

1

INNOVATIVE DESIGN. CLASSIC RESULTS.

FINAL DRAINAGE REPORT FOR RETREAT AT TIMBERRIDGE FILING NO. 1

Prepared for: **TIMBERRIDGE DEVELOPMENT GROUP, LLC** 2138 FLYING HORSE CLUB DRIVE COLORADO SPRINGS CO 80921 (719) 592-9333

> Prepared by: CLASSIC CONSULTING 619 N. CASCADE AVE SUITE 200 COLORADO SPRINGS CO 80903 (719) 785-0790

> > Job No. 1185.00

PCD Project No. SF-19-009

619 N. Cascade Ave, Suite 200 | Colorado Springs, CO 80903 | (719) 785-0790

FINAL DRAINAGE REPORT FOR RETREAT AT TIMBERRIDGE FILING NO. 1

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

	E C ALAN WAR	
	37155	
Marc A.	Whorton Colorado P.E. #37155	
	MANNAL CONNEL	

6/8/2020

Date

OWNER'S/DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:	TIMBERRIDGE DEVELOPMENT GROUP, LLC	
Ву:	UA	
Title:	C.RO	
Address:	2138 Flying Horse Club Drive	
	Colorado Springs, CO 80921	

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer, / ECM Administrator

Conditions:

APPROVED Engineering Department

11/25/2020 10:50:35 AM dsdnijkamp EPC Planning & Community Development Department

FINAL DRAINAGE REPORT FOR RETREAT AT TIMBERRIDGE FILING NO. 1

TABLE OF CONTENTS:

PURPOSE	Page	1
GENERAL DESCRIPTION	Page	1
EXISTING DRAINAGE CONDITIONS	Page	1
PROPOSED DRAINAGE CONDITIONS	Page	5
DETENTION/SWQ FACILITIES	Page	16
SAND CREEK CHANNEL IMPROVEMENTS	Page	16
DRAINAGE CRITERIA	Page	22
FLOODPLAIN STATEMENT	Page	24
DRAINAGE AND BRIDGE FEES	Page	24
SUMMARY	Page	26
REFERENCES	Page	28

APPENDICES

VICINITY MAP

SOILS MAP (WEB SOIL SURVEY)

F.E.M.A. MAP / LOMR (08-08-0541P)

RECOMMENDATIONS PER SAND CREEK DBPS

HYDROLOGIC / HYDRAULIC CALCULATIONS

STORMWATER QUALITY / DETENTION POND CALCULATIONS

HEC-RAS CALCULATIONS

DRAINAGE MAPS

SECTION 404 PERMITTING / WETLAND IMPACT MAP (CORE Consultants)

POCO ROAD CULVERT DESIGN DOCUMENTS (CBC Engineers)

PURPOSE

The purpose of this Final Drainage Report is to address on-site and off-site drainage patterns and identify specific drainage improvements and facilities required to minimize impacts to the adjacent properties.

GENERAL DESCRIPTION

The Retreat at TimberRidge Filing No. 1 is 68.14-acre site located in portions sections 27 and 28, township 12 south, range 65 west of the sixth principal meridian. The site is bounded on the north and east by future development phases within the TimberRidge property, to the south by Sterling Ranch property (zoned for future urban development) and to the west by Vollmer Road. The site is in the upper portion of the Sand Creek Drainage Basin. Both large lot rural single family residential and urban single family residential are proposed in this Filing.

The average soil condition reflects Hydrologic Group "B" (Pring coarse sandy loam and Kettle gravelly loamy sand) as determined by the "Web Soil Survey of El Paso County Area," prepared by the Natural Resources Conservation Service (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The Retreat at TimberRidge Filing No. 1 property is located in the upper portion of the Sand Creek drainage basin on the south edge of Black Forest. Nearly the entire site, other than the Sand Creek corridor, is mainly covered with native grasses with few or no pine trees. The Sand Creek channel bisects the site in a north-south direction. A wetlands delineation was prepared by CORE Consultants, Inc. and submitted along with the Preliminary Plan. (See Appendix) This document reflects some wetlands throughout the Sand Creek channel. Any effect on these wetlands within jurisdictional waters will be described later in this report along with the appropriate permitting.

Portions of this site have been previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Engineering Corporation, March 1996. The portion of Sand Creek that traverses the site is defined as Reach SC-9 in the DBPS. 1000+ acres north of this property is tributary to this reach of the channel. (See Off-site Drainage Map in Appendix)

According to the DBPS, this reach of Sand Creek all contained within the channel has the following flow characteristics: $Q_{10} = 630$ cfs $Q_{100} = 2170$ cfs. However, the 100 yr. flow recognized by FEMA in the LOMR 08-08-0541P with effective date of July 23, 2009, equals nearly $Q_{100} = 2600$ cfs. Also, Sterling Ranch has recently finalized their MDDP which includes modeling of this property as well as the large acreage north up to the top of the Sand Creek Basin. The MDDP proposes developed flows within Sand Creek that are significantly lower than both the DBPS and FEMA currently show. These flows are as follows: At Arroya Lane crossing $Q_{10} = 430$ cfs $Q_{100} = 1487$ cfs and TimberRidge south property line $Q_{10} = 452$ cfs $Q_{100} = 1523$ cfs. Even with the County approval of the MDDP and these adjusted flows, a CLOMR/LOMR will be required to be prepared, submitted and approved by FEMA prior to utilizing these flows in any Final Drainage Reports within this development. Based on the anticipated 12-18 month timing of the CLOMR/LOMR process, this development will continue to utilize the much larger FEMA recognized flows for all proposed channel improvements through this property, including the culvert crossing at Poco Road.

The majority of these off-site flows enter the property at the north end of the site conveying flows from the northwest (Black Forest area) and the off-site stock ponds to the north (both tributary to hundreds of acres of property in Black Forest). There are multiple existing culvert crossings of Vollmer Rd. just north of Arroya Lane to facilitate these historic flow patterns. The following are the few key culverts that directly feed the Sand Creek channel north of Arroya Lane: Approximately 1,000 feet north of Arroya Lane, an existing 36" CMP crosses Vollmer Road (Basin SC-1 on Off-site Drainage Map). A small basin and natural ravine just west of Vollmer feeds this facility. From a recent field visit, this small facility seems to be in good working condition, however, not labeled in the DBPS. Another 700 feet+ north along Vollmer a much larger basin exists west of the roadway. This off-site basin is approximately 350+ acres northwest of Vollmer Road (Basin SC-2 on Off-site Drainage Map). As shown within the DBPS, this existing crossing is a 60" CMP with some very dense and tall vegetation at both the entrance and exit of this facility. But, based on a recent field visit this facility seems to be in good working condition.

depicts this facility and recommends an additional 60" CMP at this location. However, there are no signs of erosion or over topping the road at this location at this time based on the current development within the tributary area to this facility. Based on the existing surrounding topography and roadway configuration, the 100 yr. historic flows at this location would appear to spill over the roadway and continue in their historic drainage pattern downstream within the upper reach of Sand Creek.

The following descriptions represent the pre-development flow design points for the property excluding the major off-site flows within Sand Creek just described:

EX DP-1 ($Q_2 = 4.2$ cfs $Q_5 = 28.5$ cfs, $Q_{100} = 219.2$ cfs) This does not include the major off-site channel flows but reflects only the on-site and off-site flows that travel across the property and have a direct effect on the development. This total represents the allowed developed release off-site at this location. This total pre-development flow includes the flowing basins: EX-1, EX-4, EX-5, EX-6 and EX-7. Basins EX-1 ($Q_2 = 0.5$ cfs $Q_5 = 3.9$ cfs, $Q_{100} = 30.0$ cfs) and EX-6 ($Q_2 = 0.7$ cfs $Q_5 = 5.8$ cfs, $Q_{100} = 44.8$ cfs) consist of a good portion of the Filing 1 development and a significant future development area both on and off-site. These basins sheet flow in a southwesterly direction and eventually travel within various natural ravines created within the site. These ravines then route the predevelopment flows directly into Sand Creek in multiple locations. Upon development, over 90% of this historic tributary area will be routed directly into a proposed onsite facility and treated prior to entering Sand Creek. Basin EX-5 ($Q_2 = 2.0 \text{ cfs } Q_5 = 13.5 \text{ cfs}, Q_{100}$ = 107.2 cfs) consists of the majority of the future TimberRidge development area along with an off-site future Sterling Ranch development area. This basin also sheet flows in a southerly direction within natural ravines that route the predevelopment flows directly into Sand Creek in multiple locations. Upon development, over 65% of this historic on-site tributary area will also be routed directly into a proposed on-site facility and treated prior to entering Sand Creek. Basin EX-7 ($Q_2 = 1.0 \text{ cfs } Q_5 = 5.2 \text{ cfs}$, $Q_{100} = 32.1 \text{ cfs}$) consists of an off-site basin west of Vollmer Road

(not a part of this development) that drains under Vollmer into the TimberRidge property via an existing 48" CMP culvert and then within a natural ravine that routes the off-site flow directly into Sand Creek. This condition will remain with the development of Filing 1. Upon future TimberRidge development in this area, these off-site flows will be routed directly towards Sand Creek via an extension of the 48" storm within Arroya Lane.

EX DP-2 ($Q_2 = 0.03$ cfs $Q_5 = 0.3$ cfs, $Q_{100} = 2.3$ cfs) consists of a minimal portion of Filing 1 development area that currently sheet flows in a southwesterly direction. These predevelopment flows travel off-site directly onto Sterling Ranch property prior to eventually entering the Sand Creek channel.

EX DP-3 (Q₂ = 0.4 cfs Q₅ = 3.4 cfs, Q₁₀₀ = 26.8 cfs) consists of flows from on-site Basin EX-3 that travel off-site directly onto Sterling Ranch property prior to eventually entering the Sand Creek channel. Upon development, over nearly 100% of this historic tributary area will be routed directly into a proposed on-site facility and treated prior to entering Sand Creek.

EX DP-4 (Q₂ = 0.2 cfs Q₅ = 1.4 cfs, Q₁₀₀ = 10.5 cfs) consists of on-site flows from Basin EX-4 that travel in a southeasterly direction directly towards Sand Creek. Upon development, nearly 60% of this historic tributary area will be routed directly into the proposed on-site facility and treated prior to entering Sand Creek.

EX DP-8 (Q₂ = 0.2 cfs Q₅ = 1.4 cfs, Q₁₀₀ = 10.7 cfs) consists of on-site flows from Basin EX-8 that travel in a southwesterly direction. Upon development, the majority of this historic tributary area will be routed directly into the proposed on-site facility and treated prior to entering Sand Creek.

PROPOSED DRAINAGE CONDITIONS

Proposed development within the Retreat at TimberRidge Filing No. 1 will consist of a variety of different residential lot sizes ranging from 1.0 - 2.5 acre large rural lots to 12,000 SF min. urban lots. The rural lots will have paved streets and roadside ditches while the urban lots paved streets with County standard curb, gutter and sidewalk. Development of the urban lots proposed will consist of overlot grading for the planned roadways and lots. Development of rural lots proposed within the site will be limited to roadways, building pads and 4'-6' high natural berm along Vollmer Road, conserving the natural feature areas. Individual home sites on these lots are to be left generally in their natural condition with minimal disturbance to existing conditions per individual lot construction. Per the El Paso County ECM, Section I.7.1.B, rural lots of 2.5 ac. and larger are not required to provide Water Quality Capture Volume (WQCV). However, based on the current County/Urban Drainage stormwater quality standards, a WQCV component is automatically built into the UD Detention spreadsheet utilized in the detention basin design. Thus, the proposed facilities within both the rural and urban portions of this development will provide WQCV along with an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume with an outlet control device. Frequent and infrequent inflows are released at rates approximating undeveloped conditions. This concept provides some mitigation of increased runoff volume by releasing a portion of the increased runoff at a low rate over an extended period of time, up to 72 hours. This means that frequent storms, smaller than the 2 year event, will be reduced to very low flows near or below the sediment carrying threshold value for downstream drainage ways. Also, by incorporating an outlet structure that limits the 100year runoff to the undeveloped condition rate, the discharge hydrograph for storms between the 2 year and the 100 year event will approximate the hydrograph for the undeveloped conditions and will help effectively mitigate the effects of development. To the greatest extent possible, WQCV will be provided for all new roads and urban lots. The following describes how this development proposes to handle both the off-site and on-site drainage conditions:

As mentioned previously, the majority of the off-site flows are already within the Sand Creek channel prior to entering the property. However the few off-site basins that must travel through the proposed site development areas prior to entering Sand Creek have been accounted for.

The following represent the basins west of Sand Creek:

Basin OS-1 ($Q_2 = 2 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 5 \text{ cfs}$) represents off-site flows from the east half of Vollmer Road. These existing flows will continue to travel in a southerly direction within the current roadside ditch along the east side of Vollmer road to the intersection with Poco Road. At this location, these existing flows will then be routed in an easterly direction via a proposed graded swale along the north side of Poco Road. **Basin C** ($Q_2 = 1 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 12 \text{ cfs}$) will combine with these flows and travel via the swale towards Design Point 1. **Basin A** ($Q_2 = 2 \text{ cfs}$ $Q_5 = 5 \text{ cfs}$, $Q_{100} = 22 \text{ cfs}$) represents the majority of the proposed 2.5 ac. rural lots adjacent to Vollmer Road. Developed flows from this basin will continue to sheet flow in a southeasterly direction towards the west side of Aspen Valley Road. These ditch flows travel to **Design Point** 1 ($Q_5 = 9 \text{ cfs}$, $Q_{100} = 36 \text{ cfs}$) where proposed dual 24" RCP culverts will convey the flows under the road towards Pond 1. The sideroad ditch along the west side of Aspen Valley Road will be lined with a turf reinforcement matting (TRM) adjacent to Lots 1-5 and erosion control matting adjacent to Lots 6-7, in order to adequately convey the developed flows without exceeding the allowable velocity and shear stress limits. (See Appendix for ditch calculations)

Basin B ($Q_2 = 1$ cfs $Q_5 = 3$ cfs, $Q_{100} = 14$ cfs) represents a portion of the proposed 2.5 ac. rural lots adjacent to Sand Creek. Developed flows from this basin will continue to sheet flow in a southeasterly direction towards Pond 1. The sideroad ditch along the north side of Poco Road east of Aspen Valley Road (within a 50' public drainage esmt.) will be lined with TRM to adequately convey the developed flows directly into Pond 1 without exceeding the allowable velocity and shear stress limits. (See Appendix for ditch calculations)

Design Point 2 (Q₅ = **11 cfs, Q**₁₀₀ = **47 cfs)** represents the total developed flows entering **Pond 1.** A proposed full-spectrum EDB is proposed at this location to release less than the predevelopment flows currently seen. The following describes the design of this facility. (See Appendix for UD Detention pond design sheets):

Detention Pond 1 (Full Spectrum EDB – see multiple storm release data below) 0.214 Ac.-ft. WQCV required 0.177 Ac.-ft. EURV required with 4:1 max. slopes 0.877 Ac.-ft. 100-yr. Storage 1.268 Ac.-ft. Total Total In-flow: $Q_2 = 3.8 \text{ cfs}$, $Q_5 = 5.8 \text{ cfs}$, $Q_{100} = 47.0 \text{ cfs}$ Pond Design Release: $Q_2 = 0.1 \text{ cfs}$, $Q_5 = 0.17 \text{ cfs}$, $Q_{100} = 24.0 \text{ cfs}$ Pre-development Release: $Q_2 = 0.3 \text{ cfs}$, $Q_5 = 0.48 \text{ cfs}$, $Q_{100} = 29.2 \text{ cfs}$ (Ownership and maintenance by the Retreat at TimberRidge Metro District)

At this proposed outfall location, the Sand Creek channel is proposed to be improved by widening the channel with selective rip-rap bank stabilization creating additional vegetated floodplain terrace area. These improvements will help control velocities thru this stretch of the channel while decreasing flow depths. The overall channel flows will not significantly change based on Detention Pond 1 release of $Q_{100} = 24.0$ cfs which is less than 1% of the total predeveloped channel flows at this location.

Basin E ($Q_2 = 0.4$ cfs $Q_5 = 1$ cfs, $Q_{100} = 6$ cfs) represents a portion of the rural 2.5 ac. lots west of Sand Creek outside the proposed roadway improvements. Only lot 8 and possibly lot 9 is anticipated to have any building structure constructed within this basin. Per the ECM Section I.7.1.B, WQCV is not required for these lots given their size (2.5 Ac.). However, sediment control will be provided for this basin in the form of a permanent sediment basin at the

northeast corner of lot 10 within a public drainage easement. (See Grading and Erosion Control Plan for design calculations and exact location) Basins OS-2 ($Q_2 = 0.0 \text{ cfs } Q_5 = 0.2 \text{ cfs}, Q_{100} = 1.6 \text{ cfs}$) and F ($Q_2 = 0.1 \text{ cfs } Q_5 = 0.4 \text{ cfs}, Q_{100} = 1.9 \text{ cfs}$) represent minor portions (both under 1.0 Ac.) of 2.5 Ac. lots that are not planned to have any building structure or roadway constructed within these basins. Thus, per ECM Section I.7.1.B, WQCV is not required and sediment control will be handled by silt fence and straw bale barriers as a part of the Grading and erosion Control Plan. Basin G ($Q_2 = 0.4 \text{ cfs } Q_5 = 2 \text{ cfs}, Q_{100} = 14 \text{ cfs}$) represents a portion of Sand Creek that will be platted with this Filing. No residential development is proposed within this basin other than the gravel trail along the west side of the creek and the proposed to be improved by regrading the potentially unstable slopes along the west side and installing selective rip-rap bank stabilization. These improvements help control velocities and provide stabilization thru this stretch of the channel while maintaining flow depths. The overall channel flows will not significantly change based on no increase to the total predeveloped channel flows at this location.

Basins D1 ($Q_2 = 2 \text{ cfs } Q_5 = 3 \text{ cfs}$, $Q_{100} = 5 \text{ cfs}$) and D2 ($Q_2 = 3 \text{ cfs } Q_5 = 4 \text{ cfs}$, $Q_{100} = 9 \text{ cfs}$) represent flows from the development of Poco Road. Both of these basins develop flows that end up as curb and gutter flow in an easterly direction towards Design Points 4 and 7. **Design Point 4 (Q_5** = **3 cfs, Q_{100} = 5 \text{ cfs})** represents the developed flow from Basin D1 where a proposed 5' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then around the corner of the intersection of Poco Road and Antelope Ravine Dr.

The following represent the basins east of Sand Creek:

Basin H ($Q_2 = 1 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 6 \text{ cfs}$) represents the rear yards of lots and the open space adjacent to Sand Creek within Tract E. These flows will sheet flow and be directed towards Design Point 7. **Design Point 7 (Q_5 = 4 \text{ cfs}, Q_{100} = 11 \text{ cfs})** represents the developed flow from

Basins D2, H and a portion of the 100 yr. flow-by from Design Point 6, described later. At this location, a proposed 10' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then around the corner of the intersection of Poco Road and Antelope Ravine Dr.

Design Point 5 ($Q_5 = 5 \text{ cfs}$, $Q_{100} = 17 \text{ cfs}$ **)** represents the developed flow from future Basin OS-4 and I. At this location, a proposed 15' Type R At-Grade Inlet will be installed to intercept 100% of the 5 yr. and 75% of the 100 yr. developed flows. The flow-by that will continue down the east side of the street equals $Q_5 = 0 \text{ cfs}$, $Q_{100} = 4.3 \text{ cfs}$. (See Appendix for calculations) This flowby will combine with Basin L and continue to travel in a southerly direction towards Design Point 10.

Design Point 6 (Q₅ = 2 cfs, Q₁₀₀ = 8 cfs) represents the developed flow from future Basin OS-3. At this location, a proposed 10' Type R At-Grade Inlet will be installed to intercept 100% of the 5 yr. and 79% of the 100 yr. developed flows. The flow-by that will continue down the west side of the street equals $Q_5 = 0$ cfs, $Q_{100} = 1.7$ cfs. (See Appendix for calculations) This flow-by will combine with Basins D2 and H and continue to travel in a southerly direction towards Design Point 7.

Design Point 8 (Q₅ = 1 cfs, Q₁₀₀ = 4 cfs) represents the developed flow from Basin K. At this location, a proposed 5' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then around the corner of the intersection of Bison Valley Trail and Rabbit Tail Place.

Design Point 9 (Q₅ = 5 cfs, Q₁₀₀ = 15 cfs) represents the developed flow from Basins J and future OS-7. At this location, a proposed 10' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then over the highpoint at the intersection of Bison Valley Trail and Rabbit Tail Place.

Design Point 10 ($Q_5 = 5 \text{ cfs}$, $Q_{100} = 22 \text{ cfs}$ **)** represents the developed flow from Basin L and the flow-by from Design Point 5. At this location, a proposed 15' Type R At-Grade Inlet will be installed to intercept 100% of the 5 yr. and 66% of the 100 yr. developed flows. The flow-by that will continue down the east side of the street equals $Q_5 = 0 \text{ cfs}$, $Q_{100} = 7.4 \text{ cfs}$. (See Appendix for calculations) This flow-by will combine with Basin P and continue to travel in a southerly direction towards Design Point 11.

Design Point 11 (Q_5 = 4 cfs, Q_{100} = 21 cfs) represents the developed flow from Basins N, O, P and a portion of the 100 yr. flow-by from Design Point 10. At this location, a proposed 15' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be ponding of 9" and then spill directly into Pond 2.

The following represent future basins and Design Points anticipated to be constructed with the future filings that will all be tributary to Pond 2:

Future Design Point 12 (Q₅ = 9 cfs, Q₁₀₀ = 33 cfs) represents the future developed flow from Basin OS-5. At this location, a future 15' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then westerly over the highpoint Elk Antler Lane.

Future Design Point 13 (Q₅ = 1 cfs, Q₁₀₀ = 13 cfs) represents the future developed flow from Basin OS-6. Again, this basin is mainly comprised of tributary area off-site within the Sterling Ranch Master Plan. At this location, a future 10' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then westerly over the highpoint Elk Antler Lane. These basins are mainly comprised of tributary area off-site within the Sterling Ranch Master Plan. It is planned with this report that with the future development of this portion of Sterling Ranch developed flows

equal to pre-development quantities are accounted for downstream in the on-site Pond 2. These future flows quantities will be treated and detained within Pond 2. Any developed flows above these quantities will need to be routed further downstream within the Sterling Ranch development. With the development of the proposed Filing No. 1 only, these pre-development flows will continue to enter the Timber Ridge property and be handled in multiple temporary sediment basins on-site. (See Interim Developed Drainage Map)

Future Design Point 14 (Q₅ = 1 cfs, Q₁₀₀ = 3 cfs) represents the future developed flow from Basin OS-8. At this location, a future 5' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then southerly over the highpoint.

Future Design Point 15 (Q_5 = 3 cfs, Q_{100} = 12 cfs) represents the future developed flow from Basin OS-9. This basin is comprised of a good portion of tributary area off-site within the Sterling Ranch Master Plan. At this location, a future 10' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then south over the highpoint and ultimately west towards Design Point 17. It is planned with this report that with the future development of this portion of Sterling Ranch developed flows equal to pre-development quantities are accounted for downstream in the onsite Pond 2. These future flows quantities will be treated and detained within Pond 2. Any developed flows above these quantities will need to be routed further downstream within the Sterling Ranch development. With the development of the proposed Filing No. 1 only, these pre-development flows will continue to enter the Timber Ridge property and be handled in multiple temporary sediment basins on-site. (See Interim Developed Drainage Map)

Future Design Point 16 (Q₅ = 1 cfs, Q_{100} = 3 cfs) represents the future developed flow from Basin OS-10. At this location, a future 5' Type R Sump Inlet will be installed to completely

intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then southerly over the highpoint.

Future Design Point 17 (Q₅ = 7 cfs, Q₁₀₀ = 22 cfs) represents the future developed flow from Basin OS-11. At this location, a future 10' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then southerly over the highpoint in Bison Valley Trail.

Future Design Point 18 (Q₅ = 6 cfs, Q_{100} = 30 cfs) represents flows from future development area both on and off-site. However, with the construction of the secondary gravel road connection up to Arroya Lane, the ultimate 30" RCP culvert is planned to be constructed with Filing No. 1 to collect these flows. In the interim it will act as just a culvert routing these predeveloped flows under the gravel road towards Sand Creek as currently taking place. Upon future development in this area, this 30" RCP storm system will be extended further downstream within the future roadway and ultimately into Pond 2.

Future Design Point 19 (Q₅ = 1 cfs, Q_{100} = 4 cfs) represents the future developed flow from Basin OS-13. At this location, a future 5' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then southerly over the highpoint.

Future Design Point 20 (Q₅ = 6 cfs, Q_{100} = 21 cfs) represents the future developed flow from Basin OS-14. At this location, a future 10' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then southerly over the highpoint Antelope Ravine Drive. This basin is comprised of a portion of tributary area off-site within the Sterling Ranch Master Plan. It is planned with this report that with the future development of this portion of Sterling Ranch developed flows equal to pre-development quantities are accounted for downstream in the on-site Pond 2. These future

flows quantities will be treated and detained within Pond 2. Any developed flows above these quantities will need to be routed further downstream within the Sterling Ranch development. With the development of the proposed Filing No. 1 only, these pre-development flows will continue to enter the Timber Ridge property and be handled in multiple temporary sediment basins on-site. (See Interim Developed Drainage Map)

Future Design Point 21 (Q₅ = 5 cfs, Q₁₀₀ = 35 cfs) represents the pre-development flows from Basin OS-15. This basin is mostly comprised of tributary area off-site within the Sterling Ranch Master Plan. With the development of the proposed Filing No. 1 only, these pre-development flows will continue to enter the existing stock pond located on-site. (See Interim Developed Drainage Map) This facility will act as a temporary sediment pond and a formal outlet pipe will be constructed. Also constructed with Filing No. 1 will be a permanent 24" RCP storm system routing the release from this existing stock pond directly towards Sand Creek, as currently taking place. Upon future TimberRidge development in this area, this storm system will be extended further east to the property line, the existing stock pond will be removed and another formal sediment pond will be constructed within the Sterling Ranch property. An appropriate drainage easement will be acquired for this construction. The Sterling Ranch development will be responsible for the required treatment and detention for future development in this basin, with formal outfall through the 24" RCP storm system.

Design Point 22 (Q₅ = **51 cfs, Q**₁₀₀ = **191 cfs)** represents the total developed flows entering **Pond 2.** These flows include Basin Q (Q₂ = 0.4 cfs Q₅ = 1 cfs, Q₁₀₀ = 6 cfs) which represents the developed flow within the actual detention basin. A proposed full-spectrum EDB is proposed at this location to release less than the pre-development flows currently seen. The following describes the design of this facility.

(See Appendix for UD Detention pond design sheets):

Detention Pond 2 (Full Spectrum EDB – see multiple storm release data below) 1.060 Ac.-ft. WQCV required 1.180 Ac.-ft. EURV required with 4:1 max. slopes 3.465 Ac.-ft. 100-yr. Storage 5.705 Ac.-ft. Total Total In-flow: $Q_2 = 24.7 \text{ cfs}, Q_5 = 35.9 \text{ cfs}, Q_{100} = 190.6 \text{ cfs}$ Pond Design Release: $Q_2 = 0.7 \text{ cfs}, Q_5 = 0.87 \text{ cfs}, Q_{100} = 100.5 \text{ cfs}$ Pre-development Release: $Q_2 = 1.1 \text{ cfs}, Q_5 = 1.91 \text{ cfs}, Q_{100} = 115.2 \text{ cfs}$ (Ownership and maintenance by the Retreat at TimberRidge Metro District)

At this proposed outfall location, based on the HEC-RAS analysis, the Sand Creek channel remains stable with only a sheet pile check structure proposed just downstream of this location. This improvement will help control velocities and long term stream degradation while maintaining flow depths. The overall channel flows will not significantly change based on Detention Pond 2 release of Q_{100} = 100.5 cfs which is less than 4% of the total predeveloped channel flows at this location.

Basin M ($Q_2 = 1 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 8 \text{ cfs}$) represents the rear yards of lots 16-24 and the open space adjacent to Sand Creek within Tract C. These flows will sheet flow in a southwesterly direction and be directed towards a proposed Rain Garden via a private 24" wide concrete chase section and natural swale. This facility will treat the developed stormwater within this basin prior to entering Sand Creek. It will be constructed within a public drainage easement with ownership and maintenance by the TrimberRidge Metro District. Access for maintenance will be from the north (Poco Road). The following describes the design of this facility. (See Appendix for UD Detention pond design sheets):

Rain Garden 1 (See multiple storm release data below)0.024 Ac.-ft. WQCV required with 4:1 max. slopes0.136 Ac.-ft. 100-yr. Storage0.161 Ac.-ft. TotalTotal In-flow: $Q_2 = 1.2 \text{ cfs}$, $Q_5 = 1.7 \text{ cfs}$, $Q_{100} = 8.0 \text{ cfs}$ Pond Design Release: $Q_2 = 0.0 \text{ cfs}$, $Q_5 = 0.029 \text{ cfs}$, $Q_{100} = 3.8 \text{ cfs}$ Pre-development Release: $Q_2 = 0.0 \text{ cfs}$, $Q_5 = 0.03 \text{ cfs}$, $Q_{100} = 4.5 \text{ cfs}$ (Ownership and maintenance by the Retreat at TimberRidge Metro District)

Basin R ($Q_2 = 1 \text{ cfs } Q_5 = 1 \text{ cfs}$, $Q_{100} = 3 \text{ cfs}$) represents developed flows from the rear yards of lots 25-28 that are not reasonably feasible to be routed to a proposed treatment facility. However, per the recent ECM revisions, Section 3.2.5.A Space Planning...... "up to 20 percent, not to exceed one (1) acre, of an applicable development site may be excluded from Water Quality Capture Volume (WQCV) calculations when it has been determined that it is not practical to capture runoff from portions of the site that will not drain towards a permanent control measure." Basin R is 0.90 acres and seems to meet this criteria. It is still planned that any impervious area within this basin not able to be routed to the front of the lots will travel across a grass buffer (sodded rear yard) prior to exiting the lot.

At this proposed outfall location, based on the HEC-RAS analysis, the Sand Creek channel remains stable with only a sheet pile check structure proposed just downstream of this location. This improvement will help control velocities and long term stream degradation while maintaining flow depths. The overall channel flows will not significantly change based on Rain Garden 1 release of $Q_{100} = 3.8$ cfs which is well less than 1% of the total predeveloped channel flows at this location.

Basin S ($Q_2 = 0.2 \text{ cfs } Q_5 = 1 \text{ cfs}$, $Q_{100} = 7 \text{ cfs}$) represents a portion of Sand Creek that will be platted with this Filing. No residential development is proposed within this basin other than the proposed channel improvements as recommended in the DBPS and proposed with this specific Filing.

DETENTION / STORMWATER QUALITY FACILITES

As required, storm water quality measures will be utilized in order to reduce the amount of sediment, debris and pollutants that are allowed to enter Sand Creek. These features include but are not limited to the multiple Full Spectrum Detention Basins, Rain Gardens and permanent sediment basins. Site Planning and design techniques for the large lot, rural areas should help limit impervious area, minimize directly impervious area, lengthen time of travel and increase infiltration in order to decrease the rate and volume of stormwater runoff. Urban areas that require detention will provide a Water Quality Capture Volume (WQCV) and Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume that will release the more frequent storms at a slower rate to help minimize the effects of development of the property. The proposed detention/SWQ facilities are to be private facilities with ownership and maintenance by the TimberRidge Metropolitan District. After completion of construction and upon the Board of County Commissioners acceptance, the Sand Creek channel will be owned and maintained by the El Paso County along with all drainage facilities within the public Right of Way.

SAND CREEK CHANNEL IMPROVEMENTS

As stated in the Sand Creek DBPS, this Reach SC-9 is recommended as a floodplain preservation design concept. Given the fact of the current requirements for detention/SWQ facilities planned for the property with designed release at or below pre-development flows, the existing Sand Creek drainageway is expected to remain stable. Existing FEMA FIS channel velocities as found in the LOMR 08-080541P seem to exceed recommended allowable velocities. Although, based on the findings from the CORE Consultants, Inc. Impact Identification Report, no significant erosion or channel degradation through this property currently exists at this time. Specifically

located grade control structures (See Appendix) were specified in the DBPS through this reach in order to slow the cannel velocity to the DBPS recommended 7 feet per second and to prevent localized and long-term stream degradation affecting channel linings and overbanks. The allowable velocity and shear stress will vary depending upon the existing riparian vegetation/wetlands found within the channel and overbank floodplain terrace areas. A HEC-RAS hydraulic analysis for this portion of Reach SC-9 has been provided in order to determine the necessary channel improvements for the proposed Filing No. 1 development and future Filings. A separate wetland impact report along with the Section 404 permitting, prepared by CORE Consultants, has been developed based on these proposed channel improvements and submitted directly to the U.S. Army Corps of Engineers with necessary consult with U.S. Fish and Wildlife for their review and approval. This report and documentation can be found in the Appendix for El Paso County staff review.

HEC-RAS MODELING

HEC-RAS ver. 5.0.6 was used to perform a one-dimensional, steady flow hydraulic model of a portion of Reach SC-9 from Arroya Lane to approximately 650 feet downstream of the TimberRidge south property line. HEC-RAS was used to define the stream centerline, overbanks, cross-sections and manning's n values. The stream centerline follows the channel thalweg to define the reach network. Cross-section topography data was obtained by using the generated surface from the 2-ft. flown contours utilized for all site design. This data was then exported from AutoCAD containing three-dimensional coordinates for the stream centerline, cross-sections, reach stations, overbank stations, reach lengths and imported into HEC-RAS. Two separate models defining the existing condition and proposed condition were prepared using the same centerline stationing. The proposed model included the introduction of the ineffective flow area for the culvert added for the Poco Road crossing. Different Manning's n values were applied across the various channel cross-sections to reflect the changes in vegetative cover within the channel and overbanks. The selected Manning's n values for the channel and overbanks were determined using Tables 10-1 and 10-2 from the DCM and Table 3 from the USGS Guide for

selecting Manning's Roughness Coefficients based on numerous site visits in an effort to photograph and document each cross-section. (See Appendix) The following table summarizes the selected Manning's n values:

Feature	Manning's n Value
Main Channel	0.03 - 0.10
Overbank Floodplain Terraces	0.12 – 0.16

Manning's n Values

Steady flow data was entered starting at Arroya Lane, channel station 55+32.95, with a flow change location at station 15+07.91 representing the Sand Creek DBPS segment change from 171 to 170. Steady flow data corresponding to recurrence intervals of 10 Yr. and 100 Yr. for the FEMA, DBPS and Sterling Ranch MDDP conditions was entered. The models were run in subcritical mode to evaluate hydraulic conditions. Boundary conditions for the entire reach were based on normal depth calculations for the upstream and downstream channel slopes. The following table summarizes the flows used in the models:

Flood Event / Location	Flow Value (cfs)	
Arroya Lane (Sta: 55+32.95)		
FEMA 100 Yr.	2600	
DBPS 100 Yr.	2170	
DBPS 10 Yr.	630	
Sterling MDDP 100 Yr.	1487	
Sterling MDDP 10 Yr.	430	

Table 1

Model Flow Values

DBPS Segment 170 (Sta: 15+07.91)	
FEMA 100 Yr.	2600
DBPS 100 Yr.	2260
DBPS 10 Yr.	670
Sterling MDDP 100 Yr.	1520
Sterling MDDP 10 Yr.	450

Per the approved DBPS, the anticipated developed flows just upstream of this project are $Q_{10} = 630$ cfs and $Q_{100} = 2170$ cfs as depicted within DBPS segment no. 171. The anticipated developed flows exiting this property are $Q_{10} = 670$ cfs and $Q_{100} = 2260$ cfs as depicted within DBPS segment no. 170. As discussed earlier, the FEMA FIS flows appear to be significantly higher than both those presented in the DBPS and the Sterling Ranch MDDP. We understand that Sterling Ranch may be processing a CLOMR/LOMR in the near future, however, we have continued to utilize the significantly larger flows as determined by the FEMA FIS (2600 cfs) in the channel improvement designs and the Poco Road culvert crossing calculations. The proposed culvert calculations meet the criteria found in the DCM Vol. 1 6.4.2. which provides the 2 feet freeboard within the structure based on the flow of 2600 cfs.

The proposed public roadway crossing of Sand Creek is planned for this site. (Extension of Poco Road) Upon development of Filing No. 1, the proposed crossing will consist of a two cell multiplate steel single radius arch (24' x 10.33') with concrete headwalls to facilitate the conveyance of the 100 yr. flow. (See Appendix) This facility allows for 2.2' of freeboard within the structure utilizing the 2600 cfs FEMA flows. The proposed structure is made from heavy gage corrugated steel plates with 3 oz. per square foot galvanized coating (both sides) capable of providing a service life of 75 years or longer. Soils testing provide further design information related to wall thickness to account for corrosion and abrasion requirements per County standards.

Based on recent site visits during May and July of 2019, the entire Sand Creek drainage corridor through the Retreat at TimberRidge development was walked and photographed for documentation purposes and aide in the HEC-RAS modeling. (See Appendix) As discovered in the field and documented in the photos taken both up-stream and down-stream at each HES-RAS station, this reach of the Sand Creek channel appears very stable with no signs of erosion within the main channel or channel overbanks. This is mainly due to the significant vegetal cover throughout the reach. The classification of the vegetal cover seems to have a range from Retardance Class A-C as defined by HEC-15 chart (See Appendix) This type of vegetation retardance significantly increases the allowable shear stress within the channel while reducing the velocity. The following table defines the retardance level based on the vegetation class:

Table 3
Vegetal Retardance Curve Index by SCS Retardance Class

SCS Retardance Class	Retardance Curve Index	
А	10.0	
В	7.64	
С	5.60	
D	4.44	
E	2.88	

Based on this information, the maximum allowable sheer stress is found by the flowing equation:

T = 0.75Curve Index

Thus, the range of shear stress for this reach of Sand Creek equals 4.2 - 7.5 (lb/ft²).

Referencing the HES-RAS model calculations in the Appendix shows that only a few stations showed shear stress exceeding this limit. (Sta: 33+34.27, 20+83.66 and 18+79.67) All three of these stations are within the Filing 1 development area and with the proposed channel

improvements and selective embankment lining, the shear stress at those locations will be reduced to the allowable range.

The proposed channel improvements within this Filing consist of five check structures located approximately 600 feet apart. Two of them will be constructed north of the Poco Road crossing and three south of the road crossing. The DBPS only depicts one structure along this stretch of channel but additional ones are being planned to further limit degradation and help control the elevation of the channel invert. These check structures are designed to be sheet piling with a concrete cap per Urban Drainage Vol. 2 Figures 9-27 thru 9-28. The intent of these structures is to hold grade so if the stream wants to flatten its equilibrium slope, the incision is limited. Thus, the plan is for these structures to eventually become drop structures as dictated by future channel characteristics.

The DBPS also recommended to provide selective rip-rap channel stabilization located at culvert crossings, pipe outlets and outside bends of the channel. Based on the mean channel slope and maximum allowable velocity of 7.0 fps, Type L Rip-Rap stabilization will be provided at select locations within Filing No. 1. (See Appendix for tables describing slope, velocity, shear, Froude No., etc.) The existing channel slope throughout this reach ranges from 0.6% to 7.3%. These steeper slopes seem to represent numerous areas with isolated shallow pools within the main channel which help support the growth of the wetlands. These isolated areas will remain with only minimal disturbance taking place at the locations of the proposed improvements (i.e. check structures and culvert crossing). Per the HEC-RAS model, the proposed channel velocities range from 2.7 ft./sec. to 6.0 ft./sec. All stations are within the allowable velocity of 7.0 ft./sec. In conjunction with the installation of the rip-rap stabilization, the selected stretches of channel with the higher velocities have also been widened 15'-20' to create and extend the floodplain terraces, better stabilize the steeper natural slopes outside the floodplain area, as recommended in the soils report. These extended terraces assist in reducing flow velocities and provide adequate capacity for larger storm events. The proposed widening of the floodplain terraces

takes place outside of the wetland delineations. (Reference the wetland mitigation plan prepared by CORE Consultants found in the Appendix)

The HEC-RAS model calculations also shows only one station with Froude No. over 1.0. This location is Sta: 29+60.10, at the entrance to the proposed culvert crossing where the channel has been narrowed up to help facilitate efficiently routing the flow under the roadway. However, the supercritical flow at this location is handled with rip-rap bank stabilization and concrete headwall and wingwalls at the culvert crossing. The Froude No. at all other stations remains less than 1.0, with subcritical flow characteristics.

DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. The overall pre-development design model was calculated using PondPack V8i with time of concentrations estimated using NRCS Unit Hydrograph procedures described in the DCM based upon the hydrologic soil type and runoff ARC II curve numbers (CN) chart (Table 6-10) with a 24 hour NRCS Type II distribution. Individual on-site developed basin design used for detention/SWQ basin sizing, inlet sizing and storm system routing was calculated using the Rational Method. Runoff Coefficients are based on the imperviousness of the particular land use and the hydrologic soil type in accordance with Table 6-6. The average rainfall intensity, by recurrence interval found in the Intensity-Duration-Frequency (IDF) curves in Figure 6-5. (See Appendix)

The City of Colorado Springs/El Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as

opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

This site adheres to this Four Step Process as follows:

- Employ Runoff Reduction Practices: Proposed rural lot impervious area (roof tops, patios, etc.) will sheet flow across lengthy landscape/natural areas within the large lots and proposed urban lot impervious areas (roof tops, patios, etc.) will sheet flow across landscaped yards and through open space areas to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets or detention facilities. This will minimize directly connected impervious areas within the project site.
- 2. Stabilize Drainageways: After developed flows utilize the runoff reduction practices through the front and rear yards, developed flows will travel via roadside ditches in the large lot, rural portions of the development, curb and gutter within the public streets in the urban portions of the development and eventually public storm systems. These collected flows are then routed directly to multiple extended detention basins (full-spectrum facilities) and a Rain Garden. Where developed flows are not able to be routed to public streets (rear yards of lots 25-28 adjacent to Sand Creek 0.90 ac.), sheet flows will travel across landscaped rear yards towards the Sand Creek channel within the open space corridor. This channel corridor will then be protected with various channel improvements as recommended in the Sand Creek DBPS and proposed with this Filing in order to reduce velocities to erosive levels.
- Provide Water Quality Capture Volume (WQCV): Runoff from this development will be treated through capture and slow release of the WQCV and excess urban runoff volume (EURV) in the proposed Full-Spectrum permanent Extended Detention Basins and a Rain Garden designed per current El Paso County drainage criteria.

4. Consider need for Industrial and Commercial BMPs: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative has been submitted along with the grading and erosion control plan. Details such as site specific sediment and erosion control construction BMP's as well as temporary and permanent BMP's were detailed in this plan and narrative to protect receiving waters. Multiple temporary BMP's are proposed based on specific phasing of the overall development. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

FLOODPLAIN STATEMENT

Portions of this site are located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C 0535G with effective date of December 7, 2018 and the previously mentioned LOMR 08-08-0541P with an effective date of July 23, 2009. (See Appendix).

DRAINAGE AND BRIDGE FEES

This site lies entirely within the Sand Creek Drainage Basin boundaries.

The fees are calculated using the following impervious acreage method approved by El Paso County. The Retreat at TimberRidge Filing No. 1 has a total area of 72.42 acres with the following different land uses proposed:

11.22 Ac.	Sand Creek Drainage corridor (Tracts A & C)
3.66 Ac.	Detention Facilities & Park (Tracts B, D & E)
33.60 Ac.	2.5 Ac. lots (Rural Lots 1-11,& Tract F)
23.94 Ac.	1/3 Ac. lots (Urban Lots 12-70 with avg. size 14,347 SF)
72.42	Total

The percent imperviousness for this subdivision is calculated as follows:

Fees for Sand Creek Drainage Corridor

(Per El Paso County Percent Impervious Chart: 2%)

11.22 Ac. x 2% = **0.22** Impervious Ac.

Fees for Detention Facilities & Park

(Per El Paso County Percent Impervious Chart: 7%)

3.66 Ac. x 7% = **0.26 Impervious Ac.**

Fees for 2.5 Ac. lots

(Per El Paso County Percent Impervious Chart: 11% with
25% fee reduction for 2.5 ac. lots planned) – *Reduction for Drainage Fees only*33.60 Ac. x 11% x 75% = 2.77 Impervious Ac. (Drainage Fees)
33.60 Ac. x 11% = 3.70 Impervious Ac. (Bridge Fees)

Fees for 1/3 Ac. lots (Avg. lot size of 14,347 SF)
(Per El Paso County Percent Impervious Chart: 30%)
23.94 Ac. x 30% = 7.18 Impervious Ac.

Total Impervious Acreage:	10.43 Imp. Ac. (Drainage Fees)
Total Impervious Acreage:	11.36 Imp. Ac. (Bridge Fees)

The following calculations are based on the 2019 Sand Creek drainage/bridge fees:

ESTIMATED FEE TOTALS:

Bridge Fees		
\$ 5,559.00 x 11.36 Impervious Ac.	=	<u>\$ 63,150.24</u>
Drainage Fees		
\$ 18,940.00 x 10.43 Impervious Ac.	=	<u>\$ 197,544.20</u>

Per the ECM 3.10.5.a, this development requests a reduction of drainage fees based on the onsite regional channel improvements for this stretch of Sand Creek Reach SC-9 as shown in the DBPS. The following facilities within the Sand Creek Drainage Basin seem to meet the criteria for this reduction:

Sand Creek Channel Improvements per DBPS	=	\$175,000
Proposed Sand Creek Channel Improvements:		
Sheet Pile Check Structure w/ Conc. Cap	\$35,000 EA x 5 =	\$175,000
Selective Bank Stabilization (Buried Rip-Rap)	\$60/LF x 1400 LF =	\$ 84,000
Selective Bank Stabilization (Grading & Reveg.)	=	\$120,000
Total	=	\$379,000

(Exact facility costs provided upon construction and acceptance by County. Any credits may be used for future Filings)

Classic Consulting Engineers & Surveyors cannot and does not guarantee that the construction cost will not vary from these opinions of probable construction costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular.

SUMMARY

The proposed Retreat at TimberRidge Filing No. 1 is within the Sand Creek Drainage Basin. Recommendations are made within this report concerning necessary improvements that will be required as a result of development of this property. The points of storm water release from the proposed site are required to be at or below the calculated historic flow quantities. The development of the proposed site does not significantly impact any downstream facility or property to an extent greater than that which currently exists in the 'historic' conditions. All drainage facilities within this report were sized according to the Drainage Criteria Manuals and the full-spectrum storm water quality requirements.

PREPARED BY:

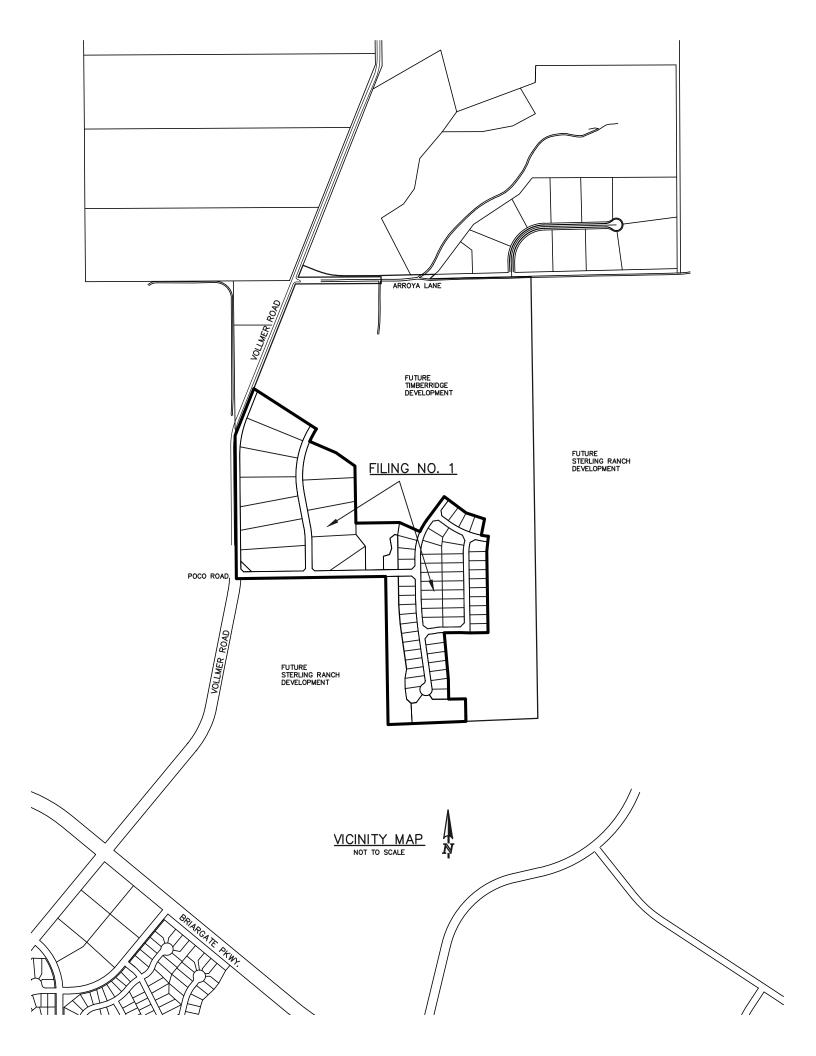
Classic Consulting Engineers & Surveyors, LLC

Marc A. Whorton, P.E. Project Manager

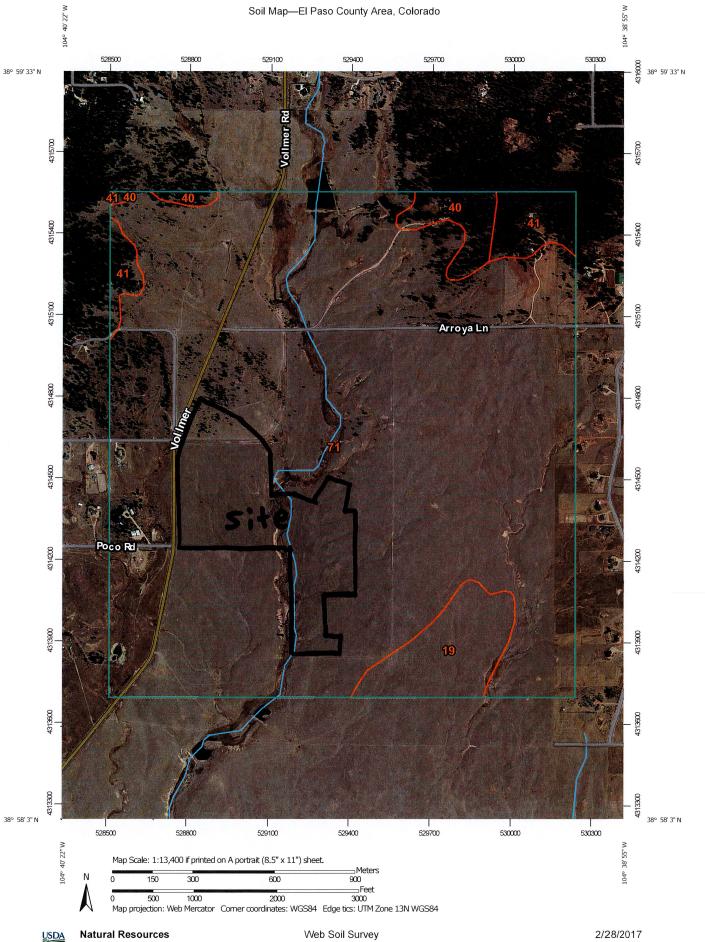
maw/118500/FDR.doc

REFERENCES

- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
- 2. "Urban Storm Drainage Criteria Manual Volume 1, 2 & 3" Urban Drainage and Flood Control District, dated January 2016.
- 3. "Final Drainage Report for Forest Gate Subdivision" Law & Mariotti Consultants, Inc. dated October 2004.
- 4. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corporation, dated March 1996.
- 5. "Master Development Drainage Plan for The Retreat at TimberRidge", Classic Consulting, approved March 2018.
- 6. "Preliminary Drainage Report for The Retreat at TimberRidge Preliminary Plan South of Arroya Lane", Classic Consulting, approved October 2018.
- 7. "2018 Sterling Ranch MDDP", M&S Civil Consultants, Inc., June 2018



APPENDIX


VICINITY MAP

SOILS MAP (S.C.S SURVEY)

Conservation Service

Web Soil Survey National Cooperative Soil Survey

2/28/2017 Page 1 of 3

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Loamy Park (R048AY222CO) Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes Other soils Percent of map unit: Hydric soil rating: No

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016

F.E.M.A. MAP / LOMR (08-08-0541P)

NOTES TO USERS

s map is for use in administency the National Flood Insurance Program. It does necessarily identify all areas subject to flooding, particularly from locat drainege toes of small size. The community map reportingy should be consulted for sible updated or additional flood hazard information. his map is for use in adr ot nece

obtain more detailed information in areas where Base Flood Elevations (BFE To obtain more detailed information in areas where Base Flood Elevations (BFEs and/or flood/way base been deteemhed, users are encouraged to consult the Flood Profiles and Flood/way Data and/or Summary of Siliwater Elevations tables containers whin the Flood Insurance Study (FIS) report that accompanies this FIRM, User should be aware that BFEs shown on the FIRM represent rounded whole-do levations. These BFEs are included for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplan management

Coastal Base Flood Elevations shown on this map apply only landward of 0.0 North American Vertical Datum of 1988 (NAVD86). Users of this FIRM should be avere that coastal flood elevations are also provided in the Summary of SiGNuell Elevations table in the Flood Insurance Study report for this phosicition. Elevations shown in the Summary of SiGNuell Elevations table should be used for constructor and/or Anodphin management purposes when they are higher than the elevations shown on this FIRM.

Soundaries of the floodways were computed at cross sections and interpolated setween cross sections. The floodways were based on hydraulic considerations with egard to requirements of the National Flood Insurance Program Floodway widths and other perferent floodway data are provided in the Flood Insurance Study report r this jurisolic

ertain areas not in Special Flood Hazard Areas may be protected by flood contro Injectures. Refer to section 2.4 'Flood Protection Measures' of the Flood Insurance tudy report for information on flood control structures for this jurisdiction

The projection used in the preparation of this map use Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NADB3, GRSS6 spheroid Differences in datum, spherod, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in alight postional differences in map features across jurisdiction boundaries. These differences do not effect the accuracy of Inis FIRM.

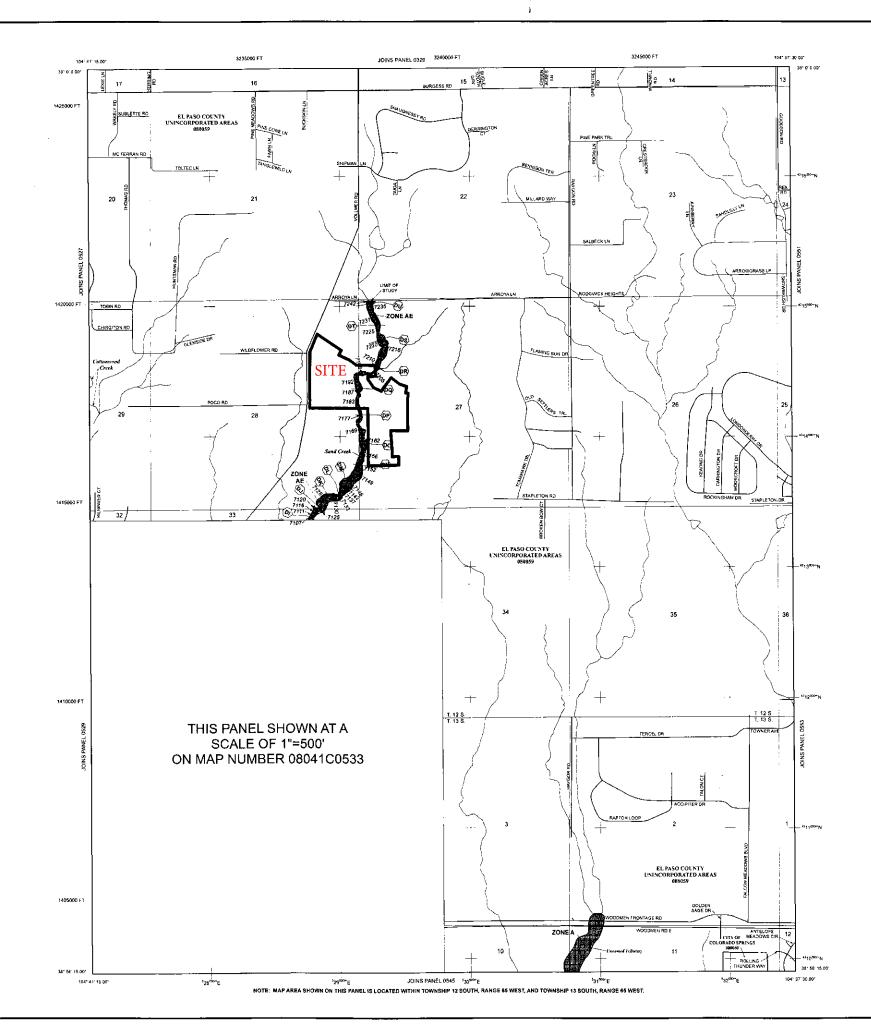
Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the Nabonal Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1980, with the Nabional Geodetic Survey webste at http://www.ngs.ncsa.gov/ or contact the National Geodetic Survey at the following address: iress:

NGS information Services NOAA, N/NGS12 NUAA, NINGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the Nationa Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.ncaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Pasc County, Colorado Springs Ulúlties, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more delialed and up-to-date stream channel configurations and floodplain delineations; than those shown on the previous FIRM for this jurisdiction. The floodplain delineations; that where transferred from the previous FIRM may have been adjusted to confirm to lines new viterem channel configurations. As a result, the Flood Profiles and Floodway Date tables in the Flood insurance Study Report (which contains authoritable hydraucid data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling basefines that match the flood profiles and Floodway Date Tables if applicable, in the FIS report. As a result, the profile basefines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.


corporate limits shown on this map are based on the best data available at the time f publication. Because charges due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate ommunity officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresse; and a buting of Communities table containing National Rood inspiratore Program dates for each community as well as a listing of the panels on which each community is

Contact FEMA Map Service Center (MSC) via the FEMA Map Information exchange (FMX) 1-877-335-5627 for information on available products associated with this FIRM. Available products may include previously issued Leiters of Map Change, a Flood insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax et 1-800-338-8620 end its webaite of the floww.msc.fema.gov/.

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-338-2627) or visil the FEMA wabsite at http://www.fema.gov/business/nfp

El Paso County Vertical D	Vertical Datum
Flooding Source REFER TO SECTION 3.3 OF THE EL PASO C FOR STREAM BY STREAM VERTICAL DA	Offset (h) OUNTY FLOOD INSURANCE STUDY FUM CONVERSION INFORMATION
Panel Locatio	n Map
	╶┰┼╹╬╌┟╊┪
	╍┿┯╼╋┼╌╌╵┨┧
<u>└</u> ┖╍┿╍┉ ┇┥┊┊╞╺╞ ╼	
us Digital Flood Insurance Rate Map poperating Technical Partner (CTP) agree ater Conservation Soard (CWCB) and th	ment between the Slate of Colorado
ency (FEMA).	o record chergency Menagement
STREET, STREET	
available from	Hazard information and resources are local communities and the Colorado
Water Conserva	tion Board

	SPECIAL FLOO	LEGEND D HAZARD AREAS (SFHAS) SUBJECT TO Y THE 1% ANNUAL CHANCE FLOOD
		The The ANNOVAL CHARGE FLOOD ivear force), also known as the base flood, is the flood based or excessed in any given year. The Speciel Flood to flooding by the 1% annual chance flood. Ansas of is A, AE, AH, AD, AB, ABP, V, and VE. The Base Flood ation of the 1% annual thanker flood.
ZONE A ZONE AE	No Base Flood Elev Base Flood Elevatio	ations determined.
ZONE AH	Flood depths of Elevations determs	to 3 feet (usually areas of ponding); Base Flood red
ZONE AD	Flood depths of 1 i depths peterminer determined	a 3 feet (usually sheet flow on sloping terrain); average 1. For areas of alluvial fan Rooding, velocibes also
ZONE AR	Special Rood Haza fixed by a flood of AR indextes that provide protector	II Area Formerly protected from the 1% annual chance ontrol system that was subsequently decettified. Zone the former food carriers system is being restand to from the 1% annual chance or greater food.
ZONE A99	Area to be protec	ted httm 1% annual chance flood by a Federal flood 1 under construction: no Base Flood Elevations
ZONE V	Coasta ficcos zon	with velocity hazard (wave action); no Base Flood
ZONE VE	Coasta flood zo: Elevations determine	ved w with velocity hazard (wave action); Base Flood red.
1.465		EAS IN ZONE AE
The floodway kept free of	is the channel of a encroachment so th	stream prus any adjacent filosopian areas that must be at the 1% annual chance flood can be carried without hts.
	OTHER FLOOD	
ZONE X		us: chance flood; areas of 1% annual crance flood; with less than 1 foot or with dramage areas less than 1 reas protected by levees from 1% armau' chance flood.
	OTHER AREAS	
ZONE X		to be outside the 0.2% annual chance floodplain. dinazands are undetermined, but possible.
		VER RESOURCES SYSTEM (CBRS) AREAS
223		ROTECTED AREAS (OPAS)
		y rocalled within or adjacent to Special Rood Hazard Areas.
		piert boundary way boundary
	Zone	D Boundery and OPA boundary
		anti cervi boundary Sary dividing Special Rood Hazard Areas of different Base Elevations, flood depths or flood velocities
~~ 513		Elevations, flood depths ar flood velocities Flood Elevation line and value; elevation is feet"
IEL 983	eleva	Flood Elevation value where uniform within zone; tion in feet*
* Referenced		en Verboe Datum of 1988 (NAYD 88) section kne
23		ect line
97° 07' 30 37' 27' 30	~	raphic coordinates referenced to the Sorth American n of 1963 (NAD 83)
427530	N 1000	meter Universal Transverse Nercator prió ticks.
6000000	дле FT 5000	
		foot gnd tocks: Colorado State Plane coordinate m, central zone (FIPSZONE 0502), ert Conformal Conic Projection
DX5510		n mark (see explanation in Notes to Users section of IRM panel)
● ^{M1.8}	5 Rver	Mie
	Refer t	MAP REPOSITORIES Map Repositores I st on Map Index
	EFF FI	ECTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997
DECEM Specar F	EFFECTIVE (MARCH 17, 1397 INTE(S) DF REVISION(S) TO THIS PAREL late componet know, to change Base Flood Elevations and a update mess format, to add roads and road names, and to arevulatly assued Labets of Mar Revision
		ary prior to countywide matping, refer to the Community Roos Insurance Study report for this jursdiction.
		Roos Insurance Study report for this jurisdiction. is available in this community, contact your insurance isurance Program at 1-800-638-5620.
	жэ о ННН	MAP SCALE 1" = 1000' 1000 2000
:		6 300 600
[NFIP	PANEL 0535G
		FIRM
	RYAN	FLOOD INSURANCE RATE MAP
	Q	EL PASO COUNTY.
	RC	COLORADO
	R.	AND INCORPORATED AREAS
	ЦЦ С	PANEL 535 OF 1300
	2	(SEE MAP INDEX FOR FIRM PANEL LAYOUT
		CONTAINS COMMUNITY NUMBER PANEL SUFFL
	Ð	CONCREADE SPRINGS (CITY OF DELOSE 1625 6 16. PASIS COUNTY 1640051 1632 9
	SN	
	\odot	
	E C	Notice to user. The Map Number shoen before should be
	j	Notice to user. The Map Number Artian better should be used when search map orders the Community Number phone socie should be used on insufance sphile tools for the Subject of the community.
	NVI.	MAP NUMBER
	R	08041C0535G
	JHK	MAP REVISED
	AV.	DECEMBER 7, 2018 Federal Emergency Management Agency
,		

Page 1 of 4	Issue Date: March 6, 2009	Effective Dat	e: July 23, 2009	Case No.:	08-08-0541P	LOMR-APP
	Feder		gency Mana hington, D.C. 2047	0	Agency	
			MAP REVISION ON DOCUMEN	г		
	COMMUNITY AND REVISION INFORMAT	ION	PROJECT DESCR	IPTION	BASIS OF RI	EQUEST
COMMUNITY	El Paso County Colorado (Unincorporated Are	as)	NO PROJECT		YDRAULIC ANAL EW TOPOGRAPH	
	COMMUNITY NO.: 080059			_		
IDENTIFIER	Sand Creek Letter of Map Revision, Mustang Place to Arroya Lane	_	APPROXIMATE LATITUD SOURCE: USGS QUADR		38.971, -104.668 M: NAD 27	
	ANNOTATED MAPPING ENCLOSURES		ANN	OTATED STUDY	ENCLOSURES	
TYPE: FIRM*	ct changes to flooding sources affected by this	arch 17, 1997 s revision.	DATE OF EFFECTIVE FLO PROFILE(S): 204P(a), FLOODWAY DATA TAE	204P(b), 204P(c) / BLE: 5		3, 1999
* FIRM - Flood In	surance Rate Map; ** FBFM - Flood Boundar			loundary Map		
Sand Creek - froi	m approximately 360 feet downstream of Mus		6) & REVISED REACH(ES) wwnstream of Arroya Lane			
			OF REVISIONS			
Flooding Source Sand Creek		Effective Floo Zone A No BFEs* No Floodway	oding Revised Flooding Zone AE BFEs Floodway	Increases YES YES YES	Decreases YES NONE NONE	
* BFEs - Base Flo	ood Elevations					
		DETERM	AINATION			
regarding a rec a revision to th warranted. Th panels revised This determinatic any questions ab	provides the determination from the De quest for a Letter of Map Revision (LOM) e flood hazards depicted in the Flood Ins is document revises the effective NFIP n by this LOMR for floodplain management on is based on the flood data presently availat out this document, please contact the FEMA 01 Eisenhower Avenue, Alexandria, VA 2230	R) for the area des surance Study (FI nap, as indicated in nt purposes and fo ole. The enclosed do Map Assistance Cer 4. Additional Inform	scribed above. Using the i S) report and/or National F n the attached documents or all flood insurance polici ocuments provide additional in the toll free at 1-877-336-262 ation about the NFIP is availa	information subn Flood Insurance ation. Please us ies and renewals nformation regardii 7 (1-877-FEMA M	nitted, we have de Program (NFIP) m e the enclosed an i in your communi i n your communi ng this determination AP) or by letter addr	termined that hap is notated map ty. h. If you have essed to the
	E	David N. Bascom, Pr Engineering Manage Mitigation Directorate	ment Branch	112553	10.3.1.08080541	102-I-A-0

Page 2 of 4	Issue Date: March 6, 2009	Effective Date: July 23, 2009	Case No.: 08-08-0541P	LOMR-APF
	Fede	eral Emergency Man Washington, D.C. 204		
		ETTER OF MAP REVISION		

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NFIP regulations.

COMMUNITY REMINDERS

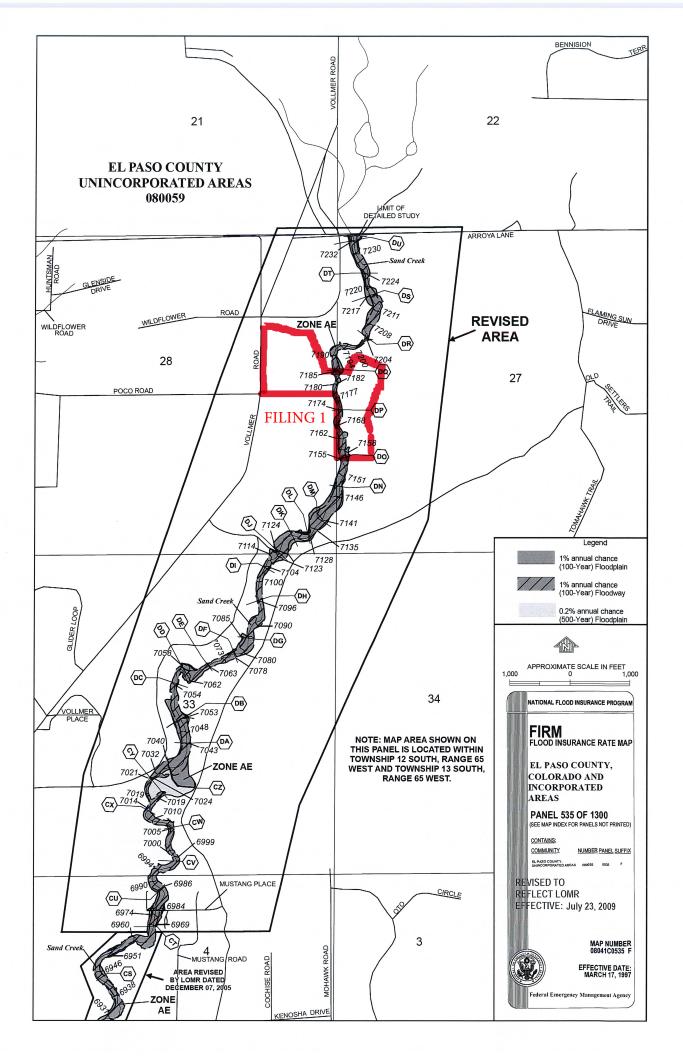
We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

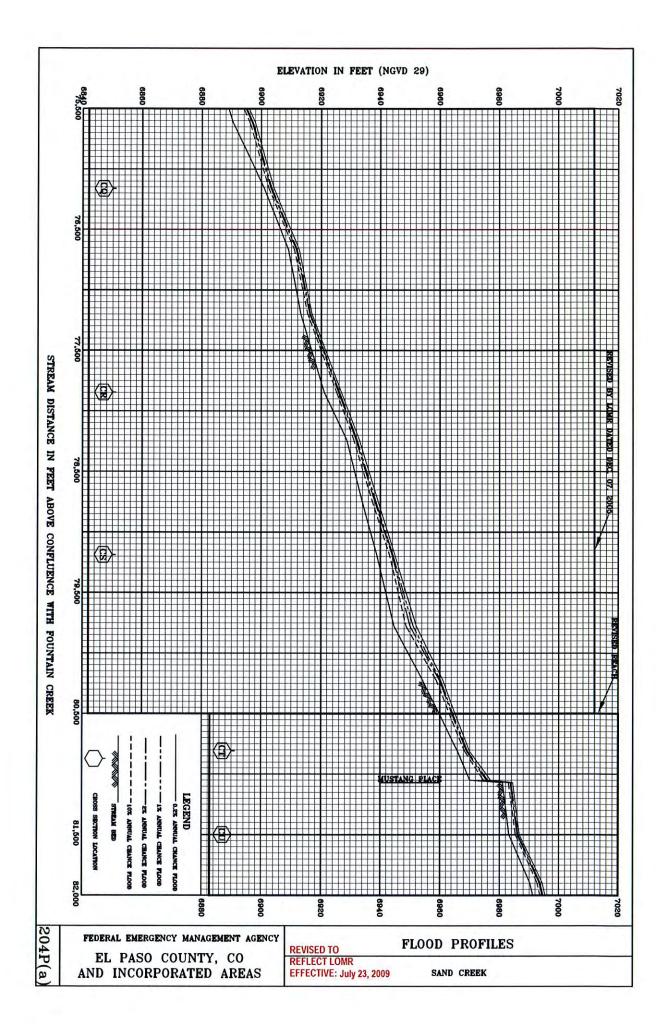
This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

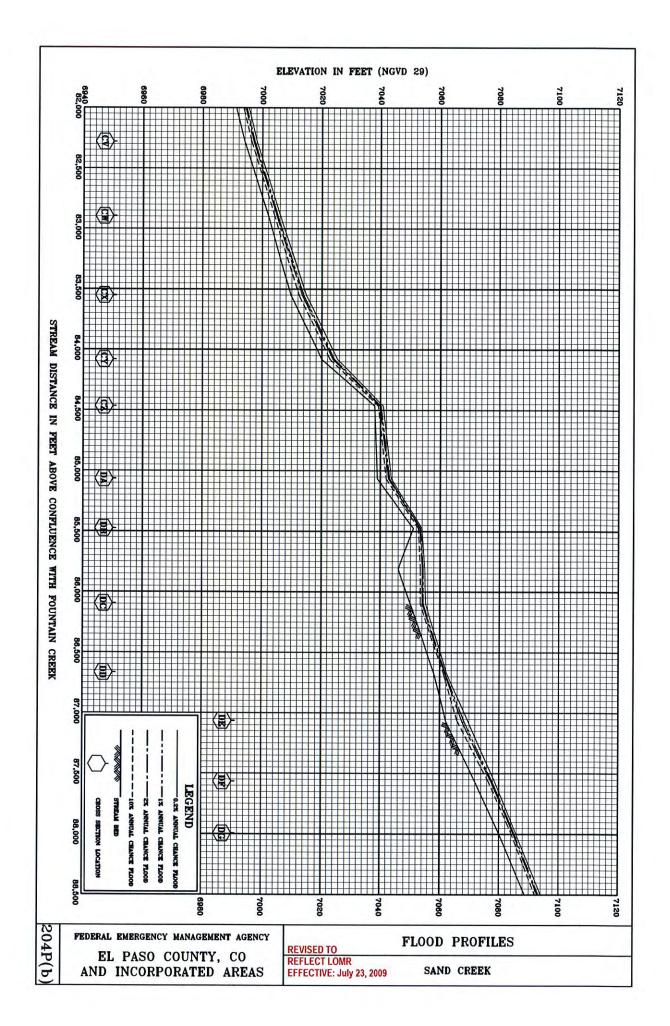
wid 1. Baycon

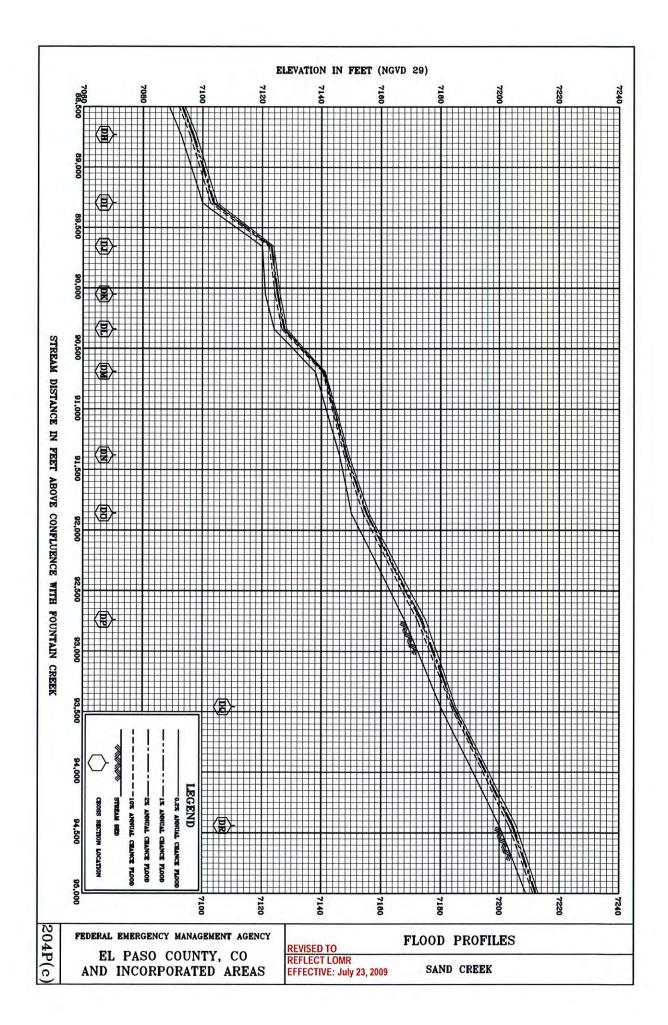

David N. Bascom, Program Specialist Engineering Management Branch Mitigation Directorate

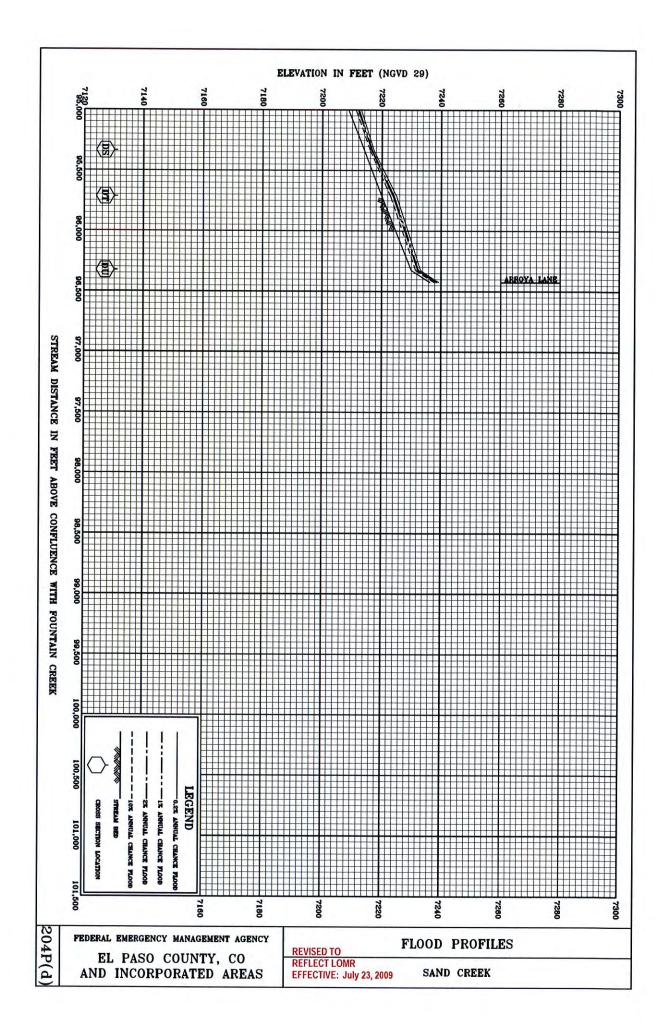
112553 10.3.1.08080541

102-I-A-C

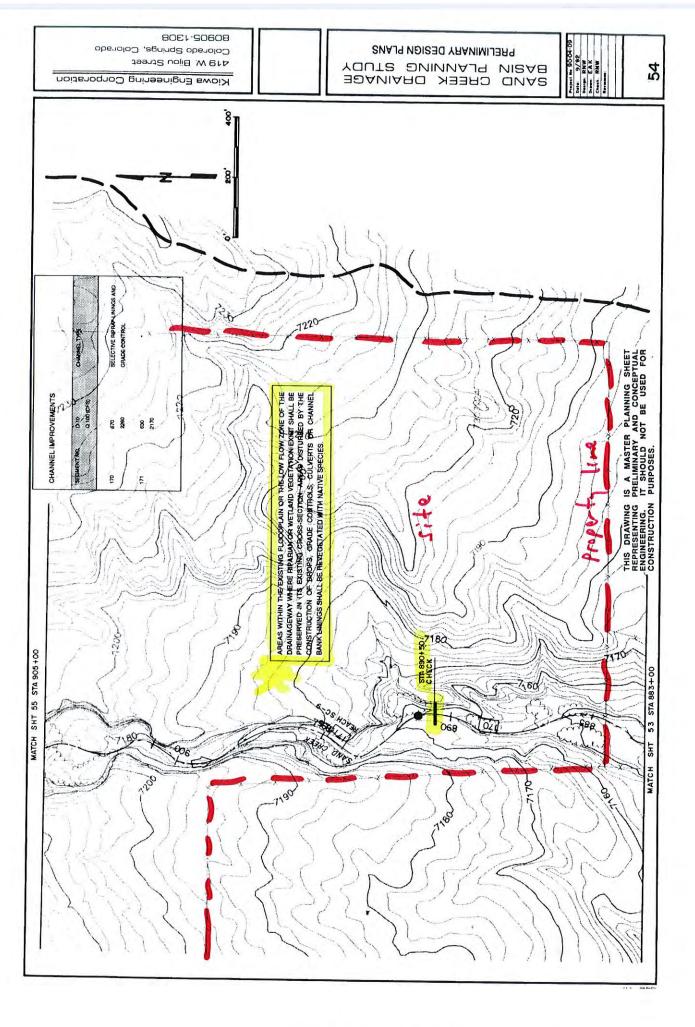

Page 3 of 4	Issue Date: March 6, 2009	Effective Date: July 23, 2009	Case No.: 08-08-0541P	LOMR-APP
Fage 5 01 4	1550e Date. March 0, 2009	Enective Date. Suly 23, 2009	Case No 00-00-0041P	LOWIK-AFF
	Fede	eral Emergency Mar Washington, D.C. 20	• • • •	7
		ETTER OF MAP REVISIO	N	
	DETERMI	NATION DOCUMENT (CO	NTINUED)	
	signated a Consultation Coordination unity and FEMA. For information re	Officer (CCO) to assist your communi garding your CCO, please contact:	ty. The CCO will be the primary	liaison between
	Federal	Ms. Jeanine D. Petterson Director, Mitigation Division Emergency Management Agency, Reg Denver Federal Center, Building 710 P.O. Box 25267 Denver, CO 80225-0267 (303) 235-4830	ion VIII	
STATUS O	F THE COMMUNITY NFIP MAI	PS		
LOMR at the		IRM and FIS report for your communit usly cited FIRM panel(s) and FIS repor- made by this LOMR at that time.		
any questions a	about this document, please contact the FEM	ilable. The enclosed documents provide addition AA Map Assistance Center toll free at 1-877-336 304. Additional Information about the NFIP is a Marich A. Bascom	5-2627 (1-877-FEMA MAP) or by letter ad	dressed to the
		David N. Bascom, Program Specialist Engineering Management Branch Mitigation Directorate	112552 10 2 4 00000544	10214.0
		1990 1 - C. S. S. 1993 - S. 19 (1993) 1 - S. 1993 - S. 1	112553 10.3.1.08080541	102-I-A-C

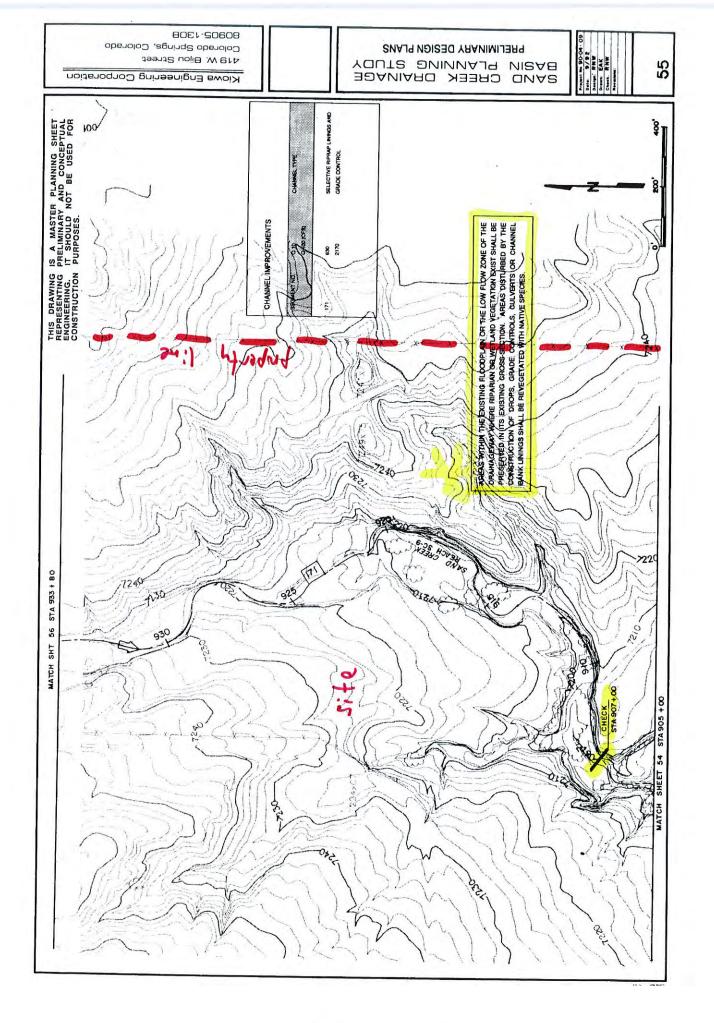

	Issue Date: N	March 6, 2009	Effective Date: July 23,	2009	Case No.: 08-08-0541P	LOMR-APP
	STAR BAR	Federa	al Emergency Washington,	U	ement Agenc	У
			TER OF MAP RE TION DOCUMEN		IUED)	
		PUBLIC	NOTIFICATION O	F REVISION		
		-	PUBLIC NOTIFICATI	ION		
FLOODI	NG SOURCE	LOCATION OF REFE		BFE (F	EET NGVD 29)	MAP PANEL
				EFFECTIVE	REVISED	NUMBER(S)
Sand Creek		Just upstream of Mustang		None	6,984	08041C0535 F
		Just downstream of Arroya	n Lane newspaper, a citizen may	None	7,238	08041C0535 F
LOCAL NEV	WSPAPER	Name: <i>El Paso Coun.</i> Dates: 03/18/09	ty News 03/25/09			




	FLUUDING S	SOURCE		FLOODWAY		M		5 EI	
	CROSS SECTION	DISTANCE ¹	WIDTH (Feet)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY FEET	NUT WITH WAY FLOODWAY FEET (NGVD)	INCREASE
	Sand Creek (cont'd)								
	CA	65,292	164	427	6.1	6,748.7	6,748.7	6,749.4	0.7
	CB	66,092	41	223	11.7	6,761.2	6,761.2	6,762.2	1.0
	SC	66,247	90	270	9.6	6,773.6		6,773.7	0.1
	8	67,647	50	218	11.9	782.		783	•
	CE	68,297	65	284	8.8	79	6,793.9	79	0.5
	CF	69,147	50	213	11.7	6,804.5	6,804.5	6,804.5	
	CG	70,157	50	213	11.7		-	815.	0.2
Revised	CH	70,577	205	4	7.2	, 82	6,823.9	6,824.5	0.6
-	CI	70,627	180	267	9.4	6,826.7	6,826.7	6,827.7	1.0
	CJ	70,727	210	340		6,831.1	6,831.1	6,831.1	0.0
LOMR	CK	70,807	195	334	7.5	332		6,832.5	0.0
-	IJ	71,162	06	255	9.8	88.	6,838.0	6,839.0	
Dec. 7,	CM	71,977	226	503	5.2	6,847.4	6,847.4	6,848.3	0.9
-	CN	73,052	174	328	7.9	6,861.1	6,861.1	6,861.2	0.1
1	CO	73,644	237	364	7.1	6,870.2	6,870.2	6,870.2	0.0
	CP	75,142	172	324	8.0	6,888.5	6,888.5	6,888.7	0.2
	çõ	76,161	109	283	9.2	6,903.5	6,903.5	6,903.7	0.2
Revised	CR	77,846	100	272	9.6	6,926.1	6,926.1	6,926.7	0.6
-	CS	79,187	117	287	9.1	6,944.1	6,944.1	6,944.1	0.0
1	CT	80,808	142	310	8.4	6,969.2	6,969.2	6,969.2	0.0
	CU	81,501	120	342	7.6	6,986.1	6,986.1	6,986.5	0.4
-	CV	82,281	124	295	8.8	6,997.4	6,997.4	6,997.4	0.0
	CW	82,897	64	237	11.0	7,005.3	7,005.3	7,006.1	0.8
-	Ŋ	83,517	90	266	9.8	7,013.9	7,013.9	7,013.9	0.0
-	CY	84,087	70	244	10.7		7,024.3	4	0.0
-	CZ	84,473	160	322	8.1	7,040.2	7,040.2	7,040.2	0.0
					REVISED TO	D T 0			
					REFLEC	REFLECT LOMR			
-	Feet Above Confl	Confluence With	Fountain	Creek	EFFECI	EFFECTIVE: July 23, 2009	600		
	FEDERAL EM	FEDERAL EMERGENCY MANAGEMENT AGENCY	EMENT AGE	VCY		H	FLOODWAY DATA	DATA	
		AND INCORPORATED AREAS	D AREAS				SAND CREEK	×	
5								×	

FLOODING SO	CROSS SECTION	Sand Creek	(cont'd)	DA	DB	DC	DD	DE	DF	DG	HD	DI	DJ	DK	DL	DM	DN	DO	DP	QQ	DR	DS	DT	DU		Feet Above Confluence	FEDERAL EMER	
SOURCE	DISTANCE ¹			85,073	85,483	86,103	86,673	87,073	87,573	•	8	89,303	89,663	-	90,348	~	38	91,868	,74	-	,44	95,343	95,723	96,333		With	FEDERAL EMERGENCY MANAGEMENT AGENCY	
	WIDTH (FEET)			139	170	100	197	83	98	135	89	74	143	140	102	300	120	105	65	117	81	100	77	90		Fountain		
FLOODWAY	SECTION AREA (SQUARE FEET)			456	328	274	434	270	325	304	263	249	309	426	276	398	292	313	m	288	6	274	252	266	<u> </u>	Creek E	ICY	
	MEAN VELOCITY (FEET PER SECOND)			5.7	7.9	9.5	6.0	9.6	8.0	8.6	9.9	10.4	8.4	6.1	9.4	6.5	8.9	8.3	10.9	9.0	10.0	9.5	10.3	9.8	REFLECT LOMR	EFFECTIVE: July 23, 2009		
M	REGULATORY			7,043.0	7,053.4	7,054.4	7,061.7	7,068.2	7,077.7	085	7,096.9	7,104.1	7,123.2	7,125.1	7,127.6	7,141.0	7,148.5	155.	7,173.8	84.		7,216.8	7,224.2	7,232.5		/ 23, 2009	F	
BASE FI WATER SURFACE	WITHOUT FLOODWAY FEET			7,043.0	7,053.4	7,054.4	7,061.7	7,068.2	7.077.7	7,085.1	7,096.9	7,104.1	7,123.2	7,125.1	7,127.6	7,141.0	7,148.5	7,155.2	7,173.8	7,184.6	7,204.5	7,216.8	7,224.2	7,232.5			FLOODWAY DATA	
FLOOD CE ELEVATION	1 14 (9			7,043.1	7,053.5			068.	. 770	085.	.960	,104.	7,123.2	7,125.2	7,127.8	7,141.0	7,148.6	7,155.9	173.	7,184.6	204.	7,217.2	7,224.3	7,233.0			DATA	
7	INCREASE		ľ	0.1	0.1	•	0.3		•					0.1	0.2	0.0	•	0.7	0.0	0.0	0.1	0.4	0.1	0.5				




RECOMMENDATIONS PER SAND CREEK DBPS

.

e i

.

et -

VI. DEVELOPMENT OF ALTERNATIVES AND RECOMMENDED PLAN The concepts which are available for handling stormwater runoff within the Sand Creek basin have been presented and discussed in detail in the Sand Creek Drainage Basin Planning Study Development of Alternatives Report and the draft East Fork Sand Creek Drainage Basin Planning Study. The process of combining the various channel treatment options, detention schemes and roadway crossing structures into a contiguous plan for all of the reaches is presented in this chapter of the report. As a result of the evaluation of the flood control, environmental, open space, operations and maintenance, and implementation concerns within the Sand Creek basin, the following concepts were identified as having sufficient feasibility to warrant furture evaluation and review:

Channel Concepts: Floodplain Preservation Channelization, 10- or 100-year Selective Improvements Detention: Regional detention systems **Channel Concepts**: The channel concepts listed above have been evaluated with respect to the parameters listed in the previous chapter. A concept's feasibility depends upon its impact, positive or negative, upon the evaluation parameters. *The floodplain preservation* concept has been considered to be the same as the "*do-nothing*" alternative. The floodplain preservation concept would involve the regulation of the floodplain limits, generally as depicted on the effective City of Colorado Springs and El Paso County Flood Insurance Rate Maps. Regulation of the floodplain limits, generally as depicted on the effective City of Colorado Springs and El Paso County Flood Insurance Rate Maps. Regulation of the floodplain so that future encroachments are minimized and the floodprooffing of structures which are currently within the 100-year floodplain would presumably be the methods used to address the flood hazard concerns along Sand Creek. In the upper reaches of Sand Creek, the ownership or easements associated with the 100-year floodplain (or greater limits to allow for an erosion buffer zone) would be a primary issue in regards to implementation of such a concept. Detention in the upper reaches of the basin Sand Creek basin and in the East Fork Sand Creek basin will maintain the 100-year floodplain at existing limits within the lower reaches of Sand Creek. The "do-nothing" concept is feasible wherver

the existing drainageway improvements are of adequate capacity to convey flood flows. *Charmelization* would involve the lining of the Creek into a more confined flow area, and could be done for either the *100-year or 10-year* flood discharges. Several typical channel concepts have been presented. The primary bank lining material would probably be riprap. Grade control and/or drop structures would be required in a channelization concepts so that the flood velocities could be controlled to a level requiring medium to heavy riprap. Soli centent offers an alternative to riprap and concrete for the construction of drops or grade control structures. Revegetation would occur wherever the native vegetation was disturbed by the channel construction. Willows at the toe of the riprap banks would be a minimum replacement. *Selective linings* would involve the construction of grade controls, drop structures, bank linings, storm sever outlet control structures selectively sited to resist stream erosion or to reduce potential flooding damages. Areas of future concern such as at the outside bends of the creek, or at the outlets of bridges or culverts which will cross the drainageway would be subject to selective improvements.

Detention Concepts: The two general detention concepts evaluated were onsite versus regional detention. During the evaluation process, it was determined that the onsite detention concept has a low feasibility relative to a regional concept. This is because, (1) onsite detention has a unpredictable impact upon lowering peak discharges from urbanized areas to historic conditions (reference, Urbonas and Glidden, "Effect of Detention on Flows in Major Drainageways" ASCE Water Forum '81, 1981), (2) an onsite concept has little impact upon maintaining or enhancing water quality, (3) the number of onsite detention basins, their locations and size cannot be accurately determined in the undeveloped portions of the basin at this time, and (4) onsite detention would present a substantial maintenance responsibility to the jurisdictions involved. For these reasons the onsite detention concept was eliminated and regional detention basin concepts were developed. In the analysis of the channel concepts, regional detention facilities were assumed to be in place.

Channel Alternatives

Presented on Table VI-1 is a matrix of channel alternatives which were evaluated. All reaches of Sand Creek and the East Fork of Sand Creek had at least three alternatives analyzed. Presented on Tables VI-2 through VI-6 are comparative evaluations of the floodplain preservation (do-nothing), channelization and selective lining concepts, for the mainstem Sand Creek basin, by reach. The purpose of the evaluation process was to identify the relative advantages and disadvantages of each concept within each reach.

100-year peak discharge to levels. This will allow for the channel improvements to be constructed within the existing right-of way.

Reaches SC-5 and SC-6: A selective channel improvement concept has been recommended for these reaches. Detention in Reach SC-8 of the basin will maintain flows to historic peak discharge levels, however the low flows will increase in frequency and volume. For this reason it has been recommended to provide riprap channel linings and volume. For this reason it has been recommended to provide riprap controls. This will prevent the long-term degradation of the invert. A residual 100-year floodplain will remain and will offer opportunities for habitat replacement and open space preservation. Land adjacent to the drainageway is currently undeveloped or unplated at this time which makes the feasibility of implementing this concept greater in comparison to the urbanized reaches of the creek.

Reaches SC-7 and SC-8: A selective improvement concept involving the localized liming of channel banks and grade control construction has been recommended for these reaches. The feasibility of this concept stems from the fact that flows will be reduced because of detention. Numerous individual rural ownerships cross the drainageway, however no habitable structures lie within the 100-year floodplain. Because of this, the economic feasibility of channelization concepts is low. Non-structural measures can be used to limit encroachments into floodprone areas. Additionally, the City of Colorado Springs Comprehensive plan recommended that the floodplains be maintained as open space. Potential habitat disturbances can be avoided with a selective plan, or simply replaced as part of the particular construction activity which caused the disturbance.

Reach SC-9: A floodplain preservation concept has been recommended for this reason the reach. Little increase in urbanization is anticipated in this reach, and for this reason the existing drainageway is expected to remain stable. Localized improvements may be necessary to limit erosion caused by flow concentrations at culverts or storm sewers. Private ownership of the drainageway is anticipated to continue which lower the feasibility of channel concepts which require permanent right-of-ways or easements for construction and maintenance.

Reaches WF-1 through WF-3: A 100-year channel concept has been recommended for these reaches primarily because of the potential for flooding damages. Several roadway crossings are in need of replacement because of the flood hazard the constrictions create. Some open space enhancement potential exists for this concept since these reaches have been degraded visually by debris accumulation, bank sloughing and sedimentation. Little opportunity exists for widening the drainageway because the

Development of the Recommended Plan

Presented on Table VI-7 is a matrix representing the recommended plan for each major drainageway reach. The selection of a recommended channel treatment scheme has been based upon the qualitative and quantitative information presented in the Sand Creek Drainage Basin Planning Study Development of Alternatives report and the draft East Fork Sand Creek Drainage Basin Planning Study. Contained within the Technical Addendum to the Sand Creek Drainage Basin Planning Study Development of Alternatives report, is the alternative hydrologic, hydraulic and conceptual cost data used in the evaluation and comparison of each of the alternatives within the mainstern Sand Creek basin.

Discussion of Recommended Plan

The recommendation of a particular channel treatment or detention scheme has been based upon the qualitative and quantitative data presented. For each reach the flood hazard, environmental, cost, operations and maintenance and open space aspects of the drainageway were weighed for each alternative concept.

Reach SC-1: For this reach a 10-year channel section was recommended for further evaluation. With the implementation of regional detention in the upper basin, the 100-year floodplain will generally be confined within the existing banks, excepting at roadway crossings lacking 100-year capacity. It is recommended that a 10-year low flow channel be constructed within the invert of the existing channel through the construction of benches and sand bars. As urbanization continues towards the full development scenario, the base flow and annual flows will increase in volume and frequency. For this reason, the low flow area must be stabilized to protect the existing channel banks from underrnining and subsequent bank sloughing. The benched areas offer an opportunity for habitat replacement and enhancement. At some locations within this reach, a residual 100-year floodplain will remain which will have to be regulated. The residual 100-year floodplain offers some potential for open space preservation and enhancement. This is particularly true in the portion of the reach downstream of Hancock Expressway.

Reaches SC-2 through SC-4: A 100-year channel concept has been recommended primarily because of the potential for flooding damages which exists in these reaches. Habitat disturbed by the construction of channel linings and grade control structures could be replaced along the channel toes and on the overbanks. The replacement of the Waynoka Road crossing will reduce the potential for flood damages in areas adjacent to these roadways. The detention within the upper reaches will limit the

VII. PRELIMINARY DESIGN

The results of the preliminary design analysis are summarized in this section. The alternative improvements have been quantitatively and qualitatively evaluated, and presented to the City of Colorado Springs and other interested agencies and individuals. Field review of specific areas of concern have been conducted in order to refine the channel treatments suggested for use along Sand Creek, East Fork Sand Creek and their major tributaries. The preliminary plan for the recommended alternative is shown on the drawings contained at the rear of this report.

Criteria

The City of Colorado Springs, El Paso County Drainage Criteria Manual was used in the development of the typical sections and plans for the major drainageways within the Basin. The City/County manual was supplemented by various criteria manuals with more specific application. These were:

- "Design Guidelines and Criteria for Channels and Hydraulic Structures on Sandy Soils," prepared by Simons, Li & Associates, Inc., 1981.
- Urban Storm Drainage Criteria Manual, Volumes I, II, and III, prepared by the Urban Drainage and Flood Control District.

Various design plans for roadway and channel improvement projects, either proposed or already constructed were reviewed in order to prepare the preliminary design plans. Specifically, the project design plans for the Las Vegas Street and Galley Road bridge replacement projects were reviewed and the improvements incorporated in the preliminary design. The proposed Sand Creek Stabilization Project, AT&SF Railroad to Hancock Expressway and the proposed Sand Creek Stabilization Project at Fountain Boulevard design plans have been reviewed and incorporated into the preliminary design have been reviewed and incorporated into the preliminary design plan and profiles.

Hydrology

Presented on Table VII-1 is selected hydrologic data to be used for the sizing of major drainageway improvements within the Basin. Peak flow rates for the 10- and 100-year frequency incorporating and the selected detention alternatives for the Sand Creek and East Fork Sand Creek Basin are summarized for key points along the major drainageways.

Contained within the The technical addenda of this report contains a complete listing of peak discharges for all the sub-basins, stream segments and design points shown on Exhibit 1.

The sizing the drainageway improvements for the tributaries will need to be verified during the final design and layout of the proposed drainageway facilities. Land development activities may alter the location of design points along the tributaries, and therefore slight alteration in a sub-basin's length, slope and area may occur. The methods outlined in the City/County Drainage Criteria Manual should be applied during final design analysis. The rational method should be used to check the peak flow rates for all tributary drainageways and storm sewers draining areas less than 100 acres in size.

Channels

The recommended channel sections for each reach of drainageway has been outlined in Section VI of this report. In general, the banks of Sand Creek channel, from the confluence with Fountain Creek to the proposed Sand Creek Detention Basin No. 2 are to be lined, or in some cases relined, with ripra to either a 10-year or 100-year flow depth, as shown on the preliminary design plans. Above the Sand Creek Detention Basin No. 2, selectively located riprap bank protection such as at outside bends, at bridge or culvert outlets, and at confluences with side tubutaries have been recommended. In conjunction with the selective improvement measures, and the 10-year low flow concept, the 100-year floodplain should be preserved and regulated. Wherever existing bank linings were judged to be adequate, no improvements have been recommended at this time. For the West Fork Sand Creek, 100-year riprap bank linings have been recommended in order to address the 100-year flooding hazard which exists at numerous locations along the West Fork. The final design improvements shown in the Palmer Park Bridge Replacement project drawings have been incorporated into the preliminary design plans. In the uppermost reaches of the West Fork, a short segment of rectangular concrete channel has been recommended because of right-of-way constraints. For the Center Tributary of Sand Creek, 100-year riprap lined channels have been recommended from the confluence with East Fork to Platte Avenue. Above Platte Avenue, the existing concrete channels have adequate capacity except where the drainageway channel has yet to be improved. The final design plans for the US 24 Bypass Project, Phase II have been incorporated into the plans. As part of the bypass construction, it is proposed to line the Center Tributary using riprap. The location of the proposed roadway, new crossings, drops and channel as shown on the Phase II Bypass plans have been reflected on the preliminary design drawings.

For the East Fork Sand Creek drainageway, riprap lined channel banks have been recommended for the majority of the reaches. This is mainly because of the high level of development predicted for the basin in the area known as the Banning-Lewis Ranch development. Open space to accommodate the 100-year floodplains should be allowed for as the East Fork Sand Creek drainageways develop. This is consistent with the Banning-Lewis Ranch master development plan which was approved at the time of annexation of this property. Above Woodmen Road, selective channel lining improvements and grade control structures have been recommended.

For the most part the side tributaries have been recommended to be lined with riprap, however there are some locations in the upper basin which have been proposed to be grasslined. The location of the side drainageways should be considered approximate and may very likely be modified in the future because of land development. The primary criteria used when sizing the proposed channel sections has been velocity. For all riprap lined channels, the average design velocity should be no greater than 9 feet per second. This criteria allows for the use of Type H riprap within the main flow area of the drainageway. For the case of a 10-year channel with an overall floodplain section, limiting the main channel velocity to 9 feet per second will result in overbank velocities in the five feet per second range. At this level of overbank velocity, native vegetation will be able to withstand the erosive forces which might result in a 100-year flow event. Velocities approaching 10 feet per second could occur at constrictions such as at roadway crossings and at culvert outlets.

Drop Structures and Check Structures

Drop and check structures have been sited along Sand Creek in order to slow the channel velocity to the recommended 7 feet per second, and to prevent localized and long-term stream degradation from affecting channel linings and overbanks. In the reaches to be selectively lined, drops and check structures will protect the native vegetation from the detrimental effects of stream invert headcutting. Several types of structures could be considered for the Sand Creek Basin. For channel bottom widths in excess of fifty feet, soil cement or sheet piling drops/checks are feasible. For channels narower than this, reinforced concrete structures are probably the best alternative. A maximum drop height of three feet is recommended. The methodology recommended for use when designing vertical structures is contained with volume II of the Urban Storm Drainage Criteria Manual.

Detention

The recommended plan calls for the construction of six regional detention basins within the Sand Creek basin, and six regional basins within the East Fork Sand Creek basin. The

purpose of the Sand Creek detention basins is to limit peak discharges at Powers Boulevard to existing development condition levels. The detention basins in the upper portions of the Sand Creek basin will keep the majority of the existing channel sections and bridges below Powers Boulevard with adequate flow capacity in the future development condition. The detention basins within the East Fork Sand Creek basin have been sized to maintain the flow outfalling from the Banning-Lewis Ranch property at existing levels. This in turn will help to reduce flow to the mainstem of Sand Creek Basin Nos. 2 and 6, and East Fork Sand Creek Basin Nos. 1, 2, and 3 will be classified as jurisdictional structures, and their design and operation would be subject to State Engineer's office criteria. Sand Creek basins number 1 and 3 should be edsigned to accommode the troadway embankments, and therefore classifying as incidental storage and not subject State Engineer's regulations.

At Stetson Hills Boulevard, the roadway embankment has created a 2 acre open water wetland which was identified during the environmental review of the basin. It is recommended that this wetland be preserved. Accordingly, an outlet control structure will have to be constructed to pass the 100-year discharge to the downstream channel without overtopping the roadway. No floodwater storage or routing has been accounted for in the hydrology modelling at this roadway for the selected detention plan.

For the East Fork Sand Creek detention basin numbers 2, and 3, the existing embankment and outlet structure act to maintain a permanent pool at this time. It is recommended that the design of these detention basins be directed at maintaining the permanent pool when the flood control storage is to be added. The existence of a permanent pool may enhance the water quality aspects of these basins, and offer the opportunity of open space development conducive with open water.

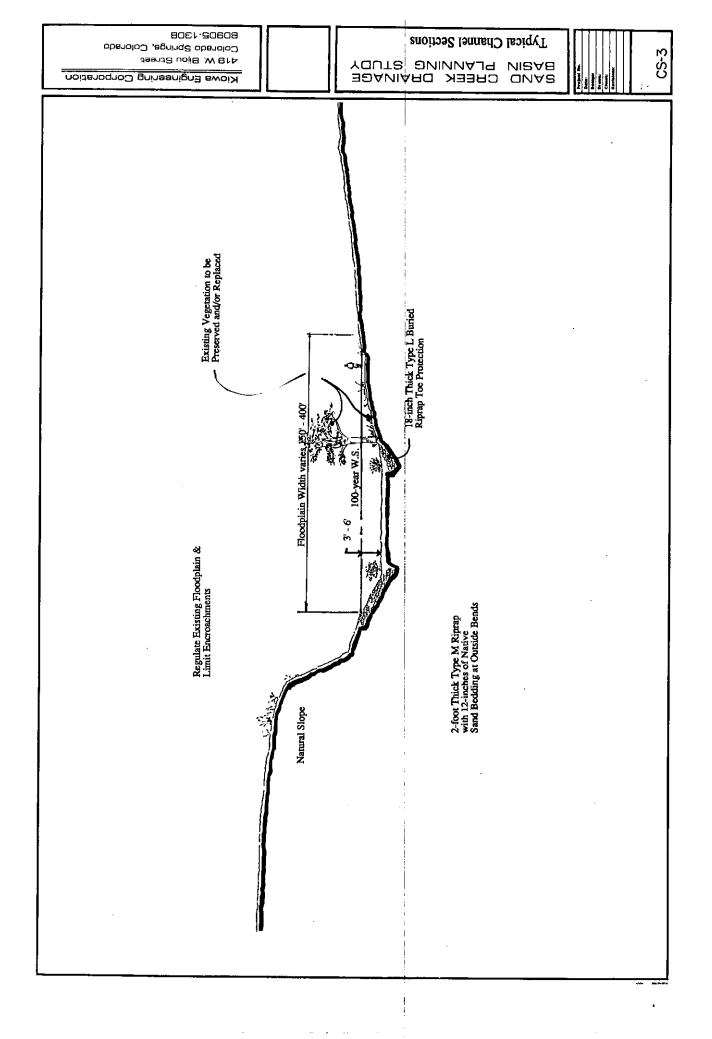
Water Ouality

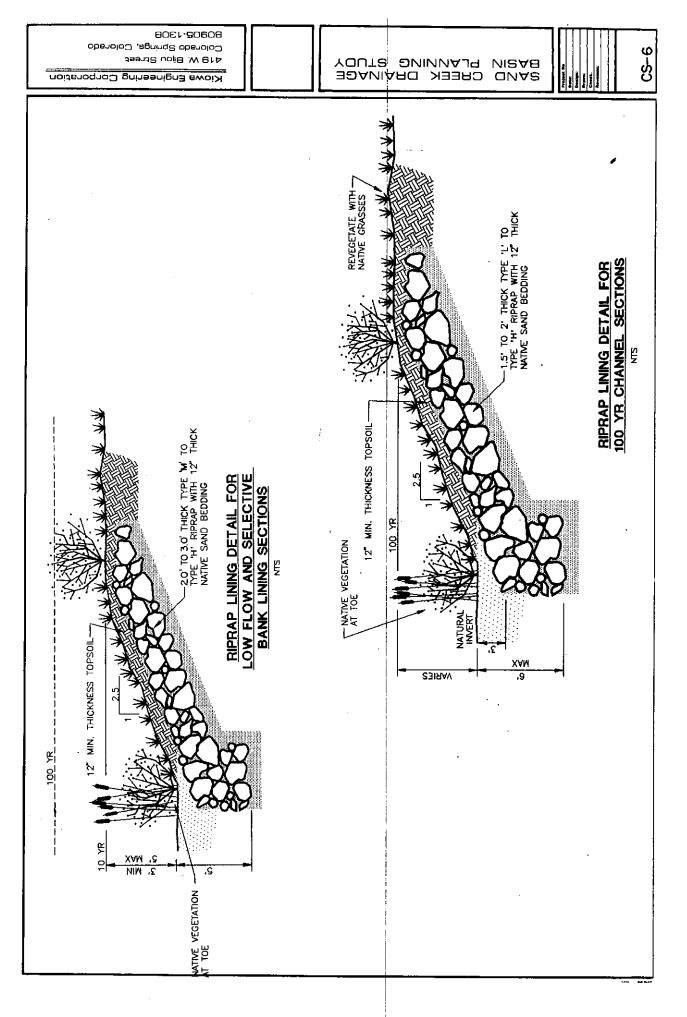
Improvement of urban stormwater quality has become and important issue in drainage basin planning. Many pollutants are naturally associated with sediments that enter sensitive receiving waters. The pollutants are naturally occurring compounds that are carried to the drainageways in storm runoff. Other pollutants are the result of urbanization such as lawn chemicals, oil and grease, pet feces, lawn clippings and other items. Many pollutants can be limited by programs such as erosion control at construction sites, educational programs to inform the public as to the proper use of lawn chemicals, oil recycling programs and street sweeping programs. Even with these programs in place, erosion along the drainageways can generate large quantities of sediment that can settle out along the downstream channel bottorns.

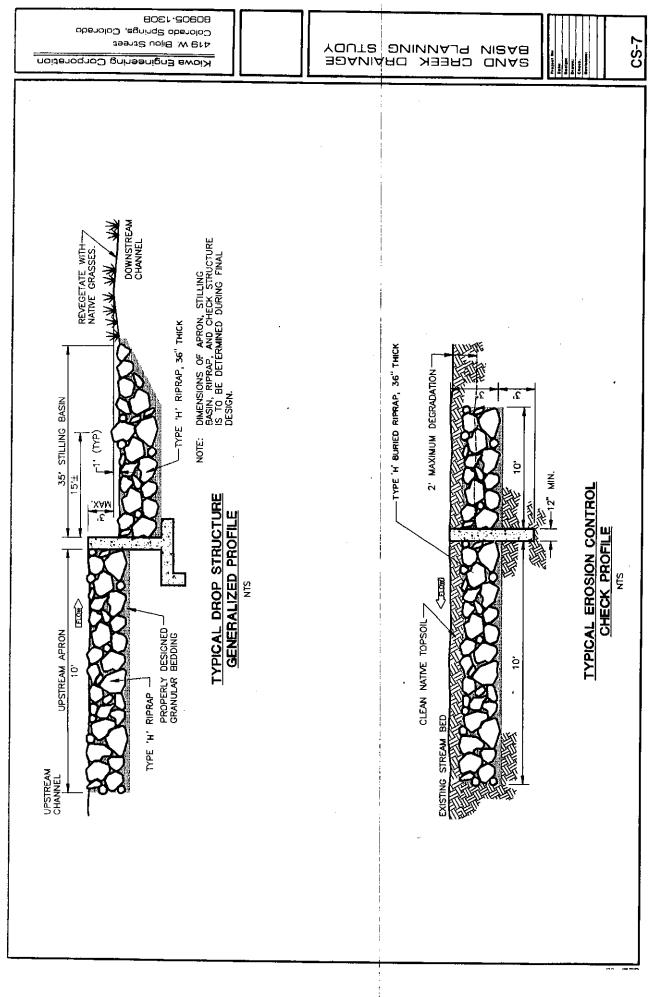
SAND CREEK DRAINAGE BASIN PLANNING STUDY	DRAINAGEWAY CONVEYANCE COST ESTIMATE	WITH SEI ECTED DETENTION ALTERNATIVES
TABLE VIII-2:		

IMPROVEMENT LIMP. UNIT NUMBER GRADECONTROL TOTAL TOTAL TYPE LENGTH COST OF GRADE LENGTH REIMBURSABL COST (FT) (S/LF) CONTROLS (FT) COSTS	2150 127 5 620 5384,650 5384,650	1700 10-YEAR RUPRAP 500 238 3 250 \$164,000 5164,000	3100 SEL LININGS (1 SIDE) 4400 127 6 720 5688,400 5688,400	FR RIPRAP 600 238 0 0 5142,800 5142,800	6300 SEL LININGS (1 SIDE) 2600 127 15 1200 \$546,200 \$546,200	350 238 0 0 \$83,300	1200 SEL LININGS (1 SIDE) 0 0 2 160 528,800 528,800	0 0 4 320 557,600 557,600	0 0 2 170 530,600 520,600	
TYP		YEAR RIPR	T. LININGS	10-YR RIPRAP	L LININGS	10-YR RIPRAP	T. LININGS			
SEGMENT LENGTH (FT)	2600	1700 10	5100 SE	10	6300 SE	10	1200 SE	3200	5000	
REACH NUMBER	i.	SC-8					•	SC-9		
NUMBER	148-2	151	160		163		187	170	1/1	

\$15,560,220 \$18,279,420


TOTAL SAND CREEK DRAINAGEWAY


64


		SAND CREEK, CENTER TRIBUTARY AND WEST FORK SAND CREEK	ARY AND WEST FO	ORK SAND CREE	X			
SEGMENT NUMBER	REACH NUMBER	IMPROVEMENT TYPE	IMP. LENGTH (FT)	UNIT COST (S/LF)	NUMBER OF GRADE CONTROLS	LENGTH OF TOTAL GRADE CONTROL REIMBURSABLE (FT) COSTS	TOTAL REIMBURSABLE COSTS	TOTAL COST
147-2	•		1150	200		90	\$235,400	\$235,400
153-1		•	009	150	0	0	290,000	000'065
153-2			450	150	0	0	\$67,500	867,500
152-1	SC-7	100-YEAR GRASSLINED	1650	150	0	0	\$247,500	\$247,500
152-2			800	150	2	100	\$138,000	\$138,000
150-1		100-YEAR STORM SEWER	800	58	0	0	\$46,400	\$46,400
		36" RCP						
150-2	•	100-YEAR RIPRAP	2400	200	0	0	\$480,000	\$480,000
1-191	•	100-YEAR GRASSLINED	550	150	0	0	\$82,500	\$82,500
154	SC-8		2100	200	10	009	\$528,000	\$528,000
151	•	,	2400	200	13	520	\$573,600	\$573,600
155-1	•	100-YEAR GRASSLINED	550	175	4	140	\$121,450	\$121,450
159	•	100-YEAR RIPRAP	3450	200	14	840	\$841,200	\$841,200
164			1350	200	s	200	\$306,000	\$306,000
186			2250	200	S	200	\$486,000	\$486,000
169	•	•	650	175	1	04	\$120,950	\$120,950
173	SC-9	•	950	5/1	80	320	058'EZZS	\$223,850
WEST FORK SAND CREEK	ND CREEK							
1541	WF-1	100-YEAR RIPRAP	1550	223	2	100	8	\$363,650
161			009	223	2	80	8	\$148,200
164-2	•	100-YEAR GRASSLINED	500	150	0	0	8	\$75,000
1644	•	100-YEAR RIPRAP	2500	175	6	280	8	\$487,900
165-1	•		1350	175	0	0	95	\$236.250

73

•

:

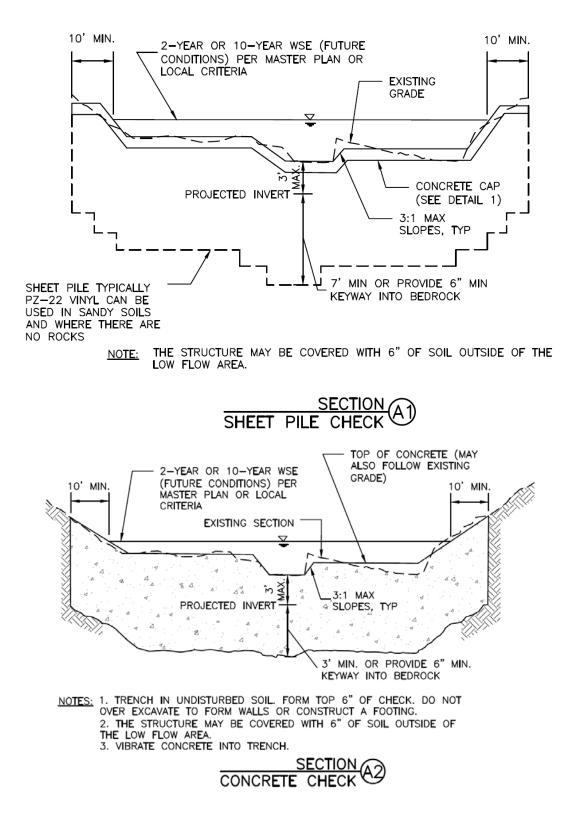


Figure 9-27. Check structure details (Part 2 of 3)

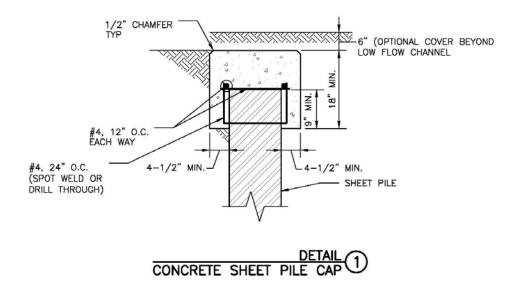


Figure 9-28. Check structure details (Part 3 of 3)

HYDROLOGIC CALCULATIONS

For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

Return	1-Hour	6-Hour	24-Hour
Period	Depth	Depth	Depth
2	1.19	1.70	2.10
5	1.50	2.10	2.70
10	1.75	2.40	3.20
25	2.00	2.90	3.60
50	2.25	3.20	4.20
100	2.52	3.50	4.60
	Where Z=	6,840 ft/10)0

Table 6-2. Rainfall Depths for Colorado Springs

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves² and should produce similar depth calculation results.

2.2 Design Storms

Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either shortduration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lowerintensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

• **Thunderstorms**: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14-year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1-hour rainfall depth to create the distribution shown in Table 6-3 with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business										-			
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	<u>0.4</u> 5	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													-
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0,54	0.54	0.59	0.57	0.62	0.59	0,65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.30	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0:46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.03	0.00	0.88	0.70	0.80	0.72	0.70	0.74
							_						
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	D.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis								_				· · ·	
Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.45	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when				_					0.5.1	0.55	0.55	0.50	0.50
landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	<u>0</u> ,44	0.44	0.51	0.48	0.55	0.51	0.59
Streets												_	
Paved	100	0.89	D.89	0.90	0.90	0.07				0.05			
Gravel	80	0.65	0.69	0.59	0.63	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
		0.57	0.00		0.03	0.63	0.66	0.66	<u>0.7</u> 0	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

í

				Pre-Development CN				
Fully Developed Urban Areas (vegetation established) ¹	Treatment	Hydrologic Condition	%I	HSG A	HSG B	HSG C	HSG D	
Open space (lawns, parks, golf courses, cemeteries, etc.):								
Poor condition (grass cover < 50%)				68	79	86	89	
Fair condition (grass cover 50% to 75%)				49	69	79	84	
Good condition (grass cover > 75%)				39	61	74	80	
Impervious areas:								
Paved parking lots, roofs, driveways, etc. (excluding right-of-way				98	98	98	98	
Streets and roads:								
Paved; curbs and storm sewers (excluding right-of-way)				98	98	98	98	
Paved; open ditches (Including right-of-way)				83	89	92	93	
Gravel (including right-of-way)				76	85	89	91	
Dirt (including right-of-way)				72	82	87	89	
Western desert urban areas:				<u> </u>		05		
Natural desert landscaping (pervious areas only)			•	63	77	85	88	
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders)				96	96	96	96	
Urban districts:								
Commercial and business			85	89	92	94	95	
Industrial Residential districts by average let size			72	81	88	91	93	
Residential districts by average lot size:					05			
1/8 acre or less (town houses) 1/4 acre			65	77	85	90	92	
1/3 acre			38 30	61	75	83	87	
1/2 acre			30 25	57	72	81	86	
1 acre			25	54 51	70 68	80 79	85 84	
2 acres			12	45	65	77	82	
24003		Hydrologic	12	40	0.5		02	
Developing Urban Areas ¹	Treatment ²	Condition ³	%1	HSG A	HSG B	HSG C	HSG D	
Newly graded areas (pervious areas only, no vegetation)				77	86	91	94	
Cultivated Agricultural Lands ¹	Treatment	Hydrologic	%I	HSG A	HSG B	HSG C	HSG D	
	0	Condition						
Fallow	Bare soil			77	86	91	94	
	Crop residue	Poor		76 74	85	90	93	
	cover (CR)	Good			83	88	90	
	Straight row	Poor			81 78	88	91	
	(SR)	<u>Good</u> Poor		71	78 80	85 87	89 90	
	SR + CR	Good	+	64	75	87	90 85	
	Contoured (C)	Poor		70	79	84	88	
		Good		65	75	82	86	
Row crops	C+CR	Poor		69	78	83	87	
		Good		64	74	81	85	
	Contoured &	Poor		66	74	80	82	
	terraced (C&T)	Good		62	71	78	81	
		Poor		65	73	79	81	
-	C&T+CR	Good		61	70	77	80	
	<u>~</u>	Poor		65	76	84	88	
	SR	Good		63	75	83	87	
	50 - 00	Poor		64	75	83	86	
	SR + CR	Good		60	72	80	84	
		Poor		63	74	82	85	
l Small grain	с	Good		61	73	81	84	
Auton Brant	C + CR Poor	Poor		62	73	81	84	
		Good		60	72	80	83	
		Poor		61	72	79	82	
	C 9.T							
	C&T	Good		59	70	78	81	
	C&T C&T+ CR	Good Poor		59 60	70 71	78 78	81 81	

Table 6-10. NRCS Curve Numbers for Frontal Storms & Thunderstorms for Developed Conditions (ARCII)

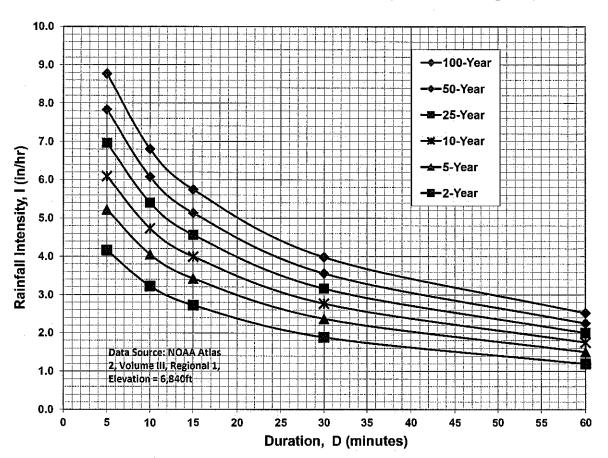


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations $I_{100} = -2.52 \ln(D) + 12.735$ $I_{50} = -2.25 \ln(D) + 11.375$ $I_{25} = -2.00 \ln(D) + 10.111$ $I_{10} = -1.75 \ln(D) + 8.847$ $I_5 = -1.50 \ln(D) + 7.583$ $I_2 = -1.19 \ln(D) + 6.035$ Note: Values calculated by
equations may not precisely
duplicate values read from figure.

UNDEVELOPED LAND ASSUMED TO BE ONE OF THE FOLLOWING: PASTURE, GRASSLAND, RANGE - POOR HERBACEOUS MIXTURE OF GRASS WEEDS AND LOW GROWING BRUSH WITH BRUSH MINOR ELELMENT - POOR WOODS - GRASS COMBINATION - POOR

BASIN	BASIN	SOII	WEIGHTED	
(label)	AREA			CN
	(Ac)	CN	AREA	
			(Ac.)	
EX-1	32.4	61	32.4	61
EX-2	1.7	61	1.7	61
EX-3	25.7	61	25.7	61
EX-4	9.6	61	9.6	61
EX-5	123.3	61	123.3	61
EX-6	41.8	61	41.8	61
EX-7	27.6	63	27.6	63
EX-8	9.5	61	9.5	61

CN VALUES - EXISTING CONDITIONS

			OVERLAND			5	STREET / CH	ANNEL FLO	Tc	Tc	Tc	
BASIN	Cn	C(5)	Length	Height	Tc	Length	Slope	Velocity	Tc	TOTAL	LAG	LAG
			(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(hr)
EX-1	61.0	0.08	300	10	21.4	1500	1.8%	1.3	19.2	40.7	24.4	0.41
EX-2	61.0	0.08	300	10	21.4					21.4	12.9	0.21
EX-3	61.0	0.08	300	12	20.2	1500	4.0%	1.8	13.9	34.1	20.4	0.34
EX-4	61.0	0.08	300	10	21.4	1000	4.0%	1.8	9.3	30.7	18.4	0.31
EX-5	61.0	0.08	300	8	23.1	1800	2.0%	1.3	23.1	46.2	27.7	0.46
EX-6	61.0	0.08	300	10	21.4	800	3.0%	1.3	10.3	31.7	19.0	0.32
EX-7	63.0	0.08	300	10	21.4	1200	3.0%	1.4	14.3	35.7	21.4	0.36
EX-8	61.0	0.08	300	10	21.4	700	4.0%	1.3	9.0	30.4	18.2	0.30

TIME OF CONCENTRATION - EXISTING CONDITIONS

BASIN	TOTAL	WEIGHTED	TOTAL	Q	Q	Q
	BASIN	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
	AREA					
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
EX-1	32.4	61	0.41	0.5	3.9	30.0
EX-2	1.7	61	0.21	0.03	0.3	2.3
EX-3	25.7	61	0.34	0.4	3.4	26.8
EX-4	9.6	61	0.31	0.2	1.4	10.5
EX-5	123.3	61	0.46	2.0	13.5	107.2
EX-6	41.8	61	0.32	0.7	5.8	44.8
EX-7	27.6	63	0.36	1.0	5.2	32.1
EX-8	9.5	61	0.30	0.2	1.4	10.7

BASIN SUMMARY - EXISTING CONDITIONS

Design Point (label)	Contributing Basins	Q 2 Yr. Q (cfs)	Q 5 Yr. Q (cfs)	Q 100 Yr. Q (cfs)
EX DP-1	BASINS EX-1, EX-4, EX-5, EX-6, EX-7 (234.7 AC.)	4.2	28.5	219.2
EX DP-2	BASIN EX-2 (1.7 AC.)	0.03	0.3	2.3
EX DP-3	BASIN EX-3 (25.7 AC.)	0.4	3.4	26.8
EX-DP-4	BASIN EX-4 (9.6 AC.)	0.2	1.4	10.5
EX-DP-8	BASIN EX-8 (9.5 AC.)	0.2	1.4	10.7

DESIGN POINTS SURFACE ROUTING SUMMARY - EXISTING CONDITIONS

Job Name:	RETREAT AT TIMBERRIDGE FILING NO. 1
JOB NUMBER:	1185.00
DATE:	03/12/20
CALCULATED BY:	MAW

							FINAL D	RAINAG	E REPOR	I ~ DASI	N KUNU			SUIVIIVIAN	1						
				IMPERVIO	OUS AREA /	STREETS				LANDSCAPE/DEVELOPED AREAS					V	WEIGHTED			WEIGHTED C	A	
BASIN	TOTAL AREA (AC)	AREA (AC)	C(2)	C(5)	C(10)	C(25)	C(50)	C(100)	AREA (AC)	C(2)	C(5)	C(10)	C(25)	C(50)	C(100)	C(2)	C(5)	C(100)	CA(2)	CA(5)	CA(100)
OS-1	1.20	0.75	0.89	0.90	0.92	0.94	0.95	0.96	0.45	0.02	0.08	0.15	0.25	0.30	0.35	0.56	0.59	0.73	0.68	0.71	0.88
0S-2	0.90	0.00	0.89	0.90	0.92	0.94	0.95	0.96	0.90	0.02	0.08	0.15	0.25	0.30	0.35	0.02	0.08	0.35	0.02	0.07	0.32
OS-3	2.50	0.00	0.89	0.90	0.92	0.94	0.95	0.96	2.50	0.18	0.25	0.32	0.39	0.43	0.47	0.18	0.25	0.47	0.45	0.63	1.18
OS-4	3.10	0.00	0.89	0.90	0.92	0.94	0.95	0.96	3.10	0.15	0.22	0.30	0.37	0.41	0.46	0.15	0.22	0.46	0.47	0.68	1.43
OS-5	20.90	0.00	0.89	0.90	0.92	0.94	0.95	0.96	20.90	0.06	0.14	0.23	0.31	0.36	0.40	0.06	0.14	0.40	1.25	2.93	8.36
OS-6	1.20	0.00	0.89	0.90	0.92	0.94	0.95	0.96	1.20	0.07	0.16	0.24	0.32	0.37	0.41	0.07	0.16	0.41	0.08	0.19	0.49
OS-7	2.10	0.00	0.89	0.90	0.92	0.94	0.95	0.96	2.10	0.18	0.25	0.32	0.39	0.43	0.47	0.18	0.25	0.47	0.38	0.53	0.99
OS-8	1.00	0.00	0.89	0.90	0.92	0.94	0.95	0.96	1.00	0.18	0.25	0.32	0.39	0.43	0.47	0.18	0.25	0.47	0.18	0.25	0.47
OS-9	5.30	0.00	0.89	0.90	0.92	0.94	0.95	0.96	5.30	0.07	0.16	0.24	0.32	0.37	0.41	0.07	0.16	0.41	0.37	0.85	2.17
OS-10	1.00	0.00	0.89	0.90	0.92	0.94	0.95	0.96	1.00	0.18	0.25	0.32	0.39	0.43	0.47	0.18	0.25	0.47	0.18	0.25	0.47
OS-11	7.90	0.00	0.89	0.90	0.92	0.94	0.95	0.96	7.90	0.18	0.25	0.32	0.39	0.43	0.47	0.18	0.25	0.47	1.42	1.98	3.71
OS-12	15.00	0.00	0.89	0.90	0.92	0.94	0.95	0.96	15.00	0.06	0.14	0.23	0.31	0.36	0.40	0.06	0.14	0.40	0.90	2.10	6.00
OS-13	1.40	0.00	0.89	0.90	0.92	0.94	0.95	0.96	1.40	0.12	0.20	0.27	0.35	0.40	0.44	0.12	0.20	0.44	0.17	0.28	0.62
OS-14	9.10	0.00	0.89	0.90	0.92	0.94	0.95	0.96	9.10	0.12	0.20	0.27	0.35	0.40	0.44	0.12	0.20	0.44	1.09	1.82	4.00
OS-15	23.40	0.00	0.89	0.90	0.92	0.94	0.95	0.96	23.40	0.03	0.09	0.17	0.26	0.31	0.36	0.03	0.09	0.36	0.70	2.11	8.42
OS-16	7.70	0.00	0.89	0.90	0.92	0.94	0.95	0.96	7.70	0.03	0.09	0.17	0.26	0.31	0.36	0.03	0.09	0.36	0.23	0.69	2.77
OS-17	20.40	0.00	0.89	0.90	0.92	0.94	0.95	0.96	20.40	0.03	0.09	0.17	0.26	0.31	0.36	0.03	0.09	0.36	0.61	1.84	7.34
OS-18	10.90	0.00	0.89	0.90	0.92	0.94	0.95	0.96	10.90	0.03	0.09	0.17	0.26	0.31	0.36	0.03	0.09	0.36	0.33	0.98	3.92
OS-19	7.20	0.00	0.89	0.90	0.92	0.94	0.95	0.96	7.20	0.03	0.09	0.17	0.26	0.31	0.36	0.03	0.09	0.36	0.22	0.65	2.59
OS-20	25.10	0.00	0.89	0.90	0.92	0.94	0.95	0.96	25.10	0.03	0.09	0.17	0.26	0.31	0.36	0.03	0.09	0.36	0.75	2.26	9.04
																					L
																					L
	40.00		0.00	0.00	0.00	0.04	0.05	0.00	40.00	0.00	0.44	0.00	0.04	0.00			0.44	0.40			
A	13.80	0.00	0.89	0.90	0.92	0.94	0.95	0.96	13.80	0.06	0.14	0.23	0.31	0.36	0.40	0.06	0.14	0.40	0.83	1.93	5.52
B	7.70	0.00	0.89	0.90	0.92	0.94	0.95	0.96	7.70	0.06	0.14	0.23	0.31	0.36	0.40	0.06	0.14	0.40	0.46	1.08	3.08
<u>C</u>	6.70	0.00	0.89	0.90	0.92	0.94	0.95	0.96	6.70	0.06	0.14	0.23	0.31	0.36	0.40	0.06	0.14	0.40	0.40	0.94	2.68
D1 D2	1.10	0.80	0.89	0.90	0.92	0.94	0.95	0.96	0.30	0.02	0.08	0.15	0.25	0.30	0.35	0.65	0.68	0.79	0.72	0.74	0.87
E DZ	3.20	0.80	0.89	0.90	0.92	0.94	0.95	0.96	3.20	0.16	0.25	0.32	0.39	0.43	0.47	0.44	0.49	0.65	0.96	0.45	1.43
F	0.90	0.00	0.89	0.90	0.92	0.94	0.95	0.96	0.90	0.06	0.14	0.23	0.31	0.36	0.40	0.06	0.14	0.40	0.19	0.45	0.36
G	7.20	0.00	0.89	0.90	0.92	0.94	0.95	0.96	7.20	0.06	0.14	0.23	0.31	0.30	0.40	0.06	0.14	0.40	0.05	0.13	2.52
<u> </u>	2.00	0.00	0.89	0.90	0.92	0.94	0.95	0.96	2.00	0.02	0.00	0.13	0.25	0.30	0.35	0.02	0.00	0.35	0.14	0.38	0.92
	3.70	0.00	0.89	0.90	0.92	0.94	0.95	0.90	3.70	0.13	0.22	0.30	0.37	0.41	0.40	0.13	0.22	0.40	0.50	0.44	1.74
	3.60	0.00	0.89	0.90	0.92	0.94	0.95	0.90	3.60	0.18	0.25	0.32	0.39	0.43	0.47	0.18	0.25	0.47	0.65	0.93	1.69
J K	1.50	0.00	0.89	0.90	0.92	0.94	0.95	0.96	1.50	0.18	0.25	0.32	0.39	0.43	0.47	0.18	0.25	0.47	0.65	0.90	0.71
	7.30	0.00	0.89	0.90	0.92	0.94	0.95	0.96	7.30	0.18	0.25	0.32	0.39	0.43	0.47	0.18	0.25	0.47	1.31	1.83	3.43
L	2.70	0.00	0.89	0.90	0.92	0.94	0.95	0.90	2.70	0.15	0.23	0.32	0.39	0.43	0.47	0.15	0.23	0.47	0.41	0.59	1.24
N	2.10	0.00	0.89	0.90	0.92	0.94	0.95	0.96	2.10	0.13	0.22	0.32	0.39	0.43	0.40	0.13	0.22	0.40	0.41	0.53	0.99
0	1.50	0.00	0.89	0.90	0.92	0.94	0.95	0.96	1.50	0.18	0.25	0.32	0.39	0.43	0.47	0.18	0.25	0.47	0.30	0.38	0.33
0	2.70	0.00	0.89	0.90	0.92	0.94	0.95	0.96	2.70	0.18	0.25	0.32	0.39	0.43	0.47	0.18	0.25	0.47	0.49	0.68	1.27
Q	2.20	0.00	0.89	0.90	0.92	0.94	0.95	0.96	2.20	0.06	0.23	0.32	0.31	0.36	0.40	0.06	0.14	0.40	0.43	0.31	0.88
R	0.90	0.00	0.89	0.90	0.92	0.94	0.95	0.96	0.90	0.18	0.25	0.32	0.39	0.43	0.47	0.18	0.25	0.47	0.16	0.23	0.42
S	3.60	0.00	0.89	0.90	0.92	0.94	0.95	0.96	3.60	0.02	0.08	0.15	0.25	0.30	0.35	0.02	0.08	0.35	0.07	0.29	1.26

Job Name:	RETREAT AT TIMBERRIDGE FILING NO. 1	
JOB NUMBER:	1185.00	
DATE:	03/12/20	
CALC'D BY:	MAW	
		$-0.395(1.1-C_5)$
		<i>l</i> _i = <u>c</u> ^{0.33}

 $\frac{395(1.1-C_5)\sqrt{L}}{S^{0.33}}$ V =

$V = C_v S_w^{0.5}$		
$V = C_v S_w$	Tc=L/V	

Type of Land Surface	C,
Heavy meadow	2.5
Tillage/field $t = \frac{L}{L} + 10$	5
Riprap (not buried) [*] $I_c = \frac{1}{180} + 10$	6.5
Short pasture and lawns	7

10

15

20

Nearly bare ground

Grassed waterway

Paved areas and shallow paved swales

	Parter states	
	* For buried riprap, select C _v value based on type of ve	getative cover.
FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUM	MMARY	

						FI	NAL L	AL DRAINAGE REPOR			(I ~ BASIN RUNOFF SUMMARY													
			WEI	GHTED				OVERLAND				et / Ch	IANNEL	FLOW	Tc			INTE	ISITY			тот	AL FLC	ows
BASIN	CA(2)	CA(5)	CA(10)	CA(25)	CA(50)	CA(100)	C(5)	Length (ft)	Height <i>(ft)</i>	Tc (min)	Length <i>(ft)</i>	Slope <i>(%)</i>	Velocity (fps)	Tc (min)	TOTAL (min)	l(2) (in/hr)	l(5) (in/hr)	I(10) <i>(in/hr)</i>	l(25) (in/hr)	l(50) (in/hr)	l(100) (in/hr)	Q(2) (cfs)	Q(5) (cfs)	Q(100) (cfs)
OS-1	0.68	0.71	0.76	0.82	0.85	0.88	0.08	10	0.2	4.6	1700	3.5%	1.9	15.1	19.8	2.48	3.11	3.62	4.14	4.66	5.21	2	2	5
OS-2	0.02	0.07	0.14	0.23	0.27	0.32	0.08	300	10.5	21.1					21.1	2.41	3.01	3.51	4.01	4.51	5.05	0.0	0.2	1.6
OS-3	0.45	0.63	0.80	0.98	1.08	1.18	0.25	55	1.1	9.1	600	3.0%	3.5	2.9	11.9	3.08	3.86	4.51	5.15	5.80	6.49	1	2	8
OS-4	0.47	0.68	0.93	1.15	1.27	1.43	0.22	200	6	15.6	400	3.0%	3.5	1.9	17.6	2.62	3.28	3.83	4.38	4.93	5.51	1	2	8
OS-5	1.25	2.93	4.81	6.48	7.52	8.36	0.14	200	8	15.5	750	2.0%	2.8	4.4	19.9	2.47	3.09	3.61	4.13	4.64	5.19	3	9	43
OS-6	0.08	0.19	0.29	0.38	0.44	0.49	0.16	55	1.1	10.0	500	3.0%	3.5	2.4	12.4	3.04	3.80	4.44	5.07	5.71	6.39	0.3	1	3
OS-7	0.38	0.53	0.67	0.82	0.90	0.99	0.25	100	10	7.2					7.2	3.69	4.63	5.40	6.17	6.94	7.77	1	2	8
OS-8	0.18	0.25	0.32	0.39	0.43	0.47	0.25	55	1.1	9.1	400	3.0%	3.5	1.9	11.0	3.18	3.99	4.65	5.32	5.98	6.70	1	1	3
OS-9	0.37	0.85	1.27	1.70	1.96	2.17	0.16	200	10	14.1	400	3.0%	3.5	1.9	16.0	2.73	3.42	3.99	4.56	5.13	5.74	1	3	12
OS-10	0.18	0.25	0.32	0.39	0.43	0.47	0.25	55	1.1	9.1	450	3.8%	3.9	1.9	11.0	3.18	3.99	4.65	5.32	5.98	6.69	1	1	3
OS-11	1.42	1.98	2.53	3.08	3.40	3.71	0.25	200	10	12.8	450	3.8%	3.9	1.9	14.7	2.84	3.55	4.14	4.74	5.33	5.96	4	7	22
OS-12	0.90	2.10	3.45	4.65	5.40	6.00	0.14	300	13	18.5	600	2.0%	2.8	3.5	22.0	2.35	2.94	3.43	3.93	4.42	4.94	2	6	30
OS-13	0.17	0.28	0.38	0.49	0.56	0.62	0.20	55	1.1	9.6	450	2.0%	2.8	2.7	12.2	3.05	3.83	4.46	5.10	5.74	6.42	0.5	1	4
OS-14	1.09	1.82	2.46	3.19	3.64	4.00	0.20	300	12	17.8	350	2.0%	2.8	2.1	19.9	2.48	3.10	3.62	4.13	4.65	5.20	3	6	21
OS-15	0.70	2.11	3.98	6.08	7.25	8.42	0.09	300	16	18.2	1300	3.5%	1.9	11.6	29.8	2.00	2.49	2.91	3.32	3.74	4.18	1	5	35

Page 1 of 3

JOB NAME:	RETREAT AT TIMBERRIDGE FILING NO. 1
JOB NUMBER:	1185.00
DATE:	03/12/20
CALC'D BY:	MAW

	$0.395(1.1-C_5)\sqrt{L}$
<i>i</i> _i -	S ^{0.33}

 $V = C_v S_w^{0.5}$ Tc=L/V

Type of Land Surface	C,
Heavy meadow	2.5
Tillage/field L	5
Riprap (not buried)* $t_c = \frac{1}{180} + 10$	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY

						FI	NAL C	RAIN	AGE R	EPOF	<u> </u>	ASIN	RUNO	FF Sl	JMMA	RY								I
			WEI	GHTED				OVEF	RLAND		STRE	et / Ch	IANNEL	FLOW	Tc			INTE	NSITY			TOT	AL FLO	JWS
BASIN	CA(2)	CA(5)	CA(10)	CA(25)	CA(50)	CA(100)	C(5)	Length (ft)	Height <i>(ft)</i>	Tc <i>(min)</i>	Length <i>(ft)</i>	Slope (%)	Velocity (fps)	Tc (min)	TOTAL (min)	l(2) <i>(in/hr)</i>	l(5) (in/hr)	l(10) <i>(in/hr)</i>	l(25) <i>(in/hr)</i>	l(50) <i>(in/hr)</i>	l(100) (in/hr)	Q(2) (cfs)	Q(5) (cfs)	Q(100) (cfs)
OS-16	0.23	0.69	1.31	2.00	2.39	2.77	0.09	300	10	21.2	600	3.5%	1.9	5.3	26.6	2.13	2.66	3.11	3.55	4.00	4.47	0.5	2	12
OS-17	0.61	1.84	3.47	5.30	6.32	7.34	0.09	300	9.5	21.6	650	3.5%	1.9	5.8	27.4	2.10	2.62	3.05	3.49	3.93	4.39	1.3	5	32
OS-18	0.33	0.98	1.85	2.83	3.38	3.92	0.09	300	10	21.2	700	3.5%	1.9	6.2	27.5	2.09	2.61	3.05	3.49	3.92	4.39	0.7	3	17
OS-19	0.22	0.65	1.22	1.87	2.23	2.59	0.09	300	10	21.2	400	3.5%	1.9	3.6	24.8	2.21	2.77	3.23	3.69	4.15	4.64	0.5	2	12
OS-20	0.75	2.26	4.27	6.53	7.78	9.04	0.09	300	16	18.2	1300	3.5%	1.9	11.6	29.8	2.00	2.49	2.91	3.32	3.74	4.18	2	6	38
А	0.83	1.93	3.17	4.28	4.97	5.52	0.14	300	10.5	19.9	1280	3.2%	1.8	11.9	31.8	1.92	2.39	2.79	3.19	3.59	4.02	2	5	22
В	0.46	1.08	1.77	2.39	2.77	3.08	0.14	300	10.5	19.9	400	2.0%	1.4	4.7	24.6	2.23	2.78	3.24	3.71	4.17	4.67	1	3	14
С	0.40	0.94	1.54	2.08	2.41	2.68	0.14	300	10.5	19.9	1100	1.5%	2.4	7.5	27.3	2.10	2.62	3.06	3.49	3.93	4.40	1	2	12
D1	0.72	0.74	0.78	0.83	0.85	0.87	0.08	15	0.3	5.7	1400	1.5%	2.4	9.5	15.2	2.80	3.50	4.08	4.67	5.25	5.88	2	3	5
D2	0.96	1.07	1.18	1.30	1.36	1.43	0.25	55	1.1	9.1	500	2.5%	3.2	2.6	11.7	3.11	3.89	4.54	5.19	5.84	6.54	3	4	9
E	0.19	0.45	0.74	0.99	1.15	1.28	0.14	300	10.5	19.9	300	2.0%	1.4	3.5	23.4	2.28	2.85	3.33	3.81	4.28	4.79	0.4	1	6
F	0.05	0.13	0.21	0.28	0.32	0.36	0.14	300	10.5	19.9					19.9	2.48	3.10	3.62	4.13	4.65	5.20	0.1	0.4	1.9
G	0.14	0.58	1.08	1.80	2.16	2.52	0.08	70	14	5.7	900	2.0%	1.4	10.6	16.3	2.71	3.39	3.96	4.52	5.09	5.70	0.4	2	14
Н	0.30	0.44	0.60	0.74	0.82	0.92	0.22	100	4	10.1	300	3.0%	3.5	1.4	11.5	3.13	3.92	4.57	5.23	5.88	6.58	1	2	6
I	0.67	0.93	1.18	1.44	1.59	1.74	0.25	120	3	12.4	550	3.5%	3.7	2.4	14.9	2.82	3.53	4.12	4.71	5.30	5.93	2	3	10

Page 2of 3

DATE:	03/12/20	
CALC'D BY:	MAW	
		<i>t</i> =

RETREAT AT TIMBERRIDGE FILING NO. 1

JOB NAME:

JOB NUMBER:

1185.00

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}} \qquad \qquad V = C_v S_w^{0.5} \qquad \text{Tc=LV}$

Type of Land Surface	<i>C</i> ,
Heavy meadow	2.5
Tillage/field L	5
$\frac{1}{\text{Riprap (not buried)}^*} t_c = \frac{1}{180} + 10$	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

Table 6-7. Conveyance Coefficient, C_v

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY

						1.11						AUIN	NUNO	11 50										
			WEI	GHTED				OVER	RLAND		STRE	et / Ch	ANNEL	FLOW	Tc			INTE	ISITY			тот	AL FLC	JWS
BASIN	CA(2)	CA(5)	CA(10)	CA(25)	CA(50)	CA(100)	C(5)	Length <i>(ft)</i>	Height <i>(ft)</i>	Tc (min)	Length (ft)	Slope <i>(%)</i>	Velocity (fps)	Tc (min)	TOTAL (min)	l(2) (in/hr)	l(5) (in/hr)	I(10) <i>(in/hr)</i>	l(25) <i>(in/hr)</i>	I(50) <i>(in/hr)</i>	l(100) (in/hr)	Q(2) (cfs)	Q(5) (cfs)	Q(100) (cfs)
J	0.65	0.90	1.15	1.40	1.55	1.69	0.25	120	3	12.4	600	2.0%	2.8	3.5	16.0	2.74	3.43	4.00	4.57	5.14	5.75	2	3	10
К	0.27	0.38	0.48	0.59	0.65	0.71	0.25	55	1.1	9.1	600	2.0%	2.8	3.5	12.6	3.02	3.78	4.41	5.05	5.68	6.35	0.8	1	4
L	1.31	1.83	2.34	2.85	3.14	3.43	0.25	150	4.5	13.1	850	2.5%	3.2	4.5	17.6	2.62	3.28	3.83	4.38	4.93	5.51	3	6	19
М	0.41	0.59	0.81	1.00	1.11	1.24	0.22	100	4	10.1	400	2.0%	2.8	2.4	12.4	3.04	3.80	4.44	5.07	5.71	6.39	1	2	8
Ν	0.38	0.53	0.67	0.82	0.90	0.99	0.25	55	1.1	9.1	1050	2.0%	2.8	6.2	15.2	2.79	3.50	4.08	4.66	5.25	5.87	1	2	6
0	0.27	0.38	0.48	0.59	0.65	0.71	0.25	80	5	7.5					7.5	3.64	4.56	5.32	6.08	6.84	7.66	1	2	5
Р	0.49	0.68	0.86	1.05	1.16	1.27	0.25	120	3	12.4	450	1.5%	2.4	3.1	15.5	2.77	3.47	4.05	4.63	5.21	5.83	1	2	7
Q	0.13	0.31	0.51	0.68	0.79	0.88	0.14	90	22	5.7	300	1.5%	1.2	4.1	9.8	3.32	4.16	4.85	5.54	6.24	6.98	0.4	1	6
R	0.16	0.23	0.29	0.35	0.39	0.42	0.25	90	6	7.8					7.8	3.59	4.50	5.26	6.01	6.76	7.56	1	1	3
S	0.07	0.29	0.54	0.90	1.08	1.26	0.08	140	14	10.2	750	1.5%	2.4	5.1	15.3	2.79	3.49	4.07	4.66	5.24	5.86	0.2	1.0	7

JOB NAME:	RETREAT AT TIMBERRIDGE FILING NO. 1
JOB NUMBER:	1185.00
DATE:	03/12/20
CALCULATED BY:	MAW

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY

					Inter	nsity	FI	ow	
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Inlet Size
1	A (13.8 Ac.), OS-1 (1.2 Ac.) and C (6.7 Ac.)	3.58	9.08	31.8	2.39	4.02	9	36	DUAL 24" RCP CULVERTS
2	TOTAL INFLOW INTO POND 1 A, B, C and OS-1 (29.4 Ac.)	4.66	12.16	33.8	2.30	3.86	11	47	POND 1
3	No longer used								
4	D1 (1.1 Ac.)	0.74	0.87	15.2	3.50	5.88	3	5	5' TYPE R SUMP INLET
5	OS-4 (3.1 Ac.), I (3.7 Ac.)	1.61	3.17	17.7	3.28	5.50	5	17	15' TYPE R A GRADE INLET
6	OS-3 (2.5 Ac.)	0.63	1.18	11.9	3.86	6.49	2	8	10' TYPE R A GRADE INLET
7	Basin D2, Basin H and 50% of 100 yr Flowby from DP-6 (5.5 Ac)	1.51	2.47	27.3	2.62	4.40	4	11	10' TYPE R SUMP INLET
8	K (1.5 Ac.)	0.38	0.71	12.6	3.78	6.35	1	4	5' TYPE R SUMP INLET
9	J and OS-7 (5.7 Ac.)	1.43	2.68	16.0	3.43	5.75	5	15	10' TYPE R SUMP INLET
10	Flowby from DP-5 and Basin L (7.3 Ac)	1.83	4.29	21.2	3.00	5.04	5	22	15' TYPE R A GRADE INLET
11	Basins N, O, P and 50% 100 Yr Flowby from DP 6 and portion of 100 Yr Flowby from DP 10 (13.6 Ac)	1.58	4.54	24.2	2.80	4.70	4	21	15' TYPE R SUMP INLET
12	OS-5 (20.9Ac.)	2.93	6.27	19.9	3.09	5.19	9	33	15' TYPE R SUMP INLET
13	OS-6 (1.2Ac.)	0.19	2.06	12.4	3.80	6.39	1	13	10' TYPE R SUMP INLET

JOB NAME:	RETREAT AT TIMBERRIDGE FILING NO. 1
JOB NUMBER:	1185.00
DATE:	03/12/20
CALCULATED BY:	MAW

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY

					Inten	sity	FI	ow	
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Inlet Size
14	OS-8 (1.0Ac.)	0.25	0.47	11.0	3.99	6.70	1	3	5' TYPE R SUMP INLET
15	OS-9 (5.3 Ac.)	0.85	2.17	16.0	3.42	5.74	3	12	10' TYPE R SUMP INLET
16	OS-10 (1.0 Ac.)	0.25	0.47	11.0	3.99	6.69	1	3	5' TYPE R SUMP INLET
17	OS-11 (7.9 Ac.)	1.98	3.71	14.7	3.55	5.96	7	22	10' TYPE R SUMP INLET
18	OS-12 (15.0 Ac.)	2.10	6.00	22.0	2.94	4.94	6	30	30" RCP CULVERT
19	OS-13 (1.4 Ac.)	0.28	0.62	12.2	3.83	6.42	1	4	5' TYPE R SUMP INLET
20	OS-14 (9.1 Ac.)	1.82	4.00	19.9	3.10	5.20	6	21	5' TYPE R SUMP INLET
21	TOTAL INFLOW INTO EXIST. STOCK POND (23.4 Ac.)	2.11	8.42	29.8	2.49	4.18	5	35	EXIST. STOCK POND W ITH OUTLET
22	TOTAL INFLOW INTO POND 2 (104.8 Ac.)	20.50	45.77	30.0	2.48	4.16	51	191	POND 2

JOB NAME:	RETREAT AT TIMBERRIDGE FILING NO. 1
JOB NUMBER:	1185.00
DATE:	03/12/20
CALCULATED BY:	MAW

* PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.

Flow Intensity Equivalent Equivalent Maximum Pipe Run Q(5) Q(100) **Contributing Basins** l(5) I(100) CA(5) CA(100) Tc Pipe Size* DP-18 6 30" RCP 1 2.10 6.00 23.2 2.86 4.81 29 DP-19 2 0.28 0.62 12.2 1 4 18" RCP 3.83 6.42 DP-20 3 4.00 19.9 6 21 24" RCP 1.82 3.10 5.20 PR-1, PR-2, PR-3 4 4.20 10.62 23.9 2.82 4.73 12 50 36" RCP 5 Captured from DP-5 1.61 2.31 17.7 3.28 5 13 24" RCP 5.50 6 0.93 2 6 18" RCP Captured from DP-6 0.63 11.9 3.86 6.49 7 PR-4, PR-5, PR-6 6.43 13.86 24.4 2.79 4.68 18 65 36" RCP 8 DP-4 0.74 0.87 15.2 3 5 18" RCP 3.50 5.88 DP-7 9 4 1.51 2.47 27.3 2.62 4.40 11 24" RCP PR-8, PR-9 10 2.25 3.34 27.5 2.61 6 15 30" RCP 4.38 PR-7, PR-10 11 8.69 17.20 28.0 2.58 4.33 22 75 42" RCP Captured from DP-10 12 2.83 5 24" RCP 1.83 21.2 3.00 5.04 14 20.03 27 13 PR-11, PR-12 10.51 28.1 87 42" RCP 2.58 4.33 DP-8 0.38 0.71 12.6 1 4 18" RCP 14 3.78 6.35 DP-9 2.68 5 24" RCP 15 1.43 16.0 3.43 5.75 15

FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY

Classic Consulting 118500 CALCS-MSTR-WQCV 2017 rev.xlsx

JOB NAME:	RETREAT AT TIMBERRIDGE FILING NO. 1
JOB NUMBER:	1185.00
DATE:	03/12/20
CALCULATED BY:	MAW

* PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.

Flow Intensity Equivalent Equivalent Maximum **Pipe Run Contributing Basins** I(100) Q(5) Q(100) l(5) CA(5) CA(100) Тс Pipe Size* PR-14, PR-15 3.38 6 19 24" RCP 16 1.80 16.4 3.39 5.69 PR-13, PR-16 12.31 23.41 48" RCP 17 28.6 31 100 2.55 4.28 DP-11 18 1.58 4.54 24.2 2.80 4.70 4 21 30" RCP PR-17, PR-18 19 13.89 27.96 28.8 2.54 4.26 35 119 48" RCP W'LY FOREBAY OUTFALL DP-12 2.93 30" RCP 9 20 6.27 19.9 3.09 5.19 33 DP-13 21 0.19 2.06 12.4 3.80 6.39 1 13 24" RCP PR-20, PR-21 9 30" RCP 22 3.12 8.33 20.7 3.04 5.10 42 DP-14 23 0.25 0.47 11.0 3.99 6.70 1 3 18" RCP 24 DP-15 0.85 2.17 16.0 3.42 5.74 3 12 24" RCP 12 25 PR-22, PR-23, PR-24 4.22 10.97 22.0 54 36" RCP 2.94 4.94 DP-16 0.25 3.99 3 18" RCP 26 0.47 11.0 6.69 1 27 DP-17 1.98 3.71 14.7 3.55 5.96 7 22 30" RCP PR-26, PR-27 2.23 25 28 4.18 14.9 3.53 5.93 8 30" RCP PR-25, PR-28 6.44 15.16 22.3 19 74 42" RCP 29 2.92 4.91 E'LY FOREBAY OUTFALL

FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY

Project:	Timber Ridge Fil. 1	
Date:	3/5/19	Telephone Record
Contact:		Note to the File
		□ Job Information
Phone: By:	MAW	 D Meeting Minutes D

619 N. Cascade Avenue, Suite 200 Colorado Springs, CO 80903

			fective		17.8 17.8	an geometric transmission of the			
	Pord		Ba	sin	A Hors A	· @	. 1	1%. Imp.	
	L			rim	B TITAC		1	11. Imp.	
4			ßa.		5-1 1.2 Ac	0		gor. 13	. 8
	TO	tal tri	b. acr	dage	= 24.0	Ac.	6	Ht.	Imp.
					Cur			Carlo and a state of the state	
	5								
	Pond	2	Busi	52 h £		6	11	Ac. 90.	/
			Bran	n k	27	Innp!		Ac. 30.	1 1 1 1
a Theorem and a						Innp.	4.4	Atc. H	
			Barin	DI				1 5 .	-
					1.1 Ac.	6	49	K. Imp.	
			- Burin	H	2.0 AC.	Q	25	1. Imp.	
			Basin	. I	4r Ac.	Q	30	·4 Imp.	
			- Basin		3.6 AC.	Q		1. Imp.	
			- Basin		1.5 Ac.	e		" Imp.	
				L	7.3 Ac.	9		i. Imp.	
			- Basin						
			Basin		2.1 Ac.	e		1. Imp	
			Basic		1.5 Ac.			ic Inp.	
		د	Busin	P	2.7 AC	6	3	M. Imp.	
			- Basin	0	2.2 Ac.	B	10	1. Imp	

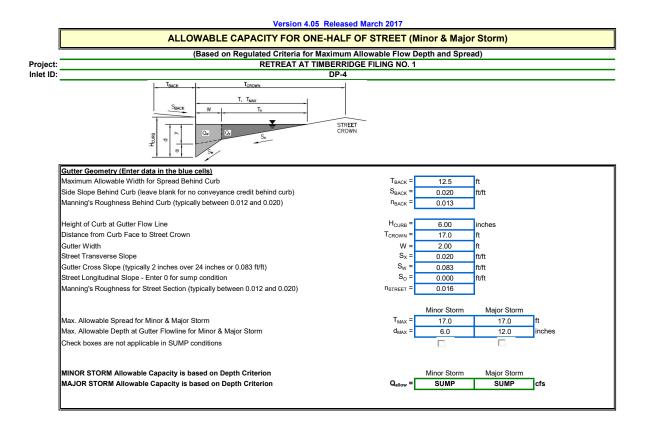
Ph: 719.785.0790 Fax: 719.785.0799

www.classicconsulting.net

Innovative Design....Classic Results

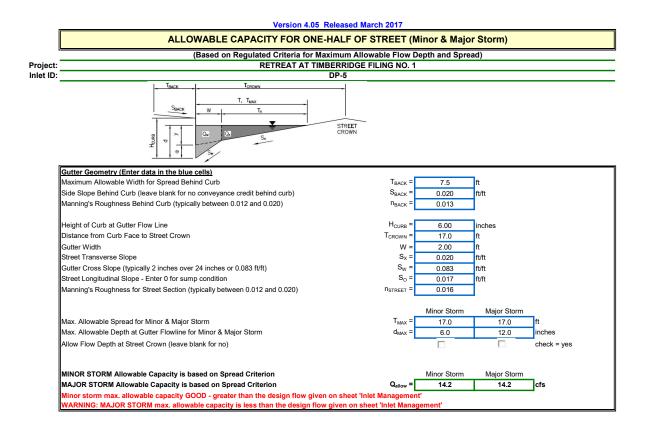
619 N. Cascade Avenue, Suite 200 Colorado Springs, CO 80903

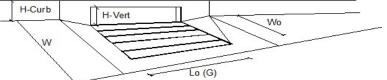
Project:	<u> NOTES</u>
Date:	Telephone Record
Contact:	Note to the File
	□ Job Information
Phone:	Meeting Minutes
Ву:	D

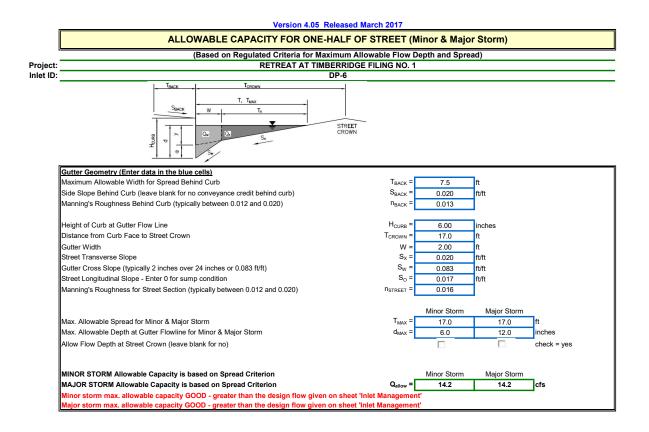

Effective Imperviourners (cont.)	
Pond 2 OS-3 3.2 Ac. @ 30% Inp. 05-4 52 Ac. @ 25% Inp.	
05-4 52 Ac. @ 25%. Imp.	
- 05-5 20.9 AC. @ 5.7 Ac. 30%	
= 10%. Imp. 15,2AC. 2%	
- 05-6 1.2 AC. @ 0.6AC. 70%	
- 05-6 1.2 Ac. @ 0.6Ac. 70% = 16% Imp. 6.6Ac. 26	
- 05-7 2.1 AC. & 30 & Imp.	
- 05-8 1.5 AC. C 35%. Imp.	
- 05-9 J.7 Ac. @ 2.8 Ac. 702	
= 17% Imp. 2.5 Ac. 2%.	
- 05-10 1.0 Ac. @ 30%	
- OS-11 7.9 AC. Q 30%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
05-13 AC @ 20%	
05-14 3-8 Ac C 20%.	
Total trib. acreage = 100.4 Ac.	
EEL. Imp. = 24.4 1. 21.6%	

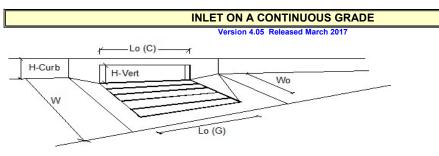
Ph: 719.785.0790 Fax: 719.785.0799

Innovative Design....Classic Results

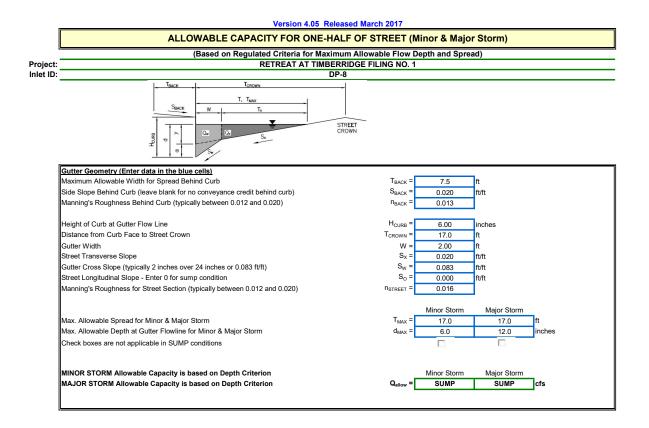

www.classicconsulting.net



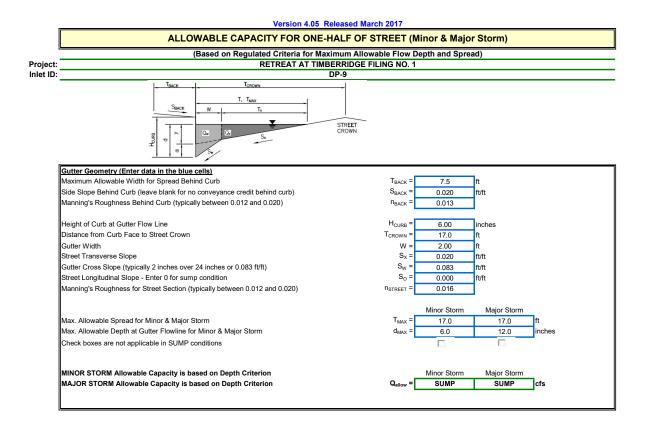

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.0	5.0	cfs



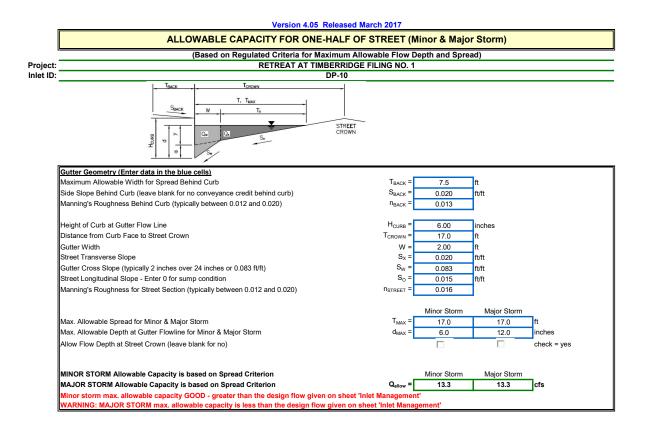
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.0	12.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	4.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	75	%



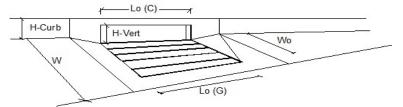
CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	2.0	6.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	79	%

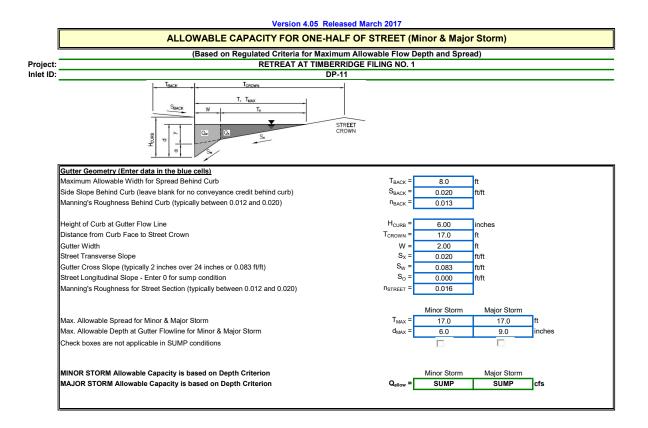


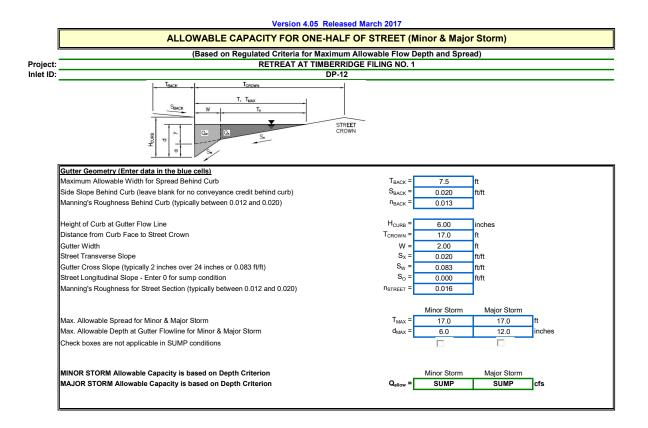
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00]
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.0	11.0	cfs



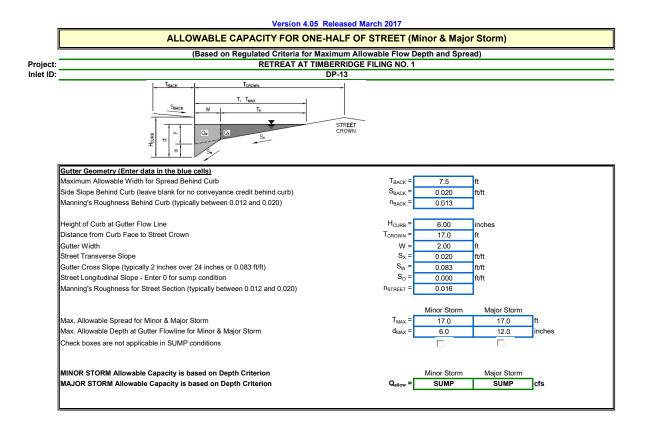
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	4.0	cfs



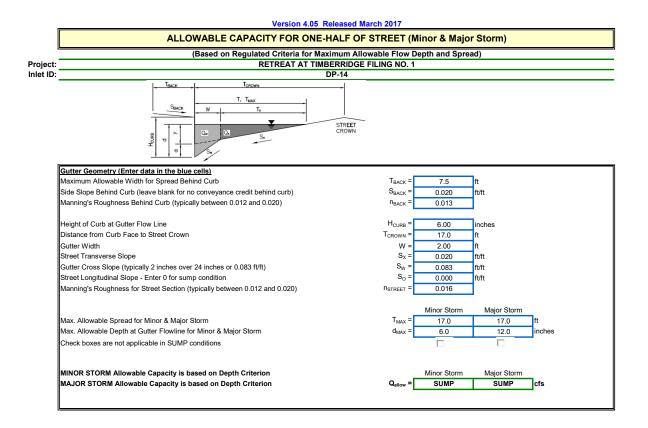

CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.0	15.0	cfs



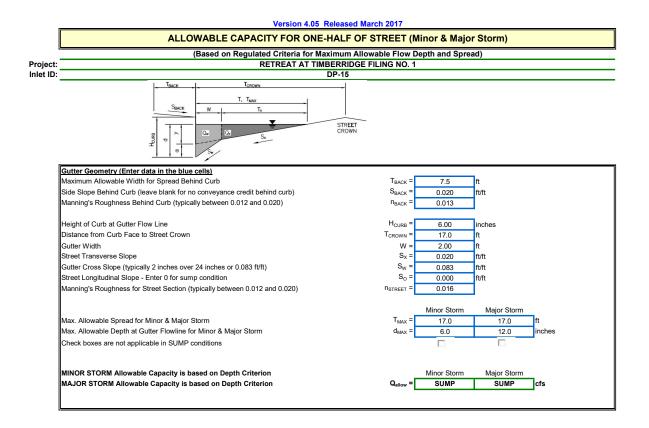
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.0	14.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	7.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	66	%



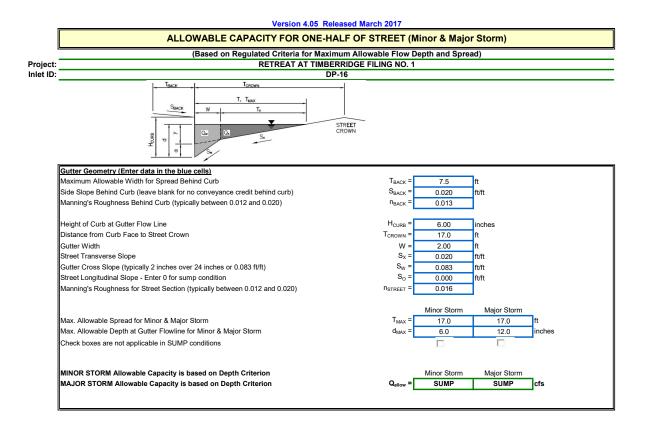
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	9.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.58	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.85	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.93	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	26.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.0	21.0	cfs



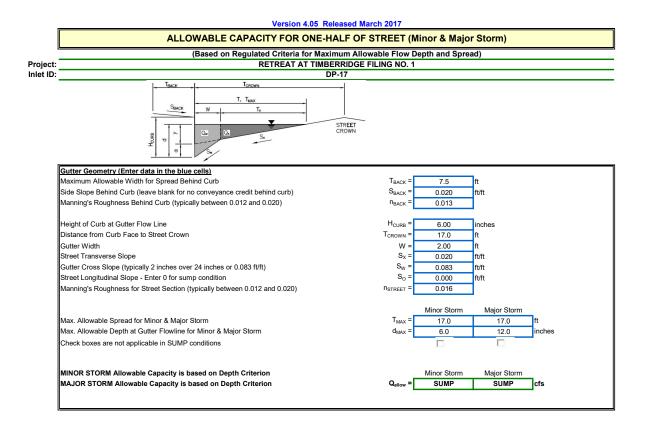
CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	39.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	9.0	33.0	cfs



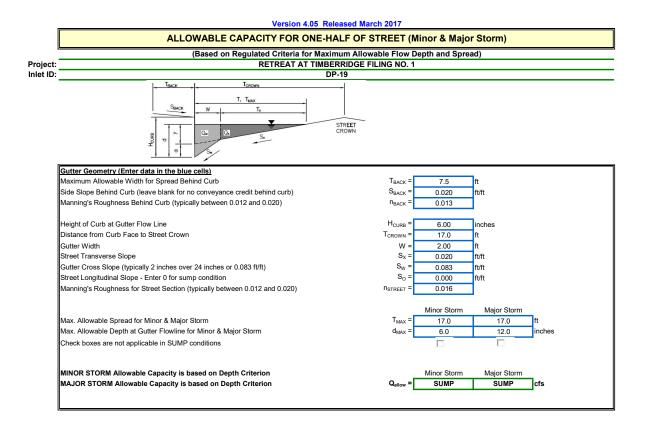
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	_
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	13.0	cfs



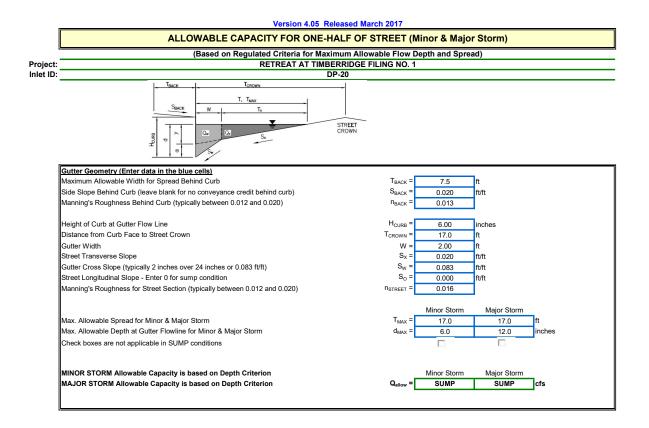
CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	3.0	cfs



CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.0	12.0	cfs



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00]
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	3.0	cfs



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	7.0	22.0	cfs

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	4.0	cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00]
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.0	21.0	cfs

Straight Culvert

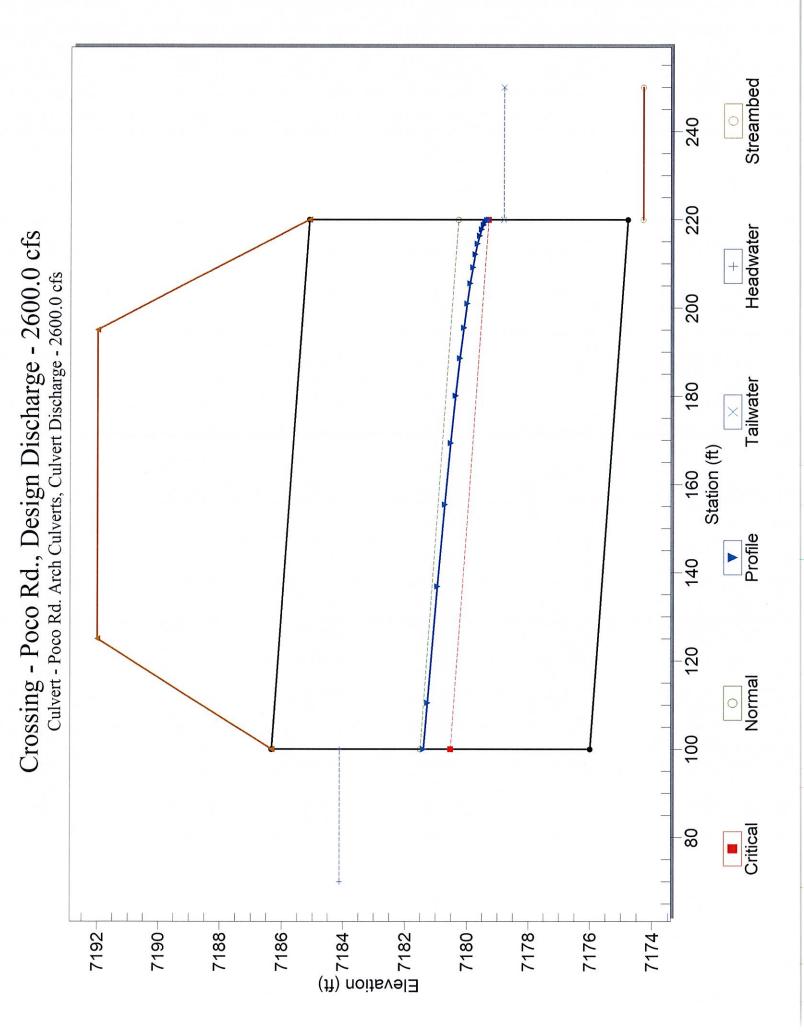
Inlet Elevation (invert): 7176.00 ft, Outlet Elevation (invert): 7174.80 ft Culvert Length: 120.01 ft, Culvert Slope: 0.0100

Site Data - Poco Rd. Arch Culverts

Site Data Option: Culvert Invert Data Inlet Station: 100.00 ft Inlet Elevation: 7176.00 ft Outlet Station: 220.00 ft Outlet Elevation: 7174.80 ft Number of Barrels: 2

Culvert Data Summary - Poco Rd. Arch Culverts

Barrel Shape: Arch, Open Bottom Barrel Span: 24.00 ft Barrel Rise: 10.33 ft Barrel Material: Corrugated Steel Embedment: 0.00 in Barrel Manning's n: 0.0240 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None


Tailwater Channel Data - Poco Rd.

Tailwater Channel Option: Irregular Channel

Roadway Data for Crossing: Poco Rd.

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 140.00 ft Crest Elevation: 7192.00 ft Roadway Surface: Paved Roadway Top Width: 70.00 ft

.

HY-8 Analysis Results

Customized Table

Culvert Crossing: Poco Rd.

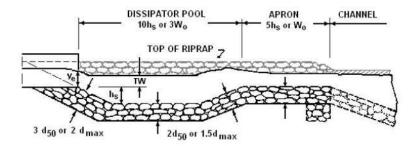
Discharg e Names	Discharg			Control	Normal Depth (ft)				Velocity	Tailwater Velocity (ft/s)
DBPS 10 Yr	630.00	7179.04	2.99	3.04	2.08	1.76	1.87	2.37	7.13	6.33
DBPS 100 Yr	2170.00	7183.13	6.94	7.13	4.79	4.02	4.02	4.15	11.80	9.79
FEMA 100 Yr	2600.00	7184.12	7.87	8.12	5.50	4.53	4.53	4.53	12.66	10.45

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
630.00	7176.67	2.37	6.33	1.77	0.88
2170.00	7178.45	4.15	9.79	3.11	0.98
2600.00	7178.83	4.53	10.45	3.39	0.99

Table 3 - Downstream Channel Rating Curve (Crossing: Poco Rd.)

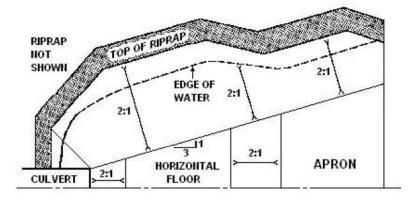
Riprap Basin and Apron

The input variables required for this calculation is the following:


 Condition to compute Basin Outlet Velocity — The user can select *Best Fit Curve* or *Envelope Curve*.

The user should choose *Best Fit Curve* if the flow downstream of the basin is believed to be supercritical. If the flow downstream is believed to be subcritical, the user should choose *Envelope Curve*.

- D50 of the Riprap Mixture Mean diameter (by weight) of the riprap to be used.
- DMax of the Riprap Mixture Maximum diameter (by weight) of the riprap to be used.


The design criteria for this basin was based on model runs in which D50/YE ranged from 0.1 to 0.7; values outside this range are rejected by the program.

The following figures show riprap basins and aprons.

Variables from the figure

- h_s Dissipator pool depth
- W₀ Culvert width
- TW Tailwater depth
- y_e Equivalent brink (outlet) depth
- d₅₀ Median rock size by weight
- d max Max rock size by weight

HY-8 Energy Dissipation Report

External Energy Dissipator

Parameter	Value	Units
Select Culvert and Flow		
Crossing	Poco Rd.	
Culvert	Poco Rd. Arch Culverts	
Flow	2600.00	cfs
Culvert Data		
Culvert Width (including multiple	48.0	ft
barrels)		
Culvert Height	10.3	ft
Outlet Depth	4.53	ft
Outlet Velocity	12.66	ft/s
Froude Number	1.05	
Tailwater Depth	4.53	ft
Tailwater Velocity	10.45	ft/s
Tailwater Slope (SO)	0.0100	
External Dissipator Data		
External Dissipator Category	Streambed Level Structures	
External Dissipator Type	Riprap Basin	
Restrictions		
Froude Number	<3	
Input Data		
Condition to be used to Compute	Envelope Curve	
Basin Outlet Velocity		
D50 of the Riprap Mixture		
Note:	Minimum HS/D50 = 2 is Obtained if	
	D50 = 1.533 ft	
D50 of the Riprap Mixture	1.500	ft
DMax of the Riprap Mixture	2.000	ft
Results		
Brink Depth	4.528	ft
Brink Velocity	12.656	ft/s
Depth (YE)	10.135	ft
Riprap Thickness	3.000	ft
Riprap Foreslope	4.5000	ft
Check HS/D50		
Note:	OK if HS/D50 > 2.0	
HS/D50	2.183	
HS/D50 Check	HS/D50 is OK	
Check D50/YE		
Note:	OK if 0.1 < D50/YE < 0.7	
Check D50/YE	0.148	
D50/YE Check	D50/YE is OK	
Basin Length (LB)		ft
Basin Lengt <u>h (LB)</u> Basin Width	81.078	
Basin Width	81.078 74.322	ft
Basin Width Apron Length	81.078 74.322 20.270	ft ft
Basin Width Apron Length Pool Length	81.078 74.322 20.270 60.809	ft ft ft
Basin Width Apron Length Pool Length Pool Depth (HS)	81.078 74.322 20.270 60.809 3.275	ft ft
Basin Width Apron Length Pool Length Pool Depth (HS) TW/YE	81.078 74.322 20.270 60.809 3.275 0.447	ft ft ft
Basin Width Apron Length Pool Length Pool Depth (HS)	81.078 74.322 20.270 60.809 3.275	ft ft ft

Average Velocity with Yc 9.857 ft/s	

Darrell Sanders PE, Chief Engineer Contech Engineered Solutions LLC 9025 Centre Pointe Drive, Suite 400 West Chester, OH 45069 Phone: (513) 645-7511 dsanders@conteches.com www.ContechES.com

RE: Timber Ridge Twin MULTI-PLATE™ Structures

Dear Sir or Madam:

The most complete reference on design and service life for galvanized corrugated steel structures is provided by the National Corrugated Steel Pipe Association (NCSPA).

On their website they provide a "plate service life calculator". When the structure in question is an open bottom structure as are the twin barrels of the Timber Ridge project, the calculator uses the most appropriate method to calculate the service life, which in this case is the American Iron and Steel Institute's method (AISI).

Using this method the 8 gage open bottom structures will provide an estimated service life of over 75 years, with a substantial safety factor, as long as the pH of the water and backfill material is 6.0 or above and the Resistivity of the water and backfill material is 2000 ohm-cm or above.

See the attached report.

The backfill material should be well graded granular material meeting AASHTO M 145 classes of A-1, A-2-4, or A-2-5

If road salts will be used above the structures, an impermeable membrane would be recommended for use in the fill above the crown of the structure.

Sincerely,

A. R. Dom

Darrell Sanders, PE Contech Engineered Solutions, LLC

Service Life Calculator (Plate)

Gage: 12	100 Years
Gage: 10	100 Years
Gage: 8	100 Years
Gage: 7	100 Years
Gage: 5	100 Years
Gage: 3	100 Years
Gage: 1	100 Years
Gage: 5/16	100 Years
Gage: 3/8	100 Years

Calculation Method	Desired Service Life (Years)
AISI	75
Resistivity (Ohm-cm)	
2000	
рН	Abrasion Level
6.0	Level 1: Non-abrasive
Is the culvert an open-bottom structure?	Is the culvert asphalt coated in 🖸
Yes 🗸	No
If an open bottom structure is selected the service life is calculated using the AISI methodology.	
Are concrete paved inverts being	Will road salts be used near the structure?
installed?	No 🗸
No 🗸	

Real Deal On Steel E-News

PRESS RELEASE: NCSPA ANNOUNCES MICHAEL MCGOUGH AS NEW EXECUTIVE DIRECTOR

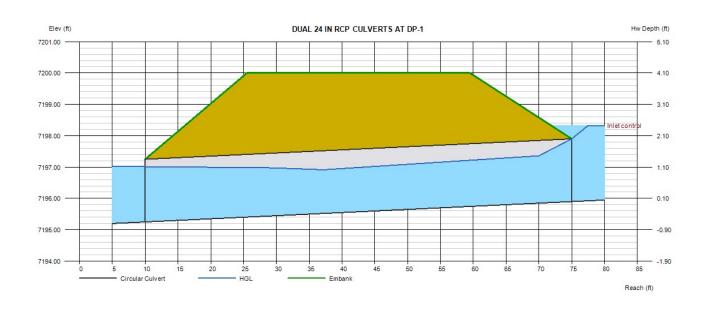
FOR IMMEDIATE RELEASE: 01/13/2020 Diana Brooks National Corrugated Steel Pipe Association (NCSPA) 540-743-1354 dbrooks@NCSPA.org NCSPA ANNOUNCES MICHAEL MCGOUGH AS NEW EXECUTIVE DIRECTOR Dallas, Texas: The National Corrugated Steel Pipe Association (NCSPA) announced that its Board of Directors has promoted Michael McGough as Executive Director.... Read More

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Mar 16 2020

DUAL 24 IN RCP CULVERTS AT DP-1

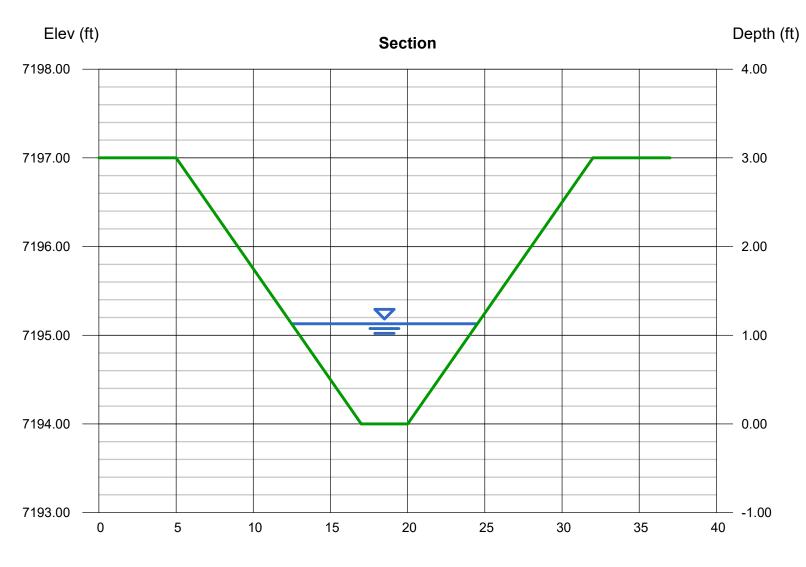

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7195.25 = 65.00 = 1.00	Calculations Qmin (cfs) Qmax (cfs)	= 0.00 = 36.00
Invert Elev Up (ft) Rise (in)	= 7195.90 = 24.0	Tailwater Elev (ft)	= (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 36.00
No. Barrels	= 2	Qpipe (cfs)	= 36.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.14
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 6.99
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 7197.01
		HGL Up (ft)	= 7197.43
Embankment		Hw Elev (ft)	= 7198.33
Top Elevation (ft)	= 7200.00	Hw/D (ft)	= 1.21
\pm \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot	04.00		

Т μ Top Width (ft) Crest Width (ft)

=	7200.00
=	34.00
=	50.00

HGL OP (II)
Hw Elev (ft)
Hw/D (ft)
Flow Regime

=	36.00
=	36.00
=	0.00
=	6.14
=	6.99
=	7197.01
=	7197.43
=	7198.33
=	1.21
=	Inlet Control



Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Grass Swale with TRM into Pond 1

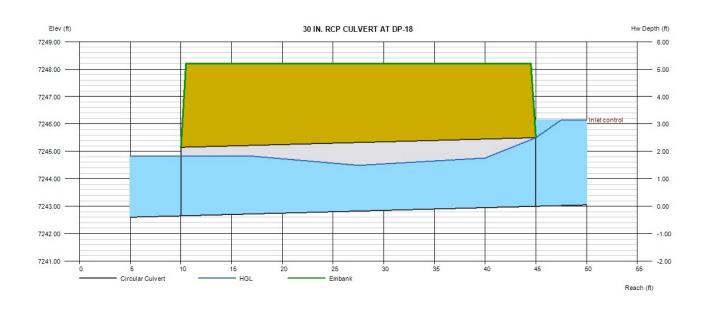
Trapezoidal		Highlighted	
Bottom Width (ft)	= 3.00	Depth (ft)	= 1.13
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 40.00
Total Depth (ft)	= 3.00	Area (sqft)	= 8.50
Invert Elev (ft)	= 7194.00	Velocity (ft/s)	= 4.71
Slope (%)	= 1.50	Wetted Perim (ft)	= 12.32
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.13
		Top Width (ft)	= 12.04
Calculations		EGL (ft)	= 1.47
Compute by:	Known Q		
Known Q (cfs)	= 40.00		

Reach (ft)

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Mar 18 2019


30 IN. RCP CULVERT AT DP-18

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7242.65 = 35.00 = 1.00 = 7243.00 = 30.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.00 = 30.00 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 30.00
No. Barrels	= 1	Qpipe (cfs)	= 30.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.60
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.64
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7244.83
		HGL Up (ft)	= 7244.87
Embankment		Hw Elev (ft)	= 7246.15
Top Elevation (ft)	= 7248.20	Hw/D (ft)	= 1.26

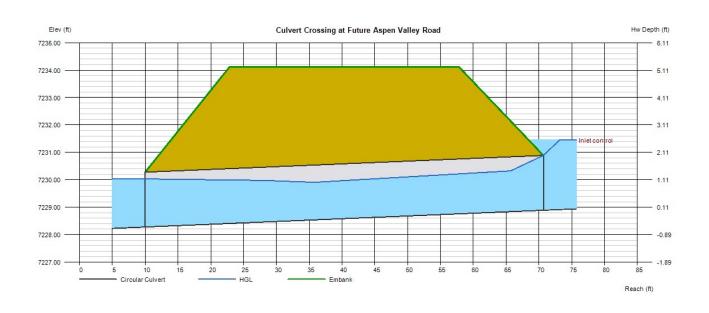
Top Width (ft) Crest Width (ft)

=	7248.20
=	34.00
=	50.00

		00100
Qpipe (cfs)	=	30.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	6.60
Veloc Up (ft/s)	=	7.64
HGL Dn (ft)	=	7244.83
HGL Up (ft)	=	7244.87
Hw Elev (ft)	=	7246.15
Hw/D (ft)	=	1.26
Flow Regime	=	Inlet Control

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

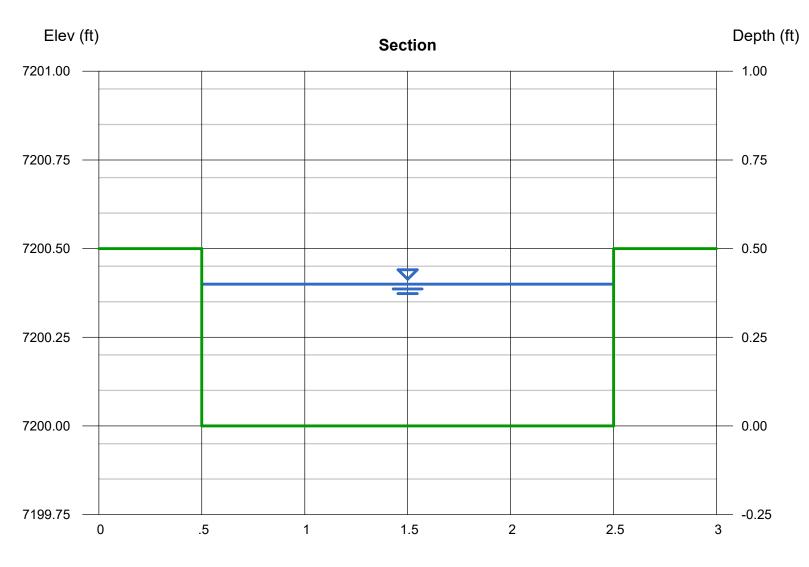

Culvert Crossing at Future Aspen Valley Road

Invert Elev Dn (ft)	= 7228.28	Calculations	
Pipe Length (ft)	= 60.68	Qmin (cfs)	= 0.00
Slope (%)	= 1.01	Qmax (cfs)	= 35.00
Invert Elev Up (ft)	= 7228.89	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		()
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 35.00
No. Barrels	= 2	Qpipe (cfs)	= 35.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.00
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 6.90
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7230.03
		HGL Up (ft)	= 7230.40
Embankment		Hw Elev (ft)	= 7231.46
Top Elevation (ft)	= 7234.11	Hw/D (ft)	= 1.28

Top Width (ft) Crest Width (ft)

=	7234.11
=	35.00
=	150.00

Qtotal (cfs)	=	35.00
Qpipe (cfs)	=	35.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	6.00
Veloc Up (ft/s)	=	6.90
HGL Dn (ft)	=	7230.03
HGL Up (ft)	=	7230.40
Hw Elev (ft)	=	7231.46
Hw/D (ft)	=	1.28
Flow Regime	=	Inlet Control



Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

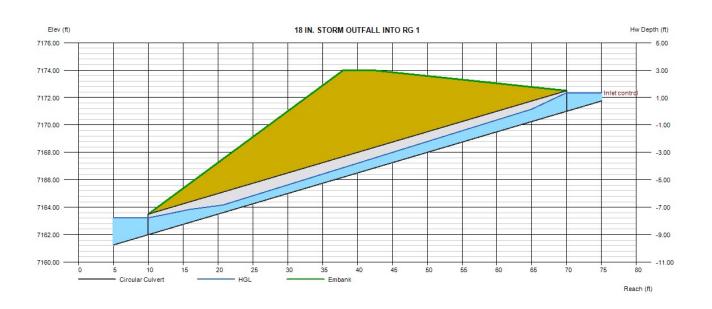
24 in. Wide Concrete Chase Section - Rear of lots 16-21

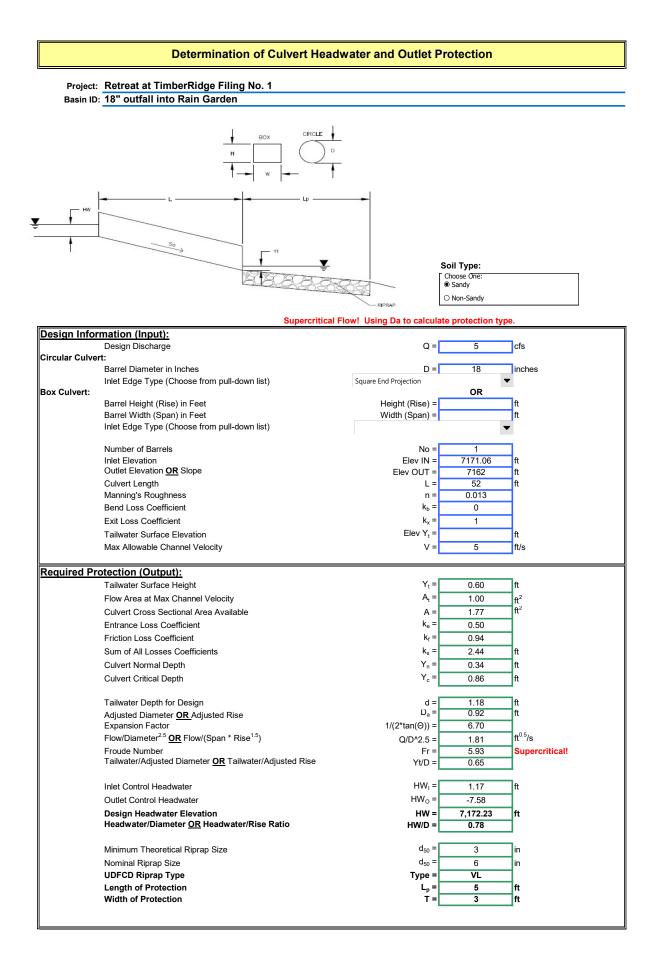
Rectangular		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.40
Total Depth (ft)	= 0.50	Q (cfs)	= 5.500
		Area (sqft)	= 0.80
Invert Elev (ft)	= 7200.00	Velocity (ft/s)	= 6.88
Slope (%)	= 2.00	Wetted Perim (ft)	= 2.80
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.50
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 1.13
Compute by:	Known Q		
Known Q (cfs)	= 5.50		

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Jul 18 2019

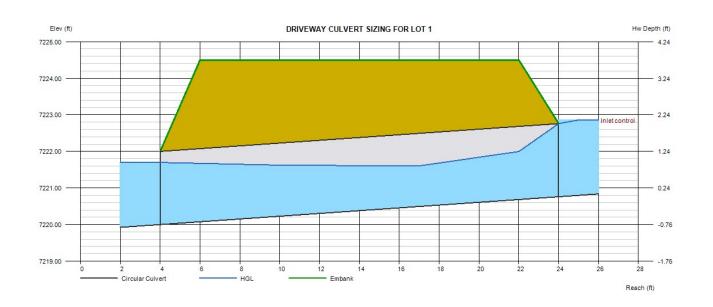

18 IN. STORM OUTFALL INTO RG 1


Invert Elev Dn (ft)	= 7162.00	Calculations	
Pipe Length (ft)	= 60.00	Qmin (cfs)	= 6.00
Slope (%)	= 15.00	Qmax (cfs)	= 6.00
Invert Elev Up (ft)	= 7171.00	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 6.00
No. Barrels	= 1	Qpipe (cfs)	= 6.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 3.89
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.12
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7163.22
		HGL Up (ft)	= 7171.95
Embankment		Hw Elev (ft)	= 7172.35
Ton Elevation (ft)	- 7174 00		- 0.90

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	7174.00
=	4.00
=	15.00

0 0		
Qtotal (cfs)	=	6.00
Qpipe (cfs)	=	6.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	3.89
Veloc Up (ft/s)	=	5.12
HGL Dn (ft)	=	7163.22
HGL Up (ft)	=	7171.95
Hw Elev (ft)	=	7172.35
Hw/D (ft)	=	0.90
Flow Regime	=	Inlet Control


DRIVEWAY CULVERT SIZING FOR LOT 1

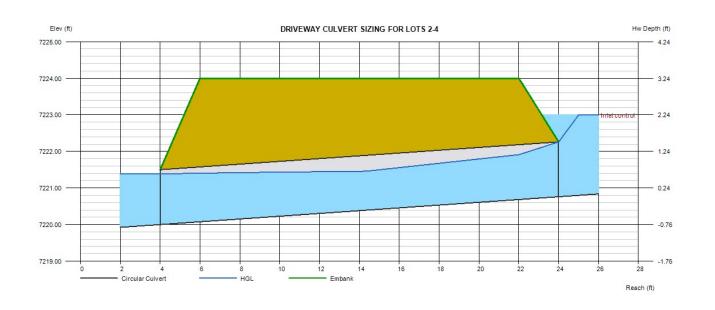
Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft)	= 7220.00 = 20.00 = 3.80 = 7220.76	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 15.00 = 15.00 = (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 15.00
No. Barrels	= 1	Qpipe (cfs)	= 15.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 5.28
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 6.41
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 7221.70
		HGL Up (ft)	= 7222.15
Embankment		Hw Elev (ft)	= 7222.86
Top Elevation (ft)	= 7224.50	Hw/D (ft)	= 1.05
	10.00		

Top Width (ft) Crest Width (ft)

=	7224.50
=	16.00
=	20.00

15.00
15.00
0.00
5.28
6.41
7221.70
7222.15
7222.86
1.05
Inlet Control

Friday, Jul 19 2019


DRIVEWAY CULVERT SIZING FOR LOTS 2-4

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7220.00 = 20.00 = 3.80	Calculations Qmin (cfs)	= 11.00 = 11.00
Slope (%)		Qmax (cfs)	
Invert Elev Up (ft)	= 7220.76	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 11.00
No. Barrels	= 1	Qpipe (cfs)	= 11.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	 Circular Concrete 	Veloc Dn (ft/s)	= 6.45
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 6.90
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 7221.39
		HGL Up (ft)	= 7222.03
Embankment		Hw Elev (ft)	= 7223.00
Top Elevation (ft)	= 7224.00	Hw/D (ft)	= 1.49

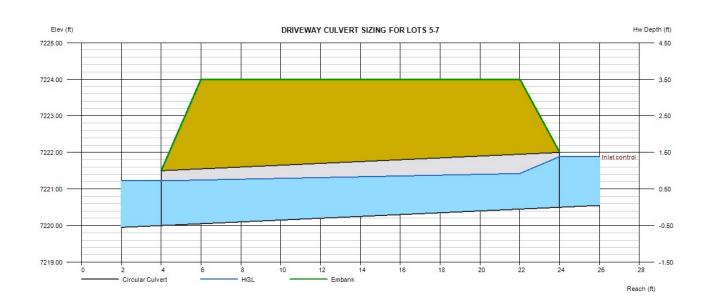
=levation (It) rop Top Width (ft) Crest Width (ft)

=	7224.00
=	16.00
=	20.00

Qpipe (cfs)	= 11.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 6.45
Veloc Up (ft/s)	= 6.90
HGL Dn (ft)	= 7221.39
HGL Up (ft)	= 7222.03
Hw Elev (ft)	= 7223.00
Hw/D (ft)	= 1.49
Flow Regime	= Inlet Control

Friday, Jul 19 2019

DRIVEWAY CULVERT SIZING FOR LOTS 5-7


Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft)	= 7220.00 = 20.00 = 2.50 = 7220.50	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 6.00 = 6.00 = (dc+D)/2
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 6.00
No. Barrels	= 1	Qpipe (cfs)	= 6.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 3.89
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 5.12
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 7221.22
		HGL Up (ft)	= 7221.45
Embankment		Hw Elev (ft)	= 7221.89
Top Elevation (ft)	= 7224.00	Hw/D (ft)	= 0.92

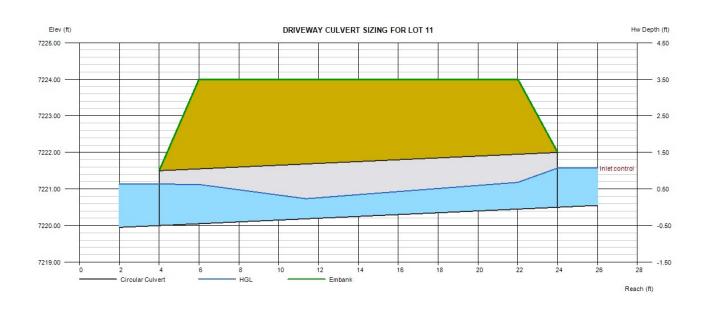
=levation (It) γp Top Width (ft) Crest Width (ft)

=	7224.00
=	16.00
=	20.00

00			

	0.12
HGL Dn (ft)	= 7221.22
HGL Up (ft)	= 7221.45
Hw Elev (ft)	= 7221.89
Hw/D (ft)	= 0.92
Flow Regime	= Inlet Control

Friday, Jul 19 2019


DRIVEWAY CULVERT SIZING FOR LOT 11

Invert Elev Dn (ft)	= 7220.00	Calculations	
Pipe Length (ft)	= 20.00	Qmin (cfs)	= 4.00
Slope (%)	= 2.50	Qmax (cfs)	= 4.00
Invert Elev Up (ft)	= 7220.50	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 4.00
No. Barrels	= 1	Qpipe (cfs)	= 4.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 2.79
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 4.42
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 7221.13
		HGL Up (ft)	= 7221.27
Embankment		Hw Elev (ft)	= 7221.57
Top Elevation (ft)	= 7224.00	Hw/D (ft)	= 0.71

valion (it) Top Width (ft) Crest Width (ft)

=	7224.00
=	16.00
=	20.00

ingingine a	
Qtotal (cfs)	= 4.00
Qpipe (cfs)	= 4.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 2.79
Veloc Up (ft/s)	= 4.42
HGL Dn (ft)	= 7221.13
HGL Up (ft)	= 7221.27
Hw Elev (ft)	= 7221.57
Hw/D (ft)	= 0.71
Flow Regime	= Inlet Control

Aspen Valley Road - West side of roadway (Sta. 1+50 to Sta. 11+50)

	Erosion Control Blanket (ECB)	Turf Reinforcement Mat (TRM)	Revegetation - Grass line	
	(North American Green - SC150)	(North American Green - P300)	(Native Seed Mix)	
Given:	(Temporary - 24 months)	(Permanent)		
Design Flow (cfs)	22.0	22.0	5.5	
Permissible Shear (lbs/ft. ²)	2.0	8.0	0.1	
Permissible Velocity (ft./sec.)	8.0	16.0	3.0	
Safety Factor	1	1	1	
Ditch Slope (Max.)	3.8%	3.8%	1.5%	
Ditch Section (24 in. depth)	V-Ditch	V-Ditch	V-Ditch	
Flow Area (ft. ²)	2.89	9.00	4.00	
Wetted Perimeter (ft.)	7.02	12.39	8.26	
Hydraulic Radius	0.41	0.73	0.48	
Mannings n 0.035		0.030	0.030	
Depth of Flow (max.) 0.9		1.5	1.0	
Calculations:				
Shear Stress (lbs/ft. ²)	2.0	3.6	0.9	
Velocity (ft./sec.) 7.6		2.4	1.4	
Allowed Flow (cfs)	13.3	70.4	15.0	

Aspen Valley Road - West side of roadway (Sta. 11+50 to Sta. 14+39)

	Erosion Control Blanket (ECB) (North American Green - SC150)	Turf Reinforcement Mat (TRM)	Revegetation - Grass line	
	• • •	(North American Green - P300)	(Native Seed Mix)	
Given:	(Temporary - 24 months)	(Permanent)		
Design Flow (cfs)	5.5	5.5	5.5	
Permissible Shear (lbs/ft. ²)	2.0	8.0	0.1	
Permissible Velocity (ft./sec.)	8.0	16.0	3.0	
Safety Factor	1	1	1	
Ditch Slope (Max.)	1.5%	1.5%	1.5%	
Ditch Section (24 in. depth)	V-Ditch	V-Ditch	V-Ditch	
Flow Area (ft. ²)	4.00	4.00	4.00	
Wetted Perimeter (ft.)	8.26	8.26	8.26	
Hydraulic Radius	0.48	0.48	0.48	
Mannings n	0.035	0.030	0.030	
Depth of Flow (max.)	1.0	1.0	1.0	
Calculations:				
Shear Stress (lbs/ft. ²)	0.9	0.9	0.9	
Velocity (ft./sec.)	1.4	1.4	1.4	
Allowed Flow (cfs)	12.9	15.0	15.0	

Aspen Valley Road - East side of roadway (Sta. 1+50 to Sta. 4+50)

	Erosion Control Blanket (ECB)	Turf Reinforcement Mat (TRM)	Revegetation - Grass line	
	(North American Green - SC150)	(North American Green - P300)	(Native Seed Mix)	
Given:	(Temporary - 24 months)	(Permanent)		
Design Flow (cfs)	3.0	3.0	3.0	
Permissible Shear (lbs/ft. ²)	2.0	8.0	0.1	
Permissible Velocity (ft./sec.)	8.0	16.0	3.0	
Safety Factor	1	1	1	
Ditch Slope (Max.)	3.8%	3.8%	0.5%	
Ditch Section (24 in. depth)	V-Ditch	V-Ditch	V-Ditch	
Flow Area (ft. ²)	1.00	1.00	1.00	
Wetted Perimeter (ft.)	4.13	4.13	4.13	
Hydraulic Radius	0.24	0.24	0.24	
Mannings n	0.035	0.030	0.030	
Depth of Flow (max.)	0.5	0.5	0.5	
Calculations:				
Shear Stress (lbs/ft. ²)	1.2	1.2	0.2	
Velocity (ft./sec.) 3.0		3.0	3.0	
Allowed Flow (cfs)	3.2	3.8	1.4	

Poco Road - North side of roadway (Sta. 1+50 to Sta. 4+50)

	Erosion Control Blanket (ECB)	Turf Reinforcement Mat (TRM)	Revegetation - Grass line	
	(North American Green - SC150)	(North American Green - P300)	(Native Seed Mix)	
Given:	(Temporary - 24 months)	(Permanent)		
Design Flow (cfs)	15.0	15.0	3.0	
Permissible Shear (lbs/ft. ²)	2.0	8.0	0.1	
Permissible Velocity (ft./sec.)	8.0	16.0	3.0	
Safety Factor	1	1	1	
Ditch Slope (Max.)	4.0%	4.0%	0.5% V-Ditch	
Ditch Section (24 in. depth)	V-Ditch	V-Ditch		
Flow Area (ft. ²)	4.00	4.00	1.00	
Wetted Perimeter (ft.)	8.26	8.26	4.13	
Hydraulic Radius	0.48	0.48	0.24	
Mannings n	0.035	0.030	0.030	
Depth of Flow (max.)	1.0	1.0	0.5	
Calculations:				
Shear Stress (lbs/ft. ²)	2.5	2.5	0.2	
Velocity (ft./sec.)	3.8	3.8	3.0	
Allowed Flow (cfs)	21.0	24.5	1.4	

Poco Road - Channel into pond north of roadway (Sta. 8+00 to Sta. 10+00)

	Erosion Control Blanket (ECB)	Turf Reinforcement Mat (TRM)	Revegetation - Grass line	
	(North American Green - SC150)	(North American Green - P300)	(Native Seed Mix)	
Given:	(Temporary - 24 months)	(Permanent)		
Design Flow (cfs)	40.0	40.0	2.0	
Permissible Shear (lbs/ft. ²)	2.0	8.0	0.1	
Permissible Velocity (ft./sec.)	8.0	16.0	3.0	
Safety Factor	1	1	1	
Ditch Slope (Max.)	1.5%	1.5%	1.5%	
Ditch Section (36 in. depth)	Trapezoidal-Ditch (3' wide)	Trapezoidal-Ditch (3' wide)	V-Ditch	
Flow Area (ft. ²)	10.66	8.14	1.00	
Wetted Perimeter (ft.)	13.74	9.09	4.13	
Hydraulic Radius	0.78	0.90	0.24	
Mannings n 0.035		0.030	0.030	
Depth of Flow (max.) 1.3		1.1	0.5	
Calculations:				
Shear Stress (lbs/ft. ²)	1.2	1.0	0.5	
Velocity (ft./sec.) 3.8		4.9	2.0	
Allowed Flow (cfs)	46.9	46.0	2.4	

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Table

Time Intensity

8.68	6.93	5.19	4.16	3.44	2.42	0.67
Ś	10	20	30	4 0	09	120

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

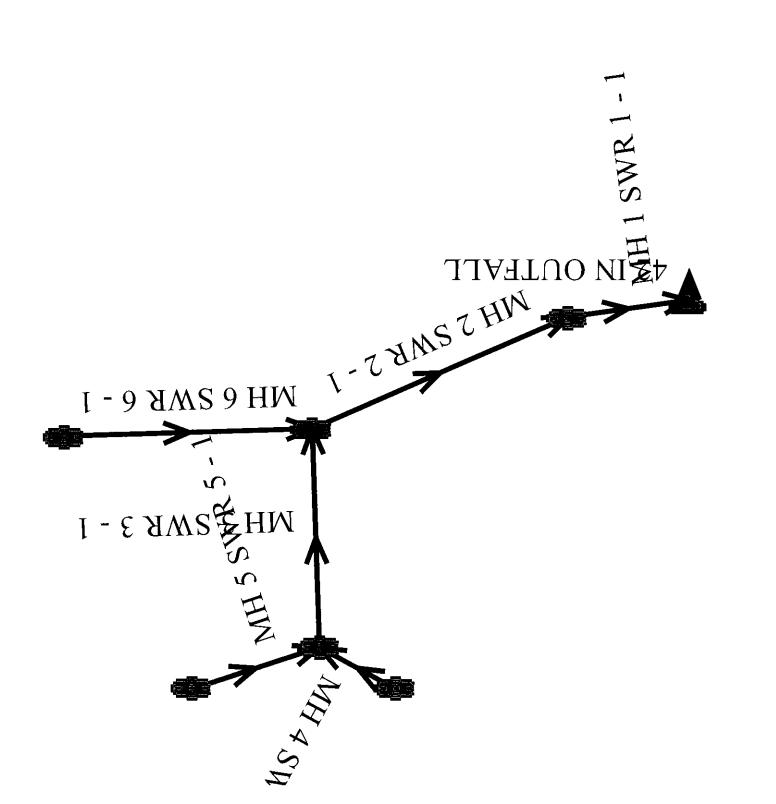
Tailwater Elevation (ft): 7168.91

•

		•					5~4~	part & Spec.	5		
	Full Flov	Full Flow Capacity	Critic	Critical Flow		Nor /	Normal Flow			-	
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity Depth (fps) (in)	Depth (in)	Depth Velocity Depth Velocity Froude (in) (fps) (in) (fps) Number	elocity Froude (fps) Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
MH I SWR I - 1	142.67	14.83	32.32	9.31	21.46	14.96	2.22	Pressurized	74.00	28.00	
MH 2 SWR 2 - 1	352.36	36.62	32.32	9.31	13.06	28.99	5.76	Supercritical Jump	74.00	2.87	- - - - - -
MI16 SWR 6 - 1	115.84	16.39	28.64	8.96	17.28	16.10	2.68	Supercritical 54.00	54.00	0.00	
MII 3 SWR 3 - 1	41.13	8.38	20.44	7.02	16.89	8.78	1.45	Pressurized 25.00	25.00	41.77	
MH 5 SWR 5 - 1	50.37	10.26	19.14	6.66	13.87	16.0	1.85	Supercritical Jump	22.00	4.65	
MH 4 SWR 4 - 1	22.34	12.64	7.90	4.02	4.45	8.81	3.03	Pressurized 3.00	3.00	6.86	

A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
If the sewer is pressurized, full flow represents the pressurized flow conditions.

Grade Line Summary:


Tailwater Elevation (ft): 7168.91

	Invert Elev.	Elev.	Downstre	Downstream Manhole Losses	HGL	L		EGL	
Element Name	Downstream Upstrea (ft) (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
MH 1 SWR 1 - 1	7164.75	7165.31	0.00	0.00	7168.91	7169.06	7169.83	0.15	7169.98
MH 2 SWR 2 - 1	7165.30	7178.00	0.07	0.00	7169.13	7180.69	7170.05	11.99	7182.04
MH 6 SWR 6 - 1	7178.50	7179.40	0.07	0.01	7180.78	7183.06	7183.97	0.00	7183.97
MH 3 SWR 3 - 1	7179.00	7179.42	0.33	0.00	7181.97	7182.13	7182.37	0.15	7182.53
MH 5 SWR 5 - 1	7179.92	7180.31	0.26	0.00	7182.48	7182.48	7182.79	0.06	7182.84
MH 4 SWR 4 - 1	7180.42	7180.73	0.03	0.00	7182.51	7182.52	7182.56	0.01	7182.56

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer. Bend loss = Bend K * V_fi ^ 2/(2*g) Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K * V_fi ^ 2/(2*g). Friction loss is always Upstream EGL Downstream EGL. •
 - •
- .
 - •

•

- -----

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Table

Time	Intensity
5	8.68
10	6.93
20	5.19
30	4.16
40	3.44
60	2.42
120	0.67

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

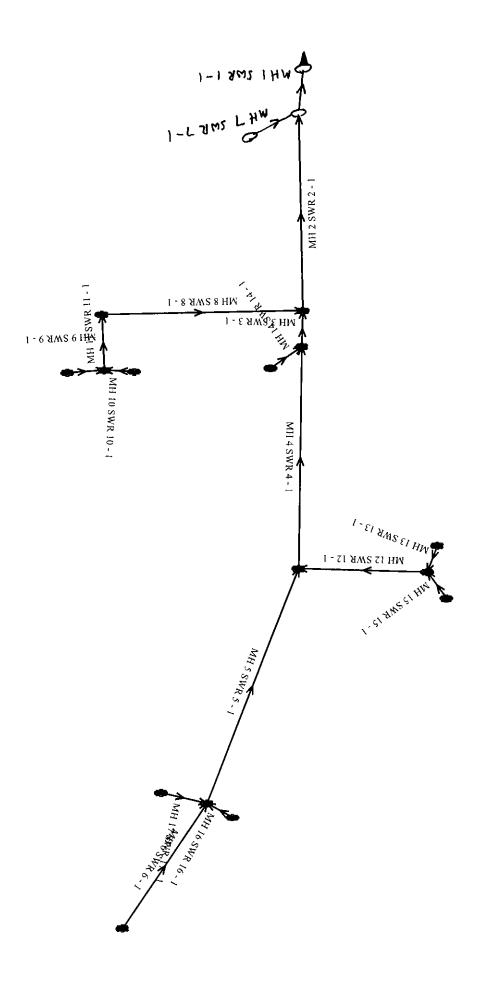
Tailwater Elevation (ft): 7168.91

Sewer Flow Summary:

	Full Flov	w Capacity	Critic	al Flow		Noi	mal Flow	/			
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
MH 1 SWR 1 - 1	203.69	16.21	40.67	11.27	27.59	17.12	2.20	Pressurized	128.00	51.14	
MH 2 SWR 2 - 1	176.40	14.04	37.88	10.25	27.30	14.77	1.91	Supercritical Jump	109.00	74.57	
MH 3 SWR 3 - 1	100.88	10.49	36.11	10.80	32.41	11.92	1.28	Supercritical	95.00	0.00	
MH 14 SWR 14 - 1	44.22	14.07	16.17	6.22	9.28	12.49	2.90	Supercritical	14.00	0.00	
MH 4 SWR 4 - 1	123.55	12.84	34.09	9.92	25.20	13.77	1.83	Supercritical	83.00	0.00	
MH 12 SWR 12 - 1	41.13	8.38	19.58	6.78	16.04	8.61	1.47	Supercritical Jump	23.00	69.95	
MH 13 SWR 13 - 1	11.54	6.53	13.15	5.78	11.03	7.05	1.41	Supercritical	8.00	0.00	
MH 15 SWR 15 - 1	22.68	7.22	18.82	7.19	16.81	8.09	1.26	Supercritical	19.00	0.00	
MH 5 SWR 5 - 1	109.89	15.55	31.02	10.03	19.92	16.20	2.46	Supercritical	65.00	0.00	
MH 17 SWR 17 - 1	22.68	7.22	15.56	6.03	13.02	7.47	1.41	Supercritical	13.00	0.00	
MH 16 SWR 16 - 1	24.92	14.10	11.35	5.11	6.01	11.60	3.38	Supercritical	6.00	0.00	
MH 6 SWR 6 - 1	89.73	12.69	27.61	8.59	19.21	13.04	2.03	Supercritical	50.00	0.00	
MH 8 SWR 8 - 1	45.37	14.44	18.82	7.19	10.83	13.80	2.92	Supercritical Jump	19.00	52.97	
MH 9 SWR 9 - 1	22.68	7.22	18.82	7.19	16.81	8.09	1.26	Supercritical	19.00	0.00	
MH 11 SWR 11 - 1	22.68	7.22	16.75	6.41	14.25	7.72	1.37	Supercritical	15.00	0.00	
MH 10 SWR 10 - 1	24.92	14.10	9.18	4.41	4.88	10.34	3.38	Supercritical	4.00	0.00	
MH 7 SWR 7 - 1	82.26	16.76	19.14	6.66	10.60	14.19	3.11	Supercritical	22.00	0.00	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.


• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Grade Line Summary:

Tailwater Elevation (ft): 7168.91

	Invert	Elev.		eam Manhole losses	HG	Ĺ		EGL	
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
MH 1 SWR 1 - 1	7162.50	7163.52	0.00	0.00	7168.91	7169.31	7170.52	0.40	7170.92
MH 2 SWR 2 - 1	7165.57	7173.78	0.06	0.44	7170.26	7176.94	7171.43	7.14	7178.57
MH 3 SWR 3 - 1	7174.27	7174.73	0.08	0.00	7177.01	7177.74	7179.18	0.37	7179.55
MH 14 SWR 14 - 1	7176.73	7177.83	0.12	0.00	7177.86	7179.55	7179.92	0.00	7179.92
MH 4 SWR 4 - 1	7175.23	7182.57	0.06	0.36	7178.15	7185.41	7180.27	6.67	7186.94
MH 12 SWR 12 - 1	7184.07	7185.41	0.45	0.00	7187.05	7187.05	7187.39	0.37	7187.76
MH 13 SWR 13 - 1	7186.41	7186.60	0.34	0.00	7187.39	7187.70	7188.10	0.11	7188.22
MH 15 SWR 15 - 1	7185.91	7186.14	0.22	0.00	7187.31	7187.71	7188.33	0.19	7188.51
MH 5 SWR 5 - 1	7186.15	7199.87	0.07	0.00	7187.81	7202.46	7191.89	12.13	7204.02
MH 17 SWR 17 - 1	7202.13	7202.38	0.35	0.00	7203.26	7203.68	7204.04	0.20	7204.24
MH 16 SWR 16 - 1	7202.38	7202.67	0.24	0.00	7202.88	7204.79	7204.97	0.00	7204.97
MH 6 SWR 6 - 1	7200.37	7204.60	0.04	0.54	7203.03	7206.90	7204.61	3.44	7208.05
MH 8 SWR 8 - 1	7175.00	7191.11	0.75	0.00	7178.75	7192.68	7179.32	14.16	7193.48
MH 9 SWR 9 - 1	7192.65	7193.85	0.75	0.00	7194.05	7195.42	7195.06	1.16	7196.22
MH 11 SWR 11 - 1	7194.35	7194.60	0.47	0.00	7196.33	7196.33	7196.69	0.06	7196.75
MH 10 SWR 10 - 1	7194.85	7195.14	0.11	0.00	7195.52	7196.84	7196.92	0.00	7196.92
MH 7 SWR 7 - 1	7167.14	7167.47	0.20	0.00	7169.51	7170.84	7171.15	0.00	7171.15

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer. ٠
- •
- Bend loss = Bend K * V_fi ^ 2/(2*g) Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K * V_fi ^ 2/(2*g). Friction loss is always Upstream EGL Downstream EGL. ٠
- •

•

System Input Summary

DP-18 Storm Outfall

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Table

Time	Intensity
5	8.68
10	6.93
20	5.19
30	4.16
40	3.44
60	2.42
120	0.67

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 7237.00

Sewer Flow Summary:

		Flow acity		itical low		Nor	mal Flo	w			
Eleme nt Name	Flow (cfs)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Froud e Numb er	Flow Conditio n	Flo w (cfs)	Surcharg ed Length (ft)	Comme nt
MH 1 SWR 1 - 1	41.1 3	8.38	22.4 0	7.63	19.0 2	9.14	1.38	Supercriti cal	30.0 0	0.00	
MH 2 SWR 2 - 1	140. 08	28.54	22.4 0	7.63	9.43	22.71	5.31	Supercriti cal	30.0 0	0.00	Velocit y is Too High
MH 3 SWR 3 - 1	41.1 3	8.38	22.4 0	7.63	19.0 2	9.14	1.38	Supercriti cal	30.0 0	0.00	

Plans show Class IV RCP Pipe

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Grade Line Summary:

Tailwater Elevation (ft): 7237.00

	Invert	Elev.	m M	nstrea anhole osses	HG	L		EGL	
Eleme nt Name	Downstre am (ft)	Upstrea m (ft)	Ben d Los s (ft)	Later al Loss (ft)	Downstrea m (ft)	Upstrea m (ft)	Downstrea m (ft)	Frictio n Loss (ft)	Upstrea m (ft)
MH 1 SWR 1 - 1	7234.57	7234.77	0.00	0.00	7237.00	7237.00	7237.59	0.06	7237.65
MH 2 SWR 2 - 1	7234.79	7242.57	0.06	0.00	7237.06	7244.44	7243.59	1.75	7245.34
MH 3 SWR 3 - 1	7242.57	7243.00	0.06	0.00	7244.50	7244.87	7245.46	0.31	7245.77

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * $V_{fi} ^ 2/(2*g)$
- Lateral loss = $V_{fo} \wedge 2/(2*g)$ Junction Loss K * $V_{fi} \wedge 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

System Input Summary

Exist. Stock Pond Outfall

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Table

Time	Intensity
5	8.68
10	6.93
20	5.19
30	4.16
40	3.44
60	2.42
120	0.67

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 7215.00

Sewer Flow Summary:

		l Flow pacity		itical low		Nor	mal Flo	w			
Eleme nt Name	Flo w (cfs)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Froud e Numb er	Flow Conditio n	Flo w (cfs)	Surcharg ed Length (ft)	Comme nt
MH 1 SWR 1 - 1	22.6 8	7.22	24.0 0	9.55	24.0 0	9.55	0.00	Pressurize d	30.0 0	16.00	
MH 2 SWR 2 - 1	76.9 2	24.49	22.3 5	9.84	10.4 1	22.97	4.99	Supercriti cal Jump	30.0 0	10.79	Velocity is Too High
MH 3 SWR 3 - 1	22.6 8	7.22	24.0 0	9.55	24.0 0	9.55	0.00	Pressurize d	30.0 0	70.59	
MH 4 SWR 4 - 1	22.6 8	7.22	24.0 0	9.55	24.0 0	9.55	0.00	Pressurize d	30.0 0	68.52	
MH 5 SWR 5 - 1	45.3 7	14.44	22.3 5	9.84	14.2 5	15.43	2.73	Supercriti cal	30.0 0	0.00	
MH 6 SWR 6 - 1	21.0 7	11.92	18.0 0	16.98	18.0 0	16.98	0.00	Pressurize d	30.0 0	35.00	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Plans show Class IV RCP Pipe

Grade Line Summary:

Tailwater Elevation (ft): 7215.00

	Invert	Elev.	m M	nstrea anhole osses	HG	L		EGL	
Eleme nt Name	Downstre am (ft)	Upstrea m (ft)	Ben d Los s (ft)	Later al Loss (ft)	Downstrea m (ft)	Upstrea m (ft)	Downstrea m (ft)	Frictio n Loss (ft)	Upstrea m (ft)
MH 1 SWR 1 - 1	7212.15	7212.31	0.00	0.00	7215.00	7215.28	7216.42	0.28	7216.70
MH 2 SWR 2 - 1	7212.38	7223.02	0.16	0.00	7215.44	7224.88	7216.85	9.54	7226.39
MH 3 SWR 3 - 1	7223.02	7223.73	0.16	0.00	7225.13	7226.36	7226.54	1.23	7227.78
MH 4 SWR 4 - 1	7224.22	7224.91	0.07	0.00	7226.43	7227.63	7227.85	1.20	7229.05
MH 5 SWR 5 - 1	7228.86	7237.06	0.07	0.00	7230.05	7238.92	7233.75	6.68	7240.43
MH 6 SWR 6 - 1	7237.06	7238.46	0.22	0.00	7239.15	7241.40	7243.04	2.84	7245.87

• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

- Bend loss = Bend K * $V_{fi} ^ 2/(2*g)$
- Lateral loss = $V_{fo} \wedge 2/(2*g)$ Junction Loss K * $V_{fi} \wedge 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Description

A sediment basin is a temporary pond built on a construction site to capture eroded or disturbed soil transported in storm runoff prior to discharge from the site. Sediment basins are designed to capture site runoff and slowly release it to allow time for settling of sediment prior to discharge. Sediment basins are often constructed in locations that will later be modified to serve as post-construction stormwater basins.

Appropriate Uses

Most large construction sites (typically greater than 2 acres) will require one or more sediment basins for effective

Photograph SB-1. Sediment basin at the toe of a slope. Photo courtesy of WWE.

management of construction site runoff. On linear construction projects, sediment basins may be impractical; instead, sediment traps or other combinations of BMPs may be more appropriate.

Sediment basins should not be used as stand-alone sediment controls. Erosion and other sediment controls should also be implemented upstream.

When feasible, the sediment basin should be installed in the same location where a permanent postconstruction detention pond will be located.

Design and Installation

The design procedure for a sediment basin includes these steps:

- Basin Storage Volume: Provide a storage volume of at least 3,600 cubic feet per acre of drainage area. To the extent practical, undisturbed and/or off-site areas should be diverted around sediment basins to prevent "clean" runoff from mixing with runoff from disturbed areas. For undisturbed areas (both on-site and off-site) that cannot be diverted around the sediment basin, provide a minimum of 500 ft³/acre of storage for undeveloped (but stable) off-site areas in addition to the 3,600 ft³/acre for disturbed areas. For stable, developed areas that cannot be diverted around the sediment basin, storage volume requirements are summarized in Table SB-1.
- Basin Geometry: Design basin with a minimum length-to-width ratio of 2:1 (L:W). If this cannot be achieved because of site space constraints, baffling may be required to extend the effective distance between the inflow point(s) and the outlet to minimize short-circuiting.
 Sediment Basins
- **Dam Embankment**: It is recommended that embankment slopes be 4:1 (H:V) or flatter and no steeper than 3:1 (H:V) in any location.

Sediment Basins	
Functions	
Erosion Control	No
Sediment Control	Yes
Site/Material Management	No

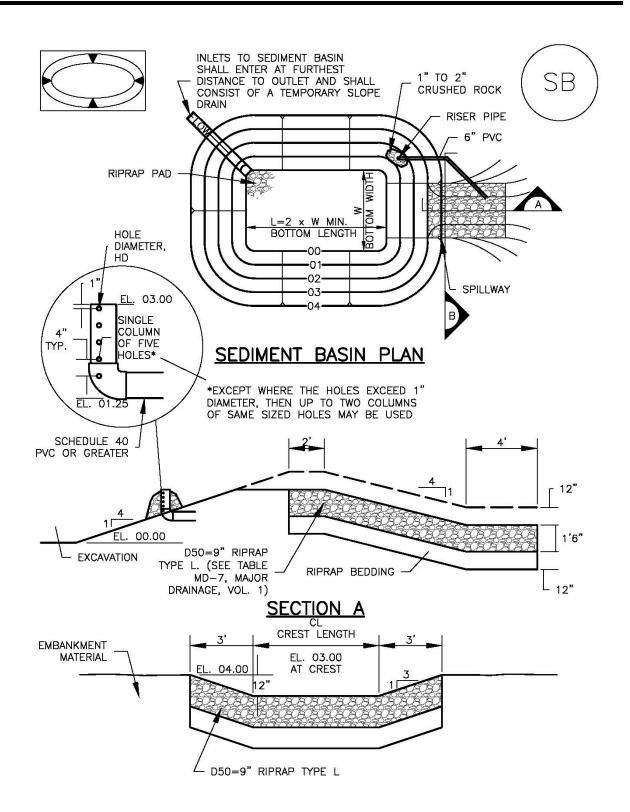
• **Inflow Structure**: For concentrated flow entering the basin, provide energy dissipation at the point of inflow.

Imperviousness (%)	Additional Storage Volume (ft ³) Per Acre of Tributary Area
Undeveloped	500
10	800
20	1230
30	1600
40	2030
50	2470
60	2980
70	3560
80	4360
90	5300
100	6460

Table SB-1. Additional Volume Requirements for Undisturbed and Developed Tributary Areas Draining through Sediment Basins

- **Outlet Works**: The outlet pipe shall extend through the embankment at a minimum slope of 0.5 percent. Outlet works can be designed using one of the following approaches:
 - **Riser Pipe (Simplified Detail):** Detail SB-1 provides a simplified design for basins treating no more than 15 acres.
 - **Orifice Plate or Riser Pipe**: Follow the design criteria for Full Spectrum Detention outlets in the EDB Fact Sheet provided in Chapter 4 of this manual for sizing of outlet perforations with an emptying time of approximately 72 hours. In lieu of the trash rack, pack uniformly sized 1¹/₂ to 2-inch gravel in front of the plate or surrounding the riser pipe. This gravel will need to be cleaned out frequently during the construction period as sediment accumulates within it. The gravel pack will need to be removed and disposed of following construction to reclaim the basin for use as a permanent detention facility. If the basin will be used as a permanent extended detention basin for the site, a trash rack will need to be installed once contributing drainage areas have been stabilized and the gravel pack and accumulated sediment have been removed.
 - Floating Skimmer: If a floating skimmer is used, install it using manufacturer's recommendations. Illustration SB-1 provides an illustration of a Faircloth Skimmer Floating OutletTM, one of the more commonly used floating skimmer outlets. A skimmer should be designed to release the design volume in no less than 48 hours. The use of a floating skimmer outlet can increase the sediment capture efficiency of a basin significantly. A floating outlet continually decants cleanest water off the surface of the pond and releases cleaner water than would discharge from a perforated riser pipe or plate.

Illustration SB-1. Outlet structure for a temporary sediment basin - Faircloth Skimmer Floating Outlet. Illustration courtesy of J. W. Faircloth & Sons, Inc., FairclothSkimmer.com.


- **Outlet Protection and Spillway:** Consider all flow paths for runoff leaving the basin, including protection at the typical point of discharge as well as overtopping.
 - **Outlet Protection:** Outlet protection should be provided where the velocity of flow will exceed the maximum permissible velocity of the material of the waterway into which discharge occurs. This may require the use of a riprap apron at the outlet location and/or other measures to keep the waterway from eroding.
 - **Emergency Spillway:** Provide a stabilized emergency overflow spillway for rainstorms that exceed the capacity of the sediment basin volume and its outlet. Protect basin embankments from erosion and overtopping. If the sediment basin will be converted to a permanent detention basin, design and construct the emergency spillway(s) as required for the permanent facility. If the sediment basin will not become a permanent detention basin, it may be possible to substitute a heavy polyvinyl membrane or properly bedded rock cover to line the spillway and downstream embankment, depending on the height, slope, and width of the embankments.

Maintenance and Removal

Maintenance activities include the following:

- Dredge sediment from the basin, as needed to maintain BMP effectiveness, typically when the design storage volume is no more than one-third filled with sediment.
- Inspect the sediment basin embankments for stability and seepage.
- Inspect the inlet and outlet of the basin, repair damage, and remove debris. Remove, clean and replace the gravel around the outlet on a regular basis to remove the accumulated sediment within it and keep the outlet functioning.
- Be aware that removal of a sediment basin may require dewatering and associated permit requirements.
- Do not remove a sediment basin until the upstream area has been stabilized with vegetation.

Final disposition of the sediment basin depends on whether the basin will be converted to a permanent post-construction stormwater basin or whether the basin area will be returned to grade. For basins being converted to permanent detention basins, remove accumulated sediment and reconfigure the basin and outlet to meet the requirements of the final design for the detention facility. If the sediment basin is not to be used as a permanent detention facility, fill the excavated area with soil and stabilize with vegetation.

TABLE SB-1. SI	TABLE SB-1. SIZING INFORMATION FOR STANDARD SEDIMENT BASIN										
Upstream Drainage Area (rounded to nearest acre), (ac)	Basin Bottom Width (W), (ft)	Spillway Crest Length (CL), (ft)	Hole Diameter (HD), (in)								
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12 ½ 21 28 33 ½ 43 47 ¼ 51 55 58 ¼ 61 64 67 ½ 70 ½ 73 ¼	2 3 5 6 8 9 11 12 13 15 16 18 19 21 22	932 13/6 12 9%6 21/32 25/32 25/32 27/32 27/32 78 15/6 31/36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								

SEDIMENT BASIN INSTALLATION NOTES

- 1. SEE PLAN VIEW FOR:
 - -LOCATION OF SEDIMENT BASIN.

-TYPE OF BASIN (STANDARD BASIN OR NONSTANDARD BASIN).

-FOR STANDARD BASIN, BOTTOM WIDTH W, CREST LENGTH CL, AND HOLE DIAMETER, HD.

-FOR NONSTANDARD BASIN, SEE CONSTRUCTION DRAWINGS FOR DESIGN OF BASIN INCLUDING RISER HEIGHT H, NUMBER OF COLUMNS N, HOLE DIAMETER HD AND PIPE DIAMETER D.

2. FOR STANDARD BASIN, BOTTOM DIMENSION MAY BE MODIFIED AS LONG AS BOTTOM AREA IS NOT REDUCED.

3. SEDIMENT BASINS SHALL BE INSTALLED PRIOR TO ANY OTHER LAND-DISTURBING ACTIVITY THAT RELIES ON ON BASINS AS AS A STORMWATER CONTROL.

4. EMBANKMENT MATERIAL SHALL CONSIST OF SOIL FREE OF DEBRIS, ORGANIC MATERIAL, AND ROCKS OR CONCRETE GREATER THAN 3 INCHES AND SHALL HAVE A MINIMUM OF 15 PERCENT BY WEIGHT PASSING THE NO. 200 SIEVE.

5. EMBANKMENT MATERIAL SHALL BE COMPACTED TO AT LEAST 95 PERCENT OF MAXIMUM DENSITY IN ACCORDANCE WITH ASTM D698.

6. PIPE SCH 40 OR GREATER SHALL BE USED.

7. THE DETAILS SHOWN ON THESE SHEETS PERTAIN TO STANDARD SEDIMENT BASIN(S) FOR DRAINAGE AREAS LESS THAN 15 ACRES. SEE CONSTRUCTION DRAWINGS FOR EMBANKMENT, STORAGE VOLUME, SPILLWAY, OUTLET, AND OUTLET PROTECTION DETAILS FOR ANY SEDIMENT BASIN(S) THAT HAVE BEEN INDIVIDUALLY DESIGNED FOR DRAINAGE AREAS LARGER THAN 15 ACRES.

SEDIMENT BASIN MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED IN BASIN SHALL BE REMOVED AS NEEDED TO MAINTAIN BMP EFFECTIVENESS, TYPICALLY WHEN SEDIMENT DEPTH REACHES ONE FOOT (I.E., TWO FEET BELOW THE SPILLWAY CREST).

5. SEDIMENT BASINS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND GRASS COVER IS ACCEPTED BY THE LOCAL JURISDICTION.

6. WHEN SEDIMENT BASINS ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

MULTI-PLATE® Made to Perform, Built to Last.

Contech MULTI-PLATE structures provide designers of stormwater management systems underpasses and bridges with a versatile method of construction and a long history of strength, durability, and economy. A variety of shapes and sizes ensures that MULTI-PLATE structures fit most applications. Ease of design, construction, and proven reliability make them the frequent choice of experienced engineers.

MULTI-PLATE structures are made from sturdy, heavy gage, corrugated steel plates that are pre-formed to various shapes and sizes, then galvanized for long-term protection and performance. The plates are delivered to the job site and bolted together to form a MULTI-PLATE structure optimally suited for the project.

MULTI-PLATE is available in full round, arch, pipe-arch, horizontal and vertical ellipse, underpass, and long-span shapes—all in a wide range of sizes. Since 1931, MULTI-PLATE has been proven to offer:

Superior Durability

MULTI-PLATE's heavy gage steel uses an industry standard 3 oz. per square foot galvanized coating (both sides) capable of providing a service life of 75 years or longer. For additional information, see page 7.

When selecting the proper material for an application, designers need to evaluate the soil side of the structure along with the corrosive and abrasive action due to the flow at the invert of the structure. The use of structural plate gives designers more structure shape options to help minimize the impact of abrasion on the invert of the structure.

High Load-Carrying Capacity

As a steel-soil interaction system, MULTI-PLATE is designed to carry high combined live and dead loads. High traffic loads and deep cover applications are key benefits of specifying MULTI-PLATE.

A More Efficient Installation

Prefabricated plates are assembled in the field, translating into finished construction in days instead of weeks as with most concrete structures.

Versatility

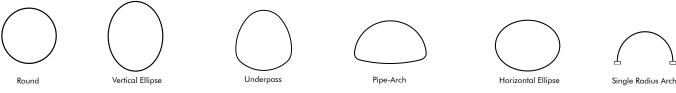
MULTI-PLATE structures remove all of the shape, size and installation restrictions of precast or cast-in-place concrete.

Descriptions of Plates

MULTI-PLATE plates are field assembled into pipe, pipearches, ellipses, arches, and underpasses. Corrugations of 6-inch pitch and 2-inch depth are perpendicular to the length of each plate.

Thickness. Standard specified thickness of the galvanized plates vary from 0.111 to 0.380 inches.

Widths. Standard plates are fabricated in five net covering widths, 28.8 inches, 48.0 inches, 57.6 inches, 67.2 inches, and 76.8 inches. See Table 11.


The "Pi" (Pi = 3.2) nomenclature translated circumference directly into nominal diameter in inches. For example, four 15-Pi plates give a diameter of 60 inches; four 21-Pi plates provide an 84-inch diameter, etc. Various plate widths may be combined to obtain almost any diameter.

Lengths. MULTI-PLATE plates are furnished in either 10-foot or 12-foot nominal lengths. Actual length of the square-end structure is about four inches longer than its nominal length because a 2-inch lip protrudes beyond each end of every plate for lapping purposes.

Longitudinal bolt holes. The plates are punched with 7/8inch holes on 3-inch centers to provide the standard four bolts per foot of longitudinal seam in two staggered rows on 2-inch centers. They may also be punched to provide either six or eight bolts per foot of longitudinal seam on 0.280 inch thickness material, if required. One-inch holes, punched 8 bolts per foot of long seam are used for 0.318-inch and 0.380-inch thick material.

The inside crests of the end (circumferential) corrugations are punched with 1-inch-diameter holes for circumferential seams on centers of 9.6 inches or 9^{19/32} inches (equals 3-Pi).

Standard Shapes

Standard Plate Detail

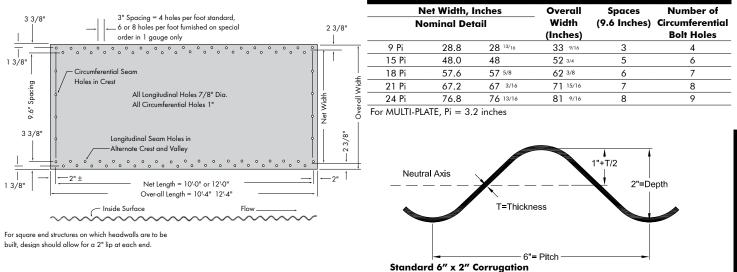
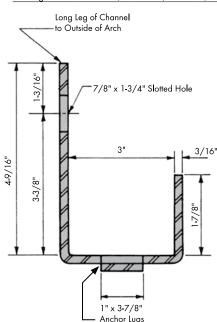
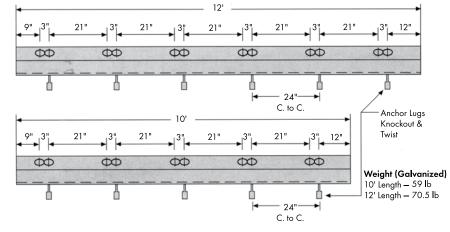


TABLE 11. DETAILS OF UNCURVED MULTI-PLATE® SECTIONS

TABLE 12. APPROXIMATE WEIGHT OF MULTI-PLATE SECTIONS Galvanized, in Pounds, without Fasteners **Specified Thickness, Inches** Net Length Pi 0.111 0.140 0.170 0.188 0.218 0.249 0.280 0.318 0.380 (Feet) (12 Ga.) (10 Ga.) (8 Ga.) (7 Ga.) (5 Ga.) (3 Ga.) (1 Ga.) (5/16 In.) (3/8 In.) N/A N/A N/A N/A


Notes:


1. Weights are based on a zinc coating of 3 oz./sq. ft., total both surfaces.

2. All weights are subject to manufacturing tolerances.

3. Specified thickness is a nominal galvanized thickness. Reference AASHTO M 167.

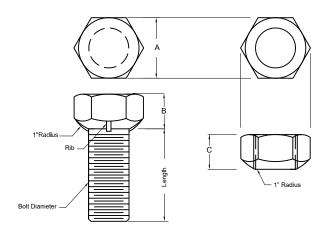
4. Gages 12 thru 1 use 3/4" bolts. 5/16 and 3/8 use 7/8" bolts.

Unbalanced Channel for MULTI-PLATE® Arch

Unbalanced Channel Cross Section

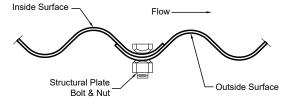
MULTI-PLATE® Bolts and Nuts

3/4" or 7/8" diameter hot-dipped galvanized steel (specially heattreated) fasteners meeting ASTM A307/A449 specifications are used to assemble structural plate structures.

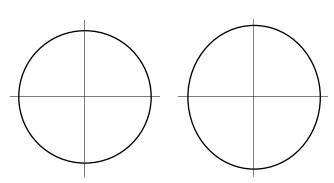

The underside of the bolt head is uniformly rounded and ribbed to prevent bolt head rotation while tightening. Unlike conventional bolts, once the nut is finger tight, final tightening can typically be accomplished by one worker with an air driven impact wrench to 100 - 300 ft. lbs. of torque.

In addition, one side of the nut is spherically formed to help align and center the fastener into the punched holes. The rounded side shall be placed against the metal side of the structure.

TABLE 14. BOLT LEN	IGTH AND USAGE
Plate Gages	Bolt Lengths
12, 10 and 8	11/4" and 11/2"
7 and 5	1½" and 1¾"
3 and 1	11⁄2″ and 2″
5/16* and 3/8*	2″ and 2½″


* These are used with 7/8" diameter bolts.

Notes: The longer bolts are used in 3 plate lap seams.


Typical Bolt and Nut

Diameter (Inches)	A (Inches)	B (Inches)	C (Inches)
3/4	11⁄4	5/8	13/16
7/8	17/16	3/4	7/8

MULTI-PLATE® Round

TABLE 15. MULTI-PLATE ROUND PIPE										
Pipe D	iameter	End Area	Pipe D	End Area						
(Feet)	(Inches)	- (Sq. Ft.)	(Feet)	(Inches)	- Sq. Ft.					
5.0	60	19.1	16.0	192	204.4					
5.5	66	23.2	16.5	198	217.5					
6.0	72	27.8	17.0	204	231.0					
6.5	78	32.7	17.5	210	244.9					
7.0	84	38.1	18.0	216	259.2					
7.5	90	43.9	18.5	222	274.0					
8.0	96	50.0	19.0	228	289.1					
8.5	102	56.6	19.5	234	304.7					
9.0	108	63.6	20.0	240	320.6					
9.5	114	71.0	20.5	246	337.0					
10.0	120	78.8	21.0	252	353.8					
10.5	126	87.1	21.5	258	371.0					
11.0	132	95.7	22.0	264	388.6					
11.5	138	104.7	22.5	270	406.6					
12.0	144	114.2	23.0	276	425.0					
12.5	150	124.0	23.5	282	443.8					
13.0	156	134.3	24.0	288	463.0					
13.5	162	144.9	24.5	294	482.6					
14.0	168	156.0	25.0	300	502.7					
14.5	174	167.5	25.5	306	523.1					
15.0	180	179.4	26.0	312	543.9					
15.5	186	191.7								

Round and 5% Vertical Ellipse Pipe

MULTI-PLATE® Height of Cover Tables

Height-of-Cover Tables 18, 21, 24, 26 and 29A are presented for the designer's convenience for use in routine applications. These tables are based on the outlined design procedures, using the following values for the soil and steel parameters:

- Unit weight of soil 120 pcf.
- Relative density of compacted backfill minimum 90% standard per AASHTO T 180 ٠
- Yield point of steel - 33,000 psi
- Heights of cover are based on 3/4" bolts (4 bolts/ft) except 5/16 and 3/8 which use 7/8" bolts (8 bolts/ft). 6 and 8 bolts/ft are available for 1 Ga. structures.

						TICAL ELLIPSE P 20, H-25, HS-25				
				Thickne	ess In Inches					
Span Diameter FtIn.	Minimum Cover (Inches)	0.111 (12 Ga.)	0.14 (10 Ga.)	0.17 (8 Ga.)	0.188 (7 Ga.)	0.218 (5 Ga.)	0.249 (3 Ga.)	0.28 (1 Ga.)	0.318 (5/16)	0.380 (3/8)
5-0	12	46	68	90	103	124	146	160	256	308
5-6	12	42	62	81	93	113	133	145	233	280
6-0	12	38	57	75	86	103	122	133	214	257
6-6	12	35	52	69	79	95	112	123	197	237
7-0	12	33	49	64	73	88	104	114	183	220
7-6	12	31	45	60	68	82	97	106	171	205
8-0	12	29	43	56	64	77	91	100	160	192
8-6	18	27	40	52	60	73	86	94	151	181
9-0	18	25	38	50	57	69	81	88	142	171
9-6	18	24	36	47	54	65	77	84	135	162
10-0	18	23	34	45	51	62	73	80	128	154
10-6	18	22	32	42	49	59	69	76	122	147
11-0	18	21	31	40	46	56	66	72	116	140
11-6	18	20	29	39	44	54	63	69	111	134
12-0	18	19	28	37	43	51	61	66	107	128
12-6	24	18	27	36	41	49	58	64	102	123
13-0	24	17	26	34	39	47	56	61	98	118
13-6	24	17	25	33	38	46	54	59	95	114
14-0	24	16	24	32	36	44	52	57	91	110
14-6	24	16	23	31	35	42	50	55	88	106
15-0	24	15	22	30	34	41	48	53	85	102
15-6	24	15	22	29	33	40	47	51	82	99
16-0	24		21	28	32	38	45	50	80	96
16-6	30		20	27	31	37	44	48	77	93
17-0	30		20	26	30	36	43	47	75	90
17-6	30		19	25	29	35	41	45	73	88
18-0	30			25	28	34	40	44	71	85
18-6	30			24	27	33	39	43	69	83
19-0	30			23	27	32	38	42	67	81
19-6	30			23	26	31	37	41	65	79
20-0	30				25	31	36	40	64	77
20-6	36				25	30	35	39	62	75
20.0	36				24	29	34	38	61	73
21-6	36					28	34	37	59	71
21-0	36					28	33	36	58	70
22-6	36					27	32	35	57	68
22-0	36					_,	31	34	55	67
23-6	36						30	34	54	65
23-0	36						00	33	53	64
24-0	42							32	51	62
24-0 25-0	42							02	49	60
25-0 25-6	42								49	58
25-6 26-0	42								40 46	56
20-0 Notes	I I	I							40	50

Notes:

34

1. Tables based upon AASHTO Sec. 12 Standard Specifications for Highway Bridges.

2. H-20, HS-20, H-25, HS-25 live loads

3. Minimum cover is defined as the vertical distance from the top of the corrugated structure to the bottom of flexible or top of rigid pavement.

4. Minimum cover for heavy off-road construction equipment loads must be checked.

	TABLE 18. PLATE ARRANGEMENT AND APPROXIMATE WEIGHT PER FOOT														
								[®] VERTICAL E	LLIPSE SHAP						
Nominal	5% Vei Ellip					er of Plo er Ring	ates		Approximate Weight Per Foot of Structures, Lbs. Specified Thickness, Inches						
Pipe Diameter	Horizontal	Vertical	Area			Pi		Total	0.111	0.140	0.170	0.188	0.218	0.249	0.280
Pi	(Inches)	(Inches)	Sq. Ft.	15	18	21	24	Plates	(12 Ga.)	(10 Ga.)	(8 Ga.)	(7 Ga.)	(5 Ga.)	(3 Ga.)	(1 Ga.)
60	56	62	19	4				4	110	138	166	180	208	236	264
66	62	68	23	2	2			4	119	150	180	196	227	257	287
72	68	75	28		4			4	129	162	195	212	245	277	310
78	73	81	32		2	2		4	138	174	209	227	263	298	333
84	79	88	38			4		4	147	185	223	243	281	318	356
90	85	94	44			2	2	4	157	198	239	260	300	341	382
96	91	101	50				4	4	168	211	254	276	320	364 395	407
102	97	107	56	2	4			6	184 193	231 242	278 292	302 317	349 367	395 416	442 465
108 114	103 109	114 120	63 71		6 4	2		6	202	242	306	333	385	410	488
114	109	120	79		4	2 4		6	202	266	300	333 349	403	457	400 512
126	120	133	87		2	6		6	212	278	335	364	400	478	535
132	126	139	95			4	2	6	231	291	350	381	440	500	560
138	132	146	104			2	4	6	241	304	366	398	460	523	585
144	138	152	114			-	6	6	251	316	381	415	479	546	611
150	142	157	124		6	2		8	267	335	404	439	507	575	644
156	148	163	134		4	4		8	276	347	418	454	525	596	667
162	154	170	144		2	6		8	285	359	432	470	543	616	690
168	159	176	155			8		8	295	371	447	485	561	637	713
174	165	183	167			6	2	8	305	384	462	502	581	660	738
180	171	189	179			4	4	8	315	396	478	519	600	682	764
186	177	195	191			2	6	8	325	409	493	536	620	705	789
192	182	202	204				8	8	335	422	508	553	639	728	814
198	189	209	217		4	6		10		440	530	576	666	755	845
204	195	215	230		2	8		10		452	544	591	684	776	868
210	201	222	244			10		10		464	559	607	701	796	891
216	206	228	258			8	2	10		476	574	624	721	819	917
222	212	235	273			6	4	10			589	640	741	841	942
228	218	241	288			4	6	10			605	657	760	864	967
234	224	247	303			2	8	10			620 635	674 691	780 799	887 909	993 1018
240	229	253	319		0	10	10	10			035	713	824	909 935	1018
246 252	236 242	261 267	336 352		2	10 12		12 12				728	842	935 955	1048
252 258	242	207	352			12	2	12				, 20	861	978	1009
258	247	273	387			8	4	12					881	1001	1120
270	259	286	405			6	6	12					900	1023	1145
276	264	291	423			4	8	12					920	1046	1171
282	271	299	442			2	10	12						1069	1196
288	276	305	461				12	12						1091	1222
294	283	312	481			14		14						1115	1248
300	289	319	501			12	2	14						1137	1273
306	294	325	521			10	4	14						1160	1298
312	300	332	542			8	6	14						1183	1324

Notes:

Notes:
 Dimensions are to inside crests of corrugations and are subject to manufacturing tolerances.
 These plate arrangements will be furnished unless noted otherwise on assembly drawings.
 Approximate weights include galvanized steel material, bolts, and nuts.
 Specified thickness is a nominal galvanized thickness.
 24 pi plates are not available in 5/16 through 3/8. Inquire for number of plates per ring and structure weights.

6-0	1-10 2-4	7.9	0.30	41 37	27 30	
7-0	3-2 2-5	15.0 12.1	0.53 0.34	36 45	36 33	
7-0	2-10	14.9	0.34	43	36	
	3-8	20.4	0.52	42	42	
8-0	2-11	17.0	0.36	51	39	
	3-4 4-2	20.3 26.6	0.42 0.52	49 48	42 48	
9-0	2-11	19.2	0.32	59	40	
	3-11	26.5	0.43	55	48	
	4-8	33.6	0.52	54	54	
10-0	3-6 4-5	25.4 33.5	0.35 0.44	64 61	48 54	
	4-J 5-3	41.4	0.52	60	60	
11-0	3-6	27.8	0.32	73	51	
	4-6	36.9	0.41	68	57	
12-0	5-9 4-1	50.0	0.52 0.34	66 78	66 57	
12-0	5-0	35.3 45.2	0.34	78	63	
	6-3	59.4	0.52	72	72	
13-0	4-1	38.1	0.33	87	60	
	5-1 6-9	48.9	0.40	81	66 79	
14-0	4-8	69.7 47.0	0.52 0.31	78 91	78 66	
110	5-7	58.5	0.38	86	72	
	7-3	80.7	0.44	84	84	
15-0	4-8	48.9	0.52	101	69	
	5-8 6-7	62.8 74.8	0.33 0.44	93 91	75 81	
	7-9	92.6	0.52	90	90	
16-0	5-3	60.1	0.31	105	75	
	7-1	86.2	0.42	97	87	
17-0	8-4 5-3	105.3 63.4	0.52 0.31	96 115	96 78	
17-0	7-2	91.9	0.42	103	90	
	8-10	118.8	0.52	102	102	
18-0	5-9	74.8	0.32	119	84	
	7-8 8-11	104.6 126.0	0.43 0.50	109 108	96 105)
19-0	6-4	87.1	0.33	123	90	Sec. 2
	8-3	118.1	0.43	115	102	S. A.
	9-5	140.7	0.50	114	111	- 3
20-0	6-4 8-3	91.0 124.4	0.32 0.42	133 122	93 105	25
	10-0	156.3	0.50	120	117	5.000
21-0	6-11	104.6	0.33	137	99	
	8-10	139.2	0.42	128	111	
22-0	10-6 6-11	172.6 109.3	0.50 0.32	126 146	123 102	
22-0	8-11	145.9	0.40	135	114	52.45
	11-0	189.8	0.50	132	129	
23-0	8-0	133.6	0.35	147	111	MUL
	9-10	171.1	0.43 0.50	140	123 135	
24-0	11-6 8-6	207.8 149.4	0.36	138 152	135	
	10-4	188.3	0.43	146	129	
	12-0	226.6	0.50	144	141	
25-0	8-7	155.6	0.34	160	120	Notes: 1. Dim
	10-10 12-6	206.3 246.2	0.43 0.50	152 150	135 147	n. Dim man
26-0	8-7	161.4	0.33	169	123	2. To d
	11-0	214.9	0.42	158	138	Page 3. For

TABLE 22. MULTI-PLATE® ARCHES

Waterway Rise/Span

Ratio

0.30

Area Ft.²

7.9

Nominal Arc Length

Pi

27

Radius

Inches

41

Dimensions

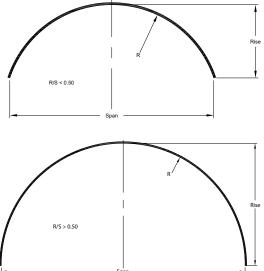
Span

Ft.-In.

6-0

Rise

Ft.-In.


1-10

13-1

266.7

0.50

156

Single Radius Arch

LTI-PLATE Arch Pedestrian Underpass

153

- mensions are to inside crests of corrugations are are subject to inufacturing tolerances.
- determine proper gage, use Table 24 and/or design information found on ges 13-18.
- 3. For additional arch sizes, contact your Contech representative.

Steel and Aluminum Structural Plate Design Guide

			BLE 23. PLA						nate Weigl	nt Per Foot	of Structure	, Pounds	
Arch Arc									Specifie	d Thicknes	s, Inches		
Length		Nu	mber of	Plates Pe	er Ring		0.111	0.140	0.170	0.188	0.218	0.249	0.280
Pi	9 Pi	15 Pi	18 Pi	21 Pi	24 Pi	Total Plates	(12 Ga.)	(10 Ga.)	(8 Ga.)	(7 Ga.)	(5 Ga.)	(3 Ga.)	(1 Ga.)
24		1	1		1	1	42	53	64	69	80	91	102
27	1		1			2	50	63	76	82	95	108	120
30		2				2	55	69	83	90	104	118	132
33		1	1			2	60	75	90	98	113	128	144
36		1		1		2	64	81	97	106	122	139	155
39			1	1		2	69	87	105	114	131	149	167
42			1		1	2	74	93	112	121	140	159	178
45				1	1	2	79	99	119	130	150	171	191
48					2	2	84	105	127	138	160	182	204
51		1	2			3	92	115	139	151	174	198	221
54			3			3	96	121	146	159	184	208	233
57			2	1		3	101	127	153	167	193	218	244
60			1	2		3	106	133	160	174	201	229	256
63				3	_	3	110	139	168	182	210	239	267
66				2	1	3	116	145	175	190	220	250	280
69				1	2	3	121	152	183	199	230	262	293
72					3	3	126	158	191	207	240	273	305
75			3	1		4	133	168	202	219	254	288	322
78			2	2		4	138	174	209	227	263	298	333
81			1	3		4	143	179	216	235	272	308	345
84			2	2	2	4	147	185	223	243	281	318	356
87				3	1	4	152	192	231	251	290	330	369
90				2	2	4	157	198	239	260	300	341	382
93				1	3	4	163	205	246	268	310	352	395
96 99			3	2		5	168	211	254	276	320	364	407
			2	3		5	175	220	265	288	333	377	422
102			1	4 5		5 5	179	226	272	296	342	388	434
105					1		184	232	279	303	351	398	446
108 111				4 3	1 2	5 5		238 245	287 295	312 320	361 370	409 421	458 471
114				3	2	5		245 251	302	320	370	421	471
114				2	3	5		251	302 310	329 337	380 390	432 443	484 496
120				I	4 5	5		264	310	345	400	443	490 509
123			1	5	5	6		204	328	345	400	455	523
123			3	5	3	6			335	364	412	407	535
120			0	5	1	6			343	372	421	478	547
132				4	2	6			040	372	431	500	560
135				4	3	6				389	440	512	573
133				2	4	6				398	450	523	585
141				1	5	6				406	400	534	598
141			1	6	5	7				400	470	534 546	611
144			'	7		7					479	540	624
147				6	1	7					503	567	636
150				0	2	/					500	507	000

Notes:

Dimensions are to inside crests of corrugations and are subject to manufacturing tolerances.
 These plate arrangements will be furnished unless noted otherwise on assembly drawings.
 Approximate weights include galvanized steel material, bolts, and nuts.
 24 pi plates are not available in 5/16 through 3/8. Inquire for number of plates per ring and structure weights.

			AASH <u>T</u> O	TABLE HEIGHT OF CO	24. MULTI-PL Ver Limits H-			LOADS			
Span	Rise	Minimum				Thickne	ess in Inches ver Height S	(Gage)	et)		
FtIn.	FtIn.	Cover (Inches)	0.111 (12 Ga.)	0.140 (10 Ga.)	0.170 (8 Ga.)	0.188 (7 Ga.)	0.218 (5 Ga.)	0.249 (3 Ga.)	0.280 (1 Ga.)	0.318 (5/16)	0.380 (3/8)
6-0	1-10	12	39	57	75	86	103	122	133	214	257
	2-4										
7-0	3-2 2-5	12	34	49	64	73	88	104	114	183	220
, ,	2-10		01	.,		, 0				100	220
8-0	3-8 2-11	12	29	43	56	64	77	91	100	160	192
00	3-4	12	27	10	50	01	,,	,,	100	100	172
9-0	4-2 2-11	18	26	38	50	57	69	81	88	142	171
7-0	3-11	10	20	00	50	57	07	01	00	142	17.1
10-0	4-8 3-6	18	23	34	45	51	62	73	80	128	154
10-0	4-5	10	23	54	45	51	02	73	80	120	154
11.0	5-3	10	01	21	40	A (E /		70	11/	140
11-0	3-6 4-6	18	21	31	40	46	56	66	72	116	140
10.0	5-9	10	10	00	07	10	5 1	(]	<i>, ,</i>	107	100
12-0	4-1 5-0	18	19	28	37	43	51	61	66	107	128
10.0	6-3	<u>.</u>	10	<i></i>	<u>.</u>			- /	<i></i>		
13-0	4-1 5-1	24	18	26	34	39	47	56	61	98	118
	6-9										
14-0	4-8 5-7	24	17	24	32	36	44	52	57	91	110
	7-3										
15-0	4-8 5-8	24	15	22	30	34	41	48	53	85	102
	6-7										
16-0	7-9 5-3	24	14	21	28	32	38	45	50	80	96
10-0	7-1	24	14	21	20	52	50	45	50	00	70
17-0	8-4 5-3	30	14	20	26	30	36	43	47	75	90
17-0	7-2	30	14	20	20	30	50	43	47	/3	70
18-0	8-10 5-9	30	13	19	25	28	34	40	44	71	85
10-0	7-8	30	15	17	25	20	34	40	44	71	65
19-0	8-11 6-4	30	12	18	23	27	32	38	42	67	81
19-0	8-3	30	12	10	23	27	32	30	42	07	01
00.0	9-5	00		17	00	05	01	<u> </u>	10		
20-0	6-4 8-3	30		17	22	25	31	36	40	64	77
01.0	10-0	24		17	01	0.4	00	24	20	(1	70
21-0	6-11 8-10	36		16	21	24	29	34	38	61	73
	10-6	<i></i>							<i></i>	50	
22-0	6-11 8-11	36			20	23	28	33	36	58	70
00.0	11-0	C :				0.5	0-	0-	0 ·		
23-0	8-0 9-10	36			19	22	27	31	34	55	67
	11-6										
24-0	8-6 10-4	36			18	21	25	30	33	53	64
	12-0										
25-0	8-7 10-10	42				20	24	29	32	49	60
	12-6										
26-0	8-7 11-0	42					23	28	30	46	56
	13-1										
Notes:											

Notes:

 Tables based upon AASHTO Sec. 12 Standard Specifications for Highway Bridges.
 H-20, HS-20, H-25, HS-25 Live Loads.
 Minimum cover is defined as the vertical distance from the top of the corrugated structure to the bottom of flexible or top of rigid pavement.
 Minimum cover for heavy off-road construction equipment loads must be checked.
 Footing reactions can be provided by supplier.

Steel and Aluminum Structural Plate Design Guide

Galvanized Steel Structural Plate Specification

Scope: This specification covers the manufacture and installation of the galvanized steel structural plate structure detailed in the plans.

Material: The galvanized steel structural plate structure shall consist of plate and appurtenant items as shown on the plans and shall conform to the requirements of AASHTO M 167/ASTM A761. All manufacturing processes, including corrugating, punching, curving and galvanizing, shall be performed within the United States using raw materials made in the United States.

Assembly bolts and nuts shall be galvanized and meet the provisions of ASTM A449, Type 1 and ASTM A563, Grade C, respectively.

Assembly: The structure shall be assembled in accordance with the shop drawings provided by the manufacturer and per the manufacturer's recommendations. Bolts shall be tightened using an applied torque of between 100 and 300 ft.-lbs. When seam sealant tape is used, bolts shall be installed and retightened to these torque levels after 24 hours. Torque levels are for installation, not residual, in-service requirements.

Installation: The structure shall be installed in accordance with the plans and specifications, the manufacturer's recommendations, and the AASHTO Standard Specifications for Highway Bridges, Section 26 (Division II).

Backfill: The structure shall be backfilled using clean, well graded granular material that meets the requirements of AASHTO M 145 for soil classification A-1, A-2-4, A-2-5, or A-3. Backfill must be placed symmetrically on each side of the structure in 8-inch uncompacted lifts. Each lift shall be compacted to a minimum of 90 percent density per AASHTO T 180.

Notes: Construction loads that exceed highway load limits are not allowed on the structure without approval from the Engineer.

Hot-Dip Galvanizing Process

Galvanized Steel Key-Hole Slot Structural Plate Specification

Scope: This specification covers the manufacture and installation of the galvanized steel structural plate structure detailed in the plans.

Material: The galvanized steel structural plate structure shall consist of plates and appurtenant items as shown on the plans and shall conform to the requirements of AASHTO M 167/ ASTM A761 except the longitudinal seam bolt holes shall be key-hole shaped as shown in the plans. All manufacturing processes including corrugating, punching, curving and galvanizing, shall be performed within the United States using raw materials made in the United States.

Assembly bolts and nuts shall be galvanized and meet the provisions of ASTM A449, Type 1 and ASTM A563, Grade C, respectively.

Assembly: The structure shall be assembled in accordance with the shop drawings provided by the manufacturer and per the manufacturer's recommendations. Bolts shall be tightened using an applied torque of between 100 and 300 ft.-lbs.

Installation: The structure shall be installed in accordance with the plans and specifications, the manufacturer's recommendations, and the AASHTO Standard Specifications for Highway Bridges, Section 26 (Construction).

Backfill: The structure shall be backfilled using clean, well graded granular material that meets the requirements of AASHTO M 145 for soil classifications A-1-a. Backfill must be placed symmetrically on each side of the structure in 8-inch uncompacted lifts. Each lift shall be compacted to a minimum of 90 percent density per AASHTO T 180. Backfill limits shall be in accordance with the details shown on the plans.

Notes: Construction loads that exceed highway load limits are not allowed on the structure without approval from the Project Engineer.

Installation

A successful installation is dependent on these five critical components being followed:

- Good foundation
- Use of structural backfill
- 8" lifts of backfill evenly placed on both sides of the structure
- Adequate compaction of backfill
- Adequate minimum cover over the structure

Required Elements

Satisfactory site preparation, trench excavation and bedding and backfill operations are essential to develop the strength of any flexible conduit. In order to obtain proper strength while preventing settlement, it is necessary that the soil envelope around the structure be of good granular material, properly placed, and carefully compacted.

Pipe-arch and underpass shapes pose special installation problems not found in other shapes. These two shapes generate high corner bearing pressures against the side fill and foundation. Therefore, special installation care must be implemented to achieve a composite soil structure.

A qualified Engineer should be engaged to design a proper foundation, adequate bedding, backfill, and erosion control.

Trench Excavation

If the adjacent embankment material is structurally adequate, the trench requires only a bottom clear width of the structure's span plus sufficient room for compaction equipment.

Bedding

Proper bedding preparation is critical to both structure performance and service life. The bedding should be constructed to a uniform line and grade to avoid distortions that may create undesirable stresses in the structure and/or rapid deterioration of the roadway. It should be free of rock formations, protruding stones, and frozen matter that may cause unequal settlement.

It is recommended that the bedding be a relatively loose granular material that is roughly shaped to fit the bottom of the structure, be a minimum of twice the corrugation depth in thickness and have a maximum particle size of one half the corrugation depth.

It should be noted that the bedding depth can vary based on the amount of cover and the shape of the structure's invert. The bedding should be shaped to match structures with flatter inverts.

Backfill

Satisfactory backfill material, proper placement and compaction are key factors in obtaining maximum strength and stability. Compaction needs to be achieved under the haunches by carefully tamping a granular or select material.

The backfill material should be free of rocks, frozen lumps, and foreign material that can cause hard spots or decompose to create voids. Backfill material should be well graded granular material that meets the requirements of AASHTO M 145 for soil classifications A-1, A-2-4, A-2-5, or A-3. Backfill must be placed symmetrically on each side of the structure in six-inch loose lifts. Each lift is to be compacted to a minimum of 90 percent density per AASHTO T 180.

A high percentage of silt or fine sand in the native soils suggests the need for a *well graded* granular backfill material to prevent soil migration.

During backfill, only small tracked vehicles (D4 or smaller) should be near the structure as fill progresses above the crown and to the finished grade. The Engineer and Contractor are cautioned that the minimum cover may need to be increased to handle temporary construction vehicle loads (larger than D4).

For more information, refer to ASTM A807 and AASHTO Standard Specifications for Highway Bridges Div. II – Construction Section 26.

Bolting

If the plates are well aligned, the torque applied with an air-powered wrench need not be excessive. Bolts should be torque initially to a minimum 100 foot pounds and a maximum 300 foot pounds. A good plate fit is far better than high torque.

Complete detailed assembly instructions and drawings are provided with each structure.

Erosion Control

During installation and prior to the construction of permanent erosion control and end treatment protection, special precautions may be necessary. The structure must be protected from unbalanced loads and from any structural loads or hydraulic forces that may bend or distort the unsupported ends of the structure. Erosion or washout of previously soils support must be prevented to ensure that the structure maintains its load capacity.

Design Procedure Form: Extended Detention Basin (EDB)		
		(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Marc A. Whorton, P.E.	
Company:	Classic Consulting	
Date:	June 26, 2019	
Project:	Retreat at TimberRidge Filing No. 1	
Location:	Pond 1	
1. Basin Storage Volume		
A) Effective Imp	erviousness of Tributary Area, I _a	I _a = <u>13.8</u> %
B) Tributary Are	a's Imperviousness Ratio (i = ${\sf I}_{\rm a}/$ 100)	i =138
C) Contributing	Watershed Area	Area = 29.400 ac
D) For Watersh Runoff Prod	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in
E) Design Concept (Select EURV when also designing for flood control)		Choose One Owater Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time .0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = ac-ft
Water Quali	neds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume $_{\alpha} = (d_{6}^{*}(V_{DESIGN}/0.43))$	V _{DESIGN OTHER} = 0.209 ac-ft
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
i) Percenta ii) Percenta	logic Soil Groups of Tributary Watershed ge of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	$ \begin{array}{c} HSG_{A} = & 0 & \% \\ HSG_{B} = & 100 & \% \\ HSG_{CD} = & 0 & \% \end{array} $
For HSG A: For HSG B:	In Runoff Volume (EURV) Design Volume $EURV_{A} = 1.68 * i^{1.26}$ $EURV_{n} = 1.36 * i^{1.08}$ /D: EURV _{CD} = 1.20 * i ^{1.06}	EURV _{DESIGN} = 0.392 ac-f t
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-ft
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1
3. Basin Side Slop	es	
A) Basin Maxim (Horizontal c	um Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft
4. Inlet		Rip-Rap and Concrete Forebay into Concrete trickle channel
A) Describe me inflow locatio	eans of providing energy dissipation at concentrated	
5. Forebay		
A) Minimum Fo	rebay Volume = 2% of the WQCV)	V _{FMIN} =0.004 ac-ft
B) Actual Foreb		V _F = ac-ft
C) Forebay Dep (D _F :		$D_F = 8.0$ in
D) Forebay Disc		· ···
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 47.00 cfs
ii) Forebay (Q _F = 0.02	Discharge Design Flow $2 * Q_{100}$)	Q _F = 0.94 cfs
E) Forebay Disc	charge Design	Choose One
		Berm With Pipe Flow too small for berm w/ pipe Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge Pij	pe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated W _N = in

Design Proc	cedure Form: Extended Detention Basin (EDB)
Designer: Marc A. Whorton, P.E. Company: Classic Consulting Date: June 26, 2019 Project: Retreat at TimberRidge Filing No. 1 Location: Pond 1	Sheet 2 of 3
6. Trickle Channel A) Type of Trickle Channel	Choose One © Concrete © Soft Bottom
F) Slope of Trickle Channel	S =ft / ft
 7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type 	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{45}_{Sq} \text{ sq ft}$ $\underbrace{\text{Choose One}}_{@ \text{ Orffice Plate}}$ $\bigcirc \text{ Other (Describe):}$
 D) Smallest Dimension of Orifice Opening Based on Hydrograph Routi (Use UD-Detention) E) Total Outlet Area 	ng $D_{ottlice} = 1.24$ inches $A_{ex} = 3.82$ square inches
 8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool 	$D_{IS} = 6$ in $V_{IS} = $ cu ft $V_a = 22.5$ cu ft
 9. Trash Rack A) Water Quality Screen Open Area: A_t = A_{ct} * 38.5*(e^{-0.095D}) B) Type of Screen (If specifying an alternative to the materials recommendation in the USDCM, indicate "other" and enter the ratio of the total open are total screen are for the material specified.) Other (Y/N): N 	to the
 C) Ratio of Total Open Area to Total Area (only for type 'Other') D) Total Water Quality Screen Area (based on screen type) E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) F) Height of Water Quality Screen (H_{TR}) G) Width of Water Quality Screen Opening (W_{opening}) (Minimum of 12 inches is recommended) 	User Ratio = $A_{total} = 218$ sq. in. H = 3.5 feet $H_{TR} = 70$ inches $W_{coening} = 12.0$ inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

Design Procedure Form: Extended Detention Basin (EDB)			
Designer: Company: Date: Project:			Sheet 3 of 3
Location:			
B) Slope of O	ankment mbankment protection for 100-year and greater overtopping: verflow Embankment distance per unit vertical, 4:1 or flatter preferred)	Buried Rip-Rap Ze = 10.00 ft / ft Choose One O Irrigated () Not Irrigated	
	ediment Removal Procedures	Maintenace provided via access road	
Notes:			

Design Procedure Form: Extended Detention Basin (EDB)		
		(Version 3.07, March 2018) Sheet 1 of 3
Designer:	MARC A. WHORTON, P.E.	
Company: Date:	CLASSICCONSULTING August 1, 2019	
Project:	RETREAT AT TIMBERRIDGE FILING NO. 1	
Location:	POND 2	
1. Basin Storage Volume		
A) Effective Imp	perviousness of Tributary Area, I _a	l _a = 21.6 %
B) Tributary Are	ea's Imperviousness Ratio (i = $I_a / 100$)	i = 0.216
C) Contributing	Watershed Area	Area = 100.400 ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = 0.42 in
E) Design Concept (Select EURV when also designing for flood control)		Choose One O Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volu (V _{DESIGN} = (*	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft
Water Quali	heds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume $_{R}=(d_{0}^{*}(V_{\text{DESIGN}}/0.43))$	V _{DESIGN OTHER} = 0.998 ac-ft
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
i) Percenta ii) Percenta	logic Soil Groups of Tributary Watershed age of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	$ HSG_{A} = 0 \% HSG_{B} = 100 \% HSG_{CD} = 0 \% $
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28} : EURV _n = $1.36 * i^{1.08}$ /D: EURV _{CD} = $1.20 * i^{1.08}$	EURV _{DESIGN} = ac-f t
	of Excess Urban Runoff Volume (EURV) Design Volume fferent EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1
3. Basin Side Slop)es	
	num Side Slopes	Z = 4.00 ft / ft
(Horizontal o	distance per unit vertical, 4:1 or flatter preferred)	
4. Inlet		
A) Describe me	eans of providing energy dissipation at concentrated	
inflow location		
5. Forebay		
A) Minimum Fo (V _{FMIN}	orebay Volume =3%of the WQCV)	V _{FMIN} = 0.030 ac-ft
B) Actual Forel		V _F =ac-ft
C) Forebay Dep (D _F		D _F = in
D) Forebay Disc	charge	
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = cfs
ii) Forebay (Q _F = 0.02	Discharge Design Flow 2 * Q ₁₀₀)	Q _F = cfs
E) Forebay Disc	charge Design	Choose One
		O Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge Pi	ipe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated W _N = in

Design Procedure Form: Extended Detention Basin (EDB)		
		(Version 3.07, March 2018) Sheet 1 of 3
Designer:	MARC A. WHORTON, P.E.	
Company: Date:	CLASSICCONSULTING March 26, 2019	
Project:	RETREAT AT TIMBERRIDGE FILING NO. 1	
Location:	POND 2 (EAST FOREBAY)	
1. Basin Storage \	/olume	
A) Effective Imp	perviousness of Tributary Area, I _a	l _a = 16.5 %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i =0.165
C) Contributing	Watershed Area	Area =37.300 ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = 0.42 in
E) Design Concept (Select EURV when also designing for flood control)		Choose One O Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volu (V _{DESIGN} = (*	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft
Water Qual	heds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume $_{\rm R} = (d_{\rm 0}^{ *}(V_{\rm DESIGN}/0.43))$	V _{DESIGN OTHER} = 0.305 ac-ft
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
i) Percenta ii) Percenta	logic Soil Groups of Tributary Watershed age of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	$ \begin{array}{c c} HSG_{A} = & 0 & \% \\ HSG_{B} = & 100 & \% \\ HSG_{CD} = & 0 & \% \end{array} $
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume : EURV _A = $1.68 * i^{1.28}$: EURV _A = $1.36 * i^{1.08}$ /D: EURV _{CD} = $1.20 * i^{1.08}$	EURV _{DESIGN} = 0.604 ac-f t
	f Excess Urban Runoff Volume (EURV) Design Volume fferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-f t
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1
3. Basin Side Slop	bes	
A) Basin Maxin	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = ft / ft
4. Inlet		
 A) Describe me inflow location 	eans of providing energy dissipation at concentrated ons:	
5. Forebay		
A) Minimum Fo (V _{FMIN}		V _{FMIN} = ac-ft
B) Actual Forel		V _F =0.009 ac-ft
C) Forebay Dep (D _F		$D_{\rm F} = 18.0$ in
D) Forebay Dis		
i) Undetain	ed 100-year Peak Discharge	Q ₁₀₀ = 74.00 cfs
ii) Forebay (Q _F = 0.0	Discharge Design Flow 2 * Q ₁₀₀)	Q _F = cfs
E) Forebay Disc	charge Design	Choose One O Berm With Pipe Flow too small for berm w/ pipe Wall with Rect. Notch O Wall with V-Notch Weir
F) Discharge Pi	ipe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated W _N = in

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	MARC A. WHORTON, P.E. CLASSICCONSULTING March 26, 2019 RETREAT AT TIMBERRIDGE FILING NO. 1 POND 2 (EAST FOREBAY)	Sheet 2 of 3
6. Trickle Channel A) Type of Trick	de Channel	Choose One © Concrete O Soft Bottom
F) Slope of Tric	kle Channel	S = 0.0100 ft / ft
	Dutlet Structure ropool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{200}_{M} \text{ sq ft}$ $Choose One$ $\textcircled{0} Orifice Plate}_{O} Other (Describe):$
D) Smallest Din (Use UD-Detent E) Total Outlet A		$D_{\text{artifice}} = 2.25$ inches $A_{\text{ext}} = 13.43$ square inches
8. Initial Surcharge	Volume	
(Minimum red	al Surcharge Volume commended depth is 4 inches)	$D_{is} = 6$ in
	al Surcharge Volume ume of 0.3% of the WQCV)	V _{is} = 40 cu ft
C) Initial Surcha	rge Provided Above Micropool	V _s = <u>100.0</u> cu ft
B) Type of Scree in the USDCM, i	y Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$ en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): N	A _t = square inches Aluminum Amico-Klemp SR Series with Cross Rods 2" O.C.
C) Ratio of Total	Open Area to Total Area (only for type 'Other')	User Ratio =
	Quality Screen Area (based on screen type) ign Volume (EURV or WQCV)	A _{total} = <u>588</u> sq. in. H= <u>5</u> feet
(Based on c	design concept chosen under 1E)	
G) Width of Wat	ter Quality Screen (H _{TR}) ter Quality Screen Opening (W _{openinα}) inches is recommended)	H _{TR} = 88 inches W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

	Design Procedure Form:	Extended Detention Basin (EDB)	
Designer: Company:	MARC A. WHORTON, P.E. CLASSICCONSULTING		Sheet 3 of 3
Date:	March 26, 2019		
Project:	RETREAT AT TIMBERRIDGE FILING NO. 1		
Location:	POND 2 (EAST FOREBAY)		
10. Overflow Emb A) Describe e	pankment		
	overflow Embankment Il distance per unit vertical, 4:1 or flatter preferred)	Ze = ft / ft	
11. Vegetation		Choose One O Irrigated O Not Irrigated	
12. Access			
A) Describe S	Sediment Removal Procedures		
Notes:			

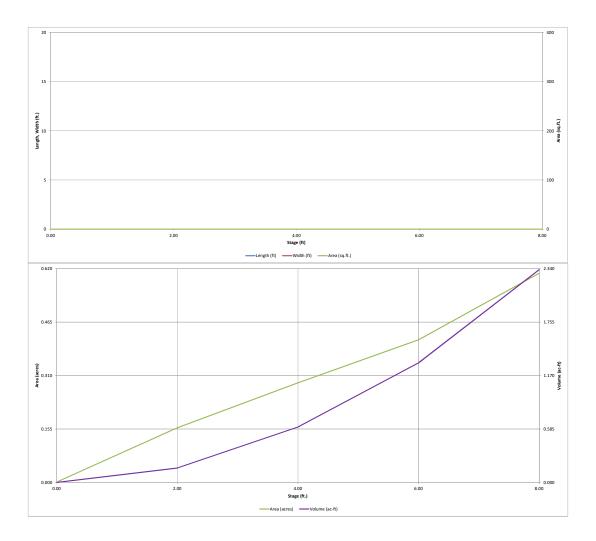
	Design Procedure Form:	Extended Detention Basin (EDB)
		(Version 3.07, March 2018) Sheet 1 of 3
Designer:	MARC A. WHORTON, P.E. CLASSICCONSULTING	
Company: Date:	March 26, 2019	
Project:	RETREAT AT TIMBERRIDGE FILING NO. 1	
Location:	POND 2 (WEST FOREBAY)	
1. Basin Storage V	/olume	
A) Effective Imp	perviousness of Tributary Area, I _a	l _a = 25.0 %
B) Tributary Are	ea's Imperviousness Ratio (i = $I_a / 100$)	i = 0.250
C) Contributing	Watershed Area	Area = 65.300 ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = 0.42 in
E) Design Con (Select EUR	cept V when also designing for flood control)	Choose One O Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volu (V _{DESIGN} = (me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft
Water Qual	heds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume $_{\rm R} = (d_{\rm 0}^{ *}(V_{\rm DESIGN}/0.43))$	V _{DESIGN OTHER} = 0.717 ac-ft
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
i) Percenta ii) Percent	logic Soil Groups of Tributary Watershed age of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	$ \begin{array}{c c} HSG_{A} = & 0 & \% \\ HSG_{B} = & 100 & \% \\ HSG_{CD} = & 0 & \% \end{array} $
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28} : EURV _R = 1.36 * i ^{1.08} /D: EURV _{CD} = 1.20 * i ^{1.08}	EURV _{DESIGN} =1.656 ac-f t
	f Excess Urban Runoff Volume (EURV) Design Volume fferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-ft
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1
3. Basin Side Slop	bes	
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = ft / ft
4. Inlet		
	,	
inflow locati	eans of providing energy dissipation at concentrated ons:	
<u> </u>		
5. Forebay		
A) Minimum Fo (V _{FMIN}		V _{FMIN} = ac-ft
B) Actual Fore	bay Volume	V _F = 0.022 ac-ft
C) Forebay Der (D _F		D _F = 18.0 in
D) Forebay Dis	charge	
, ,	ed 100-year Peak Discharge	Q ₁₀₀ = 128.00 cfs
,	Discharge Design Flow	$Q_F = 2.56$ cfs
E) Forebay Dis	charge Design	F churre data
,,		Choose One O Berm With Pipe Wall with Rect. Notch O Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated W _N = in

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	MARC A. WHORTON, P.E. CLASSICCONSULTING March 26, 2019 RETREAT AT TIMBERRIDGE FILING NO. 1 POND 2 (WEST FOREBAY)	Sheet 2 of 3
6. Trickle Channel A) Type of Trick		Choose One © Concrete O Soft Bottom
		$S = 0.0100 \text{ ft / ft}$ $D_{M} = 2.5 \text{ ft}$ $A_{M} = 200 \text{ sq ft}$ $Choose One$ $@ Orifice Plate$ $\bigcirc Other (Describe):$
(Úse UD-Detent E) Total Outlet A	Area	D _{ortfice} = 2.25 inches A _{ct} = 13.43 square inches
(Minimum red B) Minimum Initi (Minimum vol	ial Surcharge Volume commended depth is 4 inches) al Surcharge Volume ume of 0.3% of the WQCV) rge Provided Above Micropool	$D_{is} = 6$ in $V_{is} = 94$ cu ft $V_s = 100.0$ cu ft
B) Type of Scree in the USDCM, i	ty Screen Open Area: $A_t = A_{ct} * 38.5*(e^{-0.0950})$ en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): N	A _t =
D) Total Water (E) Depth of Des (Based on c F) Height of Wa G) Width of Wat	l Open Area to Total Area (only for type 'Other') Quality Screen Area (based on screen type) ign Volume (EURV or WQCV) design concept chosen under 1E) ter Quality Screen (H _{TR}) ter Quality Screen Opening (W _{openina}) inches is recommended)	User Ratio = $\[A_{total} = \[588 \] sq. in. \\ H = \[5 \] feet \\ H_{TR} = \[88 \] inches \\ W_{opening} = \[12.0 \] inches \] VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES. \]$

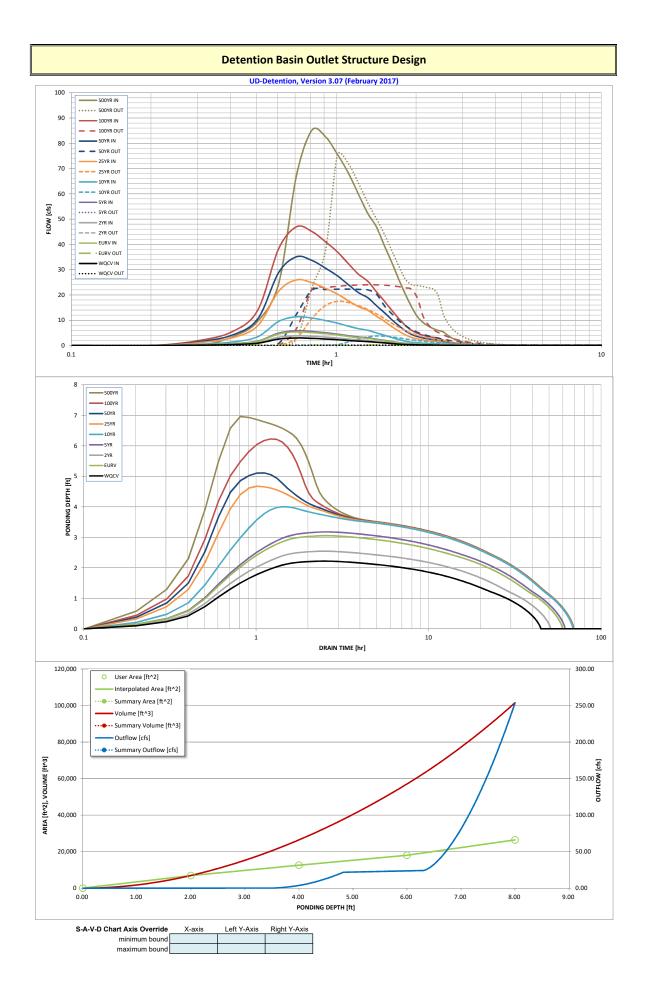
	Design Procedure Form:	Extended Detention Basin (EDB)	
Designer: Company: Date: Project: Location:	MARC A. WHORTON, P.E. CLASSICCONSULTING March 26, 2019 RETREAT AT TIMBERRIDGE FILING NO. 1 POND 2 (WEST FOREBAY)		Sheet 3 of 3
B) Slope of (bankment embankment protection for 100-year and greater overtopping: Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	Ze = ft / ft	
11. Vegetation		Choose One O Irrigated O Not Irrigated	
12. Access A) Describe	Sediment Removal Procedures		
Notes:			

	Design Procedure	Form: Rain Garden (RG)	
-		(Version 3.07, March 2018)	Sheet 1 of 2
Designer:	Marc A. Whorton, P.E.		
Company: Date:	Classic Consulting		
Project:	Retreat at TimberRidge Filing No. 1		
Location:	El Paso County RG-1		
1. Basin Sto	rage Volume		
	ve Imperviousness of Tributary Area, I _a if all paved and roofed areas upstream of rain garden)	I _a = 25.0 %	
B) Tribut	ary Area's Imperviousness Ratio (i = I _a /100)	i = 0.250	
	Quality Capture Volume (WQCV) for a 12-hour Drain Time CV= 0.8 * (0.91* i^3 - 1.19 * i^2 + 0.78 * $i)$	WQCV = 0.11 watershe	ed inches
D) Contri	buting Watershed Area (including rain garden area)	Area = <u>117,600</u> sq ft	
	Quality Capture Volume (WQCV) Design Volume (WQCV / 12) * Area	V _{WQCV} =cu ft	
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = <u>0.42</u> in	
	atersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} = 1,033 cu ft	
	nput of Water Quality Capture Volume (WQCV) Design Volume f a different WQCV Design Volume is desired)	V _{WQCV USER} =cu ft	
2. Basin Ge	ometry		
A) WQCV	/ Depth (12-inch maximum)	D _{WQCV} = <u>12</u> in	
	arden Side Slopes (Z = 4 min., horiz. dist per unit vertical))" if rain garden has vertical walls)	Z = 4.00 ft / ft	
C) Mimim	um Flat Surface Area	A _{Min} = <u>588</u> sq ft	
D) Actual	Flat Surface Area	A _{Actual} = <u>3125</u> sq ft	
E) Area a	t Design Depth (Top Surface Area)	A _{Top} = <u>5350</u> sq ft	
· ·	arden Total Volume A _{Top} + A _{Actual}) / 2) * Depth)	V _⊺ = <u>4,238</u> cu ft	
3. Growing I	<i>I</i> ledia	Choose One 18" Rain Garden Grow Other (Explain):	ving Media
4 Underdre	n System		
4. Underdra	ii oystem	Choose One	
A) Are un	derdrains provided?	O NO	
B) Under	rain system orifice diameter for 12 hour drain time		
	i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	y = 2.0 ft	
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = <u>1,033</u> cu ft	
	iii) Orifice Diameter, 3/8" Minimum	D _O = <u>3/4</u> in	

Company: Classic C Date: July 19, 20 Project: Retreat at Location: El Paso C 5. Impermeable Geomen A) Is an impermeable of structures or gro	019 TimberRidge Filing No. 1		Sheet 2 of 2
Company: Classic C Date: July 19, 20 Project: Retreat at Location: El Paso C 5. Impermeable Geomen A) Is an impermeable of structures or gro	onsulting D19 TimberRidge Filing No. 1 ounty RG-1		
Date: July 19, 2/ Project: Retreat at Location: El Paso C 5. Impermeable Geomen A) Is an impermeable of structures or gro	019 TimberRidge Filing No. 1 ounty RG-1		
Project: Retreat at Location: El Paso C 5. Impermeable Geomen A) Is an impermeable of structures or group	TimberRidge Filing No. 1 ounty RG-1		
Location: El Paso C 5. Impermeable Geomen A) Is an impermeable of structures or gro	ounty RG-1		
 Impermeable Geomen A) Is an impermeable of structures or gro 	•		
A) Is an impermeable of structures or gro	brane Liner and Geotextile Separator Fabric		
	liner provided due to proximity uundwater contamination?	Choose One O YES NO	
 6. Inlet / Outlet Control A) Inlet Control 		Choose One Sheet Flow- No Energy Dissipation Concentrated Flow- Energy Dissipation	-
7. Vegetation		Choose One Seed (Plan for frequent weed cont Plantings Sand Grown or Other High Infiltra	
8. Irrigation A) Will the rain garder	i be irrigated?	Choose One O YES O NO	
Notes:		•	


			DETEN		ASIN STAGE-S	TORAG	E TABLE	BUILDE	R					
					Detention, Version 3									
Project: Basin ID:		TTIMBERR	IDGE FILING N	0.1										
	2 ONE 1		_											
	1						_							
ZONE	1 AND 2	100-YE ORIFIC	EAR DE		Depth Increment =	1	ft Optional				Optional			
POOL Example Zone		on (Retent	ion Pond)		Stage - Storage Description	Stage	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Required Volume Calculation		-			Top of Micropool	(ft) 	0.00				50	0.001	(11 3)	(ac-it)
Selected BMP Type =	EDB	_					2.00	-		-	6,905	0.159	6,886	0.158
Watershed Area = Watershed Length =	29.40 2,130	acres ft					4.00 6.00				12,575 18,016	0.289	26,435 57,026	0.607
Watershed Slope =	0.018	ft/ft					8.00				26,430	0.607	101,472	2.329
Watershed Imperviousness = Percentage Hydrologic Soil Group A =	13.80%	percent percent												
Percentage Hydrologic Soil Group B =	100.0%	percent												
Percentage Hydrologic Soil Groups C/D = Desired WQCV Drain Time =	0.0%	percent hours								-				
Location for 1-hr Rainfall Depths =		nouro												
Water Quality Capture Volume (WQCV) = Excess Urban Runoff Volume (EURV) =	0.214	acre-feet acre-feet	Optional Use 1-hr Precipita											
2-yr Runoff Volume (P1 = 1.19 in.) =	0.391	acre-feet	1.19	inches										
5-yr Runoff Volume (P1 = 1.5 in.) =	0.421	acre-feet	1.50	inches				-						
10-yr Runoff Volume (P1 = 1.75 in.) = 25-yr Runoff Volume (P1 = 2 in.) =	0.832	acre-feet acre-feet	1.75	inches inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	2.610	acre-feet	2.25	inches										
100-yr Runoff Volume (P1 = 2.52 in.) = 500-yr Runoff Volume (P1 = 3.85 in.) =	3.508 6.448	acre-feet acre-feet	2.52 3.85	inches inches										
Approximate 2-yr Detention Volume =	0.258	acre-feet	0.00	1		-		-	-	-				
Approximate 5-yr Detention Volume =	0.394	acre-feet												
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =	0.720	acre-feet acre-feet												<u> </u>
Approximate 50-yr Detention Volume =	1.002	acre-feet												
Approximate 100-yr Detention Volume =	1.268	acre-feet												
Stage-Storage Calculation								-						
Zone 1 Volume (WQCV) =	0.214	acre-feet				-		-		-				
Zone 2 Volume (EURV - Zone 1) = Zone 3 Volume (100-year - Zones 1 & 2) =	0.177	acre-feet acre-feet												<u> </u>
Total Detention Basin Volume =	1.268	acre-feet												
Initial Surcharge Volume (ISV) = Initial Surcharge Depth (ISD) =	user	ft^3							-					<u> </u>
Total Available Detention Depth (H _{total}) =	user	ft				-		-	-	-				
Depth of Trickle Channel (H _{TC}) =	user	ft			-	-		-	-					
Slope of Trickle Channel (S _{TC}) = Slopes of Main Basin Sides (S _{main}) =	user	ft/ft H:V												<u> </u>
Basin Length-to-Width Ratio (R _{L/W}) =	user	11. 4				-		-		-				
Initial Surcharge Area (A _{ISV}) =	user	1								-				
Surcharge Volume Length (L _{ISV}) =	user	ft^2 ft				-		-	-	-				
Surcharge Volume Width (W _{ISV}) =	user	ft												
Depth of Basin Floor (H_{PLOOR}) = Length of Basin Floor (L_{PLOOR}) =	user	ft e							-					<u> </u>
Width of Basin Floor (W _{FLODR}) =	user	ft												
Area of Basin Floor (A _{FLODR}) = Volume of Basin Floor (V _{FLODR}) =	user	ft^2						-						<u> </u>
Depth of Main Basin (H _{MAIN}) =	user	ft^3 ft						-	-					
Length of Main Basin (L _{MAIN}) =	user	ft						-						
Width of Main Basin (W _{MAIN}) = Area of Main Basin (A _{MAIN}) =	user	ft ft^2												<u> </u>
Volume of Main Basin (V _{MAIN}) =	user	ft^2						-						
Calculated Total Basin Volume (V _{total}) =	user	acre-feet												<u> </u>
										-				<u> </u>
						-			-	-				
						-		-	-	-				<u> </u>
									-	-				
						-			-	-				
						-		-		-				<u> </u>
						-		-	-					<u> </u>
						-			-	-				<u> </u>
														<u> </u>
						-								
														<u> </u>
										-				
						-		-		-				
						-				-				
						-				-				
										-				
						-		-		-				
						-		-	-	-				<u> </u>
						-				-	-			
						-		-	-	-				<u> </u>
						-		-	-	-	1			<u> </u>

-


-

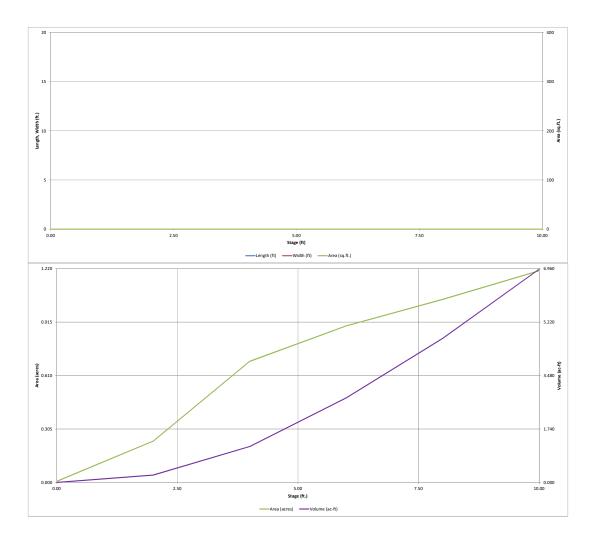
- -

UD-Detention, Version 3.07 (February 2017)

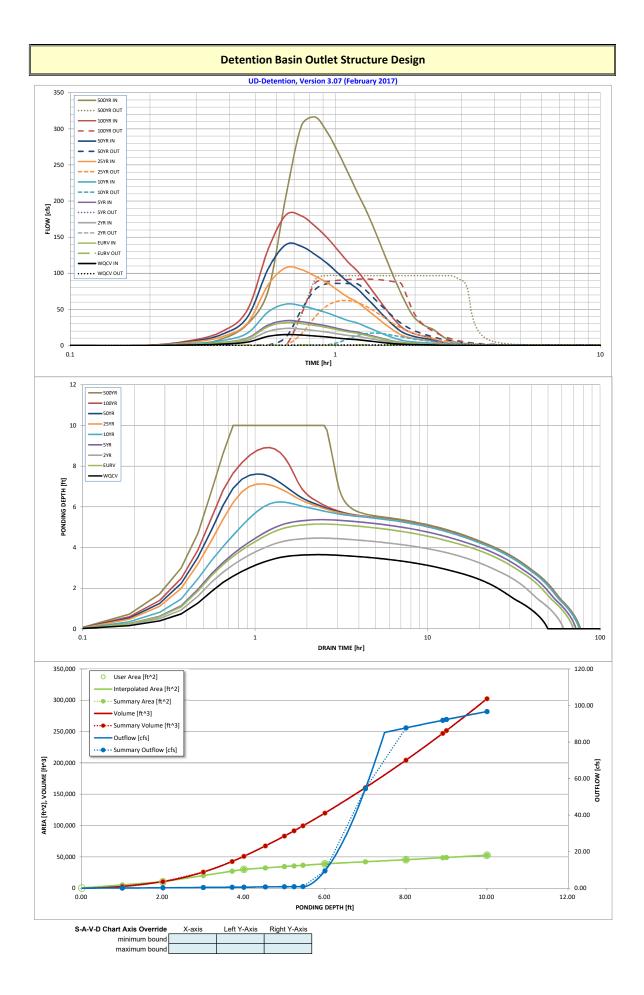
	Det	ention Basin (Outlet Struct	ure Design				
Project: RETRFAT A	TIMBERRIDGE FILING		rsion 3.07 (Februar	ry 2017)				
Basin ID: POND 1								
			Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
		Zone 1 (WQCV)	2.33	0.214	Orifice Plate			
	00-YEAR DRIFICE	Zone 2 (EURV)	3.18	0.177	Orifice Plate			
PERMANENT ORIFICES		'one 3 (100-year)	5.91	0.877	Weir&Pipe (Restrict)			
Example Zone Configuration	n (Retention Pond)			1.268	Total	1		
: Orifice at Underdrain Outlet (typically used to drain V	QCV in a Filtration BMP)				Calculate	ed Parameters for Ur	nderdrain	
Underdrain Orifice Invert Depth = N/A	ft (distance below	the filtration media su	rface)	Unde	rdrain Orifice Area =	N/A	ft²	
Underdrain Orifice Diameter = N/A	inches			Underdra	in Orifice Centroid =	N/A	feet	
			101/1		0.1			
t: Orifice Plate with one or more orifices or Elliptical Slo Invert of Lowest Orifice = 0.00		bottom at Stage = 0 fl			rifice Area per Row =	lated Parameters for N/A		
Depth at top of Zone using Orifice Plate = 3.50		bottom at Stage = 0 f			lliptical Half-Width =	N/A N/A	π feet	
Orifice Plate: Orifice Vertical Spacing = 14.00	inches	bottom at Stage - o n			otical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row = N/A	inches			2.00	Elliptical Slot Area =	N/A	ft ²	
							1	
t: Stage and Total Area of Each Orifice Row (number		it)	I		1	I	1	1
Row 1 (requ		Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	-
Stage of Orifice Centroid (ft) 0.00	1.20	2.40						-
Orifice Area (sq. inches) 1.20	1.31	1.31						1
Row 9 (opti	nal) Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)	inary into wino (optional)	(optional)	now rz (optional)	now is (optional)	Tow 14 (optional)	now is (optional)	Tow To (optional)	1
Orifice Area (sq. inches)								1
								1
User Input: Vertical Orifice (Circular or Rectar	gular)	_			Calculated	Parameters for Vert	tical Orifice	
Not Selec	ed Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice = N/A	N/A	ft (relative to basin b	-		ertical Orifice Area =	N/A		ft ²
epth at top of Zone using Vertical Orifice = N/A	N/A	ft (relative to basin b	nottom at Stago – O f					feet
			Jottom at Stage - 01	t) Vertio	al Orifice Centroid =	N/A	N/A	lieet
Vertical Orifice Diameter = N/A	N/A	inches	Jottom at Stage – 0 i	t) Vertio	al Orifice Centroid =	N/A	N/A	lieer
	N/A		ottom at stage – o r	t) Vertio	cal Orifice Centroid =	N/A	N/A	lieer
Vertical Orifice Diameter = N/A			Jottom at stage - 0 1	t) Vertio				Jeer
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S	oped)			t) Vertio		Parameters for Ove	rflow Weir]
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W	oped) ir Not Selected	inches			Calculated		rflow Weir Not Selected	feet
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W	oped)			Height of Gr		Parameters for Ove Zone 3 Weir	rflow Weir]
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = 3.50	pped) ir Not Selected N/A	ft (relative to basin bo	ttom at Stage = 0 ft)	Height of Gr	Calculated ate Upper Edge, H _t = Weir Slope Length =	Parameters for Ove Zone 3 Weir 4.50	rflow Weir Not Selected N/A	feet
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00	ir Not Selected	ft (relative to basin bo	ttom at Stage = 0 ft)	Height of Gr Over Flow Grate Open Area /	Calculated ate Upper Edge, H _t = Weir Slope Length =	Parameters for Ove Zone 3 Weir 4.50 4.12	rflow Weir Not Selected N/A N/A N/A	feet feet
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = 4.00 Overflow Weir Sides = 4.00 Horiz. Length of Weir Sides = 4.00 Overflow Grate Open Area % = 75%	ir Not Selected N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fi	ettom at Stage = 0 ft) lat grate)	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00	rflow Weir Not Selected N/A N/A N/A N/A	feet feet should be ≥ 4
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Sides = 4.00	ir Not Selected N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fi feet	ettom at Stage = 0 ft) lat grate)	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37	rflow Weir Not Selected N/A N/A N/A N/A	feet feet should be ≥ 4 ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Sloes = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50%	pped) ir Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t %	ettom at Stage = 0 ft) lat grate)	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18	rflow Weir Not Selected N/A N/A N/A N/A N/A	feet feet should be ≥4 ft^2
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Sides = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice	ir Not Selected N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or Recta	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t %	ettom at Stage = 0 ft) lat grate)	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat	feet feet should be ≥4 ft^2
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Sides = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% t: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Zone 3 Rest	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t %	ttom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor	rflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected	feet feet should be ≥ 4 ft ² ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Zone 3 Rest Depth to Invert of Outlet Pipe = 2.50	ir Not Selected N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or Recta ctor Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % angular Orifice) ft (distance below bas	ttom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ft)	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Zone 3 Rest Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for ff feet % grate open area/t % ingular Orifice) ft (distance below bas inches	ntom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (ft)	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A	feet feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Zone 3 Rest Depth to Invert of Outlet Pipe = 2.50	ir Not Selected N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or Recta ctor Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % angular Orifice) ft (distance below bas	ntom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ft)	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Zone 3 Rest Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00	pped) ir Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or Recta ctor Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for ff feet % grate open area/t % ingular Orifice) ft (distance below bas inches	ntom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (ft)	Calculated ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75	rflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Horiz. Length of Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = Soff Detric Outlet Pipe = Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for ff feet % grate open area/t % ingular Orifice) ft (distance below bas inches	ittom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate O (ft) Out Central Angle of Restr	Calculated ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14	rflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Sides = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 User Input: Emergency Spillway (Rectangular or Trapez	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % mgular Orifice) ft (distance below bas inches	ittom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) (ft) Out Central Angle of Rest	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S	rflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway	feet feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = Overflow Weir Slope = Horiz. Length of Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = Some Striction Plate (Circular Orifice Depth to Invert of Outlet Pipe = Outlet Pipe W/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Is.00 User Input: Emergency Spillway (Rectangular or Trapez Spillway Invert Stage= Spillway Crest Length = 3.00	ir Not Selected N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % mgular Orifice) ft (distance below bas inches	ittom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ti) Central Angle of Restr Spillway Stage a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet	feet feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 User Input: Emergency Spillway (Rectangular or Trape: Spillway Invert Stage 6.30 Spillway Crest Length = 30.00	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % mgular Orifice) ft (distance below bas inches	ittom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ti) Central Angle of Restr Spillway Stage a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet	feet feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 Etestrictor Plate Height Above Pipe Invert = 18.00 User Input: Emergency Spillway (Rectangular or Trape: Spillway Invert Stage= 6.30 Spillway Crest Length = 30.00 Freeboard above Max Water Surface = 1.00	ir Not Selected N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % mgular Orifice) ft (distance below bas inches	ittom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ti) Central Angle of Restr Spillway Stage a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet	feet feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Sides = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% e: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 testrictor Plate Height Above Pipe Invert = 18.00 Spillway Invert Stage= 6.30 Spillway Crest Length = 30.00 Freeboard above Max Water Surface = 1.00 Routed Hydrograph Results	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % mgular Orifice) ft (distance below bas inches bottom at Stage = 0 fi	ttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-1 t)	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ft) Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60	rflow Weir Nd Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet acres	feet feet should be ≥ 4 ft ² ft ² te feet radians
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 Etestrictor Plate Height Above Pipe Invert = 18.00 User Input: Emergency Spillway (Rectangular or Trape: Spillway Invert Stage= 6.30 Spillway Crest Length = 30.00 Freeboard above Max Water Surface = 1.00	ir Not Selected N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % mgular Orifice) ft (distance below bas inches	ittom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ti) Central Angle of Restr Spillway Stage a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet	feet feet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Coverflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = 4.00 Overflow Weir Front Edge Length = 4.00 Horiz. Length of Weir Sides = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 Extrictor Plate Height Above Pipe Invert = 18.00 Spillway Invert Stage= 6.30 Spillway Crest Length = 3.00 Freeboard above Max Water Surface = 1.00 Routed Hydrograph Results Design Storm Return Period = 1.00 Cone-Hour Rainfall Depth (in) = 0.53 Calculated Runoff Volume (arcert) = 0.214	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet % grate open area/t % inches inches bottom at Stage = 0 fi	vttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-(t) 5 Year	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Central Angle of Restu Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year	feet feet should be ≥ 4 ft ² ft ft fee radians
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 User Input: Emergency Spillway (Rectangular or Trape: Spillway Crest Length = 3.00 Freeboard above Max Water Surface = 1.00 Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = 0	pped) ir Not Selected N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet % grate open area/t % ft (distance below bas inches inches bottom at Stage = 0 fi 2 Year 1.19 0.278	ittom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 t) <u>5 Year 1.50</u> 0.421	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (Central Angle of Restrict Spillway Stage a Basin Area a 10 Year 1.75 0.832	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.922	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 50 Year 2.25 2.610	rflow Weir Nd Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 3.508	feet feet should be ≥ 4 ft ² ft ² feet radians <u>500 Year</u> <u>3.85</u> <u>6.448</u>
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% Structure View Pipe Diameter = 18.00 User Input: Emergency Spillway (Rectangular or Trapez Spillway Invert Stage = Spillway Crest Length = 30.00 Spillway Crest Length = 3.00 Freeboard above Max Water Surface = 1.00 Routed Hydrograph Results Design Storm Return Period = WQCV One-Hour Rainfall Depth (in) = 0.53 Calculated Runoff Volume (acre-ft) = 0.214 IONAL Override Runoff Volume (acre-ft) = 0.214	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below bas inches bottom at Stage = 0 fi 2 Year 1.19 0.278 0.277	ttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 t) <u>5 Year</u> 1.50 0.421	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.832	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 2.00 1.922	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 S0 Year 2.25 2.610	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² feet radians 500 Year 3.85 6.448 6.443
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = Horiz. Length of Weir Slope = 0 Overflow Grate Open Area % = 75% Debris Clogging % = 50% c: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = 0utlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stages Spillway Crest Length = 30.00 Spillway End Slopes = 3.00 Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Outlet Period = Outlet Pipe Traperiod = One-Hour Rainfall Depth (in) = Outlet Rouring Routle (core-ft) = Inflow Hydrograph Volume (acre-ft) = <td>pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>inches ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % angular Orifice) ft (distance below bas inches bottom at Stage = 0 ff 2 Year 1.19 0.278 0.277 0.01</td> <td>ttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 t) <u>5 Year 1.50</u> 0.421 0.421 0.02</td> <td>Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ft) Out Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.832 0.15</td> <td>Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = ben Area w/ o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.922 1.922 0.53</td> <td>Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 50 Year 2.25 2.610 0.73</td> <td>rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 3.508 0.99</td> <td>feet feet should be ≥ 4 ft² ft² ft² feet radians 500 Year 3.85 6.448 </td>	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % angular Orifice) ft (distance below bas inches bottom at Stage = 0 ff 2 Year 1.19 0.278 0.277 0.01	ttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 t) <u>5 Year 1.50</u> 0.421 0.421 0.02	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ft) Out Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.832 0.15	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = ben Area w/ o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.922 1.922 0.53	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 50 Year 2.25 2.610 0.73	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 3.508 0.99	feet feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.85 6.448
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% Structure View Pipe Diameter = 18.00 User Input: Emergency Spillway (Rectangular or Trapez Spillway Invert Stage = Spillway Crest Length = 30.00 Spillway Crest Length = 3.00 Freeboard above Max Water Surface = 1.00 Routed Hydrograph Results Design Storm Return Period = WQCV One-Hour Rainfall Depth (in) = 0.53 Calculated Runoff Volume (acre-ft) = 0.214 IONAL Override Runoff Volume (acre-ft) = 0.214	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below bas inches bottom at Stage = 0 fi 2 Year 1.19 0.278 0.277	ttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 t) <u>5 Year</u> 1.50 0.421	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.832	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 2.00 1.922	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 S0 Year 2.25 2.610	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² ft ft feet radians 500 Year 3.85 6.448 6.443
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Coverflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 User Input: Emergency Spillway (Rectangular or Trape: Spillway Invert Stage= 6.30 Spillway Crest Length = 3.00 Freeboard above Max Water Surface = 1.00 Routed Hydrograph Results Design Storm Return Period = 0.214 (ONAL Override Runoff Volume (acre-ft) = 0.214 evelopment Unit Peak Q (cfs) = 0.00	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % inches bottom at Stage = 0 fi 2 Year 1.19 0.278 0.277 0.01 0.3	ttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 t) 5 Year 1.50 0.421 0.02 0.421 0.02 0.479	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (Central Angle of Restrict Spillway Stage a Basin Area a 10 Year 1.75 0.832 0.15 4.5	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.922 1.922 0.53 15.5	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 SO Year 2.25 2.610 0.73 21.5	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 3.508 0.99 29.2	feet feet should be ≥ 4 ft ² ft ² feet radians 500 Year 3.85 6.448 6.443 1.81 5.3.1
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = Sold Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Routed Hydrograph Results Design Storm Return Period = Spillway End Slopes = Scalculated Runoff Volume (acre-ft) = Inflow Hydrograph Nolume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Peak Inflow Q (cfs) = Peak Nuflow Q (cfs) = Peak Nuflow Q (cfs) =	Not Selected N/A Didal feet H:V feet 0.391 0.391 0.00 0.00 0.00 0.00 0.2 N/A	inches ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % inches bottom at Stage = 0 ff 2 Year 1.19 0.277 0.01 0.3 3.8 0.1 N/A	ttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 t) 5 Year 1.50 0.421 0.02 0.421 0.02 0.479 5.8 0.172 0.4	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ft) Out Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.832 0.15 4.5 11.3 3.8 0.8	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.922 1.922 0.53 15.5 26.0 17.5 1.1	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 50 Year 2.25 2.610 0.73 21.5 35.1 22.3 1.0	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 3.508 0.99 29.2 47.0 24.0 0.8	feet feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year a.85 6.443 1.81 53.1 85.1 85.1 85.1 1.81
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 User Input: Emergency Spillway (Rectangular or Traper Spillway Crest Length = 3.00 Freeboard above Max Water Surface = 1.00 Routed Hydrograph Results Design Storm Return Period = 0.01 Routed Runoff Volume (acre-ft) = 1.00 Routed Runoff Volume (acre-ft) = 0.01 Predevelopment Peak Q (cfs) = 0.00 Peak Inflow Q (cfs) = 0.00 Peak Outflow Q (cfs) = 0.00 Nation Peak Outflow Q (cfs)	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches inches ft (relative to basin bo feet H:V (enter zero for fi feet % angular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fi 2 Year 1.19 0.277 0.01 0.3 3.8 0.1 N/A Plate	ttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 t) t) 5 Year 1.50 0.421 0.421 0.421 0.479 5.8 0.172 0.4 Plate	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C ft) Central Angle of Restri Spillway Stage a Basin Area a 0.832 0.15 4.5 11.3 3.8 0.8 0.8 0.8 0.8	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.922 0.53 1.5.5 26.0 1.7.5 1.1 Overflow Grate 1	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 S0 Year 2.25 2.610 0.73 21.5 35.1 22.3 1.0 Outlet Plate 1	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 3.508 0.99 29.2 47.0 24.0 0.8 Outlet Plate 1	feet feet should be ≥ 4 ft ² ft ² feet radians 6.448 6.443 1.81 5.3.1 5.3.1 8.5.1 7.5.6 1.4 Spillway
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% Structure of Outlet Pipe a 2.50 Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Zone 3 Rest Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 User Input: Emergency Spillway (Rectangular or Trape: Spillway Crest Length = Spillway Crest Length = 3.00 Spillway Crest Length = 3.00 Spillway End Slopes = 3.00 Freeboard above Max Water Surface = 1.00 Routed Hydrograph Results 0.214 Design Storm Return Period = 0.214 (ONAL Override Runoff Volume (acre-ft) = 0.214 (ONAL Override Runoff Volume (acre-ft) = 0.214 Peak Inflow Q (cfs) = 0.0 Peak Muflow Q (cfs) = 0.1 atio Peak Outflow to Predevelopment Q = N/A Nathflow Perdevelopment Q = N/A <	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ft (distance below bas inches inches bottom at Stage = 0 fi 2 Year 1.19 0.278 0.277 0.01 0.3 3.8 0.1 N/A Plate N/A	stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 Half-0 0.421 0.43 0.44 N/A	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ft) Out Central Angle of Restr Spillway Stage a Basin Area a 0.832 0.15 4.5 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 0.8 0.9 (0.9 11.3 0.8 0.8 0.9 (0.9 11.3 0.8 0.8 0.9 (0.9 11.3 0.8 0.8 0.9 (0.9 11.3 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.922 0.53 15.5 26.0 17.5 1.1 Overflow Grate 1 1.4	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 50 Year 2.25 2.610 0.73 21.5 35.1 22.3 1.0 Outlet Plate 1 1.8	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 3.508 0.99 29.2 47.0 0.8 Outlet Plate 1 1.9	feet feet should be ≥ 4 ft ² ft ² feet radians
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Weir Slope = 4.00 Horiz. Length of Weir Slope = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Zone 3 Rest Depth to Invert of Outlet Pipe = 18.00 Outlet Pipe Diameter = 18.00 Routed Hydrograph Results 30.00 Spillway Invert Stage = 3.00 Spillway Invert Stage = 3.00 Spillway Invert Stage = 0.300 Spillway Invert Stage = 0.00 Preeboard above Max Water Surface = 1.00 One-Hour Rainfall Depth (in = 0.214 ONAL Override Runoff Volume (acreft) = 0.01 Inflow	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % ngular Orifice) ft (distance below bas inches bottom at Stage = 0 ff 2 Year 1.19 0.277 0.01 0.3 3.8 0.1 N/A Plate N/A N/A	ttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 t) 5 Year 1.50 0.421 0.421 0.02 0.421 0.02 0.479 5.8 0.172 0.4 Plate N/A N/A	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (ft) Out Central Angle of Restr Spillway Stage a Basin Area a 0.832 0.15 4.5 11.3 3.8 0.832 0.15 4.5 11.3 3.8 0.8 0.9 0.15 4.5 11.3 3.8 0.8 0.9 0.15 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.922 0.53 15.5 26.0 17.5 1.1 Overflow Grate 1 1.4 N/A	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 S0 Year 2.25 2.610 0.73 21.5 35.1 22.3 1.0 Outlet Plate 1 1.8 N/A	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² ft ² feet radians
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Zone 3 W Overflow Weir Front Edge Height, Ho = 3.50 Overflow Weir Front Edge Length = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% Structure of Outlet Pipe a 2.50 Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Zone 3 Rest Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 User Input: Emergency Spillway (Rectangular or Trape: Spillway Crest Length = Spillway Crest Length = 30.00 Spillway Crest Length = 3.00 Freeboard above Max Water Surface = 10.00 Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = 0.214 ONAL Override Runoff Volume (acre-ft) = 0.214 ONAL Override Runoff Volume (acre-ft) = 0.00 Predevelopment Peak Q(cfs) = 0.00 Peak Muflow Q (cfs) = 0.1 atio Peak Outflow to Predevelopment Q = N/A Nathflow Pipel Resu 0.1 Autor Predevelopment Q = N/A </td <td>pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>inches inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ft (distance below bas inches inches bottom at Stage = 0 fi 2 Year 1.19 0.278 0.277 0.01 0.3 3.8 0.1 N/A Plate N/A</td> <td>stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 Half-0 0.421 0.43 0.44 N/A</td> <td>Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ft) Out Central Angle of Restr Spillway Stage a Basin Area a 0.832 0.15 4.5 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 0.8 0.9 (0.9 11.3 0.8 0.8 0.9 (0.9 11.3 0.8 0.8 0.9 (0.9 11.3 0.8 0.8 0.9 (0.9 11.3 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.922 0.53 15.5 26.0 17.5 1.1 Overflow Grate 1 1.4</td> <td>Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 50 Year 2.25 2.610 0.73 21.5 35.1 22.3 1.0 Outlet Plate 1 1.8</td> <td>rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 3.508 0.99 29.2 47.0 0.8 Outlet Plate 1 1.9</td> <td>feet feet should be ≥ 4 ft² ft² feet radians 500 Year 3.85 6.448 -6.443 1.81 -53.1 -75.6 1.4 -85.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 1</td>	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ft (distance below bas inches inches bottom at Stage = 0 fi 2 Year 1.19 0.278 0.277 0.01 0.3 3.8 0.1 N/A Plate N/A	stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 Half-0 0.421 0.43 0.44 N/A	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ft) Out Central Angle of Restr Spillway Stage a Basin Area a 0.832 0.15 4.5 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 3.8 0.8 0.9 (0.9 11.3 0.8 0.9 (0.9 11.3 0.8 0.8 0.9 (0.9 11.3 0.8 0.8 0.9 (0.9 11.3 0.8 0.8 0.9 (0.9 11.3 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 11.3 0.8 0.8 0.0 (0.9 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.922 0.53 15.5 26.0 17.5 1.1 Overflow Grate 1 1.4	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 50 Year 2.25 2.610 0.73 21.5 35.1 22.3 1.0 Outlet Plate 1 1.8	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 3.508 0.99 29.2 47.0 0.8 Outlet Plate 1 1.9	feet feet should be ≥ 4 ft ² ft ² feet radians 500 Year 3.85 6.448 -6.443 1.81 -53.1 -75.6 1.4 -85.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 -53.1 -75.6 1.4 1
Vertical Orifice Diameter = N/A er Input: Overflow Weir (Dropbox) and Grate (Flat or S Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = 4.00 Overflow Weir Front Edge Length = 4.00 Overflow Grate Open Area % = 75% Debris Clogging % = 50% E: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice Depth to Invert of Outlet Pipe = 2.50 Outlet Pipe Diameter = 18.00 Restrictor Plate Height Above Pipe Invert = 18.00 Spillway Invert Stages Spillway Crest Length = 30.00 Freeboard above Max Water Surface = 1.00 Routed Hydrograph Results Design Storm Return Period = 1.00 Routed Hydrograph Results Design Storm Return Period = 0.214 Inflow Hydrograph Volume (acre-ft) = 0.214 Inflow Hydrograph Volume (acre-ft) = 0.214 Neak Unflow Q (cfs) = 0.0 Preak Unflow Q (cfs) = 0.0 Peak Inflow Q (cfs) = 0.1 Structure Contolling Flow = N/A Structure Contolling Flow = N/A Ax Velocity through Grate 2 (fps) = N/A e to Drain 97% of Inflow Volume (hore) = 0.11	pped) ir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % inches inches bottom at Stage = 0 fi 2 Year 1.19 0.277 0.01 0.3 3.8 0.1 N/A Plate N/A N/A 46	ttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-0 t) 5 Year 1.50 0.421 0.02 0.421 0.02 0.479 5.8 0.172 0.4 Plate N/A N/A 55	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (Central Angle of Restrict Spillway Stage a Basin Area a 0.832 0.15 4.5 11.3 3.8 0.832 0.15 4.5 11.3 3.8 0.8 0.7 0.7 10.7 1.7 5 0.8 10 10 10 10 10 10 10 10 10 10 10 10 10	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.922 0.53 15.5 26.0 17.5 1.1 Overflow Grate 1 1.4 N/A 48	Parameters for Ove Zone 3 Weir 4.50 4.12 7.00 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 ted Parameters for S 0.62 7.92 0.60 50 Year 2.25 2.610 0.73 21.5 35.1 22.3 1.0 Outlet Plate 1 1.8 N/A 44	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet feet feet acres 100 Year 2.52 3.508 0.99 29.2 47.0 24.0 0.8 Outlet Plate 1 1.9 N/A 39	feet feet should be ≥ 4 ft ² ft ² feet radians 500 Year a.85 6.443 1.81 5.3.1 8.5.1 7.5.6 1.4 Spillway 2.0 N/A 2.8

Outflow Hydrograph Workbook Filename:

	Storm Inflow H			ention, Versio						
	The user can c				this workbook v		graphs develop	ed in a separate	program.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
6.07 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:06:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:12:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:18:13	0.13	0.24	0.17	0.26	0.50	1.12	1.49	1.97	3.37
0.824	0:24:17	0.36	0.65	0.46	0.69	1.35	3.05	4.10	5.45	9.57
	0:30:21 0:36:25	0.92	1.66 4.56	1.19 3.26	1.78 4.90	3.47 9.53	7.83 21.50	10.53 28.90	13.99 38.38	24.58 67.32
	0:42:29	2.97	5.38	3.83	5.78	11.35	25.95	35.09	46.96	85.14
	0:48:34	2.82	5.12	3.65	5.51	10.84	24.85	33.63	45.09	82.62
	0:54:38	2.57	4.66	3.32	5.02	9.87	22.62	30.61	41.03	75.52
	1:00:42	2.28	4.15	2.95	4.47	8.82	20.30	27.52	36.95	68.09
	1:06:46	1.95	3.57	2.53	3.85	7.63	17.65	23.98	32.28	59.76
	1:12:50	1.71	3.12	2.21	3.36	6.64	15.33	20.88	28.15	52.26
	1:18:55	1.54	2.82	2.00	3.04	6.02	13.90	18.90	25.44	47.02
	1:24:59 1:31:03	1.26	2.32	1.64	2.50	4.98 4.08	11.59	15.79	21.29	39.62
	1:37:07	0.77	1.88	1.33	2.03	3.15	9.55 7.49	13.04 10.27	17.63 13.93	32.90 26.25
	1:43:11	0.56	1.06	0.74	1.15	2.36	5.70	7.87	10.73	20.20
	1:49:16	0.41	0.77	0.54	0.84	1.70	4.19	5.82	7.99	15.35
	1:55:20	0.32	0.60	0.42	0.65	1.32	3.18	4.40	6.01	11.43
	2:01:24	0.27	0.50	0.35	0.54	1.08	2.59	3.56	4.84	9.13
	2:07:28	0.23	0.42	0.30	0.46	0.92	2.19	3.00	4.08	7.66
	2:13:32	0.20	0.37	0.26	0.40	0.80	1.91	2.62	3.55	6.65
	2:19:37	0.18	0.33	0.24	0.36	0.72	1.71	2.35	3.18	5.93
	2:25:41 2:31:45	0.17	0.31	0.22	0.33	0.67	1.57 1.16	2.15	2.91 2.16	5.42 4.10
	2:31:45	0.12	0.23	0.18	0.24	0.36	0.85	1.16	1.57	2.96
	2:43:53	0.07	0.17	0.09	0.13	0.26	0.62	0.85	1.16	2.19
	2:49:58	0.05	0.09	0.06	0.10	0.19	0.46	0.63	0.86	1.63
	2:56:02	0.03	0.06	0.04	0.07	0.14	0.33	0.46	0.63	1.20
	3:02:06	0.02	0.04	0.03	0.05	0.10	0.24	0.33	0.45	0.86
	3:08:10	0.02	0.03	0.02	0.03	0.07	0.17	0.24	0.33	0.63
	3:14:14	0.01	0.02	0.01	0.02	0.05	0.12	0.17	0.23	0.44
	3:20:19 3:26:23	0.01	0.01	0.01	0.01	0.03	0.07	0.10	0.15	0.29
	3:32:27	0.00	0.01	0.00	0.01	0.01	0.04	0.06	0.08	0.17
	3:38:31	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.04	0.08
	3:44:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:56:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:02:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:08:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:14:56 4:21:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:33:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:39:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:51:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:57:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:03:30 5:09:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:21:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:27:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:33:51 5:39:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:39:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:52:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:58:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:04:12 6:10:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:16:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:22:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:28:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:34:33 6:40:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:40:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:52:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:58:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:04:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:10:58 7:17:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
I	7.17.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00


UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition p


Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
	1.00	3,443	0.079	1,729	0.040	0.04	For best results, include th
	2.00	6,871	0.158	6,886	0.158	0.10	stages of all grade slope
WQCV	2.00	7,529	0.173	8,543	0.196	0.10	changes (e.g. ISV and Floc
2 YR.	2.22	8,436	0.194	11,097	0.255	0.13	from the S-A-V table on
2 18.	3.00	9,740	0.224	15,277	0.351	0.16	Sheet 'Basin'.
EURV	3.05	9,882	0.227	15,768	0.362	0.16	Also include the inverts of
5 YR.	3.18	10,250	0.235	17,077	0.392	0.17	outlets (e.g. vertical orific
516.	4.00	12,575	0.289	26,435	0.607	3.73	overflow grate, and spillw
	5.00	15,295	0.351	40,370	0.927	22.11	where applicable).
	6.00	18,016	0.414	57,026	1.309	23.69	
100 VP	6.22	18,942	0.414	61,091	1.402	24.02	-
100 YR.	7.00	22,223	0.510	77,145	1.771	80.83	-
	8.00	26,430	0.607	101,472	2.329	253.19	-
	0.00	50	0.001	0	0.000	0.00	-
	0.00			-			-
							-
							-
							-
							-
							1
							4
							4
		1					4
							4
							4
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							4
							-
							-
							-
							4
							4
							-
							4
							-
							4
							4
							4
							4
							4
							4
							4
							4
							4
							4
							4
							1
							1
							1
]
							1
							4
	_						4
							4
							4
							4
							1
							1
							1
							1
							1
							1
							-

			DETENTION B	ASIN STAGE-S	TORAGI	E TABLE	BUILDEF	2					
Project:	RETREAT A	T TIMBERRI	UD-D	etention, Version 3	.07 (Febru	ary 2017)							
Basin ID:	POND 2												
	2 ONE 1		~										
	1					_							
ZONE	1 AND 2	100-YE ORIFIC	EAR CE	Depth Increment =	2	ft							
POOL Example Zone		on (Retent	ion Pond)	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Required Volume Calculation				Description Top of Micropool	(ft)	Stage (ft) 0.00	(ft) 	(ft) 	(ft^2)	Area (ft^2) 277	(acre) 0.006	(ft^3)	(ac-ft)
Selected BMP Type =	EDB	1		7162		2.00	-	-		10,268	0.236	10,442	0.240
Watershed Area =	100.40	acres		7164	-	4.00	-	-		30,108	0.691	50,921	1.169
Watershed Length =	4,000	ft		7166		6.00 8.00	-	-		38,919	0.893	119,948	2.754
Watershed Slope = Watershed Imperviousness =	0.032 21.60%	ft/ft percent		7168	-	8.00	-			45,498 52,628	1.044	204,365 302,491	4.692 6.944
Percentage Hydrologic Soil Group A =	0.0%	percent											
Percentage Hydrologic Soil Group B =	100.0%	percent											
Percentage Hydrologic Soil Groups C/D = Desired WQCV Drain Time =	0.0%	percent hours			-								<u> </u>
Location for 1-hr Rainfall Depths =		India						-					
Water Quality Capture Volume (WQCV) =	1.022	acre-feet	Optional User Override		-								
Excess Urban Runoff Volume (EURV) =	2.168	acre-feet	1-hr Precipitation		-								
2-yr Runoff Volume (P1 = 1.19 in.) = 5-yr Runoff Volume (P1 = 1.5 in.) =	2.351	acre-teet acre-feet	1.19 inches 1.50 inches		-				-				
10-yr Runoff Volume (P1 = 1.75 in.) =	3.953	acre-feet	1.75 inches										
25-yr Runoff Volume (P1 = 2 in.) =	7.552	acre-feet	2.00 inches										
50-yr Runoff Volume (P1 = 2.25 in.) = 100-yr Runoff Volume (P1 = 2.52 in.) =	9.864 12.887	acre-feet	2.25 inches 2.52 inches		-								<u> </u>
500-yr Runoff Volume (P1 = 3.85 in.) =	23.106	acre-feet	3.85 inches		-				-				
Approximate 2-yr Detention Volume =	1.499	acre-feet			-								
Approximate 5-yr Detention Volume = Approximate 10-yr Detention Volume =	2.205	acre-feet acre-feet			-								
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =	4.261	acre-feet			-			-					
Approximate 50-yr Detention Volume =	4.500	acre-feet											
Approximate 100-yr Detention Volume =	5.494	acre-feet											
Stage-Storage Calculation					-								├───
Zone 1 Volume (WQCV) =	1.022	acre-feet					-	-					
Zone 2 Volume (EURV - Zone 1) =	1.146	acre-feet						-					
Zone 3 Volume (100-year - Zones 1 & 2) = Total Detention Basin Volume =	3.327 5.494	acre-feet			-								<u> </u>
Initial Surcharge Volume (ISV) =	5.494 User	acre-feet ft^3			-		-	-					
Initial Surcharge Depth (ISD) =	user	ft						-					
Total Available Detention Depth (H_{total}) =	user	ft			-		-						<u> </u>
Depth of Trickle Channel (H_{TC}) = Slope of Trickle Channel (S_{TC}) =	user	ft			-		-						┝────
Slopes of Main Basin Sides (S _{main}) =	user	ft/ft H:V			-		-	-					
Basin Length-to-Width Ratio (R _{I/W}) =	user												
		-			-		-	-					<u> </u>
Initial Surcharge Area (A _{ISV}) = Surcharge Volume Length (L _{ISV}) =	user user	ft^2 ft			-		-	-					<u> </u>
Surcharge Volume Width (W _{ISV}) =	user	ft						-					
Depth of Basin Floor (H _{FLODR}) =	user	ft						-					
Length of Basin Floor (L_{PLOOR}) = Width of Basin Floor (W_{PLOOR}) =	user	ft ft			-								┝───
Area of Basin Floor (A _{FLOOR}) =	user	ft^2					-						
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3						-					
Depth of Main Basin $(H_{MAIN}) =$ Length of Main Basin $(L_{MAIN}) =$	user user	ft			-		-	-					
Length of Main Basin (L _{MAIN}) = Width of Main Basin (W _{MAIN}) =	user	ft ft			-				-				
Area of Main Basin (A _{MAIN}) =	user	ft^2			-								
Volume of Main Basin (V _{MAIN}) =	user	ft^3											<u> </u>
Calculated Total Basin Volume (V _{total}) =	user	acre-feet			-				-				
									-				<u> </u>
								-	-				
					-			-					——
								-					<u> </u>
					-			-	-				
					-		-	-					<u> </u>
					-			-	-				<u> </u>
								-					
								-	-				
					-				-				
					-		-						<u> </u>
					-			-					<u> </u>
													<u> </u>
					-			-	-				
					-			-	-				
					-								——
					-			-	-				
									-				
					-								
					-								
				1								1	i i

UD-Detention, Version 3.07 (February 2017)

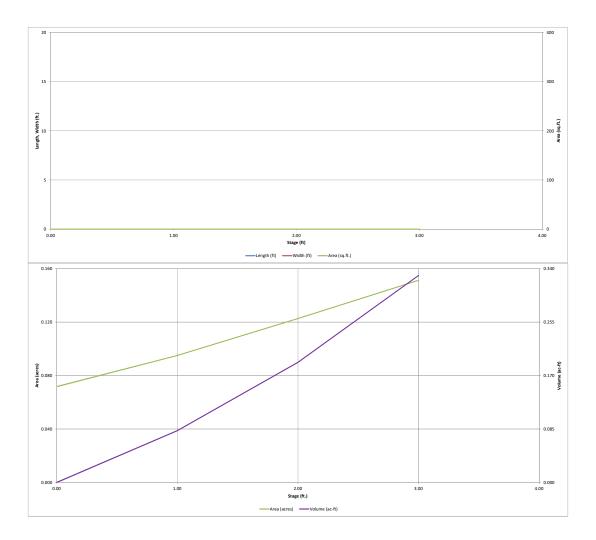
		Dete	ention Basin (Dutlet Struct	ure Design				
				rsion 3.07 (Februai	ry 2017)				
Project: Basin ID:	RETREAT AT TIME	ERRIDGE FILING N	0.1						
ZONE 3	POND 2								
ZONE 2 ZONE 1		~		. (6)					
				Stage (ft)	Zone Volume (ac-ft)		1		
VOLUME_EURV Wacv			Zone 1 (WQCV)	3.78	1.022	Orifice Plate			
1	100-YEAI ORIFICE	1	Zone 2 (EURV)	5.32	1.146	Orifice Plate			
PERMANENT ZONE 1 AND 2- ORIFICES			lone 3 (100-year)	8.75	3.327	Weir&Pipe (Restrict)			
POOL Example Zone	Configuration (Re	tention Pond)			5.494	Total			
ser Input: Orifice at Underdrain Outlet (typically u	sed to drain WQCV i	n a Filtration BMP)				1	ed Parameters for Ur	nderdrain	
Underdrain Orifice Invert Depth =	N/A		ne filtration media su	face)	Unde	rdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches				in Orifice Centroid =	N/A	feet	
	•							1	
ser Input: Orifice Plate with one or more orifices	or Elliptical Slot Wei	(typically used to d	rain WQCV and/or EL	JRV in a sedimentati	on BMP)	Calcu	lated Parameters for	Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin l	bottom at Stage = 0 ft	:)	WQ Or	rifice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	5.50	ft (relative to basin l	bottom at Stage = 0 ft	:)	E	lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	16.50	inches	-		Ellip	otical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	N/A	ft ²	
	•							1.4	
ser Input: Stage and Total Area of Each Orifice	Row (numbered from	n lowest to highest)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	0.00	1.40	2.80	4.20					1
Orifice Area (sq. inches)	3.00	4.00	4.00	4.00					1
						•		•	-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]
Stage of Orifice Centroid (ft)	())	(,	(,	((,		(,	1
Orifice Area (sq. inches)									1
Office / tea (sq. indices)									1
User Input: Vertical Orifice (Circ	ular or Rectangular)					Calculated	Parameters for Vert	tical Orifice	
	Not Selected	Not Selected	1				Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	ottom at Stage = 0 f	r) V	ertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b			al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches		.,				1
			Indico						
User Input: Overflow Weir (Dropbox) and G									
User Input: Overflow weir (Drobbox) and G						6.1. J.1.		<i>a</i>	
		Necchand	1			Calculated	Parameters for Ove		1
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 5.50	N/A	ft (relative to basin bo	ttom at Stage = 0 ft)		ate Upper Edge, H _t =	Zone 3 Weir 6.50	Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir 5.50 12.00	N/A N/A	feet		Over Flow	ate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir 6.50 4.12	Not Selected N/A N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	Zone 3 Weir 5.50 12.00 4.00	N/A N/A N/A	feet H:V (enter zero for fl		Over Flow Grate Open Area /	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 6.50 4.12 6.22	Not Selected N/A N/A N/A	feet should be ≥ 4
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 5.50 12.00 4.00 4.00	N/A N/A N/A N/A	feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 6.50 4.12 6.22 37.11	Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 5.50 12.00 4.00 4.00 75%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 6.50 4.12 6.22	Not Selected N/A N/A N/A	feet should be ≥ 4
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 5.50 12.00 4.00 4.00	N/A N/A N/A N/A	feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 6.50 4.12 6.22 37.11	Not Selected N/A N/A N/A N/A	feet should be <u>></u> 4 ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz, Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 5.50 12.00 4.00 4.00 75% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55	Not Selected N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz, Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 5.50 12.00 4.00 4.00 75% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55	Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 5.50 12.00 4.00 4.00 75% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55	Not Selected N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri	N/A N/A N/A N/A N/A Ctor Plate, or Rectar	feet H:V (enter zero for fl feet %, grate open area/t %	at grate) ootal area	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 5.50 12.00 4.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor	N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	at grate) ootal area	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Coverflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50	N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below bas	at grate) otal area in bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Coverflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet should be ≥ 4 ft ² ft ² te ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % sular Orifice) ft (distance below bas inches	at grate) otal area in bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (t)	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18	Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % sular Orifice) ft (distance below bas inches	at grate) otal area in bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (t)	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % sular Orifice) ft (distance below bas inches	at grate) otal area in bottom at Stage = 0 Half-C	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (th) Out Central Angle of Restr	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 wilar or Trapezoidal)	N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches	at grate) otal area in bottom at Stage = 0 Half-C	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (tt) Central Angle of Restr Spillway	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway	feet should be ≥ 4 ft ² ft ² te ft ² fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 ular or Trapezoidal) 9.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches	at grate) otal area in bottom at Stage = 0 Half-C	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (C th) Central Angle of Restr Spillway Stage a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 ular or Trapezoidal) 9.00 65.00	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches	at grate) otal area in bottom at Stage = 0 Half-C	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (C th) Central Angle of Restr Spillway Stage a	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 ular or Trapezoidal) 9.00 65.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectar NA Selected N/A N/A ft (relative to basin I feet H:V	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches	at grate) otal area in bottom at Stage = 0 Half-C	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (C th) Central Angle of Restr Spillway Stage a	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft^2 ft^2 te ft^2 feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 ular or Trapezoidal) 9.00 65.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectar NA Selected N/A N/A ft (relative to basin I feet H:V	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches	at grate) otal area in bottom at Stage = 0 Half-C	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (C th) Central Angle of Restr Spillway Stage a	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloge = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 ular or Trapezoidal) 9.00 65.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectar NA Selected N/A N/A ft (relative to basin I feet H:V	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches	at grate) otal area in bottom at Stage = 0 Half-C	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (C th) Central Angle of Restr Spillway Stage a	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² fte
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloge = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 (ular or Trapezoidal) 9.00 65.00 3.00 	N/A N/A N/A N/A N/A ctor Plate, or Rectar N/A N/A ft (relative to basin l feet H:V feet EURV 1.07	feet H:V (enter zero for fl feet %, grate open area/t % sular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19	at grate) otal area in bottom at Stage = 0 Half-() <u>5 Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (Control of the open ft) Out Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 S0 Year 2.25	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52	feet should be ≥ 4 ft ² ft ² feet radians <u>500 Year</u> 3.85
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloge = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Kater Surface = Restered above Max Water Surface = Restrictor Plate Height Above Pipe Invert = Calculated Runoff Volume (acre-ft) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 wlar or Trapezoidal) 9.00 65.00 3.00 WQCV	N/A N/A N/A N/A N/A Ctor Plate, or Rectar N/A N/A t (relative to basin l feet H:V feet EURV	feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches inches bottom at Stage = 0 ft	at grate) otal area in bottom at Stage = 0 Half-0	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (Contral Angle of Restr Spillway Stage a Basin Area a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year	feet should be ≥ 4 ft ² ft ² te ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 (ular or Trapezoidal) 9.00 65.00 3.00 WOCV 0.53 1.022	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet EURV 1.07 2.168	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 1.608	at grate) otal area in bottom at Stage = 0 Half-C ;) <u>5 Year</u> 1.50 2.351	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (C (t) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.953	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 7.552	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 50 Year 2.25 9.864	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 12.887	feet should be \geq 4 ft ² ft ² ft ² feet radians 500 Year 3.85 23.106
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Stope = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 wlar or Trapezoidal) 9.00 65.00 3.00 WQCV 0.53 1.022 1.021	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectar NA Selected N/A N/A ft (relative to basin I feet H:V feet EURV 1.07 2.168	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) If (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.608	at grate) otal area in bottom at Stage = 0 Half-C c) <u>5 Year</u> 1.50 2.351 <u>2.349</u>	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (Control of the open the open of the open Control of the open of the open Control of the open of the o	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 7.552 7.544	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for 5 0.96 9.96 1.20 50 Year 2.25 9.864 9.852	Not Selected N/A Italion Italion Italio	feet should be \geq 4 ft ² ft ² fe ft ² feet radians 2.3.106 2.3.079
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 (ular or Trapezoidal) 9.00 65.00 3.00 WQCV 0.53 1.022 1.021 0.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectar N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 2.168 2.165 0.00	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.608 	at grate) otal area in bottom at Stage = 0 Half-C t) <u>5 Year 1.50 2.351</u> <u>2.349</u> 0.02	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (C (t) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.953 - 3.949 0.17	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 7.552 7.544 0.58	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 SO Year 2.25 9.864 9.852 0.80	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 12.887 12.868 1.08	feet should be ≥ 4 ft ² ft ² ft ² feet radians 23.079 1.97
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Network Ray Restricts Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Q (ofs) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 25.00 (ular or Trapezoidal) 9.00 65.00 3.00 0.53 1.022 1.021 0.00 0.0	N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A N/A N/A ft (relative to basin I feet H:V feet EURV 1.07 2.168 2.165 0.00 0.0	feet H:V (enter zero for fi feet %, grate open area/t % rgular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 1.608 1.607 0.01 1.0	at grate) otal area in bottom at Stage = 0 Half-O .) 5 Year 1.50 2.351 2.349 0.02 1.800	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C ft) Out Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.953 - 3.949 0.17 17.0	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 7.552 7.544 0.58 58.0	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 S0 Year 2.25 9.864 9.852 0.80 80.3	Not Selected N/A Italian Italian Italian It	feet should be ≥ 4 ft ² ft ² ft ² feet feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak (D(cfs) = Peak Inflow Q (cfs) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 wular or Trapezoidal) 9.00 65.00 3.00 WQCV 0.53 1.022 1.021 0.00 0.0 15.1	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet 2.165 0.00 31.7	feet H:V (enter zero for fi feet %, grate open area/t % rgular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 1.608 <u>1.607</u> 0.01 1.0 23.6	at grate) otal area in bottom at Stage = 0 Half-C :) 5 Year 1.50 2.351 2.349 0.02 1.800 34.3	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C th ft) Central Angle of Restrict Spillway Stage a Basin Area a 10 Year 1.75 3.953 3.949 0.17 1.7.0 57.3	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 7.552 7.544 0.58 58.0 107.8	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 50 Year 2.25 9.864 9.852 0.80 80.3 139.7	Not Selected N/A IOO Year 1.08 108.7 180.8<	feet should be \geq 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Riow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Nuflow Q (cfs) = Peak Nuflow Q (cfs) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 vular or Trapezoidal) 9.00 65.00 3.00 VUQCV 0.53 1.022 1.021 0.00 0.0 15.1 0.5	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet 2.165 0.00 31.7 0.8	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.608 1.607 0.01 1.0 23.6 0.7	at grate) otal area in bottom at Stage = 0 Half-C) 5 Year 1.50 2.351 2.349 0.02 1.800 34.3 0.858	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (C (t) Out Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.953 3.949 0.17 17.0 57.3 17.1	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.00 7.552 7.544 0.58 58.0 107.8 62.2	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 S0 Year 2.25 9.864 9.852 0.80 80.3 139.7 85.9	Not Selected N/A Itality Itality Itality It	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 (ular or Trapezoidal) 9.00 65.00 3.00 (Ular or Trapezoidal) 9.00 65.00 3.00 (Ular or Trapezoidal) 9.00 1.021 0.00 0.0 0.0 1.021 0.00 0.0 1.5.1 0.5 N/A	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet H:V feet 0.07 2.165 0.00 0.10 31.7 0.8 N/A	feet H:V (enter zero for fi feet %, grate open area/t % sgular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.607</u> <u>0.01</u> <u>1.607</u> <u>0.01</u> <u>1.0</u> <u>2.3.6</u> <u>0.7</u> N/A	at grate) otal area in bottom at Stage = 0 Half-O 2.351 2.349 0.02 1.800 34.3 0.858 0.5	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C th ft) Central Angle of Restr Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 3.953 0.17 1.70 5.7.3 1.7.1 1.0	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 7.552 7.544 0.58 58.0 107.8 62.2 1.1	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 50 Year 2.25 9.864 9.852 0.80 80.3 139.7 85.9 1.1	Not Selected N/A A A ID0 Year 12.868	feet should be ≥ 4 ft ² ft ² ft ² feet radians 23.079 1.97 1.97.5 3.16.4 96.7 0.5
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Calculated Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Riow, Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 (ular or Trapezoidal) 9.00 65.00 3.00 WOCV 0.53 1.022 1.021 0.00 0.0 15.1 0.5 N/A Plate	N/A N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet EURV 1.07 2.168 EURV 2.168 CO 0.00 0.0 31.7 0.8 N/A Plate	feet H:V (enter zero for fi feet %, grate open area/t % rgular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 1.608 1.607 0.01 1.0 23.6 0.7 N/A Plate	at grate) otal area in bottom at Stage = 0 Half-O) 5 Year 1.50 2.351 2.349 0.02 1.800 3.4.3 0.858 0.5 Plate	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C ft) Out Central Angle of Restr Spillway Stage a Basin Area a Basin Area a 0.17 1.75 3.953 0.17 1.7.0 57.3 17.1 1.0 0.0verflow Grate 1	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 7.552 7.554 0.58 58.0 107.8 62.2 1.1 Overflow Grate 1	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 50 Year 2.25 9.864 9.852 0.80 80.3 139.7 85.9 1.1 Outlet Plate 1	Not Selected N/A Spillway feet feet 12.868 1.08 108.7 180.8 91.9 0.8 Outlet Plate 1	feet should be ≥ 4 ft ² ft ² ft ² feet feet radians 23.106 23.079 1.97 1.97. 316.4 96.7 0.5 N/A
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Debris Clogging % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 wlar or Trapezoidal) 9.00 65.00 3.00 WQCV 0.53 1.022 1.021 0.00 0.0 15.1 0.5 N/A Plate N/A	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet 2.165 0.00 31.7 0.8 N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.608 1.607 0.01 1.0 23.6 0.7 N/A Plate N/A	at grate) otal area in bottom at Stage = 0 Half-C :) 5 Year 1.50 2.351 2.349 0.02 1.800 34.3 0.858 0.5 Plate N/A	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C ft) Out Central Angle of Restr Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 3.953 3.949 0.17 17.0 57.3 17.1 1.0 Overflow Grate 1 0.4	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 7.552 7.544 0.58 58.0 107.8 62.2 1.1 Overflow Grate 1 1.7	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for 5 0.96 9.96 1.20 50 Year 2.25 9.864 9.852 0.80 80.3 139.7 85.9 1.1 Outlet Plate 1 2.3	Not Selected N/A 100 Year 1.2.868 1.08 91.9	feet should be ≥ 4 ft ² ft ² ft ² feet radians 23.106 23.079 1.97 1.97.5 316.4 96.7 0.5 N/A 2.6
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Net State Stat	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 (ular or Trapezoidal) 9.00 65.00 3.00 	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet H:V 1.07 2.165 0.00 0.17 0.8 N/A Plate N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % sgular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.608 1.607 0.01 1.0 23.6 0.7 N/A Plate N/A N/A	at grate) otal area in bottom at Stage = 0 Half-C) 5 Year 1.50 2.351 	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (C (ft) Out Central Angle of Restr Spillway Stage a Basin Area a Basin Area a 0.07 1.75 3.953 0.17 1.70 57.3 1.7.1 1.0 Overflow Grate 1 0.4 N/A	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = tet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00 7.552 7.544 0.58 58.0 107.8 62.2 1.1 Overflow Grate 1 1.7 N/A	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 50 Year 2.25 9.864 9.852 0.80 80.3 139.7 85.9 1.1 Outlet Plate 1 2.3 N/A	Not Selected N/A 100 Year 2.52 12.868 1.08 10.8.7 180.8 91.9 0.8 Outlet Plate 1 2.4	feet should be ≥ 4 ft ² ft ² ft ² feet radians 23.079 1.97 1.97 1.97 3.16.4 3.6.5 N/A N/A
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Leight = Overflow Weir Front Edge Leight = Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Network and Staff Staff (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q Frest Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (nours) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 25.00 3.00 65.00 3.00 WQCV 0.53 1.022 1.021 0.00 0.0 15.1 0.5 N/A Plate N/A Plate N/A 44	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet D.07 2.165 0.00 0.0 31.7 0.8 N/A Plate N/A 59	feet H:V (enter zero for fi feet %, grate open area/t % rgular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.607 0.01 1.607 0.01 1.0 2.3.6 0.7 N/A Plate N/A N/A 53	at grate) otal area in bottom at Stage = 0 Half-O) 5 Year 1.50 2.351 2.349 0.02 1.800 34.3 0.858 0.5 Plate N/A 61	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C the context of the open text open text open	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 7.552 7.554 0.58 58.0 107.8 62.2 1.1 Overflow Grate 1 1.7 N/A 53	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 50 Year 2.25 9.864 9.852 0.80 80.3 139.7 85.9 1.1 Outlet Piate 1 2.3 N/A 49	Not Selected N/A Spillway feet feet acres 100 Year 2.52 12.887 1.08 1.08.7 180.8 91.9 0.8 Outlet Plate 1 2.4 N/A 46	feet should be ≥ 4 ft ² ft ² ft ² feet radians 23.079 1.97 1.97. 316.4 96.7 0.5 N/A 2.6 N/A 36
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 wular or Trapezoidal) 9.00 65.00 3.00 WQCV 0.53 1.022 1.021 0.00 0.0 15.1 0.5 N/A Plate N/A Plate N/A 44 47	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectar Not Selected N/A rt (relative to basin I) feet H:V feet 2.165 0.00 31.7 0.8 N/A Plate N/A S9 65	feet H:V (enter zero for fi feet %, grate open area/t % sgular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.608 1.607 0.01 1.0 23.6 0.7 N/A Plate N/A N/A	at grate) otal area in bottom at Stage = 0 Half-C) 5 Year 1.50 2.351 	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (C (ft) Out Central Angle of Restr Spillway Stage a Basin Area a Basin Area a 0.07 1.75 3.953 0.17 1.70 57.3 1.7.1 1.0 Overflow Grate 1 0.4 N/A	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = tet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00 7.552 7.544 0.58 58.0 107.8 62.2 1.1 Overflow Grate 1 1.7 N/A	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 50 Year 2.25 9.864 9.852 0.80 80.3 139.7 85.9 1.1 Outlet Plate 1 2.3 N/A 49 62	Not Selected N/A 100 Year 2.52 12.868 1.08 10.8.7 180.8 91.9 0.8 Outlet Plate 1 2.4	feet should be ≥ 4 ft ² ft ² ft ² feet radians 23.079 1.97 1.97 1.97 3.64 96.7 0.5 N/A N/A
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Leight = Overflow Weir Front Edge Leight = Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Network and Staff Staff (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q Frest Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (nours) =	Zone 3 Weir 5.50 12.00 4.00 75% 50% ircular Orifice, Restri Zone 3 Restrictor 2.50 42.00 25.00 25.00 3.00 65.00 3.00 WQCV 0.53 1.022 1.021 0.00 0.0 15.1 0.5 N/A Plate N/A Plate N/A 44	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet D.07 2.165 0.00 0.0 31.7 0.8 N/A Plate N/A 59	feet H:V (enter zero for fi feet %, grate open area/t % rgular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 1.608 1.607 0.01 1.0 23.6 0.7 N/A Plate N/A N/A S 3 58	at grate) otal area in bottom at Stage = 0 Half-C) 5 Year 1.50 2.351 2.349 0.02 1.800 3.4.3 0.858 0.5 Plate N/A N/A 61 61 61 68	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C th Out Central Angle of Restr Spillway Stage a Basin Area a Basin Area a Basin Area a 0.17 1.75 3.953 0.17 1.70 57.3 1.71 1.0 Overflow Grate 1 0.4 N/A 59 68	ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 7.552 7.554 0.58 58.0 107.8 62.2 1.1 Overflow Grate 1 1.7 N/A 53 64	Zone 3 Weir 6.50 4.12 6.22 37.11 18.55 s for Outlet Pipe w/ Zone 3 Restrictor 5.97 1.18 1.76 ted Parameters for S 0.96 9.96 1.20 50 Year 2.25 9.864 9.852 0.80 80.3 139.7 85.9 1.1 Outlet Piate 1 2.3 N/A 49	Not Selected N/A Spillway feet feet feet 100 Year 2.52 12.868 1.08 108.7 180.8 91.9 0.8 Outlet Plate 1 2.4 N/A 46 59	feet should be ≥ 4 ft ² ft ² ft ² feet feet radians 23.079 1.97 1.97. 316.4 96.7 0.5 N/A 2.6 N/A 36 53

Outflow Hydrograph Workbook Filename:

	Storm Inflow H The user can o				n 3.07 (Februa this workbook w		araphs develop	ed in a separate	program.	
[SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.59 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:11:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:16:46	0.66	1.36	1.02	1.47	2.39	4.16	5.15	6.29	8.96
0.894	0:22:22	1.79	3.72	2.78	4.02	6.62	11.98	15.15	19.05	29.41
	0:27:57	4.60	9.54	7.15	10.33	17.00	30.75	38.91	48.98	76.40
	0:33:32	12.62	26.20	19.62	28.34	46.61	84.16	106.36	133.64	207.45
	0:39:08	15.08	31.69	23.61	34.34	57.28	107.80	139.67	180.76	304.12
	0:44:43	14.41 13.12	30.36 27.63	22.60 20.57	32.91 29.95	55.08 50.14	105.04 96.17	137.24 126.02	179.41 165.31	316.41 295.56
	0:55:54	11.74	24.82	18.45	26.91	45.17	86.74	113.73	149.26	267.69
	1:01:29	10.17	21.59	16.02	23.43	39.50	76.21	100.14	131.70	239.17
	1:07:05	8.85	18.78	13.92	20.39	34.47	66.69	87.69	115.40	211.69
	1:12:40	8.02	17.01	12.62	18.47	31.13	59.91	78.57	103.12	187.91
	1:18:16	6.65	14.19	10.51	15.41	26.08	50.61	66.67	87.93	162.57
	1:23:51 1:29:26	5.45	11.71	8.65	12.72	21.60	42.06	55.47	73.24	137.38
	1:29:26	4.23 3.18	9.19 7.02	6.76 5.13	10.00	17.10 13.20	33.64 26.19	44.55 34.79	59.07 46.26	113.47 91.42
	1:40:37	2.30	5.17	3.75	5.65	9.85	19.76	26.35	35.18	72.36
	1:46:13	1.77	3.92	2.86	4.27	7.39	14.67	19.48	25.97	55.47
	1:51:48	1.45	3.18	2.33	3.47	5.95	11.69	15.45	20.48	41.79
	1:57:23	1.23	2.69	1.97	2.92	5.01	9.80	12.94	17.11	33.89
	2:02:59	1.08	2.35	1.73	2.55	4.36	8.50	11.19	14.76	28.81
	2:08:34	0.97	2.10	1.55	2.29	3.90	7.58	9.97	13.13	25.30
	2:14:10	0.89	1.93 1.43	1.42	2.10	3.57 2.66	6.92 5.26	9.09	11.96 9.31	22.77 18.38
	2:25:20	0.48	1.43	0.77	1.13	1.93	3.79	5.03	6.70	13.45
	2:30:56	0.35	0.77	0.56	0.83	1.42	2.81	3.74	4.97	9.80
	2:36:31	0.26	0.57	0.42	0.62	1.06	2.09	2.77	3.69	7.33
	2:42:07	0.19	0.41	0.30	0.45	0.77	1.54	2.05	2.73	5.48
	2:47:42	0.13	0.29	0.21	0.32	0.56	1.11	1.48	1.98	4.07
	2:53:17 2:58:53	0.10	0.21	0.16	0.23	0.40	0.81	1.07	1.43	2.98
	3:04:28	0.06	0.15	0.11	0.16	0.28	0.57	0.76	1.03 0.69	2.21
	3:10:04	0.04	0.05	0.03	0.06	0.18	0.38	0.30	0.03	1.04
	3:15:39	0.01	0.02	0.01	0.02	0.05	0.11	0.15	0.21	0.62
	3:21:14	0.00	0.00	0.00	0.00	0.01	0.03	0.05	0.07	0.31
	3:26:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10
	3:32:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:38:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:43:36 3:49:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:54:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
[4:11:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:22:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:28:19 4:33:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:39:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:50:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:56:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:01:52 5:07:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:13:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:18:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:24:13 5:29:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:29:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
[5:40:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:46:35 E:E2:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:52:10 5:57:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:03:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
[6:08:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:14:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:20:07 6:25:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:31:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
[6:36:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:42:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships


The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition p

noints

Shame Street	Stage	Area	Area	Volume	Volume	Total	
Stage - Storage Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	Outflow [cfs]	
	1.00	5,223	0.120	2,722	0.062	0.10	For best results, include the
	2.00	10,218	0.235	10,442	0.240	0.24	stages of all grade slope changes (e.g. ISV and Floor
	3.00	20,188	0.463	25,773	0.592	0.40	from the S-A-V table on
WQCV	3.71	27,231	0.625	42,607	0.978	0.52	Sheet 'Basin'.
	4.00	30,108	0.691	50,921	1.169	0.56	
2 Yr.	4.53	32,443	0.745	67,497	1.550	0.70	Also include the inverts of a
	5.00	34,513	0.792	83,232	1.911	0.80	outlets (e.g. vertical orifice,
EURV	5.24	35,571	0.817	91,642	2.104	0.84	overflow grate, and spillwa where applicable).
5 Yr.	5.46	36,540	0.839	99,574	2.286	0.87	where applicable).
	6.00	38,919	0.893	119,948	2.754	9.50	-
	7.00	42,208	0.969	160,512	3.685 4.692	54.49	-
	8.00	45,498	1.044	204,365 247,244		87.74	-
100 Yr.	8.91	48,742 49,063	1.119 1.126		5.676	91.93	-
	9.00			251,645	5.777	92.33 96.70	-
	10.00	52,628	1.208	302,491	6.944	96.70	-
							-
							-
							-
							-
							4
							4
							+
							4
							+
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							+
							+
							4
							1
							1
							1
							1
							1
							4
							4
							-
							+
							1
							1
							-
							-
							4
							4
							-
							+
			1	1	1	1	1
							1

Project: <u>ETREAT AT IMBERRIDGE FLINK NO.1</u> Basin D: <u>Rain Garden 1</u> <u>Basin D: Caling Garden 1 <u>Basin D: Caling Garden 1</u> <u>Basin D: Caling Garden 1</u> <u>Basin D: Caling Garden 1 <u>Basin D: Caling Garden 1</u> <u>Basin D: Caling Garden 1</u> <u>Basin D: Caling Garden 1 <u>Basin D: Caling Garden 1 <u>Basin D: Caling Garden 1</u> <u>Basin D: Caling Garden 1 <u>Basin D: Caling Garden 1 <u>Bas</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>	= 1 Stage (ft) 	ft Optional Override Stage (ft) 0.00 1.00 2.00	Length (ft)	Width (ft)					
Example Zone Configuration (Retention Pond) Description Stateshed Area = Watershed Area = Watershed Signa + S	Stage (ft) 	Override Stage (ft) 0.00 1.00	(ft)						
Contract Control Contrecont Control Control Control Control Control Control Control Contr	Stage (ft) 	Override Stage (ft) 0.00 1.00	(ft)						
Depth Interment Depth Interment POC Example Zone Configuration (Retention Pond) Stage - Storage ed Volume Calculation Steded BMP Type = RG Watershed Lengh = 370 nt Watershed Signe = 25.00% percent Percentage Hydroigic Soil Group B = 0.00% percent Percentage Hydroigic Soil Group B = 0.00% percent Desired WQCV Drain Time = 12.0 hours Location for 1-th Rainfall Depths = User Input 0.02% acre-feet 2-yr Rundf Volume (PI = 1.19 in.) = 0.074 acre-feet 1.19 inches 2-yr Rundf Volume (PI = 1.10 in.) = 0.074 acre-feet 1.19 inches	Stage (ft) 	Override Stage (ft) 0.00 1.00	(ft)						
Registration Registration Registration Watershed Zene Configuration (Retention Pond) Stage-Skrage Description ed Volume Calculation Selected BMP Type = Watershed Area Watershed Ioper RG 2.70 acres Media Surface Watershed Ioper 0.056 fift	Stage (ft) 	Override Stage (ft) 0.00 1.00	(ft)						
Note: Desired Starge Storage de Volume Calculation Stadel 20ne Configuration (Retention Pond) Stage - Storage de Volume Calculation Stadewide MP Type = RG Watershed Lengh = 2.70 acres Watershed Signe = 0.050 ft/ft Watershed Lengh = 0.050 ft/ft Watershed Signe = 0.050 percent Percentage Hydroidgic Sil Group B = 0.00% percent Desired WQCV Drain Time = 12.0 hours Location for 1-hr Rainfall Depths = User Input 0.088 acre-feet 42-ry Rundf Volume (PI = 1.19 in.) = 0.074 acre-feet 1.19 2-yr Rundf Volume (PI = 1.1.) = 0.074 acre-feet 1.10	Stage (ft) 	Override Stage (ft) 0.00 1.00	(ft)						
Besteded BMP Type = RG Media Surface Watershed Area = 2.70 acres	(ft) 	Stage (ft) 0.00 1.00	(ft)		Area	Optional Override	Area	Volume	Volu
Re Watershed Area Z.70 acres Watershed Area Z.70 acres Watershed Logh 370 ft Watershed Inperviousness 25.05% percent Percentage Hydrologic Soll Group A D 100.0% percent Desired WQCV Drain Time 12.0 hours Location for 1-hr Rainfall Depths User Input 20.083 Z-yr Rundf Volume (UCPV) 0.024 acre-feet 2-yr Rundf Volume (PI = 1 1.91 n.) 0.074 acre-feet 0.074 acre-feet 1.19 1.50 inches 1.50		1.00	- 1	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac
Watershed Area 2.70 acres Watershed Lengh 370 ft Watershed Sicpe = 0.050 ft/ft Watershed Imperviousness = 25.00% percent Percentage Hydrologic Soil Group A = 0.0% percent Contage Hydrologic Soil Group C D = 0.0% percent Desired WOCV Drain Time = 12.0 hours Location for 1-th Rainfall Depths = Use Input 0.08 fer Qualify Capture Volume (WCCV) = 0.024 acre-feet 2-yr Runoff Volume (PI = 1.19 in) = 0.051 acre-feet 5-yr Runoff Volume (FI = 1 5.10 in) = 0.074 acre-feet 1.19			-			3,125 4,140	0.072	3,591	0.0
Watershed Length = 370 ft Watershed Slope = 0.050 ft/ft Watershed Broperiousness 25.00% percent Percentage Hydrologic Soil Group A = 0.05% percent Percentage Hydrologic Soil Group D = 100.0% percent Desired WCCV Dain Time = 12.0 hours Location for 1-hr Rainfall Depths = User Input 2-yr Rundf Volume (WCCV) = 0.024 acre-feet 2-yr Rundf Volume (PI = 1.19 in) = 0.051 acre-feet 5-yr Kundf Volume (FI = 1 5.11) = 0.074 acre-feet 1.10 inches 1.10			-	-	-	5,344	0.095	8,321	0.0
Watershed Imperviousness = 25.00% percent Percentage Hydrologic Soil Group A = 0.0% percent Percentage Hydrologic Soil Group Soil 100.0% percent 0.0% Desired WOCV Drain Time = 100.0% percent Desired WOCV Drain Time = 12.0 hours Location for 1-N familal Depths = User Input 0.024 acre-feet 0.088 acre-feet 2-yr Rundf Volume (PI = 1.10 in.) = 0.074 acre-feet 5-yr Rundf Volume (PI = 1.10 in.) = 0.074 acre-feet 1.19 nches 1.10		3.00				6,590	0.151	14,341	0.3
Percentage Hydrologic Soil Group A = 0.0% percent Percentage Hydrologic Soil Group C D 100.0% percent Desired WCCV Drain Time = 12.0 hours Location for 1-hr Rainfall Depthe = User Input ater Quality Capture Volume (WCCV) = 0.024 accre-feet Optional User Override 2-yr Runoft Volume (PI = 1.19 In) = 0.051 accre-feet 1.19 inches 2-yr Runoft Volume (PI = 1.19 In) = 0.051 accre-feet 1.19 inches			-						
Percentage Hydrotogic Soil Groups B 100.0% percent Desired WOCV Drain Time 3 0.0% percent Location for 1-hr Rainfall Depths = 12.0 hours Location for 1-hr Rainfall Depths = User Input eff cuality Capture Volume (VIC-U) 0.02% acer-feet									
Contage Hydrologic Soil Groups C/D = 0.0% percent Desired WOCV Drain Time = 12.0 hours Location for 1-H Rainfall Depths - User Input 12.0 hours ater Quality Capture Volume (WOCV) = 0.024 acre-feet Optional User Override 2-yr Runoff Volume (P1 = 1.10 in.) = 0.051 acre-feet 1.19 inches 5-yr Runoff Volume (P1 = 1.10 in.) = 0.074 acre-feet 1.50 inches	-				-				
Location for 1-hr Rainfall Depths = User Input State Quality Capture Volume (WQCV) = 0.024 acre-feet Optional User Override Sxxxss Urban Runoff Volume (EURV) = 0.068 acre-feet 1-hr Precipitation 2-yr Runoff Volume (P1 = 1.5 in.) = 0.051 acre-feet 1.50 5-yr Runoff Volume (P1 = 1.5 in.) = 0.074 acre-feet 1.50			-						
ater Quality Capture Volume (WQCV) = 0.024 acre-feet Optional User Override Sxcess Urban Rundf Volume (EURV) = 0.088 acre-feet 1.11r Precipitation 2-yr Rundf Volume (P1 = 1.16 in.) = 0.051 acre-feet 1.50 5-yr Rundf Volume (P1 = 1.5 in.) = 0.074 acre-feet 1.50									
Screes Urban Runoff Volume (EURV) = 0.068 acre-feet 1-th Precipitation 2-yr Runoff Volume (P1 = 1.19 in.) = 0.051 acre-feet 1.19 inches 5-yr Runoff Volume (P1 = 1.5 in.) = 0.074 acre-feet 1.50 inches									
2-yr Runoff Volume (P1 = 1.5 in.) 0.074 acre-feet 1.50 inches	-				-			+	-
5-yr Runoff Volume (P1 = 1.5 in.) = 0.074 acre-feet 1.50 inches	-			-	-			<u> </u>	-
10-yr Runoff Volume (P1 = 1.75 in.) = 0.119 acre-feet 1.75 inches			-						
25-yr Runoff Volume (P1 = 2 in.) = 0.215 acre-feet 2.00 inches 50-yr Runoff Volume (P1 = 2.25 in.) = 0.276 acre-feet 2.25 inches									-
50-yr Runoff Volume (P1 = 2.25 in.) = 0.276 acre-feet 2.25 inches 100-yr Runoff Volume (P1 = 2.52 in.) = 0.357 acre-feet 2.52 inches								1	-
500-yr Runoff Volume (P1 = 3.85 in.) = 0.634 acre-feet 3.85 inches									L
Approximate 2-yr Detention Volume = 0.048 acre-feet	-								
Approximate 5-yr Detention Volume = 0.070 acre-feet	-						<u> </u>	<u> </u>	-
Approximate 10-yr Detention Volume = 0.106 acre-feet Approximate 25-yr Detention Volume = 0.126 acre-feet	-							<u> </u>	-
Approximate 2097 Detertion Volume = 0.133 acce-feet	-		-		-				
Approximate 100-yr Detention Volume = 0.161 acre-feet									
	-		-				<u> </u>	<u> </u>	<u> </u>
Zone 1 Volume (WQCV) = 0.024 acre-feet	-		-						-
Zone 1 Volume (WQCV) = 0.024 acre-feet Zone 2 Volume (100-year - Zone 1) = 0.136 acre-feet	-		-	-				<u> </u>	
act Zone 3 Storage Volume (Optional) =acre-feet			-						
Total Detention Basin Volume = 0.161 acre-feet									
Initial Surcharge Volume (ISV) = N/A ft^3 Initial Surcharge Depth (ISD) = N/A ft	-		-					<u> </u>	
Initial Surcharge Depth (ISD) = N/A ft otal Available Detention Depth (H _{otal}) = user ft			-					+	-
Depth of Trickle Channel (H_{TC}) = N/A ft									
Slope of Trickle Channel (STC) = N/A ft/ft	-								
Slopes of Main Basin Sides (S _{main}) = user H:V Basin Length-to-Width Ratio (R _{v/w}) = user			-					<u> </u>	-
Basin Length-to-Width Ratio (R _{L/W}) = user	-		-		-			-	-
Initial Surcharge Area (A _{SV}) = user ft^2	-								
Surcharge Volume Length (L _{ISV}) = ter the second s	-		-						
Surcharge Volume Width (W _{ISV}) = user ft	-		-				 	<u> </u>	-
Depth of Basin Floor (H _{RLODI}) = user ft Length of Basin Floor (L _{RLODI}) = user ft			-					<u> </u>	-
Width of Basin Floor (W _{R.ODR}) = user ft	-		-						
Area of Basin Floor (A _{FLODR}) = user ft^2									
Volume of Basin Floor (V _{ROR}) = user ft^3	-		<u> </u>	<u> </u>			<u> </u>	<u> </u>	
Depth of Main Basin (H _{MANN}) = user ft Length of Main Basin (L _{MANN}) = user ft	-		-					<u> </u>	
Width of Main Basin (W _{MAIN}) = user ft	-		-	-	-			1	-
Area of Main Basin (A _{MAIN}) = user ft^2									
Volume of Main Basin (V _{MAIN}) = user ft^3							L	<u> </u>	
Calculated Total Basin Volume (V _{total}) = user acre-feet								+	-
			-		-			<u> </u>	
	-		-	-	-				
					-				L
	-								
			-					—	-
	-			-	-				
									L
							——	——	-
	-						<u> </u>	<u> </u>	
									L
	-				-			-	
								<u> </u>	
			-		-			<u> </u>	
	-						<u> </u>	<u> </u>	-
			-			1		<u> </u>	
								1	
					-				
			-						
					-				

UD-Detention, Version 3.07 (February 2017)

Detention Basin Outlet Structure Design													
Project:		BERRIDGE FILING N		rsion 3.07 (Februar	ry 2017)								
	Rain Garden 1												
				Stage (ft)	Zone Volume (ac-ft)) Outlet Type							
			Zone 1 (WQCV)	0.33	0.024	Filtration Media							
ZONE 1 AND 2	100-YEA	B		1.74	0.136	Weir&Pipe (Restrict)							
PERMANENT ORIFICES	Configuration (Re	etention Pond)	Zone 3										
User Input: Orifice at Underdrain Outlet (typically u	•				0.161	Total Calculate	ed Parameters for Ur	dordrain					
Underdrain Orifice Invert Depth =	2.00		he filtration media su	rface)	Unde	erdrain Orifice Area =	0.0	ft ²					
Underdrain Orifice Diameter =	0.81	inches			Underdra	ain Orifice Centroid =	0.03	feet					
User Input: Orifice Plate with one or more orifices							lated Parameters for	1					
Invert of Lowest Orifice = = Depth at top of Zone using Orifice Plate	N/A N/A		asin bottom at Stage = 0 ft) WQ Orifice Area per Row = N/A ft ² asin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet				ft ²						
Orifice Plate: Orifice Vertical Spacing =	N/A N/A	inches	Jottom at Stage - 0 h	c)		ptical Slot Centroid =	N/A	feet					
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	N/A	ft²					
User Input: Stage and Total Area of Each Orifice		, <u> </u>	<u></u>	1	1			. <u> </u>	1				
Stage of Orifice Centroid (ft)	Row 1 (optional) N/A	Row 2 (optional) N/A	Row 3 (optional) N/A	Row 4 (optional) N/A	Row 5 (optional) N/A	Row 6 (optional) N/A	Row 7 (optional) N/A	Row 8 (optional) N/A					
Orifice Area (sq. inches)		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)					
Stage of Orifice Centroid (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Orifice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice													
	Not Selected	Not Selected					Not Selected	Not Selected	. 7				
Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice =			- ·	oottom at Stage = 0 f oottom at Stage = 0 f		ertical Orifice Area = cal Orifice Centroid =			ft ² feet				
Vertical Orifice Diameter =			inches		cy terti			·	licer				
			-										
User Input: Overflow Weir (Dropbox) and G	irate (Flat or Sloped) Zone 2 Weir	Not Selected	1			Calculated	Parameters for Ove Zone 2 Weir	rflow Weir Not Selected	1				
Overflow Weir Front Edge Height, Ho =	1.00	Hot Scietted	ft (relative to basin bo	ottom at Stage = 0 ft)	Height of Gr	rate Upper Edge, H _t =	1.73	Not Selected	feet				
Overflow Weir Front Edge Length =	2.90		feet		Over Flow	Weir Slope Length =	2.99		feet				
Overflow Weir Slope =	4.00		H:V (enter zero for fl	lat grate)		100-yr Orifice Area =	16.56		should be ≥ 4				
Horiz. Length of Weir Sides = Overflow Grate Open Area % =	2.90 75%		feet % grate open area/t	total area		en Area w/o Debris = nen Area w/ Debris =	6.50	<u> </u>	ft ²				
Debris Clogging % =	50%		%			pen Area wy bebns -	5.25	%, grate open area/total area Overflow Grate Open Area w/ Debris = 3.25 ft ²					
					Debris Clogging % = 50% %								
User Input: Outlet Pipe w/ Flow Restriction Plate (C	Zircular Orifice, Restr Zone 2 Restrictor	1	ctangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction										
Depth to Invert of Outlet Pipe =	Lone L nestrictor	Not Selected	ngular Orifice)		c	Calculated Parameter							
	2.50	Not Selected]	in bottom at Stage = 0		Calculated Parameter Outlet Orifice Area =	s for Outlet Pipe w/ Zone 2 Restrictor 0.39	Flow Restriction Plat Not Selected					
Outlet Pipe Diameter =	2.50 12.00	Not Selected]	in bottom at Stage = 0	ft)		Zone 2 Restrictor	Not Selected	e				
		Not Selected	ft (distance below bas	-	ft) Out	Outlet Orifice Area =	Zone 2 Restrictor	Not Selected	re ft ²				
Outlet Pipe Diameter =	12.00 6.00		ft (distance below bas inches	-	ft) Out	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 2 Restrictor 0.39 0.29	Not Selected	e ft² feet				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	12.00 6.00		ft (distance below bas inches	Half-C	ft) Out Central Angle of Restr	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 2 Restrictor 0.39 0.29 1.57	Not Selected	e ft² feet				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length =	12.00 6.00 gular or Trapezoidal) 2.00 10.00	ft (relative to basin l	ft (distance below bas inches inches	Half-C	ft) Out Central Angle of Rest Spillway Stage a	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39	Not Selected N/A Spillway feet feet	e ft² feet				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage=	12.00 6.00 gular or Trapezoidal) 2.00	ft (relative to basin l	ft (distance below bas inches inches	Half-C	ft) Out Central Angle of Rest Spillway Stage a	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39	Not Selected N/A Spillway feet	e ft² feet				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	12.00 6.00 gular or Trapezoidal) 2.00 10.00	ft (relative to basin h feet H:V	ft (distance below bas inches inches	Half-C	ft) Out Central Angle of Rest Spillway Stage a	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39	Not Selected N/A Spillway feet feet	e ft² feet				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes =	12.00 6.00 gular or Trapezoidal) 2.00 10.00	ft (relative to basin h feet H:V	ft (distance below bas inches inches	Half-C	ft) Out Central Angle of Rest Spillway Stage a	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39	Not Selected N/A Spillway feet feet	e ft² feet				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 WQCV 0.53	ft (relative to basin l feet H:V feet <u>EURV</u> 1.07	ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19	t) 5 Year 1.50	ft) Out Central Angle of Rest Spillway Stage a Basin Area a <u>10 Year</u> 1.75	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 50 Year 2.25	Not Selected N/A Spillway feet feet acres 100 Year 2.52	ft ² feet radians <u>500 Year</u> 3.85				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 WQCV	ft (relative to basin I feet H:V feet EURV	ft (distance below bas inches inches bottom at Stage = 0 ft	t) 5 Year	ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 50 Year	Not Selected N/A Spillway feet feet acres 100 Year	re ft ² feet radians 500 Year				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 WQCV 0.53	ft (relative to basin l feet H:V feet <u>EURV</u> 1.07	ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 0.051 0.051	Half-C t) <u>5 Year</u> 1.50	ft) Out Central Angle of Rest Spillway Stage a Basin Area a <u>10 Year</u> 1.75	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 50 Year 2.25	Not Selected N/A Spillway feet feet acres 100 Year 2.52	ft ² feet radians <u>500 Year</u> 3.85				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 WQCV 0.53 0.024 0.024 0.00	ft (relative to basin l feet H:V feet <u>EURV</u> 1.07 0.068 0.067 0.00	ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 0.051 0.051 0.02	Half-C t) 5 Year 1.50 0.074 0.03	ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.119 0.118 0.29	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = <u>25 Year</u> 2.00 0.215 0.214 0.92	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 50 Year 2.25 0.276 0.276 1.27	Not Selected N/A Spillway feet feet acres 100 Year 2.52 0.357 0.357 1.68	re ft ² feet radians <u>500 Year</u> <u>3.85</u> <u>0.634</u> <u>0.633</u> <u>3.03</u>				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 WQCV 0.53 0.024 0.024	ft (relative to basin I feet H:V feet <u>EURV</u> 1.07 0.068 0.067	ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 0.051 0.051	Half-C t) 5 Year 1.50 0.074 0.074	ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.119 0.118	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00 0.215 0.214	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 50 Year 2.25 0.276 0.276	Not Selected N/A Spillway feet feet acres 100 Year 2.52 0.357 0.357	re ft ² feet radians <u>500 Year</u> <u>3.85</u> 0.634 <u>0.633</u>				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 WQCV 0.53 0.024 0.024 0.024 0.00 0.6 0.0	ft (relative to basin l feet H:V feet 1.07 0.068 0.067 0.00 0.0 1.6 0.0	ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 0.051 0.02 0.0 1.2 0.0	Half-C t) 5 Year 1.50 0.074 0.03 0.079 1.7 0.029	ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.119 0.118 0.29 0.8 2.7 0.4	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00 0.215 0.214 0.92 2.5 4.9 2.3	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 50 Year 2.25 0.276 0.276 1.27 3.4 6.2 3.5	Not Selected N/A Spillway feet feet acres 100 Year 2.52 0.357 0.357 1.68 4.5 8.0 3.8	re ftt ² feet radians <u>500 Year</u> <u>3.85</u> 0.634 <u>0.633</u> <u>3.03</u> <u>8.2</u> <u>14.2</u> <u>4.3</u>				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Volume (acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 WQCV 0.53 0.024 0.024 0.024 0.00 0.6 0.0 N/A	ft (relative to basin l feet H:V feet 0.067 0.00 0.00 1.6 0.0 N/A	ft (distance below bas inches inches bottom at Stage = 0 ft 0.051 0.051 0.02 0.0 1.2 0.0 N/A	Half-C 5 Year 1.50 0.074 0.03 0.079 1.7 0.029 0.4	ft) Out Central Angle of Rest Spillway Stage a Basin Area a 1.75 0.119 0.118 0.29 0.8 2.7 0.4 0.6	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00 0.215 0.214 0.92 2.5 4.9 2.3 0.9	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 SO Year 2.25 0.276 0.276 1.27 3.4 6.2 3.5 1.0	Not Selected N/A N/A Spillway feet feet acres 100 Year 2.52 0.357 0.357 1.68 4.5 8.0 3.8 0.8	e ft ² feet radians 3.85 0.634 0.633 3.03 8.2 14.2 14.2 4.3 0.5				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 WQCV 0.53 0.024 0.024 0.024 0.00 0.6 0.0	ft (relative to basin l feet H:V feet 1.07 0.068 0.067 0.00 0.0 1.6 0.0	ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 0.051 0.02 0.0 1.2 0.0	Half-C t) 5 Year 1.50 0.074 0.03 0.079 1.7 0.029	ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.119 0.118 0.29 0.8 2.7 0.4	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00 0.215 0.214 0.92 2.5 4.9 2.3	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 50 Year 2.25 0.276 0.276 1.27 3.4 6.2 3.5	Not Selected N/A Spillway feet feet acres 100 Year 2.52 0.357 0.357 1.68 4.5 8.0 3.8	re ftt ² feet radians <u>500 Year</u> <u>3.85</u> 0.634 <u>0.633</u> <u>3.03</u> <u>8.2</u> <u>14.2</u> <u>4.3</u>				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Deak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 0.02 0.024 0.024 0.00 0.024 0.00 0.0 0.0 N/A Filtration Media	ft (relative to basin I feet H:V feet 1.07 0.068 0.00 0.0 1.6 0.0 N/A Filtration Media	ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 0.051 0.02 0.0 1.2 0.0 1.2 0.0 N/A Filtration Media	Half-0 5 Year 1.50 0.074 0.03 0.079 1.7 0.029 0.4 Filtration Media	ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.119 0.118 0.29 0.8 2.7 0.4 0.6 Overflow Grate 1	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.215 0.214 0.92 2.5 4.9 2.3 0.9 Overflow Grate 1	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 S0 Year 2.25 0.276 1.27 3.4 6.2 3.5 1.0 Overflow Grate 1	Not Selected N/A Spillway feet feet acres 100 Year 2.52 0.357 0.357 1.68 4.5 8.0 3.8 0.8 Outlet Plate 1	re ftr ² feet radians <u>500 Year</u> <u>3.85</u> 0.633 <u>3.03</u> <u>8.2</u> 14.2 4.3 0.5 N/A				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Volume (acre-ft) = Predevelopment Peak Q(cfs) = Peak Inflow Q(cfs) = Peak Inflow Q(cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 	ft (relative to basin l feet H:V feet 1.07 0.068 0.067 0.00 0.0 1.6 0.0 1.6 0.0 N/A Filtration Media N/A 30	ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 0.051 0.051 0.02 0.0 1.2 0.0 N/A Filtration Media N/A N/A 23	Half-C 5 Year 1.50 0.074 0.03 0.079 1.7 0.029 0.4 Filtration Media N/A 33	ft) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 0.119 0.118 0.29 0.8 2.7 0.4 0.6 0.4 0.6 Overflow Grate 1 0.1 0.1 0.4 39	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.215 0.214 0.92 2.5 4.9 2.3 0.9 Overflow Grate 1 0.3 N/A 38	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 S 0.43 S 0.276 0.276 0.276 0.276 1.27 3.4 6.2 3.5 1.0 Overflow Grate 1 0.5 N/A 37	Not Selected N/A N/A Spillway feet feet acres 2.52 0.357 0.357 1.68 4.5 8.0 3.8 0.8 Outlet Plate 1 0.6 N/A 36	re ft ² feet radians				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Dath Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 	EURV 1.07 0.067 0.067 0.00 1.6 0.0 1.6 0.0 1.6 30 N/A Filtration Media N/A 30 31 31	ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 0.051 0.02 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 1.2 0.0 2 1.2 0.0 2 1.2 0.0 2 1.2 0.0 2 1.2 0.0 2 1.2 0.0 2 1.2 0.0 2 1.2 0 0.0 5 1 0.0 2 0.0 2 0.0 5 1 0.0 5 1 0.0 2 0 0.0 5 1 0.0 2 0 0.0 5 1 0.0 2 0.0 5 1 0.0 2 0 0.0 1.2 0 0.0 1.2 0 0.0 2 0 0.0 1.2 0 0.0 2 0 0.0 1.2 0 0.0 0 0.0 0 0.0 0 0 0 0 0.0 0 0 0 0	Half-0 5 Year 1.50 0.074 0.03 0.079 1.7 0.029 0.4 Filtration Media N/A N/A N/A N/A 33 33 33	ft) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 1.75 0.119 0.118 0.29 0.8 2.7 0.4 0.5 0.4 0.6 Overflow Grate 1 0.1 N/A 39 40	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 2.00 0.215 0.214 0.92 2.5 4.9 2.5 4.9 2.5 4.9 2.3 0.9 Overflow Grate 1 0.3 N/A 38 40	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 S0 Year 2.25 0.276 1.27 3.4 6.2 3.5 1.0 Overflow Grate 1 0.5 N/A 37 40	Not Selected N/A N/A Spillway feet feet acres 100 Year 2.52 0.357 1.68 4.5 8.0 3.8 0.8 Outlet Plate 1 0.6 N/A 36 39	re ftr ² feet radians 500 Year 3.85 0.634 0.633 3.03 8.2 14.2 4.3 0.5 N/A 0.7 N/A 0.7 N/A 32 38				
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Volume (acre-ft) = Predevelopment Peak Q(cfs) = Peak Inflow Q(cfs) = Peak Inflow Q(cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	12.00 6.00 gular or Trapezoidal) 2.00 10.00 3.00 	ft (relative to basin l feet H:V feet 1.07 0.068 0.067 0.00 0.0 1.6 0.0 1.6 0.0 N/A Filtration Media N/A 30	ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 0.051 0.051 0.02 0.0 1.2 0.0 N/A Filtration Media N/A N/A 23	Half-C 5 Year 1.50 0.074 0.03 0.079 1.7 0.029 0.4 Filtration Media N/A 33	ft) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 0.119 0.118 0.29 0.8 2.7 0.4 0.6 0.4 0.6 Overflow Grate 1 0.1 0.1 0.4 39	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.215 0.214 0.92 2.5 4.9 2.3 0.9 Overflow Grate 1 0.3 N/A 38	Zone 2 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.39 2.39 0.13 S 0.43 S 0.276 0.276 0.276 0.276 1.27 3.4 6.2 3.5 1.0 Overflow Grate 1 0.5 N/A 37	Not Selected N/A N/A Spillway feet feet acres 2.52 0.357 0.357 1.68 4.5 8.0 3.8 0.8 Outlet Plate 1 0.6 N/A 36	re ft ² feet radians				

Outflow Hydrograph Workbook Filename:

	Storm Inflow H			ention, Versio						
	The user can o			drographs from	this workbook v		graphs develop	ed in a separate	program.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
3.71 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:03:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:07:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:11:08	0.03	0.07	0.06	0.08	0.12	0.22	0.28	0.36	0.63
1.347	0:14:50	0.07	0.19	0.15	0.21	0.33	0.59	0.75	0.97	1.69
	0:18:33	0.18	0.49	0.38	0.54	0.85	1.51	1.93	2.48	4.35
	0:25:58	0.50	1.35	1.03 1.19	1.47	2.33	4.14	5.32 6.24	6.83 8.04	11.94 14.17
	0:29:41	0.54	1.30	1.13	1.62	2.57	4.61	5.94	7.66	13.53
	0:33:23	0.48	1.34	1.02	1.47	2.34	4.20	5.41	6.97	12.31
	0:37:06	0.42	1.18	0.90	1.29	2.07	3.73	4.81	6.21	11.00
	0:40:49	0.36	1.00	0.76	1.10	1.76	3.19	4.13	5.34	9.49
	0:44:31	0.31	0.88	0.67	0.96	1.54	2.79	3.60	4.66	8.27
	0:48:14	0.28	0.79	0.60	0.87	1.40	2.52	3.26	4.22	7.49
	0:51:56	0.22	0.64	0.48	0.70	1.13	2.06	2.67	3.46	6.18
	0:55:39	0.18	0.51	0.38	0.56	0.91	1.66	2.16	2.81	5.05
	0:59:22 1:03:04	0.13	0.37	0.28	0.41	0.68	1.26 0.92	1.64	2.14	3.89 2.89
	1:06:47	0.09	0.27	0.20	0.29	0.49	0.92	0.88	1.58	2.89
	1:10:29	0.05	0.16	0.13	0.22	0.30	0.53	0.69	0.90	1.62
	1:14:12	0.05	0.13	0.10	0.14	0.24	0.44	0.57	0.74	1.34
	1:17:55	0.04	0.11	0.08	0.12	0.20	0.37	0.48	0.63	1.13
	1:21:37	0.03	0.10	0.08	0.11	0.18	0.33	0.43	0.55	1.00
	1:25:20	0.03	0.09	0.07	0.10	0.16	0.30	0.38	0.50	0.90
	1:29:02	0.03	0.08	0.06	0.09	0.15	0.27	0.36	0.46	0.83
	1:32:45	0.02	0.06	0.05	0.07	0.11	0.20	0.26	0.34	0.61
	1:36:28	0.02	0.05	0.03	0.05	0.08	0.15	0.19	0.25	0.45
	1:43:53	0.01	0.03	0.02	0.04	0.06	0.11 0.08	0.14	0.18	0.33
	1:47:35	0.01	0.02	0.02	0.03	0.04	0.08	0.10	0.15	0.24
	1:51:18	0.00	0.01	0.01	0.01	0.02	0.04	0.05	0.07	0.12
	1:55:01	0.00	0.01	0.01	0.01	0.01	0.03	0.04	0.05	0.09
	1:58:43	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.06
	2:02:26	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.03
	2:06:08	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02
	2:09:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	2:13:34 2:17:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:20:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:24:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:28:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:32:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:39:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:43:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:46:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:54:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:01:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:09:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:12:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:16:38 3:20:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:27:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:31:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:11 3:38:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:38:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:46:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:53:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:57:26 4:01:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:04:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:08:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:12:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:59 4:19:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:19:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	Outflow [cfs]	
							-
WQCV	0.28	3,399	0.078	881	0.020	0.03	For best results, include th stages of all grade slope
2 YR.	0.61	3,734	0.086	2,058	0.047	0.03	changes (e.g. ISV and Floor
EURV	0.79	3,917	0.090	2,746	0.063	0.03	from the S-A-V table on
5 YR.	0.86	3,988	0.092	3,023	0.069	0.03	Sheet 'Basin'.
100 1/0	1.00	4,130 5,151	0.118	3,591 7,535	0.173	3.81	Alea izaluda tha izuada af
100 YR.	1.85	5,332	0.122	8,321	0.173	3.88	Also include the inverts of outlets (e.g. vertical orifice
	3.00	6,590	0.151	14,341	0.329	4.32	overflow grate, and spillw
							where applicable).
							-
							-
							-
							4
							-
							-
							1
]
							1
							-
							4
							-
							-
							-
]
]
							-
							-
							4
							-
							1
							1
							4
							-
							-
							-
							-
]
							1
							4
							-
							4
							1
							4
							4
							1
							1
							1
							4
							4
							1
							1
							4
							4
							1
			l				4

Pre-Dev	2	Year	Routing
---------	---	------	---------

Project Summary		
Title	Retreat atTimberRidge Filing No. 1 Final Drainage Report	
Engineer	MAW	
Company	CCES	
Date	6/26/2019	
Notes	Pre-Dev 2 year SCS Model	

EX 2yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 9

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, 2 years	3
EX DP-1		
	Addition Summary, 2 years	4
EX DP-2		
	Addition Summary, 2 years	5
EX DP-3		
	Addition Summary, 2 years	6
EX DP-4		
	Addition Summary, 2 years	7
EX DP-8		
	Addition Summary, 2 years	8

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX-1	Pre-Development 2 YEAR	2	0.249	12.600	0.54
EX-2	Pre-Development 2 YEAR	2	0.013	12.300	0.03
EX-3	Pre-Development 2 YEAR	2	0.198	12.450	0.44
EX-4	Pre-Development 2 YEAR	2	0.074	12.400	0.17
EX-4	Pre-Development 2 YEAR	2	0.074	12.400	0.17
EX-5	Pre-Development 2 YEAR	2	0.945	12.750	2.04
EX-6	Pre-Development 2 YEAR	2	0.322	12.400	0.72
EX-7	Pre-Development 2 YEAR	2	0.287	12.300	0.97
EX-8	Pre-Development 2 YEAR	2	0.073	12.400	0.17

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX DP-1	Pre-Development 2 YEAR	2	1.876	12.500	4.21
EX DP-2	Pre-Development 2 YEAR	2	0.013	12.300	0.03
EX DP-3	Pre-Development 2 YEAR	2	0.198	12.450	0.44
EX DP-4	Pre-Development 2 YEAR	2	0.074	12.400	0.17
EX DP-8	Pre-Development 2 YEAR	2	0.073	12.400	0.17

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 2 of 9

Subsection: Time-Depth Curve Label: Colo Springs 2015

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYPE II 24 HOUR					
Label	TYPE II 24 HOUR				
Start Time	0.000 hours				
Increment	0.250 hours				
End Time	24.000 hours				
Return Event	2 years				

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

	This of ferrepresents time for hist value in each form						
Time (hours)	Dep (in		Depth (in)	Depth (in)	Depth (in)	Depth (in)	
0.0	00	0.0	0.0	0.0	0.0	0.0	
1.2	50	0.0	0.0	0.0	0.0	0.1	
2.5	00	0.1	0.1	0.1	0.1	0.1	
3.7	50	0.1	0.1	0.1	0.1	0.1	
5.0	00	0.1	0.1	0.2	0.2	0.2	
6.2	50	0.2	0.2	0.2	0.2	0.2	
7.5	00	0.2	0.2	0.3	0.3	0.3	
8.7	50	0.3	0.3	0.3	0.3	0.4	
10.0	00	0.4	0.4	0.4	0.5	0.5	
11.2	50	0.5	0.6	0.8	1.4	1.5	
12.5	00	1.5	1.6	1.6	1.7	1.7	
13.7	50	1.7	1.7	1.8	1.8	1.8	
15.0	00	1.8	1.8	1.8	1.9	1.9	
16.2	50	1.9	1.9	1.9	1.9	1.9	
17.5	00	1.9	1.9	1.9	1.9	2.0	
18.7	50	2.0	2.0	2.0	2.0	2.0	
20.0	00	2.0	2.0	2.0	2.0	2.0	
21.2		2.0	2.0	2.0	2.1	2.1	
22.5	00	2.1	2.1	2.1	2.1	2.1	
23.7	50	2.1	2.1	(N/A)	(N/A)	(N/A)	

Subsection: Addition Summary Label: EX DP-1

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-1
<catchment node="" outflow="" to=""></catchment>	EX-5
<catchment node="" outflow="" to=""></catchment>	EX-6
<catchment node="" outflow="" to=""></catchment>	EX-7
<catchment node="" outflow="" to=""></catchment>	EX-4

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-1	0.249	12.600	0.54
Flow (From)	EX-5	0.945	12.750	2.04
Flow (From)	EX-6	0.322	12.400	0.72
Flow (From)	EX-7	0.287	12.300	0.97
Flow (From)	EX-4	0.074	12.400	0.17
Flow (In)	EX DP-1	1.876	12.500	4.21

EX 2yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 4 of 9

Subsection: Addition Summary Label: EX DP-2

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-2'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-2	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-2	0.013	12.300	0.03
Flow (In)	EX DP-2	0.013	12.300	0.03

EX 2yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 5 of 9

Subsection: Addition Summary Label: EX DP-3

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-3'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-3	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-3	0.198	12.450	0.44
Flow (In)	EX DP-3	0.198	12.450	0.44

EX 2yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 6 of 9

Subsection: Addition Summary Label: EX DP-4

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-4'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-4	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-4	0.074	12.400	0.17
Flow (In)	EX DP-4	0.074	12.400	0.17

EX 2yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 7 of 9

Subsection: Addition Summary Label: EX DP-8

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-8'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-8	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-8	0.073	12.400	0.17
Flow (In)	EX DP-8	0.073	12.400	0.17

EX 2yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 8 of 9

Index C C Colo Springs 2015 (Time-Depth Curve, 2 years)...3 E EX DP-1 (Addition Summary, 2 years)...4 EX DP-2 (Addition Summary, 2 years)...5 EX DP-3 (Addition Summary, 2 years)...6 EX DP-4 (Addition Summary, 2 years)...7 EX DP-8 (Addition Summary, 2 years)...8 M Master Network Summary...2

EX 2yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 9 of 9

Pre-Dev	5	Year	Routing
---------	---	------	---------

Project Summary		
Title	Retreat atTimberRidge Filing No. 1 Final Drainage Report	
Engineer	MAW	
Company	CCES	
Date	6/26/2019	
Notes	Pre-Dev 5 year SCS Model	

EX 5yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 9

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, 5 years	3
EX DP-1		
	Addition Summary, 5 years	4
EX DP-2		
	Addition Summary, 5 years	5
EX DP-3		
	Addition Summary, 5 years	6
EX DP-4		
	Addition Summary, 5 years	7
EX DP-8		
	Addition Summary, 5 years	8

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX-1	Pre-Development 5 YEAR	5	0.691	12.250	3.85
EX-2	Pre-Development 5 YEAR	5	0.036	12.100	0.31
EX-3	Pre-Development 5 YEAR	5	0.549	12.200	3.44
EX-4	Pre-Development 5 YEAR	5	0.205	12.150	1.38
EX-4	Pre-Development 5 YEAR	5	0.205	12.150	1.38
EX-5	Pre-Development 5 YEAR	5	2.624	12.300	13.49
EX-6	Pre-Development 5 YEAR	5	0.893	12.150	5.79
EX-7	Pre-Development 5 YEAR	5	0.717	12.200	5.15
EX-8	Pre-Development 5 YEAR	5	0.203	12.150	1.39

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX DP-1	Pre-Development 5 YEAR	5	5.131	12.200	28.49
EX DP-2	Pre-Development 5 YEAR	5	0.036	12.100	0.31
EX DP-3	Pre-Development 5 YEAR	5	0.549	12.200	3.44
EX DP-4	Pre-Development 5 YEAR	5	0.205	12.150	1.38
EX DP-8	Pre-Development 5 YEAR	5	0.203	12.150	1.39

Subsection: Time-Depth Curve Label: Colo Springs 2015

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYPE II 24 HOUR				
Label TYPE II 24 HOUR				
Start Time	0.000 hours			
Increment	0.250 hours			
End Time	24.000 hours			
Return Event	5 years			

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
1.250	0.0	0.0	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.750	0.1	0.1	0.1	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
6.250	0.2	0.2	0.3	0.3	0.3
7.500	0.3	0.3	0.3	0.3	0.4
8.750	0.4	0.4	0.4	0.4	0.5
10.000	0.5	0.5	0.5	0.6	0.6
11.250	0.7	0.8	1.0	1.8	1.9
12.500	2.0	2.0	2.1	2.1	2.2
13.750	2.2	2.2	2.3	2.3	2.3
15.000	2.3	2.3	2.3	2.4	2.4
16.250	2.4	2.4	2.4	2.4	2.5
17.500	2.5	2.5	2.5	2.5	2.5
18.750	2.5	2.5	2.5	2.6	2.6
20.000	2.6	2.6	2.6	2.6	2.6
21.250	2.6	2.6	2.6	2.6	2.6
22.500	2.7	2.7	2.7	2.7	2.7
23.750	2.7	2.7	(N/A)	(N/A)	(N/A)

Subsection: Addition Summary Label: EX DP-1

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-1
<catchment node="" outflow="" to=""></catchment>	EX-5
<catchment node="" outflow="" to=""></catchment>	EX-6
<catchment node="" outflow="" to=""></catchment>	EX-7
<catchment node="" outflow="" to=""></catchment>	EX-4

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-1	0.691	12.250	3.85
Flow (From)	EX-5	2.624	12.300	13.49
Flow (From)	EX-6	0.893	12.150	5.79
Flow (From)	EX-7	0.717	12.200	5.15
Flow (From)	EX-4	0.205	12.150	1.38
Flow (In)	EX DP-1	5.131	12.200	28.49

EX 5yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 4 of 9

Subsection: Addition Summary Label: EX DP-2

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-2'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-2	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-2	0.036	12.100	0.31
Flow (In)	EX DP-2	0.036	12.100	0.31

EX 5yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 5 of 9

Subsection: Addition Summary Label: EX DP-3

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-3'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-3	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-3	0.549	12.200	3.44
Flow (In)	EX DP-3	0.549	12.200	3.44

EX 5yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 6 of 9

Subsection: Addition Summary Label: EX DP-4

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-4'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-4	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-4	0.205	12.150	1.38
Flow (In)	EX DP-4	0.205	12.150	1.38

EX 5yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 7 of 9

Subsection: Addition Summary Label: EX DP-8

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-8'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-8	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-8	0.203	12.150	1.39
Flow (In)	EX DP-8	0.203	12.150	1.39

EX 5yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 8 of 9

Index C Colo Springs 2015 (Time-Depth Curve, 5 years)...3 E EX DP-1 (Addition Summary, 5 years)...4 EX DP-2 (Addition Summary, 5 years)...5 EX DP-3 (Addition Summary, 5 years)...6 EX DP-4 (Addition Summary, 5 years)...7 EX DP-8 (Addition Summary, 5 years)...8 M Master Network Summary...2

EX 5yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 9 of 9

Project Summary	
Title	Retreat atTimberRidge Filing No. 1 Final Drainage Report
Engineer	MAW
Company	CCES
Date	6/26/2019
Notes	Pre-Dev 100 year SCS M

EX 100yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 9

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, 100 years	3
EX DP-1		
	Addition Summary, 100 years	4
EX DP-2		
	Addition Summary, 100 years	5
EX DP-3		
	Addition Summary, 100 years	6
EX DP-4		
	Addition Summary, 100 years	7
EX DP-8		
	Addition Summary, 100 years	8

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX-1	Pre-Development 100 YEAR	100	3.044	12.150	29.97
EX-2	Pre-Development 100 YEAR	100	0.160	12.050	2.25
EX-3	Pre-Development 100 YEAR	100	2.420	12.150	26.76
EX-4	Pre-Development 100 YEAR	100	0.904	12.100	10.53
EX-4	Pre-Development 100 YEAR	100	0.904	12.100	10.53
EX-5	Pre-Development 100 YEAR	100	11.571	12.200	107.20
EX-6	Pre-Development 100 YEAR	100	3.932	12.100	44.84
EX-7	Pre-Development 100 YEAR	100	2.887	12.150	32.06
EX-8	Pre-Development 100 YEAR	100	0.894	12.100	10.70

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
EX DP-1	Pre-Development 100 YEAR	100	22.338	12.150	219.24
EX DP-2	Pre-Development 100 YEAR	100	0.160	12.050	2.25
EX DP-3	Pre-Development 100 YEAR	100	2.420	12.150	26.76
EX DP-4	Pre-Development 100 YEAR	100	0.904	12.100	10.53
EX DP-8	Pre-Development 100 YEAR	100	0.894	12.100	10.70

Subsection: Time-Depth Curve Label: Colo Springs 2015

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYPE II 24 HOUR			
Label	TYPE II 24 HOUR		
Start Time	0.000 hours		
Increment	0.250 hours		
End Time	24.000 hours		
Return Event	100 years		

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

Time on left represents time for mist value in each row.					
Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.1
1.250	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.2	0.2	0.2
3.750	0.2	0.2	0.2	0.3	0.3
5.000	0.3	0.3	0.3	0.3	0.4
6.250	0.4	0.4	0.4	0.5	0.5
7.500	0.5	0.5	0.6	0.6	0.6
8.750	0.6	0.7	0.7	0.7	0.8
10.000	0.8	0.9	0.9	1.0	1.1
11.250	1.2	1.3	1.8	3.0	3.3
12.500	3.4	3.5	3.6	3.6	3.7
13.750	3.7	3.8	3.8	3.9	3.9
15.000	3.9	4.0	4.0	4.0	4.1
16.250	4.1	4.1	4.1	4.2	4.2
17.500	4.2	4.2	4.2	4.3	4.3
18.750	4.3	4.3	4.3	4.4	4.4
20.000	4.4	4.4	4.4	4.4	4.4
21.250	4.5	4.5	4.5	4.5	4.5
22.500	4.5	4.5	4.5	4.6	4.6
23.750	4.6	4.6	(N/A)	(N/A)	(N/A)

EX 100yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 3 of 9

Subsection: Addition Summary Label: EX DP-1

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-1'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-1
<catchment node="" outflow="" to=""></catchment>	EX-5
<catchment node="" outflow="" to=""></catchment>	EX-6
<catchment node="" outflow="" to=""></catchment>	EX-7
<catchment node="" outflow="" to=""></catchment>	EX-4

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-1	3.044	12.150	29.97
Flow (From)	EX-5	11.571	12.200	107.20
Flow (From)	EX-6	3.932	12.100	44.84
Flow (From)	EX-7	2.887	12.150	32.06
Flow (From)	EX-4	0.904	12.100	10.53
Flow (In)	EX DP-1	22.338	12.150	219.24

EX 100yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 4 of 9

Subsection: Addition Summary Label: EX DP-2

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-2'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-2	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-2	0.160	12.050	2.25
Flow (In)	EX DP-2	0.160	12.050	2.25

EX 100yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 5 of 9

Subsection: Addition Summary Label: EX DP-3

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-3'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-3	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)	
Flow (From)	EX-3	2.420	12.150	26.76	
Flow (In)	EX DP-3	2.420	12.150	26.76	

EX 100yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 6 of 9

Subsection: Addition Summary Label: EX DP-4

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-4'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-4	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)	
Flow (From)	EX-4	0.904	12.100	10.53	
Flow (In)	EX DP-4	0.904	12.100	10.53	

EX 100yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 7 of 9

Subsection: Addition Summary Label: EX DP-8

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-8'

Upstream Link		Upstream Node	
<catchment node="" outflow="" to=""></catchment>	EX-8		

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)	
Flow (From)	EX-8	0.894	12.100	10.70	
Flow (In)	EX DP-8	0.894	12.100	10.70	

EX 100yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 8 of 9

Index

Colo Springs 2015 (Time-Depth Curve, 100 years)...3

Е

С

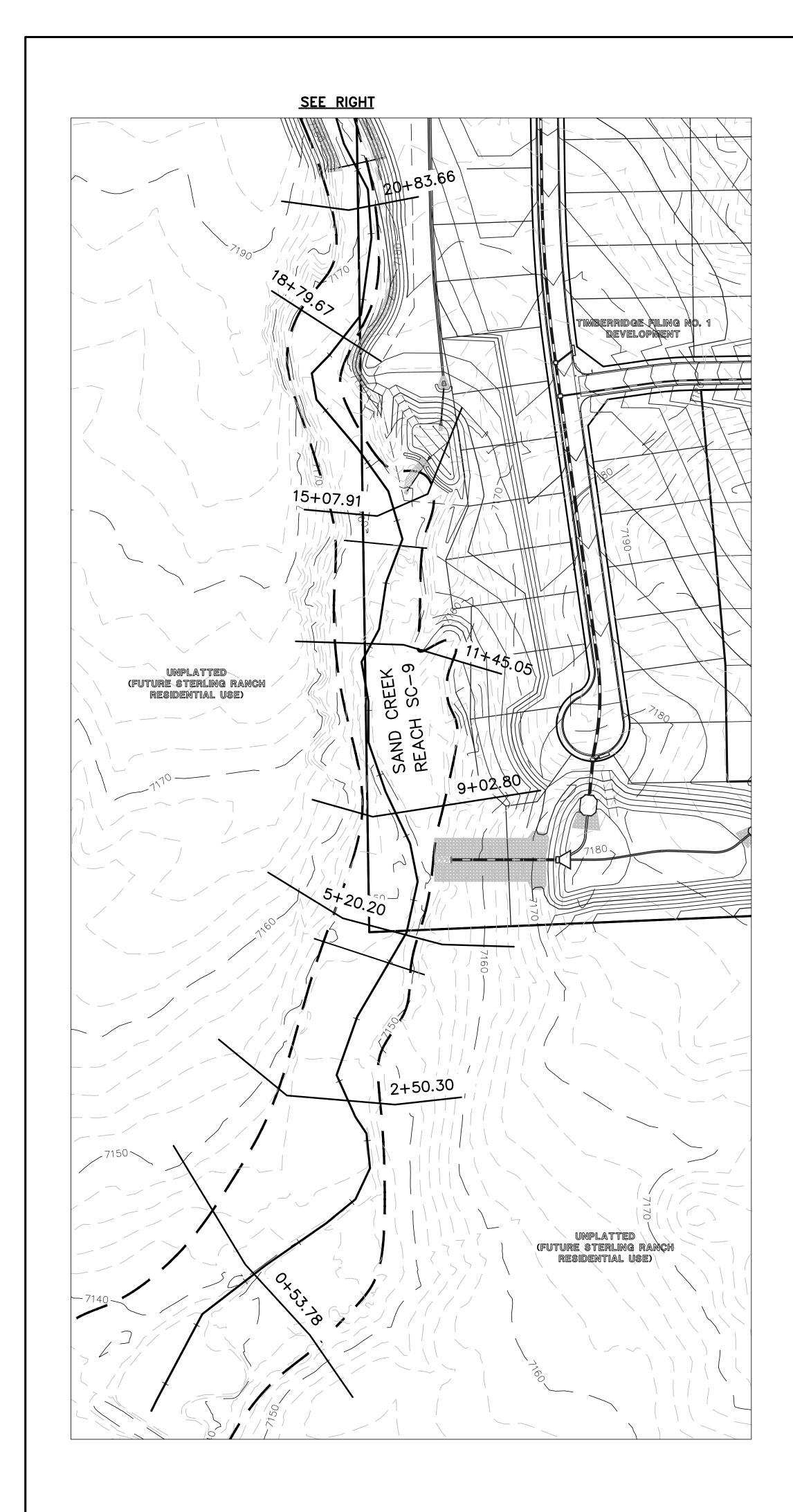
EX DP-1 (Addition Summary, 100 years)...4

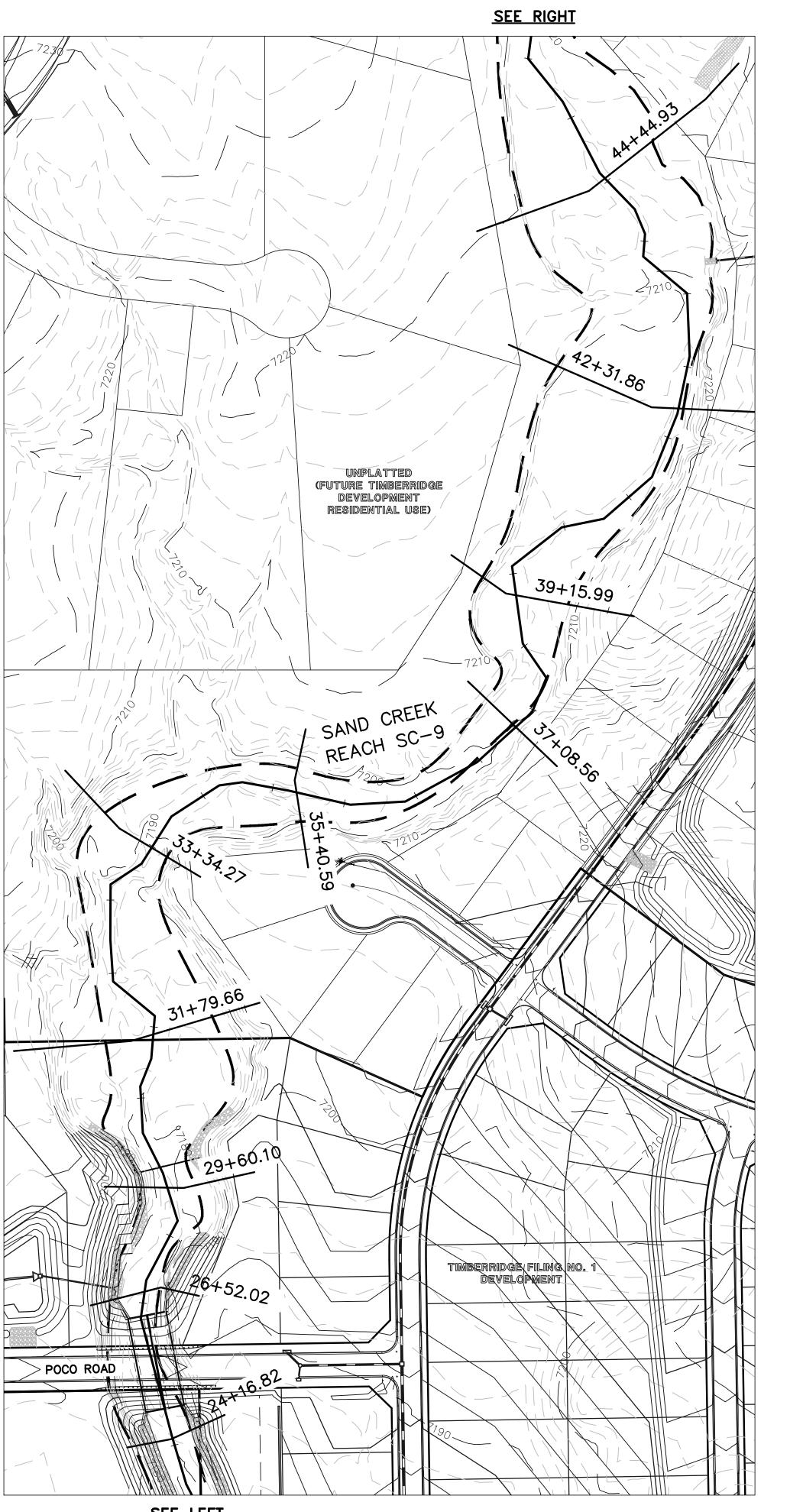
EX DP-2 (Addition Summary, 100 years)...5

EX DP-3 (Addition Summary, 100 years)...6

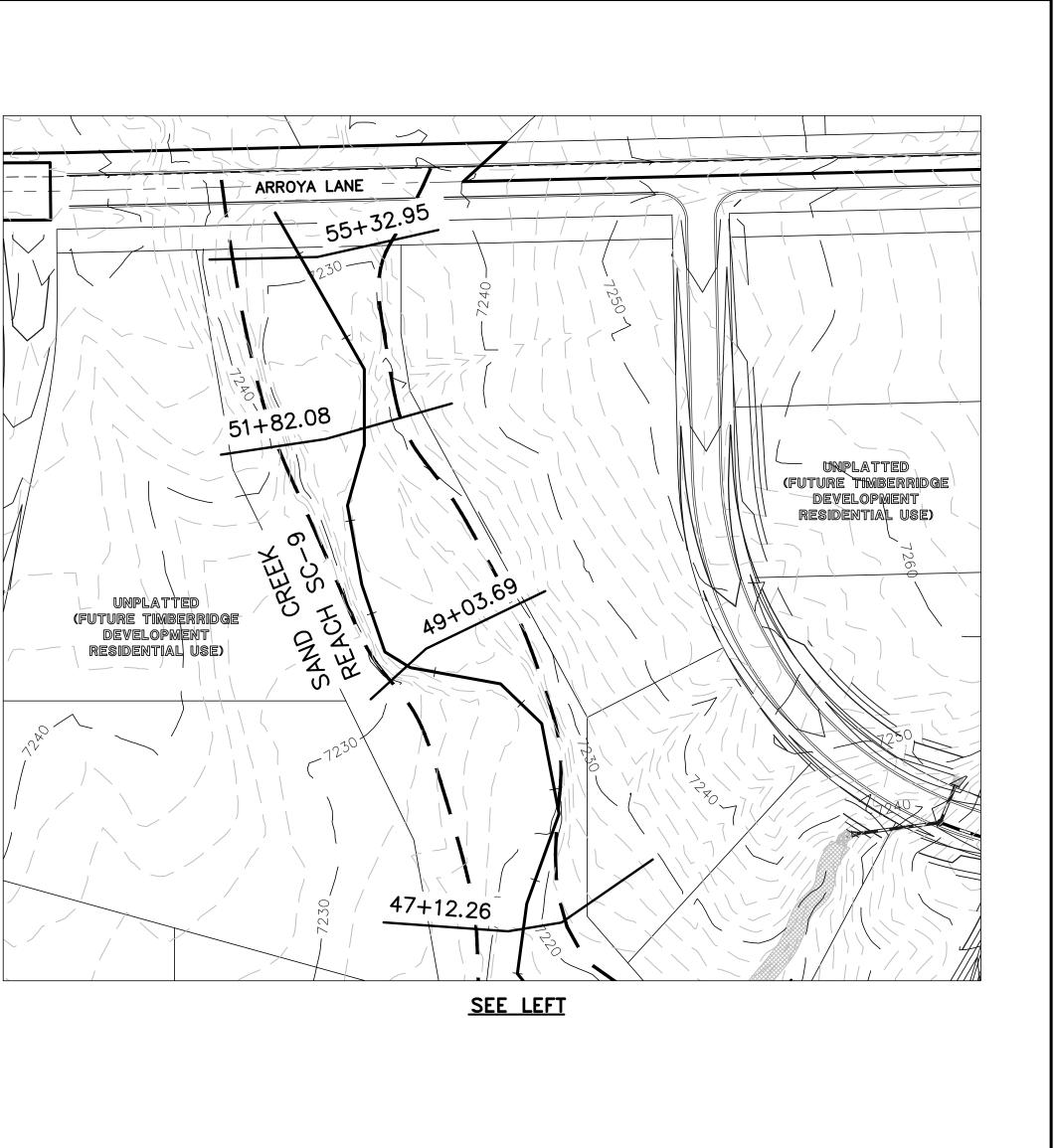
EX DP-4 (Addition Summary, 100 years)...7

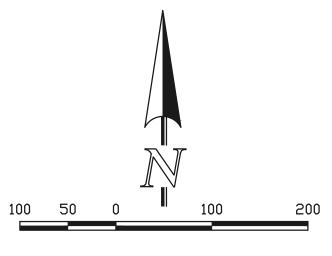
EX DP-8 (Addition Summary, 100 years)...8

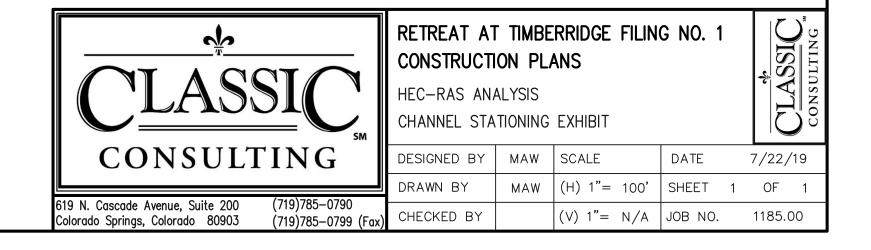

М


Master Network Summary...2

EX 100yr SCS.ppc 6/26/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 9 of 9


HEC-RAS CALCULATIONS





<u>SEE LEFT</u>

SCALE: 1" = 100'

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 35+40.59)

SAND CREEK REACH 9 - LOOKING UPSTREAM (HEC-RAS STA: 35+40.59)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 33+34.27)

SAND CREEK REACH 9 - LOOKING UPSTREAM (HEC-RAS STA: 33+34.27)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 31+79.66)

(HEC-RAS STA: 31+79.66)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 29+60.10)

(HEC-RAS STA: 29+60.10)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 26+52.02)

(HEC-RAS STA: 26+52.02)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 24+16.82)

SAND CREEK REACH 9 - LOOKING UPSTREAM

(HEC-RAS STA: 24+16.82)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 20+83.66)

(HEC-RAS STA: 20+83.66)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 18+79.67)

(HEC-RAS STA: 18+79.67)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 15+07.91)

(HEC-RAS STA: 15+07.91)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 11+45.05)

(HEC-RAS STA: 11+45.05)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 9+02.80)

SAND CREEK REACH 9 - LOOKING UPSTREAM (HEC-RAS STA: 9+02.80)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 5+20.20)

(HEC-RAS STA: 5+20.20)

SAND CREEK REACH 9 - LOOKING UPSTREAM FROM HEC-RAS STA: 34+00

SAND CREEK REACH 9 - LOOKING UPSTREAM FROM HEC-RAS STA: 27+00

SAND CREEK REACH 9 - LOOKING DOWNSTREAM FROM HEC-RAS STA: 14+00

TABLE 10-1

COMPOSITE ROUGHNESS COEFFICIENTS FOR UNLINED OPEN CHANNELS (Reference: Chow, Ven Te, 1959; Open-Channel Hydraulics)

.

n = ((n _o +	n ₁	+ n ₂	+ n ₃	+	n ₄)m	(10-2)
-------	-------------------	----------------	------------------	------------------	---	-------------------	--------

	<u>Channel Conditions</u>	<u>Value</u>
Material Type ⁿ o	Earth Fine Gravel Coarse Gravel	0.020 0.024 0.028
Degree of Irregularity ⁿ l	Smooth Minor Moderate Severe	0.000 0.005 0.010 0.020
Variation of Channel Cross Section ⁿ 2	Gradual Alternating Occasionally Alternating Frequently	0.000 0.005 0.010 - 0.015
Relative Effect of Obstructions n ₃	Negligible Minor Appreciable Severe	0.000 0.010 - 0.015 0.020 - 0.030 0.040 - 0.060
Vegetation ⁿ 4	Low Medium High Very High	0.005 - 0.010 0.010 - 0.025 0.025 - 0.050 0.050 - 0.100
Degree of Meandering ´ m	Minor Appreciable Severe	1.000 - 1.200 1.200 - 1.500 1.500

TABLE 10-2 (Continued)

TYPICAL ROUGHNESS COEFFICIENTS FOR OPEN CHANNELS

Type of Channel and Description	<u>Minimum</u>	<u>Normal</u>	<u>Maximum</u>					
NATURAL STREAMS								
Minor streams (top width at flood stage 100 ft)								
a. Streams on plain								
 Clean, straight, full stage, no rifts or deep pools 	0.025	0.030	0.033					
2. Same as above, but more stones and weeds	0.030	0.035	0.040					
3. Clean, winding, some pools and shoals	0.033	0.040	0.045					
4. Same as above, but some weeds and stones	0.035	0.045	0.050					
5. Same as above, lower stages, more ineffective slopes and sections	0.040	0.048	0.055					
6. Same as 4, but more stones	0.045	0.050	0.060					
 Sluggish reaches, weedy, deep pools 	0.050	0.070	0.080					
8. Very weedy reaches, deep pools, or floodways with heavy stand of timber and underbrush	0.075	0.100	0.150					
LINED OR BUILT-UP CHANNELS								
a. Corrugated Metal	0.021	0.025	0.030					
 b. Concrete Trowel finish Float finish Finished, with gravel on bottom Unfinished Gunite, good section Gunite, wavy section On good excavated rock On irregular excavated rock 	0.011 0.013 0.015 0.014 0.016 0.018 0.017 0.022	0.013 0.015 0.017 0.017 0.019 0.022 0.020 0.027	0.016 0.020 0.020 0.023					

Table 3. Adjustment values for factors that affect roughness of flood plains

[Modified from Aldridge and Garrett, 1973, table 2]

Flood-plain co	onditions	<i>n</i> value adjustment	Example
12122	Smooth	0.000	Compares to the smoothest, flattest flood plain attainable in a given bed material.
Degree of	Minor	0.001-0.005	Is a flood plain slightly irregular in shape. A few rises and dips or sloughs may be visible on the flood plain.
irregularity (n_1)	Moderate Severe	0.006-0.010 0.011-0.020	Has more rises and dips. Sloughs and hummocks may occur. Flood plain very irregular in shape. Many rises and dips or sloughs are visible. Irregular ground surfaces in pastureland and furrows perpendicular to the flow are also included.
Variation of flood-plain cross section (n_2)	(a	0.0	Not applicable.
Effect of obstructions	Negligible	0.000-0.004	Few scattered obstructions, which include debris deposits, stumps, exposed roots, logs, or isolated boulders, occupy less than 5 percent of the cross- sectional area.
(<i>n</i> ₃)	Minor Appreciable	0.005-0.019 0.020-0.030	Obstructions occupy less than 15 percent of the cross-sectional area. Obstructions occupy from 15 to 50 percent of the cross-sectional area.
	Small	0.001-0.010	Dense growth of flexible turf grass, such as Bermuda, or weeds growing where the average depth of flow is at least two times the height of the vegetation, or supple tree seedlings such as willow, cottonwood, arrowweed, or saltcedar growing where the average depth of flow is at least three times the height of the vegetation.
	Medium	0.011-0.025	Turf grass growing where the average depth of flow is from one to two times the height of the vegetation, or moderately dense stemmy grass, weeds, or tree seedlings growing where the average depth of flow is from two to three times the height of the vegetation; brushy, moderately dense vegetation, similar to 1- to 2-year-old willow trees in the dormant season.
Amount of vegetation (n_4)	Large	0.025–0.050	Turf grass growing where the average depth of flow is about equal to the height of the vegetation, or 8- to 10-year-old willow or cottonwood trees intergrown with some weeds and brush (none of the vegetation in foliage) where the hydraulic radius exceeds 2 ft, or mature row crops such as small vegetables, or mature field crops where depth of flow is at least twice the height of the vegetation.
	Very large	0.050–0.100	Turf grass growing where the average depth of flow is less than half the height of the vegetation, or moderate to dense brush, or heavy stand of timber with few down trees and little undergrowth where depth of flow is below branches, or mature field crops where depth of flow is less than the height of the vegetation.
	Extreme	0.100-0.200	Dense bushy willow, mesquite, and saltcedar (all vegetation in full foliage), or heavy stand of timber, few down trees, depth of flow reaching branches.
Degree of meander (m)		1.0	Not applicable.

Chow (1959) presents a table showing minimum, normal, and maximum values of n for flood plains covered by pasture and crops. These values are helpful for comparing the roughness values of flood plains having similar vegetation.

Vegetation-Density Method

For a wooded flood plain, the vegetation-density method can be used as an alternative to the previous method for determining n values for flood plains. In a wooded flood plain, where the tree diameters can be measured, the vegetation density of the flood plain can be determined.

Determining the vegetation density is an effective way of relating plant height and density characteristics, as a function of depth of flow, to the flow resistance of vegetation. Application of the flow-resistance model presented below requires an estimate of the vegetation density as a function of depth of flow. The procedure requires a direct or indirect determination of vegetation density at a given depth. If the change in n value through a range in depth is required, then an estimation of vegetation density through that range is necessary.

Techniques for Determining Vegetation Density

Petryk and Bosmajian (1975) developed a method of analysis of the vegetation density to determine the rough_____

Retardance Class	Cover	Condition						
	Weeping lovegrass	Excellent stand, tall, average 30 in.						
A	Yellow bluestem Ischaemum	Excellent stand, tall, average 36 in.						
	Bermuda grass	Good stand, tall, average 12 in.						
	Native grass mixture (little bluestem, bluestem, blue gamma, and other long and short Midwest grasses	Good stand, unmowed						
	Weeping lovegrass	Good stand, tall, average 24 in.						
В	Lespedeza serica	Good stand, not woody, tall, average 19 in.						
	Alfalfa	Good stand uncut, average 11 in.						
	Weeping lovegrass	Good stand, unmowed, average 13 in.						
	Kudzu	Dense growth, uncut						
	Blue gamma	Good stand, uncut, average 13 in.						
	Crabgrass	Fair stand, uncut, avg. 10 in.						
	Bermuda grass	Good stand, mowed, average 6 in.						
	Common lespedeza	Good stand, uncut, average 11 in.						
С	Grass-legume mixture - summer (orchard grass, redtop Italian ryegrass, and common lespedeza)	Good stand, uncut, average 6 to 8 in.						
	Centipedegrass	Very dense cover, average 6 in.						
	Kentucky Bluegrass	Good stand, headed, 6 to 12 in.						
	Bermuda grass	Good stand, cut to 2.5 in. height						
	Common lespedeza	Excellent stand, uncut, average 4.5 in.						
	Buffalo Grass	Good stand, uncut, 3 t 6 in.						
D	Grass-legume mixture - fall (orchard grass, redtop Italian ryegrass, and common lespedeza)	Good stand, uncut, 3 to 5 in.						
	Lespedeza serica	After cutting to 2 in. height, good stand before cutting						
	Bermuda grass	Good stand, cut to average 1.5 in. height						
Ξ	Bermuda grass	Burned stubble						
Note: Covers cla iniform.	ssified have been tested in experimental cha	nnels. Covers were green and generally						

Classification of Vegetal Covers

SCS Retardance Class	Cn
Α	0.605
В	0.418
С	0.220
D	0.147
<u>Е</u> .	0.093

Composite Roughness

Culverts using different materials for portions of the perimeter such as embedded culverts or culverts with an invert liner should use a composite Manning's n value. A weighted n value based on the materials can be derived using the following equation:

$$n_c = \left[\frac{\Sigma(p_i n_i^{1.5})}{p}\right]^{0.67}$$

Where:

 n_c = Composite/weighted Manning's n. p_i = Wetted perimeter for the material, ft. n_i = Manning's n value for the material. p = Total wetted perimeter, ft.

750.1.4.1.2 Hydraulic Radius

The hydraulic radius is a characteristic depth of flow and is defined as the cross-sectional area of flow divided by the wetted perimeter of the channel. The hydraulic radius is computed as follows:

$$R = \frac{A}{P}$$

where:

 $\begin{aligned} R &= hydraulic radius, ft \\ A &= cross-sectional area of flow, ft^2 \\ P &= wetted perimeter of the channel cross section, ft \end{aligned}$

750.1.4.1.3 Slope

Table 8-8

Contra contra	Height	at maturity
Grass species	(ft)	(m)
Cool-season grasses		
Creeping foxtail	3-4	0.9–1.2
Crested wheatgrass	2-3	0.6-0.9
Green needlegrass	3-4	0.9 - 1.2
Russian wild rye	3-4	0.9–1.2
Smooth bromegrass	3-4	0.9-1.2
Tall fescue	3-4	0.9-1.2
Tall wheatgrass		1.2 - 1.5
Western wheatgrass	2–3	0.6-0.9
Warm-season grasses		
Bermudagrass	3/42	0.2-0.6
Big bluestem	4-6	1.2-1.8
Blue grama	12	0.3–0.6
Buffalograss	1/3-1	0.1-0.3
Green spangletop	3-4	0.9-1.2
Indiangrass	5-6	1.5 - 1.8
Klein grass	3-4	0.9 - 1.2
Little bluestem	3-4	0.9-1.2
Plains bristlegrass	1-2	0.3-0.6
Sand bluestem	56	1.5-1.8
Sideoats grama	2-3	0.6-0.9
Switchgrass	4-5	1.2–1.5
Vine mesquitegrass	1-2	0.3-0.6
Weeping lovegrass	3-4	0.9 - 1.2
Old World bluestems		
Caucasian bluestem	4–5	1.2-1.5
Ganada yellow bluestem	3-4	0.9 - 1.2

Characteristics of selected grass species for

Table 8–9 Retardance curve index by SCS retardance class

SCS retardance class	Retardance curve index
A	10.0
В	7.64
С	5.60
D	4.44
Е	2.88

this table were obtained from a review of the available qualitative descriptions and stem counts reported by researchers studying channel resistance and stability.

Since cover conditions vary from year to year and season to season, it is recommended that an upper and lower bound be determined for C₁. The lower bound should be used in stability computations, and the upper bound should be used to determine channel capacity. Some practitioners find that the use of SCS retardance class (table 8–9) is a preferable approach.

The vegetal cover index, C_F, depends primarily on the density and uniformity of density in the immediate vicinity of the soil boundary. Because this parameter is associated with the prevention of local erosion damage which may lead to channel unraveling, the cover factor should represent the weakest area in a reach, rather than the average for the cover species. Recommended values for the cover factor are presented in table 8-10. Values in this table do not account for such considerations as maintenance practices or uniformity of soil fertility or moisture. Therefore, appropriate engineering judgment should be used in its application.

Table 8-10

Properties of grass channel linings values (apply to good uniform stands of each cover)

Cover factor (C _F)	Covers tested	Reference stem density (stems/ft ²)	Reference stem density (stems/m²)
0.90	Bermudagrass	500	5,380
	Centipede grass	500	5,380
0.87	Buffalograss	400	4,300
	Kentucky bluegrass	350	3,770
	Blue grama	350	3,770
0.75	Grass mixture	200	2,150
0.50	Weeping lovegrass	350	3,770
	Yellow bluestem	250	2,690
0.50	Alfalfa	500	5,380
	Lespedeza sericea	300	3,280
0.50	Common lespedeza	150	1,610
	Sudangrass	50	538

Multiply the stem densities given by 1/3, 2/3, 1, 4/3, and 5/3 for poor, fair, good, very good, and excellent covers, respectively. Reduce the C_{F} by 20% for fair stands and 50% for poor stands.

Threshold Channel Design

Part 654 National Engineering Handbook

Two soil parameters are required for application of effective stress concepts to the stability design of lined or unlined channels having an erodible soil boundary: soil grain roughness, n_s , and allowable effective stress, τ_a . When the effective stress approach is used, the soil parameters are the same for both lined and unlined channels with negligible bed-material sediment transport.

Soil grain roughness is defined as the roughness associated with particles or aggregates of a size that can be independently moved by the flow at incipient channel failure. For noncohesive soils, the soil grain roughness and effective shear stress are both a function of the D_{75} grain size. When D_{75} is greater than 1.3 millimeter, the soil is considered coarse grained. When D_{75} is less than 1.3 millimeter, the soil is considered fine grained. Fine-grained roughness is considered to have a constant value of 0.0156. Fine-grained effective shear stress is taken to have a constant value of 0.02 pound per square foot. Coarse-grained shear stress and roughness are given in figures 8–21 and 8–22.

A soil grain roughness of 0.0156 is assigned to all cohesive soils. The allowable effective stresses are a function of the unified soil classification system soil type, the plasticity index, and the void ratio. The basic allowable shear stress, τ_{ab} , is determined from the plasticity index and soil classification, and then adjusted by the void ratio correction factor, C_{e} , using the following equation:

$$\tau_a = \tau_{ab} C_e^2 \qquad (eq. 8-29)$$

The basic allowable effective stress can be determined from figure 8–23 and the void ratio correction factor from figure 8–24. These two figures were developed directly from the allowable velocity curves in AH 667. Stress partitioning (slope partitioning) is essential to application of figures 8–21 to 8–24, with or without vegetation (Temple et al. 1987).

(e) General design procedure

Use the basic shear stress equation to determine effective shear stress on the soil beneath the vegetation. Use any consistent units of measurement.

$$\tau_{e} = \gamma dS \left(1 - C_{F}\right) \left(\frac{n_{s}}{n}\right)^{2}$$

(eq. 8–30)

where:

- τ_e = effective shear stress exerted on the soil beneath vegetation (lb/ft² or N/m²)
- γ = specific weight of water (lb/ft³ or N/m³)
- S = energy slope, dimensionless
- $C_{\rm F}$ = vegetation cover factor (0 for unlined channel), dimensionless
- $n_{\rm s}$ = grain roughness of underlying soil, typically taken as dimensionless
- n = roughness coefficient of vegetation, typically taken as dimensionless

The flow depth is used instead of the hydraulic radius because this will result in the maximum local shear stress, rather than the average shear stress. The cover factor is a function of the grass and stem density. Roughness coefficients are standard Manning's roughness values; n_s can be determined from figure 8–22, n can be determined from figure 8–20) or from the following equation.

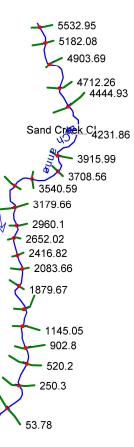
$$n_{R} = \exp\left\{C_{I}\left[0.0133\left(\ln R_{v}\right)^{2} - 0.0954\ln R_{v} + 0.297\right] - 4.16\right\}$$
(eq. 8-31)

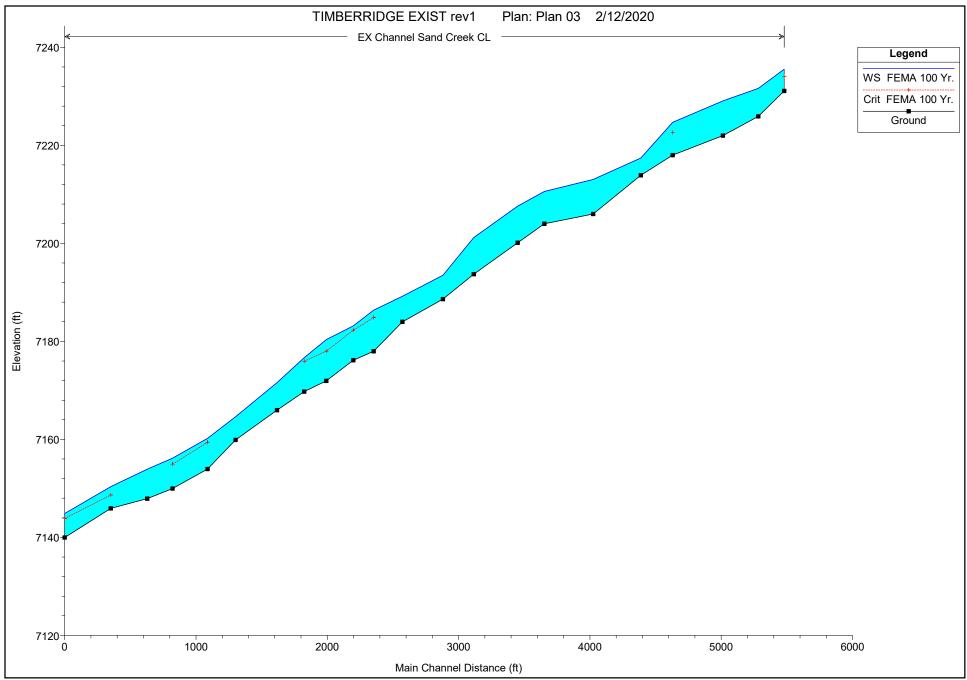
where:

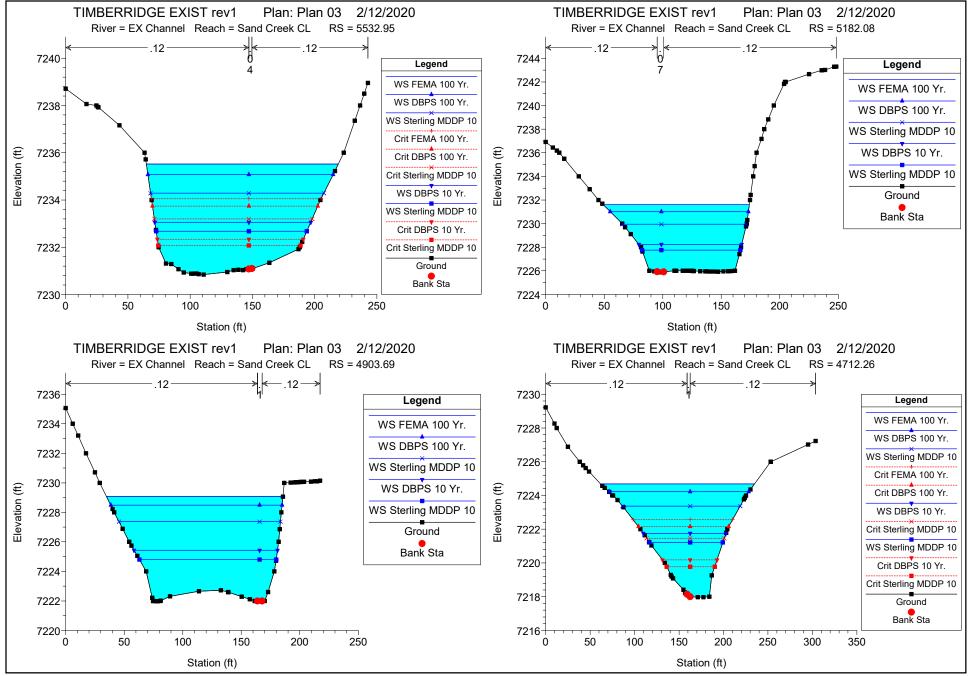
 $R_v = (VR/v) \ge 10^5$ (this dimensionless term reduces to VR for practical application in English units)

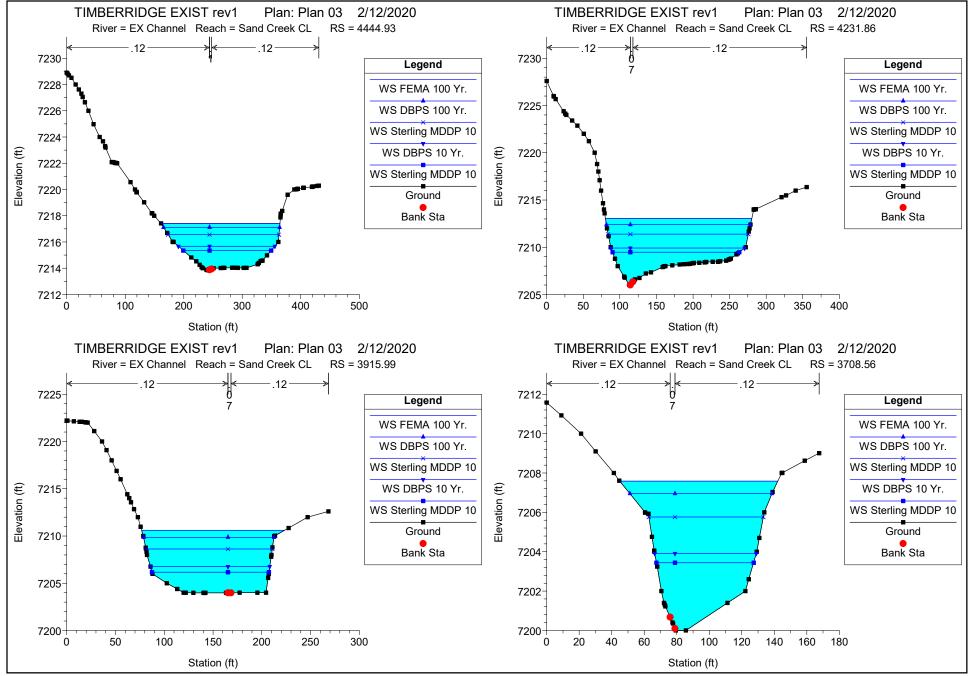
V = channel velocity (ft/s or m/s)

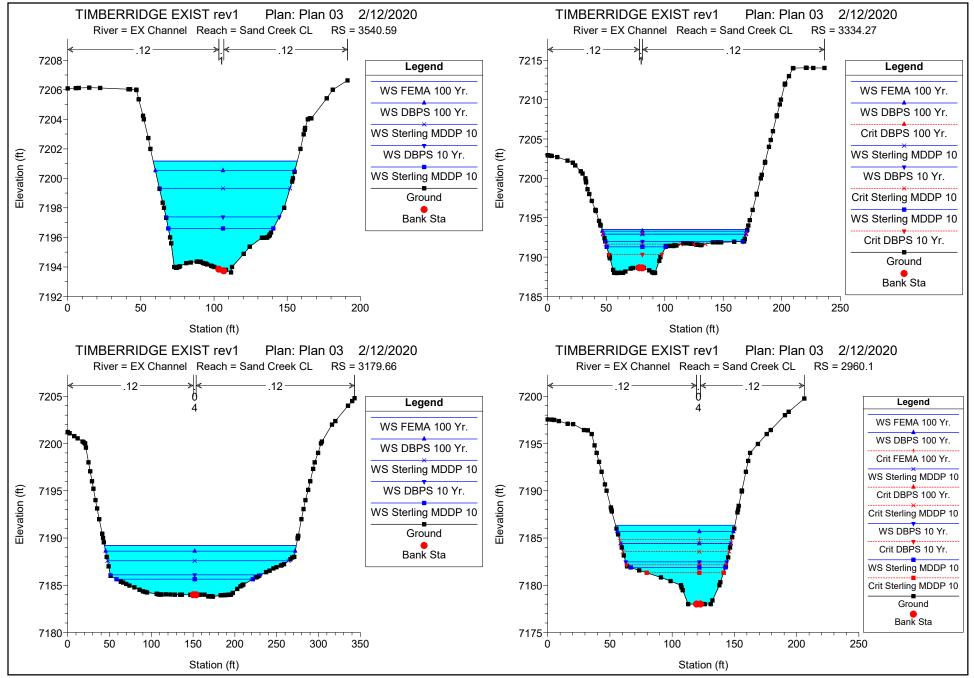
 $\mathbf{R} = \mathbf{hydraulic radius (ft or m)}$

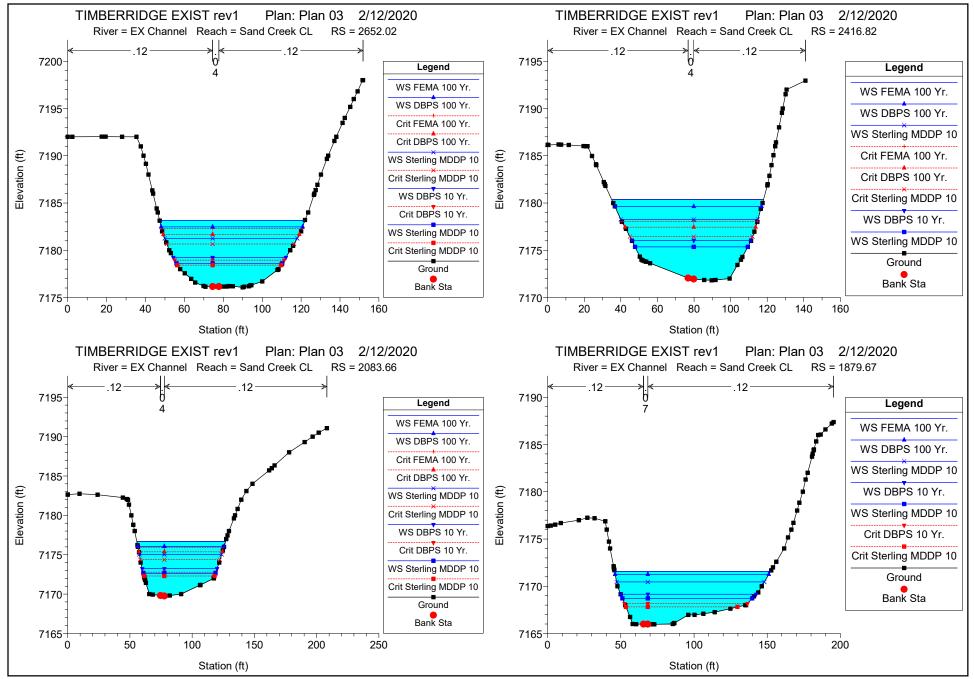

Limited to $0.0025C_1^{2.5} < R_v < 36$

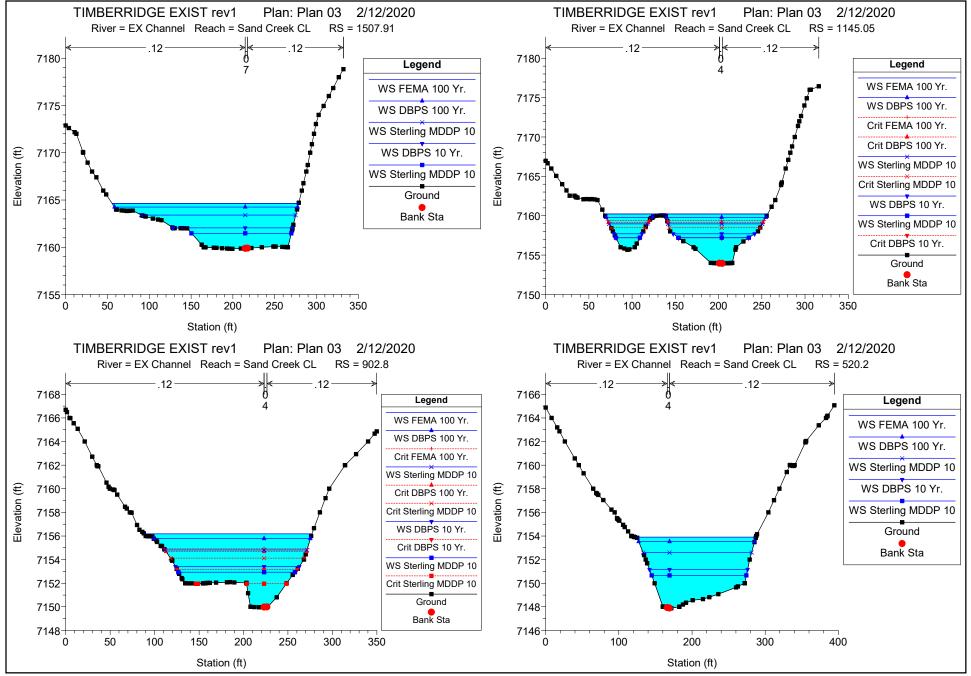

A reference value of Manning's resistance coefficient, n_{R} is applicable to vegetation established on relatively smoothly graded fine-grained soil.

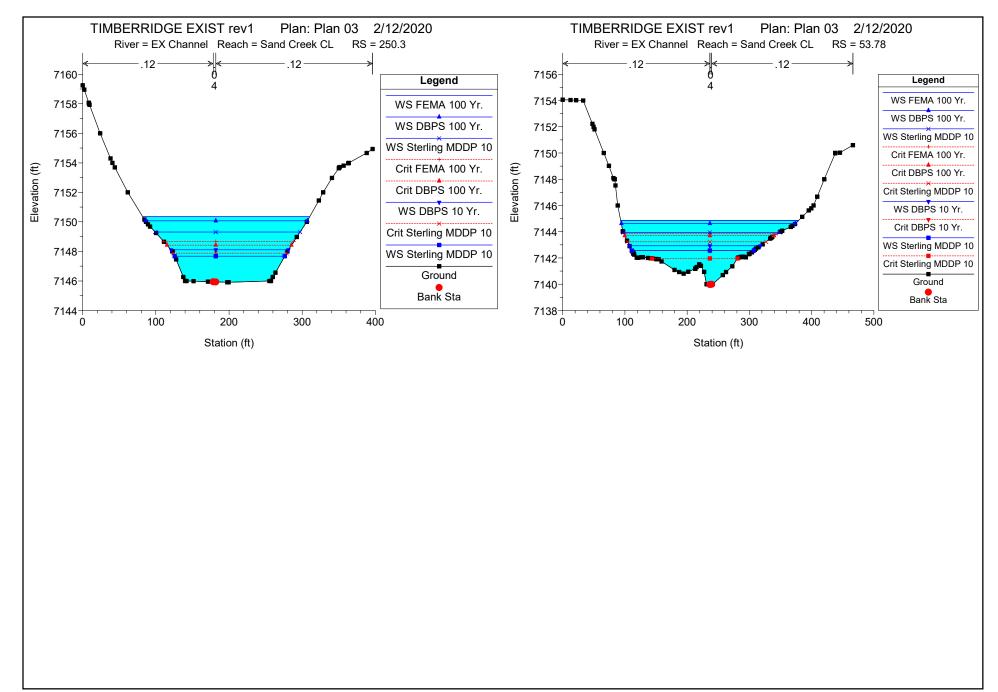

If vegetated channel liner mats are used, manufacturer-supplied roughness coefficients for particular mats may be used in the equation.


Maximum allowable shear stress, τ_{va} , in pound per square foot is determined as a function of the retardance curve index, $C_{t'}$ Very little information is available for vegetal performance under very high stresses and this relation is believed to be conservative.

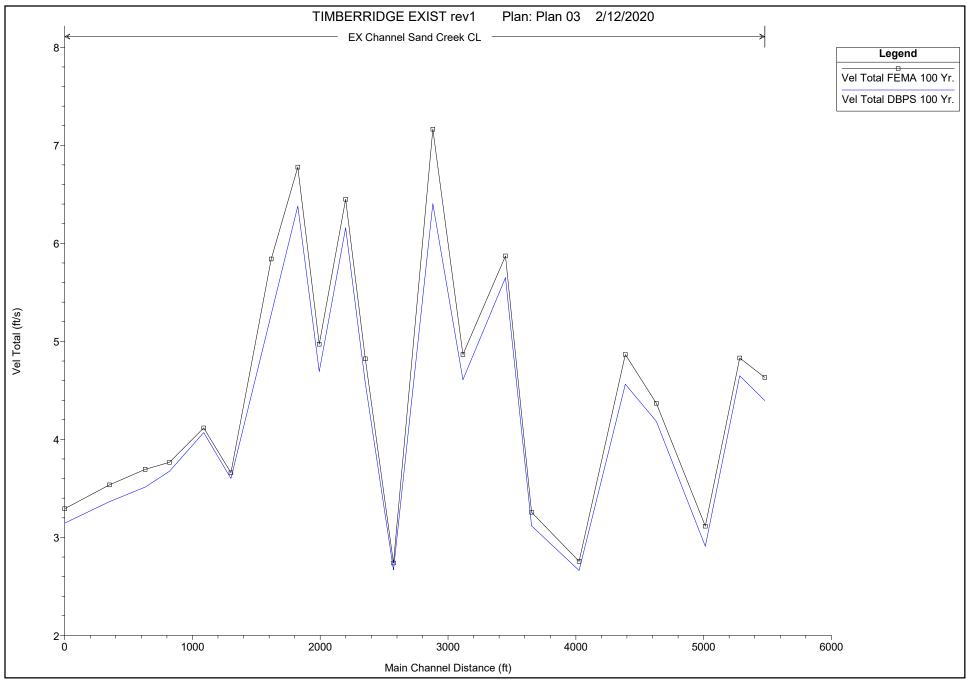

$$\tau_{va} = 0.75C_1$$
 (eq. 8–32)

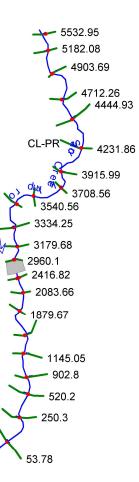


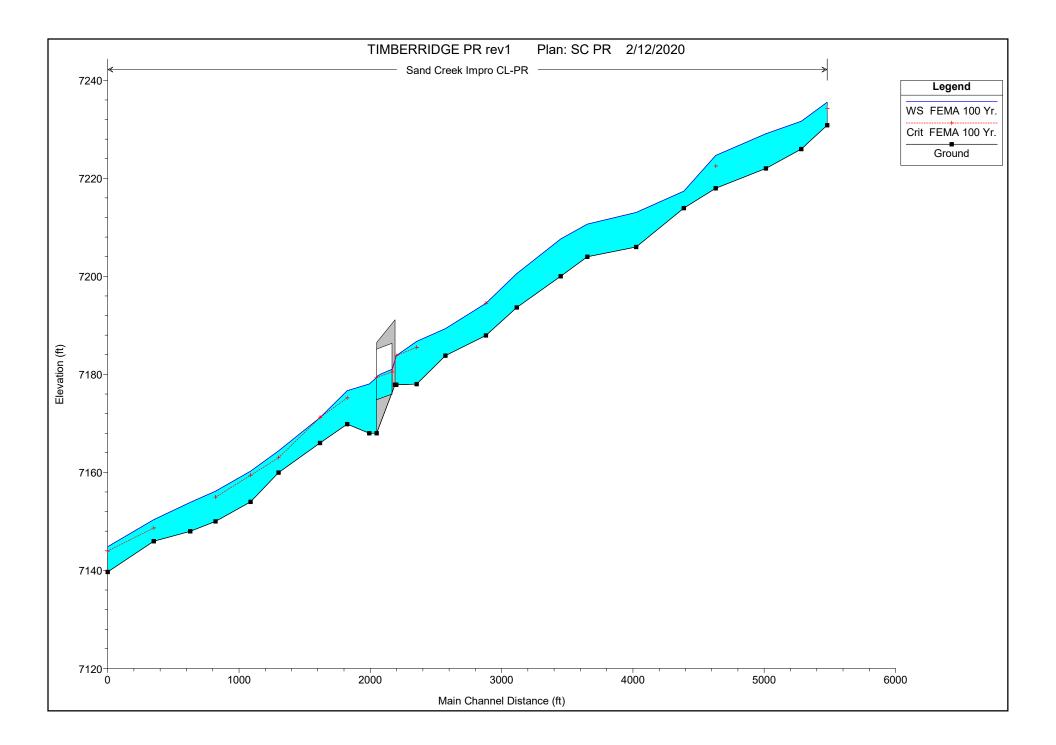


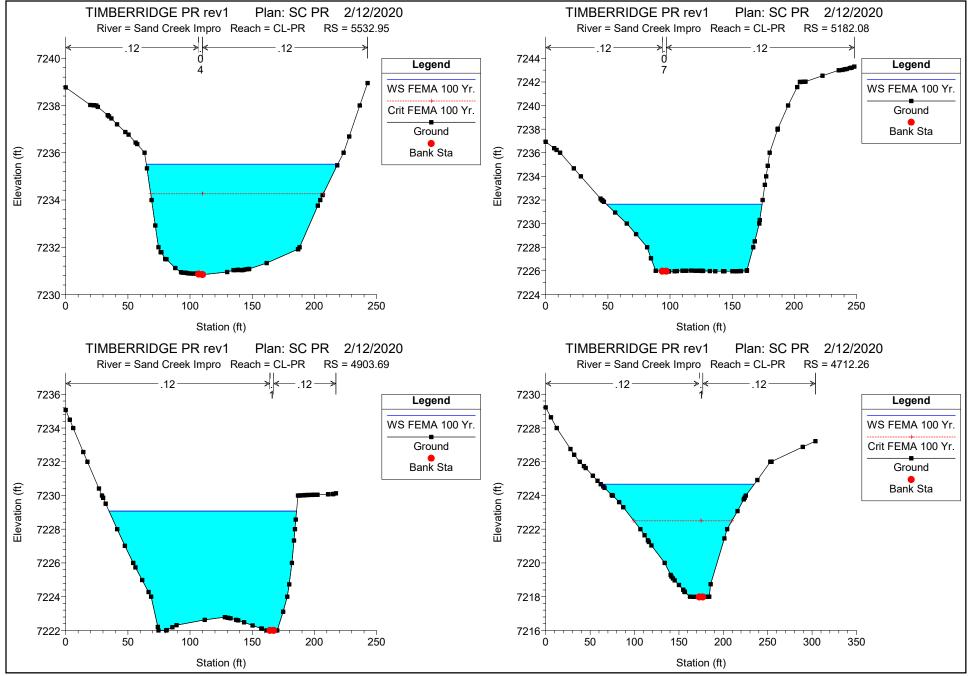


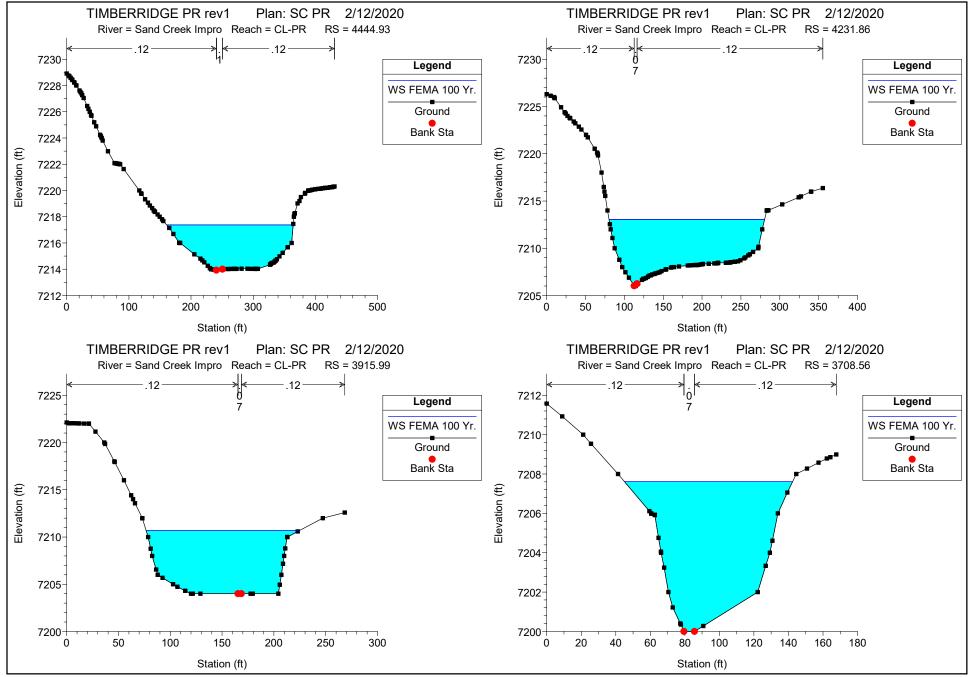
HEC-RAS Plan: EX Channel River: EX Channel Reach: Sand Creek CL

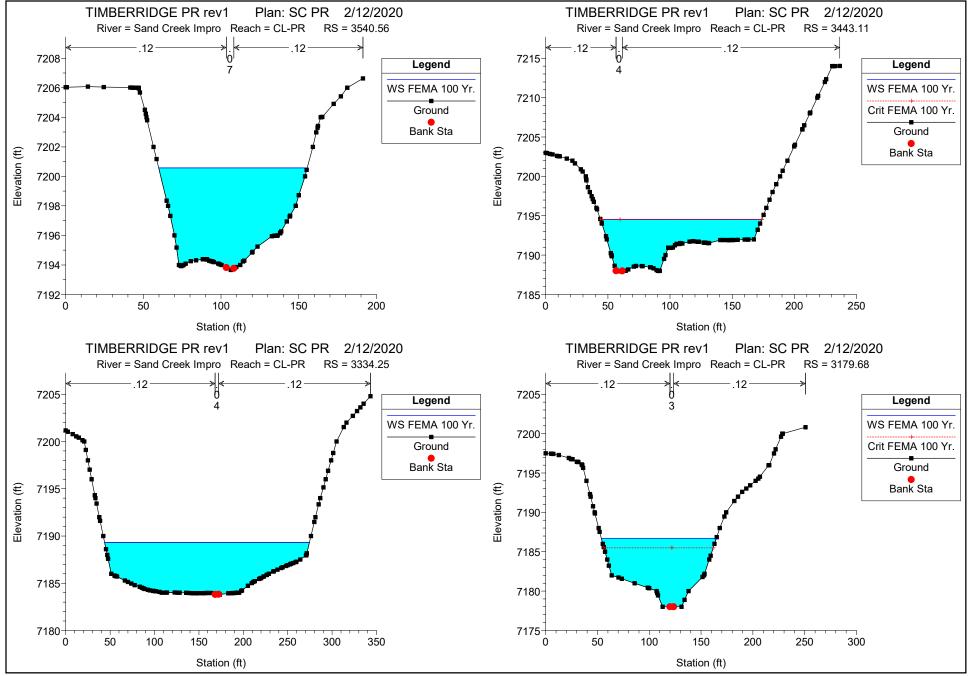

Instruction Color	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	Max Chl Dpth	Hydr Radius	E.G. Elev	E.G. Slope	Vel Total	Shear Total	Flow Area	Top Width	Froude # XS
Smrd Greek, C. S528 56 DBPS 10 Vr. 2100 7225.00 7225.07 723.74 4.20 3.20 7235.80 0.022407 4.40 4.50 4.50 4.51 217.65 Smrd Creek, C. S52.85 DBPS 10 Vr. 610 723.06 723.25 0.23247 4.23 0.0316 2.80 2.81 217.65 723.26 0.0316 2.80 2.81 217.65 2.21 723.26 0.0316 2.80 2.81 2.71 723.80 0.0316 2.80 2.81 2.71 723.80 723.90	Reduit	River Sta	FIOIlle					· · ·			· · ·				· ·	Floude # X3
Send Greek CL SS2280 DefPs 100 Yr. 217.10 728.07	Sand Creek Cl	5532.05	EEMA 100 Vr		. ,	. ,	. ,	. ,	· · /	. ,	. ,	· · /	,	,	,	0.53
Sind Dreke, CL Sizzg 9: Sand Dreke, CL Sizzg 9: Sizzg 7: Sizzg																0.53
Sind Devic L. Size 39 Selening MODP 10 1477 723.00 723.20 3.45 272.7 723.00 0.22716 0.22716 2.51 2.01 773.45 1.02 Sand Devic LL 512.08 PERM 100 Yr. 2200 723.08 723.00 5.71 4 1.41 723.08 0.02716 2.51 2.01 773.44 1.41 723.08 0.02716 2.51 2.01 773.44 0.011855 4.55 4.68 4.68 4.67 1.16.0 Sand Devic LL 512.08 Definition Yr. 200 772.24 773.14 0.011855 4.65 4.68 4.67 1.16.0 Sand Devic LL 512.08 Berling MODP 10 1.03 772.24 2.06 773.42 0.000265 3.11 2.15 4.58 1.40.24 1.40.24 Sand Devic LL 403.69 PERM 100 Yr. 2.200 772.24 0.000274 2.201 0.000274 2.201 0.000274 2.201 1.40.2 1.40.2 1.40.2 1.40.2 <																0.53
Sand Devek LL Saza BS Biering MDDP 10 4-30 77231.06 7723.06 7232.07 1.44 1.41 1722.80 0.027790 2.21 2.01 171.35 121.05 Sand Oreek CL S182.06 DBP 10 V/ 2000 7723.106 5.71 4.28 7723.04 0.019385 4.48 4.48 5.82.3 121.17 5.71 4.28 7723.04 0.020081 3.46 4.48 4.49 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.41 <td></td> <td>0.47</td>																0.47
Send Creek CL 5182.08 FEAA 100 Vr. 2200 722.580 7231.60 5.71 4.28 722.00 0.01933 4.65 4.88 583.22 124.78 Smid Creek CL 5182.08 DBFS 100 Vr. 2010 722.840 7731.00 5.11 4.02 0.019331 4.65 4.86 4.8																
Sand Creek CL 582.08 DBP'S 10 Yr. 21 To 7225.89 7231.45 0.19231 4.65 4.68 4.66.74 118.65 Sand Creek CL 582.08 String MODP 10 1447 7225.89 7228.24 2.08 7233.42 0.02128 4.28 4.38 347.54 105.91 Sand Creek CL 582.08 String MODP 10 1447 7225.89 7227.57 1.16 1.66 1.66 7227.92 0.02128 4.28 4.30 347.54 105.91 Sand Creek CL 4003.69 FEMA 100 Yr. 210 727.18 7227.44 0.51 727.86 0.00655 3.11 7.64 7.71 5.40 7.227.47 0.00645 3.11 1.66 8.47 7.71 5.40 7.227.47 0.00645 3.81 7.80.33 7.85.35 7.83.37 7.83.37 7.83.47 1.80.47 7.71 8.40 0.00257 2.11 1.66.34 7.86.35 7.86.35 7.86.35 7.86.35 7.86.35 7.86.35 7.86.35 7.86.35 <td>Sand Creek CL</td> <td>5532.95</td> <td>Sterling MDDP 10</td> <td>430</td> <td>7231.08</td> <td>7232.68</td> <td>7232.07</td> <td>1.84</td> <td>1.41</td> <td>7232.83</td> <td>0.022799</td> <td>2.51</td> <td>2.01</td> <td>171.34</td> <td>121.05</td> <td>0.46</td>	Sand Creek CL	5532.95	Sterling MDDP 10	430	7231.08	7232.68	7232.07	1.84	1.41	7232.83	0.022799	2.51	2.01	171.34	121.05	0.46
Sand Creek CL 582.08 DBP'S 10 Yr. 21 To 7225.89 7231.45 0.19231 4.65 4.68 4.66.74 118.65 Sand Creek CL 582.08 String MODP 10 1447 7225.89 7228.24 2.08 7233.42 0.02128 4.28 4.38 347.54 105.91 Sand Creek CL 582.08 String MODP 10 1447 7225.89 7227.57 1.16 1.66 1.66 7227.92 0.02128 4.28 4.30 347.54 105.91 Sand Creek CL 4003.69 FEMA 100 Yr. 210 727.18 7227.44 0.51 727.86 0.00655 3.11 7.64 7.71 5.40 7.227.47 0.00645 3.11 1.66 8.47 7.71 5.40 7.227.47 0.00645 3.81 7.80.33 7.85.35 7.83.37 7.83.37 7.83.47 1.80.47 7.71 8.40 0.00257 2.11 1.66.34 7.86.35 7.86.35 7.86.35 7.86.35 7.86.35 7.86.35 7.86.35 7.86.35 <td></td>																
Sand Creek CL 5820.08 DBPS 10 Yr. 630 7253.80 7223.84 2.35 2.26 723.44 0.00081 3.46 3.36 152.76 67.91 Sand Creek CL 5820.08 Stering MODP 10 440 7253.80 7273.58 7273.55 1.66 1.66 7273.23 0.00455 3.11 2.19 844.00 44.02 Sand Creek CL 4003.89 DBPS 10 Yr. 2000 7271.98 7223.64 3.47 1.65 5.02 7272.46 0.00553 1.18 1.00 3.516 122.77 Sand Creek CL 4003.89 Stering MODP 10 440 722.18 722.44 3.47 2.20 722.44 0.00503 1.88 1.00 3.516 122.77 Sand Creek CL 4003.99 Stering MODP 10 440 722.46 722.46 722.46 722.46 0.00503 1.88 1.00 3.518 122.77 Sand Creek CL 4712.26 DBPS 10 Yr. 200 722.46 722.46 0.002209 4.37																0.46
Sand Creek, CL 5182.08 Stering MODP 10 1477 7229.86 7229.95 4.06 3.35 7223.20 0.27278 3.07 2.88 140.24 48.02 Sand Creek, CL 490.39 FEMA 100 Yr. 222.98 7227.82 0.00455 3.11 2.56 727.02 0.00455 3.11 2.56 722.90 722.90 722.91 722.92																0.46
Sand Creek CL 542.08 Stering MDDP 10 430 7228.69 7227.75 1.66 7227.92 0.2775 3.07 2.86 140.24 44.02 Sand Creek CL 4903.69 DEPS 10 Yr. 2000 7221.96 7222.96 7.11 5.44 7228.62 0.00455 3.11 2.19 854.70 150.70 Sand Creek CL 4903.69 DEPS 10 Yr. 0.03 7221.96 7225.44 3.47 7228.40 0.006926 2.83 1.86 567.20 138.03 Sand Creek CL 4903.69 Stering MDDP 10 4.93 7224.69 7222.40 2.23 7224.84 0.006110 1.86 0.94 295.85 116.87 Sand Creek CL 4712.26 DEPS 10 Yr. 0.30 721.40 7222.66 722.40 2.23 7224.84 0.002116 4.18 4.55 518.03 517.1 Sand Creek CL 4712.26 DEPS 10 Yr. 0.30 721.47 722.46 7.227.47 0.24 7.227.43 0.001103 2.24																0.46
Sand Creek CL 4003.99 FEMA 100 Yr. 200 7221.98 7220.00 7.11 5.44 7222.22 0.000455 3.11 2.19 84.470 150.70 Sand Creek CL 4003.99 DBFS 100 Yr. 630 7221.98 7223.48 6.651 5.02 7222.67 0.000524 2.91 1.96 746.03 146.41 Sand Creek CL 4003.99 Biering MDDP 10 1447 7721.98 7227.37 5.40 4.20 7222.47 0.000542 2.53 1.59 597.29 138.81 10.02 Sand Creek CL 4712.28 DBFS 100 Yr. 2701 718.00 7224.69 7222.46 2.20 0.02220 0.02229 4.37 4.90 596.61 177.21 Sand Creek CL 4712.26 DBFS 100 Yr. 270 771.80.0 7227.47 5.40 2.37 7224.51 0.02229 4.37 4.90 596.6 177.1 Sand Creek CL 4712.26 Biering MDP 10 1447 7718.00 7227.47 722.16 2.20 7223.16 0.02209 3.77 395.	Sand Creek CL	5182.08	Sterling MDDP 10		7225.89	7229.95				7230.29	0.021236				105.91	0.46
Sand Creek CL 4003 00 OPES 10 Yr. 2170 722.148 722.848 6.51 5.02 722.862 0.002574 2.01 1.98 1.94.00 144.1 Sand Creek CL 4003 00 Sterling MDDP 10 1447 722.189 722.446 0.00508 1.88 1.00 335.16 122.57 Sand Creek CL 4003 00 Sterling MDDP 10 1447 722.189 722.480 0.00508 0.005010 1.88 1.00 355.2 116.82 Sand Creek CL 4712.28 DEPS 100 Yr. 2700 721.80 7722.42 722.216 6.57.2 3.24 722.58 0.002219 4.16 4.45 518.63 157.2 Sand Creek CL 4712.28 DEPS 100 Yr. 200 721.16 3.72 722.17 0.002198 4.16 4.55 518.63 157.2 Sand Creek CL 4712.8 Keffing MDDP 10 4.30 727.16 722.17 7.000.000018 4.67 6.67 5.94.3 2.257 Sand Creek CL 4444.33 FEM 100 Yr. 200 721.18 7.721.48 0.0	Sand Creek CL	5182.08	Sterling MDDP 10	430	7225.89	7227.75		1.86	1.66	7227.92	0.027783	3.07	2.88	140.24	84.02	0.45
Sand Creek CL 4003 00 OPES 10 Yr. 2170 722.148 722.848 6.51 5.02 722.862 0.002574 2.01 1.98 1.94.00 144.1 Sand Creek CL 4003 00 Sterling MDDP 10 1447 722.189 722.446 0.00508 1.88 1.00 335.16 122.57 Sand Creek CL 4003 00 Sterling MDDP 10 1447 722.189 722.480 0.00508 0.005010 1.88 1.00 355.2 116.82 Sand Creek CL 4712.28 DEPS 100 Yr. 2700 721.80 7722.42 722.216 6.57.2 3.24 722.58 0.002219 4.16 4.45 518.63 157.2 Sand Creek CL 4712.28 DEPS 100 Yr. 200 721.16 3.72 722.17 0.002198 4.16 4.55 518.63 157.2 Sand Creek CL 4712.8 Keffing MDDP 10 4.30 727.16 722.17 7.000.000018 4.67 6.67 5.94.3 2.257 Sand Creek CL 4444.33 FEM 100 Yr. 200 721.18 7.721.48 0.0																
Sand Creek CL Sand Cr	Sand Creek CL	4903.69	FEMA 100 Yr.	2600	7221.98	7229.08		7.11	5.44	7229.23	0.006455	3.11	2.19	834.70	150.79	0.24
Sand Creek CL 4903 89 Stering MDDP 10 1447 722 19 722 737 5-40 420 722 747 0.000204 2.55 15.8 597 29 130.03 Sand Creek CL 4903 89 Stering MDDP 10 430 7224 80 7224 80 7224 80 7224 80 7224 80 7224 80 0.000110 166 0.84 258 95 116.82 Sand Creek CL 4712.26 DBPS 10 Yr. 630 721.80 7224.82 722.18 0.022198 4.16 4.55 518.65 157.21 Sand Creek CL 4712.26 DBPS 10 Yr. 630 721.80 722.147 5.40 2.97 722.36 0.022199 3.77 3.95.65 1.25.1 Sand Creek CL 4712.28 Stering MDDP 10 430 721.80 721.147 5.40 2.97 723.38 0.014713 2.57 1.94 167.54 1.94 167.54 1.94 167.54 1.94 167.54 1.94 167.54 1.94 167.54 1.94 172.148 1.92.17 </td <td>Sand Creek CL</td> <td>4903.69</td> <td>DBPS 100 Yr.</td> <td>2170</td> <td>7221.98</td> <td>7228.48</td> <td></td> <td>6.51</td> <td>5.02</td> <td>7228.62</td> <td>0.006274</td> <td>2.91</td> <td>1.96</td> <td>746.03</td> <td>146.41</td> <td>0.23</td>	Sand Creek CL	4903.69	DBPS 100 Yr.	2170	7221.98	7228.48		6.51	5.02	7228.62	0.006274	2.91	1.96	746.03	146.41	0.23
Sand Creek CL 490.89 Sering MDP 10 430 722190 7224.80 2.80 7224.81 0.00110 1.66 0.64 2886 116.82 Sand Creek CL 4712.26 DBP5 10 Yr. 2200 7224.60 7224.60 7224.61 522.15 6.25 3.26 7224.51 0.022180 4.18 4.55 518.63 115.71 Sand Creek CL 4712.26 DBP5 10 Yr. 6.60 721.80 7221.71 7221.71 0.017028 2.93 2.44 2.443 2.94 2.443 2.94 2.443 2.95 3.77 395.56 1.92.51 3.77 395.56 1.92.51 3.77 395.56 1.92.51 3.77 395.56 1.92.51 3.77 395.56 1.92.51 3.77 395.56 1.92.51 3.77 395.56 1.92.51 3.77 395.56 1.92.51 3.75 1.94 1.75.5 2.64.81 3.75.70 1.94.67 6.70 534.32 2.02.97 3.77.53.86 7.71.58 7.71.79 0.0406951 4	Sand Creek CL	4903.69	DBPS 10 Yr.	630	7221.98	7225.44		3.47	2.71	7225.49	0.005936	1.88	1.00	335.16	122.57	0.20
Sand Creek CL 4712 26 FEM 100 Yr. 2200 722 460 722 25 6 772 25 722 50 0.02289 4.37 4.90 595 24 173.14 Sand Creek CL 4712 26 DBPS 10 Yr. 2170 7218.00 7224.22 722.15 0.22289 4.37 4.90 595 24 213.81 157.21 Sand Creek CL 4712 26 Steting MDD 10 1487 7218.00 7223.37 7221.47 5.40 2.97 7223.82 0.020309 3.76 3.77 395.96 132.51 Sand Creek CL 4712.26 Steting MDD 10 4.30 721.80 7221.27 718.10 3.25 2.01 7221.79 0.040801 4.87 6.70 584.32 202.97 Sand Creek CL 444.43 DBPS 10 Vr. 2300 721.388 721.71 3.25 2.01 721.74 0.040803 4.56 6.06 475.64 198.27 Sand Creek CL 444.43 Stering MDDP 10 1437 721.58 2.17 1.56 1.57<	Sand Creek CL	4903.69	Sterling MDDP 10	1487	7221.98	7227.37		5.40	4.20	7227.47	0.006024	2.53	1.58	587.29	138.03	0.22
Sand Creek CL 4712.26 FEM 100 Yr. 2270 722.4.69 722.2.56 6.72 3.42 722.502 0.022020 4.37 4.90 505.2.7 Sand Creek CL 4712.26 DBPS 10 Yr. 2170 7218.00 7224.22 7222.15 3.72 722.91 0.022020 4.37 4.90 595.24 214.89 92.93 Sand Creek CL 4712.26 Stering MDDP 10 1487 7218.00 722.12 722.12 722.13 0.015113 2.57 1.94 1167.53 82.84 Sand Creek CL 444.93 DBPS 10 Yr. 2800 721.38 721.740 3.56 2.63 721.79 0.040801 4.87 6.70 534.32 202.97 Sand Creek CL 444.43 DBPS 10 Yr. 2300 721.38 721.740 3.56 2.63 721.79 0.040803 4.56 6.06 475.64 199.27 Sand Creek CL 444.43 DBPS 100 Yr. 2.170 721.386 721.58 1.24 1.27 721.82 0.0	Sand Creek CL	4903.69	Sterling MDDP 10	430	7221.98	7224.80		2.83	2.20	7224.84	0.006110	1.66	0.84	258.95	116.82	0.20
Sand Creek CL 4712.26 DBPS 10 Yr. 2170 7218.00 7224.27 7222.16 3.26 7224.53 0.02718 4.18 4.455 516.63 157.21 Sand Creek CL 4712.26 DBPS 10 Yr. 630 7221.90 722.018 3.79 2.30 722.018 0.02306 3.76 3.77 39.696 132.51 Sand Creek CL 4712.26 Stering MDDP 10 1487 721.00 722.12 721.77 3.25 2.01 727.13 0.016413 2.57 1.94 167.53 82.63 Sand Creek CL 444.433 DBPS 100 Yr. 2200 721.38 7217.40 3.56 2.63 721.77 0.040991 4.87 6.70 534.32 200.97 Sand Creek CL 4444.93 DBPS 10 Yr. 6.30 721.88 721.71 3.25 1.50 1.05 7216.81 0.041676 4.02 5.07 36.64 148.47 Sand Creek CL 4444.93 DBPS 10 Yr. 630 7213.88 7213.83 7.03																
Sand Creek CL 4712.26 DBPS 10 Yr. 2170 7218.00 7224.27 7222.16 3.26 7224.53 0.02718 4.18 4.455 516.63 157.21 Sand Creek CL 4712.26 DBPS 10 Yr. 630 7221.90 722.018 3.79 2.30 722.018 0.02306 3.76 3.77 39.696 132.51 Sand Creek CL 4712.26 Stering MDDP 10 1487 721.00 722.12 721.77 3.25 2.01 727.13 0.016413 2.57 1.94 167.53 82.63 Sand Creek CL 444.433 DBPS 100 Yr. 2200 721.38 7217.40 3.56 2.63 721.77 0.040991 4.87 6.70 534.32 200.97 Sand Creek CL 4444.93 DBPS 10 Yr. 6.30 721.88 721.71 3.25 1.50 1.05 7216.81 0.041676 4.02 5.07 36.64 148.47 Sand Creek CL 4444.93 DBPS 10 Yr. 630 7213.88 7213.83 7.03	Sand Creek CL	4712.26	FEMA 100 Yr.	2600	7218.00	7224.69	7222.56	6.72	3.42	7225.02	0.022929	4.37	4.90	595.24	173.14	0.44
Sand Creek CL 4712.28 DBPS 10 Yr. 630 721.00 722.17 722.147 6.40 2.90 722.147 0.07028 2.83 2.44 21.493 92.93 Sand Creek CL 4712.26 Sterling MDDP 10 430 721.800 7223.27 7221.47 5.40 2.97 7223.62 0.02009 3.76 3.77 395.96 132.51 Sand Creek CL 4444 93 FEMA,100 Yr. 200 7213.86 7217.10 3.56 2.63 7217.79 0.040691 4.67 6.70 534.32 202.97 Sand Creek CL 4444 93 DBPS 10 Yr. 2100 7213.86 7217.11 3.27 2.39 7217.45 0.040693 4.56 6.08 4.76.44 198.27 Sand Creek CL 4444 93 Sterling MDDP 10 1487 7213.86 7215.55 1.150 1.05 7216.83 0.04167 4.02 5.07 386.61 188.52 Sand Creek CL 4231.86 DBPS 100 Yr. 2.000 721.08 721.30 <																0.43
Sand Creek CL 4712 28 Stering MDDP 10 1487 721.00 722.137 722.147 5.40 2.97 722.362 0.00309 3.76 3.77 395.96 132.51 Sand Creek CL 4712.26 Stering MDDP 10 430 721.80 7221.32 721.79 0.040691 4.87 6.70 534.32 20.27 Sand Creek CL 4444 39 DBP5 100 Yr. 2600 721.38 7217.40 3.56 2.63 7217.79 0.040691 4.87 6.70 534.32 202.97 Sand Creek CL 4444 39 DBP5 100 Yr. 630 721.58 721.65 2.72 1.95 7216.58 0.041676 4.02 5.07 306.061 168.52 Sand Creek CL 4444 93 Stering MDDP 10 1487 721.58 1.50 1.05 7215.47 0.040335 2.73 2.88 157.50 148.90 Sand Creek CL 4231.88 FEMA 100 Yr. 2600 7213.03 7.03 4.88 7213.17 0.006020 2.76 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.36</td></t<>																0.36
Sand Creek CL 4712.26 Sterling MDDP 10 430 7218.00 7221.22 7219.78 3.25 2.01 7221.33 0.015413 2.57 1.94 167.53 82.63 Sand Creek CL 4444.93 FEMA 100 Yr. 2000 7213.88 7217.10 3.25 2.39 7217.45 0.040691 4.87 6.670 534.32 202.97 Sand Creek CL 4444.93 DBPS 100 Yr. 6210 7213.88 7215.65 1.84 1.27 7216.80 0.040693 4.56 6.68 475.64 199.27 Sand Creek CL 4444.93 Sterling MDDP 10 1487 7213.88 7215.35 1.50 1.05 7215.47 0.043935 2.73 2.88 157.50 149.90 Sand Creek CL 4231.86 DBPS 100 Yr. 2100 7206.00 7213.03 7.03 4.68 7213.17 0.006020 2.76 1.69.97 200.14 Sand Creek CL 4231.86 DBPS 100 Yr. 2100 7206.00 7204.90 7204.91 3.91																0.40
Sand Creek CL 4444.93 FEMA 100 Yr. 2600 721.78 0 3.56 2.63 721.7.8 0.040891 4.87 6.70 534.32 20.20 721.78 Sand Creek CL 4444.93 DBPS 10 Yr. 2170 721.3.8 721.7.11 3.27 2.39 721.7.45 0.040693 4.56 6.08 475.64 198.27 Sand Creek CL 4444.93 DBPS 10 Yr. 630 721.3.8 7215.65 1.84 1.27 7216.83 0.041676 4.02 5.07 369.61 198.52 Sand Creek CL 4444.93 Sterling MDDP 10 1430 7213.38 7215.35 1.50 1.05 7215.47 0.040393 2.73 2.88 157.50 149.90 Sand Creek CL 4231.86 DBPS 100 Yr. 2600 7213.03 7.03 4.68 721.517 0.006020 2.76 1.76 943.27 200.14 Sand Creek CL 4231.86 DBPS 100 Yr. 2600 721.33 7.03 4.68 721.717 0.006020																0.34
Sand Creek CL 4444.93 DBPS 100 Yr. 2170 7213.88 7217.11 3.27 2.39 7217.45 0.040633 4.56 6.08 477.64 198.27 Sand Creek CL 4444.93 DBPS 10 Yr. 630 7213.88 7215.68 1.84 1.27 7215.82 0.041199 3.01 3.27 209.50 164.71 Sand Creek CL 4444.93 Sterling MDDP 10 1447 7213.88 7215.65 2.72 1.95 7215.47 0.043935 2.73 2.88 175.50 149.90 Sand Creek CL 4231.86 FEMA 100 Yr. 2000 7210.00 7213.03 7.03 4.68 7213.17 0.006020 2.76 1.76 943.27 200.14 Sand Creek CL 4231.86 DBPS 100 Yr. 2170 7206.00 7213.03 7.03 4.68 7213.17 0.006020 2.76 1.76 943.27 200.14 Sand Creek CL 4231.86 DBPS 100 Yr. 2170 7206.00 7213.38 7210.39 720.91	Sand Creek CL	4712.20		430	7210.00	1221.22	7215.70	5.25	2.01	7221.00	0.013413	2.57	1.54	107.55	02.05	0.34
Sand Creek CL 4444 93 DBPS 100 Yr. 2170 7213 88 7217.11 3.27 2.39 7217.45 0.04683 4.56 6.08 475.64 198.27 Sand Creek CL 4444.93 DBPS 10 Yr. 630 7213.88 7215.68 1.84 1.27 7215.82 0.041199 3.01 3.27 209.50 164.71 Sand Creek CL 4444.93 Sterling MDDP 10 14407 7213.88 7215.65 1.50 1.50 7215.47 0.043935 2.73 2.88 175.50 149.90 Sand Creek CL 4231.86 FEMA 100 Yr. 2600 7210.00 7213.03 7.03 4.68 7213.17 0.006020 2.76 1.76 943.27 200.14 Sand Creek CL 4231.86 DBPS 100 Yr. 2170 7206.00 7213.03 7.03 4.68 721.17 0.006020 2.76 1.76 943.27 200.14 Sand Creek CL 4231.86 DBPS 100 Yr. 2170 7206.00 7213.38 3.31 721.97 <t< td=""><td>Sand Creek Cl</td><td>1111 03</td><td>EEMA 100 Vr</td><td>2600</td><td>7213.88</td><td>7217 40</td><td></td><td>3.56</td><td>2.63</td><td>7217 70</td><td>0.040801</td><td>4 87</td><td>6 70</td><td>53/ 32</td><td>202.07</td><td>0.54</td></t<>	Sand Creek Cl	1111 03	EEMA 100 Vr	2600	7213.88	7217 40		3.56	2.63	7217 70	0.040801	4 87	6 70	53/ 32	202.07	0.54
Sand Creek CL 4444.93 DBPS 10 Yr. 630 7213.88 7215.88 1.84 1.27 7215.82 0.041199 3.01 3.27 209.50 164.71 Sand Creek CL 4444.93 Sterling MDDP 10 1487 7213.88 7216.56 2.72 1.95 7216.83 0.041676 4.02 5.07 360.61 189.52 Sand Creek CL 4444.93 Sterling MDDP 10 1487 7213.88 7215.87 1.50 1.05 7215.47 0.043935 2.73 2.88 197.50 194.97 Sand Creek CL 4231.86 DBPS 10 Yr. 2600 7210.00 7213.03 7.03 4.68 7213.17 0.006020 2.76 1.76 943.27 200.14 Sand Creek CL 4231.86 DBPS 10 Yr. 630 7206.00 7213.38 538 3.22 7211.49 0.007400 2.40 1.49 619.75 191.99 Sand Creek CL 4231.86 Sterling MDDP 10 1487 7206.00 720.41 3.47 1.52				-												0.54
Sand Creek CL 4444.93 Sterling MDDP 10 1487 7218.88 7216.56 2.72 1.95 7216.83 0.041676 4.02 5.07 369.61 189.52 Sand Creek CL 4444.93 Sterling MDDP 10 430 7213.88 7216.53 1.50 1.05 7215.47 0.043935 2.73 2.88 157.50 149.90 Sand Creek CL 4231.86 FEMA 100 Yr. 2600 7206.00 7212.39 6.39 4.11 7212.52 0.006621 2.76 1.76 943.27 200.14 Sand Creek CL 4231.86 DBPS 100 Yr. 2170 7206.00 7213.33 7.03 4.68 7211.17 0.006020 2.76 1.76 943.27 200.14 Sand Creek CL 4231.86 Sterling MDDP 10 1487 7206.00 7211.38 5.38 3.22 7211.49 0.007400 2.40 1.49 619.75 191.59 Sand Creek CL 431.86 Sterling MDDP 10 430 7200.00 7209.47 3.47 1.52																0.33
Sand Creek CL 444.93 Sterling MDDP 10 430 7213.88 7215.35 1.50 1.05 7215.47 0.043935 2.73 2.88 157.50 149.90 Sand Creek CL 4231.86 FEMA 100 Yr. 2200 7213.03 7.03 4.68 7213.17 0.006020 2.76 1.76 943.27 200.14 Sand Creek CL 4231.86 DBPS 100 Yr. 630 7206.00 7212.39 6.39 4.11 7212.52 0.006641 2.66 1.70 815.20 196.97 Sand Creek CL 4231.86 Sterling MDDP 10 1487 7206.00 7201.91 3.91 1.87 7209.98 0.008532 1.44 1.00 342.68 182.71 Sand Creek CL 4231.86 Sterling MDDP 10 430 7206.00 7209.47 3.47 1.52 7209.54 0.008703 3.22 721.48 0.008703 3.26 2.35 798.22 146.52 Sand Creek CL 3915.99 FEMA 100 Yr. 2600 7203.98 7210.60																
Sand Creek CL 4231.86 FEMA 100 Yr. 2600 7206.00 7213.03 7.03 4.68 7213.17 0.006020 2.76 1.76 943.27 200.14 Sand Creek CL 4231.86 DBPS 100 Yr. 2170 7206.00 7212.39 6.39 4.11 7212.52 0.006631 2.66 1.70 815.20 196.97 Sand Creek CL 4231.86 DBPS 10 Yr. 630 7206.00 7219.91 3.91 1.87 7209.96 0.008532 1.84 1.00 342.68 188.71 Sand Creek CL 4231.86 Sterling MDDP 10 1487 7206.00 7211.38 5.38 3.22 7211.49 0.007400 2.40 1.49 619.75 191.59 Sand Creek CL 4231.86 Sterling MDDP 10 430 7206.00 7209.74 3.47 1.52 720.940 0.008470 1.63 0.81 264.54 173.30 Sand Creek CL 3915.99 DEPS 10 Yr. 2170 7203.98 7206.76 2.279 2.41																0.52
Sand Creek CL 4231.86 DBPS 100 Yr. 2170 7206.00 7212.39 6.39 4.11 7212.52 0.006641 2.66 1.70 815.20 196.97 Sand Creek CL 4231.86 DBPS 10 Yr. 630 7206.00 7209.91 3.91 1.87 7209.98 0.008532 1.84 1.00 342.68 182.71 Sand Creek CL 4231.86 Sterling MDDP 10 1487 7206.00 7213.8 5.38 3.22 7211.49 0.007400 2.40 1.49 619.75 191.59 Sand Creek CL 431.86 Sterling MDDP 10 430 7206.00 7209.47 3.47 1.52 720.60470 1.63 0.007035 3.26 2.35 798.22 146.52 Sand Creek CL 3915.99 DBPS 10 Yr. 2600 7203.98 7206.66 5.89 5.10 7210.03 0.007035 3.22 2.12 1.22 0.695.96 13.89 Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.86 7206.76	Sand Creek CL	4444.93	Sterling MDDP 10	430	7213.88	7215.35		1.50	1.05	7215.47	0.043935	2.73	2.88	157.50	149.90	0.48
Sand Creek CL 4231.86 DBPS 100 Yr. 2170 7206.00 7212.39 6.39 4.11 7212.52 0.006641 2.66 1.70 815.20 196.97 Sand Creek CL 4231.86 DBPS 10 Yr. 630 7206.00 7209.91 3.91 1.87 7209.98 0.008532 1.84 1.00 342.68 182.71 Sand Creek CL 4231.86 Sterling MDDP 10 1487 7206.00 7213.8 5.38 3.22 7211.49 0.007400 2.40 1.49 619.75 191.59 Sand Creek CL 431.86 Sterling MDDP 10 430 7206.00 7209.47 3.47 1.52 720.60470 1.63 0.007035 3.26 2.35 798.22 146.52 Sand Creek CL 3915.99 DBPS 10 Yr. 2600 7203.98 7206.66 5.89 5.10 7210.03 0.007035 3.22 2.12 1.22 0.695.96 13.89 Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.86 7206.76	Sand Creek Cl	4004.96		2600	7206.00	7010.00		7.02	4.69	7040.47	0.006020	0.76	1 76	042.07	200.14	0.24
Sand Creek CL 4231.86 DBPS 10 Yr. 630 7206.00 7209.91 3.91 1.87 7209.98 0.008532 1.84 1.00 342.68 182.71 Sand Creek CL 4231.86 Sterling MDDP 10 1487 7206.00 7211.38 5.38 3.22 7211.49 0.007400 2.40 1.49 619.75 191.59 Sand Creek CL 4231.86 Sterling MDDP 10 430 7209.47 3.47 1.52 7209.47 0.007400 2.40 1.49 619.75 191.59 Sand Creek CL 3915.99 FEMA 100 Yr. 2600 7203.98 7209.66 5.89 5.10 721.0.3 0.007035 3.26 2.35 798.22 146.52 Sand Creek CL 3915.99 DBPS 10 Yr. 630 7203.98 7208.63 4.66 4.05 7208.76 0.007497 2.91 1.90 533.44 122.49 Sand Creek CL 3915.99 DBPS 10 Yr. 630 7208.63 4.66 4.05 7208.76 0.007497 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></td<>													-			
Sand Creek CL 4231.86 Sterling MDDP 10 1487 7206.00 7211.38 5.38 3.22 7211.49 0.007400 2.40 1.49 619.75 191.59 Sand Creek CL 4231.86 Sterling MDDP 10 430 7206.00 7209.47 3.47 1.52 7209.54 0.008470 1.63 0.81 264.54 173.30 Sand Creek CL 3915.99 FEMA 100 Yr. 2600 7203.98 7200.86 5.89 5.10 7210.03 0.006918 3.12 2.20 695.96 133.69 Sand Creek CL 3915.99 DBPS 10 Yr. 630 7203.98 7206.63 4.66 4.05 7208.76 0.007497 2.79 1.49 97.77 122.23 Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.98 7206.63 4.66 4.05 7208.76 0.007497 2.79 1.49 97.77 122.23 Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.98 7206.76 2.79 2.41																0.25
Sand Creek CL 4231.86 Sterling MDDP 10 430 7206.00 7209.47 3.47 1.52 7209.54 0.008470 1.63 0.61 264.54 173.30 Sand Creek CL 3915.99 FEMA 100 Yr. 2600 7203.98 7210.60 6.63 5.34 7210.78 0.007035 3.26 2.35 798.22 146.52 Sand Creek CL 3915.99 DBPS 100 Yr. 2170 7203.98 7206.76 2.79 2.41 7200.84 0.008573 2.12 1.29 297.77 122.23 Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.98 7206.76 2.79 2.41 7206.84 0.008573 2.12 1.29 297.77 122.23 Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.98 7206.76 2.79 2.41 7206.84 0.007497 2.79 1.90 533.48 129.49 Sand Creek CL 3915.99 Sterling MDDP 10 430 7207.58 7.58 4.46 7208.29																0.29
Sand Creek CL 3915.99 FEMA 100 Yr. 2600 7203.98 7210.60 6.63 5.34 7210.78 0.007035 3.26 2.35 798.22 146.52 Sand Creek CL 3915.99 DBPS 100 Yr. 2170 7203.98 7209.86 5.89 5.10 7210.03 0.006918 3.12 2.20 695.96 133.69 Sand Creek CL 3915.99 DBPS 100 Yr. 630 7203.98 7206.76 2.79 2.41 7206.84 0.008573 2.12 1.29 297.77 122.23 Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.98 7206.76 2.79 2.41 7206.84 0.008573 2.12 1.29 297.77 122.23 Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.98 7206.63 4.66 4.05 7208.76 0.007497 2.79 1.90 533.48 129.49 Sand Creek CL 3708.56 FEMA 100 Yr. 2600 7200.10 7207.58 7.58 4.46			· ·													0.26
Sand Creek CL 3915.99 DBPS 100 Yr. 2170 720.38 7209.86 5.89 5.10 7210.03 0.006918 3.12 2.20 695.96 133.69 Sand Creek CL 3915.99 DBPS 10 Yr. 630 7203.98 7206.76 2.79 2.41 7206.84 0.008573 2.12 1.29 297.77 122.23 Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.98 7206.17 2.20 1.88 7206.23 0.007497 2.79 1.90 533.48 129.49 Sand Creek CL 3915.99 Sterling MDDP 10 430 7203.98 7206.17 2.20 1.88 7206.23 0.009588 1.90 1.12 226.66 119.89 Sand Creek CL 3708.56 FEMA 100 Yr. 2600 7207.10 7207.58 7.58 4.46 7208.29 0.02518 5.87 6.99 442.80 97.22 Sand Creek CL 3708.56 DBPS 10 Yr. 2170 7200.10 7207.59 6.95 4.30 7207.59 0.024758 5.65 6.64 384.15 87.35 <th< td=""><td>Sand Creek CL</td><td>4231.86</td><td>Sterling MDDP 10</td><td>430</td><td>7206.00</td><td>7209.47</td><td></td><td>3.47</td><td>1.52</td><td>7209.54</td><td>0.008470</td><td>1.63</td><td>0.81</td><td>264.54</td><td>173.30</td><td>0.29</td></th<>	Sand Creek CL	4231.86	Sterling MDDP 10	430	7206.00	7209.47		3.47	1.52	7209.54	0.008470	1.63	0.81	264.54	173.30	0.29
Sand Creek CL 3915.99 DBPS 100 Yr. 2170 7203.98 7209.86 5.89 5.10 7210.03 0.006918 3.12 2.20 695.96 133.69 Sand Creek CL 3915.99 DBPS 10 Yr. 630 7203.98 7206.76 2.79 2.41 7206.84 0.008573 2.12 1.29 297.77 122.23 Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.98 7206.17 2.20 1.88 7206.23 0.007497 2.79 1.90 533.48 129.49 Sand Creek CL 3915.99 Sterling MDDP 10 430 7203.98 7206.17 2.20 1.88 7206.23 0.007497 2.79 1.90 533.48 129.49 Sand Creek CL 3915.99 Sterling MDDP 10 430 7203.98 7206.17 2.20 1.88 7206.23 0.007497 2.79 1.90 533.48 129.49 Sand Creek CL 3708.56 FEMA 100 Yr. 2600 7207.58 7.58 4.46 7208.29 0.02118 5.87 6.99 442.80 97.22 5.33 5.65																
Sand Creek CL 3915.99 DBPS 10 Yr. 630 7203.98 7206.76 2.79 2.41 7206.84 0.008573 2.12 1.29 297.77 122.23 Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.98 7208.63 4.66 4.05 7208.76 0.007497 2.79 1.90 533.48 129.49 Sand Creek CL 3915.99 Sterling MDDP 10 430 7203.98 7206.17 2.20 1.88 7206.23 0.009588 1.90 1.12 226.66 119.89 Sand Creek CL 3708.56 FEMA 100 Yr. 2600 7200.10 7207.58 7.58 4.46 7208.29 0.025118 5.87 6.99 442.80 97.22 Sand Creek CL 3708.56 DBPS 100 Yr. 2170 7200.10 7207.59 6.95 4.30 7207.59 0.024758 5.65 6.64 384.15 87.35 Sand Creek CL 3708.56 DBPS 10 Yr. 630 7200.10 7203.92 3.91 2.65 7204.18 0.022000 3.75 3.63 168.13 62.56 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.26</td></td<>																0.26
Sand Creek CL 3915.99 Sterling MDDP 10 1487 7203.98 7208.63 4.66 4.05 7208.76 0.007497 2.79 1.90 533.48 129.49 Sand Creek CL 3915.99 Sterling MDDP 10 430 7203.98 7206.17 2.20 1.88 7206.23 0.009588 1.90 1.12 226.66 119.89 Sand Creek CL 3708.56 FEMA 100 Yr. 2600 7200.10 7207.58 7.58 4.46 7208.29 0.025118 5.87 6.99 442.80 97.22 Sand Creek CL 3708.56 DBPS 100 Yr. 2170 7200.10 7207.59 6.95 4.30 7207.59 0.024758 5.65 6.64 384.15 87.35 Sand Creek CL 3708.56 DBPS 100 Yr. 630 7200.10 7203.92 3.91 2.65 7204.18 0.022000 3.75 3.63 168.13 62.56 Sand Creek CL 3708.56 Sterling MDDP 10 1487 7200.10 7205.77 5.77 4.03 7206.26 0.023468 5.11 5.91 291.24 70.38 62.56																0.25
Sand Creek CL 3915.99 Sterling MDDP 10 430 7203.98 7206.17 2.20 1.88 7206.23 0.009588 1.90 1.12 226.66 119.89 Sand Creek CL 3708.56 FEMA 100 Yr. 2600 7200.10 7207.58 7.58 4.46 7208.29 0.025118 5.87 6.99 442.80 97.22 Sand Creek CL 3708.56 DBPS 100 Yr. 2170 7200.10 7207.59 6.95 4.30 7207.59 0.024758 5.65 6.64 384.15 87.35 Sand Creek CL 3708.56 DBPS 10 Yr. 630 7200.10 7203.92 3.91 2.65 7204.18 0.02200 3.75 3.63 168.13 62.56 Sand Creek CL 3708.56 Sterling MDDP 10 1487 7200.10 7205.77 5.77 4.03 7206.26 0.023468 5.11 5.91 291.24 70.38 Sand Creek CL 3708.56 Sterling MDDP 10 1437 7200.10 7203.44 3.44 2.30 <																0.25
Image: Note of the image: No												-				0.25
Sand Creek CL 3708.56 DBPS 100 Yr. 2170 7200.10 7206.95 6.95 4.30 7207.59 0.024758 5.65 6.64 384.15 87.35 Sand Creek CL 3708.56 DBPS 10 Yr. 630 7200.10 7203.92 3.91 2.65 7204.18 0.02200 3.75 3.63 168.13 62.56 Sand Creek CL 3708.56 Sterling MDDP 10 1487 7200.10 7205.77 4.03 7206.26 0.023468 5.11 5.91 291.24 70.38 Sand Creek CL 3708.56 Sterling MDDP 10 430 7200.10 7203.44 3.44 2.30 7203.63 0.018000 3.09 2.58 139.24 59.81 Sand Creek CL 3708.56 Sterling MDDP 10 430 7201.10 7203.44 3.44 2.30 7203.63 0.018000 3.09 2.58 139.24 59.81 Sand Creek CL 3540.59 FEMA 100 Yr. 2600 7193.71 7201.17 7.54 5.28 7201.56	Sand Creek CL	3915.99	Sterling MDDP 10	430	7203.98	7206.17		2.20	1.88	7206.23	0.009588	1.90	1.12	226.66	119.89	0.25
Sand Creek CL 3708.56 DBPS 100 Yr. 2170 7200.10 7206.95 6.95 4.30 7207.59 0.024758 5.65 6.64 384.15 87.35 Sand Creek CL 3708.56 DBPS 10 Yr. 630 7200.10 7203.92 3.91 2.65 7204.18 0.02200 3.75 3.63 168.13 62.56 Sand Creek CL 3708.56 Sterling MDDP 10 1487 7200.10 7205.77 4.03 7206.26 0.023468 5.11 5.91 291.24 70.38 Sand Creek CL 3708.56 Sterling MDDP 10 430 7200.10 7203.44 3.44 2.30 7203.63 0.018000 3.09 2.58 139.24 59.81 Sand Creek CL 3708.56 Sterling MDDP 10 430 7201.10 7203.44 3.44 2.30 7203.63 0.018000 3.09 2.58 139.24 59.81 Sand Creek CL 3540.59 FEMA 100 Yr. 2600 7193.71 7201.17 7.54 5.28 7201.56																
Sand Creek CL 3708.56 DBPS 10 Yr. 630 7200.10 7203.92 3.91 2.65 7204.18 0.02200 3.75 3.63 168.13 62.56 Sand Creek CL 3708.56 Sterling MDDP 10 1487 7200.10 7205.77 4.03 7206.26 0.023468 5.11 5.91 291.24 70.38 Sand Creek CL 3708.56 Sterling MDDP 10 430 7200.10 7203.44 3.44 2.30 7203.63 0.018000 3.09 2.58 139.24 59.81 Sand Creek CL 3540.59 FEMA 100 Yr. 2600 7193.71 7201.17 7.54 5.28 7201.56 0.016232 4.87 5.35 534.27 98.51	Sand Creek CL	3708.56	FEMA 100 Yr.	2600	7200.10	7207.58		7.58	4.46	7208.29	0.025118	5.87	6.99	442.80	97.22	0.56
Sand Creek CL 3708.56 Sterling MDDP 10 1487 7200.10 7205.77 5.77 4.03 7206.26 0.023468 5.11 5.91 291.24 70.38 Sand Creek CL 3708.56 Sterling MDDP 10 430 7200.10 7203.44 3.44 2.30 7203.63 0.018000 3.09 2.58 139.24 59.81 Sand Creek CL 3540.59 FEMA 100 Yr. 2600 7193.71 7201.17 7.54 5.28 7201.56 0.016232 4.87 5.35 534.27 98.51	Sand Creek CL	3708.56	DBPS 100 Yr.	2170	7200.10	7206.95		6.95	4.30	7207.59	0.024758	5.65	6.64	384.15	87.35	0.54
Sand Creek CL 3708.56 Sterling MDDP 10 430 7200.10 7203.44 3.44 2.30 7203.63 0.018000 3.09 2.58 139.24 59.81 Sand Creek CL 3540.59 FEMA 100 Yr. 2600 7193.71 7201.17 7.54 5.28 7201.56 0.016232 4.87 5.35 534.27 98.51	Sand Creek CL	3708.56	DBPS 10 Yr.	630	7200.10	7203.92		3.91	2.65	7204.18	0.022000	3.75	3.63	168.13	62.56	0.45
And Creek CL 3540.59 FEMA 100 Yr. 2600 7193.71 7201.17 7.54 5.28 7201.56 0.016232 4.87 5.35 534.27 98.51	Sand Creek CL	3708.56	Sterling MDDP 10	1487	7200.10	7205.77		5.77	4.03	7206.26	0.023468	5.11	5.91	291.24	70.38	0.49
Sand Creek CL 3540.59 FEMA 100 Yr. 2600 7193.71 7201.17 7.54 5.28 7201.56 0.016232 4.87 5.35 534.27 98.51	Sand Creek CL	3708.56	Sterling MDDP 10	430	7200.10	7203.44		3.44	2.30	7203.63	0.018000	3.09	2.58	139.24	59.81	0.40
	Sand Creek CL	3540.59	FEMA 100 Yr.	2600	7193.71	7201.17		7.54	5.28	7201.56	0.016232	4.87	5.35	534.27	98.51	0.38
																0.37
Sand Creek CL 3540.59 DBPS 10 Yr. 630 7193.71 7197.39 3.76 2.52 7197.56 0.017944 3.18 2.82 198.37 77.51									-			-				0.36

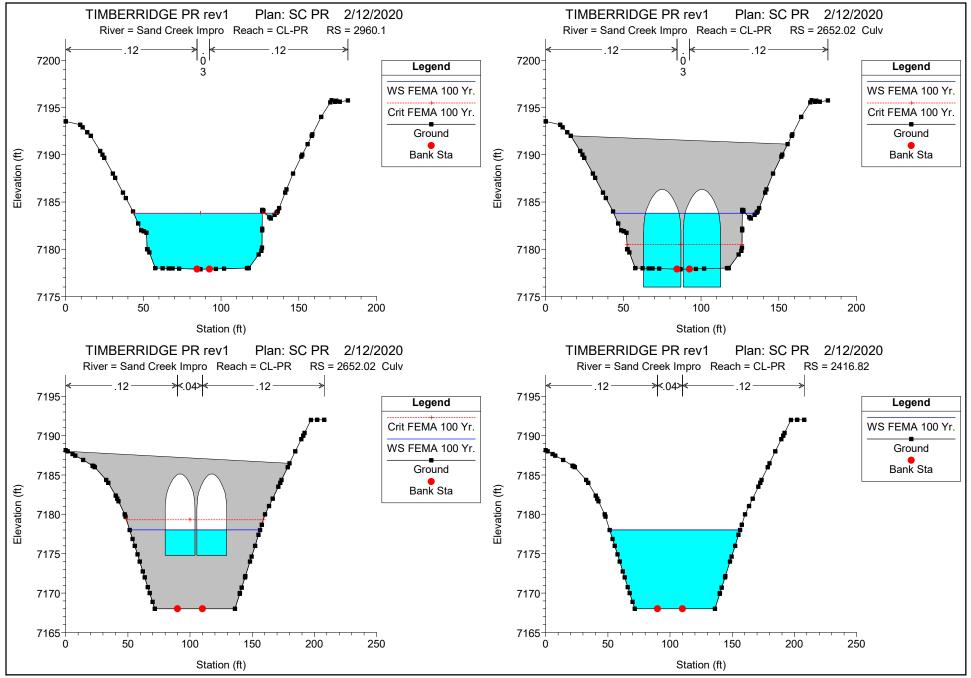

		Ver: EX Channel Reach		Min Ch El	W.S. Elev	Crit W.S.	Max Chl Dpth	Hydr Radius	E.G. Elev	E.G. Slope	Vel Total	Shear Total	Flow Area	Top Width	Froude # XS
Reach	River Sta	Piolile	Q Total (cfs)	(ft)	(ft)		(ft)	(ft)	E.G. Elev (ft)	(ft/ft)	(ft/s)	(lb/sq ft)	(sq ft)	(ft)	FIOUDE # XS
Sand Creek CL	3540.59	Sterling MDDP 10	(CIS) 1487	7193.71	7199.33	(ft)	5.70	3.95	7199.61	0.016974	(IUS) 4.12	(ID/SQ IT) 4.19	(sq it) 360.69	(11) 89.33	0.37
Sand Creek CL	3540.59		430	7193.71	7199.33		2.98	3.95	7199.01	0.010974	3.08	2.85	139.68	71.70	0.37
Sanu Creek CL	3040.09	Sterling MDDP 10	430	7195.71	7 190.01		2.90	1.92	7190.77	0.023749	3.00	2.05	139.00	71.70	0.41
Sand Creek CL	3334.27	FEMA 100 Yr.	2600	7188.62	7193.49		5.51	2.86	7194.42	0.073099	7.17	13.07	362.87	124.31	0.80
Sand Creek CL	3334.27	DBPS 100 Yr.	2000	7188.62	7193.30	7192.93	5.32	2.69	7194.42	0.062288	6.40	10.47	338.85	124.51	0.74
Sand Creek CL	3334.27	DBPS 100 Yr.	630	7188.62	7193.30	7192.93	4.01	1.52	7194.05	0.028882	3.48	2.73	180.90	123.57	0.74
Sand Creek CL	3334.27	Sterling MDDP 10	1487	7188.62	7191.93	7190.34	4.01	2.34	7192.20	0.025662	5.11	6.64	291.05	117.03	0.65
Sand Creek CL	3334.27	Sterling MDDP 10	430	7188.62	7192.91		3.32	2.48	7193.41	0.043335	3.35	3.29	128.21	50.30	0.03
Sand Creek CL	5554.27		430	7100.02	7191.50		5.52	2.40	7131.40	0.021233	5.55	5.29	120.21	50.50	0.37
Sand Creek CL	3179.66	FEMA 100 Yr.	2600	7183.98	7189.19		5.39	4.12	7189.37	0.006748	2.74	1.73	948.90	229.38	0.30
Sand Creek CL	3179.66	DBPS 100 Yr.	2170	7183.98	7188.60		4.80	3.57	7188.78	0.007669	2.67	1.71	813.47	226.82	0.32
Sand Creek CL	3179.66	DBPS 10 Yr.	630	7183.98	7186.09		2.29	1.62	7186.22	0.014340	2.17	1.45	290.92	179.91	0.40
Sand Creek CL	3179.66	Sterling MDDP 10	1487	7183.98	7187.59		3.79	2.71	7187.76	0.009833	2.53	1.66	588.17	216.49	0.35
Sand Creek CL	3179.66	Sterling MDDP 10	430	7183.98	7185.63		1.83	1.30	7185.75	0.016735	2.03	1.36	211.87	163.01	0.42
Sand Creek CL	2960.1	FEMA 100 Yr.	2600	7177.99	7186.35	7184.86	8.36	5.44	7187.34	0.012352	4.82	4.20	539.23	95.90	0.59
Sand Creek CL	2960.1	DBPS 100 Yr.	2170	7177.99	7185.67	7184.40	7.68	4.93	7186.58	0.012498	4.57	3.85	474.47	93.36	0.60
Sand Creek CL	2960.1	DBPS 10 Yr.	630	7177.99	7182.47	7182.17	4.48	2.36	7183.11	0.013648	3.23	2.01	195.10	81.29	0.73
Sand Creek CL	2960.1	Sterling MDDP 10	1487	7177.99	7184.43	7183.56	6.44	3.98	7185.23	0.012904	4.11	3.21	362.09	88.65	0.63
Sand Creek CL	2960.1	Sterling MDDP 10	430	7177.99	7181.87	7181.32	3.88	1.91	7182.44	0.013267	2.92	1.58	147.46	76.10	0.77
Sand Creek CL	2652.02	FEMA 100 Yr.	2600	7176.16	7183.16	7182.30	7.09	5.22	7184.74	0.023111	6.45	7.53	403.16	74.63	0.77
Sand Creek CL	2652.02	DBPS 100 Yr.	2170	7176.16	7182.47	7181.65	6.40	4.70	7183.93	0.024025	6.16	7.06	352.38	72.79	0.78
Sand Creek CL	2652.02	DBPS 10 Yr.	630	7176.16	7179.24	7178.95	3.17	2.37	7180.06	0.030771	4.53	4.56	139.00	57.91	0.82
Sand Creek CL	2652.02	Sterling MDDP 10	1487	7176.16	7181.25	7180.65	5.18	3.82	7182.47	0.025760	5.59	6.14	265.78	68.09	0.79
Sand Creek CL	2652.02	Sterling MDDP 10	430	7176.16	7178.61	7178.43	2.54	1.89	7179.31	0.034408	4.16	4.05	103.47	54.37	0.86
Sand Creek CL	2416.82	FEMA 100 Yr.	2600	7171.94	7180.36	7178.02	8.55	6.07	7181.30	0.011436	4.97	4.33	523.13	83.01	0.54
Sand Creek CL	2416.82	DBPS 100 Yr.	2170	7171.94	7179.62	7177.44	7.81	5.57	7180.45	0.011348	4.69	3.95	462.48	80.17	0.54
Sand Creek CL	2416.82	DBPS 10 Yr.	630	7171.94	7176.05		4.24	3.04	7176.43	0.010721	3.12	2.03	201.81	65.32	0.50
Sand Creek CL	2416.82	Sterling MDDP 10	1487	7171.94	7178.26	7176.44	6.45	4.63	7178.92	0.011294	4.17	3.26	356.97	74.99	0.53
Sand Creek CL	2416.82	Sterling MDDP 10	430	7171.94	7175.35		3.54	2.52	7175.65	0.010263	2.73	1.61	157.59	61.66	0.48
Sand Creek CL	2083.66	FEMA 100 Yr.	2600	7169.76	7176.69	7175.91	6.94	5.14	7178.44	0.025935	6.78	8.33	383.61	71.31	0.81
Sand Creek CL	2083.66	DBPS 100 Yr.	2170	7169.76	7176.07	7175.37	6.32	4.71	7177.63	0.025755	6.38	7.57	340.07	69.34	0.80
Sand Creek CL	2083.66	DBPS 10 Yr.	630	7169.76	7173.24	7172.78	3.49	2.55	7173.91	0.022028	4.02	3.51	156.72	60.20	0.72
Sand Creek CL	2083.66	Sterling MDDP 10	1487	7169.76	7175.04	7174.37	5.29	3.95	7176.21	0.023864	5.50	5.89	270.45	66.10	0.76
Sand Creek CL	2083.66	Sterling MDDP 10	430	7169.76	7172.64	7172.30	2.89	2.06	7173.19	0.022350	3.55	2.87	121.00	57.95	0.73
Sand Creek CL	1879.67	FEMA 100 Yr.	2600	7165.97	7171.58		5.62	4.11	7172.20	0.031597	5.84	8.10	445.17	106.68	0.54
Sand Creek CL	1879.67	DBPS 100 Yr.	2170	7165.97	7171.26		5.30	3.86	7171.76	0.027995	5.28	6.74	411.26	105.05	0.51
Sand Creek CL	1879.67	DBPS 10 Yr.	630	7165.97	7169.15		3.19	2.16	7169.34	0.020911	3.13	2.82	201.37	92.62	0.42
Sand Creek CL	1879.67	Sterling MDDP 10	1487	7165.97	7170.46		4.50	3.22	7170.84	0.025939	4.52	5.22	329.27	100.99	0.48
Sand Creek CL	1879.67	Sterling MDDP 10	430	7165.97	7168.72	7167.81	2.76	1.82	7168.86	0.018628	2.65	2.11	162.36	88.70	0.39
															
Sand Creek CL	1507.91	FEMA 100 Yr.	2600	7159.88	7164.63		4.81	3.17	7164.87	0.017371	3.66	3.44	710.48	222.91	0.39
Sand Creek CL	1507.91	DBPS 100 Yr.	2260	7159.88	7164.25		4.43	2.85	7164.49	0.019124	3.60	3.41	627.63	218.99	0.41
Sand Creek CL	1507.91	DBPS 10 Yr.	670	7159.88	7162.05		2.23	1.66	7162.19	0.024465	2.81	2.54	238.69	143.21	0.41
Sand Creek CL	1507.91	Sterling MDDP 10	1520	7159.88	7163.40		3.58	2.46	7163.60	0.020266	3.34	3.11	455.39	184.75	0.40
Sand Creek CL	1507.91	Sterling MDDP 10	450	7159.88	7161.47		1.65	1.40	7161.59	0.028902	2.69	2.52	167.28	119.36	0.42
															L

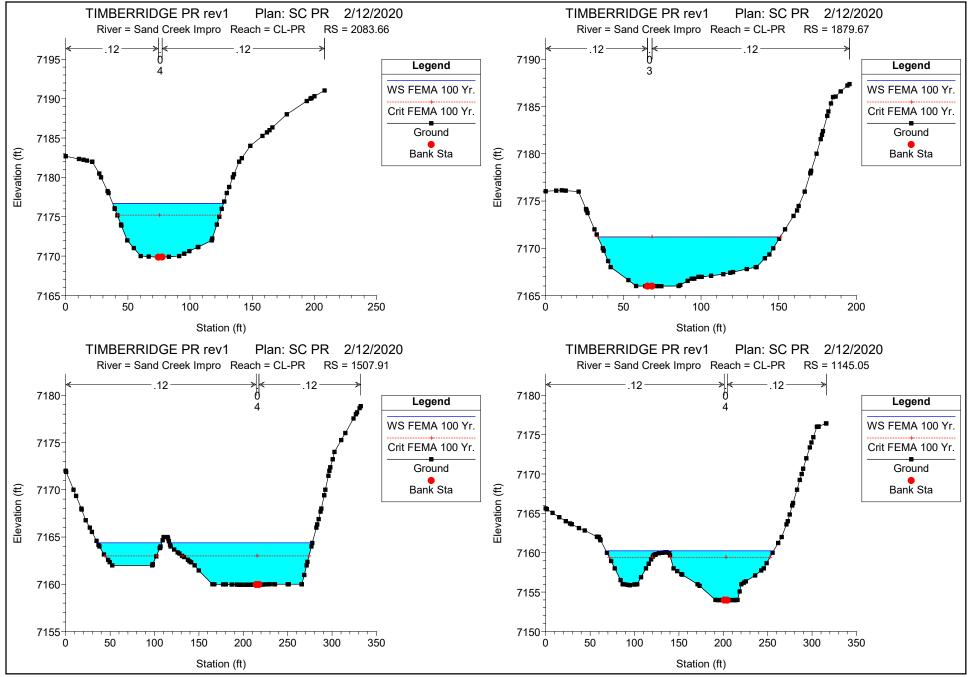

HEC-RAS Plan: EX Channel River: EX Channel Reach: Sand Creek CL (Continued)

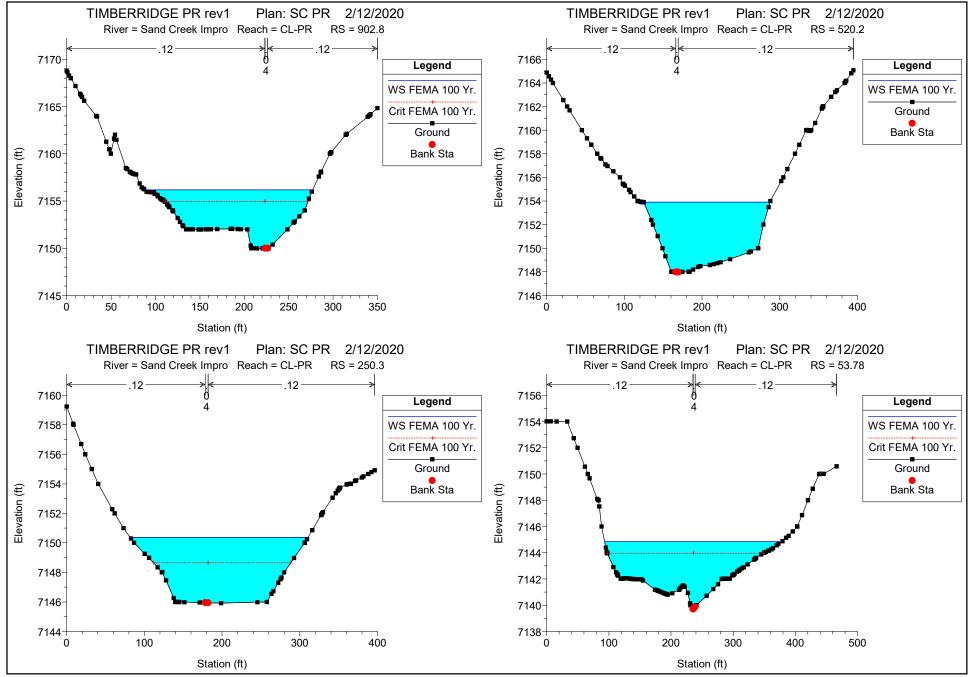

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	Max Chl Dpth	Hydr Radius	E.G. Elev	E.G. Slope	Vel Total	Shear Total	Flow Area	Top Width	Froude # XS
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(lb/sq ft)	(sq ft)	(ft)	
Sand Creek CL	1145.05	FEMA 100 Yr.	2600	7153.95	7160.23	7159.42	6.28	3.31	7161.04	0.018058	4.12	3.73	631.41	188.80	0.70
Sand Creek CL	1145.05	DBPS 100 Yr.	2260	7153.95	7159.81	7159.14	5.86	3.24	7160.55	0.017537	4.07	3.55	555.35	169.18	0.67
Sand Creek CL	1145.05	DBPS 10 Yr.	670	7153.95	7157.71	7157.18	3.76	1.90	7158.17	0.014815	2.77	1.76	242.20	126.57	0.69
Sand Creek CL	1145.05	Sterling MDDP 10	1520	7153.95	7158.97	7158.47	5.02	2.72	7159.61	0.017078	3.61	2.90	420.68	153.10	0.68
Sand Creek CL	1145.05	Sterling MDDP 10	450	7153.95	7157.21		3.26	1.66	7157.58	0.013177	2.46	1.37	183.29	109.31	0.66
Cond One als Ol	902.8		2600	7149.98	7156.19	7154.92	6.23	3.64	7156.73	0.014044	3.77	0.40	690.52	188.81	0.55
Sand Creek CL		FEMA 100 Yr.								0.014044	-	3.19			0.55
Sand Creek CL	902.8	DBPS 100 Yr.	2260	7149.98	7155.77	7154.68	5.81	3.47	7156.29	0.014165	3.67	3.07	615.10	176.13	0.54
Sand Creek CL	902.8	DBPS 10 Yr.	670	7149.98	7153.41	7153.18	3.45	1.74	7153.84	0.017688	2.74	1.93	244.11	139.26	0.70
Sand Creek CL	902.8	Sterling MDDP 10	1520	7149.98	7154.82	7154.13	4.86	2.83	7155.28	0.015038	3.34	2.66	454.67	159.84	0.57
Sand Creek CL	902.8	Sterling MDDP 10	450	7149.98	7152.93	7151.96	2.97	1.36	7153.36	0.019136	2.51	1.62	179.05	131.17	0.79
Sand Creek CL	520.2	FEMA 100 Yr.	2600	7147.90	7153.90		6.02	4.22	7154.32	0.011080	3.69	2.92	703.76	165.62	0.44
Sand Creek CL	520.2	DBPS 100 Yr.	2260	7147.90	7153.53		5.65	4.03	7153.90	0.010740	3.51	2.70	643.44	158.55	0.43
Sand Creek CL	520.2	DBPS 10 Yr.	670	7147.90	7151.16		3.28	2.22	7151.34	0.009545	2.25	1.32	298.12	134.11	0.40
Sand Creek CL	520.2	Sterling MDDP 10	1520	7147.90	7152.61		4.73	3.37	7152.89	0.010122	3.03	2.13	502.03	148.42	0.41
Sand Creek CL	520.2	Sterling MDDP 10	450	7147.90	7150.66		2.77	1.79	7150.80	0.009331	1.94	1.04	231.62	129.32	0.40
	050.0		0000	74.45.00	7450.00	74.40.00		2.00	7450 70	0.045040	0.54	0.07	705 40	000.07	0.40
Sand Creek CL	250.3 250.3	FEMA 100 Yr.	2600	7145.93 7145.93	7150.36	7148.66 7148.42	4.44	3.22 3.03	7150.70 7150.38	0.015312	3.54 3.36	3.07 2.84	735.42 671.63	228.27 221.45	0.46
Sand Creek CL	250.3	DBPS 100 Yr. DBPS 10 Yr.	2260 670	7145.93		7 148.42	4.16	3.03	7150.38				296.30	-	
Sand Creek CL Sand Creek CL	250.3			7145.93	7148.11	74 47 00	2.20 3.40	2.59	7148.24	0.013148	2.26 2.96	1.51 2.32	296.30	160.55 197.96	0.38
		Sterling MDDP 10	1520		7149.32	7147.88				0.014349					0.43
Sand Creek CL	250.3	Sterling MDDP 10	450	7145.93	7147.68		1.76	1.52	7147.77	0.012772	1.96	1.21	229.25	150.37	0.36
Sand Creek CL	53.78	FEMA 100 Yr.	2600	7139.97	7144.87	7143.86	4.90	2.76	7145.22	0.016021	3.29	2.76	789.78	286.02	0.50
Sand Creek CL	53.78	DBPS 100 Yr.	2260	7139.97	7144.62	7143.69	4.65	2.57	7144.95	0.016006	3.15	2.56	718.39	279.57	0.51
Sand Creek CL	53.78	DBPS 10 Yr.	670	7139.97	7142.93	7142.58	2.96	1.45	7143.15	0.016007	2.19	1.45	305.31	210.61	0.56
Sand Creek CL	53.78	Sterling MDDP 10	1520	7139.97	7143.95	7143.24	3.98	2.16	7144.24	0.016020	2.81	2.16	541.68	250.80	0.51
Sand Creek CL	53.78	Sterling MDDP 10	450	7139.97	7142.56	7141.97	2.59	1.18	7142.77	0.016010	1.95	1.18	230.97	196.16	0.60


HEC-RAS Plan: EX Channel River: EX Channel Reach: Sand Creek CL (Continued)

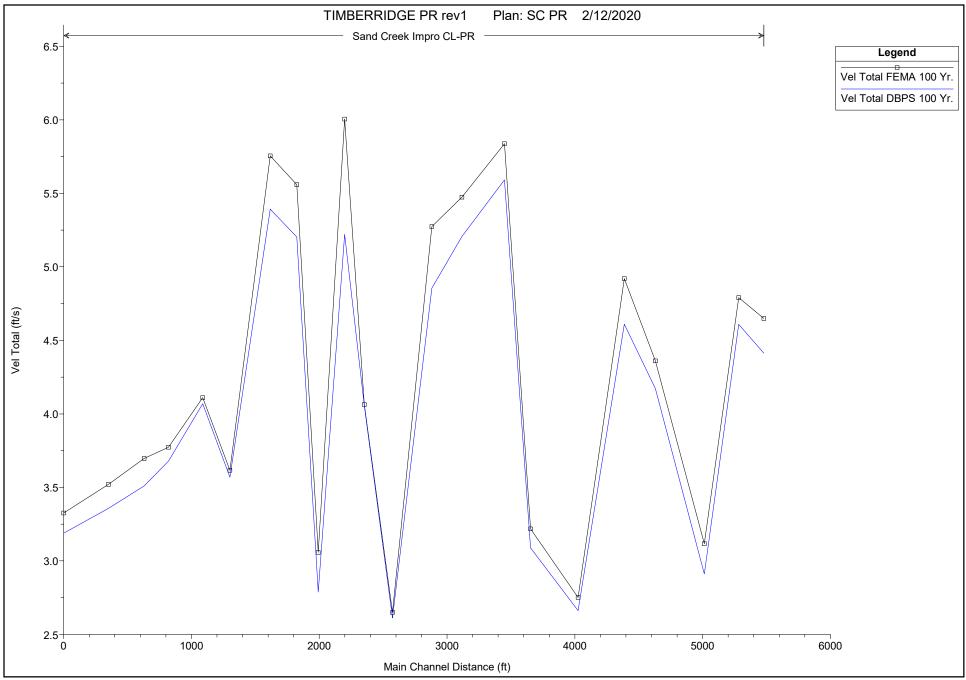








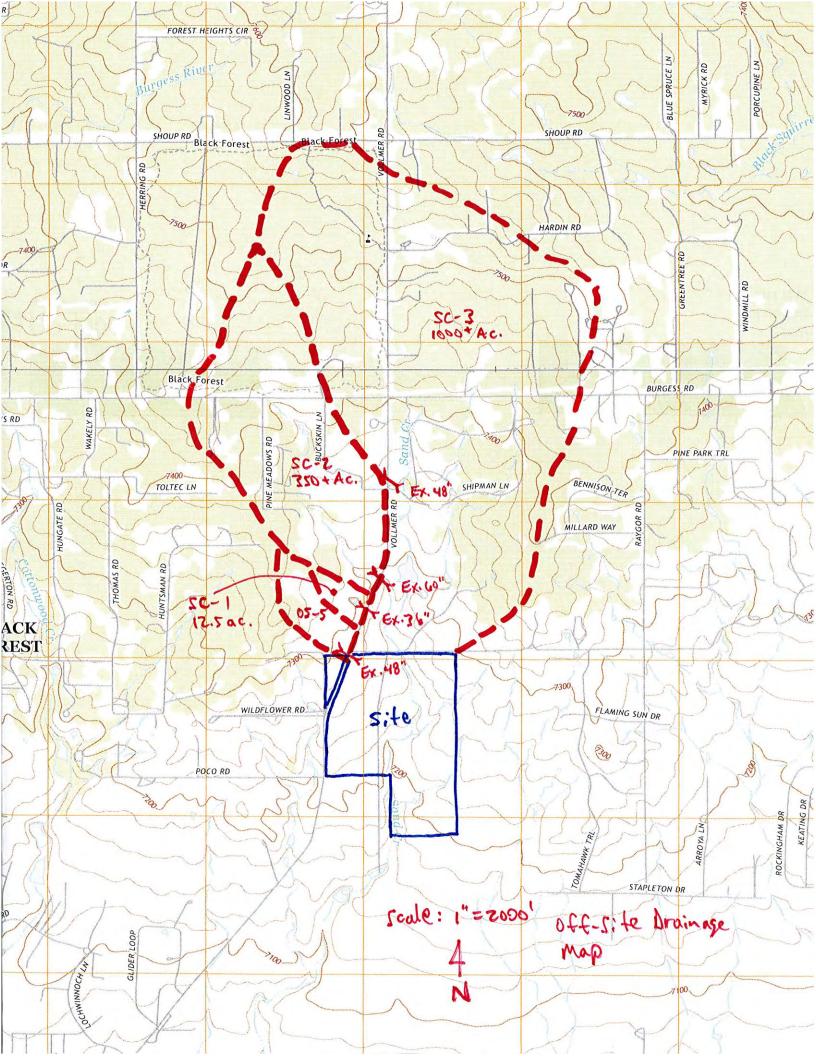
HEC-RAS Plan: SC PR River: Sand Creek Impro Reach: CL-PR


Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	Max Chl Dpth	Hydr Radius	E.G. Elev	E.G. Slope	Vel Total	Shear Total	Flow Area	Top Width	Froude # XS
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(lb/sq ft)	(sq ft)	(ft)	
CL-PR	5532.95	FEMA 100 Yr.	2600	7230.84	7235.52	7234.26	4.68	3.61	7236.12	0.022532	4.65	5.08	559.31	154.07	0.57
CL-PR	5532.95	DBPS 100 Yr.	2170	7230.84	7235.07	7233.95	4.23	3.29	7235.61	0.022905	4.41	4.71	491.77	148.65	0.57
CL-PR	5532.95	DBPS 10 Yr.	630	7230.84	7233.06	7232.50	2.22	1.73	7233.31	0.023035	2.91	2.48	216.54	125.20	0.54
CL-PR	5532.95	Sterling MDDP 10	1487	7230.84	7234.29	7233.38	3.45	2.71	7234.72	0.023299	3.92	3.95	379.06	139.17	0.56
CL-PR	5532.95	Sterling MDDP 10	430	7230.84	7232.68	7232.24	1.84	1.40	7232.87	0.022857	2.53	2.00	169.66	120.97	0.53
CL-PR	5182.08	FEMA 100 Yr.	2600	7225.96	7231.65		5.70	4.27	7232.07	0.018615	4.79	4.96	542.74	125.32	0.44
CL-PR	5182.08	DBPS 100 Yr.	2170	7225.96	7231.06		5.11	3.92	7231.45	0.019462	4.61	4.76	470.87	118.58	0.44
CL-PR	5182.08	DBPS 10 Yr.	630	7225.96	7228.29		2.34	2.08	7228.49	0.026314	3.41	3.41	185.01	88.36	0.44
CL-PR	5182.08	Sterling MDDP 10	1487	7225.96	7229.99		4.04	3.26	7230.32	0.021471	4.24	4.37	351.05	106.45	0.44
CL-PR	5182.08	Sterling MDDP 10	430	7225.96	7227.79		1.84	1.68	7227.95	0.027798	3.02	2.92	142.22	84.05	0.43
CL-PR	4903.69	FEMA 100 Yr.	2600	7222.00	7229.08		7.08	5.44	7229.24	0.006504	3.12	2.21	834.06	150.85	0.24
CL-PR	4903.69	DBPS 100 Yr.	2170	7222.00	7228.49		6.48	5.01	7228.62	0.006323	2.91	1.98	745.50	146.47	0.24
CL-PR	4903.69	DBPS 10 Yr.	630	7222.00	7225.44		3.44		7225.50	0.005992	1.88	1.01	334.88	122.66	0.20
CL-PR	4903.69	Sterling MDDP 10	1487	7222.00	7227.37		5.37	4.19	7227.47	0.006083	2.53	1.59	586.67	138.19	0.22
CL-PR	4903.69	Sterling MDDP 10	430	7222.00	7224.81		2.81	2.20	7224.85	0.006187	1.66	0.85	258.54	116.93	0.20
CL-PR	4712.26	FEMA 100 Yr.	2600	7217.98	7224.67	7222.49	6.69	3.43	7225.00	0.022684	4.36	4.86	596.20	172.82	0.44
CL-PR	4712.26	DBPS 100 Yr.	2170	7217.98	7224.21	7222.08	6.23	3.29	7224.51	0.022022	4.17	4.52	520.04	157.47	0.43
CL-PR	4712.26	DBPS 10 Yr.	630	7217.98	7221.75	7220.15	3.76		7221.89	0.016998	2.91	2.46	216.66	92.87	0.35
CL-PR	4712.26	Sterling MDDP 10	1487	7217.98	7223.35	7221.41	5.37	2.98	7223.60	0.020224	3.75	3.77	396.37	132.21	0.40
CL-PR	4712.26	Sterling MDDP 10	430	7217.98	7221.22	7219.76	3.24	2.03	7221.33	0.015199	2.52	1.93	170.41	83.30	0.33
CL-PR	4444.93	FEMA 100 Yr.	2600	7213.93	7217.38		3.45	2.59	7217.78	0.041470	4.92	6.71	528.48	203.56	0.56
CL-PR	4444.93	DBPS 100 Yr.	2170	7213.93	7217.10		3.17	2.37	7217.45	0.040993	4.61	6.07	470.76		0.54
CL-PR	4444.93	DBPS 10 Yr.	630	7213.93	7215.68		1.75	1.26	7215.83	0.040995	3.03	3.23	207.63	164.62	0.49
CL-PR	4444.93	Sterling MDDP 10	1487	7213.93	7216.56		2.63	1.93	7216.83	0.041638	4.06	5.02	366.53	189.42	0.53
CL-PR	4444.93	Sterling MDDP 10	430	7213.93	7215.34		1.41	1.04	7215.47	0.044949	2.78	2.90	154.49		0.50
-		<u>J</u>													
CL-PR	4231.86	FEMA 100 Yr.	2600	7206.00	7213.05		7.05	4.68	7213.18	0.005951	2.75	1.74	944.92	200.18	0.24
CL-PR	4231.86	DBPS 100 Yr.	2170	7206.00	7212.39		6.39	4.11	7212.52	0.006602	2.66	1.69	815.09	196.97	0.25
CL-PR	4231.86	DBPS 10 Yr.	630	7206.00	7209.91		3.91	1.87	7209.99	0.008531	1.84	0.99	341.65	182.71	0.29
CL-PR	4231.86	Sterling MDDP 10	1487	7206.00	7211.38		5.38	3.21	7211.49	0.007400	2.40	1.48	618.74	191.90	0.26
CL-PR	4231.86	Sterling MDDP 10	430	7206.00	7209.48		3.48	1.52	7209.55	0.008382	1.63	0.80	264.61	173.44	0.30
CL-PR	3915.99	FEMA 100 Yr.	2600	7203.99	7210.67		6.67	5.37	7210.84	0.006819	3.22	2.28	807.78	147.59	0.25
CL-PR	3915.99	DBPS 100 Yr.	2170	7203.99	7209.92		5.93	5.14	7210.08	0.006714	3.09	2.16	702.67	133.86	0.25
CL-PR	3915.99	DBPS 10 Yr.	630	7203.99	7206.76		2.77	2.41	7206.84	0.008606	2.12	1.29	297.60	122.40	0.25
CL-PR	3915.99	Sterling MDDP 10	1487	7203.99	7208.64		4.65	4.07	7208.77	0.007426	2.78	1.88	535.10	129.53	0.25
CL-PR	3915.99	Sterling MDDP 10	430	7203.99	7206.17		2.17	1.87	7206.23	0.009769	1.91	1.14	225.47	119.97	0.26
CL-PR	3708.56	FEMA 100 Yr.	2600	7200.00	7207.61		7.61	4.48	7208.47	0.022675	5.84	6.34	445.42	97.38	0.61
CL-PR	3708.56	DBPS 100 Yr.	2170	7200.00	7207.00		7.00	4.31	7207.76	0.022077	5.59	5.94	388.08	88.02	0.59
CL-PR	3708.56	DBPS 10 Yr.	630	7200.00	7203.76		3.76	2.53	7204.15	0.022567	3.98	3.57	158.43	61.66	0.55
CL-PR	3708.56	Sterling MDDP 10	1487	7200.00	7205.80		5.80	4.06	7206.39	0.020504	5.07	5.19	293.58	70.55	
CL-PR	3708.56	Sterling MDDP 10	430	7200.00	7203.33		3.33	2.21	7203.60	0.017709	3.25	2.44	132.37	59.09	0.49
CL-PR	3540.56	FEMA 100 Yr.	2600	7193.66	7200.57		6.91	4.85	7201.18	0.020761	5.47	6.29	474.94	95.52	0.49
CL-PR	3540.56	DBPS 100 Yr.	2170	7193.66	7199.95		6.29	4.40	7200.51	0.021210	5.21	5.83	416.82	92.51	0.50
CL-PR	3540.56	DBPS 10 Yr.	630	7193.66	7197.31		3.65		7197.55	0.017340	3.28	2.66	191.88	76.96	0.43
CL-PR	3540.56	Sterling MDDP 10	1487	7193.66	7198.86		5.20	3.61	7199.31	0.021767	4.66	4.91	319.14	86.58	0.50

HEC-RAS Plan: SC PR River: Sand Creek Impro Reach: CL-PR (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	Max Chl Dpth	Hydr Radius	E.G. Elev	E.G. Slope	Vel Total	Shear Total	Flow Area	Top Width	Froude # XS
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(lb/sq ft)	(sq ft)	(ft)	
CL-PR	3540.56	Sterling MDDP 10	430	7193.66	7196.50		2.84	1.84	7196.75	0.024145	3.26	2.77	131.95	70.93	0.51
		-													
CL-PR	3443.11	FEMA 100 Yr.	2600	7187.94	7194.51	7194.51	6.56	3.73	7196.07	0.021671	5.27	5.04	492.98	129.56	0.91
CL-PR	3443.11	DBPS 100 Yr.	2170	7187.94	7194.15	7194.15	6.21	3.42	7195.54	0.020111	4.85	4.30	447.03	127.88	0.89
CL-PR	3443.11	DBPS 10 Yr.	630	7187.94	7191.36	7190.82	3.42	2.37	7192.50	0.025903	4.74	3.84	132.80	54.41	0.96
CL-PR	3443.11	Sterling MDDP 10	1487	7187.94	7193.45	7193.45	5.51	2.83	7194.60	0.017805	4.14	3.14	359.38	124.76	0.89
CL-PR	3443.11	Sterling MDDP 10	430	7187.94	7190.91	7190.56	2.97	2.24	7191.62	0.019329	3.94	2.70	109.12	47.34	0.79
		-													
CL-PR	3334.25	FEMA 100 Yr.	2600	7183.81	7189.32		5.52	4.23	7189.51	0.005907	2.65	1.56	981.23	230.65	0.30
CL-PR	3334.25	DBPS 100 Yr.	2170	7183.81	7188.66		4.86	3.64	7188.85	0.006937	2.61	1.58	830.90	227.52	0.32
CL-PR	3334.25	DBPS 10 Yr.	630	7183.81	7186.03		2.23	1.57	7186.19	0.015218	2.24	1.50	280.91	178.27	0.45
CL-PR	3334.25	Sterling MDDP 10	1487	7183.81	7187.56		3.76	2.68	7187.75	0.009702	2.55	1.62	582.77	217.08	0.38
CL-PR	3334.25	Sterling MDDP 10	430	7183.81	7185.57	7185.03	1.77	1.27	7185.72	0.017980	2.12	1.42	202.82	159.92	0.48
CL-PR	3179.68	FEMA 100 Yr.	2600	7178.00	7186.71	7185.49	8.71	5.63	7187.94	0.007518	4.06	2.64	639.85	110.97	0.65
CL-PR	3179.68	DBPS 100 Yr.	2170	7178.00	7185.75	7184.94	7.75	4.91	7187.04	0.008743	4.05	2.68	535.16	106.58	0.72
CL-PR	3179.68	DBPS 10 Yr.	630	7178.00	7182.53	7182.53	4.53	2.33	7183.49	0.009626	2.92	1.40	215.73	91.59	0.91
CL-PR	3179.68	Sterling MDDP 10	1487	7178.00	7184.63	7184.05	6.63	4.06	7185.70	0.008282	3.55	2.10	418.93	101.39	0.72
CL-PR	3179.68	Sterling MDDP 10	430	7178.00	7181.91	7181.80	3.91	1.84	7182.82	0.009671	2.68	1.11	160.58	86.43	0.99
CL-PR	2960.1	FEMA 100 Yr.	2600	7177.88	7183.81	7183.81	5.93	4.52	7186.24	0.015014	6.00	4.24	433.01	89.70	1.00
CL-PR	2960.1	DBPS 100 Yr.	2170	7177.88	7183.62	7183.62	5.74	4.49	7185.43	0.011742	5.22	3.29	415.72	86.85	0.87
CL-PR	2960.1	DBPS 10 Yr.	630	7177.88	7180.25	7180.25	2.37	2.07	7181.27	0.020692	4.06	2.68	155.15	73.90	0.99
CL-PR	2960.1	Sterling MDDP 10	1487	7177.88	7181.69	7181.69	3.81	3.37	7183.66	0.021780	5.67	4.58	262.04	74.31	1.06
CL-PR	2960.1	Sterling MDDP 10	430	7177.88	7179.69	7179.69	1.81	1.59	7180.56	0.024632	3.75	2.45	114.63	71.48	1.04
CL-PR	2652.02		Culvert												
CL-PR	2416.82	FEMA 100 Yr.	2600	7168.00	7178.03		10.03	7.75	7178.46	0.001610	3.06	0.78	850.03	104.94	0.32
CL-PR	2416.82	DBPS 100 Yr.	2000	7168.00	7177.34		9.34		7177.69	0.001441	2.79	0.76	778.14	104.34	0.30
CL-PR	2416.82	DBPS 10 Yr.	630	7168.00	7173.86		5.86		7173.94	0.000608	1.41	0.19	447.31	88.13	0.18
CL-PR	2416.82	Sterling MDDP 10	1487	7168.00	7176.06		8.06		7176.28	0.0001131	2.29	0.15	650.59	96.97	0.10
CL-PR	2416.82	Sterling MDDP 10	430	7168.00	7173.14		5.14		7173.19	0.000445	1.12	0.12	384.42		0.15
	2410.02			7100.00	1110.14		0.14	4.00	7170.10	0.000110	1.12	0.12	001.12	00.21	0.10
CL-PR	2083.66	FEMA 100 Yr.	2600	7169.86	7176.67	7175.20	6.81	5.12	7177.75	0.018458	5.56	5.90	467.69	89.07	0.64
CL-PR	2083.66	DBPS 100 Yr.	2170	7169.86		7174.72	6.23		7177.04	0.017970	5.20	5.29	417.06		0.63
CL-PR	2083.66	DBPS 10 Yr.	630	7169.86	7173.17	7172.49	3.31		7173.62	0.017534	3.42	2.72	183.97	73.27	0.59
CL-PR	2083.66	Sterling MDDP 10	1487	7169.86	7175.02	7173.85	5.16		7175.75	0.017320	4.55	4.25	327.03	81.60	0.60
CL-PR	2083.66	Sterling MDDP 10	430	7169.86	7172.54	7172.09	2.68		7172.93	0.019196	3.10	2.35	138.88	70.36	0.62
-															
CL-PR	1879.67	FEMA 100 Yr.	2600	7165.99	7171.19	7171.19	5.21	3.81	7172.98	0.028576	5.75	6.80	451.84	117.40	0.96
CL-PR	1879.67	DBPS 100 Yr.	2170	7165.99	7170.77	7170.77	4.79		7172.37	0.028116	5.39	6.11	402.44	114.64	0.96
CL-PR	1879.67	DBPS 10 Yr.	630	7165.99	7168.82	7168.76	2.84		7169.55	0.021750	3.29	2.58	191.77	100.63	0.88
CL-PR	1879.67	Sterling MDDP 10	1487	7165.99	7170.01	7170.01	4.03		7171.29	0.026838	4.68	4.82	317.64	109.73	0.94
CL-PR	1879.67	Sterling MDDP 10	430	7165.99		7168.38	2.49		7169.02	0.018443	2.74	1.84	156.86	97.71	0.83
		J													
CL-PR	1507.91	FEMA 100 Yr.	2600	7159.96	7164.39	7162.99	4.45	3.06	7164.73	0.016308	3.62	3.12	718.84	233.19	0.47
CL-PR	1507.91	DBPS 100 Yr.	2260	7159.96	7164.01	7162.75	4.07		7164.36	0.017902	3.57	3.09	633.11	227.58	0.50
CL-PR	1507.91	DBPS 10 Yr.	670	7159.96	7161.95	7161.23	2.01		7162.17	0.024174	2.99	2.68	224.05		0.50
CL-PR	1507.91	Sterling MDDP 10	1520	7159.96	7163.22	7162.20	3.28		7163.52	0.019435	3.30	2.69	460.79	206.84	0.51
CL-PR	1507.91	Sterling MDDP 10	450	7159.96	7161.46	7160.95	1.52		7161.65	0.029371	2.75	2.49	163.35		0.52
		U													

HEC-RAS Plan: SC PR River: Sand Creek Impro Reach: CL-PR (Continued)


Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	Max Chl Dpth	Hydr Radius	E.G. Elev	E.G. Slope	Vel Total	Shear Total	Flow Area	Top Width	Froude # XS
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(lb/sq ft)	(sq ft)	(ft)	
CL-PR	1145.05	FEMA 100 Yr.	2600	7153.97	7160.24	7159.42	6.27	3.31	7161.05	0.017947	4.11	3.71	632.55	188.76	0.69
CL-PR	1145.05	DBPS 100 Yr.	2260	7153.97	7159.81	7159.12	5.84	3.25	7160.55	0.017500	4.07	3.55	555.47	169.09	0.67
CL-PR	1145.05	DBPS 10 Yr.	670	7153.97	7157.71	7157.23	3.74	1.89	7158.17	0.014848	2.76	1.75	242.44	127.39	0.69
CL-PR	1145.05	Sterling MDDP 10	1520	7153.97	7158.97	7158.47	5.00	2.72	7159.61	0.017020	3.61	2.89	420.96	153.05	0.68
CL-PR	1145.05	Sterling MDDP 10	450	7153.97	7157.22		3.25	1.64	7157.59	0.013306	2.45	1.36	183.48	111.09	0.67
CL-PR	902.8	FEMA 100 Yr.	2600	7149.99	7156.18	7154.92	6.20	3.63	7156.73	0.014153	3.77	3.20	689.09	188.94	0.55
CL-PR	902.8	DBPS 100 Yr.	2000	7149.99	7155.77	7154.92	5.79	3.47	7156.29	0.014155	3.68	3.08	614.39	175.99	0.53
CL-PR	902.8	DBPS 100 Yr.	670	7149.99	7153.42	7154.09	3.44	1.75	7153.84	0.014200	2.74	1.93	244.17	139.03	0.69
CL-PR	902.8	Sterling MDDP 10	1520	7149.99	7154.82	7154.13	4.84	2.83	7155.28	0.017039	3.35	2.66	454.21	159.68	0.03
CL-PR	902.8	Sterling MDDP 10	450	7149.99	7154.02	7154.13	2.96	1.36	7153.20	0.019105	2.51	1.62	179.34	139.00	0.79
	302.0		430	1 143.33	1152.54	7152.05	2.90	1.50	1155.57	0.019103	2.01	1.02	175.54	131.19	0.79
CL-PR	520.2	FEMA 100 Yr.	2600	7147.98	7153.90		5.92	4.25	7154.31	0.011062	3.70	2.94	703.30	164.34	0.44
CL-PR	520.2	DBPS 100 Yr.	2260	7147.98	7153.53		5.55	4.04	7153.90	0.010733	3.51	2.71	643.97	158.44	0.42
CL-PR	520.2	DBPS 10 Yr.	670	7147.98	7151.16		3.18	2.22	7151.33	0.009612	2.25	1.33	297.97	134.05	0.39
CL-PR	520.2	Sterling MDDP 10	1520	7147.98	7152.61		4.63	3.37	7152.89	0.010142	3.03	2.13	502.24	148.41	0.41
CL-PR	520.2	Sterling MDDP 10	450	7147.98	7150.66		2.68	1.79	7150.80	0.009375	1.94	1.05	231.82	129.26	0.39
CL-PR	250.3	FEMA 100 Yr.	2600	7145.95	7150.37	7148.65	4.45	3.22	7150.71	0.015150	3.52	3.05	738.50	228.86	0.46
CL-PR	250.3	DBPS 100 Yr.	2000	7145.95	7150.08	7148.41	4.43	3.03	7150.71	0.013130	3.36	2.82	673.05	220.00	0.45
CL-PR	250.3	DBPS 10 Yr.	670	7145.95	7148.12	7 140.41	2.20	1.85	7148.24	0.012952	2.25	1.50	297.75	160.58	0.43
CL-PR	250.3	Sterling MDDP 10	1520	7146.95	7149.33	7147.88	3.41	2.59	7149.56	0.012002	2.25	2.30	514.46	198.14	0.42
CL-PR	250.3	Sterling MDDP 10	450	7145.95	7147.68	1141.00	1.76	1.53	7147.78	0.012593	1.95	1.20	230.66	150.96	0.35
02.1.1	20010									0.012000			200.00	100.00	
CL-PR	53.78	FEMA 100 Yr.	2600	7139.68	7144.84	7143.96	5.16	2.74	7145.25	0.016008	3.33	2.74	781.65	284.79	0.55
CL-PR	53.78	DBPS 100 Yr.	2260	7139.68	7144.58	7143.81	4.90	2.56	7144.97	0.016007	3.19	2.56	708.62	276.00	0.55
CL-PR	53.78	DBPS 10 Yr.	670	7139.68	7142.89	7142.65	3.21	1.43	7143.19	0.016011	2.24	1.42	298.70	209.26	0.64
CL-PR	53.78	Sterling MDDP 10	1520	7139.68	7143.92	7143.35	4.24	2.14	7144.27	0.016001	2.85	2.14	534.10	249.07	0.57
CL-PR	53.78	Sterling MDDP 10	450	7139.68	7142.52	7142.40	2.84	1.15	7142.81	0.016008	2.01	1.15	224.09	193.76	0.70

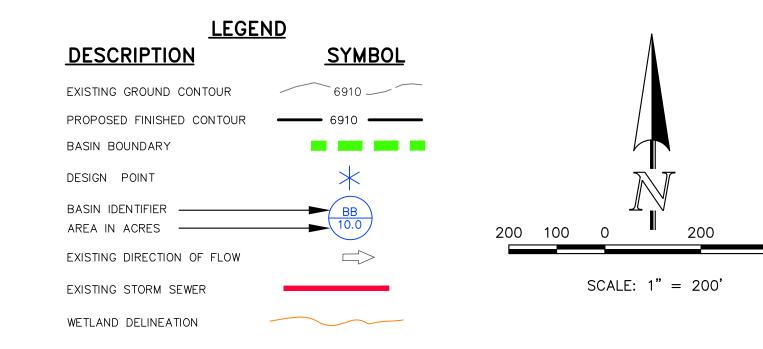
DRAINAGE MAPS

:

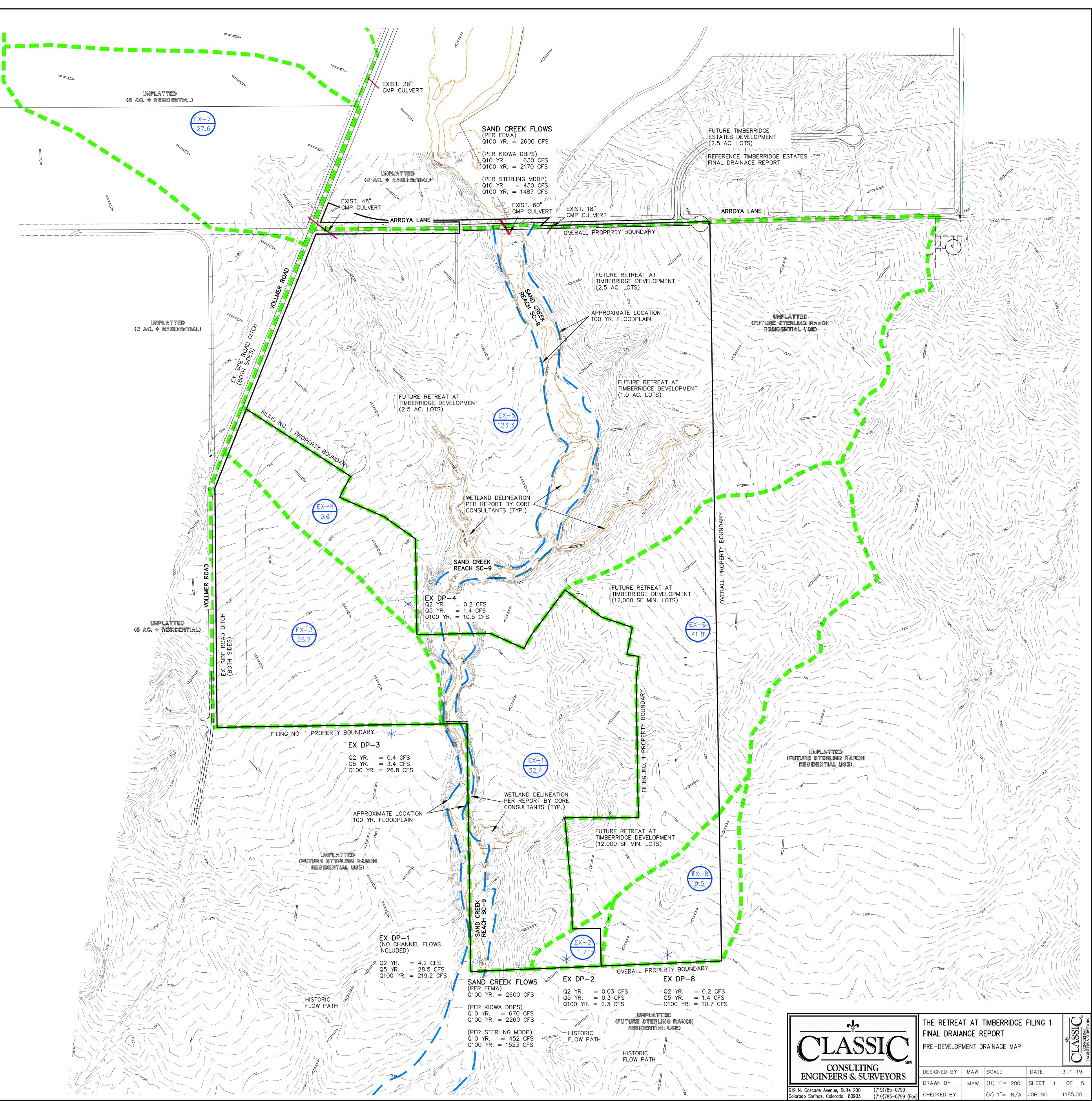
BASIN	BASIN	SOI	L TYPE B	WEIGHTED
(label)	AREA			C∾
	(Ac)	CN	AREA	
			(Ac.)	
EX-1	32.4	61	32.4	61
EX-2	1.7	61	1.7	61
EX-3	25.7	61	25.7	61
EX-4	9.6	61	9.6	61
EX-5	123.3	61	123.3	61
EX-6	41.8	61	41.8	61
EX-7	27.6	63	27.6	63
EX-8	9.5	61	9.5	61

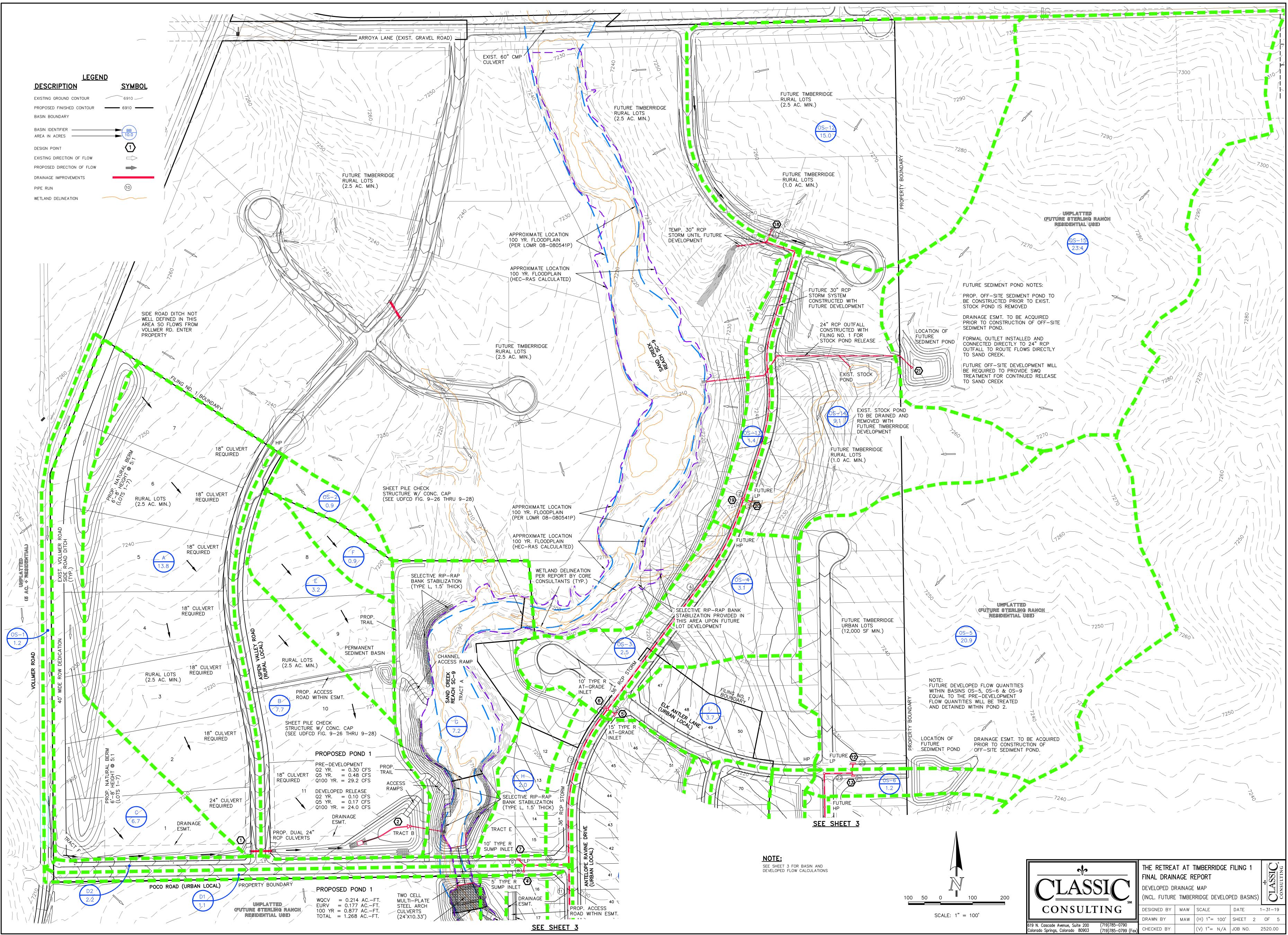
CN VALUES - EXISTING CONDITIONS

TIME OF CONCENTRATION - EXISTING CONDITIONS


				OVERLAND		S	STREET / Ch	HANNEL FLO	W	Tc	Tc	Тс
BASIN	Cn	C(5)	Length	Height	Tc	Length	Slope	Velocity	Tc	TOTAL	LAG	LAG
			(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(hr)
EX-1	61.0	0.08	300	10	21.4	1500	1.8%	1.3	19.2	40.7	24.4	0.41
EX-2	61.0	0.08	300	10	21.4					21.4	12.9	0.21
EX-3	61.0	0.08	300	12	20.2	1500	4.0%	1.8	13.9	34.1	20.4	0.34
EX-4	61.0	0.08	300	10	21.4	1000	4.0%	1.8	9.3	30.7	18.4	0.31
EX-5	61.0	0.08	300	8	23.1	1800	2.0%	1.3	23.1	46.2	27.7	0.46
EX-6	61.0	0.08	300	10	21.4	800	3.0%	1.3	10.3	31.7	19.0	0.32
EX-7	63.0	0.08	300	10	21.4	1200	3.0%	1.4	14.3	35.7	21.4	0.36
FX-8	61.0	0.08	300	10	21.4	700	4.0%	1.3	9.0	30.4	18.2	0.30

BASIN SUMMARY - EXISTING CONDITIONS


BASIN	TOTAL	WEIGHTED	TOTAL	Ø	Ø	Q
	BASIN	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
	AREA					
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
EX-1	32.4	61	0.41	0.5	3.9	30.0
EX-2	1.7	61	0.21	0.03	0.3	2.3
EX-3	25.7	61	0.34	0.4	3.4	26.8
EX-4	9.6	61	0.31	0.2	1.4	10.5
EX-5	123.3	61	0.46	2.0	13.5	107.2
EX-6	41.8	61	0.32	0.7	5.8	44.8
EX-7	27.6	63	0.36	1.0	5.2	32.1
EX-8	9.5	61	0.30	0.2	1.4	10.7


DESIGN POINTS SURFACE ROUTING SUMMARY - EXISTING CONDITIONS

Design Point	Contributing Basins	Q	Q	Q
		2 Yr.	5 Yr.	100 Yr.
		Q (cfs)	Q (cfs)	Q (cfs)
(label)				
EX DP-1	BASINS EX-1, EX-4, EX-5, EX-6, EX-7 (234.7 AC.)	4.2	28.5	219.2
EX DP-2	BASIN EX-2 (1.7 AC.)	0.03	0.3	2.3
EX DP-3	BASIN EX-3 (25.7 AC.)	0.4	3.4	26.8
EX-DP-4	BASIN EX-4 (9.6 AC.)	0.2	1.4	10.5
EX-DP-8	BASIN EX-8 (9.5 AC.)	0.2	1.4	10.7

400

	FINAL DF	RAINAGE F	REPORT~	SURFACE	ROUTIN	g summa	RY		
					Inte	nsity	FI	ow	
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Inlet Si
1	A (13.8 Ac.), OS-1 (1.2 Ac.) and C (6.7 Ac.)	3.58	9.08	31.8	2.39	4.02	9	36	DUAL 24" R CULVERTS
2	TOTAL INFLOW INTO POND 1 A, B, C and OS-1 (29.4 Ac.)	4.66	12.16	33.8	2.30	3.86	11	47	POND 1
3	No longer used								
4	D1 (1.1 Ac.)	0.74	0.87	15.2	3.50	5.88	3	5	5' TYPE R SUMP INLE
5	OS-4 (3.1 Ac.), I (3.7 Ac.)	1 .61	3. 1 7	17.7	3.28	<mark>5.5</mark> 0	5	17	15' TYPE R GRADE INL
6	OS-3 (2.5 Ac.)	0.63	1.18	11.9	3.86	<mark>6.4</mark> 9	2	8	10' TYPE R GRADE INL
7	Basin D2, Basin H and 50% of 100 yr Flowby fromDP-6 (5.5 Ac)	1.51	2.47	27.3	2.62	4.40	4	11	10' TYPE R SUMP INLE
8	K (1.5 Ac.)	0.38	0.71	12.6	3.78	6.35	1	4	5' TYPE R SUMP INLE
9	J and OS-7 (5.7 Ac.)	1.43	2.68	16.0	3.43	<mark>5.7</mark> 5	5	15	10' TYPE R SUMP INLE
10	Flowby fromDP-5 and Basin L (7.3 Ac)	1.83	4.29	21.2	3.00	5.04	5	22	15' TYPE R GRADE INL
11	Basins N, O, P and 50% 100 Yr Flowby from DP 6 and portion of 100 Yr Flowby from DP 10 (13.6 Ac)	1.58	4.54	24.2	2.80	4.70	4	21	15' TYPE R SUMP INLE
12	OS-5 (20.9Ac.)	2.93	6.27	19.9	3.09	5.19	9	33	15' TYPE R SUMP INLE
13	OS-6 (1.2Ac.)	0.19	2.06	12.4	3.80	<mark>6.3</mark> 9	1	13	10' TYPE R SUMP INLE
14	OS-8 (1.0Ac.)	0.25	0.47	11.0	3.99	<mark>6</mark> .70	1	3	5' TYPE R SUMP INLE
15	OS-9 (5.3 Ac.)	0.85	2.17	16.0	3.42	5.74	3	12	10' TYPE R SUMP INLE
16	OS-10 (1.0 Ac.)	0.25	0.47	11.0	3.99	<mark>6</mark> .69	1	3	5' TYPE R SUMP INLE
17	OS-11 (7.9 Ac.)	1 .98	3.71	14.7	3.55	5.96	7	22	10' TYPE R SUMP INLE
18	OS-12 (15.0 Ac.)	2.10	6.00	22.0	2.94	4.94	6	30	30" RCP CULVERT
19	OS-13 (1.4 Ac.)	0.28	0.62	12.2	3.83	6.42	1	4	5' TYPE R SUMP INLE
20	OS-14 (9.1 Ac.)	1 .82	4.00	19.9	3.10	5.20	6	21	5' TYPE R SUMP INLE
21	TOTAL INFLOW INTO EXIST. STOCK POND (23.4 Ac.)	2.11	8.42	29.8	2.49	4.18	5	35	EXIST. STO POND WIT OUTLET
22	TOTAL INFLOW INTO POND 2 (104.8 Ac.)	20.50	45.77	30.0	2.48	4.16	51	191	POND 2

<u>SEE SHEET 2</u>

NOTE

UNPLATTED .

(Future sterling ranch

residential use)

NOTE:

MULTI-PLATE STEEL ARCH CULVERTS (24'X10.33')

PROP. ACCESS ROAD

TWO CELL

PROP. ACCESS ROAD

10' TYPE |

SUMP INLET

ACCESS

RAMPS

J 3.6

്റ്റ്

SAND

RIP-RAP PLUNGE POOL \sim SHEET PILE CHECK

STRUCTURE W/ CONC. CAP (SEE UDFCD FIG. 9-26 THRU 9-28) PUBLIC DRAINAGE ESMTS. TO BE ACQUIRED FROM ADJACENT PROPERTY OWNER PRIOR TO CONST. APPROXIMATE LOCATION

100 YR. FLOODPLAIN (PER LOMR 08-080541P) APPROXIMATE LOCATION 100 YR. FLOODPLAIN

(HEC-RAS CALCULATED) PROP. RAIN GARDEN

> PRE-DEVELOPMENT Q2 YR. = 0.0 CFS Q5 YR. = 0.08 CFS Q100 YR. = 4.5 CFS DEVELOPED RELEASE

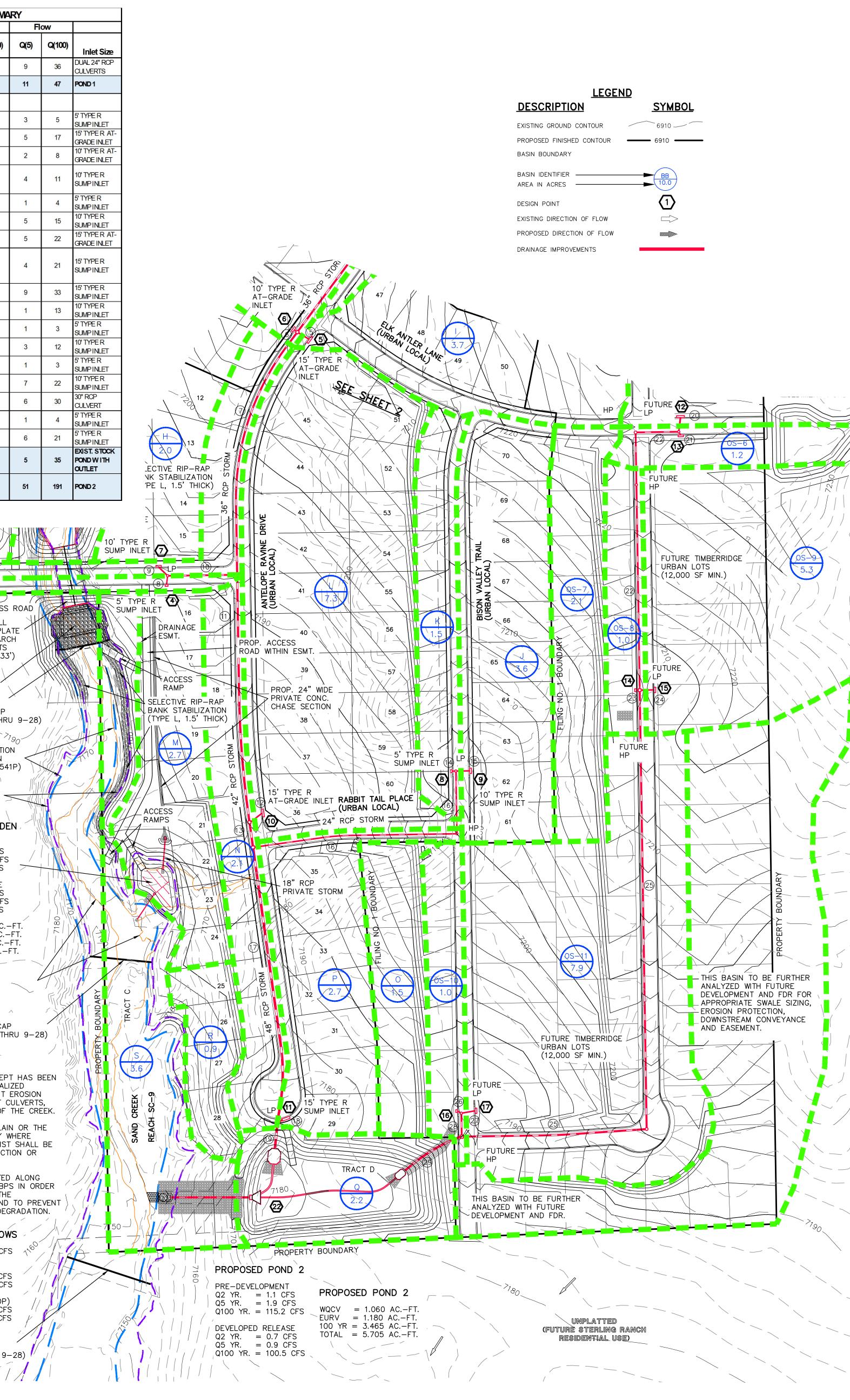
Q2 YR. = 0.0 CFS Q5 YR. = 0.07 CFS Q100 YR. = 3.8 CFS WQCV = 0.024 AC.-FT. EURV = 0.044 AC.-FT.

100 YR = 0.092 AC.-FT.TOTAL = 0.161 AC.-FT.

SHEET PILE CHECK STRUCTURE W/ CONC. CAP (SEE UDFCD FIG. 9-26 THRU 9-28)

CHANNEL NOTES PER DBPS:

1. A FLOODPLAIN PRESERVATION CONCEPT HAS BEEN RECOMMENDED FOR THIS REACH. LOCALIZED IMPROVEMENTS ARE PROPOSED TO LIMIT EROSION CAUSED BY FLOW CONCENTRATIONS AT CULVERTS, STORM SEWERS AND OUTSIDE BENDS OF THE CREEK.


2. AREA WITHIN THE EXISTING FLOODPLAIN OR THE LOW FLOW ZONE OF THE DRAINAGEWAY WHERE RIPARIAN OR WETLAND VEGETATION EXIST SHALL BE PRESERVED IN ITS EXISTING CROSS-SECTION OR REPLACED IN THE SAME REACH.

3. CHECK STRUCTURES HAVE BEEN SITED ALONG SAND CREEK AS PRESENTED IN THE DBPS IN ORDER TO SLOW THE CHANNEL VELOCITY TO THE RECOMMENDED 7 FEET PER SECOND AND TO PREVENT LOCALIZED AND LONG-TERM STREAM DEGRADATION.

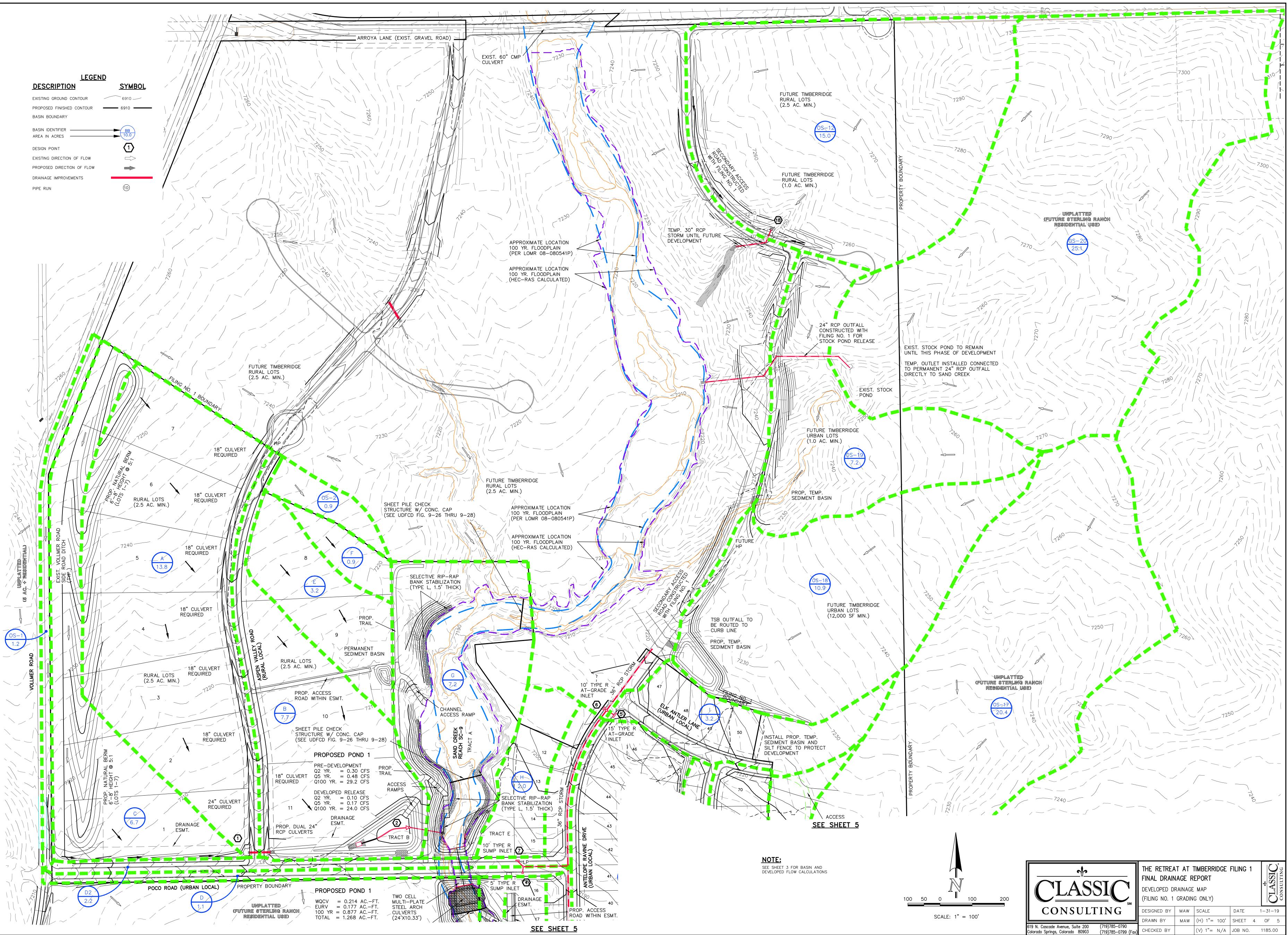
SAND CREEK FLOWS (PER FEMA) Q100 YR. = 2600 CFS 🔨 PUBLIC DRAINAGE ESMTS. (PER KIOWA DBPS) TO BE ACQUIRED FROM ADJACENT PROPERTY Q10 YR. = 670 CFS OWNER PRIOR TO CONST. (PER STERLING MDDP) $\dot{Q}10$ YR. = 452 CFS Q100 YR. = 1523 CFS


SHEET PILE CHECK STRUCTURE W/ CONC. CAP SEE UDFCD FIG. 9-26 THRU 9-28) / ___/

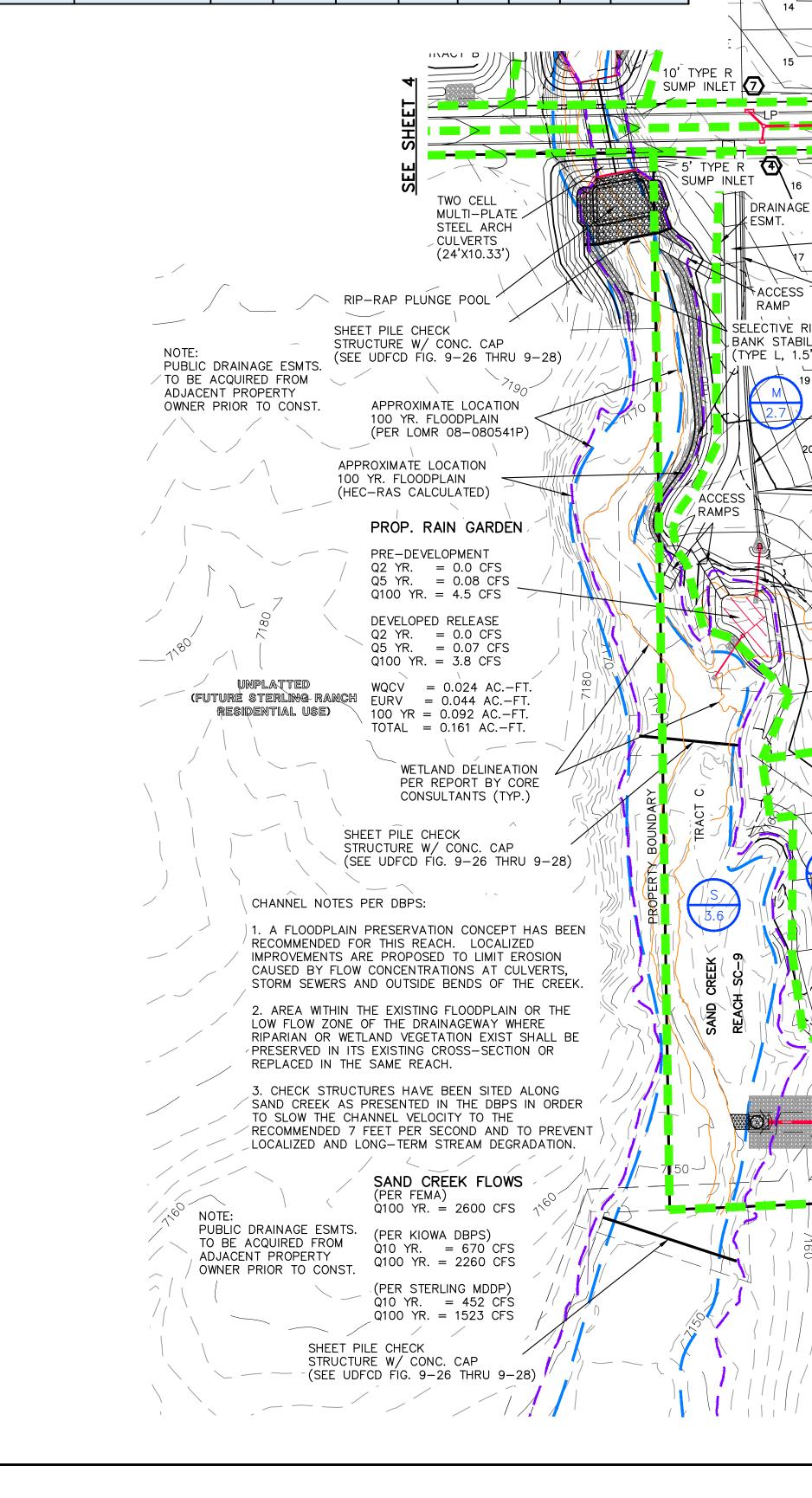
_

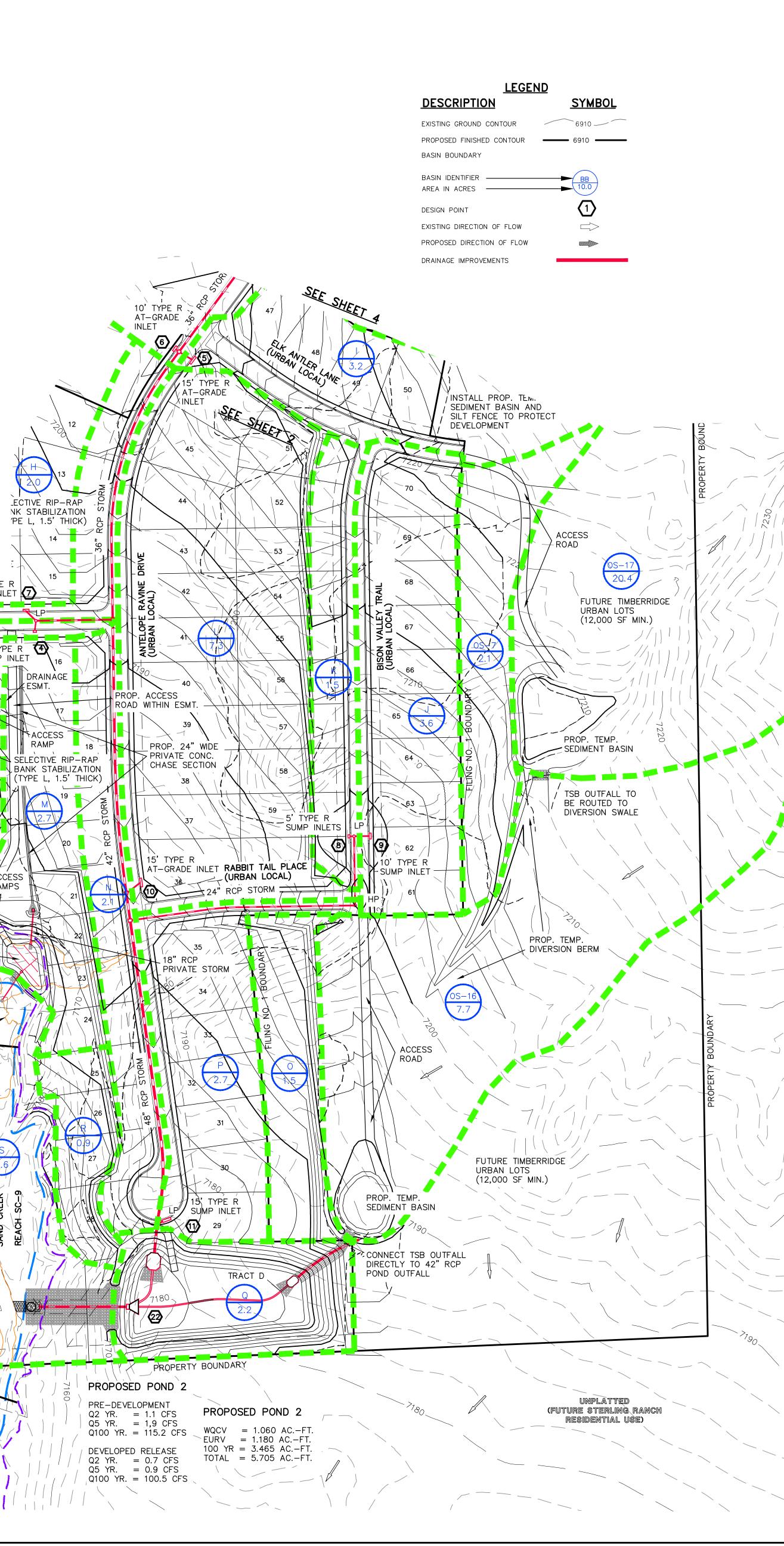
						FIN	AL D	RAIN	GER	EPOF	RT∼Β	ASIN	RUN	OFF S	UMM	ARY								
	Ì		WE	GHTED	3	•		OVEF	RLAND		STRE	et / Ch	ANNEL	FLOW	Tc			INTE	NSITY	3		τοτ	AL FLC	ws
BASIN	CA(2)	CA(5)	CA(10)	CA(25)	CA(50)	CA(100)	C(5)	Length (ft)	Height (ft)	Tc (<i>min</i>)	Length (ft)	Slope (%)	Velocity (fps)	Tc (<i>min</i>)	TOTAL (<i>min</i>)	l(2) (in/hr)	l(5) (in/hr)	l(10) (in/hr)	l(25) <i>(in/hr)</i>	l(50) (in/hr)	l(100) (in/hr)	Q(2) (cfs)	Q(5) (cfs)	Q(100) (cfs)
OS-1	0.68	0.71	0.76	0.82	0.85	0.88	0.08	10	0.2	4.6	1700	3.5%	1.9	15.1	19.8	2.48	3.11	3.62	4.14	4.66	5.21	2	2	5
OS-2	0.02	0.07	0.14	0.23	0.27	0.32	0.08	300	10.5	21.1					21.1	2.41	3.01	3.51	4.01	4.51	5.05	0.0	0.2	1.6
OS-3	0.45	0.63	0.80	0.98	1.08	1.18	0.25	55	1.1	9.1	600	3.0%	3.5	2.9	11.9	3.08	3.86	4.51	5.15	5.80	6.49	1	2	8
OS- 4	0.47	0.68	0.93	1.15	1.27	1.43	0.22	200	6	15.6	400	3.0%	3.5	1.9	17.6	2.62	3.28	3.83	4.38	4.93	5.51	1	2	8
OS-5	1.25	2.93	4.81	6.48	7.52	8.36	0.14	200	8	15.5	750	2.0%	2.8	4.4	19.9	2.47	3.09	3.61	4.13	4.64	5.19	3	9	43
OS-6	0.08	0.19	0.29	0.38	0.44	0.49	<mark>0.1</mark> 6	55	1.1	10.0	500	3.0%	3.5	2.4	12.4	3.04	3.80	4. <mark>44</mark>	5.07	5.71	6.39	0.3	1	3
OS- 7	0.38	0.53	0.67	0.82	0.90	0.99	0.25	100	10	7.2					7.2	3.69	4.63	5.40	6.17	6.94	7.77	1	2	8
OS-8	0.18	0.25	0.32	0.39	0.43	0.47	0.25	55	1.1	9.1	400	3.0%	<u>3.5</u>	1.9	11.0	3.18	3.99	4.65	5.32	5.98	6.70	1	1	3
OS-9	0.37	0.85	1.27	1.70	1.96	2.17	0.16	200	10	14.1	400	3.0%	3.5	1.9	16.0	2.73	3.42	3.99	4.56	5.13	5.74	1	3	12
OS-10	0.18	0.25	0.32	0.39	0.43	0.47	0.25	55	1.1	9.1	450	3.8%	3.9	1.9	11.0	3.18	3.99	4.65	5.32	5.98	6.69	1	1	3
OS-11	1.42	1.98	2.53	3.08	3.40	3.71	0.25	200	10	12.8	450	3. <mark>8</mark> %	3.9	1.9	14.7	2.84	3.55	4.14	4.74	5.33	5.96	4	7	22
OS-12	0.90	2.10	3.45	4.65	5.40	6.00	0.14	300	13	18.5	600	2.0%	2.8	3.5	22.0	2.35	2.94	3.43	3.93	4.42	4.94	2	6	30
OS-13	0.17	0.28	0.38	0.49	0.56	0.62	0.20	55	1.1	9.6	450	2.0%	2.8	2.7	12.2	3.05	3.83	4.4 6	5.10	5.74	6.42	0.5	1	4
OS-14	1.09	1.82	2.46	3.19	3.64	4.00	0.20	300	12	17.8	350	2.0%	2.8	2.1	19.9	2.48	3.10	3.62	4.13	4.65	5.20	3	6	21
OS-15	0.70	2.11	3.98	6.08	7.25	8.42	0.09	300	16	18.2	1300	3.5%	1.9	11.6	29.8	2.00	2.49	2.91	3.32	3.74	4.18	1	5	35
OS-16	0.23	0.69	1.31	2.00	2.39	2.77	0.09	300	10	21.2	600	3.5%	1.9	5.3	26.6	2.13	2.66	3.11	3.55	4.00	4.47	0.5	2	12
OS-17	0.61	1.84	3.47	5.30	6.32	7.34	0.09	300	9.5	21.6	650	3.5%	1.9	5.8	27.4	2.10	2.62	3.05	3.49	3.93	4.39	1.3	5	32
OS-18	0.33	0.98	1.85	2.83	3.38	3.92	0.09	300	10	21.2	700	3.5%	1.9	6.2	27.5	2.09	2.61	3.05	3.49	3.92	4.39	0.7	3	17
OS-19	0.22	0.65	1.22	1.87	2.23	2.59	0.09	300	10	21.2	400	3.5%	1.9	3.6	24.8	2.21	2.77	3.23	3.69	4.15	4.64	0.5	2	12
OS-20	0.75	2.26	4.27	6.53	7.78	9.04	0.09	300	16	18.2	1300	3.5%	1.9	11.6	29.8	2.00	2.49	2.91	3.32	3.74	4.18	2	6	38
Α	0.83	1.93	3.17	4.28	4.97	5.52	0.14	300	10.5	19.9	1280	3.2%	1.8	11.9	31.8	1.92	2.39	2.79	3.19	3.59	4.02	2	5	22
В	0.46	1.08	1.77	2.39	2.77	3.08	0.14	300	10.5	19.9	400	2.0%	1.4	4.7	24.6	2.23	2.78	3.24	3.71	<mark>4.17</mark>	4.67	1	3	14
С	0.40	0.94	1.54	2.08	2.41	2.68	0.14	300	10.5	19.9	1100	1.5%	2.4	7.5	27.3	2.10	2.62	3.06	3.49	3.93	4.40	1	2	12
D1	0.72	0.74	0.78	0.83	0.85	0.87	0.08	15	0.3	5.7	1400	1.5%	2.4	9.5	15.2	2.80	3.50	4.08	4.67	5.25	5.88	2	3	5
D2	0.96	1.07	1.18	1.30	1.36	1.43	0.25	55	1.1	9.1	500	2.5%	3.2	2.6	11.7	3.11	3.89	4.54	5.19	<mark>5.84</mark>	6.54	3	4	9
Е	0.19	0.45	0.74	0.99	<mark>1</mark> .15	1.28	0.14	300	10.5	19.9	300	2.0%	1.4	3.5	23.4	2.28	2.85	3.33	3.81	4.28	4.79	0.4	1	6
F	0.05	0.13	0.21	0.28	0.32	0.36	0.14	300	10.5	19.9					19.9	2.48	3.10	3.62	4.13	4.65	5.20	0.1	0.4	1.9
G	0.14	0.58	1.08	1.80	2.16	2.52	0.08	70	14	5.7	900	2.0%	1.4	10.6	16.3	2.71	3.39	3.96	4.52	5.09	5.70	0.4	2	14
Н	0.30	0.44	0.60	0.74	0.82	0.92	0.22	100	4	10.1	300	3.0%	3.5	1.4	11.5	3.13	3.92	4.57	5.23	5.88	6.58	1	2	6
1	0.67	0.93	1.18	1.44	1.59	1.74	0.25	120	3	12.4	550	3.5%	3.7	2.4	<mark>14</mark> .9	2.82	3.53	4.12	4.71	5.30	5.93	2	3	10
J	0.65	0.90	1.15	1.40	1.55	1.69	0.25	120	3	12.4	600	2.0%	2.8	3.5	16.0	2.74	3.43	4.00	4.57	5.14	5.75	2	3	10
К	0.27	0.38	0.48	0.59	0.65	0.71	0.25	<mark>5</mark> 5	1.1	9.1	600	2.0%	2.8	3.5	12.6	3.02	3.78	4.41	5.05	5.68	6.35	0.8	1	4
L	1.31	1.83	2.34	2.85	3.14	3.43	0.25	150	4.5	13.1	850	2.5%	3.2	4.5	17.6	2.62	3.28	3.83	4.38	4.93	5.51	3	6	19
М	0.41	0.59	0.81	1.00	1.11	1.24	0.22	100	4	10.1	400	2.0%	2.8	2.4	12.4	3.04	3.80	4.44	5.07	5.71	6.39	1	2	8
N	0.38	0.53	0.67	0.82	0.90	0.99	0.25	55	1.1	9.1	1050	2.0%	2.8	6.2	15.2	2.79	3.50	4.08	4.66	5.25	5.87	1	2	6
0	0.27	0.38	0.48	0.59	0.65	0.71	0.25	80	5	7.5					7.5	3.64	4.56	5.32	6.08	6.84	7.66	1	2	5
Р	0.49	0.68	0.86	1.05	1.16	1.27	0.25	120	3	12.4	450	1.5%	2.4	3.1	15.5	2.77	3.47	4.05	4.63	5.21	5.83	1	2	7
Q	0.13	0.31	0.51	0.68	0.79	0.88	0.14	90	22	5.7	300	1.5%	1.2	4.1	9.8	3.32	4.16	4.85	5.54	6.24	6.98	0.4	1	6
R	0.16	0.23	0.29	0.35	0.39	0.42	0.25	90	6	7.8					7.8	3.59	4.50	5.26	6.01	6.76	7.56	1	1	3
S	0.07	0.29	0.54	0.90	1.08	1.26	0.08	140	14	10.2	750	1.5%	2.4	5.1	15.3	2.79	3.49	4.07	4.66	5.24	5.86	0.2	1.0	7

	FINAL	DRAINAG	E REPORT	~ PIPE RC	DUTTING S	UMMAR	Y		
					Inter	sity	FI	w	
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Pipe Size
1	DP-18	2.10	6.00	23.2	2.86	4.81	6	29	30" RCP
2	DP-19	0.28	0.62	12.2	3.83	6.42	1	4	18" RCP
3	DP-20	1.82	4.00	19.9	3.10	5.20	6	21	24" RCP
4	PR-1, PR-2, PR-3	4.20	10.62	23.9	2.82	4.73	12	50	36" RCP
5	Captured from DP-5	1.61	2.31	17.7	3.28	5.50	5	13	24" RCP
6	Captured from DP-6	0.63	0.93	11.9	3.86	6.49	2	6	18" RCP
7	PR-4, PR-5, PR-6	6.43	13.86	24.4	2.79	4.68	18	65	36" RCP
8	DP-4	0.74	0.87	15.2	3.50	5.88	3	5	18" RCP
9	DP-7	1.51	2.47	27.3	2.62	4.40	4	11	24" RCP
10	PR-8, PR-9	2.25	3.34	27.5	2.61	4.38	6	15	30" RCP
11	PR-7, PR-10	8.69	17.20	28.0	2.58	4.33	22	75	42" RCP
12	Captured from DP-10	1.83	2.83	21.2	3.00	5.04	5	14	24" RCP
13	PR-11, PR-12	10.51	20.03	28.1	2.58	4.33	27	87	42" RCP
14	DP-8	0.38	0.71	12.6	3.78	6.35	1	4	18" RCP
15	DP-9	1.43	2.68	16.0	3.43	5.75	5	15	24" RCP
16	PR-14, PR-15	1.80	3.38	16.4	3.39	5.69	6	19	24" RCP
17	PR-13, PR-16	12.31	23.41	28.6	2.55	4.28	31	100	48" RCP
18	DP-11	1.58	4.54	24.2	2.80	4.70	4	21	30" RCP
19	PR-17, PR-18 W'LY FOREBAY OUTFALL	13.89	27.96	28.8	2.54	4.26	35	119	48" RCP
20	DP-12	2.93	<mark>6.27</mark>	19.9	3.09	5.19	9	33	30" RCP
21	DP-13	0.19	2.06	12.4	3.80	6.39	1	13	24" RCP
22	PR-20, PR-21	3.12	8.33	20.7	3.04	5.10	9	42	30" RCP
23	DP-14	0.25	0.47	11.0	3.99	6.70	1	3	18" RCP
24	DP-15	0.85	2.17	16.0	3.42	5.74	3	12	24" RCP
25	PR-22, PR-23, PR-24	4.22	10.97	22.0	2.94	4.94	12	54	36" RCP
26	DP-16	0.25	0.47	11.0	3.99	6.69	1	3	18" RCP
27	DP-17	1.98	3.71	14.7	3.55	5.96	7	22	30" RCP
28	PR-26, PR-27	2.23	4. 1 8	14.9	3.53	5.93	8	25	30" RCP
29	PR-25, PR-28 E'LY FOREBAY OUTFALL	6.44	15.16	22.3	2.92	4.91	19	74	42" RCP

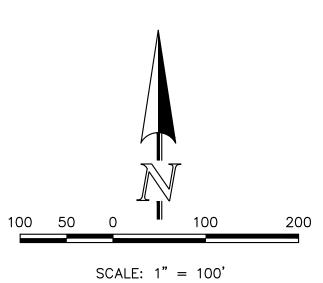


UNPLATTED (FUTURE STERLING RANCH Residential USE)


011 0112 0201112111 1 0110


 $\overline{}$ — —

AT AT T NAGE R	imberridge Eport	FILING 1	<u>SSIC</u>
RAINAGE E DEVEL(MAP DPED TIMBERRIE	DGE BASINS)	CLA
MAW	SCALE	DATE 1	1-31-19
MAW	(H) 1"= 100'	SHEET 3	OF 5
	(V) 1"= N/A	JOB NO.	2520.00


	FINAL DF	RAINAGE F	REPORT~	SURFACE	ROUTING	SUMMA	RY		
					Inte	nsity	FI	ow	
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Inlet S
1	A (13.8 Ac.), OS-1 (1.2 Ac.) and C (6.7 Ac.)	3.58	9.08	31.8	2.39	4.02	9	36	DUAL 24" F
2	TOTAL INFLOW INTO POND 1 A, B, C and OS-1 (29.4 Ac.)	4.66	12.16	33.8	2.30	3.86	11	47	POND 1
3	No longer used								
4	D1 (1.1 Ac.)	0.74	0.87	15.2	3.50	5.88	3	5	5' TYPE R SUMP INLE
5	OS-4 (3.1 Ac.), I (3.7 Ac.)	1.61	3. <mark>1</mark> 7	17.7	3.28	5.50	5	17	15' TYPE F GRADE INI
6	OS-3 (2.5 Ac.)	0.63	1.18	11.9	3.86	6.49	2	8	10' TYPE F GRADE IN
7	Basin D2, Basin H and 50% of 100 yr Flowby from DP-6 (5.5 Ac)	1.51	2.47	27.3	2.62	4.40	4	11	10' TYPE F SUMP INLE
8	K (1.5 Ac.)	0.38	0.71	12.6	3.78	6.35	1	4	5' TYPE R SUMP INLE
9	J and OS-7 (5.7 Ac.)	1.43	2.68	16.0	3.43	5.75	5	15	10' TYPE F SUMP INLE
10	Flowby from DP-5 and Basin L (7.3 Ac)	1.83	4.29	21.2	3.00	5.04	5	22	15' TYPE F GRADE IN
11	Basins N, O, P and 50% 100 Yr Flowby fromDP 6 and portion of 100 Yr Flowby fromDP 10 (13.6 Ac)	1.58	4.54	24.2	2.80	4.70	4	21	15' TYPE F SUMP INLE
12	OS-5 (20.9Ac.)	2.93	6.27	19.9	3.09	5.19	9	33	15' TYPE F SUMP INLE
13	OS-6 (1.2Ac.)	0. 1 9	2.06	12.4	3.80	6.39	1	13	10' TYPE F SUMP INLE
14	OS-8 (1.0Ac.)	0.25	0.47	11.0	3.99	6.70	1	3	5' TYPE R SUMP INLE
15	OS-9 (5.3 Ac.)	0.85	2.17	16.0	3.42	5.74	3	12	10' TYPE R SUMP INLE
16	OS-10 (1.0 Ac.)	0.25	0.47	11.0	3.99	6.69	1	3	5' TYPE R SUMP INLE
17	OS-11 (7.9 Ac.)	1.98	3.71	14.7	3.55	5.96	7	22	10' TYPE F SUMP INLE
18	OS-12 (15.0 Ac.)	2.10	<mark>6.00</mark>	22.0	2.94	4.94	6	30	30" RCP CULVERT
19	OS-13 (1.4 Ac.)	0.28	0.62	12.2	3.83	6.42	1	4	5' TYPE R SUMP INLE
20	OS-14 (9.1 Ac.)	1.82	4.00	19.9	3.10	5.20	6	21	5' TYPE R SUMP INLE
21	TOTAL INFLOW INTO EXIST. STOCK POND (23.4 Ac.)	2.11	8.42	29.8	2.49	4.18	5	35	EXIST. ST POND W I OUTLET
22	TOTAL INFLOW INTO POND 2 (104.8 Ac.)	20.50	45.77	30.0	2.48	4.16	51	191	POND 2

						CIN				EPOF	ΩT∼P	VCIVI												
				GHTED		L, IIN	ᆔᄔᄭ		NGE K RLAND			ASIN T/CH			Tc			INTE	NSITY			тот	AL FLC	<u>)</u>
BASIN	CA(2)	CA(5)	CA(10)	CA(25)	CA(50)	CA(100)	C(5)	Length		Tc	Length		Velocity	1	TOTAL	I(2)	I(5)	I(10)	I(25)	I(50)	I(100)	Q(2)		Q(100)
								(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(đs)	(cfs)	(cfs)
OS-1	0.68	0.71	0.76	0.82	0.85	0.88	0.08	10	0.2	4.6	1700	3.5%	1.9	15.1	19.8	2.48	3.11	3.62	4.14	4.66	5.21	2	2	5
OS-2	0.02	0.07	0.14	0.23	0.27	0.32	0.08	300	10.5	21.1					21.1	2.41	3.01	3.51	4.01	4.51	5.05	0.0	0.2	1.6
OS-3	0.45	0.63	0.80	0.98	1.08	1.18	0.25	55	1.1	9.1	600	3.0%	3.5	2.9	11.9	3.08	3.86	4.51	5.15	5.80	6.49	1	2	8
OS-4	0.47	0.68	0.93	1.15	1.27	1.43	0.22	200	6	15.6	400	3.0%	3.5	1.9	17.6	2.62	3.28	3.83	4.38	4.93	5.51	1	2	8
OS-5	1.25	2.93	4.81	6.48	7.52	8.36	0.14	200	8	15.5	750	2.0%	2.8	4.4	19.9	2.47	3.09	3.61	4.13	4.64	5.19	3	9	43
OS-6	0.08	0.19	0.29	0.38	0.44	0.49	0.16	55	1.1	10.0	500	3.0%	3.5	2.4	12.4	3.04	3.80	4.44	5.07	5.71	6.39	0.3	1	3
OS-7	0.38	0.53	0.67	0.82	0.90	0.99	0.25	100	10	7.2					7.2	3.69	4.63	5.40	6.17	6.94	7.77	1	2	8
OS-8	0.18	0.25	0.32	0.39	0.43	0.47	0.25	55	1.1	9.1	400	3.0%	3.5	1.9	11.0	3.18	3.99	4.65	5.32	5.98	6.70	1	1	3
OS-9	0.37	0.85	1.27	1.70	1.96	2.17	0.16	200	10	14.1	400	3.0%	3.5	1.9	16.0	2.73	3.42	3.99	4.56	5.13	5.74	1	3	12
OS-10	0.18	0.25	0.32	0.39	0.43	0.47	0.25	55	1.1	9.1	450	3.8%	3.9	1.9	11.0	3.18	3.99	4.65	5.32	5.98	6.69	1	1	3
OS-11	1.42	1.98	2.53	3.08	3.40	3.71	0.25	200	10	12.8	450	3.8%	3.9	1.9	14.7	2.84	3.55	4.14	4.74	5.33	5.96	4	7	22
OS-12	0.90	2.10	3.45	4.65	5.40	6.00	0.14	300	13	18.5	600	2.0%	2.8	3.5	22.0	2.35	2.94	3.43	3.93	4.42	4.94	2	6	30
OS-13	0.17	0.28	0.38	0.49	0.56	0.62	0.20	55	1.1	9.6	450	2.0%	2.8	2.7	12.2	3.05	3.83	4.46	5.10	5.74	6.42	0.5	1	4
OS-14	1.09	1.82	2.46	3.19	3.64	4.00	0.20	300	12	17.8	350	2.0%	2.8	2.1	19.9	2.48	3.10	3.62	4.13	4.65	5.20	3	6	21
OS-15	0.70	2.11	3.98	6.08	7.25	8.42	0.09	300	16	18.2	1300	3.5%	1.9	11.6	29.8	2.00	2.49	2.91	3.32	3.74	4.18	1	5	35
OS-16	0.23	0.69	1.31	2.00	2.39	2.77	0.09	300	10	21.2	600	3.5%	1.9	5.3	26.6	2.13	2.66	3.11	3.55	4.00	4.47	0.5	2	12
OS-17	0.61	1.84	3.47	5.30	6.32	7.34	0.09	300	9.5	21.6	650	3.5%	1.9	5.8	27.4	2.10	2.62	3.05	3.49	3.93	4.39	1.3	5	32
OS-18	0.33	0.98	1.85	2.83	3.38	3.92	0.09	300	10	21.2	700	3.5%	1.9	6.2	27.5	2.09	2.61	3.05	3.49	3.92	4.39	0.7	3	17
OS-19	0.22	0.65	1.22	1.87	2.23	2.59	0.09	300	10	21.2	400	3.5%	1.9	3.6	24.8	2.21	2.77	3.23	3.69	4.15	4.64	0.5	2	12
OS-20	0.75	2.26	4.27	6.53	7.78	9.04	0.09	300	16	18.2	1300	3.5%	1.9	11.6	29.8	2.00	2.49	2.91	3.32	3.74	4.18	2	6	38
•	0.02	1.00	2.47	4.00	4.07	5.50	0.11	200	10.5	40.0	1000	2.00/	1.0	44.0	24.0	100	2.00	0.70	2.40	2.50	100	2	<u> </u>	<u> </u>
A	0.83	1.93	3.17	4.28	4.97	5.52	0.14	300	10.5	19.9	1280	3.2%	1.8	11.9	31.8	1.92	2.39	2.79	3.19	3.59	4.02	2	5	22
В	0.46	1.08	1.77	2.39	2.77	3.08	0.14	300	10.5	19.9	400	2.0%	1.4	4.7	24.6	2.23	2.78	3.24	3.71	4.17	4.67	1	3	14
C	0.40	0.94	1.54	2.08	2.41	2.68	0.14	300	10.5	19.9	1100	1.5%	2.4	7.5	27.3	2.10	2.62	3.06	3.49	3.93	4.40	1	2	12
	0.72	0.74	0.78	0.83	0.85	0.87	0.08	15	0.3	5.7	1400	1.5%	2.4	9.5	15.2	2.80	3.50	4.08	4.67	5.25	5.88 6.54	2	3	5
D2	0.96	1.07	1.18	1.30	1.36	1.43	0.25	55 200	1.1	9.1	500	2.5%	3.2	2.6	11.7	3.11	3.89	4.54	5.19	5.84		3	4	9
E F	0.19	0.45	0.74	0.99	1.15 0.32	1.28	0.14	300	10.5	19.9	300	2.0%	1.4	3.5	23.4 19.9	2.28	2.85	3.33	3.81	4.28	4.79	0.4	1	6
G	0.05	0.13	0.21	0.28	2.16	0.36	0.14 0.08	300 70	10.5 14	19.9 5.7	900	2.0%	1.4	10.6	16.3	2.40	3.10 3.39	3.62 3.96	4.13 4.52	4.65 5.09	5.20 5.70	0.1	0.4 2	1.9 14
H	0.14	0.38	0.60	0.74	0.82	0.92	0.08	100		10.1	300	3.0%	3.5	1.4	11.5	3.13	3.92	4.57	5.23	5.88	6.58	0.4	2	
	0.30	0.44	1.18	1.44	1.59	1.74	0.22	100	4	12.4	550	3.5%	3.5	2.4	14.9	2.82	3.53	4.57	4.71	5.30	5.93	2	2	6 10
J	0.65	0.90	1.15	1.40	1.55	1.69	0.25	120	3	12.4	600	2.0%	2.8	3.5	14.9	2.02	3.43	4.00	4.57	5.14	5.75	2	3	10
л К	0.85	0.90	0.48	0.59	0.65	0.71	0.25	55	3 1.1	9.1	600 600	2.0%	2.8	3.5	12.6	3.02	3.78	4.00	4.57 5.05	5.68	6.35	2 0.8	3 1	4
L	1.31	1.83	2.34	2.85	3.14	3.43	0.25	150	4.5	9.1 13.1	850	2.0%	3.2	4.5	12.6	2.62	3.28	3.83	4.38	4.93	5.51	3	6	4
M	0.41	0.59	0.81	1.00	1.11	1.24	0.23	100	4.5	10.1	400	2.5%	2.8	2.4	17.6	3.04	3.80	4.44	4. <i>3</i> 0 5.07	4.95 5.71	6.39	1	° 2	8
N	0.41	0.59	0.67	0.82	0.90	0.99	0.22	55	1.1	9.1	1050	2.0%	2.8	6.2	12.4	2.79	3.50	4.44	4.66	5.25	5.87	1	2	6
0	0.36	0.33	0.07	0.62	0.50	0.39	0.25	30 80	5	7.5	.000	2.070	2.0	0.2	7.5	3.64	4.56	5.32	6.08	6.84	7.66	1	2	5
P	0.27	0.58	0.46	1.05	1.16	1.27	0.25	120	3	12.4	450	1.5%	2.4	3.1	15.5	2.77	3.47	4.05	4.63	5.21	5.83	1	2	5 7
Q	0.49	0.88	0.00	0.68	0.79	0.88	0.25	90	22	5.7	400 300	1.5%	1.2	4.1	9.8	3.32	4.16	4.05	5.54	6.24	6.98	0.4	2	6
R	0.13	0.31	0.51	0.00	0.79	0.00	0.14	90 90	6	7.8		1.370	1.2	94. I	9.0 7.8	3.52	4.16	4.00 5.26	5.54 6.01	6.76	7.56	0.4	1	о 3
S	0.16	0.23	0.29	0.35	1.08	1.26		90 140		10.2	750	1.5%	21	51	7.0 15.3	2.79	4.50 3.49	4.07	4.66	5.24	5.86		~	
0	0.07	0.29	0.54	0.90	1.00	1.20	0.08	140	14	10.2	750	1.5%	2.4	5.1	15.3	2.19	3.49	4.07	4.00	0.24	0.00	0.2	1.0	7

	FINAL	DRAINAG	E REPORT	~ PIPE ROUTING SUMMARY							
					Inten			ow			
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	(
1	DP-18	2.10	6.00	23.2	2.86	4.81	6				
2	DP-19	0.28	0.62	12.2	3.83	6.42	1				
3	DP-20	1.82	4.00	19.9	3.10	5.20	6				
4	PR-1, PR-2, PR-3	4.20	10.62	23.9	2.82	4.73	12				
5	Captured from DP-5	1.61	2.31	17.7	3.28	5.50	5				
6	Captured from DP-6	0.63	0.93	11.9	3.86	6.49	2				
7	PR-4, PR-5, PR-6	6.43	<mark>1</mark> 3.86	24.4	2.79	4.68	18				
8	DP-4	0.74	0.87	15.2	3.50	5.88	3				
9	DP-7	1.51	2.47	27.3	2.62	4.40	4				
10	PR-8, PR-9	2.25	3.34	27.5	2.61	4.38	6				
11	PR-7, PR-10	8.69	17.20	28.0	2.58	4.33	22				
12	Captured fromDP-10	1.83	2.83	21.2	3.00	5.04	5				
13	PR-11, PR-12	10.51	20.03	28.1	2.58	4.33	27				
14	DP-8	0.38	<mark>0.71</mark>	12.6	3.78	6.35	1				
15	DP-9	1.43	2.68	16.0	3.43	5.75	5				
16	PR-14, PR-15	1.80	3.38	16.4	3.39	5.69	6				
17	PR-13, PR-16	12.31	23.41	28.6	2.55	4.28	31				
18	DP-11	1.58	4.54	24.2	2.80	4.70	4				
19	PR-17, PR-18 WLY FOREBAY OUTFALL	13.89	27.96	28.8	2.54	4.26	35				
20	DP-12	2.93	<mark>6.27</mark>	19.9	3.09	5.19	9				
21	DP-13	0.19	2.06	12.4	3.80	6.39	1				
22	PR-20, PR-21	3.12	<mark>8.3</mark> 3	20.7	3.04	5.10	9				
23	DP-14	0.25	0.47	11.0	3.99	6.70	1				
24	DP-15	0.85	2.17	16.0	3.42	5.74	3				
25	PR-22, PR-23, PR-24	4.22	10.97	22.0	2.94	4.94	12				
26	DP-16	0.25	0.47	11.0	3.99	6.69	1				
27	DP-17	1.98	3.71	14.7	3.55	5.96	7				
28	PR-26, PR-27	2.23	4. 1 8	14.9	3.53	5.93	8				
29	PR-25, PR-28 E'LY FOREBAY OUTFALL	6.44	15.16	22.3	2.92	4.91	19				

 $\overline{}$ — —

UNPLATTED (FUTURE STERLING RANCH RESIDENTIAL USE)

	,	
29 30" RCP 4 18" RCP 21 24" RCP 50 36" RCP 13 24" RCP 6 18" RCP 6 18" RCP 6 36" RCP 11 24" RCP 15 30" RCP 15 30" RCP 14 24" RCP 15 30" RCP 14 24" RCP 15 30" RCP 14 24" RCP 15 24" RCP 14 24" RCP 15 24" RCP 14 24" RCP 15 24" RCP 16 30" RCP 11 30" RCP 12 30" RCP 13 24" RCP 33 30" RCP 13 24" RCP 13 24" RCP 14 30" RCP 13 30" RCP 14 30" RCP 15 36" RCP 12 30" RCP 13 18" RCP <th>/</th> <th></th>	/	
4 18" RCP 21 24" RCP 50 36" RCP 13 24" RCP 6 18" RCP 6 36" RCP 6 18" RCP 50 36" RCP 6 18" RCP 11 24" RCP 11 24" RCP 15 30" RCP 14 24" RCP 15 42" RCP 14 24" RCP 15 24" RCP 14 24" RCP 15 24" RCP 14 30" RCP 15 24" RCP 16 30" RCP 11 30" RCP 12 30" RCP 13 24" RCP 14 30" RCP 13 30" RCP 14 30" RCP 15 36" RCP 12 30" RCP 12 30" RCP 12 30" RCP 12 30" RCP	ର୍(100)	Pipe Size*
21 24" RCP 50 36" RCP 13 24" RCP 6 18" RCP 65 36" RCP 15 18" RCP 11 24" RCP 15 30" RCP 15 30" RCP 14 24" RCP 15 30" RCP 14 24" RCP 15 42" RCP 14 24" RCP 15 24" RCP 16 30" RCP 15 24" RCP 16 30" RCP 15 24" RCP 16 30" RCP 11 30" RCP 12 30" RCP 13 30" RCP 14 30" RCP 13 31" RCP 14 30" RCP 12 30" RCP 12 36" RCP 12 30" RCP 12 30" RCP 13 36" RCP 12 30" RCP 13 36" RCP 12 30" RCP <	29	30" RCP
50 36" RCP 13 24" RCP 6 18" RCP 65 36" RCP 50 36" RCP 65 36" RCP 15 36" RCP 11 24" RCP 15 30" RCP 15 30" RCP 14 24" RCP 14 24" RCP 15 24" RCP 14 24" RCP 15 24" RCP 16 24" RCP 15 24" RCP 16 30" RCP 19 24" RCP 11 30" RCP 12 30" RCP 13 30" RCP 13 24" RCP 3 30" RCP 13 24" RCP 3 30" RCP 12 30" RCP 3 18" RCP 3 18" RCP 24 30" RCP 3 18" RCP 3 18" RCP	4	18" RCP
13 24" RCP 6 18" RCP 65 36" RCP 5 18" RCP 11 24" RCP 11 24" RCP 11 24" RCP 15 30" RCP 15 30" RCP 14 24" RCP 14 24" RCP 15 24" RCP 14 24" RCP 15 24" RCP 15 24" RCP 16 24" RCP 19 24" RCP 10 48" RCP 11 30" RCP 12 30" RCP 13 24" RCP 13 30" RCP 13 30" RCP 12 30" RCP 12 36" RCP 3 18" RCP 12 36" RCP 13 18" RCP 12 30" RCP 13 18" RCP 12 30" RCP <tr td=""> <tr td=""> <tr td=""> <tr td=""> <</tr></tr></tr></tr>	21	24" RCP
6 18" RCP 65 36" RCP 5 18" RCP 1 24" RCP 11 24" RCP 15 30" RCP 15 42" RCP 14 24" RCP 14 24" RCP 15 42" RCP 14 24" RCP 15 24" RCP 15 24" RCP 15 24" RCP 16 30" RCP 19 24" RCP 19 24" RCP 11 30" RCP 12 30" RCP 13 24" RCP 13 30" RCP 13 30" RCP 12 30" RCP 12 36" RCP 3 18" RCP 3 18" RCP 12 36" RCP 12 36" RCP 13 36" RCP 14 36" RCP 15 36" RCP 12 36" RCP	50	36" RCP
65 36" ROP 5 18" ROP 11 24" ROP 15 30" ROP 15 30" ROP 15 30" ROP 15 42" ROP 14 24" ROP 14 24" ROP 15 24" ROP 14 24" ROP 15 24" ROP 15 24" ROP 10 48" ROP 110 48" ROP 110 30" ROP 12 30" ROP 13 24" ROP 14 30" ROP 13 30" ROP 14 30" ROP 13 24" ROP 3 30" ROP 12 30" ROP 3 18" ROP 3 18" ROP 3 18" ROP 54 36" ROP 22 30" ROP 23 18" ROP 3 18" ROP <tr td=""> <tr td=""> 3</tr></tr>	13	24" RCP
5 18" RCP 11 24" RCP 15 30" RCP 75 42" RCP 14 24" RCP 14 24" RCP 87 42" RCP 15 24" RCP 14 24" RCP 15 24" RCP 15 24" RCP 15 24" RCP 10 48" RCP 110 48" RCP 111 30" RCP 112 30" RCP 13 24" RCP 13 30" RCP 13 24" RCP 13 30" RCP 13 24" RCP 3 30" RCP 12 30" RCP 12 24" RCP 3 18" RCP 3 18" RCP 12 24" RCP 13 18" RCP 12 36" RCP 13 18" RCP 14 36" RCP 15 30" RCP <td>6</td> <td>18" RCP</td>	6	18" RCP
11 24" ROP 15 30" ROP 75 42" ROP 14 24" ROP 14 24" ROP 14 24" ROP 87 42" ROP 14 24" ROP 15 24" ROP 15 24" ROP 15 24" ROP 19 24" ROP 100 48" ROP 119 48" ROP 33 30" ROP 13 24" ROP 33 30" ROP 13 24" ROP 33 30" ROP 12 30" ROP 3 18" ROP 22 30" ROP 3 18" ROP 3 18" ROP 3 18" ROP 3 30" ROP <td>65</td> <td>36" RCP</td>	65	36" RCP
15 30" RCP 75 42" RCP 14 24" RCP 87 42" RCP 4 18" RCP 15 24" RCP 15 24" RCP 19 24" RCP 10 48" RCP 110 48" RCP 13 30" RCP 13 24" RCP 3 18" RCP 3 18" RCP 3 18" RCP 3 18" RCP 24 30" RCP 3 18" RCP 54 36" RCP 3 18" RCP 22 30" RCP 24 30" RCP 3 18" RCP <t< td=""><td>5</td><td>18" RCP</td></t<>	5	18" RCP
75 42" RCP 14 24" RCP 87 42" RCP 4 18" RCP 15 24" RCP 19 24" RCP 100 48" RCP 110 48" RCP 110 30" RCP 13 24" RCP 13 30" RCP 13 24" RCP 13 30" RCP 12 30" RCP 12 36" RCP 3 18" RCP 3 18" RCP 3 18" RCP 3 18" RCP 12 24" RCP 3 18" RCP 3 18" RCP 12 36" RCP 3 18" RCP 24 30" RCP 3 18" RCP	11	24" RCP
14 24" ROP 87 42" ROP 4 18" ROP 15 24" ROP 15 24" ROP 19 24" ROP 100 48" ROP 21 30" ROP 33 30" ROP 13 24" ROP 42 30" ROP 13 24" ROP 33 30" ROP 12 30" ROP 3 18" ROP 22 30" ROP 23 36" ROP 3 18" ROP 3 30" ROP <td>15</td> <td>30" RCP</td>	15	30" RCP
87 42" RCP 4 18" RCP 15 24" RCP 19 24" RCP 100 48" RCP 21 30" RCP 33 30" RCP 13 24" RCP 13 30" RCP 13 24" RCP 13 30" RCP 13 24" RCP 33 30" RCP 13 24" RCP 3 18" RCP 24 30" RCP 3 18" RCP 3 18" RCP 3 30" RCP	75	42" RCP
4 18" ROP 15 24" ROP 19 24" ROP 100 48" ROP 21 30" ROP 119 48" ROP 33 30" ROP 13 24" ROP 42 30" ROP 12 24" ROP 3 30" ROP 42 30" ROP 3 18" ROP 3 18" ROP 12 24" ROP 3 18" ROP 24 30" ROP 54 36" ROP 3 18" ROP 22 30" ROP 23 30" ROP	14	24" RCP
15 24" ROP 19 24" ROP 100 48" ROP 21 30" ROP 119 48" RCP 33 30" ROP 13 24" ROP 13 24" ROP 13 30" ROP 12 30" ROP 3 18" ROP 3 18" ROP 12 24" ROP 3 18" ROP 24 30" ROP 12 24" ROP 3 18" ROP 24 30" ROP 54 36" ROP 22 30" ROP 22 30" ROP 25 30" ROP	87	42" RCP
19 24" RCP 100 48" RCP 21 30" RCP 119 48" RCP 33 30" RCP 13 24" RCP 13 24" RCP 13 24" RCP 13 24" RCP 142 30" RCP 15 24" RCP 3 18" RCP 3 30" RCP 3 18" RCP 3 30" RCP 3 30" RCP 22 30" RCP 25 30" RCP	4	18" RCP
100 48" RCP 21 30" RCP 119 48" RCP 33 30" RCP 13 24" RCP 42 30" RCP 3 18" RCP 3 18" RCP 3 18" RCP 12 24" RCP 3 18" RCP 24 30" RCP 3 18" RCP 54 36" RCP 2 30" RCP 22 30" RCP 25 30" RCP	15	24" RCP
21 30" RCP 119 48" RCP 33 30" RCP 13 24" RCP 42 30" RCP 3 18" RCP 12 24" RCP 54 36" RCP 3 18" RCP 22 30" RCP 23 18" RCP 3 18" RCP 54 36" RCP 25 30" RCP	19	24" RCP
119 48" RCP 33 30" ROP 13 24" ROP 42 30" ROP 42 30" ROP 3 18" ROP 12 24" ROP 54 36" ROP 3 18" ROP 22 30" ROP 25 30" ROP	100	48" RCP
33 30" ROP 13 24" ROP 42 30" ROP 3 18" ROP 12 24" ROP 54 36" ROP 3 18" ROP 22 30" ROP 25 30" ROP	21	30" RCP
13 24" ROP 42 30" ROP 3 18" ROP 12 24" ROP 54 36" ROP 3 18" ROP 22 30" ROP 25 30" ROP	119	48" RCP
42 30" ROP 3 18" ROP 12 24" ROP 54 36" ROP 3 18" ROP 22 30" ROP 25 30" ROP	33	30" RCP
3 18" RCP 12 24" RCP 54 36" RCP 3 18" RCP 22 30" RCP 25 30" RCP	13	24" RCP
12 24" RCP 54 36" RCP 3 18" RCP 22 30" RCP 25 30" RCP	42	30" RCP
54 36" RCP 3 18" RCP 22 30" RCP 25 30" RCP	3	18" RCP
3 18" RCP 22 30" RCP 25 30" RCP	12	24" RCP
22 30" RCP 25 30" RCP	54	36" RCP
25 30" RCP	3	18" RCP
	22	30" RCP
74 42" RCP	25	30" RCP
	74	42" RCP

AT AT 1 NAGE R	imberridge Eport	FILING 1	<u>SSIC</u>
RAINAGE GRADIN	MAP G ONLY)		CLA
MAW	SCALE	DATE	1-31-19
MAW	(H) 1"= 100'	SHEET 5	OF 5
	(V) 1"= N/A	JOB NO.	1185.00

SECTION 404 PERMTTING WETLAND IMPACT MAP (CORE CONSULTANTS REPORT)

COMPENSATORY MITIGATION PLAN

The Retreat at Timber Ridge Residential Development – Filing No. 1 El Paso County, CO

PREPARED FOR:

Classic Communities 6385 Corporate Drive-Suite 101 Colorado Springs, CO 80919 Phone: 719-785-3270 Contact: Loren Moreland

PREPARED BY:

CORE Consultants, Inc. 1950 W. Littleton Boulevard, Suite 109 Littleton, CO 80120 Phone: 303-730-5979 Contact: Dan Maynard CORE Project Number: 19-XXX

July 2019

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 SITE DESCRIPTION
3.0 COMPENSATORY MITIGATION PLAN4
3.1 Objectives
3.2 Site Selection
3.3 Mitigation Area Protection5
3.4 Baseline Information
3.5 Mitigation Work Plan5
3.6 Mitigation Work Plan Schedule5
3.7 Operation and Maintenance
3.8 Performance Standards and Monitoring Requirements6
4.0 LONG TERM MANAGEMENT PLAN
4.1 Adaptive Management Strategy
5.0 CONCLUSIONS AND RECOMMENDATIONS II
REFERENCES

TABLES

 TABLE 3-1. IMPACTED WETLANDS LOCATIONS

 TABLE 3-2. EL PASO COUNTY NOXIOUS WEEDS

APPENDICES

APPENDIX I: SITE LOCATION MAP APPENDIX II: COMPENSATORY WETLAND MITIGATION PLAN MAP

Page 2 of 12

1.0 INTRODUCTION

CORE Consultants, Inc. (CORE) was retained by Classic Communities (Applicant) to provide a compensatory mitigation plan for the proposed The Retreat at Timber Ridge Residential Development – Filing No. I ("Project"). The Project encompasses approximately 68 acres of largely undisturbed land zoned for a planned unit development (PUD), located southeast of the intersection of Vollmer Road and Arroya Lane on portions of Sections 27 and 28 in Township 12 South, Range 65 West, and can be found on the U.S. Geological Survey (USGS) Falcon Northwest 7.5-minute quadrangle (**Appendix I:** *Site Location Map*). Coordinates of the approximate center of the Project are latitude 38.980576° North and longitude -104. 663569° West.

The Project would consist of 70 single family lots, open space and trails, permanent access roads, utilities, stormwater detention ponds, and channel improvements to prevent long-term stream degradation. Permanent impacts to potentially jurisdictional wetlands totaling 0.44 acre and 691 linear feet would result from the development of the Project. Construction of the southernmost access road and associated culvert construction would result in 0.11 acre and 211 linear feet of permanent impacts to Stream Channel Containing Wetlands (SCCW) 6. Construction of the southernmost detention pond would result in an additional 0.26 acre and 210 linear feet of permanent impacts to SCCW 6 (**Appendix II**: *Compensatory Wetland Mitigation Plan Map*). Construction of the northern access road would result in 0.07 acre and 270 linear feet of permanent impacts to SCCW 4 (**Appendix II**). Temporary impacts to potentially jurisdictional wetlands totaling 0.06 acre and 64 linear feet would result from the development of the four buried sheet pile check structures. This report presents the mitigation plan for the establishment and management of a wetland mitigation area on the Project site which would offset 0.44 acre of permanent loss to Waters of the U.S. (WOTUS) resulting from development of the Project.

Page 3 of 12

2.0 SITE DESCRIPTION

CORE conducted a formal wetland delineation on May 15 and 16, 2017 in accordance with the U.S. Army Corps of Engineers' (USACE) 1987 USACE Wetland Delineation Manual (USACE 1987) and the Western Mountains, Valleys, and Coasts Regional Supplement (Version 2.0) (USACE 2010). The regulatory status of the wetlands and waters considered herein are assumed jurisdictional for the purpose of quantifying impacts to WOTUS.

The main channel of Sand Creek drains the Project in a southerly direction. Two eastern tributaries identified in NHD spatial data, and one unidentified western tributary are located in the proposed Project area (**Appendix II**). The majority of the main channel of Sand Creek and its associated tributaries were characterized as stream channels containing potentially jurisdictional persistent emergent (PEM) wetlands; short stretches of the main channel throughout the Project area were characterized as potentially jurisdictional stream channels lacking wetlands (**Appendix II**). Sand Creek and its tributaries flow to the Fountain Creek watershed approximately 20 miles downstream.

The Environmental Protection Agency (EPA) Section 303(d) list identifies stream segments that do not meet water quality standards. Selenium and *E. coli* are listed as causes for impairment of Sand Creek within the Fountain watershed (EPA 2016). As such, primary needs for the watershed headwaters include mechanisms to reduce waste runoff into watercourses, as well as mechanisms to capture and uptake excess nutrients and waste. The mitigation proposed is anticipated to encourage the removal of excess nutrients and prevent additional nutrient runoff through the creation of wetlands. Creation of wetlands would improve local habitats and water quality. Improved water quality would be expected as a result of locating the mitigation wetlands upslope and upstream of the majority of the areas of wetland impacts within the Project area.

3.0 COMPENSATORY MITIGATION PLAN

This compensatory mitigation plan was prepared to compensate for the loss of 0.44 acre of wetland habitat through the establishment of new emergent wetlands within the Project. Coordinates of the wetland areas to be impacted are shown in Table 3-1 below, and depicted in **Appendix II**.

	LATITUDE	LONGITUDE	PERMANENT IMPACTS
SCCW 4	38.979822	-104.660451	0.07 acre; 270 linear feet
SCCW 6	38.976811	-104.663614	0.11 acre; 211 linear feet
SCCW 6	38.975046	-104.662760	0.26 acre; 210 linear feet

TABLE 3-1: LOCATIONS OF IMPACTED WETLANDS

Only the USACE can determine jurisdictional status

3.1 Objectives

Mitigation for 0.44 acre of permanent wetland loss would be located adjacent to the main channel of Sand Creek within the Project. Specifically, mitigation would involve the following:

- Creation of 0.44 acre of emergent, palustrine wetland habitat adjacent to and between the main channel of Sand Creek identified as JD Channel A and Isolated Wetland I (Proposed Mitigation B; Attachment II).
- Creation of stable upland buffers through soil amendments (as necessary), seedbed preparation and decompaction (as necessary), and appropriate native plant selection based on surrounding and existing native vegetation. Noxious weed control and management would be implemented as needed.

A total of 0.44 acre of emergent wetlands would be established within the Project and would offset the 0.44 acre of permanent wetland loss resulting from the construction of the Project.

3.2 Site Selection

Completing the majority of mitigation near the site of impacts would ensure the mitigation directly offsets the on-site Project impacts. Moreover, on-site mitigation ensures that hydrologic and soil conditions are conducive to successful mitigation implementation. Hydrology for the mitigation area would be supplied in part by runoff from the proposed Project, and by contouring adjacent to the existing channel and upland within the proposed mitigation area to ensure sufficient saturation. The NRCS identifies Project area soils as hydric (NRCS 2014). Therefore, retention of on-site soils would further facilitate the establishment and longevity of the proposed mitigation area. Salvaged soils from impacted wetland areas on the Project site would be utilized to prepare the mitigation area.

The Proposed mitigation area would consist of one palustrine, persistent emergent, seasonally flooded wetland and upland buffer located between JD Channel A and Isolated Wetland I. The proposed location of the mitigation area would serve to connect the existing Isolated Wetland A with the main channel of Sand Creek (JD Channel A), thereby serving to increase filtration of additional stormwater runoff resulting from Project construction.

3.3 Mitigation Area Protection

The mitigation area will be owned by the Applicant and authorized access would require permission from the Applicant. According to the USACE's Regional Compensatory Mitigation and Monitoring Guidelines for South Pacific Division (2015), the mitigation area requires protection of the site in the form of a deed restriction, easement or similar legally-binding document. A deed restriction would be prepared to provide for long-term protection of the mitigation area.

3.4 Baseline Information

The Project would result in the permanent loss of 0.44 acre of wetland characterized as palustrine, emergent, persistent, and seasonally flooded (PEMIC). The proposed mitigation area would consist of 0.44 acre of wetland characterized as palustrine, emergent, persistent, and seasonally flooded (PEMIC) since the mitigation area would develop wetlands mirroring the surrounding wetland areas within and adjacent to Sand Creek (**Appendix II**). Wetland vegetation was dominant during the 2017 wetland delineation within the channel where impacts are proposed: vegetation consisted of Arctic rush (*Juncus arcticus* syn. *J. balticus*), Nebraska sedge (*Carex nebrascensis*), clustered field sedge (*Carex praegracilis*), and common spike rush (*Eleocharis palustris*).

3.5 Mitigation Work Plan

The mitigation area would be created immediately adjacent to the main channel of Sand Creek (JD Channel A; **Appendix II**). Contouring of both the upland area associated with the proposed mitigation area and the proposed mitigation area itself would ensure that drainage patterns would direct sufficient hydrology to the mitigation area. Soil preparation and amendments, seeding, and installation of wetland plugs would create 0.44 acre of emergent wetland adjacent to the main channel of Sand Creek (**Appendix II**). Establishment of the wetland would augment water filtration capacity of anticipated runoff resulting from the proposed Project, and would support the Sand Creek watershed priority to reduce selenium and *E. coli* within the watershed.

Native wetland plant communities would be established within the mitigation area through seeding and the installation of wetland plugs. Newly seeded areas and plugs would be protected by erosion control mats. A CORE biologist would determine, upon a site assessment of the mitigation area, if transplanting of neighboring wetland plants would expedite the establishment of the proposed wetland mitigation area. Potential wetland plant populations that would be utilized for transplant include Arctic rush, Nebraska sedge, and clustered field sedge.

3.6 Mitigation Work Plan Schedule

Mitigation work would begin immediately in conjunction with the commencement of construction activities and would be completed within three months of commencement. Project construction is anticipated to begin in fall of 2019. Construction is expected to be completed in summer or fall of 2020; restoration and mitigation installation measures would be completed by fall 2020. Primary mitigation measures and an estimated schedule of activities implementation are outlined below:

- Year I
 - Grading, clearing, and other site preparation as needed for construction of the wetland mitigation site;

- Documentation of baseline conditions and seeding of mitigation area and uplands; installation of wetland plugs.
- Year 2
 - Monitoring and management: set up monitoring locations and collect relevant data, control noxious weeds (if needed), and transplant wetland vegetation from existing onsite wetlands (if needed).
- Years 3, 4, and 5
 - Site monitoring to determine whether performance standards are met and request concurrence from USACE;
 - If standards are not met, continue monitoring and management until they are met.

3.7 Operation and Maintenance

The Applicant would be responsible for monitoring the proposed mitigation area throughout the life of the Project. The Applicant, or an authorized representative for the Applicant familiar with wetland ecology would monitor the condition of the mitigation site and would make adjustments on an asneeded basis in accordance with USACE mitigation requirements and permit conditions.

3.8 Performance Standards and Monitoring Requirements

Performance standards would be used to assess the success of mitigation measures implemented at the Project. Performance standards are required and must be met in order for mitigation activities to be approved by the USACE. However, performance standards may change based on the conditions included in the approved Section 404 permit to be issued for the Project. The mitigation area would be monitored for a period of five years, or until performance standards are met. If performance standards are met during the first year of monitoring, additional monitoring would not be required. Performance standards should be met by the end of the five-year monitoring period. If standards are not met within five years, additional monitoring and corrective action may be required at the request of the USACE.

The mitigation plan for The Retreat at Timber Ridge – Filing No. I would be determined successful and complete when the following standards of performance are met:

- 1. Wetland vegetation areas and buffers should have a vegetation cover of at least 85 percent, and the vegetation must be composed of at least 50 percent emergent wetland species (i.e., species rated facultative, facultative wetland, or obligate wetland plant species on the National Wetland Plant List (Lichvar et al. 2016) and at least 50 percent of dominant species shall be newly established. Mitigation areas (wetlands and buffers) will have no more than 20 percent non-native species coverage. Vegetation maintenance activities for locations not meeting these requirements may include transplanting the appropriate wetland species and eradication of non-native species if necessary.
- Upland buffer establishment will be determined successful when ground cover of native species species rated upland, facultative upland, or facultative plants on the National Wetland Plant List (Lichvar et al. 2016) – is equal to or greater than 85 percent, with less than 1-percent invasive species documented at each monitoring location. Vegetation maintenance activities for sample

locations not meeting ground cover requirements would include re-seeding or planting of the appropriate native species and eradication of invasive species if necessary.

- 3. Coverage of noxious weed species (**Table 3-2**: *El Paso County Noxious* Weeds) shall be 95 percent eradicated across all mitigation areas (wetlands and upland buffers) and maintained as such in perpetuity.
- 4. Documentation shall demonstrate consistent wetland hydrology during the growing season. Data shall indicate 14 or more consecutive days of flooding or ponding, or a water table 12 inches or less below the soil surface. Data must demonstrate the presence of wetland hydrology with 50% or higher probability. Documentation of recorded data will be presented with photographs, moisture probe data, and/or the collection of multiple soil pit samples during the growing season.
- 5. Soil documentation and morphologic description should demonstrate the development of redoximorphic features or other hydric soil indicators over time, and progression toward hydric soil conditions. Documentation would include pre-and post-construction, and during the 3rd, 5th, and final years of wetland establishment and would be collected according to the Western Mountains, Valleys, and Coasts Regional Supplement (Version 2.0) (USACE 2010) to the 1987 USACE Wetland Delineation Manual (USACE 1987).

Page 8 of 12

TABLE 3-2: EI PASO	COUNTY NOXIOUS WEEDS
--------------------	----------------------

COMMON NAME	SCIENTIFIC NAME
Bull Thistle	Cirsium vulgare
Canada Thistle	Cirsium arvense
Common Mullein	Verbascum thapsus
Common Tansy	Tanacetum vulgare
Common Teasel	Dipsacus fullonum
Cutleaf Teasel	Dipsacus laciniatus
Cypress Spurge	Euphorbia cyparissias
Dalmation Toadflax	Linaria dalmatica
Dalmation Toadflax	Linaria genistifolia
Diffuse Knapweed	Centaurea diffusa
Field Bindweed	Convulvulus arvensis
Hoary Cress	Cardaria draba
Houndstongue	Cynoglossum officinale
Leafy Spurge	Euphorbia esula
Mediterranean Sage	Salvia aethiopis
Musk Thistle	Carduus nutans
Myrtle Spurge	Euphorbia myrcinites
Orange Hawkweed	Hieracium aurantiacum
Perennial Pepperweed	Lepidium latifolium
Plumeless Thistle	Carduus acanthoides
Poison Hemlock	Conium maculatum
Puncturevine	Tribulus terrestris
Purple Loosestrife	Lythrum salicaria
Redstem Filaree	Erodium cicutarium
Russian Knapweed	Acroptilon repens
Russian Olive	Elaeagnus angustifolia
Salt Cedar	Tamarix chinensis
Salt Cedar	Tamarix parviflora
Salt Cedar	Tamarix ramosissima
Scotch Thistle	Onopordum acanthium
Spotted Knapwseed	Centaurea maculosa
Sulfur Cinquefoil	Potentilla recta

Page 9 of 12

Monitoring would be conducted during the growing season by qualified personnel experienced in wetland ecology and mitigation. Monitoring would occur for a minimum of five years postconstruction, unless conditions are met in prior years. Results of monitoring visits would be used to assess and modify maintenance and operations plans as appropriate and implement adaptive management strategies as necessary. Monitoring would entail annual site visits to assess progress in meeting performance standards, and to evaluate establishment, development, and maintenance of the mitigation area. The mitigation area would be monitored to ensure the establishment of desirable wetland characteristics. Standardized plots would be established to confirm the dominance of emergent wetland species at the wetland establishment location. A report detailing the results of each monitoring survey would be submitted to the USACE within two months of any site visit. The site would also be monitored incidentally while walking between sampling points. During incidental observations, areas of concern would be noted, including areas of erosion, significant areas of bare ground, and areas where invasive species have become established. Incidental observations would be included in the annual report and would be considered for maintenance and adaptive management.

Photo monitoring points would be established prior to construction to determine baseline conditions. Each monitoring report would include photos depicting baseline conditions, construction, and current state to demonstrate progress toward wetland establishment. A map would document the locations of sampling transects and photo monitoring points.

Page 10 of 12

4.0 LONG TERM MANAGEMENT PLAN

Funding for the management of the mitigation plan would be provided by the Applicant and the Applicant would be responsible for the monitoring and long-term management of the proposed mitigation area. Since the mitigation site would be located on the Applicant's property, access to the site could be controlled to protect the area. Periodic inspections would also be conducted by the Applicant or by the Applicant's authorized personnel to ensure that the desired site characteristics are maintained including maintaining proper hydrology through the mitigation area, controlling invasive plants (if any), and other maintenance as needed. If invasive species are detected during inspections, invasive species control measures would be implemented. Where invasive plants are limited, control methods would consist of removal by hand or mechanical methods. If invasive plants become established beyond a point of mechanical control, chemical control methods would be initiated. Appropriate herbicides would be selected based on target species and would be applied in accordance with manufacturer and invasive species control recommendations. Herbicide application would not occur when rain is forecasted, or during or immediately following precipitation events to prevent herbicides from running into sensitive water features. Invasive species control would be conducted in a manner that minimizes impacts to desirable species to the extent practicable. Where significant invasive species infestations have occurred, the area would be transplanted with local wetland plant sources, or re-seeded with desirable vegetation after control of invasives. Alternative methods of invasive species control would be utilized as appropriate based on target species. For example, prolonged flooding followed by heavy seeding has been documented to control Johnsongrass (Sorghum halepense). Wetland and transitional vegetation would be mowed on an as-needed basis. Signage may also be used along the boundaries of the proposed mitigation area identifying the area as such. If control of the development were to transfer from the Applicant to a different entity, that entity would become responsible for the maintenance and upkeep of the mitigation area.

The principal management concerns for the mitigation area are maintaining suitable hydrology to support wetland growth and the maintenance of vegetation, including the control of invasive and weedy species. Operation and maintenance activities would generally ensure compliance with the conditions of the USACE permit. Project area management needs would be assessed during monitoring sessions and on an as-needed basis. Operation and maintenance activities would be modified as appropriate in accordance with principles of adaptive management and based on observations during mitigation monitoring activities.

4.1 Adaptive Management Strategy

Management objectives and techniques may be modified in response to feedback such as monitoring results. Adaptive management is based on the idea that the collective general understanding of natural system is necessarily incomplete, and thus new information should be allowed to influence the potential re-evaluation of strategies for management.

Management techniques would be modified as appropriate to ensure performance standards are met, based on monitoring and incidental observations. Potential management modifications or corrective actions that may be taken to ensure standards are met include: alternative vegetation management, modification of hydrology, alternative control measures for invasive species, re-seeding or planting, stabilization of banks or other areas.

If the mitigation area should fail to meet performance standards, corrective action would be taken. If necessary, corrective action may be taken prior to the end of the five-year monitoring period.

Page 11 of 12

5.0 CONCLUSIONS AND RECOMMENDATIONS

In summary, the proposed Project, consisting of 70 single family lots, open space and trails, permanent access roads, utilities, stormwater detention ponds, and channel improvements to prevent long-term stream degradation, would result in 0.44 acre and 91 linear feet of permanent impacts to the main channel of Sand Creek and its associated tributaries. On-site mitigation is planned that would offset 0.44 acre of wetland loss. Mitigation practices would comply with the 2008 Mitigation Rule (33 CFR 332-Compensatory Mitigation for losses of aquatic resources) as specified by the USACE Albuquerque District Southern Colorado Regulatory Office.

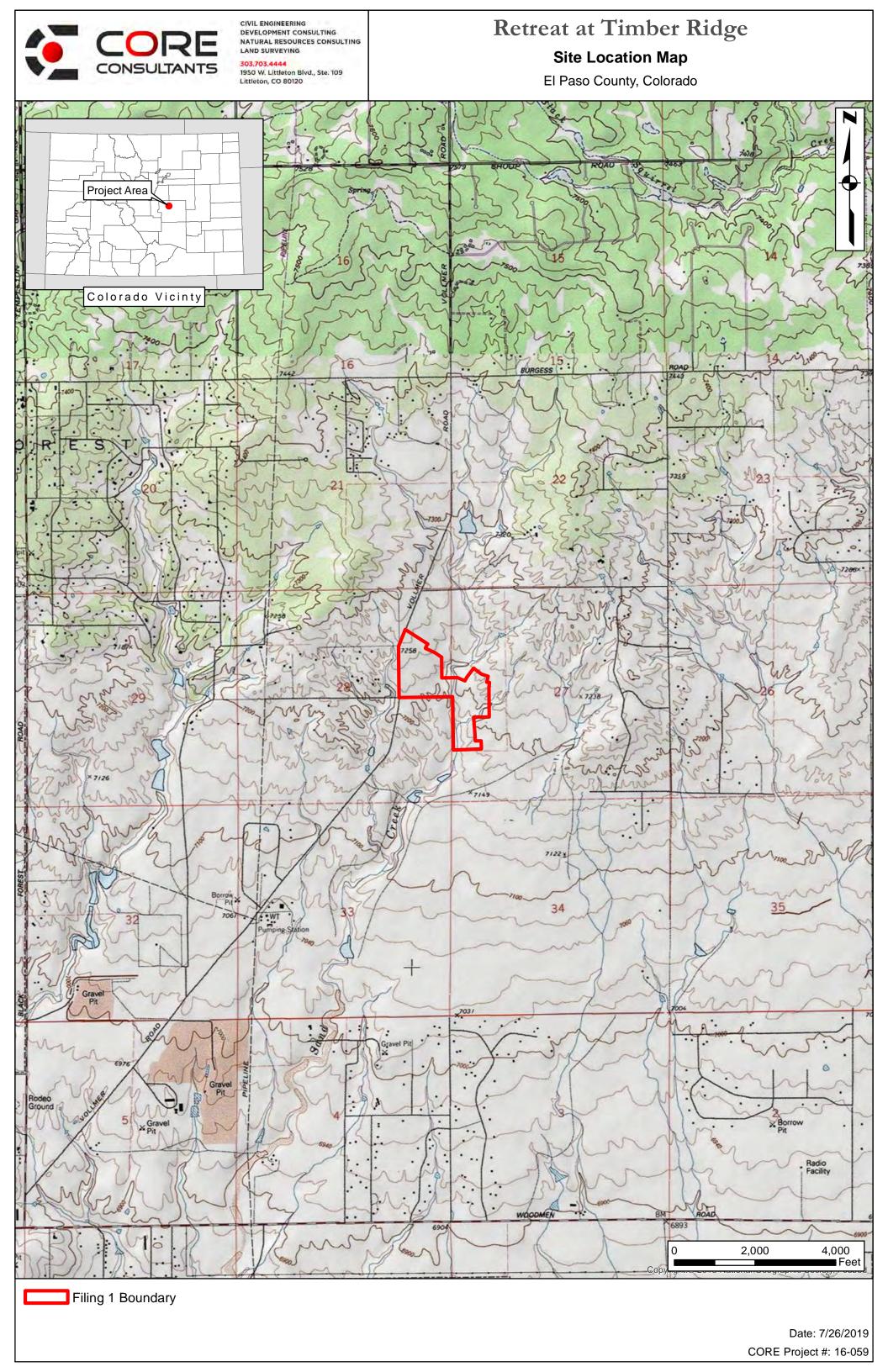
Page 12 of 12

REFERENCES

- Chapman, S.S., Griffith, G.E., Omernik, J.M., Price, A.B., Freeouf, J., and Schrupp, D.L., 2006, ECOREgions of Colorado. Reston, Virginia, U.S. Geological Survey (map scale 1:1,200,000). ftp://ftp.epa.gov/wed/eCOREgions/co/co_front.pdf
- Environmental Protection Agency (EPA). 2016. Watershed Assessment, Tracking, and Environmental Results System. https://ofmpub.epa.gov/waters10/attains_watershed.control Accessed July 2019.
- Lichvar, R.W., M. Butterwick, N.C. Melvin, and W.N. Kirchner. 2016. The National Wetland Plant List: 2016 Update of Wetland Ratings. Phytoneuron 2016-30: 1-17.

Natural Resources Conservation Service. 2014. List of Hydric Soils.

U.S. Army Corps of Engineers (USACE). 1987. Wetlands Delineation Manual.

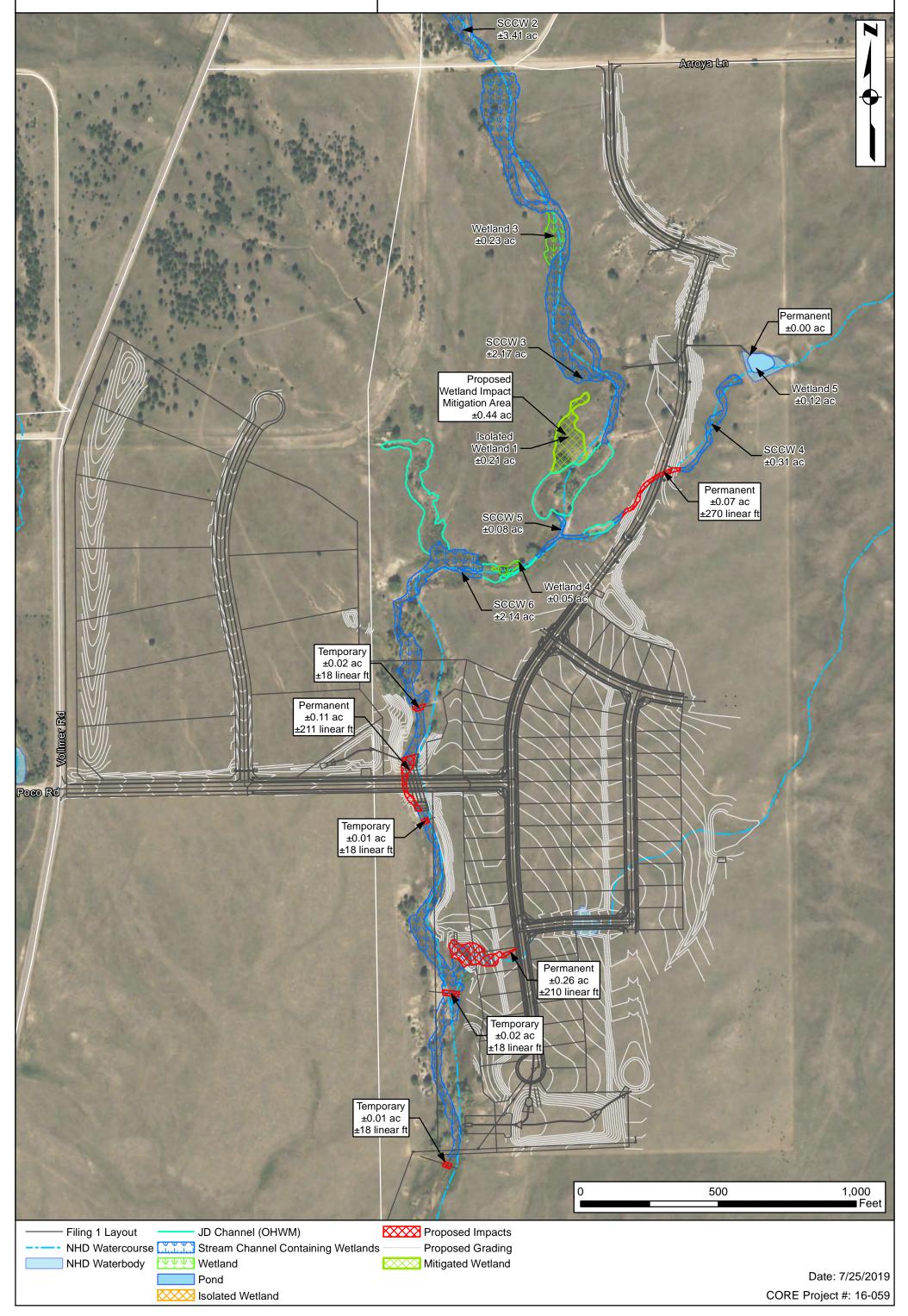

- _____. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2).
- _____. 2015. Final Regional Compensatory Mitigation and Monitoring Guidelines for South Pacific Division USACE. Albuquerque District.

APPENDIX

SITE LOCATION MAP

APPENDIX II

COMPENSATORY WETLAND MITIGATION PLAN MAP



CIVIL ENGINEERING DEVELOPMENT CONSULTING NATURAL RESOURCES CONSULTING LAND SURVEYING 303.703.4444 1950 W. Littleton Blvd., Ste. 109 Littleton, CO 80120

Retreat at Timber Ridge

Compensatory Mitigation Map

El Paso County, Colorado

POCO ROAD CULVERT DESIGN DOCUMENTS

(CBC Engineers)

Dayton Office

March 16, 2020

Contech Engineered Solutions LLC 9025 Centre Pointe Drive Suite 400 West Chester, Ohio 45069

Attn: Mr. Erik Early Design Engineer

Re: Review of AASHTO Calculations and Shop Drawings, Design of Concrete Spread Footings, and Design of Concrete Headwalls and Wingwalls for a Twin 24'-0" x 10'-4" MULTI-PLATE Arch Structure (617696); Retreat at Timber Ridge, El Paso County, Colorado; CBC Report No. 23088D-1-0320-05

Ladies and Gentlemen:

We are pleased to submit our report for the above referenced project. This report contains the review of the AASHTO calculations and shop drawings, design of concrete spread footings, and design of concrete headwalls and wingwalls for a twin MULTI-PLATE arch structure at the subject project location. The sole responsibility of CBC Engineers & Associates, Ltd. is to provide the above mentioned items. Others are responsible for all other aspects of the design of the structure, and the only responsibility of CBC Engineers & Associates, Ltd. is as listed above. The calculations, drawings, and specifications are attached with this report.

If you have any questions, please contact us.

Respectfully submitted,

CBC Engineers & Associates, Ltd.

OLORADO Deepa Nair, M.S., P.E. TOHELL T. Project Engineer Chief Engineer A CHONAL ONAL ENG DN/MTH/leh ec: Erik Early (eearly@conteches.com) ec: Darrell Sanders (dsanders@conteches.com) ec: Melinda Fugate (mfugate@conteches.com) 1-File

TABLE OF CONTENTS

SECTION

c:-

I TEXT

0 AUTHORIZATION1	1.0
1	2.0
	3.0
0 FOOTING EVALUATION	4.0
-	5.0
AND SHOP DRAWINGS3	
	6.0
	7.0
0 WARRANTY5	8.0

II SPECIFICATIONS

APPENDIX A – CALCULATIONS APPENDIX B – SHOP DRAWINGS APPENDIX C – PRINTS

SECTION I

TEXT

1.0 AUTHORIZATION

Authorization to proceed with this project was given by Mr. Erik Early of Contech Engineered Solutions LLC. Work was to proceed in accordance with CBC Engineers & Associates, Ltd. Quotation No. 20-050-05, Revision No. 1 dated March 3, 2020, and the terms and conditions of the Master Agreement for Engineering Services dated July 30, 2009.

2.0 PROJECT DESCRIPTION AND SCOPE

The proposed structure consists of a twin MULTI-PLATE arch structure with a span of 24'-0" and a rise of 10'-4" to be installed in El Paso County, Colorado. The 6" x 2" deep corrugated structural plates for the MULTI-PLATE arch structure are proposed to be 8 gage (0.170"). The scope of this project is to provide a peer review of the AASHTO structural calculations and shop drawings, design of concrete spread footings, and design of concrete headwalls and wingwalls for the above referenced structure at the subject project location. The following table describes the structure.

TABLE	1
-------	---

STRUCTURE CHARACTERISTICS

Number of Structures	2
Structure Type	MULTI-PLATE arch
Span (ftin.)	24'-0"
Rise (ftin.)	10'-4"
Length Out to Out (ftin.)	120'-0"
Live Load	HL-93
Design Cover (ft.)	6.0 feet to 7.25 feet @ 120 pcf

3.0 FOUNDATION EVALUATION

We have been provided a geotechnical report prepared by Entech Engineering, Inc. (their report No. 190975 dated August 8, 2019) for the subject project. We have been instructed to design the concrete spread footings for the MULTI-PLATE arch structure and headwalls/wingwalls for an allowable bearing capacity of 3,500 psf in an email from Austin Nossokoff, P.E., of Entech Engineering, Inc. dated March 3, 2020.

We have accordingly designed the concrete spread footings for an allowable bearing capacity of 3,500 psf. A friction factor of 0.45 has also been utilized. It should be noted that CBC Engineers & Associates, Ltd. has not made any independent evaluation of the foundation and/or geotechnical conditions. We are relying totally on the information furnished to us as being correct and indicative of the allowable bearing capacity and friction factor at the actual structure location. We recommend that a geotechnical engineer examine the foundation soils once the foundation has been excavated, and that the allowable bearing capacity and friction factor be field verified before the footings are constructed. All recommendations in the project geotechnical report should be followed during construction. Any foundation improvement required to achieve an allowable bearing capacity of at least 3,500 psf and a coefficient of friction of 0.45, and to protect against frost and scour and settlement, is the responsibility of others than CBC Engineers & Associates, Ltd.

4.0 FOOTING EVALUATION

The load on a footing consists of the load on top of the structure carried by each leg of the structure, which is equal to the unit weight of the soil times the height of cover over the structure divided into each leg; plus the weight of the soil on the outside edges of the footing outside the structure, plus the weight of the structure itself plus the live load. The weight of the soil over the footings that is excavated can be deducted from the pressure at the bottom of the footing in the consideration of the bearing capacity. The footing also must be designed for any horizontal thrust which is created by the angle of entry into the footing. Since the structure has a span of 24'-0" and a rise of 10'-4", the structure essentially does enter the footing at an angle and there is, therefore, a horizontal component to the footing reactions towards the outside of the structure. The service state loading of the footing according to AASHTO LRFD Bridge Design Specifications is R_h = 2,454 R_v = 16,171 plf. Figure 1 shows the loads on the footing.

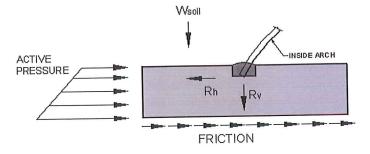


Figure 1

Based on the above loads and an allowable bearing capacity of 3,500 psf, the width of the inner footing for the twin MULTI-PLATE arch structure must be 12'-9" with a minimum thickness of 2'-8" beneath the keyway, and the width of the two (2) outer footings must be 9'-4" with a minimum thickness of 2'-8" beneath the keyway. The steel required in the footings consists of #6 bars at 6" center to center transversely at the bottom and #6 bars at 6" center to center at the top for the outer footings and #6 bars at 6" center to center transversely at the bottom and #6 bars at 6" center to center at the top for the inner footings. The longitudinal reinforcement should be #5 bars as shown on the footing details. The details for the footings can be found on the drawings attached in Appendix C.

5.0 REVIEW OF AASHTO CALCULATIONS AND SHOP DRAWINGS

We have evaluated AASHTO structural calculations and shop drawings for the 8-gage MULTI-PLATE arch and agree that they conform to accepted industry standards for this structure type. We have not made an independent verification of the data used to perform the design calculations, and are assuming all initial assumptions and data are correct as presented to us. AASHTO structural calculations for the MULTI-PLATE arch have been performed for a height of cover varying from 6.0 feet to 7.25 feet at a unit weight of 120 pcf combined with HL-93 live loading. The select backfill around and over the MULTI-PLATE arch structure must be in strict conformance with the project specifications, the manufacturer's requirements and accepted industry standards. Contractor is responsible for any required bracing/shoring to prevent any distortion of the structure during installation and for knowing and following all applicable safety requirements. Care must be exercised to maintain balanced loading on the structure during any backfilling or construction operations, and the structure must be properly backfilled to maintain this balanced loading. The dimension of the structure should be within 2% of the design dimensions at all locations during and at the completion of installation, and this should be verified by field measuring during construction. The reviewed AASHTO structural calculations and shop drawings are included in Appendix A and Appendix B of this report, respectively.

6.0 DESIGN OF CONCRETE HEADWALLS AND WINGWALLS

Concrete headwalls have been designed to be connected to the upstream and downstream ends of the structure. The geometry of the headwalls and wingwalls has been prepared according to

the design information from Classic Consulting dated April 5, 2019 (Project No. 1185.00). The maximum height of the upstream and downstream headwall is approximately 12.2 feet and 11.4 feet respectively above the top of the 36" thick footings. The design of any required vehicle barriers and their connection to the headwalls is the responsibility of others than CBC. There is a wingwall connected to the headwall on each side of the structure as shown on the drawings. An expansion joint will be placed between the headwall and wingwall sections and between headwall sections as shown on the drawings. The length of the headwall at the ends is about 54'-8". The required geometry of the headwalls and wingwalls should be verified prior to construction.

The headwalls at both ends have been designed to carry the lateral soil pressure resulting from the backfill around the structure, and lateral live load pressure from the HL-93 live load surcharge. The dimensions and reinforcing steel have been designed using AASHTO LRFD factored loads to resist the loads applied to the headwall, and to protect against temperature and shrinkage effects. The headwalls have been designed to be founded on the MULTI-PLATE arch footings as shown on the drawings.

The wingwalls at both sides have been designed to carry the lateral soil pressure resulting from the maximum backfill above the footings. No live load surcharge has been considered in the design of wingwalls as per AASHTO methodology (horizontal distance from wingwalls to nearest roadway is greater than the maximum overall height of wingwalls as per project drawings). The dimensions and reinforcing steel have also been designed using AASHTO LRFD factored loads to resist the loads applied to the wingwalls, and to protect against temperature and shrinkage effects. The foundations for the wingwalls have been designed for an allowable bearing capacity of 3,500 psf and a friction factor of 0.45 as described previously.

As mentioned above, the MULTI-PLATE arch structure will be tied into the headwalls with 3/4" diameter hook bolts as shown on the construction drawings. The headwalls and wingwall sections will be tied into each other using #4 epoxy coated dowels at 12" O.C. vertically embedded 2'-0" into the headwall and wingwall sections. Dimensions and the reinforcing steel required for the headwalls and wingwalls is as shown on the attached drawings in Appendix C. The calculations are attached in Appendix A. The backfill behind the headwalls should meet the requirements of the select backfill for the MULTI-PLATE arch and should

have a minimum internal friction angle of 34 degrees and a maximum unit weight of 120 pcf. The select backfill behind the wingwalls extending to a minimum distance of 15.0 feet behind the back face of the walls must be a well-graded, angular, durable granular material placed and compacted to achieve a minimum internal friction angle of 34 degrees and a maximum unit weight of 120 pcf. These values to be field verified. All Federal, State, and Local regulations shall be strictly adhered to relative to excavation side-slope geometry and any required excavation shoring.

7.0 <u>SCOUR</u>

It is beyond the scope of this report to evaluate scour and it is the responsibility of others than CBC Engineers & Associates, Ltd. The depth of all foundations should be evaluated for scour before foundations are constructed, and scour countermeasures (by others) provided as necessary to protect the foundations.

8.0 <u>WARRANTY</u>

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. No other warranty, expressed or implied, is made.

This report has been prepared for the exclusive use of Contech Engineered Solutions, LLC for specific application to the structure herein described. Specific recommendations have been provided in the various sections of the report. The report shall, therefore, be used in its entirety. This report is not a bidding document and shall not be used for that purpose. Anyone reviewing this report must interpret and draw their own conclusions regarding specific construction techniques and methods chosen. CBC Engineers & Associates, Ltd. is not responsible for the independent conclusions, opinions or recommendations made by others.

SECTION II

SPECIFICATIONS

I – GENERAL

1.0 STANDARDS AND DEFINITIONS

- **1.1 STANDARDS** All standards refer to latest edition unless otherwise noted.
 - **1.1.1** ASTM D-698-70 (Method C) "Standard Test Methods for Moisture. Density Relations of Soils and Soil Aggregate Mixtures Using 5.5-lb (2.5 kg.) Rammer and 12-inch (305-mm) Drop".
 - **1.1.2** ASTM D-2922 "Standard Test Method for Density of Soil and Soil Aggregate in Place by Nuclear methods (Shallow Depth)".
 - **1.1.3** ASTM D-1556 "Standard Test Method for Density of Soil in place by the Sand-Cone Method".
 - **1.1.4** ASTM D-1557 "Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort."
 - **1.1.5** All construction and materials shall be in accordance with the latest AASHTO LRFD Bridge Design Specifications.

1.2 DEFINITIONS

- **1.2.1** Owner In these specifications the word "Owner" shall mean Elite Properties of America, LLC.
- **1.2.2** Engineer In these specifications the word "Engineer" shall mean the Owner designated engineer.
- **1.2.3** Design Engineer In these specifications the words "Design Engineer" shall mean CBC Engineers and Associates, Ltd.
- **1.2.4** Contractor In these specifications the word "Contractor" shall mean the firm or corporation undertaking the execution of any work under the terms of these specifications.
- **1.2.5** Approved In these specifications the word "approved" shall refer to the approval of the Engineer or his designated representative.
- **1.2.6** As Directed In these specifications the words "as directed" shall refer to the directions to the Contractor from the Owner or his designated representative.

2.0 GENERAL CONDITIONS

2.1 The Contractor shall furnish all labor, material and equipment and perform all work and services except those set out and furnished by the Owner, necessary to complete in a satisfactory manner the site preparation, excavation, filling, compaction, grading, footing construction, headwall/wingwall construction as shown on the plans and as described therein.

This work shall consist of all mobilization clearing and grading, grubbing, stripping, removal of existing material unless otherwise stated, preparation of the land to be filled, filling of the land, spreading and compaction of the fill, and all subsidiary work necessary to complete the grading of the cut and fill areas to conform with the lines, grades, slopes, and specifications.

This work is to be accomplished under the observation of the Owner or his designated representative.

2.2 Prior to bidding the work, the Contractor shall examine, investigate and inspect the construction site as to the nature and location of the work, and the general and local conditions at the construction site, including, without limitation, the character of surface or subsurface conditions and obstacles to be encountered on and around the construction site; and shall make such additional investigation as he may deem necessary for the planning and proper execution of the work.

If conditions other than those indicated are discovered by the Contractor, the Owner should be notified immediately. The material which the Contractor believes to be a changed condition should not be disturbed so that the owner can investigate the condition.

2.3 The construction shall be performed under the direction of an experienced engineer who is familiar with the design plan.

II – FOOTINGS

1.0 EXCAVATION FOR FOOTINGS

- **1.1** Footing excavation shall consist of the removal of all material, of whatever nature, necessary for the construction of foundations.
- **1.2** It shall be the responsibility of the Contractor to identify and relocate all existing utilities which conflict with the proposed footing locations shown on the plan. The Contractor must call the appropriate utility company at least 48 hours before any excavation to request exact field location of utilities, and coordinate removal and installation of all utilities with the respective utility company.
- **1.3** The side of all excavations shall be cut to prevent sliding or caving of the material above the footings.
- **1.4** Excavated material shall be disposed in accordance with the plan established by the Engineer.
- **1.5** The footings for the MULTI-PLATE arch, and headwalls/wingwalls are designed for an allowable bearing capacity of the non-yielding foundation material of 3,500 psf and a friction factor of 0.45. These values shall be verified in the field before construction. The evaluation and design of any required foundation improvement to achieve the design allowable bearing capacity and friction factor, and to protect against frost and scour and settlement, is the responsibility of others than CBC.

2.0 CONCRETE FOOTING DIMENSIONS

The footings shall be reinforced in accordance with the construction drawings.

III – HEADWALLS/WINGWALLS

- **1.0** The headwalls/wingwalls shall consist of reinforced concrete conforming to Chapter IV of these specifications and to Division II, Section 8, of the AASHTO Standard Specifications for Highway Bridges having a minimum compression strength of 4,000 psi.
- 2.0 Reinforcing steel shall conform to ASTM A-615, Grade 60, having minimum yield strength of 60,000 psi.
- **3.0** The headwalls shall be anchored to the MULTI-PLATE arch in the manner shown on the plans and shall be formed and poured in accordance with the plan dimensions.
- **4.0** Round weep holes spaced not over 5 feet on center shall be placed in the walls above finished grade as shown on the construction drawings. A granular envelope, consisting of #57 stone (clean ³/₄" aggregate) or equivalent, shall be placed behind each weep hole for a distance of approximately 1 foot from all edges of the weep hole. A free-draining geotextile screen shall be placed between the weep hole and the stone to prevent erosion of the stone.
- **5.0** The select backfill behind the headwalls must be a well-graded, angular, durable granular material conforming to the select backfill specifications for the MULTI-PLATE arch placed and compacted to achieve a minimum internal friction angle of 34 degrees and a maximum unit weight of 120 pcf. The material must be placed in strict conformance with the project specifications, the manufacturer's requirements, and industry standards. The select backfill behind the wingwalls extending to a minimum distance of 15.0 feet behind the back face of the walls must be a well-graded, angular, durable granular material placed and compacted to achieve a minimum internal friction angle of 34 degrees and a maximum unit weight of 120 pcf. These values must be field verified.
- 6.0 All Federal, State, and Local regulations shall be strictly adhered to relative to excavation side-slope geometry and any required excavation shoring.

IV – CONCRETE FOR FOOTINGS AND HEADWALLS/WINGWALLS

1.0 <u>CODES AND STANDARDS</u>

1.1 Reinforced concrete shall conform to the requirements of AASHTO Standard Specifications for Highway Bridges, Division II - Construction, Section 8, "Concrete Structures", for Class A concrete, having a minimum compressive strength of 4,000 psi.

2.0 STANDARDS FOR MATERIALS

- **2.1** Portland Cement Conforming to ASTM Specification C-150, Type I or II.
- 2.2 Water The water shall be drinkable, clean free from injurious amounts of oils, acids, alkalis, organic materials, or deleterious substances.
- **2.3** Aggregates Fine and coarse aggregates shall conform to current ASTM Specification C-33 "Specification for Concrete Aggregates" except that local aggregates which have been shown by tests and by actual service to produce satisfactory qualities may be used when approved by the Engineer.
- **2.4** Submittals Test data and/or certifications to the Owner shall be furnished upon request.

3.0 **PROPORTIONING OF CONCRETE**

3.1 COMPOSITION

- **3.1.1** The concrete shall be composed of cement, fine aggregate, coarse aggregate and water.
- **3.1.2** The concrete shall be homogeneous, readily placeable and uniformly workable and shall be proportioned in accordance with ACI-211.1.
- **3.1.3** Proportions shall be established on the basis of field experience with the materials to be employed. The amount of water used shall not exceed the maximum 0.45 water/cement ratio, and shall be reduced as necessary to produce concrete of the specified consistency at the time of placement.
- **3.1.4** An air-entraining admixture, conforming to the requirements of ASTM C260, shall be used in all concrete furnished under this contract. The quantity of admixture shall be such as to produce an air content in the freshly mixed concrete of 6 percent plus or minus 1 percent as determined in accordance with ASTM C231 or C173.

3.2 Qualities Required - As indicated in the table below:

TABLE IV-1

QUALITIES REQUIRED

ITEM	QUALITY REQUIRED
AASHTO Class	А
Type of Cement	l or II
Compressive Strength fc @ 28 days	4,000 psi
Slump, inches	2 - 4 in.

- **3.3** Maximum Size of Coarse Aggregates Maximum size of coarse aggregates shall not be larger than 19 mm (3/4 inches).
- **3.4** Rate of Hardening of Concrete Concrete mix shall be adjusted to produce the required rate of hardening for varied climatic conditions:

Under 40°F Ambient Temperature - Accelerate calcium chloride at 2% is acceptable when used within the recommendations of ACI-306R "Cold Weather Concreting." Admixtures containing chloride ion in excess of 1% by weight of admixture shall not be used in reinforced concrete.

4.0 MIXING AND PLACING

- **4.1** Equipment Ready Mix Concrete shall be used and shall conform to the "Specifications for Ready-Mix Concrete," ASTM C-94. Approval is required prior to using job mixed concrete.
- **4.2** Preparation All work shall be in accordance with ACI-304, "Recommended Practice for Measuring, Mixing, Transporting and Placing Concrete." All construction debris and extraneous matter shall be removed from within the forms. Concrete shall be placed on clean surfaces, free from water. Concrete that has to be dropped four (4) feet or more shall be placed through a tremie.
- **4.3** All concrete shall be consolidated by internal mechanical vibration immediately after placement. Vibrators shall be of a size appropriate for the work, capable of transmitting vibration to concrete at frequencies of not less than 4,500 impulses per minute.

5.0 <u>FORM WORK</u>

5.1 Forms shall be of wood, steel or other approved material and shall be set and held true to the dimensions, lines and grades of the structure prior to and during the placement of concrete.

5.2 Forms shall not be removed until the concrete has sufficient strength to prevent concrete damage and/or drainage.

6.0 <u>CURING</u>

6.1 Fresh concrete shall be protected from rains, flowing water and mechanical injury for a period of four (4) days. Loads shall not be placed on the concrete until it has reached its design strength.

7.0 <u>REINFORCING STEEL</u>

7.1 MATERIAL

7.1.1 All reinforcing bars shall be deformed bars (ASTM-A615) Grade 60.

7.2 BENDING AND SPLICING

- 7.2.1 Bar reinforcement shall be cut and bent to the shapes shown on the plans. Fabrication tolerances shall be in accordance with ACI 315. All bars shall be bent cold, unless otherwise permitted.
- 7.2.2 All reinforcement shall be furnished in the full lengths indicated on the plans unless otherwise permitted. Except for splices shown on the plans and splices for No. 5 or smaller bars, splicing of bars will not be permitted without written approval. Splices shall be staggered as far as possible.
- **7.2.3** In lapped splices, the bars shall be placed and wired in such a manner as to maintain the minimum distance to the surface of the concrete shown on the plans.
- **7.2.4** Substitution of different size bars will be permitted only when authorized by the engineer. The substituted bars shall have an area equivalent to the design area, or larger.

7.3 PLACING AND FASTENING

- **7.3.1** Steel reinforcement shall be accurately placed as shown on the plans and firmly held in position during the placing and setting of concrete. Bars shall be tied at all intersections around the perimeter of each mat and at not less than 2 foot centers or at every intersection, whichever is greater, elsewhere. Welding of cross bars (tack welding) will not be permitted for assembly of reinforcement.
- 7.3.2 Reinforcing steel shall be supported in its proper position by use of mortar blocks, wire bar supports, supplementary bars or other approved devices.

Such devices shall be of such height and placed at sufficiently frequent intervals so as to maintain the distance between the reinforcing and the formed surface or the top surface within 1/4 inch of that indicated on the plans.

V - FILTER FABRIC (GEOTEXTILE SCREEN)

- **1.0** Filter fabric shall be placed at all locations shown on the construction drawings, and as necessary between all dissimilar materials to prevent soil migration and to maintain a soil-tight system.
- 2.0 Filter fabric cloth shall conform to Contech specification for C60-NW or equivalent and shall meet the following ASTM tests:
 - 2.1 ASTM D4751 Apparent opening size equal to #70 U.S. Standard Sieve Size.
 - **2.2** ASTM D4632 (Grab Tensile Test) Minimum Strength = 160 pounds.
 - **2.3** ASTM D4632 (Grab Elongation) 30-70%.
 - **2.4** ASTM D4533 (Trapezoidal Tear) Minimum Strength = 60 pounds.
 - **2.5** ASTM D4355 (Stabilized for Heat and Ultra-Violet Degradation) 70% strength retained.
- **3.0** The minimum fabric coefficient of permeability (ASTM D4491) shall be 0.24 cm/sec.
- **4.0** The fabric shall be non-woven with a minimum thickness (ASTM D5199) of 60 mils.
- 5.0 Fabric shall not be placed over sharp or angular rocks that could tear or puncture it.
- 6.0 Care should be exercised to prevent any puncturing or rupture of the filter fabric. Should such rupture occur the damaged area should be covered with a patch of filter fabric using an overlap minimum of one (1) foot.

APPENDIX A CALCULATIONS

Structural Design Check for Corrugated Steel Plate Arch Per AASHTO LRFD Bridge Design Specifications, Section 12, 8th Edition 2017

Project Name: Timber F	Ridge	CRM #:	617,696
Location: Colorado Sp	rings, CO	_ Date: _	1/23/2020
Corrugation Type	6 X 2 in.	-	Select Shape Below or Select "User Defined"
oading Case	1	(lanes)	
Gage	8	J L	24' X 10'-4"
Bolting Type	4 Bolts/ft.]	
s, Span	288	_ (in.)	
, Rise	124	(in.)	
, Top Rise	124	. (in.)	
T, Area Above Springline	188.0	(sq. ft.)	
, Return Angle	-8,63	(°)	
, Height of Cover	6	(ft.)	
esign Truck (LRFD Highway Load is HL-93)	HL-93		
, Density of Cover Material (120 pcf default)	0.12	(kcf)	
", Pipe Wall Area	2.449	(sq. in <i>./f</i> t.)	(Table A12-3)
Moment of Inertia	0.0962	(in. ⁴ /in.)	(Table A12-3)
Radius of Gyration	0.686	(in.)	(Table A12-3)
n, Modulus of Elasticity	29000	(ksi)	(Table A12-10)
, Tensile Strength	45	(ksi)	(Table A12-10)
, Yield Strength	33	(ksi)	(Table A12-10)
, Surface Load Contact Length	0.83	(ft.)	(3.6.1.2.5)
, Surface Load Contact Width	1.67	(ft.)	(3.6.1.2.5)
	lem Controls	(1)	(0.0.1.2.0)
, Wheel	6.00	(ft)	
, axle spacing	4.00	(ft)	
DF	1.15		
nt-t, Wheel Interaction Depth	2.52	(ft)	
/ _w , live load patch length /w=wt/12+sw+LLDF x H + 0.06 Di/12	16.01	(ft)	
nt-p, Axle Interaction Depth	2.75		
umber of Interacting Wheels	4		
L, Design Lane Load	0.64	(klf)	(3.6.1.2.4)
live load patch length		(ft)	
=lt/12+sa+LLFD(H)	11.73	. /	
L, Area of live load patch at H	187.81	(ft²)	
FR, Flexibility Factor Required	30	(in./kip)	(Table 12.5.6.1-1)
Soil Stiffness Factor	0.22		(12.7.2.4)
l, Dynamic Load Factor = 33(1.0-0.125H)	8,25	(%)	
Multiple Presence Factor	1.2		(Table 3.6.1.1.2-1)
, Design Tandem Load	12.5	(kip/wheel group)	(3.6.1.2.2)
S, Seam Strength		(kip/ft.)	(Table A12-8)
, Wall Area and Buckling	1		(Table 12.5.5-1)
ss, Seam Strength	0.67		(Table 12.5.5-1)
v, Redundancy Factor	1.05		(1.3.4, 12.5.4)
L, Redundancy Factor	1.00		(1.3.4, 12.5.4)
v, Dead Load Factor	1.95		(Table 3.4.1-2)
L, Live Load Factor	1.75		(Table 3.4.1-1)

Structural Design Check for Corrugated Steel Plate Arch

Per AASHTO LRFD Bridge Design Specifications, Section 12, 8th Edition 2017

P _L = (P(1+IM/100)m)/A _{LL}		0.35	(ksf)		(3.6.1.2.6b-7)
P _{FD} , Factored Dead Load Ci	rown Pressure =η _{εν} γ _{εν} x H x ρ	1.4742	(ksf)		(3.5.1)
P _{FL} , Factored Live Load Cro		0.6052	(ksf)		
P _{DL} , Factored Design Lane I	Load Crown Pressure = η _{LL} γ _{LL} m DL/10	0.1344	(ksf)		
Factored Thrust (standard F _{nin} F ₁	structures) = greater of 15/S or 1 = greater of 0.75S/lw or F _{min}	1.00 1.53	(dimensionless) (dimensionless)		(12.7.2.2-4) (12.7.2.2-3)
C _L , Width of Culvert on which LL is applied	= lw ≤ S	11.73	(ft)		(12.7.2.2-2)
T _L , Factored Thrust	$=(P_{FD}+P_{DL})S/2+(P_{FL} C_{L} F_{1})/2$	24.75	(kip/ft)		(P12.7.2.2)
R _w , Wall Resistance	$R_w = \Phi_w F_v A_w$	80.817	(kip/ft.)	> T	24.750 OK (12.7.2.3-1)
Fcr, Critical Buckling Stress	. v.	32.590	(ksi)		-
lf:	$S < \frac{r}{k} \sqrt{\frac{24E_m}{F_u}}$	Then:	$F_{cr} = F_u - \int_{-\infty}^{\infty}$	$\left(\frac{F_{ukS}}{r}\right)^2$	(12.7.2.4-1)
	ngant - Kingga	Upper Case Controls		8Em	
But if:	$s > \frac{r}{k} \sqrt{\frac{24E_m}{F_u}}$	Then:	$F_{cr} = \frac{12E_m}{\left(\frac{kS}{r}\right)}$	2	(12.7.2.4-2)
R _b , Buckling	If: $F_{cr} > F_{y}$, then $F_{cr} = F_{y}$	32,590	(ksi)	<	33
Resistance	$R_b = \Phi_w F_{cr} A_w$	79.813	(kip/ft.)	> T	24.750 OK (12.7.2.3-1)
FF, Flexibility Factor	$FF = S^2/(E_mI)$	29.731	(in./kip)	< FFR _	30 OK (12.7.2.6-1)
$R_{\mathfrak{s}}$, Factored Seam Strength	$R_s = \Phi_{SS}SS$	54.270	(kip/ft.)	>T _	24.750 OK (12.7.2.5)
Footing Reactions:					
V _{DL} , Dead Load Reaction	$V_{DL} = [S/12(H + R, /12) - A]$	$\frac{12.2400}{d_r]\rho/2}$	(kip/ft.)		(12.8.4.2)
V _{LL} , Live Load Reaction	V _{LL} = 2L _c P/(8+2(H+R/12)) Assumes loading case of 2 lanes	2.459	(kip/ft.)		(12.8.4.2)
R _v , Vertical Reaction	$R_V = (V_{DL} + V_{LL}) \cos \Delta$	14.533	(kip/ft.)	downward	(12.8.4.2-1)
R _H , Horizontal Reaction	$R_{H} = (V_{DL} + V_{LL}) \sin \Delta$	-2.205	(kip/ft.)	outward	(12.8.4.2-2)

Structural Design Check for Corrugated Steel Plate Arch

Per AASHTO LRFD Bridge Design Specifications, Section 12, 8th Edition 2017

Location: Colorado Springs, CO	
	Date: <u>1/23/2020</u>
Corrugation Type6 X :	in
Loading Case 1	Select Shape Below or Select "User Defined" (lanes)
Gage 8	24' X 10'-4"
Bolting Type 4 Bol	s/ft.
S, Span 28	3 (in.)
R, Rise	4 (in.)
R _t , Top Rise 12	
A _T , Area Above Springline 188	
Δ, Return Angle -8.6	
H, Height of Cover 7.2	
Design Truck (LRFD Highway Load is HL-93)	
o, Density of Cover Material (120 pcf default) 0.1	
A _w , Pipe Wall Area 2.44	9 (sq. in./ft.) (Table A12-3)
, Moment of Inertia 0.09	
Radius of Gyration 0.66	
Em, Modulus of Elasticity 290	
, Tensile Strength 45	(ksi) (Table A12-10)
v, Yield Strength 33	(ksi) (Table A12-10)
t, Surface Load Contact Length 0.8	
rt, Surface Load Contact Width 1.6	
Tandem Controls	
v, Wheel 6.0	(ft)
, axle spacing 4.0	
_DF 1.1	
int-t, Wheel Interaction Depth 2.5	
W, live load patch length W=wt/12+sw+LLDF x H + 0.06 Di/12 17.4	
h _{int-p} , Axle Interaction Depth 2.7	
lumber of Interacting Wheels 4	
DL, Design Lane Load 0.64	(klf) (3.6.1.2.4)
w, live load patch length	(ft)
x=lt/12+sa+LLFD(H) 13.1	
Area of live load patch at H 229.	5 (ft²)
FR, Flexibility Factor Required 30	(in./kip) (Table 12.5.6.1-1)
x, Soil Stiffness Factor 0.22	
M, Dynamic Load Factor = 33(1.0-0.125H) 3.093	
n, Multiple Presence Factor 1.2	(Table 3.6.1.1.2-1)
T, Design Tandem Load 12.	
SS, Seam Strength 81	(kip/ft.) (Table A12-8)
$D_{\rm w}$, Wall Area and Buckling 1	(Table 712-5) (Table 712-5)
$_{\rm W}$, which are and buckning1	
EV, Redundancy Factor 1.0	
Pedundancy Factor	
ILL, Redundancy Factor 1.00 Ev, Dead Load Factor 1.99	

Structural Design Check for Corrugated Steel Plate Arch Per AASHTO LRFD Bridge Design Specifications, Section 12, 8th Edition 2017

$P_L = (P(1+IM/100)m)/A_{LL}$		0.27	(ksf)		(3.6.1.2.6b-7)
P _{FD} , Factored Dead Load Ci	rown Pressure =η _{εν} γ _{εν} x H x ρ	1.7813	(ksf)		(3.5.1)
P _{FL} , Factored Live Load Cro	wn Pressure = η _{LL} γ _{LL} Ρ _L	0.4711	(ksf)		
P _{DL} , Factored Design Lane I	_oad Crown Pressure = η _{LL} γ _{LL} m DL/10	0.1344	(ksf)		
Factored Thrust (standard F _{nin} F ₁	structures) = greater of 15/S or 1 = greater of 0.75S/lw or F _{min}	1.00 1.37	(dimensionless) (dimensionless)		(12.7.2.2-4) (12.7.2.2-3)
C _L , Width of Culvert on which LL is applied	= lw ≤ S	13.17	(ft)		(12.7.2.2-2)
TL, Factored Thrust	$=(P_{FD}+P_{DL})S/2+(P_{FL} C_{L} F_{1})/2$	27.23	(kip/ft)		(P12.7.2.2)
R _w , Wall Resistance	$R_w = \Phi_w F_v A_w$	80.817	(kip/ft.)	> T	27.229 OK (12.7.2.3-1)
Fcri Critical Buckling Stress		32.590	(ksi)		
lf:	$S < \frac{r}{k} \sqrt{\frac{24E_m}{F_u}}$	Then:	<u>`</u>	$\left(\frac{G_{uk}S}{r}\right)^2$	(12.7.2.4-1)
		Upper Case Control		8Em	
But if:	$S > \frac{r}{k} \sqrt{\frac{24E_m}{F_u}}$	Then:	$F_{cr} = \frac{12E_{m}}{\left(\frac{kS}{r}\right)}$	2	(12.7.2.4-2)
R _b , Buckling	If: $F_{cr} > F_{y}$, then $F_{cr} = F_{y}$	32.590	(ksi)	<	33
Resistance	$R_b = \Phi_wF_crA_w$	79.813	(kip/ft.)	> T	27.229 OK (12.7.2.3-1)
FF, Flexibility Factor	$FF = S^2/(E_n,I)$	29.731	(in./kip)	< FFR	30 OK (12.7.2.6-1)
R _s , Factored Seam Strength	$R_s = \Phi_{SS}SS$	54.270	(kip/ft.)	>T	27.229 OK (12.7.2.5)
Footing Reactions:					
V _{DL} , Dead Load Reaction	$V_{DL} = [S/12(H + R, /12) - \lambda]$	$\frac{14.0400}{4_r]\rho/2}$	(kip/ft.)		(12.8.4.2)
V _{LL} , Live Load Reaction	V _{LL} = 2L _c P/(8+2(H+R/12)) Assumes loading case of 2 lanes	2.317	(kip/ft.)		(12.8.4.2)
R _v , Vertical Reaction	$R_V = (V_{DL} + V_{LL}) \cos \Delta$	16.172	(kip/ft.)	downward	(12.8.4.2-1)
R _H , Horizontal Reaction	R _H =(V _{DL} +V _{LL})sin∆	-2.453	(kip/ft.)	outward	(12.8.4.2-2)

Page 2 of 2 These results are submitted to you as a guideline only, without liability on the part of Contech Engineered Solutions LLC for accuracy or suitability to any particular application, and are subject to your verification.

MULTI-PLATE ARCH (24'-0" X 10'-4") FOOTING DESIGN :

(AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS)

Project No: CBC	23088	Project Title:	Retreat at Timber Ridge
Structure Size: Rv = (V _{dl} + V _{LL})x COS	MULTI-PLATE	Span, S (ft)= Allowable bearing capa Vertical Footing Reacti	
Rh = (V _{dl} + V _{LL})x SIN	(A) ^o	Horizontal Footing Rea	action Component
$VdI = (H_2$	xS - A _t)xGamma/2		Gamma = Unit Weight of Soil
V ₁₁ = n . (A	\L) / (L _w + 2xH₁)		120 pcf
S = 24.00 R= 10.33 H= 7.25 H1= 17.58 H2= 17.58 A ^o = 8.63 At = 188.00 AL = 5000.00 n = 2.00 Lw = 8.00	ft ft ft. ft. o sq.ft. lbs. ft.	Span Rise Height of cover above Height of cover above Return angle Area of the top portion HL-93 Traffic lanes Lane width	the footing to traffic surf the springline
VdI =	14039.5	lbs/ft.	Rv= 16171.0 Rh= 2454.3
V _{LL} =	2316.6	lbs/ft.	Rvd= 13880.6 Rhd= 2106.7

Factored Footing Reaction AASHTO LRFD SECTION 3.4.1-1

STRENGTH LIMIT CASE

LOAD FACTORS:

Beta Coefficient = 1.25 for Dead Load = 1.75 for Live Load = 1.95 for Vertical Earth Press.

Rvu = 31075.3 lbs/ft.

Rhu = 4716.34 lbs/ft.

MULTI-PLATE ARCH (INNER) FOOTING DESIGN : (AASHTO LRED BRIDGE DESIGN SPECIFICATIONS) INNER FOOTING Project No: 23088 Project Title:

Project Title: Retreat at Timber Ridge

MULTI-PI Span, S (ft)= 24 Allowable bearing capacity (psf)		[Feq	/	, ,
		7.25	17.583	32341.9	
Structure Size:	DATA	HEIGHT OF COVER (ft)	Hc to INVERT (ft)	Rv (pif)	

► Wsoil

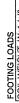
f

۵

Prec

ie ie

Ped


2 ►

Wsoil

10.33 3500

Rise, R (ft)=

	2222.11
Rv (plf)	32341.9
Rh (plf)	0.0
ALL. BEARING (psf)	3500
FOOTING GEOMETRY	
WIDTH, B (ft)	12.75
Central WIDTH, w (ft)	3.33
THICKNESS, t (ft)	2.170
HEIGHT, h (ft)	2.500

7026.17	0000			32341.9	00.00	0.0	2.170	
SOIL WEIGHT, Ws1 (plf)	MOMENT ARM (ft)	CONCRETE WEIGHT, Wc1 (plf)	MOMENT ARM (ft)	Rv (plf)	MOMENT ARM (ft)	Rh (pif)	MOMENT ARM (ft)	

BEARING PRESSURE CALCULATION (STATIC)	ATION (STATIC	()
SUM OF VERTICALS, Q (pif)	44149.4	
SUM OF MOMENTS, Mo (ft-#/ft)	0.0	(CLOCKWISE POSITIVE)
ECCENTRICITY, e (ft)	0.0000	B/6 =
BEARING PRESSURES, q (psf)		
MAXIMUM PRESSURE (psf)	3463	
MINIMUM PRESSURE (pst)	3463	

MULTI-PLATE ARCH (INNER) FOOTING DESIGN : (AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS) INNER FOOTING Project No: 23088 Project Title:

Project Title: Retreat at Timber Ridge

Structure Size:

MULTI-PI Span, S (ft)= 24 Allowable bearing capacity (psf)

Feg Peq

10.33 3500

Rise, R (ft)=

Wsoil

ſ

≯ Wsoil

¥

-> Ř

m

Prec

μ. Έ

DATA	
HEIGHT OF COVER (ft)	7.25
Hc to INVERT (ft)	17.583
Rv (pit)	62150.6
Rh (plf)	0.0
ALL. BEARING (psf)	3500
FOOTING GEOMETRY	
WIDTH, B (ft)	12.75
Central WIDTH, w (ft)	3.33
THICKNESS, t (ft)	2.170
HEIGHT, h (ft)	2.500

SOIL WEIGHT, Ws1 (plf) 9134.02 MOMENT ARM (ft) 9134.02 GONCRETE WEIGHT, Wc1 (plf) 5976.6 MOMENT ARM (ft) 62150.6 MOMENT ARM (ft) 62150.6 MOMENT ARM (ft) 0.00 Rh (plf) 0.0 MOMENT ARM (ft) 2.170	FOOTING LOADS	
NT ARM (ft) RETE WEIGHT, Wc1 (plf) NT ARM (ft) NT ARM (ft) NT ARM (ft)	. •	9134.02
RETE WEIGHT, Wc1 (plf) NT ARM (ft) NT ARM (ft) NT ARM (ft) NT ARM (ft)	DMENT ARM (ft)	0.000
NT ARM (ft) NT ARM (ft) NT ARM (ft) NT ARM (ft)	NCRETE WEIGHT, Wc1 (plf)	5976.6
NT ARM (ft) NT ARM (ft) NT ARM (ft)	DMENT ARM (ft)	0.00
NT ARM (ft) NT ARM (ft)	(plf)	62150.6
NT ARM (ft)	DMENT ARM (ft)	0.00
	(plf)	0.0
	DMENT ARM (ft)	2.170

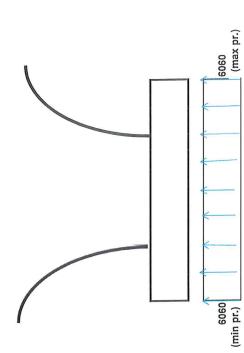
1.25 1.3

OUTSIDE SOIL PRESSURE	
At rest COEFFICIENT, Ko	0.0
Prec (pst)	0.0
Ptri (psf)	0.0
Frec (plf)	0.0
MOMENT ARM (ft)	1.25
Ftri (plf)	0.0
MOMENT ARM (ft)	0.8

ON (STATIC)	77261.2	0.0 (CLOCKWISE POSITIVE	0.0000 B/6 =		6060	6060
BEARING PRESSURE CALCULATION (STATIC)	SUM OF VERTICALS, Q (pit)	SUM OF MOMENTS, Mo (ft-#/ft)	ECCENTRICITY, e (ft)	BEARING PRESSURES, q (psf)	MAXIMUM PRESSURE (psf)	MINIMUM PRESSURE (pst)

S
СĽ
ш
ω
7
-
C
z
ш
~
0
m
O

MULTI-PLATE ARCH (INNER) FOOTING DESIGN : (AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS) INNER FOOTING Project No: 23088 Project Title: Retreat at Timber Riv


Retreat at Timber Ridge

10.33 3500
Rise, R (ft)= psf)
24 capacity (
MULTI-PL Span, S (ft)= Allowable bearing
Structure Size:

	3	< outer footings	
분 분 년 년 .		ft lb ft- lb	lbs
4.71 12.75 12 30	26.63	67,214.53 38,408.39 reinforcement)	Vu = 28541.20).85x2x(f _c) ^{0.5} x b
Cantilever Length (a): Footing width: Concrete Beam :	ط ال د ال	Bending Moment @ arch connection Mu= 67,214.53 Bending Moment @ arch connection Ms= 38,408.39 (See attached calculations for the reinforcement)	Shear (a) the arch connection $Vu = 28541.$ Required Depth : $d = Vu/(0.85x2x(f_c)^{0.5} x b)$
		Factored Service	

₽

MULTI-PLATE ARCH (INNER) FOOTING DESIGN :

(AASHTO LRFD BRIDGE D	DESIGN SPECI	FICATIONS)			
INNER FOOTING Project No: 23088		Project Title:	Retreat at Timb	er Ridge	
Structure Size:	MULTI-PLATE		24	Rise, R (ft)=	10.33
			ng capacity (psf)		3500
		F REINFORCEMEN	T FOR		
	CRACKING CONT				
AASHTO LRFD SPECIFICAT	IONS SECTION	5.7.3.4			
Size of the bar #		6			
Width of the footing,b (in)		12.0			
Net design depth,d (in)		26.63			
dc(in)		3.38			
bar diameter (in)		0.75			
c/s area of the bar(in^2)		0.44			
spacing(in)		6.0			
no: of bars (n)		2			
Area of steel,As(in^2)		0.88			
fy(kips/in^2)		60			
f'c(kips/in^2)		4000			
M(ft-kips) (service load mo	oment)	38.41			
M(ft-kips) (factored load m	oment)	67.2			
y e (exposure factor)		0.75			
fss (ksi)		20.1			
$\beta s = 1 + \frac{dc}{0.7(h - dc)}$		1.181			
Note: sact < 700ye/	Bs.fss- 2 de				
700γe/βs.fss - 2 de		15.4	0.K		

2.0 CHECK FOR MINIMUM REINFORCEMENT FOR CRACKING CONTROL: AASHTO LRFD SPECIFICATION 5.7.3.3.2

otal Depth	(in)	30	
fcr(psi)	lg(in^4)	yt	Mcr (ft-k)
480.0	27000.0	15.0	72.0
	(Criterion:	

 $\varphi Mn \ge the lesser of Mcr and 1.33 Mu$

3.0	Mu(ft-kips)	a(in)(assumed)	b(in)	d(in)	As (in^2)	a cal(in)
(1.33Mu)	89.40	1.12	12.0	26.6	0.76	1.12
	As provided =	0.88	sq.in			
	φMn(ft-kips)	> 1.33 Mu(ft-Kips)		O.K		

4.0 CHECK FOR TEMPERATURE AND SHRINKAGE REINFORCEMENT: AASHTO LRFD SPECIFICATIONS SECTION 5.10.8

As = 0.00186 b.h 153 For longitudinal bars : b= 30 h= 32 No of bars prov = 9.9 #5 longitudinal bars As = 8.5 As req= 12 For transverse bars: b= h= 30 2 No: of bars prov 0.67 As req= #6@6" @ top and #6@6"@ bottom 0.88 As prov=

MULTI-PLATE ARCH (24'-0" X 10'-4") FOOTING DESIGN : (AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS)

Project No: CBC	23088	Project Title:	Retreat at Timber Ridge, El Paso, CO
Structure Size: Rv = (V _{dt} + V _{LL})x CO	MULTI-PLATE S (A) ^o	Span, S (ft)= Allowable bearing ca⊧ Vertical Footing Reac	
Rh = (V _{dl} + V _{LL})x SIN	(A) ^o	Horizontal Footing Re	action Component
	xS - A _t)xGamma/2 AL) / (L _w + 2xH ₁)		Gamma = Unit Weight of Soil 120 pcf
	ft ft ft. ft. sq.ft.	Span Rise Height of cover above Height of cover above Height of cover above Return angle Area of the top portior HL-93 Traffic lanes Lane width	the footing to traffic surf the springline
Vdl = V _{LL} =		lbs/ft. lbs/ft.	Rv= 16171.0 Rh= 2454.3 Rvd= 13880.6 Rhd= 2106.7
VLL -	2310.0	105/11.	NVG- 13000.0 KHu- 2100.7

Factored Footing Reaction AASHTO LRFD SECTION 3.4.1-1

STRENGTH LIMIT CASE

LOAD FACTORS:

Beta Coefficient = 1.25 for Dead Load = 1.75 for Live Load = 1.95 for Vertical Earth Press.

Rvu = 31075.3 lbs/ft.

Rhu = 4716.34 lbs/ft.

MULTI-PLATE ARCH (OUTER) FOOTING DESIGN : (AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS) OUTER FOOTING Project No: 23088 Project Title:

Retreat at Timber Ridge Project Title: (#) U

Structure Size:

24	capacity (psf)
MULTI-PLATE Span, S (ft)=	Allowable bearing

DATA	
HEIGHT OF COVER (ft)	7.25
Hc to INVERT (ft)	17.583
Rv (plf)	16171
Rh (pif)	2454
Rvd(plf)=	13881
Rh dl(ptf)=	2106.7
ALL. BEARING (psf)	3500
FOOTING GEOMETRY	
WIDTH, B (ft)	9.33
OUTSIDE WIDTH, w (ft)	6.08
THICKNESS, t (ft)	2.170
HEIGHT, h (ft)	2.500

Т

Rh

£

Prec

Pari I

Frec

Å -1

Wsoil

10.33 3500

Rise, R (ft)=

	(hlf)	
NDS	Ws1	1000
LOA	GHT,	0
DNIL	VEI	ŀ
0	Ы	Ċ

FOOTING LOADS	
SOIL WEIGHT, WS1 (pff)	12834.89
MOMENT ARM (ft)	3.042
CONCRETE WEIGHT, Wc1 (pff)	3498.8
MOMENT ARM (ft)	4.67
Rv (plf)	16171.0
MOMENT ARM (ft)	6.08
Rh (plf)	-2454.3
MOMENT ARM (ft)	2.170

OUTSIDE SOIL PRESSURE	
At rest COEFFICIENT, Ko	0.5
Prec (psf)	1055.0
Ptri (psf)	150.0
Frec (plf)	2637.5
MOMENT ARM (ft)	1.25
Ftri (pif)	187.5
MOMENT ARM (ft)	0.8

G	_
(STATIC	3750A 6
ATION	305
EARING PRESSURE CALCULATION (STATIC)	(uh)
SURE (MAIO S LOBTICAL S O MI
S PRES	VEBTIC
EARING	IN OF

TIC)		(CLOCKWISE POSITIVE)	B/6 = 1.5550		<3500 psf	
ATION (STA'	32504.6	151854.3	0.0068		3499	3469
BEARING PRESSURE CALCULATION (STATIC)	SUM OF VERTICALS, Q (plf)	SUM OF MOMENTS, Mo (ft-#/ft)	ECCENTRICITY, e (ft)	BEARING PRESSURES, q (psf)	MAXIMUM PRESSURE (psf)	MINIMUM PRESSURE (psf)

MULTI-PLATE ARCH (OUTER) FOOTING DESIGN : (AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS) OUTER FOOTING Project No: 23088 Project Title

Structure Size:

MULTI-PLATE Span, S (ft)= 24 Rise, R (ft)= Allowable bearing capacity (psf)

Project Title: Retreat at Timber Ridge

	ER	
	Š	101
	E C	
	Ĕ	11/14
Ā	б	-
S	Щ	-

DATA	
HEIGHT OF COVER (ft)	7.25
Hc to INVERT (ft)	17.583
Rvfac (plf)	31075
Rhfac (pif)	4716
ALL. BEARING (psf)	3500

т

뭔

ß

Prec

Frec

Î E E

Å •

Wsoil

10.33 3500

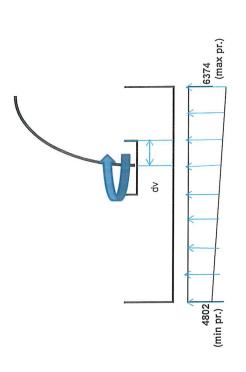
FOOTING GEOMETRY	
WIDTH, B (ft)	9.33
OUTSIDE WIDTH, w (ft)	6.08
THICKNESS, t (ft)	2.170
HEIGHT, h (ft)	2.500

FOOTING LOADS	
SOIL WEIGHT, Ws1 (pif)	16685.35
MOMENT ARM (ft)	3.042
CONCRETE WEIGHT, Wc1 (plf)	4373.4
MOMENT ARM (ft)	4.67
Rvfac (plf)	31075.3
MOMENT ARM (ft)	6.08
Rhfac (plf)	-4716.3
MOMENT ARM (ft)	2.170

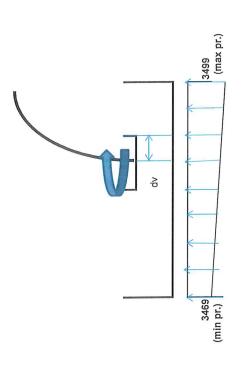
1.25

1.3

1.35


OUTSIDE SOIL PRESSURE At rest COEFFICIENT, Ko Prec (psf) Ptri (psf)	0.5 1424.2 202.5
Frec (plf) MOMENT ARM (ft)	3560.6 1.25
i (pif)	253.1
DMENT ARM (ft)	0.8

		(CLOCKWISE POSITIVE)	B/6 = 1.5550			
ATION	52134.1	254608.9	0.2187		6374	4802
BEARING PRESSURE CALCULATION	SUM OF VERTICALS, Q (pif)	SUM OF MOMENTS, Mo (ft-#/ft)	ECCENTRICITY, e (ft)	BEARING PRESSURES, q (psf)	MAXIMUM PRESSURE (psf)	MINIMUM PRESSURE (psf)


MULTI-PLATE ARCH (OUTER) FOOTING DESIGN : (AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS)

	10.33 3500	با ب	
er Ridge	Rise, R (ft)= f)		
Retreat at Timber Ridge	Span, S (ft)= 24 R Allowable bearing capacity (psf)	6.08 b = 12 b = 12 h = 30 d = 26.63 dv = 23.96 $f'_{c} = 4000$ $f'_{c} = 4000$ $f'_{c} = 57,054.00$ (See attached calculations for the reinforcement) connection= 6163.16 m the arch connection= $V_{U} = 32326.61$ $d = V_{U}(0.85x2x(f_{c})^{0.5} x b)$	26.63 in. provided
Project Title:	Span, S (ft)= Allowable bear	sction Mu= (See attached c connection= om the arch conn	26.6
	MULTI-PLATE	Cantilever Length : Footing width: Concrete Beam : Concrete Beam : Bending Moment @ arch connection Mu= Bending Moment @ arch connection Mu= Max. Factored pressure @ arch connection= Max. Factored pressure @ arch connection= Shear @ the arch connection Shear @ the arch connection Shear @ the arch connection Shear @ the arch connection	25.06 in. < O.K. for SHEAR
OUTER FOOTING Project No: 23088	: Size:	Cantilever Length Footing width: Concrete Bearm : Bending Moment Max. Factored pr Max. Factored pr Max. Eactored pr Shear @ the arc Shear @ the arc	25.
OUTER I Project N	Structure Size:	DATA	ц

MULTI-PLATE ARCH (OUTER) FOOTING DESIGN : (AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS) OUTER FOOTING

Project No: 23088	o: 23088		Project Title:	Retreat at Timber Ridge	mber Ridge	
Structure Size:	Size:	MULTI-PLATE	Span, S (ft)= 24 R Allowable bearing capacity (psf)	24 ng capacity (Rise, R (ft)= psf)	10.33 3500
DATA	Cantilever Length :	Length :			6.08 0.33	₽₽₽
	Concrete Beam	atn: 3eam :		= q	12	₽.Ę
				≓ų	30	Ľ.
				q = م	26.63	Ľ.
				=vb	23.96	Ŀ.
				f'c =	4000	psi
Service	Bending N	Bending Moment @ arch connection Mu=	iection Mu=		25,504.90	ft Ib
	Max. UnFa Max. UnFa	(See attached calculations Max. UnFactored pressure @ arch connection⊐ Max. UnFactored pressure @ dv from the arch connection=	(See attached carticles attached carticles connection= dv from the arch co	alculations for nnection=	(See attached calculations for the reinforcement) ch connection= 3488.50 from the arch connection= 3494.99	psf psf

MULTI-PLATE ARCH (OUTER) FOOTING DESIGN :

(AASHTO LRFD BRIDGE D	ESIGN SPECI	FICATIONS)		
Project No: 23088		Project Title:	Retreat at Timber	r Ridge
Structure Size:	/ULTI-PLATE	Span, S (ft)=	24	Rise, R (ft)=
		Allowable bearin		
		F REINFORCEMENT	FOR	
	CRACKING CONT			
AASHTO LRFD SPECIFICAT	IONS SECTION	5.7.3.4		
Size of the bar #		6		
Width of the footing,b (in)		12.0		
Net design depth,d (in)		26.63		
dc(in)		3.38		
bar diameter (in)		0.75		
c/s area of the bar(in^2)		0.44		
spacing(in)		6.0		
no: of bars (n)		2.00		
Area of steel,As(in^2)		0.88		
fy(kips/in^2)		60		
f'c(kips/in^2)		4000		
M(ft-kips) (service load mo	ment)	25.50		
M(ft-kips) (factored load m	oment)	57.1		
γ e (exposure factor)		0.75		
fss (ksi)		13.3		
$\beta s = 1 + \frac{dc}{0.7(h-dc)}$		1.181		
Note: $sact < 700\gamma e/g$	s.fss- 2 de]	
700γe/βs.fss - 2 de		26.7	0.K	

2.0 CHECK FOR MINIMUM REINFORCEMENT FOR CRACKING CONTROL: AASHTO LRFD SPECIFICATION 5.7.3.3.2

otal Depth	(in)	30	
fcr(psi)	lg(in^4)	yt	Mcr (ft-k)
480.0	27000.0	15.0	72.0
	(Criterion:	

 φ Mn \geq the lesser of Mcr and 1.33 Mu

3.0	Mu(ft-kips)	a(in)(assumed)	b(in)	d(in)	As (in^2)	a cal(in)
(1.33Mu)	75.88	0.95	12.0	26.6	0.64	0.95
	As provided =	0.88 s	q.in			
	φMn(ft-kips)	> 1.33 Mu(ft-Kips)		O.K		

4.0 CHECK FOR TEMPERATURE AND SHRINKAGE REINFORCEMENT: AASHTO LRFD SPECIFICATIONS SECTION 5.10.8

As = 0.00186 b.h		
For longitudinal bars : b=	112	
h=	30	
No of bars prov =	22	min
As =	6.8	#5 longitudinal bars
As req=	6.2	
For transverse bars: b=	12	
h=	30	
No: of bars prov	2.00	
As req=	0.67	
As prov=	0.88	

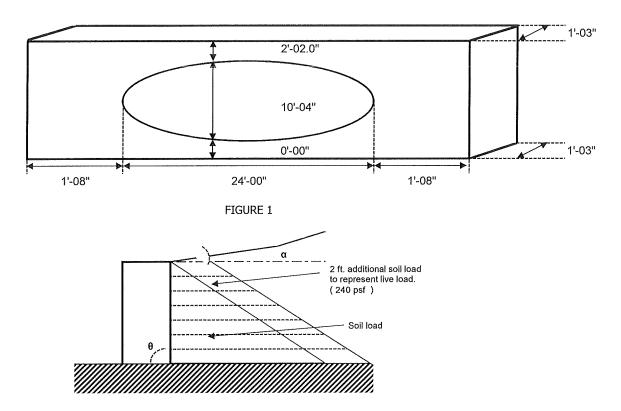
10.33 3500

CONCRETE HEADWALL DESIGN

CBC # 23088 Retreat at Timber Ridge, El Paso, CO SQUARE END

Material Properties: 120 pcf = γ_{soll} 150 pcf = $\gamma_{concrete}$ 34° = ϕ' 4,000 psi = Concrete strength 60,000 psi = Steel yield strength Cast-in-Place = Type of Structure

Analysis based on:

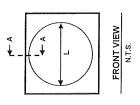

Active conditions 0.42 = Ka - horizontal 240 psf Live Load Surcharge 10 kip Impact Load

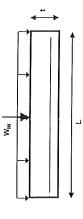
```
Shape: Round/Ellipse/Pipe Arch
10.33 ft = Rise
24.00 ft = Span
2.17 ft = Height of cover
0.00 ft = Stickup
1.67 ft = Left end width of headwall
1.67 ft = Right end width of headwall
15.0 in = Top Thickness
15.0 in = Bottom Thickness
```

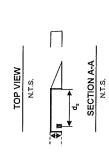
0.00 in = Toe

Headwall/Soil Interface:

- $90.0^{\circ} = \theta$, Angle of Headwall to Horizontal
- $0.0^{\circ} = \alpha$, Soil Angle of Inclination
- $0.0^{\circ} = \delta$, Soil-Concrete Interface Friction Angle


Concrete Strength f _c	4,000 psi
Steel Yield Strength fy	60,000 psi
ength L	27.33 ft
Thickness h	12.00 in
Height of Cover + Stickup] b	2.17 ft


dition UNFACTORED LOADS - Activ


UNFACTORED LUADS - ACTIVE CONDITIONS	
Earth Surchage Load War 218.74 pf	
Soil Load W _{sail} 118.66 pff	
Load from the skew (plf) 0	
FACTORED LOADS - Active conditions	η _R = 1
Earth Surchage Load War 382.79 pif	Υ _{ES} = 1.75
Soil Load W _{see} 178.00 pff	Υ _{EH} = 1.50
Impact load (lbs/ft) 0,000 lbs (See attached sheet)	ed sheet)

RESULTS

31.50 k-ft	57 36 k-ft	
Max. Unfactored Moment Ms (lateral)	Max. Factored Moment M., Amon	

HEADWALL DESIGN :

(AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS)

CBC # 23088 (TOP BEAM)

CDC #	23000 (TOF DLAM)		
	FLEXURAL CRACKING CON	TROL:	
AASHTO L	RFD SPECIFICATIONS SECTIO	N 5.7.3.4	TOP BEAM
Size of the	bar #	#8	
Width of th	e beam,b (in)	26.00	
Net design	depth,d (in)	8.88	
dc(in)		3.13	
bar diamet	er (in)	1	
c/s area of	the bar(in^2)	0.79	
spacing(in)		3.0	
no: of bars	(n)	5.0	
Area of ste	el,As(in^2)	3.95	
fy(kips/in^2	2)	60	
f'c(kips/in^	2)	4000	
M(ft-kips) (service load moment)	31.50	
M(ft-kips) (factored load moment)	52.4	
γ e (exposu	ire factor)	0.75	
fss (ksi)		11.4	
$\beta s = 1 +$	$\frac{dc}{0.7(h-dc)}$		
<i>µ</i> 5 – 1 †	0.7(h-dc)	1.503	
Note:	$sact < 700\gamma e/\beta s.fss- 2 dc$		
700γe/βs.fs	s - 2 de	24.4	O.K

2.0 CHECK FOR MINIMUM REINFORCEMENT FOR CRACKING CONTROL: AASHTO LRFD SPECIFICATION 5.7.3.3.2

	AASHTU LRFD SPECIFICATI	UN 5.7.3.3
)	12	

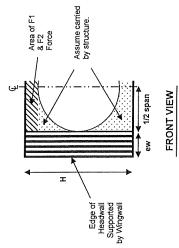
	9	h (in)	otal Deptl
Mcr (ft-k)		lg(in^4)	fcr(psi)
25.0		3744.0	480.0
	Criterio	3744.0	400.0

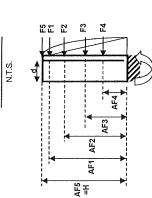
 $\varphi Mn \ge$ the lesser of Mcr and 1.33 Mu

3.0	Mu(ft-kips)	a(in)(assumed)	b(in)	d(in)	As (in^2)	a cal(in)
(Mu)	52.36	0.94	26.0	8.9	1.38	0.94
	As provided =	4.0 sq	ı.in			
	φMn(ft-kips)	> 1.33 Mu(ft-Kips)		О.К		

END BEAM - BENDING AT BOTTOM Retreat at Timber Ridge, El Paso, CO

Concrete Strength f.	4,000 psi
Steel Yield Strength fy	60,000 psi
	12.20 ft
	12.00 in
End Width b	1.67 ft
ength L = 1/2 Span	12.00 ft


FORCES AND MOMENT ARMS	Unfact.	Fact.	$\eta_{R} = 1$
F1 ES Force - Top Beam (kips)	2:62	4.59	γ _{Es} = 1.75
Moment Arm	11.12 ft		
F2 Soil Force - Top Beam (kips)	1.42	2.14	Υ _{EH} = 1.5
Moment Arm	10.75 ft		
F3 ES Force - End Beam (kips)	2.05	3.59	γ _{Es} = 1.75
Moment Arm	6.10 ft		
F4 Soil Force - End Beam (kips)	6.26	9.40	Ү _{Ен} = 1.5
Moment Arm	4.07 ft	新生物的 	
Impact load (kips)	00:00	00:0	γ _{LL} = 1.75
Moment Arm	26.00 ft	26.00	


 $\eta_{R} = 1$

RESULTS

82.49 k-ft	134.16 k-ft
Max. Unfactored Moment M _s	Max. Factored Moment M.

Σ

HEADWALL DESIGN :

(AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS)

CBC # 23088 SQUARE END

AASHTO LRFD SPECIFICATIONS SECTI	ON 5.7.3.4	END BEAM
Size of the bar #	#9	
Width of the beam,b (in)	20.0	
Net design depth,d (in)	9.44	
dc(in)	2.56	
bar diameter (in)	1.128	
c/s area of the bar(in^2)	1	
spacing(in)	3.8	
no: of bars (n)	4.0	
Area of steel,As(in^2)	4.0	
fy(kips/in^2)	60	
f'c(kips/in^2)	4000	
M(ft-kips) (service load moment)	82.49	
M(ft-kips) (factored load moment)	134.2	
γ e (exposure factor)	0.75	
fss (ksi)	32.0	
$\beta s = 1 + \frac{dc}{0.7(h-dc)}$	1.388	
Note: $sact < 700 \gamma e/\beta s.fss - 2 dc$		

700γe/βs.fss - 2 de

2.0 CHECK FOR MINIMUM REINFORCEMENT FOR CRACKING CONTROL:

AASHTO LRFD SPECIFICATION 5.7.3.3.2

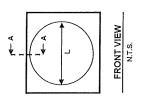
6.7

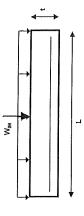
0.K

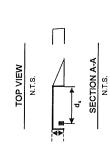
otal Depti	h (in)	12	
fcr(psi)	lg(in^4)	yt	Mcr (ft-k)
480.0	2880.0	6.0	19.2
	C	criterion:	

 $\varphi Mn \ge the \ lesser \ of \ Mcr \ and \ 1.33 \ Mu$

3.0	Mu(ft-kips)	a(in)(assumed)	b(in)	d(in)	As (in^2)	a cal(in)
(Mu)	134.16	3.40	20.0	9.4	3.9	3.40
	As provided =	4.0 s	q.in			
	φMn(ft-kips)	> 1.33 Mu(ft-Kips)		0.К		


Concrete Strength f _c	4,000 psi
Steel Yield Strength f,	e0'000 bsi
rength L	27.33 ft
Thickness h	UI 00:7T
[Height of Cover + Stickup] b	1.36 ft


UNFACTORED LOADS - Active conditions


			$\eta_{R} = 1$	γ _{ES} = 1.75	γ _{EH} = 1.50	(See attached sheet)
Earth Surchage Load War and American State and American Structure 134.06 plf	Soil Load Wsei 44:58 plf	Load from the skew (plf) 0	FACTORED LOADS - Active conditions	Earth Surchage Load Wsur	Soil Load Wseel 66.86 plf	Timpact load (lbs/ft) 0,000 lbs

RESULTS

16.68 k-ft	28.15 k-ft
1000	
Max. Unfactored Moment Ms (attenui)	x. Factored Moment Mu(tateral)
2	2

HEADWALL DESIGN :

(AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS)

CBC # 23088 (TOP BEAM)

FLEXURAL CRACKING CONT	ROL:	
AASHTO LRFD SPECIFICATIONS SECTION	15.7.3.4	TOP BEAM
Size of the bar #	#8	
Width of the beam,b (in)	16.00	
Net design depth,d (in)	8.88	
dc(in)	3.13	
bar diameter (in)	1	
c/s area of the bar(in^2)	0.79	
spacing(in)	3.0	
no: of bars (n)	3.0	
Area of steel,As(in^2)	2.37	
fy(kips/in^2)	60	
f'c(kips/in^2)	4000	
M(ft-kips) (service load moment)	16.68	
M(ft-kips) (factored load moment)	28.1	
γ e (exposure factor)	0.75	
fss (ksi)	10.0	
$\beta s = 1 + \frac{dc}{0.7(h-dc)}$	1.503	
Note: $sact < 700\gamma e/\beta s.fss - 2 dc$		
700 <i>γ</i> e/βs.fss - 2 de	28.8	O.K

2.0 CHECK FOR MINIMUM REINFORCEMENT FOR CRACKING CONTROL:

AASHTO LRFD SPECIFICATION 5.7.3.3.2

Total Deptl	h (in)	12	
fcr(psi)	lg(in^4)	yt	Mcr (ft-k)
480.0	2304.0	6.0	15.4
	(criterion:	

 $\varphi Mn \ge$ the lesser of Mcr and 1.33 Mu

3.0	Mu(ft-kips)	a(in)(assumed)	b(in)	d	(in)	As (in^2)	a cal(in)
(Mu)	28.15	0.81	16.0	8	8.9	0.74	0.81
	As provided =	2.4 sq	ı.in				
	φMn(ft-kips)	> 1.33 Mu(ft-Kips)		О.К			

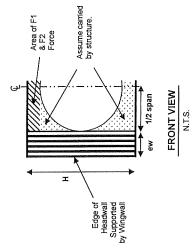
DATA

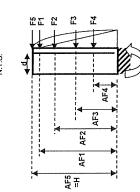
Concrete Strength f.	4,000 psi
Steel Yield Strength f,	60,000 psi
Height H	11.36 ft
Thickness h	12.00 ln
End Width b	L.67 ft
Length L = 1/2 Span	12.00 ft

FORCES AND MOMENT ARMS	Unfact.	Fact.
F1 ES Force - Top Beam (kips)	1.61	2.82
Moment Arm	10.68 ft	
F2 Soil Force - Top Beam (kips)	0.53	0.80
Moment Arm	10.45 ft	
F3 ES Force - End Beam (kips)	1.91	3.35
Moment Arm	5.68 ft	
F4 Soil Force - End Beam (kips)	5.43	8.15
Moment Arm	3.79 ft	
Impact load (kips)	0:00	0:00
Moment Arm	26.00 ft	26.00

γ_{ES}= 1.75

 $\gamma_{EH}=1.5$


γ_{ES}= 1.75


η_R= 1

RESULTS

54.20 k-ft	88.31 k-ft
Max. Unfactored Moment Ms	Max. Factored Moment Mu

Σ

γ_{EH}= 1.5

γ_{LL}= 1.75

CBC Engineers 3/20/2020

HEADWALL DESIGN :

(AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS)

CBC # 23088 SQUARE END

SQUAREEND		
AASHTO LRFD SPECIFICATIONS SECTION	1 5.7.3.4	END BEAM
Size of the bar #	#9	
Width of the beam,b (in)	20.0	
Net design depth,d (in)	9.44	
dc(in)	2.56	
bar diameter (in)	1.128	
c/s area of the bar(in^2)	1	
spacing(in)	5.0	
no: of bars (n)	3.0	
Area of steel,As(in^2)	3.0	
fy(kips/in^2)	60	
f'c(kips/in^2)	4000	
M(ft-kips, (service load moment)	54.20	
M(ft-kips, (factored load moment)	88.3	
γ e (exposure factor)	0.75	
fss (ksi)	25.8	
$\beta s = 1 + \frac{dc}{0.7(h - dc)}$	1.388	
Note: $sact < 700\gamma e/\beta s.fss - 2 dc$		
700 <i>γ</i> e/βs.fss - 2 de	9.5	O.K

2.0 CHECK FOR MINIMUM REINFORCEMENT FOR CRACKING CONTROL: AASHTO LRFD SPECIFICATION 5.7.3.3.2

Total Depth (in)		n (in) 12	
fcr(psi)	lg(in^4)	yt	Mcr (ft-k)
480.0 2880.0		6.0	19.2
	(Criterion:	

 $\varphi Mn \ge the lesser of Mcr and 1.33 Mu$

3.0	Mu(ft-kips)	a(in)(assumed)	b(in)	d(in)	As (in^2)	a cal(in)
(Mu)	88.31	2.06	20.0	9.4	2.3	2.06
	As provided =	3.0 sc	ı.in			
	φMn(ft-kips)	> 1.33 Mu(ft-Kips)		о.к		

Retain Pro 9 © 1989 - 2011 Ver: 9.27 8171 Registration #: RP-1110505 **RP9.27**

Cantilevered Retaining Wall Design

Title	: RETREAT AT	TIMBER I	RIDGE, CO	
Job #	: 23088	Dsgnr:	CBC	Da
Descri	ption			

Page: ate: MAR 20,2020

Description.... WINGWALL MAX HT. 5 FEET

Criteria		Soil Data				
Slope Behind Wall Height of Soil over Toe	= 12.20 ft = 0.00 ft = 0.00 : 1 = 0.00 in = 0.0 ft	Equivalent Fluid PressureMethodHeel Active Pressure=Toe Active Pressure=Passive Pressure=Soil Density, Heel=	46.0 46.0	0 psf/ft 0 psf/ft 0 psf/ft 0 pcf 0 pcf 0		
					Thum	onail
Surcharge Loads		Lateral Load Applied to	Stem	n I	Adjacent Footing	_oad
NOT Used To Resist SI Surcharge Over Toe NOT Used for Sliding & Axial Load Applied Axial Dead Load	= 0.0 psf Overturning to Stem = 0.0 lbs = 0.0 lbs	Height to Bottom = The above lateral load	0.0 # 0.00 ft 0.00 ft 1.00 0.0 p		Adjacent Footing Load Footing Width Eccentricity Wall to Ftg CL Dist Footing Type Base Above/Below Soil at Back of Wall Poisson's Ratio	= 0.0 lbs = 0.00 ft = 0.00 in = 0.00 ft Line Load = 0.0 ft = 0.300
Design Summary		Stem Construction		Top Stem Stem Ok		
Sliding Fotal Bearing Load resultant ecc. Soil Pressure @ Toe Soil Pressure @ Heel Allowable Soil Pressure Less T ACI Factored @ Toe ACI Factored @ Heel Footing Shear @ Toe Footing Shear @ Heel Allowable Liding Calcs (Vertical Co	= 3,345 psf = 1,604 psf = 0.0 psi OK = 8.9 psi OK = 94.9 psi mponent NOT Used) = 5,106.2 lbs	Design Height Above Ftg Wall Material Above "Ht" Thickness Rebar Size Rebar Spacing Rebar Placed at Design Data fb/FB + fa/Fa Total Force @ Section MomentActual MomentAllowable ShearAllowable Wall Weight Rebar Depth 'd' LAP SPLICE IF ABOVE LAP SPLICE IF BELOW HOOK EMBED INTO FT	= = = lbs = ft-# = = psi = = in = in = in =	0.00 Concrete 12.00 # 6 6.00 Edge 0.587 5,134.1 20,877.1 35,545.0 44.5 94.9 150.0 9.63 37.00		
, laaba i bibb i loga	= - 9,942.1 lbs = 0.0 lbs OK = 0.0 lbs OK	Masonry Data ———— fm Fs Solid Grouting	psi = psi = =			
oad Factors Building Code Dead Load Live Load Earth, H Wind, W Seismic, E	1.250 1.750 1.500 1.600 1.000	Modular Ratio 'n' Short Term Factor Equiv. Solid Thick. Masonry Block Type Masonry Design Method Concrete Data f'c Fy		Medium V ASD 4,000.0 60,000.0		

Retain Pro 9 © 1989 - 2011 Ver: 9.27 8171 Registration #: RP-1110505 RP9.27

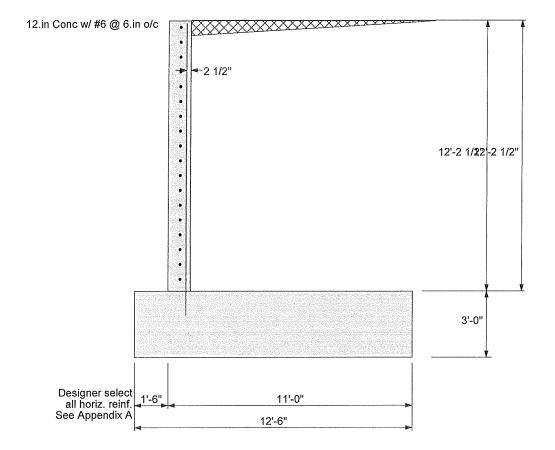
Cantilevered Retaining Wall Design

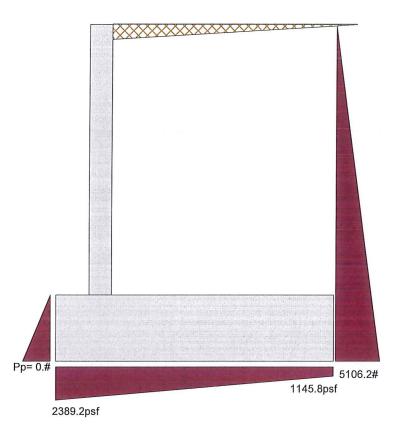
Footing Dimension	ons & Strengths	
Toe Width	= 1.50 ft	
Heel Width	= <u>11.00</u>	
Total Footing Width	= 12.50	
Footing Thickness	= 36.00 in	
Key Width	= 0.00 in	
Key Depth	= 0.00 in	
Key Distance from Toe	= 0.00 ft	
fc = 4,000 psi	Fy = 40,000 psi	
Footing Concrete Dens		
Min. As %	= 0.0000	
Cover @ Top 0.00	@ Btm.= 0.00 in	

Footing Design Results						
		Toe	Heel			
Factored Pressure	=	3,345	1,604 psf			
Mu' : Upward	=	3,685	103,416 ft-#			
Mu': Downward	=	709	133,972 ft-#			
Mu: Design	Ξ	2,976	30,556 ft-#			
Actual 1-Way Shear	=	0.00	8.90 psi			
Allow 1-Way Shear	Ξ	94.87	94.87 psi			
Toe Reinforcing	=	None Spec'd				
Heel Reinforcing	=	None Spec'd				
Key Reinforcing	=	None Spec'd				
Other Acceptable S	Size	s & Spacing	S			

Toe: Not req'd, Mu < S * Fr Heel: Not req'd, Mu < S * Fr

Key: No key defined


Summary of Overturning & Resisting Forces & Moments


Item		Force lbs	ERTURNING. Distance ft	Moment ft-#			Force Ibs	SISTING Distance ft	Moment ft-#
Heel Active Pressure	=	5,313.2	5.07	26,918.5	Soil Over Heel	=	14,638.8	7.50	109,791.
Surcharge over Heel	=				Sloped Soil Over Hee	=			
Toe Active Pressure	=	-207.0	1.00	-207.0	Surcharge Over Heel	=			
Surcharge Over Toe	=				Adjacent Footing Load	1 =			
Adjacent Footing Load	=				Axial Dead Load on St	tem =			
Added Lateral Load	=				* Axial Live Load on Ste	em =			
Load @ Stem Above So	il =				Soil Over Toe	=			
					Surcharge Over Toe	=			
					Stem Weight(s)	=	1,829.9	2.00	3,659.7
					Earth @ Stem Transiti	ons =			
Total	=	5,106.2	O.T.M. =	26,711.5	Footing Weight	=	5,625.0	6.25	35,156.3
Resisting/Overturnin	g Raf	tio	=	5.56	Key Weight	=			
Vertical Loads used f	for So	il Pressure :	= 22,093.7	lbs	Vert. Component	=			
					To * Axial live load NOT ind resistance, but is inclu	otal = cluded ir ded for :	22,093.7 lb n total displaye soil pressure c	d, or used for	148,607.0 overturning

DESIGNER NOTES:

Description.... WINGWALL MAX HT. 5 FEET

Title : RETREAT AT TIMBER RIDGE, CO Job # : 23088 Dsgnr: CBC

Retain Pro 9 © 1989 - 2011 Ver: 9.27 8171 Registration #: RP-1110505 **RP9.27**

Cantilevered Retaining Wall Design

Criteria		
Retained Height	=	5.00 ft
Wall height above soil	=	0.00 ft
Slope Behind Wall	=	2.00:1
Height of Soil over Toe	=	0.00 in
Water height over heel	=	0.0 ft

Soil Data		
Allow Soil Bearing	=	3,500.0 psf
Equivalent Fluid Pressure	Meth	
Heel Active Pressure	=	46.0 psf/ft
Toe Active Pressure	=	46.0 psf/ft
Passive Pressure	Ξ	0.0 psf/ft
Soil Density, Heel	=	120.00 pcf
Soil Density, Toe	=	120.00 pcf
Footing Soil Friction	=	0.450
Soil height to ignore for passive pressure	=	0.00 in

boting Soil Friction	=	0.450	
oil height to ignore for passive pressure	=	0.00 in	

Wind on Exposed Stem =

for passive pressure	=	0.00 in	
Lateral Load App	lied t	o Stem	Adjacen
Lateral Load Height to Top	=	0.0 #/ft 0.00 ft	Adjacent F Footing Wi
Height to Bottom The above lateral load has been increased by a factor of	=	0.00 ft 1.00	Eccentricity Wall to Ftg Footing Ty Base Aboy

0.0 psf

Thumbnail nt Footing Load Footing Load = 0.0 lbs /idth = 0.00 ft 0.00 in = ty Wall to Ftg CL Dist = 0.00 ft Footing Type Line Load Base Above/Below Soil = 0.0 ft at Back of Wall

Surcharge Over Hee	=	0.0 psf				
NOT Used To Resis	st Sliding	& Overturning				
Surcharge Over Toe	=	0.0 psf				
NOT Used for Slidin	ng & Ove	rturning				
Axial Load Applied to Stem						
Avial Dead Load	-	0.0 lbs				

Axial Load Eccentricity	=	0.0 m
Avial Land Depentricity		0.0 in
Axial Live Load	=	0.0 lbs
Axial Dead Load	=	0.0 lbs

Design Summary

Surcharge Loads

Wall Stability Ratios Overturning Sliding	=		4.17 1.57		
Total Bearing Loadresultant ecc.	п п		8,558 6.63		
Soil Pressure @ Toe Soil Pressure @ Heel Allowable	11 11 11		1,513 627 3,500	psf psf	
Soil Pressure Less ACI Factored @ Toe ACI Factored @ Heel	Th = =	an	Allowable 2,118 877	psf	
Footing Shear @ Toe Footing Shear @ Heel Allowable	II II II			psi	OK OK
Sliding Calcs (Vertical Co Lateral Sliding Force less 100% Passive Force less 100% Friction Force	=	-	2,450.9 0.0	lbs Ibs	ed)
Added Force Req'd for 1.5 : 1 Stability	11 11				OK OK

Load Factors Building Code	
Dead Load	1.250
Live Load	1.750
Earth, H	1.500
Wind, W	1.600
Seismic, E	1.000

Wind on Exposed otem =	0.0 p	51	Poisson's Ratio	=	0.300
	-				
Stem Construction	_	Fop Stem			
Design Height Above Ftg	ft =	Stem OK 0.00			
Wall Material Above "Ht"	=	Concrete			
Thickness	=	12.00			
Rebar Size	=	# 6			
Rebar Spacing	=	6.00			
Rebar Placed at	=	Edge			
Design Data ———					
fb/FB + fa/Fa	=	0.040)		
Total Force @ Section	lbs =	862.5			
MomentActual	ft-# =	1,437.5			
MomentAllowable	=	35,545.0			
ShearActual	psi =	7.5			
ShearAllowable	psi =	94.9			
Wall Weight	=	150.0			
Rebar Depth 'd'	in =	9.63			
LAP SPLICE IF ABOVE	in =	37.00			
LAP SPLICE IF BELOW	in =				
HOOK EMBED INTO FT	G in =	9.96			
Masonry Data					
f'm	psi =				
Fs	psi =				
Solid Grouting	=				
Modular Ratio 'n'	=				
- Short Term Factor	=				
Equiv, Solid Thick.	=				
Masonry Block Type	=	Medium V	Veight		
Masonry Design Method	=	ASD			
Concrete Data					
f'c	psi =	4,000.0			
Fy	psi =	60,000.0			

RETREAT AT TIMBER RIDGE, CO 23088 Dsgnr: CBC Title Job # Description

Page: Date: MAR 20,2020

WINGWALL MAX HT. 5 FEET

Retain Pro 9 © 1989 - 2011 Ver: 9.27 8171 Registration #: RP-1110505 **RP9.27**

Cantilevered Retaining Wall Design

Footing Dimen	nsions &	Strengths	
Toe Width	=	1.50 ft	
Heel Width	=	6.50	
Total Footing Width	י ד	8.00	
Footing Thickness	=	36.00 in	
Key Width	=	0.00 in	
Key Depth	=	0.00 in	
Key Distance from	Toe =	0.00 ft	
f'c = 4,000 ps		40,000 psi	
Footing Concrete D	ensity =	150.00 pcf	
Min. As %	=	0.0000	
Cover @ Top C).00 @I	Btm.= 0.00 in	

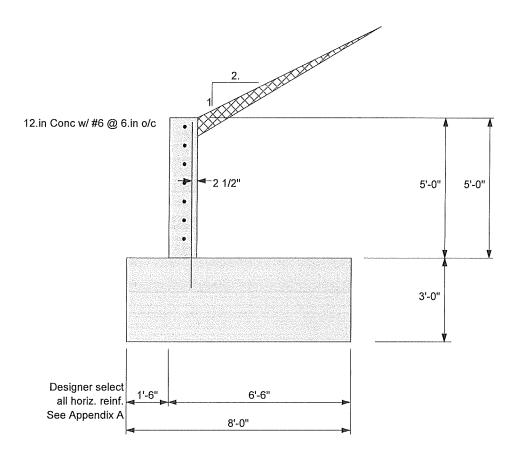
Footing Desig			
		Toe	Heel
Factored Pressure	Ξ	2,118	877 psf
Mu' : Upward	=	2,295	17,569 ft-#
Mu': Downward	=	709	26,892 ft-#
Mu: Design	=	1,587	9,323 ft-#
Actual 1-Way Shear	=	0.00	5.13 psi
Allow 1-Way Shear	=	94.87	94.87 psi
Toe Reinforcing	=	None Spec'd	
Heel Reinforcing	=	None Spec'd	
Key Reinforcing	=	None Spec'd	
Other Acceptable S	lize	s & Spacings	

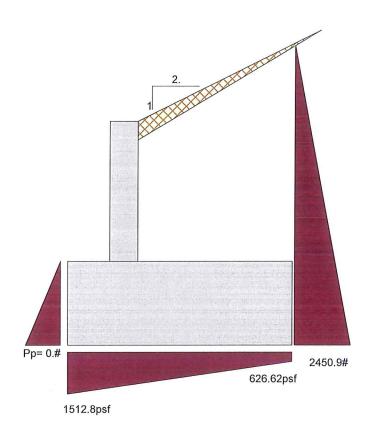
Other Acceptable Sizes & Spacings Toe: Not req'd, Mu < S * Fr Heel: Not req'd, Mu < S * Fr

Key: No key defined

Summary of Overturning & Resisting Forces & Moments

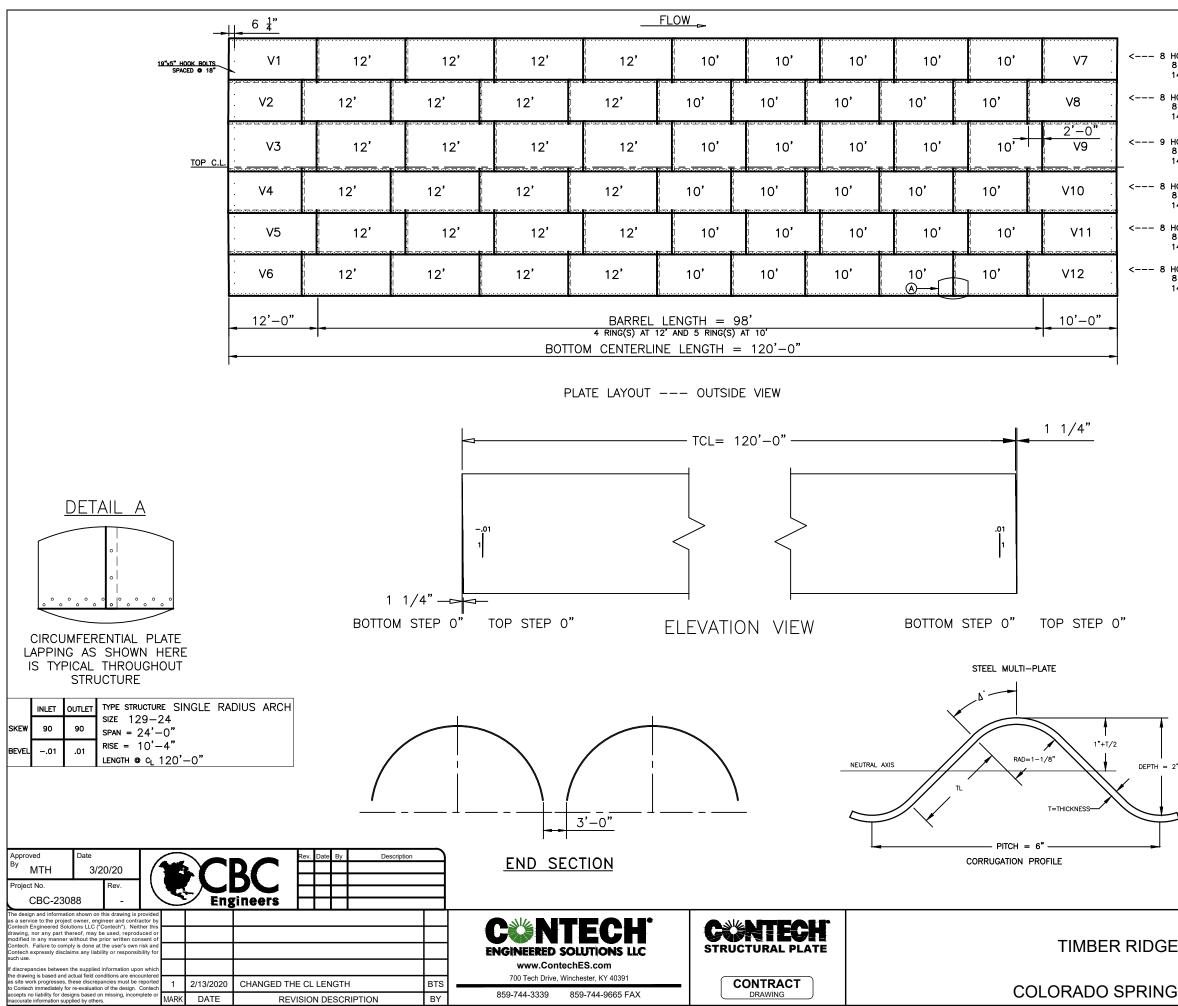
Item		Force Ibs	ERTURNING Distance ft	Moment ft-#	_		Force Ibs	SISTING Distance ft	Moment ft-#
Heel Active Pressure	=	2,657.9	3.58	9,524.3	Soil Over Heel	=	3,300.0	5.25	17,325.0
Surcharge over Heel	=				Sloped Soil Over Hee	=	907.5	6.17	5,596.3
Toe Active Pressure	=	-207.0	1.00	-207.0	Surcharge Over Heel	=			
Surcharge Over Toe	=				Adjacent Footing Load	=			
Adjacent Footing Load	=				Axial Dead Load on Ste	em =			
Added Lateral Load	=				* Axial Live Load on Ster	n =			
Load @ Stem Above So	il =				Soil Over Toe	=			
					Surcharge Over Toe	=			
					Stem Weight(s)	=	750.0	2.00	1,500.0
	-		-		Earth @ Stem Transitio	ons =			
Total	Ξ	2,450.9	O.T.M. =	9,317.3	Footing Weight	Ξ	3,600.0	4.00	14,400.0
Resisting/Overturnin	g Rat	tio	=	4.17	Key Weight	=			
Vertical Loads used f	or So	il Pressure	= 8,557.5	i lbs	Vert. Component	=			
Vertical component of a	ctive	pressure NC	OT used for so	oil pressure		tal =	8,557.5 lb		38,821.3
* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.									

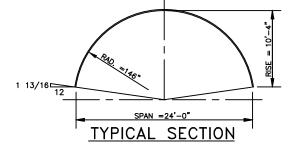

DESIGNER NOTES:


- ---

Description.... WINGWALL MAX HT. 5 FEET

 Title
 :
 RETREAT AT TIMBER RIDGE, CO


 Job #
 :
 23088
 Dsgnr:
 CBC



APPENDIX B

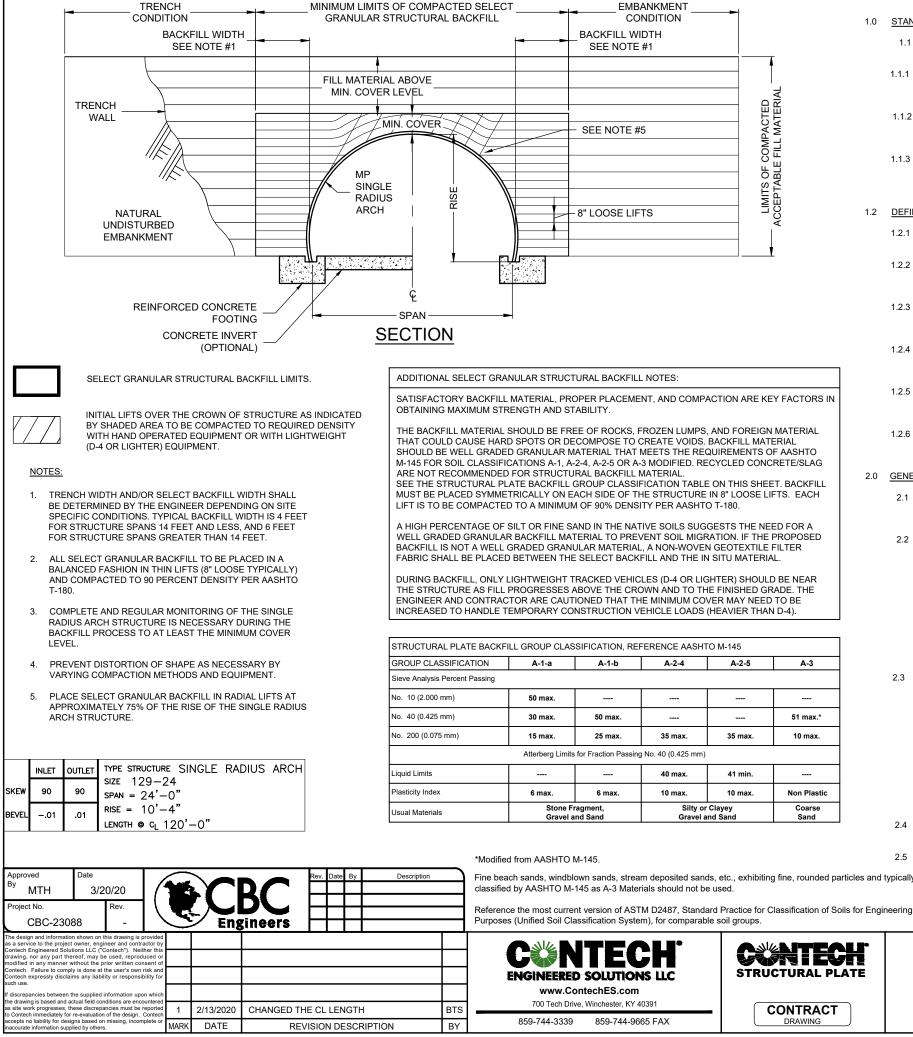
SHOP DRAWINGS

- <--- 8 HOLE PLATE 8 GAGE 146" RADIUS
- <--- 8 HOLE PLATE 8 GAGE 146" RADIUS
- <--- 9 HOLE PLATE 8 GAGE 146" RADIUS
- <--- 8 HOLE PLATE 8 GAGE 146" RADIUS
- <--- 8 HOLE PLATE 8 GAGE 146" RADIUS
- <--- 8 HOLE PLATE 8 GAGE 146" RADIUS

IMPORTANT

ASSEMBLY INSTRUCTIONS WILL BE SHIPPED WITH THE STRUCTURE. THEY ARE LOCATED IN THE BRIGHT COLORED BUCKET.

IMPORTANT


WHEN BEGINNING ASSEMBLY, BE CERTAIN PLATES ARE ORIENTED SO BOLT HOLE PATTERN MATCHES THAT SHOWN ON THIS DRAWING AND ASSEMBLY INSTRUCTIONS.

TORQUE NOTE

PLATE LAPS MUST BE PROPERLY MATED IN A TANGENT FASHION USING PROPER ALIGNMENT TECHNIQUES AND ADEQUATE BOLT TORQUE TO SEAT THE CORRUCATION. FOR PLAIN, GALVANIZED PLATES, AN INSTALLATION BOLT TORQUE OF 100-300 ft-lbs IS RECOMMENDED. WHEN SEAM SEALANT TAPE OR ASPHALT (SHOP) COATED PLATES ARE USED, BOLTS SHALL BE INSTALLED AT 150-300 ft-lbs AND RETIGHTENED TO THESE LIMITS AFTER 4 TO 6 HOURS. TORQUE LEVELS ARE FOR INSTALLATION, NOT RESIDUAL, IN-SERVICE REQUIREMENTS.

THE ASSEMBLY BOLTS AND NUTS ARE SPECIALLY DESIGNED WITH ROUNDED OR SPHERICAL THROATS FOR FITTING EITHER THE CREST OR VALLEY OF THE CORRUGATIONS, PROVIDING MAXIMUM BEARING CONTACT AREA WITH THE PLATES WITHOUT THE USE OF WASHERS. NOTE THAT THE BOLTS AND NUTS SHOULD BE INSTALLED SUCH THAT THE ROUNDED PORTION IS IN CONTACT WITH THE PLATES.

			PLAN	IT OF	RDER NO.	
	DRAWING #:		SALE	S OF	RDER NO.	
	617696-010-MP-	-CON-C				
		PROJECT No.: 617696	SEQ. N 01		DATE: 2/20/20)20
θE		DESIGNED:		DRAW	^{/N:} BTS	
		CHECKED:		APPR	OVED:	
IGS, CO		SHEET NO .:	1	OF	- 2	

1.0 STANDARDS AND DEFINITIONS

- STANDARDS All standards refer to the current ASTM/AASHTO 1.1 edition unless otherwise noted
- ASTM A761 "Corrugated Steel Structural Plate, Zinc Coated 111 for Field-Bolted Pipe, Pipe-Arches and Arches" (AASHTO Designation M-167).
- 3.2 The single radius arch structure shall be installed in accordance with the plans and 1.1.2 AASHTO Standard Specification for Highway Bridges - Section 12 specifications, the Manufacturer's recommendations, and AASHTO Standard Division I - Design, AASHTO LRFD Bridge Design Specifications Specification for Highway Bridges - Section 26 Division II - Construction/AASHTO Section 12. LRFD Bridge Construction Specifications - Section 26.
- AASHTO Standard Specification for Highway Bridges Section 26 1.1.3 Division II - Construction, AASHTO LRFD Bridge Construction Specifications - Section 26. ASTM A807, Standard Practice for Installing Corrugated Steel Structural Plate Pipe.
- 1.2 DEFINITIONS
 - 1.2.1 Owner - In these specifications the word "Owner" shall mean The Owner of Muilti-Plate Arch.
 - 1.2.2 Engineer - In these specifications the word "Engineer" shall mean the Engineer of Record or Owner's designated engineering representative
 - 1.2.3 Manufacturer - In these specifications the word "Manufacturer' shall mean CONTECH ENGINEERED SOLUTIONS 800-338-1122
 - 1.2.4 Contractor - In these specifications the word "Contractor" shall mean the firm or corporation undertaking the execution of any installation work under the terms of these specifications.
 - 1.2.5 Approved - In these specifications the word "approved" shall refer to the approval of the Engineer or his designated representative
 - 126 As Directed - In these specifications the words "as directed" shall refer to the directions to the Contractor from the Owner or his designated representative.

2.0 GENERAL CONDITIONS

2.5

- 2.1 Any installation guidance provided herein shall be endorsed by the If a metal headwall and/or wingwall system is specified, the select granular structural 3.8 Engineer; discrepancies herein are governed by the Engineer's plans backfill limits shall extend past the deadman anchor system. Contact the Engineer if and specifications. stiff material or rock is encountered where the wingwalls and deadmen are to be installed.
- 2.2 The Contractor shall furnish all labor, material and equipment and perform all work and services except those set out and furnished by the Owner, necessary to complete in a satisfactory manner the site preparation, excavation, filling, compaction, grading as shown on the plans and as described therein. This work shall consist of all mobilization clearing and grading, grubbing, stripping, removal of existing material unless otherwise stated, preparation of the land to be filled, filling of the land, spreading and compaction of the fill, and all subsidiary work necessary to complete the grading of the cut and fill areas to conform with the lines, grades, slopes, and specifications. This work is to be accomplished under the observation of the Owner or his designated representative.
- 2.3 Prior to bidding the work, the Contractor shall examine, investigate and inspect the construction site as to the nature and location of the work, and the general and local conditions at the construction site, including without limitation, the character of surface or subsurface conditions and obstacles to be encountered on and around the construction site and shall make such additional investigation as he may deem necessary for the planning and proper execution of the work

If conditions other than those indicated are discovered by the Contractor, the Owner shall be notified immediately. The material which the Contractor believes to be a changed condition shall not be disturbed so that the owner can investigate the condition

2.4 The construction shall be performed under the direction of the Engineer

> All aspects of the structure design and site layout including foundations, backfill, end treatments and necessary scour consideration shall be performed by the Engineer.

TIMBER R

COLORADO SP

3.0 ASSEMBLY AND INSTALLATION

31 Bolts and nuts shall conform to the requirements of ASTM A449. The single radius arch structure shall be assembled in accordance with the plate layout drawings provided by the Manufacturer and per the Manufacturer's recommendations.

Bolts shall be tightened using an applied torque of between 100 and 300 ft.-lbs.

- Trench excavation shall be made in embankment material that is structurally adequate 3.3 The trench width shall be shown on the plans. Poor quality in situ embankment material must be removed and replaced with suitable backfill as directed by the
- Bedding preparation is critical to both structure performance and service life. 3.4 The bed should be constructed to uniform line and grade to avoid distortions that may create undesirable stresses in the structure and/or rapid deterioration of the roadway. The bed should be free of rock formations, protruding stones, frozen lumps, roots, and other foreign matter that may cause unequal settlement
- 3.5 The structure shall be assembled in accordance with the Manufacturer's instructions. All plates shall be unloaded and handled with reasonable care. Plates shall not be rolled or dragged over gravel rock and shall be prevented from striking rock or other hard objects during placement in trench or on bedding.
- The structure shall be backfilled using clean well graded granular material that meets 3.6 the requirements for soil classifications A-1, A-2-4, A-2-5 or A-3 modified per AASHTO M-145. See the structural plate backfill group classification table on this sheet.

Backfill must be placed symmetrically on each side of the structure in 8 inch loose lifts. Each lift shall be compacted to a minimum of 90 percent density per AASHTO T-180

37 If temporary construction vehicles are required to cross the structure, it is the Contractor's responsibility to contact the Engineer to determine the amount of additional minimum cover necessary to handle the specific loading condition.

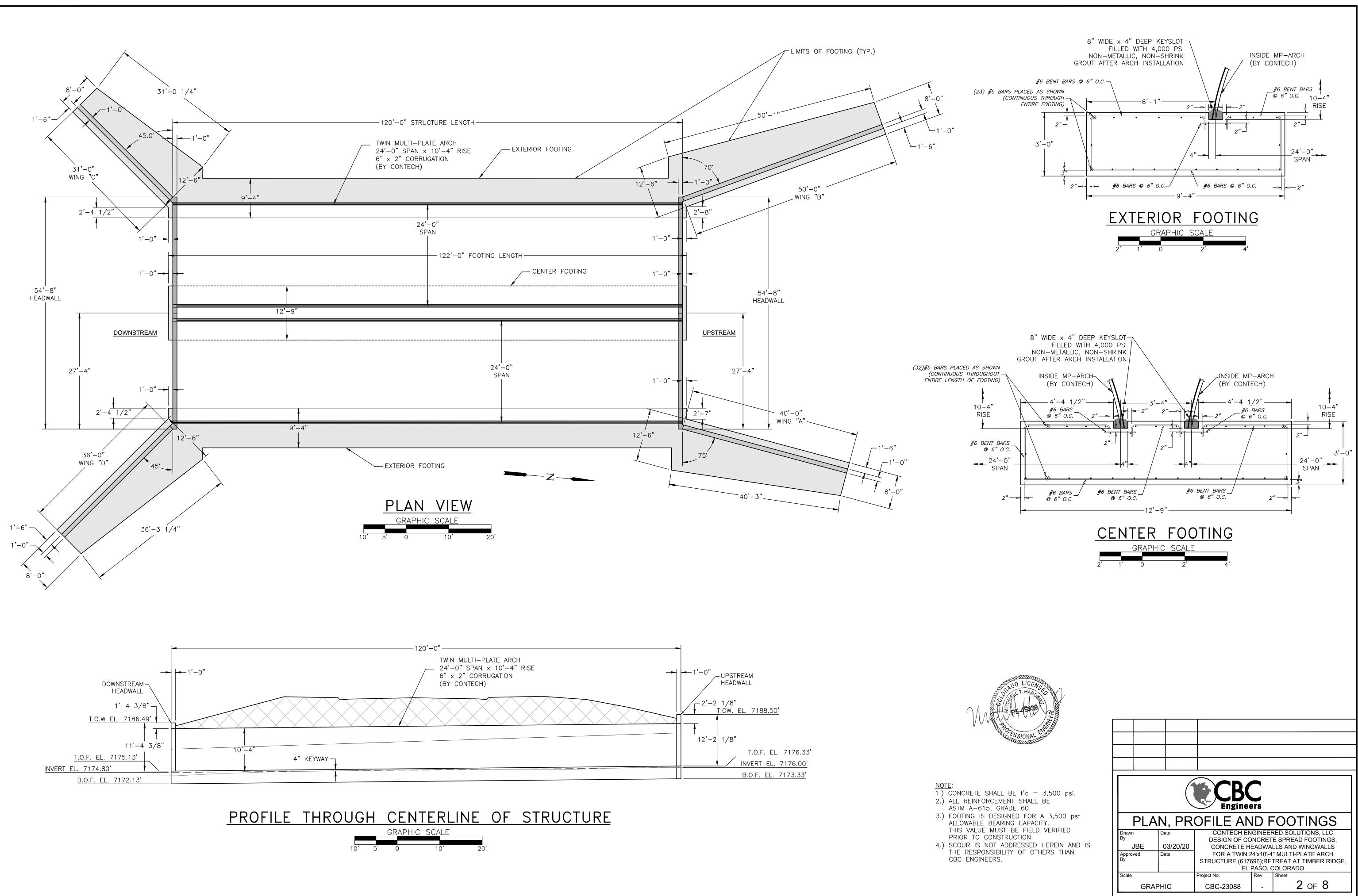
Normal highway traffic is not allowed to cross the structure until the structure has been backfilled and paved. If the road is unpaved, cover allowance to accommodate rutting shall be as directed by the Engineer.

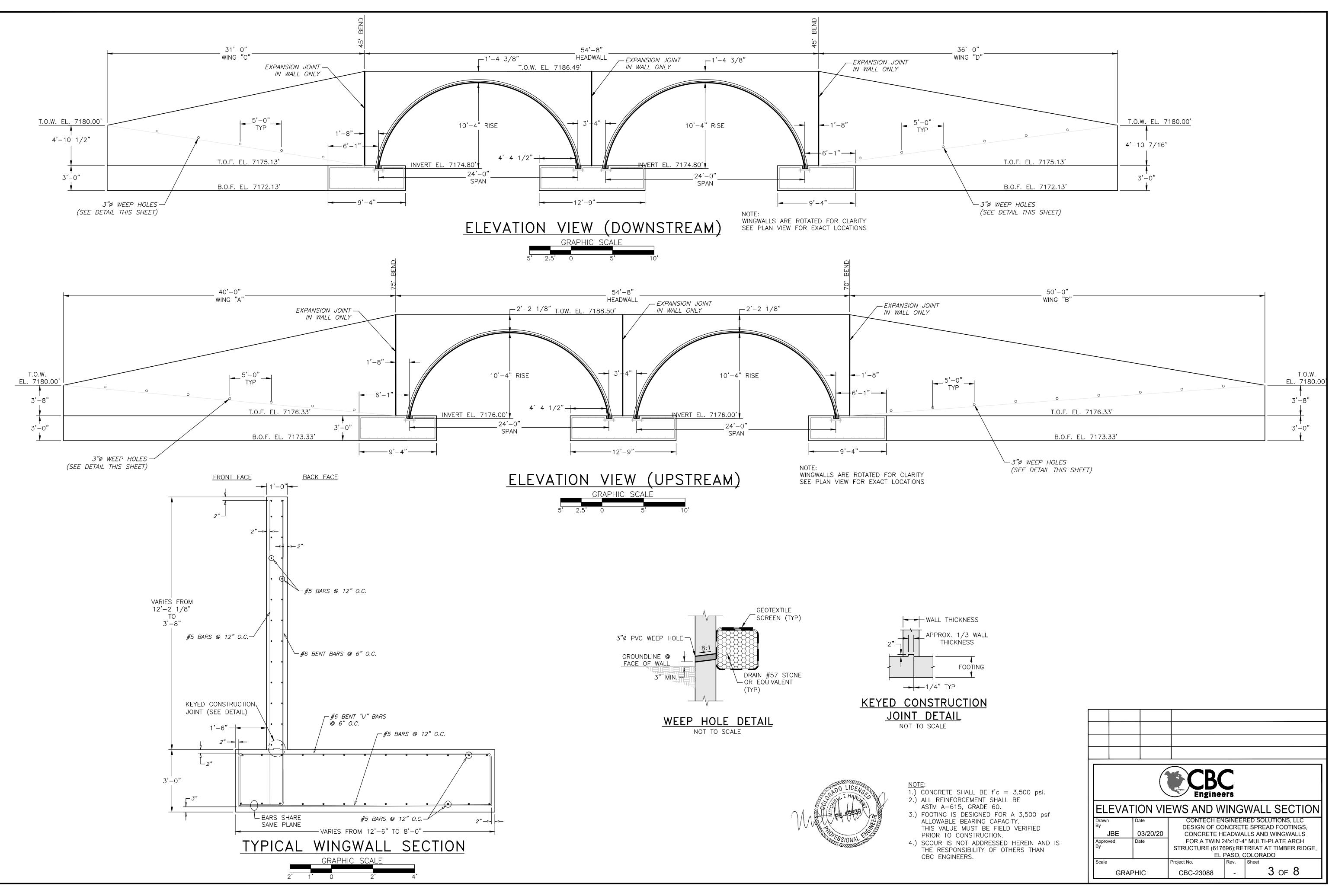
THE ASSEMBLY BOLTS AND NUTS ARE SPECIALLY DESIGNED WITH ROUNDED OR SPHERICAL THROATS FOR FITTING EITHER THE CREST OR VALLEY OF THE CORRUGATIONS, PROVIDING MAXIMUM BEARING CONTACT AREA WITH THE PLATES WITHOUT THE USE OF WASHERS. NOTE THAT THE BOLTS AND NUTS SHOULD BE INSTALLED SUCH THAT THE ROUNDED PORTION IS IN CONTACT WITH THE PLATES

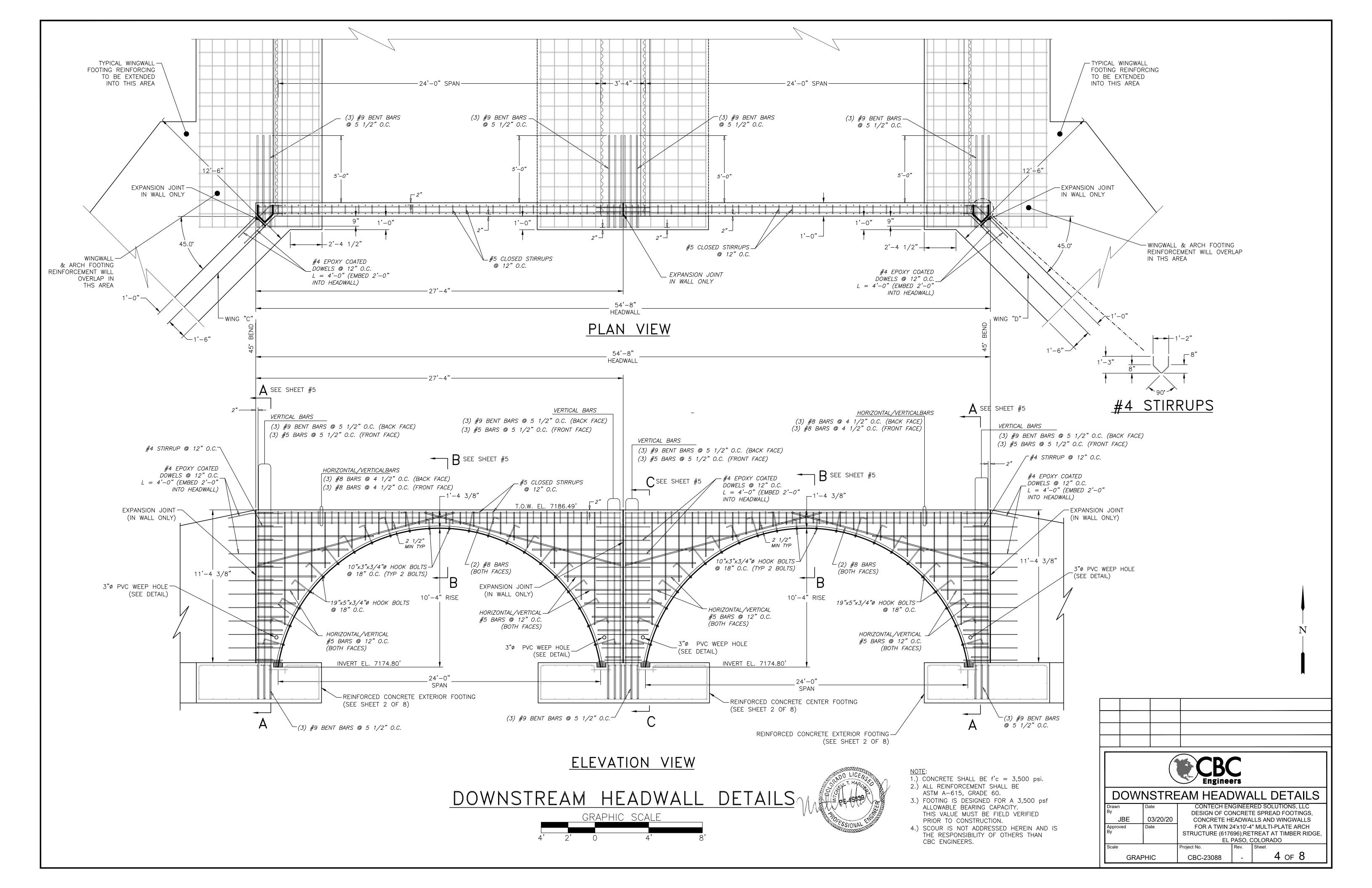
PLANT ORDER NO.

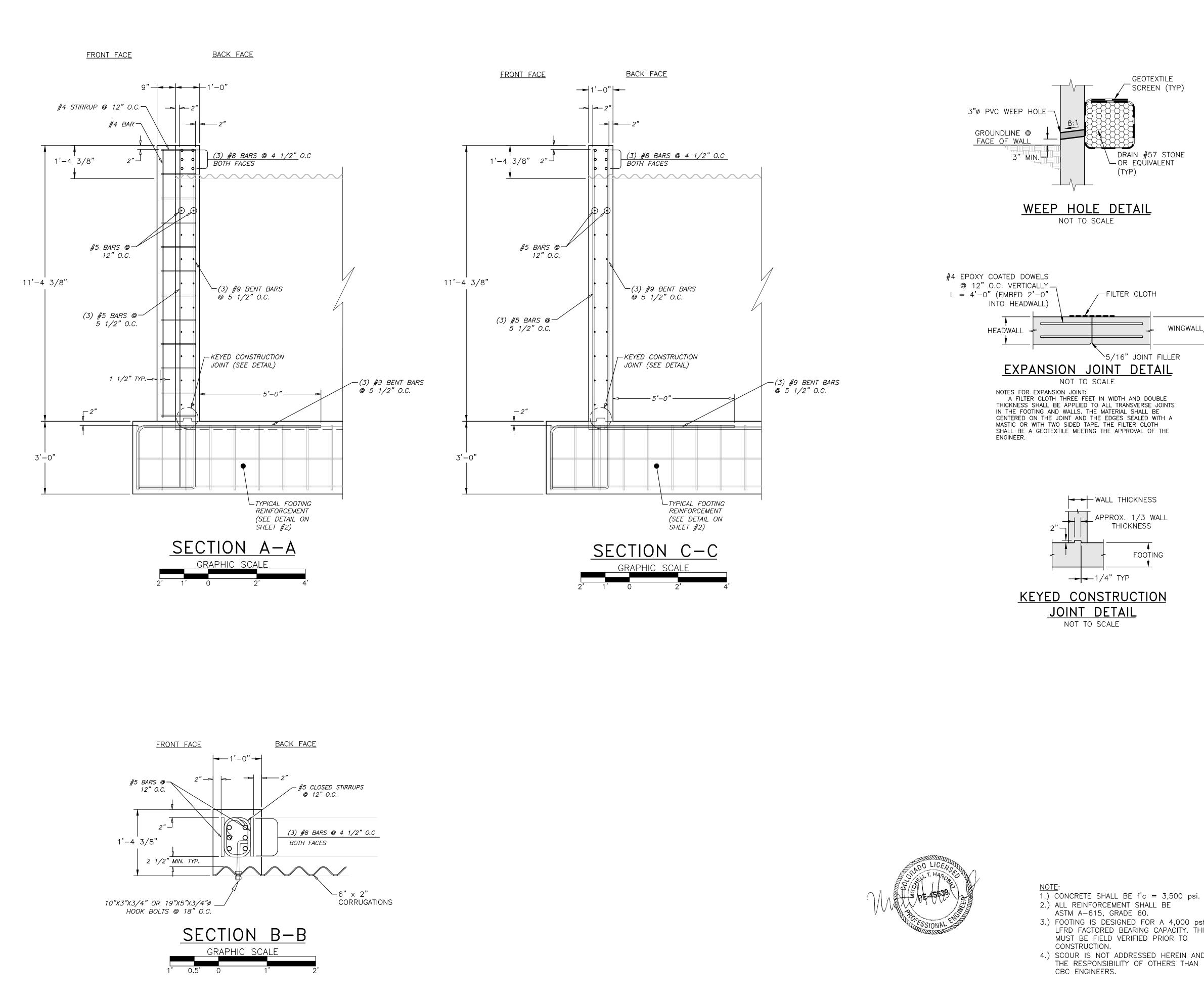
_						
	DRAWING #:		SALL	ES OF	RDER	NO.
	617696-010-MP-	-CON-C				
		PROJECT No.:	SEQ. N		DATE	
		617696	01	10	2/2	20/2020
IDGE		DESIGNED:		DRAW		
IDGE					BT	S
		CHECKED:		APPRO	OVED:	
RINGS, CO		SHEET NO .:	<u></u>	-	. –	<u>`</u>
				OF		2

APPENDIX C


PRINTS


CONTECH ENGINEERED SOLUTIONS, LLC DESIGN OF CONCRETE SPREAD FOOTINGS, **CONCRETE HEADWALLS AND WINGWALLS** FOR A TWIN 24'X10'-4" MULTI-PLATE ARCH STRUCTURE (617696); RETREAT AT TIMBER RIDGE, EL PASO, COLORADO INDEX 1. TITLE SHEET/INDEX PLAN, PROFILE & FOOTINGS 2. ELEVATION VIEWS AND WINGWALL SECTION DOWNSTREAM HEADWALL DETAILS DOWNSTREAM SECTIONS AND DETAILS UPSTREAM HEADWALL DETAILS UPSTREAM SECTIONS AND DETAILS 8. SPECIFICATIONS



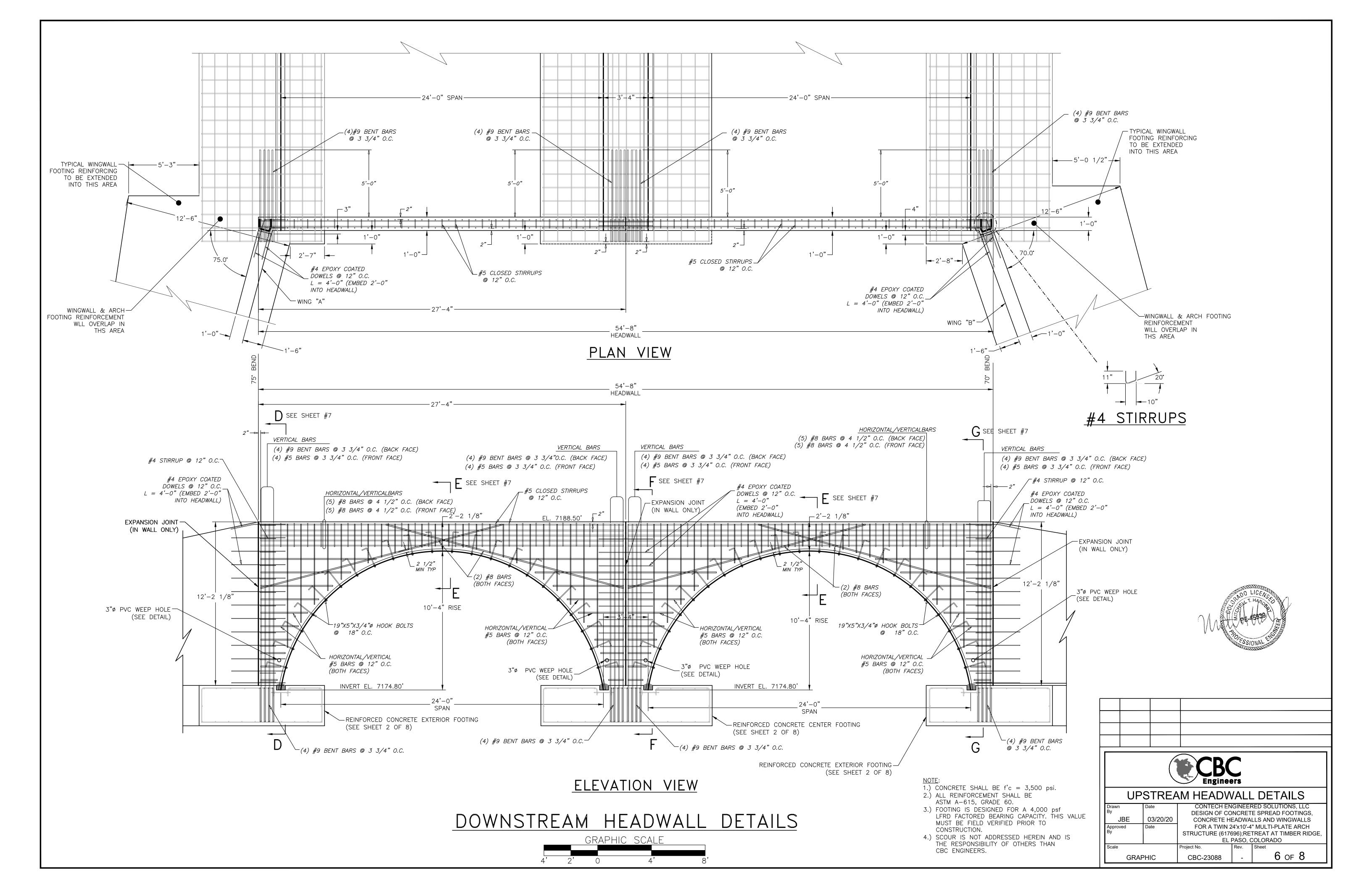

- 1.) CONCRETE SHALL BE f'c = 3,500 psi. 2.) ALL REINFORCEMENT SHALL BE
- ASTM A-615, GRADE 60. 3.) FOOTING IS DESIGNED FOR A 3,500 psf
- ALLOWABLE BEARING CAPACITY. THIS VALUE MUST BE FIELD VERIFIED PRIOR TO CONSTRUCTION.
- 4.) SCOUR IS NOT ADDRESSED HEREIN AND IS THE RESPONSIBILITY OF OTHERS THAN CBC ENGINEERS.

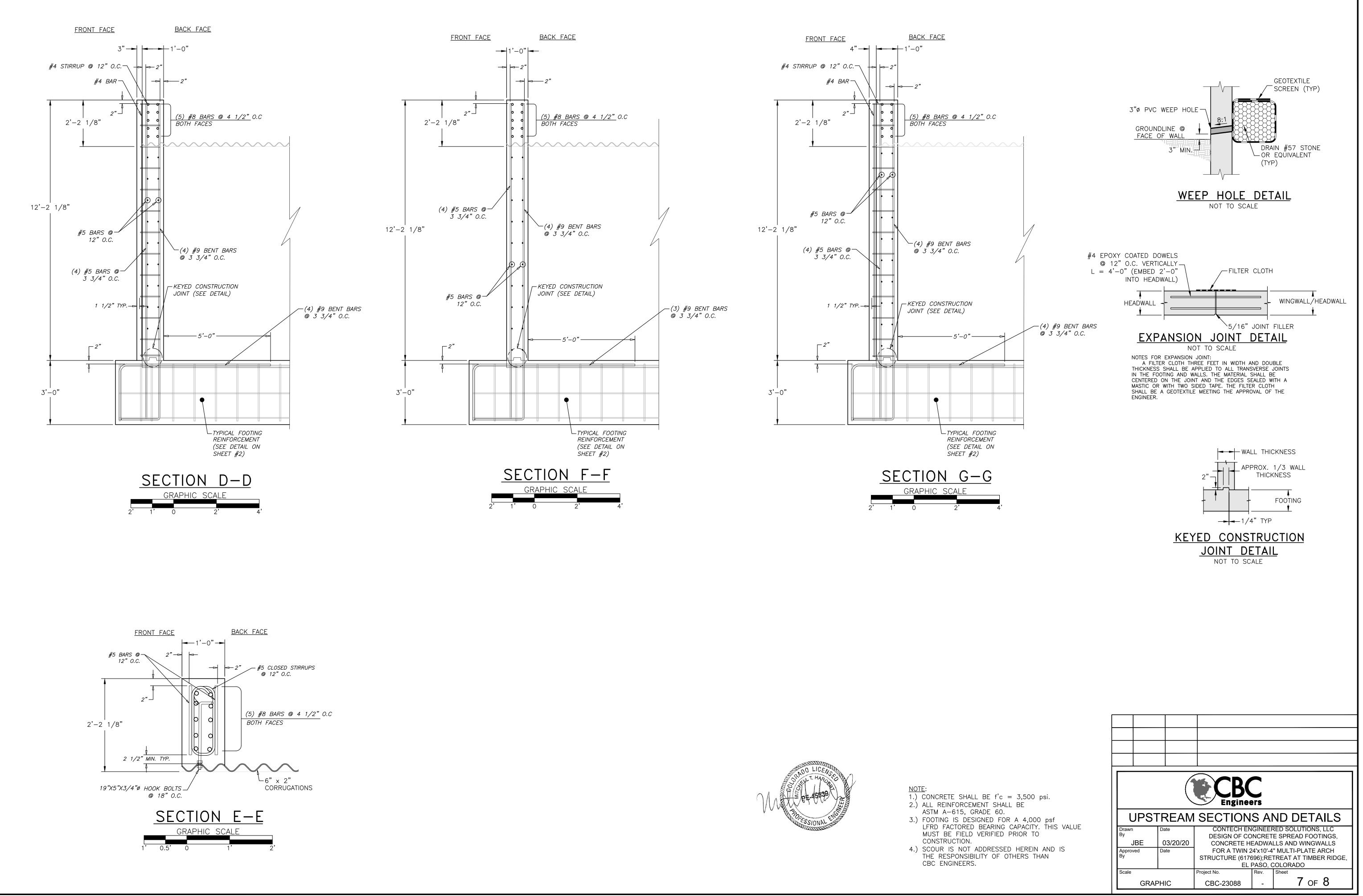
	TITLE SHEET / INDEX								
Drawn By JE		ate 03/20/20	CONTECH ENGINEERED SOLUTIONS, LLC DESIGN OF CONCRETE SPREAD FOOTINGS, CONCRETE HEADWALLS AND WINGWALLS						
Approve By	ed D	ate	FOR A TWIN 24'x10'-4" MULTI-PLATE ARCH STRUCTURE (617696);RETREAT AT TIMBER RIDGE, EL PASO, COLORADO						
Scale	Scale GRAPHIC		Project No. CBC-23088	Rev. -	Sheet 1 OF 8				

NOT TO SCALE

- 2.) ALL REINFORCEMENT SHALL BE
- ASTM A-615, GRADE 60.
- 3.) FOOTING IS DESIGNED FOR A 4,000 psf LFRD FACTORED BEARING CAPACITY. THIS VALUE MUST BE FIELD VERIFIED PRIOR TO
- 4.) SCOUR IS NOT ADDRESSED HEREIN AND IS THE RESPONSIBILITY OF OTHERS THAN CBC ENGINEERS.

GEOTEXTILE SCREEN (TYP)


DRAIN #57 STONE └─ OR EQŰIVALENT


(TYP)

WINGWALL/HEADWALL 5/16" JOINT FILLER

FOOTING

CBC Engineers DOWNSTREAM SECTIONS AND DETAILS CONTECH ENGINEERED SOLUTIONS, LLC DESIGN OF CONCRETE SPREAD FOOTINGS, JBE 03/20/20 CONCRETE HEADWALLS AND WINGWALLS FOR A TWIN 24'x10'-4" MULTI-PLATE ARCH proved Date STRUCTURE (617696);RETREAT AT TIMBER RIDGE EL PASO, COLORADO Project No. Sheet 5 of 8 GRAPHIC CBC-23088

I – GENERAL

1.0 STANDARDS AND DEFINITIONS

1.1 STANDARDS - All standards refer to latest edition unless otherwise noted.

1.1.1 ASTM D-698-70 (Method C) "Standard Test Methods for Moisture. Density Relations of Soils and Soil Aggregate Mixtures Using 5.5-lb (2.5 kg.) Rammer and 12inch (305-mm) Drop".

1.1.2 ASTM D-2922 "Standard Test Method for Density of Soil and Soil Aggregate in Place by Nuclear methods (Shallow Depth)".

1.1.3 ASTM D-1556 "Standard Test Method for Density of Soil in place by the Sand-Cone Method".

1.1.4 ASTM D-1557 "Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort."

1.1.5 All construction and materials shall be in accordance with the latest AASHTO LRFD Bridge Design Specifications.

1.2 DEFINITIONS

1.2.1 Owner - In these specifications the word "Owner" shall mean Elite Properties of America, LLC.

1.2.2 Engineer - In these specifications the word "Engineer" shall mean the Owner designated engineer.

1.2.3 Design Engineer - In these specifications the words "Design Engineer" shall mean CBC Engineers and Associates, Ltd.

1.2.4 Contractor - In these specifications the word "Contractor" shall mean the firm or corporation undertaking the execution of any work under the terms of these specifications.

1.2.5 Approved - In these specifications the word "approved" shall refer to the approval of the Engineer or his designated representative.

1.2.6 As Directed - In these specifications the words "as directed" shall refer to the directions to the Contractor from the Owner or his designated representative.

2.0 GENERAL CONDITIONS

2.1 The Contractor shall furnish all labor, material and equipment and perform all work and services except those set out and furnished by the Owner, necessary to complete in a satisfactory manner the site preparation, excavation, filling, compaction, grading, footing construction, headwall/wingwall construction as shown on the plans and as described therein.

This work shall consist of all mobilization clearing and grading, grubbing, stripping, removal of existing material unless otherwise stated, preparation of the land to be filled, filling of the land, spreading and compaction of the fill, and all subsidiary work necessary to complete the grading of the cut and fill areas to conform with the lines, grades, slopes, and specifications.

This work is to be accomplished under the observation of the Owner or his designated representative.

2.2 Prior to bidding the work, the Contractor shall examine, investigate and inspect the construction site as to the nature and location of the work, and the general and local conditions at the construction site, including, without limitation, the character of surface or subsurface conditions and obstacles to be encountered on and around the construction site; and shall make such additional investigation as he may deem necessary for the planning and proper execution of the work.

If conditions other than those indicated are discovered by the Contractor, the Owner should be notified immediately. The material which the Contractor believes to be a changed condition should not be disturbed so that the owner can investigate the condition.

2.3 The construction shall be performed under the direction of an experienced engineer who is familiar with the design plan.

II – FOOTINGS

1.0 EXCAVATION FOR FOOTINGS

1.1 Footing excavation shall consist of the removal of all material, of whatever nature, necessary for the construction of foundations.

1.2 It shall be the responsibility of the Contractor to identify and relocate all existing utilities which conflict with the proposed footing locations shown on the plan. The Contractor must call the appropriate utility company at least 48 hours before any excavation to request exact field location of utilities, and coordinate removal and installation of all utilities with the respective utility company.

1.3 The side of all excavations shall be cut to prevent sliding or caving of the material above the footings.

1.4 Excavated material shall be disposed in accordance with the plan established by the Engineer.

1.5 The footings for the MULTI-PLATE arch, and headwalls/wingwalls are designed for an allowable bearing capacity of the non-yielding foundation material of 3,500 psf and a friction factor of 0.45. These values shall be verified in the field before construction. The evaluation and design of any required foundation improvement to achieve the design allowable bearing capacity and friction factor, and to protect against frost and scour and settlement, is the responsibility of others than CBC.

2.0 CONCRETE FOOTING DIMENSIONS

The footings shall be reinforced in accordance with the construction drawings.

1.0 The headwalls/wingwalls shall consist of reinforced concrete conforming to Chapter IV of these specifications and to Division II, Section 8, of the AASHTO Standard Specifications for Highway Bridges having a minimum compression strength of 4,000 psi.

2.0 Reinforcing steel shall conform to ASTM A-615, Grade 60, having minimum yield strength of 60,000 psi.

3.0 The headwalls shall be anchored to the MULTI-PLATE arch in the manner shown on the plans and shall be formed and poured in accordance with the plan dimensions.

4.0 Round weep holes spaced not over 5 feet on center shall be placed in the walls above finished grade as shown on the construction drawings. A granular envelope, consisting of #57 stone (clean $\frac{3}{4}$ " aggregate) or equivalent, shall be placed behind each weep hole for a distance of approximately 1 foot from all edges of the weep hole. A free-draining geotextile screen shall be placed between the weep hole and the stone to prevent erosion of the stone.

5.0 The select backfill behind the headwalls must be a well-graded, angular, durable granular material conforming to the select backfill specifications for the MULTI-PLATE arch placed and compacted to achieve a minimum internal friction angle of 34 degrees and a maximum unit weight of 120 pcf. The material must be placed in strict conformance with the project specifications, the manufacturer's requirements, and industry standards. The select backfill behind the wingwalls extending to a minimum distance of 15.0 feet behind the back face of the walls must be a well-graded, angular, durable granular material placed and compacted to achieve a minimum internal friction angle of 34 degrees and a maximum unit weight of 120 pcf. These values must be field verified.

6.0 All Federal, State, and Local regulations shall be strictly adhered to relative to excavation sideslope geometry and any required excavation shoring.

IV – CONCRETE FOR FOOTINGS AND HEADWALLS/WINGWALLS

1.0 CODES AND STANDARDS

1.1 Reinforced concrete shall conform to the requirements of AASHTO Standard Specifications for Highway Bridges, Division II - Construction, Section 8, "Concrete Structures", for Class A concrete, having a minimum compressive strength of 4,000 psi.

2.0 STANDARDS FOR MATERIALS

2.1 Portland Cement - Conforming to ASTM Specification C-150, Type I or II.

2.2 Water - The water shall be drinkable, clean free from injurious amounts of oils, acids, alkalis, organic materials, or deleterious substances.

2.3 Aggregates - Fine and coarse aggregates shall conform to current ASTM Specification C-33 "Specification for Concrete Aggregates" except that local aggregates which have been shown by tests and by actual service to produce satisfactory qualities may be used when approved by the Engineer.

2.4 Submittals - Test data and/or certifications to the Owner shall be furnished upon request.

3.0 PROPORTIONING OF CONCRETE 3.1 COMPOSITION

water.

3.1.3 Proportions shall be established on the basis of field experience with the materials to be employed. The amount of water used shall not exceed the maximum 0.45 water/cement ratio, and shall be reduced as necessary to produce concrete of the specified consistency at the time of placement.

3.1.4 An air-entraining admixture, conforming to the requirements of ASTM C260, shall be used in all concrete furnished under this contract. The quantity of admixture shall be such as to produce an air content in the freshly mixed concrete of 6 percent plus or minus 1 percent as determined in accordance with ASTM C231 or C173.

3.2 Qualities Required - As indicated in the table below:

QUALITIES REQUIRED						
ITEM	QUALITY REQUIRED					
AASHTO Class	А					
Type of Cement	I or II					
Compressive Strength fc @ 28 days	4,000 psi					
Slump, inches	2 - 4 in.					

larger than 19 mm (3/4 inches).

3.4 Rate of Hardening of Concrete - Concrete mix shall be adjusted to produce the required rate of hardening for varied climatic conditions:

Under 40°F Ambient Temperature - Accelerate calcium chloride at 2% is acceptable when used within the recommendations of ACI-306R "Cold Weather Concreting." Admixtures containing chloride ion in excess of 1% by weight of admixture shall not be used in reinforced concrete.

4.0 MIXING AND PLACING

4.1 Equipment - Ready Mix Concrete shall be used and shall conform to the "Specifications for Ready-Mix Concrete," ASTM C-94. Approval is required prior to using job mixed concrete.

4.2 Preparation - All work shall be in accordance with ACI-304, "Recommended Practice for Measuring, Mixing, Transporting and Placing Concrete." All construction debris and extraneous matter shall be removed from within the forms. Concrete shall be placed on clean surfaces, free from water. Concrete that has to be dropped four (4) feet or more shall be placed through a tremie.

4.3 All concrete shall be consolidated by internal mechanical vibration immediately after placement. Vibrators shall be of a size appropriate for the work, capable of transmitting vibration to concrete at frequencies of not less than 4,500 impulses per minute.

III - HEADWALLS/WINGWALLS

3.1.1 The concrete shall be composed of cement, fine aggregate, coarse aggregate and

3.1.2 The concrete shall be homogeneous, readily placeable and uniformly workable and shall be proportioned in accordance with ACI-211.1.

TABLE IV-1

3.3 Maximum Size of Coarse Aggregates - Maximum size of coarse aggregates shall not be

5.0 FORM WORK

5.1 Forms shall be of wood, steel or other approved material and shall be set and held true to the dimensions, lines and grades of the structure prior to and during the placement of concrete.

5.2 Forms shall not be removed until the concrete has sufficient strength to prevent concrete damage and/or drainage.

6.0 CURING

6.1 Fresh concrete shall be protected from rains, flowing water and mechanical injury for a period of four (4) days. Loads shall not be placed on the concrete until it has reached its design strength.

7.0 REINFORCING STEEL

7.1 MATERIAL

7.1.1 All reinforcing bars shall be deformed bars (ASTM-A615) Grade 60.

7.2 BENDING AND SPLICING

7.2.1 Bar reinforcement shall be cut and bent to the shapes shown on the plans. Fabrication tolerances shall be in accordance with ACI 315. All bars shall be bent cold. unless otherwise permitted.

7.2.2 All reinforcement shall be furnished in the full lengths indicated on the plans unless otherwise permitted. Except for splices shown on the plans and splices for No. 5 or smaller bars, splicing of bars will not be permitted without written approval. Splices shall be staggered as far as possible.

7.2.3 In lapped splices, the bars shall be placed and wired in such a manner as to maintain the minimum distance to the surface of the concrete shown on the plans.

7.2.4 Substitution of different size bars will be permitted only when authorized by the engineer. The substituted bars shall have an area equivalent to the design area, or larger.

7.3 PLACING AND FASTENING

7.3.1 Steel reinforcement shall be accurately placed as shown on the plans and firmly held in position during the placing and setting of concrete. Bars shall be tied at all intersections around the perimeter of each mat and at not less than 2 foot centers or at every intersection, whichever is greater, elsewhere. Welding of cross bars (tack welding) will not be permitted for assembly of reinforcement.

7.3.2 Reinforcing steel shall be supported in its proper position by use of mortar blocks, wire bar supports, supplementary bars or other approved devices. Such devices shall be of such height and placed at sufficiently frequent intervals so as to maintain the distance between the reinforcing and the formed surface or the top surface within 1/4 inch of that indicated on the plans.

V - FILTER FABRIC (GEOTEXTILE SCREEN)

1.0 Filter fabric shall be placed at all locations shown on the construction drawings, and as necessary between all dissimilar materials to prevent soil migration and to maintain a soil-tight system.

2.0 Filter fabric cloth shall conform to Contech specification for C60-NW or equivalent and shall meet the following ASTM tests:

- 2.1 ASTM D4751 Apparent opening size equal to #70 U.S. Standard Sieve Size.
- **2.2** ASTM D4632 (Grab Tensile Test) Minimum Strength = 160 pounds.
- **2.3** ASTM D4632 (Grab Elongation) 30-70%.
- **2.4** ASTM D4533 (Trapezoidal Tear) Minimum Strength = 60 pounds.

2.5 ASTM D4355 (Stabilized for Heat and Ultra-Violet Degradation) - 70% strength retained.

- **3.0** The minimum fabric coefficient of permeability (ASTM D4491) shall be 0.24 cm/sec.
- The fabric shall be non-woven with a minimum thickness (ASTM D5199) of 60 mils. 4.0
- Fabric shall not be placed over sharp or angular rocks that could tear or puncture it. 5.0

6.0 Care should be exercised to prevent any puncturing or rupture of the filter fabric. Should such rupture occur the damaged area should be covered with a patch of filter fabric using an overlap minimum of one (1) foot.

SPECIFICATIONS								
Drawn By Date CONTECH ENGINEERED SOLUTIONS, LLC DESIGN OF CONCRETE SPREAD FOOTINGS, CONCRETE HEADWALLS AND WINGWALLS Approved By Date FOR A TWIN 24'x10'-4" MULTI-PLATE ARCH STRUCTURE (617696);RETREAT AT TIMBER RIDGE EL PASO, COLORADO					E SPREAD FOOTINGS, LLS AND WINGWALLS " MULTI-PLATE ARCH TREAT AT TIMBER RIDGE,			
Scale	GRAPH		Project No. CBC-23088	Rev.	Sheet 8 OF 8			