RETREAT AT TIMBERRIDGE

WATER RESOURCES And WASTEWATER REPORT For Retreat at TimberRidge

November, 2020

Prepared By:

5540 TECH CENTER DRIVE • COLORADO SPRINGS, CO • 80919 • (719) 227-0072 • FAX (719) 471-3401

Executive Summary: Water Resources and Wastewater Report—Retreat at TimberRidge Revision November, 2020

Retreat at TimberRidge development by Arroya Investments consists of approximately 227 acres located east of Vollmer Rd and north of Woodmen Rd, in portions of Section 21, 22, 27 & 28, Township 12 South, Range 65 West of the 6th P.M. The land is to be provided water and sewer services through either the Sterling Ranch Metropolitan District (SRMD) or on-site individual wells and septic.

It is expected an urban residential home in Retreat at TimberRidge will require an average of 0.353 annual acre-feet. Rural residential homes in Retreat at TimberRidge will require an average of 0.32 annual acre-feet. This is consistent with historic needs for nearby developments.

The larger rural lots anticipated will be served by on-site single-family wells and septic. After considering water line layout, it was determined that larger rural lots 39, 40, and 41, could be easily provided for Central Water and would be better served on central water. For this reason, the overall Water Resources needed for the Retreat include 167 lots. The following augmentation plans are in place, or pending, to serve these lots.

• An augmentation plan (18CW3002-pending) relinquishes 2,796 acre-feet of Laramie Fox Hills NT water to augment the single family wells on in the Dawson NNT aquifer.

The water available for the Central System from On-site sources is 42.76 annual acre-feet (on a 300 year basis). Therefore, the available supply will not meet the legal and physical needs of 167 residential homes (or single family equivalents) which is 58.95 annual acre-feet. An additional 16.19 annual acre-feet is required.

The SRMD has committed to providing the additional water resources on a 300-year basis to make up the annual acre-foot shortfall from the District's overall sources of supply. The Arapahoe and LFH NT water available on Phase 1 of the Retreat at TimberRidge was not included in the currently available on-site supply in the SRMD commitment letter.

Additional NNT water may be made available if and when an augmentation plan is developed and approved. Certain other rights will be necessary in order to develop and augment this supply.

TABLE OF CONTENTS

SECTION 1 INTRODUCTION

1.1 New Development Description

SECTION 2 PROJECTION OF WATER NEEDS

2.1 Analysis of Water Demands Table 2-1 – *Projected Water Demands for Retreat at TimberRidge*

SECTION 3 PROPOSED WATER RIGHTS AND SYSTEM FACILITIES

- 3.1 Water Rights Table 3 – Summary of Immediately Available Legal Water Supply for Retreat at TimberRidge Phase 1-6
- 3.2 Source of Supply
- 3.3 Water Quality and Treatment
- 3.4 Water Storage
- 3.5 Distribution and Transmission Lines
- 3.6 Pumping for Service Pressures

SECTION 4 WASTEWATER REPORT

- 4.1 Wastewater Loads Table 4-1 – Projected Wastewater Loads on Central Wastewater System for Retreat at TimberRidge
- 4.2 Wastewater Collection and Pumping
- 4.3 Wastewater Treatment
- 4.4 On-Site Wastewater Treatment Systems

APPENDICES

Appendix A- Preliminary Plan for Retreat at TimberRidge

- *Appendix B* Overall Water Supply Inventory Sterling Ranch including Retreat at TimberRidge
- Appendix C- Water Rights Decrees 17CW3002 18CW3002 - Pending

Appendix D- On-site Wastewater Treatment System Evaluation

Appendix E- Water Quality from Sterling Existing Wells

SECTION 1 INTRODUCTION

The purpose of this study is to provide a preliminary outline of the water resources and wastewater needs that would be necessary for Phase 1-6 of the Retreat at TimberRidge development.

1.1 New Development Description:

Retreat at TimberRidge development consists of approximately 261 acres located east of Vollmer Rd and north of Woodmen Rd and approximately 7 acres west of Vollmer Rd allocated for Lots 11 and 12 owned by Jacob Decoto, Section 27 & 28, Township 12 South, Range 65 West of the 6th P.M. Phase 1-6 is designated for 205 residential units in addition to stormwater detention facilities, open space, drainageway, and trails.

Appendix A contains a preliminary plan for the Retreat at TimberRidge.

SECTION 2 PROJECTION OF WATER NEEDS

2.1 Analysis of Water Demands:

It is expected that the residential lots on central water will be developed with single family housing anticipating turf grass landscaping. The expected water demands are shown below. Displayed below is Table 2-1: Projected Water Demands for Retreat at TimberRidge:

# of Units	Land Use	Water Use Per Unit (AF/Unit)	Annual Demand (AF)	Average Daily Flow (ADF) (GPD)	Maximum Daily Flow (MDF) (@ 2.45 x ADF) (GPD)	Peak Hour Flow (@ 1.5 x MDF) (GPM)
167	Residential (Urban, Central systems)	0.353	58.95	52,627	128,900	133
41 *	Residential (Rural, Well & OWTS)	0.32	21.73	19,399	47,528	50

Table 2-1 - Projected Water Demands for Retreat at TimberRidge

Total Annual Demand of Retreat at TimberRidge (sans individual wells on rural lots) is 58.95 Acre-Feet.

• The augmentation case 18 CW 3002 covers 41 lots, so we have re-iterated that number here but it should be noted that 3 of the larger lots will be served with central water and are also included in the 167.

Page-4

SECTION 3 PROPOSED WATER RIGHTS AND SYSTEM FACILITIES

3.1 Water Rights:

Water rights adjudications have been decreed by the State of Colorado, Water Division 2 District Court. The findings and relevant summary information is displayed in <u>Appendix B</u>.

<u>Table 3-1</u> <u>Summary of Immediately Available Legal Water Supply</u> for Datasat at TimborDidge Phase 1.6					
<u>for Retre</u> Water	Annual Supply (Acre-Feet)	Availability			
On-site NT Water	42.76	Available Immediately (Phase 3, 4 (not incl. Lot 39-41), &			
On-Site NNT Dawson	15.35	Available Immediately (Phase 2 (not incl. Lot 11-12),			
On-Site NNT Dawson	5.23	Available Immediately (Phase 1)			
Off-Site NNT Dawson	2.00	Available Immediately Lots 11 & 12 in Phase 2			

An augmentation plan (16CW3095) relinquished 1,324 acre-feet of Arapahoe NT water to augment 10 single family wells (Phase 1) in the Dawson NNT aquifer. An augmentation plan (18CWXXXX-pending) relinquishes 3,100 acre-feet of Laramie Fox Hills NT water to augment the 29 single family wells (Phase 2 (not incl. Lot 11 & 12), Lot 39-41 in Phase 4, & Phase 5) in the Dawson NNT aquifer. An augmentation plan (18CW3005-pending) relinquishes 403 acre-feet of Laramie Fox Hills NT water to augment the 2 single family wells on Lots 11 and 12 of Phase 2.

The total 300 year legal water supply currently available from on-site sources is 42.76 annual acre-feet. Therefore, the available supply will not meet the legal and physical needs of 167 residential homes (or single family equivalents) which is 58.95 annual acre-feet. An additional 16.19 annual acre-feet is required.

The SRMD has committed to providing the additional water resources on a 300year basis to make up the annual acre-foot shortfall from the District's overall sources of supply. An updated SRMD commitment letter allocates an estimated 16.19 annual acre-foot required. The Arapahoe and LFH NT water available on Phase 1 of Retreat at TimberRidge was not included in the currently available onsite supply in the SRMD commitment letter. See SRMD commitment letter in <u>Appendix E</u>. Additional NNT water may be made available if and when an augmentation plan is developed and approved.

Beneficial use of the water from the decrees includes domestic, commercial, irrigation, stock water, recreation, wildlife, wetlands, fire protection, piscatorial, and for storage and augmentation associated with such uses and excludes municipal use. The beneficial uses will need to be revised to include municipal use.

<u>Appendix C</u> includes the applicable decrees enumerated in Table 3 as the onsite/offsite water decrees.

3.2 Source of Supply:

Municipal water demand would be met using primarily Arapahoe and Laramie-Fox Hills formation wells. Arroya Investments has contracted with SRMD for the provision of municipal water services.

Retreat at TimberRidge will be served from SRMD Well Site #1. Well Site #1 will include all storage, treatment, and pumping facilities required to meet the SRMD demands.

3.3 Water Quality and Treatment:

The water quality in Arapahoe and Laramie-Fox Hills aquifers in this area has typically been suitable for potable use with the addition of iron and manganese treatment. SRMD will be responsible for water quality testing and the final design of treatment at Well Site #1 as part of the agreement to provide municipal water services.

See Appendix

3.4 Water Storage:

Water storage at Well Site #1 will be designed based on fire flow needs as well as equalizing storage needs. (Equalizing storage is the amount of water that helps the system meet diurnal peaks during the annual day of highest use in the system). We previously provided recommendations to SRMD that storage should equal at least the required fire supply plus necessary equalizing storage, and should exclude the bottom foot of water storage in the tank. The recommended initial storage tank size was a 1.0 Million Gallon tank followed by a 2.0 Million Gallon tank for future site development.

3.5 Distribution and Transmission Lines:

For the purpose of fire protection, we recommend minimum eight-inch lines throughout the residential subdivision. The lines should be looped wherever street layout allows. An 12-inch diameter transmission line should be extended south-southwesterly along one of the major roadways from the Storage tank at Well Site #1 into the Retreat at TimberRidge development.

3.6 Pumping for Service Pressures:

Ground elevations within the development service area range from approximately 7150 to 7280. Adequate service pressures are generally considered 60 psi for residential service. The preliminary tank site is on the Sterling property at a base elevation of approximately 7300 feet which would be capable of supplying acceptable service pressures to ground elevations of approximately 7160. A pumping facility at Well Site #1 would be required to provide for service pressures for lots platted after Filing #1

SECTION 4 WASTEWATER AND WASTEWATER TREATMENT

4.1 Wastewater Loads

Wastewater projections are based on similar District historical use. Average daily wastewater loads are expected to be roughly 172 gallons per day per single family residence. Maximum daily wastewater loads are expected to be roughly 210 gallons per day per single family residence. There are 164 initial residential units expected in Phase 3, 4 (not incl. Lot 39-41), & 6 on the central wastewater system Table 4-1 includes a complete breakdown.

	Wastewater Loads				
# of Units	Average Daily Flow (ADF) (GPD)	Maximum Daily Flow (GPD)			
164	28,208	34,440			

Table 4-1 - Projected Wastewater Loadson Central Wastewater System forRetreat at TimberRidge

Total Expected Daily Loads of Retreat at TimberRidge – Phase 3, 4 & 6 is 28,208 gallons/day.

4.2 Wastewater Collection and Pumping

All lands to be developed within Phase 3, 4 (not incl. Lot 39-41), & 6 will gravity feed to the southern portion of the site and tie-into the Sterling Ranch collection system. Arroya Investments has contracted with SRMD for the provision of wastewater collection, conveyance, and treatment services. The Sterling Ranch collection system will include a lift station that will pump through a force main that extends along the southern side of Sterling Ranch. From the Southeast corner of Sterling Ranch, the force main extends southerly across Woodmen Road and then easterly to Meridian Road. From this point wastewater is intercepted by Meridian Service Metropolitan District gravity sewer infrastructure.

4.3 Wastewater Treatment

Sterling Ranch Metropolitan District has contracted with Meridian Service Metropolitan District for the provision of wastewater treatment services.

It is expected that MSMD will treat wastewater flows through its participation in the Cherokee wastewater treatment facility. The Cherokee Wastewater Facility is in compliance with their current COC issued by the Colorado Department of Public Health and Environment.

4.4 On-Site Wastewater Treatment Systems

41 single family homes (Phase 1 & 2, Lot 39-41 on Phase 4, and Phase 5) on a minimum lot size of 2.5 acres will be served by individual on-site wastewater treatment systems. The site was evaluated for on-site wastewater treatment systems by Entech Engineering, Inc. in April 2017. Two (2) percolation tests and three (3) tactile test pits were performed across the site. Percolation test and tactile test pits were located in anticipated locations of proposed on-site wastewater treatment systems. The on-site soils are described as having moderate to moderately rapid percolation rates. Due to shallow bedrock and percolation rates less than 60 minutes per inch in some areas, a designed system will likely be necessary depending on site selection for the majority of the lots.

Based on the evaluation, the site is suitable for on-site wastewater treatment systems. Additional testing will be required in other areas of proposed on-site wastewater treatment systems (remaining lots of Phase 2, Lots 39-31 of Phase 4, and Phase 5). Each on-site wastewater treatment system should be evaluated and installed according to El Paso County Guidelines and properly maintained to prevent contamination of surface and subsurface water resources. The Soil, Geology, and Geologic Hazard Report by Entech Engineering, Inc. dated April 12, 2017 is included in <u>Appendix D</u>.

Appendix A

LEGAL DESCRIPTION

RETREAT AT TIMBER RIDGE

A PORTION OF SECTION 21, 22, 27 AND 28, TOWNSHIP 12 SOUTH, RANGE 65 WEST OF THE 6TH P.M., EL PASO COUNTY, COLORADO, AND BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BASIS OF BEARINGS

A LINE BETWEEN THE NORTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4) OF SECTION 27 AND THE SOUTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4) OF SAID SECTION 27, TOWNSHIP 12 SOUTH, RANGE 65 WEST, MONUMENTED AT THE NORTHERLY END BY A 3-1/4" ALUMINUM CAP STAMED "2006 ESI PLS 10376" AND MONUMENTED AT THE SOUTHERLY END BY A 3-1/4" ALUMINUM CAP STAMPED "2006 ESI PLS 10376" AND IS ASSUMED TO BEAR S00°54'30"E. A DISTANCE OF 3925.63 FEET.

PARCEL 1

COMMENCING AT THE NORTHEAST CORNER OF THE NORTHWEST QUARTER OF THE NORTHWEST QUARTER OF SECTION 27, TOWNSHIP 12 SOUTH, RANGE 65 WEST OF THE 6TH P.M., SAID POINT ALSO BEING THE POINT OF BEGINNING; THENCE S00°54'30"E ON THE EAST LINE OF THE WEST HALF OF THE WEST HALF OF SAID SECTION 27, A DISTANCE OF 3925.63 FEET TO THE SOUTHEAST

CORNER OF THE NORTHWEST QUARTER OF THE SOUTHWEST QUARTER OF SAID SECTION 27; THENCE S87°35'00"W ON THE SOUTH LINE OF SAID NORTHWEST QUARTER OF THE SOUTHWEST QUARTER, A DISTANCE OF 1332,78 FEET TO THE

SOUTHWEST CORNER OF SAID NORTHWEST QUARTER OF THE SOUTHWEST QUARTER;

THENCE N00°53'18"W ON THE WEST LINE OF SAID NORTHWEST QUARTER OF THE SOUTHWEST QUARTER, A DISTANCE OF 1316.78 FEET TO THE NORTHWEST CORNER OF SAID NORTHWEST QUARTER OF THE SOUTHWEST QUARTER;

THENCE S89°08'28"W ON THE SOUTH LINE OF THE SOUTHEAST QUARTER OF THE NORTHEAST QUARTER OF SECTION 28, A DISTANCE OF 1326.68 FEET TO THE SOUTHWEST CORNER OF SAID SOUTHEAST QUARTER OF THE NORTHEAST QUARTER;

THENCE N00°30'49"W ON THE WEST LINE OF SAID SOUTHEAST QUARTER OF THE NORTHEAST QUARTER, A DISTANCE OF 1270.77 FEET TO A POINT ON THE EASTERLY RIGHT-OF-WAY LINE OF VOLLMER ROAD AS RECORDED IN BOOK 2678 AT PAGE 430 OF THE RECORDS OF THE EL PASO COUNTY CLERK AND RECORDER:

THENCE N21°41'10"E ON SAID EASTERLY RIGHT-OF-WAY LINE, A DISTANCE OF 1450.84 FEET TO THE POINT OF INTERSECTION OF THE SOUTHERLY RIGHT-OF-WAY LINE AS DESCRIBED IN A DEED RECORDED IN BOOK 2678 AT PAGE 431 OF SAID COUNTY RECORDS;

THENCE ON THE SOUTHERLY, EASTERLY AND NORTHERLY RIGHT-OF-WAY LINES OF SAID DEED THE FOLLOWING FOUR COURSES:

1. N89°40'23"E, A DISTANCE OF 761.52 FEET TO A POINT ON THE EAST LINE OF THE NORTHEAST QUARTER OF SAID SECTION 28;

- 2. N00°52'58"W ON SAID EAST LINE, A DISTANCE OF 30.00 FEET TO THE SOUTHEAST CORNER OF SAID SECTION 21;
- 3. N00°37'14"W ON THE WEST LINE OF THE SOUTHWEST QUARTER OF SECTION 22, A DISTANCE OF 30.00 FEET;
- 4. S89°40'23"W, A DISTANCE OF 736.82 FEET TO THE POINT OF INTERSECTION OF THE EASTERLY RIGHT-OF-WAY LINE AS DESCRIBED IN A DEED RECORDED IN BOOK 2678 AT PAGE 431 OF SAID COUNTY RECORDS;

THENCE N21°41'10"E ALONG SAID EASTERLY RIGHT-OF-WAY LINE, A DISTANCE OF 113.82 FEET;

THENCE S68°18'50"E, A DISTANCE OF 145.93 FEET TO A POINT OF CURVE;

THENCE ALONG THE ARC OF A CURVE TO THE LEFT HAVING A RADIUS OF 560.00 FEET, A CENTRAL ANGLE OF 22°00'47" FOR A LENGTH OF 215.15 FEET TO A POINT OF TANGENT;

THENCE N89°40'23"E ON A LINE THAT IS 40.00 NORTHERLY OF AND PARALLEL WITH THE SOUTH LINE OF THE SOUTHEAST QUARTER OF SAID SECTION 21, A DISTANCE OF 348.92 FEET,

THENCE N88°38'56"E ON A LINE THAT IS 40.00 NORTHERLY OF AND PARALLEL WITH THE SOUTH LINE OF THE SOUTHWEST QUARTER OF SAID SECTION 22, A DISTANCE OF 477.80 FEET TO A POINT ON THE WESTERLY BOUNDARY LINE OF A WARRANTY DEED RECORDED UNDER RECEPTION NO. 217111767 OF SAID RECORDS; THENCE ALONG THE BOUNDARY OF SAID WARRANTY DEED THE FOLLOWING SEVEN COURSES:

- 1. N47°35'42"E, A DISTANCE OF 44.33 FEET;
- 2. N36°59'01"E, A DISTANCE OF 517.38 FEET;
- 3. N56°32'31"E, A DISTANCE OF 489.24 FEET;
- 4. N38°17'19"E, A DISTANCE OF 182.67 FEET;
- 5. N89°41'56"E, A DISTANCE OF 1283.66 FEET;
- 6. S00°18'04"E, A DISTANCE OF 852.14 FEET TO A POINT ON THE SOUTH LINE OF THE SOUTHEAST QUARTER OF THE SOUTHWEST QUARTER OF SECTION 21;
- 7. S88°38'37"W ON SAID SOUTH LINE, A DISTANCE OF 1300,52 FEET TO THE POINT OF BEGINNING.

CONTAINING A CALCULATED AREA OF 9,891,306 SQ. FEET, OR 227.07 ACRES.

PARCEL 2

TOGETHER WITH:

BEGINNING AT THE EAST 1/16TH CORNER OF SAID SECTION 21 AND 28;

THENCE N89°40'23" ON THE NORTH LINE OF THE NORTHEAST QUARTER OF SAID SECTION 28, A DISTANCE OF 499.73 FEET TO A POINT ON THE WESTERLY RIGHT OF WAY LINE OF VOLLMER ROAD AS RECORDED IN BOOK 2678 AT PAGE 30 OF SAID RECORDS:

THENCE S21°41'10"W ON SAID WESTERLY RIGHT OF WAY LINE, A DISTANCE OF 1312.75 FEET TO A POINT ON THE WEST LINE OF THE NORTHEAST QUARTER OF THE NORTHEAST QUARTER OF SAID SECTION 28;

THENCE N00°41'17"W ON SAID WEST LINE, A DISTANCE OF 1217.12 FEET TO THE POINT OF BEGINNING.

CONTAINING A CALCULATED AREA OF 304,098 SQUARE FEET, OR 6.98 ACRES

TRACT TABLE

TRACT	SIZE	USE	OWNERSHIP	MAINTENANCE
А	Not a part of this preliminary	plan		
В	1.296 AC (56,448 SF)	Detention, Water Quality	TimberRidge MetroDistrict	TimberRidge MetroDistrict
С	0.065 AC (2,844 SF)	Signage, Landscape	TimberRidge MetroDistrict	TimberRidge MetroDistrict
D	0.251 AC (10,955 SF)	Detention, Water Quality	TimberRidge MetroDistrict	TimberRidge MetroDistrict
Е	0.241 AC (10,500 SF)	Detention, Water Quality	TimberRidge MetroDistrict	TimberRidge MetroDistrict
F	17.762 AC (773,713 SF)	Regional & Local Trails, Existing Drainageway, Open Space	TimberRidge MetroDistrict	TimberRidge MetroDistrict + El Paso County Parks
G	4.580 AC (199,518 SF)	Existing Drainageway, Open Space	TimberRidge MetroDistrict	TimberRidge MetroDistrict
Н	2.279 AC (99,280 SF)	Detention, Water Quality, Local Trail	TimberRidge MetroDistrict	TimberRidge MetroDistrict
Ι	0.374 AC (16,303 SF)	Regional Trails, Landscape	TimberRidge MetroDistrict	TimberRidge MetroDistrict + El Paso County Parks
J	0.366 AC (15,941 SF)	Regional Trails, Landscape	TimberRidge MetroDistrict	TimberRidge MetroDistrict + El Paso County Parks
К	0.360 AC (15,684 SF)	Regional Trails, Landscape	TimberRidge MetroDistrict	TimberRidge MetroDistrict + El Paso County Parks

Retreat at TimberRidge PRELIMINARY PLAN EL PASO COUNTY, COLORADO

GENERAL NOTES

1. All rural roads will be asphalt with gravel shoulders. All urban streets will be asphalt with type A or C curb & gutter 2. This property is subject to the findings summary and conclusions of a geologic hazard report prepared by ENTECH dated April 12, 2017 and revised on December 1, 2017. A copy of said report has been submitted with the zone change request for Retreat at TimberRidge PUD. Contact the El Paso County Land use review team, if you would like to review said report. 3. Development Requirements: A. Maximum lot coverage: a. For lots less than 20,000 Sq. Ft. - 45% b. For lots with a minimum lot size of 20,000 Sq. Ft. - 45% For lots 2.5 acres and greater including Tract A - 20% C. B. Maximum building height: thirty (35) feet. Minimum Lot Size: 12,000 Sq. Ft. D. Setback minimums: a. For lots less than 20,000 square feet: Front - 25 feet minimum Corner Lots - 10 feet for non-garage front Side - 7.5 feet minimum Rear - 25 feet minimum For lots with a minimum lot size of 20.000 square feet: b. Front - 25 feet minimum Corner Lots - 15 feet for non-garage front Side - 15 feet minimum Rear - 35 feet minimum c. For lots 2.5 acres and greater including Tract A: Front - 35 feet minimum Side - 25 feet minimum

- Rear 50 feet minimum, except that lots 20 26 shall have a rear yard setback of 100 feet minimum
- Accessory buildings must comply with the setbacks established above, except that the rear yard setback may be reduced to twenty (20) feet for any lots that do not abut a public street or the golf course. Accessory structures are governed by architectural covenants regarding building colors and materials to be consistent with the primary structure of the site.
- 4. All development of lots are subject to the development guidelines and provisions of the approved PUD Resolution File No# ______ and
- PUD Rec.
- 5. Final Plats may contain more than one phase and may not be sequenced as shown on the Phasing Diagram.

PHASE & TRACT MAP

Arroya Investments LLC

1283 Kelly Johnson Blvd.

Colorado Springs, CO 80920

OWNERS:

APPLI

SITE DATA

CANT	2	

TAX ID NUMBER:

DEVELOPMENT SCHEDULE: SITE ACREAGE: CURRENT ZONING: PROPOSED ZONING: CURRENT LAND USE: PROPOSED LAND USE

Jacob Decoto 10620 Vollmer Rd Colorado Springs, CO 80910 N.E.S. Inc. 619 N Cascade Ave., Suite 200 Colorado Springs, CO 80903 5227000004; 5228000019; 5227000003; 5227000001 520000398: 520000397 5222000023; 5200000393 2018 234.05 AC RR-5 PUD Vacant Residential: 205 Total Lots, 0.876 DU/AC 2.5 AC Minimum: 41 Lots • 1 AC Minimum: 11 Lots • 100' x 150' Minimum: 11 Lots • 80' x 150' Minimum: 142 Lots 27.58 AC Open Space: • Open Space (Sand Creek Greenway): 22.34 AC • Landscape & Buffers: 1.17 AC 4.07 AC Detention/Water Quality:

PHASING PLAN

PHASE	TOTAL COUNT	LOT COUNTS	LOT NUMBERS	MINIMUM LOT SIZE	AVERAGE LOT SIZE
1	10 Lots	10	1-10	2.5 Acres	3.01 Acres
2	13 Lots	13	11-12, 20-30	2.5 Acres	2.73 Acres
3	59 Lots	59	68-112, 127-136, 196-199	80' x 150'	14,326 SF
4	33 Lots	3	39-41	2.5 Acres	2.54 Acres
		11	42-52	1 Acre	1.06 Acres
		9	53-61	100' x 150'	17,618 SF
		10	62-67, 200-203	80' x 150'	19,636 SF
5	15 Lots	15	13-19, 31-38	2.5 Acres	2.56 Acres
6	75 Lots	2	204-205	100' x 150'	22,120 SF
		73	113-126, 137-195	80' x 150'	15,619 SF

SHEET INDEX

Sheet 1 of 3:	
Sheet 2 of 3:	
Sheet 3 of 3:	

Cover Sheet PUD Development Plan PUD Development Plan

PUD

AGRICULTURE

*BASED ON THE FINDINGS, SUMMARY, AND CONCLUSIONS OF A GEOLOGIC HAZARD REPORT PREPARED BY ENTECH DATED APRIL 12, 2017. IF ANY DISCREPANCIES ARE FOUND BETWEEN PLAN AND SAID REPORT, THE REPORT SUPERSEDES.

- psw potential seasonal shallow water sw - seasonal shallow water
- TKd Dawson Formation of Tertiary to Cretaceous Age: arkosic sandstone with siltstone and claystone lenses
- recent water deposited materials
- Qal <u>Recent Alluvium of Holocene Age:</u>
- EXISTING GEOLOGIC HAZARD* LEGEND:

Appendix B

<u>Update November, 2020</u>

Sterling Ranch Metropolitan District <u>Comprehensive Water Supply Inventory</u> <u>Current Legal Supply</u>

	Reference Finding/			Annual	Annual	Approved		Satu	rated
Land Formation/Aquifer	Determination/ Decree	Tributary Status	Volume	Allocation 100 Year	Allocation 300 Year	Well	Notes	Sand Thickness	Specific Vield
Tormation/riquiter		Status	Acre-Feet	A-F/Year	A-F/Year	Locations		Thickness	
Laramie Fox Hills	86-CW-19	Current	y Available O	n-Site Sterling	g Water Legal	Sources	Under 1410 acres	255	15%
Latanic Fox This	00-C W-17		55,700	559.00	177.07	KEI-I-KEI-4	Under 1410 acres	200	1570
	08CW113	NT	40	0.40	0.13		Under 41.44 acres, reduced to 1.44 acres		
Arapahoe	86-CW-18	NT	57500	575.00	191.67	KA-1 - KA-4	Under 1410 acres	240	17%
					3/1.4/			57528	
	<u>Ca</u>	se Pending	Available On-X	Site Sterling W	Vater Legal So	ources (Note 2)		07020	
Laramie Fox Hills	20CW 3059 (Pending)	NT	2780	27.80	9.27		97.54 acres SR Quarry (Note 5)	190	
Arapahoe	20CW 3059 (Pending)	NNT	4320	43.20	14.40	Augmented via Same Case	97.54 acres SR Quarry	260.5	
Denver	20CW 3059 (Pending)	NNT	4895	48.95	16.32	Augmented via Same Case	(Note 5) 97.54 acres SR Quarry	295.2	
							(Note 5)		
Denver	08CW113	NNT	72893	728.93	242.98		Sterling Ranch 1410 acres		
	Aug 20CW 3059 (Pending)					Augmented via Pending Case			
Arapahoe	08CW113	NNT	60	0.60	0.20	Augmented via Danding Case	Sterling Ranch 41.44 reduced		
	Aug 200 w 3039 (Pending)				283.16	Augmented via Fending Case	to 1.44 acres		
		Currently A	vailable On-Si	ite Retreat Wa	ter Legal Sou	rces (Note 1)			
Laramie Fox Hills	17CW3002	NT	6,440				Under 225.97 acres	190	15%
Laramie Fox Hills	17CW3002	NT	0				(not owned by Retreat)		
LFH (Retained Water by predescer		NT	-612						
LFH (Relinquishment)	18CW3002	NT	-2,796				Augments 18 CW 3002		
			3,032	30.32	10.11		, i i i i i i i i i i i i i i i i i i i		
Arapahoe	17CW3002	NT	9,796	97.96	32.65		Under 225.97 acres	255	17%
Legal Supply: Phase 3,									
Phase 4 (excluding Lots 39-41)			12.929	129.29	42.7(-			
and Phase 6			12,828	128.28	42.70				
						29 Single Family Wells			
Augmentation (Dawson NNT)	18CW3002	Aug	2,796	27.96	9.32		pumping		
(excluding Lots 11-12),					9.32				
Augmentation (Dawson NNT)	16CW3095	Aug	1567.5	15.68	5.23	10 Single Family Wells (Phase	Replace actual depletions		
Legal Supply Phase 1					5.23	1)	· · ·		
Augmentation (Dawson NNT)	18CW3005	Curro Aug	ently Availab 324.0	ole Off-Site G	Fround Wate	r Legal Sources	pumping		I
(Juniou (University)						2 Single Family Wells (Phase 2 - Lots 11 &12)			
2)			324.0	3.2	1.1				
Total Current Available 300-Year	Water Supply				697.39	For Sterling Ranch including R	etreat Central system		
Note 1.	The water listed in the shaded at	rea will be us	ed to serve sir	ngle family we	lls and is not i	ncluded in the Total Available for	the Central System		
Current SFE supported by Existing	water rights				1976	Single Family Equivalents under	r El Paso County 300 year Rule		

Includes both Retreat and Sterling Ranch Based on established Use Caracteristic 0.353 AF/SFE

Appendix C

2170623135/31/2017 10:16 AMPGS 16\$88.00DF \$0.00Electronically Recorded Official Records El Paso County COChuck Broerman, Clerk and RecorderTD1000N

DISTRICT COUR	T, WATER DI	VISION 2, COL	ORADO
---------------	-------------	----------------------	-------

Court Address: 501 North Elizabeth Street, Suite 116 Pueblo, CO 81003

CONCERNING THE APPLICATION FOR WATER RIGHTS OF:

ARROYA INVESTMENTS, LLC, JACOB DECOTO, MARVIN ORNES and TERRI WAHLBERG

CASE NUMBER: 2017CW3002

DATE FILED: May 31, 2017 9:37 AM

▲ COURT USE ONLY ▲

Case No.: 17CW3002

IN EL PASO COUNTY

FINDINGS OF FACT, CONCLUSIONS OF LAW, RULING OF REFEREE AND DECREE

THIS MATTER comes before the Water Referee on the Application filed by Arroya Investments, LLC, Jacob Decoto, Marvin Ornes and Terri Wahlberg, and having reviewed said Application and other pleadings on file, and being fully advised on this matter, the Water Referee makes the following findings and orders:

GENERAL FINDINGS OF FACT

1. The applicants in this case are Arroya Investments, LLC ("Arroya"), Jacob Decoto ("Decoto"), Marvin Ornes ("Ornes") and Terri Wahlberg ("Wahlberg") (collectively, "Applicants"). Applicants are, collectively, the owners of the four separately owned parcels of land totaling approximately 335.59 acres under which the groundwater sought to be adjudicated herein are located, and are likewise the owners of the place of use where the water is anticipated to be put to beneficial use.

2. The Applicants filed this Application with the Water Court for Water Division 2 on January 31, 2017. The Application was referred to the Water Referee by order of the Court dated February 2, 2017.

3. The time for filing statements of opposition to the Application expired on the last day of March, 2017, and a no statements of opposition were timely filed.

4. On February 2, 2017, the Division 2 Water Court ordered that publication occur in the *Daily Transcript* within El Paso County.

5. The Clerk of this Court has caused publication of the Application filed in this matter as provided by statute and the publication costs have been paid. On February 15, 2017, proof of publication in the *Daily Transcript* was filed with the Court. All notices of the Application have been given in the manner required by law.

6. Pursuant to C.R.S. §37-92-302(2), the Office of the State Engineer has filed Determination of Facts for each aquifer with this Court dated March 14, 2017.

7. Pursuant to C.R.S. §37-92-302(4), the office of the Division Engineer for Water Division 2 filed its Consultation Report dated March 29, 2017, with the Court. The Consultation Report has been considered by the Water Referee in the entry of this Ruling.

8. The Water Court has jurisdiction over the subject matter of these proceedings and over all who have standing to appear as parties whether they have appeared or not. The land and water rights involved in this case are not within a designated groundwater basin.

GROUNDWATER RIGHTS

9. The Applicants requested the adjudication and quantification all Denver Basin groundwater in each aquifer underlying the four (4) specifically described parcels of land owned by each of the Applicants, respectively, as described herein. No plan for augmentation for the use of the not-nontributary groundwater was sought or is decreed herein. The Applicants shall construct such wells as necessary for withdrawal of Applicants' full entitlements of water supplies decreed herein. The following findings are made with respect to such underground water rights:

A. <u>Property Description</u>. All wells to all aquifers will be located on the Applicants respective properties. Such Properties are more specifically described as follows:

i. <u>Arroya Parcel</u>. The "Arroya Parcel" is an approximately 226 acre parcel located in the SE1/4 SE1/4 of Section 21, the W1/2 SW1/4 of Section 22, the E1/2 NE1/4 of Section 28, the W1/2 NW1/4 and the NW1/4 SW1/4 of Section 27, all in Township 21 South, Range 65 West of the 6th P.M., El Paso County, Colorado, as more particularly described on attached **Exhibit A**, and depicted on attached **Exhibit E**. The Arroya Parcel is owned by Applicant Arroya Investments, LLC.

ii. <u>West Parcel No. 1</u>. The "West Parcel No. 1" is an approximately 36.01 acre parcel located in the SW1/4 SE1/4 and the SE1/4 SE1/4 of Section 21, and the NE1/4 NE1/4 of Section 27, Township 12 South, Range 65 West of the 6th P.M., El Paso County, Colorado, as more particularly described on attached **Exhibit B**, and depicted on attached **Exhibit E**. The West Parcel No. 1 is owned by Applicant Jacob Decoto.

iii. <u>West Parcel No. 2</u>. The "West Parcel No. 2" is an approximately 36.03 acre parcel located in the SW1/4 SE1/4 and the SE1/4 SE1/4 of Section 21, Township 12 South, Range 65 West of the 6th P.M., El Paso County, Colorado, as more particularly described on attached **Exhibit C**, and depicted on attached **Exhibit E**. The West Parcel No. 2 is owned by Applicant Jacob Decoto.

iv. <u>West Parcel No. 3</u>. The "West Parcel No. 3" is an approximately 37.58 acre parcel located in the NW1/4 SE1/4 and the NE1/4 SE1/4 of Section 21, Township 12 South, Range 65 West of the 6th P.M., El Paso County, Colorado, as more particularly described on attached **Exhibit D**, and depicted on attached **Exhibit E**. The West Parcel No. 3 is owned by Applicants Marvin Ornes and Terri Wahlberg.

B. <u>Existing Wells</u>. There is currently one (1) existing well constructed to the Dawson aquifer on West Parcel No. 2 (Decoto): DWR Permit No. 4554, an exempt domestic well. DWR Permit No. 4554 is an exempt structure; water from the Dawson aquifer sufficient to allow for such continued exempt use has been excluded from the quantification herein. Two additional exempt domestic wells have been permitted since the filing of the application in this matter, DWR Permit No. 304551 on West Parcel No. 1 (Decoto), and DWR Permit No. 304498 on West Parcel No. 3 (Ornes/Wahlberg), and are excluded from quantification herein.

C. <u>Additional Wells</u>. Applicants anticipated additional wells will be constructed on each the Applicants' respective properties. To the extent any additional wells may be constructed to the not-nontributary Dawson and/or Denver aquifer(s), such wells may be constructed only pursuant to a subsequent decree providing an approved plan for augmentation, or as exempt well structures pursuant to C.R.S. §37-92-602.

10. Of the statutorily described Denver Basin aquifers, the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers all exist beneath the Applicants' respective properties. The Dawson and Denver aquifers contain not-nontributary water, while the water of the Arapahoe and Laramie-Fox Hills aquifers underlying the Applicants' respective properties is nontributary. The quantity of water in the Denver Basin aquifers exclusive of artificial recharge underlying each of the Applicants' respective properties as allocated on a pro-rata per acre basis from the amounts described in the State Engineer's Determination of Facts, is as follows:

Aquifer	Sand Thickness (Feet)	Total Ground Water Storage (Acre Feet)	Annual Average Withdrawal – 100 Years (Acre Feet)
Dawson (NNT)	270	12,202	122
Denver (NNT)	310	11,909	119.1
Arapahoe (NT)	255	9,796	98
Laramie-Fox Hills (NT)	190	6,440	64.4

A. <u>Arro</u>	ya Parcel	(225.97	acres)]:

Aquifer	Sand Thickness (Feet)	Total Ground Water Storage (Acre Feet)	Annual Average Withdrawal – 100 Years (Acre Feet)
Dawson (NNT)	270	1,944.4	16.44 ¹
Denver (NNT)	310	1,897.7	18.98
Arapahoe (NT)	255	1,561	15.61
Laramie-Fox Hills (NT)	190	1,026.2	10.26

B. <u>West Parcel No. 1 (Decoto – 36.01 acres)</u>:

C. <u>West Parcel No. 2 (Decoto – 36.03 acres)</u>:

Aquifer	Sand Thickness (Feet)	Total Ground Water Storage (Acre Feet)	Annual Average Withdrawal – 100 Years (Acre Feet)
Dawson (NNT)	270	1,945.4	16.45 ²
Denver (NNT)	310	1,898.8	18.99
Arapahoe (NT)	255	1,562	15.62
Laramie-Fox Hills (NT)	190	1,026.8	10.27

D. West Parcel No. 3 (Ornes & Wahlberg – 37.58 acres):

Aquifer	Sand Thickness (Feet)	Total Ground Water Storage (Acre Feet)	Annual Average Withdrawal – 100 Years (Acre Feet)
Dawson (NNT)	270	2,029.2	17.29 ³
Denver (NNT)	310	1,980.5	19.80
Arapahoe (NT)	255	1,629	16.29
Laramie-Fox Hills (NT)	190	1,071	10.7

¹ Three (3) annual acre feet of Dawson groundwater has been reserved from quantification herein for permitting of an exempt domestic well on this parcel pursuant to C.R.S. §37-92-602, *et seq.*, recently permitted as DWR Permit No. 304551.

² Three (3) annual acre feet of Dawson groundwater has been reserved from quantification herein for continued use of DWR Permit No. 4554 as an exempt domestic well on this parcel pursuant to C.R.S. \$37-92-602, et seq.

³ Three (3) annual acre feet of Dawson groundwater has been reserved from quantification herein for permitting of an exempt domestic well on this parcel pursuant to C.R.S. §37-92-602, et seq., recently permitted as DWR Permit No. 304498.

11. Pursuant to \$37-90-137(9)(c.5)(I), C.R.S., the augmentation requirements for wells in the Dawson aquifer require the replacement to the effected stream systems of actual stream depletions on an annual basis, to the extent necessary to prevent injurious effect, based upon actual aquifer conditions. The augmentation requirements for wells to the Denver aquifer are for 4% of pumping. Applicants shall not be entitled to construct a non-exempt well or use water from the not-nontributary Dawson or Denver aquifers except pursuant to an approved augmentation plan in accordance with C.R.S. \$37-90-137(9)(c.5).

12. Applicants shall be entitled to withdraw all legally available groundwater in the Denver Basin aquifers underlying Applicants' respective properties. Said amounts can be withdrawn over the 100-year life for the aquifers as set forth in C.R.S. §37-90-137(4), or withdrawn over a longer period of time based upon local governmental regulations or Applicants' water needs. The average annual amounts of ground water available for withdrawal from the underlying Denver Basin aquifers, based upon the 100-year aquifer life is determined and set forth above, based upon the March 14, 2017 Office of the State Engineer Determination of Facts. Such groundwater may be withdrawn from wells located upon the overlying land or contiguous properties with such contiguity to allow such withdrawal, consistent with the Denver Basin Rules as promulgated by the Office of the State Engineer, as may be amended from time to time.

13. Applicants shall be entitled to withdraw an amount of groundwater in excess of the average annual amount decreed herein from the Denver Basin aquifers underlying Applicants' respective properties, so long as the sum of the total withdrawals from wells in the aquifer does not exceed the product of the number of years since the date of issuance of the original well permit or the date of entry of the decree herein, whichever comes first, and the annual volume of water which Applicants are entitled to withdraw from the aquifer underlying Applicants' respective properties.

The Applicants shall have the right to use the ground water for beneficial 14. uses on or off the Applicants' respective properties consisting of domestic, commercial, irrigation, stock water, recreation, wildlife, wetlands, fire protection, piscatorial, and for storage and augmentation associated with such uses. The amount of groundwater decreed for such uses upon the Applicants' respective properties is reasonable as such uses are to be made for the long term use and enjoyment of the Applicants' respective properties and are to establish and provide for adequate water reserves. The nontributary groundwater, may be used, reused, and successively used to extinction, both on and off the Applicants' respective properties subject, however, to the relinquishment of the right to consume two percent of such nontributary water withdrawn. Applicants may use such water by immediate application or by storage and subsequent application to the beneficial uses and purposes stated herein. Provided however, as set forth above, Applicants shall only be entitled to construct a non-exempt well or use water from the not-nontributary Dawson and Denver aquifers pursuant to a decreed augmentation plan entered by the Court. Withdrawals of groundwater available from the nontributary aquifers beneath the Applicants' respective properties in the amounts determined in accordance with the provisions of this decree will not result in material injury to any other vested water rights or to any other owners or users of water.

15. Applicants may construct such wells on their respective properties as necessary for the withdrawal of all entitlements from each aquifer as described above, and such withdrawals may be made through any combination of wells. As to each of Applicants' respective properties, these wells shall be treated as a well field.

CONCLUSIONS OF LAW

16. The application for adjudication of Denver Basin groundwater was filed with the Water Clerk for Water Division 2 pursuant to C.R.S. \$37-92-302(1)(a) and 37-90-137(9)(c).

17. The Applicants' request for adjudication of these water rights is contemplated and authorized by law, and this Court and the Water Referee have exclusive jurisdiction over these proceedings. C.R.S. §§37-92-302(1)(a), 37-92-203, and 37-92-305.

18. Subject to the terms of this decree, the Applicants are entitled to the sole right to withdraw all the legally available water in the Denver Basin aquifers underlying the Applicants' respective properties, and the right to use that water to the exclusion of all others subject to the terms of this decree.

19. The Applicants have complied with C.R.S. §37-90-137(4), and the groundwater is legally available for withdrawal by the requested nontributary well(s), and legally available for withdrawal by the requested not-nontributary well(s) upon the entry of a subsequent decree approving an augmentation plan pursuant to C.R.S. §37-90-137(9)(c.5). Applicants are entitled to a decree from this Court confirming their rights to withdraw groundwater pursuant to C.R.S. §37-90-137(4).

20. The Denver Basin water rights applied for in this case are not conditional water rights, but are vested water rights determined pursuant to C.R.S. §37-90-137(4). No applications for diligence are required. The claims for nontributary and not-nontributary groundwater meet the requirements of Colorado Law.

21. The determination and quantification of the nontributary and notnontributary groundwater rights in the Denver Basin aquifers as set forth herein is contemplated and authorized by law. C.R.S. §§37-90-137, and 37-92-302 through 37-92-305.

IT IS THEREFORE ORDERED, ADJUDGED AND DECREED AS FOLLOWS:

22. All of the foregoing Findings of Fact and Conclusions of Law are incorporated herein by reference, and are considered to be a part of this decretal portion as though set forth in full.

23. The Application for Adjudication of Denver Basin Groundwater proposed by the Applicants is approved, subject to the terms of this decree.

24. The Applicants have furnished acceptable proof as to all claims and, therefore, the Application for Adjudication of Groundwater as requested by the Applicants is granted and approved in accordance with the terms and conditions of this decree. Approval of this Application will not result in any material injury to senior vested water rights.

25. The Applicants shall comply with C.R.S. §37-90-137(9)(b), requiring the relinquishment of the right to consume two percent (2%) of the amount of the nontributary groundwater withdrawn. Ninety-eight percent (98%) of the nontributary groundwater withdrawn may therefore be consumed. No plan for augmentation shall be required to provide for such relinquishment.

26. The Court retains jurisdiction over this matter to make adjustments in the allowed average annual amount of withdrawal from the Denver Basin aquifers, either upwards or downwards, to conform to actual local aquifer characteristic, and that the Applicants need not refile, republish, or otherwise amend this application to request such adjustments.

A. At such time as adequate data may be available, Applicant or the State Engineer may invoke the Court's retained jurisdiction as provided in this Paragraph 26 for purposes of making a final determination of water rights as to the quantities of water available and allowed average annual withdrawals from any of the Denver Basin aquifers quantified and adjudicated herein. Any person seeking to invoke the Court's retained jurisdiction for such purpose shall file a verified petition with the Court setting forth with particularity the factual basis for such final determination of Denver Basin water rights under this decree, together with the proposed decretal language to effect the petition. Within four months of the filing of such verified petition, the State Engineer's Office shall utilize such information as available to make a final determination of water rights finding, and shall provide such information to the Court, Applicant, and the petitioning party.

B. If no protest is filed with the Court to such findings by the State Engineer's Office within sixty (60) days, this Court shall incorporate by entry of an Amended Decree such "final determination of water rights", and the provisions of this Paragraph 26 concerning adjustments to the Denver Basin ground water rights based upon local aquifer conditions shall no longer be applicable. In the event of a protest being timely filed, or should the State Engineer's Office make no timely determination as provided in Paragraph 26.A., above, the "final determination of water rights" sought in the petition may be made by the Water Court after notice to all parties and following a full and fair hearing, including entry of an Amended Decree, if applicable in the Court's reasonable discretion.

27. Pursuant to C.R.S. §37-92-502(5)(a), the Applicants shall install and maintain such water measurement devices and recording devices as are deemed essential by the State Engineer or Division Engineers, and the same shall be installed and operated in accordance with instructions from said entities. Applicants are to install and maintain a totalizing flow meter on all wells, and any additional or replacement wells. Applicants are also to maintain records and provide reports to the State Engineer or Division Engineers as instructed by said entities, on at least an annual basis.

28. The vested water rights and water right structures decreed herein shall be subject to all applicable administrative rules and regulations, as currently in place or as may in the future be promulgated, of the offices of Colorado State and Division Engineers for administration of such water rights, to the extent such rules and regulations are uniformly applicable to other similarly situated water rights and water users.

29. This Ruling of Referee, when entered as a decree of the Water Court, shall be recorded in the real property records of El Paso County, Colorado. Copies of this ruling shall be mailed as provided by statute.

DATED THIS 5th day of May, 2017.

BY THE REFEREE:

Marado R. Di Dominico

Mardell R. DiDomenico, Water Referee Water Division 2

DECREE

THE COURT FINDS THAT NO PROTEST WAS MADE IN THIS MATTER, THEREFOR THE FORGOING RULING IS CONFIRMED AND APPROVED, AND IS HEREBY MADE THE JUDGMENT AND DECREE OF THIS COURT.

Dated: May 31, 2017.

BY THE COURT:

LARRY C SCHWARTZ, WATER JUDGE WATER DIVISION 2

EXHIBIT A

LEGAL DESCRIPTION – ARROYA PARCEL

A PARCEL OF LAND LOCATED IN A PORTION OF THE SOUTHEAST ONE-QUARTER (SE1/4) OF SECTION 21 AND A PORTION OF THE SOUTHWEST ONE-QUARTER OF SECTION 22, TOWNSHIP 12 SOUTH, RANGE 65 WEST OF THE 6TH P.M., EL PASO COUNTY, COLORADO, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BASIS OF BEARINGS: A LINE BETWEEN THE NORTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4) OF SECTION 27 AND THE SOUTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4) OF SAID SECTION 27, TOWNSHIP 12 SOUTH, RANGE 65 WEST, MONUMENTED AT THE NORTHERLY END BY A 3-1/4" ALUMINUM CAP STAMED "2006 ESI PLS 10376" AND MONUMENTED AT THE SOUTHERLY END BY A 3-1/4" ALUMINUM CAP STAMPED "2006 ESI PLS 10376" AND IS ASSUMED TO BEAR S00°54'30°E. A DISTANCE OF 3925.63 FEET;

COMMENCING AT THE NORTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4) OF SECTION 27; THENCE S88°38'56"W ALONG THE NORTH LINE OF SAID NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4), A DISTANCE OF 1047.88 FEET TO THE POINT OF BEGINNING OF THE PARCEL OF LAND HEREIN DESCRIBED;

THENCE S88°38'56"W CONTINUING ALONG SAID NORTH LINE, A DISTANCE OF 283.03 FEET TO THE NORTHWEST CORNER OF SAID SECTION 27 SAID POINT ALSO BEING A POINT ON THE EASTERLY RIGHT-OF-WAY LINE AS DESCRIBED IN THE DEED, AS RECORDED IN BOOK 2678 AT PAGE 431 OF THE RECORDS OF THE EL PASO COUNTY CLERK AND RECORDER;

THENCE ALONG THE EASTERLY AND NORTHERLY RIGHT-OF-WAY LINES OF SAID DEED THE FOLLOWING TWO (2) COURSES:

1. N00°37'14"W SAID LINE ALSO BEING THE WEST LINE OF THE SOUTHWEST ONE-QUARTER (SW1/4) OF SAID SECTION 22, A DISTANCE OF 30.00 FEET; 2. S89°40'23"W, A DISTANCE OF 736.82 FEET TO THE POINT OF INTERSECTION OF THE EASTERLY RIGHT-OF-WAY LINE AS DESCRIBED IN THE DEED, AS RECORDED IN BOOK 2678 AT PAGE 430 OF SAID COUNTY RECORDS;

THENCE N21°41'10"E ALONG SAID EASTERLY RIGHT-OF-WAY LINE, A DISTANCE OF 1798.07 FEET;

THENCE N59°58'50'E, A DISTANCE OF 694.83 FEET; THENCE S14°30'58"E, A DISTANCE OF 567.09 FEET; THENCE N69°36'18"E, A DISTANCE OF 603.87 FEET; THENCE S30°23'46"E, A DISTANCE OF 264.58 FEET; THENCE S61°52'38"W, A DISTANCE OF 227.40 FEET;

THENCE S79°15'47"W, A DISTANCE OF 276.17 FEET; THENCE S89°39'18"W, A DISTANCE OF 356.07 FEET; THENCE S40°09'47"W, A DISTANCE OF 310.61 FEET; THENCE S09°56'46"W, A DISTANCE OF 270.03 FEET; THENCE S35°00'25"W, A DISTANCE OF 167.38 FEET; THENCE S57°24'01"W, A DISTANCE OF 235.36 FEET; THENCE S27°23'34"E, A DISTANCE OF 611.29 FEET TO THE POINT OF BEGINNING; SAID PARCEL OF LAND CONTAINS A CALCULATED AREA OF 35.08 ACRES OF LAND, MORE OR LESS.

Along With:

A PARCEL OF LAND BEING THE NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4) OF SECTION 27, THE SOUTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (SW1/4 NW1/4) OF SECTION 27, THE NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4) OF SECTION 27, A PORTION OF THE SOUTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER OF SECTION 28 AND A PORTION OF THE NORTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER (NE1/4 NE1/4) OF SECTION 28, ALL IN TOWNSHIP 12 SOUTH, RANGE 65 WEST OF THE 6TH P.M., EL PASO COUNTY, COLORADO, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BASIS OF BEARINGS: A LINE BETWEEN THE NORTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4) OF SECTION 27 AND THE SOUTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4) OF SAID SECTION 27, TOWNSHIP 12 SOUTH, RANGE 65 WEST, MONUMENTED AT THE NORTHERLY END BY A 3-1/4" ALUMINUM CAP STAMED "2006 ESI PLS 10376" AND MONUMENTED AT THE SOUTHERLY END BY A 3-1/4" ALUMINUM CAP STAMPED "2006 ESI PLS 10376" AND IS ASSUMED TO BEAR S00°54'30"E, A DISTANCE OF 3925.63 FEET;

COMMENCING AT THE NORTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4) OF SECTION 27, SAID POINT ALSO BEING THE POINT OF BEGINNING OF THE PARCEL OF LAND HEREIN DESCRIBED;

THENCE S00°54'30"E ALONG THE EAST LINE OF THE WEST ONE-HALF (W1/2) OF SAID SECTION 27, A DISTANCE OF 3925.63 FEET TO THE SOUTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER NW1/4 SW1/4) OF SAID SECTION 27,

THENCE S87°35'00"W ALONG THE SOUTH LINE OF SAID NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4), A DISTANCE OF 1332.78 FEET TO THE SOUTHWEST CORNER OF SAID NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4);

THENCE N00°53'18"W ALONG THE WEST LINE OF SAID NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4), A DISTANCE OF 1316.78 FEET TO THE NORTHWEST CORNER OF SAID NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4);

THENCE S89°08'28"W ALONG THE SOUTH LINE OF THE SOUTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER (SE1/4 NE1/4) OF SECTION 28, A DISTANCE OF 1326.68 FEET TO THE SOUTHWEST CORNER OF SAID SOUTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER (SE1/4 NE1/4);

THENCE N00°30'49"W ALONG THE WEST LINE OF SAID SOUTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER (SE1/4 NE1/4), A DISTANCE OF 1270.77 FEET TO A POINT ON THE EASTERLY RIGHT-OF-WAY LINE AS DESCRIBED IN THE DEED, AS RECORDED IN

BOOK 2678 AT PAGE 430 OF THE RECORDS OF THE EL PASO COUNTY CLERK AND RECORDER;

THENCE N21°41'10"E ALONG SAID EASTERLY RIGHT-OF-WAY LINE, A DISTANCE OF 1450.84 FEET TO THE POINT OF INTERSECTION OF THE SOUTHERLY RIGHT-OF-WAY LINE AS DESCRIBED IN THE DEED, AS RECORDED IN BOOK 2678 AT PAGE 431 OF SAID COUNTY RECORDS;

THENCE ALONG THE SOUTHERLY AND EASTERLY RIGHT-OF-WAY LINES OF SAID DEED THE FOLLOWING TWO (2) COURSES:

1. N89°40'23"E, A DISTANCE OF 761.52 FEET TO A POINT ON THE EAST LINE OF SAID NORTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER (NE1/4 NE1/4); 2. N00°52'58"W ALONG SAID EAST LINE, A DISTANCE OF 30.00 FEET TO THE NORTHWEST CORNER OF SAID SECTION 27;

THENCE N88°38'56''E ALONG THE NORTH LINE OF SAID NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4), A DISTANCE OF 1330.91 FEET TO THE POINT OF BEGINNING;

SAID PARCEL OF LAND CONTAINS A CALCULATED AREA OF 190.89 ACRES OF LAND, MORE OR LESS.

EXHIBIT B

LEGAL DESCRIPTION TRAILS AT TIMBERLINE WEST PARCEL 1:

A PARCE, OF LAND LOCATED IN A PORTION OF THE SOUTHEAST ONE-QUARTER (SE1/4) OF SECTION 21 AND A PORTION OF THE NORTHCAST ONE-QUARTER (NE1/4) OF SECTION 28, TOMNSHIP 12 SOUTH, HANGE 65 MEST OF THE 5TH P.M., EL PASO DOWNLY, COLORADO, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS.

SASIS OF BEARINCS: THE WEST CIRE OF THE SOUTHEAST ONE-QUARTER (SET/4) OF SECTION 21, TOWNSHP 12 SOUTH, RANCE OS WEST IS ASSUMED TO BEAR NOR25732%, A DISTANCE OF 2638.53 FEET.

COMMENSION AT THE REATHINGST CORRECT OF DAID SOUTHEAST ONE-OLARTER (3E1/*) SAID FORT ALSO BEING THE POINT OF BECKNING OF THE PARCEL OF LAND HEREIN DESCRIBED: THENCE NDC25'32'W ALGOLG THE WEST LINE OF SAID SOUTHEAST ONE-QUARTER (SEX/4), A DISTANCE OF 850-11 FEET.

THENCE N89140'SIT, A DISTANCE OF 2077.12 FEET TO A POINT ON THE MESTERLY RIGHT-OF-WAY LINE OF VOLUMER RUAD AS DESCRIPTION THE OCCUMENT RELORDED IN BOOK 2678 AT PACE 430 GF THE RECERDS OF THE RE PAGE COUNTY CLERK AND RECORDER. THENCE SZTATIOW ALONG SAID WESTERLY RIGHT-OF-WAY LINE, A DISTANCE IN 2813.88 FEET TO A POINT DESCRIPTION.

THENCE SET AT TO WALCONG SAID WESTERLY RIGHT-OF-WAY LINE, A DISTANCE OF 2013.38 FEET TO A POINT ON THE EAST LINE OF THE MONTHMEST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER (NVD/A NET/4) OF SAID SECTION 28:

THENCE NOTATITY ALLONG SAID EAST LINE, A DISTANCE OF 1217.12 FUTT TO DHE SOUTHEAST DORMER OF THE SOUTHWEST ONE QUARTER OF THE SOUTHEAST ONE-QUARTER (SW174 SEL/4) OF SAID SECTION 21: THENCE 383740'14'W ALONG THE SOUTH UNE OF SAID SOUTHWEST ONE-QUARTER OF THE SOUTHEAST ONE-QUARTER (SW1/4 SEL/4), A DISTANCE OF 1313.40 FEST TO THE POINT OF BEQUINES

SAED PARCEL OF LAMB CONTAINS & CALCOLATED AREA OF SECTI ACRES OF LAMP. ROBE OF LESS.

EXHIBIT C

LEGAL DESCRIPTION TRAILS AT TIMBERLINE WEST PARCEL 2:

A PARCEL OF LAND LOCATED IN A PORTION OF THE SOUTHEAST ONE-DUARTER (SE)/A) OF SECTION 21. TOWNSHIP 12 SOUTH, RANGE 65 WEST OF THE SIXTH PRINCIPAL MERICIAN, EL PASO COUNTY, COLORADO, BONG MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BASIS OF BEARINGS. THE WEST LINE OF THE SCUTHEAST ONE-QUARTER (SET/4) OF SECTION 21, TOWNSHIP 12 SOUTH, RANGE 65 WEST IS ASSUMED TO BEAR NOO'25 32"N, A DISTANCE OF 2638-53 FEET,

COMMENCING AT THE SOUTHWEST CORNER OF SAID SOUTHEAST CHE-QUARTER (SCI/4) THENCE NOO'2S'32 W ALONG THE WEST LINE OF SAID SOUTHEAST CHE-QUARTER (SCI/4). A DISTANCE OF 650.11 FLET TO THE POINT OF BEDMINEND OF THE PARCEL OF LAND HEPEDN DESCRIDED. THENCE NOU'2S 32 W CONTINUING ALONG SAID WEST UNE, A DISTANCE OF 705.70 FLET THENCE NOU'SS 32 W CONTINUING ALONG SAID WEST UNE, A DISTANCE OF 705.70 FLET THENCE NOTAGEST AND CONTINUING ALONG SAID WEST UNE, A DISTANCE OF 705.70 FLET VOLUMED ROAD AS DESCRIBED IN THE DOCUMENT RECORDED IN BOOK 2678 AT PAGE 430 OF THE RECORDS OF THE EL PAGE COUNTY OLERS AND RECORDER. THENCE SEGNAD'S WALCING SAID WESTERLY RIGHT-OF-WAY LINE, A DISTANCE OF 762.26 FEEP THENCE SEGNAD'STW. A DISTANCE OF 2077.12 FEET TO THE POINT OF BESINNENG.

SAID PARCEL OF LAND CONTANUS & CALCULATED APEA OF JELDS ACRES OF LAND, MORE OF JESS.

EXHIBIT D

LEGAL DESCRIPTION TRAILS AT TIMBERLINE WEST PARCEL 3:

A PARCEL OF LAND LOCATED IN A PORTION OF THE SOUTHEAST ONE-QUARTER (SE1/4) OF SECTION 21, TOWNSHEP 12 SOUTH, RANGE 65 WEST OF THE SIXTH PRINCIPAL MERIDIAN, EL PASC COUNTY, COLORADO, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BASIS OF BEARINGS: THE WEST LINE OF THE SOUTHEAST ONE-OUARTER (SE1/4) OF SECTION 21. TOWNSHIP-12 SOUTH, RANGE 65 WEST IS ASSUMED TO BEAR NOO'25'32'W, A DISTANCE OF 2038,53 FEET;

COMMENCING AT THE SOUTHWEST CORNER OF SAID SOUTHEAST ONE-QUARTER (SE1/4); DENCE NOT22'32'W ALONG THE WEST UNE OF BAID SOUTHEAST ONE-QUARTER (SE1/4); A DISTANCE OF 1356.51 FEET TO THE POINT OF BEGINNING OF THE PARCEL OF LAND HEREW DESCRIBED; DENCE NOT25'32'W CONTINUING ALONG SAID WEST UNE. A DISTANCE OF 656 30 FEET; THENCE NOT25'32'W CONTINUING ALONG SAID WEST UNE. A DISTANCE OF 656 30 FEET; THENCE NOT25'32'W CONTINUING ALONG SAID WEST UNE. A DISTANCE OF 656 30 FEET; THENCE NOT25'32'W CONTINUING ALONG SAID WEST UNE. A DISTANCE OF 656 30 FEET; THENCE NOT25'32'W CONTINUING ALONG SAID WEST UNE. A DISTANCE OF 656 30 FEET; THENCE NOT25'32'W CONTINUING ALONG SAID WEST UNE. A DISTANCE OF 656 30 FEET; THENCE NOT25'32'W CONTINUING ALONG SAID WEST UNE. A DISTANCE OF 656 30 FEET; THE EL PASC COUNTY CONTINUING ALONG SAID WEST DESCRIPTION OF THE RESOLUTION OF THE EL PASCE 136 OF THE RECORDED IN THE OF MAIL INF. OF

THENCE ALONG SHID WESTERLY RIGHT-OF-WAY LINE THE FOLLOWING TWO (2) COUPSES: 1. SQU'S7'14'E, A DISTANCE OF 98.54 FEET; 2. S21'N1'NOW, A DISTANCE OF 891.81 FEET;

THENCE 388'40'31'M, A DISTANCE OF 2384.04 FEET TO THE POINT OF BECKNING.

2180925848/9/2018 3:54 PMPGS12\$68.00DF \$0.00Electronically Recorded Official Records El Paso County COChuck Broerman, Clerk and RecorderTD1000N

DISTRICT COURT, WATER DIVISION 2, CO Court Address: 501 North Elizabeth Street, Suite 116 Pueblo, CO 81003 Phone Number: (719) 404-8832	DATE FILED: August 9, 2018 3:38 PM CASE NUMBER: 2018CW3002		
CONCERNING THE APPLICATION FOR WATER RIGHTS OF:	▲ COURT USE ONLY ▲		
ARROYA INVESTMENTS, LLC	Case No.: 18CW3002 (17CW3002)		
IN EL PASO COUNTY			
FINDINGS OF FACT, CONCLUSIONS OF LAW, RULING OF REFEREE AND DECREE			

THIS MATTER comes before the Water Referee on the Application filed by Arroya Investments, LLC, and having reviewed said Application and other pleadings on file, and being fully advised on this matter, the Water Referee makes the following findings and orders:

GENERAL FINDINGS OF FACT

1. The applicant in this case is Arroya Investments, LLC, whose address is 1283 Kelly Johnson Blvd., Colorado Springs, CO 80920 ("Applicant"). Applicant is the owner of the land totaling approximately 72.5 acres (a portion of the larger 225.97-acre Arroya Parcel previously adjudicated in Case No. 17CW3002), on which the structures sought to be adjudicated herein are located, and are the owners of the place of use where the water will be put to beneficial use.

2. The Applicant filed this Application with the Water Court for Water Division 2 on January 9, 2018. The Application was referred to the Water Referee in Division 2 on or about January 18, 2018.

3. The time for filing statements of opposition to the Application expired on the last day of March 2018. No Statements of Opposition were timely filed.

4. On January 18, 2018, the Water Court, Division 2 ordered that publication occur in the *Daily Transcript* within El Paso County.

5. The Clerk of this Court has caused publication of the Application filed in this matter as provided by statute and the publication costs have been paid. On February 15, 2018, proof of publication in the *Daily Transcript* was filed with Water

Court Division 2. All notices of the Application have been given in the manner required by law.

6. Pursuant to C.R.S. §37-92-302(4), the office of the Division Engineer for Water Division 2 has filed its Consultation Report dated May 2, 2018, with the Court, and a Response to the Consultation Report was filed by the Applicant on June 26, 2018. Both the Consultation Report and Response have been considered by the Water Referee in the entry of this Ruling.

7. The Water Court has jurisdiction over the subject matter of these proceedings and over all who have standing to appear as parties whether they have appeared or not. The land and water rights involved in this case are not within a designated groundwater basin.

8. The Applicant, consistent with the decree entered in Case No. 17CW3002, seeks to utilize ground water rights granted therein for the construction of Timber Ridge Wells Nos. 1 through 29 to the Dawson aquifer, and additional or replacement wells associated therewith, for withdrawal of Applicant's full entitlements of supply under the plan for augmentation sought herein.

9. The land overlying the groundwater subject to the adjudication in this case is owned by the Applicant and was previously quantified in Case No. 17CW3002, which concerned a 225.97 acre parcel of land located in El Paso County, Colorado ("Arroya Parcel"). The land relevant to this decree consists of an approximately 72.5 acre portion of the larger Arroya Parcel as described in Case No. 17CW3002, located in a portion of the SE¹/₄ of Section 21 and a portion of the SW¹/₄ of Section 22, Township 12 South, Range 65 West of the 6th P.M., El Paso County, Colorado, as more particularly described on the attached **Exhibit A**, and depicted on the attached **Exhibit B** map ("Subject Property"). Applicant intends to subdivide the property into up to twenty-nine (29) lots of approximately 2.5 acres each. All groundwater adjudicated herein shall be withdrawn from the overlying land.

10. <u>Timber Ridge Wells Nos. 1 through 29</u>: Each of the Timber Ridge Wells Nos. 1 through 29 are to be constructed to the not-nontributary Dawson aquifer pursuant to the Plan for Augmentation decreed herein to provide domestic water supplies to a single family residence to be located upon the subdivided Subject Property. Upon entry of this decree and submittal by the Applicant of a complete well permit application and filing fee, the State Engineer shall issue a revised permit for Timber Ridge Wells Nos. 1 through 29 pursuant to C.R.S. §37-90-137(4), consistent with and references the Plan for Augmentation decreed herein.

PLAN FOR AUGMENTATION

11. The structures to be augmented are Timber Ridge Wells Nos. 1 through 29 in the not-nontributary Dawson aquifer underlying the Applicant's Property, along with any additional or replacement wells associated therewith.

12. Pursuant to C.R.S. §37-90-137(9)(c.5), the augmentation obligation for Timber Ridge Wells Nos. 1 through 29, and any additional or replacement wells constructed to the Dawson aquifer requires the replacement of actual stream depletions to the extent necessary to prevent any injurious effect. The water rights to be used for augmentation during pumping are the septic return flows of the not-nontributary Timber Ridge Wells Nos. 1 through 29, to be pumped as set forth in this plan for augmentation. The water rights to be used for augmentation after pumping are a reserved portion of Applicant's nontributary water rights in the Laramie-Fox Hills aquifers. Applicant shall provide for the augmentation of stream depletions caused by pumping the Timber Ridge Wells Nos. 1 through 29 as approved herein. Water use criteria as follows:

A. <u>Use</u>: The Timber Ridge Wells Nos. 1 through 29 may each pump up to 0.32 acre feet of water per year, for a maximum total of 9.32 acre feet being withdrawn from the Dawson aquifer annually. Households will utilize up to 0.26 acre feet of water per year per residence, with the additional pumping available for landscape irrigation, the watering of horses or equivalent livestock, and other beneficial uses decreed in 17CW3002 at each residence. The foregoing figures assume the use of 29 septic systems, with resulting return flows from each. Should Applicant subdivide Applicant's property into fewer than 29 lots, both depletions and return flows for the replacement of the same will be correspondingly reduced, though pumping for uses other than household use may be increased provided at all times septic return flows shall replace the maximum depletions resulting from pumping.

B. <u>Depletions</u>: Applicant has determined that maximum stream depletions over the 300-year pumping period will amount to approximately fifty-six percent (56%) of pumping. Maximum annual depletions for total residential pumping from all wells is therefore 5.22 acre feet in year 300. Should Applicant's pumping be less than the 0.32 acre feet per lot described herein, or should fewer lots be developed, resulting depletions and required replacements will be correspondingly reduced.

C. <u>Augmentation of Depletions During Pumping Life of Wells</u>: Depletions during pumping will be effectively replaced by residential return flows from non-evaporative septic systems. The annual consumptive use for non-evaporative septic systems is 10% per year per residence. At a conservatively estimated household use rate of 0.18 acre feet per residence per year (rather than the full 0.26 acre feet annually), a total of 5.22 acre feet is replaced to the stream system per year, utilizing non-evaporative septic systems, assuming all 29 wells are utilized. With maximum depletions from the pumping of 29 wells at 0.18 acre feet, and anticipated replacement of 5.22 acre feet annually, during pumping, stream depletions will be adequately augmented.

D. <u>Augmentation of Post Pumping Depletions</u>: This plan for augmentation shall have a pumping period of a minimum of 300 years. For the replacement of any injurious post-pumping depletions which may be associated with the use of the Timber Ridge Wells Nos. 1 through 29, Applicant will reserve up to 2,796

acre feet of water from the nontributary Laramie Fox Hills aquifer, less actual stream depletions replaced during the plan pumping period as necessary to replace any injurious post pumping depletions. Applicant also reserves the right to substitute other legally available augmentation sources for such post pumping depletions upon further approval of the Court under its retained jurisdiction. Even though this reservation is made, under the Court's retained jurisdiction, Applicant reserves the right in the future to prove that post pumping depletions will be noninjurious. The reserved nontributary Laramie-Fox Hills groundwater will be used to replace any injurious post-pumping depletions. Upon entry of a decree in this case, the Applicant will be entitled to apply for and receive a new well permit for the Timber Ridge Wells Nos. 1 through 29 for the uses in accordance with this Application and otherwise in compliance with C.R.S. §37-90-137.

13. This decree, upon recording, shall constitute a covenant running with Applicant's Property, benefitting and burdening said land, and requiring construction of well(s) to the nontributary Laramie-Fox Hills aquifer and pumping of water to replace any injurious post-pumping depletions under this decree. Subject to the requirements of this decree, in order to determine the amount and timing of post-pumping replacement obligations, if any, under this augmentation plan, Applicant or its successors shall use information commonly used by the Colorado Division of Water Resources for augmentation plans of this type at the time. Pursuant to this covenant, the water from the nontributary Laramie-Fox Hills aquifer reserved herein may not be severed in ownership from the overlying subject property. This covenant shall be for the benefit of, and enforceable by, third parties owning vested water rights who would be materially injured by the failure to provide for the replacement of post-pumping depletions under the decree, and shall be specifically enforceable by such third parties against the owner of the Applicant's Property.

14. Applicant or its successors shall be required to initiate pumping from the Laramie-Fox Hills aquifer for the replacement of post-pumping depletions when either: (i) the absolute total amount of water available from the Dawson aquifer allowed to be withdrawn under the plan for augmentation decreed herein has been pumped; (ii) the Applicant or its successors in interest have acknowledged in writing that all withdrawals for beneficial use through the Timber Ridge Wells Nos. 1 through 29 have permanently ceased, (iii) a period of 10 consecutive years where either no withdrawals of groundwater has occurred, or (iv) accounting shows that return flows from the use of the water being withdrawn is insufficient to replace depletions caused by the withdrawals that already occurred.

15. Accounting and responsibility for post-pumping depletions in the amount set forth herein shall continue for the shortest of the following periods: (i) the period provided by statute; (ii) the period specified by any subsequent change in statute; (iii) the period required by the Court under its retained jurisdiction; (iv) the period determined by the State Engineer; or (v) the period as established by Colorado Supreme Court final decisions. Should Applicant's obligation hereunder to account for and replace such post-pumping stream depletions be abrogated for any reason, then
the Laramie-Fox Hills aquifer groundwater reserved for such a purpose shall be free from the reservation herein and such groundwater may be used or conveyed by its owner without restriction for any post-pumping depletions.

16. The term of this augmentation plan is for a minimum of 300 years, however, the length of the plan for a particular well or wells may be extended beyond such time provided the total plan pumping allocated to such well or wells is not exceeded. Should the actual operation of this augmentation plan depart from the planned diversions described herein such that annual diversions are increased or the duration of the plan is extended, the Applicant must prepare and submit a revised model of stream depletions caused by the actual pumping schedule. This analysis must utilize depletion modeling acceptable to the State Engineer, and to this Court, and must represent the water use under the plan for the entire term of the plan to date. The analysis must show that return flows have equaled or exceeded actual stream depletions throughout the pumping period and that reserved nontributary water remains sufficient to replace post-pumping depletions.

17. Consideration has been given to the depletions from Applicant's use and proposed uses of water, in quantity, time and location, together with the amount and timing of augmentation water which will be provided by the Applicant, and the existence, if any, injury to any owner of or person entitled to use water under a vested water right.

18. It is determined that the timing, quantity and location of replacement water under the protective terms in this decree are sufficient to protect the vested rights of other water users and eliminate material injury thereto. The replacement water shall be of a quantity and quality so as to meet the requirements for which the water of senior appropriators has normally been used, and provided of such quality, such replacement water shall be accepted by the senior appropriators for substitution for water derived by the exercise of the Timber Ridge Wells Nos. 1 through 29. As a result of the operation of this plan for augmentation, the depletions from the Timber Ridge Wells Nos. 1 through 29 and any additional or replacement wells associated therewith will not result in material injury to the vested water rights of others.

CONCLUSIONS OF LAW

19. The Applicant's request for adjudication of the plan for augmentation decreed herein is contemplated and authorized by law, and this Court and the Water Referee have exclusive jurisdiction over these proceedings. C.R.S. §§37-92-302(1)(a), 37-92-203, and 37-92-305.

20. Subject to the terms of the 17CW3002 decree, the Applicant is entitled to the sole right to withdraw all the legally available water in the Denver Basin aquifers underlying the Applicant's Property, and the right to use that water to the exclusion of all others subject to the terms of said 17CW3002 decree.

21. The Applicant's request for approval of a plan for augmentation is contemplated and authorized by law. If administered in accordance with this decree, this plan for augmentation will permit the uninterrupted diversions from the Timber Ridge Wells Nos. 1 through 29 without adversely affecting any other vested water rights in the Arkansas River or its tributaries and when curtailment would otherwise be required to meet a valid senior call for water. C.R.S. §§37-92-305(3),(5), and (8).

IT IS THEREFORE ORDERED, ADJUDGED AND DECREED AS FOLLOWS:

22. All of the foregoing Findings of Fact and Conclusions of Law are incorporated herein by reference, and are considered to be a part of this decretal portion as though set forth in full.

23. The Application for Adjudication of Denver Basin Groundwater and for Approval of Plan for Augmentation proposed by the Applicant is approved, subject to the terms of this decree.

24. The Applicant has furnished acceptable proof as to all claims and, therefore, the Application for Adjudication of Groundwater and Plan for Augmentation, as requested by the Applicant, is granted and approved in accordance with the terms and conditions of this decree. Approval of this Application will not result in any material injury to senior vested water rights.

25. The Applicant shall comply with C.R.S. §37-90-137(9)(b), requiring the relinquishment of the right to consume two percent (2%) of the amount of the nontributary groundwater withdrawn. Ninety-eight percent (98%) of the nontributary groundwater withdrawn may therefore be consumed. No plan for augmentation shall be required to provide for such relinquishment.

26. The State Engineer, the Division Engineer, and/or the Water Commissioner shall not curtail the diversion and use of water covered by the Timber Ridge Wells Nos. 1 through 29 so long as the return flows from the annual diversions associated with the Timber Ridge Wells Nos. 1 through 29 accrue to the stream system pursuant to the conditions contained herein. To the extent that Applicant or one of its successors or assigns is ever unable to provide the replacement water required, then the Timber Ridge Wells Nos. 1 through 29 shall not be entitled to operate under the protection of this plan, and shall be subject to administration and curtailment in accordance with the laws, rules, and regulation of the State of Colorado. Pursuant to C.R.S. §37-92-305(8), the State Engineer shall curtail all out-of-priority diversions which are not so replaced as to prevent injury to vested water rights. In order for this plan for augmentation to operate, return flows from the one or both of the septic systems discussed herein, as appropriate, shall at all times during pumping be in an amount sufficient to replace the amount of stream depletions.

27. Pursuant to C.R.S. §37-92-304(6), the Court shall retain continuing jurisdiction over the plan for augmentation decreed herein for reconsideration of the question of whether the provisions of this decree are necessary and/or sufficient to prevent injury to vested water rights of others, as pertains to the use of Denver Basin groundwater supplies adjudicated herein, including for augmentation purposes.

Except as otherwise specifically provided in Paragraph 28, above, 28. pursuant to the provisions of C.R.S. §37-92-304(6), this plan for augmentation decreed herein shall be subject to the reconsideration of this Court on the question of material injury to vested water rights of others, for a period of five (5) years, except as otherwise provided herein. Any person, within such period, may petition the Court to invoke its retained jurisdiction. Any person seeking to invoke the Court's retained jurisdiction shall file a verified petition with the Court setting forth with particularity the factual basis for requesting that the Court reconsider material injury to petitioner's vested water rights associated with the operation of this decree, together with proposed decretal language to effect the petition. The party filing the petition shall have the burden of proof of going forward to establish a prima facie case based on the facts alleged in the petition. If the Court finds those facts are established, Applicant shall thereupon have the burden of proof to show: (i) that the petitioner is not materially injured, or (ii) that any modification sought by the petitioner is not required to avoid material injury to the petitioner, or (iii) that any term or condition proposed by Applicant in response to the petition does avoid material injury to the petitioner. The Division of Water Resources as a petitioner shall be entitled to assert material injury to the vested water rights of others. If no such petition is filed within such period and the retained jurisdiction period is not extended by the Court in accordance with the revisions of the statute, this matter shall become final under its own terms.

29. Pursuant to C.R.S. §37-92-502(5)(a), the Applicant shall install and maintain such water measurement devices and recording devices as are deemed essential by the State Engineer or Division Engineers, and the same shall be installed and operated in accordance with instructions from said entities. Applicant is to install and maintain a totalizing flow meters on all Timber Ridge Wells or any additional or replacement wells associated therewith. Applicant is also to maintain records and provide reports to the State Engineer or Division Engineers as instructed by said entities, on at least an annual basis.

30. The vested water rights, water right structures, and plan for augmentation decreed herein shall be subject to all applicable administrative rules and regulations, as currently in place or as may in the future be promulgated, of the offices of Colorado State and Division Engineers for administration of such water rights, to the extent such rules and regulations are uniformly applicable to other similarly situated water rights and water users.

31. This Ruling of Referee, when entered as a decree of the Water Court, shall be recorded in the real property records of El Paso County, Colorado. Copies of this ruling shall be mailed as provided by statute.

DATED THIS 18th day of July, 2018.

BY THE REFEREE:

Marall R. Ditemarica

Mardell R. DiDomenico, Water Referee Water Division 2

DECREE

THE COURT FINDS THAT NO PROTEST WAS MADE IN THIS MATTER, THEREFOR THE FORGOING RULING IS CONFIRMED AND APPROVED, AND IS HEREBY MADE THE JUDGMENT AND DECREE OF THIS COURT.

Dated: August 9th, 2018.

BY THE COURT:

EARRY C. SCHWARTZ, WATER JUDGE WATER DIVISION 2

EXHIBIT A

LEGAL DESCRIPTION – ARROYA PARCEL

A PARCEL OF LAND LOCATED IN A PORTION OF THE SOUTHEAST ONE-QUARTER (SE1/4) OF SECTION 21 AND A PORTION OF THE SOUTHWEST ONE-QUARTER OF SECTION 22, TOWNSHIP 12 SOUTH, RANGE 65 WEST OF THE 6TH P.M., EL PASO COUNTY, COLORADO, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BASIS OF BEARINGS: A LINE BETWEEN THE NORTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4) OF SECTION 27 AND THE SOUTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4) OF SAID SECTION 27, TOWNSHIP 12 SOUTH, RANGE 65 WEST, MONUMENTED AT THE NORTHERLY END BY A 3-1/4" ALUMINUM CAP STAMED "2006 ESI PLS 10376" AND MONUMENTED AT THE SOUTHERLY END BY A 3-1/4" ALUMINUM CAP STAMPED "2006 ESI PLS 10376" AND IS ASSUMED TO BEAR S00°54'30"E, A DISTANCE OF 3925.63 FEET;

COMMENCING AT THE NORTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4) OF SECTION 27; THENCE S88°38'56"W ALONG THE NORTH LINE OF SAID NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4), A DISTANCE OF 1047.88 FEET TO THE POINT OF BEGINNING OF THE PARCEL OF LAND HEREIN DESCRIBED;

THENCE S88°38'56"W CONTINUING ALONG SAID NORTH LINE, A DISTANCE OF 283.03 FEET TO THE NORTHWEST CORNER OF SAID SECTION 27 SAID POINT ALSO BEING A POINT ON THE EASTERLY RIGHT-OF-WAY LINE AS DESCRIBED IN THE DEED, AS RECORDED IN BOOK 2678 AT PAGE 431 OF THE RECORDS OF THE EL PASO COUNTY CLERK AND RECORDER;

THENCE ALONG THE EASTERLY AND NORTHERLY RIGHT-OF-WAY LINES OF SAID DEED THE FOLLOWING TWO (2) COURSES:

1. N00°37'14"W SAID LINE ALSO BEING THE WEST LINE OF THE SOUTHWEST ONE-QUARTER (SW1/4) OF SAID SECTION 22, A DISTANCE OF 30.00 FEET; 2. S89°40'23"W, A DISTANCE OF 736.82 FEET TO THE POINT OF INTERSECTION OF THE EASTERLY RIGHT-OF-WAY LINE AS DESCRIBED IN THE DEED, AS RECORDED IN BOOK 2678 AT PAGE 430 OF SAID COUNTY RECORDS;

THENCE N21°41'10"E ALONG SAID EASTERLY RIGHT-OF-WAY LINE, A DISTANCE OF 1798.07 FEET; THENCE N59°58'50"E, A DISTANCE OF 694.83 FEET; THENCE S14°30'58"E, A DISTANCE OF 567.09 FEET; THENCE N69°36'18"E, A DISTANCE OF 603.87 FEET; THENCE S30°23'46"E, A DISTANCE OF 264.58 FEET; THENCE S61°52'38"W, A DISTANCE OF 227.40 FEET;

THENCE S79°15'47"W, A DISTANCE OF 276.17 FEET; THENCE S89°39'18"W, A DISTANCE OF 356.07 FEET; THENCE S40°09'47"W, A DISTANCE OF 310.61 FEET; THENCE S09°56'46"W, A DISTANCE OF 270.03 FEET; THENCE S35°00'25"W, A DISTANCE OF 167.38 FEET; THENCE S57°24'01"W, A DISTANCE OF 235.36 FEET; THENCE S27°23'34"E, A DISTANCE OF 611.29 FEET TO THE POINT OF BEGINNING; SAID PARCEL OF LAND CONTAINS A CALCULATED AREA OF 35.08 ACRES OF LAND, MORE OR LESS.

Along With:

A PARCEL OF LAND BEING THE NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4) OF SECTION 27, THE SOUTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (SW1/4 NW1/4) OF SECTION 27, THE NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4) OF SECTION 27, A PORTION OF THE SOUTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER OF SECTION 28 AND A PORTION OF THE NORTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER (NE1/4 NE1/4) OF SECTION 28, ALL IN TOWNSHIP 12 SOUTH, RANGE 65 WEST OF THE 6TH P.M., EL PASO COUNTY, COLORADO, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BASIS OF BEARINGS: A LINE BETWEEN THE NORTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4) OF SECTION 27 AND THE SOUTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4) OF SAID SECTION 27, TOWNSHIP 12 SOUTH, RANGE 65 WEST, MONUMENTED AT THE NORTHERLY END BY A 3-1/4" ALUMINUM CAP STAMED "2006 ESI PLS 10376" AND MONUMENTED AT THE SOUTHERLY END BY A 3-1/4" ALUMINUM CAP STAMPED "2006 ESI PLS 10376" AND IS ASSUMED TO BEAR S00°54'30"E, A DISTANCE OF 3925.63 FEET;

COMMENCING AT THE NORTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4) OF SECTION 27, SAID POINT ALSO BEING THE POINT OF BEGINNING OF THE PARCEL OF LAND HEREIN DESCRIBED;

THENCE S00°54'30"E ALONG THE EAST LINE OF THE WEST ONE-HALF (W1/2) OF SAID SECTION 27, A DISTANCE OF 3925.63 FEET TO THE SOUTHEAST CORNER OF THE NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER NW1/4 SW1/4) OF SAID SECTION 27;

THENCE S87°35'00"W ALONG THE SOUTH LINE OF SAID NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4), A DISTANCE OF 1332.78 FEET TO THE SOUTHWEST CORNER OF SAID NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4);

THENCE N00°53'18"W ALONG THE WEST LINE OF SAID NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4), A DISTANCE OF 1316.78 FEET TO THE NORTHWEST CORNER OF SAID NORTHWEST ONE-QUARTER OF THE SOUTHWEST ONE-QUARTER (NW1/4 SW1/4);

THENCE S89°08'28"W ALONG THE SOUTH LINE OF THE SOUTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER (SE1/4 NE1/4) OF SECTION 28, A DISTANCE OF 1326.68 FEET TO THE SOUTHWEST CORNER OF SAID SOUTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER (SE1/4 NE1/4);

THENCE N00°30'49"W ALONG THE WEST LINE OF SAID SOUTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER (SE1/4 NE1/4), A DISTANCE OF 1270.77 FEET TO A POINT ON THE EASTERLY RIGHT-OF-WAY LINE AS DESCRIBED IN THE DEED, AS RECORDED IN

BOOK 2678 AT PAGE 430 OF THE RECORDS OF THE EL PASO COUNTY CLERK AND RECORDER; THENCE N21°41'10"E ALONG SAID EASTERLY RIGHT-OF-WAY LINE, A DISTANCE OF 1450.84 FEET TO THE POINT OF INTERSECTION OF THE SOUTHERLY RIGHT-OF-WAY LINE AS DESCRIBED IN THE DEED, AS RECORDED IN BOOK 2678 AT PAGE 431 OF SAID COUNTY

RECORDS;

THENCE ALONG THE SOUTHERLY AND EASTERLY RIGHT-OF-WAY LINES OF SAID DEED THE FOLLOWING TWO (2) COURSES:

1. N89°40'23"E, A DISTANCE OF 761.52 FEET TO A POINT ON THE EAST LINE OF SAID NORTHEAST ONE-QUARTER OF THE NORTHEAST ONE-QUARTER (NE1/4 NE1/4); 2. N00°52'58"W ALONG SAID EAST LINE, A DISTANCE OF 30.00 FEET TO THE NORTHWEST CORNER OF SAID SECTION 27;

THENCE N88°38'56"E ALONG THE NORTH LINE OF SAID NORTHWEST ONE-QUARTER OF THE NORTHWEST ONE-QUARTER (NW1/4 NW1/4), A DISTANCE OF 1330.91 FEET TO THE POINT OF BEGINNING;

SAID PARCEL OF LAND CONTAINS A CALCULATED AREA OF 190.89 ACRES OF LAND, MORE OR LESS.

2180925978/9/20184:06 PMPGS10\$58.00DF \$0.00Electronically Recorded Official Records El Paso County COChuck Broerman, Clerk and RecorderTD1000N

DISTRICT COURT, WATER DIVISION 2, CO Court Address: 501 North Elizabeth Street, Suite 116 Pueblo, CO 81003 Phone Number: (719) 404-8832	DATE FILED: August 9, 2018 3:35 PM CASE NUMBER: 2018CW3005	
CONCERNING THE APPLICATION FOR WATER RIGHTS OF:	▲ COURT USE ONLY ▲	
JAKE DECOTO	Case No.: 18CW3005	
IN EL PASO COUNTY	(17CW3002)	
FINDINGS OF FACT, CONCLUSIONS OF LAW, RULING OF REFEREE AND DECREE		

THIS MATTER comes before the Water Referee on the Application filed by Jake Decoto, and having reviewed said Application and other pleadings on file, and being fully advised on this matter, the Water Referee makes the following findings and orders:

GENERAL FINDINGS OF FACT

1. The applicant in this case is Jake Decoto, whose address is 10620 Vollmer Road, Colorado Springs, CO 80908 ("Applicant"). Applicant is the owner of the land totaling approximately 36.01 acres described as "West Parcel 1" in previously adjudicated in Case No. 17CW3002, on which the structures sought to be adjudicated herein are located, and is the owner of the place of use where the water will be put to beneficial use.

2. The Applicant filed this Application with the Water Court for Water Division 2 on January 31, 2018. The Application was referred to the Water Referee in Division 2 on or about January 31, 2018.

3. The time for filing statements of opposition to the Application expired on the last day of March 2018. No Statements of Opposition were timely filed.

4. On January 31, 2018, the Water Court, Division 2 ordered that publication occur in the *Daily Transcript* within El Paso County.

5. The Clerk of this Court has caused publication of the Application filed in this matter as provided by statute and the publication costs have been paid. On February 15, 2018, proof of publication in the *Daily Transcript* was filed with Water Court Division 2. All notices of the Application have been given in the manner required by law.

1

6. Pursuant to C.R.S. §37-92-302(4), the office of the Division Engineer for Water Division 2 has filed its Consultation Report dated May 2, 2018, with the Court, and a Response to the Consultation Report was filed by the Applicant on June 27, 2018. Both the Consultation Report and Response have been considered by the Water Referee in the entry of this Ruling.

7. The Water Court has jurisdiction over the subject matter of these proceedings and over all who have standing to appear as parties whether they have appeared or not. The land and water rights involved in this case are not within a designated groundwater basin.

8. The Applicant, consistent with the decree entered in Case No. 17CW3002, seeks to utilize ground water rights granted therein for the construction of Decoto Wells Nos. 1 through 3 to the Dawson aquifer, and additional or replacement wells associated therewith, for withdrawal of Applicant's full entitlements of supply under the plan for augmentation sought herein.

9. The land overlying the groundwater subject to the adjudication in this case is owned by the Applicant and was previously quantified in Case No. 17CW3002. The land relevant to this decree consists of an approximately 36.01 acre portion identified as "West Parcel 1" in Case No. 17CW3002, located in a portion of the SE 1/4 of Section 21 and a portion of the NE 1/4 of Section 28, Township 12 South, Range 65 West of the 6th P.M., El Paso County, Colorado, as more particularly described on the attached **Exhibit A**, and depicted on the attached **Exhibit B** map ("Subject Property"). Applicant intends to subdivide the property into up to three (3) parcels, two of approximately 3.5 acres in size (Tracts R-11 and R-12) and one of approximately 29 acres (Tract A) as depicted on **Exhibit B**, on Applicant's Property, utilizing individual wells and septic systems on all said lots. All groundwater adjudicated herein shall be withdrawn from the overlying land.

10. <u>Decoto Wells Nos. 1 through 3</u>: Each of the Decoto Wells Nos. 1 through 3 are to be constructed to the not-nontributary Dawson aquifer pursuant to the Plan for Augmentation decreed herein to provide domestic water supplies to a single family residence to be located upon the subdivided Subject Property. Upon entry of this decree and submittal by the Applicant of a complete well permit application and filing fee, the State Engineer shall issue a revised permit for Decoto Wells Nos. 1 through 3 pursuant to C.R.S. §37-90-137(4), consistent with and references the Plan for Augmentation decreed herein.

PLAN FOR AUGMENTATION

11. The structures to be augmented are Decoto Wells Nos. 1 through 3 in the not-nontributary Dawson aquifer underlying the Applicant's Property, along with any additional or replacement wells associated therewith.

12. Pursuant to C.R.S. §37-90-137(9)(c.5), the augmentation obligation for Decoto Wells Nos. 1 through 3, and any additional or replacement wells constructed to the Dawson aquifer requires the replacement of actual stream depletions to the extent necessary to prevent any injurious effect. The water rights to be used for augmentation during pumping are the septic return flows of the not-nontributary Decoto Wells Nos. 1 through 3, to be pumped as set forth in this plan for augmentation. The water rights to be used for augmentation after pumping are a reserved portion of Applicant's nontributary water rights in the Laramie-Fox Hills aquifers. Applicant shall provide for the augmentation of stream depletions caused by pumping the Decoto Wells Nos. 1 through 3 as approved herein. Water use criteria as follows:

A. <u>Use</u>: The Decoto Wells Nos. 2 and 3 may each pump up to 0.32 acre feet of water per year, and Decoto Well No. 1 may pump up to 0.58 acre feet of water per year (unless a maximum depletion percentage of less than 44% during the pumping life of the wells is adequately evidenced), for a maximum total of 1.22 acre feet being withdrawn from the Dawson aquifer annually. Households will utilize up to 0.26 acre feet of water per year per residence, with the additional pumping available for landscape irrigation, the watering of horses or equivalent livestock, and other beneficial uses decreed in 17CW3002 at each residence. The foregoing figures assume the use of 3 septic systems, with resulting return flows from each. Should Applicant subdivide Applicant's property into fewer than 3 lots, both depletions and return flows for the replacement of the same will be correspondingly reduced, though pumping for uses other than household use may be increased provided at all times septic return flows shall replace the maximum depletions resulting from pumping.

B. <u>Depletions</u>: Applicant has determined that maximum stream depletions over the 300-year pumping period will amount to approximately forty-four percent (44%) of pumping. Maximum annual depletions for total residential pumping from all wells is therefore 0.54 acre feet in year 300. Should Applicant's pumping be less than a combined total of 1.22 acre feet described herein, or should fewer lots be developed, resulting depletions and required replacements will be correspondingly reduced.

C. <u>Augmentation of Depletions During Pumping Life of Wells</u>: Depletions during pumping will be effectively replaced by residential return flows from non-evaporative septic systems. The annual consumptive use for non-evaporative septic systems is 10% per year per residence. At a conservatively estimated household use rate of 0.20 acre feet per residence per year (rather than the full 0.26 acre feet annually), a total of 0.54 acre feet is replaced to the stream system per year (0.18 acre feet per lot), utilizing non-evaporative septic systems, assuming all 3 wells are utilized. With maximum depletions from the pumping of 3 wells at 0.18 acre feet, and anticipated replacement of 0.54 acre feet annually, during pumping, stream depletions will be adequately augmented.

D. <u>Augmentation of Post Pumping Depletions</u>: This plan for augmentation shall have a pumping period of a minimum of 300 years. For the

replacement of any injurious post-pumping depletions which may be associated with the use of the Decoto Wells Nos. 1 through 3, Applicant will reserve up to 366 acre feet of water from the nontributary Laramie Fox Hills aquifer, less actual stream depletions replaced during the plan pumping period, as necessary to replace any injurious post pumping depletions. Applicant also reserves the right to substitute other legally available augmentation sources for such post pumping depletions upon further approval of the Court under its retained jurisdiction. Even though this reservation is made, under the Court's retained jurisdiction, Applicant reserves the right in the future to prove that post pumping depletions will be noninjurious. The reserved nontributary Laramie-Fox Hills groundwater will be used to replace any injurious post-pumping depletions. Upon entry of a decree in this case, the Applicant will be entitled to apply for and receive a new well permit for the Decoto Wells Nos. 1 through 3 for the uses in accordance with this Application and otherwise in compliance with C.R.S. §37-90-137.

13. This decree, upon recording, shall constitute a covenant running with Applicant's Property, benefitting and burdening said land, and requiring construction of well(s) to the nontributary Laramie-Fox Hills aquifer and pumping of water to replace any injurious post-pumping depletions under this decree. Subject to the requirements of this decree, in order to determine the amount and timing of post-pumping replacement obligations, if any, under this augmentation plan, Applicant or its successors shall use information commonly used by the Colorado Division of Water Resources for augmentation plans of this type at the time. Pursuant to this covenant, the water from the nontributary Laramie-Fox Hills aquifer reserved herein may not be severed in ownership from the overlying subject property. This covenant shall be for the benefit of, and enforceable by, third parties owning vested water rights who would be materially injured by the failure to provide for the replacement of post-pumping depletions under the decree, and shall be specifically enforceable by such third parties against the owner of the Applicant's Property.

14. Applicant or its successors shall be required to initiate pumping from the Laramie-Fox Hills aquifer for the replacement of post-pumping depletions when either: (i) the absolute total amount of water available from the Dawson aquifer allowed to be withdrawn under the plan for augmentation decreed herein has been pumped; (ii) the Applicant or its successors in interest have acknowledged in writing that all withdrawals for beneficial use through the Decoto Wells Nos. 1 through 3 have permanently ceased, (iii) a period of 10 consecutive years where either no withdrawals of groundwater has occurred, or (iv) accounting shows that return flows from the use of the water being withdrawn is insufficient to replace depletions caused by the withdrawals that already occurred.

15. Accounting and responsibility for post-pumping depletions in the amount set forth herein shall continue for the shortest of the following periods: (i) the period provided by statute; (ii) the period specified by any subsequent change in statute; (iii) the period required by the Court under its retained jurisdiction; (iv) the period determined by the State Engineer; or (v) the period as established by Colorado Supreme Court final decisions. Should Applicant's obligation hereunder to account for

and replace such post-pumping stream depletions be abrogated for any reason, then the Laramie-Fox Hills aquifer groundwater reserved for such a purpose shall be free from the reservation herein and such groundwater may be used or conveyed by its owner without restriction for any post-pumping depletions.

16. The term of this augmentation plan is for a minimum of 300 years, however, the length of the plan for a particular well or wells may be extended beyond such time provided the total plan pumping allocated to such well or wells is not exceeded. Should the actual operation of this augmentation plan depart from the planned diversions described herein such that annual diversions are increased or the duration of the plan is extended, the Applicant must prepare and submit a revised model of stream depletions caused by the actual pumping schedule. This analysis must utilize depletion modeling acceptable to the State Engineer, and to this Court, and must represent the water use under the plan for the entire term of the plan to date. The analysis must show that return flows have equaled or exceeded actual stream depletions throughout the pumping period and that reserved nontributary water remains sufficient to replace post-pumping depletions.

17. Consideration has been given to the depletions from Applicant's use and proposed uses of water, in quantity, time and location, together with the amount and timing of augmentation water which will be provided by the Applicant, and the existence, if any, injury to any owner of or person entitled to use water under a vested water right.

18. It is determined that the timing, quantity and location of replacement water under the protective terms in this decree are sufficient to protect the vested rights of other water users and eliminate material injury thereto. The replacement water shall be of a quantity and quality so as to meet the requirements for which the water of senior appropriators has normally been used, and provided of such quality, such replacement water shall be accepted by the senior appropriators for substitution for water derived by the exercise of the Decoto Wells Nos. 1 through 3. As a result of the operation of this plan for augmentation, the depletions from the Decoto Wells Nos. 1 through 3 and any additional or replacement wells associated therewith will not result in material injury to the vested water rights of others.

CONCLUSIONS OF LAW

19. The Applicant's request for adjudication of the plan for augmentation decreed herein is contemplated and authorized by law, and this Court and the Water Referee have exclusive jurisdiction over these proceedings. C.R.S. §§37-92-302(1)(a), 37-92-203, and 37-92-305.

20. Subject to the terms of the 17CW3002 decree, the Applicant is entitled to the sole right to withdraw all the legally available water in the Denver Basin aquifers underlying the Applicant's Property, and the right to use that water to the exclusion of all others subject to the terms of said 17CW3002 decree.

21. The Applicant's request for approval of a plan for augmentation is contemplated and authorized by law. If administered in accordance with this decree, this plan for augmentation will permit the uninterrupted diversions from the Decoto Wells Nos. 1 through 3 without adversely affecting any other vested water rights in the Arkansas River or its tributaries and when curtailment would otherwise be required to meet a valid senior call for water. C.R.S. §§37-92-305(3),(5), and (8).

IT IS THEREFORE ORDERED, ADJUDGED AND DECREED AS FOLLOWS:

22. All of the foregoing Findings of Fact and Conclusions of Law are incorporated herein by reference, and are considered to be a part of this decretal portion as though set forth in full.

23. The Application for Adjudication of Denver Basin Groundwater and for Approval of Plan for Augmentation proposed by the Applicant is approved, subject to the terms of this decree.

24. The Applicant has furnished acceptable proof as to all claims and, therefore, the Application for Adjudication of Groundwater and Plan for Augmentation, as requested by the Applicant, is granted and approved in accordance with the terms and conditions of this decree. Approval of this Application will not result in any material injury to senior vested water rights.

25. The Applicant shall comply with C.R.S. §37-90-137(9)(b), requiring the relinquishment of the right to consume two percent (2%) of the amount of the nontributary groundwater withdrawn. Ninety-eight percent (98%) of the nontributary groundwater withdrawn may therefore be consumed. No plan for augmentation shall be required to provide for such relinquishment.

the Division Engineer, and/or the Water 26. The State Engineer, Commissioner shall not curtail the diversion and use of water covered by the Decoto Wells Nos. 1 through 3 so long as the return flows from the annual diversions associated with the Decoto Wells Nos. 1 through 3 accrue to the stream system pursuant to the conditions contained herein. To the extent that Applicant or one of its successors or assigns is ever unable to provide the replacement water required, then the Decoto Wells Nos. 1 through 3 shall not be entitled to operate under the protection of this plan, and shall be subject to administration and curtailment in accordance with the laws, rules, and regulation of the State of Colorado. Pursuant to C.R.S. §37-92-305(8), the State Engineer shall curtail all out-of-priority diversions which are not so replaced as to prevent injury to vested water rights. In order for this plan for augmentation to operate, return flows from the one or both of the septic systems discussed herein, as appropriate, shall at all times during pumping be in an amount sufficient to replace the amount of stream depletions.

27. Pursuant to C.R.S. §37-92-304(6), the Court shall retain continuing jurisdiction over the plan for augmentation decreed herein for reconsideration of the question of whether the provisions of this decree are necessary and/or sufficient to prevent injury to vested water rights of others, as pertains to the use of Denver Basin groundwater supplies adjudicated herein, including for augmentation purposes.

Except as otherwise specifically provided in Paragraph 28, above, 28. pursuant to the provisions of C.R.S. §37-92-304(6), this plan for augmentation decreed herein shall be subject to the reconsideration of this Court on the question of material injury to vested water rights of others, for a period of five (5) years, except as otherwise provided herein. Any person, within such period, may petition the Court to invoke its retained jurisdiction. Any person seeking to invoke the Court's retained jurisdiction shall file a verified petition with the Court setting forth with particularity the factual basis for requesting that the Court reconsider material injury to petitioner's vested water rights associated with the operation of this decree, together with proposed decretal language to effect the petition. The party filing the petition shall have the burden of proof of going forward to establish a prima facie case based on the facts alleged in the petition. If the Court finds those facts are established, Applicant shall thereupon have the burden of proof to show: (i) that the petitioner is not materially injured, or (ii) that any modification sought by the petitioner is not required to avoid material injury to the petitioner, or (iii) that any term or condition proposed by Applicant in response to the petition does avoid material injury to the petitioner. The Division of Water Resources as a petitioner shall be entitled to assert material injury to the vested water rights of others. If no such petition is filed within such period and the retained jurisdiction period is not extended by the Court in accordance with the revisions of the statute, this matter shall become final under its own terms.

29. Pursuant to C.R.S. §37-92-502(5)(a), the Applicant shall install and maintain such water measurement devices and recording devices as are deemed essential by the State Engineer or Division Engineers, and the same shall be installed and operated in accordance with instructions from said entities. Applicant is to install and maintain a totalizing flow meters on all Decoto Wells or any additional or replacement wells associated therewith. Applicant is also to maintain records and provide reports to the State Engineer or Division Engineers as instructed by said entities, on at least an annual basis.

30. The vested water rights, water right structures, and plan for augmentation decreed herein shall be subject to all applicable administrative rules and regulations, as currently in place or as may in the future be promulgated, of the offices of Colorado State and Division Engineers for administration of such water rights, to the extent such rules and regulations are uniformly applicable to other similarly situated water rights and water users.

31. This Ruling of Referee, when entered as a decree of the Water Court, shall be recorded in the real property records of El Paso County, Colorado. Copies of this ruling shall be mailed as provided by statute.

DATED THIS 18th day of July, 2018.

BY THE REFEREE:

Marcal R. Di Demorier

Mardell DiDomenico, Water Referee Water Division 2

DECREE

THE COURT FINDS THAT NO PROTEST WAS MADE IN THIS MATTER, THEREFOR THE FORGOING RULING IS CONFIRMED AND APPROVED, AND IS HEREBY MADE THE JUDGMENT AND DECREE OF THIS COURT.

Dated: August 9th, 2018.

BY THE COURT:

EARRY C. SCHWARTZ, WATER JUDGE WATER DIVISION 2

EXHIBIT A

LEGAL DESCRIPTION:

A PARCEL OF LAND LOCATED IN A PORTION OF THE SOUTHEAST ONE-QUARTER (SE1/4) OF SECTION 23 AND A PORTION OF THE NORTHEAST ONE-QUARTER (NE1/4) OF SECTION 28, TOWNSHIP 12 SOUTH, RANGE 65 WEST OF THE 6TH P.M., EL PASO COUNTY, COLORADO, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BASIS OF BEARINGS: THE WEST LINE OF THE SOUTHEAST ONE-QUARTER (SE1/4) OF SECTION 21, FOWNSHIP 12 SOUTH, RANGE 65 WEST IS ASSUMED TO BEAR NO0'25'32'W, A DISTANCE OF 2638:53 FEET;

COMMENCERIO AT THE BOUTHWEST CORINER OF SAID SOUTHEAST OME-OUARTER (SEI/14) DAVE FORMT ALSO BEING THE POINT OF BEGINNING OF THE PARCEL OF LAND HEREIN DESCRIBED; THENCE NO0'25'32'W ALONG THE WEST LINE OF SAID SOUTHEAST ONE-QUARTER (SEI/4). A DISTANCE OF 650.11 FEET.

THENCE N89140'31'E, A DISTANCE OF 2077.12 FEET TO A POINT ON THE WESTERLY RIGHT-OF-WAY LINE OF VOLLMER ROAD AS DESCRIBED IN THE DOCUMENT RECORDED IN BOOK 2678 AT PAGE 430 OF THE RECORDS OF THE EL PASO COUNTY CLERK AND RECORDER:

THENCE \$21'41'10'W ALONG SAID WESTERLY RIGHT-OF-WAY LINE, A DISTANCE OF 2013.90 FEET TO A POINT ON THE EAST DNE OF THE NORTHWEST ONE-OUARTER OF THE NORTHEAST ONE-OUARTER (NW1/4 NE1/4) OF SAID SECTION 2B;

THENCE NOCATITY ALONG SAID EAST LINE, A DISTANCE OF 1217.12 FEET TO THE SOUTHEAST CORNER OF THE SOUTHWEST ONE-QUARTER OF THE SOUTHEAST ONE-QUARTER (SWI/4 SE1/4) OF SAID SECTION 21; THENCE S89'40'14'W ALONG THE SOUTH LINE OF SAID SOUTHWEST ONE-QUARTER OF THE SOUTHEAST ONE-QUARTER (SWI/4 SE1/4), A DISTANCE OF 1313.49 FEET TO THE POINT OF BEGINNING.

SAID PARCEL OF LAND CONTAINS A CALCULATED AREA OF 30:01 ACRES OF LAND, MORE OR LESS.

EXHIBIT B - MAP

Appendix D

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

SOIL, GEOLOGY, AND GEOLOGIC HAZARD THE RETREAT AT TIMBER RIDGE 2.5+ ACRE LOTS VOLLMER ROAD AND ARROYA LANE EL PASO COUNTY, COLORADO

Prepared for

Arroya Investments P.O. Box 50223 Colorado Springs, Colorado 80949

Attn: Peter Martz

April 12, 2017

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Logan L. Langford Geologist

LLL/rm

Encl.

Entech Job No. 170209 AAprojects/2017/170209 countysoil/geo/wastewater Reviewed by:

TABLE OF CONTENTS

1.0 SUMMARY	. 1
2.0 GENERAL SITE CONDITIONS AND PROJECT DESCRIPTION	.2
3.0 SCOPE OF THE REPORT	.2
4.0 FIELD INVESTIGATION	.3
5.0 SOIL, GEOLOGY AND ENGINEERING GEOLOGY	.3
5.1 General Geology	.3
5.2 Soil Conservation Survey	.4
5.3 Site Stratigraphy	.4
5.4 Soil Conditions	.5
5.5 Groundwater	.6
6.0 ENGINEERING GEOLOGY - IDENTIFICATION AND MITIGATION OF GEOLOGIC HAZARDS	.6
6.1 Relevance of Geologic Conditions to Land Use Planning	.8
7.0 ECONOMIC MINERAL RESOURCES	.9
8.0 EROSION CONTROL	12
9.0 CLOSURE	13
RIBLIOGRAPHY	11

TABLES

Table 1: Summary of Laboratory Test ResultsTable 2: Summary of Percolation Test Results

FIGURES

Figure 1: Vicinity Map Figure 2: USGS Map Figure 3: Preliminary Concept Plan Figure 4: Development Plan/Test Boring Location Map Figure 5: Soil Survey Map Figure 6: Falcon Northwest Quadrangle Geology Map Figure 7: Geology Map/Engineering Geology Figure 8: Floodplain Map Figure 9: Typical Perimeter Drain Details Figure 10: Septic Suitability Map

APPENDIX A: Site Photographs APPENDIX B: Test Boring Logs and Profile Hole Logs APPENDIX C: Laboratory Test Results APPENDIX D: Soil Survey Descriptions APPENDIX E: Percolation Test Results

1.0 SUMMARY

Project Location

The project lies in portions of the SW¼ of Section 22 and the NE¼ of Section 28, Township 12 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado. The site is located approximately 3 miles northeast of Colorado Springs, Colorado.

Project Description

Total acreage involved in the project is approximately forty-two acres. The proposed site development consists of twelve single-family residential lots. Ten lots are located north of Arroya Lane, and two lots are located west of Vollmer Road just south of Arroya Lane. The development will utilize individual water wells and on-site wastewater treatment systems.

Scope of Report

This report presents the results of our geologic evaluation and treatment of engineering geologic hazard study.

Land Use and Engineering Geology

This site was found to be suitable for the proposed development. Areas were encountered where the geologic conditions will impose some constraints on development and land use. These include areas of shallow bedrock, expansive soils, artificial fill, seasonal shallow groundwater and potentially seasonally shallow groundwater areas. Based on the proposed development plan, it appears that these areas will have some impact on the development. These conditions will be discussed in greater detail in the report.

In general, it is our opinion that the development can be achieved if the observed geologic conditions on site are either avoided or properly mitigated. All recommendations are subject to the limitations discussed in the report.

2.0 GENERAL SITE CONDITIONS AND PROJECT DESCRIPTION

The site is located in portions of the SW¼ of Section 22 and the NE¼ of Section 28, Township 15 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado. The site is located approximately 3 miles northeast of Colorado Springs, Colorado, at Vollmer Road and Arroya Lane. The location of the site is as shown on the Vicinity Map, Figure 1.

The topography of the site is generally gradually to moderately sloping to the southeast and southwest towards Sand Creek. The drainages on site flow in southerly and direction through the central portion of the site. Water was not observed in the drainages on-site at the time of this investigation. The site boundaries are indicated on the USGS Map, Figure 2. Previous land uses have included grazing and pasture land. The site contains primarily field grasses, weeds, cacti, and yuccas, and ponderosa pine trees. Site photographs, taken March 9 and 28, 2017, are included in Appendix A.

Total acreage involved in the proposed development is approximately forty-two acres. Twelve single-family rural residential lots are proposed. The proposed lots will be approximately 2.5+ acres. The area will be serviced individual water wells and on-site wastewater treatment systems. The proposed Preliminary Concept Plan and the proposed Development Plan is presented in Figures 3 and 4.

3.0 SCOPE OF THE REPORT

The scope of the report will include the following:

- A general geologic analysis utilizing published geologic data. Detailed site-specific mapping will be conducted to obtain general information in respect to major geographic and geologic features, geologic descriptions and their effects on the development of the property.
- The site will be evaluated for on-site wastewater treatment systems in accordance with El Paso Land Development Code.

4.0 FIELD INVESTIGATION

Our field investigation consisted of the preparation of a geologic map of any bedrock features and significant surficial deposits. The Natural Resource Conservation Service (NRCS), previously the Soil Conservation Service (SCS) survey was also reviewed to evaluate the site. The position of mappable units within the subject property are shown on the Geologic Map. Our mapping procedures involved both field reconnaissance and measurements and air photo reconnaissance and interpretation. The same mapping procedures have also been utilized to produce the Engineering Geology Map which identified pertinent geologic conditions affecting development. The field mapping was performed by personnel of Entech Engineering, Inc. on March 9 and 28, 2017.

Two Test Borings were performed for the percolation test profile holes, and three test pits were excavated across the site to determine general soil and bedrock characteristics. The locations of the profile holes and test pits are indicated on the Development Plan/Test Boring Location Map, Figure 4. The Test Boring and Test Pit Logs are presented in Appendix B. Results of this testing will be discussed later in this report.

Laboratory testing was also performed on some of the soils to classify and determine the soils engineering characteristics. Laboratory tests included grain-size analysis ASTM D-422, Atterberg Limits ASTM D-4318, volume change testing using FHA Swell Testing and Swell/Consolidation test. Results of the laboratory testing are included in Appendix C. A Summary of Laboratory Test Results is presented in Table 1.

5.0 SOIL, GEOLOGY AND ENGINEERING GEOLOGY

5.1 General Geology

Physiographically, the site lies in the western portion of the Great Plains Physiographic Province. Approximately 12 miles to the west is a major structural feature known as the Rampart Range Fault. This fault marks the boundary between the Great Plains Physiographic Province and the Southern Rocky Mountain Province. The site exists within the southeastern edge of a large structural feature known as the Denver Basin. Bedrock in the area tends to be

very gently dipping in a northeasterly direction (Reference 1). The rocks in the area of the site are sedimentary in nature and typically Upper Cretaceous in age. The bedrock underlying the site consists of the Dawson Formation. Overlying this formation are unconsolidated deposits of man-made, and alluvial soils of Quaternary Age. The alluvial soils were deposited by water on site and as stream deposits along the drainages on-site. The site's stratigraphy will be discussed in more detail in Section 5.3.

5.2 Soil Conservation Survey

The Natural Resource Conservation Service (Reference 2), previously the Soil Conservation Service (Reference 3) has mapped three soil types on the site (Figure 5). In general, the soils classify as gravelly loamy sand and coarse sandy loam. The soils are described as follows:

Type	Description
40	Kettle Gravelly Loamy Sand, 3 to 8% slopes
41	Kettle Gravelly Loamy Sand, 8 to 40% slopes
71	Pring Coarse Sandy Loam, 3 to 8% slopes

Complete descriptions of each soil type are presented in Appendix D. The soils have generally been described to have moderate to moderately rapid permeabilities. Possible hazards with soil erosion are present on the site. The erosion potential can be controlled with vegetation. The majority of the soils have been described to have slight to moderate erosion hazards.

5.3 Site Stratigraphy

The Falcon NW Quadrangle Geology Map showing the site is presented in Figure 6 (Reference 4). The Geology Map prepared for the site is presented in Figure 7. Three mappable units were identified on this site which are described as follows:

- Qaf Artificial Fill of Holocene Age: These are recent deposits of man-made fill. They are associated with the erosion berm located on the two lots west of Vollmer Road.
- Qal Recent alluvium of Holocene Age: These are recent deposits that have been deposited along the drainages on-site.

Tkd Dawson Formation of Tertiary to Cretaceous Age: The Dawson Formation typically consist of arkosic sandstone with interbedded fine-grained sandstone, siltstone and claystone. Overlying this formation is a variable layer of residual soil. The residual soils were derived from the in-situ weathering of the bedrock materials on-site. These soils consisted of silty to clayey sands and sandy clays.

The soils listed above were mapped from site-specific mapping, the *Geologic Map of the Falcon NW Quadrangle* distributed by the Colorado Geological Survey in 2003 (Reference 4), the *Geologic Map of the Colorado Springs-Castle Rock Area*, distributed by the US Geological Survey in 1979 (Reference 5), and the *Geologic Map of the Denver* $1^{\circ} \times 2^{\circ}$ *Quadrangle*, distributed by the US Geological Survey in 1981 (Reference 6). The Test Borings and Profile Holes were also used in evaluating the site and are included in Appendix B. The Geology Map prepared for the site is presented in Figure 7.

5.4 Soil Conditions

The soils encountered in the Test Borings can be grouped into three general soil types. The soils were classified using the Unified Soil Classification System (USCS). The test pit soils were classified using the USDA Textural Soil Classification.

<u>Soil Type 1</u> clayey to very clayey sand and silty to slightly silty sand (SC, SM, SM-SW), encountered in both of Test Borings and all of the test pits at the existing ground surface and extending to depths ranging from 1 foot to 14 feet bgs. These soils were encountered at loose to dense states and at moist conditions. The majority of the soils were encountered and medium dense states. Samples tested had 11 to 34 percent passing the No. 200 Sieve.

<u>Soil Type 2</u> silty sandstone and clayey to very clayey sandstone (SM, SC), encountered in both of Test Borings and all of the Test Pits at depths ranging from 1 foot to 14 feet bgs and extending to the termination of the test borings (15 feet). The sandstone was encountered at dense to very dense states and at moist conditions. Samples tested had 48 percent passing the No. 200 Sieve. Swell/Consolidation Testing on a sample of the very clayey sandstone resulted in a swell of 0.2 percent, which is in the low expansion range.

<u>Soil Type 3</u> sandy claystone and siltstone (CL, MH), encountered in Test Pit Nos. 2 and 3 at depths ranging from 5 to 6.5 feet and extended to the termination test pit (8 feet). The claystone and siltstone were encountered at hard consistencies and at moist conditions. Samples tested had 60 to 77 percent passing the No. 200 Sieve. FHA Swell Testing resulted in an expansion pressure of 1280 psf, which is in the moderate expansion range.

The Test Boring and Test Pit Logs are presented in Appendix B. Laboratory Test Results are presented in Appendix C. A Summary of Laboratory Test Results is presented in Table 1.

5.5 Groundwater

Groundwater was not encountered in the test borings, which were drilled to 15 feet. Signs of seasonally occurring groundwater were observed in Test Pit Nos. 2 and 3 at depths of 5 to 6 feet. Areas of water, seasonal shallow groundwater water, and potential seasonal shallow groundwater have been mapped along the drainages on-site. These areas are discussed in the following section. Fluctuation in groundwater conditions may occur due to variations in rainfall and other factors not readily apparent at this time.

It should be noted that in the sandy materials on site, some groundwater conditions might be encountered due to the variability in the soil profile. Isolated sand and gravel layers within the soils, sometimes only a few feet in thickness and width, can carry water in the subsurface. Groundwater may also flow on top of the underlying bedrock. Builders and planners should be cognizant of the potential for the occurrence of such subsurface water features during construction on-site and deal with each individual problem as necessary at the time of construction.

6.0 ENGINEERING GEOLOGY – IDENTIFICATION AND MITIGATION OF GEOLOGIC HAZARDS

As mentioned previously, detailed mapping has been performed on this site to produce an Engineering Geology Map Figure 7. This map shows the location of various geologic conditions of which the developers should be cognizant during the planning, design and construction

stages of the project. These hazards and the recommended mitigation techniques are as follows:

Artificial Fill

These are recent man-made fill deposits associated with the erosion berm located across the two lots west of Vollmer Road.

<u>Mitigation</u>: The erosion berms can either be avoided or penetrated by foundations. The fill on this site is considered uncontrolled for construction purposes. Any uncontrolled fill encountered beneath foundations will require removal and recompaction at a minimum of 95% of its maximum Modified Procter Dry Density, ASTM D-1557.

Collapsible Soils

The majority of the soils encountered on-site do not exhibit collapsible characteristics, however, areas of loose soils were encountered in the test borings drilled on site. Should loose or collapsible soils be encountered beneath foundations, recompaction and moisture conditioning of the upper 2 feet of soil at 95% of its maximum Modified Proctor Dry Density ASTM D-1557 will be required. Exterior flatwork and parking areas may also experience movement. Proofrolling and recompaction of soft areas should be performed during site work.

Expansive Soils

Expansive soils were encountered in the test borings drilled on site. These occurrences are typically sporadic; therefore, none have been indicated on the maps. These clays, claystones and siltstones, if encountered beneath foundations, can cause differential movement in the structure foundation. These occurrences should be identified and dealt with on an individual basis.

<u>Mitigation</u> Should expansive soils be encountered beneath the foundation, mitigation will be necessary. Mitigation of expansive soils will require special foundation design. Overexcavation and replacement with non-expansive soils at a minimum of 95% of its maximum Modified Proctor Dry Density, ASTM D-1557 is a suitable mitigation, which is common in the area. Floor slabs on expansive soils should be expected to experience movement. Overexcavation and replacement has been successful in minimizing slab movements. The use of structural floors should be considered for basement construction on highly expansive clays. Final recommendations should be determined after additional investigation of each building site.

Groundwater and Floodplain Areas

Areas within the drainages on-site have been identified as areas of seasonally high groundwater areas. Water was not flowing in the any of the drainages at the time of this investigation. The site is not mapped within floodplain zones according to the FEMA Map No. 08041CO764F, Figure 8 (Reference 7). These areas are discussed as follows:

Seasonal Shallow Groundwater Area

In these areas, we would anticipate periodic high subsurface moisture conditions and frost heave potential on a seasonal basis. Additional, highly organic soils could be encountered in these areas. These areas lie within defined drainages and it is anticipated they will be avoided by development. Any structures in or adjacent to these areas should follow the mitigation discussed below.

<u>Mitigation:</u> Foundations must have a minimum 30-inch depth for frost protection. In areas where high subsurface moisture conditions are anticipated periodically, subsurface perimeter drains are recommended to help prevent the intrusion of water into areas below grade. Typical drain details are presented in Figure 9. Any grading in these areas should be done to direct surface flow around construction to avoid areas of ponded water. Structures should not block drainages. All organic material should be completely removed prior to any fill placement. Finished floor levels must be located a minimum of one foot above floodplain levels.

Potentially Seasonal Shallow Groundwater Area

In these areas, we would anticipate the potential for periodically high subsurface moisture conditions, frost heave potential and highly organic soils. The majority of these areas lie within defined drainages which can likely be avoided by the proposed development. The same mitigation recommendations for the seasonal shallow groundwater areas apply to the potentially seasonal shallow groundwater areas.

6.1 Relevance of Geologic Conditions to Land Use Planning

As mentioned earlier in this report, we understand that the development will be single family residential. It is our opinion that the existing geologic and engineering geologic conditions will impose some constraints on the proposed development and construction. The most significant problems affecting development will be those associated with the drainages on site that can be

properly mitigated. Other hazards on site may be satisfactorily mitigated through proper engineering design and construction practices.

The upper materials are typically at loose to dense states. The granular soils encountered in the upper soil profiles of the test borings and test pits should provide good support for foundations. Loose soils if encountered at foundation depth will require mitigation. Foundations anticipated for the site are standard spread footings possibly in conjunction with overexcavation in areas of expansive soils or loose soils. Excavation is anticipated to be moderate with rubber tired equipment for the site sand materials, and will require track mounted equipment for the dense sandstone, and hard claystone and siltstone. Expansive layers may also be encountered in the soil and bedrock on this site. Areas of expansive soils encountered on site are sporadic; therefore, none have been indicated on the maps. Expansive soils, if encountered, will require special foundation design and/or overexcavation. These soils will not prohibit development.

In summary, development of the site can be achieved if the items mentioned above are mitigated. These items can be mitigated through proper design and construction or through avoidance. Investigation on each lot is recommended prior to construction.

7.0 ECONOMIC MINERAL RESOURCES

Some of the sandy materials on-site could be considered a low-grade sand resource. According to the *El Paso County Aggregate Resource Evaluation Map* (Reference 8), the area is not mapped with any aggregate deposits. According to the *Atlas of Sand, Gravel and Quarry Aggregate Resources, Colorado Front Range Counties* distributed by the Colorado Geological Survey (Reference 9), areas of the site are not mapped with any resources. According to the *Evaluation of Mineral and Mineral Fuel Potential* (Reference 10), the area of the site has been mapped as "Fair" for industrial minerals. However, considering the silty nature of much of these materials and abundance of similar materials through the region and the close proximity to developed land, they would be considered to have little significance as an economic resource.

According to the Evaluation of Mineral and Mineral Fuel Potential of El Paso County State Mineral Lands (Reference 10), the site is mapped within the Denver Basin Coal Region. However, the area of the site has been mapped as "Poor" for coal resources. No active or inactive mines have been mapped in the area of the site. No metallic mineral resources have been mapped on-site (Reference 10).

The site has been mapped as "Fair" for oil and gas resources (Reference 10). No oil or gas fields have been discovered in the area of the site. The sedimentary rocks in the area may lack the geologic structure for trapping oil or gas; therefore, it may not be considered a significant resource. Hydraulic fracturing is a new method that is being used to extract oil and gas from rocks. It utilizes pressurized fluid to extract oil and gas from rocks that would not normally be productive. The area of the site has not been explored to determine if the rocks underlying the site would be commercially viable utilizing hydraulic fracturing. The practice of hydraulic fracturing has come under review due to concerns about environmental impacts, health and safety.

8.0 ON-SITE WASTEWATER TREATMENT

The site was evaluated for on-site wastewater treatment systems for the proposed lots in accordance with El Paso Land Development Code. Two (2) percolation tests and three (3) tactile test pits were performed across the stie. Percolation test and tactile test pits were located in anticipated locations of proposed on-site wastewater treatment system (OWTS) for the development. The approximate locations of the profile holes and test pits are indicated on Figure 4 and 7, and on the Septic Suitability Map, Figure 10. The locations were chosen to determine a general understanding of the soil and bedrock conditions across the site. The results of the percolation tests and test pits are presented in Table 2. The specific test results are presented in Appendix E of this report.

The Natural Resource Conservation Service (Reference 2), previously the Soil Conservation Service (Reference 3) has been mapped with three soil descriptions. The Soil Survey Map (Reference 2) is presented in Figure 5, and the Soil Survey Descriptions are presented in Appendix D. The soils are described as having moderate to moderately rapid percolation rates.

The percolation rates varied from 44 (PH-2) to 133 (PH-1) minutes per inch. The percolation rate for PH-1 is not suitable for conventional OWTS, the rate for PH-2 is suitable for a conventional OWTS. Percolation rates slower than 60 minutes per inch will require designed

systems. Shallow bedrock was also encountered in the profile holes and test pits, and will also required a designed system. Additional drilling may identify areas where faster rates are encountered that are suitable for conventional systems.

Standard penetration testing, ASTM D-1586, was performed in each profile hole to evaluate the density of the soil and the presence of bedrock. Bedrock was encountered in The Profile Holes at 3 to 14 feet. Designed systems are required in areas of shallow bedrock.

Soils encountered in the tactile test pits consisted of sandy loam to gravelly sandy loam, gravelly loamy sand, and gravelly sandy clay loam with underlying clayey to silty sandstone, sandy claystone and sandy siltstone. The limiting layers encountered in the test pits are the sandy clay loam, silty to clayey sandstone, sandy claystone and sandy siltstone, which corresponds to an LTAR values of 0.15 to 0.20 gallons per day per square foot. The bedrock was encountered at 1 to 5 feet in the test pits. The conditions encountered in the test pits will require a designed system. Signs of seasonal shallow groundwater were observed at depths ranging from 5 to 6 feet in Test Pit Nos. 2 and 3.

Absorption fields must be maintained a minimum of 4 feet above groundwater or bedrock. Groundwater was not encountered in the profile holes which was drilled to 15 feet, however; signs of seasonally shallow groundwater were observed in Test Pit Nos. 2 and 3 at depths ranging from 5 to 6 feet. Shallow bedrock was encountered in the profile holes and test pits at depths ranging from 1 to 14 feet.

In summary, it is our opinion the site is suitable for individual on-site wastewater treatment systems (OWTS) and that contamination of surface and subsurface water resources should not occur provided the OWTS sites are evaluated and installed according to El Paso County Guidelines and properly maintained. Based on the testing performed as part of this investigation and the type of project designed systems will likely be required for the majority of the lots. A Septic Suitability Map is presented in Figure 10. Absorption fields must be located a minimum of 100 feet from any well, including those on adjacent properties. Absorption fields must also be located a minimum of 50 feet from any ponded areas and 25 feet from dry gulches. It should be noted that additional testing will be required for the individual lots prior to construction.

9.0 EROSION CONTROL

The soil types observed on the site are mildly to highly susceptible to wind erosion, and moderately to highly susceptible to water erosion. A minor wind erosion and dust problem may be created for a short time during and immediately after construction. Should the problem be considered severe enough during this time, watering of the cut areas or the use of chemical palliative may be required to control dust. However, once construction has been completed and vegetation re-established, the potential for wind erosion should be considerably reduced.

With regard to water erosion, loosely compacted soils will be the most susceptible to water erosion, residually weathered soils become increasingly less susceptible to water erosion. For the typical soils observed on-site, allowable velocities or unvegetated and unlined earth channels would be on the order of 3 to 4 feet/second, depending upon the sediment load carried by the water. Permissible velocities may be increased through the use of vegetation to something on the order of 4 to 7 feet/second, depending upon the type of vegetation established. Should the anticipated velocities exceed these values, some form of channel lining material may be required to reduce erosion potential. These might consist of some of the synthetic channel lining materials on the market or conventional riprap. In cases where ditchlining materials are still insufficient to control erosion, small check dams or sediment traps may be required. The check dams will serve to reduce flow velocities, as well as provide small traps for containing sediment. The determination of the amount, location and placement of ditch linings, check dams and of the special erosion control features should be performed by or in conjunction with the drainage engineer who is more familiar with the flow quantities and velocities.

Cut and fill slope areas will be subjected primarily to sheetwash and rill erosion. Unchecked rill erosion can eventually lead to concentrated flows of water and gully erosion. The best means to combat this type of erosion is, where possible, the adequate re-vegetation of cut and fill slopes. Cut and fill slopes having gradients more than three (3) horizontal to one (1) vertical become increasingly more difficult to revegetate successfully. Therefore, recommendations pertaining to the vegetation of the cut and fill slopes may require input from a qualified landscape architect and/or the Soil Conservation Service.

10.0 CLOSURE

It is our opinion that the existing geologic engineering and geologic conditions will impose some constraints on development and construction of the site. The majority of these conditions can be mitigated through proper engineering design and construction practices. The proposed development and use is consistent with anticipated geologic and engineering geologic conditions.

It should be pointed out that because of the nature of data obtained by random sampling of such variable and non-homogeneous materials as soil and rock, it is important that we be informed of any differences observed between surface and subsurface conditions encountered in construction and those assumed in the body of this report. Individual investigations for building sites will be required prior to construction. Construction and design personnel should be made familiar with the contents of this report. Reporting such discrepancies to Entech Engineering, Inc. soon after they are discovered would be greatly appreciated and could possibly help avoid construction and development problems.

This report has been prepared for Arroya Investments. for application to the proposed project in accordance with generally accepted geologic soil and engineering practices. No other warranty expressed or implied is made.

We trust that this report has provided you with all the information that you required. Should you require additional information, please do not hesitate to contact Entech Engineering, Inc.

BIBLIOGRAPHY

- 1. Bryant, Bruce; McGrew, Laura W, and Wabus, Reinhard A. 1981. *Geologic Structure Map of the Denver 1° x 2° Quadrangle, North-Central Colorado*. Sheet 2. U.S. Geologic Survey. Map I-1163.
- 2. Natural Resource Conservation *Service*, September 22, 2015. *Web Soil Survey*. United States Department Agriculture, http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm.
- 3. United States Department of Agriculture Soil Conservation Service. June 1981. Soil Survey of El Paso County Area, Colorado.
- 4. Madole, Richard F., 2003. *Geologic Map of the Falcon NW Quadrangle, El Paso County, Colorado*. Colorado Geological Survey. Open-File Report 03-8.
- 5. Trimble, Donald E. and Machette, Michael N. 1979. *Geologic Map of the Colorado Springs-Castle Rock Area, Front Range Urban Corridor, Colorado*. USGS, Map I-857-F.
- 6. Bryant, Bruce; McGrew, Laura W. and Wobus, Reinhard A. 1981. *Geologic Map of the Denver 1° x 2° Quadrangle, North-Central Colorado*. U.S. Geologic Survey. Map 1-1163.
- 7. Federal Emergency Management Agency. March 17, 1997. *Flood Insurance Rate Maps for El Paso County, Colorado and Incorporated Areas*. Map Number 08041CO535F
- 8. El Paso County Planning Development. December 1995. El Paso County Aggregate Resource Evaluation Maps.
- 9. Schwochow, S.D.; Shroba, R.R. and Wicklein, P.C. 1974. Atlas of Sand, Gravel, and Quarry Aggregate Resources, Colorado Front Range Counties. Colorado Geological Survey. Special Publication 5-B.
- 10. Keller, John W.; TerBest, Harry and Garrison, Rachel E. 2003. *Evaluation of Mineral and Mineral Fuel Potential of El Paso County State Mineral Lands Administered by the Colorado State Land Board*. Colorado Geological Survey. Open-File Report 03-07.

TABLES
TABLE 1

SUMMARY OF LABORATORY TEST RESULTS

CLIENT ARROYA INVESTMENTS <u>PROJECT</u> THE RETREAT AT TIMBER RIDGE <u>JOB NO.</u> 170209

	_	_		_		
SOIL DESCRIPTION	SAND, CLAYEY	SAND, SLIGHTLY SILTY	SAND, CLAYEY	SANDSTONE, VERY CLAYEY	CLAYSTONE, SANDY	CLAYSTONE, VERY SANDY
UNIFIED	sc	SM-SW	SM	sc	CL	CL
SWELL/ CONSOL (%)				0.2		-
FHA SWELL (PSF)					1280	
SULFATE (WT %)						
PLASTIC INDEX (%)						
LIQUID LIMIT (%)						
PASSING NO. 200 SIEVE (%)	34.3	11.2	16.4	47.6	76.6	60.6
DRY DENSITY (PCF)				108.3		
WATER (%)				14.9		
DEPTH (FT)	2-3	2-3	4-5	5	5-6	6-8
TEST BORING NO.	-	2	TP-3	-	TP-2	TP-3
SOIL		-		0	9	e

Table 2: Summary of Percolation Test and Tactile Test Pit Results

Percolation	Percolation	Depth	Depth to
Test	Rate	to	Groundwater
No.	(min/in)	Bedrock (ft.)	(ft.)
1	133*	N/A	N/A
2	44	N/A	N/A

Test Pit No.	USDA Soil Type	LTAR	Depth to	Depth to
	Limiting Layer	Value	Bedrock (ft.)	Groundwater
				(ft.)
1	4*	0.20	1	N/A
2	4A*	0.15	3.5	N/A
3	4A*	0.15	5	N/A

*- Conditions that will require an engineered OWTS

FIGURES

				REVISION	
				Åβ	

NOTES:

-GRAVEL SIZE IS RELATED TO DIAMETER OF PIPE PERFORATIONS-85% GRAVEL GREATER THAN 2x PERFORATION DIAMETER.

-PIPE DIAMETER DEPENDS UPON EXPECTED SEEPAGE. 4-INCH DIAMETER IS MOST OFTEN USED.

-ALL PIPE SHALL BE PERFORATED PLASTIC. THE DISCHARGE PORTION OF THE PIPE SHOULD BE NON-PERFORATED PIPE.

-FLEXIBLE PIPE MAY BE USED UP TO 8 FEET IN DEPTH, IF SUCH PIPE IS DESIGNED TO WITHSTAND THE PRESSURES. RIGID PLASTIC PIPE WOULD OTHERWISE BE REQUIRED.

-MINIMUM GRADE FOR DRAIN PIPE TO BE 1% OR 3 INCHES OF FALL IN 25 FEET.

-DRAIN TO BE PROVIDED WITH A FREE GRAVITY OUTFALL, IF POSSIBLE. A SUMP AND PUMP MAY BE USED IF GRAVITY OUT FALL IS NOT AVAILABLE.

			PERIMETER A	DRAIN DETAIL	5	JOB NO.: 170 209
505 COL	ELKTON DRIVE JRADO SPRINGS, CO. 80907 (719) 531-5599	DRAWN:	DATE:	DESIGNED: DS	CHRCKED:	9 9

ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, CO. 80907 (719) 531-5599 **APPENDIX A: Site Photographs**

APPENDIX B: Test Boring Logs from the Profile Holes

and Test Pit Logs

REMARKS TO TO	PROFILE HOLE NO. 1 DATE DRILLED 2/16/2017 ob # 170209	7						PROFILE HOLE NO.DATE DRILLED2/16.CLIENTARRLOCATIONTHE	2 /2017 OYA IN RETRE	/ESTN		NTS MBEI	R RIDG	iE
SAND, CLAYEY, FINE GRAINED, GREEN BROWN, DENSE, MOIST SANDSTONE, VERY CLAYEY TO CLAYEY, FINE TO COARSE GRAINED, GREEN BROWN, VERY DENSE, MOIST 10 10 15 15 15 10 10 15 10 10 10 50 7" 9.2 50 7" 9.2 50 7" 9.2 50 7" 9.2 50 7" 9.2 50 7" 9.2 50 7" 9.2 50 7" 9.2 50 7" 9.2 50 7" 9.2 50 7 7 7 7 7 7 4 10 5 5 7 7 7 7 4 19 2.3 7 7 7 4 19 2.3 7 7 7 7 4 6 55 50 12.5 50 12.5 50 12.5 50 12.5 50 12.5 50 12.5 50 12.5 50 12.5 50 12.5	REMARKS DRY TO 14.5', 2/17/17	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	REMARKS DRY TO 14', 2/17/17	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type
10 50 7" 13.4 15 50 7" 9.2 SANDSTONE, CLAYEY, FINE 15 6 5.5 20 7" 9.2 SANDSTONE, CLAYEY, FINE 15 50 12.5 20 12.5 10	GAND, CLAYEY, FINE GRAINED, GREEN BROWN, DENSE, MOIST GANDSTONE, VERY CLAYEY TO CLAYEY, FINE TO COARSE GRAINED, GREEN BROWN, ERY DENSE, MOIST	5	·/·		30 <u>50</u> 11"	13.0 13.1		SAND, SLIGHTLY SILTY, FINE TO COARSE GRAINED, TAN, MEDIUM DENSE TO LOOSE, MOIST	5			19 7	2.3 7.4	
15 50 9.2 SANDSTONE, CLAYEY, FINE 15 50 12.5 20 7" 9.2 SANDSTONE, CLAYEY, FINE 10 12.5 20 10 10 10 10 12.5		10			<u>50</u> 7"	13.4			10			6	5.5	
		15 20			<u>50</u> 7"	9.2		SANDSTONE, CLAYEY, FINE GRAINED, TAN, VERY DENSE, MOIST	15	- - -		50	12.5	

	ENTECH						JOB NO.:
€Э	ENGINEERING, INC. 505 ELKTON DRIVE		PROFI	LE HOLE LOG			170209 FIG NO.:
	COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE: 3/31/17]	B-1

TEST PIT NO. 1 DATE EXCAVATED 2/15/2017 Job # 170209	,						TEST PIT NO. 2 DATE EXCAVATED 2/15/2017 CLIENT ARROYA LOCATION VOLLME	, INVE R ROA	STMI		rs Roy		<u>NE</u>
REMARKS				ure Shape	ure Grade	Type	IREMARKS				ure Shape	ure Grade	Type
	Depth (ft)	Symbol	Samples	Soil Struct	Soil Struct	USDA Soil		Depth (ft)	Symbol	Samples	Soil Struct	Soil Struct	USDA Soil
topsoil, sandy loam, brown weathered to formational silty sandstone, fine to coarse	1 2	¥		gr ma	w	2A 4	topsoil, sandy loam, brown gravelly loamy sand, fine to coarse grained, tan	1	*		gr sg	w	2a 1
grained, reddish-tan	3 4						weathered silty sandstone, fine to coarse grained,	3			ma		4
	56						sandy claystone, olive-gray	5	×		ma		4A
	7							7					
	9 10							9 - 10 -					

Soil Structure Shape granular - gr platy - pl blocky - bl prismatic - pr single grain - sg massive - ma Soil Structure Grade weak - w moderate - m strong - s loose - l

				JOB NO.:
	TEST PI	T LOG		170209
				FIG NO.:
DRAWN:	DATE:		DATE: 3/31/17	B-Z

TEST PIT NO. 3 DATE EXCAVATED 3/28/2016 Job # 170209	•						TEST PIT NO. DATE EXCAVATED CLIENT LOCATION) ARROYA VOLLMEF		STM		rs Roy	ALA	NE
REMARKS	Depth (ft)	Symbol	Samples	Soil Structure Shape	Soil Structure Grade	USDA Soil Type	REMARKS		Depth (ft)	Symbol	Samples	Soil Structure Shape	Soil Structure Grade	USDA Soil Type
topsoil, sandy loam, brown gravelly loamy sand, fine to coarse grained, tan	1 2 3	۲		gr sg	W	2A 1			1 2 3					
sandy clay loam, very fine to coarse grained, tan-gray weathered clayey sandstone, very fine to coarse grained, tan-gray siltstone, very fine to fine grained, tan to reddish-tan	4 - 5 - 6 - 7 - 8			ma ma		3A 4A 4A			4 _ 5 _ 6 _ 7 _ 8 _					
	9 10								9 10					

Soil Structure Shape granular - gr platy - pl blocky - bl prismatic - pr single grain - sg massive - ma

\mathbf{O}	ENTECH ENGINEERING, INC.			TEST P	IT LOG		ſ	JOB NO.: 170209 FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907)	DRAWN:	DATE:		3/31/17	J	B-3

APPENDIX C: Laboratory Test Results

BORING NO. UNIFIED CLASSIFICATION SC TEST BY 1 BL 2-3 DEPTH(ft) AASHTO CLASSIFICATION JOB NO. 170209 CLIENT ARROYA INVESTMENTS PROJECT THE RETREAT AT TIMBER RIDGE **Sieve Analysis Grain Size Distribution** 100% **•** #10 #20 90% 80% **bercent Passing bercent Pass e #100** 20% 10% 0% 100 10 0.1 0.01 1 Grain size (mm) 110 Attor

0.5.	Percent	Atterberg
Sieve #	<u>Finer</u>	Limits
3"		Plastic Limit
1 1/2"		Liquid Limit
3/4"		Plastic Index
1/2"		
3/8"		
4	100.0%	Swell
10	97.2%	Moisture at start
20	94.9%	Moisture at finish
40	89.5%	Moisture increase
100	50.3%	Initial dry density (pcf)
200	34.3%	Swell (psf)

ENTECH ENGINEERING, INC.		LABORATORY TEST RESULTS				JOB NO.: 1702に9 FIG NO.:	
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE: 3/31/17		4-1	

BORING NO. 2 DEPTH(ft) 2-3 CLIENT PROJECT

AASHTO CLASSIFICATION ARROYA INVESTMENTS THE RETREAT AT TIMBER RIDGE

UNIFIED CLASSIFICATION

SM-SW

TEST BY

JOB NO.

BL

170209

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 2/4"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index	
3/8	100.0%	Swoll	
4	91.0% 69.0%	<u>Sweii</u> Moisture at start	
20 40	46.4% 31.9%	Moisture at finish Moisture increase	
100 200	15.7% 11.2%	Initial dry density (pcf) Swell (psf)	

ENTECH ENGINEERING, INC.		LABORATORY TEST RESULTS				
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE: 3/31/17]	6-2

U.S.	Percent	Atterberg
<u>Sieve #</u>	<u>Finer</u>	<u>Limits</u>
3"		Plastic Limit
1 1/2"		Liquid Limit
3/4"		Plastic Index
1/2"		
3/8"	100.0%	
4	93.7%	Swell
10	59.1%	Moisture at start
20	41.1%	Moisture at finish
40	31.1%	Moisture increase
100	19.9%	Initial dry density (pcf)
200	16.4%	Swell (psf)

JOB NO .: LABORATORY TEST NTECH 170209 RESULTS ENGINEERING, INC. FIG NO.: 505 ELKTON DRIVE DRAWN: DATE: CHECKED: DATE: C-3 COLORADO SPRINGS, COLORADO 80907 LLL 3/31/17

BORING NO. UNIFIED CLASSIFICATION TEST BY 1 SC BL DEPTH(ft) 5 AASHTO CLASSIFICATION JOB NO. 170209 CLIENT ARROYA INVESTMENTS PROJECT THE RETREAT AT TIMBER RIDGE Sieve Analysis Grain Size Distribution 100% #10 #40 90% 80% Percent Passing 60% 50% 50% 40% 30% 20% 🗨 #1¢¢ #200 20% 10% 0% 100 10 0.1 0.01 1 Grain size (mm)

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index
4	100.0%	<u>Swell</u>
10	99.4%	Moisture at start
20	98.4%	Moisture at finish
40	97.1%	Moisture increase
100	69.4%	Initial dry density (pcf)
200	47.6%	Swell (psf)

>	ENTECH ENGINEERING, INC.		LABORATO RESULTS	DRY TEST		JOB NO.: 170209 FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:		DATE: 3/31/17	C-4

PROJECT	THE RETREA	T AT TIMBER RI	DGE		
		(Sieve Analy Grain Size Distr	sis ibution	
100% 90% 80% 70% 50% 50% 40% 20% 10% 0%		10	1 Grain size (m	#20 #40 #100 #100 0.1 m)	\$200 \$200
U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8" 4 10 20 40 100 200	Percent Finer 100.0% 98.9% 93.8% 89.4% 82.4% 76.6%			Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index <u>Swell</u> Moisture at start Moisture at finish Moisture increase Initial dry density (pcf)	11.5% 20.8% 9.4% 103 1280

6	ENTECH ENGINEERING, INC.		LABORAT RESULTS	ORY TEST		JOB NO. 1702 0 FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE: 3/3/17	C-5

UNIFIED CLASSIFICATION AASHTO CLASSIFICATION

<u>TEST BY</u> JOB NO. BL 170209

CL

BORING NO. TP-2 DEPTH(ft) 5-6

ARROYA INVESTMENTS

DEPTH(ft) ASSIFICATION JOB NO. 6-8 170209 CLIENT ARROYA INVESTMENTS PROJECT THE RETREAT AT TIMBER RIDGE **Sieve Analysis Grain Size Distribution** 100% #10 • #100 90% 80% **Beccent Passing** 60% 50% 40% 30% 20% #200 20% 10% 0% 10 0.1 100 1 0.01 Grain size (mm)

U.S.	Percent	Atterberg
<u>Sieve #</u>	Finer	Limits
3"		Plastic Limit
1 1/2"		Liquid Limit
3/4"		Plastic Index
1/2"		
3/8"		
4	100.0%	Swell
10	99.8%	Moisture at start
20	99.3%	Moisture at finish
40	98.9%	Moisture increase
100	93.3%	Initial dry density (pcf)
200	60.6%	Swell (psf)

JOB NO.: ENTECH LABORATORY TEST 1702.09 RESULTS **ENGINEERING, INC.** FIG NO .: 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907 DRAWN: DATE: CHECKED: DATE: 6-6 3/31/17 LLL

BORING NO.

TP-3

	UNIFIED CLASSIFICATION
	AASHTO CLASSIFICATION
COTMENITO	

CL

TEST BY BL

CONSOLIDATION TEST RESULTS

SAMPLE FROM:	1	DEPTH(ft)	5
DESCRIPTION	SAND,	VERY CLAY	ΎEY
NATURAL UNIT DRY	WEIGH [*]	T (PCF)	108
NATURAL MOISTURE	CONT	ENT	14.9%
SWELL/CONSOLIDAT	ION (%)	0.2%

JOB NO.	170209
CLIENT	ARROYA INVESTMENTS
PROJECT	THE RETREAT AT TIMBER RIDGE

\diamond	ENTECH ENGINEERING, INC.		SWELL CONSOLIDATION TEST RESULTS					JOB NO.: 170209
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	Л	DRAWN:	DATE:	CHECKED:	3/31/17		L-7

APPENDIX D: Soil Survey Descriptions

El Paso County Area, Colorado

40—Kettle gravelly loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 368g Elevation: 7,000 to 7,700 feet Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand

Bt - 16 to 40 inches: gravelly sandy loam

C - 40 to 60 inches: extremely gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016

El Paso County Area, Colorado

41—Kettle gravelly loamy sand, 8 to 40 percent slopes

Map Unit Setting

National map unit symbol: 368h Elevation: 7,000 to 7,700 feet Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand

Bt - 16 to 40 inches: gravelly sandy loam

C - 40 to 60 inches: extremely gravelly loamy sand

Properties and qualities

Slope: 8 to 40 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016

Map Unit Description: Pring coarse sandy loam, 3 to 8 percent slopes—El Paso County Area, Colorado

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Loamy Park (R048AY222CO) Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Other soils Percent of map unit: Hydric soil rating: No

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016

APPENDIX E: Percolation Test Results

Client: Test Locat	Arroya Invion:	restments The Retreat at Timb	er Ridge		Job Numb	er: 170209			
PERCO Date Holes	LATION S Prepared:	HOLES - #1 2/16/2017			Date Hole	Completed:	2/1	7/2017	
Hole No. 1	2.41		Hole	No. 2		Hole No. 3			
Depth: <u>Trial</u>	34" Time (<u>min.)</u>	Water Level <u>Change (in.)</u>	Depth <u>Tri</u>	n: 36" Time <u>ial (min.)</u>	Water Level <u>Change (in.)</u>	Depth: 3	Time (<u>min.)</u>	Wate Leve <u>Change</u>	er el <u>(in.)</u>
1 2 3	10 10 10	1/8 0 1/8	1 2 3	10 2 10 3 10	0 0 1/8	1 2 3	10 10 10	0 0 0	
Perc Rate ((min./in.):	80Average P	Perc I	Rate (min./in.): (min./in.)	<u> </u>	Perc Rate (1	min./in.):	240)
PROFIL	E HOLE				Date Profile Ho	ble Completed:	2/1	6/2017	
<u>Depth</u> 0-3' 3-15' 3 5	0 Blows / ft. 0 Blows / 11	Visual Classification Sand, clayey, fine gr Sandstone, very clay @ 2' " @ 4'	<u>i</u> ained, gro vey, fine g	een brown grained, green b	rown	<u>Remarks</u> Sandstone I No Ground	Bedrock at water	3'	
5 LTAR = 0	0 Blows 7 7"	@ 9 [.] r square foot per day.							
Remarks:	* - Due to	slow percolation rate	and shall	ow bedrock, a d	esigned system o	r additional drill	ing is reco	mmended	
GPS Coo Observer:	rdinates Graham E	: 38° 59' 03.3" spenlaub	N, 104	4° 39' 17.6 By:	" W				
		CH			PERCOLATI	ON TEST RES	ULTS		JOB NO.: 170209
50 CC	5 ELKTON DRIVI	E IGS, COLORADO 80907		DRAWN:	DATE:	CHECKED:	DATE: 3/3(//		fig no.: E-1

Date Holes Prepared: 2/16/2017 Date Hole Completed: 2/17/2017 Hole No. 1 Depth: $36''$ Depth: $36''$ Depth: $31''$ Water Depth: $36''$ Depth: $31''$ Water Trime Level Trime Level Trime Level Trime Level Trime Change (in.) Trial (min.) 1 100 $1/8$ $1 100$ $1/8$ $1 100$ $7/22 100$ 0 $2 100$ $3/8$ $2 100$ $3/7Prec Rate (min./in.): 80 Perc Rate (min./in.): 27 Perc Rate (min./in.): 27Average Perc Rate (min./in.) 44PROFILE HOLE Date Profile Hole Completed: 2/16/2017Depth Sand, slightly silty, fine to coarse grained, tan14-15'$ Sandstone, clayey, fine to coarse grained, tan 14-15' Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' No Groundwater 19 Blows / ft. @ 2' 7 Blows / ft. @ 4' 6 Blows / ft. @ 9 UTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	
Hole No. 1 Depth: $36"$ Hole No. 2 36" Hole No. 2 36" Hole No. 3 Depth: $31"$ Hole No. 3 Depth: $31"$ Hole No. 3 Depth: $31"$ Water Water Trial (min.) Change (in.) Trial (min.) Change 1 10 1/8 1 10 1/8 1 10 7/2 2 10 0 2 10 3/8 2 10 5/2 3 10 1/8 3 10 3/8 3 10 3/2 Perc Rate (min./in.): 27 Perc Rate (min./in.): 27 Perc Rate (min./in.): 27 Average Perc Rate (min./in.) 44 PROFILE HOLE Date Profile Hole Completed: 2/16/2017 Depth Sand, slightly silty, fine to coarse grained, tan Sandstone, clayey, fine to coarse grained, tan Sandstone, clayey, fine to coarse grained, tan Sandstone, ft. @ 2' 7 Blows / ft. @ 2' 7 Blows / ft. @ 2' 7 Blows / ft. @ 4' 6 Blows / ft. @ 9' LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	
Depth: $36''$ Depth: $36''$ Depth: $31''$ Water Water Water Water Water Level Time Level Time Level Trial (min.) Change (in.) $1/8$ 1 10 $7/7$ 2 10 0 2 10 $3/8$ 2 10 $5/7$ 3 10 $1/8$ 3 10 $3/8$ 3 10 $3/8$ 2 10 $5/7$ Average Perc Rate (min./in.): 27 Perc Rate (min./in.): 27 Average Perc Rate (min./in.) 44 PROFILE HOLE Date Profile Hole Completed: $2/16/2017$ Depth Sand, slightly silty, fine to coarse grained, tan Sandstone, clayey, fine to coarse grained, tan Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' No Groundwater 19 Blows / ft. @ 2' 7 Blows / ft. @ 2' 7 Blows / ft. @ 9' LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	
WaterWaterWaterWaterWaterTimeLevelTimeLevelTimeLevelInableChange (in.)Trial(min.)Change (in.)Trial(min.)1101/81101/811021002103/82105/3101/83103/83103/Perc Rate (min./in.):80Perc Rate (min./in.):27Perc Rate (min./in.):27Average Perc Rate (min./in.)4444PROFILE HOLEDate Profile Hole Completed:2/16/2017DepthVisual ClassificationRemarks0-14'Sand, slightly silty, fine to coarse grained, tanSandstone, clayey, fine to coarse grained, brown19 Blows / ft. @ 2'7 Blows / ft. @ 2'7 Blows / ft. @ 9'Sandstone Feet per gallon.LTAR = 0.35 gallons per square foot per day.Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon.Remarks:	
Trial Trial (min.)Change (in.)Trial Trial (min.)Trial (min.)Trial (min.)Trial (min.)Change (in.)Trial (min.)Change (in.)Change (in.)Trial (min.)Change (in.)Trial (min.)Change (in.)Trial (min.)Trial (min.)Change (in.)Trial (min.)Trial (min.)Trial (min.)Trial (min.)Trial (min.)Trial (min.	er
Iria(min.)Change (in.)Irial(min.)Change (in.)Irial(min.)(in.) 7.3 21002103/83103/83103/8Perc Rate (min./in.):80Perc Rate (min./in.):27Perc Rate (min./in.):27Perc Rate (min./in.):27Average Perc Rate (min./in.)4444PROFILE HOLEDate Profile Hole Completed:2/16/2017DepthVisual ClassificationRemarks0-14'Sandstone, clayey, fine to coarse grained, tanSandstone Bedrock at 14'14-15'Sandstone, clayey, fine to coarse grained, brownSandstone Bedrock at 14'19 Blows / ft. @ 2'7 Blows / ft. @ 9'2'LTAR = 0.35 gallons per square foot per day.Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon.Remarks:	'el
1 10 1/8 1 10 1/8 1 10 1/8 2 10 0 2 10 3/8 2 10 5/4 3 10 1/8 3 10 3/8 3 10 3/8 Perc Rate (min./in.): 80 Perc Rate (min./in.): 27 Perc Rate (min./in.): 27 Average Perc Rate (min./in.) 44 44 44 44 44 PROFILE HOLE Date Profile Hole Completed: 2/16/2017 2/16/2017 Depth Visual Classification Remarks 5and, slightly silty, fine to coarse grained, tan 5andstone, clayey, fine to coarse grained, tan 14-15' Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' No Groundwater 19 Blows / ft. @ 2' 7 Blows / ft. @ 2' 7 Blows / ft. @ 9' 2.7 square feet per gallon. LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks: Remarks:	<u>e (1n.)</u>
$\frac{2}{3} \frac{10}{10} \frac{1}{18} \frac{2}{3} \frac{10}{378} \frac{2}{3} \frac{10}{378} \frac{3}{378} \frac{3}{378} \frac{10}{378} \frac{3}{378} \frac{3}{378$	8
3 10 1/8 3 10 3/8 3 10 3/8 Perc Rate (min./in.): 27 Perc Rate (min./in.): 27 Perc Rate (min./in.): 27 Average Perc Rate (min./in.) 44 44 44 44 PROFILE HOLE Date Profile Hole Completed: 2/16/2017 Depth Visual Classification Remarks 0-14' Sand, slightly silty, fine to coarse grained, tan Sandstone, clayey, fine to coarse grained, tan 14-15' Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' No Groundwater 19 Blows / ft. @ 2' 7 Blows / ft. @ 4' 6 Blows / ft. @ 9' LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	0
Perc Rate (min./in.): 80 Perc Rate (min./in.): 27 Perc Rate (min./in.): 27 Average Perc Rate (min./in.) 44 44 44 44 44 PROFILE HOLE Date Profile Hole Completed: 2/16/2017 Depth Visual Classification Remarks 0-14' Sand, slightly silty, fine to coarse grained, tan Sandstone Bedrock at 14' 14-15' Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' No Groundwater 19 Blows / fi. @ 2' 7 Blows / fi. @ 4' 6 Blows / fi. @ 9' LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	0
Average Perc Rate (min./in.) 44 PROFILE HOLE Date Profile Hole Completed: 2/16/2017 Depth Visual Classification Remarks 0-14' Sand, slightly silty, fine to coarse grained, tan Sandstone, clayey, fine to coarse grained, tan 14-15' Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' No Groundwater 19 Blows / ft. @ 2' 7 Blows / ft. @ 4' 6 Blows / ft. @ 9' Sandstone per day. LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Surger 3) = 2.7 square feet per gallon. Sandstone per day. Remarks: Sandstone per day. Sandstone per day.	7
PROFILE HOLE Date Profile Hole Completed: 2/16/2017 Depth Visual Classification Remarks 0-14' Sand, slightly silty, fine to coarse grained, tan Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' 14-15' Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' No Groundwater 19 Blows / ft. @ 2' 7 Blows / ft. @ 4' 6 Blows / ft. @ 9' LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks: Remarks:	
Depth Visual Classification Remarks 0-14' Sand, slightly silty, fine to coarse grained, tan Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' 14-15' Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' 19 Blows / ft. @ 2' 7 Blows / ft. @ 4' Blows / ft. @ 9' LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks: Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon.	
0-14' Sand, slightly silty, fine to coarse grained, tan 14-15' Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' 19 Blows / ft. @ 2' 7 Blows / ft. @ 4' No Groundwater 6 Blows / ft. @ 9' LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	
14-15' Sandstone, clayey, fine to coarse grained, brown Sandstone Bedrock at 14' 19 Blows / ft. @ 2' 7 Blows / ft. @ 4' No Groundwater 6 Blows / ft. @ 9' LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	
19 Blows / ft. @ 2' 7 Blows / ft. @ 4' 6 Blows / ft. @ 9' LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	
19 Blows / ft. @ 2' 7 Blows / ft. @ 4' 6 Blows / ft. @ 9' LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	
7 Blows / ft. @ 4' 6 Blows / ft. @ 9' LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	
LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	
LTAR = 0.35 gallons per square foot per day. Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	
Soil Treatment Area (Soil Type 3) = 2.7 square feet per gallon. Remarks:	
Remarks:	
Remarks:	
Remarks:	
GPS Coordinates: 38° 59' 07.0" , 104° 39' 29.2" W	
Observer: Graham Espenlaub By:	
<i>by</i> .	

0	ENTECH ENGINEERING, INC.		PERCOLAT	TION TEST RE	SULTS	JOB NO.: 170200 FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE: 3/31/17	E-2

July 11, 2017

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

Arroya Investments P.O. Box 50223 Colorado Springs, Colorado 80949

Attn: Peter Martz

Re: Final Submittal – Response Letter The Retreat at Timber Ridge – 2.5+ Acre Lots Colorado Springs, Colorado

Dear Mr. Martz:

As requested, we have submitted a Soils, Geology, Geologic Hazards, and Wastewater Study report for the above referenced site. This letter is in response to the Colorado Geological Survey Review Letter dated June 12, 2017, File No. PUD173; El Paso County, CO; CGS Unique No. EP-17-0048.

• Entech Engineering, Inc. April 12, 2017. Soils, Geology and Geologic Hazard Study, The Retreat at Timber Ridge – 2.5+ Acre Lots, Vollmer Road and Arroya Lane, El Paso County, CO, Entech Job No. 170209.

We have reviewed the Colorado Geological Survey response to the study and agree with their comments and recommendations. Additional recommendations regarding mitigation across the site provided in the report by Entech should be followed.

We trust this has provided you with the information you required. If you have any questions or need additional information, please do not hesitate to contact us.

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Logan L. Langford

Logan L. Langford Geologist

LLL

Encl.

Entech Job Nos. 170209 AA projects\2017\170209 response ltr

Appendix E

vised 6/13/2014	100									Result	1.07
Ren		Laboratory			9-2313					Lab MRL	60'0
		ov Certified	Information	L.	one: 303-65			le):		MCI.	4
		or Completed I	d Laboratory	lytical Laborato	e Pho			(II) (On Schedu		Analytical Method	EPA 300.0
Laboratory Report Form Water CAS	Denver, CO 80246-1530 nkingwater@state.co.us	Section II (Supplied	aboratory ID: CO 0015	aboratory Name: Colorado Ana	ontact Person: Customer Servic	omnents:	d by Public Water System)	Sample P	pleted by Certified Laboratory)	CAS No	7681-49-4
ganic Chemicals Certified I WQCD - Drinking	Cherry Creek Drive South, (303) 758-1398; cdphe.dri	c Water System)	L.	T	Phone #: 719-227-0072 C	Do Samples Need to be Composited BY THE LAB?	Section III (Supplied or Complete	Facility ID (On Schedule):	ction IV Inorganic Chemicals (Com	Analyte Name	Fluoride
Inor	4300 Fax	for Completed by Publi	THE PARTY WAS AN AND A					lector: Stephanie Schwe	Sec	Lab Sample II)	170217005-01
		Section 1 (Sumplies	0121724	LFH-1	: Mark Vollc			16/17 Col		I ab Analysis Date	2/17/17
	Colorado Departza of Publik Health ard Environmen		PWSID#: CO-	System Name:	Contact Person	Comments:		Sample Date: 2/		Lab Receipt Date	2/17/17

NT: Not Tested Lab MRL: Laboratory Minimum Reporting Level BDL: Below Laboratory MRL. A less than (<) may also used.

mg/L: Milligrams per Liter MCL: Maximum Contaminant Level

ed 4/13/2015	IOC									Result	(mg/L) RDL	0.002	0.015	BDL	BDL	0.001	BDL	0.001	BDL	142.7	BDL
Revis		aboratory)			-2313					Lab MRL	0.001	0.001	0.001	0.001	0.001	0.001	0.0001	0.001	0.001	0.1	0.001
		v Certified I	niormation	2	ne: 303-659			le):		MCL.	0.006	0.01	2	0.004	0.005	0.1	0.002	N/N	0.05	V/N	0.002
		or Completed b	T TROOLATOLA I	lytical Laborato	e Pho			ID (On Schedu		Analytical	EPA 200.8	EPA 200.7	EPA 200.8								
boratory Report Form Vater CAS	dcompliance.com/login	Section JI (Sumplied	oratory ID: CO 0015	oratory Name: Colorado Ana	tact Person: Customer Servic	iments:	by Public Water System)	Sample Pt	sted by Certified Laboratory)	CAS No	7740-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7439-97-6	7440-02-0	7782-49-2	7440-23-5	7440-28-0
sanic Chemicals Certified La WQCD - Drinking V	uit Online at http://www.wgo	Water System)	Lab	Lab	Phone #: Con	Do Samples Need to be Composited BY THE LAB?	Section III (Supplied or Completed	Facility ID (On Schedule):	ion IV Inorganic Chemicals (Compl	Analyte Name	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Mercury	Nickel	Selenium	Sodium	Thallium
Inorg	Subm	or Completed by Public Water System Informat	THE FAILURE PRIMA AND AN TANK AL					cctor: Stephanie Schwe	Scoti	Lab Sample ID	170217005-01A										
		ction I (Supplied Public	21724	,FH-1	Mark Volle			5/17 Coll		Lub Analysis Date	2/22/17	2/22/17	2/22/17	2/22/17	2/22/17	2/22/17	2/22/17	2/22/17	2/22/17	2/24/17	2/22/17
	Colorado Department of Public Health anticonnear	Š	PWSID#: CO-0]	System Name: 1	Contact Person:	Comments:		Sample Date: 2/1		Lab Kecenpt Date	2/17/17	2/17/17	21/1/12	2/17/17	2/1/1/2	11/1/1/2	21/1/1/2	2/17/17	2/17/17	2/1/1/2	2/1//1/2

NT: Not Tested Lab MRL: Laboratory Minimum Reporting Level BDI.: Below Laboratory MRL. A less than (<) may also used.

mg/L: Milligrams per Liter MCL: Maximum Contaminant Level

Customer ID: 20040H Account ID: Z01034 Project #: 009-616 ANALYTICAL REPORT

Stuart Nielson Colorado Analytical Laboratories, Inc.

L	ab San	ple ID	B16917-001					
Custom	er Sam	n <mark>ple ID</mark>	170217005-	01 - Lfh-1 - F	PWSID: CO	0121724 - LFH-1		
				sampled or	n 02/16/17 (@ 0906 by Stephanie Sch	wenke	
				Precision*	Detection		Analysis	
Parameter	Units	Code	Result	+/-	Limit	Method	Date / Time	Analyst
Gross Alpha	pCi/L	Т	0.0	0.0	1.5	SM 7110 B	3/2/17 @ 0840	LD
Gross Beta	pCI/L	Т	0.0	2.1	2.2	SM 7110 B	3/2/17 @ 0840	LD
Radium-226	pCI/L	Т	0.0	0.2	0.1	SM 7500-Ra B	3/3/17 @ 0825	LD
Radium-228	pCi/L	T	0.0	0.8	0.8	EPA Ra-05	3/14/17 @ 1257	JR
Radon	pCi/L	Т	345	25	13.9	SM 7500-Rn B	2/17/17 @ 1500	AN

Certification ID's: CO/EPA CO00008; CT PH-0152; KS E-10265; NJ CO008; NYSELAP (NELAC Certified) 11417; RI LAO00284; WI 998376610, TX T104704256-15-6

*Variability of the radioactive decay process (counting error) at the 95% confidence level, 1.96 sigma.

Codes: (T) = Total (D) = Dissolved (S) = Susspended (R) = Total Residual (PD) = Potentially Dissolved <= Less Than

			10		A T - Landa T La					
				ides certifie	eu Lavorator	mor round			Kevision	6/13/2014
				WQCD - DI	rinking Water	CAS			J	
Colorado Department		43	00 Cherry (Creek Drive	South; Denvei	, CO 80246-1530				AU
of Public Hickleh and Environment		F	ax: (303) 7.	58-1398; cd	phe.drinkingw	ater@state.co.us				
	Section	I (Supplied or Completed by P	sblic Water Sy	/stcm)		Section II (Supplie	ed or Completed	by Certified L	aboratory)	
	Å	ublic Water System Informatio	E			Certified L	aboratory Inform	nation		
PWS ID: CO01	21724				Laboratory ID: CC	00008				
System Name:]	. A-1 .				Laboratory Name:	Hazen Research, Inc.				
Contact Person			Phone #:		Contact Person: Je	ssica Axen		Phone #: 303-;	279-4501	
Comments:			Do Samples N	Veed to be	Comments:					
			Composited E	3Y THE LAB?						
			Secti	on III (Supplied	d or Completed by	Public Water System)				
Sample Date:	02/16/2017	Collector: Stephanie Schwenke	Facility ID (On Schedule):	Sam	ole Pt ID (On Schedule):				
			Section IV R	Ladionuclides (S	Supplied or Compl	eted by Certified Laborat	ory)			
Lab Receipt Date	Lab Analysis Date	Lab Sample ID	A1	nalyte Name ((Code)	CAS No.	Analytical Method	MCL	Lab MRL	Result
2100/21/00	03/02/2017	R16917-001	Gross Alpt	us Including U	ranium (4002)	12587-46-1	SM 7110 B	N/A	1.5	0.0(±0.0)
			Com	bined Uraniun	u (4006)	7440-61-1	D2907-97	30 ug/L		
02/17/2017	03/03/2017	B16917-001	R	adium -226 (4	020)	13982-63-3	SM 7500-Ra B	N/A	0.1	0.0(±0.2)
02/17/2017	03/14/2017	B16917-001	R	adium -228 (4	030)	15262-20-1	EPA Ra-05	N/A	0.8	0.0(±0.8)
02/17/2017	03/02/2017	B16917-001	-	Gross Beta (41	(00)	12587-47-2	SM 7110 B	50 pCi/L*	2.2	0.0(±2.1)
			Total .	Dissolved Soli	ds (1930)		EPA 160.3	NIA		
*The MCL fo	r Gross Beta F	Particle Activity is 4 mrem/yes	ur. Since there	s is no simple o	conversion betwee	en mrem/year and pCi/L	EPA considers 5	50 pCi/L to b	e the level o	f concern.
			Section	V Calculated V	Values					
		A/A	Gross Alph	a Excluding U	ranium (4000)	Calculated V	alue	15 pCi/L	N/A	
	4	17.14	Combined F	kadium {-226 /	& -228} (4010)	Calculated V	alue	5 pCi/L	N/A	
E	: Not Tested					ug/L: Microgram	is per Liter			
La	b MRL: Labor	ratory Minimum Reporting Le	vel			pCi/L: Picocurie	s per Liter			
BI	NL: Below Lab	voratory MRL. A less than sig	n (<) may als	o be used		MCL: Maximum	Contaminant Lo	evel		

MCL: Maximum Contaminant Level

Drinking	
Water	
Chain	
of Custo	
dy	

						·	-			1
	and a second	Sampler Name: Stephanic Schwenke	Email: stuartnielson@coloradolab.com	Phone:303-659-2313 Fax:303-659-2315	City: Brighton State: CO Zip: 80601	Address: <u>240 S. Main St.</u>	Contact Name: <u>Stuart Nielson</u>	Company Name: <u>Colorado Analytical</u>	Report To Information	
PHASE I. I		PO No.	Email:	Phone: Fax:	City: State: Zip:	Address:	Contact Name:	Company Name: <u>Same As Report To</u>	Bill To Information (If different from report to)	(
I. V Drinking Water Analyses (check an	NA OLT P. SAT MARKA M. BRITAN	Send Rooms to State: Yes 🗆 No 🖂	Compliance Samples: Yes 🕅 No 🗌	County: El Paso	T125 R65w 6 th Pm City: Colorado Spgs State: CO Zip: 80908	System Address: Ne 1/4 Nw 1/4 527	System Name: Lfti-1	PWSID: C00121724	State Form / Project Information	
alvsis) Subcontract Analys			www.coloradolah.com	Phone: 303-659-2313 Fax: 303-659-2315	Lakewood CO 80228	Lakewood Lab 17860 W. Cedar Dr. Suite 101	240 South Main Street Brighton, CO 80601	Brighton Lab	Colorado Analytical	

	Kennqu	1.~		Instruc						02/16/17	Date		Task	
1	ished By:		•	tions:Please					LF	0906	Time		Number	
Ľ	A Realized			print on state fi					DAN BOT	170217005-01	Client Sampi			:
CUII	// 7/16			orms but do not				141	TLES	LFH-I	le ID / EP Cod			
	Received			submit to		 			 	6	No	fContainers		
	By:			CDI				 			10.0	1 COMMINENS	_	
				HE. Th							Resid (mg/l P/A S	ual Chlorino) iamples Only		
				anks!							Tota	Coliform P	/A	
											504.	EDB/DBC	P	
	Date/										505	Pests/PCBs		
	Lime										515.4	4 Herbicides		PH
											524.2	2 VOCs		ASE
		Deli		C/S							525.2	2 SOCs-Pest		I, I
	Reli	vered		Info;							531.1	l Carbamate	s	ĻV
	inquis	Via:									547 (Glyphosate		Dric
	thed I	H	5								548.]	Endothall		licing
	dy:	137	- F								549.2	2 Diquat		g W
		S	Ý								524.2	2 TTHMs		ater
			(552.2	2 HAA5s		Ana
	Dat										Lead	/Copper		lyse
	e/l'in	harge									Nitra	te		
	16:		\sim								Nitri	te		eck
		Ter	-	Sea							Fluo	ride		
	2.5	np.	A	s Pre:	Þ						Inorg	anics		ysis)
	<i>M</i>	°Сл		sent Y							Alk./	Lang. Index		
		8	7	8							TOC	, DOC (Circ	le)	
	Υ	Sam	A	No							SUVA	, UV 254 (Circ	le)	
	9	pie F	3	T T										
	12	es. Yr	0	eadspu						\boxtimes	Gros	s Alpha/Beta	a	Sabe
	Dat	No.	₩ (ace Y						\boxtimes	Radi	um 226		iontri
	20/	No II	42	8	d					\boxtimes	Radi	um 228		act A
	A Linu		12	No	Б					\boxtimes	Rado	m		unaly
	02.		Ľ	7							Uran	ium		Ĭ

FEDEX

Ś

Report To: Mark Volle Company: JDS Hydro Consultants 545 E. Pikes Peak Ave Suite 300 Colorado Springs CO 80903 **Analytical Results**

TASK NO: 170217005

Bill To: Jim Morley Company: SR Water 20 Boulder Crescent St. Colorado Springs CO 80903

Task No.: 170217005 Client PO: Client Project: LFH-1 CO-0121724

Date Received: 2/17/17 Date Reported: 3/6/17 Matrix: Water - Drinking

Customer Sample ID LFH-1 Sample Date/Time: 2/16/17 Lab Number: 170217005-01

Test	Result	Method	ML	Date Analyzed	Analyzed By
Bicarbonate	155.5 mg/L as CaCO3	SM 2320-B	0.1	2/20/17	VDB
Calcium as CaCO3	6.3 mg/L	SM 3111-B	0.1	2/24/17	MBN
Carbonate	4.0 mg/L as CaCO3	SM 2320-B	0.1	2/20/17	VDB
Langelier Index	-0.43 units	SM 2330-B		2/24/17	SAN
pH	8.44 units	SM 4500-H-B	0.01	2/17/17	MBN
Temperature	20 °C	SM 4500-H-B	1	2/17/17	MBN
Total Alkalinity	159.5 mg/L as CaCO3	SM 2320-B	0.1	2/20/17	VDB
Total Dissolved Solids	456 mg/L	SM 2540-C	5	2/23/17	ISG

Abbreviations/ References:

ML = Minimum Level = LRL = RL mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mis = Most Probable Number Index/ 100 mis Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

240 South Main Street / Brighton, CO 80601-0507 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 / Fax: 303-659-2315 Page 1 of 3

	Nitr	ate and N	Nitrite as	Nitrogen (Certified La	aboratory Re	port Form			Revise	d 4/13/2015
Colored Department Colored Department of Path (tablit addiavionited		Submit (WQ Online at	CD - Drin) http://ww	king Water w.wqcdcor	r CAS npliance.com	/login				XON
Section I (Sumilied o	yr Comoleted by	Public Ws	ater System)			Section II (S	undied or Com	nlated her Car	tified I al	Ismotono	
Public W	Vater System In	uformation				IV IF WELLARD	Certified Lahor	atory Inform	nation	UI dHUL VI	
WSID#: CO-0121724					Laborator	y ID: CO 0015		rename from			
ystem Name: LFH-1					Laborator	y Name: Colora	do Analytical L	aboratory			
contact Person: Mark Volle		Id	hone #: 719	-227-0072	Contact P	erson: Custome	r Service	Phone: 3	03-659-23	313	
omments:					Commen	ts:					
Section III (Supplied or Comp	pleted by Public	Water Sys	(tem)		Secti	ion IV (Supplied	or Completed b	by Certified L	aboratory		
Sample Collector Facility ID O	n Schedule Sar	nple Pt II)	Confirmation?	Lab Receipt	Lab Analysis	I aboratory	Analyte	Analytical	MCL	Lab MRI.	Result
LAUCE	5	schedule		Date	Uate	Nample 113 #		Method	(mg/L)	(mg/L)	(mg/L)
/16/17 tephanic Schwenk	_			2/17/17	2/17/17	170217005-01	Nitrate Nitrogen	EPA 300.0	10	0.1	BDL
/16/17 cephanie Schwenk				2/17/17	2/17/17	170217005-01	Nitrite Nitrogen	EPA 300.0	-	0.1	BDL

NT: Not Tested Lab MRI.: Laboratory Minimum Reporting Level BIDL: Below Laboratory MRI., A less than (<) may also used.

mg/L: Milligrams per Liter MCI.: Maximum Contaminant Level

d 4/13/2015	/SOC											Result	BDL	BDL	BDL	BDL.	BDL	BDL	BDL	BDL.	BDL	BDL	BDI.	BDL	BDL	BDI.	BDL	BDL	BDL	BDL	BDL	BDL	BDL	1/2 3/6/17
Revise	VOC	aboratory				-2313						Lab MRL (uo/L)	0.02	0.1	0.2	0.2	9.0	-	0.7	0.1	0.02	6.0	0.2	1	0.6	9.0	0.2	0.4	6	10.0	0.01	0.04	0.02	170217005-01
		nv Certified I	Information		LI.	one: 303-659						MCL (ue/L)	0.2	70	50	2	N/A	N/A	N/A	3	0.2	40	2	200	400	6	7	20	100	2	0.05	0.4	0.2	
	_	d or Completed	ed Laboratory		alytical Laborato	ce Ph				ID (On Schedule)	aboratory)	Analytical Method	EPA 504.1	EPA 515.4	EPA 515.4	EPA 525.2	EPA 531.1	EPA 531.1	EPA 531.1	EPA 525.2	EPA 525.2	EPA 531.1	EPA 505	EPA 515.4	EPA 525.2	EPA 525.2	FPA S15.4	F.PA 549.2	FPA 548.1	EPA 505	EPA 504.1	EPA 525.2	EPA 505	
ratory Report Form ter CAS	compliance.com/logir	Section II (Supplier	Certifi	atory ID: CO 00063	atory Name: Colorado Ana	ot Person: Customer Servio	(ents:		Public Water System)	Sample Pt	- Completed by Certified L	CAS No.	96-12-8	94-75-7	93-72-1	15972-60-8	116-06-3	1646-88-4	1646-87-3	1912-24-9	50-32-8	1563-66-2	57-74-9	75-99-0	103-23-1	117-81-7	85-85-7	85-00-7	145-73-3	72-20-8	106-93-4	76-44-8	1024-57-3	than sign (<) may also be used.
ganic Chemicals Certified Laboratory WOCD - Drinking Water C/	nit Online at http://www.wqcd	: Water System)	tion	Labor	Labor	Phone #: 719-227-0072 Contac	Do Samples Need to be Composited BY THE LAB?		Section V (Supplied or Completed by	twenk Facility ID (On Schedule):	nthetic Organic Chemicals (Supplied or	Analyte Name	Dibromochloropropane	2,4,-D	2,4.5-TP	Alachlor	Aldicarb	Aldicarb sulfone	Aldicarb sulfoxide	Atrazine	Benzo(a)pyrene	Carbofuran	Chlordane	Dalapon	Di(2-ethylhexyl)adipate	Di(2-cthylhexyl)phthalate	Dinosch	Diquat	Endothall	Endrin	Ethylene dibromide	Heptachlor	Heptachlor epoxide	nant Level BDL Below Laboratory MRL A less
Org	Subi	ed or Completed by Publi	ic Water System Informs							Collector: Stephanie Sci	Section VJ Sy	Lab Sample ID	170217005-01E	170217005-01G	170217005-01G	170217005-01H	170217005-011	170217005-011	170217005-011	170217005-0111	170217005-01H	170217005-011	170217005-01F	D10-500712021	11/021/2005	170217005-01H	170217005-01G	170217005-01K	170217005-01J	170217005-01F	170217005-01F	170217005-01H	170217005-01F	Liter MCL: Maximum Contami
		ction I (Suppli	Publi	121724	JFH-1	Mark Volle		,	1724	6/17		Lab Analysis Date	2/24/17	3/1/17	3/1/17	2/23/17	3/2/17	3/2/17	3/2/17	2/23/17	2/23/17	3/2/17	2/24/17	3/1/17	2/23/17	2/23/17	3/1/17	2/23/17	2/23/17	2/24/17	2/24/17	2/23/17	2/24/17	Micrograms per
Ċ	Colorado Department of Public Health read Environment	X	1	PWSID#: CO-0	System Name: 1	Contact Person:	Comments:		PWSID#: CO-012	Sample Date: 2/1		Lab Receipt Date	2/17/17	2/17/17	2/17/17	2/17/17	2/17/17	2/17/17	2/17/17	2/17/17	2/17/17	21/1/1/2	2/17/17	/1//1/7	/1//1/7	11//1/7	11/1/1/2	11/1.1/2	2/1//17	11/1/17	2/1//17		1.1/1.1/2	NT: Not Tested ug/L:

Page 1 of 4

			Result	('T/Bn)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDI.	BDI.
			Lab MRL	(ng/1.)	0.1	0.1	0.02	0.1	-	0.04	0.1	0.1	0.07	-
			MCL	(rt/8m)	1	50	0.2	40	200	-	500	0.5	4	9
	ID (On Schedule):	aboratory)	Analytical	Method	EPA 505	EPA 505	EPA 505	EPA 505	I:PA 531.1	EPA 515.4	EPA 515.4	EPA 505	EPA 525.2	EPA 505
thlic Water System)	Sample Pt	ompleted by Certified La	CAS No.		1 18-74-1	77-47-4	58-89-9	72-43-5	23135-22-0	87-86-5	1918-02-1	1336-36-3	122-34-9	8001-35-2
Section V (Supplied or Completed by Pub	chwenk Facility ID (On Schedule):	synthetic Organic Chemicals (Supplied or C	Analyte Name		Hexachlorobenzene	Hexachlorocyclopentadienc	Lindane	Methoxychlor	Oxamyl	Pentachlorophenol	Picloram	Polychlorinated hiphenyl's	Simazine	Toxaphene
	Collector: Stephanic Se	Section VI S	Lab Sample ID		170217005-01F	170217005-01F	170217005-01F	170217005-01F	170217005-011	170217005-01G	170217005-01G	170217005-01F	170217005-01H	170217005-01F
21724	6/17		Lab Analysis	Date	2/24/17	2/24/17	2/24/17	2/24/17	3/2/17	3/1/17	3/1/17	2/24/17	2/23/17	2/24/17
PWSID#: CO-01.	Sample Date: 2/1		Lab Receipt	Date	2/17/17	2/17/17	2/17/17	2/17/17	2/17/17	2/17/17	2/17/17	2/17/17	2/17/17	2/17/17

NT: Not Tested ug/L: Micrograms per Liter MCL: Maximum Contaminant Level BDL Below Laboratory MRL A less than sign (<) may also he used.

170217005-01

212. 3/8/17

Report To: Mark Voile **Company: JDS Hydro Consultants** 545 E. Pikes Peak Ave Suite 300 Colorado Springs CO 80903

Lab Number: 170217005-01

Analytical Results

TASK NO: 170217005

Bill To: Jim Morley Company: SR Water 20 Boulder Crescent St. Colorado Springs CO 80903

Task No.: 170217005 **Client PO:** Client Project: LFH-1 CO-0121724

Customer Sample ID _ LFH-1 Sample Date/Time: 2/16/17 Date Received: 2/17/17 Date Reported: 3/6/17 Matrix: Water - Drinking

Test	Result	Method	ML	Date Analyzed
Chlavida	5.0 ···· - 1/		0.6	014714
	5.8 mg/L	EPA 300.0	0.1 mg/L	2/////
Cyanide-Free	< 0.005 mg/L	EPA 335.4	0.005 mg/L	2/24/17
E-Coli	< 1 mpn/100ml	Colitert	1 mpn/100mi	2/18/17
Sulfate	142.1 mg/L	EPA 300.0	0.1 mg/L	2/17/17
Total Coliform	93 mpn/100ml	Colliert	1 mpn/100mi	2/18/17
Total Organic Carbon	0.8 mg/L	SM 5310-C	0.5 mg/L	2/23/17
Turbidity	2.49 NTU	SM 2130-B	0.01 NTU	2/17/17
<u>Total</u>				
Aluminum	0.053 mg/L	EPA 200.8	0.001 mg/L	2/22/17
Calcium	2.5 mg/L	EPA 200.7	0.1 mg/L	2/22/17
Соррег	0.0026 mg/L	EPA 200.8	0.0008 mg/L	2/22/17
iron	0.602 mg/L	EPA 200.7	0.005 mg/L	2/24/17
Lead	0.0005 mg/L	EPA 200.8	0.0001 mg/L	2/22/17
Magnesium	0.39 mg/L	EPA 200.7	0.02 mg/L	2/22/17
Manganese	0.0259 mg/L	EPA 200.8	0.0008 mg/L	2/22/17
Potassium	1.5 ma/L	EPA 200.7	0.1 mg/L	2/22/17

2/24/17 MBN 2/22/17 TCD 2/22/17 MBN 2/22/17 TCD 2/22/17 MBN EPA 200.7 0.1 ma/L 1.6 mg/L 0.0001 mg/L EPA 200.8 2/22/17 TCD < 0.0001 mg/L Strontium 0.037 mg/L EPA 200.8 0.005 mg/L 2/22/17 TCD **Total Hardness** SM 2340-B 0.1 mg/L as CaCO3 7.7 mg/L as CaCO3 2/24/17 MBN EPA 200.8 0.0002 mg/L TCD < 0.0002 mg/L 2/22/17 0.004 mg/L EPA 200.8 0.001 mg/L 2/22/17 TCD

Abbreviations/ References:

Silver

Uranium

Zinc

ML = Minimum Level = LRL = RL mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mis = Most Probable Number Index/ 100 mis Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

240 South Main Street / Brighton, CO 80601-0507 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 / Fax: 303-659-2315 Page 1 of 4

Analyzed By

ШG

VDB

VDB

ЫG

VDB

ISG

MBN

TCD

MBN

TCD

2/17/17

2/24/17

2/18/17

2/17/17

2/18/17

2/23/17

2/17/17

2/22/17

2/22/17

2/22/17

Report To: Mark Volie Company: JDS Hydro Consultants 545 E. Pikes Peak Ave Suite 300 Colorado Springs CO 80903

Analytical Results

TASK NO: 170217005

Bill To: Jim Morley Company: SR Water 20 Boulder Crescent St. Colorado Springs CO 80903

Task No.: 1702170 Client PO: Client Project: LFH-1 C	005 00-0121724	Date Received: 2/17/17 Date Reported: 3/6/17 Matrix: Water - Drinking										
Customer Sample ID Sample Date/Time: 2 Lab Number: 2	LFH-1 2/16/17 170217005-01											
Test	Result	Method	ML.	Date Analyzed	Analyzed By							
<u>Total</u> Zinc	0.005 mg/L	EPA 200.8	0.001 mg/L	. 2/22/17	TCD							

Abbreviations/ References:

ML = Minimum Level = LRL = RL mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

240 South Main Street / Brighton, CO 80601-0507 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 / Fax: 303-659-2315 Page 2 of 4

170217005 2/2

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

ANALYTICAL SUMMARY REPORT

March 02, 2017

Colorado Analytical Laboratories Inc PO Drawer 507 Brighton, CO 80601

Work Order: C17020566 Quote ID: C4542 - 624, 625, 1,4-Dioxane

Project Name: 170217005 LFH-1 CO-0121724

Energy Laboratories, Inc. Casper WY received the following 1 sample for Colorado Analytical Laboratories Inc on 2/21/2017 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C17020566-001	170217005-01 LFH-1	02/16/17 0:00	02/21/17	Drinking Water	Azeotropic Distilation Separatory Funnel Liquid-Liquid Ext. Semi-Volatile Organic Compounds 624-Purgeable Organics Volatile Compounds by Azeotropic Distillation

The results as reported relate only to the item(s) submitted for testing. The analyses presented in this report were performed at Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these test results, please call.

Report Approved By:

20

Digitally signed by Randy Horton Date: 2017.03.02 10:49:28 -07:00

	Trust our People. Trust our Data.	Billings, MT 800.735.4489 • Casper, WY 888.235.051 College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711
CLIENT:	Colorado Analytical Laboratories inc	
Project:	170217005 LFH-1 CO-0121724	Report Date: 03/02/17

CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Work Order:

C17020566

LABORATORY ANALYTICAL REPORT Prepared by Casper, WY Branch **Client:** Colorado Analytical Laboratories Inc Report Date: 03/02/17 Project: 170217005 LFH-1 CO-0121724 Collection Date: 02/16/17 Lab ID: C17020566-001 DateReceived: 02/21/17 Client Sample ID: 170217005-01 LFH-1 Matrix: Drinking Water MCL/ Analyses **Result Units** Qualifiers RL QCL Method Analysis Date / By VOCS BY AZEOTROPIC DISTILLATION 1.4-Dioxane ND ug/L 1.0 SW8260M 02/27/17 11:16 / eli-b - Analysis by direct aqueous injection of the sample distillate. A deuterated version of 1,4-Dioxane was added to the sample prior to distillation and used to quantitate the 1.4-Dioxane and account for any variations in the analysis or distillation. VOLATILE ORGANIC COMPOUNDS Acetone ND ug/L 20 E624 02/24/17 19:19 / eli-b Acetonitrile ND ug/L 20 E624 02/24/17 19:19 / eli-b Acrolein ND ug/L 20 F624 02/24/17 19:19 / eli-b Acrylonitrile ND ug/L 20 E624 02/24/17 19:19 / eli-b Benzene ND ug/L 1.0 E624 02/24/17 19:19 / eli-b Bromobenzana ND ug/L 1.0 E624 02/24/17 19:19 / ell-b Bromochloromethane ND ug/L 1.0 E624 02/24/17 19:19 / eli-b Bromodichloromethane E624 ND ug/L 1.0 02/24/17 19:19 / eli-b Bromoform ND ug/L 1.0 E624 02/24/17 19:19 / eli-b Bromomethane ND ug/L E624 1.0 02/24/17 19:19 / eli-b Carbon disulfide ND ug/L 1.0 E624 02/24/17 19:19 / eli-b Carbon tetrachloride ug/L ND E624 1.0 02/24/17 19:19 / eli-b Chlorobenzene ND ug/L 1.0 E624 02/24/17 19:19 / eli-b Chlorodibromomethane ND 1.0 ug/L E624 02/24/17 19:19 / eli-b Chloroethane ND ug/L 1.0 02/24/17 19:19 / ell-b E624 2-Chloroethyl vinvl ether ug/L ND 1.0 E624 02/24/17 19:19 / eli-b Chloroform ND ug/L 1.0 E624 02/24/17 19:19 / eli-b Chloromethane ug/L ND 1.0 E624 02/24/17 19:19 / eli-b 2-Chlorotoluene ND ug/L 1.0 E624 02/24/17 19:19 / eli-b 4-Chlorotoluene ND ug/L 1.0 E624 02/24/17 19:19 / eli-b 1.2-Dibromoethane ND ug/L 1.0 E624 02/24/17 19:19 / eli-b Dibromomethane ug/L ND 1.0 E624 02/24/17 19:19 / ell-b 1,2-Dichlorobenzene ND ug/L 1.0 E624 02/24/17 19:19 / eli-b 1.3-Dichlorobenzene ug/L E624 ND 1.0 02/24/17 19:19 / eli-b 1.4-Dichlorobenzene ND ug/L 1.0 E624 02/24/17 19:19 / eli-b Dichlorodifluoromethane ug/L E624 ND 10 02/24/17 19:19 / eli-b 1.1-Dichloroethane ND ug/L 1.0 E624 02/24/17 19:19 / eli-b 1.2-Dichloroethane ug/L 1.0 ND E624 02/24/17 19:19 / eli-b 1.1-Dichloroethene ND ug/L 1.0 E624 02/24/17 19:19 / eli-b cis-1,2-Dichloroethene ND ug/L 1.0 E624 02/24/17 19:19 / ell-b trans-1,2-Dichloroethene ND ug/L 1.0 E624 02/24/17 19:19 / eli-b 1,2-Dichloropropane ND ug/L 1.0 E624 02/24/17 19:19 / eli-b 1,3-Dichloropropane 02/24/17 19:19 / eli-b ND ug/L 1.0 E624 2,2-Dichloropropane ND ug/L 1.0 E624 02/24/17 19:19 / eli-b 1,1-Dichloropropene ND ug/L E624 1.0 02/24/17 19:19 / eli-b cis-1,3-Dichloropropene ND ug/L E624 1.0 02/24/17 19:19 / eli-b trans-1,3-Dichloropropene ND ug/L 1.0 E624 02/24/17 19:19 / eli-b Ethylbenzene ND ug/L 1.0 E624 02/24/17 19:19 / eli-b

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Colorado Analytical Laboratories IncProject:170217005 LFH-1 CO-0121724Lab ID:C17020566-001Client Sample ID:170217005-01 LFH-1

Report Date: 03/02/17 Collection Date: 02/16/17 DateReceived: 02/21/17 Matrix: Drinking Water

				MCL	
Analyses	Result	Units	Qualifiers RL	QCL Method	Analysis Date / By
VOLATILE OPGANIC COMPOLINDS					
	MD:	uedi	2.0	E604	02/24/117 10-10 / oli b
Methyl ethyl ketone		ug/L ug/l	2.0	E024 E624	
Methyl isobutyl ketone	ND	ug/L	10	5624	02/24/17 19:19 / ell b
Methylene chloride	ND	ug/L	10	E024 E624	02/24/17 19:19 / eli-0
Nanbthalene	MD	ug/L ug/l	0.50	5824	02/24/17 19-19 / ell-b
Styrene	ND	ug/L	1.0	E624	02/24/17 19-19 (ali-b
Tetrachiomethene	ND	ug/L	1.0	E624	02/24/17 10:10 / eli-b
1 1 1 2-Tetrachloroethane	ND	ug/L	1.0	E624	02/24/17 19:19 / eli-b
1 1 2 2-Tetrachloroethane	ND	nos/i	1.0	E624	02/24/17 19:19 / ell-b
Toluene	ND	ua/i	1.0	E624	02/24/17 19:19 / ell-b
Trichloroethene	ND	ua/i	1.0	E624	02/24/17 19:19 / eli-b
1.1.1-Trichloroethane	ND		1.0	E624	02/24/17 19-19 / eli-b
1.1.2-Trichloroethane	ND	un/i	10	E824	02/24/17 10:10 / eli-b
Trichlorofluoromethane	ND	ug/L	10	E624	02/24/17 19:19 (eli-b
1.2.3-Trichloropropane	ND	un/l	10	E624	02/24/17 19:19 / eli-b
Vinvi Acetate	ND	ua/L	1.0	E624	02/24/17 19:19 / eli-b
Vinvl chloride	ND	ug/l	1.0	E624	02/24/17 19:19 / eli-b
m+p-Xvlenes	ND	ua/L	1.0	E624	02/24/17 19:19 / eli-b
o-Xviene	ND	ua/L	1.0	E624	02/24/17 19:19 / eli-b
Xvienes, Total	ND	ua/L	1.0	E624	02/24/17 19:19 / eli-b
Surr: 1,2-Dichloroethane-d4	76.0	%REC	71-139	E624	02/24/17 19:19 / eli-b
Surr: p-Bromofiuorobenzene	92.0	%REC	80-127	E624	02/24/17 19:19 / eli-b
Surr: Toluene-d8	94.0	%REC	80-123	E624	02/24/17 19:19 / eli-b
SEMLVOI ATH E ORGANIC COMPOLINDS					
Acerantitiene	, MD	uedi	10	E825	02/27/17 10-27 / ali b
Acananhthylena	ND	ug/L	10	E625	02/27/17 19:27 / oli b
Anthracene		ugit	10	E025	02/27/17 19:27 / eli-b
Azohenzene	ND	ug/i	10	E025	02/27/17 19.27 / eli-b
Benzicine		ug/L	10	E025	02/28/17 13:27 / eli-b
Benzo(a)anthracene	ND	ua/l	10	E625	02/20/17 10:13 / eli-b
Benzo(a)pyrene	ND	ug/L	10	E625	02/27/17 19:27 / eli-b
Benzo(b)fluoranthene	ND	ua/i	10	E625	02/27/17 19:27 / eli-b
Benzo(a,h.i)perviene	ND	ua/L	10	E625	02/27/17 19:27 / eli-b
Benzo(k)fluoranthene	ND	- <u>a</u> - ua/L	10	E625	02/27/17 19:27 / eli-b
4-Bromophenyl chenyl ether	ND	um/h	10	E625	02/27/17 19:27 / eli-h
Butvibenzviphthaiate	ND	ua/i	10	E625	02/27/17 19:27 / eli-h
4-Chloro-3-methylphenoi	ND	uo/1_	10	E625	02/27/17 19:27 / eli-b
bis(-2-chloroethoxy)Methane	ND	ua/L	10	E625	02/27/17 19:27 / eli-b
bis(-2-chloroethyl)Ether	ND	ug/L	10	E625	02/27/17 19:27 / eli-b
bis(2-chloroisopropyl)Ether	ND	ua/L	10	E625	02/27/17 19:27 / eli-b
2-Chloronaphthaiene	ND	ua/L	10	E625	02/27/17 19:27 / eli-b
2-Chlorophenol	ND	ua/L	10	E625	02/27/17 19:27 / eli-b
		-0	••		

Report Definitions: RL - Analyte reporting limit. QCL - Quality contro! limit. MCL - Maximum contaminant level.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

 Client:
 Colorado Analytical Laboratories Inc

 Project:
 170217005 LFH-1 CO-0121724

 Lab ID:
 C17020566-001

 Client Sample ID:
 170217005-01 LFH-1

Report Date: 03/02/17 Collection Date: 02/16/17 DateReceived: 02/21/17 Matrix: Drinking Water

Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
				. –			
SEMI-VOLATILE ORGANIC COMPOUNDS	ND	1 ml		40		5005	00/07/47 40:07 / -11 h
4-Chiorophenyi phenyi ether		ug/L		10		5005	02/27/17 19:27 / ell-D
Unrysene Diata a tata data		ug/L		10		E023	02/27/17 19:27 / ell-D
Dietnyi prinalate		ugric		10		E023	02/27/17 19:27 / ell-b
		ug/L		10		E625	02/27/17 19:27 / ell-D
1,2-Dichlorobenzene	ND	ug/L		10		E625	U2/27/17 19:27 / ell-b
1,3-Dichlorobenzene	ND	ug/L		10		E625	U2/27/17 19:27 / ell-D
	ND	ug/L		10		E625	U2/2//17 19:27 / ell-b
3,3 - Dichlorobenzidine	ND	ug/L		10		E625	02/27/17 19:27 / ell-b
2,4-Dichlorophenol	ND	ug/L		10		E625	02/27/17 19:27 / ell-b
Dimethyl phthalate	ND	ug/L		10		E625	C2/27/17 19:27 / eli-b
Di-n-octyl phthalate	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
Dibenzo(a,h)anthracene	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
2,4-Dimethylphenol	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
4,6-Dinitro-2-methylphenol	ND	ug/L		50		E625	02/27/17 19:27 / eli-b
2,4-Dinitrophenol	ND	ug/L		50		E625	02/27/17 19:27 / eli-b
2,4-Dinitrotoluene	ND	ug/L		10		E625	02/27/17 19:27 / ell-b
2,6-Dinitrotoluene	ND	ug/L		10		E625	02/27/17 19:27 / ell-b
bis(2-ethylhexyl)Phthalate	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
Fluoranthene	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
Fluorene	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
Hexachlorobenzene	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
Hexachlorobutadiene	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
Hexachlorocyclopentadiene	ND	ug/L		10		E 6 25	02/27/17 19:27 / eli-b
Hexachloroethane	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
Indeno(1,2,3-cd)pyrene	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
Isophorone	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
n-Nitrosodimethylamine	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
n-Nitroso-di-n-propylamine	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
n-Nitrosodiphenylamine	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
2-Nitrophenol	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
4-Nitrophenol	ND	ug/L		50		E625	02/27/17 19:27 / eli-b
Naphthalene	ND	ug/L		10		E625	02/27/17 19:27 / eli-b
Nitrobenzene	ND	ug/L		10		E625	02/27/17 19:27 / ell-b
Pentachlorophenol	ND	ug/L		50		E625	02/27/17 19:27 / eli-b
Phenanthrene	ND	ua/L		10		E625	02/27/17 19:27 / eli-b
Phenol	ND	ua/L		10		E625	02/27/17 19:27 / eli-b
Pyrene	ND	ua/L		10		E625	02/27/17 19:27 / eli-b
1.2.4-Trichiorobenzene	ND	ua/L		10		E625	02/27/17 19:27 / eli-b
2 4 B-Trichlorophenol	ND	ua/)		10		E625	02/27/17 19:27 / eli-b
Surr: 2-Fluorobiphenvi	59.0	%REC	1	28-107		E625	02/27/17 19:27 / eli-b
Surr: 2-Fluorophenol	34.0	%REC		20-56		E625	02/27/17 19:27 / eli-b
Surr: Nitrobenzene-d5	63.0	%REC		32.94		F625	02/27/17 19:27 / eli-h
Sur Dhanalda	33.0	%REC		10.45		E625	02/27/17 19:27 / eli-b
Guit. FIIGHOPUS	00.0	701 YEL		10-10		2020	VELINI 10.21/ CH-W

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client Sample ID:	170217005-01 LFH-1	Matrix:	Drinking Water
Lab ID:	C17020566-001	DateReceived:	02/21/17
Project:	170217005 LFH-1 CO-0121724	Collection Date:	02/16/17
Client:	Colorado Analytical Laboratories Inc	Report Date:	03/02/17

					MCL			
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By	
·····								
SEMI-VOLATILE ORGANIC COMPOUNDS								
Surr: Terphenyl-d14	69.0	%REC		32-122		E625	02/27/17 19:27 / eli-b	
Surr: 2,4,6-Tribromophenol	60.0	%REC		21-130		E625	02/27/17 19:27 / eli-b	
					-			

The sample was received past the extraction prep hold time. The prep hold time was exceeded by 4.31 days.

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E624			· · ·				Ar	alytical Run:	R275391
Lab ID: ccv022417	Continuing C	alibration Ve	rification Standa	rd				02/24	/17 09:51
Acetone	40.8	ug/L	20	82	70	130			
Acetonitrile	60.0	ug/L	20	120	70	130			
Acrolein	59.2	ug/L	20	118	70	130			
Acrylonitrile	46.4	ug/L	20	93	70	130			
Benzene	4.80	ug/L	0.50	96	70	130			
Bromobenzene	4,56	ug/L	0.50	91	70	130			
Bromochloromethane	4.64	ug/L	0.50	93	70	130			
Bromodichloromethane	4.08	ug/L	0.50	62	70	130			
Bromoform	4.08	ug/L	0.50	82	70	130			
Bromomethane	5.56	ug/L	0.50	111	70	130			
Carbon disulfide	4.80	ug/L	0.50	96	70	130			
Carbon tetrachloride	3.70	ug/L	0.50	74	70	130			
Chiorobenzene	4.80	ug/L	0.50	96	70	130			
Chlorodibromomethane	4.32	ug/L	0.50	86	70	130			
Chloroethane	4.88	ug/L	0.50	98	70	130			
2-Chloroethyl vinyi ether	3.07	ug/L	1.0	61	70	130			S
Chloroform	4.36	ug/L	0.50	87	70	130			
Chloromethane	4.60	ug/L	0.50	92	70	130			
2-Chlorotoluene	4.84	ug/L	0.50	97	70	130			
4-Chlorotoluene	4.80	ug/L	0.50	96	70	130			
1,2-Dibromoethane	4.40	ug/L	0.50	88	70	130			
Dibromomethane	4.60	ug/L	0.50	92	70	130			
1,2-Dichlorobenzene	4.72	ug/L	0.50	94	70	130			
1,3-Dichlorobenzene	4.84	ug/L	0.50	97	70	130			
1,4-Dichlorobenzene	4.76	ug/L	0.50	95	70	130			
Dichlorodifluoromethane	3.87	ug/L	0.50	77	70	130			
1,1-Dichloroethane	4.40	ug/L	0.50	88	70	130			
1,2-Dichloroethane	3.78	ug/L	0.50	76	70	130			
1,1-Dichloroethene	4.20	ug/L	0.50	84	70	130			
cis-1,2-Dichloroethene	4.72	ug/L	0.50	94	70	130			
trans-1,2-Dichloroethene	4.64	ug/L	0.50	93	70	130			
1,2-Dichioropropane	5.20	ug/L	0. 5 0	104	70	130			
1,3-Dichloropropane	4.64	ug/L	0.50	93	70	130			
2,2-Dichloropropane	3.92	ug/L	0.50	78	70	130			
1,1-Dichloropropene	4.40	ug/L	0.50	88	70	130			
cis-1,3-Dichloropropene	4.56	ug/L	0.50	91	70	130			
trans-1,3-Dichloropropene	4.04	ug/L	0.50	81	70	130			
Ethylbenzene	4.84	u g/ L	0.50	97	70	130			
Methyl tert-butyl ether (MTBE)	3.68	ug/L	0.50	74	70	130			
Methyl ethyl ketone	42.8	ug/L	20	86	70	130			
Methyl isobutyl ketone	45.6	ug/L	20	91	70	130			
Methylene chloride	5.44	ug/L	0.50	109	70	130			
Naphthalene	4.88	ug/L	0.50	98	70	130			

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Ξ

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E624							Ar	alytical Run:	R275391
Lab ID:	ccv022417	Continuing Ca	libration Verifi	cation Standa	rd				02/24	/17 09:51
Styrene		4.76	ug/L	0.50	95	70	130			
Tetrachioro	ethene	4.60	ug/L	0.50	92	70	130			
1, 1, 1, 2-Tetr	achloroethane	4.24	ug/L	0.50	85	70	130			
1, 1, 2, 2-Tetr	achioroethane	4.96	ug/L	0.50	99	70	130			
Toluene		4.96	ug/L	0.50	99	70	130			
Trichloroeth	iene	4.80	ug/L	0.50	96	70	130			
1,1,1-Trichk	oroethane	3.75	ug/L	0.50	75	70	130			
1,1,2-Trichle	oroethane	4.76	ug/L	0.50	95	70	130			
Trichloroflug	promethane	3.34	ug/L	0.50	67	70	130			S
1,2,3-Trichle	oropropane	4.20	ug/L	0.50	84	70	130			
Vinyl Acetat	le	4.56	ug/L	1.0	91	70	130			
Vinyl chlorid	le	4.84	ug/L	0.50	97	70	130			
m+p-Xylene	5	9.76	ug/L	0.50	98	70	130			
o-Xylene		4.76	ug/L	0.50	95	70	130			
Xylenes, To	tal	14.5	ug/L	0.50	97	70	130			
Surr: 1,2-	Dichloroethane-d4			0.50	74	71	139			
Surr: p-B	romofluorobenzene			0.50	88	80	127			
Surr: Tolu	lene-d8			0.50	92	80	123			
Method:	E624								Batch:	R275391
Lab ID:	cs022417	Laboratory Co	ntroi Sample			Run: 5971/	\.I_170224A		02/24	/17 10:31
Acetone		41.6	ug/L	20	83	55	144			
Acetonitrile		60.4	ug/L	20	121	54	142			
Acrolein		49.6	ug/L	20	99	16	233			
Acrylonitrile		46.0	ug/L	20	92	76	127			
Benzene		4.96	ug/L	0.50	99	73	122			
Bromobenzo	ene	4.76	ug/L	0.50	95	74	129			
Bromochior	omethane	4.64	ug/L	0.50	93	66	120			
Bromodichic	promethane	4.44	ug/L	0.50	89	74	128			
Bromoform		4.36	ug/L	0.50	87	66	128			
Bromometh	ane	5.76	ug/L	0.50	115	51	123			
Carbon disu	lfide	4.92	ug/L	0.50	98	46	145			
Carbon tetra	ichlonde	3.80	ug/L	0.50	76	75	125			
Chiorobenze	ene	4.92	ug/L	0.50	98	80	123			
Chlorodibro	momemane	4.64	ug/L	0.50	93	74	125			
Chloroethan		5,04	ug/L	0.50	101	59	142			
2-Chicroeth	yi vinyi ether	2.74	ug/L	1.0	55	30	144			
Chiercon		4.40	ug/L	0.50	00	50	124			
	ane	4.04	ug/L	0.50	93	53	140			
4 Chieroteiu		0.04	ug/L	0.50	101	() 74	101			
4.2 Dibromo	othana	4.00	ug/L	0.50	94 00	(*) 70	128			
Dibromomot		4.40	ug/L	0.50	00	10	124			
Pipiouuouue	ardbe	4./0	ug/L	0.50	80	11	120			

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Trust our People. Trust our Data. www.energylab.com

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E624								Batch:	R275391
Lab (D: cs022417	Laboratory Co	ntrol Sample			Run: 5971/	A.I_170224A		02/24	/17 10:31
1,2-Dichlorobenzene	4.80	ug/L	0.50	96	74	124			
1,3-Dichlorobenzene	5.00	ug/L	0.50	100	77	122			
1,4-Dichlorobenzene	4.80	ug/L	0.50	96	76	126			
Dichlorodifluoromethane	4.36	ug/L	0.50	87	56	146			
1,1-Dichloroethane	4.5 6	ug/L	0.50	9 1	74	133			
1,2-Dichloroethane	3.76	ug/L	0.50	75	75	129			
1,1-Dichloroethene	4.28	ug/L	0.50	86	74	132			
cis-1,2-Dichloroethene	4.76	ug/L	0.50	95	81	122			
trans-1,2-Dichloroethene	5.08	ug/L	0.50	102	79	143			
1,2-Dichloropropane	5.20	ug/L	0.50	104	75	126			
1,3-Dichloropropane	4.32	ug/L	0.50	86	71	136			
2,2-Dichloropropane	4.00	ug/L	0.50	80	68	142			
1, 1-Dichloropropene	4.16	ug/L	0.50	83	70	131			
cis-1,3-Dichloropropene	4.12	ug/L	0.50	82	74	135			
trans-1,3-Dichloropropene	3.96	ug/L	0.50	79	76	149			
Ethylbenzene	4.92	ug/L	0.50	98	72	130			
Methyl tert-butyl ether (MTBE)	3.71	ug/L	0.50	74	72	120			
Methyl ethyl ketone	45.2	ug/L	20	90	45	130			
Methyl isobutyl ketone	49.2	ug/L	20	98	58	135			
Methylene chloride	5.64	ug/L	0.50	113	66	142			
Naphthalene	5.44	ug/L	0.50	109	69	124			
Styrene	4.84	ug/L	0.50	97	80	124			
Tetrachloroethene	4,68	ug/L	0.50	94	72	131			
1,1,1,2-Tetrachloroethane	4.16	ug/L	0.50	83	78	124			
1,1,2,2-Tetrachloroethane	4.72	ug/L	0.50	94	68	137			
Joluene	5.16	ug/L	0.50	103	72	135			
Irichloroethene	4.80	ug/L	0.50	96	85	126			
1,1,1-Inchloroethane	3.73	ug/L	0.50	75	63	120			
1,1,2-inchioroethane	4.68	ug/L	0.50	94	78	124			
	3.30	ug/L	0.50	66	72	120			S
	4.04	ug/L	0.50	81	64	138			
Vinyi Acetate	4.08	ug/L	1.0	82	31	124			
	5.12	ug/L	0.50	102	58	140			
m+p-Xylenes	9.84	ug/L	0.50	98	67	139			
o-Xylene	4.84	ug/L	0.50	97	74	135			
Aylenes, I otal	14./	ug/L	0.50	98	70	137			
Surr: 1,2-Dichloroethane-04			0.50	72	71	139			
Surr: p-Bromotiuoropenzene			0.50	87	80	127			
Surr: Toluene-do			0.50	92	80	123			
Lab ID: bik022417	Method Blank				Run: 5971A	.I_170224A		02/24/	17 11:30
Acetone	ND	ug/L	20						
Acetonitrile	ND	ug/L	20						

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result	Units	RĹ	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E624								Batch:	R275391
Lab ID:	bik022417	Method Blank				Run: 5971/	A.I_170224A		02/24	/17 11:30
Acrolein		ND	ug/L	20						
Acrylonitrile	ł	ND	ug/L	3.0						
Benzene		ND	ug/L	0.50						
Bromobenz	ene	ND	ug/L	0.50						
Bromochion	omethane	ND	ug/L	0.50						
Bromodichle	oromethane	ND	ug/L	0.50						
Bromoform		ND	ug/L	0.50						
Bromometh	ane	ND	ug/L	0.50						
Carbon disu	lfide	ND	ug/L	0.50						
Carbon tetra	achloride	ND	ug/L	0.50						
Chlorobenz	ene	ND	ug/L	0.50						
Chlorodibro	momethane	ND	ug/L	0,50						
Chloroethan	e	ND	ug/L	0.50						
2-Chloroeth	yl vinyl ether	ND	ug/L	1.0						
Chioroform		ND	ug/L	0.50						
Chlorometh	ane	ND	ug/L	0.50						
2-Chlorotolu	iene	ND	ug/L	0.50						
4-Chlorotolu	iene	ND	ug/L	0.50						
1,2-Dibromo	bethane	ND	ug/L	0.50						
Dibromome	thane	ND	ug/L	0.50						
1,2-Dichloro	benzene	ND	u g /L	0.50						
1,3-Dichloro	benzene	ND	ug/L	0.50						
1,4-Dichloro	benzene	ND	ug/L	0.50						
Dichlorodifiu	loromethane	ND	ug/L	0.50						
1,1-Dichloro	ethane	ND	ug/L	0.50						
1,2-Dichloro	ethane	ND	ug/L	0.50						
1,1-Dichloro	ethene	ND	ug/L	0.50						
cis-1,2-Dich	loroethene	ND	ug/L	0.50						
trans-1,2-Did	chloroethene	ND	ug/L	0.50						
1,2-Dichloro	propane	ND	ug/L	0.50						
1,3-Dichloro	propane	ND	ug/L	0.50						
2,2-Dichloro	propane	ND	ug/L	0.50						
1,1-Dichioro	propene	UN	ug/L	0.50						
cis-1,3-Dichi	loropropene	ND	ug/L	0.30						
trans-1,3-Die	chioropropene	UN	ug/∟	0.30						
Ethylbenzen		UN ND	ug/L	0.50						
Methyl tert-b		DN ND	ug/L	0.50						
Methyl isobu	Kelone		ug/L	20						
Mothylana	hyr Kelorie blorido		ugri	20						
Nanhthalata			ug/L	0.50						
Shaape	,		ug/L	0.50						
Tetrachieren	thone		ug/L	0.50						
renactionoe		DN	ug/L	0.50						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc.

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E624								Batch:	R275391
Lab ID:	blk022417	Method Blank				Run: 5971/	A.I_170224A		02/24	/17 11:30
1, 1, 1, 2-Tetr	achloroethane	ND	ug/L	0.50			-			
1, 1, 2, 2-Tetr	achloroethane	ND	ug/L	0.50						
Toluene		ND	ug/L	0.50						
Trichloroeth	ene	ND	ug/L	0.50						
1,1,1-Trichic	oroethane	ND	ug/L	0.50						
1,1,2-Trichk	proethane	ND	ug/L	0.50						
Trichlorofluc	promethane	ND	ug/L	0.50						
1.2.3-Trichic	propropane	ND	ua/L	0.50						
Vinvi Acetat	8	ND	ua/L	1.0						
Vinvi chlorid	ie.	ND	ua/L	0.40						
m+p-Xviene	8	ND	ua/i	0.50						
o-Xvlene	-	ND	ug/l	0.50						
Xvienes To	tal	ND	ug/l	0.50						
Surr 1 2-	Dichlomethane_d4	NB	uğı L	0.50	74	71	130			
Sum n.B	romofluorobanzana			0.50	00	20	100			
Surr Tol	iono_d8			0.50	3U 0.4	80	127			
Sun. Tolu				0.00	94	60	123			
Lab ID:	b17021110-001bms	Sample Matrix	Spike			Run: 5971/	A.I_170224A		02/24	/17 20:47
Acrolein		ND	ug/L	20	0	16	233			S 1
Acrylonitrile		48.8	ug/L	20	98	76	127			
2-Chloroethy	yl vinyl ether	3.44	ug/L	1.0	69	36	144			
Surr: 1,2-	Dichloroethane-d4			0.50	80	71	139			
Surr: p-Br	romofluorobenzene			0.50	95	80	127			
Surr: Tolu	iene-d8			0.50	100	80	123			
- 1 = This is a with the sam	a known very reactive compoun ple matrix.	d. The recovery of t	his compound was r	ormal in th	e Laborate	ory Control Sar	mple (LCS). The	e compound	appears to hav	/e reacted
Lab ID:	b17021110-001bmsd	Sample Matrix	Spike Duplicate			Run: 5971A	.[_170224A		02/24	/17 21:16
Acrolein		ND	ug/L	20	0	16	233		20	S 1
Acrylonitrile		48.8	ug/L	20	98	76	127	0.0	20	
2-Chloroethy	vl vinyl ether	3.66	ug/L	1.0	73	36	144	6.1	20	
Surr: 1,2-	Dichloroethane-d4		0 -	0.50	81	71	139			
Surr p-Br	romofluorobenzene			0.50	96	80	127			
Surr: Tolu	iene-d8			0.50	99	80	123			
- 1 = This is a with the sam	a known very reactive compoun ple matrix.	d. The recovery of t	his compound was n	ormal in th	e Laborato	ory Control Sar	nple (LCS). The	compound	eppears to hew	/e reacted
Lab ID:	b17021110-001bms	Sample Matrix	Spike			Run: 5971A	.I_170224A		02/24/	/17 18:21
Acetone		40.4	ug/L	20	81	55	144			
Acetonitrile		66.0	ug/L	20	132	54	142			
Benzene		4.60	ug/L	0.50	92	73	122			
Bromobenze	ene	4.60	ug/L	0.50	92	74	129			
Bromochloro	omethane	4.56	ug/L	0.50	91	66	120			
Bromodichlo	promethane	4,36	ug/L	0.50	87	74	128			
Bromoform		4.40	ug/L	0.50	88	66	128			
Bromometha	ane	5.88	ug/L	0.50	118	51	123			
			-							

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Quai
Method:	E624								Batch:	R275391
Lab ID:	b17021110-001bms	Sample Matrix	< Spike			Run: 5971/	A.I_170224A		02/24	/17 18:21
Carbon disu	līde	5.12	ug/L	0.50	102	46	_ 145			
Carbon tetra	ichloride	3.59	ug/L	0.50	72	75	125			S
Chlorobenze	ene	4.52	ug/L	0.50	90	80	123			
Chlorodibror	nomethane	4.52	ug/L	0.50	90	74	125			
Chloroethan	e	5.40	ug/L	0.50	108	59	142			
Chloroform		4.68	ug/L	0.50	82	68	124			
Chlorometha	ane	4.64	ug/L	0.50	93	53	146			
2-Chiorotolu	ene	4.88	ug/L	0.50	98	75	131			
4-Chlorotolu	ene	4.68	ug/L	0.50	94	74	129			
1,2-Dibromo	ethane	4.16	ug/L	0.50	83	76	124			
Dibromomet	hane	4.64	ug/L	0.50	93	77	125			
1,2-Dichloro	benzene	4.64	ug/L	0.50	93	74	124			
1,3-Dichlorol	benzene	4.88	ug/L	0.50	98	77	122			
1,4-Dichlorol	benzene	4.76	ug/L	0.50	91	76	126			
Dichlorodiflu	oromethane	4.32	ug/L	0.50	86	56	146			
1,1-Dichloro	ethane	4.24	ug/L	0.50	8 5	74	133			
1,2-Dichloro	ethane	3.48	ug/L	0.50	70	75	129			S
1,1-Dichloro	ethene	4.12	ug/L	0.50	82	74	132			
cis-1,2-Dichi	oroethene	4.48	ug/L	0.50	90	81	122			
trans-1,2-Dic	chloroethene	4.64	ug/L	0.50	93	79	143			
1,2-Dichloro	propane	4.92	ug/L	0.50	98	75	126			
1,3-Dichlorop	propane	4.24	ug/L	0.50	85	71	136			
2,2-Dichlorop	propane	3.60	ug/L	0.50	72	68	142			
1,1-Dichlorop	propene	4.04	ug/L	0.50	81	70	131			
cis-1,3-Dichl	oropropene	4.08	ug/L	0.50	82	74	135			
trans-1,3-Dic	hloropropene	3.97	ug/L	0.50	79	76	149			
Ethylbenzen	e	4.64	ug/L	0.50	93	72	130			
Methyl tert-b	utyl ether (MTBE)	3.63	ug/L	0.50	73	72	120			
Methyl ethyl	ketone	44.4	ug/L	20	89	45	130			
Methyl isobu	tyl ketone	51.2	ug/L	20	102	58	135			
Methylene ch	loride	5.44	ug/L	0.50	109	66	142			
Naphthalene		4.84	ug/L	0.50	97	69	124			
Styrene		4.56	ug/L	0.50	91	80	124			
Tetrachloroe	thene	4.44	ug/L	0.50	89	72	131			
1,1,1,2-Tetra	chloroethane	3.95	ug/L	0.50	79	78	124			
1,1,2,2-Tetra	chloroethane	4.88	ug/L	0.50	98	68	137			
Toluene		4.88	ug/L	0.50	98	72	135			
I richloroethe	ne	4.56	ug/L	0.50	91	85	126			
1,1,1-Trichlor	roethane	3.51	ug/L	0,50	70	63	120			
1,1,2-Trichlor	roethane	4.52	ug/L	0.50	90	78	124			
Irichlorofluor	omethane	3.29	ug/L	0.50	66	72	120			S
1,2,3-Trichlor	ropropane	3.90	ug/L	0. 5 0	78	64	138			
Vinyl Acetate	1	4.00	ug/L	1.0	80	31	124			

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPD Limit	Qual
Method: E62	24								Batch:	R275391
Lab ID: b13	7021110-001bms	Sample Matrix	<pre>spike</pre>			Run: 5971/	A.I_170224A		02/24	/17 18:21
Vinyl chioride		5.12	ug/L	0.50	102	58	140			
m+p-Xylenes		9.32	ug/L	0.50	93	67	139			
o-Xylene		4.44	ug/L	0.50	89	74	135			
Xylenes, Total		13.8	ug/L	0.50	92	70	137			
Surr: 1,2-Dich	loroethane-d4			0.50	80	71	139			
Surr: p-Bromo	ofluorobenzene			0.50	94	80	127			
Surr: Toluene-	-d8			0.50	101	80	123			
Lab ID: b17	7021110-001bmsd	Sample Matrix	c Spike Du	uplicate		Run: 5971/	A.I_170224A		02/24	/17 18:50
Acetone		44.0	ug/L	20	88	55	144	8.5	20	
Acetonitrile		65.6	ug/L	20	131	54	142	0.6	20	
Benzene		5.04	ug/L	0.50	101	73	122	9.1	20	
Bromobenzene		4.96	ug/L	0.50	99	74	129	7.5	20	
Bromochloromet	thane	4.80	ug/L	0.50	96	66	120	5.1	20	
Bromodichlorom	ethane	4.60	ug/L	0.50	92	74	128	5.4	20	
Bromoform		4.80	ug/L	0.50	96	66	128	8.7	20	
Bromomethane		6.00	ug/L	0.50	120	51	123	2.0	20	
Carbon disulfide		5.20	ug/L	0.50	104	46	145	1.6	20	
Carbon tetrachio	ride	3.97	ug/L	0.50	79	75	125	10	20	
Chlorobenzene		4.88	ug/L	0.50	98	80	123	7.7	20	
Chlorodibromom	ethane	4.76	ug/L	0.50	95	74	125	5.2	20	
Chloroethane		5.32	ug/L	0.50	106	59	142	1.5	20	
Chloroform		4.96	ug/L	0.50	87	68	124	5.8	20	
Chloromethane		4.88	ug/L	0.50	98	53	146	5.0	20	
2-Chlorotoluene		5.20	ug/L	0.50	104	75	131	6.3	20	
4-Chlorotoluene		5.04	ug/L	0.50	101	74	129	7.4	20	
1,2-Dibromoetha	ine	4.52	ug/L	0.50	90	76	124	8.3	20	
Dibromomethane	9	4.88	ug/L	0.50	98		125	5.0	20	
1,2-Dichlorobenz	zene	5.04	ug/L	0.50	101	74	124	8.3	20	
1,3-Dichlorobenz	zene	5.20	ug/L	0.50	104	11	122	5.3	20	
1,4-Dichlorobenz	zene	5.12	ug/L	0.50	90	70 50	120	7.5	20	
Dichlorodifiuoron	neinane	4.30	ug/L	0.50	0/	20	140	0.9	20	
1,1-Dichloroethal	ne	4.00	ug/L	0.50	94	74	133	9.9	20	
1,2-Dichloroethal	ne	3.70	ug/L	0.50	10	70	128	7.0	20	
r, I-Dichloroethe	ne	4.44	ug/L	0.50	08	24	132	1.5	20	
trans 1.2 Dichloroe		4.00	ug/L	0.50	102	70	142	0.0	20	
1 2-Dichlorence		J. 12 5 94	ug/L	0.50	102	75	176	8.3 6.3	20	
1.2-Dichlemoren	200	J.24 A BA	ug/L	0.00	03	71	120	0.0	20	
2.2-Dichloroprop		3.04	ug/L	0.50	20 70	88	140	0.6	20	
1 1-Dichloroprop	ane 200	J.30 A 44	ug/L	0.50	80	70	131	0.0	20	
cie_1 3_Dichloroo		4 40	ug/L	0.50	88	74	135	75	20	
trans_1 2 Diables	antonene	4 24	ug/L	0.50	95	76	140	7.5 8.8	20	
uans-1,5-Dichion	ohioheire	4.24	uy/L	0.50	00	70	143	0.0	20	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc.

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E624								Batch:	R275391
Lab ID: b17021110-001bmsd	Sample Matro	Spike Duplicate			Run: 5971/	A.I_170224A		02/24	/17 18:50
Ethylbenzene	5.00	ug/L	0.50	100	72	130	7.5	20	
Methyl tert-butyl ether (MTBE)	3.83	ug/L	0.50	77	72	120	5.5	20	
Methyl ethyl ketone	46.0	ug/L	20	92	45	130	3.5	20	
Methyl isobutyl ketone	51.2	ug/L	20	102	58	135	0.0	20	
Methylene chloride	5.72	ug/L	0.50	114	66	142	5.0	20	
Naphthalene	5.56	ug/L	0.50	111	69	124	14	20	
Styrene	4.84	ug/L	0.50	97	80	124	6.0	20	
Tetrachloroethene	4.72	ug/L	0.50	94	72	131	6.1	20	
1,1,1,2-Tetrachloroethane	4.20	ug/L	0.50	84	78	124	6.1	20	
1,1,2,2-Tetrachloroethane	5.20	ug/L	0.50	104	68	137	6.3	20	
Toluene	5.12	ug/L	0.50	102	72	135	4.8	20	
Trichloroethene	4.80	ug/L	0.50	96	85	126	5.1	20	
1,1,1-Trichloroethane	3.94	ug/L	0.50	79	63	120	12	20	
1,1,2-Trichioroethane	4.76	ug/L	0.50	95	78	124	5.2	20	
Trichlorofluoromethane	3.36	ug/L	0.50	67	72	120	2.3	20	S
1,2,3-Trichloropropane	4.20	ug/L	0.50	84	64	138	7.4	20	
Vinyl Acetate	4.20	u g /L	1.0	84	31	124	4.9	20	
Vinyl chloride	5.08	u g /L	0.50	102	58	140	0.8	20	
m+p-Xylenes	9.92	ug/L	0.50	99	67	139	6.2	20	
o-Xylene	4.80	ug/L	0.50	96	74	135	7.8	20	
Xylenes, Total	14.7	ug/L	0.50	98	70	137			
Surr: 1,2-Dichloroethane-d4			0.50	81	71	139			
Surr: p-Bromofluorobenzene			0.50	94	80	127			
Surr: Toluene-d8			0.50	100	80	123			

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Quai
Method:	E625								Batch	n: 107004
Lab ID:	MB-107004	Method Blank				Run: SV59	73N2.I_170227B		02/27/	/17 18:24
Acenaphthe	ne	ND	ug/L	10						
Acenaphthy	lene	ND	ug/L	10						
Anthracene		ND	ug/L	10						
Azobenzene	9	ND	ug/L	10						
Benzo(a)an	thracene	ND	ug/L	10						
Benzo(a)py	rene	ND	ug/L	10						
Benzo(b)flu	oranthene	ND	ug/L	10						
Benzo(g,h,i)	perylene	ND	ug/L	10						
Benzo(k)fiu	pranthene	ND	ug/L	10						
4-Bromophe	enyl phenyl ether	ND	ug/L	10						
Butyibenzyi	phthalate	ND	ug/L	10						
4-Chloro-3-r	nethylphenol	ND	ug/L	10						
bis(-2-chloro	ethoxy)Methane	ND	ug/L	10						
bis(-2-chlore	oethyi)Ether	ND	ug/L	10						
bis(2-chloro	isopropyi)Ether	ND	ug/L	10						
2-Chloronap	ohthalene	ND	ug/L	10						
2-Chlorophe	enol	ND	ug/L	10						
4-Chlorophe	enyl phenyl ether	ND	ug/L	10						
Chrysene		ND	ug/L	10						
Diethyl phth	alate	ND	ug/L	10						
Di-n-butyl pl	nthalate	ND	ug/L	10						
1,2-Dichloro	benzene	ND	ug/L	10						
1,3-Dichloro	benzene	ND	ug/L	10						
1,4-Dichloro	benzene	ND	u g /L	10						
3,3'-Dichlore	obenzidine	ND	ug/L	10						
2,4-Dichioro	phenol	ND	ug/L	10						
Dimethyl ph	thalate	ND	ug/L	10						
Di-n-octyl ph	nthalate	ND	ug/L	10						
Dibenzo(a,h)anthracene	ND	ug/L	10						
2,4-Dimethy	Iphenol	ND	ug/L	10						
4,6-Dinitro-2	-methylphenol	ND	ug/L	50						
2,4-Dinitropl	nenol	ND	ug/L	50						
2,4-Dinitroto	luene	ND	ug/L	10						
2,6-Dinitroto	luene	ND	ug/L	10						
bis(2-ethylhe	exyl)Phthalate	ND	ug/L	10						
Fluoranthen	9	ND	ug/L	10						
Fluorene		ND	ug/L	10						
Hexachlorob	enzene	ND	ug/L	10						
Hexachlorob	utadiene	ND	ug/L	10						
Hexachloroc	yclopentadiene	ND	ug/L	10						
Hexachioroe	thane	ND	ug/L	10						
Indeno(1,2,3	-cd)pyrene	ND	ug/L	10						
isophorone		ND	ug/L	10						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E625								Batc	h: 107004
Lab ID:	MB-107004	Method Blank				Run: SV59	73N2.I_170227B		02/27	7/17 18:24
n-Nítrosodir	methylamine	ND	ug/L	10						
n-Nitroso-di	i-n-propylamine	ND	ug/L	10						
n-Nitrosodi	phenylamine	ND	ug/L	10						
2-Nitrophen	loi	ND	ug/L	10						
4-Nitrophen	lol	ND	ug/L	50						
Naphthalen	e	ND	ug/L	10						
Nitrobenzer	1e	ND	ug/L	10						
Pentachloro	phenol	ND	ug/L	50						
Phenanthre	ne	ND	ug/L	10						
Phenol		ND	ug/L	10						
Pyrene		ND	ug/L	10						
1,2,4-Trichle	orobenzene	ND	ug/L	10						
2,4,6-Trichle	orophenol	ND	ug/L	10						
Surr: 2-F	luorobiphenyl			10	55	28	107			
Surr: 2-Fl	luorophenol			10	36	20	56			
Surr: Nitr	obenzene-d5			10	58	32	94			
Surr: Phe	enol-d5			10	35	19	45			
Surr: Ter	phenyl-d14			10	77	32	122			
Surr: 2,4,	6-Tribromophenol			10	58	21	130			
Lab ID:	LCS-107004	Laboratory Con	trol Sample			Run: SV59	73N2.I_170227B		02/27	717 18:55
Acenaphthe	ine	81.2	ug/L	10	81	58	99			
Acenaphthy	lene	76.5	ug/L	10	77	57	96			
Anthracene		79.5	ug/L	10	80	60	107			
Azobenzene	8	79.3	ug/L	10	79	56	100			
Benzo(a)ani	thracene	84.1	ug/L	10	84	62	114			
Benzo(a)pyr	rene	80.1	ug/L	10	80	62	108			
Benzo(b)flue	oranthene	88.6	ug/L	10	89	48	127			
Benzo(g,h,i)	perylene	81.6	ug/L	10	82	62	121			
Benzo(k)fluo	pranthene	79.2	ug/L	10	79	55	111			
4-Bromophe	enyl phenyl ether	83.0	ug/L	10	83	58	105			
Butylbenzyl	phthalate	91.6	ug/L	10	92	60	113			
4-Chloro-3-r	nethylphenol	65.7	ug/L	10	66	53	92			
bls(-2-chloro	pethoxy)Methane	73.9	ug/L	10	74	50	92			
bis(-2-chloro	pethyl)Ether	63.4	ug/L	10	63	44	82			
bis(2-chloroi	isopropyl)Ether	61.2	ug/L	10	61	56	87			
2-Chloronap	ohthalene	74.9	ug/L	10	75	56	95			
2-Chlorophe	nol	60.1	ug/L	10	60	47	76			
4-Chlorophe	enyl phenyl ether	75.8	ug/L	10	76	58	99			
Chrysene		81.9	ug/L	10	82	63	106			
Diethyl phth	alate	78.6	ug/L	10	79	58	103			
Dl-n-butyl pl	nthalate	87.6	ug/L	10	88	61	110			
1,2-Dichloro	benzene	61.5	ug/L	10	62	43	81			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E625								Batcl	h: 107004
Lab ID: LCS-107004	Laboratory Co	ntrol Sample			Run: SV59	73N2.I_170227B		02/27	/17 18:55
1,3-Dichlorobenzene	60.2	ug/L	10	60	41	- 79			
1,4-Dichlorobenzene	61.4	ug/L	10	61	42	79			
3,3'-Dichlorobenzidine	68.6	ug/L	10	69	51	93			
2,4-Dichlorophenol	64.7	ug/L	10	65	49	90			
Dimethyl phthalate	76.4	ug/L	10	76	58	104			
Di-n-octyl phthalate	88.3	ug/L	10	88	56	110			
Dibenzo(a,h)anthracene	80.4	ug/L	10	80	61	111			
2,4-Dimethylphenol	61.8	ug/L	10	62	45	89			
4,6-Dinitro-2-methylphenol	48.2	ug/L	50	48	37	105			
2,4-Dinitrophenol	39.7	ug/L	50	40	27	81			
2,4-Dinitrotoluene	87.7	ug/L	10	88	63	110			
2,6-Dinitrotoluene	75.5	ug/L	10	76	60	107			
bis(2-ethylhexyl)Phthalate	88.6	ug/L	10	89	56	108			
Fluoranthene	83.8	ug/L	10	84	63	110			
Fluorene	77.4	ug/L	10	77	60	99			
Hexachlorobenzene	78.2	ug/L	10	78	57	103			
Hexachlorobutadiene	67.5	ug/L	10	67	39	83			
Hexachlorocyclopentadiene	68.4	ug/L	10	6 8	39	91			
Hexachloroethane	59.6	ug/L	10	60	37	75			
Indeno(1,2,3-cd)pyrene	82.0	ug/L	10	82	59	109			
Isophorone	67.1	ug/L	10	67	42	102			
n-Nitrosodimethylamine	36.9	ug/L	10	37	20	45			
n-Nitroso-di-n-propylamine	71.5	ug/L	10	71	49	98			
n-Nitrosodiphenylamine	90.0	ug/L	10	90	61	108			
2-Nitrophenol	68.0	ug/L	10	68	51	96			
4-Nitrophenol	18.3	ug/L	50	18	15	36			
Naphthalene	71.6	ug/L	10	72	48	96			
Nitrobenzene	65.0	ug/L	10	65	51	91			
Pentachlorophenol	70.6	ug/L	50	71	53	109			
Phenanthrene	80.5	u g/ L	10	81	58	104			
Phenol	35.4	ug/L	10	35	27	45			
Pyrene	89.3	ug/L	10	89	64	108			
1,2,4-Trichlorobenzene	67.3	ug/L	10	67	49	85			
2,4,6-Trichlorophenol	64.9	ug/L	10	65	47	99			
Surr: 2-Fluorobiphenyl			10	63	28	107			
Surr: 2-Fluorophenol			10	35	20	56			
Surr: Nitrobenzene-d5			10	68	32	94			
Surr: Phenol-d5			10	42	19	45			
Surr: Terphenyl-d14			10	87	32	122			
Surr: 2,4,6-Tribromophenol			10	70	21	130			
Lab ID: B17021688-001CMS	Sample Matrix	Spike			Run: SV597	/3N2.I_170227B		02/27/	17 20:29
Acenaphthene	86.4	ug/L	10	86	58	99			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E625								Batch	n: 107004
Lab ID:	B17021688-001CMS	Sample Matrix	Spike			Run: SV59	73N2.I_170227B		02/27	/17 20:29
Acenaphthy	lene	83.0	ug/L	10	83	57	96			
Anthracene		86.4	ug/L	10	86	60	107			
Azobenzen	e	84.3	ug/L	10	84	56	100			
Benzo(a)an	thracene	90.3	ug/L	10	90	62	114			
Benzo(a)py	rene	80.9	ug/L	10	81	62	108			
Benzo(b)flu	oranthene	80.4	ug/L	10	80	48	127			
Benzo(g,h,i)	peryiene	80.5	ug/L	10	81	62	121			
Benzo(k)flue	oranthene	83.5	ug/L	10	83	55	111			
4-Bromophe	enyl phenyl ether	80.4	ug/L	10	80	5 8	105			
Butylbenzyl	phthalate	99.7	ug/L	10	100	60	113			
4-Chloro-3-r	methyiphenol	77.0	ug/L	10	77	53	92			
bis(-2-chlore	pethoxy)Methane	77.3	ug/L	10	77	50	92			
bis(-2-chiore	pethyl)Ether	66.7	ug/L	10	67	44	82			
bis(2-chloro	isopropyi)Ether	66.6	ug/L	10	67	56	87			
2-Chloronap	ohthalene	79.8	ug/L	10	80	56	95			
2-Chlorophe	enol	64.1	ug/L	10	64	47	76			
4-Chlorophe	enyl phenyl ether	84.5	ug/L	10	85	58	99			
Chrysene		85.9	ug/L	10	86	63	106			
Diethyl phth	alate	85.4	ug/L	10	85	58	103			
Di-n-butyl pl	hthalate	96.0	ug/L	10	96	61	110			
1,2-Dichloro	benzene	66.1	ug/L	10	66	43	81			
1,3-Dichloro	benzene	61.9	ug/L	10	62	41	79			
1,4-Dichloro	benzene	61.8	ug/L	10	62	42	79			
3,3'-Dichlon	obenzidine	69.1	ug/L	10	69	51	93			
2,4-Dichloro	phenol	68.4	ug/L	10	68	49	90			
Dimethyl ph	thalate	81.4	ug/L	10	81	58	104			
Di-n-octyl pł	nthalate	90.6	ug/L	10	91	56	110			
Dibenzo(a,h)anthracene	80.0	ug/L	10	80	61	111			
2,4-Dimethy	/iphenol	69.2	ug/L	10	69	45	87			
4,6-Dinitro-2	-methylphenol	58.9	ug/L	50	59	37	105			
2,4-Dinitropl	henol	5 4.8	ug/L	50	55	27	81			
2,4-Dinitroto	luene	82.5	ug/L	10	83	63	110			
2,6-Dinitroto	luene	80.8	ug/L	10	81	60	107			
bis(2-ethylho	exyl)Phthalate	92.0	ug/L	10	92	56	108			
Fluoranthen	e	88.0	ug/L	10	88	63	110			
Fluorene		80.1	ug/L	10	80	60	99			
Hexachlorot	enzene	82.5	ug/L	10	83	57	103			
Hexachlorok	outadiene	69.0	ug/L	10	69	39	83			
Hexachloroc	cyclopentadiene	68.1	ug/L	10	68	39	91			
Hexachioroe	thane	65.6	ug/L	10	66	37	75			
Indeno(1,2,3	3-cd)pyrene	82.3	ug/L	10	82	59	109			
Isophorone		71.3	ug/L	10	71	42	102			
n-Nitrosodin	nethylamine	41.5	ug/L	10	41	20	45			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E625			· · · · · · · ·					Batcl	h: 107004
Lab ID:	B17021688-001CMS	Sample Matrix	: Spike			Run: SV59	73N2.I_170227B		02/27	/17 20:29
n-Nitroso-di	-n-propylamine	76.9	ug/L	10	77	49	98			
n-Nitrosodip	henylamine	93.7	ug/L	10	94	61	108			
2-Nitrophen	ol	69.9	ug/L	10	70	51	96			
4-Nitrophen	ol	24.6	ug/L	50	25	15	36			
Naphthalen	e	76.0	ug/L	10	76	48	96			
Nitrobenzen	e	72.5	ug/L	10	73	51	91			
Pentachioro	phenol	89.2	ug/L	50	89	53	109			
Phenanthre	ne	85.1	ug/L	10	85	58	104			
Phenol		36.7	ug/L	10	37	27	45			
Pyrene		89.8	ug/L	10	90	64	108			
1,2,4-Trichle	probenzene	70.9	ug/L	10	71	49	85			
2,4,6-Trichle	prophenol	67.7	ug/L	10	68	47	99			
Surr: 2-Fl	luorobiphenyl		-	10	62	28	107			
Surr: 2-Fl	uorophenol			10	39	20	56			
Surr: Nitr	obenzene-d5			10	72	32	94			
Surr: Phe	nol-d5			10	35	19	45			
Surr: Ten	phenvl-d14			10	87	32	122			
Surr: 2,4,	6-Tribromophenol			10	75	21	130			
Lab ID:	B17021688-003CMS	Sample Matrix	Spike			Run: SV59	73N2.I_170227B		02/27	/17 21:31
Acenaphthe	ne	89.8	ug/L	10	90	58	99			
Acenaphthy	lene	82.2	ug/L	10	82	57	96			
Anthracene		73.2	ug/L	10	73	60	107			
Azobenzene	<u>)</u>	80.2	ug/L	10	80	56	100			
Benzo(a)an	thracene	85.1	ug/L	10	85	62	114			
Benzo(a)pyr	rene	77.0	ug/L	10	77	62	108			
Benzo(b)flue	oranthene	73.3	ug/L	10	73	48	127			
Benzo(g,h,i)	perylene	78.5	ug/L	10	79	62	121			
Benzo(k)fluo	pranthene	83.1	ug/L	10	83	55	111			
4-Bromophe	enyl phenyl ether	78.1	ug/L	10	78	58	105			
Butylbenzyl	phthalate	92.9	ug/L	10	93	60	113			
4-Chioro-3-r	nethylphenol	69.5	ug/L	10	69	53	92			
bis(-2-chloro	pethoxy)Methane	69.6	ug/L	10	70	50	92			
bis(-2-chloro	oethyl)Ether	58.4	ug/L	10	58	44	82			
bis(2-chloro	isopropyl)Ether	57.7	ug/L	10	58	56	87			
2-Chloronap	ohthalene	77.7	ug/L	10	78	56	95			
2-Chlorophe	enol	56.6	ug/L	10	57	47	76			
4-Chlorophe	enyl phenyl ether	82.9	ug/L	10	83	58	89			
Chrysene		82.0	ug/L	10	82	63	106			
Diethyl phth	alate	80.2	ug/L	10	80	58	103			
Dî-n-butyî pl	hthalate	86.9	ug/L	10	87	61	110			
1,2-Dichioro	benzene	61.5	ug/L	10	62	43	81			
1,3-Dichlore	benzene	59.3	ug/L	10	59	41	79			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E625								Batc	h: 107004
Lab ID:	B17021688-003CMS	Sampie Matrix	Spike			Run: SV59	73N2.I_170227B		02/27	/17 21:31
1,4-Dichloro	obenzene	57.9	ug/L	10	58	42	79			
3,3'-Dichlor	robenzidine	52.9	ug/L	10	53	51	93			
2,4-Dichlord	phenol	61.5	ug/L	10	62	49	90			
Dimethyl ph	thalate	74.3	ug/L	10	74	58	104			
Di-n-octyl pl	hthalate	82.5	ug/L	10	83	56	110			
Dibenzo(a,h	n)anthracene	75.9	ug/L	10	76	61	111			
2,4-Dimethy	viphenol	60.0	ug/L	10	60	45	87			
4,6-Dinitro-2	2-methylphenol	41.6	ug/L	50	42	37	105			
2,4-Dinitrop	henol	30.1	ug/L	50	30	27	81			
2,4-Dinitroto	bluene	86.9	ug/L	10	87	63	110			
2,6-Dinitroto	bluene	75.9	ug/L	10	76	60	107			
bis(2-ethylh	exyl)Phthalate	81.5	ug/L	10	82	56	108			
Fluoranthen	16	82.0	ug/L	10	82	63	110			
Fluorene		81.9	ug/L	10	82	60	99			
Hexachlorol	benzene	75.8	ug/L	10	76	57	103			
Hexachlorol	butadiene	69.3	ug/L	10	69	39	83			
Hexachlorod	cyclopentadiene	69.5	ug/L	10	70	39	91			
Hexachloroa	ethane	57.7	ug/L	10	58	37	75			
Indeno(1.2.3	3-cd)pyrene	73.4	ua/L	10	73	59	109			
Isophorone		68.4	ua/L	10	68	42	102			
n-Nitrosodin	nethylamine	27.8	ua/L	10	28	20	45			
n-Nitroso-di	-n-propylamine	68.7	ua/L	10	69	49	98			
n-Nitrosodip	henvlamine	84.0	ua/L	10	84	61	108			
2-Nitrophen	ol	61.8	ua/L	10	62	51	96			
4-Nitrophen	ol	27.7	ua/L	50	28	15	36			
Naphthalen	e	72.4	ua/L	10	72	48	96			
Närobenzen	- 18	69.7	ua/L	10	70	51	91			
Pentachloro	ntenol	66.8	ua/L	50	67	53	109			
Phenanthre	ne	79.7	ua/L	10	80	58	104			
Phenol		33.9	ua/L	10	34	27	45			
Pvrene		81.2	- <u>อ</u> มิต/L	10	81	64	108			
1.2.4-Trichlo	probenzene	71.3	ua/L	10	71	49	85			
2.4.6-Trichlo	prophenol	63.8	ua/L	10	64	47	99			
Surr: 2-Fl	uorobiphenvi		~ a . -	10	45	28	107			
Surr: 2-Fi	luorophenol			10	37	20	56			
Sur: Nitre	obenzene-d5			10	62	32	94			
Surr: Phe	nol-d5			10	31	19	45			
Surr: Terr	ohenvi-d14			10	64	32	122			
Surr: 2,4,	6-Tribromophenol			10	55	21	130			
lah 10-	MR 407004	Mothed Dienis				Dun DV/50	72101 4700004		00/00	47 1044
Bonzidina	1112-10/004		ual	10		Run. 37391	UNZ.I_I/UZZOA		02/20/	17 12:11
Denzigilie		ND.	agre	10						

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result Uni	its RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E625							Batcl	h: 107004
Lab ID: Benzidine	LCS-107004	Laboratory Control (63.4 ug/	Sample /L 10	63	Run: SV59 10	73N2.I_170228A 100		02/28	/17 12:42
Lab ID: Benzidine	B17021688-001CMS	Sample Matrix Spike 25.8 ug/	.e /L. 20	26	Run: SV59) 10	73N2.I_170228A 100		02/28	/17 14:16
Lab ID: Benzidine	B17021688-003CMS	Sample Matrix Spik 28.5 ug/	re /L 20	28	Run: SV597 10	73N2.I_170228A 100		02/28	/17 15:18

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc.

Project: 170217005 LFH-1 CO-0121724

Report Date:	03/02/17
Work Order:	C17020566

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E625							Ar	alytical Run:	R275528
Lab ID:	27-Feb-17_CCV_2	Continuing Ca	libration \	/erification Standa	ard				02/27	7/17 15:18
Acenaphthe	ne	75.7	ug/L	10	101	80	120			
Acenaphthyl	ene	75.2	ug/L	10	100	80	120			
Anthracene		78.7	ug/L	10	105	80	120			
Azobenzene		79.8	ug/L	10	106	80	120			
Benzo(a)anti	hracene	78.0	ug/L	10	104	80	120			
Benzo(a)pyre	ene	78.0	ug/L	10	104	80	120			
Benzo(b)fluo	ranthene	78.6	ug/L	10	105	80	120			
Benzo(g,h,i)	perylene	75.3	ug/L	10	100	80	120			
Benzo(k)fluo	ranthene	73.2	ug/L	10	98	80	120			
4-Bromophe	nyi phenyi ether	74.4	ug/L	10	99	80	120			
Butylbenzylp	hthalate	84.4	ug/L	10	113	80	120			
4-Chloro-3-n	nethylphenol	77.2	ug/L	10	103	80	120			
bis(-2-chloro	ethoxy)Methane	79.4	ug/L	10	106	80	120			
bis(-2-chloro	ethyi)Ether	80,8	ug/L	10	108	80	120			
bis(2-chioroi	sopropyl)Ether	77.8	ug/L	10	104	80	120			
2-Chloronap	hthalene	70.3	ug/L	10	94	80	120			
2-Chlorophe	nol	80.3	ug/L	10	107	80	120			
4-Chlorophe	nyl phenyl ether	72.9	ug/L	10	97	80	120			
Chrysene		75.0	ug/L	10	100	80	120			
Diethyl phtha	alate	75.7	ug/L	10	101	80	120			
Di-n-butyl ph	thalate	81.6	ug/L	10	109	80	120			
1,2-Dichlorol	benzene	72.7	ug/L	10	97	80	120			
1,3-Dichlorol	benzene	77.8	ug/L	10	104	80	120			
1,4-Dichlorol	benzene	74.9	ug/L	10	100	80	120			
3,3'-Dichloro	benzidine	/5,8	ug/L	10	101	80	120			
2,4-Dichloro	phenol	/4.8	ug/L	10	100	00	120			
Dimethyl pht	nalate	75.3	ug/L	10	100	00	120			
Di-n-octyl ph	thalate	83.5	ug/L	10	111	00	120			
Dibenzo(a,n)	anmracene	/4.8	ugrL	10	100	00	120			
2,4-Dimethyl	pnenol	73.0	ug/L	50	91	80	120			
4,6-Dinitro-2	-metnyiprienoi	/1.3 60.4	ug/L	50	90	80	120			
2,4-Dinitropr	ienoi	09.4 70.4	ug/L	30	108	80	120			
2,4-Dimitroto	luene	79.4	ugit	10	104	80	120			
2,0-Dinitiolo		70.1 R4.4	ug/L	10	112	80	120			
Dis(2-ethylne	xyi)rnulaiale	76.0	ugri:	10	101	80	120			
Fluorantien	5	70.0	ugru ma/l	10	104	80	120			
Fluorene	007000	73.8	ug/L	10	09	80	120			
Hexaciliorob	utediono	73.0	ugru	10	90	80	120			
Hevenhoree	volonantadieno	73.1	ug/L	าบ 10	97	80	120			
Hevechloree	thane	77.6	ua/l	10	103	80	120			
Indepo/1 2 2		75.8	nu\[10	101	80	120			
Indentity 1,2,3		78.1	ua/)	10	104	80	120			
aophotone		f Q. 1	ag/r	10	EQ-1		129			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date:	03/02/17
Work Order:	C17020566

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E625							Ar	alytical Run:	R275528
Lab ID: 27-Feb-17_CCV_2	Continuing Ca	libration Verti	ication Stands	ard				02/27	/17 15:18
n-Nitrosodimethylamine	75.3	ug/L	10	100	80	120			
n-Nitroso-di-n-propylamine	77.8	ug/L	10	104	80	120			
n-Nitrosodiphenylamine	78.9	ug/L	10	105	80	120			
2-Nitrophenol	75.8	ug/L	10	101	80	120			
4-Nitrophenol	69.6	ug/L	50	93	80	120			
Naphthalene	79.8	ug/L	10	106	80	120			
Nitrobenzene	76.8	ug/L	10	102	80	120			
Pentachiorophenol	73.3	ug/L	50	98	80	120			
Phenanthrene	74.0	ug/L	10	99	80	120			
Phenoi	79.2	ug/L	10	106	80	120			
Pyrene	75.2	ug/L	10	100	80	120			
1,2,4-Trichlorobenzene	72.8	ug/L	10	97	80	120			
2,4,6-Trichlorophenol	73.6	ug/L	10	98	80	120			
Surr: 2-Fluoroblphenyi			10	100	80	120			
Surr: 2-Fluorophenol			10	113	80	120			
Surr: Nitrobenzene-d5			10	105	80	120			
Surr: Phenol-d5			10	121	80	120			S
Surr: Terphenyl-d14			10	101	80	120			
Surr: 2,4,6-Tribromophenol			10	102	80	120			
Method: E625							An	alytical Run:	R275577
Lab ID: 28-Feb-17_CCV_2	Continuing Ca	libration Verif	ication Standa	rd				02/28	/17 11:39
Benzidine	89.5	ug/L	10	119	80	120			

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

=

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Colorado Analytical Laboratories Inc

Project: 170217005 LFH-1 CO-0121724

Report Date: 03/02/17 Work Order: C17020566

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW8260M								Analytical Ru	n: 107003
Lab ID:	CCV-107003	Continuing Cal	Ibration Verificatio	on Standa	Irdi				- 02/27	7/17 08:30
1,4-Dioxane	•	105	ug/L	1.0	105	80	120		-=,=,	
Method:	SW8260M								Batc	h: 107003
Lab ID: 1,4-Dioxane	LCS-107003	Laboratory Cor 106	ntrol Sample ug/L	1.0	106	Run: VOA5 70	973A.I_170227A 130		02/27	717 09:22
Lab ID: 1,4-Dioxane	MB-107003	Method Blank ND	ug/L	1.0		Run: VOA5	973A.I_170227A		02/27	/17 09:44
Lab ID: 1,4-Dioxane	C17020566-001BMS	Sample Matrix 200	Spike ug/L	2.0	100	Run: VOA5 70	973A.I_170227A 130		02/27	/17 11:37
Lab ID: 1,4-Dioxane	C17020566-001BMSD	Sample Matrix	Spike Duplicate ug/L	2.0	103	Run: VOA5 70	973A.I_170227A 130	3.0	02/27 , 20	/17 11:59

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

C17020566

Work Order Receipt Checklist

Colorado Analytical Laboratories Inc

Login completed by:	Dorian Quis		Date F	Received: 2/21/2017
Reviewed by:	Kasey Vidick		Rec	eived by: dcq
Reviewed Date:	2/21/2017		Carri	er name: Ground
Shipping container/cooler in go	ood condition?	Yes 🖌	No 🗌	Not Present
Custody seals intact on all ship	oping container(s)/cooler(s)?	Yes	No 🗌	Not Present
Custody seals intact on all san	nple bottles?	Yes	No 🗌	Not Present
Chain of custody present?		Yes 🗸	No 🛄	
Chain of custody signed when	relinquished and received?	Yes 🗹	No 🗌	
Chain of custody agrees with s	ample labels?	Yes 🗸	No 🗌	
Samples in proper container/bo	ottle?	Yes 🗸	No 📋	
Sample containers intact?		Yes 🗸	No 🗌	
Sufficient sample volume for in	dicated test?	Yes 🗹	No 🗌	
All samples received within hole (Exclude analyses that are con- such as pH, DO, Res CI, Sulfit	ding time? sidered field parameters ie, Ferrous Iron, etc.)	Yes 🗹	No 📑	
Temp Blank received in all ship	ping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank tempera	ture:	6.8°C Blue ice		
Water - VOA viais have zero he	adspace?	Yes 🗹		No VOA vials submitted
Water - pH acceptable upon rea	ceipt?	Yes	No 门 🛛 🛔	Not Applicable 🗹

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

None

	HOLOI
	uscoay
Ç)
4	5
1	
Ē	5

Eal Bill To Information (If different from report to) Project Name Eal Company Name: Same As Report To 170217005 Eal Company Name: Same As Report To 170217005 Brighton Lab Lin-1 Collored Lab Contact Name:				
vtical Company Name: Same As Report To 170217005 Erichton Lab Contact Name: Contact Name: Lfh-1 Co-0121724 Brighton, CO 8 Address: Address: Lfh-1 Co-0121724 Brighton, CO 8 State Z40 South Main 240 South Main Brighton, CO 8 Lakewood Lab 12860 W, Ceda Lakewood Lab 12860 W, Ceda Lakewood Lab Lakewood Lab 12860 W, Ceda Lakewood Coi Brighton, CO 8 Lakewood Coi Lakewood Coi Brighton, Co 8 Disposal Ise Cnly) Lakewood Coi Brighton, Co 8 Lakewood Coi Phone: Fax: 303-659-23 Fax: 303-659-2315 Phone: Fax: Phone: Jax b.com Email: Disposal Ibate(Lab Use Only)		Bill To Information (If different from report to)	Project Name	Colorado An=
Contact Name:Lfh-1Co-0121724Brighton LabAddress:Address:Lfh-1Co0121724240 South MainAddress:Address:Address:Lfh-1Co0121724240 South MainAddress:Address:Address:Lakewood LabDisc Only)Lakewood LabIpabco1CityStateZ4pLakewood CO1Lakewood CO1Phone:Fax:3036592315Phone:Fax:303-659Fax:3036592315Phone:Fax:Disposal Inste(Lab Use Only)Phone:CityEmail:Disposal Inste(Lab Use Only)Phone:303-659	<u>alytical</u>	Company Name: Same As Report To	170217005	Leboratories, Inc.
Address: Address: Zip <u>80601</u> City Zip <u>80601</u> City State Zip Izakewood Lab Lakewood CO i Lakewood CO i Zipson City State Zip Phone: Fax:3035592315 Phone: Fax: Scinwenke PO No.:	đ	Contact Name:	Lfh-1 Co-0121724	Brighton Lab 240 South Main Stree
Zip80601 City State Zip East:3036592315 City State Zip Fax:3036592315 Phone: Faz: Faz: dolab.com Email: Email: Pisposel Date(Lab Use Only) Schwenke PO No.: Disposel Date(Lab Use Only)		Address:	Task Number (Lab Use Only)	Brighton, CO 80601 Lakewood Lab
Zip80601CityStateZipFax:3036592315Phone: 303-659Fax:3036592315Phone: 303-659-23Fax:3036592315Phone: 303-659-23Fax:3036592315Phone: Fax:SchwenkeEmail:SchwenkePO No.:				Lakewood CO 80228
Fax:3036592315 Phone: Fax: 303-659-23 Iolab.com Email: Email: WWW.coloradola Schwenke PO No.; Disposal Date(Lab Use Only) WWW.coloradola	Zip <u>80601</u>	CityStateZip		Phone: 303-659-2313
dolab.com Email: Disposel Date(Lab Use Only) WWW.coloradola Schwenke PO No.;	Fax:3036592315	Phone: Fax:		Fax: 303-659-2315
s Schwenke PO No.:	dolab.com	Email:	Disposal Date(Lab Use Only)	www.coloradolab.com
	: Schwenke	PO No.:		

C MONTANI.	675 SOCs						CS Charge Temp Lo-B ocnce Block Sample Free. Yes No] Date/Time: Received By: Date/Time: Sauco Chin 20/21/17 1150
	Mo. of Containers Grab or (Check One Only) Composite Composite 624 VOC Long List					C/S linfo:	Date/Time: Relinquished By:
	Soil Sludge Oth Diamon Compost Diamon	117005-01 LFH-1				Energy Labs	Date/Pime: Date/Pao/r7 foot
日本の日本の	Waste Water	2/16/17 17/02				Instructions:Send via UPS to. 3, N	Relinquished By:

		Inor	ganic Chemicals Certifie	d Laboratory Report Form		Revise	d 6/13/2014
Colorado Department		4300	WQCD - Drinki Cherry Creek Drive Sou	ng Water CAS th, Denver, CO 80246-1530			IOC
of Pathic Flealdt and Eminonment		Fax	: (303) 758-1398; cdphe.	drinkingwater@state.co.us			
Sec	tion I (Supplied	or Completed by Public	Water System)	Section II (Supplied	or Completed by Certified L	aboratory)	
	JUDURY	water system intorma	non	Certifie	d Laboratory Information		
PWSID#: CO012	1724			Laboratory ID: CO 0015			
System Name: Si	terling Ranch M	D		Laboratory Name: Colorado Ana	ytical Laboratory		T
Contact Person:	Mark Volle		Phone #: 719-227-0072	Contact Person: Customer Servic	c Phone: 303-659	-2313	
Comments:			Do Samples Need to be Composited BY THE LAB?	Coroments:			
			Section III (Supplied or Comp	leted by Public Water System)			
Sample Date: 3/23	V17 Coll	ector: Stephanie Schwe	Facility ID (On Schedule): 1	Vew Well Sample PI	ID (On Schedule): New V	Well	
		Sec	tion IV Inorganic Chemicals (C	completed by Certified Laboratory)			
Lab Receipt	Lab Analysis	Lab Sample (D	Analyte Name	CAS No.	Analytical MCL	Lab MRL	Result
LITTLE					Method (mg/L)	(mg/L)	(mg/L)
11/47/0	21 241 1 1	10-7008250/1	Flunride	7681-49-4	EPA 300.0 4	0.09	1.22

NT: Not Tested Lab MRL: Laboratory Minimum Reporting Level BDL: Below Laboratory MRL. A less than (<) may also used.

mg/L: Milligrams per Liter MCL: Maximum Contaminant Level

									V #"	1				21.1									1					
					•					1968			un	uinerU														
					100					Clan	\vdash		I	Каdor	\uparrow		\vdash	-				\vdash		\square	PN N		2	
					uite					act /		5	377 W	uibeA	\uparrow					×)		
			01 eel		11, S 228	13				ontr		5	ш 750	uibaA	+					X			\vdash	\vdash	к К	i	<mark>≻ i</mark> E	
<u>o</u> d 2	į	1		a	ar 1 2 200	9-2	2315	olab.		Subo		st98\s	udlA	Gross	$\left \right $	<u> </u>			×						adspa			
		वै	E C	d La	30	3-64	659-	rado		-		70	5-5	en	\vdash						×				He		Sam	
اللغ الم		5	iton,	W00	.V V Voov	e: 30	303-	0100			()	ləri) +	57 AN	₩ NUS	\mathbf{f}		-	\square							en la		+	_
Se a		녪	a de se	<u>ak</u>	2861 	hon	a X	MM			(ə	olic)	DOC	TOC,	\vdash											1	2	
	i	Half (theme:				키			-	хэриј	.gns.	V.AIA.	\vdash							\vdash		×		- N) H Pa	
										ysis)			รวเท	groni	╎─		┢					·	X		Prese	3	ecelv	
0	_			1		50		·	1	ana	<u> </u>		эр	noula	\vdash						<u> </u>	-		x	Scals			
			0			Ro				eck				vittiv	\vdash					•				X				
			1			× ₹				s (ch			, 9	Nitrat				Η		-						,u	Line Line	
2	Itlen	-	13	Re-		20		No	, Z	lyse	┢	EL .	ddog	Lead								┢			1	į		
Je)	form	104				ate	Q	8		Ans		sç	AAH	2225	\square			\square							1	ŝ	귀	
ھ	ect In	2				S	Sa	les:)	ite: Y	'ater		sM	HLL	524.2	\square			\square						-	1	\geq	<u>ڊ</u>	
6	E	0		3	Share for the state of the stat	59	9	Samp	to Sti	N BI		18	upiQ	2.942								X				א ד	1.	
p-	E	Ŭ A		<u></u> 8		39		ance	orms	inkit		llarty	opu3	1.842		×				i					1	IP		
	ate T	MSII	Ne E	ES S		lly C	cumb	duo	End F	DI		91820	jyyphic	D 475													vishe uishe	
>	60		02		i 		0	0	Ø.	E	s	atsms	Carb	1.152											ü		eling	
itod		1		je je		m		Ę		ΞI,		s-Pest	SOC	2.252			X								S	i i i		
Cus	10)			L'A		80		3		HAS		S'	NOC	234.2												Ţ	8	5
lof	m rep.	d'	Ľ	5		8	23	90				esbioi	Чеф	\$'SIS	X										2	1.8		Ē
hain	at fro	F	100	4		0 Zip	Fax	(a)				PCBs	\zisə ^c	505											M	10.1		A
ō	iffere	3				0 5		84			d	\DBC	EDB	1.402											Ţ	d'	Date	10
ate	u (if d	S.	j)			5 Sta		20			¥/	9 mio	Colif	Indo T				×							F	H 1		5
8 N	natkoi		5	à		37		ピ				vinO a	anple:	'S∀/a 7/800)											रि	Ž		S
kin	nfor	y Na	Nati	S.		22		Ľ				orine	AD La	Resid										•	3	30		3
)rin	1 To	mpar	ntact	dress		<u>g</u>	one:	ila	No.:			ยาวทุย	trio Di	No. 01		-	う		-	3	3	-	~	7	2	ð,		6
	38	ບີ ນາ	ປີ	2		3	a a	5																	to t	aSe 1	iver 1	S
		3						ξ	Z					ode			1					1			3	A) Å	V
		F		2		D		2	N.					Ъ С			0					124			\$ }	ب و بر	ş	Å
		Na	1	2	-	2		P	, S					D/E			30					10			à	51	<u> </u>	5
		9	P	L.S	Ч	5		<u> </u>						ple I					. 1		_	<u>م</u>			J L	٦ م م	비를 비를	
		-in		5	നി	8	で で	1	LA R					Sam		2	3	1	4	Z	<u>ل</u> هر	100	5	¥ X	J.	13 x	a Fe	4
		4	5	2	¥.		8	ୢୄୄ	F					lient		-	T	Ŧ		-			Ť	*	Ľ	JH .	F	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	ation	H	É	5	<u>الح</u>	2	10	2	Å	1				Ü				-		<u></u>					9	te		
	afora	ame:	lie.	29	~	2	20	ß	The r	k No.	2007		••	ime	5	2	N	3	3	Ś	5	X	2	ß	:5	3	By	
	To II	iny N	t Nan	L.		ات	भ	٤	r Na	Tas	0324		ARF		7	ř.	, '	8	5	Ħ	5	F	ŕ	6	ction	ŦIJ	憘	\triangleleft
	cport	ounpa	ontac	ddre		2	hone:	mail:	ample	CAL	17			ate	3	-		_							stru	まう	ling	Æ
	a	0	0	<		<u> </u>	A	1	<i>i</i> ii	l	с · Р	age 2	? of 3		07								7	▶		2	2	KI (

										_				~ 24		1	7										_	
					•						SCS		I	muiner	n								Τ					
					Ĩ nn						(In all			uope	H I	╎	-	\parallel	1	$\overline{\mathbf{x}}$	+	╈	+	+	ž		No L	
					ain			_			ģ		877	muibe	a –	┢	╋			1		1	+					ü
		tree	10	2	228	212		E O I			öntr		526	muibe	1	$^{+}$	+	\parallel		+	┿		+		-×		es. Y	te/Ti
22	Ś	lin S	808	-9 S			231	olab.				BJ:	aB/ad/Be	A szorá	5	┢		╢	-	+	+	+	╎	+	- dsp		ple Pr	Da
	'n	Lab Ma	B	<u>l</u> la		12.64	629	rad				-	2110	wh.		1	+	╂┦		+	+	+	+-	+-	H		Sam	
		out	lton	Noon I	MO0 A	2. 2		.colo			ł	(əjə)	N 224 (C!	νυ , Ανυ	s	+	-	$\dagger \dagger$	+	+	+	+	+	+	Ž			
				ake Daki	ake	hon		WWV			t	(ələr	ic) 00	a '60.		t	-+-	╢	-	+	2		+	+			/Ice	<u></u>
1	-					1		2			Ĺ	X	abril .gr	NIK./La	r /	┢	+	╂	-+	+	Ŧ	┭	+-	+			ŝ	ed B
) SIS/		so	norgan		┢	╉	Ħ	╉	+	+	+	+	+	Pres			eceiv
				1	_	Μ				,]]				pinouls	ı 📩	┢		Ħ	+	+	-	┿	+	-	Seals		len p	<u>~</u>
``		-		15		3								Vitrite	1	┢	+	╂╋	-+		+	╈	+	+				
T		Te .		3		Ś			De					Vitrate				╢	-+	╉		╈	╋	+-				ime:
, 7º	ation	Г	٤	2				No.	, Pon				opper	O\bs9.		┢		╢	╉	+-	+	+	╉	+-	1		R S C F R	ate/]
g	lform	3	5	N/		alk C	Q		່ ເ				sčAA]	H 7.222		\uparrow		╢	-	╋	+	+	+	+-	1		อี	
8	ect In	ā	a	17		S	ا کر کر		ite: Y	- total			ZHMs	1 2.423		┢	+	╢	-†			╉	┢	+-	1			
-	/ Proj	Ole	2	nĂ		٨	0	Sam	to Sti		⊧ - ⊮		teupi(3 <u>7</u> .649	+-		+	╢	+	+	+	+	+	+-				
	OLM		5		,	Ś	Ē	ance	orms	a far		11	sdiobri	248'1 E	+	┢	+	╢	-+-	+	+	-	╈	╉─	1		1	d By:
	Inte F	vstem vstem	δ			Ņ	ount	Iduno	end F			ə	tesoud/	19 L75	1	-	+-	╫	\uparrow	╈	╈	+	+	+-	{		Via:	
~	Ø.	A 0	-	<		C	0	U C	ي م			səte	smedns	231.1 C				\parallel	+	+-	╋	1,		╈	ö		Ered	
DO1				も		\mathcal{M}		b				jsə	OCs-P	\$ 2.252	1			+	╋		╈			╉	CS		Deliv	ž
Cus	ort to)	1 1	0	Ž		9		1.		HAS		19/	120	-6-14-6	•			+		T	+	\uparrow	+	X			1	
10	п тер	2 2		S	4	ଛ		2				səp	lerbicic	14.212					+	1		┢	┢					
	at from	2 2		S		Zip	Рах	0				se	Sts/PC	505 Pe						+	+	+						
	ifferer	19	ľ	べ	5	9		5				BCb	DB/DI	11.402			\dagger)	Ķ	$^{+}$	╞	1					1040	
	i (if d	N E		R		Stat		יא ב	2			A\9 n	motilo) IntoT				1-	1	\uparrow							F	
\$	ation		ļi	5		B		5			T	λį	iO səlqn	IBS A/9					1	+	+		-					
	nforn	y Nar	1	3	1	G		Ê				ວບ	al Chlori	(. Nam)							5	4	1.87					
	To	mpan ntact	dress:			3	ü	ίij.	No.		Γ	sJa	Containe	No. of	_	X	1	14		3	2		m	2			l sa	· ·
		<u> </u>	V			Cit	Pho	E	3		┢			Τ			ſ	ľ				_	<u> </u>				ived	
					I			Ę	Ľ.					e F						101							Rece	
Í					1	\mathcal{N}		ปุ	X					Ŝ						Dig Dig								र्द
		S I		Ĩ,	nŚ	Ĭ,		arc.	P) / EI						5		1						2
	<	E C	1:	A L L	ž (2		र्दे	\mathcal{A}					le ID						5		8					ie E	
	,	3h>	F	Y.					NC NC					amp		<u>d</u>	1	1	<u>I</u>	13	-	4	19	Ň				4
		<u>1</u> 7		3		5	ų	0	R					ent	H	#	4	3	\$ =	44	F		#	#			a	3
		A J	0	20	Ő	Sta	5	الح	الجر					Ū	T	5												d
			0	Ŋ			2	3	/.] ij	ġ	Ŀ			a	5	8		2	۶×	3	ર	5	হ	99	1.1	~	6	
Ē		ny Na Nam	1	10	2	N.	110	2	E BN	ask	2400		R	ц.	00	3		ē	200	Ś	ŝ	3	3	8	tions		shed	e.
	chout	ompai	ldpess	ĥ		1	one:	nail:	mpler	AL T	1703	5	٩	Ite	S.					5					itruc		inpai	B
	4	<u>ਹ ਹ</u>	Ň				Z	<u> i</u>	Sa	0		- Da		ă	3								7		SCI		Ba	TR
																									-			∇J

8 500 Drinking Water Chain

Colorado

		-								-			_	_	_	_	_	_	_	_	-	_
sed 4/13/2015	IOC										Result (mu/L)	BDL	0.002	0.003	BDL	BDL	BDL	BDL	0.001	BDL	52.8	BDL
Revis		aboratory)				-2313			Well		Lab MRI. (ms/L)	0.001	0.001	0.001	0.001	0.001	0.001	0.0001	0.001	0.001	0.1	0.001
		v Certified I	nformation		2	ne: 303-659	:		c): New		MCL.	0.006	0.01	2	0.004	0.005	0.1	0.002	V/N	0.05	V/N	0.002
		r Completed b	Laboratory I		ical Laboraton	Pho			O (On Schedu		Analytical Method	FPA 200.8	EPA 200.8	EPA 200.8	EPA 200.8	EPA 200.7	EPA 200.8					
oratory Report Form	compliance.com/login	Section II (Supplied or	Certified	atory ID: CO 0015	atory Name: Colorado Analyt	ct Person: Customer Service	lents;	Public Water System)	ell Sample Pt II	ed by Certified Laboratory)	CAS No.	7740-36-0	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7439-97-6	7440-02-0	7782-49-2	7440-23-5	7440-28-0
ified Lab	ww.wgcdd			Labon	Labor	Contac	2 Comm	ompleted by	: New We	ls (Complete												
anic Chemicals Certi WOCD 2 Driv	it Online at http://wv	Water System)	ion			Phone #:	Do Samples Need to be Composited BY THE LAB	Section III (Supplied or Co	Facility ID (On Schedule)	ion IV Inorganic Chemical	Analyte Name	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Mercury	Nickel	Selenium	Sodium	Ihallium
Inorg	Subm	or Comnleted by Public	Water System Informat		D				ector: Stephanie Schwe	Sect	Lab Sample ID	170324007-01A	170324007-01A	170324007-01A	170324007-01A	170324007-01A	170324007-01A	I 70324007-01A	I 70324007-01A	170324007-01A	170324007-01A	170324007-01A
		ction I (Sumplied	Public	21724	Sterling Ranch M	Mark Volle			3/17 Coll		Lab Analysis Date	3/29/17	3/29/17	3/29/17	3/29/17	3/29/17	3/29/17	3/29/17	3/29/17	3/29/17	3/30/17	3/29/17
	Colorado Departexen of Poblic fieldh and Emitonment	Š		PWSID#: CO01	System Name:	Contact Person:	Comments:		Sample Date: 3/2		Lab Receipt Date	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17

NT: Not Tested Lab MRL: Laboratory Minimum Reporting Level BDL: Below Laboratory MRL. A luss than (<) may also used.

mg/L.: Milligrams per Liter MCL.: Maximum Contaminant Level

									19 m	1				21.1										•				
					-					Ses	Τ		un	ni ner U				Γ							L			
					100/					lan			1	Radon	+			\mathbf{f}		-	\vdash	\vdash			N Z		2 2	
					uite					Act A		·	877 w	nibsA	+	+				×	-			-)		
			treet	5	L, S	9 E		com		ontr	\vdash		977 W	nibeA	+	┢		┢──				┢			ce Xe	i		
<u>्त</u>	į		in Sug		년 19 19 19 19 19 19 19 19 19 19 19 19 19	-0-2	2315	olab.		Subc		Beta	venqi A	Cross	+	┼─	+		×		\vdash	+	\vdash	\vdash	adspa		원 원	
		Lab	25	3		3	659-	rado			╀	70	5-9	िला		-			•		×		\vdash	-	He	i	Nam	
ઽ૱		ton	iout)		W00 W.	e: 3(303-	colo		1	(skrii))	ከለ ን?ተ	አካሪ	+	\uparrow	\vdash					-	\vdash	-	e Z	-	\star	.
Sč -		Brig	2070 1017		<u>ake</u> 286	aww. Phon	ax:	MMM			(9	Circle	DOC (, JOT	\uparrow	\mathbf{T}	\mathbf{F}			-	┢─					:		
20	J	Per li		•				≥1				хәрс	n .gns.	VIKV		\top				-			┝	×		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, ed B	
Q.										lysis			soin	grong	\uparrow	┢	\square			•		 -	X		Pres	3	ecel.	
	-		1							ana			эр	nouli	\uparrow	1								X	Scals			
				0	5	ß				heck			(Nitrite						•				X		(٦.,	
,				1	SC E	₿ Ø			X) <mark>9</mark>			, a	Nitrat	\uparrow		\vdash							X			Time	
2	ation			3	AR.	2 0		No	, Z	alyse			Copper	Lead	\uparrow							┢				ļ		
te)	form	č t		B	2	ate	Q	Kes Rt	. 🗖	And		S	ZAAH	222.2		\square									1	(뀌	
ø.	ect II	ġ		9	ě	S S	2	ples:	ate:)	/atei		SJ	WHIT	2.4.2	\uparrow											>	<u>ڊ</u>	
لمع	/Pro		기걸	4	3	5	<u> </u>	Sam	to St	N Bu		1	Bupid	2.94.2	1	\square						X				א ד	3.	
ρ	form	ě		Z	<u>.</u> 8	39		iance	orms	İnki	Γ	llar	Endot	1.842		×				1						(P		
	tate		ysten	5	ja ja	Jly C	(uml)	dino		D	Γ	918:	soyd Aj	9 <i>1</i> 45													il a la	
>					<u>k</u>				20	H,		291RM	Betha	1.152						_					Info:		<u>vercu</u> elinq	
stod		ł				5		Ę		SE I,		Pest	SOCS	2.252			X								S			
Cur	off to)		73	-	L.	30		3		HA			VOCs	234.2												4	2	5
l of	m rep	2	7		J	8		loo				səpia	Herbid	1.212.4	X										3	L Č		E
hain	nt fro	AT	106	i i i	5	0 Zip	Fay	3				CBs	glaster.	1 SOS											NA	10.1		4
D L	iffere	3			DE	0 2		870				DBCI	EDB/I	1.402											Z	N.Y.Y	Date	TO
/ate	n (if d	3	À		TYC	Sta		ू रा			V	/႕ աս	oliloD	Into T				X							F	H 1	2 	ā
50	natio	mc:	5		ă	83		て				VinO) Səlqmı (רא א משויר 3'											R	S.	ŝ	S.
ikin	lafor	ay Na	Nag		S.	22		Ę				anîne -	oiri'O lisi	Ibizak										~	3	33		3
niri	II To	iedau	mtact			Š <u>≻</u>	one:	ila	No.:			sian	istno)'	No. of		-	3		-	3	3		-		3	à è		e l
	8	Ŭ M	<u> </u>		2	Ĵ	<u>ء</u>	8	Ĕ													445			to	SS	ieive L	S
		12			2			ξ	ž					ge			10								3	À	Re	V
		RL B			Ž	D		2	N.					D C			0								é.	4	ş	Å
		٩	J			8		- P	,X		ĺ			D/E			00								ă.	51	\$ 	5-
		e	10		\$ Y	\otimes	, H	ألحر						ple I					.0		_	Ĩ		0	0 T	-6-		
		1	Z		3	Q	3	- El	LA R					Sam	14	5	4	1	#	7	4	11 8	4 0	74	ري م	J.J.d) je	Ę.
		A	5	ł	E L	J ard	윙	0	-3					lient			1	*		7					1	The state	Ĩ	~
	nation	H	2	Ì	2	S.	5	R	Å	-				0						<u></u>				_	2	ag	¥	
	nfora	:0 Ш В	the:		1 1	2	2	3	me: (k No.	1001			ime	9	15		3	15	Ś	5	SX	R	껑	:sc	22	d By	
	t To I	ny N	ct Na:		, T,	2	٦	٤	er Na	L Tas	0324		AR	Ľ	17	1	Υ ι "	00	5	Ц	7	ŕ	ŕ	50	Iction	FJ	嗜	\mathbb{X}
	Cepor	Compu	Conta	V ded mar		Â	hone	mail	ampl	CA	17			Date	0	-	_		_						ıstru	En	elinq	Æ
	.	-			• 1				60		F	age	2 of 3		100								7	P		يہ 		X

															~ X.L.		12	1										
											100			ш	uinsiU]											
						100/					vlan				Radon	+		┼		+		$\frac{1}{1}$	+	+				
						lite						-		877 u	nuibeA	+		+-		+		+	+		\vdash	ļ,		
			reet			r, Si	9	2	E		ontra			977 u	nuibeA	+	+		╟	+	-	╞	┼─	\vdash	\vdash	- Normal Sector	2	
07	ن		in St	806	-01			7-23 2315	lab.		Sube		Beta	/eudiA	Gross A	+	┝	+		┼─	+	┢	+	+		dspa -	ų s	Dat
<u>S</u> SS S	⊆ N	Lab	Mai	8	Lal	B S	3	59-5	rado		F	╁	2		かっ		, ,	╢		┢		+	+			Ŧ	in all all all all all all all all all al	
č ž		ton	outh	ion,	vood	Ň		03-6				\vdash	(ອາວມາດ)	•C7 A (1'VA 05			+		+-	+	-	┢	$\left \right $				
		righ	S O	hgi	akev	2860 1501		anone ax: 3	WW.		Ì		ອາວມາວ) 200		+	┢	+	\mid	+	+-		2		<u> </u>	Ó	5	
	S		6	22	Ľ	12	i i		M				XƏDL	il .gns		-		+		+		P		-		it Yes	Jo	8
4											(sis)	$\left - \right $		รวเน	រោលនៃន	+		+		+	-	-	╞		_	Lesel		ceiv
0	_										vlaa	`		20		_	-	$\left \right $		-	-			\square				å
					+	1	5				ck a	\vdash		-r			-					-	+	$\left - \right $		Ø.	÷	
2		1 LÍ			3		5				(che	,				_				+			-			-		
de		Г Г		乞	J						/Ses	\vdash			NDDOLT			\square		\vdash	<u> </u>	_	\vdash			-	Charry	Ľ,
()	Timat	Ē	8	2	3)	4					' _			 	<u> </u>		ļ	<u> </u>		_						CS	Dat
ð	Info	7	-	रु	イフ					X cs	er A			• • • • •	6 655					+		<u> </u>	-					
à	2 Sie		1	പ്പ	2					State	Wal			NHLL	27425	ļ				-								
	I III	_(J ä	2	۳ ړ		$ \mathcal{N} $	2	ce Sa	is to	cing	-	+	- euni(]	2.945					_						4		ž
	e For			K	Į آگ				plian	For	li in	\vdash	lled	tobu ³	1.848					-								hed
	Stat	1000	Syst		PPV	ľ				Send		\vdash	ettes		9742	 				-							d Via	quis
dy						1			5		I, II,		zətem	edis.)	1.152				_				X			S Infa	livere	Relin
isto	6		I		ち		3		j ĝ		SE		teed-	\$00s	2 525			Ц		_						ວັ	ĕ	
ſĊ	port	7	1		SZ		340		13		PH			20	6-11-5										X			
in o	om re	る	5		J J				9				sahia	Herbi	PSIS			Ц										ie l
iad)	ent fr	3	گر ا		Se				jo l			\vdash	CBs		1 \$05					_				×				
er C	differ	J	2		3		2		38					EDB	1.402				X									Date
Vati	om (H	5	2		Ň		st o	1	3	7		Ľ	//d mic	niloD	Total													
5	inetic	ame:	빌		์ อ		Ę	-	3			ľ	VlnO	səlqmı (אן S.א (שנ⁄יך)													
ıkir	Infor	ny Ni	f Nan		Ŋ		9		ξ	2				IAD ISI	Residu			\downarrow		1			2	- 20				
Drii	III To	ompa	ontac		larcs				nail;	No			erəni	RINO)	No. of	-	N	d)	3	3	3	2	-	n	η			d By
	Ä	Ŭ N	Ŭ		2		0	-		-5								T			3				-			ceive
		Te					~		5	X		ľ			ode						CI VE							Å.
		XL			J		2		J	Z		ĺ			P C						Ä							Dam
		Å			£	0	5		1 F	Ϋ́Ρ					0/1						7							ŝ
		e			žak	ž	30	1:	3						ole II			k			~	\mathbf{c}	30		9		ĺ	
		भ	Ž	1	3	Y	2 Z	5		NV-					Sam		g	\mathbb{T}	1	<u>N</u>		-	4	ମ	N			ter after
		1	뇐		2	J	3	ų	0	R					ient	-	#	백	4	#	Ŧ	*	:	#	Ŧ			<u>a</u> w
	ntion	Ä	식	1	9	Ň	Sta	5	1	X					5	r	-											Z
	lorm				W			10	3	步	ġ	2			e l	5	8	1	R	Ŋ	3	री	5	্ব	2	10	7	
	Tolla	ıy Na	Nam		5	ļ	N	119	<u> </u> Σ	Ea.	ask N	2400		L L	F	Š	30	ļ	ŝ	3	ŝ	ŝ	ž	80		tíon:		Shed (22)
	port	Impai	ntact	dree	n		N N		lail:	mpler	ALT	1703		4	e	S	_			_				X		itruc		
[Ř	<u>ت</u>	Ű				Ö	ź		Sai	0		- Dare		n n	3				1				7]	Sal		专内
													r ay	G U U														1

Report To: Mark Volle Company: JDS Hydro Consultants 545 E. Pikes Peak Ave Suite 300 Colorado Springs CO 80903 **Analytical Results**

TASK NO: 170324007

Bill To: Jim Morley Company: SR Water 20 Boulder Crescent St. Colorado Springs CO 80903

Task No.: 170324007 Client PO: Client Project: Sterling Ranch MD CO0121724

Date Received: 3/24/17 Date Reported: 4/21/17 Matrix: Water - Drinking

 Customer Sample ID
 Sterling Ranch MD

 Sample Date/Time:
 3/23/17
 8:03 AM

 Lab Number:
 170324007-01

Test	Result	Method	ML	Date Analyzed	Analyzed By
Bicarbonate	99.7 mg/L as CaCO3	SM 2320-B	0.1	3/28/17	VDB
Calcium as CaCO3	2.5 mg/L	SM 3111-B	0.1	3/30/17	MBN
Carbonate	< 0.1 mg/L as CaCO3	SM 2320-B	0.1	3/28/17	VDB
Langelier Index	-1.23 units	SM 2330-B		3/31/17	LJG
pН	8.16 units	SM 4500-H-B	0.01	3/24/17	MBN
Temperature	20 °C	SM 4500-H-B	1	3/24/17	MBN
Total Alkalinity	99.7 mg/L as CaCO3	SM 2320-B	0.1	3/28/17	VDB
Total Dissolved Solids	143 mg/L	SM 2540-C	5	3/29/17	ISG

Abbreviations/ References:

ML = Minimum Level = LRL = RL mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mis = Most Probable Number Index/ 100 mis Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

240 South Main Street / Brighton, CO 80601-0507 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 / Fax: 303-659-2315 Page 1 of 3

170324007 1/ 1

									V #	1				21.1									ş · ·					
				•						'ses			un	viaerU	Τ							Γ			L			
				100						(lan)			ł	nobeЯ	+		┢				-		┢		2°N			
				uite						act /		8	27 W	uibeA	\uparrow	-			\square	×	<u> </u>)	X ;	
			01 01	L S	228	313	10	COM		contr	F	9	ш 53	VibeA	╈	1-			\vdash	X				\vdash	ice X	2	7.12 1. √	
<u>od</u>	j		800) 80.	59-2.	2315	olab,		Subc		a)Beta	uq!A	Gross	\top	\uparrow	-		×			-			Bqsba		퓔	1
<u>50</u>	- i	Lab	ž9	d La	D P	03-6	639-	Irad				70	<u></u>	िला		\vdash					×			-	He	I	E	
53		Ion	South Ston	N O	W00	e: H	303-	.cold			(3	ioniO) bi	57 AN	יאע:	\top	\square		\vdash				-		-	2 Z	-	+	-
S T S T S		E E	Srigl S	<u>1386</u>	ake	hon	ax:	WWV			()	(Circl	DOC	, JOT,	$^{+}$	╞	\square					t				:	<u>9</u>	
20	1						(aller)	21				хэриј	.gns.	1/'41¥	1	\vdash								×		: 04	2 Per	
Q.										lysis	F		soint	រដូរ០ព្រ	\top		\vdash					l ·	X		Pres	3	ecel.	
			· · · · ·	_		90				ana			əp	riouiT	\uparrow									x	Scals	. 1		
			6	2 5		g) Seck			G	Nitrit	1-					·	-		╞	X		1	╡.	.
				2 3		2			X	100			, ə	Nitrat	+									X		, -	line.	
2	ation	-		AR.		N N		No.	2	ilyse		er	ddog	Lead	+							\vdash			1	ł		
Je]	form	с Н				ale	Q	4 80)		Ana		sçı	₩¥₩	2255	+-	-											뀌	
ø	eet la	9	Į į			22	كم	oles: 1	lte: Y	ater		sM	HLL	2.4.2													<u>ب</u>	
e.	Proj			13		5	6	Sam	to Sta	N BI		1BI	upiQ	2.942	\uparrow							X			1	¥ ح	기 イー	
P	erm /		Na C			32	J.	ance	orms	nkir		lladio	bn3	1.842	+	×										ip	ᅨ촱	
		TISW	Vaten I) z z		ত ই	ounty	hdmo	la be	E.		Sib 20	iJyph	9 <i>L</i> †\$									-			н. 	Vishe Lishe	
>	G	à	0	1<11 E	1		<u>с</u>	0	- vy	E	5	Signa	Carb	1.152	1										ö		erta elinqi	
tod			ł	E.	-	5		E		Ξ,		3 -Pes t	SOC	2.252			X								CSI		Reiv	
Cus	(9 12		3	N.		8		3		HAS		s	NOA	2.4.2						_						t		읭
of	u repo	4	L	3		80		Jok				səbiəid	Hert	215.4	X					_					7	2		7
ain	it fron	ATA	NO A	2		2Zb	Fax:	3				SCB ²	Pests/	505						-					Ale	401	Lime	ት
Ū.	fferen	3	2	G		ğ		5			d	NDBC	EDB	1.402				_							Ţ	E SP) Jefe J	2
ater	(If di	K	£			Stat		33			٧/	9 mo	Colin	[eto]				Ň							4	ĄŦ		
No.	ation	ີ ຍິ	6	K		34		2				yinO a	əlqma	S A/9							_				8	2	1	S
king	form	y Nan	Name	3		ž.		Ľ				aninoli	nai Ch	diceSA Nami										•	3	33		খ
luiu	Toli	npan	Itact	Iress		वर्ग	ä	1	No.:			ยาวกม์ผ	1000 j	lo .oN		-	3		-	N	3				3	d'		<u> </u>
8	BIB	Ö	Ĉ	Vqć		Cic	Å	Em	S					1						-		1.4		_	F	as i	기장	S.
		y al	I		ŀ			Ę	ike					ę			,					The second se			3	750	Rec	Ŵ
		TT I		3				J	No.					ů			50					25			S	A- 5		- A
		- Na	.)	5	1	5		2	Ê					1E1			00					L L			á	. ţ,	ŧ[5
		e		20	<u>y</u>	$\overline{\mathbf{x}}$		Ž						le ID								29 1			E	۽ ھ	j ä	
		1	7	931	11		6	3	R					amp		3	3	1	10.	Q	5	8	حرا	3	S	12	2 E	ß
		H-S	Z	S.	¥.	J	g	rol	-A					ent S	≭		#	#	-	4	-	4	Ŧ	7	T	Fie		2
	tion	2	2	Q.	3	Sta	-16	Ä	X					ő						E					9	E	2	
	orma			w'	2		lý.	B	() ()	No.	07			ne	3	5	W	=	22	ম	5	X	হ	3	Z	37	Â	1
	To lat	y Nai	Nantri	9			0	٤	Nam	Task	3240		ARF	The second	F	Ň	₽!	\$	F	F	Ÿ	1	1	5	tions	¥J	择	A
	port 1	upan	ntact	50		7	Die	ij	npler	CAL	170;			e	R					1					truct	£	inpu	
	Re	ő	ರೆ	P		ฮี	Ē	Ë S	Sar		K - 1			ñ	07								7	-	Ins	3	R	7A
											P	age 2	of 3															タイ

Colorado Analytical	LABORATORIES, INC.	Brighton Lab	240 South Main Street Brighton, CO 20601		Lakewood Lab 12860 W. Cedar Dr, Suite 100A	Lakewood CO 80228	Fax: 303-659-2315 Fax: 303-659-2315	www.coloradolab.com		analysis) Subcontract Analyses		иdex Circle) (Circle) С Вета	ח 1 228 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Fluorid Inorgau Alk./L. 5070, L 6005, L Radium Radium Radium Radium							×			cals Present Yes 🗌 No 🗍 Headspace Yes 🗍 No 🗍	emn. "Of flee Samula Press Van 🗍 Na	Received By: Date/Time:
zde ZetZ	t information		101101		Jec Creent	Condin ministra		:: Yes 🚺 No 🗌	: Yes 🗆 No 👿	er Analyses (check		S	2AAH	S552.2 I Lead/C Nitrate Nitrite											C/S Charge 7	Date/Time:
Ą	State Form / Project		System Name:	Address: Address:	SU EU	5	Country EI Do	Compliance Samples	Send Forms to State:	II, V Drinking Wat		mates sate hall t	Carba Lyphos Diqua Carba	25475 24675 24671 24871 2472 Cl										10:	sred Via:	linquished By:
ater Chain of Custody	a (if different from report to)	Sewaler	in moder	2	Daulder (resert	Start D Zie 21702	Fax:	~ 3870 Cast . 10m	2	PHASE 1, 1	t	-best cides DBCB	SOCs Herbi ests/P EDB/	1502 504.1 515.4 515.4 525.2				*				7	X	CS In	Delive	Date/Time: Rei
Drinking W	Bill To Informatio	Company Name:	Contact Name:	Address:	22	CIN A SAD	Phone:	Email: Troche	PO No.:			iners orine VInO	Conta () () () () () () () () () () () () ()	No. of Residu (mg/L) (mg/L)	-	X	1	3	3	5	02					ived By:
	Report To Information	Company Name: JDS-Hydre Consultants	Contact Name: Mark Volle	Addressing & D'Y & D. V A.	Suite 200	city CS StarLE ZIP & D 70 3	Phone: 719-327-002	Email: MVolle@jdshydre.com	Sampler Name: Honding Schusenke	CAL Task No.	170324007		ARF	Date Time Client Sample ID / EP Code	117 1018 225	6:00 # + D		S:36 411	1 8"18 # IS	1 8:32 4 10 (1,4 Dichand	X177 17.8	1/ 8/15 #19	OCA beis A	nstructions:		Hinquisned by Date/Time: Recei

~ KL

171

C See	ado Doperenent Politic Health Economicat	F-1	Vitrate and Submit	Nitrite as WQ Online at	Nitrogen (CD - Drini http://ww	Certified La king Water w.wqcdcon	tboratory Re CAS apliance.com	port Form /login			Revised	413/2015
	Section I	(Supplied or Complete	ed hv Public W	ater System)			Section II (S	upplied or Com	oleted by Cer	tified Lab	oratory)	
_		Public Water Syste	in Information					Certified Labor	atory Inform	nation		
IISWA	0#: CO0121724		1			Laborator	y ID: CO 0015					
System	Name: Sterling	g Ranch MD				Laborator	y Name: Colora	do Analytical La	lboratory			
Contac	t Person: Mark	Volle	P	hone #: 719	-227-0072	Contact P	erson: Custome	r Service	Phone: 3	03-659-2	313	
Comme	cnts:					Comment	šč					
Š	action III (Supply	ied or Completed by Pr	ublic Water Sy	stem)		Secti	on IV (Supplied	or Completed by	y Certified L	aboratory		
Sample Date	Callector	Facility ID On Schedule	Sample Pt ID On Schedule	Confirmation?	Lab Receipt Date	Lab Analysis Date	Laboratory Sample ID #	Analyte	Analytical Method	MCL (mg/L)	Lab MRI, (mg/L)	Result (mg/L)
3/23/17	tephanie Schwenk	New Well	New Well		3/24/17	3/24/17	170324007-01	Nitrate Nitrogen	EPA 300.0	10	0.1	BDL
3/23/17	tephanic Schwenk	New Well	New Well		3/24/17	3/24/17	170324007-01	Nitrite Nitrogen	EPA 300.0	-	0.1	BDL

NT: Not Tested Lab MRL: Laboratory Minimum Reporting Level BDL: Below Laboratory MRL. A less than (<) may also used.

mg/L: Milligrams per Liter MCL: Maximum Contaminant Level

									v 4'	1				-11							. 1		111					
					-					365	Ι		un	imnU										,		г		
										Clark	F		l	Radon											PN N	. L		
					nuc			_		act		1	877 W	Radi u		 				×								
			tree 01	1	228	313	10	uloj.		contr		9	w 336	uibeA						X					Ne Y			
ठेव	į			- 21		59-2	231	olab		Sub		et981/6	Alph	Gross					×						adap	-		
ୁ ଅନ୍ତି				- The	50	03-6	-659	orad			\square	70	5-5	CON	\square						×			-	E.			
		hton	Sout	DOW0		ne: 3	303	1007			(1	(Circl	የደረ የሆ	'VANS											2N	•	+	•
ŬË 1		믭	Brig	Lak	Lak	Phoi	Рах:	AMM			(ə	loriO)	DOC	, JOT												5	By:	.
11												хэрц	.gne.	1/ . %										×	Sent	3	ived	
								34		lyst			soint	gnonl									Х		s Pre	3	Rece	
			T	1		-0				(ang			эр	nouli										X	Sea	E		\neg
			9	5		Ğ				heck			ę	Nitrite						·				X		٦,];;	
1				\$C		2 aF			ł	es (, a	Nitrat										X				
Ç Z	atior	J		3		g		N°0	, Ž	aiys		3	oddog	\ bsə. l											[Date	
6	nforn	1				inte	S	Yes		An		sç	AAH	2225												``	F	
õ	ject I	ŝ		Se l		92	2	ples:	inte	Vate		۶N	IHTT	2.4.2											Į	>	Ś	
, a	NA /	Ģ	ÿЧ	Z	a da Bandy Anna A	292		c Sam	s to S	bu		16	upiQ	2.642.2							1	X				-	Ś	
F-	Form	ē	E Na	ů.		24	内 別	lianc	Form	ink.		lisrit	opu3	1.842		X				1						ſ		
	State	IS/Md	Syste	PA	1. B. 1. C. 1. B. 1.	ALL	Coun	Comp	Send			91624	jAbµo	9 <i>1</i> 42													a la	
ł	-		1	5						, I ,	2	.ejerne	carba	231'1											info:		Relin	
stoc		Ì		Ce	and a second second	n		F		SEI		s-Pest	SOC	2.252			\ge								Š	2		
C	bort		1	Le le		090				PHA		S		234.2					_							tes		ò
n of		a l	PL	2		8	X	00		[_		səbiəi	Негр	1515	X										63	4 5	ie ie	E
hai	ent fr	AT	Mo	5		021	2	3			\vdash	282	[/stsə _c	202					\square	-			_		Ind	201	Ϋ́ι	24
C	differ		5	4) a		38.7				DBG	EDB	1705											Z	X 2	Dat	m
Vati	on (lf	3	R	S S		ية 14		3			V/	d mud	 itilo:D	[eto]				×	_						0	1		Say
8	Tmat	ame:	ale:			羽		Fo				vinO	(Səlamı	J\໘m) ມ\ຊາກ)											3	230		्रि
nkiı	leg.	N N	t Nar	S.	ľ	24		୍ୟ . ମ			<u> </u>		Naj Chi	Residu							-				د ا	5 2		2
Dri		(ompi	Contar	ddre		۶ <u>غ</u>	hone:	the state	O No				ano)	No. of	_	-	3		1	3	D			1	Ž	99	28	6
		ম্	<u> </u>			┦		<u>د</u>	2													9			VQ.	252	eceiv	S.
		2				M		9	<u>S</u>					Ode			5				ļ	Ĩ			Š	Ă,	æ	<u>v</u>
		TS.		F		2		ø	N.S.					EP (3.0								e.	さん		Â
		्री	2	J	n			101	N								vv								ц. 	20) j	5
		E.	S	de la	R	Zip	لقا	3	لُع					nple		R	2		5	0		2	_	0	Ś	9	Ē	A
		7	۲	19	al.	g	5	0	RY					ıt Sai	*	F	#	4	#	4	4	7	#	*	4	UN A	Date	N
	u	×	2	E	키	Statd	2	୍ଷ	9					Clier						2					 2	E'		
	rmati	ក្ត្រ	2	N.	S		R	1	5	ő	4			0	2	7	TT I		ন	2	2	2	5	0	Ž	Å9	Ä	h
	Info	Nami	ame:	9			5	2	ame:	N YSE	2400		ħ	Tim	2	22	8	100	15	5	2	3	5.7	9	ons:	¥.	H P	1
	ort To	pany	tact N	1	ľ	\sim		Line Line Line Line Line Line Line Line	pler N	ALT	1703		A		3		1.			<u>-</u>	+	-	1	84	ructi	£	Hej ab	イ
	Rep	Com	Con	Add		CIty	Phon	Ema	Sam	O				Dat	3	-		-+	-+	-+	-+		X	-	Insti	ñ	Wein	Æ
			<u> </u>								P	age 2	2 of 3										-				1-1	रूर

														•••	· KL		17												
											Ses			ш	uinsiU												г		
											nation	` _			кадоп	+							+	-	╞	Ž	L V		
						uite					actA	\vdash		877 u	nuibeA	┢	\vdash	\vdash		ſ			+	┢	╞				
			lireet	5	¢	1, V	2		E		ontr	\vdash		977 u	nibeA	+	+			+		╂──	┼─	┢	\dagger	ž	2	te/T	
ৃত্ব	Ľ.		in Si and	500	ء ام	ar U 802	0.7	2315	<u>olab.</u>		Subc	\vdash	Rtad/	shqiA	Gross	+	+	Η		+	\vdash		1		┢	gespa		Da	
ŭ Č Č	= n u	Lab	BN S	3	La		3-6	629	rado			┢	21	- JU2	がっ	t	•	Η	+	+	\vdash	<u> </u>	+	+	+	Ê	Com	5	
<u>Š</u>		ton	outh	(III)	NOON	. W 00	30	303-	00				(ອໄສ <u>າ່</u> ວ)	•52 VU		P		Η		-	-		+-		+	Ž			
No F		i i i	40 S		ake	2000 ake	hon	3X:	MM			1	(Circle	DOC	(<u>10</u>)			┢		+	-	×		+	┢			A	
	2		() A	2	-11 +		<u> </u>	, 12	21				xəpu	ang. I		+	1	-		+	╞				+	III Ve			
AC.											ysis)	`		soin	lnorga	+	┢	┢		+			-	\vdash	+	Pres		eceiv	
	_						- A		· · ·		anal			эр	Fluori	+	$\left \right $	$\left \right $	4	+	\vdash	-		+	┢	Seals	le le	–	
							12				eck	\vdash			Nitrite	+				+	\vdash	-	+		\vdash				
2		ק		0	N.						ch	ŀ			Nitrate		-	Η		+			\vdash	+	┢	1	ros	ime	
C et	E	٢		Z	Ų		Z		2 N	No N	lyse			addo _)/peə7	┥─		┢─	\parallel	┢			-	+	┢	-	Che 2	ate/1	
e e		n	6	5	لأر		J.	٥	es 🚺		Ana	\vdash	Sg	AAH	2.222	┼─		┝			-			┢	┢		č		
s s		5	5	Z	3	:	Str	ોડે	les: Y	ie: X	ater	┢	sy	TTHA	254.2	┢	-	┝	╢──	+				+	┢	1			
Q-	Proje	1)	2	NA		٨	0	jampi	o Sta	N N		ţ.	Bupia	2.942	$\left \right $		-	╢─					┢	+				
		1			2		S	Ð	Ince	irms (likin	\vdash	llad	tobn∃	1.848.1					-			-	-		1		By	
	Re Fi	Nei D	影	A).			2	unty	mpli	ad Fo	II		ətes	oydAj	9 <i>1</i> 75					╞		-		\vdash	-	1	/im:	ishe	
	S	4	Ś				G	<u> </u>	ů –	Se .		\vdash	rates	carba	1.152	+	Η						V	┢	+ -	ioje	Pred V	linqu	
ody		Ţ			七		\sim		S		E L,	F	-Pest	soca	2.252	-			+	-				-	\vdash	COST	Delivi	å	
Cust	(Q)	1	1	2	Ś		Ó		1 . 6		TAS	7	Q1]	.	6-14-2	1			+						X	-			
of (Epol	Z	3		S		Ř		S	Í	Ā	F	səbiə	Herbi	515.4	+			\uparrow				-		-	1			
ain	from	8	Z		5		Zip	Fax:	0			\vdash	SBS	g\zisə	1 SOS			╉	-					2				Lime	
C	fferen	2	≿∣		7		9		5			-	DBCI	EDB/	1.402				×		-				<u> </u>			ate/	ĺ
ater	(If di	S	3		R		Stat		5	2		V	/d wu	ofiloO	IntoT									- 1				 	
Ň	ation		F		1		B		5		h		VinO	səlqmu	S A\9														
king	form	и Naп	Za Inc		d.		्यु		Ê				orine) Isl Chi	ubizəA (Nam)							4	പ	14	•				
rinl	Tol	undu	tact {	ress:			3	ne:	ail: /) :: No:			erani	ano)'	10 .oN	_	X	9	3	α	3	3		$\tilde{\boldsymbol{\omega}}$	$\overline{\mathbf{v}}$			By:	
a		Cor	C	Add			Č	Pho	E	2		-		<u>.</u>				┦	\vdash		3			•,	-			eived	
		¥.	1			1			Ę	K					de						Nah							Rec	
		417					N		J	X					P Co						Ä								- E
		3			Ĩ		লু		arc	È)/E						7								2
			alla		٦K	X	5	A ::	द्वी	N					le IL			k			J o	~	30		d			ïme:	2
		す	Ž	4	Ľ,	5			2	NR.					amp		G	\mathbb{A}	5	P.			4	5	Ŵ			ate/T	2
		1	Y		الخ	1	3	肖	0	R		ĺ			ient (H	#	4	せ	Ŧ	F	#		#	F			Á	M
	ution	Ä	46	10	2/1	Ń	Sta	5	1	X					อี	T	_	ł											ト
	forms			1	N			2	3	시] 필	ġ	2			ne	5	8		R	x	3	ଝ	5	2	39		-		1
1	To In	by Na	Nam		J J		N	2	2	Man	ask	240(RF	Ë	ŝ	39		õ	3	<u> </u>	ŝ	ž	3	8	tion		ishea	7.3
	thort	induk	ontact	Idress	2		N N	1 ione:	nail:	mpler	, ALT	1703		4	ate	5	_	-		-	≥ 1	\square		1	_	struc		ling 19	J.
	Å	ŭ	ŭ	P			Ū	4	5	S.	1	L	-Рал	<u>e 3 n</u>		3				1				1		Ĩ		4	D
																												1	ı J

		Org	anic Chemicals Certified	I Laboratory Report Form			Revised	1 4/13/2015
Colorido Department of Politice i lealth and Environment		Subn	שעיט - טרוואט ait Online at http://www	ng water LAS .wqcdcompliance.com/logi	E		VOC	SOC
3	sction I (Supply	ed or Completed by Public	Water System)	Section J1 (Sumplie	ed or Completed b	y Certified L	aboratory)	
PWSID#-CO01	21774 x 100	c water System Informa	1101	Certify	ied Laboratory J	nformation		
	17117			LEDOFAIOLY JU: CU UU03				
System Name:	Sterling Ranch	MD		Laboratory Name: Colorado An	alytical Laborato	IJ		
Contact Person:	Mark Volle		Phone #: 719-227-0072	Contact Person: Customer Servi	ice Pho	one: 303-659	-2313	
Comments:			Do Samples Need to be Composited BY THE LAB?	Comments:				
PWSID#: CO012	1724		Section V (Supplied or Compl	leted by Public Water System)				
Sample Date: 3/2	3/17	Collector: Stephanie Sch	wenk Facility ID (On Schedule):	New Well Sample P	Y ID (On Schedule)	: New We		
		Section VI Sy	nthetic Organic Chemicals (Sur	phied or Completed by Certified I	Laboratory)			
Lab Receipt Uate	Lab Analysis Date	Lab Sample ID	Analyte Name	CAS No	Analytical Method	MCL.	Lab MRL	Result
3/24/17	4/3/17	170324007-01E	Dibromochloropropane	96-12-8	EPA 504.1	0.2	0.02	BDL
3/24/17	3/29/17	170324007-01G	2,4D	94-75-7	EPA 515.4	70	0.1	BDL
3/24/17	3/29/17	170324007-01G	2,4,5-TP	93-72-1	EPA 515.4	50	0.2	BDL
3/24/17	3/31/17	170324007-011	Alachlor	15972-60-8	EPA 525.2	2	0.2	BDL
3/24/17	3/31/17	170324007-01J	Aldicarb	116-06-3	EPA 531.1	N/A	0.6	BDL
3/24/17	3/31/17	170324007-01J	Aldicarb sulfone	1646-88-4	EPA 531.1	N/A	1	BDL
3/24/1/	3/31/17	170324007-011	Aldicarb sulfoxide	1646-87-3	EPA 531.1	N/A	0.7	BDL
3/24/17	3/31/17	170324007-011	Atrazine	1912-24-9	EPA 525.2	3	0.1	BDL
3/24/17	3/31/17	170324007-011	Benzo(a)pyrene	50-32-8	EPA 525.2	0.2	0.02	BDL
5/24/11	3/31/17	1/0324007-011	Carbofuran	1563-66-2	EPA 531.1	40	6.0	BDL
3/24/17	3/30/17	170324007-01F	Chlordanc	57-74-9	FPA 505	2	0.2	BDL
11/47/5	11/67/5	1/03/2400/-010	Dalapon	15-99-0	EPA 515.4	200	-	BDL
11/47/0	11/10/0	1/032400/~011	Di(2-ethylhexyl)adipate	103-23-1	EPA 525.2	400	0.6	BDL
3/24/1/	3/31/17	1/0324007-011	Di(2-ethylhexyl)phthalate	117-81-7	EPA 525.2	6	0.6	BDI.
3/24/1/	3/29/17	1/0324007-01G	Dinosch	85-85-7	FPA 515.4	7	0.2	BDL
3/24/17	3/24/17	170324007-01L	Diquat	85-00-7	EPA 549.2	20	0.4	BDL
3/24/17	3/29/17	170324007-01K	Endothall	145-73-3	EPA 548.1	100	6	BDL
5/24/17	1/06/5	[70324007-01F	Endrín	72-20-8	EPA 505	2	0.01	BDL
3/24/1/	4/3/17	170324007-01E	Ethylene dibromide	106-93-4	EPA 504.1	0.05	0.01	BDL
3/24/1/	3/31/17	170324007-011	Heptachlor	76-44-8	EPA 525.2	0.4	0.04	BDL
3/24/1/	3/30/17	170324007-01F	Hentachlor epoxide	1024-57-3	FPA 505	0.2	0.02	BDL
NT: Not Tested ug/L	Micrograms per I	Liter MCL: Maximum Contamin	nant Level BDL Below Laboratory MI	RL A less than sign (<) may also be used.			170324007-01	N 1/2 4/71/17

Page 1 of 4

			Result	(ng/l))	RDI.	RNL	BNL	IUI		IUI	IUI	Rhf	RDT	BDL
			Lab MRL	(ng/L)	0.1	10	0.02	10	-	0.04	10	0.1	0.07	-
	New We		MCL	("I/@n)	1	50	0.2	40	200	-	200	0.5	4	
	ID (On Schedule):	aboratory)	Analytical	Method	EPA 505	EPA 505	EPA 505	EPA 505	EPA 531.1	EPA 515.4	EPA 515.4	EPA 505	EPA 525.2	EPA 505
ublic Water System)	/ Well Sample Pt	Completed by Certified L	CAS No.		118-74-1	77-47-4	58-89-9	72-43-5	23135-22-0	87-86-5	1918-02-1	1336-36-3	122-34-9	8001-35-2
Section V (Supplied or Completed by P	chwenk Facility ID (On Schedule): New	Synthetic Organic Chemicals (Supplied or (Analyte Name		Hexachlorobenzene	Hexachlorocyclopentadiene	Lindane	Methoxychlor	Oxamyl	Pentachlorophenol	Picloram	Polychlorinated biphenyl's	Simazine	Toxaphene
	Collector: Stephanie S	Section VI S	Lab Sample ID		170324007-01F	170324007-01F	170324007-01F	170324007-01F	170324007-01J	170324007-01G	170324007-01G	170324007-01F	170324007-011	170324007-01F
1724	23/17		Lab Analysis	Lato	3/30/17	3/30/17	3/30/17	3/30/17	3/31/17	3/29/17	3/29/17	3/30/17	3/31/17	3/30/17
PWSID#: CO012	Sample Date: 3/.		Lab Receipt	THREE	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17	3/24/17

NT: Not Tested ug/L: Micrograms per Liter MCL: Maximum Contaminant Level BDL Below Laboratory MRL A less than sign (<) may also be used.

170324007-01 N 2/2 4/21/17

								V 41	1				21.1									5					
									ses		-	um	unerU									Γ		L	r		
				100,					lan (ι	Rador	†	-						┢	\vdash	\vdash	N N			Ì
				uite			_		act A		87	77 W	vibsA	+-	-				×			╞──					
		treet	5	Dr, S	872		COID		sontr		97	77 W	vibeA	\top	┼─			-	X		╞		┢	Se X	i		
<u> </u>	ż	().	806	-9 <u>-</u>	0 802 20-2	2315	<u>olab.</u>		Subc	T	ha/Bet	qIA	Gross	+	-			×		1	\vdash			adspa	-		
	- '01		8	Ced		659-	Prad				$\gamma \sigma_{s}$		େମ	\uparrow						×			•	H			
<u>j</u>		hton South	hton	0 W.O	.woo	303	<u>.col</u>			(ə	əniƏ) I RI	7 VU	አላህሪ	\uparrow	\uparrow							\vdash		PN N		≁	.
Se i		Brig	Brig	Lake 1286	Lake Phon	Tax:	MMN			(əլ	C (Circ	DO	toc,												5		
10		_;;;	. –				-				xəpul :	gne	N.XIA	\uparrow									×		() ()	, bev	
Q									lysis		ş	soine	gionl	\uparrow								X		Pres	3	Recei	
				1	00				ana			əp	Fluon									İ	X	Seals	E		
			9	5	l g				heck			9	Nitrit						-				X		1		
			2	22	No.			X	ા જ			, a	Nitrat										X	1		Time	
2	ation	-	۲. ۲	S.	9		No	2	alyse		per	idoj	l.ead	T										1	5		
te)	form	12	AA		Late	Q	Ves M		An.		sζA	¥Η	225.2											1	(Ή	
ø	ect Ir	ğ	5	j j	j 2	2	ples:	ate:	/atei		sMH	łTT	234.2	\uparrow					_		<u> </u>	\vdash		1		<u>.</u>	
وتع	P.	0	ü Î	3	5		Sam	to St	N Bu		ţen	piQ	2.942.2	\uparrow							X			1	メーて	s =	
ρ	ern.	U ä			34		iance	orms	inki		lisitio	bn3	1.842		X				1		-			1	٩	B	
	tate I	WSH		PE E	liy o	ount	iqmo	end F	D		SIB2 01	iqyb	242 C											1			
>	-	F ai	02	K				20	П, 1	S	atsmed	Carl	1.152						_					iğu Luğa	1	eling	·
tod			1	E.	n		Ę		Ж.	1	၉၈၂-၉၂	OS	2.252			X								S			
Cus	ont to)		オ	E.S.	90		3		HAS		sJ	ΟΛ	224.2												ţ	9	5
lof	de u	d'	Ľ	J	28		00			2	picide	Her	215.4	X										3	LS	1	E
nain	nt froi	FA	Ś	4	0 Zăp	Fax	(a)				NPCBs	Pests	SOS											TY I	101	Ĩ	¥
5 D	iffere	3		DE	U E		84			d	B\DBC	ED	1.402											17	ST J	Date	10
ate	(Ifd	K I	à l		s Sta		100			∀/e	l moli	(lo)	Total				X							F	A f		ð
8	hatio			A	187		L				vinO 29	(duns	'S ∀/d ⊐/âш)							:				8	N.		g
kin	afor	N N	Nan	90	24		Ľ				hiorine	C IBU	Resid										-	3	35		3
lrin (I To	mpar	ntact	dress	J S V	one:	ile	No.:			ເສເບດເລ	ഞാി	<u>No. ol</u>		-	う		-	3	3	١			2	à j		6
	Ē	ర 10	පී	2		Å		2			-													15	asa	Seiver	S
					1_0		ξ	Z					g			1.					S			3	NY.	Rec	S
		ar l		ž			J	Š					D D D			0					22			l S			Å
		کھر ہ	J		12		2	R.					0/E			\$								à	5	}	5
		ę =	ē	34	∭ŵ		J.						ske []					. ~		~	42 \			L L	- È (ime:	
		T	2	30	8	S.	5						Sam	14	20	3	1	いま	Å	4	18	5	とえ	ير ال	. Tox	afe /	r,
		5 IZ		F K	J	8	@	F					ient		-	Ŧ	#	- 14	4		-7	÷		1	Try I	P	~~
	ation	出	-		3	re	Ĕ	, K		1			ប						<u></u>					9	ESC.		
	iform	, sami	le:	1 2	1	0	ß	ч Л Ц	í No.	007			me	2	27	H	3	52	3	33	X	2	ß	is	1	1 By:	
	ToIn	ny Na	t Nan	H		त्र	٤	LEN L	. Tasl.	3324			F	ŕ	F	7 2	\$	r	ŕ	5	7	ŕ	3	ction	Ŧţ	N.	X
	eport	ompa	ontac	망니	<u>2</u>	ione:	mail:	Imple	CAL	17(ate	$\left \begin{array}{c} \mathcal{C} \\ \mathcal{C} \end{array} \right $	-									struk	ま	lingu	4
	ä	Ű	U	< !	ĪŌ	â	ū	ŝ	1	P	age 3	of 4		ŝ								7			\$	2	K/T
											u																-

														· Ku		12											
					-					100			ш	uinsiU]											
					100/					Name	'	-		nobeA	╈				5	7		1	1		2		
			_		uite					act			877 u	nibeA					ŕ		\uparrow			-			
			01 01		Jr, S	513		COM		Sontr			977 u	Radiur	1		h		\uparrow	1		†-	+		Ce K	A SEC	te/T
्रव	č S		806 806	ام	lar I		231	olab.		Sub		RT58/6	sıqqiA	Gross	\top	-		╋	\uparrow	+	-	+			adspa	nle P	ñ
	- -	Lab	N S	d La	32		629	rad			╧	21	102	れっ	×		╞	+	\uparrow	+		+				E	
<u>ک</u>		iton	iton,	WOO	W.C.	18-10 18-10	303	colo			((Sircle)	۰ ۲۸ 32	אַראַראַ	F	17			+	┢		╡──	$\left \right $	-	Ž		
S Č Č		in the second se	tight s	ake	286(ake		ax:	WW.			(;	(Circle	DOC	.001)	1		Η	\parallel	+	+	X	3		-		/Ice	ż
60	1							>1			F	хәриј	.gns.	<u>→~</u> ∀IF'\Γ	╀		Ħ								int V	0°	ed B
										ysis)	`	-	soin	Inorga	+		H			+	\vdash				Prese		eceiv
0	r		т <u> </u>	1.				,		anal			- əp	Fluori	+		Η		+						Scals	Temp	~
		_				12				eck				Nitrite					\vdash	\square		┢──					
2		г Ф	L	3		3			Ļ	ch			G	Nitrat	-	-			+		-	╀	$\left \right $		4	ne [ime:
20	Elon	F	٤ [No [2	lyse		sr	ddo_)/psə.l	+				┼─	+		┢				S Cha	ate/]
er.	forms	R	Ļ			J	٥	ce M		Ana	F	sç	AAH	27255			⊢	╟─				╞	H		-	5	
્રૅટ્ર	set In	ā				Sta	3	les: Y	te: Y	ater		sM	IHLL	254'5					+		\vdash	+			1		
4	Proj	0	2 3	hě			0	Samp	to Sta	N B		16	upiQ	5.49.2	+				\vdash	-							
	nm/	్ష	Nam,	<u>,</u>):	5	E	влсе	orms 1	akin	┢	lisiti	opug	1'875	+		Η										d By:
	ate F	MSID		dres (2	ounty	ilduo	nd Fo	Dri	┢	Sate	ιλbμα	9 <i>1</i> 75			-		\vdash	-						Via:	rishe
2	S	<u> </u>	6	R		0	Ű	Ū	Š	H, V		sətsma	Carb	1.152					-			X			nfo:	ered	lingt
tody				+		m		δ		E I,		s-Pest	SOC	2.222	†		1	1	-						CSI	Deliv	Å.
Cus	nt to)	L	10	3		0		100		HAS	7	QI I	政	GPC.				-						X			
of	n repo	P.	3	S		R		4		1		sabiai	Herb	4.212			1									ĺ	
lain	at from	2	è	2		Zip	Fax	00				PCBs	/stsə	1 SOS			1	1-					X			:	Time
C	fferen	<u>_</u> '	S.	え		9		5			-	DBCI	EDB	1 .402		-	十	×					Ť	-			Date/
ater	(If di	Ň	3	R		Stat		3)		¥.	\9 mo	tiloD	Isto T			1										
N :	ation	Ĩ		0		B		لال				yinO a	andre	S V/d			T							-	x		
king	uforn	y Nar	Name	C,		5		Ê				aninol	d) Ch	Reside							÷.,	Ъ	×	•			
rin	Tol	mpan	ntact	dress:		3	ijĊ	ail:	No.:			279nin	tino)1	No. 01	_	X	9	3	3	3	R	-	3	2			By:
9		Ŝ	<u>ਹ</u>	P V		ີ່ວັ	Pho	E	2								-H	\square		3				-			eived
		A A			1			Ę	X					de						Nah						ĺ	Rec
		417				3		ปู	X					P C						Ä				Ì		ſ	र्म
		Ś		A		5 S		gr.	Ç)/E						1							3
	•	e =		20K	X	S	1	3						le II			k		1	0	\sim	30	(0			
		P)	ž	A	J		3		NG.					Sam		g	4	3	5	1	-	4	ମ	Ĵ			ate/
		1:	괸	.Ke	3	تي ا	Ŕ	Q	K					ient	4	#	4	せ	#	Ŧ	*	:	#	F			<u>n</u>
	ation	Ä -	4	9	Ň	Sta	5	1	X					ច	r	-	ľ			_							2
	ulorm	ame:	i i	W			2	2	빌	No.	07			a	5	3	1	R	2	3	R	5	2	34	<u>s:</u>	1	
	Toll	ny Ns	t Nar	<u>ר</u> יי גיי		N	비	2	r Nan	lask	3240	ļ		F	8	3	ļ	Ś	ŝ	ŝ	50	à	201	2	ction		risher
	cport	ompa	ontac	ទួល) (i	hone:	mail:	ample	CALT	170		•	ate	S.		-		-	≥†	_		1	ا ج	struk	:	
Į į		C	0	<		0		Ē	æ	-1		Page	4 01	4	3				1				1	1		1	<u>E</u> []
												-															VI 2

~ XL

		Dadiamalidas Cartifica	T change					
			u Labulatury abing Woton (Acpuil Furill			Kevision	6/13/2014
	21	IIU - UUX W On Channy Analy Drives	under Denge					
Coloratio Department of Phillic Halth and Environments		ax: (303) 758-1398; cdp	he.drinkingwa	tter@state.co.us				
Section I (Suppli	lied or Completed by P	ablic Water System)		Section II (Supplie	d or Completed l	by Certified L	aboratory)	
Public Wa	ater System Informatio			Certified L:	aboratory Inform	ation		
PWS ID: C00121724			Laboratory ID: CO	00008				
System Name: Sterling Ranch MD			Laboratory Name:	Hazen Research, Inc.				
Contact Person:		Phone #:	Contact Person: Je	ssica Axen		Phone #: 303-2	279-4501	
Comments:		Do Samples Need to be Composited BY THE LAB?	Comments:					
		Section III (Supplied	or Completed by	Public Water System)				
Sample Date: 03/23/2017 Collect	tor:	Facility ID (On Schedule):	Samr	le Pt ID (On Schedule):				
		Section IV Radionuclides (St	upplied or Comple	ted by Certified Laborate	013)			
Lab Receipt Lab Analysis Date Date	Lab Sample ID	Analyte Name (C	ode)	CAS No.	Analytical Method	MCL	Lab MRL	Result
03/24/2017 04/18/2017 C27017	7-001	Gross Alpha Including Ura	anium (4002)	12587-46-1	SM 7110 B	N/A	1.5	0.0(±1.5)
		Combined Uranium	(4006)	7440-61-1	D2907-97	30 ug/L		
03/24/2017 04/07/2017 C27017	7-001	Radium -226 (40	20)	13982-63-3	SM 7500-Ra B	N/A	0.1	0.4(±0.3)
03/24/2017 03/30/2017 C27017	7-001	Radium -228 (40	30)	15262-20-1	EPA Ra-05	N/A	0.6	0.2(±0.6)
03/24/2017 04/18/2017 C27017	7-001	Gross Beta (410	(0)	12587-47-2	SM 7110 B	50 pCi/L*	2.1	0.0(±2.0)
		Total Dissolved Solid	s (1930)		EPA 160.3	N/A		
*The MCL for Gross Beta Particle /	Activity is 4 mrcm/ye	ar. Since there is no simple co	inversion betwee	n mrem/year and pCi/L	EPA considers 5	0 pCi/L to be	e the level	of concern.
		Section V Calculated V:	alues					
N/A		Gross Alpha Excluding Ur	anium (4000)	Calculated Va	alue	15 pCi/L	N/A	
đ a sp a sp d		Combined Radium {-226 &	:-228} (4010)	Calculated V ₈	alue	5 pCi/L	N/A	
NT: Not Tested Lab MRL · Labratory Mi	finimum Renorting I /	type]		ug/L: Microgram	s per Liter			

BDL: Below Laboratory MRL. A less than sign (<) may also be used

pC#L: Picocuries per Liter MCL: Maximum Contaminant Level
Drinking	
Water	
Chain	
of	
Custody	

Company Name: same PWSID: C001217 Contact Name: System Name: Sterli Address: System Address: City: State: Zip: City: State: Zip: Phone: Fax: County: El Paso Email: Compliance Samples PO No.: Send Forms to State:	Report To Information	Company Name: Colorado Analytical Labs	Contact Name: Stuart Nielson	Address: P.O. Box 507	City: Brighton State: CO Zip: 80601	Phone:303-659-2313 Fax:303-659-2315	Email: stuartnielson@coloradolab.com	Sampler Name:	
PWSID: CO01217 System Name: Sterli System Address: 20 Boulder Crescen ZO Boulder Crescen City: County: El Paso Compliance Samples Send Forms to State:	Bill To Information (If different from report to)	Company Name: <u>same</u>	Contact Nante:	Address:	City: State: Zip:	Phone: Fax:	Email:	PO No.:	
24 ng Ranch MD t State: CO Zip: 80903 : Yes 🛛 No 🔲	State Form / Project Information	PWSID: C00121724	System Name: Sterling Ranch MD	System Address: 20 Boulder Crescent	City: Colo Spgs State: CO Zip: 80903	County: El Paso	Compliance Samples: Yes 🛛 No 🗌	Send Forms to State: Yes 🔲 No 🛛	

1 TUCKett	Relinquished By:	>	Instructions: Gross , Please print results o							3/23/17 08:03	Date Time	ARF	170324007	CAL Task No.
1150	Dave/Time: 3/24/17 Re		Alpha, without Radon & Uranium n Colorado State form but do not							170324007 Sterling Ranch MD	Client Sample ID / EP Code			
	ceived B		submit 1		 	 		 		6	No. c	f Containers		
	¥:		to CDPHE.								Resid (mg/l P/A S	lual Chlorine L) Samples Only	,	
			Thar								Tota	l Coliform l	P/A	
-			-226 1k yo								504.	I EDB/DBC	2P	
	Date/		H -22								505	Pests/PCBs	;	
	Time:		28.								515.	4 Herbicide	S	PH
											524.	2 VOCs		ASE
		Deli	C/S								525.	2 SOCs-Pes	t	I, D
	Reli	vered	Into:								531.	1 Carbamate	es	S.
	nquis	Via:									547	Glyphosate		Drie
	shed I	-									548.	I Endothall		king
	By:	5									549.	2 Diquat		
											524.	2 TTHMs		ater
		_									552.	2 HAA5s		Ana
	Dat	C/S C									Lead	/Copper		lyses
	e/Tin	harge									Nitra	ite		i (ch
	le:	Ď									Nitri	te		eck
		Te Te	Sea								Fluo	ride		anal
85	12	mp.	lls Pre								Inor	ganics		ysis)
R	No.	°C	sent								Alk	Lang. Inde	ĸ	
		8	8								тос	, DOC (Cir	cie)	
	13	Sam	No I								SUVA	, UV 254 (Cir	cle)	
		ipie Pi												<u> </u>
331		× 33	cadsp							\boxtimes	Gros	s Alpha /Be	eta	Subo
12	Da		ace Y							\boxtimes	Radi	um 226		ontr
22	le/Ti	N N	2 2							\boxtimes	Radi	um 228		act A
4	ac//		No							\boxtimes	Rado	m		land
	3		L								Uran	dum		SCS
I	+	L		1			<u> </u>		L		L			1

Colorado Analytical

<u>Brighton Lab</u> 240 South Main Street Brighton, CO 80601

Lakewood Lab 12860 W. Cedar Dr, Suite 101 Lakewood CO 80228

Phone: 303-659-2313 Fax: 303-659-2315

www.coloradolab.com

Report To: Mark Volle Company: JDS Hydro Consultants 545 E. Pikes Peak Ave Suite 300 Colorado Springs CO 80903 **Analytical Results**

TASK NO: 170324007

Bill To: Jim Morley Company: SR Water 20 Boulder Crescent St. Colorado Springs CO 80903

> Facility ID: New Well Sample Point ID: New Well

Task No.: 170324007 **Client PO:** Client Project: Sterling Ranch MD CO0121724

Date Received: 3/24/17 Date Reported: 4/21/17 Matrix: Water - Drinking

Customer Sample ID Sterling Ranch MD Sample Date/Time: 3/23/17

8:03 AM Lab Number: 170324007-01

Test	Result	Method	ML	Date Analyzed	Analyzed By
Chloride	1.3 mg/L	EPA 300.0	0.1 mg/L	3/24/17	LIG
Cyanide-Free	< 0.005 mg/L	EPA 335.4	0.005 mg/L	3/28/17	VDB
E-Coli	< 1 mpn/400ml	Colliert	1 mpn/100ml	3/25/17	VDB
Sulfate	10.7 mg/L	EPA 300.0	0.1 mg/L	. 3/24/17	LJG
Total Coliform	68 mpn/100ml	Colifert	1 mpn/100ml	3/25/17	VDB
Total Organic Carbon	< 0.5 mg/L	SM 5310-C	0.5 mg/L	. 3/28/17	ISG
Turbidity	1.08 NTU	SM 2130-B	0.01 NTU	3/24/17	MBN
Total					
Aluminum	0.032 mg/L	EPA 200.8	0.001 mg/L	3/29/17	TCD
Calcium	1.0 mg/L	EPA 200.7	0.1 mg/L	. 3/29/17	MBN
Copper	< 0.0008 mg/L	EPA 200.8	0.0008 mg/L	3/29/17	TCD
iren	0.180 mg/L	EPA 200.7	0.005 mg/L	3/30/17	MBN
Lead	0.0002 mg/L	EPA 200.8	0.0001 mg/L	3/29/17	TCD
Magnesium	0.06 mg/L	EPA 200.7	0.02 mg/L	3/29/17	MBN
Manganese	0.0071 mg/L	EPA 200.8	0.0008 mg/L	3/29/17	TCD
Potassium	1.0 mg/L	EPA 200.7	0.1 mg/L	3/29/17	MBN
Silver	< 0.0001 mg/L	EPA 200.8	0.0001 mg/L	3/29/17	TCD
Strontium	0.009 mg/L	EPA 200.8	0.005 mg/L	3/29/17	TCD
Total Hardness	2.7 mg/L as CaCO3	SM 2340-B	0.1 mg/L as CaCO3	3/30/17	MBN
Uranium	< 0.0002 mg/L	EPA 200.8	0.0002 mg/L	3/29/17	TCD
Zinc	0.002 mg/L	EPA 200.8	0.001 mg/L	3/29/17	TCD

Abbreviations/ References:

ML = Minimum Level = LRL = RL mg/L = Milligrams Per Liter or PPM ug/L = Microgrems Per Liter or PPB mpn/100 m/s = Most Probable Number Index/ 100 m/s Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

240 South Main Street / Brighton, CO 80601-0507 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 / Fax: 303-659-2315 Page 1 of 4

Report To: Mark Volle Company: JDS Hydro Consultants 545 E. Pikes Peak Ave Suite 300 Colorado Springs CO 80903

Analytical Results

TASK NO: 170324007

Bill To: Jim Morley Company: SR Water 20 Boulder Crescent St. Colorado Springs CO 80903

Cli	Task No.: 170324007 Client PO: ent Project: Sterling Ranc	h MD CO0121724	Da Da	te Received: 3/2 te Reported: 4/2 Matrix: Wa	4/17 1/17 ater - Drinking	
	Customer Sample ID Sterling Sample Date/Time: 3/23/17 Lab Number: 170324	Ranch MD 8:03 AM 007-01		Fac Sample P	tility ID: New Well oint ID: New Well	
Test		Result	Method	ML	Date Analyzed	Analyzed By
<u>Total</u> Zinc		0.002 mg/L	EPA 200.8	0.001	mg/L 3/29/17	TCD

Abbreviations/ References:

ML = Minimum Level = LRL = RL mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpr/100 mis = Most Probable Number Index/ 100 mis Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

240 South Main Street / Brighton, CO 80601-0507 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 / Fax: 303-659-2315 Page 2 of 4

170324007 2/2

									V ar	2				21.1							-		1					
										/ses			w	inerU												Г		
					100/					Inal			1	Radon	†								t		2 N			
					uite					act /		1	822 w	Vibe N	1					×						<u>ب</u>		
			itree 01		0r, S 238			.com		contr		-	w 536	Radiu						X					A SU			
्रत	į	-	ain S 806	4		50-2	231	<u>olab</u>		Sub	7	nəg/a	uqiA	22010	t				×						depa-	1		
Ö S S S S S S S S S S S S S S S S S S S		Lat	ΞÖ,	d La	ιð ζ	5 10	629	orad				70	<u> </u>	लग							×			•	E.	t		
<u>j</u>	5	hton	Sout	DOWS	N O		33	<u>'.col</u>			(၁	loriO) I	አር እበ	'YVUS						-					°Z	-	+	.
°S⊊ ≣	Š	Brig	240 (Brig	Lake	1286 ate	Phone	Fax:	MMA			(əj	oniO)	DOC	, JOT												5		
10	•				. – –	_	-	-				xəpuj	.gns.	7/.¥IA	\square									×	ient V	(7)	Ved	
								3		lysis			ຂວງເມ	gronl								† †	X		E.	3	Recel Recel	
						M				ana			эр	inoulii									<u> </u>	X	Scal	E		
			4		2	g				heck			(Nitrie						•				X	\square].		
					5	n S			H	ss (c)			, a	tertiv										X				
N	ation	7				g		No.	, I	alys		J.	obbe	Lead													Date/	
)e	form	Č T		RA .)	ate C	Q	Ves 1		AB		sç	AAH	2225											1	ţ,	Ŧ	
ø	ect Ir	9		9		Š	2	ples:	le:	/atei		sM	HLL	2.422											1	>	</td <td></td>	
وأع	Pad	()	기교	7	5	5		Sam	8	N Bu		je	upiQ	2.942						_		X			1	メて	5 =	
ρ	ELO				8	32		iance	orms	inki		listi	opu3	1.842		X				1						()	B	
	tate I	1 ISAN			3	N A	ount	omp	end F	Ā		SIE 2	jAbµo	9 <i>1</i> 45												H-m	uishe	
>	0		- 00	<	1 		0	0		II,	5	aisme	strib)	1.152											ë		eine Bine	
tod					i.	5		Ę		Ж. I.		s-Pest	SOC	2.252.2			X								S	Ĩ		
Cus	12		갋	6	S	90		3		HAS		S	AOC	254.2												ţ	5	5
of	n rep	g	L.	4	5	80		loc		•		səbiəi	Нефі	515.4	X										3	L S		2
nain	at from	FA	106		6	0 Zlp	Fax	رفي				SCBS	cata/I	1 505											PA	10.1		A
õ	iffere	3	2			U g		870			d	DBC	EDB	204"]											17	y the	Date	10
atei	(If d	K K	à			Sta		2			∀/	9 mia	Colifo	Total				×							F	A f		8
8	ation	Tiet.	5	d	1	87		권				KinO :	səlqmu V	לא צי רוקעי רוקעי											13	Š		S
kin	aforn	y Nai	Nans	S.C		120		Ľ				anino	N CH	Residu										*	3	33		2
nir	ToT	nequ	ntact	dress		S.)ne:	ile	ÿ			ຂາອກພ	stno)	to .oV	-	-	З		-	3	3				2		By:	G
8		ပိ က	ಲಿ	P	<u> </u>	Ü	Ĭ	Ē	2										-			1.0			5	S.S.S.	ive.	S.
		Je l	1		h	ام. ا		ξ	Z					qe			١.					S.			3	NY S	Rec	V
		ALL M						J	¥.					PC			0					2.5			N N	6		Å
		Ň	.)	3		5		2	Ę.					3/E			00					2 Prints			à	. द ु (}	5
		ę		1 Star	4	3		J.		i				le II					. ~		~	¥ ¥ \			L L	- 6-6) E	=
		14	ウ	4	M	2	de la	Se	24		:			Samp		$\overline{\mathcal{O}}$	\mathcal{C}_{0}	1	い	Å	4	48	5	エ	ر کر	. To	a la	5
		J.	3	210	4	J.	8	(0)	F					ient (-	Ŧ	*		4		-7	4	-	1	الرو		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	ntion	3	Ž	19	J	S	5	Ĕ	X					ō						E					2	ES.		
	form	, india		8			Q	3	V J	No.	207			me	3	5	H	3	25	R	5	SX	R	3	3	1	By:)
	To In	ny Na	Nam	1.5	2	ك ا	51	٤	TINN L	Task	1324(ARF	Ë.	É	ĥ	%	δ0	Ē	2	F		i	6	tion	≠v	搔	X
	sport	rødnuc	ontaci	dres	ľ	2	Olici -	nail:	mplei	CAL	170			ate	3	_									struc	E	inqu	A
	ä	ŭ	ŭ	¥		0	- E	5	ŝ		L .	ane '	3.017		3							*****	Z		Ĩŋ	3	2	Â
												-96.		•														~ \

															Y		1	4										
											ses			шт	inerU												Г	
						100					lian				горвЯ				-					+	╞	Ž	ž	
					;	uite					act A		8	77 W	nibs A								\vdash	\vdash	\vdash			
			reet	2	l	r, Si 28		2	com		ontri	\vdash	9		Radiu	+		╎┤	+		-			-	\vdash	х З	>	ie/Ti
07 s	į		in St Pool		ا م	ar D	6.0	2315	lab.		Subc	-	a/Beta	ıdıv	Gross	+			┢	+		-			┢	adspa	ele P	Da
	5	Lab	W S	3	<u> </u> Lal			226-2	rado		F	┢╌	25	102	ホっ			╞┼	+	\vdash				<u> </u>		Ê	Tel.	
			outh		vood	Noov	2		coloi				4 (Circle	5Z AO	'ΨΛ <u>Ο</u> S	$rac{1}{2}$	1	H	+	+			-	┞		2		
		<u>rich</u>	10 N	20	akev	2860 akev			WW.			(a	(Circl	DOC	, 100		<u> </u>	┝┤	+	-		1		┢	┢	ģ.	(Ice	
	1		8 ¤	9					≥ I				xəpuj	.gns.		+		┤┥	┢	-		P	-			nt Ye	Jo	
X.											(sis)			soint	igroni	\vdash		$\left \right $	╀	-	-	\vdash	┝	╞	┢	Prese		eceiv
											Inal			әр	Fluon	\vdash			┢	┢				┢	-	seals		ž
					+	1	10				eck :	\vdash		1	Nitriti			┝╌╋		$\left \right $	_		-	<u> </u>		62		
5		7		Δ	26		ŝ				(ch	\vdash		ə	Nitrat		-	\mathbb{H}	+	-			-	┣─		-	L ě	
Let .	tion	-		Ê	J		Ž	1	2 2	의 의	lyses	⊢	er	ddog	/peə Ţ	+		$\left \cdot \right $	-	┝			-			-	Che	ite/T
لو	DTIMAL	Ta	8	5	ડ્રે		S.	n		Ō	Anal	\vdash	sçı	AAH 2	2.222		H	$\left \cdot \right $						\vdash	-		CSS	ã
e e	t loĥ	ō	2	ž	PT-		Sta	୬	es: Ye	e: Ye	ıter ,	┝	sM	HLI	2.4.2			\vdash	-						-			
6	Proje			Y	NÃ			0	ampl	o Stat	N ⁸	⊢	161	npiQ	2.948			Η					-	\vdash				
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	١ <u>۽</u>	مر المرز				E	nceS	rms to	king	$\vdash$	lishid	Dona	1.842					-				╞				By:
	tte Fo			눼.					all all all all all all all all all all	ld Fo	Dric	-	<b>91B</b> 2C	ydAli	2470	$\vdash$		$\neg$		┢─				-			į	ished
	St	nd	Ŝ				5	<u>්</u>	ථ	2	I, V		səterne	фвЭ	1.152									╞	-	ie	red V	lingu
ody		1			+				S		E 1, ]		1səd-s	SOC	2.25.2		-	╉	-						-	CASI	Delive	Re
Cust	t to)			2	Ś		0				IASI	7	QI I		6-14-1			╉	-						X			
of C	repor	2	3		ુ		8		3		a l	F	sabioid	Herb	Þ.čľč			╁										
ain	from	3	3		5		Zip	Fax:	ୁ			┝──	PCBs	Pests/	\$0\$			╉	-		-			-				lime:
Ch	Terent	2	٤		4		9		5			6	NDBCI	EDB	1.402			╈	×						-			ate/
ıter	(if dif	K K	8		R		Stat		m	2		V	/d uno)	liloD	lato T			╉				-		1				
M	tion	ر ار	F		1		ß	•	100				ynny z	əlqma	S A\¶			+			-							
ting	form	Nam	(ame:		ä		5	「	Ě				annoli	,) (,	bizəX (mg/L								4	×,				
luir	Toln	ipany	tact N				7	ij		) 			ยาวาเล	Ino.D.1	0 '0N	_	X	9	2		2	2		$\tilde{\mathbf{w}}$	λ			By:
â	Bill	Con	Con	PPY			City	Pho	Ema	2								-			1							ived
		Y.							E	Y					e						NaN NaN							Rece
		417					M		Ĵ	K					ů Ú			Į			Dig Dig							ž
		3			Ł		S S		E.	P					/ EI						5							²
	•	J.	alle		F	X	S		乽	N.					le ID			k			5		50		d			ime:
		马	3	1	2	лл Ы	2Zip	Ser. 1	No.	NA NA					amp		6	<b>1</b>	3	<u>M</u>	7	1	4	5	Ň			141
		H	k		ž	CT	J	성	0	R					entS		#	Ť	4	#	P	F	İ	#	#			<u>a</u> M
	ttion	ä	Ye.	1	الي	Ś	Sta	5	الح	×.					Ē	T	5	ľ										d
	Corma		<b>-</b>		Ś			6	5	/ <u>j</u>	ó	2			e l	5	8	·	2	N	3	র	5	<u>े</u> श्र	29	10	-	
		iy Nai	Nam		5		2	51	2	Ea.	ask N	2400	ł		Ë	Š	 		Ś	3	ŝ	2	Å	3	8	tion		ished
	port	mpar	Intact	dree	ŝ		Š Š	, <u>9</u>	nail:	mpler	ALT	1703	,	4	ate	5	_	-		_				1	<u> </u>	struc		1 I I I I I I I I I I I I I I I I I I I
l	ž	ű	ŭ	V	6		5	Ph	E	Sa	1		Рале	4.0	ă	<i>w</i>				1				1		Ĩ		
															-													$\sqrt{J}$

- XL



# ANALYTICAL SUMMARY REPORT

April 06, 2017

Colorado Analytical Laboratories Inc PO Drawer 507 Brighton, CO 80601

Work Order: C17030850 Quote ID: C4542 - 624, 625, 1,4-Dioxane

Project Name: 170324007 Sterling Ranch MD

Energy Laboratories, Inc. Casper WY received the following 1 sample for Colorado Analytical Laboratories Inc on 3/28/2017 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C17030850-001	170324007 Sterling Ranch MD	03/23/17 8:03	03/28/17	Groundwater	Azeotropic Distilation Separatory Funnel Liquid-Liquid Ext. Semi-Volatile Organic Compounds 624-Purgeable Organics Volatile Compounds by Azeotropic Distillation

The results as reported relate only to the item(s) submitted for testing. The analyses presented in this report were performed at Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these test results, please call.

Report Approved By:

Digitally signed by Randy Horton Date: 2017.04.06 16:31:29 -06:00

ENERGY	Trust our People. Trust our Data.	Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711
CLIENT:	Colorado Analytical Laboratories Inc	
Project:	170324007 Sterling Ranch MD	Report Date: 04/06/17
Work Order:	C17030850	CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

.



## LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Colorado Analytical Labo	oratories	sinc				Repor	t Date:	04/06/17
Project:	170324007 Sterling Ran	ch MD					Collection	n Date:	03/23/17 08:03
Lab ID:	C17030850-001						DateRed	eived:	03/28/17
Client Sample ID:	170324007 Sterling Ran	ch MD						Matrix	Groundwater
							·		oroundhator
	_					HOL			- · · · · · · · · · · · · · · · · · · ·
Analyses		Result	Units	Qualifiers	RL	QCL	Method	Anal	ysis Date / By
VOCS BY AZEOTE	OPIC DISTILLATION								
1,4-Dioxane		ND	ug/L		1.0		SW8260M	04/0	5/17 09:34 / eli-b
- Analysis by direct a quantitate the 1,4-Di	queous injection of the sample d oxane and account for any variati	ons in the	analysis of	distillation.	xane was	added to t	he sample prior i	lo distillati	on and used to
VOLATILE ORGAN	IIC COMPOUNDS								
Acetone		ND	ug/L		20		E624	03/31	/17 16:09 / eli-b
Acetonitrile		ND	ug/L		20		E624	03/31	/17 16:09 / eli-b
Acrolein		ND	ug/L		20		E624	03/31	/17 16:09 / eli-b
Acrylonitrile		ND	ug/L		20		E624	03/31	/17 16:09 / ell-b
Benzene		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Bromobenzene		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Bromochioromethane		ND	ug/L		1.0		E624	03/31	/17 16:09 / ell-b
Bromodichloromethan	e	ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Bromoform		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Bromomethane		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Carbon disulfide		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Carbon tetrachloride		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Chlorobenzene		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Chlorodibromomethan	le	ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Chloroethane		ND	ug/L		1.0		E624	03/31	/17 16:09 / eil-b
2-Chloroethyl vinyl eth	er	ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Chloroform		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Chloromethane		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
2-Chlorotoluene		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
4-Chlorotoluene		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
1,2-Dibromoethane		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Dibromomethane		ND	ug/L		1.0		E624	03/31	/17 16:09 / ell-b
1,2-Dichlorobenzene		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
1,3-Dichlorobenzene		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
1,4-Dichlorobenzene		ND	ug/L		1.0		E624	03/31	/17 16:09 / ell-b
Dichlorodifiuoromethal	ne	ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
1,1-Dichloroethane		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
1,2-Dichloroethane		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
1,1-Dichloroethene		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
cis-1,2-Dichioroethene	1	ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
trans-1,2-Dichloroethe	ne	ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
1,2-Dichloropropane		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
1,3-Dichloropropane		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
2,2-Dichloropropane		ND	ug/L		1.0		E624	03/31	/17 16:09 / ell-b
1,1-Dichloropropene		ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
cis-1,3-Dichloroproper	6	ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
trans-1,3-Dichioroprop	ene	ND	ug/L		1.0		E624	03/31	/17 16:09 / eli-b
Ethylbenzene		ND	ug/L		1.0		E624	03/31	/17 16:09 / ell-b

Report Definitions:

RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.



### LABORATORY ANALYTICAL REPORT Prepared by Casper, WY Branch

Client:Colorado Analytical Laboratories IncProject:170324007 Sterling Ranch MDLab ID:C17030850-001Client Sample ID:170324007 Sterling Ranch MD

Report Date: 04/06/17 Collection Date: 03/23/17 08:03 DateReceived: 03/28/17 Matrix: Groundwater

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
	ND	ue/i		2.0		Eeg.	02/24/47 46:00 / -8 6
Nothyl othyl kotone		ug/L		2.0		E024	03/31/17 10:09 / ell-D
Methyl celyt Ketone		ug/L		20		E024	03/31/17 10:09 / ell-D
Methylisobulyr Refore	ND	ug/L		10		E624	U3/31/17 16:U9 / ell-p
		ugit		1.0		E024	03/31/17 16:09 / ell-b
Napra alerte		ug/L		0.50		E024	U3/31/17 16:09 / ell-b
Siylene		ug/L		1.0		E624	03/31/17 16:09 / eli-b
	ND	ug/L		1.0		E624	03/31/17 16:09 / ell-b
1, 1, 1, 2, 2 Tetrachioroethane		ug/L		1.0		E624	03/31/17 16:09 / eli-b
	ND	ug/L		1.0		E624	03/31/17 16:09 / elí-b
	ND	ug/L		1.0		E624	03/31/17 16:09 / ell-b
	ND	ug/L		1.0		E624	03/31/17 16:09 / eli-b
	ND	ug/L		1.0		E624	03/31/17 16:09 / eli-b
	ND	ug/L		1.0		E624	03/31/17 16:09 / eli-b
I richlorottuoromethane	ND	ug/L		1.0		E624	03/31/17 16:09 / elí-b
1,2,3- I richloropropane	ND	ug/L		1.0		E624	03/31/17 16:09 / eli-b
Vinyi Acetate	ND	ug/L		1.0		E624	03/31/17 16:09 / eli-b
Vinyl chloride	ND	ug/L		1.0		E624	03/31/17 16:09 / eli-b
m+p-Xylenes	ND	ug/L		1.0		E624	03/31/17 16:09 / eli-b
o-Xylene	ND	ug/L		1.0		E624	03/31/17 16:09 / eli-b
Xylenes, Total	ND	ug/L		1.0		E624	03/31/17 16:09 / eli-b
Surr: 1,2-Dichloroethane-d4	10 <del>5</del>	%REC	7	1-139		E624	03/31/17 16:09 / eli-b
Surr: p-Bromofluorobenzene	102	%REC	8	0-127		E624	03/31/17 16:09 / eli-b
Surr: Toluene-d8	92.0	%REC	8	0-123		E624	03/31/17 16:09 / eli-b
SEMI-VOLATILE ORGANIC COMPOUNDS							
Acenaphthene	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
Acenaphthylene	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
Anthracene	ND	ug/L		10		E625	03/30/17 17:14 / ell-b
Azobenzene	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
Benzidine	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
Benzo(a)anthracene	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
Benzo(a)pyrene	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
Benzo(b)fluoranthene	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
Benzo(g,h,i)perylene	ND	ug/L		10		E625	03/30/17 17:14 / elí-b
Benzo(k)fluoranthene	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
4-Bromophenyl phenyl ether	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
Butylbenzylphthalate	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
4-Chloro-3-methylphenol	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
bis(-2-chloroethoxy)Methane	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
bis(-2-chloroethyl)Ether	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
bis(2-chloroisopropyl)Ether	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
2-Chioronaphthalene	ND	ug/L		10		E625	03/30/17 17:14 / eli-b
2-Chlorophenol	ND	ug/L		10		E625	03/30/17 17:14 / eli-b

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

MCL - Maximum contaminant level.



## LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Colorado Analytical Laboratories Inc
Project:	170324007 Sterling Ranch MD
Lab ID:	C17030850-001
Client Sample ID:	170324007 Sterling Ranch MD

Report Date: 04/06/17 Collection Date: 03/23/17 08:03 DateReceived: 03/28/17 Matrix: Groundwater

				MCL/	
Analyses	Result	Units	Qualifiers RL	QCL Me	thod Analysis Date / By
SEMI-VOLATILE ORGANIC COMPOUNDS					
4-Chlorophenvl phenvl ether	ND	ua/L	10	E6	25 03/30/17 17:14 / ell-b
Chrysene	ND	ua/L	10	E6	25 03/30/17 17:14 / eli-b
Diethvi phthalate	ND	ug/L	10	E6	25 03/30/17 17:14 / eli-b
Di-n-butvi phthalate	ND	ug/L	10	E6	25 03/30/17 17:14 / eli-b
1.2-Dichlorobenzene	ND	ua/L	10	E6	25 03/30/17 17:14 / ell-b
1.3-Dichlorobenzene	ND	ug/L	10	E6	25 03/30/17 17:14 / eli-b
1.4-Dichlorobenzene	ND	ug/L	10	E6	25 03/30/17 17:14 / eli-b
3.3'-Dichlorobenzidine	ND	ug/L	10	E6	25 03/30/17 17:14 / eli-b
2.4-Dichlorophenol	ND	ua/L	10	E6	25 03/30/17 17:14 / eli-b
Dimethyl phthaiate	ND	ug/L	10	E6	25 03/30/17 17:14 / eli-b
Di-n-octvi phthalate	ND	ug/L	10	E6	25 03/30/17 17:14 / ell-b
Dibenzo(a,h)anthracene	ND	ug/L	10	E6	25 03/30/17 17:14 / eli-b
2.4-Dimethylphenol	ND	ua/L	10	Eð	25 03/30/17 17:14 / eli-b
4.6-Dinitro-2-methylphenol	ND	ug/L	50	E6	25 03/30/17 17:14 / eli-b
2.4-Dinitrophenol	ND	ug/L	50	E6	25 03/30/17 17:14 / ell-b
2.4-Dinitrotoluene	ND	ug/L	10	E6	25 03/30/17 17:14 / eli-b
2.6-Dinitrotoluene	ND	ug/L	10	E6	25 03/30/17 17:14 / eli-b
bis(2-ethylhexyl)Phthalate	ND	ug/L	10	<b>E6</b>	25 03/30/17 17:14 / eli-b
Fluoranthene	ND	ug/L	10	E6	25 03/30/17 17:14 / ell-b
Fluorene	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
Hexachlorobenzene	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
Hexachlorobutadiene	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
Hexachlorocyclopentadiene	ND	ug/L	10	E6	25 03/30/17 17:14 / eli-b
Hexachioroethane	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
Indeno(1,2,3-cd)pyrene	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
Isophorone	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
n-Nitrosodimethyiamine	ND	ug/L	10	E6:	25 03/30/17 17:14 / ell-b
n-Nitroso-di-n-propytamine	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
n-Nitrosodiphenylamine	ND	ug/L	10	E6	25 03/30/17 17:14 / eli-b
2-Nitrophenol	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
4-Nitrophenol	ND	ug/L	50	E6:	25 03/30/17 17:14 / eli-b
Naphthalene	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
Nitrobenzene	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
Pentachiorophenol	ND	ug/L	50	E6:	25 03/30/17 17:14 / eli-b
Phenanthrene	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
Phenoi	ND	ug/L	10	E6;	25 03/30/17 17:14 / eli-b
Pyrene	ND	ug/L	10	E6:	25 03/30/17 17:14 / eli-b
1,2,4-Trichlorobenzene	ND	ug/L	10	E62	25 03/30/17 17:14 / eli-b
2,4,6-Trichlorophenol	ND	ug/L	10	E6;	25 03/30/17 17:14 / eli-b
Surr: 2-Fluorobiphenyl	61.0	%REC	28-10	7 E6:	25 03/30/17 17:14 / eli-b
Surr: 2-Fluorophenol	39.0	%REC	20-5	6 E6:	25 03/30/17 17:14 / eli-b
Surr: Nitrobenzene-d5	63.0	%REC	32-9	4 E62	25 03/30/17 17:14 / ell-b
Surr: Phenoi-d5	27.0	%REC	19-4	5 E62	25 03/30/17 17:14 / eli-b

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.



### LABORATORY ANALYTICAL REPORT Prepared by Casper, WY Branch

Client:	Colorado Analytical Laboratories Inc
Project:	170324007 Sterling Ranch MD
Lab ID:	C17030850-001
Client Sample ID:	170324007 Sterling Ranch MD

Report Date: 04/06/17 Collection Date: 03/23/17 08:03 DateReceived: 03/28/17 Matrix: Groundwater

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
SEMI-VOLATILE ORGANIC COMPOUN	DS						
Surr: Terphenyl-d14	70.0	%REC		32-122		E625	03/30/17 17:14 / ell-b
Surr: 2,4,6-Tribromophenol	68.0	%REC		21-130		E625	03/30/17 17:14 / eli-b



Prepared by Billings, MT Branch

## Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E624							Ar	alytical Run:	R277281
Lab ID:	ccv033117	Continuing Cal	libration V	erification Standa	rd				03/31	/17 08:45
Acetone		58.0	ug/L	20	116	70	130			
Acetonitrile		56.4	ug/L	20	113	70	130			
Acrolein		56.4	ug/L	20	113	70	130			
Acrylonitrile		49.6	ug/L	20	99	70	130			
Benzene		5.08	ug/L	0.50	102	70	130			
Bromobenze	ene	5.04	ug/L	0.50	101	70	130			
Bromochloro	omethane	5.36	ug/L	0.50	107	70	130			
Bromodichlo	promethane	4.92	ug/L	0,50	98	70	130			
Bromoform		5.04	ug/L	0.50	101	70	130			
Bromomethe	ane	4.28	ug/L	0.50	86	70	130			
Carbon disu	lfide	5.32	ug/L	0.50	106	70	130			
Carbon tetra	achloride	5.80	ug/L	0.50	116	70	130			
Chlorobenze	ene	4.56	ug/L	0.50	91	70	130			
Chlorodibror	momethane	5.04	ug/L	0.50	101	70	130			
Chloroethan	16	4.80	ug/L	0,50	96	70	130			
2-Chloroethy	yl vinyl ether	2,90	ug/L	1.0	58	70	130			S
Chloroform		5.60	ug/L	0.50	112	70	130			
Chiorometha	ane	3,82	ug/L	0.50	76	70	130			
2-Chlorotolu	iene	5.00	ug/L	0.50	100	70	130			
4-Chiorotolu	iene	5.44	ug/L	0.50	109	70	130			
1,2-Dibromo	ethane	4.68	ug/L	0.50	94	70	130			
Dibromomet	thane	4.96	ug/L	0.50	99	70	130			
1,2-Dichloro	benzene	5.04	ug/L	0.50	101	70	130			
1,3-Dichloro	benzene	5.16	ug/L	0.50	103	70	130			
1,4-Dichloro	benzene	5.00	ug/L	0.50	100	70	130			
Dichlorodiflu	oromethane	5.20	ug/L	0.50	104	70	130			
1,1-Dichloro	ethane	4.9 <del>6</del>	ug/L	0.50	99	70	130			
1,2-Dichloro	ethane	6.24	ug/L	0.50	1 <b>25</b>	70	130			
1,1-Dichloro	ethene	5.12	ug/L	0.50	102	70	130			
cis-1,2-Dichi	oroethene	4.76	ug/L	0.50	95	70	130			
trans-1,2-Did	chioroethene	5.00	ug/L	0.50	100	70	130			
1,2-Dichloro	propane	4.88	ug/L	0.50	98	70	130			
1,3-Dichloro	propane	4.88	ug/L	0.50	98	70	130			
2,2-Dichloro	propane	5.72	ug/L	0.50	114	70	130			
1,1-Dichloro	propene	5.44	ug/L	0.50	109	70	130			
cls-1,3-Dichl	loropropene	4.80	ug/L	0.50	96	70	130			
trans-1,3-Did	chloropropene	4.84	ug/L	0.50	97	70	130			
Ethylbenzen	e	4.88	ug/L	0.50	98	70	130			
Methyi tert-b	outyl ether (MTBE)	<del>5</del> .20	ug/L	0.50	104	70	130			
Methyl ethyl	ketone	54.0	ug/L	20	108	70	130			
Methyl isobu	ityl ketone	50.4	ug/L	20	101	70	130			
Methylene cl	hloride	5.88	ug/L	0.50	118	70	130			
Naphthalene	•	5.08	ug/L	0.50	102	70	130			

**Qualifiers:** 

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

## Report Date: 04/06/17 Work Order: C17030850

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Quai
Method: E624							Ar	alytical Run:	R277281
Lab ID: ccv033117	Continuing Ca	libration V	erification Standa	rd				03/31	/17 08:45
Styrene	4.52	ug/L	0,50	90	70	130			
Tetrachloroethene	4.68	ug/L	0.50	94	70	130			
1,1,1,2-Tetrachioroethane	4.72	ug/L	0.50	94	70	130			
1,1,2,2-Tetrachloroethane	4.96	ug/L	0.50	99	70	130			
Toluene	4.76	ug/L	0.50	95	70	130			
Trichlorcethene	4.92	ug/L	0.50	98	70	130			
1,1,1-Trichloroethane	5.72	ug/L	0.50	114	70	130			
1,1,2-Trichloroethane	4.72	ug/L	0.50	94	70	130			
Trichiorofluoromethane	4,88	ug/L	0.50	98	70	130			
1,2,3-Trichloropropane	5.24	ug/L	0.50	105	70	130			
Vinyl Acetate	5.32	ug/L	1.0	106	70	130			
Vinyl chloride	4.60	u <b>g</b> /L	0.50	92	70	130			
m+p-Xylenes	9.32	ug/L	0.50	93	70	130			
o-Xylene	4.52	ug/L	0.50	90	70	130			
Xylenes, Total	13.8	ug/L	0.50	92	70	130			
Surr: 1,2-Dichloroethane-d4			0.50	107	71	139			
Surr: p-Bromofluorobenzene			0.50	102	80	127			
Surr: Toluene-d8			0.50	91	80	123			
Method: E624								Batch:	R277281
Lab ID: Ics033117	Laboratory Co	ntrol Sam	pie		Run: 5971/	.I_170331A		03/31	/17 09:19
Acetone	56.0	ug/L	20	112	55	- 144			
Acetonitrile	56.8	ug/L	20	114	54	142			
Acrolein	42.4	ug/L	20	85	16	233			
Acrylonitrile	48.4	ug/L	20	97	76	127			
Benzene	4.92	ug/L	0.50	98	73	122			
Bromobenzene	4.96	ug/L	0.50	99	74	129			
Bromochloromethane	5.16	ug/L	0.50	103	66	120			
Bromodichloromethane	5.16	ug/L	0.50	103	74	128			
Bromoform	5.12	ug/L	0.50	102	66	128			
Bromomethane	4.76	ug/L	0.50	95	51	123			
Carbon disuifide	5.36	ug/L	0.50	107	46	145			
Carbon tetrachloride	5.72	ug/L	0.50	114	75	125			
Chiorobenzene	4.64	ug/L	0.50	93	80	123			
Chiorodibromomethane	5.32	ug/L	0.50	106	74	125			
Chloroethane	4.48	ug/L	0.50	90	59	142			
2-Chloroethyl vinyl ether	2.62	ug/L	1.0	52	36	144			
Chloroform	5.52	ug/L	0.50	110	68	124			
Chloromethane	3.77	ug/L	0.50	75	53	146			
2-Chlorotoluene	5.08	ug/L	0.50	102	75	131			
4-Chlorotoluene	5.36	ug/L	0.50	107	74	129			
1,2-Dibromoethane	4.64	ug/L	0.50	93	76	124			
Dibromomethane	5.16	ug/L	0.50	103	77	125			

Qualifiers:

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E624								Batch:	R277281
Lab ID:	lcs033117	Laboratory Cor	ntrol Sample			Run: 5971	A.I_170331A		03/31	/17 09:19
1,2-Dichloro	obenzene	4.96	ug/L	0.50	99	74	124			
1,3-Dichlord	obenzene	5.12	ug/L	0.50	102	77	122			
1,4-Dichloro	obenzene	4.96	ug/L	0.50	99	76	126			
Dichlorodific	uoromethane	5.60	ug/L	0.50	112	56	146			
1,1-Dichlord	oethane	4.72	ug/L	0.50	94	74	133			
1,2-Dichloro	pethane	5.76	ug/L	0.50	115	75	129			
1,1-Dichlord	pethene	5.16	ug/L	0.50	103	74	132			
cis-1,2-Dich	nioroethene	4.88	ug/L	0.50	98	81	122			
trans-1,2-Di	ichloroethene	5.12	ug/L	0.50	102	79	143			
1,2-Dichloro	opropane	4.60	ug/L	0.50	92	75	126			
1,3-Dichlord	opropane	4.68	ug/L	0,50	94	71	136			
2,2-Dichlord	opropane	5.68	ug/L	0.50	114	68	142			
1,1-Dichlord	opropene	5.00	ug/L	0.50	100	70	131			
cis-1,3-Dich	loropropene	4.40	ug/L	0.50	88	74	135			
trans-1,3-Di	ichloropropene	4.84	ug/L	0,50	97	76	149			
Ethylbenzer	ne	4.96	ug/L	0.50	99	72	130			
Methyl tert-l	butyl ether (MTBE)	5.12	ug/L	0.50	102	72	120			
Methyl ethyl	i ketone	52.0	ug/L	20	104	45	130			
Methyl isob	utyl ketone	50.8	ug/L	20	102	58	135			
Methylene o	chloride	6.08	ug/L	0.50	122	66	142			
Naphthalen	e	5.60	ug/L	0.50	<b>112</b>	69	124			
Styrene		4.56	ug/L	0.50	91	80	124			
Tetrachloro	ethene	4.72	ug/L	0.50	94	72	131			
1,1,1,2-Tetr	achloroethane	4.64	ug/L	0.50	93	78	124			
1,1,2,2-Tetr	achloroethane	4.76	ug/L	0.50	95	68	137			
Toluene		4,76	ug/L	0.50	95	72	135			
Trichloroeth	iene	4.80	ug/L	0.50	96	85	126			
1,1,1-Trichle	oroethane	5.40	ug/L	0.50	108	63	120			
1,1,2-Trichle	oroethane	4.48	ug/L	0.50	90	78	124			
Trichiorofiud	promethane	4.52	ug/L	0.50	90	72	120			
1,2,3-Trichle	oropropane	4.68	ug/L	0.50	94	64	138			
Vinyl Acetat	te	4.76	ug/L	1.0	95	31	124			
Vinyi chlorid	ie	4.76	ug/L	0.50	95	58	140			
m+p-Xylene	15	9.08	ug/L	0.50	91	67	139			
o-Xylene		4.48	ug/L	0.50	90	74	135			
Xylenes, To	tal	13.6	ug/L	0.50	90	70	137			
Surr: 1,2-	Dichloroethane-d4			0,50	109	71	139			
Surr: p-Bi	romofluorobenzene			0.50	102	80	127			
Surr: Tolu	uene-d8			0.50	92	80	123			
Lab (D:	bik033117	Method Blank				Run: 5971A	.i_170331A		03/31	/17 10:18
Acetone		ND	ug/L	20						
Acetonitrile		ND	ug/L	20						

**Qualifiers:** 

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

## Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Anaiyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Quai
Method:	E624								Batch:	R277281
Lab ID:	blk033117	Method Blank				Run: 5971/	A.I_170331A		03/31	/17 10:18
Acrolein		ND	ug/L	20						
Acrylonitrile		ND	ug/L	20						
Benzene		ND	ug/L	0.50						
Bromobenzo	ene	ND	ug/L	0.50						
Bromochlor	omethane	ND	ug/L	0.50						
Bromodichle	promethane	ND	ug/L	0.50						
Bromoform		ND	ug/L	0.50						
Bromometh	ane	ND	ug/L	0.50						
Carbon disu	lifide	ND	ug/L	0.50						
Carbon tetra	achloride	ND	ug/L	0.50						
Chlorobenze	ene	ND	ug/L	0.50						
Chlorodibro	momethane	ND	ug/L	0.50						
Chloroethan	e	ND	ug/L	0.50						
2-Chloroeth	yl vinyl ether	ND	ug/L	1.0						
Chloroform		ND	ug/L	0.50						
Chlorometha	ane	ND	u <b>g/L</b>	0.50						
2-Chiorotolu	iene	ND	ug/L	0.50						
4-Chiorotolu	iene	ND	ug/L	0.50						
1,2-Dibromo	bethane	ND	ug/L	0.50						
Dibromomet	thane	ND	ug/L	0.50						
1,2-Dichloro	benzene	ND	u <b>g/</b> L	0.50						
1,3-Dichloro	benzene	ND	ug/L	0.50						
1,4-Dichloro	benzene	ND	ug/L	0.50						
Dichlorodifiu	oromethane	ND	ug/L	0.50						
1,1-Dichloro	ethane	ND	ug/L	0.50						
1,2-Dichloro	ethane	ND	ug/L	0.50						
1,1-Dichloro	ethene	ND	ug/L	0.50						
cis-1,2-Dichl	loroethene	ND	ug/L	0.50						
trans-1,2-Did	chloroethene	ND	u <b>g/</b> L	0.50						
1,2-Dichloro	propane	ND	u <b>g</b> /L	0.50						
1,3-Dichloro	propane	ND	ug/L	0.50						
2,2-Dichloro	propane	ND	ug/L	0.50						
1,1-Dichloro	propene	ND	ug/L	0.50						
cis-1,3-Dichl	loropropene	ND	ug/L	0.50						
trans-1,3-Did	chloropropene	ND	ug/L	0.50						
Ethylbenzen	e	ND	ug/L	0.50						
Methyl tert-b	outyl ether (MTBE)	ND	ug/L	0.50						
Methyl ethyl	ketone	ND	ug/L	20						
Methyl Isobu	ityl ketone	ND	ug/L	20						
Methylene cl	hloride	ND	ug/L	0.50						
Naphthalene	3	ND	ug/L	0.50						
Styrene		ND	ug/L	0.50						
Tetrachloroe	ethene	ND	ug/L	0.50						

#### **Qualifiers:**

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E624								Batch:	R277281
Lab (D: bik033117	Method Blank				Run: 5971/	A.I_170331A		03/31	/17 10:18
1,1,1,2-Tetrachloroethane	ND	ug/L	0.50						
1,1,2,2-Tetrachloroethane	ND	ug/L	0.50						
Toiuene	ND	ug/L	0.50						
Trichloroethene	ND	ug/L	0.50						
1,1,1-Trichloroethane	ND	ug/L	0.50						
1,1,2-Trichloroethane	ND	ug/L	0.50						
Trichlorofluoromethane	ND	ug/L	0.50						
1,2,3-Trichloropropane	ND	u <b>g/</b> L	0.50						
Vinyl Acetate	ND	ug/L	1.0						
Vinyl chloride	ND	u <b>g</b> /L	0.50						
m+p-Xylenes	ND	u <b>g/</b> L	0.50						
o-Xylene	ND	ug/L	0.50						
Xylenes, Total	ND	ug/L	0.50						
Surr: 1,2-Dichloroethane-d4			0.50	105	71	139			
Surr: p-Bromofluorobenzene			0.50	104	80	127			
Surr: Toluene-d8			0.50	92	80	123			
Lab ID: b17031875-001dms	Sample Matrix	Spike			Run: 5971/	A.I_170331A		03/31	/17 14:12
Acetone	378	u <b>g/L</b>	100	109	55	144			
Acetonitrile	274	ug/L	100	110	54	142			
Benzene	24.6	ug/L	2.5	98	73	122			
Bromobenzene	24.8	ug/L	2.5	99	74	129			
Bromochloromethane	25.2	ug/L	2.5	101	66	120			
Bromodichloromethane	26.2	ug/L	2.5	105	74	128			
Bromoform	27.0	ug/L	2.5	108	66	1 <u>2</u> 8			
Bromomethane	18.8	ug/L	2.5	75	51	123			
Carbon disulfide	26.4	ug/L	2. <del>5</del>	106	46	145			
Carbon tetrachloride	28.2	ug/L	2,5	113	75	125			
Chiorobenzene	22.8	ug/L	2.5	91	80	123			
Chlorodibromomethane	26.8	ug/L	2.5	107	74	125			
Chloroethane	20.2	ug/L	2,5	81	59	142			
Chieronom	33.2	ug/L	2.5	110	68	124			
Chloromethane	18.6	ug/L	2.0	/4	53	146			
2-Chlorotoluene	24.8	ug/L	2.5	493	(5	131			
	20.0	ug/L	2.0	103	74	129			
1,2-Dibromoetnane	24.0	ug/L	2.3	90 405	/0	124			
	20.2	ug/L	2.0	100	74	120			
	24.0	ug/L	2.5	90	(4 77	129			
	24.0	ug/L	2.0	20	70	122			
I,4-Dichlorobenzene	24.0	ug/L	2.0	90 109	/ 0 58	1/6			
1 1 Dioblaroethane	27.0	ug/L	2.0	100	7/	190			
	24.2	ug/L	2.0	3/ 117	(*) 75	100			
1,2-Dichloroethane	29.2	ugit	2.0	117	10	179			

Qualifiers:

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E624								Batch:	R277281
Lab ID: b17031875-001dms	Sample Matrix	( Spike			Run: 5971A.I 170331A				/17 14:12
1,1-Dichloroethene	26.6	ug/L	2.5	106	74	- 132			
cis-1,2-Dichloroethene	24.4	ug/L	2.5	98	81	122			
trans-1,2-Dichloroethene	25.8	ug/L	2.5	103	79	143			
1,2-Dichloropropane	23.0	ug/L	2.5	92	75	126			
1,3-Dichloropropane	22.4	ug/L	2.5	90	71	136			
2,2-Dichloropropane	28.0	ug/L	2.5	112	68	142			
1,1-Dichioropropene	25.2	ug/L	2.5	101	70	131			
cis-1,3-Dichloropropene	22.2	ug/L	2.5	89	74	135			
trans-1,3-Dichloropropene	24.6	ug/L	2.5	98	76	149			
Ethylbenzene	23.6	ug/L	2.5	94	72	130			
Methyl tert-butyl ether (MTBE)	25.6	ug/L	2.5	102	72	120			
Methyl ethyl ketone	268	ug/L	100	107	45	130			
Methyl isobutyl ketone	258	ug/L	100	103	58	135			
Methylene chloride	32.2	ug/L	2.5	129	66	142			
Naphthalene	27.6	ug/L	2.5	110	69	124			
Styrene	22.4	ug/L	2.5	90	80	124			
Tetrachloroethene	22.8	ug/L	2.5	91	72	131			
1,1,1,2-Tetrachloroethane	23.0	ug/L	2.5	92	78	124			
1,1,2,2-Tetrachloroethane	26.0	ug/L	2.5	104	68	137			
Toluene	24.4	ug/L	2.5	9 <del>5</del>	72	135			
Trichloroethene	23.8	ug/L	2.5	95	85	126			
1,1,1-Trichloroethane	26.8	ug/L	2.5	107	63	120			
1,1,2-Trichloroethane	23.4	ug/L	2.5	94	78	124			
Trichlorofluoromethane	21.2	ug/L	2.5	85	72	120			
1,2,3-Trichloropropane	26.2	ug/L	2.5	105	64	138			
Vinyl Acetate	24.4	ug/L	5.0	98	31	124			
Vinyl chloride	22.6	ug/L	2.5	90	58	140			
m+p-Xylenes	44.8	ug/L	2.5	90	67	139			
o-Xylene	22.6	ug/L	2.5	90	74	135			
Xylenes, Total	67.4	ug/L	2.5	90	70	137			
Surr: 1,2-Dichloroethane-d4			2.5	110	71	139			
Surr: p-Bromofluorobenzene			2.5	102	80	127			
Surr: Toluene-d8			2.5	93	80	123			
Lab ID: b17031875-001dmsd	Sample Matrix	Spike Duplicate			Run: 5971A	.I_170331A		03/31	/17 15:11
Acetone	410	ug/L	100	122	55	144	8.1	20	
Acetonitrile	262	ug/L	100	105	54	142	4.5	20	
Benzene	25.0	ug/L	2.5	100	73	122	1.6	20	
Bromobenzene	25.6	ug/L	2.5	102	74	129	3.2	20	
Bromochloromethane	25.2	ug/L	2.5	101	66	120	0.0	20	
Bromodichloromethane	27.2	ug/L	2.5	109	74	128	3.7	20	
Bromoform	28.4	ug/L	2.5	114	66	128	5.1	20	
Bromomethane	20.8	ug/L	2.5	83	51	123	10	20	

Qualifiers:

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E624								Batch:	R277281
Lab ID:	b17031875-001dmsd	Sample Matrix	Spike Duplicate			Run: 5971	A.I_170331A		03/31	/17 15:11
Carbon disu	lfide	25.6	ug/L	2.5	1 <b>02</b>	46	145	3.1	20	
Carbon tetra	chloride	28.6	ug/L	2.5	114	75	125	1.4	20	
Chlorobenze	ene	23.6	ug/L	2.5	94	80	123	3.4	20	
Chiorodibror	nomethane	28.0	ug/L	2.5	11 <b>2</b>	74	125	4.4	20	
Chloroethan	e	20.6	ug/L	2.5	82	59	142	2.0	20	
Chloroform		33.6	ug/L	2.5	111	68	124	1.2	20	
Chlorometha	ane	19.3	ug/L	2.5	77	53	146	3.8	20	
2-Chloratolu	ene	26.4	ug/L	2.5	106	75	131	6.2	20	
4-Chiorotolu	ene	27.2	ug/L	2.5	109	74	129	5.3	20	
1,2-Dibromo	ethane	24.0	ug/L	2.5	96	76	124	0.0	20	
Dibromomet	hane	26.8	ug/L	2.5	107	77	125	2.3	20	
1,2-Dichloro	benzene	25.8	ug/L	2.5	103	74	124	4.8	20	
1,3-Dichloro	benzene	26.0	ug/L	2.5	104	77	122	5.5	20	
1,4-Dichioro	benzene	25.4	ug/L	2.5	102	76	126	3.2	20	
Dichlorodiflu	oromethane	25.8	ug/L	2.5	103	56	146	4.5	20	
1,1-Dichloro	ethane	24.8	ug/L	2.5	99	74	133	2.4	20	
1,2-Dichloro	ethane	29.2	ug/L	2.5	117	75	129	0.0	20	
1,1-Dichloro	ethene	26.8	ug/L	2.5	107	74	132	0.7	20	
cis-1,2-Dichl	oroethene	25.2	ug/L	2.5	101	81	122	3.2	20	
trans-1,2-Die	chloroethene	26.4	ug/L	2.5	106	79	143	2.3	20	
1,2-Dichloro	propane	23.6	ug/L	2.5	94	75	126	2.6	20	
1,3-Dichloro	propane	23.8	ug/L	2.5	95	71	136	6.1	20	
2,2-Dichloro	propane	28.6	ug/L	2.5	114	68	142	2.1	20	
1,1-Dichloro	propene	25.8	ug/L	2.5	103	70	131	2.4	20	
cls-1,3-Dichl	oropropene	23.2	ug/L	2.5	93	74	135	4.4	20	
trans-1,3-Did	chloropropene	25.4	ug/L	2.5	102	76	149	3.2	20	
Ethylbenzen	e	25.0	ug/L	2.5	100	72	130	5.8	20	
Methyl tert-b	utyl ether (MTBE)	26.6	ug/L	2.5	106	72	120	3.8	20	
Methyl ethyl	ketone	282	ug/L	100	117	45	130	8.6	20	
Methyl isobu	tyl ketone	286	ug/L	100	114	58	135	10	20	
Methylene c	nioride	31.4	ug/L	2.5	126	66	142	2.5	20	
Naphthalene	•	27.8	ug/L	2.5	111	69	124	0.7	20	
Styrene		22.8	ug/L	2.5	91	80	124	1.8	20	
l etrachioroe	thene	23.8	ug/L	2,5	95	72	131	4.3	20	
1,1,1,2-1 etra		23.2	ug/L	2.5	83	78	124	0.9	20	
1,1,2,2-Tetra	Ichloroethane	27.4	ug/L	2.5	110	68	137	5.2	20	
		24.4	ug/L	2.0	800	12	100	0.0	20	
		25.U	ug/L	2.0	140	00 62	120	4.9	20	
1, 1, 1-1 (10)10		21.4	ugre	2.3	00	0J 70	120	<i>L.L</i> E 0	20	
Trichlereftur		<u>∠</u> 4.0	ug/L	2.0	99	70	124	0.0 E E	20	
		22.4	ug/L	2.J	407	12	120	0.0	20	
I,Z,J-IRCNIO	iopropane	20.0	ug/L	2.J	107	04	100	∠.J	20	
viriyi Acetate	3	24.4	ug/L	3,0	90	31	124	0.0	20	

**Qualifiers:** 

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E624								Batch:	R277281
Lab ID:	b17031875-001dmsd	Sample Matri	x Spike Duplicate			Run: 5971.	A.I_170331A		03/31	1/17 15:11
Vinyl chlori	ide	22.8	ug/L	2.5	91	58	140	0.9	20	
m+p-Xylen	es	46.0	ug/L	2.5	92	67	139	2.6	20	
o-Xylene		23.4	ug/L	2.5	94	74	135	3.5	20	
Xylenes, To	otal	69.4	ug/L	2.5	93	70	137			
Surr: 1,2	-Dichloroethane-d4			2.5	112	71	139			
Surr: p-B	Bromofluorobenzene			2.5	105	80	127			
Surr: Tol	luene-d8			2.5	93	80	123			



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

### Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E625								Batch	n: 107942
Lab ID: MB-107942	Method Blank				Run: SV59	73N2.I_170330B		03/30	/17 16:12
Acenaphthene	ND	ug/L	10						
Acenaphthylene	ND	ug/L	10						
Anthracene	ND	ug/L	10						
Azobenzene	ND	ug/L	10						
Benzidine	ND	ug/L	10						
Benzo(a)anthracene	ND	ug/L	10						
Benzo(a)pyrene	ND	ug/L	10						
Benzo(b)fluoranthene	ND	ug/L	10						
Benzo(g,h,i)perylene	ND	ug/L	10						
Benzo(k)fluoranthene	ND	ug/L	10						
4-Bromophenyl phenyl ether	ND	ug/L	10						
Butylbenzylphthalate	ND	ug/L	10						
4-Chloro-3-methylphenol	ND	ug/L	10						
bis(-2-chloroethoxy)Methane	ND	ua/L	10						
bis(-2-chlaroethyl)Ether	ND	ua/L	10						
bis(2-chloroisopropyl)Ether	ND	ug/L	10						
2-Chloronaphthalene	ND	ug/L	10						
2-Chlorophenol	ND	ug/L	10						
4-Chiorophenyl phenyl ether	ND	ua/L	10						
Chrvsene	ND	ua/L	10						
Diethyl phthalate	ND	ua/L	10						
Di-n-butvl phthalate	ND	ua/L	10						
1.2-Dichlorobenzene	ND	ug/L	10						
1.3-Dichlorobenzene	ND	ug/L	10						
1,4-Dichlorobenzene	ND	ug/L	10						
3,3'-Dichlorobenzidine	ND	ug/L	10						
2,4-Dichlorophenol	ND	ug/L	10						
Dimethyl phthalate	ND	ug/L	10						
Di-n-octvl phthalate	ND	ug/L	10						
Dibenzo(a,h)anthracene	ND	ug/L	10						
2,4-Dimethylphenol	ND	ug/L	10						
4,6-Dinitro-2-methylphenol	ND	ug/L	50						
2,4-Dinitrophenol	ND	ug/L	50						
2,4-Dinitrotoluene	ND	ug/L	10						
2,6-Dinitrotoluene	ND	ug/L	10						
bis(2-ethylhexyl)Phthalate	ND	ug/L	10						
Fluoranthene	ND	ug/L	10						
Fiuorene	ND	ug/L	10						
Hexachlorobenzene	ND	ug/L	10						
Hexachlorobutadiene	ND	ug/L	10						
Hexachlorocyclopentadiene	ND	ug/L	10						
Hexachloroethane	ND	ug/L	10						
Indeno(1,2,3-cd)pyrene	ND	ug/L	10						

#### **Qualifiers:**

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Quai
Method:	E625								Batc	h: 107942
Lab ID:	MB-107942	Method Blank				Run: SV59	73N2.I_170330B		03/30	)/17 16:12
Isophorone		ND	ug/L	10						
n-Nitrosodir	nethylamine	ND	ug/L	10						
n-Nitroso-di	-n-propylamine	ND	ug/L	10						
n-Nitrosodi	phenylamine	ND	ug/L	10						
2-Nitrophen	lol	ND	ug/L	10						
4-Nitrophen	ol	ND	ug/L	50						
Naphthalen	e	ND	ug/L	10						
Nitrobenzer	ne	ND	ug/L	10						
Pentachloro	phenol	ND	ug/L	50						
Phenanthre	ne	ND	ug/L	10						
Phenol		ND	ug/L	10						
Pyrene		ND	ug/L	10						
1,2,4-Trichle	orobenzene	ND	ug/L	10						
2,4,6-Trichl	orophenol	ND	ug/L	10						
Surr: 2-F	luorobiphenyl		-	10	57	28	107			
Surr: 2-F	luorophenol			10	42	20	56			
Surr: Nitr	obenzene-d5			10	62	32	94			
Surr: Phe	enol-d5			10	30	19	45			
Surr: Ter	phenyl-d14			10	80	32	122			
Surr: 2,4,	6-Tribromophenol			10	68	21	130			
Lab ID:	LCS-107942	Laboratory Con	troi Sampie	3		Run: SV59	73N2.I_170330B		03/30	/17 16:43
Acenaphthe	ene	89.1	ug/L	10	89	58	99			
Acenaphthy	lene	84.2	ug/L	10	84	57	96			
Anthracene		75.6	ug/L	10	76	60	107			
Azobenzen	e	78.0	ug/L	10	78	56	100			
Benzidine		53.1	ug/L	10	53	10	100			
Benzo(a)an	thracene	86.4	u <b>g/L</b>	10	86	62	114			
Benzo(a)py	rene	84.7	ug/L	10	85	62	108			
Benzo(b)flu	oranthene	8.88	ug/L	10	90	48	127			
Benzo(g,h,i	)perylene	87.2	ug/L	10	87	62	121			
Benzo(k)flu	oranthene	84.0	ug/L	10	84	55	111			
4-Bromophe	enyi phenyi ether	87.1	ug/L	10	87	58	105			
Buty/benzyl	phthalate	90.8	ug/L	10	91	60	113			
4-Chloro-3-	methyiphenoi	74.6	ug/L	10	75	53	92			
bis(-2-chlore	oethoxy)Methane	69.9	ug/L	10	70	50	92			
bis(-2-chlore	oethyi)Ether	72.1	ug/L	10	72	44	82			
bis(2-chloro	isopropyl)Ether	63.2	ug/L	10	63	56	87			
2-Chlorona	ohthalene	84.9	ug/L	10	85	56	95			
2-Chlorophe	enol	67.2	ug/L	10	67	47	76			
4-Chlorophe	enyl phenyl ether	83.0	ug/L	10	83	58	99			
Chrysene		87.0	ug/L	10	87	63	106			
Diethyl phth	alate	84.6	ug/L	10	85	58	103			

**Qualifiers:** 

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E625								Batc	h: 107942
Lab ID:	LCS-107942	Laboratory Con	troi Sample			Run: SV59	73N2.I_170330B		03/30	/17 16:43
Di-n-butyl p	hthalate	87.1	ug/L	10	87	61	110			
1,2-Dichlord	obenzene	69.3	ug/L	10	69	43	81			
1,3-Dichloro	obenzene	64.0	ug/L	10	64	41	79			
1,4-Dichloro	obenzene	64.5	ug/L	10	64	42	79			
3,3'-Dichlor	robenzidine	64.8	ug/L	10	65	51	93			
2,4-Dichlord	ophenol	70.6	ug/L	10	71	49	90			
Dimethyl ph	nthalate	82.5	ug/L	10	82	58	104			
Di-n-octyl p	hthalate	93.4	ug/L	10	93	56	110			
Dibenzo(a,t	n)anthracene	87.8	u <b>g/L</b>	10	88	61	111			
2,4-Dimethy	yiphenol	66.2	ug/L	10	66	45	89			
4,6-Dinitro-2	2-methylphenol	66.1	ug/L	50	66	37	105			
2,4-Dinitrop	henol	54.1	ug/L	50	54	27	81			
2,4-Dinitroto	oluene	86.2	ug/L	10	86	63	110			
2,6-Dinitroto	oluene	77.2	ug/L	10	77	60	107			
bis(2-ethylh	exyl)Phthalate	86.0	ug/L	10	86	56	108			
Fluoranther	ne	84.2	u <b>g/L</b>	10	84	63	110			
Fluorene		89.3	ug/L	10	89	60	99			
Hexachloro	benzene	82.7	u <b>g</b> /L	10	83	57	103			
Hexachloro	butadiene	71.7	ug/L	10	72	39	83			
Hexachioro	cyclopentadlene	81.0	ug/L	10	81	39	91			
Hexachloro	ethane	65.0	ug/L	10	65	37	75			
Indeno(1,2,	3-cd)pyrene	83.2	ug/L	10	83	59	109			
Isophorone		69.8	ug/L	10	70	42	102			
n-Nitrosodir	nethylamine	36.8	ug/L	10	37	20	45			
n-Nitroso-di	-n-propylamine	76.6	ug/L	10	77	49	98			
n-Nitrosodip	phenylamine	91.5	ug/L	10	92	61	108			
2-Nitrophen	oi	72.3	ug/L	10	72	51	96			
4-Nitrophen	ol	27.4	ug/L	50	27	15	36			
Naphthalen	e	68.1	ug/L	10	68	48	96			
Nitrobenzer	ne	77.9	ug/L	10	78	51	91			
Pentachioro	phenol	72.4	ug/L	50	72	53	109			
Phenanthre	ne	82.0	ug/L	10	82	58	104			
Phenol		40.6	ug/L	10	41	27	45			
Pyrene		85.0	ug/L	10	85	64	108			
1,2,4-Trichle	orobenzene	71.2	ug/L	10	71	49	85			
2,4,6-Trichle	orophenol	73.9	ug/L	10	74	47	99			
Surr: 2-F	luorobiphenyl			10	69	28	107			
Surr: 2-F	luorophenol			10	42	20	56			
Surr: Nitr	obenzene-d5			10	72	32	94			
Surr: Phe	enol-d5			10	36	19	45			
Surr: Ter	phenyl-d14			10	80	32	122			
Surr: 2,4,	6-Tribromophenoi			10	70	21	130			

**Qualifiers:** 

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual			
Method:	E625						far san		Batch	n: <b>107942</b>			
Lab (D:	C17030850-001CMS	Sample Matrix	Spike			Run: SV59	73N2.I_170330B		03/30/17 17:45				
Acenaphthe	ene	86.7	ug/L	10	87	58	99						
Acenaphthy	lene	75.5	ug/L	10	76	57	96						
Anthracene		81.6	ug/L	10	82	60	107						
Azobenzen	e	84.6	ug/L	10	85	56	100						
Benzidine		122	ug/L	20	122	10	100			S			
Benzo(a)an	thracene	83.4	ug/L	10	83	62	114						
Benzo(a)py	rene	78.4	ug/L	10	78	62	108						
Benzo(b)flu	oranthene	79.9	ug/L	10	80	48	127						
Senzo(g,h,i)	)perylene	83.2	ug/L	10	83	62	121						
Benzo(k)flue	oranthene	84.5	ug/L	10	84	55	111						
4-Bromophe	enyl phenyl ether	79.5	ug/L	10	79	58	105						
Butylbenzyl	phthalate	89.2	ug/L	10	89	60	113						
4-Chloro-3-r	methylphenol	78.3	ug/L	10	78	53	92						
bis(-2-chlore	oethoxy)Methane	77.9	ug/L	10	78	50	92						
bis(-2-chlore	pethyl)Ether	71.5	ug/L	10	71	44	82						
bis(2-chloroi	isopropyl)Ether	58.4	ug/L	10	58	56	87						
2-Chloronap	ohthalene	77.6	ug/L	10	78	56	95						
2-Chlorophe	enol	63.7	ug/L	10	64	47	76						
4-Chlorophe	enyl phenyl ether	81.0	ug/L	10	81	58	99						
Chrysene		85.9	ug/L	10	86	63	106						
Diethyl phth	alate	84.0	ug/L	10	84	58	103						
Di-n-butyl pl	hthalate	87.0	ug/L	10	87	61	110						
1,2-Dichloro	benzene	67.3	ug/L	10	67	43	81						
1,3-Dichloro	benzene	66.0	ug/L	10	66	41	79						
1,4-Dichloro	benzene	66.7	ug/L	10	67	42	79						
3,3'-Dichlore	obenzidine	131	ug/L	10	131	51	93			S			
2,4-Dichloro	phenol	70.0	ug/L	10	70	49	90						
Dimethyl phi	thalate	79.3	ug/L	10	79	58	104						
Di-n-octyi ph	nthalate	81.8	ug/L	10	82	56	110						
Dibenzo(a,h	)anthracene	80.1	ug/L	10	80	61	111						
2,4-Dimethy	Iphenol	70.7	ug/L	10	71	45	87						
4,6-Dinitro-2	-methylphenol	53.1	ug/L	50	53	37	105						
2,4-Dinitropt	henol	43.0	ug/L	50	43	27	81						
2,4-Dinitroto	luene	85.6	ug/L	10	86	63	110						
2,6-Dinitroto	luene	81.5	ug/L	10	81	60	107						
bis(2-ethylhe	exyl)Phthalate	77.5	ug/L	10	77	56	108						
Fluoranthen	e	84.0	ug/L	10	84	63	110						
Fluorene		80.0	ug/L	10	80	60	99						
Hexachlorob	enzene	78.2	ug/L	10	78	57	103						
Hexachlorob	outadiene	69.1	ug/L	10	69	39	83						
Hexachioroc	yclopentadiene	69.0	ug/L	10	69	39	91						
Hexachloroe	thane	62. <del>6</del>	ug/L	10	63	37	75						
Indeno(1,2,3	-cd)pyrene	76.3	ug/L	10	76	59	109						

**Qualifiers:** 

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E625								Batc	h: 107942
Lab ID:	C17030850-001CMS	Sample Matrix	x Spike			Run: SV59	73N2.I 170330B		03/30	/17 17:45
lsophorone	ł	71.4	ug/L	10	71	42	102			
n-Nitrosodi	methylamine	26.1	ug/L	10	26	20	45			
n-Nitroso-d	i-n-propylamine	76.1	ug/L	10	76	49	98			
n-Nitrosodi	phenylamine	105	ug/L	10	105	61	108			
2-Nitropher	lor	73.5	ug/L	10	74	51	96			
4-Nitropher	loi	25.8	ug/L	50	26	15	36			
Naphthalen	e	75.6	ug/L	10	76	48	96			
Nitrobenzer	ne	75.6	ug/L	10	76	51	91			
Pentachloro	phenol	60.3	ug/L	50	60	53	109			
Phenanthre	ene	83.8	ug/L	10	84	58	104			
Phenol		38.7	ug/L	10	39	27	45			
Pyrene		87.0	ug/L	10	87	64	108			
1,2,4-Trichi	orobenzene	74.7	ug/L	10	75	49	85			
2,4,6-Trichl	orophenol	68.8	ug/L	10	69	47	99			
Surr: 2-F	luorobiphenyl			10	51	28	107			
Surr: 2-F	luorophenol			10	41	20	56			
Surr: Nitr	obenzene-d5			10	64	32	94			
Surr: Phe	enol-d5			10	33	19	45			
Surr: Ten	phenyi-d14			10	73	32	122			
Surr: 2,4,	6-Tribromophenol			10	67	21	130			



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E625							Ar	alytical Run:	R277253
Lab ID:	30-Mar-17_CCV_11	Continuing Ca	libration V	erification Standa	rɗ				03/30	)/17 15:40
Acenaphthe	ene	75.3	ug/L	10	100	80	120			
Acenaphthy	/lene	79.7	ug/L	10	106	80	120			
Anthracene	1	75.2	ug/L	10	100	80	120			
Azobenzen	e	75.1	ug/L	10	100	80	120			
Benzidine		70.6	ug/L	10	94	80	120			
Benzo(a)an	thracene	76.3	ug/L	10	102	80	120			
Benzo(a)py	rene	81.9	ug/L	10	109	80	120			
Benzo(b)flu	oranthene	78.3	ug/L	10	104	80	120			
Benzo(g,h,l	)perylene	78.0	ug/L	10	104	80	120			
Benzo(k)fiu	oranthene	81.6	ug/L	10	109	80	120			
4-Bromophe	enyl phenyi ether	81.6	ug/L	10	109	80	120			
Butylbenzyl	phthalate	78.0	ug/L	10	104	80	120			
4-Chloro-3-	methylphenol	76.0	ug/L	10	101	80	120			
bis(-2-chlore	pethoxy)Methane	70.4	ug/L	10	94	80	120			
bis(-2-chlore	pethyl)Ether	77.2	ug/L	10	103	80	120			
bis(2-chioro	isopropyl)Ether	76.7	ug/L	10	102	80	120			
2-Chloronap	ohthalene	79.8	ug/L	10	106	80	120			
2-Chlorophe	enol	72.7	ug/L	10	97	80	120			
4-Chlorophe	enyl phenyl ether	72.7	ug/L	10	97	80	120			
Chrysene	• • •	74.9	ug/L	10	100	80	120			
Diethyl phth	alate	76.8	ug/L	10	102	80	120			
Di-n-butyl pl	hthalate	76.9	ug/L	10	102	80	120			
1,2-Dichloro	benzene	76.8	ug/L	10	102	80	120			
1,3-Dichloro	benzene	72.1	ug/L	10	96	80	120			
1,4-Dichloro	benzene	74.8	ug/L	10	100	80	120			
3,3'-Dichlore	obenzidine	76.2	ug/L	10	102	80	120			
2,4-Dichloro	phenol	73.5	ua/L	10	98	80	120			
Dimethyl ph	thalate	77.0	ug/L	10	103	80	120			
Di-n-octyl pł	nthaiate	81.2	ug/L	10	108	80	120			
Dibenzo(a,h	)anthracene	76.2	ug/L	10	102	80	120			
2,4-Dimethy	iphenoi	70.3	ug/L	10	94	80	120			
4,6-Dinitro-2	- -methylphenol	77.4	ug/L	50	103	80	120			
2,4-Dinitropl	henol	80.2	ug/L	50	107	80	120			
2,4-Dinitroto	luene	79,8	ua/L	10	106	80	120			
2,6-Dinitroto	luene	80.8	ug/L	10	108	80	120			
bis(2-ethylhe	exyi)Phthalate	77.3	ug/L	10	103	80	120			
Fluoranthen	e	76.8	ug/L	10	102	80	120			
Fluorene		82.8	ug/L	10	110	80	120			
Hexachiorob	enzene	74.2	ua/L	10	99	80	120			
Hexachlorob	outadiene	73.0	ug/L	10	97	80	120			
Hexachloroc	vclopentadiene	79.2	ua/L	10	106	80	120			
Hexachloroe	thane	74.4	ua/L	10	99	80	120			
Indeno(1.2.3	-cd)pyrene	73.3	ua/L	10	98	80	120			
					30		120			

**Qualifiers:** 

RL - Analyte reporting limit.



-

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

## Report Date: 04/06/17 Work Order: C17030850

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E625							Ar	alytical Run:	R277253
Lab ID:	30-Mar-17_CCV_11	Continuing Ca	libration Ve	rification Standa	rd				03/30	/17 15:40
Isophorone		71.5	ug/L	10	95	80	120			
n-Nitrosodir	nethylamine	79.5	ug/L	10	106	80	120			
n-Nitroso-di	-n-propylamine	76.0	ug/L	10	101	80	120			
n-Nitrosodip	phenylamine	77.5	ug/L	10	103	80	120			
2-Nitrophen	ol	74.6	ug/L	10	99	80	120			
4-Nitrophen	ol	72.4	ug/L	50	97	80	120			
Naphthalen	e	68.4	ug/L	10	91	80	120			
Nitrobenzer	16	77.1	ug/L	10	103	80	120			
Pentachloro	phenol	71.7	ug/L	50	96	80	120			
Phenanthre	ne	70,9	ug/L	10	95	80	120			
Phenol		79.0	ug/L	10	105	80	120			
Pyrene		79.0	ug/L	10	105	80	120			
1,2,4-Trichic	orobenzene	73.1	ug/L	10	98	80	120			
2,4,6-Trichle	prophenol	71.0	ug/L	10	95	80	120			
Surr: 2-Fl	iuorobiphenyl			10	108	80	120			
Surr: 2-Fi	iuorophenol			10	105	80	120			
Surr: Nitr	obenzene-d5			10	101	80	120			
Surr: Phe	enol-d5			10	102	80	120			
Surr: Ter	phenyl-d14			10	104	80	120			
Surr: 2,4,	6-Tribromophenol			10	105	80	120			



Prepared by Billings, MT Branch

### Client: Colorado Analytical Laboratories Inc

Project: 170324007 Sterling Ranch MD

Report Date: 04/06/17 Work Order: C17030850

Analyte		Result	Units	RL.	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW8260M							1	Analytical Ru	n: 108173
Lab ID:	CCV-108173	Continuing Ca	libration Verificati	on Standa	ırd				04/08	3/17 08:29
1,4-Dioxan	e	95.7	ug/L	1.0	96	80	120			
Method:	SW8260M								Batc	h: 108173
Lab ID:	LCS-108173	Laboratory Co	ntrol Sample			Run: VOA	5973A.I_170406A	L	04/06	3/17 08:51
1,4-Dioxano	e	87.5	ug/L	1.0	88	70	130			
Lab ID:	MB-108173	Method Blank				Run: VOA	5973A.I_170406A	l	04/08	3/17 <b>09</b> :12
1,4-Dioxane	•	ND	ug/L	1.0			_			
Lab ID:	C17030850-001AMS	Sample Matrix	Spike			Run: VOA	5973A.I_170406A		04/06	3/17 09:55
1,4-Dioxane	3	194	ug/L	2.0	97	70	130			
Lab ID:	C17030850-001AMSD	Sample Matrix	Spike Duplicate			Run: VOA	5973A.I_170406A		04/06	9/17 10:17
1,4-Dioxane	9	206	ug/L	2.0	103	70	130	6.0	20	



C17030850

# Work Order Receipt Checklist

# Colorado Analytical Laboratories Inc

Login completed by:	Corinne Wagner	Date Received: 3/28/2017									
Reviewed by:	Kasey Vidick		Re	ceived by: ckw							
Reviewed Date:	3/29/2017	Carrier name: Ground									
Shipping container/cooler in	good condition?	Yes 🖌	No 🗌	Not Present							
Custody seals intact on all sh	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗹							
Custody seals intact on all sa	ample bottles?	Yes 🗌	No 🗌	Not Present 🗹							
Chain of custody present?		Yes 🗹	No 🗌								
Chain of custody signed whe	n relinguished and received?	Yes 🗸	No 🗌								
Chain of custody agrees with	sample labels?	Yes 🗹	No 🗌								
Samples in proper container/	bottle?	Yes 🗹	No 🗌								
Sample containers intact?		Yes 🗸	No 🗌								
Sufficient sample volume for	indicated test?	Yes 🗸	No 🗌								
Ail samples received within h (Exclude analyses that are co such as pH, DO, Res Cl, Sul	olding time? onsidered field parameters fite, Ferrous Iron, etc.)	Yes 🗹	No 🗌								
Temp Blank received in all st	hipping container(s)/cooler(s)?	Yes 🗌	No 🗸	Not Applicable							
Container/Temp Blank tempe	rature:	6,6°C On Ice -	From Field								
Water - VOA vials have zero	headspace?	Yes 🗹	No 🗌	No VOA vials submitted							
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable 🗹							

## **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

## **Contact and Corrective Action Comments:**

None

	Colorado Analytical	Brighton Lab	240 South Main Street Brighton, CO 80601	Lakewood Lab	Lakewood CO 80228	لر Phone: 303-659-2313 Fax: 303-659-2315	www.coloradolah.com			UTAZO750											TECH Yes D No D LYS O	0 (% Critee ) 25 Somple Pres. Yes 🗆 No 🗆	ived By: Date/Time:	NDX (3. X-7 -
	Project Name	170324007	Sterling Ranch MD	Task Number (Lab Use Only)	CAL Task No. 15-1	2001	ARF 10 10	Disposal Date(Lab Use Only)				- PUB:	Diox.	5005 Fous 0 1't-	\$79 \$79 \$79						Scals Pri	C/S Charge 🔲 Temp. (	Date/Time: Recei	
Chain of Custody Form	Bill To Information (If different from report to)	Company Name: Same	Contact Name:	Address:		City State Zip	Phone: Fax:	Email:	PO No.:			Plant Tissue	Other Other	of Cc b b b b b b b b b b b b b b b b b b b	и Ио. Сол						C/S lufo:	Deliver Via:	y: Date/Time: Relinquished By:	
		ado Analytical <u>Laboratov</u>	vielson			e <u>CO</u> Zip <u>80601</u>	Fax:303-659-2315	oloradolab.com				Soil	Sladge	Compost		170324007 Sterling Ranch MD					rgy Labs		Date/Time: Received B	1100
	Report To Information	Company Name: Colori	Contact Name: Stuart N	Address: P.O. Boy S07	240 S Main St	City Brighton State	Phone:303-659-2313	Email: stuarmielson@co	Sample Collector:		望住在"封住"。18-16-16-16-16-16-16-16-16-16-16-16-16-16-	Waste Water	Ground Water 🛛	Surface Water		3/23/17 08:03					Instructions:UPS to Ener		Relinquished By:	THUCKER -

Supplemental Appendix B

## **EPC Confined Aquifer Sampling Requirements**

<u>Field Measurements</u> pH Temp

Radionuclides Radium 226 and Radium 228 Gross alpha/Beta

Inorganics Antimony Arsenic Barium Beryllium Cadmium Chromium Cyanide (Total) Fluoride Mercury Nitrate Nitrite Selenium Thallium

Secondary MCLs Aluminum Chloride Corrosivity Iron Manganese Silver Sulfate Zinc TDS

<u>Bacteriological:</u> Total Coliform

## **Stephanie Schwenke**

From:	Catherine McGarvy <catherinemcgarvy@elpasoco.com></catherinemcgarvy@elpasoco.com>
Sent:	Tuesday, October 13, 2020 11:59 AM
То:	Stephanie Schwenke
Subject:	RE: Small subdivision plat approval question regarding sampled water quality

Good Afternoon,

I apologize for the delay in response I am working through a lot of inquiries at the moment and wanted to make sure I had the most accurate information for you.

El Paso County Public Health (EPCPH) will note this on the Water Quality sufficiency determination. That determination is usually made just before the Final Plat is submitted. Once we make comment on the sufficiency they will usually attach and record plat note to the subdivision final drawings that is part of the information disclosed when anyone buys a lot. In some cases EPCPH has strongly encouraged the installation of an under the counter type RO system be installed, especially with a more prevalent contaminant like fluoride or nitrates. A high radium result on one test is not likely the case throughout the subdivision, so a plat note is what I would expect.

I hope this helps, please let me know if I can provide any additional information.

Thank you

Kat McGarvy M.S., R.E.H.S Water Quality Program Manager El Paso County Public Health 1675 W. Garden of the Gods Rd., Ste. 2044 Colorado Springs, CO 80907 Office: (719) 578-3112 Cell: (719) 337-7832 Fax: (719) 578-3118 www.elpasocountypublichealth.org

For local information about the novel coronavirus disease 2019 (COVID-19), visit <u>El Paso County Public</u> Health's COVID-19 website.





2020 Census information can be found at: <u>https://coloradosprings.gov/pikespeakcensus</u>

From: Stephanie Schwenke <sschwenke@jdshydro.com>
Sent: Thursday, October 8, 2020 4:31 PM
To: Catherine McGarvy <CatherineMcGarvy@elpasoco.com>
Subject: Small subdivision plat approval question regarding sampled water quality

CAUTION: This email originated from outside the El Paso County technology network. Do not click links or open attachments unless you recognize the sender and know the content is safe. Please call IT Customer Support at 520-6355 if you are unsure of the integrity of this message.

Kat,

I believe you have replaced Aaron Doussett in responding to water quality questions within El Paso County Health. I have a client who would like to subdivide land on the eastern side of the County into 10 - 12 lots that would range in size from 2.5 - 5 acres. We were able to pull water samples from the same aquifer at a property that was 0.5 miles away from the furthest possible future well in this subdivision. All the water quality came back below MCL limits except combined Radium 226+228. The result was 5.5 pCi/l using the standard deviation. That result is just above the MCL for combined Radium 226+228 of 5 pCi/l.

JDS is wondering if EPC would sign off on the signature page of the Water Resources Report with a recommendation for disclosure of the results to the lot purchaser. With that disclosure would be treatment information for the new owner to install one of several NSF approved Reverse Osmosis Point of Use treatment systems in the new home for the removal of Radium 226+228.

Please respond as soon as possible and do not hesitate to contact to contact me if you have any questions.

Thank you for your time!

## Stephanie Schwenke

JDS-Hydro Consultants, INC 545 E. Pikes Peak Ave. Ste 300 Colorado Springs, CO 80903 719-227-0072 719-321-5341 (c) sschwenke@jdshydro.com



REPORTING FORM FOR <u>INORGANIC ANIONS IN WATER</u> EPA ID # CO00025

PWSID# CO0				CONTACT: Stephanie Schwenke-JDS-Hydro								
SITE ADDRESS:				PHONE: (719) 227-0072								
10620 Vollmer	008			FAX/EMAIL: sschwenke@jdshydro.com								
Colorado Oprings, CO 00	300			COLLECTED	BY: Stephanie So	chwenke						
				SAMPLE COLLECTION DATE: 9/8/20								
SITE DESCRIPTION:				SAMPLE COL	LECTION TIME:	0850						
Public System     If	Private 🛛 Sur	face 🛛 Stre	eam	MATRIX: Grou	Indwater							
	Other			RESIDUAL CH	LORINE: mg/L							
CUSTOMER:				SAMPLE REC	EIVED DATE: 9/	8/20						
Stephanie Schwenke-JD 5540 Tech Center Drive	S-Hydro Ste 100			RECEIVED TI	ME: 1350	TECH: EE0	000728					
COLORADO SPRINGS,	CO 80908			RECEIVED TE	MP: 21.8°C							
				DILUTIONS: 1	:1							
COMMENTS:												
TES	TED			COMPLETED TEC								
DATE: 09/09/2020			DATE: 09/09/2	E: 09/09/2000								
TIME: 1122			TIME: 1440			ID: EE0000	742					
LAB SAMPLE #:IC21798			SAMPLE POIN	OINT NAME: Hydrant								
SAMPLE POINT ID:			FACILITY TYF	FACILITY TYPE:								
FACILITY ID:			FACILITY NAM	ИЕ:								
PARAMETER	RESULTS	UNITS	MCL	MSL	STANDARD N	/IETHOD	LAB MRL					
Fluoride		mg/L	4.0		EPA 3	300	0.04					
Chloride		mg/L		250	EPA 3	300	0.1					
Nitrite-N	BDL	mg/L	1.0		EPA 3	300	0.2					
Bromide		mg/L					0.2					
Nitrate-N	< 0.2	mg/L	10.0	EPA 300								
Orthophosphate-P		mg/L	no limit established		EPA 3	300	0.3					
Sulfate		mg/L		250	EPA 3	300	0.3					

BDL - Below Detection Limit MRL - Minimum Reporting Limit MCL - Maximum Contamination Unit per EPA MSL - Maximum Secondary Unit per EPA Q - Quality Control Limit Exceeded H - Holding Time Exceeded NT - No Test

El Paso County Public Health Laboratory EPA ID# CO00025

1675 West Garden of the Gods Road, Suite 2044, Colorado Springs, CO 80907 - (719) 578-3120

PWSID Sample Point ID:			☐ Raw ☐ Finished ☐ LT2 ☐ Quantitative	Date 09/09/2020 T
Sample Taken Date: 09/08/20	20 Time: 0850	Name of Supply:		Collie
Address where sample was ta	ken: 10620 Vollmer			
Sample site location: Hydrant		Sampler: Stephani	Sampler: Stephanie Schwe Chlorine: mg/L	
Community Supply	Private	☑ Well	☐ City	□ Presence: Pre
Non-Community	EHS	Surface/Spring	Cistern	non-compliance standards.
Results to: Stephanie Schwenke-JDS-Hydro		P	Phone: (719) 227-0072	
Mailing address: 5540 Tech C	enter Drive			MPN/100 ml
City/State/Zip: COLORADO S	PRINGS, CO. 8019			Wir W/ 100 mil.
Fax/Email: sschwenke@jdshy	dro.com			☑ Absence: E. C
Comments:				□ Presence:

Date 09/08/2020	Time 1350	Rc'd EE0000728
Date 09/08/2020	Time 1541	Tested EE0000742
Date 09/09/2020	Time 0953	Comp EE0000742

797

## ert Results Per 100ml

ence of coliform bacteria

sence of coliform bacteria & ce with drinking water

oli: Escherichia coli bacteria

MPN/100 ml:



Report To: Stephanie Schwenke Company: JDS Hydro Consultants 5540 Tech Center Dr. Suite 100 Colorado Springs CO 80919

## **Analytical Results**

TASK NO: 200910111

Bill To: Stephanie Schwenke Company: JDS Hydro Consultants 5540 Tech Center Dr. Suite 100 Colorado Springs CO 80919

Task No.: 200910111 Client PO: Client Project:

Date Received: 9/10/20 Date Reported: 9/23/20 Matrix: Water - Drinking

Customer Sample ID Retreat Test Sample Date/Time: 9/8/20 8:35 AM Lab Number: 200910111-01

Test	Result	Method SM 2320-B	ML 4	Date Analyzed 9/11/20	Analyzed By ECM
Bicarbonate	70.0 mg/L as CaCO3				
Calcium as CaCO3	60.2 mg/L	EPA 200.7	0.1	9/15/20	MBN
Carbonate	< 4 mg/L as CaCO3	SM 2320-B	4	9/11/20	ECM
Hydroxide	< 4 mg/L as CaCO3	SM 2320-B	4	9/11/20	ECM
Langelier Index	-1.19 units	SM 2330-B		9/23/20	SAN
рН	7.03 units	SM 4500-H-B	0.01	9/8/20	Sampler
Temperature	16 °C	SM 4500-H-B	1	9/8/20	Sampler
Total Alkalinity	70.0 mg/L as CaCO3	SM 2320-B	4	9/11/20	ECM
Total Dissolved Solids	141 mg/L	SM 2540-C	5	9/15/20	ISG

Abbreviations/ References:

ML = Minimum Level = LRL = RL mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

home Siel

DATA APPROVED FOR RELEASE BY

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 Page 1 of 3

200910111 1/1


Report To: Stephanie Schwenke Company: JDS Hydro Consultants 5540 Tech Center Dr. Suite 100 Colorado Springs CO 80919 **Analytical Results** 

TASK NO: 200910111

Bill To: Stephanie Schwenke Company: JDS Hydro Consultants 5540 Tech Center Dr. Suite 100 Colorado Springs CO 80919

Task No.: 200910111 Client PO: Client Project:

Date Received: 9/10/20 Date Reported: 9/23/20 Matrix: Water - Drinking

Customer Sample ID Retreat Test

Sample Date/Time: 9/8/20 8:35 AM

Lab Number: 200910111-01

Test	Result	Method	ML	Date Analyzed	Analyzed By	MCL
Chloride	2.1 mg/L	EPA 300.0	0.1 mg/	_ 9/11/20	MAT	
Fluoride	0.30 mg/L	EPA 300.0	0.09 mg/l	_ 9/11/20	MAT	4
Sulfate	10.4 mg/L	EPA 300.0	0.1 mg/l	9/11/20	MAT	
Cyanide-Total	< 0.005 mg/L	EPA 335.4	0.005 mg/l	9/15/20	CES	0.02
<u>Total</u>						
Iron	0.005 mg/L	EPA 200.7	0.005 mg/l	9/15/20	MBN	0.3
Aluminum	0.007 mg/L	EPA 200.8	0.001 mg/l	9/16/20	IPC	0.05
Antimony	< 0.0012 mg/L	EPA 200.8	0.0012 mg/l	9/16/20	IPC	0.006
Arsenic	0.0008 mg/L	EPA 200.8	0.0006 mg/l	9/16/20	IPC	0.01
Barium	0.1151 mg/L	EPA 200.8	0.0007 mg/l	9/16/20	IPC	2
Beryllium	< 0.0001 mg/L	EPA 200.8	0.0001 mg/l	9/16/20	IPC	0.004
Cadmium	< 0.0001 mg/L	EPA 200.8	0.0001 mg/l	9/16/20	IPC	0.005
Chromium	< 0.0015 mg/L	EPA 200.8	0.0015 mg/l	9/16/20	IPC	0.1
Manganese	0.0081 mg/L	EPA 200.8	0.0008 mg/l	9/16/20	IPC	0.05
Mercury	< 0.0001 mg/L	EPA 200.8	0.0001 mg/l	9/16/20	IPC	0.002
Selenium	< 0.0008 mg/L	EPA 200.8	0.0008 mg/L	9/16/20	IPC	0.05
Silver	< 0.0005 mg/L	EPA 200.8	0.0005 mg/L	. 9/16/20	IPC	
Thallium	< 0.0002 mg/L	EPA 200.8	0.0002 mg/L	9/16/20	IPC	0.002
Zinc	0.118 mg/L	EPA 200.8	0.001 mg/L	9/16/20	IPC	5

#### Abbreviations/ References:

ML = Minimum Level = LRL = RL MCL = Maximum Contaminant Level per The EPA mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 Page 1 of 3



October 06, 2020

Report to: Stephanie Schwenke JDS Hydro Consultants, Inc. 5540 Tech Center Drive

Colorado Springs, CO 80919

cc: John McGinn

Bill to: Stephanie Schwenke JDS Hydro Consultants, Inc. 545 E. Pikes Peak Ave. Suite 300 Colorado Springs, CO 80903

Project ID: ACZ Project ID: L61347

Stephanie Schwenke:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on September 09, 2020. This project has been assigned to ACZ is project number, L61347. Please reference this number in all future inquiries.

All analyses were performed according to ACZ^S Quality Assurance Plan. The enclosed results relate only to the samples received under L61347. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ^S current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 05, 2020. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZS stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

ve gibl

Sue Webber has reviewed and approved this report.





ACZ	<b>Laboratories,</b> e Steamboat Springs, CO 80-	<b>Inc.</b> 487 (800) 334-5493			Ra An	adioC alytic	hemi al Re	istry esults
<b>JDS Hydro Co</b> Project ID: Sample ID: Locator:	nsultants, Inc. #1-#3 RETREAT TEST			ACZ Sar Date Sa Date Re Sample	nple ID: ampled: eceived: Matrix:	<b>L613</b> 09/08 09/09 Drink	<b>47-01</b> /20 8:4 /20 ing Wat	2 ter
Gross Alpha & Beta M900.0	a, total						Pre	p Method:
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Gross Alpha Gross Beta	09/28/20 0:23 09/28/20 0:23		1.1 6	1.2 2.1	1.2 1.8	pCi/L pCi/L	*	fdw fdw
Radium 226, total M903.1							Pre	p Method:
Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Radium 226, total	09/23/20 0:27		1.4	0.18	0.08	pCi/L	*	djc
Radium 228, total M904.0							Pre	p Method:

Parameter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
Radium 228, total	10/03/20 14:40		5	0.72	0.53	pCi/L	*	fdw

Deta	03/20/20 0.23		0	2.1	1.0	powe		law
m 226, total 1							Prep	o Method:
neter	Measure Date	Prep Date	Result	Error(+/-)	LLD	Units	XQ	Analyst
m 226, total	09/23/20 0:27		1.4	0.18	0.08	pCi/L	*	djc
m 228, total 0							Prep	o Method:



# Radiochemistry Reference

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header	Explanations
Batch	A distinct set of samples analyzed at a specific time
Error(+/-)	Calculated sample specific uncertainty
Found	Value of the QC Type of interest
Limit	Upper limit for RPD, in %.
LCL	Lower Control Limit, in % (except for LCSS, mg/Kg)
LLD	Calculated sample specific Lower Limit of Detection
PCN/SCN	A number assigned to reagents/standards to trace to the manufacturers certificate of analysis
PQL	Practical Quantitation Limit
QC	True Value of the Control Sample or the amount added to the Spike
Rec	Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)
RER	Relative Error Ratio, calculation used for Dup. QC taking into account the error factor.
RPD	Relative Percent Difference, calculation used for Duplicate QC Types
UCL	Upper Control Limit, in % (except for LCSS, mg/Kg)
Sample	Value of the Sample of interest

#### QC Sample Types

DUP	Sample Duplicate	MS/MSD	Matrix Spike/Matrix Spike Duplicate
LCSS	Laboratory Control Sample - Soil	PBS	Prep Blank - Soil
LCSW	Laboratory Control Sample - Water	PBW	Prep Blank - Water

QC	Sample Type Explanations	
	Blanks	Verifies that there is no or minimal contamination in the prep method procedure.
	Control Samples	Verifies the accuracy of the method, including the prep procedure.
	Duplicates	Verifies the precision of the instrument and/or method.
	Matrix Spikes	Determines sample matrix interferences, if any.

#### ACZ Qualifiers (Qual)

H Analysis exceeded method hold time.

### Method Prefix Reference

М	EPA methodology, including those under SDWA, CWA, and RCRA
SM	Standard Methods for the Examination of Water and Wastewater.
D	ASTM
RP	DOE
ESM	DOE/ESM

#### Comments

(1)	Solid matrices are reported on a dry weight basis.
(2)	Preparation method: "Method" indicates preparation defined in analytical method.
(3)	QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
(4)	An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification
	qualifier associated with the result.

For a complete list of ACZ is Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP003.09.12.01

2773 Downhill Driv	E Steambo	ratori at Springs, (	<b>es, Inc.</b> co 80487 (80	10) 334-549	e e								Y	adioci Su	nemis Immai	y QC
JDS Hydro Co	nsultants,	Inc.										ACZ	Project	ID: <b>7</b> 61	347	
.ON	TE: If the Rec	% column is	s null, the high/low	/ limits are i	in the same	units as t	he result.	If the Rec	% colun	ın is not	null, thei	<i>ι the hig</i>	h/low lim.	its are in %	Rec.	
Alpha			0.009M										Units	: pCi/L		
ACZ ID	Type	Analyzed	PCN/SCN	gc	Sample	Error	۲۲D	Found	Error	ГГР	Rec%	Lower	Upper R	PD/RER	Limit	Qual
WG505597																
WG505597PBW	PBW	09/28/20						49	0.19	0.79			1.58			
WG505597LCSWA	LCSW	09/28/20	PCN60283	66.67				73	9	0.88	110	67	144			
L61267-01DUP	DUP-RER	09/28/20				1.6	1.7	2.7	1.9	1.6				0.64	7	C L
L6126/-01DUP	UUP-RPU	02/82/60		03 101	1.1 0 E A	0. 1	7.L	1.2		0. L C	70	13	~ ~ ~	84 72	70	פ
L61535-05DUP	DUP-RPD	09/28/20	P.CN00203	00.1 01	-0.34 8.1	1.7	3. I 15	0 8	5.6	3.7 29	ę	10	++	-	20	
Beta			0.006M										Units:	: pCi/L		
ACZ ID	Type	Analyzed	PCN/SCN	gc	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper R	PD/RER	Limit	Qual
WG505597																
WG505597PBW	PBW	09/28/20						-1.6	1.7	1.9			3.8			
WG505597LCSWB	LCSW	09/28/20	RC200602-10	66.6				61	4	1.7	92	82	122			
L61267-01DUP	DUP-RPD	09/28/20			2.6	1.9	1.8	2.8	2:1	5, 5	0	0	0	7	20	
L61267-01MSB L61535-05DLIP	MS DIIP-RER	09/28/20 09/28/20	RC200602-10	66.6	2.6	1.9 די	1.8	64 2 2	4. ת ט ת	1.9	92	82	122	0 52	~	
L61535-05DUP	DUP-RPD	09/28/20			-1.9 9.1-	5.7	19	2.2	5.5	24				2733	20	RG
Radium 226, tot	al		M903.1										Units:	: pCi/L		
ACZ ID	Type	Analyzed	PCN/SCN	gc	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper R	PD/RER	Limit	Qual
WG505137																
WG505137PBW	PBW	09/23/20						.03	0.1	0.11			0.22			
WG505137LCSW	LCSW	09/23/20	PCN61539	20				14	0.5	0.1	70	43	148			
L61175-04DUP1	DUP-RER	09/23/20			0.05	0.12	0.13	<del>.</del> .	0.1	0.12				0.32	2	
L61175-04DUP1	DUP-RPD	09/23/20			0.05	0.12	0.13	<del>.</del> .	0.1	0.12				67	20	RG
L61189-01MS	MS	09/23/20	PCN61539	20	0.12	0.12	0.12	16	0.48	0.07	79	43	148			
L61271-01DUP2	DUP-RPD	09/23/20			0.29	0.1	0.39	.38	0.2	0.2				27	20	RG
L61271-01DUP2	DUP-RER	09/23/20			0.29	0.1	0.39	.38	0.2	0.2				0.4	2	

L61347-2010061359

Page 4 of 10

ACA Standard	Labor Steamboa	ratorie at Springs, C	<b>3S, InC.</b> :0 80487 (80	0) 334-5493									Ř	ładioch Su	emistr mmary	y QC
JDS Hydro Co	nsultants,	Inc.										ACZI	^o roject	: ID: <b>791</b>	347	
ION	TE: If the Rec?	% column is	null, the high/low	limits are in	the same r	inits as th	ne result.	If the Rec	% colum	n is not r	null, ther	the hig	h/low lin	nits are in %	Rec.	
Radium 228, tot	al		M904.0										Units	:: pCi/L		
ACZ ID	Type	Analyzed	PCN/SCN	gc	Sample	Error	LLD	Found	Error	LLD	Rec%	Lower	Upper 1	RPD/RER	Limit	Qual
WG505781																
L61504-01DUP	DUP-RPD	10/03/20			1.5	1.3	3.2	1.9	~	2.4				24	20	RG
L61504-01DUP	DUP-RER	10/03/20			1.5	1.3	3.2	1.9	-	2.4				0.24	2	
L61267-04DUP	DUP-RER	10/03/20			0.3	0.36	0.36	.87	1.1	1.1				0.49	2	
WG505781LCSW	LCSW	10/03/20	PCN61541	4.82				5.4	0.54	0.35	112	47	123			
WG505781PBW	PBW	10/03/20						.45	0.36	0.36			0.72			
L61267-04DUP	DUP-RPD	10/03/20			0.3	0.36	0.36	.87	1.1	1.1				97	20	RG
L61267-05MS	MS	10/03/20	PCN61541	9.63	0.5	0.54	0.54	13	1.4	0.97	130	47	123			M1

Page 5 of 10



(800) 334-5493

#### JDS Hydro Consultants, Inc.

ACZ Project ID: L61347

than 2. Precision judged to be in control.

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L61347-01	NG505597	Gross Beta	M900.0	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
	WG505137	Radium 226, total	M903.1	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less than 2. Precision judged to be in control.
	WG505781	Radium 228, total	M904.0	M1	Matrix spike recovery was high, the recovery of the associated control sample (LCS or LFB) was acceptable.
			M904.0	RG	Sample concentration is less than 5x LLD; RPD was not used for data validation. Replicate Error Ratio (RER) is less



JDS Hydro Consultants, Inc.

ACZ Project ID: L61347

No certification qualifiers associated with this analysis

REPAD.05.06.05.01

ACZ	Laboratories, Inc.
2773 Downhill Drive	Steamboat Springs, CO 80487 (800) 334-5493

JE

JDS Hydro Consultants, Inc.	ACZ Project ID: L6134				
	Date Receive	ed: 09	9/09/202	0 12:23	
	Received E	By:			
	Date Printe	ed:	9/10/2020		
Receipt Verification					
	``````````````````````````````````````	YES	NO	NA	
1) Is a foreign soil permit included for applicable samples?				Х	
2) Is the Chain of Custody form or other directive shipping papers present?		Х			
3) Does this project require special handling procedures such as CLP protocol?			Х		
4) Are any samples NRC licensable material?				Х	
5) If samples are received past hold time, proceed with requested short hold time a	nalyses?	Х			
6) Is the Chain of Custody form complete and accurate?		Х			
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the	e samples?		Х		
Samples/Containers					
		YES	NO	NA	
8) Are all containers intact and with no leaks?		Х			
9) Are all labels on containers and are they intact and legible?		Х			
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, ar	nd Time?	Х			
11) For preserved bottle types, was the pH checked and within limits? 1		Х			
12) Is there sufficient sample volume to perform all requested work?		Х			
13) Is the custody seal intact on all containers?				Х	
14) Are samples that require zero headspace acceptable?				Х	
15) Are all sample containers appropriate for analytical requirements?		Х			
16) Is there an Hg-1631 trip blank present?				Х	
17) Is there a VOA trip blank present?				Х	
18) Were all samples received within hold time?		Х			

NA indicates Not Applicable

#### Chain of Custody Related Remarks

**Client Contact Remarks** 

## Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
4817	5.5	NA	15	Yes

#### Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

REPAD LPII 2012-03



JDS Hydro Consultants, Inc.	ACZ Project ID:	L61347
	Date Received:	09/09/2020 12:23
	Received By:	
	Date Printed:	9/10/2020

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

2773 Downhill Drive Steamboat Springs,	CO 80487 (800) 33	4-5493					
	1.2						
Name: Actionic Sch	morke	-  K	Address:	<u>5540</u>	lect	Center	<u>Pr</u>
E-mail: SC (1) - Hydro (2)	onsultants		Coh	orado Trado	<u>Deri</u>	ngs, CD	609
E-Mail: SS(MUSERREE)	ship the a Com		elephone:	(19-	321-	5341	
Copy of Report to:	· · · ·						
Name: John Metrinn		니 [4	-mail: โ	magin	inej	12shyd	ro a C.
Company: TDS-Hydro			elephone:	719	<del>227</del>	-6072	
Invoice to:							
Name: Stephante Sc	hwenke		ddress:	5540	Tech	Center	- Dr
Company: JDS-Hydro		]	<u>    Col</u>	orado			
E-mail: Sschwenke@jlshy	dro.com		elephone:				
If sample(s) received past holding time	(HT), or if insufficie	ent HT rem	ains to com	plete		YE	sХ
If "NO" then ACZ will contact client for further instruction. If no	either "YES" nor "NO" is indica	ted, ACZ will pro	ceed with the req		en if HT is expi	NC ired, and data will be	)
Are samples for SDWA Compliance Mo	nitoring?	Y	es	No	K		
if yes, please include state forms. Resu	Its will be reported	to PQL for	Colorado.				
Sampler's Name: Sa	mpler's Site Informa	ation S to the authenticit	tate( y and validity of t	Zip	code	Time	> Zone <u>/</u>
	tamperin	g with the samp	e in anyway, is co	insidered fraud and	punishable by	State Law.	the time/date
	110.00			LYSES REQUES	TED (attach	list or use quote	number)
$\frac{1}{10000000000000000000000000000000000$	H2111		ers S	E.			
			tain	R I			
Reporting state for compliance testing:			5 6	20			
Check box if samples include NRC license	d material?		ad of	Se			
SAMPLE IDENTIFICATION	DATE: TIME	Matrix	* 9	S			
# 1- Marat 1 ist 1/E	0/20 8:40am	KAW	1				
Ketricattest	<u>0.41an</u>	+++	<u> </u>				
# 3-Ketrastest V	- Briddan						
			_				
	·						
			_				
			_				
Matrix SW (Surface Water) GW (Ground	Water), WW (Waste W	vater) · DW (	Drinking Wate	er) · SL (Sludge	) · SO (Soil	) · OL (Oil) · Oth	er (Specif
REMARKS							
Please refer to A	C7's torms 8 cond	itiona lass					
			nea on the	reverse sid	e of this		
		8 B L		CECEIVED I	5Y:	D	ATE:TI
				7.11			

White - Return with sample. Yellow - Retain for your records. j.