PRELIMINARY/FINAL DRAINAGE REPORT

FOR

APPALOOSA HWY 24 SUBDIVISION FILING NO. 1A, LOTS 1, 2 & 3

Prepared For:
Platte Valley, LLC
1378 Promontory Bluff View
Colorado Springs, CO 80921
719-491-0801

Prepared By:
Associated Design Professionals, Inc.
3520 Austin Bluffs Parkway Suite 102
Colorado Springs, CO 80918
719.266-5212

This is the final drainage report for the project VR1813, which has been approved. A drainage letter must be submitted confirming that the proposed development on this lot is in conformance with the approved Final Drainage Report from the subdivision. Comments were provided on the drainage letter submitted for the AL1811 Project. The drainage letter was not required to be submitted with the special use and comments provided were for information purposes.

ADP Project No. 160504 December 12, 2018

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports, and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Michael A. I	Bartusek, P.E. #23329	
	·	
I, the Devel	R'S STATEMENT: oper, have read and will comply with all of the eport and plan.	requirements specified in this
Ву:	Ron Waldthausen	
Title: Presi	ident	
Address:	Platte Valley, LLC 1378 Promontory Bluff View Colorado Springs, CO 80921	
	cordance the El Paso County Land Developmen and 2, and the Engineering Criteria Manual, as	
Jennifer Irv	vine, County Engineer/ECM Administrator	Date
Conditions	::	

PRELIMINARY/FINAL DRAINAGE REPORT APPALOOSA HWY 24 SUBDIVISION FILING No. 1A, Lots 1, 2 & 3

PROJECT DESCRIPTION

This drainage report is for the development of the Appaloosa Hwy 24 Subdivision, Filing No. 1A, Lots 1, 2 & 3. The currently vacant 4.67 acre site is located north of U.S. Hwy 24 and east of Amelia Street. It is further described as the southern portion of Section 7, Township 14 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado.

All of this lot is located in Sand Creek drainage basin and drains into the central tributary of Sand Creek. An existing 4'x4' box culvert is located at the southeast corner of U.S. Hwy 24 and Amelia St. Also an existing concrete channel is located on the east side of proposed Lot 3.

SOILS

The soil on the site can be described as having a rapid permeability, medium-surface runoff, and moderate to high hazard of erosion. The soils within the site are Truckton Sandy Loams. These soils are classified as Hydrologic Group 'B'.

FLOODPLAIN STATEMENT

A small portion of the developed site is located within a designated FEMA 100-year floodplain according to the information published in the Federal Emergency Management Agency Flood Plain Map No. 08041CO754F, dated March 17, 1997, and LOMR 05-08-0368P dated May 23, 2007. This area falls within the existing concrete channel.

METHOD OF COMPUTATION

The methodology utilized for this report is in accordance with the *El Paso County Drainage Criteria Manual, Volumes 1*, dated May 2014. The Rational Method for computation of runoff was used for determining Sub-Basin flows.

Q = cia

Where

Q = maximum rate of runoff in cubic feet per second

c = runoff coefficient representing drainage area characteristics

 i = average rainfall intensity, in inches per hour, for the duration required for the runoff to become established

a = drainage basin size in acres

EXISTING DRAINAGE CONDITIONS

The existing site has been overlot graded and is covered with rangeland grasses. The western portion of the site drains in a southerly direction toward the existing 4' x 4' box culvert under U.S. Hwy 24. The eastern portion of the site drains westerly toward the 4' x 4' box culvert. An existing concrete channel is located on the east side of the lot, but no flows from this parcel drain to the concrete channel. A portion of the concrete channel has failed with other portions showing signs of joint failure.

The existing sub-basin AEX produces flows of 1.0 cfs for the 5-year storm and 7.9 cfs for the 100-year storm.

DEVELOPED DRAINAGE CONDITIONS

The developed site will be divided into three (3) lots. Lots 1 and 2 will encompass 1.003 acres and 1.008 acres respectively and Lot 3 will encompass 2.655 acres. The proposed land is zoned I-2 (Limited Industrial). Drainage from each lot will be self-contained with flows intercepted by swales along the property lines and directed into proposed Type C inlets and transported to a proposed extended detention basin (EDB) facility in the southwest corner of Lot 3 through a private storm sewer

Lot 1, Sub-basin A1, is located in the northern portion of the site. Sub-basin A1 will produce flows of 2.1 cfs for the 5-year storm and 4.5 cfs for the 100-year storm. These flows will continue south and be intercepted by a proposed swale located along the southerly property line. The flows will then travel west to a proposed type 'C' inlet at the southwest corner of the lot. An 18" HDPE storm sewer will transport these flows through Lot 2.

Lot 2, Sub-basin A2, is located in the center of the site. Sub-basin A2 will produce flows of 2.2 cfs for the 5-year storm and 4.5 cfs for the 100-year storm. As with Lot 1 the site flows will be intercepted by a swale located along the southerly property line. These flows will be intercepted by a type 'C' inlet at the southwest corner of the lot. These flows will combine with the flows from Sub-basin A1 at DP1 to produce flows of 4.3 cfs for the 5-year storm and 8.9 cfs for the 100-year storm. An 18" HDPE storm sewer will transport these flows into the proposed EDB in Lot 3.

Lot 3, Sub-basin A3, is located in the southern portion of the site. Sub-basin A3 will produce flows of 5.9 cfs and 10.8 cfs respectively. These flows will be intercepted by a proposed swale located along the south property line and into the proposed EDB. The combined flows into the basin at DP2 will be 9.3 cfs for the 5-year storm and 19.2 cfs for the 100-year storm.

The proposed 0.648 ac.ft. Private EDB will reduce the site flows into the existing 4' x 4' box culvert to 0.2 cfs for the 5-year storm and 5.3 cfs for the 100-year storm at DP3.

CONCRETE CHANNEL REPAIR

Approximately 120 lf of the existing concrete channel will need to be removed and replaced. The channel section is 6 feet wide and 7 feet deep. The new concrete channel section will be doweled into the concrete channel sections which remain. The channel is currently owned and maintained by the adjacent property owners as delineated on the Drainage Map. Once the repairs to the channel are made the same ownership will remain.

WATER QUALITY AND DETENTION

Water quality for the site will be achieved within by 0.118 acre-feet of storage, 1.85 ft deep within the 0.656 ac. ft. private extended detention basin (EDB) which will be maintained by the owner of Lot 3. The remainder of the basin will provide the storage volume required for detention. The facility will have an 18" RCP outlet pipe with a 12" restrictor plate located 5.8" above the pipe invert.

PRIVATE DRAINAGE FACILITIES

Item	Unit	Quantity	Unit Cost	Total Cost
18" HDPE FES	EA	1	\$450	\$ 450.00
18" HDPE	LF	346	\$45	\$ 15,570.00
Outlet Structure	EA	1	\$5,000	\$ 5,000.00
Emergency Spillway	EA	1	\$1,500	\$ 1,500.00

Type 'C' Inlet	EA	2	\$3,270	\$ 6,540.00
Concrete Channel	LF	120	\$150	\$18,000.00
Concrete Forebay	SF	102	\$10	\$ 1,020.00
Concrete Trickle Channel	LF	24	\$25	\$ 600.00
EDB	EA	1	\$8,000	\$8,000.00
24" RCP FES	EA	1	\$500	\$ 500.00
24" RCP	LF	50	\$50	<u>\$ 2,500.00</u>
			Sub-Total	\$59,680.00
		15% Cont	ingency & Engineering	<u>\$ 8,952.00</u>

TOTAL \$68,632.00

The proposed drainage improvements will be constructed at the time of plat approval. The storm sewer improvement construction and maintenance will be the responsibility of Platte Valley, LLC until such time as this property is sold. At that time the new adjacent property owners of Lots 1, 2 and 3 will assume the maintenance responsibilities, including the EDB which will be maintained by the owner of Lot 3.

DRAINAGE BASIN FEES

Based on a resolution, No. 16-336, passed by the Board of County Commissioners on September 29, 2016, drainage and bridge fees will only be assessed on the two (2) smaller lots in the replat. The area of the two (2) smaller lots is 2.011 acres.

The proposed development is located within the Sand Creek drainage basin. The 2018 drainage basin fee calculation is as follows:

Impervious Coverage	T =	75.7%
Area Subject to Fee	=	0.757 x 2.011 acres = 1.522 acre
Sand Creek Basin Fee	=	\$17,197/acre
Drainage Basin Fee	=	\$17,197 x 1.522 = \$26,174
Sand Creek Bridge Fee	=	\$5,210
Bridge Fee	=	\$5,210 x 1.522 = \$7,930

CONCLUSION

The proposed development and subsequent lot developments follow the "Four Step Process" as mandated by the EPA as follows:

Step 1: Employ runoff reduction practices

Runoff has been reduced by disconnecting impervious areas where possible, eliminating "unnecessary" impervious areas and encouraging infiltration into suitable soils.

- Impervious areas have been directed to earth swales to encourage infiltration.
- Gravel will be used in portions of the lots to reduce the impervious of the areas.

Step 2: Stabilize drainageways

All drainageways, ditches and channels have been stabilized by the following methods:

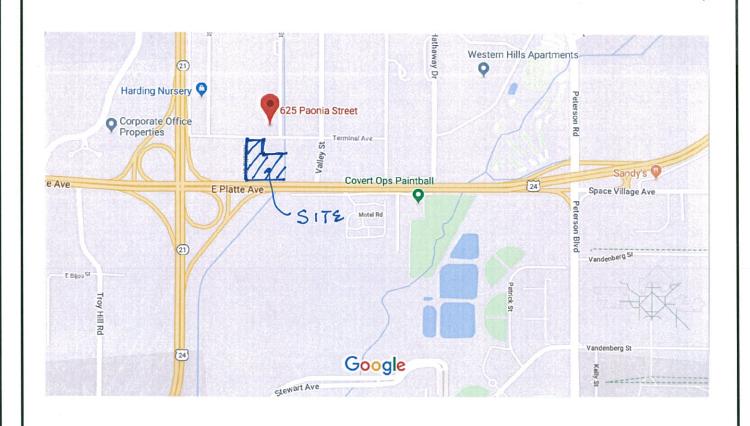
- Tributaries have been left in their relatively natural state where possible.
- New drainageways and swales have been stabilized with either riprap or erosion control fabric depending on the erosion potential.
- No new roadside ditches are proposed for the development.

Step 3: Provide water quality capture volume (WQCV)

The proposed development will disturb approximately 4.5 acres, although the initial disturbance will only be 0.6 acres.

Step 4: Consider need for industrial and commercial BMP's.

The development of this project will not affect sensitive waters.


The development of this site will have little impact on downstream properties once the EDB is constructed.

REFERENCES

- 1. City of Colorado Springs and El Paso County (1994). *Drainage Criteria Manual Volume* 1 (DCM).
- 2. City of Colorado Springs and El Paso County (1994). *Drainage Criteria Manual Volume II* (DCM).
- 3. Soil Survey of El Paso County Area, Colorado by USDA, NRCS.
- 4. El Paso County (January 2006) Engineering Criteria Manual.
- 5. Urban Drainage and Flood Control District (June 2011). *Urban Storm Drainage Criteria Manual, Volume 1-3*.
- 6. Sand Creek Drainage Basin Planning Study (DBPS).
- 7. Preliminary/Final Drainage Plan and Report for the Appaloosa Hwy 24 Subdivision by Oliver E. Watts, Consulting Engineer, dated November, 2000.
- 8. Resolution No. 16-336. Board of County Commissioners, County of El Paso, State of Colorado.

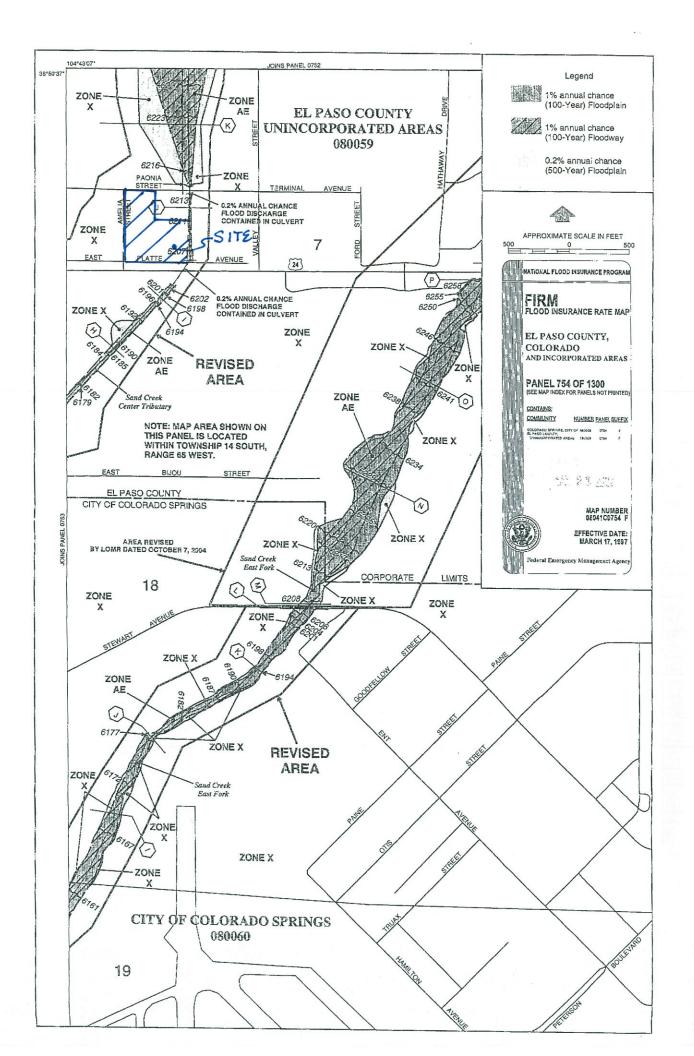
APPENDIX A

MAPS



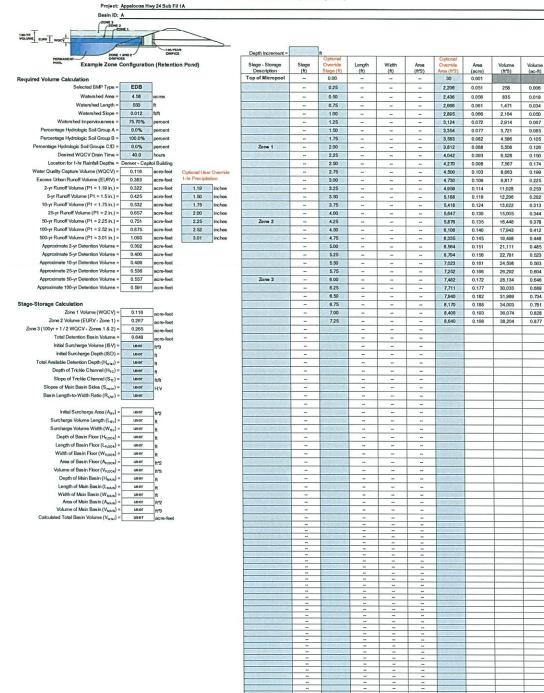
 $\frac{\text{VICINITY MAP}}{\text{\tiny N.T.S.}}$

3520 Austin Bluffs Pkwy, Suite 102 Colorado Springs, CO 80918 (719) 266-5212 fax: (719) 266-5341



SOILS MAP

3520 Austin Bluffs Pkwy, Suite 102 Colorado Springs, CO 80918 (719) 266-5212 fax: (719) 266-5341



APPENDIX B DESIGN CALCULATIONS

APPALOOSA SUBDIVISION	NOI																		
PROJ. #160504																			
DRAINAGE CALCULATION SHEET	ON SHEET														***************************************				
file:appaloosa dr																		-	
12/18/18																			
						ŀ									3	landth	g		
				10000		initial 1 ct		- ומא	2011	-	1	ū	1100	2	0400		2 >	ŧ.	ARFA
	C2	C100	C5XA	CTOUAA		m	-	7	4	\dashv	- 1	2 (24)	201	3 (2	900	(foot)	(fact)	7	DESIG
DESIG. (acre)	(5 yr)	(100 yr)			L (ff)	(%)	(min)	L (III) (70)	(sdi)	()	(111111)	-	(111111)	(513)	(615)	(1001)	(edi)	Т	200
EVICTING CONDITIONS									+										
Aex 4.58	8 0.08	0.35	0.37	1.60	100	2.50	14.10	520 1.	1.30 1.20	20 7.22	21.32	2.82	4.92	1.03	7.88			/	Aex

DEVELOPED CONDITIONS											\dashv				07.7	017	00 07	200	
A1 1.00		0.70		0.70	100	2.00				_	4	3.66	6.40	2.70	4.48	200	10.00	0.40	- C
A2 1.01	1 0.59	0.70	09.0	0.71	100	2.00	7.59	300 1.	1.00 1.00	0 2.00		3.66	6.40	2.18	4.52				7
			1.19	1.41						L	_	3.63	6.34	4.31	8.92	175	10.00	0.29	占
	7 0.59	0.70	1.52	1.80	100	1.20	8.98	400 1.	1.30 1.20	0 5.56		3.42	5.98	5.19	10.76		-,	`	A3
2			2.70	3.21							14.54	3.42	5.98	9.25	19.18				DP2
	8		1.14	0.89	Adjusted C Fact	Factor for	or for Detention Basin A	Basin A			14.54	3.42	5.98	3.90	5.30			_	DP3
						•••••													
IMPERVIOUS AREA CAL	TC						SPI	SPILLWAY CALCULATIONS	ALCULAT	SNO	FOREB	Y CALCU	FOREBAY CALCULATIONS						
Description	Imperv %						# A	151			2% OF WQV	٧٥٨							
UNDEV	0						ช	0.431			0.02 X 0.	116 = 0.00	0.02 X 0.116 = 0.002 AF = 101 CF	٦ ٦					
LOOSE GRAVEL	80						11 D	3.2											***************************************
PAVED PARKING	100										FOREB/	VY NOTCH	FOREBAY NOTCH CALCULATIONS	ATIONS					
BUILDINGS	100						II CX	d"1.5xbxC)XC		2% OF 1	2% OF 100YR FLOW							
							# C	20.8 cfs	St.		0.02 X 1	0.02 X 19.2 = 0.38 CFS	CFS						
			Imperious	Imperious Area Description	ption						W =Q/(D^1.5XC)	1.5XC)							
			Paved	Loose	Total		dld	PIPE CAPACITY	<u></u> ⊥		W=0.38/	W=0.38/(1X3.0)=0.13 F1	13 -1						
Subasin	Landscape Building	Building	Parking	Grave	mperv		А	24™											
							EQ.	± 0.6%											
A1 1.00	0.2	0.18	0.36		74.8		1	= 0.012											
A2 1.01	1 0.19	0.25	0.42		78.2		CZ	Q max = 20.4	4 cfs										
A3 2.57	7 0.35	0.25	0.40	1.60	75.1											Č			
Total 4.58	89				75.7		ίδ —								rronge	Riprap			
***************************************							Loca	ocation Q5	Q5 cfs Q100cfs	its S%	, B#		Z d100 ft	V fps	#	Size			
4444													64.0	1000	63.0	600	700 1100 1100 11		
							rid <u>s</u>	Spillway 9	9.30 19.20	20 1.00	15.00	4:1	0.43	2.20	0.57	ין כטיט	JSE O FUC	۱ ا	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Volume (ac-ft)

0.006

0.019

0.034

0.050

0.067

0.105

0.126 0.150

0.174

0,199

0.225

0.253

0.282

0.313

0.344

0.378

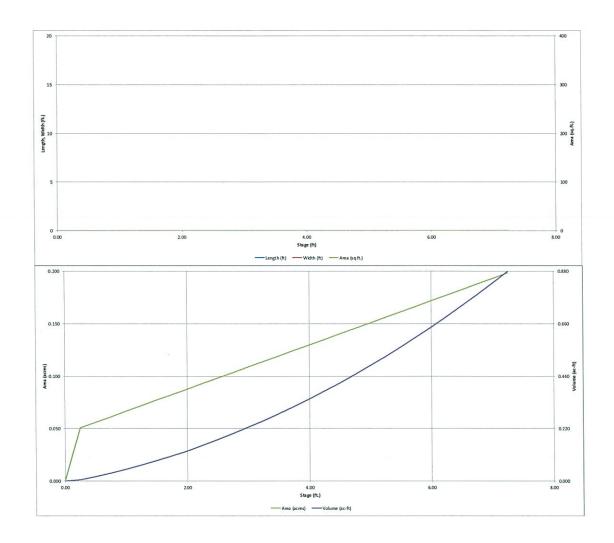
0.412

0.448

0.485

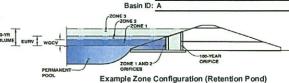
0.563

0.646


0.689

0.781

0.828


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

UD-Detention, Version 3.07 (February 2017)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.87	0.116	Orifice Plate
Zone 2 (EURV)	4.30	0.267	Orifice Plate
(100+1/2WQCV)	6.02	0.265	Weir&Pipe (Restrict)
		0.648	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Calculated Pa	arameters fo	r Underdrain
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft)

Depth at top of Zone using Orifice Plate = 4.30 ft (relative to basin bottom at Stage = 0 ft)

Orifice Plate: Orifice Area per Row = N/A inches

Calculate	d Parameter	s for Plate
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.43	2.87					INCHES STATES
Orifice Area (sq. inches)	1.07	1.07	1.50				STATE OF THE PARTY	

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)			Cartella Cartella			THE RESIDENCE OF THE PARTY OF T	THE REAL PROPERTY.	
Orifice Area (sq. inches)		STREET,	CONTRACTOR OF THE PARTY OF THE		THE PARTY AND THE	DESCRIPTION OF THE PROPERTY OF		STATE OF THE PARTY.

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	f
Depth at top of Zone using Vertical Orifice =	N/A	N/A	f
Vertical Orifice Diameter =	N/A	N/A	i

ft (relative to basin bottom at Stage = 0 ft)
ft (relative to basin bottom at Stage = 0 ft)

Calculated P	arameters for Veri	ical Orifice	
	Not Selected	Not Selected	
Vertical Orifice Area =	N/A	N/A	ft ²
Vertical Orifice Centroid =	N/A	N/A	feet

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	7
Overflow Weir Front Edge Height, Ho =	4.30	N/A	ft (relativ
Overflow Weir Front Edge Length =	1.00	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (ente
Horiz. Length of Weir Sides =	4.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate
Debris Clogging % =	50%	N/A	%

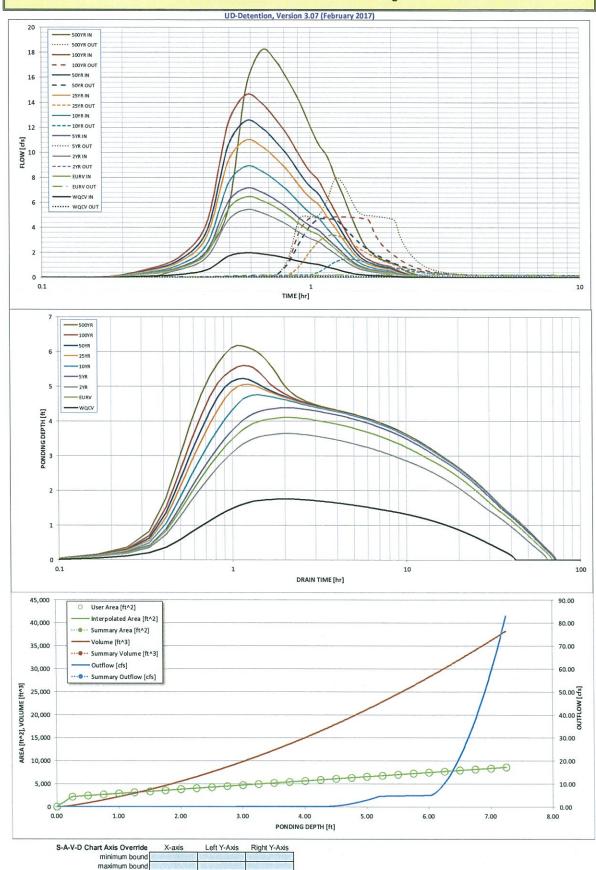
t (relative to basin bottom at Stage = 0 ft)
eet Over Flow Weith-IV (enter zero for flat grate)
feet Overflow Grate Open Area / 100Grate Open area/total area Overflow Grate Open Grate O

	Zone 3 Weir	Not Selected	
Height of Grate Upper Edge, H _t =	5.30	N/A	feet
Over Flow Weir Slope Length =	4.12	N/A	feet
te Open Area / 100-yr Orifice Area =	6.65	N/A	should be ≥ 4
rflow Grate Open Area w/o Debris =	2.89	N/A	ft ²
erflow Grate Open Area w/ Debris =	1.44	N/A	ft ²

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected
Depth to Invert of Outlet Pipe =	0.00	N/A
Outlet Pipe Diameter =	24.00	N/A
or Plate Height Above Pipe Invert =	4.70	

ft (distance below basin bottom at Stage = 0 ft)
inches
O
inches
Half-Central Angle of Re


	Zone 3 Restrictor	Not Selected	
Outlet Orifice Area =	0.43	N/A	
Outlet Orifice Centroid =	0.23	N/A	٦
estrictor Plate on Pipe =	0.92	N/A	٦

User Input: Emergency Spillway (Rectangular or Trapezoidal)

ager inhar emergency ability at freetangular	or mapezone	10.7
Spillway Invert Stage=	6.02	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	15.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calculated	Calculated Parameters for Spill						
Spillway Design Flow Depth=	0.44	feet					
Stage at Top of Freeboard =	7.46	feet					
Basin Area at Top of Freeboard =	0.20	acres					

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.01
Calculated Runoff Volume (acre-ft) =	0.116	0.383	0.322	0.425	0.532	0.657	0.751	0.875	1.093
OPTIONAL Override Runoff Volume (acre-ft) =				P. March Street, Stree				Direction bearing	U CHENTED BY
Inflow Hydrograph Volume (acre-ft) =	0.116	0.383	0.321	0.424	0.531	0.656	0.750	0.875	1.092
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.02	0.20	0.67	0.93	1.25	1.77
Predevelopment Peak Q (cfs) =	0.0	0.0	0.1	0.1	0.9	3.1	4.3	5.7	8.1
Peak Inflow Q (cfs) =	2.0	6.4	5.4	7.1	8.9	11.0	12.5	14.6	18.2
Peak Outflow Q (cfs) =	0.1	0.2	0.2	0.3	1.5	3.4	4.7	4.8	8.0
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	2.6	1.6	1.1	1.1	0.8	1.0
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.0	0.4	1.1	1.5	1.6	1.7
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	60	57	61	60	59	57	56	53
Time to Drain 99% of Inflow Volume (hours) =	41	65	61	67	67	66	65	65	64
Maximum Ponding Depth (ft) =	1.76	4.10	3.64	4.39	4.76	5.05	5.22	5.59	6.18
Area at Maximum Ponding Depth (acres) =	0.08	0.13	0.12	0.14	0.15	0.15	0.16	0.16	0.18
Maximum Volume Stored (acre-ft) =	0.106	0.358	0.299	0.395	0.448	0.492	0.518	0.577	0.675

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

SOURCE | WORKBOOK | W

	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
me Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
Admir-Model Con.	0:00:00	ACCUSCOME CONTRACTOR	contributations/sec	CONTRACTOR OF THE PARTY.	en al mandre suffer.	AND A PERSONAL PROPERTY.	STAN MARKETON AND	CONTRIBUTION CONTRIBUTION	SINDS CONTRACTOR	ARROGATION TO SHARE
4.96 min	0:04:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	17050771801283	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lydrograph	0:09:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:14:53	0.09	0.29	0.24	0.32	0.40	0.49	0.55	0.64	0.79
1.008	0:19:50	0.24	0.77	0.65	0.86	1.06	1.31	1.49	1.73	2.15
-	0:24:48	0.62 1.70	1.99 5.47	1.68 4.61	2.20 6.05	2.74 7.52	3.36 9.24	3.83 10.54	4.46	5.53 15.19
	0:34:43	1.98	6.45	5.42	7.14	8.90	10.97		12.24	
1	0:39:41	1.88	6.15	5.17	6.80	8.49	10.97	12.53 11.97	14.59 13.94	18.17 17.36
1	0:44:38	1.71	5.59	4.70	6.19	7.73	9.53	10.89	12.69	15.81
	0:49:36	1.51	4.98	4.18	5.52	6.90	8.52	9.74	11.35	14.16
Ì	0:54:34	1.29	4.29	3.59	4.75	5.95	7.35	8.41	9.82	12.26
	0:59:31	1.13	3.74	3.14	4.15	5.18	6.41	7.33	8.55	10.67
1	1:04:29	1.02	3.39	2.84	3.75	4.70	5.80	6.64	7.75	9.67
	1:09:26	0.83	2.78	2.33	3.08	3.87	4.79	5.49	6.41	8.02
	1:14:24	0.66	2.26	1.89	2.51	3.15	3.91	4.49	5.25	6.58
	1:19:22	0.49	1.73	1.44	1.92	2.42	3.01	3.46	4.06	5.11
	1:24:19	0.36	1.27	1.06	1.42	1.80	2.25	2.59	3.04	3.84
	1:29:17	0.26	0.93	0.77	1.03	1.30	1.63	1.87	2.19	2.79
	1:34:14	0.21	0.72	0.60	0.80	1.01	1.26	1.45	1.69	2.14
	1:39:12	0.17	0.59	0.50	0.66	0.83	1.04	1.19	1.39	1.76
8	1:44:10	0.15	0.51	0.42	0.56	0.71	0.88	1.01	1.18	1.49
	1:49:07	0.13	0.44	0.37	0.49	0.62	0.77	0.89	1.04	1.30
3	1:54:05 1:59:02	0.12	0.40	0.34	0.45	0.56	0.70	0.80	0.93	1.17
1	2:04:00	0.11	0.37	0.31	0.41	0.52	0.64	0.74	0.86	0.79
	2:08:58	0.06	0.20	0.23	0.22	0.38	0.47	0.40	0.46	0.79
	2:13:55	0.04	0.15	0.12	0.16	0.20	0.25	0.29	0.34	0.43
	2:18:53	0.03	0.11	0.09	0.12	0.15	0.19	0.21	0.25	0.32
	2:23:50	0.02	0.08	0.06	0.08	0.11	0.13	0.15	0.18	0.23
	2:28:48	0.02	0.05	0.04	0.06	0.08	0.09	0.11	0.13	0.16
	2:33:46	0.01	0.04	0.03	0.04	0.05	0.07	0.08	0.09	0.12
	2:38:43	0.01	0.02	0.02	0.03	0.04	0.04	0.05	0.06	0.08
	2:43:41	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.05
	2:48:38	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02
	2:53:36	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.01	0.01
	2:58:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:03:31 3:08:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:13:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:18:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:23:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:28:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:33:17	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:38:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:43:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:48:10	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00
	3:53:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:58:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:03:02 4:08:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:12:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:22:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:50 4:32:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:37:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:42:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:47:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:52:38 4:57:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:02:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:07:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
,	5:12:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:17:26 5:22:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:27:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:32:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:37:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:42:14 5:47:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:52:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:57:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft^2]	Area [acres]	Volume [ft^3]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor) from the S-A-V table on
							Sheet 'Basin'.
	PERSONAL PROPERTY						Also include the inverts of all
							outlets (e.g. vertical orifice,
	THE PROPERTY.						overflow grate, and spillway,
	TOPOSTA						where applicable).
							1
							1
A SECTION ASSESSMENT]
	CONTRACTOR OF THE PERSON OF TH						-
							-
							1
	17 18 5 4						
							-
							-
							1
	STATES.						
							-
							1
	SECTION.						
							4
							-
							1
							_
							-
							1
	100						
							-
							-
							†
							-
Architecture (Charles							
							+
	STORY OF THE						
			-				+
	1980 Delices						
							-
	Liveline Li						-
							-
							4
							-
		-		-			

APPENDIX C

DESIGN CHARTS

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

and Use or Surface	Percent			Runoff Coefficients									
	Impervious	2-year		5-year		10-уеаг		25-уеаг		50-year		300-year	
		HSGALB	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	RSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	83.0	0.88	0.89
Neighborhood Areas	76	0.45	0.49	0.49	0.53	0.53	0,57	0.58	0.52	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4Acre	40	0.23	0.28	0.30	0.35	0.36	0,42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0,25	0.30	0,32	0.38	0.39	0.47	0.43	0,52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0,28	0,30	0.35	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0,35	0.44	0.40	0,50	0.44	0.55
Industrial	<u> </u>		-			 	+	 					
light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0,66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0,73	0.75	0.75	0.77	0.78	0.80	08.0	0.82	0,81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0,39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0,48	0.41	0.54
Ralimad Yard Areas	40	0,23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0,46	0.54	0.50	0,58
Undeveloped Areas	+		1		+	+		1	<u> </u>				1
Historic Flow Analysis— Greenbelts, Agriculture	2	0,03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0,08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.98
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	D.32	0.37	0.38	0,44	0.44	0.51	0.48	0.55	0.51	0.5
Streets			 			-				+	┤─		+
Paved	100	0.89	0.89	0.90	0.90	0,92	0.92	0.94	0.94	0.95	0.95	0.95	0.9
Gravel	80	0.57	0,60	0,59	0,63	0.63	0,65	0.66	0.70	0.68	0.72	0,70	0.7
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0,96	0.9
Roofs	90	0.71					0.77	0.78	0.80	0.80	0.82	0.81	0.8
Lawns	0	0.02				0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.5

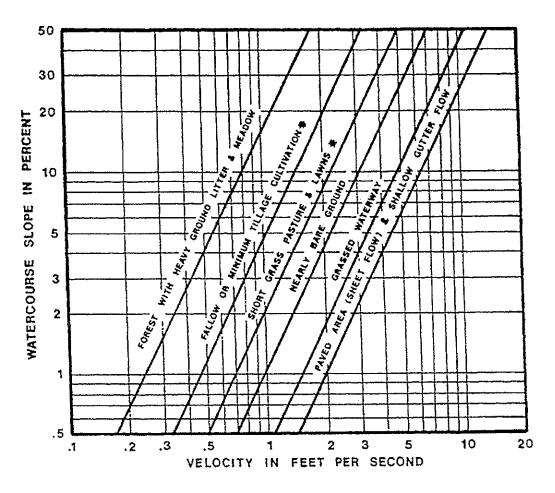


Figure 6-25. Estimate of Average Concentrated Shallow Flow

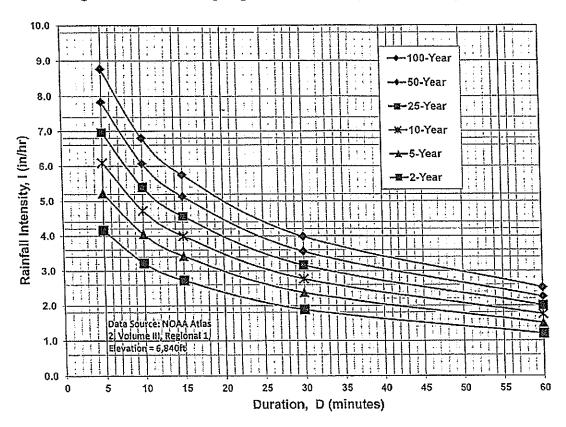
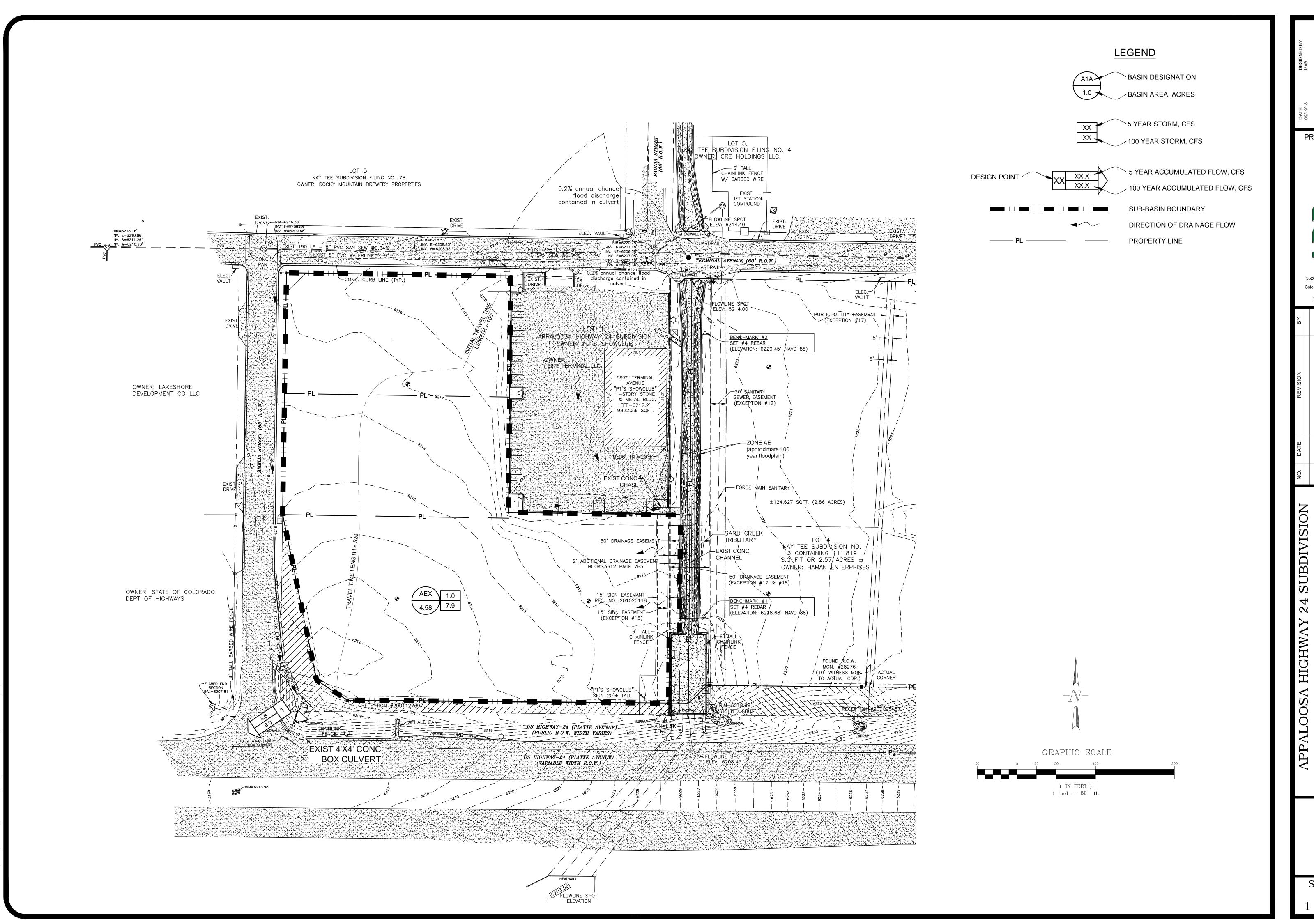


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations

$$I_{100} = -2.52 \text{ In(D)} + 12.735$$

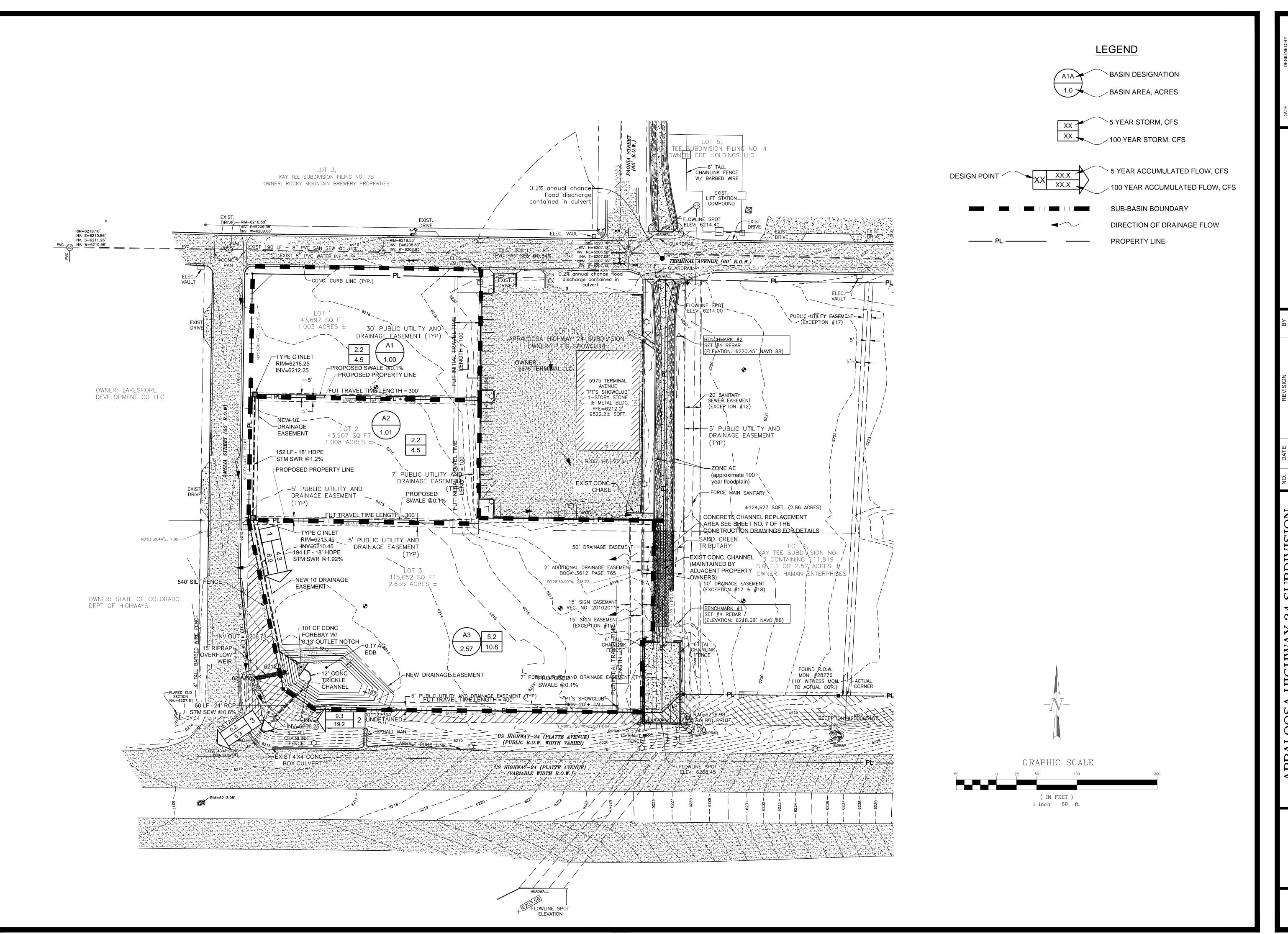
$$I_{50} = -2.25 \ln(D) + 11.375$$


$$I_{25} = -2.00 \ln(D) + 10.111$$

$$I_{10} = -1.75 \text{ In}(\mathbf{D}) + 8.847$$

$$I_5 = -1.50 \ln(D) + 7.583$$

$$I_2 = -1.19 \ln(D) + 6.035$$


Note: Values calculated by equations may not precisely duplicate values read from figure.

PREPARED BY: 3520 Austin Bluffs Parkway Suite 102 Colorado Springs, CO 80918 (719) 266-5212 fax: (719) 266-5341

FILING NO. 1A
COLORADO SPRINGS, COLOR
EXISTING DRAINAGE PLA

SHEET

PREPARED BY: 3520 Austin Bluffs Parkway Suite 102 Colorado Springs, CO 80918 (719) 266-5212 fax: (719) 266-5341

SHEET

Markup Summary

This is the final drainage report for the project VR1813, which has been approved. A drainage letter must be submitted confirming

This is the final drainage report for the project VR1615, which has been approved. At the control of the contro

Subject: Engineer Page Label: 1 Lock: Unlocked Author: dsdgrimm

Date: 5/1/2019 11:15:24 AM

Color:

This is the final drainage report for the project VR1813, which has been approved. A drainage letter must be submitted confirming that the proposed development on this lot is in conformance with the approved Final Drainage Report from the subdivision. Comments were provided on the drainage letter submitted for the AL1811 Project. The drainage letter was not required to be submitted with the special use and comments provided were for information purposes.