PRELIMINARY DRAINAGE REPORT FOR URBAN COLLECTION AT PALMER VILLAGE

Prepared For:

MDC Holdings – Richmond American Homes 4350 South Monaco Street Denver, CO 80237 720-977-3827

> July 2020 Project No. 25149.01

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

seml. Wis

Glenn D. Ellis, Colorado P.E. 38861

For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: <u>MDC Holdings – Richmond American Homes</u>

By: Jason J. W. fock

Title: VP of Land Acquisition + Entitlements

Address: 4350 South Monaco Street

Denver, CO 80237

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E. Date

County Engineer/ ECM Administrator

Conditions:

Table of Contents

Purpose	l
General Site Description	I
General Location	I
Description of Property	I
Floodplain statement	2
Existing Drainage Conditions	2
Major Basin Descriptions	2
Existing Sub-basin Drainage	3
Proposed Drainage Conditions	4
Proposed Sub-basin Drainage	4
Drainage Design Criteria	ε
Development Criteria Reference	ε
Hydrologic Criteria	8
Hydraulic Criteria	9
Drainage Facility Design	9
Four Step Process to Minimize Adverse Impacts of Urbanization	9
Water Quality	10
Erosion Control Plan	11
Operation & Maintenance	11
Drainage and Bridge Fees	11
Summary	12
References	13

APPENDIX

Appendix A – Vicinity Map, Soil Descriptions, FEMA Floodplain Map

Appendix B – Hydrologic Calculations

Appendix C - Hydraulic Calculations

Appendix D – Water Quality & Detention

Appendix E – Reference Material

Appendix F – Drainage Maps

PURPOSE

This document is the Preliminary Drainage Report for Urban Collection at Palmer Village. The purpose of this report is to identify on-site and off-site drainage patterns, storm sewer, culvert and inlet locations, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities.

GENERAL SITE DESCRIPTION

GENERAL LOCATION

Urban Collection at Palmer Village is a proposed development on six un-platted parcels with a total area of 23.1 acres. The site is located in the northeast quarter of Section 5, Township 14 South, Range 65 West of the Sixth Principal Meridian in the County of El Paso, State of Colorado. The site is located immediately south of Constitution Avenue on the west and east side of Hannah Ridge Drive, extending to the east to Marksheffel Road. The site is bounded by Constitution Avenue to the north, Marksheffel Road to the east, Jessica Heights Filing No. 1 to the south, and the Cherokee Park Townhomes to the west. The parcels are planned to be platted after approval of the Development Plan. Refer to the vicinity map in Appendix A.

DESCRIPTION OF PROPERTY

A 100-unit residential development is proposed on the four western parcels (totaling 10.83 acres) (hereby referred to as the "site") per the corresponding preliminary Development Plan this drainage report supports. Two parcels are on the east side of Hannah Ridge Drive, and two are on the west side. The two parcels along Constitution Avenue, east to Marksheffel Road will not be developed at this time. They are referenced in this report only in the context of being included in plat of the proposed development. Any development of these two parcels shall require separate drainage analysis and drainage reports. The existing western parcels are undeveloped other than a sanitary sewer easement that follows the eastern border of the two parcels on the east side of Hannah Ridge Drive. The proposed development site is comprised of variable sloping grasslands that generally slope east at approximately 3% on the east side of Hannah Ridge Drive. On the west side of Hannah Ridge Drive the land slopes at about 1% to the east, draining into the curb and gutter in Hannah Ridge Drive.

Soil characteristics are comprised of Blakeland loamy sand. NRCS rates this soil designation as Hydrologic Group A. Group A soils exhibit a high infiltration rate when thoroughly wet and consist chiefly of deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a high rate of water transmission. Refer to the soil survey mapping in Appendix A.

There are no major drainageways on the proposed development site, although a tributary to the East Fork Sand Creek is immediately to the east of the site, within the undeveloped tracts.

There are no known irrigation facilities located on the project site. A 12" PVC sanitary sewer runs along the eastern side of the site within an easement.

FLOODPLAIN STATEMENT

Based on the FEMA Firm Map Number 08041C0752G, revised December 7, 2018, the entire development is located within Zone X, or areas area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. The FEMA map containing the site has been presented in Appendix A.

EXISTING DRAINAGE CONDITIONS

MAJOR BASIN DESCRIPTIONS

The site lies within the Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" completed by Kiowa Engineering Corporation in January 1993. The Sand Creek Drainage Basin covers approximately 54 square miles and is divided into five major sub-basins: Sand Creek Mainstem, East Fork Sand Creek, Central Tributary to East Fork, West Fork, and East Fork Subtributary. The site is within the East Fork Sand Creek sub-basin, as shown in Appendix E. The Sand Creek Basin discharges into Fountain Creek approximately 1.5 miles upstream of Academy Boulevard Bridge over Fountain Creek.

As development occurred within the basin, the site was analyzed with the "Jessica Heights Filing No. 1 Final Drainage Report" completed by M.V.E. Inc. in April 2005. The portion of the site west of Hannah Ridge Drive was identified as Basin C1 and the portion of the site east of Hannah Ridge Drive was identified as Basin A2. Basin C1 contributes existing flows of $Q_5 = 2.8$ cfs and $Q_{100} = 6.8$ cfs. Basin A2 contributes existing flows of $Q_5 = 3.2$ cfs and $Q_{100} = 7.6$ cfs. Runoff from both basins flows east. Basin C1 is captured in Hannah Ridge Drive curb and gutter and is conveyed to Constitution Avenue, while Basin A2 sheet flows off site to the adjacent parcel to the east.

Most recently, the site was analyzed within the "Hannah Ridge at Feathergrass Master Drainage Development Plan" completed by M.V.E. Inc in November 2007. The site was identified as Basin OSA14 with existing flows of $Q_5=14$ and $Q_{100}=27$ cfs flowing easterly to Tributary to Sand Creek – East Fork Reach No. 6.

As previously stated, there are no known irrigation facilities within the site that would impact drainage. An existing 12" PVC sanitary sewer runs along the eastern boundary of the site and is contained within a dedicated easement.

EXISTING SUB-BASIN DRAINAGE

The site is bisected by Hannah Ridge Drive, dividing the site into east and west parcels. The east side drains directly into a tributary to the East Fork Sand Creek (Tributary to Sand Creek – East Fork Reach No. 6). Runoff from the west site sheet flows across the site and is collected in Hannah Ridge Drive curb and gutter and is conveyed either north to Constitution Avenue or south to the Jessica Heights Subdivision. The west site is comprised of existing Basins EX3 and EX4. The east site is comprised of Basin EX6. Basins EX1 and EX2 are offsite basins that sheet flow onto Basins EX3 and EX4, respectively. Basin EX5 flows offsite to Constitution Avenue. The basins shown in the "Jessica Heights Filing No. 1 Final Drainage Report" created by M.V.E., Inc. in April, 2005 correspond to the existing basins in this report in the following manner: OSA = EX1, OSB = EX2, C1 = EX3 and EX4, A4 = EX5, A2 = EX6.

Existing Basin EX1 is approximately 0.15 acres and is consistent with the Jessica Heights Filing No. 1 Final Drainage Report Basin OSA. Flow from this basin sheet flows onto the site to Basin EX3 at Design Point (DP) 1 (Q_5 =0.04 cfs, Q_{100} =0.4 cfs), eventually reaching DP3, a local depression.

Existing Basin EX2 is approximately 0.46 acres and is consistent with the Jessica Heights Filing No. 1 Final Drainage Report Basin OSB. Flow from this basin (Q_5 =0.2 cfs, Q_{100} =1.2 cfs) sheet flows onto the site to Basin EX4 at DP2, eventually reaching Hannah Ridge Drive at DP4.

Existing Basin EX3 is approximately 4.27 acres and consists of prairie grasses. Flow from this basin $(Q_5 = 1.2 \text{ cfs}, Q_{100} = 9.0 \text{ cfs})$ sheet flows to the local depression at DP3. According to the available contour data, once the local depression has filled, the overtopping flow travels to the northeast. The flow then is conveyed to the curb and gutter along the south side of Constitution Avenue, where it is conveyed to an inlet and discharges into a tributary to the East Fork Sand Creek.

Existing Basin EX4 is approximately 1.62 acres and consists of prairie grasses and a portion of Hannah Ridge Drive. Flow from this basin ($Q_5=1.1$ cfs, $Q_{100}=4.0$ cfs) sheet flows to the curb and gutter in Hannah Ridge Drive at DP4. The flow then is conveyed south via the Jessica Heights Subdivision storm sewer system, eventually discharging into a tributary to the East Fork Sand Creek.

Existing Basin EX5 is approximately 0.37 acres and consists of a portion of Hannah Ridge Drive and prairie grasses. Flow from this basin (Q_5 =1.4 cfs, Q_{100} =2.7 cfs) flows north along the Hannah Ridge Drive curb and gutter until it reaches the curb and gutter on the south side of Constitution Avenue at DP5. From there, the flow travels along the Constitution Avenue curb and gutter until reaching an inlet and discharges into a tributary to the East Fork Sand Creek.

Existing Basin EX6 is approximately 5.25 acres and consists of prairie grasses. Flow from this basin $(Q_5=1.5 \text{ cfs}, Q_{100}=11.1 \text{ cfs})$ sheet flows to the east and enters a tributary to the East Fork Sand Creek.

As stated previously, the undeveloped tracts east of the site have not been analyzed in their existing conditions as part of this report. Future development of these tracts will require a separate drainage report.

PROPOSED DRAINAGE CONDITIONS

PROPOSED SUB-BASIN DRAINAGE

The proposed site was broken into two major basins: Basin A (west parcels) and Basin B (east parcels). The proposed basin (and sub-basin) delineation is shown on the drainage basin map and is described as follows;

Basin A1 consists of approximately 0.74 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =2.0 cfs and Q_{100} =4.2 cfs) will be collected and conveyed in a 3.0' concrete pan, that follows the centerline of Vanhoutte View, to DP1. At DP1, flow enters Type A curb and gutter and is conveyed to an on-grade Double Denver Type 16 Combination Inlet (Double Type 16) at DP3, where it combines with Basin A2 flow. Discussion of DP3 captured flow versus flow-by is presented in the Basin A2 description.

Basin A2 consists of approximately 0.17 acres and includes walks, drives, and landscape areas. Flow from this basin (Q_5 =0.5 cfs and Q_{100} =1.0 cfs) will be collected and conveyed in Type A curb and gutter in Wayfaring Tree Heights to an on-grade Double Type 16 at DP3. Total flows at DP3 are Q_5 =2.4 cfs and Q_{100} =5.3 cfs. In the 5-year event, 1.9 cfs is captured, and 3.3 cfs is captured in the 100-year event. DP3 flow-by of Q_5 =0.5 cfs and Q_{100} =2.0 cfs continues in curb and gutter to DP5 where it combines with Basin A5 flow. DP3 captured flows are piped in 18" RCP to DP8.1 before discharging into Pond A at DP10.

Basin A3 consists of approximately 0.11 acres and includes walks, drives, and landscape areas. Flow from this basin (Q_5 =0.3 cfs and Q_{100} =0.7 cfs) will be collected and conveyed in Type A curb and gutter in Wayfaring Tree Heights to an on-grade Double Type 16 at DP4, where it combines with Basin A4 flow. Total flows at DP4 are Q_5 =2.4 cfs and Q_{100} =5.8 cfs. In the 5-year event, 1.9 cfs is captured and 3.5 cfs is captured in the 100-year event. DP4 flow-by of Q_5 =0.5 cfs and Q_{100} =2.3 cfs continues in curb and gutter to DP6 where it combines with Basin A7 flow. DP4 captured flows are piped in 18" RCP to DP4.1, where it combines with flow from DP3 and ultimately discharges into Pond A at DP10.

Basin A4 consists of approximately 0.72 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =2.0 cfs and Q_{1oo} =4.2 cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Vanhoutte View, to DP2. At DP2, flow enters Type A curb and gutter and is conveyed to an on-grade Double Type 16 at DP4, where it combines with Basin A3 flow. Discussion of DP4 captured flow versus flow-by is presented in the Basin A3 description.

Basin A5 consists of approximately 0.77 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =1.7 cfs and Q_{100} =3.8 cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Serviceberry Grove, to DP5. At DP5, flow enters Type A curb and gutter and combines with DP3 flow-by. The combined flow is conveyed to a sump Double Type 16 at DP8, where it combines with Basin A6 and DP7 flow. Discussion of DP8 captured flow is presented in the Basin A6 description.

Basin A6 consists of approximately 0.26 acres and includes walks, drives, and landscape areas. Flow from this basin (Q_5 =0.9 cfs and Q_{100} =1.6 cfs) will be collected and conveyed in Type A curb and gutter in Wayfaring Tree Heights to a sump Double Type 16 at DP8. The total combined flow at DP8 from DP5, DP7 and Basin A6 is Q_5 =4.1 cfs and Q_{100} =10.0 cfs. All flow at DP8 is captured and piped in a 30" RCP to DP9.1, and discharges into Pond A at DP10. If the sump inlet at DP8 were to become clogged, overflows would spill over the crown to the Denver Triple Type 16 at DP9.

Basin A7 consists of approximately 0.54 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =1.3 cfs and Q_{100} =2.8 cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Serviceberry Grove, to DP6. At DP6, flow enters Type A curb and gutter and combines with DP4 flow-by. The combined flow is conveyed to a sump Denver Triple Type 16 at DP9, where it combines with Basin A9 flow. Discussion of DP9 captured flow is presented in the Basin A9 description.

Basin A8 consists of approximately 0.70 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =1.4 cfs and Q_{100} =3.2 cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Fountain Grass Grove, to DP7. At DP7, flow enters Type A curb and gutter and is conveyed to a sump Double Type 16 at DP8 where it combines with DP5 and Basin A6 flows. Discussion of DP8 captured flow is presented in the Basin A6 description.

Basin A9 consists of approximately 0.72 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =1.8 cfs and Q_{100} =3.8 cfs) will be collected and conveyed in Type A curb and gutter in Fountain Grass Grove to a sump Triple Type 16 at DP9. The total combined flow at DP9 from DP6 and Basin A9 is Q_5 =3.3 cfs and Q_{100} =8.4 cfs. All flow at DP9 is captured and piped in 30" RCP to DP10. If the sump inlet at DP9 were to become clogged, overflows would overtop the curb and discharge directly into Pond A.

Basin A10 consists of approximately 0.46 acres of landscaped areas and contains Full Spectrum Water Quality and Detention Pond A. Flow from this basin (Q_5 =0.2 cfs and Q_{100} =1.2 cfs) is captured in a grass-lined swale that discharges directly into Pond A where it combines with flow from Basins A1-A9. A detailed discussion of Full Spectrum Water Quality and Detention Pond A is presented in the Water Quality section later in this report.

Basin A11 consists of approximately 0.29 acres of landscaped area, emergency access, and sidewalk. Due to topographical constraints and the degree of development therein, Basin A11 (Q_5 =0.4 cfs and Q_{100} =1.2 cfs) will discharge directly into Constitution Avenue curb and gutter.

Basin A12 consists of approximately 0.14 acres of landscaped area and sidewalk. Due to topographical constraints and the degree of development therein, Basin A11 (Q_5 =0.2 cfs and Q_{100} =0.6 cfs) flow will discharge directly into Constitution Avenue curb and gutter.

Basin B1 consists of approximately 0.65 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =1.4 cfs and Q_{100} =3.3 cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Fountain Grass Grove, to DP15. At DP15, flow enters Type A curb and gutter and is conveyed to an on-grade Double Denver Type 16 Combination Inlet (Double Type 16) at DP17, where it combines with Basin B2 flow. Discussion of DP17 captured flow versus flowby is presented in the Basin B2 description.

Basin B2 consists of approximately 0.08 acres and includes walks and drives. Flow from this basin $(Q_5=0.4 \text{ cfs} \text{ and } Q_{1oo}=0.7 \text{ cfs})$ will be collected and conveyed in Type A curb and gutter in Blue Avena View to an on-grade Double Type 16 at DP17. Total flows at DP17 from DP15 and Basin B2 are $Q_5=1.7 \text{ cfs}$ and $Q_{1oo}=3.8 \text{ cfs}$. In the 5-year event, 1.4 cfs is captured and 2.4 cfs is captured in the 100-year event. DP17 flow-by of $Q_5=0.3 \text{ cfs}$ and $Q_{1oo}=1.4 \text{ cfs}$ continues in curb and gutter to DP19 where it combines with Basin B5 flow. DP17 captured flows are piped in 18" RCP to DP18.1, where it combines with flow from DP18, before discharging into Pond B at DP25.

Basin B3 consists of approximately 0.11 acres and includes walks, drives, and landscape areas. Flow from this basin (Q_5 =0.5 cfs and Q_{100} =0.9 cfs) will be collected and conveyed in Type A curb and gutter in Blue Avena View to an on-grade Double Type 16 at DP18, where it combines with DP16 flow. Total flows at DP18 from DP16 and Basin B3 are Q_5 =2.8 cfs and Q_{100} =5.6 cfs. In the 5-year event, 2.0 cfs is captured and 3.1 cfs is captured in the 100-year event. DP18 flow-by of Q_5 =0.8 cfs and Q_{100} =2.5 cfs continues in curb and gutter to DP20 where it combines with Basin B8 flow. DP18 captured flows are piped in 18" RCP to DP18.1 before discharging into Pond B at DP25.

Basin B4 consists of approximately 0.88 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =2.5 cfs and Q_{100} =5.1 cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Fountain Grass Grove, to DP16. At DP16, flow enters Type A curb and gutter and is conveyed to an on-grade Double Type 16 at DP18, where it combines with Basin B3 flow. Discussion of DP18 captured flow versus flow-by is presented in the Basin B3 description.

Basin B5 consists of approximately 0.60 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =1.4 cfs and Q_{100} =3.1 cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Purple Fountain Point, to an on-grade Single Type 16 at DP19, where it combines with DP17 flow-by. Total flows at DP19 from Basin B5 and DP17 flow-by are

 Q_5 =1.7 cfs and Q_{100} =4.6 cfs. In the 5-year event, 1.2 cfs is captured and 2.1 cfs is captured in the 100-year event. DP19 flow-by of Q_5 =0.5 cfs and Q_{100} =2.5 cfs continues in curb and gutter to DP24 where it combines with Basin B6 flow. DP19 captured flow is conveyed to DP19 and piped in 18" RCP to DP 24.1 before discharging into Pond B at DP25.

Basin B6 consists of approximately 0.08 acres and includes walks, drives and landscape areas. Flow from this basin (Q_5 =0.3 cfs and Q_{100} =0.6 cfs) will be collected and conveyed in Type A curb and gutter in Blue Avena View to a sump Triple Type 16 at DP24. The total combined flow at DP24 from Basin B6 and DP19 flow-by is Q_5 =0.8 cfs and Q_{100} =3.0 cfs. All flow at DP24 is captured and piped in 30" RCP to DP24.1 before discharging into Pond B at DP25. If the sump inlet at DP24 were to become clogged, flow would overtop the curb and discharge directly into Pond B.

Basin B7 consists of approximately 0.13 acres and includes walks, drives, and landscape areas. Flow from this basin (Q_5 =0.5 cfs and Q_{100} =1.0 cfs) will be collected and conveyed in Type A curb and gutter in Blue Avena View to a sump Denver Double Type 16 at DP23. The total combined flow at DP23 from Basin B7, DP20, and DP21 flow-by is Q_5 =3.3 cfs and Q_{100} =8.3 cfs. All flow at DP23 is captured in the 5-year event, however; in the 100-year event 0.4 cfs is not captured and will overtop the street crown to the Triple Type 16 at DP24. Captured flows are piped to DP23.1 where it combines with flows from DP22.1 before discharging into Pond B at DP25.

Basin B8 consists of approximately 0.73 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =2.1 cfs and Q_{1oo} =4.3 cfs) will be collected and conveyed in a 3.0' concrete pan, that follows the centerline of Purple Fountain Point, to DP20. At DP20, flow enters Type A curb and gutter and combines with DP18 flow-by for a total flow of Q_5 =2.6 cfs and Q_{1oo} =6.4 cfs. The combined flow is conveyed to a sump Denver Double Type 16 at DP23, where it combines with Basin B7 and DP22 flow-by flow. Discussion of DP23 captured flow is presented in the Basin B7 description.

Basin B9 consists of approximately 0.54 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =1.5 cfs and Q_{100} =3.1 cfs) will be collected and conveyed in Type A curb and gutter in Foerster Grass View, to DP22. At DP22, flow is captured in a Denver Double Type 16 (Q_5 =1.4 cfs and Q_{100} =2.3 cfs). DP21 flow-by (Q_5 =0.1 cfs and Q_{100} =0.8 cfs) continues in Type A curb and gutter to DP23 where it combines with Basin B7 and DP20 flow. Discussion of DP23 captured flow is presented in the Basin B7 description.

Basin B10 consists of approximately 0.48 acres of landscaped areas and contains Full Spectrum Water Quality and Detention Pond B. Flow from this basin (Q_5 =0.2 cfs and Q_{100} =1.5 cfs) sheet flows directly into Pond B where it combines with flow from Basins B1-B9 and B15. A detailed discussion of Full Spectrum Water Quality and Detention Pond B is presented in the Water Quality section later in this report.

Basin B11 consists of approximately 0.19 acres of landscaped areas and contains approximately 1,870 square feet of asphalt roadway. Flow from this basin (Q_5 =0.5 cfs and Q_{100} =1.2 cfs) follows historic drainage patterns and sheet flows offsite, along the eastern site boundary, eventually flowing directly into the Tributary to Sand Creek – East Fork Reach No. 6.

Basin B12 consists of approximately 0.07 acres of landscaped areas and sidewalk. Due to topographical constraints and the degree of development therein, flow from this basin (Q_5 =0.1 cfs and Q_{100} =0.3 cfs) will discharge directly into Constitution Avenue curb and gutter.

Basin B13 consists of approximately 0.23 acres of landscaped areas and sidewalk. Due to topographical constraints and the degree of development therein, flow from this basin (Q_5 =0.3 cfs and Q_{100} =0.9 cfs) will discharge directly into Constitution Avenue curb and gutter.

Basin B14 consists of approximately 0.12 acres of landscaped areas and will remain undeveloped. Flow from this basin (Q_5 =0.1 cfs and Q_{100} =0.4 cfs) follows historic drainage patterns and sheet flows easterly offsite to Tributary to Sand Creek – East Fork Reach No. 6.

Basin B15 consists of approximately 0.24 acres of landscaped areas and sidewalk. Flow from this basin (Q_5 =0.4 cfs and Q_{100} =1.0 cfs) is conveyed in a grass-lined swale to a Type C Inlet at DP21. All Basin B15 flow is captured at DP21 and is piped in 18" RCP to DP22.1 (Q_5 =1.7 cfs and Q_{100} =3.2 cfs) where it combines with captured flows at DP22. Basin B15's ultimate outfall is Pond B at DP25.

Basin B16 consists of approximately 0.11 acres of landscaped areas and will remain undeveloped. Flow from this basin (Q_5 =0.1 cfs and Q_{100} =0.4 cfs) is conveyed in a grass-lined swale onsite before discharging to the east. From here, the flow follows historic drainage patterns to the Tributary to Sand Creek – East Fork Reach No. 6.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

Storm drainage analysis and design criteria for this project were taken from the "City of Colorado Springs/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual" (CSDCM), dated May 2014, as adopted by El Paso County.

HYDROLOGIC CRITERIA

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and

rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

 Storm
 Rainfall (in.)

 5-year
 1.50

 100-year
 2.52

Table 2 - 1-hr Point Rainfall Data

HYDRAULIC CRITERIA

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site, and the UDFCD UD-Detention v3.07 spreadsheet was utilized for evaluating proposed detention and water quality pond. Sump and on-grade inlets were sized using UDFCD UD-Inlet v2.07. Manning's equation was used to size the proposed pipes in this report and StormCAD will be used to model the proposed storm sewer system and to analyze the proposed HGL calculations for Construction Drawings.

DRAINAGE FACILITY DESIGN

FOUR STEP PROCESS TO MINIMIZE ADVERSE IMPACTS OF URBANIZATION

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

Step 1 – Reducing Runoff Volumes: The Urban Collection at Palmer Village development project consists of 50 duplex structures with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. Roof drains from the structures will discharge to lawn areas, where feasible, to allow for infiltration and runoff volume reduction.

Step 2 – Stabilize Drainageways: The site lies within the Sand Creek Drainage Basin. Basin and bridge fees will be paid at time of platting. These funds will be used on future projects within the basin to stabilize drainageways. The site does not discharge directly into the open drainageway of Sand Creek, therefore no downstream stabilization will be accomplished with this project.

Step 3 – Treat the WQCV: Water Quality treatment for this site is provided in two proposed full spectrum water quality detention ponds: Pond A and Pond B. The runoff from this site will be collected within inlets and conveyed to the proposed ponds via storm sewer. Upon entrance to the ponds, flows will be captured in a forebay designed to promote settlement of suspended solids. A

trickle channel is also incorporated into the ponds to minimize the amount of standing water. The outlet structure has been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for 72 hours. All flows released from the ponds will be reduced to less than historic rates.

Step 4 – Consider Need for Industrial and Commercial BMPs: BMPs will be utilized to minimize off-site contaminants and to protect the downstream receiving waters. Site specific temporary source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill containment and control, etc. The permanent erosion control BMPs include asphalt drives and parking, storm inlets and storm pipe, two full spectrum water quality and detention ponds, and permanent vegetation.

WATER QUALITY

The site is split by Hannah Ridge Drive, therefore; a full spectrum water quality and detention pond is provided on both sides. Basin A, located west of Hannah Ridge Drive, will discharge to Pond A, while the east side of Hannah Ridge Drive, Basin B, will discharge to Pond B. Both ponds have been designed per Section 13.3.2.1 of Resolution 15-042 of the El Paso County Drainage Criteria Manual.

Full Spectrum Water Quality and Detention Pond A is designed for a total contributing acreage of 5.80 acres at 48.4% impervious from Basins A1-A10. The total WQCV is 0.098 ac-ft, the excess urban runoff volume (EURV) is 0.223 ac-ft, and the total required detention volume is 0.514 ac-ft. The WQCV is released over 41 hours, the EURV is released over 72 hours, and the 100-year volume is released over 86 hours. The 100-year discharge of 2.2 cfs is equal to 90% of predevelopment rates. A riprap spillway is provided that conveys the full undetained, peak 100-year flow of 25.3 cfs with a 1.0' freeboard. The spillway has a crest length of 20' and a total depth of 1.50'. Additionally, emergency overflow inlets are included below the emergency spillway to capture emergency flows. 12" RCP connects overflow inlets to the next downstream manhole.

Pond A's outlet structure outfalls into an 18" RCP, eventually upsizing to 24" RCP, that flows along the site's southern property line before discharging into the existing double 10 x 6' RCBC located in the adjacent parcel, east of the eastern parcel. A drainage easement will be provided for both the onsite and offsite portions of this pond outfall. The ultimate discharge of the double 10' x 6' RCBC is the "Tributary to Sand Creek – East Fork Reach No. 6". A drainage map including Pond A and its outfall has been presented in Appendix F. Due to the fact that there are no upstream regional detention facilities, an "emergency conditions" scenario was not analyzed for Pond A.

Pond B is designed for a total contributing acreage of 4.28 acres at 56.5% impervious from Basins B1-B10 & B15. The total WQCV is 0.080 ac-ft, the excess urban runoff volume (EURV) is 0.208 ac-ft and the total required detention volume is 0.444 ac-ft. The WQCV is released over 40 hours, the

EURV is released over 76 hours and the 100-year volume is released over 95 hours. The 100-year discharge of 1.7 cfs is equal to 90% of predevelopment rates. A riprap spillway is provided that conveys the full undetained, peak 100-year flow of 21.9 cfs with a 1.0' freeboard. The spillway has a crest length of 20' and a total depth of 1.50'. Additionally, emergency overflow inlets are included below the emergency spillway to capture emergency flows. 12" RCP connects overflow inlets to the next downstream manhole.

The pond outfalls into an 18" RCP that flows easterly before discharging into the existing double 10' x 6' RCBC located in the adjacent parcel to the east. A drainage easement will be provided for both the onsite and offsite portions of this pond outfall. The ultimate discharge of the double 10' x 6' RCBC is the" Tributary to Sand Creek – East Fork Reach No. 6". A drainage map including Pond B and it's outfall has been presented in Appendix F. Due to the fact that there are no upstream regional detention facilities, an "emergency conditions" scenario was not analyzed for Pond B.

EROSION CONTROL PLAN

We respectfully request that the Erosion Control Plan and Cost Estimate be submitted in conjunction with the grading and erosion control plan and construction assurances posted prior to obtaining a grading permit. The PUDSP plan set includes a preliminary grading plan.

OPERATION & MAINTENANCE

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. The property owner shall be responsible for the inspection, maintenance, rehabilitation and repair of stormwater and erosion control facilities located on the property unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. Access is provided from onsite facilities and easements for proposed infrastructure located offsite. We respectfully request that the Operation & Maintenance Manual be submitted in conjunction with the construction documents, prior to obtaining a grading permit.

DRAINAGE AND BRIDGE FEES

The site lies within the Sand Creek Drainage Basin. Anticipated drainage and bridge fees are presented below, based on Resolution No. 19-441, and will be paid at time of platting. Fees could change, and are dependent on the timing of the plat.

2020 DRAINAGE AND BRIDGE FEES - URBAN COLLECTION AT PALMER VILLAGE									
Impervious Acres	Drainage Fee (Per Imp. Acre)	Bridge Fee (Per Imp. Acre)	Urban Collection at Palmer Village Drainage Fee	Urban Collection at Palmer Village Bridge Fee					
5.67	\$19,698	\$8,057	\$111,688	\$45,683					

SUMMARY

The proposed Urban Collection at Palmer Village development drainage improvements, including storm sewer and two full spectrum water quality and detention ponds were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development will not adversely affect the offsite drainageways or surrounding development. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements for this site.

REFERENCES

- 1. <u>City of Colorado Springs Drainage Criteria Manual</u> (Volumes I & II), City of Colorado Springs, Colorado, Updated May, 2014.
- 2. <u>Urban Storm Drainage Criteria Manual</u> (Volumes 1, 2, and 3), Urban Drainage and Flood Control District, June 2001.
- 3. <u>Sand Creek Drainage Basin Planning Study,</u> prepared Kiowa Engineering Corporation, January, 1993.
- 4. Jessica Heights Filing No. 1 Final Drainage Report, prepared by M.V.E., Inc, April, 2005.
- 5. <u>Hannah Ridge at Feathergrass Master Drainage Development Plan</u>, prepared by M.V.E., Inc., November 15, 2007.

Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map

NOTES TO USERS

is map is for use in administering the National Flood Insurance Program. It does the necessarily identify all areas subject to flooding, particularly from local drainage urces of small size. The community map repository should be consulted fo sesible updated or additional flood hazard information.

btain more detailed information in areas where **Base Flood Elevations** (BFE or **floodways** have been determined, users are encouraged to consult the Flo and/or floodways have been determined, users are encouraged to consult the Floot Frofiles and Floodway Data and/or Summary of Stillwater Elevations tables contains within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users holded be aware that BFEs shown on the FIRM represent rounded whole-do-levations. These BFEs are intended for flood insurance rating purposes only and hould not be used as the sole source of flood elevation information. Accordingly cod elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0° Nor-wherican Vertical Datum of 1986 (NAVD88). Users of this FIRM should be award that coastal flood elevations are also provided in the Summary of Silhwater Elevation able in the Flood insurance Study report for this jurisdiction. Elevations shown in th jurimary of Silhwater Elevations table should be used for construction and coordpain management purposes when they are higher than the elevations shown or

soundaries of the **floodways** were computed at cross sections and interpolate between cross sections. The floodways were based on hydraulic considerations wit egard to requirements of the National Flood Insurance Program. Floodway width and other pertinent floodway data are provided in the Flood Insurance Study report for the workflood of the pertinent floodway data are provided in the Flood Insurance Study report for the workflood of the pertinent floodway data are provided in the Flood Insurance Study report for the workflood of the pertinent floodway that the pertinent floodway the pertinent floodway that the pertinent floodway the pertinent floodway that the pertinent floodway that the pertinent floodway the pertinent

Certain areas not in Special Flood Hazard Areas may be protected by **flood contri** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurant study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transvers Mercator (UTM) zone 13. The horizontal datum was NADS3. GRS80 spherior priferences in datum, spheroid, projection or UTM zones zones used in the voduction of FIRMs for adjacent jurisdictions may result in slight position differences in map features across jurisdiction boundaries. These differences do no iffect the accuracy of this FIRM.

lood elevations on this map are referenced to the North American Vertical Datum (f 1988 (NAVD88). These flood elevations must be compared to structure and round elevations referenced to the same vertical datum. For information regarding onversion between the National Geodetic Vertical Datum of 1929 and the North Marchard Vertical Datum of 1886, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following

NUAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

o obtain current elevation, description, and/or location information for bench mark hown on this map, please contact the Information Services Branch of the Nation seedetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Sase Map information shown on this FIRM was provided in digital format by El Pas County, Colorado Springs Utilities, City of Fountain, Bureau of Land Managemen valational Oceanic and Atmospheric Administration, United States Geological Survey and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodways that were transferred from the previous FRM for this jurisdiction. The floodplans and floodways that were transferred from the previous FRM may the flood that the flood flood from the previous FRM may transit, the Flood Froffies and Floodway Data tables in the Flood firsurance Study Report (which contains authoritate hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain. his map reflects more detailed and up-to-date stream channel configurations a

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have courred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and slusting of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-338-2627 for information on available products associated with this fIRMA. Available products may include previously issued Letters of Map Change, FIRMA Description of the map. The MSC may also be reached by Fax at 1-800-358-9620 and its website a http://www.msc.fema.gov/.

El Paso	County Vertical D	atum Offset	Table Vertical Date	
Flooding Source			Offset	
	3.3 OF THE EL PASO C STREAM VERTICAL DA			
	Panel Locatio	n Map		
			$\overline{+}$	
			+	
		A		
		+		
15-11				
		Ш		
1				
This Digital Flood Insu	rance Rate Man	(DFIRM) was	produced	through
Cooperating Technical P Water Conservation Boa	artner (CTP) agree	ment between	the State	of Colorac
Agency (FEMA).				
ER CONSED				

(63)

MAP REVISED

DECEMBER 7, 2018

Federal Emergency Management Agency

NOTES TO USERS

is map is for use in administering the National Flood Insurance Program. It doe thecessarily identify all areas subject to flooding, particularly from local drainagurces of small size. The community map repository should be consulted for sesible updated or additional flood hazard information.

and/or floodways have been determined, users are encouraged to consult the Floor Orificias and Floodway Data and/or Summary of Silwater Elevations tables contains within the Flood Insurance Study (FIS) report that accompanies this FIRM. User hould be aware that BFEs shown on the FIRM represent rounded whole-for-levations. These BFEs are intended for flood insurance rating purposes only an hould not be used as the sole source of flood elevation information. Accordingly lood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0° Nor-wherican Vertical Datum of 1986 (NAVD88). Users of this FIRM should be away that coastal flood elevations are also provided in the Summary of Sillwater Elevation able in the Flood Insurance Study report for this jurisdiction. Elevations shown in the summary of Sillwater Elevations table should be used for construction and coopplain management purposes when they are higher than the elevations shown or

Soundaries of the **floodways** were computed at cross sections and interpolate between cross sections. The floodways were based on hydraulic considerations wit egard to requirements of the National Flood Insurance Program. Floodway within and other pertinent floodway data are provided in the Flood Insurance Study report for

Certain areas not in Special Flood Hazard Areas may be protected by **flood contritructures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurant Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transve dercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 sphero-pforferences in datum, spheroid, projection or UTM zones zones used in voduction of FIRMs for adjacent jurisdictions may result in slight position differences in map features across jurisdiction boundaries. These differences do ffect the accuracy of this FIRM.

cost alreadons on this map are efferenced to the North American Vertical Datum (1988 MAV088). These flood elevations must be compared to structure and round elevations referenced to the same vertical datum. For information regarding worrest on between the National Geodetic Vertical Datum of 1928 and the Northerence of the Northerence of the National Geodetic Survey website a Dyfown or produced to the Northerence of the National Geodetic Survey and the following Dyfown or produced to Survey website a polynown open ago ovir or contact the National Geodetic Survey and the following the Northerence of the National Geodetic Survey and the following the Northerence of the National Geodetic Survey and the following the National Survey and the National Geodetic Survey and the following the National Survey and S

NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 |315 East-West Highway Silver Spring, MD 20910-3282

o obtain current elevation, description, and/or location information for bench mark hown on this map, please contact the Information Services Branch of the Nation seedetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

iase Map information shown on this FIRM was provided in digital format by El Pas bounly, Colorado Springs Utilities, City of Fountain, Bureau of Land Managemen lational Oceanic and Amospheric Administration, United States Geological Survey nd Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations han those shown on the previous FRM for this jurisdiction. The licocplains and floodways the twee transferred from the previous FRM may have been been supported by the provided of the previous FRM may the flood profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain. is map reflects more detailed and up-to-date stream channel configurations a

corporate limits shown on this map are based on the best data available at the time f publication. Because changes due to annexations or de-annexations may have courred after this map was published, map users should contact appropriate ommunity officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a sisting of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange FMIX] 1-877-338-2627 for information on available products associated with this relim. Available products may include previously issued Letters of Map Change, a Glood Insurance Study Report, and/or digital versions of this map. The MSC may isso be reached by Fax at 1-800-358-9620 and its website a lttp://www.msc.fema.gov/.

MAP NUMBER

08041C0756G

MAP REVISED

DECEMBER 7, 2018

Federal Emergency Management Agency

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 17, Sep 13, 2019 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Apr 15, 2011—Jun 17. 2014 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	А	11.3	100.0%
Totals for Area of Intere	st	11.3	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Appendix B Hydrologic Calculations

PALMER VILLAGE - EXISTING DRAINAGE SUMMARY

EXISTING BASIN SUMMARY TABLE										
Tributary	Area	Percent			t_c	Q_5	Q ₁₀₀			
Sub-basin	(acres)	Impervious	C_5	C ₁₀₀	(min)	(cfs)	(cfs)			
EX1	0.15	2%	0.08	0.35	7.9	0.04	0.4			
EX2	0.46	2%	0.08	0.35	8.1	0.2	1.2			
EX3	4.27	2%	0.08	0.35	14.2	1.2	9.0			
EX4	1.62	19%	0.22	0.45	17.9	1.1	4.0			
EX5	0.37	82%	0.75	0.85	5.0	1.4	2.7			
EX6	5.25	2%	0.08	0.35	14.4	1.5	11.1			

EXISTING DESIGN POINT SUMMARY TABLE								
DP	Q_5	Q ₁₀₀						
1	0.04	0.4						
2	0.2	1.2						
3	1.3	9.3						
4	1.3	4.9						
5	1.4	2.7						
6	1.5	11.1						

6 IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT C.

 Subdivision:
 PALMER VILLAGE
 PALMER VILLAGE

 Location:
 Colorado Springs
 2000-5149.01

 RPD
 NQJ

 1/30/20
 1/30/20

	Total	P.	AVED ST	REETS	UNDEV	ELOPED I	MEADOW	Basins Total
Basin ID	Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
EX1	0.15	100%	0.00	0.0%	2%	0.15	2.0%	2.0%
EX2	0.46	100%	0.00	0.0%	2%	0.46	2.0%	2.0%
EX3	4.27	100%	0.00	0.0%	2%	4.27	2.0%	2.0%
EX4	1.62	100%	0.27	17.0%	2%	1.35	1.7%	18.6%
EX5	0.37	100%	0.30	81.8%	2%	0.07	0.4%	82.1%
EX6	5.25	100%	0.00	0.0%	2%	5.25	2.0%	2.0%
TOTAL	12.12							6.7%

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

Land Use or Surface	Percent	Runoff Coefficients											
Characteristics	Impervious	2-year		5-y	5-year		year	25-year		50-year		100-year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													111
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision:	PALMER VILLAGE
Location:	Colorado Springs

Project Name: PALMER VILLAGE

Project No.: 2000-5149.01

Calculated By: RPD

Checked By: NQJ

Date: 1/30/20

		Basins Total	Hydrologic Soil Group		Lar	nd Use	Mino	r Coefficients	Majo	r Coefficients			
Basin ID	Total Area (ac)	Weighted % Imp.	Area A (ac)	Area B (ac)	Area C/D (ac)	Area Paved Streets (ac)	Area Undeveloped Meadow (ac)	C _{5,A,PAVED STREETS}	C _{5,A,UNDEVELOPED} MEADOW	C _{100,A,PAVED STREETS}	C _{100,A,UNDEVELOPED} MEADOW	Basins Total Weighted C ₅	Basins Total Weighted C ₁₀₀
EX1	0.15	2.0%	0.15	0.00	0.00	0.00	0.15	0.90	0.08	0.96	0.35	0.08	0.35
EX2	0.46	2.0%	0.46	0.00	0.00	0.00	0.46	0.90	0.08	0.96	0.35	0.08	0.35
EX3	4.27	2.0%	4.27	0.00	0.00	0.00	4.27	0.90	0.08	0.96	0.35	0.08	0.35
EX4	1.62	18.6%	1.62	0.00	0.00	0.27	1.35	0.90	0.08	0.96	0.35	0.22	0.45
EX5	0.37	82.1%	0.37	0.00	0.00	0.30	0.07	0.90	0.08	0.96	0.35	0.75	0.85
EX6	5.25	2.0%	5.25	0.00	0.00	0.00	5.25	0.90	0.08	0.96	0.35	0.08	0.35
TOTAL	12.12	6.7%	12.12	0.00	0.00	5%	95%					0.12	0.38

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

Land Use or Surface	Percent	Runoff Coefficients											
Characteristics	Impervious	2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&I
Business						300000000							
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: PALMER VILLAGE	Project Name:	PALMER VILLAGE
Location: Colorado Springs	Project No.:	2000-5149.01
	Calculated By:	RPD
	Checked By:	NQJ
	Date:	1/30/20

		SUB-I	BASIN			INITI	AL/OVER	LAND			TRAVEL TI	ME					
	DATA						(T_i)				(T _t)			(U	FINAL		
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	So	t _i	L_t	S_t	Κ	VEL.	t _t	COMP. t_c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
EX1	0.15	Α	2%	0.08	0.35	50	5.0%	7.7	26	5.0%	10.0	2.2	0.2	7.9	76.0	25.9	7.9
EX2	0.46	Α	2%	0.08	0.35	50	5.0%	7.7	56	5.0%	10.0	2.2	0.4	8.1	106.0	26.1	8.1
EX3	4.27	Α	2%	0.08	0.35	50	7.8%	6.6	471	1.1%	10.0	1.0	7.6	14.2	521.0	33.9	14.2
EX4	1.62	Α	19%	0.22	0.45	50	7.8%	5.7	643	0.8%	10.0	0.9	12.2	17.9	693.0	33.3	17.9
EX5	0.37	Α	82%	0.75	0.85	0	N/A	N/A	189	0.5%	20.0	1.4	2.3	2.3	189.0	14.3	5.0
EX6	5.25	Α	2%	0.08	0.35	50	3.0%	9.1	550	3.0%	10.0	1.7	5.3	14.4	600.0	31.4	14.4

NOTES:

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$ $t_c = t_i + t_t$ Equation 6-3 Equation 6-2 Where: Where: t_c = computed time of concentration (minutes) t_i = overland (initial) flow time (minutes) C_5 = runoff coefficient for 5-year frequency (from Table 6-4) L_i = length of overland flow (ft) t_i = overland (initial) flow time (minutes) S_0 = average slope along the overland flow path (ft/ft). t_t = channelized flow time (minutes).

 $t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$ Equation 6-4 Equation 6-5

 t_t = channelized flow time (travel time, min) $L_{\rm f} = {\rm waterway\ length\ (ft)}$

 $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$

 $V_t = V_t$ and V_t are travel time velocity (ft/sec) = V_t = $V_$

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. L_r = length of channelized flow path (ft) i = imperviousness (expressed as a decimal) S_r = slope of the channelized flow path (ft/ft).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Table 6-2. NRCS Conveyance factors, K

Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

	Project Name: PALMER VILLAGE
Subdivision: PALMER VILLAGE	Project No.: 2000-5149.
Location: Colorado Springs	Calculated By: RPD
Design Storm: 5-Year	Checked By: NQJ
	Date: 1/30/20

				DIRE	CT RUI	NOFF			TO	OTAL I	RUNO	FF	0\	/ERLA	ND		PI	PE		TRAN	/EL TI	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)	O (cfs)	O _{overland} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	EX1	0.15	0.08	7.9	0.01	4.49	0.04					0.04	0.01	1.90					468	1.4	5.7	BASIN EX1 FLOW AT DP1, OVERLAND FLOW TO DP3
	2	EX2	0.46	0.08	8.1	0.04	4.45	0.2					0.2	0.04	1.61					626	1.3	8.2	BASIN EX2 FLOW AT DP2, OVERLAND FLOW TO DP4
		EX3	4.27	0.08	14.2	0.34	3.60	1.2															BASIN EX3 FLOW AT DP3 (LOCAL DEPRESSION)
	3								14.2	0.35	3.60	1.3											COMBINED DP1 AND EX3 FLOW AT DP3 (LOCAL DEPRESSION)
		EX4	1.62	0.22	17.9	0.35	3.26	1.1															BASIN EX4 FLOW AT DP4, FLOWS SOUTH ALONG C&G
	4								17.9	0.39	3.26	1.3											COMBINED DP2 AND EX4 FLOW AT DP4
	5	EX5	0.37	0.75	5.0	0.28	5.17	1.4															BASIN EX5 FLOW AT DP5, FLOWS EAST ALONG C&G
	6	EX6	5.25	0.08	14.4	0.42	3.59	1.5															BASIN EX6 FLOW AT DP6
	_																		1				
	-																			-			

Figure 6-5. Colorado Spring: Rainfall Intensity Duration Frequency 10.0

IDF Equations $I_{100} = 2.52 \ln(a_{\rm B}) + 12.735$ $I_{50} = 2.25 \ln(a_{\rm B}) + 11.375$ $I_{52} = 2.26 \ln(a_{\rm B}) + 11.375$ $I_{52} = 2.06 \ln(a_{\rm B}) + 10.111$ $I_{30} = 1.75 \ln(a_{\rm B}) + 8.81$ $I_{5} = -1.56 \ln(a_{\rm B}) + 7.583$ $I_{10} = 1.19 \ln(a_{\rm B}) + 6.035$ Now. Value (accioused by sequences may not precisely deplicate values and form figures

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

Page 1 of 1 2/13/2020
Page 1 of 1 2/13/2020

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: PALMER VILLAGE	
Subdivision: PALMER VILLAGE	Project No.: 2000-5149.	
Location: Colorado Springs	Calculated By: RPD	
Design Storm: 100-Year	Checked By: NQJ	
	Date: <u>1/30/20</u>	

				DIR	ECT RL	JNOFF			TO	TAL F	RUNO	FF	0\	'ERLA	ND		PII	PE		TRAV	EL TIN	ΛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{overland} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	EX1	0.15	0.35	7.9	0.05	7.54	0.4					0.4	0.05	1.90					468	1.4	5.7	BASIN EX1 FLOW AT DP1, OVERLAND FLOW TO DP3
	2	EX2	0.46	0.35	8.1	0.16	7.47	1.2					1.2	0.16	1.61					626	1.3	8.2	BASIN EX2 FLOW AT DP2, OVERLAND FLOW TO DP4
		EX3	4.27	0.35	14.2	1.49	6.04	9.0															BASIN EX3 FLOW AT DP3 (LOCAL DEPRESSION)
	3								14.2	1.54	6.04	9.3											COMBINED DP1 AND EX3 FLOW AT DP3 (LOCAL DEPRESSION)
		EX4	1.62	0.45	17.9	0.73	5.47	4.0															BASIN EX4 FLOW AT DP4, FLOWS SOUTH ALONG C&G
	4								17.9	0.89	5.47	4.9											COMBINED DP2 AND EX4 FLOW AT DP4
	5	EX5	0.37	0.85	5.0	0.31	8.68	2.7															BASIN EX5 FLOW AT DP5, FLOWS EAST ALONG C&G
	6	EX6	5.25	0.35	14.4	1.84	6.02	11.1															BASIN EX6 FLOW AT DP6

Notes

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

PALRMER VILLAGE - PROPOSED DRAINAGE SUMMARY

	BASIN 'A' SUMMARY TABLE												
Tributary	Area	Percent			t _c	Q_5	Q ₁₀₀						
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)						
EX1	0.15	0%	0.08	0.35	7.9	0.04	0.4						
EX2	0.46	0%	0.08	0.35	8.1	0.2	1.2						
A1	0.74	63%	0.56	0.70	6.4	2.0	4.2						
A2	0.17	71%	0.66	0.78	7.4	0.5	1.0						
A3	0.11	64%	0.60	0.74	6.1	0.3	0.7						
A4	0.72	65%	0.58	0.71	5.9	2.0	4.2						
A 5	0.77	51%	0.47	0.63	7.2	1.7	3.8						
A6	0.26	83%	0.74	0.84	7.9	0.9	1.6						
A7	0.54	54%	0.50	0.66	6.8	1.3	2.8						
A8	0.70	47%	0.44	0.61	7.8	1.4	3.2						
A9	0.72	60%	0.56	0.70	8.0	1.8	3.8						
A10	0.46	4%	0.12	0.38	9.5	0.2	1.2						
A11	0.29	28%	0.33	0.61	11.0	0.4	1.2						
A12	0.14	36%	0.37	0.57	8.0	0.2	0.6						

DESIGN	POINT SUI TABLE	MMARY			
Design Point	Q ₅ (cfs)	Q ₁₀₀ (cfs)			
EX1	0.04	0.2			
EX2	0.2	0.7			
1	1.9	4.3			
2	2.0	5.0			
3	2.4	5.3			
4	2.4	5.8			
4.1	3.8	6.7			
5	2.1	5.6			
6	1.7	4.9			
7	1.4	3.3			
8	4.1	10.0			
8.1	7.7	16.3			
9	3.3	8.4			
9.1	10.8	24.1			
10	11.0	25.3			

BASIN 'B' SUMMARY TABLE											
Tributary	Area	Percent			t _c	Q ₅	Q ₁₀₀				
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)				
B1	0.65	51%	0.47	0.63	6.5	1.4	3.3				
B2	0.08	100%	0.90	0.96	5.0	0.4	0.7				
В3	0.11	91%	0.83	0.90	5.0	0.5	0.9				
B4	0.88	66%	0.59	0.72	6.7	2.5	5.1				
B5	0.60	53%	0.49	0.64	6.2	1.4	3.1				
В6	0.08	88%	0.80	0.88	5.0	0.3	0.6				
В7	0.13	85%	0.77	0.87	5.0	0.5	1.0				
В8	0.73	65%	0.58	0.71	5.7	2.1	4.3				
В9	0.54	64%	0.58	0.71	6.5	1.5	3.1				
B10	0.48	2%	0.10	0.36	5.7	0.2	1.5				
B11	0.19	58%	0.55	0.70	5.0	0.5	1.2				
B12	0.07	29%	0.31	0.52	5.1	0.1	0.3				
B13	0.23	30%	0.33	0.54	7.5	0.3	0.9				
B14	0.12	0%	0.08	0.35	5.0	0.1	0.4				
B15	0.24	25%	0.29	0.50	5.0	0.4	1.0				
B16	0.11	9%	0.15	0.41	5.0	0.1	0.4				

DESIGN	POINT SUI TABLE	MMARY
Design Point	Q ₅ (cfs)	Q ₁₀₀ (cfs)
15	1.4	3.3
16	2.5	5.1
17	1.7	3.8
18	2.8	5.6
18.1	3.4	5.5
19	1.7	4.6
20	2.6	6.4
21	0.4	1.0
22	1.5	3.1
22.1	1.7	3.2
23	3.3	8.3
23.1	8.1	16.0
24	0.8	3.0
24.1	9.9	20.7
25	10.1	21.9

COMPOSITE % IMPERVIOUS CALCULATIONS

Subdivision: PALMER VILLAGE	Project Name: PALMER VII	LLAGE
Location: Colorado Springs	Project No.: 2514901	
	Calculated By: NQJ	
	Checked By:	

Date: 2/6/20

			Drives/Wal	ks		Roofs			Basins Total		
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
EX1	0.15	100%	0.00	0.0%	90%	0.00	0.0%	0%	0.15	0.0%	0.0%
EX2	0.46	100%	0.00	0.0%	90%	0.00	0.0%	0%	0.46	0.0%	0.0%
A1	0.74	100%	0.19	25.7%	90%	0.31	37.7%	0%	0.24	0.0%	63.4%
A2	0.17	100%	0.12	70.6%	90%	0.00	0.0%	0%	0.05	0.0%	70.6%
A3	0.11	100%	0.07	63.6%	90%	0.00	0.0%	0%	0.04	0.0%	63.6%
A4	0.72	100%	0.19	26.4%	90%	0.31	38.8%	0%	0.22	0.0%	65.1%
A5	0.77	100%	0.16	20.8%	90%	0.26	30.4%	0%	0.35	0.0%	51.2%
A6	0.26	100%	0.17	65.4%	90%	0.05	17.3%	0%	0.04	0.0%	82.7%
A7	0.54	100%	0.15	27.8%	90%	0.16	26.7%	0%	0.23	0.0%	54.4%
A8	0.70	100%	0.14	20.0%	90%	0.21	27.0%	0%	0.35	0.0%	47.0%
A9	0.72	100%	0.34	47.2%	90%	0.10	12.5%	0%	0.28	0.0%	59.7%
A10	0.46	100%	0.02	4.3%	90%	0.00	0.0%	0%	0.44	0.0%	4.3%
A11	0.29	100%	0.08	27.6%	90%	0.00	0.0%	0%	0.29	0.0%	27.6%
A12	0.14	100%	0.05	35.7%	90%	0.00	0.0%	0%	0.09	0.0%	35.7%
B1	0.65	100%	0.14	21.5%	90%	0.21	29.1%	0%	0.30	0.0%	50.6%
B2	0.08	100%	0.08	100.0%	90%	0.00	0.0%	0%	0.00	0.0%	100.0%
B3	0.11	100%	0.10	90.9%	90%	0.00	0.0%	0%	0.01	0.0%	90.9%
B4	0.88	100%	0.31	35.2%	90%	0.30	30.7%	0%	0.27	0.0%	65.9%
B5	0.60	100%	0.13	21.7%	90%	0.21	31.5%	0%	0.26	0.0%	53.2%
B6	0.08	100%	0.07	87.5%	90%	0.00	0.0%	0%	0.01	0.0%	87.5%
B7	0.13	100%	0.11	84.6%	90%	0.00	0.0%	0%	0.02	0.0%	84.6%
B8	0.73	100%	0.19	26.0%	90%	0.32	39.5%	0%	0.22	0.0%	65.5%
В9	0.54	100%	0.20	37.0%	90%	0.16	26.7%	0%	0.18	0.0%	63.7%
B10	0.48	100%	0.01	2.1%	90%	0.00	0.0%	0%	0.47	0.0%	2.1%
B11	0.19	100%	0.11	57.9%	90%	0.00	0.0%	0%	0.08	0.0%	57.9%
B12	0.07	100%	0.02	28.6%	90%	0.00	0.0%	0%	0.05	0.0%	28.6%
B13	0.23	100%	0.07	30.4%	90%	0.00	0.0%	0%	0.16	0.0%	30.4%
B14	0.12	100%	0.00	0.0%	90%	0.00	0.0%	0%	0.12	0.0%	0.0%
B15	0.24	100%	0.06	25.0%	90%	0.00	0.0%	0%	0.18	0.0%	25.0%
B16	0.11	100%	0.01	9.1%	90%	0.00	0.0%	0%	0.10	0.0%	9.1%
SITE TOTAL	11.47									SITE	49.1%
WEST POND	5.80									WEST POND	48.4%
EAST POND	4.28									EAST POND	56.5%

X3/2510000.all/2514901/Excel/Drainage/Proposed_Drainage Cales_v2.07.xlsm

COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: PALMER VILLAGE Location: Colorado Springs

Project Name: PALMER VILLAGE
Project No.: 2514901
Calculated By: NQJ
Checked By:

Date: 2/6/20

			Hydro	ologic Soil (Group		Land Use		Minor	Coefficient	3	Major	Coefficients			
Basin ID	Total Area (ac)	Basins Total Weighted % Imp.	Area A (ac)	Area B (ac)	Area C/D (ac)	Area Walks & Drives (ac)	Area Roofs (ac)	Area Lawns (ac)	C _{5,A,WALKS & DRIVES}	C _{5,A,ROOFS}	C _{5,A,LAWNS}	C _{100,A,WALKS & DRIVES}	C _{100,A,ROOFS}	C _{100,A,LAWNS}	Basins Total Weighted C ₅	Basins Total Weighted C ₁₀₀
EX1	0.15	0%	0.15	0.00	0.00	0.00	0.00	0.15	0.90	0.73	0.08	0.96	0.81	0.35	0.08	0.35
EX2	0.46	0%	0.46	0.00	0.00	0.00	0.00	0.46	0.90	0.73	0.08	0.96	0.81	0.35	0.08	0.35
A1	0.74	63%	0.74	0.00	0.00	0.19	0.31	0.24	0.90	0.73	0.08	0.96	0.81	0.35	0.56	0.70
A2	0.17	71%	0.17	0.00	0.00	0.12	0.00	0.05	0.90	0.73	0.08	0.96	0.81	0.35	0.66	0.78
A3	0.11	64%	0.11	0.00	0.00	0.07	0.00	0.04	0.90	0.73	0.08	0.96	0.81	0.35	0.60	0.74
A4	0.72	65%	0.72	0.00	0.00	0.19	0.31	0.22	0.90	0.73	0.08	0.96	0.81	0.35	0.58	0.71
A 5	0.77	51%	0.77	0.00	0.00	0.16	0.26	0.35	0.90	0.73	0.08	0.96	0.81	0.35	0.47	0.63
A6	0.26	83%	0.26	0.00	0.00	0.17	0.05	0.04	0.90	0.73	0.08	0.96	0.81	0.35	0.74	0.84
A7	0.54	54%	0.54	0.00	0.00	0.15	0.16	0.23	0.90	0.73	0.08	0.96	0.81	0.35	0.50	0.66
A8	0.70	47%	0.70	0.00	0.00	0.14	0.21	0.35	0.90	0.73	0.08	0.96	0.81	0.35	0.44	0.61
A9	0.72	60%	0.72	0.00	0.00	0.34	0.10	0.28	0.90	0.73	0.08	0.96	0.81	0.35	0.56	0.70
A10	0.46	4%	0.46	0.00	0.00	0.02	0.00	0.44	0.90	0.73	0.08	0.96	0.81	0.35	0.12	0.38
A11	0.29	28%	0.29	0.00	0.00	0.08	0.00	0.29	0.90	0.73	0.08	0.96	0.81	0.35	0.33	0.61
A12	0.14	36%	0.14	0.00	0.00	0.05	0.00	0.09	0.90	0.73	0.08	0.96	0.81	0.35	0.37	0.57
B1	0.65	51%	0.65	0.00	0.00	0.14	0.21	0.30	0.90	0.73	0.08	0.96	0.81	0.35	0.47	0.63
B2	0.08	100%	0.08	0.00	0.00	0.08	0.00	0.00	0.90	0.73	0.08	0.96	0.81	0.35	0.90	0.96
B3	0.11	91%	0.11	0.00	0.00	0.10	0.00	0.01	0.90	0.73	0.08	0.96	0.81	0.35	0.83	0.90
B4	0.88	66%	0.88	0.00	0.00	0.31	0.30	0.27	0.90	0.73	0.08	0.96	0.81	0.35	0.59	0.72
B5	0.60	53%	0.60	0.00	0.00	0.13	0.21	0.26	0.90	0.73	0.08	0.96	0.81	0.35	0.49	0.64
B6	0.08	88%	0.08	0.00	0.00	0.07	0.00	0.01	0.90	0.73	0.08	0.96	0.81	0.35	0.80	0.88
В7	0.13	85%	0.13	0.00	0.00	0.11	0.00	0.02	0.90	0.73	0.08	0.96	0.81	0.35	0.77	0.87
B8	0.73	65%	0.73	0.00	0.00	0.19	0.32	0.22	0.90	0.73	0.08	0.96	0.81	0.35	0.58	0.71
B9	0.54	64%	0.54	0.00	0.00	0.20	0.16	0.18	0.90	0.73	0.08	0.96	0.81	0.35	0.58	0.71
B10	0.48	2%	0.48	0.00	0.00	0.01	0.00	0.47	0.90	0.73	0.08	0.96	0.81	0.35	0.10	0.36
B11	0.19	58%	0.19	0.00	0.00	0.11	0.00	0.08	0.90	0.73	0.08	0.96	0.81	0.35	0.55	0.70
B12	0.07	29%	0.07	0.00	0.00	0.02	0.00	0.05	0.90	0.73	0.08	0.96	0.81	0.35	0.31	0.52
B13	0.23	30%	0.23	0.00	0.00	0.07	0.00	0.16	0.90	0.73	0.08	0.96	0.81	0.35	0.33	0.54
B14	0.12	0%	0.12	0.00	0.00	0.00	0.00	0.12	0.90	0.73	0.08	0.96	0.81	0.35	0.08	0.35
B15	0.24	25%	0.24	0.00	0.00	0.06	0.00	0.18	0.90	0.73	0.08	0.96	0.81	0.35	0.29	0.50
B16	0.11	9%	0.11	0.00	0.00	0.01	0.00	0.10	0.90	0.73	0.08	0.96	0.81	0.35	0.15	0.41
	ļ															
TOTAL	11.47	49.1%	11.47	0.00	0.00	3.29	2.60	5.66							0.46	0.63

Page 1 of 1 2/13/2020

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision:	PALMER VILLAGE
Location:	Colorado Springs

Project Name: PALMER VILLAGE
Project No.: 2514901

Calculated By: NQJ

Checked By: 2/6/20

		SUB-I	BASIN			INITI	AL/OVER	LAND		1	RAVEL TIN	1E					
		DA	ATA				(T _i)				(T _t)			(U	RBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	So	t _i	L_t	S_t	Κ	VEL.	t _t	COMP. t_c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
EX1	0.15	Α	0%	0.08	0.35	50	5.0%	7.7	26	5.0%	10.0	2.2	0.2			26.2	7.9
EX2	0.46	A	0%	0.08	0.35	50	5.0%	7.7	56	5.0%	10.0	2.2	0.4	8.1	106.0	26.5	8.1
A1	0.74	Α	63%	0.56	0.70	87	5.0%	5.3	155	1.4%	20.0	2.4	1.1		242.0	16.4	6.4
A2	0.17	Α	71%	0.66	0.78	87	2.0%	5.9	180	1.0%	20.0	2.0	1.5	7.4	267.0	15.6	7.4
A3	0.11	Α	64%	0.60	0.74	87	6.0%	4.6	180	1.0%	20.0	2.0	1.5	6.1	267.0	16.9	6.1
A4	0.72	Α	65%	0.58	0.71	87	6.0%	4.9	150	1.6%	20.0	2.5	1.0	5.9	237.0	16.0	5.9
A5	0.77	Α	51%	0.47	0.63	87	5.0%	6.2	150	1.6%	20.0	2.5	1.0	7.2	237.0	18.5	7.2
A6	0.26	Α	83%	0.74	0.84	99	1.0%	6.4	178	1.0%	20.0	2.0	1.5	7.9	277.0	13.4	7.9
A7	0.54	Α	54%	0.50	0.66	87	5.5%	5.8	153	1.6%	20.0	2.5	1.0	6.8	240.0	18.0	6.8
A8	0.70	Α	47%	0.44	0.61	90	4.5%	6.9	115	1.1%	20.0	2.1	0.9	7.8	205.0	19.2	7.8
A9	0.72	Α	60%	0.56	0.70	87	3.0%	6.4	200	1.0%	20.0	2.0	1.7	8.0	287.0	17.8	8.0
A10	0.46	Α	4%	0.12	0.38	50	15.0%	5.1	325	0.7%	15.0	1.3	4.3	9.5	375.0	32.0	9.5
A11	0.29	Α	28%	0.33	0.61	90	2.0%	10.5	55	1.0%	20.0	2.0	0.5	11.0	145.0	22.0	11.0
A12	0.14	Α	36%	0.37	0.57	20	2.0%	4.7	280	0.5%	20.0	1.4	3.3	8.0	300.0	24.6	8.0
B1	0.65	Α	51%	0.47	0.63	97	8.0%	5.7	105	1.0%	20.0	2.0	0.9	6.5	202.0	18.5	6.5
B2	0.08	Α	100%	0.90	0.96	12	2.0%	1.0	182	2.3%	20.0	3.1	1.0	2.0	194.0	9.9	5.0
В3	0.11	Α	91%	0.83	0.90	12	2.0%	1.4	190	2.3%	20.0	3.0	1.0	2.4	202.0	11.5	5.0
B4	0.88	Α	66%	0.59	0.72	120	6.0%	5.6	183	2.0%	20.0	2.8	1.1	6.7	303.0	16.0	6.7
B5	0.60	Α	53%	0.49	0.64	97	8.0%	5.5	103	1.6%	20.0	2.5	0.7	6.2	200.0	17.8	6.2
B6	0.08	Α	88%	0.80	0.88	12	2.0%	1.5	160	2.5%	20.0	3.2	0.8	2.3	172.0	11.9	5.0
В7	0.13	Α	85%	0.77	0.87	12	2.0%	1.6	170	2.5%	20.0	3.2	0.9	2.5	182.0	12.5	5.0
B8	0.73	Α	65%	0.58	0.71	97	9.0%	4.5	145	1.0%	20.0	2.0	1.2	5.7	242.0	16.2	5.7
В9	0.54	Α	64%	0.58	0.71	87	5.0%	5.2	155	1.0%	20.0	2.0	1.3	6.5	242.0	16.6	6.5
B10	0.48	Α	2%	0.10	0.36	15	2.0%	5.6	40	33.0%	15.0	8.6	0.1	5.7	55.0	25.8	5.7
B11	0.19	Α	58%	0.55	0.70	20	2.0%	3.5	20	2.0%	20.0	2.8	0.1	3.6	40.0	16.3	5.0
B12	0.07	Α	29%	0.31	0.52	20	2.0%	5.0	19	2.5%	20.0	3.2	0.1	5.1	39.0	21.3	5.1
B13	0.23	Α	30%	0.33	0.54	20	2.0%	4.9	450	2.2%	20.0	3.0	2.5	7.5	470.0	24.6	7.5
B14	0.12	Α	0%	0.08	0.35	20	25.0%	2.8	35	25.0%	15.0	7.5	0.1	2.9	55.0	26.1	5.0
B15	0.24	Α	25%	0.29	0.50	15	10.0%	2.7	365	3.0%	15.0	2.6	2.3	5.0	380.0	24.6	5.0
B16	0.11	Α	9%	0.15	0.41	15	10.0%	3.1	150	1.5%	15.0	1.9	1.3	4.4	165.0	26.4	5.0

X:(2510000.all/2514901)Excet/Drainage/Proposed_Drainage Cales_v2.07.xlsm

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

	Project Name: PALMER VILLAGE	
bdivision: PALMER VILLAGE	Project No.: 2514901	
Location: Colorado Springs	Calculated By: NQJ	
gn Storm: 5-Year	Checked By:	
	Date: 2/6/20	

				DIREC	CT RUN	NOFF			TC	OTAL RL	JNOFF		STREE	Γ		PIF	PΕ		TRAVE	L TIM	E	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t, (min)	REMARKS
	EX1		0.15	0.08	7.9	0.01	4.49	0.04														OFFSITE BASIN EX1 FLOW @ DPEX1, FLOW INTO BASIN A1 (ROUTED IN SF2)
	EX2	EX2	0.46	0.08	8.1	0.04	4.45	0.2														BASIN EX2 FLOW @ DPEX2, FLOW INTO BASIN A2 (ROUTED IN SF2)
	1	A1					4.80		7.9	0.43	4.49 1		0.43	1.0					170	2.0	1.	BASIN A1 & DPEX1 FLOW @ DP1, C&G FLOW TO DP3
		A2					4.58															BASIN A2 FLOW @ DP3 (ROUTED IN SF2)
		А3	0.11	0.60	6.1	0.07	4.86	0.3														BASIN A3 FLOW @ DP4 (ROUTED IN SF2)
	2	A4					4.92		0.1	0.45	4.45		0.45	1.0					170	2.0	1.	BASIN A4 & DPEX2 FLOW @ DP2, C&G TO DP4
	3	A4	0.72	0.56	3.7	0.41	4.72	2.0		0.54		0.5	0.12	1.0		0.42	2.0	18	60 5	2.0 5.6		DP3 FLOW-BY, C&G FLOW TO DP5 DP1 & BASIN A2 FLOW CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP4.1
	4								7.3	0.52	4.60 2		0.11	1.0		0.41		18	60 31	2.0 5.6		DP4 FLOW-BY, C&G FLOW TO DP6 BASIN A3 & DP2 FLOW CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP4.1
	4.1								7.8	0.84	4.50 3				3.8	4.50	2.0	18	123			COMBINED DP3&DP4 CAPTURED FLOW, PIPE FLOW TO DP8.1
	5	A5	0.77	0.47	7.2	0.36	4.61	1.7	8.3	0.48	4.41 2		0.48	1.0					115	2.0	1.	BASIN A5 & DP3 FLOW by @ DP5, C&G FLOW TO DP8
		A6	0.26	0.74	7.9	0.19	4.48	0.9														BASIN A6 FLOW @ DP8 (ROUTED IN SF2)
	6	Α7	0.54	0.50	6.8	0.27	4.71	1.3	7.8	0.38	4.50 1	.7	0.38						130			BASIN A7 FLOW & DP4 FLOW-BY @ DP6, C&G FLOW TO DP9
	7	A8	0.70	0.44	7.8	0.31	4.50	1.4				1.4	0.31	1.0					100	2.0	0.	BASIN A8 FLOW @ DP7, C&G FLOW TO DP8
	8				_				9.3	0.98	4.24 4	1.1			4.1	0.98	2.0	30	5	6.7	0.	BASIN A6, DP5 & DP7 FLOW @ DP8, CAPTURED BY DBL. DENVER TYPE 16 COMBO INLET, PIPE FLOW TO DP9.1
	8.1								9.3	1.81	4.24 7	1.7			7.7	1.81	2.0	30	55	2.0	0.	DP4.1 & DP8 FLOW @ DP8.1, PIPE FLOW TO DP9.1
	9	A9	0.72	0.56	8.0	0.40	4.46	1.8	8.9	0.78	4.31 3	3.3			3.3	0.78	2.0	30	5	6.4	0.	DP6 & BASIN A9 FLOW @ DP9, CAPTURED BY TRP. DENVER TYPE 16 COMBO INLET, PIPE FLOW TO DP9.1
	9.1				\dashv					2.59					10.8	2.59	5.0	30	55	12.5	0.	DP8.1 & DP9 FLOW @ DP9.1, PIPE FLOW TO DP10 (WATER QUALITY POND)
	10	A10					4.21		9.8	2.64	4.16 11	.0										BASIN A1-10 FLOW @ DP10, TOTAL FLOW ENTERING WATER QUALITY POND
		A11					3.99					-										BASIN A11 FLOW, FOLLOWS HISTORIC DRAINAGE PATTERNS TO CONSTITUTION AVENUE
		A12	0.14	0.37	8.0	0.05	4.47	0.2														BASIN A12 FLOW, FOLLOWS HISTORIC DRAINAGE PATTERNS TO CONSTITUTION AVENUE

X:250000.ali251490[facet]DrainageProposed_DrainageProposed_DrainageCakes_2:07.shm

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

	Project Name: PALMER VILLAGE	
bdivision: PALMER VILLAGE	Project No.: 2514901	
Location: Colorado Springs	Calculated By: NQJ	
gn Storm: 5-Year	Checked By:	
	Date: 2/6/20	

				DIREC	T DI IN	IOFF			TC	OTAL RI	INOFF	_	STREE	т		PII	DE		TRAVE	LTIM	-	
				DINCO	, KUI	1011			- 10	JIAL KI	OINOI F	+	JINEE			71	_		INMVE	L I IIVII	-	+
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	I (in/hr)	(613)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
													1.4 0.30						160		0.	9 BASIN B1 FLOW @ DP15, C&G FLOW TO DP17
	15	B1	0.65	0.47	6.5	0.30	4.76	1.4														
	17	B2	0.00	0.00	E 0	0.07	5.17	0.4	7.4	0.27	4.58		0.3 0.06	2.3	1.4	0.31	E 0	18		3.1 7.2		4 DP17 FLOW-BY, C&G FLOW TO DP19 1 BASIN B2 AND DP15 FLOW @ DP17, CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP18.1
	17	DZ.	0.08	0.70	3.0	0.07	3.17	0.4	7.4	0.37	4.30	1.7			1.4	0.31	5.0	10	33	1.2	0.	BASIN BZ AND DE 13 FLOW & DE 17, CAFTORED IN DBL. DENVER TIFE TO COMBO INCET, FIFE TO DE 18.1
		В3	0.11	0.83	5.0	0.09	5.17	0.5														BASIN B3 FLOW @ DP18 (ROUTED IN SF2)
													2.5 0.52	2.3					185	3.1	1.	D BASIN B4 FLOW @ DP16, C&G FLOW TO DP18
	16	B4	0.88	0.59	6.7	0.52	4.74	2.5				_										
	18								77	0.41	4.53		0.8 0.17	2.3	20	0.44	2.0	18	/5 5	3.0 5.7		4 DP18 FLOW-BY, C&G FLOW TO DP20 BASIN B3 & DP16 FLOW @ DP18, CAPTURED BY DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP18.1
	10			_	_	_	-		1.1	0.01	4.33 .	2.0		-	2.0	0.44	2.0	10	3	3.7	U.	7 BASIN 63 & DETOTEON WE DETO, CAPTURED BY DBL. DENVER TIPE TO CONIBO INCET, FIFE TO DETO. 1
	18.1								7.7	0.75	4.52	3.4			3.4	0.75	2.0	18	160	6.7	0.	DP17 & DP18 CAPTURED FLOW, PIPE FLOW TO DP22.1
													0.5 0.11	2.5					103			DP19 FLOW-BY, C&G FLOW TO DP23
	19	B5	0.60	0.49	6.2	0.29	4.85	1.4	6.2	0.35	4.85	1.7			1.2	0.25	2.0	18	103	5.0	0.	3 BASIN B5 & DP17 FLOW-BY @ DP19, CAPTURED IN SINGLE DENVER TYPE 16 COMBO INLET, PIPE TO DP23.1
		B6	0.08	0.80	5.0	0.06	5.17	0.3														BASIN B6 FLOW AT DP23 (ROUTED IN SF2)
		B7	0.13	0.77	5.0	0.10	5.17	0.5														BASIN B7 FLOW AT DP22 (ROUTED IN SF2)
	20		0.70	0.50		0.40	4.07	0.4		0.50			2.6 0.59	2.5					125	3.2	0.	7 BASIN B8 & DP18 FLOW-BY @DP20, C&G FLOW TO DP22
	20	B8	0.73	0.58	5./	0.42	4.97	2.1	8.1	0.59	4.45	2.6	-		-		-					4
	21	B15	0.24	0.29	5.0	0.07	5.17	0.4							0.4	0.07	1.0	18	145	2.6	0.	BASIN B15 FLOW @ DP21, CAPTURED IN TYPE C INLET, PIPED TO DP22.1
													0.1 0.02	1					65		0.	DP22 FLOW-BY, C&G FLOW TO DP23
	22	B9	0.54	0.58	6.5	0.31	4.78	1.5							1.4	0.29	2.0	18	45	5.1	0.	1 BASIN B9 FLOW CAPTURED BY DBL DENVER TYPE 16 COMBO INLET, PIPE TO DP22.1
	22.1								6.6	0.36	4.75	1.7			1.7	0.36	2.0	18	25	5.5	0.	1 COMBINED DP21 & DP22 CAPTURED FLOW, PIPE TO DP23.1
	00								7.0	0.74						0.74		40	20			DATE OF THE PROPERTY OF THE PR
	23								7.0	0./1	4.66	3.3			3.3	0.71	5.0	18	33	9.3	0.	1 BASIN B7, DP20 FLOW-BY & DP22 FLOW-BY@ DP23, CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP23.1
	23.1								8.1	1.82	4.45	3.1			8.1	1.82	3.0	24	33	9.7	0.	1 DP23 CAPTURED FLOW & DP22.1 FLOW, PIPE TO DP24.1
	24								6.7	0.17	4.72	0.8			0.8	0.17	5.0	24	5	5.6	0	D BASIN B6 & DP19 FLOW-BY @ DP24, CAPTURED IN TRIPLE DENVER TYPE 16 COMBO INLET, PIPE TO DP24.1
	24.1			_	_	_			8.1	2.23	4.44	9.9		-	9.9	2.23	5.0	30	55	12.1	0.	1 COMBINED DP23.1 & DP24 FLOW, PIPE TO DP25
	25	B10	0.48	0.10	5.7	0.05	4.98	0.2	8.2	2.28	4.42 10	0.1										DP24.1 AND BASIN B10 FLOW, TOTAL FLOW @ DP25 (FSD WATER QUALITY POND)
		B11	0.19	0.55	5.0	0.11	5.17	0.6														BASIN B11 FLOW, FOLLOW EX PATTERNS & FLOWS EAST OFF SITE
		B12					5.13															BASIN B12 FLOW, FOLLOW EX PATTERNS & FLOWS NORTH TO CONSTITUTION AVENUE
												Ť										
		B13	0.23	0.33	7.5	0.08	4.57	0.4				-										BASIN B13 FLOW, FOLLOW EX PATTERNS & FLOWS NORTH TO CONSTITUTION AVENUE
		B14	0.12	0.08	5.0	0.01	5.17	0.1														BASIN B11 FLOW, FOLLOW EX PATTERNS & FLOWS EAST OFF SITE
		B16	0.11	0.15	5.0	0.02	5.17	0.1														BASIN B11 FLOW, SWALE CONVEYS FLOW OFFSITE EAST (FOLLLOWS HISTORIC PATTERNS)

Notes: Street and Pipe C^*A values are determined by Q/i using the catchment's intensity value.

X:\2510000.all\2514901\Excel\Drainage\Proposed_Drainage Calcs_v2.07.xlsm Page 2 of 2 2/13/2020

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

sion: PALMER VILLAGE	
tion: Colorado Springs	
armi 100 Voar	

Project Name: PALMER VILLAGE
Project No.: 2514901

Calculated By: NOI

Checked By:
Date: 276720

Г	Т			DIREC	T RUN	IOFF			T	OTAL	RUNO	FF	S	TREET			PII	PF .		TRAV	I TIM	1F	
TRE	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	(in/hr)	a (cfs)	tc (min)	C*A (ac)	(in/hr)	Q (cfs)	Ostreet (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
															0,			05					
-	EX1	EX1	0.15	0.35	7.9	0.05	4.49	0.2															OFFSITE BASIN EX1 FLOW @ DPEX1, FLOW INTO BASIN A1
	EX2	EX2	0.46	0.35	8.1	0.16	4.45	0.7															BASIN EX2 FLOW @ DPEX2,
	1	A1	0.74	0.70	6.4	0.52	8.06	4.2	7.9	0.57	7.54	4.3		0.57	1.0					170	2.0	1.4	BASIN A1 & DPEX1 FLOW @ DP1, C&G FLOW TO DP3
		A2		0.78																			BASIN A2 FLOW @ DP3 (ROUTED IN SF2)
Н		A3	0.11	0.74	6.1	0.08	8.16	0.7					5.0	0.67	1.0					170	2.0		BASIN A3 FLOW @ DP4 (ROUTED IN SF2) BASIN A4 & DPEX2 FLOW @ DP2, C&G TO DP4
	2	A4	0.72	0.71	5.9	0.51	8.27	4.2	8.1	0.67	7.47	5.0		0.26	1					60	2.0	0.5	DP3 FLOW-BY, C&G FLOW TO DP5
	3								7.8	0.70	7.55	5.3				3.3	0.44	2.0	18	5	6.8	0.0	DP1 & BASIN A2 FLOW CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP4.1
	4								7.3	0.75	7.72	5.8		0.3	1	3.5	0.45	2.0	18	60 31	6.8	0.5	DP4 FLOW-BY, C&G FLOW TO DP6 BASIN A3 & DP2 FLOW CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP4.1
	4.1								7.8	0.89	7.55	6.7				6.7	7.55	2.0	18				COMBINED DP3 & DP4 CAPTURED FLOW, PIPE FLOW TO DP8.1
	5	A5	0.77	0.63	7.2	0.40	7 75	3.8			7.40		5.6	0.75	1								BASIN A5 & DP3 FLOW-BY @ DP5, C&G FLOW TO DP8
	3									0.73	7.40	3.0											DACINA A FLOIM & DDD (DOUTED IN CEA)
		A6		0.84			7.52						4.9	0.65	1					130	2.0	1.1	BASIN A6 FLOW @ DP8 (ROUTED IN SF2) BASIN A7 FLOW & DP4 FLOW-BY @ DP6, C&G FLOW TO DP9
-	6	A7	0.54	0.66	6.8	0.35	7.91	2.8	7.8	0.65	7.56	4.9	3.3	0.43	1					100	2.0	0.8	BASIN A8 FLOW @ DP7, C&G FLOW TO DP8
	7	A8	0.70	0.61	7.8	0.43	7.56	3.3															
	8								9.3	1.40	7.12	10.0				10.0	1.40	2.0	30	5	8.7	0.0	BASIN A6, DP5 & DP7 FLOW @ DP8, CAPTURED BY DBL. DENVER TYPE 16 COMBO INLET, PIPE FLOW TO DP9.1
	8.1								9.3	2.29	7.12	16.3				16.3	2.29	2.0	30	55	2.0	0.5	DP4.1 & DP8 FLOW @ DP8.1, PIPE FLOW TO DP9.1
	9	A9	0.72	0.70	8.0	0.51	7.49	3.8	8.9	1.16	7.23	8.4				8.4	1.16	2.0	30	5	8.3	0.0	DP6 & BASIN A9 FLOW @DP9, CAPTURED BY TPL. DENVER TYPE 16 COMBO INLET, PIPE FLOW TO DP9.1
	9.1								9.7	3.45	7.00	24.1				24.1	3.45	5.0	30	55	15.7	0.1	DP8.1 & DP9 FLOW @ DP9.1, PIPE FLOW TO DP10 (WATER QUALITY POND)
	10	A10	0.46	0.38	9.5	0.17	7.07	1.2	9.8	3.62	6.98	25.3											BASIN A1-10 FLOW @ DP10, TOTAL FLOW ENTERING WATER QUALITY POND
		A11	0.29	0.61	11.0	0.18	6.70	1.2															BASIN A11 FLOW, FOLLOWS HISTORIC DRAINAGE PATTERNS TO CONSTITUTION AVENUE
		A12	0.14	0.57	8.0	0.08	7.50	0.6															BASIN A12 FLOW, FOLLOWS HISTORIC DRAINAGE PATTERNS TO CONSTITUTION AVENUE

Page 1 of 2 213/2020 all 2514901 Excel Drainage/Proposed, Drainage Cales, v2.07 xlsm

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

sion: PALMER VILLAGE	
tion: Colorado Springs	
orm: 100-Year	

Project Name:	PALIMER VILLAGE
Project No.:	2514901
Calculated By:	NO
Checked By:	
Date:	2/6/20

_	DIRECT RUNOFF TOTAL RUNOFF STREET											D.I	25		TD 41 //		-						
I			_	DIRE	JI RUN	NOFF		_	- 10	UIALI	KUNO	ltt.	<u> </u>	IKEE			PI	PE		TRAVE	L IIIV	IŁ	
TRE	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	I (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	15	B1	0.65	0.63	6.5	0.41	8.00	3.3					3.3	0.41						160		0.9	BASIN B1 FLOW @ DP15, C&G FLOW TO DP17
	17	B2					8.68		7.4	0.49	7.68	3.8	1.4	0.18	2.3	24	0.31	5.0	18	70 33			DP17 FLOW-BY, C&G FLOW TO DP19 BASIN B2 AND DP15 FLOW @ DP17, CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP18.1
		В3	0.11				8.68																BASIN B3 FLOW @ DP18 (ROUTED IN SF2)
	1.,												5.1	0.64	2.3					185	3.1	1.0	BASIN BA FLOW @ DP16, C&G FLOW TO DP18
	16	B4	0.88	0.72	6.7	0.64	7.96	5.1		0.74	7.60	F./	2.5	0.33	2.3	2.1	0.41	2.0	18	75 5			DP18 FLOW-BY, C&G FLOW TO DP20 BASIN B3 & DP16 FLOW @ DP18, CAPTURED BY DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP18.1
H																							
	18.1										7.60		2.5	0.31	2.5		0.72			103	3.2	0.5	DP17 & DP18 CAPTURED FLOW, PIPE FLOW TO DP22.1 DP19 FLOW-BY, C&G FLOW TO DP23
	19	B5		0.64			8.14		6.2	0.57	8.14	4.6				2.1	0.26	2.0	18	103	5.8	0.3	BASIN B5 & DP17 FLOW-BY @ DP19, CAPTURED IN SINGLE DENVER TYPE 16 COMBO INLET, PIPE TO DP23.1
		B6	0.08	0.88	5.0	0.07	8.68	0.6															BASIN B6 FLOW AT DP23 (ROUTED IN SF2)
		B7	0.13	0.87	5.0	0.11	8.68	1.0					6.4	0.85	2.5					125	3.2	0.7	BASIN B7 FLOW AT DP22 (ROUTED IN SF2) BASIN B8 & DP18 FLOW-BY @DP20, C&G FLOW TO DP22
	20	B8	0.73	0.71	5.7	0.52	8.35	4.3	8.1	0.85	7.47	6.4									-		
	21	B15	0.24	0.50	5.0	0.12	8.68	1.0					0.0	0.09	- 1	1.0	0.12	1.0	18	145 65	3.8		BASIN B15 FLOW @ DP21, CAPTURED IN TYPE C INLET, PIPED TO DP22.1 DP22 FLOW-BY, C&G FLOW TO DP23
	22	В9	0.54	0.71	6.5	0.38	8.03	3.1					0.6	0.09	'	2.3	0.29	2.0	18				BASIN B9 FLOW CAPTURED BY DBL DENVER TYPE 16 COMBO INLET, PIPE TO DP22.1
	22.1								6.6	0.41	7.98	3.2				3.2	0.41	2.0	18	25	6.7	0.1	COMBINED DP21 & DP22 CAPTURED FLOW, PIPE TO DP23.1
	23								7.0	1.06	7.82	8.3	0.4	0.05	2	7.9	1.01	5.0	18	33	12.0	0.0	DP23 FLOW BY, OVERTOP CROWN TO DP24 BASIN B7, DP20 FLOW-BY & DP22 FLOW-BY@ DP23, CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP23.1
	23.1								8.0	2.14	7.49	16.0				16.0	2.14	3.0	24	33	11.8	0.0	DP23 CAPTURED FLOW & DP22.1 FLOW, PIPE TO DP24.1
	24								6.7	0.38	7.93	3.0				3.0	0.38	5.0	24	5	8.5	0.0	BASIN B6 & DP19 FLOW-BY @ DP24, CAPTURED IN TRIPLE DENVER TYPE 16 COMBO INLET, PIPE TO DP24.1
	24.1								8.1	2.77	7.47	20.7				20.7	2.77	5.0	30	55	15.1	0.1	COMBINED DP23.1 & DP24 FLOW, PIPE TO DP25
	25	B10	0.48	0.36	5.7	0.17	8.37	1.4	8.1	2.94	7.45	21.9											DP24.1 AND BASIN B10 FLOW, TOTAL FLOW @ DP25 (FSD WATER QUALITY POND)
		B11	0.19	0.70	5.0	0.13	8.68	1.1															BASIN B11 FLOW, FOLLOW EX PATTERNS & FLOWS EAST OFF SITE
		B12	0.07	0.52	5.1	0.04	8.61	0.3															BASIN B12 FLOW, FOLLOW EX PATTERNS & FLOWS NORTH TO CONSTITUTION AVENUE
		B13	0.23	0.54	7.5	0.12	7.67	0.9															BASIN B13 FLOW, FOLLOW EX PATTERNS & FLOWS NORTH TO CONSTITUTION AVENUE
		B14	0.12	0.35	5.0	0.04	8.68	0.3															BASIN B11 FLOW, FOLLOW EX PATTERNS & FLOWS EAST OFF SITE
		B16	0.11	0.41	5.0	0.04	8.68	0.3															BASIN B11 FLOW, SWALE CONVEYS FLOW OFFSITE EAST (FOLLLOWS HISTORIC PATTERNS)

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

Page 2 of 2 213/2000 all 2514901 Excel Drainage Proposed, Drainage Proposed, Drainage Cales, v207 Alson

Appendix C Hydraulic Calculations

Alley Street Capacity - 1% CL - Allowable Spread - Edge of Pavement

User-defined		Highlighted	
Invert Elev (ft)	= 0.36	Depth (ft)	= 0.24
Slope (%)	= 1.00	Q (cfs)	= 6.000
N-Value	= 0.016	Area (sqft)	= 2.88
		Velocity (ft/s)	= 2.08
Calculations		Wetted Perim (ft)	= 24.00
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.25
Known Q (cfs)	= 6.00	Top Width (ft)	= 24.00
, ,		EGL (ft)	= 0.31

(Sta, EI, n)-(Sta, EI, n)... (0.00, 1.00)-(8.00, 0.60, 0.016)-(20.00, 0.36, 0.016)-(32.00, 0.60, 0.016)-(40.00, 1.00, 0.016)

Alley Street Capacity - 1.55% CL - Allowable Spread - Edge of Pavement

User-defined		Highlighted	
Invert Elev (ft)	= 0.36	Depth (ft)	= 0.24
Slope (%)	= 1.55	Q (cfs)	= 8.000
N-Value	= 0.016	Area (sqft)	= 2.88
		Velocity (ft/s)	= 2.78
Calculations		Wetted Perim (ft)	= 24.00
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.28
Known Q (cfs)	= 8.00	Top Width (ft)	= 24.00
, ,		EGL (ft)	= 0.36

(Sta, EI, n)-(Sta, EI, n)... (0.00, 1.00)-(8.00, 0.60, 0.016)-(20.00, 0.36, 0.016)-(32.00, 0.60, 0.016)-(40.00, 1.00, 0.016)

Version 4.05 Released March 2017

INLET MANAGEMENT

Worksheet Protected

NLET NAME	DP3	DP4	STREET CAPACITY @ DP4	DP8	DP9	<u>DP24</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
nlet Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade	In Sump	In Sump	In Sump
llet Type	Denver No. 16 Combination	Denver No. 16 Combination		Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination
ER-DEFINED INPUT						
Jser-Defined Design Flows	2.4	2.4	2.4	4.1	3.3	0.8
Minor Q _{Known} (cfs) Major Q _{Known} (cfs)	5.3			10.0	8.4	3.0
Wajor Q _{Known} (CIS)	5.3	5.8	5.8	10.0	0.4	3.0
Bypass (Carry-Over) Flow from Upstream						
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Receive
Minor Bypass Flow Received, Q _h (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0
Vatershed Characteristics						
Subcatchment Area (acres)						
Percent Impervious						
IRCS Soil Type						
	•	•	•	•	•	•
Vatershed Profile						
Overland Slope (ft/ft)						
Overland Length (ft)						
Channel Slope (ft/ft)						
Channel Length (ft)						
linor Storm Rainfall Input						
Design Storm Return Period, T _r (years)						
One-Hour Precipitation, P ₁ (inches)						
Major Storm Rainfall Input						
Design Storm Return Period, T _r (years)						
One-Hour Precipitation, P ₁ (inches)						L
One-Hour Precipitation, P ₁ (inches) LCULATED OUTPUT Winor Total Design Peak Flow, Q (cfs)	2.4	2.4	2.4	4.1	3.3	0.8
One-Hour Precipitation, P, (inches) LCULATED OUTPUT Winor Total Design Peak Flow, Q (cfs) Wajor Total Design Peak Flow, Q (cfs)	5.3	5.8	2.4 5.8	10.0	8.4	3.0
Dne-Hour Precipitation, P ₁ (inches) LCULATED OUTPUT Winor Total Design Peak Flow, Q (cfs) Wajor Total Design Peak Flow, Q (cfs) Winor Flow Bypassed Downstream, Q _b (cfs)	5.3 0.5	5.8 0.5		10.0 N/A	8.4 N/A	3.0 N/A
One-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Alinor Total Design Peak Flow, Q (cfs) Aligor Total Design Peak Flow, Q (cfs) Alinor Flow Bypassed Downstream, Q ₅ (cfs)	5.3	5.8		10.0	8.4	3.0
COLLATED OUTPUT Alinor Total Design Peak Flow, Q (cfs) Alajor Total Design Peak Flow, Q (cfs) Alinor Flow Bypassed Downstream, Q _b (cfs) Alajor Flow Bypassed Downstream, Q _b (cfs)	5.3 0.5 2.0	5.8 0.5		10.0 N/A	8.4 N/A	3.0 N/A
One-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Alinor Total Design Peak Flow, Q (cfs) Aligor Total Design Peak Flow, Q (cfs) Alinor Flow Bypassed Downstream, Q ₅ (cfs)	5.3 0.5 2.0	5.8 0.5 2.3	5.8	10.0 N/A N/A	8.4 N/A N/A	3.0 N/A N/A
CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) Itajor Total Design Peak Flow, Q (cfs) Itajor Total Design Peak Flow, Q (cfs) Itajor Flow Bypassed Downstream, Q _b (cfs) Itajor Flow Bypassed Downstream, Q _b (cfs)	5.3 0.5 2.0	5.8 0.5 2.3	5.8 N/A	10.0 N/A N/A	8.4 N/A N/A	3.0 N/A N/A
CULATED OUTPUT Ilinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q _b (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) lajor Flow Galculated) Analysis of Flow T	5.3 0.5 2.0 Time N/A N/A	5.8 0.5 2.3 N/A N/A	5.8 N/A N/A	10.0 N/A N/A N/A N/A	8.4 N/A N/A N/A N/A	3.0 N/A N/A N/A N/A
CULATED OUTPUT Innor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) linor Storm (Calculated) Analysis of Flow 1	5.3 0.5 2.0 Fime N/A N/A N/A	5.8 0.5 2.3 N/A N/A N/A	5.8 N/A N/A N/A	10.0 N/A N/A N/A N/A N/A	8.4 N/A N/A N/A N/A N/A	3.0 N/A N/A N/A N/A N/A
CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Iajor Flow Bypassed Downstream, Q _b (cfs) Iajor Flow Welocity, Vi Channel Flow Velocity, Vi Channel Flow Velocity, Vi	5.3 0.5 2.0 Fime N/A N/A N/A N/A	5.8 0.5 2.3 N/A N/A N/A N/A	5.8 N/A N/A N/A N/A	10.0 N/A N/A N/A N/A N/A N/A	8.4 N/A N/A N/A N/A N/A N/A	3.0 N/A N/A N/A N/A N/A N/A
CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) Itajor Total Design Peak Flow, Q (cfs) Itinor Flow Bypassed Downstream, Q _b (cfs) Itinor Flow Bypassed Downstream, Q _b (cfs) Itinor Storm (Calculated) Analysis of Flow T	5.3 0.5 2.0 Fime N/A N/A N/A N/A N/A	5.8 0.5 2.3 N/A N/A N/A N/A N/A	5.8 N/A N/A N/A N/A N/A	10.0 N/A N/A N/A N/A N/A N/A N/A	8.4 N/A N/A N/A N/A N/A N/A N/A N/A	3.0 N/A N/A N/A N/A N/A N/A N/A
CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) lejor Flow Bypassed Downstream, Q _b (cfs) leior Flow Bypassed Downstream, Q _b (cfs) leior Storm (Calculated) Analysis of Flow T by Calculated (Calculated) Analysis of Flow T channel Flow Velocity, Vi channel Flow Time, Ti channel Travel Time, Ti channel Travel Time, Ti	5.3 0.5 2.0 Time N/A N/A N/A N/A N/A N/A N/A	5.8 0.5 2.3 N/A N/A N/A N/A N/A N/A N/A	5.8 N/A N/A N/A N/A N/A N/A	10.0 N/A N/A N/A N/A N/A N/A N/A N/A	8.4 N/A N/A N/A N/A N/A N/A N/A N/A	3.0 N/A N/A N/A N/A N/A N/A N/A N/A
CULATED OUTPUT Ilinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q _b (cfs) lajor Flow Output Grant Gra	5.3 0.5 2.0 Fime N/A N/A N/A N/A N/A N/A N/A N/A N/A	5.8 0.5 2.3 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	10.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.4 N/A N/A N/A N/A N/A N/A N/A N/A	3.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Ine-Hour Precipitation, P, (inches) CULATED OUTPUT Innor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Iajor Flow Bypassed Downstream, Q _b (cfs) Innor Storm (Calculated) Analysis of Flow 1 Control of the Calculated of Total Pione Inches	5.3 0.5 2.0 Fime N/A	5.8 0.5 2.3 N/A	5.8 N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A N/A N/A N/A N/A N/A N/A N/A	3.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
CULATED OUTPUT Ilinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) lajor Flow Bypassed Dow	5.3 0.5 2.0 2.0 Sime N/A N/A N/A N/A N/A N/A N/A N/	5.8 0.5 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A N/A N/A N/A N/A N/A N/A N/A	8.4 N/A N/A N/A N/A N/A N/A N/A N/A	3.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
CULATED OUTPUT Ilinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q _b (cfs) lajor Flow Welocity, Vi 's overland Flow Velocity, Vi 'hannel Flow Velocity, Vi 'hannel Flow Velocity, Vi 'hannel Flow Velocity, Vi 'hannel Flow Velocity, Vi 'channel Flow Velocity, Vi 'ch	5.3 0.5 2.0 Fime N/A	5.8 0.5 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A	3.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
CULATED OUTPUT Innor Total Design Peak Flow, Q (cfs) Injor Total Design Peak Flow, Q (cfs) Injor Total Design Peak Flow, Q (cfs) Injor Flow Bypassed Downstream, Q _b (cfs) Injor Flow Bypassed Downstream, Q _b (cfs) Injor Flow Bypassed Downstream, Q _b (cfs) Injor Storm (Calculated) Analysis of Flow Telephone September 1	5.3 0.5 2.0 Time N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 0.5 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A	3.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
CULATED OUTPUT Ininor Total Design Peak Flow, Q (cfs) Injor Flow Bypassed Downstream, Q _b (cfs) Injor Storm (Calculated) Analysis of Flow Testing Flow Velocity, Vi Diverland Flow Velocity, Vi Diverland Flow Velocity, Vi Diverland Flow Time, Ti Diannel Flow Flow Time, Ti Diannel Travel Time, Ti Dianulated Time of Concentration, T _c Legional T _c Selected by User	5.3 0.5 2.0 Fime N/A	5.8 0.5 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A	3.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
CULATED OUTPUT Innor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) linor Storm (Calculated) Analysis of Flow 1 control of the Calculated of the Calculated Flow Velocity, Vi channel Flow Velocity, Vi channel Travel Time, Ti channel Travel Time, Tt calculated Time of Concentration, T _c tegional T _c selected by User Design Rainfall Intensity, I alculated Local Peak Flow, Q _p	5.3 0.5 2.0 Fime N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 0.5 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A	3.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Flow Bypassed Downstream, Q ₀ (cfs) ajor Flow Bypassed Downstream, Q ₀ (cfs) inor Storm (Calculated) Analysis of Flow 1 s verland Flow Velocity, Vi hannel Flow Velocity, Vi verland Flow Time, Ti hannel Travel Time, Tt alculated Time of Concentration, T _c gejional T _c ecommended T _c selected by User esign Rainfall Intensity, I alculated Local Peak Flow, Q _p	5.3 0.5 2.0 Time N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 0.5 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A	3.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Flow Bypassed Downstream, Q ₀ (cfs) ajor Flow Bypassed Downstream, Q ₀ (cfs) inor Storm (Calculated) Analysis of Flow 1 s verland Flow Velocity, Vi hannel Flow Velocity, Vi hannel Flow Time, Ti hannel Travel Time, Tt alculated Time of Concentration, T _c gejional T _c ecommended T _c selected by User esign Rainfall Intensity, I alculated Local Peak Flow, Q _p	5.3 0.5 2.0 Fime N/A	5.8 0.5 2.3 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A N/A N/A N/A N/A N/A N/A N/	3.0 N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Flow Bypassed Downstream, Q ₀ (cfs) ajor Flow Plow Bypassed Downstream, Q ₀ (cfs) ajor Flow Tlow Bypassed Downstream, Q ₀ (cfs) ajor Flow Tlow Bypassed Downstream, Q ₀ (cfs) alculated Time Of Concentration, T ₀ alculated Time of Concentration, T ₀ alculated by User asiegn Rainfall Intensity, I alculated Local Peak Flow, Q ₀ ajor Storm (Calculated) Analysis of Flow T	5.3 0.5 2.0 Fime N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 0.5 2.3 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A	3.0 N/A
CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) linor Storm (Calculated) Analysis of Flow 1 s verland Flow Velocity, Vi hannel Travel Time, Ti laculated Time of Concentration, T _c egional T _c ecommended T _c selected by User esign Rainfall Intensity, I alculated Local Peak Flow, Q _p lajor Storm (Calculated) Analysis of Flow 1 s verland Flow Velocity, Vi	5.3 0.5 2.0 Time N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 0.5 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A	3.0 N/A
Inne-Hour Precipitation, P, (inches) CULATED OUTPUT Innor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) linor Storm (Calculated) Analysis of Flow 1 Companies of Pione Velocity, Vi Channel Flow Velocity, Vi Channel Travel Time, Tt Channel Towel Type Companies Compa	5.3 0.5 2.0 Time N/A	5.8 0.5 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A N/A N/A N/A N/A N/A N/A N/	3.0 N/A
CULATED OUTPUT Linor Total Design Peak Flow, Q (cfs) Lajor Flow Bypassed Downstream, Q _b (cfs) Lajor Flow Velocity, Vi Lajor Flow Lajor Storm (Calculated) Analysis of Flow Lajor Storm (Calculated)	5.3 0.5 2.0 Time N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 0.5 2.3 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A	3.0 N/A
CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) linor Storm (Calculated) Analysis of Flow 1 s verland Flow Velocity, Vt hannel Flow Velocity, Vt lajor Bainfall Intensity, I lajor Storm (Calculated) Analysis of Flow 1 s verland Flow Velocity, Vt hannel Flow Velocity, Vt hannel Flow Velocity, Vt verland Flow Time, Ti hannel Travel Time, Ti	5.3 0.5 2.0 Fime N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 0.5 2.3 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A N/A N/A N/A N/A N/A N/A N/	3.0 N/A
ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Ilinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q ₀ (cfs) linor Storm (Calculated) Analysis of Flow Testing Total Pione Velocity, VI channel Flow Velocity, VI channel Flow Velocity, VI channel Flow Time, TI calculated Time of Concentration, T _c gelected by User lajor Storm (Calculated) Analysis of Flow Testing Total laiculated Time of Concentration, Q ₀ lajor Storm (Calculated) Analysis of Flow Testing Total laiculated Time Velocity, VI control Flow Time, Ti calculated Time, Ti calculated Time, Ti calculated Time of Concentration, T _c	5.3 0.5 2.0 7	5.8 0.5 2.3 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A N/A N/A N/A N/A N/A N/A N/	3.0 N/A
CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q _b (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) linor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Bypassed Downstream, Q _b lajor Bypassed Downstream, Q _b lajor Bypassed Downstream, Q _b lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Bypassed Downstream, Q _b lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Bypassed Downstream, Q _b lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Bypassed Downstream, Q _b lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Bypassed Downstream, Q _b lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Bypassed Downstream, Q _b lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Bypassed Downstream, Q _b lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Bypassed Downstream, Q _b lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Bypassed Downstream, Q _b lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Bypassed Downstream, Q _b lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Velocity, Vi lajor Bypassed Downstream, Q _b lajor Storm (Calculated) Analysis of Flow 1 by verland Flow Plow Plow Plow Plow Plow Plow Plow P	5.3 0.5 2.0 Time N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 0.5 2.3 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A	8.4 N/A	3.0 N/A
inor-Hour Precipitation, P, (inches) CULATED OUTPUT Ilinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q ₀ (cfs) linor Storm (Calculated) Analysis of Flow I s verland Flow Velocity, VI hannel Flow Velocity, VI twerland Flow Time, Ti hannel Travel Time, Ti alculated Time of Concentration, T _c esign Rainfall Intensity, I alculated Local Peak Flow, Q _p lajor Storm (Calculated) Analysis of Flow I s verland Flow Velocity, VI twerland Flow Velocity, VI hannel Travel Time, Ti hannel Travel Time, Ti hannel Travel Time, Ti alculated Time of Concentration, T _c egional T _c ecommended T _c	5.3 0.5 2.0 7	5.8 0.5 2.3 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A N/A N/A N/A N/A N/A N/A N/	8.4 N/A N/A N/A N/A N/A N/A N/A N/	3.0 N/A
CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) lajor Flow Velocity, Vi channel Flow Velocity, Vi channel Tavel Intensity, I lajor Storm (Calculated) Analysis of Flow Telephone lajor Telephone lajor Telephone lajor Telephone lajo	5.3 0.5 2.0 Time N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 0.5 2.3 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A N/A N/A N/A N/A N/A N/A N/	8.4 N/A	3.0 N/A
CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) lajor Flow Bypassed Downstre	5.3 0.5 2.0 7	5.8 0.5 2.3 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.8 N/A N/A N/A N/A N/A N/A N/A N/	10.0 N/A N/A N/A N/A N/A N/A N/A N/	8.4 N/A N/A N/A N/A N/A N/A N/A N/	3.0 N/A

Version 4.05 Released March 2017

INLET MANAGEMENT

Worksheet Protected

NLET NAME	<u>DP23</u>	<u>DP17</u>	<u>DP18</u>	DP22	<u>DP19</u>	DP21
te Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	RURAL
et Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	AREA
draulic Condition	In Sump	On Grade	On Grade	On Grade	On Grade	Swale
et Type	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination	CDOT Type C
R-DEFINED INPUT						
er-Defined Design Flows						
nor Q _{Known} (cfs)	3.3	1.7	2.8	1.5	1.7	0.4
ajor Q _{Known} (cfs)	8.3	3.8	5.6	3.1	4.6	1.0
ajo: aknown (o.o)	0.0	3.5	5.0	5.1	4.0	1.0
pass (Carry-Over) Flow from Upstream						
eceive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Receive
inor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
ajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
atomak and Channastoniasian						
atershed Characteristics						
ubcatchment Area (acres)						
ercent Impervious						
RCS Soil Type						
atershed Profile						
verland Slope (ft/ft)						
verland Length (ft)						
hannel Slope (ft/ft)						
hannel Length (ft)		1				
inor Storm Rainfall Input						
esign Storm Return Period, T _r (years)						
ne-Hour Precipitation, P ₁ (inches)						
, , , , , , , , , , , , , , , , , , , ,		•		•	•	•
lajor Storm Rainfall Input						
esign Storm Return Period, T, (years)						
esign Storm Return renou, 1, (years)						
ne-Hour Precipitation, P ₁ (inches)						
One-Hour Precipitation, P, (inches)	40					
.CULATED OUTPUT linor Total Design Peak Flow, Q (cfs)	3.3	1.7	2.8	1.5	1.7	0.4
ne-Hour Precipitation, P, (inches) CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs)	8.3	3.8	5.6	3.1	4.6	1.0
One-Hour Precipitation, P, (inches) CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Infor Flow Bypassed Downstream, Q, (cfs)	8.3 N/A	3.8 0.3	5.6 0.8	3.1 0.1	4.6 0.5	1.0 0.0
One-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs)	8.3	3.8	5.6	3.1	4.6	1.0
CULATED OUTPUT Ilinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q ₀ (cfs) lajor Flow Bypassed Downstream, Q ₀ (cfs)	8.3 N/A N/A	3.8 0.3	5.6 0.8	3.1 0.1	4.6 0.5	1.0 0.0
One-Hour Precipitation, P, (inches) CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Inor Flow Bypassed Downstream, Q, (cfs)	8.3 N/A N/A	3.8 0.3 1.4	5.6 0.8 2.5	3.1 0.1 0.8	4.6 0.5 2.5	1.0 0.0 0.0
CULATED OUTPUT Ilinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q ₀ (cfs) lajor Flow Bypassed Downstream, Q ₀ (cfs)	8.3 N/A N/A	3.8 0.3 1.4	5.6 0.8 2.5	3.1 0.1 0.8	4.6 0.5 2.5	1.0 0.0 0.0
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₁ (cfs) ajor Flow Bypassed Downstream, Q ₂ (cfs) inor Storm (Calculated) Analysis of Flow T	8.3 N/A N/A N/A N/A	3.8 0.3 1.4 N/A N/A	5.6 0.8 2.5 N/A N/A	3.1 0.1 0.8 N/A N/A	4.6 0.5 2.5 N/A N/A	1.0 0.0 0.0 N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi	8.3 N/A N/A N/A N/A N/A	3.8 0.3 1.4 N/A N/A N/A	5.6 0.8 2.5 N/A N/A N/A	3.1 0.1 0.8 N/A N/A N/A	4.6 0.5 2.5 N/A N/A N/A	1.0 0.0 0.0 0.0 N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT iinor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) iinor Flow Bypassed Downstream, Q ₀ (cfs) ajor Flow Bypassed Downstream, Q ₀ (cfs) iinor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi	8.3 N/A N/A N/A N/A N/A N/A	3.8 0.3 1.4 N/A N/A N/A N/A	5.6 0.8 2.5 N/A N/A N/A N/A	3.1 0.1 0.8 N/A N/A N/A N/A	4.6 0.5 2.5 N/A N/A N/A N/A N/A	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _c (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi verland Flow Time, Ti	8.3 N/A N/A N/A N/A N/A N/A N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/A	3.1 0.1 0.8 N/A N/A N/A N/A N/A	4.6 0.5 2.5 N/A N/A N/A N/A N/A	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT iinor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) iinor Flow Bypassed Downstream, Q ₀ (cfs) ajor Flow Bypassed Downstream, Q ₀ (cfs) iinor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vt verland Flow Time, Ti hannel Travel Time, Ti hannel Travel Time, Ti	8.3 N/A N/A N/A N/A N/A N/A N/A N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Flow Bypassed Downstream, Q ₆ (cfs) ajor Flow Bypassed Downstream, Q ₆ (cfs) ajor Flow Bypassed Downstream, Q ₇ (cfs) inor Storm (Calculated) Analysis of Flow T is verland Flow Velocity, Vi nannel Flow Velocity, Vi verland Flow Time, Ti nannel Travel Time, Ti nannel Travel Time, Ti nannel Travel Time, Ti nannel Flow Goncentration, T ₆	8.3 N/A N/A N/A N/A N/A N/A N/A N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/A	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A N/A N/A	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T inor Storm (Calculated) Analysis of Flow T inor Storm (Talculated) Analysis of Flow T inannel Flow Velocity, Vi verland Flow Velocity, Vi verland Flow Time, Ti laculated Time of Concentration, T _c gional T _c gional T _c	8.3 N/A N/A N/A N/A N/A N/A N/A N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A	5.6 0.8 2.5 N/A	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T inor Storm (Calculated) Analysis of Flow T is verland Flow Velocity, Vi nannel Flow Lime, Ti nannel Travel Time, Ti alculated Time of Concentration, T _c gligonal T geommended T commended T commended T	8.3 N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	4.6 0.5 2.5	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₆ (cfs) inor Flow Bypassed Downstream, Q ₆ (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi hannel Flow Travel Time, Ti hannel Travel Time, Ti hannel Travel Time, Tc alculated Time of Concentration, T _c egional T _c eselocted by User	8.3 N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A N/A N/A	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T inor Storm (Calculated) Analysis of Flow T in September 1 in September 1 in September 1 in September 2 in Septe	8.3 N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A N/A N/A	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _c (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi verland Flow Time, Ti	8.3 N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A N/A N/A	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) and Flow Velocity, Vi verland Flow Time, Ti annel Travel Time, Tt alculated Time of Concentration, T _c gional T _c accommended T _c selected by User assign Rainfall Intensity, I alculated Local Peak Flow, Q _p	8.3 N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A N/A N/A	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) and Flow Velocity, Vi verland Flow Time, Ti annel Travel Time, Tt alculated Time of Concentration, T _c gional T _c accommended T _c selected by User assign Rainfall Intensity, I alculated Local Peak Flow, Q _p	8.3 N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A N/A N/A	4.6 0.5 2.5	1.0 0.0 0.0 0.0 N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T Increased Flow Velocity, Vi Interest	8.3 N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T inor Storm (Calculated) Analysis of Flow T inor Storm (Calculated) Analysis of Flow T includated Time, Ti includated Time of Concentration, T _c selected by User seign Rainfall Intensity, I includated Local Peak Flow, Q _c ajor Storm (Calculated) Analysis of Flow T	8.3 N/A	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q ₀ (cfs) nor Flow Bypassed Downstream, Q ₀ (cfs) inor Storm (Calculated) Analysis of Flow T verland Flow Velocity, Vi terland Flow Velocity, Vi terland Flow Time, Ti terland Flow Time, Ti terland Flow Time, Ti terland Flow Time of Concentration, T ₀ terland Flow User terland Flow User terland Flow Total Terland terland Flow Total Terland terland Flow Velocity, Vi terland Flow Velocity, Vi terland Flow Velocity, Vi	8.3 N/A N/A N/A N/A N/A N/A N/A N/	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	4.6 0.5 2.5	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T	8.3 N/A N/A N/A N/A N/A N/A N/A N/	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 0.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₀ (cfs) ajor Flow Bypassed Downstream, Q ₀ (cfs) inor Storm (Calculated) Analysis of Flow T is verland Flow Velocity, Vi nannel Flow Velocity, Vi nannel Travel Time, Ti nannel Travel Time, Ti alculated Time of Concentration, T _c sejonal T _c selected by User sign Rainfall Intensity, I alculated Local Peak Flow, Q _p ajor Storm (Calculated) Analysis of Flow T is verland Flow Velocity, Vi nannel Flow Velocity, Vi nannel Flow Velocity, Vi nannel Flow Velocity, Vi nannel Flow Velocity, Vi reverland Flow Time, Ti	8.3 N/A N/A N/A N/A N/A N/A N/A N/	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	4.6 0.5 2.5	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₀ (cfs) ajor Flow Bypassed Downstream, Q ₀ (cfs) inor Storm (Calculated) Analysis of Flow T in annel Flow Velocity, Vi in annel Flow Velocity, Vi in annel Travel Time, Ti in alculated Time of Concentration, T _c is elected by User is selected by User is glonal T _c is elected by User is elected	8.3 N/A N/A N/A N/A N/A N/A N/A N/	3.8 0.3 1.4 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T	8.3 N/A N/A N/A N/A N/A N/A N/A N/	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 0.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	4.6 0.5 0.5 2.5	1.0 0.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T	8.3 N/A N/A N/A N/A N/A N/A N/A N/	3.8 0.3 1.4 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.0 0.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T inor Storm (Calculated) Analysis of Flow T in September 1 in September 1 in September 1 in September 2 in Septe	8.3 N/A N/A N/A N/A N/A N/A N/A N/	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 0.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	4.6 0.5 0.5 2.5	1.0 0.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi verland Flow Time, Ti hannel Travel Time, Tt alculated Time of Concentration, T _c esignoral T _c esommended T _c selected by User selegic Alpill Intensity, I alculated Local Peak Flow, Q _b ajor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi verland Flow Velocity, Vi hannel Travel Time, Ti hannel Travel Time, Ti hannel Travel Time, Ti hannel Travel Time, Ti halculated Time of Concentration, T _c egional T _c escommended T _c seconmended T _c	8.3 N/A N/A N/A N/A N/A N/A N/A N/	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.1 0.8 0.8 NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q _n (cfs) ajor Flow Bypassed Downstream, Q _n (cfs) inor Storm (Calculated) Analysis of Flow T inor Storm (Calculated) Analysis of	8.3 N/A N/A N/A N/A N/A N/A N/A N/	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	4.6 0.5 2.5	1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi hannel Travel Time, Ti hannel Travel Time, Ti alculated Time of Concentration, T _c gejlonal T _c selected by User seign Rainfall Intensity, I alculated Local Peak Flow, Q _c aior Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi hannel Flow Velocity, Vi hannel Flow Velocity, Vi hannel Travel Time, Ti hannel Travel Time, Ti hannel Travel Time, Ti hannel Travel Time, Ti alculated Time of Concentration, T _c gejional T _c	8.3 N/A N/A N/A N/A N/A N/A N/A N/	3.8 0.3 1.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	5.6 0.8 2.5 N/A N/A N/A N/A N/A N/A N/A N/	3.1 0.1 0.1 0.8 0.8 NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/	4.6 0.5 2.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	1.0 0.0 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) PALMER VILLAGE Project: Inlet ID: STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 21.0 Gutter Width w 2.00 Street Transverse Slope S_X : 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.010 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 12.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm 21.1 MAJOR STORM Allowable Capacity is based on Spread Criterion inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Inlet Calcs_v4.05.xlsm, DP3 2/13/2020, 11:36 AM

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	Denver No. 16 Combination		MINOR	MAJOR	_
Type of Inlet	Deriver No. 16 Combination	Type =	Denver No. 1	6 Combination	
Local Depression (additional to conti	nuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (G	rate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate o	r Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be gre-	ater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Gr	ate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Cu	rb Opening (typical min. value = 0.1)	$C_{f}C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowa	ble Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity		Q =	1.9	3.3	cfs
Total Inlet Carry-Over Flow (flow b	ypassing inlet)	Q _b =	0.5	2.0	cfs
Capture Percentage = Q _a /Q _o =		C% =	81	62	%

Inlet Calcs_v4.05.xlsm, DP3 2/13/2020, 11:36 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) PALMER VILLAGE Project: Inlet ID: STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 12.0 Gutter Width w 2.00 Street Transverse Slope S_X : 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.010 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 12.0 12.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Spread Criterion inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage ARNING: MAJOR STORM max. allowable capacity is less than the design flow given on sheet 'Inlet Manage'

Inlet Calcs_v4.05.xlsm, DP4 2/13/2020, 11:36 AM

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	Denver No. 16 Combination		_	MINOR	MAJOR	_
Type of Inlet	Deriver No. 16 Combination		Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a')			a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (0	Grate or Curb Opening)		No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)			L ₀ =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)			W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit G	Grate (typical min. value = 0.5)		C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)		$C_f - C =$	0.10	0.10	
Street Hydraulics: WARNING: Q :	> ALLOWABLE Q FOR MAJOR STORM			MINOR	MAJOR	
Total Inlet Interception Capacity			Q =	1.9	3.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)			Q _b =	0.5	2.3	cfs
Capture Percentage = Q _a /Q _o =			C% =	81	61	%

Inlet Calcs_v4.05.xlsm, DP4 2/13/2020, 11:36 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) PALMER VILLAGE Project: Inlet ID: STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 30.0 Gutter Width W: 2.00 Street Transverse Slope S_X : 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 30.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm SUMP MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP

Inlet Calcs_v4.05.xlsm, DP8 2/13/2020, 11:36 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) □ Denver No. 16 Combination □		MINOR	MAJOR	
Type of Inlet Denver No. 16 Combination ▼	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	0.689	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.71	0.94]
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00]
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.71	0.94	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	6.2	12.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.1	10.0	cfs

Inlet Calcs_v4.05.xlsm, DP8 2/13/2020, 11:36 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) PALMER VILLAGE Project: Inlet ID: STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 21.0 Gutter Width W: 2.00 Street Transverse Slope S_X : 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm SUMP MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP

Inlet Calcs_v4.05.xlsm, DP9 2/13/2020, 11:36 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) □ Denver No. 16 Combination □		MINOR	MAJOR	_
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.60	0.60	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L ₀ (C) =	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.66	0.66]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	0.569	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.38	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.62	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.97	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.57	0.62	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	7.6	9.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.3	8.4	cfs

Inlet Calcs_v4.05.xlsm, DP9 2/13/2020, 11:36 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) PALMER VILLAGE Project: Inlet ID: DP17 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 12.0 Gutter Width w 2.00 Street Transverse Slope S_X : 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.023 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 12.0 12.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Spread Criterion 8.2 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Inlet Calcs_v4.05.xlsm, DP17 2/13/2020, 11:36 AM

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	Denver No. 16 Combination		MINOR	MAJOR	
Type of Inlet	Deriver No. 16 Combination	Type =	Denver No. 1	6 Combination	
Local Depression (additional to cor	ntinuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)			2	2	
Length of a Single Unit Inlet (Grate	L _o =	3.00	3.00	ft	
Width of a Unit Grate (cannot be gr	W _o =	1.73	1.73	ft	
Clogging Factor for a Single Unit (Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allov	vable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	1.4	2.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)		Q _b =	0.3	1.4	cfs
Capture Percentage = Q _a /Q _o =		C% =	84	64	%

Inlet Calcs_v4.05.xlsm, DP17 2/13/2020, 11:36 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) PALMER VILLAGE Project: Inlet ID: DP18 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 21.0 Gutter Width w 2.00 Street Transverse Slope S_X : 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.023 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 21.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm d_{MAX} Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm 32.1 MAJOR STORM Allowable Capacity is based on Spread Criterion 22.0 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Inlet Calcs_v4.05.xlsm, DP18 2/13/2020, 11:37 AM

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	Denver No. 16 Combination		_	MINOR	MAJOR	_
Type of Inlet	Deriver No. 16 Combination		Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a')			a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)			L ₀ =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)			W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit G	Grate (typical min. value = 0.5)		C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	vable Street Capacity'			MINOR	MAJOR	
Total Inlet Interception Capacity			Q =	2.0	3.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)			Q _b =	0.8	2.5	cfs
Capture Percentage = Q _a /Q _o =			C% =	72	55	%

Inlet Calcs_v4.05.xlsm, DP18 2/13/2020, 11:37 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) PALMER VILLAGE Project: Inlet ID: DP19 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 12.0 Gutter Width w 2.00 Street Transverse Slope S_X : 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.025 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 12.0 12.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Spread Criterion inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Inlet Calcs_v4.05.xlsm, DP19 2/13/2020, 11:37 AM

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.2	2.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.5	2.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	70	46	%

Inlet Calcs_v4.05.xlsm, DP19 2/13/2020, 11:37 AM

AREA INLET IN A SWALE

PALMER VILLAGE DP21

This worksheet uses the NRCS vegetal retardance method to determine Manning's n.

For more information see Section 7.2.3 of the USDCM.

Analysis of Transport	idal Crass I insel Channel	Heine SCS Method			
	idal Grass-Lined Channel dance (A, B, C, D, or E)	Using SCS Method	A, B, C, D or E	С	٦
•	ell D16 blank to manually e	nter an n value)	n =	see details below	1
Channel Invert Slope	, , , , , , , , , , , , , , , , , , , ,	,	S _o =	0.0300	ft/ft
Bottom Width			B =	1.00	ft
Left Side Slope			Z1 =	4.00	ft/ft
Right Side Slope			Z2 =	3.00	ft/ft
Check one of the follo	wing soil types:			- Choose One: -	
Soil Type:	Max. Velocity (V _{MAX})	Max Froude No. (F _{MAX})		○ Non-Cohesiv	e
Non-Cohesive	5.0 fps	0.60		Cohesive	
Cohesive	7.0 fps	0.80		C Paved	
Paved	N/A	N/A			
				Minor Storm	_
	Vidth of Channel for Minor	•	T _{MAX} =	6.00	
Max. Allowable Water	r Depth in Channel for Mino	or & Major Storm	d _{MAX} =	1.00	_
Allowable Channel (Capacity Based On Chann	el Geometry		Minor Storm	
MINOR STORM Allo	wable Capacity is based of	on Top Width Criterion	Q _{allow} =	1.8	Т
MAJOR STORM Allo	wable Capacity is based	on Top Width Criterion	d _{allow} =	0.71	
Water Danth in Char	anal Basad On Dasien Da	alı Flam			
Water Depth in Char Design Peak Flow	nnel Based On Design Pe	ak Flow	Q ₀ =	0.4	т —
Design Feat Flow				V. 4	-

0.4 1.0 0.52 0.67

Major Storm 6.00

1.00

Major Storm 1.8 0.71

feet

feet

cfs

feet

inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Water Depth

Inlet Calcs_v4.05.xlsm, DP21 2/13/2020, 11:37 AM

AREA INLET IN A SWALE

PALMER VILLAGE DP21 Inlet Design Information (Input) CDOT Type C Type of Inlet CDOT Type C Inlet Type = Angle of Inclined Grate (must be <= 30 degrees) degrees Width of Grate W = Length of Grate feet Open Area Ratio A_{RATIO} : 0.70 Height of Inclined Grate 0.00 Clogging Factor 0.50 Grate Discharge Coefficient C_{d} 0.96 Orifice Coefficient C_o 0.64 Weir Coefficient 2.05 MAJOR MINOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) 0.52 0.67 Q_a = Total Inlet Interception Capacity (assumes clogged condition) 6.9 10.2 cfs Bypassed Flow, Q_b = 0.0 0.0 cfs Capture Percentage = $Q_a/Q_o = C\%$ 100 100

Inlet Calcs_v4.05.xlsm, DP21 2/13/2020, 11:37 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) PALMER VILLAGE Project: Inlet ID: DP22 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 12.0 Gutter Width w 2.00 Street Transverse Slope S_X : 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.010 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 12.0 12.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Spread Criterion inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Inlet Calcs_v4.05.xlsm, DP22 2/13/2020, 11:37 AM

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	Denver No. 16 Combination			MINOR	MAJOR	_
Type of Inlet	Deriver No. 16 Combination		Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a')			a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (0	Grate or Curb Opening)		No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)			L ₀ =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)			W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit G	Grate (typical min. value = 0.5)		C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	vable Street Capacity'			MINOR	MAJOR	
Total Inlet Interception Capacity			Q =	1.4	2.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)			Q _b =	0.1	0.8	cfs
Capture Percentage = Q _a /Q _o =			C% =	92	75	%

Inlet Calcs_v4.05.xlsm, DP22 2/13/2020, 11:37 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) PALMER VILLAGE Project: Inlet ID: DP23 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 21.0 Gutter Width W: 2.00 Street Transverse Slope S_X : 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 21.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm SUMP MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP

Inlet Calcs_v4.05.xlsm, DP23 2/13/2020, 11:36 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) Denver No. 16 Combination		MINOR	MAJOR	_
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.60	0.60	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L ₀ (C) =	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	0.569	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.38	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.71	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.71	0.77	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.2	7.9	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	3.3	8.3	cfs

Inlet Calcs_v4.05.xlsm, DP23 2/13/2020, 11:36 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) PALMER VILLAGE Project: Inlet ID: DP24 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown 12.0 Gutter Width W: 2.00 Street Transverse Slope S_X : 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 12.0 12.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm SUMP MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP

Inlet Calcs_v4.05.xlsm, DP24 2/13/2020, 11:36 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)	Denver No. 16 Combination		MINOR	MAJOR	_
Type of Inlet	Denver No. 16 Combination	Type =	Denver No. 1	6 Combination	
Local Depression (additional to co	Local Depression (additional to continuous gutter depression 'a' from above)			2.00	inches
Number of Unit Inlets (Grate or C	No =	3	3		
Water Depth at Flowline (outside	of local depression)	Ponding Depth =	4.4	4.4	inches
Grate Information			MINOR	MAJOR	Override Depths
Length of a Unit Grate		L ₀ (G) =	3.00	3.00	feet
Width of a Unit Grate		W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (t	ypical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grat	e (typical value 0.50 - 0.70)	$C_f(G) =$	0.50	0.50	
Grate Weir Coefficient (typical va	ue 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical v	ralue 0.60 - 0.80)	C _o (G) =	0.60	0.60	
Curb Opening Information		_	MINOR	MAJOR	
Length of a Unit Curb Opening		L ₀ (C) =	3.00	3.00	feet
Height of Vertical Curb Opening i	n Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Ir	nches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Fig	ure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (t	pically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb	Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (ty	pical value 2.3-3.7)	$C_w(C) =$	3.70	3.70	
Curb Opening Orifice Coefficient	(typical value 0.60 - 0.70)	C _o (C) =	0.66	0.66]
Low Head Performance Reduct	ion (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth		d _{Grate} =	0.389	0.389	ft
Depth for Curb Opening Weir Equ	uation	d _{Curb} =	0.20	0.20	ft
Combination Inlet Performance R	eduction Factor for Long Inlets	RF _{Combination} =	0.41	0.41	
Curb Opening Performance Redu	ction Factor for Long Inlets	RF _{Curb} =	0.86	0.86	
Grated Inlet Performance Reduct	ion Factor for Long Inlets	RF _{Grate} =	0.41	0.41	
			MINOR	MAJOR	
Total Inlet Interception Ca	pacity (assumes clogged condition)	$Q_a =$	3.2	3.2	cfs
Inlet Capacity IS GOOD for Min	or and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.8	3.0	cfs

Inlet Calcs_v4.05.xlsm, DP24 2/13/2020, 11:36 AM

Nyloplast 3' x 3' Road & Highway Inlet Capacity Chart

100-year peak flow to pond (SF-3):

Pond A: 25.3 cfs Pond B: 21.9 cfs

3130 Verona Avenue • Buford, GA 30518 (866) 888-8479 / (770) 932-2443 • Fax: (770) 932-2490 © Nyloplast Inlet Capacity Charts June 2012

Weir Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Nov 18 2019

Pond A Spillway (Q_100 = Peak Undetained Q_100 (SF3 Major) = 21.5 cfs

T	rap	ezo	idal	W	eir

Crest = Sharp Bottom Length (ft) = 20.00 Total Depth (ft) = 1.50 Side Slope (z:1) = 4.00

Calculations

Weir Coeff. Cw = 3.10 Compute by: Known Q Known Q (cfs) = 21.50

Highlighted

Depth (ft) = 0.48 Q (cfs) = 21.50 Area (sqft) = 10.52 Velocity (ft/s) = 2.04 Top Width (ft) = 23.84

Weir Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Nov 18 2019

Pond B Spillway (Q_100 = Peak Undetained Q_100 (SF3 Major) = 20.0 cfs

Trapezoi	idal	Weir	
Croct			

Crest = Sharp
Bottom Length (ft) = 20.00
Total Depth (ft) = 1.50
Side Slope (z:1) = 4.00

Calculations

Weir Coeff. Cw = 3.10Compute by: Known Q Known Q (cfs) = 20.00

Highlighted

Depth (ft) = 0.45 Q (cfs) = 20.00 Area (sqft) = 9.81 Velocity (ft/s) = 2.04 Top Width (ft) = 23.60

Appendix D Water Quality & Detention

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

2514900_Pond A_v3.07.xlsm, Basin 2/132020, 11:39 AM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

2514900_Pond A_v307vism, Basin 21132000, 11:39 AM

UD-Detention, Version 3.07 (February 2017)

Example Zone Configuration (Retention Pond)

N/A

Project: PALMER VILLAGE

		Stage (ft)	Zone Volume (ac-ft)	Outlet Type
	Zone 1 (WQCV)	1.97	0.098	Orifice Plate
•	Zone 2 (EURV)	4.30	0.223	Orifice Plate
	one 3 (100-year)	5.72	0.194	Weir&Pipe (Restrict)
			0.514	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter

Calculate	d Parameters for Ur	iderdra
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate : 4.30 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A inches

Calculated Parameters for Plate WQ Orifice Area per Row = N/A Elliptical Half-Width N/A feet Elliptical Slot Centroid N/A feet Elliptical Slot Area N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Orifice Plate: Orifice Area per Row

Stage of Orifice Centroid (

Overflow Weir Slope

Debris Clogging % =

Horiz. Length of Weir Sides

Overflow Grate Open Area %

Row 3 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Row 4 (optional) Row 1 (required) Row 2 (optional) Stage of Orifice Centroid (ft 0.00 1.43 2.87 4.00 Orifice Area (sq. inches) 0.82 0.50 1.10 0.38

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
tage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

Calculated Parameters for Vertical Orifice Not Selected Not Selected Not Selected Not Selected Invert of Vertical Orifice N/A t (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area Depth at top of Zone using Vertical Orifice N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid Vertical Orifice Diameter = N/A N/A

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho N/A ft (relative to basin bottom at Stage = 0 ft) Overflow Weir Front Edge Length 3.00 N/A

0.00

3.00

Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Height of Grate Upper Edge, H_t 5.73 N/A Over Flow Weir Slope Length 3.00 N/A Grate Open Area / 100-yr Orifice Area 34.18 N/A should be ≥ 4 Overflow Grate Open Area w/o Debris N/A Overflow Grate Open Area w/ Debris =

Calculated Parameters for Spillway

0.34

8.56

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Outlet Orifice Area Depth to Invert of Outlet Pipe 0.00 N/A t (distance below basin bottom at Stage = 0 ft) 0.18 N/A Outlet Pipe Diameter 18.00 N/A inches Outlet Orifice Centroid 0.14 N/A feet Restrictor Plate Height Above Pipe Invert = Half-Central Angle of Restrictor Plate on Pipe = 2.90 inches 0.83 N/A radians

H:V (enter zero for flat grate)

%, grate open area/total area

User Input: Emergency Spillway (Rectangular or Trapezoidal) 7.22 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 20.00 Stage at Top of Freeboard Spillway Crest Length H:V Basin Area at Top of Freeboard Spillway End Slopes 4.00 Freeboard above Max Water Surface = 1.00

N/A

N/A

N/A

Routed Hydrograph Results_									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	0.00
Calculated Runoff Volume (acre-ft) =	0.098	0.321	0.219	0.288	0.355	0.444	0.557	0.691	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.097	0.320	0.218	0.287	0.354	0.443	0.556	0.690	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.00	0.00	0.01	0.02	0.18	0.44	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	0.0	0.0	0.1	0.1	1.0	2.5	0.0
Peak Inflow Q (cfs) =	1.5	5.0	3.4	4.5	5.5	6.9	8.6	10.7	#N/A
Peak Outflow Q (cfs) =	0.0	0.1	0.1	0.1	0.1	0.2	0.4	2.2	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	4.3	2.2	1.2	0.4	0.9	#N/A
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Plate	Overflow Grate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	0.0	0.3	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	39	67	58	64	69	74	80	78	#N/A
Time to Drain 99% of Inflow Volume (hours) =	41	72	62	69	74	80	87	86	#N/A
Maximum Ponding Depth (ft) =	1.85	4.13	3.22	3.85	4.40	5.05	5.77	6.04	#N/A
Area at Maximum Ponding Depth (acres) =	0.07	0.12	0.10	0.11	0.12	0.14	0.15	0.16	#N/A
Maximum Volume Stored (acre-ft) =	0.089	0.301	0.204	0.269	0.333	0.418	0.522	0.564	#N/A

S-A-V-D Chart Axis Override X-axis Left Y-Axis Right Y-Axis
minimum bound
maximum bound

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

The Internal		The user can or	verride the calcu	lated inflow hydr	ographs from th	is workbook wit	n inflow hydrogr	aphs developed	in a separate pro	gram.	
Sale mps		SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	#N/A
	Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
	E 26 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5.36 min										
Contract 0.16/06 0.07 0.22 0.16 0.20 0.25 0.21 0.38 0.07 71/4											
0.522 0.217.26											
0.26.648											
0.3270 1.32	0.932										
0.27.23 1.54											
Dec 14 132 434 245 256 427 536 636 922 10.00 MALA											
Delta 132											
0.553-36 1.17											
1985 100											
104.19											
10941											
115024 051 174 117 155 199 2.27 2.98 3.75 4.47 PNA 12524 051 174 117 155 199 2.42 3.06 325 PNA 12536 038 133 089 118 147 188 2.42 3.06 325 PNA 13107 077 097 097 097 097 097 198 197 198 2.42 3.75 198 2.25 2.94 PNA 13107 077 097 097 097 097 097 198 197 198 2.25 2.94 PNA 13107 077 097 097 097 097 097 198 197 198 127 115 2.77 159 PNA 13529 0.20 0.21 0.71 0.47 0.63 0.79 1.00 1.27 159 PNA 14150 0.56 0.56 0.37 0.69 0.62 0.08 0.08 0.08 1.23 PNA 14150 0.56 0.57 0.69 0.37 0.09 0.62 0.08 0.08 0.08 1.23 PNA 14151 0.05 0.56 0.37 0.09 0.02 0.02 0.08 0.08 0.08 1.23 PNA 15234 0.11 0.09 0.26 0.35 0.40 0.54 0.09 0.08 PNA 15255 0.00 0.34 0.22 0.31 0.31 0.38 0.48 0.00 0.75 PNA 200317 0.09 0.31 0.21 0.28 0.34 0.43 0.44 0.64 0.64 PNA 200318 0.00 0.29 0.31 0.21 0.28 0.34 0.43 0.44 0.64 PNA 200318 0.00 0.29 0.31 0.21 0.28 0.34 0.43 0.44 0.64 PNA 21420 0.00 0.00 0.21 0.14 0.19 0.22 0.29 0.37 0.44 PNA 22443 0.00 0.11 0.00 0.10 0.14 0.17 0.21 0.27 0.34 PNA 22550 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0											
12024											
125.64 0.38 1.33 0.89 1.18 1.47 1.86 2.25 2.94 8N/A											
131.07											
136,297											
14150 0 016 036 037 030 042 078 098 122 MNA 14712 013 046 037 045 035 041 055 046 081 1701 MNA 15724 011 039 026 035 043 054 056 086 088 NNA 15755 010 034 022 031 038 048 060 075 NNA 20317 069 131 021 028 034 048 060 055 048 066 075 20317 069 131 021 028 034 048 060 055 048 NNA 20517 069 131 021 028 034 048 060 055 048 NNA 20518 006 021 014 019 022 029 039 056 048 NNA 20518 006 021 014 019 022 029 039 056 048 NNA 20518 006 021 014 019 022 029 037 046 NNA 21922 055 015 010 014 017 021 021 022 034 NNA 23005 002 008 066 077 099 011 015 018 018 NNA 23005 002 066 014 055 066 038 010 012 015 018 NNA 24640 001 004 003 066 038 010 012 015 010 018 NNA 24640 001 004 003 066 038 010 012 015 018 NNA 24640 001 004 003 066 038 010 013 013 013 NNA 24640 001 004 003 066 038 010 013 013 013 NNA 24640 001 004 003 066 066 068 038 010 013 NNA 24640 001 004 003 064 065 066 038 010 013 NNA 25553 000 002 060 000 000 000 000 000 000 000											
14712											
15214											
15755 0.10 0.14 0.22 0.31 0.38 0.48 0.60 0.75 NNA											
20317											
200.38											
2-14-00											
2:19:22											
2.244.3											
2-30.05											
2.35.26 0.02 0.06 0.04 0.05 0.06 0.08 0.10 0.13 INVA 2.40.48 0.01 0.04 0.03 0.04 0.05 0.06 0.07 0.09 INVA 2.46.10 0.01 0.03 0.02 0.03 0.03 0.04 0.05 0.06 0.07 INVA 2.46.10 0.01 0.03 0.02 0.03 0.03 0.04 0.05 0.07 INVA 2.55.131 0.00 0.00 0.00 0.00 0.00 0.00 0.00											
2-40-48											
2-46-10											
2.51:31 0.00 0.02 001 0.02 0.03 0.03 0.04 N/A 2.56.53 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02											
2:56:53 0:00 0:01 0:01 0:01 0:01 0:02 0:02 0:03 PN/A 3:02:14 0:00 0:00 0:00 0:00 0:00 0:01 0:01 0											
3.02-14 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.											
3.07:36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
3:12:58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
3:18:19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
3:23:41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
3:29:02 0:00 0:00 0:00 0:00 0:00 0:00 0:0											
3:34:24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
3:39:46 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0											
3.45.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00											
3.50:29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
3:55:50 0.00 0.00 0.00 0.00 0.00 0.00 0.0											
4:01:12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
4:06:34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
### ### ##############################											
4:17:17 0.00 0.00 0.00 0.00 0.00 0.00 9.00											
4:22:38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 4:28:00 0.00											
4:28:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8N/A 4:33:22 0.00											
4:33:22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 4:38:43 0.00											
4:38:43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 4:44:05 0.00											
4:44:05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9/N/A 4:49:26 0.00 9/N/A 9/N/A			0.00			0.00					
4:54:48 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 5:00:10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 5:05:31 0.00											
5:00:10 0.00											
5.05:31 0.00											
5:10:53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9/N/A 5:16:14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9/N/A 9/											
5:16:14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 5:21:36 0.00											
5:21:36 0.00											
5:26:58 0.00											
5:37:41 0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
5:43:02 0.00											
5:48:24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 5:53:46 0.00 #N/A 6:09:50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 6:15:12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 6:20:34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A											
5:53:46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 5:59:07 0.00 #N/A 6:09:50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 6:15:12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 6:20:34 0.00 0.00 0.00 0.00 0.00 0.00 #N/A											
5:59:07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 6:04:29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 6:09:50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 6:15:12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A 6:20:34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 #N/A											
6:04:29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
6:09:50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0											
6:15:12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
6:20:34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
6:25:55 0.00 0.00 0.00 0.00 0.00 0.00 0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
		6:25:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A

UD-Detention, Version 3.07 (February 2017)
Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Supplement Sup	The user should graphically con	ipare the summ	ary O A V D tab	10 10 110 1411 0 71	V D table in the	order to commi		y transition points.
0.00	Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
1.00 2.418 0.055 1.521 0.035 0.03 stages of all grade slope	Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
1.00 2.418 0.055 1.521 0.035 0.03 stages of all grade slope		0.00	0	0.000	0	0.000	0.00	For book was the final colored the
2.00 3,198 0.073 4,323 0.099 0.05 changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'. 4.00 4,957 0.114 12,461 0.286 0.12 5.00 5,946 0.136 17,903 0.411 0.16 Also include the inverts of all 6.00 7,010 0.161 24,372 0.560 2.15 outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable in the second or spill of the second or spill or spi								
2.00 3,179 0.073 7,971 0.183 0.08 from the S-A-V table on Sheet 'Basin'. 4,00 4,957 0.114 12,461 0.286 0.12 Sheet 'Basin'. 5,00 5,946 0.136 17,903 0.411 0.16 Also include the inverts of all of the sheet 'Basin'. 6,00 7,010 0.161 24,372 0.560 2.15 outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable) 7,00 8,179 0.188 31,949 0.733 2.32 where applicable) 2,000 2,00								
3.00								
5.00 5,946 0.136 17,903 0.411 0.16 Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where a spill-spills) 7.00 8,179 0.188 31,949 0.733 2.32 overflow grate, and spillway, where a spill-spills)								Sheet 'Basin'.
6.00 7,010 0.161 24,372 0.560 2.15 outlets (e.g. vertical orifice, 7.00 8,179 0.188 31,949 0.733 2.32 overflow grate, and spillway, where a capiticable,								
7.00 8,179 0.188 31,949 0.733 2.32 overflow grate, and spillway,								
where applicable)								
8.455 0.194 33.778 0.775 2.36								where annlicable)
		8.00	8,455	0.194	33,778	0.775	2.36	чисте аррисавісу.
						-		
						I		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Selected BMP Type =	EDB	
Watershed Area =	4.28	acres
Watershed Length =	700	ft
Watershed Slope =	0.028	ft/ft
Watershed Imperviousness =	56.50%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	
Vater Quality Capture Volume (WQCV) =	0.080	acre-fee
Excess Urban Runoff Volume (EURV) =	0.289	acre-fee
2-yr Runoff Volume (P1 = 1.19 in.) =	0.198	acre-fee
5-yr Runoff Volume (P1 = 1.5 in.) =	0.259	acre-fee
10-yr Runoff Volume (P1 = 1.75 in.) =	0.317	acre-fee
25-yr Runoff Volume (P1 = 2 in.) =	0.390	acre-fee
50-yr Runoff Volume (P1 = 2.25 in.) =	0.476	acre-fee
100-yr Runoff Volume (P1 = 2.52 in.) =	0.577	acre-fee
500-yr Runoff Volume (P1 = 0 in.) =	0.000	acre-fee
Approximate 2-yr Detention Volume =	0.187	acre-fee
Approximate 5-yr Detention Volume =	0.245	acre-fee

Approximate 50-yr Detention Volume =	0.400
Approximate 100-yr Detention Volume =	0.444

Zone 1 Volume (WQCV) =	0.080	acre-fe
Zone 2 Volume (EURV - Zone 1) =	0.208	acre-fe
Zone 3 Volume (100-year - Zones 1 & 2) =	0.156	acre-fe
Total Detention Basin Volume =	0.444	acre-fe
Initial Surcharge Volume (ISV) =	user	ft/3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft/3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft/3
Calculated Total Basin Volume (Vtotal) =	user	acre-

Management Man		Stage - Storage	Stage	Optional	Length	Width	Area	Optional	Area	Volume	Volume
664 - 100 - - - 7212 0.166 3384 645 1.394 645 - 2.00 - - - 6.015 1.394 645 1.394 647 - 4.02 - - - 1.397 0.282 20.705 647	L	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft/2)	Area (ft/2)	(acre)	(ft/3)	(ac-ft)
6435 - 220	33										
6456 3.00		6434		1.00				7,212	0.166	3,534	0.081
6437	Т				-	-			0.196		0.262
6437		6436	-	3.00		-		9,917	0.228	20,706	0.475
		6437	-	4.00				11,391	0.262	31,360	0.720
		6437.62		4.62	-			12,397	0.285	38,735	0.889
					-						
						-					
			-								
			-								
			-								
			-								
			-		-	-					
			-			-					
			-								
			-			-					
			-			-					
			-		-	-					
			-		-	-					
			-		-	-					
			-		-	-					
			-		-	-					
	ı										
	ı										
	ı										
	ı										
	ı										
	ı										
	ı										
	ı										
	ı										
			-								
			-								
			-		-	-					
			-								
			-								
			-								
			-								
			-								
			-								
			-								
			-		-						
			-		-						
			-		-						
			-		-						
			-		-	-					
			-		-	-					
			-		-	-					
			-		-	-					
			-		-	-					
			-		-	-					
					-	-					
	-		-			-					
	۲										
			-		-						
	H				-					-	-
	F										-
	t		-								
					-						
	۲				-					l	l
	F		-			-					
	H		-		-					-	-
			-		-	-					
	F					-					<u> </u>
	t		-			-					
			-		-	-	-				
	H									l	l
	F		-		-						
	-		-		-	-	-			-	-
	H										
	F		-		-	-	-				
	H									-	-
	t				-						
			-			-	-				
	H		-		-	-	-			-	-
	þ		-		-	-					
	-									-	-
	۲		-				-			l	l
	F		-		-	-					
	H		-		-		-			-	-
	t										
	F										
	H		-		-					l	

2514900_Pond B_v3.07.xlsm, Basin 2/13/2020, 11:39 AM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

2514900_Pond B_v3.07.xlsm, Basin 21132000, 11:39 AM

UD-Detention, Version 3.07 (February 2017)

		Stage (ft)	Zone Volume (ac-ft)	Outlet Type
	Zone 1 (WQCV)	0.99	0.080	Orifice Plate
•	Zone 2 (EURV)	2.13	0.208	Orifice Plate
	one 3 (100-year)	2.87	0.156	Weir&Pipe (Restrict)
			0.444	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = inches

Calculated Parameters for Underdrain Underdrain Orifice Area = Underdrain Orifice Centroid =

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) ft (relative to basin bottom at Stage = 0 ft) Invert of Lowest Orifice = 0.00

Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) 2.13 Orifice Plate: Orifice Vertical Spacing = 8.50 inches Orifice Plate: Orifice Area per Row = sq. inches (diameter = 1 inch) 0.85

Calculated Parameters for Plate WQ Orifice Area per Row = 5.903E-03 Elliptical Half-Width = N/A feet Elliptical Slot Centroid = N/A Elliptical Slot Area N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.71	1.42					
Orifice Area (sq. inches)	0.85	0.85	0.85					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
e of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circ	ular or Rectangular)		Calculated	Calculated Parameters for Vertical Orifice			
Not Selected Not Selected				Not Selected	Not Selected		
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area =	N/A	N/A		
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid =	N/A	N/A		
Vertical Orifice Diameter =	N/A	N/A	inches				

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

input: Overnow well (broppox) and drate (riat or sloped)									
	Zone 3 Weir	Not Selected							
Overflow Weir Front Edge Height, Ho =	3.00	N/A	ft (relative to basin bottom at Stage = 0 ft)						
Overflow Weir Front Edge Length =	6.00	N/A	feet						
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)						
Horiz. Length of Weir Sides =	6.00	N/A	feet						
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area						
Debris Clogging % =	50%	N/A	%						

Calculated Parameters for Overflow Weir							
Zone 3 Weir Not Selected							
Height of Grate Upper Edge, H_t =	3.00	N/A	feet				
Over Flow Weir Slope Length =	6.00	N/A	feet				
Grate Open Area / 100-yr Orifice Area =	124.16	N/A	should be >				
Overflow Grate Open Area w/o Debris =	25.20	N/A	ft ²				
Overflow Grate Open Area w/ Debris =	12.60	N/A	ft ²				

User Input

out: Outlet Pipe w/ Flow Restriction Plate (C	's for Outlet Pipe w/ Flow Restriction Plate						
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	l
Depth to Invert of Outlet Pipe =	0.50	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.20	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.15	N/A	feet
Restrictor Plate Height Above Pipe Invert =	3.10		inches Half-Central A	Angle of Restrictor Plate on Pipe =	0.86	N/A	radia

User Input: Emergency Spillway (Rectangular or Trapezoidal)

assor in part. Emorgano, opiniva, (nestangular or mapozoida)									
Spillway Invert Stage=	4.62	ft (relative to basin bottom at Stage = 0 ft)							
Spillway Crest Length =	20.00	feet							
Spillway End Slopes =	4.00	H:V							
Freeboard above Max Water Surface =	1.00	feet							

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	0.27	feet
Stage at Top of Freeboard =	5.89	feet
Basin Area at Top of Freeboard =	0.28	acres

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	0.00
Calculated Runoff Volume (acre-ft) =	0.080	0.289	0.198	0.259	0.317	0.390	0.476	0.577	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.080	0.288	0.197	0.258	0.317	0.390	0.476	0.577	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.00	0.00	0.01	0.03	0.19	0.45	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	0.0	0.0	0.0	0.1	0.8	1.9	0.0
Peak Inflow Q (cfs) =	1.3	4.7	3.2	4.2	5.1	6.3	7.7	9.3	#N/A
Peak Outflow Q (cfs) =	0.0	0.1	0.1	0.1	0.1	0.1	0.1	1.7	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	4.3	2.1	1.0	0.2	0.9	#N/A
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Plate	Plate	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.1	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	38	71	61	68	74	80	87	87	#N/A
Time to Drain 99% of Inflow Volume (hours) =	40	76	64	72	79	86	94	95	#N/A
Maximum Ponding Depth (ft) =	0.94	2.05	1.59	1.90	2.19	2.53	2.92	3.10	#N/A
Area at Maximum Ponding Depth (acres) =	0.16	0.20	0.18	0.19	0.20	0.21	0.22	0.23	#N/A
Maximum Volume Stored (acre-ft) =	0.073	0.273	0.186	0.244	0.301	0.372	0.455	0.496	#N/A
=	-	-		-		-	-	-	-

minimum bound maximum bound

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

SOURCE WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK #N/A

	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	#N/A
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.17 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	0:05:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Hydrograph	0:10:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Constant	0:15:31	0.06	0.21	0.15	0.19	0.23	0.28	0.34	0.41	#N/A
0.968	0:20:41	0.16	0.56	0.39	0.51	0.62	0.76	0.92	1.11	#N/A
	0:25:51	0.41	1.45	1.00	1.30	1.59	1.94	2.36	2.85	#N/A
	0:31:01	1.14	3.98	2.74	3.57	4.36	5.34	6.49	7.83	#N/A
	0:36:11	1.32	4.67	3.21	4.19	5.13	6.30	7.67	9.28	#N/A
-	0:41:22	1.25	4.45	3.05	3.99	4.89	6.01	7.32	8.85	#N/A
-	0:46:32 0:51:42	1.13	4.05 3.60	2.78 2.46	3.63	4.45 3.96	5.47 4.87	6.66 5.94	8.05 7.19	#N/A #N/A
-	0:56:52	0.85	3.09	2.40	2.77	3.40	4.07	5.12	6.20	#N/A
•	1:02:02	0.75	2.70	1.84	2.42	2.97	3.66	4.46	5.41	#N/A
•	1:07:13	0.67	2.44	1.67	2.19	2.69	3.31	4.04	4.90	#N/A
•	1:12:23	0.54	2.00	1.36	1.79	2.20	2.72	3.32	4.04	#N/A
	1:17:33	0.43	1.62	1.10	1.45	1.79	2.21	2.71	3.29	#N/A
	1:22:43	0.32	1.23	0.83	1.10	1.36	1.69	2.08	2.53	#N/A
	1:27:53	0.23	0.90	0.60	0.80	1.00	1.25	1.54	1.88	#N/A
,	1:33:04	0.17	0.66	0.44	0.59	0.73	0.91	1.12	1.36	#N/A
-	1:38:14 1:43:24	0.14	0.52	0.35	0.46	0.57	0.71	0.87	1.06	#N/A
•	1:43:24	0.11	0.43	0.29	0.38	0.47	0.58	0.71	0.87	#N/A
•	1:53:44	0.10	0.36	0.24	0.32	0.40	0.49	0.61	0.74 0.65	#N/A #N/A
•	1:58:55	0.08	0.32	0.19	0.26	0.32	0.44	0.48	0.59	#N/A
•	2:04:05	0.07	0.27	0.18	0.24	0.29	0.36	0.44	0.54	#N/A
•	2:09:15	0.05	0.20	0.13	0.17	0.22	0.27	0.33	0.40	#N/A
	2:14:25	0.04	0.14	0.10	0.13	0.16	0.20	0.24	0.29	#N/A
	2:19:35	0.03	0.10	0.07	0.09	0.12	0.14	0.18	0.21	#N/A
	2:24:46	0.02	0.08	0.05	0.07	0.08	0.10	0.13	0.16	#N/A
	2:29:56	0.01	0.05	0.04	0.05	0.06	0.07	0.09	0.11	#N/A
-	2:35:06 2:40:16	0.01	0.04	0.03	0.03	0.04	0.05	0.06	0.08	#N/A
-	2:40:16	0.01	0.03	0.02	0.02	0.03	0.04	0.05	0.06	#N/A
-	2:50:37	0.00	0.02	0.01	0.02	0.02	0.02	0.03	0.04	#N/A #N/A
-	2:55:47	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.02	#N/A
-	3:00:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:06:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:11:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:16:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:21:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:26:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
-	3:31:58 3:37:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
-	3:42:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
-	3:47:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
•	3:52:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
•	3:57:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:02:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:08:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:13:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:18:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
-	4:23:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:28:50 4:34:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
•	4:39:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ļ	4:44:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:49:31 4:54:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
•	4:54:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
-	5:05:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ļ	5:10:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:15:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
-	5:20:32 5:25:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
•	5:30:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
•	5:36:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ļ	5:41:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:46:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
-	5:51:34 5:56:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
-	6:01:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
							0.00			
-	6:07:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

The user should graphically co	mpare the summ	ary S-A-V-D tab	le to the full S-A	-V-D table in the	e chart to confirn		ey transition points.
Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
	0.50	3,534	0.081	866	0.020	0.02	Facility and a second and a second and a second
		7,140	0.164	3,534	0.081	0.04	For best results, include the stages of all grade slope
	1.00						changes (e.g. ISV and Floor)
	1.50	7,861	0.180	7,299	0.168	0.07	from the S-A-V table on
	2.00	8,523	0.196	11,394	0.262	0.09	Sheet 'Basin'.
	2.50	9,226	0.212	15,920	0.365	0.11	
	3.00	9,917	0.228	20,706	0.475	0.13	Also include the inverts of all outlets (e.g. vertical orifice,
	3.50	10,654	0.245	25,849	0.593	1.92	overflow grate, and spillway,
	4.00	11,391	0.262	31,360	0.720	2.04	where applicable).
	4.50	12,202	0.280	37,259	0.855	2.15	,
	5.00	12,397	0.285	38,735	0.889	2.18	
							:
							-
							:
							:
		-					
		-					
							:
		<u> </u>					1
							1
							1
				1			1
							1
							1
							1
							1
]
	1	-					
							1
							1
							1
						<u> </u>]
							1
							-
							:
		<u> </u>					1
							:
							1
			·		i	·	4

Appendix E Reference Material

El Paso County Drainage Basin Fees Resolution No. 18-470

Basin	Receiving	Year	Drainage Basin Name	2019 Drainage Fee	2019 Bridge Fee
Number	Waters	Studied		(per Impervious Acre)	(per Impervious Acre)
Drainage Basins w	vith DBPS's:				
CHMS0200	Chico Creek	2013	Haegler Ranch	\$10,324	\$1,524
HWS1200	Chico Creek	2001	Bennett Ranch	\$11,558	\$4,433
HWS1400	Chico Creek	2013	Falcon	\$29,622	\$4,069
OFQ2000	Fountain Creek	2001	West Fork Jimmy Camp Creek	\$12,564	\$3,717
OFO2600	Fountain Creek	1991*	Big Johnson / Crews Gulch	\$18,350	\$2,370
OFO2800	Fountain Creek	1988*	Widefield	\$18,350	\$0
OFO2900	Fountain Creek	1988*	Security	\$18,350	\$0
OFO3000	Fountain Creek	1991*	Windmill Gulch	\$18,350	\$275
OFO3100 / FOFO32	200 Fountain Creek	1988*	Carson Street / Little Johnson	\$11,192	\$0
OFO3400	Fountain Creek	1984*	Peterson Field	\$13,235	\$1,004
OFO3600	Fountain Creek	1991*	Fisher's Canyon	\$18,350	\$0
OFO4000	Fountain Creek	1996	Sand Creek	\$18,940	\$5,559
OFO4200	Fountain Creek	1977	Spring Creek	\$9,517	\$0
OFO4600	Fountain Creek	1984*	Southwest Area	\$18,350	\$0
OFO4800	Fountain Creek	1991	Bear Creek	\$18,350	\$1,004
OFO5400	Fountain Creek	1977	21st Street	\$5,521	\$0
OFO5600	Fountain Creek	1964	19th Street	\$3,611	\$0
OFO5800	Fountain Creek	1964	Camp Creek	\$2,033	\$0
OMO0400	Monument Creek	1986"	Mesa	\$9,598	\$0
			Douglas Creek	\$11,5 4 0	\$255
OMO1000	Monument Creek	1981	-	\$11,847	\$275
OMO1200	Monument Creek	1977	Templeton Gap	•	\$627
OMO1400	Monument Creek	1976	Pope's Bluff	\$3,676	\$0
OMO1600	Monument Creek	1976	South Rockrimmon	\$4,314	\$0 \$0
OMO1800	Monument Creek	1973	North Rockrimmon	\$5,521	
OMO2000	Monument Creek	1971	Pulpit Rock	\$6,085	\$0
OMO2200	Monument Creek	1994	Cottonwood Creek / S. Pine	\$18,350	\$1,004
OMO2400	Monument Creek	1966	Dry Creek	\$14,486	\$524
OMO3600	Monument Creek	1989*	Black Squirrel Creek	\$8,331	\$524
OMO3700	Monument Creek	1987*	Middle Tributary	\$15,312	\$0
OMO3800	Monument Creek	1987*	Monument Branch	\$18,350	\$0
OMO4000	Monument Creek	1996	Smith Creek	\$7,481	\$1,004
OMO4200	Monument Creek	1989*	Black Forest	\$18,350	\$500
OMO5200	Monument Creek	1993*	Dirty Woman Creek	\$18,350	\$1,004
OMO5300	Fountain Creek	1993*	Crystal Creek	\$18,350	\$1,004
Miscellaneous Dra	ainage Basins; 1				
CHBS0800	Chico Creek		Book Ranch	\$17,217	\$2,492
CHEC0400	Chico Creek		Upper East Chico	\$9,380	\$272
CHWS0200	Chico Creek		Telephone Exchange	\$10,306	\$241
:HWS0400	Chico Creek		Livestock Company	\$16,976	\$202
HWS0600	Chico Creek		West Squirrel	\$8,849	\$3,672
CHW\$0800	Chico Creek		Solberg Ranch	\$18,350	\$0
OFO1200	Fountain Creek		Crooked Canyon	\$5,540	\$0
OFO1400	Fountain Creek		Calhan Reservoir	\$4,625	\$270
OFO1600	Fountain Creek		Sand Canyon	\$3,342	\$0
			Jimmy Camp Creek ³	\$18,350	\$858
OFO2000	Fountain Creek			\$14,486	\$524
OFO2200	Fountain Creek		Fort Carson		\$0 \$0
OFO2700	Fountain Creek		West Little Johnson	\$1,209 \$8,804	· ·
OFO3800	Fountain Creek		Stratton	\$8,801	\$394
OFO5000	Fountain Creek		Midland	\$14,486 544,488	\$524
OFO6000	Fountain Creek		Palmer Trail	\$14,486	\$524
OFO6800	Fountain Creek		Black Canyon	\$14,486	\$524
OMO4600	Monument Creek		Beaver Creek	\$10,970	\$0
OMO3000	Monument Creek		Kettle Creek	\$9,909	\$0
OMO3400	Monument Creek		Eikhorn	\$1,665	\$0
ОМО5000	Monument Creek		Monument Rock	\$7,953	\$0
OMO5400	Monument Creek		Palmer Lake	\$12,717	\$0
OMO5600	Monument Creek		Raspberry Mountain	\$4,278	\$0
PLPL0200	Monument Creek		Bald Mountain	\$9,116	\$0
nterim Drainage I	Basins: 2				
OFO1800	Fountain Creek		Little Fountain Creek	\$2,346	\$0
OMO4400	Monument Creek		Jackson Creek	\$7,263	\$0
OMQ4800	Monument Creek		Teachout Creek	\$5,044	\$758

^{1.} The miscellaneous drainage fee previous to September 1999 resolution was the average of all drainage fees for basins with Basin Planning Studies perform

EPC Stormwater Management

Jennifer Irvine, P.E.

^{2.} Interim Drainage Fees are based upon draft Drainage Basin Planning Studies or the Drainage Basin Identification and Fee Estimation Report. (Best available

^{3.} This is an interim fee and will be adjusted when a DBPS is completed. In addition to the Drainage Fee a surety in the amount of \$7,285 per impervious acre shifted DBPS results in a fee greater than the current fee. Fees paid in excess of the future revised fee will be reimbursed. See Resolution 06-326 (9/14/06) and Resolution 06-326 (9/14/06) an

SAND CREEK DRAINAGE BASIN PLANNING STUDY

PRELIMINARY DESIGN REPORT

CITY OF COLORADO SPRINGS, EL PASO COUNTY, COLORADO

PREPARED FOR:

City of Colorado Springs
Department of Comprehensive Planning, Development and Finance
Engineering Division
30 S. Nevada
Colorado Springs, Colorado 80903

PREPARED BY:

Kiowa Engineering Corporation 1011 North Weber Colorado Springs, CO 80903

II. STUDY AREA DESCRIPTION

The Sand Creek drainage basin is a left-bank tributary to the Fountain Creek lying in the west-central portions of El Paso County. Sand Creek's drainage area at Fountain Creek is approximately 54 square miles of which approximately 18.8 square miles are inside the City of Colorado Springs corporate limits. The basin is divided into five major sub-basins, the Sand Creek mainstem, the East Fork Sand Creek, the Central Tributary to East Fork, the West Fork, and the East Fork Subtributary. Figure II-1 shows the location of the Sand Creek basin.

Basin Description

The Sand Creek basin covers a total of 54 square miles in unincorporated El Paso County and Colorado Springs, Colorado. Of this total, approximately 28 square miles is encompassed by the Sand Creek basin, and 26 square miles for the East Fork Sand Creek basin. The basin trends in generally a south to southwesterly direction, entering the Fountain Creek approximately two miles upstream of the Academy Boulevard bridge over Fountain Creek. Two main tributaries drain the basin, those being the mainstem of Sand Creek and East Fork Sand Creek. Development presence in most evident along the mainstream. At this time, approximately 25 percent of the basin is developed. This alternative evaluation focuses upon the Sand Creek basin only.

The maximum basin elevation is approximately 7,620 feet above mean sea level, and falls to approximately 5,790 feet at the confluence with Fountain Creek. The headwaters of the basin originate in the conifer covered areas of The Black Forest. The middle eastern portions of the basin are typified by rolling range land with fair to good vegetative cover associated with semi-arid climates.

Climate

This area of El Paso County can be described, in general as high plains, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry. Precipitation ranges from 14 to 16 inches per year, with the majority of this precipitation occurring in spring and summer in the form of rainfall. Thunderstorms are common during the summer months, and are typified by quick-moving low pressure cells which draw moisture from the Gulf of Mexico into the region. Average temperatures range from about 30°F in the winter

to 75° in the summer. The relative humidity ranges from about 25 percent in the summer to 45 percent in the winter.

Soils and Geology

Soils within the Sand Creek basin vary between soil types A through D, as identified by the U. S. Department of Agriculture, Soil Conservation Service. The predominant soil groupings are in the Truckton and Bresser soil associations. The soils consist of deep, well drained soils that formed in alluvium and residium, derived from sedimentary rock. The soils have high to moderate infiltration rates, and are extremely susceptible to wind and water erosion where poor vegetation cover exists. In undeveloped areas, the predominance of Type A and B soils give this basin a lower runoff per unit area as compared to basins with soils dominated by Types C and D. Presented on Figure II-2 is the Hydrologic Soil distribution map for the Sand Creek basin.

Property Ownership and Impervious Land Densities

Property ownership along the major drainageway within the Sand Creek basin vary from public to private. Along the developed reaches, drainage right-of-ways and greenbelts have been dedicated during the development of the adjacent residential and commercial land. Where development has not occurred, the drainageways remain under private ownership with no delineated drainage right-of-way or easements. There are several public parks which abut the mainstem of Sand Creek. Roadway and utility easements abutting or crossing the major drainageways occur most frequently in the developed portions of the basin.

Land use information for the existing and future conditions were reviewed as part of the planning effort. This information is used in the hydrologic analysis to predict runoff rates and volumes for the purposes of facility evaluation. The identification of land uses abutting the drainageways is also useful in the identification of feasible plans for stabilization and aesthetic treatment of the creek. Presented on Figure II-3 is the proposed land use map used in the evaluation of impervious land densities discussed in the hydrologic section of this report. Figure II-3 is not intended to reflect the future zoning or land use policies of the City or the County.

The land use information within the Banning-Lewis Ranch property was obtained from Aries Properties during the time the draft East Fork Sand Creek Drainage Basin Planning Study was being prepared. The land use information was again reviewed with the City of Colorado Springs Department of Planning and was found to be appropriate for use in the estimation of hydrology for the East Fork Basin. The location of future arterial streets and roadways within

4

RECEIVED

Mar. 20, 700

EPC DEVELOPMENT SERVICES

HANNAH RIDGE AT FEATHERGRASS MASTER DRAINAGE DEVELOPMENT PLAN

November 15, 2007 Project No. 60754

PREPARED FOR:

FEATHERGRASS INVESTMENTS, LLC 4715 North Chestnut Street Colorado Springs, CO 80907 (719) 593-8367

Kenneth P. Driscoll, Manager

PREPARED BY:

M.V.E., Inc. 1903 Lelaray Street, Suite 200 Colorado Springs, CO 80909 (719) 635-5736

discharges of $Q_5 = 2$ cfs and $Q_{100} = 5$ cfs. Basin OSA8, on the east side of Akers Drive, drains south onto the eastern section of the property with peak discharges of $Q_5 = 30$ cfs and $Q_{100} = 60$ cfs. Flows from Basin OSA3 and a portion of Basin OSA8 enters Akers Drive. The existing Akers Drive and Akers drainage improvements were designed by M.V.E., Inc. and approved by El Paso County D.O.T. in September 2006. The system was designed to capture and convey developed flows in Akers Drive. One 10 ft Type R inlet and one 15 ft Type R inlet, connected by an 18" RCP are installed on the east side of Akers, just north of the Constitution intersection. A 10 ft Type R inlet is located on the west side of Akers. The flows collected by the inlets are discharged at the CBC opening, just to the west, with a 24" RCP. The inlets and connecting pipes are adequate to collect and route developed 100 year flows of 20.9 cfs to the creek. In the 100-year event, bypass flows of 5.1 cfs reaches Constitution and travels west to the sump inlet at the CBC crossing. Off-site basins OSA11, OSA12, and OSA13 contain portions of Constitution Avenue. These basins drain to the existing double 12' x 6' CBC under Constitution Avenue. Runoff from Basin OSA14 drains easterly onto the southern portion of the proposed project located on the south side of Constitution Avenue with flows of $Q_5 = 14$ cfs and $Q_{100} = 27$ cfs. Basin OSA14 is currently undeveloped commercial property, just north of the Jessica Heights Filing Nol. 1 residential subdivision. A storm drain pipe from Jessica Heights delivers an additional $Q_{\rm s}=9.8$ cfs and $Q_{\rm 100}=18.5$ cfs to the Tributary 6 channel. These flow enter the property and then travel to the creek flowing to the south.

IV. ON-SITE DRAINAGE BASINS

The existing site drains southerly and easterly from the old Rock Island Railroad that bounds the property on the north and west. Tributary 6 to the East Fork of Sand Creek runs north to south through the property to Constitution Avenue. Offsite storm discharges from the Tributary enter onsite Basin A4 at Design Point 1 (the existing 7'x7' CBC). The existing channel area from the railroad culvert to existing Electronic Drive will be maintained in nearly existing condition. Basin A4 will contain single family residential development with open space components and produce runoff quantities of $Q_5 = 41$ cfs and $Q_{100} = 83$ cfs. Flows from Basin A4, along with the Tributary flows will drain to Design Point 2 at proposed Under Saddle Street. A new CBC beneath the street will allow runoff into Basin A9, where flows will enter a park area by way of an improved channel from the DP 2 culvert. Basin A9 contains single family residential development and open space. Developed runoff discharges of $Q_5 = 51$ cfs and $Q_{100} = 109$ cfs are generated by the basin. A storm

JESSICA HEIGHTS FILING NO. 1 FINAL DRAINAGE REPORT

April 27, 2005 Project No. 60742

PREPARED FOR:

Sand Creek Investments South, LLC
%
Equity Investments
90 South Cascade, Suite 1500
Colorado Springs, CO 80903

PREPARED BY:

M.V.E., Inc. 1903 Lelaray Street, Suite 200 Colorado Springs, CO 80909 (719) 635-5736 roads will be paved county streets within 50 to 80 foot of right-of-ways. Curb & gutter will be constructed on the streets and route storm water flows to storm water inlets. Grading operations will be done in order to improve drainage conditions and to direct runoff to a desired location. Overlot grading will be necessary for subdivision development.

The included **Drainage Map - Developed Condition** shows the proposed road scheme, lot layout, and developed drainage basins with basin designations. The basin sizes and estimated peak storm runoff flows are shown in the table below and on the included map.

Table 3.1 - Developed Condition Hydrologic Data					
Design Point or Basin		Cumulative Drainage Area (Ac)	5-yr Discharge (cfs)	100-yr Discharge (cfs)	
	OSA	0.15	0.6	1.1	
	OSB	0.46	1.8	3.3	
	OSC	0.88	3.3	6.0	
	A1	0.96	2.0	4.0	
	A2	5.25	3.2	7.6	
	A3	0.51	1.4	2.8	
	A4	O.32	1.3	2.3	
	B1	2.27	4.1	8.2	
DP 2	B2	0.70	2.0	3.8	
DP 3a	B3a	0.77	1.7	3.4	
DP 3b	B3b	2.53	4.8	9.6	
	B3c	1.35	3.2	6.6	
DP3	B3+3b+3c	4.65	8.4	16.9	
	B4	0.51	1.4	2.7	
	B5	1.06	2.5	5.0	
DP5	B6	0.53	1.4	2.6	
DP6	В8	1.98	3.9	7.8	

Table 3.1 - Developed Condition Hydrologic Data					
	Design Point or Basin	Cumulative Drainage Area (Ac)	5-yr Discharge (cfs)	100-yr Discharge (cfs)	
DP7	В9	1.29	3.3	6.3	
DP8	B10	1.75	3.7	7.6	
	B11	1.88	3.9	7.9	
DP10	B12	2.48	4.9	9.8	
DP11	B13	2.30	5.1	10.2	
	B14	0.98	2.4	4.9	
	B15	0.24	1.1	2.1	
	C1	5.99	2.8	6.8	
	OSA+OSB+C1	6.19	3.6	8.1	
DP1	OSC+B1	3.15	6.6	12.8	
	OSC1+B1+B2+B4	4.36	8.7	17.1	
DP4	OSC1+B1+B2+B4+B5	5.42	10.3	20.3	
	OSC1+B1+B2+B4+B5+B8	7.40	14.0	27.6	
	OSC1+B1+B2+B4+B5+B8+B9	8.69	15.2	30.5	
DP9	B10+B11	3.63	7.5	15.2	
	A1+A2	6.21	4.6	10.6	
B10+B11+B13+B15+A3		6.68	13.8	27.9	

The future lot owners in Jessica Heights Filing No. 1 will adhere to proper construction technics and erosion control. The recommendations within this report need to be followed by the new lot owners. We also recommend that the existing down gradient lot owners not construct their homes in existing drainage swales or flow paths.

The developed conditions will route storm water flows over the site in sheet flow and shallow concentrated flow, depending on the topography and the contributing flow areas. These flows will be routed to the streets. The five and one hundred year frequency storm water flows will be collected and routed to the offsite earthen channel.

The nature of this development dictates that some lots will contribute storm flows onto other lots. This cross-lot drainage cannot be avoided. It is the responsibility of the individual lot owners and the building contractors to locate new structures on each lot so that the structures do not interfere with the proposed drainage pathways. The individual lot owners and contractors should provide positive drainage away from all structures. Individual lot owners are also responsible for maintaining their properties in such a manner that does not allow soil movement from one lot to another.

3.2 Offsite

The offsite pipe flow will continue to drain easterly. The pipe will be extended easterly and shall, in addition to the offsite flow, carry the proposed pipe flows from Jessica Heights. The small strip of land adjacent to the west boundary of the site shall continue to drain onto the site as defined by Basin OSC to the north and Basin OSB to the south. Basin C1, which is not being developed at this time, will continue to drain to the east. A berm and swale will direct runoff to the northeast where the flow will enter Hannah Ridge Drive and flow north. When Basin C1 is developed, all flows will be collected and piped to the east. Basin A2 is also not to be developed at this time. Basin A2 will continue to drain to the east.

3.3 Onsite

Basin OSC overland storm water flows enter the subdivision along the western boundary of Basin B1 and travel easterly overland to Great Sky Road. These flows then travel southerly in the street section of said Great Sky Road to a 10' inlet at Design Point No.1. The inlet intercepts $Q_5 = 4.5 \text{ cfs} / Q_{100} = 6.5 \text{ cfs}$ of the calculated storm water runoff.

Basin B2 overland storm water flows enter Great Sky Road from the adjacent lots and travel southerly in the street section of said Great Sky Road to a 5' inlet at Design Point No. 2. The inlet intercepts $Q_5 = 1.4 \text{ cfs}/Q_{100} = 1.9 \text{ cfs}$ of the calculated storm water runoff. This collected inlet runoff flows via a 15" reinforced concrete pipe (RC Pipe) to the 10' inlet at Design Point No. 1. The combined collected flows of Design Point No's 1 & 2 then flow in a 24" RC Pipe which connects to a Type I Manhole along with the extended existing 42" corrugated metal pipe in Palmer Park Boulevard. A 42" RC Pipe continues east in Palmer Park Boulevard.

Basins B3a, B3b and B3c overland storm water flows enter Buffalo Plains Court, Majestic plains Court, and Talus Ridge Drive. These flows travel via street section easterly, westerly, and

Appendix F Drainage Maps

URBAN COLLECTION AT PALMER VILLAGE **EXISTING DRAINAGE MAP**

EXISTING BASIN SUMMARY TABLE							
Tributary	Area	Percent			t _c	Q ₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
EX1	0.15	2%	0.08	0.35	7.9	0.04	0.4
EX2	0.46	2%	0.08	0.35	8.1	0.2	1.2
EX3	4.27	2%	0.08	0.35	14.2	1.2	9.0
EX4	1.62	19%	0.22	0.45	17.9	1.1	4.0
EX5	0.37	82%	0.75	0.85	5.0	1.4	2.7
EX6	5.25	2%	0.08	0.35	14.4	1.5	11.1

EXISTING	EXISTING DESIGN POINT				
SUM	SUMMARY TABLE				
DP	Q₅	Q ₁₀₀			
1	0.04	0.4			
2	0.2	1.2			
3	1.3	9.3			
4	1.3	4.9			
5	1.4	2.7			
6	1.5	11.1			

BASIN DESIGNATION I.D.: BASIN IDENTIFIER A: BASIN AREA B: MINOR COEFFICIENT

C: MAJOR COEFFICIENT

DESIGN POINT

BASIN DELINEATION

--6100-- EXISTING INDEX CONTOURS

EXISTING INTERMEDIATE CONTOURS EXISTING FLOW DIRECTION

EXISTING DRAINAGE MAP URBAN COLLECTION AT PALMER VILLAGE JOB NO. 25149.01 01/30/2020 SHEET 1 OF 1

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

⟨\2510000.all\2514901\Drawings\Sheet Dwgs\Drainage\2514901_Pr.Drainage Map.dwg, DR01, 5/29

