HAY CREEK VALLEY FINAL DRAINAGE REPORT

EPC STORMWATER REVIEW COMMENTS IN ORANGE BOXES WITH BLACK TEXT

Prepared for:

VIEW HOMES, INC.

555 Middle Creek Parkway Suite 500 Colorado Springs, CO 80921 (719) 382-9433

Prepared by:

2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 (719) 575-0100 fax (719) 572-0208

September 2023

Project No. 22.886.076

PCD File SP-23-XX

SF2324

Hay Creek Valley
Final Drainage Report

Engine	eer's	Staten	nent:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Jesse Sullivan Registered Professional Engineer State of Colorado No. 55600	Date
Owner/Developer's Statement: I, the owner/developer have read and will comply drainage report and plan.	with all of the requirements specified in this
View Homes, Inc. Business Name	
By:	
Timothy Buschar	Date
Title: Director of Land Acquisition and Developmen	t
Address: 555 Middle Creek Parkway Suite 500 Colorado Springs, CO 80921	
El Paso County:	
Filed in accordance with the requirements of the l Paso County Engineering Criteria Manual and Lan	
Joshua Palmer, P.E. County Engineer / ECM Administrator Conditions:	Date

TABLE OF CONTENTS

CER	TIFICATION		I
I.	INTRODUC	TION	1
II.	HYDROLO	OGIC METHODOLOGY	2
III.	PROJECT	CHARACTERISTICS	5
IV.	BASIN HY	DROLOGY	6
V.	HYDRAUI	IC ANALYSIS	12
VI.	STORM W.	ATER QUALITY	15
VII.	EROSIO	N CONTROL PLAN	16
VIII	. FLOODF	PLAINS	16
IX.	FEE DEVE	ELOPMENT	17
X.	SUMMARY	7	19
XI.	REFEREN	CES	20
6.	APPENDIC	ES	21
APP	ENDIX		
	•	ogic and Hydraulic Calculations	
	1.	Rational Calculations	
	2. 3.	Inlet Calculations Culvert Calculations	
	3. 4.	Runoff Reduction Calculations	
	5.	Pond Calculations	
	6.	HEC-HMS Results	
	7.	StormCAD Results	
	8.	Swale Calculations	
		rd Design Charts and Tables	
	1.	Runoff Coefficients	
	2.	ECM Table 3-1	
	3.	Shallow Flow Velocities	
	4.	Basin Fee Schedule	
	5.	ECM Table 10-4	

C. Report References

- 1. HEC-2 Printout
- 2. FIRMette
- 3. Soil Survey

D. Maps

- 1. Vicinity Map
- 2. Offsite Basins Drainage Basin Map
- 3. Existing Conditions Drainage Basin Map
- 4. Proposed Conditions Drainage Basin Map

I. INTRODUCTION

The Hay Creek Valley site is comprised of approximately 214.6 acres of unplatted and mostly undeveloped land. The site is located on Smow Mountain Heights approximately 700 feet south of its intersection with Hay Creek Road. The site is currently comprised of six (6) parcels which are to be subdivided into 20 lots and three tracts. The existing access road will be replaced with a private road having a 60-foot right of way that will terminate with a cul-de-sac in the southwestern section of the site.

a. PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to evaluate the specific drainage infrastructure requirements which will provide compliance with the approved Hay Creek Valley MDDP / Preliminary Drainage Report, by Matrix, dated August 2023 (MDDP), and the El Paso County Drainage Criteria Manual (DCM) to provide storm water conveyance for associated developments. This study will identify off-site, and on-site drainage patterns associated with respective land uses, provide hydrologic and hydraulic analysis of tributary basins and conveyance structures to a detention pond, and identify effective, safe routing to the downstream outfall. The improvements associated with this report maintain compliance with the DCM by providing full spectrum detention where necessary, which is to be constructed concurrently with the improvements associated with this FDR.

b. DBPS RELATED INVESTIGATIONS

The proposed development is located within the Beaver Creek Drainage Basin. No Drainage Basin Planning Study (DBPS) has been completed for this basin.

c. GENERAL PROJECT DESCRIPTION

The Hay Creek Valley Subdivision is located to the southwest of the intersection of Hay Creek Road and Smow Mountain Heights. The site is located as follows:

- 1. <u>General Location:</u> Southwest ¼ of Section 34 and the Southeast ¼ of Section 33, Township 11 South, Range 67 West of the 6th P.M. in the County of El Paso, State of Colorado.
- 2. <u>Drainageway:</u> The Hay Creek Subdivision is located on the southern edge of the Beaver Creek Drainage Basin. Most of the site drains north and into Hay Creek located approximately 200 feet north of the site. Hay Creek is a tributary to Beaver Creek which ultimately drains into Monument Creek. A small portion of the southeast corner of the site drains south into the Air Force Academy Major Drainage Basin.
- 3. <u>Surrounding Developments:</u> The site is bound Lots 1 through 8 Hay Creek Ranch Subdivision, and 4 unplatted parcels to the north, and by the Air Force Academy the south. The site is bound by Lot 2 Rush Subdivision and Lot 2 Block 1 Smiley Subdivision to the west, and an unplatted parcel to the east.
- 4. Lots to be Platted: The site is to be subdivided into 20 lots zoned RR-5 and 5 tracts.
- 5. <u>Area of Disturbance:</u> The Hay Creek Valley development is expected to disturb a total area of approximately 17.6 acres.
- 6. Streamside Zone: This project is not located within a streamside zone.
- 7. <u>Vegetation:</u> The Hay Creek Valley site contains a single-family residence, a barn and Smow Mountain Heights, a private road that provided access to the site from hay Creek

Road. The vegetation of the site consists of sparse, natural vegetative land cover in the form of grasses and shrubs with sparse trees throughout.

Refer to Appendix D for the Vicinity Map.

d. SOILS CONDITIONS

Soils can be classified in four different hydrologic groups, A, B, C, or D to help predict stormwater runoff rates. Hydrologic group "A" is characterized by deep, well-drained coarse-grained soils with a rapid infiltration rate when thoroughly wet and having a low runoff potential. Group "D" typically has a clay layer at or near to the surface, or a very shallow depth to impervious bedrock and has a very slow infiltration rate and a high runoff potential. See Soils Map, Appendix A. The following soil types are present in the Hay Creek Valley site:

Table 1.1 – NRCS Soil Survey for El Paso County – Hay Creek Valley

Soil ID Number	Soil	Hydrologic Classification	Drainage Class	Percent of Site
38	Jarre-Tecolote Complex, 8 to 65 percent slopes	В	Well Drained	50.8%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	Well Drained	14.5%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	В	Well Drained	34.7%

DATA SOURCES

Topographical information for the district was found using a combination of *United States Geological Survey* (USGS) mapping as well as field surveying. The *Web Soil Survey*, created by the *Natural Resources Conservation Service*, was utilized to investigate the existing general soil types within the district. Offsite contours are taken from the *2018 El Paso County LIDAR* survey and/or USGS Quad Sheets.

e. APPLICABLE CRITERIA AND STANDARDS

This report has been prepared in accordance to the criteria set forth in the City of Colorado Springs and El Paso County DCM, El Paso County Engineering Criteria Manual (ECM) and El Paso County Resolutions 15-042 and 19-245. In addition to the DCM, the **Urban Storm Drainage Criteria Manuals, Volumes 1 through 3**, dated 2016 have been used to supplement the County's Criteria Manual.

II. Hydrologic Methodology

a. MAJOR BASINS AND SUBBASINS

The majority of the Hay Creek Valley site is located within the Beaver Creek Drainage Basin with a small portion of the site tributary to the Air Force Academy Major Drainage Basin. Runoff presently flows overland until reaching an existing natural drainage swale located within the site. This drainage swale directs flows internally until discharging from near the northeastern corner of the site. Drainage

from the developed road will be directed to Pond 1, where the runoff will be treated for water quality and detained to maintain the historic major event discharge rate from the site.

b. METHODOLOGY

i. UD Methods

The hydrology for this project uses both the **SCS Hydrograph Procedure** and the **Rational Method** as recommended by the Drainage Criteria Manual (DCM) for the minor and major storms. The Rational Method is used for drainage basins less than 100-acres in size. The Rational Method uses the following equation:

$$Q=C*i*A$$

Where:

Q = Maximum runoff rate in cubic feet per second (cfs)

C = Runoff coefficient

i = Average rainfall intensity (inches per hour)

A = Area of drainage sub-basin (acres)

Rational Method coefficients from 6-6 of the Drainage Criteria Manual for developed land were utilized in the Rational Method calculations. This method will be used primarily for sizing of storm sewer infrastructure. See Appendix B for more information.

Time of Concentration

The time of concentration consists of the initial time of overland flow and the travel time in a channel to the inlet or point of interest. A minimum time of concentrations of 5 minutes is utilized for urban areas. The Rational Calculation spreadsheet included in Appendix A shows an initial overland flow length, a channel or street flow length for each sub-basin, and also demonstrates the time of concentration calculations for initial (overland) and channel (or street) conditions. A maximum "True Initial" Flow Length of 300 feet will be used for pre-developed sub-basins and a maximum length of 100 feet will be used for Developed sub-basins for time of concentration calculations in compliance with the DCM.

Rainfall Intensity

The hypothetical rainfall depths for the 1-hour storm duration were derived using Table 6-2 of the Colorado Springs DCM (shown below). See Appendix B.

Table 2.1 – Project Area 1-Hour Rainfall Depth

Storm Recurrence Interval	Rainfall Depth (inches)
5-year	1.50
100-year	2.52

The rainfall intensity equation for the Rational Method was taken from Drainage Criteria Manual Volume 1 Figure 6-5.

C-Factors

C-factors for the Rational Method are based on anticipated land use and are taken from Table 6-6. Proposed single family residential is considered as the Single Family – 5 acres category. Areas which will be future open spaces or detention facilities are modeled under the Parks and Cemeteries category. Undeveloped or predevelopment areas are model under Undeveloped Areas-Historic Flow Analysis—Greenbelts, Agriculture category.

ii.HEC-HMS Methods

The DCM requires the use of the SCS Hydrograph Procedure to compute storm water runoff quantities when the drainage area is greater than 100 acres. This report uses HEC-HMS for the routing and analysis of the site conditions.

SCS Lag

The SCS lag calculations are completed as part of this report. Proposed development areas within the Hay Creek area are calculated based on the methodology indicated in the DCM Equations:

Lag time should be equal to 0.6xtc

The Time of Concentration is the sum of overland flow time and the t_t values for the various consecutive flow segments:

$$t_c = t_i + t_{t1} + t_{t2} + t_{t3} \dots t_{tm}$$
 (Eq. 6-14)

Where:

 t_c = time of concentration (hr) t_i = overland (initial) flow time (hr) t_{tm} = travel time for each flow segment (hr) m = number of flow segments

Overland Flow:

$$T_i = 0.007 (n \cdot L)^{0.8} / (P_2)^{0.5} S^{0.4} \tag{Eq. 6-15}$$

Where:

$$\begin{split} &T_i = \text{overland flow time (hr)} \\ &n = \text{Manning's roughness coefficient L} \\ &= \text{flow length (ft)} \\ &P_2 = 2\text{-year, 24-hour rainfall (in)} \\ &S = \text{slope of hydraulic grade line (ft/ft)} \end{split}$$

3,600 =conversion factor from seconds to hours

Concentrated Flow:

 $T_t = L / (3600 \cdot V) \tag{Eq. 6-16}$ Where: $T_t = \text{travel time (hr)}$ L = flow length (ft) V = velocity (ft/s)

Runoff Analysis

The site has been analyzed using HEC-HMS and the NRCS SCS method. The model indicates approximately 0.1 cfs decrease for Q100 event post development of the Hay Creek site. (**EX-Q5, EX-Q100, PR-Q5, and PR-Q100)** These models look at the 5, and 100-year events for onsite detention within the Hay Creek Site and demonstrate a slight reduction for the 100-year event. Print outs from each model can be found in Appendix A.

Hydrographs for the proposed Pond 1 are taken from MHFD-Detention, where appropriate, and input to the model to represent the detention required within the development to maintain the historic flow discharge downstream of the site and provide water quality for the development in accordance with the DCM.

NRCS SCS curve numbers (CN) are taken from Table 6-10 of the DCM and weighted for each basin based on the soil and development types. As recommended in the DCM storms of 2-hour duration are used for the 5-year event. A 24-hour storm is used for the 100-year event. Lag times are calculated for the basins using the formulas from the DCM shown above.

iii. HGL Profile Methods

Preliminary sizing of storm sewer has been completed using the Manning's channel flow calculation.

To confirm DCM compliant capacity and velocity values the site has been modeled in StormCAD using the Standard head loss method and head loss values taken from Table 9-4 of the DCM. HGL profiles modeled in StormCAD are included in Appendix C.

III. Project Characteristics

a. BASIN LOCATION AND FLOWS

The Hay Creek Valley site is found on the southern border of the Beaver Creek Drainage Basin. In addition to the 214.6-acre site, there are off-site basins east, west,

Table 9-4. STORMCAD Standard Method Coefficients

	Bend Loss			
Bend Angle	K Coeff	ïcient		
0°	0.0:	5		
22.5°	0.10	0		
45°	0.4	0		
60°	0.6	4		
90°	1.33	2		
LATERAL LOSS				
(One Lateral K Coeffici	ent		
Bend Angle	Non-surcharged	Surcharged		
45°	0.27	0.47		
60°	0.52	0.90		
90°	1.02	1.77		
Т	wo Laterals K Coeffic	ient		
45° 0.96				
60°	1.16			
90°	1.53	2		

and south of the site that contribute a total tributary area of 98.5 acres. The Hay Creek Valley Road & Storm improvements are anticipated to disturb approximately 17.6 acres.

b. MAJOR DRAINAGEWAYS

Beaver Creek

The majority of the Hay Creek Valley site is located within the Beaver Creek Drainage Basin. Runoff generated within this basin presently flows overland with slopes ranging from 5 to 50% until reaching an existing natural drainage swale located within the site. This drainage swale directs the sites flows internally until discharging from the site near the northeastern corner. Drainage from the developed road will be directed to Pond 1, where the runoff will be treated for water quality and detained to maintain the historic major event discharge rate from the site.

Air Force Academy

The area along the southeastern border of the site drains southeast into the Air Force Academy Major Drainage Basin. Runoff generated within this basin presently flows overland with slopes ranging from 15 to 45% until exiting the site to the southeast into the adjacent property.

c. LAND USES

Presently, the site is unplatted and consists mostly of undeveloped land. The 214.6-acre area is entirely zoned RR-5. The site will consist of residential lots containing 5-acres or more and three tracts, one containing the proposed Pond 1, one containing the proposed roadway, and the other containing the Preble's mouse habitat which is undevelopable.

IV. BASIN HYDROLOGY

a. The <u>Pre-development conditions</u> for the Hay Creek Valley site have been analyzed and are presented by design points and are described as follows:

Predevelopment conditions have been analyzed using both the SCS Hydrograph Procedure and the routed Rational Method. The existing conditions will discuss the entry of runoff from off-site basins as it relates to the respective design point. Runoff generated, either on-site or off-site, drains overland towards the northeastern corner of the site where it is captured by the existing natural swale that runs northeast, exiting the site and releasing flows to be collected in Hay Creek. Generally, all undeveloped basins are considered to be vegetated with sparse grasses. A delineation of the basin boundaries can be found in Appendix D in drawings DR-01 and DR-02. Runoff calculations can be found in Appendix A. The existing runoff design points are described below:

Design Point 1 (Rational ($Q_5 = 3.5$ cfs, $Q_{100} = 18.9$ cfs) HEC-HMS ($Q_5 = 0.8$ cfs, $Q_{100} = 4.1$ cfs)) (sub-basin: EX-OS1a; Area: 9.4 Ac.) (Slopes: 5 to 15%) This point represents the discharge from offsite sub-basin EX-OS1a into the site. Stormwater runoff will sheet flow to the east and into sub-basin EX-1.

Design Point 2 (Rational ($Q_5 = 12.3$ cfs, $Q_{100} = 74.6$ cfs) HEC-HMS ($Q_5 = 2.6$ cfs, $Q_{100} = 15.7$ cfs)) (sub-basin: EX-OS1b; Area: 59.2 Ac.) (Slopes: 5 to 10%) This point represents the discharge from offsite sub-basin EX-OS1b into the site. Stormwater runoff will sheet flow to the east and into sub-basin EX-2.

Design Point 3 (Rational ($Q_5 = 7.8 \text{ cfs}$, $Q_{100} = 42.0 \text{ cfs}$) HEC-HMS ($Q_5 = 1.5 \text{ cfs}$, $Q_{100} = 8.0 \text{ cfs}$)) (sub-basin: EX-OS2a; Area: 15.9 Ac.) (Slopes: 20 to 50%) This point represents the discharge from offsite sub-basin EX-OS2a into the site. Stormwater runoff will sheet flow to the north and into sub-basin EX-2.

Design Point 4 (Rational ($Q_5 = 1.3$ cfs, $Q_{100} = 6.7$ cfs) HEC-HMS ($Q_5 = 0.3$ cfs, $Q_{100} = 1.4$ cfs)) (sub-basin: EX-OS2b; Area: 2.8 Ac.) (Slopes: 10 to 40%) This point represents the discharge from offsite sub-basin EX-OS2b into the site. Stormwater runoff will sheet flow to the north and into sub-basin EX-3.

Design Point 5 (Rational ($Q_5 = 1.6$ cfs, $Q_{100} = 8.2$ cfs) HEC-HMS ($Q_5 = 0.3$ cfs, $Q_{100} = 1.6$ cfs)) (sub-basin: EX-OS2c; Area: 3.2 Ac.) (Slopes: 10 to 50%) This point represents the discharge from

offsite sub-basin EX-OS2c into the site. Stormwater runoff will sheet flow to the north and into sub-basin EX-3.

Drainage map states 8.1ac

Design Point 6 (Rational ($Q_5 = 2.7$ cfs, $Q_{100} = 17.7$ cfs) HEC-HMS ($Q_5 = 0.2$ cfs, $Q_{100} = 2.0$ cfs)) (sub-basin: EX-OS3; Area: 8.2 Ac.) (Slopes: 10 to 45%) This point represents the discharge from offsite sub-basin EX-OS3 into the site. Stormwater runoff will sheet flow to the west and into sub-basin EX-5.

Design Point 7 (Rational ($Q_5 = 2.3$ cfs, $Q_{100} = 15.6$ cfs) HEC-HMS ($Q_5 = 2.3$ cfs, $Q_{100} = 15.6$ cfs)) (sub-basin: EX-4; Area: 5.9 Ac.) (Slopes: 10 to 50%) This point represents the discharge from sub-basin EX-4 into the adjacent property. Stormwater runoff will sheet flow to the south and into the adjacent property then continue south along historic paths.

Design Point 8 (Rational ($Q_5 = 26.1$ cfs, $Q_{100} = 153.1$ cfs) HEC-HMS ($Q_5 = 5.4$ cfs, $Q_{100} = 30.9$ cfs)) (sub-basins: EX-OS1b, EX-OS2a, EX-2; Area: 123.3 Ac.) (Slopes: 5 to 30%) This point represents the combined discharge from sub-basins EX-OS1b, EX-OS2a, and EX-2 into sub-basin EX-1. Stormwater runoff will sheet flow to the north to combine with the flows from sub-basin EX-1 before continuing along historic paths.

Design Point 9 (Rational ($Q_5 = 17.6$ cfs, $Q_{100} = 106.5$ cfs) HEC-HMS ($Q_5 = 2.9$ cfs, $Q_{100} = 17.4$ cfs)) (sub-basins: EX-OS2b, EX-OS2c, EX-3; Area: 67.6 Ac.) (Slopes: 5 to 60%) This point represents the combined discharge from sub-basins EX-OS2b, EX-OS2c, and EX-3 into sub-basin EX-1. Stormwater runoff will sheet flow to the north to combine with the flows from sub-basin EX-1 before continuing along historic paths.

Design Point 10 (Rational ($Q_5 = 13.5$ cfs, $Q_{100} = 85.3$ cfs) HEC-HMS ($Q_5 = 1.8$ cfs, $Q_{100} = 11.9$ cfs)) (sub-basins: EX-OS3, EX-5; Area: 51.0 Ac.) (Slopes: 5 to 50%) This point represents the combined discharge from sub-basins EX-OS3, and EX-5 into sub-basin EX-1. Stormwater runoff will sheet flow to the north to combine with the flows from sub-basin EX-1 before continuing along historic paths.

Design Point 11 (Rational ($Q_5 = 35.0$ cfs, $Q_{100} = 210.9$ cfs) HEC-HMS ($Q_5 = 11.2$ cfs, $Q_{100} = 69.9$ cfs)) (sub-basins: EX-OS1a, EX-OS1b, EX-OS2a, EX-OS2b, EX-OS2c, EX-OS3, EX-1, EX-2, EX-3, EX-5; Area: 307.3 Ac.) (Slopes: 5 to 50%) This point represents the total discharge from the site. Stormwater runoff is collected in a natural swale and directed to the northeast. The channelized flow exits the site near the northeast corner of the site and continues north before draining into Hay Creek approximately 300 feet north of the site.

Design Point HC ($Q_{100} = 127$ cfs) This point represents the stormwater flows in Hay Creek at the existing private 24"x36" culvert to the north of the site. The existing private 24"x36" culvert conveys the flows in Hay Creek under the existing access road. The proposed flows in Hay Creek come from the HEC-2 analysis provided by the Regional Floodplain Administrator. The HEC-2 results are included in **appendix C**.

b. The <u>fully developed conditions</u> for the site are as follows:

Post development conditions have been analyzed using both the SCS Hydrograph Procedure and the rational routed flow. The proposed conditions will discuss the entry of runoff from off-site basins as it relates to the respective design point. Runoff generated, either on-site or off-site, drains overland towards the northeastern corner of the site where it is captured by the existing natural swale that runs northeast, exiting the site and releasing flows to be collected in Hay Creek. Generally, the developed lots are considered to be residential lots containing 5 acres or more, having an imperviousness of 7.0%. Sub-basins PR-8a and PR-8b, which contain the proposed roadway and ditch, have an imperviousness of 66.4%. Sub basins PR-9, and PR-10, containing the proposed Pond 1 and open space are considered to have an imperviousness of 2.0%. A delineation of the basin boundaries can be found in Appendix D in drawing DR-03. Runoff calculations can be found in Appendix A. The existing runoff design points are described below:

Design Point 1 (Rational ($Q_5 = 3.5 \text{ cfs}$, $Q_{100} = 18.9 \text{ cfs}$) HEC-HMS ($Q_5 = 0.8 \text{ cfs}$, $Q_{100} = 3.6 \text{ cfs}$)) (sub-basin: OS1a; Area: 9.4 Ac.) (Slopes: 5 to 15%) This point represents the discharge from offsite sub-basin OS1a into the site. Stormwater runoff will sheet flow to the east and into sub-basin PR-1b.

Design Point 2 (Rational ($Q_5 = 12.3$ cfs, $Q_{100} = 74.6$ cfs) HEC-HMS ($Q_5 = 2.6$ cfs, $Q_{100} = 14.2$ cfs)) (sub-basin: OS1b; Area: 59.2 Ac.) (Slopes: 5 to 10%) This point represents the discharge from offsite sub-basin OS1b into the site. Stormwater runoff will sheet flow to the east and into sub-basin PR-1a.

Design Point 3 (Rational ($Q_5 = 2.2$ cfs, $Q_{100} = 12.4$ cfs) HEC-HMS ($Q_5 = 0.4$ cfs, $Q_{100} = 1.8$ cfs)) (sub-basin: OS2a; Area: 5.0 Ac.) (Slopes: 20 to 50%) This point represents the discharge from offsite sub-basin OS2a into the site. Stormwater runoff will sheet flow to the north and into sub-basin PR-1a.

Design Point 4 (Rational ($Q_5 = 4.0 \text{ cfs}$, $Q_{100} = 21.6 \text{ cfs}$) HEC-HMS ($Q_5 = 0.7 \text{ cfs}$, $Q_{100} = 3.2 \text{ cfs}$)) (sub-basin: OS2b; Area: 8.6 Ac.) (Slopes: 20 to 50%) This point represents the discharge from offsite sub-basin OS2b into the site. Stormwater runoff will sheet flow to the north and into sub-basin PR-2.

Design Point 5 (Rational ($Q_5 = 1.3 \text{ cfs}$, $Q_{100} = 6.5 \text{ cfs}$) HEC-HMS ($Q_5 = 0.3 \text{ cfs}$, $Q_{100} = 1.2 \text{ cfs}$)) (sub-basin: OS2c; Area: 2.3 Ac.) (Slopes: 20 to 50%) This point represents the discharge from offsite sub-basin OS2c into the site. Stormwater runoff will sheet flow to the north and into sub-basin PR-3.

Design Point 6 (Rational ($Q_5 \not\equiv 2.9$ cfs, $Q_{100} = 14.4$ cfs) HEC-HMS ($Q_5 = 0.5$ cfs, $Q_{100} = 2.3$ cfs)) (sub-basin: OS2d, OS2e; Area: 5.9 Ac.) (Slopes: 10 to 50%) This point represents the combined discharge from offsite sub-basins OS2d and OS2e into the site. Stormwater runoff will sheet flow to the north and into sub-basin PR-4.

Design Point 7 (Rational ($Q_5 = 1.5$ cfs, $Q_{100} = 10.1$ cfs) HEC-HMS ($Q_5 = 0.1$ cfs, $Q_{100} = 0.9$ cfs)) (sub-basin: OS3a; Area: 4.9 Ac.) (Slopes: 5 to 40%) This point represents the discharge from sub-basin OS3a into the site. Stormwater runoff will sheet flow to the north and into sub-basin PR-7.

Design Point 8 (Rational ($Q_5 = 1.1 \text{ cfs}$, $Q_{100} = 7.6 \text{ cfs}$) HEC-HMS ($Q_5 = 0.1 \text{ cfs}$, $Q_{100} = 0.8 \text{ cfs}$)) (sub-basins: OS3b; Area: 3.3 Ac.) (Slopes: 10 to 45%) This point represents the discharge from sub-basin OS3b into the site. Stormwater runoff will sheet flow to the west and into sub-basin PR-10.

Design Point 9 (Rational ($Q_5 = 3.1$ cfs, $Q_{100} = 17.0$ cfs)) (sub-basins: PR-5; Area: 5.9 Ac.) (Slopes: 10 to 50%) This point represents the discharge from sub-basin PR-5 into the adjacent property. Stormwater runoff will sheet flow to the south and into the adjacent property then continue south along historic paths. Note: HEC-HMS values not calculated for this basin due to size and its not being tributary to the site infrastructure.

Design Point 10 (Rational ($Q_5 = 15.0$ cfs, $Q_{100} = 88.8$ cfs) HEC-HMS ($Q_5 = 3.7$ cfs, $Q_{100} = 19.5$ cfs)) (sub-basins: OS1b, OS2a, PR-1a; Area: 77.2 Ac.) (Slopes: 5 to 30%) This point represents the flows from sub-basins OS1b, OS2a and PR-1a that are directed to the proposed private type C inlet at DP-10. The flows collected at DP-10 are conveyed northeast via proposed private 36-inch RCP storm drain towards Design Point 11b (DP-11b).

Design Point 11a (Rational ($Q_5 = 4.9 \text{ cfs}$, $Q_{100} = 26.8 \text{ cfs}$) HEC-HMS ($Q_5 = 1.3 \text{ cfs}$, $Q_{100} = 6.1 \text{ cfs}$)) (sub-basins: OS1a, PR-1b; Area: 15.6 Ac.) (Slopes: 5 to 30%) This point represents the flows from sub-basins OS1a, and PR-1b that are directed to the proposed private type C inlet at DP-11a. The flows collected at DP-11 are combined with the flows from DP-10 at DP-11b before being conveyed to the east via proposed private 36-inch RCP storm drain which outfalls via a proposed private flared end section that directs the flows to the east along historic paths.

Design Point 11b (Rational ($Q_5 = 18.4 \text{ cfs}$, $Q_{100} = 107.5 \text{ cfs}$) HEC-HMS ($Q_5 = 5.0 \text{ cfs}$, $Q_{100} = 25.2 \text{ cfs}$)) (sub-basins: OS1a, OS2a, OS1b, PR-1a, PR-1b; Area: 92.8 Ac.) (Slopes: 5 to 30%) This point represents the combination of the flows collected at DP-10 and DP-11a. The combined flows are conveyed to the east via proposed private 36-inch RCP storm drain which outfalls via a proposed private flared end section that directs the flows to the east along historic paths.

Design Point 12 (Rational ($Q_5 = 9.0$ cfs, $Q_{100} = 48.8$ cfs) HEC-HMS ($Q_5 = 2.1$ cfs, $Q_{100} = 9.6$ cfs)) (sub-basins: OS2b, PR-2; Area: 24.7 Ac.) (Slopes: 5 to 30%) This point represents the flows from sub-basins OS2b and PR-2 that have been collected in the roadside ditch that runs along the south side of the proposed roadway. The roadside ditch located upstream of Design Point 12 will be lined with Type M Rip Rap. These flows travel northeast in the ditch before being collected in the proposed private 36-inch Flared End Section (FES) at Design Point 12 (DP-12). These flows are conveyed under the proposed roadway to the north, discharging via a proposed private 36-inch FES before continuing along historic paths.

Design Point 13 (Rational ($Q_5 = 4.5$ cfs, $Q_{100} = 24.0$ cfs) HEC-HMS ($Q_5 = 1.0$ cfs, $Q_{100} = 4.6$ cfs)) (sub-basins: OS2c, PR-3; Area: 12.1 Ac.) (Slopes: 5 to 30%) This point represents the flows from sub-basins OS2c and PR-3 that have been collected in the roadside ditch that runs along the south side of the proposed roadway. The roadside ditch along this stretch will be protected with Type L Rip Rap. These flows travel northeast in the ditch before being collected in the proposed private 30-inch FES at Design Point 13 (DP-13). These flows are conveyed under the proposed roadway to the north, discharging via a proposed private 30-inch FES before continuing along historic paths.

Design Point 14 (Rational ($Q_5 = 8.7$ cfs, $Q_{100} = 46.8$ cfs) HEC-HMS ($Q_5 = 2.7$ cfs, $Q_{100} = 12.3$ cfs)) (sub-basins: OS2d, OS2e, PR-4; Area: 34.3 Ac.) (Slopes: 5 to 60%) This point represents the flows from sub-basins OS2d, OS2e and PR-4 that have been collected in the roadside ditch that runs along the south side of the proposed roadway. The roadside ditch along this stretch will be protected with Type L Rip Rap. These flows travel northeast in the ditch before being collected in the proposed private 36-inch FES at Design Point 14 (DP-14). These flows are conveyed under the proposed roadway to the north, discharging via a proposed private 36-inch FES before continuing along historic paths.

Design Point 15 (Rational ($Q_5 = 14.4$ cfs, $Q_{100} = 78.4$ cfs) HEC-HMS ($Q_5 = 3.7$ cfs, $Q_{100} = 17.0$ cfs)) (sub-basin: PR-6; Area: 44.8 Ac.) (Slopes: 5 to 60%) This point represents the flows from sub-basin PR-6 that have been collected in the roadside ditch that runs along the south side of the proposed roadway. The roadside ditch along this stretch will be protected with Type L Rip Rap. These flows travel northeast in the ditch before being collected in the proposed private Type C Inlet at Design Point 15 (DP-15). These flows are conveyed under the proposed roadway to the north via proposed private 30" RCP, to be combined with the flows collected at Design Point 18a (DP-18a).

Design Point 16 (Rational ($Q_5 = 5.6$ cfs, $Q_{100} = 31.9$ cfs) HEC-HMS ($Q_5 = 1.2$ cfs, $Q_{100} = 6.1$ cfs)) (sub-basin: OS3a, PR-7; Area: 18.3 Ac.) (Slopes: 5 to 10%) This point represents the flows from sub-basins OS3a, and PR-7 that have been collected in the roadside ditch that runs along the south side of the proposed roadway downstream of DP-15. The roadside ditch along this stretch will be protected with Type L Rip Rap. These flows travel northeast in the ditch before being collected in the proposed private 30" FES at Design Point 16 (DP-16). These flows are conveyed under the proposed roadway to the west via proposed private 30" RCP.

Design Point 17 (Rational ($Q_5 = 27.6$ cfs, $Q_{100} = 154.2$ cfs) HEC-HMS ($Q_5 = 11.8$ cfs, $Q_{100} = 58.1$ cfs)) (sub-basins: OS1a, OS1b, OS2a, OS2b, OS2c, OS2d, OS2e, PR-1a, PR-1b, PR-1c, PR-2, PR-3, PR-4; Area: 217.0 Ac.) (Slopes: 5 to 50%) This point represents the outfall from the proposed private swale located along the northwestern border of the proposed private pond (Pond 1). The combined flows from sub-basins OS1a, OS1b, OS2a, OS2b, OS2c, OS2d, OS2e, PR-1a, PR-1b, PR-1c, PR-2, PR-3, and PR-4 are collected in the proposed swale and diverted around Pond 1 toward the proposed stilling basin at Design Point 19. The proposed swale will be lined with Type L Rip Rap.

Design Point 18a (Rational ($Q_5 = 5.2 \text{ cfs}$, $Q_{100} = 10.8 \text{ cfs}$) HEC-HMS ($Q_5 = 3.3 \text{ cfs}$, $Q_{100} = 7.8 \text{ cfs}$)) (sub-basins: PR-8a; Area: 4.7 Ac.) (Slopes: 2.8 to 6%) This point represents the Proposed Private Type-C inlet located on the north side of the proposed roadway southwest of the proposed pond (Pond 1). All flows from the proposed roadway will drain to the north and into the northern roadside ditch. All runoff from the proposed roadway will drain to the Type C inlet at Design Point 18a. The flows collected in the inlet will be conveyed downstream towards the proposed private forebay at Design Point EDB-IN via proposed private 18-inch RCP pipe.

Design Point 18b (Rational ($Q_5 = 13.7$ cfs, $Q_{100} = 58.8$ cfs) HEC-HMS ($Q_5 = 6.6$ cfs, $Q_{100} = 24.3$ cfs)) (sub-basins: PR-6, PR-8a; Area: 49.5 Ac.) (Slopes: 2.8 to 6%) This point represents the combination of flows from design points 15 and 18a. The combined flows will be conveyed downstream towards the proposed private forebay at Design Point EDB-IN via proposed private 18-inch RCP pipe.

Design Point EDB-IN (Rational ($Q_5 = 14.8 \text{ cfs}$, $Q_{100} = 62.9 \text{ cfs}$) HEC-HMS ($Q_5 = 5.1 \text{ cfs}$, $Q_{100} = 22.4 \text{ cfs}$)) (sub-basin: PR-6, PR-8a, PR-8b, PR-9; Area: 52.3 Ac.) (Slopes: 2.8 to 50%) This point represents the total discharge into the Proposed Private Extended Detention Basin (EDB). Flows will be treated for water quality and released at such a rate that the overall discharge from the site does not increase under proposed conditions.

Design Point EDB-OUT ($Q_5 = 5.8$ cfs, $Q_{100} = 17.3$ cfs) (sub-basins: PR-6, PR-8a, PR-8b, PR-9; Area: 52.3 Ac.) (Slopes: 2.8 to 50%) This point represents the discharge from the EDB. The discharge from Pond 1 will be routed downstream via proposed private 18-inch RCP pipe that will convey the flows to the proposed private stilling basin located at Design Point 19.

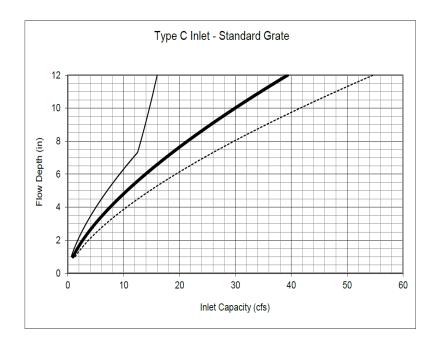
Design Point 19 (Rational ($Q_5 = 31.7$ cfs, Q_{100} 176.3 = cfs) HEC-HMS ($Q_5 = 12.5$ cfs, $Q_{100} = 64.7$ cfs) (design points: DP-EDB-OUT, DP-16, DP-17; Area: 287.6 Ac.) (Slopes: 2.8 to 50%) This point represents the proposed private stilling basin located north of proposed Pond 1. Flows from Design Points 15, 16, and EDB-OUT all discharge to the stilling basin which will release the flows at a velocity of 4.02 ft/sec.

Design Point 20 (Rational ($Q_5 = 37.5$ cfs, $Q_{100} = 212.1$ cfs) HEC-HMS ($Q_5 = 13.0$ cfs, $Q_{100} = 68.6$ cfs)) (sub-basins: DP-19, OS3b, PR-10; Area: 307.3 Ac.) (Slopes: 2.8 to 60%) This point represents the total discharge from the site. Stormwater runoff from the site will continue north in the existing channel before draining into Hay Creek, a tributary of Beaver Creek.

Design Point HC ($Q_{100} = 127$ cfs) This point represents the stormwater flows in Hay Creek at the proposed private 48" x 48" Box culvert to the north of the site. The proposed private 48" x 48" culvert conveys the flows in Hay Creek under the proposed access road. Culvert calculations for the existing and proposed culvert at DP-HC can be found in Appendix A. The proposed flows in Hay Creek come from the HEC-2 analysis provided by the Regional Floodplain Administrator. The HEC-2 results are included in **appendix C**.

Notes:

- MHFD-Detention Analysis for the proposed detention pond (Pond 1) which will be constructed as part of the Improvements associated with Hay Creek Valley can be found in Appendix A of this report.
- Tables summarizing inlet sizes and capacities, storm pipe sizes and capacities and swale capacities for the proposed improvements can be found in Appendix A and/or in the following section.
- All ponds and associated infrastructure are to be owned and maintained by the HOA.
- The ratio of the total site discharge in proposed conditions vs existing conditions is 1.0, representing no significant increase in flows in the proposed condition.
- The hydraulic model for Beaver Creek indicated approximately 127 cfs from the entire Hay Creek tributary basin which contains the development. We therefore believe the above hydrological analysis with the Rational Method to be quite conservative.


V. Hydraulic Analysis

a. Proposed Inlets

Headwalls and Wingwalls: Given the erodible soils onsite, provide a headwall and/or wingwall for the inlet and outlet of culverts as necessary given flowrate, slope, and length (per MHFD USDCM Vol 2, Chapter 9, Section 3.0). Or based on engineering judgement, state that based on the site conditions, they are not necessary.

	INLET SUMMARY									
				HA	Y CREEK	VALLEY				
DESIGN POINT	CLIB BACING	TOTAL	INLET		0(5)	Q(5)	Of Division	Q(100)	Q(100)	36437 7317 7707
or SUB- BASIN	SUB-BASINS/ DESCRIPTION	AREA (AC)	SIZE (Ft.)	TYPE	CONDITION	TÒTAL INFLOW	TOTAL CARACTIV	BYPASS FLOWS (cfs)		MAX INLET CAPACITY
10	OS1b, OS2a, PR- 1a	77.15	3x6	D	SUMP	3.7	3.7	0.0	19.5	39.0
11a	OS1a, PR-1b	15.63	3x3	С	SUMP	1.3	1.3	0.0	6.1	17.0
15	PR-6	44.76	3x3	С	SUMP	3.7	3.7	0.0	17.0	17.0
18a	PR-8a	4.73	3x3	С	SUMP	3.5	3.5	0.0	8.3	17.0

Note: Inlet sizes indicated are minimums. Larger sizes may be used in the construction plans for conservative design.

	Inlet Overflow Routing						
Inlet	Overflow Routing Under Sump Inlet Blockage Conditions						
10	Blockage of this inlet will cause runoff to surcharge the sump and direct runoff across the proposed driveway and into the type C inlet at DP-11a.						
11a	Blockage of this inlet will cause runoff to surcharge the sump and direct runoff across the proposed driveway to the east before continuing along historic paths.						
15	Blockage of this inlet will cause runoff to surcharge the sump and direct runoff across the proposed roadway and into the type C inlet at DP-18a.						
18a	Blockage of this inlet will cause runoff to surcharge the sump and direct runoff into the proposed Extended Detention Basin.						

b. Swales

The initial swale analysis was performed using Hydraflow Express to determine flow depths and velocities. Per the El Paso County DCM Volume 1, Chapter 6, section 6.5.2. Channel Velocity, "Concrete, riprap, or soil cement linings as approved by the City/County shall be used where channel bottom velocities exceed 6.0 ft/sec." Table 10-4 is included in Appendix B for reference. Further analysis was performed using the Federal Highway Administration (FHWA) Hydraulic Toolbox for those sections having flow velocities initially calculated to be greater than 6 ft/sec. This tool helps determine the stability of each proposed swale based on the flows, cross section, and type of lining material. Concentrated stormwater flows that drain along the existing drainage path through sub-basin PR-1c will be collected in a proposed swale north of the proposed roadside ditch. A 25-foot drainage easement will extend from proposed lot 1 to lot 9 along the existing drainage path to ensure that future developments do not impede the flow of stormwater through the site. The swale calculations have been applied to the most critical swale scenarios for the Site. The table below summarizes the various swales included as part of these improvements.

	Swale Capacities						
		HAY CREE	K VALLE	Y			
Design Point	Armoring Type	Anticipated Slope %	CHANNEL CAPACITY MAJOR STORM (cfs)	Q(100) TOTAL FLOW (cfs)	Q(100) VELOCTIY (FT/S)	Q100 Flow Depth (ft)	
12	Type L Rip Rap*	5.7%	9.6	9.6	2.66	0.94	
13	Vegetation	2.8%	4.6	4.6	3.30	0.59	
14	Type L Rip Rap*	5.0%	12.3	12.3	2.84	1.04	
15	Type L Rip Rap*	5.7%	17.0	17.0	3.39	1.12	
16	Type L Rip Rap*	2.8%	6.1	6.1	1.59	0.98	

Per ECM 3.3.4.A, ditches in developments (roadside ditches excluded) that convey more than 15cfs should be in drainage easements. Please create drainage easements and reflect them on the plat.

	Swale Capacities					
		HAY CREE	K VALLE	ΞΥ		
Design Point	Armoring Type	Anticipated Slope %	CHANNEL CAPACITY MAJOR STORM (cfs)	Q(100) TOTAL FLOW (cfs)	Q(100) VELOCTIY (FT/S)	Q100 Flow Depth (ft)
17	Type L Rip Rap*	4.5%	58.1	58.1	4.06	1.14
18 (2.8%)	Vegetation	2.8%	7.8	7.8	3.76	0.72
18 (5.0%)	Type L Rip Rap*	5.0%	7.8	7.8	4.62	0.65
18 (5.7%)	Type L Rip Rap*	5.7%	7.8	7.8	4.91	0.63

Per ECM 3.3.4.A, ditches in developments (roadside ditches excluded) that convey more than 15cfs should be in drainage easements. Please create drainage easements and reflect them on the plat. For all swales with greater than 15 cfs

Note: The values shown in the above table are based on the final design. Sections which were initially calculated to have velocities over 6 ft/s have been reevaluated using the Manning's n value (from Hydraulic Toolbox) corresponding to the armoring type used for that section. As such all velocities shown are below 6 ft/s.

c. Driveway Culverts

Upon the development of the proposed lots, it will be necessary to place culverts along the roadside ditches to convey flows through driveways. Initial calculations for driveway culvert sizing at each lot is summarized in the table below:

Driveway Culvert Sizes HAY CREEK VALLEY						
Lot	Q(100) TOTAL FLOW IN DITCH (cfs)	Anticipated Slope %	Minimum Culvert Inside Diameter (in)			
1-10	12.3	2.8%	24			
11-12	9.6	6.0%	18			
13	4.6	2.8%	18			
14-16	12.3	4.8%	24			
17-19	17.0	2.8%	24			
20	6.1	2.8%	18			

d. Detention

Due to the development of the site and the resulting increase in imperviousness, detention will be required to limit the 100-year discharge to historic rates. The proposed private Extended Detention Basin (Pond 1) has been designed to over detain stormwater flows to reduce the total site discharge to predevelopment levels. The pond will provide detention and water quality treatment for stormwater runoff generated within the Hay Creek Valley site. The proposed private Forebay at the southwestern

^{*} Turf Reinforcement Mat (TRM) may be used in place of Rip Rap.

corner of Pond 1 has been sized based on the untreated WQCV calculated in the UD-BMP worksheet. The forebay calculations and UD-BMP worksheet can be found in Appendix A. Pond 1 will outfall to a stilling basin to the north. Flows from the pond will combine with flows from Design Points 16 and 17 in the stilling basin which will release the flows with a velocity of 1.65 ft/sec during the 100-year storm event which is considered by the DCM to be stable for the major storm event in the context of open channel flows. The stilling basin will provide a suitable outfall for the concentrated flows into the existing natural swale. The proposed stilling basin has a depth of 24-inches and, when at max capacity, will infiltrate within 40 hours. Infiltration rates have been determined using the f_{θ} value for type B soils in Table 6-7 of the MHFD Drainage Criteria Manual Volume 1 (below). Design information including calculations are included in Appendix A. The table below summarizes the detention provided for this development.

			-	ed Pond S CREEK V		ry		
Pond	Tributary	% Impervious	Pre-Devel	opment Peak	Pond	Outflow	Pre vs. P	ost Ratio
	Area	impervious	Q5	Q100	Q5	Q100	Q5	Q100
Pond 1	52.31	12.63	11.3	51.6	5.8	17.3	0.5	0.3

Table 6-7. Recommended Horton's equation parameters

NRCS Hydrologic	Infiltration (in	nches per hour)	Decay
Soil Group	Initial—fi	Final—fo	Coefficient—a
A	5.0	1.0	0.0007
В	4.5	0.6	0.0018
C	3.0	0.5	0.0018
D	3.0	0.5	0.0018

Emergency Overflow

Pond 1: If the emergency overflow weir receives flows, these flows will continue downstream along the existing natural swale and drain into Hay Creek.

VI. Storm Water Quality

Per the DCM Volume 2, Section 4.1, El Paso County recommends the MHFD Four Step Process for receiving water protection that focuses on reducing runoff by disconnecting impervious area, eliminating "unnecessary" impervious area and encouraging infiltration into soils that are suitable, treat and slowly release the WQCV, stabilize stream channels, and implement source controls. The four-step process has been completed below.

Per DCMv2 – Chap 4.2, trickle channel should at a minimum provide capacity equal to twice the release capacity at the upstream forebay outlet. Provide these calcs in the drainage report and revise plans as needed.

Step 1: Employ Runoff Reduction Practices.

• The low-density nature of this development and the fact that none of the streets will have curb and gutter, means that most, if not all, runoff from impervious surfaces will sheet flow across pervious areas to grass lined swales. Runoff reduction calculations are included in Appendix A.

Step 2: Stabilize Drainageways.

• The site is in the Beaver Creek Drainage Fee Basin. Drainage fees, to be paid by the relevant Hay Creek Valley developers at the time of platting, will help fund proposed channel improvements. Information on planned future improvements to the Beaver Creek channel was unavailable for this report.

Step 3: Provide Water Quality Capture Volume (WQCV).

• As required by the DCM, runoff from the proposed streets which is feasible to detain, is directed into a proposed detention pond (Pond 1) via grass lined swale. The proposed private swale will provide water quality treatment for the impervious areas that drain to it through runoff reduction. The pond has been designed to meet the DCM standards for the release rates of Full Spectrum Detention Ponds for Water Quality Capture Volumes, and all of the other storm events listed in the MHFD-Detention spreadsheet. Exclusions are listed below:

See comments on the drainage map - this exclusion only applies to basins which are returned to the existing condition in grading and vegetation which would not be applicable

The lots containing large lot residential sites are excluded from WQ treatment per section I.7.1.b.5 of the ECM.

Disturbed areas that will return to an undeveloped state are excluded from WQ treatment per section I.7.1.B.7.

Disturbed areas that are not practicable to detain are excluded from WQ treatment per section I.7.1.C.1.a.

Step 4: Consider Need for Industrial and Commercial BMPs.

• There are no commercial or industrial components of this development, therefore no BMPs of this nature are required.

VII. Erosion Control Plan

A grading and erosion control plan (GEC) for the proposed improvements will be submitted for review as separate submittals by the various developments. These will incorporate straw wattles, straw bale check dams, silt fence, vehicle tracking control, inlet & outlet control, sedimentation basins and other best management practices (CMs) identified in the DCM Volume 2.

VIII. Floodplains

Per the *Flood Insurance Rate Map (FIRM) 08041CO267 G*, effective date December 7, 2018, published by the Federal Emergency Management Agency (FEMA), Hay Creek, a Tributary to Beaver

Creek runs along the northern bound of the Hay Creek Valley area and has designated 100-year floodplain. The developed portion of the site is generally not touched by the 100 year floodplain, however the road improvements associated with this site will cross the FEMA floodplain at the location where the site access easement crosses Hay Creek. Draft model backed BFEs for this area have been developed as part of Phase 1 for the ongoing El Paso County, CO, Risk MAP Project. The data have been reviewed and approved through FEMA's QA/QC process (May 11, 2022) and are currently in the MIP (Case No. 19-08-0037s). This data is considered "FEMA APPROVED BFEs" This will need to be shown on the prelim plan and plat. Refer to the map in Appendix C.

IX. Fee Development

a. UNDEVELOPED PLATTABLE LAND

The Hay Creek Valley site is located within the Beaver Creek Drainage Fee Basin and within previously unplatted land. The 2023 Drainage Basin Fees for the Beaver Creek Drainage Fee Basin are: \$13,797/impervious acre for the Drainage Fee and \$0.00/impervious acre for the Bridge Fee. Per the *El Paso County Engineering Criteria Manual*, Appendix L, Section 3.10.1a Fee Reductions for Low Density Lots, with the site being developed into 5-acre lots, drainage fees may be reduced by 25%.

Hay Creek Final Drainage Report 2023 Drainage and Bridge Fees											
	Platted Area (Acres)	Imperviousness (%)	Platted Area (Imp. ac.)	Fee/ Imp. Acre	Fee Due	Drainage Fee Reduction	Fee Due at Platting				
Drainage Fee	214.63	8.12	17.428	\$13,797.00	\$240,453.51	\$60,113.38	\$180,340.13				
Bridge Fee	214.63	8.12	17.428	\$0.00	\$0.00	\$0.00	\$0.00				

TOTAL \$180,340.13

Cost Estimate

Table 12.1

Engineer's Estimate of Probable Construction Costs												
BEAVER CREEK												
HAY CREEK VALLEY												
Private Non-Reimbursable												
Item	Unit	Quantity	Unit Cost	Extension								
18" RCP/HP	LF	190	\$76.00	\$14,440.00								
30" RCP/HP	LF	217	\$114.00	\$24,738.00								
36" RCP/HP	LF	370	\$140.00	\$51,800.00								
18" FES	EA	1	\$456.00	\$456.00								
30" FES	EA	4	\$684.00	\$2,736.00								
36" FES	EA	5	\$840.00	\$4,200.00								
Type C Inlet	EA	2	\$6,000.00	\$12,000.00								
Type D Inlet	EA	2	\$7,000.00	\$14,000.00								
STM MH	EA	3	\$6,600.00	\$19,800.00								
RIPRAP	CY	4,280	\$135.00	\$577,800.00								

Sub Total \$721,970.00

10% Contingency \$72,197.00

TOTAL: \$794,167.00

Engineer's Estimate of Probable Construction Costs										
BEAVER CREEK										
HAY CREEK VALLEY										
Permanent BMP (ED	B): Pri	vate Non-	reimbursable							
Item	Unit	Quantity	Unit Cost	Extension						
DETENTION POND GRADING	EA	1	\$35,000.00	\$35,000.00						
3' TRICKLE CHANNEL	LF	310	\$250.00	\$77,500.00						
FOREBAY	EA	1	\$40,000.00	\$40,000.00						
OUTLET STRUCTURE	EA	1	\$40,000.00	\$40,000.00						
EMERGENCY SPILLWAY	EA	1	\$5,000.00	\$5,000.00						
STILLING BASIN	EA	1	\$30,000.00	\$30,000.00						

Sub Total \$227,500.00

10% Contingency \$22,750.00

TOTAL: \$250,250.00

Overall Total \$1,044,417.00

Since the engineer has no control over the cost of labor, materials, equipment, or services furnished by others, or over the contractor's method of determining prices, or over the competitive bidding or market conditions, the opinion of probable construction costs provided herein are made on the basis of the engineer's experience and qualifications and represents the best judgment as an experienced and qualified professional familiar with the construction industry. The engineer cannot, and does not guarantee that proposals, bid or actual construction costs will not vary from the opinion of probable costs.

X. Summary

This report demonstrates that the proposed infrastructure associated with Hay Creek Valley is in conformance with the El Paso County Drainage Criteria Manual, Volumes 1 and 2, October 2018 and all previously approved studies related to the project site. Stormwater flows will generally remain the same in post-development conditions (Rational ($Q_5 = 37.5$ cfs, $Q_{100} = 212.1$ cfs) HEC-HMS ($Q_5 = 13.0$ cfs, $Q_{100} = 68.6$ cfs)) as in pre-development conditions (Rational ($Q_5 = 35.0$ cfs, $Q_{100} = 210.9$ cfs) HEC-HMS ($Q_5 = 11.2$ cfs, $Q_{100} = 69.9$ cfs)). These proposed improvements should not adversely affect downstream or surrounding developments and are in conformance with the pertinent studies for the area.

XI. References

- 1. El Paso County and City of Colorado Springs Drainage Criteria Manual, Volume 1 & 2, El Paso County, May 2014
- 2. El Paso County Engineering Criteria Manual, El Paso County, Rev. December 2016
- 3. Web Soil Survey of El Paso County Area, Colorado. Unites States Department of Agriculture Soil Conservation Service.
- 4. Flood Insurance Rate Maps for El Paso County, Colorado and Incorporated Areas, Panel 279 of 1275, Federal Emergency Management Agency, Effective Date December 7, 2018.
- 5. *Urban Storm Drainage Criteria Manual, Vol. 1-3* by Urban Drainage and Flood Control District (UDFCD), January 2016

Appendices

APPENDIX A

HYDROLOGIC AND HYDRAULIC CALCULATIONS

Project Name: Project Location: Designer Notes:

Hay Creek El Paso County, Colorado WCG

EXISTING CONDITIONS

Avg. Channel Velocity Avg. Slope for Initial Flow

4 ft/s 0.04 ft/ft

(If specific channel vel is used, this will be ignored)

(If Elevations are used, this will be ignored)

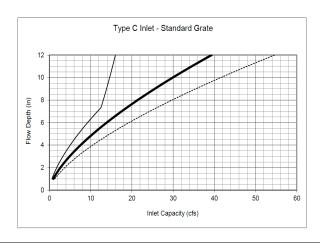
Channel Flow Type Key Heavy Meadow 2

Tillage/Field 3 Short Pasture and Lawns 4 Nearly Bare Ground 5

Grassed Waterway 6 Paved Areas 7

r			A = 0.0			1	//0			100%	al 'C' Val		27	0			_	т -		Flow Leng	-th-o		ı		1				T 20		Daimfall Int	ensity & Ratio	and Flour D	ata		
	_	ļ	Area					-		Kanon	ai C vai	ies			1					riow Leng	tns								Tc		Kainraii Int	ensity & Ratio	onai riow K	ate	lacksquare	
Sub-basin	Comments				Soil Group		-Acre Los Impervi		(100	Pavement)% Impervio	us)		developed Area (2% Impe			omposite	Percent Impervio	I niti:	al T	rue Initial	Channel	Гrue Channe	Average (decimal)	Initial	Average (%)	Channel Flow Type (See Key above)	Velocity	Channel	Total	i5	Q5	HEC-HMS Q5	i100	Q100	HEC-HMS Q100	Sub-basin
		sf	acres	Sq. Mi.			C100 A	(- /	C5	C100	Area (S	F) C5	C100	Area	C5	C100)	ft		Length ft	ft	Length ft	Slope	Tc (min)	Slope	Ground Ty	o (ft/s)	Tc (min)	(min)	in/hr	cfs	cfs	in/hr	cfs	cfs	
EX-OS1a		407292	9.35	0.0146	В	0.12	0.39	407292	0.90	0.96		0.09	0.36		0.12	0.39	7.00%	300)	300	672	672	0.10	14.23	9.9	4	2.20	5.09	19.31	3.07	3.5	0.8	5.15	18.9	4.1	EX-OS1a
EX-OS1b		2579029	59.21	0.0925	В	0.12	0.39	1173596	0.90	0.96		0.09	0.36	140543	0.10	0.37	4.28%	300)	300	2754	2754	0.07	16.48	6.7	4	1.81	25.33	41.80	1.99	12.3	2.6	3.34	74.6	15.7	EX-OS1b
EX-OS2a		692771	15.90	0.0248	В	0.12	0.39		0.90	0.96	2542	0.09	0.36	66734	8 0.12	0.38	5.60%	300)	300	84	84	0.31	9.70	31.3	4	3.50	0.40	10.10	4.09	7.8	1.5	6.87	42.0	8.0	EX-OS2a
EX-OS2b		120503	2.77	0.0043	В				0.90	0.96	6033	0.09	0.36	11447	0.13	0.39	6.91%	300)	300	113	113	0.15	12.31	14.8	4	2.69	0.70	13.00	3.69	1.3	0.3	6.20	6.7	1.4	EX-OS2b
EX-OS2c		137929	3.17	0.0049	В	0.12	0.39		0.90	0.96	6548	0.09	0.36	13138	0.13	0.39	6.65%	268	3	268	0	0	0.17	11.09	17.2	4	2.90	0.00	11.09	3.94	1.6	0.3	6.62	8.2	1.6	EX-OS2c
EX-OS3		354850	8.15	0.0127	В	0.12	0.39		0.90	0.96	475	0.09	0.36	35437.	5 0.09	0.36	2.13%	300)	300	265	265	0.16	12.54	15.8	4	2.78	1.59	14.12	3.56	2.7	0.2	5.98	17.7	2.0	EX-OS3
EX-1		2441168	56.04	0.0876	В	0.12	0.39		0.90	0.96	3006	0.09	0.36	241110	0.10	0.37	3.21%	300)	300	4763	4763	0.05	18.23	5.0	4	1.57	50.72	68.94	1.44	8.2	1.6	2.43	50.4	9.9	EX-1
EX-2		2100638	48.22	0.0754	В	0.12	0.39		0.90	0.96	4643	0.09	0.36	205420	0.11	0.37	4.17%	300)	300	2795	2795	0.06	16.66	6.4	4	1.77	26.31	42.96	1.96	10.3	2.0	3.29	59.7	11.2	EX-2
EX-3		2684942	61.6	0.0963	В	0.12	0.39		0.90	0.96	3189	0.09	0.36	265305	0.10	0.37	3.16%	300)	300	2002	2002	0.11	13.86	11.4	4	2.36	14.12	27.97	2.52	15.6	2.3	4.23	96.6	14.7	EX-3
EX-4		256265	5.88	0.0092	В	0.12	0.39		0.90	0.96	0	0.09	0.36	25626	5 0.09	0.36	2.00%	206	5	206	0	0	0.29	8.53	28.6	4	3.50	0.00	8.53	4.35	2.3	2.3	7.30	15.6	15.6	EX-4
EX-5		1865454	42.82	0.0669	В	0.12	0.39		0.90	0.96	1811	0.09	0.36	184733	0.10	0.37	2.95%	300)	300	1427	1427	0.11	14.18	10.7	4	2.29	10.39	24.56	2.71	11.4	1.5	4.55	71.8	10.0	EX-5
DESIGN POINTS	Sub-basins																																			DESIGN POINTS
1	EX-OS1a	407292	9.35	0.0146	В	0.12	0.39	407292	0.90	0.96	0	0.09	0.36	0	0.12	0.39	7.0%	300)	300	672	672	0.10	14.23	9.9	4	2.20	5.09	19.31	3.07	3.5	0.8	5.15	18.9	4.1	1
2	EX-OS1b	2579029	59.21	0.0925	В	0.12	0.39	1173596	0.90	0.96	0	0.09	0.36	140543	0.10	0.37	4.3%	300)	300	2754	2754	0.07	16.48	6.7	4	1.81	25.33	41.80	1.99	12.3	2.6	3.34	74.6	15.7	2
3	EX-OS2a	692771	15.90	0.0248	В	0.12	0.39		0.90	0.96	2542	0.09	0.36	66734	8 0.12	0.38	5.6%	300)	300	84	84	0.31	9.70	31.3	4	3.50	0.40	10.10	4.09	7.8	1.5	6.87	42.0	8.0	3
4	EX-OS2b	120503	2.77	0.0043	В	0.12	0.39		0.90	0.96	6033	0.09	0.36	11447	0.13	0.39	6.9%	300)	300	113	113	0.15	12.31	14.8	4	2.69	0.70	13.00	3.69	1.3	0.3	6.20	6.7	1.4	4
5	EX-OS2c	137929	3.17	0.0049	В	0.12	0.39		0.90	0.96	6548	0.09	0.36	13138	0.13	0.39	6.7%	268	3	268	0	0	0.17	11.09	17.2	4	2.90	0.00	11.09	3.94	1.6	0.3	6.62	8.2	1.6	5
6	EX-OS3	354850	8.15	0.0127	В	0.12	0.39		0.90	0.96	475	0.09	0.36	35437.	5 0.09	0.36	2.1%	300)	300	265	265	0.16	12.54	15.8	4	2.78	1.59	14.12	3.56	2.7	0.2	5.98	17.7	2.0	6
7	EX-4	256265	5.88	0.0092	В	0.12	0.39		0.90	0.96	0	0.09	0.36	25626.	5 0.09	0.36	2.0%	206	5	206	0	0	0.29	8.53	28.6	4	3.50	0.00	8.53	4.35	2.3	2.3	7.30	15.6	15.6	7
8	EX-OS1b, EX-OS2a, EX-2	5372438	123.3	3 0.1927	В	0.12	0.39	1173596	0.90	0.96	7186	0.09	0.36	412698	0.11	0.37	4.4%	300)	300	2795	2795	0.06	16.67	6.4	4	1.77	26.31	42.97	1.96	26.1	5.4	3.29	153.1	30.9	8
9	EX-OS2b, EX-OS2c, EX-3	2943374	67.5	0.1056	В	0.12	0.39		0.90	0.96	4447	0.09	0.36	289890	0.10	0.37	3.5%	300)	300	2002	2002	0.11	13.82	11.4	4	2.36	14.12	27.93	2.52	17.6	2.9	4.24	106.5	17.4	9
10	EX-OS3, EX-5	2220304	50.97	0.0796	В	0.12	0.39		0.90	0.96	18592	0.09	0.36	220171	2 0.10	0.37	2.8%	300)	300	1427	1427	0.11	14.19	10.7	4	2.29	10.39	24.58	2.71	13.5	1.8	4.55	85.3	11.9	10
11	DP-8, DP-9, DP-10, EX-OS1a, EX-1	13384576	307.2	7 0.4801	В	0.12	0.39	1580888	0.90	0.96	16498	5 0.09	0.36	116387	0.10	0.37	3.8%	300)	300	8062	8062	0.05	18.17	5.0	4	1.57	85.84	104.01	1.09	35.0	11.2	1.84	210.9	69.9	11
HC	From PPRBD Regional floodplane Administrator																																	127.0	127.0	HC
									•																											

Project Name: Hay Creek
Project Location: El Paso County, Colorado
Designer WCG
Notes: Proposed Condition

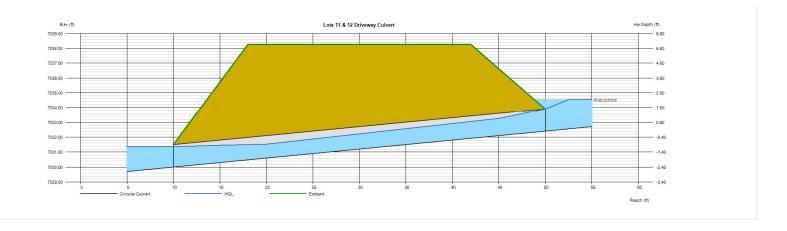

Average Channel Velocity 4.00 ft/s (If specific channel vel is used, this will be ignored)

Average Slope for Initial Flow 0.04 ft/ft (If Elevations are used, this will be ignored)

Channel Flow Type Key
Heavy Meadow 2
Tillage/Field 3
Short Pasture and Lawns 4
Nearly Bare Ground 5
Grassed Waterway 6
Paved Areas 7

					7%			100%			2%								_				-								-	
	Area	a						Ration	al 'C' Values							Fl	low Lengths								Tc		Rainfall Ir	tensity & Ratio	nal Flow Rate	e		
Sub-basin Comments			Soil Group	,	5-Acre Lots 7% Impervious)		Pavemen (100% Imperv			veloped/Perv (2% Impervi		Composite	Percent Impervious	Initial	True Initial	Channel	True Channel	Average (decimal)	Initial	Average (%)	Channel Flow Type (See Key above)	Velocity	Channel	Total	i5	Q5	HEC-HMS Q5	i100	Q100	HEC-HMS Q100	Sub-basin
	sf a	acres Sq	ı. Mi.	C5	C100		C5	C100	Area (SF)	00	C100	Area	C5 C10	,	ft	Length ft		Length ft	Slope T	- (/	Slope	Ground Type	(-0, 0)	Tc (min)	(min)	in/hr	cfs	cfs	in/hr	cfs	cfs	
OS1a	407292 9	9.35 0.0	0146 B		0.39	407292		0.96		0.09	0.36		0.12 0.39	7.00%						14.23	9.9	4	2.20	5.09	19.31	3.07	3.5	0.8	5.15	18.9	3.6	OS1a
OS1b	2579029 59	59.21 0.0	0925 B	0.12	0.39	1173596	0.90	0.96	(105	0.09	0.36	1405433	0.10 0.37	4.28%	300	300	2754	2754	0.00	16.48	6.7	4	1.81	25.33	41.80	1.99	12.3	2.6	3.34	74.6	14.2	OS1b
OS2a OS2b	218316 5 373332 8	9.57 0.0	0078 B 0134 B	0.12	0.39		0.90	0.96	6435 13773	0.09	0.36	211881	0.11 0.38		300	300	203			10.54	24.8	4	3.49	0.97	11.51	3.88	2.2 4.0	0.4	6.52	12.4 21.6	1.8 3.2	OS2a OS2b
OS2c	99203 2	2.28 0.0	0036 B	0.12	0.39		0.90	0.96	5222	0.09	0.36	93981	0.12 0.30	3.02/0	280	280	0	33	0.20	8.91	35.0	4	3.50	0.17	8.90	4.28	1.3	0.7	7.19		1.2	OS2b OS2c
OS2d	120503 2	2.77 0.0	0043 B	0.12	0.39		0.90	0.96	6033	0.09	0.36	114470	0.13 0.39	7.1070	300	300	44			12.72	13.4	4	2.56	0.29	13.01	3.69	1.3	0.3	6.19	6.7	1.1	OS2d
OS2e	137929 3	3.17 0.0	0049 B		0.39		0.90	0.96	6548	0.09	0.36	131381	0.13 0.39	6.65%	285	285	0			11.87	15.4	4	2.75	0.00	11.86	3.83	1.6	0.3	6.44		1.3	OS2e
OS3a	212463 4	4.88 0.0	0076 B	0.12	0.39		0.90	0.96		0.09	0.36	212463	0.09 0.30	2.00%	300	300	27		0.00	15.39	8.6	4	2.05	0.22	15.61	3.40	1.5	0.1	5.71	10.1	0.9	OS3a
OS3b	143157 3	3.29 0.0	0051 B	0.12	0.39		0.90	0.96		0.09	0.36	143157	0.09 0.30	2.00%	300	300	195	195	0.22	11.24	22.0	4	3.28	0.99	12.22	3.79	1.1	0.1	6.36	7.6	0.8	OS3b
PR-1a	563521 12	12.94 0.0	0202 B	0.12	0.39	563521	0.90	0.96		0.09	0.36		0.12 0.39	7.00%	300		479	479	0.05	17.75	5.1	4	1.58	5.05	22.80	2.82	4.4	0.9	4.73		4.3	PR-1a
PR-1b	273497 6	6.28 0.0	0098 B	0.12	0.39	273497	0.90	0.96		0.09	0.36		0.12 0.39	7.00%	300		644			14.33	9.7	4	2.18	4.92	19.24	3.07	2.3	1	5.16	12.7	2.5	PR-1b
PR-1c	2318386 53 700274 10	55.22 0.0	0832 B	0.12	0.39	2318386	0.90	0.96		0.09	0.36		0.12 0.39	7.00%	300	300	3863	3863	0.00	17.64	5.2	4	1.60	40.33	57.96	1.62	10.4	3.4	2.72	56.9 34.1	15.7	PR-1c
PR-2 PR-3	700274 10 425946 9	0.08 0.0	0251 B 0153 B	0.12	0.39	700274 425946	0.90	0.96		0.09	0.36		0.12 0.39	7.00%	300		576 764			13.54	11.5 9.8	4	2.37	4.04 5.81	17.58 20.08	3.21	6.2 3.6	0.8	5.40	34.1 19.4	6.5 3.8	PR-2 PR-3
PR-5 PR-4	1235031 2	28.35 0.0	0155 B		0.39	1235031		0.96		0.09	0.36		0.12 0.39	7.0070	300	0.00	1015			14.28	1.0	4	0.70	24.17	38.25	2.10	7.2			39.3		PR-3
PR-5	255265 5	5.86 0.0	0092 B	0.12	0.39	255265	0.90	0.96		0.09	0.36		0.12 0.39	7.00%	206		0			8.28	28.6	4	3.50	0.00	8.27	4.39	3.1		7.38		20.0	PR-5
PR-6	1949910 4	14.76 0.0	0699 B		0.39	1949910				0.09		0	0.12 0.39	7.00%	300		1504			14.18	10.0	4	2.21	11.32			14.4	3.7	4.46		17.0	PR-6
PR-7	585132 13	13.43 0.0	0210 B	0.12	0.39	585132	0.90	0.96		0.09	0.36		0.12 0.39	7.00%	300	300	1400	1400	0.10	14.18	10.0	4	2.21	10.54	24.72	2.70	4.4	1.1	4.53	23.9	5.1	PR-7
PR-8a	206019 4	4.73 0.0	0074 B	0.12	0.39		0.90	0.96	129912	0.09	0.36	76107	0.60 0.74	63.80%	300	300	3558	3558	0.05	9.23	4.8	4	1.53	38.67	47.89	1.83	5.2	3.3	3.07	10.8		PR-8a
PR-8b	17696 0	0.41 0.0	0006 B	0.12	0.39		0.90	0.96	17173	0.09	0.36	523	0.88 0.94	97.10%	50	50	0	0	0.03	1.98	3.0	4	1.21	0.00	5.00	5.10	1.8	0.8	8.58	3.3	1.7	PR-8b
PR-9	105045 2		0038 B		0.39		0.90	0.96		0.09	0.36	130492			260	-00	0			36.14	0.5	4	0.49	0.00	36.13		0.6		3.65			PR-9
PR-10	713346 10	16.38 0.0	0256 B	0.12	0.39		0.90	0.96	11977	0.09	0.36	701369	0.10 0.37	3.65%	300	300	395		0.04	19.25	4.2	4	1.43	4.59	23.84	2.75	4.7	0.6	4.62	28.2	3.4	PR-10
DESIGN POINTS Sub-Basins 1 OS1a	407292 9	0.25 0.0	0146 B	0.12	0.39	407292	0.90	0.96	0	0.09	0.36	0	0.12 0.39	7.00%	300	300	672	672	0.10	14.23	9,9	4	2.20	5.09	19.31	2.07	3.5	0.8	5.15	18.9	3.6	DESIGN POII
2 OS1b	2579029 59	50.21 0.0	0925 B	0.12	0.39	1173596	0.90	0.96	0	0.09	0.36	1405433	0.12 0.3	1.00%	300	300	2754	2754		16.48	6.7	4	1.81	25.33	41.80	1.99	12.3	2.6	3.34		14.2	2
3 OS2a	218316 5	5.01 0.0	0078 B	0.12	0.39	0	0.90	0.96	6435	0.09	0.36	211881	0.11 0.38	4.89%	300	300	203		0.00	10.54	24.8	4	3.49	0.97	11.51	3.88	2.2	0.4	6.52		1.8	3
4 OS2b	373332 8	8.57 0.0	0134 B	0.12	0.39	0	0.90	0.96	13773	0.09	0.36	359559	0.12 0.38		300		33			11.18	20.4	4	3.16	0.17	11.35	3.90	4.0	0.7	6.56	21.6	3.2	4
5 OS2c	99203 2	2.28 0.0	0036 B	0.12	0.39	0	0.90	0.96	5222	0.09	0.36	93981	0.13 0.39	7.16%	280	280	0	0	0.35	8.91	35.0	4	3.50	0.00	8.90	4.28	1.3	0.3	7.19	6.5	1.2	5
6 OS2d, OS2e	258432 5	5.93 0.0	0093 B	0.12	0.39	0	0.90	0.96	12581	0.09	0.36	245851	0.13 0.39	6.77%	300	0.00	44	44		12.74	13.4	4	2.56	0.29	13.02	3.69	2.9	0.5	6.19	14.4	2.3	6
7 OS3a	212463 4	4.88 0.0	0076 B	0.12	0.39	0	0.90	0.96	0	0.09	0.36	212463	0.09 0.30	2.00%	300		27	27		15.39	8.6	4	2.05	0.22	15.61	3.40	1.5	1	5.71	10.1	0.9	7
8 OS3b	143157 3	3.29 0.0	0051 B	0.12	0.39	0	0.90	0.96	0	0.09	0.36	143157	0.09 0.30	2.00%	300	300	195			11.24	22.0	4	3.28	0.99	12.22	3.79	1.1	0.1	6.36	7.6	0.8	8
9 PR-5 10 OS1b, OS2a, PR-1a	255265 5 3360866 7	5.86 0.0	1206 B	0.12	0.39	255265 1737117	0.90	0.96	6435	0.09	0.36	1617314	0.12 0.39	7.00%	206 300		3533	3533		8.28 16.42	28.6	4	3.50 1.81	0.00	8.27 48.91	4.39 1.80	3.1 15.0	3.7	7.38	17.0 88.8	19.5	10
10 OS16, OS22, PR-12 112 OS1a.PR-1b	680789 1	77.15 0.1	1206 B 0244 B	0.12	0.39	680789	0.70	0.96	0435	0.09	0.36	0	0.11 0.38	7.00%	300	0.00	0000	0000	0.00	14.23	9.9	4	2.20	12.23	26.45	2.60	4.9		4.37		6.1	10 11a
11b OS1a, OS2a, OS1b, PR-1a, PR-1b	4041655 92	22.78 0.1	1450 B	0.12	0.39	2417906	0.90	0.96	6435	0.09	0.36	1617314	0.11 0.38	5.15%	300		3533			16.38	6.7	4	1.81	32.50	48.88	1.81	18.4	5.0	3.03	107.5	25.2	118 11b
12 OS2b, PR-2	1073606 24	24.65 0.0	0385 B	0.12	0.39	700274		0.96	13773		0.36	359559	0.12 0.39	6.52%	300		908			13.54	11.5	4	2.37	6.38	19.91	3.02	9.0		5.08		9.6	12
13 OS2c, PR-3	525149 12	12.06 0.0	0188 B	0.12	0.39	425946	0.90	0.96	5222	0.09	0.36	93981	0.12 0.39	7.03%	300	300	764	764	0.10	14.24	9.8	4	2.19	5.81	20.05	3.01	4.5	1.0	5.06	24.0	4.6	13
14 OS2d, OS2e, PR-4	1493463 34	34.29 0.0	0536 B	0.12	0.39	1235031		0.96	12581	0.09	0.36	245851	0.12 0.39		300					14.06	1.0	4	0.70	25.21		2.07	8.7			46.8	12.3	14
15 PR-6	1949910 4	14.76 0.0	0699 B	0.12	0.39	1949910	0.90	0.96	0	0.09	0.36	0	0.12 0.39	7.00%	300		1504	1504		14.18	10.0	4	2.21	11.32	25.50	2.65	14.4	3.7	4.46	78.4	17.0	15
16 OS3a, PR-7	797595 18	18.31 0.0	0286 B	0.12	0.39	585132	0.90	0.96	0	0.09	0.36	212463	0.11 0.38	5.67%	300	300	1400	1400	0.10	14.30	10.0	4	2.21	10.54	24.83	2.69	5.6	1.2	4.52	31.9	6.1	16
OS1a, OS1b, OS2a, PR-1a, PR-1b, PR-1c, DP-10, DP-11, DP-12, DP-13, DP-14	9452259 21	10.77	3391 B	0.12	0.39	7097543	0.90	0.96	38011	0.09	0.36	2316705	0.12 0.38		300	300	8302	8302		17.71	5.2	4	1.60	86.68	104.39	1.09	27.6	11.8	1.83	154.2	58.1	17
18a PR-8a	206019 4	4.73 0.0	0074 B	0.12	0.39	0	0.90		129912	0.09	0.36	76107	0.60 0.74	63.80%			3558			9.23	4.8	4	1.53	38.67	47.89	-100	5.2	3.3		10.8	7.8	18a
18b PR-6, PR-8a	2155929 49	19.49 0.0	0773 B 0817 B	0.12	0.39	1949910	0.70	0.96	129912 147085	0.09	0.36	76107	0.17 0.42	12.43%	300	300	3558	3558	0.05	17.26	4.8	4	1.53	38.67	55.93	1.66	13.7	6.6	2.78	58.8	24.3 22.4	18b
EDB-IN PR-6, PR-8a, PR-8b, PR-9 EDB-OUT PR-6, PR-8a, PR-8b, PR-9	2278670 52 2278670 52	52.31 0.0	001/ B 0817 B	0.12	0.39	1949910 1949910	0.90	0.96	147085	0.09	0.36	207122 207122			300	300	3558	3558	0.05	17.21	4.8	4	1.53	38.67	55.87	1.66	14.8 5.8		2.79	62.9 17.3	17.3	EDB-IN EDB-OUT
19 EDB-OUT, DP-14, DP-15	12528524 28	87.62 0.0	4494 B	0.12	0.39	9632585		0.96		0.09	0.36	2736290												+			31.7			17.3	64.7	BDB-O01 19
20 DP-8, DP-18, PR-10	13385027 30	0.10-	4801 B		0.39	9632585		0.96			0.36	3580816		110071										1			37.5	1		212.1	68.6	20
HC From PPRBJ Regional floodplane Administrator						3.0020.00							0.03	1.0.170													0.10				127.0	HC
7.Umimoustot																																
														-																		

	INLET SUMMARY											
	Hay Creek											
DESIGN POINT		TOTAL		INLE	т	Q(5) BYPASS	O(E) TOTAL	OF INI ET	Q(100) BYPASS	Q(100) TOTAL	MAY INI ET	
or SUB-BASIN	SUB-BASINS	AREA (AC)	SIZE (Ft.)	TYPE	CONDITION	FLOWS (cfs)	Q(5) TOTAL INFLOW	Q5 INLET CAPACTIY	FLOWS (cfs)	INFLOW (cfs)	MAX INLET CAPACITY	NOTES:
10	OS1b, OS2a, PR-1a	77.15	3x6	D	SUMP	0.0	3.70	3.7	0.0	19.50	39.0	
11a	OS1a,PR-1b	15.63	3x3	С	SUMP	0.0	1.30	1.3	0.0	6.10	17.0	
15	PR-6	44.76	3x3	С	SUMP	0.0	3.70	3.7	0.0	17.00	17.0	
18a	PR-8a	4.73	3x3	С	SUMP	0.0	3.50	3.5	0.0	8.30	17.0	

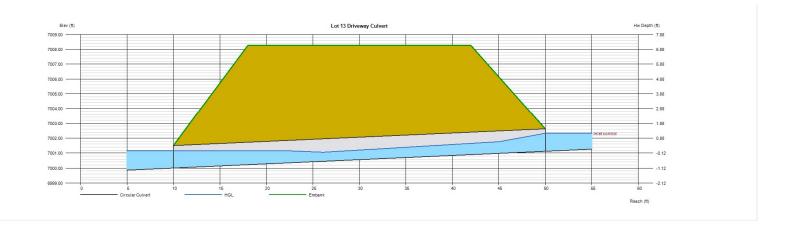


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 22 2023

Lots 11 & 12 Driveway Culvert

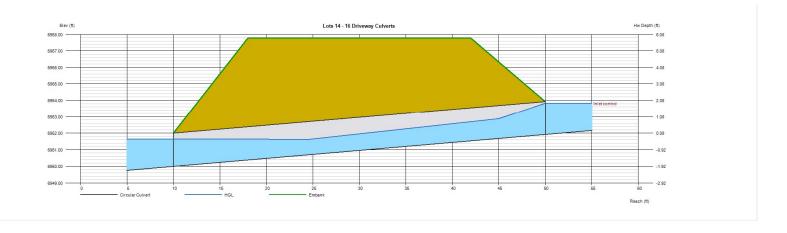
0
0
+D)/2
,
0
0
0
4
6
31.35
33.60
34.54
2
et Control


Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 22 2023

Lot 13 Driveway Culvert


Invert Elev Dn (ft)	= 7000.00	Calculations	
Pipe Length (ft)	= 40.00	Qmin (cfs)	= 0.00
Slope (%)	= 2.80	Qmax (cfs)	= 4.60
Invert Elev Up (ft)	= 7001.12	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 4.60
No. Barrels	= 1	Qpipe (cfs)	= 4.60
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 3.13
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.63
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7001.16
		HGL Up (ft)	= 7001.94
Embankment		Hw Elev (ft)	= 7002.32
Top Elevation (ft)	= 7008.25	Hw/D (ft)	= 0.80
Top Width (ft)	= 24.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 30.00		

Tuesday, Aug 22 2023

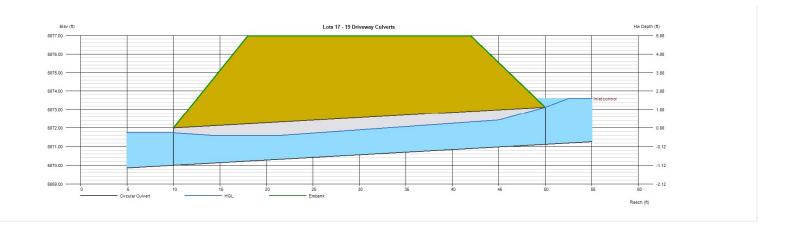
Lots 14 - 16 Driveway Culverts

Invert Elev Dn (ft)	= 6950.00	Calculations	
Pipe Length (ft)	= 40.00	Qmin (cfs)	= 0.00
Slope (%)	= 4.80	Qmax (cfs)	= 12.30
Invert Elev Up (ft)	= 6951.92	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 12.30
No. Barrels	= 1	Qpipe (cfs)	= 12.30
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 4.49
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.90
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6951.63
		HGL Up (ft)	= 6953.18
Embankment		Hw Elev (ft)	= 6953.82
Top Elevation (ft)	= 6957.77	Hw/D (ft)	= 0.95
Top Width (ft)	= 24.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 30.00		

Top Width (ft)

Crest Width (ft)

= 24.00


= 30.00

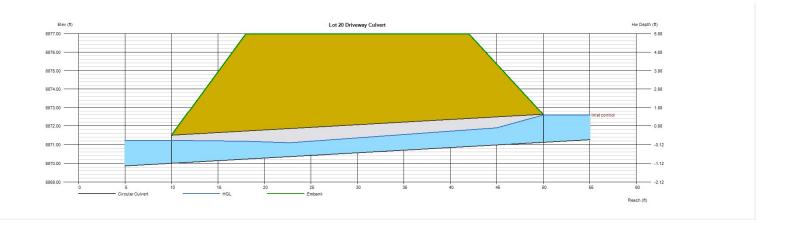
Tuesday, Aug 22 2023

= Inlet Control

Lots 17 - 19 Driveway Culverts

Invert Elev Dn (ft)	= 6870.00	Calculations	
Pipe Length (ft)	= 40.00	Qmin (cfs)	= 0.00
Slope (%)	= 2.80	Qmax (cfs)	= 17.00
Invert Elev Up (ft)	= 6871.12	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 24.0	,	,
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 17.00
No. Barrels	= 1	Qpipe (cfs)	= 17.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 5.85
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 6.80
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6871.74
		HGL Up (ft)	= 6872.61
Embankment		Hw Elev (ft)	= 6873.60
Top Elevation (ft)	= 6876.97	Hw/D (ft)	= 1.24
T ' \A (! \(\(\(\(\(\(\(\(\(\(\(\(\(0.4.00	E. B. '.	

Flow Regime


Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Aug 22 2023

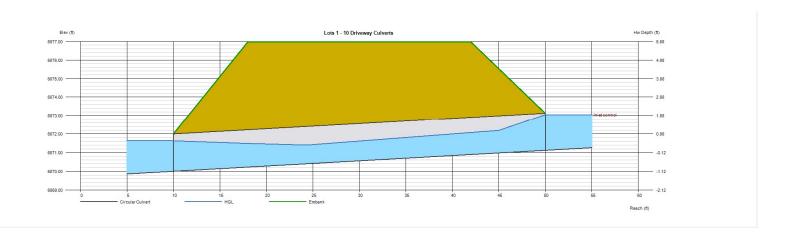
Lot 20 Driveway Culvert

Invert Elev Dn (ft)	= 6870.00	Calculations	
Pipe Length (ft)	= 40.00	Qmin (cfs)	= 0.00
Slope (%)	= 2.80	Qmax (cfs)	= 6.10
Invert Elev Up (ft)	= 6871.12	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 18.0	•	
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 6.10
No. Barrels	= 1	Qpipe (cfs)	= 6.10
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 3.94
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.15
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6871.23
		HGL Up (ft)	= 6872.07
Embankment		Hw Elev (ft)	= 6872.58
Top Elevation (ft)	= 6876.97	Hw/D (ft)	= 0.97
Top Width (ft)	= 24.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 30.00	-	

Top Width (ft)

Crest Width (ft)

= 24.00


= 30.00

Tuesday, Aug 22 2023

= Inlet Control

Lots 1 - 10 Driveway Culverts

Invert Elev Dn (ft)	= 6870.00	Calculations	
Pipe Length (ft)	= 40.00	Qmin (cfs)	= 0.00
Slope (%)	= 2.80	Qmax (cfs)	= 12.30
Invert Elev Up (ft)	= 6871.12	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		, ,
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 12.30
No. Barrels	= 1	Qpipe (cfs)	= 12.30
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 4.49
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.90
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6871.63
		HGL Up (ft)	= 6872.38
Embankment		Hw Elev (ft)	= 6873.04
Top Elevation (ft)	= 6876.97	Hw/D (ft)	= 0.96

Flow Regime

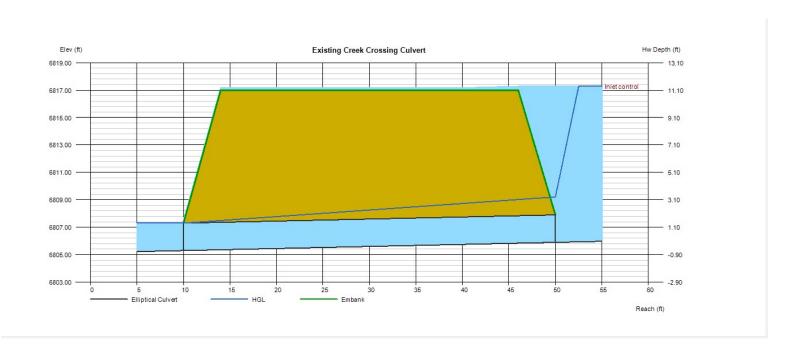
Culvert Report

Top Width (ft)

Crest Width (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 32.00

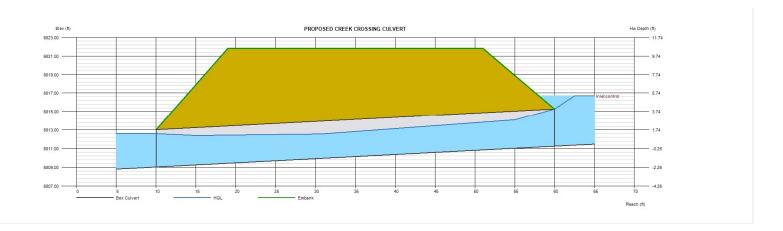

= 100.00

Wednesday, Mar 29 2023

= Inlet Control

Existing Creek Crossing Culvert

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6805.30 = 40.00 = 1.50 = 6805.90 = 24.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 127.00 = 127.00 = (dc+D)/2
Shape	= Elliptical	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 127.00
No. Barrels	= 1	Qpipe (cfs)	= 83.74
n-Value	= 0.013	Qovertop (cfs)	= 43.26
Culvert Type	 Horizontal Ellipse Concrete 	Veloc Dn (ft/s)	= 17.77
Culvert Entrance	= Groove end projecting (H)	Veloc Up (ft/s)	= 17.77
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6807.30
		HGL Up (ft)	= 6809.21
Embankment		Hw Elev (ft)	= 6817.28
Top Elevation (ft)	= 6817.00	Hw/D (ft)	= 5.69

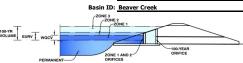

Flow Regime

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 31 2023

PROPOSED CREEK CROSSING CULVERT

Invert Elev Dn (ft)	= 6809.03	Calculations	
Pipe Length (ft)	= 50.00	Qmin (cfs)	= 127.00
Slope (%)	= 4.46	Qmax (cfs)	= 127.00
Invert Elev Up (ft)	= 6811.26	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		
Shape	= Box	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 127.00
No. Barrels	= 1	Qpipe (cfs)	= 127.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= 90D Headwall,	Veloc Dn (ft/s)	= 8.88
	Chamfered or Beveled Inlet Edg	e s /eloc Up (ft/s)	= 10.08
Culvert Entrance	= 90D headwall w/3/4-in chamfers	HGL Dn (ft)	= 6812.60
Coeff. K,M,c,Y,k	= 0.515, 0.667, 0.0375, 0.79, 0.2	HGL Up (ft)	= 6814.41
		Hw Elev (ft)	= 6816.69
Embankment		Hw/D (ft)	= 1.36
Top Elevation (ft)	= 6821.82	Flow Regime	= Inlet Control
Top Width (ft)	= 32.00		
Crest Width (ft)	= 100.00		



Design Procedure Form: Runoff Reduction												
	UD-BMP (Version 3.07, March 2018)										Sheet 1 of 1	
	WCG									-		
		Matrix Design Group										
,	August 29, 20											
	Hay Creek Va El Paso Coun											
Location:	El Paso Coun	ty, co										
SITE INFORMATION (Use	or Input in R	luo Colle)										
SHE INFORMATION (OF	-	Rainfall Depth	0.60	inches								I
Depth of Average Rur					/atersheds O	utside of the I	Denver Regio	n, Figure 3-1	in USDCM V	'ol. 3)		
Area Type	SPA	UIA:RPA	UIA:RPA	UIA:RPA	UIA:RPA	DCIA						
Area ID		1	2	3	4							
Downstream Design Point ID	Pond 1	Pond 1	Pond 1	Pond 1	Pond 1	Pond 1						
Downstream BMP Type	EDB	EDB	EDB	EDB	EDB	EDB	 			 		
DCIA (ft²)		38,589	30,400	30,400	30,523	157,884	 			+		+
UIA (ft²) RPA (ft²)		20,585	18,096	18,056	19,241		 			 		
SPA (ft²)							 			 		
HSG A (%)	0%	0%	0%	0%	0%		t	-				
HSG B (%)	100%	100%	100%	100%	100%							
HSG C/D (%)	0%	0%	0%	0%	0%							
Average Slope of RPA (ft/ft)		0.057	0.028	0.050	0.057							
UIA:RPA Interface Width (ft)		1060.00	950.00	950.00	958.00							
CALCULATED BUNGE	DECLUITO											
CALCULATED RUNOFF Area ID	RESULIS	1	2	3	4	ı	T		1	T 1		Т
UIA:RPA Area (ft ²)		59,174	48,496	48,456	49,764		 			 		+
L / W Ratio		0.06	0.06	0.06	0.06					 		+
UIA / Area		0.6521	0.6269	0.6274	0.6134					†		†
Runoff (in)	0.00	0.00	0.00	0.00	0.00	0.50						†
Runoff (ft ³)	0	0	0	0	0	6579						
Runoff Reduction (ft ³)	95745	1608	1267	1267	1272	0						
CALCULATED WQCV RE	ESULTS					1	 		T			
Area ID WQCV (ft ³)	0	1 1608	2 1267	3 1267	4 1272	6579						
WQCV (ft ³) WQCV Reduction (ft ³)	0	1608	1267	1267	1272	0	 			 		
WQCV Reduction (ft) WQCV Reduction (%)	0%	100%	100%	100%	100%	0%	 			 		+
Untreated WQCV (ft ³)	0	0	0	0	0	6579	t	-				†
Onitioutes 40 ,									J.			
CALCULATED DESIGN F	OINT RESU	LTS (sums r	esults from a	all columns v	with the sam	e Downstrea	m Design Po	int ID)				
Downstream Design Point ID	Pond 1											
DCIA (ft ²)	157,884				<u> </u>							
UIA (ft²)	129,912	igsquare	 '	<u> </u>	<u> </u> '	ļ						<u> </u>
RPA (ft²)	75,978	\vdash	<u>'</u>	 '	 		\vdash			1		
SPA (ft²)	1,914,896	\vdash		 '	 							
Total Importious Area (ft ²)		\vdash		 '	 	ļ	\vdash			+	-	+
Total Impervious Area (ft²) WQCV (ft³)	11,992	\vdash		 	+					+		
WQCV (it) WQCV Reduction (ft ³)	5,413	$\overline{}$		 	 							+ 1
WQCV Reduction (%)	45%											
Untreated WQCV (ft ³)			i									
, ,				,	,							
CALCULATED SITE RES	ULTS (sums	results from	ı all columns	s in workshe	et)							
Total Area (ft ²)		1										
Total Impervious Area (ft²)	287,796	1										
WQCV (ft ³)	11,992	4										
WQCV Reduction (ft ³)		4										
WQCV Reduction (%)	45%	1										
Untreated WQCV (ft ³)	6,579	1										

Please provide information in the text and on the maps to clarify what areas this refers too and the goal of the calculations.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

Project: Hay Creek Valley

Please use the latest MHFD-Detention spreadsheet (v4.06) [as of July 2023]

100-YR VOLUME EURY WOCU	
ZONE 1 AND 2 ORIFICE	
PERMANENT ORIFICES	
POOL Example Zone Configuration (Retention Pond)	

Watershed	Information

	EDB	Selected BMP Type =
acre	52.31	Watershed Area =
ft	3,860	Watershed Length =
ft	1,930	Watershed Length to Centroid =
ft/ft	0.048	Watershed Slope =
per	12.63%	Watershed Imperviousness =
per	0.0%	Percentage Hydrologic Soil Group A =
per	100.0%	Percentage Hydrologic Soil Group B =
per	0.0%	Percentage Hydrologic Soil Groups C/D =
hou	40.0	Target WQCV Drain Time =
	User Input	Location for 1-hr Rainfall Depths =

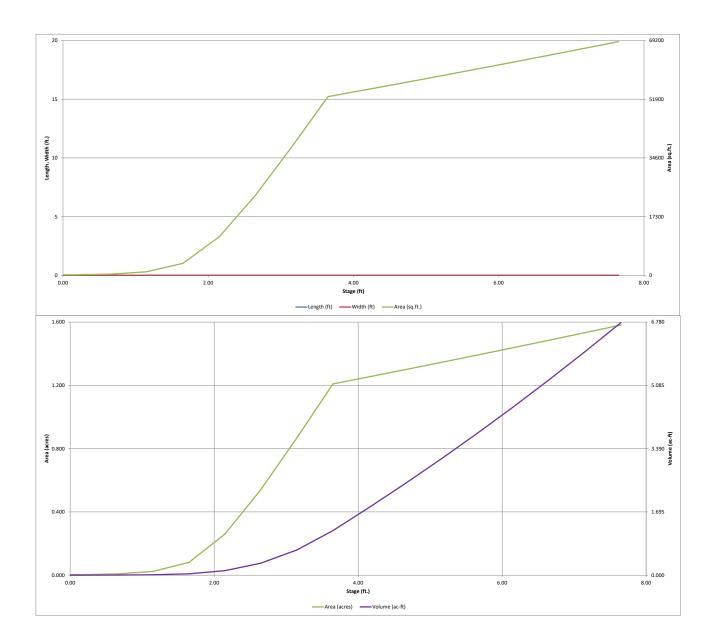
why was the

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Proceduje.

the embedded Colorado Urban Hydro	graph Procedu	re.
Water Quality Capture Volume (WQCV) =	0.151	acre-feet
Excess Urban Runoff Volume (EURV) =	0.633	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.814	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.687	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	2.547	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	4.039	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	5.071	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	6.542	acre-feet
500-yr Runoff Volume (P1 = 3.55 in.) =	11.077	acre-feet
Approximate 2-yr Detention Volume =	0.414	acre-feet
Approximate 5-yr Detention Volume =	0.637	acre-feet
Approximate 10-yr Detention Volume =	1.200	acre-feet
Approximate 25-yr Detention Volume =	1.612	acre-feet
Approximate 50-yr Detention Volume =	1.695	acre-feet
Approximate 100-yr Detention Volume =	2.159	acre-feet

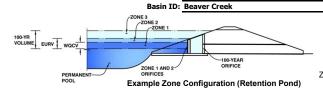
rcen	WQCV
rcen	overrided?
rcen	Please add a
rcen	note stating wh
urs	note stating wil

Optional User Overrides							
0.151	acre-feet						
	acre-feet						
1.19	inches						
1.50	inches						
1.75	inches						
2.00	inches						
2.25	inches						


2.52 inches

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.151	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.482	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.527	acre-feet
Total Detention Basin Volume =	2.159	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (Htotal) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	


Initial Surcharge Area $(A_{ISV}) =$	user	ft²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor (A_{FLOOR}) =	user	ft²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-f

Depth Increment =		ft	-	J U. U. J.				.	
		Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft²)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00				150	0.003		
6865.5		0.15				153	0.004	23	0.001
6866		0.65				334	0.008	144	0.003
		1.15				1,036	0.024	487	0.011
6867		1.65				3,527	0.081	1,628	0.037
		2.15	-			11,323	0.260	5,340	0.123
6868		2.65				23,599	0.542	14,071	0.323
0000									
		3.15				37,857	0.869	29,434	0.676
6869		3.65				52,672	1.209	52,067	1.195
		4.15				54,619	1.254	78,889	1.811
6870		4.65				56,587	1.299	106,691	2.449
		5.15				58,584	1.345	135,484	3.110
6871		5.65				60,610	1.391	165,282	3.794
		6.15				62,643	1.438	196,095	4.502
6872		6.65				64,709	1.486	227,933	5.233
		7.15				66,790	1.533	260,808	5.987
6070			-				1.581		
6873		7.65				68,887	1.561	294,727	6.766
							_		
	-								
			-						
							_		
			-						
			-						
			-						
	_								
			-						
			-						
			-						
			-						
	-								
	-								
			-						
	-								
	-								
			-						
			-						
	-								
			-						
	-								
			-						

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.05 (January 2022)

Project: Hay Creek Valley

	Estimated	Estimated	
_	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.25	0.151	Orifice Plate
Zone 2 (EURV)	3.10	0.482	Circular Orifice
Zone 3 (100-year)	4.43	1.527	Weir&Pipe (Restrict)
-	Total (all zones)	2.159	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = N/A Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A ft² Underdrain Orifice Centroid N/A feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = 2.25 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing : N/A inches Orifice Plate: Orifice Area per Row = 0.63 sq. inches (diameter = 7/8 inch)

ft² WO Orifice Area per Row 4.403E-03 Elliptical Half-Width = N/A feet Elliptical Slot Centroid N/A feet ft² Elliptical Slot Area N/A

<u>User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)</u>

uge ui	d Total / II ca of Each Office	- NOW (Halliberea i	TOTAL TOTAL CO TRIGUE						
		Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
	Stage of Orifice Centroid (ft)	0.00	1.00						
_ *	Orifice Area (sq. inches)	0.63	0.63						

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular

Overflow Grate Type =

Debris Clogging % =

not shown correctly on the CDs detail.

alculated Parameters for Vertical Orifice Zone 2 Circular Not Selected ft² 0.07 N/A 0.15 N/A

Calculated Parameters for Plate

Zone 2 Circular Not Selected Invert of Vertical Orifice 2.25 N/A Depth at top of Zone using Vertical Orifice = 3.10 N/A Vertical Orifice Diameter = 3.50 N/A

ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = inches

Us	er Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Re	ctangular/Trapezoidal Weir and No Outlet	: Pipe)	Calculated Paramet	ers for Overflow W	/eir
		Zone 3 Weir	Not Selected			Zone 3 Weir	Not Selected	
	Overflow Weir Front Edge Height, Ho =	3.11	N/A	ft (relative to basin bottom at Stage = 0 ft)	Height of Grate Upper Edge, H_t =	3.11	N/A	feet
	Overflow Weir Front Edge Length =	4.00	N/A	shown as 3ft on CDs.	Overflow Weir Slope Length =	3.00	N/A	feet
	Overflow Weir Grate Slope =	0.00	N/A		e Open Area / 100-yr Orifice Area =	5.62	N/A	
	Horiz. Length of Weir Sides =	3.00	N/A	feet Over	flow Grate Open Area w/o Debris =	8.35	N/A	ft ²
	Overflow Grate Type =	Type C Grate	N/A	Ove	erflow Grate Open Area w/ Debris =	4.18	N/A	ft ²

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

•	Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	1.00	N/A	ft (distar
Outlet Pipe Diameter =	18.00	N/A	inches
Restrictor Plate Height Above Pipe Invert =	14.10		inches

Type C Grate

50%

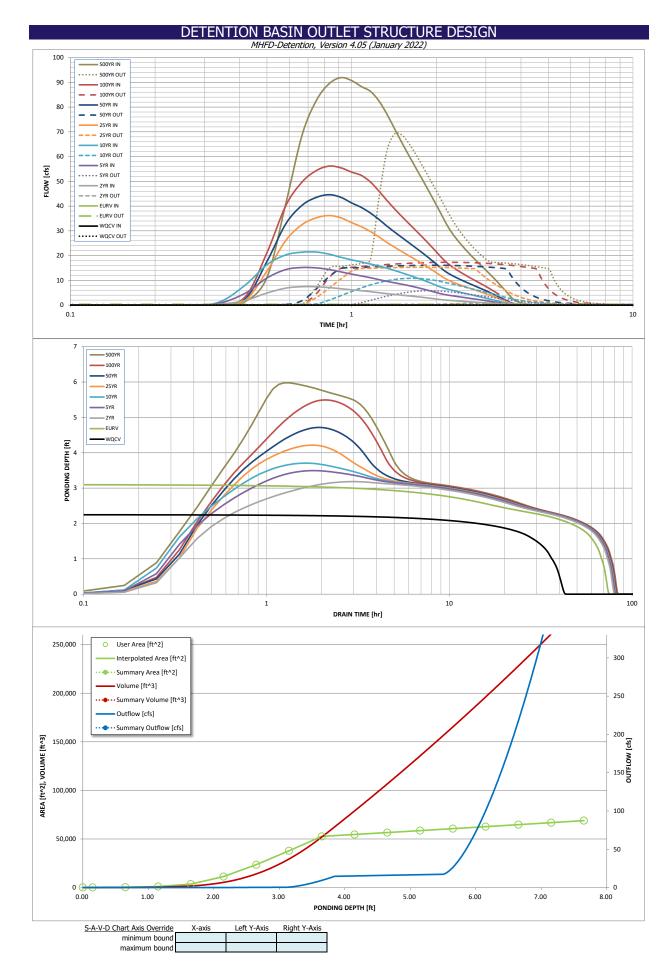
N/A

(distance below basin bottom at Stage = 0 ft)

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Outlet Orifice Area 1.49 N/A Outlet Orifice Centroid 0.64 N/A feet Half-Central Angle of Restrictor Plate on Pipe = 2.17 N/A radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage= Spillway Crest Length = 5.50 ft (relative to basin bottom at Stage = 0 ft) 50.00 feet Verify - not shown on the CD's Spillway End Slopes : H:V 4.00 Freeboard above Max Water Surface = 1.00 feet


Calculated Parameters for Spillway Spillway Design Flow Depth= 0.52 feet Stage at Top of Freeboard = feet 7.02 Basin Area at Top of Freeboard 1.52 acres Basin Volume at Top of Freeboard = 5.79 acre-ft

Verify - plans show 2.15'

Currently shown as ~10:1

Routed Hydrograph Results Design Storm Return Period 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year One-Hour Rainfall Depth (in) = 1.50 N/A N/A 1.19 1.75 2.00 3.55 CUHP Runoff Volume (acre-ft) 0.814 1.687 4.039 5.07 6.542 11.077 0.633 Inflow Hydrograph Volume (acre-ft) = N/A N/A 0.814 1.687 4.039 5.071 6.542 11.077 CUHP Predevelopment Peak Q (cfs) = N/A N/A 4.0 17.5 32.0 40.2 51.6 86.5 11.3 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A Predevelopment Unit Peak Flow, q (cfs/acre) = 0.08 0.77 0.99 0.22 0.33 0.61 1.65 N/A N/A Peak Inflow Q (cfs) N/A 44.6 91.9 N/A 15.2 21.4 36.2 7.4 56.2 Peak Outflow Q (cfs) = 0.1 0.3 0.8 10.8 69.0 5.8 15.3 16.1 Ratio Peak Outflow to Predevelopment Q = N/A 0.5 0.5 0.3 0.8 N/A N/A 0.6 0.4 Structure Controlling Flow : Plate Vertical Orifice 1 Overflow Weir 1 Overflow Weir 1 Overflow Weir 1 let Plat let Pla Outlet Plate Spillway Max Velocity through Grate 1 (fps) : N/A N/A 0.05 1.8 N/A Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) = 68 62 41 Time to Drain 99% of Inflow Volume (hours) 69 73 71 69 65 63 60 50 Maximum Ponding Depth (ft) : 2.25 3.10 3.50 3.71 5.98 Area at Maximum Ponding Depth (acres) 1.10 1.42 Maximum Volume Stored (acre-ft) = 1.886 4 244

> Per USDCMv2 Chap 12, Section 5.5.5 - "The design goal is that the outlet pipe orifice controls flow for the 100-yr event, and the grate controls for more frequent return periods." Review this section of MHFD guidance and consider revising the pond design accordingly.

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename: __(Outflow Hydrographs.xisx

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.04
	0:15:00	0.00	0.00	0.06	0.10	0.13	0.08	0.11	0.10	0.21
	0:20:00	0.00	0.00	0.27	0.64	0.99	0.28	0.33	0.43	1.33
	0:25:00	0.00	0.00	1.84	4.69	7.92	1.78	2.26	3.12	11.19
	0:30:00	0.00	0.00	4.89	10.95	16.33	13.76	17.64	21.21	41.01
	0:35:00	0.00	0.00	6.85	14.36	20.28	26.13	32.83	40.20	68.76
	0:40:00 0:45:00	0.00	0.00	7.44 7.41	15.18 15.02	21.38 21.41	32.56 35.27	40.32 43.53	49.75 54.39	82.78 89.52
	0:50:00	0.00	0.00	7.41	14.36	20.55	36.17	44.60	56.16	91.89
	0:55:00	0.00	0.00	6.60	13.41	19.30	35.24	43.50	55.44	90.68
	1:00:00	0.00	0.00	6.17	12.51	18.28	33.30	41.27	53.72	88.27
	1:05:00	0.00	0.00	5.82	11.77	17.42	31.65	39.42	52.38	86.35
	1:10:00	0.00	0.00	5.43	11.05	16.58	29.71	37.17	49.70	82.47
	1:15:00	0.00	0.00	5.01	10.30	15.77	27.55	34.62	46.08	77.25
	1:20:00	0.00	0.00	4.63	9.60	14.93	25.36	31.95	42.35	71.55
	1:30:00	0.00	0.00	4.31 4.03	9.02 8.48	14.03 13.13	23.50 21.81	29.64 27.53	39.04 36.08	66.16 61.25
	1:35:00	0.00	0.00	3.77	7.96	12.25	20.22	25.54	33.38	56.70
	1:40:00	0.00	0.00	3.51	7.40	11.38	18.72	23.66	30.86	52.42
	1:45:00	0.00	0.00	3.25	6.81	10.52	17.27	21.84	28.44	48.32
	1:50:00	0.00	0.00	2.99	6.22	9.69	15.86	20.06	26.08	44.34
	1:55:00	0.00	0.00	2.73	5.64	8.84	14.46	18.32	23.78	40.46
	2:00:00	0.00	0.00	2.46 2.21	5.07 4.55	7.97 7.20	13.08 11.70	16.60 14.87	21.54 19.31	36.69 33.03
	2:10:00	0.00	0.00	2.21	4.16	6.61	10.52	13.40	17.40	29.93
	2:15:00	0.00	0.00	1.86	3.86	6.13	9.63	12.28	15.93	27.44
	2:20:00	0.00	0.00	1.73	3.59	5.68	8.90	11.34	14.68	25.28
	2:25:00	0.00	0.00	1.61	3.34	5.27	8.25	10.50	13.56	23.33
	2:30:00	0.00	0.00	1.50	3.10	4.87	7.65	9.73	12.54	21.55
	2:35:00	0.00	0.00	1.39	2.87	4.49	7.10	9.02	11.60	19.89
	2:45:00	0.00	0.00	1.28 1.17	2.64	4.13 3.78	6.57	8.33 7.68	10.71 9.89	18.33 16.88
	2:50:00	0.00	0.00	1.07	2.20	3.44	5.56	7.05	9.09	15.49
	2:55:00	0.00	0.00	0.97	1.99	3.11	5.07	6.42	8.30	14.13
	3:00:00	0.00	0.00	0.87	1.78	2.80	4.58	5.81	7.52	12.79
	3:05:00	0.00	0.00	0.77	1.58	2.48	4.10	5.20	6.74	11.45
	3:10:00	0.00	0.00	0.67	1.37	2.17	3.62	4.59	5.96	10.12
	3:15:00 3:20:00	0.00	0.00	0.58	1.17 0.97	1.87 1.56	3.14	3.99	5.19	8.79
	3:25:00	0.00	0.00	0.48 0.38	0.78	1.26	2.66 2.18	3.38 2.78	4.41 3.64	7.47 6.15
	3:30:00	0.00	0.00	0.29	0.58	0.96	1.71	2.19	2.87	4.83
	3:35:00	0.00	0.00	0.20	0.39	0.67	1.24	1.59	2.10	3.54
	3:40:00	0.00	0.00	0.12	0.25	0.48	0.79	1.03	1.38	2.42
	3:45:00	0.00	0.00	0.09	0.18	0.38	0.51	0.70	0.93	1.72
	3:50:00 3:55:00	0.00	0.00	0.07	0.15	0.30	0.35	0.49	0.64	1.24
	4:00:00	0.00	0.00	0.05 0.04	0.12	0.25 0.20	0.24 0.17	0.35 0.25	0.44	0.89
	4:05:00	0.00	0.00	0.04	0.09	0.16	0.17	0.23	0.29	0.63
	4:10:00	0.00	0.00	0.03	0.06	0.12	0.08	0.13	0.12	0.28
	4:15:00	0.00	0.00	0.02	0.05	0.09	0.06	0.09	0.07	0.18
	4:20:00 4:25:00	0.00	0.00	0.02 0.01	0.03	0.07 0.05	0.04 0.03	0.07 0.05	0.05 0.04	0.14
	4:30:00	0.00	0.00	0.01	0.02	0.03	0.03	0.03	0.03	0.10
	4:35:00	0.00	0.00	0.01	0.01	0.03	0.02	0.03	0.03	0.06
	4:40:00 4:45:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02 0.02	0.02 0.01	0.05
	4:50:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 13-12b. Emergency Spillway Profile at Embankment

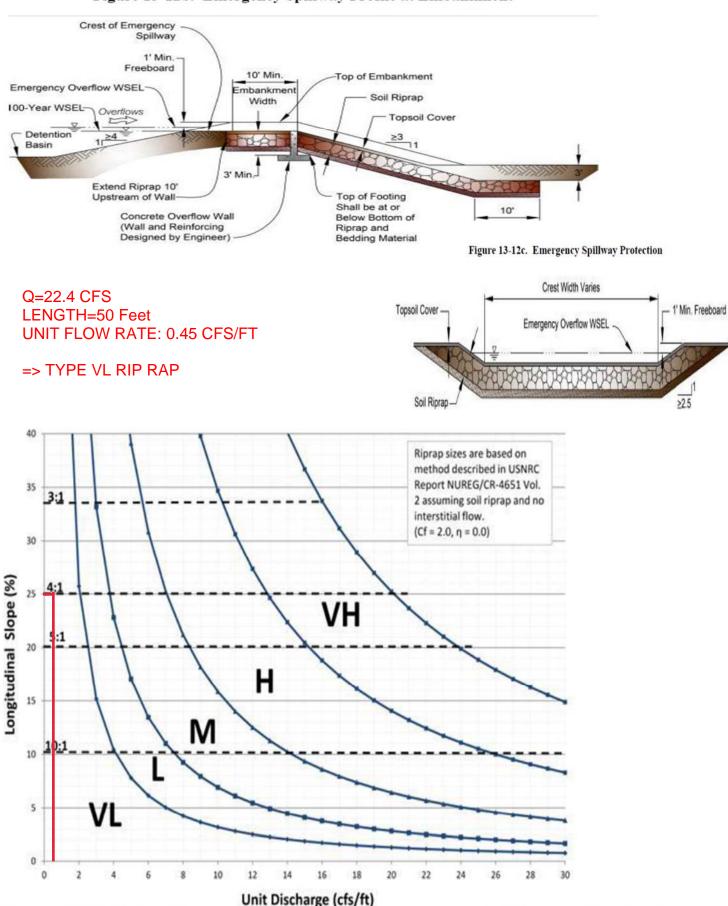


Figure 13-12d. Riprap Types for Emergency Spillway Protection

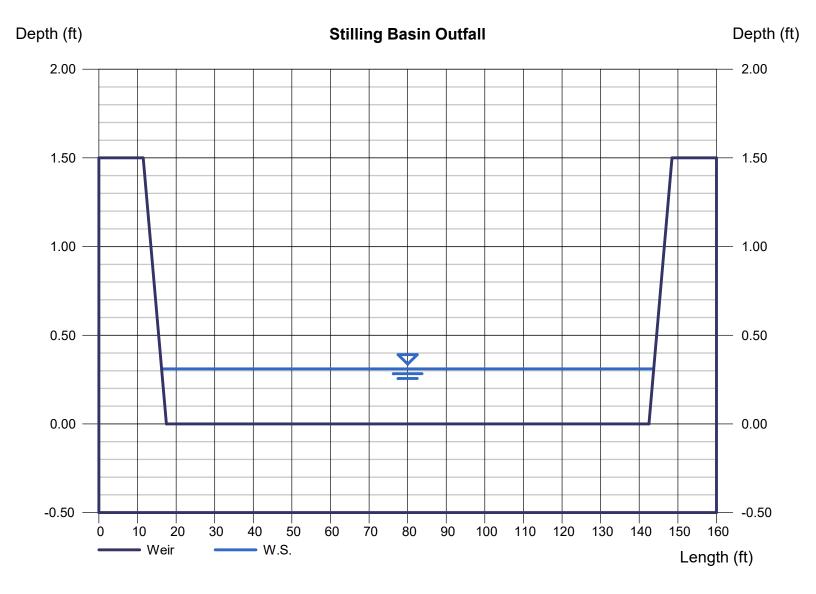
Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Sep 18 2023

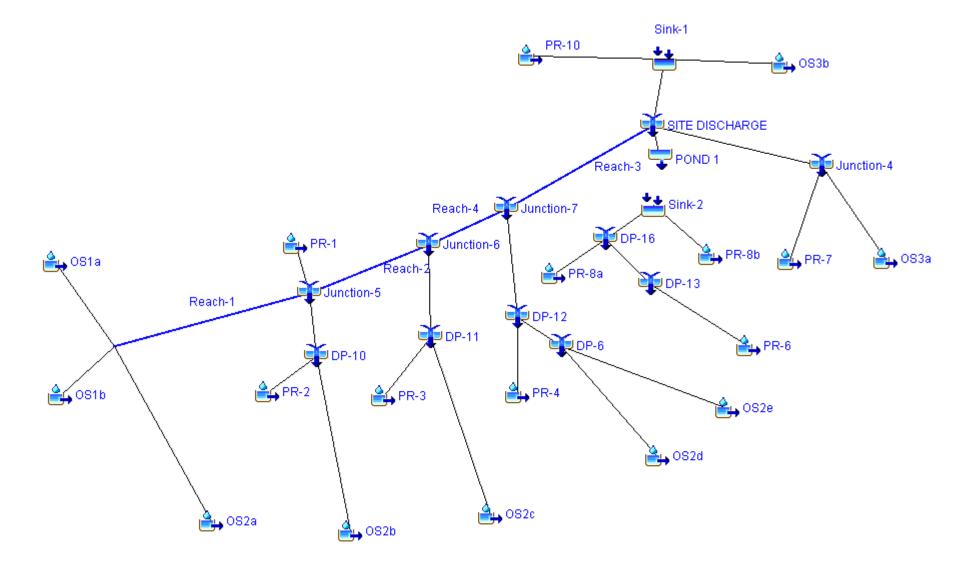
Stilling Basin Outfall

Tra	pezo	idal	Weir


Crest = Sharp Bottom Length (ft) = 125.00 Total Depth (ft) = 1.50 Side Slope (z:1) = 4.00

Calculations

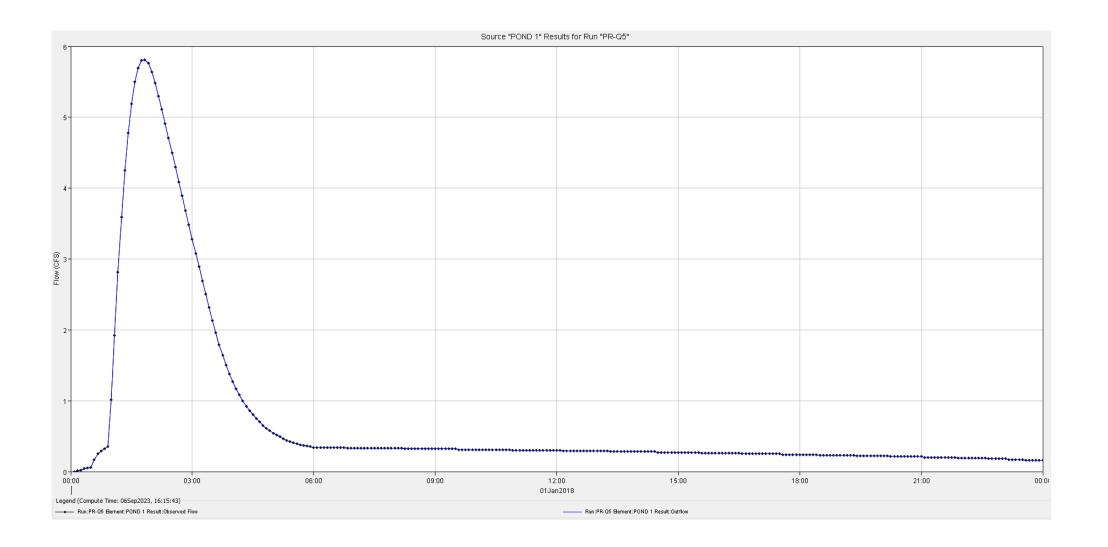
Weir Coeff. Cw = 3.10Compute by: Known Q Known Q (cfs) = 64.70


Highlighted

Depth (ft) = 0.31 Q (cfs) = 64.70 Area (sqft) = 39.13 Velocity (ft/s) = 1.65 Top Width (ft) = 127.48

Model Name: Hay_Creek_Forest_Manor

These models reflect full development of the areas included in the Hay Creek development with full spectrum detention provided to maintain historic flows. Areas tributary to Pond 1 have been modeled to drain to "Sink 2" while the pond itself has been modeled using the outflow hydrographs from the MHFD-Detention Spreadsheet.


Project: Hay Creek Simulation Run: PR-Q5

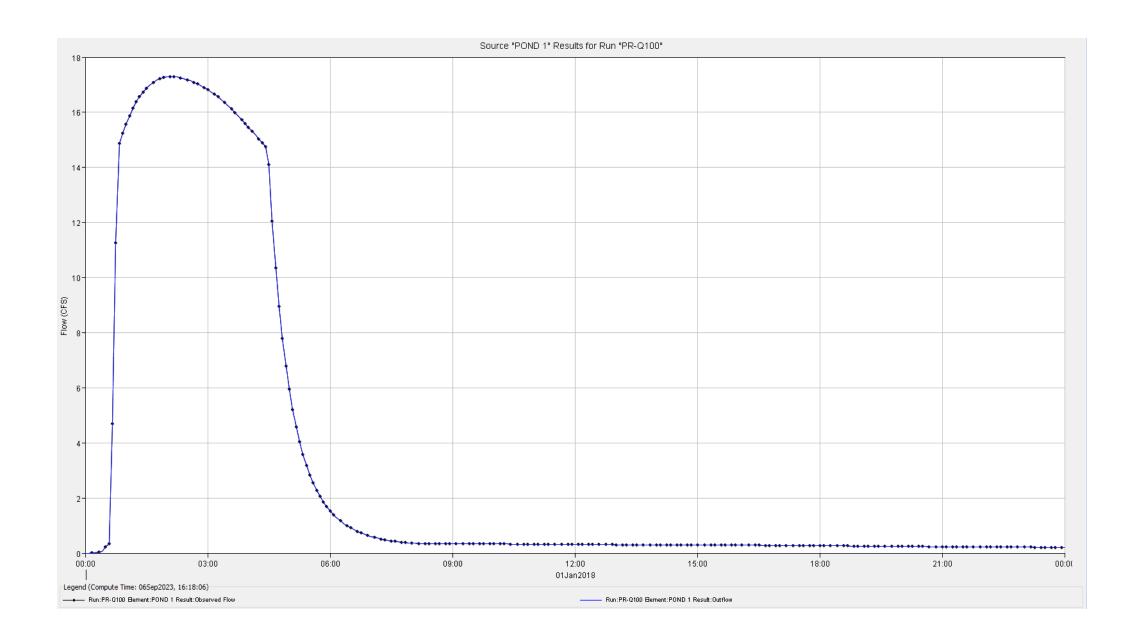
Start of Run: 01Jan2018, 00:00 Basin Model: PR - HAY CREEK_FM End of Run: 02Jan2018, 00:00 Meteorologic Model: 5 YEAR EVENT Compute Time: 06Sep2023, 16:09:24 Control Specifications: 1 DAY

Volume Units:

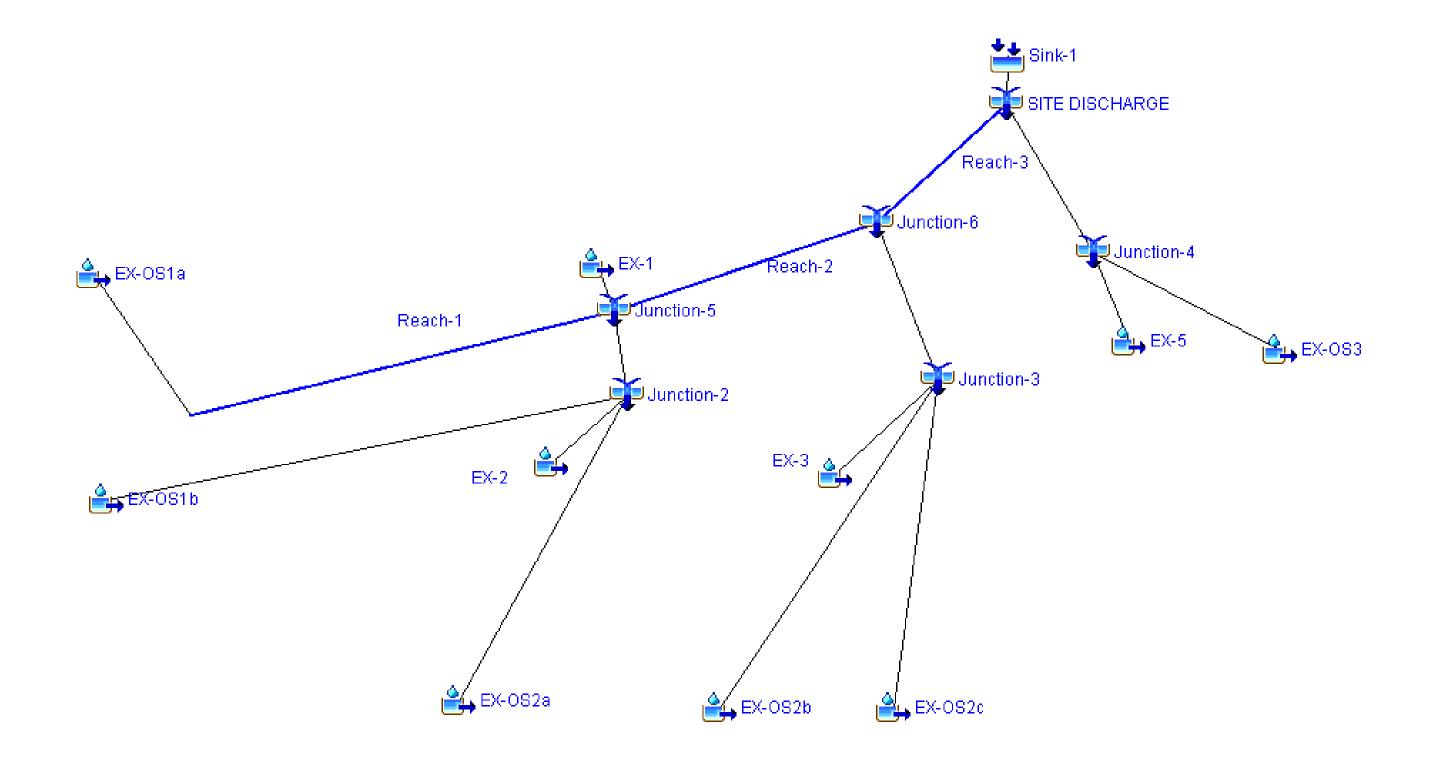
IN
AC-FT

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
DP-10	0.1205	3.7	01Jan2018, 12:50	0.14
DP-11a	0.0244	1.3	01Jan2018, 12:40	0.21
DP-11b	0.1449	5.0	01Jan2018, 12:50	0.16
DP-12	0.0385	2.1	01Jan2018, 12:35	0.20
DP-13	0.0189	1.0	01Jan2018, 12:35	0.21
DP-14	0.0535	2.7	01Jan2018, 12:40	0.21
DP-15	0.0699	3.7	01Jan2018, 12:40	0.21
DP-16	0.0286	1.2	01Jan2018, 12:40	0.17
DP-18	0.0773	6.6	01Jan2018, 12:50	0.39
DP-6	0.0092	0.5	01Jan2018, 12:30	0.20
Junction-5	0.2666	9.5	01Jan2018, 13:00	0.18
Junction-6	0.2855	10.0	01Jan2018, 13:05	0.18
Junction-7	0.3390	11.6	01Jan2018, 13:10	0.18
OS1a	0.0146	0.8	01Jan2018, 12:40	0.21
OS1b	0.0925	2.6	01Jan2018, 12:50	0.13
OS2a	0.0078	0.4	01Jan2018, 12:25	0.14
OS2b	0.0134	0.7	01Jan2018, 12:30	0.16
OS2c	0.0036	0.3	01Jan2018, 12:25	0.21
OS2d	0.0043	0.3	01Jan2018, 12:35	0.20
OS2e	0.0049	0.3	01Jan2018, 12:30	0.20
OS3a	0.0076	0.1	01Jan2018, 12:40	0.06
OS3b	0.0051	0.1	01Jan2018, 12:30	0.06
POND 1	0.0840	5.8	01Jan2018, 01:50	0.32
PR-10	0.0256	0.6	01Jan2018, 12:55	0.11
PR-1a	0.0202	0.9	01Jan2018, 12:50	0.21
PR-1b	0.0098	0.5	01Jan2018, 12:40	0.21
PR-1c	0.0832	3.4	01Jan2018, 13:00	0.21
PR-2	0.0251	1.4	01Jan2018, 12:35	0.21
PR-3	0.0153	0.8	01Jan2018, 12:40	0.21
PR-4	0.0443	2.2	01Jan2018, 12:45	0.21
PR-6	0.0699	3.7	01Jan2018, 12:40	0.21
PR-7	0.0210	1.1	01Jan2018, 12:40	0.21
PR-8a	0.0074	3.3	01Jan2018, 13:00	2.00
PR-8b	0.0006	0.8	01Jan2018, 12:15	2.66
Reach-1	0.1449	5.0	01Jan2018, 13:05	0.15
Reach-2	0.2666	9.4	01Jan2018, 13:10	0.18
Reach-3	0.3390	11.6	01Jan2018, 13:15	0.18
Reach-4	0.2855	10.0	01Jan2018, 13:15	0.18
Reach-5	0.0244	1.3	01Jan2018, 12:45	0.21
Reach-6	0.1205	3.7	01Jan2018, 12:50	0.14
Sink-1	0.4823	13.0	01Jan2018, 13:10	0.20
Sink-2	0.0779	6.8	01Jan2018, 12:45	0.40
SITE DISCH	0.4516	12.5	01Jan2018, 13:15	0.21

Project: Hay Creek Simulation Run: PR-Q100


Start of Run: 01Jan2018, 00:00

Basin Model: PR - HAY CREEK_FM End of Run: 02Jan2018, 00:00 Meteorologic Model: 100 YEAR EVENT
Compute Time: 06Sep2023, 16:18:06 Control Specifications: 1 DAY


Volume Units:

IN
AC-FT

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
DP-10	0.1205	19.5	01Jan2018, 12:55	0.74
DP-11a	0.0244	6.1	01Jan2018, 12:45	0.92
DP-11b	0.1449	25.2	01Jan2018, 12:55	0.77
DP-12	0.0385	9.6	01Jan2018, 12:40	0.87
DP-13	0.0189	4.6	01Jan2018, 12:40	0.91
DP-14	0.0535	12.3	01Jan2018, 12:45	0.91
DP-15	0.0699	17.0	01Jan2018, 12:45	0.92
DP-16	0.0286	6.1	01Jan2018, 12:45	0.82
DP-18	0.0773	24.3	01Jan2018, 12:50	1.27
DP-6	0.0092	2.3	01Jan2018, 12:35	0.85
Junction-5	0.2666	46.9	01Jan2018, 13:05	0.82
Junction-6	0.2855	50.2	01Jan2018, 13:05	0.82
Junction-7	0.3390	60.0	01Jan2018, 13:05	0.83
OS1a	0.0146	3.6	01Jan2018, 12:45	0.92
051b	0.0925	14.2	01Jan2018, 13:00	0.70
052a	0.0078	1.8	01Jan2018, 12:30	0.71
OS2b	0.0134	3.2	01Jan2018, 12:35	0.76
052c	0.0036	1.2	01Jan2018, 12:25	0.89
052d	0.0043	1.1	01Jan2018, 12:40	0.86
052e	0.0049	1.3	01Jan2018, 12:35	0.84
053a	0.0076	0.9	01Jan2018, 12:50	0.53
OS3b	0.0051	0.8	01Jan2018, 12:35	0.53
POND 1	0.0840	17.3	01Jan2018, 02:05	1.40
PR-10	0.0256	3.4	01Jan2018, 13:05	0.65
PR-1a	0.0202	4.3	01Jan2018, 12:55	0.92
PR-1b	0.0098	2.5	01Jan2018, 12:45	0.92
PR-1c	0.0832	15.7	01Jan2018, 13:05	0.91
PR-2	0.0251	6.5	01Jan2018, 12:40	0.92
PR-3	0.0153	3.8	01Jan2018, 12:45	0.92
PR-4	0.0443	10.3	01Jan2018, 12:50	0.92
PR-6	0.0699	17.0	01Jan2018, 12:45	0.92
PR-7	0.0210	5.1	01Jan2018, 12:45	0.92
PR-8a	0.0074	7.8	01Jan2018, 13:00	4.55
PR-8b	0.0006	1.7	01Jan2018, 12:15	5.49
Reach-1	0.1449	25.0	01Jan2018, 13:05	0.76
Reach-2	0.2666	46.9	01Jan2018, 13:05	0.82
Reach-3	0.3390	59.7	01Jan2018, 13:10	0.83
Reach-4	0.2855	50.1	01Jan2018, 13:10	0.82
Reach-5	0.0244	6.1	01Jan2018, 12:45	0.92
Reach-6	0.1205	19.5	01Jan2018, 13:00	0.74
Sink-1	0.4823	68.6	01Jan2018, 13:05	0.92
Sink-2	0.0779	24.6	01Jan2018, 12:50	1.30
SITE DISCH	0.4516	64.7	01Jan2018, 13:05	0.94

Model Name: **Hay_Creek_Forest_Manor**These models reflect the existing conditions on the Hay Creek development.

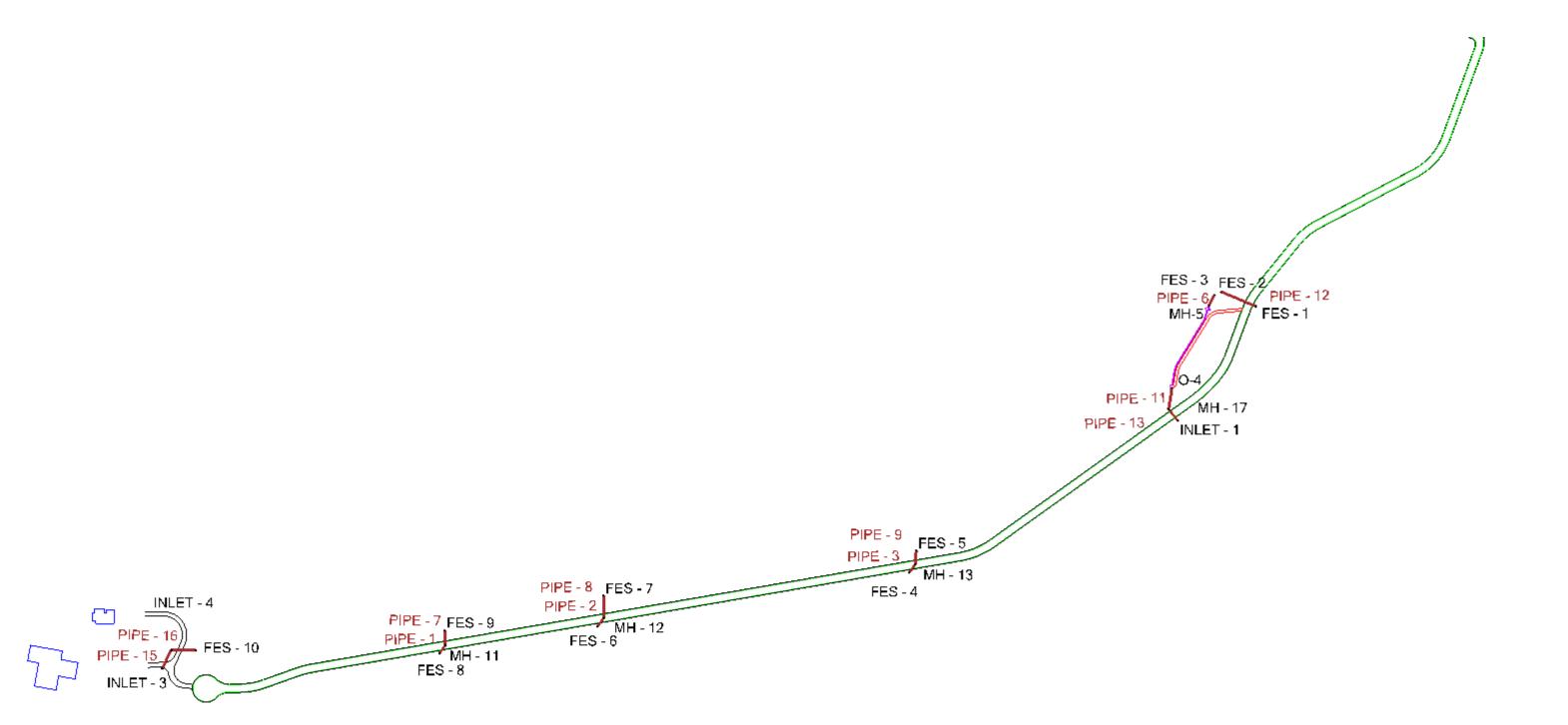
Project: HAY_CREEK_FOREST_MANOR - UP Simulation Run: EX-Q5

Start of Run: 01Jan2018, 00:00 Basin Model: EX - HAY CREEK_FM End of Run: 02Jan2018, 00:00 Meteorologic Model: 5 YEAR EVENT
Compute Time: 28Mar2023, 08:56:35 Control Specifications: 1 DAY

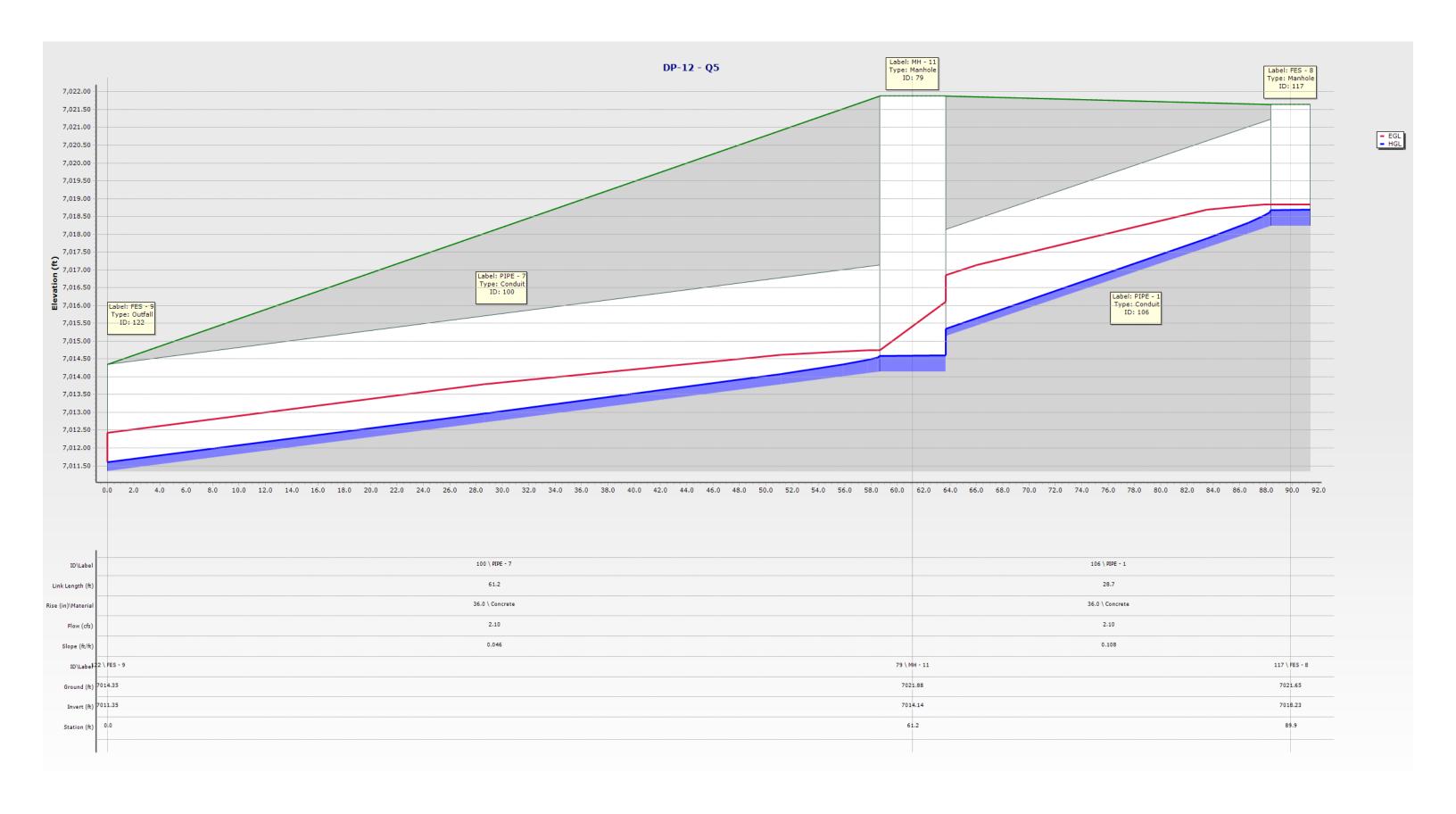
Volume Units: IN AC-FT

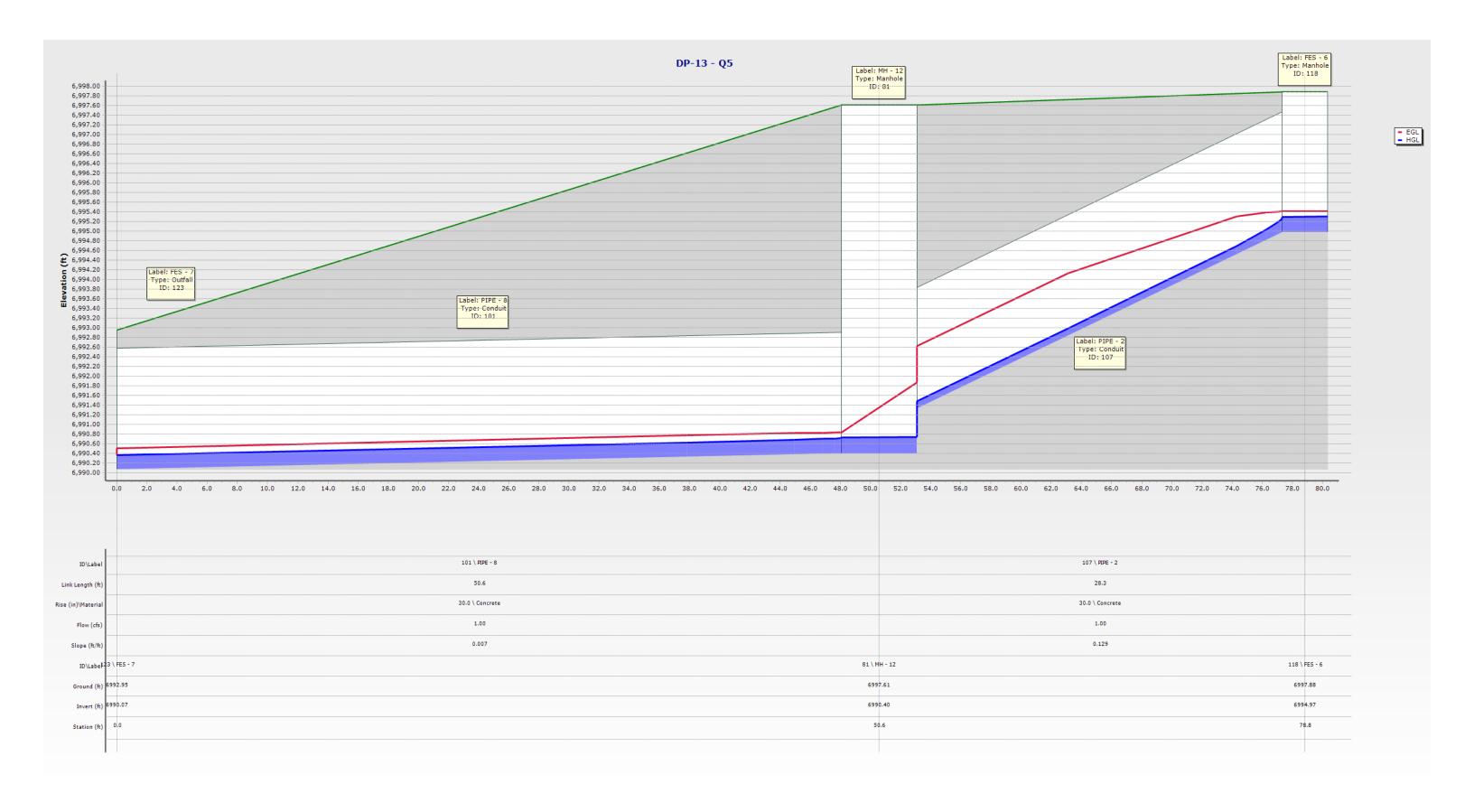
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
EX-1	0.0876	1.6	01Jan2018, 13:00	0.10
EX-2	0.0754	2.0	01Jan2018, 12:50	0.13
EX-3	0.0963	2.3	01Jan2018, 12:40	0.10
EX-5	0.0669	1.5	01Jan2018, 12:40	0.09
EX-OS1a	0.0146	0.8	01Jan2018, 12:40	0.23
EX-OS1b	0.0925	2.6	01Jan2018, 12:50	0.14
EX-OS2a	0.0248	1.5	01Jan2018, 12:25	0.18
EX-OS2b	0.0043	0.3	01Jan2018, 12:35	0.23
EX-OS2c	0.0049	0.3	01Jan2018, 12:30	0.22
EX-OS3	0.0127	0.2	01Jan2018, 12:30	0.07
Junction-2	0.1927	5.4	01Jan2018, 12:45	0.14
Junction-3	0.1055	2.9	01Jan2018, 12:35	0.11
Junction-4	0.0796	1.8	01Jan2018, 12:40	0.09
Junction-5	0.2949	7.5	01Jan2018, 12:50	0.13
Junction-6	0.4004	9.8	01Jan2018, 12:50	0.12
Reach-1	0.0146	0.8	01Jan2018, 13:00	0.23
Reach-2	0.2949	7.5	01Jan2018, 13:00	0.13
Reach-3	0.4004	9.8	01Jan2018, 12:55	0.12
Sink-1	0.4800	11.2	01Jan2018, 12:50	0.12
SITE DISCH	0.4800	11.2	01Jan2018, 12:50	0.12

Project: HAY_CREEK_FOREST_MANOR - UP Simulation Run: EX-Q100

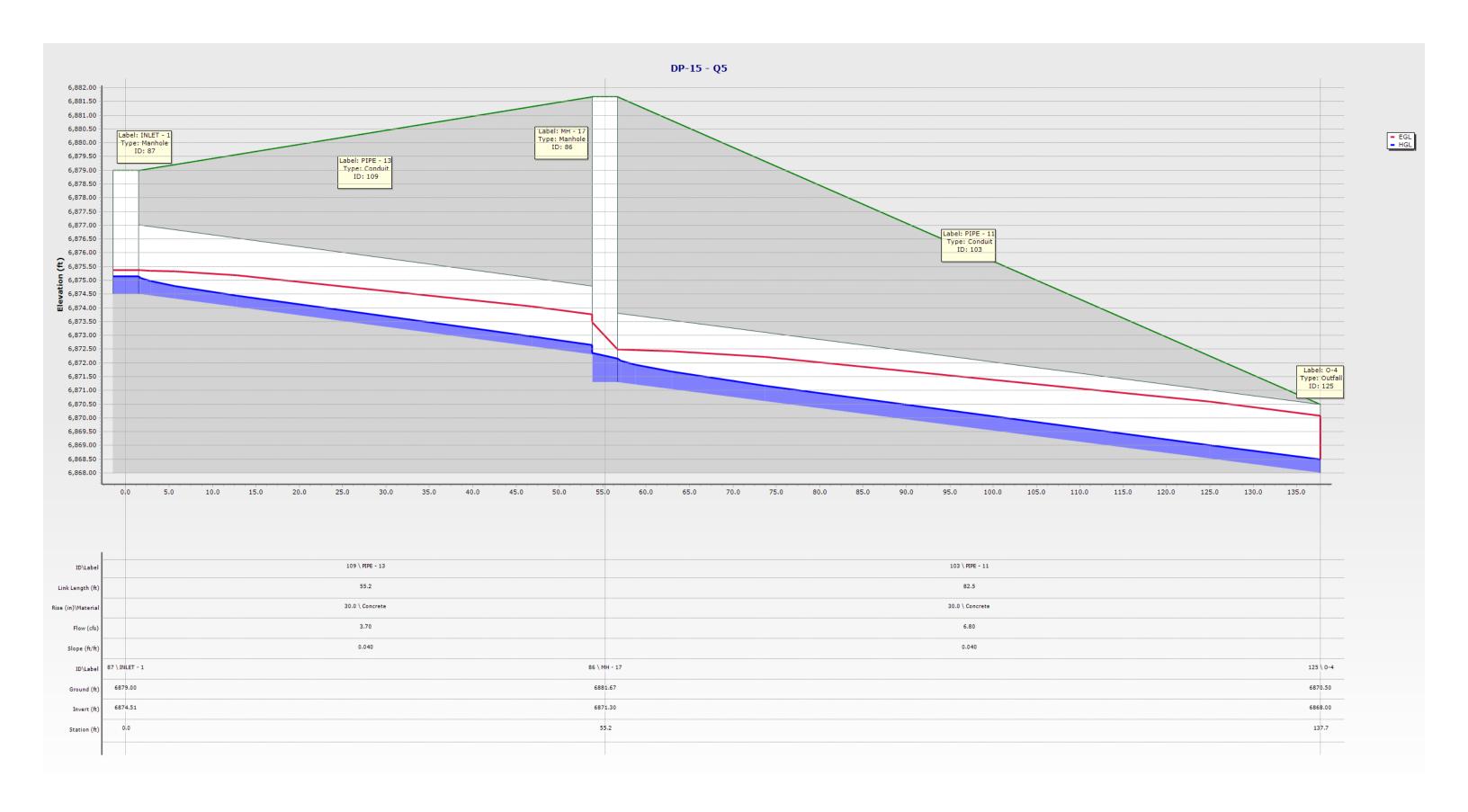

Start of Run: 01Jan2018, 00:00 Basin Model: EX - HAY CREEK_FM
End of Run: 02Jan2018, 00:00 Meteorologic Model: 100 YEAR EVENT
Compute Time: 28Mar2023, 08:57:29 Control Specifications: 1 DAY

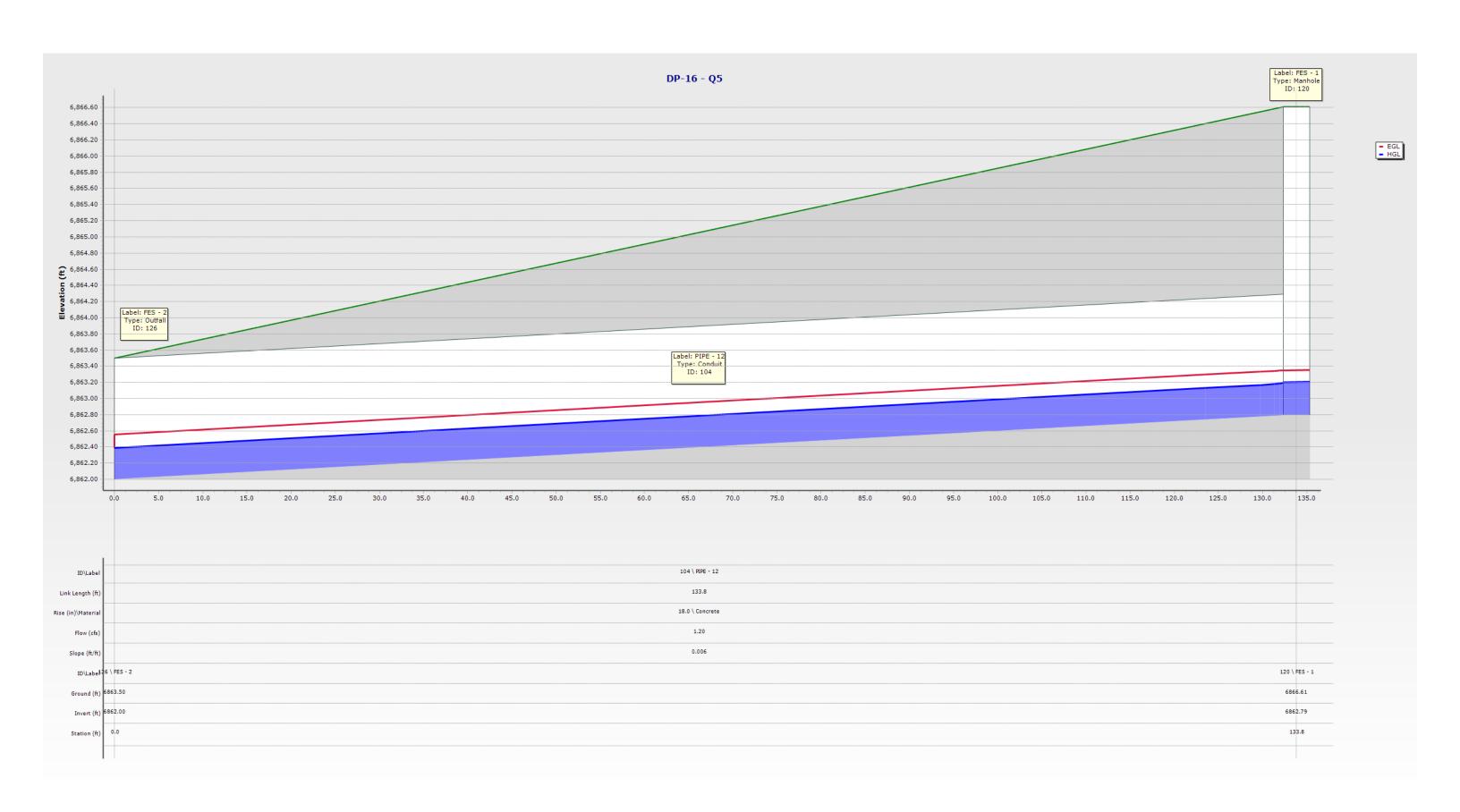
Volume Units:

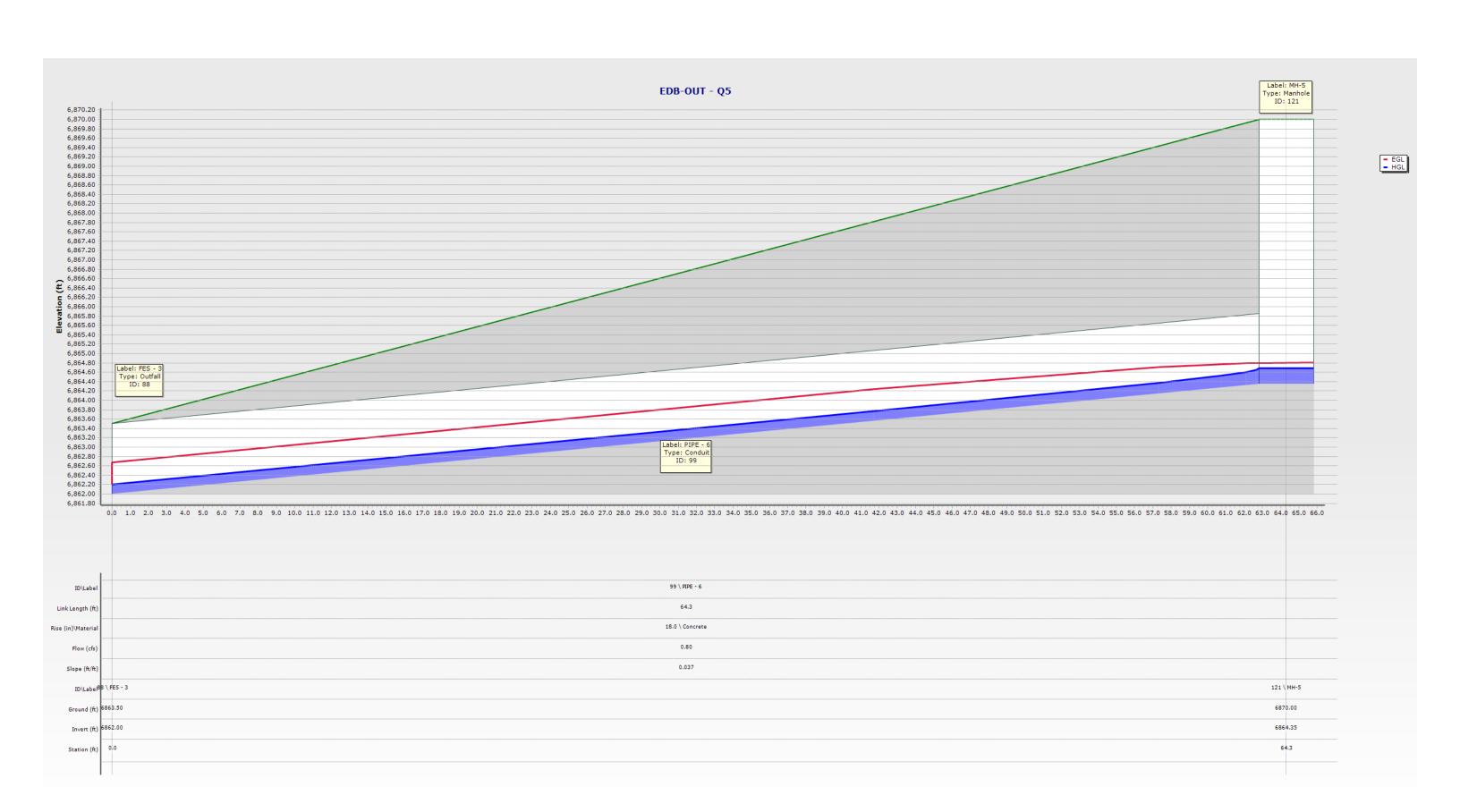

IN
AC-FT


Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(IN)
EX-1	0.0876	9.9	01Jan2018, 13:15	0.62
EX-2	0.0754	11.2	01Jan2018, 13:00	0.69
EX-3	0.0963	14.7	01Jan2018, 12:45	0.62
EX-5	0.0669	10.0	01Jan2018, 12:45	0.61
EX-OS1a	0.0146	4.1	01Jan2018, 12:45	1.01
EX-OS1b	0.0925	15.7	01Jan2018, 13:00	0.76
EX-OS2a	0.0248	8.0	01Jan2018, 12:30	0.89
EX-OS2b	0.0043	1.4	01Jan2018, 12:35	1.01
EX-OS2c	0.0049	1.6	01Jan2018, 12:30	0.99
EX-053	0.0127	2.0	01Jan2018, 12:40	0.57
Junction-2	0.1927	30.9	01Jan2018, 12:55	0.75
Junction-3	0.1055	17.4	01Jan2018, 12:45	0.65
Junction-4	0.0796	11.9	01Jan2018, 12:45	0.60
Junction-5	0.2949	43.9	01Jan2018, 13:00	0.72
Junction-6	0.4004	59.2	01Jan2018, 12:55	0.70
Reach-1	0.0146	4.1	01Jan2018, 12:55	1.00
Reach-2	0.2949	43.8	01Jan2018, 13:00	0.72
Reach-3	0.4004	59.1	01Jan2018, 13:00	0.70
Sink-1	0.4800	69.9	01Jan2018, 12:55	0.68
SITE DISCH	0.4800	69.9	01Jan2018, 12:55	0.68

StormCAD LAYOUT



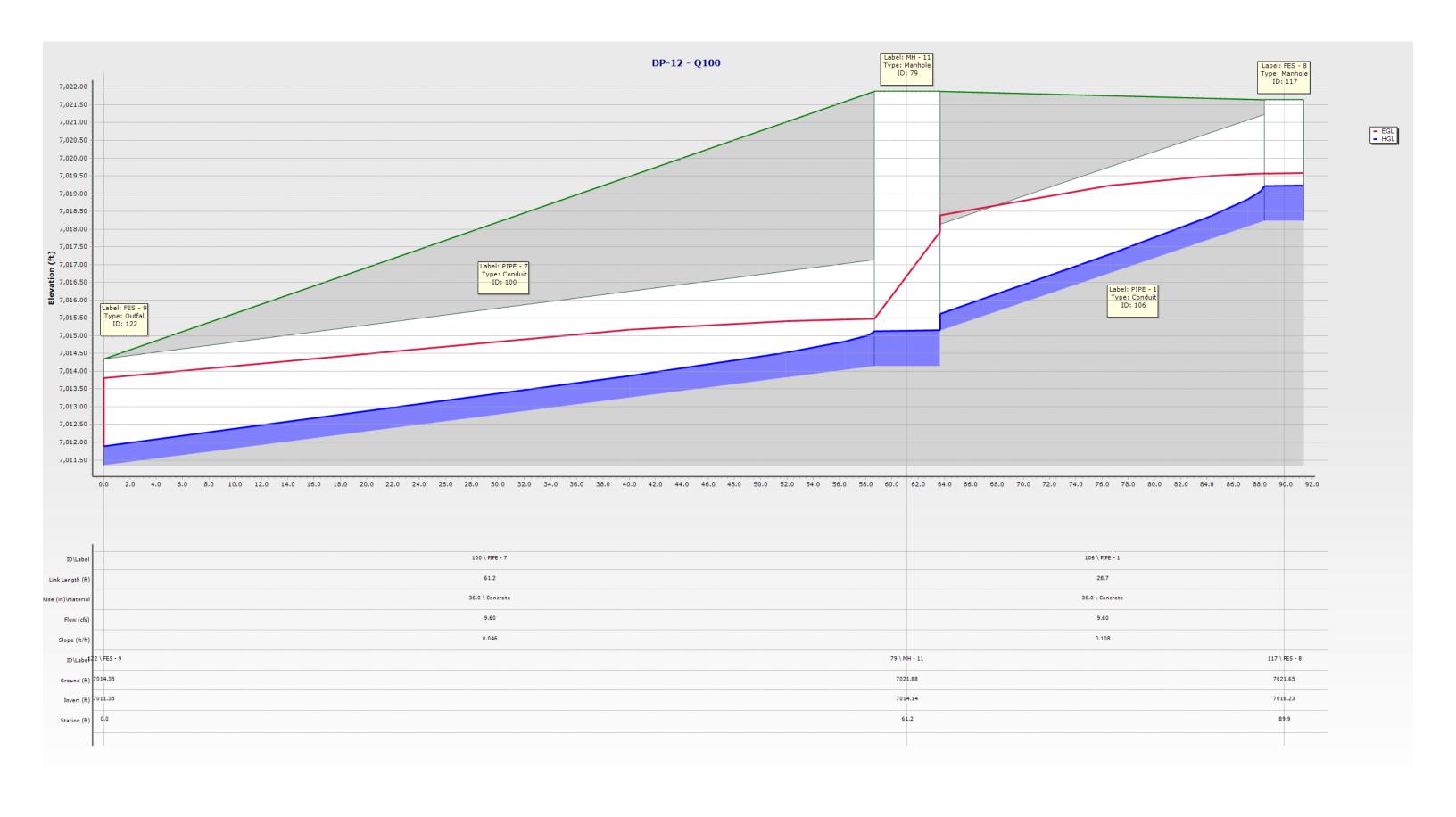




	Label	Velocity (ft/s)	Start Node	Invert (Start) (ft)	Hydraulic Grade Line (In) (ft)	Invert (Stop) (ft)	Hydraulic Grade Line (Out) (ft)	Stop Node	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Manning's n	Flow (cfs)	Capacity (Design) (cfs)	Depth (Normal) / Rise (%)	Diameter (in)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)
99: PIPE - 6	PIPE - 6	5.53	MH-5	6,864.35	6,864.68	6,862.00	6,862.20 FES - 3	}	64.3	0.037	0.013	0.80	20.08	13.6	18.0	6,870.00	6,863.50
100: PIPE - 7	PIPE - 7	7.28	MH - 11	7,014.14	7,014.59	7,011.35	7,011.60 FES - 9)	61.2	0.046	0.013	2.10	142.45	8.5	36.0	7,021.88	7,014.35
101: PIPE - 8	PIPE - 8	3.02	MH - 12	6,990.40	6,990.72	6,990.07	6,990.37 FES - 7	,	50.6	0.007	0.013	1.00	33.13	11.9	30.0	6,997.61	6,992.95
102: PIPE - 9	PIPE - 9	5.89	MH - 13	6,933.09	6,933.60	6,932.02	6,932.37 FES - 5	i	53.3	0.020	0.013	2.70	94.48	11.6	36.0	6,940.67	6,935.02
103: PIPE - 11	PIPE - 11	10.11	MH - 17	6,871.30	6,872.16	6,868.00	6,868.49 O-4		82.5	0.040	0.013	6.80	82.04	19.5	30.0	6,881.67	6,870.50
104: PIPE - 12	PIPE - 12	3.28	FES - 1	6,862.79	6,863.20	6,862.00	6,862.39 FES - 2	2	133.8	0.006	0.013	1.20	8.07	26.1	18.0	6,866.61	6,863.50
106: PIPE - 1	PIPE - 1	9.82	FES - 8	7,018.23	7,018.68	7,015.14	7,015.35 MH - 1	1	28.7	0.108	0.013	2.10	218.84	6.9	36.0	7,021.65	7,021.88
107: PIPE - 2	PIPE - 2	8.56	FES - 6	6,994.97	6,995.29	6,991.33	6,991.48 MH - 1	2	28.3	0.129	0.013	1.00	147.20	5.9	30.0	6,997.88	6,997.61
108: PIPE - 3	PIPE - 3	10.79	FES - 4	6,937.18	6,937.69	6,934.02	6,934.25 MH - 1	3	27.9	0.113	0.013	2.70	224.66	7.7	36.0	6,940.60	6,940.67
109: PIPE - 13	PIPE - 13	8.45	INLET - 1	6,874.51	6,875.14	6,872.30	6,872.66 MH - 1	7	55.2	0.040	0.013	3.70	82.03	14.5	30.0	6,879.00	6,881.67
110: PIPE - 15	PIPE - 15	3.96	INLET - 3	7,051.94	7,052.54	7,051.55	7,052.28 INLET	- 4	78.8	0.005	0.013	3.70	46.93	19.0	36.0	7,059.70	7,056.91
111: PIPE - 16	PIPE - 16	4.33	INLET - 4	7,051.25	7,051.95	7,050.79	7,051.45 FES - 1	.0	92.3	0.005	0.013	5.00	47.07	22.0	36.0	7,056.91	7,053.79

Figure 1- Q5 CONDUIT SUMMARY

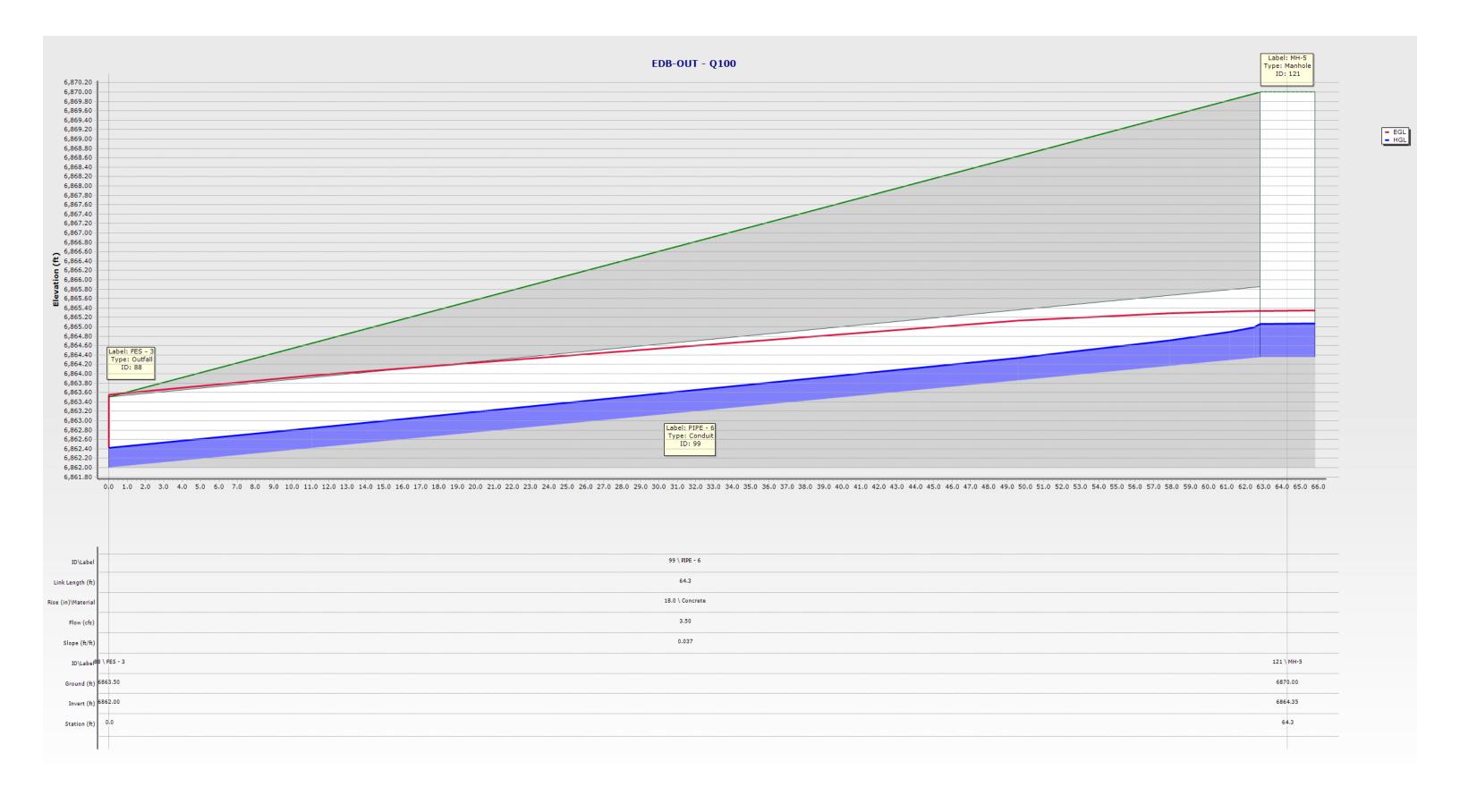
	ID	Label	Flow (Known) (cfs)	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Depth (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Headloss Coefficient (Standard)	Flow (Total Out) (cfs)
79: MH - 11	79	MH - 11	2.10	7,021.88	7,021.88	0.45	7,014.61	7,014.59	Standard	0.100	2.10
81: MH - 12	81	MH - 12	1.00	6,997.61	6,997.61	0.32	6,990.74	6,990.72	Standard	0.100	1.00
84: MH - 13	84	MH - 13	2.70	6,940.67	6,940.67	0.51	6,933.67	6,933.60	Standard	0.400	2.70
86: MH - 17	86	MH - 17	6.80	6,881.67	6,881.67	0.86	6,872.37	6,872.16	Standard	0.640	6.80
87: INLET - 1	87	INLET - 1	3.70	6,879.00	6,879.00	0.63	6,875.15	6,875.14	Standard	0.050	3.70
96: INLET - 3	96	INLET - 3	3.70	7,059.70	7,059.70	0.60	7,052.55	7,052.54	Standard	0.050	3.70
97: INLET - 4	97	INLET - 4	5.00	7,056.91	7,056.91	0.70	7,052.28	7,051.95	Standard	1.320	5.00
117: FES - 8	117	FES - 8	2.10	7,021.65	7,021.65	0.45	7,018.69	7,018.68	Standard	0.050	2.10
118: FES - 6	118	FES - 6	1.00	6,997.88	6,997.88	0.32	6,995.30	6,995.29	Standard	0.050	1.00
119: FES - 4	119	FES - 4	2.70	6,940.60	6,940.60	0.51	6,937.70	6,937.69	Standard	0.050	2.70
120: FES - 1	120	FES - 1	1.20	6,866.61	6,866.61	0.41	6,863.21	6,863.20	Standard	0.050	1.20
121: MH-5	121	MH-5	0.80	6,870.00	6,870.00	0.33	6,864.69	6,864.68	Standard	0.050	0.80


Figure 2-Q5 NODE SUMMARY

	ID	Label	Elevation (Ground) (ft)	Set Rim to Ground Elevation?	Elevation (Invert) (ft)	Boundary Condition Type	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
88: FES - 3	88	FES - 3	6,863.50	~	6,862.00	Free Outfall	6,862.20	0.80
98: FES - 10	98	FES - 10	7,053.79	~	7,050.79	Free Outfall	7,051.45	5.00
122: FES - 9	122	FES - 9	7,014.35	~	7,011.35	Free Outfall	7,011.60	2.10
123: FES - 7	123	FES - 7	6,992.95	~	6,990.07	Free Outfall	6,990.37	1.00
124: FES - 5	124	FES - 5	6,935.02	~	6,932.02	Free Outfall	6,932.37	2.70
125: 0-4	125	0-4	6,870.50	~	6,868.00	User Defined Tailwater	6,868.49	6.80
126: FES - 2	126	FES - 2	6,863.50	~	6,862.00	Free Outfall	6,862.39	1.20

Figure 3- Q5 OUTFALL SUMMARY

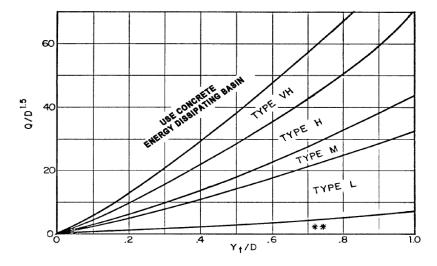
why is free outfall selected and tailwater is not analyzed for 6 of the 7 storm drain outfalls? If there's a reason please add a note/discuss.



	Label	Velocity (ft/s)	Start Node	Invert (Start) (ft)	Hydraulic Grade Line (In) (ft)	Invert (Stop) (ft)	Hydraulic Grade Line (Out) (ft)	Stop Node	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Manning's n	Flow (cfs)	Capacity (Design) (cfs)	Depth (Normal) / Rise (%)	Diameter (in)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)
99: PIPE - 6	PIPE - 6	8.53	MH-5	6,864.35	6,865.06	6,862.00	6,862.42	FES - 3	64.3	0.037	0.013	3.50	20.08	28.2	18.0	6,870.00	6,863.50
100: PIPE - 7	PIPE - 7	11.48	MH - 11	7,014.14	7,015.12	7,011.35	7,011.89	FES - 9	61.2	0.046	0.013	9.60	142.45	17.6	36.0	7,021.88	7,014.35
101: PIPE - 8	PIPE - 8	4.75	MH - 12	6,990.40	6,991.11	6,990.07	6,990.70	FES - 7	50.6	0.007	0.013	4.60	33.13	25.2	30.0	6,997.61	6,992.95
102: PIPE - 9	PIPE - 9	9.23	MH - 13	6,933.09	6,934.20	6,932.02	6,932.78	FES - 5	53.3	0.020	0.013	12.30	94.48	24.4	36.0	6,940.67	6,935.02
103: PIPE - 11	PIPE - 11	14.63	MH - 17	6,871.30	6,872.99	6,868.00	6,870.84	0-4	82.5	0.040	0.013	24.70	82.04	37.6	30.0	6,881.67	6,870.50
104: PIPE - 12	PIPE - 12	5.02	FES - 1	6,862.79	6,863.76	6,862.00	6,862.95	FES - 2	133.8	0.006	0.013	6.10	8.07	65.0	18.0	6,866.61	6,863.50
106: PIPE - 1	PIPE - 1	15.52	FES - 8	7,018.23	7,019.21	7,015.14	7,015.62	MH - 11	28.7	0.108	0.013	9.60	218.84	14.3	36.0	7,021.65	7,021.88
107: PIPE - 2	PIPE - 2	13.58	FES - 6	6,994.97	6,995.68	6,991.33	6,991.65	MH - 12	28.3	0.129	0.013	4.60	147.20	12.1	30.0	6,997.88	6,997.61
108: PIPE - 3	PIPE - 3	17.01	FES - 4	6,937.18	6,938.29	6,934.02	6,934.56	MH - 13	27.9	0.113	0.013	12.30	224.66	15.9	36.0	6,940.60	6,940.67
109: PIPE - 13	PIPE - 13	13.18	INLET - 1	6,874.51	6,875.90	6,872.30	6,873.13	MH - 17	55.2	0.040	0.013	17.00	82.03	30.9	30.0	6,879.00	6,881.67
110: PIPE - 15	PIPE - 15	6.33	INLET - 3	7,051.94	7,053.74	7,051.55	7,053.73	INLET - 4	78.8	0.005	0.013	19.50	46.93	44.9	36.0	7,059.70	7,056.91
111: PIPE - 16	PIPE - 16	6.77	INLET - 4	7,051.25	7,052.87	7,050.79	7,052.35	FES - 10	92.3	0.005	0.013	25.20	47.07	52.1	36.0	7,056.91	7,053.79

Figure 4- Q100 CONDUIT SUMMARY

	ID	Label	Flow (Known) (cfs)	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Depth (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Headloss Coefficient (Standard)	Flow (Total Out) (cfs)
79: MH - 11	79	MH - 11	9.60	7,021.88	7,021.88	0.98	7,015.16	7,015.12	Standard	0.100	9.60
81: MH - 12	81	MH - 12	4.60	6,997.61	6,997.61	0.71	6,991.13	6,991.11	Standard	0.100	4.60
84: MH - 13	84	MH - 13	12.30	6,940.67	6,940.67	1.11	6,934.37	6,934.20	Standard	0.400	12.30
86: MH - 17	86	MH - 17	24.70	6,881.67	6,881.67	1.69	6,873.48	6,872.99	Standard	0.640	24.70
87: INLET - 1	87	INLET - 1	17.00	6,879.00	6,879.00	1.39	6,875.93	6,875.90	Standard	0.050	17.00
96: INLET - 3	96	INLET - 3	19.50	7,059.70	7,059.70	1.80	7,053.75	7,053.74	Standard	0.050	19.50
97: INLET - 4	97	INLET - 4	25.20	7,056.91	7,056.91	1.62	7,053.73	7,052.87	Standard	1.320	25.20
117: FES - 8	117	FES - 8	9.60	7,021.65	7,021.65	0.98	7,019.23	7,019.21	Standard	0.050	9.60
118: FES - 6	118	FES - 6	4.60	6,997.88	6,997.88	0.71	6,995.69	6,995.68	Standard	0.050	4.60
119: FES - 4	119	FES - 4	12.30	6,940.60	6,940.60	1.11	6,938.31	6,938.29	Standard	0.050	12.30
120: FES - 1	120	FES - 1	6.10	6,866.61	6,866.61	0.97	6,863.78	6,863.76	Standard	0.050	6.10
121: MH-5	121	MH-5	3.50	6,870.00	6,870.00	0.71	6,865.08	6,865.06	Standard	0.050	3.50


Figure 5- Q100 NODE SUMMARY

	ID	Label	Elevation (Ground) (ft)	Set Rim to Ground Elevation?	Elevation (Invert) (ft)	Boundary Condition Type	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
88: FES - 3	88	FES - 3	6,863.50	~	6,862.00	Free Outfall	6,862.42	3.50
98: FES - 10	98	FES - 10	7,053.79	~	7,050.79	Free Outfall	7,052.35	25.20
122: FES - 9	122	FES - 9	7,014.35	~	7,011.35	Free Outfall	7,011.89	9.60
123: FES - 7	123	FES - 7	6,992.95	~	6,990.07	Free Outfall	6,990.70	4.60
124: FES - 5	124	FES - 5	6,935.02	~	6,932.02	Free Outfall	6,932.78	12.30
125: 0-4	125	0-4	6,870.50	~	6,868.00	User Defined Tailwater	6,870.84	24.70
126: FES - 2	126	FES - 2	6,863.50	~	6,862.00	Free Outfall	6,862.95	6.10

Figure 6- Q100 OUTFALL SUMMARY

why is free outfall selected and tailwater is not analyzed for 6 of the 7 storm drain outfalls? If there's a reason please add a note/discuss.

_	DP16		DP EDB-OUT	
Pipe Size (D)	18	Inches	18	Inches
Q	6.1	cfs	17.3	cfs
L	4.5	Feet	4.5	Feet
W	4.5	Feet	4.5	Feet
D	0	Feet	0	Feet
d 50	0.07	Feet	0.31	Feet
	0.87	Inches	3.69	Inches
Depth of Flow	1.56	Feet	1.12	Feet
Q/D^1.5	3.32		9.42	
Yt/D	1.040		0.747	
	Type L for 3 x		Type L for 3 x	
Rip Rap	Pipe Dia		Pipe Dia	
	Downstream		Downstream	
Length of Rock	4.5	Feet	4.5	Feet
Width of Rock	4.5	Feet	4.5	Feet

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

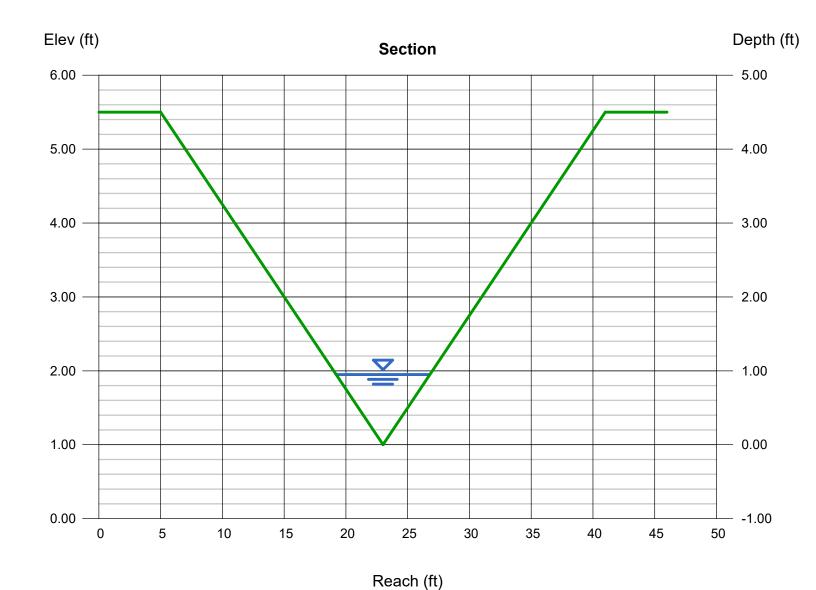
Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for Q/D2.5 \leq 6.0)

SWALE CALCULATIONS

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Sep 1 2023


DP-12 Q100

Triangular Side Slopes (z:1) Total Depth (ft)	= 4.00, 4.00 = 4.50
Invert Elev (ft)	= 1.00
Slope (%)	= 5.70
N-Value	= 0.079

Calculations

Compute by: Known Q Known Q (cfs) = 9.60

Highlighted	
Depth (ft)	= 0.95
Q (cfs)	= 9.600
Area (sqft)	= 3.61
Velocity (ft/s)	= 2.66
Wetted Perim (ft)	= 7.83
Crit Depth, Yc (ft)	= 0.82
Top Width (ft)	= 7.60
EGL (ft)	= 1.06

Channel Report

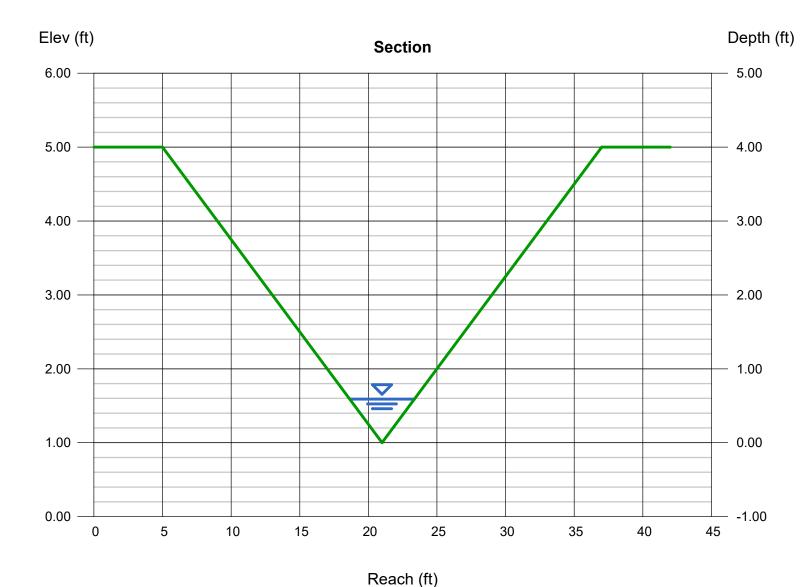
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Sep 1 2023

= 0.59= 4.600= 1.39= 3.30

= 4.87

= 0.61= 4.72= 0.76

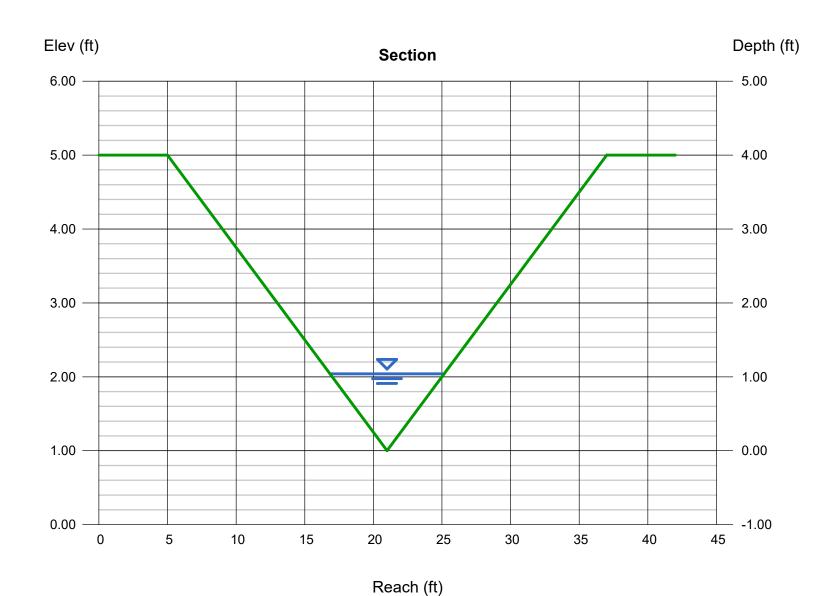

DP-13 Q100

Compute by: Known Q (cfs)

Triangular		Highlighted
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)
Total Depth (ft)	= 4.00	Q (cfs)
		Area (sqft)
Invert Elev (ft)	= 1.00	Velocity (ft/s)
Slope (%)	= 2.80	Wetted Perim (ft)
N-Value	= 0.032	Crit Depth, Yc (ft)
		Top Width (ft)
Calculations		EGL (ft)

Known Q

= 4.60


Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

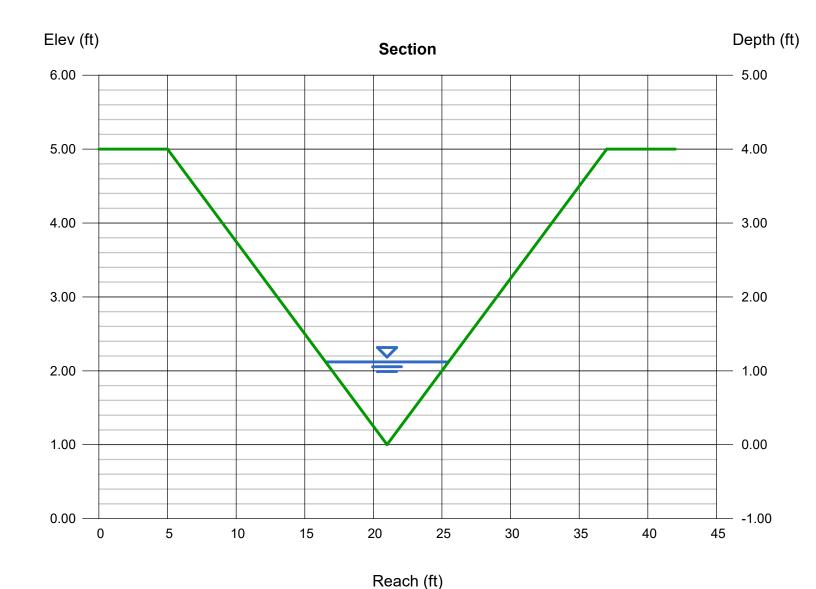
Friday, Sep 1 2023

DP-14 Q100

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 1.04
Total Depth (ft)	= 4.00	Q (cfs)	= 12.30
		Area (sqft)	= 4.33
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.84
Slope (%)	= 5.00	Wetted Perim (ft)	= 8.58
N-Value	= 0.074	Crit Depth, Yc (ft)	= 0.90
		Top Width (ft)	= 8.32
Calculations		EGL (ft)	= 1.17
Compute by:	Known Q		
Known Q (cfs)	= 12.30		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Sep 1 2023

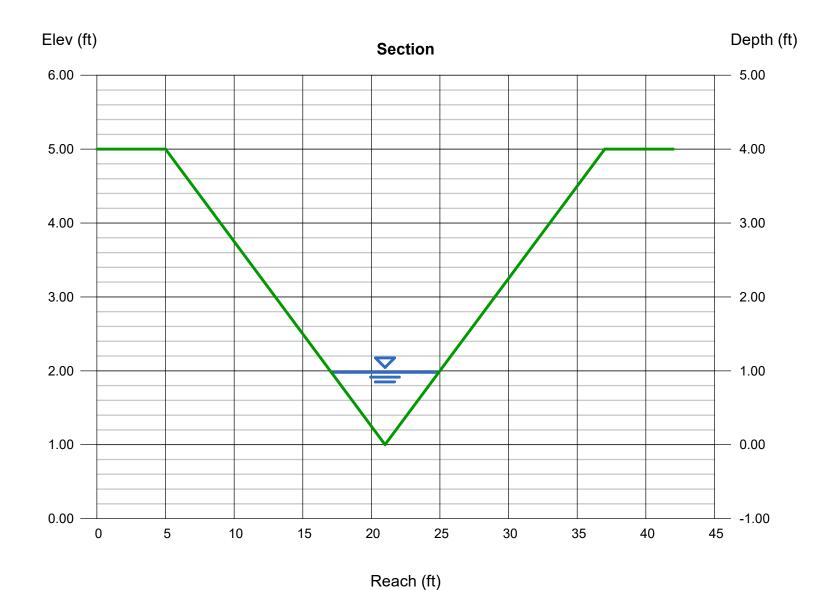

DP-15 Q100

Triangular	
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 4.00
Invert Elev (ft)	= 1.00
Slope (%)	= 5.70
N-Value	= 0.069

Calculations

Compute by: Known Q Known Q (cfs) = 17.00

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


= 6.10

Friday, Sep 1 2023

DP-16 Q100

Known Q (cfs)

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 0.98
Total Depth (ft)	= 4.00	Q (cfs)	= 6.100
		Area (sqft)	= 3.84
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 1.59
Slope (%)	= 2.80	Wetted Perim (ft)	= 8.08
N-Value	= 0.094	Crit Depth, Yc (ft)	= 0.68
		Top Width (ft)	= 7.84
Calculations		EGL (ft)	= 1.02
Compute by:	Known Q		
	0.40		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

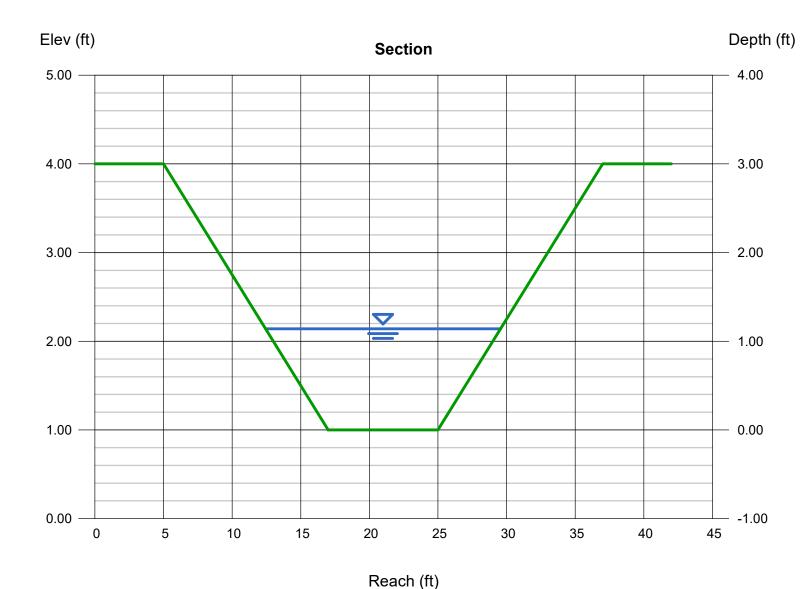
Friday, Sep 1 2023

= 1.40

DP-17 Q100

Trapezoidal	
Bottom Width (ft)	= 8.00
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 3.00
Invert Elev (ft)	= 1.00
Slope (%)	= 4.50
N-Value	= 0.068

Calculations


Compute by: Known Q Known Q (cfs) = 58.10

Depth (ft) = 1.14 Q (cfs) = 58.10Area (sqft)

Highlighted

EGL (ft)

= 14.32Velocity (ft/s) = 4.06Wetted Perim (ft) = 17.40 Crit Depth, Yc (ft) = 1.00 Top Width (ft) = 17.12

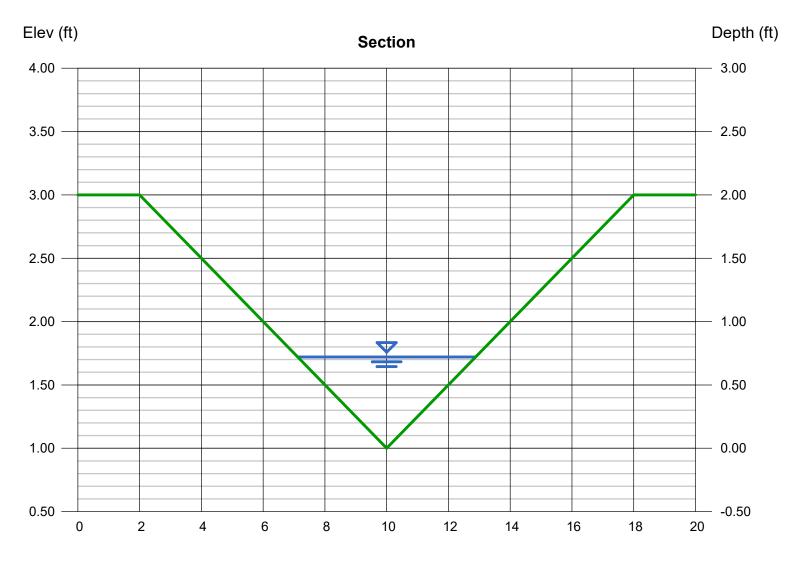
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Sep 1 2023

DP-18 (2.8%) Q100

H	rı	aı	าg	ļu	ıar	
_			_			

Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 2.00


Invert Elev (ft) = 1.00 Slope (%) = 2.80 N-Value = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 7.80

Highlighted

= 0.72Depth (ft) Q (cfs) = 7.800Area (sqft) = 2.07Velocity (ft/s) = 3.76Wetted Perim (ft) = 5.94Crit Depth, Yc (ft) = 0.75Top Width (ft) = 5.76EGL (ft) = 0.94

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Sep 1 2023

DP-18 (5.0%) Q100

Triangular	
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 2.00

Invert Elev (ft) = 1.00 Slope (%) = 5.00 N-Value = 0.032

Calculations

0

2

4

6

8

Compute by: Known Q Known Q (cfs) = 7.80

Highlighted		
Depth (ft)	=	0.65
Q (cfs)	=	7.800
Area (sqft)	=	1.69
Velocity (ft/s)	=	4.62
Wetted Perim (ft)	=	5.36
Crit Depth, Yc (ft)	=	0.75
Top Width (ft)	=	5.20
EGL (ft)	=	0.98

Elev (ft) Depth (ft) **Section** 4.00 -3.00 3.50 -- 2.50 3.00 -- 2.00 2.50 — - 1.50 2.00 -- 1.00 1.50 -- 0.50 1.00 -0.00 0.50 -0.50

10

Reach (ft)

12

14

16

18

20

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Sep 1 2023

DP-18 (5.7%) Q100

Triangular	
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 2.00

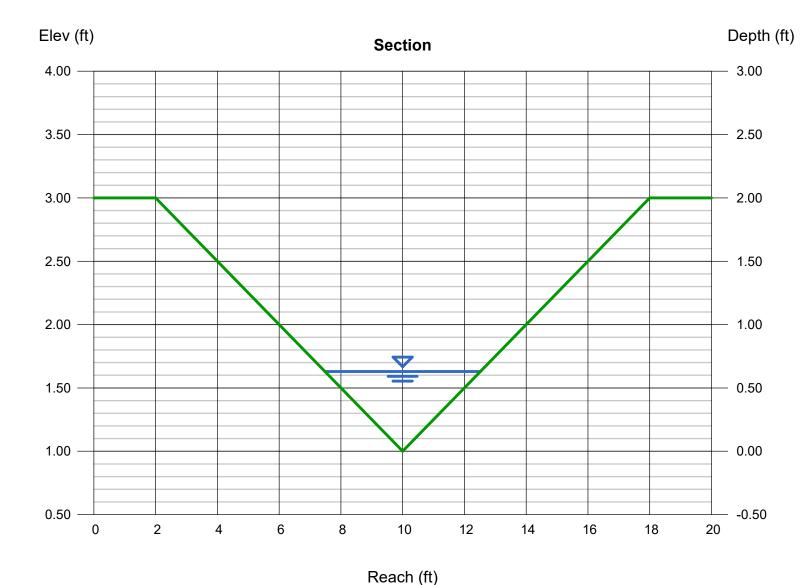
Invert Elev (ft) = 1.00 Slope (%) = 5.70 N-Value = 0.032

Calculations

Compute by: Known Q Known Q (cfs) = 7.80

Depth (ft)	= 0.63
Q (cfs)	= 7.800
Area (sqft)	= 1.59
Velocity (ft/s)	= 4.91

Highlighted


Velocity (ft/s) = 4.91

Wetted Perim (ft) = 5.20

Crit Depth, Yc (ft) = 0.75

Top Width (ft) = 5.04

EGL (ft) = 1.01

Hydraulic Analysis Report

Project Data

Project Title: Hay Creek

Designer:

Project Date: Thursday, January 12, 2023

Project Units: U.S. Customary Units

Notes:

Channel Analysis: DP-12

Notes:

Input Parameters

Channel Type: Triangular

Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0570 ft/ft

Manning's n: 0.0790

Flow: 9.6000 cfs

Result Parameters

Depth: 0.9475 ft

Area of Flow: 3.5909 ft^2 Wetted Perimeter: 7.8132 ft Hydraulic Radius: 0.4596 ft Average Velocity: 2.6734 ft/s

Top Width: 7.5799 ft

Froude Number: 0.6845 Critical Depth: 0.8142 ft Critical Velocity: 3.6205 ft/s Critical Slope: 0.1280 ft/ft Critical Top Width: 6.51 ft

Calculated Max Shear Stress: 3.3700 lb/ft^2 Calculated Avg Shear Stress: 1.6347 lb/ft^2

Channel Lining Analysis: Channel Lining Design Analysis DP-12

Notes:

Lining Input Parameters

Channel Lining Type: Riprap, Cobble, or Gravel

D50: 0.75 ft

Riprap Specific Weight: 165 lb/ft^3 Water Specific Weight: 62.4 lb/ft^3

Riprap Shape is Angular

Safety Factor: 1

Calculated Safety Factor: 1.12916

Lining Results

Angle of Repose: 41.7 degrees Relative Flow Depth: 0.631869 Manning's n method: Bathurst

Manning's n: 0.0790259

Channel Bottom Shear Results

V*: 1.31894

Reynold's Number: 81282.1 Shield's Parameter: 0.0735754

shear stress on channel bottom: 3.37115 lb/ft^2

Permissible shear stress for channel bottom: 5.23606 lb/ft^2

channel bottom is stable Stable D50: 0.545243 ft

Channel Side Shear Results

K1: 0.934

K2: 1 Kb: 0

shear stress on side of channel: 3.37115 lb/ft^2

Permissible shear stress for side of channel: 5.23606 lb/ft^2

Stable Side D50: 0.509257 lb/ft^2

side of channel is stable

Channel Lining Stability Results

the channel is stable

Channel Summary

Name of Selected Channel: DP-12

Channel Analysis: DP-14

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0500 ft/ft

Manning's n: 0.0744 Flow: 12.3000 cfs

Result Parameters

Depth: 1.0416 ft

Area of Flow: 4.3398 ft^2 Wetted Perimeter: 8.5893 ft Hydraulic Radius: 0.5053 ft Average Velocity: 2.8343 ft/s

Top Width: 8.3328 ft
Froude Number: 0.6921
Critical Depth: 0.8990 ft
Critical Velocity: 3.8045 ft/s
Critical Slope: 0.1096 ft/ft
Critical Top Width: 7.19 ft

Calculated Max Shear Stress: 3.2498 lb/ft^2 Calculated Avg Shear Stress: 1.5764 lb/ft^2

Channel Lining Analysis: Channel Lining Design Analysis DP-14

Notes:

Lining Input Parameters

Channel Lining Type: Riprap, Cobble, or Gravel

D50: 0.75 ft

Riprap Specific Weight: 165 lb/ft^3 Water Specific Weight: 62.4 lb/ft^3

Riprap Shape is Angular

Safety Factor: 1

Calculated Safety Factor: 1.12682

Lining Results

Angle of Repose: 41.7 degrees Relative Flow Depth: 0.707087 Manning's n method: Bathurst

Manning's n: 0.0780488

Channel Bottom Shear Results

V*: 1.30676

Reynold's Number: 80531.5 Shield's Parameter: 0.0730921

shear stress on channel bottom: 3.30917 lb/ft^2

Permissible shear stress for channel bottom: 5.22044 lb/ft^2

channel bottom is stable Stable D50: 0.535705 ft

Channel Side Shear Results

K1: 0.934

K2: 1 Kb: 0

shear stress on side of channel: 3.30917 lb/ft^2

Permissible shear stress for side of channel: 5.22044 lb/ft^2

Stable Side D50: 0.500348 lb/ft^2

side of channel is stable

Channel Lining Stability Results

the channel is stable

Channel Summary

Name of Selected Channel: DP-14

Channel Analysis: DP-15 (5.7%)

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0570 ft/ft

Manning's n: 0.0689 Flow: 17.0000 cfs

Result Parameters

Depth: 1.1152 ft

Area of Flow: 4.9743 ft^2 Wetted Perimeter: 9.1959 ft Hydraulic Radius: 0.5409 ft Average Velocity: 3.4175 ft/s

Top Width: 8.9213 ft

Froude Number: 0.8065 Critical Depth: 1.0233 ft Critical Velocity: 4.0589 ft/s Critical Slope: 0.0902 ft/ft

Critical Top Width: 8.19 ft
Calculated Max Shear Stress: 3.9664 lb/ft^2

Calculated Avg Shear Stress: 1.9240 lb/ft^2

Channel Lining Analysis: Channel Lining Design Analysis DP-15 (5.7%)

Notes:

Lining Input Parameters

Channel Lining Type: Riprap, Cobble, or Gravel

D50: 0.75 ft

Riprap Specific Weight: 165 lb/ft^3 Water Specific Weight: 62.4 lb/ft^3

Riprap Shape is Angular

Safety Factor: 1

Calculated Safety Factor: 1.15291

Lining Results

Angle of Repose: 41.7 degrees Relative Flow Depth: 0.755533 Manning's n method: Bathurst

Manning's n: 0.0719488

Channel Bottom Shear Results

V*: 1.44224

Reynold's Number: 88880.9 Shield's Parameter: 0.0784671

shear stress on channel bottom: 4.03092 lb/ft^2

Permissible shear stress for channel bottom: 5.52618 lb/ft^2

channel bottom is stable Stable D50: 0.630717 ft

Channel Side Shear Results

K1: 0.934

K2: 1 Kb: 0

shear stress on side of channel: 4.03092 lb/ft^2

Permissible shear stress for side of channel: 5.52618 lb/ft^2

Stable Side D50: 0.58909 lb/ft^2

side of channel is stable

Channel Lining Stability Results

the channel is stable

Channel Summary

Name of Selected Channel: DP-15 (5.7%)

Channel Analysis: DP-16 (2.8%)

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0280 ft/ft

Manning's n: 0.0936

Flow: 6.1000 cfs

Result Parameters

Depth: 0.9731 ft

Area of Flow: 3.7874 ft^2 Wetted Perimeter: 8.0241 ft Hydraulic Radius: 0.4720 ft Average Velocity: 1.6106 ft/s

Top Width: 7.7845 ft

Froude Number: 0.4069 Critical Depth: 0.6791 ft

Critical Velocity: 3.3066 ft/s Critical Slope: 0.1906 ft/ft Critical Top Width: 5.43 ft

Calculated Max Shear Stress: 1.7001 lb/ft^2 Calculated Avg Shear Stress: 0.8247 lb/ft^2

Channel Lining Analysis: Channel Lining Design Analysis DP-16 (2.8%)

Notes:

Lining Input Parameters

Channel Lining Type: Riprap, Cobble, or Gravel

D50: 0.75 ft

Riprap Specific Weight: 165 lb/ft^3 Water Specific Weight: 62.4 lb/ft^3

Riprap Shape is Angular

Safety Factor: 1

Calculated Safety Factor: 1.05793

Lining Results

Angle of Repose: 41.7 degrees Relative Flow Depth: 0.666049 Manning's n method: Bathurst

Manning's n: 0.100413

Channel Bottom Shear Results

V*: 0.949086

Reynold's Number: 58489.3 Shield's Parameter: 0.0589025

shear stress on channel bottom: 1.74558 lb/ft^2

Permissible shear stress for channel bottom: 4.53255 lb/ft^2

channel bottom is stable Stable D50: 0.305575 ft

Channel Side Shear Results

K1: 0.934

K2: 0.931169

Kb: 0

shear stress on side of channel: 1.74558 lb/ft^2

Permissible shear stress for side of channel: 4.22056 lb/ft^2

Stable Side D50: 0.306504 lb/ft^2

side of channel is stable

Channel Lining Stability Results

the channel is stable

Channel Summary

Name of Selected Channel: DP-16 (2.8%)

Channel Analysis: DP-17

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 8.0000 ft

Longitudinal Slope: 0.0450 ft/ft

Manning's n: 0.0679 Flow: 58.1000 cfs

Result Parameters

Depth: 1.1374 ft

Area of Flow: 14.2731 ft^2 Wetted Perimeter: 17.3789 ft Hydraulic Radius: 0.8213 ft Average Velocity: 4.0706 ft/s

Top Width: 17.0988 ft
Froude Number: 0.7852
Critical Depth: 0.9917 ft
Critical Velocity: 4.8956 ft/s
Critical Slope: 0.0756 ft/ft

Critical Top Width: 15.93 ft

Calculated Max Shear Stress: 3.1937 lb/ft^2 Calculated Avg Shear Stress: 2.3062 lb/ft^2

Channel Lining Analysis: Channel Lining Design Analysis DP-17

Notes:

Lining Input Parameters

Channel Lining Type: Riprap, Cobble, or Gravel

D50: 0.75 ft

Riprap Specific Weight: 165 lb/ft^3 Water Specific Weight: 62.4 lb/ft^3

Riprap Shape is Angular

Safety Factor: 1

Calculated Safety Factor: 1.12239

Lining Results

Angle of Repose: 41.7 degrees Relative Flow Depth: 1.11299 Manning's n method: Bathurst

Manning's n: 0.0678818

Channel Bottom Shear Results

V*: 1.28375

Reynold's Number: 79113.9 Shield's Parameter: 0.0721795

shear stress on channel bottom: 3.19369 lb/ft^2

Permissible shear stress for channel bottom: 5.55422 lb/ft^2

channel bottom is stable Stable D50: 0.484031 ft

Channel Side Shear Results

K1: 0.934

K2: 0.931169

Kb: 0

shear stress on side of channel: 3.19369 lb/ft^2

Permissible shear stress for side of channel: 5.17191 lb/ft^2

Stable Side D50: 0.485503 lb/ft^2

side of channel is stable

Channel Lining Stability Results

the channel is stable

Channel Summary

Name of Selected Channel: DP-17

Channel Analysis: DP-19

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Channel Width: 20.0000 ft

Longitudinal Slope: 0.0330 ft/ft

Manning's n: 0.1024 Flow: 67.3000 cfs

Result Parameters

Depth: 1.1023 ft

Area of Flow: 26.9056 ft^2 Wetted Perimeter: 29.0896 ft Hydraulic Radius: 0.9249 ft Average Velocity: 2.5013 ft/s

Top Width: 28.8182 ft
Froude Number: 0.4562
Critical Depth: 0.6737 ft
Critical Velocity: 4.4019 ft/s
Critical Slope: 0.1826 ft/ft
Critical Top Width: 25.39 ft

Calculated Max Shear Stress: 2.2698 lb/ft^2 Calculated Avg Shear Stress: 1.9046 lb/ft^2

Channel Lining Analysis: Channel Lining Design Analysis DP-19

Notes:

Lining Input Parameters

Channel Lining Type: Riprap, Cobble, or Gravel

D50: 1 ft

Riprap Specific Weight: 165 lb/ft^3 Water Specific Weight: 62.4 lb/ft^3

Riprap Shape is Angular

Safety Factor: 2.5

Calculated Safety Factor: 1.15306

Lining Results

Angle of Repose: 41.7 degrees Relative Flow Depth: 0.933631 Manning's n method: Bathurst

Manning's n: 0.102434

Channel Bottom Shear Results

V*: 1.08226

Reynold's Number: 88928.2 Shield's Parameter: 0.0784975

shear stress on channel bottom: 2.26981 lb/ft^2

Permissible shear stress for channel bottom: 8.05385 lb/ft^2

channel bottom is stable Stable D50: 0.704572 ft

Channel Side Shear Results

K1: 0.934

K2: 0.931169

Kb: 0

shear stress on side of channel: 2.26981 lb/ft^2

Permissible shear stress for side of channel: 7.49949 lb/ft^2

Stable Side D50: 0.706715 lb/ft^2

side of channel is stable

Channel Lining Stability Results

the channel is stable

Channel Summary

Name of Selected Channel: DP-19

<u>APPENDIXB</u>

STANDARD DESIGN CHARTS AND TABLES

Chapter 6 Hydrology

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

Land Use or Surface	Percent	Runoff Coefficients											
Characteristics	Impervious	2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Chun aha													
Streets Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.89	0.60	0.59	0.63	0.63	0.92	0.66	0.70	0.95	0.93	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Type of Development	Percent Impervious
Commercial	95%
Industrial	85%
Multi-Family	65%
Single Family - 0.1377 acre lots (6,000 SF)	53%
Single-Family - 0.20 acre lots	43%
Single-Family - 0.25 acre lots	40%
Single-Family - 0.33 acre lots	30%
Single-Family - 0.5 acre lots	25%
Single-Family - 1.0 acre lots	20%
Single-Family - 2.5 acre lots	11%
Single-Family - 5 acre lots	7%

about:blank 1/1

Hydrology Chapter 6

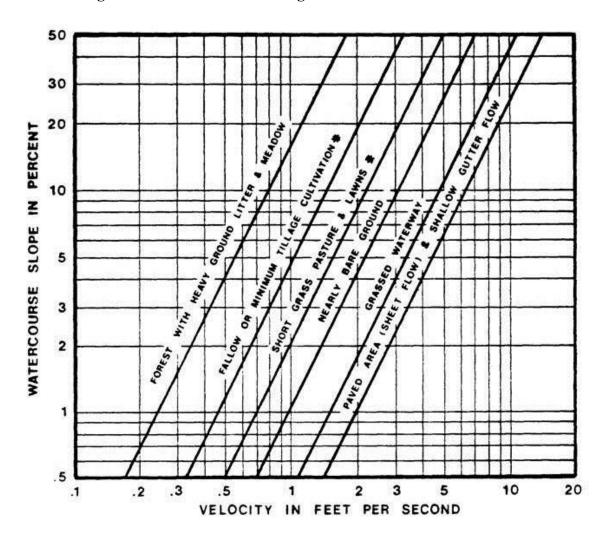


Figure 6-25. Estimate of Average Concentrated Shallow Flow

El Paso County Drainage Basin Fees

Resolution No. 22-442

Basin	Receiving	Year	Drainage Basin Name	2023 Drainage Fee	2023 Bridge Fee
Number	Waters	Studied		(per Impervious Acre)	(per Impervious Acre)
Drainage Basins with 1					
CHMS0200	Chico Creek	2013	Haegler Ranch	\$12,985	\$1,916
CHWS1200	Chico Creek	2001	Bennett Ranch	\$14,536	\$5,576
CHWS1400	Chico Creek	2013	Falcon	\$37,256	\$5,118
FOFO2000	Fountain Creek	2001	West Fork Jimmy Camp Creek	\$15,802	\$4,675
FOFO2600	Fountain Creek	1991*	Big Johnson / Crews Gulch	\$23,078	\$2,980
FOFO2800	Fountain Creek	1988*	Widefield	\$23,078	\$0 \$0
FOFO2900	Fountain Creek Fountain Creek	1988* 1991*	Security Windmill Gulch	\$23,078 \$23,078	•
FOFO3000 FOFO3100 / FOFO3200	Fountain Creek	1988*	Carson Street / Little Johnson	\$23,078 \$14,077	\$346 \$ 0
FOFO3400	Fountain Creek	1984*	Peterson Field	\$16,646	\$1,262
FOFO3600	Fountain Creek	1991*	Fisher's Canyon	\$23,078	\$1,202 \$ 0
FOFO4000	Fountain Creek	1996	Sand Creek	\$23,821	\$9,743
FOFO4200	Fountain Creek	1977	Spring Creek	\$11,969	\$ 9,743
FOFO4600	Fountain Creek	1984*	Southwest Area	\$23,078	\$ 0
FOFO4800	Fountain Creek	1991	Bear Creek	\$23,078	\$1,262
FOFO5800	Fountain Creek	1964	Camp Creek	\$2,557	\$0
FOMO1000	Monument Creek	1981	Douglas Creek	\$14,514	\$321
FOMO1200	Monument Creek	1977	Templeton Gap	\$14,900	\$346
FOMO2000	Monument Creek	1971	Pulpit Rock	\$7,653	\$0
FOMO2200	Monument Creek	1994	Cottonwood Creek / S. Pine	\$23,078	\$1,262
FOMO2400	Monument Creek	1966	Dry Creek	\$18,219	\$660
FOMO3600	Monument Creek	1989*	Black Squirrel Creek	\$10,478	\$660
FOMO3700	Monument Creek	1987*	Middle Tributary	\$19,259	\$ 0
FOMO3800	Monument Creek	1987*	Monument Branch	\$23,078	\$0
FOMO4000	Monument Creek	1996	Smith Creek	\$9,409	\$1,262
FOMO4200	Monument Creek	1989*	Black Forest	\$23,078	\$628
FOMO5200	Monument Creek	1993*	Dirty Woman Creek	\$23,078	\$1,262
FOMO5300	Fountain Creek	1993*	Crystal Creek	\$23,078	\$1,262
Miscellaneous Drainas	ee Basins: 1				
CHBS0800	Chico Creek		Book Ranch	\$21,654	\$3,135
CHEC0400	Chico Creek		Upper East Chico	\$11,797	\$342
CHWS0200	Chico Creek		Telephone Exchange	\$12,962	\$304
CHWS0400	Chico Creek		Livestock Company	\$21,351	\$254
CHWS0600	Chico Creek		West Squirrel	\$11,129	\$4,619
CHWS0800	Chico Creek		Solberg Ranch	\$23,078	\$0
FOFO1200	Fountain Creek		Crooked Canyon	\$6,968	\$0
FOFO1400	Fountain Creek		Calhan Reservoir	\$5,817	\$339
FOFO1600	Fountain Creek		Sand Canyon	\$4,203	\$0
FOFO2000	Fountain Creek		Jimmy Camp Creek ³	\$23,078	\$1,079
FOFO2200	Fountain Creek		Fort Carson	\$18,219	\$660
FOFO2700	Fountain Creek		West Little Johnson	\$1,521	\$0
FOFO3800	Fountain Creek		Stratton	\$11,070	\$495
FOFO5000	Fountain Creek		Midland	\$18,219	\$660
FOFO6000	Fountain Creek		Palmer Trail	\$18,219	\$660
FOFO6800	Fountain Creek		Black Canyon	\$18,219	\$660
FOMO4600	Monument Creek		Beaver Creek	\$13,797	\$0
FOMO3000	Monument Creek		Kettle Creek	\$12,463	\$0
FOMO3400	Monument Creek		Elkhorn	\$2,094	\$0
FOMO5000	Monument Creek		Monument Rock	\$10,003	\$0
FOMO5400	Monument Creek		Palmer Lake	\$15,995	\$0
FOMO5600	Monument Creek		Raspberry Mountain	\$5,380	\$0
PLPL0200	Monument Creek		Bald Mountain	\$11,465	\$0
Interim Drainage Basis			Little Ferratain Creek	69 050	e no
FOFO1800	Fountain Creek		Little Fountain Creek	\$2,950 \$0.135	\$0
FOMO4400 FOMO4800	Monument Creek Monument Creek		Jackson Creek Teachout Creek	\$9,135 \$6,343	\$0 \$953
1.01A10.4000	Monument Cleek		1 CONTIOUS CICCE	4U,343	かろつつ

^{1.} The miscellaneous drainage fee previous to September 1999 resolution was the average of all drainage fees for basins with Basin Planning Studies performed within the last 14 years.

PC Stormwater Management	Ioshua Palmer P F

^{2.} Interim Drainage Fees are based upon draft Drainage Basin Planning Studies or the Drainage Basin Identification and Fee Estimation Report. (Best available information suitable for setting a fee.)

^{3.} This is an interim fee and will be adjusted when a DBPS is completed. In addition to the Drainage Fee a surety in the amount of \$7,285 per impervious acre shall be provided to secure payment of additional fees in the event that the DBPS results in a fee greater than the current fee. Fees paid in excess of the future revised fee will be reimbursed. See Resolution 06-326 (9/14/06) and Resolution 16-320 (9/07/16).

Channel Slope	Lining	Permissible Mean Channel Velocity* (ft/sec)
0 - 5%	Sodded grass	7
	Bermudagrass	6
	Reed canarygrass	5
	Tall fescue	5
	Kentucky bluegrass	5
	Grass-legume mixture	4
	Red fescue	2.5
	Redtop	2.5
	Sericea lespedeza	2.5
	Annual lespedeza	2.5
	Small grains (temporary)	2.5
5 - 10%	Sodded grass	6

about:blank 1/2

Channel Slope	Lining	Permissible Mean Channel Velocity* (ft/sec)
	Bermudagrass	5
	Reed canarygrass	4
	Tall fescue	4
	Kentucky bluegrass	4
	Grass-legume mixture	3
Greater than 10%	Sodded grass	5
	Bermudagrass	4
	Reed canarygrass	3
	Tall fescue	3
	Kentucky bluegrass	3

^{*}For highly erodible soils, decrease permissible velocities by 25%.

about:blank 2/2

^{*}Grass lined channels are dependent upon assurances of continuous growth and maintenance of grass.

APPENDIX C

REPORT REFERENCES

THIS DOCUMENT IS THE HEC-2 MODEL PRINT OUT FOR THE 2003 LOMR FOR BEAVER CREEK. IT WAS SOURCED FROM THE REGIONAL FLOODPLAIN ADMINISTRATOR AT PIKES PEAK REGIONAL BUILDING DEPARTMENT (PPRBD).

				Χ	Χ	XXXXXX	XXX	XXX		
XXXXX				Х	Х	X	Χ	Х		Х
Χ										
Χ				Х	Х	X	Χ			
				XXX	XXXX	XXXX	Χ		XXXXX	
XXXXX				Х	Х	X	Х			Х
				Χ	Х	X	X	Χ		X
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				Χ	Х	XXXXXXX	XXX	XXX		
XXXXXXX END OF BANN	IER									
1 11/3/3	3 12:40:22									
11/ 3/ 3	, 12.40.22	PAGE	1							

T1 BEAVER CREEK LOMR PROJECT NO. 03012

T2 BEAVER CREEK FROM MONUMENT CREEK CONFLUENCE THROUGH SOUTH FORK

T3 FILE NAME BVREFF.DAT
T3 100-YEAR FREQUENCY CROSS-SECTIONS L TO R FACING UPSTREAM

J1 WSE	ICHECK L FQ	INQ	NINV	IDIR	STRT	METRIC	HVINS	Q
	0	3	0	0	0	0	0	0
6733	.2							
J2 NPROF IPLOT CHNIM ITRACE			PRFVS	XSECV	XSECH THE QT R	FN OW/CARD R	ALLDC EPRESENTS TE	IBW HE FLOW VALUES
	1	0	-1		THE CON	FLUENCE O HICH IS LOC	IODELS. THIS (F BEAVER AND CATED JUST DO ER CREEK CON	MONUMENT DWNSTREAM OF
QΤ	2	6317	20974	K				
NC	.07	.07	.05		.2	.4		
X1	CONFL 60	UENCE WITH 15	MONUMENT (360	0	0	0
VΤ	00	15	1200	1	300	V	V	Ø
GR	6752 1235	1000 6730	6750 1250	1	085	6740	1170	6735
GR	6725	1280	6720	1	295	6718	1305	6720
	1310	6725	1360					
GR	6730	1445	6735		525 OT CARD IS A	6740	1560 TELY AT THE H	6745
	1670	6750	1810					EMONSTRATES A 127
QT	2	3507	6915 ⁻					aD. (6915 CFS -6788
							BELIEVE 127 C OR HAY CREEK	
NC	.07	.07	.05	TCL/100	• •	• • • • • • • • • • • • • • • • • • • •	ORTHIT CREEK	Σ.
X1	1	14	1507	1	545	1047	1047	1047
GR	6748	1000	6744	1	163	6742	1193	6740
GR	1313 6738	6740 1386	1358 6736	1	507	6734	1520	6732
GR	1526 6740 1798	6732 1548	1541 6746	1	563	6746	1748	6748
NC	.07	.07	.05		.1	.3		
X1	2	11	1136	1	195	759	759	759
GR	6758 1076	1034 6748	6756 1136	1	049	6750	1064	6748
GR	6746	1147	6746	1	184	6748	1195	6750
	1227	6756	1254					
GR	6758	1274						
QT	2	1847	5128					

NC	.013	.013	.015	.1	.3			
X1	CROSS FLOW (REEK ROAD 2-7 SECTION MODE OVER ROAD RED RTS CALCULATE 6	LED FOR ROAD	O PROFILE LVERTS CAPA	MP'S THE CU	JLVERTS IS ACC	THE FLOW THROUGH COUNTED FOR, THI CUPSTREAM QT CAR S + 1660 CFS = 6788 CF 845	E QT RD
GR	6778	1000	6772	1130	6772	1250	6774	
GR	1390 6778	6776 1720	1500					
1	11/ 3/ 3	12:40:22	PAGE		PSTREAM OF THE		ROAD CULVERT CE WITH HAY	
NC	.025	.025	.025	.1	.3			
QT	2	3107	6788					
	CROSS FLOW (ROCE RANCH RO SECTION MODE OVER ROAD RED RTS CALCULATE	LED FOR ROAD	O PROFILE LVERTS CAPA				
X1	4	5	1070	1280	984	984	984	
X4	1	6786	1000					
GR	6790 1420	900 6796	6784 1520	1070	6784	1280	6790	
NC	.07	.07	.08					
X1	5	14	1243	1314	722	722	722	
GR	6806 1221	1188 6786	6804 1246	1198	6800	1211	6798	
GR	6786 1391	1272 6796	6788 1427	1314	6790	1344	6796	
GR	6798 1512	1428	6800	1435	6804	1475	6806	
NC	.013	.013	.013	.1	.3			
QT	2	3216	6154					
NC	.013	.013	.015	.1	.3			
X1	6.1	9	1209	1230	1160	1160	1160	
GR	6840 1209	1000 6806.6	6828 1230	1091	6828	1209	6806.6	
GR	6828 1619	1230	6828	1316	6830	1457	6840	

SB	1.05		2.6	0	20	1.0	210
NC	0 .013	6807.3 .013	6806.6 .015	.3	.5		
X1	LONG 6.2	VALLEY DRIVE,	EXISITNG 1209	2-10' x 10' 1230	CBC FACE	48	48
X2	0.2	0	1209	6817.3	6828	40	40
٨٧	ð	0	1	0017.5	0828		
ВТ	9 1209	1000 6828	6840 6828	6840	1091	6828	6828
ВТ	1209 6828	6828 6828	6817.3 1316	1230	6828	6817.3	1230
ВТ	6828	6828	1457	6830	6830	1619	6840
GR		1000	6828	1091	6828	1209	6807.3
GR	1209 6828	6807.3 1230	1230 6828	1316	6830	1457	6840
	1619						
NC	.07	.07	.08	.1	.3		
X1	7	9	1146	1193	856	856	856
GR	6862 1146	1033 6854	6858 1193	1042	6856	1071	6854
GR	6856 1354	1279	6858	1312	6860	1326	6862
NC	.015	.015	.02				
	BRIS ⁻	TLECONE LAKE C	ONCRETE SI	PILLWAY			
X1	8	8	1080	1520	1026	1026	1026
GR	6910	1000	6908	1020	6900	1050	6890
GR	1080 6889	6889 1500	1090 6890	1520	6908	1580	
QT	2	4860	8624				
NC	.07	.07	.05				
	FLOW	INTO BRISTLEC	ONE LAKE				
X1	9	13	1484	1817	2638	2638	2638
GR	6910	1000	6908	1050	6906	1135	6900
GR	1173 6890	6894 1484	1260 6890	1817	6894	1824	6894
-	1845	6900	1871	4000	604.0	4004	
GR	6902	1905	6908	1982	6910	1991	
1	44 / 5 / 5						
	11/ 3/ 3	12:40:22	PAGE	3			
			I AGE	J			

X1	10	15	1169	1529	590	590	590
GR	6916 1112	1000	6910	1044	6908	1064	6904
GR	6898	6900 1270	1230 6898	1334	6896	1349	6896
GR	1361 6900 1645	6898 1392 6916	1379 6902 1662	1530	6910	1614	6912
NC	.1	.1	.08				
X1	11	13	1149	1363	701	701	701
GR	6924 1077	1000 6910	6920 1149	1041	6918	1069	6916
GR	6908 1226	1165 6906	6904 1346	1177	6904	1216	6906
GR	6916	1381	6918	1392	6924	1456	
X1	12	14	1213	1240	643	643	643
GR	6936	1000	6928	1110	6926	1162	6922
GR	1176 6916	6922 1226	1213 6916	1228	6922	1240	6922
GR	1246 6916	6918 1317	1256 6916	1447	6930	1486	6936
	1566						
X1	13	10	1139	1345	689	689	689
GR	6948 1152	1000 6928	6944 1195	1053	6940	1139	6938
GR	6928 1321	1221 6948	6930 1429	1230	6932	1274	6934
X1	14	11	1184	1401	834	834	834
GR	6964	1000	6956	1071	6954	1119	6948
GR	1234 6944 1414	6946 1316 6958	1305 6944 1435	1342	6946	1392	6956
GR	6964	1527	1433				
X1	15	17	1091	1278	764	764	764
GR	6978	1000	6970	1047	6966	1081	6962
GR	1091 6960	6962 1145	1133 6958	1161	6958	1177	6960
GR	1219 6962 1336	6962 1312 6970	1278 6960 1371	1319	6960	1333	6962

GR	6974	1430	6978	1448				
X1	16	15	1266	1400	718	718	718	
GR	6994 1205	1000	6992 1266	1025	6986	1193	6984	
GR	6974 1400	6980 1321 6982	6974 1505	1331	6976	1364	6980	
GR	6986 1615	1572 6994	6988 1618	1584	6990	1609	6992	
QT	2	4772	8270					
	CONE	LUENCE OF NOR	TH AND COLLT	U DEAVED C	DEEN			
X1	17	16	1101	п веачек ст 1378	547	547	547	
Λ_	1,	10	1101	1370	547	547	547	
GR	7008 1117	1000 6992	7002 1121	1072	6998	1101	6994	
GR	6988 1213	1139 6996	6988 1277	1169	6990	1196	6992	
GR	6996 1427	1324 7004	6998 1489	1378	7000	1410	7002	
GR	7008	1552	1409					
QT	2	3757	6754					
	BEAV	ER CREEK SOUTH	H FORK					
X1	18	10	1075	1269	598	598	598	
GR	7022 1122	1000 7002	7018 1128	1075	7016	1088	7004	
GR	7002 1269	1151 7022	7008 1285	1187	7012	1237	7020	
1	11/ 3/ 3	12:40:22						
	, _, _		PAGE	4				
X1	19	16	1115	1341	800	800	800	
GR	7046 1115	1000 7032	7044	1021	7038	1072	7034	
GR	7030	1177	1129 7028	1198	7026	1207	7026	
GR	1228 7032	7030 1259	1242 7034	1341	7038	1412	7040	
GR	1473 7046	7042 1578	1536					
X1	20	14	1046	1295	625	625	625	
GR	7068 1061	1000 7052	7062 1072	1031	7058	1046	7056	

GR	7050 1185	16 7052	99	7048 1201	1122	7048		1178	7050
GR	7058 1656		264	7060	1295	7062		1384	7068
X1	21		17	1066	1246	879		879	879
GR	7092 1109	16 7074	000	7084 1133	1032	7080		1066	7078
GR	7072 1200		.39	7072 1229	1171	7074		1180	7076
GR	7078	12	239	7080	1246	7084		1271	7086
GR	1306 7088	7086 13	668	1328 7092	1445				
X1	22		8	1032	1179	554		554	554
GR	7104 1085	16 7092	000	7096 1094	1032	7094		1079	7092
GR	7094		.08	7096	1179	7104		1252	
X1	23		7	1119	1165	514		514	514
GR	7124 1158	16 7116	000	7110 1165	1119	7108		1145	7108
GR	7120		89	7124	1205				
1	11/ 3/ 3	12:	40:22	PAGE	5				
	SECNO	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS
	Q (DTCUT	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA
	/RIGHT TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN
	STA SLOPE NDST	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID
*PR 0	OF 1								

CCHV= .200 CEHV= .400 *SECNO 60.000

3720 CRITICAL DEPTH ASSUMED

CONFLUENCE WITH MONUMENT CREEK

60.00 15.36 6733.36 6733.20 6736.77 3.41 .00 .00 6725.00

20974. 6725.00	1400.	15429.	4145.	193.	921.	588.	0.	0.
.00	7.27	16.75	7.05	.070	.050	.070	.000	6718.00
1239.93 .012557 1498.70 0	0.	0.	0.	0	4	0	.00	258.76
CCHV= . *SECNO 1.00		= .30	0					
3301 HV CHA	NGED MORI	THAN HV	INS					
1.00 6736.00	11.87	6743.87	.00	.00	6744.18	.30	7.10	.31
6915. 6732.00	4409.	2319.	187.	1514.	359.	74.	44.	8.
.07 1164.88	2.91	6.46	2.53	.070	.050	.070	.000	6732.00
.002082 1557.69	1047.	1047.	1047.	3	0	0	.00	392.81
0 CCHV= *SECNO 2.00		= .300	0					
3301 HV CHA	NGED MORI	THAN HV	INS					
3685 20 TRI 3693 PROBAB 3720 CRITIC	LE MINIMU	JM SPECIF	-					
		6751.95	6751.95	.00	6753.89	1.94	3.60	.49
6915. 6748.00	1999.	4311.	605.	277.	329.	103.	67.	13.
.09	7.21	13.09	5.87	.070	.050	.070	.000	6746.00
1059.12 .019770 1235.79	759.	759.	759.	20	8	0	.00	176.67
0 CCHV= . *SECNO 3.00	100 CEHV: 0	= .300	0					
3301 HV CHA		E THAN HV	INS					
1								
11/ 3/ 3	12	:40:22	PAGE	6				
SECNO BANK ELEV	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS
Q	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA
LEFT/RIGHT TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN
SSTA SLOPE ENDST	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID

CROSS FLOW	E MINIMU L DEPTH CREEK RO S SECTIO OVER RO	JM SPECIFIC ASSUMED DAD 2-72", DN MODELED DAD REDUCE	C ENERGY 1-78" ANI FOR ROAD D FOR CUL	PROFILE VERTS CA	PACITY			
3.00		LCULATED CA				.94	4.43	.10
6772.00								
5128. 6772.00	506.	2806.	1817.	82.	330.	260.	80.	18.
	6.18	8.51	6.99	.013	.015	.013	.000	6772.00
1070.47								
	845.	845.	845.	20	14	0	.00	360.65
1431.12								
0	00 05104	200						
CCHV= .10	00 CEHV=	= .300						
*SECNO 4.000 3685 20 TRIA	C ATTEN	MDTED WEEL	CHCEL					
3693 PROBABLI			•					
3720 CRITICAL			C LIVERGI					
			CROSSING :	1-84" AN	D 1-72" CM	Р		
		ON MODELED						
FLOW	OVER RO	DAD REDUCEI	D FOR CUL	VERTS CA	PACITY			
CULVI	ERTS CAI	LCULATED C	APACITY =	400 cfs				
4.00	2.82	6786.82	6786.82	.00	6787.96	1.14	3.30	.06
6784.00								
6788.	884.	5375.	530.	136.	592.	93.	97.	26.
6784.00								
	6.52	9.08	5.72	.025	.025	.025	.000	6784.00
979.55						•		244 22
.005866	984.	984.	984.	20	8	0	.00	366.20
1345.75								
*CECNO E 000								
*SECNO 5.000								
3302 WARNING	· CONV	EVANCE CHAI	NGE OUTSTI	DE DE AC	CEDTARIE R	ANGE KR/	\TTO -	54
JJ02 WARNITING	. CONVI	LIANCE CHA	NGL OUISI	DL OI AC	CEPTABLE II.	ANGL, KIV	110 -	• 54
5.00	7.93	6793.93	.00	.00	6795.16	1.23	7.17	.03
6798.00		0.25025			0.750.20	_,_,	, , _ ,	
6788.	0.	5205.	1583.	0.	563.	208.	110.	30.
6788.00								
.18	.00	9.25	7.59	.000	.080	.070	.000	6786.00
1229.48								
.020365	722.	722.	722.	3	0	0	.00	145.32
1374.79								
0								
	00 CEHV=							
CCHV= .10	00 CEHV=	300						
*SECNO 6.100								
1 11/2/2	10	. 40.22						
11/ 3/ 3	12	:40:22						

SECNO BANK ELEV	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS
Q LEFT/RIGHT	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA
TIME SSTA	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN
SLOPE ENDST	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID
3301 HV CHA 3685 20 TRI 3693 PROBAB 3720 CRITIO 6.10 6828.00 6154. 6828.00 .19 1209.00	IALS ATTE BLE MINIM IAL DEPTH	MPTED WSE UM SPECIF	L,CWSEL IC ENERGY	.00 0. .000	6827.40 290. .015	6.98 0. .000	9.61 125. .000	1.73 33. 6806.60
.004232	1160.	1160.	1160.	20	14	0	.00	21.00
0								
SPECIAL BR	IDGE							
5227 DOWNST			-	IOT 68	20.42 HYDF	RAULIC JUI	MP OCCURS	

DOWNSTREAM (IF LOW FLOW CONTROLS)

SB XK	XKOR	COFQ	RDLEN	BWC	BWP	BAREA	SS
ELCHU	ELCHD						
1.05	1.25	2.60	.00	20.00	1.00	210.00	.00
6807.30	6806.60						

CCHV= .300 CEHV= .500 *SECNO 6.200

3301 HV CHANGED MORE THAN HVINS

3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 1.45 PRESSURE AND WEIR FLOW, Weir Submergence Based on TRAPEZOIDAL Shape

EGPRS	EGLWC	Н3	QWEIR	QPR	BAREA	TRAPEZOID	ELLC
ELTRD	WEIRLN					AREA	
6837.09	6829.67	.00	1566.	4591.	210.	190.	6817.30
6828.00	358.						

6.20	18.51	6825.81	.00	.00	6829.70	3.89	2.30	.00
6828.00 6154.	0.	6154.	0.	0.	389.	0.	125.	33.
6828.00 .19	.00	15.84	.00	.000	.015	.000	.000	6807.30
1209.00 .002023	48.	48.	48.	6	0	5	.00	21.00
1230.00 0								
CCHV= .	100 CEHV	= .30	0					
11/ 3/ 3	12	:40:22						
			PAGE	8				
SECNO BANK ELEV	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS
Q LEFT/RIGHT	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA
TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN
SSTA SLOPE ENDST	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID
*SECNO 7.00 3301 HV CHA 3685 20 TRI 3693 PROBAB 3720 CRITIC 7.00	NGED MOR ALS ATTE LE MINIM AL DEPTH	MPTED WSE UM SPECIF	L,CWSEL IC ENERGY	.00	6859.09	1.29	4.78	.26
6854.00								
6154. 6854.00	2041.	1773.	2340.	233.	178.	267.	135.	35.
.22 1045.01	8.77	9.94	8.78	.070	.080	.070	.000	6854.00
.048456	856.	856.	856.	20	21	0	.00	263.57
1308.58 0								
*SECNO 8.00 3685 20 TRI 3693 PROBAB 3720 CRITIC	ALS ATTE LE MINIM AL DEPTH	UM SPECIF ASSUMED		I MAV				
8.00			6890.86		6891.77	.91	11.36	.04
6890.00 6154.	4.	6145.	5.	1.	802.	1.	153.	44.
6890.00 .26	3.76	7.66	3.78	.015	.020	.015	.000	6889.00
1077.43 .004781 1522.85 0 *SECNO 9.00		1026.	1026.	20	11	0	.00	445.42

3302 WARNIN	IG: CONV	EYANCE CH	ANGE OUTSI	DE OF A	CCEPTABLE	RANGE,	KRATIO =	3.00
FLC	W INTO B	RISTLECON	E LAKE					
9.00		6896.25	.00	.00	6896.39	.14	4.54	.08
6890.00	4720	6774	440	000	2004	00	272	7.6
8624. 6890.00	1738.	6774.	112.	988.	2081.	88.	273.	76.
	1.76	3.26	1.28	.070	.050	.070	.000	6890.00
1227.40	2620	2620	2620	C	0	0	00	627.25
.001042 1854.74	2638.	2638.	2638.	6	0	0	.00	627.35
0								
*SECNO 10.0	000							
3301 HV CHA	NGED MOR	E THAN HV	INS					
3685 20 TRI	ALC ATTE	MDTED WCE	I CHCEL					
3003 20 IKI	ALS AITE	MPIED WSE	L,CWSEL					
11/ 3/ 3	12	:40:22		_				
			PAGE	9				
CECNO	DEDTU	CWSEL	CDTUC	UCELK	F.C	1157	HL	OI OCC
SECNO BANK ELEV	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS
Q	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA
LEFT/RIGHT TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN
SSTA	VLOD	VCII	VIOD	XIVL	ANCII	XIVIX	WIIN	CENTIN
SLOPE	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID
ENDST								
3693 PROBAB 3720 CRITIC			IC ENERGY					
		6902.42	6902.42	.00	6903.79	1.37	1.64	.37
6904.00								
8624. 6900.00	0.	7868.	756.	0.	806.	197.	301.	83.
0300.00								

*SECNO 11.000

.020723

.52

1158.67

1534.39

3301 HV CHANGED MORE THAN HVINS

590. 590. 590.

3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 1.51

11.00 8.51 6912.51 .00 .00 6913.11 .60 9.25 .08 6910.00

.00 9.76 3.84 .000 .050 .070 .000 6896.00

8 0

.00 375.72

20

8624. 6906.00	63.	8336.	226.	38.	1323.	74.	321.	88.
.55	1.65	6.30	3.04	.100	.080	.100	.000	6904.00
.009130 1368.80	701.	701.	701.	5	0	0	.00	249.98
*SECNO 12.0	00							
3265 DIVIDE	D FLOW							
3302 WARNIN	G: CONV	EYANCE CHA	ANGE OUTS	IDE OF AC	CEPTABLE	RANGE, K	RATIO =	.58
12.00 6922.00	5.74	6921.74	.00	.00	6922.57	.83	9.39	.07
8624. 6922.00	0.	489.	8135.	0.	80.	1101.	340.	92.
.58 1213.54	.00	6.08	7.39	.000	.080	.100	.000	6916.00
.027002 1463.02	643.	643.	643.	2	0	0	.00	242.34
<pre>0 *SECNO 13.0</pre>	00							
13.00 6940.00	9.37	6937.37	.00	.00	6938.49	1.12	15.83	.09
8624. 6934.00	0.	8495.	129.	0.	993.	44.	357.	95.
.60 1154.72	.00	8.55	2.94	.000	.080	.100	.000	6928.00
.019789 1346.98	689.	689.	689.	3	0	0	.00	192.27
0 *SECNO 14.0	aa							
14.00 6954.00		6952.38	.00	.00	6953.10	.72	14.57	.04
8624. 6946.00	0.	8455.	169.	0.	1234.	45.	380.	100.
.64	.00	6.85	3.77	.000	.080	.100	.000	6944.00
1150.04 .015530 1406.04	834.	834.	834.	5	0	0	.00	255.99
0 1								
11/ 3/ 3	12	:40:22	PAGE	10				
SECNO	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS
BANK ELEV Q	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA
LEFT/RIGHT TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN
SSTA SLOPE ENDST	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID

*SECNO 15.000 15.00 7.44 6965.44 .00 .00 6966.26 .82 13	13 .03
6962.00	15 .05
	2. 104.
.67 2.81 7.60 5.09 .100 .080 .100 .0	00 6958.00
1082.39 .019128 764. 764. 4 0 0 1351.06	00 268.67
0 *SECNO 16.000	
3301 HV CHANGED MORE THAN HVINS	
16.00 8.28 6982.28 6981.98 .00 6983.91 1.63 17 6980.00	41 .24
	0. 109.
.69 2.88 10.55 3.10 .100 .080 .100 .0	00 6974.00
	00 278.30
0 *SECNO 17.000	
3301 HV CHANGED MORE THAN HVINS	
CONFLUENCE OF NORTH AND SOUTH BEAVER CREEK	
17.00 9.53 6997.53 .00 .00 6998.36 .82 14 6998.00	36 .08
	3. 112.
	00 6988.00
	00 262.59
0 *SECNO 18.000	
SECNO 18.888	
3301 HV CHANGED MORE THAN HVINS	
BEAVER CREEK SOUTH FORK	
18.00 9.92 7011.92 .00 .00 7013.30 1.38 14 7018.00	78 .17
	5. 115.
	00 7002.00
1099.55 .028896 598. 598. 3 0 0 1236.06	00 136.51
0	
*SECNO 19.000 19.00 8.79 7034.79 .00 .00 7035.68 .89 22 7034.00	33 .05

6754.	4.	6742.	7.	3.	890.	6.	460.	118.
7034.00 .75	1.31	7.58	1.31	.100	.080	.100	.000	7026.00
.026968 1355.03	800.	800.	800.	4	0	0	.00	248.53
1 11/ 3/ 3	12	:40:22						
11, 3, 3		. 10.22	PAGE	11				
SECNO BANK ELEV	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS
Q	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA
LEFT/RIGHT TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN
SSTA SLOPE ENDST	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID
*SECNO 20.00	0 0							
3301 HV CHAI	NGED MOR	E THAN HV	INS					
20.00 7058.00	6.36	7054.36	.00	.00	7055.81	1.45	19.96	.17
6754. 7060.00	0.	6754.	0.	0.	698.	0.	472.	121.
.77	.00	9.67	.00	.000	.080	.000	.000	7048.00
1065.51 .038415	625.	625.	625.	2	0	0	.00	160.28
1225.79 0								
*SECNO 21.00 21.00		7080.56	.00	.00	7081.53	.97	25.68	.05
7080.00 6754.	1.	6752.	1.	1.	854.	1.	487.	125.
7080.00	0.5	7.00	0.6	100	000	100	000	7072 00
.80 1061.22	.96	7.90	.96	.100	.080	.100	.000	7072.00
.022960 1249.51	879.	879.	879.	5	0	0	.00	188.29
0 *SECNO 22.00	9 0							
3301 HV CHAI		E THAN HV	INS					
3302 WARNING	G: CONV	EYANCE CH	ANGE OUTS:	IDE OF AC	CEPTABLE	RANGE, KI	RATIO =	.65
22.00	6.61	7098.61	7098.55	.00	7100.44	1.83	18.65	.26

55. 6570. 128. 14. 598. 31. 497.

127.

7096.00

7096.00

6754.

.82	4.05	10.98	4.11	.10	90	.080	.10	0 .	000	7092.00
.054047	554.	554.	554.		6	19		0	.00	181.31
1202.86										
*SECNO 23.000										
3302 WARNING:	CONV	EYANCE CHANG	E OUTSIDE	OF	ACCEPT	ABLE	RANGE,	KRATIO	=	1.42

9.38 7117.38 23.00 .00 .00 7119.39 2.01 18.90 .05 7110.00 6754. 1332. 5064. 358. 231. 398. 65. 505. 129. 7110.00 .000 7108.00 .83 5.76 12.71 5.49 .100 .080 .100 1056.30 514. 514. 514. 0 0 .00 .026617 4 126.40 1182.70 0 1 11/ 3/ 3 12:40:22

PAGE 12

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

100-YEAR FREQUENCY CROSS

SUMMARY PRINTOUT TABLE 150

	SECNO	XLCH	EL7	TRD ELL	_C	ELMIN	Q	CWSEL	CRIWS
	EG	10*KS	VCH	AREA	.0	1K			
*	00.000			.00 1701.40			20974.00	6733.36	6733.36
	1.000 6744.18			.00 1946.76		6732.00 .58	6915.00	6743.87	.00
*	2.000		13.09	.00 709.71		6746.00 .80	6915.00	6751.95	6751.95

	.00 .00 6772.00 8.51 671.52 1171.06	5128.00	6774.75	6774.75
	.00 .00 6784.00 9.08 820.00 886.28	6788.00	6786.82	6786.82
	.00 .00 6786.00 9.25 771.30 475.67	6788.00	6793.93	.00
	.00 .00 6806.60 21.20 290.26 946.04	6154.00	6820.42	6820.42
	6828.00 6817.30 6807.30 15.84 388.61 1368.18	6154.00	6825.81	.00
	.00 .00 6854.00 9.94 677.64 279.57	6154.00	6857.79	6857.79
	.00 .00 6889.00 7.66 804.16 890.04	6154.00	6890.86	6890.86
	.00 .00 6890.00 3.26 3157.00 2671.12	8624.00	6896.25	.00
	.00 .00 6896.00 9.76 1002.54 599.08	8624.00	6902.42	6902.42
	.00 .00 6904.00 6.30 1435.60 902.54	8624.00	6912.51	.00
* 12.000 643.00 6922.57 270.02	.00 .00 6916.00 6.08 1181.02 524.82	8624.00	6921.74	.00
	.00 .00 6928.00 8.55 1036.84 613.05	8624.00	6937.37	.00
	.00 .00 6944.00 6.85 1278.76 692.03	8624.00	6952.38	.00
	.00 .00 6958.00 7.60 1231.38 623.56	8624.00	6965.44	.00
1 11/3/3 12:40	:22 PAGE 13			
	ELTRD ELLC ELMIN VCH AREA .01K	Q	CWSEL	CRIWS
	.00 .00 6974.00 10.55 940.80 484.16	8624.00	6982.28	6981.98
	.00 .00 6988.00 7.28 1136.59 558.36	8270.00	6997.53	.00

7013	18.000 .30 288		.00 716.36		6754.00	7011.92	.00
7035	19.000 .68 269		.00 898.56		6754.00	7034.79	.00
7055			.00 698.47		6754.00	7054.36	.00
7081	21.000 .53 229		.00 856.49		6754.00	7080.56	.00
			.00 643.15		6754.00	7098.61	7098.55
			.00 694.80		6754.00	7117.38	.00

1

11/ 3/ 3 12:40:22

PAGE 14

100-YEAR FREQUENCY CROSS

SUMMARY PRINTOUT TABLE 150

	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
*	60.000	20974.00	6733.36	.00	.00	.16	258.76	.00
	1.000	6915.00	6743.87	.00	10.52	.00	392.81	1047.00
*	2.000	6915.00	6751.95	.00	8.08	.00	176.67	759.00
*	3.000	5128.00	6774.75	.00	22.79	.00	360.65	845.00
*	4.000	6788.00	6786.82	.00	12.07	.00	366.20	984.00
*	5.000	6788.00	6793.93	.00	7.11	.00	145.32	722.00
*	6.100	6154.00	6820.42	.00	26.49	.00	21.00	1160.00
*	6.200	6154.00	6825.81	.00	5.38	.00	21.00	48.00
*	7.000	6154.00	6857.79	.00	31.99	.00	263.57	856.00
*	8.000	6154.00	6890.86	.00	33.06	.00	445.42	1026.00
*	9.000	8624.00	6896.25	.00	5.39	.00	627.35	2638.00
*	10.000	8624.00	6902.42	.00	6.17	.00	375.72	590.00
*	11.000	8624.00	6912.51	.00	10.10	.00	249.98	701.00

*	12.000	8624.00	6921.74	.00	9.23	.00	242.34	643.00	
	13.000	8624.00	6937.37	.00	15.63	.00	192.27	689.00	
	14.000	8624.00	6952.38	.00	15.01	.00	255.99	834.00	
	15.000	8624.00	6965.44	.00	13.06	.00	268.67	764.00	
	16.000	8624.00	6982.28	.00	16.84	.00	278.30	718.00	
	17.000	8270.00	6997.53	.00	15.26	.00	262.59	547.00	
	18.000	6754.00	7011.92	.00	14.39	.00	136.51	598.00	
	19.000	6754.00	7034.79	.00	22.87	.00	248.53	800.00	
	20.000	6754.00	7054.36	.00	19.57	.00	160.28	625.00	
	21.000	6754.00	7080.56	.00	26.21	.00	188.29	879.00	
*	22.000	6754.00	7098.61	.00	18.05	.00	181.31	554.00	
1	11/ 3/ 3	12:40:22 PAGE 15							
	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH	
*	23.000	6754.00	7117.38	.00	18.77	.00	126.40	514.00	
1	11/ 3/ 3	12:40:2	22 PA0	GE 16					

SUMMARY OF ERRORS AND SPECIAL NOTES

CAUTION SECNO=	60.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION SECNO=	2.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION SECNO=	2.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION SECNO=	2.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION SECNO=	3.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION SECNO=	3.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION SECNO=	3.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION SECNO=	4.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION SECNO=	4.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION SECNO=	4.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL

WARNING SECNO=	5.000 PI	ROFILE= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
CAUTION SECNO=	6.100 PI	ROFILE= 1	CRITICAL DEPTH ASSUMED
CAUTION SECNO=	6.100 P	ROFILE= 1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION SECNO=		ROFILE= 1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION SECNO	0.100	NOTICE I	20 TRIALS ATTEM TED TO DALANCE WILL
CAUTION SECNO=	6.200 PI	ROFILE= 1	HYDRAULIC JUMP D.S.
WARNING SECNO=	6.200 PI	ROFILE= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
CAUTION SECNO=		ROFILE= 1	CRITICAL DEPTH ASSUMED
CAUTION SECNO=	7.000 PI	ROFILE= 1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION SECNO=	7.000 PI	ROFILE= 1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION SECNO=	8.000 PI	ROFILE= 1	CRITICAL DEPTH ASSUMED
CAUTION SECNO=	8.000 PI	ROFILE= 1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION SECNO=		ROFILE= 1	
CHOTION SECNO	0.000	NOTICE I	20 Mines Miles 10 Brenier Wall
WARNING SECNO=	9.000 PI	ROFILE= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
CAUTION SECNO=	10.000 PI	ROFILE= 1	CRITICAL DEPTH ASSUMED
CAUTION SECNO=	10.000 PI	ROFILE= 1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION SECNO=		ROFILE= 1	
CAUTION SECTO	10.000	KOI ILL- I	20 INTALS ATTEM TED TO DALANCE WILL
WARNING SECNO=	11.000 P	ROFILE= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
10 11112110 320110	11.000		CONTENTICE CHANGE OUTSIDE MCCENTAGE
WARNING SECNO=	12.000 PI	ROFILE= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
	12.000	1	CONTENTION CONTINUE CONTENT NOTE INDICE INDICE
WARNING SECNO=	22.000 PI	ROFILE= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
	22.000		CONTENTION CONTINUE CONTENTS NOCE INDEE MANGE
WARNING SECNO=	23.000 PI	ROFILE= 1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
WARRIED SECTIO	23.000 FI	MOITEL I	CONVETANCE CHANGE OUTSIDE ACCEL TABLE NAME

NOTES TO USERS

his map is for use in administering the National Flood Insurance Program. It does tot necessarily identify all areas subject to flooding, particularly from local drainage ources of small size. The community map repository should be consulted fo ossible updated or additional flood hazard information.

o obtain more detailed information in areas where Rase Flood Flevations (RFF To obtain more detailed information in areas where these Flood Elevations (IEEs) andorf floodways that between determined, uses are encouraged to consult the Flood within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BIESs above on the FIRM represent rounded whole-low devations. These BFEs are intended for food insurance rating purposes only and should not be used as the sole source of food elevation fromtains. Accordingly, flood elevation date presented in the FIRM report about due suitased in conjunction with the FIRM for purpose of construction and for flood plan insuranges.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0° North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Sillustee Elevations table in the Flood insurance Study report for this jurisdiction. Elevations shown in the Summary of Sillustee Elevations table should be used for construction and/or floodplain ransagement purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdictor for this jurisdictor.

Contain areas not in Special Flood Hazard Areas may be protected by **flood cont structures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurar Study report for information on flood control structures for this jurisdiction.

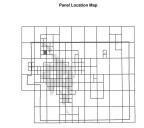
The projection used in the preparation of this map was Universal Transverse Mercator (UTM), zone 13. The horizontal datum was NADS3, GRSS0 splencid, projection of Filips for adjacent principal control of the projection of Filips for adjacent principations may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the **North American Vertical Datu**of **1988 (NAVD88)**. These food elevations must be compared to stockine an
open devalence referenced to the same vertical datum. For devalence regard
of the elevations referenced to the same vertical datum. For devalence regard
of the elevation reference of the elevation of the ele

NGS Information Services NOAA, N/NGS12 315 East-West Highway Silver Spring, MD 20910-3282

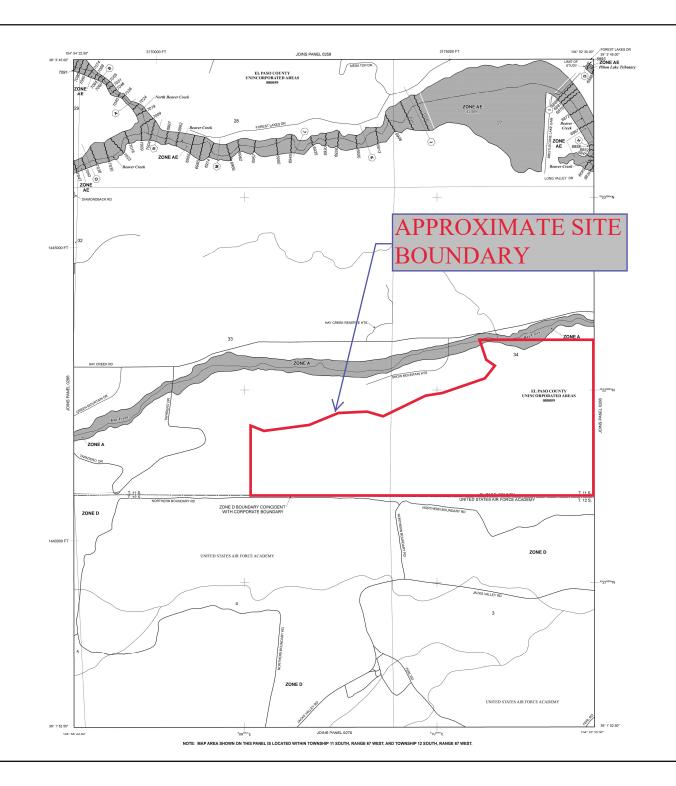
o obtain current elevation, description, and/or location information for bench mar hown on this map, please contact the Information Services Branch of the Natio Seodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Pass County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management National Oceanic and Armospheric Administration, United States deological Survey and Anderson Consulting Engineers, Inc. These data are current as of 2006.


The ring reflects more detailed and up-to-date stream channel configurations and The finodplains and foodways that were transferred from the previous FRM may have been adjusted to confirm to these me stream channel configurations. As a have been adjusted to confirm to these me stream channel configurations. As a FREAD of the confirm to these me stream channel configurations. As a Report (which contains authoritative hydrautic data) may reflect stream channel distances that differ may had a shown on the map. The profile baselines depicted on their may previously the profile to the configuration of the con

Corporate limits shown on this map are based on the best data available at the sme if publication. Because changes due to annexations or de-annexations may have locurred after this map was published, map users should contact appropriate ommunity officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is


Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1477-336-2627 for information on available products associated with the FEMA Available products may notice previously issued Letter of Map Determine. The FEMA Available of the Peman May of the Pe

ryou have questions about this map or questions concerning the National Floor nsurance Program in general, please call 1-877-FBM MAP (1-877-336-2627) o isit the FEMA website at http://www.fema.gov/business/nfip. FI Pasc County Vertical Datum Offset Table Flooding Source REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

LEGEND

The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equated or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AM, AR, M91, V, and VE. The Base Flood Benedon is the water-unface elevation of the 1% small or there in flood the 1% or the chance flood.

ZONE A ZONE AE ZONE AH

No Base Flood Elevations determined,
Base Flood Elevations determined,
Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood
Elevations determined. Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of elluvial fan flooding, velocities also determined.

ZONE VE Coestal flood zone with velocity hazard (wave action); Base Flood Reputitions determined

FLOODWAY AREAS IN ZONE AE

OTHER FLOOD AREAS

OTHER AREAS

Areas determined to be outside the 0.2% annual chance floodplai Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

Zone D Boundary CRRS and CRA houndar

~~ 512 ~~ Date Flood Elevation line and value: elevation in feet*

(A)----(A)

23----23

Geographic coordinates referenced to the North American Detum of 1983 (NAD 83) 97° 07' 30.00° 32° 22' 30.00°

1000-meter Universal Transverse Mercator grid ticks, zone 13

M1.5

MAP REPOSITORIES Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP MARCH 17, 1997

For community map revision history prior to countywide mapping, refer to the Co Map History Table located in the Flood Insurance Study report for this jurisdiction.

To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-900-638-6620.

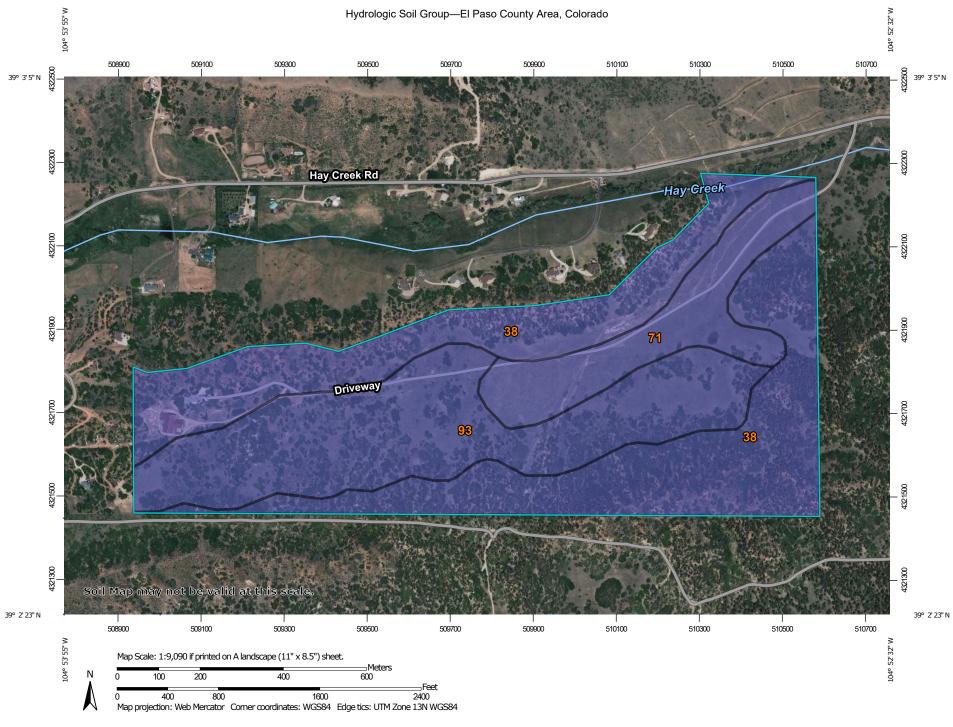
MAP SCALE 1" = 500" 250 0 500

PANEL 0267G

FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY. AND INCORPORATED AREAS

COLORADO PANEL 267 OF 1300

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)


NUMBER PANEL SUFFIX COMMUNITY

08041C0267G DECEMBER 7, 2018

MAP NUMBER

Federal Emergency Management Agency

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 20, Sep 2, 2022 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Jun 9, 2021—Jun 12. 2021 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
38	Jarre-Tecolote complex, 8 to 65 percent slopes	В	109.5	50.8%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	31.1	14.5%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	В	74.8	34.7%
Totals for Area of Inter	rest		215.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

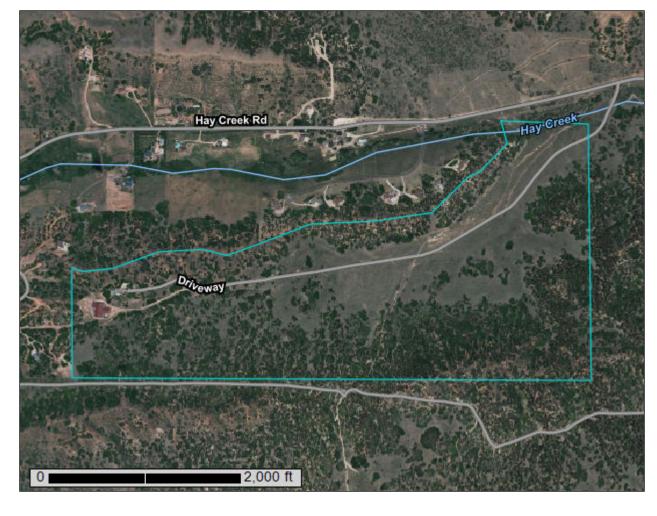
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified


Tie-break Rule: Higher

Natural

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
El Paso County Area, Colorado	13
38—Jarre-Tecolote complex, 8 to 65 percent slopes	13
71—Pring coarse sandy loam, 3 to 8 percent slopes	14
93—Tomah-Crowfoot complex, 8 to 15 percent slopes	15
References	18

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

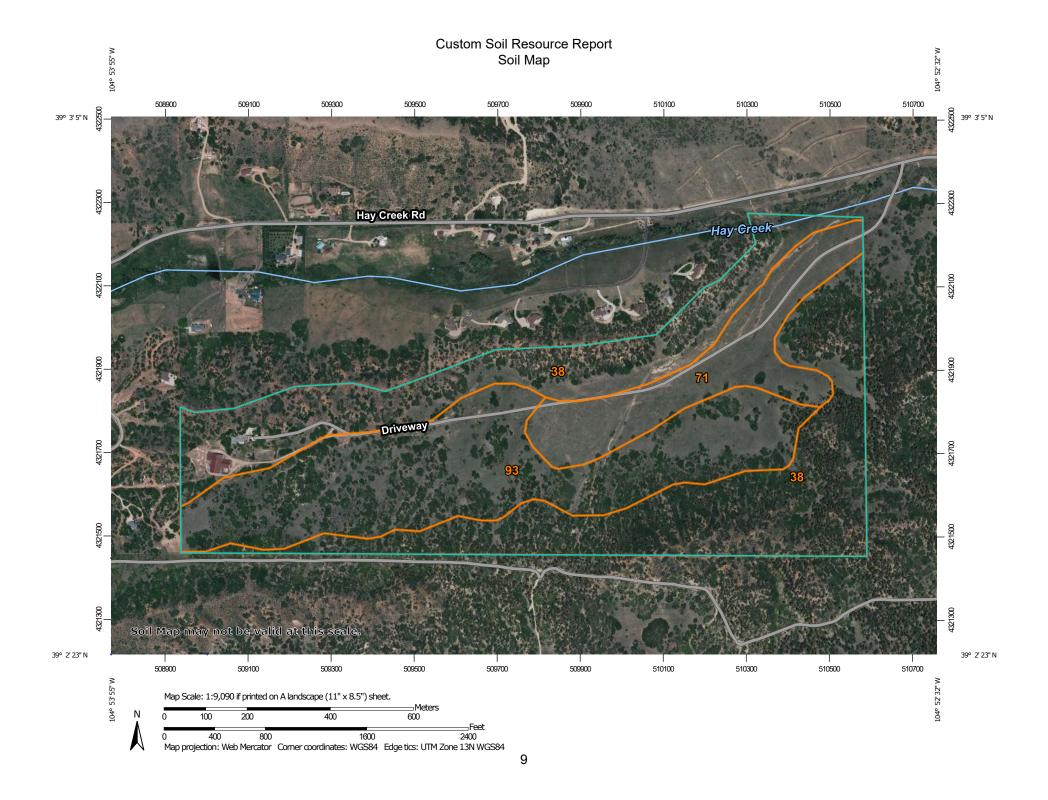
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

(o)

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole Slide or Slip

Sodic Spot

Spoil Area

Stony Spot Very Stony Spot

Wet Spot Other

Δ

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

00

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 20, Sep 2, 2022

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Jun 9, 2021—Jun 12, 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
38	Jarre-Tecolote complex, 8 to 65 percent slopes	109.5	50.8%
71	Pring coarse sandy loam, 3 to 8 percent slopes	31.1	14.5%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	74.8	34.7%
Totals for Area of Interest	,	215.4	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

38—Jarre-Tecolote complex, 8 to 65 percent slopes

Map Unit Setting

National map unit symbol: 368c Elevation: 6,700 to 7,500 feet Frost-free period: 90 to 125 days

Farmland classification: Not prime farmland

Map Unit Composition

Jarre and similar soils: 40 percent Tecolote and similar soils: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Jarre

Setting

Landform: Alluvial fans
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

Typical profile

A - 0 to 5 inches: gravelly sandy loam

Bt - 5 to 22 inches: gravelly sandy clay loam

2C - 22 to 60 inches: very gravelly sandy loam

Properties and qualities

Slope: 8 to 30 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R048AY222CO - Loamy Park

Hydric soil rating: No

Description of Tecolote

Setting

Landform: Alluvial fans
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

Typical profile

A - 0 to 3 inches: very stony loam

E - 3 to 12 inches: very gravelly loamy sand

Bt - 12 to 45 inches: extremely gravelly sandy clay loam C - 45 to 60 inches: extremely gravelly loamy sand

Properties and qualities

Slope: 8 to 65 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 2.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: R048AY255CO - Pine Grasslands

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet

Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam
C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: R048AY222CO - Loamy Park

Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No

93—Tomah-Crowfoot complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 36bb Elevation: 7,300 to 7,600 feet

Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent Crowfoot and similar soils: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tomah

Setting

Landform: Hills, alluvial fans

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from arkose and/or residuum weathered from

arkose

Typical profile

A - 0 to 10 inches: loamy sand E - 10 to 22 inches: coarse sand

Bt - 22 to 48 inches: stratified coarse sand to sandy clay loam

C - 48 to 60 inches: coarse sand

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R049XY216CO - Sandy Divide

Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Hills, alluvial fans

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 12 inches: loamy sand E - 12 to 23 inches: sand

Bt - 23 to 36 inches: sandy clay loam C - 36 to 60 inches: coarse sand

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R049XY216CO - Sandy Divide

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

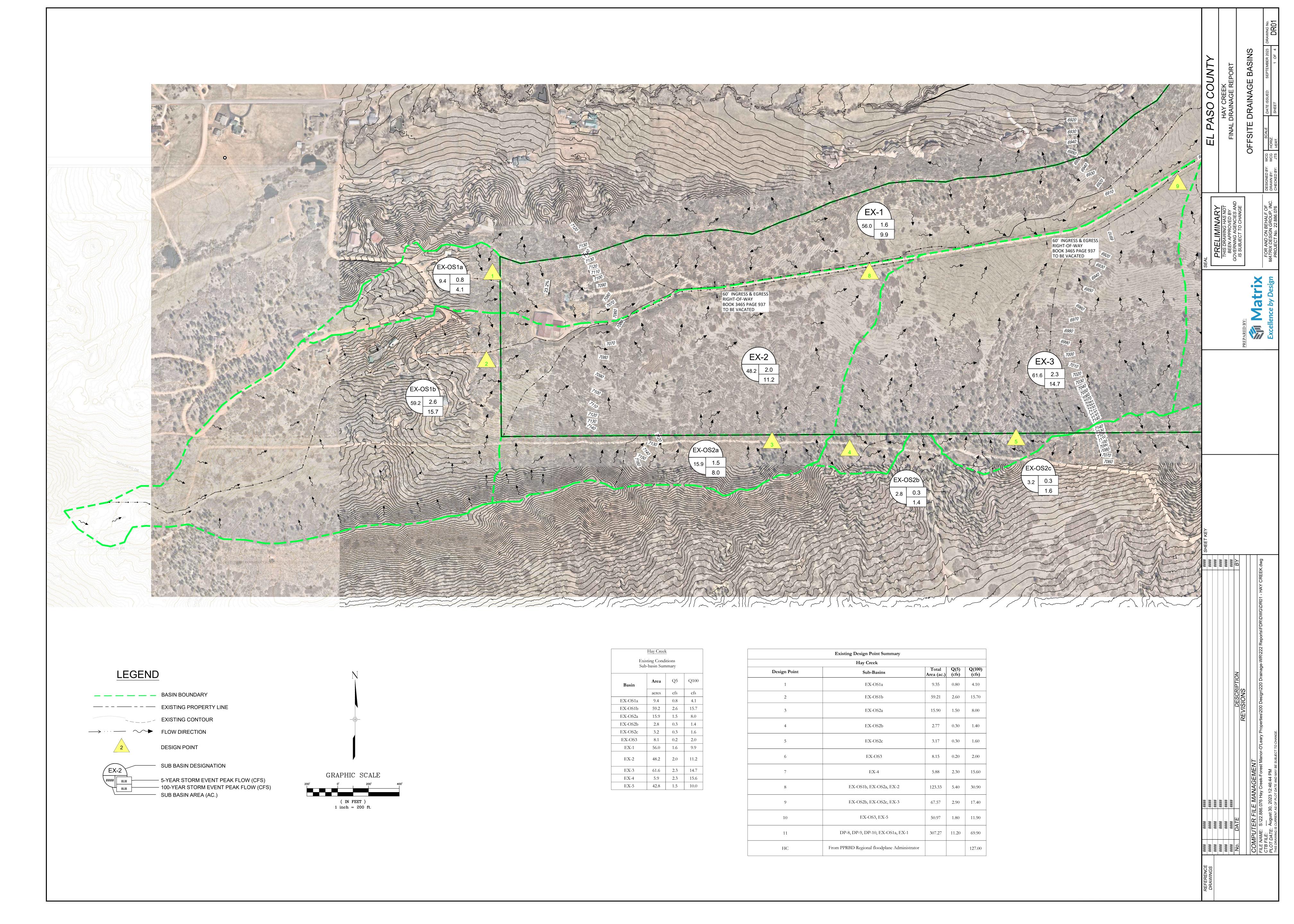
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

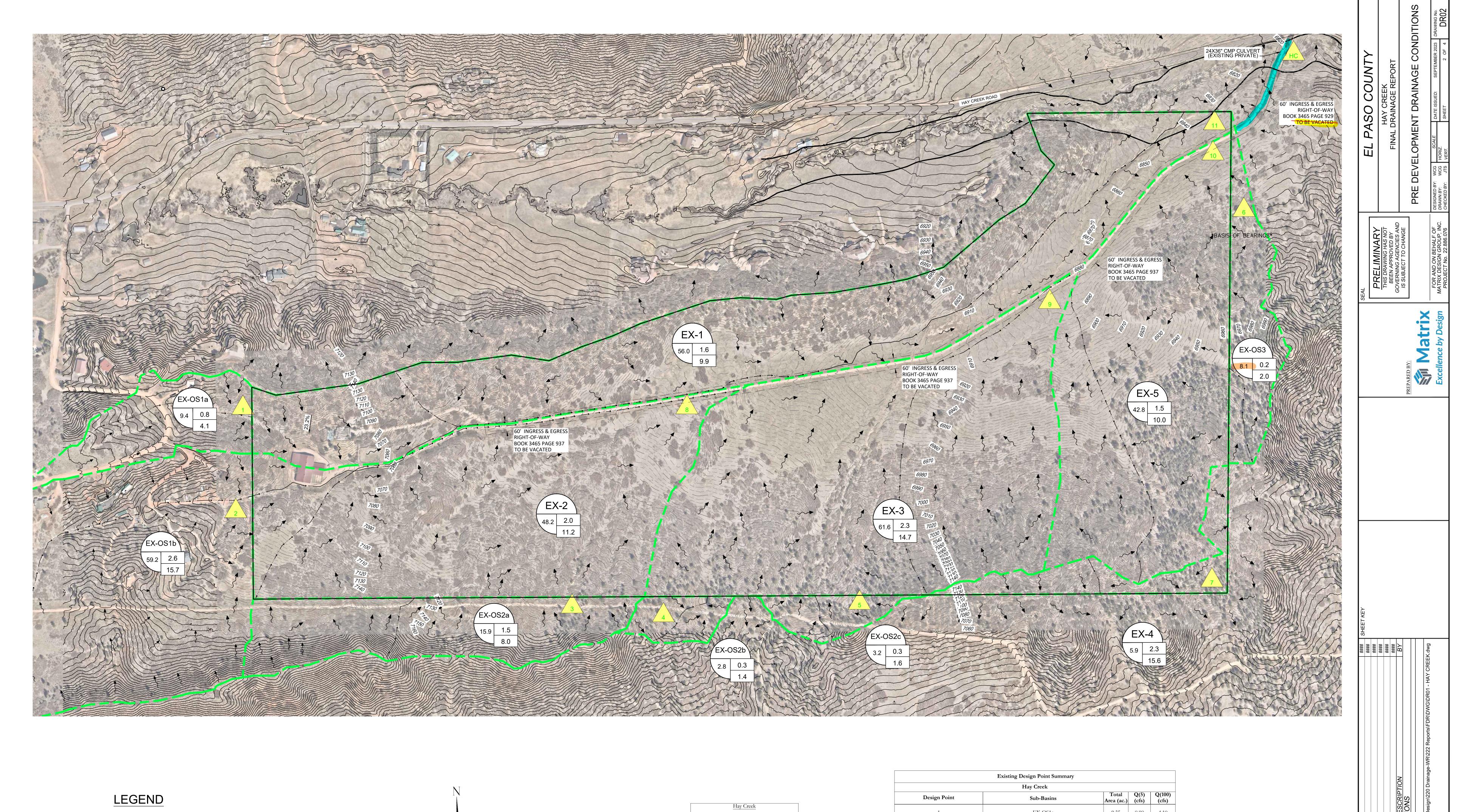
United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

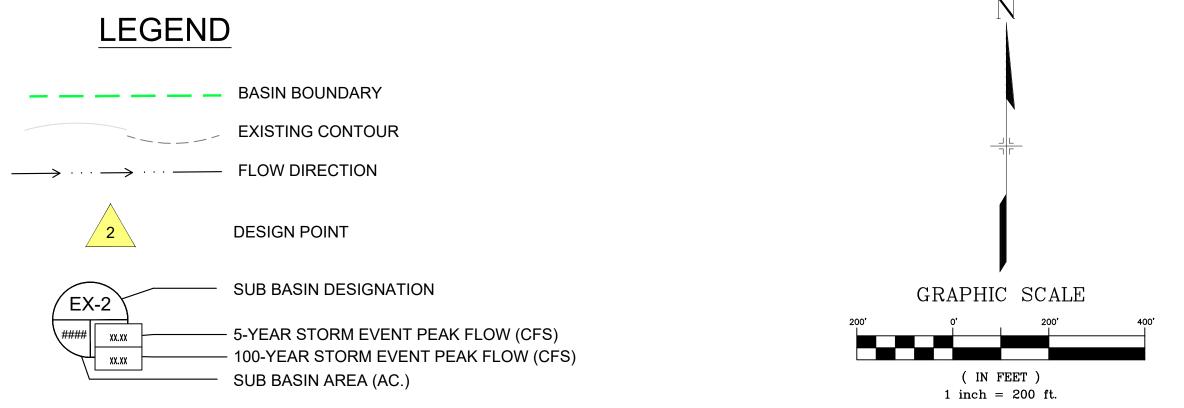
United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

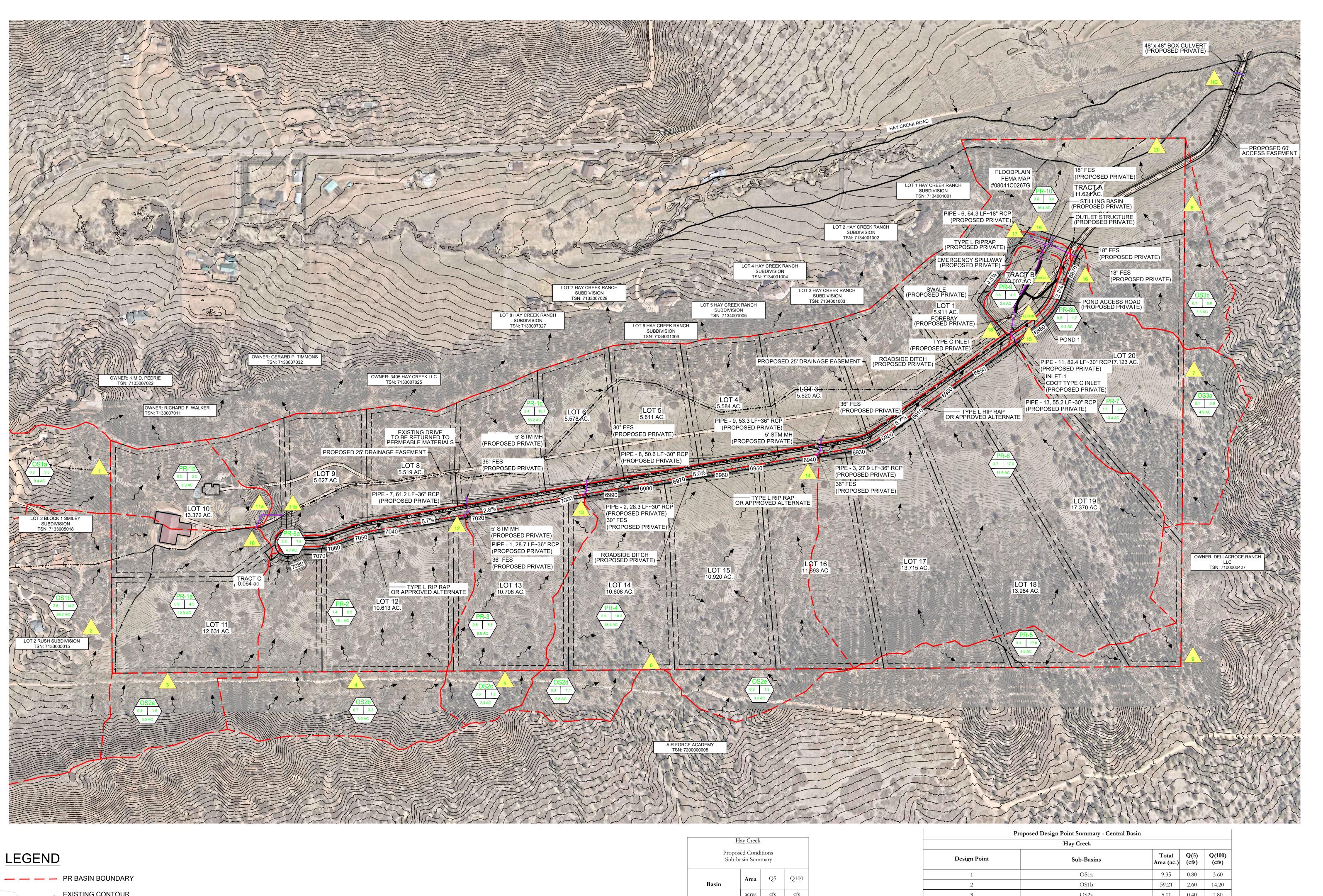
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

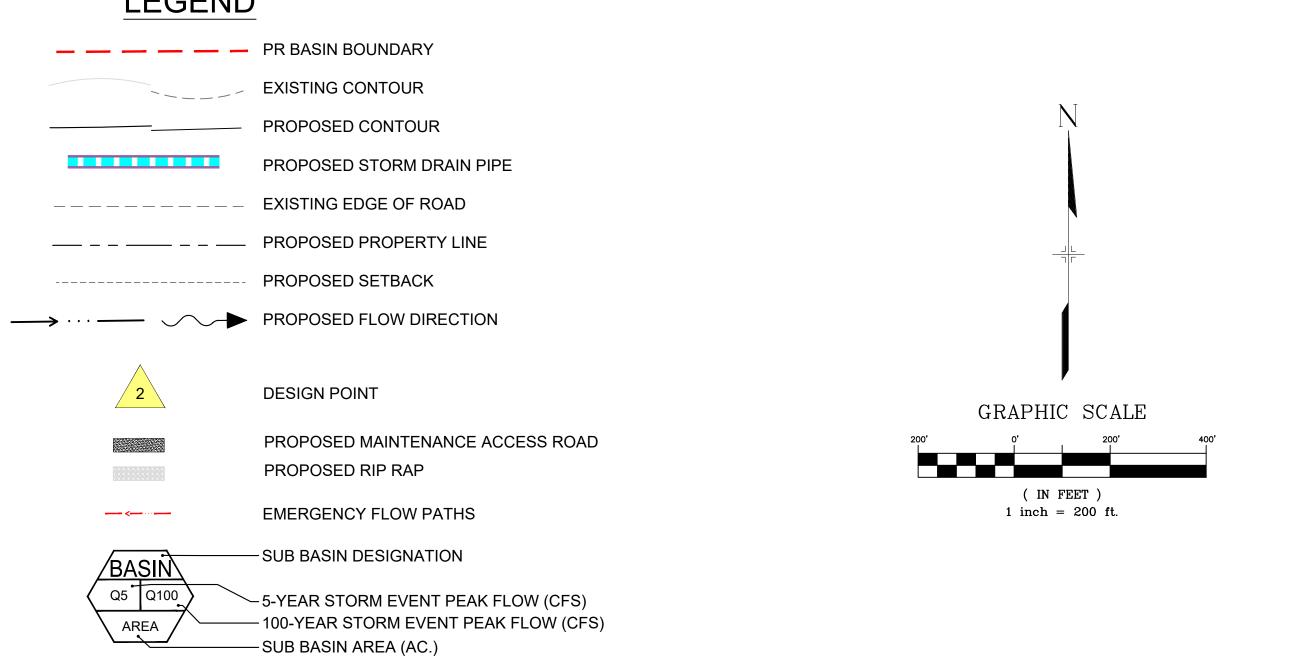

APPENDIX D


MAPS



VICINITY MAP HAY CREEK VALLEY (NTS)

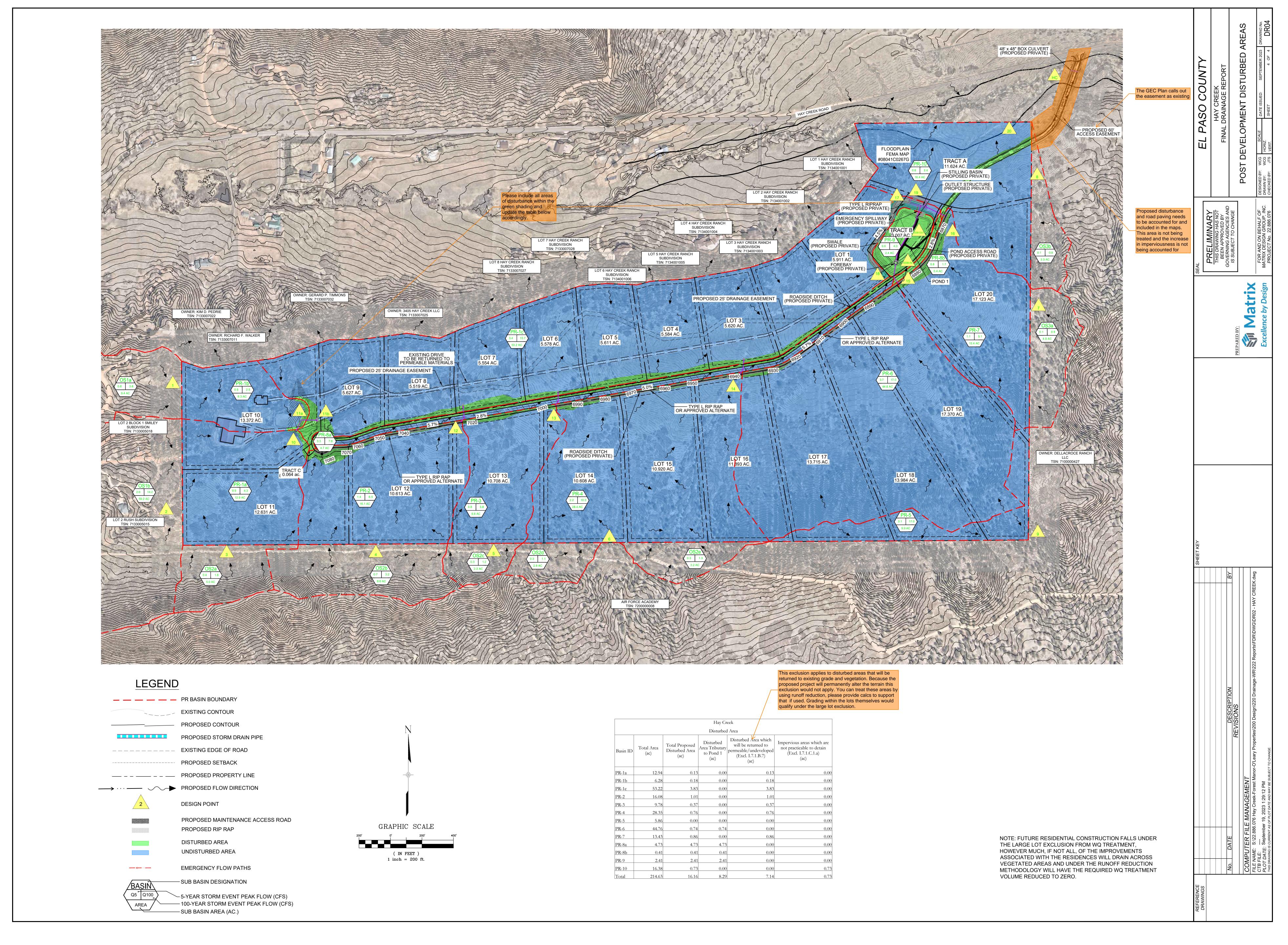



	Hay Creel	<u> </u>	
	sting Cond -basin Sun		
Basin	Area	Q5	Q100
	acres	cfs	cfs
EX-OS1a	9.4	0.8	4.1
EX-OS1b	59.2	2.6	15.7
EX-OS2a	15.9	1.5	8.0
EX-OS2b	2.8	0.3	1.4
EX-OS2c	3.2	0.3	1.6
EX-OS3	8.1	0.2	2.0
EX-1	56.0	1.6	9.9
EX-2	48.2	2.0	11.2
EX-3	61.6	2.3	14.7
EX-4	5.9	2.3	15.6
EX-5	42.8	1.5	10.0

	Hay Creek	Total	Q(5)	Q(100)
Design Point	Sub-Basins	Area (ac.)	(cfs)	(cfs)
1	EX-OS1a	9.35	0.80	4.10
2	EX-OS1b	59.21	2.60	15.70
3	EX-OS2a	15.90	1.50	8.00
4	EX-OS2b	2.77	0.30	1.40
5	EX-OS2c	3.17	0.30	1.60
6	EX-OS3	8.15	0.20	2.00
7	EX-4	5.88	2.30	15.60
8	EX-OS1b, EX-OS2a, EX-2	123.33	5.40	30.90
9	EX-OS2b, EX-OS2c, EX-3	67.57	2.90	17.40
10	EX-OS3, EX-5	50.97	1.80	11.90
11	DP-8, DP-9, DP-10, EX-OS1a, EX-1	307.27	11.20	69.90
НС	From PPRBD Regional floodplane Administrator			127.00

DATE

No.



	posed Condi o-basin Sumi		
Basin	Area	Q5	Q100
	acres	cfs	cfs
OS1a	9.4	0.8	3.6
OS1b	59.2	2.6	14.2
OS2a	5.0	0.4	1.8
OS2b	8.6	0.7	3.2
OS2c	2.3	0.3	1.2
OS2d	2.8	0.3	1.1
OS2e	3.2	0.3	1.3
OS3a	4.9	0.1	0.9
OS3b	3.3	0.1	0.8
PR-1a	12.9	0.9	4.3
PR-1b	6.3	0.5	2.5
PR-1c	53.2	3.4	15.7
PR-2	16.1	1.4	6.5
PR-3	9.8	0.8	3.8
PR-4	28.4	2.2	10.3
PR-5	5.9	0.0	0.0
PR-6	44.8	3.7	17.0
PR-7	13.4	1.1	5.1
PR-8a	4.7	3.3	7.8
PR-8b	0.4	0.8	1.7
PR-9	2.4	0.0	0.0
PR-10	16.4	0.6	3.4

	Hay Creek			
Design Point	Sub-Basins	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)
1	OS1a	9.35	0.80	3.60
2	OS1b	59.21	2.60	14.20
3	OS2a	5.01	0.40	1.80
4	OS2b	8.57	0.70	3.20
5	OS2c	2.28	0.30	1.20
6	OS2d, OS2e	5.93	0.50	2.30
7	OS3a	4.88	0.10	0.90
8	OS3b	3.29	0.10	0.80
9	PR-5	5.86	3.11	17.01
10	OS1b, OS2a, PR-1a	77.15	3.70	19.50
11a	OS1a,PR-1b	15.63	1.30	6.10
11b	OS1a, OS2a, OS1b, PR-1a, PR-1b	92.78	5.00	25.20
12	OS2b, PR-2	24.65	2.10	9.60
13	OS2c, PR-3	12.06	1.00	4.60
14	OS2d, OS2e, PR-4	34.29	2.70	12.30
15	PR-6	44.76	3.70	17.00
16	OS3a, PR-7	18.31	1.20	6.10
17	OS1a, OS1b, OS2a, PR-1a, PR-1b, PR-1c, DP-10, DP-11, DP-12, DP-13, DP-14	216.99	11.80	58.10
18a	PR-8a	4.73	3.30	7.80
18b	PR-6, PR-8a	49.49	6.60	24.30
EDB-IN	PR-6, PR-8a, PR-8b, PR-9	52.31	5.10	22.40
EDB-OUT	PR-6, PR-8a, PR-8b, PR-9	52.31	5.80	17.30
19	EDB-OUT, DP-14, DP-15	287.62	12.50	64.70
20	DP-8, DP-18, PR-10	307.28	13.00	68.60
НС	From PPRBD Regional floodplane Administrator			127.00

REFERENCE SHEET KEY		SEAL	VTINI IOO COVO 13
		PREI MINARY	EL LASO COON I
		THIS DRAWING HAS NOT	HAY CREEK
		BEEN APPROVED BY GOVERNING AGENCIES AND	FINAL DRAINAGE REPORT
NO. DAIE DESCRIPTION BY REVISIONS	n n en a van de nav.	IS SUBJECT TO CHANGE	
	FREFARED BY:		ACITICINOC TO AIMIN OF TIMEN OF TIMEN TO
COMPUTER FILE MANAGEMENT			POST DEVELOPIMENT DRAINAGE CONDITIONS
FILE NAME: S:\22.886.076 Hay Creek-Forest Manor-O'Leary Properties\200 Design\220 Drainage-WR\222 Reports\FDR\DWG\DR02 - HAY CREEK.dwg			
CTB FILE:		FOR AND ON BEHALF OF	DESIGNED BY: WCG SCALE DATE ISSUED: SEPTEMBER 2023 DRAWING No.
PLOT DATE: September 19, 2023 1:28:21 PM	Excellence by Design	MATRIX DESIGN GROUP, INC.	HORIZ.
THIS DRAWING IS CURRENT AS OF PLOT DATE AND MAY BE SUBJECT TO CHANGE.		PROJECT No. 22.886.076	CHECKED BY: JIS VERT. SHEE! 3 OF 4 CHECKED BY:

