Final Drainage Report

Prairie Ridge Subdivision

August 2020

PCD File No SF2010

Prepared for:

Justin Ensor Sonship Properties, LLC P.O Box 511 Rocky Ford, Colorado 81067

Prepared by:

Kenneth C. Harrison, P.E. KCH Engineering Solutions 5228 Cracker Barrel Circle Colorado Springs, Colorado 80917 719-246-4471 ksharrison5228@msn.com

Job No: 2019-104

Table of Contents

Cover Sheet

Certifications and Approvals

Floodplain Statement

I. Report Purpose

II. General Description

III. Design Criteria and Methodology

IV. Existing Reports, Mapping and Information

V. FEMA Floodplain

VI. Hydrologic Soils Information

VII. Downstream Drainage Conditions

VIII. Upstream/ Offsite Conditions

IX. Historic Drainage Conditions

X. Existing Improvements

XI. Developed Drainage Conditions

XII. Proposed Improvements

XIII. Brown Road Cost Sharing
XIV. Detention and Water Quality

XV. Erosion Control

XVI. Summary

APPENDIX

Exhibit 1: General Location Map

Exhibit 2: FEMA FIRM Map

Exhibit 3: SCS Soils Map and Data

Exhibit 4: Rational Method Exhibits

Exhibit 5: SCS TR55 Calculation Exhibits

Exhibit 6: Culvert Capacity Exhibits

Exhibit 7: Stone Check Dams

Exhibit 8: Borrow Ditch Calculations

Exhibit 9: Historical Inflation Rate Table

Exhibit 10: Historic Drainage Conditions (map pocket)

Exhibit 11: Developed Drainage Conditions (map pocket)

Certifications and Approvals

Engineer's Statement The attached drainage plan and report were prepared	d under my direction and
supervision and are correct to the best of my knowled report had been prepared according to the criteria est drainage reports and said drainage report is in confor drainage basin, I accept responsibility for any liability errors or omission on my part in preparation this repo	dge and belief. Said drainage tablished by El Paso County for mity with the master plan of the caused by any negligent acts
	41
Signature(Kenneth C. Harrison, P.E.)	
Registered Professional Engineer State of Colorado	NO
Seal	
Owner's Statement	
I, the Owner, Justin Ensor, have read and will comply specified in this drainage report and plan	with all of the requirements
specified in this drainage report and plan.	
(Print Entity Name)	Review 1 comment: Please
(Frince Lindly Name)	revise to the following: Filed in
By:	accordance with the requirement
Title:	of the Drainage Criteria Manual Volumes 1 and 2, El Paso
Address:	County Engineering Criteria
	Manual and Land Development
	Code as amended. Review 2: Unresolved. Please
	include the El Paso County
El Paso County	Engineering Criteria Manual in
Filed in accordance with the requirement of the David	the statement.
Filed in accordance with the requirements of the Drain Development Code as amended.	age Criteria Manual and Land
El Paso County Engineer/ ECM Administrator	
Jennifer Irvine, P.E.	

Date: _____

(Signature)

I. REPORT PURPOSE

The purpose of this study is to evaluate the drainage characteristics for both the existing and developed conditions of the Prairie Ridge Subdivision in accordance the current El Paso County Drainage Criteria. A drainage study and report were previously prepared by Troy Kent of Land Development Consultants (LDC), submitted and approved by El Paso County on May 28, 2008. Subsequent to the report approval the plat was never recorded and the project remained dormant until recently. An Early Assistance Meeting was held on August 28, 2018 to review current requirements for reconsidering the plat. According to the Meeting Minutes, the existing drainage study needed to be amended to address current drainage criteria. El Paso County amended it criteria on January 27, 2015. At this meeting El Paso County adopted the adopted Chapter 6 (Hydrology) and Section 3.2.1 of Chapter 13 (Full Spectrum Detention) of the May 2014 City of Colorado Springs Drainage Criteria Manual Volume 1 (DCMV1). The criteria changes that impact this report are:

- Design storm for the minor event was changed from the 10 year to the 5-year storm
- The Curve Numbers (CN) used in the NRCS method were amended to more accurately reflect the runoff for both the existing and developed conditions. However, the Curve Numbers presented in the User's Manual for the TR55 Method (see Appendix, Exhibit 5), were used since the results closely correlate to the results obtained from the Rational Method (see Appendix, Exhibit 4). These results are shown on the two (2) Drainage Plans included in the map pocket.
- Additional detail describing the components of this study was required to meet requirements.

It was decided to use the sections of the existing report where no changes were required. Sections of the narrative were updated where required. Hydrologic calculations were modified to reflect the new Curve Numbers. The drainage maps prepared for the existing and developed conditions are basically the same with only minimal modifications.

II. GENERAL DESCRIPTION

The property is approximately located in the SE ½ of the SE ½ of Section 12, Township 11 South, Range 66 West of the 6th P.M., El Paso County, Colorado. The property is comprised of 40.7 +/- acres and is more particularly located on the south and east sides of Brown Road approximately 0.5 miles north of the intersection of Brown Road and Walker Road (*Appendix*, *Exhibit* 1).

The project is currently undeveloped agricultural ground and has been used for pasture and grazing land. There are no buildings or irrigation ditches located on the property, however there are observable natural drainage corridors on the site. One of the natural drainage corridors bisects the site north to south, while the other runs west to east along the southerly boundary. The site is to be divided

into 7 single-family lots with a minimum size of 5 acres.

Offsite improvements include the leveling and the placement of Class 6 road base at the northeast and northwest corners of the property. Roadway improvements to Brown Road, at the northwest corner of the site include increasing the existing turning radius of Brown Road on the east side from a 30' radius to a 100' radius. This widens the road approximately 15' at the corner. At the northeast corner of the property a 60' radius emergency turnaround will be constructed. This will be accomplished by widening the road to the south approximately 75' from its existing edge. Roadside ditch restoration at both locations will be provided to continue to direct runoff along the edge of Brown Road.

The Soil, Geology, Geologic Hazard, and Wastewater Study, dated May 31, 2007, by Entech Engineering, Inc., addresses the general soil conditions and erosion potential of the site. The soils on the subject property have been generally classified as sandy clay and sandy clay-silt.

The existing channel along the southerly portion of the site is fairly well vegetated, and is in good condition, however, since it is subject to seasonal flooding and further erosion, this region of the development is being preserved. Some ponding of water exists on the site within the southerly drainage corridor, where water has been impounded behind an earthen dam east of the site for a stock pond. This portion of the site, in addition to the lesser drainage way running from north to south has been identified as a no-build area, and has been included within a proposed drainage easement.

The Entech report states that "the soil types observed on the site are mildly to highly susceptible to wind erosion, and moderately to highly susceptible to water erosion". This is in reference to areas that are to be disturbed during the construction. Since no site grading is proposed, the erodible soils will not be exposed to weathering, therefore no on-site erosion control measures have been presented. Brown Road improvements, where significant grading is proposed (northwest and northeast corners of the site), have been provided with stone check dams (*Appendix*, *Exhibit 7*) and silt fence. As individual lots are developed, erosion control measures are to be installed, according to the specific needs of each parcel, consistent with the recommendations of Entech's report.

Undeveloped and unplatted parcels, ranging in size from 4.67 to 97-acres surround the site, along with an existing MVEA overhead power lines along the southerly and easterly side of Brown Road.

III. DESIGN CRITERIA AND METHODOLOGY

The existing and proposed runoff patterns, runoff estimates, and proposed drainage improvements were evaluated based on the criteria and procedures outlined in the El Paso County Drainage Criteria Manual.

Design Manuals

- City of Colorado Springs Criteria Manual, Volume I.
 The charts and graphs used from this manual are reproduced within the pertinent sections of the Appendix.
- Soil Survey of El Paso County Area, Colorado United States Department of Agriculture, Soil Conservation Service (Appendix, Exhibit 3)
- Flood Insurance Rate Map, Federal Emergency Management Agency (Appendix, Exhibit 2)
- Urban Storm Drainage Criteria Manual, Urban Storm & Flood Control District, Copyright 2005 updated January 2016
- Soil, Geology, Geologic Hazard, and Wastewater Study Prairie Ridge, El Paso County, Colorado, Entech Engineering, Inc., dated May 31, 2007
 Not duplicated in the Appendix of the report. The report is available upon request.

Design storms

Minor storm: 5-yearMajor storm: 100-year

Drainage Areas

Areas for the offsite and onsite sub basins were obtained from the May 28,
 2008 drainage report that was previously approved by El Paso County

Runoff Methods

Rational Method

This method was used to determine runoff quantities for sub basins with less than 130 acres. Intensity-Duration-Frequency (IDF) curves were obtained from the Colorado Springs Drainage Criteria Manual (DCM) (Appendix, Exhibit 4). This method was used to estimate existing from offsite basins at design points 2, 3, and 5. Runoff from sub basins A, B, C D, and E were used to verify the stability of the existing swales that drain these sub basins. Based visual observation and existing vegetative conditions, it is expected that these swales safely convey the runoff from both the minor and major to the site's outfall point at Design Point 6.

National Resources Conservation Service (NRCS) (TR 55)
This method was used for the entire drainage area that impacts the subdivision which has an area of 296.3 acres. The runoff values that were determined for the areas less than 130 acres were compared to those determined with the Rational Method. The values obtained from the SCS TR55 method were used since the overall drainage area was in excess of 130 acres.

Culverts

Sizing

- The 5-year storm was used to size the culvert under Brown Road located at the southwesterly corner of the site. Assumptions were necessary due to the limited field data.
- The 100-year storm was used to evaluate the over topping conditions anticipated at the existing culvert under Brown Road.

Culvert Velocities

- Maximum velocity = 18 fps
- o Minimum velocity = 3 fps when the pipe is 50% full

Drainage Swale and Borrow Ditch Sizing

Sizing

- Estimated runoff from the design the design storms were used to verify the stability of the existing onsite swales as well as the borrow ditch along Brown Road.
- The 100-year storm event was used to evaluate roadway overtopping conditions along the borrow ditches.

Velocity

Less than the erosive velocities typical for the existing soils.

Freeboard Requirements

o 12" for the minor storm and no roadway overtopping for the 100 year.

Flow Regime

- Drainage improvements are not recommended for swales that are characterized by a subcritical flow regime. This occurs when the Froude No. is less than 1.0
- Erosion control improvements are recommended for swales where the runoff is characterized by a supercritical flow regime. This regime is characterized by high velocities and erratic, erosive, and unpredictable flows. This occurs when the Froude No. is 1.0 or greater

Please indicate ECM Appendix I.7.1.B.5 instead of the page #.

Detention/ Water Quality Pond

Basis of evaluation:

 El Paso County Engineering Criteria Manual, Appendix 1, Page 1-18-19 According to El Paso County criteria a Water Quality Capture Volume (WQCV) pond is not required for lots 2.5 acres or larger. Also, since the area of disturbance is less than 1- acre a WQCV pond is not required.

Detention has not been addressed.

Your preVious EXISTING REPORTS, MAPPING AND INFORMATION

The project lies within the East Cherry Creek Drainage Basin. There are submittal indicated drainage fees associated with this basin. why detention was

not required. Please No drainage reports have been prepared for any of the tracts that

also provide that

surround the site.

explanation in this

section. \/ FEMA FLOODPLAIN

Paso County, Colorado and Incorporated Arbesexcluded please also state the above

Please identify the acreage of the proposed land disturbance to include any improvements to the roadway. Per ECM Appendix I these

improvements may also be excluded from water The project is within Zone X (other) as show quality (see 1.7.B.2). Should these improvements

08041C0305 G, Effective Date December 7 exclusion in your parrative. Also, please be aware that land disturbance is defined in appendix I as

any activity that results in a change in the existing land surface (both vegetative and non-vegetative). The hydrologic soils groups were obtained Atthough permanent water quality may not be

Conservation Service website for soils type required due to exclusions an ESQCP as well as (Appendix, Exhibit 3). The soils are identifies WMP may be required if the disturbance is 1

acre or greater.

VI. HYDROLOGIC SOILS INFORMATION

Brusset Loam 3-5% (SCS No. 15)

Peyton-Pring Complex 8-15% (SCS No. 69).

The soils and their characteristic are described in the soils report included in the Appendix, Exhibit 3. All of the soils in the project area are classified within the B hydrologic group.

VII. DOWNSTREAM DRAINAGE CONDITIONS

There is a stock pond located immediately downstream of the subdivision at Design Point 6. A total of approximately 295 acres drain through the pond. According to the drainage plan offsite sub basins OS1, OS2 and OS3 drain through the project site. The total area for the offsite basins is 255 acres which represents 86% of the total area draining to the pond. Onsite sub basins consist of area A, B, C, D, and E with a total area of 40.3 acres. This represents 14% of the total area.

All of the offsite and onsite basins are carried to the stock pond via a natural grassed swale located along the southerly boundary of the project site. Based on visual observations, the swale is stable with only a minimal amount of erosion. The condition of the swale as it enters the pond is also stable with negligible signs of erosion. Based on visual observations of the upstream and downstream swale of the pond, and the relatively small percentage that the project site is

compared to the total drainage area, it is reasonable to assume that the pond is adequate to accommodate the minor increase in flows as a result of development.

A detailed analysis of the hydraulic and structural characteristics of the pond is outside the scope of this report.

VIII. HISTORIC OFFSITE CONDITIONS

Basin OS-1 (based on 2% Impervious)

Sub basin OS-1 is approximately 211.8-acres, and extends from the westerly boundary of the site to the top of the watershed at Spruce Hill to the west. The topography within the basin ranges from 9.9% near Spruce Hill to 2.9% near the site boundary. Runoff from this basin flows easterly to the southwest corner of the site, crossing Brown Road via an existing 24-inch CMP at an assumed slope of 2.0%. This culvert is in good condition. This basin comprises the primary source of flow in the existing channel. A stock pond exists within this channel, immediately upstream from the site (Design Point 1) on the westerly side of Brown Road. At the southwest corner of the site, flows from this basin are evaluated at Design Point 1 (DP1).

Since this sub basin is greater than 130 acres, the NRCS-TR55 method was utilized. Values were obtained from the TR-55 User Guide.

- o Area = 211.8 acres
- Curve Numbers = 69 (Appendix, Exhibit 5). These values presented in this table were used instead of the ones published in the DCMV1 since they are specific to the TR55 method and the runoff produced are comparable to those of the Rational Method.
- Time of Concentration = 33.4 minutes
- Estimated Runoff (TR 55)
 Minor storm (5 year) = 69.6 cfs
 Major Storm (100 year) = 279.5 cfs

Basin OS-2 (based on 2% Impervious)

Basin OS-2 is approximately 31.8-acres, and drains most of the region south of the site. The topography within this basin ranges from 6.5% at the top to 5.1% near the existing channel. Runoff from this basin flows to the northeast, and intersects the existing channel south of the site boundary. For this reason, flow from this basin is extended via the channel to the site boundary. At this point, flows are evaluated at Design Point 3 (DP3), where runoff from Basin OS-1 and Basin A combines with that from Basin OS-2.

Since this sub basin is less than 130 acres, the Rational Method was utilized

with the following hydrologic parameters and characteristics.

- Area = 31.8 acre
- Runoff Coefficients
 Minor (5 year) storm = 0.08
 Major (100 year) storm = 0.35
- Time of Concentration: 26.7 minutes
- Estimated Runoff (UDFC Rational): (Appendix, Exhibit 4)
 Minor storm (5 year) = 6.4 cfs
 Major Storm (100 year) = 47.1 cfs
- Estimated Runoff (TR55): (Appendix, Exhibit 5)
 Minor storm (5 year) = 17.4 cfs
 Major Storm (100 year) = 65.5 cfs

Comments

The discharge estimated using the Rational Method will be used since this adheres to the current criteria.

• Basin OS-3 and sub basin D (based on 2% Impervious)
Sub basins OS3 and D were combined since sub basin D is relatively small in comparison to OS-3. It is also expected, due to the location of the Sub Basin D in the "watershed" that no development will occur. Basin OS-3 and D is approximately 13.6 acres, and drains the region south of the site and east of Basin OS-2. The topography within this basin ranges from 4.5% at the top to

approximately 13.6 acres, and drains the region south of the site and east of Basin OS-2. The topography within this basin ranges from 4.5% at the top to 5.9% near the sites southeast corner. Runoff from this basin flows to the northeast, and intersects the site near its southeast corner. At this point, flows are evaluated at Design Point 5 (DP5).

Since this sub basin is less than 130 acres, the Rational Method was utilized with the following hydrologic parameters and characteristics. They were compared with those determined by the TR55 Method.

based on 2%

- o Area 13.6 acres
- Runoff Coefficients
 Minor (5 year) storm = 0.08
 Major (100 year) storm = 0.35
- o Time of Concentration: 31.6 minutes
- Estimated Runoff (UDFC Rational Method) (Appendix, Exhibit oughout the report Minor storm (5 year) = 0.4 cfs

impervious and table

coefficient values for

the 5yr/100yr storms

would be .09 and .36.

The values used appear to be for

0%impervious.

6-6 the runofff

Major Storm (100 year) = 22.7 cfs

Estimated Runoff (TR55) (Appendix, Exhibit 5):
Runoff from OS3 was not determined using the TR55 program. The runoff from OS3 was included with the runoff from sub basin D for the developed conditions. It is anticipated that the developed runoff from sub basins OS3 and D will be the same as for the historic conditions since there is not a suitable building site for a residence in sub basin D

IX. HISTORIC ONSITE DRAINAGE CONDITIONS

General

The site is bounded to the north and west by Brown Road and to the south and east by undeveloped agricultural land. A defined drainage channel runs along the southerly boundary of the site, which is tributary to East Cherry Creek. The site drains primarily to the south and east, where this drainage channel intercepts it. Stock ponds exist immediately upstream and downstream from the site. The subject property consists of approximately 40.7-acres, and is divided into five (5) historic basins, identified as Basins A through E. Approximately 255.5-acres of off-site area tributary to the site is divided into three (3) basins, labeled OS-1 through OS-3. The hydrologic characteristics of these offsite sub-basins are described in the previous section. The historic hydrologic conditions of the onsite basins are described in more detail below. The TR55 program was used to compare the flows obtained using the Rational Method. The results are shown below. The TR20 data is shown for information purposes only. The flows obtained from the Rational Method were used in order to adhere to the El Paso County drainage criteria

Sub-basin A (historic) (based on 2% Impervious)

Sub-basin A is approximately 10.7 acres, and drains the westerly portion of the site, along Brown Road. The topography within this basin ranges between 2.2% and 6.5%. Runoff from this basin flows to the south and intersects the existing channel at the southerly boundary approximately 250-feet east of Brown Road. At this point, flows are evaluated at Design Point 2 (DP2), where runoff from Basin OS-1 combines with that from Basin A

Since this sub basin is less than 130 acres, the Rational Method was utilized with the following hydrologic parameters and characteristics. They were compared with those determined by the TR55 Method.

- Area 10.7 acres
 Is this correct?

 Runoff Coefficients
 Minor storm (5 year): 0.08
 Major Storm (100 year): 0.35

 Time of Concentration: 26.7 minutes
 Estimated Runoff (UDFC Rational Method) (Appendix, Exhibit 4)
 Minor storm (5 year): 6.4 cfs
 Major Storm (100 year): 47.1 cfs
- Estimated Runoff (TR55) (Appendix, Exhibit 5)

Minor storm (5 year): 5.8 cfs Major Storm (100 year): 22.0 cfs

The estimated runoff utilizing the Rational Method was used to evaluate the hydraulic characteristics of the existing swale that drains the sub basin.

Sub-basin B (historic) (based on 2% Impervious)

Sub-basin B is approximately 19.6-acres, and drains the central portion of the site. The topography within this basin ranges between 2.1% and 10.4%. Runoff from this basin flows to the southeast, and intersects the existing channel near the southeast corner of the site. At this point, flows were evaluated at Design Point 4 (DP4), where runoff from Basins OS-1, OS-2, and Basin A combine with runoff from Basin B.

Since this sub basin is less than 130 acres, the Rational Method was utilized with the following hydrologic parameters and characteristics. They were compared with those determined by the TR55 Method.

- o Area 19.6 acres
- Runoff Coefficients
 Minor storm (5 year): 0.08
 Major Storm (100 year): 0.35
- o Time of Concentration: 26.1 minutes
- Estimated Runoff (UDFC Rational Method) (Appendix, Exhibit 4)
 Minor storm (5 year): 4.0 cfs
 Major Storm (100 year): 29.4 cfs
- Estimated Runoff (TR55) (Appendix, Exhibit 5)
 Minor storm (5 year): 10.4 cfs
 Major Storm (100 year): 39.4 cfs

The estimated runoff utilizing the Rational Method was used to evaluate the hydraulic characteristics of the existing swale that drains the sub basin

Sub-basin C (historic) (based on 2% Impervious)

Sub-basin C is approximately 5.3-acres, and drains most of the easterly portion of the site. The topography within this basin ranges from 2.0% to 15.7%. Runoff from this basin flows to the southeast, and intersects the existing channel near the southeast corner of the site, approximately 130-feet downstream from DP4. At this point, flows are evaluated at Design Point 6 (DP6), where runoff from Basins OS-1, OS-2, OS-3, A, B, and D combines with Basin C.

Since this sub basin is less than 130 acres, the Rational Method was utilized with the following hydrologic parameters and characteristics. They were compared with those determined by the TR55 Method.

- Area = 5.3 acres
- Runoff Coefficients
 Minor storm (5 year): 0.08
 Major Storm (100 year): 0.35
- Time of Concentration: 22.6 minutes
- Estimated Runoff (UDFC Rational Method) (Appendix, Exhibit 4)
 Minor storm (5 year): 1.2 cfs
 Major Storm (100 year): 8.6 cfs
- Estimated Runoff Estimated Runoff (TR55) (Appendix, Exhibit 5)
 Minor storm (5 year): 3.5 cfs
 Major Storm (100 year): 12.6 cfs

The estimated runoff utilizing the Rational Method was used to evaluate the hydraulic characteristics of the existing swale that drains the sub basin

• Sub-basin OS-3 and D (historic) (based on 2% Impervious)
These two sub-basins were combined since the runoff from OS-3 flows into sub-basin D. Sub-basin OS-3 is 12.1 acres and Sub-basin D is approximately 1.5 acres. The sub basins drain to the southeasterly corner of the site. The topography within this basin slopes at approximately 12.5%. Runoff from this basin flows to the northwest from the southerly side of the existing channel, and intersects it near the southeast corner of the site, approximately 130-feet downstream from DP4. At this point, flows are evaluated at Design Point 6 (DP6), where runoff from Basins OS-1, OS-2, OS-3, A, B, and C combine with Basin D.

Since this sub basin is less than 130 acres, the Rational Method was utilized with the following hydrologic parameters and characteristics. They were compared with those determined by the TR55 Method.

- Area = 13.6 areas
- Runoff Coefficients
 Minor storm (5 year): 0.08
 Major Storm (100 year): 0.35
- Time of Concentration: 31.6 minutes

- Estimated Runoff (UDFC Rational Method) (Appendix, Exhibit 4)
 Minor storm (5 year): 2.5 cfs
 Major Storm (100 year): 18.2 cfs
- Estimated Runoff (TR55) (Appendix, Exhibit 5)
 Minor storm (5 year): 7.0 cfs
 Major Storm (100 year): 26.7 cfs

The estimated runoff utilizing the Rational Method was used to evaluate the hydraulic characteristics of the existing swale that drains the sub basin

Sub-basin E (historic) (based on 2% Impervious)
Sub-basin E is approximately 3.7-acres, and drains the northeast corner of the site. The topography within this basin ranges from 2.4% to 7.7%. Runoff from this basin flows to the southeast, and exits the site at the eastern boundary, approximately 700-feet south of the north boundary. At this point, flows are evaluated at Design Point 7 (DP7).

Since this sub basin is less than 130 acres, the Rational Method was utilized with the following hydrologic parameters and characteristics;

- Area = 3.7 acres
- Runoff Coefficients
 Minor storm (5 year): 0.08
 Major Storm (100 year): 0.35
- o Time of Concentration: 22.3 minutes
- Estimated Runoff (UDFC Rational Method) (Appendix, Exhibit 4)
 Minor storm (5 year): 0.8 cfs
 Major Storm (100 year): 6.1 cfs
- Estimated Runoff (TR55) (Appendix, Exhibit 5)
 Minor storm (5 year): 1.9 cfs
 Major Storm (100 year): 7.2 cfs

The estimated runoff was used to evaluate the hydraulic characteristics of the existing swale that drains the sub basin

• All Offsite and Onsite Sub-basins (historic) (based on 2% Impervious) All runoff from the sub-basins described above ultimately leaves the site at Design Point 6 which is located at the southeast corner of the site. The runoff historically enters an existing stock pond. The physical and hydraulic characteristics of this pond are outside the scope of this report since there is only negligible increase in runoff for both the minor (5 year) and major (100 year) storm events.

Since the total drainage area is greater than 130 acres, the NRCS TR55 method was utilized to determine the following hydrologic characteristics:

- o Drainage area = 296.3 acres
- Curve Number = 69 (based on an imperviousness of 2%) (see Appendix, Exhibit 5)
- Estimated Runoff
 Minor storm (5 year) = 85.7 cfs
 Major Storm (100 year) = 356 cfs

X. EXISTING DRAINAGE FACILITIES

The only drainage facility on this site is a 24-inch corrugated metal pipe located under Brown Road at the southwest corner of the site (DP 1). This DP is located on the westerly side of the project. The stormwater runoff at this location was estimated to be:

Location: Brown Road

Contributing sub basin: OS1

o Contributing Drainage area: 211.6

o Method: TR 55

Minor storm (5 yr.) = 69.6 cfs

Major storm (100 yr.) = 279.5 cfs

The hydraulic characteristics of the existing 24-inch culvert were determined by assuming the inverts and the length of the culvert since field data was not obtained. This is a safe assumption since the outfall "swale" is broad and is expected to have minimal depth that would create an "outlet control condition". Based on the limitations described, the hydraulic conditions were determined to be as follows (*Appendix*, *Exhibit* 6)

- The culvert has a capacity of 20.5 cfs (Appendix, Exhibit 6). This is based on a headwater to depth ratio of 1.5. This provides an upstream depth of 3.1 feet.
- The culvert is operating under inlet control since the downstream depth is expected to be negligible.
- The velocity in the culvert was not determined since data regarding the pipe slope was not obtained.

Conclusions

- The existing culvert is undersized to safely accommodate the runoff from the 5-year storm event
- The runoff from the 100-year event is expected to overtop the existing roadway and therefore has the potential of damaging the existing roadway cross section.

It is recommended to replace the existing culvert. Since the culvert only accommodates runoff from offsite sources, the culvert is to be replaced by other parties and not as part of the subdivision improvements.

XI. **DEVELOPED DRAINAGE CONDITIONS**

- Offsite Sub-basin Characteristics for Developed Conditions There are no plans to develop the tracts located upstream of the project site. Therefore, the hydrologic conditions for the offsite sub basins will remain the same, as described Section VIII of this report, under the developed conditions.
- Onsite Sub-basin Characteristics for Developed Conditions Since the development of this site consists of 5-acre parcels, the majority of the hydrologic parameters for onsite sub-basins, presented in Section IX, remain the same. The only change is in the determination of the Runoff Coefficient. The following is a summary of how the runoff coefficients for the developed conditions were calculated (Appendix, Exhibit 4):
 - Drainage Sub Basins identification is the same as existing conditions
 - Developed Lot Characteristics
 - Typical total lot area = 217,800 square feet (lot size of 5 acres)
 - Average house footprint = 4,000 square feet
 - Average area for driveways, patios, walk ways = 2,500 square feet
 - -- Average area for driveways, patios, walk ways = 1,200 square feet
 - Average area to remain in its existing condition = 210,100 square feet
 - o Runoff Coefficients (Rational Method "C" coefficient) (Table 6-6, CSDCM) (Appendix, Exhibit 4) and TR55 Method "CN" Curve Numbers (Tables 2-2a- 2d) (Appendix, Exhibit 5) Typically, published design tables for use with the Rational Method and the NCRS Method do not provide runoff coefficients for 5-acre developments. It only provides values for 2.5 acres and smaller. As a result, the composite coefficients (Table 6-6) and curve number (Table 2-2a-2d) for each developed lot were determined as follows:
 - Average roof size = 4,000 square feet
 - % Impervious: 90%
 - Rational Method: Minor storm (5 year) runoff coefficient: 0.73
 - Rational Method: Major storm (100 year) runoff coefficient: 0.81
 - NCRS Curve Number = 98
 - Average area for **driveways**, **patios**, and walk ways = 2,500 square feet
 - % Impervious: 100% (This is a conservative assumption. It assumes a paved driveway as opposed to a typical gravel one)

Rational Method: Minor storm (5 year) runoff coefficient: 0.73

This should be 0.90 per table 6-6 and 100% impervious. Please revise. If a gravel driveway is proposed then 80% impervious may be used for the driveway. Concrete walkways and patios would still be considered 100% impervious.

Page 18 of 28

should be 0.96 per table 6-6 and 100% impervious. Revise accordingly.

- Rational Method: Major storm (100 year) runoff coefficient: 0.81
- NCRS Curve Number = 98
- Average area for "grassed" lawn = 1,200 square feet
 - % Impervious: 0%
 - Rational Method: Minor storm (5 year) runoff coefficient: 0.08
 - Rational Method: Major storm (100 year) runoff coefficient: 0.35
 - NCRS Curve Number = 69 (fair condition)
- Average area in existing condition (Pasture/Meadow) = 210,100 square feet
 - Rational Method Impervious: 0%
 - Rational Method: Minor storm (5 year) runoff coefficient: 0.08
 - Rational Method: Major storm (100 year) runoff coefficient: 0.35
 - NCRS Curve Number = 69

The value from Table 6-9 ARC I, instead of Table 6-10 ARC II, was used since the "undeveloped" area of the lot will not be disturbed and will remain "un-watered/ irrigated".

Composite Runoff Coefficients and Curve Numbers for developed conditions (Appendix, Exhibit 4 and 5)
Exhibit 4 in the Appendix includes the tables used for the Rational Method. Exhibit 5 in the Appendix includes the tables used for the NCRS method. Based on the above assumptions the following composite runoff coefficients were determined as follows:

Developed Conditions: the following is for **developed** lots only and not for offsite areas.

- % Impervious = 2.8%
- Rational Method: Minor storm (5 year) runoff coefficient: 0.10 (developed conditions)
- Rational Method: Major storm (100 year) runoff coefficient: 0.37 (developed conditions)
- NCRS Curve Number = 70

Please see previous comment

- Existing Conditions (for comparison purposes)
 - % Impervious = 2%

 ✓
 - Rational Method: Minor storm (5 year) runoff coefficient: 0.08 (existing conditions)
 - Rational Method: Major storm (100 year) runoff coefficient: 0.35 (existing conditions)
 - NCRS Curve Number = 69
- Time of Concentration

 The time of concentration for each sub-basin remains the same.

- Rainfall Intensity
 The rainfall intensity for each sub-basin remains the same since the time of concentration remains the same.
- Estimated Runoff
 Based on the above assumptions, runoff for the minor (5 year) and major (100 year) storms were estimated for each sub-basin

Sub-basin A (developed)

- Design point = 2
- Drainage Area = 10.7 acres
- Runoff Coefficients
 - % Impervious = 2.8
 - Rational Method: Minor storm (5 year): 0.10
 - Rational Method: Major Storm (100 year): 0.37
 - NCRS Curve #: 70
- Estimated Runoff
 - Rational Method: Minor storm (5 year): 2.7 cfs (see Appendix, Exhibit 4)
 - Rational Method: Major Storm (100 year): 16.7 cfs (see Appendix, Exhibit 4)
 - NCRS: Not Applicable

Sub-basin B (developed)

- Design Point = 4
- Drainage Area = 19.6 acres
- Runoff Coefficients
 - % Impervious = 2.8
 - Rational Method: Minor storm (5 year): 0.10
 - Rational Method: Major Storm (100 year): 0.37
 - NCRS Curve #: 70 (see Appendix, Exhibit 5)
- Estimated Runoff
 - Minor storm (5 year): 5.0 cfs
 - Major Storm (100 year): 31.1 cfs
 - NCRS: Not Applicable

Sub-basin C (developed)

Design Point = 6

Please explain how/why the developed runoff from Basin A is much less than the historic runoff (47 cfs) indicated in page 12 of 28. Revise accordingly.

- Drainage Area = 5.3 acres
- Runoff Coefficients
 - % Impervious = 2.8
 - Rational Method: Minor storm (5 year): 0.10
 - Rational Method: Major Storm (100 year), 0.37 acres. Revise
 - NCRS Curve #: 70

Developed drainage plan indicates 13.6 acres. Revise accordingly.

- Estimated Runoff
 - Rational Method: Minor storm (5 year): 1.5 cfs
 - Rational Method: Major Storm (100 year): 9.1 cfs
 - NCRS: Not Applicable
- Sub-basin OS-3 and D (developed)
 - o Design Point = 4
 - Drainage Area = 16.6 acres
 - Runoff Coefficients
 - % Impervious = 2.0
 - Rational Method: Minor storm (5 year): .08
 - Rational Method: Major Storm (100 year): 0.35
 - NCRS Curve #: 69
 - Estimated Runoff
 - Rational Method: Minor storm (5 year): 2.5 cfs
 - Rational Method: Major Storm (100 year): 18.2 cfs
 - NCRS: Not Applicable
- Sub-basin E (developed)
 - Design Point = 7
 - Drainage Area = 3.7 acres
 - Runoff Coefficients
 - % Impervious = 2.8
 - Rational Method: Minor storm (5 year): 0.10
 - Rational Method: Major Storm (100 year): 0.37
 - NCRS Curve #: 70
 - Estimated Runoff
 - Rational Method: Minor storm (5 year):1.0 cfs
 - Major Storm (100 year): 6.4 cfs
 - NCRS: Not Applicable

- All Sub-basins (developed) (NCRS Method) (Appendix, Exhibit 5)
 - o Design Point = 6
 - Drainage Area = 296.3 acres
 - Runoff Coefficients
 - % Impervious = 2.1
 - Rational Method: Minor storm (5 year): Not Applicable
 - Rational Method: Major Storm (100 year): Not Applicable
 - NCRS Curve #: 70 (+-)
 - Estimated Runoff (Developed)
 - Rational Method: Minor storm (5 year): Not Applicable
 - Rational Method: Major Storm (100 year): Not Applicable
 - NCRS: 5 year = 86.7 cfs
 - NCRS: 100 year = 360.8 cfs
 - Estimated Runoff (Historic)
 - Rational Method: Minor storm (5 year): Not Applicable
 - Rational Method: Major Storm (100 year): Not Applicable
 - NCRS: 5 year = 85.7 cfs
 - NCRS: 100 year = 356.0 cfs
 - Conclusions

The increase in runoff is negligible for both the minor and major storm events as a result of development

Please consider revising this to

XII. PROPOSED IMPROVEMENTS

Culvert Improvements

The existing culvert (24" CMP) was evaluated in Section X of this report. It was determined that the existing 24" culvert had a capacity to pass 20.5 cfs based on a headwater to depth ratio of 1.5. This is substantially less than the discharge for the 5-year storm event which is 69.6 cfs. This was determined based on the assumptions described in Report Section X.

It is recommended to replace the existing culvert. The proposed culvert described below was sized only for the 5-year storm since data regarding the existing and/or proposed roadway at the culvert crossing was not available. The final design of the culvert will require field data to obtain inverts, roadway cross section, and inlet and outlet topography. The design and construction of this culvert is not part of this subdivision since the stormwater runoff from the subdivision does not impact the facility.

indicate "recommended" instead

of "proposed" as the applicant is

not proposing to install this

culvert.

The following recommendation is based on the size culvert required to pass the 5-year flow with a limiting headwater to depth ratio of 1.5 (*Appendix*, *Exhibit 6*);

o Criteria

- Minor storm (5 yr.): Headwater to Depth ratio = 1.5 limit with no roadway overtopping.
- Major Storm (100 yr.): not used in the following concept design.

Recommended culvert

- Size: 42" RCP Culvert
- Headwater to depth ratio: 1.5
- Culvert Capacity = 80 cfs
- % slope = 1.0 %
- Headwater to depth = 1.5
- Culvert Velocity = 7.8 fps
- Culvert Depth of Flow = 2.2
- End treatments: Flared end sections
- Riprap protection at the outfall: 12" D50, 30 feet long by 12 feet wide
- Concrete low water crossing

Borrow Ditches and Onsite Swales (Appendix, Exhibit 8)

- West Property Line, East borrow ditch
 - Runoff Areas: Sub basins E and C

Design Discharge 5 yr. = 2.5 cfs

100 yr. = 15.5

- Estimated Slope = 6.4%
- Estimated Side slope = 3:1
- Manning's Coef. = .035

- Depth:

5 year: 0.3 ft 100 Year: 0.7 ft

Velocity =
 5 year: 5.0 fps
 100 Year: 8.0 fps

Sub basins E and C are on the northeast property line. Sub basin A is on the west property line. Please revise accordingly as it is not clear which ditch this is referring to.

Froude No.

5 year: 1.97 (supercritical) 100 Year: 2.23 (supercritical)

Recommended Improvements = stone check dams at 50-foot intervals

o North Property Line, South borrow ditch

- Runoff Areas, only ½ of the existing road in sub basin B drains into the roadside ditch. = 0.2 acres
- Runoff Coefficient:

5 yr. = 0.59 100 yr. = 0.71

- Time of Concentration: 5 minutes (minimal allowed)
- Rainfall Intensity:

5 yr. = 4.1 100 yr. = 8.8

Design Discharge

5 yr. = 0.5 cfs100 yr. = 1.9

- Estimated Slope = 6.4%
- Estimated Side slope = 3:1
- Manning's Coef. = .035
- Depth:

5 year: 0.2 ft 100 Year: 0.3 ft

Velocity =

5 year: 2.5 fps 100 Year: 3.6 fps

Froude No.

5 year: 1.28 (supercritical) 100 Year: 1.41 (supercritical)

Recommended Improvements = stone check dams at 50-foot intervals

Onsite Swale Design Point 1 to Design Point 6 (developed)
 A range for the 5 yr. and 100 yr. storms is represented below since the flows are subcritical and therefore no improvements are recommended.

5 Year storm Event

- Discharge

5 yr.= 86.7cfs

- Slope = 2.5% to 6%
- Side slope = 0.5 to 0.5
- Manning's Coef. = 0.12 for range grass
- Velocity range = 2.2 fps to 4.9 fps
- Depth range = 1.3 ft to 2.4 ft
- Froude No. range == 0.34 to 0.56, subcritical flow
- Recommended Improvements = none since flow is subcritical.

100 Year storm Event

- 100 yr. = 360.8 cfs
- Slope = 2.5% to 6%
- Side slope = 0.5 to 0.5

Velocity range = 3.7 fps to 4.9 fps

Depth range = 2.4 ft to 3.4 ft.

Please remove this section as this does Manning's Coef. = 0.12 for range granot provide any relevant information pertaining to the drainage of the site. Additionally, if there is any changes to Froude No. range = 0.38 to 0.57, su the Broad Road evaluation report this will have to be continually updated.

No improvements are required for the onsite swales since all velocities are less that the erosive velocities and are sub critical in the flow regime (Appendix, Exhibits 4, 5, and 8)

XIII. **BROWN ROAD COST SHARING**

The following was taken from Section XI of the Brown Road Evaluation Report prepared by KCH Engineering Solutions, LLC, dated August 2020.

The current improvements along the entire length of Brown Road currently do not meet El Paso County standards for a rural gravel road. Due to the cost required to bring the road to current standards, equitable cost sharing for the individual parcels sharing access to this road, was discussed in a 2008. Attached is a letter from El Paso County, dated May 19, 2008 and corrected October 1, 2008 (Appendix, Exhibit 9 (Brown Road Evaluation Report)). This letter outlines the "Conditions for Approval" for the Prairie Ridge plat in 2008. An inflation rate of 21.1% was used in the calculation of the various numbers used in the Development Services letter. This rate was determined from a table produced by the Department of Labor and Statistics for the average inflation rate for the period between 2008 and 2020 is included as Exhibit 10 in the Appendix (Brown Road Evaluation Report) of this report.

It is recommended that the May 19, 2008 (corrected October 1, 2008) letter from El Paso County Development Services be revised to include the following amended amounts for the Brown Road improvements:

Preliminary Plan Conditions of Approval (Appendix, Exhibit 9)

All conditions are to remain the same except for the changes described below.

Conditions of Approval, Item 9.1 (adjusted for 2020) revised as follows (changes are shown in bold type):

Applicant's total fair share, equitable, and reasonably proportional contribution to the Brown Road Improvements shall be \$13,325 per lot for a total of \$93,275 structured as follows:

Conditions of Approval, Item 9.1.A (adjusted for 2020) revised as follows (changes are shown in bold type):

Prior to recording the final plat, Applicant shall deposit the sum of \$60,550 with the El Paso County Treasurer, which funds the County shall maintain and deposit in a separate, interest bearing account not part of the County's operating budget.

Conditions of Approval, Item 9.1.B (adjusted for 2020) revised as follows (changes are shown in bold type):

At the time of closing each lot the remaining \$32,725 balance of the contribution, or \$4,675 per lot.

Conditions of Approval, Item 9.2

No changes

Conditions of Approval, Item 9.3

No changes

Conditions of Approval, Item 9.4

No changes but repeated as follows:

Should the County not use the funds on or before the expiration date the County shall return the funds to the Applicant, their heirs, successors and assigns (excluding individual lot owner successors), together with accrued interest.

Conditions of Approval, Item 10

No changes

Final Plat Conditions of Approval

All conditions are to remain the same except for the changes described below.

Conditions of Approval, Item 14.1 (adjusted for 2020) (changes are shown in bold type):

Applicant's total fair share, equitable, and reasonably proportional contribution to the Brown Road Improvements shall be \$13,325 per lot for a total of \$93,275 structured as follows:

Conditions of Approval, Item 14.1.A (adjusted for 2020) (changes are shown in bold type):

Prior to recording the final plat, Applicant shall deposit the sum of \$60,550 with the El Paso County Treasurer, which funds the County shall maintain and deposit in a separate, interest bearing account not part of the County's operating budget.

Conditions of Approval, Item 14.1.B (adjusted for 2020) revised as follows (changes are shown in **bold** type):

At the time of closing each lot the remaining \$32,725 balance of the contribution, or \$4,675 per lot,

Conditions of Approval, Item 14.2

No changes

Conditions of Approval, Item 14.3

a. No changes

Conditions of Approval, Item 14.4

b. No changes and repeated as follows:

Should the County not use the funds on or before the expiration date the County shall return the funds to the Applicant, their heirs, successors and assigns (excluding individual lot owner successors), together with accrued interest.

Conditions of Approval, Item 15

No changes

Please see comments above regarding detention and water quality and revise accordingly.

XIV. DETENTION AND WATER QUALITY Criteria

El Paso County Engineering Criteria Manual, Appendix 1, Page 1.18-19 According to El Paso County criteria a Water Quality Capture Volume (WQCV) pond is not required for lots 2.5 acres or larger. Also, since the area of disturbance is less than 1- acre a WQCV pond is not required.

Hydrologic for Existing and Developed Conditions) (see Report Section XI)

- Estimated Runoff (Historic)
 - Rational Method: Minor storm (5 year): Not Applicable
 - Rational Method: Major Storm (100 year): Not Applicable
 - NCRS: 5 year = 85.7 cfs
 - NCRS: 100 year = 356.0 cfs
- Estimated Runoff (Developed)
 - Rational Method: Minor storm (5 year): Not Applicable
 - Rational Method: Major Storm (100 year): Not Applicable
 - NCRS: 5 year = 86.7 cfs
 - NCRS: 100 year = 360.8 cfs

XV. EROSION CONTROL

The following erosion control measures are recommended. Exhibits for all of the erosion control facilities recommended below are included in the *Appendix*, *Exhibit 7*.

- Stone check dams in the roadside swales under supercritical conditions
- Riprap outlet aprons (by others) at locations where the storm sewer exit velocity is great enough to cause excessive erosion
- Silt fences are recommended along the lower edge of grading activity

XVI. SUMMARY

This report provides a thorough analysis of the historic and developed drainage conditions for the proposed Prairie Ridge Subdivision. The property is comprised of 40.7 +/- acres and is located on the south and east sides of Brown Road approximately 0.5 miles north of the intersection of Brown Road and Walker Road. The subdivision is to be subdivided into seven (7) consisting of areas 5-acres or greater.

The vegetation consists of primarily prairie grass with no trees. There is a main natural drainage way that is located along the southerly side of the boundary. It has been demonstrated that there is only a negligible increase in runoff as a result of development. Also, based on the present engineering criteria for El Paso County a water quality/ detention pond is not required.

Please state whether or not this development will have an adverse affect to the downstream or surrounding properties.

Erosion control facilities include staked hay bales, erosion control check dams, and stone check dams. The location and details for these are included on the Storm Water Management Plan.

Included in the map pocket are drainage maps for the Historic Drainage Conditions and the Developed Drainage Conditions. No storm water structures are proposed for this subdivision.

APPENDIX

Exhibit 1 General Location Map

Vicinity Map

Exhibit 2 FEMA FIRM Map

FEMA Flood Map Service Center: Search By Address

Navigation

Search

Languages

MSC Home (/portal/)

MSC Search by Address (/portal/search)

MSC Search All Products (/portal/advanceSearch)

MSC Products and Tools
 (/portal/resources/productsandtor

Hazus (/portal/resources/hazus)

LOMC Batch Files (/portal/resources/lomc) Product Availability (/portal/productAvailability)

MSC Frequently Asked Questions (FAQs) (/portal/resources/faq)

Enter an address, place, or coordinates: 😵

El Paso County Colorado

Search

insurance doesn't cover flood damage. If you live in an area with low or moderate flood risk, you are 5 times more likely to experience flood than a fire in your home over the next 30 years. For many, a National Flood Insurance Program's flood insurance policy could cost less than \$400 (https://www.fema.gov/national-flood-insurance-program) because most homeowners Whether you are in a high risk zone or not, you may need <u>flood insurance</u> per year. Call your insurance agent today and protect what you've built.

Learn more about <u>steps you can take (https://www.fema.gov/what-mitigation)</u> to reduce flood risk damage.

3/25/2019

(/portal/resources/contact) Contact MSC Help

Share This Page.

About Us (//www.fema.gov/about-agency). Privacy Policy (//www.fema.gov/privacy-Home (//www.fema.gov/) Download Plug-ins (//www.fema.gov/download-plug-ins) Whitehouse gov (//www.whitehouse.gov). DHS.gov (//www.dhs.gov). Ready.gov <u>(//www.oig.dhs.gov/), Strategic Plan (//www.fema.gov/fema-strategic-plan)</u> (//www.ready.gov) USA.gov (//www.usa.gov). DisasterAssistance.gov policy) FOIA (//www.fema.gov/foia). Office of the Inspector General (//www.disasterassistance.gov/)

(https://www.oig.dhs.gov/hotline)

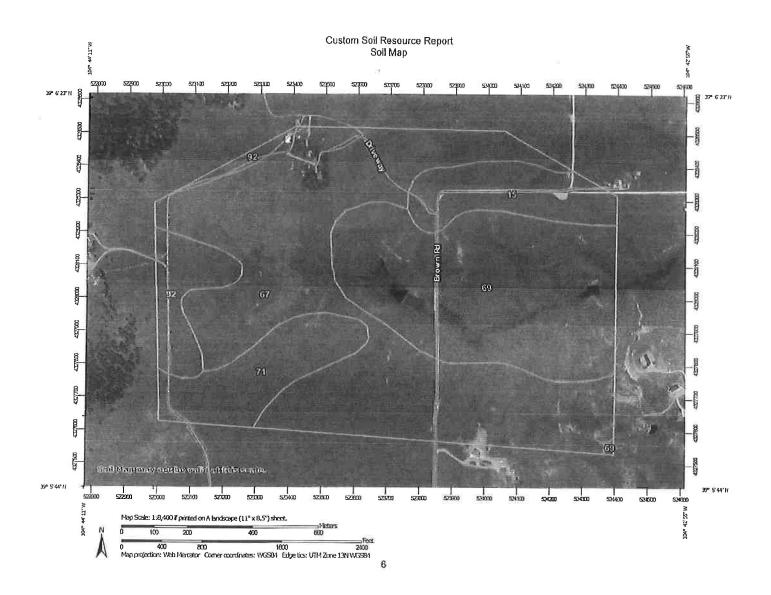
e Official website of the Department of Homeland Security

Exhibit 3 SCS Soils Map and Data

United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants


Custom Soil Resource Report for El Paso County Area, Colorado

Prairie Ridge Subdivision

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
15	Brussett loam, 3 to 5 percent slopes	23.9	7.8%
67	Peyton sandy loam, 5 to 9 percent slopes	147.0	47.9%
69	Peyton-Pring complex, 8 to 15 percent slopes	. 90.5	29.5%
71	Pring coarse sandy loam, 3 to 8 percent slopes	26,8	8.7%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	18.4	6.0%
Totals for Area of Interest		306.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

Custom Soil Resource Report

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

15-Brussett loam, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: 367k Elevation: 7,200 to 7,500 feet Frost-free period: 115 to 125 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Brussett and similar soils: 85 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brussett

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian deposits

Typical profile

A - 0 to 8 inches: loam
BA - 8 to 12 inches: loam
Bt - 12 to 26 inches: clay loam
Bk - 26 to 60 inches: silt loam

Properties and qualities

Slope: 3 to 5 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 5 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: High (about 9.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: Loamy Park (R048AY222CO)

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

67—Peyton sandy loam, 5 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369d Elevation: 6,800 to 7,600 feet

Mean annual air temperature: 43 to 45 degrees F

Frost-free period: 115 to 125 days

Farmland classification: Not prime farmland

Map Unit Composition

Peyton and similar soils: 85 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Peyton

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic

residuum weathered from sedimentary rock

Typical profile

A - 0 to 12 inches: sandy loam

Bt - 12 to 25 inches: sandy clay loam

BC - 25 to 35 inches: sandy loam

C - 35 to 60 inches: sandy loam

Properties and qualities

Slope: 5 to 9 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: Sandy Divide (R049BY216CO)

Hydric soil rating: No

Custom Soil Resource Report

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

69—Peyton-Pring complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 369g Elevation: 6,800 to 7,600 feet

Farmland classification: Not prime farmland

Map Unit Composition

Peyton and similar soils: 40 percent Pring and similar soils: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Peyton

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic residuum weathered from sedimentary rock

Typical profile

A - 0 to 12 inches: sandy loam

Bt - 12 to 25 inches: sandy clay loam

BC - 25 to 35 inches: sandy clay loam

C - 35 to 60 inches: sandy loam

Properties and qualities

Slope: 8 to 9 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 7.3 inches)

Custom Soil Resource Report

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: Sandy Divide (R049BY216CO)

Hydric soil rating: No

Description of Pring

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: Loamy Park (R049BY222CO)

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Exhibit 4 Rational Method Exhibits

Stormwater Runoff Summary

Historic Conditions

Prairie Ridge

Jul-20

				Т.	R55				Rationa	ıl	
Design Point	Sub Basib I.D.	Area (acres)	Time of Concentration (min)	Curve #	5 year (cfs)	100 year (cfs)	Time of Concentration (min)	C5 Table	C100 table	5 year (cfs)	100 year (cfs)
1	OS-1	211.6	33.4	69	69.6	279.5					
3	OS-2	31.8	14.6	69	17.4	65.5	26.7	0.08	0.35	6.4	47.1
5	OS-3 and D	13.6	16.4	69	7.0	26.7	31.6	0.08	0.35	0.4	22.7
2	А	10.7	14.6	69	5.8	22.0	26.7	0.08	0.35	6.4	47.1
4	В	19.6	15.5	69	10.4	39.4	26.1	0.08	0.35	4	29.4
6	С	5.3	8	69	3.5	12.6	22.6	0.08	0.35	1.2	8.6
7	E	3.7	16.8	69	1.9	7.2	22.3	0.08	0.35	10.9	7.2
6	All Sub basins	296.3			85.7	356.0					

Stormwater Runoff Summary

Developed Conditions

Prairie Ridge

Jul-20

					Jui-						
				TI	R55				Rationa	l	
Design Point	Sub Basib I.D.	Area (acres)	Time of Concentration (min)	Curve#	5 year (cfs)	100 year (cfs)	Time of Concentration (min)	C5 Table	C100 table	5 year (cfs)	100 year (cfs)
1	OS-1	211.6	33.4	69	69.6	279.5		1			
3	OS-2	31.8	14.6	69	17.4	65.5	26.7	0.08	0.35	1.0	58.6
5	OS-3 and D	13.6	16.4	69	7.0	26.7	31.6	0.08	0.35	0.4	22.7
2	А	10.7	14.6	70	7.7	23.1	26.7	0.10	0.37	2.7	16.7
4	В	19.6	15.5	70	13.8	41.3	26.1	0.10	0.37	5.0	31.1
6	С	5.3	8	70	3.9	11.6	22.6	0.10	0.37	1.5	9.1
7	E	3.7	16.8	70	2.5	7.6	22.3	0.10	0.37	1.0	6.4
6	All Sub basins	296.3			86.7	360.8					

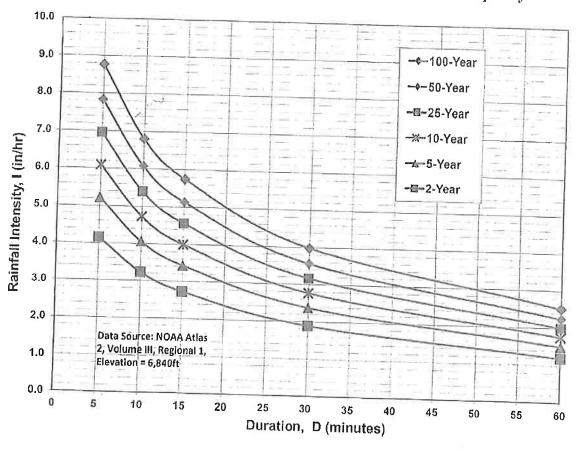


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations

$$I_{100} = -2.52 \ln(D) + 12.735$$

$$I_{50} = -2.25 \ln(D) + 11.375$$

$$I_{25} = -2.00 \ln(D) + 10.111$$

$$I_{10} = -1.75 \ln(D) + 8.847$$

$$I_5 = -1.50 \ln(D) + 7.583$$

$$I_2 = -1.19 \ln(D) + 6.035$$

Note: Values calculated by equations may not precisely duplicate values read from figure.

Table 6-7. Conveyance Coefficient, C,

Type of Land Surface	C_{ν}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

For buried riprap, select C, value based on type of vegetative cover.

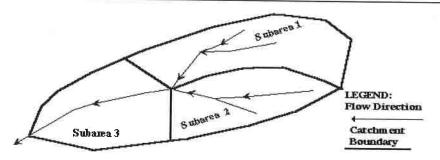
Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

Land Use or Surface	Percent	-				,	Runoff Co	efficients					
Characteristics	Impervious		ear .	5-\	rear	10-1	yezr	25.	Year	50-	үеаг	100	-уеаг
Business	_	HSG ABB	HSG C&D	HSG A88	HSG C&D	HSGABB	HSG C&O	HSG A&B	HSG C&D	HSG A&B	HSG C&D	H5G ABB	HSG C&D
Commercial Areas	95	0.79											100 000
Neighborhood Areas	70	0.79	0.80	0.81	0.82	+ 0.83 0.53	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Residential					1.0.0	0.33	0.37	0.56	0.62	0.60	0.65	0.62	0.68
1/8 Acre or less	-												- 5
1/4 Acre	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	_0.65
1/3 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.5B
1/2 Acre	30	0.18	0,22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.57
TACIE	20	0.12	0.17	0.20	0,26	0,27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
ndustrial				_									
Light Areas	80	0.57	0.60	0.59	0.63	0.00							
Heavy Areas	90	0.71	0.73	0.73	0.03	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
				35///.5		0.13	0.77	0.78	08.0	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40				
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.40	0.34	0.46	0.39	0.52
Railroad Yard Areas	40	0.23	0.28	0.30	0,35	0.36	0.42	0.42	0.42	0.37	0.48 0.54	0.41	0.54
Indeveloped Areas	-										U.S.	0.30	0.58
Historic Flow Analysis	2	-		\rightarrow		-							
Greenbelts, Agriculture		0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.30		12	19.00	
Pasture/Meadow	0.	0.02	0.01	0.08	0.15	0.15	0.25	0.25	0.38	0.31	0.45	0.36	0.51
Forest .	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92		0.37	0.30	0.44	0.35	0.50
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.94	0.94	0.95	0.95	0.96	0.96
reets								0.77	0.51	0.48	0.55	0.51	0.59
Payed	100												
Gravel	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
viole:	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
rive and Walks	100	0.89	0.89	0.90	0.90	0.00							300.5
oofs	90	0.71	0.73	0.73	0.75	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
wns	6	0.02	0.04	0.03	0.15	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
				0.00	0.13	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

July Sugarthal Developed Los

Area-Weighted Runoff Coefficient Calculations

Version 2.00 released May 2017


Designer: Ken Harrison

Company: KCH Engineering Solutions

Date: 6/26/2020

Project: Prairie Ridge Historic Conditions

Location: El Paso County

Subcatchment Name Typ 5 acre lot

210,103

Cells of this color are for required user-input

Cells of this color are for optional override values

Cells of this color are for calculated results based on overrides

See sheet "Design Info" for imperviousness-based runoff coefficient values. **NRCS** Runoff Coefficient, C Sub-Area

Area	I	Percent I							
(ac)	Hydrologic Soil Group	Imperviousness	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr
0.0918	В	90.0	0.74	0.76	0.78	0.81	0.83	0.84	0.87
		00.0	0.71	0.73	0.75	0.78	0.80	0.81	
0.0574	В	100.0	0.84	0.86	0.86	0.88	0.89	0.89	0.90
CETTE V		100.0	0.89	0.90	0.92	0.94	0.95	0.96	
0.0275	В	0.0	0.00	0.00	0.06	0.25	0.33	0.43	0.54
		0.0	0.02	0.08	0.15	0.25	0.30	0.35	
4 8233	B	0.0	0.00	0.00	0.06	0.25	0.33		0.54
110200		0.0	0.02	0.08	0.15	0.25	0.30		
	AVE. ST								
	N HOL'						THE PARTY		
	1275								
	18 7/15 (4)								
				V 1 - 1					
		AT A STATE OF THE							15 0
	TARREST A STATE	A North Park							
	X LUCIO DE LA CONTRACTOR DE LA CONTRACTO	VIII SUIP III							
5,0000		Area-Weighted C	0.02	0.02	0.08	0.27	0.34	0.44	0.55
5.5500	Area-Weig	ghted Override C	0.04	0.10	0.17	0.27		0.37	0.55
		(ac) Hydrologic Soil Group 0.0918 B 0.0574 B 0.0275 B 4.8233 B	(ac) Hydrologic Soil Group Imperviousness 0.0918 B 90.0 0.0574 B 100.0 0.0275 B 0.0 4.8233 B 0.0	(ac) Hydrologic Soil Group Imperviousness 2-yr 0.0918 B 90.0 0.74	(ac) Hydrologic Soil Group Imperviousness 2-yr 5-yr 0.0918 B 90.0 0.74 0.76 0.0574 B 100.0 0.84 0.86 0.89 0.90 0.00 0.00 0.00 0.02 0.08 0.00 0.00 0.00 4.8233 B 0.0 0.00 0.00 0.00 0.02 0.08 0.02 0.08 0.00 0.00 0.00 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>(ac) Hydrologic Soil Group Imperviousness 2-yr 5-yr 10-yr 0.0918 B 90.0 0.74 0.76 0.78 0.0574 B 100.0 0.84 0.86 0.86 0.0275 B 0.0 0.00 0.00 0.00 0.06 0.02 0.08 0.15 0.02 0.08 0.15 4.8233 B 0.0 0.00 0.00 0.06 0.02 0.08 0.15</td> <td>(ac) Hydrologic Soil Group Imperviousness 2-yr 5-yr 10-yr 25-yr 0.0918 B 90.0 0.74 0.76 0.78 0.81 0.0574 B 100.0 0.84 0.86 0.86 0.88 0.0275 B 0.0 0.00 0.00 0.06 0.25 4.8233 B 0.0 0.00 0.00 0.06 0.25 0.02 0.08 0.15 0.25 0.02 0.08 0.15 0.25 0.02 0.08 0.15 0.25 0.02 0.08 0.15 0.25 0.02 0.08 0.15 0.25 0.02 0.08 0.15 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>(ac) Hydrologic Soil Group Imperviousness 2-yr 5-yr 10-yr 25-yr 50-yr 0.0918 B 90.0 0.74 0.76 0.78 0.81 0.83 0.0574 B 100.0 0.84 0.86 0.86 0.88 0.89 0.0275 B 0.0 0.00 0.00 0.06 0.25 0.33 4.8233 B 0.0 0.00 0.00 0.06 0.25 0.33 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.00 0.00 0.00 0.00 0.00 0.00</td><td> Cac Hydrologic Soil Group Imperviousness 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr </td></td>	(ac) Hydrologic Soil Group Imperviousness 2-yr 5-yr 10-yr 0.0918 B 90.0 0.74 0.76 0.78 0.0574 B 100.0 0.84 0.86 0.86 0.0275 B 0.0 0.00 0.00 0.00 0.06 0.02 0.08 0.15 0.02 0.08 0.15 4.8233 B 0.0 0.00 0.00 0.06 0.02 0.08 0.15	(ac) Hydrologic Soil Group Imperviousness 2-yr 5-yr 10-yr 25-yr 0.0918 B 90.0 0.74 0.76 0.78 0.81 0.0574 B 100.0 0.84 0.86 0.86 0.88 0.0275 B 0.0 0.00 0.00 0.06 0.25 4.8233 B 0.0 0.00 0.00 0.06 0.25 0.02 0.08 0.15 0.25 0.02 0.08 0.15 0.25 0.02 0.08 0.15 0.25 0.02 0.08 0.15 0.25 0.02 0.08 0.15 0.25 0.02 0.08 0.15 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>(ac) Hydrologic Soil Group Imperviousness 2-yr 5-yr 10-yr 25-yr 50-yr 0.0918 B 90.0 0.74 0.76 0.78 0.81 0.83 0.0574 B 100.0 0.84 0.86 0.86 0.88 0.89 0.0275 B 0.0 0.00 0.00 0.06 0.25 0.33 4.8233 B 0.0 0.00 0.00 0.06 0.25 0.33 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.00 0.00 0.00 0.00 0.00 0.00</td> <td> Cac Hydrologic Soil Group Imperviousness 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr </td>	(ac) Hydrologic Soil Group Imperviousness 2-yr 5-yr 10-yr 25-yr 50-yr 0.0918 B 90.0 0.74 0.76 0.78 0.81 0.83 0.0574 B 100.0 0.84 0.86 0.86 0.88 0.89 0.0275 B 0.0 0.00 0.00 0.06 0.25 0.33 4.8233 B 0.0 0.00 0.00 0.06 0.25 0.33 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.02 0.08 0.15 0.25 0.30 0.00 0.00 0.00 0.00 0.00 0.00	Cac Hydrologic Soil Group Imperviousness 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr

4,000

																Calcula	Calculation of Peak Runo	eak Runol
Company: KCH Enginee	CH Engine	Company: KCH Engineering Solutions	15	Į.	Version 2	2.00 release	/ersion 2.00 released May 2017				0.	$0.395(1.1 - C_5)/L_1$	/Li					
Date: 7	Date: 7/23/2020	Date: 7/23/2020	ouciși o	1	Cells of th	his color are	Cells of this color are for required user-input	l user-Input			 -	S ₁ 0.33		computed $t_c = t_l + t_t$: = ال + ال ال + ال			tminimum = 1(
Location: El Paso County	Paso Cou	inty		1.1	Cells of th	ils color are	Cells of this color are for optional overrides values.	override va	ased on ove	errides	بد اا	$\frac{L_t}{60K\sqrt{S_t}} = \frac{L_t}{60V_t}$	ار در ا	Regional t _c	Regional $t_c = (26 - 17i) +$	Lt 60(14i + 9),/S	[US	Selected t _c =
		2001				Runc	Runoff Coefficient, C	int, C				Overla	Overland (Initial) Flow Time	v Time				Channa
Subcatchment Name	Area (ac)	Hydrologic Soil Group	Percent Imperviousness	s 2-vr	5-VI	10-vr	25-Vr	50-71	100-70	500-yr	Overland Flow Length L _I (ft)	U/S Elevation (ft) (Optional)	U/S Elevation D/S Elevation (ft) (ft) (Optional)	Overland Flow Slope S _i (ff/ft)	Overland Flow Time t. (min)	Channelized Flow Length	U/S Elevation D/S Elevation (ft) (ft)	D/S Elevation (ft)
230	31,80	Ф	2.0 🗸	0.01	0.01	0.07	0.26	0.34	0.35	0.54	100.00	7540,00	7500 00	0.050	11.55	1700.00	7500.00	7420.00
٧	10.70	В	2.0	0.01	0.01	70.07	0.26	0.34	0.44	0.54	100.00	7510,00	7490,00	0.033	13,25	1500.00	7490.00	7430.00
В	19.60	В	2.0	0.01		0.07	0.26	0.34	0.44	0.54	7100.00	7510,00	7490.00	0.033	13,25	1500.00	7490.00	7430.00
0	5.30	В	2:0	0.01	0.01	0.07	0.26	0.34	0.44	0.54	4100.00	7490.00	7480.00	0.033	13.25	1100 00	7480.00	7410.00
OS3 and D	13,60	В	20 0	0.01	0.01	0.07	0.26	0.34	0.44	0.54	400 00	7510.00	7490.00	0.064	10.64	1600 00	7490.00	7410 00
E	3.70	ю	2.0 2	0.01	0.01	0.07	0.26	75.0	0.44	0,54	100.00	7490.00	7480,00	0.017	16.49	700.00	7480.00	7460.00
OS3	12.10	В	2.0 🗡	0.01	0.01	0.07	0.26	0.34	0.44	0,54	00.00	7510.00	7500,00	0 100	9,19	922.00	7500.00	7440.00
			<u>ر</u>	3	2	2	3	3	1	1	7			N III O	0000			
	Ť						2											
X						ě				1	1							

Please update the runoff coefficient values so that it matches the 2% impervious indicated in table 6-6.

Exhib, 24 Historic

July Report

if using R	if using Rational Method	Nethod																	
(urban) O (non-urban)					Sele	Select UDF-CD location for NOAA Attas 14 Rainfall Depths from the pulldown list OR enter your own 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr 500-yr 500-yr	2-yr	5-yr	10-yr 2	25-yr 50	50-yr 100-yr	R enter your ov -yr 500-yr	wn depths o	stained from	the NOAA	depths obtained from the NOAA website (click this link)	ok this link)		
max{t _{minimum}	, min(Comput	max(t _{minimum} , min(Computed t _c , Regional t _c))	t,)}	Rainfall Inte	ensity Equation	Rainfall Intensity Equation Coefficients =	a 28.50	b 10.00	0.786 I($I(in/hr) = \frac{a * P_1}{(b + t_2)^c}$	a * P ₁	25	7		00	Q(cfs) = CIA	4		
ized (Travel) Flow Time	Now Time			Tim	Time of Concentration	tion			Rainfall Int	Rainfall Intensity. I (in/hr)	hri				o d	100			
Channelized Flow Slope St (ft/ft)	NRCS Conveyance Factor K	Channelized Flow Velocity V _t (ft/sec)	Channelized Flow Time t _t (min)	Computed t _c (min)	Regional t _c (min)	Selected t _c (min)	2-yī	5-yr	10-yr 2	25-yr 50	50-yr 100-yr	-уг 500-уг	2-yr	5-yr	10-yr	7 25-yr 5	50-yr	100-уг	500-yr
0.071	1	1.87	15.19	26,74	37.12	26.74	2.00	2.52	2.94	3.35 3.	3.77 4,23	3	0.55	0.97	6.83	27.91	40.71	58.52	
				26.02						-		The state of the s	1.27	6.40	14.00	28.67	36.01	47.05	
0.070	-	1.85	13.50	26.74	35.84	26.74	2.00	2,52	2.94	3.35 3.	3,77 4,23	ę,	0.18	0.33	2.30	9.39	13.70	19.69	
				76.67		0,00		+	-	+			0.43	2.15	4.71	8.97	12.11	15.83	100
0.077	1	1.94	12.87	26.02	35,37	70,17	2.02	2.55	2.98	3.40	3.83 4.28	80	0.34	0.61	4.27	17.43	25.43	36.55	
1. STOCKE				87.67		000		+	+			Well Mine	62.0	4.00	8.75	16.68	22.49	29.39	
0.078	7	1.95	9.38	20.27	32,73	79.77	2.19	2.76	3.22	3.68 4.	4.14 4.64	77	0.10	0.18	1.25	5.11	7.45	10.71	
				21.80				-		-		881188	0.23	1.17	2.56	4.88	6.59	8.61	10 10 10 10 10 10 10 10 10 10 10 10 10 1
0.033	7	1.27	20.97	31.62	41.48	31.62	1.81	2.28	2.66	3.04	3.42 3.83	<u>82</u>	0.21	0.38	2.65	10.82	15.78	22.69	
				30.35				+	+		-		0.49	2.48	5.43	10.34	13.96	18.24	
0.082	7	2.00	5.82	22.31	30'08	15.77	2.21	2.78	3.25	3.71	4.18 4.68	80	0.07	0.13	0.88	3.59	5.24	7.53	
The state of the s	-			0717		45 47		+		-	-		0.16	0.82	1.80	3,43	4.63	8.08	
0.065	7	1.79	8.61	17.79	32.15	17.79	2.49	3.13	3.66 4	4.18 4.	4.70 5.26	و	0.26	0.46	3.24	13.22	19.29	27.73	
				11 77								IIIII III CON	0.60	3.03	6.63	12.64	17.06	22.29	
									100										
				The state of the s															
	To Tale								-										
									3 10										

Ephibit 4 Historic 2082

July Report

																Calcula	Calculation of Peak Runo	eak Runo
Company:	Designer: Ken Harrison Company: KCH Enginee	Company: KCH Engineering Solutions	St		Version 2.	.00 release	Version 2.00 released May 2017	7				$0.395(1.1-C_5)\sqrt{L_i}$	\(\int_{i}\)					tminimum = 5
Date:	7/23/2020				Cells of thi	is color are	for require	Cells of this color are for required user-input			 	59.33		combuted $t_c = t_1 + t_2$	1 + 1 ± €			t _{minimum} = 1
Project:	Prairie Ric	Project: Prairie Ridge Develped Conditions	onditions		Cells of the	us color are	for optiona	Cells of this color are for optional override values	alues			1				-	Γ	
Location:	Location: El Paso County	ounty		- 	Cells of th	ils color are	for calcula	ted results I	Cells of this color are for calculated results based on overrides	errides	ا	$\frac{1}{60 \text{K} \sqrt{S_t}} = \frac{1}{60 V_t}$		Regional t _c	Regional $t_c = (26 - 17i) +$	+ Lt 60(14i+9)\St	\frac{1}{2}	Selected $t_{\rm c} \approx$
						Run	Runoff Coefficient, C	ent, C				Overla	Overland (Initial) Flow Time	/ Time				Channel
Subcatchment Name	Area (ac)	NRCS Hydrologic Soil Group	Percent Imperviousness	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr	Overland Flow Length	U/S Elevation (ft)	U/S Elevation D/S Elevation (ft)	Overland Flow Slope	Overland Flow Time	Channelized Flow Length	Ì	D/S Elevation (ft)
			8				7	7	>	((Optional)	(Optional)	S _i (TUT)	t (min)	Ľ (#)	(Optional)	(Optional)
OSS	31.80	α	٠,	0.01	0.01	0,07	0.26	0.34	0.44	0.54	2000	i i	1		11.55			
		1	2	0.02	0.08	. 0.15	0.25	030	0.35	07.4	700.00	7540.00	00.000	0.050	10.63	1700,00	7500 00	7420 00
٩	10.70	α	マイジナ	N.01	X50.0X	\$0.0	X0.0X	3)	くがう	00000	1	0 0 0	1000	13.18			
)	0.04	0.10	0.17	0.27	0.32	0.37	0.55	00.001	00,0167	/490.00	0.033	12.18	1500 00	7490 00	7430,00
co	19.60	œ	28	0.01	0.02	0.08	0.27	0.34	0.44	0.55	100 00	000711	1,000		13.18			
				0.04	0.10	0.17	0.27	0.32	0.37	0.55	100 00	00.0167	7490.00	0.033	12.18	1500.00	7490 00	7430.00
O	5.30	В	*	0.01	0.02	0.08	0.27	0.34	0.44	0.55	100.00	7490.00	7480.00	0.033	13.18	1100 00	7480 00	7410 00
							770	76.0	10.0	0.00				1/4	12.18			
OS3 and D	13.60	æ	2.0	0.01	0.01	0.07	0.26	0.34	0.35	0.54	180.00	7510.00	7490.00	0.064	10.64	1600,00	7490.00	7410,00
ш	3.70	œ		3	X20X						100.00	7490.00	7480.00	0.017	16.40	700.00	7480 00	7460.00
	1			0.01	0.01	0.07	0 2g	NE U	NA C	0 5.0					10,15			
OS3	12.10	m	5:0	0.02	0.08	0.15	0.25	0.30	0.35	to.	100.00	7510.00	7500.00	0.100	9.19	922.00	7500.00	7440.00
	W		3	1	7	1	7	7	3	8								
									į									
							-								1			
				,														

Please update the runoff coefficient values so that it matches the 2% impervious indicated in table 6-6.

Etb.b.t4 Developed 1882

July Repo

H using R	H using Rational Method	1ethod																	
(urban)					Sele	Select UDFCD location for NGAA Atlas 14 Rainfall Depths from the buildown list OR enter your own	an for NOAA	Atlas 14 Rain	nfall Depths f	nom the bulldi	own list OR a	nter your own	1 depths obt	Goths obland from the ACM and months of the series	the MOAA	saheite felin	the Spirit		
0 (non-urban)							2-yr	5-yr	10-yr 25	25-yr 50-yr	/r 100-yr	r 500-yr				MALCONE LAND	A III O III W		
					1-hour rainfall	1-hour rainfall depth, P1 (in) =	1.19	0	1.75 2.	2.00 2.25	-	-							
max{t _{minimum}	, min(Comput	$\max\{t_{minimum}, min(Computedt_c, Regionalt_c)\}$	t _c)}	Rainfall Inte	ensity Equation	Rainfall Intensity Equation Coefficients =	28.50	10.00 C	0 786 I(i	$I(in/hr) = \frac{a * P_1}{(h + t_1)^c}$	* P ₁		E1		0	O(cfs) = CIA			
										2	(3, -				,				
ized (Travel) Flow Time	low Time			Tim	Time of Concentration	tion			Rainfall Inte	Rainfall Intensity, I (in/hr)	.)				Peak	Peak Flow O (rfs)	ik)		
Channelized Flow Slope St (ft/ft)	NRCS Conveyance Factor K	Channelized Flow Velocity V _t (ft/sec)	Channelized Flow Time t _t (min)	Computed t _c (min)	Regional t _c (min)	Selected t _c (min)	2-yr	5-yr 1	10-yr 25	25-yr 50-yr	л 100-уг	500-yr	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr
0.071	7	1.87	15.19	26.74	37.12	26.74	2.00	2,52	2.94 3.	3,35 3,77	7 4.23		0.55	0.97	6.83	27.91	40.71	58.52	
				26.02				-	Merchanic Land				1.27	6.40	14.00	28.67	36.01	47.05	
0.070	1	1.85	13.50	26.68	35.58	26.68	2.00	2.52	2.94 3.	3,36 3,78	9 4.23		0.27	0.47	2.50	9,58	13.90	19.88	
				19 67				+	-	-	1		98'0	2.70	5.35	9.70	12.94	16.76	
0,077	7	1.94	12.87	20.02	35.12	26,05	2.03	2.55	2.98 3.	3.41 3.83	3 4,29		0.51	0.88	4.65	17.79	25.80	36.92	
The state of the s	Take The last			25.05		4		+		-			1.59	5.01	9.93	18.02	24.03	31.12	
0.078	7	1.95	9.38	22,30	32.51	22,56	2.20	2.77	3.23 3.	3.69 4.15	5 4,65		0.15	0.26	1.36	5.21	7.56	10.82	
THE PARTY OF				21.55				+	-	-	1000		0.47	1.47	2.91	5.28	7.04	9.12	
0.033	7	1.27	20.97	31.62	41,48	31.62	1.81	2.28	2.66 3.	3.04 3.42	3.83		0,21	0.38	2.65	10.82	15.78	22.69	
				30.35		1000		+	+	+	-		0.49	2.48	5.43	10.34	13,96	18.24	
0.082	_	2.00	5.82	26.43	29.86	57.77	77.7	2.79	3.25 3.	3.72 4.18	3 4.69		0,10	0.18	96.0	3,67	5.32	7.61	
				20,30		000		+	+	+	1		0.33	1.03	2.05	3.72	4.95	6.42	0000
0.065	7	1.79	8.61	17.73	32.15	67.71	2.49	3.13	3.66 4.	4.18 4.70	5.26		0.26	0.46	3.24	13.22	19.29	27.73	
				77.11									09.0	3.03	6.63	12.64	17.06	22.29	
							100												
													HILLS		2 100			THE SE	1,311/0
				11 Bit 150															
																		T	
									The same					ALL PROPERTY.	1				

Exhibit 4
Developed
2082

Tuly Recoll

Exhibit 5 SCS TR55 Method Exhibits

Technical Release 55 Urban Hydrology for Small Watersheds

Table 2-2a Runoff curve numbers for urban areas 1/

Cover description ————————————————————————————————————			berelinala at	11	
AVE			-uyurotogic	soil group	
Cover time and hydrologic acadition	erage percent		-	- 2	
Cover type and hydrologic condition impe	rvious area 2/	Α	В	C	D
Fully developed urban areas (vegetation established)					
Dpen space (lawns, parks, golf courses, cemeteries, etc.) ½:					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
mpervious areas:		55	O1	14	00
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	0.0	00
Streets and roads:		อด	90	98	98
Paved; curbs and storm sewers (excluding					
right-of-way)		OB	00		0.0
Devods open ditabas (in all dia a sight of any)		98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Vestern desert urban areas:					
Natural desert landscaping (pervious areas only) 4/		63	77	85	88
Artificial desert landscaping (impervious weed barrier,					
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)		96	96	96	96
Irban districts:					
Commercial and business	85	89	92	94	95
Industrial	72	81	88	91	93
lesidential districts by average lot size:					0.0
1/8 acre or less (town houses)	65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre	30	57	72	81	86
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	
2 acres	12				84
2 dolog manner	14	46	65	77	82
eveloping urban areas					
ewly graded areas					
(pervious areas only, no vegetation) ₺		77	86	91	94
lle lands (CN's are determined using cover types					
similar to those in table 2-2c).					

 $^{^{1}}$ Average runoff condition, and $I_{a} = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

TR-55

Chapter 2

Estimating Runoff

Technical Release 55 Urban Hydrology for Small Watersheds

Table 2-2b Runoff curve numbers for cultivated agricultural lands 1/

			,	Curve num		
	Cover description	II-aduol - di -		hydrologic so	on group —	
		Hydrologic		D	C	D
Cover type	Treatment 2	condition 3/	A	В	C	D
Fallow	Bare soil	_	77	86	91	94
ranow	Crop residue cover (CR)	Poor	76	85	90	93
	Grop residue cover (OK)	Good	74	83	88	90
Row crops	Straight row (SR)	Poor	72	81	88	91
ton crops	212110111111111111111111111111111111111	Good	67	78	85	89
Ş	SR + CR	Poor	71	80	87	90
		Good	64	75	82	85
	Contoured (C)	Poor	70	7 9	84	88
	outroilled (o)	Good	65	75	82	86
	C + CR	Poor	69	78	83	87
	*	Good	64	74	81	85
	Contoured & terraced (C&T)	Poor	66	74	80	82
	000000000000000000000000000000000000000	Good	62	71	78	81
	C&T+ CR	Poor	65	73	79	81
		Good	61	70	77	80
Small grain	SR	Poor	65	76	84	* 88
Orticas British		Good	63	75	83	87
	SR + CR	Poor	64	75	83	86
		Good	60	72	80	84
	C	Poor	63	74	82	85
	533	Good	61	73	81	84
	C + CR	Poor	62	73	81	84
		Good	60	72	80	83
	C&T	Poor	61	72	79	82
		Good	59	70	78	81
	C&T+ CR	Poor	60	71	78	81
		Good	58	69	77	80
Close-seeded	SR	Poor	66	77	85	89
or broadcast		Good	58	72	81	85
legumes or	C	Poor	64	75	83	85
rotation		Good	55	69	78	83
meadow	C&T	Poor	63	73	80	83
		Good	51	67	76	80

¹ Average runoff condition, and I_a=0.2S

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

5A (2064)

² Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good ≥ 20%), and (e) degree of surface roughness.

Chapter 2

Estimating Runoff

Technical Release 55 Urban Hydrology for Small Watersheds

Runoff curve numbers for other agricultural lands \mathcal{Y} Table 2-2c

Cover description ————————————————————————————————————		Curve numbers for					
Cover type	Hydrologic	hydrologic soil group ———					
	condition	A	В	C	Γ		
Pasture, grassland, or range—continuous forage for grazing. 2/	Poor Fair Good	68 49 39	79 69 61	86 79 74	89 84 80		
Meadow—continuous grass, protected from grazing and generally mowed for hay.		30	58	71	78		
Brush—brush-weed-grass mixture with brush the major element. 3/	Poor Fair Good	48 35 30 4/	67 56 48	77 70 65	83 77 7 3		
Voods—grass combination (orchard or tree farm), №	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79		
Voods. Ø	Poor Fair Good	45 36 30 <i>¥</i>	66 60 55	77 73 70	83 79 77		
armsteads—buildings, lanes, driveways, and surrounding lots.	-	59	74	82	86		

Average runoff condition, and I_a = 0.28.

Poor: <50%) ground cover or heavily grazed with no mulch.

Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

Poor: <50% ground cover.

Fair: 50 to 75% ground cover.

Good: >75% ground cover.

4 Actual curve number is less than 30; use CN = 30 for runoff computations.

CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed 6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

Fair: Woods are grazed but not burned, and some forest litter covers the soil.

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

TR-55

Chapter 2

Estimating Runoff

Technical Release 55 Urban Hydrology for Small Watersheds

Table 2-2d Runoff curve numbers for arid and semiarid rangelands ${\cal V}$

Cover description			Curve nui – hydrologi	nbers for c soil group	
Cover type	Hydrologic condition 21	A 3/	В	C	D
Herbaceous—mixture of grass, weeds, and	Poor		80	87	93
low-growing brush, with brush the	Fair		71	81	89
minor element.	Good		62	74	85
Oak-aspen—mountain brush mixture of oak brush,	Poor		66	74	79
aspen, mountain mahogany, bitter brush, maple,	Fair		48	57	63
and other brush.	Good		30	41	48
Pinyon-juniper—pinyon, juniper, or both;	Poor		75	85	89
grass understory.	Fair		58	73	80
3	Good		41	61	71
Sagebrush with grass understory.	Poor		67	80	85
	Fair		51	63	70
	Good		35	47	55
Desert shrub—major plants include saltbush,	Poor	63	77	85	88
greasewood, creosotebush, blackbrush, bursage,	Fair	55	72	81	86
palo verde, mesquite, and cactus.	Good	49	68	79	84

Average runoff condition, and I_a = 0.2S. For range in humid regions, use table 2-2c.

Poor: <30% ground cover (litter, grass, and brush overstory).</p>

Fair: 30 to 70% ground cover.

Good: > 70% ground cover.

³ Curve numbers for group A have been developed only for desert shrub.

Table 6-9. NRCS Curve Numbers for Pre-Development Thunderstorms Conditions (ARC I)

		Hydrologic			Pre-Devel	pment CN	
Fully Developed Urban Areas (vegetation established) ¹	Treatment	Condition	%1	HSG A	HSG B	HSG C	HSG D
Open space (lawns, parks, golf courses, cemeteries, etc.):							
Poor condition (grass cover < 50%)	*****			47	61	72	77
Fair condition (grass cover 50% to 75%)				29	48	61	69
Good condition (grass cover > 75%)	*****			21	40	54	63
Impervious areas:							
Paved parking lots, roofs, driveways, etc. (excluding right-of-way				95	95	95	95
Streets and roads:							
Paved; curbs and storm sewers (excluding right-of-way)	*****			95	95	95	95
Paved; open ditches (including right-of-way)	*****			67	77	83	85
Gravel (including right-of-way)				57	70	77	81
Dirt (including right-of-way)				52	66	74	77
Western desert urban areas:				J.	- 00		- //
Natural desert landscaping (pervious areas only)				42	58	70	75
Artificial desert landscaping (impervious weed barrier, desert				72	30	7.0	- 73
shrub with 1- to 2-inch sand or gravel mulch and basin borders)		*****	1444	91	91	91	91
Developing Urban Areas ¹	Treatment ²	Hydrologic Condition ³	% I	HSG A	HSG B	HSG C	HSG E
Newly graded areas (pervious areas only, no vegetation)	*****			58	72	81	87
Cultivated Agricultural Lands ¹	Treatment	Hydrologic Condition	%1	H5G A	HSG B	HSG C	HSG (
	Bare soil			58	72	81	87
Fallow	Crap residue	Poor		57	70	79	85
	cover (CR)	Good	14.	54	67	75	79
	Straight row	Poor		52	64	75	81
	(SR)	Good		46	60	70	77
	1511)	Poor		51	63	74	79
	SR + CR	Good		43	56	66	70
		Poor		49	61	69	75
	Contoured (C)			44	56	66	72
Row crops		Good		48	60	67	74
	C + CR	Poor					
		Good		43	54	64	70
	Contoured &	Poor		45	54	63	66
	terraced (C&T)	Good		41	51	60	64
	C&T+ CR	Poor	***	44	53	61	64
		Good		40	49	58	63
	SR	Poor		44	57	69	75
		Good		42	56	67	74
	SR + CR	Poor		43	56	67	72
		Good	***	39	52	63	69
	С	Poor		42	54	66	70
Small grain		Good		40	53	64	69
mian Brain	C + CR Poor	Poor		41	53	64	69
	C1 CK 1001	Good		39	52	63	67
	C&T	Poor		40	52	61	66
	Cal	Good		38	49	60	64
	C8.T+ CD	Poor		39	51	60	64
×	C&T+ CR	Good		37	48	58	63
	en.	Poor		45	58	70	77
	SR	Good		37	52	64	70
		Poor		43	56	67	70
Close-seeded or broadcast legumes or rotation meadow	С	Good		34	48	60	67
	***	Poor		42	53	63	67
	C&T	Good		30	46	57	63

Table 6-9. (continued)

Other Agricultural Lands ¹	Treatment	Hydrologic Condition	% I	HSG A	HSG B	HSG C	HSG E
		Poor		47	61	72	77
Pasture, grassland, or range—continuous forage for grazing ⁴		Fair		29	48	61	69
grazing		Good		21	40	54	63
Meadow—continuous grass, protected from grazing and generally mowed for hay				15	37	51	60
		Poor		28	46	58	67
Brush—brush-weed-grass mixture with brush the major element ⁵		Fair	***	18	35	49	58
major element		Good		15	28	44	53
		Poor	***	36	53	66	72
Woods—grass combination (orchard or tree farm) ⁶		Fair		24	44	57	66
	****	Good		17	37	52	61
		Poor		26	45	58	67
Woods ⁷		Fair		19	39	53	61
		Good		15	34	49	58
Farmsteads—buildings, lanes, driveways, and surrounding lots				38	54	66	72
Arid and Semi-arid Rangelands ¹	Treatment	Hydrologic Condition ⁸	% !	HSG A	HSG B	HSG C	HSG C
		Poor			63	74	85
Herbaceous—mixture of grass, weeds, and low- growing brush, with brush the minor element		Fair			51	64	77
growing brush, with brush the minor element		Good			41	54	70
Oak-aspen—mountain brush mixture of oak brush,		Poor			45	54	61
aspen, mountain mahogany, bitter brush, maple, and		Fair		*****	28	36	42
other brush		Good			15	23	28
		Poor	***		56	70	77
Pinyon-juniper—pinyon, juniper, or both; grass understory		Fair			37	53	63
understory		Good			23	40	51
		Poor			46	63	70
Sagebrush with grass understory		Fair			30	42	49
	*****	Good			18	27	34
Desert shrub—major plants include saltbush,		Poor	***	42	58	70	75
greasewood, creosotebush, blackbrush, bursage, palo		Fair		34	52	64	72
verde, mesquite, and cactus		Good		29	47	61	69

^{1.} Average runoff condition, and la = 0.1S.

² Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good ≥ 20%), and (e) degree of surface roughness. Poor: Factors Impair infiltration and tend to increase runoff. Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

4 Poor: <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Good: > 75% ground cover

and lightly or only occasionally grazed.

⁵ Poor: <50% ground cover. Fair: 50 to 75% ground cover. Good: >75% ground cover.

⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

^{7.} Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

B Poor: <30% ground cover (litter, grass, and brush overstory). Fair: 30 to 70% ground cover. Good: > 70% ground cover.

7 my 2050 kg

Table 6-10. NRCS Curve Numbers for Frontal Storms & Thunderstorms for Developed Conditions (ARCII)

		Hydrologic			Pre-Devel	pment CN	
Fully Developed Urban Areas (vegetation established) ¹	Treatment	Condition	%1	H\$G A	HSG B	HSG C	HSG D
Open space (lawns, parks, golf courses, cemeteries, etc.):							
Poor condition (grass cover < 50%)		*****		68	79	86	89
Fair condition (grass cover 50% to 75%)	*****	*****		49	69	79	84
Good condition (grass cover > 75%)	****			39	61	74	80
mpervious areas:							
Paved parking lots, roofs, driveways, etc. (excluding right-of-way				98	98	98	_98
Streets and roads:							
Paved; curbs and storm sewers (excluding right-of-way)	****			98	98	98	98
Paved; open ditches (including right-of-way)				83	89	92	93
Gravel (including right-of-way)	*****	****		76	85	89	91
Dirt (Including right-of-way)				72	82	87	89
Western desert urban areas:							
Natural desert landscaping (pervious areas only)				63	77	85	88
Artificial desert landscaping (impervious weed barrier, desert				96	96	96	96
shrub with 1- to 2-inch sand or gravel mulch and basin borders)				20	30		30
Urban districts:							
Commercial and business			85	89	92	94	95
Industrial			72	81	88	91	93
Residential districts by average lot size:							+
1/8 acre or less (town houses)			65	77	85	90	92
1/4 acre			38	61	75	83	87
1/3 acre			30	57	72	81	86
1/2 acre		*****	25	54	70	80	85
1 acre		*****	20	51	68	79	84
2 acres			12	45	65	77	82
Developing Urban Areas ¹	Treatment ²	Hydrologic Condition ³	%1	HSG A	HSG B	HSG C	H\$G D
		Londition		77	86	91	94
Nawly graded areas (pervious areas only, no vegetation) Cultivated Agricultural Lands ¹	Treatment	Hydrologic Condition	% i	HSG A	HSG B	HSG C	HSG D
	Bare soil			77	86	91	94
Fallow	Crop residue	Poor		76	85	90	93
Fallow	cover (CR)	Good		74	83	88	90
	Straight row	Poor		72	81	88	91
	(SR)	Good		67	78	85	89
	(3/1)	Poor		71	80	87	90
	SR + CR	Good		64	75	82	85
				70	79	84	88
	Contoured (C)	Poor	-	65	75	82	86
Row crops		Good	***	69	78	83	87
	C+CR	Good		64	74	81	85
	Contoured &	Poor		66	74	80	82
					71	78	81
	terraced (C&T)	Good		62 65	71	78	81
	C&T+CR	Poor	-	61	70	77	80
		Good			76	84	88
	SR	Poor		65	_	-	-
		Good		63	75	83	87
	SR + CR	Poor		64	75	83	86
		Good		60	72	80	84
	c	Poor		63	74	82	85
Small grain		Good		61	73	81	84
oriian Brant	C+CR Poor	Poor		62	73	81	84
		Good		60	72	80	83
	C&T	Poor		61	72	79	82
		Good		59	70	78	81
	C&T+ CR	Poor		60	71	78	81
	CHITCH	Good		58	69	77	80

Table 6-10. (continued)

Other Agricultural Lands ¹	Treatment	Hydrologic Condition	%1	HSG A	HSG B	HSG C	HSG D
		Poor		68	79	86	89
Pasture, grassland, or range—continuous forage for grazing 4		Fair		49	69	79	84
		Good		39	61	74	80
Meadow—continuous grass, protected from grazing and generally mowed for hay				30	58	71	78
	*****	Poor		48	67	77	83
Brush—brush-weed-grass mixture with brush the major element ^s	*****	Fair		35	56	70	77
		Good		30	48	65	73
	*****	Poor		57	73	82	86
Woods—grass combination (orchard or tree farm) ⁶		Fair		43	65	76	82
		Good		32	58	72	79
		Poor		45	66	77	83
Woods ⁷	*****	Fair		36	60	73	79
		Good		30	55	70	77
Farmsteads—buildings, lanes, driveways, and surrounding lots	****			59	74	82	86
Arld and Semi-arid Rangelands ¹	Treatment	Hydrologic Condition ⁸	%1	HSG A	HSG B	HSG C	HSG D
Herbaceous—mixture of grass, weeds, and low-growing brush,	*****	Poor	***		80	87	93
with brush the minor element	****	Fair			71	81	89
with brash the minor element		Good			62	74	85
Dak-aspen—mountain brush mixture of oak brush, aspen,		Poor			66	74	79
mountain mahogany, bitter brush, maple, and other brush		Fair			48	57	63
mountain manogariy, bitter ordsii, mapie, and other brusii		Good			30	41	48
		Poor			75	85	89
inyon-juniper—plnyon, juniper, or both; grass understory		Fair			58	73	80
*:		Good		*****	41	61	71
		Poor			67	80	85
agebrush with grass understory		Fair			51	63	70
	*****	Good			35	47	55
Desert shrub—major plants include saltbush, greasewood,		Poor		63	77	85	88
reosotebush, blackbrush, bursage, palo verde, mesquite, and	*****	Fair		55	72	81	86
actus	*****	Good		49	68	79	84

Ia = 0.1 S

4.6 Lag Time

While the NRCS curve numbers are used to calculate the volume of runoff and magnitude of losses, to transform the volume of runoff into a hydrograph using the NRCS dimensionless unit hydrograph, the lag time must be specified. The lag time is defined as the time from the centroid of the rainfall distribution of a storm to the peak discharge produced by the watershed. For this Manual, the lag time is defined as a fraction of the time of concentration (t_c) as shown in Equation 6-13.

$$t_{lag} = 0.6 \cdot t_c$$

(Eq. 6-13)

^{*}Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good 2 20%), and (e) degree of surface roughness. Poor: Factors impair infiltration and tend to increase runoff. Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

^{4.} Poor: <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Good: > 75% ground cover and lightly or only occasional

Poor: <50% ground cover. Fair: 50 to 75% ground cover. Good: >75% ground cover.

⁶ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods

Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Poor: <30% ground cover (litter, grass, and brush overstory). Fair: 30 to 70% ground cover. Good: > 70% ground cover.

Table 6-11. Roughness Coefficients (Manning's n) for NRCS Overland Flow

Surface description	n¹
Smooth surfaces (concrete, asphalt, gravel, bare soil, etc.)	0.011
Fallow (no residue)	0.05
Cultivated Soils:	0.03
Residue cover <20%	0.06
Residue cover >20%	0.17
Grass:	0.17
Short grass prairie	0.15
Dense grasses ²	0.24
Bermuda grass	0.41
Range (natural)	0.13
Woods ³	0.15
Light underbrush	0.40
Dense underbrush	0.80

- 4. The values are a composite of information compiled by Engman (1986).
- 5. ²Includes species such as weeping lovegrass, bluegrass, buffalograss, blue gramma grass, native grass mixtures.
- 6. When selecting n, consider cover to a height of about 0.1 feet. This is the only part of the plant cover that will obstruct sheet flow.

KCH Engineering Solutions

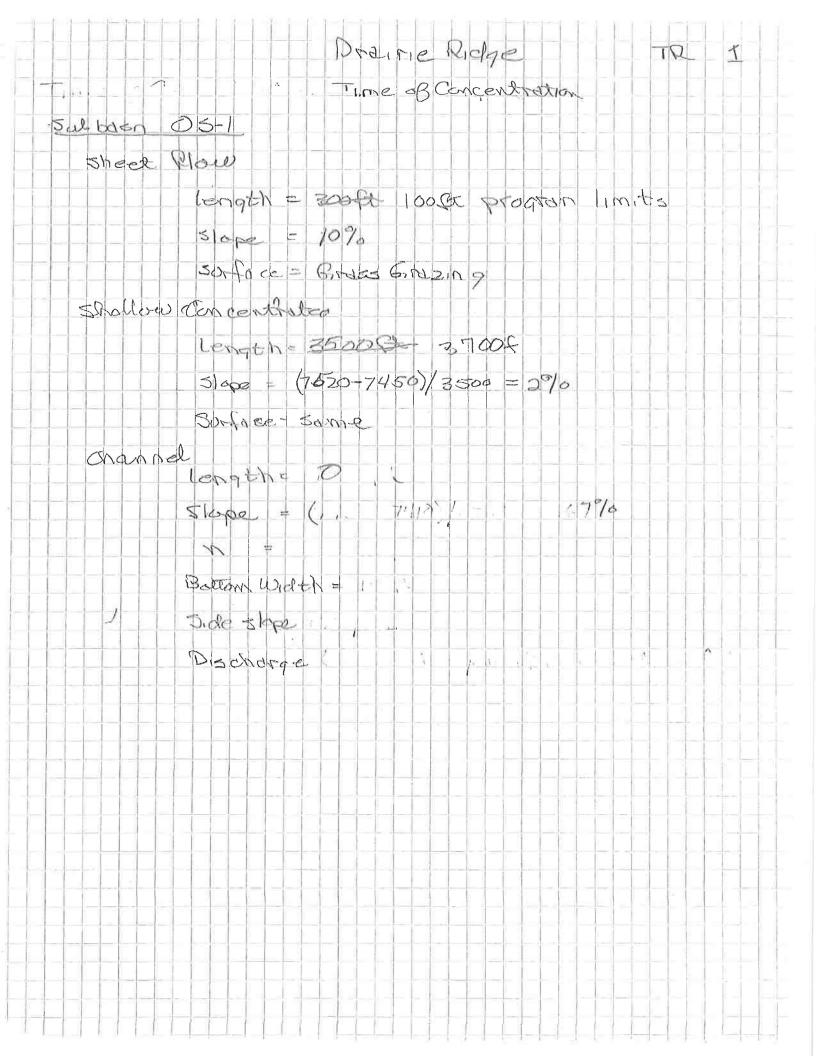
5228 Cracker Barrel Circle Colorado Springs, CO 80917 (719) 246-4471

1 wy 2620 12400	
JOB DRAITIE RIRGE	
OUTTO	

SHEET NO	lese:
STIELT NO.	UF
CALCULATED BY K, Harrison	DATE 6/30/20
CHECKED BY	DATE

Curve No for Typical 5 Acre lat Historic Condilions from Tolle 6-9 Pedevelopement Condition ARCI Post Grassland Rong condinuous ferage from grazing ASSUME FAR CONDUCK CN=69 Developed Condum from TR-65 5Acres=217,800PE Roofton (4000SF) (N= 98 Patios, Wallusip Drives (2500s. F) CN= 98 Notoral, undisturbed, Notwatered CN=69 Remaining Natural Avea 217,800-4000-2500-1200= 210,1005,5 Weighted Impervious [4000(98)+2500(98)+1200(69)+210,100(69)/217,800 CN = 699 use 70 for Composite

KCH Engineering Solutions


5228 Cracker Barrel Circle Colorado Springs, CO 80917 (719) 246-4471

a July Re	POUC	
108 Raite RIC	lg-e	
SHEET NO	OF	

CALCULATED BY K. HATTISON DATE 6/30/20

SCALE

	SUALE
	% Impervious for DAINAGE A Ed
A. Ared Por 2.0	%
051 = 052 = 053+50 =	211.6 31.8 13.6 257.0 Acres
B A SEA FOR 2. A = 10 B = 10 C: D = 0 E = 0	1.6 5.3 Included w/05 basins)
O. Total Ara	296,3
D. Composite?	70
[257 (0.0:	2)+39.3(0.028)]/296.3 = 0,021=2.1%

Time of Devoe Drokia Sulbisin O.S-3 and D. Sheet Flow Length - 300 100' 5/cp= (7510-7500)/300 = 3,3% de to usa w/100' Condles = grass grazing Shallow Conceltrate 100 1400 Some - (7500 - 7410)/1400 + 6,48% No concentrated channel Place Jub-buin A theet (How length - 300 use 100 : pragrin limb Slope = (7520-0510)/300 = 3.3% Land close = grass, grazing Shollow Channel Length- 1000 St Slope = (7510-7440)/1000 = 790 No consentrated Shamped Flow

Prairie Ridge	TR-4
Time of Concentration	
Sub bash B	
Sheet Flow	
length = 3000 use 100	
Slope = (7520-7610)/800 = 3.3	% deto up
Land clase = grass, gruzing	
Shallow Concentrates	
length = 1300pl	
Diago - (7510-7410)/1300 = 71.69	%
Channel - No channel Plans	
SUD-HASINC	
Sheet How	
Longth= Book 100/c program u	oper how
Slope = (7490_7480)/300 = 33596 a	
Land close = grass, grazing	
that aw concontrated	
Vengtho 900s	
Jane - (7480-7410) / 900 = 17,8%	
Land Chop = grass, grazing	
Concentrated channel-None	

Prairie Ridge	TRO
Time of Concentration	
Sub-60= n =	
Sheet Flow	
Leverth = 300E 400 100Se for upper line	at of around
SIGE - (7490-7485)/300 = 1.6796	
Land the = gruss, grazing	
5 hallow conce Asstal	
Length = 8500	
Slope = (7485-7415)/850 = 8.24%	
Concentrated Channel - None	

```
Prairie Ridge
                 Reach Date
 Read 1 to Reach Z
        Length = 600
      Mannings n' = arassy swale
    Friction Slope (7450-4430)(600 = 3.73390
     Bottom Width = 30'
     Side slopes = O. P. per Pt
Reach 2 to Reach 3
      Length = 3000
      Manning's "h" = grassy swale
      Fried on Slope = (7440 - 7435)/300 = 167%
      Bottom WEEth = 30'
       Side Slope = OIR per 194
Reach 3-Reach4
      Length = 300ft
      Mannings = glassy scool
      Slage - (7420 - 7415) /300 = 1.67%
      5, de signes = 0.1 ft per th
Reach 4
     length = 200 ch
      mannings + grassy swale
      Stope (7415-7410)/200 = 2,5 9/6
      Side super - Oil to 1
```

Existing structure There are 4 and seck pends that will have Little impactor the runds There is a relatively large pend at the outlet of the subclinision, Evaluating this is beyond the scape of this report				
Existing structure There are it employed pends that will have Little impactor the runds There is a relatively large pend at the outlet of the subdivision, Evaluating this is beyond the scape of this report			Daine Riche	TR-6
There are 4 emal sheet ponds that will have little impactor the runds There is a relatively large pend at the outlet of the subclinision. Evaluating this is beyond the scape of this report			structure Duto	
Little impaction the runoff There is a relatively large pend at the outher of ohe scape of this report this report	EXIL	structur	e	
There is a relatively large pend at the outher of the supplemental supports this is beyond the supplemental this report		There are 4.	enall steek ponds.	that will have
this report				
this report		1		
		subdivision.	Evaluating this is bey	and the scape of
		this report		

												(D	D	15	1	م	-	2	d	7	9									+		Q.	_	7		
													<	火	508	N		D	d	63		Ce)1	VC	() ()	4)											
1	Ba	rit	Re	200	2	1	Sie	et	1	b	i	tic	N			T	Y	P	2.	IJ.						ŀ	1			1		1					
ł		لم																				er	2	1	00					ł							
		15	e	Q	IJ	51	7	P	: [10	x)	4	1	H	0		2	,4	-	4	s e	en	5	91	N	P	e	a	- M	NE	00	W.	t			
																			İ				ŀ			-											
İ				İ	l							D	-,	5	91		51	ar	.6	e.s	2		1	1	10	526	0	7 5	96	Ac			l		ŀ		
	W	20	jţ	1	1.5	-	c	ne		16)C	Qu	d	ed)	5	4)	Ve.	F	Ste	20	16	M	٧,	T	N	e	S	di	NO	c	OG	5	10	e	,	
F)e.																-			ŀ		L				L			İ.	ŀ						F
	ļ					ŀ		-											İ																		
		L				İ									1						ŀ		L								ŀ						
						ļ																	ŀ														
															ŀ			l													-						
						ŀ	ŀ				-						-	-												-							
	H																							İ								-					
						-	ŀ		-	1				ł	1															F							
	H					F				ł			-	-	-		ŀ																				
						F							-																								
			7			-			-				-	-																							
									-								L																				
			İ					1	F																											1	
										1	ŀ		L	ŀ												Account of		-									
											F		L																								
										L					-																						
																													= -								
Ì																		-1			- Company	-															
					1																1	Ť	1	-	+	-			1		-		-	+	-		+

Prairie Ridge Existing Conditions El Paso County, Colorado

Watershed Peak Table

Sub-Area		ak Flow by Ra	ainfall	Return	Period		
or Reach Identifier	5-Yr (cfs)	100-Yr (cfs)					
SUBAREAS OS-1	69.61	279.49					
OS-2	17.37	65.45					
OS-3 and D	7.02	26.69					
A	5.84	22.02					
В	10.42	39.39					
С	3.50	12.60					
Е	1.88	7.19					
REACHES							
Reach 1 Down	72.17 72.08	289.29 289.06					
Reach 2 Down	72.08 72.00	289.06 288.70					
Reach 3 Down	77.98 77.88	314.96 314.74					,ū
Reach 4 Down	84.31 84.28	348.68 348.66					
OUTLET	85.73	356.00					

WinTR-55 Current Data Description

--- Identification Data ---

User: Harrison Project: Prairie Ridge SubTitle: Existing Conditions

3/31/2019 Date: Units: English Areal Units: Acres

State: Colorado County: El Paso

Filename: C:\Users\Ken\Documents\Business-Consulting\Prairie Ridge\TR 55 existing conditions.w55

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	TC
os-1		Reach 1	211.6	69	.556
OS-2		Reach 3	31.8	69	.243
OS-3 and D		Reach 4	13.6	69	.274
A		Reach 1	10.7	69	.243
В		Reach 4	19.6	69	.258
C		Outlet	5.3	69	.134
E		Outlet	3.7	69	0.280

Total area: 296.30 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr (in)	5-Yr (in)	10-Yr (in)	25-Yr (in)	50-Yr (in)	100-Yr (in)	1-Yr (in)
2.1	2.7	3.2	3.6	4.2	4 - 6	. 0

Storm Data Source:

User-provided custom storm data

Rainfall Distribution Type: Dimensionless Unit Hydrograph: <standard>

Type II

Prairie Ridge Existing Conditions El Paso County, Colorado

Storm Data

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
2.1	2.7	3.2	3.6	4.2	4.6	.0

Storm Data Source:

User-provided custom storm data

Rainfall Distribution Type: Type II
Dimensionless Unit Hydrograph: <standard>

Prairie Ridge Existing Conditions El Paso County, Colorado

Hydrograph Peak/Peak Time Table

or Reach	5-Yr (cfs) (hr)	100-Yr (cfs) (hr)	(hr) by Rainfall Return Period
SUBAREAS OS-1		279.49	
OS-2	17.37 12.07		
OS-3 and D	7.02 12.09		
A	5.84 12.07	22.02 12.04	
В	10.42 12.08	39.39 12.05	
С	3.50 12.02	12.60 11.97	
Е	1.88	7.19 12.08	
REACHES Reach 1	72.17 12.25 72.08 12.31	12.23 289.06	
Reach 2 Down	72.08 12.31 72.00 12.35	12.24 288.70	
Reach 3	77.98 12.33 77.88 12.36	314.74	
Down	84.31 12.35 84.28 12.36	12.21 348.66	
OUTLET	85.73	356.00	

Prairie Ridge
Existing Conditions
El Paso County, Colorado

Sub-Area Summary Table

Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve Number	Receiving Reach	Sub-Area Description
OS-1	211.60	0.556	69	Reach 1	
OS-2	31.80	0.243	69	Reach 3	
OS-3 and D	13.60	0.274	69	Reach 4	
A	10.70	0.243	69	Reach 1	
В	19.60	0.258	69	Reach 4	
C	5.30	0.134	69	Outlet	
E	3.70	0.280	69	Outlet	

Total Area: 296.30 (ac)

Prairie Ridge Existing Conditions El Paso County, Colorado

Reach Summary Table

Reach Identifier	Receiving Reach Identifier	Reach Length (ft)	Routing Method
Reach 1	Reach 2	600	CHANNEL
Reach 2	Reach 3	300	CHANNEL
Reach 3	Reach 4	300	CHANNEL
Reach 4	Outlet	200	CHANNEL

Prairie Ridge Existing Conditions El Paso County, Colorado

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimete (ft)	velocity (ft/sec)	
OS-1 SHEET SHALLOW	100 3700	0.1000 0.0200	0.150 0.050				0.106 0.450
			3	Ti	me of Cor	ncentration	.556
OS-2 SHEET SHALLOW	100 1600	0.0500 0.0714	0.150 0.050				0.140 0.103
				Ti	me of Cor	ncentration	.243
OS-3 and D SHEET SHALLOW	100 1600	0.0330 0.0643	0.150 0.050				0.165 0.109
				Ti	me of Cor	ncentration	.274
A SHEET SHALLOW	100 1200	0.0330 0.0700	0.150 0.050				0.165 0.078
				Ti	me of Cor	ncentration	.243
B SHEET SHALLOW	100 1500	0.0330 0.0769	0.150 0.050				0.165 0.093
				Ti	me of Cor	ncentration	.258
C SHEET SHALLOW	100 1100	0.3300 0.0780	0.150 0.050				0.066 0.068
				Ti	me of Cor	ncentration	.134
E SHEET SHALLOW	100 1050	0.0167 0.0824	0.150 0.050				0.217 0.063
				Ti	me of Cor	ncentration	0.280

Prairie Ridge Existing Conditions El Paso County, Colorado

Sub-Area Land Use and Curve Number Details

Sub-Are Identifi		Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
OS-1	CN directly entered by user	*	211.6	69
	Total Area / Weighted Curve Number		211.6	69
os-2	CN directly entered by user	莱	31,8	69
	Total Area / Weighted Curve Number		31.8	69 ==
OS-3 and	DCN directly entered by user	<u> </u>	13.6	69
	Total Area / Weighted Curve Number		13.6	69 ==
A	CN directly entered by user	U tt	10.7	69
	Total Area / Weighted Curve Number		10.7	69
В	CN directly entered by user	199	19.6	69
	Total Area / Weighted Curve Number		19.6	69
C	CN directly entered by user	25	5.3	69
	Total Area / Weighted Curve Number		5.3	69 ==
E	CN directly entered by user	7 <u>=</u>	3.7	69
	Total Area / Weighted Curve Number		3.7	69 ==

Prairie Ridge Existing Conditions El Paso County, Colorado

Reach Channel Rating Details

Reach Identifier	Reach Length (ft)	Reach Manning's n	Friction Slope (ft/ft)	Bottom Width (ft)	Slope
Reach 1 Reach 2 Reach 3 Reach 4	600 300 300 200	0.13 0.13 0.13 0.13	0.0333 0.0167 0.0167 0.025	30 30 30 30	.1 :1 .1 :1 .1 :1 .1 :1
Reach Identifier	Stage (ft)	Flow (cfs)	End Area (sq ft)	Top Width (ft)	Friction Slope (ft/ft)
Reach 1	0.0 0.5 1.0 2.0 5.0 10.0	0.000 19.336 60.263 184.730 775.675 2179.432 5826.058	0 15 30.1 60.4 152.5 310 640	30 30.1 30.2 30.4 31 32 34	0.0333
Reach 2	0.0 0.5 1.0 2.0 5.0 10.0	0.000 13.693 42.676 130.820 549.308 1543.403 4125.826	0 15 30.1 60.4 152.5 310 640	30 30.1 30.2 30.4 31 32 34	0.0167
Reach 3	0.0 0.5 1.0 2.0 5.0 10.0 20.0	0.000 13.693 42.676 130.820 549.308 1543.403 4125.826	0 15 30.1 60.4 152.5 310 640	30 30.1 30.2 30.4 31 32 34	0.0167
Reach 4	0.0 0.5 1.0 2.0 5.0 10.0 20.0	0.000 16.754 52.215 160.061 672.090 1888.388 5048.039	0 15 30.1 60.4 152.5 310 640	30 30.1 30.2 30.4 31 32 34	0.025

Developed conditions El Paso County, Colorado

Watershed Peak Table

Sub-Area or Reach Identifier	5-Yr (cfs)	100-Yr (cfs)	Rainfall Return Period
SUBAREAS OS-1	69.61	279.49	
OS-2	17.37	65.45	
OS-3 and D	7.02	26.69	
Ā	6.45	23.11	
В	11.51	41.30	
С	3.26	11.61	
E	2.08	7.55	
REACHES Reach 1 Down Reach 2 Down Reach 3 Down Reach 4		289.42 289.42 289.15 315.47 315.25 350.33	
Down	84.84	350.32 360.77	

Developed

WinTR-55 Current Data Description

--- Identification Data ---

User: Harrison
Project: Prairie Ridge
SubTitle: Developed conditions

Date: 3/31/2019 Units: English

Areal Units: Acres

State: Colorado

County: El Paso

Filename: C:\Users\Ken\Documents\Business-Consulting\Prairie Ridge\TR 55 developed conditions.w55

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
OS-1 OS-2 OS-3 and A B	D	Reach 1 Reach 3 Reach 4 Reach 1	211.6 31.8 13.6 10.7 19.6	69 69 69 70 70	.556 .243 .274 .243 .258
C E		Outlet Outlet	5.3 3.7	70	0.280

Total area: 296.30 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr (in)	5-Yr (in)	10-Yr (in)	25-Yr (in)	50-Yr (in)	100-Yr (in)	1-Yr (in)
2 1	2 7	3.2	3.6	4.2	4.6	.0

Storm Data Source:

User-provided custom storm data

Rainfall Distribution Type: Dimensionless Unit Hydrograph: <standard>

Type II

Prairie Ridge Developed conditions El Paso County, Colorado

Storm Data

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
2.1	2.7	3.2	3.6	4.2	4.6	.0

Storm Data Source:

User-provided custom storm data

Rainfall Distribution Type: Type II
Dimensionless Unit Hydrograph: <standard>

Prairie Ridge
Developed conditions
El Paso County, Colorado

Hydrograph Peak/Peak Time Table

Identifier	(cfs) (hr)	(hr)
SUBAREAS OS-1	69.61 12.29	279.49
OS-2	17.37 12.07	65.45 12.04
OS-3 and D	7.02 12.09	26.69 12.07
A	6.45 12.07	23.11 12.05
В	11.51 12.08	41.30 12.07
С	3.26 12.06	11.61 12.04
E	2.08	7.55 12.07
REACHES Reach 1 Down	72.41 12.25 72.30 12.31	12.22 289.42
	72.30 12.31 72.22 12.34	12.25 289.15
Reach 3 Down	78.22 12.33 78.12 12.36	12.25 315.25
Reach 4 Down	84.88 12.33 84.84 12.34	12.20 350.32
OUTLET	86.66	360.77

Prairie Ridge
Developed conditions
El Paso County, Colorado

Sub-Area Summary Table

Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve Number	Receiving Reach	Sub-Area Description
OS-1	211.60	0.556	69	Reach 1	
OS-2	31.80	0.243	69	Reach 3	
OS-3 and D	13.60	0.274	69	Reach 4	
A	10.70	0.243	70	Reach 1	
В	19.60	0.258	70	Reach 4	
С	5.30	0.233	70	Outlet	
E	3.70	0.280	70	Outlet	

Total Area: 296.30 (ac)

Prairie Ridge Developed conditions El Paso County, Colorado

Reach Summary Table

Reach Identifier	Receiving Reach Identifier	Reach Length (ft)	Routing Method	
Reach 1	Reach 2	600	CHANNEL	-
Reach 2	Reach 3	300	CHANNEL	
		3.8.3	CHANNEL	
Reach 3	Reach 4	300		
Reach 4	Outlet	200	CHANNEL	

Prairie Ridge Developed conditions El Paso County, Colorado

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimet (ft)		•
OS-1 SHEET SHALLOW	100 3700	0.1000 0.0200	0.150 0.050	30 30 30 30 30 30 30	90; 90) MI (80; 90) MI, 600. 60		0.106 0.450
				Ti	me of Co	ncentration	.556
OS-2 SHEET SHALLOW	100 1600	0.0500 0.0714	0.150 0.050				0.140 0.103
				Ti	me of Co	ncentration	.243
OS-3 and D SHEET SHALLOW	100 1600	0.0330 0.0643	0.150 0.050				0.165 0.109
				Ti	me of Co	ncentration	.274
A SHEET SHALLOW	100 1200	0.0330 0.0700	0.150 0.050				0.165 0.078
				Tir	me of Co	ncentration	.243
B SHEET SHALLOW	100 1500	0.0330 0.0769	0.150 0.050				0.165 0.093
				Tit	me of Co	ncentration	.258
C SHEET SHALLOW	100 1100	0.0330 0.0780	0.150 0.050				0.165 0.068
				Tir	me of Co	ncentration	.233
E SHEET SHALLOW	100 1050	0.0167 0.0824	0.150 0.050				0.217 0.063
				Tir	ne of Co	ncentration	0.280

Prairie Ridge
Developed conditions
El Paso County, Colorado

Sub-Area Land Use and Curve Number Details

Sub-Area Identifie	er Land Use	Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
OS-1	Cover Description Cover Description	? ?	0 0	0
	Total Area / Weighted Curve Number		211.6	69 ==
OS-2	CN directly entered by user	=	31.8	69
	Total Area / Weighted Curve Number		31.8	69 ==
OS-3 and	DCN directly entered by user	=	13.6	69
	Total Area / Weighted Curve Number		13.6	69 ==
A	CN directly entered by user	(41)	10.7	70
	Total Area / Weighted Curve Number		10.7	70 ==
В	CN directly entered by user	2 2.	19.6	70
	Total Area / Weighted Curve Number		19.6	70 ==
C	CN directly entered by user		5.3	70
	Total Area / Weighted Curve Number		5.3	70 ==
E	CN directly entered by user	=:	3.7	70
	Total Area / Weighted Curve Number		3.7	70 ==

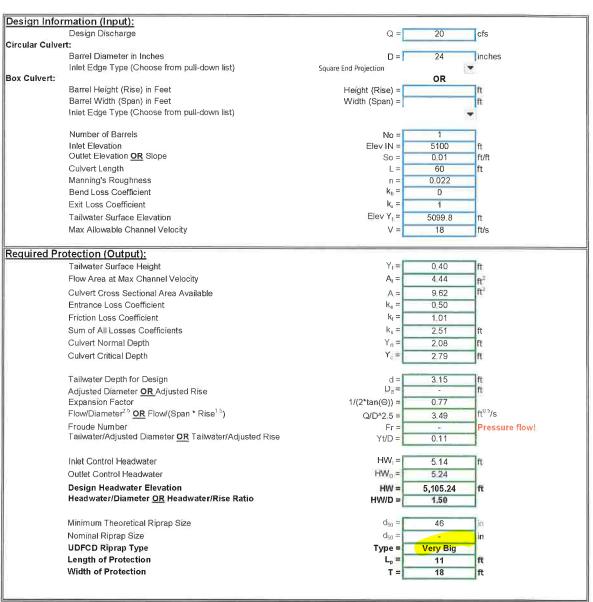
Developed conditions El Paso County, Colorado

Reach Channel Rating Details

Reach Identifier	Reach Length (ft)	Reach Manning's n	Friction Slope (ft/ft)	Bottom Width (ft)	
Reach 1 Reach 2 Reach 3 Reach 4	600 300 300 200	0.13 0.13 0.13 0.13	0.0333 0.0167 0.0167 0.025	30 30 30 30	.1 :1 .1 :1 .1 :1 .1 :1
Reach Identifier	Stage (ft)	Flow (cfs)	End Area (sq ft)	Top Width (ft)	Friction Slope (ft/ft)
Reach 1	0.0 0.5 1.0 2.0 5.0 10.0 20.0	0.000 19.336 60.263 184.730 775.675 2179.432 5826.058	0 15 30.1 60.4 152.5 310 640	30 30.1 30.2 30.4 31 32 34	0.0333
Reach 2	0.0 0.5 1.0 2.0 5.0 10.0	0.000 13.693 42.676 130.820 549.308 1543.403 4125.826	0 15 30.1 60.4 152.5 310 640	30 30.1 30.2 30.4 31 32 34	0.0167
Reach 3	0.0 0.5 1.0 2.0 5.0 10.0 20.0	0.000 13.693 42.676 130.820 549.308 1543.403 4125.826	0 15 30.1 60.4 152.5 310 640	30 30.1 30.2 30.4 31 32 34	0.0167
Reach 4	0.0 0.5 1.0 2.0 5.0 10.0 20.0	0.000 16.754 52.215 160.061 672.090 1888.388 5048.039	0 15 30.1 60.4 152.5 310 640	30 30.1 30.2 30.4 31 32 34	0.025

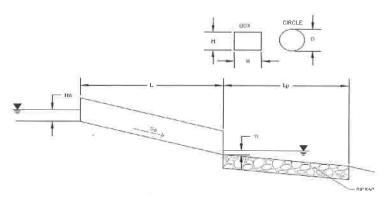
Exhibit 6 Culvert Capacity Exhibits

July 2020


Determination of Culvert Headwater and Outlet Protection

Project: Prairie Ridge: Existing culvert capacity

Basin ID: OS1



Determination of Culvert Headwater and Outlet Protection

Project: Prairie Ridge: proposed culvert at DP2 designed for 5yr storm

Basin ID: OS1

Jesign Info	rmation (Input):			
	Design Discharge	Q =	80	cfs
Circular Culve		Transfer of the second		
	Barrel Diameter in Inches	D =	42	inches
Box Culvert:	Inlet Edge Type (Choose from pull-down list)	Square End Projection		
Box Cuivert;	Barrel Height (Rise) in Feet	Hainha (Dina)	OR	T ₂₄
	Barrel Width (Span) in Feet	Height (Rise) = Width (Span) =		ft.
	Inlet Edge Type (Choose from pull-down list)	Width (Span) -		IT.
	mor Edge Type (Shoose nom pan down listy			M .
	Number of Barrels	No =	1	
	Inlet Elevation	Elev IN =	5100	ft
	Outlet Elevation OR Slope	So =	0.01	ft/ft
	Culvert Length	L = -	60	ft
	Manning's Roughness	n =	0.022	
	Bend Loss Coefficient	k _b =	0	-
	Exit Loss Coefficient	k _x =	1	
	Tallwater Surface Elevation	Elev Y ₁ =	5099.8	ft
	Max Allowable Channel Velocity	V =	18	ft/s
	· · · · · · · · · · · · · · · · · · ·			
Required Pr	otection (Output):			
	Tailwater Surface Height	$Y_t = $	0.40	ft
	Flow Area at Max Channel Velocity	$A_{t} =$	4.44	ft ²
	Culvert Cross Sectional Area Available	-		— ft
	Entrance Loss Coefficient	A =	9.62	100
		k _e =	0.50	
	Friction Loss Coefficient	$k_l =$	1.01	
	Sum of All Losses Coefficients	$k_s =$	2.51	ft
	Culvert Normal Depth	Y _n ≃	2.08	ft
	Culvert Critical Depth	Y _c =	2.79	ft
		· ·		
	Tailwater Depth for Design	d = [3.15	ft
	Adjusted Diameter OR Adjusted Rise	$D_0 =$	-	lft.
	Expansion Factor	1/(2*tan(⊖)) =	0.77	
	Flow/Diameter ^{2 5} OR Flow/(Span * Rise *)	Q/D^2,5 =	3.49	ft ^{u 5} /s
	Froude Number	Fr =	-	Pressure flow!
	Tailwater/Adjusted Diameter OR Tailwater/Adjusted Rise	Yt/D = [0.11	
	Inlet Control Headwater	HW ₁ =	E 4.4	
			5.14	ft
	Outlet Control Headwater	HW _o =	5.24	
	Design Headwater Elevation	HW =	5,105.24	ft
	Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	HW/D =	1.50	
	Minimum Theoretical Riprap Size	d ₅₀ =	46	Tie
			40	in
	Nominal Riprap Size UDFCD Riprap Type	d ₅₀ ≃	Von B	in
	Length of Protection	Type =	Very Big	
	Width of Protection	L _p =	11	ft
	width of Frotection	T =	18	ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University,

July zoz

Exhibit 7 Stone Check Dams

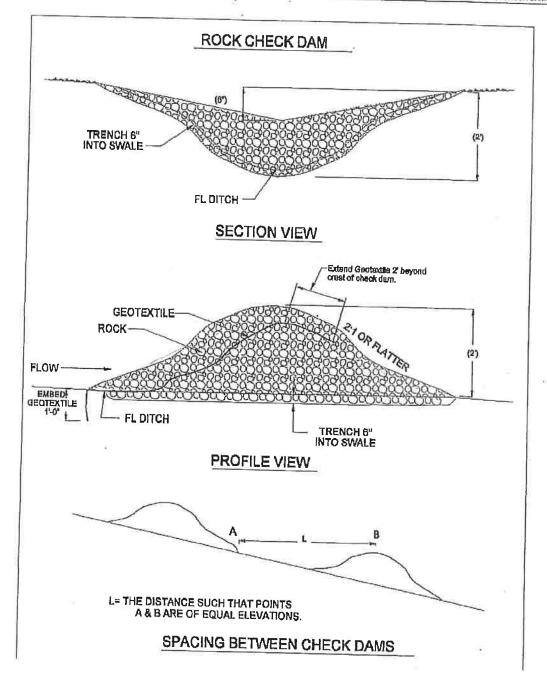


TABLE EC 9.1 Check Dam Spacing

Slope	2 percent	3 percent	4 percent	5 percent	6 percent
Spacing (ft)	100	67	50	40	33

Exhibit 8 Borrow Ditch Calculations

Select Channel Type: Trapezoid	The open channel flow calculator Pertangle Trapezoid	Trapezoid Triangle Circle Triangle Circle Triangle Circle Triangle Circle Triangle Circle Triangle Circle Triangle Circle Triangle Circle Triangle Circle Triangle Circle Triangle Circle Triangle Circle Triangle Circle Triangle T
Specific energy 1.38 [ft	Froude number 0.34	Flow status Subcritical flow
Critical depth 0.64	Critical slope 0.2524	Velocity head 0.08

Please provide as to where this swale is on the the flow indicated

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

additional description drainage map. Per above this appears to be at DP6.

Onsite Susless Syr Slope 2,5%

July Report

	The open channel flow calculator	
Select <u>Channel</u> Type: Trapezoid 🗸	Rectangle Trapezoid	Triangle Circle
Depth from Q	Select unit system: Feet(ft) 🗸	
Channel slope: 1.06 ft/ft	Water depth(y): 2.43	Bottom width(b) 30 ft
Flow velocity 4.947 [ft/s]	LeftSlope (Z1): [05 [to 1 (H:V)]	RightSlope (Z2): 05 to 1 (H:V)
Flow discharge 360 ft^3/s	Input n value 0.12 or select n very poor natural channels:0.060	al channels:0.060 💉
Calculatel	Status: Calculation finished	Reset
Wetted perimeter 34.85	Flow area 72.76 ft^2	Top width(T) 30 ft
Specific energy 2.81	Froude number 0.56	Flow status Subcritical flow
Critical depth 1.65	Critical slope 0.2028 It/ft	Velocity head 0.38

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Please provide additional description as to where this swale is on the

drainage map

https://www.eng.auburn.edu/~xzf0001/Handbook/Channels.html

T. O. Report

	The open channel flow calculator	
Select <u>Channel</u> Type: Trapezoid 🗸	Rectangle Trapezoid	Triangle Circle
Depth from Q	Select unit system: Feet(ft) 🗢	
Channel slope: 0.025 ft/ft	Water depth(y): 3.14	Bottom width(b) 30 ft
Flow velocity 3.729 ft/s	LeftSlope (Z1): [05 [to 1 (H:V)]	RightSlope (Z2): 0.5 to 1 (H:V)
Flow discharge 360 ft^3/s	Input n value .12 or select n	
Calculatel	Status: Calculation finished	Reset
Wetted perimeter 36.64	Flow area 96.54 ft^2	Top width(T) 31.57
Specific energy 3.35	Froude number 0.38	Flow status Subcritical flow
Critical depth 1.64	Critical slope 0.1991	Velocity head 0.22

swale is on the drainage map

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Please provide additional description as to where this

Internal (onsite)

1 Supples

510pe = 2,5%

100yr

	The open channel flow calculator	
Select <u>Channel</u> Type: Trapezoid 🗸	Hectangle Trapezoid	Triangle Circle
► Depth from Q	Select unit system: Feet(ft) 🗸	
Channel slope: 0.06 ft/ft	Water depth(y): [2.38 ft	Bottom width(b) 30 ft
Flow velocity 4.941 ft/s	LeftSlope (Z1): [05 to 1 (H:V)]	RightSlope (Z2): 0.5 to 1 (H:V)
Flow discharge 360 ft^3/s	Input n value 12 or select n	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 35.04 ft	Flow area 72.86 ft^2	Top width(T) 31.19
Specific energy 2.76	Froude number 0.57	Flow status Subcritical flow
Critical depth 1.64	Critical slope 0.1991	Velocity head 0.38

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Internal (onsite)
Swales
Slope = 6.96
100yr

Select Channel Type: Trapezoid 🔻	Hectangle Trapezoid	Tigangle Circle
Depth from Q v	Select unit system: [Feet(ft) 🔻]	
Channel slope: .025 ft/ft	Water depth(y): 1.31	Bottom W(b) 100 ft
Flow velocity 2.29 ft/s	LeftSlope (Z1): 0.1 to 1 (H:V)	RightSlope (Z2): 0.1 to 1 (H:V)
Flow discharge 300 ft^3/s	Input n value.12 or select n	
Calculatei	Status: Calculation finished	Reset
Wetted perimeter 102.63 ft	Flow area 131 ft^2	Top width(T) 100.26
Specific energy 1.39	Froude number 0.35	Flow status Subcritical flow
Critical depth 0.66	Critical slope 0.2422	Velocity head 0.08

esen Part 1 to 6

T+15709 Open Channel Flow Calculator

4/1/2019

The open channel flow calculator (Course sleepe

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Is this the analysis of the southern swale between DP1 and DP2? Please be more specific as to where this existing swale is at. This comment also applies to the next calculation.

4/1/2019	Open Channel Flow Calculator	Description of the
	The open channel flow calculator	Chigher dep
Select Channel Type: Trapezoid 🔻	Rectangle Trapezoid	I riangle Circle
Depth from Q ▼	Select unit system: Feet(ft) 🔻	
Channel slope: .06 ft/ft	Water depth(y): 1	Bottom W(b) 100 ft
Flow velocity 2.984 ft/s	LeftSlope (Z1): 0.1 to 1 (H:V)	RightSlope (Z2): 0.1 to 1 (H:V)
Flow discharge 300 ft^3/s	Input n value.12 or select n	
Calculate	Status: Calculation finished	Reset
Wetted perimeter 102.02 ft	Flow area 100.55 ft^2	Top width(T) 100.2
Specific energy 1.14 ft	Froude number 0.52	Flow status Subcritical flow
Critical depth 0.66	Critical slope 0.2422 ft/ft	Velocity head 0.14

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

	The open channel flow calculator	
Select Channel Type: Trapezoid 🔻	Rectangle Trapezoid	Triangle Circle
Depth from Q ▼ Se	Select unit system: Feet(ft) 💌	
Channel slope: .02 ft/ft	Water depth(y): 0.49	Bottom width(b) 10 ft
Flow velocity 1.015433 ft/s	LeftSlope (Z1): .1 to 1 (H:V)	RightSlope (Z2): .1 to 1 (H:V)
Flow discharge 5 ft^3/s	Input n value .12 or select r	
Calculate	Status: Calculation finished	Reset
Wetted perimeter 10.98	Flow area 4.92	Top width(T) 10.1
Specific energy 0.51	Froude number 0.26	Flow status Subcritical flow
Critical depth 0.2	Critical slope 0.3595 ft/ft	Velocity head 0.02

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Such basin Swales - 2% shape

1/1

	The open channel flow calculator	
Select Channel Type: Trapezoid 🔻	Hectangle Trapezoid	I riangle Circle
Depth from Q	Select unit system: Feet(ft) ▼	
Channel slope: .10 ft/ft	Water depth(y): 0.3	Bottom width(b) 10 ft
Flow velocity 1.667815 ft/s	LeftSlope (Z1): .1 to 1 (H:V)	RightSlope (Z2): .1 to 1 (H:V)
Flow discharge 5 ft^3/s	Input n value.12 or select n	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 10.6	Flow area 3 ft^2	Top width(T) 10.06
Specific energy 0.34 ft	Froude number 0.54	Flow status Subcritical flow
Critical depth 0.2	Critical slope 0.3595 [tt/ft	Velocity head 0.04

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

3 wb- basin - 10% slape

Please provide more description of which swale from the drainage plan you are calculating.

Ednt Side of Frow Rd 1062

	y zl zz Ly zz B Triangle Circle		Bottom width(b) 0.5	RightSlope (Z2): 3 to 1 (H:V)		Reset	Top width(T)[2.5 [ft]	Flow status Supercritical flow	Velocity head 0.39
The open channel flow calculator	Rectangle Trapezoid	Select unit system: Feet(ft) 🗢	Water depth(y): 0.33	LeftSlope (Z1): [3 to 1 (H:V)]	Input n value 0.025 or select n	Status: Calculation finished	Flow area 0.5	Froude number 1.97	Critical slope 0.0146
	Select <u>Channel</u> Type: Trapezoid 🗸	Depth from Q	Channel slope: [.067 ft/ft	Flow velocity 5.003335 ft/s	Flow discharge 2.5 ft^3/s	Calculate!	Wetted perimeter 2.61 [ft	Specific energy 0.72	Critical depth 0.46

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Please provide further description. It appears this may be on the west property line as indicated on pg 23 of 28 of your report. Please update the description accordingly.

	The open channel flow calculator	
Select <u>Channel</u> Type: Trapezoid 🗸	Rectangle Trapezoid	zl zz lz z d d z z z d d z z z z z z z z
Depth from Q	Select unit system: Feet(ft) 🗢	
Channel slope: .067 [#/ft	Water depth(y): 0.73	Bottom width(b) 0.5
Flow velocity 7.988 ft/s	LeftSlope (Z1): 3 to 1 (H:V)	RightSlope (Z2): 3 to 1 (H:V)
Flow discharge 15.5 ft^3/s	Input n value 0.025 or select n	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 5.09	Flow area 1.94 ft^2	Top width(T) 4.85
Specific energy 1.72	Froude number 2.23	Flow status Supercritical flow
Critical depth 1.03	Critical slope 0.0117 It/ft	Velocity head 0.99

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Fast Side of 5 Brown 100 year 262

July Report

	The open channel flow calculator	
Select <u>Channel</u> Type: Trapezoid 🗸	Rectangle Trapezoid	Z1 Z2 II D D Triangle Circle
Depth from Q	Select unit system: Feet(ft) 🗢	
Channel slope: 0.064 ft/ft	Water depth(y): 0.19 ft	Bottom width(b) 0.5 ft
Flow velocity 2.536638 ft/s	LeftSlope (Z1): [3 [to 1 (H:V)]	RightSlope (Z2): 3 to 1 (H:V)
Flow discharge 0.5	Input n value 0.035 or select n	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 1.68	Flow area 0.2 ft^2	Top width(T) 1.62
Specific energy 0.29	Froude number 1.28	Flow status Supercritical flow
Critical depth 0.22	Critical slope 0.0335	Velocity head 0.1

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

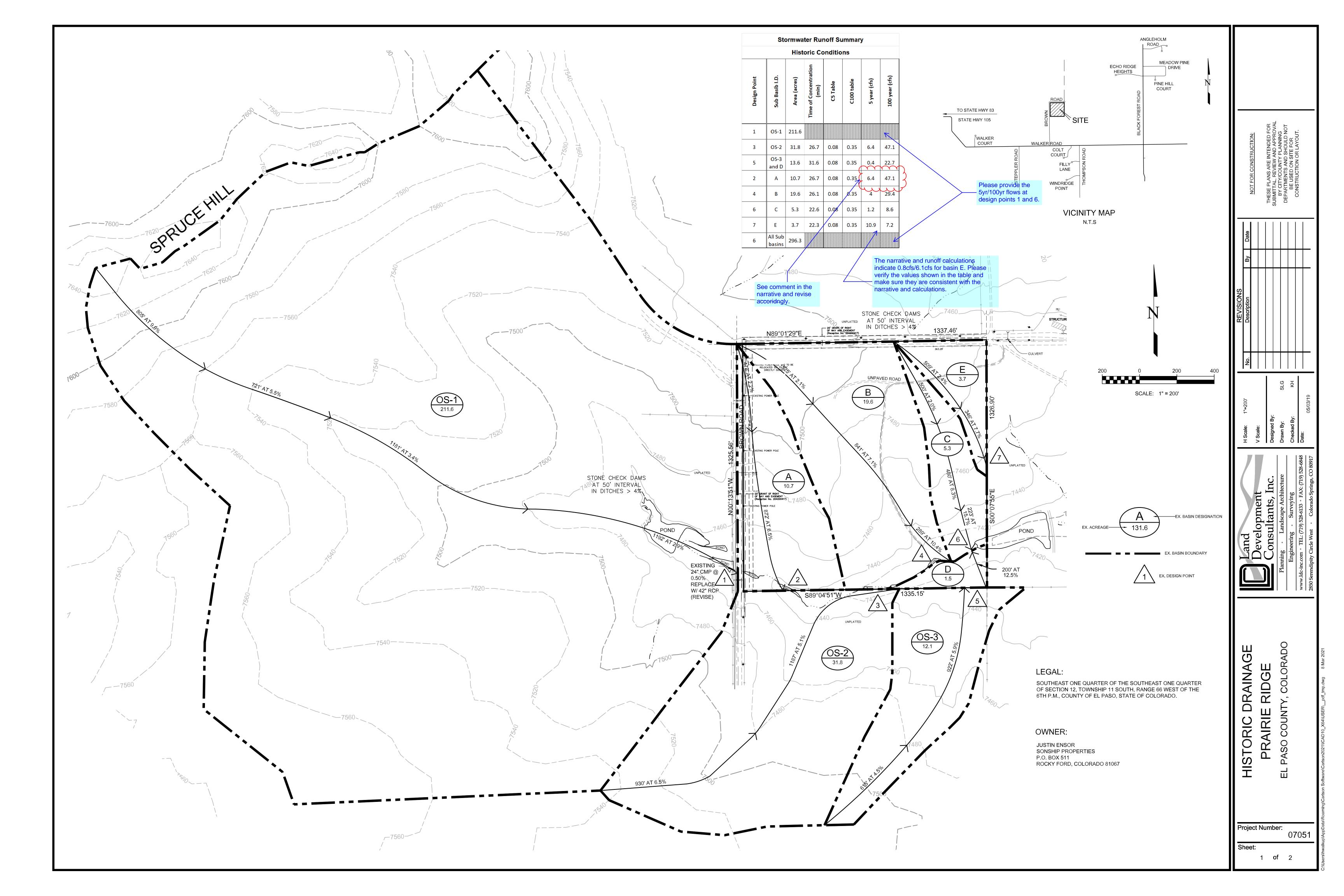
North Propling

	The open channel flow calculator	
Select <u>Channel</u> Type: Trapezoid 🗸	Hectangle Trapezoid	Triangle Circle
Depth from Q	Select unit system: Feet(ft) 🗢	
Channel slope: 0.064 ft/ft	Water depth(y): 0.34	Bottom width(b) 0.5 ft
Flow velocity 3.622864 ft/s	LeftSlope (Z1): [3 to 1 (H:V)	RightSlope (Z2): 3 to 1 (H:V)
Flow discharge 1.9 ft^3/s	Input n value 0.035 or select n	
Calculatel	Status: Calculation finished	Reset
Wetted perimeter 2.67	Flow area 0.52 ft^2	Top width(T) 2.56
Specific energy 0.55	Froude number 1.41	Flow status Supercritical flow
Critical depth 0.41	Critical slope 0.0294	Velocity head 0.2

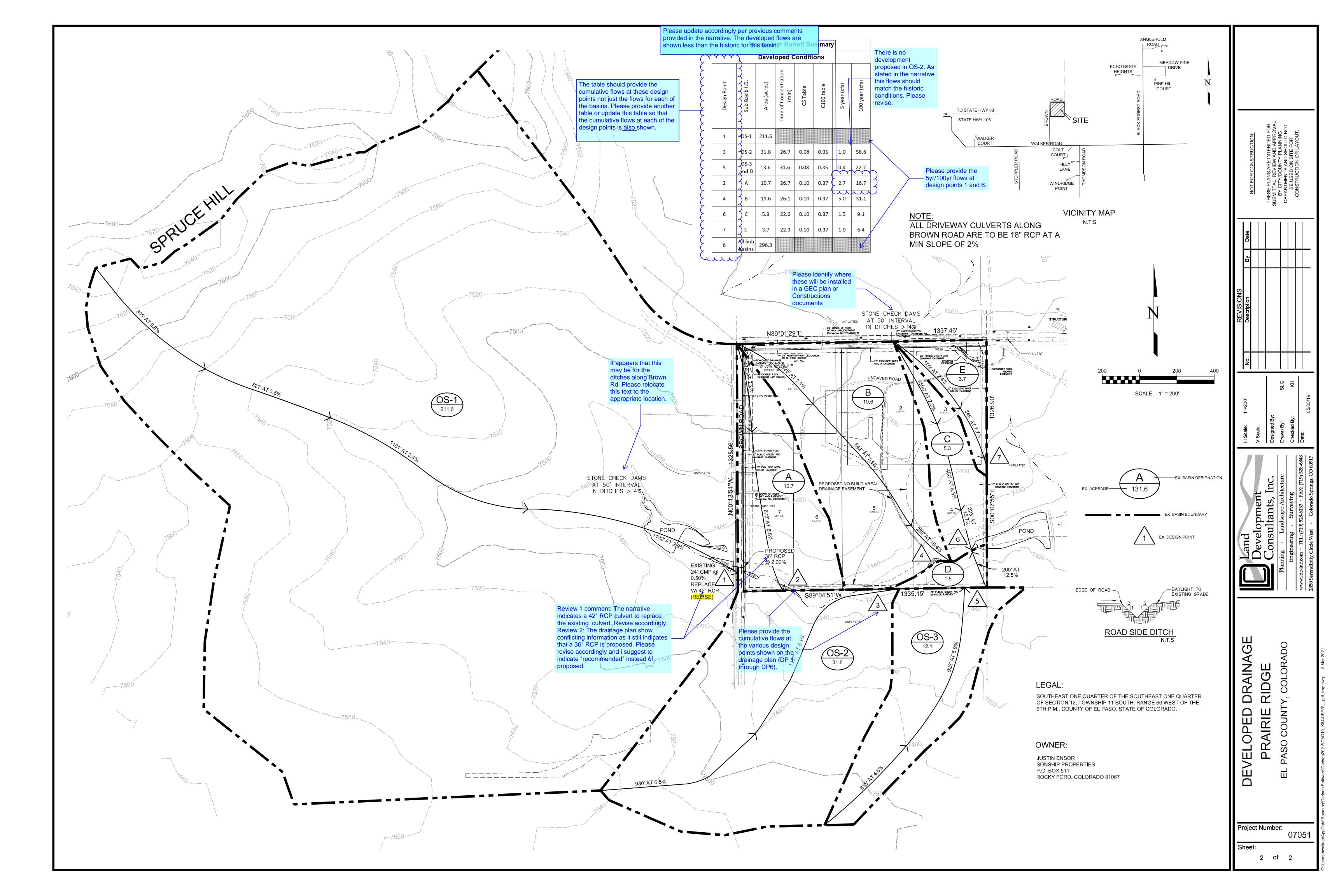
Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

North Prop Line South Borrow

Exhibit 9 Historical Inflation Rate Table


Table of Historical Inflation Rates in Percent

The table of **historical inflation rates** displays annual rates from 1914 to 2020. Rates of inflation are calculated using the current <u>Consumer Price Index</u> published monthly by the Bureau of Labor Statistics (<u>BLS</u>). BLS data was last updated on August 12, 2020 and covers up to July 2020. The next inflation update is set to happen on September 11, 2020. It will provide historical inflation rates through to August 2020.


Year	IANI	מיניי						5	וווומווסוו ומנג	ı ııfınalın e	o August 20	120.	
0000	NICO	LED	MAK	APR	MAY	NOS		OLIV	C				
2008	4.3	4	4	3.0	42			AUG	SEP	OCT	NOV	DEC	AVE
2009	C	00		2	4.2	n	5.6	5.4	6.4	3.7	1 1	2	
		2.0	-0.4	-0.7	5.	-14	21	7 12	,			- -	3.8
2010	2.6	2.1	2.3	22	0	7		0.1-	-1,3	-0.2	1.8	2.7	-0.4
2011	1.6	2.1	2.7	3.2	7 0	- 6	1.2	1.7	1.1	1.2	1.1	1.5	18
2012	29	20	77	7.0	0.5	3.6	3.6	3.8	3.9	3.5	3.4	1	
0,000		6.7	7:7	2.3	1.7	1.7	14	17	(,	3.4
2013	1.6	7	1.5	7	4.4	7.0		, , ,	7	2.2	1.8	1.7	2.1
2014	1.6	7	7 12		+	0.	7	1.5		1	12	15	4.17
2000			Ç.	7	2.1	2.1	2	17	L	\right		?	0.
2015	-0.1	0	-0.1	-0.2	c	40			l	1.7	7.3	8.0	1.6
2016	1.4	1	0	7			0.2	0.2	0	0.2	0.5	0.7	1
2047			0.0			-	0.8	1.1	15	7.0			
7107	7.5	2.7	2.4	2.2	19	7	11			0.	1.,	2.1	د .
2018	2.1	2.2	2.4	4 0			, ,	P. P.	2.2	Ŋ	2.2	2.1	2.1
2010	0 7			6.3	2.8	2.9	2.9	2.7	23	25	000		
2013	0.	1.5	0.	CA	7	1.6	10		2 ii	22	7.7	1.9	2.4
2020	2.5	2.3	7.	0.3		2 6	0.	1.7	1.7	1.8	2.1	2.3	1.8
				0.0	0.0	9.0	-						

Total

Exhibit 10 Drainage Map for Historic Conditions (Inside map pocket)

Exhibit 11 Drainage Map for Developed Conditions (Inside map pocket)

