0	00:35	0
0.659 65	0.000	JUNCTION	0.00	69.12	0	00:35	0
1.63	0.000	JUNCTION	0.00	09.12	0	00.00	0
66	0.000	JUNCTION	0.00	60.11	0	00:35	0
1.38	0.000				· ·		· ·
70		JUNCTION	13.78	13.78	0	00:30	0.32
0.32	0.000						
71		JUNCTION	6.55	6.55	0	00:35	0.191
0.191	0.000						
72		JUNCTION	0.00	6.55	0	00:35	0
0.191	0.000			a	-		-
73	0.000	JUNCTION	0.00	6.55	0	00:35	0
0.191	0.000						

		SWMM	5 Year Ou	utput 9-21	-20		
74		JUNCTION	0.00	189.05	0	01:15	0
146	0.000						
80	0.000	JUNCTION	5.68	5.68	0	00:35	0.173
0.173 81	0.000	JUNCTION	16.24	16.24	0	00:30	0.333
0.333	0.000	JUNCTION	10.24	10.24	0	00.50	0.555
82	0.000	JUNCTION	5.21	5.21	0	00:30	0.1
0.1	0.000				-		
83		JUNCTION	20.93	20.93	0	00:30	0.453
0.453	0.000						
84		JUNCTION	0.00	21.67	0	00:30	0
0.507	0.000				-		_
85	0.000	JUNCTION	0.00	5.21	0	00:30	0
0.1	0.000		67 00	67.00	٥	00.00	FA 1
0S1 54.1	0.000	JUNCTION	67.00	67.00	0	00:00	54.1
0S3	0.000	JUNCTION	61.00	61.00	0	00:00	49.3
49.3	0.000	JUNCTION	01.00	01.00	0	00.00	
054	01000	JUNCTION	180.00	180.00	0	00:00	145
145	0.000				-		_
0S2		JUNCTION	59.00	59.00	0	00:00	47.7
47.7	0.000						
Outfall	.2	OUTFALL	0.00	61.68	0	02:52	0
49.4	0.000						
Outfall		OUTFALL	0.00	67.69	0	02:35	0
54.5	0.000			076.40			
Outfall		OUTFALL	0.00	276.10	0	01:07	0
198 Outfall	0.000		0 00	0 50	٥	02:07	٥
1.45	0.000	OUTFALL	0.00	8.58	0	02:07	0
PondB	0.000	STORAGE	0.00	134.27	0	00:31	0
3.91	-0.000	STORAGE	0.00	194.27	Ŭ	00.51	Ŭ
PondC		STORAGE	0.00	77.99	0	00:30	0
1.38	0.005						
PondA		STORAGE	0.00	30.72	0	00:35	0
0.705	0.003						
PondD		STORAGE	0.00	120.96	0	00:30	0
2.27	0.003				-		_
PondE	0 100	STORAGE	0.00	46.88	0	00:35	0
0.982	0.190	CTODACE	0 00	120 20	0	00.25	0
PondF 3.01	0 010	STORAGE	0.00	129.20	0	00:35	0
PondG	0.010	STORAGE	0.00	20.07	0	00:35	0
0.51	0.116	JIUNAUL	0.00	20.07	0		0
PondH	0.110	STORAGE	0.00	47.25	0	00:32	0
1.06	0.003				-		J

*****	******		5 Year	Output	9-21-20					
	ooding Summary									
No node	es were flooded	J.								
•	• Volume Summan *************	•								
of Max	Maximum	Average	Avg	Evap	Exfil	Maximum	Max	Time		
		Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt			
Occurrenc Storage hr:min		1000 ft3	Full	Loss	Loss	1000 ft3	Full	days		
PondB		321.956	38	0	0	389.908	46	0		
02:51 PondC	2.68	111.256	19	0	0	174.130	30	0		
02:23	1.52	111.250	17	0	0	174.150	50	0		
PondA		59.417	29	0	0	88.970	44	0		
02:35	0.69	104 527	20	0	0	270 050	45	0		
PondD 02:07	8.58	184.527	30	0	0	278.950	45	0		
PondE	0.90	46.471	16	0	0	72.497	25	0		
01:03	24.04									
PondF		238.240	29	0	0	353.902	43	0		
02:03	15.59	2 6 4 7	~	~	0	21 200	-	•		
PondG 01:15	9.05	2.647	0	0	0	31.289	6	0		
PondH	2.03	86.593	14	0	0	132.766	21	0		
02:39	1.11			Ū	-	0		-		
*****	****	* * *								

******************************** Outfall Loading Summary ***********************

Flow	Avg	Max	Total
Freq	Flow	Flow	Volume

	SWM	1M 5 Year	Output	9-21-2	20		
Outfall Node	Pcnt				10^6 gal		
	99.97						
	99.97						
	99.89						
Outfall3	99.69	1.80	8.	58 	1.447		
System	99.88	375.63	407.	24	303.154		

Link Flow Summary ************************************							
		 Maximum	Time	of Max	Maximum	 Max/	Max/
		Flow	0ccu	rrence	Veloc	Full	Full
Link	Туре				ft/sec	Flow	Depth
100	DUMMY	30.72	 0	00:35			
200	DUMMY	29.46		00:30			
200	DUMMY	12.02		00:35			
202	CONDUIT	40.84		00:31	18.27	0.02	0.11
203	CONDUIT	1.52		02:24			0.05
204	DUMMY	92.76				0.00	0.05
205	CONDUIT	93.43				0.06	0.17
300	DUMMY	77.99		00:30			
400	DUMMY	24.15		00:30			
401	CONDUIT	23.53		00:32		0.06	0.16
402	DUMMY	98.47					
500	DUMMY	46.88	0	00:35			
601	DUMMY	60.11	0	00:35			
602	CONDUIT	60.09	0	00:35	10.17	0.25	0.34
603	DUMMY	16.28	0	00:35			
604	DUMMY	11.36	0	00:30			
605	CONDUIT	26.88	0	00:35	14.61	0.02	0.09
606	DUMMY	42.32	0	00:30			
607	CONDUIT	69.12	0	00:31	16.65	0.04	0.14
700	DUMMY	13.78	0	00:30			
701	DUMMY	6.55	0	00:35			
702	DUMMY	6.55	0	00:35			
703	CONDUIT	6.54	0	00:36	5.62	0.03	0.11
801	DUMMY	5.68	0	00:35			
802	DUMMY	16.24	0	00:30			
803	CONDUIT	21.49	0	00:32	8.87	0.03	0.11
804	DUMMY	5.21	0	00:30			
806	DUMMY	20.93	0	00:30			
805	CONDUIT	5.08	0	00:32	5.42	0.02	0.09

	SWMM	5 Year	Output	9-21-20			
808	CONDUIT	201.42	0	01:59	4.47	0.03	0.20
800	CONDUIT	189.04	0	01:19	6.57	0.02	0.14
600	CONDUIT	84.88	0	01:06	9.93	0.00	0.06
EastForkTrib	CONDUIT	61.00	0	00:32	3.08	0.01	0.07
EastFork	CONDUIT	180.00	0	00:24	4.29	0.03	0.15
MainStem	CONDUIT	67.00	0	01:15	2.39	0.00	0.05
MainStemTrib	CONDUIT	59.00	0	03:06	2.28	0.00	0.04
101	DUMMY	0.69	0	02:35			
206	DUMMY	2.68	0	02:52			
301	DUMMY	1.52	0	02:23			
501	DUMMY	24.04	0	01:03			
704	DUMMY	9.05	0	01:15			
807	DUMMY	1.11	0	02:39			
608	DUMMY	15.59	0	02:04			
403	DUMMY	8.58	0	02:07			

No conduits were surcharged.

Analysis begun on: Mon Sep 21 16:22:13 2020 Analysis ended on: Mon Sep 21 16:22:14 2020 Total elapsed time: 00:00:01

SWMM 100 Year Output

SWMM 100 Year Post Development

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012) NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***** Analysis Options ****** Flow Units CFS Process Models: Rainfall/Runoff NO RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method KINWAVE Starting Date 01/01/2005 00:00:00 Ending Date 01/02/2005 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:05:00 Routing Time Step 30.00 sec ****** Volume Volume Flow Routing Continuity acre-feet 10^6 gal ******** ----------Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 0.000 0.000 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 123.320 40.186 External Outflow 105.086 34.244 Flooding Loss 0.000 0.000 Evaporation Loss 0.000 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 18.084 5.893 Continuity Error (%) 0.122

All links are stable.

Routing Time Step Summary *********			
Minimum Time Step	:	30.00 sec	2
Average Time Step	:	30.00 sec	2
Maximum Time Step	:	30.00 sec	2
Percent in Steady State	:	0.00	
Average Iterations per Step	:	1.02	
Percent Not Converging	:	0.00	

Node Depth Summary *********

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL	0ccu	rrence	Max Depth
Node	Туре	Feet	Feet	Feet	days	hr:min	Feet
10							
10	JUNCTION	0.00	0.00	6975.00		00:00	0.00
20	JUNCTION	0.00	0.00	6982.00		00:00	0.00
21	JUNCTION	0.00	0.00	6953.00		00:00	0.00
22	JUNCTION	0.00	0.00	6936.00	0	00:00	0.00
23	JUNCTION	0.06	1.35	6946.35	0	00:35	1.34
24	JUNCTION	0.27	2.22	6936.22	0	00:51	2.22
30	JUNCTION	0.00	0.00	6985.00	0	00:00	0.00
31	JUNCTION	0.24	1.68	6954.68	0	00:59	1.68
67	JUNCTION	0.24	2.30	6867.80	0	01:13	2.30
40	JUNCTION	0.00	0.00	6918.00	0	00:00	0.00
41	JUNCTION	0.00	0.00	6888.00	0	00:00	0.00
42	JUNCTION	0.05	1.40	6912.40	0	00:35	1.38
50	JUNCTION	0.00	0.00	6945.00	0	00:00	0.00
51	JUNCTION	0.04	0.74	6920.74	0	00:49	0.74
60	JUNCTION	0.00	0.00	6942.00	0	00:00	0.00
61	JUNCTION	0.00	0.00	6893.00	0	00:00	0.00
62	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
63	JUNCTION	0.00	0.00	6882.00	0	00:00	0.00
64	JUNCTION	0.06	1.19	6901.19	0	00:40	1.19
65	JUNCTION	0.09	1.92	6881.92	0	00:40	1.92

	Sh	IMM 100 Ye	ear Outp	ut			
66	JUNCTION	0.13	3.12	6871.12	0	00:40	3.12
70	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00
71	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
72	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00
73	JUNCTION	0.06	1.02	6903.02	0	00:45	1.02
74	JUNCTION	0.05	0.60	6897.60	0	01:12	0.60
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.07	1.45	6873.45	0	00:40	1.45
85	JUNCTION	0.03	0.82	6874.82	0	00:35	0.81
Outfall2	OUTFALL	0.00	0.00	6910.00	0	00:00	0.00
Outfall1	OUTFALL	0.00	0.00	6947.00	0	00:00	0.00
Outfall4	OUTFALL	0.24	2.30	6867.30	0	01:13	2.30
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
PondB	STORAGE	6.72	9.85	6920.85	0	01:16	9.85
PondC	STORAGE	5.17	7.08	6963.08	0	00:59	7.08
PondA	STORAGE	5.81	8.60	6957.60	0	01:13	8.59
PondD	STORAGE	5.66	8.08	6889.08	0	01:04	8.08
PondE	STORAGE	4.04	5.84	6928.84	0	00:49	5.84
PondF	STORAGE	5.86	8.17	6874.17	0	01:09	8.17
PondG	STORAGE	0.20	2.69	6902.69	0	01:12	2.68
PondH	STORAGE	4.95	6.51	6872.51	0	01:12	6.51

Node Inflow Summary *********

			Maximum	Maximum		Lateral	
Total	Flow						
			Lateral	Total	Time of Max	Inflow	
Inflow	Balance						
			Inflow	Inflow	Occurrence	Volume	
Volume	Error						
Node		Туре	CFS	CFS	days hr:min	10^6 gal	10^6
gal	Percent						
10			100 64	100 64	0 00.40	2 27	
10	0.000	JUNCTION	100.64	100.64	0 00:40	2.37	
2.37	0.000		07 00	07 09	0 00.25	1 01	
20	0.000	JUNCTION	97.08	97.08	0 00:35	1.81	
1.81	0.000						

			SWMM 100 Y	ear Output			
21		JUNCTION	42.26	42.26	0	00:40	1.2
1.2	0.000						
22		JUNCTION	295.27	295.27	0	00:40	6.04
6.04	0.000						
23		JUNCTION	0.00	136.17	0	00:35	0
3.01	0.000						
24		JUNCTION	0.00	334.84	0	00:51	0
9.43	-0.000						
30		JUNCTION	238.03	238.03	0	00:35	4
4	0.000				_		_
31		JUNCTION	0.00	115.75	0	00:59	0
3.39	0.000		0.00	270 44	~	01.12	0
67	0.000	JUNCTION	0.00	270.41	0	01:13	0
9.72	-0.000		70 07	70 07	0	00.75	1 77
40	0 000	JUNCTION	70.07	70.07	0	00:35	1.32
1.32 41	0.000	JUNCTION	252.18	252.18	0	00:35	4.73
41	0.000	JUNCTION	252.10	232.10	0	00.55	4.75
4.73	0.000	JUNCTION	0.00	70.07	0	00:35	0
1.32	0.000	JUNCTION	0.00	/0.0/	0	00.55	0
50	0.000	JUNCTION	178.04	178.04	0	00:40	4.2
4.2	0.000	50110111011	1,0.01	1,0.01	Ŭ	00.10	1.2
51		JUNCTION	0.00	164.75	0	00:49	0
3.95	0.000				-		-
60		JUNCTION	58.95	58.95	0	00:40	1.65
1.65	0.000						
61		JUNCTION	170.90	170.90	0	00:40	3.87
3.87	0.000						
62		JUNCTION	32.93	32.93	0	00:35	0.699
0.699	0.000						
63		JUNCTION	124.89	124.89	0	00:40	2.87
2.87	0.000						
64		JUNCTION	0.00	90.88	0	00:40	0
2.35	0.000			045 40			
65	0.000	JUNCTION	0.00	215.63	0	00:40	0
5.22	0.000		0.00	170.00	~	00.40	0
66	0.000	JUNCTION	0.00	170.90	0	00:40	0
3.87	0.000		42.05	42.05	0	00.10	1 05
70 1.05	0.000	JUNCTION	43.95	43.95	0	00:40	1.05
71	0.000	JUNCTION	23.95	23.95	0	00:45	0.742
0.742	0.000	JUNCTION	23.95	23.95	U	00.45	0.742
72	0.000	JUNCTION	0.00	23.95	0	00:45	0
0.742	0.000	SOUCTION	0.00		Ŭ	00.75	0
73	0.000	JUNCTION	0.00	23.95	0	00:45	0
0.742	0.000	2 3			5		
74		JUNCTION	0.00	42.13	0	01:12	0
1.79	-0.000						

		9	SWMM 100 Ye	ar Output			
80		JUNCTION	27.62	27.62	0	00:45	0.833
0.833	0.000						
81		JUNCTION	47.62	47.62	0	00:35	1.01
1.01	0.000						
82		JUNCTION	15.60	15.60	0	00:35	0.314
0.314	0.000						
83		JUNCTION	64.71	64.71	0	00:35	1.46
1.46	0.000						
84		JUNCTION	0.00	73.73	0	00:40	0
1.84	0.000						
85		JUNCTION	0.00	15.60	0	00:35	0
0.314	0.000						
Outfall2		OUTFALL	0.00	256.11	0	01:16	0
10.3	0.000						
Outfall1		OUTFALL	0.00	53.95	0	01:13	0
2.03	0.000						
Outfall4		OUTFALL	0.00	478.86	0	01:05	0
16.7	0.000				_		_
Outfall		OUTFALL	0.00	160.70	0	01:04	0
5.21	0.000				_		_
PondB		STORAGE	0.00	447.00	0	00:49	0
12.4	0.062				_		
PondC		STORAGE	0.00	238.03	0	00:35	0
	0.130					~~ ~~	
PondA	0.000	STORAGE	0.00	100.64	0	00:40	0
2.37	0.096	CTODACE	0.00	220.24	~	00.25	0
PondD	0 105	STORAGE	0.00	320.21	0	00:35	0
6.05	0.105	CTODACE	0 00	170.04	~	00.40	0
PondE	0 170	STORAGE	0.00	178.04	0	00:40	0
4.2 Dand5	0.178	CTODACE	0.00	205 07	~	00.41	0
PondF	0 100	STORAGE	0.00	385.87	0	00:41	0
9.08	0.109	CTODACE	0.00		~	00.40	0
PondG	0.070	STORAGE	0.00	67.73	0	00:40	0
1.8 Dondu	0.079	CTOPACE	0.00	152 02	0	00.20	0
PondH	0 1 4 2	STORAGE	0.00	153.03	0	00:38	0
3.61	0.143						

No nodes were flooded.

SWMM 100 Year Output

			_	_						
o C. Moss	Ma	Average	Avg	Evap	Extil	Maximum	Max	Time		
of Max	Maximum	Volume	Pcnt	Dent	Pcnt	Volume	Pcnt			
Occurrent	ce Outflow	VOTUME	FCIIC	FCIIC	FCIIC	VOTUIIE	FCIIC			
Storage		1000 ft3	Full	Loss	Loss	1000 ft3	Full	days		
hr:min	CFS									
			42	0	0	007 701	07	•		
PondB 01:15	256.11	363.135	43	0	0	827.701	97	0		
PondC	230.11	146.763	26	0	0	299.338	52	0		
00:58	115.75	140.705	20	Ū	0	200.000	52	0		
PondA		75.030	37	0	0	152.554	76	0		
01:12	53.95									
PondD		192.591	31	0	0	418.291	67	0		
01:04	160.70									
PondE		48.028	17	0	0	106.230	37	0		
00:48	164.75	250 100	24	0	0	540 500	67	0		
PondF	229.20	250.108	31	0	0	549.589	67	0		
01:09 PondG	229.20	5.811	1	0	0	88.594	16	0		
01:11	42.13	5.011	1	0	0	00.554	10	0		
PondH		131.315	21	0	0	268.983	42	0		
01:12	80.17									

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
Outfall2	99.64	12.77	256.11	10.280
Outfall1	99.69	2.53	53.95	2.035
Outfall4	99.67	20.76	478.86	16.717
Outfall3	99.69	6.47	160.70	5.209
System	99.67	42.53	924.48	34.241

SWMM 100 Year Output

Link Flow Summary *********

		Maximum		of Max		Max/	
• •	-	Flow		rrence	Veloc		Full
_ink	Туре	CFS	days	hr:min	ft/sec	Flow	Depth
100	DUMMY	100.64	0	00:40			
200	DUMMY	97.08	0	00:35			
201	DUMMY	42.26	0	00:40			
202	CONDUIT	136.36	0	00:36	26.17	0.08	0.19
203	CONDUIT	115.74	0	00:59	23.03	0.37	0.42
204	DUMMY	295.27	0	00:40			
205	CONDUIT	334.86	0	00:51	31.89	0.22	0.32
300	DUMMY	238.03	0	00:35			
100	DUMMY	70.07	0	00:35			
101	CONDUIT	69.37	0	00:36	15.63	0.17	0.28
102	DUMMY	252.18	0	00:35			
500	DUMMY	178.04	0	00:40			
501	DUMMY	170.90	0	00:40			
502	CONDUIT	170.58	0	00:41	13.26	0.71	0.62
503	DUMMY	58.95	0	00:40			
504	DUMMY	32.93	0	00:35			
505	CONDUIT	90.74	0	00:41	20.83	0.06	0.17
506	DUMMY	124.89	0	00:40			
507	CONDUIT	215.42	0	00:40	23.26	0.13	0.24
700	DUMMY	43.95	0	00:40			
701	DUMMY	23.95	0	00:45			
/02	DUMMY	23.95	0	00:45			
' 03	CONDUIT	23.94	0	00:45	8.29	0.09	0.20
301	DUMMY	27.62	0	00:45			
802	DUMMY	47.62	0	00:35			
303	CONDUIT	73.66	0	00:40	12.80	0.09	0.21
804	DUMMY	15.60	0	00:35			
306	DUMMY	64.71	0	00:35			
305	CONDUIT	15.43	0	00:37	7.47	0.06	0.16
308	CONDUIT	270.40	0	01:13	4.87	0.04	0.23
300	CONDUIT	41.98	0	01:17	4.06	0.00	0.06
500	CONDUIT	164.38	0	00:51	12.48	0.01	0.09
101	DUMMY	53.95	0	01:13			
206	DUMMY	256.11	0	01:16			
301	DUMMY	115.75	0	00:59			
501	DUMMY	164.75	0	00:49			
704	DUMMY	42.13	0	01:12			
307	DUMMY	80.17	0	01:12			
508	DUMMY	229.20	0	01:09			

		SWMM 100	Year Output
403	DUMMY	160.70	0 01:04

No conduits were surcharged.

Analysis begun on: Mon Apr 13 19:00:38 2020 Analysis ended on: Mon Apr 13 19:00:38 2020 Total elapsed time: < 1 sec

SWMM 100 Year Output 9-21-20

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012) _____ NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ***** Analysis Options ********** Flow Units CFS Process Models: Rainfall/Runoff NO RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Flow Routing Method KINWAVE Starting Date 01/01/2005 00:00:00 Ending Date 01/02/2005 06:00:00 Antecedent Dry Days 0.0 Report Time Step 00:05:00 Routing Time Step 30.00 sec ****** Volume Volume Flow Routing Continuity acre-feet 10^6 gal _ Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 0.000 0.000 Groundwater Inflow 0.000 0.000 RDII Inflow 0.000 0.000 External Inflow 3854.070 1255.906 External Outflow 3828.229 1247.485 Flooding Loss 0.000 0.000 Evaporation Loss 0.000 0.000 Exfiltration Loss 0.000 0.000 Initial Stored Volume 0.000 0.000 Final Stored Volume 9.185 28.186 Continuity Error (%) -0.061

SWMM 100 Year Output 9-21-20 ****** All links are stable.

Routing Time Step Summary ******

Minimum Time Step	:	30.00 sec
Average Time Step	:	30.00 sec
Maximum Time Step	:	30.00 sec
Percent in Steady State	:	0.00
Average Iterations per Ste	p :	1.02
Percent Not Converging	:	0.00

Node Depth Summary ******

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL	0ccu	rrence	Max Depth
Node	Туре	Feet	Feet				Feet
10	JUNCTION	0.00	0.00		0		0.00
20	JUNCTION	0.00	0.00	6982.00	0	00:00	0.00
21	JUNCTION	0.00	0.00	6953.00	0	00:00	0.00
22	JUNCTION	0.00	0.00	6936.00	0	00:00	0.00
23	JUNCTION	0.06	1.35	6946.35	0	00:35	1.34
24	JUNCTION	0.27	2.22	6936.22	0	00:51	2.22
30	JUNCTION	0.00	0.00	6985.00	0	00:00	0.00
31	JUNCTION	0.24	1.68	6954.68	0	00:59	1.68
67	JUNCTION	3.45	4.11	6869.61	0	01:12	4.11
40	JUNCTION	0.00	0.00	6918.00	0	00:00	0.00
41	JUNCTION	0.00	0.00	6888.00	0	00:00	0.00
42	JUNCTION	0.05	1.40	6912.40	0	00:35	1.38
50	JUNCTION	0.00	0.00	6945.00	0	00:00	0.00
51	JUNCTION	1.48	1.48	6921.48	0	00:21	1.48
60	JUNCTION	0.00	0.00	6942.00	0	00:00	0.00
61	JUNCTION	0.00	0.00	6893.00	0	00:00	0.00
62	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
63	JUNCTION	0.00	0.00	6882.00	0	00:00	0.00
64	JUNCTION	0.06	1.19	6901.19	0	00:40	1.19
65	JUNCTION	0.09	1.92	6881.92	0	00:40	1.92
66	JUNCTION	0.13	3.12	6871.12	0	00:40	3.12
70	JUNCTION	0.00	0.00	6923.00	0	00:00	0.00

	SWMM	100 Year (Output 9	-21-20			
71	JUNCTION	0.00	0.00	6908.00	0	00:00	0.00
72	JUNCTION	0.00	0.00	6904.00	0	00:00	0.00
73	JUNCTION	0.06	1.02	6903.02	0	00:45	1.02
74	JUNCTION	2.57	2.66	6899.66	0	01:12	2.66
80	JUNCTION	0.00	0.00	6890.00	0	00:00	0.00
81	JUNCTION	0.00	0.00	6896.00	0	00:00	0.00
82	JUNCTION	0.00	0.00	6886.00	0	00:00	0.00
83	JUNCTION	0.00	0.00	6878.00	0	00:00	0.00
84	JUNCTION	0.07	1.45	6873.45	0	00:40	1.45
85	JUNCTION	0.03	0.82	6874.82	0	00:35	0.81
0S1	JUNCTION	1.33	1.33	6953.93	0	00:00	1.33
0S3	JUNCTION	1.48	1.48	6924.28	0	00:00	1.48
0S4	JUNCTION	2.38	2.38	6902.18	0	00:00	2.38
0S2	JUNCTION	1.06	1.06	6925.06	0	00:00	1.06
Outfall2	OUTFALL	1.06	1.06	6911.06	0	01:47	1.06
Outfall1	OUTFALL	1.33	1.33	6948.33	0	00:39	1.33
Outfall4	OUTFALL	3.45	4.11	6869.11	0	01:12	4.11
Outfall3	OUTFALL	0.00	0.00	6880.00	0	00:00	0.00
PondB	STORAGE	6.72	9.85	6920.85	0	01:16	9.85
PondC	STORAGE	5.17	7.08	6963.08	0	00:59	7.08
PondA	STORAGE	5.81	8.60	6957.60	0	01:13	8.59
PondD	STORAGE	5.66	8.08	6889.08	0	01:04	8.08
PondE	STORAGE	4.04	5.84	6928.84	0	00:49	5.84
PondF	STORAGE	5.86	8.17	6874.17	0	01:09	8.17
PondG	STORAGE	0.20	2.69	6902.69	0	01:12	2.68
PondH	STORAGE	4.95	6.51	6872.51	0	01:12	6.51

Node Inflow Summary **********

			Maximum	Maximum		Lateral				
Total	Flow		Latana]	Tatal	Time of Max	Tafler				
Inflow	Balance		Lateral	TOCAL	TIME OF Max	Inflow				
Volume	Ennon		Inflow	Inflow	Occurrence	Volume				
Node	Error	Туре	CFS	CFS	days hr:min	10^6 gal	10^6			
gal	Percent									
 10		JUNCTION	100.64	100.64	0 00:40	2.37				
2.37	0.000					2.07				

		SWMM	100 Year	Output 9-	21-20		
20		JUNCTION	97.08	97.08	0	00:35	1.81
1.81	0.000						
21		JUNCTION	42.26	42.26	0	00:40	1.2
1.2	0.000						
22		JUNCTION	295.27	295.27	0	00:40	6.04
6.04	0.000						
23		JUNCTION	0.00	136.17	0	00:35	0
3.01	0.000			224.04	•	00 54	
24	0.000	JUNCTION	0.00	334.84	0	00:51	0
9.43	-0.000		220.02	220.02	0	00.25	
30	0.000	JUNCTION	238.03	238.03	0	00:35	4
4	0.000		0 00	115 75	0	00.00	٥
31 3.39	0 000	JUNCTION	0.00	115.75	0	00:59	0
5.39 67	0.000	JUNCTION	0.00	865.98	0	01:12	0
489	0.000	JUNCTION	0.00	803.98	U	01.12	U
489	0.000	JUNCTION	70.07	70.07	0	00:35	1.32
1.32	0.000	JUNCTION	/0.0/	/0.0/	0	00.55	1.52
41	0.000	JUNCTION	252.18	252.18	0	00:35	4.73
4.73	0.000	5011011011	292.10	252.10	U	00.55	+ •75
42	0.000	JUNCTION	0.00	70.07	0	00:35	0
1.32	0.000	5011011011	0.00	/0.0/	Ū	00.55	Ŭ
50	0.000	JUNCTION	178.04	178.04	0	00:40	4.2
4.2	0.000	5011012011	1,0101	2,0101	Ũ	00110	
51		JUNCTION	0.00	381.75	0	00:49	0
179	0.000				-		-
60		JUNCTION	58.95	58.95	0	00:40	1.65
1.65	0.000						
61		JUNCTION	170.90	170.90	0	00:40	3.87
3.87	0.000						
62		JUNCTION	32.93	32.93	0	00:35	0.699
0.699	0.000						
63		JUNCTION	124.89	124.89	0	00:40	2.87
2.87	0.000						
64		JUNCTION	0.00	90.88	0	00:40	0
2.35	0.000						
65		JUNCTION	0.00	215.63	0	00:40	0
5.22	0.000						
66		JUNCTION	0.00	170.90	0	00:40	0
3.87	0.000						
70		JUNCTION	43.95	43.95	0	00:40	1.05
1.05	0.000						
71		JUNCTION	23.95	23.95	0	00:45	0.742
0.742	0.000						
72		JUNCTION	0.00	23.95	0	00:45	0
0.742	0.000				-		-
73	0.000	JUNCTION	0.00	23.95	0	00:45	0
0.742	0.000						

				Output 9-			
74 482	0.000	JUNCTION	0.00	637.13	0	01:12	0
402 80	0.000	JUNCTION	27.62	27.62	0	00:45	0.833
0.833	0.000		_/ •• _	_/ •• _	Ū		
81		JUNCTION	47.62	47.62	0	00:35	1.01
1.01	0.000						
82	0.000	JUNCTION	15.60	15.60	0	00:35	0.314
0.314 83	0.000	JUNCTION	64.71	64.71	0	00:35	1.46
1.46	0.000	JUNCTION	04./1	04./1	Ø	00.55	1.40
84	0.000	JUNCTION	0.00	73.73	0	00:40	0
1.84	0.000				Ū		· ·
85		JUNCTION	0.00	15.60	0	00:35	0
0.314	0.000						
0S1		JUNCTION	413.00	413.00	0	00:00	334
334	0.000				-		
053	0.000	JUNCTION	217.00	217.00	0	00:00	175
175	-0.000				0	00.00	401
0S4 481	0.000	JUNCTION	595.00	595.00	0	00:00	481
481 0S2	0.000	JUNCTION	280.00	280.00	0	00:00	226
226	0.000	SOUCTION	200.00	200.00	0	00.00	220
Outfal		OUTFALL	0.00	536.11	0	01:16	0
236	0.000						
Outfa]	111	OUTFALL	0.00	466.95	0	01:13	0
335	0.000						
Outfal		OUTFALL	0.00	1291.25	0	01:05	0
671	0.000				-		-
Outfal		OUTFALL	0.00	160.70	0	01:04	0
5.21 PondB	0.000	STOPACE	0.00	447.00	0	00:49	0
12.4	0.062	STORAGE	0.00	447.00	0	00.49	0
PondC	0.002	STORAGE	0.00	238.03	0	00:35	0
	0.130	STORIGE	0.00	250.05	Ũ	00.55	Ũ
PondA		STORAGE	0.00	100.64	0	00:40	0
2.37	0.096						
PondD		STORAGE	0.00	320.21	0	00:35	0
6.05	0.105						
PondE	0.470	STORAGE	0.00	178.04	0	00:40	0
4.2	0.178	CTODACE	0.00	205 07	0	00.44	0
PondF	0 100	STORAGE	0.00	385.87	0	00:41	0
9.08 PondG	0.109	STORAGE	0.00	67.73	0	00:40	0
1.8	0.079	JIONAGE	0.00	01.15	U	00.40	0
PondH		STORAGE	0.00	153.03	0	00:38	0
3.61	0.143		-	-			-

		SWMM	100 Year	Outpu	ut 9-21-20	0		
******	************	k						
	Looding Summary							
No node	es were flooded	1.						
******	************	**						
•	e Volume Summan *************	•						
of Max	Maximum	Average	Avg	Evap	Exfil	Maximum	Max	Time
	Maximum	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	
Occurrenc Storage hr:min		1000 ft3	Full	Loss	Loss	1000 ft3	Full	days
PondB 01:15	256.11	363.135	43	0	0	827.701	97	0
PondC		146.763	26	0	0	299.338	52	0
00:58 PondA	115.75	75.030	37	0	0	152.554	76	0
01:12 PondD	53.95	192.591	31	0	0	418.291	67	0
01:04 PondE	160.70	48.028	17	0	0	106.230	37	0
00:48 PondF	164.75	250.108	31	0	0	549.589	67	0
01:09 PondG	229.20	5.811	1	0	0	88.594	16	0
01:11	42.13							
PondH 01:12	80.17	131.315	21	0	0	268.983	42	0

Outfall Loading Summary ************

Flow	Avg	Max	Total
Freq	Flow	Flow	Volume

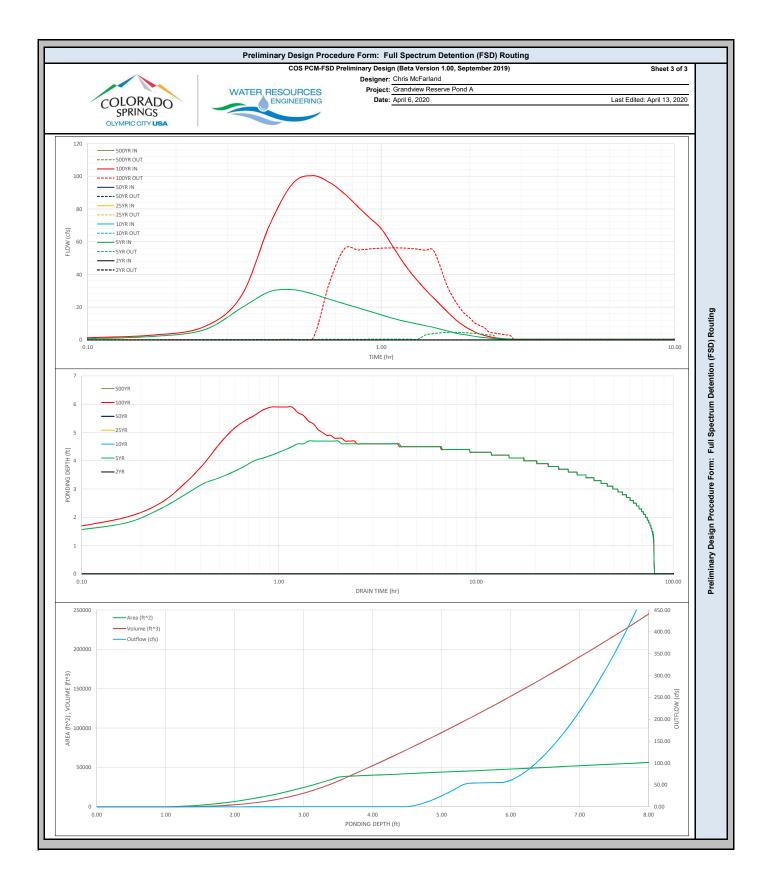
Outfall Node	SWM Pcnt	M 100 Year CFS	•		20 .0^6 gal		
					•		
Outfall2		292.00			235.796		
Outfall1		415.18			335.258		
Outfall4	99.92	831.58			671.130		
Outfall3	99.69	6.47	160.	70 	5.209		
System	99.89	1545.23	2428.	13 1	247.393		

Link Flow Summary ************************************							
		 Maximum	 Timo		Maximum		
					Veloc		
Link	Туре				ft/sec		
100	DUMMY	100.64		00:40			
200	DUMMY	97.08		00:35			
201	DUMMY	42.26		00:40			
202	CONDUIT	136.36	0	00:36	26.17	0.08	0.19
203	CONDUIT	115.74	0	00:59	23.03	0.37	0.42
204	DUMMY	295.27	0	00:40			
205	CONDUIT	334.86	0	00:51	31.89	0.22	0.32
300	DUMMY	238.03	0	00:35			
400	DUMMY	70.07	0	00:35			
401	CONDUIT	69.37	0	00:36	15.63	0.17	0.28
402	DUMMY	252.18	0	00:35			
500	DUMMY	178.04	0	00:40			
601	DUMMY	170.90	0	00:40			
602	CONDUIT	170.58	0	00:41	13.26	0.71	0.62
603	DUMMY	58.95	0	00:40			
604	DUMMY	32.93	0	00:35			
605	CONDUIT	90.74	0	00:41	20.83	0.06	0.17
606	DUMMY	124.89	0	00:40			
607	CONDUIT	215.42	0	00:40	23.26	0.13	0.24
700	DUMMY	43.95	0	00:40			
701	DUMMY	23.95	0	00:45			
702	DUMMY	23.95	0	00:45			
703	CONDUIT	23.94	0	00:45	8.29	0.09	0.20
801	DUMMY	27.62	0	00:45			
802	DUMMY	47.62	0	00:35	40.00	0.00	0.04
803	CONDUIT	73.66	0	00:40	12.80	0.09	0.21
804	DUMMY	15.60	0	00:35			
806		64.71	0	00:35	7 47	0.00	0.10
805	CONDUIT	15.43	0	00:37	7.47	0.06	0.16

	SWMM	100 Year	Outpu	t 9-21-20			
808	CONDUIT	865.97	0	01:12	6.70	0.14	0.41
800	CONDUIT	637.10	0	01:15	9.35	0.06	0.27
600	CONDUIT	381.54	0	00:50	16.34	0.02	0.15
EastForkTrib	CONDUIT	217.00	0	00:21	4.75	0.02	0.15
EastFork	CONDUIT	595.00	0	00:16	6.34	0.10	0.30
MainStem	CONDUIT	413.00	0	00:40	4.75	0.03	0.13
MainStemTrib	CONDUIT	280.00	0	01:49	4.12	0.02	0.11
101	DUMMY	53.95	0	01:13			
206	DUMMY	256.11	0	01:16			
301	DUMMY	115.75	0	00:59			
501	DUMMY	164.75	0	00:49			
704	DUMMY	42.13	0	01:12			
807	DUMMY	80.17	0	01:12			
608	DUMMY	229.20	0	01:09			
403	DUMMY	160.70	0	01:04			

No conduits were surcharged.

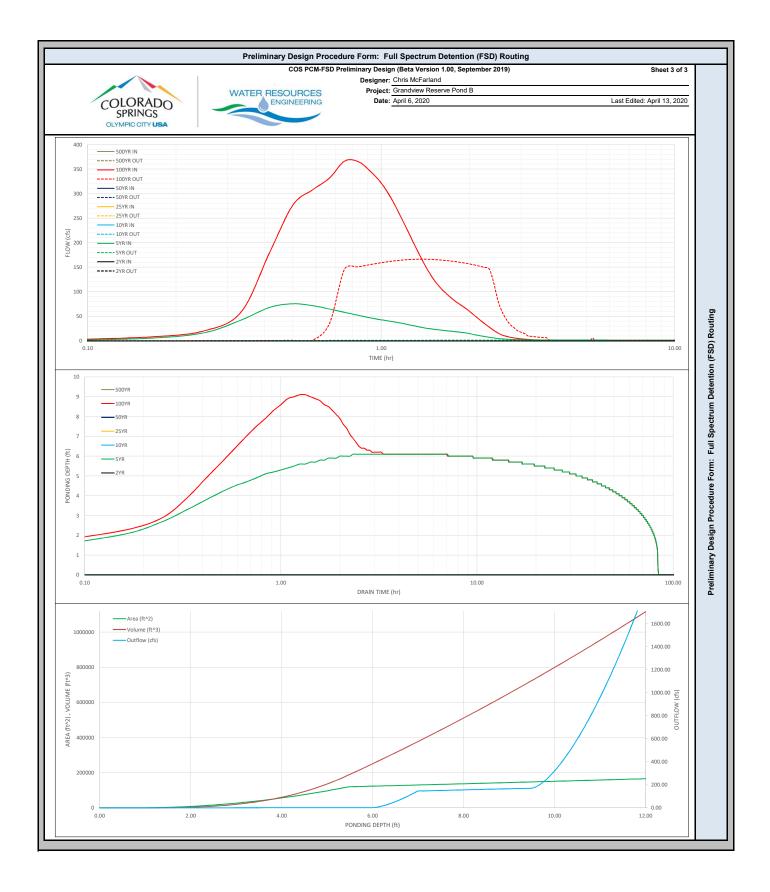
Analysis begun on: Mon Sep 21 16:06:21 2020 Analysis ended on: Mon Sep 21 16:06:21 2020 Total elapsed time: < 1 sec


Grandview Reserve Master Development Drainage Plan Project No.: 191897.01

Appendix D

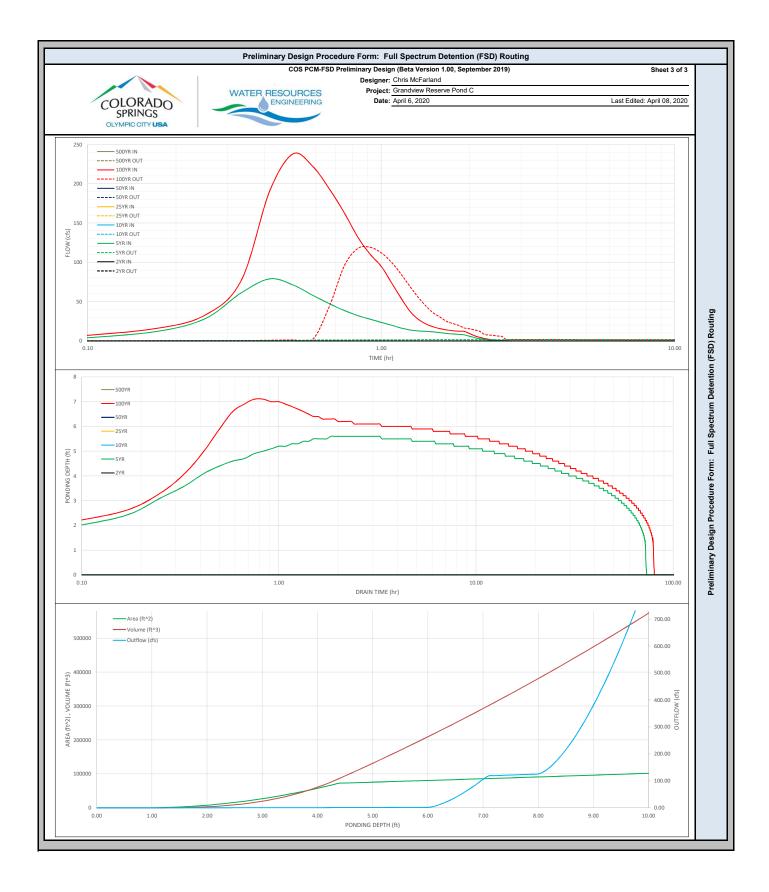
		Preliminary Des	gn Procedure F	Form: Full Spectru	m Detention (F	SD) Routin	g				
		COS		nary Design (Beta Vers		oer 2019)	Sheet 1 of 3				
	STOR	MWATER		Designer: Chris McFarland Project: Grandview Reserve Pond A							
COLOPADO	SIUN	ENTERPRISE		Project: Grandview Reserve Pond A Date: April 6, 2020 Last Edited: April 13, 2020							
COLORADO SPRINGS		ENTERPRISE					1				
OLYMPIC CITY USA											
OLIMPIC CITI DAA			1								
1. Select WQCV/EURV PCM Type:				Extended Detention	on Basin (EDB)	•					
Imports the Stage-Area-Volume-Discharg corresponding PCM worksheet. The sele											
must be completed before the import will	work.										
2. WQCV/EURV Outlet Details				Input User Inpu	Parameters t COS DCM	-					
A) Average Infiltration Rate of WQCV				i = N/A	N/A	in / hr					
 B) Depth to Centroid of Underdrain Outlet C C) Underdrain Outlet Orifice Area 	orifice from filte	r media surface	Under	y = N/A rdrain Ao = N/A	N/A N/A	inches sq in					
D) Number of WQCV Orifice Rows E) Vertical Spacing between WQCV Orifice	Bown			QCV rows = 10 Spacing = 4.0	10	inches					
F) WQCV Orifice Area (A _o) per Row			W	/QCV Ao = 0.61	0.61	sq in					
 G) Maximum Stage of WQCV (includes ISD H) EURV Orifice Area (A_n) in Single Row 	and Trickle Cl	hannel Depth)	E	age wocv = 3.40 EURV Ao = 2.96	3.40 2.96	ft sq in					
I) Maximum Stage of EURV (includes ISD a			Max St	tage _{EURV} = 4.50	4.50	ft					
J) Discharge Coefficient for all WQCV/EUR	V Outlet Onflice	e(s)		Cd = 0.60	0.60]					
. Flood Control Surcharge Basin Geometry (a	bove FURV/) -	See Figure					User can override default flood surcharge				
Default Flood Surcharge Geometry inputs	represent a cor	ntinuation of			Parameters	-	geometry inputs to create a transition bench				
the PCM Geometry in an upward direction	without a transi	tion bench.		User Input	COS DCM		between the top of the PCM and the Flood Surcharge Volume by entering larger				
 A) Length of Basin at Top of EURV B) Width of Basin at Top of EURV 			1	L _{PCM} = <u>370.3</u> W _{PCM} = <u>113.6</u>	370.3	ft ft	dimensions in C), D), and E). See the Figure to the right.				
C) Stage at Top of Transition Bench (Bottor			Stage at Top of	of Bench = 4.60	4.60	ft					
 D) Length of Basin at Top of Transition Ben E) Width of Basin at Top of Transition Benc 	ch (Bottom of I h (Bottom of FI	Hood Control Surcharge lood Control Surcharge		L Bench = <u>371.1</u> W Bench = <u>114.4</u>	371.1 114.4	ft	Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction				
F) Average Side Slopes of Flood Control Su	ircharge above	e Transition Bench		Z _{Surcharge} = 4.00	4.00	ft / ft					
(Recommend no steeper than 3H:1V slo	pe. Use zero i	ior vertical Walls.)									
Tributary Watershed Hydrology											
 A) Input hydrology data (copy/paste) from m 	odel rune	2 Year 5 Year		opment Peak Flow (cfs 25 Year 50 Year) 100 Year	500 Year					
		13.03	iu redi	20 roar 00 rear	57.08	Joo real	1				
B) Adjust "Time Interval" to match hydrograph data	Time Interva 5.0	l minutes									
	Time			Storm Inflow Hydrogra		500.1/					
5-yr and 100-yr Hydrology Required (Other Storms are Optional)	(min) 0:00	2 Year 5 Year 0.00	10 Year	25 Year 50 Year	0.00	500 Year					
	0:05	0.32			0.84						
	0:10 0:15	2.12 6.24			2.93 8.14		1				
	0:20 0:25	19.45 29.43			26.66 70.19		4				
	0:30	30.68			95.65		1				
	0:35 0:40	28.10 24.84			100.37 96.25		1				
	0:45	22.05 19.61			89.32 81.43						
	0:50	17.40			74.41		1				
	1:00 1:05	15.33 13.43			68.04 58.60		4				
	1:10	11.93			49.54		1				
	1:15 1:20	10.74 9.68			42.06 35.93		1				
	1:25	8.69 7.74			30.71 26.07						
	1:30 1:35	6.69			21.81		1				
	1:40 1:45	5.63 4.64			17.82 14.14		4				
	1:50	3.79			10.94		1				
	1:55 2:00	3.24 2.68			8.55 6.51		4				
	2:05	2.16			4.89						
	2:10 2:15	1.73 1.39			3.64 2.70		1				
	2:20 2:25	1.11 0.88			1.98 1.45		4				
	2:30	0.68			1.07		1				
	2:35 2:40	0.53 0.41			0.82		4				
	2:45	0.32			0.50		1				
	2:50 2:55	0.24 0.17			0.39		1				
	3:00 3:05	0.12			0.20		4				
	3:10	0.05			0.07		1				
	3:15 3:20	0.02			0.03		1				
	3:25	0.00			0.00		1				
	3:30 3:35						1				
	3:40 3:45						4				
	3:50						1				
	3:55 4:00						4				
	4:05						1				
	4:10 4:15						1				
	4:20										
	4:25 4:30						1				
	4:35										
	4:40 4:45										
	4:50 4:55					+	4				
	5:00						1				
	5:05 5:10						4				
	5:15						1				
	5:20 5:25						1				
	5:30						1				
	5:35										

5:40				
5:45				
5:50				
5:55				
6:00				


			Prelimir					Detention (F		-	
~				COS PC	M-FSD Prelir			n 1.00, Septemi	oer 2019)	Sheet 2 of 3	
							Chris McFarlar				
	WATER RESOURCES						Grandview Res	serve Pond A			
COLORADO				BINEERING		Date:	April 6, 2020			Last Edited: April 13, 2020	
SPRINGS)										
OLYMPIC CITY USA											
OLYMPIC CITY USA	i 1										
5. Flood Control Outlet Structure T	уре				Overflow	wWeir/Grate Out	et Pine Restriction	& Emergency Spillw	ay 🔻		
A) Select Flood Control Outlet S	Structure Typ	e			Overnov	weil/diate, out	et ripe Restriction	a chiergency splitw	ay 🔹		
,	,										
6. Overflow Weir (Dropbox) and Gr	ata /Elat ar S	Cloned)					Input Pr	arameters			
(Assumes that top of grate is f			crete dropbo	0			User	COS	-		
				,			Input	DCM	_		
A) Overflow Weir Front Edge He						H _{weir front} =	4.50	4.50	ft		
 B) Overflow Weir Front Edge Le C) Overflow Weir Grate Slope (L _{weir front} = S _{weir sides} =	8.00	9.00	ft ft / ft		
D) Horizontal Length of Weir Si					Horizon	ntal L _{weir sides} =	8.00	5.00	ft		
E) Overflow Grate Open Area %					Grate	Open Area =	70%	70%	%		
F) Debris Clogging %	/-+ !- -				Debr	is Clogging =	50%	50%	% ft		
 G) Height of Grate Upper Edge H) Overflow Grate Slope Length 					Slo	H _{grate top} = ppe L _{weir sides} =	4.50 8.00	4.50 5.00	ft		
 I) Overflow Grate Open Area (v 	vithout debris				Open Are	a (No Clogging) =	44.80	31.50	sq ft		
J) Overflow Grate Open Area (v	vith debris)				Open A	rea (_{Clogged}) =	22.40	15.75	sq ft		Bodiminanu Daoian Beanadura Eanne Eull Secontrum Datartica, (EGN) Bautina
					<u> </u>						-
7. Outlet Pipe with Flow Restriction	Plate										
						<i>c</i>	0.444 8144 (2)	No.		-	
 A) Select Type of Outlet Restric (Circular Pipe w/ Restrictor Place) 			angular Or#ic	(a)		Circula	Outlet Pipe w/ Re	strictor Plate		•	
(Circular Fipe W) Restrictor Fi	ate, circular i	Office of Rect	angulai Onin	<i>(</i>)			Input Pa	arameters			
							User	COS	-		
		o			Direch		Input	DCM	7		
 B) Depth to Invert of Outlet Pipe C) Outlet Pipe Diameter 	(relative to	Stage = 0 π)				nvert Depth = e Diameter =	1.50 36.00	1.50 30.00	inches		
 D) Restrictor Plate Height above 	Pipe Invert					Plate Height =	22.42	28.11	inches		
E) Half-Central Angle of Restric						Theta =	1.82	2.63	radians		
F) Outlet Orifice Area						Outlet Ao = Outlet _{centroid} =	4.63	4.78	sq ft ft		
 G) Height of Outlet Orifice Cent H) Ratio of Grate Open Area / 1 						Area Ratio =	1.06 9.68	1.22 6.59			
	oo ji oillioo	, non (ononin i	,o _ 1)				0.00	0.00			
	-						In much Da				
8. Emergency Spillway (Rectangul	ar or Trapezo	oldal)					User	cos	-		
							Input	DCM	_		
A) Spillway Invert Stage (relativ	e to Stage =	0 ft)				H _{spillway invert} =	5.90	6.00	ft ft		
 B) Spillway Crest Length C) Spillway End Slopes (H:V) 						L _{spillway crest} = S _{spillway ends} =	42.00	33.00 4.00	ft / ft		, and a second
D) Freeboard above Maximum	Nater Surfac	e			Freeb	board Depth=	1.00	1.00	ft		ŝ
 E) Spillway Design Flow Depth 						Depth _{spillway} =	0.80	1.00	ft		
 F) Stage at Top of Freeboard G) Basin Area at Top of Freebo 	ard					I Top Stage = Basin Area =	7.70	8.00 1.29	ft acres		
G) Dasili Alea at 10p of fleebo	aru				IVIAA	Dasiii Alea =	1.27	1.25	acres		
9. Routed Hydrograph Results				Resu	ilts based on	User Input					
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year		1
Inflow Hydrograph Volume (ac-ft) =	0.64	1.66		2.16				7.27			5
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) =	N/A N/A	N/A N/A		13.0 30.7	<u> </u>			57.1 100.4	1		•
Peak Outflow (cfs) =	0.3	0.5		4.6	1			56.3	1		
Ratio (Outflow/Predevelopment) =	N/A	N/A		0.4				1.0			
Structure Controlling Flow =	Orifice Plate	Orifice Plate		Overflow Grate				Outlet Pipe			
Max Velocity through Grate = Fime to Drain 97% of Volume (hr) =	N/A 39	N/A 69		0.1 73				1.2 61	1		
Fime to Drain 99% of Volume (hr) =	41	72		77				72			
Maximum Ponding Depth (ft) =	3.40	4.50		4.70				5.90			
Area at Max Ponding Depth (ac) = Maximum Volume Stored (ac-ft) =	0.80	0.97		0.98				1.09 3.11			
	0.04	1.00		1.07		1		0.11	1	l	
					based on CO	S DCM Inputs					
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year		
Inflow Hydrograph Volume (ac-ft) = Predevelopment Peak Q (cfs) =	U.64 N/A	1.66 N/A		2.16	<u> </u>			57.1	1		
Peak Inflow (cfs) =	N/A	N/A		30.7				100.4			
Peak Outflow (cfs) =	0.3	0.5		4.3				57.5			
Ratio (Outflow/Predevelopment) = Structure Controlling Flow =	N/A Orifice Diet	N/A Orific - Di-t		0.3	<u> </u>			1.0 Outlist Disc			
Max Velocity through Grate =	N/A	Orifice Plate N/A		Overflow Grate 0.2	t			Outlet Pipe 1.8			
Fime to Drain 97% of Volume (hr) =	39	69		73				61			
	41	72		77				72			
Fime to Drain 99% of Volume (hr) =	0.40	1 = 0									
	3.40	4.50 0.97		4.70				5.90			

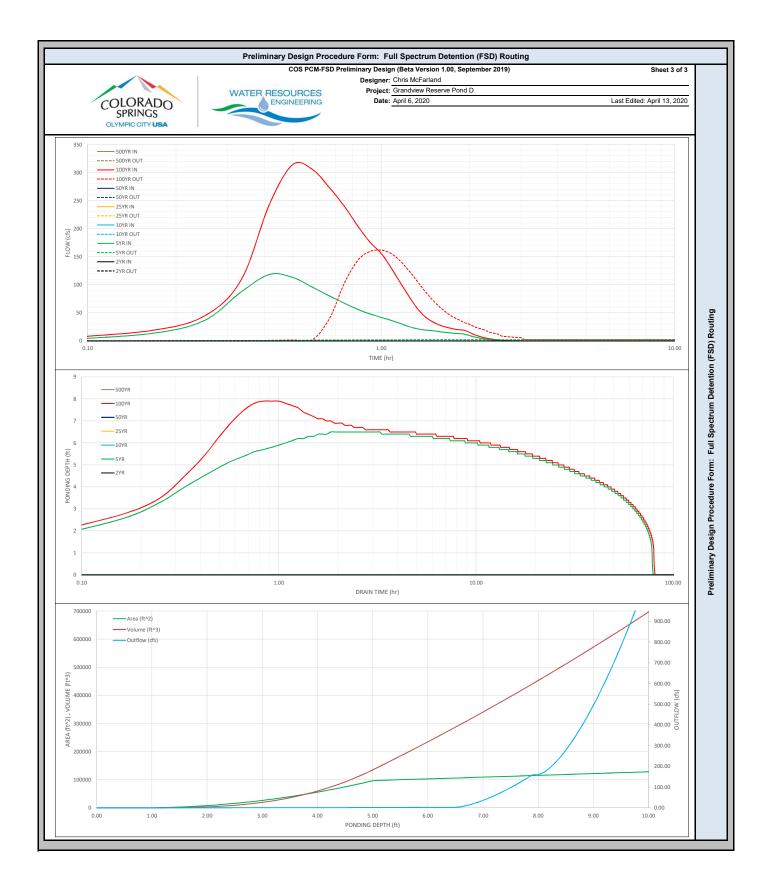
		Preliminary Desig	n Procedure Form: F	ull Spectrum Detention (F	SD) Routin	99	
		COS PO	, ,	n (Beta Version 1.00, Septem) Chris McFarland	ber 2019)	Sheet 1 of 3	
	STOR	MWATER	•	Grandview Reserve Pond B			
COLORADO	UT UT II	ENTERPRISE	•	April 6, 2020		Last Edited: April 13, 2020	
SPRINGS							
OLYMPIC CITY USA							
1. Select WQCV/EURV PCM Type:				xtended Detention Basin (EDB)	•	1	
Imports the Stage-Area-Volume-Discharg corresponding PCM worksheet. The sele						1	
must be completed before the import will		sneet					
							-
2. WQCV/EURV Outlet Details				Input Parameters User Input COS DCM	-		
 A) Average Infiltration Rate of WQCV B) Depth to Centroid of Underdrain Outlet (Orifice from filte	r madia surfaca	i = y =	N/A N/A	in / hr inches		
C) Underdrain Outlet Orifice Area			Underdrain Ao = # WQCV rows =	N/A N/A	sq in		
D) Number of WQCV Orifice Rows E) Vertical Spacing between WQCV Orifice	e Rows		Orifice Spacing =	4.0 4.0	inches		
 F) WQCV Orifice Area (A_o) per Row G) Maximum Stage of WQCV (includes ISE 	D and Trickle Ch	nannel Depth)	WQCV Ao = Max Stage _{WQCV} =	1.49 1.49 4.70 4.70	sq in ft		
 H) EURV Orifice Area (A_o) in Single Row I) Maximum Stage of EURV (includes ISD a 	and Trickle Cha	nnel Denth)	EURV Ao = Max Stage _{EURV} =	1.49 1.49 6.00 6.00	sq in ft		
J) Discharge Coefficient for all WQCV/EUF			Cd =				
Elead Cantral Surpharga Pagin Coomata	abova EUR\/\	Soo Eiguro				Heer can everyide default fleed euroberge	
. Flood Control Surcharge Basin Geometry (a Default Flood Surcharge Geometry inputs	represent a cor	ntinuation of		Input Parameters	_	User can override default flood surcharge geometry inputs to create a transition bench	
the PCM Geometry in an upward direction	witnout a transi	uon bench.		User COS Input DCM	_	between the top of the PCM and the Flood Surcharge Volume by entering larger	
 A) Length of Basin at Top of EURV B) Width of Basin at Top of EURV 			L _{PCM} = W _{PCM} =	644.7 644.7 191.2 191.2	ft ft	dimensions in C), D), and E). See the Figure to the right.	
C) Stage at Top of Transition Bench (Botto D) Length of Basin at Top of Transition Ber			Stage at Top of Bench =	6.10 6.10	ft	· · ·	
E) Width of Basin at Top of Transition Bend	ch (Bottom of Fl	ood Control Surcharge)	L Bench = W Bench =	645.5 645.5 192.0 192.0	ft	Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction	
F) Average Side Slopes of Flood Control S (Recommend no steeper than 3H:1V slope)			Z _{Surcharge} =	4.00 4.00	ft / ft		
			<u> </u>				
Tributary Watershed Hydrology			Pre-Development Pe]	
 A) Input hydrology data (copy/paste) from r 		2 Year 5 Year 17.56	10 Year 25 Year	50 Year 100 Year 164.21	500 Year		;
B) Adjust "Time Interval" to match hydrograph data	Time Interval 5.0	l minutes					
5-yr and 100-yr Hydrology Required	Time (min)	2 Year 5 Year	st-Development Storm Inf 10 Year 25 Year	ow Hydrographs (cfs) 50 Year 100 Year	500 Year		
(Other Storms are Optional)	0:00	0.00		0.00			
	0:05	0.69		2.08 8.30		1	
	0:15 0:20	16.64 42.42		20.58 58.80		1	
	0:25 0:30	68.16 75.65		179.82 276.49		4	
	0:35	71.78		307.62 331.81			
	0:40	58.24		366.22		1	9
	0:50	52.24 47.02		365.58 346.26		1	
	1:00 1:05	42.99 39.68		321.76 290.00		4	
	1:10	36.25		252.97 216.52		1	
	1:15 1:20	29.09		182.15		1	
	1:25 1:30	26.07 23.97		152.09 127.70		1	
	1:35 1:40	22.28 20.74		109.78 96.42		4	
	1:45	19.35 18.07		85.46 76.27			
	1:55	16.77		68.63		1	
	2:00 2:05	14.81 12.66		60.20 51.42		1	
	2:10 2:15	10.67 8.88		42.95 35.32		4	
	2:20	7.28		28.18 21.64			
	2:30	4.82		15.96		1	
	2:35 2:40	4.08 3.58		11.89 9.39		1	
	2:45 2:50	3.19 2.86		7.53 6.09		4	
	2:55	2.60 2.39		4.98		1	
	3:05	2.22		3.47	1	1	
	3:10 3:15	2.09 1.97		2.97 2.55		1	
	3:20 3:25	1.86		2.21 2.08		4	
	3:30 3:35	1.70 1.63		1.98 1.88		1	
	3:40	1.58		1.81		1	
	3:45 3:50	1.54 1.51		1.75 1.70		1	
	3:55 4:00	1.49 1.47		1.67 1.65		}	
	4:05 4:10	1.46 1.46		1.64 1.64		1	
	4:15	1.46		1.64	1	1	
	4:20 4:25	1.46 1.45		1.64 1.64		1	
	4:30 4:35	1.45 1.45		1.63 1.63		4	
	4:40	1.45 1.45		1.63 1.63		1	
	4:50	1.44		1.63		1	
	4:55 5:00	1.44 1.44		1.63 1.62		1	
	5:05 5:10	1.44 1.44		1.62 1.62		4	
	5:15	1.43		1.62	1	1	
	5:20 5:25	1.43 1.43		1.62 1.61		1	
	5:30 5:35	1.43 1.43		1.61 1.61		4	
	0.00	1.40		1.01	1		1

5:40	1.42		1.61	
5:45	1.42		1.61	
5:50	1.42		1.60	
5:55	1.42		1.60	
6:00				


			Prelimir	ary Desig	n Procedure	e Form: Fu	II Spectrum	Detention (F	SD) Routin	lg	
						minary Desig	n (Beta Versio	n 1.00, Septem		Sheet 2 of 3	
	1					Designer:	Chris McFarlar	d			
		١٨/٨	TER RES	OURCES		Project:	Grandview Res	erve Pond B			
COLORADO		VVA		GINEERING		Date:	April 6, 2020			Last Edited: April 13, 2020	
SPRINGS	5										
OLYMPIC CITY USA											
OLEMPIC CITE DSA											
5. Flood Control Outlet Structure T	vpe										
					Overflov	v Weir/Grate, Out	let Pipe Restriction	& Emergency Spillw	ray 🔻		
A) Select Flood Control Outlet :	Structure Typ	e									
							In much Da				1
 Overflow Weir (Dropbox) and G (Assumes that top of grate is 			crete dropbo	K)			User	rameters COS	-		
		•		<i>'</i>			Input	DCM	٦.		
 A) Overflow Weir Front Edge H B) Overflow Weir Front Edge Le 						H _{weir front} = L _{weir front} =	6.00 17.00	6.00	ft ft		
C) Overflow Weir Front Edge Lo	H:V, enter ze	ero for flat grat	e)			Sweir sides =	0.00	0.00	ft / ft		
D) Horizontal Length of Weir Si						ntal L _{weir sides} =	17.00	7.00	ft		
 E) Overflow Grate Open Area % F) Debris Clogging % 	6 (grate open	i area / total gr	ate area)			Open Area = ris Clogging =	70% 50%	70%	%		
G) Height of Grate Upper Edge						H _{grate top} =	6.00	6.00	ft		
 H) Overflow Grate Slope Lengt I) Overflow Grate Open Area (I) 					Open Are	ppe L _{weir sides} = ea _(No Clogging) =	17.00 202.30	7.00 83.30	ft sa ft		_
 I) Overflow Grate Open Area (v J) Overflow Grate Open Area (v 		<i>י</i> י			Open A	Area (_{Clogged}) =	101.15	41.65	sq ft sq ft		tinç
											out
7. Outlet Pipe with Flow Restriction	Plate) В
A) Select Type of Outlet Restric	tion					Circula	r Outlet Pipe w/ Re	trictor Plate		•	FSI
(Circular Pipe w/ Restrictor Pl		Orifice or Rect	angular Orific	e)							E E
							Input Pa User	rameters COS	-		ij
							Input	DCM			ete
 B) Depth to Invert of Outlet Pipe 	e (relative to	Stage = 0 ft)				nvert Depth =	1.50	1.50	ft		ă
 C) Outlet Pipe Diameter D) Restrictor Plate Height above 	e Pine Invert					e Diameter = Plate Height =	54.00 37.00	48.00 42.00	inches inches		E E
E) Half-Central Angle of Restrict						Theta =	1.95	2.42	radians		ct.
F) Outlet Orifice Area						Outlet Ao = Outlet _{centroid} =	11.61	11.66	sq ft		be
 G) Height of Outlet Orifice Cent H) Ratio of Grate Open Area / 1 					Open	Area Ratio =	1.73	1.87 7.14			=
,	,	`	,								<u>ц</u>
8. Emergency Spillway (Rectangul	ar or Trapezo	oidal)					Input Pa	rameters			Ë
							User	COS DCM			ъ
 A) Spillway Invert Stage (relative) 	/e to Stage =	0 ft)				H _{spillway invert} =	9.50	9.30	ft		nre
B) Spillway Crest Length						L _{spillway crest} =	136.00	122.00	ft ft / ft		ed
 C) Spillway End Slopes (H:V) D) Freeboard above Maximum 	Water Surfac	e			Freel	S _{spillway ends} = board Depth=	4.00	4.00	ft		ğ
E) Spillway Design Flow Depth					Flow	Depth _{spillway} =	0.90	1.00	ft		<u>н</u>
 F) Stage at Top of Freeboard G) Basin Area at Top of Freeboard 	ard					I Top Stage = Basin Area =	11.40 3.70	11.30 3.68	ft acres		sig
-,											De
9. Routed Hydrograph Results											Preliminary Design Procedure Form: Full Spectrum Detention (FSD) Routing
Design Storm Return Period =	wqcv	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	1	ä
Inflow Hydrograph Volume (ac-ft) =	2.41	5.73		6.67				31.72			reli
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) =	N/A N/A	N/A N/A		17.6 75.7				164.2 366.2		4	۵.
Peak Outflow (cfs) =	1.1	1.4		1.4	t	1		166.4	1	1	
Ratio (Outflow/Predevelopment) =	N/A	N/A		0.1				1.0		1	
Structure Controlling Flow = Max Velocity through Grate =	Orifice Plate N/A	Orifice Plate N/A		Overflow Grate 0.0				Outlet Pipe 0.8		1	
Time to Drain 97% of Volume (hr) =	40	68		76				61		1	
Time to Drain 99% of Volume (hr) =	42	72		80				73		4	
Maximum Ponding Depth (ft) = Area at Max Ponding Depth (ac) =	4.70 1.92	6.00 2.83		6.10 2.85	<u> </u>			9.10 3.32	<u> </u>	1	
Maximum Volume Stored (ac-ft) =	2.41	5.73		6.04				15.28		1	
				Results	based on CO	S DCM Input	s			ı	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	1	
Inflow Hydrograph Volume (ac-ft) = Predevelopment Peak Q (cfs) =	2.41	5.73 N/A		6.67 17.6	<u> </u>			31.72 164.2	<u> </u>	4	
Peak Inflow (cfs) =	N/A	N/A N/A		75.7				366.2		1	
Peak Outflow (cfs) =	1.1	1.4		1.4				166.5		1	
Ratio (Outflow/Predevelopment) = Structure Controlling Flow =	N/A Orifice Plate	N/A Orifice Plate		U.1 Overflow Grate	<u> </u>			1.0 Outlet Pipe	<u> </u>	1	
Max Velocity through Grate =	N/A	N/A		0.0				2.0		1	
Time to Drain 97% of Volume (hr) = Time to Drain 99% of Volume (hr) =	40 42	68		76				61		4	
	42	72 6.00		80 6.10	+			73 9.20	<u> </u>	1	
Maximum Ponding Depth (ft) =	4.70							3.20			
	4.70 1.92 2.41	2.83 5.73		2.85				3.34 15.62			

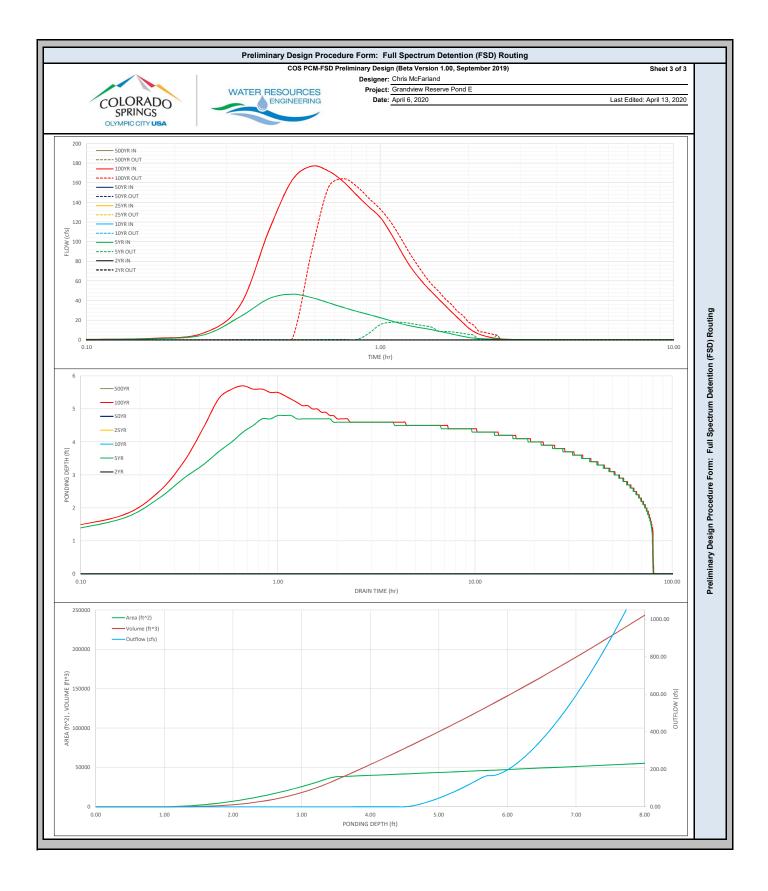
		Preliminary D	esign	Procedure	e Form: Fu	II Spectrum	Detention (F	SD) Routin	ng	
		С	OS PCN	A-FSD Prelin		n (Beta Version		oer 2019)	Sheet 1 of 3	
	STOR	MWATEF	3		•	Chris McFarlan Grandview Res				
COLORADO	orora	ENTERPRISE			•	April 6, 2020			Last Edited: April 08, 2020	
COLORADO SPRINGS			-							
OLYMPIC CITY USA										
1. Select WQCV/EURV PCM Type:					F	tended Detention B	asin (EDB)	•	1	
Imports the Stage-Area-Volume-Discharg corresponding PCM worksheet. The sele										
must be completed before the import will		sneet								
										-
2. WQCV/EURV Outlet Details						Input Pa User Input	rameters COS DCM	•		
 A) Average Infiltration Rate of WQCV B) Depth to Centroid of Underdrain Outlet (Drifice from filter	r media surface			i = y =	N/A N/A	N/A N/A	in / hr inches		
C) Underdrain Outlet Orifice Area					derdrain Ao = VQCV rows =	N/A 12	N/A 12	sq in		
D) Number of WQCV Orifice Rows E) Vertical Spacing between WQCV Orifice	Rows				ice Spacing =	4.0	4.0	inches		
 F) WQCV Orifice Area (A_o) per Row G) Maximum Stage of WQCV (includes ISI 	and Trickle Ch	nannel Depth)		Max	WQCV Ao = Stage wqcv =	1.05 4.00	1.05	sq in ft		
 H) EURV Orifice Area (A_o) in Single Row I) Maximum Stage of EURV (includes ISD a 	and Trickle Char	nnel Depth)		Max	EURV Ao = Stage _{EURV} =	17.07 6.00	17.07 6.00	sq in ft		
J) Discharge Coefficient for all WQCV/EUF					Cd =	0.60	0.60	1		
Eland Control Surphares Basin Coomates (Poo Eiguro							Heer can everyide default flood evroberge	
 Flood Control Surcharge Basin Geometry (a Default Flood Surcharge Geometry inputs 	represent a con	tinuation of					rameters	-	User can override default flood surcharge geometry inputs to create a transition bench	
the PCM Geometry in an upward direction	without a transit	ion bench.				User Input	COS DCM	_	between the top of the PCM and the Flood Surcharge Volume by entering larger	
 A) Length of Basin at Top of EURV B) Width of Basin at Top of EURV 					L _{PCM} = W _{PCM} =	453.3 177.8	453.3 177.8	ft ft	dimensions in C), D), and E). See the Figure to the right.	
C) Stage at Top of Transition Bench (Botto			inde)	Stage at To	op of Bench =	6.10	6.10	ft ft		
 D) Length of Basin at Top of Transition Ber E) Width of Basin at Top of Transition Bend 	h (Bottom of Flo	ood Control Surcharg			L Bench = W Bench =	454.1 178.6	454.1	ft	Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction	
F) Average Side Slopes of Flood Control S (Recommend no steeper than 3H:1V slope)					Z _{Surcharge} =	4.00	4.00	ft / ft		
Tributary Watershed Hydrology						ak Flow (cfs)]	
 A) Input hydrology data (copy/paste) from r 	nodel runs		'ear 95	10 Year	25 Year	50 Year	100 Year 120.21	500 Year		
 Adjust "Time Interval" to match hydrograph data 	Time Interval 5.0	minutes	•						-	Ó
	Time					ow Hydrograph		500 Year]	6
5-yr and 100-yr Hydrology Required (Other Storms are Optional)	(min) 0:00	0.	'ear 00	10 Year	25 Year	50 Year	100 Year 0.00	500 real		
	0:05		75 .33				4.56 15.20		•	194
	0:15 0:20	27	.93 .14				32.42 76.70			Partiminano Districture Forms, Full Constanting (FON) Durities
	0:25	78	.99				190.43		1	
	0:30	58					238.04 222.59		1	1
	0:40		.28 .58				193.29 162.70		1	
	0:50	32	.22 .64				131.89 110.47			7
	1:00	23	.60 .00				95.05 74.37		1	
	1:05 1:10	16	.49				54.92		1	
	1:15 1:20	12	.05 .80				38.35 27.93		1	
	1:25 1:30		.09 .62				21.76 18.07		4	
	1:35	10	.55 56				15.64 14.06		1	
	1:45	8.	84				12.98		1	
	1:50 1:55	7.	33 74				12.35 12.15		1	
	2:00 2:05		88 08				9.32 6.49		1	
	2:10 2:15	2.	79 86				4.48			
	2:20	1.	21				1.99		1	
	2:25 2:30	0	80 49				1.32 0.80		1	[°]
	2:35 2:40		25 09				0.40 0.14		4	
	2:45 2:50	0.					0.01			
	2:55	0.					0.00		1	
	3:00 3:05								1	
	3:10 3:15		$-\top$						4	
	3:20 3:25								1	
	3:30								1	
	3:35 3:40								1	
	3:45 3:50								4	
	3:55 4:00								1	
	4:05								1	
	4:10 4:15								1	
	4:20 4:25								1	
	4:30								1	
	4:35 4:40								1	
	4:45 4:50								4	
	4:55								1	
	5:00 5:05								1	
	5:10 5:15		$\neg \uparrow$						4	
	5:20 5:25								1	
	5:30								1	
	5:35								J	1

5:45 5:50 5:55 6:00	5:40				
5:55	5:45				
6:00	5:55				
	6:00				


			Prelimin				•	Detention (F	•	-
				COS PO	M-FSD Prelir			n 1.00, Septemb	oer 2019)	Sheet 2 of 3
							Chris McFarlan			
		WA	TER RES	OURCES			Grandview Res	erve Pond C		
COLORADO			ENC	BINEERING		Date:	April 6, 2020			Last Edited: April 08, 2020
SPRINGS	,									
OLYMPIC CITY USA										
					1					
5. Flood Control Outlet Structure T	ype									
A) Select Flood Control Outlet S	Structure Type	-			Overflow	v Weir/Grate, Out	et Pipe Restriction	& Emergency Spillwa	ay 🔻	
	a dotar o 13p	, ,								
6. Overflow Weir (Dropbox) and G	ate (Elat or S	loped)					Innut Pa	rameters		
(Assumes that top of grate is			crete dropbox	<)			User	COS	•	
						н	Input	DCM	10	
 A) Overflow Weir Front Edge He B) Overflow Weir Front Edge Le 						H _{weir front} = L _{weir front} =	6.00 12.00	6.00 11.00	ft	
C) Overflow Weir Grate Slope (H:V, enter ze	ro for flat grate	e)			Swair eidee =	0.00	0.00	ft / ft	
D) Horizontal Length of Weir Si					Horizon	ntal L _{weir sides} =	12.00	11.00	ft	
 E) Overflow Grate Open Area % F) Debris Clogging % 	grate open	area / totai gra	ate area)			Open Area = is Clogging =	70% 50%	50%	%	
G) Height of Grate Upper Edge						H _{grate top} =	6.00	6.00	ft	
 H) Overflow Grate Slope Length I) Overflow Grate Open Area (I) 					Slo Open Are	ppe L _{weir sides} = a _(No Clogging) =	12.00	11.00 84.70	ft sa ft	
 I) Overflow Grate Open Area (v J) Overflow Grate Open Area (v 		,			Open A	rea (No Clogging) =	100.80 50.40	42.35	sq ft sq ft	
,	,					00			• •	
7. Outlet Pipe with Flow Restriction	Plate									
						<i>.</i> .	0.440	and an an Dist		_
 A) Select Type of Outlet Restric (Circular Pipe w/ Restrictor PI 		Drifice or Rect	angular Orific	e)		Circula	Outlet Pipe w/ Re	strictor Plate		•
Controller ripe wirtestrictor Pi	alo, onouidi (angular Office					rameters		
							User	COS	•	
 B) Depth to Invert of Outlet Pipe 	(relative to s	Stage = 0 ft)			Pipe I	nvert Depth =	1.50	DCM 1.50	ft	
C) Outlet Pipe Diameter		Juigo o II)			Pip	e Diameter =	48.00	42.00	inches	
D) Restrictor Plate Height above					F	Plate Height =	33.13	39.36	inches	
 E) Half-Central Angle of Restric F) Outlet Orifice Area 	tor Plate on H	hpe				Theta = Outlet Ao =	1.96 9.25	2.63 9.37	radians sq ft	
G) Height of Outlet Orifice Cent	roid above Or	utlet Pipe Inver	t			Outlet _{centroid} =	1.54	1.71	ft	
H) Ratio of Grate Open Area / 1	00-yr Orifice	Area (should b	e≥4)		Open	Area Ratio =	10.90	9.04]	
8. Emergency Spillway (Rectangul	ar or Trapezo	idal)					Input Pa User	cos	-	
							Input	DCM	-	
 A) Spillway Invert Stage (relativ B) Spillway Crest Length 	e to Stage =	D ft)				H _{spillway invert} = L _{spillway crest} =	8.00	999.00 42.00	ft ft	
C) Spillway End Slopes (H:V)						S _{spillway ends} =	79.00 4.00	42.00	ft / ft	
D) Freeboard above Maximum	Nater Surfac	e				poard Depth=	1.00	1.00	ft	
 E) Spillway Design Flow Depth F) Stage at Top of Freeboard 						Depth _{spillway} = I Top Stage =	1.00		ft ft	
G) Basin Area at Top of Freebo	ard					Basin Area =	2.34		acres	
9. Routed Hydrograph Results				Resu	Its based on	User Input				
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	
Inflow Hydrograph Volume (ac-ft) = Predevelopment Peak Q (cfs) =	1.36 N/A	4.79 N/A		4.34 10.0	-			12.42 120.2		
Peak Inflow (cfs) =	N/A	N/A		79.0				238.0		
Peak Outflow (cfs) =	0.6	1.7		1.5				119.2		
Ratio (Outflow/Predevelopment) = Structure Controlling Flow =	N/A Orifice Plate	N/A Orifice Plate		0.2 Orifice Plate				1.0 Outlet Pipe		
Max Velocity through Grate =	N/A	N/A		N/A				1.2		
Fime to Drain 97% of Volume (hr) =	39	67		65				63		
Fime to Drain 99% of Volume (hr) = Maximum Ponding Depth (ft) =	41 4.00	72 6.00		69 5.60				72 7.10		
Area at Max Ponding Depth (ac) =	1.32	1.85		1.80				1.98		
Maximum Volume Stored (ac-ft) =	1.36	4.79		4.07				6.91		
				Results	based on CO	S DCM Inputs	6			
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	
Inflow Hydrograph Volume (ac-ft) = Predevelopment Peak Q (cfs) =	1.36	4.79 N/A		4.34	<u> </u>			12.42		
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) =	N/A	N/A N/A		79.0				238.0		
Peak Outflow (cfs) =	0.6	1.7		1.5				116.8		
Ratio (Outflow/Predevelopment) =	N/A	N/A		0.2				1.0		
Structure Controlling Flow = Max Velocity through Grate =	Orifice Plate N/A	Orifice Plate N/A		Orifice Plate N/A	<u> </u>			Overflow Grate 1.3		
Fime to Drain 97% of Volume (hr) =	39	67		65				63		
	41	72		69				72		
Fime to Drain 99% of Volume (hr) =	4.00	0.00								
	4.00 1.32	6.00 1.85		5.60 1.80				7.10		

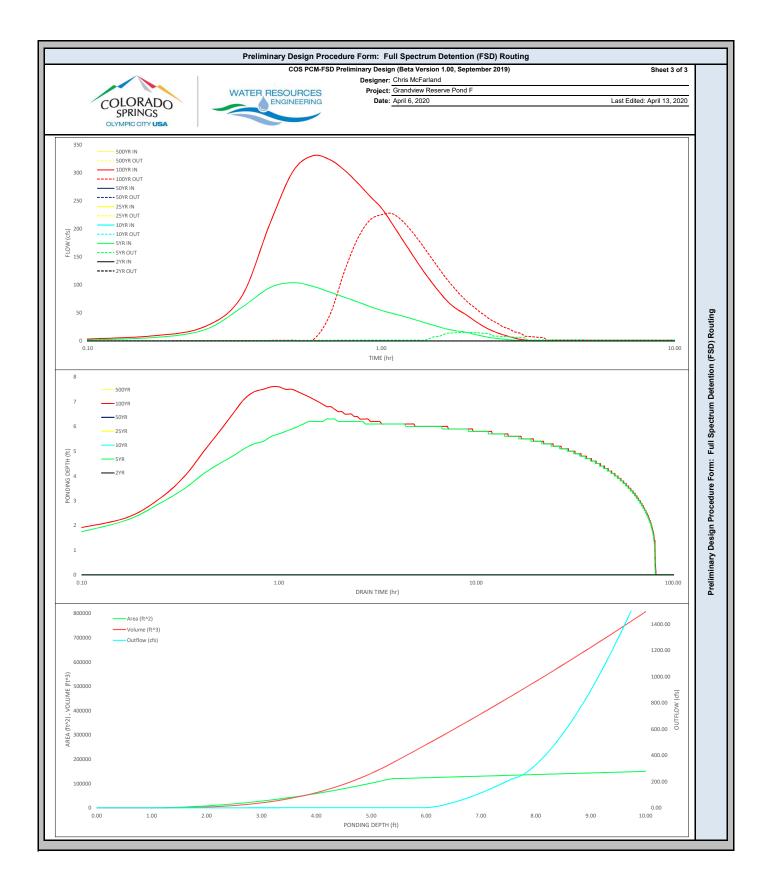
		Preliminar	ry Design	Procedure	ອ Form: Fu	II Spectrum	Detention (F	SD) Routin	ıg	
			COS PC	M-FSD Prelin		n (Beta Versior		oer 2019)	Sheet 1 of 3	
	STOR	MWATE	ER		•	Chris McFarlan Grandview Res				
COLORADO	or or a	ENTERPE				April 6, 2020	·		Last Edited: April 13, 2020	
COLORADO SPRINGS										
OLYMPIC CITY USA										
1. Select WQCV/EURV PCM Type:					Đ	tended Detention B	Jasin (EDB)	•		
Imports the Stage-Area-Volume-Discharg corresponding PCM worksheet. The sele										
must be completed before the import will										
2. WQCV/EURV Outlet Details						Input Pa	rameters			1
A) Average Infiltration Rate of WQCV						User Input	COS DCM	- 		
B) Depth to Centroid of Underdrain Outlet C	Drifice from filter	r media surface			y =	N/A	N/A N/A	in / hr inches		
C) Underdrain Outlet Orifice Area D) Number of WQCV Orifice Rows				# V	derdrain Ao = VQCV rows =	N/A 13	N/A 13	sq in		
 E) Vertical Spacing between WQCV Orifice F) WQCV Orifice Area (A_o) per Row 					ice Spacing = WQCV Ao =	4.0 1.34	4.0 1.34	inches sq in		
 G) Maximum Stage of WQCV (includes ISE H) EURV Orifice Area (A_o) in Single Row 	and Trickle Ch	nannel Depth)			Stage wqcv = EURV Ao =	4.50 20.83	4.50 20.83	ft sqin		
 Maximum Stage of EURV (includes ISD a J) Discharge Coefficient for all WQCV/EUR 				Max	CStage _{EURV} = Cd =	6.50 0.60	6.50 0.60	ft		
-,		.(-)								-
Flood Control Surcharge Basin Geometry (a	bove EURV) - :	See Figure				In such Da	rameters		User can override default flood surcharge	
Default Flood Surcharge Geometry inputs the PCM Geometry in an upward direction	without a transit	tion bench.				User	COS	-	geometry inputs to create a transition bench between the top of the PCM and the Flood	
A) Length of Basin at Top of EURV					L _{PCM} =	588.5	DCM 588.5	ft	Surcharge Volume by entering larger dimensions in C), D), and E).	
 B) Width of Basin at Top of EURV C) Stage at Top of Transition Bench (Bottor) 	n of Flood Con	trol Surcharge)		Stage at To	W _{PCM} = op of Bench =	180.1 6.60	180.1 6.60	ft	See the Figure to the right.	
 D) Length of Basin at Top of Transition Ben E) Width of Basin at Top of Transition Benc 	ch (Bottom of F h (Bottom of Flo	Flood Control Su ood Control Sur	charge)		L Bench = W Bench =	589.3 180.9	589.3 180.9	ft ft	Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction	
F) Average Side Slopes of Flood Control Si (Recommend no steeper than 3H:1V slope)	urcharge above	Transition Bend	ch 🦷		Z _{Surcharge} =	4.00	4.00	ft / ft	•	
,										-
Tributary Watershed Hydrology				Pre-Dov	elopment Po	ak Flow (cfs)			1	
A) Input hydrology data (copy/paste) from n	nodel runs	2 Year	5 Year 30.00	10 Year	25 Year	50 Year	100 Year 154.35	500 Year	1	Postiniona Decodence Forms - Euli Constantina (FON) Device
B) Adjust "Time Interval" to match	Time Interval		30.00				154.35		1	ő
hydrograph data	5.0 Time	minutes	Pos			ow Hydrograph	is (cfs)]	í,
5-yr and 100-yr Hydrology Required (Other Storms are Optional)	(min) 0:00	2 Year	5 Year 0.00	10 Year	25 Year	50 Year	100 Year 0.00	500 Year		ų,
	0:05 0:10		1.91 13.55				5.05 18.88		4	, ti o
	0:15 0:20		36.44 87.25				44.44 108.47		-	
	0:25		118.48				244.10 314.40		1	8
	0:30		113.01 95.70				305.49			100
	0:40 0:45		80.03 67.12				273.09 239.63			6
	0:50		56.09 48.05				204.40 175.96			ŭ
	1:00 1:05		41.91 36.47				156.02 129.55			į
	1:10 1:15		30.68 25.11				102.47 77.55		-	Ľ
	1:20		21.41				56.75 42.46		4	
	1:30 1:35		18.14				33.79 28.16	1	4	
	1:40		14.92				24.40		1	ģ
	1:45 1:50		13.77 12.92				21.80 19.98		1	-
	1:55 2:00		12.02 9.58				18.83 15.10		1	6
	2:05 2:10		6.95 4.98				10.86 7.82		1	
	2:15 2:20		3.53 2.44				5.61 3.93	[4	
	2:25 2:30		1.66				2.73 1.86	ļ	4	Ġ
	2:35		0.72				1.18		1	
	2:40 2:45		0.41				0.67		1	
	2:50 2:55		0.08 0.04				0.11 0.05		1	
	3:00 3:05		0.02 0.01				0.02 0.01		1	
	3:10 3:15		0.01				0.01		4	
	3:20 3:25						0.00		4	
	3:30							1	1	
	3:35 3:40								1	
	3:45 3:50								1	
	3:55 4:00								1	
	4:05 4:10								4	
	4:15							İ	1	
	4:20 4:25								1	
	4:30 4:35								1	
	4:40 4:45								4	
	4:50							1	4	
	5:00							1	1	
	5:05 5:10								1	
	5:15 5:20								1	

	5:40				
	5:45				
	5:50				
	5:55				
	6:00				
-					


<form></form>								•	Detention (F		Sheet 2 of 3
		1			500 FC						Sheet 2 01 3
			WA	TER RES	OURCES				erve Pond D		
	COLORADO			ENC	BINEERING		Date:	April 6, 2020			Last Edited: April 13, 2020
1. Prod Carden Dukits Busines Type A) Sates Flood Control Cates Stages () (A) Control Wate (Front Wat	SPRINGS										
	OLYMPIC CITY USA										
						1					
A) Search Pool Carried Cuter National Type Imped Proceedings 6. Overflow Werk (Digolar of Antibaction Stage = 0); Imped Proceedings b) Control Werk (Trick) Length Head book of Education); Imped Proceedings c) Overflow Werk (Trick) Length Head book of Education); Imped Proceedings c) Overflow Werk (Trick) Length Head book of Education); Imped Proceedings c) Overflow Werk (Trick) Length Head book of Education); Imped Proceedings c) Overflow Werk (Trick) Length Head book of Education); Imped Proceedings c) Overflow Werk (Trick) Length Head book of Education); Imped Proceedings c) Overflow Werk (Trick) Length Head book of Education; Imped Proceedings c) Overflow Werk (Trick) Length Head book of Education; Imped Proceedings c) Overflow Team (Trick) Head Werk (Trick) (5. Flood Control Outlet Structure T	уре				Overflow	wWair/Grate Out	at Dina Partriction	8: Emergency Spiller	-	
Control War (Droptod) and Cala File or Bioped) (December Pairs Pairs (Pairs) Control War (Diroptod) and Cala File or Bioped) Control War (Diroptod) (Pairs) Control War (Diroptod)	A) Select Flood Control Outlet	Structure Type	e			Overnov	v weir/Grate, Out	et Pipe Restriction	a Emergency Splitwa	ay 🔹	
(Assent Part of gala is share with the of the concette dription) User (COS) (A) Orantow With Francisco Part of Lago Part		,,									
(Assent Part of gala is share with the of the concette dription) User (COS) (A) Orantow With Francisco Part of Lago Part	6. Overflow Weir (Dropbox) and G	ate (Flat or S	loped)					Input Pa	rameters		
A) Ourden Work Front Edge Legin (Insteine to Boge 0 = 0); B) Ourden Work Front Edge Legin (Insteine to Boge 0 = 0); B) Ourden Work Front Edge Legin (Insteine to Boge 0 = 0); B) Control Legin Formania Legin (Insteine to Boge 0 = 0); C) Control Legin Formania Legin (Insteine to Boge 0 = 0); D) Horizontal Legin Formania Leging (Insteine to Boge 0 = 0); D) Horizontal Legin (Insteine to Boge 0 = 0); D) Horizontal Legin (Insteine to Boge 0 = 0); D) Horizontal Legin (Insteine to Boge 0 = 0); D) Control Case (Insteine to Boge 0 = 0); D) Control Case (Insteine to Boge 0 = 0); D) Dogh to Invert of Outed Reaction; D)				crete dropbox	()					•	
b) Outbook Wei Front Edge Langth (rists edge of copbo) Lanuts # 1000 ±000 # 1000 ±00 # 1000 ±00 # 1000 ±00 # 1000 ±00 # 1000 ±00 # 1000 ±00	A) Overflow Weir Front Edge H	aight (relative	to Stage = 0 f	t)			Huseir front =		6.50	ft	
C) Outlook Web Case Slipe (14) Center series for large (a) Control Web Case Slipe (4) Center Slipe (a) Control Case Case (4) Control Cas							Lweir front =		9.00	ft	
E) Outlow Grain (Span Ans K (grain Goan Tans K) (grain	C) Overflow Weir Grate Slope (H:V, enter ze	ro for flat grate	e)			S _{weir sides} =		0.00		
1) Detric Clogging 16 (a) Hopfer of frage is the state did detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Detric Clogging 16 (a) Control Cate Deprint value (whood detric) Deprint value (whood detric) B) Deprint to Invert of Catel Deprint (Clogging 16 (b) Control Cate Deprint (Clogging 16 (c) Control Cate Deprin	D) Horizontal Length of Weir Si	des (inside ec	lge of dropbox)							
(a) Forder of Gine Super Edge (at back side of croption) (b) Overflow Gine Super Area (with dectra) (c) Overflow Gine Super Area (with dectra) (c) Overflow Gine Super Area (with dectra) (c) Overflow Gine Charac Overflow Overflow Charac (with dectra) (c) Overflow Gine Charac Overflow Overflow Charac (with dectra) (c) Overflow Gine Charac Overflow Overflow Charac (with dectra) (c) Overflow Charac Overflow Overflow Overflow Charac (with dectra) (c) Overflow Charac Overflow Overflo		grate open	area / total gra	ate area)							
I) Outches Carls (Spin Area (Notice)) Open Area (Notice) Open Area (Notice) 2) Outches (Spin Copen Area (Moteles)) Open Area (Notice) If XTO 5570 set ft 3) Outches (Spin Copen Area (Moteles)) Open Area (Notice) If XTO 5570 set ft 4) Outches (Spin Copen Area (Moteles)) Open Area (Notice) If XTO 5570 set ft 4) Outches (Spin Copen Area (Moteles)) Open Area (Notice) Institution (Notice) 4) Outches (Spin Copen Area (Moteles)) Institution (Notice) Institution (Notice) 4) Dept (Notice) Institution (Notice) Institution (Notice) Institution (Notice) 6) Dept (Notice) Institution (Notice) Institution (Notice) Institution (Notice) Institution (Notice) 1) Outches (Spin Copen Area (Notice) Institution (Notice) Institution (Notice) Institution (Notice) 1) Outches (Spin Copen Area (Notice) Institution (Notice) Ins		(at back side	of dropbox)				H _{grate top} =		6.50		
1) Organ Area (Support) Quere Area (Support) 2. Outed Pipe with Flow Readicion Place (Circular Pipe wit Redictor Place, Circular Onfice or Rectangular Onfice) Circular Onfice Pipe Demoter Dispetition Place (Circular Pipe wit Redictor Place, Circular Onfice or Rectangular Onfice) Circular Onfice Pipe Demoter Dispetition Place (Circular Onfice or Rectangular Onfice) 1) Open Area (Support) Quere Area (Support) User Corcular Onfice Pipe Demoter Dispetition Place (Circular Onfice Pipe Planet Dispetition Corcular Onfice Area (Support) Dispetition Corcular Onfice Area (Support) Dispetition Corcular Onfice Area (Support) 0) Redict Of Circular Onfice Area (Support) Dispetition Corcular Onfice Area (Support) 0) Redict Of Circle Area (Support) Dispetition Corcular Onfice Area (Support) Dispetition Corcular Area (Support)	H) Overflow Grate Slope Lengtl	í (inside edge	of dropbox)			Slo	pe L _{weir sides} =				
2. Outlet Pipe with Flow Restriction Plate A. Solver Type of Outlet Restriction A. Solver Pipe with Flow Restriction Plate A. Coular Office or Rectangular Office) Beach to have of Outlet Restriction A. Solver Pipe With Restriction Plate Decide Type of Outlet Restriction A. Solver Pipe New Tope (relate to Stage = 0 ft) Decide Type of Coular Office or Rectangular Office) Pipe Invert Outlet Tope of Pipe Invert Decide Type of Coular Office or Rectangular Office) Decide Type of Coular Office or Rectangular Office Decide Type)			Open Are Open A	(No Clogging) =				
A) Selet Type of Outlet Restriction (Crouter Pipe w Restriction Pipe, (relate to Stage = 0 t); Body Type of Pipe (relate to Stage = 0 t); Body Type of Pipe (relate to Stage = 0 t); Body Type of Pipe (relate to Stage = 0 t); Hal-Contal Age of Restrictor Pipe (relate to Stage = 0 t); Hal-Contal Age of Restrictor Pipe (relate to Stage = 0 t); Hal-Contal Age of Restrictor Pipe (relate to Stage = 0 t); Hal-Contal Age of Restrictor Pipe (relate to Stage = 0 t); Halphage of Restrictor Pipe (relate to Stage = 0 t); Halphage To Alsows (Hutor Office Area Halphage To Alsows (Hutor News (relate to Stage = 0 t); Halphage To Alsows (Hutor News (relate to Stage = 0 t); Halphage To Alsows (Hutor News (relate to Stage = 0 t); Halphage To Alsows (Hutor News (relate to Stage = 0 t); Halphage To Alsows (Hutor News (relate to Stage = 0 t); Halphage To Alsows (Hutor News (relate to Stage = 0 t); Halphage To Alsows (Hutor News (relate to Stage = 0 t); Halphage To Alsows (Hutor News (relate to Tage Stage); Halphage To Alsows (Hutor News (relate to Tage Stage); Halphage To Alsows (Hutor News (relate to Tage Stage); Halphage To Alsows (Hutor News (relate to Tage Stage); Halphage To Alsows (Hutor News (relate to Tage Stage); Halphage To Alsows (Hutor News (relate to T	c, overnow orace open Alea (I						(Ciuggeo)	72.00	20.00	~ ~ ~	
A) Selet Type of Outlet Restriction (Cruciar Ype w Restrictor Plate, Cruciar Orifice or Rectangular Orifice) Deduction from the Outlet Plate, Inclusive Type Inclusive B) Deduct Type Inclusive B) Hard Cruciar Orifice or Rectangular Orifice) The Outlet Plate Inclusive B) Hard Cruciar Orifice or Rectangular Orifice) B) Hard Cruciar Orifice or Rectangular Orifice) Deduct Plate Inclusive B) Hard Cruciar Orifice or Rectangular Orifice) The Outlet Plate Inclusive B) Hard Cruciar Orifice orifice) <td>7. Outlet Pipe with Flow Restriction</td> <td>Plate</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	7. Outlet Pipe with Flow Restriction	Plate									
Circular Pipe wir Restrictor Plate, Cloular Orthe or Rectangular Orthol B) Doph to Invert of Outlet Pipe (relative to Stage = 0.1) C) Restrict Plate infortation Plate on Pipe B) Restrict Plate infortation Plate on Pipe B) Restrict Plate infortation Plate on Pipe B) Hogh to Outloar Organization Plate Outloar Organization Plate on Pipe B) Hogh to Outloar Organization Plate Outloar Organi Plate Outloar Organizatio Plate Outloar Organization								0.44.0	diata Diat		-1
B) Depth to Invert a Outlet Pope (relative to Stage = 0 ft) Imple Features 0) Outlet Pope Invert Gent Pipe Invert Oepth ft 1) Bis Schwarz Auge of Restrictor Market and Pope ft 1) Restrictor Flat Height adow Pipe Invert ft 1) Restrictor Flat Height adow Pipe Invert ft 1) Restrictor Flat Height adow On Acta (100-yr Office Area (chould be 2.4) ft 8. Emergency Spilway (Rectangular or Trapezoidal) ft A) Spilway Invert Stage (relative to Stage = 01) ft 8. Same Carl State			Orifice or Rect	angular Orific	e)		Circula	Outlet Pipe w/ Re	strictor Plate		
B) Depth to Invert of Outlet Ppe (relative to Stage = 0 ft) input input <td>Conservation - apo winteservelor Fi</td> <td></td> <td></td> <td></td> <td>-,</td> <td></td> <td></td> <td></td> <td>rameters</td> <td></td> <td></td>	Conservation - apo winteservelor Fi				-,				rameters		
B) Deph to Invert of Colder Pipe (relative to Stage = 0.1) Pipe Invert Deph = 150 100 100 Pipe Invert Deph = 40.00 100 Pice Dameter D) Reath-cbr Plate Height above Pipe Invert Pipe Dameter 100 Pipe Dameter Pice Dameter P											
C) Outlet Pipe Diameter All 00 Inc. Inc. D) Restrict Pite Height avor D) Restrict Pite Height avor D) Height Of One Control Babwo Outlet Pipe Invert Inc. Inc. Inc. E) Height Of One Control Babwo Outlet Pipe Invert Inc. Inc. Inc. Inc. 0) Height Of One Control Babwo Outlet Pipe Invert Inc. Inc. Inc. Inc. 0) Height Of One Control Babwo Outlet Pipe Invert Inc. Inc. Inc. Inc. 8. Emergency Spillway (Rectangular or Trapozoidal) Inc. Inc. Inc. Inc. A) Spillway Invert Stage (relative to Stage = 0 ft) Inc. Inc. Inc. Inc. 10) Babwy Creat Length Inc. Inc. Inc. Inc. Inc. 10) Babwy Creat Length Inc. Inc. Inc. Inc. Inc. 11) Babwy Creat Length Inc. Inc. Inc. Inc. Inc. Inc. 11) Babwy Creat Length Inc. I	B) Depth to Invert of Outlet Pipe	(relative to s	Stage = 0 ft)			Pipe II	nvert Depth =			ft	
E) Half-Cantal Angle of Restrictor Pitte on Pipe Theta = 2.63 2.63 1.63 1.13 <td>C) Outlet Pipe Diameter</td> <td></td> <td></td> <td></td> <td></td> <td>Pip</td> <td>e Diameter =</td> <td>48.00</td> <td>48.00</td> <td></td> <td></td>	C) Outlet Pipe Diameter					Pip	e Diameter =	48.00	48.00		
F) Outlet Online Aria Outlet Aria Outlet Aria Outlet Aria 6) Heght Outlet Online Centrol above Outlet Pipe Invert 1) Raid o Orate Open Area (Hould be 24) Outlet Aria 10 8. Emergency Spillway (Rectangular or Trapezoidal) Imput Parameters 100 1100 11 A) Spillway Invert Stage (relative to Stage = 0 ft) B) Spillway Creat Length Imput Parameters Imput Parameters 10 Spillway Creat Length C) Spillway Creat Length Imput Parameters Imput Parameters 10 Spillway Creat Length Spillway Creat Length Imput Parameters Imput Parameters 10 Spillway Creat Length Imput Parameters Imput Parameters Imput Parameters 10 Spillway Creat Length Imput Parameters Imput Parameters Imput Parameters 10 Spillway Creat Imput Parameters Imput Parameters Imput Parameters 10 Spillway Creat Imput Parameters Imput Parameters Imput Parameters 10 Spillway Creat Imput Parameters Imput Parameters Imput Parameters 10 Spillway Creat Imput Parameters Imput Parameters Imput Parameters 10 Spillway Creat Imput Parameters Imput Parameters Im						F			44.00		
G) Height of Quilet Open Area (100-yr Office Area (should be 2-4) Outlet_based = 133 183 183 183 183 183 183 183 183 183		tor Plate on F	Pipe						2.56		
h) Ratio of Grate Open Area / 100-yr Orffice Area (should be 2-4) Open Area Ratio = 7.02 4.70 8. Emergency Spillway (Rectangular or Trapezoidal) User A) Spillway (Rectangular or Trapezoidal) User B. Spillway Crest Length COS C) Spilvey Fish Sobpes (HV) Drebox Borbes (HV) D) Freeboard above Maximum Water Surface Biol 000 ft F) Sbiger Toro Deph Freeboard above Maximum Water Surface Biol 000 ft B) Basin Area If top of Freeboard 1000 ft ft P: Rectard Byser (HV) Biol 000 ft 1000 ft C) Basin Area If top of Freeboard 1000 ft ft Freeboard Borbe Maximum Vater Surface 2000 ft ft Freeboard Solope Area If top of Freeboard 1000 ft ft G Basin Area If top of Freeboard 1000 ft ft Freeboard Borbe Maximum Vater Surface 1020 ft 1000 ft Freeboard Borbe Maximum Vater Surface 1020 ft ft Freeboard Borbe Maximum Vater Surface 1020 ft 1020 ft Biol Maximum Vater Surface 1020 ft 1020 ft Freeboard Borbe Maximum Vater Surface 1020 ft 1020 ft Freeboard Borbe Maximum Va		roid above Or	utlet Pipe Inve	t			Outlet _{centroid} =		1.93		
A) Spillway Invert Stage (relative to Stage = 0 ft) Builtway Crest Length User COS B) Spillway End Stopse (HVI) Builtway Crest Length Builtway Crest Length Builtway End Stopse (HVI) C) Spillway End Stopse (HVI) Builtway Crest Length Builtway Crest Length Builtway Crest Length F) Spillway End Stopse (HVI) Spillway End Stopse (HVI) Builtway Crest Length Builtway Crest Length Builtway Crest Length F) Spillway Crest Length Spillway End Stopse (HVI) Builtway Crest Length Builtway Crest Length Builtway Crest Length F) Spillway Crest Length Spillway Crest Length Builtway Crest Length Builtway Crest Length Builtway Crest Length G) Basin Area at Top of Freeboard Builtway Crest Length Builtway Crest Length Builtway Crest Length Builtway Crest Length 9. Routed Hydrograph Volume (acre) = NAA Results Based on User Input Basin Area at Top of Freeboard Builtway Crest Length Builtway Crest Length 9. Routed Hydrograph Volume (acre) = NAA Results Based on User Input Basin Area at Top of Freeboard Basin Area at Top of Freeboard 9. Routed Hydrograph Volume (acre) = NAA NAA Pack Inflow (Cre) = NAA NAA Pack Inflow (Cre) = NAA NAA									4.70		
A) Spillway Invert Stage (relative to Stage = 0 ft) Builtway Crest Length User COS B) Spillway End Stopse (HVI) Builtway Crest Length Builtway Crest Length Builtway Crest Length Builtway Crest Length C) Spillway End Stopse (HVI) Builtway Crest Length D) Spillway Depti File Depti File Spillway Crest Length Builtway Crest Length Builtway Crest Length Builtway Crest Length Builtway Crest Length F) Spillway Depti File Spillway Crest Length Builtway Crest Length											
A) Spilway Invert Stage (relative to Stage = 0 ft) B) Spilway Crest Length input bCM C) Spilway Crest Length input bCM D) Freeboard above Maxmum Water Surface Spilway Crest Length input bCM F) Spilway Crest Length input bCM input bCM C) Basin Area at Top of Freeboard input bCM input bCM Besign Storm Return Period inpot bCS input bCM input bCM Predevicipment Peak (infor (cfs) = N/A N/A inform Hydrograph Volume (cfs) = inform Hydrograph Colume (cfs) = Predevicipment Peak (infor (cfs) = N/A N/A inform Hydrograph (fr) = inform Hydrograph (fr) = Structure Controlling Flow Contrel Pade (fr) = infor	8. Emergency Spillway (Rectangul	ar or Trapezo	oidal)					Input Pa	rameters	_	
A) Spilway Invert Stage (relative to Stage = 0 ft) B) Spilway Creat Length B) Spilway Creat Length <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>										-	
B) Splivay Crest Length C) Splivay Crest Length D) Freeboard above Maximum Water Surface S) Splivay Crest Length F) Splivat Crest Length F) Spl	A) Spillway Invert Stage (relativ	e to Stage =	0 ft)				H _{spillway invert} =			ft	
D) Freeboard above Maximum Water Surface Freeboard Depth, film, film								105.00	42.00		
E) Siguity Design Flow Depth Flow Depth (main pair of Freeboard ft F) Stage at Top of Freeboard 10.00 ft G) Basin Area at Top of Freeboard 10.00 ft 9. Routed Hydrograph Results		M-4 0	_			Enab			4.00		
Freeboard Top of Freeboard Freeboard Top Stage = 10.00 n G Basin Area at Top of Freeboard Stage at Top of Freeboard 9. Routed Hydrograph Results Besign Storm Return Period = 1000 Freeboard Top Stage = 10.00 n Design Storm Return Period = 1000 Freeboard Top Stage = 10.00 n Predevelopment Peak (0 (c5) = 10/A N/A N/A N/A N/A Predevelopment Peak (0 (c5) = 10/A N/A N/A N/A N/A Predevelopment Peak (0 (c5) = 10/A N/A		Water Surfac	e			Flow	Depth _{spillway} =		1.00		
9. Routed Hydrograph Results Design Storm Return Period Inflow Hydrograph Volume (ach) 19. Routed Hydrograph Results Design Storm Return Period 19. Routed Hydrograph Volume (ach) 10. NA 19. Routed Hydrograph Results 19. Routed Hydrograph Results 19. Routed Hydrograph Results 10. Routed Hydrograph Results<										ft	
Results based on User Input VOCV EURV 25 Year 500 Year Inflow Hydrograph Volume (acf) 136 6.56 6.97 18.57 Predevelopment Peak O (16) N/A N/A 118.5 118.57 Peak Inflow (cf) 9 2.2 2.2 161.7 Ratio (Outflow/Predevelopment) N/A N/A 0.1 1.0 Structure Controlling Flow Onfloe Plate Onfloe Plate Onfloe Plate Onfloe Plate Max Velocity through Grade N/A N/A N/A N/A 1.8 Ime to Drain 97% of Volume (nr) 4.50 6.50 7.70 6.22 Maximum Ponding Depth (1) 4.50 6.50 7.90 7.22 Maximum Volume Stored (acf) 1.36 7.90 7.22 7.5 Maximum Volume Stored (acf) 1.36 6.50 7.90 7.90 Predevelopment Peak O, (17) 2.43 2.63 1.13.6 1.96 Predevelopment Peak O, (16) 5.90 6.97	G) Basin Area at Top of Freebo	ard				Max	Basin Area =	2.95		acres	
Results based on User Input VOCV EURV 25 Year 50 Year 100 Year 500 Year Inflow Hydrograph Volume (acf) NA N/A N/A N/A 196 6.56 6.97 100 Year 500 Year Predevelopment Peak O(16) N/A N/											
Inflow Hydrograph Volume (ac-ft) = 196 6.56 6.97 18.57 Predevelopment Peak O (d5) = N/A N/A 30.0 154.4 Peak Inflow (d5) = 0.9 2.2 2.2 161.7 Ratio (Outflow/Predevelopment) = N/A N/A 0.11 1.0 Structure Controlling Flow = Onfloe Plate Onfloe Plate Onfloe Plate Outflow (Predevelopment) = Max Velocity through Crate = N/A N/A N/A 1.8											
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) = Peak Outflow (cfs) = O.9 N/A N/A 118.5 Peak Outflow (cfs) = Peak Outflow (cfs) = Structure Controlling Flow Outflow Predevelopment) = N/A N/A 0.1 1.0 Structure Controlling Flow Outflow Predevelopment) = N/A N/A 0.1 1.0 Structure Controlling Flow Onfloe Plate Outlee NPpe 0.0 Max Velocity through Grate = N/A N/A N/A N/A Max Velocity through Grate = N/A N/A N/A 0.1 Max Velocity through Grate = N/A N/A N/A N/A Maximum Ponding Depth (tr) = 42 72 75 72 Maximum Ponding Depth (tr) = 42 4.50 6.50 7.90 Maximum Volume Stored (ac-ft) = Predevelopment Peak Q (cfs) = N/A 1.96 6.56 6.59 Maximum Volume Stored (ac-ft) = Peak Inflow (cfs) = N/A N/A 10 Year 25 Year 100 Year 500 Year Peak Nuth (cfs) = Peak Nuth (cfs) = Structure Controlling Flow N/A 110 Year 25 Year 100 Year 500 Year Max Velocity through Grate = N/A N/A 110 Year 25 Year 50 Year 100 Year				2 Year		10 Year	25 Year	50 Year		500 Year	
Peak Unflow (cfs) = N/A N/A 118.5 314.4 Peak Outflow (cfs) = 0.9 2.2 2.2 161.7 Ratio (Outflow (Predevelopment) = N/A N/A 0.1 1.0 Structure Controlling Flow = Onfice Plate Onfice Plate Outele Pipe Max Velocity through Grate = N/A N/A N/A 1.8 Time to Drain 97% of Volume (nr) = 40 67 70 62 Maximum Ponding Depth (ft) = 450 6.50 6.50 72 Maximum Volume Stored (ac-ft) = 1.71 2.43 2.43 2.63 Maximum Volume Stored (ac-ft) = 1.96 6.56 6.59 10.13 Design Storm Return Period = 1.96 6.56 6.97 10.79 Predevelopment Peak Q (cfs) = N/A N/A 110 Year 25 Year 50 Year Peak Unflow (cfs) = 0.9 2.2 2.2 134.4 10.9 Peak Outflow (cfs) = 0.9 2.2 2.2 134.4 10.13 <	Predevelopment Peak Q (cfs) =	N/A	N/A		30.0				154.4		
Ratio (Outflow/Predevelopment) = N/A N/A 0.1 1.0 Structure Controlling Flow = Onfice Plate Onfice Plate Onfice Plate Outflow Plate Outflow Plate Max Velocity through Grate = N/A N/A N/A N/A N/A 1.8 Time to Drain 97% of Volume (hr) = 42 72 75 72 72 Max Mending Depth (ft) = 4.50 6.50 6.50 7.90 72 Maximum Ponding Depth (ft) = 4.50 6.50 6.50 7.90 72 Maximum Volume Stored (ac-ft) = 1.96 6.56 6.59 10.13 72 Design Storm Return Period = 1.96 6.56 6.59 10.13 70 70 70 70 70 70 70 72 70 72 70 72 70 <	Peak Inflow (cfs) =	N/A	N/A		118.5				314.4		
Structure Controlling Flow = Onfloe Plate Onfloe Plate Onfloe Plate Max Velocity through Grate = N/A N/A N/A 18 Fine to Drain 99% of Volume (hr) = 40 67 70 62 Ime to Drain 99% of Volume (hr) = 42 72 75 72 Maximum Ponding Depth (t) = 4.50 6.50 6.50 7.90 Area at Max Ponding Depth (ac) = 1.71 2.43 2.63 101.13 Design Storm Return Period 1.96 6.56 6.59 101.13 Design Storm Return Period 1.96 6.56 0.97 18.57 Predevelopment Peak Q (cfs) = N/A N/A 118.5 314.4 Peak Oufflow (cfs) = N/A N/A 118.5 314.4 Peak Oufflow (cfs) = N/A N/A 0.01 154.4 Max Velocity through Grate = N/A N/A 0.1 1.0 Structure Controlling Flow Outcore Plate Overflow Grate 0.047 Or Max Velocity through Grate = N/A						L					
Max Velocity through Grate N/A N/A N/A Ime to Drain 97% of Volume (tr) = 40 67 70 62 Ime to Drain 99% of Volume (tr) = 42 72 75 72 Maximum Ponding Depth (t) = 4.50 6.50 6.50 7.90 Maximum Ponding Depth (t) = 4.50 6.50 6.50 7.90 Maximum Volume Stored (ac-ft) = 1.96 6.56 6.59 7.90 Design Storm Return Period = Results based on COS DCM Inputs 700 700 Maximum Volume Stored (ac-ft) = 1.96 6.56 6.59 100 Year 500 Year Inflow Hydrograph Volume (ac-ft) = 1.96 6.56 6.57 70 18.57 Predevelopment Peak Q(cfs) = N/A N/A 1195 14.4 Peak Inflow (fs) = N/A 118.5 14.4 Peak Outflow (cfs) = N/A 118.5 14.4 Peak Outflow (cfs) = N/A 0.1 1.0 Structure Controlling Flow Onfore Plate Overflow Grate Max Velocity through Grate = N/A N/A 2.8 Ime to Drain 99% of Volume (hr) = 4.2 7.2 7.6 Maximum Ponding Depth (t) = 4.2 7.2 7											
Ward Nume Product of the second s	Max Velocity through Grate =	N/A	N/A		N/A				1.8		
Maximum Ponding Depth (ft) = 4.50 6.50 7.90 Area at Max Ponding Depth (ac) = 171 2.43 2.43 2.63 Maximum Volume Stored (ac-ft) = 1.96 6.56 6.59 10.13 Design Storm Return Period = WQCV EURV 2 Year 50 Year 100 Year 500 Year Inflow Hydrograph Volume (ac-ft) = 1.96 6.56 6.97 18.57 50 Year 100 Year 500 Year Predevelopment Peak Q (cfs) = N/A N/A 30.0 154.4 14.4 16.51 314.4 153.1 153.1 153.1 153.1 153.1 153.1 10.1 10.0 10.1	ime to Drain 97% of Volume (hr) =										
Area at Max Ponding Depth (ac) = 1.71 2.43 2.43 2.63 Maximum Volume Stored (ac-ft) = 1.96 6.56 6.59 10.13 Results based on COS DCM Inputs WQCV EURV 2 Year 10 Year 25 Year 100 Year 500 Year Inflow Hydrograph Volume (ac-ft) = Predevelopment Peak Q (cfs) = N/A N/A 30.0 164.4 Peak Inflow (cfs) = 0.9 2.2 2.2 153.1 Predevelopment) = 0.9 2.2 2.2 153.1 Ratio (Outflow/Predevelopment) = N/A N/A 0.1 1.0 Structure Controlling Flow Outflow ePade Overflow Grate Overflow Grate Maximum Ponding Depth (tr) = 4.2 72 75 72 Maximum Ponding Depth (tr) = 4.50 6.50 6.50 8.10											
Maximum Volume Stored (ac-ft) = 1.96 6.56 6.59 10.13 Design Storm Return Period = Results based on COS DCM Inputs MQCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year Inflow Hydrograph Volume (ac-ft) = 1.96 6.56 6.57 10 Year 25 Year 50 Year 100 Year 500 Year Predevelopment Peak Q (cfs) = N/A N/A 30.0 154.4 14.4 Peak Inflow (cfs) = 0.9 2.2 2.2 153.1 Ratio (Qutflow (cfs) = 0.9 2.2 2.2 153.1 Structure Controlling Flow = Oncore Plate Overflow crate Max Velocity through Grate = N/A N/A N/A 2.8 10 Time to Drain 99% of Volume (hr) = 4.2 72 76 72 72 Maximum Ponding Depth (ft) = 4.50 6.50 8.10 8.10 2.66	Area at Max Ponding Depth (ac) =	1.71	2.43		2.43				2.63		
Design Storm Return Period = WQCV EURV 2 Year 5 Year 10 Year 500 Year 500 Year Inflow Hydrograph Volume (ac-ft) = 1.85 6.97 18.57 18.57 Predevelopment Peak Q (cfs) = N/A N/A 30.0 154.4 194.4 Peak Outflow (cfs) = 0.9 2.2 2.2 153.1 153.1 Ratio (Outflow/Predevelopment) = N/A N/A 0.1 1.0 154.4 Structure Controlling Flow Ontice Plate Ontice Plate 0.04 0.1 1.0 Max Velocity through Grate = N/A N/A N/A 0.1 2.8 100 ime to Drain 97% of Volume (hr) = 4.0 6.7 7.0 633 110 Maximum Ponding Depth (ft) = 4.50 6.50 7.2 75 72	Maximum Volume Stored (ac-ft) =	1.96	6.56		6.59				10.13		
Design Storm Return Period = WQCV EURV 2 Year 5 Year 10 Year 500 Year 500 Year Inflow Hydrograph Volume (ac-ft) = 1.85 6.97 18.57 18.57 Predevelopment Peak Q (cfs) = N/A N/A 30.0 154.4 194.4 Peak Outflow (cfs) = 0.9 2.2 2.2 153.1 153.1 Ratio (Outflow/Predevelopment) = N/A N/A 0.1 1.0 154.4 Structure Controlling Flow Ontice Plate Ontice Plate 0.04 0.1 1.0 Max Velocity through Grate = N/A N/A N/A 0.1 2.8 100 ime to Drain 97% of Volume (hr) = 4.0 6.7 7.0 633 110 Maximum Ponding Depth (ft) = 4.50 6.50 7.2 75 72					Results	based on CO	S DCM Inputs	6			
Predevelopment Peak Q (cfs) = N/A N/A 30.0 154.4 Peak Inflow (cfs) = N/A N/A 118.5 314.4 Peak Outflow (cfs) = 0.9 2.2 2.2 153.1 Ratio (Outflow/Predevelopment) = N/A N/A 0.1 1.0 Structure Controlling Flow Onfloce Plate Overflow Grate Overflow Grate Max Velocity through Grate = N/A N/A N/A 2.8 ime to Drain 97% of Volume (tr) = 42 72 76 63 'ime to Prain 99% of Volume (tr) = 4.50 6.50 8.10 Area at Max Fonding Depth (t) = Area at Max Fonding Depth (t) = 2.43 2.66 1.11 1.12		WQCV	EURV	2 Year					100 Year	500 Year	
Peak Inflow (cfs) = N/A 118.5 314.4 Peak Outflow (cfs) = 0.9 2.2 2.2 153.1 Ratio (Outflow/Predevelopment) = N/A N/A 0.1 1.0 Structure Controlling Flow = Onfloe Plate Onfloe Plate Overflow Grate Max Velocity through Grate = N/A N/A N/A 2.8 ime to Drain 97% of Volume (hr) = 40 67 70 63 Maximum Ponding Depth (ht) = 4.50 6.50 6.50 8.10 Area at Max Ponding Depth (ac) = 1.71 2.43 2.66		1.96	6.56		6.97				18.57		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		N/A							314.4		
Structure Controlling Flow = Outlose Plate Outlose Plate Outlose Plate Max Velocity through Grate = N/A N/A 2.8 ime to Drain 97% of Volume (hr) = 40 67 70 63 Time to Drain 99% of Volume (hr) = 42 72 75 72 Maximum Ponding Depth (t) = 4.50 6.50 8.10 Area at Max Ponding Depth (ac) = 1.71 2.43 2.66	Peak Outflow (cfs) =				2.2				153.1		
Max Velocity through Crate = N/A N/A 2.8 Ime to Drain 97% of Volume (hr) = 40 67 70 63 Ime to Drain 99% of Volume (hr) = 42 72 75 72 Maximum Ponding Depth (ft) = 4.50 6.50 8.10 8.10 Area at Max Ponding Depth (a) = 1.71 2.43 2.66 10		N/A									
ime to Drain 97% of Volume (hr) = 40 67 70 63 ime to Drain 99% of Volume (hr) = 42 72 75 72 Maximum Ponding Depth (lt) = 4.50 6.50 8.10 Area at Max Ponding Depth (ac) = 1.71 2.43 2.66	Structure Controlling Flow = Max Velocity through Grate =	Orifice Plate									
Time to Drain 99% of Volume (hr) = 4.2 7.2 7.5 7.2 Maximum Ponding Depth (t) = 4.50 6.50 8.10 8.10 Area at Max Ponding Depth (ac) = 1.71 2.43 2.66 5.0		40				1					
Area at Max Ponding Depth (ac) = 1.71 2.43 2.43 2.66	ime to Drain 99% of Volume (hr) =		72		75				72		
	Maximum Ponding Depth (ft) =	4.50	6.50								
		4 74									

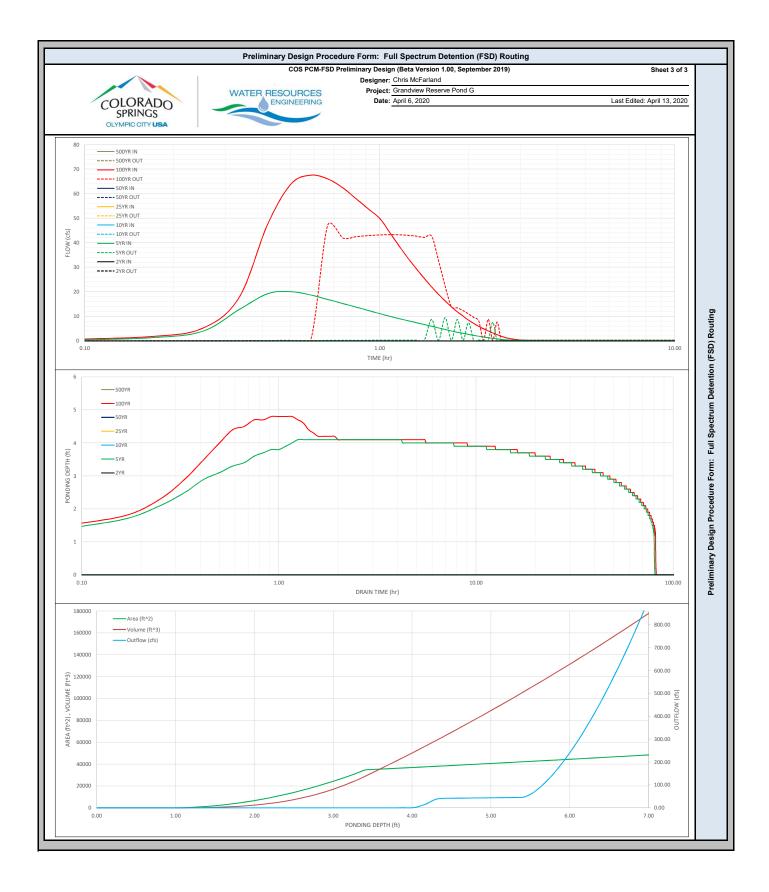
		Preliminary	Design	Procedure	e Form: Fu	III Spectrum	Detention (F	SD) Routin	la l
			COS PC	M-FSD Prelin		•	n 1.00, Septemb	oer 2019)	Sheet 1 of 3
	STOR	MWATE	B			Chris McFarlan Grandview Res			
COLOPADO	SIUN	ENTERPRIS				April 6, 2020	SIVE FOIL L		Last Edited: April 13, 2020
COLORADO SPRINGS		ENTERPRI	JE .		-	<u> </u>			
OLYMPIC CITY USA									
				<u> </u>					
 Select WQCV/EURV PCM Type: Imports the Stage-Area-Volume-Discharge 	e information f	from the			Ex	ktended Detention B	asin (EDB)	-	
corresponding PCM worksheet. The select	cted PCM work								
must be completed before the import will v	work.								
2. WQCV/EURV Outlet Details						Input Pa	rameters		
						User Input	COS DCM	-	
A) Average Infiltration Rate of WQCVB) Depth to Centroid of Underdrain Outlet O)rifice from filte	er media surface			i = y =	N/A N/A	N/A N/A	in / hr inches	
C) Underdrain Outlet Orifice Area D) Number of WQCV Orifice Rows				Und # W	derdrain Ao = VQCV rows =	N/A 10	N/A 10	sq in	
E) Vertical Spacing between WQCV Orifice	Rows			Orifi	ice Spacing =	4.0	4.0	inches	
 F) WQCV Orifice Area (A_o) per Row G) Maximum Stage of WQCV (includes ISD) 	and Trickle Cl	hannel Depth)		Max	WQCV Ao = Stage wQCV =	0.67 3.60	0.67	sq in ft	
 EURV Orifice Area (A_o) in Single Row 					EURV Ao = Stage _{EURV} =	0.67	0.67	sq in	
 I) Maximum Stage of EURV (includes ISD an J) Discharge Coefficient for all WQCV/EURV 				ividA	Cd =	4.50 0.60	4.50	ft	
				<u> </u>					
. Flood Control Surcharge Basin Geometry (al Default Flood Surcharge Geometry inputs r						Input Dr	rameters		User can override default flood surcharge geometry inputs to create a transition bench
the PCM Geometry in an upward direction v	without a transi	ition bench.				User	COS	-	between the top of the PCM and the Flood
A) Length of Basin at Top of EURV					L _{PCM} =	327.0	DCM 327.0	ft	Surcharge Volume by entering larger dimensions in C), D), and E).
B) Width of Basin at Top of EURV	n of Electric	trol Sur-t-		Ct	W _{PCM} =	127.7	127.7		See the Figure to the right.
C) Stage at Top of Transition Bench (Bottom D) Length of Basin at Top of Transition Bench	ch (Bottom of F	Flood Control Surch	charge)	Stage at 10	pp of Bench = L Bench =	4.60 327.8	4.60 327.8	ft ft	Bench Slope is 4H:1V in length direction
 E) Width of Basin at Top of Transition Bench F) Average Side Slopes of Flood Control Su 	h (Bottom of FI	lood Control Surcha	narge)		W _{Bench} = Z _{Surcharge} =	128.5 4.00	128.5 4.00	ft ft / ft	Bench Slope is 4H:1V in width direction
(Recommend no steeper than 3H:1V slop					go				
Tributary Watershed Hydrology				<u>. </u>					
 A) Input hydrology data (copy/paste) from m 	odel rups	2 Year 5	5 Year	Pre-Dev 10 Year	velopment Per 25 Year	ak Flow (cfs) 50 Year	100 Year	500 Year	1
		1	32.34	10 fear	23 fear	50 real	157.99	300 fear	j
B) Adjust "Time Interval" to match hydrograph data	Time Interva 5.0	minutes							
5-yr and 100-yr Hydrology Required	Time (min)	2 Year 5	Pos 5 Year	10 Year		ow Hydrograph 50 Year	ns (cfs) 100 Year	500 Year	
(Other Storms are Optional)	0:00		0.00				0.00		
	0:05		0.16				0.43 1.54		· · · · · · · · · · · · · · · · · · ·
	0:15 0:20		5.07 23.64				7.00 35.29		1
	0:25	4	41.87				110.52		1
	0:30 0:35	4	46.56 43.13				162.17 176.94		1
	0:40	3	37.83 33.03				172.03 161.08		1
	0:45 0:50	2	29.04				147.26		1
	0:55		25.75 22.65				135.35 124.96		4
	1:05		19.67				109.31 92.46		1
	1:10 1:15		16.82 14.63				77.36		1
	1:20 1:25		13.01 11.61				65.86 56.57		4
	1:30		10.30 8.90				48.68 41.54		1
	1:40		7.47				34.92		1
	1:45 1:50		6.08 4.75				28.67 22.81		1
	1:55		3.50				17.32		1
	2:00 2:05		2.49 1.86				12.10 8.45		· · · · · · · · · · · · · · · · · · ·
	2:10 2:15		1.45 1.16				6.02 4.29		4
	2:20		0.92				3.03	1	1
	2:25 2:30		0.73 0.57				2.11 1.42		1
	2:35		0.44 0.34				0.96		1
	2:40 2:45		0.26				0.55		1
	2:50 2:55		0.20 0.15				0.44 0.34		4
	3:00		0.11 0.07				0.26		1
	3:05 3:10		0.05				0.13		<u>'</u>
	3:15 3:20		0.03 0.02				0.08		4
	3:25		0.01				0.02		1
	3:30 3:35		0.00 0.00				0.00		1
	3:40 3:45		0.00 0.00						4
	3:50		0.00						1
	3:55 4:00		0.00 0.00						1
	4:05 4:10		0.00						4
	4:15		5.00						1
	4:20 4:25								1
	4:30								1
	4:35 4:40								<u>'</u>
	4:45 4:50								4
	4:55							1	1
	5:00 5:05								1
								1	1
	5:10								•
	5:10 5:15 5:20								
	5:10 5:15								

	5:40				
	5:45				
	5:50				
	5:55				
	6:00				
-					


							•	Detention (F	•	*
~				COS PC	wi-FSD Prelir			n 1.00, Septemb	oer 2019)	Sheet 2 of 3
						-	Chris McFarlan			
		WA	TER RES	OURCES		Project:	Grandview Res	erve Pond E		
COLORADO				SINEERING		Date:	April 6, 2020			Last Edited: April 13, 2020
SPRINGS				1						
OLYMPIC CITY USA										
					1					
5. Flood Control Outlet Structure T	vpe									
					Overflow	v Weir/Grate, Out	et Pipe Restriction	& Emergency Spillwa	ay 🔻	
A) Select Flood Control Outlet \$	Structure Typ	e								
6. Overflow Weir (Dropbox) and Gr								rameters	_	
(Assumes that top of grate is f	lush with the	top of the con	crete dropbo	K)			User	COS DCM		
A) Overflow Weir Front Edge He	eight (relative	to Stage = 0 f	t)			H _{weir front} =	4.50	4.50	ft	
 B) Overflow Weir Front Edge Le 	ngth (inside e	edge of dropb	ox)			L _{weir front} =	15.00	9.00	ft	
C) Overflow Weir Grate Slope (Horizon	S _{weir sides} = ntal L _{weir sides} =	0.00	0.00	ft / ft	
 D) Horizontal Length of Weir Si E) Overflow Grate Open Area % 					Grate	Open Area =	15.00 70%	9.00 70%	ft %	
F) Debris Clogging %	(grate open	aroa / total gr	ato aroa)			is Clogging =	50%	50%	%	
G) Height of Grate Upper Edge					C1-	H _{grate top} =	4.50	4.50	ft	
 H) Overflow Grate Slope Length I) Overflow Grate Open Area (v 					Open Are	epe L _{weir sides} = a _(No Clogging) =	15.00 157.50	9.00 56.70	ft sq ft	
 J) Overflow Grate Open Area (v 		/			Open A	vrea (_{Clogged}) =	78.75	28.35	sq ft	
• •										
7. Outlet Pipe with Flow Restriction	Plate									
·						Ci 1-	Outlat Pine of D	trictor Plate		-
 A) Select Type of Outlet Restric (Circular Pipe w/ Restrictor Place) 	uon ate. Circular (Orifice or Rect	angular Orific	e)		Circula	r Outlet Pipe w/ Res	strictor Plate		•
· · · · · · · · · · · · · · · · · · ·	,		5 . 2.110					rameters		
							User	COS		
 B) Depth to Invert of Outlet Pipe 	(relative to s	Stage = 0 ft)			Pipe I	nvert Depth =	Input 1.50	1.50	ft	
C) Outlet Pipe Diameter		olago oliy			Pip	e Diameter =	60.00	54.00	inches	
 D) Restrictor Plate Height above 	Pipe Invert				F	Plate Height =	43.00	50.00	inches	
 E) Half-Central Angle of Restric F) Outlet Orifice Area 	tor Plate on H	Jipe				Theta = Outlet Ao =	2.02	2.59 15.37	radians sq ft	
 G) Height of Outlet Orifice Cent 	oid above O	utlet Pipe Inve	t			Outlet _{centroid} =	1.99	2.18	ft	
H) Ratio of Grate Open Area / 1	00-yr Orifice	Area (should l	be≥4)		Open	Area Ratio =	10.46	3.69	1	
8. Emergency Spillway (Rectangul	ar or Trapezo	oidal)					Input Pa	rameters	_	
							User Input	COS DCM		
A) Spillway Invert Stage (relativ	e to Stage =	0 ft)				H _{spillway invert} =	5.80	999.00	ft	
B) Spillway Crest Length						L _{spillway crest} =	100.00	42.00	ft	
 C) Spillway End Slopes (H:V) D) Freeboard above Maximum 	Notor Surfac				Freek	S _{spillway ends} = board Depth=	4.00	4.00	ft / ft ft	
E) Spillway Design Flow Depth	Water Suriac	e			Flow	Depth _{spillway} =	0.70	1.00	ft	
F) Stage at Top of Freeboard					Freeboard	Top Stage =	7.50		ft	
G) Basin Area at Top of Freebo	ard				Max	Basin Area =	1.22		acres	
9. Routed Hydrograph Results				Resu	Its based on	User Input				
Design Storm Return Period = Inflow Hydrograph Volume (ac-ft) =	0.81	EURV 1.70	2 Year	5 Year 3.01	10 Year	25 Year	50 Year	100 Year 12.89	500 Year	
Predevelopment Peak Q (cfs) =	N/A	N/A		32.3				12.89		
Peak Inflow (cfs) =	N/A	N/A		46.6				176.9		
Peak Outflow (cfs) = Ratio (Outflow/Predevelopment) =	0.3	0.4		18.0				164.2		
Structure Controlling Flow =	N/A Orifice Plate	N/A Orifice Plate		0.6 Overflow Grate				1.0 Outlet Pipe		
Max Velocity through Grate =	N/A	N/A		0.1				1.0		
Time to Drain 97% of Volume (hr) =	44	69		71				54		
Time to Drain 99% of Volume (hr) = Maximum Ponding Depth (ft) =	46 3.60	72 4.50		76 4.80				69 5.70		
Area at Max Ponding Depth (ac) =	0.88	0.96		0.98				1.06		
Maximum Volume Stored (ac-ft) =	0.81	1.70		1.99				2.91		
				Resulte	hased on CO	S DCM Inputs				
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	
Inflow Hydrograph Volume (ac-ft) =	0.81	1.70		3.01				12.89		
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) =	N/A N/A	N/A N/A		32.3 46.6				158.0 176.9		
Peak Outflow (cfs) =	0.3	0.4		16.3				153.2		
Ratio (Outflow/Predevelopment) =	N/A	N/A		0.5				1.0		
Structure Controlling Flow =	Orifice Plate	Orifice Plate		Overflow Grate				Overflow Grate		
Max Velocity through Grate = Fime to Drain 97% of Volume (hr) =	N/A 44	N/A 69		0.3	<u> </u>			2.8		
Time to Drain 99% of Volume (hr) =	44	72		76				69		
Maximum Ponding Depth (ft) =	3.60	4.50		4.90				6.10		
	0.88	0.96		0.99	l			1.10	ļ	
Area at Max Ponding Depth (ac) = Maximum Volume Stored (ac-ft) =	0.81	1.70		2.09				3.34		

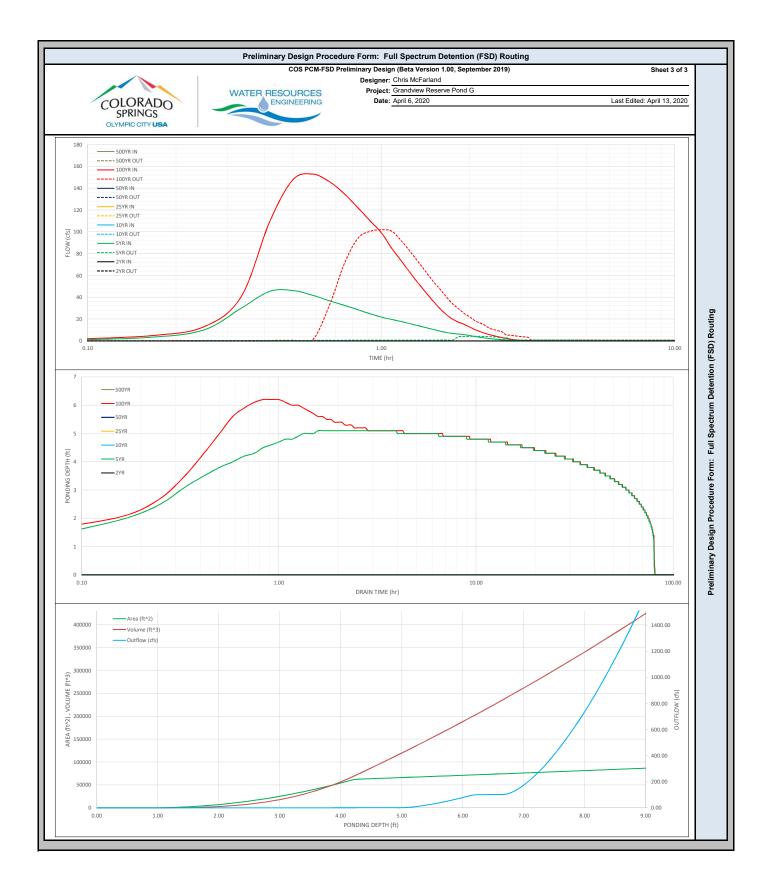
		Preliminary Design	n Procedure Form: Fu	rocedure Form: Full Spectrum Detention (FSD) Routing							
		COS PO		n (Beta Version 1.00, Septem)	ber 2019)	Sheet 1 of 3					
	STOR	MWATER		Chris McFarland Grandview Reserve Pond F							
COLORADO	UTUT .	ENTERPRISE	Date:	April 6, 2020		Last Edited: April 13, 2020					
COLORADO SPRINGS											
OLYMPIC CITY USA											
1. Select WQCV/EURV PCM Type:			Extended Detention Basin (EDB)								
Imports the Stage-Area-Volume-Discharg corresponding PCM worksheet. The sele						1					
must be completed before the import will		31001									
2. WQCV/EURV Outlet Details				Input Parameters User Input COS DCM	-						
 A) Average Infiltration Rate of WQCV B) Depth to Centroid of Underdrain Outlet 0 	Drifice from filter	r media surface	i = y =	N/A N/A N/A N/A	in / hr inches						
 C) Underdrain Outlet Orifice Area D) Number of WQCV Orifice Rows 			Underdrain Ao = # WQCV rows =	N/A N/A 14 13	sq in						
 E) Vertical Spacing between WQCV Orifice F) WQCV Orifice Area (A₀) per Row 	Rows		Orifice Spacing = WQCV Ao =	4.0 4.0 1.55 1.47	inches sq in						
G) Maximum Stage of WQCV (includes ISE	and Trickle Ch	nannel Depth)	Max Stage work =	4.80 4.50	ft						
 H) EURV Orifice Area (A_o) in Single Row I) Maximum Stage of EURV (includes ISD a 			EURV Ao = Max Stage _{EURV} =	1.55 7.84 6.00 6.00	sq in ft						
J) Discharge Coefficient for all WQCV/EUR	V Outlet Orifice	e(s)	Cd =	0.60 0.60							
. Flood Control Surcharge Basin Geometry (a	above EURV) - 5	See Figure				User can override default flood surcharge					
Default Flood Surcharge Geometry inputs the PCM Geometry in an upward direction	represent a con	ntinuation of		Input Parameters User COS	-	geometry inputs to create a transition bench between the top of the PCM and the Flood					
			I	Input DCM	Tft	Surcharge Volume by entering larger					
A) Length of Basin at Top of EURV B) Width of Basin at Top of EURV			L _{PCM} = W _{PCM} =	570.9 570.9 217.0 217.0	ft	dimensions in C), D), and E). See the Figure to the right.					
 C) Stage at Top of Transition Bench (Botton D) Length of Basin at Top of Transition Ben 	ch (Bottom of F	lood Control Surcharge)	Stage at Top of Bench = L Bench =	6.10 6.10 571.7 571.7	ft ft	Bench Slope is 4H:1V in length direction					
 E) Width of Basin at Top of Transition Benc F) Average Side Slopes of Flood Control St 	h (Bottom of Flo	ood Control Surcharge)	W _{Bench} = Z _{Surcharge} =	217.8 217.8 4.00 4.00	ft ft / ft	Bench Slope is 4H:1V in width direction					
(Recommend no steeper than 3H:1V slo			Gardinage		-						
Tributary Watershed Hydrology							1				
A) Input hydrology data (copy/paste) from n	nodel runs	2 Year 5 Year	Pre-Development Pe 10 Year 25 Year	ak Flow (cfs) 50 Year 100 Year	500 Year						
B) Adjust "Time Interval" to match	Time Interval	42.34		221.11		1					
hydrograph data	5.0 Time	minutes	st-Development Storm Infl	ow Hydrographs (cfc)							
5-yr and 100-yr Hydrology Required	(min)	2 Year 5 Year	10 Year 25 Year	50 Year 100 Year	500 Year		Ļ				
(Other Storms are Optional)	0:00	0.00		0.00							
	0:10 0:15	5.98 19.71		8.99 25.32							
	0:20 0:25	58.79 94.74		77.64 207.48							
	0:30	103.82 97.47		301.83 329.97							
	0:35 0:40	87.23		323.46							
	0:45 0:50	77.84 69.34		304.34 281.05							
	0:55	61.26 54.52		257.82 237.51							
	1:05 1:10	49.46 45.22		211.11 185.26							
	1:15	40.70 36.24		161.15 139.03							
	1:25	32.06		119.17	1						
	1:30 1:35	24.61		86.26							
	1:40 1:45	21.24 19.05		72.79 62.33							
	1:50 1:55	17.44 16.04		54.79 48.91							
	2:00 2:05	13.99 11.69		42.35 35.81							
	2:10 2:15	9.57		29.96 24.91							
	2:20	6.28		20.57							
	2:25 2:30	5.03 4.03		16.95 13.95							
	2:35 2:40	3.21 2.52		11.42 9.20							
	2:45 2:50	1.92		7.18 5.32							
	2:55 3:00	0.95		3.69							
	3:05	0.46		1.70	1						
	3:10 3:15	0.33		1.17 0.81							
	3:20 3:25	0.18		0.56 0.38							
	3:30 3:35	0.11 0.08		0.26							
	3:40 3:45	0.06		0.13 0.10							
	3:50 3:55	0.03		0.07							
	4:00	0.02		0.04							
	4:05 4:10	0.01		0.03							
	4:15 4:20	0.00		0.01							
	4:25 4:30			0.00							
	4:35 4:40										
	4:45										
	4:50 4:55										
	5:00 5:05										
	5:10 5:15										
	5:20 5:25										
	5:30										
	5:35					l	1				

5:40				
5:45				
5:50				
5:55				
6:00				


			Prelimir				-	Detention (F			
				COS PC	CM-FSD Prelin			n 1.00, Septemi	oer 2019)	Sheet 2 of 3	
						Designer:	Chris McFarlar	nd			
		W/A	TER RES	OURCES		Project:	Grandview Res	serve Pond F			
COLORADO				BINEERING		Date:	April 6, 2020			Last Edited: April 13, 2020	
SPRINGS)			1.5							
OLYMPIC CITY USA											
OLYMPIC CITY USA											
5. Flood Control Outlet Structure T	уре				Overflow	wWeir/Grate Out	et Pine Restriction	& Emergency Spillw	ay 🔻		
A) Select Flood Control Outlet \$	Structure Type	e			ovenior	Then, Glute, Out	er ipe nestretori	a emergency spinw	ay -		
-											_
6. Overflow Weir (Dropbox) and G	ate (Flat or S	loned)					Input Pa	arameters			
(Assumes that top of grate is			crete dropbo	()			User	COS	-		
							Input	DCM			
 A) Overflow Weir Front Edge He B) Overflow Weir Front Edge Le 						H _{weir front} = L _{weir front} =	6.00 13.00	10.00	ft		
C) Overflow Weir Front Edge Le						Swair eidee =	0.00	0.00	ft / ft		
 D) Horizontal Length of Weir Si 	des (inside ed	lge of dropboy	:)		Horizon	ntal L _{weir sides} =	13.00	10.00	ft		
E) Overflow Grate Open Area %	6 (grate open	area / total gr	ate area)			Open Area =	70%	70%	%		
 F) Debris Clogging % G) Height of Grate Upper Edge 	(at back side	of dropbox)			Debr	ris Clogging = H _{grate top} =	50% 6.00	6.00	% ft		
 H) Overflow Grate Slope Lengtl 					Slo	pe Lweir sides =	13.00	10.00	ft		
 I) Overflow Grate Open Area (v 	vithout debris				Open Are	a (No Clogging) =	118.30	70.00	sq ft		5
J) Overflow Grate Open Area (v	vitn debris)				Open A	rea (_{Clogged}) =	59.15	35.00	sq ft		
					t						
7. Outlet Pipe with Flow Restriction	Plate										1
A) Select Type of Outlet Restric	tion					Circula	Outlet Pipe w/ Re	strictor Plate		•	6
(Circular Pipe w/ Restrictor Pl		Drifice or Rect	angular Orific	e)		circuit	outer tipe tij ne	Stretor Fiste			
	, -		5	/			Input Pa	arameters	_		
							User	COS			5
 B) Depth to Invert of Outlet Pipe 	(relative to S	Stage = 0 ft)			Pipe II	nvert Depth =	1.50	DCM 1.50	ft		Ě
C) Outlet Pipe Diameter		Judge – 0 It)				e Diameter =	66.00	60.00	inches		5
D) Restrictor Plate Height above					F	Plate Height =	46.05	54.00	inches		
 E) Half-Central Angle of Restric F) Outlet Orifice Area 	tor Plate on F	Pipe				Theta = Outlet Ao =	1.98 17.70	2.50 18.61	radians sq ft		
G) Height of Outlet Orifice Cent	roid above Ou	utlet Pipe Inve	t			Outlet _{centroid} =	2.14	2.38	ft		å
H) Ratio of Grate Open Area / 1						Area Ratio =	6.68	3.76			5
											- '
8. Emergency Spillway (Rectangul	ar or Trapezo	idal)					Input Pa	arameters			
5 5 7 7 7 5		,					User	COS	•		i i
A) Spillway Invert Stage (relativ	e to Stage - I	ר (ו ו				H _{spillway invert} =	Input	DCM 999.00	ft		5
 B) Spillway Crest Length 	e to stage - t	J IL)				L _{spillway crest} =	7.60 126.00	42.00	ft		Ę
C) Spillway End Slopes (H:V)						S _{spillway ends} =	4.00	4.00	ft / ft		ç
D) Freeboard above Maximum	Water Surfac	e				poard Depth=	1.00	1.00	ft ft		
 E) Spillway Design Flow Depth F) Stage at Top of Freeboard 						Depth _{spillway} = I Top Stage =	0.90 9.50		ft		ş
G) Basin Area at Top of Freebo	ard					Basin Area =	3.37		acres		
											- 4
9. Routed Hydrograph Results											
Design Storm Return Period =	WQCV	EURV	2 Year	Resu 5 Year	Its based on 10 Year	User Input 25 Year	50 Year	100 Year	500 Year		i.
Inflow Hydrograph Volume (ac-ft) =	2.62	5.94	2 i edi	7.80	ivitedi	25 fedi	JUTEdi	26.37	JUU Tear		Profiminary Desires Descodure Form - Eull Snorteum Detertion (FSD) Deution
Predevelopment Peak Q (cfs) =	N/A	N/A		42.3				221.1			Ď
Peak Inflow (cfs) =	N/A	N/A		103.8				330.0			
Peak Outflow (cfs) = Ratio (Outflow/Predevelopment) =	1.1 N/A	1.5 N/A		15.1 0.4				227.3 1.0			
Structure Controlling Flow =	Orifice Plate	Orifice Plate		Overflow Grate	1			Outlet Pipe			
Max Velocity through Grate =	N/A	N/A		0.2				1.9			
Time to Drain 97% of Volume (hr) = Time to Drain 99% of Volume (hr) =	42	68		72 77				61			
Maximum Ponding Depth (ft) =	45 4.80	72 6.00		6.30	t			72 7.60			
Area at Max Ponding Depth (ac) =	2.12	2.84		2.89				3.08			
Maximum Volume Stored (ac-ft) =	2.62	5.94		6.82				10.70			
				Results	based on CO	S DCM Inputs	6				
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year		
Inflow Hydrograph Volume (ac-ft) =	2.21	5.94		7.80				26.37			
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) =	N/A N/A	N/A N/A		42.3				221.1			
Peak Outflow (cfs) =	1.1	1.4		13.2	1			214.5			
Ratio (Outflow/Predevelopment) =	N/A	N/A		0.3				1.0			
Structure Controlling Flow =	Orifice Plate	Orifice Plate		Overflow Grate				Overflow Grate			
Max Velocity through Grate = Time to Drain 97% of Volume (hr) =	N/A 36	N/A 69		0.2				3.0 63			
Time to Drain 99% of Volume (hr) =	38	73		78				73			
Maximum Ponding Depth (ft) =	4.50	6.00		6.30				7.80			
Area at Max Ponding Depth (ac) = Maximum Volume Stored (ac-ft) =	1.81 2.21	2.84		2.89				3.11 11.32			
Maximum volume Stored (ac-ii) =											

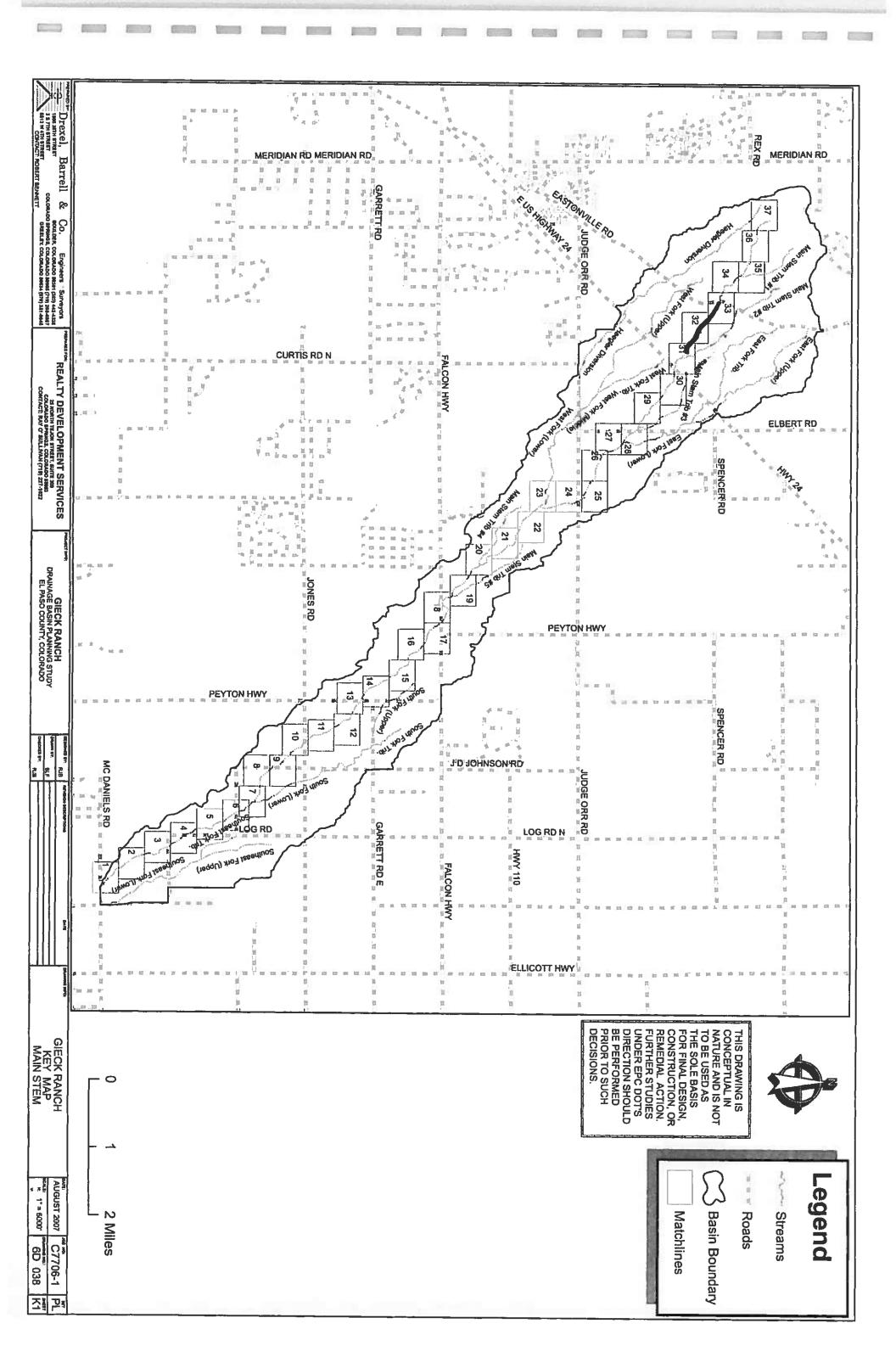
		Preliminary Des	ign Procedu	re Form: Fi	ull Spectrum	Detention (F	SD) Routir	ng		
		COS	PCM-FSD Pre			n 1.00, Septemb	oer 2019)	Sheet 1 of 3		
	STOR	MWATER		•	Chris McFarlar Grandview Res					
COLORADO	orora	ENTERPRISE			April 6, 2020			Last Edited: April 13, 2020		
COLORADO SPRINGS										
OLYMPIC CITY USA										
1. Select WQCV/EURV PCM Type:				Extended Detention Basin (EDB)						
Imports the Stage-Area-Volume-Discharg	ports the Stage-Area-Volume-Discharge information from the rresponding PCM worksheet. The selected PCM worksheet									
must be completed before the import will		sneet								
									-	
2. WQCV/EURV Outlet Details					Input Pa User Input	cos DCM	•			
 A) Average Infiltration Rate of WQCV B) Depth to Centroid of Underdrain Outlet 0 	Drifice from filter	r media surface		i = y =	N/A N/A	N/A N/A	in / hr inches			
C) Underdrain Outlet Orifice Area				nderdrain Ao = WQCV rows =	N/A	N/A 9	sq in			
D) Number of WQCV Orifice Rows E) Vertical Spacing between WQCV Orifice	Rows			rifice Spacing =	4.0	4.0	inches			
 F) WQCV Orifice Area (A_o) per Row G) Maximum Stage of WQCV (includes ISE 	and Trickle Ch	nannel Depth)	Ма	WQCV Ao = x Stage wqcv =	3.20	0.49 3.20	sq in ft			
 H) EURV Orifice Area (A_o) in Single Row I) Maximum Stage of EURV (includes ISD a 	and Trickle Char	nnel Depth)	Ma	EURV Ao = ax Stage _{EURV} =	1.94	1.94 4.00	sq in ft			
J) Discharge Coefficient for all WQCV/EUF				Cd =		0.60	1			
Elead Cantral Surpharga Paoin Coomata		Poo Eiguro						Lear can override default flood oursharge	1	
Flood Control Surcharge Basin Geometry (a Default Flood Surcharge Geometry inputs	represent a con	tinuation of				arameters		User can override default flood surcharge geometry inputs to create a transition bench		
the PCM Geometry in an upward direction	witnout a transit	uori Dench.			User Input	COS DCM		between the top of the PCM and the Flood Surcharge Volume by entering larger		
 A) Length of Basin at Top of EURV B) Width of Basin at Top of EURV 				L _{PCM} = W _{PCM} =	349.7 105.4	349.7 105.4	ft ft	dimensions in C), D), and E). See the Figure to the right.		
C) Stage at Top of Transition Bench (Botto D) Length of Basin at Top of Transition Ber				Top of Bench =	4.10	4.10	ft			
E) Width of Basin at Top of Transition Bend	h (Bottom of Flo	ood Control Surcharge		L _{Bench} = W _{Bench} =	350.5 106.2	106.2	ft	Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction		
F) Average Side Slopes of Flood Control S (Recommend no steeper than 3H:1V slope)				Z _{Surcharge} =	4.00	4.00	ft / ft			
			<u> </u>							
Tributary Watershed Hydrology		<u></u>		evelopment Pe				1		
 A) Input hydrology data (copy/paste) from r 		2 Year 5 Yea 9.42		25 Year	50 Year	100 Year 48.48	500 Year			
B) Adjust "Time Interval" to match hydrograph data	Time Interval 5.0	minutes								
5-yr and 100-yr Hydrology Required	Time (min)	2 Year 5 Yea			low Hydrograpi 50 Year	hs (cfs) 100 Year	500 Year]	ļ	
(Other Storms are Optional)	0:00	0.00				0.00				
	0:05	0.18				0.49		1		
	0:15 0:20	3.86				5.05 17.55		1		
	0:25 0:30	19.21				47.38 63.86		4		
	0:35	18.72				67.51 66.01		1		
	0:40	15.24				62.38		1		
	0:50	13.74				57.86 53.71		1		
	1:00 1:05	11.12 10.01				49.93 44.10		}		
	1:10	9.05		1		38.52 33.58		1	L	
	1:15 1:20	7.42				29.30		1		
	1:25 1:30	6.67 5.98				25.48 22.03		1		
	1:35 1:40	5.28 4.64				18.97 16.31		1	1	
	1:45 1:50	4.05				13.93 11.83]		
	1:55	3.12		_		10.10		1		
	2:00 2:05	2.67 2.26				8.48 7.10		1		
	2:10 2:15	1.90 1.58				5.93 4.93		1		
	2:20	1.30				4.04		1		
	2:25 2:30	0.82				2.54		1		
	2:35 2:40	0.62				1.90 1.36		1		
	2:45 2:50	0.35				0.99		4		
	2:55 3:00	0.22				0.54 0.39		1		
	3:05	0.13				0.28		1		
	3:10 3:15	0.10				0.19 0.13		1		
	3:20 3:25	0.05				0.09		}		
	3:30	0.03				0.06		1		
	3:35 3:40	0.02				0.04		1		
	3:45 3:50	0.01				0.03		1		
	3:55 4:00	0.01				0.01]		
	4:05	0.00			ļ	0.00		1		
	4:10 4:15							1		
	4:20 4:25							1		
	4:30 4:35							1		
	4:40							1		
	4:45 4:50							1		
	4:55 5:00							}		
	5:05							1		
	5:10 5:15							1		
	5:20 5:25							4		
	5:30							1		
	5:35									

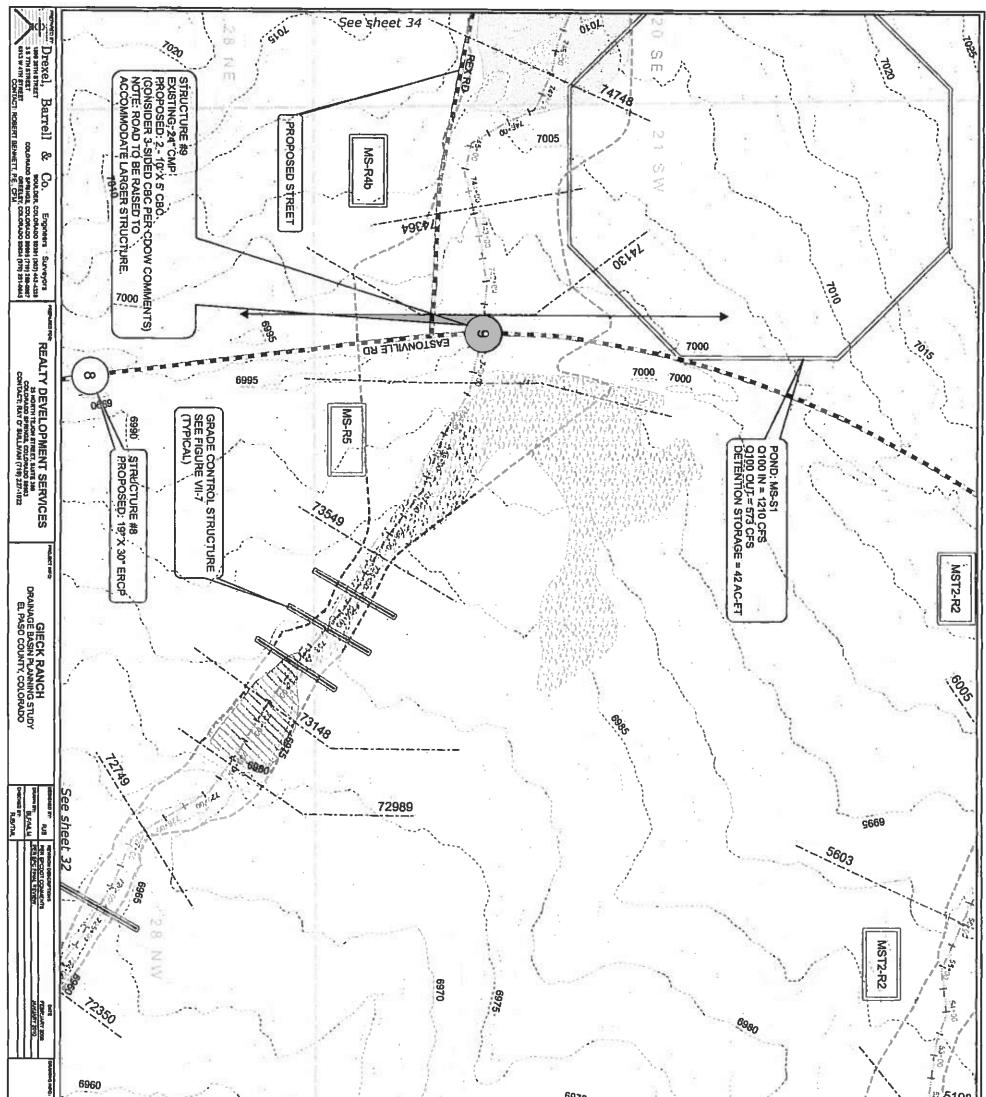
	5:40				
	5:45				
	5:50				
	5:55				
	6:00				
-					


							•	Detention (F		•
~				COS PC	w-FSD Prelin			1.00, Septeml	oer 2019)	Sheet 2 of 3
						-	Chris McFarlan			
		WA	TER RES	OURCES		Project:	Grandview Res	erve Pond G		
COLORADO				SINEERING		Date:	April 6, 2020			Last Edited: April 13, 2020
SPRINGS				1						
OLYMPIC CITY USA										
					1					
5. Flood Control Outlet Structure T	voe									
					Overflov	v Weir/Grate, Out	et Pipe Restriction	& Emergency Spillw	ay 🔻	
A) Select Flood Control Outlet \$	Structure Typ	e								
6. Overflow Weir (Dropbox) and Gr								rameters		
(Assumes that top of grate is f	lush with the	top of the con	crete dropbo	K)			User	COS DCM		
A) Overflow Weir Front Edge He	eight (relative	to Stage = 0 f	t)			H _{weir front} =	4.00	4.00	ft	
 B) Overflow Weir Front Edge Le 	ngth (inside e	edge of dropbo	ox)			L _{weir front} =	26.00	26.00	ft	
C) Overflow Weir Grate Slope (Horizor	S _{weir sides} = ntal L _{weir sides} =	0.00	0.00	ft / ft ft	
 D) Horizontal Length of Weir Si E) Overflow Grate Open Area % 					Grate	Open Area =	26.00 70%	26.00	π %	
F) Debris Clogging %	(grate open	area / total gri	ate area)			is Clogging =	50%	50%	%	
G) Height of Grate Upper Edge						H _{grate top} =	4.00	4.00	ft	
 H) Overflow Grate Slope Length I) Overflow Grate Open Area (v 					Open Are	epe L _{weir sides} = a _(No Clogging) =	26.00 473.20	26.00	ft	
 J) Overflow Grate Open Area (v J) Overflow Grate Open Area (v 		,			Open A	rea (No Clogging) =	236.60	236.60	sq ft sq ft	
,	,							•		
7. Outlet Pipe with Flow Restriction	Plate									
·						e	Outlet Normal 2	trictor Dist-		•
 A) Select Type of Outlet Restrict (Circular Pipe w/ Restrictor Place) 	tion ate, Circular (Drifice or Rect	angular Orific	e)		Circula	r Outlet Pipe w/ Res	unctor Plate		*
(.,		5 O.III	'				rameters		
							User	COS	-	
 B) Depth to Invert of Outlet Pipe 	(relative to 9	Stago = 0 ft)			Pine I	nvert Depth =	Input 1.50	1.50	Tet	
C) Outlet Pipe Diameter	(relative to v	stage = 0 it)				e Diameter =	30.00	27.00	inches	
 D) Restrictor Plate Height above 	e Pipe Invert				Ē	Plate Height =	22.22	26.24	inches	
 E) Half-Central Angle of Restric F) Outlet Orifice Area 	tor Plate on F	Pipe				Theta = Outlet Ao =	2.07 3.90	2.80	radians sq ft	
 G) Height of Outlet Orifice Cent 	roid above Or	utlet Pipe Inver	t			Outlet _{centroid} =	1.03	1.12	ft	
H) Ratio of Grate Open Area / 1						Area Ratio =	121.39	119.97		
8. Emergency Spillway (Rectangul	ar or Trapezo	idal)					Input Pa	rameters	_	
							User	COS		
A) Spillway Invert Stage (relativ	e to Stage =	D ft)				H _{spillway invert} =	Input 5.40	4.90	Tft	
B) Spillway Crest Length	5	,				L _{spillway crest} =	136.00	23.00	ft	
C) Spillway End Slopes (H:V)						S _{spillway ends} =	4.00	4.00	ft / ft	
 D) Freeboard above Maximum E) Spillway Design Flow Depth 	Nater Surfac	e			Freel	ooard Depth= Depth _{spillway} =	1.00 0.30	1.00 0.90	ft ft	
F) Stage at Top of Freeboard						Top Stage =	6.70	6.80	ft	
G) Basin Area at Top of Freebo	ard				Max	Basin Area =	1.08	1.09	acres	
9. Routed Hydrograph Results				Resu	Its based on	User Input				
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	
Inflow Hydrograph Volume (ac-ft) = Predevelopment Peak Q (cfs) =	0.47 N/A	1.15 N/A		1.57 9.4	<u> </u>			5.51 48.5		
Peak Inflow (cfs) =	N/A N/A	N/A N/A		20.1				67.5	1	
Peak Outflow (cfs) =	0.2	0.3		9.4				47.1		
Ratio (Outflow/Predevelopment) =	N/A	N/A		1.0				1.0 Outlat Disc		
Structure Controlling Flow = Max Velocity through Grate =	Orifice Plate N/A	Orifice Plate N/A		Overflow Grate 0.0				Outlet Pipe 0.1		
Time to Drain 97% of Volume (hr) =	41	69		73				63		
Time to Drain 99% of Volume (hr) =	43	72		78				74		
Maximum Ponding Depth (ft) = Area at Max Ponding Depth (ac) =	3.20 0.67	4.00 0.85		4.10 0.85				4.80 0.91		
Maximum Volume Stored (ac-ft) =	0.07	1.15		1.24	1			1.85	1	
(
Design Storm Return Period =	WQCV	EURV	2 Year	Results 5 Year	based on CO 10 Year	S DCM Inputs 25 Year	50 Year	100 Year	500 Year	
Inflow Hydrograph Volume (ac-ft) =	0.47	1.15	cui	1.57		_0 / 001		5.51	ooo rour	
Predevelopment Peak Q (cfs) =	N/A	N/A		9.4				48.5	1	
Peak Inflow (cfs) =	N/A	N/A		20.1				67.5		
Peak Outflow (cfs) = Ratio (Outflow/Predevelopment) =	0.2 N/A	0.3 N/A		9.4	<u> </u>			47.1		
Structure Controlling Flow =	Orifice Plate	Orifice Plate		Overflow Grate				Outlet Pipe	1	
Max Velocity through Grate =	N/A	N/A		0.0				0.1		
Fime to Drain 97% of Volume (hr) =	41 43	69		73 78				63		
Time to Drain 99% of Volume (hr) = Maximum Ponding Depth (ft) =	43	72 4.00		4,10				74 4.80		
	0.07	0.85		0.85	t i	İ		0.91	1	
Area at Max Ponding Depth (ac) = Maximum Volume Stored (ac-ft) =	0.07	0.00		0.00						

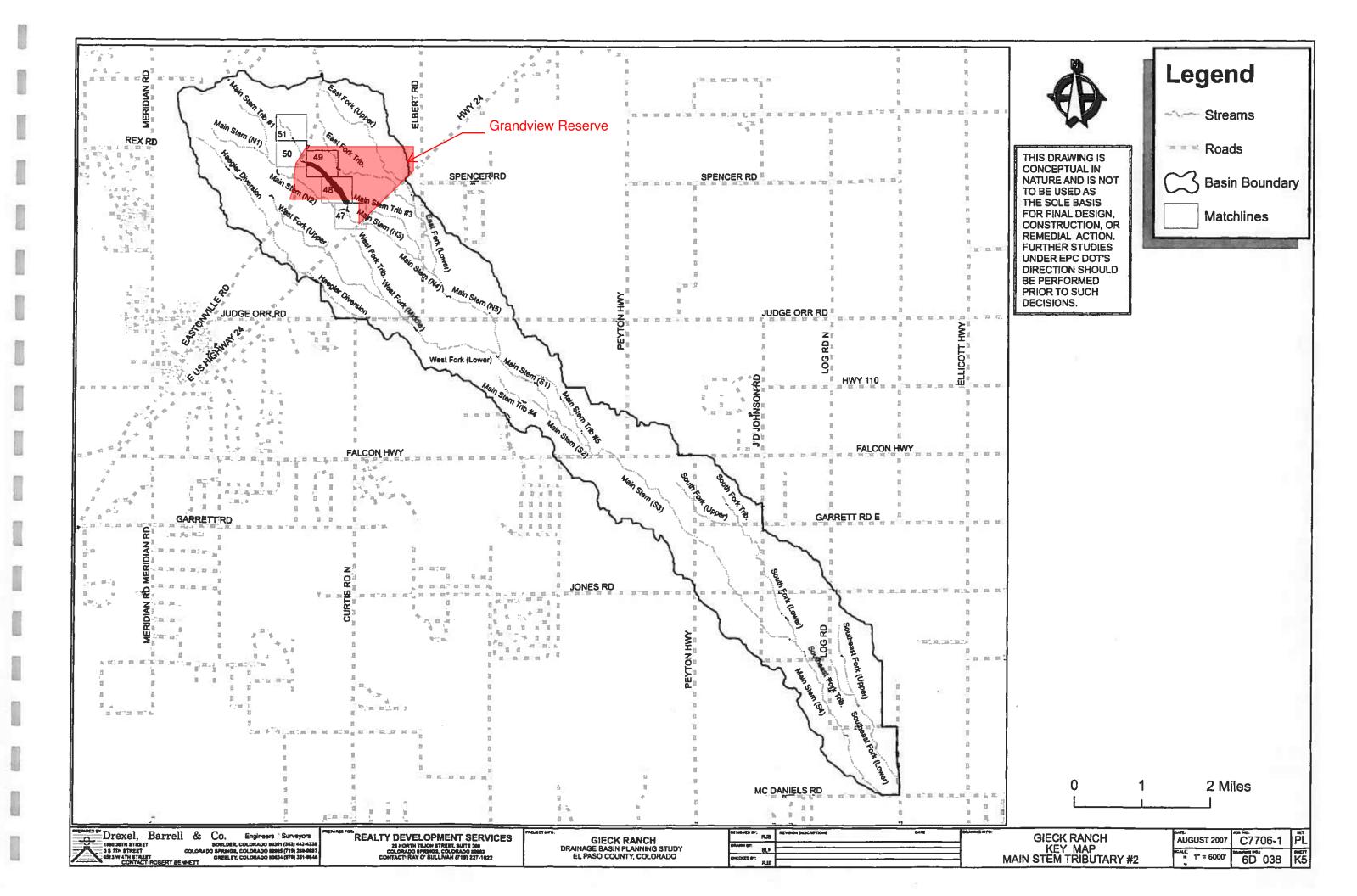
		Preliminary Desig	n Procedure Form: F	Procedure Form: Full Spectrum Detention (FSD) Routing							
		COS PO			nber 2019)	Sheet 1 of 3					
	STOR	MWATER	•	Chris McFarland Grandview Reserve Pond G							
COLORADO	UTUT .	ENTERPRISE	•	April 6, 2020		Last Edited: April 13, 2020					
COLORADO SPRINGS											
OLYMPIC CITY USA											
1. Select WQCV/EURV PCM Type:			F	xtended Detention Basin (EDB)	•						
Imports the Stage-Area-Volume-Discharg corresponding PCM worksheet. The sele											
must be completed before the import will		sileet									
2. WQCV/EURV Outlet Details				Input Parameters User Input COS DCM	_						
 A) Average Infiltration Rate of WQCV B) Depth to Centroid of Underdrain Outlet 0 	Drifice from filter	r media surface	i = y =	N/A N/A N/A N/A	in / hr inches						
C) Underdrain Outlet Orifice Area D) Number of WQCV Orifice Rows			Underdrain Ao = # WQCV rows =	N/A N/A 11 11	sq in						
E) Vertical Spacing between WQCV Orifice	Rows		Orifice Spacing =	4.0 4.0	inches						
F) WQCV Orifice Area (A _o) per Row G) Maximum Stage of WQCV (includes ISE	and Trickle Ch	annel Depth)	WQCV Ao = Max Stage _{WQCV} =	0.86 0.86 3.80 3.80	sq in ft						
 H) EURV Orifice Area (A_o) in Single Row I) Maximum Stage of EURV (includes ISD a 	and Trickle Cha	nnel Depth)	EURV Ao = Max Stage _{EURV} =	4.73 4.73 5.00 5.00	sq in ft						
J) Discharge Coefficient for all WQCV/EUF			Cd =	0.60 0.60							
. Flood Control Surcharge Basin Geometry (a	above ELIBV/) -	See Figure				User can override default flood surcharge	1				
Default Flood Surcharge Geometry inputs the PCM Geometry in an upward direction	represent a con	tinuation of		Input Parameters	_	geometry inputs to create a transition bench					
	williout a transit			User COS Input DCM	-	between the top of the PCM and the Flood Surcharge Volume by entering larger					
 A) Length of Basin at Top of EURV B) Width of Basin at Top of EURV 			L _{PCM} = W _{PCM} =	468.4 468.4 141.1 141.1	ft ft	dimensions in C), D), and E). See the Figure to the right.					
 C) Stage at Top of Transition Bench (Botton D) Length of Basin at Top of Transition Ber 			Stage at Top of Bench = L Bench =	5.10 5.10 469.2 469.2	ft ft	Bench Slope is 4H:1V in length direction					
E) Width of Basin at Top of Transition Bend	h (Bottom of Flo	ood Control Surcharge)	W Bench =	141.9 141.9	ft ft/ft	Bench Slope is 4H:1V in length direction Bench Slope is 4H:1V in width direction					
F) Average Side Slopes of Flood Control S (Recommend no steeper than 3H:1V slope)			Z _{Surcharge} =	4.00 4.00							
Taibutan Mistan (1997)			I								
Tributary Watershed Hydrology		<u></u>	Pre-Development Pe			1					
 A) Input hydrology data (copy/paste) from r 		2 Year 5 Year 17.11	10 Year 25 Year	50 Year 100 Year 99.16	500 Year	1					
B) Adjust "Time Interval" to match hydrograph data	Time Interval 5.0	minutes									
5-yr and 100-yr Hydrology Required	Time (min)		st-Development Storm Inf 10 Year 25 Year	ow Hydrographs (cfs) 50 Year 100 Year	500 Year]					
(Other Storms are Optional)	0:00	0.00		0.00	000 100						
	0:05	0.41		1.20 4.91		1					
	0:15 0:20	10.22 29.97		13.16 40.46		1					
	0:25 0:30	45.35 46.22		109.08 147.68		4					
	0:35	41.85		152.97 145.92		1					
	0:45	32.51		134.77		1	9				
	0:50	28.57 24.90		122.07 110.10		1					
	1:00 1:05	21.86 19.69		99.42 85.33		1					
	1:10	17.78		73.97		1	1				
	1:20	14.00		53.39		1					
	1:25 1:30	10.61		36.81		1					
	1:35 1:40	9.00 7.68		29.80 24.16		1					
	1:45 1:50	6.80 6.25		19.99 17.20		}					
	1:55	5.79		17.20		1					
	2:00 2:05	4.96		10.46		1					
	2:10 2:15	3.32 2.70		8.57 7.04		1					
	2:20 2:25	2.18 1.75		5.80 4.76		4					
	2:30	1.37		3.85		1					
	2:35 2:40	1.07 0.81		3.04 2.31		1					
	2:45 2:50	0.60		1.65 1.12		1					
	2:55 3:00	0.31 0.23		0.76 0.51		1					
	3:05 3:10	0.17		0.34 0.23]					
	3:15	0.09		0.16		1					
	3:20 3:25	0.07		0.12		1					
	3:30 3:35	0.05		0.07		1					
	3:40 3:45	0.03 0.03		0.05		4					
	3:50 3:55	0.02		0.03		1					
	4:00	0.01		0.01		1					
	4:05 4:10	0.01		0.01 0.01		1					
	4:15 4:20			0.00		1					
	4:25 4:30					1					
	4:35					1					
	4:40 4:45					1					
	4:50 4:55					1					
	5:00					}					
	5:10 5:15					1					
	5:20					1					
	5:25 5:30					1					
	5:35]					

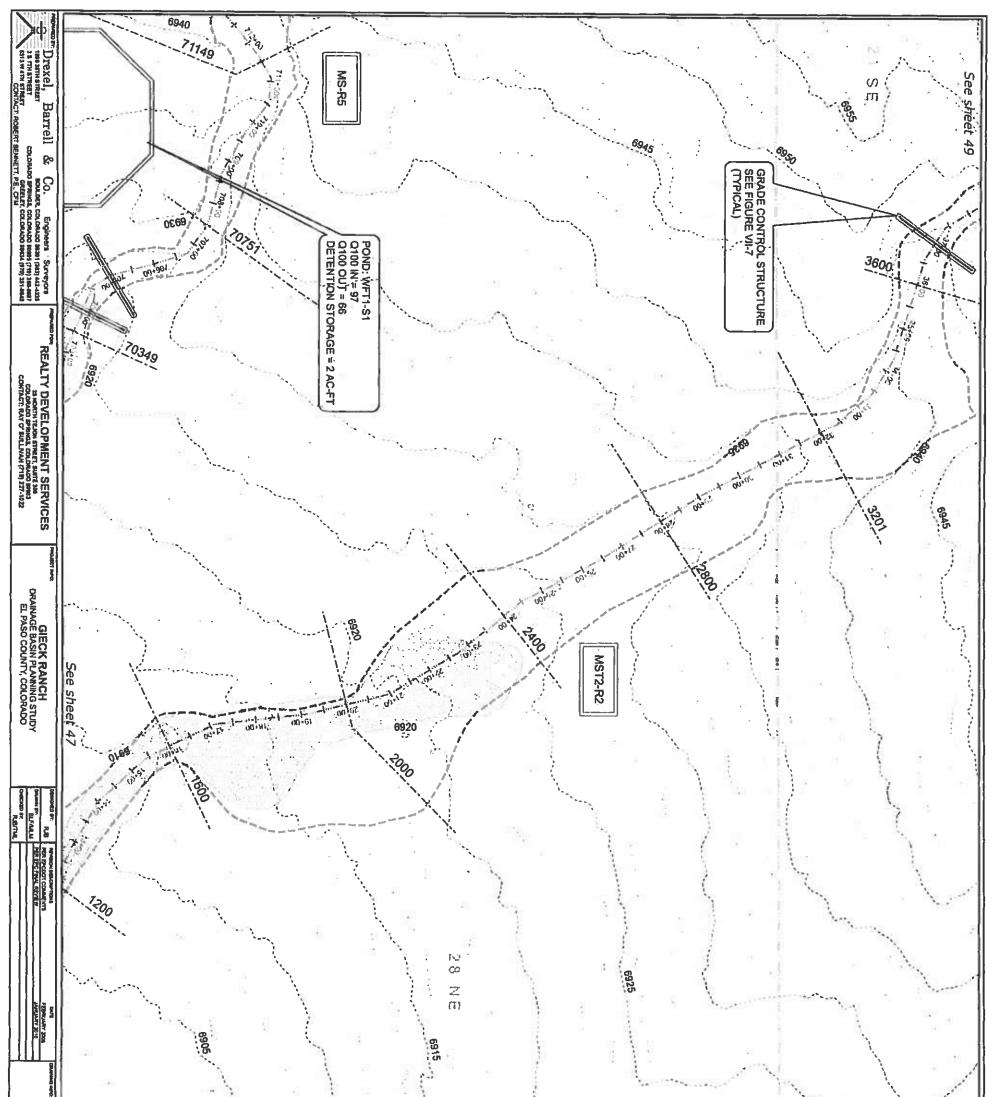
5:40				
5:45				
5:50				
5:55				
6:00				

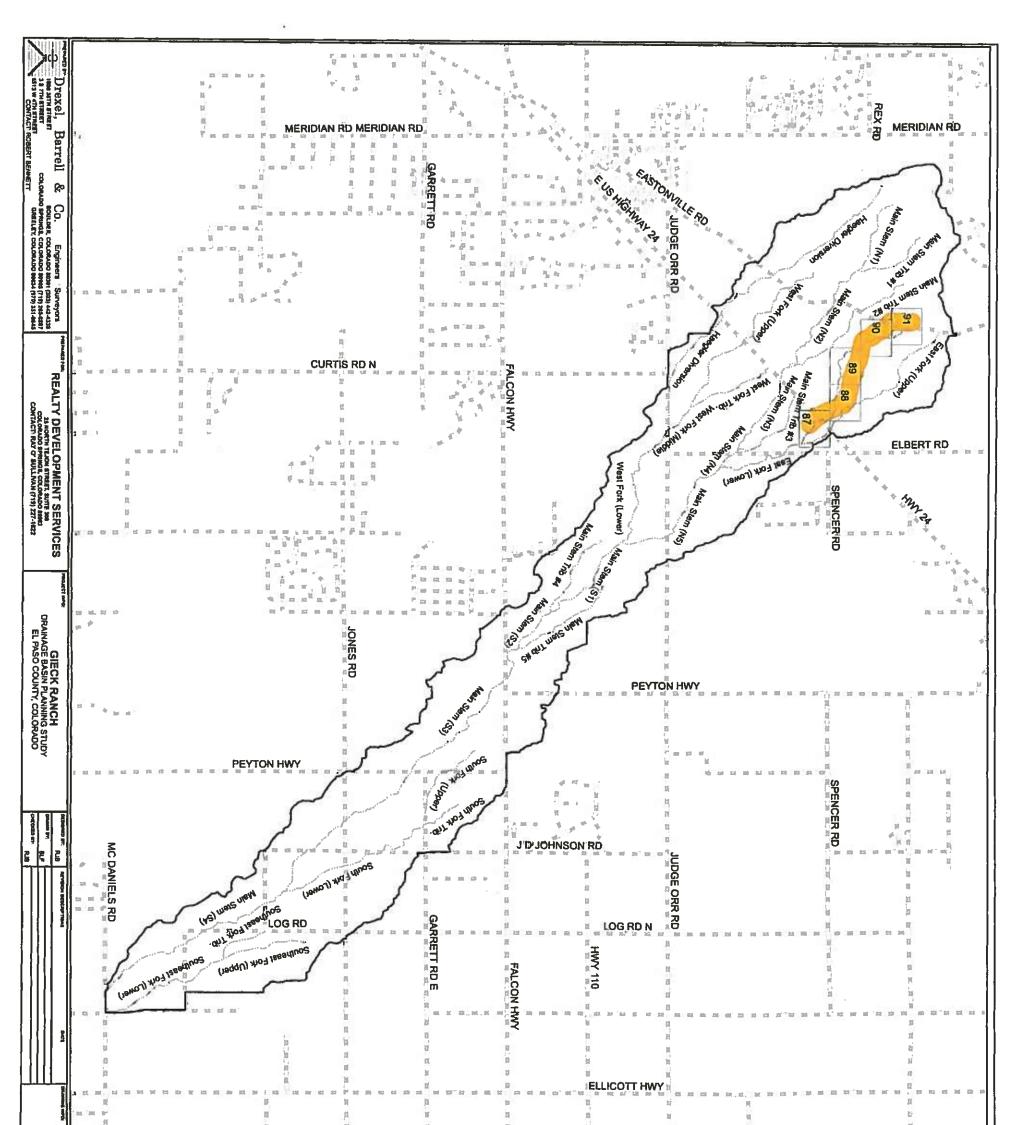

			Prelimin				-	Detention (F	•	-	
~				COS PC	CM-FSD Prelin			n 1.00, Septemb	oer 2019)	Sheet 2 of 3	
							Chris McFarlar				
		WA	TER RES	OURCES			Grandview Res	serve Pond G			
COLORAD				BINEERING		Date:	April 6, 2020			Last Edited: April 13, 2020	
SPRINGS				1							
OLYMPIC CITY USA											
					-						-
5. Flood Control Outlet Structure T	vpe										
					Overflow	v Weir/Grate, Out	let Pipe Restriction	& Emergency Spillw	ay 🔻		
A) Select Flood Control Outlet 3	Structure Typ	e									
											-
6. Overflow Weir (Dropbox) and G								arameters			
(Assumes that top of grate is	flush with the	top of the con	crete dropbo	()			User Input	COS DCM			
A) Overflow Weir Front Edge H	eight (relative	to Stage = 0 f	t)			H _{weir front} =	5.00	5.00	ft		
 B) Overflow Weir Front Edge Le 	ength (inside	edge of dropbo	ox)			L _{weir front} =	9.00	7.00	ft		
C) Overflow Weir Grate Slope (Horizon	S _{weir sides} = ntal L _{weir sides} =	0.00	0.00	ft / ft		
 D) Horizontal Length of Weir Si E) Overflow Grate Open Area % 					Grate	Open Area =	9.00 70%	7.00	ft %		
F) Debris Clogging %	o (grato opori	aroa / total gri	ato aroa)			is Clogging =	50%	50%	%		
G) Height of Grate Upper Edge					01-	H _{grate top} =	5.00	5.00	ft		
 H) Overflow Grate Slope Lengt I) Overflow Grate Open Area (v 					Open Are	epe L _{weir sides} = a _(No Clogging) =	9.00 56.70	7.00 34.30	ft sq ft		
J) Overflow Grate Open Area (1			Open A	rea (_{Clogged}) =	28.35	17.15	sq ft		
	,				L	55			• •		
7. Outlet Pipe with Flow Restriction	Plate										
						C	- Outlat Pinzou / D	etrictor Dist-		-	
 A) Select Type of Outlet Restric (Circular Pipe w/ Restrictor PI 		Orifice or Rect	angular Orific	e)		Circula	r Outlet Pipe w/ Re	strictor Plate		•	
			galar offic	-,				arameters			
							User	COS	-		
 B) Depth to Invert of Outlet Pipe 	(relative to !	Stage = 0 ft)			Pine II	nvert Depth =	1.50	DCM 1.50	ft		
C) Outlet Pipe Diameter		blage - o it)				e Diameter =	42.00	42.00	inches		
D) Restrictor Plate Height above					F	Plate Height =	34.00	34.00	inches		
 E) Half-Central Angle of Restric F) Outlet Orifice Area 	tor Plate on F	Pipe				Theta = Outlet Ao =	2.24 8.34	2.24	radians sq ft		
G) Height of Outlet Orifice Cent	roid above O	utlet Pipe Inve	rt			Outlet _{centroid} =	1.54	1.54	ft		d
H) Ratio of Grate Open Area / 1					Open	Area Ratio =	6.80	4.11	1		:
											- '
8. Emergency Spillway (Rectangul	ar or Trapezo	oidal)					Input Pa	arameters	_		
							User Input	COS DCM			l i
A) Spillway Invert Stage (relativ	e to Stage =	0 ft)				H _{spillway invert} =	6.70	999.00	ft		-
B) Spillway Crest Length						L _{spillway crest} =	136.00	27.00	ft		7
 C) Spillway End Slopes (H:V) D) Freeboard above Maximum 	Motor Surfac				Freek	S _{spillway ends} = board Depth=	4.00	4.00	ft / ft ft		ę
E) Spillway Design Flow Depth	Water Suriac	c			Flow	Depth _{spillway} =	0.50	1.00	ft		Ō
F) Stage at Top of Freeboard						Top Stage =	8.20		ft		1
G) Basin Area at Top of Freebo	ard				Max	Basin Area =	1.89		acres		
9. Routed Hydrograph Results											1
					ilts based on						
Design Storm Return Period = Inflow Hydrograph Volume (ac-ft) =	1.03	EURV 2.73	2 Year	5 Year 3.25	10 Year	25 Year	50 Year	100 Year 11.08	500 Year		Destinations Destations Forms. 5.11 Constitution (FCD) Destation
Predevelopment Peak Q (cfs) =	N/A	2.73 N/A		17.1				99.2			
Peak Inflow (cfs) =	N/A	N/A		46.2				153.0			
Peak Outflow (cfs) = Ratio (Outflow/Predevelopment) =	0.4 N/A	0.7 N/A		4.2 0.2				101.9 1.0	ļ		
Structure Controlling Flow =	N/A Orifice Plate	N/A Orifice Plate		0.2 Overflow Grate	-			1.0 Outlet Pipe			
Max Velocity through Grate =	N/A	N/A		0.0				1.7			
Time to Drain 97% of Volume (hr) =	39	68		73				62			
Time to Drain 99% of Volume (hr) = Maximum Ponding Depth (ft) =	41 3.80	72 5.00		77 5.10				72 6.20	<u> </u>		
Area at Max Ponding Depth (ac) =	1.09	1.52		1.53				1.65			
Maximum Volume Stored (ac-ft) =	1.03	2.73		2.90				4.65			
				Results	based on CO	S DCM Input	s				
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year		
	1.03	2.73 N/A		3.25				11.08 99.2	ļ		
Inflow Hydrograph Volume (ac-ft) =	N/A N/A	N/A N/A		46.2				153.0			
Inflow Hydrograph Volume (ac-ft) = Predevelopment Peak Q (cfs) = Peak Inflow (cfs) =	0.4	0.7		3.6				98.1			
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) = Peak Outflow (cfs) =		N/A		0.2				1.0			
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) = Peak Outflow (cfs) = Ratio (Outflow/Predevelopment) =	N/A			Overflow Grate				Overflow Grate 2.8			
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) = Peak Outflow (cfs) = Ratio (Outflow/Predevelopment) = Structure Controlling Flow =	N/A Orifice Plate N/A	Orifice Plate N/A						2.0			
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) = Peak Outflow (cfs) = Ratio (Outflow/Predevelopment) = Structure Controlling Flow = Max Velocity through Grate = Time to Drain 97% of Volume (hr) =	N/A Orifice Plate N/A 39	Orifice Plate N/A 68		0.2				62			
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) = Peak Outflow (cfs) = Structure Controlling Flow = Max Velocity through Grate = Time to Drain 97% of Volume (hr) = Time to Drain 99% of Volume (hr) =	39 41	68 72		73 77				73			
Predevelopment Peak Q (cfs) = Peak Inflow (cfs) = Peak Outflow (cfs) = Ratio (Outflow/Predevelopment) = Structure Controlling Flow = Max Velocity through Grate = Time to Drain 97% of Volume (hr) =	39	68		73							

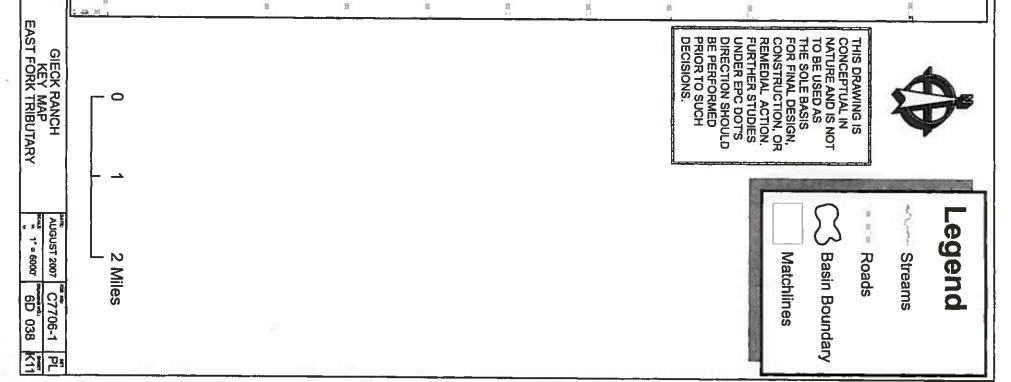


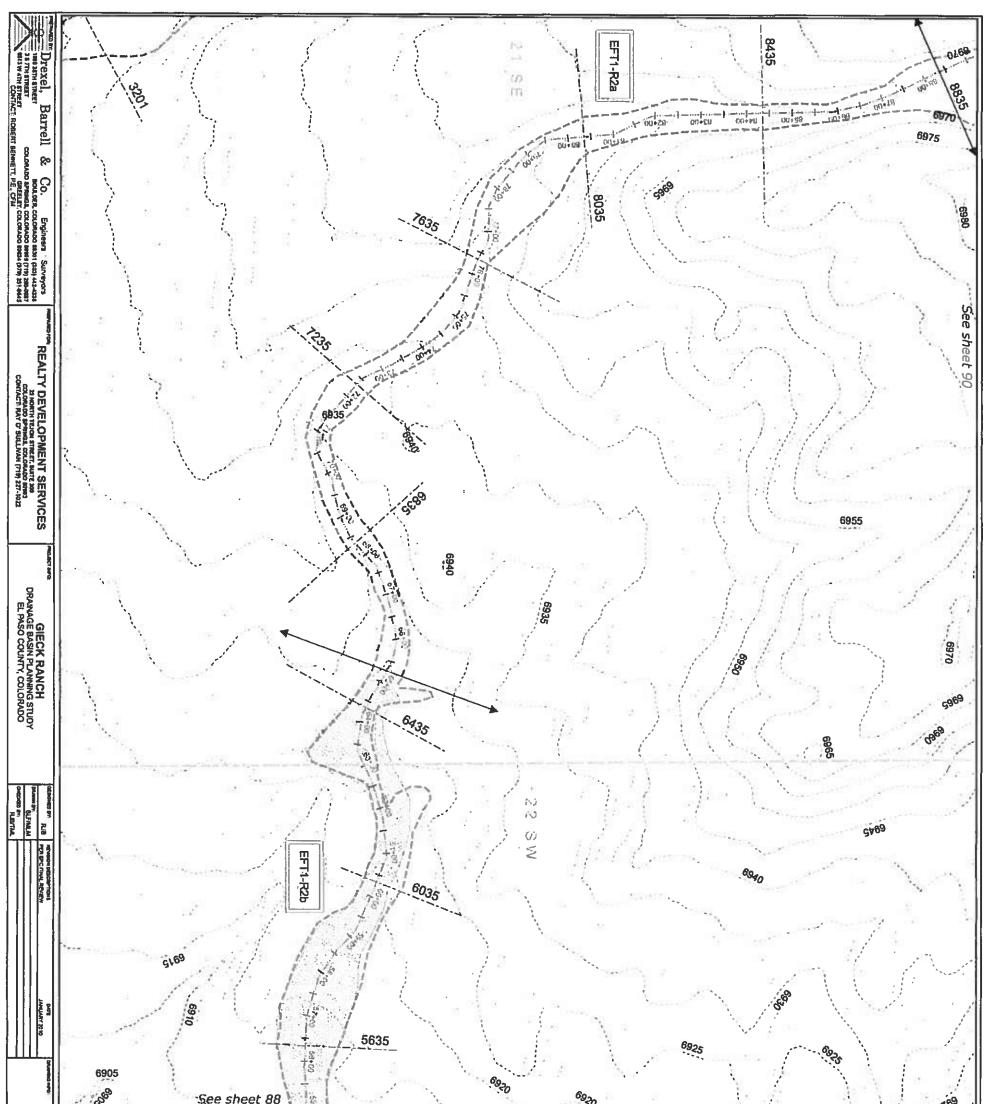
Grandview Reserve Master Development Drainage Plan Project No.: 191897.01


Appendix E

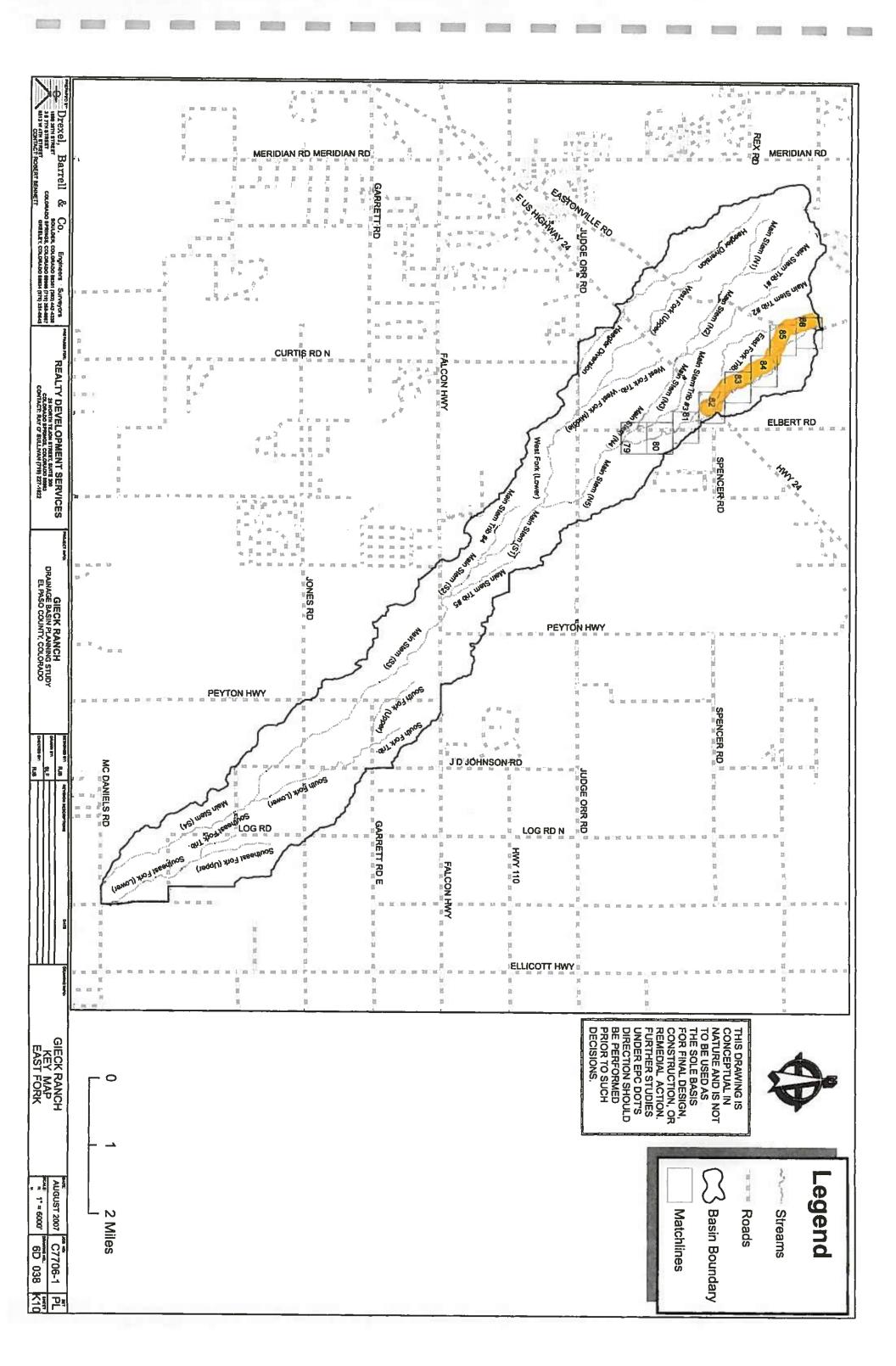


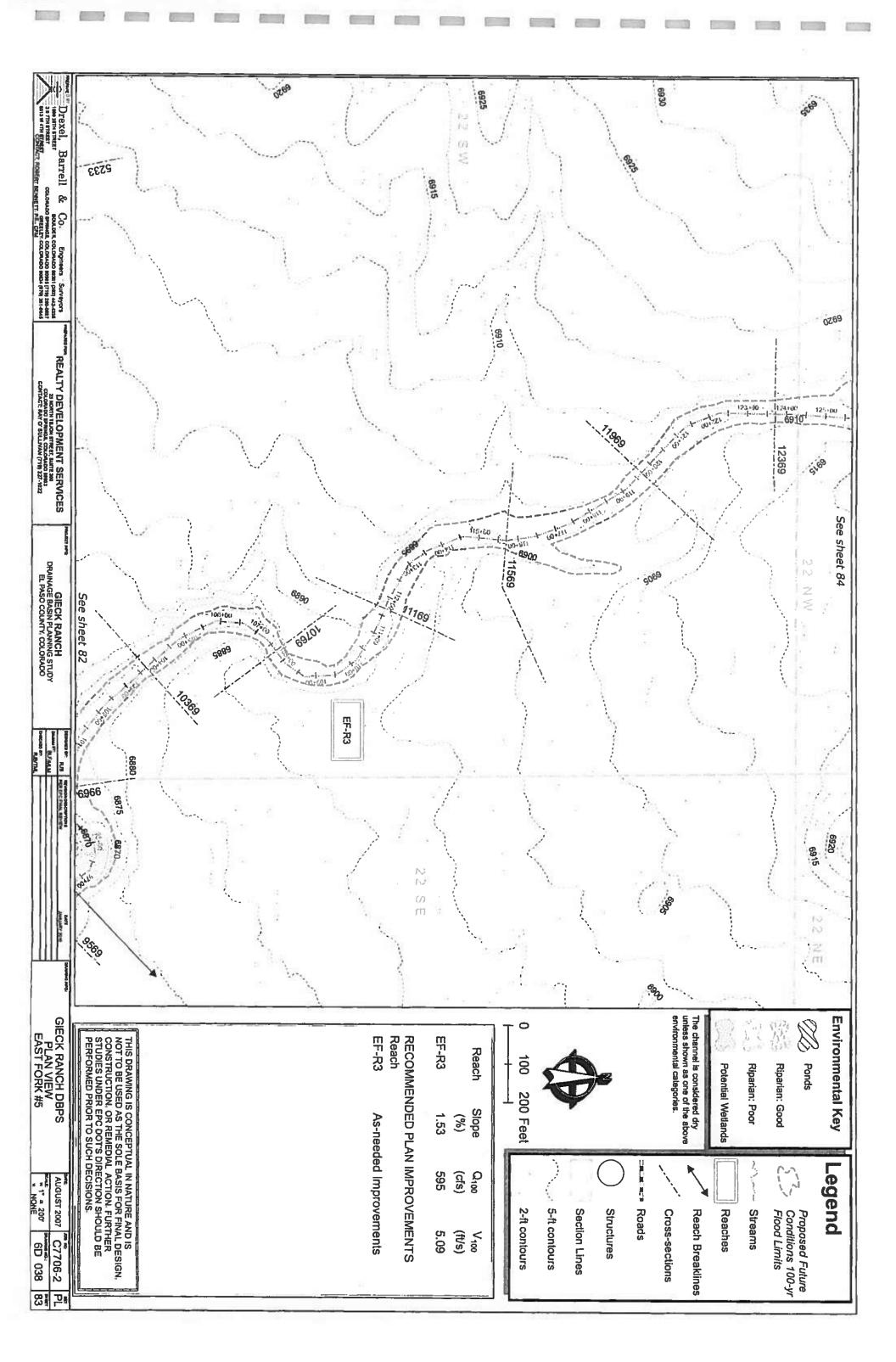

- -----


	·	Survey of the first			6970		1	1	, 18	0198
GIECK RANCH DBPS PLAN VIEW MAIN STEM #33	Note: See Technic THIS DRAWIN NOT TO BE US CONSTRUCTI STUDIES UNC	MS-R5	RECOMMENDED PL Reach MS-R4b	Reach MS-R4b MS-R5	0 100		The channel is considered dry unless shown as one of the ab environmental categories.	Riperian:	Ponds Riparian:	Environmental
DBPS N #33	al Addenda for g G IS CONCEPTU/ SED AS THE SOLE ON, OR REMEDIA DER EPC DOT'S D PRIOR TO SUCH	Vegetatic		Slope (%) 1.76 1.88	200 Feet	¥	considered dry as one of the above calegories.	Riparian: Poor Potential Wetlands	n: Good	al Key
AUGUST 2007	Note: See Technical Addenda for grade control data. THIS DRAWING IS CONCEPTUAL IN NATURE AND IS NOT TO BE USED AS THE SOLE BASIS FOR FINAL DESIGN, CONSTRUCTION, OR REMEDIAL ACTION. FURTHER STUDIES UNDER EPC DOT'S DIRECTION SHOULD BE PERFORMED PRIOR TO SUCH DECISIONS.	Vegetation Augmentation	AN IMPROVEMENTS	Q ₁₀₀ ((cfs) (1094 4 573 5	2-ft o	Structures Section Li	Reach Cross-	Reaches	Prop Conc Flood	Legend
C7706-2 PL 6D 038 33	D BE HER SIGN	ğ.	ENTS	V₁₀₀ (ft/s) 4.24 5.00	contours	Structures Section Lines 5-ft contours	Reach Breaklines Cross-sections Roads	ims hes	Proposed Future Conditions 100-yr Flood Limits	



N.	b		1			100 Hills
GIECK RANCH DBPS PLAN VIEW MAIN STEM TRIBUTARY-2 #2	Note: See Technical Addenda for grade control data THIS DRAWING IS CONCEPTUAL IN NATURE AND NOT TO BE USED AS THE SOLE BASIS FOR FINAL CONSTRUCTION, OR REMEDIAL ACTION. FURTH STUDIES UNDER EPC DOTS DIRECTION SHOULD PERFORMED PRIOR TO SUCH DECISIONS.	RECOMMENDED PLAN IMPROVEMENTS Reach MST2-R2 Vegetation Augmentation	Reach Siope (%) MST2-R2 1.93	100 200 Feet	Riparian: Poor Potential Wetlands The channel is considered dry unless shown as one of the above environmental categories.	Environmental Key Ponds Riparian: Good
AUGUST 2007 C7706-2 PL	Note: See Technical Addenda for grade control data. THIS DRAWING IS CONCEPTUAL IN NATURE AND IS NOT TO BE USED AS THE SOLE BASIS FOR FINAL DESIGN, CONSTRUCTION, OR REMEDIAL ACTION. FURTHER STUDIES UNDER EPC DOT'S DIRECTION SHOULD BE PERFORMED PRIOR TO SUCH DECISIONS.	ED PLAN IMPROVEMENTS	Q ₁₀₀ V ₁₀₀ (cfs) (ft/s) 271 3.16	Structures Section Lines 5-ft contours 2-ft contours	Reaches Cross-sections	Legend Proposed Future Conditions 100-yr Flood Limits

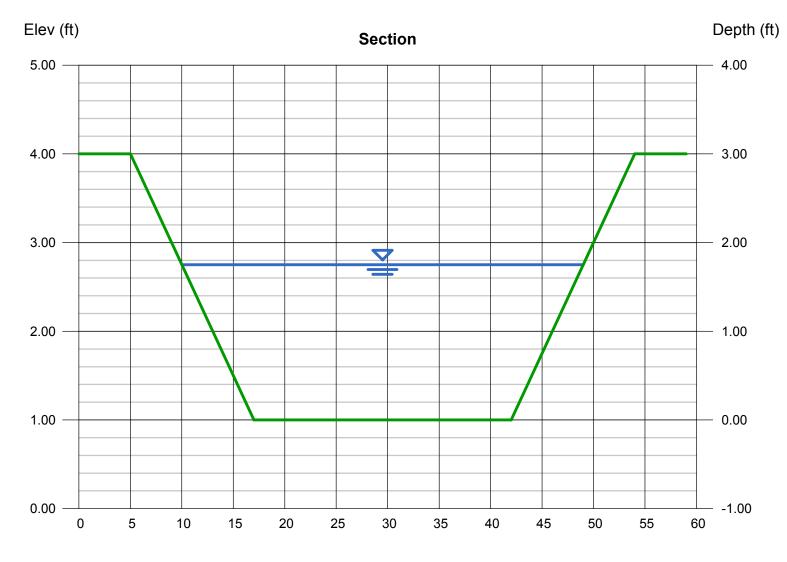




E

E

GIECK RANCH DBPS PLAN VIEW EAST FORK TRIBUTARY #3	THIS DRAWING IS CONCEPTUAL IN NATURE AND IS NOT TO BE USED AS THE SOLE BASIS FOR FINAL DESIGN CONSTRUCTION, OR REMEDIAL ACTION. FURTHER STUDIES UNDER EPC DOT'S DIRECTION SHOULD BE PERFORMED PRIOR TO SUCH DECISIONS.	RECOMMENDED PLAN IMPROVEMENTS Reach EFT1-R2a As-needed Improvements EFT1-R2b As-needed Improvements	Reach Slope (%) EFT1-R2a 1.83 EFT1-R2b 1.60		The channel is considered dry unless shown as one of the above environmental categories.	Riparian: Good Potential Wetlands	Environmental
AUGUST 2007	UAL IN NATU LE BASIS FC DIAL ACTION DIRECTION H DECISION	ED PLAN IMPROVEMENT As-needed Improvements As-needed Improvements	Q ₁₀₀ (cfs) 217 217	$\langle 0 \rangle$		Lege	
SUST 2007 Max An Max Max 1° = 200° 6D 038 89 NOME 6D 038 89	RE AND IS IR FINAL DESIGN, FURTHER SHOULD BE S.	APROVEMENTS Improvements Improvements	V₁₀₀ (ft/s) 2.68	Structures Section Lines 5-ft contours 2-ft contours	Reach Breaklines Cross-sections Roads	Proposed Future Conditions 100-yr Flood Limits Streams Reaches	

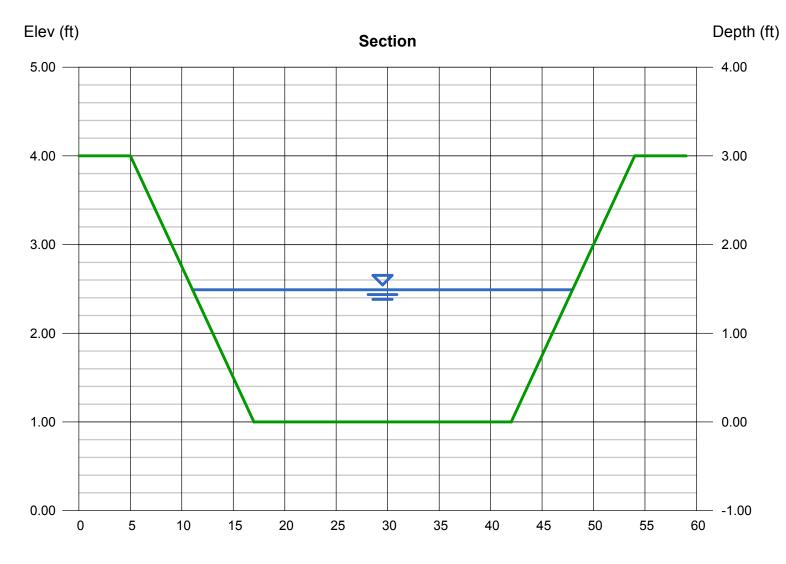


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jan 25 2019

East Fork Tributary 1 Reach 3 - Proposed Channel_Capacity

Trapezoidal		Highlighted	
Bottom Width (ft)	= 25.00	Depth (ft)	= 1.75
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 217.00
Total Depth (ft)	= 3.00	Area (sqft)	= 56.00
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.88
Slope (%)	= 0.69	Wetted Perim (ft)	= 39.43
N-Value	= 0.040	Crit Depth, Yc (ft)	= 1.24
		Top Width (ft)	= 39.00
Calculations		EGL (ft)	= 1.98
Compute by:	Known Q		
Known Q (cfs)	= 217.00		

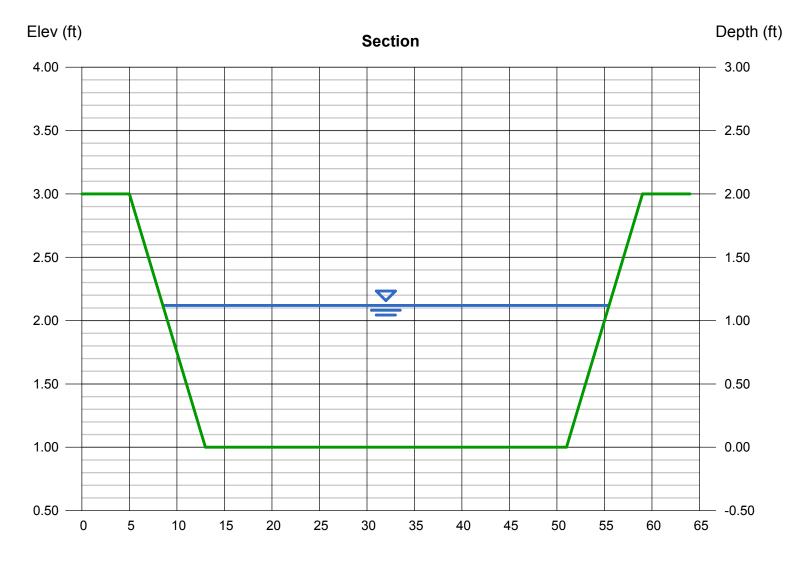

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jan 25 2019

East Fork Tributary 1 Reach 3 - Proposed Channel_Velocity

Trapezoidal		Highlighted	
Bottom Width (ft)	= 25.00	Depth (ft)	= 1.49
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 217.00
Total Depth (ft)	= 3.00	Area (sqft)	= 46.13
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 4.70
Slope (%)	= 0.69	Wetted Perim (ft)	= 37.29
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.24
		Top Width (ft)	= 36.92
Calculations		EGL (ft)	= 1.83
Compute by:	Known Q		
Known Q (cfs)	= 217.00		

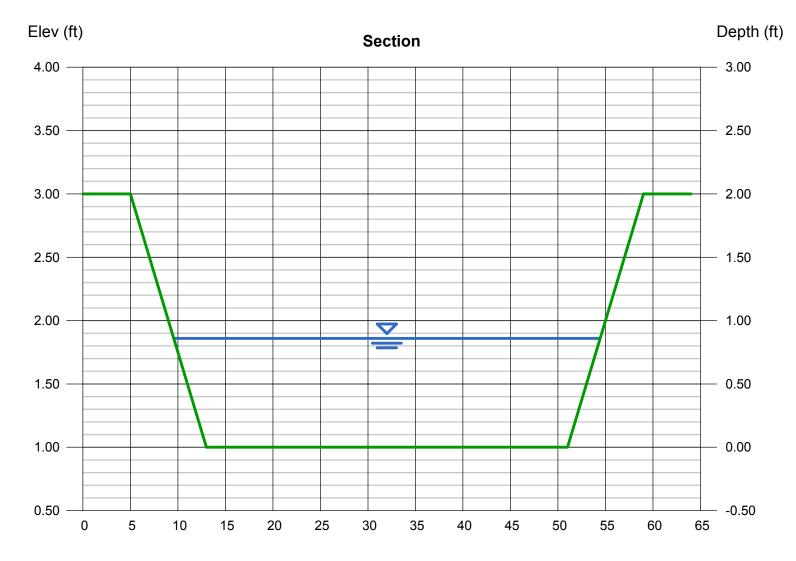


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jan 18 2019

East Fork Tributary 1 Reach 2 - Proposed Channel_Capacity

Trapezoidal		Highlighted	
Bottom Width (ft)	= 38.00	Depth (ft)	= 1.12
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 177.00
Total Depth (ft)	= 2.00	Area (sqft)	= 47.58
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.72
Slope (%)	= 1.58	Wetted Perim (ft)	= 47.24
N-Value	= 0.050	Crit Depth, Yc (ft)	= 0.86
		Top Width (ft)	= 46.96
Calculations		EGL (ft)	= 1.34
Compute by:	Known Q		
Known Q (cfs)	= 177.00		

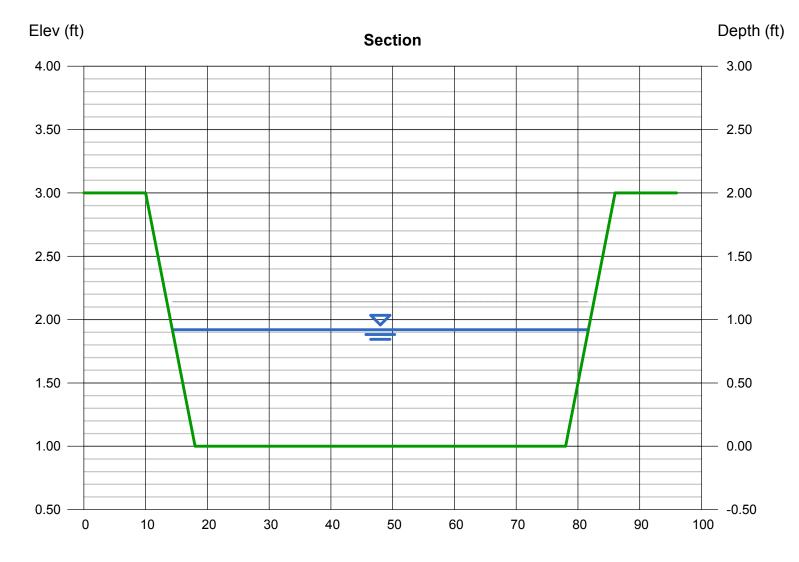


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jan 18 2019

East Fork Tributary 1 Reach 2 - Proposed Channel_Velocity

Trapezoidal		Highlighted	
Bottom Width (ft)	= 38.00	Depth (ft)	= 0.86
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 177.00
Total Depth (ft)	= 2.00	Area (sqft)	= 35.64
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 4.97
Slope (%)	= 1.58	Wetted Perim (ft)	= 45.09
N-Value	= 0.032	Crit Depth, Yc (ft)	= 0.86
		Top Width (ft)	= 44.88
Calculations		EGL (ft)	= 1.24
Compute by:	Known Q		
Known Q (cfs)	= 177.00		



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Main Stem Trib 2

Gieck Manch Hubble 2 - Proposed Channel Section Capacity Check

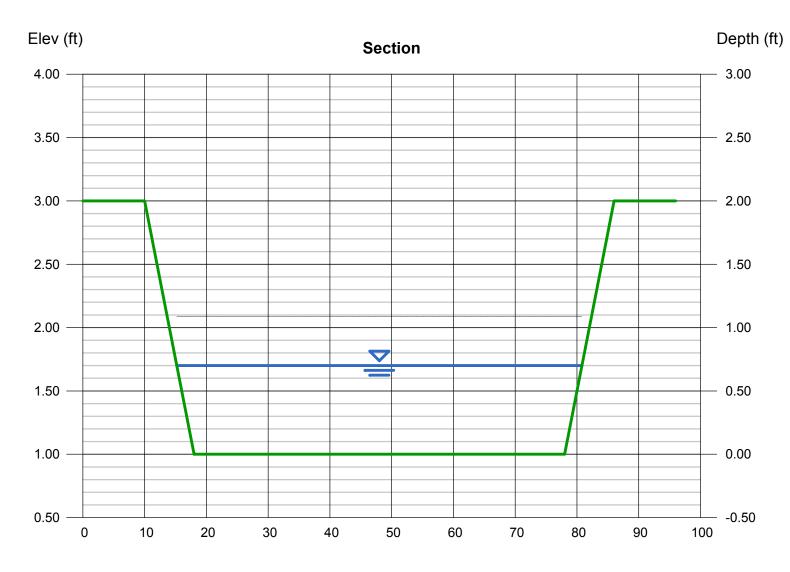
Trapezoidal		Highlighted	
Bottom Width (ft)	= 60.00	Depth (ft)	= 0.92
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 220.00
Total Depth (ft)	= 2.00	Area (sqft)	= 58.59
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.76
Slope (%)	= 2.00	Wetted Perim (ft)	= 67.59
N-Value	= 0.050	Crit Depth, Yc (ft)	= 0.74
		Top Width (ft)	= 67.36
Calculations		EGL (ft)	= 1.14
Compute by:	Known Q		
Known Q (cfs)	= 220.00		

Compute by:

Known Q (cfs)

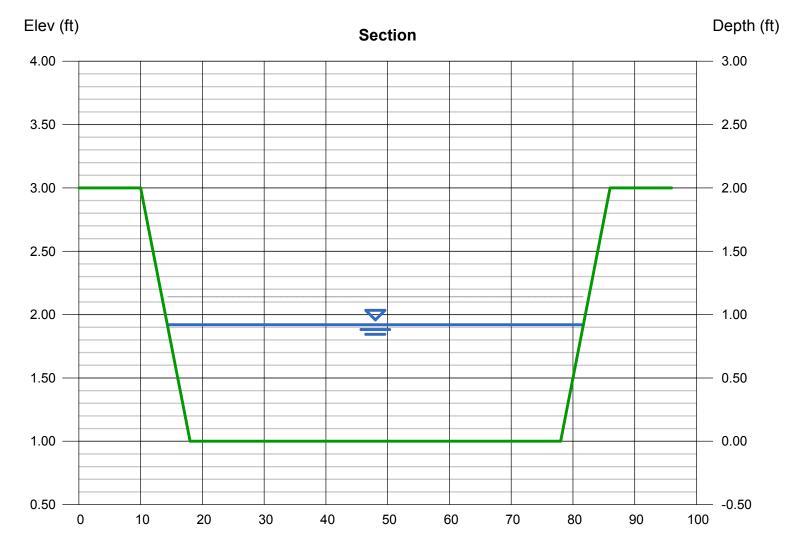
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Known Q

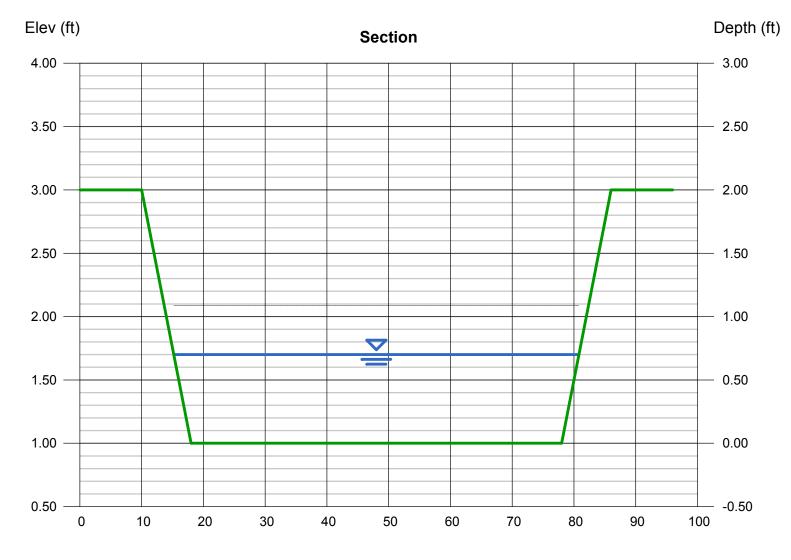

= 220.00

Main Stem Trib 2

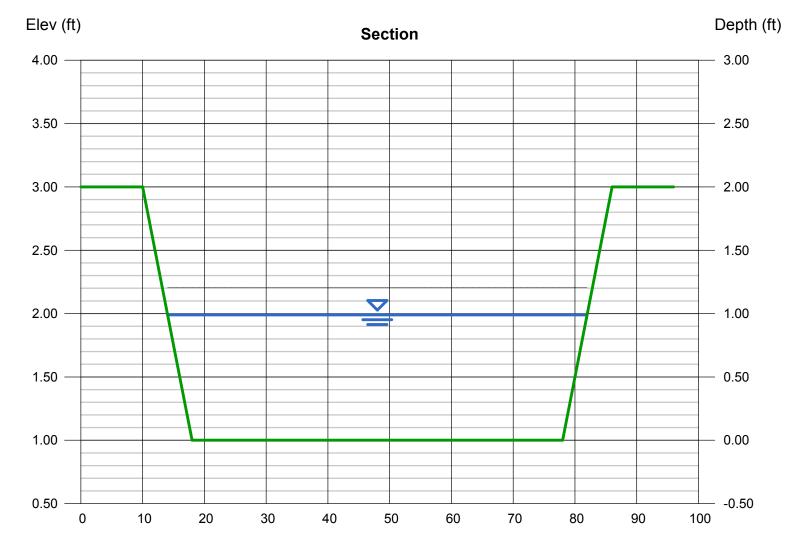
Gieck Ranch Hubblery 2 - Proposed Channel Section Velocity Check


Trapezoidal	
Bottom Width (ft)	= 60.00
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 2.00
Invert Elev (ft)	= 1.00
Slope (%)	= 2.00
N-Value	= 0.032
Calculations	

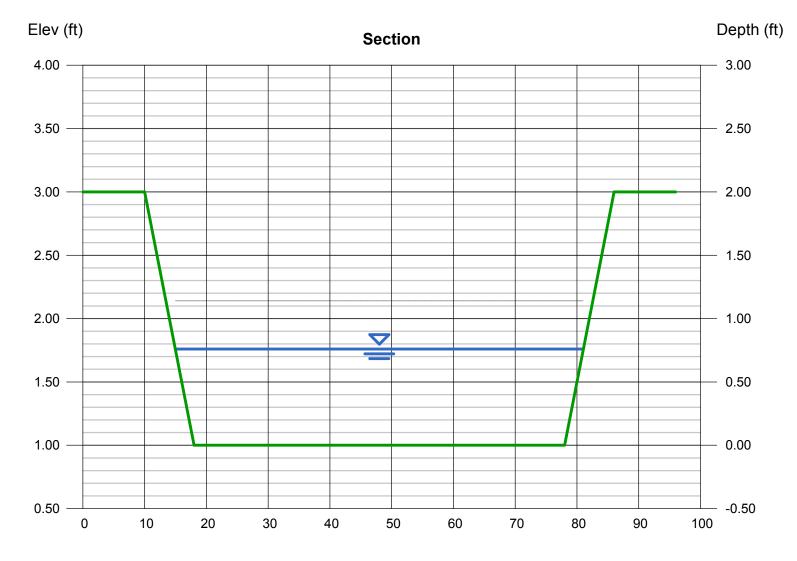
Highlighted		
Depth (ft)	=	0.70
Q (cfs)	=	220.00
Area (sqft)	=	43.96
Velocity (ft/s)	=	5.00
Wetted Perim (ft)	=	65.77
Crit Depth, Yc (ft)	=	0.74
Top Width (ft)	=	65.60
EGL (ft)	=	1.09


Gieck Ranch Tributary 2_Reach 1 - Proposed Channel Section Capacity Check

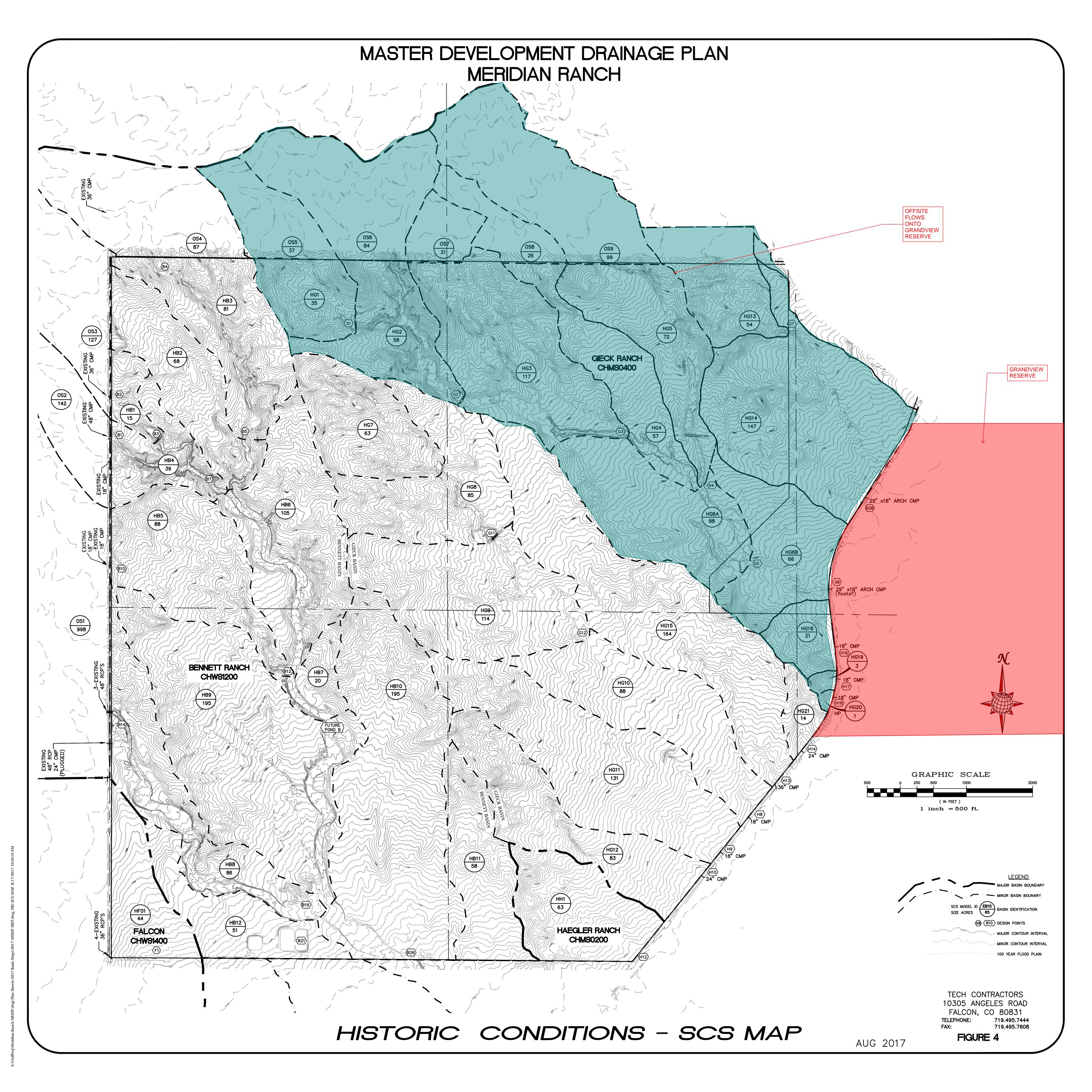
	Main Stem		
Trapezoidal		Highlighted	
Bottom Width (ft)) = 60.00	Depth (ft)	= 0.92
Side Slopes (z:1)) = 4.00, 4	.00 Q (cfs)	= 220.00
Total Depth (ft)	= 2.00	Area (sqft)	= 58.59
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.76
Slope (%)	= 2.00	Wetted Perim (ft)	= 67.59
N-Value	= 0.050	Crit Depth, Yc (ft)	= 0.74
		Top Width (ft)	= 67.36
Calculations		EGL (ft)	= 1.14
Compute by:	Known Q		
Known Q (cfs)	= 220.00		

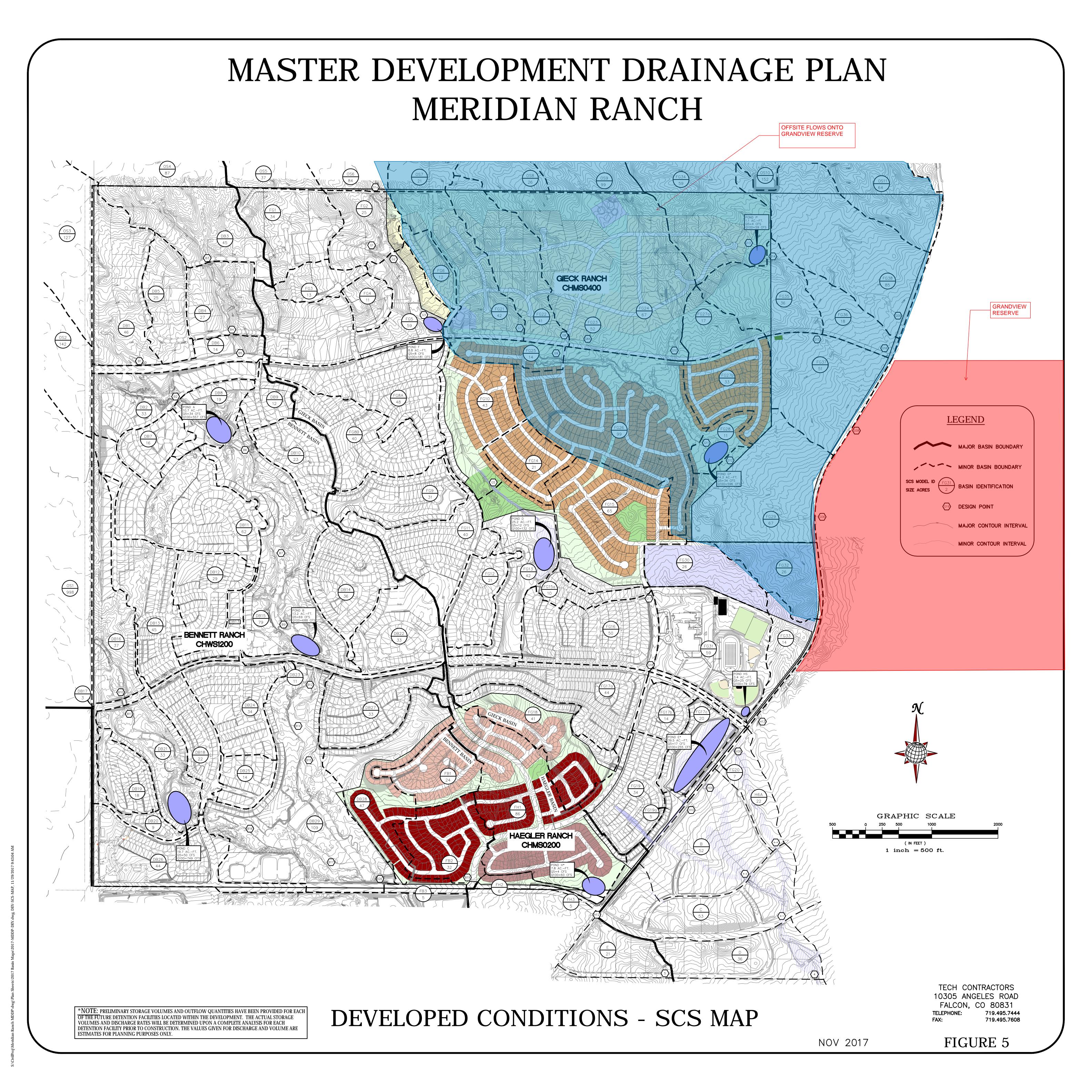

Gieck Ranch Tributary 2 Reach 1 - Proposed Channel Section Velocity Check

	Main Stem	-	-
Trapezoidal		Highlighted	
Bottom Width (ft)	= 60.00	Depth (ft)	= 0.70
Side Slopes (z:1)	= 4.00, 4.0	00 Q (cfs)	= 220.00
Total Depth (ft)	= 2.00	Area (sqft)	= 43.96
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 5.00
Slope (%)	= 2.00	Wetted Perim (ft)	= 65.77
N-Value	= 0.032	Crit Depth, Yc (ft)	= 0.74
		Top Width (ft)	= 65.60
Calculations		EGL (ft)	= 1.09
Compute by:	Known Q		
Known Q (cfs)	= 220.00		


Gieck Ranch Tributary 2 Reach 2 - Proposed Channel Section Capacity Check

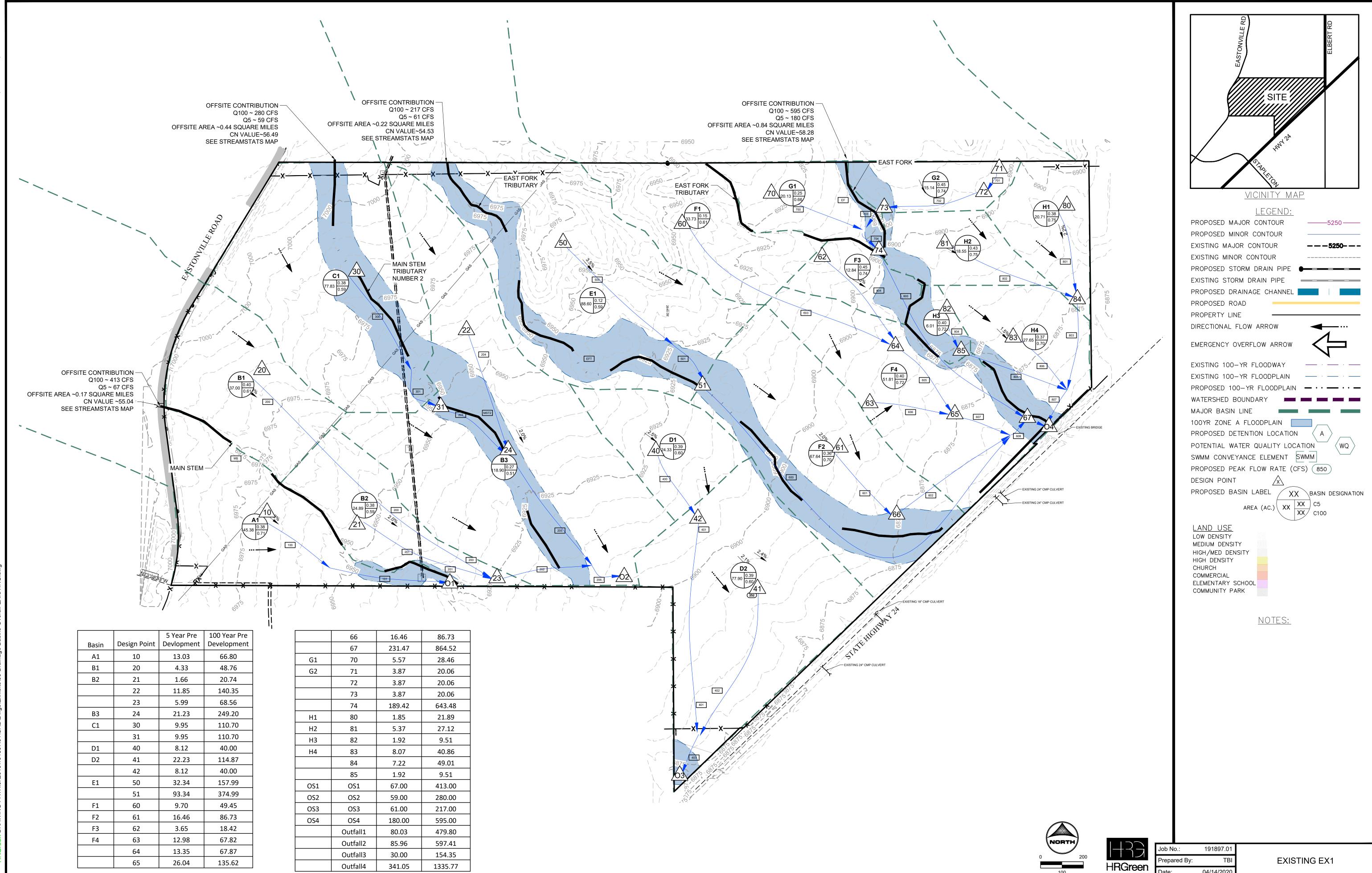
	Main Stem	•		
Trapezoidal			Highlighted	
Bottom Width (ft)) = 60.00		Depth (ft)	= 0.99
Side Slopes (z:1)) = 4.00, 4	.00	Q (cfs)	= 237.00
Total Depth (ft)	= 2.00		Area (sqft)	= 63.32
Invert Elev (ft)	= 1.00		Velocity (ft/s)	= 3.74
Slope (%)	= 1.80		Wetted Perim (ft)	= 68.16
N-Value	= 0.050		Crit Depth, Yc (ft)	= 0.78
			Top Width (ft)	= 67.92
Calculations			EGL (ft)	= 1.21
Compute by:	Known Q			
Known Q (cfs)	= 237.00			




Gieck Ranch Tributary 2_Reach 2 - Proposed Channel Section Velocity Check

Trapezoidal	Main Stem	Highlighted	
Bottom Width (f	t) = 60.00	Depth (ft)	= 0.76
Side Slopes (z:	1) = $4.00, 4$	4.00 Q (cfs)	= 237.00
Total Depth (ft)	= 2.00	Area (sqft)	= 47.91
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 4.95
Slope (%)	= 1.80	Wetted Perim (ft)	= 66.27
N-Value	= 0.032	Crit Depth, Yc (ft)	= 0.78
		Top Width (ft)	= 66.08
Calculations		EGL (ft)	= 1.14
Compute by:	Known C	2	
Known Q (cfs)	= 237.0	0	

Reach (ft)



Grandview Reserve Master Development Drainage Plan Project No.: 191897.01

Appendix F

		5 Year Pre	100 Year Pre
Basin	Design Point	Devlopment	Development
A1	10	13.03	66.80
B1	20	4.33	48.76
B2	21	1.66	20.74
	22	11.85	140.35
	23	5.99	68.56
B3	24	21.23	249.20
C1	30	9.95	110.70
	31	9.95	110.70
D1	40	8.12	40.00
D2	41	22.23	114.87
	42	8.12	40.00
E1	50	32.34	157.99
	51	93.34	374.99
F1	60	9.70	49.45
F2	61	16.46	86.73
F3	62	3.65	18.42
F4	63	12.98	67.82
	64	13.35	67.87
	65	26.04	135.62

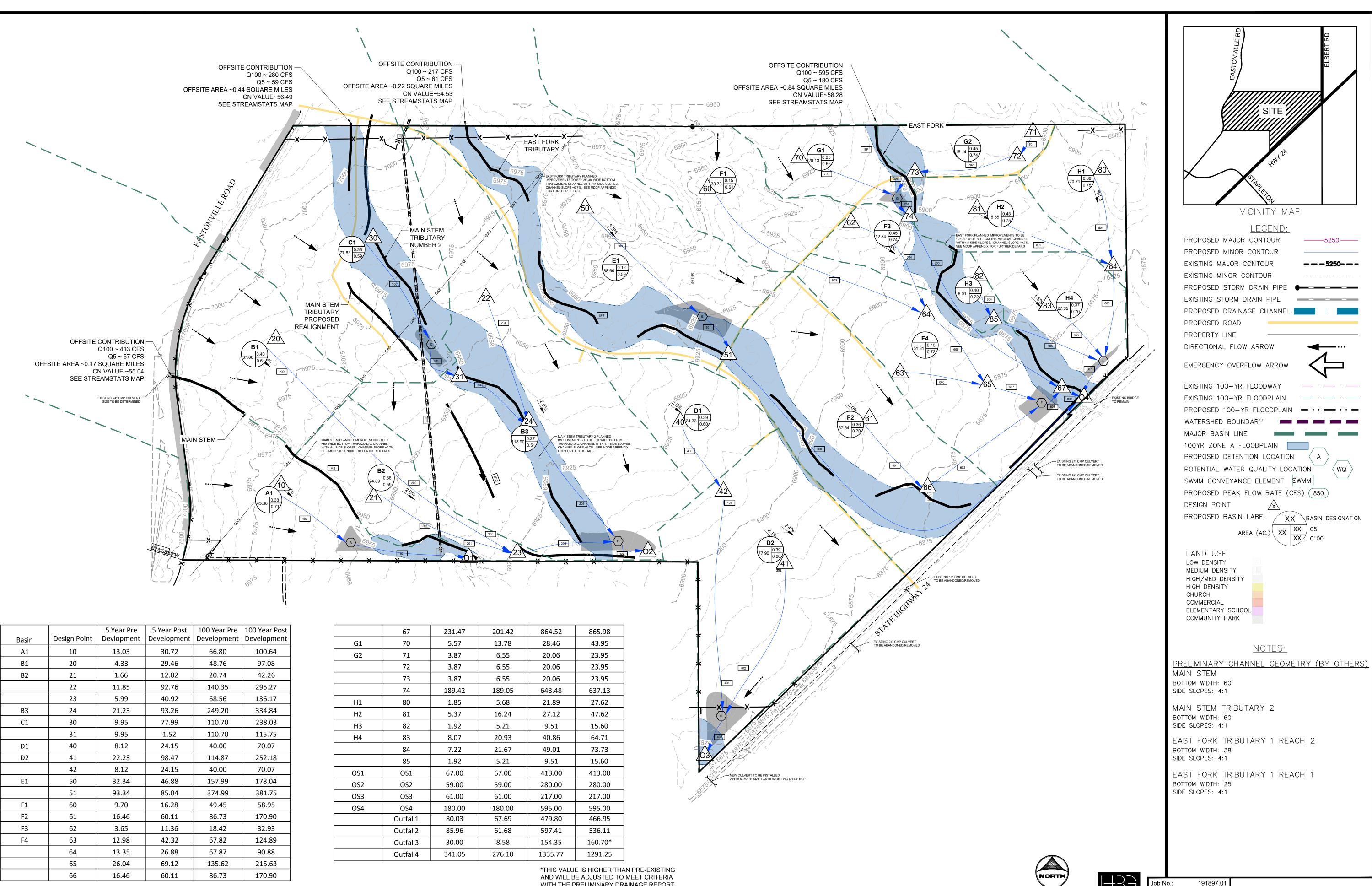
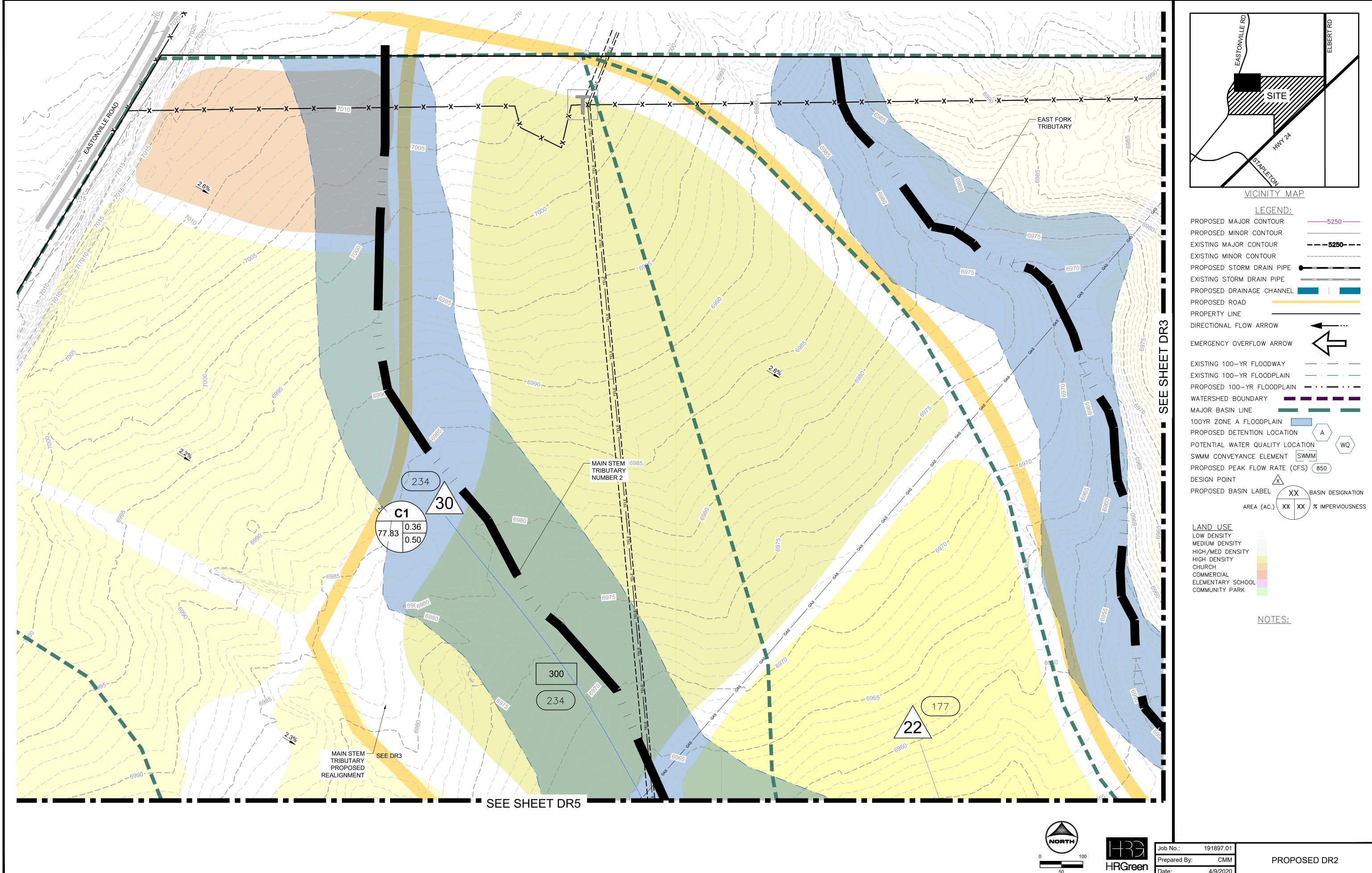

	66	16.46	86.73
	67	231.47	864.52
G1	70	5.57	28.46
G2	71	3.87	20.06
	72	3.87	20.06
	73	3.87	20.06
	74	189.42	643.48
H1	80	1.85	21.89
H2	81	5.37	27.12
H3	82	1.92	9.51
H4	83	8.07	40.86
	84	7.22	49.01
	85	1.92	9.51
OS1	OS1	67.00	413.00
OS2	OS2	59.00	280.00
OS3	OS3	61.00	217.00
OS4	OS4	180.00	595.00
	Outfall1	80.03	479.80
	Outfall2	85.96	597.41
	Outfall3	30.00	154.35
	Outfall4	341.05	1335.77

FIG.EX1

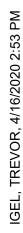
04/14/202

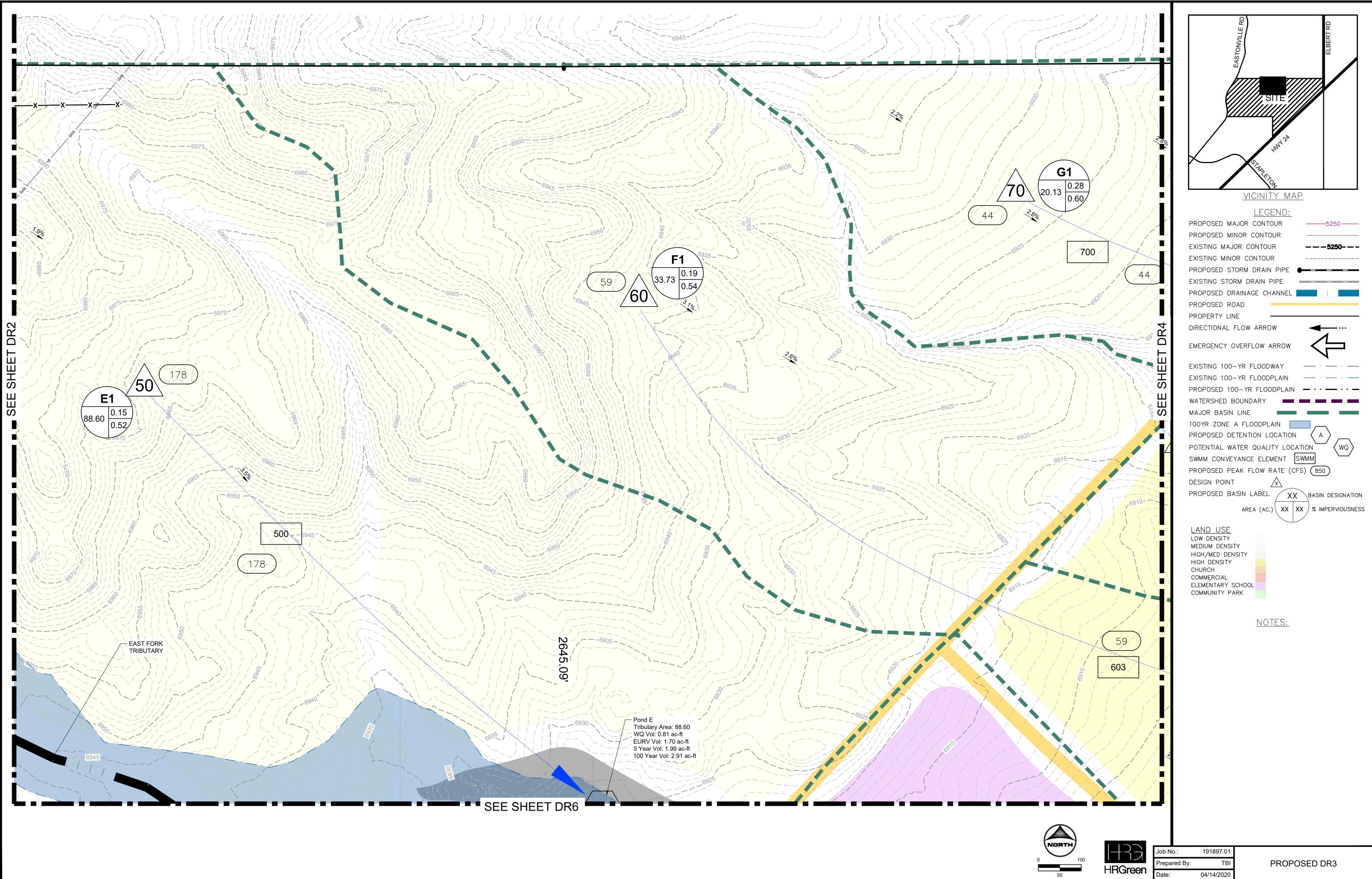
ate


Basin	Design Point	5 Year Pre Devlopment	5 Year Post Development	100 Year Pre Development	100 Year Post Development
A1	10	13.03	30.72	66.80	100.64
B1	20	4.33	29.46	48.76	97.08
B2	21	1.66	12.02	20.74	42.26
	22	11.85	92.76	140.35	295.27
	23	5.99	40.92	68.56	136.17
B3	24	21.23	93.26	249.20	334.84
C1	30	9.95	77.99	110.70	238.03
	31	9.95	1.52	110.70	115.75
D1	40	8.12	24.15	40.00	70.07
D2	41	22.23	98.47	114.87	252.18
	42	8.12	24.15	40.00	70.07
E1	50	32.34	46.88	157.99	178.04
	51	93.34	85.04	374.99	381.75
F1	60	9.70	16.28	49.45	58.95
F2	61	16.46	60.11	86.73	170.90
F3	62	3.65	11.36	18.42	32.93
F4	63	12.98	42.32	67.82	124.89
	64	13.35	26.88	67.87	90.88
	65	26.04	69.12	135.62	215.63
	66	16.46	60.11	86.73	170.90

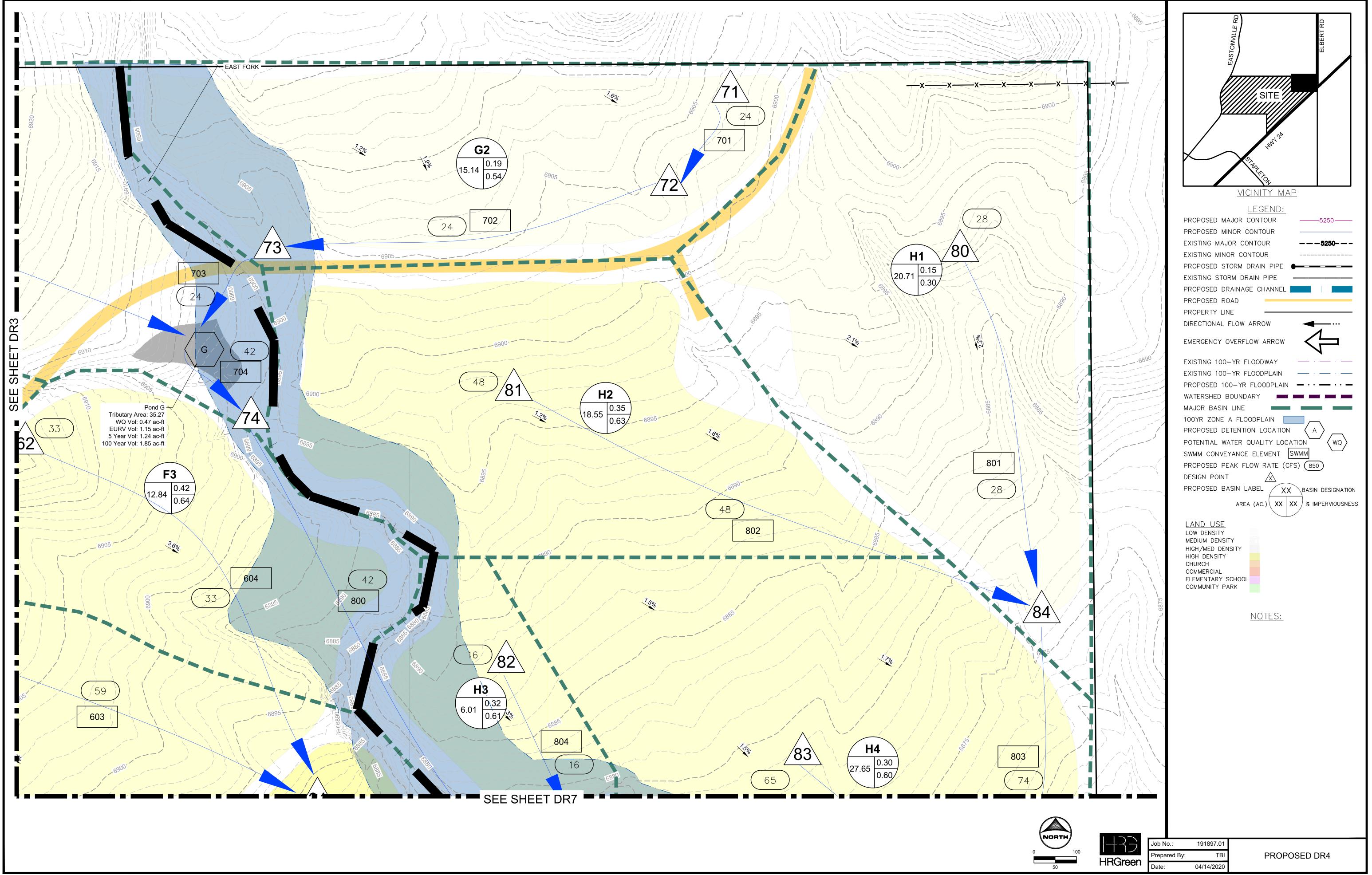
	67	231.47
G1	70	5.57
G2	71	3.87
	72	3.87
	73	3.87
	74	189.42
H1	80	1.85
H2	81	5.37
Н3	82	1.92
H4	83	8.07
	84	7.22
	85	1.92
OS1	OS1	67.00
OS2	OS2	59.00
OS3	OS3	61.00
OS4	OS4	180.00
	Outfall1	80.03
	Outfall2	85.96
	Outfall3	30.00
	Outfall4	341.05

WITH THE PRELIMINARY DRAINAGE REPORT

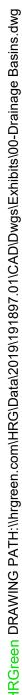

HR	Green

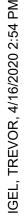

PROPOSED DR1

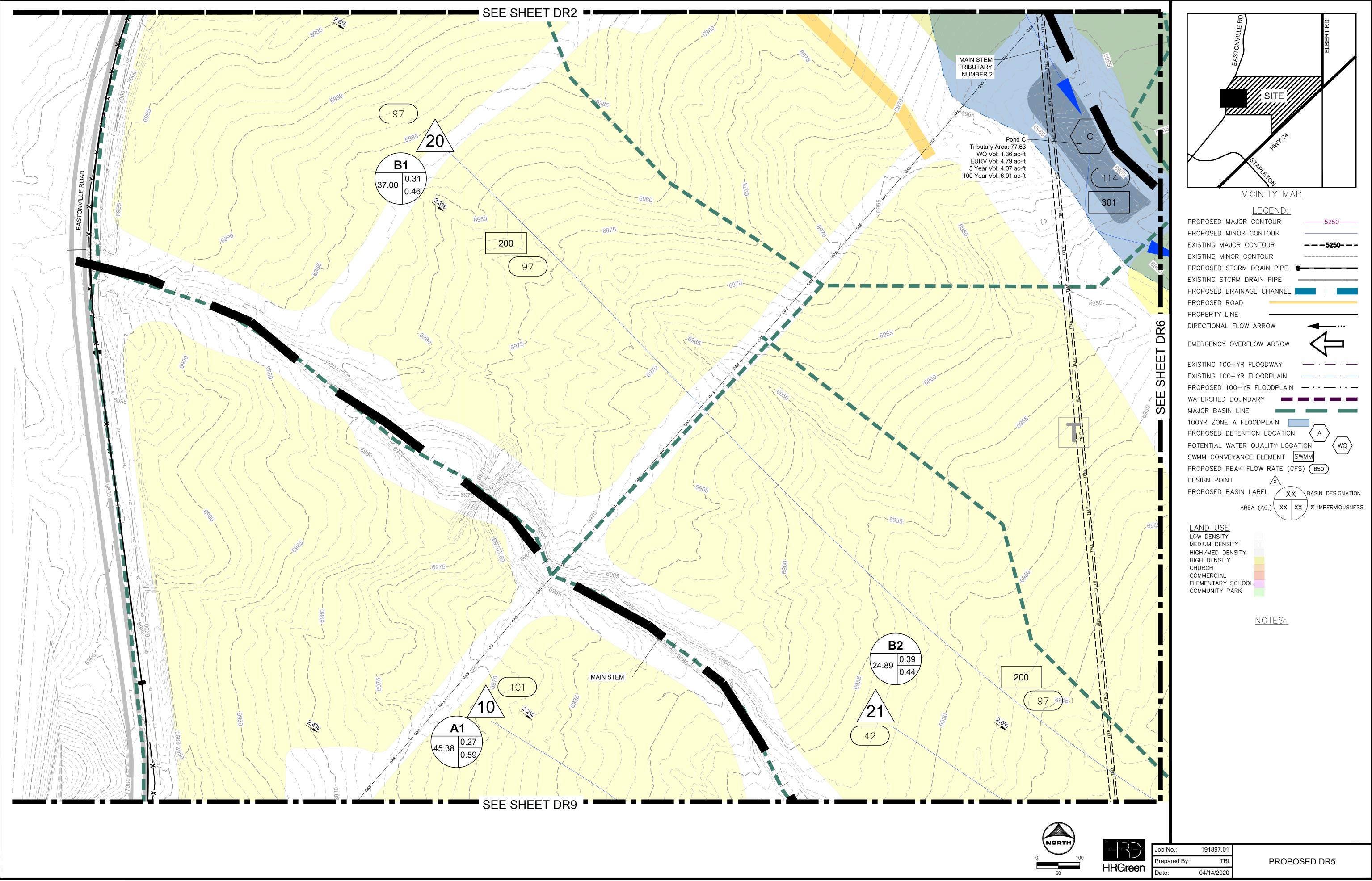


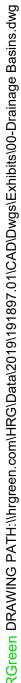

4/9/202

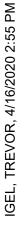
ate

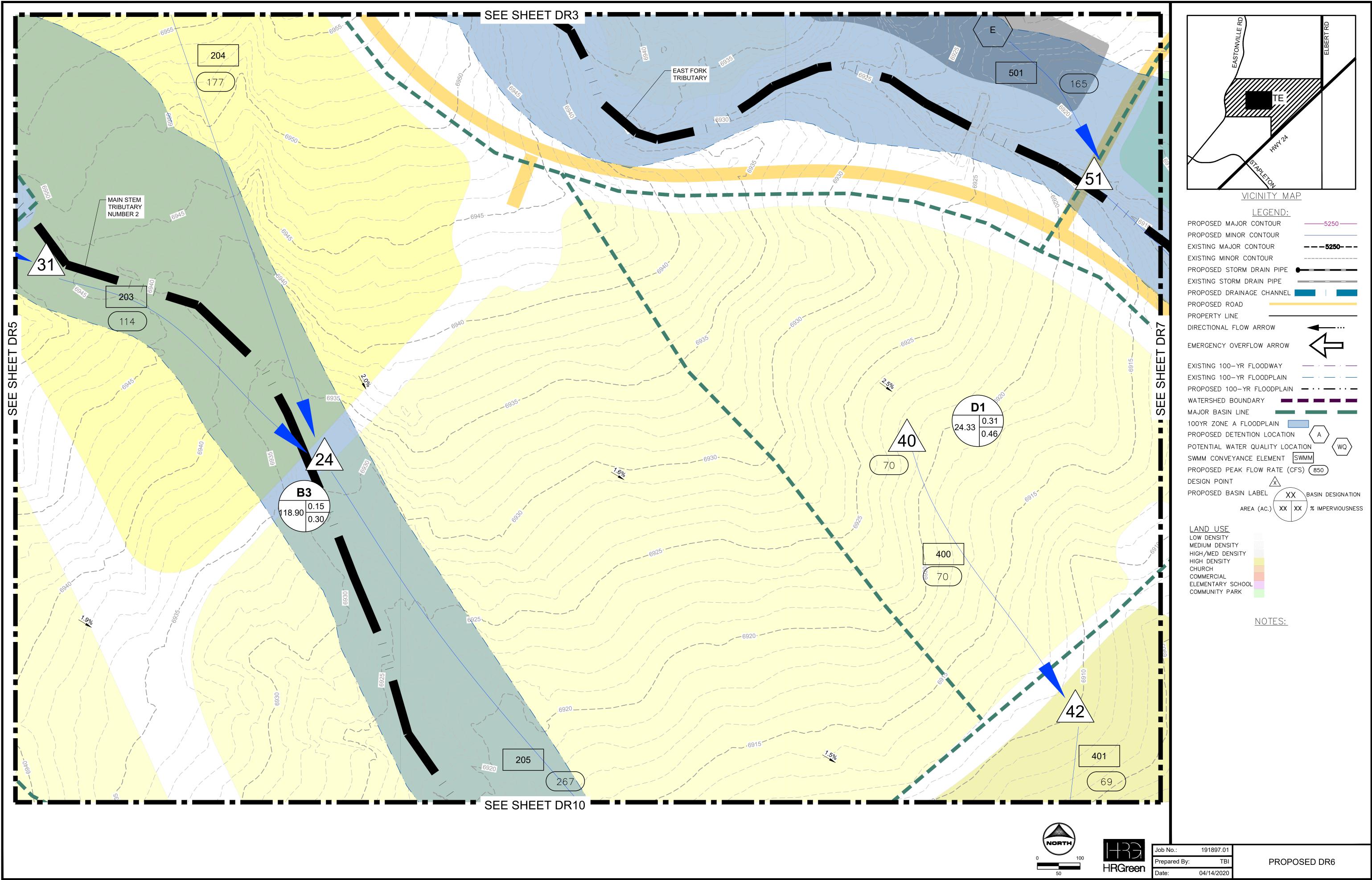


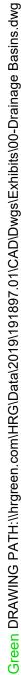


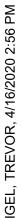


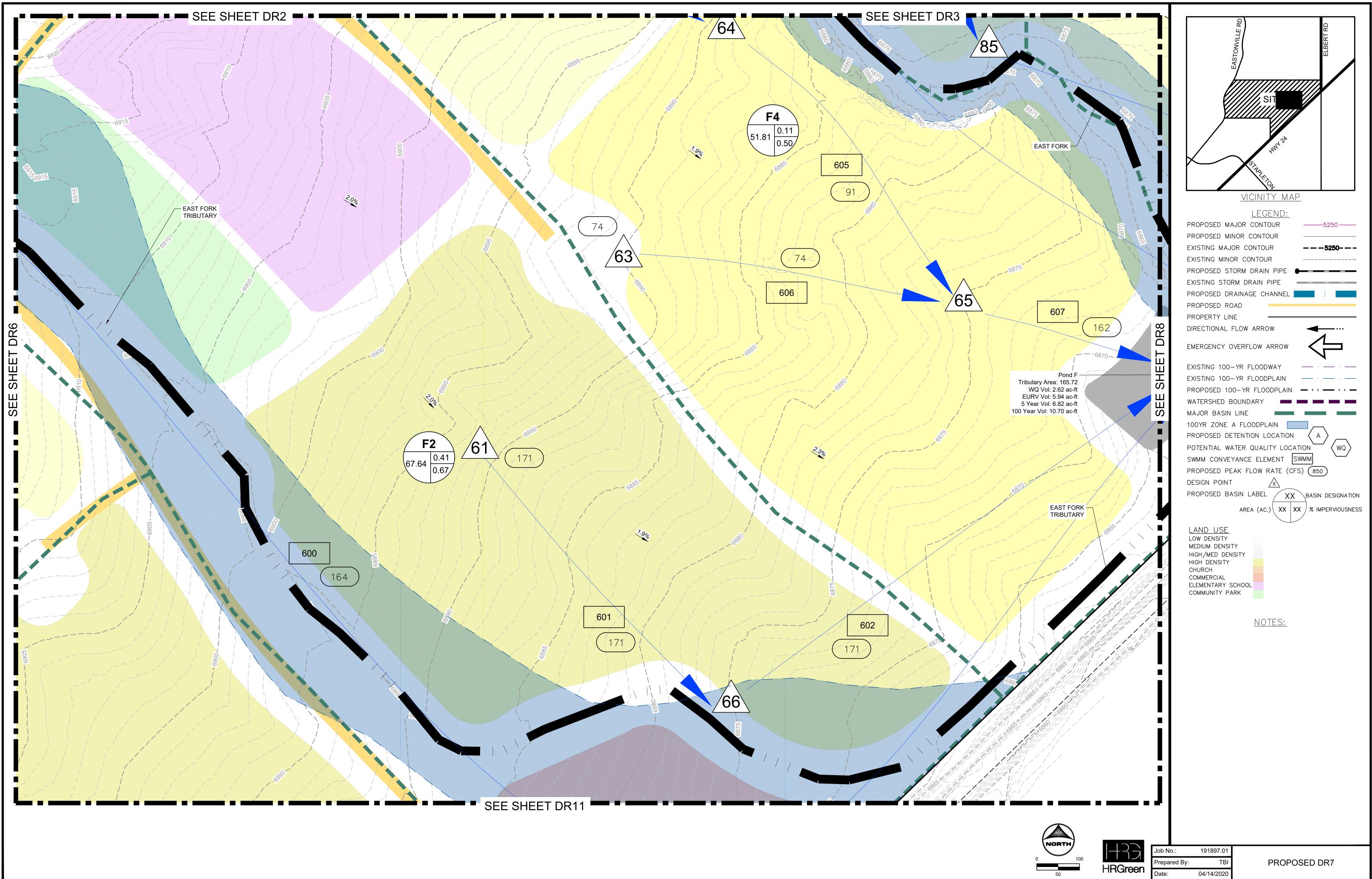


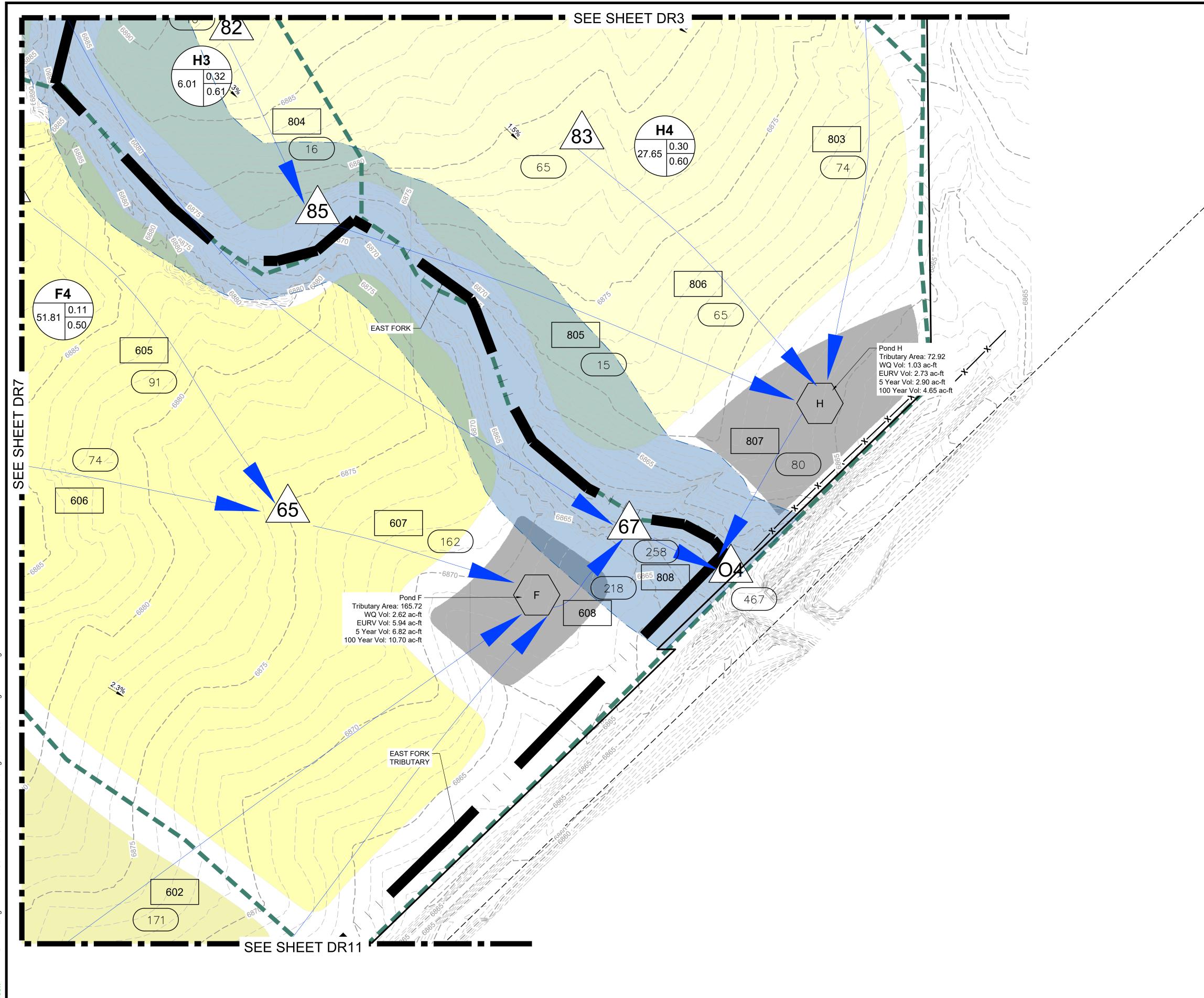

HRGreen DRAWING PATH:\\hrgreen.com\HRG\Data\2019\191897.01\CAD\Dwgs\Exhibits\00-Drainage Basins.dv

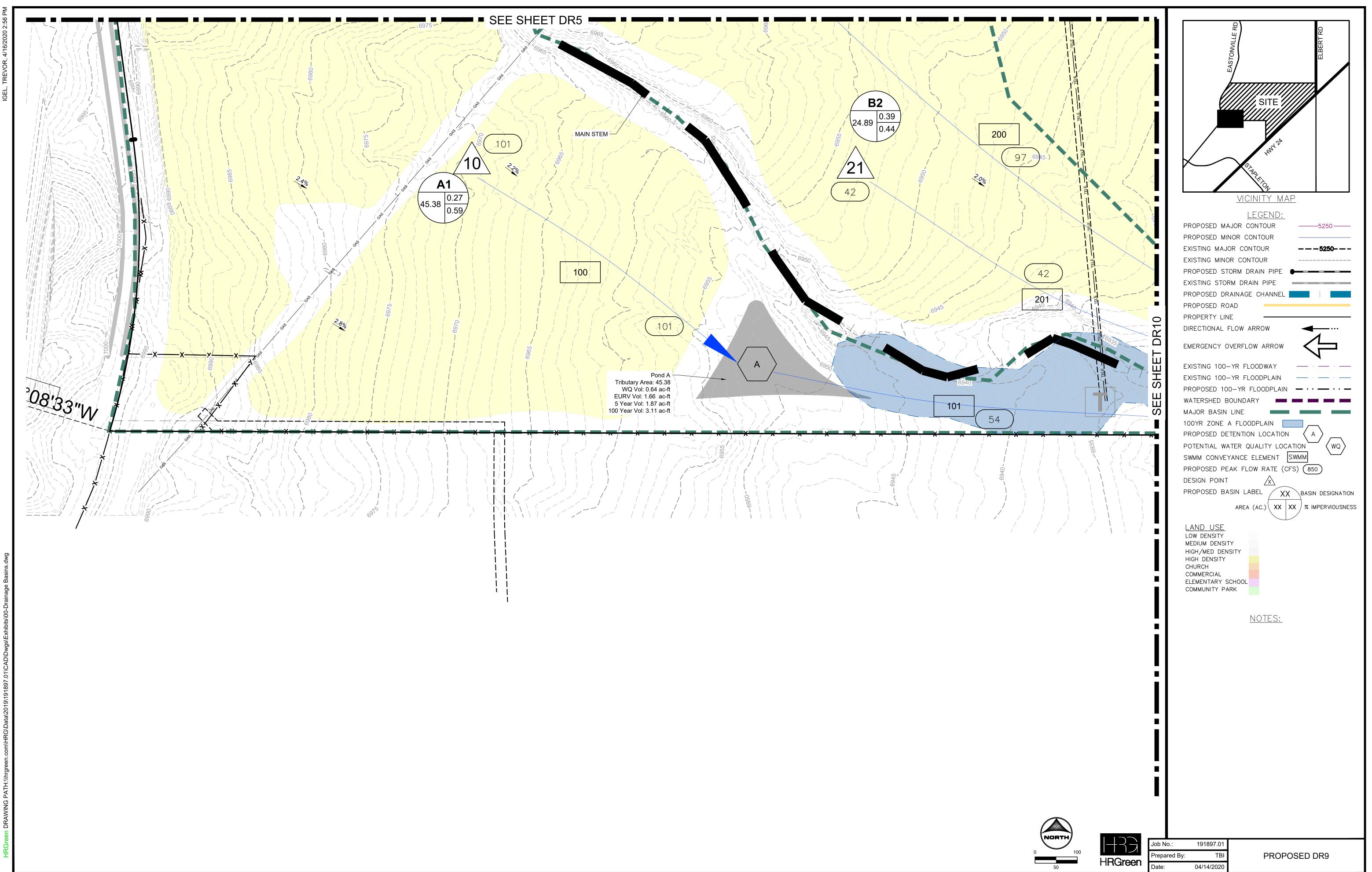


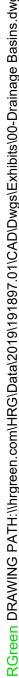




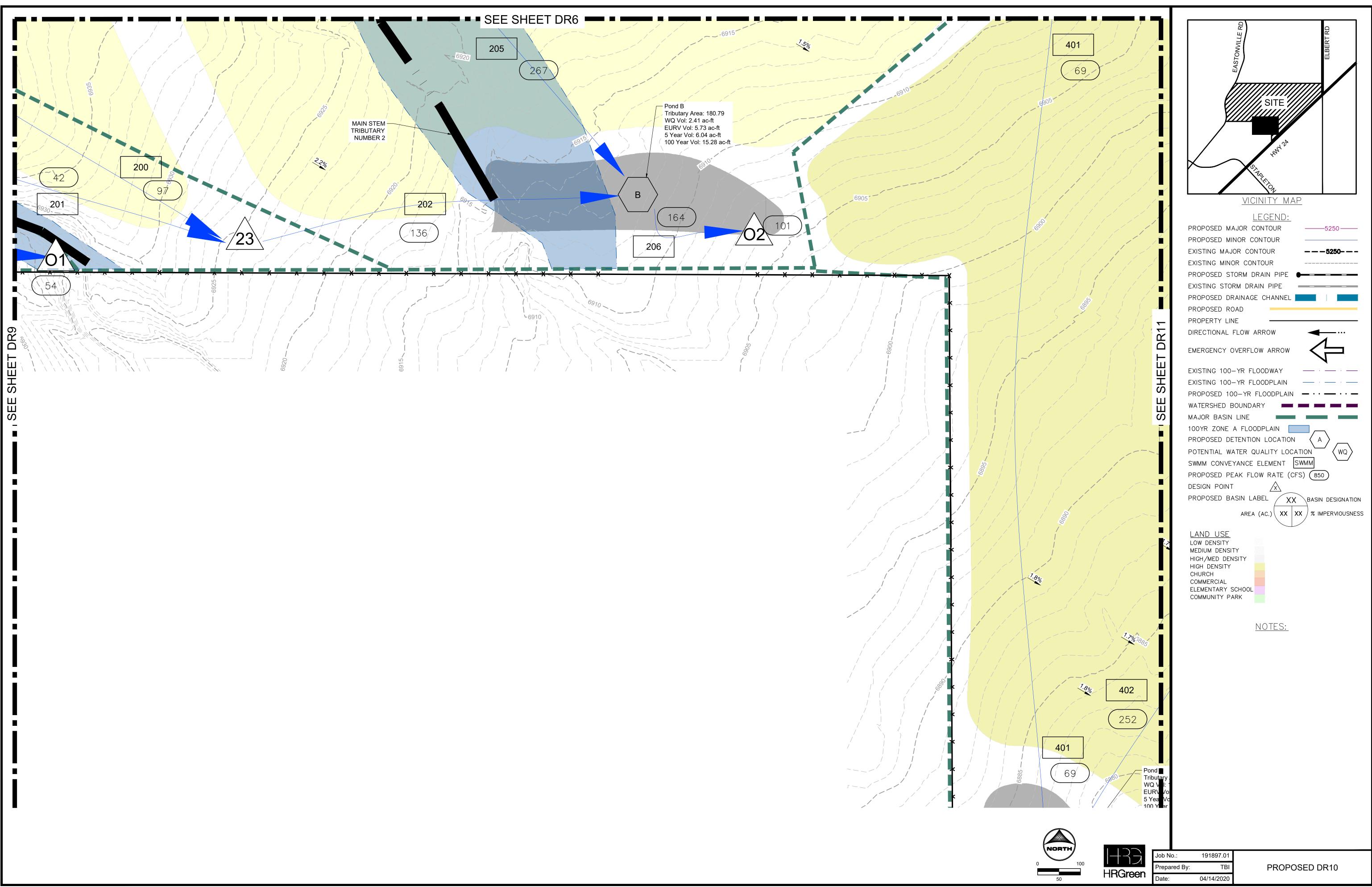


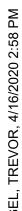


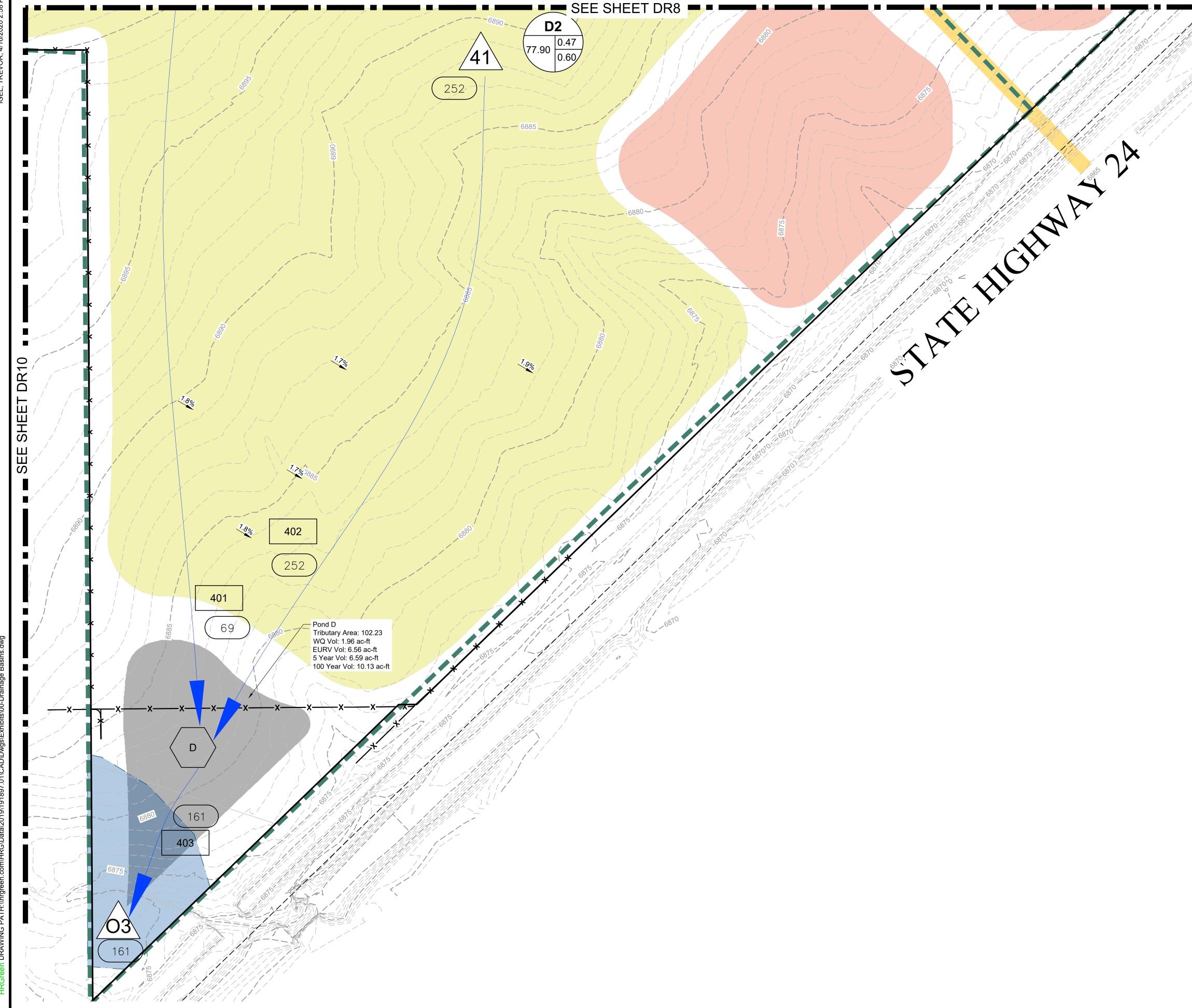




	LE RD
/	EASTONVILLE RD
	SITE
	HWW 2A
	ST ROTHING
	VICINITY MAP
	LEGEND:
	PROPOSED MAJOR CONTOUR5250 PROPOSED MINOR CONTOUR
	EXISTING MAJOR CONTOUR5250EXISTING MINOR CONTOUR
	PROPOSED STORM DRAIN PIPE
	PROPOSED DRAINAGE CHANNEL
	PROPOSED ROAD PROPERTY LINE
	DIRECTIONAL FLOW ARROW
	EMERGENCY OVERFLOW ARROW
	EXISTING 100-YR FLOODWAY
	PROPOSED 100-YR FLOODPLAIN
	MAJOR BASIN LINE
	PROPOSED DETENTION LOCATION A
	SWMM CONVEYANCE ELEMENT SWMM
	PROPOSED PEAK FLOW RATE (CFS) (850) DESIGN POINT
	PROPOSED BASIN LABEL $\chi\chi$ BASIN DESIGNATION AREA (AC.) $\chi\chi$ XX $\chi\chi$ MPERVIOUSNESS
	LAND USE
	LOW DENSITY MEDIUM DENSITY
	HIGH/MED DENSITY HIGH DENSITY CHURCH
	COMMERCIAL ELEMENTARY SCHOOL COMMUNITY PARK
	<u>NOTES:</u>
Job N Prepa	o.: 191897.01 red By: TBI PROPOSED DR8







HRGreen DRAWING PATH:\\hrgreen.com\HRG\Data\2019\191897.01\CAD\Dwgs\Exhibits\00-Drainage Basins.c

Green DRAWING PATH:\\hrgreen.com\HRG\Data\2019\191897.01\CAD\Dwgs\Exhibits\00-Drainage Basi

	•	
		EASTONVILLE RD
		FONVILLE R
line i line i		ELB
		- Teles
		SITE
		HWY 2ª
		S, To
		102
		<u>VICINITY MAP</u>
		LEGEND:
	PROPOSED MA	AJOR CONTOUR5250
	PROPOSED MI	NOR CONTOUR
	EXISTING MAJ	OR CONTOUR
	EXISTING MINC	
		ORM DRAIN PIPE
		RM DRAIN PIPE
	PROPOSED DR	AINAGE CHANNEL
	PROPOSED RC	
	PROPERTY LIN	IE
	DIRECTIONAL	FLOW ARROW
	EMERGENCY C	VERFLOW ARROW
		-YR FLOODWAY
		-YR FLOODPLAIN
		0-YR FLOODPLAIN - · · - · · -
	WATERSHED B	
	MAJOR BASIN	
	100YR ZONE	
		TENTION LOCATION
		ATER QUALITY LOCATION
		YANCE ELEMENT SWMM
		AK FLOW RATE (CFS) (850)
	DESIGN POINT	
	PROPOSED BA	SIN LABEL XX BASIN DESIGNATION
		AREA (AC.) XX XX % IMPERVIOUSNESS
	LAND USE LOW DENSITY	
	MEDIUM DENSI	ſY
	HIGH/MED DEN HIGH DENSITY	SITY
	CHURCH	
	COMMERCIAL ELEMENTARY S	CHOOL
	COMMUNITY PA	
		NOTEC.
		<u>NOTES:</u>
	Job No.: 191897.01	
HRGroop	Prepared By: TBI Date: 04/14/2020	PROPOSED DR11
50	Date. 04/14/2020	

Grandview Metro District 1041 Permit Application Project No.: 201662.05

EXHIBIT M: FEMA FLOODPLAIN MAPPING

possible updated of additional libou hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (INAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurksiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

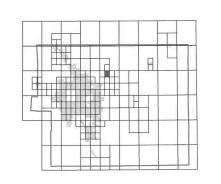
NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contract the Information Services Branch of the Nationa Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains a subminitative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

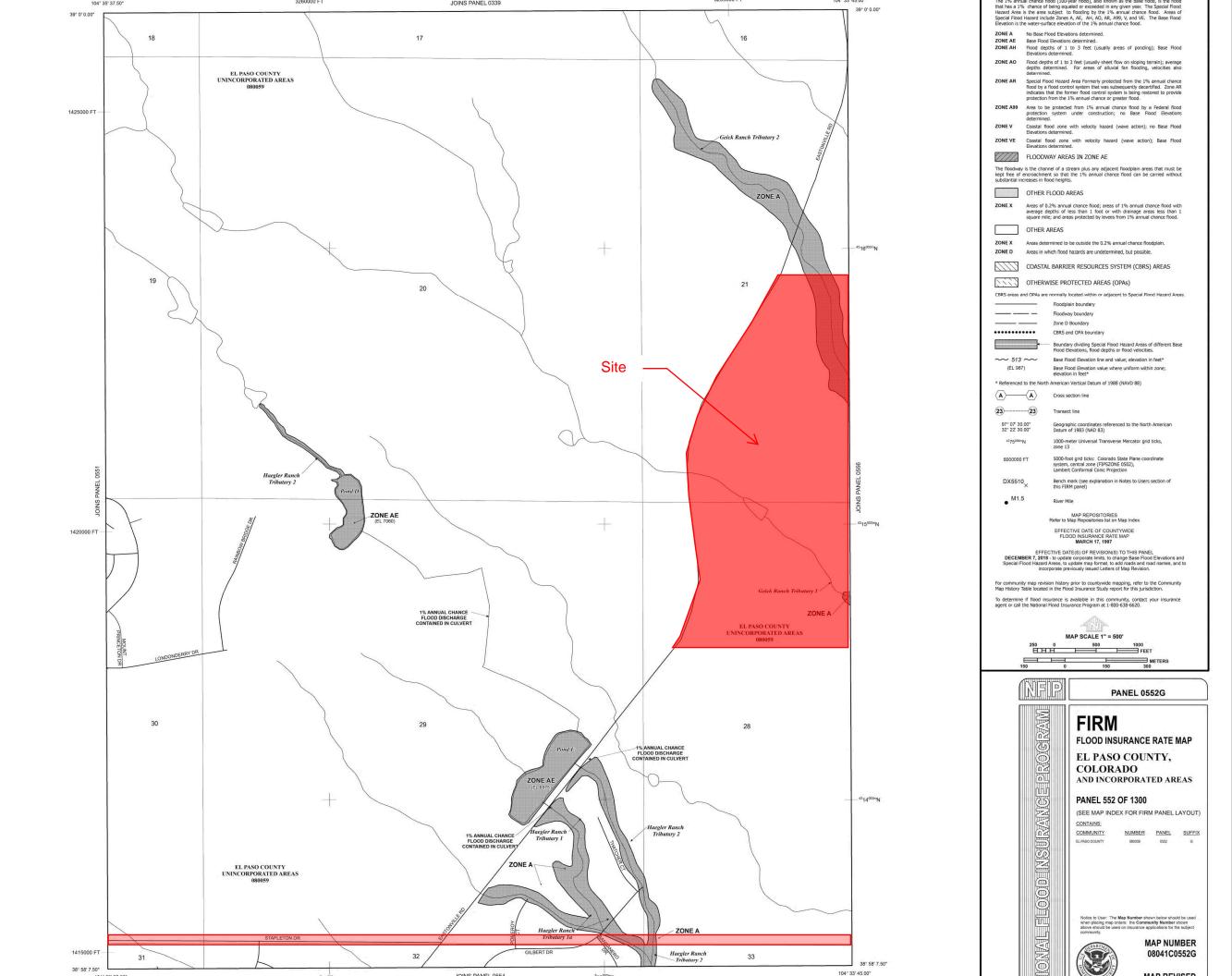
Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2827 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

	Vertical Datum
Flooding Source	Offset (ft)
REFER TO SECTION 3.3 OF THE EL PAS	SO COUNTY FLOOD INSURANCE STUDY
FOR STREAM BY STREAM VERTICAL	DATUM CONVERSION INFORMATION


Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

possible updated of additional nood nazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

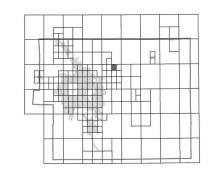
To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

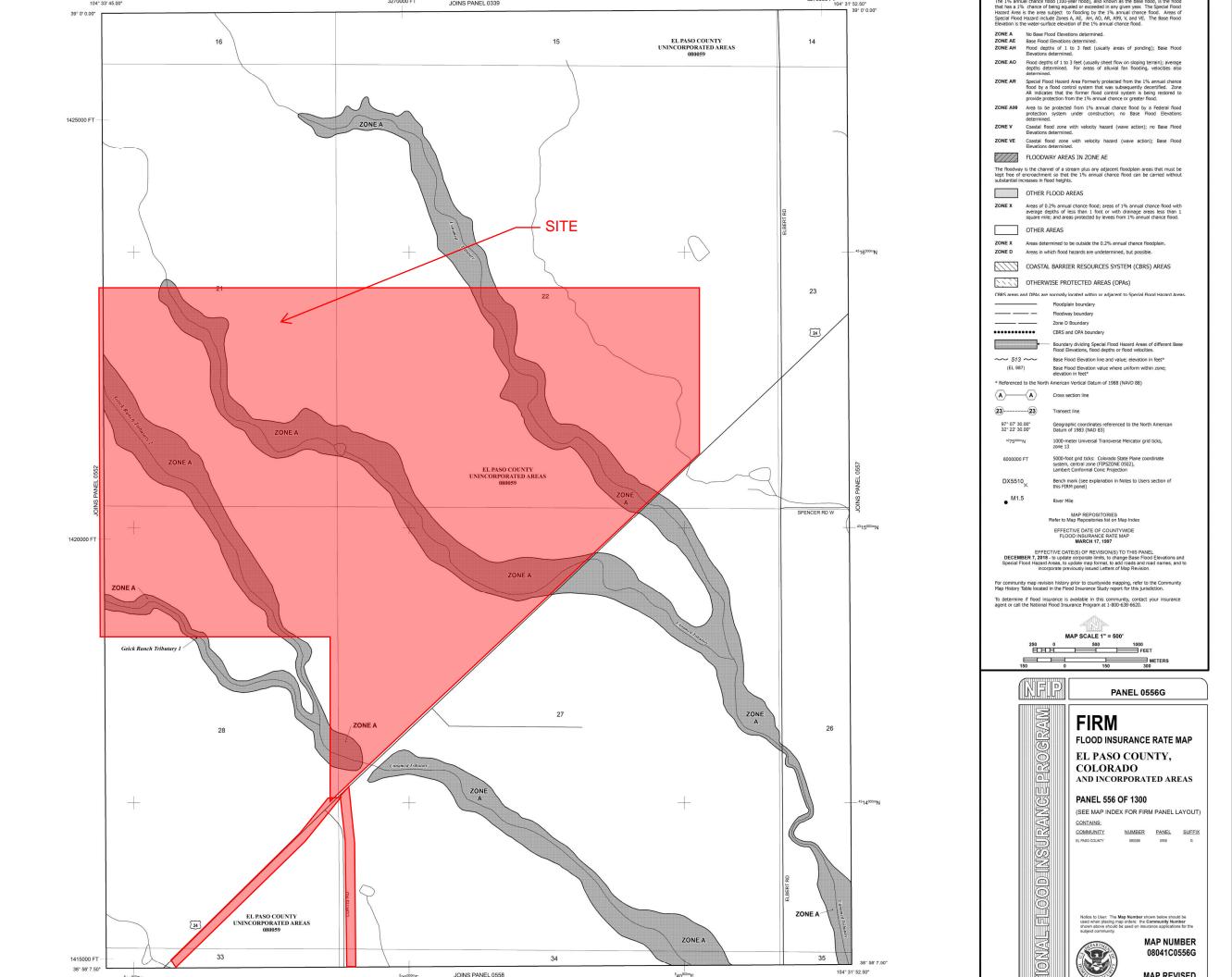
Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.


Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County Vertical Datum Offset Table Vertical Datum Flooding Source Offset (tt)

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foo elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. According flood elevation data presented in the FIS report should be utilized in conjunction will the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Sillivater Elevation table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Sillivater Elevations table should be used for construction and/ and/pain amagement purcess when here vare higher that the elevations shown or oodplain management purposes when they are higher than the elevations shown or his FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for the interdictions. his jurisdiction

Certain areas not in Special Flood Hazard Areas may be protected by **flood contro structures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NADB3, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following ddress:

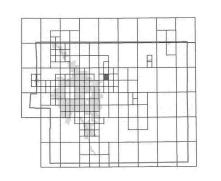
NGS Information Services NOAA, N/NGS12 Notional Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench mark** shown on this map, please contact the Information Services Branch of the Nation Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management National Oceanic and Atmospheric Administration, United States Geological Survey and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplain and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may anone or utside of the floor/plain. This map reflects more detailed and up-to-date stream channel configurations ar and may appear outside of the floodplain

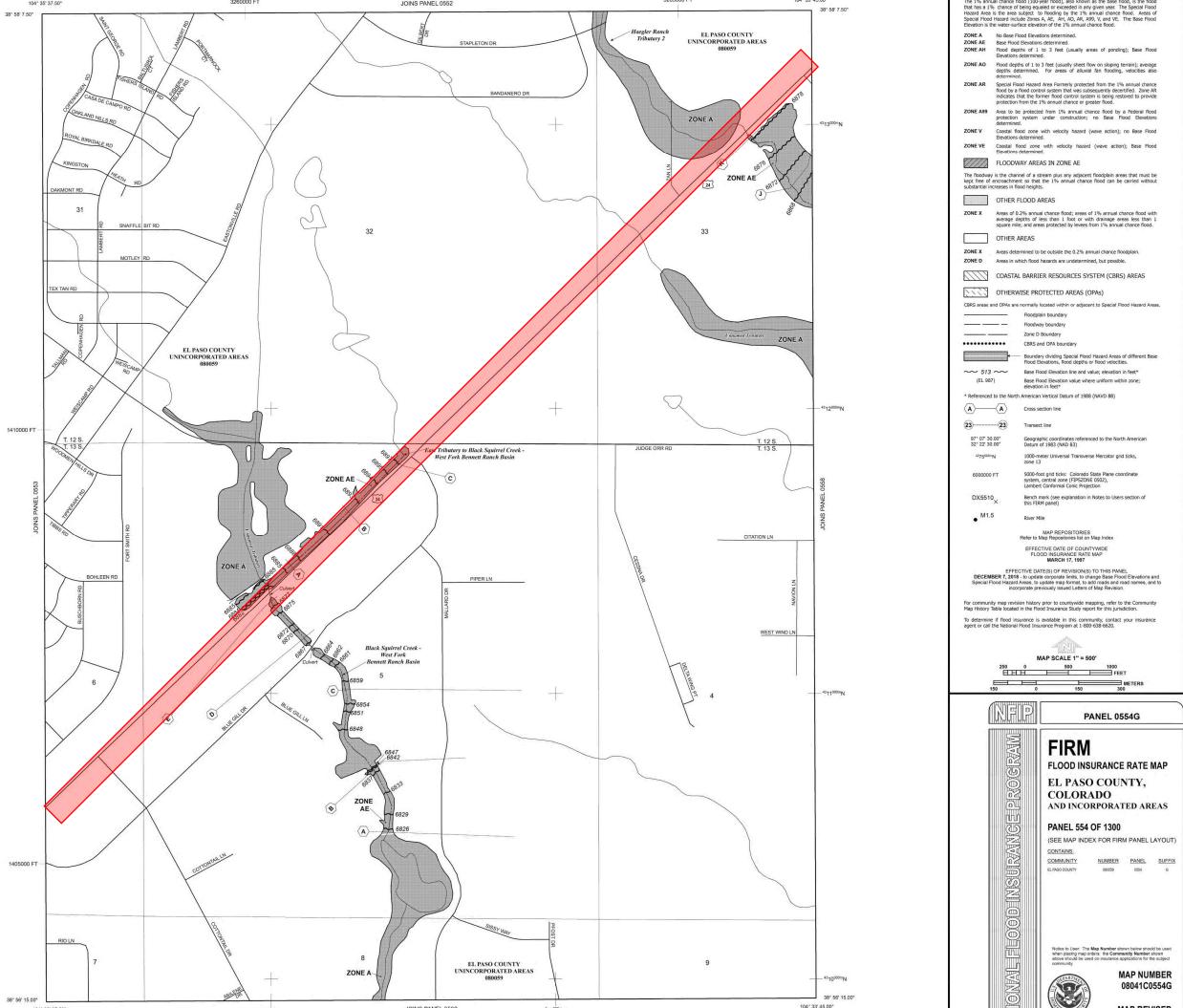
Corporate limits shown on this map are based on the best data available at the time or publication. Because changes due to sace of the best data available at the and of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at bit/u/www mes fema cou/ ttp://www.msc.fema.gov/.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

Flooding Source	Vertical Datum Offset (ft)
	TY FLOOD INSURANCE STUDY CONVERSION INFORMATION



This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

possible updated of additional nood nazard mormation.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs and/or **floodways** have been determined, users are encouraged to consult the Flooc Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foo elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GR580 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

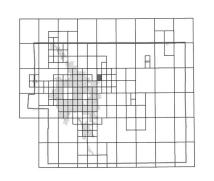
NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench mark** shown on this map, please contact the Information Services Branch of the Nationa Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

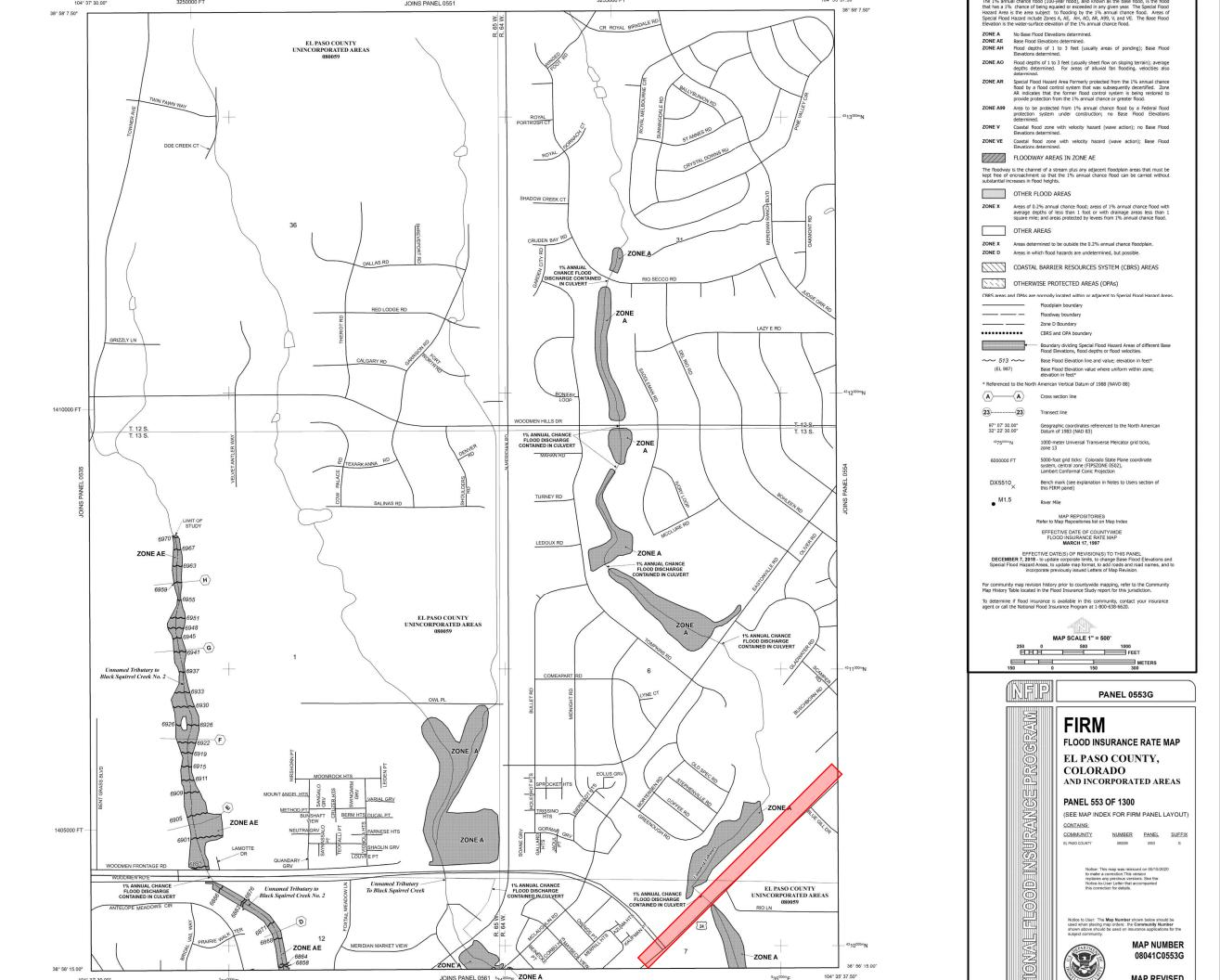
Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877.FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County Vertical Datum Offset Table		
Flooding Source	Vertical Datum Offset (ft)	
REFER TO SECTION 3.3 OF THE EL PASO COUNTY FL FOR STREAM BY STREAM VERTICAL DATUM CONV		



This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or loodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services

NOAA, N/NGS12 National Geodetic Survey

SSMC-3, #9202 1315 East-West Highway

Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

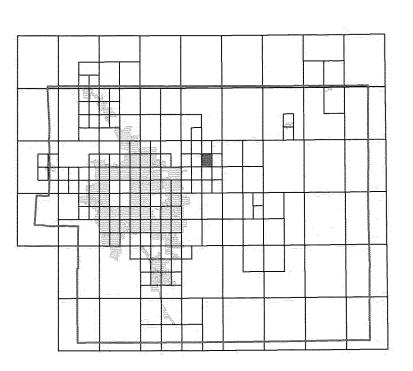
Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation nd may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

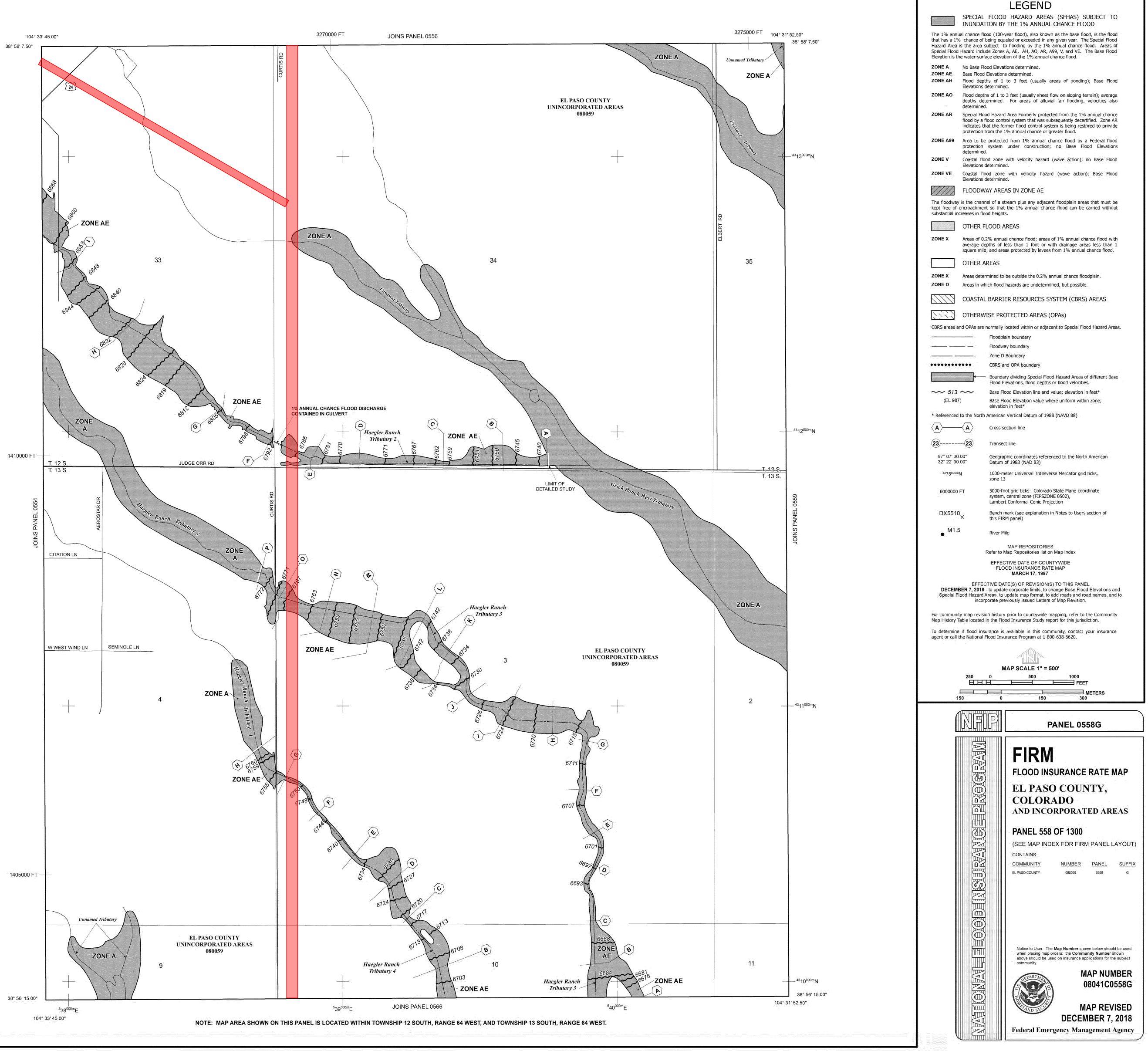
Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.


If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

> El Paso County Vertical Datum Offset Table **Vertical Datum**

Flooding Source

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

Grandview Metro District 1041 Permit Application Project No.: 201662.05

EXHIBIT N: COLORADO PARKS & WILDLIFE CORRESPONDENCE

MEMO

To:	El Paso County
From:	HR Green
Subject:	Colorado Parks and Wildlife Exhibit
Project Number:	201662
Date:	August 4, 2021

Regarding Exhibit N of the 1041 Permit, please consult the following document as evidence of Correspondence with Colorado Parks and Wildlife. HR Green is in communication with Wildlife Manager, Aaron Berscheid. Based on discussions with Aaron Berscheid, further comments regarding Grandview Development will be provided upon referral of the PUD/PD from El Paso County to Colorado Parks and Wildlife, but the general recommendations contained withing the following documents for Waterbury (the property directly south of Grandview Reserve) also apply to the Grandview Reserve property. Thank you for your consideration.

COLORADO Parks and Wildlife

Department of Natural Resources

Area 14, Southeast Region 4255 Sinton Road Colorado Springs, CO 80907 P 719.227.5200 | F 719.227.5264

August 12, 2020

El Paso County ATTN: Kari Parsons 2880 International Circle, Colorado Springs, CO 80910

Re: Grandview Reserve Sketch Plan

Dear Ms. Parsons,

Colorado Parks and Wildlife (CPW) has reviewed the plans for the Grandview Reserve Sketch Plan in El Paso County, Colorado in the northwest corner of the intersection of Elbert Road and Colorado Highway 24. Colorado Parks and Wildlife (CPW) is in receipt of the above referenced permit application and is familiar with the site. CPW offers the following comments for your consideration.

CPW recommends crossing any riparian corridors and streams at a perpendicular angle, in order to reduce impacts to natural resources, as well as spanning the corridors with structures located outside the riparian and stream zone. During construction, stream crossing by construction vehicles should be avoided. CPW requests that any new service roads that are proposed for construction in conjunction with the project avoid crossing creeks or stream beds to avoid impacts to wildlife and habitat. If any new access or maintenance roads will be constructed that cross stream habitat, CPW would like to be consulted on best management practices and options for construction to minimize impacts. A construction design for any new or reconstructed riparian crossing that actively minimizes barriers to fish passage at all water levels and mitigates any existing barriers where possible would minimize the negative impact of the project on native fish species.

CPW recommends a 100 foot buffer zone be permanently placed around the creeks and ponds. If a trail is constructed near the creek or ponds, it should be a minimum of 100 feet from the edge. This buffer zone will offer wildlife utilizing the creek and ponds less disturbance by development and decrease the likelihood of human and wildlife encounters. The existing native riparian vegetation around the creeks, the ponds and in the drainage ways should be kept intact for wildlife habitat and to increase ground stabilization.

Trails would provide excellent opportunities for wildlife viewing. However, if trails are placed too close to areas utilized by wildlife it creates disturbances resulting in reduced wildlife

viewing opportunities. CPW recommends constructing trails on the outer edges of open space areas. This minimizes wildlife disturbance and creates increased wildlife viewing opportunities. Trails near creeks and drainage areas should cross perpendicular rather than run parallel to these critical wildlife habitat areas. Crossings should occur in areas that have the least usage by wildlife in order to have minimal impacts on wildlife.

CPW recommends the development and implementation of a noxious weed control plan for the site. All disturbed soils should be monitored for noxious weeds and noxious weeds should be actively controlled until native plant revegetation and reclamation is achieved. Care should be taken to avoid the spread of noxious weeds, and all construction equipment should be cleaned prior to leaving the site. A noxious weed management plan should be developed prior to any disturbance of the site. ACPW recommends that all landscaping in the developed area should be comprised of native species. Using native species with high food and cover values in an open space area is beneficial to wildlife. This can encourage wildlife to concentrate in areas that minimize human conflicts and optimize wildlife watching opportunities. Native plant species can also provide an aesthetically pleasing landscape that requires little maintenance, and are frequently more drought-tolerant than non-native species

CPW also recommends that all areas of disturbance and exposed soils above the ordinary high water mark be re-vegetated with a native seed mix. This will contribute to the replacement of lost riparian vegetation values and minimize establishment of noxious weeds. The placement of willow sprigs or bare root stock should also be considered along the banks, especially in those areas which have been disturbed. We recommend planting of vegetation along the bank to help reduce and control erosion and contribute to bank stability over the long term. The site should be monitored for a period of at least two growing seasons. Any stands of noxious weeds that become established should be controlled with appropriate mechanical and/or chemical methods suitable for the proposed location. CPW recommends using a clean fill material, if needed, that would be conducive to growing native vegetation that will help stabilize the banks. Non-native vegetation can overrun native vegetation and can become problematic. A seed mixture of native grasses is also recommended to provide a good support system in the soil.

We appreciate being given the opportunity to comment. Please feel free to contact District Wildlife Manager, Aaron Berscheid, should you have any questions or require additional information at 719-439-9601 or via email at aaron.berscheid@state.co.us

Sincerely,

Fri J Mile

Frank McGee Area Wildlife Manager

Cc: SE regional files Area 14 files Aaron Berscheid, DWM

Grandview Metro District 1041 Permit Application Project No.: 201662.05

EXHIBIT O: ECOS REPORT

Natural Features and Wetland Report for the Grandview Reserve Project in El Paso County, Colorado

August 12, 2020

Prepared for:

4 Site Investments 1271 Kelly Johnson Blvd., Ste. 100 Colorado Springs, CO 80920 Prepared by:

1455 Washburn Street Erie, Colorado 80516 (p): 970-812-3267

Project Number: 2018-15-1

Ecosystem Services, LLC Response to El Paso County Comments Regarding The Natural Features and Wetland Report (Report) for the Grandview Reserve Project in El Paso County, Colorado

Responses to County Comments RE: April 10, 2020 Report:

1) The County comments were inserted as text boxes in the April 10, 2020 Report (please refer to the County's internal copy of this marked up Report). Ecos resubmitted the Report with a revision date of July 10, 2020 in response to County comments (refer to 7/10/20 Report on file with the County).

General Response:

Ecos stated in several sections of the Report "...the Site is situated between 6,860 and 7,020 feet above mean sea level, which is higher than the 6,500-foot elevation limits documented for the species and recommended for conducting surveys by the USFWS." We did not insert ULTO references and requirements, write up an action plan and mitigation recommendations, etc. per County comments, as these actions are not required by the U.S. Fish and Wildlife Service (USFWS) under the Endangered Species Act (ESA). In the 7/10/20 report we have attached the 2020 ESA Clearance from USFWS for this Site which states, " Ute ladies-tresses orchid and Preble's meadow jumping mouse are not likely to occupy the project site. Project is still consistent with the section 7 conclusions from 2019." Ecos also attached our request for said 2020 ESA Clearance which was mandated by the County due to a site plan change, noting that an ESA Clearance applies to a Site regardless of site plan.

Detailed Responses to each comments inserted into the April 10, 2020 Report with references to page and section:

Based on the explanation above Ecos did not make any revisions regarding ULTO, however we did insert the new Figure 2 Sketch Plan HR Green prepared that better illustrates topography (per other County comments). Our detailed response to each of the County comments are below:

- Page iii, Acronyms and Abbreviations Ecos has not inserted the acronym "ULTO" as we do not use said acronym in our Report. The County had inserted this acronym in their comments.
- Page 1, 1.1 Purpose We assume the notes "ULTO" (pointing at the Vegetation bullet) and "USFW survey
 required for a recommended 3 years for ULTO" (pointing at the Federal and State Listed, Candidate, Threatened
 and Endangered Species bullet) are for the County's reference as they do not belong or need to be inserted in a
 general "bullet" listing of resources reviewed in the Report.
- Page 9, 3.3 Vegetation A text box stating, "Address action plan for ULTO" is pointing at an excerpt taken from the USFWS March 25, 2019 response to our 2019 ESA Clearance Request (Appendix F of April 10, 2020 Report) in which the USFWS states that, "...the project area has not yet been surveyed for ULTO..." and "The Grandview Reserve subdivision would be located between 7020 and 6860 feet above mean sea level, which is higher than the 6500-foot elevation recommended for conducting ULTO surveys." No action plan for ULTO is required under the law as the USFWS has issued a legal document in response to our 2020 Endangered Species Act (ESA) Clearance Request that states, "Ute ladies-tresses orchid and Preble's mouse are not likely to occupy the project site. Project is still consistent with the section 7 conclusions from 2019." The Agency has indicated that they have "No Concern" with our findings under the ESA. We also made sure to clarify 2 items in our 2020 Revised Report:
 - The recommendation for a ULTO survey was removed from Table 3 of the report as it prompted the USFWS to provide Survey Guidelines in their response to our 2019 ESA Clearance Request; and
 - We stated in Table 3 that "...the Site is situated between 6,860 and 7,020 feet above mean sea level, which is higher than the 6,500-foot elevation limits documented for the species and recommended for

conducting surveys by the USFWS." This fact was presented in the USFWS 2019 response to Ecos' 2019 ESA Clearance Request that the County is referencing and inserting in their comments (refer to USFWS March 25, 2019 response to Ecos 2019 ESA Clearance Request in Appendix F of April 10, 2020 Report as cited in the USFWS March 25, 2019 response excerpt referenced above).

- Page 12, Section 3.4 Wetland Habitat and Waters of the U.S., Sub-section 3.4.2 Field Assessment Findings, items

 Jurisdictional wetland habitat and waters of the U.S. and 2) Non-Jurisdictional, Isolated Wetlands –Label each
 on figures". The County has requested that we label the applicable figures to indicate which Drainages are
 Jurisdictional and Non-Jurisdictional. Figure 6 on page 15 is the only Figure referenced in this section and the
 only one that represents the content of the County comments; and Figure 6 clearly labels each Drainage by
 alpha designation (A D) and Jurisdictional and Non-Jurisdictional status.
- Page 28, Table 3 A text box stating, "address mitigation, protection" is pointing at the Ute ladies tresses box in the table. No mitigation plan for ULTO is required under the law as the USFWS has issued a legal document in response to our 2020 ESA Clearance Request that states, ""Ute ladies-tresses orchid and Preble's mouse are not likely to occupy the project site. Project is still consistent with the section 7 conclusions from 2019." The Agency has indicated that they have "No Concern" with our findings under the ESA. We also made sure to clarify 2 items in our 2020 Revised Report:
 - The recommendation for a ULTO survey was removed as it prompted the USFWS to provide Survey Guidelines in their response to our 2019 ESA Clearance Request; and
 - We stated in Table 3 that "...the Site is situated between 6,860 and 7,020 feet above mean sea level, which is higher than the 6,500-foot elevation limits documented for the species and recommended for conducting surveys by the USFWS." This fact was presented in the USFWS 2019 response to Ecos' 2019 ESA Clearance Request that the County is referencing and inserting in their comments (refer to USFWS March 25, 2019 response to Ecos 2019 ESA Clearance Request in Appendix F of April 10, 2020 Report as cited in the USFWS March 25, 2019 response excerpt referenced above).

2) 6/30/20 EDARP Review; PCD Manager Comments – These comments are still referencing the March 25, 2109 letter from USFWS and as such are not applicable. As explained in our detailed response to the comments on our Report (above), we will not be implementing any of the recommendation regarding Ute-ladies-tresses orchid as they are not likely to occupy the project site as confirmed by the USFWS.

3) 4/27/20 Community Services Department, Environmental Division comments -

- Wetland habitat: The Applicant will apply for and provide a Clean Water Act Section 404 Permit to the Planning and Community Development Department prior to undertaking ground-disturbing activities if the onsite wetland areas are proposed to be impacted. Ecos has addressed this issue in 7.1 of all previous versions of the Report and again in the 7/10/20 Report.
- Wildlife Habitat: The Applicant will prepare a fencing plan to avoid negative conflicts with pronghorn in accordance with CPW guidelines. The Applicant will perform two surveys for migratory birds and their nests approximately 1 2 months prior to 1 week prior to construction to ensure compliance with the MBTA. Avoidance of nest take or harm is typically feasible and if not, then a permit will be processed with the USFWS. These comments are addressed below in Ecos' response to the County comments received for the 7/10/20 report.

4) 4/22/19 Community Services Department, Environmental Division comments -

Comment 1: "Two jurisdictional wetlands have been identified on the property. A completed U.S. Army Corps of Engineers (USCOE) permit shall be provided to the Planning and Community Development Department prior to undertaking ground-disturbing activities in these jurisdictional wetland areas. The applicant is hereby on notice that the USCOE has regulatory jurisdiction over wetlands. It is the applicant's responsibility, and not El Paso County's, to ensure compliance with all applicable laws and regulations, including, but not limited to, the Clean Water Act." Ecos has addressed this issue in 7.1 of all previous versions of the Report and again in the 7/10/20 Report.

- Comment 2: "Documentation from the U.S. Fish and Wildlife Service (USFWS) shall be provided to the Planning and Community Development Department prior to project commencement where the project will result in ground disturbing activity in habitat occupied or potentially occupied by threatened or endangered species and/or where development will occur within 300 feet of the centerline of a stream or within 300 feet of the 100 year floodplain, whichever is greater." Ecos has provided USFWS ESA Site Clearance concurrence responses dated March 25, 2019 response to our 2019 ESA Clearance Request (Appendix F of April 10, 2020 Report) and April 29, 2020 (Appendix F of July 10, 2020 Report).
- Comment 3: "The project will interfere with wildlife habitat. Information regarding wildlife protection measures shall be provided including fencing requirements, garbage containment, and riparian/wetland protection/buffer zones, as appropriate. Information can be obtained from Colorado Parks and Wildlife." Fencing requirements are addressed below in Ecos' response to the County comments received for the 7/10/20 report. Garbage containment will be addressed by the Grandview Reserve HOA. Riparian/wetland protection/buffer zones have been incorporated into the Sketch Plan by design.
- General Comment: "It is strongly recommended that the applicant obtain the necessary approvals from all federal, state and county agencies as a part of their planning process." Ecos references obtaining permits for all applicable environmental issues in Section 7.0 of all previous versions of the Report and again in the 7/10/20 Report.

Responses to County Comments RE: July 10, 2020 Report:

The El Paso County, Community Services Department, Environmental Division provided a comment letter dated 7/17/20. Ecos has incorporated applicable revision into this August 12, 2020 revision of the Report, as summarized below:

- Comment 1: "Two jurisdictional wetlands have been identified on the property. A completed U.S. Army Corps of Engineers (USCOE) permit shall be provided to the Planning and Community Development Department prior to undertaking ground-disturbing activities in these jurisdictional wetland areas. The applicant is hereby on notice that the USCOE has regulatory jurisdiction over wetlands. It is the applicant's responsibility, and not El Paso County's, to ensure compliance with all applicable laws and regulations, including, but not limited to, the Clean Water Act." Ecos has addressed this issue in 7.1 of all previous versions of the Report and again in the 8/12/20 Report.
- Comment 2: "2. The project will interfere with wildlife habitat including pronghorn range. In accordance with Colorado Parks and Wildlife guidelines, the applicant will prepare a fencing plan to avoid negative conflicts with pronghorn." Ecos revised Section 6.6 of the 8/12/20 Report to acknowledge this request, noting our intention to discuss this with the county, as follows: "2. Ecos has recommended that the Project minimize the installation of fencing to avoid injury to wildlife. When fencing is needed, we have specified the use of wildlife friendly fences or the inclusion of specific wildlife crossings along fence lines. Pronghorn are of particular concern because they do not jump over fences and can be injured by barbed-wire fences. The El Paso County, Community Services Department, Environmental Division has requested that fencing be installed to "avoid negative conflicts with pronghorn". Therefore, ecos will discuss this with the County and if deemed to be in the best interest of pronghorn protection, work with the Applicant to prepare a fencing plan in accordance with Colorado Parks and Wildlife guidelines.

Ecos' recommendation is that fencing is not required to avoid impacts with pronghorn as they are a timid and non-confrontational species that avoids interaction with humans as a regular course of their survival. The County Environmental Divisions references fencing be installed, "In accordance with Colorado Parks and Wildlife guidelines...", however pursuant to the CPW publication *Fencing with Wildlife in Mind* CPW does NOT advocate for the use of fences; rather they try to rationalize that fencing may not be required at all, and only provides guidelines for the portion of the public that feels they need fences for other reasons such as privacy and security.

The CPW guidance publication *Fencing with Wildlife in Mind* correctly states on page 5 in the section titled <u>Do</u> <u>You Really Need a Fence?</u> That, "...<u>the best fence for wildlife is no fence at all</u>...In some cases, though, <u>there are</u> <u>good alternatives to fences</u>. People, especially those new to mountain and foothill communities, tend to put up fencing along their property lines. <u>If the property contains important habitat and the fence excludes wildlife, the</u> <u>animals lose food, water, resting areas, and travel corridors</u>." and "<u>There are many creative ways to define</u> <u>boundaries, discourage trespass, or maintain privacy</u>. A line of trees, shrubs, and other vegetation can be used to mark a boundary, screen for privacy, beautify your landscape, and provide additional food and cover for wildlife. The areas that wildlife choose as travel corridors are often the same places that you would want to preserve in a natural state to retain the scenic amenities and aesthetic value of your property. You could also consider marking property boundaries with signs, flexible fiberglass or plastic boundary posts, or fence posts spaced at intervals without cross-wires. If you only fence the portions of your property that you need to protect, you'll be <u>saving</u> time, money, and <u>wildlife</u>."

Furthermore, in the section titled *Considerations for Fence Design* CPW states, "<u>If a fence is needed</u>, please consider fence placement and designs that minimize the impact on wildlife." And "Wherever possible, design your fence to provide wildlife free travel to important habitats and corridors, as well as access to water. Wetlands and riparian habitats are especially important for all wildlife." Please refer to the CPW manual at: <u>https://cpw.state.co.us/Documents/LandWater/PrivateLandPrograms/FencingWithWildlifeInMind.pdf</u>

Comment 3: "3. The project will interfere with wildlife habitat including potentially nesting migratory birds. The • applicant will perform two surveys for migratory birds and their nests approximately one to two months prior to one week prior to construction. The take of migratory birds and their nests will be avoided. The applicant is hereby on notice that the U.S. Fish and Wildlife Service has regulatory jurisdiction over migratory birds. It is the applicant's responsibility, and not El Paso County's, to ensure compliance with all applicable laws and regulations, including but not limited to, the Migratory Bird Treaty Act." Ecos has revised Section 7.3 of the 8/12/20 Report to specify that 2 surveys will be performed prior to construction pursuant to the wording recommended by the County. However, as Wildlife Biologists our typical approach includes formulating sitespecific migratory bird/raptor impact avoidance recommendations by discussing the proposed Construction Start Date with the Applicant well in advance to recommend the best start date and work timeframe to avoid and/or minimize migratory bird/raptor impact. At this phase of the Project it was not yet appropriate to insert this specific language, but ecos intends to work with the Applicant as outlined in the following text. We will wait until the Construction Start Date is first proposed, make our site-specific recommendations (outlined above) and once the Construction Start Date is finalized, we then set the date for the first survey based on seasonal conditions that make nest identification most effective such that the field surveyor may have maximum opportunity to identify all potential nests. The second survey is always set one week or less prior to construction to ensure no new nest have been established.

TABLE OF CONTENTS

1.0	INTRODUCTION	1	
1	.1 Purpose	1	
1	.2 SITE LOCATION AND PROJECT DESCRIPTION	1	
2.0	METHODOLOGY	5	,
3.0	ENVIRONMENTAL SETTING	6)
3	.1 TOPOGRAPHY	7	,
3	.2 Soils	7	,
3	.3 VEGETATION	9)
3	.4 Wetland Habitat and Waters of the U.S.	11	
	3.4.1 Methodology		
	3.4.2 Field Assessment Findings	11	
	3.4.3 Summary of Jurisdictional and Non-Jurisdictional Wetlands and Waters	13	
	3.4.4 Verification by the U.S. Army Corps of Engineers	13	
3	.5 WEEDS		
	3.5.1 Regulatory Background	16	í
	3.5.2 Noxious Weed Survey Results	16	í
	3.5.3 Noxious Weed Management Plan	16	í
3	.6 WILDFIRE HAZARD	20)
	3.6.1 Fire Protection	21	
3	7 WILDLIFE COMMUNITIES	24	
4.0	FEDERAL LISTED SPECIES	24	•
4	.1 Preble's meadow jumping mouse	28	í
	4.1.1 Natural History		
	4.1.2 Threats		
	4.1.3 Critical Habitat		
	4.1.4 Potentially Occupied Range		
	4.1.5 Summary		
	RAPTORS AND MIGRATORY BIRDS		
	SUMMARY OF POTENTIAL IMPACTS		
	.1 MINERAL AND NATURAL RESOURCE EXTRACTION		
	2 VEGETATION		
	.3 Wetland Habitat and Waters of the U.S.		
-	.4 WEEDS		
	.5 WILDFIRE HAZARD		
	.6 WILDLIFE COMMUNITIES		
	.7 FEDERAL LISTED SPECIES		
	.8 Raptors and Migratory Birds		
	REGULATIONS AND RECOMMENDATIONS		
	.1 CLEAN WATER ACT		
7	.2 ENDANGERED SPECIES ACT	37	

0.0		
8.0	D REFERENCES	38
	7.4 COLORADO NOXIOUS WELD ACT	.57
	7.4 COLORADO NOXIOUS WEED ACT	37
	7.5 WIGHTON DIN HEAT AT A DALB AND GOLDEN EAGET NOTECHON ACT	
	7.3 MIGRATORY BIRD TREATY ACT & BALD AND GOLDEN EAGLE PROTECTION ACT	37

LIST OF FIGURES

FIGURE 1. USGS SITE LOCATION MAP	.3
FIGURE 2. SKETCH PLAN	4
FIGURE 3. TOPOGRAPHIC MAP	. 7
FIGURE 4. VEGETATION COMMUNITY MAP	. 10
FIGURE 5. NWI & CNHP WETLAND AND RIPARIAN AREAS MAP	14
FIGURE 6. ECOS WETLAND AND WATERS SKETCH MAP	.15
FIGURE 7. EL PASO COUNTY WILDFIRE HAZARDS MAP	23
FIGURE 8. USFWS PMJM TRAPPING LOCATION MAP	.31
FIGURE 9. PMJM HABITAT MAP	32

LIST OF TABLES

TABLE 1 – LAND USE SUMMARY

TABLE 2 – NOXIOUS WEED MANAGEMENT SUMMARY

 TABLE 3 – FEDERAL LISTED SPECIES ASSESSED FOR THE PROJECT

LIST OF APPENDICES

APPENDIX A – USDA SOIL DATA

APPENDIX B – USACE VERIFICATION EMAIL

APPENDIX C – COMMITMENT LETTERS TO PROVIDE FIRE AND EMERGENCY SERVICES

APPENDIX D – USFWS IPAC TRUST RESOURCE REPORT

APPENDIX E – MINERAL ESTATE OWNER CERTIFICATION

APPENDIX F – ESA Clearance Letter from the USFWS

APPENDIX G – PROFESSIONAL QUALIFICATIONS

LIST OF ACROYNMS AND ABBREVIATIONS

AMSL	above mean sea level
Applicant	4 Site Investments
CCRs	Codes, Covenants and Restrictions
CDA	Colorado Department of Agriculture
CNHP	Colorado Natural Heritage Program
COGCC	Colorado Oil and Gas Conservation Commission
CPW	Colorado Parks and Wildlife
CWA	Clean Water Act
Ecos or ecos	Ecosystem Services, LLC
JD	Jurisdictional under the Clean Water Act
Non-JD	Non- jurisdictional under the Clean Water Act
PMJM	Preble's meadow jumping mouse
Report	Natural Features and Wetland Report
Site	Grandview Reserve
NRCS	Natural Resource Conservation Service
NTCHS	National Technical Committee for Hydric Soils
NWI	National Wetland Inventory
USACE	U.S. Army Corps of Engineers
USDA	U.S. Department of Agriculture
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey
WOUS	Waters of the United States

1.0 INTRODUCTION

Ecosystem Services, LLC (Ecos or ecos) was retained by 4 Site Investments (Applicant) to perform a natural resource assessment for the proposed Grandview Reserve project (Project) and to prepare this Natural Features and Wetland Report (Report).

The contact information for the Applicant and ecos representatives for this Report is provided below:

Applicant

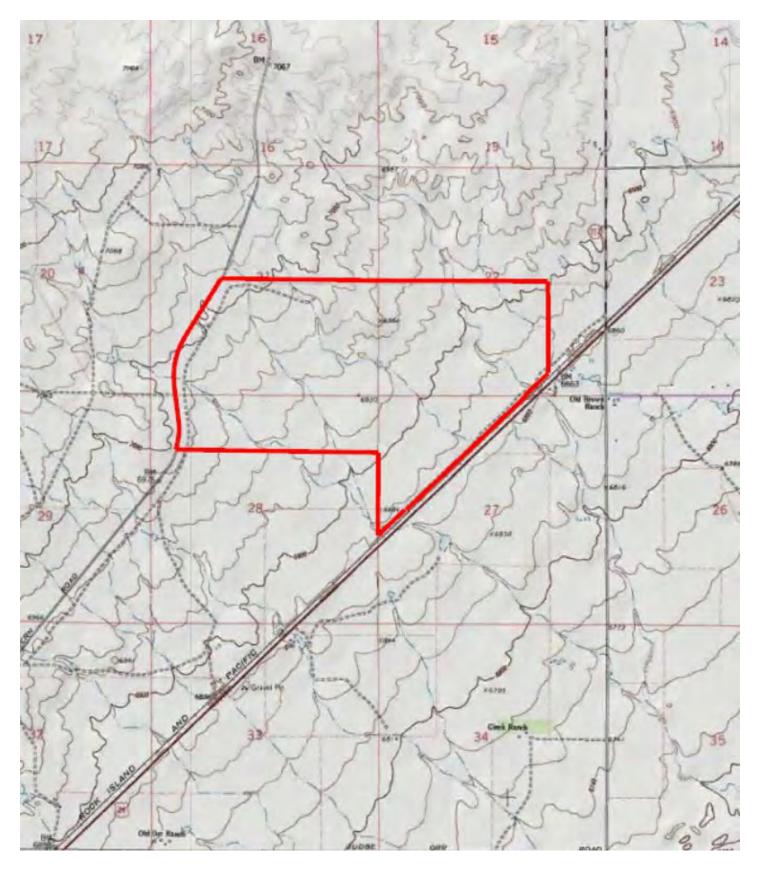
Agent

Peter Martz 4 Site Investments 1271 Kelly Johnson Blvd., Ste. 100 Colorado Springs, Colorado 80920 Phone: 719-492-1993 pmartzlrg@comcast.net Grant E. Gurnée, P.W.S. Ecosystem Services, LLC 1455 Washburn Street Erie, Colorado 80516 Phone: (970) 812-6167 grant@ecologicalbenefits.com

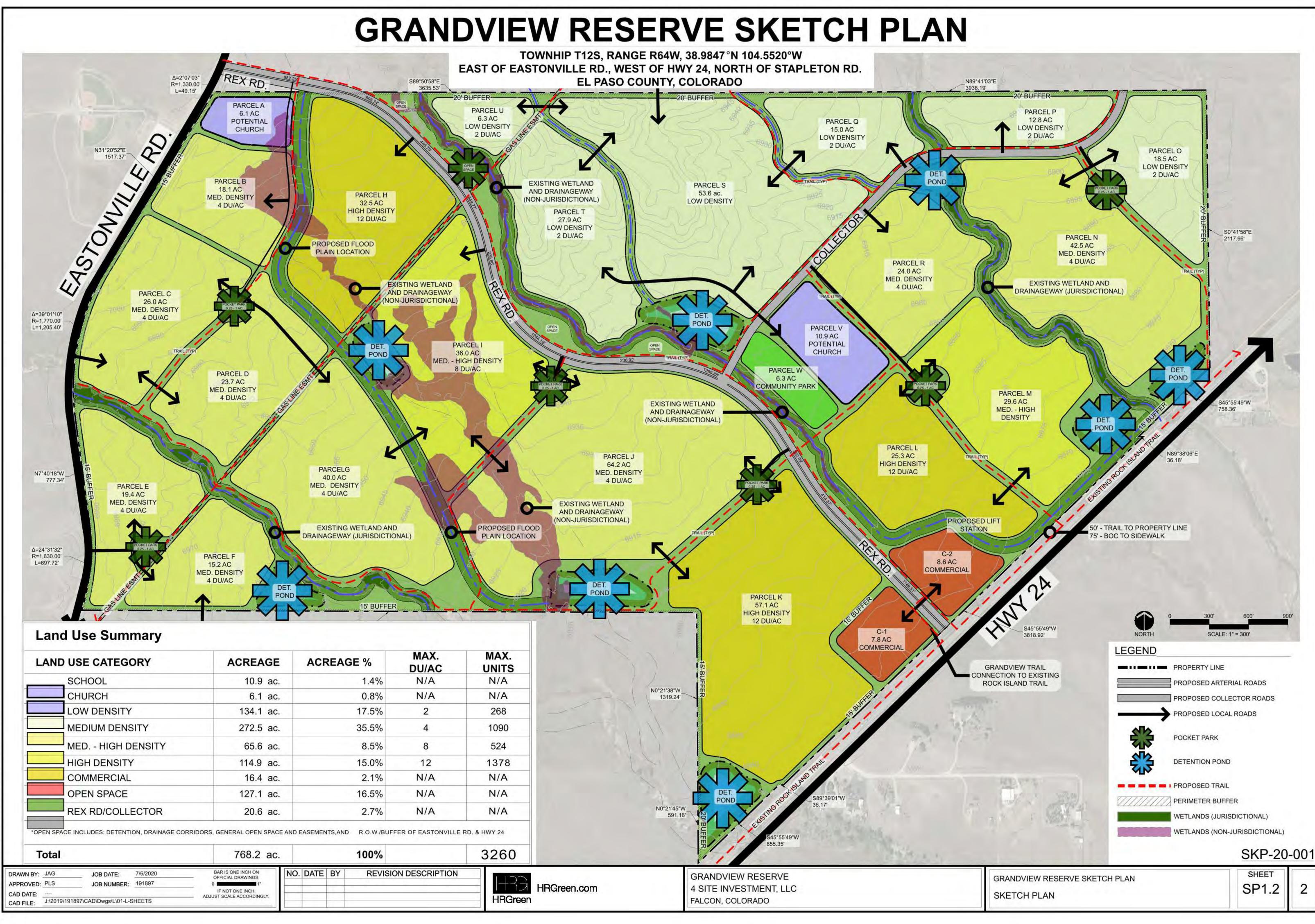
1.1 Purpose

The purpose of this Report is to identify and document the natural resources, ecological characteristics and existing conditions of the Project site (Site); identify potential ecological impacts associated with Site development; and provide current regulatory guidance related to potential development-related impacts to natural resources. The specific resources and issues of concern addressed in this Report are in conformance with the El Paso County requirements (refer to Section 2.0), and include:

- Mineral and Natural Resource Extraction;
- Vegetation;
- Wetland Habitat and Waters of the U.S.
- Weeds;
- Wildfire Hazard;
- Wildlife;
- Federal and State Listed, Candidate, Threatened and Endangered Species; and
- Raptors and Migratory Birds.


1.2 Site Location and Project Description

The Site is located in the Falcon/Peyton area of El Paso County and is bounded along the north by 4 Way Ranch Phase I, along the south by Waterbury, along the southeast by Highway 24, and along the west by Eastonville Road. There are no existing structures, roads, or other infrastructure on the Site. The Site is located approximately 4.14 miles southwest of Peyton, 4.16 miles northeast of Falcon and 4.66 miles south of Eastonville, in El Paso County, Colorado. The Site is generally located within the south ½ of Section 21, south ½ of Section 22, the north ½ of Section 27, and the north ½ of Section 28, Township 12 South, Range 64 West in El Paso County, Colorado. The Site is situated at approximately Latitude 38.98541389 north, -104.55472222 east (refer to Figure 1).


Table 1 – Land Use Summary						
Land Use CategoryAcreageDensity Units/Acre						
School	10.9 acres	1.4%	NA	NA		
Church	6.1 acres	0.8%	NA	NA		
Low Density Residential	134.1 acres	17.5%	2	268		
Medium Density Residential	272.5 acres	35.5%	4	1090		
Medium-High Density Residential	65.6 acres	8.5	8	524		
High Density Residential	114.9 acres	15.0%	12	1378		
Commercial	16.4 acres	2.1%	NA	NA		
Open Space ₁	127.1 acres	16.5%	NA	NA		
Rex Road Collector	20.6 acres	2.7%	NA	NA		
TOTAL	768.2 acres	100%	-	3260		

The Applicant proposes to develop the 768.2-acre Site as a mixed use residential and commercial community consisting of the following:

Please refer to Figure 2.

USGS 7.5 min. Quad: Falcon Latitude: 38.985713°N Longitude: -104.552854°W Section 21, 22, 27 & 28, Township 12 South, Range 64 West

2.0 METHODOLOGY

Ecos performed an office assessment in which available databases, resources, literature and field guides on local flora and fauna were reviewed to gather background information on the environmental setting of the Site. We consulted several organizations, agencies, and their databases, including:

- Colorado Department of Agriculture (CDA) Noxious Weed List;
- Colorado Natural Heritage Program (CNHP);
- Colorado Oil and Gas Conservation Commission (COGCC) GIS Online;
- Colorado Parks and Wildlife (CPW);
- El Paso County Master Plan;
- El Paso County, Sub-Area Plan (provided by Client);
- Federal Emergency Management Agency (FEMA);
- Google Earth current and historic aerial imagery;
- Survey of Critical Biological Resources, El Paso County, Colorado;
- Survey of Critical Wetlands and Riparian Areas in El Paso and Pueblo Counties, Colorado;
- U.S. Army Corps of Engineers (USACE) 1987 Corps of Engineers Wetlands Delineation Manual;
- USACE 2010 Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Great Plains Region;
- U.S. Department of Agriculture (USDA) PLANTS Database;
- U.S. Fish and Wildlife Service (USFWS) Region 6;
- USFWS National Wetland Inventory (NWI);
- USFWS IPaC database search; and
- U.S. Geological Survey (USGS).

Ecos also reviewed pertinent, site-specific background data provided by 4 Site Investments and their consulting Team, including: topographic base mapping, site development plans, and other data pertinent to the assessment.

Ecos reviewed, and incorporated the requirements of the following regulations into, this Report:

- 1) Chapter IV. Zoning Regulations, Section 35.13 Development Requirements for Mineral and Natural Resource Extraction Operations;
- 2) Chapter V. Subdivision Regulations:
 - a. Section 51.5 Wildlife Hazard and Vegetation Reports; and
 - b. Section 51.6 Streams, Lakes, Physical Features and Wildlife Habitats.
- 3) Chapter 6 General Development Standards:
 - a. Section 6.3.3 Wildfire Protection and Wildfire Mitigation;
 - b. Section 6.3.7 Noxious Weeds;

- c. Section 6.3.8 Wetlands; and
- d. Section 6.3.9 Wildlife.
- 4) Chapter 8 Subdivision Design, Improvements and Dedications:
 - a. Section 8.4.2 Environmental Considerations:
 - i. Item A.4. Threatened and Endangered Species Compliance; and
 - ii. Item B.1. Hazards
 - 1. IOO-year floodplain as identified by the applicant, review agency, or the Floodplain Administrator; and
 - 2. Wildfire hazards as identified on the County and State wildfire hazard inventory or maps.
- 5) El Paso County Master Plan: Pertinent Maps and descriptors to append all of the topics, regulations and guidance referenced above, including:
 - a. Wetland Habitat Maps and descriptors; and
 - b. Wildlife Habitat Maps and descriptors.

Following the collection and review of existing data and background information, ecos conducted a field assessment of the Site to identify any potential impacts to natural resources associated with the Project. Field reconnaissance concentrated on identification of wetland habitat, waters of the U.S., wildlife habitat (including habitat suitable to support threatened and endangered wildlife) significant topographic features, noxious weeds and vegetation. Wetland habitat and waters of the U.S. boundaries, wildlife habitat, major vegetation communities, and significant weed stands were sketched on topographic and aerial base maps and located using a hand-held Global Positioning System as deemed necessary. Representative photographs were taken to assist in describing and documenting Site conditions and potential ecological impacts.

The office and onsite assessment data, the pertinent El Paso County regulations outlined above, and Natural Resource Assessment and Wetland report examples used in previous County land development review submittals (provided by El Paso County) were used in the preparation of the Report.

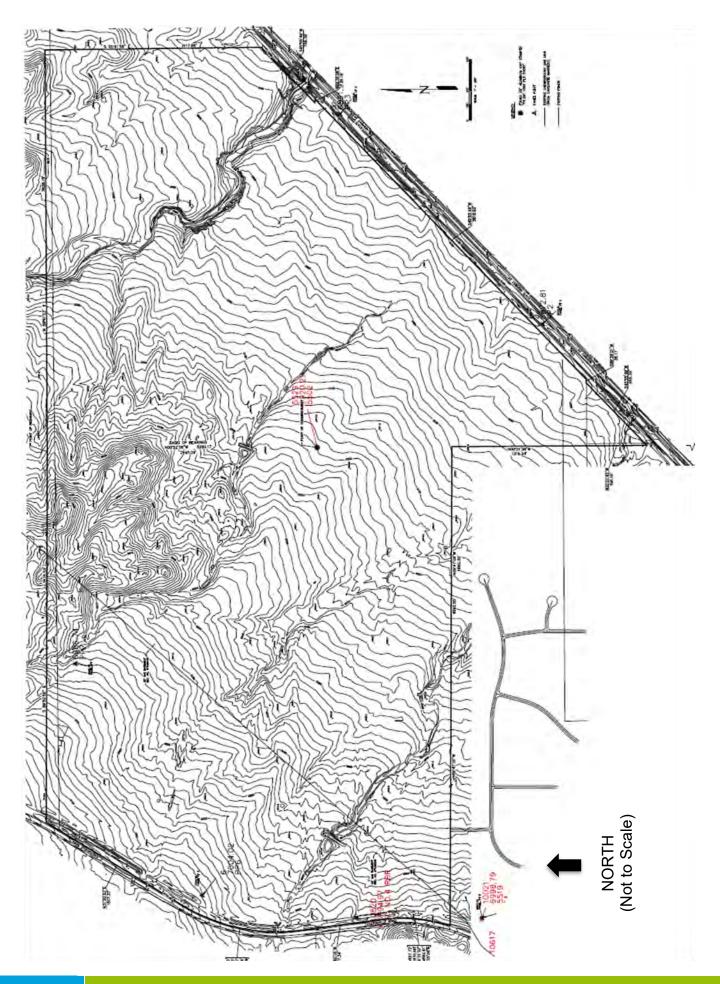
3.0 ENVIRONMENTAL SETTING

The Site is located in the Southwestern Tablelands Ecological Region (Chapman et al, 2006), which is primarily comprised of sub-humid grassland and semiarid rangeland. More specifically, the Site is located in the Foothills Grassland sub-region (26j) which contains a mix of grassland types with some small areas of isolated tallgrass prairie species that are more common much farther east. The proximity to runoff and moisture from the Front Range and the more loamy, gravelly, and deeper soils are able to support more tallgrass and midgrass species than neighboring ecoregions. Big and little bluestem, yellow indiangrass and switchgrass occur, along with foothill grassland communities. The annual precipitation of 14 to 20 inches tends to be greater than in regions farther east. Soils are loamy, gravelly, moderately deep, and mesic. Rangeland and pasture are common , with small areas of cropland. Urban and suburban

development has increased in recent years, expanding out from Colorado Springs and the greater Denver area.

3.1 Topography

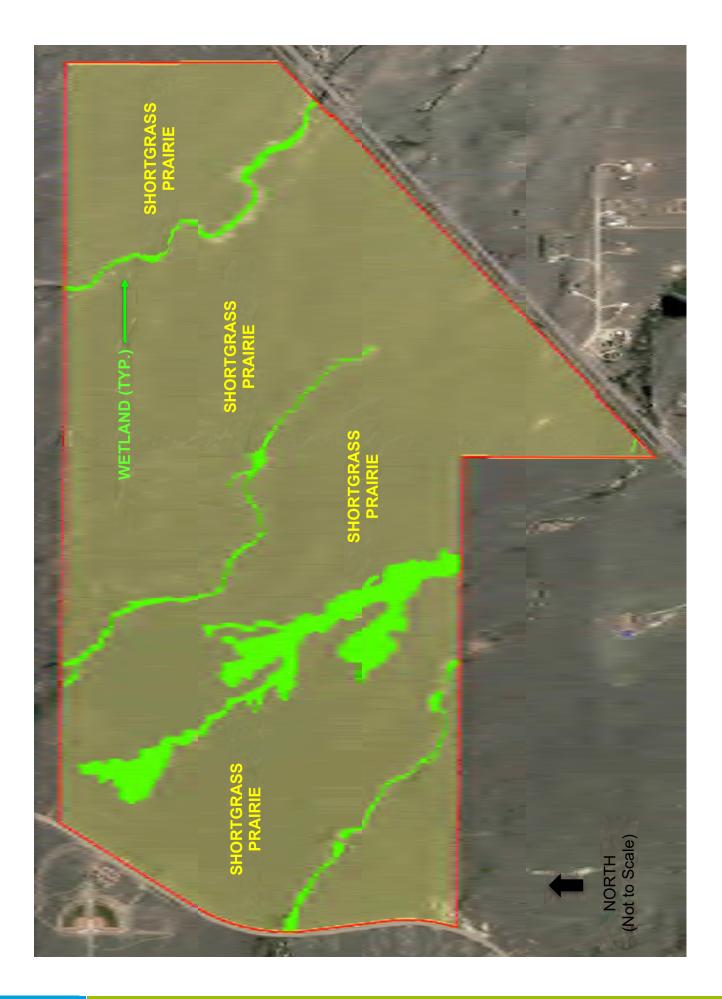
The Site is generally characterized as gently sloping from northwest to southeast with four ephemeral drainages (prairie sloughs) present, two of which are discontinuous and two are tributary to Black Squirrel Creek offsite. Naturally undulating swales drain toward the sloughs, which contain wetlands in low areas and dry areas where alluvial deposits have formed. Site topography ranges from a high elevation of 7020 feet above mean sea level (AMSL) in the northwestern corner to a low elevation of 6860 feet above AMSL where the northeastern tributary exits the Site on the southeast boundary along Highway 24; for a total elevation drop of 160 feet. An ill-defined and undulating hill, which is likely an eroded remnant bluff, is present in the north-central portion of the Site. Refer to Figure 3 for the Topographic Map.


3.2 Soils

Ecos utilized the U.S. Department of Agriculture, Natural Resource Conservation Service Web Soil Survey (USDA, NRCS, 2020) to determine if hydric soils are present within the Site, as this data assist in informing the presence/absence of potential wetland habitat regulated under the Clean Water Act. The soils data were also utilized to supplement the field observations of vegetation, as the USDA provides correlation of native vegetation species by soils types. Please refer to Appendix A for the USDA Soil Map and additional information.

Blakeland loamy sand (Map Unit #8), Columbine gravelly sandy loam (Map Unit #19) and Stapleton sandy loam (Map Unit #83) are listed by the NRCS as hydric soils that are found in swales and depressions. Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS, 1994) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part. Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in *Field Indicators of Hydric Soils in the United States* (USDA, NRCS, 2010).


Additional, detailed soil data for the Project are presented in the Soils & Geology Report that will be included in the Project submittal.

3.3 Vegetation

The vegetation within the Site is primarily comprised of shortgrass prairie with wetland vegetation in the swales and sloughs (Figure 4). The shortgrass prairie is dominated by little bluestem (*Schizachyrium scoparium*), blue grama (*Bouteloua gracilis*), and buffalograss (*Bouteloua dactyloides*) with occasional associative grass and forb species including western wheatgrass (*Pascopyrum smithii*), yellow Indiangrass (*Sorghastrum nutans*), Canada wildrye (*Elymus canadensis*), needle and thread (*Hesperostipa comata*), switchgrass (*Panicum virgatum*), Western yarrow (*Achillea millefolium*), broom snakeweed (*Gutierrezia sarothrae*), fringed sage (*Artemisia frigida*), Prickly pear (*Opuntia* spp.), and prairie aster spp. (*Symphyotrichum* spp.). Occasional patches of snowberry (*Symphoricarpos albus*) and Wood's rose (*Rosa woodsii*) occupy the transitional areas between uplands and wetlands. A few, single plains cottonwood (*Populus deltoides*) occur along the drainages. The Site is heavily grazed and there are weeds scattered throughout, including Canada thistle (*Cirsium arvense*), Scotch thistle (*Onopordum acanthium*), Russian thistle (*Salsola kali*), common mullein (*Verbascum thapsus*), and yellow toadflax spp. (*Linaria vulgaris*).

Hydrophytic vegetation (wetland vegetation) is present within the swales and sloughs (refer to Section 3.4.2).

3.4 Wetland Habitat and Waters of the U.S.

3.4.1 Methodology

Ecos utilized the National Wetland Inventory (NWI) Wetlands Mapper (USFWS 2020a); Colorado Wetland Inventory Mapping Tool (CNHP, 2018); historic and current Google Earth aerial photography; USGS 7.5-minute topographic mapping; and detailed Project topographic mapping to screen the Site for potential wetland habitat and waters of the U.S. Additionally, ecos performed a jurisdictional delineation to identify the Waters of the United States (WOUS), including wetlands.

The mapping data above were proofed during the filed assessment and a wetland delineation was conducted to determine the presence/absence of potential WOUS, including wetland habitat. Once a feature was verified to be present, ecos determined whether it is a jurisdictional wetland/waters under the Clean Water Act. The USACE, wetland delineation methodology was employed to document the 3 field indicators (parameters) of wetland habitat (i.e., wetland hydrology, hydric soils and a predominance of hydrophytic vegetation as explained in the *Corps of Engineers Wetlands Delineation Manual* (Environmental Laboratory, 1987) and supplemented by the Regional Supplement to the *Corps of Engineers Wetlands Delineation Manual*: *Western Mountains, Valleys and Coast Region (Version 2)* (USACE, 2010). The wetland delineation was surveyed by the project team surveyor

Consistent with the NWI and Colorado Wetland Inventory Mapping Tool (Figure 5) and topographic mapping, the wetland/waters delineation revealed the presence of four drainages with the potential to support wetland habitat (Figure 6). Two of the drainages (i.e. northeast Drainage D and southwest Drainage A) were determined to be jurisdictional, and support predominantly palustrine emergent wetland (PEMC1) habitat with minor occurrences of palustrine scrub-shrub (PSS) and palustrine forested (PFO) species along their fringes. The central Drainage C and south-central Drainage B were investigated found to be discontinuous, prairie sloughs that are non-jurisdictional, "isolated" features, as verified by the USACE (Appendix B). Please refer to Figure 5 for a composite of the NWI and CNHP Wetland and Riparian Areas mapping, to Figure 6 for the ECOS Wetland and Waters Sketch Map, and to Appendix B for the USACE Non-Jurisdictional Verification email.

3.4.2 Field Assessment Findings

The results of the onsite assessment for each of the four onsite drainages is summarized below, with an explanation of the field indicators (parameters) of wetland habitat/waters that were observed, and an explanation as to whether ecos determined each feature was jurisdictional or non-jurisdictional under Section 404 of the Clean Water Act (as verified by the USACE). Jurisdictional features are mapped on Figure 6.

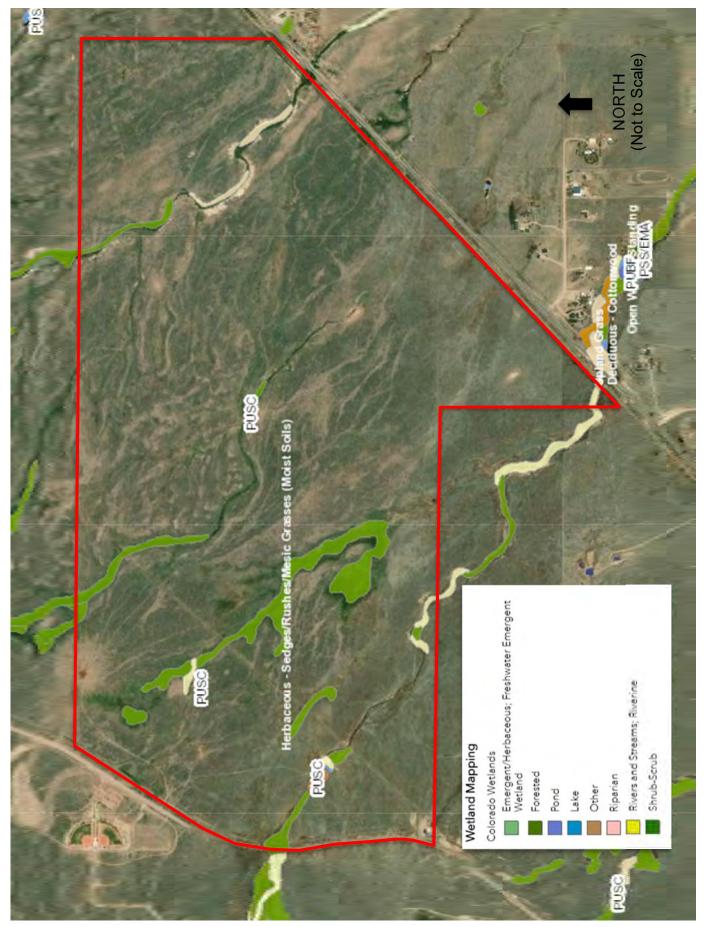
- 1) Jurisdictional wetland habitat and waters of the U.S.
 - a. <u>PEMC1 Wetland Habitat</u> Northeast Drainage D is classified as a Palustrine Emergent, Persistent, Seasonally Flooded wetland (PEMC1). Wetland Area A is tributary to Black Squirrel Creek off of the Site to the southeast. It is dominated by Nebraska sedge, redtop, clustered field sedge, three-square bulrush, swordleaf rush, soft-stem bulrush, poverty rush, Baltic rush, and watercress. Other species were present, including water mint, sporadic patches of sandbar willow, cutleaf evening primrose, fireweed, curly dock, and water milfoil, and snowberry, wild licorice and Wood's rose along the high banks. Soil samples indicate the presence of field indicators of hydric soils (organic horizon from 0-2 inches, 10YR4/2 clay loam from 2-9 inches, 10YR4/1 clay loam from 9-14 inches, and 10YR5/1 sandy clay from 14-18+ inches). Sustaining hydrology was evident as flowing water is present within a defined channel and saturated soils are present at the surface and throughout the floodplain, including groundwater driven side-slope seepage. This area meets all 3 parameters for jurisdictional wetland habitat.
 - b. <u>PEMC1 Wetland Habitat</u> Southwest Drainage A is classified as a Palustrine Emergent, Persistent, Seasonally Flooded wetlands (PEMC1 Wetland Area D is tributary to Black Squirrel Creek off of the Site to the southeast. It is dominated by Nebraska sedge, clustered field sedge, swordleaf rush, redtop, poverty rush, Baltic rush, and pussytoes. Other species were present, including soft-stem bulrush, three-square bulrush, smartweed, saltgrass, foxtail barley, water mint, scouring rush, wild geranium, watercress, narrowleaf cattail, and snowberry, wild licorice and Wood's rose along the high banks. Sporadic occurrences of sandbar willow, crack willow and plains cottonwood were present. Soil samples indicate the presence of field indicators of hydric soils (10YR2/2 loamy clay from 0-6 inches, 10YR4/2 sand from 16-18+ inches). Sustaining hydrology from groundwater seepage was evident as saturated soil is present at or within 8-12 inches of the ground surface. These areas meet all 3 parameters for jurisdictional wetland habitat.
- 2) <u>Non-Jurisdictional, Isolated Wetlands -</u> The central Drainage C and south-central Drainage B were investigated found to be discontinuous, prairie sloughs with reaches that are upland swales; they exhibited upland "breaks" in which they did not exhibit defined bed or bank (Figure 6); and they were also found to be "isolated" as they did not connect with downstream WOUS. Patches of PEMC1 Wetland exists in these drainages that exhibits the same characteristics of other wetlands on site and meets all 3 parameters for jurisdictional wetland habitat. However, they are clearly disconnected from Black Squirrel Creek by uplands that do not exhibit a defined bed or bank. Therefore, these drainages are isolated, non-jurisdictional features and as such were not delineated.

3.4.3 Summary of Jurisdictional and Non-Jurisdictional Wetlands and Waters

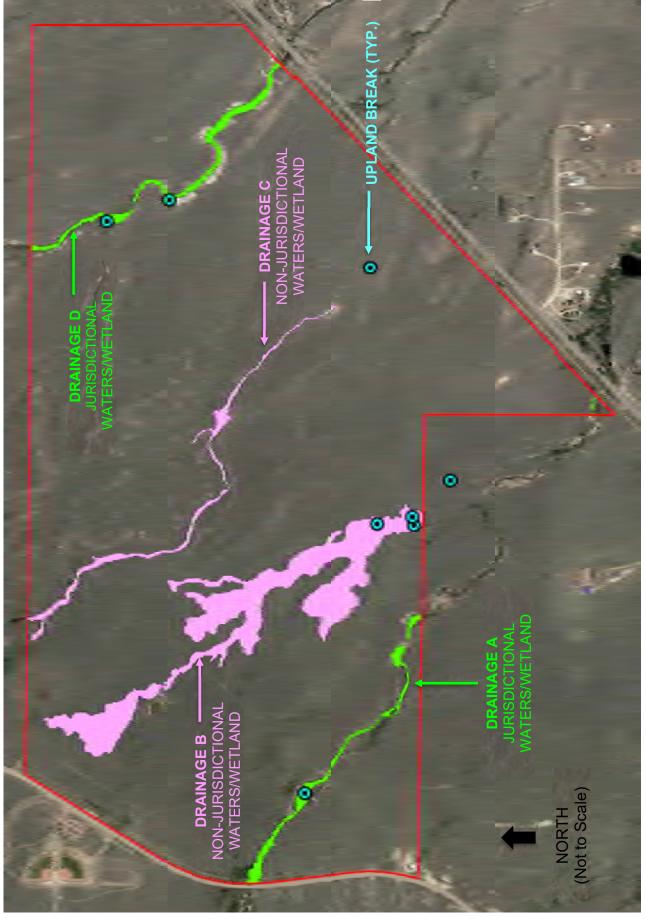
<u>Jurisdictional Habitat</u> – Northeast Drainage D and southwest Drainage A (refer to Figure 6) are jurisdictional wetland habitat and WOUS as they are tributary to the jurisdictional habitat in Black Squirrel Creek. These natural features meet the criteria that the USACE uses to assert jurisdiction, as they are:

- Non-navigable tributaries of traditional navigable waters that are relatively permanent where the tributaries typically flow year-round or have continuous flow at least seasonally (e.g., typically three months); and
- Wetlands that directly abut such tributaries.

<u>Non-Jurisdictional Areas</u> – The central Drainage C and south-central Drainage B are considered non-jurisdictional. They do not meet the criteria that the Corps uses to assert jurisdiction, as they are not:


- Traditional navigable waters;
- Wetlands adjacent to traditional navigable waters;
- Non-navigable tributaries of traditional navigable waters that are relatively permanent where the tributaries typically flow year-round or have continuous flow at least seasonally (e.g., typically three months); and
- Wetlands that directly abut such tributaries.

Furthermore, Drainages B and C are not considered "tributaries", as "a tributary includes natural, man-altered, or man-made water bodies that carry flow directly or indirectly into a traditional navigable water." These drainages are ephemeral swales or erosional features (e.g., gullies, small washes characterized by low volume, infrequent, or short duration flow) over which the Corps does not assert jurisdiction.


3.4.4 Verification by the U.S. Army Corps of Engineers

On July 5, 2019, the USACE provided an email to Ecos to confirm our findings of nonjurisdiction for Drainages B and C. Note that we did not request a jurisdictional determination of Drainages A and D as we have documented them to be jurisdictional. An excerpt of the USACE response from Tony Martinez, Regulatory Program Manager for the Albuquerque District, Southern Colorado Regulatory Branch of the USACE is copied below, and the original email is contained in Appendix B.

"Based on the information provided in the attached email and our site visit on June 21, 2019 our office concurs with your observations that central Drainage C and southcentral Drainage B are isolated and are located entirely upland therefore, we conclude that No permit is required."

SOURCE: USFWS, National Wetland Inventory & CNHP, Colorado Wetland Inventory

SOURCE: Ecosystem Services, LLC On-site Delineation, 10-11-18

3.5 Weeds

3.5.1 Regulatory Background

The Colorado Department of Agriculture maintains a list of noxious weed species (CDA, 2020a) and works with counties to manage noxious weeds. Weed management on Site must follow County requirements, including the "El Paso County Noxious Weeds and Control Methods" report (El Paso County, 2015b).

There are four CDA categories of noxious weeds:

- List A: Rare noxious that are designated for eradication statewide.
- List B: Discretely distributed noxious weeds that must be eradicated, contained, or suppressed, depending on their location, to stop their continued spread.
- List C. These species are well-established in Colorado. Species management plans are designed to support the efforts of local governing bodies to facilitate more effective integrated weed management. The goal of such plans is not to stop the continued spread of these species, but to provide additional education, research, and biological control resources to jurisdictions that choose to require management of List C species.
- Watch List Species are those may pose a potential threat to the agricultural productivity and environmental values. The Watch List is intended to serve advisory and educational purposes only. Its purpose is to encourage the identification and reporting of these species to the Commissioner in order to assist in determining which species should be designated as noxious weeds.

3.5.2 Noxious Weed Survey Results

Weed species on the Site were very limited, sporadic and dispersed; and as such, no large patches were identified or mapped by ecos.

No noxious weed species on the Colorado Department of Agriculture List A or the Watch List (CDA, 2020a) were observed on the Site.

Three List B noxious weed species (CDA, 2020a) were observed on the Site:

- Canada thistle (*Cirsium arvense*);
- Scotch thistle (*Onopordum acanthium*)
- yellow toadflax (*Linaria vulgaris*).

One List C noxious weed species (CDA, 2020a) were observed on Site:

• common mullein (*Verbascum thapsus*).

3.5.3 Noxious Weed Management Plan

All of the List B species on the Site are designated for suppression (CDA, 2018a). The Colorado Noxious Weed Act defines suppression as *"reducing the vigor of noxious weed populations within an infested region, decreasing the propensity of noxious weed species*

to spread to surrounding lands, and mitigating the negative effects of noxious weed populations on infested lands." Suppression efforts may employ a wide variety of integrated management techniques. Per the El Paso County Noxious Weed and Control Methods document (El Paso County, 2018a): "The most effective way to control noxious weeds is through Integrated Pest Management (IPM). IPM incorporates weed biology, environmental information, and available management techniques to create a management plan that prevents unacceptable damage from pests, such as weeds, and poses the least risk to people and the environment. IPM is a combination of treatment options that, when used together, provide optimum control for noxious weeds; however, IPM does not necessarily imply that multiple control techniques have to be used or that chemical control options should be avoided.

- Prevention: The most effective, economical, and ecologically sound management technique. The spread of noxious weeds can be prevented by cleaning equipment, vehicles, clothing, and shoes before moving to weed free areas; using weed-free sand, soil, and gravel; and using certified weed free seed and feed.
- Cultural: Promoting and maintaining healthy native or other desirable vegetation. Methods include proper grazing management (prevention of overgrazing), re-vegetating or re-seeding, fertilizing, and irrigation.
- Biological: The use of an organism such as insects, diseases, and grazing animals to control noxious weeds; useful for large, heavily infested areas. Not an effective method when eradication is the objective but can be used to reduce the impact and dominance of noxious weeds.
- Mechanical: Manual or mechanical means to remove, kill, injure, or alter growing conditions of unwanted plants. Methods include mowing, hand pulling, tilling, mulching, cutting, and clipping seed heads.
- Chemical: The use of herbicides to suppress or kill noxious weeds by disrupting biochemical processes unique to plants."

The following information provides general measures to prevent introducing new weeds and spreading existing weeds during construction:

Prior to Construction:

1. Create a native habitat restoration and weed control plan for the Open Space areas. Since there is such dense knapweed mixed with other weeds along the Creek, total re-vegetation of some areas may be necessary. One option in the weediest areas would be to remove the top three to six inches of topsoil and replace it with topsoil from the non-weedy short grass prairie north of the Creek that will be developed. If topsoil can be transferred directly, or is only briefly stockpiled, then re-seeding may not be needed. Planning topsoil management ahead of construction may decrease costs for weed control, restoration, and grading.

- 2. Biological control is a low cost and non-invasive way to begin controlling weeds. Optimum results take 3-5 years. Contact the Colorado Department of Agriculture Request-A-Bug program at 970-464-7916 to reserve insects, determine the species/quantity needed, and discuss release schedules (CDA, 2020b). At a minimum, species should be introduced to control the knapweed. Biological control may also be available for yellow toadflax, musk thistle, and Canada thistle; with the dense patches of yellow toadflax in the northwest corner of the Site being the highest priority of these three.
- 3. Reduce grazing overall. Eliminate cattle grazing in knapweed-infested areas, unless using grazing for weed control. Cattle will eat young knapweed prior to bolting but avoid it once the plant matures and develops spines. Thus, targeted grazing can reduce knapweed, but prolonged heavy grazing increases it. Cattle grazing in areas of diffuse knapweed twice in spring may decrease seed by 50%. If cattle are being used for weed control, grazing should consist of two, 10-day intervals in the spring when diffuse knapweed is bolting and about 6 to 12 inches tall (see CSU, 2013). Grazing may reduce the efficacy of biological control.
- 4. Develop a mowing program to control weeds. This will be most effective for the large areas of common mullein, but may also be used for Canada thistle, musk thistle, and cheatgrass. Mowing in the knapweed areas may reduce the efficacy of biological control for this species.

During construction staging:

- 1. Fence off all the open space areas to prevent vehicles from driving through them and spreading knapweed, etc. to new areas (Note: fencing will also prevent unpermitted wetland impacts and likely be required by the stormwater management plan).
- 2. Designate a minimal number of vehicle crossings of the Open Space areas. Construct crossings with weed free soil so that noxious weed seeds are not tracked into new areas.

During construction:

- Prior to any grading of the non-weedy areas on the slopes north of the Creek, salvage the top six inches of topsoil so that it can be used to construct vehicle crossings and for re-vegetation of natural areas. If possible, immediately move soil to re-vegetation areas. If soil must be stockpiled, minimize the time in order to maintain native seed viability. Excess topsoil may be used for development areas.
- 2. Do not move weedy soil to new areas within the Site or import weedy soil from other Sites.
- 3. Control weeds within staging areas and along construction access roads on an ongoing basis.

4. Noxious weeds are most likely to become established in areas where the native vegetation and soil have been disturbed by construction. Thus, maintaining and then quickly re-establishing desirable vegetation post-construction will minimize weed infestations. Desirable vegetation may consist of native plant communities or landscaped areas.

The Site development plan should include measures to prevent introducing new weeds and spreading existing weeds during construction (including prevention measures above). Following construction, the Homeowner's Association (HOA) will be responsible for weed control. Weed management recommendations for the species observed on the Site are summarized in Table 2. Refer to the El Paso County "Noxious Weed and Control Methods" booklet for additional detail (El Paso County, 2018a).

TABLE 2 – NOXIOUS WEED MANAGEMENT SUMMARY				
Species	Occurrence	Management ^{1,2,3}		
	LIST B ⁴			
Canada thistle (Cirsium arvense)	Uncommon and dispersed.	Mowing combined with herbicide treatment. Mow every 10 to 21 days during the growing season to prevent seeding. Spot treatment with herbicide will likely be needed in open space areas.		
Scotch thistle (Onopordum acanthium)	Uncommon and dispersed.	No known biological control agents effective against Scotch thistle. Any physical method that severs the root below the soil surface prior to seed production will kill the plant. Properly dispose of flowering cut plants, as seeds can mature and become viable. Spot treatment with herbicide will likely be needed in open space areas.		
Yellow toadflax (<i>Linaria vulgaris</i>)	Uncommon and dispersed.	Difficult to control; control when infestations are small. Biological control is available and recommended, particularly in the northwest corner where this species is most abundant. Spot treatment with herbicide will likely be needed in open space areas.		
LIST C				

TABLE 2 – NOXIOUS WEED MANAGEMENT SUMMARY				
Species	Occurrence	Management ^{1,2,3}		
Common mullein (Verbascum thapsus)	Uncommon and dispersed.	Reduce grazing to increase density of other vegetation. Mow in the bolting to early flowering stage to reduce seed production. Use herbicide to kill existing rosettes. Hand-pulling is effective, but likely not feasible for such large areas. Establish other vegetation and minimize disturbance to prevent existing seeds from sprouting in bare soil.		

¹Refer to the El Paso County "Noxious Weed and Control Methods" booklet for additional detail (El Paso County, 2018a).

²When using herbicides, always read and follow the product label to ensure proper use and application.

³If near water or wetlands, only use herbicides and formulations approved for use near water.

⁴All of the List B species on the Site are designated for suppression (Colorado Code of regulations, 2018).

3.6 Wildfire Hazard

The stated purpose and intent of the 2018 El Paso County Development Standards" for "Fire Protection and Wildfire Mitigation" is to ensure that proposed development is reviewed for wildfire risks and adequate fire protection. No permit or approval associated with development, construction or occupancy shall be approved or issued until the provisions of these standards are satisfied.

The El Paso County Wildfire Hazard Map is based on the existing vegetation and classifies the grassland areas that comprise the Site as "Low Hazard – Non Forested". [Note: the Vegetation Map required to be referenced in the current Land Development Code is not available, therefore we used the most current map (Figure 7).] "Wildland areas" include land shown as "High Hazard – Forested" or areas identified as such in the "Wildland Fire Risk and Hazard Mitigation Plan." Since the Site does not include forested (high hazard) areas, it is not subject to the wildland areas requirements and does not requires the preparation of a Wildland Fire and Hazard Mitigation Plan.

3.6.1 Fire Protection

Falcon Fire Protection District

A portion of the Site is located within the jurisdiction and boundaries of the Falcon Fire Protection District (FFPD). The portion of the Site within the boundaries of the Falcon Fire Protection District is that portion west of the North/South section line beginning at the intersection of Highway 24 and Curtis Road. The Falcon Fire Department (Fire Department) has provided a letter for the previous iteration of this Project dated October 15, 2018 (Appendix C) to confirm its commitment to provide fire suppression, fire prevention, emergency rescue, ambulance, hazardous materials and emergency medical services (collectively, "Emergency Services") to the applicable portion of the Site, subject to the following conditions:

- All new construction, renovations or developments within the Fire Department's jurisdiction must comply with the applicable fire code and nationally recognized life-safety standards adopted by the El Paso County Board of County Commissioners and the FFPD's Board of Directors, as amended from time to time;
- All development, water and construction plans must be reviewed and approved by the Fire Department for compliance with the applicable fire code and nationally recognized life-safety standards prior to final plat or construction permit being issued; and,
- All development or construction projects shall meet the fire code and nationally recognized standards' pertaining to fire protection water. Please note that approved and inspected fire cisterns are permitted by the Fire Department in an attempt to help the property owner/developer meet these requirements.

Note: A new letter from FFPD will be obtained for the current iteration of this Project prior to Preliminary Plan submittal.

The three staffed FFPD stations are located as follows:

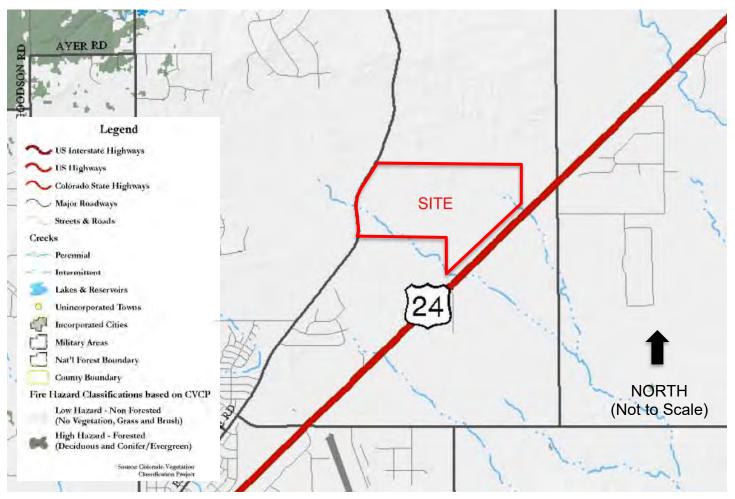
- Station 1, 12072 Royal County Down Road, Peyton (1.94 miles from Site)
- Station 3, 7030 Old Meridian Road, Peyton (4.21 miles from Site)
- Station 4, 2710 Capital Drive, Colorado Springs, CO (9.95 miles from Site)

One unstaffed station is located as follows:

• Station 2 located at 14450 Meridian Road (4.16 miles from the Site.

The closest station to the Site entrance is Station 1. Equipment at Station 1 includes an engine, a water tender (water truck), a brush truck, an AMR ambulance, a utility truck, and a command vehicle (FFPD, 2018). Equipment at the second closest station, Station 2, includes a 4-wheel drive engine, a water tender, and a brush truck.

Peyton Fire Protection District


Peyton Fire Protection District (PFPD) will serve that potion of the Site east of the North/South section line beginning at the intersection of Highway 24 and Curtis Road.

The PFPD has provided a letter for the previous iteration of this Project dated October 30, 2018 (Appendix C) to confirm its commitment to provide fire prevention and suppression, emergency rescue, emergency medical and emergency hazardous materials response services (collectively, "Emergency Services") to the applicable portion of the Site, subject to the following conditions:

- All new construction, renovations or developments within the Fire Department's jurisdiction must comply with the applicable fire code and nationally recognized life-safety standards adopted by the El Paso County Board of County Commissioners and the PFPD's Board of Directors, as amended from time to time;
- All development, water and construction plans must be reviewed and approved by the PFPD for compliance with the applicable fire code and nationally recognized life-safety standards prior to final plat or construction permit being issued; and,
- All development or construction projects shall meet the fire code and nationally recognized standards' pertaining to fire protection water. Approved and inspected fire cisterns are permitted by the PFPD in an attempt to help the property owner/developer meet these requirements.

Note: A new letter from PFPD will be obtained for the current iteration of this Project prior to Preliminary Plan submittal.

PFPD is a paid/volunteer fire department located at 13665 Railroad Street, Peyton, Colorado, which is 4.26 miles from the Site. PFPD covers 110 square miles and has an ISO rating of 8B.

SOURCE: El Paso County, Colorado Wildfire Hazards (Based on CVCP Indicators), Map, 2007

Colorado Vegetation Classification Project (CVCP) Indicator Groupings

No Vegetation.	 (1) Urban/Built Up (6) Barren Land (8) Riparian (9) Water (11) Residential (12) Commercial (61) Rock (6101) Talus Slopes & Rock Outcroppings (62) Soil 	(22 (31 (31 (33) (33) (71) (71) (74)) Dryland Agriculture) Irrigated Agriculture 02) Grassland 04) Grass/Forb Mix 11) Sparse Grass/Blowouts 04) Grass/Misc. Cactus Mix 07) Grass/Yucca Mix 02) Alpine Grass Dominated 03) Alpine Grass/Forb Mix 01) Subalpine Grass/Forb Mix) Herbaceous Riparian 	(4202) Xeric M (4203) Mesic M (4205) Upland	a Community ood ss/Forb Mix h/Grass Mix ush/Grass Mix ountain Shrub Mix Ountain Shrub Mix Willow/Shrub Mix Willow/Shrub Mix
Deaduous:	(4201) Gambel Qak (5101) Aspen (5102) Aspen/Mesic Mountain Shnib Mix (81) Foreited Riparian (8101) Cotronwood	High Haza	(4101) Punyon-Juniper (4102) Juniper (4301) FJ-Oak Mix (4303) FJ-MINT Shrub Mix (4304) Sparse JV Shrub/Rock Mix (4305) Sparse JUniper/Shrub/Rock Mix (5201) Ponderosa Pine (5202) Engelmann Spruce/Pit Mix (5203) Douglat Fit (5204) Lodgepole Pine (5207) Spruce/Lodgepole Pine Mix	(5211) Limber Pine (5213) Lodgepole/Spruce/Fir M (5214) Fir/Lodgepole Pine Mix (5215) Douglas Fir/Engemann ((5301) Spruce/Fir/Aspen Mix (5303) Ponderosa Pine/Aspen Mix (5304) Ponderosa Pine/Aspen Mix (5305) Lodgepole Pine/Aspen Mix (5306) Lodgepole Pine/Aspen Mix (5308) F. Pine/Mountam Shrub (5308) F. Pine/Aspen/Messc Mo	iproce Mix ix x apen Mix

ow Hazard - Non Forested

3.7 Wildlife Communities

The stated purpose and intent of the "El Paso County Development Standards" section on wildlife is to ensure that proposed development is reviewed in consideration of the impacts on wildlife and wildlife habitat, and to implement the provisions of the Master Plan (El Paso County, 2018b). Ecos has determined that the wildlife impact potential for development of the Site is expected to be low.

The Site currently provides poor to moderate habitat for wildlife. There are two primary vegetation types on the Site, including shortgrass prairie and wetlands.

The project would develop most of the shortgrass prairie, however the drainages and adjacent short grass prairie would be preserved as Open Space. A noxious weed management plan will be implemented per State and County requirements to improve wildlife habitat; and a native plant re-vegetation plan for the Open Space is recommended to provide additional benefit to wildlife habitat.

The habitat preferences of the observed species are reflective of the habitat on Site. Two species of raptors were observed and appear to either be residents or frequent hunters to this Site: ferruginous hawk (*Buteo regalis*) and great horned owl (*Bubo virginianus*). Sandhill crane (*Grus canadensis*) were observed flying over during their migration, although they are not likely to utilize the Site. Prairie species such as jackrabbit (*Lepus townsendii*), pronghorn (*Antilocapra americana*), black-tailed prairie dog (*Cynomys ludovicianus*) and thirteen-lined ground squirrel (*Ictidomys tridecemlineatus*) were present. The remaining species are considered generalists and included mourning doves (*Zenaida macroura*) and American crows (*Corvus brachyrhynchos*). The Site provides very limited tree nesting habitat for raptors; however, ferruginous hawks may also use ground nests. No existing nest sites for any raptors were noted during the Site visit.

The Site provides habitat for mammals including rodents, antelope, and carnivores. The site provides foraging and breeding habitat for predators such as coyote and fox. The Site also provides good habitat for reptiles but limited habitat for amphibians due to the lack of persistent standing and flowing water. No other species were observed by ecos during our field assessment.

The Site contains no Wildlife Refuges or Hatcheries according to the USFWS IPaC Trust Resources Report (USFWS, 2020b) (Appendix D).

4.0 FEDERAL LISTED SPECIES

A number of species that occur in El Paso County are listed as candidate, threatened or endangered by the USFWS (USFWS, 2020b) under the Endangered Species Act (ESA). Ecos compiled the Federally-listed species for the Site in Table 3 based on the Sitespecific, USFWS IPaC Trust Resources Report we ran for the Project (Appendix D); and our onsite assessment. Ecos has provided our professional opinion regarding the probability that these species may occur within the Site and their probability of being impacted by the Project.

The likelihood that the Project would impact any of the species listed below is very low to none. Most are not expected occur in the Project area or on the Site; nor will they be affected by the indirect effects of the project. The Preble's meadow jumping mouse is discussed in more detail below because there is USFWS designated Critical Habitat in the County.

TABLE 3 - FEDERAL LISTED SPECIES ASSESSED FOR THE PROJECT					
Species	Status	Habitat Requirements and Presence	Probability of Impact by Project		
FISH					
Greenback cutthroat trout (Oncorhynchus clarki stomias)	cutthroat troutCold, clear, gravely headwater streaCold, clear, gravely headwater strea(Oncorhynchusfood supply of insects.		None. Suitable habitat does not exist on the Site.		
Pallid sturgeon (Scaphirhynchus albus)	Endangered	Water-related activities/use in the N. Platte, S. Platte and Laramie River Basins may affect listed species in Nebraska.	None. The proposed project is not in the watershed for any of the listed river basins.		
BIRDS					
Least tern (Sternula antillarum)	Endangered	Water-related activities/use in the N. Platte, S. Platte and Laramie River Basins may affect listed species in Nebraska.	None. The proposed project is not in the watershed for any of the listed river basins.		
Mexican spotted owl (Strix occidentalis lucida)	Threatened	Mature, old-growth forests of white pine, Douglas fir, and ponderosa pine; steep slopes and canyons with rocky cliffs. The closest USFWS designated Critical habitat is over 15 miles southwest of the Site in mountainous terrain.	None. Suitable habitat does not exist on the Site.		

TABLE 3 - FEDERAL LISTED SPECIES ASSESSED FOR THE PROJECT					
Species	Status	Habitat Requirements and Presence	Probability of Impact by Project		
Piping plover (Charadrius melodus)	Threatened	Water-related activities/use in the N. Platte, S. Platte and Laramie River Basins may affect listed species in Nebraska.	None. The proposed project is not in the watershed for any of the listed river basins.		
Whooping crane (Grus americana)	Endangered	Water-related activities/use in the N. Platte, S. Platte and Laramie River Basins may affect listed species in Nebraska.	None. The proposed project is not in the watershed for any of the listed river basins.		
MAMMALS					

TABLE 3 - FEDERAL LISTED SPECIES ASSESSED FOR THE PROJECT						
Species	Status	Habitat Requirements and Presence	Probability of Impact by Project			
Preble's meadow jumping mouse (Zapus hudsonius preblei)	Threatened	Inhabits well-developed riparian habitat with adjacent, relatively undisturbed grassland communities, and a nearby water source. Well-developed riparian habitat includes a dense combination of grasses, forbs and shrubs; a taller shrub and tree canopy may be present. Has been found to regularly use uplands at least as far out as 100 meters beyond the 100-year floodplain.	None. Unlikely to occur on Site due to: 1) the absence of habitat required to support the life requisites of the species; 2) negative trapping results reported by USFWS adjacent to the Site; 3) 10.22-mile distance from closest CPW "Potential" Occupied Habitat (west/northwest of the Site in Colorado Springs); 4) 6.5-mile distance from closest USFWS Critical Habitat (southwest of the Site along Black Squirrel Creek in Colorado Springs); and 5) lack of habitat connection corridor from known habitat to the Site.			
	PLANTS					

TABLE 3 - FEDERAL LISTED SPECIES ASSESSED FOR THE PROJECT					
Species	Status	Habitat Requirements and Presence	Probability of Impact by Project		
Ute ladies'- tresses orchid (<i>Spiranthes</i> <i>diluvialis</i>)	Threatened	Primarily occurs along seasonally flooded river terraces, sub-irrigated or spring-fed abandoned stream channels or valleys, and lakeshores. May also occur along irrigation canals, berms, levees, irrigated meadows, excavated gravel pits, roadside borrow pits, reservoirs, and other human-modified wetlands.	Very Low. Unlikely to occur as the Site is situated between 6,860 and 7,020 feet above mean sea level, which is higher than the 6,500-foot elevation limits documented for the species and recommended for conducting surveys by the USFWS.		
Western prairie fringed orchid (Platanthera praeclara)	Threatened	Occurs in tallgrass prairie in Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and Oklahoma. Upstream depletions to the Platte River system in Colorado and Wyoming may affect the species in Nebraska.	None. The proposed project will not alter or deplete flows to the South Platte.		

4.1 Preble's meadow jumping mouse

4.1.1 Natural History

The Preble's meadow jumping mouse (PMJM) is a small mammal approximately 9inches in length with large hind feet adapted for jumping, a long bicolor tail (which accounts for 60% of its length), and a distinct dark stripe down the middle of its back, bordered on either side by gray to orange-brown fur (USFWS, 2016). This largely nocturnal mouse lives primarily in the foothills of southeastern Wyoming, and south to Colorado Springs, along the eastern edge of the Front Range of Colorado. PMJM are true hibernators. They usually enter into hibernation in September or October and emerge in May of the following spring.

PMJM typically inhabits areas characterized by well-developed plains riparian vegetation with relatively undisturbed grassland and a water source in close proximity (Armstrong et al. 1997). PMJM regularly range into adjacent uplands to feed, hibernate, and avoid flooding. Radio-tracking studies conducted by CPW have documented PMJM using upland habitat adjacent to wetlands and riparian areas (Shenk and Sivert 1999).

4.1.2 Threats

Threats to PMJM and their habitat include habitat alteration, degradation, loss, and fragmentation resulting from human land uses including urban development, flood control, water development, and agriculture. Habitat destruction may impact individual PMJM directly or by destroying nest sites, food resources, and hibernation sites; by disrupting behavior; or by forming a barrier to movement. Invasive non-native and noxious weeds can alter habitat and decrease its value.

4.1.3 Critical Habitat

Critical habitat is specific areas identified by the USFWS as being essential to the conservation of PMJM (USFWS, 2016). In determining which areas to designate as critical habitat, the USFWS must use the best scientific and commercial data available and consider physical and biological features (primary, constituent elements) that are essential to conservation of the species, and that may require special management consideration and protection. The primary constituent elements for the PMJM include those habitat components essential for the biological needs of reproducing, rearing of young, foraging, sheltering, hibernation, dispersal, and genetic exchange. Thus, critical habitat includes riparian areas located within grassland, shrub land, forest, and mixed vegetation types where dense herbaceous or woody vegetation occurs near the ground level, where available open water exists during their active season, and where there are ample upland habitats of sufficient width and quality for foraging, hibernation, and refugia from catastrophic flooding events. Section 7 of the Endangered Species Act prohibits destruction or adverse modification of a critical habitat by any activity funded, authorized, or carried out by any Federal agency, and Federal Agencies proposing actions affecting areas designated as critical habitat must consult with the USFWS on the effects of their proposed actions, pursuant to Section 7(a)(2) of the Act.

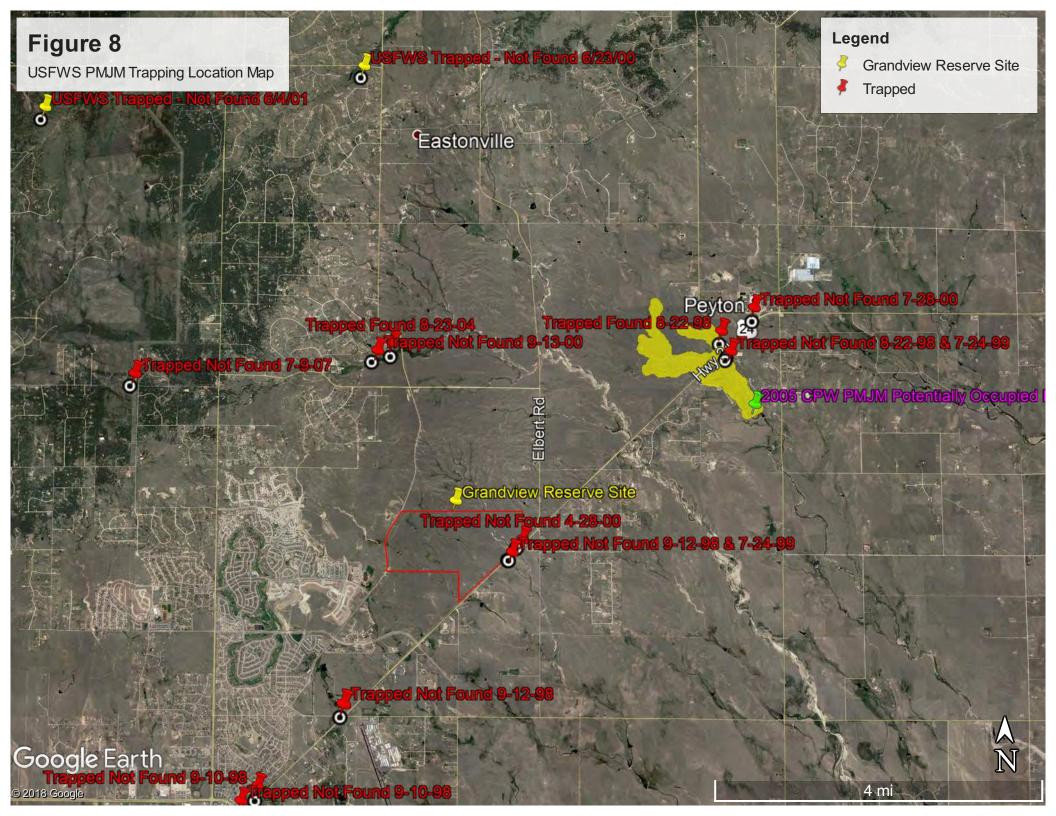
4.1.4 Potentially Occupied Range

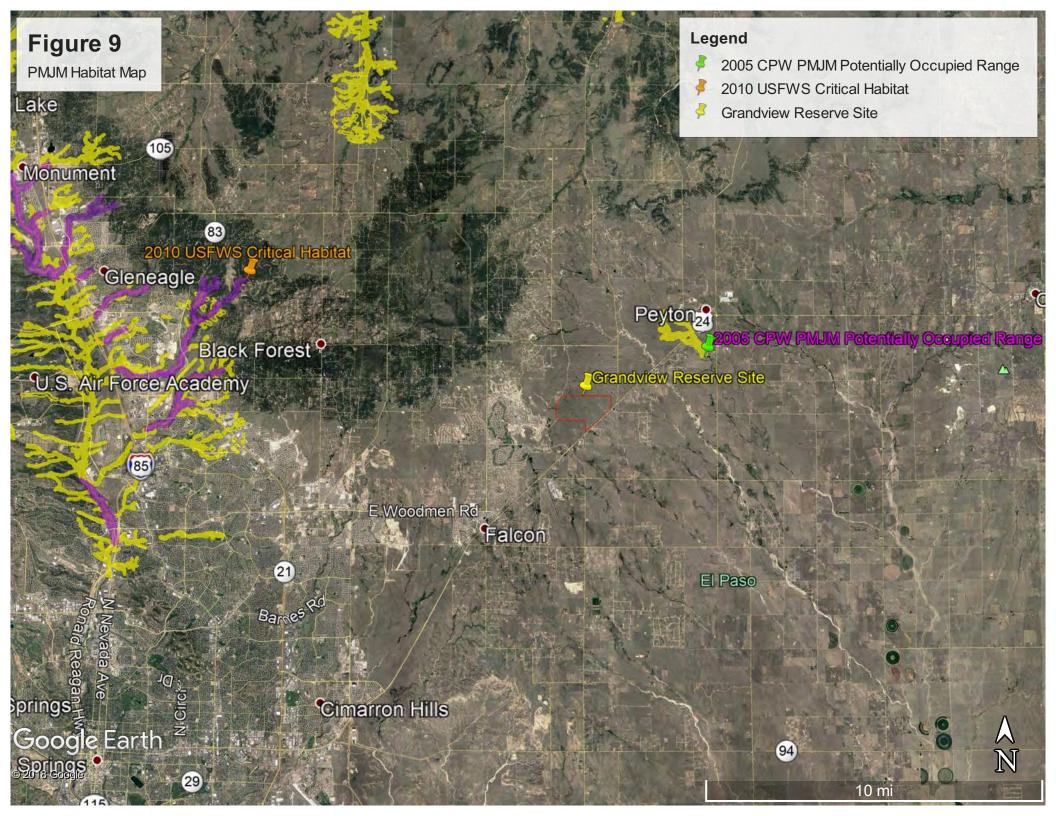
Colorado Parks and Wildlife (CPW) mapped areas of "potential" PMJM occupied range (CPW, 2005). The occupied range mapping is based on known occurrences of PMJM (i.e., trapping data) and mapped riparian vegetation (i.e., potential habitat that was not necessarily trapped or verified). For each known PMJM location, a one-mile buffer is applied to riparian areas both upstream and downstream. This includes both the main channel and side channels. Additionally, a 100-meter lateral buffer is applied which, in general, represents foraging and hibernaculum habitat. This buffer serves as a general guideline. Site specific topographic and vegetative features may increase or decrease the area considered locally as foraging and hibernaculum habitat. Where riparian vegetation maps don't exist, the stream centerline is buffered laterally by 100 meters.

4.1.5 Summary

PMJM are very unlikely to occur on the Site or be affected by the Project due to:

1) the absence of onsite habitat required to support the life requisites of the species;


2) negative trapping results reported by USFWS adjacent to the Site;


3) 10.22-mile distance from closest CPW "Potential" Occupied Range (west/northwest of the Site in Colorado Springs);

4) 6.5-mile distance from closest USFWS Critical Habitat (southwest of the Site along Black Squirrel Creek in Colorado Springs); and

5) lack of a habitat connection corridor from known habitat to the Site.

Refer to Figure 8 – USFWS PMJM Trapping Map and Figure 9 – PMJM Habitat Map.

5.0 RAPTORS AND MIGRATORY BIRDS

Raptors and most birds are protected by the Colorado Nongame Wildlife Regulations, as well as by the federal Migratory Bird Treaty Act and/or the Bald and Golden Eagle Protection Act. No raptor nests have been mapped within one mile of the Site (COGCC, 2020). No raptors nests were observed during the site visit. However, the short grass prairie and wetland habitats are valuable nesting and foraging habitat for birds.

6.0 SUMMARY OF POTENTIAL IMPACTS

6.1 Mineral and Natural Resource Extraction

The previous project engineer researched the records of the El Paso County Clerk and Recorder and established that there is not a mineral estate owner on the Site (Appendix E). This research will be replicated for this current iteration of the Project and provided prior to Preliminary Plan submittal. However, Mineral or Natural Resource Extraction will not occur as a part of this Project, and no associated impacts to habitat will occur.

6.2 Vegetation

There are two main types of vegetation on Site; wetlands and short-grass prairie. Longterm cattle grazing has degraded vegetation by increasing weeds (although mild) in many areas and severely reducing woody riparian vegetation along the drainages. Direct negative impacts to vegetation will result from the construction of roads, trails, and homes; and indirect negative impacts will result such as spreading weeds to new areas or alteration of wetland hydrology. Since the project will preserve the onsite drainages and an open space area, there is good potential to improve vegetation in these areas. The following recommendations are intended to minimize negative impacts and increase positive impacts:

- 1. Create a habitat restoration and management plan for the drainages and Open Space areas that begins as soon as possible, continues through construction, and is taken over and implemented by the Metropolitan District following construction.
- Increase native vegetation in the disturbed shortgrass prairie areas by seeding with native species. Another option would be to spread ~1" of salvaged topsoil obtained/stockpiled from any non-weedy shortgrass prairie area that would be impacted by infrastructure construction, such as roads and associated disturbances, and use it in undisturbed areas.
- 3. Include requirements in the Codes, Covenants and Restrictions (CCRs) to preserve native vegetation and minimize non-native landscaping and irrigation.
- 4. Implement a stormwater management system that does not significantly increase flows into the drainages and prepare a natural channel stabilization plan for all drainages.

6.3 Wetland Habitat and Waters of the U.S.

Drainages A and D are both jurisdictional WOUS, including adjacent wetlands; therefore, potential regulatory impacts to these drainages are discussed below:

<u>Drainage A</u> is the western-most drainage located between Parcels E and F (Medium Density) along the west side; and Parcels C, D and G (Medium Density) along the east side. The Sketch Plan (Figure 2) illustrates an Open Space buffer along both sides of the drainage that will assist in ameliorating the effects of residential runoff. This buffer area should be planted with multi-story palette of native upland and riparian species to supplement the regrowth and regeneration of previous woody vegetation (now that grazing has been removed), provide shading to regulate pH and water quality, and assist in stabilizing the streambanks. Given that Parcels E and F are proposed to be accessed via Eastonville Road to the west and the Waterbury project to the south, it does not appear that a road crossing of Drainage A will be necessary. Utility lines will need to cross Drainage A to get service to all lots; however, this impact may be avoided by boring beneath the drainage. A Detention Pond is proposed along the downstream, west side of the drainage that will require an outfall into the drainage. However, with proper location and alignment, impacts for this outfall should be minimal and primarily restored in-place.

Drainage D is the eastern-most drainage located between Parcels M (Medium-High Density), R (Medium Density) and Q (Low Density) along the west side; and Parcels N (Medium Density) and P (Low Density) along the east side. The Sketch Plan (Figure 2) illustrates an Open Space buffer along both sides of the drainage that will assist in ameliorating the effects of residential runoff. This buffer area should be planted with multi-story palette of native upland and riparian species to supplement the regrowth and regeneration of previous woody vegetation (now that grazing has been removed), provide shading to regulate pH and water quality, and assist in stabilizing the streambanks. A road crossing is proposed over the upstream reach of Drainage D that may cause impacts to WOUS and wetlands; however, these impacts may be significantly reduced if a free-span bridge is used. Utility lines will need to cross Drainage D to get service to all lots; however, this impact may be avoided by boring beneath the drainage or minimized by including them in the road crossing ROW. Three Detention Ponds are proposed along the drainage, one upstream and two downstream, all of which will require outfalls into the drainage. However, with proper location and alignment, impacts for these outfalls should be minimal and primarily restored in-place.

<u>All Drainages</u>: Project phasing should be used to avoid Site-wide, over-lot grading and related impacts from runoff, erosion and pollutant discharge into the drainages. Given the proposed density of development, strategic stormwater control before, during and after construction will be required to avoid these impacts and the associated channel incision and streambank degradation. Stormwater runoff from streets and impervious surfaces should be treated via vegetated swales, separators, (e.g., "Stormceptors" or similar oil and sediment separators) and/or the proposed detention basins prior to discharge into the drainages.

6.4 Weeds

Weeds observed on Site included three List B noxious weed species and one List C noxious weed species (CDA, 2018a). Suppression is required for all List B species. Site development typically causes weeds to increase due to increased earth disturbance and new weeds being brought in (on vehicles and shoes, in soil and fill material, in landscaping supplies, etc.). The following recommendations are intended to minimize negative impacts and increase positive impacts:

- 1. Introduce biological control agents for weed control as soon as possible.
- 2. Implement an integrated noxious weed management plan that begins as soon as possible, continues through construction, and is taken over and implemented by the Metropolitan District following construction. Control of List B species should be the highest priority, particularly knapweed.
- 3. Include requirements in the CCRs that landowners manage weeds on their property per the Colorado Noxious Weed Act and El Paso County guidelines.
- 4. Prohibit importation of fill dirt and landscaping material from other locations unless it is certified as weed free.

6.5 Wildfire Hazard

The Site is comprised entirely of herbaceous prairie and wetland vegetation designated as "Low Hazard – Non Forested" and has no forested (high hazard) areas (Figure 7). Therefore, it is not subject to the wildland areas requirements and does not require the preparation of a Wildland Fire and Hazard Mitigation Plan.

6.6 Wildlife Communities

The impact to wildlife is similar to that for vegetation. Species that occur in wetland and riparian habitat are expected to benefit from Open Space protection. Implementation of the stormwater management plan will assist in protecting water quality in the drainages, to ameliorate development impacts on aquatic wildlife species. Many shortgrass prairie specialist species avoid areas with buildings, overhead powerlines, and trees; thus, the project is expected to have the most significant negative impact on these species. The following, additional recommendations are intended to reduce impacts to wildlife:

- 1. Limit the use of herbicides, pesticides, and fertilizers as they can negatively impact aquatic wildlife species.
- 2. Ecos has recommended that the Project minimize the installation of fencing to avoid injury to wildlife. When fencing is needed, we have specified the use of wildlife friendly fences or the inclusion of specific wildlife crossings along fence lines. Pronghorn are of particular concern because they do not jump over fences and can be injured by barbed-wire fences. The El Paso County, Community Services Department, Environmental Division has requested that fencing be installed to "avoid negative conflicts with pronghorn". Therefore, ecos will

discuss this with the County and if deemed to be in the best interest of pronghorn protection, work with the Applicant to prepare a fencing plan in accordance with Colorado Parks and Wildlife guidelines.

- 3. Road crossings over the drainages should be designed to enable wildlife underpass and allow use of the drainages as movement corridors to reduce collisions with vehicles.
- 4. Dogs should be kept in fenced pens and be leashed when on walks. At least one designated off-leash area for dogs should be provided, as this will increase compliance with leash rules in other areas.
- 5. Cats should no be allowed outdoors because they kill birds and native rodents. Cats may also be eaten by foxes and coyotes.

6.7 Federal Listed Species

The Site is not located within any USFWS designated critical habitat or known occupied habitat for federally designated threatened or endangered species, including the Preble's meadow jumping mouse. Therefore, no direct or indirect impacts to federally designated threatened or endangered species are expected to occur from the Project.

6.8 Raptors and Migratory Birds

The Project is expected to have minimal impacts on raptors and migratory birds. Preservation of Open Space along the drainages will likely have a positive impact on the birds that use this habitat. The project is expected to have slight negative impact on shortgrass prairie birds due to habitat alteration and increased disturbance by people, dogs, and cats. Negative impacts can be minimized by following the recommendations in the vegetation and wildlife sections.

7.0 REGULATIONS AND RECOMMENDATIONS

7.1 Clean Water Act

Section 404 of the Clean Water Act prohibits the discharge of dredged or fill material into waters of the U.S. (including wetland habitat) without a valid permit. Ecos identified jurisdictional wetland habitat and WOUS along Drainages A and D. However, the majority of the WOUS and wetlands on the Site will be set aside and included in Open Space with buffers; and no jurisdictional wetlands or waters will occur within private lots. Therefore, it is evident that impact minimization has been incorporated since the early stages of the design process. Any proposed impacts to WOUS or wetlands resulting from road or utility crossings, stormwater outfalls, channel stabilization, grading operations or other associated development disturbances should be avoided or minimized to the extent feasible. 4 Site Investments will need to obtain Clean Water Act (CWA) Section 404 Permit authorization from the USACE prior to construction to authorize development-related impacts. At the Sketch Plan phase, detailed data are not available to assess cumulative impacts and assign the type of 404 Permit that may be

applicable. However, if feasible, the cost and timeframe associated with the Project may be minimized if cumulative impacts are avoided and minimized to the extent that they meet the requirements for Nationwide Permit 29 for Residential Developments.

7.2 Endangered Species Act

The Site is not located within any USFWS designated critical habitat or known occupied habitat for federally designated threatened or endangered species, including the Preble's meadow jumping mouse. Therefore, no direct or indirect impacts to federally designated threatened or endangered species are expected to occur from the Project. Therefore, 4 Site Investments is not required to initiate consultation with the USFWS under the ESA. A "Clearance Letter" dated May 25, 2019 was obtained from the USFWS for the previous iteration of this Project that concurred with ecos' findings and "cleared" the entire Site. Ecos requested an updated, 2020 Endangered Species Act (ESA) Clearance Letter from USFWS. The USFWS issued a Concurrence response to our 2020 ESA Clearance Request that states, ""Ute ladies-tresses orchid and Preble's mouse are not likely to occupy the project site. Project is still consistent with the section 7 conclusions from 2019." The Agency has indicated that they have "No Concern" with our findings under the ESA and therefore no further action is required under the ESA (refer to Appendix F)

7.3 Migratory Bird Treaty Act & Bald and Golden Eagle Protection Act

No raptor nests have been mapped within one mile of the Site (COGCC, 2020) and no migratory bird nests were observed within the Site during ecos' assessment. However, given the transitory nature of these species ecos recommends a nesting bird inventory immediately prior to construction to identify any new nests within the Site or within the CPW recommended buffers of the Site. Therefore, the Applicant will perform two surveys for migratory birds and their nests: 1) approximately one to two months prior to construction; and 2) one week prior to construction. If these species are found to be present, construction activities will be restricted during the breeding season near any newly identified nests to ensure the avoidance of take.

7.4 Colorado Noxious Weed Act

In order to ensure Project compliance with the Act, the Noxious Weed Management Plan referenced in Section 3.5.3 of this Report should be implemented, and further site-specific weed management should be implemented on an ongoing basis, starting as soon as feasible.

8.0 REFERENCES

Armstrong, D.M., M.E. Bakeman, A. Deans, C.A. Meaney, and T.R. Ryon. 1997. Report on habitat findings of the PMJM meadow jumping mouse. Boulder, Colorado. Report to the U.S. Fish and Wildlife Service and Colorado Division of Wildlife.

CDA (Colorado Department of Agriculture). 2020a. Noxious Weed Species. Available at: https://www.colorado.gov/pacific/agconservation/noxious-weed-species.

CDA (Colorado Department of Agriculture). 2020b. Request-A-Bug. Available at: https://www.colorado.gov/pacific/agconservation/request-bug.

Chapman, S.S, G.E. Griffith, J.M. Omernik, A.B. Price, J. Freeouf, and D.L. Schrupp. 2006. Ecoregions of Colorado (color poster with map, descriptive text, summary tables and photographs): Reston, Virginia, U.S. Geological Survey.

COGCC (Colorado Oil and Gas Conservation Commission). 2020. COGCC GIS Online.

Colorado Code of Regulations. 2018. Conservation Services Division Code of Colorado Regulations. Rules Pertaining To The Administration And Enforcement Of The Colorado Noxious Weed Act (8 CCR 1206-2).

CNHP (Colorado Natural Heritage Program). 2020. Colorado Wetland Inventory Mapping Tool. Available at: http://www.cnhp.colostate.edu/cwic/location/viewSpatialData.asp.

CPW, 2005. "Preble's Meadow Jumping Mouse - Colorado Occupied Range 2005." Published by Colorado Division of Wildlife on October 12, 2005.

El Paso County. 1996. El Paso County Master Plan for Mineral Extraction. El Paso County Land Development Code Chapter IV - Section 35.13, *Development Requirements for Mineral and Natural Resource Extraction Operations*, available at: <u>http://dev.adm2.elpasoco.com/planning/ldc/LDC-Sec35-13.asp</u>

El Paso County, 2007. El Paso County Wildfire Hazards Based on CVCP Indicators. El Paso County, Colorado. December, 2007.

El Paso County. 2018a. Noxious Weeds and Control Methods. Prepared by the Community Services Department - Environmental Division. Available at: https://communityservices.elpasoco.com/wp-content/uploads/Environmental-Division-Picture/Noxious-Weeds/Noxious-Weed-Control-Book.pdf

El Paso County. 2018b. Land Development Code: Chapter 6. General Development Standards. Effective January 1, 2018.

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

FFPD (Falcon Fire Protection District), 2020. Falcon Fire Department website.

NTCHS (National Technical Committee for Hydric Soils). 1994. *Changes in Hydric Soils of the United States* (including the NTCHS definition of Hydric Soil). Federal Register Volume 59, Number 133. Wednesday, July 13, 1994.

Shenk, T.M. and M.M. Sivert. 1999. Movement patterns of Preble's meadow jumping mouse (*Zapus hudsonius preblei*) as they vary across space and time. Unpublished report of the Colorado Division of Wildlife.

USACE (U.S. Army Corps of Engineers). 2010. Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Western Mountains, Valleys and Coasts Region (Version 2) (USACE, 2010).

USDA (U.S. Department of Agriculture). 2020. USDA PLANTS Database. Available at: http://plants.usda.gov/.

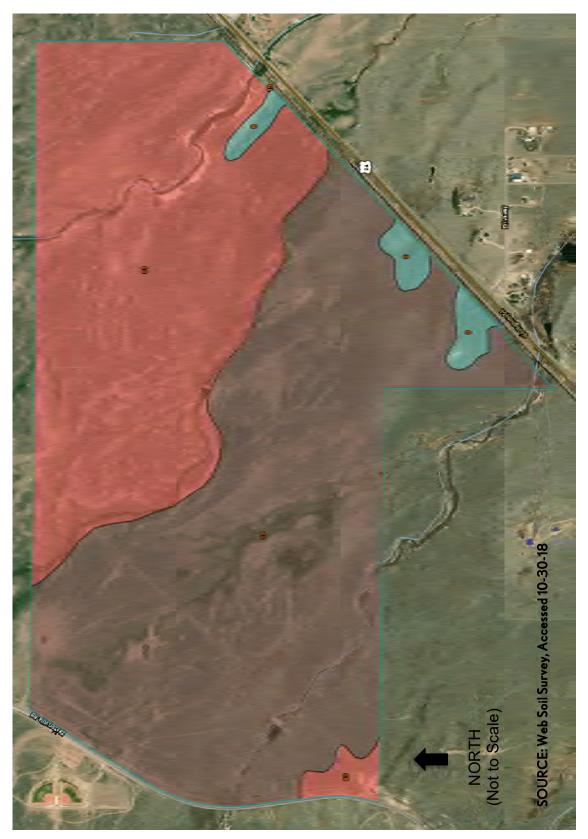
USDA, Natural Resources Conservation Service (NRCS). 2010. Field Indicators of Hydric Soils in the United States, A Guide for Identifying and Delineating Hydric Soils, Version 7.0. L.M. Vasilas, G.W. Hurt and C.V. Noble (eds.). USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils.

USDA, NRCS. 2020. Web Soil Survey. Available at: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.

USFWS (United States Fish and Wildlife Service). 2016. USFWS Mountain-Prairie Region Endangered Species description for the Preble's Meadow Jumping Mouse. Available at: <u>https://www.fws.gov/mountain-prairie/es/preblesMeadowJumpingMouse.php</u>

USFWS. 2020a. National Wetland Inventory, Wetlands Mapper. Available at: <u>http://www.fws.gov/wetlands/Data/Mapper.html</u>.

USFWS. 2020b. Information, Planning, and Conservation System. Available at: <u>https://ecos.fws.gov/ipac/</u>.


Weber, William A. and R.C. Wittmann. 2012. Colorado Flora: Eastern Slope, Fourth Edition. University Press of Colorado, Boulder, Colorado.

White, G.C. and T.M. Shenk. 2000. Relationship of Preble's meadow jumping mouse densities to vegetation cover. Unpublished report of the Colorado Division of Wildlife. May 12, 2000.

Whitson, Tom D. L.C. Burrill, S.A. Dewey, D.W. Cudney, B.E. Nelson, R.D. Lee, and R. Parker. 2004. Weeds of the West, 9th Edition. Western Society of Weed Science, Western United States Land Grant Universities Cooperative Extension Services, and the University of Wyoming, Jackson Hole, Wyoming.

Wingate, Janet. L. 1994. Illustrated Key to the Grasses of Colorado. Wingate Consulting, Denver, Colorado.

Appendix A USDA Soil Data

Summary by Map Unit — El Paso County Area, Colorado (CO625)

Summary by Map Unit — El Paso County Area, Colorado (CO625)					
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
8	Blakeland loamy sand, 1 to 9 percent slopes	Blakeland loamy sand, 1 to 9 percent slopes	17.5	2.3%	
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	Columbine gravelly sandy loam, 0 to 3 percent slopes	428.6	55.8%	
83	Stapleton sandy loam, 3 to 8 percent slopes	Stapleton sandy loam, 3 to 8 percent slopes	322.2	41.9%	
Totals for Area of Interest				100.0%	

Appendix B

USACE Verification Email

CLASSIFICATION: UNCLASSIFIED

Mr. Gurnee,

Based on the information provided in the attached email and our site visit on June 21, 2019 our office concurs with your observations that central Drainage C and south-central Drainage B are isolated and are located entirely upland therefore, we conclude that No permit is required.

If you should have any questions, please contact me at (719).600.8641.

Respectfully,

Tony Martinez, R.E.M.

Regulatory Program Manager | U.S. Army Corps Of Engineers | Office: (719) 600.8641 | Email: joseph.a.martinez@usace.army.mil

Albuquerque District Southern Colorado Regulatory Branch 201 West 8th Street, Suite 350, Pueblo Colorado 81003

Visit our Web Site at: http://www.spa.usace.army.mil/Missions/Regulatory-Program-and-Permits/

-----Original Message-----From: Grant Gurnee [mailto:grant@ecologicalbenefits.com] Sent: Tuesday, June 18, 2019 2:21 PM To: Martinez, Joseph A CIV USARMY CESPA (US) <Joseph.A.Martinez@usace.army.mil> Subject: [Non-DoD Source] FW: Grandview Reserve Project - Request for Verification of Non-JD Drainages

Hi Tony -

Here is the email I sent Van on May 20, 2019.

I hope you received my calendar invitation to meet at 10:30 this Friday (June 21) at the intersection of Stapleton Road and Hwy. 24.

Thank you,

Grant

From: Grant Gurnee <grant@ecologicalbenefits.com <<u>mailto:grant@ecologicalbenefits.com</u>> > Sent: Monday, May 20, 2019 10:23 AM

To: Truan, Van A SPA <van.a.truan@usace.army.mil <<u>mailto:van.a.truan@usace.army.mil</u>>> Cc: Peter Martz <pmartzlrg@comcast.net <<u>mailto:pmartzlrg@comcast.net</u>> >; Mike Bramlett <mbramlett@jrengineering.com <<u>mailto:mbramlett@jrengineering.com</u>> >; Jon Dauzvardis <jon@ecologicalbenefits.com <<u>mailto:jon@ecologicalbenefits.com</u>> > Subject: Grandview Reserve Project - Request for Verification of Non-JD Drainages Importance: High

Hello Van -

Ecos would like to request the Corps' formal concurrence regarding the non-jurisdictional status of Drainages B and C on the Grandview Reserve Site in El Paso County (refer to Section 3.4 and additional information in the attached report). Please let us know if you would like to schedule a site visit to review these drainages with us.

Summary:

The central Drainage C and south-central Drainage B were investigated found to be discontinuous, prairie sloughs with reaches that are upland swales; they exhibited upland "breaks" in which they did not exhibit defined bed or bank (Figure 6 in attached report); and they were also found to be "isolated" as they did not connect with downstream WOUS. Patches of PEMC1 Wetland exists in these drainages that exhibits the 3 parameters for jurisdictional wetland habitat. However, they are clearly disconnected from Black Squirrel Creek by uplands that do not exhibit a defined bed or bank. Therefore, ecos determined that these drainages are isolated, non-jurisdictional features – pending Corps verification.

Thank you,

Grant

Grant Gurnée, P.W.S.

Owner - Restoration Ecologist

ecosystem services LLC

(o): 970-812-ECOS (3267)

(c): 303-746-0091

(w): Blockedwww.ecologicalbenefits.com <Blockedhttp://www.ecologicalbenefits.com/>

(e): grant@ecologicalbenefits.com <<u>mailto:grant@ecologicalbenefits.com</u>>

P Life is like a river...we all must learn to adapt to the challenges of dynamic equilibrium

Appendix C

Commitment Letters to Provide Fire and Emergency Services

FALCON FIRE PROTECTION DISTRICT

Administration Office 7030 Old Meridian Road Falcon, Colorado 80831 Business Number: 719-495-4050 Business Fax: 719-495-3112

October 15, 2018

4 Site Investments, LLC 1271 Kelly Johnson Blvd, Suite 100 Colorado Springs, CO 80920

Re: Conditional Commitment to Provide Emergency Services Property: A portion of 4 Way Ranch- Phase 2

Based upon the information you have provided, a portion of the above-referenced real property is located within the jurisdiction and boundaries of the Falcon Fire Protection District ("Fire Department"). The portion within the boundaries of the Falcon Fire Protection District is that portion west of the North/South section line beginning at the intersection of Highway 24 and Curtis By this letter, the Fire Department confirms its commitment to provide fire suppression, fire prevention, emergency rescue, ambulance, hazardous materials and emergency medical services (collectively, "Emergency Services") to the property within the District boundaries, subject to the following conditions:

- All new construction, renovations or developments within the Fire Department's jurisdiction must comply with the applicable fire code and nationally recognized life-safety standards adopted by the El Paso County Board of County Commissioners and the Fire Department's Board of Directors, as amended from time to time;
- All development, water and construction plans must be reviewed and approved by the Fire Department for compliance with the applicable fire code and nationally recognized life-safety standards prior to final plat or construction permit being issued; and,
- All development or construction projects shall meet the fire code and nationally recognized standards' pertaining to fire protection water. Please note that approved and inspected fire cisterns are permitted by the Fire Department in an attempt to help the property owner/developer meet these requirements.

Please do not hesitate to call the fire administration office or me for further information between 9:00 am and 4:00 pm, Monday through Friday.

Sincerely, Trent Harwig Fire Chief/Administrator

PEYTON FIRE PROTECTION DISTRICT

Administrative Offices

141 Union Boulevard, Suite 150 Lakewood, Colorado 80228-1898 Tel: 303-987-0835 800-741-3254 Fax: 303-987-2032

October 30, 2018

4 Site Investments, LLC 1274 Kelly Johnson Blvd., Suite 100 Colorado Springs, CO 80923

Re: A portion of 4 Way Ranch – Phase 2 (the "Project") – Fire Protection to Serve Letter

To Whom It May Concern:

Based upon the provided information, a portion of the above-referenced Project is located within the jurisdiction and boundaries of the Peyton Fire Protection District (the "District"). The portion within the boundaries of the District is that portion east of the North/South section line beginning at the intersection of Highway 24 and Curtis Road.

The District is able to provide fire prevention and suppression, emergency rescue, emergency medical, and emergency hazardous materials response to the portion of the Project that is within the District service area, subject to the following conditions:

- All new construction, renovations, or developments within the District's jurisdiction must comply with the applicable fire code and nationally recognized life-safety standards adopted by the El Paso County Board of County Commissioners and the District's Board of Directors, as amended from time to time;
- All development, water, and construction plans must be reviewed and approved by the District for compliance with the applicable fire code and nationally recognized life-safety standards prior to final plat or construction permit being issued; and
- All development or construction projects shall meet the fire code and nationally recognized standards pertaining to fire protection water. Approved and inspected fire cisterns are permitted by the District in an attempt to help the property owner/developer meet these requirements.

If additional information is required, please contact our administrative office at 303-987-0835. Thank you.

Sincerely,

Ashley B. Frisbie District Manager

cc: Patrick Palacol, District President Jeffery Turner, Fire Chief

Appendix D

USFWS IPaC Trust Resources Report