

FINAL DRAINAGE REPORT

For

MAYBERRY, COLORADO SPRINGS – FILING NO. 4

PREPARED FOR:

MAYBERRY COMMUNITIES, LLC 22108 CATTLEMAN RUN CALHAN, CO 80808

PREPARED BY:

R & R ENGINEERS - SURVEYORS, INC. 1635 W. 13[™] AVE, SUITE 310 DENVER, CO 80204 CONTACT: CLIF DAYTON, P.E. (303) 753-6730

> R&R JOB #MC22249 EPC PROJECT NO. SF2317

> > **JANUARY 2025**

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors, or omissions on my part in preparing this report.

SIGNATURE:

Clif Dayton, P.E. Registered Professional Engineer State of Colorado No. 51674

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

SIGNATURE:

Owner's Representative Colorado Springs Mayberry, LLC 22108 Cattleman Run Calhan, CO 80808

EL PASO COUNTY'S STATEMENT:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

2/19/2025

SIGNATURE:

Joshua Palmer, P.E. County Engineer/ECM Administrator

TABLE OF CONTENTS

I.	GENERAL LOCATION AND DESCRIPTION
Α.	Background1
В.	Scope 1
C.	Site Location and Description1
D.	General Soil Conditions
Ε.	References
II.	DRAINAGE BASINS AND SUB-BASINS
Α.	Major Drainage Basins
В.	Floodplain Impacts
C.	Sub-Basin Description
III.	DRAINAGE DESIGN CRITERIA
Α.	Development Criteria Reference
В.	Hydrologic Criteria
C.	Hydraulic Criteria
D.	Detention and Water Quality Criteria6
IV.	DRAINAGE PLANNING FOUR STEP PROCESS
V.	GENERAL DRAINAGE RECOMMENDATIONS
VI.	DRAINAGE FACILITY DESIGN
Α.	General Concept
В.	Specific Details
C.	Emergency Conditions Analysis13
D.	Comparison of Developed to Filing 3 FDR13
Ε.	Detention Design
F.	Onsite Drainage Facility Design
G.	Analysis of Existing and Proposed Downstream Facilities15
Н.	Anticipated Drainage Problems and Solutions15
VII.	EROSION CONTROL
VIII.	COST ESTIMATE AND DRAINAGE FEES 16
IX.	MAINTENANCE

Х.	SUMMARY	
XI.	APPENDICES	
А	Appendix A - Hydrologic Computations	
Д	Appendix B – Hydraulic Computations	
Д	Appendix C – Reference Information	

I. GENERAL LOCATION AND DESCRIPTION

A. Background

Mayberry, Colorado Springs (formerly known as "Ellicott Town Center") is a proposed subdivision located west of Ellicott, Colorado in El Paso County. Mayberry Filing 4 encompasses 9.78 acres east of Springs Road, south of Highway 94, west of the Gillespie Family Revocable and north of Filing 3. Filing 4 was formerly designated as "Tract A" in the Filing 3 Final Plat. The Final Drainage Report for Mayberry Colorado Springs – Filing No. 3 (referred to as Filing 3 FDR hereon) by R&R Engineers-Surveyors was approved by El Paso County on June 14th, 2023. Filing 3 FDR has designed and sized all drainage infrastructure that Filing 4 is tributary to. This Drainage Report will include documentation and calculations to support the new layout of this area is still in compliance with the approved Filing 3 FDR.

B. Scope

This Drainage Report has been prepared to fulfill the El Paso County requirements due to it being tributary to the Filing 3 FDR by R&R Engineers-Surveyors.

Mayberry Filing 4 proposes the construction of Business Park Drive, a Urban Local roadway, and associated infrastructure as well as overlot grading 8 sites for future commercial use. A temporary cul-de-sac is proposed at the eastern end of Business Park Drive as a placeholder for future improvements. Channel E, which is designed in Mayberry Filing 3, will be redirected and placed outside of the Filing 4 property.

This Drainage Report will provide a summary of the site-specific drainage design and the conformance with the Filing 3 FDR. This Drainage Report is based on the guidelines and criteria outline in the El Paso County Drainage Criteria Manual.

C. Site Location and Description

The Mayberry, Colorado Springs (Ellicott Town Center) parcel comprises the west half of Section 14 along with the contiguous east quarter of Section 15, as well the west half of the northeast quarter of Section 14, Township 14 South, Range 63 West of the 6th Principal Meridian. The site is located at an elevation of approximately 6,050 feet above mean sea level. Filing No. 4 comprises 9.78-acres in the northeastern area of the Mayberry development.

Filing 4 is located in El Paso County, Colorado and is bordered by Springs Road to the west, Highway 94 to the north, the Gillespie Family Revocable property to the east, Mayberry, Colorado Springs Filing No. 3 to the south.

The primary access to Filing 4 will be provided by Business Park Drive via Springs Road.

The terrain is generally flat with gentle northwest to southeast slopes ranging from one to two percent. Historic drainage patterns from the site are conveyed overland to the south and east boundaries of the site. The entire site is covered with native grasses.

D. General Soil Conditions

According to the Soil Survey of El Paso County prepared by the Soil Conservation Service, on-site soils are comprised primarily of Blakeland series (type 8) and Truckton series (type 95) soils. Both soils are characterized as well-drained loamy sand with rapid permeability, slow surface runoff rates, and moderate hazard of erosion. These soils are classified as hydrologic soils group "A" for drainage analysis purposes.

E. References

El Paso County "Engineering Criteria Manual," October 14, 2020.

El Paso County "Drainage Criteria Manual County of El Paso, Colorado – Volumes 1 and 2" dated October 31, 2018.

El Paso County Resolution No. 15-042 (El Paso County adoption of "Chapter 6: Hydrology" and "Chapter 13, Section 3.2.1: Full Spectrum Detention" of the City of Colorado Springs Drainage Criteria Manual dated May 2014).

JPS Engineering, "Master Development Drainage Plan for Ellicott Town Center," November 22, 2005 (approved by El Paso County 12/02/05).

JPS Engineering, "Preliminary & Final Drainage Report for Mayberry, Colorado Springs - Filing No. 1," revised October 27, 2020 (approved by El Paso County November 5, 2020).

JPS Engineering, "Preliminary Drainage Report Amendment for Mayberry, Colorado Springs – Phase 1 PUD," revised February 2022.

R&R Engineers-Surveyors, "Final Drainage Report for Mayberry Colorado Springs – Filing No. 3," *Approved June 14th, 2023.*

II. DRAINAGE BASINS AND SUB-BASINS

A. Major Drainage Basins

The proposed development lies primarily within the Ellicott Consolidated Drainage Basin (CHBS1200) as classified by El Paso County. This basin is comprised of the area tributary to the West Fork of Black Squirrel Creek, with the majority of the basin bounded by SH94 to the north and Ellicott Highway to the east. No drainage planning study has been completed for the Ellicott Consolidated Drainage Basin or any adjacent drainage basins.

The major drainage basins lying in and around the proposed development are depicted in Figure EX1 and is sourced from the Phase 1 PUD Amended Drainage Report. Mayberry, Colorado Springs is located primarily within the Ellicott Consolidated Drainage Basin, which comprises a tributary area of about 13 square miles, or 8,320 acres. Filing 4 represents a total of 9.78 acres of development, or less than one percent of the total basin area. An "on-site" drainage planning approach has been proposed in Filing 4 based on the relatively small developed area in comparison to the remaining undeveloped basin area, which is primarily agricultural land.

The existing site topography has one off-site drainage basin (EC-10) that enters Filing 4 from the north through three 30-inch CMP culverts under SH94. Per the Filing 3 FDR, the triple 30-inch CMP culverts have a 5-year and 100-year flowrate of 18.4 cfs and 144.7 cfs, respectively. Filing 4 lies within the Filing 3 FDR Basin D1.5 which conveys flows towards the south and eastern boundaries of the site (see referenced drainage map from Filing 3 in the appendices). Flows from Filing 4 remain below the anticipated peak flows of Basin D1.5, as designated by the Filing 3 FDR.

B. Floodplain Impacts

Mayberry – Filing 4, Colorado Springs is located approximately one mile southwest of the 100-year floodplain limits for the West Fork of Black Squirrel Creek, as delineated by the Federal Emergency Management Agency (FEMA). The floodplain limits in the vicinity of the site are shown in Flood Insurance Rate Map (FIRM) Number 08041C0810G, dated December 7, 2018 (see Appendix C).

C. Sub-Basin Description

The developed drainage basins lying within Filing 4 are depicted in Figure DR-1. The interior site layout has been delineated into several drainage basins based on the proposed interior road layout and grading scheme. The natural drainage patterns will be impacted through development by site grading and concentration of runoff in subdivision street gutters, storm drains, and channels. Most sub-basins drain to the

southeast, collecting in the interior roadway, Business Park Drive and interim riser pipes connecting to the proposed storm plugs for the southern lots (lots 5-8). On-site flows will be diverted to an existing extended detention basin (EDB) located at the southeast boundary of the approved Mayberry Filing 3 site, and detained flows will discharge to the east, following historic drainage paths.

III. DRAINAGE DESIGN CRITERIA

A. Development Criteria Reference

The Ellicott Consolidated Drainage Basin has not had a Drainage Basin Planning Study performed for the basin. Most areas within the basin are comprised of agricultural lands and rural residential uses.

A "Master Development Drainage Plan (MDDP) for Ellicott Town Center" was approved concurrent with the original Overall PUD, and a Preliminary Drainage Report for Ellicott Town Center Phase One was approved with the original Phase One PUD and Preliminary Plan.

JPS Engineering prepared the "Preliminary & Final Drainage Report for Mayberry, Colorado Springs - Filing No. 1," revised October 27, 2020 (approved by El Paso County November 5, 2020) in support of the final approval and recording of Filing No. 1.

The "Final Drainage Report for Mayberry, Colorado Springs – Filing No. 3" fully conforms to the previously approved MDDP and Preliminary/Final Drainage Reports, along with the "Preliminary Drainage Report Amendment for Mayberry, Colorado Springs Phase 1 PUD" dated February, 2022 prepared in support of the Phase 1 PUD Amendment.

This, "Final Drainage Report for Mayberry, Colorado Springs – Filing No. 4" fully conforms to "Final Drainage Report for Mayberry, Colorado Springs – Filing No. 3".

B. Hydrologic Criteria

Rational method procedures were utilized for calculation of peak flows within the onsite drainage basins. Rational method hydrologic calculations were based on the following assumptions:

- Design storm (minor)
- Design storm (major)
- Rainfall Intensities

5-year 100-year El Paso County I-D-F Curve A

• Hydrologic soil type

Composite runoff coefficients for the developed commercial areas have been calculated based *Table 6-6 Runoff Coefficients for Rational Method* in Chapter 6, Section 3.1 in the El Paso County Drainage Criteria Manual. A rational method spreadsheet was utilized for modeling these flows.

C. Hydraulic Criteria

Streets and Inlets

Street and inlet capacities were calculated using the MHFD Inlet spreadsheet utilizing the street geometries at each inlet. The criteria used for the design of one Urban Local Roadway was that of the El paso County ECM Volume 1 Section 3 Chapter 6, *Table 6-1 Allowable Use of Roads and Streets*. The criteria states that for the 5-year storm, flow would not exceed 6 inches of depth in the cross pan or gutter flow line or overtop the street crown while for the 100-year storm, the depth of water at the gutter flow line would not exceed 12 inches.

Underground Storm Sewer Pipe Systems

Three pipe systems are proposed as part of the Filing 4 development. Pipes are sized so that the 100-year HGLs are a minimum of 1 foot below finished grades. HGLs are derived using Bentley StormCAD software. Velocities in pipes do not exceed 18 fps as stated in the EPC DCM. All peak flows for pipes were derived via the Rational Method.

Channels

One existing grass lined channel (Channel E) will be moved as part of the Filing 4 development. Channel E is sized so that there is a minimum of 1 foot of freeboard between the 100-year water surface elevation and the top of the channel. Where Channel E makes defined bends, additional freeboard is provided per Equation 10-4 of the EPC DCM. Channels are designed to not exceed velocities of 5 fps and will be lined with native grasses. Because the EPC DCM does not give specific guidance on the use of native grasses for channel lining, El Paso County DCM Vol. 1 Section 3, Chapter 10.4, *Table 10-4 Maximum Permissible Velocities for Earth Channels with Varied Grass Linings and Slopes* was utilized to establish maximum velocities and roughness coefficients. The channels will be lined in Wetland native seed. Peak flows for Channel E were obtained using the SCS method due to the size of the offsite basins being routed through the channel. Refer to Appendix B for the referenced calculations taken from the Mayberry Filing No. 3 Final Drainage Report.

<u>Culverts</u>

One temporary culvert is proposed beneath the temporary cul-de-sac east of the proposed development. The culvert is designed so that during the 100-year storm event, water levels do not exceed 12 inches above finished grade when overtopping the roadway above per El Paso County DCM Vol. 1 Section 3, Chapter 6.4, *Table 6-4 Allowable Culvert Overtoppings*. This proposed culvert will convey water from the upstream basin, EC-10, having a 5-year and 100-year flowrate of 18.4 cfs and 144.7 cfs, respectively. The district shall maintain the cul-de-sac if culvert does not meet criteria.

D. Detention and Water Quality Criteria

Detention volumes and required release rates have been calculated in Filing 3 and will be utilized to provide water quality and detention for Filing 4 and Filing 3 as well as the future development of Filing 2 and Filing 2A. The facility is designed to pass and release the water quality captured volume (WQCV), excess urban runoff volume (EURV), and 100-year storm to meet all local and state regulations by means of a multi-stage outlet structure.

The WQCV will be routed through an existing orifice plate installed during the Mayberry Filing 3 construction. This existing orifice plate is proposed to be modified within the outlet structure to accommodate a 40 hour draw down time. The orifice plate will also drain 97% of the EURV within 72 hours. The final orifice plate will be installed within the future filing to the south of Mayberry Drive. Finally, a restrictor plate and weir combination will pass the 100-year flow at 90% of the pre-developed rate. Reference Section VI.E for additional information.

Per El Paso County Engineering Criteria Manual Section 1.7.1.C.1, up to one acre of development may be exempt from stormwater treatment. Due to the requirement that the temporary cul-de-sac be provided for fire department access to Business Park, these developed areas are unable to drain to the proposed detention pond. These areas will drain to Channel E and flow offsite undetained. This cul-de-sac area totals to 0.15 acres, so well below the one-acre requirement. The cul-de-sac is designed to slope towards the inlets in Business Park, as the temporary cul-de-sac does not include curb and gutter, only a portion of this area will make it to the inlets, meaning the remaining flow will spill over the edge of asphalt and into Channel E. This small area that will be temporarily tributary to Channel E is negligible. In the ultimate design, when the Gillespie property to the east is acquired and developed per the master planned development, the temporary cul-de-sacs will be eliminated and the curb and gutter will continue east along the future roadway.

IV. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in DCM Volume 2, the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

- Minimize Impacts: The approved Planned Unit Development includes commercial use areas resulting in a moderate level of impervious site development.
- Minimize Directly Connected Impervious Areas (MDCIA): The proposed development will include landscaped areas adjoining the proposed building and parking lots, providing for impervious areas to drain across pervious areas where feasible.
- Grass Swales: The proposed drainage plan incorporates grass-lined swales in selected locations to encourage stormwater infiltration while providing positive drainage through the site.

Step 2: Stabilize Drainageways

• Proper erosion control measures will be implemented along the grass-lined drainage channels to provide stabilized drainageways within the site.

Step 3: Provide Water Quality Capture Volume (WQCV)

- EDB: The developed areas of the site will drain through proposed Full-Spectrum Extended Detention Basins (EDB) southeast of the developed areas. Site drainage will be routed through the extended detention basins, which will capture and slowly release the WQCV over an extended release period.
- The detention pond, Pond D, designed and approved within the Filing 3 Final Drainage Report, has been designed to accept and treat the developed runoff from Filing 4. Prior to issuance of building permits within Filing 4, Pond D will be fully functioning and in good working condition to accept these developed flows. The Filing 3 Final Drainage report routing and MHFD spreadsheets have been provided in the Appendices for reference.

Step 4: Consider Need for Industrial and Commercial BMPs

• Commercial land uses are proposed as part of Filing No. 4 development. The

individual commercial site owners for each lot will be encouraged to provide additional water quality treatment such as grass lined swales, porous landscape, permeable pavement, etc. however this is not required if the developed lot remains in compliance with the pre-determined impervious area set forth in this drainage report. Water quality is treated in the down stream grass lined swales and extended detention pond.

V. GENERAL DRAINAGE RECOMMENDATIONS

The developed drainage plan for the site is to provide and maintain positive drainage away from structures and conform to the established drainage patterns for the overall site. Positive drainage shall be established and maintained away from all structures within the site in conformance with applicable building codes and geotechnical engineering recommendations.

Site grading and drainage improvements performed as a part of subdivision infrastructure development includes overlot grading and subdivision drainage improvements depicted on the subdivision construction drawings. Individual lot grading is the sole responsibility of the individual builders and property owners. Final grading of each commercial site should establish proper protective slopes and positive drainage in accordance with the current building codes.

In general, we recommend positive drainage slopes should be maintained away from all structures, with a minimum recommended slope of 5 percent for the first 10 feet away from buildings in landscaped areas, a minimum recommended slope of 2 percent for the first 10 feet away from buildings in paved areas, and a minimum slope of 1 percent for paved areas beyond buildings.

VI. DRAINAGE FACILITY DESIGN

A. General Concept

Consistent with generally accepted practices in eastern El Paso County, the general concept for stormwater management from development of Mayberry – Filing 4 proposes to construct a storm sewer system which will outfall into the Filing 3 storm sewer that routes water to the channels and extended detention basin constructed in Mayberry Filing No. 3.

Runoff from majority of the site will flow by street gutters to two proposed curb inlets in a sump, thence by storm drains and drainage channels to the existing detention pond constructed with Filing 3.

Due to an offsite basin north of SH94 flowing onto the subject property, Filing 3

Mayberry – Filing 4 Final Drainage Report

proposed a channel, Channel E, that conveys the flow around the proposed development. Filing 4 will move Channel E further east and continue to route flow around the site and combine with the pond discharge.

B. Specific Details

Existing Basins

Historic drainage conditions for Filing 4 are depicted from the drainage map included as EX-1 which can be found in the Appendices. The site generally drains from northwest to southeast. Undeveloped flows sheet flow generally towards southeast corner of the property towards Design Points e12 with 5-year and 100-year peak flows of 1.91 and 12.82 cfs, respectively. There is no existing stormwater conveyance infrastructure currently on site (piping, inlets, channels, etc) and no detention/water quality facilities existing on the site.

The existing off-site drainage basins north of Filing 4 generally flow into Channel E around the proposed site depicted as basin EC10 with 5-year and 100-year flowrates of 18.4 cfs and 144.7 cfs, respectively.

Basin D1.5, which encompasses Filing 4, will be conveyed through the storm drain stub at design point 12 constructed with Filing 3 with anticipated 5-year and 100-year flows of 31.6 cfs and 57.6 cfs, respectively. Ultimately, these flows are conveyed through the existing storm sewer system which will direct runoff south and combine with basins D1.6-D1.10 where the flow will be released into Channel D at Design Point 19 with a 5-year and 100-year peak flow of 53.1 and 106.8 cfs, respectively.

Pond D has been sized to attenuate peak flows and mitigate developed drainage impacts. The total volume storage equivalent to the 100-year + ½ WQCV produced by the onsite developed area of Filing 2, 2A, 3 and 4 is 4.96 acre-feet. Detention volume will be routed through a modified CDOT Type C outlet structure. The WQCV and EURV will be controlled by a multi-stage orifice plate while the 100-year volume will be routed through a 36" pipe with a restrictor plate. The approved filing 3 drainage report includes an interim orifice plate, to mitigate the runoff from filing 3 being fully developed, while the remaining pond tributary area is undeveloped, and the ultimate design, being all of Filing 2, 2A, 3, and 4 being developed. This drainage report includes the proposed design of another interim orifice plate option for when Filing 3 and Filing 4 are developed to comply with release rates. Refer to the table below for release rates:

RELEASE RATES IN CO	RELEASE RATES IN COMPLIANCE WITH ULTIMATE POND D DESIGN								
	5-YEAR FLOW (CFS)	100-YEAR FLOW (CFS)							
Filing 3 FDR's Ultimate Post Developed Site Detained (Pond D Discharge - DP23)	1.2	39.5							
Filing 4 Modified Orifice Plate Post Developed Site Detained (Pond D Discharge)	0.9	25.1							

Developed Drainage Basins

Basin EX-1 is an 8.88-acre basin that includes the majority of Filing 4 in its undeveloped state. Historically, the basin sheet flows from the northwest to the southeast to design point e12. The 5-year and 100-year existing peak flows are 1.91 cfs and 12.82 cfs, respectively. In the approved Filing 3 Drainage Maps, this Basin EX-1 lies within the Filing 3 Basin D1.5, which is collected by design point 12 (same location as e12). The 5-year and 100-year developed peak flows for Basin D1.5 are 31.6 cfs and 57.6 cfs, respectively.

Basin EX-2 is a 1.72-acre basin that includes the roadside ditch and existing Channel E constructed within Filing 3. The 5-year and 100-year existing peak flows are 0.38 cfs and 2.82 cfs, respectively. This flow combines with the offsite basin EC-10 with 5-year and 100-year peak flows of 18.4 cfs and 144.7 cfs, respectively. The overall flow continues south towards the roadside ditch along Log Road.

Basin C-1 is a 1.09-acre basin that encompasses Lot 1 and is analyzed entirely as a commercial development. In the interim, the basin sheet flows from northwest to southeast, over undeveloped land. In the ultimate condition, the business owner of Lot 1 is responsible for constructing a storm drain system that will tie into the proposed 18" storm stub at design point 1. The developed flow will enter the Filing 4 public storm drain system and ultimately be conveyed to Detention Pond D constructed within Filing 3. The 5-year and 100-year developed peak flows are 3.82 cfs and 6.97 cfs respectively.

Basin C-2 is a 1.09-acre basin that encompasses Lot 2 and is analyzed entirely as a commercial development. In the interim, the basin sheet flows from northwest to southeast, over undeveloped land. In the ultimate condition, the business owner of Lot 2 is responsible for constructing a storm drain system that will tie into the proposed 18" storm stub at design point 2. The developed flow will enter the Filing 4 public storm drain system and ultimately be conveyed to Detention Pond D

constructed within Filing 3. The 5-year and 100-year developed peak flows are 3.82 cfs and 6.97 cfs respectively.

Basin C-3 is a 1.07-acre basin that encompasses Lot 3 and is analyzed entirely as a commercial development. In the interim, the basin sheet flows from northwest to southeast, over undeveloped land. In the ultimate condition, the business owner of Lot 3 is responsible for constructing a storm drain system that will tie into the proposed 18" storm stub at design point 4. The developed flow will enter the Filing 4 public storm drain system and ultimately be conveyed to Detention Pond D constructed within Filing 3. The 5-year and 100-year developed peak flows are 3.75 cfs and 6.84 cfs respectively.

Basin C-4 is a 1.05-acre basin that encompasses Lot 4 and is analyzed entirely as a commercial development. In the interim, the basin sheet flows from northwest to southeast, over undeveloped land. In the ultimate condition, the business owner of Lot 3 is responsible for constructing a storm drain system that will tie into the proposed 18" storm stub at design point 6. The developed flow will enter the Filing 4 public storm drain system and ultimately be conveyed to Detention Pond D constructed within Filing 3. The 5-year and 100-year developed peak flows are 3.68 cfs and 6.71 cfs respectively.

Basin C-5 is a 0.91-acre basin that encompasses the northeast half of Springs Road and the north half of Business Park Drive, which includes mostly hardscape. Flows from this basin will be conveyed via curb and gutter and ultimately captured by the 5' Type R inlet in a sump at design point 7. The 5-year and 100-year developed peak flows are 2.14 cfs and 4.10 cfs, respectively.

Basin C-6 is a 1.21-acre basin that encompasses the south half of Business Park Drive and the first 20' of lots 5 through 8, which includes mostly hardscape and future commercial areas. Flows from this basin will be conveyed via curb and gutter and ultimately captured by the 5' Type R inlet in a sump at design point 9. The 5-year and 100-year developed peak flows are 3.41 cfs and 6.41 cfs, respectively.

Basin C-7 is a 0.82-acre basin that encompasses Lot 8 and is analyzed entirely as a commercial development. In the interim, the basin sheet flows from northwest to southeast, over undeveloped land. In the ultimate condition, the business owner of Lot 8 is responsible for constructing a storm drain system that will tie into the proposed 18" storm stub at design point 10. The developed flow will enter the Filing 4 public storm drain system and ultimately be conveyed to Detention Pond D constructed within Filing 3. The 5-year and 100-year developed peak flows are 2.95 cfs and 5.38 cfs respectively. In the interim condition, there will be a storm plug for lot 8 equipped with a perforated riser pipe that extends to the surface at a temporary low point. Undeveloped flows from lot 8 will sheetflow towards the southeast corner of the lot and be captured by this riser pipe. The lot owner will be responsible for

removing the interim plug and riser pipe and connect the future storm system to the provided stub.

Basin C-8 is a 0.83-acre basin that encompasses Lot 7 and is analyzed entirely as a commercial development. In the interim, the basin sheet flows from northwest to southeast, over undeveloped land. In the ultimate condition, the business owner of Lot 7 is responsible for constructing a storm drain system that will tie into the proposed 18" storm stub at design point 11. The developed flow will enter the Filing 4 public storm drain system and ultimately be conveyed to Detention Pond D constructed within Filing 3. The 5-year and 100-year developed peak flows are 2.99 cfs and 5.45 cfs respectively. In the interim condition, there will be a storm plug for lot 7 equipped with a perforated riser pipe that extends to the surface at a temporary low point. Undeveloped flows from lot 7 will sheetflow towards the southeast corner of the lot and be captured by this riser pipe. The lot owner will be responsible for removing the interim plug and riser pipe and connect the future storm system to the provided stub.

Basin C-9 is a 0.83-acre basin that encompasses Lot 6 and is analyzed entirely as a commercial development. In the interim, the basin sheet flows from northwest to southeast, over undeveloped land. In the ultimate condition, the business owner of Lot 6 is responsible for constructing a storm drain system that will tie into the proposed 18" storm stub at design point 13. The developed flow will enter the Filing 4 public storm drain system and ultimately be conveyed to Detention Pond D constructed within Filing 3. The 5-year and 100-year developed peak flows are 2.99 cfs and 5.45 cfs respectively. In the interim condition, there will be a storm plug for lot 6 equipped with a perforated riser pipe that extends to the surface at a temporary low point. Undeveloped flows from lot 6 will sheetflow towards the southeast corner of the lot and be captured by this riser pipe. The lot owner will be responsible for removing the interim plug and riser pipe and connect the future storm system to the provided stub.

Basin C-10 is a 0.83-acre basin that encompasses Lot 5 and is analyzed entirely as a commercial development. In the interim, the basin sheet flows from northwest to southeast, over undeveloped land. In the ultimate condition, the business owner of Lot 5 is responsible for constructing a storm drain system that will tie into the proposed 18" storm stub at design point 15. The developed flow will enter the Filing 4 public storm drain system and ultimately be conveyed to Detention Pond D constructed within Filing 3. The 5-year and 100-year developed peak flows are 2.99 cfs and 5.45 cfs respectively. In the interim condition, there will be a storm plug for lot 5 equipped with a perforated riser pipe that extends to the surface at a temporary low point. Undeveloped flows from lot 5 will sheetflow towards the southeast corner of the lot and be captured by this riser pipe. The lot owner will be responsible for removing the interim plug and riser pipe and connect the future storm system to the provided stub.

Basin U-1 is a 1.25-acre basin that is comprised of the existing channel E designed in the Filing 3 FDR and a portion of undeveloped land west of the three existing 30" cmp culverts under Highway 94. Drainage patterns and flows will follow the proposed design in filing 3 with the 5-year and 100-year developed peak flows are 0.24 cfs and 1.74 cfs, respectively. The flowrate from the three culverts conveying water from the north and onto the site have a 5-year and 100-year flow rate of 18.4 cfs and 144.7 cfs, respectively. The offsite flow from basin EC-10 and basin U-1 were combined to model the proposed culvert under the temporary cul-de-sac.

C. Emergency Conditions Analysis

In the event of clogging, the storm inlets within the Filing 4 development area will overflow to the adjacent channel, Channel E, which generally flows southeasterly ultimately discharging to the Log Road roadside ditch.

Pond D also has measures in place to mitigate an emergency condition. A buried riprap emergency spillway will route emergency flows over the embankment and into a swale that will carry flows east of the site.

D. Comparison of Developed to Filing 3 FDR

Major Basin D1.5 in the Filing 3 FDR was designed to be 95% impervious with 5- and 100-year peak flow rates of 31.60 and 57.60 cfs, respectively. With the development of Filing 4, the composite site will have an imperviousness of 92.3% with 5- and 100-year peak flow rates of 30.96 and 56.93 cfs respectively. Design point 17 is the ultimate discharge point of filing 4. Storm Sewer HGL's and inlet calculations are provided in the following appendices showing all proposed storm infrastructure within filing 4 will function as intended and be in conformance with the El Paso County Drainage Criteria Manual.

The development of Filing 4 is in compliance with the Filing 3 FDR.

E. Detention Design

The total developed storm runoff downstream of the Filing No. 4 development along with the future developments of Filings 2, 2A, 3, and the area south of Filing 3 area will be maintained at historic levels by routing flows through Detention Pond D located at the southeast corner of the subdivision. The detention facility was sized to attenuate onsite peak flows through the pond, mitigating developed drainage impacts per the approved Filing 3 Final Drainage Report. Detention Pond D will be constructed within Filing 3, which will come before this Filing 4 development.

The total volume requiring storage is equivalent to the 100 Year + ½ WQCV produced by the onsite developed area. The required pond volume was determined using the ultimate buildout conditions for all areas tributary to the pond in the approved Filing 3 FDR. The calculated volume to be stored is 9.1 ac-ft and was calculated by means of the UD_Detention spreadsheet. The detention volume will be routed through the extended detention basin by means of a modified CDOT Type C structure. The WQCV and EURV will be controlled by a multi-stage orifice plate within the Type C structure while the 100-year volume will be routed through a 36" pipe with restrictor plate within the Type C structure.

Two scenarios for Pond D have been examined for design purposes within and downstream of the pond: Interim Condition and Ultimate Development. The interim condition assumes Filing 2, 2A and 3 are fully developed, while ultimate development assumes all tributary basins are fully developed. The Type C outlet structure and multi-stage orifice plate proposed within Filing 3 will meet the required release rates during the interim condition. The orifice plate will be modified as needed to ensure release rates remain in compliance with the development of Filing 4. Please see Appendix B for the updated Mile High Flood District Detention Pond spreadsheet. The Filing 3 Drainage Report uses an interim imperviousness of 23%. When Filing 4 gets developed, the interim imperviousness will increase to 33%. This will require two of the existing orifices to enlarge to provide adequate release rates. No significant downstream drainage impacts are anticipated, and no downstream drainage improvements are proposed.

F. Onsite Drainage Facility Design

Storm Sewer System Layout

Generally, Business Park Drive is designed with cross slopes of 2%, pushing water from the centerline to the curb and gutter system. The street conveys flows to one low point where Type R curb inlets are proposed to convey street flows to an underground storm sewer system. The storm sewer system contains reinforced concrete pipes (RCP) with minimum sizes of 18 inches and minimum slopes of 0.5%.

Basins C1-C10 drain to a dedicated storm sewer system that connects to the storm sewer system designed in Filing 3 which will ultimately discharge to channel D at DP19. The channel will ultimately drain to Detention Pond D.

Open Channel System Layout

One open channel is proposed as part of the Filing 4 development: Channel E. The channel will generally be designed as a stable native grass-lined channel with a subcritical flow regime. Channel E will be designed to convey 100-year flows, with trapezoidal cross-sections, side slopes of 4:1, and minimum freeboard of 1-foot.

The proposed development will require an adjustment of Channel E to be extended eastward to convey flows from offsite basins EC-10 and OS-1 around the site. The portion of Channel E south of property limits will not be modified. The channel will maintain the general design as a grass-lined channel with a bottom width of 8 feet and a depth of 3.25 feet.

G. Analysis of Existing and Proposed Downstream Facilities

The general concept of the proposed drainage plan is to attenuate peak flows from the developed site by routing flows through the on-site detention pond D. An analysis of drainage patterns downstream of the subdivision was performed as part of the Filing 3 report to ensure historic drainage patterns are maintained. Filing 4 will remain in compliance of Filing 3.

H. Anticipated Drainage Problems and Solutions

The proposed stormwater detention pond is designed to mitigate the impacts of developed drainage from this project. The overall drainage plan for the subdivision includes a public street with curb and gutter, storm inlets, and storm sewers conveying developed flows to the detention pond designed within Filing 3. The primary drainage problems anticipated within this development will consist of maintenance of these storm sewer systems, culverts, and drainage channel. Care will need to be taken to implement proper erosion control measures in the proposed channel which will be designed to meet allowable velocity criteria.

A trail system will be maintained along the major drainage channel to provide maintenance access to the drainage facilities throughout the development. Proper construction and maintenance will minimize downstream drainage impacts. The proposed public street will be owned and maintained by El Paso County.

VII. EROSION CONTROL

The Contractor will be required to implement best management practices (BMP's) for erosion control during construction. The proposed erosion control plan is included in the Grading & Erosion Control (GEC) Plans submitted with the subdivision construction drawings. Erosion control measures will include installation of silt fence at the toe of disturbed slopes and hay bales protecting drainage ditches. Cut and fill slopes will be stabilized during excavation if necessary and vegetation will be established for stabilization of the disturbed areas. All ditches have been designed to meet El Paso County criteria for slope and velocity. Additionally, gravel vehicle tracking pads will be installed at construction access points and inlet protection will be provided to minimize conveyance of sediment into storm inlets.

VIII. COST ESTIMATE AND DRAINAGE FEES

The developer will pay all capital costs for roadway and drainage improvements. As detailed in Appendix C. The engineer's estimate for Filing 4 drainage improvements is approximately \$295,594.85. Filing 4 is located entirely within the Ellicott Consolidated Drainage Basin, which currently does not have a drainage or bridge fee requirement. As such, no drainage basin fees are applicable.

IX. MAINTENANCE

All proposed road and drainage construction within the Mayberry – Filing 4, Colorado Springs project will be performed to El Paso County Standards. Interior roads will be dedicated as public right-of-way. Roads and drainage facilities within the public right-of-way will be maintained by El Paso County upon final acceptance of these facilities after the warranty period. The Metropolitan District will maintain drainage channels and stormwater detention pond within the proposed open space areas.

X. SUMMARY

The Mayberry – Filing 4, Colorado Springs consists of 8 commercial lots in the northeast part of the master development, with access connections to State Highway 94 at Springs Road. The commercial lots are platted within Filing 4. The development will generate an increase in developed runoff from the site, which will be mitigated through stormwater detention and water quality facility.

The proposed drainage patterns will remain consistent with historic conditions, and new drainage facilities constructed to El Paso County standards will safely convey runoff to adequate outfalls. Detention Pond D southeast of the development areas will ensure that developed flows remain below historic levels. Construction and proper maintenance of the proposed drainage and erosion control facilities will ensure that this subdivision has no significant adverse drainage impacts on downstream or surrounding areas.

XI. APPENDICES

Appendix A - Hydrologic Computations

- 1. Hydrologic References from Filing 3
- 2. Pre-Developed Flow Rates
- 3. Post Developed Flow Rates

Appendix B – Hydraulic Computations

- 1. Detention and Water Quality Facility Design
- 2. Storm Sewer Capacity
- 3. Inlet and Street Capacity
- 4. Channel Design
- 5. Culvert Capacity

Appendix C – Reference Information

- 1. Vicinity Map
- 2. Cost Estimate
- 3. NRCS Soils Report
- 4. FEMA Flood Insurance Maps
- 5. Referenced Narrative and Drainage Maps from Filing 3
- 6. Existing and Developed Drainage Maps
- 7. Outlet Structure Modifications

APPENDIX A - HYDROLOGIC COMPUTATIONS

POST-DEVELOPMENT C VALUES

Designer: ES	51					Glol	bal Parameters ¹				Sumr	nary	1				
	&R Engineers-Survey	iors				and Use	% Imp.	C ₅	C ₁₀₀		Total Area (ac)	561.92					
Date: 1/	-	/013	-		SF LOTS (1/6 A		47.5	0.375	0.545		. ,	33.1%	_				
							100	0.375			Composite Impervious	33.1%					
	layberry Filing 3		-	R&R	Hardscape				0.96				-	1			
Location: El	Paso County		_		Commercial		95	0.81	0.88					¹ From Table			
			ENGIN	EERS Z	Landscape/Park		2	0.08	0.35					² From Table	e 6-6 in El Pa	so County D	CM
			SURVE	YORS 🗖							Cells of this color are for	or required user-input					
				•							Cells of this color are f	or optional user-input					
	Area	NRCS Hydrologic Soil	SF LOT	TS (1/6 AC)	н	ardscape	Comm	ercial	Landsca	pe/Park				Run	off Coefficie	nt. C ²	-
Basin Name	(ac)	Group	Area (ac)	%	Area (ac)	%	Area (ac)	%	Area (ac)	%	% Check	Percent Imperviousness	2-yr	5-yr	10-yr	25-yr	100-yr
C2.1	0.77	Α	0.77	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%	- 1-	0.38	1.	1-	0.55
C2.2	0.33	A	0.33	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
C2.3	1.81	A	1.81	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
C2.4	1.16	A	0.00	0.0%	0.93	80.0%	0.00	0.0%	0.23	20.0%	100.00%	80%		0.74			0.84
C2.5	9.61	A	9.61	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%	Ī	0.38			0.55
C3.0	35.40	A	17.70	50.0%	0.00	0.0%	0.00	0.0%	17.70	50.0%	100.00%	25%	1	0.23			0.45
D1.1	1.73	А	0.00	0.0%	0.00	0.0%	1.73	100.0%	0.00	0.0%	100.00%	95%		0.81	1		0.88
D1.2	2.56	А	2.56	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.3	2.02	A	2.02	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.4	3.75	А	3.52	93.9%	0.00	0.0%	0.23	6.1%	0.00	0.0%	100.00%	50%		0.40			0.57
D1.5	9.88	A	0.00	<mark>0.0%</mark>	0.00	0.0%	<mark>9.88</mark>	<mark>100.0%</mark>	0.00	<mark>0.0%</mark>	100.00%	<mark>95%</mark>		<mark>0.81</mark>			0.88
D1.6	1.96	А	1.96	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.7	1.56	A	1.56	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.8	1.27	А	1.27	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.9	0.54	A	0.54	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.10	2.13	A	2.13	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.11	1.23	A	0.00	0.0%	0.98	80.0%	0.00	0.0%	0.25	20.0%	100.00%	80%		0.74			0.84
D1.12	3.42	A	3.42	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.13	3.07	A	0.00	0.0%	0.00	0.0%	3.07	100.0%	0.00	0.0%	100.00%	95%		0.81			0.88
D1.14	0.91	A	0.60	65.9%	0.00	0.0%	0.31	34.1%	0.00		100.00%	64%		0.52			0.66
D2.0	11.90	A	9.50	79.8%	0.00	0.0%	0.00	0.0%	2.40	20.2%	100.00%	38%		0.32			0.51
E1	3.92	A	0.00	0.0%	0.00	0.0%	0.00	0.0%	3.92	100.0%	100.00%	2%		0.08			0.35
D2.1	3.15	A	0.00	0.0%	0.00	0.0%	0.00	0.0%	3.15	100.0%	100.00%	2%		0.08			0.35
OS-1	2.65	A	0.00	0.0%	0.91	34.3%	0.00	0.0%	1.74	65.7%	100.00%	36%		0.36		 	0.56
C Basins	49.08	A	30.22	61.6%	0.93	1.9%	0.00	0.0%	17.93	36.5%	100.00%	32%		0.28			0.48
D Basins	51.08	A	29.08	56.9%	0.98	1.9%	15.22	29.8%	2.65	5.2%	93.83%	57%	1	0.48	1	1	0.61
												1	I	-	1	1	1
Pond - Developed	100.16	A	59.30	59.2%	1.91	1.9%	15.22	15.2%	20.58	20.5%	96.86%	45%	1	0.38			0.55
D1.5 (pre-dev)	9.88	А	0.00	0.0%	0.00	0.0%	0.00	0.0%	9.88	100.0%	100.00%	2%		0.08			0.35
D2.0 (pre-dev)	11.90	А	0.00	0.0%	0.00	0.0%	0.00	0.0%	11.90	100.0%	100.00%	2%		0.08			0.35
C3.0 (pre-dev)	35.40	A	0.00	0.0%	0.00	0.0%	0.00	0.0%	35.40	100.0%	100.00%	2%		0.08			0.35
Pond - F2 & F3 Dev only	100.16	A	32.10	32.0%	1.91	1.9%	5.34	5.3%	60.81	60.7%	100.00%	23%					ļ/
*1																	 '
*highlighted basins are																	
tributary to Pond D in																	
Interim condition																	╂─────′
GALV	4.44	•		100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
GALV	4.44	Α	4.44	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
C Basins - Pre Dev	49.08	Α	12.52	25.5%	0.93	1.9%	0.00	0.0%	35.63	72.6%	100.00%	15.5%		0.17			0.41
D Basins - Pre Dev	49.08	A	12.52	40.9%	0.98	2.1%	5.34	11.1%	22.03	46.0%	100.00%	33.0%	l	0.17			0.41
D DUSITIS FIE DEV	-1.55	A	10.00	+0.570	0.50	2.1/0	5.54	11.1/0	22.05	+0.070	100.0070	55.070	I	0.50		I	0.50

TIME OF CONCENTRATION

Designer:		.]	$t_i = \frac{0.395}{1000}$	$\frac{1}{S_i^{0.33}}$	Co	mputed t _c = t	$t_i + t_t$ t_r	_{ninimum} = 5 (urb _{ninimum} = 10 (no	an)	Non Urban Li ma Urban Li Max = 1			
	R&R Engineers-	Surveyors			L	t L			,		-				
	1/5/2023				$t_t =$	$\frac{L_{t}}{L_{t}/S_{t}} = \frac{L}{60}$	V ₊ Sel	ected t _c = max	(t _{minimum} , n	nin(Computed t	; _c , Regional t _c)}				RER
Project:	Mayberry Filing	3			001	v ot		T					-	_	
Location:	El Paso County			1	Regional t	_e = (26 –	$17i) + \frac{1}{60(14)}$	$\frac{L_t}{(i+9)\sqrt{S_t}}$		Cells of this c	olor are for require	ed user-input]		ENGINEERS SURVEYORS
	Subbasin I	Data			nd (Initial) Flo				elized (Travel) F	low Time			Ti	me of Concentra	
	505503111			Overland									1		
Basin	Area	% Impervious	С5	Flow Length L _i (ft)	Overland Flow Slope S _i (ft/ft)	Overland Flow Time t _i (min)	Channelized Flow Length L _t (ft)	Channelized Flow Slope S _t (ft/ft)	NRCS Conveyance Factor K	Channelized Flow Velocity V _t (ft/sec)	Channelized Flow Time t _t (min)	Computed t _c (min)	Regional t _c (min)	Selected t _c (min)	Remarks
C2.1	0.77	47.5%	0.38	100.00	0.020	10.41	242.00	0.020	20	2.83	1.43	11.84	19.75	11.84	
C2.2	0.33	47.5%	0.38	36.00	0.020	6.25	152.00	0.020	20	2.83	0.90	7.14	19.07	7.14	
C2.3	1.81	47.5%	0.38	100.00	0.020	10.41	1033.00	0.010	20	2.00	8.61	19.02	28.93	19.02	
C2.4	1.16	80.4%	0.74	12.00	0.020	1.81	534.00	0.009	20	1.90	4.69	6.50	16.96	6.50	
C2.5	9.61	47.5%	0.38	36.00	0.020	6.25	513.00	0.007	20	1.67	5.11	11.36	24.45	11.36	
C3.0	35.40	24.8%	0.23	100.00	0.020	12.53	1536.00	0.010	20	2.00	12.80	25.33	42.33	25.33	
D1.1	1.73	95.0%	0.81	100.00	0.020	4.17	405.00	0.020	20	2.83	2.39	6.55	11.99	6.55	
D1.2	2.56	47.5%	0.38	100.00	0.020	10.41	533.00	0.010	20	2.00	4.44	14.86	23.60	14.86	
D1.3	2.02	47.5%	0.38	36.00	0.020	6.25	495.00	0.010	20	2.00	4.13	10.37	23.20	10.37	
D1.4	3.75	50.4%	0.40	100.00	0.020	10.03	634.00	0.014	20	2.37	4.47	14.50	22.99	14.50	
D1.5	9.88	<mark>95.0%</mark>	0.81	100.00	0.020	4.17	856.00	0.010	20	2.00	7.13	11.30	16.25	11.30	
D1.6	1.96	47.5%	0.38	100.00	0.020	10.41	534.00	0.010	20	2.00	4.45	14.86	23.61	14.86	
D1.7	1.56	47.5%	0.38	100.00	0.020	10.41	530.00	0.010	20	2.00	4.42	14.83	23.57	14.83	
D1.8	1.27	47.5%	0.38	100.00	0.020	10.41	325.00	0.010	20	2.00	2.71	13.12	21.39	13.12	
D1.9	0.54	47.5%	0.38	36.00	0.020	6.25	389.00	0.010	20	2.00	3.24	9.49	22.07	9.49	
D1.10	2.13	47.5%	0.38	36.00	0.020	6.25	465.00	0.010	20	2.00	3.88	10.12	22.88	10.12	
D1.11	1.23	80.4%	0.74	12.00	0.020	1.81	962.00	0.017	20	2.61	6.15	7.96	18.40	7.96	
D1.12	3.42	47.5%	0.38	100.00	0.020	10.41	1356.00	0.010	20	2.00	11.30	21.71	32.37	21.71	
D1.13	3.07	95.0%	0.81	100.00	0.020	4.17	456.00	0.008	20	1.79	4.25	8.41	13.66	8.41	
D1.14	0.91	63.7%	0.52	100.00	0.020	8.28	400.00	0.008	20	1.79	3.73	12.01	19.33	12.01	
D2.0	11.90	38.3%	0.32	100.00	0.020	11.27	1750.00	0.011	20	2.10	13.90	25.17	38.84	25.17	
D2.1	3.15	2.0%	0.08	100.00	0.021	14.42						14.42		14.42	
E1	3.92	2.0%	0.08				2811.00	0.008							Tc calculated using TR55 - see Hydraflow Hydrographs Model
EC10	320.00		0.08	300.00	0.020		5250.00	0.013							Tc calculated using TR55 - see Hydraflow Hydrographs Model
OS-1	2.65	35.7%	0.36	50.00	0.020		2525.00	0.007							Tc calculated using TR55 - see Hydraflow Hydrographs Model
GALV	4.44	47.5%	0.38	36.00	0.020	6.25	1007.00	0.010	20	2.00	8.39	14.64	28.65	14.64	
D2.0 (pre-dev)	11.90	2.0%	0.08	100.00	0.020	14.65	1750.00	0.011	20	2.10	13.90	28.56	55.63	28.56	
C3.0 (pre-dev)	35.40	2.0%	0.08	100.00	0.020	14.65	1536.00	0.010	20	2.00	12.80	27.45	53.25	27.45	

DIRECT RUNOFF TOTAL RUNOFF STREET BYPASS PIPE STREET/ CONTRIBUTING DESGIN Sum Basin Name Area Coeff C*A Q Slope PIPE Тс 1 Тс Sum C*A Q Slope Street Q Design Q L 1 BASINS POINT Area (ac) in/hr SIZE ft (ac) С (min) (ac) (cfs) (min) (ac) cfs % cfs cfs % 0.81 3.95 D1.5 9.88 11.3 8.00 31.6 D1.5 3.95 <mark>31.58</mark> 135 12 11.3 9.88 8.00 0.38 0.74 2.6 D1.6 1.96 14.9 3.53 13 DP12, D1.6 14.86 11.8 8.7 3.53 30.88 35 D1.7 1.56 0.38 14.8 0.59 3.54 2.1 14 DP13, D1.7 14.96 13.4 9.3 3.52 32.86 232 D1.8 0.38 0.48 3.72 1.8 1.27 13.1 15 DP14, D1.8 15.96 14.7 9.8 3.43 33.59 35 D1.9 0.38 4.21 0.9 0.54 9.5 0.20 DP15, D1.9 15.2 34.19 137 16 16.06 10.0 3.42 0.38 0.80 4.11 3.3 D1.10 2.13 10.1 17 10.12 0.8 4.11 3.28 20 D1.10 2.1 D1.11 0.74 8.0 0.91 4.47 4.0 10 1.23 18 D1.11, DP17, DP10 27.8 2.59 27.44 63 20.8 10.6 19 1024 DP16, DP18 28.1 36.0 20.6 2.58 53.06 0.32 2.74 D2.0 11.9 25.2 3.75 10.3 20 DP19, D2.0 32.41 47.9 24.3 2.37 57.54 22.0 C3.0 35.4 0.23 25.3 8.05 2.73 21 DP4, C3.0 25.9 2.70 49.1 13.6 36.73 D2.1 3.15 0.08 14.4 0.25 3.58 0.9 22 D2.1, DP20, DP21 28.1 100.2 38.2 2.58 98.46 23 POND D OUTFLOW 1.20 CHANNEL E OUTFLOW 17.60 24 18.70 EX5 DP23, DP24 0.38 GALV 14.6 1.67 3.56 5.9 4.44 D2.0 (pre-11.9 0.08 28.6 0.95 2.56 2.4 dev) C3.0 (pre-35.4 0.08 27.5 2.83 2.61 7.4 dev) D1.5 (pre-9.88 0.08 21.8 2.96 0.79 2.3 dev)

TRAVE	L TIME		
VEL	Tt	Q add'l	Remarks
ft/sec	min		
4	0.60		
4	0.10		
	1.00		
4	1.00		
4	0.10		
4	0.10		
4	0.60		
	0.00		
4	0.10		
4	0.00		
4	0.30		
4	4.30		Total into upper Channel D
			To channel C2
			5 YEAR RELEASE RATE FOR POND D
			Input from Hydraflow Hydrographs,
			Calculated via SCS Method
			Input from Hydraflow Hydrographs,
			Calculated via SCS Method
	1		

	/			DIRE	CT RUNOFF					т	OTAL RUNC	DFF		STREET	BYPASS		PIPE			TRAVE
DESGIN POINT	STREET/ CONTRIBUTING	Basin Name	Area	Coeff	Тс	C*A	I	Q	Тс	Sum Area	Sum C*A	I	Q	Slope	Street Q	Design Q	Slope	PIPE	L	VEL
POINT	BASINS		(ac)	с	(min)	(ac)		(cfs)	(min)	(ac)	(ac)	in/hr	cfs	%	cfs	cfs	%	SIZE	ft	ft/sec
<mark>12</mark>	D1.5								11.3	9.88	8.69	6.62	<mark>57.60</mark>						135	4
		D1.6	1.96	0.55	14.9	1.07	5.93	6.3												
13	DP12, D1.6								14.86	11.8	9.8	5.93	57.93						35	4
		D1.7	1.56	0.55	14.8	0.85	5.94	5.0												
14	DP13, D1.7	54.0	4.07	0.55	12.1	0.60	6.25	4.2	14.96	13.4	10.6	5.92	62.79		ļ				232	4
15	DP14, D1.8	D1.8	1.27	0.55	13.1	0.69	6.25	4.3	16.06	14.7	11.3	5.74	64.87						35	4
15	DP14, D1.0	D1.9	0.54	0.55	9.5	0.29	7.06	2.1	10.00	14.7	11.5	5.74	04.07						- 35	4
16	DP15, D1.9	01.5	0.54	0.55	5.5	0.25	7.00	2.1	16.16	15.2	11.6	5.72	66.38		<u> </u>				137	4
	2. 20, 22.0	D1.10	2.13	0.55	10.1	1.16	6.90	8.0	10.10	10.12	11.0	0.72							207	
17	D1.10				-				10.12	2.1	1.2	6.90	8.01						20	4
		D1.11	1.23	0.84	8.0	1.03	7.51	7.7											10	4
18	D1.11, DP17, DP10								28.6	20.8	13.5	4.28	57.81						63	4
19	DP16, DP18								28.9	36.0	25.1	4.26	106.83		ļ				1024	4
		D2.0	11.9	0.51	25.2	6.02	4.61	27.7												
20	DP19, D2.0								33.21	47.9	31.1	3.91	121.58							
		C3.0	35.4	0.45	25.3	15.84	4.59	72.7												
21	DP4, C3.0	52.4	0.45	0.25		1.10	6.01	6.6	26.9	49.1	23.6	4.44	104.87		ļ					
22	D2.1, DP20, DP21	D2.1	3.15	0.35	14.4	1.10	6.01	6.6	28.9	100.2	55.9	4.26	237.76			237.8				
22	D2.1, DF20, DF21								20.9	100.2	55.5	4.20	237.70			257.0				
23	POND D OUTFLOW												39.60							
25															1	<u> </u>				
24	CHANNEL E OUTFLOW												138.50							
													177.50							
EX5	DP23, DP24												177.50							
		GALV	4.44	0.55	14.6	2.42	5.97	14.5							ļ	14.5				
		D2.0 (mm																		
		D2.0 (pre- dev)	11.9	0.35	28.6	4.17	4.29	17.9												
		uevj						<u> </u>												
		C3.0 (pre-																		
		dev)	35.4	0.35	27.5	12.39	4.39	54.4												
		/																		
		D1.5 (pre-	9.88	0.35	21.8	2.40	4.97	17.2												
		dev)	3.00	0.55	21.0	3.46	4.97	17.2												
20 - Pre Dev	DP4, C3.0 (pre-dev)							ļ	27.5	49.1	20.19	4.39	88.57			88.6				
21 - Pre Dev	DP19, D2.0 Pre-Dev,								33.2	47.9	24.0	3.91	93.88							
	D1.5 (pre-dev)											l				93.9				

VE	L TIME		
	Tt	Q add'l	Remarks
	min		
	0.60		
	0.10		
	1.10		
	0.10		
	0.10		
	0.60		
	0.00		
-	0.10		
	0.00		
	0.30		
	4.30		Total into upper Channel D
			To channel C2
_			
_			100 YEAR RELEASE RATE FOR POND D
_			Input from Hydraflow Hydrographs, Calculated via
			SCS Method
			Input from Hydraflow Hydrographs, Calculated via SCS Method
_			
_			
			Used for sizing for interim forebay release rate
			Used for sizing for interim forebay release rate

EXISTING C VALUES

Designer: ESJ		(Global Parameters ¹			T	Sumr	mary
Company: R&R Engineers-Surveyors		Land Use	% Imp.	C ₅	C ₁₀₀	1	Total Area (ac)	
Date: 8/9/2023		Agriculture	2	0.09	0.36	1	Composite Impervious	
Project: Mayberry Filing 4	R&R	Hardscape	100	0.9	0.96			
Location: El Paso County		Commercial/Industrial	80	0.59	0.7			
	ENGINEERS 🗩	Landscape/Park	2	0.08	0.35			
						-	Cells of this color are fo	or requir
	I I			•			Cells of this color are for	or optior

Basin Name	Area (ac)					NRCS Hydrologic Soil Group	Agri	culture	н	ardscape	Commercial/	'Industrial	Landsca	pe/Park	% Check	Perc
		, , , ,	Area (ac)	%	Area (ac)	%	Area (ac)	%	Area (ac)	%]					
EX-1	8.88	A	8.88	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%					
EX-2	1.72	A	0.00	0.0%	0.00	0.0%	0.00	0.0%	1.72	100.0%	100.00%					

ý					
10.60					
2.0%					
	1	From Table	6-6 in El Pasc	County DCN	Л
	2	From Table	6-6 in El Pasc	County DCN	Л
equired user-input					
ptional user-input					
ercent Imperviousness		Run	off Coefficie	nt, C ²	
	2-yr	5-yr	10-yr	25-yr	100-yr
2.0%		0.09			0.36
2.0%		0.08			0.35

EX DEVELOPMENT CN VALUES

Designer:	ESJ
Company:	R&R Engineers-Surveyors
Date:	8/9/2023
Project:	Mayberry Filing 4
Location:	El Paso County

Global Parameters	1
Land Use	CN
PASTURE - GOOD	61

Basin Name	Area	NRCS Hydrologic Soil Group	PASTU	RE - GOOD	% Check	SCS CN
	(ac)		Area (ac)	%		CN
EX-1	8.88	А	8.88	100.0%		61.00
EX-2	1.72	A	1.72	100.0%		61.00

TIME OF CONCENTRATION (EXISTING)

Date:	R&R Enginee 8/9/2023				t _i =	$\frac{S(1.1 - C_5)}{S_i^{0.33}}$ $\frac{L_t}{\zeta_s \sqrt{S_t}} = \frac{L_t}{60}$		computed $t_c = t$ lected $t_c = max$	t t	minimum= 5 (urb minimum= 10 (no min(Computed t	an) on-urban)	Non Urban Li ma Urban Li Max = 1			RER
	Mayberry Fil El Paso Coun	ty			Regional t	_c = (26 –	$17i) + \frac{1}{60(14)}$	$\frac{L_t}{4i+9)\sqrt{S_t}}$			olor are for requir	ed user-input]		ENGINEERS SURVEYORS
	Subbasir	n Data		Overlan Overland	nd (Initial) Flo	w Time		Chann	elized (Travel) F	Flow Time			Time of C	Concentration	
Basin	Area	% Impervious	C5	Flow Length L _i (ft)	Overland Flow Slope S _i (ft/ft)		Channelized Flow Length L _t (ft)	Channelized Flow Slope S _t (ft/ft)	NRCS Conveyance Factor K	Channelized Flow Velocity V _t (ft/sec)	Channelized Flow Time t _t (min)	Computed t _c (min)	Regional t _c (min)	Selected t _c (min)	Remarks
EX-1	8.88	2.0%	0.09	100.00	0.020	14.51	737.00	0.020	5	0.71	17.37	31.88	35.02	31.88	
EX-2	1.72	2.0%	0.08	100.00	0.020	14.65	1250.00	0.020	15	2.12	9.82	24.47	41.53	24.47	

EXISTING - 5-YEAR DESIGN STORM

Company:	R&R Engineers-Surveyors
Date:	8/9/2023
Project:	Mayberry Filing 4
Location:	El Paso County

Cells of this color are for required user-input Cells of this color are for optional user-input

 $I_5 = -1.50 \ln(D) + 7.583$

	STREET/			DIF	RECT RUNC	DFF				Т	OTAL RUNC	DFF		STREET	BYPASS		PIPE			TRAVE	L TIME		
DESGIN POINT	CONTRIBUTING	Basin Name	Area	Coeff	Тс	C*A	I	Q	Тс	Sum Area	Sum C*A	I	Q	Slope	Street Q	Design Q	Slope	PIPE	L	VEL	Tt	Q add'l	Remarks
	27.0.1.0		(ac)	С	(min)	(ac)		(cfs)	(min)	(ac)	(ac)	in/hr	cfs	%	cfs	cfs	%	SIZE	ft	ft/sec	min		
		EX-1	8.88	0.09	31.9	0.80	2.39	1.91															
e12	EX-1								31.9	8.88	0.80	2.39	1.91										
		EX-2	1.72	0.08	24.5	0.14	2.79	0.38															
e13	EX-2								24.5	1.72	0.14	2.79	0.38										

Designer:	ESJ
Company:	R&R Engineers-Surveyors
Date:	8/9/2023
Project:	Mayberry Filing 4
Location:	El Paso County

Cells of this color are for required user-input Cells of this color are for optional user-input

$I_{100} = -2.52 \ln(D) + 12.735$

	STREET/			DIRE	CT RUNOF	•				т	TOTAL RUNOFF		STREET BYPASS		PIPE			TRAVEL TIME					
DESGIN POINT	CONTRIBUTING BASINS	Basin Name	Area (ac)	Coeff C	Tc (min)	C*A (ac)	I	Q (cfs)	Tc (min)	Sum Area (ac)	Sum C*A (ac)	l in/hr	Q cfs	Slope %	Street Q cfs	Design Q cfs	Slope %	PIPE SIZE	L ft	VEL ft/sec	Tt min	Q add'l	Remarks
		EX-1	8.88	0.36	31.9	3.20	4.01	12.82	()	()	()									.,			
		EV-T	0.00	0.30	51.5	3.20	4.01	12.02															
e12	EX-1								31.9	8.88	3.20	4.01	12.82										
		EX-2	1.72	0.35	24.5	0.60	4.68	2.82															
e13	EX-2								24.5	1.72	0.60	4.68	2.82										

POST-DEVELOPMENT C VALUES

Designer:	LAO					Glo	bal Parameters ¹				Sumr	nary				
Company:	R&R Engineers-Surveyo	ors			La	and Use	% Imp.	C ₅	C ₁₀₀	Ĩ	Total Area (ac)	9.73				
Date:	12/20/2024				Commercial		95	0.81	0.88	Î	Composite Impervious	92.3%				
Project:	Mayberry Filing 4			R&R	Hardscape		100	0.9	0.96							
Location:	El Paso County				Landscape/Park		2	0.08	0.35				¹ From Table	6-6 in El Paso	County DC	M
			ENGIN	EERS 📃	Gravel		80	0.57	0.7				² From Table	6-6 in El Paso	County DC	Μ
			SURVE	YORS 🗖							Cells of this color are f	or required user-input				
				•				-			Cells of this color are f	or optional user-input				
Basin Name	Area	NRCS Hydrologic Soil Group	Com	mercial	На	ırdscape	Landscap	e/Park	Gra	avel	% Check	Percent Imperviousness	Run	off Coefficien	t, C ²	
	(ac)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Area (ac)	%	Area (ac)	%	Area (ac)	%	Area (ac)	%			2-yr 5-yr	10-yr	25-yr	100-yr
C-1	1.09	A	1.09	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	95.0%	0.81			0.88
C-2	1.09	А	1.09	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	95.0%	0.81			0.88
C-3	1.07	А	1.07	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	95.0%	0.81			0.88
C-4	1.05	А	1.05	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	95.0%	0.81			0.88
C-5	0.91	А	0.00	0.0%	0.72	79.1%	0.19	20.9%	0.00	0.0%	100.00%	79.5%	0.73			0.83
C-6	1.21	A	0.44	36.4%	0.61	50.4%	0.16	13.2%	0.00	0.0%	100.00%	85.2%	0.76			0.85
C-7	0.82	A	0.82	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	95.0%	0.81			0.88
C-8	0.83	A	0.83	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	95.0%	0.81			0.88
C-9	0.83	A	0.83	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	95.0%	0.81			0.88
C-10	0.83	A	0.83	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	95.0%	0.81			0.88
U-1	1.25	Δ	0.00	0.0%	0.00	0.0%	1.25	100.0%	0.00	0.0%	100.00%	2.0%	0.08			0.35

POST-DEVELOPMENT CN VALUES

Designer:	ESJ
Company:	R&R Engineers-Surveyors
Date:	12/20/2024
Project:	Mayberry Filing 4
Location:	El Paso County

Global Parameters ¹	
Land Use	CN
SF LOTS (1/6 AC)	80
PASTURE - GOOD	61
COMMERCIAL	92
OPEN SPACE - GOOD	61
PAVED STREETS	98

Basin Name	Area	NRCS Hydrologic Soil Group	SF LOT	S (1/6 AC)	PAST	URE - GOOD	СОММЕ	RCIAL	OPEN SPA	CE - GOOD	PAVED	STREETS	% Check	SCS CN
	(ac)		Area (ac)	%	Area (ac)	%	Area (ac)	%	Area (ac)	%	Area (ac)	%		CN
U-1	1.25	А	0.00	0.0%	0.00	0.0%	0.00	0.0%	1.25	100.0%	0.00	0.0%	100.00%	61.00
EC-10	320.00	A	0.00	0.0%	320.00	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	61.00

TIME OF CONCENTRATION

Date: Project:	ESJ R&R Enginee 12/20/2024 Mayberry Fil El Paso Coun	ing 4				$\frac{S_i}{L_t} = \frac{L}{60}$	^{/t})V _t S		$\begin{array}{c c} \mbox{mputed } t_c = t_i + t_t \\ \mbox{minimum} = 10 \ (non-urban) \\ \mbox{ected } t_c = \max\{t_{\min num}, \min(\text{Computed } t_c, \text{Regional } t_c)\} \end{array} \qquad Urban \ \text{Li Max} = 100'$				Regional t _c)}						
	Subbasii	n Data			nd (Initial) Flo			,	elized (Travel)	low Time			Time of	Concentration	•				
Basin	Area	% Impervious	C5	Overland Flow Length L _i (ft)	Overland Flow Slope S _i (ft/ft)	Overland Flow Time t _i (min)	Channelized Flow Length L _t (ft)		NRCS Conveyance Factor K	Channelized Flow Velocity V _t (ft/sec)	Channelized Flow Time t _t (min)	Computed t _c (min)	Regional t _c (min)	Selected t _c (min)	Remarks				
C-1	1.09	95.0%	0.81	100.00	0.010	5.24	300.00	0.005	20	1.41	3.54	8.77	13.02	8.77					
C-2	1.09	95.0%	0.81	100.00	0.010	5.24	300.00	0.005	20	1.41	3.54	8.77	13.02	8.77					
C-3	1.07	95.0%	0.81	100.00	0.010	5.24	300.00	0.005	20	1.41	3.54	8.77	13.02	8.77					
C-4	1.05	95.0%	0.81	100.00	0.010	5.24	300.00	0.005	20	1.41	3.54	8.77	13.02	8.77					
C-5	0.91	79.5%	0.73	100.00	0.020	5.33	1100.00	0.005	20	1.41	12.96	18.30	25.35	18.30					
C-6	1.21	85.2%	0.76	30.00	0.020	2.68	892.00	0.005	20	1.41	10.51	13.20	21.56	13.20					
C-7	0.82	95.0%	0.81	100.00	0.015	4.58	300.00	0.005	20	1.41	3.54	8.12	13.02	8.12					
C-8	0.83	95.0%	0.81	100.00	0.015	4.58	300.00	0.005	20	1.41	3.54	8.12	13.02	8.12					
C-9	0.83	95.0%	0.81	100.00	0.015	4.58	300.00	0.005	20	1.41	3.54	8.12	13.02	8.12					
C-10	0.83	95.0%	0.81	100.00	0.015	4.58	300.00	0.005	20	1.41	3.54	8.12	13.02	8.12					
U-1	1.21	2.0%	0.08	35.00	0.010	10.90	900.00	0.010	7	0.70	21.43	32.32	41.82	32.32					
EC-10	0.82		0.08				2811.00	0.008							From apprvd F3 FDR				

Designer: ESJ

Company: R&R Engineers-Surveyors

Date: 12/20/2024

Project: Mayberry Filing 4

Location: El Paso County

Cells of this color are for required user-input Cells of this color are for optional user-input

 $I_5 = -1.50 \ln(D) + 7.583$

		DIRECT RUNOFF								т	OTAL RUNC	FF		STREET BYPASS PIPE					TRAVE	LTIME			
DESGIN POINT	STREET/ CONTRIBUTING BASINS	Basin Name	Area	Coeff	Тс	C*A	I	Q	Tc	Sum Area	Sum C*A	I	Q	Slope	Street Q	Design Q	Slope	PIPE	L	VEL	Tt	Q add'l	Remarks
			(ac)	с	(min)	(ac)		(cfs)	(min)	(ac)	(ac)	in/hr	cfs	%	cfs	cfs	%	SIZE	ft	ft/sec	min		
		C-1	1.09	0.81	8.8	0.88	4.33	3.82															
1	C-1								8.8	1.09	0.88	4.33	3.82						283	3	1.6		
2	C-2	C-2	1.09	0.81	8.8	0.88	4.33	3.82											25	3	0.1		
3	C-1, C-2								10.5	2.18	1.77	4.06	7.17						233	3	1.3		
4	C-3	C-3	1.07	0.81	8.8	0.87	4.33	3.75											25	3	0.1		
5	C-1, C-2, C-3								11.9	3.25	2.63	3.87	10.18						225	3	1.3		
6	C-4	C-4	1.05	0.81	8.8	0.85	4.33	3.68											23	3	0.1		
		C-5	0.91	0.73	18.3	0.66	3.22	2.14															
7	C-4, C-5								18.4	1.96	1.51	3.21	4.86						5	3	0.0		
8	C-1, C-2, C-3, C-4, C-5								19.7	5.21	4.15	3.11	12.91						28	3	0.2		
		C-6	1.21	0.76	13.2	0.92	3.71	3.41															
9	C-1, C-2, C-3, C-4, C-5, C-6								19.8	6.4	5.1	3.10	15.71						172	3	1.0		
		C-7	0.82	0.81	8.1	0.66	4.44	2.95															
10	C-7								8.1	0.82	0.66	4.44	2.95						244	3	1.4		
11	C-8	C-8	0.83	0.81	8.1	0.67	4.44	2.99											8	3	0.0		
12	C-7, C-8								9.5	1.65	1.34	4.21	5.63						235	3	1.3		
13	C-9	C-9	0.83	0.81	8.1	0.67	4.44	2.99											8	3	0.0		
14	C-7, C-8, C-9								10.8	2.48	2.01	4.02	8.07						199	3	1.1		
15	C-10	C-10	0.83	0.81	8.1	0.67	4.44	2.99											8	3	0.0		
16	C-7, C-8, C-9, C-10								11.9	3.31	2.68	3.87	10.38						26	3	0.1		
17	C-1, C-2, C-3, C-4, C-5, C-6, C-7, C-8, C-9, C-10								10.9	9.73	7.75	4.00	30.96										
		U-1	1.25	0.08	32.3	0.10	2.37	0.24															
18	U-1, EC-10	EC-10	320					18.43	32.32	321.25		2.37	18.67										Values taken from the approved F3 FDR

PROPOSED STORM DRAINAGE SYSTEM DESIGN - 100-YEAR DESIGN STORM

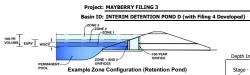
Designer: ESJ

Company: R&R Engineers-Surveyors

Date: 12/20/2024

Project: Mayberry Filing 4 Location: El Paso County Cells of this color are for required user-input Cells of this color are for optional user-input

 $I_{100} = -2.52 \ln(D) + 12.735$


		DIRECT RUNOFF								т	OTAL RUNG	DFF		STREET BYPASS PIPE				TRAV	/EL TIME		· · · · · · · · · · · · · · · · · · ·		
DESGIN POINT	STREET/ CONTRIBUTING BASINS	Basin Name	Area	Coeff	Тс	C*A	I	Q	Тс	Sum Area	Sum C*A	I	Q	Slope	Street Q	Design Q	Slope	PIPE	L	VEL	Tt	Q add'l	Remarks
			(ac)	с	(min)	(ac)		(cfs)	(min)	(ac)	(ac)	in/hr	cfs	%	cfs	cfs	%	SIZE	ft	ft/sec	min		
		C-1	1.09	0.88	8.8	0.96	7.26	6.97															
1	C-1								8.8	1.09	0.96	7.26	6.97						283	3	1.6		
2	C-2	C-2	1.09	0.88	8.8	0.96	7.26	6.97											25	3	0.1		
3	C-1, C-2								10.5	2.18	1.92	6.81	13.07						233	3	1.3		
4	C-3	C-3	1.07	0.88	8.8	0.94	7.26	6.84											25	3	0.1		
5	C-1, C-2, C-3								11.9	3.25	2.86	6.49	18.56						225	3	1.3		
6	C-7	C-4	1.05	0.88	8.8	0.92	7.26	6.71											23	3	0.1		
		C-5	0.91	0.83	18.3	0.76	5.41	4.10															
7	C-4, C-5								18.4	1.96	1.68	5.39	9.07						5	3	0.0		
8	C-1, C-2, C-3, C-4, C-5								19.7	5.21	4.54	5.23	23.74						28	3	0.2		
		C-6	1.21	0.85	13.2	1.03	6.23	6.41															
9	C-1, C-2, C-3, C-4, C-5, C-6								19.8	6.4	5.6	5.21	29.01						172	3	1.0		
		C-7	0.82	0.88	8.1	0.72	7.46	5.38															
10	C-7								8.1	0.82	0.72	7.46	5.38						244	3	1.4		
11	C-8	C-8	0.83	0.88	8.1	0.73	7.46	5.45											8	3	0.0		
12	C-7, C-8								9.5	1.65	1.45	7.07	10.26						235	3	1.3		
13	C-9	C-9	0.83	0.88	8.1	0.73	7.46	5.45											8	3	0.0		
14	C-7, C-8, C-9								10.8	2.48	2.18	6.74	14.72						199	3	1.1		
15	C-10	C-10	0.83	0.88	8.1	0.73	7.46	5.45											8	3	0.0		
16	C-7, C-8, C-9, C-10								11.9	3.31	2.91	6.50	18.93						26	3	0.1		
17	C-1, C-2, C-3, C-4, C-5, C-6, C-7, C-8, C-9, C-10								10.9	9.73	8.48	6.71	56.93										
															-	-							
		U-1	1.25	0.35	32.3	0.44	3.98	1.74							-	-							
18	U-1, EC-10	EC-10	320.00					144.70	32.3	321.25													Values taken from the approved F3 FDR

APPENDIX B - HYDRAULIC COMPUTATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

-

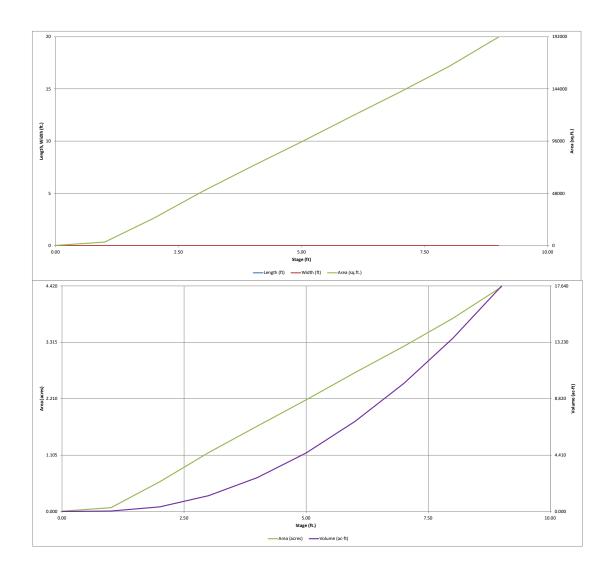
Selected BMP Type =	EDB	
Watershed Area =	100.20	acres
Watershed Length =	2,867	ft
Watershed Length to Centroid =	1,433	ft
Watershed Slope =	0.010	ft/ft
Watershed Imperviousness =	33.00%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the period of Colorada Likhan Hudrograph Dependence

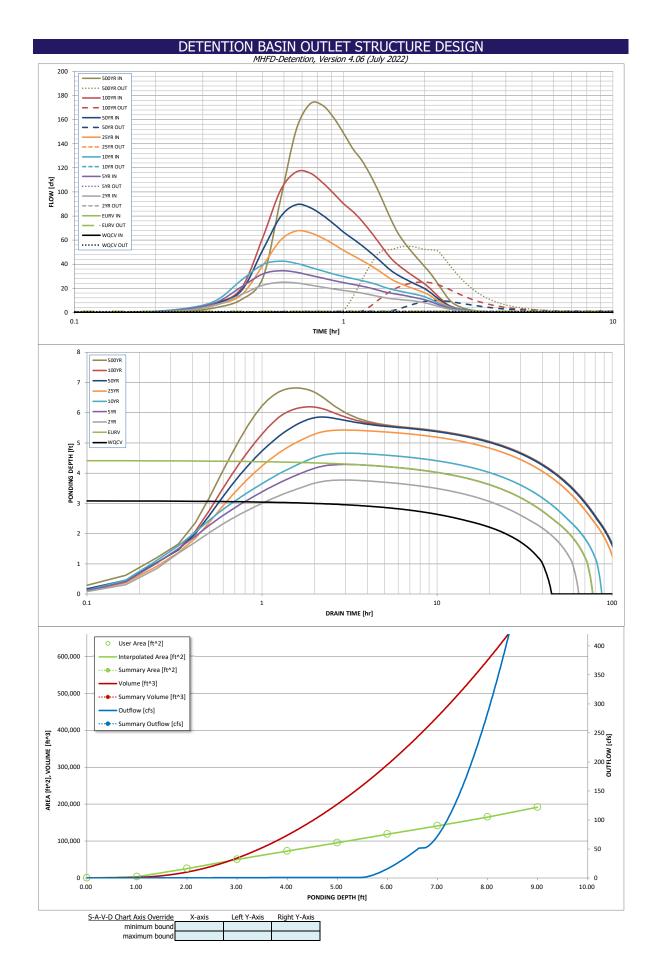
tne	emp	eaae	a c	.0101	300	Urban	Hydr	ograpn	Procedu	ire.	
										٦.	

depths, click 'Run CUHP' to generate rund	off hydrograph	s using					
the embedded Colorado Urban Hydro	graph Procedu	ire.	Optional User Overrides				
Water Quality Capture Volume (WQCV) =	1.340	acre-feet		acre-feet			
Excess Urban Runoff Volume (EURV) =	3.394	acre-feet		acre-feet			
2-yr Runoff Volume (P1 = 1.19 in.) =	2.446	acre-feet	1.19	inches			
5-yr Runoff Volume (P1 = 1.5 in.) =	3.340	acre-feet	1.50	inches			
10-yr Runoff Volume (P1 = 1.75 in.) =	4.073	acre-feet	1.75	inches			
25-yr Runoff Volume (P1 = 2 in.) =	5.780	acre-feet	2.00	inches			
50-yr Runoff Volume (P1 = 2.25 in.) =	7.384	acre-feet	2.25	inches			
100-yr Runoff Volume (P1 = 2.52 in.) =	9.520	acre-feet	2.52	inches			
500-yr Runoff Volume (P1 = 3.14 in.) =	14.111	acre-feet	3.14	inches			
Approximate 2-yr Detention Volume =	2.143	acre-feet					
Approximate 5-yr Detention Volume =	2.852	acre-feet					
Approximate 10-yr Detention Volume =	3.549	acre-feet					
Approximate 25-yr Detention Volume =	4.456	acre-feet					
Approximate 50-yr Detention Volume =	5.111	acre-feet					
Approximate 100-yr Detention Volume =	6.121	acre-feet					

Define Zones and Basin Geometry


Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	1.340	acre-feet
Zone 2 Volume (EURV - Zone 1) =	2.054	acre-feet
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	3.397	acre-feet
Total Detention Basin Volume =	6.791	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (STC) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width (WISV) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-feet


Depth Increment = Stage - Storage Description	Stage (ft)	ft Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volu (ac-l
Top of Micropool		0.00				170	0.004	(10)	(00
6027		1.00		-		3,344	0.077	1,757	0.04
6028		2.00				25,396	0.583	16,127	0.37
6029		3.00				50,286	1.154	53,968	1.23
6030		4.00				72,956	1.675	115,589	2.65
6031		5.00				95,393	2.190	199,763	4.58
6032		6.00				118,525	2.721	306,722	7.04
6033		7.00				141,085	3.239	436,527	10.0
6034		8.00				164,866	3.785	589,503	13.5
6035		9.00		-		191,669	4.400	767,770	17.6
			-						
			-						
								-	
								-	
				-					
				-					
				-					
				-				<u> </u>	
				-	-				
				-					
				-	-				
				-					
				-					
			-	1					
			-	-					
				-					
								L	
				-				-	
				-				1	
				-					
				-					
				1 1					
				-					l –
				-				<u> </u>	
			-	-					
				-					
								-	
			: :					1	
					-				
				-					
			: :	1 1					
								-	
				1 1					
				1 1		_			l –
		1				-		I	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

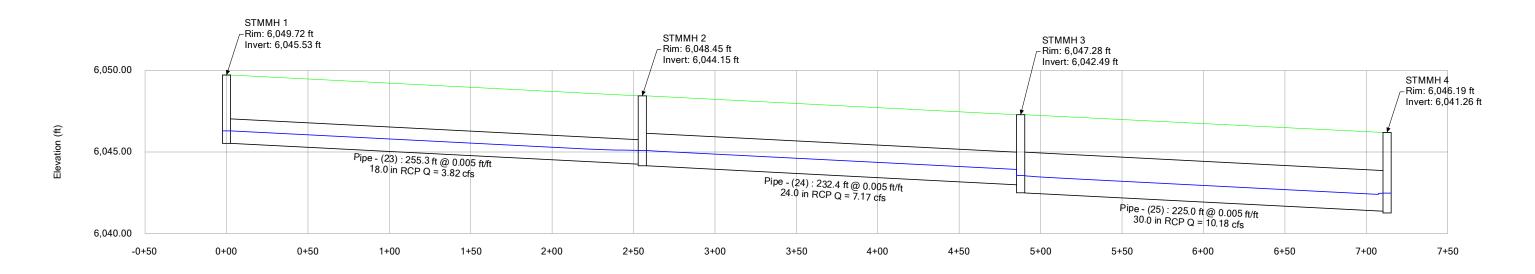
MHFD-Detention, Version 4.06 (July 2022)

	DE	: I EN LION	BASIN OUT	FLET STRU	CTURE DE	SIGN			
Project:	MAYBERRY FILING	M	IHFD-Detention, V						
	INTERIM DETENTI		Filing 4 Developed)						
ZONE 3				Estimated	Estimated				
100-YB				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	3.09	1.340	Orifice Plate			
	100-YEAR ORIFICE		Zone 2 (EURV)	4.42	2.054	Orifice Plate			
PERMANENT ORIFICES	ORIFICE		3 (100+1/2WQCV)	5.91	3.397	Weir&Pipe (Restrict)			
POOL Example Zone	Configuration (Re		, ,	Total (all zones)	6.791	,	1		
Jser Input: Orifice at Underdrain Outlet (typical	y used to drain WQ	CV in a Filtration BN	4P)			1	Calculated Parame	ters for Underdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	drain Orifice Area =	N/A	ft ²			
Underdrain Orifice Diameter =	N/A	inches		n Orifice Centroid =	N/A	feet			
		-							
Iser Input: Orifice Plate with one or more orific			-		mentation BMP)		Calculated Parame		
Centroid of Lowest Orifice =			bottom at Stage =		-	fice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	3.60		n bottom at Stage =	= 0 ft)		liptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	14.40 N/A	inches				tical Slot Centroid =	N/A N/A	feet ft ²	
Office Plate: Office Area per Row =	IN/A	sq. inches			ļ	Elliptical Slot Area =	N/A	π	
ser Input: Stage and Total Area of Each Orifice	e Row (numbered fr	om lowest to highe	est)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)		1.20	2.40						
Orifice Area (sq. inches)		5.00	6.25						
									-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									_
Orifice Area (sq. inches)									J
lean Transfer Vention Outford (City)	(Jan)						Calaulated D	tone for Month 1 C -	fiee
ser Input: Vertical Orifice (Circular or Rectange		Not Colortod	1					ters for Vertical Ori Not Selected	fice
Invert of Vertical Orifice =	Not Selected N/A	Not Selected N/A	ft (relative to bacir	n bottom at Stage =	0 ft) //c	rtical Orifice Area =	Not Selected N/A	Not Selected	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	-	bottom at Stage = bottom at Stage =		al Orifice Centroid =	N/A	N/A N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches	- Doctorn at Stage	vertice		N/A	N/A	icce
			•						
Jser Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	<u>Outlet Pipe OR Rec</u>	tangular/Trapezoida	al Weir and No Outl	et Pipe)_		Calculated Parame	ters for Overflow W	/eir
Jser Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and Zone 3 Weir	Outlet Pipe OR Rec Not Selected	tangular/Trapezoida	al Weir and No Outl	et Pipe)		Calculated Parame Zone 3 Weir	ters for Overflow W Not Selected	/eir
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 5.50	Not Selected N/A	ft (relative to basin t	al Weir and No Outl) Height of Gra	te Upper Edge, H _t =	Zone 3 Weir 5.50	Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir 5.50 7.00	Not Selected N/A N/A	ft (relative to basin t feet	pottom at Stage = 0 fl) Height of Grai Overflow V	Veir Slope Length =	Zone 3 Weir 5.50 6.00	Not Selected N/A N/A]
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	Zone 3 Weir 5.50 7.00 0.00	Not Selected N/A N/A N/A	ft (relative to basin t feet H:V	oottom at Stage = 0 fi G) Height of Grad Overflow V rate Open Area / 1	Veir Slope Length = 00-yr Orifice Area =	Zone 3 Weir 5.50 6.00 6.46	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 5.50 7.00 0.00 6.00	Not Selected N/A N/A N/A N/A	ft (relative to basin t feet	oottom at Stage = 0 fl G O	Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris =	Zone 3 Weir 5.50 6.00 6.46 29.23	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin t feet H:V feet	oottom at Stage = 0 fl G O	Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper	Veir Slope Length = 00-yr Orifice Area =	Zone 3 Weir 5.50 6.00 6.46	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 5.50 7.00 0.00 6.00	Not Selected N/A N/A N/A N/A	ft (relative to basin t feet H:V	oottom at Stage = 0 fl G O	Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris =	Zone 3 Weir 5.50 6.00 6.46 29.23	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin t feet H:V feet %	oottom at Stage = 0 fl G O) Height of Grai Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, Re	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Re	ft (relative to basin t feet H:V feet %	oottom at Stage = 0 fl G O) Height of Grai Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin t feet H:V feet % ectangular Orifice)	oottom at Stage = 0 fl G O) Height of Grai Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper Overflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% c (Circular Orifice, Re Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected	ft (relative to basin t feet H:V feet % ectangular Orifice)	oottom at Stage = 0 ff G O O) Height of Grai Overflow V rate Open Area / 1 verflow Grate Open Dverflow Grate Open Dverflow Grate Open <u>C</u> = 0 ft) C	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameters	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction PI Not Selected	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.00 36.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba	bottom at Stage = 0 ff G O (asin bottom at Stage =) Height of Grai Overflow V rate Open Area / 1 verflow Grate Oper Dverflow Grate Oper Dverflow Grate Oper Correllow Grate Oper Dverflow Grate Oper Correllow	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches	bottom at Stage = 0 ff G O (asin bottom at Stage =) Height of Grai Overflow V rate Open Area / 1 verflow Grate Oper Dverflow Grate Oper Dverflow Grate Oper Correllow Grate Oper Dverflow Grate Oper Correllow	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter: Dutlet Orifice Area = et Orifice Centroid =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 5 for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal)	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 ff G O (asin bottom at Stage = Half-Cen	Height of Grai Overflow V rate Open Area / 1 verflow Grate Open Dverflow Grate Open Overflow Grate Open	Veir Slope Length = 00-yr Orifice Area = A Area w/o Debris = en Area w/ Debris = alculated Parameters Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 <u>Calculated Parame</u>	Not Selected N/A N/A N/A N/A N/A <u>Flow Restriction Pl</u> Not Selected N/A N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A ft (relative to basir	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches	oottom at Stage = 0 ff G O (asin bottom at Stage = Half-Cen	Height of Grai Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper Over Overflow Grate Oper Overflow Grate Oper Overflow	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth=	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65	Not Selected N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A ters for Spillway feet	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Jser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 ff G O (asin bottom at Stage = Half-Cen	Height of Grai Overflow V rate Open Area / 1 verflow Grate Open Dverflow Grate Open Dverflow Grate Open <u>C</u> = 0 ft) <u>C</u> Outle tral Angle of Restri Spillway I Stage at	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40	Not Selected N/A N/A N/A N/A N/A Construction Pl Not Selected N/A N/A N/A N/A ters for Spillway feet feet	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 ff G O (asin bottom at Stage = Half-Cen	Height of Grai Overflow V rate Open Area / 1 verflow Grate Oper Dverflow Grate Oper Overflow Grate Oper Over Overflow Grate Oper Overflow Grate Oper Overflow	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/ Debris = alculated Parameter outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 <u>Calculated Parame</u> 0.65 8.40 4.03	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 ff G O (asin bottom at Stage = Half-Cen	Height of Grai Overflow V rate Open Area / 1 verflow Grate Oper Dverflow Grate Oper Overflow Grate Oper Over Overflow Grate Oper Overflow Grate Oper Overflow	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40	Not Selected N/A N/A N/A N/A N/A Construction Pl Not Selected N/A N/A N/A N/A ters for Spillway feet feet	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 ff G O (asin bottom at Stage = Half-Cen	Height of Grai Overflow V rate Open Area / 1 verflow Grate Oper Dverflow Grate Oper Overflow Grate Oper Over Overflow Grate Oper Overflow Grate Oper Overflow	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/ Debris = alculated Parameter outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 <u>Calculated Parame</u> 0.65 8.40 4.03	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% C(ircular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A ft (relative to basir feet H:V feet	ft (relative to basin t feet H:V feet 9% ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 ff O O asin bottom at Stage + Half-Cen : 0 ft)	 Height of Grai Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open C C	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/ Debris = alculated Parameter outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 5 for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction PI Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft lumns W through A	feet feet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Surface = Freeboard above Max Water Surface = Outlet Hydrograph Results Design Storm Return Period =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, Rd) Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A Selected N/A N/A t (relative to basin feet H:V feet tide the default CU/I EURV	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below basin inches inches to bottom at Stage = +/P hydrographs and 2 Year	oottom at Stage = 0 ff G O asin bottom at Stage = Half-Cen = 0 ft) I <i>runoff volumes by</i> 5 Year	 Height of Grai Overflow V rate Open Area / 1 verflow Grate Open Dverflow Grate Open C <lic< l<="" td=""><td>Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter: Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hyde 25 Year</td><td>Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td><td>feet feet ft² ft² ft² feet radians</td></lic<>	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter: Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hyde 25 Year	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Creat Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can oven WQCV N/A	Not Selected N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A Selected N/A Selected N/A N/A N/A Selected N/A N/A N/A N/A Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below basinches inches h bottom at Stage = Phydrographs and 2 Year 1.19	oottom at Stage = 0 ff G O asin bottom at Stage = Half-Cen = 0 ft) <u>5 Year</u> 1.50	 Height of Grai Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open Control a of the open Control a o	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hyd 25 Year 2.00	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 rographs table (Con 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A <u>Flow Restriction Pl</u> Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acres acres teres acres acres 2.52	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-th) =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can overn WQCV N/A 1.340	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basir feet H:V feet ide the default CU/ EURV N/A 3.394	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 2.446	oottom at Stage = 0 ff G O asin bottom at Stage + Half-Cen : 0 ft) <u>f runoff volumes by</u> <u>5 Year</u> 1.50 3.340	 Height of Grai Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open Comparison Op	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter outlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Cop of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = Top of Freeboard = Cop of Freeboard = Top of Freeboard = Cop of Freeboard =	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 5 for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 Tographs table (Con 50 Year 2.25 7.384	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Creat Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can oven WQCV N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Re N/A N/A t (relative to basin feet H:V feet ride the default CU/i EURV N/A	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below basinches inches h bottom at Stage = Phydrographs and 2 Year 1.19	oottom at Stage = 0 ff G O asin bottom at Stage = Half-Cen = 0 ft) <u>5 Year</u> 1.50	 Height of Grai Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open Control a of the open Control a o	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hyd 25 Year 2.00	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 rographs table (Con 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A <u>Flow Restriction Pl</u> Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acres acres teres acres acres 2.52	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, Ro 200 22.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can over WQCV N/A 1.340 N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet ide the default CUI EURV N/A 3.394 N/A N/A N/A	ft (relative to basin b feet H:V feet 9% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>4P hydrographs and 2 Year 1.19 2.446 2.446 0.6</u>	bottom at Stage = 0 ff G O asin bottom at Stage = Half-Cen = 0 ft) 1 7 Year 1.50 3.340 1.2	 Height of Grai Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open Dverflow Grate Open C C C	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/ Debris = alculated Parameter: butlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = top of Freeboard = Cop of Freeb	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 5 for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 Fographs table (Con 50 Year 2.25 7.384 7.384 31.3	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians 500 Yea 3.14 14.111 14.111
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Ser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = CUHP Runoff Volume (arce-ft) = Inflow Hydrograph Volume (arce-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arce) =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, R, Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 7 he user can oven WQCV N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A ft (relative to basir feet H:V feet CUIV N/A S.3394 N/A N/A N/A N/A N/A N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basinches inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 2.446 2.446 0.6	xottom at Stage = 0 ff G O asin bottom at Stage = Half-Cen Half-Cen : 0 ft) 5 Year 1.50 3.340 3.340 1.2 0.01	 Height of Grat Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open Dverflow Grate Open C <l< td=""><td>Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/ Debris = alculated Parameters alculated Parameters outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Fr</td><td>Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 Fographs table (Con 50 Year 2.25 7.384 7.384 31.3 0.31</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td><td>feet feet ft² ft² ft² ft² feet radians</td></l<>	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/ Debris = alculated Parameters alculated Parameters outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Fr	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 Fographs table (Con 50 Year 2.25 7.384 7.384 31.3 0.31	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (are-ft) = Inflow Hydrograph Volume (are-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/are) = Peak Inflow Q (cfs) =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, Rr Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can oven WQCV N/A 1.340 N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A Selected N/A N/A Selected N/A N/A ft (relative to basir feet H:V feet ide the default CU/I EURV N/A 3.394 N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basis inches inches to bottom at Stage = HP hydrographs and 2 Year 1.19 2.446 2.446 0.6	asin bottom at Stage = 0 ff G O asin bottom at Stage = Half-Cen Co ft) 5 Year 1.50 3.340 1.2 0.01 34.5	 Height of Grat Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open C <lic< li=""> C C <lic< li=""> <lic< li=""></lic<></lic<></lic<>	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/o Debris = alculated Parameters Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 5.780 15.6 0.16 67.6	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 <u>Calculated Parame</u> 0.65 8.40 4.03 15.10 rographs table (Cor 50 Year 2.25 7.384 31.3 0.31 89.4	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians 500 Yee 3.14 14.111 94.2 0.94 173.1
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Ser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = CUHP Runoff Volume (arce-ft) = Inflow Hydrograph Volume (arce-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arce) =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, R, Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 7 he user can oven WQCV N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A ft (relative to basir feet H:V feet CUIV N/A S.3394 N/A N/A N/A N/A N/A N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basinches inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 2.446 2.446 0.6	xottom at Stage = 0 ff G O asin bottom at Stage = Half-Cen Half-Cen : 0 ft) 5 Year 1.50 3.340 3.340 1.2 0.01	 Height of Grat Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open Dverflow Grate Open C <l< td=""><td>Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/ Debris = alculated Parameters alculated Parameters outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Fr</td><td>Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 Fographs table (Con 50 Year 2.25 7.384 7.384 31.3 0.31</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td><td>feet feet ft² ft² ft² ft² feet radians</td></l<>	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/ Debris = alculated Parameters alculated Parameters outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Fr	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 Fographs table (Con 50 Year 2.25 7.384 7.384 31.3 0.31	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = UHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, R/ Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can overn WQCV N/A 1.340 N/A N/A N/A N/A Plate	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A t (relative to basin feet H:V feet tide the default CU/I Feet N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches to bottom at Stage = HP hydrographs and 2 Year 1.19 2.446 2.446 0.6 0.01 24.9 0.8 N/A Plate	bottom at Stage = 0 ff G O asin bottom at Stage = Half-Cen For ft) I runoff volumes by 5 Year 1.50 3.340 1.2 0.01 34.5 0.7 Plate	 Height of Grat Overflow V rate Open Area / 1 verflow Grate Open Dverflow Grate Open C <lic< li=""> C C <lic< li=""> <lic< li=""></lic<></lic<></lic<>	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/o Debris = alculated Parameters butlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 100 5.780 5.780 15.6 0.16 67.6 1.0 0.1 Plate	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 rographs table (Cor 50 Year 2.25 7.384 31.3 0.31 89.4 9.9 0.3 Overflow Weir 1	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Control C	feet feet ft² ft² ft² ft² fc² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Jeer Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Netter Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OHTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow Max Velocity through Grate 1 (fps) =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% C(crcular Orifice, R/ Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can oven WQCV N/A 1.340 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Ri Not Selected N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU/I EURV N/A 3.394 N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches to bottom at Stage = HP hydrographs and 2 Year 1.19 2.446 2.446 0.6 0.01 24.9 0.8 N/A Plate N/A	oottom at Stage = 0 ff G G O asin bottom at Stage = Half-Cen Half-Cen Half-Cen : 0 ft) 5 Year 1.50 3.340 3.340 1.2 0.01 34.5 0.9 0.7 Plate N/A	 Height of Grai Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open Dverflow Grate Open Comparison a comparison a comparison	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = an Area w/o Debris = alculated Parameter Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Freeboard = 15,6 0,16 67,6 1,0 0,1 Plate N/A	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 rographs table (Cor 50 Year 2.25 7.384 7.384 31.3 0.31 89.4 9.9 0.3 Overflow Weir 1 0.3	Not Selected N/A N/A N/A N/A N/A N/A N/A Construction Pl Not Selected N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft lumns W through A 100 Year 2.52 9.520 9.	feet feet ft² ft² ft² feet faint feet soor Yea 3.14 14.111 94.2 0.94 173.1 54.8 0.6 Spillway 1.8
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Jser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Qes Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, R/ Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can overn WQCV N/A 1.340 N/A N/A N/A N/A Plate	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basir feet H:V feet Feet H:V feet N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basinches inches h bottom at Stage = 2 Year 1.19 2.446 2.446 0.6 0.01 24.9 0.8 N/A Plate N/A N/A	oottom at Stage = 0 ff G O asin bottom at Stage = Half-Cen : 0 ft) 5 Year 1.50 3.340 3.340 1.2 0.01 34.5 0.9 0.7 Plate N/A N/A	 Height of Grat Overflow V rate Open Area / 1 verflow Grate Open Dverflow Grate Open C <lic< li=""> C C <lic< li=""> <lic< li=""></lic<></lic<></lic<>	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/o Debris = alculated Parameters butlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 5.780 15.6 0.16 67.6 1.0 0.1 Plate	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 rographs table (Cor 50 Year 2.25 7.384 31.3 0.31 89.4 9.9 0.3 Overflow Weir 1	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Control C	F). 500 Yea 3.14 14.111 94.2 0.94 7.51
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Jser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height New Water Surface = Cuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controling Flow = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, R Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can oven WQCV N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Ri Not Selected N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU/I EURV N/A 3.394 N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches to bottom at Stage = HP hydrographs and 2 Year 1.19 2.446 2.446 0.6 0.01 24.9 0.8 N/A Plate N/A	oottom at Stage = 0 ff G G O asin bottom at Stage = Half-Cen Half-Cen Half-Cen : 0 ft) 5 Year 1.50 3.340 3.340 1.2 0.01 34.5 0.9 0.7 Plate N/A	 Height of Grat Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open C offlow Grate Open C offlow	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris = alculated Parameters butlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 15.6 0.16 67.6 1.0 0.1 Plate N/A N/A	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 rographs table (Col 50 Year 2.25 7.384 7.384 0.31 89.4 9.9 0.3 Overflow Weir 1 0.3 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A V/A V/A V/A V/A V/A V/A V/A V/A V/A V	F). 500 Yea 3.14 14.111 14.111 94.2 0.94 173.1 500 Yea 3.14 14.111 94.2 0.94 173.1 1.8 0.6 Spiillway 1.8 N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arce) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (ft) = Maximum Ponding Depth (ft) =	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% 20ne 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 7 <i>the user can oven</i> WQCV N/A 1.340 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Setrictor Plate, or R N/A N/A N/A Selected N/A N/A Selected N/A	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = hobttom at Stage = 2 Year 1.19 2.446 0.6 0.01 24.9 0.8 N/A Plate N/A N/A 57 61 3.77	oottom at Stage = 0 ff G O asin bottom at Stage = Half-Cen Half-Cen • 0 ft) 5 Year 1.50 3.340 1.50 3.340 0.9 0.7 Plate N/A 68 73 4.28	 Height of Grai Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open Dverflow Grate Open Composition Composition (Composition Composition) a 0 ft) b 0 ft c 0 ft) <lic 0="" ft)<="" li=""> c 0 ft) c 0 ft) <li< td=""><td>Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = an Area w/o Debris = an Area w/ Debris = alculated Parameters butlet Orifice Area = to Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Fr</td><td>Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 Tographs table (Con 50 Year 2.25 7.384 7.384 31.3 0.31 89.4 9.9 0.3 Overflow Weir 1 0.3 N/A 99 106 5.85</td><td>Not Selected N/A 100 Year 2.52 9.520 51.8 0.52 116.6 25.1 0.52 116.6 25.1 0.8 N/A 97 105 6.19</td><td>F). 500 Yea 3.14 14.111 14.111 9.94 173.11 54.8 0.6 Spillway 1.8 N/A 92 103 6.81</td></li<></lic>	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = an Area w/o Debris = an Area w/ Debris = alculated Parameters butlet Orifice Area = to Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Fr	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 Tographs table (Con 50 Year 2.25 7.384 7.384 31.3 0.31 89.4 9.9 0.3 Overflow Weir 1 0.3 N/A 99 106 5.85	Not Selected N/A 100 Year 2.52 9.520 51.8 0.52 116.6 25.1 0.52 116.6 25.1 0.8 N/A 97 105 6.19	F). 500 Yea 3.14 14.111 14.111 9.94 173.11 54.8 0.6 Spillway 1.8 N/A 92 103 6.81
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Jser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (arce-t) = Inflow Hydrograph NeakInflow (cfs) = CUHP Predevelopment Peak Q (cfs) = CUHP Predevelopment Peak Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours)	Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, R/ Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can oven WQCV N/A 1.340 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A ft (relative to basir feet H:V feet ide the default CU/ EURV N/A 3.394 N/A	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = http://www.stage 2.446 2.446 0.6 0.01 2.446 0.6 0.01 2.446 0.6 0.01 2.446 0.6 0.01 2.446 0.6 0.6 0.01 2.446 0.6 0.6 0.01 2.446 0.6 0.01 2.446 0.6 0.01 2.446 0.6 0.6 0.01 2.446 0.6 0.6 0.01 2.446 0.6 0.6 0.01 2.446 0.6 0.6 0.01 2.446 0.6 0.6 0.01 2.446 0.6 0.6 0.01 0.7 0.7 0.6 0.01 0.7 0.7 0.6 0.01 0.7 0.7 0.6 0.01 0.7 0.7 0.6 0.01 0.7 0.7 0.7 0.6 0.01 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	asin bottom at Stage = 0 ff G O asin bottom at Stage = Half-Cen For ft) 1.2 0.01 3.340 1.2 0.01 34.5 0.7 Plate N/A N/A 73	 Height of Grat Overflow V rate Open Area / 1 verflow Grate Open Overflow Grate Open C <lic< li=""> C C <lic< li=""> <lic< li=""></lic<></lic<></lic<>	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/o Debris = alculated Parameters butlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Freeboard = 15.6 15.6 15.6 1.0 0.16 67.6 1.0 0.1 Plate N/A N/A N/A N/A N/A 102	Zone 3 Weir 5.50 6.00 6.46 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 15.10 15.10 15.10 50 Year 2.25 7.384 31.3 0.31 89.4 9.9 0.3 Overflow Weir 1 0.3 N/A 99 106	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft umns W through A 100 Year 2.52 9.520 9.520 51.8 0.52 116.6 25.1 0.5 Overflow Weir 1 0.8 N/A 97 105	feet feet ft ² ft ² ft ² ft ² feet radians 500 Year 3.14 14.111 14.111 94.2 0.94 173.1 54.8 0.6 Spiillway 1.8 N/A 92 103

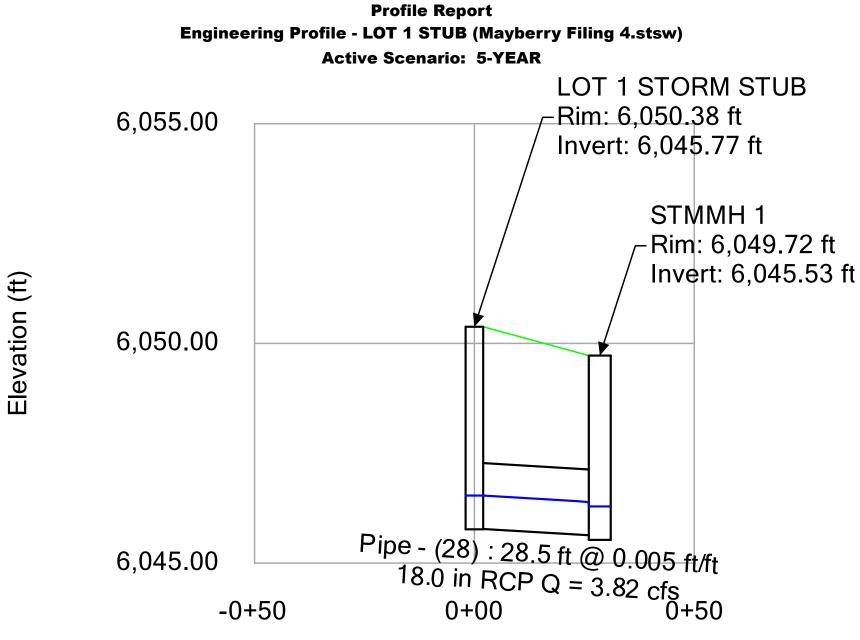
DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
mo Inton al	TIME									
ime Interval		WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.02	0.54
	0:15:00	0.00	0.00	1.40	2.28	2.87	1.95	2.56	2.44	3.86
	0:25:00	0.00	0.00	5.82 14.71	7.90 21.13	9.51 26.61	6.15 14.42	7.37	7.78 19.84	10.58 28.17
	0:30:00	0.00	0.00	22.45	31.83	39.54	38.80	51.63	61.91	93.83
	0:35:00	0.00	0.00	24.90	34.55	42.51	59.89	79.42	101.48	151.65
	0:40:00	0.00	0.00	24.39	33.27	40.67	67.58	89.38	116.64	173.06
	0:45:00	0.00	0.00	22.68	30.75	37.44	66.08	86.97	115.63	171.96
	0:50:00	0.00	0.00	20.90	28.50	34.49	61.77	80.72	107.85	161.77
	0:55:00	0.00	0.00	19.39	26.43	31.84	56.60	73.62	98.77	148.57
	1:00:00	0.00	0.00	18.13	24.64	29.72	51.36	66.51	90.14	135.55
	1:05:00	0.00	0.00	17.14	23.18	28.00	47.15	60.94	83.49	126.25
	1:10:00	0.00	0.00	15.98	21.81	26.38	43.19	55.56	76.04	115.00
	1:15:00	0.00	0.00	14.68	20.27	24.76	39.28	50.24	67.93	102.43
	1:20:00 1:25:00	0.00	0.00	13.41	18.59	22.89	35.24	44.78	59.63	89.40
	1:25:00	0.00	0.00	12.26 11.41	17.01 15.84	20.82 19.25	31.31 27.60	39.47 34.64	51.64 44.76	76.92 66.56
	1:35:00	0.00	0.00	11.41	15.84	19.25	27.60	34.64	39.76	58.96
	1:40:00	0.00	0.00	10.32	13.05	16.99	24.90	28.42	35.93	52.91
	1:45:00	0.00	0.00	9.88	13.21	16.01	21.01	26.04	32.54	47.51
	1:50:00	0.00	0.00	9.44	12.29	15.07	19.32	23.80	29.41	42.56
	1:55:00	0.00	0.00	8.76	11.41	14.09	17.74	21.69	26.42	37.86
	2:00:00	0.00	0.00	7.97	10.52	12.94	16.19	19.63	23.55	33.34
	2:05:00	0.00	0.00	6.96	9.24	11.28	14.11	16.95	20.15	28.22
	2:10:00	0.00	0.00	5.88	7.79	9.43	11.78	14.02	16.54	22.90
	2:15:00	0.00	0.00	4.84	6.40	7.66	9.52	11.18	13.04	17.76
	2:20:00	0.00	0.00	3.90	5.13	6.11	7.44	8.55	9.77	13.00
	2:25:00	0.00	0.00	3.10	4.05	4.86	5.60	6.26	6.88	9.18
	2:30:00	0.00	0.00	2.51	3.28	4.01	4.22	4.71	5.05	6.78
	2:35:00 2:40:00	0.00	0.00	2.08	2.73	3.37	3.32	3.71	3.90	5.18
	2:45:00	0.00	0.00	1.74 1.45	2.29	2.82	2.68 2.16	2.99	3.05 2.38	3.97 3.04
	2:50:00	0.00	0.00	1.45	1.51	1.93	1.74	1.93	1.85	2.31
	2:55:00	0.00	0.00	0.99	1.30	1.58	1.41	1.55	1.43	1.75
	3:00:00	0.00	0.00	0.82	1.06	1.29	1.13	1.24	1.12	1.36
	3:05:00	0.00	0.00	0.68	0.87	1.05	0.92	1.01	0.92	1.10
	3:10:00	0.00	0.00	0.56	0.71	0.85	0.75	0.81	0.74	0.89
	3:15:00	0.00	0.00	0.45	0.56	0.67	0.60	0.64	0.59	0.70
	3:20:00	0.00	0.00	0.35	0.44	0.53	0.47	0.50	0.46	0.54
	3:25:00	0.00	0.00	0.27	0.34	0.40	0.35	0.38	0.35	0.40
	3:30:00	0.00	0.00	0.20	0.25	0.29	0.26	0.27	0.25	0.28
	3:35:00	0.00	0.00	0.13	0.17	0.20	0.18	0.19	0.16	0.18
	3:40:00 3:45:00	0.00	0.00	0.09	0.12	0.13	0.11	0.11	0.10	0.11
	3:50:00	0.00	0.00	0.05	0.07	0.07	0.06	0.06	0.05	0.05
	3:55:00	0.00	0.00	0.02	0.04	0.03	0.03	0.02	0.02	0.01
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

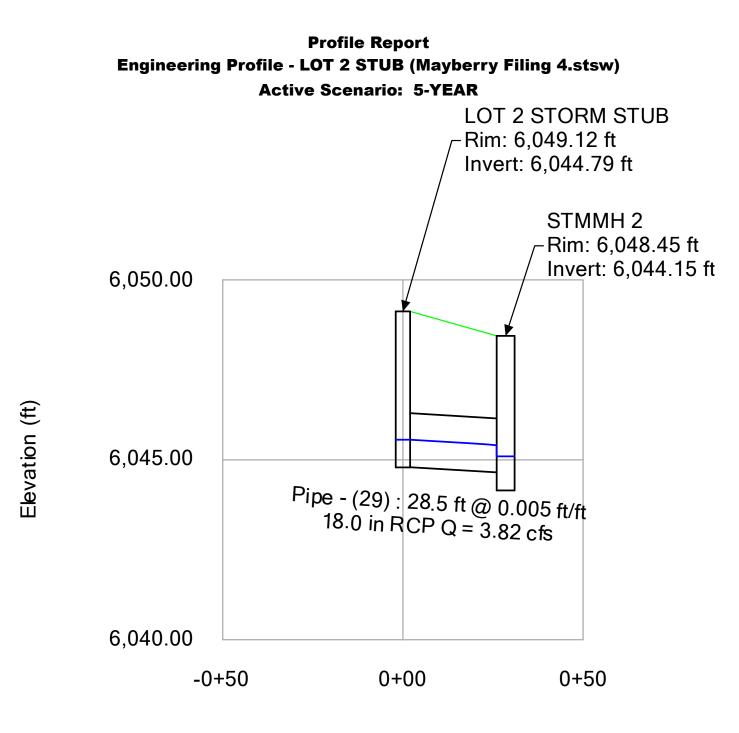

FlexTable: Conduit Table

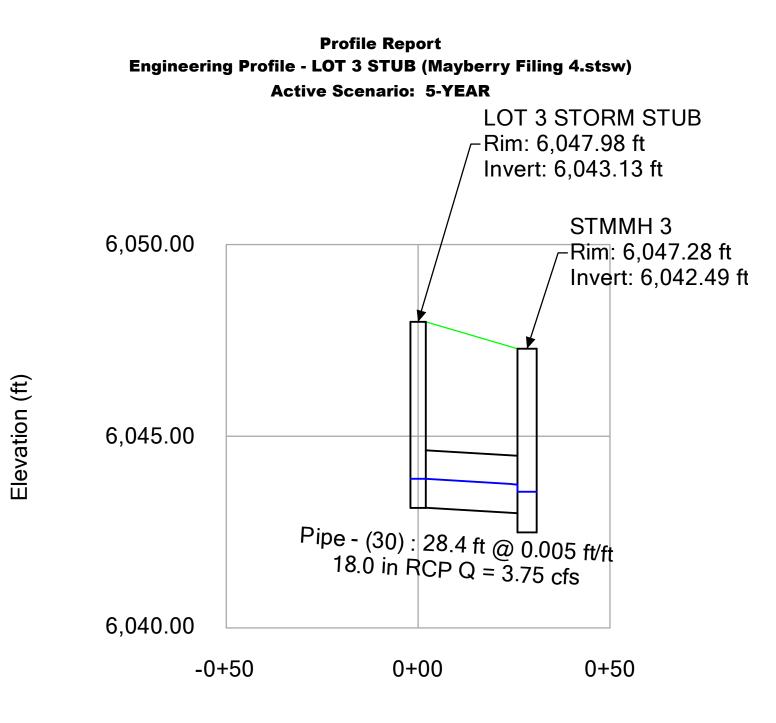
Active Scenario: 5-YEAR

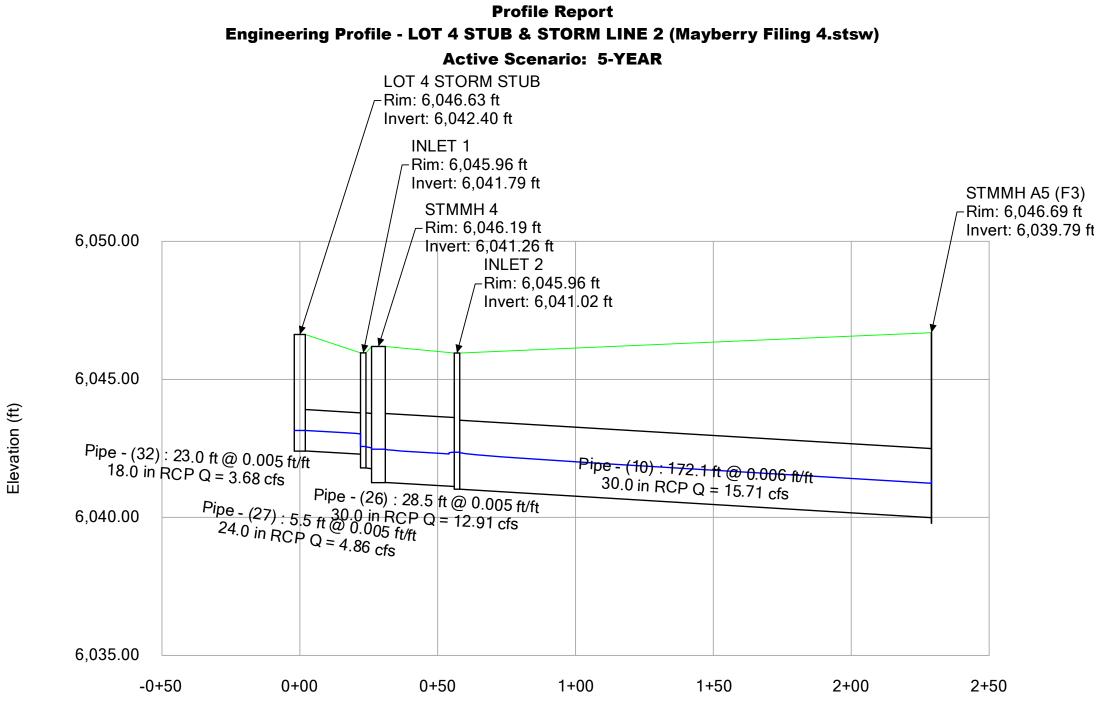

Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Flow / Capacity (Design)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)
					(ft)						(%)	(ft)	(ft)
Pipe - (28)	LOT 1 STORM STUB	6,045.77	STMMH 1	6,045.63	28.5	0.005	18.0	0.013	3.82	4.23	51.4	6,046.54	6,046.38
Pipe - (23)	STMMH 1	6,045.53	STMMH 2	6,044.25	255.3	0.005	18.0	0.013	3.82	4.23	51.4	6,046.29	6,045.10
Pipe - (36)	STMMH 9	6,044.27	STMMH 8	6,043.09	235.3	0.005	18.0	0.013	2.95	3.96	39.7	6,044.93	6,043.74
Pipe - (37)	LOT 8 STORM STUB	6,044.41	STMMH 9	6,044.37	8.1	0.005	18.0	0.013	2.95	3.96	39.7	6,045.07	6,045.02
Pipe - (29)	LOT 2 STORM STUB	6,044.79	STMMH 2	6,044.65	28.5	0.005	18.0	0.013	3.82	4.23	51.4	6,045.56	6,045.40
Pipe - (24)	STMMH 2	6,044.15	STMMH 3	6,042.99	232.4	0.005	24.0	0.013	7.17	4.95	44.8	6,045.10	6,043.92
Pipe - (30)	LOT 3 STORM STUB	6,043.13	STMMH 3	6,042.99	28.4	0.005	18.0	0.013	3.75	4.21	50.5	6,043.89	6,043.73
Pipe - (35)	STMMH 8	6,042.89	STMMH 7	6,041.71	235.3	0.005	24.0	0.013	5.63	4.65	35.1	6,043.73	6,042.53
Pipe - (38)	LOT 7 STORM STUB	6,043.43	STMMH 8	6,043.39	8.0	0.005	18.0	0.013	2.99	3.97	40.3	6,044.09	6,044.05
Pipe - (25)	STMMH 3	6,042.49	STMMH 4	6,041.36	225.0	0.005	30.0	0.013	10.18	5.39	35.1	6,043.55	6,042.47
Pipe - (34)	STMMH 7	6,041.51	STMMH 6	6,040.52	198.6	0.005	24.0	0.013	8.07	5.10	50.5	6,042.52	6,041.53
Pipe - (39)	LOT 6 STORM STUB	6,042.05	STMMH 7	6,042.01	8.0	0.005	18.0	0.013	2.99	3.97	40.3	6,042.71	6,042.67
Pipe - (33)	STMMH 6	6,040.32	STMMH A5 (F3)	6,040.19	26.0	0.005	24.0	0.013	10.38	5.42	64.9	6,041.50	6,041.35
Pipe - (40)	LOT 5 STORM STUB	6,040.86	STMMH 6	6,040.82	8.0	0.005	18.0	0.013	2.99	3.97	40.3	6,041.52	6,041.50
Pipe - (10)	INLET 2	6,041.02	STMMH A5 (F3)	6,039.99	172.1	0.006	30.0	0.013	15.71	6.45	49.5	6,042.36	6,041.23
Pipe - (32)	LOT 4 STORM STUB	6,042.40	INLET 1	6,042.29	23.0	0.005	18.0	0.013	3.68	4.20	49.5	6,043.15	6,043.02
Pipe - (26)	STMMH 4	6,041.26	INLET 2	6,041.12	28.5	0.005	30.0	0.013	12.91	5.74	44.5	6,042.47	6,042.36
Pipe - (27)	INLET 1	6,041.79	STMMH 4	6,041.76	5.5	0.005	24.0	0.013	4.86	4.47	30.4	6,042.57	6,042.52

ic ne 5.38 5.10 3.74 5.02 5.40 3.92 3.73 2.53 1.05 2.47 1.53 2.47 1.53 2.67 1.23 3.02 2.36 2.23

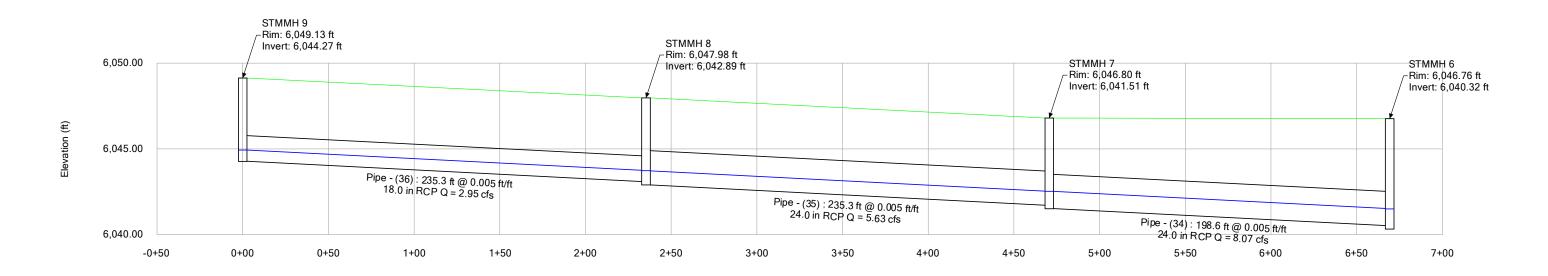
Profile Report Engineering Profile - STORM LINE 1 (Mayberry Filing 4.stsw) Active Scenario: 5-YEAR



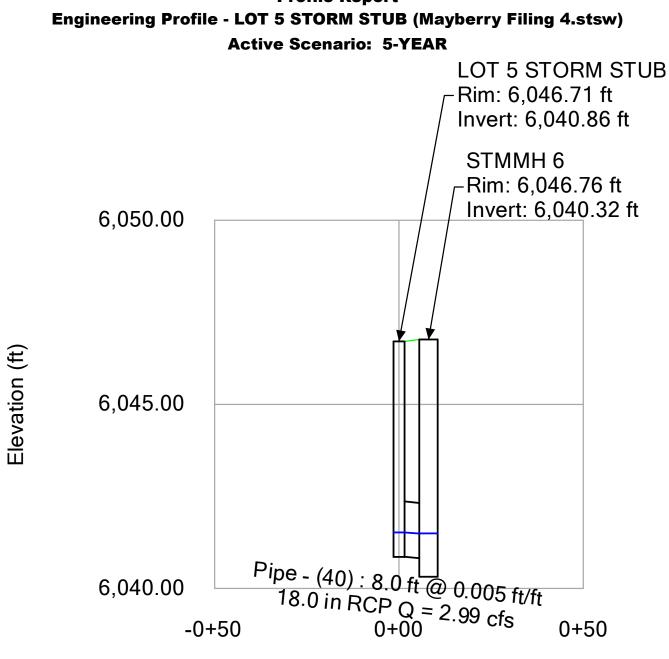

Station (ft)


Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Mayberry Filing 4.stsw 12/20/2024

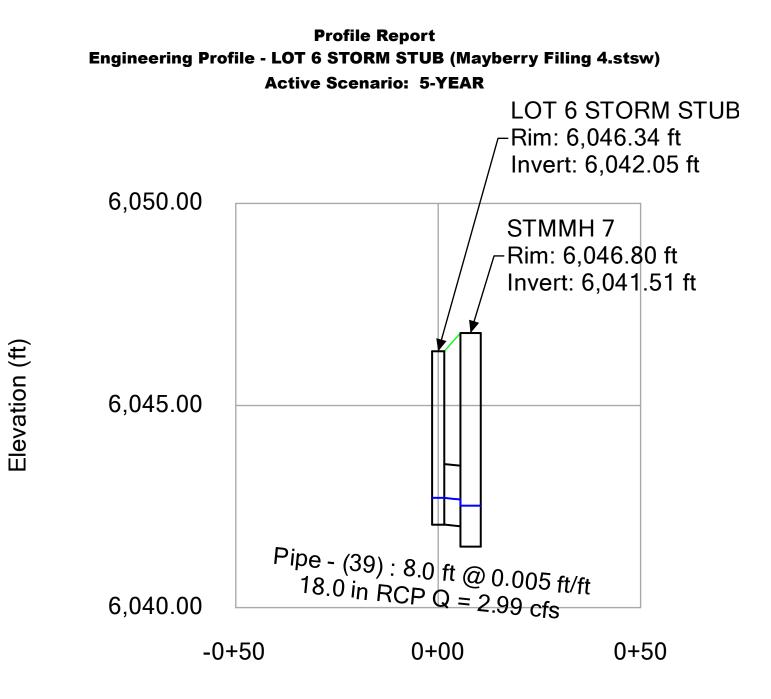


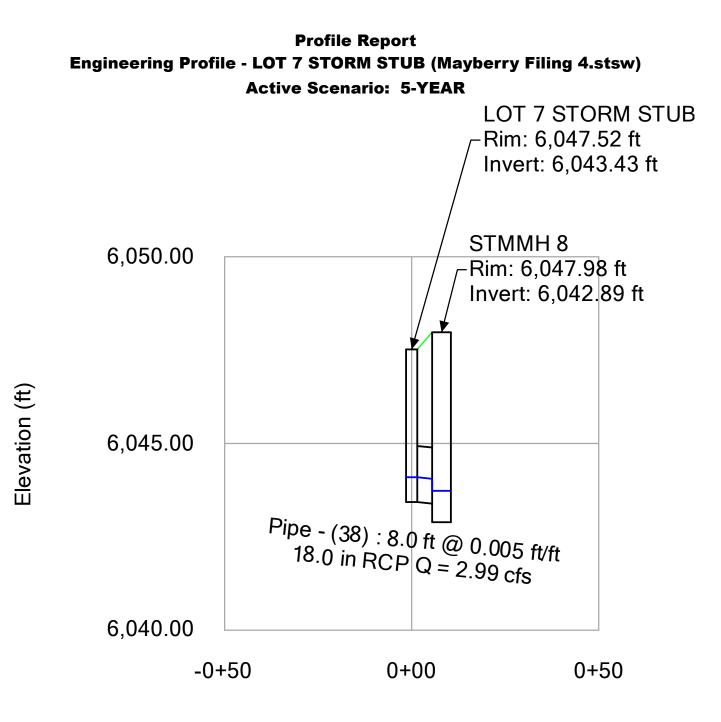
Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

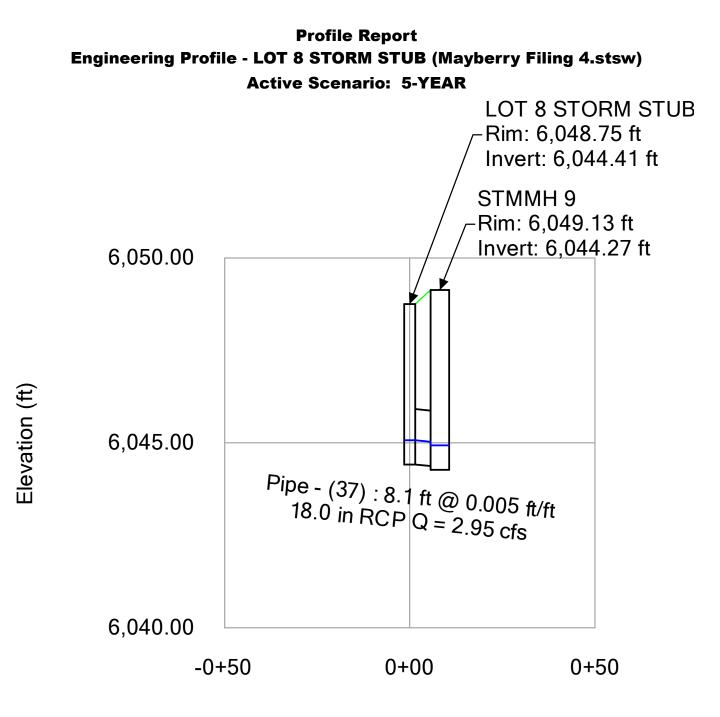


Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Profile Report Engineering Profile - STORM LINE 3 (Mayberry Filing 4.stsw) Active Scenario: 5-YEAR

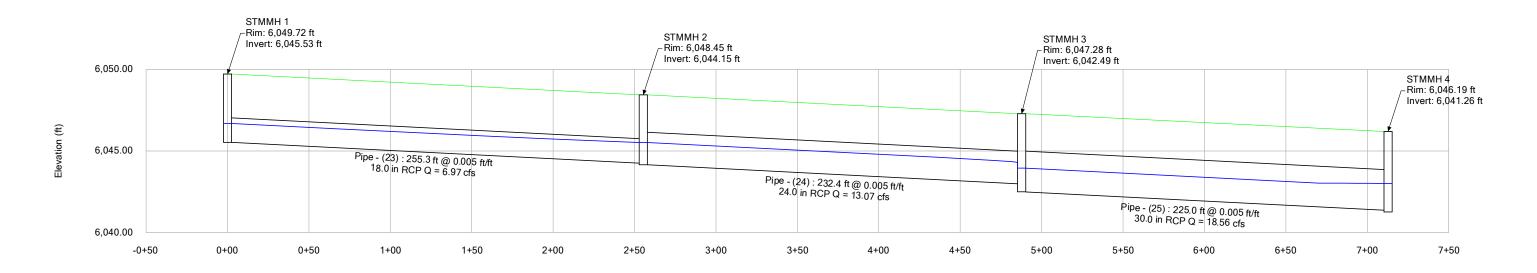

Station (ft)


Profile Report

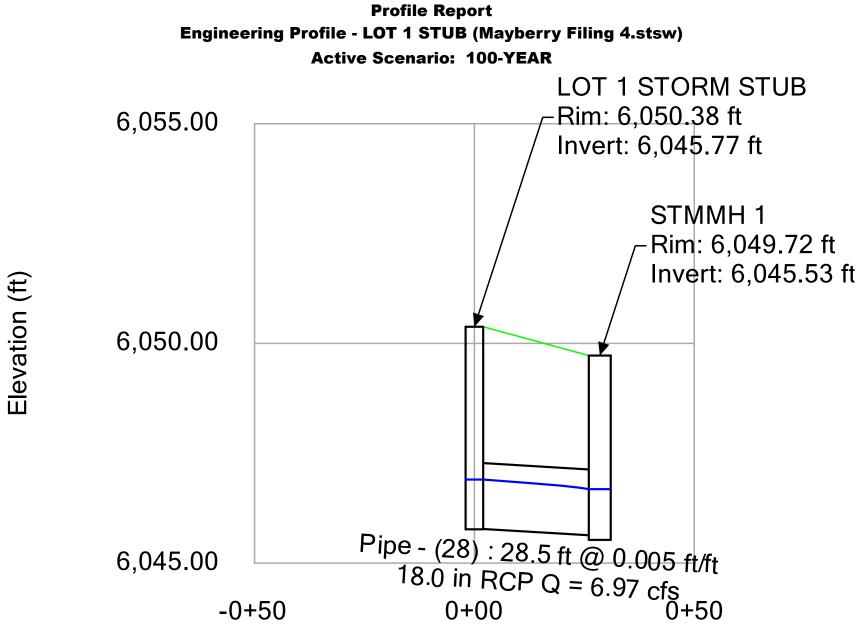

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

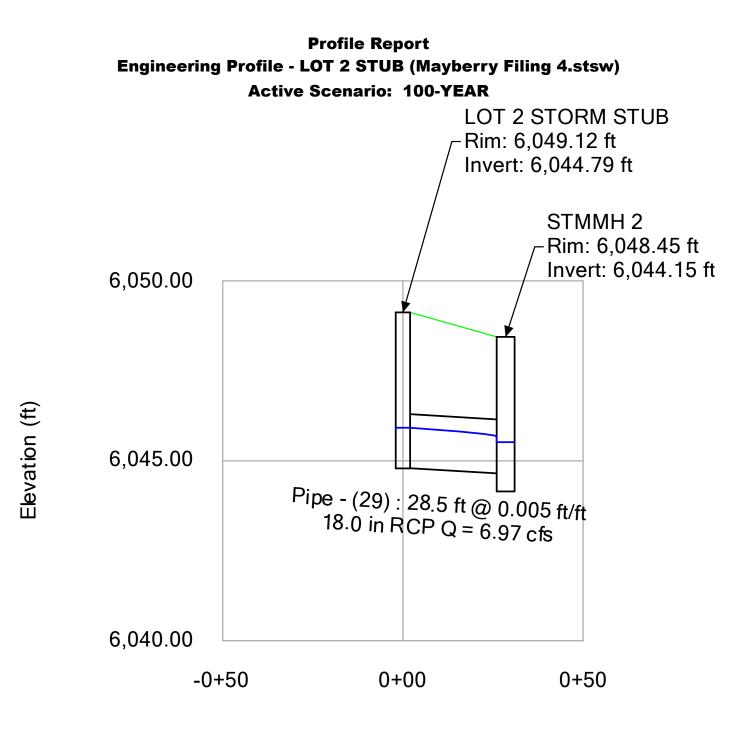

FlexTable: Conduit Table

Active Scenario: 100-YEAR

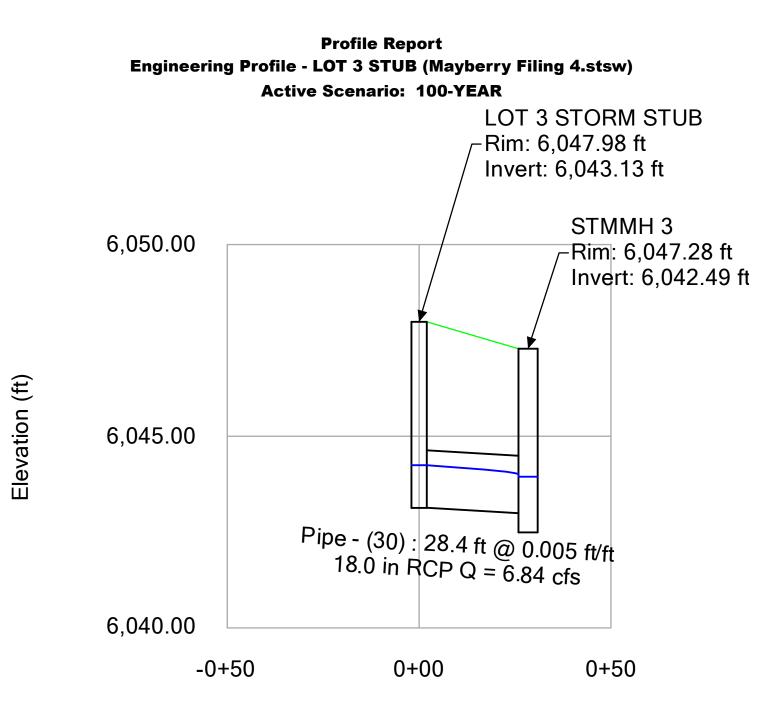

Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Flow / Capacity (Design)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)
					(ft)						(%)	(ft)	(ft)
Pipe - (28)	LOT 1 STORM STUB	6,045.77	STMMH 1	6,045.63	28.5	0.005	18.0	0.013	6.97	4.78	93.8	6,046.90	6,046.68
Pipe - (23)	STMMH 1	6,045.53	STMMH 2	6,044.25	255.3	0.005	18.0	0.013	6.97	4.78	93.8	6,046.68	6,045.52
Pipe - (36)	STMMH 9	6,044.27	STMMH 8	6,043.09	235.3	0.005	18.0	0.013	5.38	4.59	72.3	6,045.22	6,044.06
Pipe - (37)	LOT 8 STORM STUB	6,044.41	STMMH 9	6,044.37	8.1	0.005	18.0	0.013	5.38	4.58	72.4	6,045.35	6,045.27
Pipe - (29)	LOT 2 STORM STUB	6,044.79	STMMH 2	6,044.65	28.5	0.005	18.0	0.013	6.97	4.78	93.8	6,045.92	6,045.67
Pipe - (24)	STMMH 2	6,044.15	STMMH 3	6,042.99	232.4	0.005	24.0	0.013	13.07	5.68	81.7	6,045.52	6,044.29
Pipe - (30)	LOT 3 STORM STUB	6,043.13	STMMH 3	6,042.99	28.4	0.005	18.0	0.013	6.84	4.77	92.1	6,044.25	6,044.00
Pipe - (35)	STMMH 8	6,042.89	STMMH 7	6,041.71	235.3	0.005	24.0	0.013	10.26	5.41	64.1	6,044.06	6,043.03
Pipe - (38)	LOT 7 STORM STUB	6,043.43	STMMH 8	6,043.39	8.0	0.005	18.0	0.013	5.45	4.59	73.4	6,044.37	6,044.29
Pipe - (25)	STMMH 3	6,042.49	STMMH 4	6,041.36	225.0	0.005	30.0	0.013	18.56	6.27	64.0	6,043.95	6,043.00
Pipe - (34)	STMMH 7	6,041.51	STMMH 6	6,040.52	198.6	0.005	24.0	0.013	14.72	5.77	92.2	6,043.03	6,042.08
Pipe - (39)	LOT 6 STORM STUB	6,042.05	STMMH 7	6,042.01	8.0	0.005	18.0	0.013	5.45	4.59	73.4	6,043.05	6,043.03
Pipe - (33)	STMMH 6	6,040.32	STMMH A5 (F3)	6,040.19	26.0	0.005	24.0	0.013	18.93	6.03	118.4	6,042.08	6,041.76
Pipe - (40)	LOT 5 STORM STUB	6,040.86	STMMH 6	6,040.82	8.0	0.005	18.0	0.013	5.45	4.59	73.4	6,042.10	6,042.08
Pipe - (10)	INLET 2	6,041.02	STMMH A5 (F3)	6,039.99	172.1	0.006	30.0	0.013	29.01	7.33	91.4	6,042.90	6,041.83
Pipe - (32)	LOT 4 STORM STUB	6,042.40	INLET 1	6,042.29	23.0	0.005	18.0	0.013	6.71	4.76	90.3	6,043.50	6,043.29
Pipe - (26)	STMMH 4	6,041.26	INLET 2	6,041.12	28.5	0.005	30.0	0.013	23.74	6.59	81.9	6,043.00	6,042.90
Pipe - (27)	INLET 1	6,041.79	STMMH 4	6,041.76	5.5	0.005	24.0	0.013	9.07	5.25	56.7	6,043.01	6,043.00

lic ne 5.68 5.52 4.06 5.27 5.67 4.29 4.00 3.03 4.29 3.00 2.08 3.03 1.76 2.08 1.83 3.29 2.90 3.00

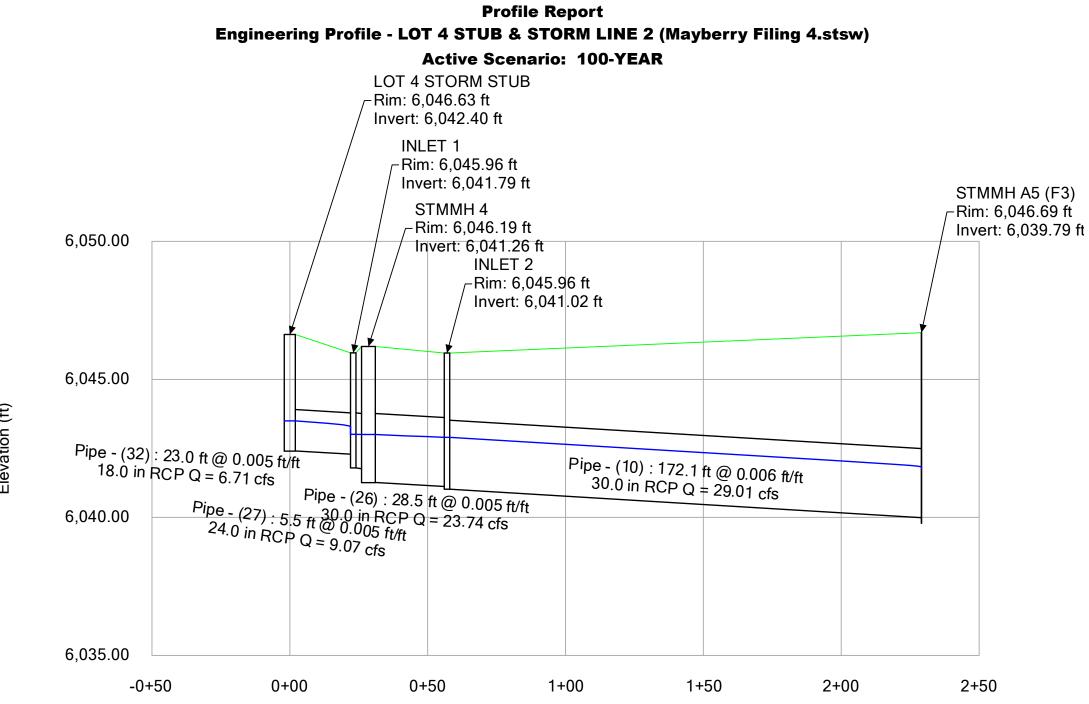
Profile Report Engineering Profile - STORM LINE 1 (Mayberry Filing 4.stsw) Active Scenario: 100-YEAR



Station (ft)

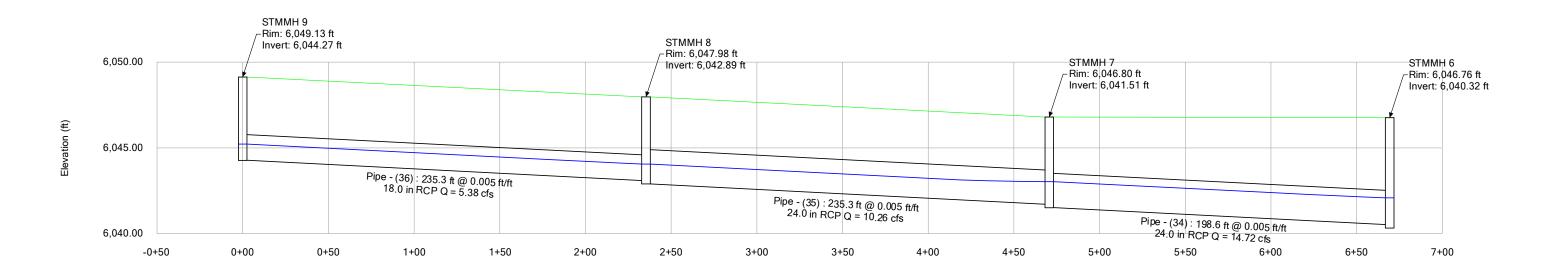


Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

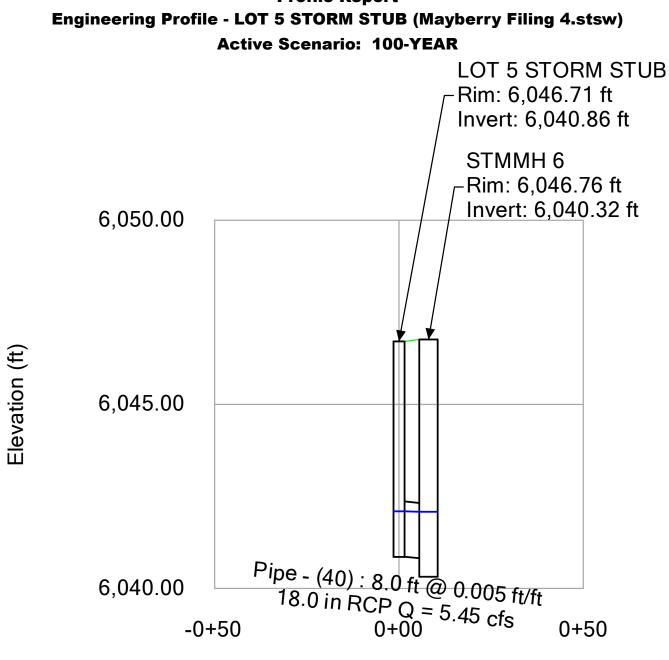

Mayberry Filing 4.stsw 12/20/2024

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

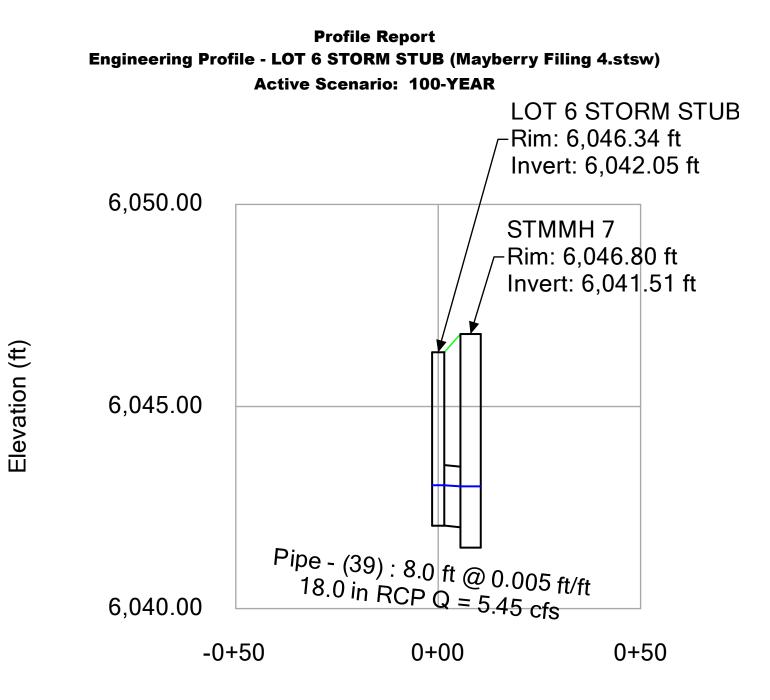

Station (ft)

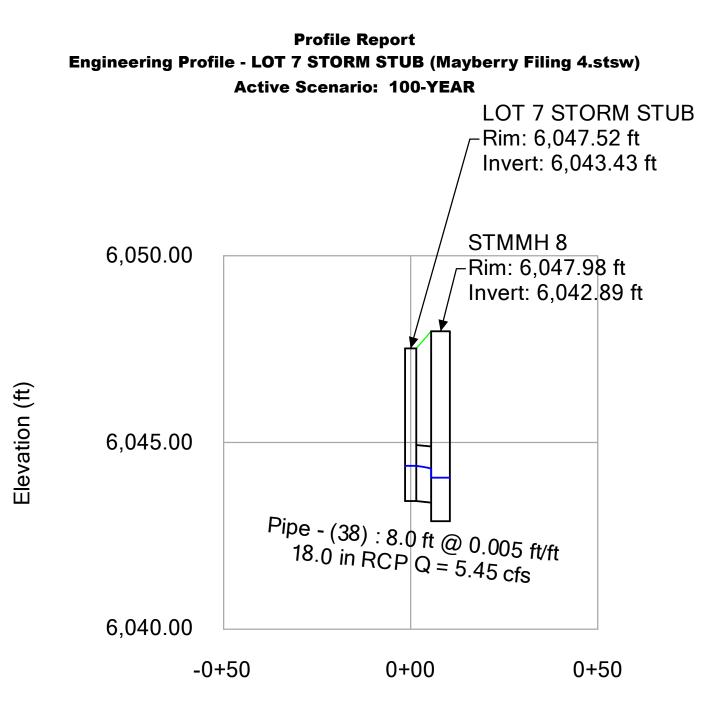
Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666


Elevation (ft)

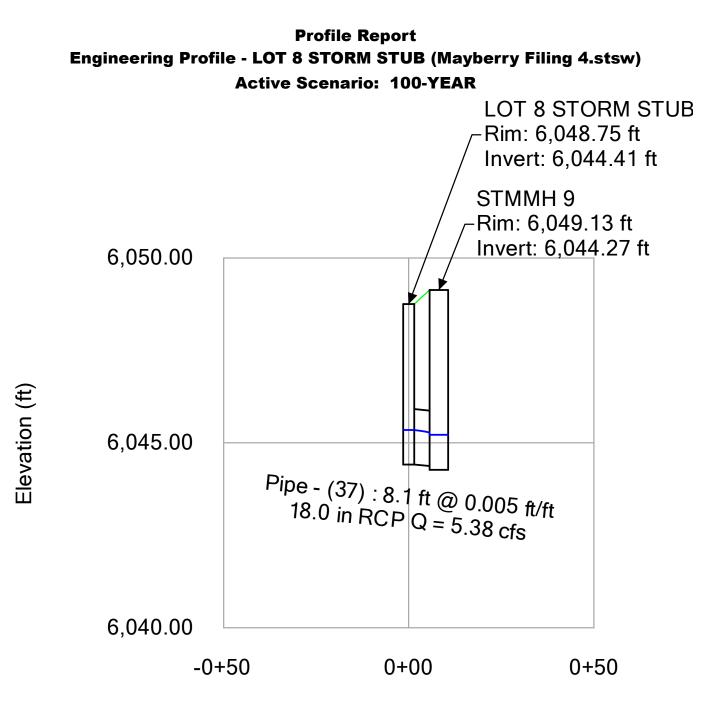
Mayberry Filing 4.stsw 12/20/2024

Profile Report Engineering Profile - STORM LINE 3 (Mayberry Filing 4.stsw) Active Scenario: 100-YEAR


Station (ft)


Profile Report

Station (ft)


Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

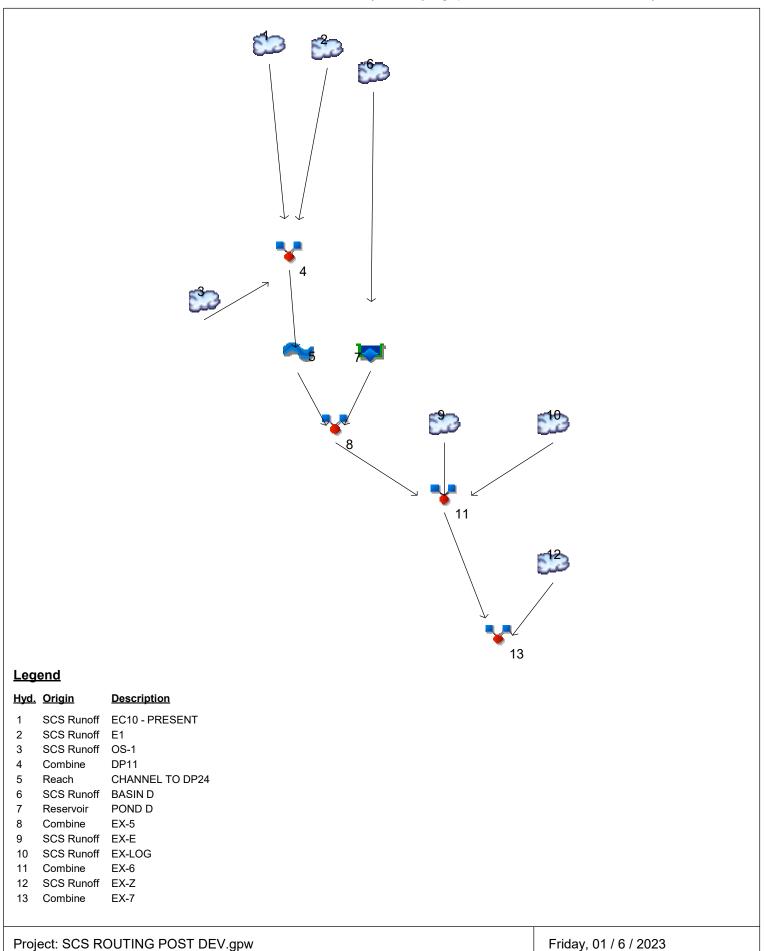
Hydraflow Table of Contents

Friday, 01 / 6 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

5 - Year


Summary Report	3
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, EC10 - PRESENT	
TR-55 Tc Worksheet	5
Hydrograph No. 2, SCS Runoff, E1	. 6
TR-55 Tc Worksheet	7
Hydrograph No. 3, SCS Runoff, OS-1	. 8
TR-55 Tc Worksheet	9
Hydrograph No. 4, Combine, DP11	10
Hydrograph No. 2, SCS Runoff, E1 TR-55 Tc Worksheet Hydrograph No. 3, SCS Runoff, OS-1 TR-55 Tc Worksheet	. 6 7 . 8 9

100 - Year

Summary Report	11
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, EC10 - PRESENT	
Hydrograph No. 2, SCS Runoff, E1	13
Hydrograph No. 3, SCS Runoff, OS-1	
Hydrograph No. 4, Combine, DP11	15
IDF Report	16

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

1

Project: SCS ROUTING POST DEV.gpw

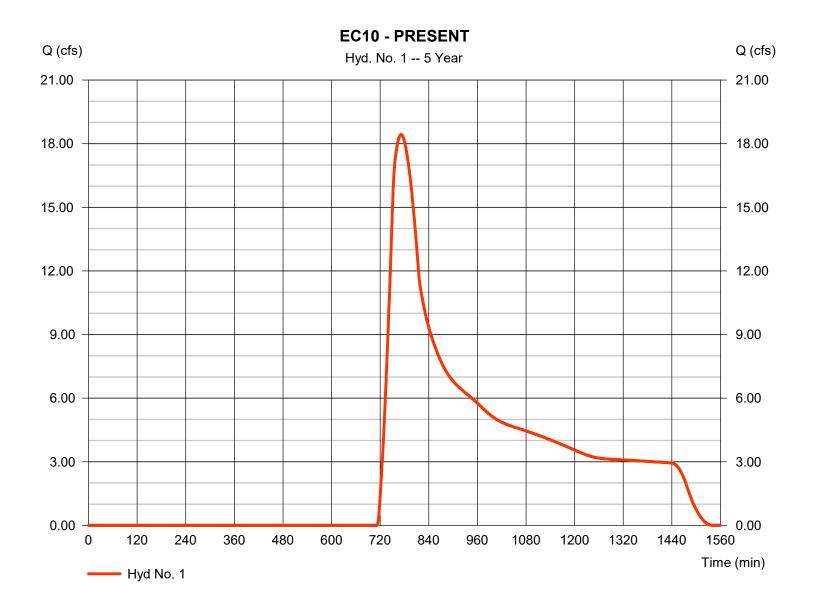
Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Inflow hyd(s)	Peak Outflow (cfs)								Hydrograph	
			1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		Description
1	SCS Runoff					18.43				144.67	EC10 - PI	RESENT
2	SCS Runoff					0.320				2.846	E1	
3	SCS Runoff					1.349				4.333	OS-1	
4	Combine	1, 2, 3				18.93				148.45	DP11	
5	Reach	4				17.61				138.52	CHANNE	L TO DP24
6	SCS Runoff					61.50				190.38	BASIN D	
7	Reservoir	6				1.722				39.58	POND D	
8	Combine	5, 7				18.66				177.50	EX-5	
9	SCS Runoff					6.054				53.32	EX-E	
10	SCS Runoff					3.682				6.317	EX-LOG	
11	Combine	8, 9, 10				21.86				204.65	EX-6	
12	SCS Runoff					8.146				63.40	EX-Z	
13	Combine	11, 12				26.53				244.45	EX-7	
	j. file: SCS F										6 / 2023	

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	18.43	1	772	262,007				EC10 - PRESENT
2	SCS Runoff	0.320	1	742	3,200				E1
3	SCS Runoff	1.349	1	734	6,442				OS-1
4	Combine	18.93	1	771	271,649	1, 2, 3			DP11
5	Reach	17.61	1	789	271,640	4			CHANNEL TO DP24
6	SCS Runoff	61.50	1	730	256,733				BASIN D
7	Reservoir	1.722	1	1443	150,906	6	6031.02	201,385	POND D
8	Combine	18.66	1	789	422,546	5, 7			EX-5
9	SCS Runoff	6.054	1	745	62,432				EX-E
10	SCS Runoff	3.682	1	729	15,373				EX-LOG
11	Combine	21.86	1	784	500,351	8, 9, 10			EX-6
12	SCS Runoff	8.146	1	742	76,284				EX-Z
13	Combine	26.53	1	761	576,634	11, 12			EX-7
SC	S ROUTING	POST DE	EV.gpw		Return F	Period: 5 Ye	ear	Friday, 01 /	/ 6 / 2023


Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

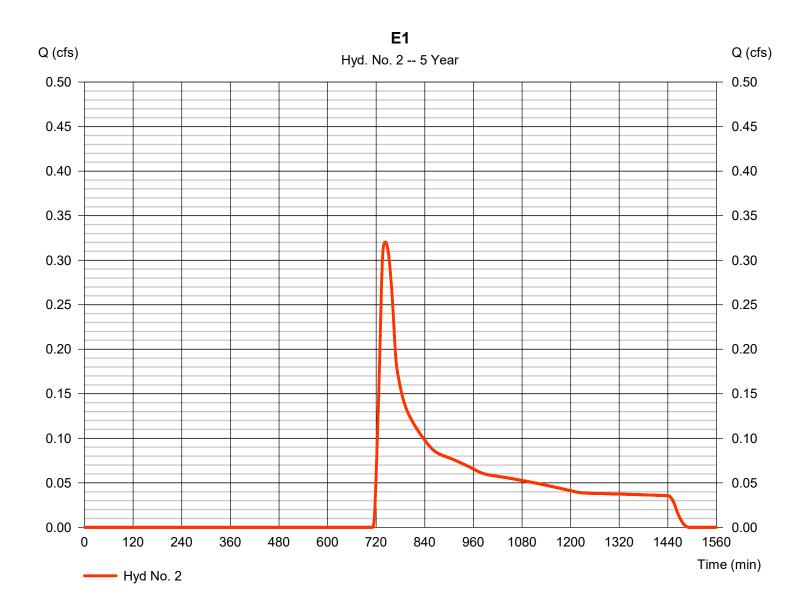
EC10 - PRESENT

Hydrograph type	= SCS Runoff	Peak discharge	= 18.43 cfs
Storm frequency	= 5 yrs	Time to peak	= 772 min
Time interval	= 1 min	Hyd. volume	= 262,007 cuft
Drainage area	= 320.000 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 63.00 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

EC10 - PRESENT


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 300.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.85	+	0.00	+	0.00	=	7.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 6086.00 = 1.30 = Unpaved =1.84		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 55.14	+	0.00	+	0.00	=	55.14
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00

Hydrograph Report

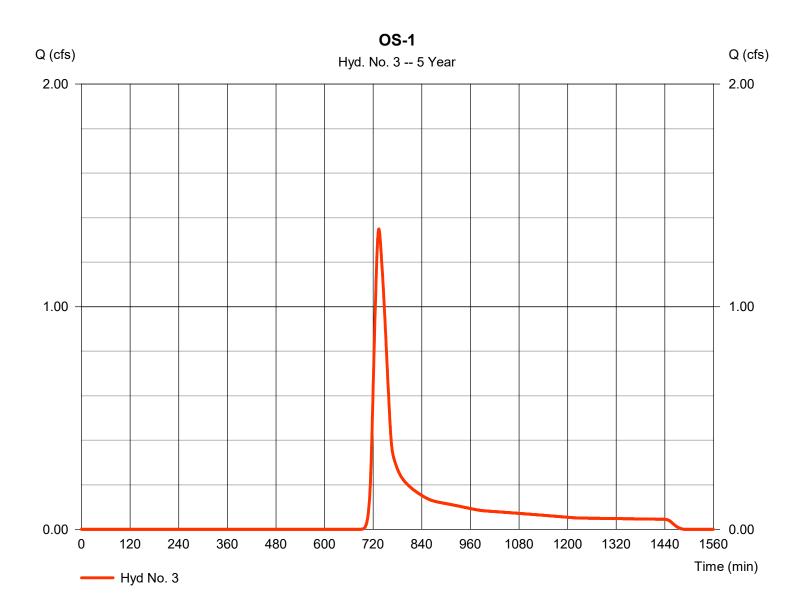
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.320 cfs
Storm frequency	= 5 yrs	Time to peak	= 742 min
Time interval	= 1 min	Hyd. volume	= 3,200 cuft
Drainage area	= 3.920 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.50 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2


E1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>	
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.011 = 0.0 = 0.00 = 0.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00			
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00	
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2811.00 = 0.80 = Unpaved =1.44		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00			
Travel Time (min)	= 32.46	+	0.00	+	0.00	=	32.46	
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00			
Flow length (ft)	({0})0.0		0.0		0.0			
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00	
Total Travel Time, Tc								

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

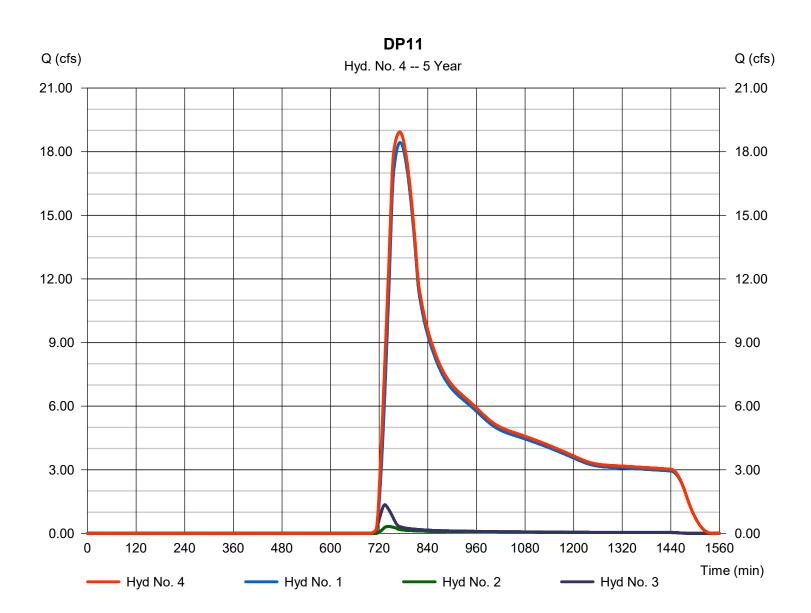
Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 1.349 cfs
Storm frequency	= 5 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 6,442 cuft
Drainage area	= 2.650 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.10 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

OS-1


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.013 = 50.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.96	+	0.00	+	0.00	=	0.96
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2525.00 = 0.70 = Unpave =1.35		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 31.17	+	0.00	+	0.00	=	31.17
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							32.10 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

DP11

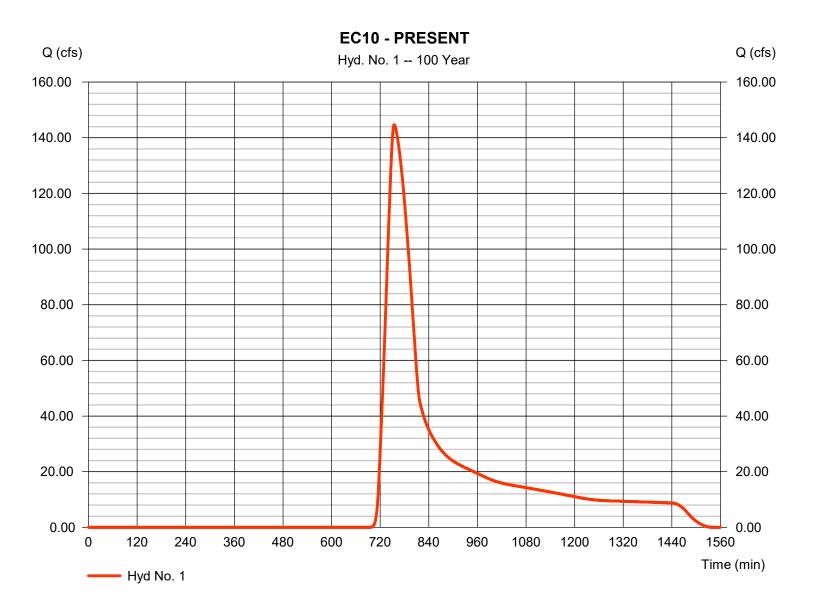
Storm frequency = Time interval =	 Combine 5 yrs 1 min 1, 2, 3 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	 = 18.93 cfs = 771 min = 271,649 cuft = 326.570 ac
innow nyus. –	1, 2, 3	Contrib. Grain. area	= 320.570 ac

10

Friday, 01 / 6 / 2023

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

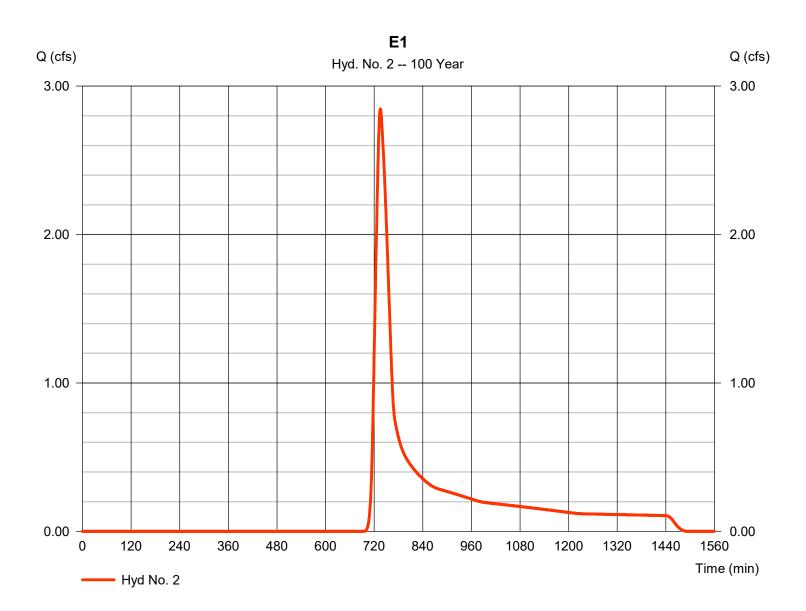

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	144.67	1	755	1,185,497				EC10 - PRESENT
2	SCS Runoff	2.846	1	735	14,479				E1
3	SCS Runoff	4.333	1	733	18,356				OS-1
4	Combine	148.45	1	754	1,218,333	1, 2, 3			DP11
5	Reach	138.52	1	766	1,218,326	4			CHANNEL TO DP24
6	SCS Runoff	190.38	1	730	718,796				BASIN D
7	Reservoir	39.58	1	759	610,089	6	6032.21	333,480	POND D
8	Combine	177.50	1	765	1,828,414	5, 7			EX-5
9	SCS Runoff	53.32	1	736	282,485				EX-E
10	SCS Runoff	6.317	1	729	27,009				EX-LOG
11	Combine	204.65	1	758	2,137,908	8, 9, 10			EX-6
12	SCS Runoff	63.40	1	736	328,266				EX-Z
13	Combine	244.45	1	754	2,466,175	11, 12			EX-7
SC	S ROUTING	POST DE	V.gpw		Return P	eriod: 100	Year	Friday, 01	/ 6 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

EC10 - PRESENT

Hydrograph type	= SCS Runoff	Peak discharge	= 144.67 cfs
Storm frequency	= 100 yrs	Time to peak	= 755 min
Time interval	= 1 min	Hyd. volume	= 1,185,497 cuft
Drainage area	= 320.000 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 63.00 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

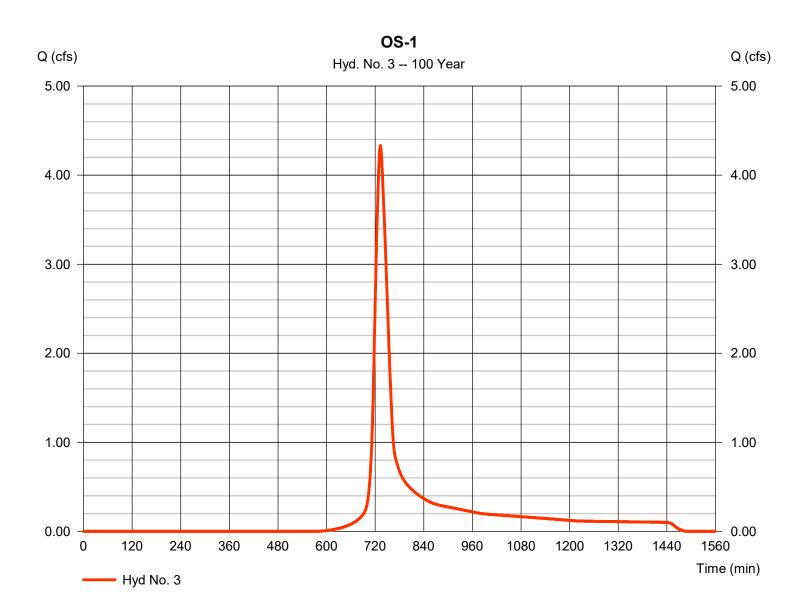


Friday, 01 / 6 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 2.846 cfs
Storm frequency	= 100 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 14,479 cuft
Drainage area	= 3.920 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.50 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

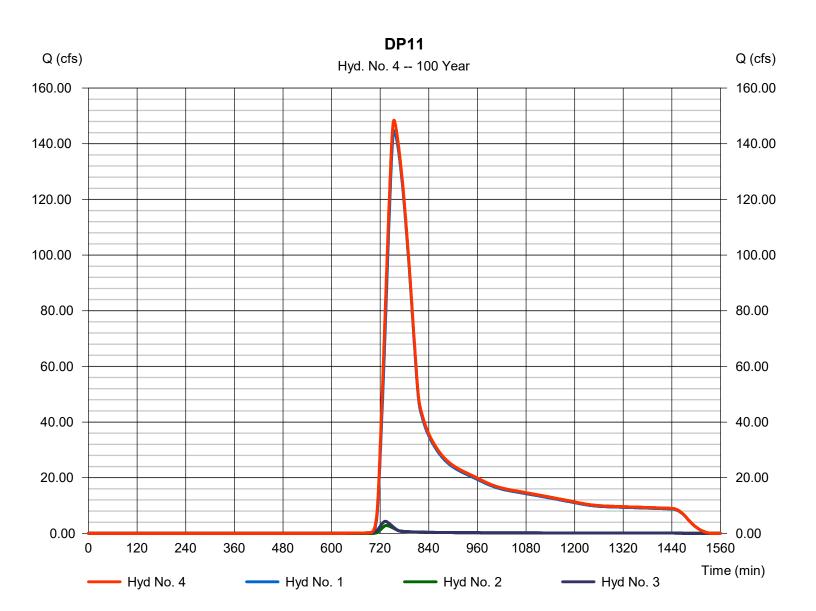


Friday, 01 / 6 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 4.333 cfs
Storm frequency	= 100 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 18,356 cuft
Drainage area	= 2.650 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.10 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



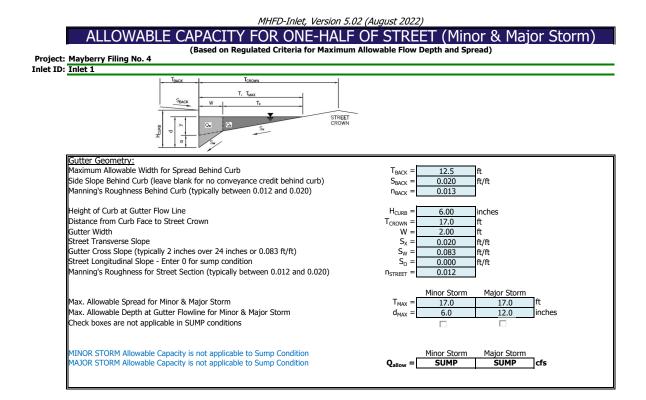
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

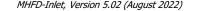
DP11

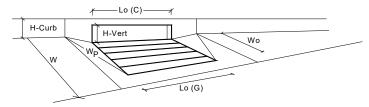
Storm requency= 100 yrsTime to peak= 754 minTime interval= 1 minHyd. volume= 1,218,333 cuftInflow hyds.= 1, 2, 3Contrib. drain. area= 326.570 ac			5	
--	--	--	---	--

15

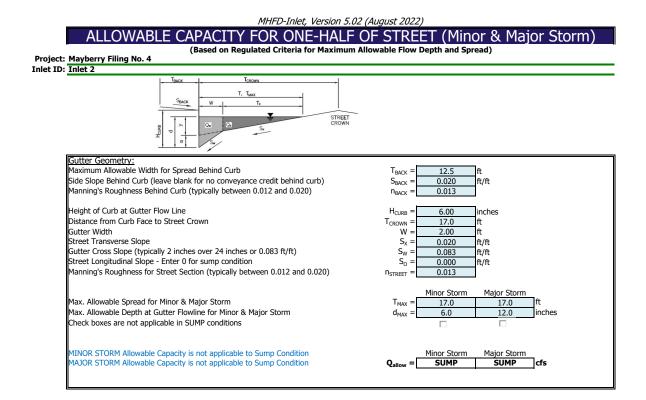

Friday, 01 / 6 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

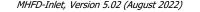

Friday, 01 / 6 / 2023

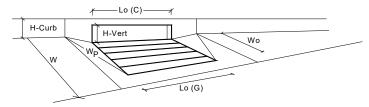

		Rainfall Precipitation Table (in)						
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour	0.00	2.20	0.00	2.60	4.25	5.77	6.80	4.40
SCS 6-Hr	0.00	1.80	0.00	0.00	2.60	0.00	0.00	0.00
Huff-1st	0.00	1.55	0.00	0.00	4.00	5.38	6.50	0.00
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	0.00	1.75	0.00	0.00	3.90	5.25	6.00	0.00

Precip. file name: Sample.pcp



INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)





Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Grate} =	0.30	0.30	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
	··· combination	,,,,		1
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.6	4.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	2.1	4.1	cfs

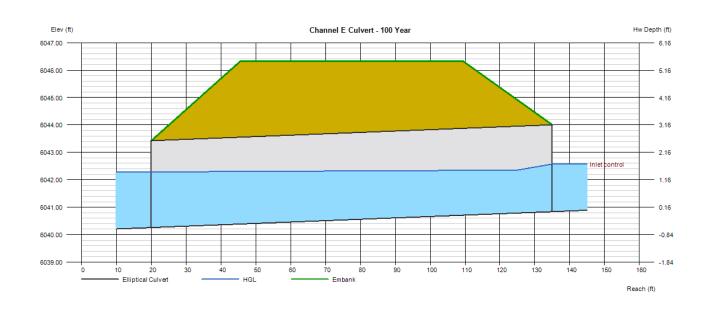
INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	0.93	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
	_			
	~ 「	MINOR	MAJOR].e.
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	6.9 3.4	8.3 6.4	cfs cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	3.4	0.4	us

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Aug 7 2023


Channel E Culvert - 5 Year

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6040.26 = 115.00 = 0.50 = 6040.84 = 38.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 18.67 = 118.67 = (dc+D)/2
Shape	= Elliptical	Highlighted	
Span (in)	= 60.0	Qtotal (cfs)	= 18.67
No. Barrels	= 1	Qpipe (cfs)	= 18.67
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	 Horizontal Ellipse Concrete 	Veloc Dn (ft/s)	= 2.00
Culvert Entrance	= Square edge w/headwall (H)	Veloc Up (ft/s)	= 3.13
Coeff. K,M,c,Y,k	= 0.01, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6042.29
		HGL Up (ft)	= 6042.36
Embankment		Hw Elev (ft)	= 6042.58
Top Elevation (ft)	= 6046.32	Hw/D (ft)	= 0.55

Top Width (ft) Crest Width (ft)

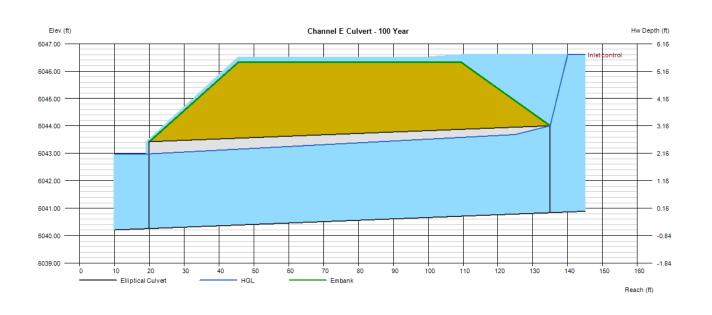
= 64.00 = 60.80

Qpipe (cfs)	=	18.67
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	2.00
Veloc Up (ft/s)	=	3.13
HGL Dn (ft)	=	6042.29
HGL Up (ft)	=	6042.36
Hw Elev (ft)	=	6042.58
Hw/D (ft)	=	0.55
Flow Regime	=	Inlet Control

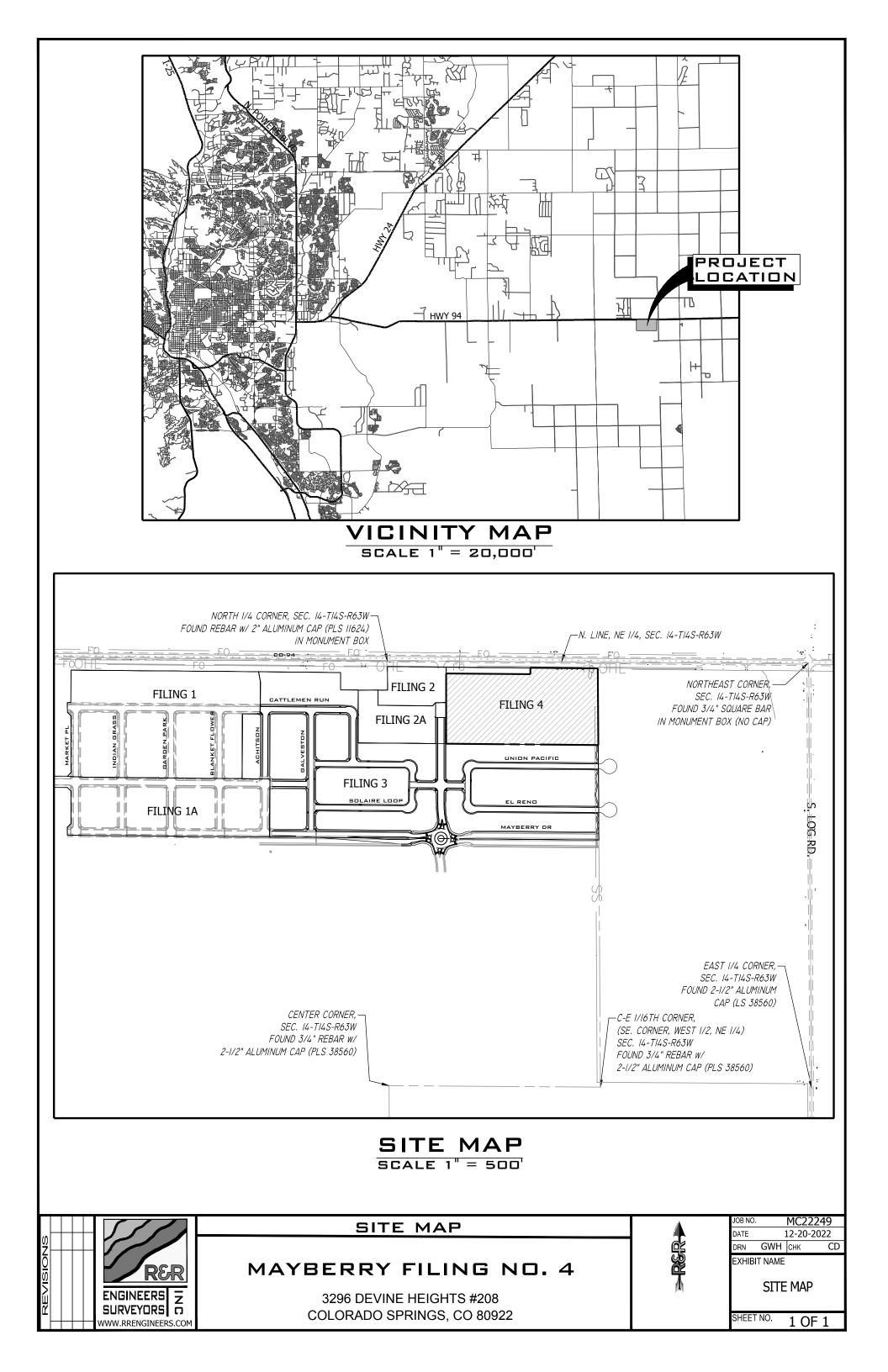
Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Aug 7 2023


Channel E Culvert - 100 Year

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 6040.26 = 115.00 = 0.50	Calculations Qmin (cfs) Qmax (cfs)	= 46.40 = 146.40
Invert Elev Up (ft)	= 6040.84	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 38.0		
Shape	= Elliptical	Highlighted	
Span (in)	= 60.0	Qtotal (cfs)	= 146.40
No. Barrels	= 1	Qpipe (cfs)	= 119.01
n-Value	= 0.013	Qovertop (cfs)	= 27.39
Culvert Type	= Horizontal Ellipse Concrete	Veloc Dn (ft/s)	= 10.24
Culvert Entrance	= Square edge w/headwall (H)	Veloc Up (ft/s)	= 9.97
Coeff. K,M,c,Y,k	= 0.01, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6042.98
		HGL Up (ft)	= 6043.75
Embankment		Hw Elev (ft)	= 6046.60
Top Elevation (ft)	= 6046.32	Hw/D (ft)	= 1.82
T	04.00		


Top Width (ft) Crest Width (ft)

=	6046.32
=	64.00
=	60.80

Qpipe (cfs)	=	119.01
Qovertop (cfs)	=	27.39
Veloc Dn (ft/s)	=	10.24
Veloc Up (ft/s)	=	9.97
HGL Dn (ft)	=	6042.98
HGL Up (ft)	=	6043.75
Hw Elev (ft)	=	6046.60
Hw/D (ft)	=	1.82
Flow Regime	=	Inlet Control
-		

APPENDIX C – REFERENCE INFORMATION

ENGINEER'S OPINION OF PROBABLE COSTS FOR Mayberry Filing 4 - Drainage Improvements

Item	Description	Total Work Units	Unit Price (\$)	Total Cost (\$)
Riprap		25 Ton	104.00 Ton	2,600.00
18" RCP		255 LF	\$ 82.00 LF	\$ 52,234.00
24" RCP		468 LF	\$ 98.00 LF	\$ 45,864.00
30" RCP		426 LF	\$ 123.00 LF	\$ 52,398.00
60" RCP		116 LF	\$ 374.00 LF	\$ 43,384.00
5' Type R		1 EA	\$ 7,212.00 EA	\$ 7,212.00
10' Type R		1 EA	\$ 9,925.00 EA	\$ 9,925.00
Storm Manhole		5 EA	\$ 8,322.00 EA	\$ 41,610.00
36" FES		2 EA	\$ 906.00 EA	\$ 1,812.00
Grass Channels		2.0 AC	\$ 1,911.00 EA	\$ 3,822.00
SUBTOTAL		2.0 40		\$ 257,039.00
Contingency (15%)				\$ 38,555.85
TOTAL				\$ 295,594.85

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	11
El Paso County Area, Colorado	
8—Blakeland loamy sand, 1 to 9 percent slopes	13
95—Truckton loamy sand, 1 to 9 percent slopes	14
References	16

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

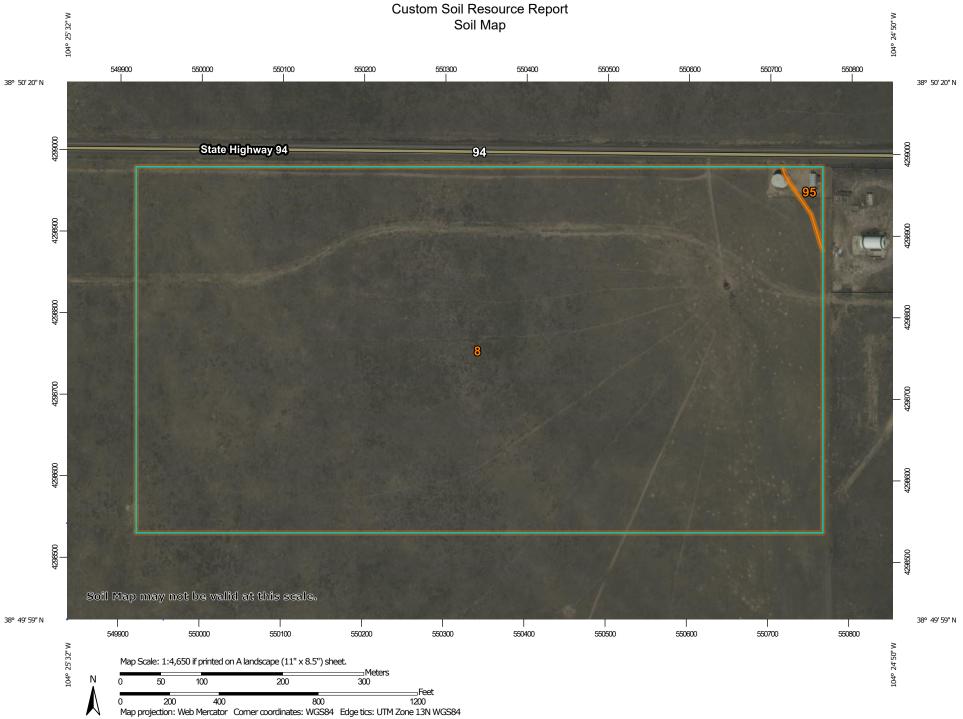
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND)	MAP INFORMATION
Area of In	terest (AOI)	38	Spoil Area	The soil surveys that comprise your AOI were mapped at
	Area of Interest (AOI)	٥	Stony Spot	1:24,000.
Soils		۵	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
	Soil Map Unit Polygons	\$2	Wet Spot	
~	Soil Map Unit Lines	Δ	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
	Soil Map Unit Points		Special Line Features	line placement. The maps do not show the small areas of
•	Point Features Blowout	Water Fea	atures	contrasting soils that could have been shown at a more detailed scale.
ອ	Borrow Pit	\sim	Streams and Canals	
×		Transpor	tation	Please rely on the bar scale on each map sheet for map
*	Clay Spot	+++	Rails	measurements.
<u>ہ</u>	Closed Depression	~	Interstate Highways	Source of Map: Natural Resources Conservation Service
X	Gravel Pit	~	US Routes	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
000	Gravelly Spot	\sim	Major Roads	Coordinate System. Web Mercator (EPSG.3657)
٥	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
A.	Lava Flow	Backgrou	Ind	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
علله	Marsh or swamp	Mar.	Aerial Photography	Albers equal-area conic projection, should be used if more
奈	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
0	Perennial Water			of the version date(s) listed below.
\vee	Rock Outcrop			Soil Survey Area: El Paso County Area, Colorado
+	Saline Spot			Survey Area Data: Version 20, Sep 2, 2022
0 0 0 0	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
0	Sinkhole			Date(s) aerial images were photographed: Sep 11, 2018—Oct
\$	Slide or Slip			20, 2018
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

		1	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	93.6	99.4%
95	Truckton loamy sand, 1 to 9 percent slopes	0.6	0.6%
Totals for Area of Interest		94.2	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

8-Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Flats, hills Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 1 percent

Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

95—Truckton loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 2yvrm Elevation: 5,800 to 7,100 feet Mean annual precipitation: 12 to 19 inches Mean annual air temperature: 46 to 50 degrees F Frost-free period: 90 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Truckton and similar soils: 87 percent *Minor components:* 13 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Truckton

Setting

Landform: Interfluves, fan remnants Down-slope shape: Linear Across-slope shape: Linear Parent material: Wind re-worked alluvium derived from arkose

Typical profile

A - 0 to 4 inches: loamy sand Bt1 - 4 to 12 inches: sandy loam Bt2 - 12 to 19 inches: sandy loam C - 19 to 80 inches: sandy loam

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Minor Components

Blakeland

Percent of map unit: 5 percent Landform: Interfluves, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear, convex Across-slope shape: Linear, convex Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Bresser

Percent of map unit: 5 percent Landform: Interfluves, terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Urban land

Percent of map unit: 2 percent Hydric soil rating: No

Ellicott, occasionally flooded

Percent of map unit: 1 percent Landform: Flood plains, drainageways Down-slope shape: Linear Across-slope shape: Linear, concave Ecological site: R067BY031CO - Sandy Bottomland Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the **North American Vertical Datum** of **1988** (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services

NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202

1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

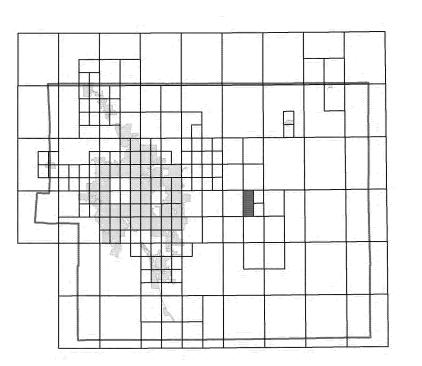
Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date **stream channel configurations and floodplain delineations** than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

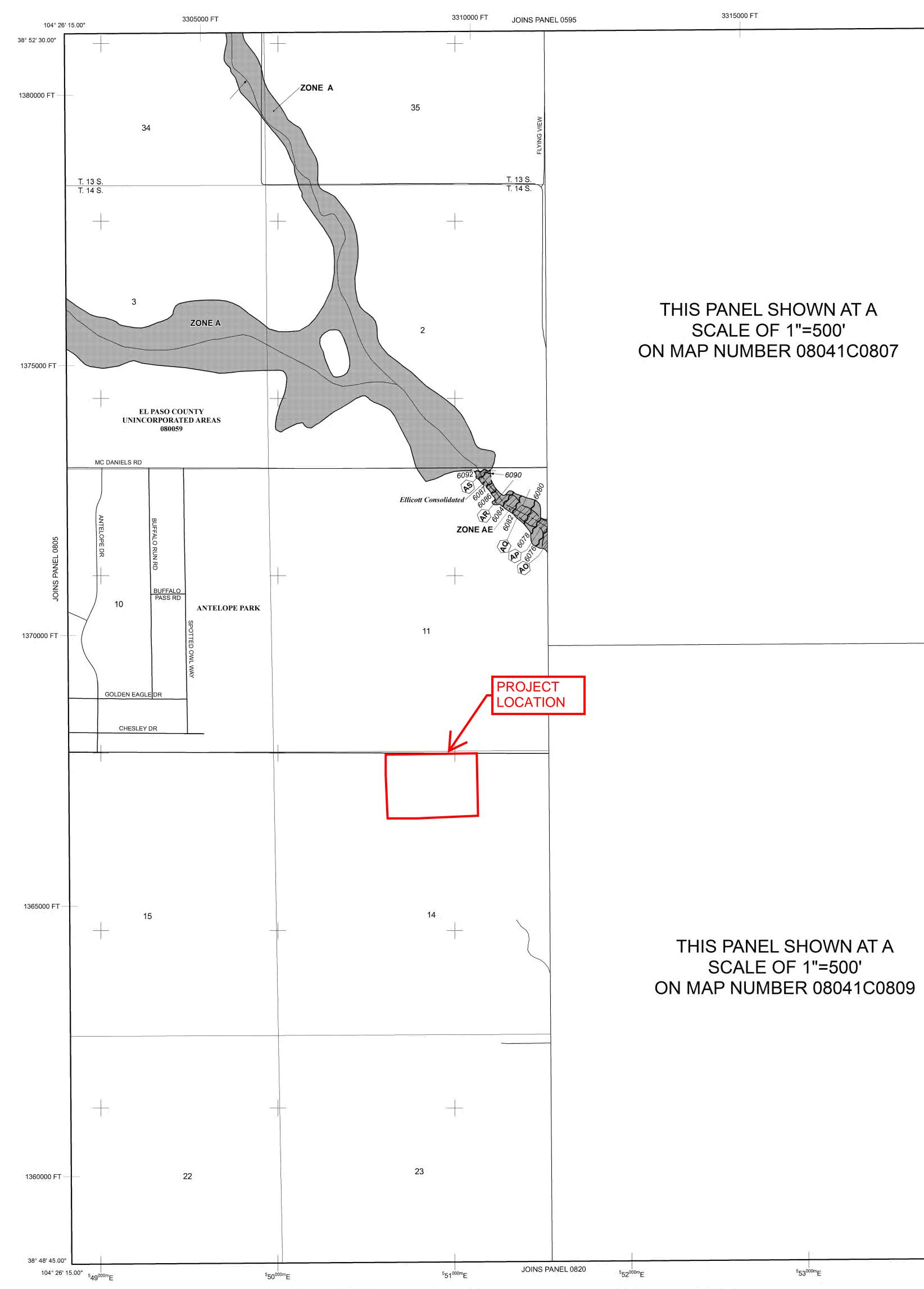
Contact **FEMA Map Service Center** (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

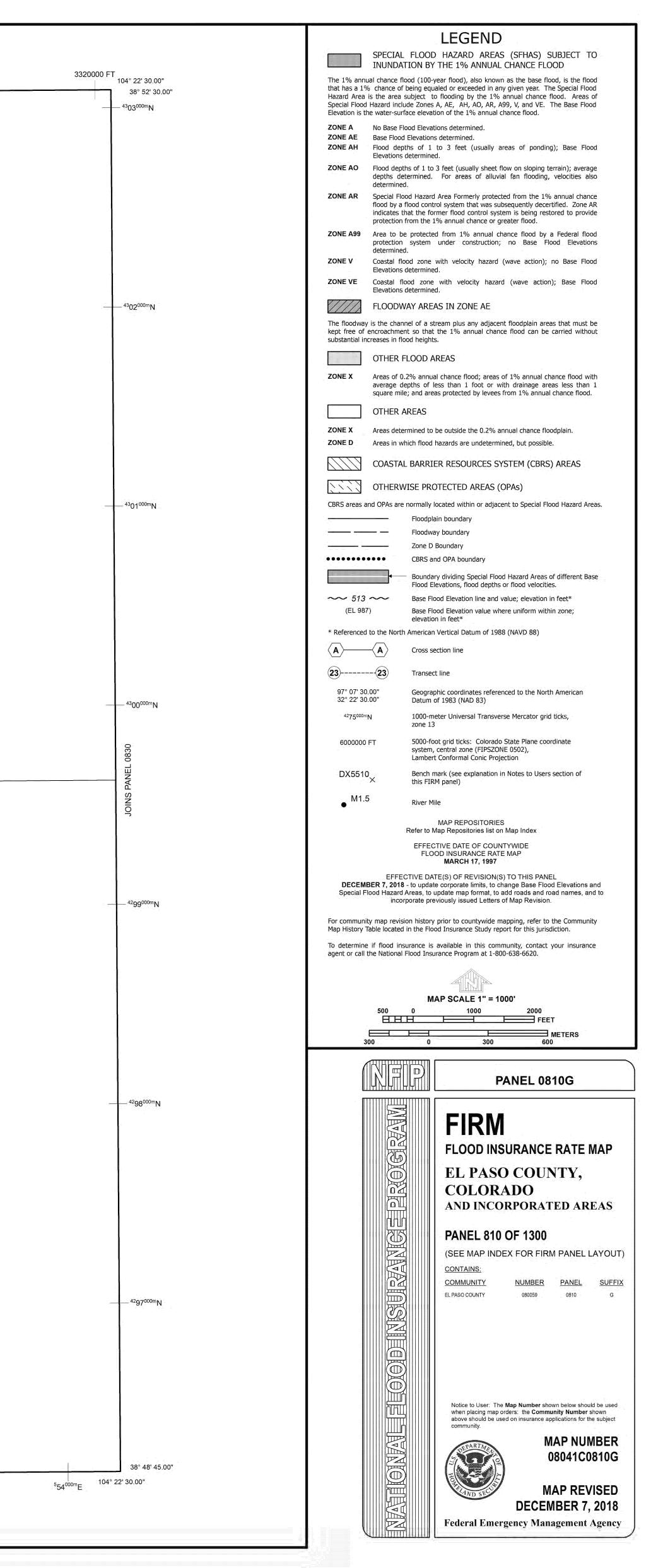

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

Flooding Source

El Paso County Vertical Datum Offset Table Vertical Datum

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map


This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 13 SOUTH, RANGE 63 WEST, AND TOWNSHIP 14 SOUTH, RANGE 63 WEST.

FINAL DRAINAGE REPORT

For

MAYBERRY, COLORADO SPRINGS – FILING NO. 3

PREPARED FOR:

COLORADO SPRINGS MAYBERRY, LLC 3296 DEVINE HEIGHTS #208 COLORADO SPRINGS, CO 80922

PREPARED BY:

R & R ENGINEERS - SURVEYORS, INC. 1635 W. 13[™] AVE, SUITE 310 DENVER, CO 80204 CONTACT: CLIF DAYTON, P.E. (303) 753-6730

> R&R JOB #MC22110 EPC PROJECT NO. SF2219

ORIGINAL SUBMITTAL: MAY 2022 2ND SUBMITTAL: SEPTEMBER 2022 3RD SUBMITTAL: JANUARY 2023 4TH SUBMITTAL: APRIL 2023

1635 West 13th Avenue - Suite 310, Denver, Colorado 80204 Phone - (303) 753-6730 Fax - (303) 753-6568

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

SIGNATURE:

Clif Davton, P.E. Registered Professional Engineer State of Colorado No. 51674

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

SIGNATURE:

John Mick Colorado Springs Mayberry, LLC 3296 Devine Heights #208 Colorado Springs, CO 80922

EL PASO COUNTY'S STATEMENT:

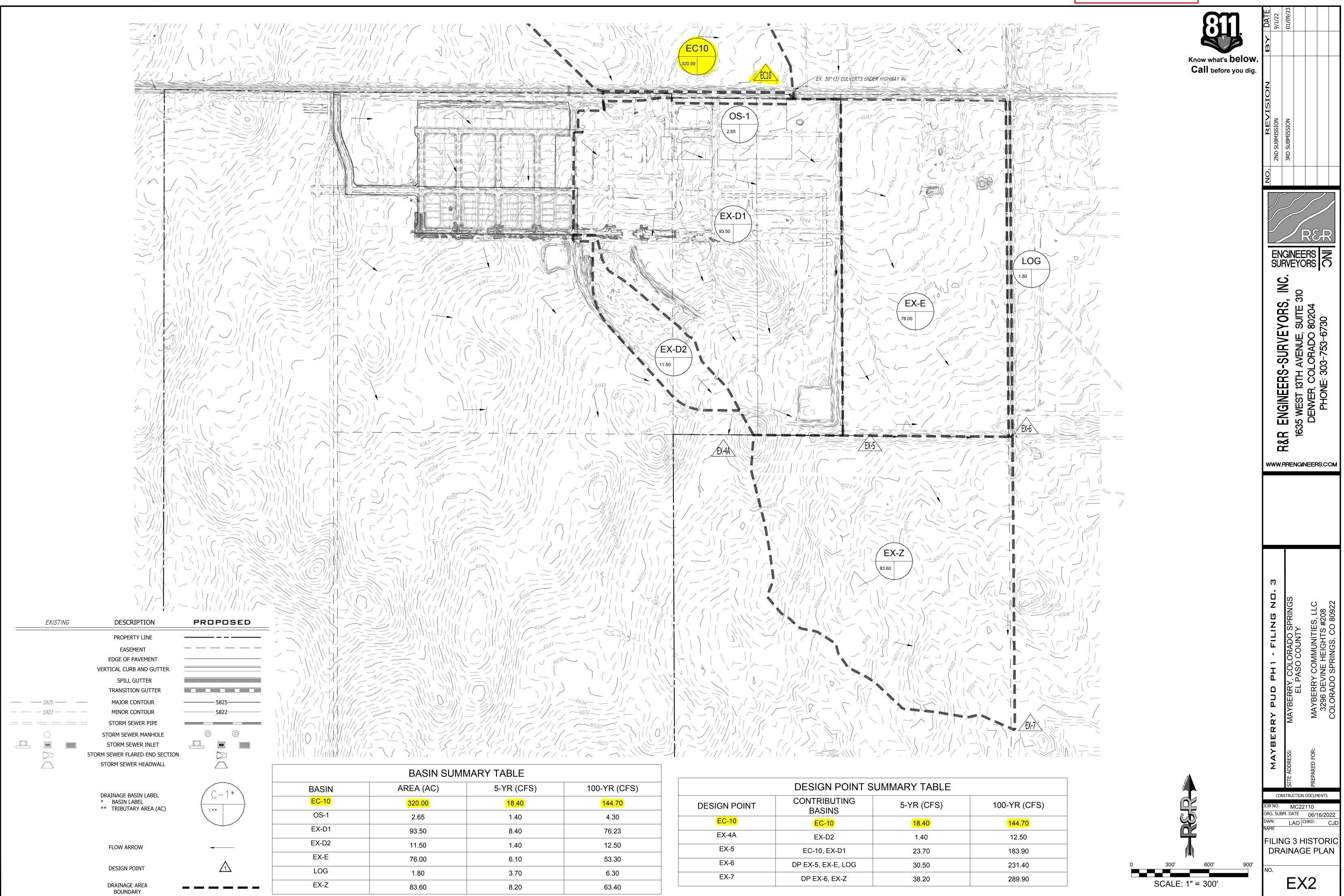
Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Joshua Palmer, P.E. County Engineer/ECM Administrator

MAYBERRY – FILING 3 FINAL DRAINAGE REPORT

Sub-basin D1.5* is a 9.88 acre basin comprising the future Filing 4 area and is assumed to be Commercial/Industrial in nature. Developed runoff from this basin will be routed via curb/gutter and crosspans and enter inlets within the future development. The inlets will be piped to the proposed piping to the south of the basin that will be stubbed as part of Filing 3. The 5 year and 100 year developed peak flows are 31.6 and 57.6 cfs respectively.

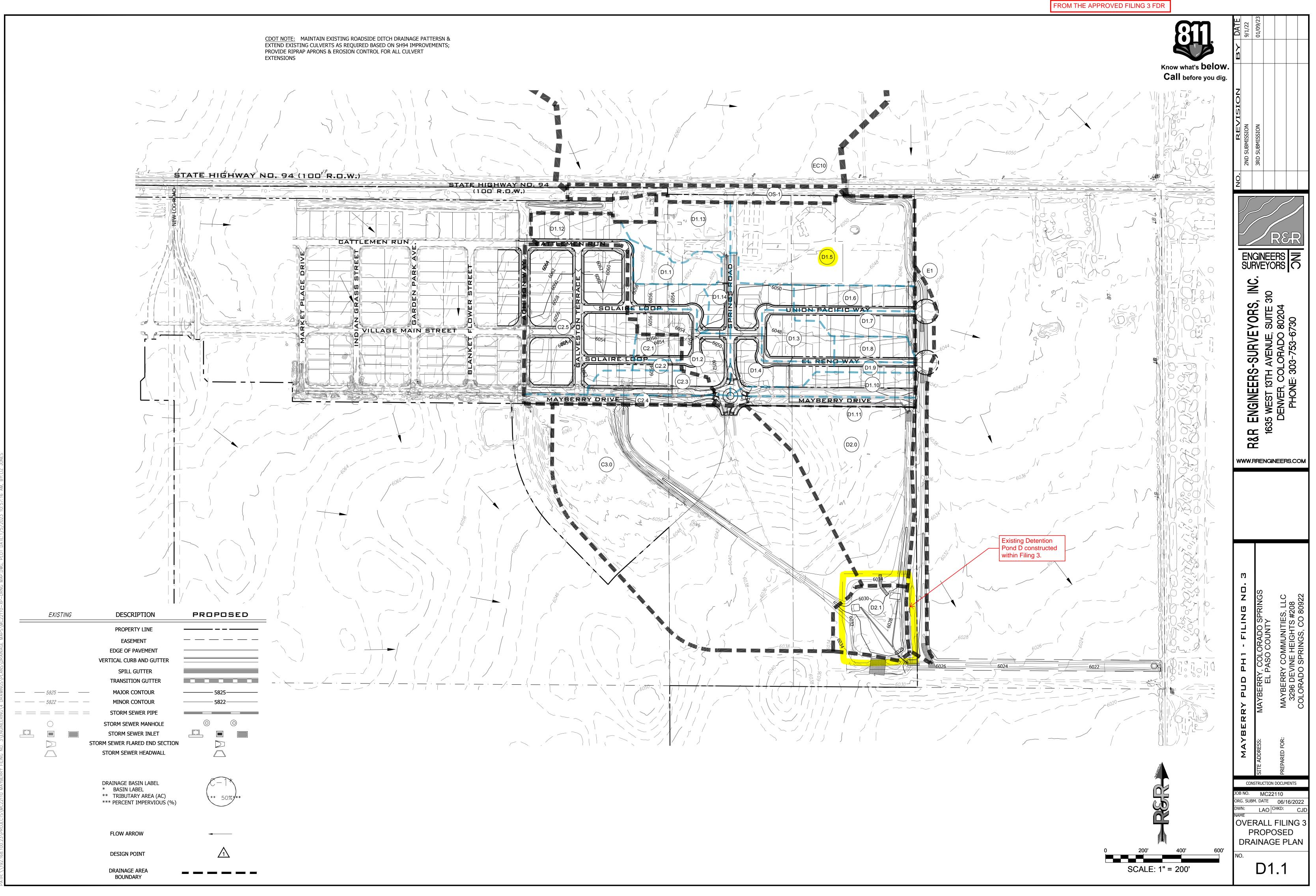
***D1.5** was also analyzed using an interim condition that represents the runoff patterns prior to development. Under this condition the basin would flow east into Channel E, combining with offsite basins EC-10 and OS-1 along with onsite basin E1. The flows would ultimately be routed to the Log Road ROW. The basin was analyzed using the SCS method due to the combining with the large offsite basins. The 5 year and 100 year undeveloped peak flows are 1.4 and 12.2 cfs respectively.

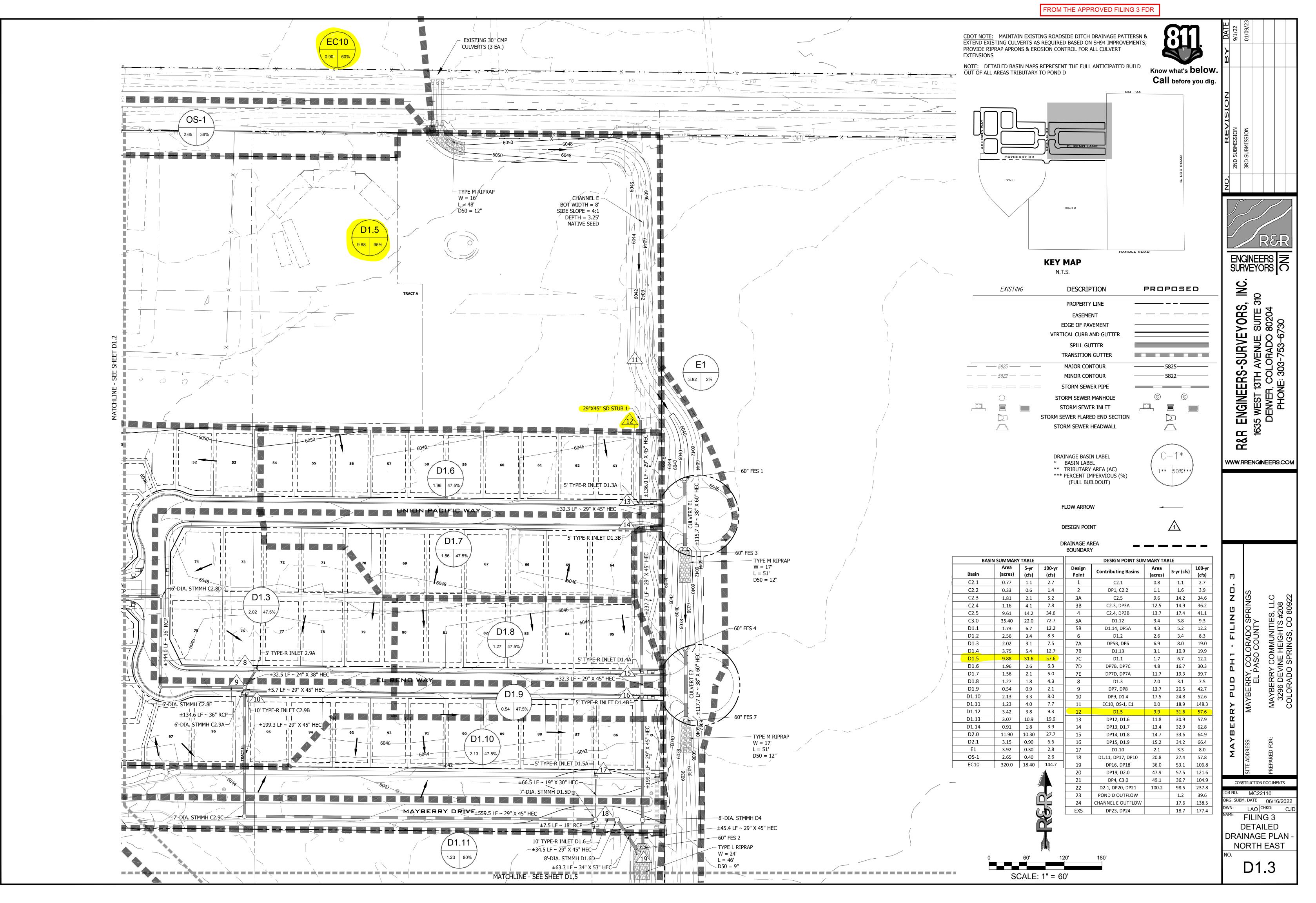

Sub-basin D1.6 is a 1.96 acre basin comprising single family lots and portions of Union Pacific Way. Runoff from this basin is routed via curb/gutter and crosspans, enters a Type R curb inlet on the north side of Union Pacific Way, and is discharged into the piped storm sewer system to the east. The 5 year and 100 year developed peak flows are 2.6 and 6.3 cfs respectively.

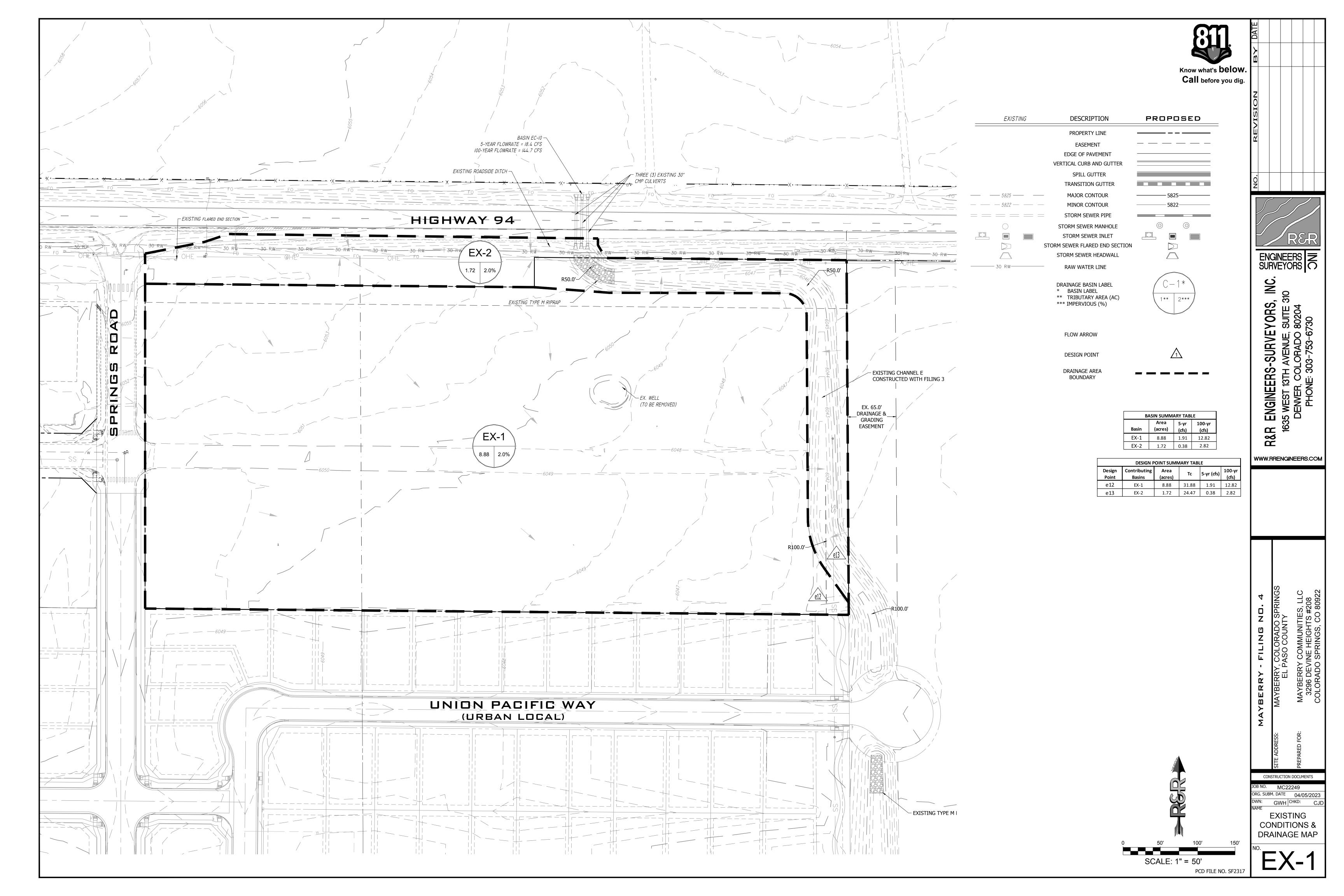
Sub-basin D1.7 is a 1.56 acre basin comprising single family lots and portions of Union Pacific Way. Runoff from this basin is routed via curb/gutter, enters a Type R curb inlet on the south side of Union Pacific Way, and is discharged into the piped storm sewer system to the east. The 5 year and 100 year developed peak flows are 2.1 and 5.0 cfs respectively.

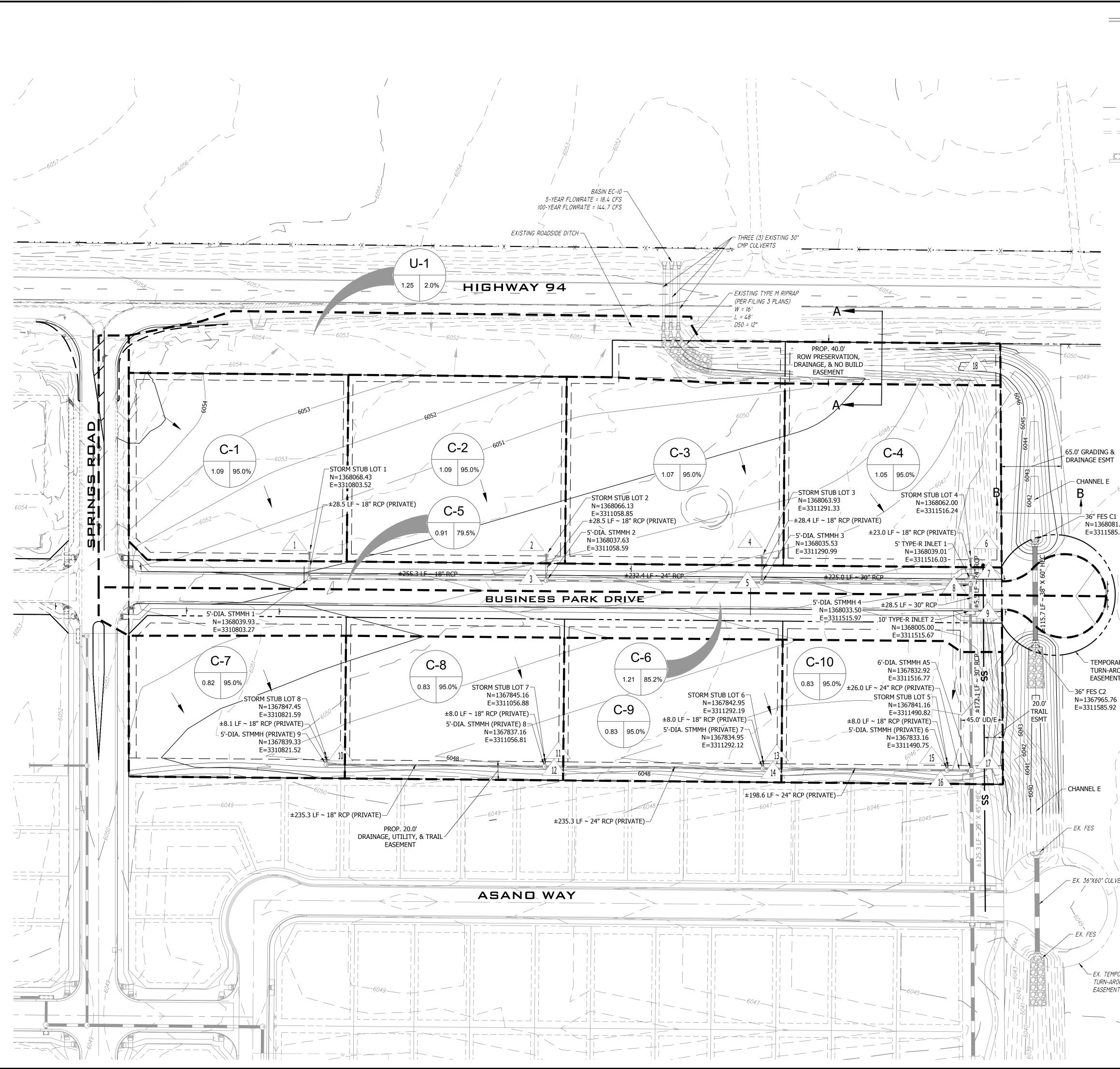
Sub-basin D1.8 is a 1.27 acre basin comprising single family lots and portions of El Reno Way. Runoff from this basin is routed via curb/gutter, enters a Type R curb inlet on the north side of El Reno Way, and is discharged into the piped storm sewer system to the east. The 5 year and 100 year developed peak flows are 1.8 and 4.3 cfs respectively.

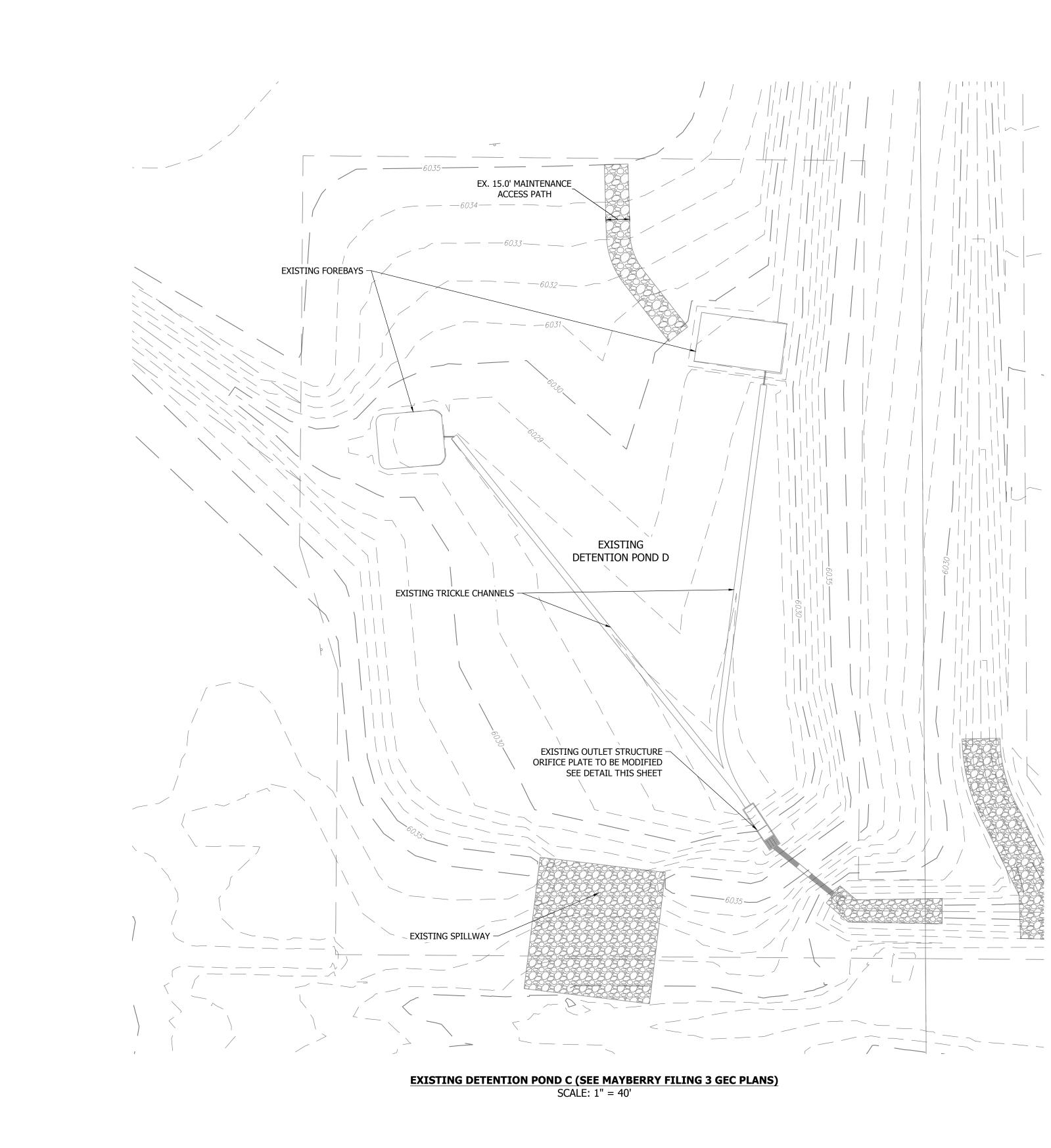
Sub-basin D1.9 is a 0.54 acre basin comprising single family lots and portions of El Reno Way. Runoff from this basin is routed via curb/gutter, enters a Type R curb inlet on the south side of El Reno Way, and is discharged into the piped storm sewer system to the east. The 5 year and 100 year developed peak flows are 0.9 and 2.1 cfs respectively.

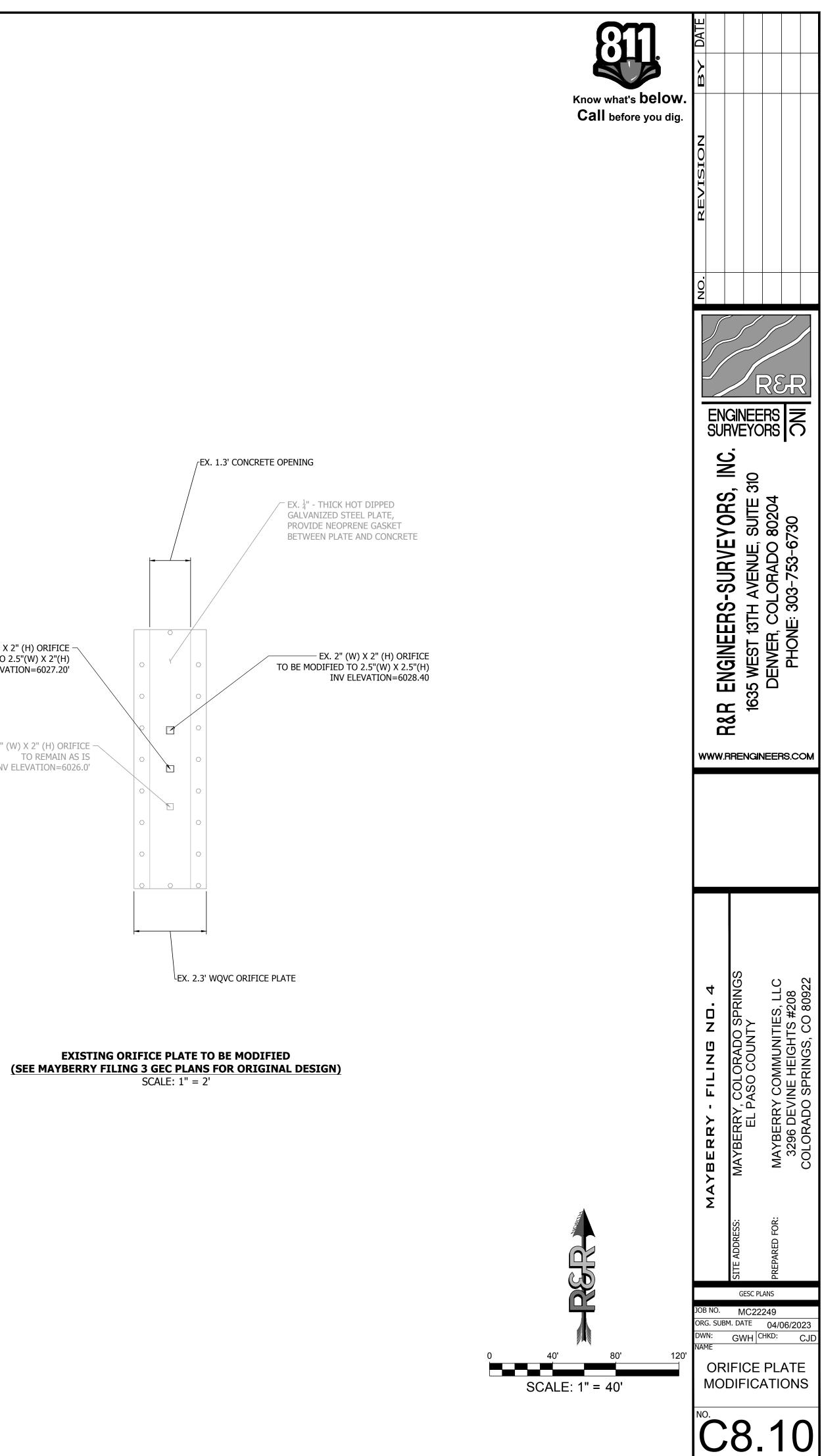

Sub-basin D1.10 is a 2.13 acre onsite area that will not be fully developed until future phases. In the future the basin will be collected by a curb inlet on the north side of Mayberry Drive. This basin consists of the north section of the Mayberry Drive ROW. Runoff from this basin will be routed via curb/gutter, enter a Type R curb inlet, and will be discharged into the piped storm sewer system. A stub will be installed during




	5-YR (CFS)	100-YR (CFS)		
	<mark>18.40</mark>	<mark>144.70</mark>		
	1.40	4.30		
	8.40	76.23		
	1.40	12.50		
	6.10	53.30		
	3.70	6.30		
	8.20	63.40		


		_
DESIGN POINT	CONTRIBUTING BASINS	5-YR (CF
EC-10	EC-10	<mark>18.40</mark>
EX-4A	EX-D2	1.40
EX-5	EC-10, EX-D1	23.70
EX-6	DP EX-5, EX-E, LOG	30.50
EX-7	DP EX-6, EX-Z	38.20





EXISTING	DESCRIPTION	PROPOSED	<u> </u>	
	PROPERTY LINE			D
	EDGE OF PAVEMENT VERTICAL CURB AND GUTTER		Know what's below .	
	SPILL GUTTER		Call before you dig.	
— — 5825 — —	TRANSITION GUTTER — MAJOR CONTOUR	5825	-	
5822	MINOR CONTOUR		_	IS
	STORM SEWER PIPE	0 0	=	
	STORM SEWER INLET			2
	STORM SEWER FLARED END SECTION STORM SEWER HEADWALL			
		7 <u>~</u>		<u>.</u>
	DRAINAGE BASIN LABEL	C - 1*		ž
	 * BASIN LABEL ** TRIBUTARY AREA (AC) *** IMPED (COULS (%)) 	()		
	*** IMPERVIOUS (%)			
				- REP
	FLOW ARROW			
	DESIGN POINT	Δ		ENGINEERS SURVEYORS
	DRAINAGE AREA BOUNDARY		-	
	-	31.0' CHANNEL	- -	YORS SUITE SUITE 80204 730
		CHANNEL 		
	3:1	4:1		SURVE AVENUE, ORADO 3-753-6
			3.25'	ENGINEERS-SURVEYORS, 5 WEST 13TH AVENUE, SUITE 3 DENVER, COLORADO 80204 PHONE: 303-753-6730
	CHAN	INEL E SECTION A-A	GRADE	
& 1T		SCALE: 1" = 10'		GINEEF VEST 131 NVER, C PHONE:
6047				R ENGINEE 1635 WEST 1 DENVER, PHON
_0°				m
C1 081.47				R&R 16
585.21	-	34.0' CHANNEL	-	
	- 13.0'+		-	WWW.RRENGINEERS.COM
	4:1	4:1		
		EL E SECTION B-B ALE: 1" = 10'		
DRARY		BASIN SUMMARY TABLE		
AROUND	В	Area 5-yr 100 asin (acres) (cfs) (cfs		
.76		C-1 1.09 3.82 6.9 C-2 1.09 3.82 6.9)7	
92 ¹ 9709		C-3 1.07 3.75 6.8 C-4 1.05 3.68 6.7	34	LC VGS
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	
		C-7 0.82 2.95 5.3 C-8 0.83 2.99 5.4	38	ADO SPI UNTY JNITIES AAN RUN 80808
(C-9 0.83 2.99 5.4 C-10 0.83 2.99 5.4	15	COUN COUN COUN COUN CO 8(
		J-1 1.25 0.24 1.7		
}	Design	DESIGN POINT SUMMARY TABL	Area 100-yr	KY - FIL RRY, COL EL PASO ERRY COL 108 CATT CALHAN,
	Point (Contributing Basins	Area 5-yr (cfs) 100-yr (acres) 3.82 6.97	YBERRY , C MAYBERRY, C EL PA MAYBERRY 22108 C/ CALH
	2	C-2 C-1, C-2	1.09 3.82 0.97 1.09 3.82 6.97 2.18 7.17 13.07	MAYB E F MAYB MAY
	4	C-1, C-2 C-3 C-1, C-2, C-3	2.18 7.17 13.07 1.07 3.75 6.84 3.25 10.18 18.56	
UL VERT	6	C-4	1.05 3.68 6.71	Σ
		C-4, C-5 -1, C-2, C-3, C-4, C-5	1.96 4.86 9.07 5.21 12.91 23.74	DRESS: D FOR
	10	, C-2, C-3, C-4, C-5, C-6 C-7	6.42 15.71 29.01 0.82 2.95 5.38	SITE ADDRESS: PREPARED FOR:
/		C-8 C-7, C-8	0.83 2.99 5.45 1.65 5.63 10.26	
		C-9 C-7, C-8, C-9	0.83 2.99 5.45 2.48 8.07 14.72	JOB NO. MC22249
EMPORARY AROUND		C-10 C-7, C-8, C-9, C-10	0.83 2.99 5.45 3.31 10.38 18.93	ORG. SUBM. DATE 04/05/2023 DWN: GWH CHKD: CJD NAME
MENT	17 C-1, C-2, C-3, 18	C-4, C-5, C-6, C-7, C-8, C-9, C-10 U-1, EC-10	9.7330.9656.93321.2518.67146.44	PROPOSED
				DRAINAGE MAP
	50' 100' 150'			
SC	CALE: 1" = 50'		PCD FILE NO. SF2317	UK-1
			- CD FILL NO. 01 2017	

EX. 2" (W) X 2" (H) ORIFICE --TO BE MODIFIED TO 2.5"(W) X 2"(H) INV ELEVATION=6027.20' EX. 2" (W) X 2" (H) ORIFICE – TO REMAIN AS IS INV ELEVATION=6026.0'

