

Engineers/Surveyors

Colorado Springs Lafayette

101 Sahwatch St., Ste 100 Colorado Springs, Colorado 80903

719 260-0887 719 260-8352 Fax

Drexel, Barrell & Co.

October 17, 2023

El Paso County Department of Public Works 3275 Akers Drive Colorado Springs, CO 80922

Attn: Jeff Rice, P.E.

RE: Windermere Filing No. 1 Certification Letter

Mr. Rice,

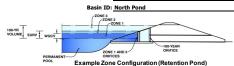
Based upon information gathered from periodic site visits during significant/key phases of the project development, Drexel, Barrell & Co., is of the opinion that the subdivision improvements have been constructed in general conformance with the approved design plans as filed with El Paso County.

The site and adjacent properties (as affected by work performed under the County permit) are stable with respect to settlement and subsidence, sloughing of cut and fill slopes, revegetation or other ground cover, and that the improvements (public improvements, common development improvements, site grading and paving) meet or exceed the minimum design requirements.

Drainage improvements for the site consist of two Extended Detention Basins. The facilities have been constructed in general compliance with the approved Erosion Control and Stormwater Quality Plan. The facilities provide the required storage volume and meet the required release rates as documented by the attached MHFD design forms. The Engineering Record Drawings accurately depict the installation of the facilities and verify the detention volume provided.

Tim D. McConnell, P.E. Colorado No. 33797

as a mould


Page **1** of **1**

EPC STORMWATER REVIEW COMMENTS IN ORANGE BOXES WITH BLACK TEXT

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: Windermere Filing No. 1

Watershed Information

EISHEU IIIIOIIIIddon		
Selected BMP Type =	EDB	
Watershed Area =	133.15	acres
Watershed Length =	4,000	ft
Watershed Length to Centroid =	600	ft
Watershed Slope =	0.025	ft/ft
Watershed Imperviousness =	40.70%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1 br Rainfall Donths -	Licor Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro	graph Procedu	ire.
Water Quality Capture Volume (WQCV) =	2.016	acre-feet
Excess Urban Runoff Volume (EURV) =	5.899	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	4.477	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	6.022	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	7.245	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	9.501	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	11.710	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	14.604	acre-feet
500-yr Runoff Volume (P1 = 3.49 in.) =	24.649	acre-feet
Approximate 2-yr Detention Volume =	3.759	acre-feet
Approximate 5-yr Detention Volume =	4.975	acre-feet
Approximate 10-yr Detention Volume =	6.130	acre-feet
Approximate 25-yr Detention Volume =	7.597	acre-feet
Approximate 50-yr Detention Volume =	8.584	acre-feet
Approximate 100-yr Detention Volume =	9.941	acre-feet

1.19 inches
1.50 inches
1.75 inches
2.00 inches
2.25 inches
3.49 inches

Define Zones and Basin Geometry

erine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	2.016	acre-feet
Zone 2 Volume (EURV - Zone 1) =	3.883	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	4.043	acre-feet
Total Detention Basin Volume =	9.941	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft 2
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin $(W_{MAIN}) =$	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-fee

NORTH POND DESIGN

Depth Increment =		ft Optional				Optional		1	
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Vol
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft ³)	(ad
Top of Micropool	-	0.00	-	-	-	250	0.006		
6572		0.50			-	7,926	0.182	2,044	0.0
6576		4.50	-		-	135,531	3.111	288,957	6.6
6578		6.50	_		_	209,825	4.817	634,313	14.
6579		7.50	-		_	220,020	5.051	849,236	19.
6580		8.50	_		_	225,118	5.168	1,071,805	24.
0300		0.30	_			223,110	3.100	1,071,003	24.
			-		-				
	-		-	-	-				
	-		-	-	-				
	-		-		-				
					-				
			-		-				
			-		-				
			1	1	-				
			-						
					-				
			-		-				
					_				
			-						
			-						
			1	-					
			1	-	-				
			-		-		_	1	
			-					-	
			-		-				
			-	-	-			1	
			_		_			1	
			_		-				
					-				
					-				
			-		-				
			-		-				
			_		_				
			_		_				
	-		-	-	-				
			1	1					
	-		-	-	-				
			-	-	-				
			-		-				
			-		-				
			_						
			-	-	-				
	-		-	-					
			-		-				
	-		-	-	-				
			-	-	-			1	
	-		-	-	-			-	
			-	-				1	
			-		-			1	
			-						
			-						
			-		-			 	
			-	-	-				
			-		-			1	
			-		-				
			-		-			1	
				1 1 1	-				
			1 1	1 1	-				
			1 1	1 1	-				
			-		-				
	-		-	1 1 1	-			1	
			-		-				
			-		-				
			1 1		-			 	
			-	-	-				
			-		-			-	
					-				
			1 1		-				
			-		-				
			-		-		-		
			-	-	-				
	-		1 1	-	-				ĻΞ
			-	-	-				
			1 1	1 1	-			1	
		1	1	-	-			1	
			-		-				

MHFD-Detention_v4 04 Windermere Nxism, Basin 34/2022, 12:36 PM

MHFD-Detention, Version 4.04 (February 2021)

Project: Windermere Filing No. 1

Basin ID: North Pond

Example Zone Configuration (Retention Pond)

	Estimated	Estimated	
_	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.59	2.016	Orifice Plate
Zone 2 (EURV)	4.26	3.883	Orifice Plate
Zone 3 (100-year)	5.45	4.043	Weir&Pipe (Circular)
•	Total (all zones)	9.941	

NORTH POND DESIGN

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = N/A Underdrain Orifice Diameter = N/A inches

<u></u>	Calculated Paramet	ters for Underdrain
Underdrain Orifice Area =	N/A	ft ²
Inderdrain Orifice Centroid -	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) 4.26 Orifice Plate: Orifice Vertical Spacing = N/A inches Orifice Plate: Orifice Area per Row = N/A inches

P)	Calculated Paramet	ers for Plate
NQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.42	2.83					
Orifice Area (sq. inches)	11.00	11.00	11.00					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	N/A	N/A	inches

	Calculated Parameters for Vertical Orifice				
	Not Selected	Not Selected			
Vertical Orifice Area =	N/A	N/A	ft ²		
/ertical Orifice Centroid =	N/A	N/A	fe		

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir Overflow Weir Carbox (Pipe)							
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Overflow Grate Type = Overflow Grate Open Area Wo Debris = Type C Grate N/A Overflow Grate Open Area Wo Debris = Type C Grate N/A Overflow Grate Open Area Wo Debris = Type C Grate N/A Overflow Grate Open Area Wo Debris = Type C Grate N/A	input: Overflow Weir (Dropbox with Flat or	Calculated Parameters for Overflow Weir					
Overflow Weir Front Edge Length = 6.75 N/A feet Overflow Weir Slope Length = 6.75 N/A feet Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area = 4.49 N/A feet Overflow Grate Open Area w/o Debris = 31.71 N/A ft² Overflow Grate Type = Type C Grate N/A Overflow Grate Open Area w/ Debris = 15.86 N/A ft²		Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area = 4.49 N/A Horiz. Length of Weir Sides = 6.75 N/A fet Overflow Grate Open Area w/o Debris = 31.71 N/A ft² Overflow Grate Type = Type C Grate N/A Overflow Grate Open Area w/ Debris = 15.86 N/A ft²	Overflow Weir Front Edge Height, Ho =	4.30	N/A	ft (relative to basin bottom at Stage = 0 ft) $$ Height of Grate Upper Edge, $H_t =$	4.30	N/A	feet
Horiz. Length of Weir Sides = 6.75 N/A feet Overflow Grate Open Area w/o Debris = 31.71 N/A ft ² Overflow Grate Type = 15.86 N/A ft ²	Overflow Weir Front Edge Length =	6.75	N/A	feet Overflow Weir Slope Length =	6.75	N/A	feet
Overflow Grate Type = Type C Grate N/A Overflow Grate Open Area w/ Debris = 15.86 N/A ft²	Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	4.49	N/A	
	Horiz. Length of Weir Sides =	6.75	N/A	feet Overflow Grate Open Area w/o Debris =	31.71	N/A	ft ²
Debris Clogging % = 50% N/A %	Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	15.86	N/A	ft²
	Debris Clogging % =	50%	N/A	%			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

•	Zone 3 Circular	Not Selected
Depth to Invert of Outlet Pipe =	0.00	N/A
Circular Orifice Diameter =	36.00	N/A

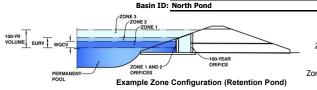
ft (distance below basin bottom at Stage = 0 ft) inches

		Zone 3 Circular	Not Selected	
at Stage = 0 ft)	Outlet Orifice Area =	7.07	N/A	ft ²
	Outlet Orifice Centroid =	1.50	N/A	feet
Half-Central Angle	of Restrictor Plate on Pipe =	N/A	N/A	radia

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	6.00	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	70.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet


	Calculated Paramet	ers for Spillway
Spillway Design Flow Depth=	0.92	feet
Stage at Top of Freeboard =		feet
Basin Area at Top of Freeboard =	5.10	acres
Basin Volume at Top of Freeboard =	21.63	acre-ft

Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).

Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft) =	2.016	5.899	4.477	6.022	7.245	9.501	11.710	14.604	24.649
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	4.477	6.022	7.245	9.501	11.710	14.604	24.649
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	1.4	2.7	3.8	35.3	69.5	113.7	257.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.03	0.26	0.52	0.85	1.93
Peak Inflow Q (cfs) =	N/A	N/A	76.6	105.2	127.2	182.0	232.6	297.1	501.8
Peak Outflow Q (cfs) =	1.0	1.8	1.6	1.8	6.7	20.3	38.5	67.6	189.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.7	1.8	0.6	0.6	0.6	0.7
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.2	0.6	1.2	2.06	2.4
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	66	59	68	71	69	68	65	59
Time to Drain 99% of Inflow Volume (hours) =	40	71	62	72	76	76	75	75	72
Maximum Ponding Depth (ft) =	2.59	4.26	3.64	4.20	4.53	4.86	5.19	5.61	6.64
Area at Maximum Ponding Depth (acres) =	1.71	2.94	2.48	2.88	3.13	3.42	3.69	4.06	4.85
Maximum Volume Stored (acre-ft) =	2.027	5.908	4.229	5.704	6.696	7.809	8.946	10.613	15.238

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Project: Windermere Filing No. 1 - AS BUILT

	Estimated	Estimated	
_	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.59	2.016	Orifice Plate
Zone 2 (EURV)	4.26	3.883	Orifice Plate
ne 3 (100-year)	5.45	4.043	Weir&Pipe (Circular)
•	Total (all zones)	9.941	

NORTH POND AS-BUILT

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid = N/A

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = 4.26 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A inches Orifice Plate: Orifice Area per Row = N/A inches

Calculated Parameters for Plate WQ Orifice Area per Row = N/A Elliptical Half-Width = N/A feet Elliptical Slot Centroid = N/A feet Elliptical Slot Area = N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

a rotal rived or Each of more from frambored from forest to might est									
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.50	2.90						
Orifice Area (sq. inches)	12.00	12.00	12.00						

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

er Input: Vertical Orifice (Circular or Rectangui	<u>ar)</u>				Caiculated Paramet	ers for vertical Orifi	<u>.ce</u>
	Not Selected	Not Selected			Not Selected	Not Selected	l
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches	_			

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho N/A Height of Grate Upper Edge 4.27 ft (relative to basin bottom at Stage = 0 ft) Overflow Weir Front Edge Length = feet Overflow Weir Slope Len 6.75 N/A Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice A Horiz. Length of Weir Sides N/A Overflow Grate Open Area w/o Del 6.75 feet Overflow Grate Type = Type C Grate Overflow Grate Open Area w/ Del N/A Debris Clogging % = 50% N/A

Calculated Parameters for Overflow Weir							
	Zone 3 Weir	Not Selected					
e, H _t =	4.27	N/A	feet				
ngth =	6.75	N/A	feet				
Area =	4.49	N/A	1				
bris =	31.71	N/A	ft ²				
bris =	15.86	N/A	ft ²				
			_				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Circular	Not Selected	
Depth to Invert of Outlet Pipe =	0.19	N/A	ft (distance below basin bottom at Stage = 0 ft)
Circular Orifice Diameter =	36.00	N/A	inches
			·

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Circular Not Selected Outlet Orifice Area 7.07 N/A Outlet Orifice Centroid = 1.50 N/A feet Half-Central Angle of Restrictor Plate on Pipe = N/A N/A radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage= 6.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Crest Length = 70.00 feet Spillway End Slopes = H:V 4.00 Freeboard above Max Water Surface = 1.00 feet

Calculated Parameters for Spillway Spillway Design Flow Depth= 0.92 feet Stage at Top of Freeboard = 7.92 feet 5.10 Basin Area at Top of Freeboard = acres Basin Volume at Top of Freeboard = 21.63 acre-ft

Routed Hydrograph Results	The user can over	ride the default CUH	P hydrographs and	runoff volumes by	entering new values	in the Inflow Hydro	ographs table (Colui	mns W through AF).	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft) =	2.016	5.899	4.477	6.022	7.245	9.501	11.710	14.604	24.649
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	4.477	6.022	7.245	9.501	11.710	14.604	24.649
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	1.4	2.7	3.8	35.3	69.5	113.7	257.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.03	0.26	0.52	0.85	1.93
Peak Inflow Q (cfs) =	N/A	N/A	76.6	105.2	127.2	182.0	232.6	297.1	501.8
Peak Outflow Q (cfs) =	1.1	2.0	1.7	1.9	7.3	21.1	39.5	68.7	189.0
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.7	1.9	0.6	0.6	0.6	0.7
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.2	0.6	1.2	2.08	2.4
Max Velocity through Grate 2 (fps) =		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	36	62	55	64	66	65	63	61	55
Time to Drain 99% of Inflow Volume (hours) =	38	66	58	68	71	71	70	70	67
Maximum Ponding Depth (ft) =	2.59	4.26	3.63	4.19	4.51	4.84	5.17	5.59	6.64
Area at Maximum Ponding Depth (acres) =	1.71	2.94	2.47	2.88	3.12	3.40	3.68	4.04	4.85
Maximum Volume Stored (acre-ft) =	2.027	5.908	4.204	5.704	6.665	7.741	8.910	10.532	15.190

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

Project: Windermere Filing No. 1

OCUME BUNY WOO'T TONE 1 AND 2' OWNERS

Example Zone Configuration (Retention Pond)

Basin ID: South Pond - Interim Condition

Watershed Information

EISHEU IIIIOIIIIauoii		
Selected BMP Type =	EDB	
Watershed Area =	10.89	acres
Watershed Length =	700	ft
Watershed Length to Centroid =	400	ft
Watershed Slope =	0.040	ft/ft
Watershed Imperviousness =	23.80%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1 br Painfall Donths -	Hoor Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro	graph Proced	lure.
Water Quality Capture Volume (WQCV) =	0.118	acre-fee
Excess Urban Runoff Volume (EURV) =	0.243	acre-fee
2-yr Runoff Volume (P1 = 1.19 in.) =	0.156	acre-fee
5-yr Runoff Volume (P1 = 1.5 in.) =	0.221	acre-fee
10-yr Runoff Volume (P1 = 1.75 in.) =	0.279	acre-fee
25-yr Runoff Volume (P1 = 2 in.) =	0.448	acre-fee
50-yr Runoff Volume (P1 = 2.25 in.) =	0.608	acre-fee
100-yr Runoff Volume (P1 = 2.52 in.) =	0.825	acre-fee
500-yr Runoff Volume (P1 = 3.49 in.) =	1.590	acre-fee
Approximate 2-yr Detention Volume =	0.151	acre-fee
Approximate 5-yr Detention Volume =	0.203	acre-fee
Approximate 10-yr Detention Volume =	0.256	acre-fee
Approximate 25-yr Detention Volume =	0.328	acre-fee
Approximate 50-yr Detention Volume =	0.388	acre-fee
Approximate 100-yr Detention Volume =	0.496	acre-fee
•		_

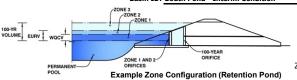
Optional Use	r Overrides
	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
3.49	inches

Define Zones and Basin Geometry

	Jerine Zones and Basin Geometry
(CV) = 0.118 acre-fi	Zone 1 Volume (WQCV) =
ie 1) = 0.124 acre-f	Zone 2 Volume (EURV - Zone 1) =
& 2) = 0.253 acre-f	Zone 3 Volume (100-year - Zones 1 & 2) =
ume = 0.496 acre-f	Total Detention Basin Volume =
ISV) = user ft 3	Initial Surcharge Volume (ISV) =
ISD) = user ft	Initial Surcharge Depth (ISD) =
total) = user ft	Total Available Detention Depth (H _{total}) =
H _{TC}) = user ft	Depth of Trickle Channel (H _{TC}) =
S_{TC}) = user ft/ft	Slope of Trickle Channel (S_{TC}) =
main) = user H:V	Slopes of Main Basin Sides (Smain) =
_{L/W}) = user	Basin Length-to-Width Ratio (R _{L/W}) =

Initial Surcharge Area $(A_{ISV}) =$	user	ft²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-fee

SOUTH POND INTERIM DESIGN


Depth Increment = Stage - Storage Description		ft Optional				Optional			
Description									
Description	Stage	Override	Length	Width	Area	Override	Area	Volume	Volum
	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft
		0.00		()	(,,,,	40	0.001	(,,,	(ac It
Top of Micropool		0.00	-		-	40	0.001		
6574		1.00	-			1,801	0.041	920	0.021
									_
6575		2.00	-		-	3,008	0.069	3,325	0.076
6576		3.00			_	5,232	0.120	7,445	0.171
6577		4.00			-	7,923	0.182	14,022	0.322
6578		5.00				11,161	0.256	23,564	0.541
6579	-	6.00	-		_	13,425	0.308	35,857	0.823
6580		7.00	-		-	15,853	0.364	50,496	1.159
6581	-	8.00			-	18,293	0.420	67,569	1.551
6581.5	-	8.50	-		-	25,208	0.579	78,445	1.801
					-				
					-				
					-				
					ł			-	
			-		-				
					-				
	-				-			1	1
								1	-
			-						
					-			1	1
	-		-						
			-		-				1
			-					1	
								1	
			-		-				1
			-		_				
			-					l	-
					-				
	-				-			1	
								!	
					-			1	
					-			I	
								1	-
					-				
			-		-			1	
								l —	1
					-				
					-			I	
					_			t	
					-				
			-		-				
			-		-				
					_				
					-				
	-								
			-		-				
			-		-				
					-				
	-								
			-		-				
	-		-		-			1	
	-		-		-			1	
			-		-				
	-		-		-				
			-						
					-				
	1 1		-		-				
					-				
	1 1		-		-				
	1 1		-		-				
	 		- - - -	 	-				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- - - -	 	 				
	 		- - - -						
			- - - - - - -						

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)

Project: Windermere Filing No. 1
Basin ID: South Pond - Interim Condition

SOUTH POND INTERIM DESIGN

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.52	0.118	Orifice Plate
Zone 2 (EURV)	3.53	0.124	Orifice Plate
Zone 3 (100-year)	4.82	0.253	Weir&Pipe (Restrict)
_	Total (all zones)	0.496	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface)
Underdrain Orifice Diameter = inches

Underdrain Orifice Centroid =

User Input: Orifice Plate with one or more orific	Calculated Parame	eters for Plate			
Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)	WQ Orifice Area per Row =	N/A	ft ²
Depth at top of Zone using Orifice Plate =	3.53	ft (relative to basin bottom at Stage = 0 ft)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	25.40	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	N/A	inches	Elliptical Slot Area =	N/A	ft ²

<u>User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)</u>

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.18	2.35					
Orifice Area (sq. inches)	0.67	0.67	0.67					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

OSCI IIIpat: Vertical Office (circulal of Nectaring	ului j				Calculated I al allic	icis ioi vertical or	IIICC
	Not Selected	Not Selected			Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches				-

User Input: Overflow Weir (Dropbox with Flat of	Calculated Parameters for Overflow Weir		Veir			
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	l
Overflow Weir Front Edge Height, Ho =	6.40	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	6.40	N/A	feet
Overflow Weir Front Edge Length =	3.92	N/A	feet Overflow Weir Slope Length =	3.92	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	16.92	N/A	i
Horiz. Length of Weir Sides =	3.92	N/A	feet Overflow Grate Open Area w/o Debris =	10.76	N/A	ft ²
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area	5.38	N/A	ft ²
Debris Clogging % =	50%	N/A	%			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Zone 3 Restrictor Not Selected Not Selected Depth to Invert of Outlet Pipe = Outlet Orifice Area 2.50 N/A 0.64 ft (distance below basin bottom at Stage = 0 ft) N/A Outlet Pipe Diameter 18.00 N/A inches Outlet Orifice Centroid 0.34 N/A feet Restrictor Plate Height Above Pipe Invert = inches Half-Central Angle of Restrictor Plate on Pipe = radians 7.00 1.35 N/A

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage= 6.94 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= Spillway Crest Length = 27.00 feet Stage at Top of Freeboard =

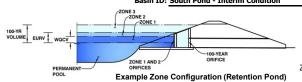
Routed Hydrograph Results	The user can over	rride the default CU	HP hydrographs an	d runoff volumes b	y entering new vall	ues in the Inflow H	ydrographs table (C	Columns W throug	h AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft) =	0.118	0.243	0.156	0.221	0.279	0.448	0.608	0.825	1.590
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.156	0.221	0.279	0.448	0.608	0.825	1.590
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.1	0.2	0.3	2.9	5.6	9.1	20.5
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.03	0.27	0.52	0.84	1.89
Peak Inflow Q (cfs) =	N/A	N/A	2.5	3.6	4.5	7.7	10.6	14.5	27.0
Peak Outflow Q (cfs) =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	9.2
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.4	0.3	0.0	0.0	0.0	0.4
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Plate	Plate	Plate	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8.0
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	53	44	51	57	71	83	99	103
Time to Drain 99% of Inflow Volume (hours) =	40	57	47	55	61	77	91	108	116
Maximum Ponding Depth (ft) =	2.51	3.53	2.76	3.27	3.64	4.53	5.17	5.93	6.91
Area at Maximum Ponding Depth (acres) =	0.10	0.15	0.11	0.14	0.16	0.22	0.27	0.30	0.36
Maximum Volume Stored (acre-ft) =	0.118	0.243	0.144	0.204	0.260	0.427	0.585	0.799	1.127

Spillway End Slopes =

Freeboard above Max Water Surface =

4.00

1.00


H:V

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)

Project: Windermere Filing No. 1 - AS BUILT Basin ID: South Pond - Interim Condition

SOUTH POND INTERIM AS-BUILT

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.52	0.118	Orifice Plate
Zone 2 (EURV)	3.53	0.124	Orifice Plate
Zone 3 (100-year)	4.82	0.253	Weir&Pipe (Restrict)
-	Total (all zones)	0.496	

User Input: Orifice at Underdrain Outlet (typicall	y used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) Underdrain Orifice Diameter = inches

0.150			
		Calculated Parame	ters for Underdrain
Underdi	rain Orifice Area =		ft ²
Underdrain	Orifice Centroid =		feet

User Input:	Orifice Plate with one or more orific	es or Elliptical	Slot Weir (typically us	sed to drain WQCV and/or	EURV in a sedimentation BMP)
	Invert of Lowest Orifice -	0.00	ft (relative to bac	in bottom at Stage - 0 ft	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) 3.53 Orifice Plate: Orifice Vertical Spacing = inches N/A Orifice Plate: Orifice Area per Row = inches

on BMP)	Calculated Parameters for Plate			
WQ Orifice Area per Row =	N/A	ft ²		
Elliptical Half-Width =		feet		
Elliptical Slot Centroid =	N/A	feet		
Elliptical Slot Area =	N/A	ft ²		

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	•							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.20	2.40					
Orifice Area (sq. inches)	0.78	0.78	0.78					

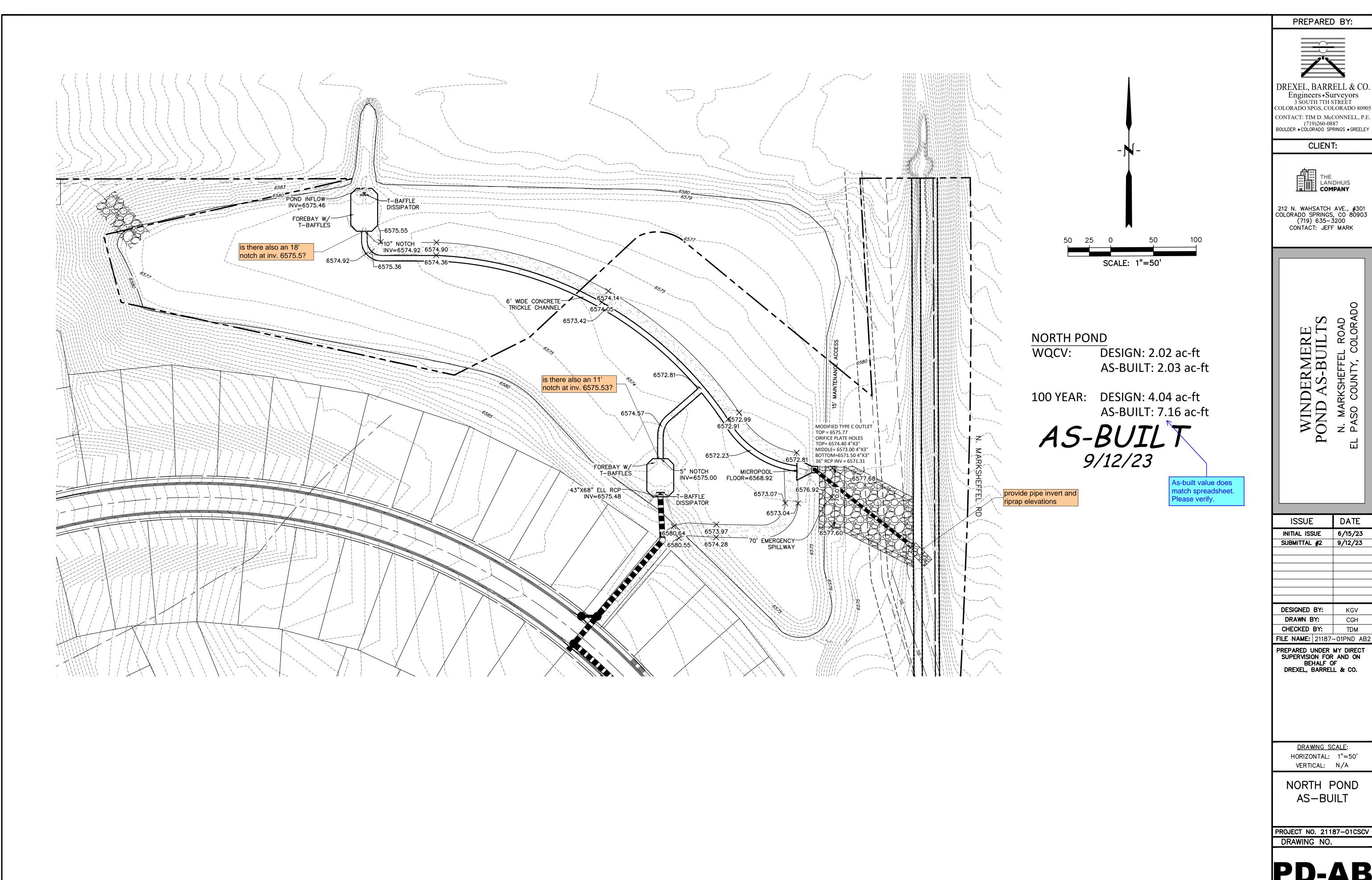
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

<u>User Input: Vertical Orifice (Circular or Rectangular)</u>

OSCI TIPUC. VCI GCAI OTTICC (CII CUIAI OT NCCCATIG	ulai j				Calculated Faranic	ters for vertical or	IIICC
	Not Selected	Not Selected			Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches				=

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)
User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir									
	Zone 3 Weir	Not Selected			Zone 3 Weir	Not Selected	ĺ		
Overflow Weir Front Edge Height, Ho =	6.22	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of	f Grate Upper Edge, H_t =	6.22	N/A	feet		
Overflow Weir Front Edge Length =	3.92	N/A	feet Overf	flow Weir Slope Length =	3.92	N/A	feet		
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Are	ea / 100-yr Orifice Area =	16.92	N/A	İ		
Horiz. Length of Weir Sides =	3.92	N/A	feet Overflow Grate	Open Area w/o Debris =	10.76	N/A	ft ²		
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area	e Open Area w/ Debris =	5.38	N/A	ft ²		
Debris Clogging % =	50%	N/A	%						


User Input:

ser Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)				neters for Outlet Pipe w/ Flow Restriction Plate			
Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected		
2.50	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.64	N/A	ft ²	
18.00	N/A	inches	Outlet Orifice Centroid =	0.34	N/A	feet	
7.00		inches Half-Central Angle of	Restrictor Plate on Pipe =	1.35	N/A	radians	
	Zone 3 Restrictor 2.50 18.00	Zone 3 Restrictor	Zone 3 Restrictor Not Selected 2.50 N/A ft (distance below basin bottom at Stage = 0 ft) 18.00 N/A inches	Zone 3 Restrictor Not Selected	Zone 3 Restrictor Not Selected Zone 3 Restrictor 2.50 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.64	Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected 2.50 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.64 N/A 18.00 N/A inches Outlet Orifice Centroid = 0.34 N/A	

User Input: E

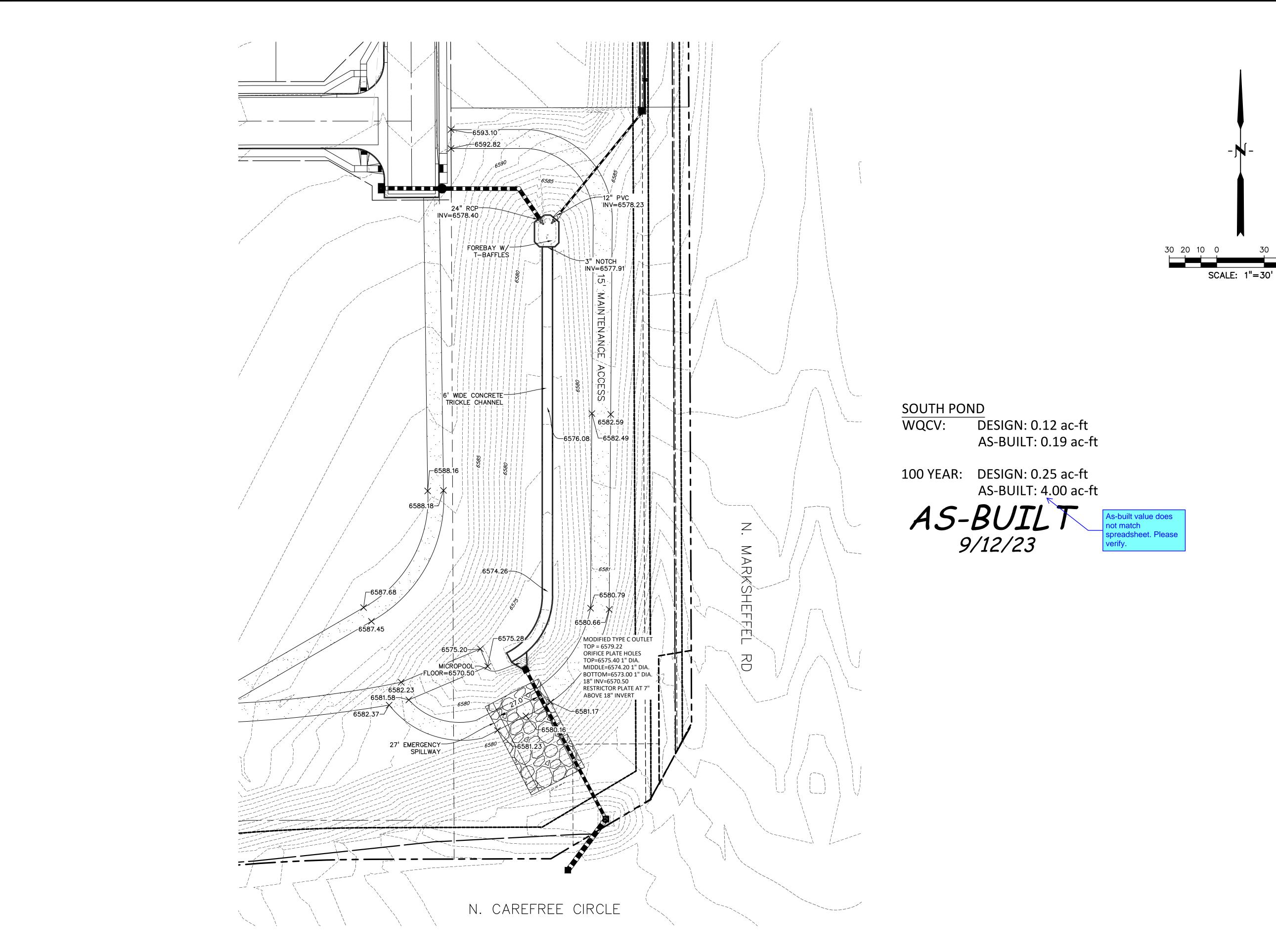
<u>nput: Emergency Spillway (Rectangular or</u>	<u>l rapezoidal)</u>			Calculated Parame	ters for Spillwa
Spillway Invert Stage=	6.94	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.55	feet
Spillway Crest Length =	27.00	feet	Stage at Top of Freeboard =	8.49	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	0.58	acres
Freeboard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	1.80	acre-ft

Routed Hydrograph Results	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).							h AF).	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.49
CUHP Runoff Volume (acre-ft) =	0.118	0.243	0.156	0.221	0.279	0.448	0.608	0.825	1.590
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.156	0.221	0.279	0.448	0.608	0.825	1.590
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.1	0.2	0.3	2.9	5.6	9.1	20.5
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.03	0.27	0.52	0.84	1.89
Peak Inflow Q (cfs) =	N/A	N/A	2.5	3.6	4.5	7.7	10.6	14.5	27.0
Peak Outflow Q (cfs) =	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	9.2
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.5	0.4	0.0	0.0	0.0	0.4
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Plate	Plate	Plate	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.8
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	33	45	38	44	49	62	72	85	85
Time to Drain 99% of Inflow Volume (hours) =	35	49	40	47	53	67	79	93	97
Maximum Ponding Depth (ft) =	2.51	3.53	2.75	3.25	3.63	4.51	5.16	5.91	6.82
Area at Maximum Ponding Depth (acres) =	0.10	0.15	0.11	0.14	0.16	0.22	0.26	0.30	0.35
Maximum Volume Stored (acre-ft) =	0.118	0.243	0.141	0.203	0.257	0.424	0.580	0.796	1.095

DREXEL, BARRELL & CO.
Engineers • Surveyors
3 SOUTH 7TH STREET
COLORADO SPGS, COLORADO 80905 CONTACT: TIM D. McCONNELL, P.E (719)260-0887 BOULDER • COLORADO SPRINGS • GREELEY CLIENT: THE LANDHUIS COMPANY

PREPARED BY:

DATE ISSUE 6/15/23 INITIAL ISSUE SUBMITTAL #2 9/12/23 DESIGNED BY: DRAWN BY: CHECKED BY: FILE NAME: 21187-01PND AB2 PREPARED UNDER MY DIRECT SUPERVISION FOR AND ON BEHALF OF DREXEL, BARRELL & CO.


DRAWING SCALE: HORIZONTAL: 1"=50' VERTICAL: N/A

NORTH POND AS-BUILT

PROJECT NO. 21187-01CSCV DRAWING NO.

PD-AB

SHEET: 1 OF 4 COUNTY FILE NO.: SF2126

PREPARED BY:

DREXEL, BARRELL & CO.
Engineers • Surveyors
3 SOUTH 7TH STREET
COLORADO SPGS, COLORADO 80905 CONTACT: TIM D. McCONNELL, P.E (719)260-0887 BOULDER • COLORADO SPRINGS • GREELEY

CLIENT:

212 N. WAHSATCH AVE., #301 COLORADO SPRINGS, CO 80903 (719) 635—3200 CONTACT: JEFF MARK

ISSUE DATE INITIAL ISSUE 6/15/23
SUBMITTAL #2 9/12/23

DESIGNED BY: DRAWN BY: CHECKED BY: FILE NAME: 21187-01PND AB2

PREPARED UNDER MY DIRECT SUPERVISION FOR AND ON BEHALF OF DREXEL, BARRELL & CO.

DRAWING SCALE: HORIZONTAL: 1"=30' VERTICAL: N/A

SOUTH POND AS-BUILT

PROJECT NO. 21187-01CSCV DRAWING NO.

PD-AB

SHEET: 2 OF 4 COUNTY FILE NO.: SF2126