SECTION 01020

GEOTECHNICAL REPORT

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Reports of explorations and tests of subsurface conditions at the project site.

1.2 RELATED SECTIONS

- A. Section 01010 Summary of Work
- B. Section 02300 Earthwork

1.3 INVESTIGATION

- A. Soil and subsurface investigations were conducted at the site, the results of which are to be found in the report issued by Shannon & Wilson, Inc, Geotechnical and Pavement Design Report, July 6, 2017.
- B. A reference copy of the report is included herein, Supplement A (01020)
- C. Bidders are expected to examine soils investigation data and to make their own investigation of the site on or prior to the bid date.

1.4 INTERPRETATION

A. Soil investigation data is provided only for information and the convenience of bidders. Owner and Engineer disclaim any responsibility for the accuracy, true location, and extent of the soils investigation that has been prepared by others. They further disclaim responsibility for interpretations of that data by bidders, as in projecting soil-bearing values, rock profiles, soil stability and the presence, and level and extent of underground water.

PART 2 PRODUCTS (NOT APPLICABLE)

PART 3 EXECUTION (NOT APPLICABLE)

END OF SECTION

Geotechnical and Pavement Design Report
Highway 105
Full Corridor Design
El Paso County, Colorado

July 6, 2017

Excellence. Innovation. Service. Value. *Since 1954*.

Submitted To: HDR Engineering, Inc. 2060 Briargate Parkway, Suite 120 Colorado Springs, Colorado 80920

By: Shannon & Wilson, Inc. 1321 Bannock Street, Suite 200 Denver, Colorado 80204

23-1-01311-002

July 6, 2017

HDR Engineering, Inc. 2060 Briargate Parkway, Suite 120 Colorado Springs, Colorado 80920

Attn: Cory Beasley, P.E.

RE: GEOTECHNICAL AND PAVEMENT DESIGN REPORT, HIGHWAY 105 FULL CORRIDOR DESIGN, EL PASO COUNTY, COLORADO

We are pleased to submit our geotechnical report for the above-referenced project. The enclosed report summarizes subsurface conditions encountered in a subsurface exploration program, laboratory tests, and geotechnical engineering and pavement design recommendations.

We appreciate the opportunity to be of service to you on this project. If you have any questions or require further information, please contact me at 303-825-3800.

Sincerely,

SHANNON & WILSON, INC.

Gregory R. Fischer, PhD, P.E.

Senior Vice President

JCG:GRF/lmr

Encl: Geotechnical and Pavement Design Report

01311-002_L1/wp/lmr

SHANNON & WILSON, INC.

TABLE OF CONTENTS

			Page
1.0	INTROD	UCTION	1
2.0	PROJECT	T AND SITE DESCRIPTION	1
3.0	FIELD EXPLORATIONS AND LABORATORY TEST RESULTS		
	3.1 Pr	eliminary Subsurface Investigation	2
		nal Subsurface Explorations	
	3.3 Fa	lling Weight Deflectometer Testing	3
	3.4 La	boratory Test Results	3
4.0		AL GEOLOGY AND SUBSURFACE CONDITIONS	
		egional Geology	
		bsurface Conditions	4
	4.2	2.1 Project A Walls	
	4.2	2.2 Project B Walls	5
	4.2	2.3 Pavement Subgrade Conditions	
	4.2	2.4 Groundwater	5
5.0			
		ismic Hazards and Ground Motion Design Parameters	
		vell	
	5.3 Co	orrosion	7
6.0		ENT DESIGN RECOMMENDATIONS	
		bgrade Strength	
		bgrade Treatment	
		affic Loading	9
		verlay Alternative	
	6.5 Re	ecommended Pavement Sections	10
7.0		NG WALL RECOMMENDATIONS	
	7.1 Pr	oject A Walls	
		1.1 MSE Walls	
		1.2 Drilled Shaft Wall	
		eliminary Project B Walls Recommendations	
		2.1 MSE Walls	
		2.2 Cast-in-place Concrete Cantilever	
	7.3 M	SE and CIPCC Wall Drainage	14
8.0		UCTION AND MATERIALS CONSIDERATIONS	
	8.1 Di	rilled Shaft Installation	15

TABLE OF CONTENTS (cont.)

			Page	
		8.1.1 Drilled Shaft Installation Methods	and Equipment15	
			vation16	
			17	
		8.1.4 Non-Destructive Integrity Tests	17	
	8.2	Site Preparation	18	
	8.3	Earthwork		
		8.3.1 Excavation Potential	18	
			on19	
			19	
			tioning20	
	8.4	Temporary Slopes		
	8.5	Paving Materials	21	
9.0	PLAN	REVIEW AND CONSTRUCTION OBSER	VATION2	
10.0	LIMI	ΓATIONS	22	
11.0	REFE	RENCES	22	
		TABLES		
	1	Saignaia Danian Craynd Mation Donamator	-	
	l 2	Seismic Design Ground Motion Parameter Recommended Pavement Sections	TS	
	3		s for MSE and CIP Walls	
4		Recommended Backfill Design Parameters for MSE and CIP Walls Recommended MSE Wall Design Parameters for Walls 1 and 2		
	5	Recommended Cantilevered Drilled Shaft		
		and 4	With 2 congress and an expension of the second control of the seco	
(6	Preliminary Project B MSE Wall Design F	Parameters	
7		Preliminary Project B CIP Gravity Wall D		
		FICURE		
		FIGURES		
1		Vicinity Map		
2		Site and Exploration Plan (6 sheets)		
3		Recommended Surcharge Loading for Temporary and Permanent Walls		

SHANNON & WILSON, INC.

TABLE OF CONTENTS (cont.)

APPENDICES

A	Subsurface Explorations
В	Laboratory Test Results
C	Falling Weight Deflectometer Testing
D	Previous Subsurface Information
E	Pavement Design Calculations
F	Important Information About Your Geotechnical Report

GEOTECHNICAL AND PAVEMENT DESIGN REPORT HIGHWAY 105 FULL CORRIDOR DESIGN EL PASO COUNTY, COLORADO

1.0 INTRODUCTION

This geotechnical and pavement design report provides our recommendations for the Highway (Hwy) 105 Full Corridor Design Project. The following report summarizes our subsurface explorations and laboratory testing, and presents geotechnical design recommendations. Our services were conducted in general accordance with our amendment to subconsultant agreement with HDR, Inc. (HDR), signed November 18, 2015.

2.0 PROJECT AND SITE DESCRIPTION

Proposed improvements to Hwy 105 consists of approximately 4.8 miles of roadway widening between Interstate 25 (I-25) and State Highway (SH) 83 (refer to Figure 1). The eastern ¼-mile of the corridor is located within the Town on Monument, Colorado with the remaining western portion of Hwy 105 located in unincorporated El Paso County. East of the improvement corridor, Hwy 105 transitions into SH 105. The existing topography along Hwy 105 generally consists of forested rolling hills with residential development along the corridor. The roadway is currently paved with asphalt, and we understand the proposed roadway surface will remain asphalt.

The Hwy 105 improvement project is divided into two projects. The western project (Project A), is located east of the I-25 ramp intersection and extends to the east of Lake Woodmoor Drive (Station [Sta.] 104+00 to Sta. 154+70, respectively). The eastern project (Project B), extends from Lake Woodmoor Drive to SH 83 (Sta. 154+70 to Sta. 358+46, respectively). Refer to Figure 2 for an overview of the alignment and the corresponding stationing discussed in this report. For the purposes of this report, we understand Project A will be taken through final design while preliminary geotechnical recommendations will be provided for Project B.

Project A will be widened to support two eastbound (EB) and two westbound (WB) travel lanes with a separated median. Based on preliminary plans available at the time of this report, Project B will be widened to accommodate 2 traffic lanes and a center turn lane. Improvements to the existing roadway include the widening of the existing right of way and will require both cut and

fill walls throughout the alignment. In general, the widening improvements will be made both to the north and south of the existing alignment.

It is our understanding that overlay alternatives are being considered for rehabilitation of the pavement in Project A. In general, the existing pavement in Project A is in fair condition with occasional longitudinal, transverse, and fatigue cracking. We understand that the pavements in Project B will be fully reconstructed.

At this time, the proposed walls for both Projects A and B include mechanically stabilized earth (MSE) walls, drilled shaft tangent pile walls, and cast-in-place (CIP) concrete cantilever walls. Project A includes 4 proposed walls designated Wall 1 through Wall 4. Wall 1 (Sta. 131+48 to Sta. 137+27) and Wall 2 (Sta. 145+57 to Sta. 150+94) will be constructed as MSE walls with approximate maximum heights of 16 feet and 10 feet, respectively. Wall 3 (Sta. 152+20 to Sta. 154+75) and Wall 4 (Sta. A 152+99 to Sta. 154+70) are proposed cantilevered drilled shaft walls, with maximum exposed heights of approximately 10 feet for both walls.

We understand the proposed walls for Project B have been advanced to the preliminary design stage. The preliminary plans indicate eleven walls are proposed and are designated RW-01 through RW-11. RW-01 and RW-02 are continuations of Walls 4 and 3 from project A, respectively. The remaining walls will consist of either MSE wall in fill locations and CIP concrete cantilever walls in cut locations. Refer to Figure 2 for the proposed wall locations at the time of this report.

3.0 FIELD EXPLORATIONS AND LABORATORY TEST RESULTS

3.1 Preliminary Subsurface Investigation

Shannon & Wilson conducted a preliminary field exploration program in June 2012 with nine borings designated SW-01 and SW-03 through SW-10. These preliminary investigation boring were presented in our June 22, 2012 preliminary geotechnical report and logs of these borings are reproduced in Appendix D of this report.

3.2 Final Subsurface Explorations

Shannon & Wilson implemented the final geotechnical exploration program in two mobilizations, one to evaluate pavement subgrade conditions in June of 2016 and a second at proposed retaining wall locations in November 2016. The initial mobilization consisted of 28 pavement borings drilled along the alignment (designated as SW-P-01 through SW-P-28). Our

second mobilization consisted of 29 borings and 9 test pits with both borings and test pits designated sequentially from west to east (borings designated as SW-W-01 through SW-W-38 with test pits explorations at TP-06 though TP-08, TP-14, TP-17, TP-19, TP-28, TP-29, and TP-33). The approximate boring locations are shown on Figure 2. In general, the location of pavement borings on Hwy 105 were drilled through the existing asphalt pavement. The wall borings and test pits were completed at wall locations adjacent to the existing pavement where feasible. In areas where drilling access was restricted due to available right-of-way or overhead and underground utilities, wall borings were completed within the existing roadway. Cores of the existing pavement were completed at each pavement boring location in Project A (borings SW-P-01 though SW-P-06) and photographs of the pavement cores are presented in Appendix C. Appendix A describes the procedures used to complete the drilling and sampling of the borings and excavations of the test pits, provides an explanation of the symbols and terminology used, and presents the individual boring logs.

3.3 Falling Weight Deflectometer Testing

As part of our investigation of the existing Hwy 105 pavements, nondestructive falling weight deflectometer (FWD) testing was completed on the existing pavements for consideration for future rehabilitation within Project A. Testing was completed on the existing travel lane of both the eastbound and westbound lanes from the I-25 ramps to Lake Woodmoor Drive. Appendix D contains the summary report.

3.4 Laboratory Test Results

Shannon & Wilson completed geotechnical laboratory testing to determine index and engineering properties of samples retrieved from the borings. Laboratory tests included natural water content, grain size distribution, Atterberg limits, R-Values, swell/consolidation, and corrosion testing. Laboratory test results and a discussion of testing procedures for each of the borings are included in Appendix B. The natural water contents, Atterberg limits, and percent fines are also indicated on the individual boring logs in Appendix A.

4.0 REGIONAL GEOLOGY AND SUBSURFACE CONDITIONS

4.1 Regional Geology

Published geologic information (Thorson and Madole, 2003) encompassing the project area indicates the bedrock geology consists of Paleocene (approximately 56 to 65 million years old) sedimentary rocks of the Dawson Formation, specifically, facies units four and five in the upper

part of the formation. Facies unit four is shown as underlying the western end of the alignment. It transitions to the overlying facies unit five near Lake Woodmoor Drive (approximate Sta. 153+00). Facies unit five extends beneath the alignment to the east edge of the project area.

Facies unit four is dominated by thick bedded to massive arkosic sandstone and conglomerate with several interbeds of finer grained, friable sandstone with high clay content. The top of this unit is defined by a well developed paleosol, or ancient soil horizon, characterized by mottled reddish clayey sandstone. Facies unit five is similar to facies unit four in containing thick arkosic sandstone and conglomerate beds interspersed with thin beds of finer grained, clay-rich sandstone. Geologic structure is dominated by bedding within the Dawson Formation, which dips gently to the northeast.

Surficial deposits are mapped along the west end of the alignment between approximate Sta. 105+00 and 152+00 and, intermittently along the east end of the alignment between approximate Sta. 321+00 and 358+46. At the west end of the alignment, surficial deposits are typically 5 to 15 feet thick and include sheetwash and older stream alluvium characterized by thin beds of poorly sorted sand and sandy fine pebble gravel. Older stream alluvium, up to 60 feet thick, consisting of poorly sorted, fine to coarse sand and pebble gravel and modern stream alluvium, approximately 5 feet thick, characterized by sand, silt, and minor gravel comprise the surficial deposits at the east end of the alignment.

4.2 Subsurface Conditions

The explorations were performed to evaluate geotechnical soil conditions at the project site. Our observations are specific to the locations, depths, and times noted on the logs and may not be applicable to all areas of the site. No amount of explorations or testing can precisely predict the characteristics, quality, or distribution of subsurface and site conditions. Potential variation includes, but is not limited to:

- The conditions between explorations may be different.
- The passage of time or intervening causes (natural and manmade) may result in changes to site and subsurface conditions.

If conditions different from those described herein are encountered during construction, we should review our description of the subsurface conditions to reconsider our conclusions and recommendations

4.2.1 Project A Walls

Borings SW-W-01 through SW-W-05, SW-W-09, and SW-W-10 and test pits TP-06 through TP-08 were completed at the proposed Project A walls. Our borings and test pits generally encountered overburden material consisting of very loose to medium dense sand with varying percentages of silt and clay. Sandstone was then encountered in each boring to the termination depth of each boring and test pit. The sandstone was very low strength, completely to moderately weathered.

4.2.2 Project B Walls

Borings SW-W-11 through SW-W-38 and TP-14, TP-17, TP-19, TP-28, TP-29, TP-33 were completed at the proposed Project B walls. The explorations generally encountered overburden consisting of very loose to dense sand with silt and clay, clayey sand, and silty sand. Occasional soft to stiff sandy clay layers were also encountered. Underlying the overburden was very low strength sandstone with occasional claystone and siltstone layers.

4.2.3 Pavement Subgrade Conditions

Based on the pavement borings (SW-P-01 through SW-P-26), the existing pavement asphalt thicknesses ranged from 6 to 12.5 inches along the alignment. In general, the existing Hwy 105 pavement consisted of a full-depth hot mix asphalt (HMA) pavement section overlying native subgrade soils. Borings SW-P-01 and SW-P-02 encountered 11 and 5 inches, respectively, of aggregate base course (ABC) material below the existing HMA. A scattered, thin granular material was observed below the existing pavement in 11 of the 26 pavement borings. These granular layers (logged as base course in our logs) are generally 1 to 3 inches thick and it is unclear if this material was placed is an ABC or are granular soils generated from native subgrade material used to level the roadway (during the initial construction).

Pavement subgrade soils were variable but predominately consisted of loose to dense clayey sand, silty sand, and sands with silt and sand (AASHTO A-1-b, A-2-4, and A-2-6). Sandstone and claystone were also occasionally encountered throughout the alignment (A-2-4 and A-6).

4.2.4 Groundwater

Groundwater was encountered at the wall locations in boring SW-W-02, SW-W-09, and SW-W-12 at a depth of approximately 20, 17, and 14 feet, respectively. Boring SW-P-05 encountered groundwater at a depth of 7 feet. All other borings did not encountered groundwater

during drilling. Groundwater fluctuations are likely and will depend on seasonal variations, local precipitation and runoff, and other factors.

5.0 GEOLOGIC HAZARD EVALUATION

5.1 Seismic Hazards and Ground Motion Design Parameters

The Front Range of Colorado is an area of low potential for damaging earthquakes. Unfortunately, it is not possible to accurately estimate the timing or location of future earthquakes, because the occurrence of earthquakes is relatively infrequent and the historical earthquake record in Colorado is short (about 130 years). Based on a recent geologic map by the U.S. Geological Survey (Rogers and others, 1998), the nearest fault to the proposed project is the Rampart Range Fault, approximately 4 miles to the west. Based on geomorphic features along the fault trace, this fault is suspected to have been active less than 750,000 years ago. Therefore, in our opinion, the potential for ground surface fault rupture is low.

Liquefaction may occur in loose, saturated, cohesionless soils when subjected to earthquake ground shaking. Based on the subsurface conditions encountered at the project site and the relatively low peak ground acceleration (PGA) for this area, it is our opinion that the risk of liquefaction is low.

Using the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications (AASHTO, 2014) criteria, and based on subsurface conditions encountered in our boring at the proposed walls (assuming that similar conditions are present from the maximum depth of our boring to a depth of 100 feet), Site Class D is recommended.

Ground motion parameters were determined for the project site using the USGS U.S. Seismic Design Map Web Application (USGS, 2016) and procedures recommended by AASHTO (2014). Table 1 presents recommended seismic design ground motion parameters.

5.2 Swell

Many of the soil formations along the Front Range of Colorado are susceptible to volume change by swelling/shrinking. This geologic hazard has the potential to cause substantial damage to lightly loaded structures (in particular pavements) when exposed to water. To provide an initial indication of the swell potential of near surface soil and bedrock materials in the area, we reviewed a geologic map of potentially swelling soil and rock developed by Hart (1974). The

map generally indicates low swell potential throughout the project area with occasional areas of moderate swell potential.

To further evaluate the potential for swell at the site, we performed swell/consolidation tests on soil samples encountered in our explorations. We performed two swell tests on subgrade samples, one on claystone from boring SW-P-07 and a second on overburden silty sand from SW-P-23. The swell test results indicated 2.2 percent swell and 1.2 percent collapse, respectively. Our swell test result on the claystone sample does indicate a moderate swell potential, but we only occasionally encountered claystone throughout the alignment. In general, the materials encountered throughout the alignment were granular in nature (less than 30 percent fines), and in our opinion, Dawson Formation sandstone and fill soils generated from Dawson Formation are low swell susceptible.

5.3 Corrosion

The subsurface materials in the Front Range of Colorado can be corrosive to substructure elements. To assist in estimating the corrosion potential at each wall location, a soil sample was tested for pH, resistivity, and water-soluble sulfates and chlorides. The results are summarized in Table B-1 in Appendix B.

The measured resistivity in the three samples, one of overburden lean clay, and two samples of sandstone were 570; 2,200; and 2,100 Ohm-centimeters (Ω -cm), respectively. Resistivity values less than 1,000 Ω -cm indicate extremely corrosive conditions and highly corrosive for samples with resistivity between 1,000 to 3,000 Ω -cm (Roberge, 2012). Resistivity results from our preliminary borings (Shannon & Wilson, 2012) indicate highly corrosive conditions.

The concentration of water soluble sulfates measured in a sample from the site was less than 0.09 percent by weight. Based on classifications as defined by ACI-318-14, these test results and those from the preliminary borings (Shannon & Wilson, 2012) suggest a negligible degree of sulfate attack on concrete exposed to site soils (exposure class S0).

The test results provided in our report are meant to assist in the selection of wall materials, concrete type or other features that should consider the subsurface conditions with respect to corrosion. If more evaluation is needed, we recommend a specialist in corrosion-resistance design review the results included in Table B-1 to determine actual construction materials and methods based on the test results.

6.0 PAVEMENT DESIGN RECOMMENDATIONS

Pavements along the Hwy 105 corridor were designed in accordance with the 2015 El Paso County Engineering Criteria Manual. The pavement design is for Hwy 105 from the CDOT right-of-way near Interstate 25 to State Highway (SH) 83.

For our analysis, we assumed the final roadway configuration will consist of:

- two eastbound (EB) and two westbound (WB) travel lanes from I-25 to Lake Woodmoor Drive and;
- one EB and WB travel lane with center turn lanes from Lake Woodmoor Drive to SH83.

Based on discussions with HDR and the County, the roadway classification for Hwy 105 is divided into an urban, principle arterial classification west of Lake Woodmoor Drive (Project A) and either a rural, minor or principal arterial classification east of Lake Woodmoor Drive (Project B). For Project A, we further subdivided the alignment into sub-segments at Knollwood Drive based on the anticipated traffic projections provided by HDR and to accommodate a potential rehabilitation of the existing pavement.

To accommodate the proposed Hwy 105 grade changes, we understand the pavements for the cross streets will be reconstructed at the tie-in locations. Because the cross streets are predominately access roads for residential roads, the preliminary pavement section for these roads assumes a Local roadway classification and minimum traffic loading. This Local roadway classification should be validated with El Paso County for the cross streets along the alignment, including Furrow Road and Roller Coaster Road.

6.1 Subgrade Strength

Based on our subsurface explorations (see Section 4.0), subgrade soils for the proposed pavement were assumed to primarily consist of granular subgrade material (A-2-4, A-2-6, and A-1-b). Subgrade strengths for the pavement design are based on results obtained from the falling weight deflectometer (FWD) analysis of the existing Project A pavement and R-value testing of the subgrade in our geotechnical exploration program for the Hwy 105 corridor. We understand that rehabilitation of the existing pavement will be considered in the western segment where mill and overlay of the existing pavement is feasible.

In accordance with 2015 El Paso County Engineering Criteria Manual, subgrade strength was evaluated with Hveem stabilometer (R-value) tests completed on three bulk samples collected

along the alignment. Bulk subgrade samples from borings SW-P-02, SW-P-08, and SW-P-19, SW-P-27. The R-Values ranged from 16 to 62 and are summarized in Table B-2.

For our analysis of Project A the subgrade strength is based on the FWD of the existing pavement. The FWD report is presented in Appendix D. For Project B we averaged the results from the R-Values from boring SW-P-02, SW-P-19, and SW-P-27 resulting in an average R-Value of 19. We discarded the results from SW-P-08 as the R-Value was uncharacteristically high. We used a subgrade modulus of 5,400 psi and 4,800 psi for the west and east segment, respectively.

6.2 Subgrade Treatment

Based on the requirements outlined in Section D.2.4 of the El Paso County Engineering Criteria Manual swell mitigation is required for swells greater than 2 percent. In accordance with the Table J-3 of the El Paso County Engineering Criteria Manual the upper 12 inches of the subgrade should be scarified, moisture-treated to above the optimum moisture content, and recompacted in areas where existing pavement is replaced (Section 8.2.2).

6.3 Traffic Loading

To estimate an 18-kip Equivalent Single-Axle Loading (ESAL) value for the roadways, assumptions were made regarding traffic distributions. Traffic loading for Hwy 105 were determined based on discussion with HDR. For Project A we assumed an average daily traffic (ADT) of 13,924 vehicles for the paving year and 19,846 vehicles at the end of the project design life (20 years). For Project B, we assumed an ADT of 10,357 vehicles for the paving year and 18,807 vehicles at the end of the project design life (20 years). We assumed 4 percent truck traffic for the entire length of the alignment. In addition, El Paso County has a minimum required ESAL for design based on roadway classifications. A summary of these traffic projections along with the County minimum traffic loading is provided in Table 2. For Project A, the projected traffic loading is below the County minimum. For Project B, the projected traffic loading is above the County minimum for a for a rural, minor arterial (which assumes two travel lanes) and below the minimum for a rural, principle arterial (which assumes four travel lanes). To provide the County options for consideration, we provided pavement designs for both the projected traffic loading and County minimums as summarized in Table 2.

6.4 Overlay Alternative

We understand that an overlay rehabilitation of the existing pavement in Project A is also being considered. Based on the condition of the pavements along Project A of Hwy 105 an overlay on the existing pavements is feasible within this segment.

Based on pavement cores in this section from borings SW-P-01 through SW-P-06, the thickness of the existing pavement varies and there were indications of significant asphalt degradation. For our overlay analysis, we assumed the asphalt was in good to fair condition (with an existing structural layer coefficient of 0.30). Refer to Table 2 for the Project A overlay design recommendations.

6.5 Recommended Pavement Sections

Appendix D presents a summary of design parameters used in our pavement analyses. For our analysis, HMA thicknesses were rounded up to the nearest ½ inch and ABC thicknesses were rounded up to the nearest inch. Our recommended pavement sections are presented in Table 2.

7.0 RETAINING WALL RECOMMENDATIONS

The proposed walls for the project include MSE, cantilevered drilled shaft wall, and cast-in-place concrete cantilevered gravity wall. Design recommendations based on AASHTO (2014) for these walls are provided in the following sections.

7.1 Project A Walls

As indicated in Section 2.0, Project A will consist of MSE walls (Walls 1 and 2) and drilled shaft tangent walls (Walls 3 and 4).

7.1.1 MSE Walls

Consistent with AASHTO (2014) requirements, a minimum 4-foot wide horizontal bench should be provided in front of MSE walls bearing on slopes. The horizontal bench may be formed or the slope may be continued above the elevation of the bench. Regardless, the base of the reinforced zone should be embedded a minimum of 3 feet below the bench elevation for frost protection.

To satisfy global stability requirements (i.e., provide a minimum factor of safety (FS) of 1.5 for static conditions and 1.1 for seismic conditions) and reduce potential for compound stability to control the design, we recommend a minimum MSE wall reinforcement length of

0.7H (where H is the height measured from the bottom of the reinforced fill zone to the top of the wall) or 8 feet, whichever is greater. The reinforcement lengths may need to be increased to meet internal, external (sliding and overturning), or compound stability requirements. These failure modes should be evaluated by the MSE wall designer/vendor as these failure modes depend on the reinforcement type and spacing.

Our recommended lateral earth pressures for design of MSE walls are provided in Table 3. The parameters are based on AASHTO (2014) criteria and assume CDOT Class 1 Structure Backfill is used in the reinforced and either CDOT Class Structure Backfill or fills generated onsite from sandstone or clayey sand within the retained zones (i.e., the 1H:1V zone extending upward from the heel of the reinforced zone). The recommended active lateral earth pressures should be applied to the back of the reinforced zone of MSE walls. The static earth pressures assume a vertical wall face with a horizontal backslope and do not include any hydrostatic pressure related to accumulation of water in the backfill. The MSE vendor/designer may use alternative earth pressure parameters for design based on further testing and characterization of the actual fill materials used for construction. Surcharge loads should be added to the pressures in Table 3.

Soil-reinforcement interaction coefficients should be selected based on the properties of the soil above and below the reinforcement and the selected reinforcement type (continuous or discontinuous) and properties. Sliding parameters and analyses should be evaluated by the MSE wall vendor/designer considering the friction angle of the foundation soil provided in Table 4 and appropriate interaction coefficients. AASHTO (2014) recommends a resistance factor of 1.0 for sliding analyses. Table 4 provides the anticipated subgrade conditions at each of the proposed walls. Based on these observed subgrade conditions, we recommend the following drained strength parameters for sliding analysis:

- Clayey Sand subgrade: $\phi' = 30$ degrees, c' = 0 psf
- Sandstone: $\phi' = 38$ degrees, c' = 0 psf

The anticipated settlement values for MSE walls are provided in Table 4. Differential settlement of approximately ½ the overall settlement is expected to occur over a distance of 25 feet. We anticipate that the majority of settlement will occur during wall construction.

We recommend that MSE walls include the drainage measures similar to the CDOT Structural MSE Worksheet Sheets and as discussed in Section 7.4.

We understand that the existing private wall located south of the Monument Academy School near Wall 1 will be removed and replaced by Wall 1. We recommend that all elements of the existing wall including; facing, reinforcements, and all other deleterious material associated with the current wall be completely removed.

7.1.2 Drilled Shaft Wall

We understand that Walls 3 and 4 will be constructed as a drilled shaft tangent pile wall. The design of tangent pile walls could be completed using force-moment equilibrium methods, with the active and passive earth pressure parameters provided in Table 5. Alternatively, the walls could be designed using the p-y method to evaluate the lateral behavior of the deep foundation elements. Such an analysis could be completed with a combination of the active earth pressure parameters and the LPILE parameters provided in Table 5.

The active parameters assume the top of the wall will be free to deflect at least 0.001 times the height of the wall. If such deflections are not feasible, at-rest parameters should be used. We have assumed that these walls will incorporate appropriate drainage system such that water will not accumulate in the backfill (see Section 7.3). Accordingly, our design recommendations do not include hydrostatic pressure behind the wall. As appropriate, surcharge loads should be added to the earth pressures in Table 5. Surcharge pressures can be determined using the parameters provided in Table 5 and the diagrams provided in Figure 3.

For the tangent drilled shaft walls, standard earth pressure theory and force/moment balance analyses should be used to design the drilled shaft size and embedment depth. Earth pressure distributions are appropriate for design of the wall and should be used above the base of the retained wall excavation. We recommend a minimum shaft spacing of six inches between shafts for constructability and a maximum separation between shafts (edge to edge) equal to one diameter, up to a maximum of 2.5 feet. At this spacing, arching stresses in the soil and concrete loss into the formation should strengthen the soil between shafts and reduce the potential for ground loss between shafts prior to permanent facing installation. For permanent facing design, the lateral earth pressure between shafts can be reduced by 50 percent due to arching stresses. A minimum shotcrete thickness of 4 inches is recommended for the excavated space between tangent shafts as part of the permanent facing detail. Should soil loss tend to occur between shafts during excavation of the tangent wall, a flash application of shotcrete could be applied to temporarily retain soil. Partial excavation heights and immediate placement of shotcrete can mitigate soil loss during excavation.

To provide adequate global stability, we recommend a bedrock penetration of approximately 5 feet for deep foundation supporting retaining structures.

7.2 Preliminary Project B Walls Recommendations

As indicated in Section 2.0, preliminary design plans indicate MSE walls and cast-in-place cantilever gravity walls are proposed for Project B walls. Limited information is available for the walls in Project B and the parameters provided for walls in Project B should be considered preliminary. Once final layout and wall heights for the Project B walls are determined, we should be contacted to review and provide final design recommendations.

Based on preliminary plans provided by HDR, eleven walls will be completed in project B. The walls are indicated as RW-01 through RW-11. RW-01 and RW-02 are continuations of Project A Walls 4 and 3, respectively. The remaining walls will consist of three fill walls and six cut walls. Refer to Figure 2 for approximate wall locations.

7.2.1 MSE Walls

All recommendations and assumptions presented in Section 7.1.1 are applicable for Project B MSE walls. Our preliminary recommended lateral earth pressures and anticipated settlement values for Project B MSE walls are provided in Table 6. Surcharge loads should be added to the pressures in Table 6.

To meet global stability requirements (i.e., provide a minimum factor of safety (FS) of 1.5 for static conditions and 1.1 for seismic conditions) and reduce potential for compound stability to control the design, we recommend a minimum MSE wall reinforcement length of 0.7H (where H is the height measured from the bottom of the reinforced fill zone to the top of the wall) or 8 feet, whichever is greater. The reinforcement lengths may need to be increased to meet internal, external (sliding and overturning), or compound stability requirements. These failure modes should be evaluated by the MSE wall designer/vendor as these failure modes depend on the reinforcement type and spacing.

Table 6 provides the anticipated subgrade conditions at each of the proposed walls. Based on these observed subgrade conditions, we recommend the following drained strength parameters for sliding analysis:

- Clayey Sand subgrade: $\phi' = 28$ degrees, c' = 0 psf
- Sandstone: $\phi' = 38$ degrees, c' = 0 psf

7.2.2 Cast-in-place Concrete Cantilever

Our recommended preliminary design parameters for Project B cast-in-place concrete cantilever (CIPCC) walls are provided in Table 7 based on the anticipated bearing stratum at each wall. Based on preliminary cross sections provided by HDR we anticipate that CIP walls RW-05, RW-07, RW-08, and RW-10 will bear predominately on sandstone while portions of walls RW-04 and RW-11 will bear on loose clayey sands. Additional recommendations and assumptions are summarized below:

- Active earth pressures assume walls are free to displace a minimum of 1/1,000th the structure height (0.001H).
- Active earth pressures assume walls are backfilled with either CDOT Class 1 Structure Backfill or fills generated onsite from sandstone or clayey sand in the 1 horizontal to 1 vertical (1H:1V) zone extending upward from a point 1.5 feet behind the heel of the wall.
- The earth pressures assume walls have a vertical wall face and horizontal back slope.
- Passive lateral earth pressures can be applied below the frost depth.
- The earth pressures assume drainage measures are provided such that hydrostatic pressures do not develop in the retained backfill (Section 7.3).

If any of these conditions are not met, we should be notified so that we may revise our recommendations.

Surcharge loads such as motor vehicles and construction equipment will induce lateral loads on retaining walls and buried structures. Consistent with AASHTO (2014) criteria, we recommend utilizing a live load traffic surcharge of 250 psf for areas subject to motor vehicle loading. Lateral loads due to various types of surcharges may be calculated using the parameters provided in Table 7 and the diagrams provided in Figure 3.

7.3 MSE and CIPCC Wall Drainage

The earth pressure parameters provided for the proposed walls assume a free-draining backfill condition. As such, it will be important to control surface water and to provide drainage measures that reduce the potential for water to accumulate behind walls.

Surface water behind the wall should not be allowed to discharge directly into the wall backfill materials. In addition, water should not be allowed to discharge or pond around retaining structures. We recommend sloping the ground surface in front of walls a minimum of 5 percent

away from the wall face for a minimum horizontal distance of 10 feet measured from the face of the wall (or until a paved surface is encountered, whichever is less).

We recommend that MSE walls include the drainage measures shown in the CDOT Structural Worksheet Sheets, which include the use of a geomembrane installed above the reinforced and retained zones, a heel drain at the back of the reinforced zone, and geocomposite strip drains installed on the cut surface behind the retained zone. Providing adequate drainage to reduce hydrostatic forces against the back of the wall and accumulation of water in the reinforced zone will be critical to the long-term stability and performance of the wall.

In general, materials with greater than about 3 percent fines content are not considered free draining. CDOT Class 1 backfill may have a maximum fines content of 20 percent, indicating the material may not be free draining. Appropriate drainage features could include:

- Placement of a 12-inch thick drainage layer (CDOT Filter Material) on the back face of the wall, with a discharge system (e.g. weep holes or a perforated collector pipe at the base of the drainage layer, daylighting to a suitable discharge point).
- Installation of geocomposite drainage boards on the back face of the wall, with a suitable discharge system (e.g. weep holes or a perforated collector pipe, daylighting to a suitable discharge point)
- Limiting the fines content of the Class 1 backfill to 3 percent.

8.0 CONSTRUCTION AND MATERIALS CONSIDERATIONS

The applicability of the design parameters in Sections 6.0 and 7.0 is contingent on good construction practice. Poor construction techniques may alter conditions from those upon which our recommendations are based, and therefore result in poor performance. Our analyses assumed that this project is constructed according to El Paso County construction standards. The following sections provide additional construction considerations for this project.

8.1 Drilled Shaft Installation

8.1.1 Drilled Shaft Installation Methods and Equipment

Specifications and installation methods should be in general accordance with our recommendations and guidelines in the 2010 FHWA Manual, "Drilled Shafts: Construction Procedures and Design Methods" (Brown and others, 2010).

Drilled shafts for Walls 3 and 4 will be socketed in the bedrock. Our experience indicates heavy duty drill rigs using auger drill methods can usually penetrate bedrock similar to that encountered at the site. Moderately cemented layers of sandstone are not uncommon and may result in more difficult and slower drilling. These layers are variable in location and thickness. The specifications should require the drilled shaft contractor to demonstrate experience in this formation, or adequate evaluation of bedrock conditions, to confirm proposed methods and expected production.

Based on the borings and test pits completed at the proposed Walls 3 and 4, overburden along the wall alignment generally consists of medium stiff clay and medium dense sand with varying amounts of silt and clay. Groundwater was encountered at a depth of approximately 15 feet below the existing ground surface in the Sandstone. During drilled shaft installation, we anticipate the potential need for temporary casing sealed into the bedrock to prevent raveling and caving conditions in the overburden. Where casing is used, it should be pushed, rotated, vibrated, or driven into the bedrock. The inside diameter of the casing should be equal to or larger than the specified drilled shaft dimensions. The use of casings larger than the diameter of the specified casing must have prior approval from the Engineer. Groundwater can infiltrate into drilled shafts from perched water or within fractured or more permeable zones within the sandstone. Hence, the contractor should be prepared for underwater concrete placement techniques (tremie pipes).

If slurry methods are required to stabilize the excavation, we recommend the use of polymer slurry in the bedrock. Uncontrolled slurries should not be permitted. Additionally, the drilled shaft contractor should not be permitted to use mineral (e.g. bentonite) slurry in the bedrock. Mineral slurries may reduce the side resistance in the bedrock below the values provided herein. Construction of drilled shafts using wet methods (i.e. slurry) is more difficult than constructing shafts using dry methods. Because a wet excavation cannot be easily visually observed, good construction practices, particularly the recommendations discussed in Sections 8.1.2 and 8.1.3, are critical to constructing shafts that perform adequately. Wet installation methods and specifications should be in accordance with the 2010 FHWA Manual, "Drilled Shafts: Construction Procedures and Design Methods" (Brown and others, 2010).

8.1.2 Drilled Shaft Inspection and Observation

A geotechnical engineer familiar with the subsurface conditions at the site should observe drilled shaft installation to determine the top of rock elevation and shaft penetration into rock. The hole should be cleaned of loose material and observed by the geotechnical engineer prior to

pouring concrete. The drilling and concreting process should be relatively continuous with minimal stoppage of work between the completion of drilling, cleaning the hole, and the placement of concrete after setting the rebar cage.

8.1.3 Concrete Placement

Groundwater inflow into drilled shafts from fractured or more permeable zones within the sandstone bedrock is possible. Pumping and/or tremie concrete placement may be required if significant water inflow develops in the bedrock or shafts are constructed using wet methods. Tremie placement should be used if wet methods are used to construct the shafts or if water cannot be controlled by pumping or bailing such that more than 3 inches of water is present when concrete is placed. The contractor should be prepared to address these issues.

We recommend concrete be designed and placed with a slump of 4 to 6 inches if placed in the dry (with no casing to be pulled), 5 to 7 inches if casing is to be pulled or the shaft is heavily reinforced, and 7 to 9 inches (with maximum aggregate size of 3/4 inch) when pumping and/or tremie placement is used. When casing and/or tremie concrete placement methods are used, a minimum head of concrete of 5 feet above the bottom of the tremie pipe and/or casing should be maintained at all times.

Drilled shaft defects in cased shafts are frequently the result of inadequate head of concrete, particularly when combined with marginal or low slump concrete. If a truck-mounted pump is used to tremie concrete, pull-out of the pipe can occur if a pressure surge causes upward boom movement. Adequate methods should be established to measure and confirm that minimum head requirements are met throughout the concrete placement process.

8.1.4 Non-Destructive Integrity Tests

We recommend that non-destructive tests be completed on select drilled shafts for the project. In our opinion, Cross-Hole Sonic Logging (CSL) will provide the best evaluation of the integrity of the drilled shafts, particularly where temporary casing is used. In our opinion, CSL should be performed on a minimum of ten percent of the total number of drilled shafts for Walls 3 and 4. As a minimum, consideration should be given to installing access tubes for CSL in all shafts in case uncertainty arises during installation regarding the integrity of the shaft.

CSL is a non-destructive testing method that requires steel (preferred for durability and to avoid delaminating from the concrete) or plastic tubes installed in the drilled shaft and tied to the rebar cage. The tubes are attached to the interior of the rebar cage and then the cage is lowered

into the hole and the concrete is placed. After the concrete has cured, a sound source and receiver are lowered, maintaining a consistent elevation between source and sensor. A signal generator generates a sonic pulse from the emitter which is recorded by the sensor. Relative energy, waveform, and differential time are recorded and logged. This procedure is repeated at regular intervals throughout the shaft. By comparing the graphs from the various combinations of access tubes, a qualitative idea of the soundness of the concrete throughout the drilled shaft can be interpreted.

For small diameter shafts (less than 2 feet in diameter), CSL testing may not be cost-effective. For these small diameter shafts we recommend using a stress wave method, such as Sonic Echo (SE). The SE method involves generation of low-amplitude stress waves at the top of the shaft. Properties of the shaft concrete then are inferred from measured reflections and travel times of the stress waves. Defects or irregularities in a drilled shaft or any change in the shaft dimensions will change the impedance and result in reflection of wave energy, which allows interpretation of the irregularity or change in diameter. Generally, SE methods are less expensive and can be completed on a greater number of shafts than CSL testing. However, CSL test results are generally considered more accurate in identifying defects.

8.2 Site Preparation

Prior to site grading, ponded water should be drained from low-lying areas. In addition, construction areas should be cleared to a depth necessary to remove all surface and subsurface structures associated with current development of the site, including all pavements, utility poles, fence poles, underground utilities, and other deleterious material. Trees or shrubs to be removed should include the entire rootball and all roots larger than ½-inch-diameter. This may require laborers handpicking the roots from the subsurface soils prior to compaction.

Surface vegetation within construction areas should be removed by stripping. The depth of stripping should be determined at the time of construction based on existing conditions. Debris from the stripping should not be used in general fill construction in either pavement and wall foundation areas, but may be used in landscape areas.

8.3 Earthwork

8.3.1 Excavation Potential

We anticipate that excavation of overburden soil and shallow claystone/sandstone bedrock (where encountered) can be accomplished with conventional excavating equipment,

such as dozers, front-end loaders or scrapers. We do not anticipate blasting will be required for rock excavation. However, excavation in fresh rock could be slow at times and require the use of hydraulic excavators and dozers with ripper attachments.

8.3.2 Proof Roll and Subgrade Preparation

Proper subgrade preparation is required for adequate foundation and pavement performance. In pavement areas the exposed material should be scarified in place an additional 12 inches, moisture treated, and recompacted. If granular soils are encountered (AASHTO soil classification A-1, A-2 and A-3), subgrade soils should be compacted within 2 percent of optimum moisture content and recompacted to at least 95 percent of the maximum dry density as determined by AASHTO T180 (modified compaction effort). If cohesive soils are encountered (AASHTO soil classification A-4, A-6 and A-7), subgrade soils should be compacted to 0 to 3 percent above optimum moisture content and recompacted to at least 95 percent AASHTO T99 (standard compaction effort).

The compacted surface below pavements and walls should be proof-rolled with a fully-loaded, tandem-axle, 10-yard dump truck or equivalent. Any areas that are delineated to be soft, loose, or yielding during proof-rolling should be removed and reconditioned, or replaced. We recommend the subgrade be overexcavated to a maximum depth of two feet and a geogrid (Tensar biaxial BX1200, Tensar triaxial TX5, or equivalent products) should be installed at the base of the excavation before backfilling. Below walls, we recommend a granular fill (such as an aggregate base course) placed above the geogrid. Care should be taken during proof-rolling and subgrade preparation to avoid disturbing subgrade soils and supporting soils that will remain in place, as they can rut and pump under repeated construction traffic. Additionally, subgrades should be protected from drying or wetting in excess of what is required to achieve the specified compaction requirements.

We recommend that the contract documents contain contingency for a unit rate for subgrade re-working. For cost estimating purposes, we recommend up to 10 percent of the alignment may encounter pumping subgrade conditions and require either sub-grade re-working or placing of geogrid.

8.3.3 Fill Materials

All fill placed should be free of organics, deleterious material, contaminants, construction debris, and rock fragments larger than 3 inches and which is compacted to a dense and unyielding condition meeting the relative compaction requirements of described in Section 8.3.4.

The on-site soils can be reused as retained fill behind walls provided the material contains less than 35 percent fines. Based on our laboratory testing, we anticipate the site soils will meet this criteria. However, if any soils with greater than 35 percent fines are encountered, such soils should only be used in landscaping or drainage areas of the site.

Import granular fill should have a maximum fines content of 35 percent and a minimum R-value of 20 if placed in the roadway profile.

8.3.4 Fill Placement and Moisture Conditioning

All fill material should be placed in horizontal lifts and be compacted to a dense and unyielding condition. The thickness of loose lifts should not exceed 8 inches for heavy equipment compactors and 4 inches for hand-operated compactors, but may be less depending on that required to obtain the required relative compaction. Granular soils (material with less than 35 percent fines) should be moisture treated to within 2 percent of optimum moisture content and compacted to at least 95 percent of the maximum dry density per AASHTO T180 (modified compaction effort). Cohesive soils should be placed to at least 95 percent of the maximum dry density per AASHTO T99 (standard compaction effort) and be moisture treated to within 0 to 3 percent above the optimum moisture content.

8.4 Temporary Slopes

We anticipate temporary excavations will be required to construct the project. The type of excavation support system selected for construction will depend on proposed depth of the excavation, proximity to existing structures, anticipated surcharge loads, and materials exposed during construction.

Temporary, unbraced excavations should be sloped, as needed, to provide a safe, stable slope. Consistent with conventional construction practice, the Contractor should be responsible for temporary excavation slopes. The Contractor is continually at the site, is able to observe the nature and conditions of the subsurface materials encountered, and is responsible for the methods, sequence, and schedule of construction.

For planning purposes only, we anticipate Type B soils will be encountered and 1:1 (H:V) slopes may be used. We recommend using the excavation criteria in OSHA 29 CFR, Part 1926, Subpart P, Excavations (1989).

If required, temporary, unbraced excavations should be sloped, as needed, to provide a safe, stable slope. Consistent with conventional construction practice, the Contractor should be responsible for temporary excavation slopes. The Contractor is continually at the site, is able to observe the nature and conditions of the subsurface materials encountered, and is responsible for the methods, sequence, and schedule of construction.

8.5 Paving Materials

Per section D.5 of El Paso County Engineering Criteria Manual, the ABC material shall consist of either CDOT Class 5 or Class 6 aggregated base course (CDOT, 2011) with the stipulation the ABC have a minimum R-value of 72.

HMA mix designs should be in accordance with the Pikes Peak Region Asphalt Paving Specification (2015). We recommend that the surface HMA lift be a Grade SX mix with a PG 64-22 binder. Below 2 inches, we recommend either a Grade S or SX mix with a PG 64-22 binder. We recommend a Superpave design gyratory number (N) of 75. In addition, a tack coat should be placed between subsequent lifts if the underlying lift will be used for traffic or left uncovered for a significant period of time.

9.0 PLAN REVIEW AND CONSTRUCTION OBSERVATION

We recommend that we be retained to review the geotechnical aspects of the plans and specifications prior to bidding the work to determine that they are in accordance with our recommendations. While this step is often skipped in design document preparation, our experience is that the review can find discrepancies or misinterpretations and correct them before bidding, thus avoiding potential change orders during construction.

Geotechnical design recommendations are developed from a limited number of explorations and tests. Therefore, recommendations may need to be adjusted in the field. To this end, we recommend that a construction observation and monitoring program be implemented for the project and that Shannon & Wilson be retained to monitor the geotechnical aspects of construction. This monitoring would allow us to confirm that conditions encountered are consistent with those indicated by the explorations and provide expedient recommendations should conditions be revealed during construction that are different from those anticipated.

10.0 LIMITATIONS

Our evaluations, analyses, conclusions, and recommendations are based on the limitations of our approved scope, schedule, and budget described in our Subconsultant Agreement dated November 18, 2015. Our understanding of the project is based on information provided by HDR throughout the project. This report was prepared for the exclusive use of HDR and their representatives for design of the Hwy 105 corridor improvements.

This report should not be used without our approval if any of the following occurs:

- Conditions change due to natural forces or human activity under, at, or adjacent to the site
- Assumptions stated in this report have changed.
- Project details change or new information becomes available such that our analyses, conclusions, and recommendations may be affected.
- If the site ownership or land use has changed.
- More than 5 years has passed since the date of this report.

If any of these occur, we should be retained to review the applicability of our analyses, conclusions, and recommendations.

Unanticipated soil conditions are commonly encountered and cannot be fully determined by a limited boring and testing program. Such unexpected conditions frequently require that additional expenditures be made to attain a properly constructed project. Therefore, some contingency fund is recommended to accommodate such potential extra costs.

The scope of our services did not include an evaluation regarding the presence or absence of hazardous or toxic materials in the soil, surface water, groundwater, or air, on or below or around this site. If such contamination exists, it would not be possible to determine it within this limited scope of work.

SHANNON & WILSON, INC.

Shannon & Wilson has prepared Appendix D, "Important Information About Your Geotechnical Report," to assist you and others in understanding the use and limitations of our reports.

SHANNON & WILSON, INC.

Joseph Goode, P.E. Geotechnical Engineer

Mark J. Vessely, P.E. Vice President

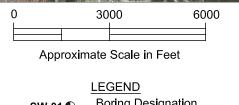
JCG:DAA:MJV/lmr


11.0 REFERENCES

- American Association of State Highway and Transportation Officials (AASHTO), 2015, Mechanistic-Empirical pavement design guide: A manual of practice (2nd ed.): Washington, D.C., AASHTO, August.
- AASHTO, 2014, AASHTO LRFD bridge design specifications: U.S. customary units (7th ed.): Washington, D.C., AASHTO.
- AASHTO, 1993, AASHTO guide for design of pavement structures: Washington, D.C., AASHTO, 2 v.
- Brown, D. A.; Turner, J. P.; and Castelli, R. J., 2010, Drilled shafts: construction procedures and LRFD design methods: Washington, D. C., U. S. Federal Highway Administration, FHWA NHI-10-016, NHI course no. 132014, GEC 010, 970 p.
- CDOT, 2011, Standard specifications for road and bridge construction, available to download at: http://www.coloradodot.info/business/designsupport/construction-specifications.
- El Paso County, 2015, Engineering criteria manual, available to download at: http://adm.elpasoco.com/publicservices/transportation/Documents/ECM%2029Jul2015.pdf
- Ensoft, Inc., 2016, LPILE 2016, A program for analyzing stress and deformation of individual piles or drilled shafts under lateral load, Austin, Texas.
- Hart, S. S., 1974, Potentially swelling soil and rock in the Front Range urban corridor, Colorado: Golden, Colo., Colorado Geological Survey Environmental Geology no. 7, 23 p., 4 plates.
- OSHA 29 CFR, Part 1926, Subpart P, Excavations (1989).
- Pikes Peak Region, 2015, Asphalt paving specifications, Version 3, Effective: February, 2015, available at:

 http://adm.elpasoco.com/publicservices/transportation/Documents/Pikes%20Peak%20Region%20Asphalt%20Paving%20Specs%20-%20February%202015%20-%20Version%203.pdf
- Rogers, W.P., Kirkham, R.M., and Widmann, B.L., compilers, 1998, Fault number 2328, Rampart Range fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, http://earthquakes.usgs.gov/hazards/qfaults, accessed May, 2017.
- Shannon & Wilson, 2012, Preliminary geotechnical report, Highway 105 corridor improvements, El Paso County, Colorado. June 22.

SHANNON & WILSON, INC.


- Thorson, J. P. and Madole, R. F., 2003, Geologic map of the Monument quadrangle, El Paso County, Colorado: Colorado Geological Survey Open-File Report 02-4, 1 sheet, scale 1:24,000.
- U.S. Geological Survey (USGS), 2016, U.S. seismic design maps: Available: http://earthquake.usgs.gov/designmaps/us/application.php

 Map adapted from aerial imagery provided by Google Earth Pro, reproduced by permission granted by Google Earth ™ Mapping Service.

FIG.

2. Alignment adapted from files 2D-HWY105
Project A_TO CAD-5-23-17.dwg and
10_076DES_HCL_Hwy105_50s_Project_B_to_E.dwg,
received from HDR Engineering, Inc. on May
24, 2017.

SW-01 🚱

Boring Designation and Approximate Location

SH 1

Figure 2 Index Map and Reference Sheet Number

Corridor Improvements
El Paso County, Colorado

VICINITY MAP

July 2017

23-1-01311-002

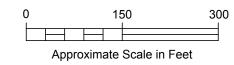
SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. 1

LEGEND

SW-P-01

Boring Designation and Approximate Location


TP-01 Test Pit Designation and Approximate Location

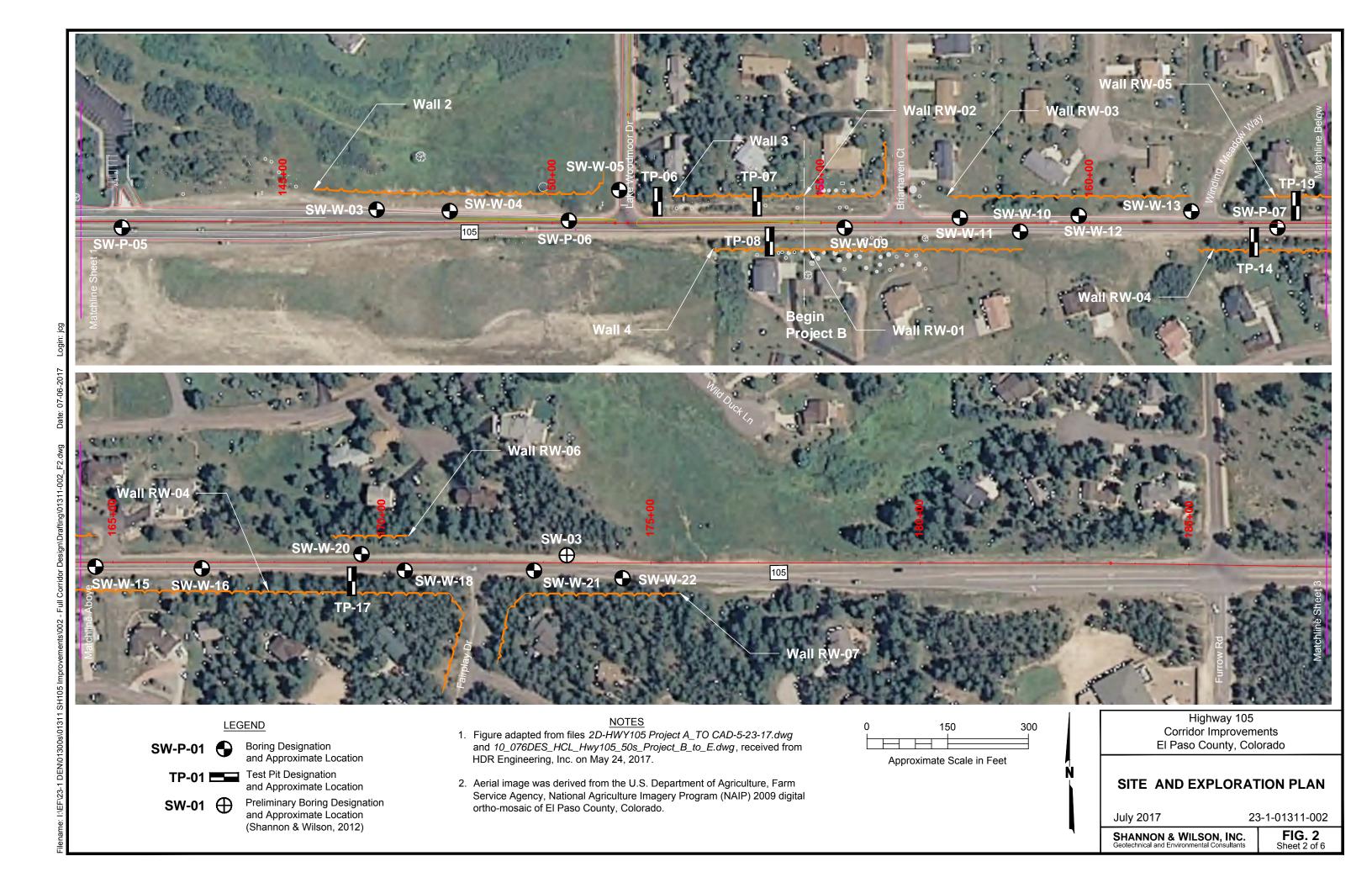
SW-01 ⊕

Preliminary Boring Designation and Approximate Location (Shannon & Wilson, 2012)

- NOTES

 1. Figure adapted from files 2D-HWY105 Project A_TO CAD-5-23-17.dwg and 10_076DES_HCL_Hwy105_50s_Project_B_to_E.dwg, received from HDR Engineering, Inc. on May 24, 2017.
- Aerial image was derived from the U.S. Department of Agriculture, Farm Service Agency, National Agriculture Imagery Program (NAIP) 2009 digital ortho-mosaic of El Paso County, Colorado.

Highway 105 Corridor Improvements El Paso County, Colorado


SITE AND EXPLORATION PLAN

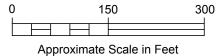
July 2017

23-1-01311-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

FIG. 2 Sheet 1 of 6

SW-P-01


Boring Designation and Approximate Location

TP-01 Test Pit Designation and Approximate Location

SW-01 ⊕

Preliminary Boring Designation and Approximate Location (Shannon & Wilson, 2012)

- Aerial image was derived from the U.S. Department of Agriculture, Farm Service Agency, National Agriculture Imagery Program (NAIP) 2009 digital ortho-mosaic of El Paso County, Colorado.

El Paso County, Colorado

SITE AND EXPLORATION PLAN

July 2017

23-1-01311-002

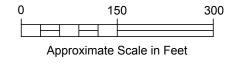
SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

FIG. 2 Sheet 4 of 6

LEGEND

SW-P-01

Boring Designation and Approximate Location


TP-01 Test Pit Designation and Approximate Location

SW-01 ⊕

Preliminary Boring Designation and Approximate Location (Shannon & Wilson, 2012)

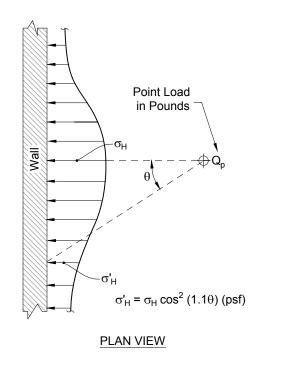
- NOTES

 1. Figure adapted from files 2D-HWY105 Project A_TO CAD-5-23-17.dwg and 10_076DES_HCL_Hwy105_50s_Project_B_to_E.dwg, received from HDR Engineering, Inc. on May 24, 2017.
- 2. Aerial image was derived from the U.S. Department of Agriculture, Farm Service Agency, National Agriculture Imagery Program (NAIP) 2009 digital ortho-mosaic of El Paso County, Colorado.

Highway 105 Corridor Improvements El Paso County, Colorado

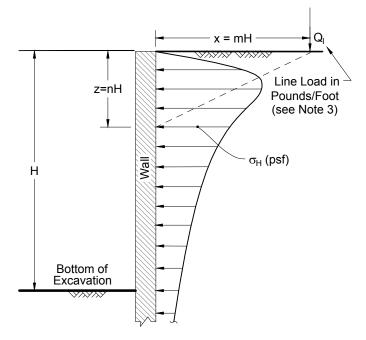
SITE AND EXPLORATION PLAN

July 2017


23-1-01311-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

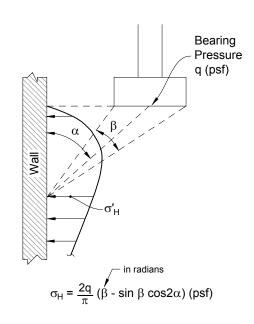
FIG. 2 Sheet 6 of 6


ELEVATION VIEW

For m \leq 0.4: σ_H = 0.28 $\frac{Q_p}{H^2} = \frac{n^2}{(0.16 + n^2)^3}$ (psf) (see Note 3) For m > 0.4: σ_H = 1.77 $\frac{Q_p}{H^2} = \frac{m^2 n^2}{(m^2 + n^2)^3}$ (psf)

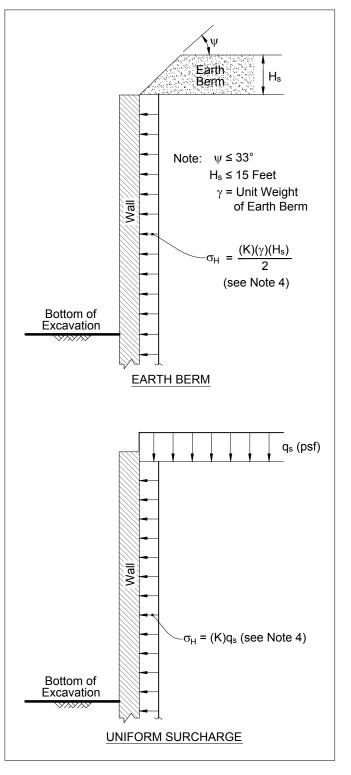
A) LATERAL PRESSURE DUE TO POINT LOAD i.e. SMALL ISOLATED FOOTING OR WHEEL LOAD

(NAVFAC DM 7.2, 1986)

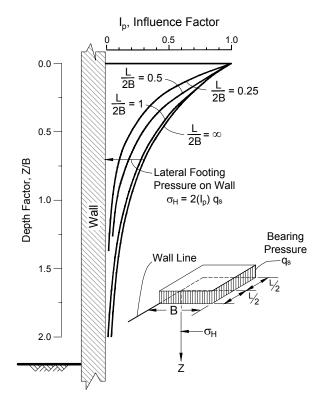


ELEVATION VIEW

For m \leq 0.4: $\sigma_H = 0.20 \frac{Q_l}{H} \frac{n}{(0.16 + n^2)^2} \text{ (psf)}$ (see Note 3) For m > 0.4: $\sigma_H = 1.28 \frac{Q_l}{H} \frac{m^2 n}{(m^2 + n^2)^2} \text{ (psf)}$


B) LATERAL PRESSURE DUE TO LINE LOAD i.e. NARROW CONTINUOUS FOOTING PARALLEL TO WALL

(NAVFAC DM 7.02, 1986)


C) LATERAL PRESSURE DUE TO STRIP LOAD

(derived from Fang, Foundation Engineering Handbook, 1991)

D) LATERAL PRESSURE DUE TO EARTH BERM OR UNIFORM SURCHARGE

(derived from Poulos and Davis, *Elastic Solutions for Soil and Rock Mechanics*, 1974; and Terzaghi and Peck, *Soil Mechanics in Engineering Practice*, 1967)

E) LATERAL PRESSURE DUE TO ADJACENT FOOTING

(see Notes 5 and 6)

(derived from NAVFAC DM 7.02, 1986; and Sandhu, Earth Pressure on Walls Due to Surcharge, 1974)

<u>NOTES</u>

- 1. Figures are not drawn to scale.
- Applicable surcharge pressures should be added to appropriate temporary and permanent wall lateral earth and water pressure.
- If point or line loads are close to the back of the wall such that m ≤ 0.4, it may be more appropriate to model the actual load distribution (i.e., Detail E) or use more rigorous analysis methods.
- 4. See text for recommended K values.
- 5. The stress is estimated on the back of the wall at the center of the length, L, of loading.
- 6. The estimated stress is based on a Poisson's ratio of 0.5.

Highway 105 Corridor Improvements Colorado Springs, Colorado

RECOMMENDED SURCHARGE LOADING FOR TEMPORARY AND PERMANENT WALLS

July 2017

23-1-01311-002

SHANNON & WILSON, INC.

FIG. 3

TABLE 1
SEISMIC DESIGN GROUND MOTION PARAMETERS

Ground Motion Parameters				
Peak Ground Acceleration ¹ (PGA _B)	0.057 g			
Site Class	D			
Short-period Spectral Acceleration, S _s	0.123 g			
Long-period Spectral Acceleration, S ₁	0.035 g			
Site Factor, F _{pga}	1.6			
Site Factor, F _a	1.6			
Site Factor, F _v	2.4			
Peak Design Spectral Acceleration, A _S	0.091 g			
Short-period Design Spectral Acceleration, S _{DS}	0.196 g			
Long-period Design Spectral Acceleration, S _{D1}	0.083 g			
T_0	0.085 sec.			
T_{S}	0.423 sec.			

Note:

¹ PGA_B = peak ground acceleration for a site underlain by Site Class B soil (soft rock).

SHANNON & WILSON, INC.

TABLE 2 RECOMMENDED PAVEMENT SECTIONS

	Segment	Subgrade Modulus (psi)	18 kip ESAL	Pavement Section
Hwy 105 ¹ Project A,	Eastern-most I-25 Ramps to Knollwood Dr.	5,400	2,216,000 (Projected Traffic) 5,256,000 (County Minimum for 4-lane Principal Arterial)	7.5" HMA over 8" ABC 2" mill, 2" HMA overlay 8.5" HMA over 8" ABC 2" mill, 2" HMA overlay
(Urban Principal Arterial)	Knollwood Dr to Lake Woodmoor Dr.	5,400	1,611,000 (Projected Traffic) 5,256,000 (County Minimum for 4-lane Principal Arterial)	7.0" HMA over 8" ABC 2" mill, 4.5" HMA overlay 8.5" HMA over 8" ABC 2" mill, 6.0" HMA overlay
Hwy 105 ² Project B (Rural Minor or Principal Arterial)	Lake Woodmoor Dr to SH 83	4,800	1,810,000 (Projected Traffic) 689,850 (County Minimum for Minor Arterial) 2,628,000 (County Minimum for 4-lane Principal Arterial)	7.5" HMA over 8" ABC See note 2 8.0" HMA over 8" ABC
Cross Streets	Low Traffic Volume Cross Streets	4,800	36,500 (County Minimum for Local Roads)	3.5" HMA over 6" ABC

HMA = Hot Mix Asphalt
ABC = CDOT Class 6 Aggregate Base Course
ESAL = Single Axle Equivalent Loading

¹ Based on communication from El Paso County, the selected pavement section should be based on County Minimum traffic

² The projected traffic loading exceeds the County minimum value. Therefore, pavement sections based on the projected traffic loading should be used.

TABLE 3 RECOMMENDED BACKFILL DESIGN PARAMETERS FOR MSE AND CIP WALLS

DESIGN PARAMET	ER	VALUE			
Backfill Design Parameters – CDOT Class 1 Structural Backfill					
Total Unit Weight (pcf)		135			
Effective Friction Angle (degrees)		34			
Cohesion (psf)		0			
Active Earth Pressure Coefficient, K _A :	Horizontal Back Slope	0.28			
Active Earth Fressure Coefficient, KA.	4H:1V Back Slope	0.33			
Equivalent Fluid Density for Active	Horizontal Back Slope	38			
Conditions (pcf):	4H:1V Back Slope	45			
Seismic Active Earth Pressure	Horizontal Back Slope	0.31			
Coefficient, Kae	4H:1V Back Slope	0.36			
Backfill Design Parameters – Fill Generated from On Site Sandstone and Clayey Sand					
Total Unit Weight (pcf)		125			
Effective Friction Angle (degrees)		30			
Cohesion (psf)		0			
Adding Foodly Decrees Conference W.	Horizontal Back Slope	0.33			
Active Earth Pressure Coefficient, K _A :	4H:1V Back Slope	0.40			
Equivalent Fluid Density for Active	Horizontal Back Slope	41			
Conditions (pcf):	4H:1V Back Slope	50			
Seismic Active Earth Pressure	Horizontal Back Slope	0.36			
Coefficient, K _{ae}	4H:1V Back Slope	0.44			

pcf = pounds per cubic foot psf = pounds per square foot

TABLE 4
RECOMMENDED MSE WALL DESIGN PARAMETERS FOR WALLS 1 AND 2

DESIGN PARAMETER	VAI	LUE		
Backfill Design Parameter	Refer to	Refer to Table 3		
Bearing Resistance - Wall 1				
Strength Limit Nominal Bearing Resistance (psf) ^{1, 2}	5,5	500		
Anticipated Settlement (S _T) for the corresponding	S _T =1"	1,100		
Service Limit Nominal Bearing Resistance (psf) ^{2, 4}	S _T = 2"	2,000		
Strength Limit Resistance Factor for Bearing ³	0.65			
Nominal Coefficient of Friction for Sliding	See Section 7.1.1			
Bearing Resistance - Wall 2				
Strength Limit Nominal Bearing Resistance (psf) ^{1, 2}	10,000			
Service Limit Nominal Bearing Resistance (psf) ^{2, 5} 0.5-inches of settlement 3,000				
Strength Limit Resistance Factor for Bearing ³	0.65			
Nominal Coefficient of Friction for Sliding	See Sect	ion 7.1.1		

Notes:

pcf = pounds per cubic foot

psf = pounds per square foot

¹ Nominal bearing resistance assumes a minimum reinforcement length of 8 feet.

 $^{^2}$ The provided nominal bearing resistance assumes groundwater is more than 1.5 B below the base of the wall, where B is the footing width in feet.

³ Bearing resistance factor based on AASHTO (2014), Table 11.5.7-1.

⁴ MSE Wall 1 is anticipated to bear on loose to medium dense sand subgrade.

⁵ MSE Wall 2 is anticipated to bear on sandstone.

TABLE 5 RECOMMENDED CANTILEVERED DRILLED SHAFT WALL DESIGN PARAMETERS FOR WALLS 3 AND 4

		LATERAL EARTH PRESSURE PARAMETERS ^{2, 3, 4, 5}						LPILE PARAMETERS FOR LATERAL ANALYSIS 6,7							
Location (Boring ID)	-	Below Botton of Cut Bottom (ft)	- (ft)	Representative Soil/Rock Description	Effective Friction Angle, ф (degrees)	Effective Unit Weight γ' (pcf)	Active Earth Pressure Coefficient, K _A	Equivalent Active Fluid Weight, γ _{eq,A} (pcf)	At-Rest Earth Pressure Coefficient, K ₀	Equivalent At- Rest Fluid Weight, γ _{eq,0} (pcf)	Seismic Active Earth Pressure Coefficient, K _{ae}	Nominal Passive Earth Pressure ⁵	LPile Soil Type	Drained Friction Angle ø' (deg)	Undrained Shear Strength s _u (psf)
	Reta	Retained Fill	ed Fill	Medium Stiff Clay to Medium	28	120	0.36	43	0.53	64	0.39		Sand (Reese)	28	
	0	5		Dense, Sand with Silt	28	120	0.30	43	0.33	04	-	-	Sand (Reese)	28	-
Walls 3 and 4 (TP-06 through TP-08,	5	10	15	SANDSTONE: Very Low Strength, Highly Weathered	38	130	0.24	32	0.38	50	-	1,400 pcf EFW	Sand (Reese)	38	-
SW-W-09)	10	15		SANDSTONE: Very Low Strength, Moderately Weathered	-	130	-	-			-	8,000 psf	Stiff clay w/o free water	-	4,000
	15	20 (BOE)		SANDSTONE: Very Low Strength, Moderately Weathered	-	67.6	-	-			-	8,000 psf	Stiff clay w/o free water	-	4,000

Notes:

pcf = pounds per cubic foot

deg = degrees

ft = foot

BOE = bottom of exploration

EFW = equivalent fluid weight

01311-002_T5_Project A Drilled Shaft Wall/wp/lmr

¹ Design groundwater elevation above assumes an elevation of 2 feet above the highest observed water level in boring SW-W-09.

² Above cut, apply earth pressure to the full width of wall. Active pressures should be used if the wall is able to deflect at least 0.001 times the height of the wall, otherwise at-rest pressure should be used.

³ Passive resistance should be ignored above the frost depth (3 feet) from below the bottom of the cut.

⁴ A resistance factor of 0.75 should be applied for passive resistance AASHTO (2014), Section 11.5.7.

⁵ Resistance factors based on AASHTO (2014). See AASHTO (2014) Sections 3.4.1 and 11.8 for appropriate load factors and load combinations and static forces to be evaluated.

⁶ The above LPILE parameters are for a horizontal ground surface on the side of the drilled shaft resisting lateral loading. Sloping ground surface modifications should be included as per Ensoft, Inc.'s recommendations for the LPILE program as necessary.

⁷ The LPILE parameters do not consider group effects. We recommend p-reduction factors according to the equation $\beta_a = 0.64(S/D)^{0.34}$ for 1 < (S/D) < 0.375, where S = center-to-center spacing and D = drilled shaft diameter. (Reese and others, 2006) psf = pounds per square foot

TABLE 6
PRELIMINARY PROJECT B MSE WALL DESIGN PARAMETERS

DESIGN PARAMETER	VALUE	
Backfill Design Parameters	Refer to Table 3	
Walls Bearing on Clayey Sand Overburden – Bearing Resistance – Clayey Sand Subgrade	Wall RW-03	
Strength Limit Nominal Bearing Resistance (psf) ^{1, 2}	7,000	
Service Limit Nominal Bearing Resistance (psf) ^{2, 4} 0.5-inches of settlement	2,000	
Strength Limit Resistance Factor for Bearing ³	0.65	
Nominal Coefficient of Friction for Sliding	See Section 7.2.1	
Bearing Resistance – Sandstone Subgrade	Walls RW-06 and RW-09	
Strength Limit Nominal Bearing Resistance (psf) ^{1, 2}	10,000	
Service Limit Nominal Bearing Resistance (psf) ^{2, 5} 0.5-inches of settlement	3,000	
Strength Limit Resistance Factor for Bearing ³	0.65	
Nominal Coefficient of Friction for Sliding	See Section 7.2.1	

Notes:

pcf = pounds per cubic foot

psf = pounds per square foot

¹ Nominal bearing resistance assumes a minimum reinforcement length of 8 feet.

² The provided nominal bearing resistance assumes groundwater is more than 1.5 B below the base of the wall, where B is the footing width in feet.

³ Bearing resistance factor based on AASHTO (2014), Table 11.5.7-1.

⁴ MSE Wall RW-03 is anticipated to bear on loose to medium dense clayey sand subgrade.

⁵ MSE Wall RW-06 and RW-09 are anticipated to bear on sandstone.

TABLE 7
PRELIMINARY PROJECT B CIP GRAVITY WALL DESIGN PARAMETERS

DESIGN PARAMETER	VALUE
Backfill Design Parameter	Refer to Table 3
Bearing Resistance – Sandstone Subgrade	Walls RW-05, RW-07, RW-08, and RW-10
Strength Limit Nominal Bearing Resistance (psf) ^{1, 2}	10,000
Service Limit Nominal Bearing Resistance (psf) ² 0.5-inches of settlement	3,000
Strength Limit Resistance Factor for Bearing ³	0.55
Passive Earth Pressure Coefficient, K _P :	11.0
Equivalent Fluid Density for Passive Conditions (pcf) ⁴	1,400
Resistance Factor for Passive Sliding Resistance	0.50
Coefficient of Friction for Sliding (tan δ)	0.40
Strength Limit Resistance Factor for Sliding	0.80
Bearing Resistance – Clayey Sand Subgrade	Walls RW-04 and
	RW-11
Strength Limit Nominal Bearing Resistance (psf) ^{1, 2}	7,000
Service Limit Nominal Bearing Resistance (psf) ² 0.5-inches of settlement	3,000
Strength Limit Resistance Factor for Bearing ³	0.55
Passive Earth Pressure Coefficient, K _P :	4.9
Equivalent Fluid Density for Passive Conditions (pcf) ⁴	500
Resistance Factor for Passive Sliding Resistance	0.50
Coefficient of Friction for Sliding (tan δ)	0.32
Strength Limit Resistance Factor for Sliding	0.80

Notes:

¹ Nominal bearing resistance assumes a minimum footing width of 8 feet.

² The provided nominal bearing resistance assumes groundwater is more than 1.5 B below the base of the wall, where B is the footing width in feet.

³ Bearing and sliding resistance factors based on AASHTO (2014), Tables 11.5.7-1 and 10.5.5.2.2-1, respectively. Sliding resistance factors assumes cast-in-place concrete.

⁴ Passive resistance should be ignored above the frost depth (3 feet) from below the bottom of the cut. pcf = pounds per cubic foot

psf = pounds per square foot

SHANNON & WILSON, INC.

APPENDIX A SUBSURFACE EXPLORATIONS

APPENDIX A

SUBSURFACE EXPLORATIONS

TABLE OF CONTENTS

			Page
A.1	INTRO	ODUCTION	A-1
A.2	BORII	NGS	A-1
	A.2.1	Standard Penetration Test	
	A.2.2	Modified California (MC) Test and Sampling	
	A.2.3	Bulk Samples	
	A.2.4	Soil and Rock Classification System	A-2
A.3	TEST	PITS	A-3
		FIGURES	
	A-1	Soil Description and Log Key (3 sheets)	
	A-2	Rock Classification and Log Key (2 sheets)	
	A-3	Log of Boring SW-P-01	
	A-4	Log of Boring SW-P-02	
	A-5	Log of Boring SW-P-03	
	A-6	Log of Boring SW-P-04	
	A-7	Log of Boring SW-P-05	
	A-8	Log of Boring SW-P-06	
	A-9	Log of Boring SW-P-07	
	A-10	Log of Boring SW-P-08	
	A-11	Log of Boring SW-P-09	
	A-12	Log of Boring SW-P-10	
	A-13	Log of Boring SW-P-11	
	A-14 A-15	Log of Boring SW-P-12	
	A-13 A-16	Log of Boring SW-P-13 Log of Boring SW-P-14	
	A-10 A-17	Log of Boring SW-P-15	
	A-17 A-18	Log of Boring SW-P-16	
	A-18 A-19	Log of Boring SW-P-17 Log of Boring SW-P-17	
	A-19 A-20	Log of Boring SW-P-17 Log of Boring SW-P-18	
	A-21	Log of Boring SW-P-19	
	-		

FIGURES (cont.)

A-22	Log of Boring SW-P-20
A-23	Log of Boring SW-P-21
A-24	Log of Boring SW-P-22
A-25	Log of Boring SW-P-23
A-26	Log of Boring SW-P-24
A-27	Log of Boring SW-P-25
A-28	Log of Boring SW-P-26
A-29	Log of Boring SW-P-27
A-30	Log of Boring SW-P-28
A-31	Log of Boring SW-W-01
A-32	Log of Boring SW-W-02
A-33	Log of Boring SW-W-03
A-34	Log of Boring SW-W-04
A-35	Log of Boring SW-W-05
A-36	Log of Test Pit TP-06
A-37	Log of Test Pit TP-07
A-38	Log of Test Pit TP-08
A-39	Log of Boring SW-W-09
A-40	Log of Boring SW-W-10
A-41	Log of Boring SW-W-11
A-42	Log of Boring SW-W-12
A-43	Log of Boring SW-W-13
A-44	Log of Test Pit TP-14
A-45	Log of Boring SW-W-15
A-46	Log of Boring SW-W-16
A-47	Log of Test Pit TP-17
A-48	Log of Boring SW-W-18
A-49	Log of Test Pit TP-19
A-50	Log of Boring SW-W-20
A-51	Log of Boring SW-W-21
A-52	Log of Boring SW-W-22
A-53	Log of Boring SW-W-23
A-54	Log of Boring SW-W-24
A-55	Log of Boring SW-W-25
A-56	Log of Boring SW-W-26
A-57	Log of Boring SW-W-27
A-58	Log of Test Pit TP-28
A-59	Log of Test Pit TP-29
A-60	Log of Boring SW-W-30
A-61	Log of Boring SW-W-31
A-62	Log of Boring SW-W-32
A-63	Log of Test Pit TP-33

SHANNON & WILSON, INC.

TABLE OF CONTENTS (cont.)

FIGURES (cont.)

A-64	Log of Boring SW-W-34
A-65	Log of Boring SW-W-35
A-66	Log of Boring SW-W-36
A-67	Log of Boring SW-W-37
A-68	Log of Boring SW-W-38
A-69	Pavement Core Photograph Boring SW-P-01
A-70	Pavement Core Photograph Boring SW-P-02
A-71	Pavement Core Photograph Boring SW-P-03
A-72	Pavement Core Photograph Boring SW-P-04
A-73	Pavement Core Photograph Boring SW-P-05
A-74	Pavement Core Photograph Boring SW-P-06

APPENDIX A

SUBSURFACE EXPLORATIONS

A.1 INTRODUCTION

The field exploration program consisted of drilling and sampling 57 geotechnical borings and 9 test pits on June 27 and 28, 2016 and November 9 through 21, 2016. Borings drilled for the pavement subsurface investigation were designated SW-P-01 through SW-P-28, and borings drilled for the retaining wall subsurface investigation were designated SW-W-01 through SW-W-38. The test pits were completed as part of the retaining wall subsurface investigation where access and right-of-way were limited and designated as "TP" in the exploration naming convention. Locations of the explorations are shown on Figure 2. A representative from Shannon & Wilson observed the drilling and excavation operations, retrieved representative samples for laboratory testing, and prepared descriptive field logs of the explorations. The methods used to conduct the field exploration program are described below.

The drilling and test pit excavation was coordinated (including subcontractor coordination and utility locates) and observed by our field representative. Individual boring logs and test pit logs are presented in Figures A-3 through A-68. These logs represent our interpretation of the subsurface conditions encountered and the results of laboratory testing.

A.2 BORINGS

All borings were drilled by Entech Engineering, Inc. of Colorado Springs, Colorado (under subcontract to Shannon & Wilson) using a truck-mounted drill rig. Borings were advanced with solid stem auger drilling techniques. All borings were backfilled with drill cuttings and repairs were made to existing pavement with hot mix asphalt.

Following sampling, representative portions of the excavation samples were placed in airtight plastic containers and transported to our laboratory in Denver, Colorado for further observation and testing.

A.2.1 Standard Penetration Test

Disturbed samples were obtained in the borings in general accordance with the Standard Penetration Test (SPT) ASTM International (ASTM) Designation: D 1586. The SPT consists of driving a 2-inch outside diameter (O.D.), 1.375-inch inside diameter (I.D.) split-spoon sampler a distance of 18 inches with a 140-pound hammer free-falling a distance of 30 inches. An automatic hammer system was used to advance the samplers. During sampling, the Shannon &

Wilson field representative recorded the number of blows for each 6-inch increment of penetration and summed the blow counts for the last two 6-inch increments. This sum is recorded as the penetration resistance number, or N-value. The N-values provide a means for evaluating the relative density or compactness of cohesionless (granular) soils and consistency or stiffness of cohesive (fine-grained) soils (see Figure A-1). The N-values are shown on the individual boring logs.

A.2.2 Modified California (MC) Test and Sampling

Samples were also obtained using a modified California (MC) barrel sampler. The MC test procedure is similar to the SPT, except a larger diameter barrel sampler (2½-inch O.D., lined with 2-inch-diameter brass tubing) is used and only driven 12 inches. During sampling, the Shannon & Wilson field representative recorded the number of blows for each 6-inch increment of penetration. As a result of the larger diameter, the MC sampler yields slightly higher raw blow count numbers when compared to SPT N-values for similar soils. In our opinion, the blow count numbers are similar between the two samplers. Because the difference in blow counts does not significantly impact our evaluation, we used the field MC blow counts over the 12-inch increment to define the relative density and consistency/stiffness of the subsurface materials following SPT terminology.

A.2.3 Bulk Samples

Bulk soil samples were obtained by collecting the drill cuttings from the upper 5 feet of select borings. Approximately 20 to 30 pounds of cuttings were placed in a plastic bag and transported to our laboratory for further analysis and testing.

A.2.4 Soil and Rock Classification System

During drilling, our field representative collected soil/rock samples and prepared field logs of the borings. Soil classifications, as shown on the boring logs, are based on ASTM International (ASTM) Designation: D 2487, Standard Test Method for Classification of Soil for Engineering Purposes, and ASTM Designation: D 2488, Standard Recommended Practice for Description of Soils (Visual-Manual Procedure). The system is called the Unified Soil Classification System (USCS) and is summarized in Figure A-1. Our representative classified rock samples in general accordance with the International Society of Rock Mechanics (ISRM) classification method. According to this system, rocks are classified based on the stratigraphic structure, rock strength, degree of weathering, and other properties. The rock classification system is summarized in Figure A-2.

A.3 TEST PITS

The test pits were excavated using a John Deere 35G track mounted backhoe operated by Entech Engineering, Inc. Test pit excavation was typically completed to a depth of 3 feet in the existing roadway cut slope where soil samples were obtained and the upper 3 feet of subgrade was probed with a ½-inch diameter T-probe. Excavation was then continued up to a depth of 9 feet where samples were obtained from the excavations by collecting samples from the excavation pit or from material removed once the pit was greater than three feet in depth. The observed soil and rock were classified using the system described in Section A.2.4. On completion, the test pits were backfilled with excavated spoils and tamped with the bucket of the backhoe in approximately 3 foot-thick lifts.

S&W INORGANIC SOIL	CONSTITUEN	T DECINITIONS
30W INURGANIC SUIL	. CUNSTITUEN	I DELIMITIONS

CONSTITUENT ²	FINE-GRAINED SOILS (50% or more fines) ¹	COARSE-GRAINED SOILS (less than 50% fines) ¹	
Major	Silt, Lean Clay, Elastic Silt, or Fat Clay ³	Sand or Gravel ⁴	
Modifying (Secondary) Precedes major constituent	30% or more coarse-grained: Sandy or Gravelly ⁴	More than 12% fine-grained: Silty or Clayey ³	
Minor	15% to 30% coarse-grained: with Sand or with Gravel ⁴	5% to 12% fine-grained: with Silt or with Clay ³	
Follows major constituent	30% or more total coarse-grained and lesser coarse-grained constituent is 15% or more: with Sand or	15% or more of a second coarse-grained constituent: with Sand or with Gravel 5	
	with Gravel ⁵	with Staver	

¹All percentages are by weight of total specimen passing a 3-inch sieve. ²The order of terms is: *Modifying Major with Minor*.

MOISTURE CONTENT TERMS

Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, from below water table

STANDARD PENETRATION TEST (SPT) SPECIFICATIONS

Hammer:	140 pounds with a 30-inch free fall.
	Rope on 6- to 10-inch-diam. cathead
	2-1/4 rope turns, > 100 rpm

NOTE: If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for efficiency of hammer.

Sampler: 10 to 30 inches long Shoe I.D. = 1.375 inches

Barrel I.D. = 1.5 inches Barrel O.D. = 2 inches

N-Value: Sum blow counts for second and third

6-inch increments.

Refusal: 50 blows for 6 inches or less; 10 blows for 0 inches.

NOTE: Penetration resistances (N-values) shown on boring logs are as recorded in the field and have not been corrected for hammer efficiency, overburden, or other factors.

DESCRIPTION	SIEVE NUMBER AND/OR APPROXIMATE SIZE
FINES	< #200 (0.075 mm = 0.003 in.)
SAND Fine Medium Coarse	#200 to #40 (0.075 to 0.4 mm; 0.003 to 0.02 in.) #40 to #10 (0.4 to 2 mm; 0.02 to 0.08 in.) #10 to #4 (2 to 4.75 mm; 0.08 to 0.187 in.)
GRAVEL Fine Coarse	#4 to 3/4 in. (4.75 to 19 mm; 0.187 to 0.75 in.) 3/4 to 3 in. (19 to 76 mm)
COBBLES	3 to 12 in. (76 to 305 mm)
BOULDERS	> 12 in. (305 mm)

RELATIVE DENSITY / CONSISTENCY

COHESIONLESS SOILS		COHES	SIVE SOILS
N, SPT, BLOWS/FT.	RELATIVE DENSITY	N, SPT, BLOWS/FT.	RELATIVE CONSISTENCY
< 4	Very loose	< 2	Very soft
4 - 10	Loose	2 - 4	Soft
10 - 30	Medium dense	4 - 8	Medium stiff
30 - 50	Dense	8 - 15	Stiff
> 50	Very dense	15 - 30	Very stiff
		> 30	Hard

WELL AND BACKFILL SYMBOLS

Bentonite Cement Grout	%	Surface Cement Seal
Bentonite Grout		Asphalt or Cap
Bentonite Chips		Slough
Silica Sand		Inclinometer or Non-perforated Casing
Perforated or Screened Casing		Vibrating Wire Piezometer

PERCENTAGES TERMS 1, 2

Trace	< 5%
Few	5 to 10%
Little	15 to 25%
Some	30 to 45%
Mostly	50 to 100%

¹Gravel, sand, and fines estimated by mass. Other constituents, such as organics, cobbles, and boulders, estimated by volume.

Highway 105 Corridor Improvements El Paso County, Colorado

SOIL DESCRIPTION AND LOG KEY

July 2017

23-1-01311-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. A-1 Sheet 1 of 3

³Determined based on behavior.

⁴Determined based on which constituent comprises a larger percentage. ⁵Whichever is the lesser constituent.

²Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) (Modified From USACE Tech Memo 3-357, ASTM D2487, and ASTM D2488) GROUP/GRAPHIC SYMBOL **MAJOR DIVISIONS** TYPICAL IDENTIFICATIONS Well-Graded Gravel; Well-Graded GW Gravel with Sand Gravel (less than 5% Poorly Graded Gravel; Poorly Graded fines) GF Gravels Gravel with Sand (more than 50% of coarse fraction retained on No. 4 Silty Gravel; Silty Gravel with Sand GM sieve) Silty or Clayey Gravel (more than 12% COARSE fines) GC Clayey Gravel; Clayey Gravel with Sand GRAINED SOILS (more than 50% retained on No. Well-Graded Sand; Well-Graded Sand SW with Gravel 200 sieve) Sand (less than 5% fines) Poorly Graded Sand; Poorly Graded SP Sands Sand with Gravel (50% or more of coarse fraction passes the No. 4 SM Silty Sand; Silty Sand with Gravel Silty or Clayey Sand sieve) (more than 12% fines) Clayey Sand; Clayey Sand with Gravel SC Silt; Silt with Sand or Gravel; Sandy or ML Gravelly Silt Inorganic Silts and Clays Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravelly Lean Clay CL (liquid limit less than 50) Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly FINE-GRAINED Organic OI SOILS Organic Silt or Clay (50% or more passes the No. 200 Elastic Silt; Elastic Silt with Sand or sieve) MH Gravel; Sandy or Gravelly Elastic Silt Inorganic Silts and Clays Fat Clay; Fat Clay with Sand or Gravel; Sandy or Gravelly Fat Clay СН (liquid limit 50 or more) Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic OH Organic Silt or Clay Peat or other highly organic soils (see ASTM D4427) HIGHLY-Primarily organic matter, dark in ORGANIC SOILS color, and organic odor

NOTE: No. 4 size = 4.75 mm = 0.187 in.; No. 200 size = 0.075 mm = 0.003 in.

NOTES

- 1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, Sand with Silt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart. Graphics shown on the logs for these soil types are a combination of the two graphic symbols (e.g., SP and SM).
- Borderline symbols (symbols separated by a slash, i.e., CL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand) indicate that the soil properties are close to the defining boundary between two groups.

Highway 105 Corridor Improvements El Paso County, Colorado

SOIL DESCRIPTION AND LOG KEY

July 2017

23-1-01311-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. A-1 Sheet 2 of 3

CEMENTATION TERMS¹

Weak Crumbles or breaks with handling or slight finger pressure

Moderate Crumbles or breaks with considerable finger pressure

Strong Will not crumble or break with finger pressure

PLASTICITY²

DESCRIPTION	F VISUAL-MANUAL CRITERIA	APPROX. PLASITICTY INDEX RANGE
Nonplastic	A 1/8-in. thread cannot be rolled at any water content.	< 4
Low	A thread can barely be rolled and a lump cannot be formed when drier than the plastic limit.	4 to 10
Medium	A thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. A lump crumbles when drier than the plastic limit.	10 to 20
High	It take considerable time rolling and kneading to reach the plastic limit. A thread can be rerolled several times after reaching the plastic limit. A lump can be formed without crumbling when drier than the plastic limit.	> 20

ADDITIONAL TERMS

Irregular patches of different colors.

Mottled

Bioturbated	Soil disturbance or mixing by plants o animals.
Diamict	Nonsorted sediment; sand and gravel in silt and/or clay matrix.
Cuttings	Material brought to surface by drilling.
Slough	Material that caved from sides of borehole.
Sheared	Disturbed texture, mix of strengths.

PARTICLE ANGULARITY AND SHAPE TERMS

174110227410024411741201242114110		
Angular	Sharp edges and unpolished planar surfaces.	
Subangular	Similar to angular, but with rounded edges.	
Subrounded	Nearly planar sides with well-rounded edges.	
Rounded	Smoothly curved sides with no edges.	
Flat	Width/thickness ratio > 3.	
Elongated	Length/width ratio > 3.	

¹Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org. ²Adapted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

ACRONYMS AND ABBREVIATIONS

ACRONTING AND ABBREVIATIONS		
ATD	At Time of Drilling	
Diam.	Diameter	
Elev.	Elevation	
ft.	Feet	
FeO	Iron Oxide	
gal.	Gallons	
Horiz.	Horizontal	
HSA	Hollow Stem Auger	
I.D.	Inside Diameter	
in.	Inches	
lbs.	Pounds	
MgO	Magnesium Oxide	
mm	Millimeter	
MnO	Manganese Oxide	
NA	Not Applicable or Not Available	
NP	Nonplastic	
O.D.	Outside Diameter	
OW	Observation Well	
pcf	Pounds per Cubic Foot	
PID	Photo-Ionization Detector	
PMT	Pressuremeter Test	
ppm	Parts per Million	
psi	Pounds per Square Inch	
PVC	Polyvinyl Chloride	
rpm	Rotations per Minute	
SPT	Standard Penetration Test	
USCS	Unified Soil Classification System	
q_{u}	Unconfined Compressive Strength	
VWP	Vibrating Wire Piezometer	
Vert.	Vertical	
WOH	Weight of Hammer	
WOR	Weight of Rods	
Wt.	Weight	
	4	

STRUCTURE TERMS¹

Interbedded	Alternating layers of varying material or color with layers at least 1/4-inch thick; singular: bed.
Laminated	Alternating layers of varying material or color with layers less than 1/4-inch thick; singular: lamination.
Fissured	Breaks along definite planes or fractures with little resistance.
Slickensided	Fracture planes appear polished or glossy; sometimes striated.
Blocky	Cohesive soil that can be broken down into small angular lumps that resist further breakdown. Inclusion of small pockets of different soils, such
Lensed	as small lenses of sand scattered through a mass of clay. Same color and appearance throughout.
Homogeneous	

Highway 105 Corridor Improvements El Paso County, Colorado

SOIL DESCRIPTION AND LOG KEY

July 2017

23-1-01311-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. A-1 Sheet 3 of 3

WEATHERING OR ALTERATION

TERM	DESCRIPTION
Fresh	No evidence of alteration
Slightly	Slight discoloration on surface
Moderately	Discoloring evident; Alteration penetrating well below rock surface
Highly	Entire rock mass discolored
Completely	Rock reduced to a soil with relict rock texture

STRENGTH

TERM	APPROX. UCS (psi x 1000)
Very Low	<0.7
Low	0.7 to 4
Moderate	4 to 7
Medium High	7 to 15
High	15 to 36
Very High	>36

JOINT ROUGHNESS COEFFICIENT (JRC)

COEFFICIENT	DESCRIPTION
14 to 20	VERY ROUGH: Near vertical edges evident
10 to 14	ROUGH: Smooth ridges, surface abrasion
6 to 10	SLIGHTLY ROUGH: Asperities on surface can be felt
2 to 6	SMOOTH: Appears and feels smooth
0 to 2	SLICKENSIDED: Visible polishing, striated surface

DISCONTINUITY DATA

SPACING									
TERM	SPACING								
Very Wide	>10 ft.								
Wide	3 to 10 ft.								
Moderately Close	1 to 3 ft.								
Close	2 in. to 1 ft.								
Very Close	<2 in.								

DISCONTINUITY TERMS

FRACTURE - Collective term for any natural break excluding shears, shear zones, and faults

JOINT (JT) - Planar break with little or no displacement

FOLIATION JOINT (FJ) or BEDDING JOINT (BJ) - Joint along foliation or bedding

INCIPIENT JOINT (IJ) or INCIPIENT FRACTURE (IF) - Joint or fracture not evident until wetted and dried; breaks along existing surface

RANDOM FRACTURE (RF) - Natural, very irregular fracture that does not belong to a set

BEDDING PLANE SEPARATION or PARTING - A separation along bedding after extraction from stress relief or slaking

FRACTURE ZONE (FZ) - Planar zone of broken rock without gouge

MECHANICAL BREAK (MB) - Breaks due to drilling or handling; drilling break (DB), hammer break (HB)

SHEAR (SH) - Surface of differential movement evident by presence of slickensides, striations, or polishing

SHEAR ZONE (SZ) - Zone of gouge and rock fragments bounded by planar shear surfaces

FAULT (FT) - Shear zone of significant extent; differentiation from shear zone may be site-specific

APERTURE WIDTH									
TERM	SPACING								
Very Tight	<0.1mm								
Tight	0.1 to 0.25mm								
Partly Open	0.25 to 0.5mm								
Open	0.5 to 2.5mm								
Moderately Wide	2.5 to 10mm								
Wide	10mm to 1cm								
Very Wide	1 to 10cm								
Extremely Wide	10 to 100cm								
Cavernous	>1m								

Highway 105 Corridor Improvements El Paso County, Colorado

ROCK CLASSIFICATION AND LOG KEY

July 2017

23-1-01311-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

FIG. A-2 Sheet 1 of 2

R	OCK CLAS	SIFICATION SYMBOLS
BEDROCK TYPE	GRAPHIC SYMBOL	ROCK NAME
		Breccia
	0000	Conglomerate
Clastic	2 13 - 2 13	Sandstone
Sedimentary		Siltstone
Rocks		Claystone
		Shale
		Coal
Carbonate		Limestone
Sedimentary Rocks		Dolomite
ROOKS	* * * * * * * * * * > \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Coral
		Gypsum
Evaporite Rocks		Halite
		Calcite
		Tuff
Extrusive	//////////////////////////////////////	Rhyolite
Igneous Rocks	* * * * * * * * * * * * * * * * * * *	Dacite
rtoono	× × × × × × × × × × × × × × × × × × ×	Andesite
		Basalt
	7:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0	Granite
Intrusive Igneous	->->->	Grano-diorite
Rocks	- + + +	Diorite
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Gabbro
		Marble
		Quartzite
Metamorphic		Slate
Rocks		Phyllite
		Schist
		Gneiss

Highway 105 Corridor Improvements El Paso County, Colorado

ROCK CLASSIFICATION AND LOG KEY

July 2017

23-1-01311-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. A-2 Sheet 2 of 2

Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drilli _ Drill	ing Co Rig E	ethod: ompany Equipments	y: ent:		m Auger ngineering, Inc 100 Truck Mount		4 in. AWJ Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
9.5 inches of Asphalt				drilling.				
11 inches of Base Course	0.8	$\frac{1}{2}$		during dr				
Dense to medium dense, brown, <i>Clayey Sand</i> (SC); moist; trace gravel. [A-2-6]	1.7		.	untered				
			S-N	not enco				
			S-2	Groundwater	_	9.		
BOTTOM OF BORING	5.5			Grou	5			
COMPLETED 6/27/2016								
					10			
					10			
					15			
					15			
								: : : : : : : : : : : : : : : : : : :
78/7								
LEGEND						0	20 〉% Fines (∘	40 60
* Sample Not Recovered Modified California Sampler						•	% Water 0	
Standard Penetration Test								
NOTES				Γ			hway 105	
1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions.	, abbrev	viations	s and				Improveme ounty, Colo	
2. The stratification lines represent the approximate boundaries be the transition may be gradual.	etween	soil ty	pes, and	d			<u>, , </u>	
3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials.			ng of th	е	L	OG OF BO	ORING S	W-P-01
4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and	-	-	testing.		July 20	017	23-	-1-01311-002
LEGEND * Sample Not Recovered Modified California Sampler Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified at 5. USCS designation is based on visual-manual classification and					SHANI Geotechnia	NON & WILS	SON, INC.	FIG. A-3

Total Depth: 5.5 ft. Latitude: Top Elevation: Congitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ _ Drilli _ Drill	ng Co Rig E	ethod: ompany Equipme mments	/: _ ent: _		n Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ ng Truck Mount Hammer Type: Automatic	_ _ _
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/fe	
10.0 inches of Asphalt				lling.			00
5 inches of Base Course	0.8 1.3	00		ing dri			
Medium dense, brown, <i>Poorly Graded Sand with Silt (SP-SM)</i> ; moist. [A-2-4]			٠ <u>٠</u>	tered dur		<u></u>	
SANDSTONE: very low strength, gray to brown,	2.5			encounte			<u> </u>
weakly cemented; moderately weathered (Dawson Formation).			ă⊕			⊕t ≎-t	
[Very dense, gray to brown, <i>Clayey Sand (SC)</i> ; moist; few gravel. (A-2-6)]	5.5		S-2	Groundwater not	5	<u> </u>	
BOTTOM OF BORING	0.0						
COMPLETED 6/27/2016							<u>.</u>
							}}- : :
					10		: : : :
							: : }}-
					15		! !
							<u> </u>
						0 20 40	60
LEGEND * Sample Not Recovered						◇ % Fines (<0.075mm)	00
Modified California Sampler						Water Content Plastic Limit Liquid Limit	
☐ Grab Sample ☐ Standard Penetration Test						Natural Water Content	
NOTES				Г		Highway 105	
1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions.	, abbrev	iation	s and			Corridor Improvements El Paso County, Colorado	
2. The stratification lines represent the approximate boundaries b the transition may be gradual.	etween	soil ty	pes, and	'		, ,	
3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials.			ng of the	e	L	OG OF BORING SW-P-02	
4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and	-	_	testing.		July 20	17 23-1-01311-002	
LEGEND * Sample Not Recovered Modified California Sampler Grab Sample Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified as 5. USCS designation is based on visual-manual classification and					SHAN Geotechni	ION & WILSON, INC. al and Environmental Consultants FIG. A-4	

Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station:	_ Drilli _ Drill	ing Co Rig E	ethod: ompany Equipme mments	: _ ent: _		m Auger ngineering, Inc 00 Truck Mount		4 in. AWJ Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
7.5 inches of Asphalt Loose to medium dense, brown, Clayey Sand (SC); moist; few gravel. [A-2-6]	0.7		5-2 Bulk S-1	Groundwater not encountered during drilling.				
BOTTOM OF BORING COMPLETED 6/27/2016	5.5			Grour	10			
7/6/17					15			
LEGEND * Sample Not Recovered Modified California Sampler Grab Sample Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a propenature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and							20 > % Fines (- ● % Water 0	
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be						Corridor	hway 105 Improveme ounty, Colo	
the transition may be gradual. 3. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and	er under and may	standi vary.	ing of the			OG OF BO		
S. 5555 acongulation is pased on visual-maintal classification and	. JUICULE	, a lab	county.	_	July 20 SHANI Geotechni	NON & WILS cal and Environment		FIG. A-5

Total Depth: <u>5.5 ft.</u> Latitude:	Drilli	ing M	ethod:	_	Solid-Ster	m Auger	Hole Diam.:	4 in.
Top Elevation: Longitude:	Drilli	ing Co	ompan	y: _	Entech E	ngineering, Inc	Rod Type.:	<i>AWJ</i>
Vert. Datum: Station:	Drill	Rig E	Equipm	ent: _	Simco 28	00 Truck Moun	t Hammer Type	e: <u>Automatic</u>
Horiz. Datum: Offset:	Othe	er Cor	mment	s: _				
OOU DECODIPTION						DENIETDA	FIGNI DEGIGE	ANOT (1) (5 o)
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface	Depth, ft.	00	Samples	Ground	Water Depth, ft.			ANCE (blows/foot)
Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated	bt	Symbol	ш] J	Water Jepth, fl	▲ Hammer v	vt. & Drop: <u>1</u>	140 lbs / 30 inches
below represent the approximate boundaries between material types, and the transition may be gradual.	De	S	Sa	ত	⊳ e			
8.0 inches of Asphalt				D)		0	<u>.20</u>	40 60
o.0 inches of Asphalt	0.0			during drilling				
Medium dense, dark brown, Clayey Sand (SC);	0.8			p gu				++++++++++++
moist. [A-2-6]			14	duri				
1			S-1	e.ed				
			′ '	encountered				
	4.0			not				
Loose, brown, Poorly Graded Sand with Clay	4.0	: //		vate		.		
(SP-SC); moist. [A-2-6]			S-2	Groundwater	5	<u> </u>	<u>: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>	<u> </u>
	5.5			S S	3			
BOTTOM OF BORING								
COMPLETED 6/27/2016								
							14-1-1-1-1-1	
					10		: : : : : : :	:: ::::::::::::::::::::::::::::::::::::
								<u>:::::::::::::::::::::::::::::::::::::</u>
					15		! ! ! ! ! ! ! !	
							<u>: : : : : : : : : : : : : : : : : : :</u>	
						0	<u>: : : : : : : : : : : : : : : : : : :</u>	40 60
<u>LEGEND</u>						U	20	40 00
* Sample Not Recovered						,	● % Water 0	Contont
Modified California Sampler						'	% water t	Jonteni
☐ Standard Penetration Test								
				_				
NOTES						Hig	hway 105	
LEGEND ★ Sample Not Recovered Modified California Sampler Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions.	. abbrev	iation:	s and			Corridor	Improveme	ents
	, ass.o.		o ua			El Paso C	County, Cold	orado
 The stratification lines represent the approximate boundaries be the transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 	etween	soil ty	pes, and					
3. The discussion in the text of this report is necessary for a prope	er under	standi	na of th	۾ ا	_			
nature of the subsurface materials.	or under	Staria	ing or an	~	L	OG OF B	ORING S	W-P-04
4. Groundwater level, if indicated above, is for the date specified a	and may	vary.						
5. USCS designation is based on visual-manual classification and	l selecte	ed lab	testing.		July 20	017	23-	-1-01311-002
				\vdash	-			T
USCS designation is based on visual-manual classification and					SHANI Geotechnic	NON & WILS cal and Environmer	tal Consultants	FIG. A-6

Total Depth: 10.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station:	_ Drill _ Drill	ling C I Rig E	lethod: compan Equipm mment	y: _ ent: _		m Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ 00 Truck Mount Hammer Type: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material type and the transition may be gradual.	₽	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60
7.0 inches of Asphalt	0.7					
Loose, brown, <i>Poorly Graded Sand with Clay</i> (SP-SC); moist. [A-2-6]	0.7		0-1 0-1			* •
	4.0					
Loose to medium dense, brown, <i>Poorly Graded Sand (SP)</i> ; moist to wet; trace gravel, trace silt. [A-1-b]	4.0		S-2		5	•
				<u>Ā</u>		
				During Drilling		
	10.5		S-3		10	A •
BOTTOM OF BORING COMPLETED 6/27/2016						
					15	
7/6/17						
LEGEND * Sample Not Recovered Modified California Sampler Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, code definitions. 2. The stratification lines represent the approximate boundaries the transition may be gradual. 3. The discussion in the text of this report is necessary for a proparture of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified 5. USCS designation is based on visual-manual classification are	Water Le	evel A	TD	•		0 20 40 60 ■ % Water Content
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, code definitions.	s, abbre	viation	is and			Highway 105 Corridor Improvements El Paso County, Colorado
2. The stratification lines represent the approximate boundaries the transition may be gradual. 3. The discussion in the text of this report is necessary for a proposition of the subsurface materials.	oer under	rstand	ing of th		L	OG OF BORING SW-P-05
4. Groundwater level, if indicated above, is for the date specified 5. USCS designation is based on visual-manual classification ar	-			.	July 20	017 23-1-01311-002
WASTER					SHANI	NON & WILSON, INC. cal and Environmental Consultants FIG. A-7

Total Depth: 5.5 ft. Latitude: Top Elevation: Congitude: Vert. Datum: Station: Horiz. Datum: Offset:	Drilli Drill	ng Co Rig E	ethod: ompany Equipme mments	ent: _	Entech	h Ei	m Auger Hole Diam.: 4 in. ingineering, Inc Rod Type.: AWJ 300 Truck Mount Hammer Type: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, π.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60
8.0 inches of Asphalt				drilling.			
Medium dense to loose, brown, Clayey Sand	0.7						
(SC); moist; trace gravel. [A-2-4]			Ψ	ed during			
			°	untere			
			ăG	t enco			
				Groundwater not encountered			
			S-2	ındwa		5	A •
BOTTOM OF BORING	5.5			Gro		Э	
COMPLETED 6/27/2016							
						10	
						15	
717							
2 2							0 20 40 60
U LEGEND Significant Sample Not Recovered							♦ % Fines (<0.075mm)
Modified California Sampler							% Water ContentPlastic LimitLiquid Limit
ପ୍ରି Grab Sample ଅଧି Standard Penetration Test							Natural Water Content
o N <u>OTES</u>							Highway 105
1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions.	abbrev	iation	s and				Corridor Improvements El Paso County, Colorado
2. The stratification lines represent the approximate boundaries be the transition may be gradual.	etween	soil ty	pes, and	,			
3. The discussion in the text of this report is necessary for a prope nature of the subsurface materials.	r under	standi	ing of the	e		L(OG OF BORING SW-P-06
4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and	-	-	testing.		July	20	017 23-1-01311-002
LEGEND * Sample Not Recovered Modified California Sampler Grab Sample Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and					SHA	NI	NON & WILSON, INC. cal and Environmental Consultants FIG. A-8

Total Depth: 4.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station:	Dı	rilling C rill Rig I	lethod: company Equipmo	ent:	Ente	ch Er	m Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ 00 Truck Mount Hammer Type: Automatic						
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsun materials and drilling methods. The stratification lines indicate below represent the approximate boundaries between material ty and the transition may be gradual.	ed to	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60						
9.5 inches of Asphalt				drilling.									
CLAYSTONE: very low strength, gray to brown; moderately to highly weathered (Dawson Formation).	0.8		S-1	during			—						
[Dense to very dense, gray, Sandy Lean Clay (CL); moist. (A-6)]			8-5	iter not encountered			● :5D/6?						
BOTTOM OF BORING COMPLETED 6/27/2016	4.5		ν _—	Groundwater		5	5,000						
						10							
												15	
 LEGEND ★ Sample Not Recovered Modified California Sampler T Standard Penetration Test 							0 20 40 60 ♦ % Fines (<0.075mm) • % Water Content Plastic Limit Liquid Limit Natural Water Content						
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codefinitions.	odes, abbr	eviation	ns and				Highway 105 Corridor Improvements El Paso County, Colorado						
 The stratification lines represent the approximate boundaring the transition may be gradual. The discussion in the text of this report is necessary for a practice of the subsurface materials. 	proper und	lerstand	ling of th			LC	OG OF BORING SW-P-07						
Groundwater level, if indicated above, is for the date specif USCS designation is based on visual-manual classification					Jul	y 20	23-1-01311-002						
				Ī	SH	ANN	NON & WILSON, INC.						

	Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drilli _ Drill	ling C I Rig	Method: Compan Equipm ommen	ny: nent:	Ente	Entech Engineering, Inc. Rod Type.: AVISION RESISTANCE (b)									l in. NWJ oma	J							
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	l #	Symbol	Samples	-	Ground Water	Depth, ft.	- 1															ws/f	es_
ł	9.0 inches of Asphalt	 			lling.			0			-			20) : :	::			_4	0				60
ŀ	2 inches of Base Course	0.8 1.0		Ī.	ring dri		1					: :-::-::-:		-					: 	-				
	Medium dense, brown, Silty Sand (SM); moist; few gravel. [A-2-4]	1.0		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	red du		1			Ð		:::::::::::::::::::::::::::::::::::::::				•						:::		
	iew gravei. [A-2-4]				not encounter		1			<u>:</u> ;					: : : : : : :									
				i i i G	not en		1	N	IP (•		: : : :<	>											
İ	SANDSTONE: very low strength, red-yellow to	4.0		S-2	Groundwater		,		 :										 : :			 		
	light red, weakly cemented; slightly weathered (Dawson Formation).	5.5			Groun		5		-	 		<u>)</u>	+	+	++	++	-		 	H	114	+ :	 	
		0.0					1		<u>.</u>	<u>: :</u>	:	<u>: :</u> : <u>:</u>	<u>: :</u>	-		::			<u>: :</u>	<u> </u>	<u> </u>	::		
	[Dense, red-yellow to light red, <i>Poorly Graded Sand (SP)</i> ; moist; trace silt. (A-2-4)]						1					: 							: 					: : : !!
	BOTTOM OF BORING						1																	
	COMPLETED 6/27/2016						1																	
							1	-	 	*** : :		}}-							} : :					
							10		<u>:</u> :	<u>: :</u> : :	: :	<u>: :</u> : ;	<u>: :</u>	+	<u>: :</u>	<u>::</u>		:	<u>: :</u> : :	 	<u>::</u> ::	<u>::</u>	::	
							1		: 	: : :-::		: :-:::		-					: 	 				
							1		<u>:</u>	<u> </u>			<u>:</u>		<u> </u>						<u>:</u>			
							1			***		}}- : : : : : :	****						}					
							1			<u></u>			:::		<u>: :</u>							<u></u>		
							15		-	! :		<u> </u>	! !	+	<u>:</u> :	: :	+		<u> </u>	 	<u>:</u> :	!!	<u> </u>	
١							ı			<u>:</u> :					<u>:</u> ::			:		<u> </u>	<u></u>			
١							ı			,														
							1									••••••••••••••••••••••••••••••••••••••								
							,	-		 : : : :	:		: :		:::	: :		<u>-</u>						
/17							1					; ;;		-	++									
7// الا			\perp		\perp			0	<u>:</u>	<u>:</u> :		<u>:</u> :	<u>:</u> :	20	<u>: :</u> 1	<u>:</u> :		<u>:</u>	- 4	10	<u>!:</u>	<u></u>	<u>::</u> :	60
302.GF	<u>LEGEND</u> ⋆ Sample Not Recovered							,					<	> '	%				0.07	75m		,		.
J1311-	Modified California Sampler Grab Sample									Р	'las	stic							Con L			Lim	nit	
23-1-(Garan Sample Standard Penetration Test							_		_	_	_							ont			_	_	_
LONG	<u>NOTES</u>							_ ~,	_						05				_	_				
LATĞ	Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions.	, abbrev	<i>v</i> iatior	ns and															nts rac					
IPEN	The stratification lines represent the approximate boundaries be the transition may be gradual.	etween	soil t	.ypes, ar	nd			_	_	<u> </u>			_	_		·y ,		-			_	—	—	
ASTER_LOG_E_POCKETPEN_LAT&LONG 23-1-01311-002.GPJ 7/6/17	The discussion in the text of this report is necessary for a proper nature of the subsurface materials.	er under	stanc	ding of t	he		LC	0	G	C)F	: E	30	ЭF	RI	N	G	S	W.	-P	-0	8		
S E	Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and	-			1.		uly 20	Դ1	7								2)て_	1_(111	21	1_(002)
ER LC						-								<u>_</u>				_						
S) Sr	HANN otechnic		Or and	مَ إ	k V	NIIV.	LS	jŲ	N,	IIV eults	C.	.	F	FIC	3 . /	A-	-10			

ſ	Total Depth: 5.5 ft.	Latitude:			/lethod:				Solid-Stem Auger Hole Di Entech Engineering, Inc Rod Ty																
	Top Elevation: ~ Vert. Datum:	Longitude: Station:			Company Equipme		Entech Er Simco 28								-			e:			<u>lWJ</u> oma				
	Horiz. Datum:	Offset:			omments		Omr.cc _			-		<u> </u>	<u></u>		••••		-از'			16	<u>"""</u>		_		
	Refer to the report text for a proper materials and drilling methods.	The stratification lines indicated	Ιŧ	Symbol	Samples	Ground	Water Depth, ft.															ws/fo			
b	pelow represent the approximate bo and the transition	oundaries between material types,	De	S	Sar	<u></u> ნ :	e ≷							2 0					40				60		
	10.5 inches of Asphalt	may we grant				rilling.		U	:		-			20					4U				60		
	Medium dense, brown, Si Sand (SC); moist. [A-2-6]		0.9		-M	J during d		-						++				++							
		!			٥	sountered			•					1											
			4.0		<u>.</u>	r not enc																			
	SANDSTONE: very low si yellow to light red, weakly	cemented; moderately	4.0		S-2	Groundwater	5		<u>:</u>	•	<u> </u>		<u>: :</u>			: :		<u> </u>		<u>::</u>	<u>;</u> ;	<u> </u>			
	weathered (Dawson Form		5.5			Gro	•		: ::::::::::::::::::::::::::::::::::::																
	[Dense, red-brown to yello Graded Sand with Silt (SP																								
	BOTTOM OF COMPLETED																<u>: :</u>								
		,								+-				-							-				
		!					10		<u>:</u>		:		<u> </u>	<u> </u>	: : : :		: :	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>			
		!								: 				+					+						
		!							<u>:</u> :					<u> </u>			<u>: :</u> : :		#	:: :::	<u>: : :</u> : : : : : : : : : : : : : : : :				
		!							<u> </u>																
		!							. <u>:</u> :		<u>.</u>								#						
		!					15		- <u> </u> -		-	! !	 	+	+			 	+	 	++	#	#		
		!							<u>:</u>										+:						
		!						-								} 									
		!							<u>:</u>																
11/9/1										†						h-r-r							****		
ון. הקט		LEGEND						0					2	20				4	40				60		
ASTEK_LOG_E_PUCKETPEN_LAT&LONG_25-1-01311-002.GPJ_//b/1/	<u></u> N	Sample Not Recovered Modified California Sampler Standard Penetration Test											•) %	6 V	Nat	er (Cor	nter	nt					
UNG 23		<u>NOTES</u>				Г										10									
LAI&L	Refer to Figures A-1 and A-2 for definitions.	for explanation of symbols, codes,	, abbrev	<i>i</i> iation	is and											ove ,, C									
)CKE I PEN	the transition may be gradual. 3. The discussion in the text of the	his report is necessary for a prope		-			1 (\cap								NG					19				
0G 보		erials. d above, is for the date specified a n visual-manual classification and	-				July 20			•	<i>,</i> .	-	<i>_</i>	/ 1 \	111							102)		
STER				July 2017 23-1-01311-002 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-11																					

	Total Depth: 10.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	Drilli Drill	ing C Rig E	lethod: ompany Equipme mments	/: _ ent: _	Solid-Sten Entech Er Simco 280	4 in. AWJ : Automatic												
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60										
	10.0 inches of Asphalt Medium dense, gray, Clayey Sand (SC) to Poorly Graded Sand with Clay (SP-SC); moist; trace gravel; trace fine roots from 1.5 feet to 2.5 feet. [A-2-6]	0.8		8-2 	roundwater not encountered during drilling.	5													
16/17	SANDSTONE: very low strength, red-yellow to brown, weakly cemented; moderately weathered (Dawson Formation). [Very dense, red-yellow to brown, <i>Poorly Graded Sand with Clay (SP-SC)</i> ; moist; trace silt and clay. (A-2-4)] BOTTOM OF BORING COMPLETED 6/28/2016	10.5		8.3	Grou	10			672										
MASTER_LOG_E_POCKETPEN_LAT&LONG_23-1-01311-002.GPJ_7/6/17	LEGEND * Sample Not Recovered Modified California Sampler Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes,				● % Water Character 105 Improvement														
3 E POCKETPEN LA	 definitions. The stratification lines represent the approximate boundaries be the transition may be gradual. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified a 	etween some	soil ty stand vary.	pes, and			Corridor Improvements El Paso County, Colorado LOG OF BORING SW-P-10												
MASTER_LOC	5. USCS designation is based on visual-manual classification and	_	July 2017 23-1-01311-002 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-12																

	Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude:	Drilli	ing C	lethod: ompan		Solid-Stem Auger Hole Diam.: Entech Engineering, Inc Simco 2800 Truck Mount Hammer Typ								:		<u>4 in.</u> AWJ e: Automati					_				
ı	Vert. Datum: Station: Offset:			Equipments		Simco	280	00	Tru	ıck	M	lou	<u>ın</u> t	Ha	am	me	er 7	Гур	e:	_	Αι	ıtor	nati	ic	_
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated lelow represent the approximate boundaries between material types,	Depth, ft.	Symbol	Samples		Water	Depui, ii.															(b)			
H	and the transition may be gradual. 9.0 inches of Asphalt				ing.			0	.	:		:		20) ::		: :			40) ::		:		60
ŀ	Medium dense, red-yellow to brown, <i>Poorly</i>	0.8	:: .].		during drilling				: !!-		: }}	<u>:</u>					: 		: !!		: 				
ı	Graded Sand with Silt (SP-SM); moist. [A-2-4]			Ψ								<u>:</u>					<u>: :</u>				:::	:::			<u>: :</u>
ı				ο .	ountere			:		```.		:			<i>[</i>										
ı					not encountered		ľ		}} : : :	- -	}} : : : :			1			*** : :		!			***		}}- : : :	***
ı					/ater n		ŀ	<u>.</u>		- <u>i</u>		. <u>:</u> ./	<i></i>	+			<u></u>								<u> </u>
ı				S-2	Groundwater		5			•	4	<u> </u>	! !	4	+	<u> </u>	: : ++		<u> </u>	\dashv	<u>: :</u>				<u>: :</u>
r	BOTTOM OF BORING	5.5	لللنا		Ō			<u>:</u>		<u>:</u>		<u>:</u>			:::						<u> </u>				<u>:</u> :
ı	COMPLETED 6/28/2016							:		:		:													
ı							İ		}} : :	- }- -	}} : :	 :	!! : : :	1		 	*** : :		!					}}- : : :	*** : :
ı								- <u>:</u>		<u>:</u>	<u>: :</u> : :	<u>:</u>		+	:::		<u>: :</u> : :		: <u>:</u> .		<u>: :</u> : :			: : : :	<u>: :</u> : :
ı									: }}	- 	: }}	- 	: !!				: :-:		!						++
ı						,	10	<u>:</u>		<u>:</u>		<u>:</u>		_							<u>: :</u>	<u>:</u>			<u> </u>
ı							. •	:		:		:													
ı							Ī		}}- : : :	- }- -	}} : :			1			**** : :		!			***		}}- : : :	†** ! !
ı							-	- <u>-</u>		- <u>i</u>		- <u>:</u>		+		<u>.</u> .			<u></u>						
ı									: 		: -		-		-						-				
ı																									
ı																									
ı						1	15	:		:		:													
ı							•	:		- :	<u></u>	- <u>:</u>		+							- 				: :
ı								<u>-</u>	: - -	- <u>-</u>	: - -		: . : !!	-		:	÷-÷								÷
ı							-	<u>.</u>		<u>:</u>		. <u>.</u>					<u>: :</u>				<u>: :</u>				<u> </u>
ı										<u>:</u>		<u>:</u>													
/1/0//										:		:													
. 🗀	LEGEND						!	0	<u>: :</u>	-	<u>: :</u>	<u>:</u>	:	20)	<u> </u>	<u>: :</u>			40	: :)			: :	60
LA I & LOIS II -002. GFJ	 * Sample Not Recovered ▶ Modified California Sampler ☐ Standard Penetration Test 												•		%	W	/at	er	Co	nte	ent	;			
22					Г							ш	ia	hv	va va		10	5	_						_
I & L	NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes,	abbrev	iati∩n	s and					C	o			_			-			en	ts					
	definitions. 2. The stratification lines represent the approximate boundaries be				,			E	ΞΙ	P	as	0	С	οι	un'	ty,	С	olo	ora	ad	0				
	the transition may be gradual. 3. The discussion in the text of this report is necessary for a propenature of the subsurface materials.		-	•		I	LC)(;	0	F	Е	30) J	RI	N	G	i S	٥V	V -	P-	11	ı		
ш	4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and	-	-			July	20	17	,									23	3-1	-0	13	11	-0(02	!
ASIER LOG				SHA	NN hnic	10	N	& Env	V	/ L	_S	0	N.	, II	NC tant). 's	T	F	IG	i. A	\ <u>-</u> 1	3			

ſ	Total Depth: 5.5 ft. Latitude: Longitude:	Drill	ing C	lethod: ompar	ıy:	Solid-Stem Auger Hole Diam.: Entech Engineering, Inc Simco 2800 Truck Mount Hammer Typ									4 in. AW. De: Automa				_			
ı	Vert. Datum:			Equipn mmen		_Sin	1co 28	00 7	Tru	ck	Mc	<u>un</u> :	t H	am	mer	Тур	pe:		Au	tom	<u>atic</u>	_
1	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	o di	Water	Depth, ft.	1									TAI					
ŀ	9.0 inches of Asphalt				ling.			0		: :	:		20) :::				40				60
ŀ	Medium dense, red-brown to brown,	0.8			during drilling					: 			$\downarrow \downarrow$					-	: 	: ::		
ı	Well-Graded Sand with Silt (SW-SM); moist; few			ΨV											<u> </u>							
ı	gravel. [A-1-b]			Ó	encountered					: :	:	2	1									
ı									.	-		 	╫							<u>.</u>		
ı				_	ter not				:	: :	<u>:</u>	: :	₽					-	: :	<u> </u>		
ı				S-2	Groundwater		5		\Diamond													
ŀ	BOTTOM OF BORING	5.5			- G		5															
ı	COMPLETED 6/28/2016									<u></u>	<u>-</u>											
ı									.	: 	<u>.</u>	: 	$\frac{1}{2}$	- <u> </u> -		- <u> </u> - -		<u>.</u>	<u>.</u>	<u>.</u>		: : : }
ı																						
ı											:											
ı																			ļļ			- -
ı							10		<u>:</u>	<u>: :</u>	<u>:</u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>			
ı																						
ı												 								* : :		
ı									<u> </u>	<u> </u>	<u>.</u>		$\frac{1}{2}$							<u> </u>		
ı									.										<u>.</u>	<u>.</u>		
ı																						
ı																						
ı							15			! !			\dashv	+	+	÷	÷	\vdash	 	÷		
ı										<u> </u>	<u>.</u>						<u></u>	<u>.</u>		<u> </u>		
ı											:											
ı									<u> </u>	**-! : :		}} : : :							!! ! !	 		}}}- : : : :
ı									<u></u> .	<u>: :</u> : :	- <u>:</u>	: : : :	$\frac{1}{2}$	<u> </u>	<u> </u>		<u> </u>		<u>: :</u> .	<u>: :</u> .		
ı																		<u>.</u>	<u>.</u>			: }}}
/ /0/ /																						
. -	LEGEND		1					0			-		20)				40				60
1-00z.	* Sample Not Recovered											((<0.			1)		
23-1-01311-002.GF	Modified California Sampler												•	, 0	•••	2101		,,,,,				
-62																						
COINC	NOTES								_			_			y 1			4				
LAI&LONG	 Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 	abbrev	iation	s and				F									nen Iora)			
T II N	The stratification lines represent the approximate boundaries be the transition may be gradual.	etween	soil ty	pes, ar	nd							_			·y,							
POCKE I PEN	3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials.			_	he		L	OG	; (OI	F	В	Ol	RI	N	3 9	SV	V-F) _	12		
ш	4. Groundwater level, if indicated above, is for the date specified a5. USCS designation is based on visual-manual classification and	-	-		J.	Jı	uly 20)17								2	3-1	-01	131	11-	002	2
ASIER LOG			SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-14							Ļ												

Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station:	_ Drill _ Drill	ing C Rig E	lethod ompa Equipr mmer	ny: nent	Ent	ech Er	n Auger ngineering 00 Truck I		Ro	д Тур		oe: _	4 in. AWJ : Automatic					
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types and the transition may be gradual.	 	Symbol	Samples		Ground Water	Depth, ft.	PENET									<u>s_</u>		
7.5 inches of Asphalt				ling.			U		20				+0			60		
Medium dense, red-brown to brown, <i>Poorly Graded Sand with Silt (SP-SM)</i> ; moist. [A-1-b]	0.7			ater not encountered during dril			•		^									
BOTTOM OF BORING COMPLETED 6/27/2016	- 5.5		S-2	Groundwate		5		*										
						10												
						15					: : : : : : !!!- : : : : : : : : : : : :							
77/6/17																		
LEGEND * Sample Not Recovered Modified California Sampler Standard Penetration Test * Standard Penetration Test * NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, coded definitions. 2. The stratification lines represent the approximate boundaries the transition may be gradual. 3. The discussion in the text of this report is necessary for a proposition of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified to USCS designation is based on visual-manual classification and the standard proposition of the subsurface materials.							0	•	20 • %	% W	ater		40 nten	ıt		60		
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions. 2. The stratification lines represent the approximate boundaries by				nd			Cori El Pa		lm	pro	vem							
the transition may be gradual. 3. The discussion in the text of this report is necessary for a prop nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified 5. USCS designation is based on visual-manual classification an	er under and may	stand vary.	ing of	the	Ju	L(ıly 20	DG OF	F B(OR	RIN					002			
0 1 1					SI	HANI	NON & \	WILS	SON	V, IN	NC.	Т			-15			
\$ }					l Ge	oleci II II (aı aılu EliVIF	ommen	iiai C	JIISUIT	anto				RE	1/ 3		

	Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ _ Drill _ Drill	ing C Rig E	lethod: ompan Equipm	ıy: nent:	ent: Simco 2800 Truck Mount Hammer Type: Automa									
İ	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	լ և	Symbol	Samples	Ground	Water	Depth, ft.	PENETRA ▲ Hammer					nches		
Ì	8.0 inches of Asphalt				lling.			0	20		40		60		
Ì	2 inches of Base Course	0.7 0.9			ing dri										
ı	Medium dense, red-yellow to brown,	0.0		Ψ	d duri										
ı	Well-Graded Sand with Silt (SW-SM); moist; few gravel. [A-1-b]			S	encountered										
ı	gration provide				enco										
I	Madisus dance and valley to brews Deads	4.0		_	ter not										
ı	Medium dense, red-yellow to brown, <i>Poorly Graded Sand with Clay (SP-SC)</i> ; moist; trace			S-2	Groundwater		_		<u>\</u>						
I	gravel. [A-1-b]	5.5			Grou		5								
ı	BOTTOM OF BORING														
ı	COMPLETED 6/28/2016									: : : : : 					
ı															
ı															
ı															
ı							10					<u> </u>			
ı							10								
ı															
ı															
ı															
ı															
ı															
ı							15			: : : : : - - - - 			: : : : : 		
ı															
ı															
ı															
ı															
ı															
7/6/17										}					
•			ļ					0	20		40		60		
02.GPJ	<u>LEGEND</u> * Sample Not Recovered								♦ % F	ines (<0.075n	nm)			
1311-(Modified California Sampler								• % \	Nater (Conte	nt			
23-1-01311-002.	Standard Penetration Test														
	NOTES				Γ			Hi	ghway	105					
T&LO	<u>NOTES</u> 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes	ahhrev	<i>i</i> iation	s and				Corrido			ents				
Y Z	definitions.				, L			El Paso	County	, Colo	orado				
ETPE	The stratification lines represent the approximate boundaries b the transition may be gradual.		_		- 1										
POCKETPEN_LAT&LONG	The discussion in the text of this report is necessary for a propenature of the subsurface materials.	er under	stand	ing of tl	ne		L	OG OF B	ORII	NG S	W-P	'-14	ı		
ш	Groundwater level, if indicated above, is for the date specified a LISCS designation is based on visual manual classification and the second of the sec	_	_	tootine			•	\.			4.51	044	000		
R LOG	5. USCS designation is based on visual-manual classification and	i seiecte	eu iab	testing	·	July	/ 20)17		23	-1-01	311-	002		
STE						SHA	ANI	NON & WIL	SON,	INC.	FIG	G. A	-16		

•	Total Depth: 10.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	Drilli Drill	ng C Rig I	lethod: compang Equipm mment	ent:	Solid-S Entech Simco 2	En	gir	ee	erir	ng,		c	Ro	od ⁻	Гур			- : _		Α	! in.		
1	SOIL DESCRIPTION In the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated ellow represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Copul, III																	foot) es 60
	6.5 inches of Asphalt	0.6					<u> </u>	:		:		:												
ı	Medium dense to loose, red-yellow to brown, Poorly Graded Sand with Silt (SP-SM); moist.	0.0												+		-								
ı	[A-2-4]			S-1			ļ.		•) 			<u>_</u>	-										
ı				' 1	Iling.]/.	/											
ı					ing dri							/:												
l				T_{s}	red dur		•	<u>-</u>																
ı				S-2	counte		5	÷	 	<u>:4</u>	1		<u>} :</u>	+	 	+			 	 	+		:	
l					Groundwater not encountered during drilling		ļ.	<u>:</u>		<u>:</u>	: :	\ <u>:</u>	<u>: :</u>	-	<u>: :</u>	::			<u>: :</u>	<u> </u>	<u>: :</u>			
l					waterr							/: 	<u>,</u>											
ı					sround			:		i		:	:/:											
l							ľ			:		:		/		:					:::		:	
l											} <u>-</u> -	·	÷		\ .\:				}}-	 				
l				S-3		1	0	:() :	<u>:</u>	<u>: :</u> : :	<u>:</u>	<u>: :</u>	+		<u>: :</u>	:		<u>: :</u> : :	+	<u>: :</u>		:	
t	BOTTOM OF BORING	10.5							: : ::		: :-:	<u>;</u>			<u>.</u>				: : }}-					
l	COMPLETED 6/27/2016							i		i		i												
ı							Ī																	
ı							ŀ				}		+	+	*- *				}}- : : :					
l								- <u>:</u>		- <u>i</u>	<u>: :</u>	<u></u> -		+					<u></u> .	- <u> </u> -			:	
l						1	5	-	ij	-	<u>: :</u>	<u>.</u>	<u>: :</u>	+	<u> </u>	-			<u> </u>	<u> </u>			-	
l								<u>:</u>		<u>:</u>		<u>:</u>	<u>:</u> :			<u>:</u>					<u>: : : : : : : : : : : : : : : : : : : </u>			
l								:		:		:												
l							ľ				!! : :	·	†! : :	1	*** : :			 	}}- : :					/
ı							ŀ												<u></u> 					
							ŀ				; ;;		-						: 					; -
//0//								<u>:</u>		<u>:</u>		<u>:</u>												
72.GF	LEGEND						(0						20					2	40				60
2	* Sample Not RecoveredModified California Sampler												•	•	%	W	ate	r C	on	iter	nt			
	☐ Standard Penetration Test																							
LAI&LONG 23-1-01311-002.GP	NOTES				Ţ							Н	ig	hv	va	y 1	05	5						
AIGL	1. Refer to Figures A-1 and A-2 for explanation of symbols, codes,	abbrev	iation	s and														ne						
	definitions. 2. The stratification lines represent the approximate boundaries be	etween	soil ty	pes, an	d				<u>=</u>	<u> </u>	as	50	<u></u>	οι	ını	у,	CC	olo	rac	00				—
TOON TOO	 the transition may be gradual. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 	r under	stand	ing of th	ie	ı	_C)(;	O	F	E	30)F	RI	N	G	SI	W	-P	'-1	5		
ш	 Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and 	-	-			July 2	20 ⁻	17									2	23-	1-(01	31	1-(002	2
ASIEN LOG					-	SHAI Geotech	NN nnica	IO	N nd I	&	V	VII	LS ent	0 al C	N,	IN sulta	IC.		ı	FIC	<u></u> Э.	Α-	17	,

-	Fotal Depth: 5.5 ft. Latitude: Fop Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drill _ Drill	ing C Rig E	lethod: ompar Equipm mmen	ny: nent:	Ente	ch Er	n Auger Hole Diam.: 4 in. gineering, Inc Rod Type.: AWJ Truck Mount Hammer Type: Automatic
1	SOIL DESCRIPTION efer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated low represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	pullout	Water	Depth, ft.	PENETRATION RESISTANCE (blows/for ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u>
H	8.0 inches of Asphalt				drilling.			0 20 40
F	2 inches of Base Course	0.7 0.9			ng dril			
	Medium dense, brown, <i>Poorly Graded Sand with</i>	0.5		ΣM	ed during			
ı	Silt (SP-SM); moist. [A-2-4]			⁶⁰	encountered			
\vdash	Medium dense, red-yellow to brown,	4.0		1	ater not			
ı	Well-Graded Sand with Silt (SW-SM); moist;			S-2	Groundwater		5	NP: ♦:
\vdash	trace gravel. [A-1-b]	5.5	:•[•]	1 1	. Š			
	BOTTOM OF BORING COMPLETED 6/28/2016							
							10	
							45	
							15	
-								0 20 40
311-002.GF	<u>LEGEND</u> * Sample Not Recovered							♦ % Fines (<0.075mm)
2	Modified California Sampler							% Water ContentPlastic LimitLiquid Limit
10-1-62								Natural Water Content
	NOTES				ſ			Highway 105
LA I & LOING	. Refer to Figures A-1 and A-2 for explanation of symbols, codes	, abbrev	<i>i</i> ation	s and				Corridor Improvements
	definitions. 2. The stratification lines represent the approximate boundaries by	etween	soil tv	pes. ar	nd			El Paso County, Colorado
	the transition may be gradual. 3. The discussion in the text of this report is necessary for a propenature of the subsurface materials.		-	•			L	OG OF BORING SW-P-16
⊔ 4	 Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and 	-	-			1.	l	47 00 4 04044 000
) 	ภ. 0000 นะราฐกลนิบการ มิสิริยัน บาก พรินสา-เกิสิกินสา Classification สิกิน	i sciect	ou IdD	ıcsıii i g	'·	Ju	ly 20	17 23-1-01311-002
2						SH		ION & WILSON, INC. FIG. A-18

	Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drilli _ Drill	ing Co Rig E	ethod: ompany Equipme mments	/: _ ent: _	Solid-Stei Entech Ei Simco 28	ng	ine	eer	ing			F		ΙŢ	ype	э.:		-			4 ii AV tor		ic		
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	water Depth, ft.																		s/fo		-
	7.0 inches of Asphalt 3 inches of Base Course Medium dense, brown, Poorly Graded Sand with Clay (SP-SC); moist. [A-2-6] Loose, brown, Clayey Sand (SC); moist to wet; trace organics. BOTTOM OF BORING COMPLETED 6/27/2016	0.6 0.9 4.5 5.5		S-2 Bulk S-1	Groundwater not encountered during drilling.	10																				<u>U</u>
MASTER_LOG_E_POCKETPEN_LAT&LONG 23-1-01311-002.GPJ 7/6/17	LEGEND * Sample Not Recovered Modified California Sampler ☐ Grab Sample ☐ Standard Penetration Test						0				-	Hic	•	0 %						40	ent				6	50
POCKETPEN_LAT&LON	NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions. 2. The stratification lines represent the approximate boundaries by the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials.	etween	soil ty	pes, and		L	0	E	: I F	Pa	ric	loi o C	r II	mp our	nty	ον /, (en Co	ne	ra	dc		17	7			
LOG E F	 Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and 	_	-	testing.		July 20	21	7									2	:3-	1-	01	13	11	-0(02	<u>}</u>	_
MASTER						SHANI Geotechnic	N(ON an	V 6	& \ nvir	W oni	IL ;	S(ON Co	, l	IN ulta	C.			FI	G	. A	\-1	9		

	Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drilli _ Drill	ling C I Rig I	Method: Compan Equipm omment	ny: nent:	_Ente	ech Er	ngi	ine	Auger Hole Diam.: ineering, Inc Rod Type.: Truck Mount Hammer Typ							- :: _	A	Αl	in. WJ omat		_ _ _		
-	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	<u> </u>	Symbol	Samples	Ground	Ground Water	Depth, ft.														-		ws/fo	<u>s</u>
	10.0 inches of Asphalt				drilling.			U			-			7) ::				-5	lu E				60
ľ	Medium dense, brown, <i>Poorly Graded Sand with Silt (SP-SM)</i> ; moist. [A-2-4]	0.8		: M	during		!																	
				٥	encountered		!				:\ :\	.												
					not		!			*** : : : : : :	- !	<u>\</u>							!-!-					
				S-2	Groundwater		5			: :::(•	}	.									<u> </u>	<u> </u>	
-	BOTTOM OF BORING	5.5		1 _	. Gro		٦		:		:													
	COMPLETED 6/28/2016						!		:		:													
							!			!!							} : : :	}}- : : :	***** : :		!!-	!!-	}-}-	 : : :
							!		:::		:								<u> </u>	 				
							1		-	} }						 -	 	 	 	 		·}	- -	
							10	-	<u>:</u>	<u>: :</u> : :	<u>:</u> :			+				<u>: :</u>	<u>: :</u> : :	H	<u>: :</u> : :	<u>::</u>	<u>::</u> ::	
							!		<u>.</u>	: : *- ! :							: : 	: : 	;; ;;	 			##-	
							1	:	<u>:</u>		- <u>:</u> -							<u>: :</u> : :	<u>: :</u> : ;	<u> </u>		::		
							!			<u>: :</u>						- - -				<u> </u>				
							!		<u>.</u>		- <u>:</u>									H				
							15		<u>:</u>	: : + :		+	+	-	+	-	<u> </u>	<u> </u>	<u> </u>	+	<u> </u>	<u> </u>	<u> </u>	<u> </u>
							!				<u>:</u>									ļ. -	<u> </u>	<u> </u>		
							!	:			<u>.</u>	: :-:							<u>.</u>					: :-:::
							!		<u>.</u>												<u> </u>	<u> </u>	<u> </u>	
							!		.							!}								
71/9/1								Ţ	:		:													
311-00z.GPJ	LEGEND ★ Sample Not Recovered Modified California Sampler							0					•	20		W	ate	er C	4 Con	10 iten	nt			60
23-1-01																								
ONG	<u>NOTES</u>				ſ												105							
LAI&I	Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions.														-				ents rac					
ASTER_LOG_E_POCKETPEN_LAT&LONG_23-1-01311-002.GPJ_7/6/17 	2. The stratification lines represent the approximate boundaries be the transition may be gradual.3. The discussion in the text of this report is necessary for a propenature of the subsurface materials.		_				LC														<u> </u>	 8		
LOG E P	Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and	-			J.	Ju	ıly 20						_		•	-							02	
STER					ļ	SH Geo	HANN otechnic	N(ON and	1 8	₹ V	NI onn	LS		N,	, IN	IC.		ı		— 3. ,	A-2	 20	

ı	Total Depth:5.5 ft Latitude:	Drilli	ng M	ethod:	_	Solid-Ste	em Auger Hole Diam.: 4 in.
ı	Top Elevation: Longitude:			ompan		Entech E	Engineering, Inc Rod Type.: AWJ
ı	Vert. Datum: Station:			Equipm		Simco 28	800 Truck Mount Hammer Type:Automatic
ı	Horiz. Datum: Offset:	Othe	er Co	mment	s: _		
ı	COUL DECODIDATION			<u></u>			DENIETDATION DEGICTANCE (International)
ı	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface	Depth, ft.	Symbol	Samples	Ground	er , ff.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches
ı	materials and drilling methods. The stratification lines indicated	abt.	Ϋ́	<u>m</u>	ŭ	Water Depth, f	Transities Wt. & Drop. <u>140 lbs / 30 inches</u>
ı	below represent the approximate boundaries between material types, and the transition may be gradual.	۵	S	Š	ا ه	> <u>a</u>	0 20 40 60
ı	8.5 inches of Asphalt				je je		0 20 40 60
ı	•	0.8			liii		
ı	3 inches of Base Course	1.0			ing		
ı	Medium dense, brown, Silty Sand (SM); moist;	1.0		Ψ	np p		
ı	trace gravel. [A-2-4]			Ġ	itere		
ı				1	cour		
ı				i i i G	t en		NP: ♠
ı	OLAVOTONIE	4.0	14		3roundwater not encountered		
ı	CLAYSTONE: very low strength, gray;			-5	dwat		
ı	moderately to highly weathered (Dawson Formation)			l o III	un o	5	5
ı		5.5		┧┸	O		
ı	[Dense, gray, <i>Clayey Sand (SC)</i> ; moist. (A-2-6)]						
ı							
ı	BOTTOM OF BORING COMPLETED 6/28/2016						
ı	COMPLETED 0/20/2010						
ı							
ı							
ı							
ı						10)
ı							
ı							
ı							
ı							
ı							
ı							
ı							
ı						45	
ı						15	` ::::::::::::::::::::::::::::::::::::
ı							
ı							
ı							
ı							
ı							
ı							
7/6/17							
_1							
GP.	<u>LEGEND</u>						0 20 40 60
-005	* Sample Not Recovered						♦ % Fines (<0.075mm) ■ % Water Content
1311	Modified California Sampler						Plastic Limit Liquid Limit
LAT&LONG 23-1-01311-002.GP	☐ Grab Sample ☐ Standard Penetration Test						Natural Water Content
G 23	Standard Penetration Test				г		11: 1 405
O O	<u>NOTES</u>						Highway 105
AT&I	1. Refer to Figures A-1 and A-2 for explanation of symbols, codes,	abbrev	iation	s and			Corridor Improvements
	definitions. 2. The stratification lines represent the approximate boundaries be	atwoon (soil tv	nec an	a L		El Paso County, Colorado
TPE	the transition may be gradual.	etween :	SOII ty	pes, an	٠		
POCKETPEN	3. The discussion in the text of this report is necessary for a prope	r under	stand	ing of th	ne	1	OG OF BORING SW-P-19
	nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a	nd may	vanz			_	OG OF BOIGHTO 577-1 - 13
LOGE	USCS designation is based on visual-manual classification and	-	-	testina.		July 2	017 23-1-01311-002
					L	July 2	23-1-01311-002
ASTER						SHAN	INON & WILSON, INC. FIG. A-21

Total Depth: 10.5 ft. Latitude: Longitude: Vert. Datum: Station: Offset: Offset:	Drilli Drill	ng Co Rig E	ethod: ompany Equipmo mments	/: _ ent: _		m Auger Hole Diam.: 4 in. ingineering, Inc Rod Type.: AWJ 100 Truck Mount Hammer Type: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foo ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 66
7.0 inches of Asphalt						
3 inches of Base Course	0.6 0.9					
Medium dense, brown, Poorly Graded Sand with	0.9		M			
Silt (SP-SM); moist; trace organics. [A-1-b]			S-1			
				illing.		
				ing dr		
			L.T	Groundwater not encountered during drilling		
			S-2	unter	5	
				enco		
				er not		
				ndwat		
				Grour		
			\top			
	10.0		S-3		10	
Medium dense, brown to gray, <i>Poorly Graded</i> Sand with Clay (SP-SC); moist. [A-2-6]	10.5	:::[//				
BOTTOM OF BORING						
COMPLETED 6/28/2016						
					15	
					10	
						
71						<u> </u>
മ് o o o						0 20 40 6
* Sample Not Recovered Modified California Sampler						% Water Content
Standard Penetration Test						
င် ပ				_		
NOTES						Highway 105
1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions.	abbrev	iation	s and			Corridor Improvements El Paso County, Colorado
2. The stratification lines represent the approximate boundaries be	etween	soil ty	pes, and	- H		
the transition may be gradual. 3. The discussion in the text of this report is necessary for a prope	r under	standi	ing of th	e	1.4	OG OF BORING SW-P-20
nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a	nd mav	varv			L	OG OF BORING 344-P-20
5. USCS designation is based on visual-manual classification and	-	-	testing.		July 20	23-1-01311-002
LEGEND * Sample Not Recovered Modified California Sampler Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a propenature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and					SHANI	NON & WILSON, INC. cal and Environmental Consultants

	Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drilli _ Drill	ing C Rig E	lethod: ompany Equipmo mments	y: ent: _		ngineering, In	_ Hole Diam.: c Rod Type.: nt Hammer Type	4 in. AWJ Automatic
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.			ANCE (blows/foot) 140 lbs / 30 inches 40 60
	11.5 inches of Asphalt 1 inch of Base Course Dense, brown, Silty Sand (SM); moist. [A-2-4]	1.0		<i>5</i> / ₀	encountered during drilling.		•	A	
5/17	Loose, brown to red-yellow, Poorly Graded Sand with Clay (SP-SC); moist. [A-2-6] BOTTOM OF BORING COMPLETED 6/28/2016	5.5		8-5	Groundwater not er	10			
MASTER_LOG_E_POCKETPEN_LAT&LONG 23-1-01311-002.GPJ 7/6/17	LEGEND ★ Sample Not Recovered Modified California Sampler Standard Penetration Test						0	20 ■ % Water 0	40 60 Content
IN_LAT&LONG	NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries by				, [Corrido	ighway 105 or Improveme County, Colo	
E_POCKETPE	 The stratification lines represent the approximate boundaries be the transition may be gradual. The discussion in the text of this report is necessary for a propenature of the subsurface materials. Groundwater level, if indicated above, is for the date specified a 	er under	stand vary.	ing of th		L	OG OF E	BORING S	W-P-21
STER_LOG	5. USCS designation is based on visual-manual classification and	selecte	ed lab	testing.	-	July 20 SHANI		23- SON, INC.	-1-01311-002 FIG. A-23
MA						Geotechnic	cal and Environme	eniai Consultants	1.317120

Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	Drilli Drill	ng Co Rig E	ethod: ompany Equipme mments	y: _ ent: _		ngineering, li	Hole Diam.: <u>nc</u> Rod Type.: <u>un</u> t Hammer Type	4 in. AWJ Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.			ANCE (blows/foot) 140 lbs / 30 inches 40 60
10.5 inches of Asphalt 2 inches of Base Course Loose, brown, Silty Sand (SM); moist. [A-2-4]	0.9 1.1		<u>۲</u>	encountered during drilling.		***		
Loose, brown to red-yellow, Poorly Graded Sand with Silt (SP-SM); moist. [A-2-4] BOTTOM OF BORING COMPLETED 6/28/2016	4.0 5.5		8.5	Groundwater not e	10			
LEGEND * Sample Not Recovered Modified California Sampler Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified at 5. USCS designation is based on visual-manual classification and						0	20 • % Water (40 60 Content
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be						Corrid	Highway 105 for Improveme County, Cold	
The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified at the control of the subsurface materials.	r under	standi vary.	ing of th				BORING S	
5. USCS designation is based on visual-manual classification and	selecte	u Iad	esing.		July 20 SHANI Geotechnic		ILSON, INC.	-1-01311-002 FIG. A-24

Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	Drill Drill	ling C I Rig I	lethod: compan Equipm mment	y: ent: _		m Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ 00 Truck Mount Hammer Type: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types and the transition may be gradual.	₹	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60
11.0 inches of Asphalt				Illing.		0 20 40 60
2 inches of Base Course /	0.9		Ψ	ring dr		
Medium dense, brown, <i>Silty Sand (SM)</i> ; moist; few gravel. [A-1-b]	1.0		٥	ntered du		♥ ₩ A
			i ii G	not encou		
Medium dense, brown to red-yellow, <i>Poorly Graded Sand with Clay (SP-SC)</i> ; moist. [A-2-4]	4.0		S-2	Groundwater not encountered during	_	• A
BOTTOM OF BORING	5.5			Grou	5	
COMPLETED 6/28/2016						
					10	
					15	
			1	-		0 20 40 60
* Sample Not Recovered Modified California Sampler						♦ % Fines (<0.075mm) • % Water Content
G Grab Sample						
Standard Penetration Test				Г		Highway 105
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, code definitions.	s, abbre	viation	is and			Corridor Improvements
				a		El Paso County, Colorado
 The stratification lines represent the approximate boundaries the transition may be gradual. The discussion in the text of this report is necessary for a proparture of the subsurface materials. 		-	-		L	OG OF BORING SW-P-23
4. Groundwater level, if indicated above, is for the date specified	-				luk oo	00 4 04044 000
5. USCS designation is based on visual-manual classification ar	וש טבובטנו	ou iau	woung.		July 20	
						NON & WILSON, INC. FIG. A-25

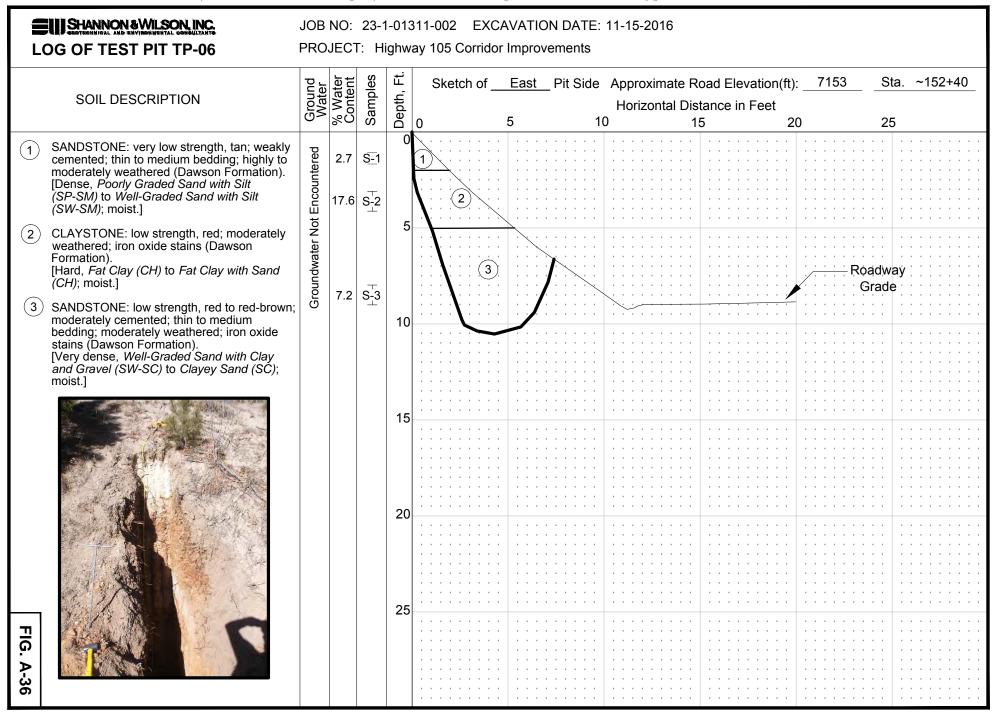
ı	Total Depth:5.5 ft Latitude:	Drilli	ing M	lethod:	_	Solid-Ster	m Auger	Hole Diam.:	4 in.
ı	Top Elevation: Longitude:	Drilli	ing C	ompan	y: _	Entech Er	ngineering, Inc	Rod Type.:	AWJ
ı	Vert. Datum: Station:			Equipm		Simco 28	<u>00 Truck Moun</u> t	Hammer Type	: <u>Automatic</u>
ı	Horiz. Datum: Offset:	Othe	er Co	mment	s: _				
ı									
	SOIL DESCRIPTION	Depth, ft.	g	Samples	pu	e, Ft			ANCE (blows/foot
ı	Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated	뮲	Symbol	Пр	Ground	Water Depth, f	▲ Hammer W	t. & Drop: <u>1</u>	40 lbs / 30 inches
ı	below represent the approximate boundaries between material types, and the transition may be gradual.	De	S	Sal	<u>්</u> ලි:	S ⊝			
ı					<u></u>		0	<u>20</u>	40 60
ı	11.5 inches of Asphalt				drilling.		: : : : : : : : :		
ı	Lacas brown City Canal (CM), maint [A 2 4]	1.0	.7.11						
ı	Loose, brown, Silty Sand (SM); moist. [A-2-4]			1	during				
				S-1					
ı				' 1	encountered		::::::::		
ı					enco			+:::::::::	
ı					not		::::::::::::::::::::::::::::::::::::::		
ı	Medium dense, brown to red-yellow, Poorly	4.0			Groundwater				
ı	Graded Sand with Clay (SP-SC); moist; trace			S-2	wpu	-			
ı	_ gravel. [A-2-6]	5.5			Grou	5		Tiiiiii	
ı	BOTTOM OF BORING	5.5							
	COMPLETED 6/28/2016								
ı	GOIVII EE I ED 0/20/2010								
ı									
ı									
ı									
ı								4.1.1.1.1.1.1.1.	
ı									
ı						10		 	: : : : : : : : : : : : : : : : : : :
ı									
									-
ı									
ı								+::::::::::::::::::::::::::::::::::::::	
ı									
								1::::::::::	
						15		 	
ı									
ı									
ı									
								4-1-1-1-1-1-1-	
7/6/17									
_					<u> </u>		0	<u> : : : : : : : : : : : : : : : : : :</u>	40 60
2.GF	<u>LEGEND</u>							20	40 00
90	* Sample Not Recovered						4	% Water C	Contont
131,	Modified California Sampler							70 Water C	Jonteni
-1-0									
5 23					_				
	NOTES						Higl	hway 105	
LAT&LONG 23-1-01311-002.GP.	1. Refer to Figures A-1 and A-2 for explanation of symbols, codes.	abbrev	iation	s and			Corridor	Improveme	ents
	definitions.	dobicv	iation	is and			El Paso Co	ounty, Colo	rado
	2. The stratification lines represent the approximate boundaries be	etween	soil ty	pes, and	d				
É	the transition may be gradual.								
POCKETPEN	The discussion in the text of this report is necessary for a prope nature of the subsurface materials.	er under	stand	ing or th	ie	L(OG OF BO	DRING S	W-P-24
Ш	4. Groundwater level, if indicated above, is for the date specified a	ind may	vary.						
000	5. USCS designation is based on visual-manual classification and	-	-			July 20	17	23-	1-01311-002
				,	\vdash	July 20			. 01011-002
ASTER						SHAN	NON & WILS all and Environmenta	ON, INC.	FIG. A-26
á					- 1	Geotechnic	aı and ⊑nvironmenta	ı ∪onsultants	

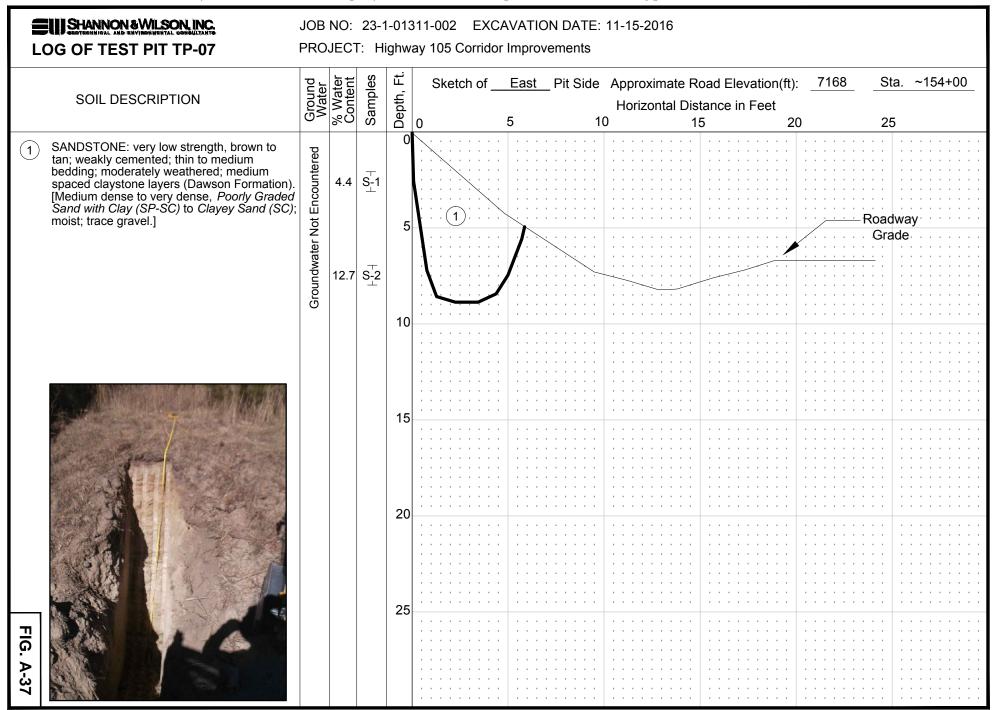
Total Depth: 10.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	Drill Drill	ing C Rig I	lethod: compang Equipmomment	y: ent: _		m Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ 00 Truck Mount Hammer Type: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types and the transition may be gradual.	₹	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60
12.5 inches of Asphalt						10 20
1 inch of Base Course	1.1					<u></u>
Medium dense, brown, <i>Silty Sand (SM)</i> ; moist. [A-2-4]			S-1	g drilling.		
Medium dense, brown to red-yellow, <i>Poorly Graded Sand with Clay (SP-SC)</i> ; moist. [A-2-6]	4.0		S-2	r not encountered during	5	•
Medium dense, brown to red-yellow, <i>Poorly Graded Sand (SP)</i> ; moist; trace gravel, trace silt. [A-1-b]	8.0			Groundwater		
BOTTOM OF BORING COMPLETED 6/28/2016	10.5		Š L		10	
					15	
					13	
LEGEND ★ Sample Not Recovered Modified California Sampler Standard Penetration Test		1				0 20 40 60
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, code definitions.				d		Highway 105 Corridor Improvements El Paso County, Colorado
the transition may be gradual. 3. The discussion in the text of this report is necessary for a proparture of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified	per under	rstand vary.	ling of th			OG OF BORING SW-P-25
5. USCS designation is based on visual-manual classification ar	id selecti	ed lab	testing.			017 23-1-01311-002 NON & WILSON, INC. FIG. A-27

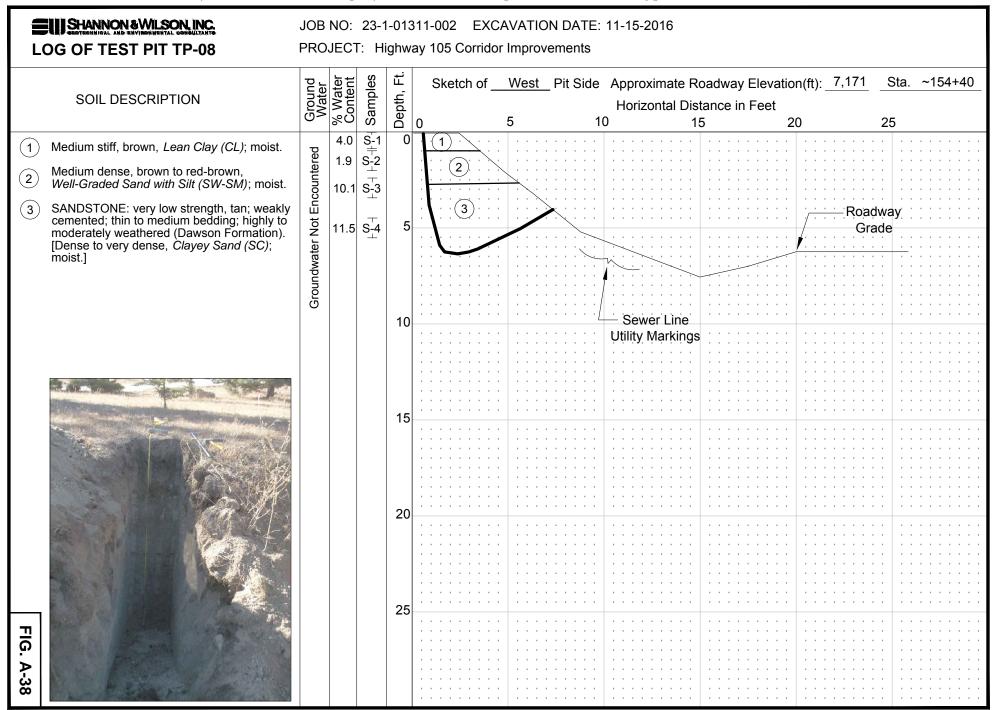
Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	Drilli Drill	ng Co Rig E	ethod: ompany Equipments	y: _ ent: _		ngineering, Ind	Hole Diam.: Rod Type.: nt Hammer Type	4 in. AWJ Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
10.0 inches of Asphalt 2 inches of Base Course Medium dense, brown to dark brown, Silty Sand (SM); moist. [A-2-4]	0.8 1.0		? \	ncountered during drilling.		• •		
Loose, brown to red-yellow, Poorly Graded Sand with Silt (SP-SM); moist. [A-2-6] BOTTOM OF BORING COMPLETED 6/28/2016	4.0 5.5			Groundwater not e	10			
LEGEND * Sample Not Recovered Modified California Sampler Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified at 5. USCS designation is based on visual-manual classification and						0	20 % Water (40 60 Content
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions.						Corrido	ghway 105 or Improveme County, Colo	
 The stratification lines represent the approximate boundaries be the transition may be gradual. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified a 	r under	standi vary.	ing of th		L	OG OF B	ORING S	W-P-26
5. USCS designation is based on visual-manual classification and	selecte	d lab	testing.	-	July 20 SHANI Geotechnic	017 NON & WIL cal and Environme		-1-01311-002 FIG. A-28

Total Depth: 5.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	Drilli Drill	ing C Rig E	lethod: ompany Equipme mments	r: ent:		m Auger ngineering, la 00 Truck Mo	-	/pe.:	: <u>A</u>	4 in. AWJ automatic	_ _ _
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	water Depth, ft.					(blows/foo / 30 inches	
10.0 inches of Asphalt Medium dense to loose, brown to red-yellow, Silty Sand (SM); moist; few gravel. [A-2-4]	0.8		2 Bulk S-1	water not encountered during drilling.		NP •	▲				
BOTTOM OF BORING COMPLETED 6/28/2016	5.5			Groundwater	10						
LEGEND * Sample Not Recovered Modified California Sampler Grab Sample Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified at 5. USCS designation is based on visual-manual classification and						ŀ	20 \$ % F \$ % W C Limit Natural \ Highway Hor Impro	Vater C	Conten Liqu Content	nm) nt uid Limit	60
1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified and the subsurface materials.		L(July 20	El Paso	County	, Colo	rado W-P					
5. USCS designation is based on visual-manual classification and	5. 0000 designation is based on visual-mandal classification and selected lab testing.						ILSON, I			311-002 3. A-29	

Total Depth: 5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drilli _ Drill	ling Co I Rig E	Method: Company Equipments	y: ent: _	Solid-Ster Entech Er Simco 28	ng	ine	er	ing		<u>1C</u>	Roo	d T		.:	ə: _		Α	in. WJ oma	I	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	ᅙ	Symbol	Samples	Ground	Water Depth, ft.													-		ws/fe	
6.0 inches of Asphalt	0.5			drilling.		1		: :	:		- '	20 					<u>40</u>				60
Medium dense, dark brown, Poorly Graded	0.5			uring drilli			: !!	: ::	<u>.</u>	: : * : :		1		: : : !!!			-		-		
Sand with Clay (SP-SC); moist; trace gravel. [A-2-6]			← M	d durir			: <u>:</u>		-							:::				: :	
[A-2-0] Fill			٥	untered					:				<i></i>		<u></u>	· · · · · · · · · · · · · · · · · · ·					
1				encor				-				#						<i></i>		·	<u> </u>
1				ter not			:		<u>:</u>	<u> </u>		<u> </u> :			:::	::	- :	<u>: :</u>			
- >>Asphalt debris encountered at a depth of 4.5 feet.	5.0		₹ 75 1	Groundwater	5			•								:::				5 <u>(</u>	0/7"4
BOTTOM OF BORING	5.υ			Grou	J	'					T :	T					T	<u> </u>	T:		
COMPLETED 6/28/2016		'				-	<u> </u>		<u>:</u>		<u> </u>	#				:::	+				
						-		!!		<u>:</u> :		1					4				
									:	: : : :	::					::			:::	:::	
									:												
							-		;	 -		+		 			+				
					10	, -	: :	<u>: :</u>	<u>:</u>	<u>: :</u> : :	<u>: :</u> : :	+	:			<u>: :</u> : :	#	<u>::</u> ::	<u>::</u>	<u>::</u>	<u> </u>
		'						: :;		<u>:</u> ;	<u>:</u>			: : : :							
		'							·**:												
		'				-	 : :		<u>-</u>			#				<u></u>	+				
										<u>:</u> :		1:					4		-		
		'					<u>.</u>		:												
									:			T								::::	
					15	;	 	 	-	 	++	#				++	+	++	++	++	++
							<u>: :</u>	<u>: :</u>	<u>:</u>	<u>: :</u>	<u>: :</u>	+:	: :			<u>: :</u>	-	<u>: :</u>		<u> </u>	<u> </u>
							. <u>.</u>		<u>;</u>												
1																					
1						-	<u> </u>		<u>:</u>		:::	1				::	1				
							! !	·	<u>-</u>			+					+				
		'				_			<u>:</u>		<u>::</u>	Ţ					Ţ		<u>:::</u>	<u>:::</u>	<u> </u>
<u>LEGEND</u>						0					2	20				•	40				60
											•	9	% V	Nat	er (Cor	nter	nt			
Standard Penetration Test																					
3				Г		_					''al	-\A/	1/	-10		_	_	_	_	_	
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes	-hhro	: ation	- and				(С	orr					10 ove		ent	s				
Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions.														y, C							
The stratification lines represent the approximate boundaries be the transition may be gradual.	etween	soil ty	pes, and	,											_	_	_	_			
 The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 	r under	standi	ing of the	е	L	0	G	C)F	: E	3 C)R	31 1	١G	S	W	/-P	'-2	28		
LEGEND * Sample Not Recovered Modified California Sampler ☐ Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a propenature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified as 5. USCS designation is based on visual-manual classification and	-				LOG OF BORING SW-P-28 July 2017 23-1-01311-002																
				 	SHANI	N	ON	1 8	<u> </u>	WI	 LS	10	N,	INC).	Т			A-:		
!				- 1	Geotechnic	ical	and	ΙE	nviro	onm	enta	al Co	onsı	ultan'	ts	1	LI	J. /	/-	JU	


Total Depth: 30.9 ft. Latitude:	Drilli	ng M	lethod:	_	Solid-Ster	m Auger Hole Diam.: 4 in.				
Top Elevation: Longitude:			ompan		Entech Er	ngineering, Inc Rod Type.: AWJ				
Vert. Datum: Station:			Equipm		Simco 280	00 Truck Mount Hammer Type:Automatic				
Horiz. Datum: Offset:	Othe	er Co	mment	s: _						
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u>				
6.0 inches of Asphalt	0.5			+		0 20 40 60				
Stiff, medium brown, Lean Clay with Sand (CL);	0.5	\bigotimes								
moist.		\bowtie								
Fill		\bowtie	S-1			: : : •: . : : : : : : : : : : : : : : : : : : :				
	4.5	\bowtie	- ↓							
Very loose to medium dense, brown to			\top_{5}		5					
red-brown, Well-Graded Sand with Silt and			· L							
Gravel (SW-SM); moist Trace to few gravel from 7.0 to 9.5 feet.			: -							
- Trace to lew graver from 7.0 to 9.5 leet.			S-3							
Madisus danas sussitatas Olassas Oasid (OO)	9.5] —							
Medium dense, gray to tan, Clayey Sand (SC); moist.			$\frac{1}{2}$, i	10	-:::: 2 ::::::::::::::::::::::::::::::::				
[SANDSTONE: very low strength; weakly] °L	lilli Bu						
cemented; completely weathered (Dawson	12.5		1.—	p gu						
Formation)].			S-5	during						
SANDSTONE: very low strength, tan; weakly				encountered	15					
cemented; medium to thick bedding; highly to			9-8	con	13	90,				
moderately weathered (Dawson Formation).] "	not en						
				ıter n						
[Dense to very dense, Clayey Sand (SC); moist.]				ndwa						
			!	Broul	20					
			S-7		20					
			1 —							
- Very low strength claystone at 23.0 to 28.0 feet.										
					25					
			ğΤ			50/6*/				
			6-S		30	50/5".				
BOTTOM OF BORING	30.9	23	"							
COMPLETED 11/9/2016										
LEGEND		1				0 20 40 60				
<u>LEGEND</u> * Sample Not Recovered						♦ % Fines (<0.075mm)				
☐ Standard Penetration Test						Water Content				
						Plastic Limit				
				_						
<u>NOTES</u>						Highway 105 Corridor Improvements				
Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions.										
The stratification lines represent the approximate boundaries by the transition may be gradual.	etween	soil ty	pes, an	d		El Paso County, Colorado				
 The stratification lines represent the approximate boundaries by the transition may be gradual. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 			Ū	ie	LC	OG OF BORING SW-W-01				
4. Groundwater level, if indicated above, is for the date specified a5. USCS designation is based on visual-manual classification and	-	-			July 2017 23-1-01311-002					
					•	NON & WILSON, INC.				
				- 1	Gentechnic	al and Environmental Consultants FIG. A-5				


4. Groundwater level, if indicated above, is for the date specific 5. USCS designation is based on visual-manual classification	•	•			July 20	23-1-01311-002
the transition may be gradual.	3. The discussion in the text of this report is necessary for a proper understanding of the					OG OF BORING SW-W-02
1. Refer to Figures A-1 and A-2 for explanation of symbols, codefinitions.			Corridor Improvements El Paso County, Colorado			
<u>NOTES</u>						Highway 105
* Sample Not Recovered	* Sample Not Recovered ♀ Ground Water Level ATD					
LEGEND						0 20 40 60
COMPLETED 11/9/2016						
BOTTOM OF BORING	31.0	10: X1:	3 or			
			6-8		30	50/6".
			"			
			- N-8-8		25	86.
				Dal		
20.0 to 23.0 feet [Sandy Lean Clay (CL)].				During Dril		
- Very low strength claystone encountered at			S-7	Drilling 1	20	
to wet.]						
moderately weathered (Dawson Formation). [Dense to very dense, <i>Clayey Sand (SC)</i> ; moist						
cemented; medium to thick bedding; highly to			S-6		13	
SANDSTONE: very low strength, tan; weakly	14.5		" <u> </u>		15	
			S			
			 		10	
			T-8-3			
few gravel.						
Well-Graded Sand with Clay (SW-SC); moist;					5	
Silt (SP-SM); moist; trace to few gravel. Loose to medium dense, red-brown,	3.0		S-1			
Medium dense, brown, Poorly Graded Sand with	0.5					
and the transition may be gradual. 6.0 inches of Asphalt		0)	S	0 -		0 20 40 60
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurfarmaterials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material type.	, <u>ĕ</u>	Symbol	Samples	Ground	vvatel Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches
Horiz. Datum: Offset:		_	mments			
Top Elevation: Longitude: Vert. Datum: Station:		-	ompany Equipme			ngineering, Inc Rod Type.: AWJ 00 Truck Mount Hammer Type: Automatic
Total Depth: <u>31 ft.</u> Latitude:		_	lethod:		Solid-Ster	


Total Depth: 31.5 ft. Latitude:	Drill	ing M	1ethod:		Solid-Ster	m Auger Hole Diam.: 4 in.
Top Elevation: Longitude:		_	ompan	y: _		ngineering, Inc Rod Type.: AWJ
Vert. Datum: Station:	_ Drill	Rig I	Equipm	ent: _	Simco 28	00 Truck Mount Hammer Type:Automatic
Horiz. Datum: Offset:	_ Oth	er Co	mment	s: _		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types	□ td	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches
and the transition may be gradual.	+					0 20 40 60
8.0 inches of Asphalt Loose to medium dense, brown, <i>Poorly Graded</i> Sand with Silt (SP-SM) to Clayey Sand (SC);	0.7		-T			
moist. Fill			——————————————————————————————————————		5	
			F.5 —			
Medium dense, brown, <i>Clayey Sand (SC)</i> ; moist. [SANDSTONE: very low strength; weakly	9.5		84 —	ng.	10	
cemented; completely weathered (Dawson Formation)]. SANDSTONE: very low strength, tan; weakly cemented; medium to thick bedding; highly to	12.5			itered during drilling	15	
moderately weathered (Dawson Formation). [Dense to very dense, Clayey Sand (SC); moist			9-8	ater not encountered		_
to wet.]			S-7	Groundwai	20	847111.
			8-S		25	50/5%
			6-8		30	85
BOTTOM OF BORING COMPLETED 11/9/2016	31.5		/ o			
						0 20 40 60
LEGEND * Sample Not Recovered T Standard Penetration Test						♦ % Fines (<0.075mm)● % Water ContentPlastic LimitLiquid Limit
				_		Natural Water Content
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, code definitions.			Highway 105 Corridor Improvements El Paso County, Colorado			
the transition may be gradual.	3. The discussion in the text of this report is necessary for a proper understanding of the nature of the subsurface materials.					
4. Groundwater level, if indicated above, is for the date specified 5. USCS designation is based on visual-manual classification an	-	-			July 20	23-1-01311-002
			J.	-	-	NON & WILSON, INC.

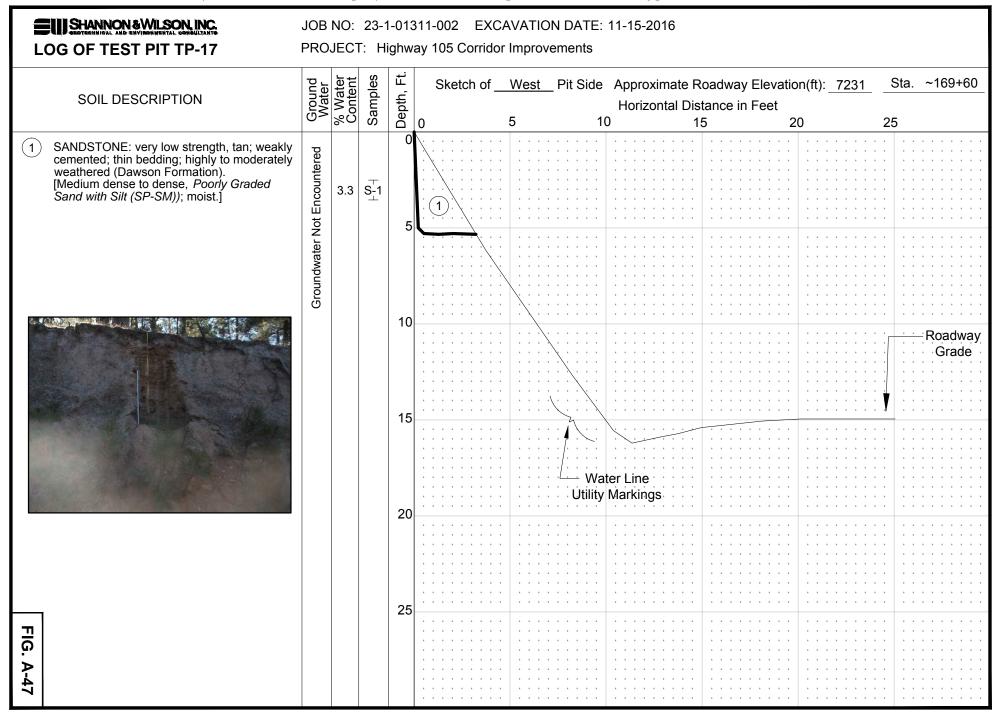
	Total Depth: 30.8 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drill _ Drill	ing C Rig E	lethod: company Equipmonts	y: _ ent: _		m Auger Hole Diam.: 4 in ingineering, Inc Rod Type.: AW Mount Hammer Type: Autom	/J
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types and the transition may be gradual.	l ₽	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (bl. ▲ Hammer Wt. & Drop: 140 lbs / 30 l	-
-	24.0 inches of Asphalt Loose, red-brown, <i>Poorly Graded Sand with Silt (SP-SM)</i> ; moist. Fill Very loose to loose, tan to brown, <i>Clayey Sand (SC)</i> ; moist. Fill	2.0		8-2 S-1		5		
-		- 14.5		S-5 S-4 S-3	ered during drilling.	10		
-	Medium dense, tan, <i>Clayey Sand (SC)</i> ; moist. [SANDSTONE: very low strength; weakly cemented; completely weathered (Dawson Formation)]. SANDSTONE: very low strength, tan; weakly cemented; medium to thick bedding; highly to moderately weathered (Dawson Formation).	18.0			Groundwater not encountered	15		
	[Dense to very dense, Clayey Sand (SC); moist to wet.]			8-8		25		83/9°,
7/6/17	BOTTOM OF BORING COMPLETED 11/9/2016	30.8		о. У		30	0 20 40	50/4°,
23-1-01311-002.GF	LEGEND ★ Sample Not Recovered Standard Penetration Test						● % Water Content	00
PEN_LAT&LONG	NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions. 2. The stratification lines represent the approximate boundaries by the transition may be gradual.	d -		Highway 105 Corridor Improvements El Paso County, Colorado				
LOG_E_POCKETPEN	 the transition may be gradual. The discussion in the text of this report is necessary for a prop nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified so. USCS designation is based on visual-manual classification and 	and may	/ vary.			LC July 20	OG OF BORING SW-W-04	
ASTER						SHANN Geotechnic	NON & WILSON, INC. cal and Environmental Consultants	-34

Total Depth: <u>25.9 ft.</u> Latitude:	Drill	ina M	1ethod:		Solid-Ster	m Auger Hole Diam.: 4 in.			
Top Elevation: Longitude:	_	•	ompan			ngineering, Inc Rod Type.: AWJ			
Vert. Datum: Station:			Equipm			00 Truck Mount Hammer Type: Automatic			
Horiz. Datum: Offset:	Oth	er Co	mment	s: _					
		1							
SOIL DESCRIPTION	<u>+</u>	<u>0</u>	Samples	þ	<u>,</u> #	PENETRATION RESISTANCE (blows/foot)			
Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated	Jepth, ft.	Symbol	dμ	Ground	Water Depth, ft.	▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u>			
below represent the approximate boundaries between material types,)el	S	Sar	ِ ق	≥ j				
and the transition may be gradual.		77.				0 20 40 60			
Loose, brown to red-brown, Clayey Sand (SC);			1						
moist.			3						
] —						
			S-1						
			1 —		5				
			S-2						
]						
SANDSTONE: very low strength, tan; weakly	7.0		1 -						
cemented; medium to thick bedding; highly to			S-3						
moderately weathered (Dawson Formation).				ng.					
			-	drilli	10				
[Dense to very dense, Clayey Sand (SC) to			8 T	ıring		50/6*/			
Poorly Graded Sand with Clay (SP-SC); moist to				g dr					
wet.]				ntere					
				encountered during drilling					
				not e					
			- L	ater r	15				
			-S-5	ndw		50/51/2			
				Groundwater					
			% <u>T</u>		20				
			0 —						
			-S-7		25	50/5"			
BOTTOM OF BORING	25.9	NAME	"						
COMPLETED 11/11/2016									
LEGEND				,		0 20 40 60			
<u>LEGEND</u> * Sample Not Recovered						♦ % Fines (<0.075mm)			
☐ Standard Penetration Test						% Water Content			
						Plastic Limit Liquid Limit			
						Natural Water Content			
<u>NOTES</u>						Highway 105			
1	abbrox	iation	e and			Corridor Improvements			
definitions.	abbrev	nation	is and			El Paso County, Colorado			
The stratification lines represent the approximate boundaries be the transition may be gradual.	etween	soil ty	/pes, an	d					
3. The discussion in the text of this report is necessary for a prope	r under	stand	ling of th	ne	10	OG OF BORING SW-W-05			
nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a	nd may	varv			LOG OF BORING 344-44-03				
Signature rever, in indicated above, is for the date specified a Signation is based on visual-manual classification and	-	-			July 20	23-1-01311-002			
				-	•				
					Geotechnic	NON & WILSON, INC. FIG. A-35			

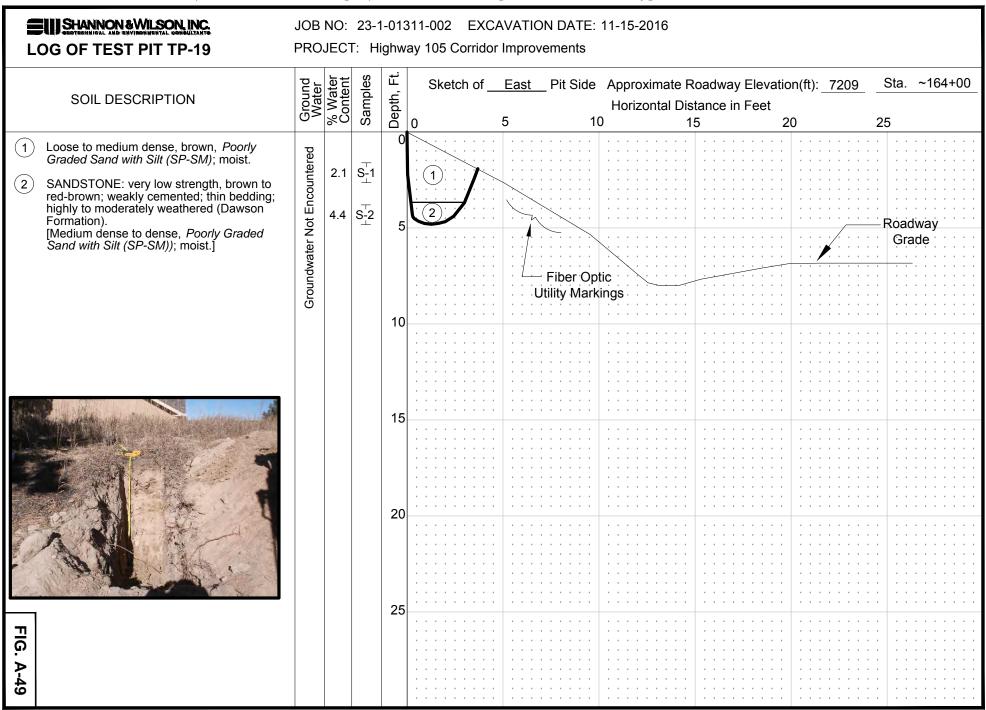
Total Depth: 20.9 ft. Latitude: Longitude: Vert. Datum: Station:	_ _ Drill	ing Co	ethod: ompan quipm	y:	Ente	ch Er	m Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ DO Truck Mount Hammer Type: Automatic			
Horiz. Datum: Offset:			nmen							
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	- Pulloud	Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches			
9.0 inches of Asphalt				+			0 20 40 60			
3 inches of Base Course	0.8 1.0	777								
Medium dense, brown to tan, Clayey Sand (SC);	1.0									
moist.			S-1							
	4.5		"				7			
SANDSTONE: very low strength, tan; weakly	4.5					5				
cemented; thick bedding; highly to moderately weathered (Dawson Formation).			S-2							
weathered (Dawson Formation).										
[Very dense, Poorly Graded Sand with Clay			S-3							
(SP-SC) to Clayey Sand (SC); moist to wet;			$^{\circ}\bot$							
trace to few gravel.]			_			10				
			S-4				704			
						15				
			S-5			15	84			
			" <u> </u>							
				Drilling 1						
				Drill						
				During						
			9-8			20				
BOTTOM OF BORING	20.9	22	» <u> </u>							
COMPLETED 11/11/2016										
						25				
<u>LEGEND</u>							0 20 40 60			
* Sample Not Recovered ♀ Ground W ☐ Standard Penetration Test	Vater Le	evel A	ΓD				♦ % Fines (<0.075mm) • % Water Content			
Standard Penetration Test							Plastic Limit Liquid Limit			
							Natural Water Content			
NOTES	ſ			Highway 105						
Refer to Figures A-1 and A-2 for explanation of symbols, codes,	. abbrev	viations	s and				Corridor Improvements			
definitions.							El Paso County, Colorado			
The stratification lines represent the approximate boundaries be the transition may be gradual.	etween	soil ty	pes, an	id						
The discussion in the text of this report is necessary for a proper nature of the subsurface materials.	er under	rstandi	ng of th	ne		LC	OG OF BORING SW-W-09			
4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and	-	-	testing	.	July 2017 23-1-01311-002					
				Ī	SH	IANI technic	NON & WILSON, INC. al and Environmental Consultants			

Total Depth: 20.9 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drill _ Drill	ing Co	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:				m Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ 00 Truck Mount Hammer Type: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	2	Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop:
Loose, brown, Clayey Sand (SC); moist.			8-1 -S-1				<u> </u>
Loose, brown, <i>Poorly Graded Sand with Silt</i> (SP-SM); moist.	4.5	9.5		ng.		5	.
Loose, brown, <i>Clayey Sand (SC)</i> ; moist; few gravel.			Z-3-3	ed during drilli			A. • • • •
SANDSTONE: very low strength, tan; weakly cemented; thick bedding; highly to moderately weathered (Dawson Formation).	9.5		8.4 4.0	er not encountered		10	
[Dense to very dense, Clayey Sand (SC); moist to wet.]			S-6 S-5	Groundwater		15	55)/6°2
BOTTOM OF BORING COMPLETED 11/11/2016	20.9		-S-			20	● :50/5°.⊿
						25	
LEGEND ★ Sample Not Recovered ☐ Standard Penetration Test				,			0 20 40 60 ♦ % Fines (<0.075mm) • % Water Content Plastic Limit Liquid Limit Natural Water Content
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions. 2. The stratification lines represent the approximate boundaries between soil types, and							Highway 105 Corridor Improvements El Paso County, Colorado
the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper understanding of the nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified and may vary.							OG OF BORING SW-W-10
USCS designation is based on visual-manual classification and selected lab testing.					-	HANI	NON & WILSON, INC. lal and Environmental Consultants and Environmental Consultants

ı	Total Depth: 20.8 ft. Latitude:	Drill	ina M	lethod:		Solid-Ste	m Auger Hole Diam.: 4 in.
ı	Top Elevation: Longitude:	_	•	ompan	٧.		ingineering, Inc. Rod Type.: AWJ
ı	Vert. Datum: Station:			Equipm			200 Truck Mount Hammer Type: Automatic
ı	Horiz. Datum: Offset:	-	_	mment			
ŀ			_				
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches
	Medium dense, brown, Poorly Graded Sand with Silt (SP-SM); moist. Fill			-S-1			0 20 40 60
	SANDSTONE: very low strength, tan; weakly cemented; thick bedding; highly to moderately weathered (Dawson Formation).	4.5		S-2	rilling.	5	
	[Dense to very dense, Clayey Sand (SC); moist to wet; trace gravel.]			S-4 S-3	not encountered during drilling	10	●
	- Iron oxides stains from 13 to 20.8 feet.				sroundwater not enc		
				- S-5	O	15	
	BOTTOM OF BORING	20.8		9-5		20	50/4%
	COMPLETED 11/11/2016					25	
/ 1/9//							
23-1-01311-002.GPJ	LEGEND ★ Sample Not Recovered Standard Penetration Test						0 20 40 60
N LAI&LONG	NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions.			Highway 105 Corridor Improvements El Paso County, Colorado			
E_POCKETPEN	 The stratification lines represent the approximate boundaries be the transition may be gradual. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified a 	r under	rstand	ing of th		LC	OG OF BORING SW-W-11
O	5. USCS designation is based on visual-manual classification and	selecte	ed lab	testing.		July 20	23-1-01311-002
SIER						SHAN	NON & WILSON, INC.


Total Depth: 21.5 ft. Latitude: Top Elevation: Congitude: Longitude: Station: Offset: Congitude: Longitude: L	_ Drill _ Drill	ing Co Rig E	ethod: ompany Equipments	/: <u>E</u> ent: <u>S</u>		<u>m Auger</u> Hole Diam.: <u>ngineering, Inc</u> Rod Type.: <u>00 Truck Moun</u> t Hammer Type	4 in. AWJ Automatic		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST. ▲ Hammer Wt. & Drop:	,		
Loose, brown to red-brown, <i>Clayey Sand (SC)</i> ; moist. Fill Soft to medium stiff, brown, <i>Sandy Lean Clay</i>	4.5		8-1		-	*•			
(CL) to Lean Clay with Sand (CL); moist. Stiff, brown, Sandy Lean Clay (CL); moist.	7.0	5	5						
Medium dense, red-brown to tan, Clayey Sand (SC); moist.	9.0		S-4 S-3		10				
SANDSTONE: very low strength, tan; weakly cemented; thick bedding; highly to moderately weathered (Dawson Formation).	12.0		S-6 S-5	∑i Dilli	15	•	64)		
[Very dense, Poorly Graded Sand with Clay (SP-SC) to Clayey Sand (SC); moist.] CLAYSTONE: very low strength, brown;	18.0		s⊥	During Drilling		•			
massive; moderately weathered; iron oxide stains (Dawson Formation). [Hard, Fat Clay (CH) to Fat Clay with Sand (CH); moist.]			S-7		20	•	72,		
BOTTOM OF BORING COMPLETED 11/11/2016					25				
LEGEND LEGEND						0 20	40 60 <0.075mm)		
LEGEND * Sample Not Recovered Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a	Vater Le	evel A I	טו			● % Water (Plastic Limit	Content Liquid Limit		
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions. 2. The stratification lines represent the approximate boundaries by	, 		Highway 105 Corridor Improveme El Paso County, Colo						
	er under and may	rstandi v vary.	ng of th	е		OG OF BORING S			
5. USCS designation is based on visual-manual classification and	ı selecte	ed lab	testing.	-	July 2017 23-1-01311-002 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-42				

Total Depth: 21.4 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drill _ Drill	ling Co I Rig E	ethod: ompang Equipment	y: <u>E</u> ent: <u>S</u>		m Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ DO Truck Mount Hammer Type: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	pth, ft.	Symbol	Samples	Ground	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop:140 lbs / 30 inches 0 20 40 60
Loose, brown to red-brown, <i>Poorly Graded Sand</i> with Silt (SP-SM); moist. Fill			<u>-8</u>			<u>0 20 40 00</u>
Loose, brown, <i>Clayey Sand (SC)</i> ; moist; few gravel.	4.5	7.0	S-2	ri,	5	- ↑ • • • • • • • • • • • • • • • • • • •
Loose to medium dense, red-brown, <i>Clayey</i> Sand (SC); moist; trace to few gravel.	7.0		S4 S-3	encountered during drilling	10	
SANDSTONE: very low strength, tan; weakly cemented; thick bedding; highly to moderately weathered (Dawson Formation).	11.2		8-9-8	$\begin{bmatrix} \bot \\ \top \end{bmatrix}$	Sroundwater not enco	15
[Very dense, Poorly Graded Sand with Clay (SP-SC) to Clayey Sand (SC); moist.]			φ- <u>ν</u>	g	15	
BOTTOM OF BORING COMPLETED 11/11/2016	21.4		S-7		20	92/11*4
					25	
<u>LEGEND</u> * Sample Not Recovered ☐ Standard Penetration Test		1		,		0 20 40 60 ♦ % Fines (<0.075mm) • % Water Content Plastic Limit Liquid Limit Natural Water Content
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions.			Highway 105 Corridor Improvements El Paso County, Colorado			
nature of the subsurface materials.	the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper understanding of the					
·	5. USCS designation is based on visual-manual classification and selected lab testing.					


SHANNON & WILSON, INC. JOB NO: 23-1-01311-002 EXCAVATION DATE: 11-15-2016 **LOG OF TEST PIT TP-14** PROJECT: Highway 105 Corridor Improvements Samples Sta. ~163+00 Sketch of <u>West</u> Pit Side Approximate Roadway Elevation(ft): 7200 SOIL DESCRIPTION Horizontal Distance in Feet 10 15 20 25 SANDSTONE: very low strength, brown to red-brown; weakly cemented; thin to medium bedding; highly weathered (Dawson Formation). **Groundwater Not Encountered** $S_{\underline{\underline{}}}^{\underline{}}1$ 3.0 [Dense, Poorly Graded Sand with Silt (SP-SM) to Well-Graded Sand with Silt 11.4 S-2 (SW-SM)); moist.] CLAYSTONE: very low strength, brown to tan; massive; moderately weathered (Dawson Formation). 9.0 S₋₃ [Hard, Sandy Fat Clay (CH) to Fat Clay (CH); moist.] 10 Water Line **Utility Markings** 15 20 25 FIG.

Total Depth: <u>15.9 ft.</u> Latitude:	Drilling Method:				Solid-Ster	m Auger Hole Diam.: 4 in.
Top Elevation: Longitude:		Drilling Company:		v:		ngineering, Inc Rod Type.: AWJ
Vert. Datum: Station:			Equipm			00 Truck Mount Hammer Type: Automatic
Horiz. Datum: Offset:			mment			
SOIL DESCRIPTION	نے	_	Ø	₅	نے _	PENETRATION RESISTANCE (blows/foot)
Refer to the report text for a proper understanding of the subsurface	, ,	<u>ا</u> کو	ble	Ì	i, te	▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u>
materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types,	Depth, ft.	Symbol	Samples	Ground	Water Depth, f	'
and the transition may be gradual.	△	0)	Ś	0		0 20 40 60
8.0 inches of Asphalt						
	0.7	ąŲ				<u> </u>
4 inches of Base Course	1.0					: : : : : : : : : : : : : : : : : : : : : : : : :
SANDSTONE: very low strength, tan to brown;			-			
weakly cemented; medium to thick bedding;			S-1			
highly to moderately weathered (Dawson			"⊥	<u>6</u>		
Formation).				E	_	
,			T_{s}	encountered during drilling	5	
[Very dense, Clayey Sand (SC); moist; trace to			် ပ	duri		
few gravel.]			1 —	ed		
lew graver.j			1. —	nute		
			S-3	lg o		: : : ● : : : : ♦ : : : : : : : : : 9071,0°7
				not e		
]		10	
			4	wat	10	72
			Ĭ º ⊥	Groundwater		
				Ö		
						: : : : : : : : : : : : : : : : : : : : : : :
			1			
			 		15	: : : : : : : : : : : : : : : : : :
	15.9		S-5			50/5*/
BOTTOM OF BORING	10.0					; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
COMPLETED 11/17/2016						
						: : : : : : : : : : : : : : : : : : : : : :
					20	
						
					25	
						: : : : : : : : : : : : : : : : : : : : : : : : :
				-1		0 20 40 60
<u>LEGEND</u>						♦ % Fines (<0.075mm)
* Sample Not Recovered						Water Content
						Plastic Limit Liquid Limit
★ Sample Not Recovered						Natural Water Content
				_		
NOTES						Highway 105
	abbrau	iatian	امده ه			Corridor Improvements
						El Paso County, Colorado
2. The stratification lines represent the approximate boundaries be the transition may be gradual.	etween	soil ty	pes, an	d		
 The stratification lines represent the approximate boundaries be the transition may be gradual. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 	r under	stand	ing of th	ne	LC	OG OF BORING SW-W-15
4. Groundwater level, if indicated above, is for the date specified a	-	-			July 20	017 23-1-01311-002
í	5. USCS designation is based on visual-manual classification and selected lab testing.					
					SHANI Geotechnic	NON & WILSON, INC. FIG. A-45

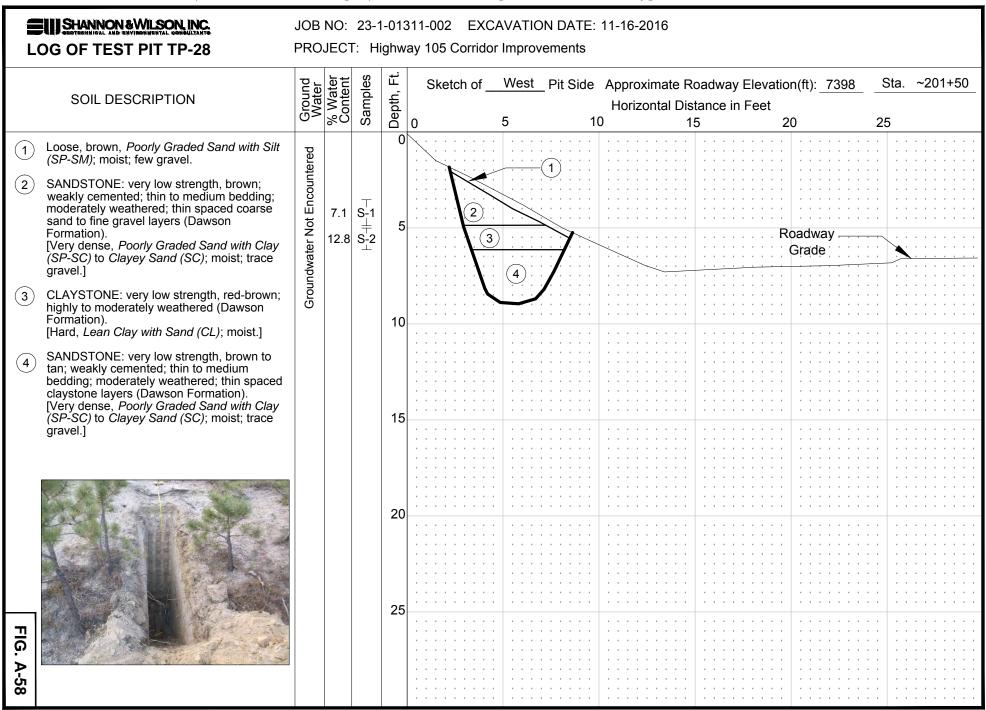
Total Depth: 11.5 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:			ent: _		m Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ 00 Truck Mount Hammer Type: Automatic			
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60			
9.0 inches of Asphalt 5 inches of Base Course Loose to medium dense, brown to tan, <i>Clayey Sand (SC)</i> ; moist; trace to few gravel.	0.8		<u></u>	during drilling.		0 20 40 80 			
SANDSTONE: very low strength, tan to brown; weakly cemented; medium to thick bedding; highly to moderately weathered (Dawson Formation).	6.5		S-2	Groundwater not encountered during	5				
[Very dense, <i>Clayey Sand (SC)</i> ; moist; trace to few gravel.] BOTTOM OF BORING	11.5	11.5		1.5		F.S.	Gro	10	73
COMPLETED 11/17/2016					15				
					20				
					25				
LEGEND ★ Sample Not Recovered						0 20 40 60 ♦ % Fines (<0.075mm) • % Water Content Plastic Limit Liquid Limit Natural Water Content			
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions. 2. The stratification lines represent the approximate boundaries between soil types, and					Highway 105 Corridor Improvements El Paso County, Colorado				
the transition may be gradual. 3. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and	er unders	stand vary.	ing of the		L(July 20	OG OF BORING SW-W-16			
LEGEND * Sample Not Recovered ☐ Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a propenature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and					SHANI	NON & WILSON, INC. al and Environmental Consultants FIG. A-46			

AS IER									SHANI	NON & WIL	SON,	INC.	FI	G. A	-48
3 ;			visual-manual classific	•	-	-	testing.		July 2017 23-1-01311-002						
Ž,	3. The discussion nature of the su	in the text of th bsurface mater	is report is necessary for ials. above, is for the date s				ing of th	e	LOG OF BORING SW-W-18						
			nt the approximate bour	ndaries be	etween	soil ty	pes, and	ı -				. _, ,		-	
וַנ	Refer to Figures definitions.	s A-1 and A-2 fo	or explanation of symbo	ls, codes,	abbrev	iation	s and			Corrido El Paso ()	
	NOTES										y 105				
												l Water			
		Ιs	Standard Penetration Te	est						Plastic L	_	Water	_		mit
		* 5	<u>LEGEND</u> Sample Not Recovered									Fines (,	
			LECEND							0	20		40		60
5															
									25						<u> </u>
									20						
									15		+++				<u> </u>
		NIPLE I ED	11/17/2016												
		OTTOM OF			10.9										
					10.9		F. Z		10						50/5
								Grou							
								Sroundwater							
	few gravel.]	, .,	(22),												
l	[Very dense, 0	Clavey Sand	(SC); moist; trace	to			S-2	not encountered				¥:::			50/6".
	Formation).						—	untere	5		<u> </u>	<u> </u>			
			hered (Dawson				ώ	ed during							
		•	trength, tan to brov n to thick bedding;	vn;			Ι-Τ	ng dril							
	4 inches of Ba			/	1.0			drilling.							
	8.0 inches of A	•			0.7										
be			oundaries between matei may be gradual.	rial types,	De	8	Sa	<u></u> 0	> @	0	20		40		60
	materials and drill	ing methods. T	understanding of the su The stratification lines ind	licated	Depth, ft.	Symbol	Samples	Ground	Water Depth, f	▲ Hammer	Nt. & [Orop: _	140 lbs	s / 30	inches
		SOIL DES	SCRIPTION		Ĥ.	Ю	es	þ	نے یا	PENETRA	TION	RESIST	ANCE	E (bl	ows/foot)
L	Horiz. Datum: _		Offset:		Othe	er Co	mment	S: _							
\	Vert. Datum: Station:		Drill	Rig E	Equipme	ent: _		00 Truck Moui			e:	Auton			
	Total Depth: _ Top Elevation:	10.9 ft. ~	Latitude: Longitude:				lethod: ompany	_	Solid-Ster	em Auger Hole Diam.: 4 in. Engineering, Inc Rod Type.: AWJ					
Г	Tatal Davids	10.0.5	1 -84		D.:111	N 4	- 411-		0-11-1-01		11-1-	D:		4 5	_

Total Danth. 2006 Latituda.	النحا	: a. N	راد د داد د		Callal Ota	um August Hala Diago	
Total Depth: Latitude: Top Elevation: Longitude:	-	Drilling Method: Drilling Company:				m Auger Hole Diam.: 4 in. Ingineering, Inc Rod Type.: AWJ	
Vert. Datum: Station:	Drill Rig Equipment:					800 Truck Mount Hammer Type: <u>Automatic</u>	
Horiz. Datum: Offset:	Oth	er Co	mment	s: _			
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches	
9.0 inches of Asphalt				+		0 20 40 60	
Brown, Poorly Graded Sand with Silt (SP-SM); moist; trace gravel.	0.8						
Fill	2.5		S-1				
Medium dense, tan, Clayey Sand (SC); moist; trace gravel.	3.5				5		
SANDSTONE: very low strength, tan to brown; weakly cemented; medium to thick bedding;			S-2	ng.			
highly to moderately weathered (Dawson			ξŢ	g drilli		50/20	
Formation).			, o	ed during dri			
[Very dense, Clayey Sand (SC) to Poorly Graded Sand with Clay (SP-SC); moist.]			- R	not encounter	10	50/3%	
Sana man slay (ch sss), moist.			°'	ot enc			
				oundwater			
				Gro	4-		
			S-5		15	85/10*4	
- Iron oxide stains from 16.0 to 20.8 feet.							
			;				
			9-8		20	50/48	
BOTTOM OF BORING	20.8		· ν			30/4/2	
COMPLETED 11/17/2016						 	
					25	· 	
LEGEND			1	1		0 20 40 60	
						♦ % Fines (<0.075mm)■ % Water ContentPlastic LimitI Liquid Limit	
				_		Natural Water Content	
<u>NOTES</u>		Highway 105 Corridor Improvements					
definitions.	Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions.						
 The stratification lines represent the approximate boundaries be the transition may be gradual. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 		•	•		L	OG OF BORING SW-W-20	
4. Groundwater level, if indicated above, is for the date specified a	4. Groundwater level, if indicated above, is for the date specified and may vary. 5. USCS designation is based on visual-manual classification and selected lab testing.						
					SHAN	NON & WILSON, INC. ical and Environmental Consultants	

Total Depth: 10.3 ft. Latitude: Longitude:	_ _ Drilli	Drilling Method: Drilling Company: Drill Rig Equipment:				Engineering, Inc Rod Type.: AWJ			
Vert. Datum: Station: Horiz. Datum: Offset:			=quipm mment		Simco 28	300 Truck Mount Hammer Type: <u>Automatic</u>			
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types and the transition may be gradual.	□ td	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches			
7.0 inches of Asphalt	0.6					0 20 40 60			
4 inches of Base Course	0.6			ing.					
SANDSTONE: very low strength, tan to brown; weakly cemented; medium to thick bedding;				during drilling					
highly to moderately weathered (Dawson			-S-	ed dur		• • • • • • • • • • • • • • • • • • • •			
Formation).			_	ounter	5				
[Dense, Clayey Sand (SC); moist; trace gravel.] CLAYSTONE: very low strength, brown;	6.0	///	S-2	not encountered					
massive; moderately weathered (Dawson				ater no					
Formation).	8.0			Groundwater					
\[Hard, Fat Clay (CH); moist; trace sand.] SANDSTONE: very low strength, tan; weakly to				Gro					
moderately cemented; medium bedding;	10.3	84.EX	い。二		10				
moderately weathered (Dawson Formation).									
[Very dense, Poorly Graded Sand with Silt (SP-SM); moist.]									
BOTTOM OF BORING						<u> </u>			
COMPLETED 11/17/2016					15	1			
					20				
					20				
						<u> </u>			
					25				
5/1/7									
						0 20 40 60			
LEGEND * Sample Not Recovered						♦ % Fines (<0.075mm)			
☐ Standard Penetration Test						● % Water Content Plastic Limit			
0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						Natural Water Content			
NOTES	Γ		Highway 105						
1. Refer to Figures A-1 and A-2 for explanation of symbols, code: definitions	s, abbrev	iation	is and		Corridor Improvements				
definitions. 2. The stratification lines represent the approximate boundaries l	etween	soil ty	pes, an	d		El Paso County, Colorado			
LEGEND * Sample Not Recovered Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, code definitions. 2. The stratification lines represent the approximate boundaries the transition may be gradual. 3. The discussion in the text of this report is necessary for a propriature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified to USCS designation is based on visual-manual classification and the standard propriate in the s			Ū	ne	LOG OF BORING SW-W-21				
 4. Groundwater level, if indicated above, is for the date specified 5. USCS designation is based on visual-manual classification an 	4. Groundwater level, if indicated above, is for the date specified and may vary. 5. USCS designation is based on visual-manual classification and selected lab testing.								
111111111111111111111111111111111111111					SHAN Geotechni	NON & WILSON, INC. Ical and Environmental Consultants			

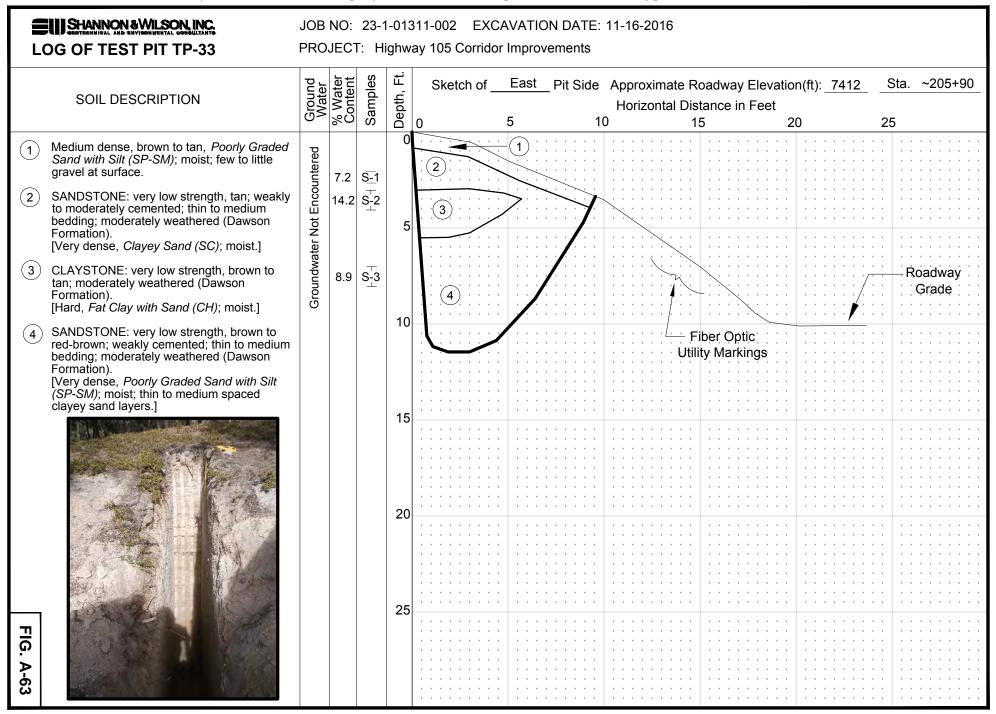
Total Depth: 11.4 f Top Elevation: ~ Vert. Datum: Horiz. Datum:		Drill Drill	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:		/: _ ent: _		m Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ 00 Truck Mount Hammer Type: Automatic				
Refer to the report text for a p materials and drilling metho below represent the approxima	DESCRIPTION roper understanding of the subsurface ds. The stratification lines indicated ate boundaries between material types, sition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60				
9.0 inches of Asphalt		0.0									
√5 inches of Base Cou	rse	0.8 1.2	0								
	ow strength, tan to brown;				during drilling.						
	edium to thick bedding;			γ.⊥	ring c						
moderately weathered	d (Dawson Formation).				inp pa						
[Very dense, Clayey S	Sand (SC): moist 1			S-2	not encountered	5	50/6"				
[very deriver, enayey c	sana (CO), moist.			"\	encol						
					Groundwater						
					puno						
Bod brown and iron	oxides stains from 10.5 to			-	ō	10	<u> </u>				
_ 11.5 feet.	Oxides stallis IIOIII 10.5 to			S-3			84/1:1*.				
	M OF BORING	11.4		1							
	TED 11/17/2016										
						15					
						20					
						25					
							0 20 40 60				
	LEGEND						0 20 40 00				
-	Sample Not Recovered Standard Penetration Test						% Water Content				
_	<u> </u>										
					_						
	<u>NOTES</u>						Highway 105				
definitions.	1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and						Corridor Improvements El Paso County, Colorado				
The stratification lines repaired the transition may be graded. The discussion in the texnature of the subsurface.	present the approximate boundaries b dual.	etween	soil ty	pes, and							
	The discussion in the text of this report is necessary for a proper understanding of the nature of the subsurface materials.						LOG OF BORING SW-W-22				
	cated above, is for the date specified a ed on visual-manual classification and	-	-			luk 20	23-1-01311-002				
o. 0000 designation to bas					 	July 20					
					- 1	SHAN	NON & WILSON, INC. FIG. A-52				


Total Depth:11.5 ft Latitude:	Drilli	na M	ethod:		Solid-Ster	m Auger Hole Diam.: 4 in.
Top Elevation: ~ Longitude:	-	_	ompan	٠,٠		ngineering, Inc. Rod Type.: AWJ
Vert. Datum: Station:			Equipm			00 Truck Mount Hammer Type: Automatic
Horiz. Datum: Offset:			mment		Sirrico 20	oo Truck Mount Hammer Type. Automatic
Tionz. Datum onset.	. Out	JI CO	mmem	J		_
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types,	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches
and the transition may be gradual. 8.0 inches of Asphalt						0 20 40 60
	0.7					<u> </u>
5 inches of Base Course	1.1			G		
Dense, red-brown, Well-Graded Sand with Silt		: . .	—			: : : : : : : : : : : : : : : : :
and Gravel (SW-SM); moist.			S-1	during drilling		
	4.5] —	d dur		
SANDSTONE: very low strength, tan to	4.5		_	encountered	5	
yellow-brown; weakly cemented; thick bedding;			S-2	inoc		
highly to moderately weathered (Dawson						: : : : : : : : : : : : : : : : : :
Formation).			_	Groundwater not		
			S-3	wate		
[Very dense, Clayey Sand (SC); moist.]			"	pund		
				Gro	10	: : : : : : : : : : : : : : : : : : :
			8.4 4.0		10	: : : : : : : : : : : : : : : : : :
	11.5		1 "			
BOTTOM OF BORING						
COMPLETED 11/10/2016						
					4-	
					15	
					20	
						
					25	
						<u> </u>
						::::::::::::::::::::::::::::::::::::::
						20 40 60
<u>LEGEND</u>						0 20 40 60
* Sample Not Recovered						Water Content
Standard Penetration Test						• % Water Content
				_		
<u>NOTES</u>						Highway 105
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions.	abbrev	iation	s and			Corridor Improvements
	etween s	soil ty	pes, and	a -		El Paso County, Colorado
 The stratification lines represent the approximate boundaries be the transition may be gradual. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 	r under	stand	ing of th	ie	1 (OG OF BORING SW-W-23
 Groundwater level, if indicated above, is for the date specified a 	_	-			_\	
5. USCS designation is based on visual-manual classification and	selecte	d lab	testing.		July 20	017 23-1-01311-002
						NON & WILSON, INC.

	Total Depth: 21.5 ft. Top Elevation: ~ Vert. Datum: Horiz. Datum:	Latitude: Longitude: Station: Offset:	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:					ngineering, Inc Rod Type.:	l in. WJ omatic
	SOIL DES Refer to the report text for a proper u materials and drilling methods. The below represent the approximate bou and the transition n	inderstanding of the subsurface e stratification lines indicated indaries between material types,	Depth, ft.	Symbol	Samples	Ground	water Depth, ft.	PENETRATION RESISTANCE (▲ Hammer Wt. & Drop: 140 lbs / 3 0 20 40	-
=	1.0 inch of Asphalt SANDSTONE: very low str tan; weakly cemented; med highly to moderately weath Formation). [Dense to very dense, Well Clay and Gravel (SW-SC) to moist.]	dium spaced bedding; ered (Dawson -Graded Sand with	0.1		S-5 S-4 S-3 S-2 S-1	Groundwater not encountered during drilling.	10		814
)6/17	- Iron oxide stains from 18 BOTTOM OF COMPLETED	BORING	21.5		9%		20 25		
:3-1-01311-002.GPJ		LEGEND ample Not Recovered andard Penetration Test						0 20 40	60
MASTER_LOG_E_POCKETPEN_LAT&LONG 23-1-01311-002.GPJ 7/6/17	 Refer to Figures A-1 and A-2 fo definitions. The stratification lines represen the transition may be gradual. The discussion in the text of this 	t the approximate boundaries be	etween	soil ty	pes, and			Highway 105 Corridor Improvements El Paso County, Colorado	
G E POC	nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified and may vary. 5. USCS designation is based on visual-manual classification and selected lab testing.						LC July 20	OG OF BORING SW-W-2	
MASTER_LC								NON & WILSON, INC. all and Environmental Consultants	

Total Depth: <u>15.5 ft.</u> Latitude:	С	rilling	Met	thod:	,	Solid-Ster	m Auger Hole Diam.: 4 in.
Top Elevation: Longitude:) Prilling					ingineering, Inc Rod Type.: AWJ
Vert. Datum: Station:		Orill Ri					00 Truck Mount Hammer Type:Automatic
Horiz. Datum: Offset:		Other (
			_				I
SOIL DESCRIPTION	4	- ا ≒	-	es	ᇢ,	نے ہے	PENETRATION RESISTANCE (blows/foot)
Refer to the report text for a proper understanding of the substimaterials and drilling methods. The stratification lines indica	urface 4	Ĕ ŧ	윤	ď	Į ž	water epth, f	▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u>
below represent the approximate boundaries between material	types,	Jepuri, III.	Symbol	Samples	Ground	water Depth,	
and the transition may be gradual.				0)			0 20 40 60
7.0 inches of Asphalt	0.6	3					
√4 inches of Base Course	/ 1.0	٧.	Ň				
Medium dense, red-brown, Poorly Graded San	d						
with Silt (SP-SM); moist; trace gravel.		::	:[·[·] ,	÷ T			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			'	ώ <u></u>	G		
					drilling	_	
				T_{5}	during	5	
SANDSTONE: very low strength, red-brown to	6.0)	, 	ဟ်			
tan; weakly cemented; thick spaced bedding;					encountered		
highly to moderately weathered (Dawson				T_{m}	nno		
Formation).				တ်	t end		NP:
i officiation).					r not		
[Dense to very dense, Silty Sand (SM) to Claye	.			\top	vate	10	
Sand (SC); moist.]	y			S ₄	Groundwater		66.
Sand (SC), Moist.]					Gro		
							
		N.		±25		15	
BOTTOM OF BORING	15	.5	::::: (ഗ்——			: : ● : : : : : : : : : : : : : : : : : : :
COMPLETED 11/10/2016							
00Wii EE1EB 11/10/2010							
							
						20	
						20	
							
						25	
							
							<u> </u>
			!_				0 20 40 60
LEGEND							♦ % Fines (<0.075mm)
* Sample Not Recovered Standard Penetration Test							Water Content
Standard Penetration Test							Plastic Limit Liquid Limit
7 m							Natural Water Content
NOTES							Highway 105
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, definitions.	codes, abb	oreviati	ions	and			Corridor Improvements
							El Paso County, Colorado
2. The stratification lines represent the approximate boundathe transition may be gradual. 3. The discussion in the text of this report is necessary for a nature of the subsurface materials.	ries betwe	en soi	I type	es, and	' -		
3. The discussion in the text of this report is necessary for a	proper un	dersta	ndin	a of th	e		
nature of the subsurface materials.	. р. оро. а	40.014		9 0	Ĭ	LC	OG OF BORING SW-W-25
u 4. Groundwater level, if indicated above, is for the date spec	cified and n	nay va	ıry.				
5. USCS designation is based on visual-manual classification	on and sele	ected I	ab te	esting.		July 20	017 23-1-01311-002
					\vdash		<u> </u>
20 EX						SHAN! Geotechnic	NON & WILSON, INC. cal and Environmental Consultants

	Total Depth: 15.8 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:					<u>m Auger</u> Hole Diam.: ngineering, Inc Rod Type.: 00 Truck Mount Hammer Type	4 in. AWJ Automatic
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESIST. ▲ Hammer Wt. & Drop:	
	9.0 inches Asphalt 3 inches of Base Course Loose to medium dense, red-brown to brown, Poorly Graded Sand with Silt (SP-SM) to Clayey Sand (SC); moist; trace gravel.	0.8 1.0		S-2 S-1	ed during drilling.	5		
	SANDSTONE: very low strength, tan to red-brown; weakly cemented; medium to thick bedding; highly to moderately weathered; trace gravel (Dawson Formation). [Very dense, Clayey Sand (SC); moist.]	7.0		84	Groundwater not encountere	10	•	93/11*2
	BOTTOM OF BORING COMPLETED 11/10/2016	15.8		- S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S		20		
PJ 7/6/17						25	0 20	40 60
MASTER_LOG_E_POCKETPEN_LAT&LONG 23-1-01311-002.GPJ 7/6/17	LEGEND ★ Sample Not Recovered						• % Water 0	
EN_LAT&LONG	NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be						Highway 105 Corridor Improveme El Paso County, Colo	
G E POCKETP	the transition may be gradual. 3. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and	er under	stand vary.	ling of th			OG OF BORING S	
MASTER_LC						July 20 SHANN Geotechnic	NON & WILSON, INC.	-1-01311-002 FIG. A-56


Total Depth: 16 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drilli _ Drill	ng C Rig E	ethod: ompany Equipme mments	r: _ ent: _		m Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ 20 Truck Mount Hammer Type: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60
8.0 inches of Asphalt 4 inches of Base Course SANDSTONE: very low strength, tan; weakly cemented; medium to thick bedding; interbedded with seams of claystone, highly to moderately weathered; (Dawson Formation). [Dense to very dense, Poorly Graded Sand with Clay (SP-SC) and Clayey Sand (SC) to hard, Sandy Lean Clay (CL); moist; trace gravel.] BOTTOM OF BORING COMPLETED 11/10/2016	16.0		\$-5	Groundwater not encountered during drilling.	5 10 15 20	550/6°.▲
<u>LEGEND</u> <u>*</u> Sample Not Recovered ☐ Standard Penetration Test						0 20 40 60
LEGEND * Sample Not Recovered Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a propenature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified as 5. USCS designation is based on visual-manual classification and	etween : er under	soil ty standi vary.	pes, and		L(July 20	Highway 105 Corridor Improvements El Paso County, Colorado OG OF BORING SW-W-27 23-1-01311-002
			5.		-	NON & WILSON, INC. lal and Environmental Consultants

	Total Depth: 21 ft. Latitude: Top Elevation: ~ Longitude: Vert. Datum: Station: Horiz. Datum: Offset:	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:			/: _ ent: _		ngineering, Inc	Hole Diam.: Rod Type.: t Hammer Type	4 in. AWJ : Automatic	
- 1	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated selow represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.		TION RESISTA Vt. & Drop:1 20	ANCE (blows/foot) 40 lbs / 30 inches 40 60	
	8 inches of Asphalt Loose to medium dense, brown to red-brown, Well-Graded Sand with Clay (SW-SC); moist; few gravel. Fill	0.7		8-2 8-1 		5				
	SANDSTONE: very low strength, brown to tan; weakly cemented; thick spaced bedding; moderately weathered (Dawson Formation). [Very dense, Well-Graded Sand with Clay (SW-SC) to Clayey Sand (SC); moist; trace to few gravel.]	0.0		S-5 	Groundwater not encountered during drilling.	10				
7/6/17	- Silty Sandstone 18.0 to 21.0 feet. BOTTOM OF BORING COMPLETED 11/17/2016	21.0		9%		20	•			
MASTER_LOG_E_POCKETPEN_LAT&LONG_23-1-01311-002.GPJ_7/6/17	LEGEND * Sample Not Recovered Standard Penetration Test		•	,	,		0	20		
EN_LAT&LONG 2	NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions. 2. The stratification lines represent the approximate boundaries by						Corridor	ghway 105 Improveme County, Colo		
G_E_POCKETP	the transition may be gradual. 3. The discussion in the text of this report is necessary for a propenature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and	er under and may	stand vary.	ing of th				ORING SI		
MASTER_LC	and the state of t					July 20 SHANN Geotechnic	NON & WILS		FIG. A-60	

Total Depth: 20.7 ft. Latitude:	Drilli	ng M	1ethod:		Solid-Ster	m Auger Hole Diam.: 4 in.
Top Elevation: ~ Longitude:	Drilli	ng C	ompan	y: _	Entech Er	ingineering, Inc Rod Type.: AWJ
Vert. Datum: Station:			Equipm			300 Truck Mount Hammer Type: Automatic
Horiz. Datum: Offset:		_	mment			
		1	_	1		
SOIL DESCRIPTION	نے	=	S	٦	نے _	PENETRATION RESISTANCE (blows/foo
Refer to the report text for a proper understanding of the subsurface	Depth, ft.	Symbol	Samples	Ground	Water Depth, f	▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u>
materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types,	ер	۱۶	au	E	e b	· ·
and the transition may be gradual.		0)	S	0		0 20 40
_ 6.0 inches of Asphalt	0.5					<u> </u>
Medium dense, brown to red-brown, <i>Poorly</i>	0.5	\bowtie	1			
		\bowtie	1			
Graded Sand with Silt (SP-SM); moist.		\bowtie	{ —			
Fill		\bowtie	₹ L			
		\bowtie	∜ "⊥			
Loose to medium dense, brown to tan, <i>Poorly</i>	4.5		4		_	::::::::::::::::::::::::::::::::::::::
Graded Sand with Clay (SP-SC) to Clayey Sand		1.1/	$T_{\scriptscriptstyle 2}$ (5	
		· //) v	<u>_</u>		
(SC); moist.	7.0		<u> </u>	iii		
SANDSTONE: very low strength, tan; weakly			-	during drill		
cemented; medium to thickly bedded; highly to			∄⊹⊥⊥	li i		50/1
moderately weathered (Dawson Formation).				p p		+
			-	nter	10	
[Very dense, interbedded Poorly Graded Sand			S 4	encountered	10	50/5
with Clay (SP-SC), Clayey Sand (SC), and Silty			1 —	t en		
Sand (SM); moist; trace to few gravel.]				er not		<u> </u>
- Iron oxide stains from 8 to 10 feet.				wate		
Horr data diame norma to 10 local.				Dung		
				9		
			\.\.\.\.\.\.\.\.		15	550/
			ÿ °⊥			
			:			
					20	
	20.7	::::	9-S_		20	50/2
BOTTOM OF BORING						
COMPLETED 11/21/2016						
					25	
						<u> </u>
LEGEND						0 20 40
* Sample Not Recovered						
						% Water Content
PLOS						
				Г		Llighway 10F
<u>NOTES</u>						Highway 105
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions.	abbrev	iation	ns and			Corridor Improvements El Paso County, Colorado
	etween	soil ty	pes, an	d		
 The stratification lines represent the approximate boundaries be the transition may be gradual. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. 	r under	stand	ling of th	ne	LC	OG OF BORING SW-W-31
 Groundwater level, if indicated above, is for the date specified a 	-	-				
5. USCS designation is based on visual-manual classification and	selecte	d lab	testing.		July 20	017 23-1-01311-002
					SHANI Geotechnic	NON & WILSON, INC. cal and Environmental Consultants FIG. A-61

Total D	epth: 20.9 ft. Latitude:	Drill	lina N	1ethod:		Solid-Ste	em Auger Hole Diam.: 4 in.
Top Ele	•		_	compan	٧٠.		Engineering, Inc. Rod Type.: AWJ
Vert. D				Equipm			800 Truck Mount Hammer Type: Automatic
Horiz. [mment		Oll 1100 ZC	Tuck Wount Hammer TypeAutomatic
TIOTIZ. L	onset.	. Ош	Ci OC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J		
materia	SOIL DESCRIPTION the report text for a proper understanding of the subsurface als and drilling methods. The stratification lines indicated resent the approximate boundaries between material types,	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches
9 O in	and the transition may be gradual.			0,			0 20 40 60
	ches of Asphalt	0.7	ياره	2			
	les of Base Course OSTONE: very low strength, red-brown to	1.0					\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
				- T			
	reakly cemented; thick spaced bedding;			γ̈́			
	to moderately weathered (Dawson			一			
Form	auorr).					5	\$::::<u>:</u>:::::: :::::::::
[Dens	e to very dense, Well-Graded Sand with			S-S	١.		: : : 9 : : : : : : : : : : : : : : : : : : :
	SW-SC) to Clayey Sand (SC); moist; few			_	lling		
grave				三 %	during drilling		50/1°
grave	·1			90	urin		
					o pa.		
					3roundwater not encountered	10)
				S-4	ncol		74.
					ot e		
					ater r		
					swpt.		
					rour		
				-	0	15	;
				S-5			84,
				"			
				:			
						20	
		00.0		9-S		20	, 50/5°
	BOTTOM OF BORING	20.9]			
	COMPLETED 11/10/2016						
							
						0.5	
						25)
_							
			-1	-			0 20 40 60
N.	<u>LEGEND</u>						♦ % Fines (<0.075mm)
	 * Sample Not Recovered T Standard Penetration Test 						Water Content
2	Otdiladia i chattation rest						
5							
2					Г		Lliaburay 10F
	<u>NOTES</u>				ł		Highway 105
1. Refer	to Figures A-1 and A-2 for explanation of symbols, codes, tions	abbre	viatior	ns and			Corridor Improvements El Paso County, Colorado
	stratification lines represent the approximate boundaries be	etween	soil ty	pes, an	d		Li i aso county, colorado
3. The o	ansition may be gradual. discussion in the text of this report is necessary for a prope	r unde	rstanc	ling of th	ie	1.4	OG OF BORING SW-W-32
	e of the subsurface materials. ndwater level, if indicated above, is for the date specified a	nd may	v varv			L'	OG OF BURING 3VV-VV-32
	6 designation is based on visual-manual classification and	-				July 2	017 23-1-01311-002
						SHAN	NON & WILSON, INC. FIG. A_62
∤ ∎					- 1		ical and Environmental Consultants FIG. A-02

ASTER							NON & WILSON, INC.	FIG. A-64
5. USCS designation is based on visual-manual	· ·	_	-	testing.		July 20)17 23	-1-01311-002
 3. The discussion in the text of this report is necessary and the subsurface materials. 4. Groundwater level, if indicated above, is for the subsurface materials. 				ing of th	ie	LC	OG OF BORING S	W-W-34
2. The stratification lines represent the approxime the transition may be gradual. 3. The discussion in the text of this report is neconature of the subsurface materials.							•	
NOTES 1. Refer to Figures A-1 and A-2 for explanation of definitions.	•						Corridor Improvemon El Paso County, Colo	
NOTES							Highway 105	4 -
1-22-21							Natural Water	
☐ Standard Peneti	ration Test						% WaterPlastic Limit	_
LEGEND * Sample Not Re	=						♦ % Fines (•
LEGEND	,			ı	1		0 20	40 60
						25		
COMPLETED 11/10/2016	;							
BOTTOM OF BORING	··]/							
Formation). [Very dense, <i>Clayey Sand (SC</i>); moist		20.9		φ				.50/5.2
bedding; moderately weathered (Daw				9-5		20		50/5
SANDSTONE: very low strength, red- tan; weakly cemented; medium to thic	-brown to							
OANIDOTONIE I II II II II	h	18.0						
[very dense, one with Sand (IVIL), MOIS	or.]			ω <u> </u>				
(Dawson Formation). [Very dense, Silt with Sand (ML); mois	.+ 1			ب		15		Q6/14#
SILTSTONE: very low strength, tan; v cemented; laminated; moderately wea					Groundwater			
CIL TOTONIC:	ve alsh s	13.0			1.			
				-	not enc			
(SM), Poorly Graded Sand with Clay (sand Clayey Sand (SC); moist.]	SP-SC),			8-4 T	encountered	10	•	50/6"
[Dense to very dense, interbedded Sill	-			"				
(Dawson Formation).				- S-3	during dri		•	
bedding; highly to moderately weather				" _	Iling.			
SANDSTONE: very low strength, red- tan; weakly cemented; medium to thic	-brown to			S-2		5	NP:	
04410070415		4.5		"				
few gravel.	, trace to			<u>-</u>			6 A	
Loose to medium dense, red-brown, I Graded Sand with Silt (SP-SM); moist;	,							
7.0 inches of Asphalt		0.6						
materials and drilling methods. The stratification below represent the approximate boundaries betwe and the transition may be gradual	een material types,	Dep	Syr	San	P.S.	Watel Depth,	0 20	40 60
SOIL DESCRIPTION Refer to the report text for a proper understanding		Depth, ft.	Symbol	Samples	Ground	Water epth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop:	,
					<u> </u>			
Vert. Datum: Station: Station: Horiz. Datum: Offset:			-	Equipm mment		Simco 280	00 Truck Mount Hammer Type	e: <u>Automatic</u>
Total Depth: 20.9 ft. Latitude: _ Top Elevation: ~ Longitude:			•	ethod: ompan		Solid-Ster Entech Er	m Auger Hole Diam.: ngineering, Inc Rod Type.:	4 in. AWJ
Total Donth: 20.0 # Latitude:		Drilli	na M	othod:		Solid Stor	n Auger Holo Diam :	4 in

Total Depth: 15.9 ft. Latitude: Top Elevation: Congitude: Longitude: Vert. Datum: Station: Offset:	Drill Drill	ing Co Rig E	ethod: ompany Equipme mments	/: _ ent: _		ngineering, Inc	Hole Diam.: Rod Type.: ht Hammer Type	4 in. AWJ : Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	water Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches
Very loose to loose, brown, Poorly Graded Sand with Silt (SP-SM) to Poorly Graded Sand with Clay (SP-SC); moist. Fill			S-2 S-1	luring drilling.	5	A •		
Loose to medium dense, brown to tan, Well-Graded Sand with Clay (SW-SC); moist; few gravel.	7.0	X	48	Groundwater not encountered d	10			
SANDSTONE: very low strength, tan; weakly cemented; medium to thickly bedded; highly to moderately weathered (Dawson Formation). [Very dense, Poorly Graded Sand with Clay (SP-SC) to Clayey Sand (SC); moist.] BOTTOM OF BORING COMPLETED 11/21/2016	15.9		S-6 8-8		15	•		::::::::::::::::::::::::::::::::::::
LEGEND * Sample Not Recovered Standard Penetration Test						0	20 > % Fines (<	Content
LEGEND * Sample Not Recovered Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified and the subsurface materials.	tween	soil ty	pes, and			Hi Corrido	imit Matural Water Coghway 105 r Improveme County, Colo	ents
	nd may	vary.		e	LC July 20		ORING SI	N-W-35 1-01311-002
5. USCS designation is based on visual-manual classification and			-			NON & WIL cal and Environme		FIG. A-65

Total Depth: 16 ft. Latitude:	Drilling Company: Drill Rig Equipment: Other Comments:			Drilling Company:Drill Rig Equipment:			Drilling Company:Drill Rig Equipment:		Drilling Company: Drill Rig Equipment:		Drilling Company: Drill Rig Equipment: Other Comments:		_ Drilling Company: _ Drill Rig Equipment: _ Other Comments:		Drilling Company: Drill Rig Equipment:		Drilling Company: Drill Rig Equipment: Other Comments:			m Auger Hole Diam.: 4 in. ngineering, Inc Rod Type.: AWJ 100 Truck Mount Hammer Type: Automat	tic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Depth, ft.	PENETRATION RESISTANCE (blow ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inc</u> 0 20 40	•														
Dense, red-brown to tan, Clayey Sand (SC); moist; few gravel. SANDSTONE: very low strength, tan to brown;	4.5		P-9																		
weakly cemented; medium to thickly bedded; highly to moderately weathered (Dawson Formation). [Very dense, <i>Poorly Graded Sand with Clay (SP-SC)</i> to <i>Clayey Sand (SC)</i> ; moist.]			8-5	Iwater not encountered during drilling.	5																
			%3 %3	Groundwater	10		50/6", 50/6",														
BOTTOM OF BORING COMPLETED 11/21/2016	16.0																				
LEGEND * Sample Not Recovered Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a propenature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and						0 20 40 ■ % Water Content Plastic Limit ■ Liquid Limit Natural Water Content	60 t														
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be						Highway 105 Corridor Improvements El Paso County, Colorado															
The statistion may be gradual. The discussion in the text of this report is necessary for a prope nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified a	er under	standi vary.	ing of the			OG OF BORING SW-W-36															
5. USCS designation is based on visual-manual classification and	selecte	ed lab	testing.	-	July 20 SHANN Geotechnic	23-1-01311-0 NON & WILSON, INC. cal and Environmental Consultants FIG. A-6															

	Total Depth: <u>16.5 ft.</u> Latitude:	Drill	ing M	ethod:	_	Solid-Ster	m Auger	Hole Diam.:	4	in.
ı	Top Elevation: Longitude:	Drill	ing C	ompan	y: _	Entech Er	ngineering, Ind	Rod Type.:	A	WJ
ı	Vert. Datum: Station:			Equipm		Simco 28	00 Truck Mou	nt Hammer Type	: <u>Auto</u>	omatic
	Horiz. Datum: Offset:	Oth	er Co	mment	s: _					
Г	SOIL DESCRIPTION	ني	_	S		نے _	PENETRA	TION RESIST	ANCE (hlows/foot)
F	efer to the report text for a proper understanding of the subsurface	h, f	QC QC	ble	l ü	iter h, f	1	Wt. & Drop:1		
Ь	materials and drilling methods. The stratification lines indicated alow represent the approximate boundaries between material types,	Depth, ft.	Symbol	Samples	Ground	Water Depth, f				
Ĺ	and the transition may be gradual.	а	0,	S			0	20	40	60
Г	Medium dense, brown to red-brown, Clayey									
ı	Sand (SC); moist; few gravel.									
ı										
ı										
ı				T						
				S-1						-
ı										<u> </u>
ı										
ı						5		$\forall \cdots $		
ı				S-2	ing.			`		
					during drilling			1/: : : : : :		
ı					during					
ı				_	ber c			1 : : : : : : :		
ı				₆	not encountered					
ı				"	enc					
L		9.5								: : : : : :
	SANDSTONE: very low strength, red-brown to	0.0			Groundwater	10				<u> </u>
	brown; weakly cemented; medium to thickly			S-4	Lonuc			\ <u>\</u>		
	bedded; highly to moderately weathered (Dawson Formation).			ν .	Ō					
	(Dawson Formation).									
	[Very dense, Poorly Graded Sand with Clay									
	(SP-SC) to Clayey Sand (SC); moist; trace									
ı	gravel.]									
						15			<u>: : : : </u>	<u>\; </u>
				.		13				\mathcal{L}
				ဟ်						
H	BOTTOM OF BORING	16.5	10:40	 						
	COMPLETED 11/21/2016									- -
									<u> </u>	<u>::::::::</u>
_										
7/6/17										
GPJ	LEGEND		•				0	20	40	60
002.0	* Sample Not Recovered									
311-								• % Water (Content	
-1-01										
23					_					
ON O	<u>NOTES</u>				ļ			ghway 105		
LAT&LONG	1. Refer to Figures A-1 and A-2 for explanation of symbols, codes,	abbrev	iation	s and				r Improveme		
	definitions. 2. The stratification lines represent the approximate boundaries be	tween	soil tv	nes an	, L		El Paso	County, Colo	rado	
	the transition may be gradual.	Stween	SOII ty	pes, and	"					
POCKETPEN	The discussion in the text of this report is necessary for a proper understanding of nature of the subsurface materials.					LC	OG OF B	ORING S	W-W-3	37
П Д	4. Groundwater level, if indicated above, is for the date specified and may vary.							J J		•
၅	5. USCS designation is based on visual-manual classification and	-	-	testing.		July 20	017	23	-1-0131	1-002
					\vdash					
ASIEK						SHANI Geotechnic	NON & WIL cal and Environme	SON, INC. ental Consultants	FIG.	A-67

Total Depth: 16.5 ft. Latitude: Top Elevation: Congitude: Longitude: Longitude: Station: Offset: Longitude: Lo	Drill Drill	ing C Rig E	lethod: ompany Equipme mments	/: _ ent: _		ngineering, li	Hole Diam.: <u>nc</u> Rod Type.: <u>un</u> t Hammer Typ	e: <u>A</u>	4 in. AWJ utomatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.		ATION RESIST er Wt. & Drop:		,
12.0 inches of Ashalt 4 inches of Base Course Medium stiff, brown, <i>Lean Clay (CL)</i> ; moist; thin spaced interbedded silty sand.	1.0		S-1				•		
Medium dense, brown to red-brown, <i>Poorly Graded Sand with Silt (SP-SM)</i> ; moist.	4.5		S-5	ng drilling.	5	• •			
Medium dense, red-brown, Poorly Graded Sand with Clay (SP-SC) to Clayey Sand (SC); moist; trace to few gravel.	7.0		8.4	Groundwater not encountered durin	10	•			
SANDSTONE: very low strength, red-brown to brown; weakly cemented; medium to thickly bedded; highly to moderately weathered; trace gravel (Dawson Formation). [Medium dense to dense, <i>Poorly Graded Sand with Clay (SP-SC)</i> to <i>Clayey Sand (SC)</i> ; moist; trace gravel.]	12.0		S-6 S-5		15	•			A
COMPLETED 11/21/2016									
LEGEND * Sample Not Recovered Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, definitions. 2. The stratification lines represent the approximate boundaries be the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified at 5. USCS designation is based on visual-manual classification and						0	20 ♦ % Fines (• % Water		
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes definitions. 2. The stratification lines represent the approximate boundaries be				, _		Corrid	Highway 105 lor Improvem County, Col		
the transition may be gradual. 3. The discussion in the text of this report is necessary for a proper nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified a 5. USCS designation is based on visual-manual classification and	ınd may	vary.		e	L (BORING S		7 -38 311-002
MASTER			-				ILSON, INC.	1	6. A-68

<u>Pavement Core at SW-P-01</u> Eastbound lane, 9.5 inches thickness measured Highway 105 Corridor Improvements El Paso County, Colorado

PAVEMENT CORE PHOTOGRAPH BORING SW-P-01

July 2017

23-1-01311-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

Pavement Core at at SW-P-02
Westbound lane. 10 inches thickness measured

Highway 105 Corridor Improvements El Paso County, Colorado

PAVEMENT CORE PHOTOGRAPH BORING SW-P-02

July 2017

23-1-01311-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

<u>Pavement Core at SW-P-03</u> Eastbound lane, 7.5 inches thickness measured Highway 105 Corridor Improvements El Paso County, Colorado

PAVEMENT CORE PHOTOGRAPH BORING SW-P-03

July 2017

23-1-01311-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

<u>Pavement Core at SW-P-04</u> Westbound lane, 8 inches thickness measured Highway 105 Corridor Improvements El Paso County, Colorado

PAVEMENT CORE PHOTOGRAPH BORING SW-P-04

July 2017

23-1-01311-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

<u>Pavement Core at SW-P-05</u> Eastbound lane, 7 inches thickness measured Highway 105 Corridor Improvements El Paso County, Colorado

PAVEMENT CORE PHOTOGRAPH BORING SW-P-05

July 2017

23-1-01311-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

<u>Pavement Core at SW-P-06</u> Westbound lane, 8 inches thickness measured Highway 105 Corridor Improvements El Paso County, Colorado

PAVEMENT CORE PHOTOGRAPH BORING SW-P-06

July 2017

23-1-01311-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

SHANNON & WILSON, INC.

APPENDIX B LABORATORY TEST RESULTS

APPENDIX B

LABORATORY TEST RESULTS

TABLE OF CONTENTS

			Page
B.1	INTRO	ODUCTION	B-1
B.2	GEOT B.2.1	ECHNICAL INDEX TESTS	
	B.2.1	Grain Size Analysis	
	B.2.3	Atterberg Limits	
B.3	GEOT	ECHNICAL ENGINEERING PROPERTY TESTS	B-2
	B.3.1	One-Dimensional Swell/Consolidation Tests	
	B.3.2	R-Value	
	B.3.3	Corrosion	B-2
		TABLE	
	B-1	Summary of Laboratory Test Results by Boring (11 sheets)	
		FIGURES	
	B-1	Grain Size Distribution (5 sheets)	
	B-2	Plasticity Chart (4 sheets)	
	B-3	Consolidation/Swell Test Report, Boring SW-P-07, Sample S-1	
	B-4	Consolidation/Swell Test Report, Boring SW-P-23, Sample S-1	
	B-5	R-Value Report, Boring SW-P-02, Bulk Sample	
	B-6 B-7	R-Value Report, Boring SW-P-08, Bulk Sample R-Value Report, Boring SW-P-19, Bulk Sample	
	B-7 B-8	R-Value Report, Boring SW-P-19, Bulk Sample R-Value Report, Boring SW-P-27, Bulk Sample	
	D 0	re value report, Boring 5 W 1 27, Burk bumple	

APPENDIX B

LABORATORY TEST RESULTS

B.1 INTRODUCTION

Laboratory tests were completed on soil and bedrock samples retrieved from the borings in general accordance with ASTM International (ASTM), the American Association of State Highway and Transportation Officials (AASHTO), and the Colorado Department of Transportation (CDOT) testing methods. The laboratory testing program was performed to classify the materials into similar geologic groups and provide data that can be used for design of the project. The geotechnical laboratory testing was performed at our laboratory. The testing program included index tests and corrosion tests. A summary of the laboratory test results is presented in Table B-1. The following sections describe the laboratory testing procedures.

B.2 GEOTECHNICAL INDEX TESTS

B.2.1 Water Content and Unit Weight

Water content was determined for selected samples in general accordance with AASHTO T 265, Laboratory Determination of Moisture Content of Soils. To perform this test, samples were weighed before and after oven-drying, and the water contents calculated. Water content determinations are shown graphically on the boring logs and are also summarized in Table B-1.

Unit weights were determined from selected modified California drive samples. To perform these tests, the dimensions of the sample were measured, the sample was weighed, and the moist unit weight was calculated.

B.2.2 Grain Size Analysis

The grain size distribution of selected samples was determined in general accordance with AASHTO T 88, Standard Method of Test for Particle Size Analysis of Soils. Results of these analyses are presented as grain size distribution curves in Figure B-1 and summarized in Table B-1.

Selected samples were also tested for the percentage of material passing the No. 200 sieve in general accordance with AASHTO T 11, Standard Method of Test for Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing. The percent fines (silt- and clay-sized particles passing the No. 200 sieve) are shown graphically on the boring logs in Appendix A and are also summarized in Table B-1.

B.2.3 Atterberg Limits

Soil plasticity was determined by performing Atterberg limits tests on selected fine-grained samples. The tests were completed in general accordance with ASTM D 4318, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. The Atterberg limits include liquid limit (LL), plastic limit (PL), and plasticity index (PI equals LL minus PL) and are generally used to assist in classification of soils, to indicate soil consistency (when compared to natural water content), and to provide correlation to soil properties. The results of the Atterberg limits tests are plotted on a plasticity chart in Figure B-2, shown graphically on the boring logs in Appendix A, and summarized in Table B-1.

B.3 GEOTECHNICAL ENGINEERING PROPERTY TESTS

B.3.1 One-Dimensional Swell/Consolidation Tests

One-dimensional swell/consolidation tests were performed in general accordance with ASTM D 4546, Standard Test Methods for One-Dimensional Swell or Settlement Potential of Cohesive Soils. The results of the swell tests are included on Figures B-3 and B-4. The samples were loaded at field moisture conditions in a fixed-ring consolidometer that measures vertical changes in volume for different loading conditions. During loading, the sample's pore pressures are allowed to drain from both the top and bottom of the sample. At a specified pressure, the sample is inundated with distilled water and then allowed to reach equilibrium. The vertical volume change caused from the inundation of water (expressed in percent strain) is then determined. Various samples were loaded down to the original height that existed prior to the inundation of water.

B.3.2 R-Value

Hveem Stabilometer (R-value) tests were completed by Vine Laboratories, Inc. of Denver, Colorado to evaluate the stiffness of soils that may be used in the subgrade of the roadway. Tests were completed according to CP-L 3101, Standard Method of Test for Resistance R-value and Expansion Pressure of Compacted Soils. R-value test results are presented on Figures B-5 through B-8 and summarized in Table B-1.

B.3.3 Corrosion

Corrosion testing of select samples was performed for pH, resistivity, sulfate content, and chloride content. Testing for pH and resistivity were done in general accordance with AASHTO T 289, Standard Method of Test for Determining pH of Soil for Use in Corrosion Testing and ASTM G 57, Standard Method of Test for Determining Minimum Laboratory Soil Resistivity,

SHANNON & WILSON, INC.

respectively. Sulfate content testing was done in accordance with CDOT laboratory procedure CP-L 2103, Sulfate Ion Content in Soil. Chloride content was done in accordance with AASHTO T 291, Standard Method of Test for Determining Water-Soluble Chloride Ion Content in Soil. Test results for sulfate and chloride content are reported in units of percent by weight. The test results are summarized in Table B-1.

TABLE B-1 SUMMARY OF LABORATORY TEST RESULTS BY BORING

	SAMPLE	DATA			ation	ure	ight		AIN-SI ALYSI			TERBE LIMITS		R-V	ALUE	SWELI	LTEST		CORROS	SION	
Boring	Sample		epth (eet)	USCS Symbol ¹	AASHTO Classification	Natural Moisture Content	ज्ञे Moist Unit Weight	% Gravel	Sand (%)	% Fines	Liquid Limit	% Plastic Limit	Plasticity Index	R-Value	is Exudation Pressure	Swell (+) Consolidation (-)	(Jsd.) Inundation Pressure	Hd	(m2-m40) Resistivity	%) Sulfates	S Chlorides
SW-P-01	S-1	2.5	3.5			11.7															
SW-P-01	S-2	4.0	5.5	SC	A-2-6	10.5		4	71	25											
	S-1	1.5	2.5			1.3															
SW-P-02	S-2	4.0	5.5			12.7															
	Bulk	2.5	5.5	SC	A-2-6(0)	12.8		9	68	23	28	16	12	24	300						
	S-1	2.0	3.0	SC	A-2-6	12.7		7	66	27											
SW-P-03	S-2	4.0	5.5			8.8															
	Bulk	2.0	5.0			8.7															
SW-P-04	S-1	1.5	2.5			10.0														0.06	
5 W -1 -04	S-2	4.0	5.5			5.0															
	S-1	1.0	2.0			12.7															
SW-P-05	S-2	4.0	5.5			7.7															
	S-3	9.0	10.5			13.7															
	S-1	1.5	2.5	SC	A-2-4(0)	7.1		4	76	20	25	15	10								
SW-P-06	S-2	4.0	5.5			12.9															
	Bulk	2.0	5.0			5.5															
SW-P-07	S-1	1.5	2.5	CL	A-6(14)	13.7	127.7			65	40	15	25			2.2	150				
5 11 07	S-2	4.0	4.5			9.7															
	S-1	1.5	2.5			6.0															
SW-P-08	S-2	4.0	5.5			11.9															
	Bulk	2.0	5.0	SM	A-2-4(0)	6.3		14	70	16	NV	NP	NP	62	300						
SW-P-09	S-1	1.5	2.5			6.1															
	S-2	4.0	5.5			8.3															igwdown
CIV D 10	S-1	1.5	2.5			8.4															
SW-P-10	S-2	4.0	5.5			12.6															\vdash
	S-3	9.0	10.5			9.2															

¹ Refer to Appendix A, Figure A-1 for definitions.

² Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.

³ NV = No Value; NP = Non-plastic

TABLE B-1 SUMMARY OF LABORATORY TEST RESULTS BY BORING

\$	SAMPLE	DATA			ntion	ure	ght		AIN-SI ALYSI			TERBE IMITS		R-V	ALUE	SWELI	L TEST		CORRO	SION	
Boring	Sample	(f	epth (eet)	USCS Symbol ¹	AASHTO Classification	Natural Moisture Content	Moist Unit Weight	Gravel	Sand	Fines	Liquid Limit	Plastic Limit	Plasticity Index	R-Value	Exudation Pressure	Swell (+) Consolidation (-)	Inundation Pressure	Hd	Resistivity	Sulfates	Chlorides
		Top	Bottom		7	(%)	(pcf)	(%)	(%)	(%)	(%)	(%)	(%)		(psi)	(%)	(psf)		(ohm-cm)	(%)	(%)
SW-P-11	S-1	1.5	2.5			5.8															
	S-2	4.0	5.5			8.3															
SW-P-12	S-1	1.5	2.5	CW CM	A 1 1.	6.3		-	0.0	(
	S-2 S-1	1.5	5.5 2.5	SW-SM	A-1-b	3.7 8.0		6	88	6											
SW-P-13	S-1 S-2	4.0	5.5			7.4															
	S-1	1.5	2.5	SW-SM	A-1-b	4.7		9	84	7											
SW-P-14	S-2	4.0	5.5	S W SIVI	71-1-0	9.8			04	,											
	S-1	1.5	2.5			6.3															
SW-P-15	S-2	4.0	5.5			14.4															
	S-3	9.0	10.5			4.1															
SW-P-16	S-1	1.5	2.5			8.5															
SW-P-10	S-2	4.0	5.5	SW-SM	A-1-b(0)	7.0		4	88	8	NV	NP	NP								
	S-1	1.5	2.5			4.6															
SW-P-17	S-2	4.0	5.5			25.4															
	Bulk	2.0	5.0			7.8															
SW-P-18	S-1	1.5	2.5			15.7															
	S-2	4.0	5.5			9.6															
CHI D 10	S-1	1.5	2.5			4.5															
SW-P-19	S-2	4.0	5.5	C) f	1 2 1(0)	9.9		2	60	20	3.13.7	NID	NID	1.6	200						
	Bulk	2.0	5.0	SM	A-2-4(0)	9.3		2	68	30	NV	NP	NP	16	300						
SW-P-20	S-1 S-2	1.5	2.5 5.5			9.9 9.3															
S W-P-20	S-2 S-3	9.0	10.5			9.5															
	S-3 S-1	1.5	2.5			9.5 8.7														0.01	
SW-P-21	S-1 S-2	4.0	5.5			20.5														0.01	

¹ Refer to Appendix A, Figure A-1 for definitions.

² Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.

³ NV = No Value; NP = Non-plastic

	SAMPLE	DATA			ation	ure	ight		AIN-SI ALYSI			TERBE LIMITS		R-V	ALUE	SWELI	LTEST		CORRO	SION	
Boring	Sample		epth Geet)	USCS Symbol ¹	AASHTO Classification	Natural Moisture Content	Moist Unit Weight	Gravel	Sand	Fines	Liquid Limit	Plastic Limit	Plasticity Index	R-Value	Exudation Pressure	Swell (+) Consolidation (-)	Inundation Pressure	Hd	Resistivity	Sulfates	Chlorides
		Top	Bottom		A	(%)	(pcf)	(%)	(%)	(%)	(%)	(%)	(%)		(psi)	(%)	(psf)		(ohm-cm)	(%)	(%)
SW-P-22	S-1	1.5	2.5			12.4															
	S-2	4.0	5.5			8.5	1010										1.50				
CILL D 22	S-1	1.0	2.0	SM	A-1-b	4.4	104.9	9	78	13						-1.2	150				
SW-P-23	S-2	4.0	5.5			5.4															
	Bulk	2.0	5.0			7.3															
SW-P-24	S-1	1.5	2.5			18.9															
	S-2	4.0	5.5	CM	4 2 4	7.3		0	70	2.1											
SW-P-25	S-1 S-2	1.5	2.5 5.5	SM	A-2-4	7.6		0	79	21											
SW-F-23	S-2 S-3	9.0	10.5			11.9 4.9															
	S-3	1.0	2.0			4.9															
SW-P-26	S-2	4.0	5.5			11.6															
	S-1	1.5	2.5			6.5															
SW-P-27	S-2	4.0	5.5			7.6															
	Bulk	2.0	5.0	SM	A-2-4(0)	6.7		8	68	24	NV	NP	NP	16	300						
CM D 20	S-1	1.5	2.5		(-)	11.5		-													
SW-P-28	S-2	4.5	5.0			8.9															

¹ Refer to Appendix A, Figure A-1 for definitions.

² Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.

³ NV = No Value; NP = Non-plastic

	SAMPLE	DATA			uo	0	ıt		AIN-SI			ΓERBE		R-V	ALUE	SWELI	LTEST		CORROS	SION	
	1			_	atio	are	igh	AN	ALYSI	ES ²	L	IMITS	3		1		1				
Boring	Sample	(f	epth eet)	USCS Symbol ¹	AASHTO Classification	Natural Moisture Content	Moist Unit Weight	Gravel	Sand	Fines	Liquid Limit	Plastic Limit	Plasticity Index	R-Value	Exudation Pressure	Swell (+) Consolidation (-)	Inundation Pressure	Hd	Resistivity	Sulfates	Chlorides
		Top	Bottom		Ŧ .	(%)	(pcf)	(%)	(%)	(%)	(%)	(%)	(%)		(psi)	(%)	(psf)		(ohm-cm)	(%)	(%)
	S-1	2.5	4.0			8.3															
	S-2	5.0	6.5	CIVI CI I		6.7		1.5	= -												
	S-3 S-4	7.5 10.0	9.0 11.5	SW-SM		5.2 12.7		17	76	7											
SW-W-01	S-4 S-5	12.5	14.0	SC	A-6(4)	13.7				47	36	20	16								
5 ** - ** -01	S-6	15.0	16.5	SC	A-0(4)	4.7				47	30	20	10								
	S-7	20.0	21.5			11.2															
	S-8	25.0	26.0			13.4															
	S-9	30.0	30.9			12.1															
	S-1	2.5	4.0			5.6															
	S-2	5.0	6.5			5.3															
	S-3	7.5	9.0			8.9															
	S-4	10.0	11.5	SW-SC		9.9		7	85	8											
SW-W-02	S-5	12.5	14.0			5.8															
	S-6	15.0	16.5			10.3															
	S-7	20.0	21.5	CL	A-6(7)	11.6				54	39	20	19								
	S-8	25.0	26.5 31.0			12.3															
-	S-9 S-1	30.0	4.0			13.5 11.9															-
	S-1 S-2	5.0	6.5			10.8															
	S-2 S-3	7.5	9.0			10.3															
	S-4	10.0	11.5	SC	A-7-6(6)	13.1				43	47	22	25								
SW-W-03	S-5	12.5	14.0		/ 0(0)	11.3					.,										
	S-6	15.0	16.5			11.8															
	S-7	20.0	21.4			11.7															
	S-8	25.0	25.9			13.7															
	S-9	30.0	31.5			13.3														-	

Refer to Appendix A, Figure A-1 for definitions.

² Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.

³ NV = No Value; NP = Non-plastic

	SAMPLE	E DATA			ıtion	ure	ght		AIN-SI ALYSI			TERBE IMITS		R-V	ALUE	SWELI	LTEST		CORRO	SION	
Boring	Sample		epth eet) Bottom	USCS Symbol ¹	AASHTO Classification	Natural Moisture Content	(Jad) Moist Unit Weight	% Gravel	Sand	Fines	S. Liquid Limit	% Plastic Limit	S Plasticity Index	R-Value	(is Exudation Pressure	Swell (+) Consolidation (-)	Inundation Fressure	Hd	(mo-mupo)	Sulfates	S Chlorides
	S-1	2.5	4.0			5.4	(P61)	(70)	(,,,)	(,0)	(70)	(,0)	(/*)		(P32)	(/0)	(P51)		(01111 0111)	(,,,	(/0)
	S-2	5.0	6.5			12.7															
	S-3	7.5	9.0			10.6															
	S-4	10.0	11.5			11.5															
SW-W-04		12.5	14.0			9.8															
	S-6	15.0	16.5			13.2															
	S-7	20.0	21.5			16.0															
	S-8	25.0	26.3			11.5															
	S-9	30.0	30.8			11.6															
	S-1	2.5	4.0	SC	A-2-6(1)	12.6				29	35	18	17								
	S-2	5.0	6.5			11.3															
CHI HI 05	S-3	7.5	9.0			9.9															
SW-W-05	S-4	10.0	11.0			7.5															
	S-5 S-6	15.0 20.0	15.9 20.5			9.4 10.1															
	S-7	25.0	25.9			11.5															
	S-1	1.0	1.5			2.7															
TP-06	S-2	3.0	4.0			17.6															
	S-3	8.0	9.0	SW-SC	A-2-7(0)	7.2		18	70	12	51	20	31								
TP-07	S-1	2.0	3.0		. (1)	4.4					_										
1P-0/	S-2	7.0	8.0	SC		12.7		3	65	32											
	S-1	0.5	1.0			4.0															
TP-08	S-2	1.0	2.7	-		1.9															
11-00	S-3	3.0	3.5			10.1															
	S-4	4.5	6.0			11.5															

¹ Refer to Appendix A, Figure A-1 for definitions.

² Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.

³ NV = No Value; NP = Non-plastic

TABLE B-1 SUMMARY OF LABORATORY TEST RESULTS BY BORING

	SAMPLE	' DATA			n		-1-		AIN-SI			ΓERBE		R_V	ALUE	SWELI	TEST		CORRO	NOIS	
	SAMI LE	DAIA			atio	ure	ight	AN	ALYSI	ES ²	L	IMITS	3	1X- V I	ALUE	SWELL	LIESI		CORRO	31011	
Boring	Sample		epth eet) Bottom	USCS Symbol ¹	AASHTO Classification	Natural MoistureContent	(Jac) Moist Unit Weight	% Gravel	Sand	% Fines	Liquid Limit	Plastic Limit	Plasticity Index	R-Value	(is Exudation Pressure	Swell (+) Consolidation (-)	Inundation Grant Pressure	Hd	(ma-mupo) Resistivity	Sulfates (%)	% Chlorides
	S-1	2.5	4.0			11.8															
	S-2	5.0	6.5			9.7															
	S-3	7.5	9.0	SC	A-2-6(0)	10.3		11	71	18	39	24	15								
SW-W-09	S-4	10.0	11.5			12.8															
	S-5	15.0	16.5			10.2															
	S-6	20.0	20.9			13.4															
	S-1	2.5	4.0			9.3															
	S-2	5.0	6.5			9.5															
	S-3	7.5	9.0	SC	A-2-6(0)	12.3		11	68	21	34	20	14								
SW-W-10	S-4	10.0	11.5			12.3															
	S-5	12.5	13.5			10.9															
	S-6	15.0	16.0			11.3															
	S-7	20.0	20.9			10.8															
	S-1	2.5	2.5			11.8															
	S-2	5.0	6.5	0.0	4.0.7(1)	12.5		2	70	2.5	4.4	21	22								
SW-W-11	S-3 S-4	7.5 10.0	9.0 11.4	SC	A-2-7(1)	13.1		2	73	25	44	21	23								
	S-4 S-5	15.0	16.5			12.4 15.1															
	S-6	20.0	20.8			15.1															
	S-1	2.5	4.0			9.8															
	S-1	5.0	6.5			10.7												6.4	2,100	0.030	0.024
	S-2 S-3	7.5	9.0	CL	A-2-7(7)	17.4				51	43	14	29					0.4	2,100	0.050	0.024
SW-W-12	S-4	10.0	11.5	CL	112/(/)	10.1				J 1	13	11	2)								
	S-5	12.5	14.0			11.3															
	S-6	15.0	16.5			12.9															
	S-7	20.0	21.5			16.2															

¹ Refer to Appendix A, Figure A-1 for definitions.

² Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.

 $^{^{3}}$ NV = No Value; NP = Non-plastic

TABLE B-1 SUMMARY OF LABORATORY TEST RESULTS BY BORING

	SAMPLE	DATA			ıtion	ure	ght		AIN-SI IALYSI			TERBE IMITS		R-V	ALUE	SWELI	L TEST		CORRO	SION	
Boring	Sample	(f	epth Geet)	USCS Symbol ¹	AASHTO Classification	Natural Moisture Content	Moist Unit Weight	Gravel	Sand	Fines	Liquid Limit	Plastic Limit	Plasticity Index	R-Value	Exudation Pressure	Swell (+) Consolidation (-)	Inundation Pressure	Hd	Resistivity	Sulfates	Chlorides
		Top	Bottom		7	(%)	(pcf)	(%)	(%)	(%)	(%)	(%)	(%)		(psi)	(%)	(psf)		(ohm-cm)	(%)	(%)
	S-1	2.5	4.0		1.0.6(1)	7.7				20	2.5	1.6	10								
	S-2 S-3	5.0 7.5	6.5 9.0	SC SC	A-2-6(1)	12.8		10	74	30	35	16	19								
SW-W-13		10.0	11.5	SC		9.7 6.7		10	74	16											
SW-W-13	S-5	12.5	14.0			9.6															
	S-6	15.0	16.0			9.4															
	S-7	20.0	21.4			11.8															
	S-1	1.0	2.0			3.0															
TP-14	S-2	4.0	5.0			11.4															
	S-3	7.0	8.0			9.0															
	S-1	2.5	4.0			10.9															
	S-2	5.0	6.5			9.9															
SW-W-15		7.5	8.8	SC	A-2-7(2)	9.5		7	69	24	47	20	27								
	S-4	10.0	11.5			11.3															
	S-5	15.0	15.9			10.1															
SW-W-16	S-1 S-2	2.5 5.0	4.0 6.5	90	A 2 7(1)	10.0		6	77	17	70	22	40								
SW-W-10	S-2 S-3	10.0	11.5	SC	A-2-7(1)	13.1 13.7		6	77	17	70	22	48								
TP-17	S-3	2.5	3.5			3.3															
11-1/	S-1	2.5	4.0			13.2															
SW-W-18		5.0	6.0	SC	A-2-6(1)	9.3		1	73	26	40	19	21								
	S-3	10.0	10.9		-12 0(1)	11.1		•	, ,												
TD 10	S-1	1.5	2.5			2.1															
TP-19	S-2	3.6	4.6			4.4															

01311-002_R1_LabSum/wp/lmr

¹ Refer to Appendix A, Figure A-1 for definitions.

² Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.

³ NV = No Value; NP = Non-plastic

	SAMPLE	DATA			ıtion	ure	ight		AIN-SI IALYSI			TERBE LIMITS		R-V	ALUE	SWELI	LTEST		CORRO	SION	
Boring	Sample	(f	epth eet)	USCS Symbol ¹	AASHTO Classification	Natural Moisture Content	Moist Unit Weight	Gravel	Sand	Fines	Liquid Limit	Plastic Limit	Plasticity Index	R-Value	Exudation Pressure	Swell (+) Consolidation (-)	Inundation Pressure	Hd	Resistivity	Sulfates	Chlorides
		Top	Bottom		,	(%)	(pcf)	(%)	(%)	(%)	(%)	(%)	(%)		(psi)	(%)	(psf)		(ohm-cm)	(%)	(%)
	S-1	2.5	4.0	SC	A-6(0)	11.8		1	61	38	29	17	12								
	S-2 S-3	5.0 7.5	5.8 8.1			12.8															
SW-W-20	S-3 S-4	10.0	10.8			10.7 12.7															
	S-4 S-5	15.0	16.3			9.3															
	S-6	20.0	20.8			8.9															
	S-1	2.5	4.0	SC	A-2-7(0)	11.9		1	80	19	44	26	18								
CIV IV 01	S-2A	5.0	6.0	50	112 /(0)	11.7		-	0.0	1)			10								
SW-W-21	S-2B	6.0	6.5			16.3															
	S-3	10.0	10.3			6.9															
	S-1	2.5	3.4			9.1															
SW-W-22	S-2	5.0	6.0			10.7												6.8	570	0.01	0.098
	S-3	10.0	11.4			11.7															
	S-1	2.5	4.0			6.7															
SW-W-23	S-2	5.0	6.5			7.6															
	S-3 S-4	7.5 10.0	9.0			8.2															
	S-4 S-1	2.5	11.5 4.0			11.1 5.9															
	S-1 S-2	5.0	6.5			8.7															
	S-3	7.5	9.0	SW-SC		6.2		20	70	10											
SW-W-24	S-4	10.0	11.5	511-50		8.6		20	7.0	10											
	S-5	15.0	16.5			6.6															
	S-6	20.0	21.5			11.3															

Refer to Appendix A, Figure A-1 for definitions.

² Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.

³ NV = No Value; NP = Non-plastic

TABLE B-1 SUMMARY OF LABORATORY TEST RESULTS BY BORING

:	SAMPLE	DATA			ıtion	ure	ght		AIN-SI ALYSI			TERBE LIMITS		R-V	ALUE	SWELI	L TEST		CORRO	SION	
Boring	Sample	(f	epth eet)	USCS Symbol ¹	AASHTO Classification	Natural Moisture Content	Moist Unit Weight	Gravel	Sand	Fines	Liquid Limit	Plastic Limit	Plasticity Index	R-Value	Exudation Pressure	Swell (+) Consolidation (-)	Inundation Pressure	Hd	Resistivity	Sulfates	Chlorides
	~ .	Top	Bottom		ł	(%)	(pcf)	(%)	(%)	(%)	(%)	(%)	(%)		(psi)	(%)	(psf)		(ohm-cm)	(%)	(%)
	S-1	2.5	5.0			7.1															
CW W OF	S-2	5.0	6.5	G) f	4.0.4(0)	8.1				20	2177	3.10	N.ID								
SW-W-25	S-3 S-4	7.5	9.0 11.5	SM	A-2-4(0)	8.4 8.7		0	72	28	NV	NP	NP								
	S-4 S-5	15.0	15.5			6.0															
	S-1A	2.5	3.0			8.2															
	S-1A S-1B	3.0	4.0			6.9															
	S-2	5.0	6.5			10.0															
SW-W-26	S-3	7.5	9.0			6.2															
	S-4	10.0	11.4			12.0															
	S-5	15.0	15.8			3.6															
	S-1	2.5	4.0	CL		7.3		3	35	62											
	S-2	5.0	6.5			10.7															
SW-W-27	S-3	7.5	9.0			8.8															
	S-4	10.0	11.5			8.7															
	S-5	15.0	16.0			9.4															
TP-28	S-1	3.5	4.8			7.1															
	S-2	5.0 3.5	6.0	CIVI CIVI	A 2 ((0)	12.8		0	0.2	0	20	26	10								
TP-29	S-1 S-2	8.0	4.5 9.0	SW-SM	A-2-6(0)	7.1 11.1		9	83	8	38	26	12								
	S-2 S-1	2.5	4.0			6.9															
	S-1 S-2	5.0	6.5	SC		7.0		12	76	12											+-
	S-3	7.5	8.2	50		7.4		12	70	12											
SW-W-30	S-4	10.0	11.5			10.3															
	S-5	15.0	16.0			9.8															
	S-6	20.0	21.0			11.5															

¹ Refer to Appendix A, Figure A-1 for definitions.

² Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.

³ NV = No Value; NP = Non-plastic

TABLE B-1 SUMMARY OF LABORATORY TEST RESULTS BY BORING

	SAMPLE	DATA			tion	ıre	ght		AIN-SI IALYSI			TERBE IMITS		R-V	ALUE	SWELI	L TEST		CORRO	SION	
Boring	Sample		epth eet) Bottom	USCS Symbol ¹	AASHTO Classification	Natural Moisture Content	(Ja) Moist Unit Weight	Gravel	Sand	Fines	S. Liquid Limit	Plastic Limit	S Plasticity Index	R-Value	(is Exudation Pressure	Swell (+) Consolidation (-)	(Jaca) Inundation Pressure	Hd	(mo-mqo)	Sulfates	% Chlorides
	S-1	2.5	4.0			4.4	(per)	(/0)	(70)	(70)	(70)	(70)	(70)		(P32)	(70)	(P31)		(onn cm)	(70)	(70)
	S-1 S-2	5.0	6.5			11.0															
	S-2	7.5	8.5			7.7															
SW-W-31	S-4	10.0	10.9			14.2															
	S-5	15.0	15.8			10.6															
	S-6	20.0	20.7			12.2															
	S-1	2.5	4.0	SW-SC		7.3		14	76	10											
	S-2	5.0	6.4			8.4															
SW-W-32	S-3	7.5	8.1			9.1															
3 W - W - 32	S-4	10.0	11.5			9.2															
	S-5	15.0	16.5			10.6															
	S-6	20.0	20.9			8.5															
	S-1	2.5	3.0			7.2															
TP-33	S-2	4.0	5.0			14.2															
	S-3	7.0	8.0			8.9															
	S-1	2.5	4.0	CD 5	1 0 1(0)	4.9			0.0	20	NIV 7) ID) ID								
	S-2 S-3	5.0 7.5	6.5 8.9	SM	A-2-4(0)	12.6 9.9		0	80	20	NV	NP	NP								\vdash
SW-W-34	S-3 S-4	10.0	11.0			7.8															
	S-4 S-5	15.0	16.4			13.0															
	S-6	20.0	20.9			8.8															
	S-1	2.5	4.0			9.5															
	S-2	5.0	6.5			7.7															
CW W 25	S-3	7.5	9.0			9.7															
SW-W-35	S-4	10.0	11.5	SW-SC	A-2-4(0)	10.7		13	75	12	29	20	9								
	S-5	12.5	13.5			8.3															
	S-6	15.0	15.9			9.1															

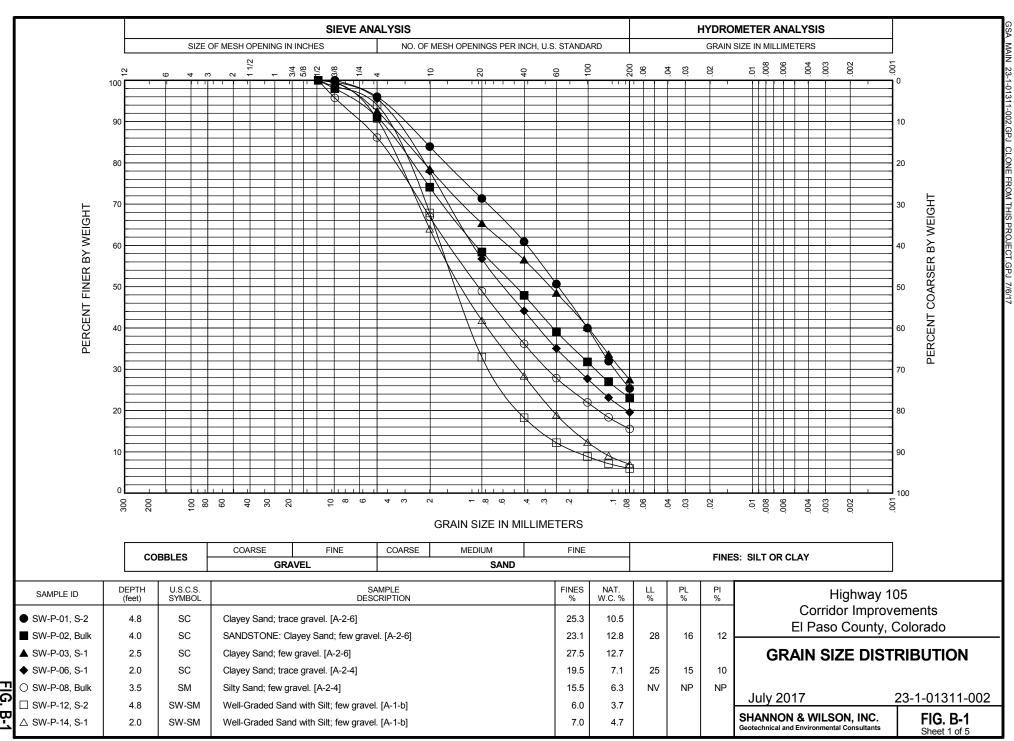
Notes:

¹ Refer to Appendix A, Figure A-1 for definitions.

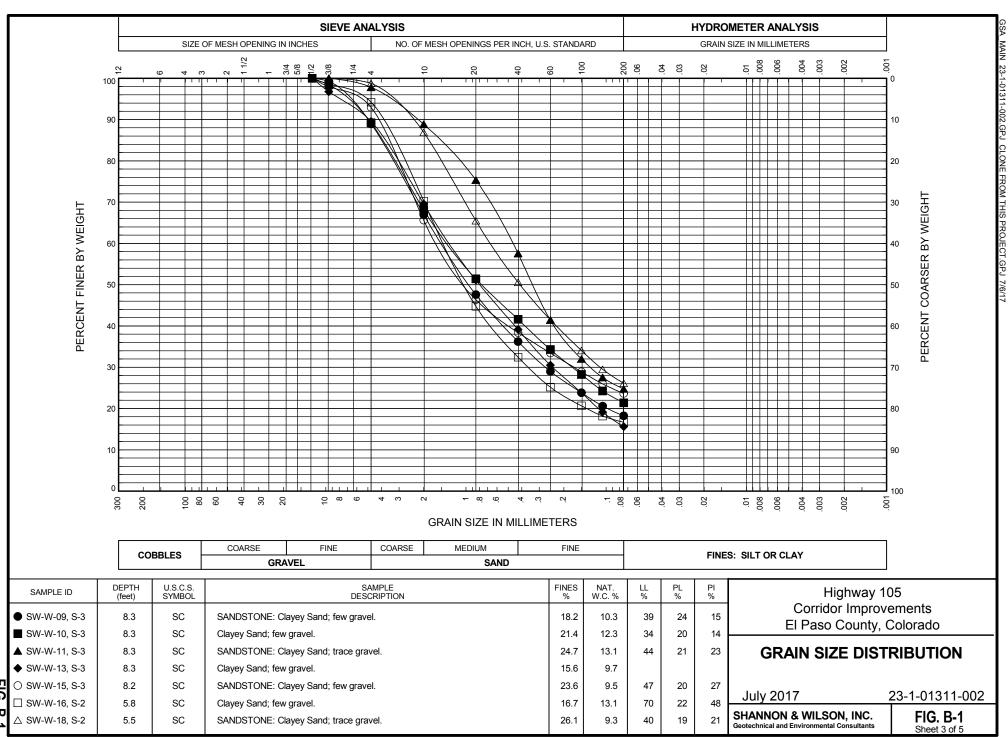
² Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.

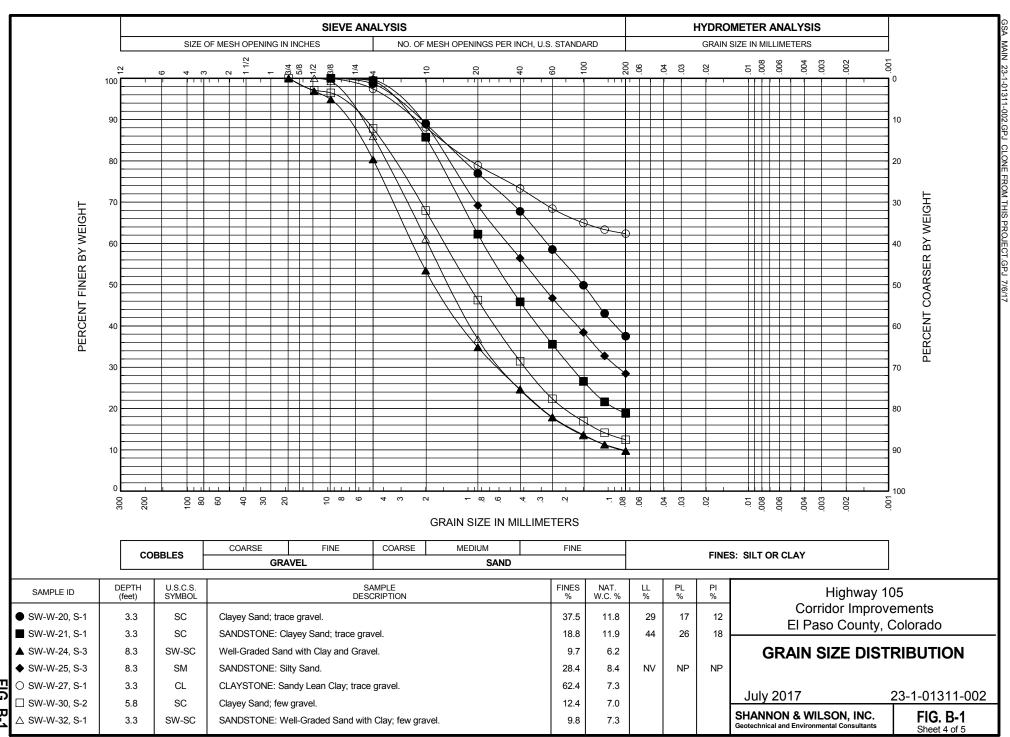
³ NV = No Value; NP = Non-plastic

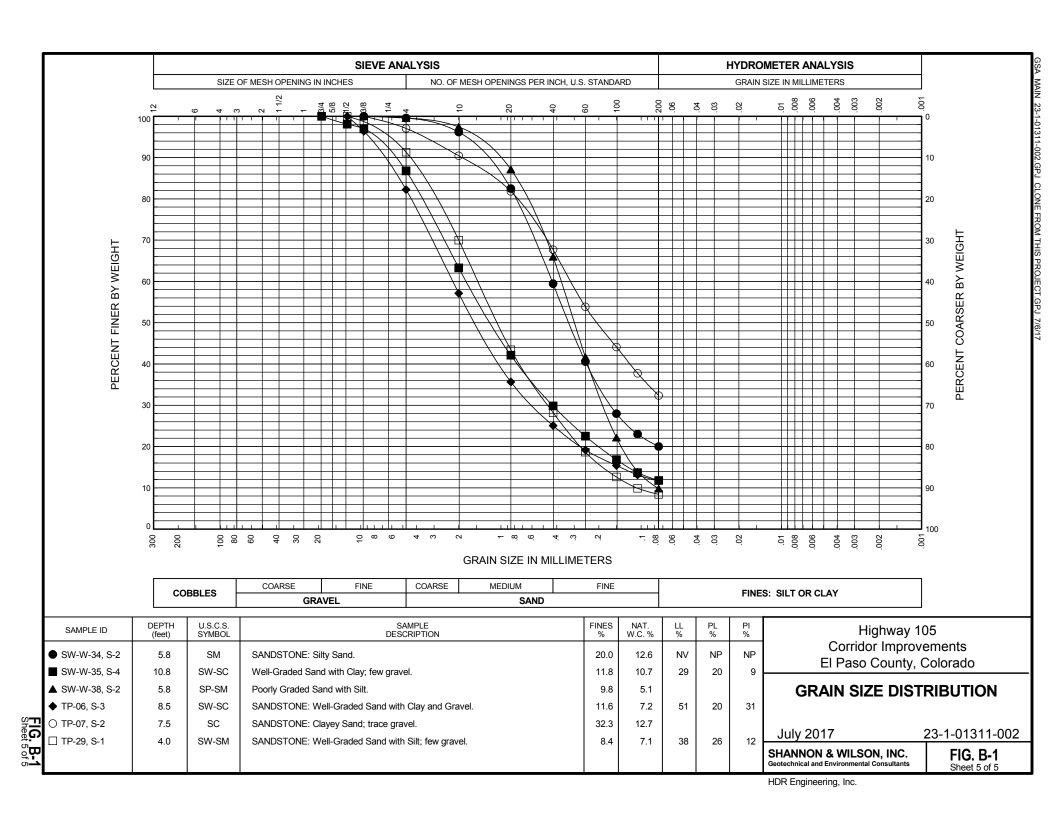
TABLE B-1 SUMMARY OF LABORATORY TEST RESULTS BY BORING


\$	SAMPLE	DATA			ation	ure	Weight		AIN-SI ALYSI			TTERBERG LIMITS ³ R-VA		R-VALUE		R-VALUE				SWELL TEST		CORROSION		
Boring	Sample		epth eet)	USCS Symbol ¹	AASHTO Classification	Natural Moisture Content	Moist Unit Wei	Gravel	Sand	Fines	Liquid Limit	Plastic Limit	Plasticity Index	R-Value	Exudation Pressure	Swell (+) Consolidation (-)	Inundation Pressure	Hd	Resistivity	Sulfates	Chlorides			
		Top	Bottom		A	(%)	(pcf)	(%)	(%)	(%)	(%)	(%)	(%)		(psi)	(%)	(psf)		(ohm-cm)	(%)	(%)			
	S-1	2.5	4.0	SC							40	16	24											
SW-W-36	S-2	5.0	6.5			7.7												7.6	2,200	0.090	0.021			
	S-3	10.0	11.0			8.9																		
	S-4	15.0	16.0			9.9																		
	S-1 S-2	2.5 5.0	4.0 6.5			9.7														<u> </u>				
SW-W-37	S-2 S-3	7.5	9.0			6.5															+			
3 W - W - 3 /	S-3 S-4	10.0	11.5			10.7																		
	S-5	15.0	16.5			11.3																		
	S-1	2.5	4.0			16.6																		
	S-2	5.0	6.5	SP-SM		5.1		0	90	10														
CW W 20	S-3	7.5	9.0			7.9																		
SW-W-38	S-4	10.0	11.5			10.5																		
	S-5	12.5	14.0			10.9																		
	S-6	15.0	16.5			11.6																		

Notes:


¹ Refer to Appendix A, Figure A-1 for definitions.


² Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.


³ NV = No Value; NP = Non-plastic

CONSOLIDATION/SWELL TEST REPORT Boring SW-P-07: Sample 1, 1.5 - 2.5 ft **Applied Pressure (ksf)** 0.1 1.0 10.0 6 5 4 3 2 Vertical Strain (%) **WATER ADDED** -1 -2 -3 -4

Swell =	2.2	%
Inundation Pressure =	150	psf
Initial Moisture Content =	13.7	%
Final Moisture Content =	17.4	%
Moist Density =	127.7	pcf

NOTE:

Testing was done in general accordance with ASTM D 4546(B), Standard Test Methods for One-Dimensional Swell or Settlement Potential of Cohesive Soils.

Highway 105 Corridor Improvements El Paso County, Colorado

CONSOLIDATION/SWELL TEST REPORT BORING SW-P-07, SAMPLE 1

July 2017

23-1-01311-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. B-3

CONSOLIDATION/SWELL TEST REPORT Boring SW-P-23: Sample 1, 1.0 - 2.0 ft **Applied Pressure (ksf)** 0.1 1.0 10.0 6 5 4 3 2 Vertical Strain (%) **WATER ADDED** -1 -2 -3 -4

Swell =	-1.2	%
Inundation Pressure =	150	psf
Initial Moisture Content =	4.4	%
Final Moisture Content =	16.0	%
Moist Density =	104.9	pcf

NOTE:

Testing was done in general accordance with ASTM D 4546(B), Standard Test Methods for One-Dimensional Swell or Settlement Potential of Cohesive Soils.

Highway 105 Corridor Improvements El Paso County, Colorado

CONSOLIDATION/SWELL TEST REPORT BORING SW-P-23, SAMPLE 1

July 2017

23-1-01311-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. B-4

CP-L 3101

Project: SH 105

Job Number: 23-1-01311-002 Report Date: 7/12/16

Reported to: Shannon & Wilson, Inc

James I a Nivers Is an	on	Test Data Summary							
Sample Number:	587	Specimen No.	1	2	3				
ample Location:	SW / P / 02	Moisture %	10.17	8.72	7.85				
Material Desc.:	SW / P / 02 Bulk Sample								
Date Sampled:	7/12/16	R-Value (corrected)	12.0	26.0	44.0				
Sampled By:	S&W	Exudation Pressure, psi	187	310	395				
9									
06									
08									
02									
09									
R-Value 50									
40 04	R-Value @ 300 psi = 24								
30									
50									
0									
0 10	00 200 3	00 400 500	600	700	800				

Vine Laboratories, Inc.

Tested By: Juan Romero

CP-L 3101

Project: SH 105

Job Number: 23-1-01311-002 Report Date: 7/12/16

Reported to: Shannon & Wilson, Inc

Sample Informat	ion	Test Data Summary							
Sample Number:	588	Specimen No		2	3				
Sample Location:	SW / P / 08	Moisture %	8.53	7.62	6.56				
Material Desc.:	SW / P / 08 Bulk Sampl								
Date Sampled:	7/12/16	R-Value (corrected)	31.0	68.0	84.0				
Sampled By:	S&W	Exudation Pressure, ps	i 173	332	557				
100									
06									
08									
	R-Value								
2	@ 300 psi								
	= 62								
09									
Val 20 20					###				
R-Value 50									
04									
8									
50									
6									

Vine Laboratories, Inc.

Tested By: Juan Romero

CP-L 3101

Project: SH 105

Job Number: 23-1-01311-002 Report Date: 7/12/16

Reported to: Shannon & Wilson, Inc

Sample Informati	ion	Test Data Summary							
Sample Number:	586	Specime	en No. 1	2	3				
Sample Location:	SW / P / 19	Mois	ture % 10.70	9.87	8.72				
Material Desc.:	SW / P / 19 Bulk Sample								
Date Sampled:	7/12/16	R-Value (corr	rected) 14.0	25.0	55.0				
Sampled By:	S&W	Exudation Pressu	re, psi 286	373	565				
100									
06									
80									
02									
e e e									
R-Value									
04									
30	R-Value @ 300 psi = 16								
70	-10								
0									
0 1	00 200 3	300 400	500 600	700	800				

Vine Laboratories, Inc.

Tested By: Juan Romero

CP-L 3101

Project: SH 105

Job Number: 23-1-01311-002 Report Date: 7/12/16

Reported to: Shannon & Wilson, Inc

	ion	Test Data Summary							
Sample Number:	585	Specimen No.	2	3					
ample Location:	SW / P / 27	Moisture %	11.05	8.31	8.02				
Material Desc.:	SW / P / 27 Bulk Sample								
Date Sampled:	7/12/16	R-Value (corrected)	11.0	27.0	40.0				
Sampled By:	S&W	Exudation Pressure, psi	245	431	601				
100									
06									
08									
02									
09 09									
R-Value 50									
04									
30	R-Value @ 300 psi = 16								
50									
6									
0 1	00 200 3	300 400 500	600	700	800				

Vine Laboratories, Inc.

Tested By: Juan Romero

SHANNON & WILSON, INC.

APPENDIX C FALLING WEIGHT DEFLECTOMETER TESTING

APPENDIX C

FALLING WEIGHT DEFLECTOMETER TETING

DATA REPORT

Kumar & Associates, Inc. (2016)

Nondestructive Deflection Testing Results and Pavement Structural Evaluation, Highway 105 from I-25 off Ramp to Lake Woodmoor Drive, El Paso County, Colorado, Project No. 16-1-401 (3 pages)

2390 South Lipan Street Denver, CO 80223 phone: (303) 742-9700 fax: (303) 742-9666 email: kadenver@kumarusa.com www.kumarusa.com

Office Locations: Denver (HQ), Colorado Springs, Fort Collins, and Frisco, Colorado

August 2, 2016

Mr. David Asunskis, P.E. Shannon & Wilson Inc., 1321 Bannock Street, Suite 200 Denver, Colorado 80204

Subject: Nondestructive Deflection Testing Results and Pavement Structural Evaluation, Highway

105 from I-25 off Ramp to Lake Woodmoore Drive, El Paso County, Colorado

Project No. 16-1-401

Dear Mr. Asunskis:

This letter presents the results of a nondestructive, falling weight deflectometer (FWD) testing program and pavement structural evaluation performed for approximately 1.0 centerline mile of Highway 105 in El Paso County, Colorado. Testing within the alignment included one lane in both the east bound and west bound directions. The study was conducted in general accordance with the scope of work in our proposal to Shannon & Wilson dated May 4, 2016.

<u>Existing Site/Pavement Conditions</u>: The alignment of Highway 105 within the limits of the testing consisted of two travel lanes with various turn lanes, accel/decal lanes, and median configurations. Testing took place in the outside travel lane in both directions between the I-25 northbound off ramp and Lake Woodmore Drive.

The existing pavement section types and thicknesses for the project segment were provided by Shannon & Wilson and were used in the data analysis. The pavement section type and thickness were based on cores taken throughout the pavement sections at various locations. In general, the cores encountered a flexible pavement section consisting of full-depth hot mix asphalt (HMA) or a flexible composite section consisting of HMA over of aggregate base course (ABC). Thicknesses of full depth HMA encountered varied from approximately 7.5 to 9.0 inches. Thicknesses of composite sections encountered in two of the borings consisted of 9.0 to 10.0 inches of HMA over 11.0 and 5.0 inches of ABC, respectively. Composite sections were located on the western portion of the testing sections, towards the I-25 off ramp, and full depth HMA sections were located along the remaining eastern portion of the alignment.

<u>Field Testing</u>: The FWD is an impulse-loading device that generates a force by dropping a predetermined load on a set of springs. The force is then transmitted to the pavement surface through a 12-inch diameter rigid plate. The force applied to the pavement surface measures the elastic response of the pavement layers and underlying subgrade material, as measured through a set of 7 deflection sensors placed at various offsets from the load source. The deflection sensors used in this study were placed at offsets from the load source at distances of 0, 8, 12, 18, 24, 36 and 60 inches.

The FWD tests were taken at approximate 250-foot intervals within the travel lane with a 125-foot staggered pattern between the eastbound and westbound directions.

Shannon & Wilson August 2, 2016 Page 2

<u>Analysis and Results</u>: The structural characteristics of the pavement section and underlying subgrade were determined from various computer software programs.

In analyzing flexible pavements, the FWD tests can be evaluated where the combined stiffness influence of the various pavement layer moduli represents the overall structural capacity of the pavement. The structural capacity obtained from this procedure is generally a function of the maximum deflection determined at the load center as well as the subgrade resilient modulus. The maximum measured deflection obtained at the load center is used to predict the effective pavement modulus of the pavement layers. The effective pavement modulus of the pavement layers and the known pavement thickness were correlated to an overall existing structural number of the pavement section at each test location. The existing structural numbers are a function of the pavement modulus, and the existing pavement thickness assumed at each test location.

In general, the deflection sensors located at a greater distance from the load source are used to determine the subgrade resilient modulus. When the deflection basin is measured using the FWD, the outer readings of the deflection basin under the imposed load represent the in-situ resilient modulus of the subgrade soil. The subgrade resilient modulus is the value that represents the pavement support condition.

The results of the analyses indicate subgrade resilient modulus values for the flexible composite section ranging from 4,072 psi to 6,924 psi with an average value of 5,395 psi. The existing structural number of the flexible composite section ranged from 3.61 to 6.36 with an average value of 4.46.

For the full-depth asphalt section, the subgrade resilient modulus values ranged from 3,845 psi to 7,764 psi with an average value of 5,490 psi. The existing structural number for the full-depth asphalt alignment area ranged from 2.04 to 3.72 with an average value of 2.63.

The design subgrade resilient modulus and existing structural numbers determined at each of the FWD test locations are provided in the attached Table.

<u>Limitations</u>: This study has been conducted in accordance with generally accepted pavement engineering practices in this area. The results and conclusions provided in this report are based upon the data obtained from the FWD tests taken at the approximate locations summarized in the attached table, and the asphalt pavement section thicknesses provided by Shannon & Wilson. Kumar & Associates, Inc. is not responsible for liability associated with interpretation of the data by others.

Sincerely,

KUMAR & ASSOCIATES, INC.

Reviewed By:

James A. Noll, P.E.

JDC/jw Attachments

cc: File, book

Lane	Station	Subgrade Resilient Modulus (psi)	Effective Pavement Section Modulus (psi)	Pvm't Existing SN
WB Outside Lane	104+00	5,772	628665	6.36
WB Outside Lane	106+50	4,554	209337	4.41
WB Outside Lane	109+00	5,872	238814	4.61
WB Outside Lane	111+50	5,657	222857	4.50
WB Outside Lane	114+00	5,171	219388	4.48
WB Outside Lane	116+50	5,680	184170	4.22
WB Outside Lane	119+00	5,721	229539	4.55
WB Outside Lane	121+50	4,309	164411	4.07
EB Outside Lane	121+25	4,072	114870	3.61
EB Outside Lane	118+75	5,577	321110	5.08
EB Outside Lane	116+25	5,194	168106	4.10
EB Outside Lane	113+75	4,736	173354	4.14
EB Outside Lane	111+25	6,559	164773	4.07
EB Outside Lane	108+75	5,441	206911	4.39
EB Outside Lane	106+25	5,083	157579	4.01
EB Outside Lane	104+00	6,924	251787	4.69
Average Section		5,395	228,479	4.46
Standard Devia		734	113,212	0.59
WB Outside Lane	124+00	4,748	334931	2.50
WB Outside Lane	126+50	5,845	460900	2.78
WB Outside Lane	129+00	4,932	319803	2.46
WB Outside Lane	131+50	5,275	401681	2.66
WB Outside Lane	134+00	5,497	349825	2.54
WB Outside Lane	136+50	5,536	455799	2.77
WB Outside Lane	139+00	6,425	435759	2.73
WB Outside Lane	141+50	6,647	384097	2.62
WB Outside Lane	144+00	7,764	455267	2.77
WB Outside Lane	146+50	6,996	530037	2.91
WB Outside Lane	149+00	5,288	340808	2.51
WB Outside Lane	150+00	3,845	181648	2.04
EB Outside Lane	150+00	5,708	408126	2.67
EB Outside Lane	148+75	5,682	1101913	3.72
EB Outside Lane	146+25	4,785	319862	2.46
EB Outside Lane	143+75	5,207	275638	2.34
EB Outside Lane	141+25	5,106	253619	2.28
EB Outside Lane	138+75	5,167	305467	2.42
EB Outside Lane	136+25	5,685	361802	2.57
EB Outside Lane	133+75	5,161	406604	2.67
EB Outside Lane	131+25	4,308	313320	2.45
EB Outside Lane	128+75	4,766	346608	2.53
EB Outside Lane	126+25	5,219	458631	2.78
EB Outside Lane	123+75	6,177	524103	2.90
Average Section	Values	5,490	400,093	2.63
Standard Deviation		841	166,799	0.30

SHANNON & WILSON, INC.

APPENDIX D PREVIOUS SUBSURFACE EXPLORATIONS

APPENDIX D

PREVIOUS SUBSURFACE EXPLORATIONS

TABLE OF CONTENTS

TABLE

B-1 Summary of Laboratory Test Results by Boring

FIGURES

A-3	Log of Boring SW-01
A-4	Log of Boring SW-03
A-5	Log of Boring SW-04
A-6	Log of Boring SW-05
A-7	Log of Boring SW-06
A-8	Log of Boring SW-07
A-9	Log of Boring SW-08
A-10	Log of Boring SW-09
A-11	Log of Boring SW-10
B-1	Grain Size Distribution (2 sheets
B-2	Plasticity Chart
B-3	R-Value Test Result

Note: Figure numbers reflect designations from our 2012 preliminary geotechnical report.

TABLE B-1 SUMMARY OF LABORATORY TEST RESULTS BY BORING

	SAMPLE	DATA				ntent	GRAIN-SIZE ANALYSES ⁽²⁾				TERBE LIMITS		R-V	ALUE		CORRO	OSION	
Boring	Sample		epth eet)	USCS Symbol ⁽¹⁾	AASHTO Classification	Natural Water Content	Gravel	Sand	Fines	Liquid Limit	Plastic Limit	Plasticity Index	R-Value	Exudation Pressure	Hd	Resistivity	Sulfates	Chlorides
		Top	Bottom			(%)	(%)	(%)	(%)	(%)	(%)	(%)		(psi)		(ohm-cm)	(%)	(%)
	S-1	1.0	2.5			12.6			22									
	S-2	5.0	6.5	SP-SM		8.8	9	82	9									
SW-01	S-4	15.0	15.9	CL	A-6(6)	13.0	0	46	54	35	19	16						
	S-5	20.0	20.3	02	11 0(0)	15.0						10						
	Bulk	0.0	5.0	GW, GM		6.1	10	0.1	_				40	300				<u> </u>
SW-03	S-1	1.0	2.5	SW-SM		6.1 7.8	12	81	7 29						<i>C</i> 1	1.750	0.0027	0.001
	S-2 S-1	5.0	6.0 2.5			6.5			29						6.4	1,750	0.0027	0.001
SW-04	S-1 S-2	5.0	5.9	SW-SM		7.8	14	78	8									-
	S-1	1.0	2.5	5 77 5171		4.5	17	70	0									
SW-05	S-2	5.0	6.5	CL	A-6(15)	15.2			68	40	14	26						-
CM OC	S-1	1.0	2.0	SW-SC	11 0(10)	9.7	18	76	6									
SW-06	S-2	5.0	5.7			9.7			28									
SW-07	S-1	1.0	2.5	CL	A-7-5(12)	16.5			54	43	14	29						
5 77 -07	S-3	10.0	10.5	SC		11.7	11	68	21									
SW-08	S-1	1.0	2.0	SC		8.5	18	70	12									
2 2 3	S-2	5.0	6.5	SW-SM		5.8	8	87	5									
SW-09	S-1	1.0	2.0	SC		8.6	9	78	13									
	S-2	5.0	5.5			6.3			9						6.6	1.010	0.022	0.017
	S-1	1.0	2.0	C) (1 2 1	10.1			20	3.77.7	NID	NID			6.0	1,210	0.023	0.015
CW 10	S-2	5.0	6.0	SM	A-2-4	17.1	1.1	92	28	NV	NP	NP						
SW-10	S-3	10.0	11.0	SP-SM		14.3 16.4	11	83	6 25									
	S-4	20.0	21.0 21.5						4									-
		21.0	21.5			13.3			4					1				

NOTES: 1) Refer to Appendix A, Figure A-1 for definitions.

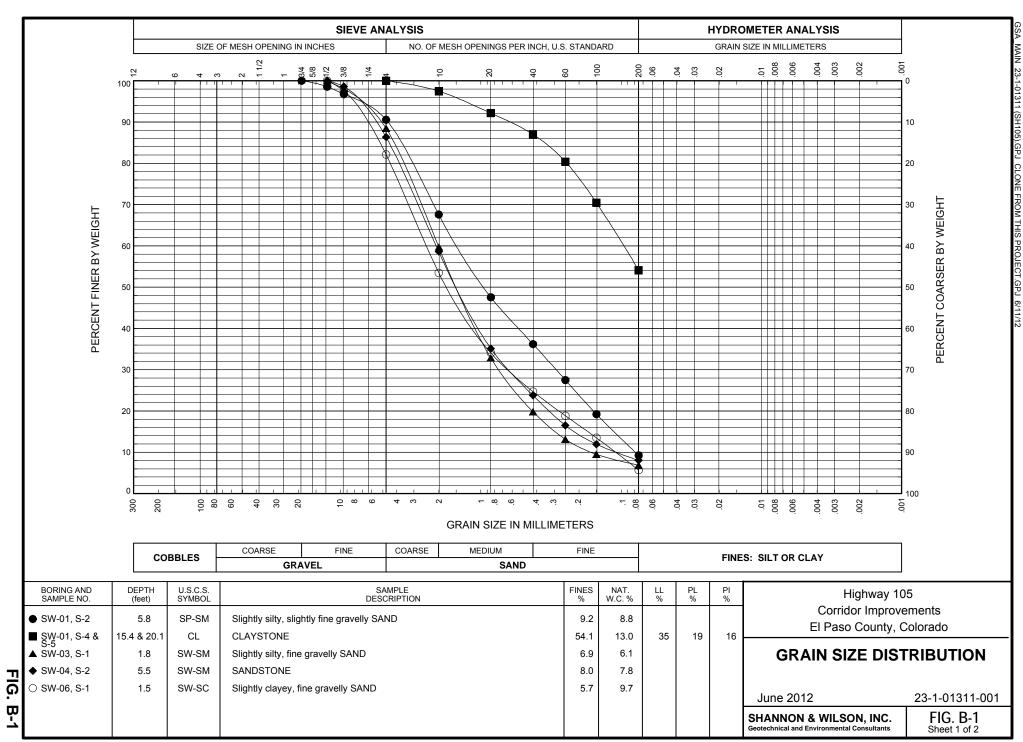
- 2) Gravel defined as particles larger than the No. 4 sieve size, Sand as particles between the No. 4 and No. 200 sieve sizes, and Fines as particles passing the No. 200 sieve.
- 3) USCS and AASHTO soil classifications are only provided on soil samples with sufficient laboratory index tests to assign such classifications.

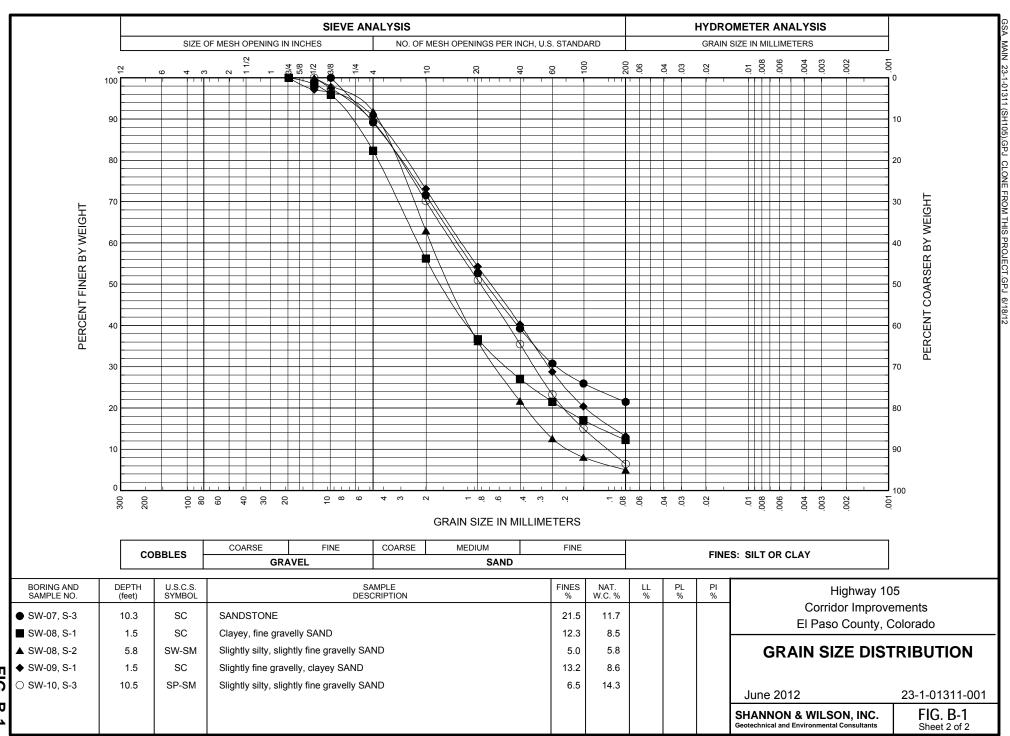
Total Depth: <u>25.3 ft.</u> Northing: Top Elevation: ~ Easting:		_	/lethod: Compan		Solid Aug Dakota Di		Hole Diam.:	4.5 in. AWJ
Vert. Datum: Station:	Dril	ill Rig E	Equipm	nent:	Dietrich 5		Hammer Type	
Horiz. Datum: Offset:	_ Otn	ner Co	omment	.s: _				
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.		Symbol	Samples	Ground	Water Depth, ft.			STANCE(blows/foot) 140 lbs / 30 inches 40 60
Loose, brown, silty, fine SAND; moist; [A-2-4]							20	10 55
SM.	3.8		1 Julk	During Drilling				
Medium dense, brown, slighlty silty, slightly gravelly to gravelly SAND; moist [A-2-4] SP-SM.			2	Encountered	5	8.		
			<u> </u>	No Groundwater	10			
			3					
					15			
SANDSTONE/CLAYSTONE: very low strength, gray and brown, weakly cemented; slightly weathered (Dawson Formation).	15.5		4		15			50/5!'』
[Interbedded very dense, slighlty clayey to clayey SAND and hard, sandy, silty CLAY; moist; SC and CL.]			5		20			50/4"
SANDSTONE: very low strength, brown, gray, and pink, weakly cemented; slightly weathered (Dawson Formation).	21.0							
[Very dense, slightly clayey SAND; moist; [A-2-6] SP-SC.]	25.3		6		25			50/3"/
BOTTOM OF BORING COMPLETED ON 6/5/2012								
LEGEND * Sample Not Recovered Grab Sample T Standard Penetration Test NOTES						Plastic L	20	Content É Liquid Limit
Refer to Figures A-1 and A-2 for explanation of symbols, cod definitions. The stratification lines represent the approximate boundaries.			Corrido	ighway 105 or Improveme				
and the transition may be gradual. 3. The discussion in the text of this report is necessary for a pro	oper un	ıderstaı	nding of	L		El Paso	County, Colo	rado
the nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified 5. USCS designation is based on visual-manual classification a		-	-		L	.OG OF	BORING	SW-01
testing. 6. The hole location was measured from existing site features a considered approximate.		June 20)12	2	3-1-01311-001			
Samples 4 and 5 were combined for water content, Atterberg analysis.		SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-3						

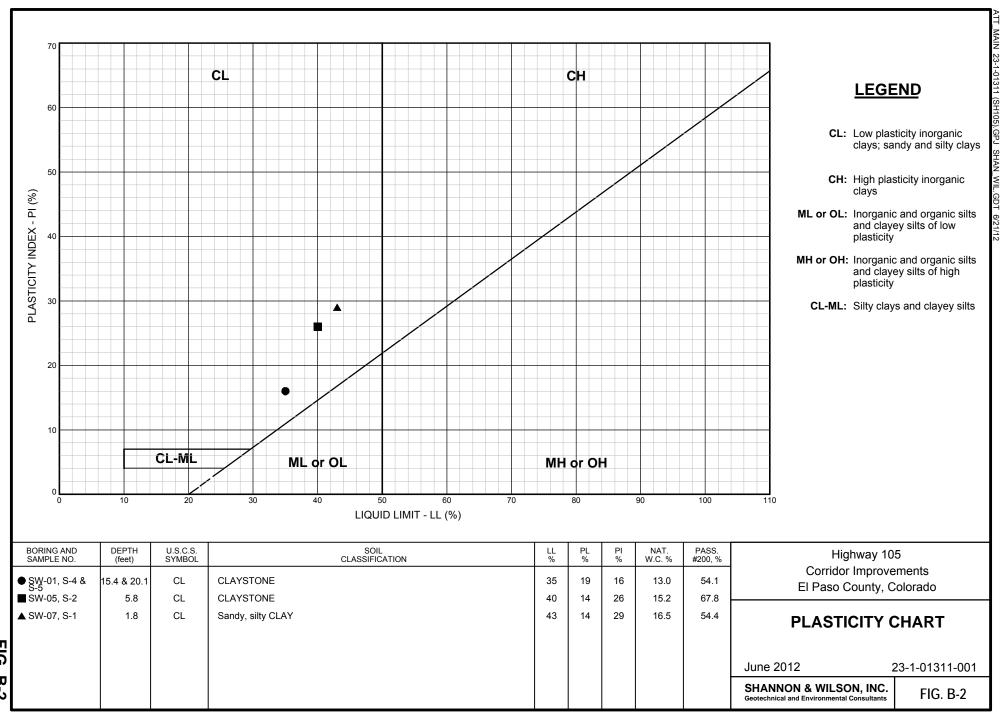
Total Depth: 10.3 ft. Northing: Top Elevation: ~ Easting: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drill _ Drill	lling Co	/lethod: Compar Equipn ommen	any: ment	Dak	lid Aug kota D etrich 5	rilling Rod T	_	4.5 in. AWJ Cathead	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.		Symbol	Samples		Ground Water	Depth, ft.	PENETRATION ▲ Hammer Wt. & D 0 20	rop: <u>140</u>		
Medium dense, red-brown, slightly silty, slightly fine gravelly SAND; moist; [A-2-4] SW-SM. SANDSTONE: very low strength, light gray with iron oxide stains, weakly cemented; slightly to	3.0		1	During Drilling			\$ 4			
moderately weathered (Dawson Formation). [Very dense, clayey SAND; moist; [A-2-6] SC.]			2	Groundwater Encountered		5	•		50/6".	
BOTTOM OF BORING COMPLETED ON 6/5/2012	10.3		3 🗔	0		10			50/3"4	
GOIVIFLE I ED GIV 0/3/2012						15				
						20				
						25				
LEGEND * Sample Not Recovered ☐ Standard Penetration Test								Fines (<0.0 Vater Cor		
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions. 2. The stratification lines represent the approximate boundaries between soil types,							Highway Corridor Impro El Paso County	ovements		
 and the transition may be gradual. 3. The discussion in the text of this report is necessary for a pro the nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified 	oper und	derstan nay var	nding of				.OG OF BOR			
USCS designation is based on visual-manual classification and selected lab testing. The hole location was measured from existing site features and should be considered approximate.						June 2012 23-1-01311-001 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-4				

Total Depth: 10.8 ft. Northing: Top Elevation: ~ Easting: Vert. Datum: Station: Horiz. Datum: Offset:	_ Drill _ Drill	lling M lling C Il Rig E ner Co	ompar Equipn	ny: ment:	Dak	id Aug cota D trich 5	Drilling Rod Type.: AWJ			
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.		Symbol	Samples		Ground Water	Depth, ft.	PENETRATION RESISTANCE(blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60			
Medium dense, brown, slightly silty, gravelly SAND; moist; [A-2-4] SP-SM.	3.0			Drilling						
SANDSTONE: very low strength, brown and pink, weakly cemented; moderately weathered (Dawson Formation).			2	Encountered During Drilling		5	• 50/5°/ ₂			
[Very dense, slightly silty, slightly gravelly to gravelly SAND; moist; [A-2-4] SW-SM.]				' No Groundwater Enc						
BOTTOM OF BORING COMPLETED ON 6/5/2012	10.8		3	- N		10	50/3",			
						15				
						20				
						25				
<u>LEGEND</u> ★ Sample Not Recovered ☐ Standard Penetration Test							0 20 40 60			
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, code definitions. 2. The stratification lines represent the approximate boundaries.							Highway 105 Corridor Improvements El Paso County, Colorado			
 The stratification lines represent the approximate boundaries and the transition may be gradual. The discussion in the text of this report is necessary for a prothe nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified LISCS designation is based on visual-manual classification at 	oper und	derstan	nding of				LOG OF BORING SW-04			
USCS designation is based on visual-manual classification and selected lab testing. The hole location was measured from existing site features and should be considered approximate.						June 2012 23-1-01311-001 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-5				

Total Depth: 10.3 ft. Northing: Top Elevation: ~ Easting: Vert. Datum: Station: Horiz. Datum: Offset:	Drill Drill	ling C I Rig I	lethod: ompan Equipm mment	y:i ient:i	Solid Au Dakota L Dietrich	Drilling Rod Type.: AWJ
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification line indicated below represent the approximate boundaries between material types, and the transition may be gradual.		Symbol	Samples	Ground	water Depth, ft.	PENETRATION RESISTANCE(blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60
6 inches of asphalt. 3 inches of base course. Medium dense, brown, slightly gravelly, slightly silty SAND; moist [A-2-4] SP-SM.	0.5		1	During Drilling		
CLAYSTONE: very low strength, brown and gray; moderately to highly weathered (Dawson Formation).	5.0		2	Encountered	5	5
[Hard, slightly silty to silty, sandy CLAY; moist; CL.] SANDSTONE: very low strength, gray and brown with iron oxide stains, weakly cemented; moderately to highly weathered (Dawson	8.3		3	No Groundwater	10	0 50/3",
Formation). [Very dense, clayey SAND; moist; SC.] BOTTOM OF BORING COMPLETED ON 6/5/2012					15	5
					20	0
					25	5
LEGEND ★ Sample Not Recovered ☐ Standard Penetration Test						0 20 40 60 \$\rightarrow\$ Fines (<0.075mm) \$\rightarrow\$ Water Content Plastic Limit Liquid Limit Natural Water Content
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codefinitions. 2. The stratification lines represent the approximate boundaries						Highway 105 Corridor Improvements El Paso County, Colorado
 and the transition may be gradual. The discussion in the text of this report is necessary for a prothen ature of the subsurface materials. Groundwater level, if indicated above, is for the date specifies. USCS designation is based on visual-manual classification and the subsurface of	ed and m	nay va	ry.			LOG OF BORING SW-05
testing. The hole location was measured from existing site features a considered approximate.				-	June 2	2012 23-1-01311-001 NNON & WILSON, INC. FIG. A-6


Total Depth: 10.5 ft. Northing: Top Elevation: ~ Easting: Vert. Datum: Station: Horiz. Datum: Offset:	Drill Drill	lling Co	fethod: Compan Equipmoment	ny: _ nent: _	Solid Aug Dakota D Dietrich S	Drilling	Hole Diam.: Rod Type.: Hammer Typ	AWJ	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.		Symbol	Samples	Ground	Water Depth, ft.			STANCE(blows/foot) 140 lbs / 30 inches 40 60	
8 inches of asphalt. 2 inches of base course. Medium dense, red-brown, slightly clayey, fine gravelly SAND; moist; [A-2-6] SW-SC. SANDSTONE: very low strength, brown, and br	0.7 0.8 - 3.0		1	d During Drilling		. ♦•			
red-brown, and pink, weakly cemented; moderately weathered (Dawson Formation). [Very dense, slightly clayey to clayey SAND; moist; [A-2-6] SP-SC/SC.]			2	Groundwater Encountered	5	,		50/8"2	
BOTTOM OF BORING COMPLETED ON 6/5/2012	10.5	20 10 20 10	3▶◀	NoO	10)		50/6"2	
					15	;			
					20)			
					25	5			
LEGEND * Sample Not Recovered Modified California Sampler						0	20		
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions.						Corric	Highway 105 dor Improvemo o County, Colo		
 The stratification lines represent the approximate boundaries and the transition may be gradual. The discussion in the text of this report is necessary for a pro the nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified 	oper und	derstan may var	nding of		<u>'</u>		BORING		
Groundwater level, it indicated above, is for the date specified and may vary. USCS designation is based on visual-manual classification and selected lab testing. The hole location was measured from existing site features and should be considered approximate.					June 2012 23-1-01311-001 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-7				


Total Depth: 10.5 ft. Northing: Top Elevation: ~ Easting: Vert. Datum: Station: Horiz. Datum: Offset:	Drill Drill	ling C I Rig E	ethod: ompan Equipm mment	ent: _	Solid / Dakota Dietric	a D	rilling		R	lole lod ⁻ lamr	Гуре		e:		4.5 AW Cath	′J	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Deptn, π.	PENE ▲ Ham						40 I				
3 inches of base course.	0.5 0.8 2.0		1 Sulk	During Drilling				Н	D								\
CLAY; moist; [A-6] CL.	5.5		2	Groundwater Encountered D		5										7	75/9"4
[Very dense, slightly fine gravelly, clayey SAND; moist; SC.] BOTTOM OF BORING COMPLETED ON 6/5/2012	10.5		3)	No		10										5	50/6"4
						15											
						20											
7						25											
LEGEND * Sample Not Recovered Grab Sample Standard Penetration Test Modified California Sampler NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, code definitions. 2. The stratification lines represent the approximate boundaries and the transition may be gradual. 3. The discussion in the text of this report is necessary for a proposition of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified to USCS designation is based on visual-manual classification are testing. 6. The hole location was measured from existing site features are considered approximate.							0 Pla	stic	• Lim	% % it 	Wat	es (< ter (0.07 Con	ten .iqui	t d Li	mit	60
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, code definitions. 2. The stratification lines represent the approximate boundaries and the transition may be gradual.							Co El P	rrido	or I	-	ove	eme		0			
3. The discussion in the text of this report is necessary for a property the nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified to USCS designation is based on visual-manual classification and the station.	and m	nay var	y.		June		. OG ()F	В	OF	RIN						11
testing. 6. The hole location was measured from existing site features ar considered approximate.	June 2012 23-1-01311-001 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-8																


Total Depth: 11.5 ft. Northing: Top Elevation: ~ Easting: Vert. Datum: Station: Horiz. Datum: Offset:	Dril Dril	lling Co Il Rig E	/lethod: Compan Equipm omment	ny: nent: _	Solid Aug Dakota D Dietrich 5	rilling	Hole Diam.: Rod Type.: Hammer Typ	4.5 in. AWJ e: Cathead	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.		Symbol	Samples	Ground	Water Depth, ft.			STANCE(blows/foot) 140 lbs / 30 inches 40 60	
Loose, dark brown, clayey, fine gravelly SAND; moist; (Fill) [A-2-6] SC.			1			0 : : : : : : : : : : : : : : : : : : :	20	40 00	
Medium dense to dense, red-brown, slightly silty, slightly fine gravelly SAND; [A-2-4] SW-SM.	- 3.5			Encountered During Drilling	5	•			
			,	Groundwater En					
			, -	No Grour	10				
BOTTOM OF BORING COMPLETED ON 6/5/2012	11.5	00000	3						
					15				
					20				
					25				
LEGEND * Sample Not Recovered Modified California Sampler ☐ Standard Penetration Test						0	20 ♦ % Fines (• • % Water (•		
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and						Corrido	ghway 105 or Improveme		
The stratification lines represent the approximate boundaries and the transition may be gradual. The discussion in the text of this report is necessary for a pro	definitions. The stratification lines represent the approximate boundaries between soil types, and the transition may be gradual. The discussion in the text of this report is necessary for a proper understanding of						County, Colo		
the nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified 5. USCS designation is based on visual-manual classification at		-	-		L June 20		BORING 2	3-1-01311-001	
testing. 6. The hole location was measured from existing site features and should be considered approximate.					SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-9				

Total Depth: 10.5 ft. Northing:	Drill Drill	lling Co	fethod: Compan Equipm omment	ny: nent: _	Solid Aug Dakota D Dietrich 5	Drilling Rod Type.: AWJ
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.		Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE(blows/food ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 66
Medium dense, dark brown, slightly fine gravelly, clayey SAND; moist; (Possible Fill) [A-2-6] SC.			1	During Drilling		● ◇ ▲
SANDSTONE: very low strength, white and pink, weakly cemented; moderately weathered (Dawson Formation).	5.0	<i>2.77</i>	2	No Groundwater Encountered	5	5
[Very dense, slightly silty, gravelly SAND; moist; SP-SM.]	10.5		3	No Groundw	10	50/6
BOTTOM OF BORING COMPLETED ON 6/5/2012	10.0					
					15	5
					20	
					25	5
LEGEND * Sample Not Recovered Modified California Sampler ☐ Standard Penetration Test						0 20 40 6
NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, codes, abbreviations and definitions.						Highway 105 Corridor Improvements El Paso County, Colorado
 The stratification lines represent the approximate boundaries and the transition may be gradual. The discussion in the text of this report is necessary for a prothe nature of the subsurface materials. Groundwater level, if indicated above, is for the date specified 	oper und	derstan	nding of	f	L	LOG OF BORING SW-09
USCS designation is based on visual-manual classification at testing.	and seled	ected la	ab		June 20	23-1-01311-001
6. The hole location was measured from existing site features a considered approximate.		SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-10				

Total Depth: 21.5 ft. Northing: Top Elevation: ~ Easting: Vert. Datum: Station: Horiz. Datum: Offset:	_ Dril _ Dril	lling C Il Rig E	ethod: ompan Equipm mment	y: _ nent: _	Solid Aug Dakota D Dietrich S	Prilling	Hole Diam.: Rod Type.: Hammer Type	4.5 in. AWJ e: Cathead		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	water Depth, ft.			TANCE(blows/foot) 40 lbs / 30 inches 40 60		
4 inches of asphalt. 3 inches of base course. Loose to dense, dark brown, silty SAND; moist; (Fill) [A-2-4] SM.	0.3 0.6	***************************************	1 Sulk		5	•	• \$			
Medium dense, brown and gray, trace to slightly silty, slightly fine gravelly SAND; wet; SP-SM/SP.	8.0		3	During Drilling ∮	10	♦				
			Т		15 20					
Medium dense, brown and gray, clayey SAND; wet; SC. BOTTOM OF BORING COMPLETED ON 6/5/2012	21.0 21.5	777	4		25					
LEGEND * Sample Not Recovered ☐ Grab Sample Modified California Sampler ☐ Standard Penetration Test * NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, code definitions. 2. The stratification lines represent the approximate boundaries and the transition may be gradual. 3. The discussion in the text of this report is necessary for a prothe nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified 5. USCS designation is based on visual-manual classification are testing. 6. The hole location was measured from existing site features are considered approximate.	Vater L	evel A	ΤD			0	20			
Standard Penetration Test NOTES 1. Refer to Figures A-1 and A-2 for explanation of symbols, code definitions. 2. The stratification lines represent the approximate boundaries				· [Corri	Highway 105 dor Improveme o County, Colo			
and the transition may be gradual. 3. The discussion in the text of this report is necessary for a prothen nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specified to the subsurface on visual-manual classification are testing.	d and n	nay var	y.		L June 20		F BORING	SW-10 3-1-01311-001		
ଥି 6. The hole location was measured from existing site features at considered approximate.	testing.The hole location was measured from existing site features and should be considered approximate.					SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-11				

R-VALUE ASTM D 2844

CLIENT Shannon & Wilson JOB NO. 2481-177

BORING NO. SAMPLED

DEPTH 0-5' DATE TESTED 06/20/12 WAR SAMPLE NO. SW-OK

SOIL DESCR. 23-1-01311-011

LOCATION: SH PO5 Improvements

MOLD#	15	12	16
WEIGHT OF WET SOIL & DISH (g)	1177.97	1152.98	1110.81
WEIGHT OF DRY SOIL & DISH (g)	1055.3	1045.51	1010.86
WEIGHT OF LOST MOISTURE (g)	122.67	107.47	99.95
WEIGHT OF DISH (g)	17.73	15.67	14.16
WEIGHT OF DRY SOIL (g)	1037.57	1029.84	996.70
MOISTURE CONTENT (%)	11.82	10.44	10.03
SAMPLE HEIGHT (in.)	2.59	2.54	2.45
TOTAL WEIGHT OF WET SAMPLE (g)	1168.3	1140.7	1090.9
WET DENSITY (PCF)	136.7	136.1	135.0
DRY DENSITY (PCF)	122.3	123.3	122.7
EXUDATION PRESSURE (PSI)	208.91	334.53	679.87
2000 LB. LOAD DIAL READING (PSI)	120	65	30
DISPLACEMENT TURNS	4.09	4.26	3.79
CALCULATED R-VALUE	17	46	74
CORRECTED R-VALUE	18	49	74

CORRECTED R-VALUE AT 300 PSI: 40

Data entered by Data checked by ____

FileName: SVRV05SH

DAW

Date: 6/22/2012 Date: 6/22/12

FIG. B-3

SHANNON & WILSON, INC.

APPENDIX E PAVEMENT DESIGN CALCULATIONS

APPENDIX E

PAVEMENT DESIGN CALCULATIONS

ATTACHMENTS

Calc. No. 1 – Highway 105 Pavement Overlay and Widening Design (19 Pages)

Calculation No.	1
-----------------	---

CALCULATION SUMMARY

_				
ப	ro	Δ	∩t	•
	ıv	ᆫ	·ι	

SH105

Job No:

23-1-01311-002

Feature and

Pavement Overlay and Widening Design

Subject::

Calculation Purpose (describe purpose/goal of calculation)

Design pavements for the proposed SH105 widening.

General Approach/Assumptions (please describe in general – can refer to calculation sheets for more information)

Alignment consists of Western and Eastern Segment divided at Lake Woodmoor Dr. The Western Segment is split into two sub-segments at Knollwood Dr. Overlay will be considered in the Western segment

Revisions to Analyses:

- Revised El Paso County Engineering Criteria Manual used (revised July 29, 2015)
- Additional traffic projections for SH105 were analyzed for critical traffic loading.
- Traffic for the Eastern Segment will consist of a two-traffic lane road (with a center turning lane). Western Segment consists of four traffic lanes (two EB and two WB).
- Pavement sections for local cross streets

Traffic Information: ADT provided by HDR, West Segment: Urban Principal Arterial (4-lane), East Segment: Rural Principal Arterial, (4-lane)

Existing Pavement Assessment: S&W soil survey, S&W pavement cores, and Kumar & Associates FWD testing.

Subgrade Strength: Western Segment: FWD analysis (average value of 5,400 psi [R-value of about ~22.7]). Eastern Segment: Average R-Value = 19, exclude high outlier of 62 from boring SW-P-08.

Assume: 20 year pavement design

Sources of Data and Equations (please describe in general – can refer to calculation sheets for more information – if other calculations are referenced, please include)

Flexible Pavement Design: In-house Pavement Design Spreadsheet (per El Paso Co design criteria)

Calculation	No.	1	

CALCULATION SUMMARY

Summary and Conclusions (please describe general conclusions – do not only refer to calculation sheets, but include conclusion here)

Traffic Loading:

Western Segment:

East of Knollwood Dr projected ESAL of 2,628,000 and 1,611,000 west of Knollwood Dr; West Segment County Min. ESAL (Urban)= 5,256,000

Eastern Segment:

County Min. ESAL (Rural)= 689,850 to 2,628,000 depending of the arterial classification; projected ESAL of 1,810,000

Cross Streets:

County minimum for rural/urban (low-volume) of 36,500

Recommend Pavement Sections:

See Summary Table for recommended pavement sections

PM Check of Assumptions and Input Properties

Rev No.	Calgulation By	Date	Checked By	Date
2	(Vand Sul	12/5/16	Ig lil	12/5/16
PM F	Review of Assumptions and In	put Properties	2) - */ »	

	Segment	Subrade Modulus (psi)	18 kip ESAL	Pavement Section
			2,216,000	7.5" HMA over 8" ABC
	Eastern-most I-25 Ramps to	5400	(Projected Traffic)	2" mill, 2" HMA overlay
	Knollwood Dr.	0,100	5,256,000	8.5" HMA over 8" ABC
SH105 West Seament			4-lane Priciple Arterial)	2" mill, 2" HMA overlay
(Urban Arterial			1,611,000	1 X HMA over 8" ABC
	Knollwood Dr to Lake	1	(Projected Traffic)	2" mill, 4.5" HMA overlay
	Woodmoor Dr.	2,400	5,256,000	8.5" HMA over 8" ABC
			4-lane Priciple Arterial)	2" mill, 6.0" HMA overlay
			lgto,000-2,216,000 (Projected Traffic)	7.5" HMA over 8" ABC
SH105 East Segment	Lake Woodmoor Dr to SH 83	4,800	689,850 (County Minimum for Minor Arterial)	6.0" HMA over 8" ABC
The state of the s			2,628,000 (County Minimum for 4-lane Priciple Arterial)	8.0" HMA over 8" ABC
Cross Streets	Low Traffic Volume Cross	4,800	36,500 (County Minimum for Local Roads)	3.5" HMA over 6" ABC

Table 1.4: Comparison of Average Daily Traffic (ADT) Count Data and Alternative Traffic Forecasts	age Daily Tra	affic (ADT) (Count Data	and Alterna	tive Traffic F	orecasts		
:	2005)5	2010	10	2035	5	20	2040
Count Location	Count	Raw Model	Count	Raw	CDOT	Raw	CDOT	Adjusted
North of 3rd Street	13,634	8,278	15,504	8,395	24,854	16,885	26,724	24,929
North of SB I-25 On-Ramp	16,692	8,278	17,974	8,395	24,387	17.100	25,669	29,334
West of Woodmoor Drive	15,880	13,336	17,700	(13,525)	26,980	23,195	28,880	28,160
East of Woodmoor Drive	15,580	10,432	17,480	10,580	26,980	20,030	28,880	27,385
West of Jackson Creek Parkway		9,772	16,396	10,390		16,205		22.201
West of Knollwood Drive		10,600	15,479	12,120		19,885		22,499
East of Knollwood Drive		11,080	12,388	12,300		21,235		20,480
West of Lake Woodmoor Drive		11,080	12,388	12,300		21.235		20,930
West of Eamplay Drive		11,043	12,388	8,405		16,585		20,568
East of Fairplay Drive		7,162	10,779	6,155		13,980		18.604
East of Furrow Road		7,733	7,563	6,290		14,625		15,898
West of Roller Coaster Road		5,656	4,778	5,565		12,610		13,397
East of Roller Coaster Road		6,516	5,188	6,365	1	13,885		15,062
East of Canterbury Drive		096'9	5,188	6,150		13,460		14,422
West of Highway 83		7,404	5,188	6,885	,	15,855		17,552
Course http://dtdoppe.golomododotinfo/otin/	Their latie IT.	. 11 1 23		200 4 1 4 70 41				

Notes: Red text indicates estimated ADT (from counts for another year) vs. actual ground count ADT for that year. Blue text indicates CDOT forecast ADT volumes and PPACG model-generated ADT volumes. Source: http://dtdapps.coloradodot.info/otis/TrafficData#ui/1/2/0/criteria/105A/4.731/9.48/true/true/

42017 ADT = 13,525 (1+0,0248) = 16,049 verious/day Frangle Calc: $\Gamma = \left\{ \left[\frac{28,160}{13,525} \right]^{(1/30)} - 1 \right\} \times 100\% = 2,48\%$

From:

Mark Vessely

To: Subject: David Asunskis; Joey Goode Fwd: Highway 105 Traffic

Date:

Thursday, July 28, 2016 2:15:35 PM

FYI

Begin forwarded message:

From: "Seyer, John M." < John.Seyer@hdrinc.com>

Date: July 28, 2016 at 12:45:07 PM PDT

To: "McQuilkin, Stephen" < Stephen.McQuilkin@hdrinc.com >, Mark

Vessely < MJV@shanwil.com >

Subject: RE: Highway 105 Traffic

1 % Truck Traffic

Steve - I'd go with 4%. SH 105 carries ~3% west of I-25 and SH 83 carries ~5%, so 4% seems like a good middle ground.

John Seyer, PE, PTOE D 970.416.4407 M 970.227.7941

E. of Woodmoor 2017 ADT = 19,380 (1+0.0139) = 19,923 W. of Lake Woodmoor: LOTAD = 12,495(1+0,0209) = 13,023

hdrinc.com/follow-us

From: McQuilkin, Stephen

Sent: Thursday, July 28, 2016 8:32 AM

To: Mark Vessely Cc: Seyer, John M.

Subject: Highway 105 Traffic

- Localed West of I-25 NBoff Ramp

Mark, here are ADT's for Highway 105. These are 2-way ADT's East of Woodmoor Drive: 2015 traffic counts = 19,380, 2040 projections = 27,385 West of Lake Woodmoor Drive: 2015 traffic counts = 12,495, 2040 projections = 20,930

I don't know what to assume for truck percentage - 8%? It is more residential than commercial/industrial but they do get some truck 'cut-through' traffic between SH 83 and

1 25.

John, any thoughts?

Steve McQuilkin, PE Senior Transportation Project Manager

HDR

1670 Broadway Suite 3400 Denver, CO 80202-4824 D 303.318.6327 M 720.301.2083 stephen.mcquilkin@hdrinc.com

hdrinc.com/follow-us

4 301.2083 West Segment 1 27,385 = (Irr) 25 / 19,380 r=1.39% Volumer with Assume Traffic , Change at Knollwood Dr.

Flexible Pavement 18-kip Equivalent Single-Axle Loading (ESAL) Worksheet

Location: SH 105, El Paso County Colorado - West Segment 2 (Knollwood to Lake Woodmoor Dr)

Comment: Analysis based on Table D.21 of the 1993 AASHTO Guide for the Design of Pavement Structures

Paving Year: 2017 h= 2017 APT	Life (N): 20 years ⁽³⁾	Fraffic (ADT) ⁽¹⁾ : 12,300 vehicles per day $d = 1/(1+\tau/100)$	Traffic (ADT) ⁽¹⁾ : 13,924	ed 2037 ADT ⁽¹⁾ . 19,846 vehicles per day \leq	7% 62.1
Paving Year: 2017	Pavement Design Life (N): 20	2010 Average Daily Traffic (ADT)(1): 12,30	2017 Average Daily Traffic (ADT)(1): 13,92	Estimated 2037 ADT ⁽¹⁾ : 19,84	Growth Rate (r): 1.79

[(1+r/100)^N-1]/(r/100)

2017 ADT * (a/100)

Equations

	a	q	o	p	a	J	ы	h		
FHWA Vehical Classification and Description	Traffic (1) 2016 Percentage AADT	2016 AADT	Total 2016 Traffic	Growth	Design Traffic Volume (total two-way volume)	Flexible (2) Pavement Equivalency Factor	Roadway Design 18k ESAL	Directional ⁽⁴⁾ Distribution Factor	Traffic ⁽⁴⁾ Lane Factor	Design Lane 18k ESAL
1) Descender Core and Dislam Tarrella	000	2000								
1) I assertiget Cats and Fickup Hucks	300	13,36/	5/0,6/8,4/9,0/5	23.79	116.075.102	0	348 225	0.50	00	102 331
2) Single Unit Trucks	1 6	278	101 647	22.70	7 410 221	00000	077,010	0.00	6.0	10/,001
	1	0/4	140,101	47.13	2,410,231	0.2490	602,140	0.50	6.0	270.963
 Combination Irucks 	2	278	101,647	23.79	2,418,231	1.0870	7 628 617	0.50	00	1 100 070
							Carolina Carolina	0000	0.7	1,102,0/0
All Vehicles	100	13.924			120 011 565		2 570 000			******
					COCKETAGET		2070100			6 1 247

- 1) The current and projected ADT were based on traffic data provided by HDR.
- 2) Table 1.2 Colorado Equivalency Factors. CDOT Pavment Design Manual (2014) provides a 3-Bin Classification of traffic with factors for each

1,611,000 ~

Design ESAL

- 3) Assume a 20 year pavement design life.
- 4) The CDOT Pavement Design Manual recommends a directional distribution factor of 0.5 and lane distribution factor of 0.9 percent for a four lane (two direction) road.

23-1-01311-202

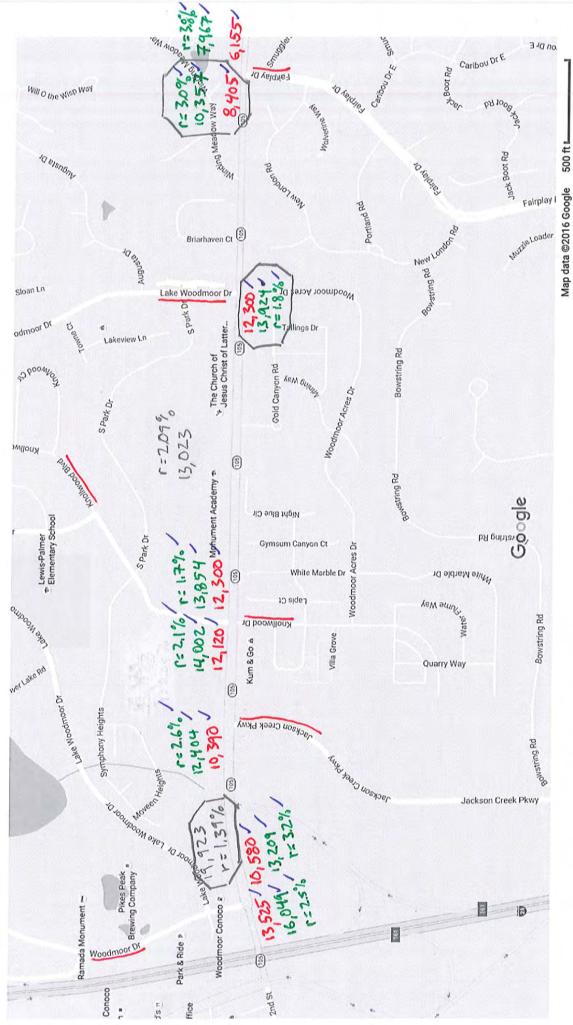
Flexible Pavement 18-kip Equivalent Single-Axle Loading (ESAL) Worksheet

Comment: Analysis based on Table D.21 of the 1993 AASHTO Guide for the Design of Pavement Structures Location: SH 105, El Paso County Colorado - East Segment (east of Lake Woodmoor Dr)

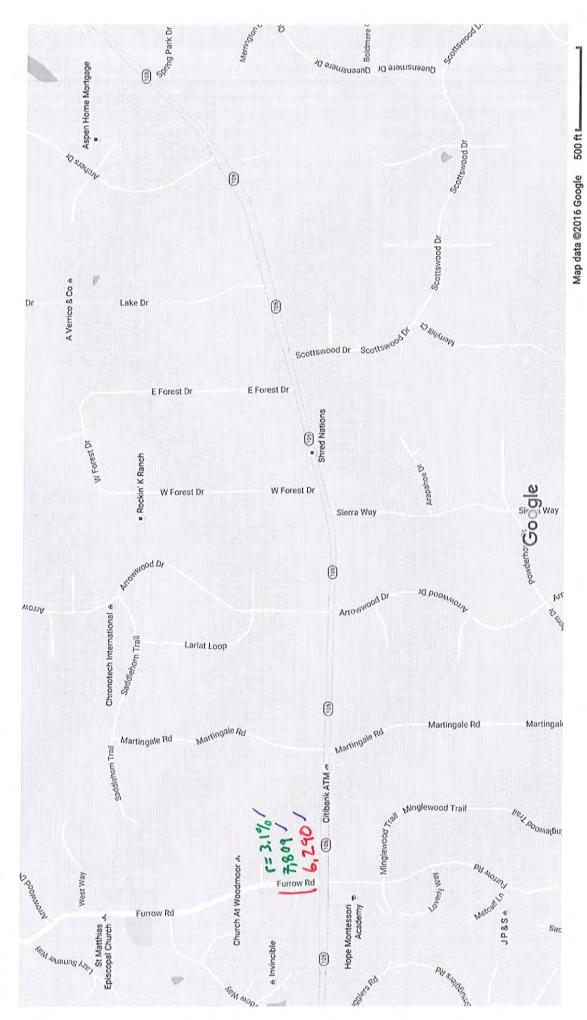
Estimated 2037 ADT⁽¹⁾: 18,807 vehicles per day vehicles per day years⁽³⁾ Growth Rate (r): 3.03 % 8,405 10,357 2017 20 Paving Year: Pavement Design Life (N): 2010 Average Daily Traffic (ADT)(1). 2017 Average Daily Traffic (ADT)(1):

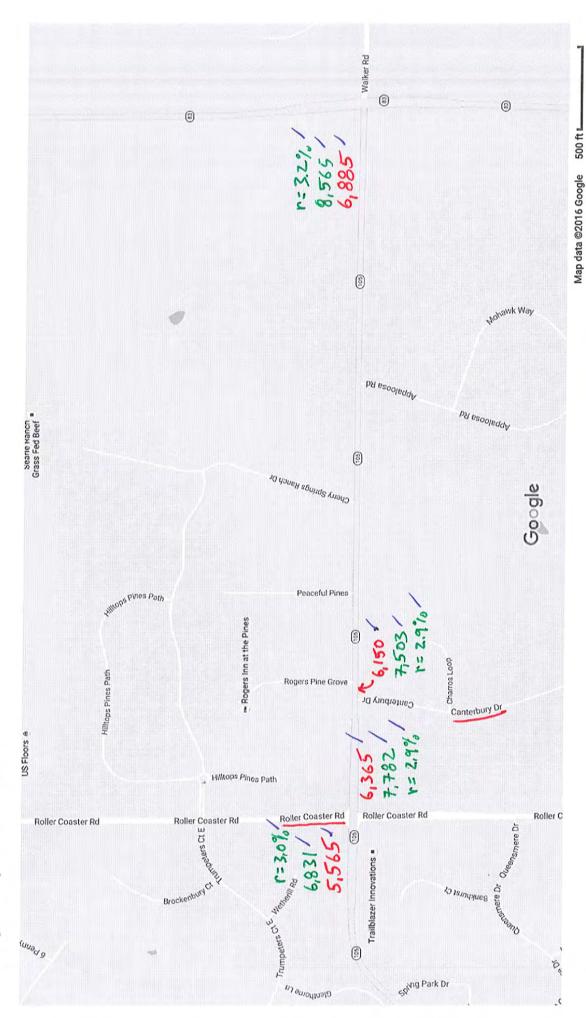
 $d = [(1+r/100)^{N}-1]/(r/100)$ b = 2017 ADT * (a/100)Equations j=g*h*i c = b * 365p * 2 = 2 g= e * f

1.809.127			3,015,213		101,865,308			10,357	100	All Vehicles
										* ** *****
101,000,01										
1328 731	1.0	/ 09.0	2,214,552	1.0870	2,037,306	26.95	75,604	207	. 7	5) Combination Lucks
504,573	0.1	00:00	102,100	200				100	, ,	2) Combination Tarala
204 272	0.1	1 090	507 289	0.2490	2.037.306	26.95	75,604	207	2 /	 Single Unit Trucks
176 023	1.0	09.0	293,372	0	969'061'16	26.95	96 9,942 3,629,007	9,942	96	 Passenger Cars and Pickup Trucks
Design Lane 18k ESAL	Traffic ⁽⁴⁾ Lane Factor	Directional ⁽⁴⁾ Distribution Factor	Roadway Design 18k ESAL	Flexible (2) Pavement Equivalency Factor	Design Traffic Volume (total two-way volume)	Growth Factors	Total 2016 Traffic	2016 AADT	Traffic (1) 2016 Percentage AADT	FHWA Vehical Classification and Description
	1	ų	ы	J	a	p	3	q	æ	


- 1) The current and projected ADT were based on traffic data provided by HDR.
- 2) Table 1.2 Colorado Equivalency Factors. CDOT Pavment Design Manual (2014) provides a 3-Bin Classification of traffic with factors for each classification.

1,810,000


Design ESAL


- 3) Assume a 20 year pavement design life.
- 4) The CDOT Pavement Design Manual recommends a directional distribution factor of 0.6 and lane distribution factor of 1 percent for a two lane road, one lane per direction.

23-1-01311-202

Projected ADT & Growth Rate (Projected from 2040 Adjusted Hodel ADT ESAL Calc. Email USeel 2010 Ray Hobel ADT for SH105 71/82/1 Values Projected ADT Indicates 2017 4107

Appendix D Pavement Design Criteria and Report

Adopted: 12/23/2004 Revised: 7/29/2015

REVISION 5

Section D.3.4-D.4.1

Table D-2. Minimum Pavement Sections

Roadway Functional Classification	ESAL	Comp Secti		Portland Cement Concrete (in)
Giassilication		Asphalt (in)	Base (in)	Concrete (III)
Rural				/
Local	36,500	3.0	4.0	5.0
Minor Collector	109,500	3.0	6.0	5.0
Major Collector	273,750	3.0	8.0	6.0
Minor Arterial	689,850	4.0	8.0	6.0
Principal Arterial, 4-lane	2,628,000	5.0	8.0	6.0
Principal Arterial, 6-lane	9,198,000	6.5	8.0	6.0
Expressway, 4-lane	3,942,000	6.5	10.0	6.0
Expressway, 6-lane	12,264,000	6.5	10.0	7.0
Urban	-1			
Local (low volume)	36,500	3.0	4.0	5.0
Local	292,000	3.0	8.0	5.0
Residential Collector	821,000	4.0	8.0	6.0
Nonresidential Collector	821,000	4.0	8.0	6.0
Minor Arterial	1,971,000	5.0	8.0	6.0
Principal Arterial, 4-lane	5,256,000	5.0	8.0	6.0
Principal Arterial, 6-lane	8,176,000	6.5	8.0	6.0
Expressway, 4-lane	7,884,000	6.5	8.0	6.0
Expressway, 6-lane	9,811,000	6.5	10.0	7.0

D.3.4 Flexible Pavement Strength Coefficients

The standard design coefficients for pavement materials are provided in Table D-3. Design values shall be verified by predesign mix test data and supported by daily construction tests.

Portland Cement Concrete Working Stress (ft) D.3.5

The working stress (ft) shall be 75% of that provided by third-point beam loading which shall have minimum laboratory 28-day strength of 650 psi based on actual tests of materials to be used.

D.3.6 Gravel Roads

A minimum thickness of 6-inches shall be used on all newly constructed gravel roads meeting material specifications presented in Table D-7.

PAVEMENT DESIGN PROCEDURE D.4

D.4.1 **Flexible Pavements**

The following procedure shall be used in determining the Structural Number (SN) and thickness of the pavement being designed.

Location: State Highway 105 Rural Principal Arterial, 4-lane

Comment: West Segment 1 - Projected ESAL (I-25 to Knollwood)

1. Pavement Design Life:

Traffic Loading (W18):

	20.0	years
18k ESALs:	2,216,000	per lane

MR:

3. Serviceability:

F	p ₀ :	4.5	1/
	p _t :	2.5	1

ΔPSI: 2.0

4. Subgrade Resilient Modulus (MR):

R-value: 22.7

Section D.4.1 (C)

$$S_1 = [(R-value - 5) / 11.29] + 3$$

$$M_R = 10^{[(S_1 + 18.72)/6.24]} =$$

5,400 psi

A Company of the Comp

5. Reliability:

Z_R: -0.842

5,400 psi

6. Design Standard Deviation (So):

7. Required Structural Numbers (SN_i): [Fig. D-1]

Analysis M _R		
32,883	SN ₁ :	2.063
5,400	SN ₂ :	3.988
-NA-	SN ₃ :	-NA-

$$\log_{10}(W_{18}) = Z_R S_o + 9.36 \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log_{10}(M_R) - 8.07$$

Layer Analysis

8. Payement Materials Characterization:

Table D-3

Layer	Material	Structural Layer Coefficients	Drainage Coefficients	Layer Modulus (psi)
1	HMA	a ₁ : 0.44		1 = 350
2	ABC	a ₂ ; 0.11	m ₂ : 1.00	32,883
3		a ₃ :	m ₃ :	

9. Solutions for thicknesses: [Figure 3.2, Part II of 1993 AASHTO]

$$SN*_1 = a_1D*_1 >= SN_1$$

$$SN*_2 = a_1D*_1 + a_2D*_2m_2 >= SN_2$$

$$SN*_3 = a_1D*_1 + a_2D*_2m_2 + a_3D*_3m_3 >= SN_3$$

		Recommended Thicknesses		
Layer	Material	Thickness (D*i)	SN*i	SNi
1	HMA	7.5 inches	3.300	2.063
2	ABC	8.0 inches	4.180	3.988
3		inches		

Location: State Highway 105 Rural Principal Arterial, 4-lane

Comment: West Segment 2 - Projected ESAL (Knollwood to Lake Woodmoor Dr)

1. Pavement Design Life:

Traffic Loading (W18):

	20.0	years
18k ESALs:	1,611,000	per lane

M_R:

3. Serviceability:

p ₀ :	4.5
p _t :	2,5

ΔPSI: 2.0

4. Subgrade Resilient Modulus (MR):

Section D.4.1 (C)

$$S_1 = [(R-value - 5) / 11.29] + 3$$

 $M_R = 10^{[(S_1 + 18.72)/6.24]} =$

5. Reliability:

5,400 /

6. Design Standard Deviation (So):

7. Required Structural Numbers (SNi): [Fig. D-1]

Analysis M _R		
32,883	SN ₁ :	1.957
5,400	SN ₂ :	3.802
-NA-	SN ₃ :	-NA-

$$\log_{10}(W_{18}) = Z_R S_o + 9.36 \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log_{10}(M_R) - 8.07$$

Layer Analysis

8. Pavement Materials Characterization:

Table D-3

Layer	Material	Structural Layer Coefficients	Drainage Coefficients	Layer Modulus (psi)
1	HMA	a ₁ : 0.44		181
2	ABC	a ₂ : 0.11	m ₂ : 1.00	32,883
3	4 - 4 - 4 - 1	a ₃ :	m ₃ :	

9. Solutions for thicknesses: [Figure 3.2, Part II of 1993 AASHTO]

$$SN*_1 = a_1D*_1 >= SN_1$$

$$SN*_2 = a_1D*_1 + a_2D*_2m_2 >= SN_2$$

$$SN*_3 = a_1D*_1 + a_2D*_2m_2 + a_3D*_3m_3 >= SN_3$$

	Recommended Thicknesses					
Layer	Material	Thickness (D*i)	SN*i	SNi		
1	HMA	7.0 inches	3.080	1.957		
2	ABC	8.0 inches	3.960	3.802		
3		inches				

Location: State Highway 105 Rural Principal Arterial, 4-lane

Comment: West Segment - Urban 4 Iane Principal Arterial, Minimum ESAL (I-25 to Lake Woodmoor Dr)

1. Pavement Design Life:

Traffic Loading (W18):

	20.0	years
18k ESALs:	5,256,000	per lane

3. Serviceability:

recaonic	y ·
p ₀ :	4.5
p _t :	2.5

ΔPSI: 2.0

4. Subgrade Resilient Modulus (MR):

Section D.4.1 (C)

$$S_1 = [(R-value - 5) / 11.29] + 3$$

 $M_R = 10^{[(S_1^{+} 18.72)/6.24]} =$

5. Reliability:

psi

5,400

6. Design Standard Deviation (So):

7. Required Structural Numbers (SN_i): [Fig. D-1]

Analysis M _R		
32,883	SN ₁ :	2.375
5,400	SN ₂ :	4.521
-NA-	SN ₃ :	-NA-

$$\log_{10}(W_{18}) = Z_R S_o + 9.36 \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta t SI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log_{10}(M_R) - 8.07$$

Layer Analysis

8. Pavement Materials Characterization:

-	Ph 1	100		Th	-
- 1	- 2	1	0	D	. 4
1.4	L CL	v,		10	-

Layer	Material	Structural Layer Coefficients	Drainage Coefficients	Layer Modulus (psi)
1	HMA	a ₁ : 0.44	-	424
2	ABC	a ₂ : 0.11	m ₂ : 1.00	32,883
3		a ₃ :	m ₃ :	

9. Solutions for thicknesses: [Figure 3.2, Part II of 1993 AASHTO]

$$SN*_1 = a_1D*_1 >= SN_1$$

$$SN*_2 = a_1D*_1 + a_2D*_2m_2 >= SN_2$$

$$SN*_3 = a_1D*_1 + a_2D*_2m_2 + a_3D*_3m_3 >= SN_3$$

	Recommended Thicknesses					
Layer	Material	Thickness (D* _i)	SN*i	SNi		
1	HMA	8.5 inches	3.740	2.375		
2	ABC	8.0 inches	4.620	4.521		
3		inches				

Location: State Highway 105 Rural Principal Arterial, 4-lane

Comment: East Segment - Projected ESAL (Knollwood to SH83)

1. Pavement Design Life:

Traffic Loading (W18):

	20.0	years
18k ESALs:	1,810,000	per lane

Serviceability:

p ₀ :	4.5	
p _t :	2.5	

ΔPSI: 2.0

4. Subgrade Resilient Modulus (MR):

Section D.4.1 (C)

$$S_1 = [(R-value - 5) / 11.29] + 3$$

 $M_R = 10^{[(S_1 + 18.72)/6.24]} =$

5. Reliability:

4,800 psi

6. Design Standard Deviation (So):

7. Required Structural Numbers (SN_i): [Fig. D-1]

Analysis M _R		
32,883	SN ₁ :	1.995
4,800	SN ₂ :	4.030
-NA-	SN ₃ :	-NA-

$$\log_{10}(W_{18}) = Z_R S_o + 9.36 \log_{10}(SN + 1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log_{10}(M_R) - 8.07$$

Layer Analysis

8. Pavement Materials Characterization:

Layer	Material	Structural Layer Coefficients	Drainage Coefficients	Layer Modulus (psi)
1	HMA	a ₁ : 0.44		0.5
2	ABC	a ₂ : 0.11	m ₂ : 1.00	32,883
3		a ₃ :	m ₃ :	

9. Solutions for thicknesses: [Figure 3.2, Part II of 1993 AASHTO]

$$SN*_1 = a_1D*_1 >= SN_1$$

$$SN*_2 = a_1D*_1 + a_2D*_2m_2 >= SN_2$$

$$SN*_3 = a_1D*_1 + a_2D*_2m_2 + a_3D*_3m_3 >= SN_3$$

	Recommended Thicknesses					
Layer	Material		Thickness (D*i)	SN*i	SNi	
1	HMA	7.5	inches	3.300	1.995	
2	ABC	8.0	inches	4.180	4.030	
3			inches			

Location: State Highway 105 Rural Principal Arterial, 4-lane

Comment: East Segment - Rural 4 lane Principal Arterial, Minimum ESAL (Lake Woodmoor Dr to SH 83)

1. Pavement Design Life:

Traffic Loading (W18):

	20.0	years	
18k ESALs:	2,628,000	per lane	

3. Serviceability:

	y	iceabini
1	4.5	p ₀ :
/	2.5	p _t :

ΔPSI: 2.0

Subgrade Resilient Modulus (M_R):

Section D.4.1 (C)

$$S_1 = [(R-value - 5) / 11.29] + 3$$

 $M_R = 10^{[(S_1 + 18.72)/6.24]} = 4,781 \text{ psi}$

M_R: 4,800 / psi

5. Reliability:

Z_R: -0.842

6. Design Standard Deviation (So):

7. Required Structural Numbers (SN_i): [Fig. D-1]

Analysis M _R		
32,883	SN ₁ :	2.122
4,800	SN ₂ :	4.262
-NA-	SN ₃ :	-NA-

$$\log_{10}(W_{18}) = Z_R S_o + 9.36 \log_{10}(SN + 1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log_{10}(M_R) - 8.07$$

Layer Analysis

Pavement Materials Characterization:

Table D-3

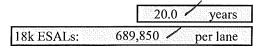
Layer	Material	Structural Layer Coefficients	Drainage Coefficients	Layer Modulus (psi)
1	HMA	a ₁ : 0.44		
2	ABC	a ₂ : 0.11	m ₂ : 1.00	32,883
3		a ₃ :	m ₃ :	

9. Solutions for thicknesses: [Figure 3.2, Part II of 1993 AASHTO]

$$SN*_1 = a_1D*_1 >= SN_1$$

$$SN*_2 = a_1D*_1 + a_2D*_2m_2 >= SN_2$$

$$SN*_3 = a_1D*_1 + a_2D*_2m_2 + a_3D*_3m_3 >= SN_3$$


		Recommended Thicknesses		
Layer	Material	Thickness (D*i)	SN*i	SNi
1	HMA	8.0 inches	3.520	2.122
2	ABC	8.0 / inches	4.400	4.262
3		inches		

Location: State Highway 105 Rural Principal Arterial, 4-lane

Comment: East Segment - Rural Minor Arterial, Minimum ESAL (Lake Woodmoor Dr to SH 83)

1. Pavement Design Life:

Traffic Loading (W₁₈):

 M_R :

3. Serviceability:

rccat	ility.	٦ /
p_0	; 4.5	1
interest	· 5	1 /

ΔPSI: 2.0

4. Subgrade Resilient Modulus (M_R):

Section D.4.1 (C)

$$S_1 = [(R-value - 5) / 11.29] + 3$$

 $M_R = 10^{[(S_1 + 18.72)/6.24]} =$

5. Reliability:

$$Z_{R}$$
: -0.842

4,800 psi

6. Design Standard Deviation (S_o):

$$S_0$$
: 0.45

7. Required Structural Numbers (SN_i): [Fig. D-1]

Analysis M _R		
32,883	SN ₁ :	1.694
4,800	SN ₂ :	3.485
-NA-	SN ₃ :	-NA-

$$\log_{10}(W_{18}) = Z_R S_o + 9.36 \log_{10}(SN + 1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log_{10}(M_R) - 8.07$$

Layer Analysis

8. Pavement Materials Characterization:

Ta	ble	D	-3

Layer	Material	Structural Layer Coefficients	Drainage Coefficients	Layer Modulus (psi)
1	НМА	a ₁ : 0.44	-	-
2	ABC	a ₂ : 0.11 🖊	m ₂ : 1.00	32,883
3		a ₃ :	m_3 :	

9. Solutions for thicknesses: [Figure 3.2, Part II of 1993 AASHTO]

$$SN*_1 = a_1D*_1 >= SN_1$$

$$SN*_2 = a_1D*_1 + a_2D*_2m_2 >= SN_2$$

$$SN*_3 = a_1D*_1 + a_2D*_2m_2 + a_3D*_3m_3 >= SN_3$$

	l	Recommended Thicknesses		
Layer	Material	Thickness (D* _i)	SN* _i	SN _i
1	HMA	6.0 inches	2.640	1.694
2	ABC	8.0 inches	3.520	3.485
3		inches		

Location: State Highway 105 Rural Principal Arterial, 4-lane

Comment: Local Road Minimum ESAL

1. Pavement Design Life:

Traffic Loading (W18):

	20.0	years
18k ESALs:	36,500	per lane

3. Serviceability:

recubility	7 .
p ₀ :	4.5
p _t :	2.5

ΔPSI: 2.0

psi

4. Subgrade Resilient Modulus (MR):

Section D.4.1 (C)

$$S_1 = [(R-value - 5) / 11.29] + 3$$

$$M_R = 10^{[(S_1 + 18.72)/6.24]} =$$

Reliability:

4,800

6. Design Standard Deviation (So):

7. Required Structural Numbers (SN_i): [Fig. D-1]

Analysis M _R		
32,883	SN ₁ :	0.960
4,800	SN ₂ :	2.188
-NA-	SN ₃ :	-NA-

$$\log_{10}(W_{18}) = Z_R S_o + 9.36 \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log_{10}(M_R) - 8.07$$

Layer Analysis

8. Pavement Materials Characterization:

Layer	Material	Structural Layer Coefficients	Drainage Coefficients	Layer Modulus (psi)
1	НМА	a ₁ : 0.44	20.73.747.267.7	
2	ABC	a ₂ : 0.11 /	m ₂ : 1.00	32,883
3		a ₃ :	m ₃ :	

9. Solutions for thicknesses: [Figure 3.2, Part II of 1993 AASHTO]

$$SN*_1 = a_1D*_1 >= SN_1$$

$$SN*_2 = a_1D*_1 + a_2D*_2m_2 >= SN_2$$

$$SN*_3 = a_1D*_1 + a_2D*_2m_2 + a_3D*_3m_3 >= SN_3$$

Recommended Thicknesses					
Layer	Material	Thickness (D*i)	SN*i	SNi	
1	HMA	3.5 / inches	1.540	0.960	
2	ABC	6.0 inches	2.200	2.188	
3		inches			

		105 lay Analysis		1-01311-00
SHANNON & WILSON, INC. Reotechnical and Environmental Cons			SHEET_	
		or DIL	12/5/2011	
54105	Keuise	ed by DAA	12/3/2018	
Existing Pavement	Sections			
West Seamon	1 / (I-Z-Z5	to Knollynn		
SW-P-01	: 9.5" HMA,	11 ABC		
SW-P-02	: 10" HMA,	5" ABC		
West Segment	2 (Knollwood	to Lake	Woodmoor)	
SW-P-03	7.5 HMA			
SW-P-04 SW-P-05	: 8" HMA			1-1-1-1
SW-P-06				
Overlay Analysis	+ + - - -			
West Segmen	1 1			
		COME STATE S		
SNEXISTI	va = 41.46	- existing	section is	sufficie
HI MI B		for cole	ulated ESAL	
2"	// ESAL = // (a \color= 0.30)	5,456,000	/ SUREQUIRED =	4.521
	, , , , , , , , ,			
Requir	cal Overlay=(4.521-(4.46	-0.3(z))]/	/
	inch mill, is		A. Game A.	
		- mek over	E54L=2	,216,000)
West Segmen	7 2 +			
		+		
SINEXISTIN	1,611,000	3	802	
ESAL =	1,553,000 SNA	market and the same of the sam	the size of the second property of the second secon	
	3.80	2		
Required	Overlay = 13.79	ST-(2.63-0.	3(2)) / 0,44	
	=444	5 4.03/12	" M:11, 4.5" o	1
				J
ESAL = 5	, 256,000 SN,	REQUIRED = 4	54/	Antogrammic amount as a
P	Overlay = [4.521	- (2/3 04)	1)7/	(min vitamas (m. (m. (p.))
Ligarical	17.521	(2.63-0.3)	0.44	
	6.0", overlay	5.66		
	6.0"			1
C mill	, Go overlay	1 - 1		4

SHANNON & WILSON, INC.

APPENDIX F

IMPORTANT INFORMATION ABOUT YOUR GEOTECHINAL REPORT

Attachment to and part of Report 23-1-01311-002

Date: June 2017
To: HDR, Inc.

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

Page 1 of 2 1/2016

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

Page 2 of 2 1/2016