

# Traffic Impact Study

Mayberry Communities

Filing 4 Traffic Impact Study

PCD File No. CS233 and SF2317

El Paso County, Colorado

Updated

January 17, 2025

# **Traffic Impact Studies**

#### **Traffic Engineer's Statement**

The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Phil Johnson, PE # 59119

1/17/2025

Date

### **Developer's Statement**

I, the Developer, have read and will comply with all commitments made on my behalf within this report.

Scott Souders, Director of Development

01/30/2025

Mayberry Communities, LLC

Date

22108 Cattlemen Run

Mayberry, CO 80808

Accepted for File

By: Gilbert LaForce, P.E. Engineering Manager Date: 02/19/2025 9:39:38 AM

El Paso County Department of Public Works

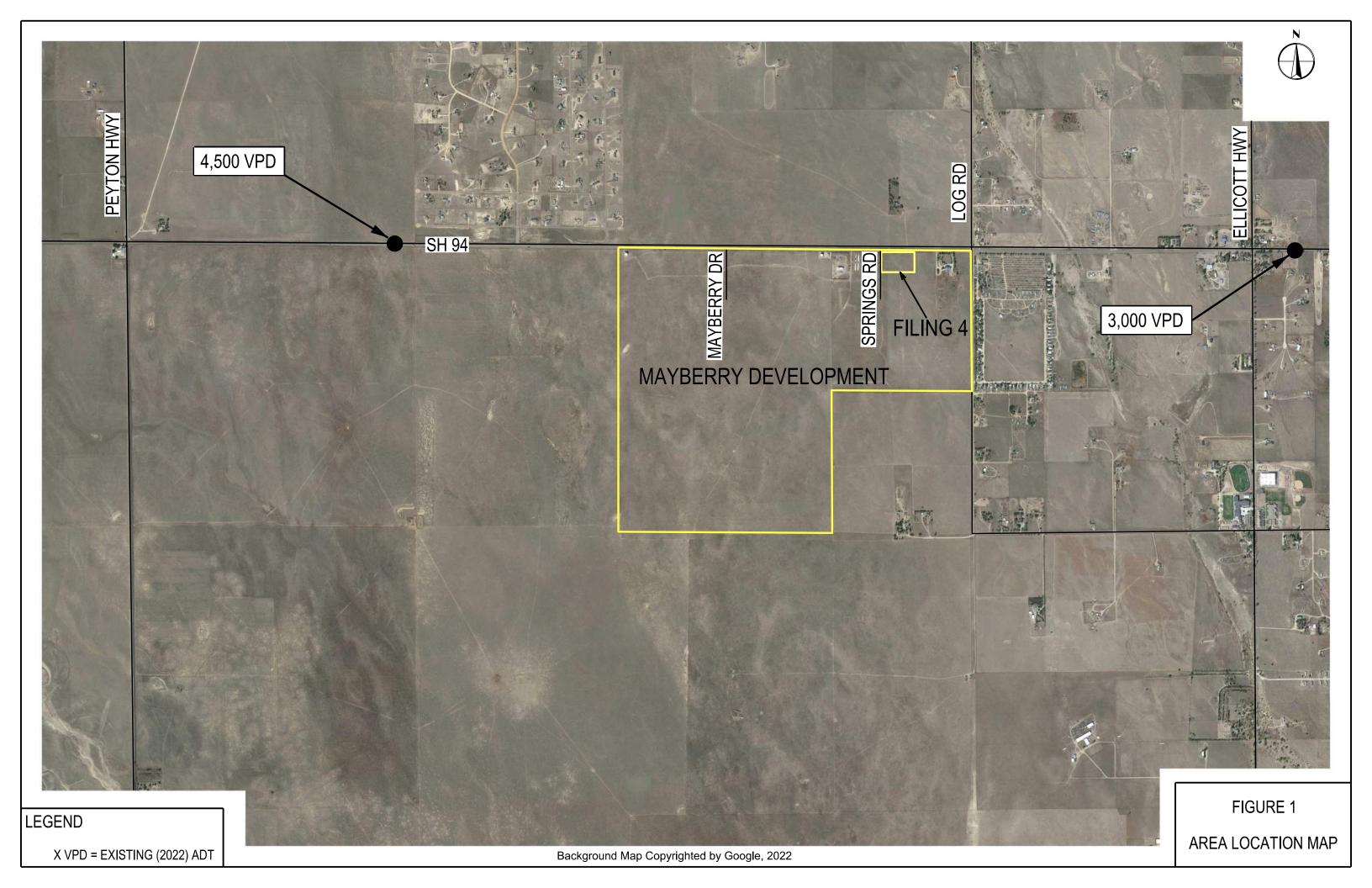
### **Contents**

| Introduction                                        | 1  |
|-----------------------------------------------------|----|
| Analysis Assumptions                                | 3  |
| Directional Distribution                            | 3  |
| Filing 3 Roadway Improvements                       | 4  |
| Existing Thoroughfare System                        | 6  |
| SH 94                                               | 6  |
| Peyton Highway                                      | 6  |
| Ellicott Highway                                    | 6  |
| Mayberry Drive                                      | 6  |
| Positive Place                                      | 6  |
| Springs Road                                        | 7  |
| Site Internal Roadways                              | 7  |
| Site and Access Characteristics                     | 7  |
| Traffic Analysis                                    | 9  |
| 2026 Opening Year Traffic Conditions                | 9  |
| 2026 Background plus Filings 1-3 Traffic Conditions | 12 |
| Filings 1- 3 Site-Generated Traffic                 | 12 |
| 2026 Background plus Filings 1-4 Traffic Conditions |    |
| Filing 4 Site Generated Traffic                     | 15 |
| 2044 Horizon Year Traffic Conditions                | 20 |
| 2044 Background plus Filings 1-3 Traffic Conditions | 22 |
| 2044 Background plus Filings 1-4 Traffic Conditions | 25 |
| Summary of Findings                                 | 28 |
| Mayberry ADT Threshold                              | 31 |
| Site Internal Roadways                              | 31 |
| CDOT Permits                                        | 32 |
| Road Impact Fees                                    | 33 |
| Deviations                                          | 33 |
| References                                          | 34 |
| Appendix A: Highway Capacity Manual Description     |    |
| Appendix B: Existing Traffic Volumes                | 36 |

hdrinc.com

| Appendix C: Letter of Intent                                                        | 37 |
|-------------------------------------------------------------------------------------|----|
| Appendix D: Synchro Outputs                                                         | 38 |
| Appendix E: Deviations                                                              | 39 |
| Tables                                                                              |    |
| Table 1: Forecasted Overall Directional Distribution Site-Oriented Traffic          | 3  |
| Table 2: 2026 Opening Year Level of Service Summary                                 | 10 |
| Table 3: Summary of Unadjusted Daily and Peak Hour Trip Generation from Filings 1-3 | 12 |
| Table 4: 2026 Background + Filings 1- 3 Level of Service Summary                    | 13 |
| Table 5: Summary of Daily and Peak Hour Trip Generation from Filing 4               | 15 |
| Table 6: 2026 Background plus Filings 1-4 Level of Service Summary                  | 16 |
| Table 7: 2044 Horizon Year Level of Service Summary                                 | 20 |
| Table 8: 2044 Background plus Filings 1-3 Level of Service Summary                  | 23 |
| Table 9: 2044 Background plus Filings 1-4 Level of Service Summary                  | 26 |
| Table 10: Level of Service Summary                                                  | 29 |
| Table 11: El Paso County Roadway Improvements                                       | 30 |
| Figures                                                                             |    |
| Figure 1: Area Location Map                                                         | 2  |
| Figure 2: Generated Traffic Trip Distribution                                       | 5  |
| Figure 3: Filing 4 Site Plan                                                        | 8  |
| Figure 4: 2026 Opening Year Traffic Volumes                                         | 11 |
| Figure 5: 2026 Background + Filings 1-3 Volumes                                     | 14 |
| Figure 6: Filing 4 Generated Volumes                                                | 17 |
| Figure 7: 2026 Background + Filings 1-4 VolumesFigure 8: Site Internal Trips        |    |
| Figure 9: 2044 Horizon Year Traffic Volumes                                         | 21 |
| Figure 10: 2044 Background + Filings 1-3 Volumes                                    | 24 |
| Figure 11: 2044 Background + Filings 1-4 Volumes                                    | 27 |

## Introduction


Mayberry Communities have retained HDR Engineering, Inc. to perform a Traffic Impact Study (TIS) for the proposed Filing 4 development located in the southeast quadrant of Springs Road and SH 94 near Ellicott, Colorado, as shown in **Figure 1**. The development is currently a Planned Unit Development (PUD) and is being rezoned to Commercial Services (CS). This study serves as part of an update to the approved 2020 - June - Ellicott Town Center Commercial Rezone TIS Report (LSC 194060) (Ref. 1) and uses assumptions and traffic data from the 2022 - September - Mayberry Filing No. 3 Traffic Technical Memorandum (Ref. 2).

Filing 4 is part of the broader proposed Mayberry Communities Development just west of Ellicott between Peyton Highway and Log Road. This community is being developed in phases, and this report details the traffic impacts only due to the Filing 4 development phase.

The project site is vacant and is currently zoned for Commercial Services. The development is expected to be complete by 2026. The development will comprise eight lots totaling 88,000 square feet of light industrial space. Discussing with El Paso County and Mayberry Communities, light industrial was selected because the type of land use will be warehouse-type facilities that share office/retail space. Typical businesses include auto/boat storage, miniwarehouse, repair/rental shop, and recreational vehicle repair. These businesses fall outside manufacturing, closely align with light industrial, and are allowable land uses for Commercial Services zoning per the El Paso County Land Development Code. Any business that falls outside the anticipated land use type will go through the appropriate approvals to gain county conditional approval before building their business.

The current connections to the Mayberry Community Development are at Mayberry Drive (formerly New Log Road) and Springs Road. Mayberry Drive is the main entrance to the development, which provides full movement and is located on the west side of the development. Springs Road, located on the east side of the development, is a Right-In Right-Out connection. The impact that Filing 4 will have on the network is anticipated to be negligible and all onsite roadways are anticipated to remain at their currently-proposed classifications.

1



# **Analysis Assumptions**

This traffic impact study uses the Highway Capacity Manual 6 (HCM6) (Ref. 3) as a basis for the capacity analysis as well as primary data and engineering judgment, which is required to estimate background traffic, pass-by trips, and internal capture reductions. These assumptions and engineering judgments are further described in the following paragraphs. See **Appendix A** for a brief description of the HCM methods.

#### **Directional Distribution**

Existing traffic projections are based on data collected for the development of the 2022 - September - Mayberry Filing No. 3 traffic study. Turning movement counts were collected for the Peyton Highway/SH 94 intersection (west of Mayberry Communities) and the Ellicott Highway/SH 94 intersection (east of Mayberry Communities). An exhibit showing these turning movement volumes is provided in **Appendix B**.

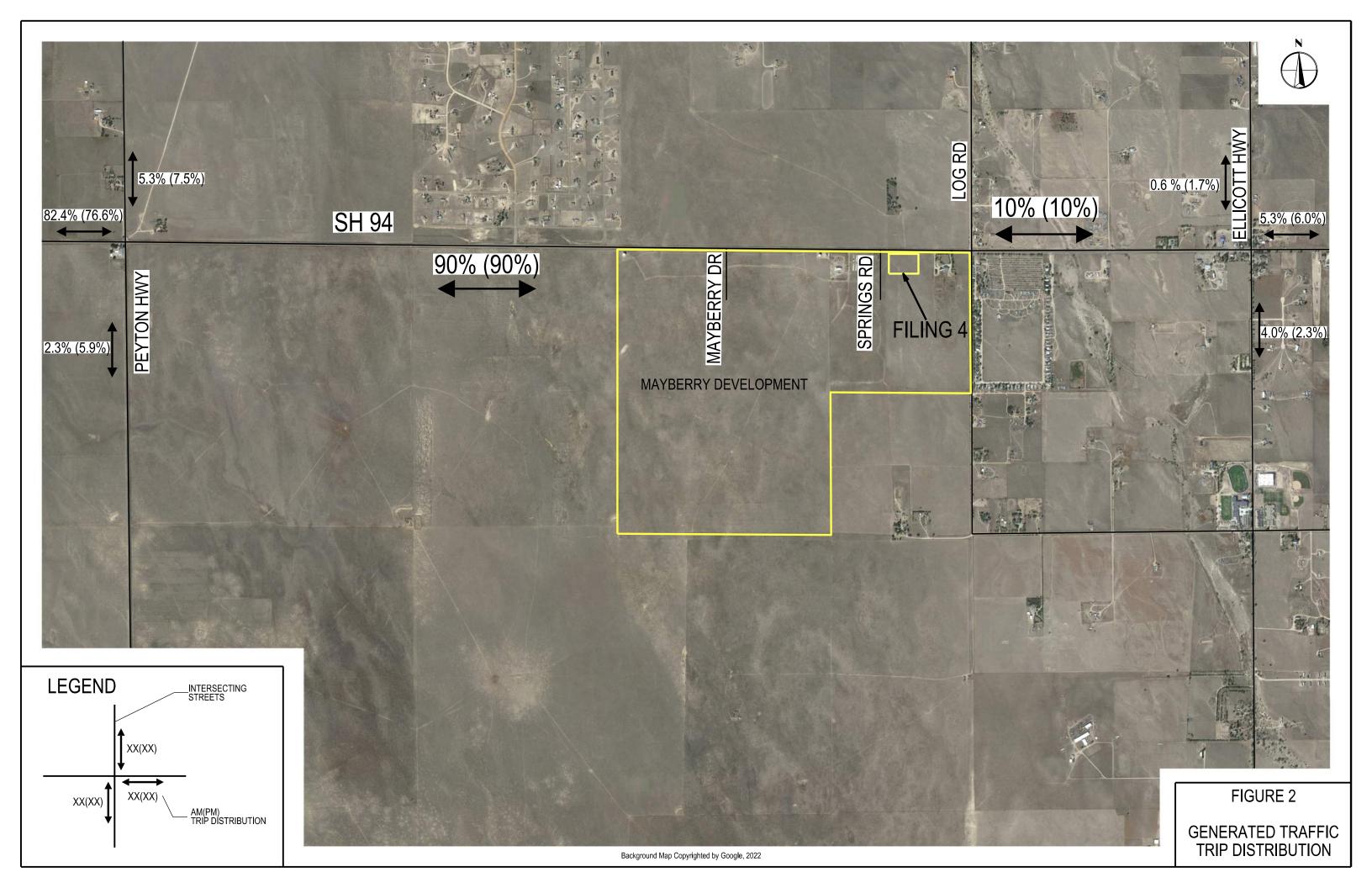
This study follows the assumption established in the 2022 – September – Mayberry Filing No. 3 traffic study that 90% of vehicle trips go to and come from points west of the development, while 10% go to and come from points east of the development. Following the 90/10 assumption, future traffic is then assumed to be proportional to the turning movement counts collected at Peyton Highway and Ellicott Highway intersections. These counts provide the basis for the overall directional distribution of the generated traffic approaching and departing the project site at these two adjacent intersections, as summarized in **Table 1** and shown graphically in **Figure 2**.

**Table 1: Forecasted Overall Directional Distribution Site-Oriented Traffic** 

| Direction/Roadway | AM % Overall<br>Distribution | PM % Overall<br>Distribution |
|-------------------|------------------------------|------------------------------|
| SH 94 W           | 82.4%                        | 76.6%                        |
| SH 94 E           | 5.3%                         | 6.0%                         |
| Peyton Hwy S      | 2.3%                         | 5.9%                         |
| Peyton Hwy N      | 5.3%                         | 7.5%                         |
| Ellicott Hwy S    | 4.0%                         | 2.3%                         |
| Ellicott Hwy N    | 0.6%                         | 1.7%                         |

N/S indicates the direction traffic is originating from or destine to for both Peyton Highway and Ellicott Highway.

Based on the current land use at the site, this study takes a conservative approach, assuming no use of pass-by, pedestrian, and bicycle reductions. Given the unique nature of the site and the desire to provide a comprehensive understanding of potential impacts, the analysis did not assume internal capture. There are currently no other planned developments in the project area, therefore, no cumulative projects are assumed in this analysis.


## Filing 3 Roadway Improvements

The Filing 4 analysis is based on the proposed improvements from 2022 - September - Mayberry Filing No. 3. The roadway network proposed in Filing 3 is assumed to be in place at the time of completion for Filing 4.

Mayberry Drive and SH 94 will be an unsignalized intersection with stop control on the northbound approach. The approaches will be constructed according to the following parameters:

- One left-turn lane and one right-turn lane for the northbound approach on Mayberry Drive
- One through lane and one dedicated right-turn turn lane on the eastbound approach of SH 94
- One dedicated left-turn lane and one through lane on the westbound approach of SH 94

The ability of the roadway network to accommodate the generated traffic of Filing 4 is contingent upon the completion of an internal roadway network comprised of Village Main Street, Mayberry Drive, Positive Place, and Springs Road. The existing internal roadway network is described in more detail in the following section.



## **Existing Thoroughfare System**

As indicated on the area location map (Figure 1) and the conceptual site plan (Figure 3), the project is located in the southeast quadrant of Mayberry Drive and SH 94, near Ellicott, CO.

Average daily traffic estimates on SH 94 were obtained from the Colorado Department of Transportation (CDOT) Online Transportation Information System (OTIS) and turning movement counts provided in the previous TIS dated September 2022. To adequately describe these roadways, further characterization is provided for each adjacent major roadway to the development.

#### **SH 94**

CDOT classifies SH 94 as a functional type Minor Arterial and an access control type as a Non-Rural Principal Highway (NR-A) west of County Road 493 and a Regional Highway (R-A) east of County Road 493. The posted speed limit is 65 miles per hour near the development. Traffic volumes from OTIS for SH 94 near the project site are provided in Appendix B. According to CDOT's traffic volume database, the existing daily traffic volume on SH 94 is listed below:

- 4,500 vpd between Peyton Highway and Ellicott Highway
- 3,000 vpd east of Ellicott Highway

#### **Peyton Highway**

The *El Paso County 2040 Major Transportation Corridor Plan* (MTCP)(Ref. 4) classifies Peyton Highway as a Minor Arterial and has a speed limit of 55 mph adjacent to the project site. Peyton Highway is a two-lane north-south highway (one lane in each direction).

#### **Ellicott Highway**

The El Paso County MTCP classifies Ellicott Highway as a Minor Arterial and has a speed limit of 55 mph adjacent to the project site. Ellicott Highway is a two-lane north-south highway (one lane in each direction).

#### **Mayberry Drive**

Mayberry Drive (formerly New Log Road) is a proposed Minor Arterial roadway which is planned to be constructed as a couplet, with two separate two-lane, one-way roadways separated by a large parkway. Currently, the ultimate northbound-only portion of the couplet has been constructed for interim use in both directions. The northbound "half couplet" has a similar cross section to an Urban Local roadway, and currently functions as such.

#### **Positive Place**

Positive Place (formerly Mayberry Drive) is a proposed Residential Major Collector roadway which runs east-west internal to the Mayberry Site. It is currently constructed as a two-lane undivided roadway and functions as an Urban Local roadway.

#### **Springs Road**

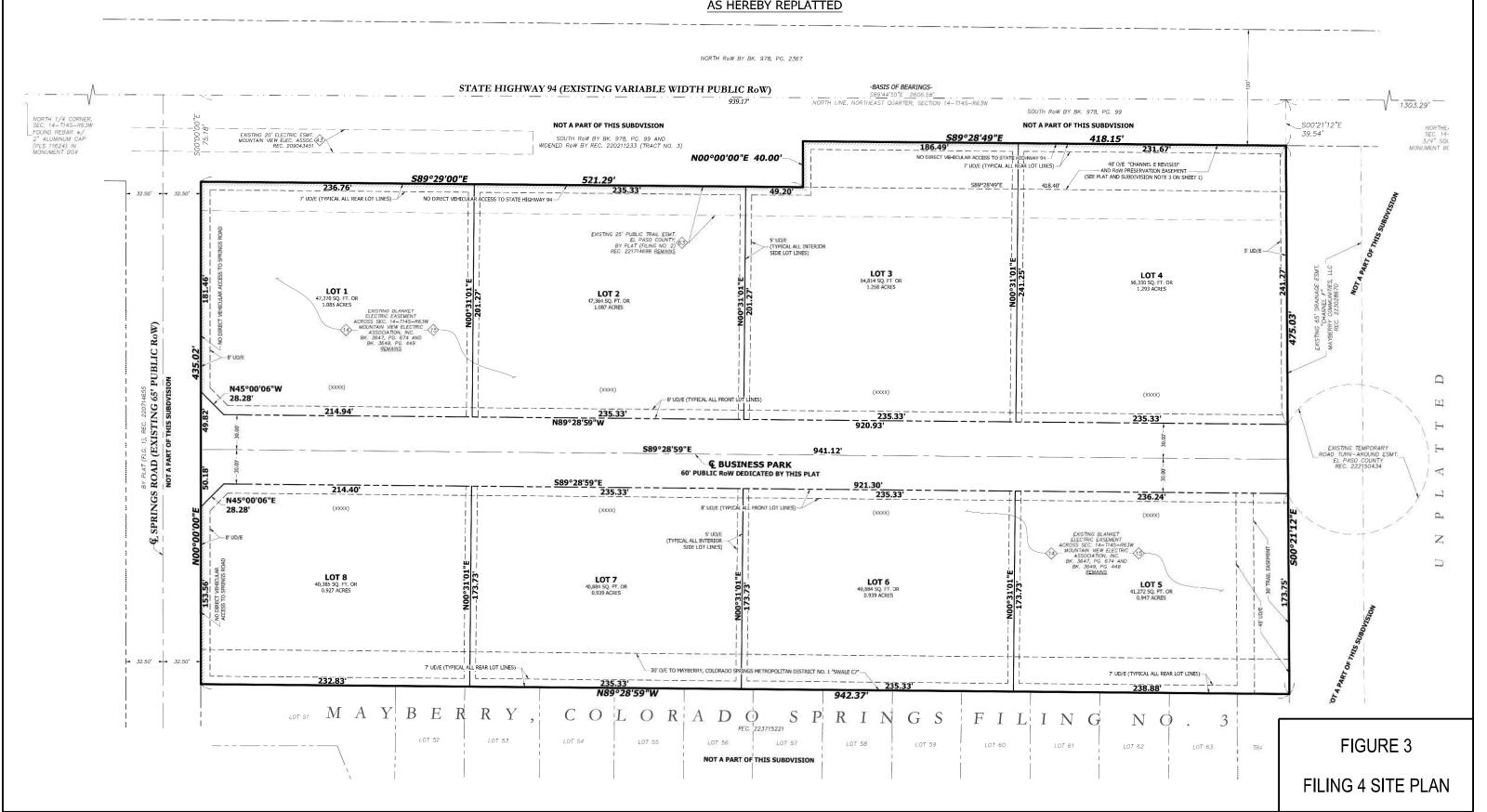
Springs Road is a proposed Minor Collector roadway which runs north-south in the easterly portion of the Mayberry Site. It is currently constructed as a two-lane undivided roadway and provides access to Filings 2 and 3.

#### **Site Internal Roadways**

Village Main Street, Marketplace Drive, Indian Grass Street, Garden Park Avenue, Blanket Flower Street, Atchison Way, Galveston Terrace, Cattlemen Run, and Solaire Loop, Besseyi Way, Asano Way, and Kona Way are all constructed as Urban Local roadways internal to the Mayberry Site which are assumed to be in place for the Filing 4 analysis. All site internal roadways, including Mayberry Drive and Positive Place, currently have a posted speed limit of 25 mph.

## Site and Access Characteristics

As shown in **Figure 3**, access to Filing 4 will be provided via one full-movement driveway on Springs Road, directly across from the Filing 2 access.


# MAYBERRY, COLORADO SPRINGS FILING NO. 4



Being a replat of Tract A, MAYBERRY, COLORADO SPRINGS FILING NO. 3

Lying the Northeast Quarter of Section 14, Township 14 South, Range 63 West of the 6th Principal Meridian County of El Paso (Unincorporated), State of Colorado

AS HEREBY REPLATTED



# **Traffic Analysis**

To assess the traffic impacts of the proposed development, two (2) time periods (AM Peak Hour and PM Peak Hour) and six (6) travel conditions were evaluated in conformance with the El Paso County Engineering Criteria Manual (Ref. 5):

- 2026 Opening Year
- 2026 Background plus Filings 1-3 Traffic Conditions
- 2026 Background plus Filings 1-4 Traffic Conditions
- 2044 Horizon Year
- 2044 Background plus Filings 1-3 Traffic Conditions
- 2044 Background plus Filings 1-4 Traffic Conditions

Intersections in the vicinity of the site are the locations of principal concern because they are the locations of the highest traffic conflict and delay. The standard used to evaluate traffic conditions at intersections is level of service (LOS), which is a qualitative measure of the effect of factors such as speed, the volume of traffic, geometric features, traffic interruptions, freedom to maneuver, safety, driving comfort, convenience, and operating cost.

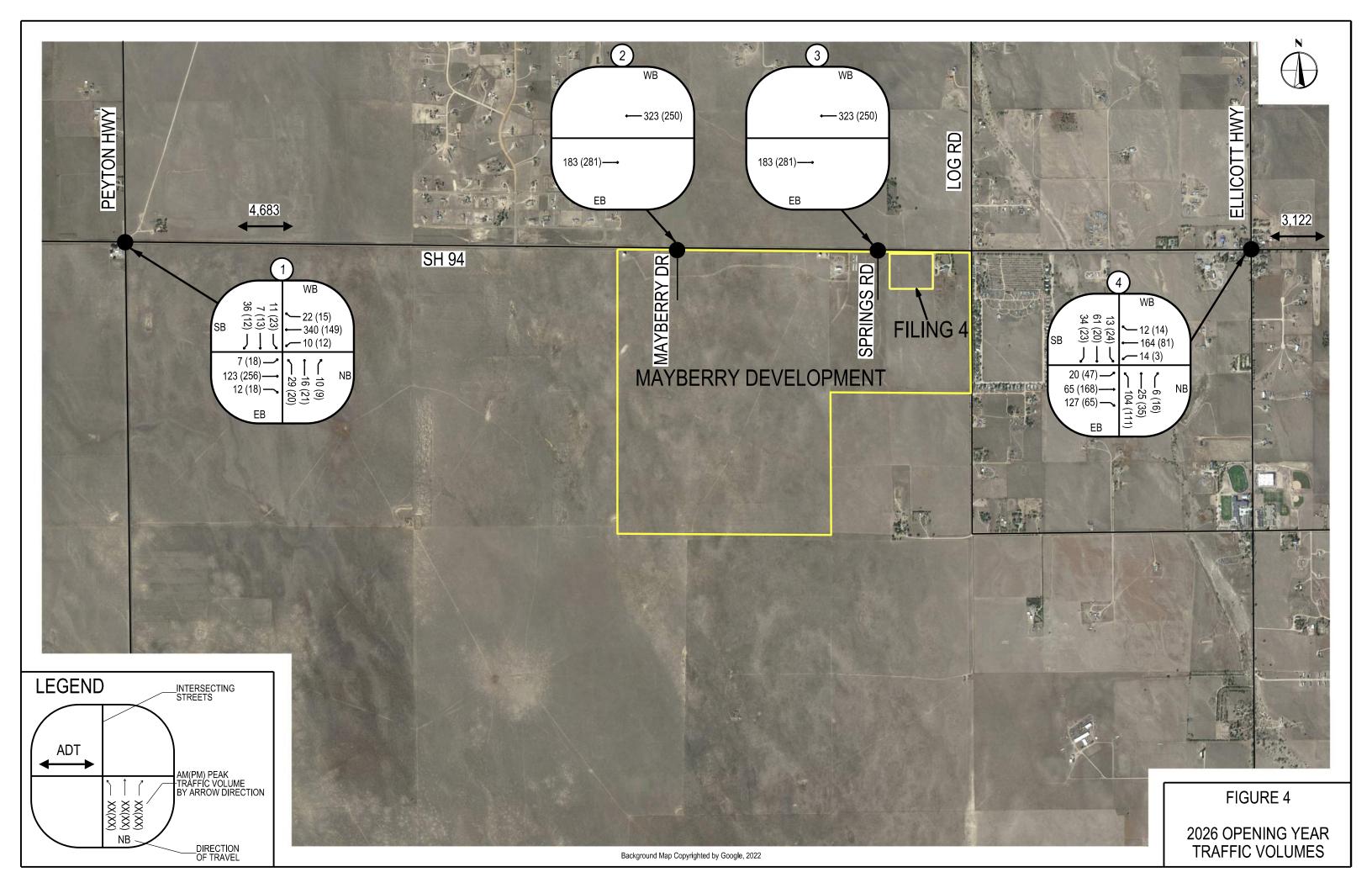
# 2026 Opening Year Traffic Conditions

The analysis of existing traffic conditions required the collection of data on the major roadways and intersections. Traffic counts for the following intersections were collected in March and August 2022 on a typical weekday while schools were in session unless otherwise noted:

- Peyton Highway and SH 94
- Ellicott Highway and SH 94

The existing TMC values were grown by a one (1) percent per year as a growth rate provided by OTIS to reach a 2026 forecast year. This process used trends established by prior data for the major roadways and intersections near the project site. The 2026 Opening Year turning movement volumes are provided in **Figure 4**. Descriptions of existing study intersections are discussed in the following sections as well as the forecasted LOS for the Year 2026. **Table 2** provides the summary of both LOS and delay.

#### Peyton Highway and SH 94


Peyton Highway and SH 94 is currently an unsignalized intersection with stop controls on the northbound and southbound approaches. The northbound and southbound approaches of Peyton Highway provide one left-turn/through/right-turn shared lane. The eastbound and westbound approaches of SH 94 provide one left-turn lane and one through/right-turn shared lane. The northbound leg of the intersection is anticipated to operate at LOS B under the 2026 Opening Year traffic conditions during both the AM and PM peak periods.

#### Ellicott Highway and SH 94

Ellicott Highway and SH 94 is currently an unsignalized intersection with stop controls on the northbound and southbound approaches. The northbound and southbound approaches of Ellicott Highway provide one left-turn/through/right-turn shared lane. The eastbound and westbound approaches of SH 94 provide one left-turn lane and one through/right-turn shared lane. The intersection is anticipated to operate at LOS C under the existing traffic conditions during both the AM and PM peak periods.

Table 2: 2026 Opening Year Level of Service Summary

| Intersection               | 2026 Opening Year |             |  |  |  |
|----------------------------|-------------------|-------------|--|--|--|
| Intersection               | AM                | PM          |  |  |  |
| Peyton Highway and SH 94   | B<br>(14.3)       | B<br>(13.6) |  |  |  |
| Ellicott Highway and SH 94 | C<br>(16.4)       | C<br>(16.0) |  |  |  |



# 2026 Background plus Filings 1-3 Traffic Conditions

The generated traffic from the previous Filings 1, 2, and 3 are assumed to be part of the background traffic. The proposed access roads that will accommodate this traffic are studied for the background traffic and the development traffic to follow. The additional intersections that will be built as part of Mayberry Filing 3 are listed below:

- Mayberry Drive and SH 94
- Springs Road and SH 94

### Filings 1-3 Site-Generated Traffic

Unadjusted daily trips and the peak hour traffic associated with the development of the previous Filings of the project were estimated using recommendations and data contained in the Institute of Transportation Engineers' *Trip Generation Manual*, *11th Edition* (Ref. 6).

These previous Filings generate approximately 2,420 unadjusted daily trips upon build-out. **Table 3** provides a detailed trip generation summary related to the assumed land use plan.

Table 3: Summary of Unadjusted Daily and Peak Hour Trip Generation from Filings 1-3

| Site             | Land Use                                | Land Use<br>Code | Size   | Size Trip Generation Method <sup>1</sup> 24-Hour Two-Way Volume  AM Peak Hour PM Peak Hour |       |       |      | ık Hour |      |
|------------------|-----------------------------------------|------------------|--------|--------------------------------------------------------------------------------------------|-------|-------|------|---------|------|
|                  |                                         |                  |        | Method                                                                                     |       | Enter | Exit | Enter   | Exit |
| Filing<br>1/1A/3 | Single<br>Family<br>Detached<br>Housing | 210              | 240 DU | Fitted<br>Curve                                                                            | 2,257 | 43    | 123  | 143     | 84   |
| Filing 2         | General<br>Light<br>Industrial          | 110              | 30 KSF | Fitted<br>Curve                                                                            | 163   | 21    | 3    | 2       | 15   |
|                  |                                         | Total            |        |                                                                                            | 2,420 | 64    | 126  | 145     | 99   |

<sup>&</sup>lt;sup>1</sup>Trip Generation is based on the higher of the ITE's average rate and fitted curve method for all land uses.

The LOS summary for the 2026 Opening Year plus trips generated from the previous Filings are discussed below. **Table 4** provides the summary of both LOS and delay. 2026 Background plus Filings 1-3 volumes are shown in **Figure 5**.

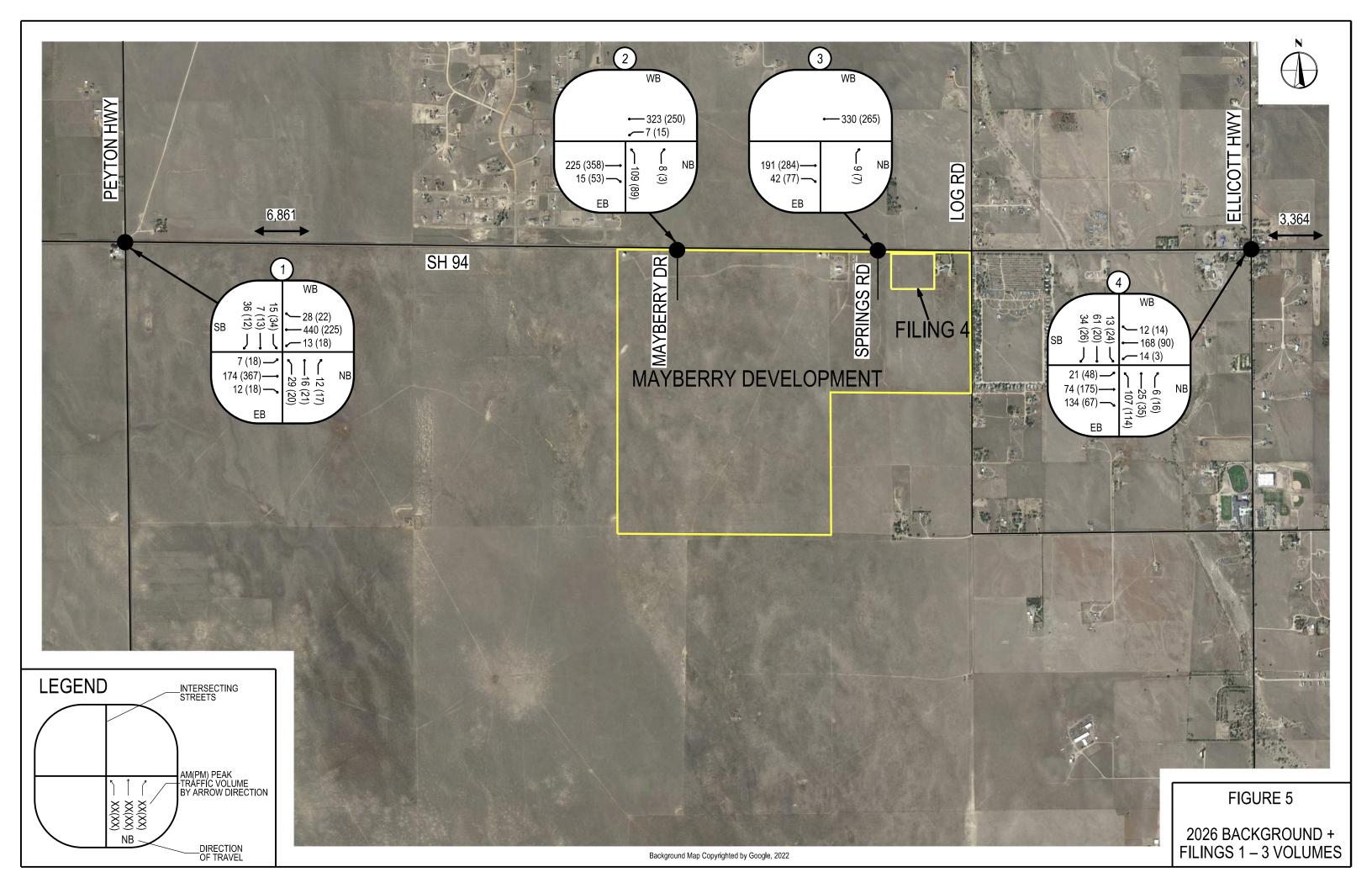
#### Peyton Highway and SH 94

The intersection is anticipated to operate at LOS C under 2026 Background plus Filings 1-3 Traffic Conditions during the AM and PM peak hours.

#### Mayberry Drive and SH 94

Mayberry Drive and SH 94 will be an unsignalized intersection with stop controls on the northbound approach. The northbound approach of Mayberry Drive will provide one left-turn lane and one right-turn lane. The eastbound approach of SH 94 will provide one through lane and one right-turn turn lane. The westbound approach of SH 94 will provide one left-turn lane and one through lane. These improvements will be built concurrently with Filings 1, 2, and 3 and will be in place by the time Filing 4 is constructed. The intersection is anticipated to operate at LOS C under 2026 Background plus Filings 1-3 Traffic Conditions during the AM and PM peak hours.

#### Springs Road and SH 94


Under CDOT's permitting requirements, an eastbound right-turn deceleration lane was constructed at the intersection of Springs Road and SH 94 in 2022. Concurrently, CDOT required the construction of a median to prohibit the left-turn movement from westbound SH 94 to Springs Road. With this intersection only being a right-in/right-out only facility, the intersection is anticipated to operate at LOS A and B under 2026 Background plus Filings 1-3 Traffic Conditions during the AM and PM peak hours, respectively.

#### Ellicott Highway and SH 94

The intersection is anticipated to operate at LOS C under 2026 Background plus Previous Filings 1-3 Traffic Conditions during the AM and PM peak hours.

Table 4: 2026 Background + Filings 1- 3 Level of Service Summary

| Intersection               | 2026 Background + Filings 1-3 |             |  |  |
|----------------------------|-------------------------------|-------------|--|--|
| intersection               | AM                            | PM          |  |  |
| Peyton Highway and SH 94   | C<br>(17.3)                   | C<br>(18.1) |  |  |
| Mayberry Drive and SH 94   | C<br>(15.7)                   | C<br>(16.7) |  |  |
| Springs Road and SH 94     | A<br>(9.4)                    | B<br>(10.0) |  |  |
| Ellicott Highway and SH 94 | C<br>(17.2)                   | C<br>(16.7) |  |  |



# 2026 Background plus Filings 1-4 Traffic Conditions

The proposed Filing 4 is anticipated to be completed in 2026. The Filing 4 traffic was projected using available information and then added to the 2026 background plus previous Filings traffic and used to assess the major roadway impacts and evaluate potential improvements. All analysis assumes the completion of Mayberry Drive and Springs Road improvements upon which previous filings are contingent.

## Filing 4 Site Generated Traffic

Unadjusted total trips per day and the peak hour traffic associated with the development of Filing 4 were estimated using recommendations and data contained in the Institute of Transportation Engineers' *Trip Generation Manual*, *11th Edition*.

As discussed in the Letter of Intent, found in **Appendix C**, Filing 4 is anticipated to consist of 88,000 square feet of general light industrial development. Typical businesses include auto/boat storage, mini-warehouse, repair/rental shop, and recreational vehicle repair. These businesses closely align with light industrial per ITE Land Use Code 110, and are allowable land uses for Commercial Services zoning per the El Paso County Land Development Code. Light industrial development generates more trips per floor area than related uses such as Industrial Park and Manufacturing, so light industrial is chosen as the most conservative choice given uncertainty about the specific uses of Filing 4 land.

The proposed Filing 4 development is anticipated to generate approximately 381 daily trips upon build-out. **Table 5** provides a detailed trip generation summary based on the land use plan.

Table 5: Summary of Daily and Peak Hour Trip Generation from Filing 4

| Site        | Land Use                       | Land<br>Use | Land Irip Tw |                     | 24-Hour<br>Two- | AM P<br>Hou |      | PM P<br>Ho |      |
|-------------|--------------------------------|-------------|--------------|---------------------|-----------------|-------------|------|------------|------|
|             |                                | Code        |              | Method <sup>1</sup> | Way<br>Volume   | Enter       | Exit | Enter      | Exit |
| Filing<br>4 | General<br>Light<br>Industrial | 110         | 88 KSF       | Fitted Curve        | 381             | 56          | 8    | 5          | 32   |

<sup>&</sup>lt;sup>1</sup>Trip Generation is based on the higher of the ITE's average rate and fitted curve method for all land uses.

The LOS summary for the 2026 total traffic conditions, including trips generated from Filing 4 are discussed below. **Table 6** provides the summary of both LOS and delay. Filing 4 generated volumes are shown in **Figure 6**, and 2026 Background plus Filings 1-4 volumes are shown in **Figure 7**.

Site internal trips were addressed with Filing 4. Anticipated daily and peak hour trips shown in Table 3 and Table 5 were totaled, then distributed to on-site roadways to show how traffic would flow on the Mayberry site. This internal distribution was determined by studying the land use intensities and locations of each filing of development relative to the access locations and external trip distribution. **Figure 8** shows the total site internal traffic.

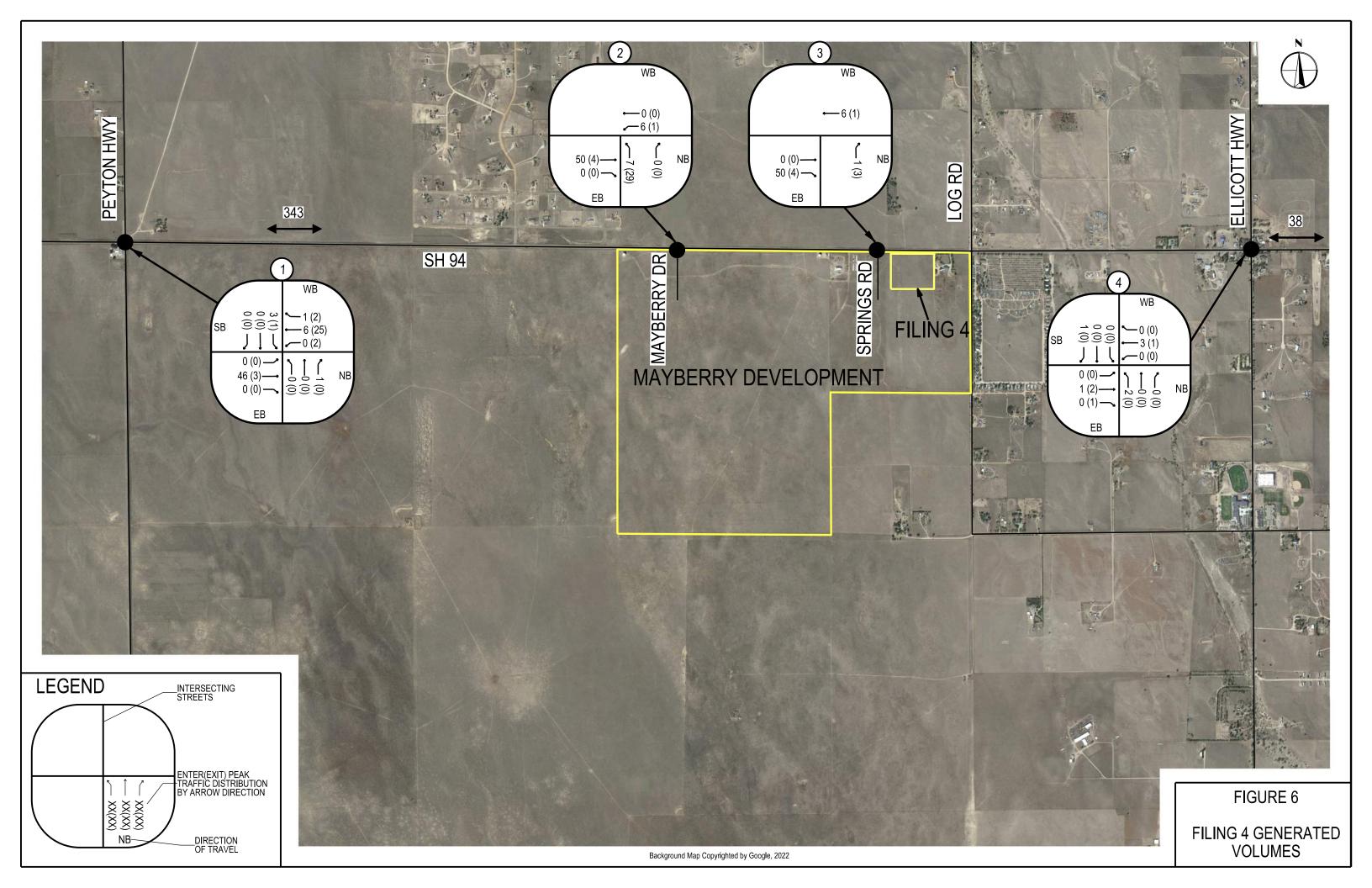
#### Peyton Highway and SH 94

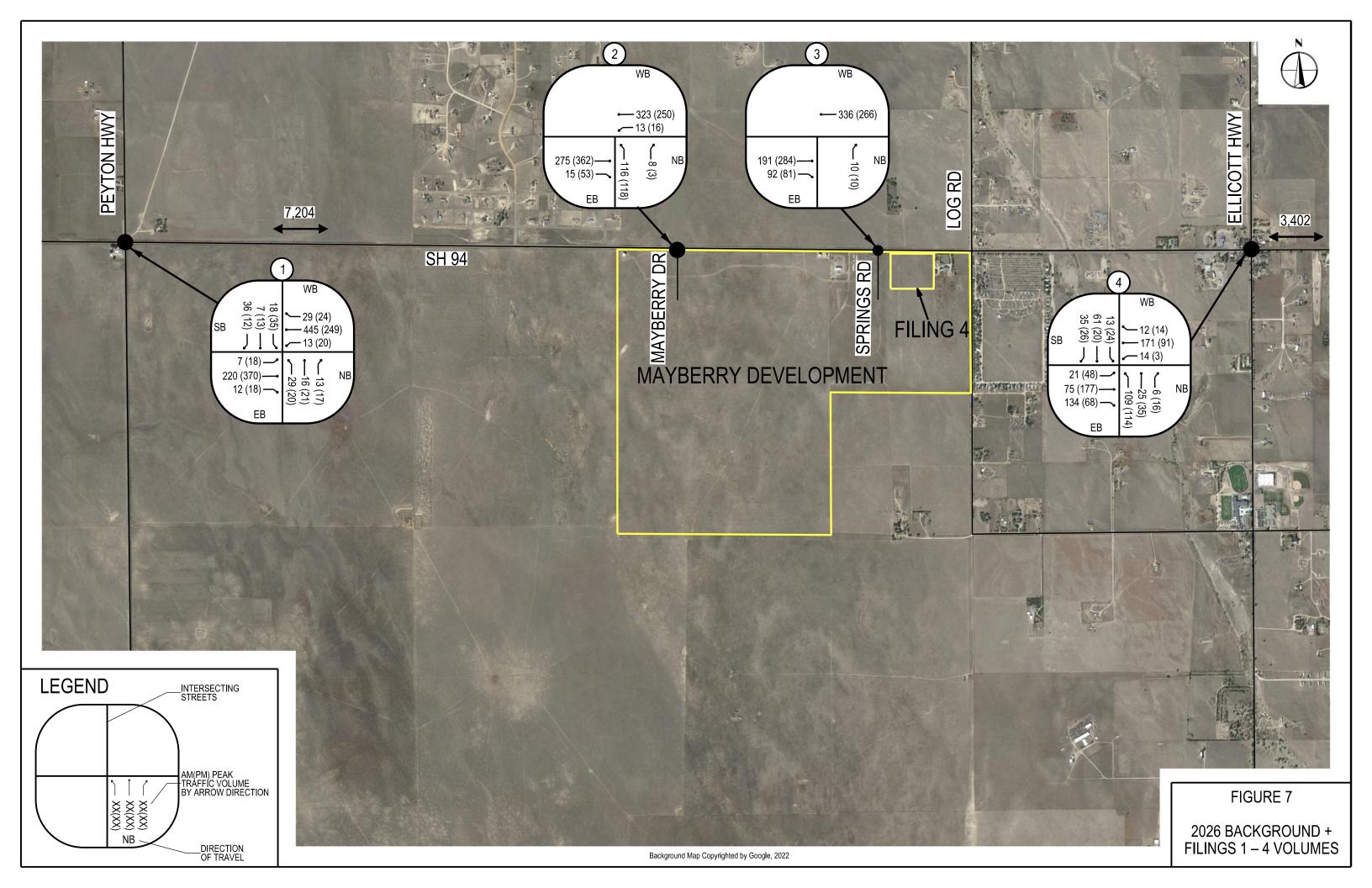
The intersection is anticipated to operate at LOS C under 2026 Background plus Filings 1-4 traffic conditions during the AM and PM peak hours. There are no improvements recommended at this intersection as part of this TIS.

#### Mayberry Drive and SH 94

The intersection is anticipated to operate at LOS C under 2026 Background plus Filings 1-4 traffic conditions during the AM and PM peak hours with the improvements assumed to be in place for Filing 3. There are no additional improvements recommended at this intersection as part of this TIS.

#### Springs Road and SH 94


The intersection is anticipated to operate at LOS A and B under 2026 Background plus Filings 1-4 traffic conditions during the AM and PM peak hours, respectively. Assuming the improvements identified in Filing 3 are provided, there are no additional improvements recommended at this intersection as part of this TIS.


#### Ellicott Highway and SH 94

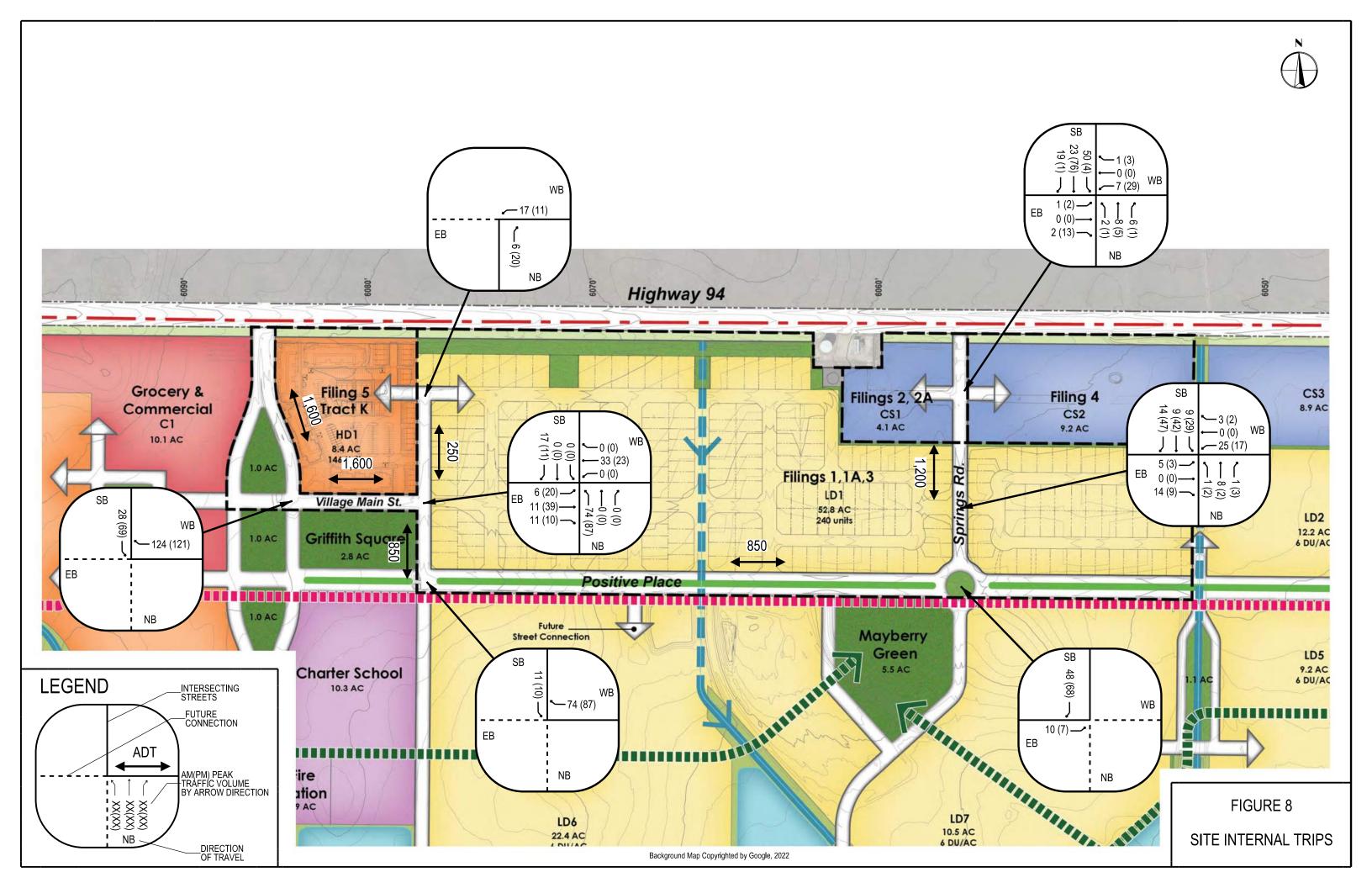
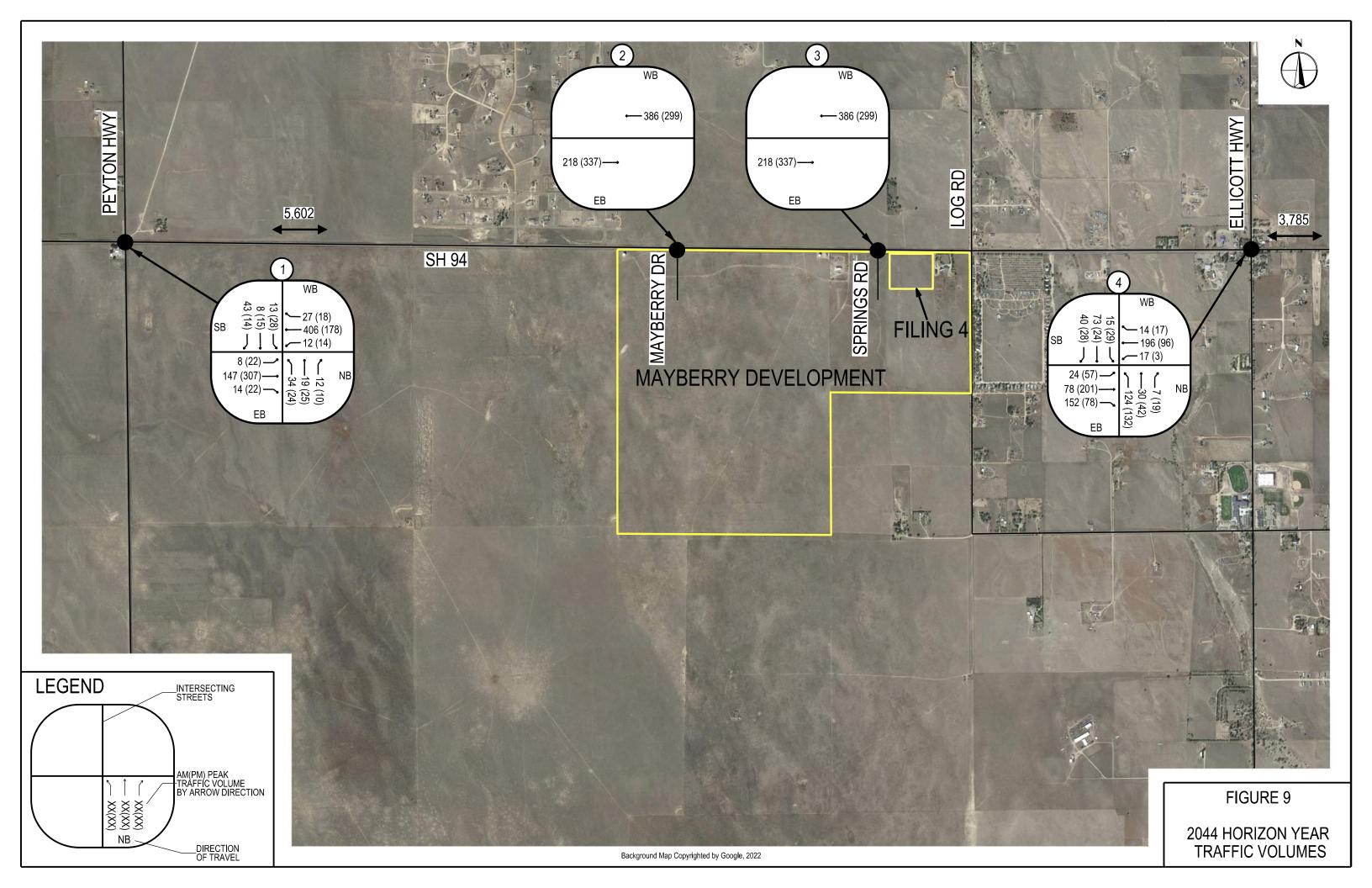

The intersection is anticipated to operate at LOS C under 2026 Background plus Filings 1-4 traffic conditions during the AM and PM peak hours. There are no improvements recommended at this intersection as part of this TIS.

Table 6: 2026 Background plus Filings 1-4 Level of Service Summary

| Intersection               | 2026 Background + Filings 1-4 |             |  |  |  |
|----------------------------|-------------------------------|-------------|--|--|--|
| Intersection               | AM                            | PM          |  |  |  |
| Peyton Highway and SH 94   | C<br>(18.5)                   | C<br>(19.1) |  |  |  |
| Mayberry Drive and SH 94   | C<br>(17.5)                   | C<br>(18.2) |  |  |  |
| Springs Road and SH 94     | A<br>(9.4)                    | B<br>(10.0) |  |  |  |
| Ellicott Highway and SH 94 | C<br>(17.5)                   | C<br>(16.8) |  |  |  |








## 2044 Horizon Year Traffic Conditions

The proposed Filing 4 is anticipated to be completed in 2026. However, a horizon year 2044 analysis was performed in accordance with the El Paso County Engineering Criteria Manual, Appendix B. The existing TMC volumes were grown by a one (1) percent per year growth rate provided by OTIS to reach a 2044 forecast year. This process used trends established by prior data for the major roadways and intersections near the project site. The 2044 forecasted turning movement volumes are provided in **Figure 9**. Descriptions of study intersections are discussed in the following sections as well as the forecasted LOS for the Year 2044. **Table 7** provides the summary of both LOS and delay for Peyton Highway and Ellicott Highway under 2044 horizon year conditions.

Table 7: 2044 Horizon Year Level of Service Summary

| Interception               | 2044 Horizon Year |             |  |  |  |
|----------------------------|-------------------|-------------|--|--|--|
| Intersection               | AM                | PM          |  |  |  |
| Peyton Highway and SH 94   | C<br>(16.7)       | C<br>(15.6) |  |  |  |
| Ellicott Highway and SH 94 | C<br>(21.8)       | C<br>(20.7) |  |  |  |



# 2044 Background plus Filings 1-3 Traffic Conditions

The 2044 plus Filings 1-3 background traffic was projected using the growth rate obtained from OTIS and traffic generated from previous project filings. These volumes were used to assess the major roadway impacts and evaluate potential improvements. All analysis assumes the completion of roadway and intersection improvements upon which Filings 1-3 are contingent.

The LOS summary for the 2044 Background plus Filings 1-3 traffic conditions are described below. **Table 8** provides the summary of both LOS and delay. 2044 forecasted plus Filings 1-3 traffic volumes are shown in **Figure 10**.

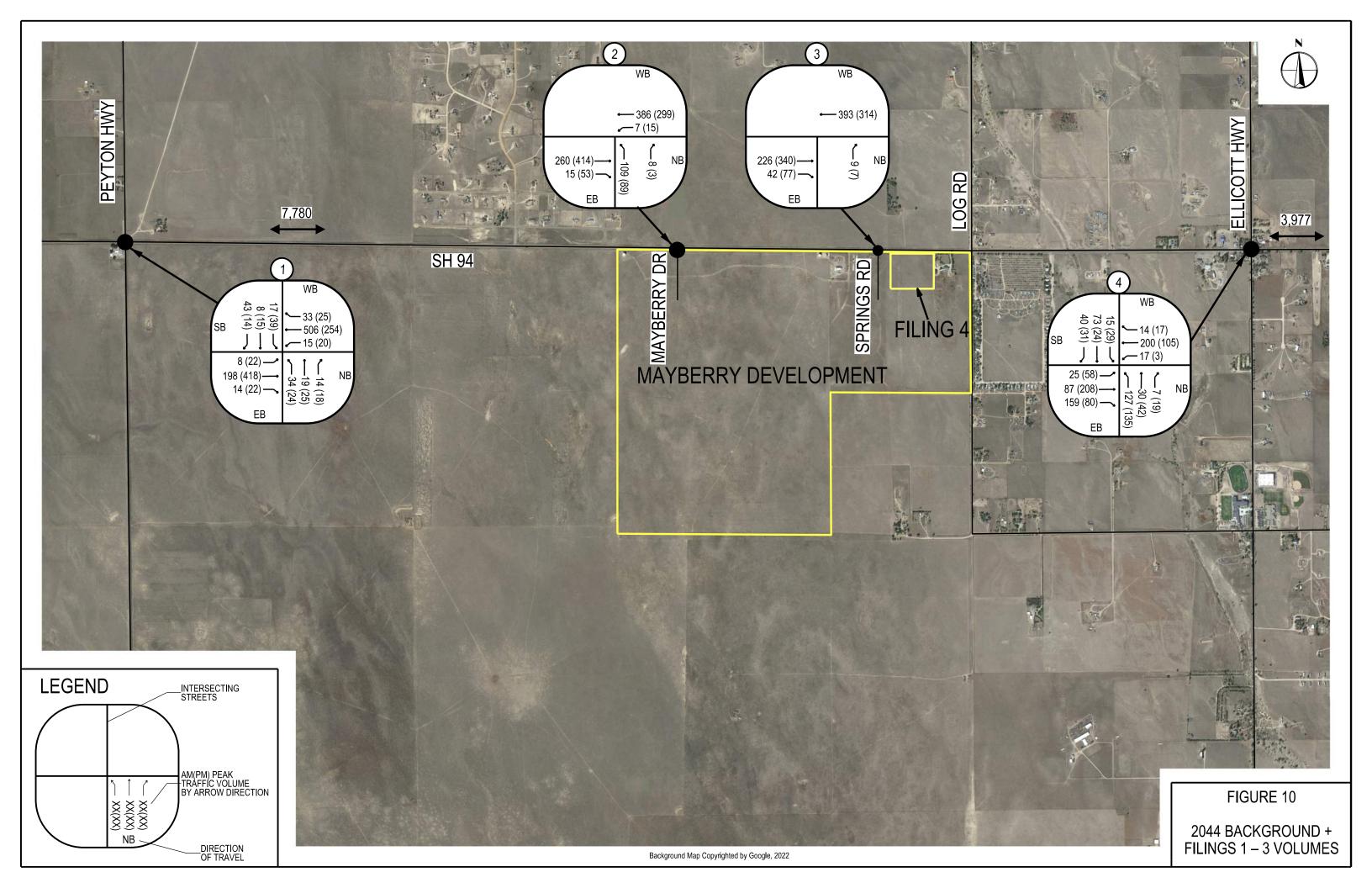
#### Peyton Highway and SH 94

The intersection is anticipated to operate at LOS C under 2044 Background plus Filings 1-3 traffic conditions during the AM and PM peak hours. There are no improvements recommended at this intersection as part of this TIS.

#### Mayberry Drive and SH 94

The intersection is anticipated to operate at LOS C under 2044 Background plus Filings 1-3 traffic conditions during the AM and PM peak hours with the improvements identified in Filings 1-3 assumed to be in place. There are no additional improvements recommended at this intersection as part of this TIS.

#### Springs Road and SH 94


The intersection is anticipated to operate at LOS A and B under 2044 Background plus Filings 1-3 traffic conditions during the AM and PM peak hours, respectively. Assuming the improvements identified in previous Filings are provided, there are no additional improvements recommended at this intersection as part of this TIS.

#### Ellicott Highway and SH 94

The intersection is anticipated to operate at LOS C under 2044 Background plus Filings 1-3 traffic conditions during the AM and PM peak hours. There are no improvements recommended at this intersection as part of this TIS.

Table 8: 2044 Background plus Filings 1-3 Level of Service Summary

| Intersection               | 2044 Background + Filings 1-3 |             |  |  |  |
|----------------------------|-------------------------------|-------------|--|--|--|
| intersection               | AM                            | PM          |  |  |  |
| Peyton Highway and SH 94   | C<br>(21.0)                   | C<br>(21.8) |  |  |  |
| Mayberry Drive and SH 94   | C<br>(18.1)                   | C<br>(19.4) |  |  |  |
| Springs Road and SH 94     | A<br>(9.6)                    | B<br>(10.4) |  |  |  |
| Ellicott Highway and SH 94 | C<br>(23.3)                   | C<br>(22.1) |  |  |  |



# 2044 Background plus Filings 1-4 Traffic Conditions

The forecasted traffic was projected using the 2044 Background plus Filings 1-3 total traffic, plus Filing 4 traffic, and was used to assess the major roadway impacts and evaluate potential improvements. All analysis assumes the completion of roadway and intersection improvements upon which previous filings are contingent.

The LOS summary for the 2044 Background plus Filings 1-4 traffic conditions are described below. **Table 9** provides the summary of both LOS and delay. 2044 total traffic volumes, including Filing 4 site-generated traffic, are shown in **Figure 11**.

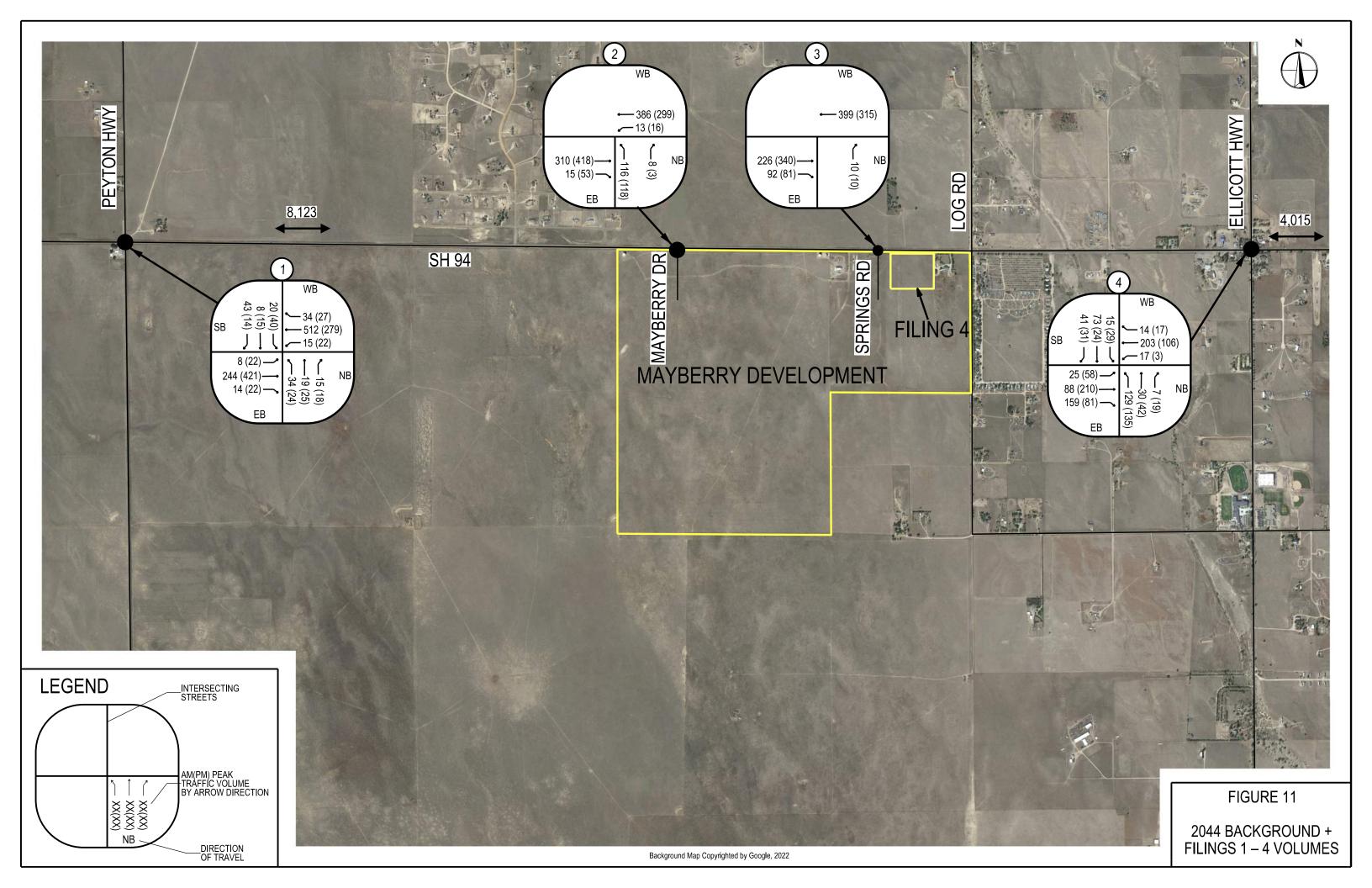
#### Peyton Highway and SH 94

The intersection is anticipated to operate at LOS C under 2044 Background plus Filings 1-4 traffic conditions during the AM and PM peak hours. There are no improvements recommended at this intersection as part of this TIS.

#### Mayberry Drive and SH 94

The intersection is anticipated to operate at LOS C under 2044 Background plus Filings 1-4 traffic conditions during the AM and PM peak hours with the improvements identified in Filings 1-3 assumed to be in place. There are no additional improvements recommended at this intersection as part of this TIS.

#### Springs Road and SH 94


The intersection is anticipated to operate at LOS A and B under 2044 Background plus Filings 1-4 traffic conditions during the AM and PM peak hours, respectively. Assuming the improvements identified in previous Filings are provided, there are no additional improvements recommended at this intersection as part of this TIS.

#### Ellicott Highway and SH 94

The intersection is anticipated to operate at LOS C under 2044 Background plus Filings 1-4 traffic conditions during the AM and PM peak hours. There are no improvements recommended at this intersection as part of this TIS.

Table 9: 2044 Background plus Filings 1-4 Level of Service Summary

| Intersection               | 2044 Background + Filings 1-4 |             |  |  |  |
|----------------------------|-------------------------------|-------------|--|--|--|
| Intersection               | AM                            | PM          |  |  |  |
| Peyton Highway and SH 94   | C<br>(22.8)                   | C<br>(23.5) |  |  |  |
| Mayberry Drive and SH 94   | C<br>(20.5)                   | C<br>(21.7) |  |  |  |
| Springs Road and SH 94     | A<br>(9.6)                    | B<br>(10.4) |  |  |  |
| Ellicott Highway and SH 94 | C<br>(24.0)                   | C<br>(22.3) |  |  |  |



# Summary of Findings

The study area intersections on SH 94 are anticipated to operate at LOS C or better for all scenarios analyzed in this TIS. Therefore, the infrastructure that is anticipated to be in place by the time Filing 3 and Filing 4 are developed and operational are anticipated to have the capacity necessary to serve the generated traffic. No improvements to SH-94 are needed for the addition of Filing 4 to the Mayberry Communities Development. Intersection LOS and delay results are presented in **Table 10**. The Synchro 11 LOS calculation sheets for all scenarios are provided in **Appendix D**.

Table 12a from the 2020 - June - Ellicott Town Center Commercial Rezone TIS Report summarized roadway improvements to be implemented with each Filing of the Mayberry Phase 1 development, and it was updated with each subsequent Filing to reflect the latest information regarding improvements. This table has been updated with the new street names, filing numbers, and improvements associated with Filing 4 of Mayberry Phase 1. The revised table is presented below as **Table 11** and shows that Filing 4 is only responsible for constructing access to its own site from Springs Road to the east.

**Table 10: Level of Service Summary** 

| 2026 Op<br>Intersection                                                         |             | ning Year   | 2026 Bad<br>+ Filin | kground<br>gs 1-3 | 2026 Bac<br>+ Filin |             | 2044 Horizon Year |             | 2044 Horizon Year |             | 2044 Back<br>Filing |             | 2044 Bac<br>+ Filin |  |
|---------------------------------------------------------------------------------|-------------|-------------|---------------------|-------------------|---------------------|-------------|-------------------|-------------|-------------------|-------------|---------------------|-------------|---------------------|--|
|                                                                                 | AM          | PM          | AM                  | PM                | AM                  | PM          | AM                | PM          | AM                | PM          | AM                  | PM          |                     |  |
| Highest delay minor street lane is reported for all unsignalized intersections. |             |             |                     |                   |                     |             |                   |             |                   |             |                     |             |                     |  |
| Peyton<br>Highway and<br>SH 94                                                  | B<br>(14.3) | B<br>(13.6) | C<br>(17.3)         | C<br>(18.1)       | C<br>(18.5)         | C<br>(19.1) | C<br>(16.7)       | C<br>(15.6) | C<br>(21.0)       | C<br>(21.8) | C<br>(22.8)         | C<br>(23.5) |                     |  |
| Mayberry Drive and SH 94                                                        | -           | -           | C<br>(15.7)         | C<br>(16.7)       | C<br>(17.5)         | C<br>(18.2) |                   |             | C<br>(18.1)       | C<br>(19.4) | C<br>(20.5)         | C<br>(21.7) |                     |  |
| Springs Road<br>and SH 94                                                       | -           | -           | A<br>(9.4)          | B<br>(10.0)       | A<br>(9.4)          | B<br>(10.0) |                   |             | A<br>(9.6)        | B<br>(10.4) | A<br>(9.6)          | B<br>(10.4) |                     |  |
| Ellicott Highway<br>and SH 94                                                   | C<br>(16.4) | C<br>(16.0) | C<br>(17.2)         | C<br>(16.7)       | C<br>(17.5)         | C<br>(16.8) | C<br>(21.8)       | C<br>(20.7) | C<br>(23.3)       | C<br>(22.1) | C<br>(24.0)         | C<br>(22.3) |                     |  |

**Table 11: El Paso County Roadway Improvements** 

| El Paso County Roadway Improvements<br>Revised January 2024 |                                                                                                                                      |                                                                                                                                                                                                                                                         |                |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Item                                                        | Improvement                                                                                                                          | Timing                                                                                                                                                                                                                                                  | Responsibility |  |
| 1                                                           | Mayberry Drive (formerly New Log Road) (Highway 94 south into the project) construct as an Urban Minor Arterial per the PUD          | With Filing No. 1: Note: Phased half-section (northbound couplet) for Filing 1 and full couplet segments beyond Filing 1 per the PUD plans.                                                                                                             | Applicant      |  |
| 2a                                                          | Positive Place (formerly Mayberry Drive) (Garden Park<br>Avenue to Springs Road) construct as a gravel,<br>secondary access road     | With Filing No. 1: Note: An interim gravel street connection (to be paved once ADT exceeds 200 vpd) will be provided with Filing No. 1.                                                                                                                 | Applicant      |  |
| 2b                                                          | Positive Place (formerly Mayberry Drive) - construct half - section                                                                  | With Filing No. 3.                                                                                                                                                                                                                                      | Applicant      |  |
| 2c                                                          | Positive Place (formerly Mayberry Drive) - Complete Full section (IE construct the remaining half - section)                         | Future - To be determined w/Future PUD's beyond Phase 1.                                                                                                                                                                                                | Applicant      |  |
| 3                                                           | Springs Road (Highway 94 south into the project) construct street with 65' ROW; design attributes to meet Urban Collector standards. | With Filing No. 1: The classification of Springs Road is: Urban Minor Collector with 65' of ROW adjacent to Filings 2 and an Urban Local with 65' of ROW south of that point adjacent to Filing No. 3. Design attributes will meet Collector standards. | Applicant      |  |
| 4                                                           | Cattlemen Run west of Springs Road into Filing Nos. 2 and 2A as a Local Street                                                       | With Filing Nos. 2 and 2a.                                                                                                                                                                                                                              | Applicant      |  |
| 5                                                           | Cattlemen Run east of Springs Road (into Filing No. 4 commercial development east of Springs Road) as a Local Street                 | With Filing No. 4.                                                                                                                                                                                                                                      | Applicant      |  |
| 6                                                           | Positive Place (formerly Mayberry Drive) & Springs Road Intersection                                                                 | With Filing No. 3 Construct as a one-lane roundabout intersection.                                                                                                                                                                                      | Applicant      |  |
| 7                                                           | Besseyi Way & Springs Road Intersection                                                                                              | With Filing No. 3. Construct as four leg, conventional, two-way, stop-sign controlled (TWSC) intersection.                                                                                                                                              | Applicant      |  |
| 8                                                           | Springs Road and Filing 2/Filing 4 Access intersection                                                                               | <b>With Filing No. 4.</b> Stripe an exclusive left turn lane on the southbound leg of the intersection.                                                                                                                                                 | Applicant      |  |

### **Mayberry ADT Threshold**

Mayberry Drive is a proposed Minor Arterial roadway which is planned to be constructed as a couplet, with two separate two-lane, one-way roadways separated by a large parkway. The ultimate northbound-only portion of the couplet has been constructed and is proposed for interim use for both directions of travel. The 2022 - September - Mayberry Filing No. 3 Traffic Technical Memorandum stated that a volume of over 3,000 vehicles per day on Mayberry Drive would require the couplet southbound lanes built. As shown in Tables 3 and 5, the total trip generation for Filings 1-4, including trips projected to use Springs Road instead of Mayberry Drive, would be 2,801 ADT. Therefore, traffic would remain under the 3,000 ADT threshold and Mayberry Drive would not need to be upgraded to the full couplet.

### **Site Internal Roadways**

The total traffic volumes internal to the site inclusive of Filing 4 is presented in Figure 8. These volumes show that all site internal roadways assumed to be in place for Filing 4 will serve less than 3,000 ADT and will therefore not need to be upgraded from their current configurations.

The peak hour trips shown in Figure 8 suggest that El Paso County criteria for exclusive turn lanes are being met at several site internal intersections:

Mayberry Drive and Village Main Street – Exclusive turn lane criteria met for southbound left turn and westbound right turn. This intersection will be partially constructed with only the north and east legs in place with the development of Filing 4. The two movements in question will be the only movements in operation and will not operate in conflict. Therefore, exclusive turn lanes are not recommended at this development stage for this intersection.

Village Main Street and Marketplace Drive – Exclusive turn lane criteria met for northbound left turn. This intersection serves as the intersection of two low-speed, Urban Local roadways. The arrival rate of northbound left turning vehicles is less than 2 vehicles per minute in the peak hours, and the arrival rate of vehicles for conflicting movements is comparatively low. No queuing or stacking issues are expected with the current lane configuration. Furthermore, the northbound left turn movement primarily serves trips originating from Filings 2 and 4, and the easterly portion of Filing 3, destined for westbound SH-94. These trips will be served in future Filings with the extension of Positive Place to Mayberry Drive, which will alleviate northbound left turning volumes from the Village Main Street and Marketplace Drive intersection. Therefore, it is not recommended to install an exclusive northbound left turn lane at this intersection with the development of Filing 4.

**Positive Place and Marketplace Drive** – Exclusive turn lane criteria met for westbound right turn. This intersection will be partially constructed with only the north and east legs in place with the development of Filing 4. Only the southbound left and westbound right turn movements will be in operation at this intersection and will not operate in conflict with one another. Therefore, the westbound exclusive right turn lane is not recommended at this development stage for this intersection.

Springs Road and Filing 2/Filing 4 Access – Exclusive turn lane criteria met for southbound left turn and westbound left turn. The stop-controlled westbound leg of the intersection represents the Filing 4 access and is expected to serve less than 50 vehicles total in the highest peak hour. Most of these will be left turning vehicles bound for westbound SH-94 since the Springs Road access to SH-94 is right-out only. With the minimal amount of through or right turning traffic, there is no operational or safety benefit to providing an exclusive left turn lane. Therefore, a westbound exclusive left turn lane is not recommended at this intersection. The southbound left turn movement meets the exclusive turn lane criteria in the AM peak hour only, with fewer than 20 vehicles operating in conflict during this highest peak hour. However, due to the proximity of this intersection with SH-94, an exclusive left turn lane for this intersection would help move turning traffic out of the through lane used by traffic exiting SH-94 and would improve safety at this location. Therefore, it is recommended to stripe an exclusive southbound left turn lane at this intersection with the development of Filing 4. The left turn lane will consist of a 115 ft turn lane with an 80 ft bay taper. A deviation request for this design is discussed in the "Deviations" section of this report.

**Table 12** shows that the intersections of Village Main Street/Marketplace Drive and Springs Road/Filings 2/4 Access are anticipated to operate at LOS A in 2044 with Filings 1-4 traffic. Appendix D contains the Synchro 11 LOS calculation sheets for these intersections. Additionally, the LOS calculation sheets show that excessive queuing is not expected to occur at these intersections.

Table 12: Site Internal Intersections Level of Service Summary

| Intersection                              | 2044 Background + Filings 1-4 |            |  |
|-------------------------------------------|-------------------------------|------------|--|
| intersection                              | AM                            | PM         |  |
| Village Main Street and Marketplace Drive | A<br>(7.7)                    | A<br>(7.9) |  |
| Springs Road and Filing 2/Filing 4 Access | A<br>(9.5)                    | A<br>(9.3) |  |

Note: Highest delay minor street lane is reported for all unsignalized intersections.

#### **CDOT Permits**

Because the posted speed limit on SH 94 is greater than 40 MPH, auxiliary turn lanes may be necessary for public safety and traffic operations. These requirements have been explored in the previously submitted TIS and are currently being implemented at Mayberry Drive and SH 94 and have been completed in 2022 for Springs Road and SH 94.

### **Road Impact Fees**

The Filing 4 development will be subject to fees addressed through El Paso County's Road Impact Fee schedule. Since Filing 4 has been rezoned to Commercial Services, the future developments within Filing 4 will pay Road Impact Fees per Resolution 19-471 at the time of building permit approval as calculated in their individual TIS or site development plan. The specific PID option (or opt-out option) will be provided with the plats.

#### **Deviations**

Refer to the *Mayberry Phase 1 PUD Amendment Transportation Memorandum* dated February 17, 2022 (Ref. 7), and the *Mayberry Filing 3* TIS, dated September 1, 2022, which contain an "Approved Deviations" section. No additional deviations from the El Paso County Engineering Criteria Manual are proposed with the development of Filing 4. **Appendix E** contains excerpts from the previous TIS reports describing the approved deviations.

A deviation request is being sought for the design of the southbound left turn lane at the Springs Road and Filing 2/Filing 4 Access intersection. Springs Road is ultimately classified as a minor collector with a design speed of 30 MPH. Per ECM Tables 2-26 and 2-30, the minimum required left turn lane length for a design speed of 30 MPH, with a design hourly volume (DHV) of 60 vehicles or less, would consist of a 115 ft lane length, 50 ft storage length, and a 120 ft bay taper, for a total length of 285 ft. The approved deviation would allow for a 115 ft lane length and 80 ft bay taper for a total length of 195 ft. Appendix E also contains this deviation request form.

### References

- 2020 June Ellicott Town Center Commercial Rezone TIS Report, LSC, PCD File Nos. CS192 & SF1910
- 2. 2022 September Mayberry Filing No. 3, LSC, PCD File No. SF2219
- 3. Transportation Research Board 2016 Highway Capacity Manual, 6th Edition, Washington, D.C.
- 4. El Paso County 2016 Major Transportation Corridor Plan Update
- 5. El Paso County Engineering Criteria Manual Appendix B, October 14, 2020
- 6. Institute of Transportation Engineers 2017 Trip Generation Manual, An Informational Report, 11th Edition, Washington D.C.
- 7. 2022 February Mayberry Phase 1 PUD Amendment Memo, LSC, PCD File No. PUDSP219
- 8. Trafficware Ltd 2017 Synchro 11, Sugar Land, Texas

# Appendix A: Highway Capacity Manual Description

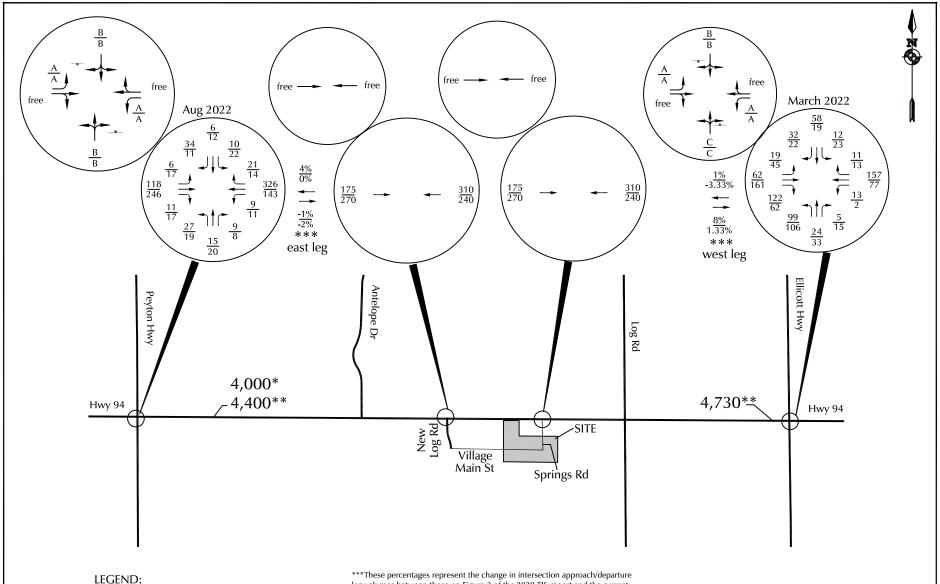
# HCM Unsignalized Intersection Level of Service

Unsignalized intersections were analyzed for this study. Unsignalized intersection LOS is defined in terms of average control delay and, in some cases, volume to capacity (v/c) ratio. Control delay is that portion of total delay attributed to traffic control measures, either traffic signals or stop signs. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

For two-way stop-controlled intersections, the analysis method assumes that major street-through traffic is not affected by minor street flows. Major street left-turning traffic and the traffic on the minor approaches will be affected by opposing movements. Stop or yield signs are used to assign the right-of-way to the major street, and this designation forces drivers on the controlled street to judgmentally select gaps in the major street flow through which to execute crossing or turning maneuvers. Thus, the capacity of the controlled legs is based on two factors:

- The distribution of gaps in the major street traffic stream.
- Driver judgment in selecting gaps through which to execute their desired maneuvers.

The LOS procedure computes a capacity for each movement based on the critical time gap required to complete the maneuver and the volume of traffic that is opposing the movement. The average control delay for any particular movement is calculated as a function of the capacity of the approach and the degree of saturation (v/c ratio). The degree of saturation is defined as the volume for a movement, expressed as an hourly flow rate, divided by the movement's capacity, expressed as an hourly flow rate. With the HCM 6 methodology (Ref. 3), overall intersection LOS is best quantified based on minor street movement average control delay. The HCM 6 methodology adjusts individual movement delay to account for a degree of saturation (v/c ratio) that is greater than 1.0. Those movements are assigned a LOS of F, regardless of the average control delay. Engineering judgment must be used to determine which minor street movement controls for overall intersection LOS and whether unacceptable LOS on minor street movements appropriately reflects unacceptable LOS for the overall intersection.


Table 2 shows the relationship between the average control delay and the LOS. The LOS range for unsignalized intersections is different than that for signalized intersections, and this difference is because drivers expect different levels of performance from other kinds of transportation facilities. Unsignalized intersections carry less traffic volume than signalized intersections, and delays at unsignalized intersections are variable. For these reasons, control delay would be less for an unsignalized intersection than for a signalized intersection. The overall approach LOS is computed as a weighted average of the vehicle delay for each movement; therefore, an approach may have an overall LOS of C or D and have individual movements, which are LOS E or F.

Analysis was performed using the microcomputer program "Synchro 11" (Ref. 6), based on the procedures contained in the Highway Capacity Manual.

Table 1: Unsignalized Intersection: Level of Service Measurement

| Level of<br>Service | Control Delay<br>Per Vehicle (sec) |
|---------------------|------------------------------------|
| Α                   | < 10                               |
| В                   | > 10 and < 15                      |
| С                   | > 15 and < 25                      |
| D                   | > 25 and < 35                      |
| E                   | > 35 and < 50                      |
| F                   | > 50                               |

## Appendix B: Existing Traffic Volumes



 $\frac{XX}{XX} = \frac{AM \text{ Peak-Hour Traffic (veh/hr)}}{PM \text{ Peak-Hour Traffic (veh/hr)}}$ 

X,XXX = Annual Average Daily Traffic (vehicles per day)

\* CDOT (2021) \*\* 2022 Estimate by LSC (based on 10x PM)

Figure 3 Existing Traffic, Lane Geometry, and Traffic Control

= Stop Sign



Mayberry Filing No 3 (LSC# 224210)

leg volumes between those on Figure 3 of the 2020 TIS report and the current 2022 counts on these intersection legs. The change (+or-) has been expressed as an annual growth rate (+or-) since the prior counts were conducted.

|    | Station ID | Route | Start  | End    | Description                            | AADT   | Year | Single Unit | Comb Trucks | % Trucks | 20 Year Factor | DHV | DVMT   | DD |
|----|------------|-------|--------|--------|----------------------------------------|--------|------|-------------|-------------|----------|----------------|-----|--------|----|
| Q  | 103943     | 094A  | 0.548  | 1      | ON SH 94 E/O MARKSHEFFEL RD, COLORAD   | 11,000 | 2022 | 180         | 140         | 2.9      | 1.24           | 12  | 5,170  | 63 |
| 9  | 103944     | 094A  | 1      | 8.085  | ON SH 94 E/O SPACE VILLAGE AVE CR 2804 | 11,000 | 2022 | 210         | 180         | 3.5      | 1,21           | 12  | 77,847 | 59 |
| Q. | 103945     | 094A  | 8.085  | 9.094  | ON SH 94 E/O CURTIS RD, CR 439         | 11,000 | 2022 | 170         | 140         | 2.8      | 1.21           | 14  | 10,967 | 62 |
| 9  | 103946     | 094A  | 9.094  | 13.095 | ON SH 94 E/O ENOCH RD, CR 441          | 5,400  | 2022 | 200         | 130         | 6.1      | 1.23           | 11  | 21,519 | 57 |
| 9  | 103947     | 094A  | 13.095 | 17.1   | ON SH 94 E/O PEYTON HWY, CR 463        | 4,500  | 2022 | 170         | 130         | 6.6      | 1.2            | 11  | 17,969 | 57 |
| Q  | 103948     | 094A  | 17.1   | 24.022 | ON SH 94 E/O ELLICOTT HWY, CR 493, ELL | 3,000  | 2022 | 110         | 110         | 7.3      | 1.23           | 12  | 20,694 | 57 |
| Q  | 103949     | 094A  | 24.022 | 26.024 | ON SH 94 E/O CALHAN HWY, CR 523        | 2,000  | 2022 | 60          | 130         | 9.4      | 1.18           | 11  | 4,002  | 57 |
| Q  | 103950     | 094A  | 26.024 | 30.084 | ON SH 94 E/O YODER RD, CR 1639         | 1,300  | 2022 | 70          | 80          | 10.8     | 1.23           | 11  | 5,221  | 57 |
| Q  | 103951     | 094A  | 30.084 | 33.079 | ON SH 94 E/O RAMAH HWY, CR 577         | 1,200  | 2022 | 70          | 110         | 14.5     | 1.18           | 11  | 3,578  | 57 |
| 9  | 103952     | 094A  | 33.079 | 45.054 | ON SH 94 E/O CR 2                      | 680    | 2022 | 70          | 50          | 17.3     | 1.14           | 12  | 8,155  | 57 |
| Q  | 103954     | 094A  | 45.054 | 54.581 | ON SH 94 W/O SH 71, PUNKIN CENTER      | 420    | 2022 | 20          | 60          | 18.4     | 1.14           | 11  | 3,999  | 57 |
| Q  | 103955     | 094A  | 54.581 | 86.174 | ON SH 94 E/O SH 71, PUNKIN CENTER      | 440    | 2022 | 40          | 60          | 23.5     | 1.09           | 12  | 13,944 | 57 |

# Appendix C: Letter of Intent

#### **APPLICANT-OWNER/CONSULTANT INFORMATION:**

OWNER/APPLICANT MAYBERRY COMMUNITIES, LLC 428 GARDEN PARK AVENUE, MAYBERRY, CO 80808 scottsouders@mayberrycoloradosprings.com 719-922-2181

PLANNING SUPPORT KIMLEY-HORN AND ASSOCIATES, INC. 2 NORTH NEVADA AVENUE, SUITE 900 COLORADO SPRINGS, CO 80903 Larry.salazar@kimley-horn.com 719-284-7829

**ENGINEERING/SURVEYING** R&R ENGINEERING AND SURVEYORS, INC. 1635 WEST 13<sup>TH</sup> AVENUE, SUITE 310 DENVER, CO 80204 cdayton@rrengineers.com 720-390-5513



#### LOCATION, ACREAGE, PARCEL ID INFO, & ZONING

The application for a map amendment (rezoning) includes Parcel No. 3414102015. The proposed rezoning is located near the southeast corner of the intersection of State Highway 94 and future Springs Road (see vicinity map insert and map exhibit for details). The total acreage of the proposed rezone is ±4.28. (Currently Zoned: Planned Unit Development [PUD]).

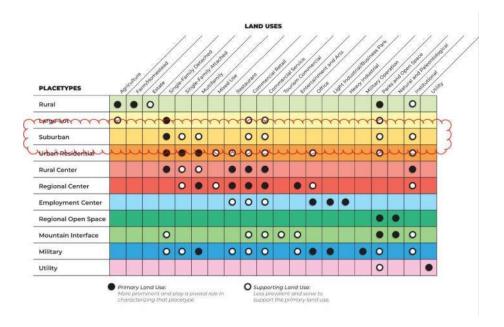


#### **REQUEST**

The application is to Rezone 4.28 acres from the PUD zone to the Commercial Services zoning district (CS). The application includes the following request:

- Approval to rezone Parcel No. 3414102015 to CS to match adjacent Parcels, 3414102013 and 3414102014, located west of said parcel.
- The Rezone process is projected to run concurrently with the site development plan of all three parcels for the purpose of being replated at a later date to include a total of eight (8) commercial lots.
- The rezone of will be for light industrial use. Conditions of approval are guaranteed upon approval of the final plat, the traffic report shall be amended if alternative or intensive uses are proposed.




#### JUSTIFICATION

The applicant requests approval of the rezoning based on findings of compliance with the following Goals:

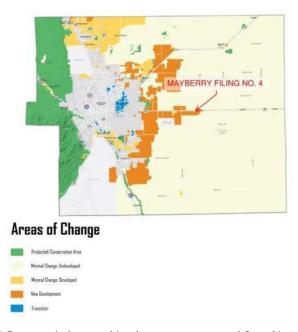
Goal 1.1 - Ensure compatibility with established character and infrastructure capacity.

Goal 1.3 - Encourage a range of development types to support a variety of land uses.

The proposed Rezone from the PUD district to the CS district provides opportunity for the developer to include additional commercial uses in this area, designating a CS zoned district creates a buffer from the residential use PUD development to the south from the State Highway 94 corridor. The proposed CS district and future plans to subdivide the parcels into eight (8) commercial lots allow the developer to maintain compliance with the previously approved Ellicott Town Center (SKP-05-005), soon to be amended to the proposed "Mayberry Communities Sketch Plan". In addition, the subject parcels directly abut State Highway 94 which is a busy corridor with vehicles traveling at high rates of speed creating above average noise. Providing commercial development directly adjacent to this expressway will act as a transition from this corridor into the Mayberry development. Furthermore, this commercial development, with any buffering and code compliant landscaping, will buffer future and planned residential developments in the surrounding area that are located within the Suburban and Rural placetypes to the east, west, and south.

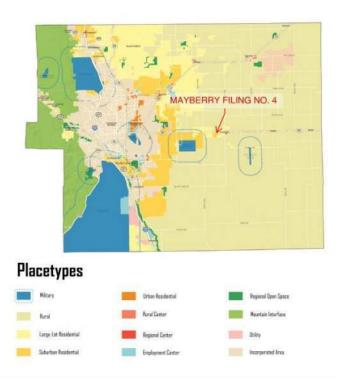





#### Key Areas:



The property is not located within the ten (10) classifications of key areas.




#### Areas of Change:



Mayberry Filing No 4 Rezone is located in the area expected for "New Development". It is understood that these areas will be significantly transformed as new development takes place on lands currently largely designated as undeveloped or agricultural areas. Undeveloped portions of the County that are adjacent to a built out area will be developed to match the character of that adjacent development or to a different supporting or otherwise complementary one, such as an employment hub or business park adjacent to an urban neighborhood.





Mayberry Filing No. 4 is located within the Suburban Residential type. This land use is designated for Suburban Residential, Traditional Residential neighborhoods with supporting commercial uses at key intersections. The Suburban place type generally supports the proposed development pattern and the support of limited accessory dwelling units as well.

- The rezone would be consistent with this placetype.
- The rezone and the code would protect the intent of the Placetype, by the procedures and standards intended to promote safe and orderly development.
- The proposal would provide for the land uses in relation to existing and predicted patterns of growth in the area.
- The proposal is consistent with available and necessary services.
- The rezone would have no impact on any currently approved sketch plans.

#### Sec. 5.3.5.B Map Amendment (Rezoning)

## (B) Criteria for Approval. In approving a Map Amendment, the following findings shall be made:

• The application is in general conformance with the El Paso County Master Plan including applicable Small Area Plans or there has been a substantial change in the character of the neighborhood since the land was last zoned;

The site, and zone change are in conformance with the El Paso County Master Plan, the rezone is a minor portion of the overall Mayberry Communities Sketch Plan Amendment (SKP-05-005), adjacent properties are zoned CS and PUD.



• The rezoning is in compliance with all applicable statutory provisions, including but not limited to C.R.S. § 30-28-111 § 30-28-113, and § 30-28-116;

The requested rezone is in compliance with applicable statutory provisions.

• The proposed land use or zone district is compatible with the existing and permitted land uses and zone districts in all directions:

The proposed land use of CS is adjacent to existing CS zones and is in compliance with the existing Sketch Plan (SKP-05-005) and proposed Mayberry Communities Sketch Plan Amendment, to be approved.

• The site is suitable for the intended use, including the ability to meet the standards as described in Chapter 5 of the Land Development Code, for the intended zone district.

Site is suitable for intended use.

#### Water Master Plan:

Under the Colorado Revised Statutes, Title 32. This property is within the Ellicott Utilities district boundary and will consistently follow the rules and regulations per the El Paso County Water Master Plan,

 A sufficient water supply has been clarified or provided through existing private wells.
 The wells have been permitted per quantity and quality standards set forth in the State water supply standards.

#### Wastewater systems:

• Wastewater services will be provided by way of Ellicott Utilities district boundary.

#### Electric

• Electric service will be provided through Mountain View Electric.

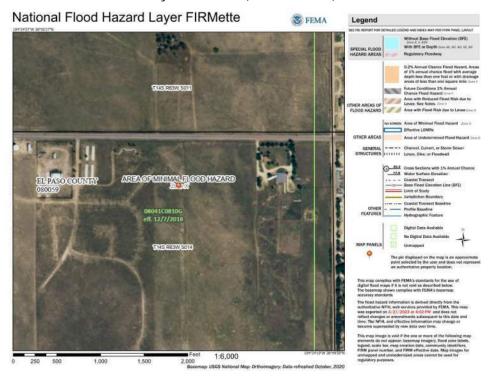
#### Gas

• Gas service will be provided through Black Hills Energy.

#### Natural or Physical site features:

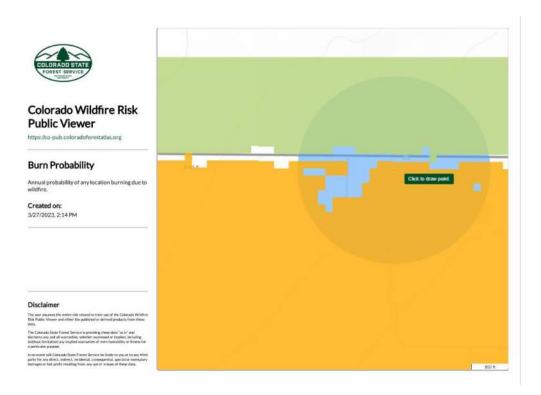
The Zone Change will support the preservation of the natural features and drainages of the site and surrounding lands:

- Site Natural Features:
  - Site is located within the Ellicott Consolidated drainage basin (CHWS0200).
     Data provided by Muller Engineering Company; (1988)






 The topography of the site includes rolling hills with one drainage way, extending from north to south through the property. The existing drainage ways are wide and without a defined flow path; no erosion is anticipated.




- o The site consists of;
  - An area of minimal flood hazard "Zone X" per the National Flood Hazard Layer FIRMette (08041C0820G)





o Said Site is mapped as low to moderate-high per the wildfire risk public viewer.







#### Wildlife:

Impacts are expected to be very low.

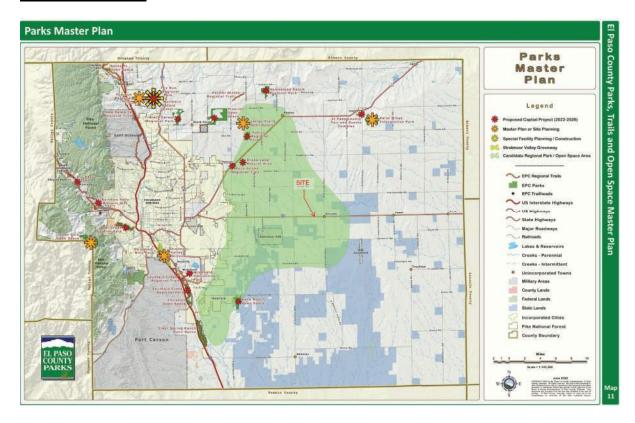
#### Community Outreach:

Summarizing any community outreach efforts by the applicant that have occurred or are planned as part of the request.

- Adjacent owner notification letters were sent out 3/24/2023 informing neighbors that a rezone and replat of said property will be completed. No comments have been received at this time.
- No additional community outreach has been conducted on the zone change to date.

A Summary of anticipated traffic generation and access

A traffic study has been completed by HDR Engineering, Inc.


- The intersection will operate at LOS A and B under 2024 site plus forecasted traffic
  conditions during the AM and PM peak periods, respectively. Assuming the
  connections at both New Log Road and Springs Road are provided, there are no
  improvements recommended at this intersection as part of this TIS.
- Intersections adjacent to the development on SH 94 will operate at LOS C or better for all scenarios analyzed in this TIA. Therefore, the infrastructure that is anticipated to be in place by the time Filing 3 and Filing 4 are developed and occupied will have the capacity to handle the generated traffic. No improvements are needed for the addition of Filing 4 to the Mayberry Communities development. Intersection LOS and delay results are presented in Table 7 below.

**Table 7: Level of Service Summary** 

| Intersection                                | 2024 E      | xisting     | 20<br>Backgr<br>Filings | ound +      | Control of the Parket of the P | kground<br>ing 4 |
|---------------------------------------------|-------------|-------------|-------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                             | AM          | PM          | AM                      | PM          | AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PM               |
| Highest delay minor street approach is repo | orted for   | all unsign  | nalized into            | ersections  | i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| Peyton Highway and SH 94                    | B<br>(14.1) | B<br>(13.5) | C<br>(15.8)             | C<br>(18.7) | C<br>(16.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C<br>(19.8)      |
| New Log Road and SH 94                      | -           |             | B<br>(14.5)             | B<br>(15.4) | C<br>(15.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C<br>(16.4)      |
| Springs Road and SH 94                      | -           |             | A<br>(9.2)              | B<br>(10.1) | A<br>(9.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B<br>(10.2)      |
| Ellicott Highway and SH 94                  | C<br>(16.0) | C<br>(15.5) | C<br>(16.7)             | C<br>(16.4) | C<br>(16.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C<br>(16.5)      |



#### Parks Master Plan



The site can is located in the "Candidate for Regional Park/Open Space Areas".

The Developer of the Mayberry Communities Sketch Plan Amendment has the intention to incorporate Filing No. 4 with trails for connectivity to parks throughout the Proposed Mayberry Communities Sketch Plan Amendment.

Connectivity throughout said sketch plan will help with the work live play aspect allowing individuals to live and work within 5-minute walk.

The proposed Sketch Plan Amendment, to be recorded, incorporates the goals and objectives of the El Paso County Parks Master Plan.

Goal 1.B to provide and support large community events and provide visitor destinations and experiences between parks within the Sketch Plan Amendment, to be recorded.

Goal 2.A to provide regional parks, recreation areas, trails and open space



Goal 2.B to continue participation in development review for lang range planning within the El Paso County development services, transportation and public park needs to anticipate future growth.

Goal 3.A to refine the definition of active trails between residential and commercial uses.

#### Regional Trails

Goal 1.A a regional trail is proposed along the State Highway 94 corridor, Mayberry Communities Sketch Plan Amendment, to be approved, acknowledges the proposed regional trail system and has incorporated an east/west trail within the community that ties into the adjacent proposed trail easement.

Additional Park and Open Space items are to be provided on the Proposed Mayberry Communities Sketch Plan Amendment (SKP-05-005).

# Appendix D: Synchro Outputs

| Intersection           |            |          |       |           |      |       |        |           |        |        |          |       |
|------------------------|------------|----------|-------|-----------|------|-------|--------|-----------|--------|--------|----------|-------|
| Int Delay, s/veh       | 2.5        |          |       |           |      |       |        |           |        |        |          |       |
| Movement               | EBL        | EBT      | EBR   | WBL       | WBT  | WBR   | NBL    | NBT       | NBR    | SBL    | SBT      | SBR   |
| Lane Configurations    | T T        | <u>₽</u> | LDIX  | VVDL<br>Š | ₩ 🕞  | WDIX  | NDL    | 4         | NDIX   | ODL    | 4        | SDIX  |
| Traffic Vol, veh/h     | 7          | 123      | 12    | 10        | 340  | 22    | 29     | 16        | 10     | 11     | 7        | 36    |
| Future Vol, veh/h      | 7          | 123      | 12    | 10        | 340  | 22    | 29     | 16        | 10     | 11     | 7        | 36    |
| Conflicting Peds, #/hr | 0          | 0        | 0     | 0         | 0    | 0     | 0      | 0         | 0      | 0      | 0        | 0     |
| Sign Control           | Free       | Free     | Free  | Free      | Free | Free  | Stop   | Stop      | Stop   | Stop   | Stop     | Stop  |
| RT Channelized         | -          | -        | None  | -         | -    | None  | - Olop | Olop<br>- | None   | - Olop | - Olop   | None  |
| Storage Length         | 532        | <u>-</u> | -     | 532       | _    | -     | _      | _         | -      | _      | _        | -     |
| Veh in Median Storage  |            | 0        | _     | -         | 0    | _     | _      | 0         | _      | _      | 0        | _     |
| Grade, %               | -, "       | 0        | _     | _         | 0    | _     | _      | 0         | _      | _      | 0        | _     |
| Peak Hour Factor       | 92         | 92       | 92    | 92        | 92   | 92    | 92     | 92        | 92     | 92     | 92       | 92    |
| Heavy Vehicles, %      | 2          | 2        | 2     | 2         | 2    | 2     | 2      | 2         | 2      | 2      | 2        | 2     |
| Mvmt Flow              | 8          | 134      | 13    | 11        | 370  | 24    | 32     | 17        | 11     | 12     | 8        | 39    |
| WWW                    | Ū          | 101      | 10    | •         | 010  |       | 02     |           | • • •  | 12     |          | 00    |
|                        |            |          | _     |           |      |       |        |           | _      |        |          |       |
|                        | Major1     |          |       | Major2    |      |       | Minor1 |           |        | Minor2 |          |       |
| Conflicting Flow All   | 394        | 0        | 0     | 147       | 0    | 0     | 585    | 573       | 141    | 575    | 567      | 382   |
| Stage 1                | -          | -        | -     | -         | -    | -     | 157    | 157       | -      | 404    | 404      | -     |
| Stage 2                | -          | -        | -     | -         | -    | -     | 428    | 416       | -      | 171    | 163      | -     |
| Critical Hdwy          | 4.12       | -        | -     | 4.12      | -    | -     | 7.12   | 6.52      | 6.22   | 7.12   | 6.52     | 6.22  |
| Critical Hdwy Stg 1    | -          | -        | -     | -         | -    | -     | 6.12   | 5.52      | -      | 6.12   | 5.52     | -     |
| Critical Hdwy Stg 2    | -          | -        | -     | -         | -    | -     | 6.12   | 5.52      | -      | 6.12   | 5.52     | -     |
| Follow-up Hdwy         | 2.218      | -        | -     | 2.218     | -    | -     | 3.518  | 4.018     | 3.318  | 3.518  |          | 3.318 |
| Pot Cap-1 Maneuver     | 1165       | -        | -     | 1435      | -    | -     | 422    | 430       | 907    | 429    | 433      | 665   |
| Stage 1                | -          | -        | -     | -         | -    | -     | 845    | 768       | -      | 623    | 599      | -     |
| Stage 2                | -          | -        | -     | -         | -    | -     | 605    | 592       | -      | 831    | 763      | -     |
| Platoon blocked, %     | 4405       | -        | -     | 440=      | -    | -     | 00-    | 40.4      | 00-    | 100    | <b>,</b> | 00-   |
| Mov Cap-1 Maneuver     | 1165       | -        | -     | 1435      | -    | -     | 387    | 424       | 907    | 406    | 427      | 665   |
| Mov Cap-2 Maneuver     | -          | -        | -     | -         | -    | -     | 387    | 424       | -      | 406    | 427      | -     |
| Stage 1                | -          | -        | -     | -         | -    | -     | 839    | 763       | -      | 619    | 594      | -     |
| Stage 2                | -          | -        | -     | -         | -    | -     | 558    | 587       | -      | 797    | 758      | -     |
|                        |            |          |       |           |      |       |        |           |        |        |          |       |
| Approach               | EB         |          |       | WB        |      |       | NB     |           |        | SB     |          |       |
| HCM Control Delay, s   | 0.4        |          |       | 0.2       |      |       | 14.3   |           |        | 12.3   |          |       |
| HCM LOS                |            |          |       |           |      |       | В      |           |        | В      |          |       |
|                        |            |          |       |           |      |       |        |           |        |        |          |       |
| Minor Lang/Major Mym   | <b>.</b> t | NIDI 51  | EBL   | EDT       | EDD  | \\/DI | WDT    | WBR       | CDI 51 |        |          |       |
| Minor Lane/Major Mvm   | IL         | NBLn1    |       | EBT       | EBR  | WBL   | WBT    | WBR       |        |        |          |       |
| Capacity (veh/h)       |            | 445      | 1165  | -         | -    |       | -      | -         | 553    |        |          |       |
| HCM Cantrol Dalay (a)  |            | 0.134    | 0.007 | -         | -    | 0.008 | -      |           | 0.106  |        |          |       |
| HCM Control Delay (s)  |            | 14.3     | 8.1   | -         | -    | 7.5   | -      | -         |        |        |          |       |
| HCM Lane LOS           | \          | B        | A     | -         | -    | A     | -      | -         | В      |        |          |       |
| HCM 95th %tile Q(veh)  | )          | 0.5      | 0     | -         | -    | 0     | -      | -         | 0.4    |        |          |       |

| Intersection           |        |       |      |        |      |              |            |       |       |        |       |          |
|------------------------|--------|-------|------|--------|------|--------------|------------|-------|-------|--------|-------|----------|
| Int Delay, s/veh       | 6      |       |      |        |      |              |            |       |       |        |       |          |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT  | WBR          | NBL        | NBT   | NBR   | SBL    | SBT   | SBR      |
| Lane Configurations    | ች      | ĵ.    |      | ች      | ĵ.   |              |            | 44    |       |        | 44    |          |
| Traffic Vol, veh/h     | 20     | 65    | 127  | 14     | 164  | 12           | 104        | 25    | 6     | 13     | 61    | 34       |
| Future Vol, veh/h      | 20     | 65    | 127  | 14     | 164  | 12           | 104        | 25    | 6     | 13     | 61    | 34       |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0      | 0    | 0            | 0          | 0     | 0     | 0      | 0     | 0        |
| Sign Control           | Free   | Free  | Free | Free   | Free | Free         | Stop       | Stop  | Stop  | Stop   | Stop  | Stop     |
| RT Channelized         | -      | -     | None | -      | -    | None         | -          | -     | None  | -      | -     | None     |
| Storage Length         | 200    | _     | -    | 400    | -    | -            | -          | -     | -     | -      | -     | -        |
| Veh in Median Storage  |        | 0     | _    | -      | 0    | -            | -          | 0     | _     | -      | 0     | -        |
| Grade, %               | -      | 0     | _    | -      | 0    | -            | -          | 0     | _     | -      | 0     | -        |
| Peak Hour Factor       | 92     | 92    | 92   | 92     | 92   | 92           | 92         | 92    | 92    | 92     | 92    | 92       |
| Heavy Vehicles, %      | 2      | 2     | 2    | 2      | 2    | 2            | 2          | 2     | 2     | 2      | 2     | 2        |
| Mvmt Flow              | 22     | 71    | 138  | 15     | 178  | 13           | 113        | 27    | 7     | 14     | 66    | 37       |
|                        |        |       |      |        |      |              |            |       |       |        |       |          |
| Major/Minor I          | Major1 |       |      | Major2 |      |              | Minor1     |       |       | Minor2 |       |          |
| Conflicting Flow All   | 191    | 0     | 0    | 209    | 0    | 0            | 450        | 405   | 140   | 416    | 468   | 185      |
| Stage 1                | 191    | -     | U    | 209    | -    | -            | 184        | 184   | 140   | 215    | 215   | 100      |
| Stage 2                | _      | _     |      | _      | _    | _            | 266        | 221   | _     | 201    | 253   | _        |
| Critical Hdwy          | 4.12   | -     | -    | 4.12   | _    | <del>-</del> | 7.12       | 6.52  | 6.22  | 7.12   | 6.52  | 6.22     |
| Critical Hdwy Stg 1    | 7. IZ  | _     |      | 4.12   | _    | -            | 6.12       | 5.52  | 0.22  | 6.12   | 5.52  | 0.22     |
| Critical Hdwy Stg 2    | -      | -     | -    | -      | -    | <u>-</u>     | 6.12       | 5.52  | _     | 6.12   | 5.52  | <u>-</u> |
| Follow-up Hdwy         | 2.218  | _     | _    | 2.218  | _    | _            |            | 4.018 |       |        | 4.018 | 3.318    |
| Pot Cap-1 Maneuver     | 1383   | -     | -    | 1362   | -    | _            | 519        | 535   | 908   | 547    | 493   | 857      |
| Stage 1                | 1303   | _     |      | 1002   | _    | _            | 818        | 747   | 300   | 787    | 725   | 001      |
| Stage 2                | _      | -     | -    | -      | -    |              | 739        | 720   | -     | 801    | 698   |          |
| Platoon blocked, %     | _      | _     |      |        | _    | -            | 100        | 120   |       | 001    | 030   | _        |
| Mov Cap-1 Maneuver     | 1383   | -     | -    | 1362   | -    | _            | 435        | 521   | 908   | 511    | 480   | 857      |
| Mov Cap-2 Maneuver     | 1000   | _     |      | 1302   |      | _            | 435        | 521   | 300   | 511    | 480   | - 001    |
| Stage 1                | -      | -     | -    | -      | -    | _            | 805        | 735   | _     | 774    | 717   |          |
| Stage 2                | _      |       |      | _      |      | _            | 635        | 712   | _     | 754    | 687   |          |
| Olaye Z                | _      | _     |      |        | •    | _            | 000        | 112   |       | 7 5-4  | 507   | _        |
| Ammunah                | ED     |       |      | \A/D   |      |              | NID        |       |       | OD     |       |          |
| Approach               | EB     |       |      | WB     |      |              | NB<br>16.4 |       |       | SB     |       |          |
| HCM Control Delay, s   | 0.7    |       |      | 0.6    |      |              | 16.4       |       |       | 13.1   |       |          |
| HCM LOS                |        |       |      |        |      |              | С          |       |       | В      |       |          |
|                        |        |       |      |        |      |              |            |       |       |        |       |          |
| Minor Lane/Major Mvm   | nt     | NBLn1 | EBL  | EBT    | EBR  | WBL          | WBT        | WBR   |       |        |       |          |
| Capacity (veh/h)       |        | 460   | 1383 | -      | -    | 1362         | -          | -     | 562   |        |       |          |
| HCM Lane V/C Ratio     |        | 0.319 |      | -      | -    | 0.011        | -          | -     | 0.209 |        |       |          |
| HCM Control Delay (s)  |        | 16.4  | 7.6  | -      | -    | 7.7          | -          | -     | 13.1  |        |       |          |
| HCM Lane LOS           |        | С     | Α    | -      | -    | Α            | -          | -     | В     |        |       |          |
| HCM 95th %tile Q(veh)  |        | 1.4   | 0    | -      | -    | 0            | -          | -     | 8.0   |        |       |          |
|                        |        |       |      |        |      |              |            |       |       |        |       |          |

| Intersection           |        |           |          |        |                |          |        |       |           |        |       |       |
|------------------------|--------|-----------|----------|--------|----------------|----------|--------|-------|-----------|--------|-------|-------|
| Int Delay, s/veh       | 2.7    |           |          |        |                |          |        |       |           |        |       |       |
| Movement               | EBL    | EBT       | EBR      | WBL    | WBT            | WBR      | NBL    | NBT   | NBR       | SBL    | SBT   | SBR   |
| Lane Configurations    | ሻ      | 4         |          | ሻ      | <del>(</del> î |          |        | 4     |           |        | 4     |       |
| Traffic Vol, veh/h     | 18     | 256       | 18       | 12     | 149            | 15       | 20     | 21    | 9         | 23     | 13    | 12    |
| Future Vol, veh/h      | 18     | 256       | 18       | 12     | 149            | 15       | 20     | 21    | 9         | 23     | 13    | 12    |
| Conflicting Peds, #/hr | 0      | 0         | 0        | 0      | 0              | 0        | 0      | 0     | 0         | 0      | 0     | 0     |
| Sign Control           | Free   | Free      | Free     | Free   | Free           | Free     | Stop   | Stop  | Stop      | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -         | None     | -      | -              | None     | -      | -     | None      | -      | -     | None  |
| Storage Length         | 532    | -         | -        | 532    | -              | -        | -      | -     | -         | -      | -     | -     |
| Veh in Median Storage  | е,# -  | 0         | -        | -      | 0              | -        | -      | 0     | -         | -      | 0     | -     |
| Grade, %               | -      | 0         | -        | -      | 0              | -        | -      | 0     | -         | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92        | 92       | 92     | 92             | 92       | 92     | 92    | 92        | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2         | 2        | 2      | 2              | 2        | 2      | 2     | 2         | 2      | 2     | 2     |
| Mvmt Flow              | 20     | 278       | 20       | 13     | 162            | 16       | 22     | 23    | 10        | 25     | 14    | 13    |
|                        |        |           |          |        |                |          |        |       |           |        |       |       |
| Major/Minor            | Major1 |           |          | Major2 |                |          | Minor1 |       |           | Minor2 |       |       |
| Conflicting Flow All   | 178    | 0         | 0        | 298    | 0              | 0        | 538    | 532   | 288       | 541    | 534   | 170   |
| Stage 1                | -      | -         | -        | -      | -              | -        | 328    | 328   | -         | 196    | 196   | -     |
| Stage 2                | _      | _         | _        | -      | _              | -        | 210    | 204   | _         | 345    | 338   | _     |
| Critical Hdwy          | 4.12   | -         | _        | 4.12   | _              | -        | 7.12   | 6.52  | 6.22      | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -         | -        | -      | -              | _        | 6.12   | 5.52  | _         | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -         | -        | -      | -              | -        | 6.12   | 5.52  | -         | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -         | -        | 2.218  | -              | -        | 3.518  | 4.018 | 3.318     | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1398   | -         | -        | 1263   | -              | -        | 454    | 453   | 751       | 452    | 452   | 874   |
| Stage 1                | -      | -         | -        | -      | -              | -        | 685    | 647   | -         | 806    | 739   | -     |
| Stage 2                | -      | -         | -        | -      | -              | -        | 792    | 733   | -         | 671    | 641   | -     |
| Platoon blocked, %     |        | -         | -        |        | -              | -        |        |       |           |        |       |       |
| Mov Cap-1 Maneuver     | 1398   | -         | -        | 1263   | -              | -        | 428    | 442   | 751       | 420    | 441   | 874   |
| Mov Cap-2 Maneuver     | -      | -         | -        | -      | -              | -        | 428    | 442   | -         | 420    | 441   | -     |
| Stage 1                | -      | -         | -        | -      | -              | -        | 675    | 638   | -         | 795    | 732   | -     |
| Stage 2                | -      | -         | -        | -      | -              | -        | 757    | 726   | -         | 629    | 632   | -     |
|                        |        |           |          |        |                |          |        |       |           |        |       |       |
| Approach               | EB     |           |          | WB     |                |          | NB     |       |           | SB     |       |       |
| HCM Control Delay, s   | 0.5    |           |          | 0.5    |                |          | 13.6   |       |           | 13.2   |       |       |
| HCM LOS                |        |           |          |        |                |          | В      |       |           | В      |       |       |
|                        |        |           |          |        |                |          |        |       |           |        |       |       |
| Minor Lane/Major Mvm   | nt     | NBLn1     | EBL      | EBT    | EBR            | WBL      | WBT    | WBR   | SRI n1    |        |       |       |
| Capacity (veh/h)       |        | 471       | 1398     |        | LUI            | 1263     | 7701   | 7701( | 490       |        |       |       |
| HCM Lane V/C Ratio     |        | 0.115     |          | -      | _              | 0.01     | _      | _     | 0.106     |        |       |       |
| HCM Control Delay (s)  |        | 13.6      | 7.6      | _      |                | 7.9      |        |       | 13.2      |        |       |       |
| HCM Lane LOS           |        | 13.0<br>B | 7.0<br>A | _      | _              | 7.9<br>A | _      | _     | 13.2<br>B |        |       |       |
| HCM 95th %tile Q(veh   | )      | 0.4       | 0        | _      | _              | 0        | _      | _     | 0.4       |        |       |       |
| TOWN JOHN JUHIC Q(VEI) | 1      | 0.7       | 0        |        |                | - 0      |        |       | 0.7       |        |       |       |

| Intersection           |        |       |       |          |      |       |        |      |       |        |       |       |
|------------------------|--------|-------|-------|----------|------|-------|--------|------|-------|--------|-------|-------|
| Int Delay, s/veh       | 6.2    |       |       |          |      |       |        |      |       |        |       |       |
| Movement               | EBL    | EBT   | EBR   | WBL      | WBT  | WBR   | NBL    | NBT  | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | *      | ĵ.    |       | ሻ        | ĵ.   |       |        | 4    |       |        | 4     |       |
| Traffic Vol, veh/h     | 47     | 168   | 65    | 3        | 81   | 14    | 111    | 35   | 16    | 24     | 20    | 23    |
| Future Vol, veh/h      | 47     | 168   | 65    | 3        | 81   | 14    | 111    | 35   | 16    | 24     | 20    | 23    |
| Conflicting Peds, #/hr | 0      | 0     | 0     | 0        | 0    | 0     | 0      | 0    | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free  | Free     | Free | Free  | Stop   | Stop | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | _      | -     | None  | _        | -    | None  | -      | -    |       | -      | -     | None  |
| Storage Length         | 200    | -     | -     | 400      | -    | -     | -      | -    | -     | -      | _     | -     |
| Veh in Median Storage  |        | 0     | _     | _        | 0    | -     | -      | 0    | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -     | _        | 0    | -     | -      | 0    | -     | -      | 0     | _     |
| Peak Hour Factor       | 92     | 92    | 92    | 92       | 92   | 92    | 92     | 92   | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2        | 2    | 2     | 2      | 2    | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 51     | 183   | 71    | 3        | 88   | 15    | 121    | 38   | 17    | 26     | 22    | 25    |
|                        |        |       |       |          |      |       |        |      |       |        |       |       |
| Major/Minor            | Major1 |       |       | Major2   |      |       | Minor1 |      |       | Minor2 |       |       |
| Conflicting Flow All   | 103    | 0     | 0     | 254      | 0    | 0     | 446    | 430  | 219   | 450    | 458   | 96    |
| Stage 1                | 103    | -     | U     | 204      | -    | -     | 321    | 321  | 219   | 102    | 102   | 90    |
| Stage 2                | -      | -     | _     | <u>-</u> | -    | -     | 125    | 109  | -     | 348    | 356   | -     |
| Critical Hdwy          | 4.12   | -     | -     | 4.12     |      | -     | 7.12   | 6.52 | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | 4.12   | _     |       | 4.12     | _    |       | 6.12   | 5.52 | 0.22  | 6.12   | 5.52  | 0.22  |
| Critical Hdwy Stg 2    | -      |       |       |          |      |       | 6.12   | 5.52 |       | 6.12   | 5.52  |       |
| Follow-up Hdwy         | 2.218  |       |       | 2.218    | _    |       | 3.518  |      | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1489   | _     |       | 1311     |      | _     | 523    | 518  | 821   | 519    | 499   | 960   |
| Stage 1                | -      | _     |       | -        |      | _     | 691    | 652  | 021   | 904    | 811   | 300   |
| Stage 2                |        | _     |       |          |      | _     | 879    | 805  | -     | 668    | 629   | _     |
| Platoon blocked, %     |        | _     | _     |          | _    | _     | 013    | 000  |       | 300    | 023   |       |
| Mov Cap-1 Maneuver     | 1489   | _     | _     | 1311     | _    | _     | 478    | 499  | 821   | 465    | 481   | 960   |
| Mov Cap-2 Maneuver     | -      | _     | _     | -        | _    | _     | 478    | 499  | -     | 465    | 481   | -     |
| Stage 1                | _      | _     | _     | _        | -    | _     | 668    | 630  | _     | 873    | 809   | _     |
| Stage 2                | _      | _     | _     | _        | -    | _     | 831    | 803  | _     | 593    | 608   | _     |
| 5.kg0 Z                |        |       |       |          |      |       | 301    | 300  |       | 300    | 300   |       |
| Approach               | EB     |       |       | WB       |      |       | NB     |      |       | SB     |       |       |
| HCM Control Delay, s   | 1.3    |       |       | 0.2      |      |       | 16     |      |       | 12.2   |       |       |
| HCM LOS                |        |       |       |          |      |       | C      |      |       | В      |       |       |
|                        |        |       |       |          |      |       |        |      |       |        |       |       |
| Minor Lane/Major Mvm   | t N    | NBLn1 | EBL   | EBT      | EBR  | WBL   | WBT    | WBR  | SBLn1 |        |       |       |
| Capacity (veh/h)       |        | 503   | 1489  | -        | -    | 1311  | -      | -    | 572   |        |       |       |
| HCM Lane V/C Ratio     |        |       | 0.034 | _        | _    | 0.002 | -      | _    | 0.127 |        |       |       |
| HCM Control Delay (s)  |        | 16    | 7.5   | -        | _    | 7.8   | -      | _    | 12.2  |        |       |       |
| HCM Lane LOS           |        | С     | Α     | -        | -    | Α     | -      | -    | В     |        |       |       |
| HCM 95th %tile Q(veh)  |        | 1.6   | 0.1   | -        | -    | 0     | -      | -    | 0.4   |        |       |       |
| 77                     |        |       |       |          |      |       |        |      |       |        |       |       |

| Intersection           |        |       |      |        |      |      |        |       |        |        |       |              |
|------------------------|--------|-------|------|--------|------|------|--------|-------|--------|--------|-------|--------------|
| Int Delay, s/veh       | 2.5    |       |      |        |      |      |        |       |        |        |       |              |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT  | WBR  | NBL    | NBT   | NBR    | SBL    | SBT   | SBR          |
| Lane Configurations    | ሻ      | ĵ.    |      | ሻ      | ĵ.   |      |        | 4     |        |        | 4     | <b>02</b> 11 |
| Traffic Vol, veh/h     | 7      | 174   | 12   | 13     | 440  | 28   | 29     | 16    | 12     | 15     | 7     | 36           |
| Future Vol, veh/h      | 7      | 174   | 12   | 13     | 440  | 28   | 29     | 16    | 12     | 15     | 7     | 36           |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0      | 0    | 0    | 0      | 0     | 0      | 0      | 0     | 0            |
| Sign Control           | Free   | Free  | Free | Free   | Free | Free | Stop   | Stop  | Stop   | Stop   | Stop  | Stop         |
| RT Channelized         | -      | _     | None | -      | -    | None | -      | -     | None   | -      | -     | None         |
| Storage Length         | 532    | -     | -    | 532    | -    | -    | -      | -     | -      | -      | -     | -            |
| Veh in Median Storage  | , # -  | 0     | -    | -      | 0    | -    | -      | 0     | -      | -      | 0     | -            |
| Grade, %               | -      | 0     | -    | -      | 0    | -    | -      | 0     | -      | -      | 0     | -            |
| Peak Hour Factor       | 92     | 92    | 92   | 92     | 92   | 92   | 92     | 92    | 92     | 92     | 92    | 92           |
| Heavy Vehicles, %      | 2      | 2     | 2    | 2      | 2    | 2    | 2      | 2     | 2      | 2      | 2     | 2            |
| Mvmt Flow              | 8      | 189   | 13   | 14     | 478  | 30   | 32     | 17    | 13     | 16     | 8     | 39           |
|                        |        |       |      |        |      |      |        |       |        |        |       |              |
| Major/Minor I          | Major1 |       | 1    | Major2 |      |      | Minor1 |       | ı      | Minor2 |       |              |
| Conflicting Flow All   | 508    | 0     | 0    | 202    | 0    | 0    | 757    | 748   | 196    | 748    | 739   | 493          |
| Stage 1                | -      | -     | -    |        | -    | -    | 212    | 212   | -      | 521    | 521   | _            |
| Stage 2                | -      | -     | -    | -      | -    | -    | 545    | 536   | -      | 227    | 218   | _            |
| Critical Hdwy          | 4.12   | -     | -    | 4.12   | -    | -    | 7.12   | 6.52  | 6.22   | 7.12   | 6.52  | 6.22         |
| Critical Hdwy Stg 1    | -      | -     | -    | -      | -    | -    | 6.12   | 5.52  | -      | 6.12   | 5.52  | -            |
| Critical Hdwy Stg 2    | -      | -     | -    | -      | -    | -    | 6.12   | 5.52  | -      | 6.12   | 5.52  | -            |
| Follow-up Hdwy         | 2.218  | -     | -    | 2.218  | -    | -    | 3.518  | 4.018 | 3.318  | 3.518  | 4.018 | 3.318        |
| Pot Cap-1 Maneuver     | 1057   | -     | -    | 1370   | -    | -    | 324    | 341   | 845    | 329    | 345   | 576          |
| Stage 1                | -      | -     | -    | -      | -    | -    | 790    | 727   | -      | 539    | 532   | -            |
| Stage 2                | -      | -     | -    | -      | -    | -    | 523    | 523   | -      | 776    | 723   | -            |
| Platoon blocked, %     |        | -     | -    |        | -    | -    |        |       |        |        |       |              |
| Mov Cap-1 Maneuver     | 1057   | -     | -    | 1370   | -    | -    | 293    | 335   | 845    | 307    | 339   | 576          |
| Mov Cap-2 Maneuver     | -      | -     | -    | -      | -    | -    | 293    | 335   | -      | 307    | 339   | -            |
| Stage 1                | -      | -     | -    | -      | -    | -    | 784    | 721   | -      | 535    | 527   | -            |
| Stage 2                | -      | -     | -    | -      | -    | -    | 476    | 518   | -      | 740    | 717   | -            |
|                        |        |       |      |        |      |      |        |       |        |        |       |              |
| Approach               | EB     |       |      | WB     |      |      | NB     |       |        | SB     |       |              |
| HCM Control Delay, s   | 0.3    |       |      | 0.2    |      |      | 17.3   |       |        | 14.6   |       |              |
| HCM LOS                |        |       |      |        |      |      | С      |       |        | В      |       |              |
|                        |        |       |      |        |      |      |        |       |        |        |       |              |
| Minor Lane/Major Mvm   | t I    | NBLn1 | EBL  | EBT    | EBR  | WBL  | WBT    | WBR   | SBI n1 |        |       |              |
| Capacity (veh/h)       |        | 354   | 1057 | -      |      | 1370 | -      | -     | 439    |        |       |              |
| HCM Lane V/C Ratio     |        | 0.175 |      | _      | _    | 0.01 | _      |       | 0.144  |        |       |              |
| HCM Control Delay (s)  |        | 17.3  | 8.4  | _      |      | 7.7  | _      | _     | 14.6   |        |       |              |
| HCM Lane LOS           |        | C     | Α    | _      | _    | Α    | _      | _     | В      |        |       |              |
| HCM 95th %tile Q(veh)  |        | 0.6   | 0    | -      | -    | 0    | -      | -     | 0.5    |        |       |              |
|                        |        | 3.0   |      |        |      |      |        |       | 3.0    |        |       |              |

| Intersection           |        |       |      |           |      |       |        |       |       |        |       |       |
|------------------------|--------|-------|------|-----------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 6.1    |       |      |           |      |       |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR  | WBL       | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | T)     | 1>    | LDIN | YVDL<br>Š | 7∌   | VVDIX | NDL    | 4     | NDIX  | ODL    | 4     | ODIN  |
| Traffic Vol, veh/h     | 21     | 74    | 134  | 14        | 168  | 12    | 107    | 25    | 6     | 13     | 61    | 34    |
| Future Vol, veh/h      | 21     | 74    | 134  | 14        | 168  | 12    | 107    | 25    | 6     | 13     | 61    | 34    |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0         | 0    | 0     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free | Free      | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None | _         | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | 200    | -     | -    | 400       | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | ,# -   | 0     | -    | -         | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -    | -         | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92    | 92   | 92        | 92   | 92    | 92     | 92    | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2     | 2    | 2         | 2    | 2     | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 23     | 80    | 146  | 15        | 183  | 13    | 116    | 27    | 7     | 14     | 66    | 37    |
|                        |        |       |      |           |      |       |        |       |       |        |       |       |
| Major/Minor N          | Major1 |       |      | Major2    |      |       | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 196    | 0     | 0    | 226       | 0    | 0     | 470    | 425   | 153   | 436    | 492   | 190   |
| Stage 1                | -      | -     | -    | -         | -    | -     | 199    | 199   | -     | 220    | 220   | -     |
| Stage 2                | -      | -     | -    | -         | -    | -     | 271    | 226   | -     | 216    | 272   | -     |
| Critical Hdwy          | 4.12   | -     | -    | 4.12      | -    | -     | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -     | -    | -         | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -     | -    | -         | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -     | -    | 2.218     | -    | -     | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1377   | -     | -    | 1342      | -    | -     | 504    | 521   | 893   | 531    | 478   | 852   |
| Stage 1                | -      | -     | -    | -         | -    | -     | 803    | 736   | -     | 782    | 721   | -     |
| Stage 2                | -      | -     | -    | -         | -    | -     | 735    | 717   | -     | 786    | 685   | -     |
| Platoon blocked, %     |        | -     | -    |           | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1377   | -     | -    | 1342      | -    | -     | 420    | 506   | 893   | 495    | 465   | 852   |
| Mov Cap-2 Maneuver     | -      | -     | -    | -         | -    | -     | 420    | 506   | -     | 495    | 465   | -     |
| Stage 1                | -      | -     | -    | -         | -    | -     | 789    | 723   | -     | 769    | 713   | -     |
| Stage 2                | -      | -     | -    | -         | -    | -     | 631    | 709   | -     | 738    | 673   | -     |
|                        |        |       |      |           |      |       |        |       |       |        |       |       |
| Approach               | EB     |       |      | WB        |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.7    |       |      | 0.6       |      |       | 17.2   |       |       | 13.4   |       |       |
| HCM LOS                |        |       |      |           |      |       | С      |       |       | В      |       |       |
|                        |        |       |      |           |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | t I    | NBLn1 | EBL  | EBT       | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        | 444   |      | -         |      | 1342  | -      | -     | 547   |        |       |       |
| HCM Lane V/C Ratio     |        | 0.338 |      | -         |      | 0.011 | -      | -     | 0.215 |        |       |       |
| HCM Control Delay (s)  |        | 17.2  | 7.7  | -         | -    | 7.7   | -      | -     | 13.4  |        |       |       |
| HCM Lane LOS           |        | С     | Α    | -         | -    | Α     | -      | -     | В     |        |       |       |
| HCM 95th %tile Q(veh)  |        | 1.5   | 0.1  | -         | -    | 0     | -      | -     | 8.0   |        |       |       |
|                        |        |       |      |           |      |       |        |       |       |        |       |       |

| Intersection           |          |        |           |      |        |       |
|------------------------|----------|--------|-----------|------|--------|-------|
| Int Delay, s/veh       | 2.7      |        |           |      |        |       |
| Movement               | EBT      | EBR    | WBL       | WBT  | NBL    | NBR   |
| Lane Configurations    | <u> </u> | T T    | YVDL<br>T | ^    | T T    | TVDIX |
| Traffic Vol, veh/h     | 225      | 15     | 7         | 323  | 109    | 8     |
| Future Vol, veh/h      | 225      | 15     | 7         | 323  | 109    | 8     |
| Conflicting Peds, #/hr | 0        | 0      | 0         | 020  | 0      | 0     |
| Sign Control           | Free     | Free   | Free      | Free | Stop   | Stop  |
| RT Channelized         | -        | None   | -         | None | -      | None  |
| Storage Length         | -        | 570    | 570       | -    | 0      | 0     |
| Veh in Median Storage  | , # 0    | -      | -         | 0    | 0      | -     |
| Grade, %               | 0        | -      | -         | 0    | 0      | -     |
| Peak Hour Factor       | 92       | 92     | 92        | 92   | 92     | 92    |
| Heavy Vehicles, %      | 2        | 2      | 2         | 2    | 2      | 2     |
| Mvmt Flow              | 245      | 16     | 8         | 351  | 118    | 9     |
|                        |          |        |           |      |        |       |
| Major/Minor N          | Major1   | ı      | Major2    |      | Minor1 |       |
| Conflicting Flow All   | 0        | 0      | 261       | 0    | 612    | 245   |
| Stage 1                | _        | -      |           | _    | 245    |       |
| Stage 2                | _        | -      | -         | -    | 367    | _     |
| Critical Hdwy          | -        | -      | 4.12      | -    | 6.42   | 6.22  |
| Critical Hdwy Stg 1    | -        | -      | -         | -    | 5.42   | -     |
| Critical Hdwy Stg 2    | -        | -      | -         | -    | 5.42   | -     |
| Follow-up Hdwy         | -        | -      | 2.218     | -    | 3.518  | 3.318 |
| Pot Cap-1 Maneuver     | -        | -      | 1303      | -    | 456    | 794   |
| Stage 1                | -        | -      | -         | -    | 796    | -     |
| Stage 2                | -        | -      | -         | -    | 701    | -     |
| Platoon blocked, %     | -        | -      |           | -    |        |       |
| Mov Cap-1 Maneuver     | -        | -      | 1303      | -    | 453    | 794   |
| Mov Cap-2 Maneuver     | -        | -      | -         | -    | 453    | -     |
| Stage 1                | -        | -      | -         | -    | 796    | -     |
| Stage 2                | -        | -      | -         | -    | 697    | -     |
|                        |          |        |           |      |        |       |
| Approach               | EB       |        | WB        |      | NB     |       |
| HCM Control Delay, s   | 0        |        | 0.2       |      | 15.3   |       |
| HCM LOS                |          |        |           |      | С      |       |
|                        |          |        |           |      |        |       |
| Minor Lane/Major Mvm   | t t      | NBLn11 | VBI n2    | EBT  | EBR    | WBL   |
| Capacity (veh/h)       |          | 453    | 794       | -    |        | 1303  |
| HCM Lane V/C Ratio     |          | 0.262  |           | _    |        | 0.006 |
| HCM Control Delay (s)  |          | 15.7   | 9.6       | _    | _      | 7.8   |
| HCM Lane LOS           |          | C      | Α.        | _    | _      | Α.    |
| HCM 95th %tile Q(veh)  |          | 1      | 0         | -    | -      | 0     |
| /VIII ~(VOII)          |          | •      |           |      |        |       |

| Intersection           |          |          |         |          |         |       |
|------------------------|----------|----------|---------|----------|---------|-------|
| Int Delay, s/veh       | 0.1      |          |         |          |         |       |
| Movement               | EBT      | EBR      | WBL     | WBT      | NBL     | NBR   |
| Lane Configurations    | <u> </u> | Į.       | ,,,,,,  | <u>₩</u> | ,,,,,,  | 7     |
| Traffic Vol, veh/h     | 191      | 42       | 0       | 330      | 0       | 9     |
| Future Vol, veh/h      | 191      | 42       | 0       | 330      | 0       | 9     |
| Conflicting Peds, #/hr | 0        | 0        | 0       | 0        | 0       | 0     |
| Sign Control           | Free     | Free     | Free    | Free     | Stop    | Stop  |
| RT Channelized         | -        | None     | -       |          | -       | None  |
| Storage Length         | _        | 250      | _       | -        | _       | 0     |
| Veh in Median Storage  | , # 0    | -        | _       | 0        | 0       | -     |
| Grade, %               | 0        | _        | _       | 0        | 0       | _     |
| Peak Hour Factor       | 92       | 92       | 92      | 92       | 92      | 92    |
| Heavy Vehicles, %      | 2        | 2        | 2       | 2        | 2       | 2     |
| Mymt Flow              | 208      | 46       | 0       | 359      | 0       | 10    |
| WIVIII I IOW           | 200      | 70       | U       | 000      | U       | 10    |
|                        |          |          |         |          |         |       |
| Major/Minor N          | Major1   | N        | //ajor2 | N        | /linor1 |       |
| Conflicting Flow All   | 0        | 0        | -       | -        | -       | 208   |
| Stage 1                | -        | -        | -       | -        | -       | -     |
| Stage 2                | -        | -        | -       | -        | -       | -     |
| Critical Hdwy          | -        | -        | -       | -        | -       | 6.22  |
| Critical Hdwy Stg 1    | -        | -        | -       | -        | -       | -     |
| Critical Hdwy Stg 2    | -        | -        | -       | -        | -       | -     |
| Follow-up Hdwy         | -        | -        | -       | -        | -       | 3.318 |
| Pot Cap-1 Maneuver     | -        | -        | 0       | -        | 0       | 832   |
| Stage 1                | -        | -        | 0       | -        | 0       | -     |
| Stage 2                | -        | -        | 0       | -        | 0       | -     |
| Platoon blocked, %     | -        | -        |         | -        |         |       |
| Mov Cap-1 Maneuver     | -        | -        | -       | -        | -       | 832   |
| Mov Cap-2 Maneuver     | -        | -        | -       | -        | -       | -     |
| Stage 1                | -        | _        | -       | -        | -       | -     |
| Stage 2                | -        | -        | -       | -        | -       | _     |
| g- <u>-</u>            |          |          |         |          |         |       |
|                        |          |          |         |          |         |       |
| Approach               | EB       |          | WB      |          | NB      |       |
| HCM Control Delay, s   | 0        |          | 0       |          | 9.4     |       |
| HCM LOS                |          |          |         |          | Α       |       |
|                        |          |          |         |          |         |       |
| Minor Lane/Major Mvm   | t 1      | NBLn1    | EBT     | EBR      | WBT     |       |
| Capacity (veh/h)       | . 1      | 832      | LDI     | LDIX     | 1101    |       |
| HCM Lane V/C Ratio     |          | 0.012    | -       | -        | -       |       |
| HCM Control Delay (s)  |          | 9.4      | -       | -        | -       |       |
| HCM Lane LOS           |          | 9.4<br>A |         |          | -       |       |
| HCM 95th %tile Q(veh)  |          | 0        | -       | -        | -       |       |
|                        |          | U        | _       | -        | -       |       |

| Intersection           |        |       |      |           |      |       |        |       |       |        |       |       |
|------------------------|--------|-------|------|-----------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 3      |       |      |           |      |       |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR  | WBL       | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | ሻ      | 1>    | LDIN | <u> ነ</u> | 1≯   | VVDIX | NDL    | 4     | NUIN  | ODL    | 4     | ODIN  |
| Traffic Vol, veh/h     | 18     | 367   | 18   | 18        | 225  | 22    | 20     | 21    | 17    | 34     | 13    | 12    |
| Future Vol, veh/h      | 18     | 367   | 18   | 18        | 225  | 22    | 20     | 21    | 17    | 34     | 13    | 12    |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0         | 0    | 0     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free | Free      | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None | _         | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | 532    | -     | -    | 532       | _    | -     | _      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | ,# -   | 0     | -    | -         | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -    | -         | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92    | 92   | 92        | 92   | 92    | 92     | 92    | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2     | 2    | 2         | 2    | 2     | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 20     | 399   | 20   | 20        | 245  | 24    | 22     | 23    | 18    | 37     | 14    | 13    |
|                        |        |       |      |           |      |       |        |       |       |        |       |       |
| Major/Minor N          | Major1 |       |      | Major2    |      |       | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 269    | 0     | 0    | 419       | 0    | 0     | 760    | 758   | 409   | 767    | 756   | 257   |
| Stage 1                | -      | -     | -    | -         | -    | -     | 449    | 449   | -     | 297    | 297   |       |
| Stage 2                | -      | -     | -    | _         | -    | -     | 311    | 309   | -     | 470    | 459   | -     |
| Critical Hdwy          | 4.12   | -     | -    | 4.12      | -    | -     | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -     | -    | -         | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -     | -    | -         | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -     | -    | 2.218     | -    | -     | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1295   | -     | -    | 1140      | -    | -     | 323    | 336   | 642   | 319    | 337   | 782   |
| Stage 1                | -      | -     | -    | -         | -    | -     | 589    | 572   | -     | 712    | 668   | -     |
| Stage 2                | -      | -     | -    | -         | -    | -     | 699    | 660   | -     | 574    | 566   | -     |
| Platoon blocked, %     |        | -     | -    |           | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1295   | -     | -    | 1140      | -    | -     | 299    | 325   | 642   | 286    | 326   | 782   |
| Mov Cap-2 Maneuver     | -      | -     | -    | -         | -    | -     | 299    | 325   | -     | 286    | 326   | -     |
| Stage 1                | -      | -     | -    | -         | -    | -     | 580    | 563   | -     | 701    | 656   | -     |
| Stage 2                | -      | -     | -    | -         | -    | -     | 661    | 648   | -     | 527    | 558   | -     |
|                        |        |       |      |           |      |       |        |       |       |        |       |       |
| Approach               | EB     |       |      | WB        |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.3    |       |      | 0.6       |      |       | 16.8   |       |       | 18.1   |       |       |
| HCM LOS                |        |       |      |           |      |       | С      |       |       | С      |       |       |
|                        |        |       |      |           |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | t I    | NBLn1 | EBL  | EBT       | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        |       | 1295 | -         |      | 1140  | -      | -     |       |        |       |       |
| HCM Lane V/C Ratio     |        | 0.172 |      | _         |      | 0.017 | _      | _     | 0.189 |        |       |       |
| HCM Control Delay (s)  |        | 16.8  | 7.8  | -         | -    | 8.2   | -      | -     | 18.1  |        |       |       |
| HCM Lane LOS           |        | С     | Α    | -         | -    | Α     | -      | -     | С     |        |       |       |
| HCM 95th %tile Q(veh)  |        | 0.6   | 0    | -         | -    | 0.1   | -      | -     | 0.7   |        |       |       |
|                        |        |       |      |           |      |       |        |       |       |        |       |       |

| Intersection           |        |                |       |        |      |       |        |       |          |        |       |       |
|------------------------|--------|----------------|-------|--------|------|-------|--------|-------|----------|--------|-------|-------|
| Int Delay, s/veh       | 6.3    |                |       |        |      |       |        |       |          |        |       |       |
| Movement               | EBL    | EBT            | EBR   | WBL    | WBT  | WBR   | NBL    | NBT   | NBR      | SBL    | SBT   | SBR   |
| Lane Configurations    | ሻ      | <del>(</del> î |       | ሻ      | f)   |       |        | 4     |          |        | 4     |       |
| Traffic Vol, veh/h     | 48     | 175            | 67    | 3      | 90   | 14    | 114    | 35    | 16       | 24     | 20    | 26    |
| Future Vol, veh/h      | 48     | 175            | 67    | 3      | 90   | 14    | 114    | 35    | 16       | 24     | 20    | 26    |
| Conflicting Peds, #/hr | 0      | 0              | 0     | 0      | 0    | 0     | 0      | 0     | 0        | 0      | 0     | 0     |
| Sign Control           | Free   | Free           | Free  | Free   | Free | Free  | Stop   | Stop  | Stop     | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -              | None  | -      | -    | None  | -      | -     | None     | -      | -     | None  |
| Storage Length         | 200    | -              | -     | 400    | -    | -     | -      | -     | -        | -      | -     | -     |
| Veh in Median Storage  | , # -  | 0              | -     | -      | 0    | -     | -      | 0     | -        | -      | 0     | -     |
| Grade, %               | -      | 0              | -     | -      | 0    | -     | -      | 0     | -        | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92             | 92    | 92     | 92   | 92    | 92     | 92    | 92       | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2              | 2     | 2      | 2    | 2     | 2      | 2     | 2        | 2      | 2     | 2     |
| Mvmt Flow              | 52     | 190            | 73    | 3      | 98   | 15    | 124    | 38    | 17       | 26     | 22    | 28    |
|                        |        |                |       |        |      |       |        |       |          |        |       |       |
| Major/Minor I          | Major1 |                |       | Major2 |      |       | Minor1 |       | <u> </u> | Minor2 |       |       |
| Conflicting Flow All   | 113    | 0              | 0     | 263    | 0    | 0     | 468    | 450   | 227      | 470    | 479   | 106   |
| Stage 1                | -      | -              | -     | -      | -    | -     | 331    | 331   | -        | 112    | 112   | -     |
| Stage 2                | -      | -              | -     | -      | -    | -     | 137    | 119   | -        | 358    | 367   | -     |
| Critical Hdwy          | 4.12   | -              | -     | 4.12   | -    | -     | 7.12   | 6.52  | 6.22     | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -              | -     | -      | -    | -     | 6.12   | 5.52  | -        | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -              | -     | -      | -    | -     | 6.12   | 5.52  | -        | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -              | -     | 2.218  | -    | -     | 3.518  | 4.018 | 3.318    | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1476   | -              | -     | 1301   | -    | -     | 505    | 504   | 812      | 504    | 486   | 948   |
| Stage 1                | -      | -              | -     | -      | -    | -     | 682    | 645   | -        | 893    | 803   | -     |
| Stage 2                | -      | -              | -     | -      | -    | -     | 866    | 797   | -        | 660    | 622   | -     |
| Platoon blocked, %     |        | -              | -     |        | -    | -     |        |       |          |        |       |       |
| Mov Cap-1 Maneuver     | 1476   | -              | -     | 1301   | -    | -     | 459    | 485   | 812      | 451    | 468   | 948   |
| Mov Cap-2 Maneuver     | -      | -              | -     | -      | -    | -     | 459    | 485   | -        | 451    | 468   | -     |
| Stage 1                | -      | -              | -     | -      | -    | -     | 658    | 622   | -        | 862    | 801   | -     |
| Stage 2                | -      | -              | -     | -      | -    | -     | 815    | 795   | -        | 585    | 600   | -     |
|                        |        |                |       |        |      |       |        |       |          |        |       |       |
| Approach               | EB     |                |       | WB     |      |       | NB     |       |          | SB     |       |       |
| HCM Control Delay, s   | 1.2    |                |       | 0.2    |      |       | 16.7   |       |          | 12.3   |       |       |
| HCM LOS                |        |                |       |        |      |       | С      |       |          | В      |       |       |
|                        |        |                |       |        |      |       |        |       |          |        |       |       |
| Minor Lane/Major Mvm   | ıt N   | NBLn1          | EBL   | EBT    | EBR  | WBL   | WBT    | WBR   | SBLn1    |        |       |       |
| Capacity (veh/h)       |        | 485            | 1476  | -      | -    | 1301  | -      | -     | 567      |        |       |       |
| HCM Lane V/C Ratio     |        | 0.37           | 0.035 | -      | -    | 0.003 | -      | -     | 0.134    |        |       |       |
| HCM Control Delay (s)  |        | 16.7           | 7.5   | -      | -    | 7.8   | -      | -     | 12.3     |        |       |       |
| HCM Lane LOS           |        | С              | Α     | -      | -    | Α     | -      | -     | В        |        |       |       |
| HCM 95th %tile Q(veh)  |        | 1.7            | 0.1   | -      | -    | 0     | -      | -     | 0.5      |        |       |       |
|                        |        |                |       |        |      |       |        |       |          |        |       |       |

| Intersection           |         |         |         |         |        |       |   |
|------------------------|---------|---------|---------|---------|--------|-------|---|
| Int Delay, s/veh       | 2.1     |         |         |         |        |       |   |
| Movement               | EBT     | EBR     | WBL     | WBT     | NBL    | NBR   |   |
| Lane Configurations    | <b></b> | 7       | ች       | <b></b> | ች      | 7     | ٠ |
| Traffic Vol, veh/h     | 358     | 53      | 15      | 250     | 89     | 3     |   |
| Future Vol, veh/h      | 358     | 53      | 15      | 250     | 89     | 3     |   |
| Conflicting Peds, #/hr |         | 0       | 0       | 0       | 0      | 0     |   |
| Sign Control           | Free    | Free    | Free    | Free    | Stop   | Stop  |   |
| RT Channelized         | -       | None    | -       | None    | _      | None  |   |
| Storage Length         | _       | 570     | 570     | _       | 0      | 0     |   |
| Veh in Median Storage  | e.# 0   | -       | -       | 0       | 0      | -     |   |
| Grade, %               | 0       | -       | _       | 0       | 0      | _     |   |
| Peak Hour Factor       | 92      | 92      | 92      | 92      | 92     | 92    |   |
| Heavy Vehicles, %      | 2       | 2       | 2       | 2       | 2      | 2     |   |
| Mymt Flow              | 389     | 58      | 16      | 272     | 97     | 3     |   |
| WIVIIILIOW             | 000     | 50      | 10      | LIL     | 51     | J     |   |
|                        |         |         |         |         |        |       |   |
| Major/Minor            | Major1  |         | Major2  | ľ       | Minor1 |       |   |
| Conflicting Flow All   | 0       | 0       | 447     | 0       | 693    | 389   |   |
| Stage 1                | -       | -       | -       | -       | 389    | -     |   |
| Stage 2                | -       | -       | -       | -       | 304    | -     |   |
| Critical Hdwy          | -       | -       | 4.12    | -       | 6.42   | 6.22  |   |
| Critical Hdwy Stg 1    | -       | -       | -       | -       | 5.42   | -     |   |
| Critical Hdwy Stg 2    | -       | -       | -       | -       | 5.42   | _     |   |
| Follow-up Hdwy         | -       | -       | 2.218   | -       | 3.518  | 3.318 |   |
| Pot Cap-1 Maneuver     | -       | -       | 1113    | -       | 409    | 659   |   |
| Stage 1                | -       | -       | -       | -       | 685    | -     |   |
| Stage 2                | -       | _       | -       | -       | 748    | -     |   |
| Platoon blocked, %     | _       | -       |         | _       |        |       |   |
| Mov Cap-1 Maneuver     | _       | -       | 1113    | _       | 403    | 659   |   |
| Mov Cap-2 Maneuver     |         | -       | -       | _       | 403    | -     |   |
| Stage 1                | _       | _       | _       | -       | 685    | _     |   |
| Stage 2                | _       | _       | _       | _       | 738    | _     |   |
| Olago Z                |         |         |         |         | 700    |       |   |
|                        |         |         |         |         |        |       |   |
| Approach               | EB      |         | WB      |         | NB     |       |   |
| HCM Control Delay, s   | 0       |         | 0.5     |         | 16.5   |       |   |
| HCM LOS                |         |         |         |         | С      |       |   |
|                        |         |         |         |         |        |       |   |
| Minor Lang/Major Myr   | nt N    | VIDI 51 | NIDI 22 | EDT     | EDD    | \\/DI |   |
| Minor Lane/Major Mvn   | nt r    | VBLn1I  |         | EBT     | EBR    | WBL   |   |
| Capacity (veh/h)       |         | 403     | 659     | -       | -      | 1113  |   |
| HCM Lane V/C Ratio     |         |         | 0.005   | -       | -      | 0.015 |   |
| HCM Control Delay (s   | 5)      | 16.7    | 10.5    | -       | -      | 8.3   |   |
| HCM Lane LOS           |         | С       | В       | -       | -      | Α     |   |
| HCM 95th %tile Q(veh   | . \     | 0.9     | 0       |         |        | 0     |   |

| Intersection                       |         |          |        |          |           |       |
|------------------------------------|---------|----------|--------|----------|-----------|-------|
| Int Delay, s/veh                   | 0.1     |          |        |          |           |       |
| Movement                           | EBT     | EBR      | WBL    | WBT      | NBL       | NBR   |
| Lane Configurations                | <u></u> | 7        | ****   | <b>↑</b> | IIDL      | 7     |
| Traffic Vol, veh/h                 | 284     | 77       | 0      | 265      | 0         | 7     |
| Future Vol, veh/h                  | 284     | 77       | 0      | 265      | 0         | 7     |
| Conflicting Peds, #/hr             | 0       | 0        | 0      | 0        | 0         | 0     |
| Sign Control                       | Free    | Free     | Free   | Free     | Stop      | Stop  |
| RT Channelized                     | -       | None     | -      |          | otop<br>- | None  |
| Storage Length                     | _       | 250      | _      | -        | _         | 0     |
| Veh in Median Storage,             |         | -        | _      | 0        | 0         | -     |
| Grade, %                           | 0       | _        | _      | 0        | 0         | _     |
| Peak Hour Factor                   | 92      | 92       | 92     | 92       | 92        | 92    |
| Heavy Vehicles, %                  | 2       | 2        | 2      | 2        | 2         | 2     |
| Mvmt Flow                          | 309     | 84       | 0      | 288      | 0         | 8     |
| IVIVIIIL FIOW                      | 309     | 04       | U      | 200      | U         | 0     |
|                                    |         |          |        |          |           |       |
| Major/Minor N                      | /lajor1 | <u> </u> | Major2 | <u> </u> | /linor1   |       |
| Conflicting Flow All               | 0       | 0        | -      | -        | -         | 309   |
| Stage 1                            | -       | -        | -      | -        | -         | -     |
| Stage 2                            | -       | -        | -      | -        | -         | -     |
| Critical Hdwy                      | -       | -        | -      | -        | -         | 6.22  |
| Critical Hdwy Stg 1                | _       | -        | -      | -        | -         | -     |
| Critical Hdwy Stg 2                | -       | -        | -      | -        | -         | -     |
| Follow-up Hdwy                     | -       | -        | _      | _        | _         | 3.318 |
| Pot Cap-1 Maneuver                 | _       | _        | 0      | _        | 0         | 731   |
| Stage 1                            | _       | -        | 0      | -        | 0         | -     |
| Stage 2                            | -       | -        | 0      | -        | 0         | -     |
| Platoon blocked, %                 | -       | -        |        | -        |           |       |
| Mov Cap-1 Maneuver                 | _       | -        | _      | _        | _         | 731   |
| Mov Cap-2 Maneuver                 | _       | -        | -      | _        | -         | -     |
| Stage 1                            | _       | _        | _      | _        | _         | _     |
| Stage 2                            | _       | _        | _      | _        | _         | _     |
| 3.0g0 Z                            |         |          |        |          |           |       |
|                                    |         |          |        |          |           |       |
| Approach                           | EB      |          | WB     |          | NB        |       |
| HCM Control Delay, s               | 0       |          | 0      |          | 10        |       |
| HCM LOS                            |         |          |        |          | В         |       |
|                                    |         |          |        |          |           |       |
| Minor Lane/Major Mvmt              | · N     | NBLn1    | EBT    | EBR      | WBT       |       |
| Capacity (veh/h)                   |         | 731      | LDT    | LDIX     | וטיי      |       |
| HCM Lane V/C Ratio                 |         | 0.01     | -      | -        | -         |       |
|                                    |         | 10       | -      | -        | -         |       |
| HCM Control Delay (s) HCM Lane LOS |         | B        | -      | -        | -         |       |
| HCM 95th %tile Q(veh)              |         | 0        | -      | -        | -         |       |
|                                    |         | U        | _      | -        | -         |       |

| Intersection           |        |          |      |        |      |       |          |       |        |        |       |       |
|------------------------|--------|----------|------|--------|------|-------|----------|-------|--------|--------|-------|-------|
| Int Delay, s/veh       | 2.6    |          |      |        |      |       |          |       |        |        |       |       |
| Movement               | EBL    | EBT      | EBR  | WBL    | WBT  | WBR   | NBL      | NBT   | NBR    | SBL    | SBT   | SBR   |
| Lane Configurations    | 7      | <b>1</b> | LDIN | ሻ      | 1≯   | WDIX  | NDL      | 4     | NUN    | ODL    | 4     | ODIN  |
| Traffic Vol, veh/h     | 7      | 220      | 12   | 13     | 445  | 29    | 29       | 16    | 13     | 18     | 7     | 36    |
| Future Vol, veh/h      | 7      | 220      | 12   | 13     | 445  | 29    | 29       | 16    | 13     | 18     | 7     | 36    |
| Conflicting Peds, #/hr | 0      | 0        | 0    | 0      | 0    | 0     | 0        | 0     | 0      | 0      | 0     | 0     |
| Sign Control           | Free   | Free     | Free | Free   | Free | Free  | Stop     | Stop  | Stop   | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -        | None | -      | -    | None  | -        | -     | None   | -      | -     | None  |
| Storage Length         | 532    | -        | -    | 532    | -    | -     | -        | -     | -      | -      | -     | -     |
| Veh in Median Storage  |        | 0        | -    | -      | 0    | -     | -        | 0     | -      | -      | 0     | -     |
| Grade, %               | -      | 0        | -    | -      | 0    | -     | -        | 0     | -      | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92       | 92   | 92     | 92   | 92    | 92       | 92    | 92     | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2        | 2    | 2      | 2    | 2     | 2        | 2     | 2      | 2      | 2     | 2     |
| Mvmt Flow              | 8      | 239      | 13   | 14     | 484  | 32    | 32       | 17    | 14     | 20     | 8     | 39    |
|                        |        |          |      |        |      |       |          |       |        |        |       |       |
| Major/Minor I          | Major1 |          |      | Major2 |      |       | Minor1   |       |        | Minor2 |       |       |
| Conflicting Flow All   | 516    | 0        | 0    | 252    | 0    | 0     | 814      | 806   | 246    | 805    | 796   | 500   |
| Stage 1                | -      | _        | -    | -      | -    | _     | 262      | 262   |        | 528    | 528   | -     |
| Stage 2                | _      | -        | -    | -      | _    | -     | 552      | 544   | -      | 277    | 268   | -     |
| Critical Hdwy          | 4.12   | _        | _    | 4.12   | _    | _     | 7.12     | 6.52  | 6.22   | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -        | -    | -      | -    | -     | 6.12     | 5.52  | -      | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -        | -    | -      | -    | -     | 6.12     | 5.52  | -      | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -        | -    | 2.218  | -    | -     | 3.518    | 4.018 | 3.318  | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1050   | -        | -    | 1313   | -    | -     | 297      | 316   | 793    | 301    | 320   | 571   |
| Stage 1                | -      | -        | -    | -      | -    | -     | 743      | 691   | -      | 534    | 528   | -     |
| Stage 2                | -      | -        | -    | -      | -    | -     | 518      | 519   | -      | 729    | 687   | -     |
| Platoon blocked, %     |        | -        | -    |        | -    | -     |          |       |        |        |       |       |
| Mov Cap-1 Maneuver     | 1050   | -        | -    | 1313   | -    | -     | 268      | 310   | 793    | 279    | 314   | 571   |
| Mov Cap-2 Maneuver     | -      | -        | -    | -      | -    | -     | 268      | 310   | -      | 279    | 314   | -     |
| Stage 1                | -      | -        | -    | -      | -    | -     | 737      | 685   | -      | 530    | 522   | -     |
| Stage 2                | -      | -        | -    | -      | -    | -     | 470      | 513   | -      | 693    | 682   | -     |
|                        |        |          |      |        |      |       |          |       |        |        |       |       |
| Approach               | EB     |          |      | WB     |      |       | NB       |       |        | SB     |       |       |
| HCM Control Delay, s   | 0.2    |          |      | 0.2    |      |       | 18.5     |       |        | 15.6   |       |       |
| HCM LOS                |        |          |      |        |      |       | С        |       |        | С      |       |       |
|                        |        |          |      |        |      |       |          |       |        |        |       |       |
| Minor Lane/Major Mvm   | t      | NBLn1    | EBL  | EBT    | EBR  | WBL   | WBT      | WBR   | SBI n1 |        |       |       |
| Capacity (veh/h)       |        | 329      | 1050 | -      |      | 1313  | -        | -     |        |        |       |       |
| HCM Lane V/C Ratio     |        | 0.192    |      | _      |      | 0.011 | _        |       | 0.163  |        |       |       |
| HCM Control Delay (s)  |        | 18.5     | 8.5  | _      | _    | 7.8   | _        | _     | 15.6   |        |       |       |
| HCM Lane LOS           |        | C        | Α    | _      | _    | Α.    | <u>-</u> | _     | C      |        |       |       |
| HCM 95th %tile Q(veh)  |        | 0.7      | 0    | _      | _    | 0     | -        | -     | 0.6    |        |       |       |
|                        |        | 0.1      |      |        |      |       |          |       | 5.5    |        |       |       |

| Intersection             |          |            |       |           |                 |       |          |                |       |        |       |       |
|--------------------------|----------|------------|-------|-----------|-----------------|-------|----------|----------------|-------|--------|-------|-------|
| Int Delay, s/veh         | 6.2      |            |       |           |                 |       |          |                |       |        |       |       |
| Movement                 | EBL      | EBT        | EBR   | WBL       | WBT             | WBR   | NBL      | NBT            | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations      | LDL<br>Š | <u>₽</u>   | LDIX  | VVDL<br>Š | WB1<br><b>}</b> | WOR   | NDL      |                | NDIX  | ODL    | - SB1 | ODIN  |
| Traffic Vol, veh/h       | ា<br>21  | <b>7</b> 5 | 134   | 14        | <b>171</b>      | 12    | 109      | <b>♣</b><br>25 | 6     | 13     | 61    | 35    |
| Future Vol, veh/h        | 21       | 75         | 134   | 14        | 171             | 12    | 109      | 25             | 6     | 13     | 61    | 35    |
|                          | 0        | 0          | 0     | 0         | 0               | 0     | 0        | 0              | 0     | 0      | 0     | 0     |
| Conflicting Peds, #/hr   |          |            |       |           |                 |       |          |                |       |        |       |       |
| Sign Control             | Free     | Free       | Free  | Free      | Free            | Free  | Stop     | Stop           | Stop  | Stop   | Stop  | Stop  |
| RT Channelized           | 200      | -          | None  | 400       | -               | None  | -        | -              | None  | -      | -     | None  |
| Storage Length           | 200      | -          | -     | 400       | -               | -     | -        | -              | -     | -      | -     | -     |
| Veh in Median Storage    | e, # -   | 0          | -     | -         | 0               | -     | -        | 0              | -     | -      | 0     | -     |
| Grade, %                 | -        | 0          | - 00  | -         | 0               | -     | -        | 0              | -     | -      | 0     | -     |
| Peak Hour Factor         | 92       | 92         | 92    | 92        | 92              | 92    | 92       | 92             | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %        | 2        | 2          | 2     | 2         | 2               | 2     | 2        | 2              | 2     | 2      | 2     | 2     |
| Mvmt Flow                | 23       | 82         | 146   | 15        | 186             | 13    | 118      | 27             | 7     | 14     | 66    | 38    |
|                          |          |            |       |           |                 |       |          |                |       |        |       |       |
| Major/Minor              | Major1   |            |       | Major2    |                 |       | Minor1   |                |       | Minor2 |       |       |
| Conflicting Flow All     | 199      | 0          | 0     | 228       | 0               | 0     | 476      | 430            | 155   | 441    | 497   | 193   |
| Stage 1                  | -        | _          | -     | -         | -               | _     | 201      | 201            | -     | 223    | 223   | -     |
| Stage 2                  | _        | -          | -     | -         | _               | _     | 275      | 229            | _     | 218    | 274   | _     |
| Critical Hdwy            | 4.12     | -          | -     | 4.12      | -               | -     | 7.12     | 6.52           | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1      | -        | _          | _     | -         | _               | _     | 6.12     | 5.52           |       | 6.12   | 5.52  |       |
| Critical Hdwy Stg 2      | _        | _          | _     | -         | -               | -     | 6.12     | 5.52           | _     | 6.12   | 5.52  | _     |
| Follow-up Hdwy           | 2.218    | _          | _     | 2.218     | _               | _     | 3.518    | 4.018          | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver       | 1373     | _          | -     | 1340      | -               | _     | 499      | 518            | 891   | 527    | 475   | 849   |
| Stage 1                  |          | _          | _     | -         | _               | _     | 801      | 735            | -     | 780    | 719   | - 3.5 |
| Stage 2                  | _        | _          | _     | _         | _               | _     | 731      | 715            | _     | 784    | 683   | _     |
| Platoon blocked, %       |          | _          | _     |           | _               | _     | . • 1    |                |       | . •    | 300   |       |
| Mov Cap-1 Maneuver       | 1373     | _          | _     | 1340      | _               | _     | 415      | 503            | 891   | 491    | 462   | 849   |
| Mov Cap-2 Maneuver       | 5.5      | _          | _     | -         | _               | _     | 415      | 503            | -     | 491    | 462   |       |
| Stage 1                  | _        | _          | _     | _         | _               | _     | 787      | 723            | _     | 767    | 711   | _     |
| Stage 2                  | _        | _          | _     | _         | _               | _     | 626      | 707            | _     | 736    | 671   | _     |
| Olugo Z                  |          |            |       |           |                 |       | 520      | , 01           |       | , 00   | 51.1  |       |
|                          |          |            |       |           |                 |       |          |                |       |        |       |       |
| Approach                 | EB       |            |       | WB        |                 |       | NB       |                |       | SB     |       |       |
| HCM Control Delay, s     | 0.7      |            |       | 0.5       |                 |       | 17.5     |                |       | 13.4   |       |       |
| HCM LOS                  |          |            |       |           |                 |       | С        |                |       | В      |       |       |
|                          |          |            |       |           |                 |       |          |                |       |        |       |       |
| Minor Lane/Major Mvm     | nt       | NBLn1      | EBL   | EBT       | EBR             | WBL   | WBT      | WBR            | SBLn1 |        |       |       |
| Capacity (veh/h)         |          | 439        | 1373  |           |                 | 1340  |          |                | 546   |        |       |       |
| HCM Lane V/C Ratio       |          | 0.347      | 0.017 | _         |                 | 0.011 | <u>-</u> | _              | 0.217 |        |       |       |
| HCM Control Delay (s)    |          | 17.5       | 7.7   | _         | _               | 7.7   | _        | _              |       |        |       |       |
| HCM Lane LOS             |          | 17.5       | Α     | _         | _               | Α     | _        | _              | В     |        |       |       |
| HCM 95th %tile Q(veh     | )        | 1.5        | 0.1   |           | _               | 0     |          | _              | 0.8   |        |       |       |
| TIOW JOHN JOHN WINE WINE | 1        | 1.0        | 0.1   |           |                 | U     | _        |                | 0.0   |        |       |       |

| Intersection             |                |          |         |          |        |       |
|--------------------------|----------------|----------|---------|----------|--------|-------|
| Int Delay, s/veh         | 2.9            |          |         |          |        |       |
| Movement                 | EBT            | EBR      | WBL     | WBT      | NBL    | NBR   |
| Lane Configurations      | <u> </u>       | 7        | ሻ       | <u>₩</u> | ሻ      | TVDIX |
| Traffic Vol, veh/h       | 275            | 15       | 13      | 323      | 116    | 8     |
| Future Vol, veh/h        | 275            | 15       | 13      | 323      | 116    | 8     |
| Conflicting Peds, #/hr   | 0              | 0        | 0       | 0_0      | 0      | 0     |
|                          | Free           | Free     | Free    | Free     | Stop   | Stop  |
| RT Channelized           | -              | None     | -       | None     | -      | None  |
| Storage Length           | -              | 570      | 570     | -        | 0      | 0     |
| Veh in Median Storage, # | <del>#</del> 0 | -        | -       | 0        | 0      | -     |
| Grade, %                 | 0              | -        | -       | 0        | 0      | -     |
| Peak Hour Factor         | 92             | 92       | 92      | 92       | 92     | 92    |
| Heavy Vehicles, %        | 2              | 2        | 2       | 2        | 2      | 2     |
| Mvmt Flow                | 299            | 16       | 14      | 351      | 126    | 9     |
|                          |                |          |         |          |        |       |
| Majar/Minar M            | -:1            |          | Maia#0  |          | \ 1:1  |       |
|                          | ajor1          |          | Major2  |          | Minor1 | 000   |
| Conflicting Flow All     | 0              | 0        | 315     | 0        | 678    | 299   |
| Stage 1                  | -              | -        | -       | -        | 299    | -     |
| Stage 2                  | -              | -        | - 4.40  | -        | 379    | -     |
| Critical Hdwy            | -              | -        | 4.12    | -        | 6.42   | 6.22  |
| Critical Hdwy Stg 1      | -              | -        | -       | -        | 5.42   | -     |
| Critical Hdwy Stg 2      | -              | -        | -       | -        | 5.42   | -     |
| Follow-up Hdwy           | -              |          | 2.218   | -        | 3.518  |       |
| Pot Cap-1 Maneuver       | -              | -        | 1245    | -        | 418    | 741   |
| Stage 1                  | -              | -        | -       | -        | 752    | -     |
| Stage 2                  | -              | -        | -       | -        | 692    | -     |
| Platoon blocked, %       | -              | -        | 1015    | -        | 440    | 744   |
| Mov Cap-1 Maneuver       | -              | -        | 1245    | -        | 413    | 741   |
| Mov Cap-2 Maneuver       | -              | -        | -       | -        | 413    | -     |
| Stage 1                  | -              | -        | -       | -        | 752    | -     |
| Stage 2                  | -              | -        | -       | -        | 684    | -     |
|                          |                |          |         |          |        |       |
| Approach                 | EB             |          | WB      |          | NB     |       |
| HCM Control Delay, s     | 0              |          | 0.3     |          | 17     |       |
| HCM LOS                  |                |          |         |          | С      |       |
|                          |                |          |         |          |        |       |
| Minor Long/Major Myset   |                | IDI 51 P | VIDI ~2 | EDT      | EDD    | WDI   |
| Minor Lane/Major Mvmt    | ſ              | VBLn11   |         | EBT      | EBR    | WBL   |
| Capacity (veh/h)         |                | 413      | 741     | -        |        | 1245  |
| HCM Control Doloy (a)    |                | 0.305    |         | -        |        | 0.011 |
| HCM Control Delay (s)    |                | 17.5     | 9.9     | -        | -      | 7.9   |
| HCM Of the O(trah)       |                | 1.3      | A       | -        | -      | A     |
| HCM 95th %tile Q(veh)    |                | 1.5      | 0       | -        | -      | 0     |

| Intersection                       |       |                 |        |      |         |       |
|------------------------------------|-------|-----------------|--------|------|---------|-------|
| Int Delay, s/veh                   | 0.1   |                 |        |      |         |       |
|                                    |       | EDD             | WDI    | WDT  | NDI     | NDD   |
|                                    | EBT   | EBR             | WBL    | WBT  | NBL     | NBR   |
| Lane Configurations                | 101   | 7               | 0      | 1000 | 0       | 7     |
| Traffic Vol, veh/h                 | 191   | 92              | 0      | 336  | 0       | 10    |
| Future Vol, veh/h                  | 191   | 92              | 0      | 336  | 0       | 10    |
| Conflicting Peds, #/hr             | _ 0   | _ 0             | _ 0    | _ 0  | 0       | 0     |
|                                    | Free  | Free            | Free   | Free | Stop    | Stop  |
| RT Channelized                     | -     |                 | -      |      | -       | None  |
| Storage Length                     | -     | 250             | -      | -    | -       | 0     |
| Veh in Median Storage, #           |       | -               | -      | 0    | 0       | -     |
| Grade, %                           | 0     | -               | -      | 0    | 0       | -     |
| Peak Hour Factor                   | 92    | 92              | 92     | 92   | 92      | 92    |
| Heavy Vehicles, %                  | 2     | 2               | 2      | 2    | 2       | 2     |
| Mvmt Flow                          | 208   | 100             | 0      | 365  | 0       | 11    |
|                                    |       |                 |        |      |         |       |
| Major/Minor Ma                     | ajor1 | N               | Major2 | N    | /linor1 |       |
|                                    |       |                 |        |      |         | 200   |
| Conflicting Flow All               | 0     | 0               | -      | -    | -       | 208   |
| Stage 1                            | -     | -               | -      | -    | -       | -     |
| Stage 2                            | -     | -               | -      | -    | -       | -     |
| Critical Hdwy                      | -     | -               | -      | -    | -       | 6.22  |
| Critical Hdwy Stg 1                | -     | -               | -      | -    | -       | -     |
| Critical Hdwy Stg 2                | -     | -               | -      | -    | -       | -     |
| Follow-up Hdwy                     | -     | -               | -      | -    |         | 3.318 |
| Pot Cap-1 Maneuver                 | -     | -               | 0      | -    | 0       | 832   |
| Stage 1                            | -     | -               | 0      | -    | 0       | -     |
| Stage 2                            | -     | -               | 0      | -    | 0       | -     |
| Platoon blocked, %                 | -     | -               |        | -    |         |       |
| Mov Cap-1 Maneuver                 | -     | -               | -      | -    | -       | 832   |
| Mov Cap-2 Maneuver                 | -     | -               | -      | -    | -       | -     |
| Stage 1                            | -     | -               | -      | -    | -       | -     |
| Stage 2                            | -     | -               | -      | -    | -       | -     |
| J. H. G.                           |       |                 |        |      |         |       |
| A                                  | ED    |                 | \A/E   |      | NE      |       |
| Approach                           | EB    |                 | WB     |      | NB      |       |
| HCM Control Delay, s               | 0     |                 | 0      |      | 9.4     |       |
| HCM LOS                            |       |                 |        |      | Α       |       |
|                                    |       |                 |        |      |         |       |
| Minor Lane/Major Mvmt              | 1     | NBLn1           | EBT    | EBR  | WBT     |       |
| Capacity (veh/h)                   | •     | 832             | -      | LDIX | -       |       |
| HCM Lane V/C Ratio                 |       | 0.013           | _      | _    | _       |       |
| HCM Control Delay (s)              |       | 9.4             | _      | _    | _       |       |
|                                    |       | J. <del>4</del> |        |      |         |       |
|                                    |       | ٨               |        |      |         |       |
| HCM Lane LOS HCM 95th %tile Q(veh) |       | A<br>0          | -      | -    | -       |       |

| Intersection           |        |       |          |          |          |          |        |              |          |              |      |          |
|------------------------|--------|-------|----------|----------|----------|----------|--------|--------------|----------|--------------|------|----------|
| Int Delay, s/veh       | 3      |       |          |          |          |          |        |              |          |              |      |          |
| Movement               | EBL    | EBT   | EBR      | WBL      | WBT      | WBR      | NBL    | NBT          | NBR      | SBL          | SBT  | SBR      |
| Lane Configurations    | ች      | ĵ.    |          | *        | ĵ.       |          |        | 4            |          |              | 4    |          |
| Traffic Vol, veh/h     | 18     | 370   | 18       | 20       | 249      | 24       | 20     | 21           | 17       | 35           | 13   | 12       |
| Future Vol, veh/h      | 18     | 370   | 18       | 20       | 249      | 24       | 20     | 21           | 17       | 35           | 13   | 12       |
| Conflicting Peds, #/hr | 0      | 0     | 0        | 0        | 0        | 0        | 0      | 0            | 0        | 0            | 0    | 0        |
| Sign Control           | Free   | Free  | Free     | Free     | Free     | Free     | Stop   | Stop         | Stop     | Stop         | Stop | Stop     |
| RT Channelized         | -      | _     | None     | -        | _        | None     | _      | _            | None     | -            | -    | None     |
| Storage Length         | 532    | _     | -        | 532      | _        | -        | -      | -            | -        | -            | -    | -        |
| Veh in Median Storage  |        | 0     | -        | -        | 0        | -        | -      | 0            | -        | -            | 0    | -        |
| Grade, %               | -      | 0     | _        | -        | 0        | -        | -      | 0            | -        | -            | 0    | _        |
| Peak Hour Factor       | 92     | 92    | 92       | 92       | 92       | 92       | 92     | 92           | 92       | 92           | 92   | 92       |
| Heavy Vehicles, %      | 2      | 2     | 2        | 2        | 2        | 2        | 2      | 2            | 2        | 2            | 2    | 2        |
| Mvmt Flow              | 20     | 402   | 20       | 22       | 271      | 26       | 22     | 23           | 18       | 38           | 14   | 13       |
|                        |        |       |          |          |          |          |        |              |          |              |      |          |
| Major/Minor            | Major1 |       |          | Major2   |          |          | Minor1 |              | ı        | Minor2       |      |          |
| Conflicting Flow All   | 297    | 0     | 0        | 422      | 0        | 0        | 794    | 793          | 412      | 801          | 790  | 284      |
| Stage 1                | -      | -     | -        | -        | -        | -        | 452    | 452          | - 12     | 328          | 328  |          |
| Stage 2                | _      | _     | _        | <u>-</u> | <u>-</u> | <u>-</u> | 342    | 341          | <u>-</u> | 473          | 462  | <u>-</u> |
| Critical Hdwy          | 4.12   | _     | _        | 4.12     | _        | _        | 7.12   | 6.52         | 6.22     | 7.12         | 6.52 | 6.22     |
| Critical Hdwy Stg 1    | - 1.12 | _     | _        |          | <u>-</u> | <u>-</u> | 6.12   | 5.52         | - 0.22   | 6.12         | 5.52 | - 0.22   |
| Critical Hdwy Stg 2    | _      | _     | _        | _        | _        | _        | 6.12   | 5.52         | _        | 6.12         | 5.52 | _        |
| Follow-up Hdwy         | 2.218  | _     | <u>-</u> | 2.218    | <u>-</u> | <u>-</u> |        | 4.018        |          | 3.518        |      | 3.318    |
| Pot Cap-1 Maneuver     | 1264   | _     | _        | 1137     | _        | _        | 306    | 321          | 640      | 303          | 322  | 755      |
| Stage 1                |        | _     | _        |          | _        | _        | 587    | 570          | -        | 685          | 647  | -        |
| Stage 2                | _      | _     | _        | _        | _        | _        | 673    | 639          | -        | 572          | 565  | _        |
| Platoon blocked, %     |        | _     | _        |          | _        | _        | 313    | 300          |          | J1 L         | 500  |          |
| Mov Cap-1 Maneuver     | 1264   | -     | -        | 1137     | -        | -        | 283    | 310          | 640      | 270          | 311  | 755      |
| Mov Cap-2 Maneuver     |        | _     | _        | -        | _        | _        | 283    | 310          | -        | 270          | 311  | -        |
| Stage 1                | -      | -     | -        | -        | -        | -        | 578    | 561          | -        | 674          | 635  | -        |
| Stage 2                | _      | _     | _        | _        | _        | -        | 634    | 627          | _        | 524          | 556  | -        |
| 2.0.00 =               |        |       |          |          |          |          | 30.    | J <u>-</u> . |          | J <u>-</u> ' | 300  |          |
| Approach               | EB     |       |          | WB       |          |          | NB     |              |          | SB           |      |          |
| HCM Control Delay, s   | 0.3    |       |          | 0.6      |          |          | 17.4   |              |          | 19.1         |      |          |
| HCM LOS                | 0.0    |       |          | 0.0      |          |          | C      |              |          | C            |      |          |
|                        |        |       |          |          |          |          | J      |              |          | <u> </u>     |      |          |
| Minor Lane/Major Mvm   | nt     | NBLn1 | EBL      | EBT      | EBR      | WBL      | WBT    | WBR          | SBI n1   |              |      |          |
| Capacity (veh/h)       |        | 352   | 1264     |          |          | 1137     |        | -            | 320      |              |      |          |
| HCM Lane V/C Ratio     |        | 0.179 |          | _        |          | 0.019    | _      | _            | 0.204    |              |      |          |
| HCM Control Delay (s)  |        | 17.4  | 7.9      | _        |          | 8.2      |        |              | 19.1     |              |      |          |
| HCM Lane LOS           |        | C     | 7.9<br>A | _        | _        | Α        | _      | _            | C        |              |      |          |
| HCM 95th %tile Q(veh)  | \      | 0.6   | 0        |          |          | 0.1      |        | _            | 0.8      |              |      |          |
| TOW SOUT JULIE Q(VEII) |        | 0.0   | - 0      |          |          | 0.1      |        |              | 0.0      |              |      |          |

| Intersection           |          |          |      |          |           |       |        |       |        |        |       |       |
|------------------------|----------|----------|------|----------|-----------|-------|--------|-------|--------|--------|-------|-------|
| Int Delay, s/veh       | 6.3      |          |      |          |           |       |        |       |        |        |       |       |
| Movement               | EBL      | EBT      | EBR  | WBL      | WBT       | WBR   | NBL    | NBT   | NBR    | SBL    | SBT   | SBR   |
| Lane Configurations    | <u> </u> | <u> </u> |      | ሻ        | <b>\$</b> |       |        | 4     |        |        | 4     |       |
| Traffic Vol, veh/h     | 48       | 177      | 68   | 3        | 91        | 14    | 114    | 35    | 16     | 24     | 20    | 26    |
| Future Vol, veh/h      | 48       | 177      | 68   | 3        | 91        | 14    | 114    | 35    | 16     | 24     | 20    | 26    |
| Conflicting Peds, #/hr | 0        | 0        | 0    | 0        | 0         | 0     | 0      | 0     | 0      | 0      | 0     | 0     |
| Sign Control           | Free     | Free     | Free | Free     | Free      | Free  | Stop   | Stop  | Stop   | Stop   | Stop  | Stop  |
| RT Channelized         | -        | -        | None | -        | -         | None  | -      | -     | None   | -      | -     | None  |
| Storage Length         | 200      | -        | -    | 400      | -         | -     | -      | -     | -      | -      | -     | -     |
| Veh in Median Storage  | e, # -   | 0        | -    | -        | 0         | -     | -      | 0     | -      | -      | 0     | -     |
| Grade, %               | -        | 0        | -    | -        | 0         | -     | -      | 0     | -      | -      | 0     | -     |
| Peak Hour Factor       | 92       | 92       | 92   | 92       | 92        | 92    | 92     | 92    | 92     | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2        | 2        | 2    | 2        | 2         | 2     | 2      | 2     | 2      | 2      | 2     | 2     |
| Mvmt Flow              | 52       | 192      | 74   | 3        | 99        | 15    | 124    | 38    | 17     | 26     | 22    | 28    |
|                        |          |          |      |          |           |       |        |       |        |        |       |       |
| Major/Minor I          | Major1   |          |      | Major2   |           |       | Minor1 |       |        | Minor2 |       |       |
| Conflicting Flow All   | 114      | 0        | 0    | 266      | 0         | 0     | 471    | 453   | 229    | 474    | 483   | 107   |
| Stage 1                | -        | -        | -    |          | -         | -     | 333    | 333   |        | 113    | 113   | -     |
| Stage 2                | -        | -        | -    | -        | -         | -     | 138    | 120   | -      | 361    | 370   | -     |
| Critical Hdwy          | 4.12     | -        | -    | 4.12     | -         | -     | 7.12   | 6.52  | 6.22   | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -        | -        | -    | -        | -         | -     | 6.12   | 5.52  | -      | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -        | -        | -    | -        | -         | -     | 6.12   | 5.52  | -      | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218    | -        | -    | 2.218    | -         | -     | 3.518  | 4.018 | 3.318  | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1475     | -        | -    | 1298     | -         | -     | 503    | 503   | 810    | 501    | 483   | 947   |
| Stage 1                | -        | -        | -    | -        | -         | -     | 681    | 644   | -      | 892    | 802   | -     |
| Stage 2                | -        | -        | -    | -        | -         | -     | 865    | 796   | -      | 657    | 620   | -     |
| Platoon blocked, %     |          | -        | -    |          | -         | -     |        |       |        |        |       |       |
| Mov Cap-1 Maneuver     | 1475     | -        | -    | 1298     | -         | -     | 457    | 484   | 810    | 448    | 465   | 947   |
| Mov Cap-2 Maneuver     | -        | -        | -    | -        | -         | -     | 457    | 484   | -      | 448    | 465   | -     |
| Stage 1                | -        | -        | -    | -        | -         | -     | 657    | 621   | -      |        | 800   | -     |
| Stage 2                | -        | -        | -    | -        | -         | -     | 814    | 794   | -      | 582    | 598   | -     |
|                        |          |          |      |          |           |       |        |       |        |        |       |       |
| Approach               | EB       |          |      | WB       |           |       | NB     |       |        | SB     |       |       |
| HCM Control Delay, s   | 1.2      |          |      | 0.2      |           |       | 16.8   |       |        | 12.4   |       |       |
| HCM LOS                |          |          |      |          |           |       | С      |       |        | В      |       |       |
|                        |          |          |      |          |           |       |        |       |        |        |       |       |
| Minor Lane/Major Mvm   | nt       | NBLn1    | EBL  | EBT      | EBR       | WBL   | WBT    | WBR   | SBI n1 |        |       |       |
| Capacity (veh/h)       |          | 483      | 1475 | -        |           | 1298  | -      | -     | 564    |        |       |       |
| HCM Lane V/C Ratio     |          | 0.371    |      | _        |           | 0.003 | _      |       | 0.135  |        |       |       |
| HCM Control Delay (s)  |          | 16.8     | 7.5  | _        | _         | 7.8   | _      | _     |        |        |       |       |
| HCM Lane LOS           |          | C        | Α.5  | <u>-</u> | _         | Α.    | _      | _     | В      |        |       |       |
| HCM 95th %tile Q(veh)  | )        | 1.7      | 0.1  | -        | _         | 0     | _      | -     | 0.5    |        |       |       |
|                        |          |          |      |          |           |       |        |       | - 0.0  |        |       |       |

| Intersection           |          |          |        |         |        |        |  |
|------------------------|----------|----------|--------|---------|--------|--------|--|
| Int Delay, s/veh       | 2.9      |          |        |         |        |        |  |
| Movement               | EBT      | EBR      | WBL    | WBT     | NBL    | NBR    |  |
| Lane Configurations    | <b>^</b> | 7        | ች      | <b></b> | ች      | 7      |  |
| Traffic Vol, veh/h     | 362      | 53       | 16     | 250     | 118    | 3      |  |
| Future Vol, veh/h      | 362      | 53       | 16     | 250     | 118    | 3      |  |
| Conflicting Peds, #/hr | 0        | 0        | 0      | 0       | 0      | 0      |  |
| Sign Control           | Free     | Free     | Free   | Free    | Stop   | Stop   |  |
| RT Channelized         | -        | None     | -      | None    | -      | None   |  |
| Storage Length         | -        | 570      | 570    | -       | 0      | 0      |  |
| Veh in Median Storage  | e,# 0    | -        | -      | 0       | 0      | _      |  |
| Grade, %               | 0        | _        | -      | 0       | 0      | -      |  |
| Peak Hour Factor       | 92       | 92       | 92     | 92      | 92     | 92     |  |
| Heavy Vehicles, %      | 2        | 2        | 2      | 2       | 2      | 2      |  |
| Mymt Flow              | 393      | 58       | 17     | 272     | 128    | 3      |  |
| WIVIIILIOW             | 000      | 00       | 11     | 212     | 120    | J      |  |
|                        |          |          |        |         |        |        |  |
| Major/Minor            | Major1   |          | Major2 | N       | Minor1 |        |  |
| Conflicting Flow All   | 0        | 0        | 451    | 0       | 699    | 393    |  |
| Stage 1                | -        | -        | -      | -       | 393    | -      |  |
| Stage 2                | -        | -        | -      | -       | 306    | -      |  |
| Critical Hdwy          | -        | -        | 4.12   | -       | 6.42   | 6.22   |  |
| Critical Hdwy Stg 1    | -        | -        | -      | -       | 5.42   | -      |  |
| Critical Hdwy Stg 2    | -        | -        | -      | -       | 5.42   | -      |  |
| Follow-up Hdwy         | -        | -        | 2.218  | -       | 3.518  | 3.318  |  |
| Pot Cap-1 Maneuver     | -        | -        | 1109   | -       | 406    | 656    |  |
| Stage 1                | -        | -        | -      | -       | 682    | -      |  |
| Stage 2                | -        | -        | -      | _       | 747    | _      |  |
| Platoon blocked, %     | _        | _        |        | _       |        |        |  |
| Mov Cap-1 Maneuver     |          | _        | 1109   | _       | 400    | 656    |  |
| Mov Cap-2 Maneuver     | _        | _        | -      | _       | 400    | -      |  |
| Stage 1                | _        | _        | _      | _       | 682    | _      |  |
| Stage 2                | _        | _        | _      | _       | 736    | _      |  |
| Slage 2                | _        | -        |        |         | 730    |        |  |
|                        |          |          |        |         |        |        |  |
| Approach               | EB       |          | WB     |         | NB     |        |  |
| HCM Control Delay, s   | 0        |          | 0.5    |         | 18     |        |  |
| HCM LOS                |          |          |        |         | С      |        |  |
|                        |          |          |        |         |        |        |  |
| NA' (NA . ' NA         |          | UDL 4    | NDL C  | EDT     | EDE    | MDI    |  |
| Minor Lane/Major Mvn   | ητ Γ     | NBLn11   |        | EBT     | EBR    | WBL    |  |
| Capacity (veh/h)       |          | 400      | 656    | -       | -      | 1109   |  |
| HCM Lane V/C Ratio     |          | 0.321    |        | -       | -      | 0.016  |  |
|                        |          | 18.2     | 10.5   | _       | -      | 8.3    |  |
| HCM Control Delay (s)  | )        |          |        |         |        |        |  |
|                        |          | C<br>1.4 | B<br>0 | -       | -      | A<br>0 |  |

| Intersection            |          |          |         |              |         |           |
|-------------------------|----------|----------|---------|--------------|---------|-----------|
| Int Delay, s/veh        | 0.2      |          |         |              |         |           |
| Movement                | EBT      | EBR      | WBL     | WBT          | NBL     | NBR       |
| Lane Configurations     | <u> </u> |          | VVDL    |              | NDL     | NDIX<br>* |
| Traffic Vol, veh/h      | 284      | 81       | 0       | <b>↑</b> 266 | 0       | 10        |
| Future Vol, veh/h       | 284      | 81       | 0       | 266          | 0       | 10        |
|                         | 204      | 0        | 0       | 200          | 0       | 0         |
| Conflicting Peds, #/hr  |          |          |         |              |         |           |
| Sign Control            | Free     | Free     | Free    | Free         | Stop    | Stop      |
| RT Channelized          | -        | None     | -       | None         | -       | None      |
| Storage Length          | -        | 250      | -       | -            | -       | 0         |
| Veh in Median Storage,  |          | -        | -       | 0            | 0       | -         |
| Grade, %                | 0        | -        | -       | 0            | 0       | -         |
| Peak Hour Factor        | 92       | 92       | 92      | 92           | 92      | 92        |
| Heavy Vehicles, %       | 2        | 2        | 2       | 2            | 2       | 2         |
| Mvmt Flow               | 309      | 88       | 0       | 289          | 0       | 11        |
|                         |          |          |         |              |         |           |
| N.A. '. (N.A.)          |          |          | 4 : 0   |              | P 4     |           |
|                         | /lajor1  |          | //ajor2 | N            | /linor1 |           |
| Conflicting Flow All    | 0        | 0        | -       | -            | -       | 309       |
| Stage 1                 | -        | -        | -       | -            | -       | -         |
| Stage 2                 | -        | -        | -       | -            | -       | -         |
| Critical Hdwy           | -        | -        | -       | -            | -       | 6.22      |
| Critical Hdwy Stg 1     | -        | -        | -       | -            | -       | -         |
| Critical Hdwy Stg 2     | -        | -        | -       | _            | -       | -         |
| Follow-up Hdwy          | _        | -        | _       | -            | _       | 3.318     |
| Pot Cap-1 Maneuver      | -        | _        | 0       | _            | 0       | 731       |
| Stage 1                 | _        | _        | 0       | _            | 0       | -         |
| Stage 2                 | _        | _        | 0       | _            | 0       | _         |
| Platoon blocked, %      | <u>-</u> | <u>-</u> | U       | _            | U       |           |
| Mov Cap-1 Maneuver      |          | _        | _       |              | _       | 731       |
|                         |          |          |         |              |         |           |
| Mov Cap-2 Maneuver      | -        | -        | -       | -            | -       | -         |
| Stage 1                 | -        | -        | -       | -            | -       | -         |
| Stage 2                 | -        | -        | -       | -            | -       | -         |
|                         |          |          |         |              |         |           |
| Approach                | EB       |          | WB      |              | NB      |           |
| HCM Control Delay, s    | 0        |          | 0       |              | 10      |           |
| HCM LOS                 | U        |          | U       |              | В       |           |
| HOW LOS                 |          |          |         |              | D       |           |
|                         |          |          |         |              |         |           |
| Minor Lane/Major Mvmt   | t 1      | NBLn1    | EBT     | EBR          | WBT     |           |
| Capacity (veh/h)        |          | 731      | _       | _            | -       |           |
| HCM Lane V/C Ratio      |          | 0.015    | _       | -            | -       |           |
| HCM Control Delay (s)   |          | 10       |         | _            | _       |           |
| HCM Lane LOS            |          | В        | _       | _            | _       |           |
| HCM 95th %tile Q(veh)   |          | 0        |         |              | _       |           |
| HOW JOHN JOHN WINE WINE |          | U        | _       | _            |         |           |

| Intersection           |         |          |      |        |      |       |        |       |       |        |       |       |
|------------------------|---------|----------|------|--------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 2.8     |          |      |        |      |       |        |       |       |        |       |       |
| Movement               | EBL     | EBT      | EBR  | WBL    | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | ሻ       | <b>1</b> |      | ኘ      | 4    |       |        | 4     |       |        | 4     | July  |
| Traffic Vol, veh/h     | 8       | 147      | 14   | 12     | 406  | 27    | 34     | 19    | 12    | 13     | 8     | 43    |
| Future Vol, veh/h      | 8       | 147      | 14   | 12     | 406  | 27    | 34     | 19    | 12    | 13     | 8     | 43    |
| Conflicting Peds, #/hr | 0       | 0        | 0    | 0      | 0    | 0     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free    | Free     | Free | Free   | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -       | -        | None | -      | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | 532     | -        | -    | 532    | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | ,# -    | 0        | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -       | 0        | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 92      | 92       | 92   | 92     | 92   | 92    | 92     | 92    | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2       | 2        | 2    | 2      | 2    | 2     | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 9       | 160      | 15   | 13     | 441  | 29    | 37     | 21    | 13    | 14     | 9     | 47    |
|                        |         |          |      |        |      |       |        |       |       |        |       |       |
| Major/Minor N          | //ajor1 |          |      | Major2 |      |       | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 470     | 0        | 0    | 175    | 0    | 0     | 696    | 682   | 168   | 685    | 675   | 456   |
| Stage 1                | -       | -        | -    | -      | -    | -     | 186    | 186   | -     | 482    | 482   | -     |
| Stage 2                | -       | -        | -    | -      | -    | -     | 510    | 496   | -     | 203    | 193   | -     |
| Critical Hdwy          | 4.12    | -        | -    | 4.12   | -    | -     | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -       | -        | -    | -      | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -       | -        | -    | -      | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218   | -        | -    | 2.218  | -    | -     | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1092    | -        | -    | 1401   | -    | -     | 356    | 372   | 876   | 362    | 376   | 604   |
| Stage 1                | -       | -        | -    | -      | -    | -     | 816    | 746   | -     | 565    | 553   | -     |
| Stage 2                | -       | -        | -    | -      | -    | -     | 546    | 545   | -     | 799    | 741   | -     |
| Platoon blocked, %     |         | -        | -    |        | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1092    | -        | -    | 1401   | -    | -     | 318    | 366   | 876   | 337    | 370   | 604   |
| Mov Cap-2 Maneuver     | -       | -        | -    | -      | -    | -     | 318    | 366   | -     | 337    | 370   | -     |
| Stage 1                | -       | -        | -    | -      | -    | -     | 809    | 740   | -     | 560    | 548   | -     |
| Stage 2                | -       | _        | _    | -      | -    | -     | 491    | 540   | -     | 759    | 735   | -     |
|                        |         |          |      |        |      |       |        |       |       |        |       |       |
| Approach               | EB      |          |      | WB     |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.4     |          |      | 0.2    |      |       | 16.7   |       |       | 13.6   |       |       |
| HCM LOS                |         |          |      |        |      |       | С      |       |       | В      |       |       |
|                        |         |          |      |        |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | t N     | NBLn1    | EBL  | EBT    | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |         |          | 1092 | -      |      | 1401  | -      | -     |       |        |       |       |
| HCM Lane V/C Ratio     |         | 0.187    |      | -      |      | 0.009 | -      | -     | 0.143 |        |       |       |
| HCM Control Delay (s)  |         | 16.7     | 8.3  | -      | -    | 7.6   | -      | -     | 13.6  |        |       |       |
| HCM Lane LOS           |         | С        | Α    | -      | -    | A     | -      | -     | В     |        |       |       |
| HCM 95th %tile Q(veh)  |         | 0.7      | 0    | -      | -    | 0     | -      | -     | 0.5   |        |       |       |
|                        |         |          |      |        |      |       |        |       |       |        |       |       |

| Intersection           |        |          |      |        |      |       |        |       |       |        |       |       |
|------------------------|--------|----------|------|--------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 7.4    |          |      |        |      |       |        |       |       |        |       |       |
| Movement               | EBL    | EBT      | EBR  | WBL    | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | ሻ      | <b>1</b> |      | ሻ      | 1≯   | 1,5,1 | 1,00   | 4     | 11011 | - 552  | 4     | UDIT  |
| Traffic Vol, veh/h     | 24     | 78       | 152  | 17     | 196  | 14    | 124    | 30    | 7     | 15     | 73    | 40    |
| Future Vol, veh/h      | 24     | 78       | 152  | 17     | 196  | 14    | 124    | 30    | 7     | 15     | 73    | 40    |
| Conflicting Peds, #/hr | 0      | 0        | 0    | 0      | 0    | 0     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free     | Free | Free   | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | _      | -        | None | -      | -    | None  | _      | -     | None  | -      | -     | None  |
| Storage Length         | 200    | -        | -    | 400    | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | , # -  | 0        | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0        | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92       | 92   | 92     | 92   | 92    | 92     | 92    | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2        | 2    | 2      | 2    | 2     | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 26     | 85       | 165  | 18     | 213  | 15    | 135    | 33    | 8     | 16     | 79    | 43    |
|                        |        |          |      |        |      |       |        |       |       |        |       |       |
| Major/Minor I          | Major1 |          | 1    | Major2 |      |       | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 228    | 0        | 0    | 250    | 0    | 0     | 538    | 484   | 168   | 497    | 559   | 221   |
| Stage 1                | -      | -        | -    | -      | -    | -     | 220    | 220   | -     | 257    | 257   | -     |
| Stage 2                | -      | -        | -    | -      | -    | -     | 318    | 264   | -     | 240    | 302   | -     |
| Critical Hdwy          | 4.12   | -        | -    | 4.12   | -    | -     | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -        | -    | -      | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -        | -    | -      | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -        | -    | 2.218  | -    | -     | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1340   | -        | -    | 1316   | -    | -     | 454    | 483   | 876   | 483    | 438   | 819   |
| Stage 1                | -      | -        | -    | -      | -    | -     | 782    | 721   | -     | 748    | 695   | -     |
| Stage 2                | -      | -        | -    | -      | -    | -     | 693    | 690   | -     | 763    | 664   | -     |
| Platoon blocked, %     |        | -        | -    |        | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1340   | -        | -    | 1316   | -    | -     | 359    | 467   | 876   | 442    | 424   | 819   |
| Mov Cap-2 Maneuver     | -      | -        | -    | -      | -    | -     | 359    | 467   | -     | 442    | 424   | -     |
| Stage 1                | -      | -        | -    | -      | -    | -     | 767    | 707   | -     | 734    | 685   | -     |
| Stage 2                | -      | -        | -    | -      | -    | -     | 572    | 680   | -     | 707    | 651   | -     |
|                        |        |          |      |        |      |       |        |       |       |        |       |       |
| Approach               | EB     |          |      | WB     |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.7    |          |      | 0.6    |      |       | 21.8   |       |       | 14.9   |       |       |
| HCM LOS                |        |          |      |        |      |       | С      |       |       | В      |       |       |
|                        |        |          |      |        |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | it l   | NBLn1    | EBL  | EBT    | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        | 386      | 1340 |        |      | 1316  | -      | -     | 502   |        |       |       |
| HCM Lane V/C Ratio     |        | 0.453    |      | _      |      | 0.014 | _      |       | 0.277 |        |       |       |
| HCM Control Delay (s)  |        | 21.8     | 7.7  | _      | _    | 7.8   | _      | -     | 14.9  |        |       |       |
| HCM Lane LOS           |        | C        | A    | _      | _    | A     | _      | _     | В     |        |       |       |
| HCM 95th %tile Q(veh)  |        | 2.3      | 0.1  | _      | -    | 0     | -      | -     | 1.1   |        |       |       |
|                        |        |          |      |        |      |       |        |       |       |        |       |       |

| Intersection                 |          |           |          |              |      |              |        |       |           |        |       |      |
|------------------------------|----------|-----------|----------|--------------|------|--------------|--------|-------|-----------|--------|-------|------|
| Int Delay, s/veh             | 3        |           |          |              |      |              |        |       |           |        |       |      |
| • •                          |          |           |          |              |      |              |        |       |           |        |       |      |
| Movement                     | EBL      | EBT       | EBR      | WBL          | WBT  | WBR          | NBL    | NBT   | NBR       | SBL    | SBT   | SBR  |
| Lane Configurations          | ች        | - ₽       |          |              | ₽    |              |        | 4     |           |        | 4     |      |
| Traffic Vol, veh/h           | 22       | 307       | 22       | 14           | 178  | 18           | 24     | 25    | 10        | 28     | 15    | 14   |
| Future Vol, veh/h            | 22       | 307       | 22       | 14           | 178  | 18           | 24     | 25    | 10        | 28     | 15    | 14   |
| Conflicting Peds, #/hr       | 0        | 0         | 0        | 0            | 0    | 0            | 0      | 0     | 0         | 0      | 0     | 0    |
| Sign Control                 | Free     | Free      | Free     | Free         | Free | Free         | Stop   | Stop  | Stop      | Stop   | Stop  | Stop |
| RT Channelized               | -        | -         | None     | -            | -    | None         | -      | -     | None      | -      | -     | None |
| Storage Length               | 532      | -         | -        | 532          | -    | -            | -      | -     | -         | -      | -     | -    |
| Veh in Median Storage        | e,# -    | 0         | -        | -            | 0    | -            | -      | 0     | -         | -      | 0     | -    |
| Grade, %                     | -        | 0         | -        | -            | 0    | -            | -      | 0     | -         | -      | 0     | -    |
| Peak Hour Factor             | 92       | 92        | 92       | 92           | 92   | 92           | 92     | 92    | 92        | 92     | 92    | 92   |
| Heavy Vehicles, %            | 2        | 2         | 2        | 2            | 2    | 2            | 2      | 2     | 2         | 2      | 2     | 2    |
| Mvmt Flow                    | 24       | 334       | 24       | 15           | 193  | 20           | 26     | 27    | 11        | 30     | 16    | 15   |
|                              |          |           |          |              |      |              |        |       |           |        |       |      |
| Major/Minor                  | Major1   |           | ı        | Major2       |      |              | Minor1 |       |           | Minor2 |       |      |
|                              | 213      | 0         | 0        | 358          | 0    | 0            | 643    | 637   | 346       | 646    | 639   | 203  |
| Conflicting Flow All Stage 1 | 213      | -         | U        | J30          |      |              | 394    | 394   | 340       | 233    | 233   | 203  |
| Stage 2                      | -        | -         | -        | -            | -    | -            | 249    | 243   | -         | 413    | 406   | -    |
| Critical Hdwy                | 4.12     | -         | -        | 4.12         | -    | -            | 7.12   | 6.52  | 6.22      | 7.12   | 6.52  | 6.22 |
| Critical Hdwy Stg 1          | 4.12     | -         | -        | 4.12         | -    | -            | 6.12   | 5.52  | 0.22      | 6.12   | 5.52  | 0.22 |
| Critical Hdwy Stg 2          | -        | -         | -        | -            | -    | -            | 6.12   | 5.52  | -         | 6.12   | 5.52  | -    |
| Follow-up Hdwy               | 2.218    | -         | -        | 2.218        | -    | -            | 3.518  | 4.018 | 3.318     | 3.518  | 4.018 |      |
| Pot Cap-1 Maneuver           | 1357     | -         | -        | 1201         |      | -            | 386    | 395   | 697       | 385    | 394   | 838  |
| Stage 1                      | 1331     | -         | -        | 1201         | -    | -            | 631    | 605   | - 097     | 770    | 712   | 030  |
| Stage 2                      | <u>-</u> | -         | -        | -            |      | -            | 755    | 705   | -         | 616    | 598   | _    |
| Platoon blocked, %           | <u>-</u> | _         |          | -            |      | -            | 100    | 103   |           | 010    | 330   |      |
| Mov Cap-1 Maneuver           | 1357     | -         | <u>-</u> | 1201         |      |              | 358    | 383   | 697       | 350    | 382   | 838  |
| Mov Cap-1 Maneuver           | 1331     | -         |          | 1201         | -    | -            | 358    | 383   | - 097     | 350    | 382   | 030  |
| Stage 1                      | <u>-</u> | -         | <u>-</u> | <del>-</del> | _    | <del>-</del> | 620    | 594   | -         | 756    | 703   | -    |
| Stage 1                      | <u>-</u> |           |          | -            | _    | -            | 715    | 697   | -         | 568    | 587   | -    |
| Slaye Z                      | _        | _         | _        | <u>-</u>     | _    | <u>-</u>     | 113    | 037   | <u>-</u>  | 500    | 307   | _    |
|                              |          |           |          |              |      |              |        |       |           |        |       |      |
| Approach                     | EB       |           |          | WB           |      |              | NB     |       |           | SB     |       |      |
| HCM Control Delay, s         | 0.5      |           |          | 0.5          |      |              | 15.6   |       |           | 15.1   |       |      |
| HCM LOS                      |          |           |          |              |      |              | С      |       |           | С      |       |      |
|                              |          |           |          |              |      |              |        |       |           |        |       |      |
| Minor Lane/Major Mvn         | nt N     | NBLn1     | EBL      | EBT          | EBR  | WBL          | WBT    | WBR   | SBLn1     |        |       |      |
| Capacity (veh/h)             | 1        | 402       |          |              |      | 1201         | -      | -     |           |        |       |      |
| HCM Lane V/C Ratio           |          |           | 0.018    | -            |      | 0.013        | -      |       | 0.148     |        |       |      |
| HCM Control Delay (s         | )        | 15.6      | 7.7      | -            | -    | 0.013        | -      | -     |           |        |       |      |
| HCM Lane LOS                 | )        | 15.6<br>C | Α.       | -            | _    | A            | -      | -     | 13.1<br>C |        |       |      |
| HCM 95th %tile Q(veh         | 1)       | 0.6       | 0.1      | <u>-</u>     | -    | 0            | -      | -     | 0.5       |        |       |      |
| HOW SOUT WHILE Q(VEI         | IJ       | 0.0       | U. I     | -            | -    | U            | -      | -     | 0.5       |        |       |      |

| Intersection           |        |       |      |        |      |       |        |      |       |        |       |       |
|------------------------|--------|-------|------|--------|------|-------|--------|------|-------|--------|-------|-------|
| Int Delay, s/veh       | 7.7    |       |      |        |      |       |        |      |       |        |       |       |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT  | WBR   | NBL    | NBT  | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | ሻ      | ĵ.    |      | ሻ      | f)   |       |        | 4    |       |        | 44    |       |
| Traffic Vol, veh/h     | 57     | 201   | 78   | 3      | 96   | 17    | 132    | 42   | 19    | 29     | 24    | 28    |
| Future Vol, veh/h      | 57     | 201   | 78   | 3      | 96   | 17    | 132    | 42   | 19    | 29     | 24    | 28    |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0      | 0    | 0     | 0      | 0    | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free | Free   | Free | Free  | Stop   | Stop | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None | -      | -    | None  | -      | -    | None  | -      | -     | None  |
| Storage Length         | 200    | -     | -    | 400    | -    | -     | -      | -    | -     | -      | -     | -     |
| Veh in Median Storage  | ,# -   | 0     | -    | -      | 0    | -     | -      | 0    | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -    | -      | 0    | -     | -      | 0    | -     | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92    | 92   | 92     | 92   | 92    | 92     | 92   | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2     | 2    | 2      | 2    | 2     | 2      | 2    | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 62     | 218   | 85   | 3      | 104  | 18    | 143    | 46   | 21    | 32     | 26    | 30    |
|                        |        |       |      |        |      |       |        |      |       |        |       |       |
| Major/Minor I          | Major1 |       | 1    | Major2 |      | 1     | Minor1 |      |       | Minor2 |       |       |
| Conflicting Flow All   | 122    | 0     | 0    | 303    | 0    | 0     | 532    | 513  | 261   | 537    | 546   | 113   |
| Stage 1                | -      | -     | -    | _      | -    | -     | 385    | 385  |       | 119    | 119   | _     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 147    | 128  | -     | 418    | 427   | -     |
| Critical Hdwy          | 4.12   | -     | -    | 4.12   | -    | -     | 7.12   | 6.52 | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -     | -    | -      | -    | -     | 6.12   | 5.52 | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -     | -    | -      | -    | -     | 6.12   | 5.52 | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -     | -    | 2.218  | -    | -     | 3.518  |      | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1465   | -     | -    | 1258   | -    | -     | 458    | 465  | 778   | 455    | 445   | 940   |
| Stage 1                | -      | -     | -    | -      | -    | -     | 638    | 611  | -     | 885    | 797   | -     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 856    | 790  | -     | 612    | 585   | -     |
| Platoon blocked, %     |        | -     | -    |        | -    | -     |        |      |       |        |       |       |
| Mov Cap-1 Maneuver     | 1465   | -     | _    | 1258   | -    | -     | 408    | 445  | 778   | 394    | 425   | 940   |
| Mov Cap-2 Maneuver     | -      | -     | -    | -      | -    | -     | 408    | 445  | -     | 394    | 425   | -     |
| Stage 1                | -      | -     | _    | -      | -    | -     | 611    | 585  | -     | 848    | 795   | -     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 799    | 788  | -     | 526    | 560   | -     |
| Ŭ.                     |        |       |      |        |      |       |        |      |       |        |       |       |
| Approach               | EB     |       |      | WB     |      |       | NB     |      |       | SB     |       |       |
| HCM Control Delay, s   | 1.3    |       |      | 0.2    |      |       | 20.7   |      |       | 13.6   |       |       |
| HCM LOS                |        |       |      |        |      |       | С      |      |       | В      |       |       |
|                        |        |       |      |        |      |       |        |      |       |        |       |       |
| Minor Lane/Major Mvm   | ıt     | NBLn1 | EBL  | EBT    | EBR  | WBL   | WBT    | WBR  | SBLn1 |        |       |       |
| Capacity (veh/h)       |        | 436   | 1465 | -      | -    | 1258  | -      | -    | 507   |        |       |       |
| HCM Lane V/C Ratio     |        | 0.481 |      | _      |      | 0.003 | _      |      | 0.174 |        |       |       |
| HCM Control Delay (s)  |        | 20.7  | 7.6  | -      | -    | 7.9   | _      | -    | 13.6  |        |       |       |
| HCM Lane LOS           |        | C     | A    | -      | _    | A     | -      | -    | В     |        |       |       |
| HCM 95th %tile Q(veh)  | )      | 2.6   | 0.1  | -      | _    | 0     | -      | -    | 0.6   |        |       |       |
|                        |        | ,     |      |        |      |       |        |      | J. J  |        |       |       |

| Intersection           |          |          |      |        |      |       |        |       |       |        |       |       |
|------------------------|----------|----------|------|--------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 3        |          |      |        |      |       |        |       |       |        |       |       |
| Movement               | EBL      | EBT      | EBR  | WBL    | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | <u> </u> | <u> </u> | LDIX | ሻ      | 1>   | WDIX. | INDL   | 4     | HOIL  | ODL    | 4     | ODIT  |
| Traffic Vol, veh/h     | 8        | 198      | 14   | 15     | 506  | 33    | 34     | 19    | 14    | 17     | 8     | 43    |
| Future Vol, veh/h      | 8        | 198      | 14   | 15     | 506  | 33    | 34     | 19    | 14    | 17     | 8     | 43    |
| Conflicting Peds, #/hr | 0        | 0        | 0    | 0      | 0    | 0     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free     | Free     | Free | Free   | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -        | _        | None | -      | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | 532      | -        | -    | 532    | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | , # -    | 0        | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -        | 0        | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 92       | 92       | 92   | 92     | 92   | 92    | 92     | 92    | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2        | 2        | 2    | 2      | 2    | 2     | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 9        | 215      | 15   | 16     | 550  | 36    | 37     | 21    | 15    | 18     | 9     | 47    |
|                        |          |          |      |        |      |       |        |       |       |        |       |       |
| Major/Minor I          | Major1   |          | 1    | Major2 |      |       | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 586      | 0        | 0    | 230    | 0    | 0     | 869    | 859   | 223   | 859    | 848   | 568   |
| Stage 1                | -        | -        | -    |        | -    | -     | 241    | 241   | -     | 600    | 600   | -     |
| Stage 2                | -        | -        | -    | -      | -    | -     | 628    | 618   | -     | 259    | 248   | -     |
| Critical Hdwy          | 4.12     | -        | -    | 4.12   | -    | -     | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -        | -        | -    | -      | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -        | -        | -    | -      | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218    | -        | -    | 2.218  | -    | -     | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 989      | -        | -    | 1338   | -    | -     | 272    | 294   | 817   | 277    | 298   | 522   |
| Stage 1                | -        | -        | -    | -      | -    | -     | 762    | 706   | -     | 488    | 490   | -     |
| Stage 2                | -        | -        | -    | -      | -    | -     | 471    | 481   | -     | 746    | 701   | -     |
| Platoon blocked, %     |          | -        | -    |        | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 989      | -        | -    | 1338   | -    | -     | 238    | 288   | 817   | 253    | 292   | 522   |
| Mov Cap-2 Maneuver     | -        | -        | -    | -      | -    | -     | 238    | 288   | -     | 253    | 292   | -     |
| Stage 1                | -        | -        | -    | -      | -    | -     | 755    | 700   | -     | 484    | 484   | -     |
| Stage 2                | -        | -        | -    | -      | -    | -     | 416    | 475   | -     | 704    | 695   | -     |
|                        |          |          |      |        |      |       |        |       |       |        |       |       |
| Approach               | EB       |          |      | WB     |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.3      |          |      | 0.2    |      |       | 21     |       |       | 16.6   |       |       |
| HCM LOS                |          |          |      |        |      |       | С      |       |       | С      |       |       |
|                        |          |          |      |        |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | ıt       | NBLn1    | EBL  | EBT    | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |          | 297      | 989  | -      |      | 1338  | -      | -     |       |        |       |       |
| HCM Lane V/C Ratio     |          | 0.245    |      | _      |      | 0.012 | _      | _     | 0.192 |        |       |       |
| HCM Control Delay (s)  |          | 21       | 8.7  | -      | -    | 7.7   | -      | -     |       |        |       |       |
| HCM Lane LOS           |          | С        | Α    | _      | -    | Α     | -      | -     | С     |        |       |       |
| HCM 95th %tile Q(veh)  |          | 0.9      | 0    | -      | -    | 0     | -      | -     | 0.7   |        |       |       |
|                        |          |          |      |        |      |       |        |       |       |        |       |       |

| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |       |             |        |                |       |        |       |       |        |      |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------------|--------|----------------|-------|--------|-------|-------|--------|------|-------|
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.7    |       |             |        |                |       |        |       |       |        |      |       |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EBL    | EBT   | EBR         | WBL    | WBT            | WBR   | NBL    | NBT   | NBR   | SBL    | SBT  | SBR   |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *      | f)    |             | ሻ      | <del>(</del> î |       |        | 4     |       |        | 4    |       |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25     | 87    | 159         | 17     | 200            | 14    | 127    | 30    | 7     | 15     | 73   | 40    |
| Future Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25     | 87    | 159         | 17     | 200            | 14    | 127    | 30    | 7     | 15     | 73   | 40    |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0      | 0     | 0           | 0      | 0              | 0     | 0      | 0     | 0     | 0      | 0    | 0     |
| Sign Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Free   | Free  | Free        | Free   | Free           | Free  | Stop   | Stop  | Stop  | Stop   | Stop | Stop  |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      | -     | None        | -      | -              | None  | -      | -     | None  | -      | -    | None  |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200    | -     | -           | 400    | -              | -     | -      | -     | -     | -      | -    | -     |
| Veh in Median Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e, # - | 0     | -           | -      | 0              | -     | -      | 0     | -     | -      | 0    | -     |
| Grade, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -      | 0     | -           | -      | 0              | -     | -      | 0     | -     | -      | 0    | -     |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92     | 92    | 92          | 92     | 92             | 92    | 92     | 92    | 92    | 92     | 92   | 92    |
| Heavy Vehicles, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2      | 2     | 2           | 2      | 2              | 2     | 2      | 2     | 2     | 2      | 2    | 2     |
| Mvmt Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27     | 95    | 173         | 18     | 217            | 15    | 138    | 33    | 8     | 16     | 79   | 43    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |             |        |                |       |        |       |       |        |      |       |
| Major/Minor I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Major1 |       |             | Major2 |                |       | Minor1 |       |       | Minor2 |      |       |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 232    | 0     | 0           | 268    | 0              | 0     | 558    | 504   | 182   | 517    | 583  | 225   |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -     | -           | -      | -              | -     | 236    | 236   | -     | 261    | 261  |       |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _      | _     | _           | _      | _              | -     | 322    | 268   | _     | 256    | 322  | _     |
| Critical Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.12   | _     | _           | 4.12   | _              | -     | 7.12   | 6.52  | 6.22  | 7.12   | 6.52 | 6.22  |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      | -     | -           | -      | -              | -     | 6.12   | 5.52  | -     | 6.12   | 5.52 | -     |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      | -     | _           | _      | _              | -     | 6.12   | 5.52  | _     | 6.12   | 5.52 | -     |
| Follow-up Hdwy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.218  | -     | -           | 2.218  | -              | _     | 3.518  | 4.018 | 3.318 | 3.518  |      | 3.318 |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1336   | -     | -           | 1296   | -              | -     | 440    | 470   | 861   | 469    | 424  | 814   |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -     | -           | -      | -              | -     | 767    | 710   | -     | 744    | 692  | -     |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -     | -           | -      | -              | -     | 690    | 687   | -     | 749    | 651  | -     |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | -     | -           |        | -              | -     |        |       |       |        |      |       |
| Mov Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1336   | -     | -           | 1296   | -              | -     | 346    | 454   | 861   | 428    | 410  | 814   |
| Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | -     | -           | -      | -              | -     | 346    | 454   | -     | 428    | 410  | -     |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -     | -           | -      | -              | -     | 752    | 696   | -     | 729    | 682  | -     |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | -     | -           | -      | -              | -     | 569    | 677   | -     | 693    | 638  | -     |
| , and the second |        |       |             |        |                |       |        |       |       |        |      |       |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EB     |       |             | WB     |                |       | NB     |       |       | SB     |      |       |
| HCM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7    |       |             | 0.6    |                |       | 23.3   |       |       | 15.3   |      |       |
| HCM LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |       |             |        |                |       | C      |       |       | C      |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |             |        |                |       |        |       |       |        |      |       |
| Minor Lane/Major Mvm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt I   | NBLn1 | EBL         | EBT    | EBR            | WBL   | WBT    | WBR   | SBLn1 |        |      |       |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 372   | 1336        |        |                | 1296  |        | _     | 488   |        |      |       |
| HCM Lane V/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 0.479 | 0.02        | -      | _              | 0.014 | _      | _     | 0.285 |        |      |       |
| HCM Control Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 23.3  | 7.8         | _      | _              | 7.8   | _      | _     | 15.3  |        |      |       |
| HCM Lane LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | C     | Α.          | -      | _              | Α     | _      | _     | C     |        |      |       |
| HCM 95th %tile Q(veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )      | 2.5   | 0.1         | _      | _              | 0     | _      | -     | 1.2   |        |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       | <b>J</b> ., |        |                |       |        |       |       |        |      |       |

| Intersection                       |                |              |        |          |            |       |
|------------------------------------|----------------|--------------|--------|----------|------------|-------|
| Int Delay, s/veh                   | 2.7            |              |        |          |            |       |
|                                    | EBT            | EBR          | WBL    | WBT      | NBL        | NBR   |
| Lane Configurations                | <u></u>        | LDIX         | YVDL   | <u>₩</u> | NDL<br>Š   | TION. |
| Traffic Vol, veh/h                 | 260            | 15           | 7      | 386      | 109        | 8     |
| Future Vol, veh/h                  | 260            | 15           | 7      | 386      | 109        | 8     |
| Conflicting Peds, #/hr             | 0              | 0            | 0      | 0        | 0          | 0     |
|                                    | Free           | Free         | Free   | Free     | Stop       | Stop  |
| RT Channelized                     | -              | None         | -      | None     | -          | None  |
| Storage Length                     | -              | 570          | 570    | -        | 0          | 0     |
| Veh in Median Storage, #           | <del>#</del> 0 | -            | -      | 0        | 0          | -     |
| Grade, %                           | 0              | -            | -      | 0        | 0          | -     |
| Peak Hour Factor                   | 92             | 92           | 92     | 92       | 92         | 92    |
| Heavy Vehicles, %                  | 2              | 2            | 2      | 2        | 2          | 2     |
| Mvmt Flow                          | 283            | 16           | 8      | 420      | 118        | 9     |
|                                    |                |              |        |          |            |       |
| Major/Minor Ma                     | ajor1          | N            | Major2 |          | Minor1     |       |
|                                    | •              |              |        |          |            | 202   |
| Conflicting Flow All               | 0              | 0            | 299    | 0        | 719<br>283 | 283   |
| Stage 1                            | -              | -            | -      | -        | 436        | -     |
| Stage 2<br>Critical Hdwy           | -              | <del>-</del> | 4.12   | -        | 6.42       | 6.22  |
| •                                  | -              | -            | 4.12   | -        | 5.42       | 0.22  |
| Critical Hdwy Stg 1                |                | -            | -      |          | 5.42       | -     |
| Critical Hdwy Stg 2 Follow-up Hdwy | -              | -            | 2.218  | -        |            |       |
| Pot Cap-1 Maneuver                 | -              |              | 1262   |          | 395        | 756   |
| •                                  | -              | -            | 1202   | -        | 765        | 750   |
| Stage 1<br>Stage 2                 | -              | -            | -      |          | 652        |       |
| Platoon blocked, %                 | -              | -            | -      | -        | 002        | -     |
| Mov Cap-1 Maneuver                 | -              | -            | 1262   |          | 393        | 756   |
| Mov Cap-1 Maneuver                 | -              | -            | 1202   | -<br>-   | 393        | 750   |
| Stage 1                            | _              | -            | -      |          | 765        |       |
| •                                  | _              | -            | -      | -        | 648        | -     |
| Stage 2                            | -              | -            | -      | _        | 040        | -     |
|                                    |                |              |        |          |            |       |
| Approach                           | EB             |              | WB     |          | NB         |       |
| HCM Control Delay, s               | 0              |              | 0.1    |          | 17.5       |       |
| HCM LOS                            |                |              |        |          | С          |       |
|                                    |                |              |        |          |            |       |
| Minor Lane/Major Mvmt              | 1              | NBLn11       | VBLn2  | EBT      | EBR        | WBL   |
| Capacity (veh/h)                   |                | 393          | 756    |          |            | 1262  |
| HCM Lane V/C Ratio                 |                | 0.301        |        | _        |            | 0.006 |
| HCM Control Delay (s)              |                | 18.1         | 9.8    | _        | _          | 7.9   |
| HCM Lane LOS                       |                | С            | A      | -        | _          | A     |
| HCM 95th %tile Q(veh)              |                | 1.2          | 0      | _        | _          | 0     |
|                                    |                |              |        |          |            |       |

| Intersection           |          |       |         |          |           |       |
|------------------------|----------|-------|---------|----------|-----------|-------|
| Int Delay, s/veh       | 0.1      |       |         |          |           |       |
| Movement               | EBT      | EBR   | WBL     | WBT      | NBL       | NBR   |
| Lane Configurations    | <b>↑</b> | 7     | - TTDL  | <b>↑</b> | IIDL      | 7     |
| Traffic Vol, veh/h     | 226      | 42    | 0       | 393      | 0         | 9     |
| Future Vol, veh/h      | 226      | 42    | 0       | 393      | 0         | 9     |
| Conflicting Peds, #/hr | 0        | 0     | 0       | 0        | 0         | 0     |
| Sign Control           | Free     | Free  | Free    | Free     | Stop      | Stop  |
| RT Channelized         | -        | None  | -       |          | otop<br>- | None  |
| Storage Length         | _        | 250   | _       | -        | _         | 0     |
| Veh in Median Storage  |          | -     | _       | 0        | 0         | -     |
| Grade, %               | 0        | _     | _       | 0        | 0         | _     |
| Peak Hour Factor       | 92       | 92    | 92      | 92       | 92        | 92    |
| Heavy Vehicles, %      | 2        | 2     | 2       | 2        | 2         | 2     |
| Mvmt Flow              | 246      | 46    | 0       | 427      | 0         | 10    |
| MINITE FIOW            | 240      | 40    | U       | 421      | U         | 10    |
|                        |          |       |         |          |           |       |
| Major/Minor            | Major1   | N     | //ajor2 | <u> </u> | /linor1   |       |
| Conflicting Flow All   | 0        | 0     | -       | -        | -         | 246   |
| Stage 1                | -        | -     | -       | -        | -         | -     |
| Stage 2                | -        | -     | -       | -        | -         | -     |
| Critical Hdwy          | -        | -     | -       | -        | -         | 6.22  |
| Critical Hdwy Stg 1    | -        | -     | -       | -        | -         | -     |
| Critical Hdwy Stg 2    | -        | -     | -       | -        | -         | -     |
| Follow-up Hdwy         | _        | -     | _       | _        | _         | 3.318 |
| Pot Cap-1 Maneuver     | -        | _     | 0       | _        | 0         | 793   |
| Stage 1                | _        | _     | 0       | _        | 0         | -     |
| Stage 2                | _        | _     | 0       | _        | 0         | _     |
| Platoon blocked, %     | _        | _     |         | _        | <u> </u>  |       |
| Mov Cap-1 Maneuver     | _        | _     | _       | _        | _         | 793   |
| Mov Cap-2 Maneuver     | _        | _     | _       | _        | _         | -     |
| Stage 1                | _        | _     | _       | _        | _         | _     |
| Stage 2                | _        | _     | _       | _        | _         | _     |
| Olaye Z                |          | _     | -       | _        | _         | _     |
|                        |          |       |         |          |           |       |
| Approach               | EB       |       | WB      |          | NB        |       |
| HCM Control Delay, s   | 0        |       | 0       |          | 9.6       |       |
| HCM LOS                |          |       |         |          | Α         |       |
|                        |          |       |         |          |           |       |
| Minor Long/Maior M.    | a4 I     | UDL 4 | CDT     | EDD      | WDT       |       |
| Minor Lane/Major Mvn   | it f     | VBLn1 | EBT     | EBR      | WBT       |       |
| Capacity (veh/h)       |          | 793   | -       | -        | -         |       |
| HCM Lane V/C Ratio     |          | 0.012 | -       | -        | -         |       |
| HCM Control Delay (s)  |          | 9.6   | -       | -        | -         |       |
| HCM Lane LOS           | ,        | Α     | -       | -        | -         |       |
| HCM 95th %tile Q(veh   |          | 0     | -       | -        | -         |       |
|                        |          |       |         |          |           |       |

| Intersection           |        |       |          |        |      |      |        |       |       |        |       |       |
|------------------------|--------|-------|----------|--------|------|------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 3.6    |       |          |        |      |      |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR      | WBL    | WBT  | WBR  | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | ች      | î,    |          |        | ₽    |      |        | 4     |       |        | 4     |       |
| Traffic Vol, veh/h     | 22     | 418   | 22       | 20     | 254  | 25   | 24     | 25    | 18    | 39     | 15    | 14    |
| Future Vol, veh/h      | 22     | 418   | 22       | 20     | 254  | 25   | 24     | 25    | 18    | 39     | 15    | 14    |
| Conflicting Peds, #/hr | 0      | 0     | 0        | 0      | 0    | 0    | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free     | Free   | Free | Free | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None     | -      | -    | None | -      | -     | None  | -      | -     | None  |
| Storage Length         | 532    | -     | -        | 532    | -    | -    | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | , # -  | 0     | -        | -      | 0    | -    | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -        | -      | 0    | -    | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92    | 92       | 92     | 92   | 92   | 92     | 92    | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2     | 2        | 2      | 2    | 2    | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 24     | 454   | 24       | 22     | 276  | 27   | 26     | 27    | 20    | 42     | 16    | 15    |
|                        |        |       |          |        |      |      |        |       |       |        |       |       |
| Major/Minor I          | Major1 |       | <u> </u> | Major2 |      |      | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 303    | 0     | 0        | 478    | 0    | 0    | 863    | 861   | 466   | 872    | 860   | 290   |
| Stage 1                | -      | -     | -        | -      | -    | -    | 514    | 514   | -     | 334    | 334   | -     |
| Stage 2                | -      | -     | -        | -      | -    | -    | 349    | 347   | -     | 538    | 526   | -     |
| Critical Hdwy          | 4.12   | -     | -        | 4.12   | -    | -    | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -     | -        | -      | -    | -    | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -     | -        | -      | -    | -    | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -     | -        | 2.218  | -    | -    | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1258   | -     | -        | 1084   | -    | -    | 275    | 293   | 597   | 271    | 294   | 749   |
| Stage 1                | -      | -     | -        | -      | -    | -    | 543    | 535   | -     | 680    | 643   | -     |
| Stage 2                | -      | -     | -        | -      | -    | -    | 667    | 635   | -     | 527    | 529   | -     |
| Platoon blocked, %     |        | -     | -        |        | -    | -    |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1258   | -     | -        | 1084   | -    | -    | 250    | 282   | 597   | 236    | 283   | 749   |
| Mov Cap-2 Maneuver     | -      | -     | -        | -      | -    | -    | 250    | 282   | -     | 236    | 283   | -     |
| Stage 1                | -      | -     | -        | -      | -    | -    | 533    | 525   | -     | 667    | 630   | -     |
| Stage 2                | -      | -     | -        | -      | -    | -    | 624    | 622   | -     | 474    | 519   | -     |
|                        |        |       |          |        |      |      |        |       |       |        |       |       |
| Approach               | EB     |       |          | WB     |      |      | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.4    |       |          | 0.6    |      |      | 20     |       |       | 21.8   |       |       |
| HCM LOS                |        |       |          |        |      |      | С      |       |       | С      |       |       |
|                        |        |       |          |        |      |      |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | it I   | NBLn1 | EBL      | EBT    | EBR  | WBL  | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        |       | 1258     | -      |      | 1084 | -      | -     |       |        |       |       |
| HCM Lane V/C Ratio     |        | 0.233 |          | _      | _    | 0.02 | _      | _     | 0.258 |        |       |       |
| HCM Control Delay (s)  |        | 20    | 7.9      | _      | _    | 8.4  | -      | -     |       |        |       |       |
| HCM Lane LOS           |        | C     | A        | -      | -    | Α    | -      | -     | С     |        |       |       |
| HCM 95th %tile Q(veh)  |        | 0.9   | 0.1      | -      | -    | 0.1  | -      | -     | 1     |        |       |       |
|                        |        |       |          |        |      |      |        |       |       |        |       |       |

| Intersection            |        |       |      |        |      |       |        |       |        |        |      |       |
|-------------------------|--------|-------|------|--------|------|-------|--------|-------|--------|--------|------|-------|
| Int Delay, s/veh        | 7.9    |       |      |        |      |       |        |       |        |        |      |       |
| Movement                | EBL    | EBT   | EBR  | WBL    | WBT  | WBR   | NBL    | NBT   | NBR    | SBL    | SBT  | SBR   |
| Lane Configurations     | ሻ      | f)    |      | ች      | f)   |       |        | 4     |        |        | 44   |       |
| Traffic Vol, veh/h      | 58     | 208   | 80   | 3      | 105  | 17    | 135    | 42    | 19     | 29     | 24   | 31    |
| Future Vol, veh/h       | 58     | 208   | 80   | 3      | 105  | 17    | 135    | 42    | 19     | 29     | 24   | 31    |
| Conflicting Peds, #/hr  | 0      | 0     | 0    | 0      | 0    | 0     | 0      | 0     | 0      | 0      | 0    | 0     |
| Sign Control            | Free   | Free  | Free | Free   | Free | Free  | Stop   | Stop  | Stop   | Stop   | Stop | Stop  |
| RT Channelized          | -      | -     | None | -      | -    | None  | -      | -     | None   | -      | -    | None  |
| Storage Length          | 200    | -     | -    | 400    | -    | -     | -      | -     | -      | -      | -    | -     |
| Veh in Median Storage   | e, # - | 0     | -    | -      | 0    | -     | -      | 0     | -      | -      | 0    | -     |
| Grade, %                | -      | 0     | -    | -      | 0    | -     | -      | 0     | -      | -      | 0    | -     |
| Peak Hour Factor        | 92     | 92    | 92   | 92     | 92   | 92    | 92     | 92    | 92     | 92     | 92   | 92    |
| Heavy Vehicles, %       | 2      | 2     | 2    | 2      | 2    | 2     | 2      | 2     | 2      | 2      | 2    | 2     |
| Mvmt Flow               | 63     | 226   | 87   | 3      | 114  | 18    | 147    | 46    | 21     | 32     | 26   | 34    |
|                         |        |       |      |        |      |       |        |       |        |        |      |       |
| Major/Minor I           | Major1 |       |      | Major2 |      |       | Minor1 |       |        | Minor2 |      |       |
| Conflicting Flow All    | 132    | 0     | 0    | 313    | 0    | 0     | 555    | 534   | 270    | 558    | 568  | 123   |
| Stage 1                 | -      | -     | -    | -      | -    | -     | 396    | 396   | -      | 129    | 129  | -     |
| Stage 2                 | _      | -     | _    | _      | _    | -     | 159    | 138   | _      | 429    | 439  | _     |
| Critical Hdwy           | 4.12   | -     | _    | 4.12   | -    | -     | 7.12   | 6.52  | 6.22   | 7.12   | 6.52 | 6.22  |
| Critical Hdwy Stg 1     | -      | -     | -    | -      | -    | -     | 6.12   | 5.52  | -      | 6.12   | 5.52 |       |
| Critical Hdwy Stg 2     | -      | -     | _    | _      | _    | -     | 6.12   | 5.52  | _      | 6.12   | 5.52 | _     |
| Follow-up Hdwy          | 2.218  | -     | -    | 2.218  | -    | _     |        | 4.018 | 3.318  | 3.518  |      | 3.318 |
| Pot Cap-1 Maneuver      | 1453   | -     | -    | 1247   | -    | -     | 442    | 452   | 769    | 440    | 432  | 928   |
| Stage 1                 | -      | -     | -    | -      | -    | -     | 629    | 604   | -      | 875    | 789  | -     |
| Stage 2                 | -      | -     | -    | -      | -    | -     | 843    | 782   | -      | 604    | 578  | -     |
| Platoon blocked, %      |        | -     | -    |        | -    | -     |        |       |        |        |      |       |
| Mov Cap-1 Maneuver      | 1453   | -     | -    | 1247   | -    | -     | 392    | 432   | 769    | 380    | 413  | 928   |
| Mov Cap-2 Maneuver      | -      | -     | -    | -      | -    | -     | 392    | 432   | -      | 380    | 413  | -     |
| Stage 1                 | -      | -     | -    | -      | -    | -     | 602    | 578   | -      | 837    | 787  | -     |
| Stage 2                 | -      | -     | -    | -      | -    | -     | 784    | 780   | -      | 518    | 553  | -     |
| •                       |        |       |      |        |      |       |        |       |        |        |      |       |
| Approach                | EB     |       |      | WB     |      |       | NB     |       |        | SB     |      |       |
| HCM Control Delay, s    | 1.3    |       |      | 0.2    |      |       | 22.1   |       |        | 13.8   |      |       |
| HCM LOS                 |        |       |      |        |      |       | С      |       |        | В      |      |       |
|                         |        |       |      |        |      |       |        |       |        |        |      |       |
| Minor Lane/Major Mvm    | nt I   | NBLn1 | EBL  | EBT    | EBR  | WBL   | WBT    | WBR:  | SBI n1 |        |      |       |
| Capacity (veh/h)        |        | 420   | 1453 |        |      | 1247  |        | -     | 500    |        |      |       |
| HCM Lane V/C Ratio      |        | 0.507 |      | _      | _    | 0.003 | _      | _     | 0.183  |        |      |       |
| HCM Control Delay (s)   |        | 22.1  | 7.6  | _      | _    | 7.9   |        | _     | 13.8   |        |      |       |
| HCM Lane LOS            |        | C     | Α.   | _      | _    | Α.5   | _      | _     | В      |        |      |       |
| HCM 95th %tile Q(veh)   | )      | 2.8   | 0.1  | _      | _    | 0     | _      | _     | 0.7    |        |      |       |
| TOW COULT TOUTO CE VOIT |        | 2.0   | J. 1 |        |      |       |        |       | 3.1    |        |      |       |

| Intersection             |                |        |        |      |        |       |   |
|--------------------------|----------------|--------|--------|------|--------|-------|---|
| Int Delay, s/veh         | 2.2            |        |        |      |        |       | 1 |
|                          | EBT            | EBR    | WBL    | WBT  | NBL    | NBR   | Į |
| Lane Configurations      | <u> </u>       | LDIX   | VVDL   |      | NDL    | TION. |   |
|                          | 414            | 53     | 15     | 299  | 89     | 3     |   |
|                          | 414            | 53     | 15     | 299  | 89     | 3     |   |
| Conflicting Peds, #/hr   | 0              | 0      | 0      | 0    | 0      | 0     |   |
|                          | Free           | Free   | Free   | Free | Stop   | Stop  |   |
| RT Channelized           | -              | None   | -      | None | -      | None  |   |
| Storage Length           | -              | 570    | 570    | -    | 0      | 0     |   |
| Veh in Median Storage, # | <del>#</del> 0 | -      | -      | 0    | 0      | -     |   |
| Grade, %                 | 0              | -      | -      | 0    | 0      | -     |   |
| Peak Hour Factor         | 92             | 92     | 92     | 92   | 92     | 92    |   |
| Heavy Vehicles, %        | 2              | 2      | 2      | 2    | 2      | 2     |   |
| Mvmt Flow                | 450            | 58     | 16     | 325  | 97     | 3     |   |
|                          |                |        |        |      |        |       |   |
| Major/Minor Ma           | ajor1          | 1      | Major2 |      | Minor1 |       | ĺ |
| Conflicting Flow All     | 0              | 0      | 508    | 0    | 807    | 450   |   |
| Stage 1                  | _              | -      | -      | -    | 450    | -     |   |
| Stage 2                  | _              | _      | _      | -    | 357    | _     |   |
| Critical Hdwy            | -              | -      | 4.12   | -    | 6.42   | 6.22  |   |
| Critical Hdwy Stg 1      | _              | -      | -      | _    | 5.42   | -     |   |
| Critical Hdwy Stg 2      | -              | -      | _      | -    | 5.42   | -     |   |
| Follow-up Hdwy           | _              | -      | 2.218  | -    | 3.518  | 3.318 |   |
| Pot Cap-1 Maneuver       | -              | -      | 1057   | -    | 351    | 609   |   |
| Stage 1                  | -              | -      | -      | -    | 642    | -     |   |
| Stage 2                  | -              | -      | -      | -    | 708    | -     |   |
| Platoon blocked, %       | -              | -      |        | -    |        |       |   |
| Mov Cap-1 Maneuver       | -              | -      | 1057   | -    | 346    | 609   |   |
| Mov Cap-2 Maneuver       | -              | -      | -      | -    | 346    | -     |   |
| Stage 1                  | -              | -      | -      | -    | 642    | -     |   |
| Stage 2                  | -              | -      | -      | -    | 697    | -     |   |
| ·                        |                |        |        |      |        |       |   |
| Approach                 | EB             |        | WB     |      | NB     |       | ĺ |
| HCM Control Delay, s     | 0              |        | 0.4    |      | 19.1   |       |   |
| HCM LOS                  | U              |        | 0.4    |      | C      |       |   |
| TIOIVI LOO               |                |        |        |      | U      |       |   |
|                          |                |        |        |      |        |       |   |
| Minor Lane/Major Mvmt    | N              | NBLn11 |        | EBT  | EBR    | WBL   |   |
| Capacity (veh/h)         |                | 346    | 609    | -    |        | 1057  |   |
| HCM Lane V/C Ratio       |                |        | 0.005  | -    | -      | 0.015 |   |
| HCM Control Delay (s)    |                | 19.4   | 10.9   | -    | -      | 8.5   |   |
| HCM Lane LOS             |                | C      | В      | -    | -      | A     |   |
| HCM 95th %tile Q(veh)    |                | 1.1    | 0      | -    | -      | 0     |   |

| Intersection                        |          |           |        |          |         |       |
|-------------------------------------|----------|-----------|--------|----------|---------|-------|
| Int Delay, s/veh                    | 0.1      |           |        |          |         |       |
|                                     |          | EDD       | WDI    | WDT      | NDI     | NDD   |
|                                     | EBT      | EBR       | WBL    | WBT      | NBL     | NBR   |
| Lane Configurations                 | <b>↑</b> |           | ^      | <b>↑</b> | 0       | 7     |
| Traffic Vol, veh/h                  | 340      | 77        | 0      | 314      | 0       | 7     |
| Future Vol, veh/h                   | 340      | 77        | 0      | 314      | 0       | 7     |
| Conflicting Peds, #/hr              | 0        | 0         | 0      | 0        | 0       | 0     |
|                                     | Free     | Free      | Free   | Free     | Stop    | Stop  |
| RT Channelized                      | -        | None      | -      |          | -       | None  |
| Storage Length                      | -        | 250       | -      | -        | -       | 0     |
| Veh in Median Storage, #            |          | -         | -      | 0        | 0       | -     |
| Grade, %                            | 0        | -         | -      | 0        | 0       | -     |
| Peak Hour Factor                    | 92       | 92        | 92     | 92       | 92      | 92    |
| Heavy Vehicles, %                   | 2        | 2         | 2      | 2        | 2       | 2     |
| Mvmt Flow                           | 370      | 84        | 0      | 341      | 0       | 8     |
|                                     |          |           |        |          |         |       |
| Major/Minor Ma                      | ajor1    | N         | Major2 | N        | /linor1 |       |
| Conflicting Flow All                | 0        | 0         |        | -        | _       | 370   |
| Stage 1                             | _        | -         | _      | -        | _       | _     |
| Stage 2                             | -        | _         | -      | _        | _       | _     |
| Critical Hdwy                       | _        | _         | _      | _        | _       | 6.22  |
| Critical Hdwy Stg 1                 | _        | _         | _      | _        | _       | -     |
| Critical Hdwy Stg 2                 | _        | _         | _      | _        | _       | _     |
| Follow-up Hdwy                      | _        | _         | _      | _        | _       | 3.318 |
| Pot Cap-1 Maneuver                  | _        | _         | 0      | _        | 0       | 676   |
| Stage 1                             | _        | _         | 0      | _        | 0       | -     |
| Stage 2                             | _        | _         | 0      | _        | 0       | _     |
| Platoon blocked, %                  | _        | _         | U      | _        | U       |       |
| Mov Cap-1 Maneuver                  | _        | _         | _      | _        | _       | 676   |
| Mov Cap-1 Maneuver                  | _        | _         | _      | _        | _       | -     |
| Stage 1                             | _        | _         | _      | _        | _       |       |
| Stage 2                             | _        |           | _      | _        | _       | -     |
| Stage 2                             | -        |           | -      |          | -       |       |
|                                     |          |           |        |          |         |       |
| Approach                            | EB       |           | WB     |          | NB      |       |
| HCM Control Delay, s                | 0        |           | 0      |          | 10.4    |       |
| HCM LOS                             |          |           |        |          | В       |       |
|                                     |          |           |        |          |         |       |
| Minor Lane/Major Mvmt               | ı        | NBLn1     | EBT    | EBR      | WBT     |       |
|                                     |          | 676       | LDI    | LDIX     | -       |       |
| Capacity (veh/h) HCM Lane V/C Ratio |          | 0.011     |        | -        | -       |       |
|                                     |          | 10.4      | -      | -        |         |       |
| HCM Control Delay (s) HCM Lane LOS  |          | 10.4<br>B | -      | -        | -       |       |
| HCM 95th %tile Q(veh)               |          | 0         | -      | -        | -       |       |
| HOW SOUT WITE Q(VEIT)               |          | U         | -      | -        | -       |       |

| Intersection           |         |            |      |        |      |       |        |       |       |        |       |       |
|------------------------|---------|------------|------|--------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 3.1     |            |      |        |      |       |        |       |       |        |       |       |
| Movement               | EBL     | EBT        | EBR  | WBL    | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | ሻ       | <b>1</b> > |      | ኘ      | 4    |       |        | 4     |       |        | 4     | July  |
| Traffic Vol, veh/h     | 8       | 244        | 14   | 15     | 512  | 34    | 34     | 19    | 15    | 20     | 8     | 43    |
| Future Vol, veh/h      | 8       | 244        | 14   | 15     | 512  | 34    | 34     | 19    | 15    | 20     | 8     | 43    |
| Conflicting Peds, #/hr | 0       | 0          | 0    | 0      | 0    | 0     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free    | Free       | Free | Free   | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -       | -          | None | -      | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | 532     | -          | -    | 532    | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage, | ,# -    | 0          | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -       | 0          | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 92      | 92         | 92   | 92     | 92   | 92    | 92     | 92    | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2       | 2          | 2    | 2      | 2    | 2     | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 9       | 265        | 15   | 16     | 557  | 37    | 37     | 21    | 16    | 22     | 9     | 47    |
|                        |         |            |      |        |      |       |        |       |       |        |       |       |
| Major/Minor N          | /lajor1 |            |      | Major2 |      |       | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 594     | 0          | 0    | 280    | 0    | 0     | 927    | 917   | 273   | 917    | 906   | 576   |
| Stage 1                | -       | -          | -    | -      | -    | -     | 291    | 291   | -     | 608    | 608   | -     |
| Stage 2                | -       | -          | -    | -      | -    | -     | 636    | 626   | -     | 309    | 298   | -     |
| Critical Hdwy          | 4.12    | -          | -    | 4.12   | -    | -     | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -       | -          | -    | -      | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -       | -          | -    | -      | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
|                        | 2.218   | -          | -    | 2.218  | -    | -     | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 982     | -          | -    | 1283   | -    | -     | 249    | 272   | 766   | 253    | 276   | 517   |
| Stage 1                | -       | -          | -    | -      | -    | -     | 717    | 672   | -     | 483    | 486   | -     |
| Stage 2                | -       | -          | -    | -      | -    | -     | 466    | 477   | -     | 701    | 667   | -     |
| Platoon blocked, %     |         | -          | -    |        | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 982     | -          | -    | 1283   | -    | -     | 217    | 266   | 766   | 229    | 270   | 517   |
| Mov Cap-2 Maneuver     | -       | -          | -    | -      | -    | -     | 217    | 266   | -     | 229    | 270   | -     |
| Stage 1                | -       | -          | -    | -      | -    | -     | 711    | 666   | -     | 479    | 480   | -     |
| Stage 2                | -       | -          | -    | -      | -    | -     | 411    | 471   | -     | 659    | 661   | -     |
|                        |         |            |      |        |      |       |        |       |       |        |       |       |
| Approach               | EB      |            |      | WB     |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.3     |            |      | 0.2    |      |       | 22.8   |       |       | 17.9   |       |       |
| HCM LOS                |         |            |      |        |      |       | С      |       |       | С      |       |       |
|                        |         |            |      |        |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvmt  | t N     | NBLn1      | EBL  | EBT    | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |         | 275        | 982  | -      |      | 1283  | -      | -     |       |        |       |       |
| HCM Lane V/C Ratio     |         | 0.269      |      | -      |      | 0.013 | -      | -     | 0.217 |        |       |       |
| HCM Control Delay (s)  |         | 22.8       | 8.7  | -      | -    | 7.8   | -      | -     | 17.9  |        |       |       |
| HCM Lane LOS           |         | С          | Α    | -      | -    | A     | -      | -     | С     |        |       |       |
| HCM 95th %tile Q(veh)  |         | 1.1        | 0    | -      | -    | 0     | -      | -     | 0.8   |        |       |       |
|                        |         |            |      |        |      |       |        |       |       |        |       |       |

| Intersection           |        |       |      |        |      |       |        |       |       |        |       |       |
|------------------------|--------|-------|------|--------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 7.9    |       |      |        |      |       |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | ሻ      | f)    |      | ř      | ĵ.   |       |        | 4     |       |        | 4     |       |
| Traffic Vol, veh/h     | 25     | 88    | 159  | 17     | 203  | 14    | 129    | 30    | 7     | 15     | 73    | 41    |
| Future Vol, veh/h      | 25     | 88    | 159  | 17     | 203  | 14    | 129    | 30    | 7     | 15     | 73    | 41    |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0      | 0    | 0     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free | Free   | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None | -      | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | 200    | -     | -    | 400    | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | e,# -  | 0     | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92    | 92   | 92     | 92   | 92    | 92     | 92    | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2     | 2    | 2      | 2    | 2     | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 27     | 96    | 173  | 18     | 221  | 15    | 140    | 33    | 8     | 16     | 79    | 45    |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |
| Major/Minor I          | Major1 |       | ı    | Major2 |      | 1     | Minor1 |       | ı     | Minor2 |       |       |
| Conflicting Flow All   | 236    | 0     | 0    | 269    | 0    | 0     | 564    | 509   | 183   | 522    | 588   | 229   |
| Stage 1                | -      | -     | -    |        | _    | _     | 237    | 237   | -     | 265    | 265   | -     |
| Stage 2                | _      | -     | -    | -      | -    | -     | 327    | 272   | -     | 257    | 323   | -     |
| Critical Hdwy          | 4.12   | -     | -    | 4.12   | -    | _     | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -     | -    | -      | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | _      | -     | -    | -      | -    | _     | 6.12   | 5.52  | -     | 6.12   | 5.52  | _     |
| Follow-up Hdwy         | 2.218  | -     | _    | 2.218  | _    | _     | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1331   | -     | -    | 1295   | -    | -     | 436    | 467   | 859   | 465    | 421   | 810   |
| Stage 1                | -      | -     | -    | -      | -    | -     | 766    | 709   | -     | 740    | 689   | -     |
| Stage 2                | -      | -     | -    | -      | -    | _     | 686    | 685   | _     | 748    | 650   | -     |
| Platoon blocked, %     |        | -     | -    |        | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1331   | -     | -    | 1295   | -    | -     | 341    | 451   | 859   | 424    | 407   | 810   |
| Mov Cap-2 Maneuver     | -      | -     | -    | -      | -    | -     | 341    | 451   | -     | 424    | 407   | -     |
| Stage 1                | _      | -     | -    | -      | -    | -     | 751    | 695   | -     | 725    | 679   | -     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 565    | 675   | -     | 692    | 637   | -     |
| <b>J</b>               |        |       |      |        |      |       |        |       |       |        |       |       |
| Approach               | EB     |       |      | WB     |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.7    |       |      | 0.6    |      |       | 24     |       |       | 15.4   |       |       |
| HCM LOS                |        |       |      |        |      |       | С      |       |       | С      |       |       |
|                        |        |       |      |        |      |       |        |       |       | -      |       |       |
| Minor Lane/Major Mvm   | nt l   | NBLn1 | EBL  | EBT    | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        | 366   | 1331 | -      | -    | 1295  | -      | -     | 486   |        |       |       |
| HCM Lane V/C Ratio     |        | 0.493 | 0.02 | _      | _    | 0.014 | -      | _     | 0.289 |        |       |       |
| HCM Control Delay (s)  |        | 24    | 7.8  | -      | -    | 7.8   | _      | -     | 15.4  |        |       |       |
| HCM Lane LOS           |        | C     | A    | _      | _    | A     | -      | -     | С     |        |       |       |
| HCM 95th %tile Q(veh)  | )      | 2.6   | 0.1  | -      | -    | 0     | _      | -     | 1.2   |        |       |       |
| 222 /00.0 2(1011)      |        |       |      |        |      |       |        |       |       |        |       |       |

| Intersection                                |          |         |        |          |           |             |  |
|---------------------------------------------|----------|---------|--------|----------|-----------|-------------|--|
| Int Delay, s/veh                            | 3        |         |        |          |           |             |  |
| Movement                                    | EBT      | EBR     | WBL    | WBT      | NBL       | NBR         |  |
| Lane Configurations                         | <u> </u> | 7       | ነ ነ    | <u> </u> | <u>``</u> | 7           |  |
| Traffic Vol, veh/h                          | 310      | 15      | 13     | 386      | 116       | 8           |  |
| Future Vol, veh/h                           | 310      | 15      | 13     | 386      | 116       | 8           |  |
| Conflicting Peds, #/hr                      | 0        | 0       | 0      | 0        | 0         | 0           |  |
| •                                           | Free     | Free    | Free   | Free     | Stop      | Stop        |  |
| RT Channelized                              | -        |         | -      | None     | -         | None        |  |
| Storage Length                              | _        | 570     | 570    | -        | 0         | 0           |  |
| Veh in Median Storage, #                    | # 0      | -       | -      | 0        | 0         | -           |  |
| Grade, %                                    | 0        | _       | _      | 0        | 0         | _           |  |
| Peak Hour Factor                            | 92       | 92      | 92     | 92       | 92        | 92          |  |
| Heavy Vehicles, %                           | 2        | 2       | 2      | 2        | 2         | 2           |  |
| Mvmt Flow                                   | 337      | 16      | 14     | 420      | 126       | 9           |  |
| IVIVIIIL I IOW                              | 551      | 10      | 17     | 420      | 120       | 9           |  |
|                                             |          |         |        |          |           |             |  |
| Major/Minor Ma                              | ajor1    | N       | Major2 |          | Minor1    |             |  |
| Conflicting Flow All                        | 0        | 0       | 353    | 0        | 785       | 337         |  |
| Stage 1                                     | -        | -       | -      | -        | 337       | -           |  |
| Stage 2                                     | -        | -       | -      | -        | 448       | -           |  |
| Critical Hdwy                               | -        | -       | 4.12   | -        | 6.42      | 6.22        |  |
| Critical Hdwy Stg 1                         | -        | -       | -      | -        | 5.42      | -           |  |
| Critical Hdwy Stg 2                         | _        | -       | -      | _        | 5.42      | _           |  |
| Follow-up Hdwy                              | _        | -       | 2.218  | _        | 3.518     | 3.318       |  |
| Pot Cap-1 Maneuver                          | _        | -       | 1206   | _        | 361       | 705         |  |
| Stage 1                                     | _        | -       | -      | _        | 723       | -           |  |
| Stage 2                                     | _        | -       | _      | _        | 644       | _           |  |
| Platoon blocked, %                          | _        | _       |        | _        |           |             |  |
| Mov Cap-1 Maneuver                          | _        | _       | 1206   | _        | 357       | 705         |  |
| Mov Cap-2 Maneuver                          | _        | _       | -      | _        | 357       | -           |  |
| Stage 1                                     | _        |         | _      | _        | 723       | _           |  |
| Stage 2                                     | _        | _       | _      | _        | 636       | <u>-</u>    |  |
| Stage 2                                     | _        | _       |        | -        | 030       | _           |  |
|                                             |          |         |        |          |           |             |  |
| Approach                                    | EB       |         | WB     |          | NB        |             |  |
| HCM Control Delay, s                        | 0        |         | 0.3    |          | 19.8      |             |  |
| HCM LOS                                     |          |         |        |          | С         |             |  |
|                                             |          |         |        |          |           |             |  |
| Miner Lene/Major Mymt                       | ,        | NDI 511 | מ וחוי | ГОТ      | EDD       | WBL         |  |
| Minor Lane/Major Mvmt Capacity (veh/h)      |          | NBLn11  |        | EBT      | EBR       |             |  |
| Capacity (ven/n)                            |          | 357     | 705    | -        | -         | 1206        |  |
|                                             |          | ひ、ろわる   | 0.012  | -        | -         | 0.012       |  |
| HCM Lane V/C Ratio                          |          |         |        |          |           | _           |  |
| HCM Lane V/C Ratio<br>HCM Control Delay (s) |          | 20.5    | 10.2   | -        | -         | 8           |  |
| HCM Lane V/C Ratio                          |          |         |        | -        | -<br>-    | 8<br>A<br>0 |  |

| 0.1    | 0.1   |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                |                     |
|--------|-------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| EBT    | EBT E | EBR                                                 | WBL                                                                                                   | WBT                                                                                                                        | NBL                                                                                                                                                                            | NBR                 |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                | 7                   |
|        |       |                                                     | 0                                                                                                     |                                                                                                                            | 0                                                                                                                                                                              | 10                  |
|        |       |                                                     | 0                                                                                                     |                                                                                                                            | 0                                                                                                                                                                              | 10                  |
| 0      |       | 0                                                   | 0                                                                                                     | 0                                                                                                                          | 0                                                                                                                                                                              | 0                   |
| Free   | ree F | Free                                                | Free                                                                                                  | Free                                                                                                                       | Stop                                                                                                                                                                           | Stop                |
| -      | - N   | lone                                                | -                                                                                                     | None                                                                                                                       | -                                                                                                                                                                              | None                |
| -      | -     | 250                                                 | -                                                                                                     | -                                                                                                                          | -                                                                                                                                                                              | 0                   |
| e,# 0  | 0     | -                                                   | -                                                                                                     | 0                                                                                                                          | 0                                                                                                                                                                              | -                   |
| 0      |       | -                                                   | -                                                                                                     | 0                                                                                                                          | 0                                                                                                                                                                              | -                   |
| 92     | 92    | 92                                                  | 92                                                                                                    | 92                                                                                                                         | 92                                                                                                                                                                             | 92                  |
| 2      | 2     | 2                                                   | 2                                                                                                     | 2                                                                                                                          | 2                                                                                                                                                                              | 2                   |
| 246    | 246   | 100                                                 | 0                                                                                                     | 434                                                                                                                        | 0                                                                                                                                                                              | 11                  |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                |                     |
| Major1 | ior1  | N                                                   | laior2                                                                                                | N                                                                                                                          | /linor1                                                                                                                                                                        |                     |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                | 246                 |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                | 240                 |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                | -                   |
|        |       |                                                     | -                                                                                                     |                                                                                                                            |                                                                                                                                                                                | 6.22                |
|        |       |                                                     | -                                                                                                     |                                                                                                                            |                                                                                                                                                                                | 0.22                |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                | -                   |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                | 3.318               |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                |                     |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                | 793                 |
| _      | -     |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                |                     |
| -      | -     |                                                     | U                                                                                                     |                                                                                                                            | U                                                                                                                                                                              | -                   |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                | 702                 |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                | 793                 |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                | -                   |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                | -                   |
| -      | -     | -                                                   | -                                                                                                     | -                                                                                                                          | -                                                                                                                                                                              | -                   |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                |                     |
| EB     | EB    |                                                     | WB                                                                                                    |                                                                                                                            | NB                                                                                                                                                                             |                     |
| 0      | 0     |                                                     | 0                                                                                                     |                                                                                                                            | 9.6                                                                                                                                                                            |                     |
|        | · ·   |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                |                     |
|        |       |                                                     |                                                                                                       |                                                                                                                            |                                                                                                                                                                                |                     |
|        |       | N 4                                                 | FDT                                                                                                   | EDD                                                                                                                        | \A/DT                                                                                                                                                                          |                     |
| nt I   |       |                                                     | FBT                                                                                                   | FBK                                                                                                                        | WBI                                                                                                                                                                            |                     |
|        |       |                                                     | -                                                                                                     | -                                                                                                                          | -                                                                                                                                                                              |                     |
|        | 0.    |                                                     | -                                                                                                     | -                                                                                                                          | -                                                                                                                                                                              |                     |
| )      |       |                                                     | -                                                                                                     | -                                                                                                                          | -                                                                                                                                                                              |                     |
| ,      |       |                                                     | -                                                                                                     | -                                                                                                                          | -                                                                                                                                                                              |                     |
| ı)     |       | 0                                                   | -                                                                                                     | -                                                                                                                          | -                                                                                                                                                                              |                     |
|        | Mag   | EBT  226 226 0 Free - N e, # 0 0 92 2 246  Major1 0 | EBT EBR  226 92 226 92 226 92 0 0 0 Free Free - None - 250 e, # 0 - 92 92 2 2 2 246 100  Major1 N 0 0 | EBT EBR WBL  226 92 0 226 92 0 0 0 0 0 Free Free Free - None - 250 - e, # 0 92 92 92 2 2 2 2 246 100 0  Major1 Major2  0 0 | EBT EBR WBL WBT  226 92 0 399 226 92 0 399 0 0 0 0 0 Free Free Free Free - None - 250 e, # 0 0 92 92 92 92 2 2 2 2 2 246 100 0 434  Major1 Major2 M  Major1 Major2 M  Major1 O | EBT EBR WBL WBT NBL |

| Intersection           |        |       |      |        |      |       |        |       |       |        |       |       |
|------------------------|--------|-------|------|--------|------|-------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 3.7    |       |      |        |      |       |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT  | WBR   | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | ች      | ĵ.    |      |        | î,   |       |        | 4     |       |        | 4     |       |
| Traffic Vol, veh/h     | 22     | 421   | 22   | 22     | 279  | 27    | 24     | 25    | 18    | 40     | 15    | 14    |
| Future Vol, veh/h      | 22     | 421   | 22   | 22     | 279  | 27    | 24     | 25    | 18    | 40     | 15    | 14    |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0      | 0    | 0     | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free | Free   | Free | Free  | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None | -      | -    | None  | -      | -     | None  | -      | -     | None  |
| Storage Length         | 532    | -     | -    | 532    | -    | -     | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | , # -  | 0     | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0     | -    | -      | 0    | -     | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92    | 92   | 92     | 92   | 92    | 92     | 92    | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2     | 2    | 2      | 2    | 2     | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 24     | 458   | 24   | 24     | 303  | 29    | 26     | 27    | 20    | 43     | 16    | 15    |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |
| Major/Minor I          | Major1 |       |      | Major2 |      |       | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 332    | 0     | 0    | 482    | 0    | 0     | 899    | 898   | 470   | 908    | 896   | 318   |
| Stage 1                | -      | -     | -    | -      | -    | -     | 518    | 518   | -     | 366    | 366   | -     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 381    | 380   | -     | 542    | 530   | -     |
| Critical Hdwy          | 4.12   | -     | -    | 4.12   | -    | -     | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -     | -    | -      | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -     | -    | -      | -    | -     | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -     | -    | 2.218  | -    | -     | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1227   | -     | -    | 1081   | -    | -     | 260    | 279   | 594   | 256    | 280   | 723   |
| Stage 1                | -      | -     | -    | -      | -    | -     | 541    | 533   | -     | 653    | 623   | -     |
| Stage 2                | -      | -     | -    | -      | -    | -     | 641    | 614   | -     | 525    | 527   | -     |
| Platoon blocked, %     |        | -     | -    |        | -    | -     |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1227   | -     | -    | 1081   | -    | -     | 235    | 267   | 594   | 221    | 268   | 723   |
| Mov Cap-2 Maneuver     | -      | -     | -    | -      | -    | -     | 235    | 267   | -     | 221    | 268   | -     |
| Stage 1                | -      | -     | -    | -      | -    | -     | 530    | 522   | -     | 640    | 609   | -     |
| Stage 2                | -      | -     | -    | -      | _    | -     | 597    | 600   | -     | 472    | 516   | -     |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |
| Approach               | EB     |       |      | WB     |      |       | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.4    |       |      | 0.6    |      |       | 21.1   |       |       | 23.5   |       |       |
| HCM LOS                |        |       |      |        |      |       | С      |       |       | С      |       |       |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | nt I   | NBLn1 | EBL  | EBT    | EBR  | WBL   | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        | 296   | 1227 | -      |      | 1081  | -      | -     |       |        |       |       |
| HCM Lane V/C Ratio     |        | 0.246 |      | _      |      | 0.022 | _      | _     | 0.279 |        |       |       |
| HCM Control Delay (s)  |        | 21.1  | 8    | -      | -    | 8.4   | -      | -     |       |        |       |       |
| HCM Lane LOS           |        | С     | A    | -      | _    | Α     | -      | -     | С     |        |       |       |
| HCM 95th %tile Q(veh)  | )      | 0.9   | 0.1  | -      | -    | 0.1   | -      | -     | 1.1   |        |       |       |
|                        |        |       |      |        |      |       |        |       |       |        |       |       |

| Intersection           |        |          |      |        |      |        |        |       |       |        |       |       |
|------------------------|--------|----------|------|--------|------|--------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 8      |          |      |        |      |        |        |       |       |        |       |       |
| Movement               | EBL    | EBT      | EBR  | WBL    | WBT  | WBR    | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | 7      | <b>1</b> |      | ሻ      | 1>   | 11.511 | 1100   | 4     | 11511 | - 552  | 4     | ODIN  |
| Traffic Vol, veh/h     | 58     | 210      | 81   | 3      | 106  | 17     | 135    | 42    | 19    | 29     | 24    | 31    |
| Future Vol, veh/h      | 58     | 210      | 81   | 3      | 106  | 17     | 135    | 42    | 19    | 29     | 24    | 31    |
| Conflicting Peds, #/hr | 0      | 0        | 0    | 0      | 0    | 0      | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free     | Free | Free   | Free | Free   | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -        | None | -      | -    | None   | -      | -     | None  | -      | -     | None  |
| Storage Length         | 200    | -        | -    | 400    | -    | -      | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | , # -  | 0        | -    | -      | 0    | -      | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | -      | 0        | -    | -      | 0    | -      | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92       | 92   | 92     | 92   | 92     | 92     | 92    | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2        | 2    | 2      | 2    | 2      | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 63     | 228      | 88   | 3      | 115  | 18     | 147    | 46    | 21    | 32     | 26    | 34    |
|                        |        |          |      |        |      |        |        |       |       |        |       |       |
| Major/Minor I          | Major1 |          |      | Major2 |      |        | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 133    | 0        | 0    | 316    | 0    | 0      | 558    | 537   | 272   | 562    | 572   | 124   |
| Stage 1                | -      | -        | -    | -      | -    | -      | 398    | 398   | -     | 130    | 130   | -     |
| Stage 2                | -      | -        | -    | -      | -    | -      | 160    | 139   | -     | 432    | 442   | -     |
| Critical Hdwy          | 4.12   | -        | -    | 4.12   | -    | -      | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -        | -    | -      | -    | -      | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -        | -    | -      | -    | -      | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -        | -    | 2.218  | -    | -      | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1452   | -        | -    | 1244   | -    | -      | 440    | 450   | 767   | 438    | 430   | 927   |
| Stage 1                | -      | -        | -    | -      | -    | -      | 628    | 603   | -     | 874    | 789   | -     |
| Stage 2                | -      | -        | -    | -      | -    | -      | 842    | 782   | -     | 602    | 576   | -     |
| Platoon blocked, %     |        | -        | -    |        | -    | -      |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1452   | -        | -    | 1244   | -    | -      | 389    | 430   | 767   | 378    | 411   | 927   |
| Mov Cap-2 Maneuver     | -      | -        | -    | -      | -    | -      | 389    | 430   | -     | 378    | 411   | -     |
| Stage 1                | -      | -        | -    | -      | -    | -      | 601    | 577   | -     | 836    | 787   | -     |
| Stage 2                | -      | -        | -    | -      | -    | -      | 783    | 780   | -     | 516    | 551   | -     |
|                        |        |          |      |        |      |        |        |       |       |        |       |       |
| Approach               | EB     |          |      | WB     |      |        | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 1.3    |          |      | 0.2    |      |        | 22.3   |       |       | 13.8   |       |       |
| HCM LOS                |        |          |      |        |      |        | С      |       |       | В      |       |       |
|                        |        |          |      |        |      |        |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | ıt     | NBLn1    | EBL  | EBT    | EBR  | WBL    | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        |          | 1452 |        |      | 1244   | -      | -     | 498   |        |       |       |
| HCM Lane V/C Ratio     |        | 0.511    |      | _      |      | 0.003  | _      |       | 0.183 |        |       |       |
| HCM Control Delay (s)  |        | 22.3     | 7.6  | -      | -    | 7.9    | -      | -     | 13.8  |        |       |       |
| HCM Lane LOS           |        | C        | A    | _      | _    | A      | -      | -     | В     |        |       |       |
| HCM 95th %tile Q(veh)  |        | 2.8      | 0.1  | -      | -    | 0      | -      | -     | 0.7   |        |       |       |
|                        |        |          |      |        |      |        |        |       |       |        |       |       |

| Intersection             |          |                  |              |          |        |                 |
|--------------------------|----------|------------------|--------------|----------|--------|-----------------|
| Int Delay, s/veh         | 3        |                  |              |          |        |                 |
| Movement                 | EBT      | EBR              | WBL          | WBT      | NBL    | NBR             |
| Lane Configurations      | <b>1</b> | 7                | ሻ            | <u> </u> | ሻ      | 7               |
| Traffic Vol. veh/h       | 418      | 53               | 16           | 299      | 118    | 3               |
| Future Vol, veh/h        | 418      | 53               | 16           | 299      | 118    | 3               |
| Conflicting Peds, #/hr   | 0        | 0                | 0            | 0        | 0      | 0               |
|                          | Free     | Free             | Free         | Free     | Stop   | Stop            |
| RT Channelized           | -        |                  | -            | None     | -      | None            |
| Storage Length           | -        | 570              | 570          | -        | 0      | 0               |
| Veh in Median Storage, # | # 0      | -                | -            | 0        | 0      | _               |
| Grade, %                 | 0        | _                | -            | 0        | 0      | -               |
| Peak Hour Factor         | 92       | 92               | 92           | 92       | 92     | 92              |
| Heavy Vehicles, %        | 2        | 2                | 2            | 2        | 2      | 2               |
| Mvmt Flow                | 454      | 58               | 17           | 325      | 128    | 3               |
|                          |          |                  |              |          |        |                 |
| Major/Minor M            | oior1    |                  | Major?       |          | Minor1 |                 |
|                          | ajor1    |                  | Major2       |          | Minor1 | 454             |
| Conflicting Flow All     | 0        | 0                | 512          | 0        | 813    | 454             |
| Stage 1                  | -        | -                | -            | -        | 454    | -               |
| Stage 2                  | -        | -                | - 4.40       | -        | 359    | -               |
| Critical Hdwy            | -        | -                | 4.12         | -        | 6.42   | 6.22            |
| Critical Hdwy Stg 1      | -        | -                | -            | -        | 5.42   | -               |
| Critical Hdwy Stg 2      | -        | -                | -            | -        | 5.42   | -               |
| Follow-up Hdwy           | -        |                  | 2.218        |          | 3.518  |                 |
| Pot Cap-1 Maneuver       | -        | -                | 1053         | -        | 348    | 606             |
| Stage 1                  | -        | -                | -            | -        | 640    | -               |
| Stage 2                  | -        | -                | -            | -        | 707    | -               |
| Platoon blocked, %       | -        | -                | 4050         | -        | 0.40   | 000             |
| Mov Cap-1 Maneuver       | -        | -                | 1053         | -        | 342    | 606             |
| Mov Cap-2 Maneuver       | -        | -                | -            | -        | 342    | -               |
| Stage 1                  | -        | _                | -            | -        | 640    | -               |
| Stage 2                  | -        | -                | -            | -        | 696    | -               |
|                          |          |                  |              |          |        |                 |
| Approach                 | EB       |                  | WB           |          | NB     |                 |
| HCM Control Delay, s     | 0        |                  | 0.4          |          | 21.4   |                 |
| HCM LOS                  |          |                  | • • • •      |          | С      |                 |
|                          |          |                  |              |          |        |                 |
| Min I /M-i M I           |          | UDL 4 I          | VIDI 0       | EDT      | EDD    | MDI             |
| Minor Lane/Major Mvmt    | ľ        | VBLn1 N          |              | EBT      | EBR    | WBL             |
| Capacity (veh/h)         |          | 342              | 606          | -        | -      | 1053            |
|                          |          | 0.375            |              | -        |        | 0.017           |
| HCM Cartes   Dalay (a)   |          | 047              | 4.4          |          |        |                 |
| HCM Control Delay (s)    |          | 21.7             | 11           | -        | -      | 8.5             |
|                          |          | 21.7<br>C<br>1.7 | 11<br>B<br>0 | -        | -      | 0.5<br>A<br>0.1 |

| Intersection                                                                                                                                                                                                                                       |                                       |                                                                                             |                                            |                                                     |                                                         |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|---------------------------|
| Int Delay, s/veh                                                                                                                                                                                                                                   | 0.1                                   |                                                                                             |                                            |                                                     |                                                         |                           |
| Movement                                                                                                                                                                                                                                           | EBT                                   | EBR                                                                                         | WBL                                        | WBT                                                 | NBL                                                     | NBR                       |
| Lane Configurations                                                                                                                                                                                                                                | <u></u>                               | 7                                                                                           | VVDL                                       | <u>₩</u>                                            | INDL                                                    | 7                         |
| Traffic Vol, veh/h                                                                                                                                                                                                                                 | 340                                   | 81                                                                                          | 0                                          | 315                                                 | 0                                                       | 10                        |
| Future Vol, veh/h                                                                                                                                                                                                                                  | 340                                   | 81                                                                                          | 0                                          | 315                                                 | 0                                                       | 10                        |
| Conflicting Peds, #/hr                                                                                                                                                                                                                             | 0                                     | 0                                                                                           | 0                                          | 0                                                   | 0                                                       | 0                         |
| Sign Control                                                                                                                                                                                                                                       | Free                                  | Free                                                                                        | Free                                       | Free                                                | Stop                                                    | Stop                      |
| RT Channelized                                                                                                                                                                                                                                     | -                                     | None                                                                                        | -                                          | None                                                | -                                                       | None                      |
| Storage Length                                                                                                                                                                                                                                     | _                                     | 250                                                                                         | _                                          | -                                                   | _                                                       | 0                         |
| Veh in Median Storage,                                                                                                                                                                                                                             |                                       | -                                                                                           | _                                          | 0                                                   | 0                                                       | -                         |
| Grade, %                                                                                                                                                                                                                                           | 0                                     | _                                                                                           | _                                          | 0                                                   | 0                                                       | _                         |
| Peak Hour Factor                                                                                                                                                                                                                                   | 92                                    | 92                                                                                          | 92                                         | 92                                                  | 92                                                      | 92                        |
| Heavy Vehicles, %                                                                                                                                                                                                                                  | 2                                     | 2                                                                                           | 2                                          | 2                                                   | 2                                                       | 2                         |
| Mymt Flow                                                                                                                                                                                                                                          | 370                                   | 88                                                                                          | 0                                          | 342                                                 | 0                                                       | 11                        |
| WWITH FIOW                                                                                                                                                                                                                                         | 3/0                                   | 00                                                                                          | U                                          | 342                                                 | U                                                       | - 11                      |
|                                                                                                                                                                                                                                                    |                                       |                                                                                             |                                            |                                                     |                                                         |                           |
| Major/Minor M                                                                                                                                                                                                                                      | lajor1                                | N                                                                                           | //ajor2                                    | N                                                   | /linor1                                                 |                           |
| Conflicting Flow All                                                                                                                                                                                                                               | 0                                     | 0                                                                                           | -                                          | -                                                   | -                                                       | 370                       |
| Stage 1                                                                                                                                                                                                                                            | -                                     | -                                                                                           | -                                          | -                                                   | -                                                       | -                         |
| Stage 2                                                                                                                                                                                                                                            | -                                     | -                                                                                           | -                                          | -                                                   | -                                                       | -                         |
| Critical Hdwy                                                                                                                                                                                                                                      | _                                     | -                                                                                           | -                                          | -                                                   | -                                                       | 6.22                      |
| Critical Hdwy Stg 1                                                                                                                                                                                                                                | _                                     | -                                                                                           | _                                          | -                                                   | _                                                       | -                         |
| Critical Hdwy Stg 2                                                                                                                                                                                                                                | _                                     | _                                                                                           | _                                          | _                                                   | _                                                       | _                         |
|                                                                                                                                                                                                                                                    |                                       |                                                                                             |                                            |                                                     |                                                         |                           |
|                                                                                                                                                                                                                                                    | _                                     | -                                                                                           | -                                          | -                                                   | _                                                       | 3.318                     |
| Follow-up Hdwy                                                                                                                                                                                                                                     | -                                     | -                                                                                           |                                            | -                                                   |                                                         | 3.318<br>676              |
| Follow-up Hdwy Pot Cap-1 Maneuver                                                                                                                                                                                                                  | -                                     |                                                                                             | 0                                          |                                                     | 0                                                       | 3.318<br>676              |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1                                                                                                                                                                                                          |                                       | -                                                                                           | 0                                          | -                                                   | 0                                                       | 676<br>-                  |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2                                                                                                                                                                                                  | -<br>-                                | -<br>-                                                                                      | 0                                          | -<br>-<br>-                                         | 0                                                       |                           |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, %                                                                                                                                                                               | -<br>-<br>-                           | -                                                                                           | 0<br>0<br>0                                | -<br>-<br>-                                         | 0<br>0<br>0                                             | 676<br>-<br>-             |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver                                                                                                                                                            | -<br>-<br>-                           | -<br>-<br>-                                                                                 | 0<br>0<br>0                                | -<br>-<br>-                                         | 0<br>0<br>0                                             | 676<br>-                  |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver                                                                                                                                         | -<br>-<br>-<br>-                      | -<br>-                                                                                      | 0<br>0<br>0                                | -<br>-<br>-                                         | 0<br>0<br>0                                             | 676<br>-<br>-             |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1                                                                                                                                 | -<br>-<br>-<br>-                      | -                                                                                           | 0<br>0<br>0                                | -                                                   | 0<br>0<br>0                                             | 676<br>-<br>-<br>676<br>- |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver                                                                                                                                         | -<br>-<br>-<br>-                      | -<br>-<br>-                                                                                 | 0<br>0<br>0                                | -<br>-<br>-                                         | 0<br>0<br>0                                             | 676<br>-<br>-             |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1                                                                                                                                 | -<br>-<br>-<br>-                      | -                                                                                           | 0<br>0<br>0                                | -                                                   | 0<br>0<br>0                                             | 676<br>-<br>-<br>676<br>- |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1                                                                                                                                 | -<br>-<br>-<br>-                      | -                                                                                           | 0<br>0<br>0                                | -                                                   | 0<br>0<br>0                                             | 676<br>-<br>-<br>676<br>- |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach                                                                                                               | -<br>-<br>-<br>-<br>-<br>-            | -                                                                                           | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>WB      | -                                                   | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>NB                   | 676<br>-<br>-<br>676<br>- |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s                                                                                          | -                                     | -                                                                                           | 0<br>0<br>0                                | -                                                   | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>NB<br>10.4           | 676<br>-<br>-<br>676<br>- |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach                                                                                                               | -<br>-<br>-<br>-<br>-<br>-            | -                                                                                           | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>WB      | -                                                   | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>NB                   | 676<br>-<br>-<br>676<br>- |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS                                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>EB | -                                                                                           | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>WB      | -                                                   | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>NB<br>10.4<br>B      | 676<br>-<br>-<br>676<br>- |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>EB | -<br>-<br>-<br>-<br>-<br>-                                                                  | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>WB      | -                                                   | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>NB<br>10.4           | 676<br>-<br>-<br>676<br>- |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h)                                          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>EB | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>WB      | -                                                   | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>NB<br>10.4<br>B      | 676<br>-<br>-<br>676<br>- |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>EB | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>WB<br>0 | -                                                   | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>NB<br>10.4<br>B      | 676<br>-<br>-<br>676<br>- |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) | -<br>-<br>-<br>-<br>-<br>-<br>-<br>EB | NBLn1<br>676<br>0.016                                                                       | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>WB<br>0 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>EBR              | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>-<br>NB<br>10.4<br>B | 676<br>-<br>-<br>676<br>- |
| Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2  Approach HCM Control Delay, s HCM LOS  Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>EB | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0<br>0<br>0<br>-<br>-<br>-<br>-<br>WB<br>0 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0<br>0<br>0<br>-<br>-<br>-<br>NB<br>10.4<br>B           | 676<br>-<br>-<br>676<br>- |

| Intersection           |        |       |       |        |          |         |        |      |      |        |      |      |
|------------------------|--------|-------|-------|--------|----------|---------|--------|------|------|--------|------|------|
| Int Delay, s/veh       | 4.1    |       |       |        |          |         |        |      |      |        |      |      |
| •                      |        |       |       |        |          |         |        |      |      |        |      |      |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT      | WBR     | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    |        | 4     |       |        | 4        |         |        | 4    |      |        | 4    |      |
| Traffic Vol, veh/h     | 1      | 0     | 2     | 7      | 0        | 1       | 2      | 8    | 6    | 50     | 23   | 19   |
| Future Vol, veh/h      | 1      | 0     | 2     | 7      | 0        | 1       | 2      | 8    | 6    | 50     | 23   | 19   |
| Conflicting Peds, #/hr | 0      | 0     | 0     | 0      | 0        | 0       | 0      | 0    | 0    | 0      | 0    | 0    |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop     | Stop    | Free   | Free | Free | Free   | Free | Free |
| RT Channelized         | -      | -     | None  | -      | -        | None    | -      | -    | None | -      | -    | None |
| Storage Length         | -      | -     | -     | -      | -        | -       | -      | -    | -    | -      | -    | -    |
| Veh in Median Storage  | e,# -  | 0     | -     | -      | 0        | -       | -      | 0    | -    | -      | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0        | -       | -      | 0    | -    | -      | 0    | -    |
| Peak Hour Factor       | 92     | 92    | 92    | 92     | 92       | 92      | 92     | 92   | 92   | 92     | 92   | 92   |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2      | 2        | 2       | 2      | 2    | 2    | 2      | 2    | 2    |
| Mvmt Flow              | 1      | 0     | 2     | 8      | 0        | 1       | 2      | 9    | 7    | 54     | 25   | 21   |
|                        |        |       |       |        |          |         |        |      |      |        |      |      |
| Major/Minor            | Minor2 |       |       | Minor1 |          |         | Major1 |      |      | Major2 |      |      |
| Conflicting Flow All   | 161    | 164   | 36    | 162    | 171      | 13      | 46     | 0    | 0    | 16     | 0    | 0    |
| Stage 1                | 144    | 144   | - 30  | 102    | 17 1     | 13      | 40     | -    | U    | 10     | -    | -    |
| Stage 2                | 17     | 20    | -     | 145    | 154      | -       | -      | -    | -    | -      | -    | -    |
| Critical Hdwy          | 7.12   | 6.52  | 6.22  | 7.12   | 6.52     | 6.22    | 4.12   | -    | -    | 4.12   | -    | -    |
| Critical Hdwy Stg 1    | 6.12   | 5.52  | U.ZZ  | 6.12   | 5.52     | 0.22    | 4.12   | -    | -    | 4.12   | -    | -    |
| Critical Hdwy Stg 2    | 6.12   | 5.52  | -     | 6.12   | 5.52     | -       | -      | -    | -    | -      | -    | -    |
| Follow-up Hdwy         | 3.518  | 4.018 | 3.318 | 3.518  | 4.018    | 3.318   | 2.218  | -    | -    | 2.218  | -    | -    |
| Pot Cap-1 Maneuver     | 804    | 729   | 1037  | 803    | 722      | 1067    | 1562   | -    | -    | 1602   | -    | -    |
|                        | 859    | 778   | 1037  | 1002   | 881      | 1007    | 1002   | -    |      | 1002   | _    | -    |
| Stage 1<br>Stage 2     | 1002   | 879   | -     | 858    | 770      | -       | -      | _    | -    | -      | -    | -    |
| Platoon blocked, %     | 1002   | 019   | -     | 000    | 110      | -       | -      | -    | -    | -      | -    | -    |
| Mov Cap-1 Maneuver     | 781    | 703   | 1037  | 780    | 696      | 1067    | 1562   | -    | -    | 1602   | -    | -    |
| Mov Cap-1 Maneuver     | 781    | 703   | 1037  | 780    | 696      | 1007    | 1302   | -    | -    | 1002   | -    | -    |
| Stage 1                | 858    | 751   | -     | 1001   | 880      | -       | -      | -    | -    | -      | -    | -    |
| Stage 2                | 1000   | 878   | -     | 826    | 743      | -       | -      | -    | -    | -      | -    | -    |
| Slaye 2                | 1000   | 010   | -     | 020    | 143      | -       | -      | -    | -    | -      | -    | -    |
|                        |        |       |       |        |          |         |        |      |      |        |      |      |
| Approach               | EB     |       |       | WB     |          |         | NB     |      |      | SB     |      |      |
| HCM Control Delay, s   | 8.9    |       |       | 9.5    |          |         | 0.9    |      |      | 4      |      |      |
| HCM LOS                | Α      |       |       | Α      |          |         |        |      |      |        |      |      |
|                        |        |       |       |        |          |         |        |      |      |        |      |      |
| Minor Long /Maior M.   | .4     | NDI   | NDT   | NDD    | CDL ~ 41 | MDL = 1 | CDI    | CDT  | CDD  |        |      |      |
| Minor Lane/Major Mvm   | IL     | NBL   | NBT   |        | EBLn1V   |         | SBL    | SBT  | SBR  |        |      |      |
| Capacity (veh/h)       |        | 1562  | -     | -      | 935      | 807     | 1602   | -    | -    |        |      |      |
| HCM Lane V/C Ratio     |        | 0.001 | -     |        | 0.003    |         | 0.034  | -    | -    |        |      |      |
| HCM Control Delay (s)  |        | 7.3   | 0     | -      | 8.9      | 9.5     | 7.3    | 0    | -    |        |      |      |
| HCM Lane LOS           |        | A     | Α     | -      | A        | A       | A      | Α    | -    |        |      |      |
| HCM 95th %tile Q(veh   | )      | 0     | -     | -      | 0        | 0       | 0.1    | -    | -    |        |      |      |

| Intersection           |        |       |       |        |        |       |        |      |      |        |      |      |
|------------------------|--------|-------|-------|--------|--------|-------|--------|------|------|--------|------|------|
| Int Delay, s/veh       | 3.5    |       |       |        |        |       |        |      |      |        |      |      |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT    | WBR   | NBL    | NBT  | NBR  | SBL    | SBT  | SBR  |
| Lane Configurations    | LDL    | 4     | LDIX  | WDL    | 4      | WDIX  | NDL    | 4    | NDIX | ODL    | 4    | ODIT |
| Traffic Vol, veh/h     | 2      | 0     | 13    | 29     | 0      | 3     | 1      | 5    | 1    | 4      | 76   | 1    |
| Future Vol, veh/h      | 2      | 0     | 13    | 29     | 0      | 3     | 1      | 5    | 1    | 4      | 76   | 1    |
| Conflicting Peds, #/hr | 0      | 0     | 0     | 0      | 0      | 0     | 0      | 0    | 0    | 0      | 0    | 0    |
| Sign Control           | Stop   | Stop  | Stop  | Stop   | Stop   | Stop  | Free   | Free | Free | Free   | Free | Free |
| RT Channelized         | -      | -     | None  | -      | _      | None  | -      | -    | None | -      | _    | None |
| Storage Length         | -      | -     | -     | -      | -      | -     | -      | -    | -    | -      | -    | -    |
| Veh in Median Storage  | , # -  | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Grade, %               | -      | 0     | -     | -      | 0      | -     | -      | 0    | -    | -      | 0    | -    |
| Peak Hour Factor       | 92     | 92    | 92    | 92     | 92     | 92    | 92     | 92   | 92   | 92     | 92   | 92   |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2      | 2      | 2     | 2      | 2    | 2    | 2      | 2    | 2    |
| Mvmt Flow              | 2      | 0     | 14    | 32     | 0      | 3     | 1      | 5    | 1    | 4      | 83   | 1    |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Major/Minor I          | Minor2 |       |       | Minor1 |        |       | Major1 |      |      | Major2 |      |      |
| Conflicting Flow All   | 101    | 100   | 84    | 107    | 100    | 6     | 84     | 0    | 0    | 6      | 0    | 0    |
| Stage 1                | 92     | 92    | -     | 8      | 8      | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 9      | 8     | -     | 99     | 92     | -     | -      | -    | -    | -      | -    | -    |
| Critical Hdwy          | 7.12   | 6.52  | 6.22  | 7.12   | 6.52   | 6.22  | 4.12   | -    | -    | 4.12   | -    | -    |
| Critical Hdwy Stg 1    | 6.12   | 5.52  | -     | 6.12   | 5.52   | -     | -      | -    | -    | -      | -    | -    |
| Critical Hdwy Stg 2    | 6.12   | 5.52  | -     | 6.12   | 5.52   | -     | -      | -    | -    | -      | -    | -    |
| Follow-up Hdwy         | 3.518  | 4.018 | 3.318 | 3.518  | 4.018  | 3.318 | 2.218  | -    | -    | 2.218  | -    | -    |
| Pot Cap-1 Maneuver     | 880    | 790   | 975   | 872    | 790    | 1077  | 1513   | -    | -    | 1615   | -    | -    |
| Stage 1                | 915    | 819   | -     | 1013   | 889    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 1012   | 889   | -     | 907    | 819    | -     | -      | -    | -    | -      | -    | -    |
| Platoon blocked, %     |        |       |       |        |        |       |        | -    | -    |        | -    | -    |
| Mov Cap-1 Maneuver     | 875    | 787   | 975   | 857    | 787    | 1077  | 1513   | -    | -    | 1615   | -    | -    |
| Mov Cap-2 Maneuver     | 875    | 787   | -     | 857    | 787    | -     | -      | -    | -    | -      | -    | -    |
| Stage 1                | 914    | 817   | -     | 1012   | 888    | -     | -      | -    | -    | -      | -    | -    |
| Stage 2                | 1008   | 888   | -     | 891    | 817    | -     | -      | -    | -    | -      | -    | -    |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Approach               | EB     |       |       | WB     |        |       | NB     |      |      | SB     |      |      |
| HCM Control Delay, s   | 8.8    |       |       | 9.3    |        |       | 1.1    |      |      | 0.4    |      |      |
| HCM LOS                | Α      |       |       | Α      |        |       |        |      |      |        |      |      |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT   | NBR    | EBLn1V | VBLn1 | SBL    | SBT  | SBR  |        |      |      |
| Capacity (veh/h)       |        | 1513  | -     | -      | 960    | 874   | 1615   | -    | -    |        |      |      |
| HCM Lane V/C Ratio     |        | 0.001 | _     | _      | 0.017  |       | 0.003  | _    | _    |        |      |      |
| HCM Control Delay (s)  |        | 7.4   | 0     | -      | 8.8    | 9.3   | 7.2    | 0    | -    |        |      |      |
| HCM Lane LOS           |        | Α     | A     | -      | Α      | Α     | Α      | A    | -    |        |      |      |
| HCM 95th %tile Q(veh)  | )      | 0     | -     | -      | 0.1    | 0.1   | 0      | -    | -    |        |      |      |
|                        |        |       |       |        |        |       |        |      |      |        |      |      |

| ntersection              |     |
|--------------------------|-----|
| ntersection Delay, s/veh | 7.4 |
| ntersection LOS          | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 6    | 11   | 11   | 0    | 33   | 0    | 74   | 0    | 0    | 0    | 0    | 17   |
| Future Vol, veh/h          | 6    | 11   | 11   | 0    | 33   | 0    | 74   | 0    | 0    | 0    | 0    | 17   |
| Peak Hour Factor           | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 0    | 2    | 0    | 2    | 0    | 0    | 0    | 0    | 2    |
| Mvmt Flow                  | 7    | 12   | 12   | 0    | 36   | 0    | 80   | 0    | 0    | 0    | 0    | 18   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      |      | WB   |      | NB   |      |      |      | SB   |      |
| Opposing Approach          | WB   |      |      |      | EB   |      | SB   |      |      |      | NB   |      |
| Opposing Lanes             | 1    |      |      |      | 1    |      | 1    |      |      |      | 1    |      |
| Conflicting Approach Left  | SB   |      |      |      | NB   |      | EB   |      |      |      | WB   |      |
| Conflicting Lanes Left     | 1    |      |      |      | 1    |      | 1    |      |      |      | 1    |      |
| Conflicting Approach Right | NB   |      |      |      | SB   |      | WB   |      |      |      | EB   |      |
| Conflicting Lanes Right    | 1    |      |      |      | 1    |      | 1    |      |      |      | 1    |      |
| HCM Control Delay          | 7.1  |      |      |      | 7.4  |      | 7.7  |      |      |      | 6.6  |      |
| HCM LOS                    | Α    |      |      |      | Α    |      | Α    |      |      |      | Α    |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 100%  | 21%   | 0%    | 0%    |  |
| Vol Thru, %            | 0%    | 39%   | 100%  | 0%    |  |
| Vol Right, %           | 0%    | 39%   | 0%    | 100%  |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 74    | 28    | 33    | 17    |  |
| LT Vol                 | 74    | 6     | 0     | 0     |  |
| Through Vol            | 0     | 11    | 33    | 0     |  |
| RT Vol                 | 0     | 11    | 0     | 17    |  |
| Lane Flow Rate         | 80    | 30    | 36    | 18    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.095 | 0.033 | 0.041 | 0.018 |  |
| Departure Headway (Hd) | 4.263 | 3.938 | 4.127 | 3.475 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 840   | 901   | 861   | 1021  |  |
| Service Time           | 2.294 | 1.997 | 2.184 | 1.525 |  |
| HCM Lane V/C Ratio     | 0.095 | 0.033 | 0.042 | 0.018 |  |
| HCM Control Delay      | 7.7   | 7.1   | 7.4   | 6.6   |  |
| HCM Lane LOS           | А     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.3   | 0.1   | 0.1   | 0.1   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 20   | 39   | 10   | 0    | 23   | 0    | 87   | 0    | 0    | 0    | 0    | 11   |
| Future Vol, veh/h          | 20   | 39   | 10   | 0    | 23   | 0    | 87   | 0    | 0    | 0    | 0    | 11   |
| Peak Hour Factor           | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 0    | 2    | 0    | 2    | 0    | 0    | 0    | 0    | 2    |
| Mvmt Flow                  | 22   | 42   | 11   | 0    | 25   | 0    | 95   | 0    | 0    | 0    | 0    | 12   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      |      | WB   |      | NB   |      |      |      | SB   |      |
| Opposing Approach          | WB   |      |      |      | EB   |      | SB   |      |      |      | NB   |      |
| Opposing Lanes             | 1    |      |      |      | 1    |      | 1    |      |      |      | 1    |      |
| Conflicting Approach Left  | SB   |      |      |      | NB   |      | EB   |      |      |      | WB   |      |
| Conflicting Lanes Left     | 1    |      |      |      | 1    |      | 1    |      |      |      | 1    |      |
| Conflicting Approach Right | NB   |      |      |      | SB   |      | WB   |      |      |      | EB   |      |
| Conflicting Lanes Right    | 1    |      |      |      | 1    |      | 1    |      |      |      | 1    |      |
| HCM Control Delay          | 7.6  |      |      |      | 7.4  |      | 7.9  |      |      |      | 6.7  |      |
| HCM LOS                    | Α    |      |      |      | Α    |      | Α    |      |      |      | Α    |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 100%  | 29%   | 0%    | 0%    |  |
| Vol Thru, %            | 0%    | 57%   | 100%  | 0%    |  |
| Vol Right, %           | 0%    | 14%   | 0%    | 100%  |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 87    | 69    | 23    | 11    |  |
| LT Vol                 | 87    | 20    | 0     | 0     |  |
| Through Vol            | 0     | 39    | 23    | 0     |  |
| RT Vol                 | 0     | 10    | 0     | 11    |  |
| Lane Flow Rate         | 95    | 75    | 25    | 12    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.113 | 0.086 | 0.029 | 0.012 |  |
| Departure Headway (Hd) | 4.317 | 4.11  | 4.178 | 3.545 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 826   | 863   | 847   | 994   |  |
| Service Time           | 2.369 | 2.175 | 2.255 | 1.622 |  |
| HCM Lane V/C Ratio     | 0.115 | 0.087 | 0.03  | 0.012 |  |
| HCM Control Delay      | 7.9   | 7.6   | 7.4   | 6.7   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.4   | 0.3   | 0.1   | 0     |  |

### Appendix E: Approved Deviations



LSC TRANSPORTATION CONSULTANTS, INC. 2504 East Pikes Peak Avenue, Suite 304 Colorado Springs, CO 80909 (719) 633-2868 FAX (719) 633-5430

> E-mail: <u>lsc@lsctrans.com</u> Website: http://www.lsctrans.com

# Mayberry Phase 1 Amendment to the Ellicott Town Center Phase 1 PUD/Preliminary Plan Transportation Memorandum PCD FILE NO.: PUDSP219

(LSC #S214300) February 17, 2022

#### **Traffic Engineer's Statement**

This traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.



#### **Developer's Statement**

I, the Developer, have read and will comply with all commitments made on my behalf within this report.

Date

#### STREET CLASSIFICATIONS

The attached Exhibit 1 shows the proposed street classifications. This exhibit is a modified version of Figure 13 from the June 2020 TIS report. The figure has been modified to illustrate the minor street network modifications. These modifications include:

- Removal of local street connections through commercial Filings 2 and 3 (except Springs Road).
- Modification to Village Main Street. This PUD has been updated to include a discontinuity between New Log Road and Springs Road. The resulting short segment west of Springs Road is now shown as Besseyi Way. This change will likely result in a shift of some traffic to Mayberry Drive, a Collector Street. This is actually an improvement in the plan, as it would shift through traffic to the collector street such as future commercial traffic which will need to travel east/west internally to and from New Log Road due to the left-turn restriction at SH 94/Springs Road. This would not affect the SH 94 projections and intersection analysis because a minor shift in travel route to Mayberry Drive would not likely change the turning volumes at the SH 94 intersections.

In the interim (Filings 1 and 4), prior to full construction of Mayberry Drive, a temporary 24-foot-wide, gravel road segment (to be paved once ADT exceeds 200 vehicles per day) connecting Garden Park Avenue in Filing 1 with Springs Road via the Mayberry Drive alignment – as shown in the attached exhibit – will be used until Filing 4 is developed and Mayberry Drive is completed.

• Several deviations have been approved for variations to the standard *ECM* cross sections by classification. Copies are attached for reference.

#### **APPROVED DEVIATIONS**

Attached are several approved deviations which apply to this application. Proposed Changes are indicated in **bold**.

Village Main Street is ultimately classified as an Urban Non-Residential Collector through
the Town Center area, and an Urban Local through the residential areas. The approved
deviation consists of modified cross-section elements including a 36-foot asphalt width
for the Non-Residential Collector and a 30-foot asphalt width for the Urban Local road
segments. The right-of-way through the residential area will be 60 feet (matching the
deviation).

PROPOSED CHANGES: The segment through the residential areas is no longer proposed to be continuous east to Springs Road. The interim secondary road connecting Filing 1 and Springs Road will not be on the Village Main Street alignment, rather on the Mayberry Drive alignment.

- **New Log Road** is ultimately classified as an Urban Minor Arterial roadway. The approved deviation consists of:
  - Modified cross-section elements including 15-foot attached sidewalks, bike lanes permitted, and on-street parking allowed for the ultimate road section, as well as an interim rural-asphalt-road section during the initial phase of development.
  - The ECM-prescribed minimum horizontal-centerline radius for an Urban Minor Arterial is 565 feet. This approved deviation also allows for a slightly reduced minimum centerline radius of 527 feet at couplet transitions as depicted on the attached Plan & Profile Drawing.

#### **PROPOSED CHANGES: None**

- Mayberry Boulevard is classified as a Collector. The approved deviation consists of modified cross-section elements including an ultimate divided section with landscaped median and a Phase 1 half-section with a 29-foot asphalt width.
  - PROPOSED CHANGES: The interim secondary road connecting Filing 1 and Springs Road will not be on the Village Main Street alignment, rather on the Mayberry Drive alignment. It is planned to be gravel, initially, but must be paved once ADT exceeds 200 vehicles per day.
- Springs Road: Prior PUD approvals addressed deviations for the 65' Springs Road ROW.
   CURRENT NOTES (May reflect changes): With this Phase 1 development, Springs Road would extend from SH 94 to the south boundary of Filing 4. Although classified as Urban Minor Collector adjacent to Filings 2 and 3 and Urban Local south of that point (as shown in the attached Exhibit 1-Roadway Classifications), the design attributes shown on the plans are consistent with current Urban Collector standards, and no lots are shown fronting Springs Road.

#### **CHANGES FROM THE JUNE 2020 TIS REPORT**

- The classification figure, Figure 13 from the June 2020 TIS Report, has been revised. The updated version (updated February 17, 2022) is presented in this memo as "Exhibit 1."
- The improvements Table, Table 12 from the June 2020 TIS Report, was updated with the last submittal. The updated version is attached to this memo and was expanded into a two-part table: Table 12 Roadway Improvements (basically containing only the CDOT improvements) and a new Table 12a El Paso County Roadway Improvements (updated February 17, 2022).
- This PUD has been updated to include a Village Main discontinuity west of Springs Road.
  The resulting short segment west of Springs Road is now shown as Besseyi Way. This
  change will likely result in a shift of some traffic to Mayberry Drive, a Collector Street.
  This is actually an improvement in the plan, as it would shift through traffic to the
  Collector street such as Filings 2 and 3 future commercial traffic which will need to



LSC TRANSPORTATION CONSULTANTS, INC. 2504 East Pikes Peak Avenue, Suite 304 Colorado Springs, CO 80909 (719) 633-2868 FAX (719) 633-5430

beite: http://www.lectrans.com

Website: http://www.lsctrans.com

## Mayberry Filing No. 3 Traffic Technical Memorandum PCD File No. SF2219 (LSC #S224210) September 1, 2022

#### **Traffic Engineer's Statement**

This traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.



#### **Developer's Statement**

I, the Developer, have read and will comply with all commitments made on my behalf within this report.

Date

Also, regarding CDOT improvements, please refer to the separate "Mayberry Filing No. 3 CDOT Access Permit Memo" included with this submittal. This memo has been prepared to accompany the CDOT access permit application for Filing 3 and is essentially an "addendum" to the **June 2020** TIS report entitled *Ellicott Town Center Filings 2 and 3 Traffic Impact Study March 31, 2020\** (\*Note: Minor Revision June 2, 2020). That report addressed the traffic impacts of Mayberry Phase 1 (Filings 1 through 4). As part of this CDOT memo, Improvements Table 12 has been updated/revised and a copy of that table has been attached to this report.

#### **New Log Road Phasing**

Following with review of the PUD/Preliminary Plan TIS, the PCD Engineering Manager requested that the phasing of the one-way, New Log Road couplet south of SH 94 be addressed in this report.

The ultimate northbound-only portion of the one-way couplet has been and is proposed for interim use for **both** directions of travel and the separate, southbound-only portion of the couplet would be constructed later as future development occurs.

The trips on New Log Road would not exceed 3,000 vehicles per day (vpd) ADT with the buildout of Filings 1, 2, and 3. Given the northbound "half couplet" would have a similar cross section to an Urban Local roadway, and the design ADT of an Urban Local is 3,000 ADT, staff has indicated this volume as an approximate trigger for construction and use of the southbound lanes of the couplet. As shown in Table 1 the total trip generation for Filings 1-3 (including trips projected to use Springs Road instead of New Log Road) would be below 3,000 ADT.

#### SUBDIVISION STREET CLASSIFICATIONS

Please refer to the *Mayberry Phase 1 PUD Amendment Transportation Memorandum* dated February 17, 2022, which contains a "Street Classifications" section and an associated exhibit.

#### **ROADWAY IMPROVEMENT FEE PROGRAM**

This project will be required to participate in the El Paso County Road Improvement Fee Program. Mayberry Filing 3 will join the ten-mil PID. The ten-mil PID building permit fee portion associated with this option is \$1,221 per single-family dwelling unit. The total building permit fee would be \$172,382 for the 142 dwelling units. Note: This is based on the current rate, which is subject to change. El Paso County updates this rate periodically.

#### **DEVIATIONS**

Please refer to the *Mayberry Phase 1 PUD Amendment Transportation Memorandum* dated February 17, 2022, which contains an "Approved Deviations" section.

An additional deviation (PUD Modification) was submitted with the PUD, which modifies the corner clearance across lots on the inside of and adjacent to ninety-degree "knuckles."

#### **ROUNDABOUT ANALYSIS & DESIGN**

A modern roundabout with a 120-foot inscribed circle diameter is proposed as the traffic control for the intersection of Mayberry Drive/Springs Road. Exhibits containing roundabout technical analysis are attached, along with a roundabout parameters table.

The horizontal layout, analysis, and roundabout report have been completed using the criteria contained in the Wisconsin DOT roundabout design manual (as required by El Paso County). The attached exhibits and roundabout parameters table contain all the details for the currently-proposed roundabout. The inscribed circle diameter is 120-feet and the design vehicle is a WB-50 truck (per the *ECM*). However, the roundabout has also been designed to accommodate a larger WB-67 truck. The roundabout will also accommodate the standard county snowplow vehicle. The design accommodates pedestrians. Please refer to the attached roundabout parameters table and exhibits for details. Also, please refer to the roundabout design report, which is included with the CD submittal.

#### **CDOT ACCESS PERMITS**

The CDOT access permits for New Log Road and Springs Road public street connections (access points) to SH 94 are 218053 and 218054. Both permits have been finalized. These permits were issued for Filings 1 and 2. A new "change of use" access-permit application is being submitted for Filing No. 3. This application has been submitted to CDOT, along with the **addendum memo** to the June 2020 TIS report, which addressed the impacts of the Phase 1 development, including the currently-proposed Filing No. 3. Please refer to the "Filing No. 3 CDOT Access Permits Memo," which is a separate document included with this submittal.

The number of lots (142) in Filing 3 is the same number as studied in the June 2020 comprehensive TIS report for the commercial rezone submitted to and accepted by CDOT. The Filing No. 3 site circulation and connections to Highway 94 also remain consistent with the 2020 study. The primary change is that Filing No. 3 is being developed ahead of the commercial Filing No. 4 (previously called Filing No. 3 in that 2020 TIS report). The addendum memo addresses this change in development order.

Note: The Improvements Table in the February 2022 PUD TIS report references these approved access permits for all CDOT-facility improvements. This improvements table (Table 12 – CDOT Improvements) has been updated as requested by County staff. Note: Table 12a, which addresses El Paso County road improvements, has also been updated (and is also attached). Table 12 (attached) has been updated with the new plat numbers and contains revisions to address the



Planning and Community
Development Department
2880 International Circle
Colorado Springs, Colorado 80910

DEVIATION REQUEST AND DECISION FORM

Updated: 6/26/20199

Phone: 719.520.6300 Fax: 719.520.6695

Website www.elpasoco.com

#### **PROJECT INFORMATION**

Project Name: Mayberry Filing No. 4

Schedule No.(s): 3414102013, 3414102014 3414102015

Legal Description: A Tract of land for the purpose of rezoning, being part of Tract C and part of Tract D, MAYBERRY,

COLORADO SPRINGS FILING NO. 2, a subdivision of land in the North-Half of Section 14, Township 14 South, Range 63 West of the 6th Principal Meridian, in the County of El Paso, State of Colorado, the plat of said subdivision recorded March 10, 2021 in the Office of the Clerk of El Paso County, Colorado as

Reception Number 221714698, said Tract more particularly described as follows:

Commencing at the North Quarter-corner of said Section 14, monumented by a found rebar with a 2 inch cap marked "PLS 11624" in a monument box, from whence the Northeast corner of said Section 14 monumented by a found 3/4 inch square bar with no cap in a monument box bears South 89° 44' 50" East a distance of 2606.58 feet as shown on said plat, being the North line of the Northeast Quarter of said Section 14 and all bearings herein are relative thereto; thence South 89° 44' 50" East 1303.29 feet on said North line to the Northeast corner of the West-Half of said Northeast Quarter; thence South 00° 21' 12" East 39.54 feet on the East line of said West-Half to the Northeast corner of said Tract D and the POINT OF BEGINNING of the Tract of land herein described;

Thence continuing South 00° 21' 12" East 475.02 feet on the East line of said Tract D; Thence departing said East line North 89° 28' 59" West 722.98 feet to a corner on the southerly line of said Tract A, being common with a corner on the northerly line of said Tract C; Thence North 00° 00' 00" East 10.73 feet on said southerly line, being coterminous with said northerly line of Tract C, to a corner common to said Tracts A and C; Thence South 89° 28' 59" East 341.89 feet continuing on said southerly line, a portion of which being coterminous with said northerly line of Tract C, to the Southeast corner of said Tract A; Thence on the easterly line segments of said Tract A, being coterminous with the westerly line segments of said Tract D, the following three (3) courses and distances: 1) North 00° 00' 00' West 223.01 feet; 2) Thence North 89° 28' 59" West 40.00 feet; 3) Thence North 00° 00' 00" East 241.26 feet to the Northwest corner of said Tract D; Thence South 89° 28' 49" East 418.15 feet on the North line of said Tract D to the POINT OF BEGINNING, said Tract containing 193,628 square feet or 4.445 acres; said Tract above described also being part of the proposed subdivision MAYBERRY, COLORADO SPRINGS FILING NO. 4

#### **APPLICANT INFORMATION**

Company: Mayberry Communities LLC

Name: Scott Souders

oximes Owner oximes Consultant oximes Contractor

Mailing Address: 22108 Cattlemen Run, Mayberry, CO 80808

Phone Number: 719-922-2181

FAX Number:

Email Address: scottsouders@mayberrycoloradosprings.com

#### **ENGINEER INFORMATION**

Company: HDR

Name: Phil Johnson Colorado P.E. Number: 59119

Mailing Address: 1670 Broadway, Suite 3400, Denver, CO 80202

Phone Number: 303-524-8423

FAX Number:

Email Address: phillip.johnson@hdrinc.com

#### OWNER, APPLICANT, AND ENGINEER DECLARATION

To the best of my knowledge, the information on this application and all additional or supplemental documentation is true, factual and complete. I am fully aware that any misrepresentation of any information on this application may be grounds for denial. I have familiarized myself with the rules, regulations and procedures with respect to preparing and filing this application. I also understand that an incorrect submittal will be cause to have the project removed from the agenda of the Planning Commission, Board of County Commissioners and/or Board of Adjustment or delay review until corrections are made, and that any approval of this application is based on the representations made in the application and may be revoked on any breach of representation or condition(s) of approval.

Signature of owner (or authorized representative)

Date

Engineer's Seal, Signature And Date of Signature



**DEVIATION REQUEST** (Attach diagrams, figures, and other documentation to clarify request)

A deviation from the standards of or in Section 2.3.7 of the Engineering Criteria Manual (ECM) is requested.

| Identify | v the s | pecific | <b>ECM</b> | standard | which a | a de | eviation | is red | quested: |
|----------|---------|---------|------------|----------|---------|------|----------|--------|----------|
|----------|---------|---------|------------|----------|---------|------|----------|--------|----------|

ECM Section 2.3.7 E-1: Turn Lane Design Elements (Left Turn Lane) (Tables 2-26 and 2-30)

At the intersection of Springs Road and Filing 4 Access (Business Park Dr), the forecasted southbound left turning volumes warrant the installation of an exclusive left turn lane (50 southbound left turning vehicles in the AM peak hour).

Due to the proximity of this intersection with SH-94, a deviation from the ECM requirements is requested for the design of this left turn lane.

#### State the reason for the requested deviation:

The proposed Springs Road and Filing 4 Access (Business Park Dr) intersection is located about 250 ft south of SH-94, with about 230 ft of available roadway from the Springs Road and Filing 4 Access curb return to the SH-94 exit lane to southbound Springs Road.

Springs Road is identified as a minor collector with a design speed of 30 MPH. The Mayberry Filing 4 TIS noted that the posted speed limit will be 25 MPH.

Per ECM Tables 2-26 and 2-30, the minimum required left turn lane length for a design speed of 30 MPH, with a DHV of 60 or less, is determined as (Lane Length) + (Bay Taper) + (Storage Length) = 115 ft + 120 ft + 50 ft = 285 ft. Not enough roadway space is available to provide the minimum required left turn lane length south of SH-94.

Explain the proposed alternative and compare to the ECM standards (May provide applicable regional or national standards used as basis):

The proposed left turn lane will consist of a 115 ft turn lane, an 80 ft bay taper, and a 40 ft tangent extending to the SH-94 exit lane, as shown on sheet C10.0 of the Mayberry Filing 4 Construction Documents (Signage and Striping Plan).

The proposed left turn lane design will meet the ECM Table 2-26 required deceleration length for a left turn lane with a design speed of 25 MPH. Vehicles exiting SH-94 are anticipated to travel at a low speed less than 25 MPH when making the sharp right turn onto southbound Springs Road, and therefore the provided deceleration length will be sufficient.

The southbound leg of the Springs Road and Filing 4 Access intersection will be uncontrolled, and the default behavior of vehicles will be to proceed through the intersection without stopping. Furthermore, the Mayberry Filing 4 TIS provides analysis which shows that queuing or stacking is not expected to occur for southbound left turning vehicles. Therefore, the storage length specified from Table 2-30 will not be needed.

The 40 ft tangent is intended to provide vehicles a sense of alignment before either entering the left turn lane or proceeding southbound on Springs Road.

| ·        | At least one of the conditions listed below must be met for this deviation request to be considered.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | <ul> <li>□ The ECM standard is inapplicable to the particular situation.</li> <li>□ Topography, right-of-way, or other geographical conditions or impediments impose an undue hardship and an equivalent alternative that can accomplish the same design objective is available and does not compromise public safety or accessibility.</li> <li>☑ A change to a standard is required to address a specific design or construction problem, and if not modified, the standard will impose an undue hardship on the applicant with little or no material benefit to the public.</li> </ul> |
|          | Provide justification:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | The requested deviation is justified by the Mayberry Filing 4 TIS. The traffic study demonstrates that the intersection will operate at an acceptable level of service, and the queuing or stacking is not expected to occur during the peak hours. The proposed Alternative would functionally equivalent to the ECM standards from an operations and safety standpoint.                                                                                                                                                                                                                 |
|          | Denial of the deviation would require a redesign of the intersection, and would significantly impact the current lot layout of Filing 4, the approved Filing 2 Access (located on the west leg of the proposed intersection), and the approved Filing 3 PUD.                                                                                                                                                                                                                                                                                                                              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C        | RITERIA FOR APPROVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>c</u> | er ECM section 5.8.7 the request for a deviation may be considered if the request is <b>not based exclusively on financial</b> onsiderations. The deviation must not be detrimental to public safety or surrounding property. The applicant must include upporting information demonstrating compliance with all of the following criteria:                                                                                                                                                                                                                                               |
|          | The deviation will achieve the intended result with a comparable or superior design and quality of improvement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | The proposed deviation will result in a traffic condition which is functionally equivalent to the ECM requirements using the available roadway                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | space. Therefore, a comparable or superior design will be achieved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | The deviation will not adversely affect safety or operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | The deviation will not adversely affect safety or operations.  The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not                                                                                                                                                                                                                                                                                                                                                                           |
|          | The deviation will not adversely affect safety or operations.  The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not expected to occur. The proposed deviation will result in a traffic condition which will not adversely affect operations and safety.                                                                                                                                                                                                                                       |
|          | The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | The Mayberry Filing 4 TIS demonstrates that the intersection will operate at an acceptable level of service, and that queuing or stacking is not                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| The deviation will not adversely affect maintenance and its associated cost.                                                                                                                                                                                                        |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| The proposed deviation consists solely of roadway striping, and therefore the difference in maintenance and costs will be r                                                                                                                                                         | negligible.       |
| , , , ,                                                                                                                                                                                                                                                                             |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
| The deviation will not adversely affect anothetic appearance                                                                                                                                                                                                                        |                   |
| The deviation will not adversely affect aesthetic appearance.                                                                                                                                                                                                                       |                   |
| The aesthetic appearance of Springs Road will not be adversely affected, since the proposed deviation consists solely of ad                                                                                                                                                         | ljustments to     |
| proposed roadway striping.                                                                                                                                                                                                                                                          |                   |
| proposed round, on pring.                                                                                                                                                                                                                                                           |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                                                                                     |                   |
| The deviation meets the design intent and purpose of the ECM standards.                                                                                                                                                                                                             |                   |
| The deviation meets the design intent and purpose of the ECM standards.  The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic at                                                                               | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
|                                                                                                                                                                                                                                                                                     | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a                                                                                                                                                         | are not adversely |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.                                                                                                                   |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.                                                                                                                   |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |
| The intent and purpose of the ECM standards is still met because as described above, the safety and operations of traffic a affected by the proposed alternative.  The deviation meets the control measure requirements of Part I.E.3 and Part I.E.4 of the County's MS4 permit, as |                   |

#### **REVIEW AND RECOMMENDATION:**

| Approved by the ECM Administrator                                                                                             |                          |               |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|
| This request has been determined to have met the criteria for approval. hereby granted based on the justification provided.   | A deviation from Section | of the ECM is |
| г                                                                                                                             | ٦                        |               |
| L                                                                                                                             | J                        |               |
| Desired by the FOM Administrator                                                                                              |                          |               |
| <b>Denied by the ECM Administrator</b> This request has been determined not to have met criteria for approval. hereby denied. | A deviation from Section | of the ECM is |
| Γ                                                                                                                             | 1                        |               |
| L                                                                                                                             | L                        |               |
|                                                                                                                               | -                        |               |
| ECM ADMINISTRATOR COMMENTS/CONDITIONS:                                                                                        |                          |               |
|                                                                                                                               |                          |               |
|                                                                                                                               |                          |               |
|                                                                                                                               |                          |               |
|                                                                                                                               |                          |               |
|                                                                                                                               |                          |               |
|                                                                                                                               |                          |               |
|                                                                                                                               |                          |               |
|                                                                                                                               |                          |               |
|                                                                                                                               |                          |               |
|                                                                                                                               |                          |               |
|                                                                                                                               |                          |               |
|                                                                                                                               |                          |               |

#### 1.1. PURPOSE

The purpose of this resource is to provide a form for documenting the findings and decision by the ECM Administrator concerning a deviation request. The form is used to document the review and decision concerning a requested deviation. The request and decision concerning each deviation from a specific section of the ECM shall be recorded on a separate form.

#### 1.2. BACKGROUND

A deviation is a critical aspect of the review process and needs to be documented to ensure that the deviations granted are applied to a specific development application in conformance with the criteria for approval and that the action is documented as such requests can point to potential needed revisions to the ECM.

#### 1.3. APPLICABLE STATUTES AND REGULATIONS

Section 5.8 of the ECM establishes a mechanism whereby an engineering design standard can be modified when if strictly adhered to, would cause unnecessary hardship or unsafe design because of topographical or other conditions particular to the site, and that a departure may be made without destroying the intent of such provision.

#### 1.4. APPLICABILITY

All provisions of the ECM are subject to deviation by the ECM Administrator provided that one of the following conditions is met:

- The ECM standard is inapplicable to a particular situation.
- Topography, right-of-way, or other geographical conditions or impediments impose an undue hardship
  on the applicant, and an equivalent alternative that can accomplish the same design objective is
  available and does not compromise public safety or accessibility.
- A change to a standard is required to address a specific design or construction problem, and if not
  modified, the standard will impose an undue hardship on the applicant with little or no material benefit to
  the public.

#### 1.5. TECHNICAL GUIDANCE

The review shall ensure all criteria for approval are adequately considered and that justification for the deviation is properly documented.

#### 1.6. LIMITS OF APPROVAL

Whether a request for deviation is approved as proposed or with conditions, the approval is for project-specific use and shall not constitute a precedent or general deviation from these Standards.

#### 1.7. REVIEW FEES

A Deviation Review Fee shall be paid in full at the time of submission of a request for deviation. The fee for Deviation Review shall be as determined by resolution of the BoCC.