PRELIMINARY DRAINAGE REPORT FOR URBAN COLLECTION AT PALMER VILLAGE

Prepared For:

MDC Holdings – Richmond American Homes 4350 South Monaco Street Denver, CO 80237 720-977-3827

> July 2020 Project No. 25149.01

Prepared By: JR Engineering, LLC 5475 Tech Center Drive, Suite 235 Colorado Springs, CO 80919 719-593-2593

PRELIMINARY DRAINAGE REPORT FOR URBAN COLLECTION AT PALMER VILLAGE

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

second. Ellis

Glenn D. Ellis, Colorado P.E. 38861 For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

MDC Holdings – Richmond American Homes

By:

Title: Address:

Jason J.W

<u>NP of Land Acquisition + Entitlements</u> 4350 South Monaco Street Denver, CO 80237

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E. County Engineer/ ECM Administrator

Conditions:

Date:07/27/2020

By: Elizabeth Nijkamp

El Paso County Planning & Community Development

PRELIMINARY DRAINAGE REPORT FOR URBAN COLLECTION AT PALMER VILLAGE

Table of Contents

Purpose	I
General Site Description	I
General Location	I
Description of Property	I
Floodplain statement	2
Existing Drainage Conditions	2
Major Basin Descriptions	2
Existing Sub-basin Drainage	3
Proposed Drainage Conditions	4
Proposed Sub-basin Drainage	4
Drainage Design Criteria	8
Development Criteria Reference	8
Hydrologic Criteria	8
Hydraulic Criteria	9
Drainage Facility Design	9
Four Step Process to Minimize Adverse Impacts of Urbanization	9
Water QualityI	0
Erosion Control PlanI	I
Operation & MaintenanceI	I
Drainage and Bridge FeesI	I
Summary I	2
ReferencesI	3

APPENDIX

- Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map
- Appendix B Hydrologic Calculations
- Appendix C Hydraulic Calculations
- Appendix D Water Quality & Detention
- Appendix E Reference Material
- Appendix F Drainage Maps

PURPOSE

This document is the Preliminary Drainage Report for Urban Collection at Palmer Village. The purpose of this report is to identify on-site and off-site drainage patterns, storm sewer, culvert and inlet locations, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities.

GENERAL SITE DESCRIPTION

GENERAL LOCATION

Urban Collection at Palmer Village is a proposed development on six un-platted parcels with a total area of 23.1 acres. The site is located in the northeast quarter of Section 5, Township 14 South, Range 65 West of the Sixth Principal Meridian in the County of El Paso, State of Colorado. The site is located immediately south of Constitution Avenue on the west and east side of Hannah Ridge Drive, extending to the east to Marksheffel Road. The site is bounded by Constitution Avenue to the north, Marksheffel Road to the east, Jessica Heights Filing No. 1 to the south, and the Cherokee Park Townhomes to the west. The parcels are planned to be platted after approval of the Development Plan. Refer to the vicinity map in Appendix A.

DESCRIPTION OF PROPERTY

A 100-unit residential development is proposed on the four western parcels (totaling 10.83 acres) (hereby referred to as the "site") per the corresponding preliminary Development Plan this drainage report supports. Two parcels are on the east side of Hannah Ridge Drive, and two are on the west side. The two parcels along Constitution Avenue, east to Marksheffel Road will not be developed at this time. They are referenced in this report only in the context of being included in plat of the proposed development. Any development of these two parcels shall require separate drainage analysis and drainage reports. The existing western parcels are undeveloped other than a sanitary sewer easement that follows the eastern border of the two parcels on the east side of Hannah Ridge Drive. The proposed development site is comprised of variable sloping grasslands that generally slope east at approximately 3% on the east side of Hannah Ridge Drive. On the west side of Hannah Ridge Drive the land slopes at about 1% to the east, draining into the curb and gutter in Hannah Ridge Drive.

Soil characteristics are comprised of Blakeland loamy sand. NRCS rates this soil designation as Hydrologic Group A. Group A soils exhibit a high infiltration rate when thoroughly wet and consist chiefly of deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a high rate of water transmission. Refer to the soil survey mapping in Appendix A.

There are no major drainageways on the proposed development site, although a tributary to the East Fork Sand Creek is immediately to the east of the site, within the undeveloped tracts.

There are no known irrigation facilities located on the project site. A 12" PVC sanitary sewer runs along the eastern side of the site within an easement.

FLOODPLAIN STATEMENT

Based on the FEMA Firm Map Number 08041C0752G, revised December 7, 2018, the entire development is located within Zone X, or areas area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. The FEMA map containing the site has been presented in Appendix A.

EXISTING DRAINAGE CONDITIONS

MAJOR BASIN DESCRIPTIONS

The site lies within the Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" completed by Kiowa Engineering Corporation in January 1993. The Sand Creek Drainage Basin covers approximately 54 square miles and is divided into five major sub-basins: Sand Creek Mainstem, East Fork Sand Creek, Central Tributary to East Fork, West Fork, and East Fork Subtributary. The site is within the East Fork Sand Creek sub-basin, as shown in Appendix E. The Sand Creek Basin discharges into Fountain Creek approximately 1.5 miles upstream of Academy Boulevard Bridge over Fountain Creek.

As development occurred within the basin, the site was analyzed with the "Jessica Heights Filing No. 1 Final Drainage Report" completed by M.V.E. Inc. in April 2005. The portion of the site west of Hannah Ridge Drive was identified as Basin C1 and the portion of the site east of Hannah Ridge Drive was identified as Basin C1 contributes existing flows of $Q_5 = 2.8$ cfs and $Q_{100} = 6.8$ cfs. Basin A2 contributes existing flows of $Q_5 = 3.2$ cfs and $Q_{100} = 7.6$ cfs. Runoff from both basins flows east. Basin C1 is captured in Hannah Ridge Drive curb and gutter and is conveyed to Constitution Avenue, while Basin A2 sheet flows off site to the adjacent parcel to the east.

Most recently, the site was analyzed within the "Hannah Ridge at Feathergrass Master Drainage Development Plan" completed by M.V.E. Inc in November 2007. The site was identified as Basin OSA14 with existing flows of $Q_5=14$ and $Q_{100}=27$ cfs flowing easterly to Tributary to Sand Creek – East Fork Reach No. 6.

As previously stated, there are no known irrigation facilities within the site that would impact drainage. An existing 12" PVC sanitary sewer runs along the eastern boundary of the site and is contained within a dedicated easement.

EXISTING SUB-BASIN DRAINAGE

The site is bisected by Hannah Ridge Drive, dividing the site into east and west parcels. The east side drains directly into a tributary to the East Fork Sand Creek (Tributary to Sand Creek – East Fork Reach No. 6). Runoff from the west site sheet flows across the site and is collected in Hannah Ridge Drive curb and gutter and is conveyed either north to Constitution Avenue or south to the Jessica Heights Subdivision. The west site is comprised of existing Basins EX3 and EX4. The east site is comprised of Basin EX6. Basins EX1 and EX2 are offsite basins that sheet flow onto Basins EX3 and EX4, respectively. Basin EX5 flows offsite to Constitution Avenue. The basins shown in the "Jessica Heights Filing No. 1 Final Drainage Report" created by M.V.E., Inc. in April, 2005 correspond to the existing basins in this report in the following manner: OSA = EX1, OSB = EX2, C1 = EX3 and EX4, A4 = EX5, A2 = EX6.

Existing Basin EX1 is approximately 0.15 acres and is consistent with the Jessica Heights Filing No. 1 Final Drainage Report Basin OSA. Flow from this basin sheet flows onto the site to Basin EX3 at Design Point (DP) 1 ($Q_5=0.04$ cfs, $Q_{100}=0.4$ cfs), eventually reaching DP3, a local depression.

Existing Basin EX2 is approximately 0.46 acres and is consistent with the Jessica Heights Filing No. 1 Final Drainage Report Basin OSB. Flow from this basin ($Q_5=0.2$ cfs, $Q_{100}=1.2$ cfs) sheet flows onto the site to Basin EX4 at DP2, eventually reaching Hannah Ridge Drive at DP4.

Existing Basin EX3 is approximately 4.27 acres and consists of prairie grasses. Flow from this basin $(Q_5 = 1.2 \text{ cfs}, Q_{100} = 9.0 \text{ cfs})$ sheet flows to the local depression at DP3. According to the available contour data, once the local depression has filled, the overtopping flow travels to the northeast. The flow then is conveyed to the curb and gutter along the south side of Constitution Avenue, where it is conveyed to an inlet and discharges into a tributary to the East Fork Sand Creek.

Existing Basin EX4 is approximately 1.62 acres and consists of prairie grasses and a portion of Hannah Ridge Drive. Flow from this basin ($Q_5=1.1$ cfs, $Q_{100}=4.0$ cfs) sheet flows to the curb and gutter in Hannah Ridge Drive at DP4. The flow then is conveyed south via the Jessica Heights Subdivision storm sewer system, eventually discharging into a tributary to the East Fork Sand Creek.

Existing Basin EX5 is approximately 0.37 acres and consists of a portion of Hannah Ridge Drive and prairie grasses. Flow from this basin ($Q_5=1.4$ cfs, $Q_{100}=2.7$ cfs) flows north along the Hannah Ridge Drive curb and gutter until it reaches the curb and gutter on the south side of Constitution Avenue at DP5. From there, the flow travels along the Constitution Avenue curb and gutter until reaching an inlet and discharges into a tributary to the East Fork Sand Creek.

Existing Basin EX6 is approximately 5.25 acres and consists of prairie grasses. Flow from this basin $(Q_5=1.5 \text{ cfs}, Q_{100}=11.1 \text{ cfs})$ sheet flows to the east and enters a tributary to the East Fork Sand Creek.

As stated previously, the undeveloped tracts east of the site have not been analyzed in their existing conditions as part of this report. Future development of these tracts will require a separate drainage report.

PROPOSED DRAINAGE CONDITIONS

PROPOSED SUB-BASIN DRAINAGE

The proposed site was broken into two major basins: Basin A (west parcels) and Basin B (east parcels). The proposed basin (and sub-basin) delineation is shown on the drainage basin map and is described as follows;

Basin A1 consists of approximately 0.74 acres and includes walks, drives, roofs and landscape areas. Flow from this basin ($Q_5=2.0$ cfs and $Q_{100}=4.2$ cfs) will be collected and conveyed in a 3.0' concrete pan, that follows the centerline of Vanhoutte View, to DP1. At DP1, flow enters Type A curb and gutter and is conveyed to an on-grade Double Denver Type 16 Combination Inlet (Double Type 16) at DP3, where it combines with Basin A2 flow. Discussion of DP3 captured flow versus flow-by is presented in the Basin A2 description.

Basin A2 consists of approximately 0.17 acres and includes walks, drives, and landscape areas. Flow from this basin ($Q_5=0.5$ cfs and $Q_{100}=1.0$ cfs) will be collected and conveyed in Type A curb and gutter in Wayfaring Tree Heights to an on-grade Double Type 16 at DP3. Total flows at DP3 are $Q_5=2.4$ cfs and $Q_{100}=5.3$ cfs. In the 5-year event, 1.9 cfs is captured, and 3.3 cfs is captured in the 100-year event. DP3 flow-by of $Q_5=0.5$ cfs and $Q_{100}=2.0$ cfs continues in curb and gutter to DP5 where it combines with Basin A5 flow. DP3 captured flows are piped in 18" RCP to DP8.1 before discharging into Pond A at DP10.

Basin A3 consists of approximately 0.11 acres and includes walks, drives, and landscape areas. Flow from this basin ($Q_5=0.3$ cfs and $Q_{100}=0.7$ cfs) will be collected and conveyed in Type A curb and gutter in Wayfaring Tree Heights to an on-grade Double Type 16 at DP4, where it combines with Basin A4 flow. Total flows at DP4 are $Q_5=2.4$ cfs and $Q_{100}=5.8$ cfs. In the 5-year event, 1.9 cfs is captured and 3.5 cfs is captured in the 100-year event. DP4 flow-by of $Q_5=0.5$ cfs and $Q_{100}=2.3$ cfs continues in curb and gutter to DP6 where it combines with Basin A7 flow. DP4 captured flows are piped in 18" RCP to DP4.1, where it combines with flow from DP3 and ultimately discharges into Pond A at DP10.

Basin A4 consists of approximately 0.72 acres and includes walks, drives, roofs and landscape areas. Flow from this basin ($Q_5=2.0$ cfs and $Q_{100}=4.2$ cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Vanhoutte View, to DP2. At DP2, flow enters Type A curb and gutter and is conveyed to an on-grade Double Type 16 at DP4, where it combines with Basin A3 flow. Discussion of DP4 captured flow versus flow-by is presented in the Basin A3 description.

Basin A5 consists of approximately 0.77 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =1.7 cfs and Q_{100} =3.8 cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Serviceberry Grove, to DP5. At DP5, flow enters Type A curb and gutter and combines with DP3 flow-by. The combined flow is conveyed to a sump Double Type 16 at DP8, where it combines with Basin A6 and DP7 flow. Discussion of DP8 captured flow is presented in the Basin A6 description.

Basin A6 consists of approximately 0.26 acres and includes walks, drives, and landscape areas. Flow from this basin ($Q_5=0.9$ cfs and $Q_{100}=1.6$ cfs) will be collected and conveyed in Type A curb and gutter in Wayfaring Tree Heights to a sump Double Type 16 at DP8. The total combined flow at DP8 from DP5, DP7 and Basin A6 is $Q_5=4.1$ cfs and $Q_{100}=10.0$ cfs. All flow at DP8 is captured and piped in a 30" RCP to DP9.1, and discharges into Pond A at DP10. If the sump inlet at DP8 were to become clogged, overflows would spill over the crown to the Denver Triple Type 16 at DP9.

Basin A7 consists of approximately 0.54 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =1.3 cfs and Q_{100} =2.8 cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Serviceberry Grove, to DP6. At DP6, flow enters Type A curb and gutter and combines with DP4 flow-by. The combined flow is conveyed to a sump Denver Triple Type 16 at DP9, where it combines with Basin A9 flow. Discussion of DP9 captured flow is presented in the Basin A9 description.

Basin A8 consists of approximately 0.70 acres and includes walks, drives, roofs and landscape areas. Flow from this basin ($Q_5=1.4$ cfs and $Q_{100}=3.2$ cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Fountain Grass Grove, to DP7. At DP7, flow enters Type A curb and gutter and is conveyed to a sump Double Type 16 at DP8 where it combines with DP5 and Basin A6 flows. Discussion of DP8 captured flow is presented in the Basin A6 description.

Basin A9 consists of approximately 0.72 acres and includes walks, drives, roofs and landscape areas. Flow from this basin ($Q_5=1.8$ cfs and $Q_{1oo}=3.8$ cfs) will be collected and conveyed in Type A curb and gutter in Fountain Grass Grove to a sump Triple Type 16 at DP9. The total combined flow at DP9 from DP6 and Basin A9 is $Q_5=3.3$ cfs and $Q_{1oo}=8.4$ cfs. All flow at DP9 is captured and piped in 30" RCP to DP10. If the sump inlet at DP9 were to become clogged, overflows would overtop the curb and discharge directly into Pond A.

Basin A10 consists of approximately 0.46 acres of landscaped areas and contains Full Spectrum Water Quality and Detention Pond A. Flow from this basin ($Q_5=0.2$ cfs and $Q_{100}=1.2$ cfs) is captured in a grass-lined swale that discharges directly into Pond A where it combines with flow from Basins A1-A9. A detailed discussion of Full Spectrum Water Quality and Detention Pond A is presented in the Water Quality section later in this report.

Basin A11 consists of approximately 0.29 acres of landscaped area, emergency access, and sidewalk. Due to topographical constraints and the degree of development therein, Basin A11 ($Q_5=0.4$ cfs and $Q_{100}=1.2$ cfs) will discharge directly into Constitution Avenue curb and gutter.

Basin A12 consists of approximately 0.14 acres of landscaped area and sidewalk. Due to topographical constraints and the degree of development therein, Basin A11 ($Q_5=0.2$ cfs and $Q_{100}=0.6$ cfs) flow will discharge directly into Constitution Avenue curb and gutter.

Basin B1 consists of approximately 0.65 acres and includes walks, drives, roofs and landscape areas. Flow from this basin (Q_5 =1.4 cfs and Q_{100} =3.3 cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Fountain Grass Grove, to DP15. At DP15, flow enters Type A curb and gutter and is conveyed to an on-grade Double Denver Type 16 Combination Inlet (Double Type 16) at DP17, where it combines with Basin B2 flow. Discussion of DP17 captured flow versus flowby is presented in the Basin B2 description.

Basin B2 consists of approximately 0.08 acres and includes walks and drives. Flow from this basin ($Q_5=0.4$ cfs and $Q_{100}=0.7$ cfs) will be collected and conveyed in Type A curb and gutter in Blue Avena View to an on-grade Double Type 16 at DP17. Total flows at DP17 from DP15 and Basin B2 are $Q_5=1.7$ cfs and $Q_{100}=3.8$ cfs. In the 5-year event, 1.4 cfs is captured and 2.4 cfs is captured in the 100-year event. DP17 flow-by of $Q_5=0.3$ cfs and $Q_{100}=1.4$ cfs continues in curb and gutter to DP19 where it combines with Basin B5 flow. DP17 captured flows are piped in 18" RCP to DP18.1, where it combines with flow from DP18, before discharging into Pond B at DP25.

Basin B3 consists of approximately 0.11 acres and includes walks, drives, and landscape areas. Flow from this basin ($Q_5=0.5$ cfs and $Q_{1oo}=0.9$ cfs) will be collected and conveyed in Type A curb and gutter in Blue Avena View to an on-grade Double Type 16 at DP18, where it combines with DP16 flow. Total flows at DP18 from DP16 and Basin B3 are $Q_5=2.8$ cfs and $Q_{1oo}=5.6$ cfs. In the 5-year event, 2.0 cfs is captured and 3.1 cfs is captured in the 100-year event. DP18 flow-by of $Q_5=0.8$ cfs and $Q_{1oo}=2.5$ cfs continues in curb and gutter to DP20 where it combines with Basin B8 flow. DP18 captured flows are piped in 18" RCP to DP18.1 before discharging into Pond B at DP25.

Basin B4 consists of approximately 0.88 acres and includes walks, drives, roofs and landscape areas. Flow from this basin ($Q_5=2.5$ cfs and $Q_{1oo}=5.1$ cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Fountain Grass Grove, to DP16. At DP16, flow enters Type A curb and gutter and is conveyed to an on-grade Double Type 16 at DP18, where it combines with Basin B3 flow. Discussion of DP18 captured flow versus flow-by is presented in the Basin B3 description.

Basin B5 consists of approximately 0.60 acres and includes walks, drives, roofs and landscape areas. Flow from this basin ($Q_5=1.4$ cfs and $Q_{100}=3.1$ cfs) will be collected and conveyed in a 3.0' concrete pan that follows the centerline of Purple Fountain Point, to an on-grade Single Type 16 at DP19, where it combines with DP17 flow-by. Total flows at DP19 from Basin B5 and DP17 flow-by are

 $Q_5=1.7$ cfs and $Q_{100}=4.6$ cfs. In the 5-year event, 1.2 cfs is captured and 2.1 cfs is captured in the 100-year event. DP19 flow-by of $Q_5=0.5$ cfs and $Q_{100}=2.5$ cfs continues in curb and gutter to DP24 where it combines with Basin B6 flow. DP19 captured flow is conveyed to DP19 and piped in 18" RCP to DP 24.1 before discharging into Pond B at DP25.

Basin B6 consists of approximately 0.08 acres and includes walks, drives and landscape areas. Flow from this basin ($Q_5=0.3$ cfs and $Q_{100}=0.6$ cfs) will be collected and conveyed in Type A curb and gutter in Blue Avena View to a sump Triple Type 16 at DP24. The total combined flow at DP24 from Basin B6 and DP19 flow-by is $Q_5=0.8$ cfs and $Q_{100}=3.0$ cfs. All flow at DP24 is captured and piped in 30" RCP to DP24.1 before discharging into Pond B at DP25. If the sump inlet at DP24 were to become clogged, flow would overtop the curb and discharge directly into Pond B.

Basin B7 consists of approximately 0.13 acres and includes walks, drives, and landscape areas. Flow from this basin ($Q_5=0.5$ cfs and $Q_{100}=1.0$ cfs) will be collected and conveyed in Type A curb and gutter in Blue Avena View to a sump Denver Double Type 16 at DP23. The total combined flow at DP23 from Basin B7, DP20, and DP21 flow-by is $Q_5=3.3$ cfs and $Q_{100}=8.3$ cfs. All flow at DP23 is captured in the 5-year event, however; in the 100-year event 0.4 cfs is not captured and will overtop the street crown to the Triple Type 16 at DP24. Captured flows are piped to DP23.1 where it combines with flows from DP22.1 before discharging into Pond B at DP25.

Basin B8 consists of approximately 0.73 acres and includes walks, drives, roofs and landscape areas. Flow from this basin ($Q_5=2.1$ cfs and $Q_{100}=4.3$ cfs) will be collected and conveyed in a 3.0' concrete pan, that follows the centerline of Purple Fountain Point, to DP20. At DP20, flow enters Type A curb and gutter and combines with DP18 flow-by for a total flow of $Q_5=2.6$ cfs and $Q_{100}=6.4$ cfs. The combined flow is conveyed to a sump Denver Double Type 16 at DP23, where it combines with Basin B7 and DP22 flow-by flow. Discussion of DP23 captured flow is presented in the Basin B7 description.

Basin B9 consists of approximately 0.54 acres and includes walks, drives, roofs and landscape areas. Flow from this basin ($Q_5=1.5$ cfs and $Q_{1oo}=3.1$ cfs) will be collected and conveyed in Type A curb and gutter in Foerster Grass View, to DP22. At DP22, flow is captured in a Denver Double Type 16 ($Q_5=1.4$ cfs and $Q_{1oo}=2.3$ cfs). DP21 flow-by ($Q_5=0.1$ cfs and $Q_{1oo}=0.8$ cfs) continues in Type A curb and gutter to DP23 where it combines with Basin B7 and DP20 flow. Discussion of DP23 captured flow is presented in the Basin B7 description.

Basin B10 consists of approximately 0.48 acres of landscaped areas and contains Full Spectrum Water Quality and Detention Pond B. Flow from this basin ($Q_5=0.2$ cfs and $Q_{1oo}=1.5$ cfs) sheet flows directly into Pond B where it combines with flow from Basins B1-B9 and B15. A detailed discussion of Full Spectrum Water Quality and Detention Pond B is presented in the Water Quality section later in this report.

PRELIMINARY DRAINAGE REPORT FOR URBAN COLLECTION AT PALMER VILLAGE

Basin B11 consists of approximately 0.19 acres of landscaped areas and contains approximately 1,870 square feet of asphalt roadway. Flow from this basin ($Q_5=0.5$ cfs and $Q_{1oo}=1.2$ cfs) follows historic drainage patterns and sheet flows offsite, along the eastern site boundary, eventually flowing directly into the Tributary to Sand Creek – East Fork Reach No. 6.

Basin B12 consists of approximately 0.07 acres of landscaped areas and sidewalk. Due to topographical constraints and the degree of development therein, flow from this basin ($Q_5=0.1$ cfs and $Q_{100}=0.3$ cfs) will discharge directly into Constitution Avenue curb and gutter.

Basin B13 consists of approximately 0.23 acres of landscaped areas and sidewalk. Due to topographical constraints and the degree of development therein, flow from this basin ($Q_5=0.3$ cfs and $Q_{100}=0.9$ cfs) will discharge directly into Constitution Avenue curb and gutter.

Basin B14 consists of approximately 0.12 acres of landscaped areas and will remain undeveloped. Flow from this basin ($Q_5=0.1$ cfs and $Q_{100}=0.4$ cfs) follows historic drainage patterns and sheet flows easterly offsite to Tributary to Sand Creek – East Fork Reach No. 6.

Basin B15 consists of approximately 0.24 acres of landscaped areas and sidewalk. Flow from this basin ($Q_5=0.4$ cfs and $Q_{100}=1.0$ cfs) is conveyed in a grass-lined swale to a Type C Inlet at DP21. All Basin B15 flow is captured at DP21 and is piped in 18" RCP to DP22.1 ($Q_5=1.7$ cfs and $Q_{100}=3.2$ cfs) where it combines with captured flows at DP22. Basin B15's ultimate outfall is Pond B at DP25.

Basin B16 consists of approximately 0.11 acres of landscaped areas and will remain undeveloped. Flow from this basin ($Q_5=0.1$ cfs and $Q_{1oo}=0.4$ cfs) is conveyed in a grass-lined swale onsite before discharging to the east. From here, the flow follows historic drainage patterns to the Tributary to Sand Creek – East Fork Reach No. 6.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

Storm drainage analysis and design criteria for this project were taken from the "*City of Colorado Springs/El Paso County Drainage Criteria Manual*" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "*Urban Storm Drainage Criteria Manual*" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "*Colorado Springs Drainage Criteria Manual*" (CSDCM), dated May 2014, as adopted by El Paso County.

HYDROLOGIC CRITERIA

All hydrologic data was obtained from the "*El Paso Drainage Criteria Manual*" Volumes 1 and 2, and the "*Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual*" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and

rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

Storm	Rainfall (in.)
5-year	1.50
100-year	2.52

ata

HYDRAULIC CRITERIA

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site, and the UDFCD UD-Detention v3.07 spreadsheet was utilized for evaluating proposed detention and water quality pond. Sump and on-grade inlets were sized using UDFCD UD-Inlet v2.07. Manning's equation was used to size the proposed pipes in this report and StormCAD will be used to model the proposed storm sewer system and to analyze the proposed HGL calculations for Construction Drawings.

DRAINAGE FACILITY DESIGN

FOUR STEP PROCESS TO MINIMIZE ADVERSE IMPACTS OF URBANIZATION

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

Step 1 – Reducing Runoff Volumes: The Urban Collection at Palmer Village development project consists of 50 duplex structures with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. Roof drains from the structures will discharge to lawn areas, where feasible, to allow for infiltration and runoff volume reduction.

Step 2 – Stabilize Drainageways: The site lies within the Sand Creek Drainage Basin. Basin and bridge fees will be paid at time of platting. These funds will be used on future projects within the basin to stabilize drainageways. The site does not discharge directly into the open drainageway of Sand Creek, therefore no downstream stabilization will be accomplished with this project.

Step 3 – Treat the WQCV: Water Quality treatment for this site is provided in two proposed full spectrum water quality detention ponds: Pond A and Pond B. The runoff from this site will be collected within inlets and conveyed to the proposed ponds via storm sewer. Upon entrance to the ponds, flows will be captured in a forebay designed to promote settlement of suspended solids. A

trickle channel is also incorporated into the ponds to minimize the amount of standing water. The outlet structure has been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for 72 hours. All flows released from the ponds will be reduced to less than historic rates.

Step 4 – Consider Need for Industrial and Commercial BMPs: BMPs will be utilized to minimize off-site contaminants and to protect the downstream receiving waters. Site specific temporary source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill containment and control, etc. The permanent erosion control BMPs include asphalt drives and parking, storm inlets and storm pipe, two full spectrum water quality and detention ponds, and permanent vegetation.

WATER QUALITY

The site is split by Hannah Ridge Drive, therefore; a full spectrum water quality and detention pond is provided on both sides. Basin A, located west of Hannah Ridge Drive, will discharge to Pond A, while the east side of Hannah Ridge Drive, Basin B, will discharge to Pond B. Both ponds have been designed per Section 13.3.2.1 of Resolution 15-042 of the El Paso County Drainage Criteria Manual.

Full Spectrum Water Quality and Detention Pond A is designed for a total contributing acreage of 5.80 acres at 48.4% impervious from Basins A1-A10. The total WQCV is 0.098 ac-ft, the excess urban runoff volume (EURV) is 0.223 ac-ft, and the total required detention volume is 0.514 ac-ft. The WQCV is released over 41 hours, the EURV is released over 72 hours, and the 100-year volume is released over 86 hours. The 100-year discharge of 2.2 cfs is equal to 90% of predevelopment rates. A riprap spillway is provided that conveys the full undetained, peak 100-year flow of 25.3 cfs with a 1.0' freeboard. The spillway has a crest length of 20' and a total depth of 1.50'. Additionally, emergency overflow inlets are included below the emergency spillway to capture emergency flows. 12'' RCP connects overflow inlets to the next downstream manhole.

Pond A's outlet structure outfalls into an 18" RCP, eventually upsizing to 24" RCP, that flows along the site's southern property line before discharging into the existing double 10 x 6' RCBC located in the adjacent parcel, east of the eastern parcel. A drainage easement will be provided for both the onsite and offsite portions of this pond outfall. The ultimate discharge of the double 10' x 6' RCBC is the "Tributary to Sand Creek – East Fork Reach No. 6". A drainage map including Pond A and its outfall has been presented in Appendix F. Due to the fact that there are no upstream regional detention facilities, an "emergency conditions" scenario was not analyzed for Pond A.

Pond B is designed for a total contributing acreage of 4.28 acres at 56.5% impervious from Basins B1-B10 & B15. The total WQCV is 0.080 ac-ft, the excess urban runoff volume (EURV) is 0.208 ac-ft and the total required detention volume is 0.444 ac-ft. The WQCV is released over 40 hours, the

PRELIMINARY DRAINAGE REPORT FOR URBAN COLLECTION AT PALMER VILLAGE

EURV is released over 76 hours and the 100-year volume is released over 95 hours. The 100-year discharge of 1.7 cfs is equal to 90% of predevelopment rates. A riprap spillway is provided that conveys the full undetained, peak 100-year flow of 21.9 cfs with a 1.0' freeboard. The spillway has a crest length of 20' and a total depth of 1.50'. Additionally, emergency overflow inlets are included below the emergency spillway to capture emergency flows. 12" RCP connects overflow inlets to the next downstream manhole.

The pond outfalls into an 18" RCP that flows easterly before discharging into the existing double 10' x 6' RCBC located in the adjacent parcel to the east. A drainage easement will be provided for both the onsite and offsite portions of this pond outfall. The ultimate discharge of the double 10' x 6' RCBC is the" Tributary to Sand Creek – East Fork Reach No. 6". A drainage map including Pond B and it's outfall has been presented in Appendix F. Due to the fact that there are no upstream regional detention facilities, an "emergency conditions" scenario was not analyzed for Pond B.

EROSION CONTROL PLAN

We respectfully request that the Erosion Control Plan and Cost Estimate be submitted in conjunction with the grading and erosion control plan and construction assurances posted prior to obtaining a grading permit. The PUDSP plan set includes a preliminary grading plan.

OPERATION & MAINTENANCE

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. The property owner shall be responsible for the inspection, maintenance, rehabilitation and repair of stormwater and erosion control facilities located on the property unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. Access is provided from onsite facilities and easements for proposed infrastructure located offsite. We respectfully request that the Operation & Maintenance Manual be submitted in conjunction with the construction documents, prior to obtaining a grading permit.

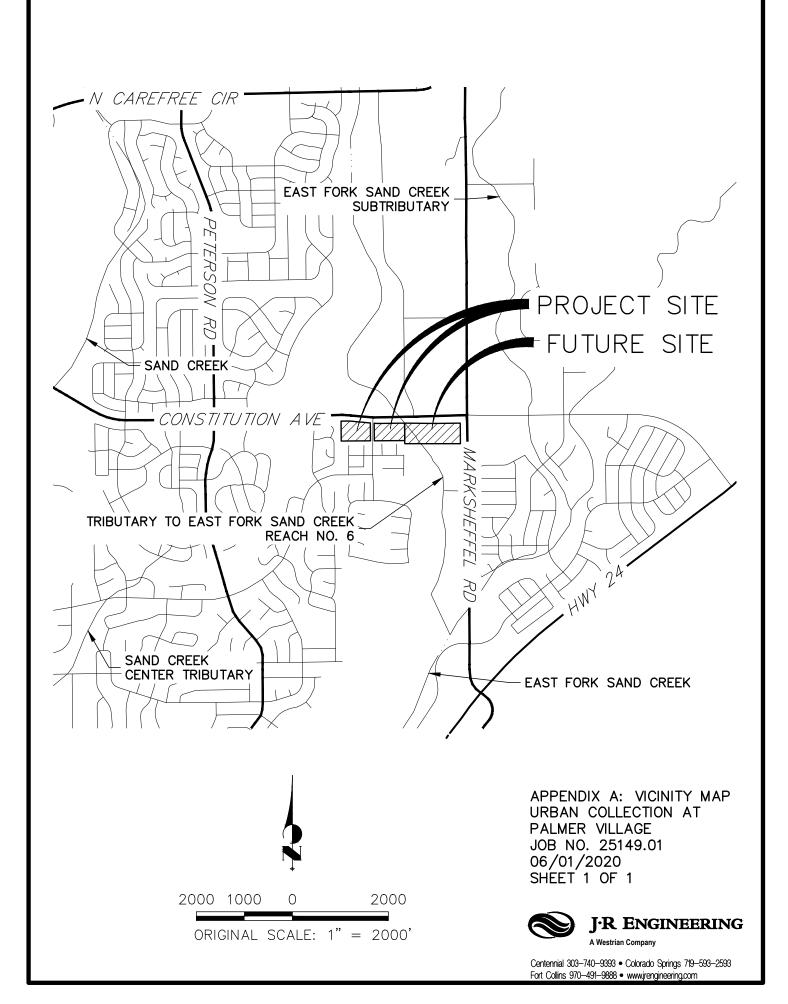
DRAINAGE AND BRIDGE FEES

The site lies within the Sand Creek Drainage Basin. Anticipated drainage and bridge fees are presented below, based on Resolution No. 19-441, and will be paid at time of platting. Fees could change, and are dependent on the timing of the plat.

2020 DRAINAGE AND BRIDGE FEES - URBAN COLLECTION AT PALMER VILLAGE					
Impervious Acres	Drainage Fee (Per Imp. Acre)	Bridge Fee (Per Imp. Acre)	Urban Collection at Palmer Village Drainage Fee	Urban Collection at Palmer Village Bridge Fee	
5.67	\$19,698	\$8,057	\$111,688	\$45,683	

SUMMARY

The proposed Urban Collection at Palmer Village development drainage improvements, including storm sewer and two full spectrum water quality and detention ponds were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development will not adversely affect the offsite drainageways or surrounding development. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements for this site.


REFERENCES

- 1. <u>City of Colorado Springs Drainage Criteria Manual</u> (Volumes I & II), City of Colorado Springs, Colorado, Updated May, 2014.
- 2. <u>Urban Storm Drainage Criteria Manual</u> (Volumes 1, 2, and 3), Urban Drainage and Flood Control District, June 2001.
- 3. <u>Sand Creek Drainage Basin Planning Study</u>, prepared Kiowa Engineering Corporation, January, 1993.
- 4. Jessica Heights Filing No. 1 Final Drainage Report, prepared by M.V.E., Inc, April, 2005.
- 5. <u>Hannah Ridge at Feathergrass Master Drainage Development Plan</u>, prepared by M.V.E., Inc., November 15, 2007.

Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map

X:\2510000.all\2514901\Drawings\Blocks\2514901_VicinityMap.dwg, Drainage, 5/29/2020 8:55:07 AM, CS

NOTES TO USERS

is map is for use in administering the National Flood Insurance Program. It does t necessarily identify all areas subject to flooding, particularly from local drainage urces of small size. The **community map repository** should be consulted for ssible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Sillwaret Elevations tables contained within the Flood insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-to-elevations. These BFEs are intended for flood insurance rating purposes only and node elevations are presented in the FIS report handle builtized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Costal Base Flood Elevations shown on this map apply only landward of 0.0' Not American Vertical Datum of 1988 (NAVD8). Users of this FIRM should be awar that coastal flood elevations are also provided in the Summary of Sulfivater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in th Summary of Sulfivater Elevations table should be used for construction and/ floodplain management purposes when they are higher than the elevations shown or be FIRM. his FIRM.

Soundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with egard to requirements of the National Flood Insurance Program. Floodway withts and other pertinent floodway data are provided in the Flood Insurance Study report fo his unistriktion.

Certain areas not in Special Flood Hazard Areas may be protected by **flood contro** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurano Study report for information on flood control structures for this jurisdiction.

The projection used in the proparation of this may was whiteveal Transvers Mercator (UTM) zona 13. The horizontal datum was NADB3, GRS30 spheroic Difference in datum, spheroit projection of urUM zonas zones used in the production of FIRMs for adjacent juridictions may result in slight positions differences in may feature across juridictions boundaries. These differences do no affect the accuracy of this FIRM.

Pood elevations on this map are referenced to the **North American Vertical Datum f 1988** (**NAVD88**). These flood elevations must be compared to structure and round elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North Merician Vertical Datum of 1988, visit the National Geodetic Survey vebsite at thtp://www.ngs.nosa.gov/ or contact the National Geodetic Survey at the following ddress:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the Nationa Seodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Pasc County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management National Oceanic and Armospheric Administration, United States Geological Survey and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurano. Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this may. The profile baselines depicted and Floodway Data Tables if applicable, in the FlO export. As a result, the profile baselines may divide significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels, community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.


Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMK) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website a http://www.msc.fema.gov/.

you have **questions about this map** or questions concerning the National Floo urance Program in general, please call **1-877-FENA MAP** (1-877-336-2627) (it the FEMA website at http://www.fema.gov/business/nfip. EI Paso County Vertical Datum Offset Table

	Panel Locat	ion Map			
					1
				-	
			H	-	-
			-		
11		14			
	- K				
L					

available from local communities and the Colora-Water Conservation Board.

63

	SPECIAL FLOO	LEGEND ID HAZARD AREAS (SFHAS) SUBJECT TO Y THE 1% ANNUAL CHANCE FLOOD
The 1% annu that has a 1% Hazard Area		1 THE 176 AIWWORL CHARGE FLOOD I-year flood), also known as the base flood, is the flood used or exceeded in any given year. The Special Flood to flooding by the 1% annual chance flood. Areas of as A, AE, AH, AO, AR, 499, V, and VE. The Base Flood ation of the 1% annual chance flood.
ZONE A ZONE AE ZONE AH	No Base Flood Eleve Base Flood Elevatio	ns determined.
ZONE AO		t to 3 feet (usually areas of ponding); Base Flood red.
	determined.	 o 3 feet (usually sheet flow on sloping terrain); average For areas of alluvial fan flooding, velocities also
ZONE AR	protection from the	rd Area Formerly protected from the 1% annual chance throl system that was subsequently decertified. Zone AR former flood control system is being restored to provide 1% annual chance or greater flood.
ZONE A99	Area to be protect protection system determined.	ted from 1% annual chance flood by a Federal flood under construction; no Base Flood Elevations
ZONE V	Elevations determin	red.
ZONE VE	Coastal flood zon Elevations determin	e with velocity hazard (wave action); Base Flood ied.
/////		EAS IN ZONE AE
The floodway kept free of o substantial inc	is the channel of a encroachment so tha creases in flood heigh	stream plus any adjacent floodplain areas that must be at the 1% annual chance flood can be carried without ats.
	OTHER FLOOD	
ZONE X	Areas of 0.2% anni average depths of	ual chance flood; areas of 1% annual chance flood with less than 1 foot or with drainage areas less than 1 eas protected by levees from 1% annual chance flood.
·		eas protected by levees from 1% annual chance flood.
ZONE X	OTHER AREAS	o be outside the 0.2% annual chance floodplain.
ZONE D		d hazards are undetermined, but possible.
[[]]]	COASTAL BARR	IER RESOURCES SYSTEM (CBRS) AREAS
2333	OTHERWISE PR	ROTECTED AREAS (OPAs)
CBRS areas ar		located within or adjacent to Special Flood Hazard Areas.
	1.	olain boundary vay boundary
		D Boundary and OPA boundary
	- Bound	lary dividing Special Flood Hazard Areas of different Base
~ 513	Flood	Elevations, flood depths or flood velocities.
(EL 987	') Base F	Flood Elevation value where uniform within zone; ion in feet*
* Referenced	to the North America	in Vertical Datum of 1988 (NAVD 88)
< <u>A</u> >	- A Cross	section line
23	Transe	ect line
97° 07' 30. 32° 22' 30.	.00" Geogr .00" Datum	aphic coordinates referenced to the North American n of 1983 (NAD 83)
4275000m	N 1000-r zone 1	meter Universal Transverse Mercator grid ticks, 13
6000000	FT 5000-1 system	foot grid ticks: Colorado State Plane coordinate n, central zone (FIPSZONE 0502),
DX5510	Lambe	ert Conformal Conic Projection
		mark (see explanation in Notes to Users section of RM panel)
• ^{M1.5}	River I	
		MAP REPOSITORIES Map Repositories list on Map Index
	EFFE FLC	CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997
DECEME Special FI	EFFECTIVE D	ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and update map format, to add roads and road names, and to
	incorporate p	reviously issued Letters of Map Revision.
For communit	incorporate p	reviously issued Letters of Map Revision.
For communit Map History T To determine agent or call t	ty map revision histor able located in the FI	reviously issued Letters of Map Revision. vy prior to countywide mapping, refer to the Community ood Insurance Study report for this jurisdiction. s walable in this community, contact year insurance surance Program at 1-800-538-6520.
For communit Map History T To determine agent or call t	ty map revision histor able located in the FI	revolusive sueue Leares of way newwork. y prior to countywide mapping, refer to the Community oud Insurance Study report for this pushediction. s evaluable in this community, contact your insurance surance Program at 1:400-638-6620.
For communit Map History T To determine agent or call t	Incorporate p ty map revision histor fable located in the Fi if flood insurance i the National Flood In:	would set the control of the control
For communit Map History T To determine agent or call t	Incorporate p ty map revision histor lable located in the FI it f flood insurance i the National Flood Ins	vincous values Laters of heap revenues. In yor is to cavelydelyde mapping, refer to the Community ood insurance Sudy report for this jurisdiction. In this community, contact your insurance where Program L 1000 038 6502. MAP SCALE 1* = 500' 500 1000 EEET
To determine agent or call t	ty map revision histor lable located in the Fi if flood insurance i the National Flood In: 250 0	y prior to countywide mapping, refer to the Community of Innamers. Subjects for the survice to the Community aurance Program at 1:800-638-6620. MAP SCALE 1* = 500' 500 1000 500 10000 500 10000
To determine agent or call t	250 0	y prior to countywide mapping, refer to the Community of Innamers. Subjects for the survice to the Community aurance Program at 1:800-638-6620. MAP SCALE 1* = 500' 500 1000 500 10000 500 10000
To determine agent or call t	the period of th	volucity setuple. Letters of heap revention. volucity setuple. Letters of heap revention. volucity and comparing refer to the Community odd Insurance Study report for this jurisdiction. s realized in this community, contact your insurance where Program L 1000 500 1000 500 1000 500 Exect the study of the setuple meet refers 100 300 PANEL 0752G
To determine agent or call t	the period of th	would select tests of heap weekend. would select tests of heap weekend. would neurone Suby report for this jurisdiction. a selected in this community, costad your insurance weekend tests of the select tests of the select MAP SCALE 1" = 500' MAP SCALE 1" =
To determine agent or call t		volucity setuple. Letters of heap revention. volucity setuple. Letters of heap revention. volucity and comparing refer to the Community odd Insurance Study report for this jurisdiction. s realized in this community, contact your insurance where Program L 1000 500 1000 500 1000 500 Exect the study of the setuple meet refers 100 300 PANEL 0752G
To determine agent or call t		would weaker Lease of heap weakers. would require a start of heap weakers. out insurance Stary report for this jurisdiction. a sealable in this community, contact your insurance ware forgum at 1000 050 6500. MAP SCALE 1* = 500' 500 050 6500 MAP SCALE 1* = 500' 500 050 0500 0500 MAP SCALE 1* = 500' 500 0500 0500 0500 0500 PANEL 0752G FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY,
To determine agent or call t		volucity subset Laters of Nata Persion. volucity subset laters of Nata Persion. Nata Personal Contact Your Insurance volucity subset laters of Nata Person. Nata Personal Contact Your Insurance volucity subset laters of Nata Person. Volucity Subset laters of Nata Person. Voluc
To determine agent or call t	Proportion big ty map reprint the property of	would weaker Lease of heap weakers. would require a start of heap weakers. out insurance Stary report for this jurisdiction. a sealable in this community, contact your insurance ware forgum at 1000 050 6500. MAP SCALE 1* = 500' 500 050 6500 MAP SCALE 1* = 500' 500 050 0500 0500 MAP SCALE 1* = 500' 500 0500 0500 0500 0500 PANEL 0752G FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY,
To determine agent or call t		would weaker Lease of heap weakers. would focus on the provided of the jurisdicion. a sealable in this community contact your insurance ware forguma 1 = 500' 500 1000 MAP SCALE 1" = 500' MAP SCALE 1" = 500
To determine agent or call t		volucity adduce Letter of Indep weekenden. volucity adduce Letter of Indep weekenden. volucity adduced to the Community order of the Symodraton. s evaluable in this community, contact your insurance weekendene weekendene weekendene weekendene service regionant at 2000 900 1000 1000 meeters 100 m
To determine agent or call t		would well and the provided and the prov
To determine agent or call t		vocada devolues Letters of reads revenues. y role to accurvely report for this jurisdiction. I while the time account of the summaria sensible in this community contact your insurance where revisions at 1500 500 500 500 500 500 500 500
To determine agent or call t		would weaker Letter of Mag Horizon. would focus of the second of the se
To determine agent or call t		vocada devolues Letters of reads revenues. y role to accurvely report for this jurisdiction. I while the time account of the summaria sensible in this community contact your insurance where revisions at 1500 500 500 500 500 500 500 500
To determine agent or call t		vocada devolues Letters of reads revenues. y role to accurvely report for this jurisdiction. I while the time account of the summaria sensible in this community contact your insurance where revisions at 1500 500 500 500 500 500 500 500
To determine agent or call t		vocaday address of maps version. vocad insurance Stady report for this jurisdiction. I while the observation of the synaptic state
To determine agent or call t		volucity devolucion. volucity devolucion. s evaluable Letter of Magn envelopment. s evaluable in this community, contact your insurance volucity devolucion. s evaluable in this community, contact your insurance volucity devolucion. MAP SCALE 1* = 500 000 000 000 000 000 000 000
To determine agent or call t		working weaker Leader of Indep weakers. weakers and the second s
To determine agent or call t		worders developed in their overset of near overset. worder focus of the provided of this jurisdiction. a sealable in this community, cortex / your insurance worder forgens at 2000 550 6502. MAP SCALE 1* = 500' 100 PANEL 075226 FIREM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 752 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: COMMUNITY NUMBER PANEL SUFFIX COMMUNITY NUMBER PANEL LAYOUT) CONTAINS: COMMUNITY NUMBER PANEL SUFFIX COMMUNITY NUMBER PANEL SUFFIX COMM
To determine agent or call t		would weaken Leader of Integr hereinen. yor of to calculate the provided and the source of the sour
To determine agent or call t		would weak in the province of the province of the community of incompany spect for the jurisdictor. a validation of the the province of the community of the community of the the province of
To determine agent or call t		would allowed Links of heap howers. which is considuated in the community out insurance which is considuated on the community out insurance which is a subject of the jurisdiction. S evaluate frequent at 1500 90 90 90 90 90 90 90 90 90

NOTES TO USERS

is map is for use in administering the National Flood Insurance Program. It does t necessarily identify all areas subject to flooding, particularly from local drainage urces of small size. The **community map repository** should be consulted for ssible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stubiester Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be avaine that BFEs alworn on the FIRM represent rounded whole-hold elevations. These BFEs are intended for flood insurance rating purposes only and elevations. These BFEs are intended for flood insurance rating purposes only and the FISM elevation and the FIS report hand be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0° Not American Vertical Datum of 1988 (NAVD83). Users of this FIRM should be awar that casatal flood elevations are also provided in the Surmary of Silviavet Elevation table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Surmary of Silviavet Elevations table should be used for construction and/ floodplain management purposes when they are higher than the elevations shown on the FIRM. nis FIRM

Soundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with egard to requirements of the National Flood Insurance Program. Floodway with and other pertinent floodway data are provided in the Flood Insurance Study report to the underlifered.

Certain areas not in Special Flood Hazard Areas may be protected by **flood contro** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurano Study report for information on flood control structures for this jurisdiction.

The projection used in the proparation of his may was universal Transvers Mercetary (UTM) zone 13. The herizontal datum was NAD83, GRS80 spheroio Difference of eathm, spheroid properties of the NAD83, GRS80 spheroio Difference of RefMs for adjacent jurisdictions may result in slight positions differences in may feature across jurisdiction boundaries. These differences do no affect the accuracy of this FIRM.

Tood elevations on this map are referenced to the **North American Vertical Datum f 1988** (**NAVD89**). These flood elevations must be compared to structure and round elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North Merician Vertical Datum of 1988, visit the National Geodetic Survey website a thtp://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following ddress:

IGS Information Services IOAA, N/NGS12 NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

o obtain current elevation, description, and/or location information for **bench marks** hown on this map, please contact the Information Services Branch of the Nationa seodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Sase Map information shown on this FIRM was provided in digital format by EI Pass. County, Colorado Springa Utilities, City of Fountain, Bureau of Land Management valorial Oceanic and Amospheric Administration, United States Geological Survey ind Anderson Consulting Engineers, Inc. These data are current as of 2006.

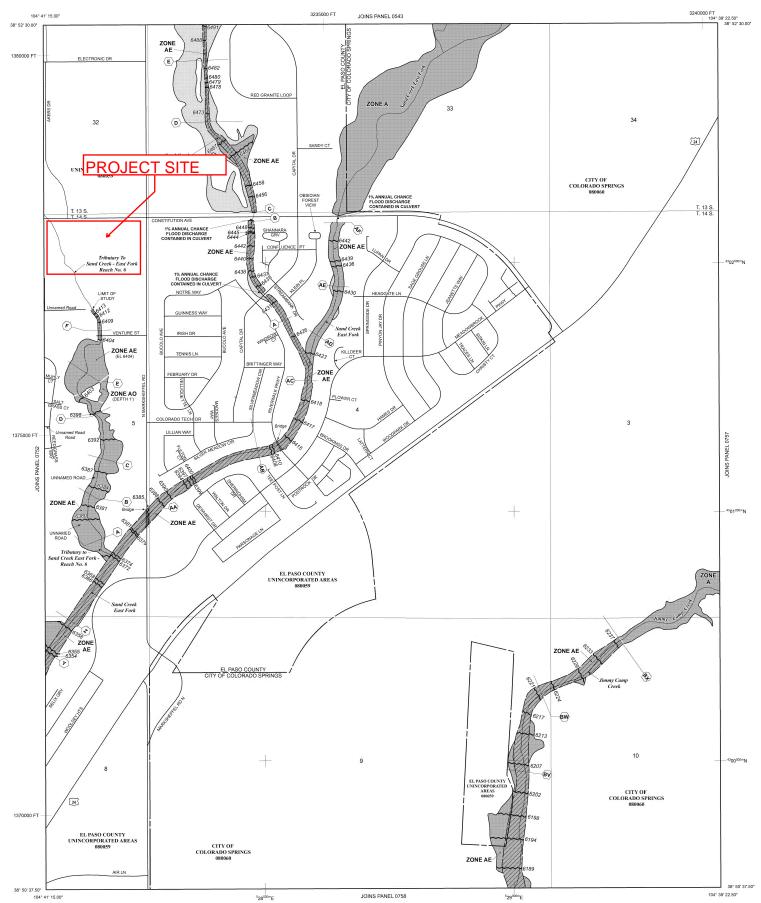
This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurano. Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what as shown on this may. The profile baselines depleted and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels, community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMK) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website a http://www.msc.fema.gov/.

you have **questions about this map** or questions concerning the National Floo surance Program in general, please call **1-877-FEM MAP** (1-877-336-2627) of it the FEMA website at http://www.fema.gov/business/nfip. **EI Paso County Vertical Datum Offset Table**

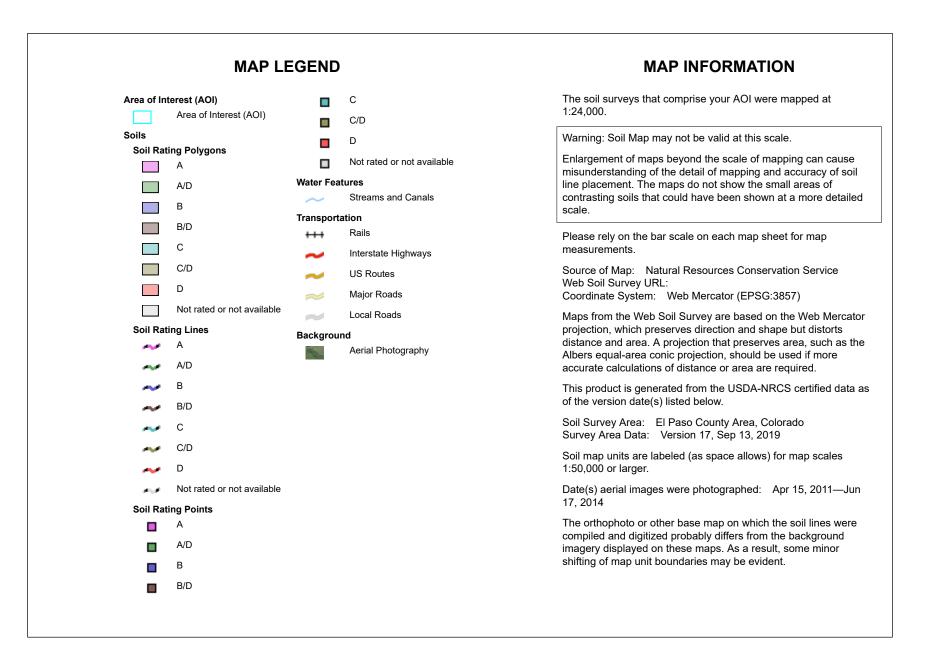

	 Panel	Locatio	n Man			
	i anei	Localic	in map			
-	-	-		 -	-	

State of

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

63

Additional Flood Hazard information and resource available from local communities and the Colora-Water Conservation Board.



NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 13 SOUTH, RANGE 65 WEST, AND TOWNSHIP 14 SOUTH, RANGE 65 WEST.

	SPECIAL FLOO	LEGEND D HAZARD AREAS (SFHAS) SUBJECT TO (THE 1% ANNUAL CHANCE FLOOD				
The 1% annu						
that has a 19 Hazard Area Special Flood Elevation is the ZONE A	6 chance of being eq is the area subject Hazard include Zone water-surface eleve No Base Flood Eleve	year flood), also known as the base flood, is the flood ualed or exceeded in any given year. The Special Flood to flooding by the 1% annual chance flood. Areas of s A, AE, AH, AO, AR, A99, V, and VE. The Base Flood tion of the 1% annual chance flood.				
ZONE AE ZONE AH	Base Flood Elevation Flood depths of 1	to 3 feet (usually areas of ponding); Base Flood				
ZONE AO	Elevations determin Flood depths of 1 to depths_determined	ed. 3 feet (usually sheet flow on sloping terrain); average For areas of alluvial fan flooding, velocities also				
ZONE AR	determined.	d Area Formerly protected from the 1% annual chance trol system that was subsequently decertified. Zone AR immer fload control system is being restored to provide				
ZONE A99	protection from the	1% annual chance or greater flood.				
ZONE V	determined.	ed from 1% annual chance flood by a Federal flood under construction; no Base Flood Elevations with velocity hazard (wave action); no Base Flood				
ZONE VE	Elevations determin	ed. e with velocity hazard (wave action); Base Flood ed.				
7///	Elevations determin FLOODWAY ARE					
The floodway kept free of	is the channel of a sencroachment so that	tream plus any adjacent floodplain areas that must be t the 1% annual chance flood can be carried without ts.				
substantial in	OTHER FLOOD					
ZONE X	Areas of 0.2% annu average depths of	al chance flood; areas of 1% annual chance flood with less than 1 foot or with drainage areas less than 1				
	square mile; and areas protected by levees from 1% annual chance flood. OTHER AREAS					
ZONE X	Areas determined to	be outside the 0.2% annual chance floodplain.				
		hazards are undetermined, but possible.				
		ER RESOURCES SYSTEM (CBRS) AREAS				
CBRS areas a		OTECTED AREAS (OPAs) located within or adjacent to Special Flood Hazard Areas.				
		lain boundary ay boundary				
	Zone D	Boundary				
	Bound	ary dividing Special Flood Hazard Areas of different Base Elevations, flood depths or flood velocities.				
~~ 513 (EL 987	∼ Base F	lood Elevation line and value; elevation in feet* lood Elevation value where uniform within zone;				
	elevati	on in feet* n Vertical Datum of 1988 (NAVD 88)				
A	- A Cross	ection line				
23	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ct line				
97° 07' 30 32° 22' 30	.00" Geogra .00" Datum	phic coordinates referenced to the North American of 1983 (NAD 83)				
4275000m	zone 1					
6000000 FT 5000-foot grid ticks: Colorado State Plane coordinate system, central zone (FIPSZONE 0502), Lambert Conformal Conic Projection						
DX5510	Bench	mark (see explanation in Notes to Users section of RM panel)				
● ^{M1.8}	River M	tile				
	Refer to	MAP REPOSITORIES Map Repositories list on Map Index				
	EFFE FLC	CTIVE DATE OF COUNTYWIDE NOD INSURANCE RATE MAP MARCH 17, 1997				
DECEMI Special F	EFFECTIVE D	MARCH 17, 1997 (TE(S) OF REVISION(S) TO THIS PANEL the corporate limits, to change Base Flood Elevations and update map format, to add roads and road names, and to evolusly issued Letters of Map Revision.				
For communi	ty map revision histor	y prior to countywide mapping, refer to the Community ood Insurance Study report for this jurisdiction.				
		available in this community, contact your insurance urance Program at 1-800-638-6620.				
	250 0 日日日	MAP SCALE 1" = 500' 500 1000 FEET				
		METERS 150 300				
1						
L		PANEL 0756G				
	WAY	FIRM				
	<u>A</u> RV	FLOOD INSURANCE RATE MAP				
	ROX	EL PASO COUNTY,				
	M AL	COLORADO AND INCORPORATED AREAS				
		PANEL 756 OF 1300				
	MG	(SEE MAP INDEX FOR FIRM PANEL LAYOUT)				
	R	CONTAINS: COMMUNITY NUMBER PANEL SUFFIX				
		COLORADO SPRINGS, CITY OF (80060 0756 G EL PASO COUNTY (80059 0756 G				
	SR .					
	00					
	Ĩ	Notice to User. The Map Number shown below should be used				
	ń	Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the subject community.				
	INAN	MAP NUMBER 08041C0756G				
	ION					
		MAP REVISED DECEMBER 7, 2018				
	M	Federal Emergency Management Agency				

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	11.3	100.0%
Totals for Area of Intere	st	11.3	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

USDA

Tie-break Rule: Higher

Appendix B Hydrologic Calculations

PALMER VILLAGE - EXISTING DRAINAGE SUMMARY

EXISTING BASIN SUMMARY TABLE							
Tributary	Area	Percent			t _c	Q ₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C_5	C ₁₀₀	(min)	(cfs)	(cfs)
EX1	0.15	2%	0.08	0.35	7.9	0.04	0.4
EX2	0.46	2%	0.08	0.35	8.1	0.2	1.2
EX3	4.27	2%	0.08	0.35	14.2	1.2	9.0
EX4	1.62	19%	0.22	0.45	17.9	1.1	4.0
EX5	0.37	82%	0.75	0.85	5.0	1.4	2.7
EX6	5.25	2%	0.08	0.35	14.4	1.5	11.1

EXISTING DESIGN POINT SUMMARY TABLE					
DP	Q ₅	Q ₁₀₀			
1	0.04	0.4			
2	0.2	1.2			
3	1.3	9.3			
4	1.3	4.9			
5	1.4	2.7			
6	1.5	11.1			

6 IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT C,

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

PALMER VILLAGE	PALMER VILLAGE
Colorado Springs	2000-5149.01
	RPD
	NQJ
	1/30/20
	-

	Total	P	AVED STI	REETS	UNDEV	ELOPED I	MEADOW	Basins Total
Basin ID	Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
EX1	0.15	100%	0.00	0.0%	2%	0.15	2.0%	2.0%
EX2	0.46	100%	0.00	0.0%	2%	0.46	2.0%	2.0%
EX3	4.27	100%	0.00	0.0%	2%	4.27	2.0%	2.0%
EX4	1.62	100%	0.27	17.0%	2%	1.35	1.7%	18.6%
EX5	0.37	100%	0.30	81.8%	2%	0.07	0.4%	82.1%
EX6	5.25	100%	0.00	0.0%	2%	5.25	2.0%	2.0%
TOTAL	12.12							6.7%

Land Use or Surface Characteristics	Percent						Runoff Co	efficients					
	Impervious	2-y	ear	5-y	ear	10-1	year	25-1	ear	50-	year	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business						1. V							100 100
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.85	0.60	0.50	0.63	0.63	0.66	0.66	0.70	0.55	0.55	0.50	0.30
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.83	0.30	0.30	0.75	0.32	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.30	0.30	0.44	0.35	0.50

COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: PALMER VILLAGE Location: Colorado Springs

Project Name: PALMER VILLAGE

Project No.: 2000-5149.01

Calculated By: RPD

Checked By: NQJ

Date: 1/30/20

		Basins Total	Hydr	ologic Soil (Group	Lar	nd Use	Mino	r Coefficients	Majo	r Coefficients		
Basin IE	Total Area (ac)	Weighted % Imp.	Area A (ac)	Area B (ac)	Area C/D (ac)	Area Paved Streets (ac)	Area Undeveloped Meadow (ac)	C _{5,A,PAVED STREETS}	C _{5,A,UNDEVELOPED MEADOW}	C _{100,A,PAVED STREETS}	C _{100,A} , undeveloped meadow	Basins Total Weighted C ₅	Basins Total Weighted C_{100}
EX1	0.15	2.0%	0.15	0.00	0.00	0.00	0.15	0.90	0.08	0.96	0.35	0.08	0.35
EX2	0.46	2.0%	0.46	0.00	0.00	0.00	0.46	0.90	0.08	0.96	0.35	0.08	0.35
EX3	4.27	2.0%	4.27	0.00	0.00	0.00	4.27	0.90	0.08	0.96	0.35	0.08	0.35
EX4	1.62	18.6%	1.62	0.00	0.00	0.27	1.35	0.90	0.08	0.96	0.35	0.22	0.45
EX5	0.37	82.1%	0.37	0.00	0.00	0.30	0.07	0.90	0.08	0.96	0.35	0.75	0.85
EX6	5.25	2.0%	5.25	0.00	0.00	0.00	5.25	0.90	0.08	0.96	0.35	0.08	0.35
TOTAL	12.12	6.7%	12.12	0.00	0.00	5%	95%					0.12	0.38

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent						Runoff Co	efficients					_
	Impervious	2-9	ear	5-9	rear	10-1	year	25-1	year	50-	year	100	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential			-		2								
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial	-								-	-			-
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas	-	-							-				-
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets	-	-											
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: PALMER VILLAGE

Location: Colorado Springs

Project Name: PALMER VILLAGE Project No.: 2000-5149.01

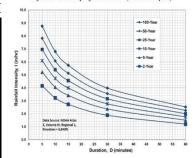
TTOJECTNO	2000-3147.01
Calculated By:	RPD
Checked By:	NQJ
Date:	1/30/20

		SUB-	BASIN			INITI	AL/OVER	LAND			TRAVEL TI	ME					
		DA	ATA				(T _i)				(T _t)			(L	JRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
EX1	0.15	А	2%	0.08	0.35	50	5.0%	7.7	26	5.0%	10.0	2.2	0.2	7.9	76.0	25.9	7.9
EX2	0.46	А	2%	0.08	0.35	50	5.0%	7.7	56	5.0%	10.0	2.2	0.4	8.1	106.0	26.1	8.1
EX3	4.27	А	2%	0.08	0.35	50	7.8%	6.6	471	1.1%	10.0	1.0	7.6	14.2	521.0	33.9	14.2
EX4	1.62	А	19%	0.22	0.45	50	7.8%	5.7	643	0.8%	10.0	0.9	12.2	17.9	693.0	33.3	17.9
EX5	0.37	А	82%	0.75	0.85	0	N/A	N/A	189	0.5%	20.0	1.4	2.3	2.3	189.0	14.3	5.0
EX6	5.25	А	2%	0.08	0.35	50	3.0%	9.1	550	3.0%	10.0	1.7	5.3	14.4	600.0	31.4	14.4

NOTES:

4 - 4 1 4	_	6-2 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{c_1^{0.033}}$	Equation 6-3	Table 6-2. NRCS Convey	ance factors, K
$t_c = t_i + t_t$	Equation	$t_i = \frac{1}{S_o^{0.33}}$	Equation 0-3	Type of Land Surface	Conveyance Factor, K
Where:				Heavy meadow	2.5
		Where:		Tillage/field	5
t_c = computed time of concentration (minutes)		t_i = overland (initial) flow time (minutes)		Short pasture and lawns	7
t_i = overland (initial) flow time (minutes)		C_5 = runoff coefficient for 5-year frequency (from Table 6-4) L_i = length of overland flow (ft)		Nearly bare ground	10
t_t = channelized flow time (minutes).		S_0 = average slope along the overland flow path (ft/ft).		Grassed waterway	15
T. T.		L		Paved areas and shallow paved swales	20
$t_r = \frac{L_r}{60K\sqrt{S_o}} = \frac{L_r}{60V_r}$	Equation 6-4	$t_{c} = (26 - 17i) + \frac{L_{t}}{60(14i + 9)\sqrt{S_{t}}}$	Equation 6-5		
Where:		Where:			
t_t = channelized flow time (travel time, min) L_t = waterway length (ft) S_o = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = K $\sqrt{S_o}$ K = NRCS conveyance factor (see Table 6-2).		t_c = minimum time of concentration for first design point when less that L_t = length of channelized flow path (ft) i = imperviousness (expressed as a decimal) S_t = slope of the channelized flow path (ft/ft).	n tc from Equation 6-1.		

Use a minimum te value of 5 minutes for urbanized areas and a minimum te value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.


STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision Location Jesign Storm	: Color	ado Sp														í Cal	Projec culate hecke	ame: t No.: d By: d By: Date:	2000 RPD NQJ	/ER VI -5149. /20	LLAG	E	
		1		DIRE	CT RU	NOFF			TC	DTAL	RUNO	FF	0\	/ERLAI	ND	1		IPE		TRAV	'EL TI	ME	
STREET LI I I I I I I I I I I I I I I I I I I	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{overland} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS	
	1	EX1	0.15	0.08	7.9	0.01	4.49	0.04					0.04	0.01						468	1.4	5.7	BASIN EX1 FLOW AT DP1, OVERLAND FLOW TO DP3
	2	EX2	0.46	0.08	8.1	0.04	4.45	0.2					0.2	0.04	1.61					626	1.3	8.2	BASIN EX2 FLOW AT DP2, OVERLAND FLOW TO DP4
		EX3	4.27	0.08	14.2	0.34	3.60	1.2															BASIN EX3 FLOW AT DP3 (LOCAL DEPRESSION)
	3								14.2	0.35	3.60	1.3											COMBINED DP1 AND EX3 FLOW AT DP3 (LOCAL DEPRE
		EX4	1.62	0.22	17.9	0.35	3.26	1.1															BASIN EX4 FLOW AT DP4, FLOWS SOUTH ALONG C&G
	4								17.9	0.39	3.26	1.3											COMBINED DP2 AND EX4 FLOW AT DP4
	5	EX5	0.37	0.75	5.0	0.28	5.17	1.4															BASIN EX5 FLOW AT DP5, FLOWS EAST ALONG C&G
	6	EX6	5.25	0.08	14.4	0.42	3.59	1.5															BASIN EX6 FLOW AT DP6
	+																						

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: PALMER VILLAGE Project No.: 2000-5149. Calculated By: RPD

Design Storm:	100-Y	ear										•				С	hecke I	d By: Date:	NQJ 1/30/	/20			
				DIF	RECT R	UNOFF			T	OTAL F	RUNO	FF	0\	/ERLA	ND		PI	PE		TRAV	EL TIN	ΛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{overland} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	EX1	0.15	0.35	7.9	0.05	7.54	0.4					0.4	0.05	1.90					468	1.4	5.7	BASIN EX1 FLOW AT DP1, OVERLAND FLOW TO DP3
	2	EX2	0.46	0.35	8.1	0.16	7.47	1.2					1.2	0.16	1.61					626	1.3	8.2	BASIN EX2 FLOW AT DP2, OVERLAND FLOW TO DP4
		EX3	4.27	0.35	14.2	1.49	6.04	9.0															BASIN EX3 FLOW AT DP3 (LOCAL DEPRESSION)
	3							ľ	14.2	1.54	6.04	9.3											COMBINED DP1 AND EX3 FLOW AT DP3 (LOCAL DEPRESSION)
		EX4	1.62	0.45	17.9	0.73	5.47	4.0															BASIN EX4 FLOW AT DP4, FLOWS SOUTH ALONG C&G
	4								17.9	0.89	5.47	4.9											COMBINED DP2 AND EX4 FLOW AT DP4
	5	EX5	0.37	0.85	5.0	0.31	8.68	2.7															BASIN EX5 FLOW AT DP5, FLOWS EAST ALONG C&G
	6	EX6	5.25	0.35	14.4	1.84	6.02	11.1															BASIN EX6 FLOW AT DP6

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

Subdivision: PALMER VILLAGE Location: Colorado Springs

PALRMER VILLAGE - PROPOSED DRAINAGE SUMMARY

		BASIN '	A' SUM	MARY T	ABLE		
Tributary	Area	Percent			tc	Q ₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
EX1	0.15	0%	0.08	0.35	7.9	0.04	0.4
EX2	0.46	0%	0.08	0.35	8.1	0.2	1.2
A1	0.74	63%	0.56	0.70	6.4	2.0	4.2
A2	0.17	71%	0.66	0.78	7.4	0.5	1.0
A3	0.11	64%	0.60	0.74	6.1	0.3	0.7
A4	0.72	65%	0.58	0.71	5.9	2.0	4.2
A5	0.77	51%	0.47	0.63	7.2	1.7	3.8
A6	0.26	83%	0.74	0.84	7.9	0.9	1.6
A7	0.54	54%	0.50	0.66	6.8	1.3	2.8
A8	0.70	47%	0.44	0.61	7.8	1.4	3.2
A9	0.72	60%	0.56	0.70	8.0	1.8	3.8
A10	0.46	4%	0.12	0.38	9.5	0.2	1.2
A11	0.29	28%	0.33	0.61	11.0	0.4	1.2
A12	0.14	36%	0.37	0.57	8.0	0.2	0.6

	BASIN 'B' SUMMARY TABLE										
Tributary	Area	Percent			t _c	Q ₅	Q ₁₀₀				
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)				
B1	0.65	51%	0.47	0.63	6.5	1.4	3.3				
B2	0.08	100%	0.90	0.96	5.0	0.4	0.7				
B3	0.11	91%	0.83	0.90	5.0	0.5	0.9				
B4	0.88	66%	0.59	0.72	6.7	2.5	5.1				
B5	0.60	53%	0.49	0.64	6.2	1.4	3.1				
B6	0.08	88%	0.80	0.88	5.0	0.3	0.6				
B7	0.13	85%	0.77	0.87	5.0	0.5	1.0				
B8	0.73	65%	0.58	0.71	5.7	2.1	4.3				
B9	0.54	64%	0.58	0.71	6.5	1.5	3.1				
B10	0.48	2%	0.10	0.36	5.7	0.2	1.5				
B11	0.19	58%	0.55	0.70	5.0	0.5	1.2				
B12	0.07	29%	0.31	0.52	5.1	0.1	0.3				
B13	0.23	30%	0.33	0.54	7.5	0.3	0.9				
B14	0.12	0%	0.08	0.35	5.0	0.1	0.4				
B15	0.24	25%	0.29	0.50	5.0	0.4	1.0				
B16	0.11	9%	0.15	0.41	5.0	0.1	0.4				

DESIGN	POINT SUI TABLE	MMARY				
Design Point	Q ₅ (cfs)	Q ₁₀₀ (cfs)				
EX1	0.04	0.2				
EX2	0.2	0.7				
1	1.9	4.3				
2	2.0	5.0				
3	2.4	5.3				
4	2.4	5.8				
4.1	3.8	6.7				
5	2.1	5.6				
6	1.7	4.9				
7	1.4	3.3				
8	4.1	10.0				
8.1	7.7	16.3				
9	3.3	8.4				
9.1	10.8	24.1				
10	11.0	25.3				

DESIGN	DESIGN POINT SUMMARY TABLE												
Design Point	Q ₅ (cfs)	Q ₁₀₀ (cfs)											
15	1.4	3.3											
16	2.5	5.1											
17	1.7	3.8											
18	2.8	5.6											
18.1	3.4	5.5											
19	1.7	4.6											
20	2.6	6.4											
21	0.4	1.0											
22	1.5	3.1											
22.1	1.7	3.2											
23	3.3	8.3											
23.1	8.1	16.0											
24	0.8	3.0											
24.1	9.9	20.7											
25	10.1	21.9											

COMPOSITE % IMPERVIOUS CALCULATIONS

Subdivision: PALMER VILLAGE Location: Colorado Springs Project Name: PALMER VILLAGE

Project No.: 2514901	
Calculated By: NQJ	
Checked By:	
Date: 2/6/20	

			Drives/Wal	ks		Roofs			Lawns		Basins Total	
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.	
EX1	0.15			90%	0.00	0.0%	0%	0.15	0.0%	0.0%		
EX2	0.46	100%	0.00	0.0%	90%	0.00	0.0%	0%	0.46	0.0%	0.0%	
A1	0.74	100%	0.19	25.7%	90%	0.31	37.7%	0%	0.24	0.0%	63.4%	
A2	0.17	100%	0.12	70.6%	90%	0.00	0.0%	0%	0.05	0.0%	70.6%	
A3	0.11	100%	0.07	63.6%	90%	0.00	0.0%	0%	0.04	0.0%	63.6%	
A4	0.72	100%	0.19	26.4%	90%	0.31	38.8%	0%	0.22	0.0%	65.1%	
A5	0.77	100%	0.16	20.8%	90%	0.26	30.4%	0%	0.35	0.0%	51.2%	
A6	0.26	100%	0.17	65.4%	90%	0.05	17.3%	0%	0.04	0.0%	82.7%	
A7	0.54	100%	0.15	27.8%	90%	0.16	26.7%	0%	0.23	0.0%	54.4%	
A8	0.70	100%	0.14	20.0%	90%	0.21	27.0%	0%	0.35	0.0%	47.0%	
A9	0.72	100%	0.34	47.2%	90%	0.10	12.5%	0%	0.28	0.0%	59.7%	
A10	0.46	100%	0.02	4.3%	90%	0.00	0.0%	0%	0.44	0.0%	4.3%	
A11	0.29	100%	0.08	27.6%	90%	0.00	0.0%	0%	0.29	0.0%	27.6%	
A12	0.14	100%	0.05	35.7%	90%	0.00	0.0%	0%	0.09	0.0%	35.7%	
B1	0.65	100%	0.14	21.5%	90%	0.21	29.1%	0%	0.30	0.0%	50.6%	
B2	0.08	100%	0.08	100.0%	90%	0.00	0.0%	0%	0.00	0.0%	100.0%	
B3	0.11	100%	0.10	90.9%	90%	0.00	0.0%	0%	0.01	0.0%	90.9%	
B4	0.88	100%	0.31	35.2%	90%	0.30	30.7%	0%	0.27	0.0%	65.9%	
B5	0.60	100%	0.13	21.7%	90%	0.21	31.5%	0%	0.26	0.0%	53.2%	
B6	0.08	100%	0.07	87.5%	90%	0.00	0.0%	0%	0.01	0.0%	87.5%	
B7	0.13	100%	0.11	84.6%	90%	0.00	0.0%	0%	0.02	0.0%	84.6%	
B8	0.73	100%	0.19	26.0%	90%	0.32	39.5%	0%	0.22	0.0%	65.5%	
В9	0.54	100%	0.20	37.0%	90%	0.16	26.7%	0%	0.18	0.0%	63.7%	
B10	0.48	100%	0.01	2.1%	90%	0.00	0.0%	0%	0.47	0.0%	2.1%	
B11	0.19	100%	0.11	57.9%	90%	0.00	0.0%	0%	0.08	0.0%	57.9%	
B12	0.07	100%	0.02	28.6%	90%	0.00	0.0%	0%	0.05	0.0%	28.6%	
B13	0.23	100%	0.07	30.4%	90%	0.00	0.0%	0%	0.16	0.0%	30.4%	
B14	0.12	100%	0.00	0.0%	90%	0.00	0.0%	0%	0.12	0.0%	0.0%	
B15	0.24	100%	0.06	25.0%	90%	0.00	0.0%	0%	0.18	0.0%	25.0%	
B16	0.11	100%	0.01	9.1%	90%	0.00	0.0%	0%	0.10	0.0%	9.1%	
SITE TOTAL	11.47									SITE	49.1%	
WEST POND	5.80									WEST POND	48.4%	
EAST POND	4.28									EAST POND	56.5%	

COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: PALMER VILLAGE Location: Colorado Springs

Project Name: PALMER VILLAGE Project No.: 2514901 Calculated By: NQJ Checked By:

Date: 2/6/20

			Hydrologic Soil Group				Land Use		Minor	Coefficients	5	Major	Coefficients			
Basin ID	Total Area (ac)	Basins Total Weighted % Imp.	Area A (ac)	Area B (ac)	Area C/D (ac)	Area Walks & Drives (ac)	Area Roofs (ac)	Area Lawns (ac)	C _{5,A,WALKS & DRIVES}	C _{5,A,ROOFS}	C _{5,A,LAWNS}	C _{100,A,WALKS & DRIVES}	C _{100,A,ROOFS}	C _{100,A,LAWNS}	Basins Total Weighted C₅	Basins Total Weighted C ₁₀₀
EX1	0.15	0%	0.15	0.00	0.00	0.00	0.00	0.15	0.90	0.73	0.08	0.96	0.81	0.35	0.08	0.35
EX2	0.46	0%	0.46	0.00	0.00	0.00	0.00	0.46	0.90	0.73	0.08	0.96	0.81	0.35	0.08	0.35
A1	0.74	63%	0.74	0.00	0.00	0.19	0.31	0.24	0.90	0.73	0.08	0.96	0.81	0.35	0.56	0.70
A2	0.17	71%	0.17	0.00	0.00	0.12	0.00	0.05	0.90	0.73	0.08	0.96	0.81	0.35	0.66	0.78
A3	0.11	64%	0.11	0.00	0.00	0.07	0.00	0.04	0.90	0.73	0.08	0.96	0.81	0.35	0.60	0.74
A4	0.72	65%	0.72	0.00	0.00	0.19	0.31	0.22	0.90	0.73	0.08	0.96	0.81	0.35	0.58	0.71
A5	0.77	51%	0.77	0.00	0.00	0.16	0.26	0.35	0.90	0.73	0.08	0.96	0.81	0.35	0.47	0.63
A6	0.26	83%	0.26	0.00	0.00	0.17	0.05	0.04	0.90	0.73	0.08	0.96	0.81	0.35	0.74	0.84
A7	0.54	54%	0.54	0.00	0.00	0.15	0.16	0.23	0.90	0.73	0.08	0.96	0.81	0.35	0.50	0.66
A8	0.70	47%	0.70	0.00	0.00	0.14	0.21	0.35	0.90	0.73	0.08	0.96	0.81	0.35	0.44	0.61
A9	0.72	60%	0.72	0.00	0.00	0.34	0.10	0.28	0.90	0.73	0.08	0.96	0.81	0.35	0.56	0.70
A10	0.46	4%	0.46	0.00	0.00	0.02	0.00	0.44	0.90	0.73	0.08	0.96	0.81	0.35	0.12	0.38
A11	0.29	28%	0.29	0.00	0.00	0.08	0.00	0.29	0.90	0.73	0.08	0.96	0.81	0.35	0.33	0.61
A12	0.14	36%	0.14	0.00	0.00	0.05	0.00	0.09	0.90	0.73	0.08	0.96	0.81	0.35	0.37	0.57
B1	0.65	51%	0.65	0.00	0.00	0.14	0.21	0.30	0.90	0.73	0.08	0.96	0.81	0.35	0.47	0.63
B2	0.08	100%	0.08	0.00	0.00	0.08	0.00	0.00	0.90	0.73	0.08	0.96	0.81	0.35	0.90	0.96
B3	0.11	91%	0.11	0.00	0.00	0.10	0.00	0.01	0.90	0.73	0.08	0.96	0.81	0.35	0.83	0.90
B4	0.88	66%	0.88	0.00	0.00	0.31	0.30	0.27	0.90	0.73	0.08	0.96	0.81	0.35	0.59	0.72
B5	0.60	53%	0.60	0.00	0.00	0.13	0.21	0.26	0.90	0.73	0.08	0.96	0.81	0.35	0.49	0.64
B6	0.08	88%	0.08	0.00	0.00	0.07	0.00	0.01	0.90	0.73	0.08	0.96	0.81	0.35	0.80	0.88
B7	0.13	85%	0.13	0.00	0.00	0.11	0.00	0.02	0.90	0.73	0.08	0.96	0.81	0.35	0.77	0.87
B8	0.73	65%	0.73	0.00	0.00	0.19	0.32	0.22	0.90	0.73	0.08	0.96	0.81	0.35	0.58	0.71
B9	0.54	64%	0.54	0.00	0.00	0.20	0.16	0.18	0.90	0.73	0.08	0.96	0.81	0.35	0.58	0.71
B10	0.48	2%	0.48	0.00	0.00	0.01	0.00	0.47	0.90	0.73	0.08	0.96	0.81	0.35	0.10	0.36
B11	0.19	58%	0.19	0.00	0.00	0.11	0.00	0.08	0.90	0.73	0.08	0.96	0.81	0.35	0.55	0.70
B12	0.07	29%	0.07	0.00	0.00	0.02	0.00	0.05	0.90	0.73	0.08	0.96	0.81	0.35	0.31	0.52
B13	0.23	30%	0.23	0.00	0.00	0.07	0.00	0.16	0.90	0.73	0.08	0.96	0.81	0.35	0.33	0.54
B14	0.12	0%	0.12	0.00	0.00	0.00	0.00	0.12	0.90	0.73	0.08	0.96	0.81	0.35	0.08	0.35
B15	0.24	25%	0.24	0.00	0.00	0.06	0.00	0.18	0.90	0.73	0.08	0.96	0.81	0.35	0.29	0.50
B16	0.11	9%	0.11	0.00	0.00	0.01	0.00	0.10	0.90	0.73	0.08	0.96	0.81	0.35	0.15	0.41
TOTAL	11.47	49.1%	11.47	0.00	0.00	3.29	2.60	5.66							0.46	0.63

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: PALMER VILLAGE Location: Colorado Springs

Project Name:	PALMER VILLAGE
Project No.:	2514901
Calculated By:	NQJ
Checked By:	
Date:	2/6/20

		SUB-I	BASIN			INITI	AL/OVER	AND		1	RAVEL TIN	1E					
		DA	ATA				(T _i)				(T _t)			(U	FINAL		
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t _i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
EX1	0.15	A	0%	0.08	0.35	50	5.0%	7.7	26	5.0%	10.0	2.2	0.2	7.9	76.0	26.2	7.9
EX2	0.46	A	0%	0.08	0.35	50	5.0%	7.7	56	5.0%	10.0	2.2	0.4	8.1	106.0	26.5	8.1
A1	0.74	A	63%	0.56	0.70	87	5.0%	5.3	155	1.4%	20.0	2.4	1.1		242.0	16.4	6.4
A2	0.17	A	71%	0.66	0.78	87	2.0%	5.9	180	1.0%	20.0	2.0	1.5		267.0	15.6	7.4
A3	0.11	A	64%	0.60	0.74	87	6.0%	4.6	180	1.0%	20.0	2.0	1.5		267.0	16.9	6.1
A4	0.72	A	65%	0.58	0.71	87	6.0%	4.9	150	1.6%	20.0	2.5	1.0		237.0	16.0	5.9
A5	0.77	A	51%	0.47	0.63	87	5.0%	6.2	150	1.6%	20.0	2.5	1.0		237.0	18.5	7.2
A6	0.26	A	83%	0.74	0.84	99	1.0%	6.4	178	1.0%	20.0	2.0	1.5		277.0	13.4	7.9
A7	0.54	A	54%	0.50	0.66	87	5.5%	5.8	153	1.6%	20.0	2.5	1.0	6.8	240.0	18.0	6.8
A8	0.70	A	47%	0.44	0.61	90	4.5%	6.9	115	1.1%	20.0	2.1	0.9		205.0	19.2	7.8
A9	0.72	Α	60%	0.56	0.70	87	3.0%	6.4	200	1.0%	20.0	2.0	1.7	8.0	287.0	17.8	8.0
A10	0.46	Α	4%	0.12	0.38	50	15.0%	5.1	325	0.7%	15.0	1.3	4.3	9.5	375.0	32.0	9.5
A11	0.29	A	28%	0.33	0.61	90	2.0%	10.5	55	1.0%	20.0	2.0	0.5	11.0	145.0	22.0	11.0
A12	0.14	A	36%	0.37	0.57	20	2.0%	4.7	280	0.5%	20.0	1.4	3.3	8.0	300.0	24.6	8.0
B1	0.65	A	51%	0.47	0.63	97	8.0%	5.7	105	1.0%	20.0	2.0	0.9	6.5	202.0	18.5	6.5
B2	0.08	A	100%	0.90	0.96	12	2.0%	1.0	182	2.3%	20.0	3.1	1.0	2.0	194.0	9.9	5.0
B3	0.11	А	91%	0.83	0.90	12	2.0%	1.4	190	2.3%	20.0	3.0	1.0	2.4	202.0	11.5	5.0
B4	0.88	A	66%	0.59	0.72	120	6.0%	5.6	183	2.0%	20.0	2.8	1.1	6.7	303.0	16.0	6.7
B5	0.60	A	53%	0.49	0.64	97	8.0%	5.5	103	1.6%	20.0	2.5	0.7	6.2	200.0	17.8	6.2
B6	0.08	А	88%	0.80	0.88	12	2.0%	1.5	160	2.5%	20.0	3.2	0.8	2.3	172.0	11.9	5.0
B7	0.13	Α	85%	0.77	0.87	12	2.0%	1.6	170	2.5%	20.0	3.2	0.9	2.5	182.0	12.5	5.0
B8	0.73	Α	65%	0.58	0.71	97	9.0%	4.5	145	1.0%	20.0	2.0	1.2	5.7	242.0	16.2	5.7
B9	0.54	Α	64%	0.58	0.71	87	5.0%	5.2	155	1.0%	20.0	2.0	1.3	6.5	242.0	16.6	6.5
B10	0.48	А	2%	0.10	0.36	15	2.0%	5.6	40	33.0%	15.0	8.6	0.1	5.7	55.0	25.8	5.7
B11	0.19	Α	58%	0.55	0.70	20	2.0%	3.5	20	2.0%	20.0	2.8	0.1	3.6	40.0	16.3	5.0
B12	0.07	А	29%	0.31	0.52	20	2.0%	5.0	19	2.5%	20.0	3.2	0.1	5.1	39.0	21.3	5.1
B13	0.23	A	30%	0.33	0.54	20	2.0%	4.9	450	2.2%	20.0	3.0	2.5	7.5	470.0	24.6	7.5
B14	0.12	А	0%	0.08	0.35	20	25.0%	2.8	35	25.0%	15.0	7.5	0.1	2.9	55.0	26.1	5.0
B15	0.24	А	25%	0.29	0.50	15	10.0%	2.7	365	3.0%	15.0	2.6	2.3	5.0	380.0	24.6	5.0
B16	0.11	Α	9%	0.15	0.41	15	10.0%	3.1	150	1.5%	15.0	1.9	1.3	4.4	165.0	26.4	5.0

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

	Project Name: PALMER VILLAGE n: S-Vear DIRECT RUNOFF TOTAL RUNOFF STREET															F Calo	Projec culate hecke	t No.: d By: d By:	2514 NQJ	901	LAGE		
				DIREC	T RUN	OFF			TC)TAL R	UNOF	F	S	TREET			PI	PE		TRAVEL TIME			
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	EX1	EX1	0.15	0.08	7.9	0.01	4.49	0.04															OFFSITE BASIN EX1 FLOW @ DPEX1, FLOW INTO BASIN A1 (ROUTED IN SF2)
	EX2	EX2	0.46	0.08	8.1	0.04	4.45	0.2															BASIN EX2 FLOW @ DPEX2, FLOW INTO BASIN A2 (ROUTED IN SF2)
	1	A1		0.56		0.42			7.9	0.43	4.49	1.9	1.9	0.43	1.0					170	2.0	1.4	BASIN A1 & DPEX1 FLOW @ DP1, C&G FLOW TO DP3
		A2	0.17	0.66	7.4	0.11	4.58	0.5															BASIN A2 FLOW @ DP3 (ROUTED IN SF2)
		A3	0.11	0.60	6.1	0.07	4.86	0.3															BASIN A3 FLOW @ DP4 (ROUTED IN SF2)
	2	A4		0.58			4.92		0 1	0.45	4.45	2.0	2.0	0.45	1.0					170	2.0	1.4	BASIN A4 & DPEX2 FLOW @ DP2, C&G TO DP4
	3	A4	0.72	0.56	5.7	0.41	4.72	2.0		0.43			0.5	0.12	1.0	19	0.42	2.0	18	60 5			DP3 FLOW-BY, C&G FLOW TO DP5 DP1 & BASIN A2 FLOW CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP4.1
	4									0.52			0.5	0.11	1.0			2.0		60		0.5	DP4 FLOW-BY, C&G FLOW TO DP6 BASIN A3 & DP2 FLOW CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP4.1
	4.1									0.84								2.0		123			COMBINED DP3&DP4 CAPTURED FLOW, PIPE FLOW TO DP8.1
	5	A5	0.77	0.47	7.2	0.36	4.61	1.7		0.48		2.1	2.1	0.48	1.0	0.0	1.00	2.0	10		2.0		BASIN A5 & DP3 FLOW by @ DP5, C&G FLOW TO DP8
	0	A6				0.19			0.0	0.10		2.1											BASIN A6 FLOW @ DP8 (ROUTED IN SF2)
	6	A7	0.54			0.27			7 0	0.38	4.50	1.7	1.7	0.38	1.0					130	2.0	1.1	BASIN A7 FLOW & DP4 FLOW-BY @ DP6, C&G FLOW TO DP9
	7	A8		0.44		0.27		1.3	7.0	5.50	1.50	1.7	1.4	0.31	1.0					100	2.0	0.8	BASIN A8 FLOW @ DP7, C&G FLOW TO DP8
	8	710	0.70	0.11	7.0	0.01	1.00		9.3	0.98	4.24	4.1				4.1	0.98	2.0	30	5	6.7	0.0	BASIN A6, DP5 & DP7 FLOW @ DP8, CAPTURED BY DBL. DENVER TYPE 16 COMBO INLET, PIPE FLOW TO DP9.1
	8.1									1.81							1.81			55			DP4.1 & DP8 FLOW @ DP8.1, PIPE FLOW TO DP9.1
	9	A9	0.72	0.56	8.0	0.40	4.46	1.8		0.78								2.0		5			DP6 & BASIN A9 FLOW @ DP9, CAPTURED BY TRP. DENVER TYPE 16 COMBO INLET, PIPE FLOW TO DP9.1
	9.1									2.59								5.0			12.5		DP8.1 & DP9 FLOW @ DP9.1, PIPE FLOW TO DP10 (WATER QUALITY POND)
	10	A10	0.46	0.12	9.5	0.05	4.21	0.2	9.8	2.64	4.16	11.0											BASIN A1-10 FLOW @ DP10, TOTAL FLOW ENTERING WATER QUALITY POND
		A11	0.29	0.33	11.0	0.10	3.99	0.4															BASIN A11 FLOW, FOLLOWS HISTORIC DRAINAGE PATTERNS TO CONSTITUTION AVENUE
		A12	0.14	0.37	8.0	0.05	4.47	0.2															BASIN A12 FLOW, FOLLOWS HISTORIC DRAINAGE PATTERNS TO CONSTITUTION AVENUE

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

odivision: Location: gn Storm:	Colora	do Spr														P Calc	roject ulatec ieckec	No.: By:	2514 NQJ		LAGE			
				DIREC	CT RUN	NOFF			TC	DTAL R	UNOFF	F	ST	REET			PIF	PE		TRAV	EL TIM	E		
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t, (min)		REMARKS
	15	B1	0.65	0.47	6.5	0.30	4.76	1.4					1.4	0.30	2.33					160	3.1	0.	.9 BASI	IN B1 FLOW @ DP15, C&G FLOW TO DP17
													0.3	0.06	2.3					70				7 FLOW-BY, C&G FLOW TO DP19
	17	B2	0.08	0.90	5.0	0.07	5.17	0.4	7.4	0.37	4.58	1.7	-+			1.4	0.31	5.0	18	33	7.2	0.	.1 BASI	IN B2 AND DP15 FLOW @ DP17, CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP18.1
		B3	0.11	0.83	5.0	0.09	5.17	0.5					25	0.52	2.2					185	3.1	1		IN B3 FLOW @ DP18 (ROUTED IN SF2) IN B4 FLOW @ DP16, C&G FLOW TO DP18
	16	B4	0.88	0.59	6.7	0.52	4.74	2.5						0.52						100	3.1		.U DASII	N 64 FLOW @ DP 10, C&G FLOW TO DP 16
	18								77	0.61	4.53	2.8	0.8	0.17	2.3	2.0	0.44	2.0	18	75 5				8 FLOW-BY, C&G FLOW TO DP20 In B3 & DP16 FLOW @ DP18, CAPTURED BY DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP18.1
	18.1					_	_		1.1	0.75	4.52	3.4	0.5	0.11	2.5	3.4	0.75	2.0	18	160 103		0.	0.5 DP19	7 & DP18 CAPTURED FLOW, PIPE FLOW TO DP22.1 9 FLOW-BY, C&G FLOW TO DP23
	19	B5	0.60	0.49	6.2	0.29	4.85	1.4	6.2	0.35	4.85	1.7	—			1.2	0.25	2.0	18	103	5.0	0.	.3 BASI	IN B5 & DP17 FLOW-BY @ DP19, CAPTURED IN SINGLE DENVER TYPE 16 COMBO INLET, PIPE TO DP23.1
		B6	0.08	0.80	5.0	0.06	5.17	0.3															BASI	IN B6 FLOW AT DP23 (ROUTED IN SF2)
		B7	0.13	0.77	5.0	0.10	5.17	0.5															BASI	IN B7 FLOW AT DP22 (ROUTED IN SF2)
	-									0.50			2.6	0.59	2.5					125	3.2	0.		IN B8 & DP18 FLOW-BY @DP20, C&G FLOW TO DP22
	20	B8		0.58		0.42		2.1	0.1	0.59	4.45	2.0		-				_					-	
	21	B15	0.24	0.29	5.0	0.07	5.17	0.4				_	0.1	0.02	1	0.4	0.07	1.0	18	145				IN B15 FLOW @ DP21, CAPTURED IN TYPE C INLET, PIPED TO DP22.1 2 FLOW-BY, C&G FLOW TO DP23
	22	B9	0.54	0.58	6.5	0.31	4.78	1.5								1.4	0.29	2.0	18	45				IN B9 FLOW CAPTURED BY DBL DENVER TYPE 16 COMBO INLET, PIPE TO DP22.1
	22.1								6.6	0.36	4.75	1.7				1.7	0.36	2.0	18	25	5.5	0.	.1 COM	//////////////////////////////////////
	23								7.0	0.71	4.66	3.3				3.3	0.71	5.0	18	33	9.3	0	1 BASI	IN B7, DP20 FLOW-BY & DP22 FLOW-BY@ DP23, CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP23.1
	23.1										4.45		\neg				1.82			33				3 CAPTURED FLOW & DP22.1 FLOW, PIPE TO DP24.1
													\neg											
	24										4.72		-				0.17			5				IN B6 & DP19 FLOW-BY @ DP24, CAPTURED IN TRIPLE DENVER TYPE 16 COMBO INLET, PIPE TO DP24.1
	24.1				_	_	_		8.1	2.23	4.44	9.9	+	_	_	9.9	2.23	5.0	30	55	12.1	0.	.1 COM	IBINED DP23.1 & DP24 FLOW, PIPE TO DP25
	25	B10	0.48	0.10	5.7	0.05	4.98	0.2	8.2	2.28	4.42	10.1	\rightarrow										DP24	4.1 AND BASIN B10 FLOW, TOTAL FLOW @ DP25 (FSD WATER QUALITY POND)
		B11	0.19	0.55	5.0	0.11	5.17	0.6															BASI	IN B11 FLOW, FOLLOW EX PATTERNS & FLOWS EAST OFF SITE
		B12	0.07	0.31	5.1	0.02	5.13	0.1															BASI	IN B12 FLOW, FOLLOW EX PATTERNS & FLOWS NORTH TO CONSTITUTION AVENUE
		B13	0.23	0.33	7.5	0.08	4.57	0.4															BASI	IN B13 FLOW, FOLLOW EX PATTERNS & FLOWS NORTH TO CONSTITUTION AVENUE
	T	B14	0.12	0.08	5.0	0.01	5.17	0.1		T		Γ			Ī	Τ	Τ						BASI	IN B11 FLOW, FOLLOW EX PATTERNS & FLOWS EAST OFF SITE
		B16	0.11	0.15	5.0	0.02	5.17	0.1	Ì														BASI	IN B11 FLOW, SWALE CONVEYS FLOW OFFSITE EAST (FOLLLOWS HISTORIC PATTERNS)

Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

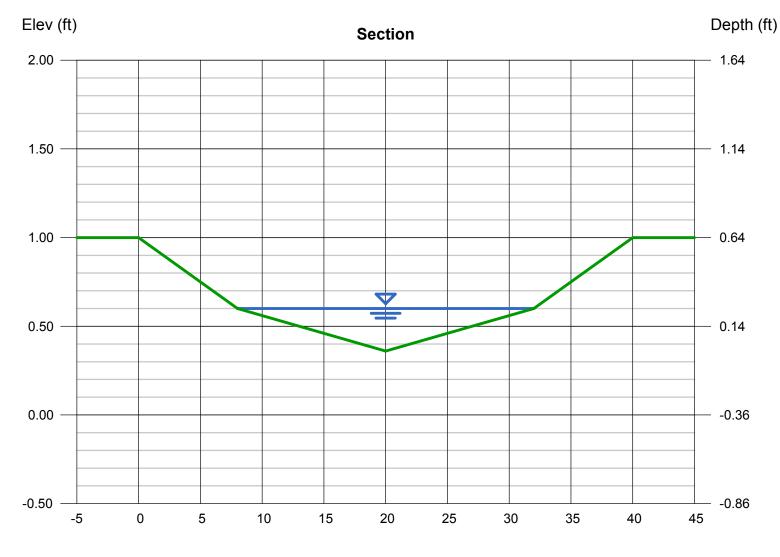
	Colora	R VILL do Spr ar										-				É Calc	Projec culate hecke	t No.: d By:	2514 NQJ	901	LLAGE		
				DIREC	T RUN	NOFF			T	OTAL	RUNO	FF	9	TREE	ſ		PI	PE		TRAV	'EL TIN	ΛE	
TREE	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	EX1	EX1	0.15	0.35	7.9	0.05	4.49	0.2															OFFSITE BASIN EX1 FLOW @ DPEX1, FLOW INTO BASIN A1
	EX2	EX2	0.46	0.35	8.1	0.16	4.45	0.7					4.3	0.57	1.0					170	2.0	1.4	BASIN EX2 FLOW @ DPEX2, BASIN A1 & DPEX1 FLOW @ DP1, C&G FLOW TO DP3
	1	A1	0.74	0.70	6.4	0.52	8.06	4.2	7.9	0.57	7.54	4.3	1.0	2.07	1.0						2.0		
		A2	0.17	0.78	7.4	0.13	7.69	1.0															BASIN A2 FLOW @ DP3 (ROUTED IN SF2)
		A3	0.11	0.74	6.1	0.08	8.16	0.7															BASIN A3 FLOW @ DP4 (ROUTED IN SF2)
	2	A4	0.72	0.71	5.9	0.51	8 27	4.2	81	0.67	7.47	5.0	5.0	0.67	1.0					170	2.0	1.4	BASIN A4 & DPEX2 FLOW @ DP2, C&G TO DP4
	3										7.55		2.0	0.26	1	2.2	0.44	2.0	18	60	2.0 6.8		DP3 FLOW-BY, C&G FLOW TO DP5 DP1 & BASIN A2 FLOW CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP4.1
													2.3	0.3	1					60	2.0	0.5	DP4 FLOW-BY, C&G FLOW TO DP6
	4								7.3	0.75	7.72	5.8				3.5	0.45	2.0	18	31	6.8	0.1	BASIN A3 & DP2 FLOW CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP4.1
	4.1								7.8	0.89	7.55	6.7	E 4	0.75	1	6.7	7.55	2.0	18	123	8.2		COMBINED DP3 & DP4 CAPTURED FLOW, PIPE FLOW TO DP8.1 BASIN A5 & DP3 FLOW-BY @ DP5. C&G FLOW TO DP8
	5	A5	0.77	0.63	7.2	0.49	7.75	3.8	8.3	0.75	7.40	5.6	0.C	0.75						115	2.0	1.0	BASIN AS & DP3 FLOW-BT @ DP3, L&G FLOW TO DP8
		A6	0.26	0.84	7.9	0.22	7.52	1.7															BASIN A6 FLOW @ DP8 (ROUTED IN SF2)
	6	A7	0.54	0.66				2.8	7.8	0.65	7.56	4.9	4.9	0.65	1					130	2.0	1.1	BASIN A7 FLOW & DP4 FLOW-BY @ DP6, C&G FLOW TO DP9
	7	A8	0.70				7.56		7.0	0.00	1.50	/	3.3	0.43	1					100	2.0	0.8	BASIN A8 FLOW @ DP7, C&G FLOW TO DP8
		<i>n</i> 0	0.70	0.01	7.0	0.43	1.00	3.3	0.0	1.00	7.10	10.0				10.0	1.40		20	-	0.7		
	8										7.12						1.40						BASIN A6, DP5 & DP7 FLOW @ DP8, CAPTURED BY DBL. DENVER TYPE 16 COMBO INLET, PIPE FLOW TO DP9.1
	8.1								9.3	2.29	7.12	16.3				16.3	2.29	2.0	30	55	2.0	0.5	DP4.1 & DP8 FLOW @ DP8.1, PIPE FLOW TO DP9.1
	9	A9	0.72	0.70	8.0	0.51	7.49	3.8	8.9	1.16	7.23	8.4				8.4	1.16	2.0	30	5	8.3	0.0	DP6 & BASIN A9 FLOW @DP9, CAPTURED BY TPL. DENVER TYPE 16 COMBO INLET, PIPE FLOW TO DP9.1
	9.1								9.7	3.45	7.00	24.1				24.1	3.45	5.0	30	55	15.7	0.1	DP8.1 & DP9 FLOW @ DP9.1, PIPE FLOW TO DP10 (WATER QUALITY POND)
	10	A10	0.46	0.38	9.5	0.17	7.07	1.2	9.8	3.62	6.98	25.3											BASIN A1-10 FLOW @ DP10, TOTAL FLOW ENTERING WATER QUALITY POND
		A11	0.29	0.61	11.0	0.18	6.70	1.2															BASIN A11 FLOW, FOLLOWS HISTORIC DRAINAGE PATTERNS TO CONSTITUTION AVENUE
		A12	0.14	0.57	8.0	0.08	7.50	0.6															BASIN A12 FLOW, FOLLOWS HISTORIC DRAINAGE PATTERNS TO CONSTITUTION AVENUE

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

tion:		ER VILL Ido Spr ear														Cal	Projec culate hecke	t No.: d By:	2514 NQJ		LAGE		
				DIRE	CT RUI	NOFF			TOT	AL RL	JNOF	F	S	TREE	Г		PI	PE		TRAV	EL TIN	ΛE	
TREE	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	U^A (ac)	l (in/hr)	Q (cfs)	Qstreet (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	15	B1	0.65	0.63	6.5	0.41	8.00	3.3					3.3	0.41	2.3					160	3.1	0.9	BASIN B1 FLOW @ DP15, C&G FLOW TO DP17
	17	B2	0.08	0.96	5.0	0.08	8.68	0.7	7.4 C	10	7 68	3.8	1.4	0.18	2.3	24	0.31	5.0	18	70			DP17 FLOW-BY, C&G FLOW TO DP19 BASIN B2 AND DP15 FLOW @ DP17, CAPTURED IN DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP18.1
	17								7.4 0		7.00	5.0				2.4	0.51	5.0	10	55	0.5	0.1	
		B3	0.11	0.90	5.0	0.10	8.68	0.9		-			5.1	0.64	2.3					185	3.1	1.0	BASIN B3 FLOW @ DP18 (ROUTED IN SF2) BASIN B4 FLOW @ DP16, C&G FLOW TO DP18
	16	B4	0.88	0.72	6.7	0.64	7.96	5.1		-	_		2.5	0.33	2.3					75	3.0	0.4	DP18 FLOW-BY, C&G FLOW TO DP20
	18								7.7 0	.74	7.60	5.6				3.1	0.41	2.0	18				BASIN B3 & DP16 FLOW @ DP18, CAPTURED BY DBL. DENVER TYPE 16 COMBO INLET, PIPE TO DP18.1
	18.1								7.7 0	.72	7.60	5.5				5.5	0.72	2.0	18	160			DP17 & DP18 CAPTURED FLOW, PIPE FLOW TO DP22.1
	19	B5	0.60	0.64	6.2	0.39	8.14	3.2	6.2 0	.57	8.14	4.6	2.5	0.31	2.5	2.1	0.26	2.0	18	103 103			DP19 FLOW-BY, C&G FLOW TO DP23 BASIN B5 & DP17 FLOW-BY @ DP19, CAPTURED IN SINGLE DENVER TYPE 16 COMBO INLET, PIPE TO DP23.1
		B6	0.08	0.88	5.0	0.07	8.68	0.6															BASIN B6 FLOW AT DP23 (ROUTED IN SF2)
		B7	0.13	0.87			8.68																BASIN B7 FLOW AT DP22 (ROUTED IN SF2)
	20	B8		0.71			8.35		8.1 0	OF	7 47	6.4	6.4	0.85	2.5					125	3.2	0.7	BASIN B8 & DP18 FLOW-BY @DP20, C&G FLOW TO DP22
	20								0.1 U	.00	7.47	0.4			-		-						
	21	B15	0.24	0.50	5.0	0.12	8.68	1.0			-		0.8	0.09	1	1.0	0.12	1.0	18	145 65			BASIN B15 FLOW @ DP21, CAPTURED IN TYPE C INLET, PIPED TO DP22.1 DP22 FLOW-BY, C&G FLOW TO DP23
	22	B9	0.54	0.71	6.5	0.38	8.03	3.1		_	_					2.3	0.29	2.0	18	45	6.1	0.1	BASIN B9 FLOW CAPTURED BY DBL DENVER TYPE 16 COMBO INLET, PIPE TO DP22.1
	22.1								6.6 0	.41	7.98	3.2				3.2	0.41	2.0	18	25	6.7	0.1	COMBINED DP21 & DP22 CAPTURED FLOW, PIPE TO DP23.1
	23								7.0 1	.06	7.82	8.3	0.4	0.05	2	7.9	1.01	5.0	18	33	12.0	0.0	DP23 FLOW BY, OVERTOP CROWN TO DP24 BASIN B7, DP20 FLOW-BY & DP22 FLOW-BY@ DP23, CAPTURED IN DBL DENVER TYPE 16 COMBO INLET, PIPE TO DP23.1
	23.1								8.0 2	.14	7.49	16.0				16.0	2.14	3.0	24	33	11.8	0.0	DP23 CAPTURED FLOW & DP22.1 FLOW, PIPE TO DP24.1
	24								6.7 C							3.0	0.38	5.0	24	5	8.5	0.0	BASIN B6 & DP19 FLOW-BY @ DP24, CAPTURED IN TRIPLE DENVER TYPE 16 COMBO INLET, PIPE TO DP24.1
	24.1								8.1 2								2.77						COMBINED DP23.1 & DP24 FLOW, PIPE TO DP25
	25	B10	0.48	0.36	5.7	0.17	8.37	1.4															DP24.1 AND BASIN B10 FLOW, TOTAL FLOW @ DP25 (FSD WATER QUALITY POND)
		B11	0.19	0.70			8.68																BASIN B11 FLOW, FOLLOW EX PATTERNS & FLOWS EAST OFF SITE
		B12	0.07	0.52	5.1																		BASIN B12 FLOW, FOLLOW EX PATTERNS & FLOWS NORTH TO CONSTITUTION AVENUE
		B13	0.23	0.54			7.67																BASIN B13 FLOW, FOLLOW EX PATTERNS & FLOWS NORTH TO CONSTITUTION AVENUE
		B14	0.12	0.35	5.0	0.04	8.68	0.3															BASIN B11 FLOW, FOLLOW EX PATTERNS & FLOWS EAST OFF SITE
		B16	0.11	0.41	5.0	0.04	8.68	0.3															BASIN B11 FLOW, SWALE CONVEYS FLOW OFFSITE EAST (FOLLLOWS HISTORIC PATTERNS)

Street and Pipe C*A values are determined by Q/I using the catchment's intensity value.

Appendix C Hydraulic Calculations

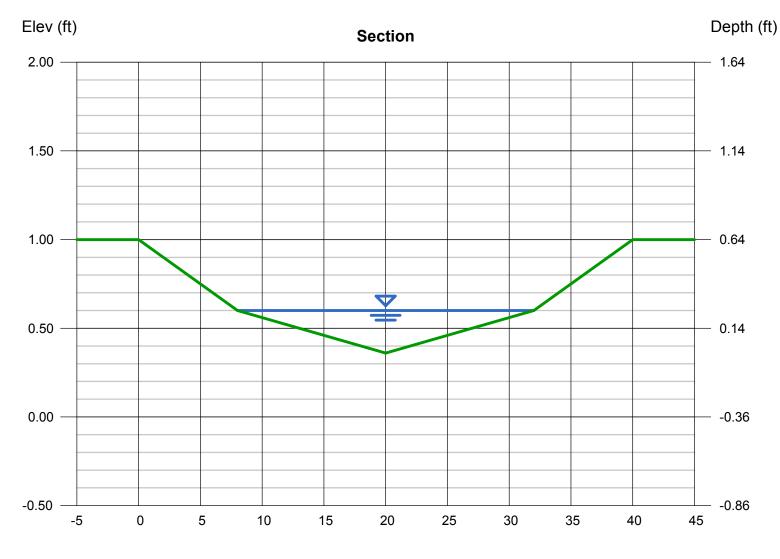

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Alley Street Capacity - 1% CL - Allowable Spread - Edge of Pavement

User-defined		Highlighted	
Invert Elev (ft)	= 0.36	Depth (ft)	= 0.24
Slope (%)	= 1.00	Q (cfs)	= 6.000
N-Value	= 0.016	Area (sqft)	= 2.88
		Velocity (ft/s)	= 2.08
Calculations		Wetted Perim (ft)	= 24.00
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.25
Known Q (cfs)	= 6.00	Top Width (ft)	= 24.00
		EGL (ft)	= 0.31

(Sta, El, n)-(Sta, El, n)... (0.00, 1.00)-(8.00, 0.60, 0.016)-(20.00, 0.36, 0.016)-(32.00, 0.60, 0.016)-(40.00, 1.00, 0.016)


Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Alley Street Capacity - 1.55% CL - Allowable Spread - Edge of Pavement

User-defined		Highlighted	
Invert Elev (ft)	= 0.36	Depth (ft)	= 0.24
Slope (%)	= 1.55	Q (cfs)	= 8.000
N-Value	= 0.016	Area (sqft)	= 2.88
		Velocity (ft/s)	= 2.78
Calculations		Wetted Perim (ft)	= 24.00
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.28
Known Q (cfs)	= 8.00	Top Width (ft)	= 24.00
		EGL (ft)	= 0.36

(Sta, El, n)-(Sta, El, n)... (0.00, 1.00)-(8.00, 0.60, 0.016)-(20.00, 0.36, 0.016)-(32.00, 0.60, 0.016)-(40.00, 1.00, 0.016)

Version 4.05 Released March 2017

INLET MANAGEMENT

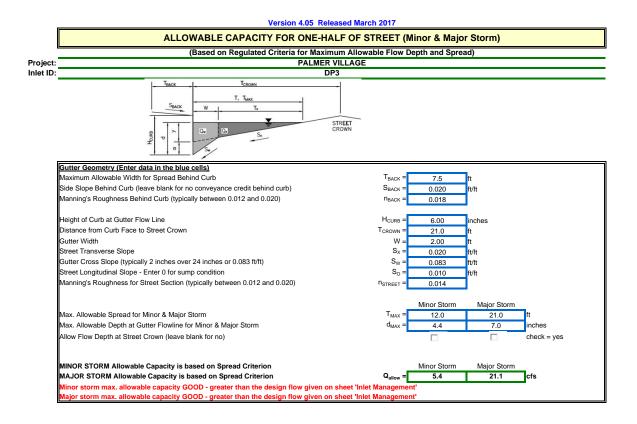
Worksheet Protected

NLET NAME	DP3	DP4	STREET CAPACITY @ DP4	DP8	DP9	<u>DP24</u>
te Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
let Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
ydraulic Condition	On Grade	On Grade	On Grade	In Sump	In Sump	In Sump
let Type	Denver No. 16 Combination	Denver No. 16 Combination		Denver No. 16 Combination	Denver No. 16 Combination	Denver No. 16 Combination
R-DEFINED INPUT						
ser-Defined Design Flows						
linor Q _{Known} (cfs)	2.4	2.4	2.4	4.1	3.3	0.8
lajor Q _{Known} (cfs)	5.3	5.8	5.8	10.0	8.4	3.0
vpass (Carry-Over) Flow from Upstream						
eceive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
linor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
lajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
Vatershed Characteristics ubcatchment Area (acres)						
ercent Impervious						
RCS Soil Type						
/atershed Profile			-			
verland Slope (ft/ft)						
verland Length (ft)						
hannel Slope (ft/ft)						
hannel Length (ft)						
linor Storm Rainfall Input esign Storm Return Period, Tr (years)						
ne-Hour Precipitation, P1 (inches)						
the field if feelphation, if (menes)						
lajor Storm Rainfall Input						
esign Storm Return Period, T _r (years)						

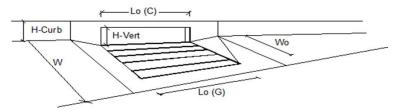
CALCULATED OUTPUT

linor Total Design Peak Flow, Q (cfs)	2.4	2.4	2.4	4.1	3.3	0.8
lajor Total Design Peak Flow, Q (cfs)	5.3	5.8	5.8	10.0	8.4	3.0
linor Flow Bypassed Downstream, Qb (cfs)	0.5	0.5		N/A	N/A	N/A
lajor Flow Bypassed Downstream, Q _b (cfs)	2.0	2.3		N/A	N/A	N/A
linor Storm (Calculated) Analysis of Flow Time						
	N/A	N/A	N/A	N/A	N/A	N/A
5	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
hannel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
hannel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
alculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
egional T _c	N/A	N/A	N/A	N/A	N/A	N/A
ecommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
selected by User	N/A	N/A	N/A	N/A	N/A	N/A
esign Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
alculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A
lajor Storm (Calculated) Analysis of Flow Time						
;	N/A	N/A	N/A	N/A	N/A	N/A
	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
hannel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
hannel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
alculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
egional T _c	N/A	N/A	N/A	N/A	N/A	N/A
ecommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
selected by User	N/A	N/A	N/A	N/A	N/A	N/A
esign Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
alculated Local Peak Flow, Q.	N/A	N/A	N/A	N/A	N/A	N/A

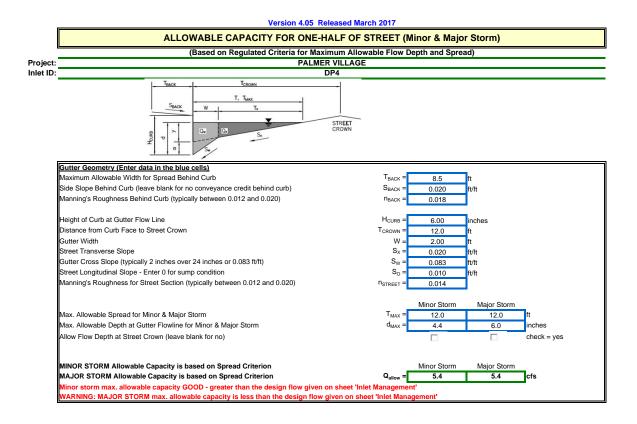
Version 4.05 Released March 2017

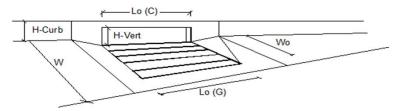

INLET MANAGEMENT

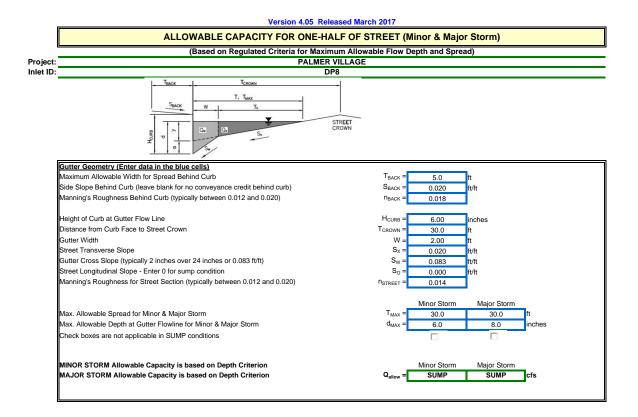
Worksheet Protected


NLET NAME	DP23	<u>DP17</u>	<u>DP18</u>	DP22	<u>DP19</u>	DP21
ite Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	RURAL
let Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	AREA
lydraulic Condition	In Sump	On Grade	On Grade	On Grade	On Grade	Swale
nlet Type	Denver No. 16 Combination	CDOT Type C				
R-DEFINED INPUT						
Iser-Defined Design Flows						
linor Q _{Known} (cfs)	3.3	1.7	2.8	1.5	1.7	0.4
fajor Q _{Known} (cfs)	8.3	3.8	5.6	3.1	4.6	1.0
ypass (Carry-Over) Flow from Upstream						
eceive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received				
linor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
ajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
Vatershed Characteristics subcatchment Area (acres) Percent Impervious						
IRCS Soil Type						
Vatershed Profile						
Overland Slope (ft/ft)						
hannel Slope (ft/ft)						
overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)						
channel Slope (ft/ft) channel Length (ft) linor Storm Rainfall Input						
hannel Slope (ft/ft) hannel Length (ft) linor Storm Rainfall Input lesign Storm Return Period, T _r (years)						
hannel Slope (ft/ft) hannel Length (ft) linor Storm Rainfall Input lesign Storm Return Period, T _r (years)						
hannel Slope (ft/ft) hannel Length (ft) inor Storm Rainfall Input esign Storm Return Period, T _r (years) ne-Hour Precipitation, P ₁ (inches) ajor Storm Rainfall Input						
channel Slope (ft/ft) channel Length (ft) linor Storm Rainfall Input						

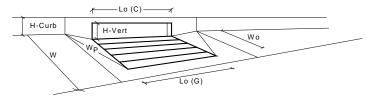
CALCULATED OUTPUT


linor Total Design Peak Flow, Q (cfs)	3.3	1.7	2.8	1.5	1.7	0.4
ajor Total Design Peak Flow, Q (cfs)	8.3	3.8	5.6	3.1	4.6	1.0
inor Flow Bypassed Downstream, Q _b (cfs)	N/A	0.3	0.8	0.1	0.5	0.0
ajor Flow Bypassed Downstream, Q _b (cfs)	N/A	1.4	2.5	0.8	2.5	0.0
linor Storm (Calculated) Analysis of Flow T						
	N/A	N/A	N/A	N/A	N/A	N/A
	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
nannel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
rerland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
annel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
alculated Time of Concentration, Tc	N/A	N/A	N/A	N/A	N/A	N/A
egional T _c	N/A	N/A	N/A	N/A	N/A	N/A
commended T _c	N/A	N/A	N/A	N/A	N/A	N/A
selected by User	N/A	N/A	N/A	N/A	N/A	N/A
esign Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
alculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A
lajor Storm (Calculated) Analysis of Flow T						
alor Storm (Calculated) Analysis of Flow T	N/A	N/A	N/A	N/A	N/A	N/A
	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
annel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
verland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
nannel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
alculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
egional T _c	N/A	N/A	N/A	N/A	N/A	N/A
ecommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
selected by User	N/A	N/A	N/A	N/A	N/A	N/A
sign Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
alculated Local Peak Flow, Q	N/A	N/A	N/A	N/A	N/A	N/A

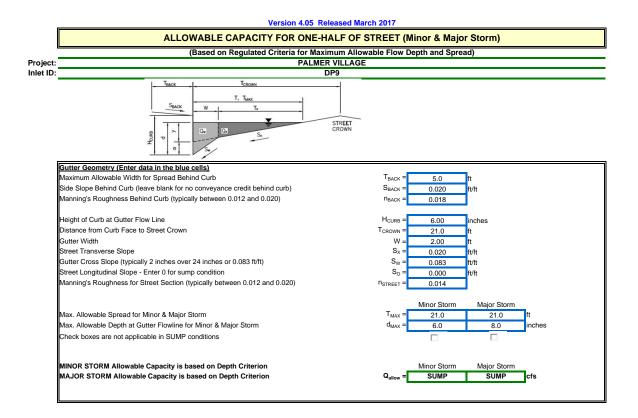

Version 4.05 Released March 2017


Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	1.9	3.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.5	2.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	81	62	%

Version 4.05 Released March 2017

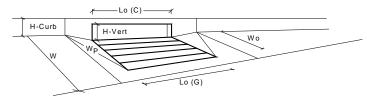


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	1.9	3.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.5	2.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	81	61	%

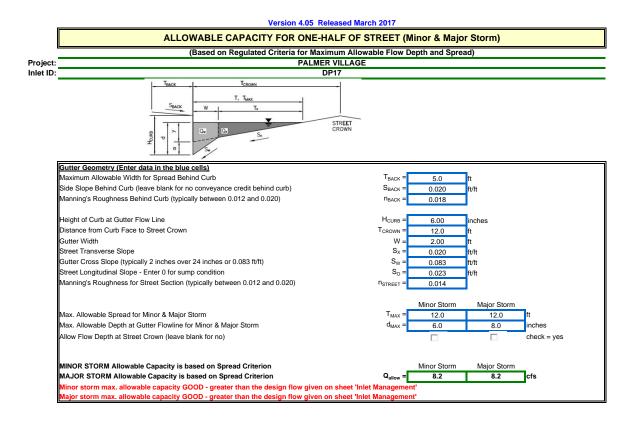


INLET IN A SUMP OR SAG LOCATION

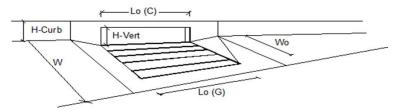
Version 4.05 Released March 2017

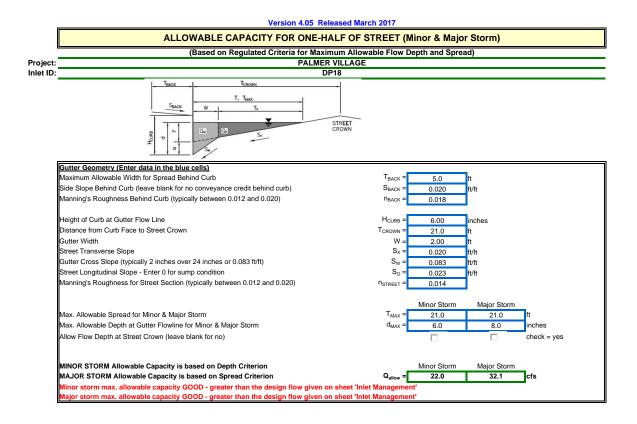


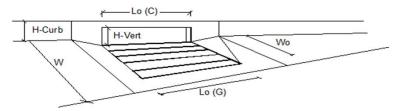
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	0.689	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.71	0.94	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.71	0.94	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.2	12.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.1	10.0	cfs

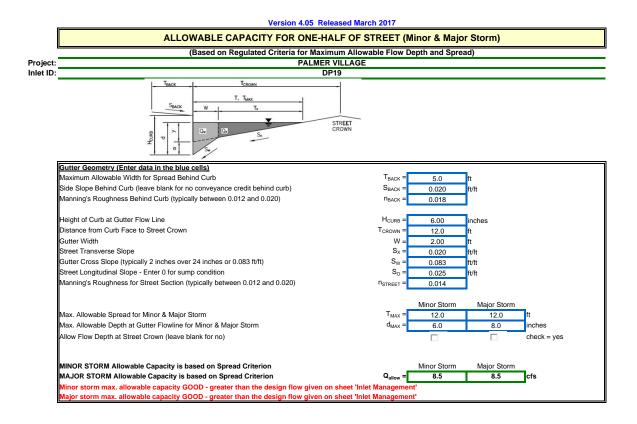


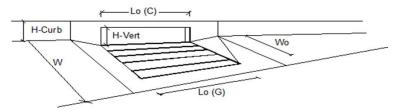
INLET IN A SUMP OR SAG LOCATION


Version 4.05 Released March 2017

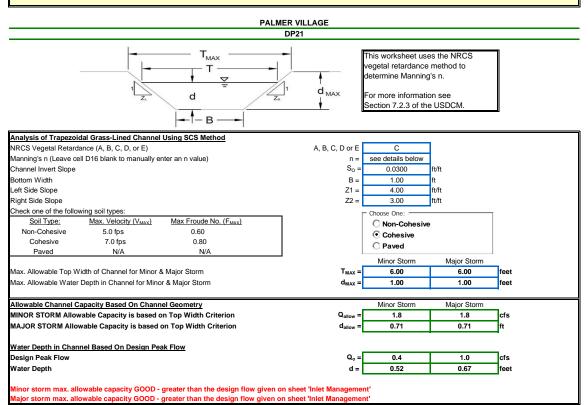

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	0.569	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.38	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.62	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.97	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.57	0.62	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.6	9.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.3	8.4	cfs


Version 4.05 Released March 2017

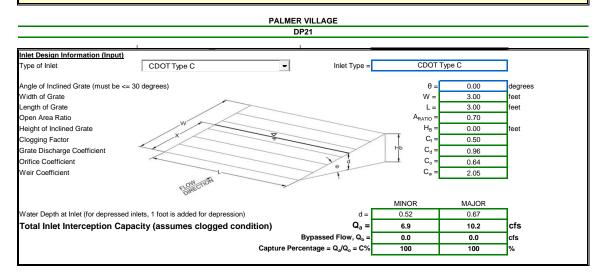

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.4	2.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.3	1.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	84	64	%

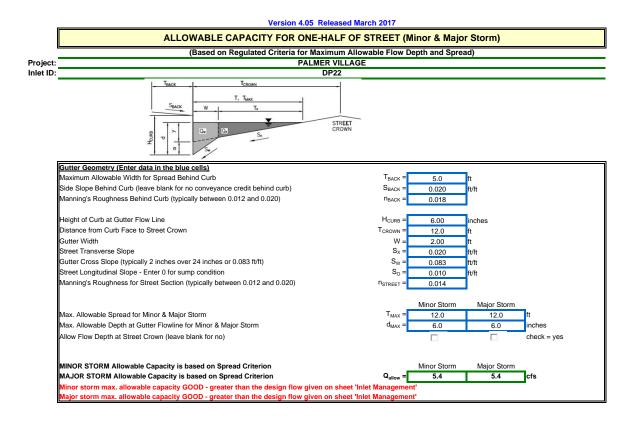

Version 4.05 Released March 2017

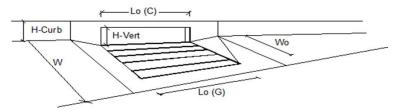
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	2.0	3.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.8	2.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	72	55	%


Version 4.05 Released March 2017

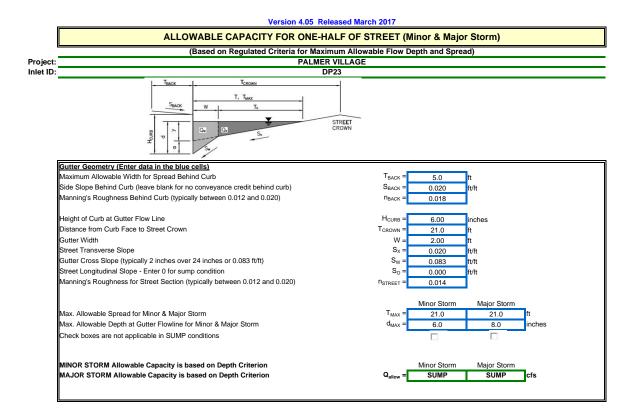
Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	1.2	2.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.5	2.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	70	46	%


Version 4.05 Released March 2017

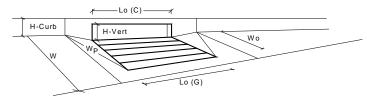

AREA INLET IN A SWALE


Version 4.05 Released March 2017

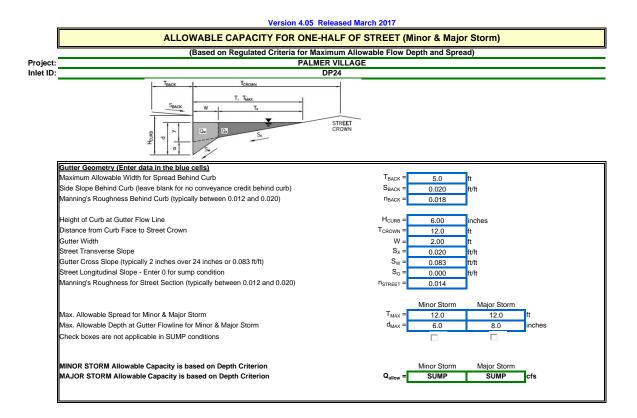
AREA INLET IN A SWALE



Version 4.05 Released March 2017

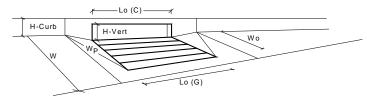


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.4	2.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	0.8	cfs
Capture Percentage = Q _a /Q _o =	C% =	92	75	%

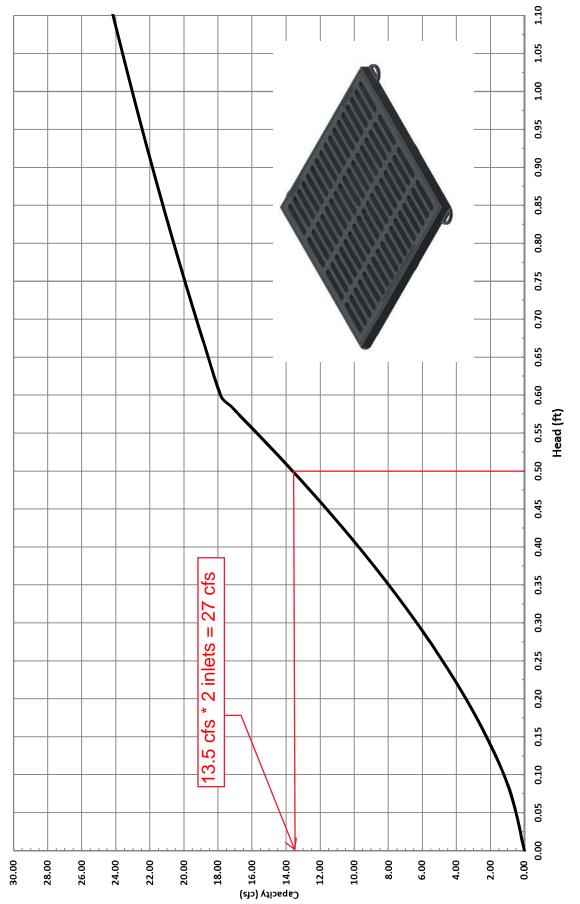


INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{o}(C) =$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	0.569	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.38	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.71	0.77	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.71	0.77	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.2	7.9	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	3.3	8.3	cfs



INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

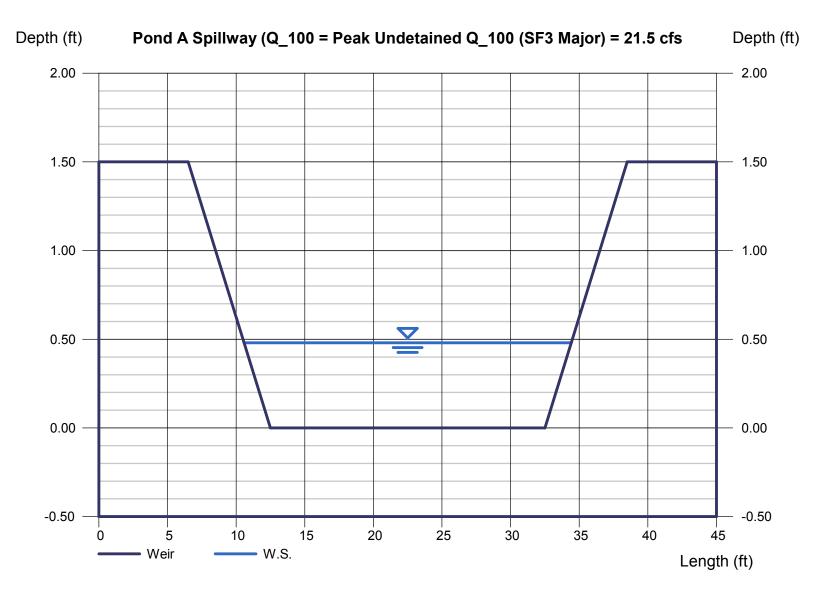
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	4.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.389	0.389	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.20	0.20	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.41	0.41	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.86	0.86	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.41	0.41	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.2	3.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.8	3.0	cfs

Nyloplast 3' x 3' Road & Highway Inlet Capacity Chart

3130 Verona Avenue • Buford, GA 30518 (866) 888-8479 / (770) 932-2443 • Fax: (770) 932-2490 © Nyloplast Inlet Capacity Charts June 2012

Nyloplast

100-year peak flow to pond (SF-3):

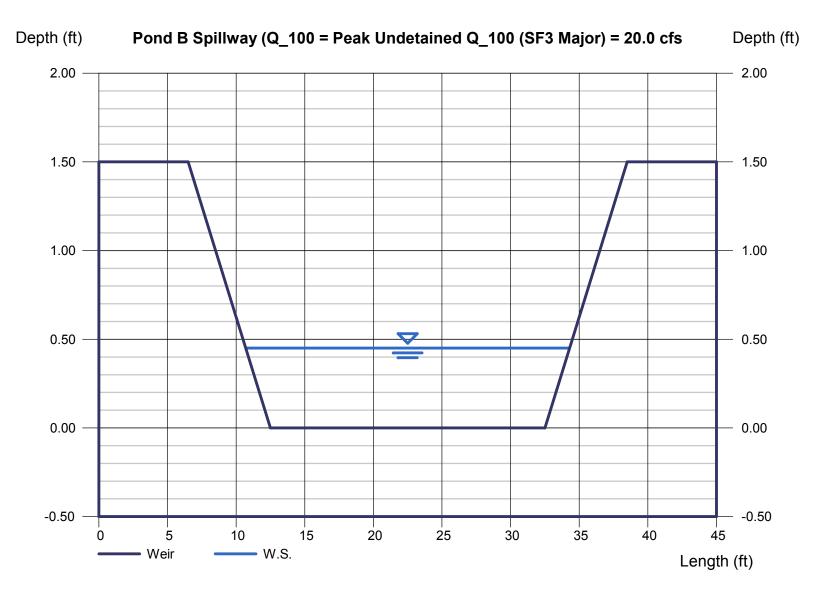

Pond A: 25.3 cfs Pond B: 21.9 cfs

Weir Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Pond A Spillway (Q_100 = Peak Undetained Q_100 (SF3 Major) = 21.5 cfs

Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.48
Bottom Length (ft)	= 20.00	Q (cfs)	= 21.50
Total Depth (ft)	= 1.50	Area (sqft)	= 10.52
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 2.04
		Top Width (ft)	= 23.84
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Known Q		
Known Q (cfs)	= 21.50		

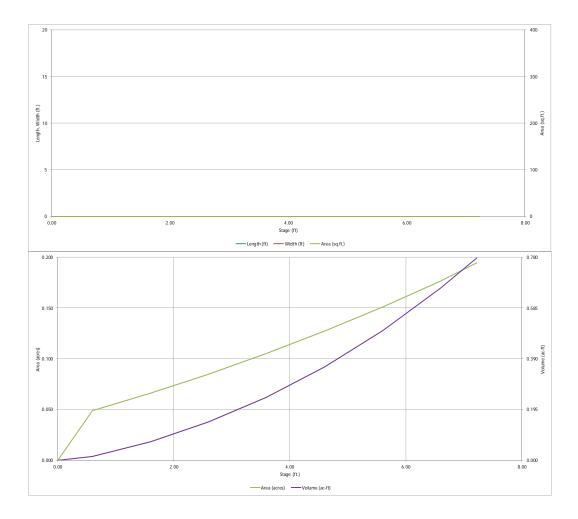


Weir Report

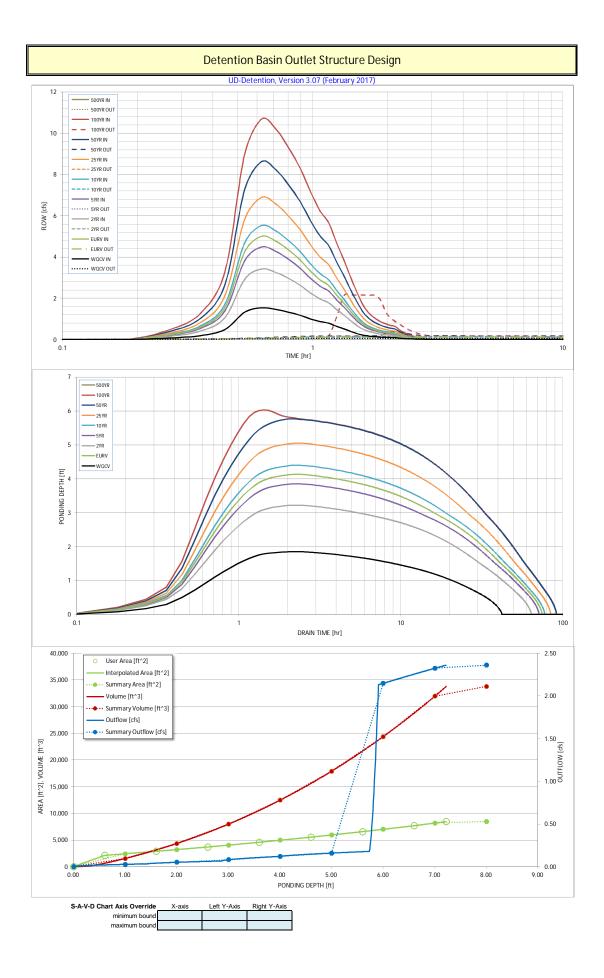
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Pond B Spillway (Q_100 = Peak Undetained Q_100 (SF3 Major) = 20.0 cfs

Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.45
Bottom Length (ft)	= 20.00	Q (cfs)	= 20.00
Total Depth (ft)	= 1.50	Area (sqft)	= 9.81
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 2.04
		Top Width (ft)	= 23.60
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Known Q		
Known Q (cfs)	= 20.00		



Appendix D Water Quality & Detention

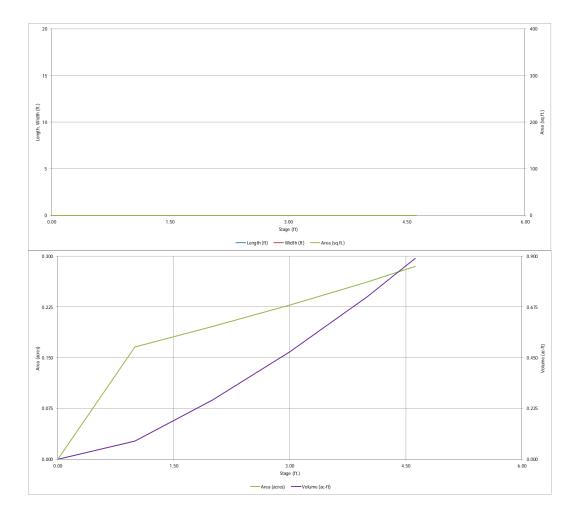


DETENTION BASIN STAGE-STORAGE TABLE BUILDER														
				UD-Dete	ention, Version 3	.07 (Febr	uary 2017	7)						
	PALMER VIL POND A (WE		.)											
ZONE 3	2 ONE 1		~											
	-1	F					_							
	1 AND 2	ORIFICI	LR.		Depth Increment =	0.1	ft Optional	1		1	Optional	1		
POOL Example Zone		tion (Reter	ntion Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft/2)	Override Area (ft/2)	Area (acre)	Volume (ft/3)	Volume (ac-ft)
Required Volume Calculation Selected BMP Type =	EDB	1		6444.4	Top of Micropool 6445		0.00				0 2,120	0.000	615	0.014
Watershed Area =	5.80	acres			6446	-	1.60				2,883	0.066	3,109	0.071
Watershed Length = Watershed Slope =	700 0.012	ft ft/ft			6447 6448	-	2.60 3.60				3,690 4,573	0.085	6,424 10,555	0.147 0.242
Watershed Imperviousness =	48.40%	percent			6449	-	4.60				5,532	0.127	15,608	0.358
Percentage Hydrologic Soil Group A = Percentage Hydrologic Soil Group B =	100.0% 0.0%	percent percent			6450 6451	-	5.60 6.60				6,566 7,676	0.151 0.176	21,657 28,778	0.497 0.661
Percentage Hydrologic Soil Groups C/D = Desired WQCV Drain Time =	0.0%	percent hours			6451.62	-	7.22				8,455	0.194	33,778	0.775
Location for 1-hr Rainfall Depths =	User Input													
Water Quality Capture Volume (WQCV) = Excess Urban Runoff Volume (EURV) =		acre-feet acre-feet	Optional User 1-hr Precipita	r Override tion		-								
2-yr Runoff Volume (P1 = 1.19 in.) =	0.219	acre-feet		inches		-								
5-yr Runoff Volume (P1 = 1.5 in.) = 10-yr Runoff Volume (P1 = 1.75 in.) =	0.288	acre-feet acre-feet	1.50 1.75	inches inches										
25-yr Runoff Volume (P1 = 2 in.) = 50-yr Runoff Volume (P1 = 2.25 in.) =	0.444	acre-feet acre-feet	2.00 2.25	inches inches		-								
100-yr Runoff Volume (P1 = 2.52 in.) =	0.691	acre-feet	2.25	inches		-								
500-yr Runoff Volume (P1 = 0 in.) = Approximate 2-yr Detention Volume =	0.000	acre-feet acre-feet		inches		-								\vdash
Approximate 5-yr Detention Volume =	0.271	acre-feet				-								
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =	0.332 0.407	acre-feet acre-feet				-								┝──┤
Approximate 50-yr Detention Volume =	0.455	acre-feet				-								
Approximate 100-yr Detention Volume =	0.514	acre-feet				-								
Stage-Storage Calculation Zone 1 Volume (WQCV) =	0.098	1												
Zone 2 Volume (EURV - Zone 1) =	0.223	acre-feet acre-feet				-		-		-				
Zone 3 Volume (100-year - Zones 1 & 2) = Total Detention Basin Volume =	0.194	acre-feet acre-feet				-								
Initial Surcharge Volume (ISV) =	user	ft*3				-								
Initial Surcharge Depth (ISD) = Total Available Detention Depth (H _{total}) =	user	ft ft				-								
Depth of Trickle Channel (H _{TC}) =	user	ft				-								
Slope of Trickle Channel (S_{TC}) = Slopes of Main Basin Sides (S_{main}) =	user	ft/ft H:V						-						
Basin Length-to-Width Ratio ($R_{L/W}$) =	user					-								
Initial Surcharge Area (A _{ISV}) =	user	ft/2				-		-						
Surcharge Volume Length (L _{ISV}) = Surcharge Volume Width (W _{ISV}) =	user	ft ft				-								
Depth of Basin Floor (H _{FLOOR}) =	user	ft				-		-						
Length of Basin Floor (L_{FLOOR}) = Width of Basin Floor (W_{FLOOR}) =	user	ft ft						-	-	-				
Area of Basin Floor (A_{FLOOR}) = Volume of Basin Floor (V_{FLOOR}) =	user	ft/2 ft/3				-								
Depth of Main Basin (H _{MMN}) =	user	ft				-		-	-					
Length of Main Basin (L_{MMN}) = Width of Main Basin (W_{MNN}) =	user	ft												
Area of Main Basin (A _{MMN}) =	user	ft/2						-	-					
Volume of Main Basin (V _{MMN}) = Calculated Total Basin Volume (V _{total}) =	user user	ft/3 acre-feet						-						
								-						
								-	-					
								-	-					
									-					
						-		-	-	-				
								-	-	-				
								-						
									-					
													I	

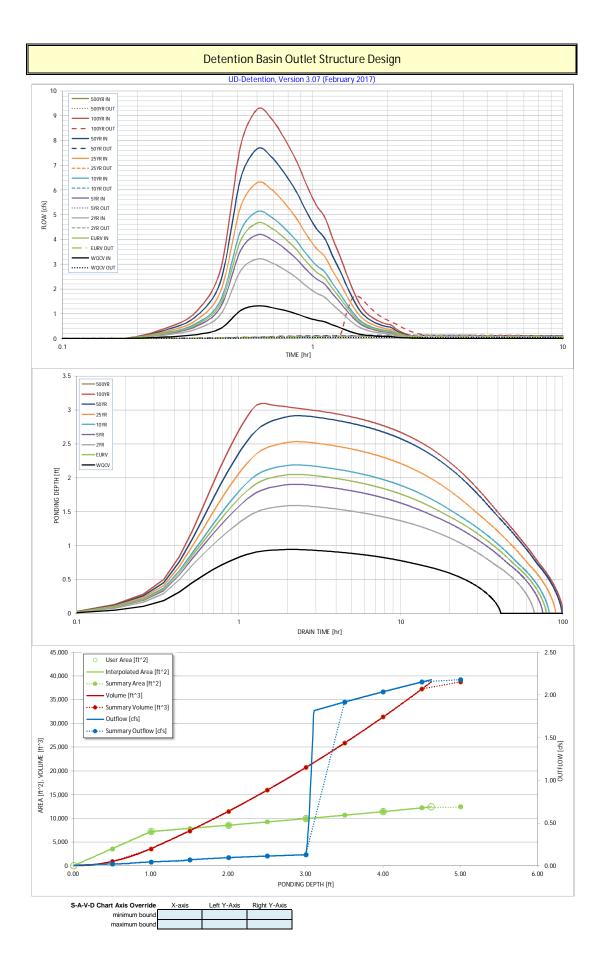
DETENTION BASIN STAGE-STORAGE TABLE BUILDER UD-Detention, Version 3.07 (February 2017)

		Dete	ntion Basin (Dutlet Struct	ure Design				
			UD-Detention, Ver	rsion 3.07 (Februa	ry 2017)				
	PALMER VILLAGE POND A (WEST PA								
ZONE 3	POND A (WEST PA	RCEL)							
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
VOLUME EURY WOCY			Zone 1 (WQCV)	1.97	0.098	Orifice Plate	1		
	100-YEA		_ ```						
ZONE 1 AND 2	ORIFICE	•	Zone 2 (EURV)	4.30	0.223	Orifice Plate			
PERMANENT ORIFICES	Configuration (R	stantion Bond)	lone 3 (100-year)	5.72	0.194	Weir&Pipe (Restrict)			
•	•				0.514	Total			
er Input: Orifice at Underdrain Outlet (typically u Underdrain Orifice Invert Depth =					Unde		ed Parameters for Ur	iderdrain ft ²	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A N/A	rt (distance below tr inches	ne filtration media su	rrace)		rdrain Orifice Area = in Orifice Centroid =	N/A N/A	feet	
	IN/ A	inches			onderdra	in onnee centrola -	IV/A	leet	
ser Input: Orifice Plate with one or more orifices	or Elliptical Slot Weir	(typically used to dra	ain WQCV and/or EU	RV in a sedimentatio	on BMP)	Calcu	lated Parameters for	Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin	oottom at Stage = 0 fl	t)	WQ Or	ifice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	4.30	ft (relative to basin I	pottom at Stage = 0 ft	t)	E	lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches				otical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	N/A	ft ²	
aar Innuts. Stage and Total Area of Each Orifica	Bow (numbered from	lowact to highaat)							
ser Input: Stage and Total Area of Each Orifice	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	ו
Stage of Orifice Centroid (ft)	0.00	1.43	2.87	4.00	(optional)	(optional)	(optional)	(optional)	1
Orifice Area (sq. inches)	0.82	0.50	1.10	0.38					1
									•
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Cir	cular or Rectangular)					Calculated	Parameters for Vert	ical Orifice	
	Not Selected	Not Selected				Salisalatoo	Not Selected	Not Selected	ו
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 ff	t) V	ertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 fl	t) Vertic	al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						-
User Input: Overflow Weir (Dropbox) and C		Not Colorised	I.			Calculated	Parameters for Ove		ı
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 5.73	Not Selected N/A	ft (relative to basin bo	attem at Stage 0 ft)	Height of Cr	ate Upper Edge, H _t =	Zone 3 Weir 5.73	Not Selected N/A	feet
Overflow Weir Front Edge Length =	3.00	N/A	feet	stion at stage - o it)		Weir Slope Length =	3.00	N/A N/A	feet
Overflow Weir Horn Edge Length -	0.00	N/A	H:V (enter zero for f	lat grate)	Grate Open Area /		34.18	N/A	should be > 4
Horiz. Length of Weir Sides =	3.00	N/A	feet		Overflow Grate Ope		6.30	N/A	ft ²
Overflow Grate Open Area % =	70%	N/A	%, grate open area/	total area	Overflow Grate Op	en Area w/ Debris =	3.15	N/A	ft ²
Debris Clogging % =	50%	N/A	%				-		,
lser Input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restri Zone 3 Restrictor		gular Orifice)						
			, ,		C	alculated Parameter		Flow Restriction Plat	e
Double to Jacob at Contract Dia a		Not Selected					Zone 3 Restrictor	Not Selected]
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below bas	sin bottom at Stage = 0) ft)	Outlet Orifice Area =	Zone 3 Restrictor 0.18	Not Selected N/A	ft ²
Outlet Pipe Diameter =	0.00 18.00		ft (distance below bas inches	-) ft) Outl	Outlet Orifice Area = et Orifice Centroid =	Zone 3 Restrictor 0.18 0.14	Not Selected N/A N/A	ft ² feet
	0.00	N/A	ft (distance below bas	-) ft)	Outlet Orifice Area = et Orifice Centroid =	Zone 3 Restrictor 0.18	Not Selected N/A	ft ²
Outlet Pipe Diameter =	0.00 18.00 2.90	N/A	ft (distance below bas inches	-) ft) Outl	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe =	Zone 3 Restrictor 0.18 0.14	Not Selected N/A N/A N/A	ft ² feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	0.00 18.00 2.90	N/A N/A	ft (distance below bas inches	Half-C	0 ft) Outl Outl Central Angle of Restr	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe =	Zone 3 Restrictor 0.18 0.14 0.83	Not Selected N/A N/A N/A	ft ² feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan	0.00 18.00 2.90 gular or Trapezoidal)	N/A N/A	ft (distance below bas inches inches	Half-C	0 ft) Outl Outl Central Angle of Restr Spillway	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S	Not Selected N/A N/A N/A Spillway	ft ² feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00	N/A N/A ft (relative to basin I feet H:V	ft (distance below bas inches inches	Half-C) ft) Outl Outl Central Angle of Restr Spillway Stage al	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34	Not Selected N/A N/A N/A Spillway feet	ft ² feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00	N/A N/A ft (relative to basin feet	ft (distance below bas inches inches	Half-C) ft) Outl Outl Central Angle of Restr Spillway Stage al	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard =	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56	Not Selected N/A N/A N/A Spillway feet feet	ft ² feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00	N/A N/A ft (relative to basin I feet H:V	ft (distance below bas inches inches	Half-C) ft) Outl Outl Central Angle of Restr Spillway Stage al	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard =	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56	Not Selected N/A N/A N/A Spillway feet feet	ft ² feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00	N/A N/A ft (relative to basin I feet H:V feet	ft (distance below bas inches inches pottom at Stage = 0 ft	- Half-C) ft) Out Out Central Angle of Restr Spillway Stage at Basin Area at	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19	Not Selected N/A N/A N/A ipillway feet feet acres	ft ² feet radians
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00	N/A N/A ft (relative to basin I feet H:V	ft (distance below bas inches inches	Half-C) ft) Outl Outl Central Angle of Restr Spillway Stage al	Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard =	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56	Not Selected N/A N/A N/A Spllway feet feet acres	ft ² feet
Outlet Pipe Dlameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WQCV	N/A N/A ft (relative to basin l feet H:V feet EURV	ft (distance below bas inches inches pottom at Stage = 0 ft 2 Year	Half-C t) 5 Year	o ft) Outl Outl Central Angle of Restr Spillway Stage al Basin Area al 10 Year	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19 50 Year	Not Selected N/A N/A N/A ipillway feet feet acres	ft ² feet radians 500 Year
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WQCV 0.53 0.098	N/A N/A ft (relative to basin i feet H:V feet EURV 1.07 0.321	ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.219	Half-C	oft) Out Out Central Angle of Restr Spillway Stage at Basin Area at <u>10 Year</u> 1.75 0.355	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.444	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19 50 Year 2.25 0.557	Not Selected N/A N/A N/A N/A feet feet acres 100 Year 2.52 0.691	ft ² feet radians 500 Year 0.00 0.000
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WQCV 0.53 0.098 0.097	N/A N/A ft (relative to basin i feet H:V feet <u>EURV</u> 1.07 0.321 0.320	ft (distance below bas inches inches boottom at Stage = 0 ft 2 Year 1.19 0.219 0.218	Half-C t) 5 Year 1.50 0.288 0.287) ft) Out Out Central Angle of Restr Spillway Stage at Basin Area at 1.75 0.355 0.355	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Cop of Freeboard = 25 Year 2.00 0.444 0.443	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19 50 Year 2.25 0.557 0.556	Not Selected N/A N/A N/A spillway feet feet acres	ft ² feet radians 500 Year 0.00 0.000 #N/A
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (ds/acre) =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WQCV 0.53 0.098	N/A N/A ft (relative to basin l feet H:V feet 1.07 0.321 0.320 0.00	ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.219	Half-C	oft) Out Out Central Angle of Restr Spillway Stage at Basin Area at <u>10 Year</u> 1.75 0.355	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.444	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19 50 Year 2.25 0.557	Not Selected N/A N/A N/A ipillway feet acres 100 Year 2.52 0.691 0.690 0.44	ft ² feet radians 500 Year 0.00 0.000
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WOCV 0.53 0.098 0.097 0.00	N/A N/A ft (relative to basin i feet H:V feet <u>EURV</u> 1.07 0.321 0.320	ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 0.219 0.218 0.00	5 Year 1.50 0.288 0.287 0.00	1 ft) Outl Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 0.355 0.354 0.01	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.444 0.443 0.02	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19 50 Year 2.25 0.557 0.556 0.18	Not Selected N/A N/A N/A spillway feet feet acres	ft ² feet radians 500 Year 0.00 0.000 #N/A 0.00
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WQCV 0.53 0.098 0.097 0.00 0.0 1.5 0.0	N/A N/A ft (relative to basin l feet H:V feet 0.320 0.00 0.0 5.0 0.1	ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 0.219 0.218 0.00 0.0 3.4 0.1	5 Year 1.50 0.287 0.00 0.0 4.5 0.1	0 ft) Out Out Central Angle of Restr Spillway Stage at Basin Area at 0.355 0.354 0.01 0.1 5.5 0.1	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.444 0.443 0.02 0.1 6.9 0.2	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for \$ 0.34 8.56 0.19 50 Year 2.25 0.557 0.556 0.18 1.0 8.6 0.4	Not Selected N/A N/A N/A N/A Spillway feet feet acres 2.52 0.691 0.690 0.44 2.5 10.7 2.2	tt ² feet radians 500 Year 0.00 0.000 #N/A #N/A #N/A
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period – One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WOCV 0.53 0.098 0.097 0.00 0.00 1.5 0.0 N/A	N/A N/A ft (relative to basin l feet H:V feet 1.07 0.321 0.320 0.00 0.0 5.0 0.1 N/A	ft (distance below bas inches inches bottom at Stage = 0 ft 0.218 0.00 0.0 3.4 0.1 N/A	Half-O b) 5 Year 1.50 0.288 0.00 0.0 4.5 0.1 4.3	0 ft) Out Central Angle of Restr Spillway Stage at Basin Area at 1.75 0.355 0.354 0.01 0.1 5.5 0.1 2.2	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.444 0.443 0.02 0.1 6.9 0.2 1.2	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19 50 Year 2.25 0.557 0.557 0.18 1.0 8.6 0.4 0.4	Not Selected N/A N/A N/A N/A Spillway feet feet acres 0.691 0.690 0.44 2.5 10.7 2.2 0.9	tt ² feet radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Q (cfs) = Predevelopment Unit Peak Riow, q (cfs/acre) Predevelopment Q = Ratio Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WQCV 0.53 0.098 0.097 0.00 0.0 1.5 0.0 N/A Plate	N/A N/A ft (relative to basin l feet H:V feet L.07 0.320 0.02 0.00 0.0 0.0 0.0 5.0 0.1 N/A Plate	ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 0.219 0.218 0.00 0.0 3.4 0.1 N/A Plate	Half-O b) 5 Year 1.50 0.288 0.287 0.00 0.0 4.5 0.1 4.3 Plate	0 ft) Out Out Central Angle of Restr Spillway Stage at Basin Area at 0.355 0.355 0.354 0.01 0.1 5.5 0.1 0.1 5.5 0.1 0.1	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.444 0.443 0.02 0.1 6.9 0.2 1.2 Plate	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19 50 Year 2.25 0.557 0.557 0.556 0.18 1.0 8.6 0.4 0.4 Overflow Grate 1	Not Selected N/A Spillway feet feet 2.52 0.691 0.690 0.44 2.5 10.7 2.2 0.9 Outlet Plate 1	ft ² feet radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period – One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WOCV 0.53 0.098 0.097 0.00 0.00 1.5 0.0 N/A	N/A N/A ft (relative to basin l feet H:V feet 1.07 0.321 0.320 0.00 0.0 5.0 0.1 N/A	ft (distance below bas inches inches bottom at Stage = 0 ft 0.218 0.00 0.0 3.4 0.1 N/A	Half-O b) 5 Year 1.50 0.288 0.00 0.0 4.5 0.1 4.3	0 ft) Out Central Angle of Restr Spillway Stage at Basin Area at 1.75 0.355 0.354 0.01 0.1 5.5 0.1 2.2	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.444 0.443 0.02 0.1 6.9 0.2 1.2	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19 50 Year 2.25 0.557 0.557 0.18 1.0 8.6 0.4 0.4	Not Selected N/A N/A N/A N/A Spillway feet feet acres 0.691 0.690 0.44 2.5 10.7 2.2 0.9	tt ² feet radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) Predevelopment Unit Peak Nou, q (cfs/acre) Peak Untilow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WOCV 0.53 0.098 0.097 0.00 0.0 1.5 0.00 N/A Plate N/A N/A 39	N/A N/A N/A ft (relative to basin l feet H:V feet 0.320 0.321 0.320 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ft (distance below bas inches inches bottom at Stage = 0 ft 1.19 0.219 0.218 0.00 0.0 3.4 0.1 N/A Plate N/A N/A S8	Half-O b) 5 Year 1.50 0.288 0.287 0.00 0.0 4.5 0.1 4.3 Plate N/A N/A 64	0 ft) Out Out Central Angle of Restr Spillway Stage al Basin Area al 10 Year 1.75 0.355 0.355 0.355 0.01 0.1 5.5 0.1 2.2 Plate N/A N/A 69	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.444 0.443 0.02 0.1 6.9 0.2 1.2 Plate N/A N/A 74	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19 50 Year 2.25 0.557 0.557 0.557 0.18 1.0 8.6 0.4 0.4 0.4 0.4 0.4 0.4 N/A 80	Not Selected N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.691 0.690 0.44 2.5 10.7 2.2 0.9 Outlet Plate 1 0.3	tt ² feet radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A #N/A #N/A
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Predevelopment Puits Q (cfs) = Peak Untflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WOCV 0.53 0.098 0.097 0.00 0.0 1.5 0.0 N/A Plate N/A N/A N/A 39 41	N/A N/A N/A ft (relative to basin l feet H:V feet 0.320 0.00 0.320 0.00 0.00 0.00 N/A Plate N/A N/A 67 72	ft (distance below bas inches inches bottom at Stage = 0 ft 0.218 0.218 0.00 0.0 3.4 0.1 N/A Plate N/A N/A N/A N/A S8 62	Half-O b) 5 Year 1.50 0.287 0.00 0.0 4.5 0.1 4.3 Plate N/A N/A N/A 64 69) ft) Outl Central Angle of Restr Spillway Stage al Basin Area al 10 Year 1.75 0.355 0.354 0.01 5.5 0.1 5.5 0.1 5.5 0.1 5.5 0.1 6.9 74 74	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.444 0.443 0.02 0.1 6.9 0.2 1.2 Plate N/A N/A N/A 80	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19 50 Year 2.25 0.557 0.556 0.18 1.0 8.6 0.4 0.4 Overflow Grate 1 0.0 N/A 80 87	Not Selected N/A Spillway feet feet acres 0.691 0.691 0.691 0.691 0.691 0.690 0.44 2.5 10.7 2.2 0.9 Outlet Plate 1 0.3 N/A 78 86	500 Year 0.00 #N/A #N/A
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Row, q (cfs/acre) = Peak Untflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WOCV 0.53 0.098 0.097 0.00 0.00 1.5 0.0 N/A Plate N/A N/A 39 41 1.85	N/A N/A N/A ft (relative to basin l feet H:V feet 0.320 0.00 0.00 0.00 0.00 0.00 0.00 0.0	ft (distance below bas inches inches bottom at Stage = 0 ft 0.218 0.219 0.218 0.00 0.0 3.4 0.1 N/A Plate N/A N/A S8 62 3.22	Half-0 5 Year 1.50 0.287 0.00 0.0 4.5 0.1 4.3 Plate N/A N/A N/A 69 3.85	0 ft) Outl Outl Central Angle of Restr Spillway Stage al Basin Area at 0.355 0.355 0.354 0.01 0.1 5.5 0.1 2.2 Plate N/A N/A 69 74 4.40	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.444 0.02 0.1 6.9 0.2 1.2 Plate N/A N/A 74 80 5.05	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for 5 0.34 8.56 0.19 0.557 0.556 0.18 1.0 8.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Not Selected N/A N/A N/A N/A Spillway feet feet acres 2.52 0.691 2.52 0.691 0.690 0.44 2.5 10.7 2.2 0.9 0.044 2.5 10.7 2.2 0.9 0.044 2.5 10.7 2.2 0.9 0.044 2.5 10.7 2.2 0.9 0.044 2.5 10.7 2.2 0.9 0.044 2.5 10.7 2.2 0.9 0.044 2.5 10.7 2.5 2.5 0.691 0.7 2.5 2.5 0.691 0.7 2.5 2.5 2.5 0.691 0.7 7 7 7 8 86 6.04	tt ² feet radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Plak Q (cfs) = Predevelopment Plak Q (cfs) = Peak Inflow Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	0.00 18.00 2.90 gular or Trapezoidal) 7.22 20.00 4.00 1.00 WOCV 0.53 0.098 0.097 0.00 0.0 1.5 0.0 N/A Plate N/A N/A N/A 39 41	N/A N/A N/A ft (relative to basin l feet H:V feet 1.07 0.320 0.02 0.02 0.00 0.0 0.0 0.0 0.0 0.0 0.	ft (distance below bas inches inches bottom at Stage = 0 ft 0.218 0.218 0.00 0.0 3.4 0.1 N/A Plate N/A N/A N/A N/A S8 62	Half-O b) 5 Year 1.50 0.287 0.00 0.0 4.5 0.1 4.3 Plate N/A N/A N/A 64 69) ft) Outl Central Angle of Restr Spillway Stage al Basin Area al 10 Year 1.75 0.355 0.354 0.01 5.5 0.1 5.5 0.1 5.5 0.1 5.5 0.1 6.9 74 74	Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.444 0.443 0.02 0.1 6.9 0.2 1.2 Plate N/A N/A N/A 80	Zone 3 Restrictor 0.18 0.14 0.83 ted Parameters for S 0.34 8.56 0.19 50 Year 2.25 0.557 0.556 0.18 1.0 8.6 0.4 0.4 Overflow Grate 1 0.0 N/A 80 87	Not Selected N/A Spillway feet feet acres 0.691 0.691 0.691 0.691 0.691 0.690 0.44 2.5 10.7 2.2 0.9 Outlet Plate 1 0.3 N/A 78 86	500 Year 0.00 #N/A #N/A

[Outflow Hy	drograph Work	book Filename:					
	Storm Inflow	ludrographo		ntion Varcia	a 2 07 (Eobrur	2017)				
	Storm Inflow H				n 3.07 (Februa is workbook wit		anhs developed	in a separate pro	aram	
									-	#N 1 (A
T	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	#N/A
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.36 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	0:05:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Hydrograph	0:10:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Constant	0:16:05 0:21:26	0.07	0.23	0.16	0.20	0.25	0.31	0.38	0.47	#N/A
0.932	0:26:48	0.19	0.60	0.41	0.54	0.66	0.83	1.03 2.65	1.27 3.27	#N/A #N/A
	0:32:10	1.32	4.25	2.92	3.82	4.69	5.83	7.28	9.00	#N/A
	0:37:31	1.54	5.00	3.42	4.48	5.52	6.89	8.62	10.69	#N/A
	0:42:53	1.46	4.76	3.25	4.27	5.26	6.56	8.22	10.20	#N/A
	0:48:14	1.32	4.34	2.96	3.88	4.79	5.97	7.49	9.29	#N/A
	0:53:36	1.17	3.86	2.63	3.45	4.26	5.33	6.68	8.30	#N/A
	0:58:58	1.00	3.32	2.25	2.97	3.66	4.59	5.76	7.17	#N/A
	1:04:19	0.87	2.89	1.97	2.59	3.20	4.00	5.02	6.24	#N/A
	1:09:41 1:15:02	0.79	2.62	1.78	2.34	2.90	3.62	4.55	5.66 4.67	#N/A #N/A
	1:20:24	0.84	1.74	1.45	1.92	1.93	2.98	3.06	3.82	#N/A #N/A
	1:25:46	0.31	1.74	0.89	1.18	1.47	1.86	2.35	2.94	#N/A #N/A
	1:31:07	0.27	0.97	0.65	0.87	1.08	1.37	1.75	2.19	#N/A
	1:36:29	0.20	0.71	0.47	0.63	0.79	1.00	1.27	1.59	#N/A
	1:41:50	0.16	0.56	0.37	0.50	0.62	0.78	0.98	1.23	#N/A
	1:47:12	0.13	0.46	0.31	0.41	0.51	0.64	0.81	1.01	#N/A
	1:52:34	0.11	0.39	0.26	0.35	0.43	0.54	0.69	0.86	#N/A
	1:57:55 2:03:17	0.10	0.34	0.23	0.31	0.38	0.48	0.60	0.75	#N/A
	2:03:17 2:08:38	0.09	0.31	0.21	0.28	0.34	0.43	0.54	0.68	#N/A
	2:14:00	0.08	0.29	0.19	0.26	0.32	0.40	0.50	0.63	#N/A #N/A
	2:19:22	0.05	0.21	0.14	0.19	0.23	0.29	0.37	0.48	#N/A #N/A
	2:24:43	0.03	0.10	0.08	0.10	0.12	0.16	0.20	0.25	#N/A
	2:30:05	0.02	0.08	0.06	0.07	0.09	0.11	0.15	0.18	#N/A
	2:35:26	0.02	0.06	0.04	0.05	0.06	0.08	0.10	0.13	#N/A
	2:40:48	0.01	0.04	0.03	0.04	0.05	0.06	0.07	0.09	#N/A
	2:46:10	0.01	0.03	0.02	0.03	0.03	0.04	0.05	0.07	#N/A
	2:51:31	0.00	0.02	0.01	0.02	0.02	0.03	0.03	0.04	#N/A
	2:56:53 3:02:14	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.03	#N/A
	3:02:14	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	#N/A #N/A
	3:12:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	3:18:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:23:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:29:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:34:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:39:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:45:07 3:50:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:50:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:01:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:06:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:11:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:17:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:22:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:28:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:33:22 4:38:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:38:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:49:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:54:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
				0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:00:10	0.00	0.00	0.00		0.00			0.00	451/6
	5:05:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
1						0.00 0.00 0.00			0.00 0.00 0.00	#N/A #N/A #N/A
	5:05:31 5:10:53 5:16:14 5:21:36	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	#N/A #N/A #N/A
	5:05:31 5:10:53 5:16:14 5:21:36 5:26:58	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	#N/A #N/A #N/A #N/A
	5:05:31 5:10:53 5:16:14 5:21:36 5:26:58 5:32:19	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	#N/A #N/A #N/A #N/A #N/A
	5:05:31 5:10:53 5:16:14 5:21:36 5:26:58	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	#N/A #N/A #N/A #N/A
	5:05:31 5:10:53 5:16:14 5:21:36 5:26:58 5:32:19 5:37:41 5:43:02 5:48:24	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	#N/A #N/A #N/A #N/A #N/A #N/A #N/A
	5:05:31 5:10:53 5:16:14 5:21:36 5:26:58 5:32:19 5:37:41 5:43:02 5:48:24 5:53:46	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
	5:05:31 5:10:53 5:16:14 5:21:36 5:26:58 5:32:19 5:37:41 5:43:02 5:48:24 5:53:46 5:59:07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
	5:05:31 5:10:53 5:16:14 5:21:36 5:26:58 5:32:19 5:37:41 5:43:02 5:48:24 5:53:46 5:59:07 6:04:29	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
	5:05:31 5:10:53 5:16:14 5:21:36 5:26:58 5:32:19 5:37:41 5:43:02 5:48:24 5:53:46 5:59:07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A
	5:05:31 5:10:53 5:16:14 5:21:36 5:26:58 5:32:19 5:37:41 5:43:02 5:48:24 5:53:46 5:55:07 6:04:29 6:09:50	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A


UD-Detention, Version 3.07 (February 2017) Summary Stage-Area-Volume-Discharge Relationships

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition point.


Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
		0	0.000	0	0.000	0.00	
	0.00						For best results, include th
	1.00	2,418	0.055	1,521	0.035	0.03	stages of all grade slope changes (e.g. ISV and Floo
	2.00	3,198	0.073	4,323	0.099	0.05	from the S-A-V table on
	3.00	4,043	0.093	7,971	0.183	0.08	Sheet 'Basin'.
	4.00	4,957	0.114	12,461	0.286	0.12	
	5.00	5,946	0.136	17,903	0.411	0.16	Also include the inverts of
	6.00	7,010	0.161	24,372	0.560	2.15	outlets (e.g. vertical orifice overflow grate, and spillw
	7.00	8,179	0.188	31,949	0.733	2.32	where applicable).
	8.00	8,455	0.194	33,778	0.775	2.36	
							_
							-
	-						-
							-
							-
							-
							-
							-
							-
							-
	-						-
	1		-				
							-
			L				4
							4
			-				1
			-				1
							1
							1
]
]
]

			DETENT	TION BA	SIN STAGE-S	TORAG	e table	BUILD	ER					
Project:	PALMER VIL	LAGE		UD-Dete	ention, Version 3	1.07 (Febr	uary 2017	7)						
Basin ID:	POND B (EA	ST PARCEL)											
		T												
T	1 AND 2 CES	100-YEA	NR E		Depth Increment =	0.1	ft							
POOL Example Zone	ces e Configura	tion (Reter	ntion Pond)		Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft/2)	Optional Override Area (ft/2)	Area (acre)	Volume (ft/3)	Volume (ac-ft)
Required Volume Calculation	EDB	1		6433	Top of Micropool 6434		0.00				0 7,212	0.000	3,534	0.081
Selected BMP Type = Watershed Area =	4.28	acres			6435	-	2.00				8,536	0.196	11,394	0.262
Watershed Length = Watershed Slope =	700 0.028	ft ft/ft			6436 6437	-	3.00 4.00				9,917 11,391	0.228	20,706 31,360	0.475
Watershed Imperviousness =	56.50%	percent			6437.62	-	4.62				12,397	0.285	38,735	0.889
Percentage Hydrologic Soil Group A = Percentage Hydrologic Soil Group B =	100.0% 0.0%	percent percent								-				
Percentage Hydrologic Soil Groups C/D = Desired WQCV Drain Time =	0.0%	percent hours				-								
Location for 1-hr Rainfall Depths =	User Input	-				-								
Water Quality Capture Volume (WQCV) = Excess Urban Runoff Volume (EURV) =	0.080	acre-feet acre-feet	Optional Use 1-hr Precipita	r Override ation										
2-yr Runoff Volume (P1 = 1.19 in.) = 5-yr Runoff Volume (P1 = 1.5 in.) =	0.198	acre-feet acre-feet	1.19 1.50	inches inches		-								
10-yr Runoff Volume (P1 = 1.75 in.) =	0.317	acre-feet	1.75	inches		-								
25-yr Runoff Volume (P1 = 2 in.) = 50-yr Runoff Volume (P1 = 2.25 in.) =	0.390	acre-feet acre-feet	2.00 2.25	inches inches		-				-				
100-yr Runoff Volume (P1 = 2.52 in.) =	0.577	acre-feet	2.52	inches		-								
500-yr Runoff Volume (P1 = 0 in.) = Approximate 2-yr Detention Volume =	0.000	acre-feet acre-feet		inches										
Approximate 5-yr Detention Volume = Approximate 10-yr Detention Volume =	0.245	acre-feet acre-feet											-	
Approximate 25-yr Detention Volume =	0.361	acre-feet				-								
Approximate 50-yr Detention Volume = Approximate 100-yr Detention Volume =	0.400	acre-feet acre-feet												
						-								
Stage-Storage Calculation Zone 1 Volume (WQCV) =	0.080	acre-feet				-				-				
Zone 2 Volume (EURV - Zone 1) = Zone 3 Volume (100-year - Zones 1 & 2) =	0.208	acre-feet												
Total Detention Basin Volume =	0.444	acre-feet acre-feet				-								
Initial Surcharge Volume (ISV) = Initial Surcharge Depth (ISD) =	user user	ft/3				-								
Total Available Detention Depth (H _{total}) =	user	ft				-								
Depth of Trickle Channel (H_{TC}) = Slope of Trickle Channel (S_{TC}) =	user	ft ft/ft				-								
Slopes of Main Basin Sides (Smain) =	user	ΗV												
Basin Length-to-Width Ratio (R _{L/W}) =	user					-				-				
Initial Surcharge Area (A _{ISV}) = Surcharge Volume Length (L _{ISV}) =	user	ft*2				-								
Surcharge Volume Width (W _{ISV}) =	user	ft				-								
Depth of Basin Floor (H_{FLOOR}) = Length of Basin Floor (L_{FLOOR}) =	user	ft ft				-								
Width of Basin Floor (W _{FLOOR}) =	user	ft												
Area of Basin Floor (A_{FLOOR}) = Volume of Basin Floor (V_{FLOOR}) =	user user	ft/2 ft/3				-		-	-	-				
Depth of Main Basin (H _{MAIN}) = Length of Main Basin (L _{MAIN}) =	user	ft				-								
Width of Main Basin (W _{MMN}) =	user	ft				-								
Area of Main Basin (A _{MMN}) = Volume of Main Basin (V _{MMN}) =	user	ft/2 ft/3				-								
Calculated Total Basin Volume (V _{total}) =	user	acre-feet				-		-	-	-				
						-		-	-					
						-		-	-					
						-		-	-	-				
						-								
						-				-				——
						-								
						-		-						
													<u> </u>	
						-		-					-	
						-		-		-				
						-								
						-								
						-		-		-			-	
						-		-		-				
						-		-	-	-				
						-		-						
						-				-			<u> </u>	<u> </u>
						-							1	,

DETENTION BASIN STAGE-STORAGE TABLE BUILDER UD-Detention, Version 3.07 (February 2017)

		Dete	ntion Basin (Juliet Struct	ure Design				
			UD-Detention, Ver	rsion 3.07 (Februa	ry 2017)				
-	PALMER VILLAGE POND B (EAST PAR	RCEL)							
ZONE 3		,							
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	0.99	0.080	Orifice Plate			
	100-YEAI ORIFICE	R	Zone 2 (EURV)	2.13	0.208	Orifice Plate			
ZONE 1 AND 2 PERMANENT ORIFICES POOL			'one 3 (100-year)	2.87	0.156	Weir&Pipe (Restrict)			
Example Zone	Configuration (R	etention Pond)			0.444	Total			
ser Input: Orifice at Underdrain Outlet (typically u	·						ed Parameters for Ur		
Underdrain Orifice Invert Depth =	N/A	-	ne filtration media su	irface)		rdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdra	in Orifice Centroid =	N/A	feet	
ser Input: Orifice Plate with one or more orifices	or Elliptical Slot Weir	(typically used to dra	ain WQCV and/or EU	RV in a sedimentatio	on BMP)	Calcu	lated Parameters for	Plate	
Invert of Lowest Orifice =	0.00		pottom at Stage = 0 ft			rifice Area per Row =	5.903E-03	ft ²	
Depth at top of Zone using Orifice Plate =	2.13	ft (relative to basin I	oottom at Stage = 0 ft	t)	E	lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	8.50	inches			Elli	ptical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	0.85	sq. inches (diameter	r = 1 inch)			Elliptical Slot Area =	N/A	ft ²	
ser Input: Stage and Total Area of Each Orifice	Row (numbered fror	n lowest to highest)							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	0.00	0.71	1.42						
Orifice Area (sq. inches)	0.85	0.85	0.85						J
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)									
Office Area (sq. inches)									
User Input: Vertical Orifice (Circ			1			Calculated	Parameters for Vert		1
Invest of Vertical Orifica	Not Selected N/A	Not Selected	ft (relative to beein k	a attam at Staga 0 fl	•	'ertical Orifice Area =	Not Selected N/A	Not Selected N/A	ft ²
Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice =	N/A	N/A N/A		bottom at Stage = 0 fi bottom at Stage = 0 fi		cal Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches	oottom at stage - o n	c) verti		IVA	N/A	loci
		•							
User Input: Overflow Weir (Dropbox) and G		Net Colorte d	I			Calculated	Parameters for Ove		1
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 3.00	Not Selected N/A	ft (relative to basin bo	ottom at Stane – 0 ft)	Height of Gr	ate Upper Edge, H _t =	Zone 3 Weir 3.00	Not Selected N/A	feet
Overflow Weir Front Edge Length =	6.00	N/A	feet	Strom at Stage - 0 H)		Weir Slope Length =	6.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for f	lat grate)	Grate Open Area /		124.16	N/A	should be <u>></u> 4
Horiz. Length of Weir Sides =	6.00	N/A	feet		Overflow Grate Ope	en Area w/o Debris =	25.20	N/A	ft ²
Overflow Grate Open Area % =	70%	N/A	%, grate open area/	total area	Overflow Grate Op	en Area w/ Debris =	12.60	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
ser Input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice Restri	rtor Plate or Rectan	nular Orifice)		(alculated Paramete	rs for Outlet Pipe w∕	Flow Restriction Plat	te
	Zone 3 Restrictor	Not Selected	galar ormooy				Zone 3 Restrictor	Not Selected	1
Depth to Invert of Outlet Pipe =	0.50	N/A	ft (distance below bas	sin bottom at Stage = 0) ft)	Outlet Orifice Area =	0.20	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches				0.45	N/A	feet
						let Orifice Centroid =	0.15		
Restrictor Plate Height Above Pipe Invert =	3.10		inches	Half-C	Out Central Angle of Rest		0.15	N/A N/A	radians
Restrictor Plate Height Above Pipe Invert =				Half-C		rictor Plate on Pipe =	0.86	N/A	radians
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan	gular or Trapezoidal)	ft (relative to basin b	inches		Central Angle of Rest	rictor Plate on Pipe = Calcula	0.86 ted Parameters for S	N/A Spillway	radians
Restrictor Plate Height Above Pipe Invert =		ft (relative to basin I feet			Central Angle of Rest Spillway	rictor Plate on Pipe =	0.86	N/A	radians
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage=	gular or Trapezoidal) 4.62	•	inches		Central Angle of Rest Spillway Stage a	rictor Plate on Pipe = Calcula Design Flow Depth=	0.86 ted Parameters for 5 0.27	N/A Spillway feet	radians
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length =	gular or Trapezoidal) 4.62 20.00	feet	inches		Central Angle of Rest Spillway Stage a	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	0.86 ted Parameters for 5 0.27 5.89	N/A Spillway feet feet	radians
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface =	gular or Trapezoidal) 4.62 20.00 4.00	feet H:V	inches		Central Angle of Rest Spillway Stage a	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	0.86 ted Parameters for 5 0.27 5.89	N/A Spillway feet feet	radians
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	gular or Trapezoidal) 4.62 20.00 4.00 1.00	feet H:V feet	inches pottom at Stage = 0 ff	t)	Central Angle of Rest Spillway Stage a Basin Area a	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	0.86 ted Parameters for S 0.27 5.89 0.28	N/A Spillway feet feet acres	
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface =	gular or Trapezoidal) 4.62 20.00 4.00 1.00 WQCV 0.53	feet H:V feet EURV 1.07	inches pottom at Stage = 0 fi <u>2 Year</u> 1.19	5 Year 1.50	Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	0.86 ted Parameters for S 0.27 5.89 0.28 0.28 50 Year 2.25	N/A pillway feet feet acres 100 Year 2.52	radians 500 Year 0.00
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway End Stopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	gular or Trapezoidal) 4.62 20.00 4.00 1.00 WOCV	feet H:V feet EURV	inches pottom at Stage = 0 ft 2 Year	t) 5 Year	Central Angle of Rest Spillway Stage a Basin Area a 10 Year	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	0.86 ted Parameters for S 0.27 5.89 0.28 50 Year	N/A Spillway feet feet acres 100 Year	500 Year
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Stopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	gular or Trapezoidal) 4.62 20.00 4.00 1.00 WOCV 0.53 0.080	feet H:V feet <u>EURV</u> 1.07 0.289	inches pottom at Stage = 0 ff 2 Year 1.19 0.198	5 Year 1.50 0.259	Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.317	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.390	0.86 ted Parameters for 5 0.27 5.89 0.28 50 Year 2.25 0.476	N/A Spillway feet feet acres 100 Year 2.52 0.577	500 Year 0.00 0.000
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	gular or Trapezoidal) 4.62 20.00 4.00 1.00 WQCV 0.53	feet H:V feet EURV 1.07	inches pottom at Stage = 0 fi <u>2 Year</u> 1.19	5 Year 1.50	Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	0.86 ted Parameters for S 0.27 5.89 0.28 0.28 50 Year 2.25	N/A pillway feet feet acres 100 Year 2.52	500 Year 0.00
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (ds/acre) = Predevelopment Unit Peak Riow, q (ds/acre) =	gular or Trapezoidal) 4.62 20.00 4.00 1.00 WQCV 0.53 0.080 0.080 0.080 0.00 0.0	Feet H:V feet 1.07 0.289 0.288 0.00 0.0	inches bottom at Stage = 0 ff 2 Year 1.19 0.198 0.197 0.00 0.0	5 Year 1.50 0.259 0.258 0.00 0.0	Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.317 0.317 0.01 0.0	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.390 0.390 0.030 0.1	0.86 ted Parameters for 5 0.27 5.89 0.28 50 Year 2.25 0.476 0.476 0.476 0.19 0.8	N/A Spillway feet feet acres 100 Year 2.52 0.577 0.577 0.45 1.9	500 Year 0.00 0.000 #N/A 0.00 0.0
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) =	ular or Trapezoidal) 4.62 20.00 4.00 1.00 0.53 0.080 0.080 0.00 0.0 1.3	Feet H:V feet 1.07 0.289 0.288 0.00 0.0 4.7	inches bottom at Stage = 0 ff 2 Year 1.19 0.198 0.197 0.00 0.0 3.2	5 Year 1.50 0.259 0.258 0.00 0.0 4.2	Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.317 0.317 0.317 0.01 0.0 5.1	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.390 0.030 0.03 0.1 6.3	0.86 ted Parameters for S 0.27 5.89 0.28 50 Year 2.25 0.476 0.476 0.476 0.476 0.77	N/A ipillway feet feet 2.52 0.577 0.577 0.45 1.9 9.3	500 Year 0.00 #N/A 0.00 0.0 #N/A
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	gular or Trapezoidal) 4.62 20.00 4.00 1.00 0.03 0.080 0.080 0.080 0.00 0.00 1.3 0.0	Feet H:V feet 0.288 0.00 0.0 4.7 0.1	inches bottom at Stage = 0 ff 2 Year 1.19 0.198 0.197 0.00 0.0 3.2 0.1	5 Year 1.50 0.259 0.258 0.00 0.0 4.2 0.1	Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.317 0.317 0.01 0.0 5.1 0.1	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.390 0.03 0.03 0.1 6.3 0.1	0.86 ted Parameters for S 0.27 5.89 0.28 50 Year 2.25 0.476 0.476 0.19 0.8 7.7 0.1	N/A pillway feet acres 100 Year 2.52 0.577 0.45 1.9 9.3 1.7	500 Year 0.00 0.000 #N/A 0.00 0.0 #N/A #N/A
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph ResultS Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak (cfs) = Predevelopment Peak (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	ular or Trapezoidal) 4.62 20.00 4.00 1.00 0.53 0.080 0.080 0.00 0.0 1.3 0.0 N/A Plate	Feet H:V feet 0.289 0.00 0.0 4.7 0.1 N/A Plate	inches bottom at Stage = 0 ff 2 Year 1.19 0.198 0.197 0.00 0.0 3.2 0.1 N/A Plate	5 Year 1.50 0.259 0.258 0.00 0.0 4.2 0.1 4.3 Plate	Central Angle of Rest Spillway Stage a Basin Area a 0.317 0.317 0.01 0.0 5.1 0.1 2.1 Plate	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.390 0.390 0.03 0.03 0.1 6.3 0.1 1.0 Plate	0.86 ted Parameters for S 0.27 5.89 0.28 50 Year 2.25 0.476 0.476 0.476 0.476 0.476 0.19 0.8 7.7 0.1 0.8 7.7 0.1 0.2 Plate	N/A spillway feet feet acres 100 Year 2.52 0.577 0.45 1.9 9.3 1.7 0.9 Outlet Plate 1	500 Year 0.00 #N/A 0.00 0.0 #N/A #N/A #N/A
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	gular or Trapezoidal) 4.62 20.00 4.00 1.00 0.53 0.080 0.080 0.00 0.00 1.3 0.0 N/A Plate N/A	Feet H:V feet 0.288 0.00 0.0 4.7 0.1 N/A Plate N/A	2 Year 1.19 0.197 0.00 0.0 3.2 0.1 N/A	5 Year 1.50 0.259 0.258 0.00 0.0 4.2 0.1 4.3 Plate N/A	Spillway Stage a Basin Area a 10 Year 1.75 0.317 0.317 0.01 0.01 0.1 2.1 Plate N/A	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.390 0.390 0.03 0.1 6.3 0.1 1.0 Plate N/A	0.86 ted Parameters for S 0.27 5.89 0.28 0.28 50 Year 2.25 0.476 0.476 0.476 0.476 0.8 7.7 0.1 0.2 0.2 Plate N/A	N/A pillway feet acres 100 Year 2.52 0.577 0.45 1.9 9.3 1.7 0.9 Outlet Plate 1 0.1	500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A #N/A
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ti) = Inflow Hydrograph Volume (acre-ti) = Inflow Hydrograph Volume (acre-ti) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	gular or Trapezoidal) 4.62 20.00 4.00 1.00 WOCV 0.53 0.080 0.080 0.080 0.00 0.00 1.3 0.0 N/A Plate N/A N/A	Feet H:V feet 0.289 0.289 0.289 0.00 0.0 4.7 0.1 N/A Plate N/A N/A	inches bottom at Stage = 0 ff 2 Year 1.19 0.198 0.197 0.00 0.0 0.0 3.2 0.1 N/A Plate N/A N/A	5 Year 1.50 0.259 0.258 0.00 0.0 4.2 0.1 4.3 Plate N/A N/A	Spillway Stage a Basin Area a 10 Year 1.75 0.317 0.01 0.01 5.1 0.1 2.1 Piate N/A	rictor Plate on Pipe = Calculz Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.390 0.03 0.0 0.03 0.0 0.03 0.0 0.03 0.0 0.0	0.86 ted Parameters for S 0.27 5.89 0.28 50 Year 2.25 0.476 0.476 0.476 0.19 0.8 7.7 0.1 0.2 Plate N/A N/A	N/A feet feet acres 100 Year 2.52 0.577 0.45 1.9 9.3 1.7 0.9 0.45 1.7 0.9 0.45 1.7 0.9 0.45 1.7 0.9 0.1 N/A	500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A #N/A
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-th) = Inflow Hydrograph Volume (acre-th) = Predevelopment Veak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	gular or Trapezoidal) 4.62 20.00 4.00 1.00 0.53 0.080 0.080 0.00 0.00 1.3 0.0 N/A Plate N/A	Feet H:V feet 0.288 0.00 0.0 4.7 0.1 N/A Plate N/A	2 Year 1.19 0.197 0.00 0.0 3.2 0.1 N/A	5 Year 1.50 0.259 0.258 0.00 0.0 4.2 0.1 4.3 Plate N/A	Spillway Stage a Basin Area a 10 Year 1.75 0.317 0.317 0.01 0.0 5.1 0.1 2.1 Plate N/A	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.390 0.390 0.03 0.1 6.3 0.1 1.0 Plate N/A	0.86 ted Parameters for S 0.27 5.89 0.28 0.28 50 Year 2.25 0.476 0.476 0.476 0.19 0.8 7.7 0.1 0.2 0.1 0.2 Plate N/A	N/A pillway feet acres 100 Year 2.52 0.577 0.45 1.9 9.3 1.7 0.9 Outlet Plate 1 0.1	500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A #N/A
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-tt) = Inflow Hydrograph Volume (acre-tt) = Predevelopment Unit Peak D (cfs) = Predevelopment Volume (acre-tt) = Predevelopment Volume (acre-tt) = Return (Structure Store) Predevelopment Unit Peak Riow, q (cfs/acre) = Peak Nuflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) =	gular or Trapezoidal) 4.62 20.00 4.00 1.00 0.03 0.080 0.00 0.00 1.3 0.0 N/A Plate N/A N/A 38	Feet H:V feet 0.289 0.289 0.00 0.0 4.7 0.1 N/A Plate N/A N/A 71	inches bottom at Stage = 0 ff 2 Year 1.19 0.198 0.00 0.0 0.0 3.2 0.1 N/A Plate N/A N/A 61	5 Year 1.50 0.259 0.258 0.00 0.0 4.2 0.1 4.3 Plate N/A N/A 68	Spillway Stage a Basin Area a 10 Year 1.75 0.317 0.317 0.01 5.1 0.1 2.1 Plate N/A 74	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.390 0.03 0.03 0.03 0.03 0.03 0.03	0.86 ted Parameters for S 0.27 5.89 0.28 0.28 0.28 0.476 0.476 0.476 0.19 0.8 7.7 0.1 0.8 7.7 0.1 0.2 Plate N/A N/A 87	N/A Spillway feet feet acres 100 Year 2.52 0.577 0.45 1.9 9.3 1.7 0.9 Outlet Plate 1 0.1 N/A 87	500 Year 0.00 #N/A 0.00 0.0 #N/A #N/A #N/A #N/A #N/A #N/A
Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Ro(cfs) = Predevelopment Peak (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	ular or Trapezoidal) 4.62 20.00 4.00 1.00 0.03 0.080 0.080 0.00 0.0 0.0 1.3 0.0 N/A Plate N/A N/A N/A 38 40	Feet H:V feet 0.288 0.00 0.0 4.7 0.1 N/A Plate N/A N/A N/A 71 76	2 Year 1.19 0.197 0.00 3.2 0.1 N/A Plate N/A N/A 61 64	5 Year 1.50 0.259 0.258 0.00 0.0 4.2 0.1 4.3 Plate N/A N/A N/A N/A 68 72	Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 0.317 0	rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.390 0.03 0.1 6.3 0.1 6.3 0.1 1.0 Plate N/A N/A N/A 80 86	0.86 ted Parameters for S 0.27 5.89 0.28 0.28 0.28 0.28 0.476 0.477 0.476 0.476 0.476 0.477 0.476 0.476 0.477 0.476 0.476 0.477 0.476 0.476 0.477 0.476 0.477 0.476 0.477 0.477 0.476 0.477 0.476 0.477 0.477 0.476 0.476 0.477 0.477 0.477 0.476 0.476 0.477 0.477 0.476 0.477 0.476 0.477 0.477 0.477 0.477 0.477 0.477 0.476 0.4777 0.4777 0.4777 0.47770 0.47770 0.47770000000000	N/A spillway feet acres 100 Year 2.52 0.577 0.45 1.9 9.3 1.7 0.9 Outlet Plate 1 0.1 N/A 87 95	500 Year 0.00 #N/A 0.00 0.0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A

	The user can o	verride the calcu	lated inflow hvdr	ographs from th	ils workbook wit	h inflow hydrogr	aphs developed	in a separate pro	gram.	
ĺ	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	#N/A
ime Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs
5.17 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
-	0:05:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Hydrograph	0:10:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Constant	0:15:31	0.06	0.21	0.15	0.19	0.23	0.28	0.34	0.41	#N/A
0.968	0:20:41 0:25:51	0.16	0.56	0.39	0.51	0.62	0.76	0.92	1.11	#N/A
	0:31:01	0.41	1.45 3.98	1.00	1.30 3.57	1.59 4.36	1.94 5.34	2.36	2.85	#N/A #N/A
	0:36:11	1.32	4.67	3.21	4.19	5.13	6.30	7.67	9.28	#N/A
	0:41:22	1.25	4.45	3.05	3.99	4.89	6.01	7.32	8.85	#N/A
	0:46:32	1.13	4.05	2.78	3.63	4.45	5.47	6.66	8.05	#N/A
	0:56:52	1.00 0.85	3.60 3.09	2.46	3.23	3.96 3.40	4.87	5.94 5.12	7.19 6.20	#N/A #N/A
	1:02:02	0.75	2.70	1.84	2.42	2.97	3.66	4.46	5.41	#N/A
	1:07:13	0.67	2.44	1.67	2.19	2.69	3.31	4.04	4.90	#N/A
	1:12:23	0.54	2.00	1.36	1.79	2.20	2.72	3.32	4.04	#N/A
	1:17:33	0.43	1.62 1.23	1.10 0.83	1.45	1.79 1.36	2.21	2.71	3.29 2.53	#N/A #N/A
	1:27:53	0.32	0.90	0.60	0.80	1.00	1.07	1.54	1.88	#N/A
	1:33:04	0.17	0.66	0.44	0.59	0.73	0.91	1.12	1.36	#N/A
	1:38:14	0.14	0.52	0.35	0.46	0.57	0.71	0.87	1.06	#N/A
	1:43:24	0.11	0.43	0.29	0.38	0.47	0.58	0.71	0.87	#N/A #N/A
	1:53:44	0.10	0.36	0.24	0.32	0.40	0.49	0.61	0.74	#N/A #N/A
	1:58:55	0.08	0.29	0.19	0.26	0.32	0.39	0.48	0.59	#N/A
	2:04:05	0.07	0.27	0.18	0.24	0.29	0.36	0.44	0.54	#N/A
	2:09:15	0.05	0.20	0.13	0.17	0.22	0.27	0.33	0.40	#N/A
	2:14:25 2:19:35	0.04	0.14	0.10	0.13	0.16	0.20	0.24	0.29	#N/A
	2:24:46	0.03	0.10	0.07	0.09	0.12	0.14	0.18	0.21	#N/A #N/A
	2:29:56	0.01	0.05	0.04	0.05	0.06	0.07	0.09	0.10	#N/A
	2:35:06	0.01	0.04	0.03	0.03	0.04	0.05	0.06	0.08	#N/A
	2:40:16	0.01	0.03	0.02	0.02	0.03	0.04	0.05	0.06	#N/A
	2:45:26 2:50:37	0.00	0.02	0.01	0.02	0.02	0.02	0.03	0.04	#N/A #N/A
	2:55:47	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.02	#N/A #N/A
	3:00:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:06:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:11:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:16:28 3:21:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	3:26:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:31:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:37:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:42:19 3:47:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:52:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	3:57:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:02:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:08:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:13:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:23:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:28:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:34:01 4:39:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:44:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:49:31 4:54:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:54:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:05:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:10:12 5:15:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:15:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:25:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:30:53 5:36:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:36:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:46:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:51:34 5:56:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	6:01:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	6:07:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A

UD-Detention, Version 3.07 (February 2017) Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition of

The user should graphically compare the s

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
	0.50	3,534	0.081	866	0.020	0.02	For best results, include the
	1.00	7,140	0.164	3,534	0.081	0.04	stages of all grade slope
	1.50	7,861	0.180	7,299	0.168	0.07	changes (e.g. ISV and Floor)
	2.00	8,523	0.196	11,394	0.262	0.09	from the S-A-V table on Sheet 'Basin'.
	2.50	9,226	0.212	15,920	0.365	0.11	Sileet basiit.
	3.00	9,917	0.228	20,706	0.475	0.13	Also include the inverts of a
	3.50	10,654	0.245	25,849	0.593	1.92	outlets (e.g. vertical orifice,
	4.00	11,391	0.262	31,360	0.720	2.04	overflow grate, and spillwa where applicable).
	4.50	12,202	0.280	37,259	0.855	2.15	where applicable).
	5.00	12,397	0.285	38,735	0.889	2.18	
	-						-
							-
	-						
							4
							-
							-
							-
							-
	+						-
							-
	+						-
							-
	-						-
							-
	-						
							-
							4
							1
]
							4
							4
							4
							1
							1

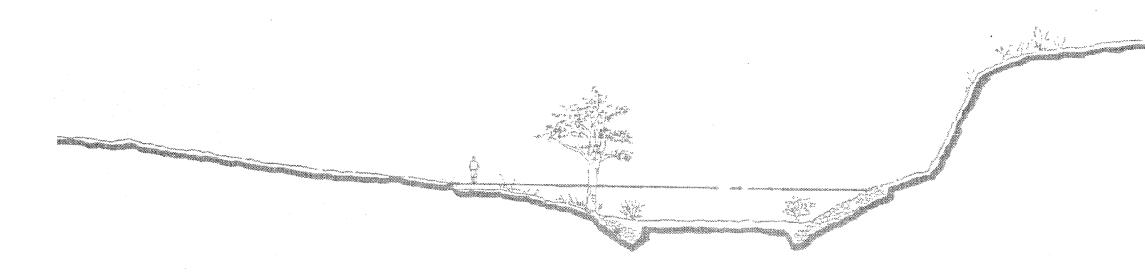
Appendix E Reference Material

El	Paso	County	Drainage	Basin	Fees
		Resolution N	lo. <u>18-470</u>		

Number Waters Studied (per Impervious Acre) (per Impervious Acre)	mpervious Acre) \$1,524 \$4,433 \$4,069 \$3,717 \$2,370 \$0 \$275 \$0 \$275 \$0 \$1,004 \$0 \$5,559 \$0 \$1,004 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$2,377 \$0 \$0 \$0 \$2,370 \$0 \$0 \$0 \$2,555 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$2,555 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
CHMS0200 Chico Creek 2013 Haegler Ranch \$10.324 CHWS1200 Chico Creek 2001 Bennett Ranch \$11,558 CHWS1200 Chico Creek 2001 Bennett Ranch \$11,558 FOF02000 Fountain Creek 2001 West Fork Jimmy Camp Creek \$12,564 FOF02000 Fountain Creek 1984 Widefield \$18,350 FOF02000 Fountain Creek 1984 Widefield \$18,350 FOF02000 Fountain Creek 1984 Videfield \$13,235 FOF02000 Fountain Creek 1984 Pelerson Field \$13,235 FOF04000 Fountain Creek 1994 Piaher's Canyon \$18,940 FOF04000 Fountain Creek 1994 Sand Creek \$18,350 FOF04000 Fountain Creek 1994 Bear Creek \$18,350 FOF04000 Fountain Creek 1997 Stift Street \$3,611 FOF04000 Fountain Creek 1984 Yold West Area \$18,350 FOF04000	\$4,433 \$4,069 \$3,717 \$2,370 \$0 \$275 \$0 \$1,004 \$0 \$5,559 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
CHWS1200 Chico Creek 2001 Bennett Ranch \$11,558 CHWS1400 Chico Creek 2013 Falcon \$29,622 CPC02000 Fountain Creek 1991* Big Johnson / Crews Gutch \$11,350 FOF02800 Fountain Creek 1998* Security \$18,350 FOF02800 Fountain Creek 1998* Security \$18,350 FOF02800 Fountain Creek 1998* Security \$18,350 FOF02800 Fountain Creek 1991* Fisher's Canyon \$11,192 FOF0300 Fountain Creek 1991* Fisher's Canyon \$18,350 FOF04000 Fountain Creek 1991* Fisher's Canyon \$18,350 FOF04000 Fountain Creek 1997 Spring Creek \$9,517 FOF04000 Fountain Creek 1997 Spring Creek \$18,350 FOF04000 Fountain Creek 1997 Spring Creek \$18,350 FOF04000 Fountain Creek 1997 Spring Creek \$18,350 FOF04800	\$4,433 \$4,069 \$3,717 \$2,370 \$0 \$275 \$0 \$1,004 \$0 \$5,559 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
CHWS1200 Chico Creek 2001 Bennett Ranch \$210 FOF 02000 Fountain Creek 2013 Falcon \$20622 FOF 02000 Fountain Creek 1991 Big Jonson / Crews Gulch \$118,350 FOF 02200 Fountain Creek 1998 Security \$18,350 FOF 02200 Fountain Creek 1998 Security \$18,350 FOF 02300 Fountain Creek 1998 Carson Street / Little Jonson \$11,192 FOF 03400 Fountain Creek 1994 Sand Creek \$18,350 FOF 04000 Fountain Creek 1994 Sand Creek \$18,940 FOF 04000 Fountain Creek 1997 Spring Creek \$18,940 FOF 04000 Fountain Creek 1997 Spring Creek \$18,950 FOF 04000 Fountain Creek 1997 Spring Creek \$18,350 FOF 04000 Fountain Creek 1997 Spring Creek \$18,350 FOF 04000 Fountain Creek 1997 Spring Creek \$14,400 FOF	\$4,069 \$3,717 \$2,370 \$0 \$0 \$275 \$0 \$1,004 \$0 \$5,559 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$255 \$275 \$627 \$0
FOF 02000 Fountain Creek 2001 West Fork Jimmy Camp Creek \$12,564 FOF 02200 Fountain Creek 1998 Widefield \$18,350 FOF 02200 Fountain Creek 1998 Security \$18,350 FOF 02200 Fountain Creek 1998 Security \$18,350 FOF 0300 Fountain Creek 1998 Carson Street / Little Johnson \$11,192 FOF 0300 Fountain Creek 1998 Carson Street / Little Johnson \$11,350 FOF 04000 Fountain Creek 1996 Sand Creek \$18,350 FOF 04000 Fountain Creek 1997 Spring Creek \$9,517 FOF 04000 Fountain Creek 1997 Spring Creek \$9,517 FOF 04000 Fountain Creek 1997 Starte \$13,350 FOF 04000 Fountain Creek 1997 Starte \$13,350 FOF 04000 Fountain Creek 1997 Starte \$13,255 FOF 05000 Fountain Creek 1997 Stare \$2,033 F	\$3,717 \$2,370 \$0 \$275 \$0 \$1,004 \$0 \$5,559 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$255 \$275 \$627 \$0
FOR D2800 Fountain Creek 1991* Big Johnson / Crews Gulch \$18,350 FOF D2800 Fountain Creek 1986* Widefield \$18,350 FOF D2800 Fountain Creek 1991* Windmill Gulch \$18,350 FOF D3100 FOF D3200 Fountain Creek 1991* Windmill Gulch \$18,350 FOF D3100 FOUntain Creek 1984* Peterson Field \$13,235 FOF D3400 Fountain Creek 1996 Sand Creek \$18,350 FOF D4000 Fountain Creek 1996 Sand Creek \$18,350 FOF D4000 Fountain Creek 1996 Sand Creek \$18,350 FOF D4000 Fountain Creek 1997 Spring Creek \$9,517 FOF D4000 Fountain Creek 1997 Street \$18,350 FOF D4000 Fountain Creek 1997 Street \$3,611 FOF D4000 Fountain Creek 1977 Street \$3,631 FOF D5000 Fountain Creek 1972 Street \$18,350 FOF D5000<	\$2,370 \$0 \$275 \$0 \$1,004 \$0 \$5,559 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$255 \$275 \$627 \$0
FOE C2800 Fountain Creek 1988* Widefield \$18,350 FOF 02000 Fountain Creek 1988* Security \$18,350 FOF 03000 Fountain Creek 1998* Carson Street / Little Johnson \$11,192 FOF 03000 Fountain Creek 1988* Carson Street / Little Johnson \$11,192 FOF 03000 Fountain Creek 1991* Fisher's Canyon \$18,350 FOF 04000 Fountain Creek 1991* Fisher's Canyon \$18,350 FOF 04000 Fountain Creek 1997 Spring Creek \$18,350 FOF 04000 Fountain Creek 1997 Spring Creek \$18,350 FOF 04000 Fountain Creek 1994 Southwest Area \$18,350 FOF 04000 Fountain Creek 1994 Southwest Area \$18,350 FOF 05600 Fountain Creek 1997 21st Street \$3,611 FOF 05600 Fountain Creek 1996 Mesa \$9,598 FOMO100 Monument Creek 1997 Templeton Gap \$11,840 </td <td>\$0 \$0 \$275 \$0 \$1,004 \$0 \$5,559 \$0 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0</td>	\$0 \$0 \$275 \$0 \$1,004 \$0 \$5,559 \$0 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
FOF02900 Fountain Creek 1989* Security \$18,350 FOF03000 Fountain Creek 1991* Windmill Gulch \$18,350 FOF03100 FOF03200 Fountain Creek 1984* Carson Street / Little Johnson \$11,192 FOF03100 Fountain Creek 1984* Peterson Field \$13,235 FOF04000 Fountain Creek 1996 Sand Creek \$18,350 FOF04000 Fountain Creek 1997 Spring Creek \$9,517 FOF04800 Fountain Creek 1991 Bear Creek \$18,350 FOF05400 Fountain Creek 1997 Stifteret \$5,521 FOF05400 Fountain Creek 1994 19th Street \$3,611 FOF05400 Fountain Creek 1996 Camp Creek \$2,033 FOM0400 Monument Creek 1996 Camp Creek \$11,540 FOM01000 Monument Creek 1976 Pope's Bulf \$3,076 FOM01000 Monument Creek 1976 Pope's Bulf \$3,376	\$0 \$275 \$0 \$1,004 \$0 \$5,559 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
FOF03000 Fountain Creek 1991* Windmill Gulch \$18,350 FOF03000 Fountain Creek 1988* Carson Street / Little Johnson \$11,192 FOF03000 Fountain Creek 1991* Fisher's Canyon \$18,350 FOF03000 Fountain Creek 1991* Fisher's Canyon \$18,350 FOF04000 Fountain Creek 1997 Spring Creek \$18,350 FOF04000 Fountain Creek 1977 Spring Creek \$18,350 FOF04000 Fountain Creek 1984* Southwest Area \$18,350 FOF05000 Fountain Creek 1977 21st Street \$3,511 FOF05000 Fountain Creek 1964 Camp Creek \$2,033 FOM01000 Monument Creek 1977 Templeton Gap \$11,540 FOM01000 Monument Creek 1976 South Rockrimmon \$3,521 FOM01000 Monument Creek 1978 South Rockrimmon \$3,521 FOM0200 Monument Creek 1977 Templeton Gap \$11,847 <tr< td=""><td>\$275 \$0 \$1,004 \$0 \$5,559 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$0 \$255 \$275 \$627 \$0</td></tr<>	\$275 \$0 \$1,004 \$0 \$5,559 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$0 \$255 \$275 \$627 \$0
FOF03100 / FOF03200 Fountain Creek 1988* Carson Street / Little Johnson \$11,192 FOF03300 / Fountain Creek 1984* Peterson Field \$13,235 FOF03300 / Fountain Creek 1996 Sand Creek \$18,350 FOF04000 / Fountain Creek 1996 Sand Creek \$18,350 FOF04000 / Fountain Creek 1997 Spring Creek \$18,350 FOF04800 / Fountain Creek 1991 Bear Creek \$18,350 FOF05400 / Fountain Creek 1997 Z1st Street \$3,521 FOF05400 / Fountain Creek 1964 19th Street \$3,611 FOF05400 / Fountain Creek 1964 Oamp Creek \$2,033 FOM0400 / Monument Creek 1986* Mesa \$3,099 FOM01000 / Monument Creek 1976 Pope's Bluff \$3,676 FOM01400 / Monument Creek 1976 Pope's Bluff \$3,676 FOM02000 / Monument Creek 1976 Pope's Bluff \$3,676 FOM02000 / Monument Creek 1971 Pubit Rock \$6,085 FOM02000 / Monument Creek 1970 \$18,350 </td <td>\$0 \$1,004 \$0 \$5,559 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$255 \$275 \$627 \$0</td>	\$0 \$1,004 \$0 \$5,559 \$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$255 \$275 \$627 \$0
FOF03400Fountain Creek1984*Peterson Field\$13,235FOF03600Fountain Creek1991*Fisher's Carvon\$18,350FOF04200Fountain Creek1997Spring Creek\$18,360FOF04800Fountain Creek1977Spring Creek\$18,350FOF04800Fountain Creek1991Bear Creek\$18,350FOF04800Fountain Creek1991Bear Creek\$18,350FOF05800Fountain Creek197721s Street\$3,611FOF05800Fountain Creek1984*Octave\$2,033FOM0400Monument Creek1986*Mesa\$9,588FOM0100Monument Creek1977Templeton Gap\$11,847FOM01400Monument Creek1976Poop's Bluff\$3,676FOM01400Monument Creek1977North Rockrimmon\$4,314FOM01600Monument Creek1977North Rockrimmon\$5,521FOM02000Monument Creek1977North Rockrimmon\$5,521FOM02000Monument Creek1974North Rockrimmon\$5,521FOM02000Monument Creek1974North Rockrimmon\$5,521FOM02400Monument Creek1974North Rockrimmon\$5,521FOM02400Monument Creek1974North Rockrimmon\$5,521FOM02400Monument Creek1974North Rockrimmon\$5,521FOM02400Monument Creek1984Black Forest\$18,350FOM02400Monument Creek19	\$1,004 \$0 \$5,559 \$0 \$1,004 \$0 \$0 \$0 \$0 \$255 \$275 \$627 \$0
FOFO26600Fountain Creek1991*Fisher's Canyon\$18,350FOF04200Fountain Creek1996Sand Creek\$19,940FOF04200Fountain Creek1997Spring Creek\$9,517FOF04800Fountain Creek1994*Southwest Area\$18,350FOF04800Fountain Creek199721st Street\$5,521FOF05000Fountain Creek199721st Street\$3,611FOF05000Fountain Creek1964Gamp Creek\$2,033FOM00400Monument Creek1986*Mesa\$9,598FOM01000Monument Creek1977Templeton Gap\$11,847FOM01000Monument Creek1976Poge's Bluff\$3,676FOM01600Monument Creek1977Templeton Gap\$11,847FOM01600Monument Creek1977North Rockrimmon\$4,314FOM01600Monument Creek1977Poge's Bluff\$3,676FOM02000Monument Creek1974Poulpit Rock\$6,085FOM02000Monument Creek1974Cotorwood Creek / S. Pine\$18,350FOM02000Monument Creek1987*Middle Tribulary\$15,312FOM03600Monument Creek1987*Middle Tribulary\$15,312FOM03600Monument Creek1987*Middle Tribulary\$15,312FOM03600Monument Creek1989*Black Forest\$18,350FOM04200Monument Creek1989*Black Forest\$18,350FOM04200Monument Cr	\$0 \$5,559 \$0 \$1,004 \$0 \$0 \$0 \$0 \$0 \$255 \$275 \$627 \$0
FOFO4000Fountain Creek1996Sand Creek\$18,940FOFC4600Fountain Creek1977Spring Creek\$9,517FOFC4600Fountain Creek1991Bear Creek\$18,350FOFC5400Fountain Creek1991Bear Creek\$18,350FOFC5600Fountain Creek1977211 Street\$5,521FOFC5600Fountain Creek196419th Street\$3,611FOFC5600Fountain Creek1964Camp Creek\$2,033FOMO0400Monument Creek1986*Mesa\$9,598FOMO1000Monument Creek1977Templeton Gap\$11,847FOMO1000Monument Creek1976Pope's Bluff\$3,676FOMO1200Monument Creek1976South Rockrimmon\$4,314FOMO1400Monument Creek1977North Rockrimmon\$5,521FOMO1800Monument Creek1977North Rockrimmon\$5,521FOMO2200Monument Creek1977North Rockrimmon\$5,521FOMO2200Monument Creek1974Nuth Rockrimmon\$5,521FOMO2400Monument Creek1987*Nuth Rock Mage\$8,331FOMO3800Monument Creek1987*Middle Tributary\$15,312FOMO3800Monument Creek1987*Middle Tributary\$15,312FOMO3800Monument Creek1987*Middle Tributary\$16,350FOMO3800Monument Creek1987*Middle Tributary\$16,350FOMO3800Monument Creek<	\$5,559 \$0 \$1,004 \$0 \$0 \$0 \$0 \$255 \$275 \$627 \$0
FOF04200Fountain Creek1977Spring Creek\$9,517FOF04600Fountain Creek1984*Southwest Area\$18,350FOF04600Fountain Creek1984*Southwest Area\$18,350FOF05400Fountain Creek197721st Street\$5,521FOF05600Fountain Creek1964Camp Creek\$2,033FOM0400Monument Creek1986*Mesa\$9,598FOM01000Monument Creek1986*Mesa\$9,598FOM01000Monument Creek1977Templeton Gap\$11,847FOM01000Monument Creek1976Pope's Bluff\$3,676FOM01400Monument Creek1976South Rockrinmon\$4,521FOM01600Monument Creek1977Noth Rockrinmon\$5,521FOM02000Monument Creek1977Noth Rockrinmon\$5,521FOM02000Monument Creek1977Noth Rockrinmon\$5,521FOM02000Monument Creek1984*Cattonwood Creek / S. Pine\$18,350FOM02200Monument Creek1987*Midel Tributary\$15,312FOM03600Monument Creek1987*Midel Tributary\$15,312FOM04000Monument Creek1987*Midel Tributary\$16,350FOM04000Monument Creek1989*Black Squirrel Creek\$18,350FOM04000Monument Creek1989*Black Forest\$18,350FOM04000Monument Creek1989*Black Squirrel\$18,350FOM04000M	\$0 \$0 \$1,004 \$0 \$0 \$0 \$0 \$275 \$627 \$0
FOFD4800Fountain Creek1984*Southwest Area\$18,350FOFD4800Fountain Creek1991Bear Creek\$18,350FOFD5400Fountain Creek1991Bear Creek\$3,611FOFD5600Fountain Creek196419th Street\$3,611FOFD5600Fountain Creek1964Camp Creek\$2,033FOMO0400Monument Creek1986Mesa\$9,998FOMO1000Monument Creek1987Templeton Gap\$11,847FOMO1200Monument Creek1977Templeton Gap\$11,847FOMO1400Monument Creek1976Pope's Bluff\$3,676FOMO1800Monument Creek1977Templeton Gap\$11,847FOMO1800Monument Creek1976South Rockrimmon\$4,314FOMO2000Monument Creek1977Publit Rock\$6,085FOMO2000Monument Creek1984*Black Squirrel Creek\$18,350FOMO2400Monument Creek1984*Black Squirrel Creek\$18,350FOMO2400Monument Creek1987*Middle Tributary\$15,312FOMO3700Monument Creek1987*Monument Branch\$18,350FOMO4000Monument Creek1987*Monument Branch\$18,350FOMO3000Monument Creek1987*Monument Branch\$18,350FOMO4000Monument Creek1989*Black Forest\$18,350FOMO4000Monument Creek1989*Dirty Woran Creek\$18,350FOMO4000Monu	\$0 \$1,004 \$0 \$0 \$0 \$0 \$255 \$275 \$627 \$0
FOFO4800Fountain Creek1991Bear Creek\$18,350FOFO5600Fountain Creek197721st Street\$5,521FOFO5600Fountain Creek196419h Street\$3,611FOFO5600Fountain Creek1964Camp Creek\$2,033FOM00400Monument Creek1986Mesa\$9,599FOM01000Monument Creek1977Templeton Gap\$11,647FOM01000Monument Creek1977Templeton Gap\$11,647FOM01400Monument Creek1976South Rockrimmon\$4,314FOM01600Monument Creek1977North Rockrimmon\$4,314FOM02000Monument Creek1977North Rockrimmon\$5,521FOM02000Monument Creek1977Pulpit Rock\$6,085FOM02000Monument Creek1986Dry Creek\$11,340FOM02000Monument Creek1986Dry Creek\$14,486FOM03000Monument Creek1987Monument Branch\$18,350FOM03000Monument Creek1987Monument Branch\$18,350FOM04000Monument Creek1987Wornan Creek\$18,350FOM04000Monument Creek1989Biack Forest\$18,350FOM04000Monument Creek1989Biack Forest\$18,350FOM04000Monument Creek1989Biack Forest\$18,350FOM04000Monument Creek1989Biack Forest\$18,350FOM04000Monument Creek1989Biack F	\$1,004 \$0 \$0 \$0 \$255 \$275 \$627 \$0
FOFD5400 Fountain Creek 1977 21st Street \$5,521 FOFD5600 Fountain Creek 1964 19h Street \$3,611 FOFD5800 Fountain Creek 1964 Camp Creek \$2,033 FOMD0400 Monument Creek 1986 Mesa \$9,599 FOMO1000 Monument Creek 1987 Douglas Creek \$11,640 FOM01200 Monument Creek 1977 Templeton Gap \$11,847 FOM01400 Monument Creek 1976 Pope's Bluff \$3,676 FOM01800 Monument Creek 1977 North Rockrimmon \$4,314 FOM02000 Monument Creek 1978 North Rockrimmon \$5,521 FOM02000 Monument Creek 1986 Cotonwood Creek / S. Pine \$18,350 FOM02400 Monument Creek 1986 Black Squirrel Creek \$8,331 FOM03000 Monument Creek 1987 Middle Tributary \$15,312 FOM04000 Monument Creek 1987 Middle Tributary \$15,312 FOM	\$0 \$0 \$0 \$255 \$275 \$627 \$0
FOFD5600 Fountain Creek 1964 19th Street \$3,611 FOFD5800 Fountain Creek 1964 Camp Creek \$2,033 FOMO0400 Monument Creek 1986* Mesa \$9,598 FOMO1000 Monument Creek 1986* Mesa \$11,540 FOMO1000 Monument Creek 1977 Templeton Gap \$11,847 FOMO1600 Monument Creek 1976 South Rockrimmon \$4,314 FOMO1600 Monument Creek 1977 South Rockrimmon \$4,314 FOMO2000 Monument Creek 1971 Pulpit Rock \$6,065 FOMO2000 Monument Creek 1974 Pulpit Rock \$18,350 FOMO2400 Monument Creek 1986* Black Squirrel Creek \$18,351 FOMO3600 Monument Creek 1987* Miodle Tributary \$15,312 FOMO3800 Monument Creek 1987* Mionument Branch \$18,350 FOMO4200 Monument Creek 1987* Mionument Creek \$18,350 FOMO4200	\$0 \$0 \$255 \$275 \$627 \$0
FOFO5800Fountain Creek1964Camp Creek\$2,033FOM00400Monument Creek1986*Mesa\$9,598FOM01000Monument Creek1981Douglas Creek\$11,540FOM01200Monument Creek1977Templeton Gap\$11,847FOM01400Monument Creek1976Pope's Bluff\$3,676FOM01600Monument Creek1976South Rockrimmon\$4,314FOM01800Monument Creek1971Pulpit Rock\$6,065FOM02000Monument Creek1974Oxth Rockrimmon\$5,521FOM02000Monument Creek1964Cottonwood Creek / S, Pine\$18,350FOM02400Monument Creek1989*Black Squirrel Creek\$8,331FOM03600Monument Creek1987*Middle Tributary\$15,312FOM03700Monument Creek1987*Monument Branch\$18,350FOM04000Monument Creek1989*Black Squirrel Creek\$7,481FOM04200Monument Creek1993*Crystal Creek\$18,350FOM05200Monument Creek1993*Dirty Wornan Creek\$18,350FOM05200Monument Creek1993*Dirty Wornan Creek\$18,350FOM05200Monument Creek1993*Crystal Creek\$18,350FOM05200Chico CreekBook Ranch\$17,217CHES0400Chico CreekUpper East Chico\$9,380CHWS0400Chico CreekUpper East Chico\$9,380CHWS0400Chico CreekVest Sq	\$0 \$0 \$255 \$275 \$627 \$0
FOMO0400Monument Creek1986*Mesa\$9,598FOMO1000Monument Creek1981Douglas Creek\$11,540FOMO1200Monument Creek1977Templeton Gap\$11,847FOMO1400Monument Creek1976Pope's Bluff\$3,676FOMO1600Monument Creek1976South Rockrimmon\$4,314FOMO2000Monument Creek1977Pupe's Bluff\$3,676FOMO2000Monument Creek1977North Rockrimmon\$4,314FOMO2000Monument Creek1971Pulpit Rock\$6,085FOMO2000Monument Creek1984Cottonwood Creek / S, Pine\$18,350FOMO2400Monument Creek1986*Black Squirrel Creek\$8,331FOMO3600Monument Creek1987*Monument Branch\$18,350FOMO4000Monument Creek1987*Monument Branch\$18,350FOMO4000Monument Creek1989*Black Forest\$18,350FOMO4200Monument Creek1989*Black Forest\$18,350FOMO4200Monument Creek1989*Black Forest\$18,350FOMO4200Monument Creek1993*Crystal Creek\$18,350FOMO5300Fountain Creek1993*Crystal Creek\$18,350FOMO5300Fountain CreekBook Ranch\$17,217CHES0400Chico CreekBook Ranch\$17,217CHES0400Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekTelephone Exchange <td< td=""><td>\$0 \$255 \$275 \$627 \$0</td></td<>	\$0 \$255 \$275 \$627 \$0
FOMO1000Monument Creek1981Douglas Creek\$11,540FOMO1200Monument Creek1977Templeton Gap\$11,847FOMO1400Monument Creek1976South Rockrimmon\$3,676FOMO1500Monument Creek1976South Rockrimmon\$4,314FOMO1600Monument Creek1977Pulpit Rock\$6,085FOMO2000Monument Creek1971Pulpit Rock\$6,085FOMO2000Monument Creek1974Cottorwood Creek / S. Pine\$18,350FOMO2400Monument Creek1986Dry Creek\$8,331FOMO3600Monument Creek1987*Middle Tributary\$15,312FOMO3700Monument Creek1987*Monument Branch\$18,350FOMO4000Monument Creek1986*Smith Creek\$7,481FOMO4000Monument Creek1989*Black Forest\$18,350FOMO5200Monument Creek1993*Dirty Woman Creek\$18,350FOMO5200Monument Creek1993*Dirty Woman Creek\$18,350FOMO5200Monument Creek1993*Dirty Woman Creek\$18,350FOMO5200Chico CreekBook Ranch\$17,217CHES0400Chico CreekBook Ranch\$17,217CHES0400Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekLivestock Company\$16,976CHWS0400Chico CreekWest Squirrel\$8,849CHWS0400Chico CreekSolberg Ranch\$18,350C	\$255 \$275 \$627 \$0
FOMO1200Monument Creek1977Templeton Gap\$11,847FOMO1400Monument Creek1976Pope's Bluff\$3,676FOMO1600Monument Creek1976South Rockrimmon\$4,314FOMO1800Monument Creek1977North Rockrimmon\$5,521FOMO2000Monument Creek1971Pulpit Rock\$6,085FOMO2000Monument Creek1994Cottonwood Creek / S, Pine\$18,350FOMO2400Monument Creek1986Dry Creek\$8,331FOMO3600Monument Creek1987*Middle Tributary\$15,312FOMO3600Monument Creek1987*Monument Branch\$18,350FOMO4000Monument Creek1987*Monument Branch\$18,350FOMO4000Monument Creek1993*Dirty Woman Creek\$18,350FOMO5200Monument Creek1993*Dirty Woman Creek\$18,350FOMO5200Monument Creek1993*Dirty Woman Creek\$18,350FOMO5200Monument Creek1993*Dirty Woman Creek\$18,350FOMO5200Chico CreekUpper East Chico\$9,380CHBS0800Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekVest Squirrel\$8,849CHWS0800Chico CreekVest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$16,976 <td< td=""><td>\$275 \$627 \$0</td></td<>	\$275 \$627 \$0
FOMO1400Monument Creek1976Pope's Bluff\$3,676FOM01600Monument Creek1976South Rockrimmon\$4,314FOM01800Monument Creek1973North Rockrimmon\$5,521FOM02000Monument Creek1971Pulpit Rock\$6,085FOM02200Monument Creek1994Cottonwood Creek / S. Pine\$18,350FOM02400Monument Creek1989*Black Squirrel Creek\$8,331FOM03600Monument Creek1989*Black Squirrel Creek\$8,331FOM03700Monument Creek1987*Middle Tributary\$15,312FOM03800Monument Creek1987*Monument Branch\$18,350FOM04000Monument Creek1998*Black Forest\$18,350FOM05200Monument Creek1999*Dirty Worman Creek\$18,350FOM05300Fountain Creek1993*Dirty Worman Creek\$18,350FOM05300Fountain Creek1993*Dirty Worman Creek\$18,350FMiscellaneous Drainage Basins: 1111CHES0800Chico CreekBook Ranch\$17,217CHEC0400Chico CreekUpper East Chico\$9,380CHWS0400Chico CreekWest Squirrel\$8,849CHWS0600Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350FOFO1200Fountain CreekSolberg Ranch\$18,350FOFO1200Fountain CreekSolberg Ranch\$18,350FOFO140	\$627 \$0
FOM01600Monument Creek1976South Rockrimmon\$4,314FOM01800Monument Creek1973North Rockrimmon\$5,521FOM02000Monument Creek1971Pulpit Rock\$6,085FOM02200Monument Creek1994Cottonwood Creek / S. Pine\$18,350FOM02400Monument Creek1996Dry Creek\$14,486FOM03600Monument Creek1989*Black Squirrel Creek\$8,331FOM03700Monument Creek1987*Middle Tributary\$15,312FOM03800Monument Creek1986Smith Creek\$7,481FOM04000Monument Creek1998*Black Forest\$18,350FOM05200Monument Creek1998*Dirty Woman Creek\$18,350FOM05200Monument Creek1993*Dirty Woman Creek\$18,350FOM05300Fountain Creek1993*Crystal Creek\$18,350FOM05300Chico CreekUpper East Chico\$9,380CHBS0800Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekLivestock Company\$16,976CHWS0600Chico CreekSolberg Ranch\$18,350FOF01200Fountain CreekSolberg Ranch\$18,350FOF01200Fountain CreekCooked Canyon\$5,540FOF01400Fountain CreekCalhan Reservoir\$4,625FOF01600Fountain CreekCalhan Reservoir\$4,625	\$0
FOMO1800Monument Creek1973North Rockrimmon\$5,521FOMO2000Monument Creek1971Pulpit Rock\$6,085FOMO2200Monument Creek1994Cottorwood Creek / S. Pine\$18,350FOMO2400Monument Creek1986Dry Creek\$14,486FOM03600Monument Creek1989*Black Squirrel Creek\$8,331FOM03700Monument Creek1987*Middle Tributary\$15,312FOM03800Monument Creek1987*Monument Branch\$18,350FOM04000Monument Creek1986Smith Creek\$7,481FOM04200Monument Creek1998*Black Forest\$18,350FOM05300Fountain Creek1993*Dirty Wornan Creek\$18,350FOM05300Fountain Creek1993*Crystal Creek\$18,350FOM05300Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekLivestock Company\$16,976CHWS0800Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350FOF01200Fountain CreekSolberg Ranch\$18,350FOF01200Fountain CreekSolberg Ranch\$18,350FOF01200Fountain CreekSolberg Ranch\$18,350FOF01400Fountain CreekCrooked Canyon\$5,540FOF01400Fountain CreekCalan Reservoir\$4,625FOF01600Fountain CreekS	
FOMO2000Monument Creek1971Pulpit Rock\$6,085FOMO2200Monument Creek1994Cottonwood Creek / S. Pine\$18,350FOMO2400Monument Creek1966Dry Creek\$14,486FOMO3600Monument Creek1989*Black Squirrel Creek\$8,331FOMO3700Monument Creek1987*Middle Tributary\$15,312FOM03800Monument Creek1987*Middle Tributary\$15,312FOM04000Monument Creek1987*Middle Tributary\$15,312FOM04200Monument Creek1987*Middle Tributary\$15,312FOM04200Monument Creek1989*Black Forest\$18,350FOM05200Monument Creek1993*Dirty Woman Creek\$18,350FOM05300Fountain Creek1993*Crystal Creek\$18,350FOM05300Chico CreekUpper East Chico\$9,380CHBS0800Chico CreekUpper East Chico\$9,380CHWS0400Chico CreekLivestock Company\$16,976CHWS0400Chico CreekWest Squirrel\$8,849CHWS0600Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolverg Ranch\$18,350FOFO1200Fountain CreekSolverg Ranch\$18,350FOFO1400Fountain CreekSolverg Ranch\$18,350FOFO1400Fountain CreekSolverg Ranch\$18,350FOFO1400Fountain CreekSolverg Ranch\$18,350FOFO1400Fountain Creek<	\$0
FOMO2200Monument Creek1994Cottonwood Creek / S. Pine\$18,350FOMO2400Monument Creek1966Dry Creek\$14,486FOMO3600Monument Creek1989*Black Squirrel Creek\$8,331FOMO3700Monument Creek1987*Middle Tributary\$15,312FOM03800Monument Creek1987*Middle Tributary\$15,350FOM04000Monument Creek1987*Monument Branch\$18,350FOMO4200Monument Creek1998*Black Forest\$18,350FOMO5200Monument Creek1993*Dirty Wornan Creek\$18,350FOMO5300Fountain Creek1993*Crystal Creek\$18,350FOMO5300Fountain Creek1993*Crystal Creek\$18,350FOM05300Chico CreekUpper East Chico\$9,380CHBS0800Chico CreekUpper East Chico\$9,380CHWS0400Chico CreekLivestock Company\$16,976CHWS0600Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekSolberg Ranch\$18,350FOFO1200Fountain CreekSolberg Ranch\$18,350FOFO1400Fountain CreekCalhan Reservoir	\$0 \$0
FOMO2400Monument Creek1966Dry Creek\$14,486FOMO3600Monument Creek1989*Black Squirrel Creek\$8,331FOMO3700Monument Creek1987*Middle Tributary\$15,312FOMO3800Monument Creek1987*Monument Branch\$18,350FOM04000Monument Creek1989*Black Forest\$18,350FOM04200Monument Creek1998*Black Forest\$18,350FOM05200Monument Creek1993*Dirty Wornan Creek\$18,350FOM05300Fountain Creek1993*Crystal Creek\$18,350FOM05300Fountain Creek1993*Crystal Creek\$18,350FOM05300Chico CreekUpper East Chico\$9,380CHBS0800Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekLivestock Company\$16,976CHWS0800Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekSolberg Ranch\$18,350FOF01200Fountain CreekCalhan Reservoir\$4,625FOF01400Fountain CreekSand Canyon\$3,342	\$1,004
FOMO3600Monument Creek1989*Black Squirrel Creek\$8,331FOMO3700Monument Creek1987*Middle Tributary\$15,312FOMO3800Monument Creek1987*Monument Branch\$18,350FOMO4000Monument Creek1996Smith Creek\$18,350FOMO4200Monument Creek1996*Black Forest\$18,350FOMO5200Monument Creek1993*Dirty Woman Creek\$18,350FOMO5300Fountain Creek1993*Crystal Creek\$18,350FOMO5300Chico CreekUpper East Chico\$9,380CHBS0800Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekLivestock Company\$16,976CHWS0400Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350FOF01200Fountain CreekSolberg Ranch\$18,350FOF01200Fountain CreekCrooked Canyon\$5,540FOF01400Fountain CreekCalhan Reservoir\$4,625FOF01600Fountain CreekSand Canyon\$3,342	\$524
FOMO3700Monument Creek1987*Middle Tributary\$15,312FOMO3800Monument Creek1987*Monument Branch\$18,350FOMO4000Monument Creek1996Smith Creek\$7,481FOMO4200Monument Creek1999*Black Forest\$18,350FOMO5200Monument Creek1993*Dirty Wornan Creek\$19,350FOMO5300Fountain Creek1993*Crystal Creek\$18,350FOMO5300Fountain Creek1993*Crystal Creek\$18,350FMISCEllaneous Drainage Basins: ****CHBS0800Chico CreekBook Ranch\$17,217CHEC0400Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekLivestock Company\$16,976CHWS0800Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350FOF01200Fountain CreekCrooked Canyon\$5,540FOF01400Fountain CreekCalhan Reservoir\$4,625FOF01600Fountain CreekSand Canyon\$3,342	\$524
FOMO3800Monument Creek1987*Monument Branch\$18,350FOMO4000Monument Creek1996Smith Creek\$7,481FOMO4200Monument Creek1999*Black Forest\$18,350FOMO5200Monument Creek1993*Dirty Woman Creek\$18,350FOMO5300Fountain Creek1993*Crystal Creek\$18,350FOMO5300Fountain Creek1993*Crystal Creek\$18,350Miscellaneous Drainage Basins: 11111CHBS0800Chico CreekBook Ranch\$17,217CHEC0400Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekLivestock Company\$16,976CHWS0400Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekSolberg Ranch\$18,350FOFO1200Fountain CreekCrooked Canyon\$5,540FOFO1400Fountain CreekCalhan Reservoir\$4,625FOFO1600Fountain CreekSand Canyon\$3,342	\$0
FOMO4000Monument Creek1996Smith Creek\$7,481FOMO4200Monument Creek1989*Black Forest\$18,350FOMO5200Monument Creek1993*Dirty Woman Creek\$18,350FOMO5300Fountain Creek1993*Crystal Creek\$18,350 <i>Miscellaneous Drainage Basins:</i> *CHBS0800Chico CreekBook Ranch\$17,217CHEC0400Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekLivestock Company\$16,976CHWS0400Chico CreekLivestock Company\$16,976CHWS0600Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekSolberg Ranch\$18,350FOFO1200Fountain CreekCrooked Canyon\$5,540FOFO1400Fountain CreekCalhan Reservoir\$4,625FOFO1600Fountain CreekSand Canyon\$3,342	\$0
FOMO4200Monument Creek1989* 1993*Black Forest\$18,350FOMO5200Monument Creek1993*Dirty Woman Creek\$18,350FOMO5300Fountain Creek1993*Dirty Woman Creek\$18,350 <i>Miscellaneous Drainage Basins:</i> ***CHBS0800Chico CreekBook Ranch\$17,217CHEC0400Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekTelephone Exchange\$10,306CHWS0400Chico CreekLivestock Company\$16,978CHWS0600Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350FOF01200Fountain CreekCrooked Canyon\$5,540FOF01400Fountain CreekCalhan Reservoir\$4,625FOF01600Fountain CreekSand Canyon\$3,342	\$1,004
FOMO5200Monument Creek1993* 1993*Dirty Woman Creek\$18,350FOMO5300Fountain Creek1993*Crystal Creek\$18,350Miscellaneous Drainage Basins:1CHBS0800Chico CreekBook Ranch\$17,217CHEC0400Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekLivestock Company\$16,976CHWS0400Chico CreekLivestock Company\$16,976CHWS0800Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekSolberg Ranch\$18,350FOFO1200Fountain CreekCrooked Canyon\$5,540FOFO1400Fountain CreekCalhan Reservoir\$4,625FOFO1600Fountain CreekSand Canyon\$3,342	\$500
FOMO5300Fountain Creek1993*Crystal Creek\$18,350Miscellaneous Drainage Basins: *CHBS0800Chico CreekBook Ranch\$17,217CHEC0400Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekTelephone Exchange\$10,306CHWS0400Chico CreekLivestock Company\$16,976CHWS0800Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350FOFO1200Fountain CreekCrooked Canyon\$5,540FOFO1400Fountain CreekCalhan Reservoir\$4,625FOFO1600Fountain CreekSand Canyon\$3,342	\$1,004
Miscellaneous Drainage Basins: 1CHBS0800Chico CreekBook Ranch\$17,217CHEC0400Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekTelephone Exchange\$10,306CHWS0400Chico CreekLivestock Company\$16,976CHWS0600Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350FOF01200Fountain CreekCrooked Canyon\$5,540FOF01400Fountain CreekCalhan Reservoir\$4,625FOF01600Fountain CreekSand Canyon\$3,342	\$1,004
CHBS0800Chico CreekBook Ranch\$17,217CHEC0400Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekTelephone Exchange\$10,306CHWS0400Chico CreekLivestock Company\$16,976CHWS0800Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350CHWS0800Chico CreekCrooked Canyon\$5,540FOF01200Fountain CreekCalhan Reservoir\$4,625FOF01600Fountain CreekSand Canyon\$3,342	
CHEC0400Chico CreekUpper East Chico\$9,380CHWS0200Chico CreekTelephone Exchange\$10,306CHWS0400Chico CreekLivestock Company\$16,976CHWS0600Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350FOF01200Fountain CreekCrooked Canyon\$5,540FOF01400Fountain CreekCalhan Reservoir\$4,625FOF01600Fountain CreekSand Canyon\$3,342	
CHWS0200Chico CreekTelephone Exchange\$10,306CHWS0400Chico CreekLivestock Company\$16,976CHWS0800Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350FOF01200Fountain CreekCrooked Canyon\$5,540FOF01400Fountain CreekCalhan Reservoir\$4,625FOF01600Fountain CreekSand Canyon\$3,342	\$2,492
CHWS0400Chico CreekLivestock Company\$16,976CHWS0600Chico CreekWest Squirrel\$8,849CHWS0800Chico CreekSolberg Ranch\$18,350FOF01200Fountain CreekCrooked Canyon\$5,540FOF01400Fountain CreekCalhan Reservoir\$4,625FOF01600Fountain CreekSand Canyon\$3,342	\$272
CHW S0600Chico CreekWest Squirrel\$8,849CHW S0800Chico CreekSolberg Ranch\$18,350FOF D1200Fountain CreekCrooked Canyon\$5,540FOF D1400Fountain CreekCalhan Reservoir\$4,625FOF D1600Fountain CreekSand Canyon\$3,342	\$241
CHWS0800Chico CreekSolberg Ranch\$18,350FOFD1200Fountain CreekCrooked Canyon\$5,540FOFD1400Fountain CreekCalhan Reservoir\$4,625FOFD1600Fountain CreekSand Canyon\$3,342	\$202
FOF D1200Fountain CreekCrooked Canyon\$5,540FOF D1400Fountain CreekCalhan Reservoir\$4,625FOF D1600Fountain CreekSand Canyon\$3,342	\$3,672
FOFO1400Fountain CreekCalhan Reservoir\$4,625FOFO1600Fountain CreekSand Canyon\$3,342	\$0
FOFO1600 Fountain Creek Sand Canyon \$3,342	\$0
	\$270
ECEC2000 Equatoin Creek limmy Camp Creek ³ \$18,350	\$0
	\$858
FOFO2200 Fountain Creek Fort Carson \$14,486	\$524
FOF02700 Fountain Creek West Little Johnson \$1,209	\$0
FOFO3800 Fountain Creek Stratton \$8,801	\$394
FOFO5000 Fountain Creek Midland \$14,486	\$524
FOFO6000 Fountain Creek Palmer Trail \$14,486	\$524
FOFO6800 Fountain Creek Black Canyon \$14,486	\$524
FOMO4600 Monument Creek Beaver Creek \$10,970	\$0 \$0
FOMO3000 Monument Creek Kettle Creek \$9,909	\$0 \$0
FOMO3400 Monument Creek Eikhom \$1,665 FOMO5000 Monument Creek Monument Rock \$7,953	101.1
FOMO5400 Monument Creek Palmer Lake \$12,717 FOMO5600 Monument Creek Raspberry Mountain \$4,278	\$0
FOMO5600 Monument Creek Raspberry Mountain \$4,278 PLPL0200 Monument Creek Bald Mountain \$9,116	\$0 \$0
	\$0 \$0 \$0
Interim Drainage Basins: *	\$0 \$0
FOFO1800 Fountain Creek Little Fountain Creek \$2,346	\$0 \$0 \$0 \$0
FOMO4400 Monument Creek Jackson Creek \$7,263 FOMO4800 Monument Creek Teachout Creek \$5,044	\$0 \$0 \$0 \$0 \$0
FOMO4800 Monument Creek Teachout Creek \$5,044	\$0 \$0 \$0 \$0

1. The miscellaneous drainage fee previous to September 1999 resolution was the average of all drainage fees for basins with Basin Planning Studies perform

2. Interim Drainage Fees are based upon draft Drainage Basin Planning Studies or the Drainage Basin Identification and Fee Estimation Report. (Best available


3. This is an interim fee and will be adjusted when a DBPS is completed. In addition to the Drainage Fee a surety in the amount of \$7,285 per impervious acre shi the DBPS results in a fee greater than the current fee. Fees paid in excess of the future revised fee will be reimbursed. See Resolution 06-326 (9/14/06) and Res

Jennifer Irvine, P.E.

SAND CREEK DRAINAGE BASIN PLANNING STUDY

PRELIMINARY DESIGN REPORT

CITY OF COLORADO SPRINGS, EL PASO COUNTY, COLORADO

PREPARED FOR:

City of Colorado Springs Department of Comprehensive Planning, Development and Finance Engineering Division 30 S. Nevada Colorado Springs, Colorado 80903

PREPARED BY:

Kiowa Engineering Corporation 1011 North Weber Colorado Springs, CO 80903

STUDY AREA DESCRIPTION II.

The Sand Creek drainage basin is a left-bank tributary to the Fountain Creek lying in the west-central portions of El Paso County. Sand Creek's drainage area at Fountain Creek is approximately 54 square miles of which approximately 18.8 square miles are inside the City of Colorado Springs corporate limits. The basin is divided into five major sub-basins, the Sand Creek mainstem, the East Fork Sand Creek, the Central Tributary to East Fork, the West Fork, and the East Fork Subtributary. Figure II-1 shows the location of the Sand Creek basin.

Basin Description

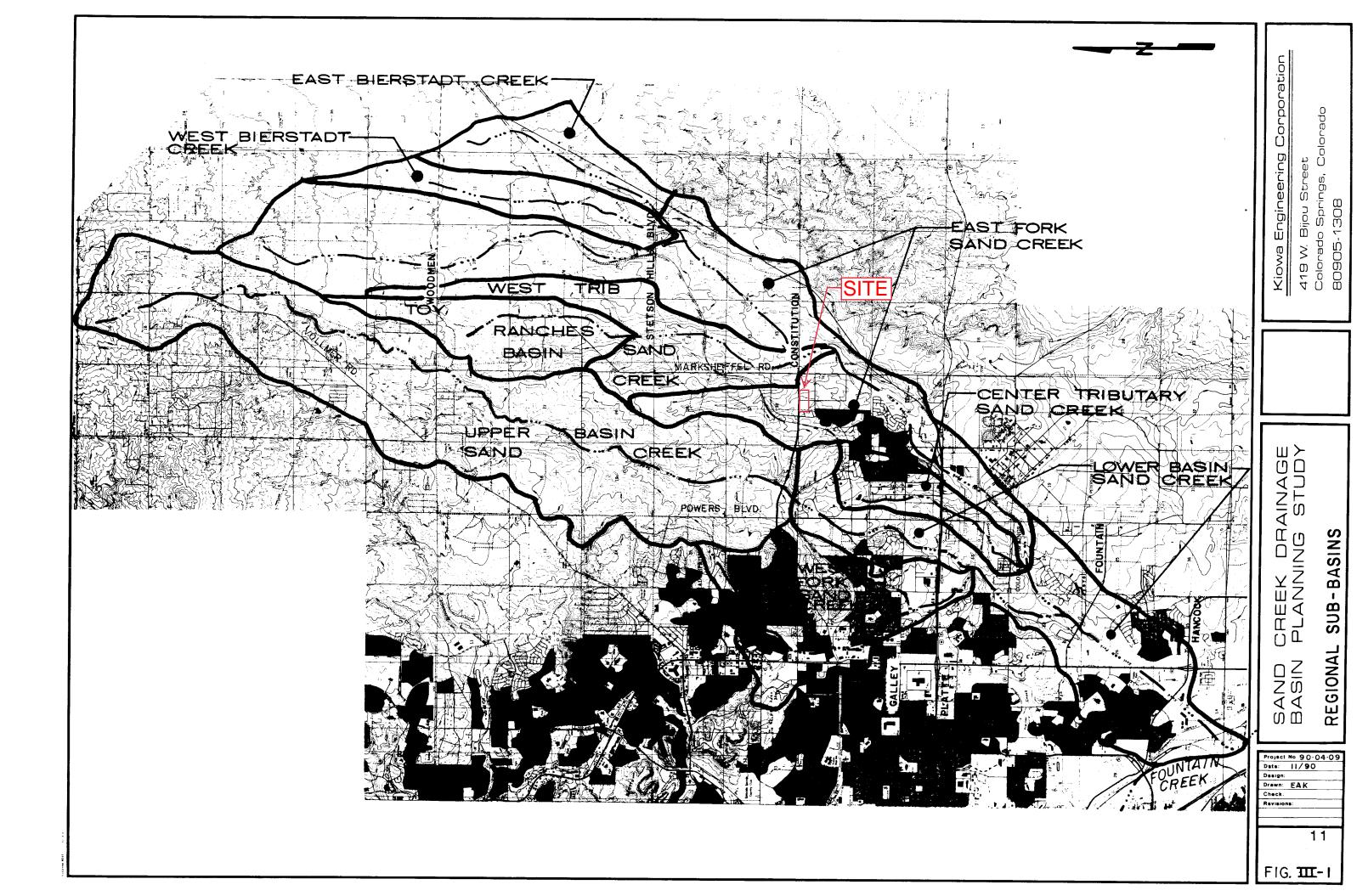
The Sand Creek basin covers a total of 54 square miles in unincorporated El Paso County and Colorado Springs, Colorado. Of this total, approximately 28 square miles is encompassed by the Sand Creek basin, and 26 square miles for the East Fork Sand Creek basin. The basin trends in generally a south to southwesterly direction, entering the Fountain Creek approximately two miles upstream of the Academy Boulevard bridge over Fountain Creek. Two main tributaries drain the basin, those being the mainstem of Sand Creek and East Fork Sand Creek. Development presence in most evident along the mainstream. At this time, approximately 25 percent of the basin is developed. This alternative evaluation focuses upon the Sand Creek basin only.

The maximum basin elevation is approximately 7,620 feet above mean sea level, and falls to approximately 5,790 feet at the confluence with Fountain Creek. The headwaters of the basin originate in the conifer covered areas of The Black Forest. The middle eastern portions of the basin are typified by rolling range land with fair to good vegetative cover associated with semi-arid climates.

Climate

This area of El Paso County can be described, in general as high plains, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry. Precipitation ranges from 14 to 16 inches per year, with the majority of this precipitation occurring in spring and summer in the form of rainfall. Thunderstorms are common during the summer months, and are typified by quick-moving low pressure cells which draw moisture from the Gulf of Mexico into the region. Average temperatures range from about 30°F in the winter to 75° in the summer. The relative humidity ranges from about 25 percent in the summer to 45 percent in the winter.

Soils and Geology


Soils within the Sand Creek basin vary between soil types A through D, as identified by the U.S. Department of Agriculture, Soil Conservation Service. The predominant soil groupings are in the Truckton and Bresser soil associations. The soils consist of deep, well drained soils that formed in alluvium and residium, derived from sedimentary rock. The soils have high to moderate infiltration rates, and are extremely susceptible to wind and water erosion where poor vegetation cover exists. In undeveloped areas, the predominance of Type A and B soils give this basin a lower runoff per unit area as compared to basins with soils dominated by Types C and D. Presented on Figure II-2 is the Hydrologic Soil distribution map for the Sand Creek basin.

Property Ownership and Impervious Land Densities

Property ownership along the major drainageway within the Sand Creek basin vary from public to private. Along the developed reaches, drainage right-of-ways and greenbelts have been dedicated during the development of the adjacent residential and commercial land. Where development has not occurred, the drainageways remain under private ownership with no delineated drainage right-of-way or easements. There are several public parks which abut the mainstem of Sand Creek. Roadway and utility easements abutting or crossing the major drainageways occur most frequently in the developed portions of the basin.

Land use information for the existing and future conditions were reviewed as part of the planning effort. This information is used in the hydrologic analysis to predict runoff rates and volumes for the purposes of facility evaluation. The identification of land uses abutting the drainageways is also useful in the identification of feasible plans for stabilization and aesthetic treatment of the creek. Presented on Figure II-3 is the proposed land use map used in the evaluation of impervious land densities discussed in the hydrologic section of this report. Figure II-3 is not intended to reflect the future zoning or land use policies of the City or the County.

The land use information within the Banning-Lewis Ranch property was obtained from Aries Properties during the time the draft East Fork Sand Creek Drainage Basin Planning Study was being prepared. The land use information was again reviewed with the City of Colorado Springs Department of Planning and was found to be appropriate for use in the estimation of hydrology for the East Fork Basin. The location of future arterial streets and roadways within

Mar. 20,702

EPC DEVELOPMENT SERVICES

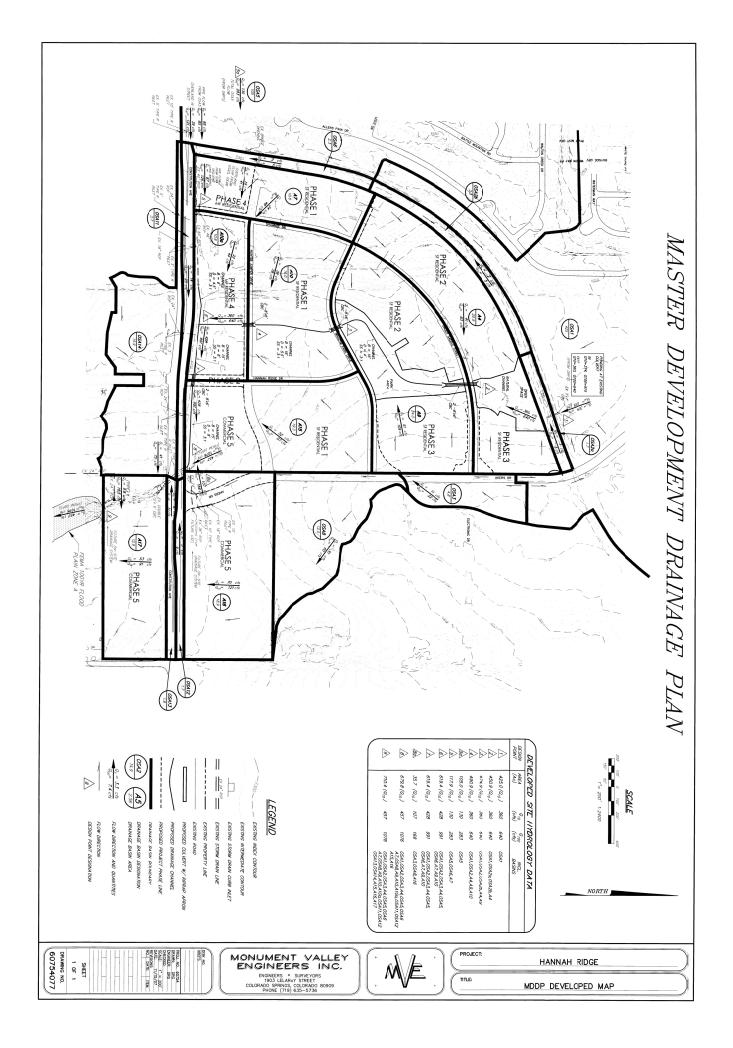
HANNAH RIDGE AT FEATHERGRASS MASTER DRAINAGE DEVELOPMENT PLAN

November 15, 2007 Project No. 60754

PREPARED FOR:

FEATHERGRASS INVESTMENTS, LLC 4715 North Chestnut Street Colorado Springs, CO 80907 (719) 593-8367

Kenneth P. Driscoll, Manager


PREPARED BY:

M.V.E., Inc. 1903 Lelaray Street, Suite 200 Colorado Springs, CO 80909 (719) 635-5736

discharges of $Q_5 = 2$ cfs and $Q_{100} = 5$ cfs. Basin OSA8, on the east side of Akers Drive, drains south onto the eastern section of the property with peak discharges of $Q_5 = 30$ cfs and $Q_{100} = 60$ cfs. Flows from Basin OSA3 and a portion of Basin OSA8 enters Akers Drive. The existing Akers Drive and Akers drainage improvements were designed by M.V.E., Inc. and approved by El Paso County D.O.T. in September 2006. The system was designed to capture and convey developed flows in Akers Drive. One 10 ft Type R inlet and one 15 ft Type R inlet, connected by an 18" RCP are installed on the east side of Akers, just north of the Constitution intersection. A 10 ft Type R inlet is located on the west side of Akers. The flows collected by the inlets are discharged at the CBC opening, just to the west, with a 24" RCP. The inlets and connecting pipes are adequate to collect and route developed 100 year flows of 20.9 cfs to the creek. In the 100-year event, bypass flows of 5.1 cfs reaches Constitution and travels west to the sump inlet at the CBC crossing. Off-site basins OSA11, OSA12, and OSA13 contain portions of Constitution Avenue. These basins drain to the existing double 12' x 6' CBC under Constitution Avenue. Runoff from Basin OSA14 drains easterly onto the southern portion of the proposed project located on the south side of Constitution Avenue with flows of $Q_5 = 14$ cfs and $Q_{100} = 27$ cfs. Basin OSA14 is currently undeveloped commercial property, just north of the Jessica Heights Filing Nol. 1 residential subdivision. A storm drain pipe from Jessica Heights delivers an additional $Q_5 = 9.8$ cfs and $Q_{100} = 18.5$ cfs to the Tributary 6 channel. These flow enter the property and then travel to the creek flowing to the south.

IV. ON-SITE DRAINAGE BASINS

The existing site drains southerly and easterly from the old Rock Island Railroad that bounds the property on the north and west. Tributary 6 to the East Fork of Sand Creek runs north to south through the property to Constitution Avenue. Offsite storm discharges from the Tributary enter onsite Basin A4 at Design Point 1 (the existing 7'x7' CBC). The existing channel area from the railroad culvert to existing Electronic Drive will be maintained in nearly existing condition. Basin A4 will contain single family residential development with open space components and produce runoff quantities of $Q_5 = 41$ cfs and $Q_{100} = 83$ cfs. Flows from Basin A4, along with the Tributary flows will drain to Design Point 2 at proposed Under Saddle Street. A new CBC beneath the street will allow runoff into Basin A9, where flows will enter a park area by way of an improved channel from the DP 2 culvert. Basin A9 contains single family residential development and open space. Developed runoff discharges of $Q_5 = 51$ cfs and $Q_{100} = 109$ cfs are generated by the basin. A storm

JESSICA HEIGHTS FILING NO. 1 FINAL DRAINAGE REPORT

April 27, 2005 Project No. 60742

PREPARED FOR:

Sand Creek Investments South, LLC % Equity Investments 90 South Cascade, Suite 1500 Colorado Springs, CO 80903

PREPARED BY:

M.V.E., Inc. 1903 Lelaray Street, Suite 200 Colorado Springs, CO 80909 (719) 635-5736

60742Final Drainage Report.wpd-05

roads will be paved county streets within 50 to 80 foot of right-of-ways. Curb & gutter will be constructed on the streets and route storm water flows to storm water inlets. Grading operations will be done in order to improve drainage conditions and to direct runoff to a desired location. Overlot grading will be necessary for subdivision development.

The included **Drainage Map - Developed Condition** shows the proposed road scheme, lot layout, and developed drainage basins with basin designations. The basin sizes and estimated peak storm runoff flows are shown in the table below and on the included map.

	Table 3.1 - Developed	Condition Hydrolo	gic Data	
I	Design Point or Basin	Cumulative Drainage Area (Ac)	5-yr Discharge (cfs)	100-yr Discharge (cfs)
	OSA	0.15	0.6	1.1
	OSB	0.46	1.8	3.3
	OSC	0.88	3.3	6.0
	A1	0.96	2.0	4.0
	A2	5.25	3.2	7.6
	A3	0.51	1.4	2.8
	A4	O.32	1.3	2.3
	B1	2.27	4.1	8.2
DP 2	B2	0.70	2.0	3.8
DP 3a	B3a	0.77	1.7	3.4
DP 3b	B3b	2.53	4.8	9.6
	B3c	1.35	3.2	6.6
DP3	B3+3b+3c	4.65	8.4	16.9
	B4	0.51	1.4	2.7
	B5	1.06	2.5	5.0
DP5	B6	0.53	1.4	2.6
DP6	B8	1.98	3.9	7.8

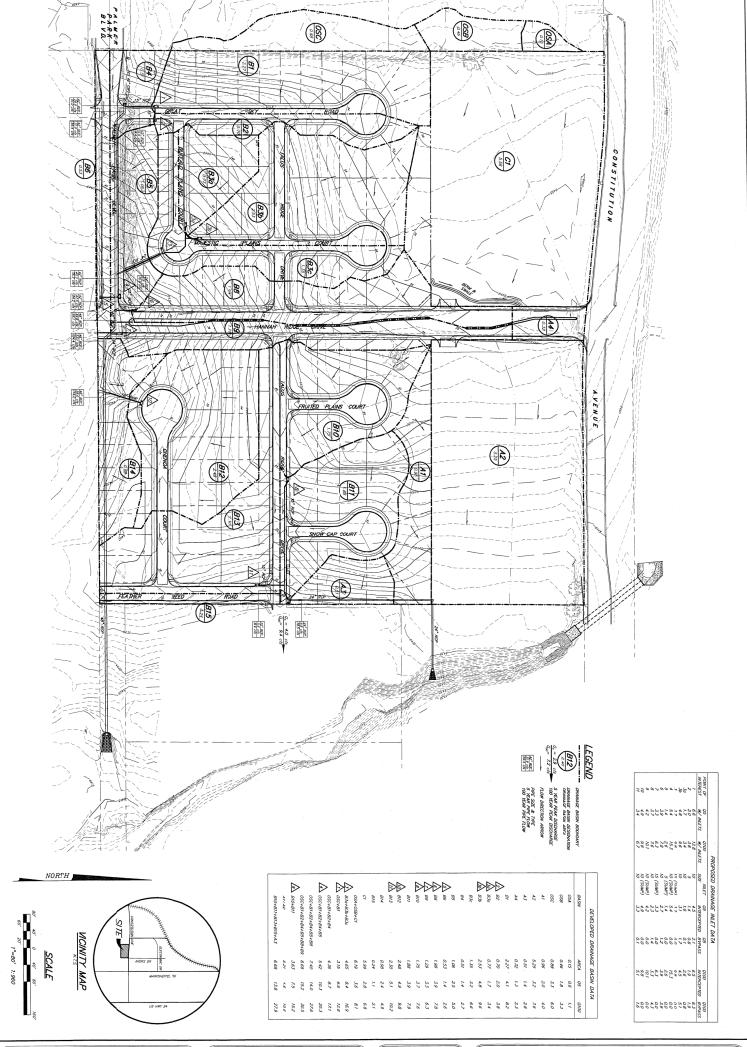
	Table 3.1 - Developed	Condition Hydrolog	gic Data	
	Design Point or Basin	Cumulative Drainage Area (Ac)	5-yr Discharge (cfs)	100-yr Discharge (cfs)
DP7	B9	1.29	3.3	6.3
DP8	B10	1.75	3.7	7.6
	B11	1.88	3.9	7.9
DP10	B12	2.48	4.9	9.8
DP11	B13	2.30	5.1	10.2
	B14	0.98	2.4	4.9
	B15	0.24	1.1	2.1
	C1	5.99	2.8	6.8
	OSA+OSB+C1	6.19	3.6	8.1
DP1	OSC+B1	3.15	6.6	12.8
	OSC1+B1+B2+B4	4.36	8.7	17.1
DP4	OSC1+B1+B2+B4+B5	5.42	10.3	20.3
	OSC1+B1+B2+B4+B5+B8	7.40	14.0	27.6
	OSC1+B1+B2+B4+B5+B8+B9	8.69	15.2	30.5
DP9	B10+B11	3.63	7.5	15.2
	A1+A2	6.21	4.6	10.6
	B10+B11+B13+B15+A3	6.68	13.8	27.9

The future lot owners in Jessica Heights Filing No. 1 will adhere to proper construction technics and erosion control. The recommendations within this report need to be followed by the new lot owners. We also recommend that the existing down gradient lot owners not construct their homes in existing drainage swales or flow paths.

The developed conditions will route storm water flows over the site in sheet flow and shallow concentrated flow, depending on the topography and the contributing flow areas. These flows will be routed to the streets. The five and one hundred year frequency storm water flows will be collected and routed to the offsite earthen channel.

The nature of this development dictates that some lots will contribute storm flows onto other lots. This cross-lot drainage cannot be avoided. It is the responsibility of the individual lot owners and the building contractors to locate new structures on each lot so that the structures do not interfere with the proposed drainage pathways. The individual lot owners and contractors should provide positive drainage away from all structures. Individual lot owners are also responsible for maintaining their properties in such a manner that does not allow soil movement from one lot to another.

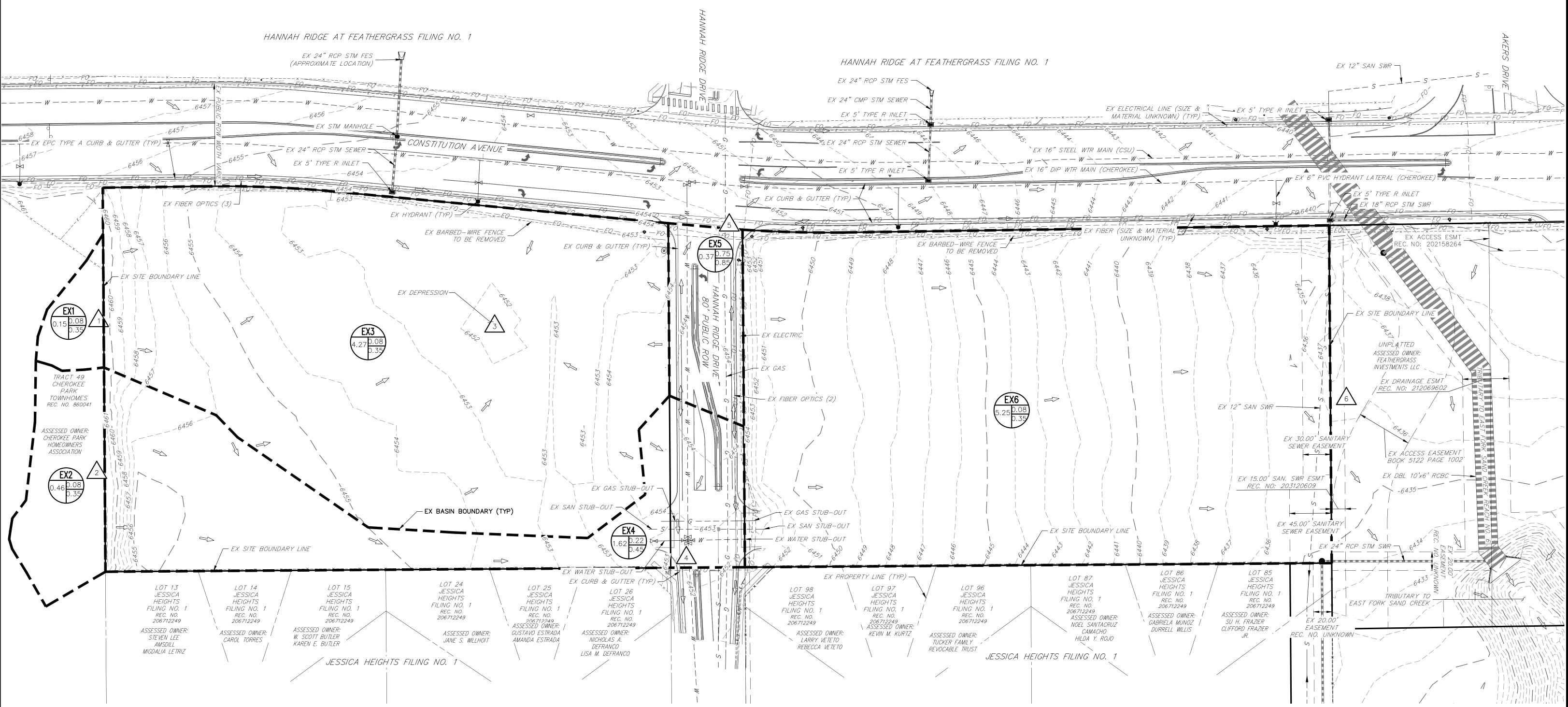
3.2 <u>Offsite</u>


The offsite pipe flow will continue to drain easterly. The pipe will be extended easterly and shall, in addition to the offsite flow, carry the proposed pipe flows from Jessica Heights. The small strip of land adjacent to the west boundary of the site shall continue to drain onto the site as defined by Basin OSC to the north and Basin OSB to the south. Basin C1, which is not being developed at this time, will continue to drain to the east. A berm and swale will direct runoff to the northeast where the flow will enter Hannah Ridge Drive and flow north. When Basin C1 is developed, all flows will be collected and piped to the east. Basin A2 is also not to be developed at this time. Basin A2 will continue to drain to the east.

3.3 <u>Onsite</u>

Basin OSC overland storm water flows enter the subdivision along the western boundary of Basin B1 and travel easterly overland to Great Sky Road. These flows then travel southerly in the street section of said Great Sky Road to a 10' inlet at Design Point No.1. The inlet intercepts $Q_5 =$ 4.5 cfs / Q_{100} = 6.5 cfs of the calculated storm water runoff.

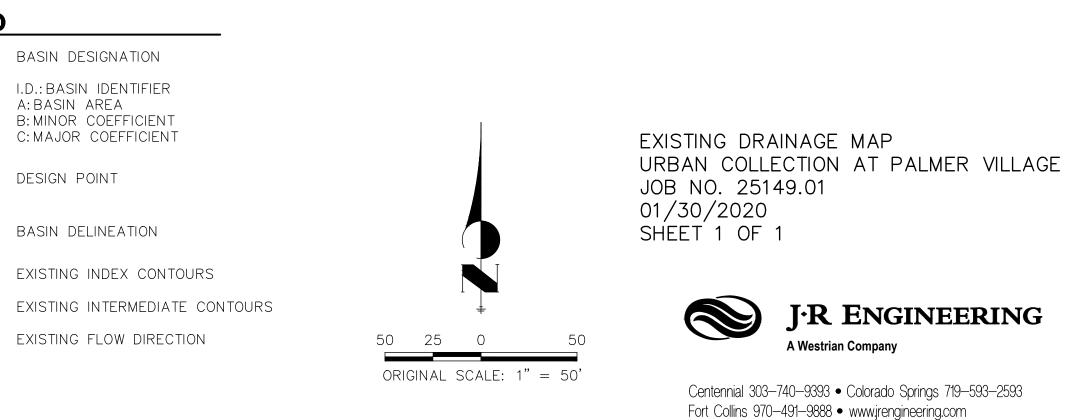
Basin B2 overland storm water flows enter Great Sky Road from the adjacent lots and travel southerly in the street section of said Great Sky Road to a 5' inlet at Design Point No. 2. The inlet intercepts $Q_5 = 1.4 \text{ cfs} / Q_{100} = 1.9 \text{ cfs}$ of the calculated storm water runoff. This collected inlet runoff flows via a 15" reinforced concrete pipe (RC Pipe) to the 10' inlet at Design Point No. 1. The combined collected flows of Design Point No's 1 & 2 then flow in a 24" RC Pipe which connects to a Type I Manhole along with the extended existing 42" corrugated metal pipe in Palmer Park Boulevard. A 42" RC Pipe continues east in Palmer Park Boulevard.

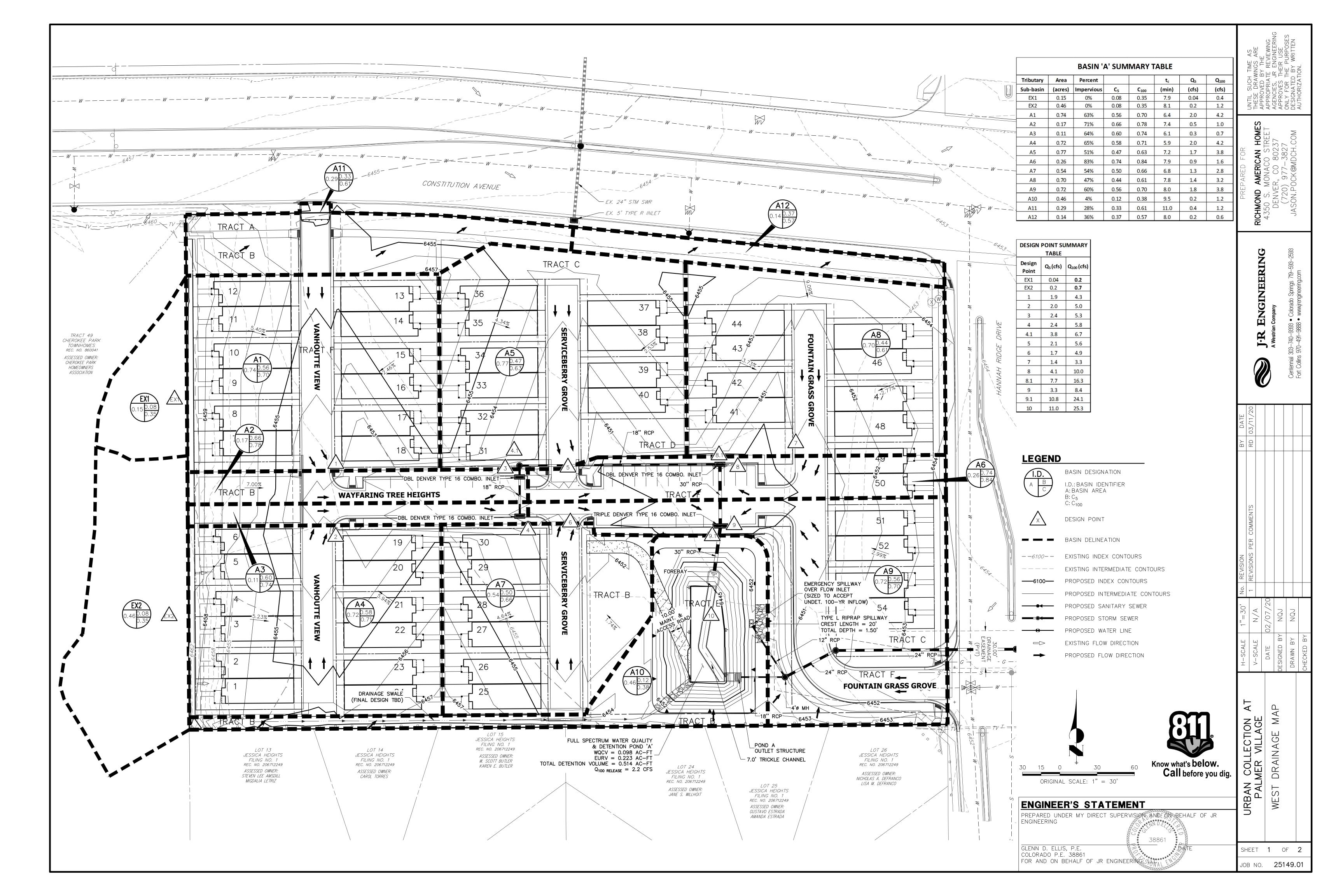

Basins B3a, B3b and B3c overland storm water flows enter Buffalo Plains Court, Majestic plains Court, and Talus Ridge Drive. These flows travel via street section easterly, westerly, and

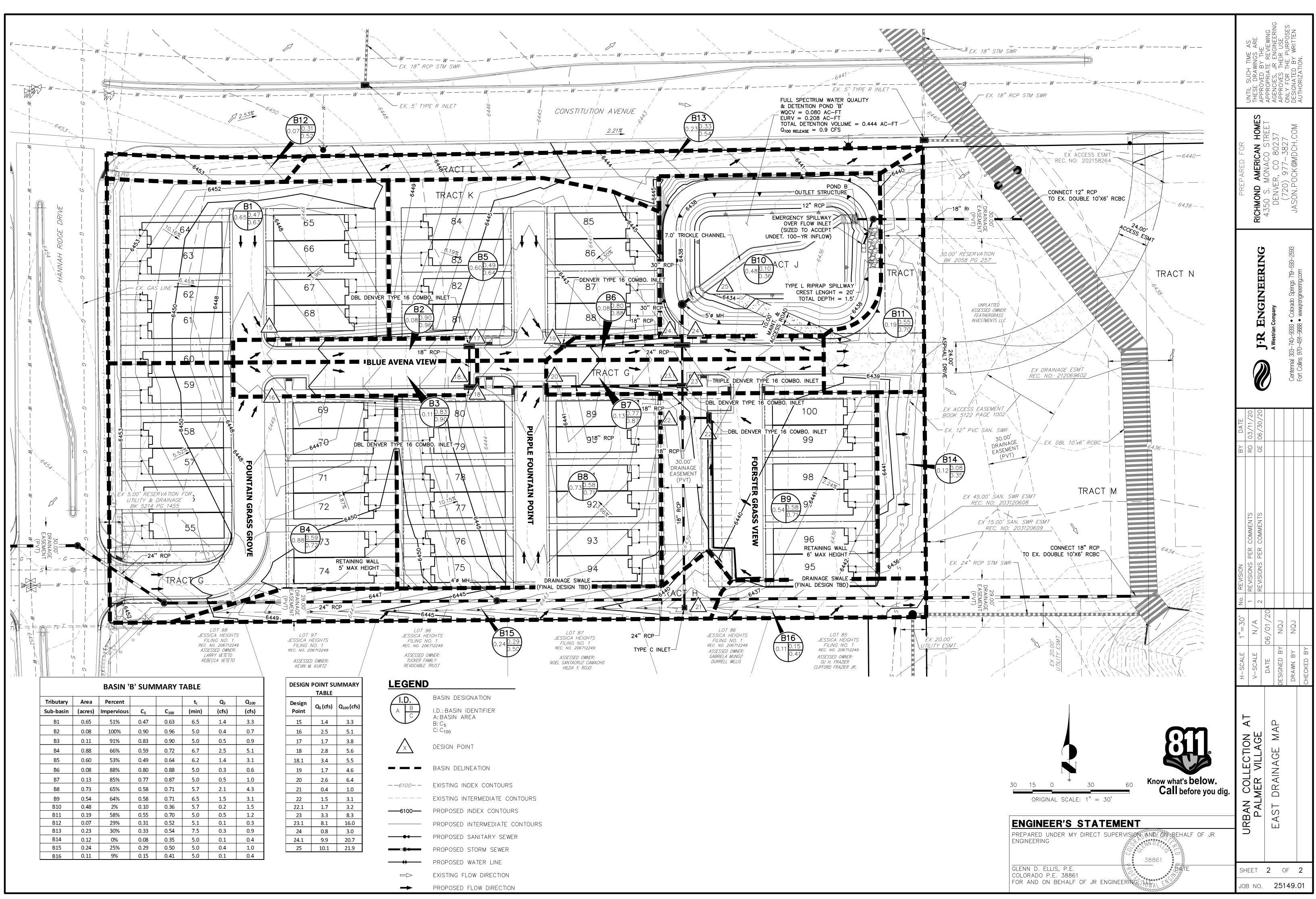
PROJECT:

Appendix F Drainage Maps

	EXISTING BASIN SUMMARY TABLE											
Tributary Sub-basin	Area (acres)	Percent Impervious	C₅	C ₁₀₀	t _c (min)	Q₅ (cfs)	Q ₁₀₀ (cfs)					
Jub-Dasiii	(acres)	impervious	~5	~100	(1111)	(CIS)						
EX1	0.15	2%	0.08	0.35	7.9	0.04	0.4					
EX2	0.46	2%	0.08	0.35	8.1	0.2	1.2					
EX3	4.27	2%	0.08	0.35	14.2	1.2	9.0					
EX4	1.62	19%	0.22	0.45	17.9	1.1	4.0					
EX5	0.37	82%	0.75	0.85	5.0	1.4	2.7					
EX6	5.25	2%	0.08	0.35	14.4	1.5	11.1					


URBAN COLLECTION AT PALMER VILLAGE EXISTING DRAINAGE MAP


EXISTING DESIGN POINT			
SUMMARY TABLE			
DP	Q₅	Q ₁₀₀	
1	0.04	0.4	
2	0.2	1.2	
3	1.3	9.3	
4	1.3	4.9	
5	1.4	2.7	
6	1.5	11.1	


LEGEND

A B C	I.D.: BASIN A: BASIN B: MINOR C: MAJOR
X	DESIGN PO
	BASIN DEI
6100	EXISTING
——6101——	EXISTING

 \Rightarrow

