FINAL DRAINAGE PLAN

LORSON RANCH EAST FILING NO. 1

MARCH 1, 2018

Prepared for:

Lorson, LLC 212 N. Wahsatch Ave, Suite 301 Colorado Springs, Colorado 80903 (719) 635-3200

Prepared by:

Core Engineering Group, LLC 15004 1ST Avenue South Burnsville, MN 55306 (719) 570-1100

Project No. 100.042

TABLE OF CONTENTS

ENGINEER'S STATEMENT	1
OWNER'S STATEMENT	1
FLOODPLAIN STATEMENT	1
1.0 LOCATION and DESCRIPTION	2
2.0 DRAINAGE CRITERIA	2
3.0 EXISTING HYDROLOGICAL CONDITIONS	3
4.0 DEVELOPED HYDROLOGICAL CONDITIONS	4
5.0 HYDRAULIC SUMMARY	8
6.0 DETENTION and WATER QUALITY PONDS	20
7.0 DRAINAGE and BRIDGE FEES	22
8.0 FOUR STEP PROCESS	23
9.0 CONCLUSIONS	24
10.0 REFERENCES	24

APPENDIX A

VICINITY MAP, SCS SOILS INFORMATION, FEMA FIRM MAP

APPENDIX B

HYDROLOGY CALCULATIONS

APPENDIX C

HYDRAULIC CALCULATIONS

APPENDIX D

POND AND HYDRAFLOW CALCULATIONS

APPENDIX E

STORM SEWER SCHEMATIC and HYDRAFLOW STORM SEWER CALCS

BACK POCKET

EXISTING CONDITIONS DRAINAGE MAP – from Lorson East MDDP OVERALL DEVELOPED CONDITIONS DRAINAGE MAP DEVELOPED CONDITIONS DRAINAGE MAPS POND C5 AND D2 FULL SPECTRUM OUTLET STRUCTURES

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development is located within a designated floodplain as shown on Flood Insurance Rate Map Panel No. 08041C0957 F and 08041C1000 F, dated March 17, 1997 and modified by modified per LOMR Case No. 14-08-0534P. (See Appendix A, FEMA FIRM Exhibit)

Richard L. Schindler, #33997

Date

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volume 1 and 2, and Engineering Criteria Manual, As Amended.

Jennifer Irvine Date County Engineer/ECM Administrator

Conditions:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Richard L. Schindler, P.E. #33997 For and on Behalf of Core Engineering Group, LLC

OWNER'S STATEMENT

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

Lorson, LLC

By Jeff Mark

Title

Manager Address

212 N. Wahsatch Avenue, Suite 301, Colorado Springs, CO 80903

ENGINEER'S STATEMENT

Date

Date

1.0 LOCATION and DESCRIPTION

Lorson Ranch East is located east of the East Tributary of Jimmy Camp Creek. The site is located on approximately 126.25 acres of vacant land. This project will develop this site into single-family residential developments. This plat does include a school site but it is offsite and is only platted as a tract of land. Future development of the school site will require it's own final drainage report. The land for the residential lots is currently owned by Lorson LLC or its nominees for Lorson Ranch.

The site is located in the West 1/2 of Sections 14 & 23, South ½ of Section 13, and the North ½ of Section 24, Township 15 South and Range 65 West of the 6th Principal Meridian. The property is bounded on the north by Fontaine Boulevard, on the east by Lamprey Drive, on the west by The East Tributary of Jimmy Camp Creek, and the south by Lorson Boulevard. For reference, a vicinity map is included in Appendix A of this report.

Conformance with applicable Drainage Basin Planning Studies

There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson & Company in 1987, and is referenced in this report. The only major drainage improvements for this study area according to the 1987 Wilson study was the reconstruction of the East Tributary of Jimmy Camp Creek (East Tributary). In 2014 a portion of the East Tributary was reconstructed from Fontaine Boulevard south 2,800 feet in accordance with the 1987 study. This section of the East Tributary included a trapezoidal channel section with 6:1 side slopes and a sand bottom. On March 9, 2015 a new DBPS for Jimmy Camp Creek has not been adopted by Kiowa Engineering. The Kiowa Engineering DBPS for Jimmy Camp Creek has not been adopted by El Paso County but is allowed for concept design. The concept design includes the East Tributary armoring concept and the full spectrum detention pond requirements. The Kiowa DBPS did not calculate drainage fees so current El Paso County drainage/bridge fees apply to this development. Channel improvements in the East Tributary within this final plat limits were constructed in 2014.

and PDR _____ south of Fontaine Blvd.

Conformance with Lorson East MDDP by Core Engineering Group and PDR
Core Engineering Group has an approved MDDP for Lorson East which covers this final plat area and
the East Tributary. This FDR conforms to the MDDP for Lorson East and is referenced in this report.
The major infrastructure to be constructed in this RDR site includes the forebays for Detention/WQ
Ponds C5 and D2. Ponds C5 and D2 were constructed in the Early Grading Plans for Lorson Ranch
East under PUDSP-16-003 graded (?) final plat

Lorson Ranch East is located within the "Jimmy Camp Creek Drainage Basin", which is a fee basin in El Paso County.

2.0 DRAINAGE CRITERIA

The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November, 1991, the El Paso County "Engineering Criteria Manual", Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, and the UDFCD "Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 for inlet sizing and full spectrum ponds. No deviations from these published criteria are requested for this site.

The Rational Method as outlined in Section 6.3.0 of the May 2014 "Drainage Criteria Manual" and in Section 3.2.8.F of the El Paso County "Engineering Criteria Manual" was used for basins less than 130 acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County states the if detention is necessary, Full Spectrum Detention will be included in the design, based on this criteria, Full Spectrum

Detention will be required for this development. The ponds were graded under PUDSP-16-003 and this plat will construct the forebays and outlet structure.

— (prior to early grading)

3.0 EXISTING HYDROLOGICAL CONDITIONS

The site is currently undeveloped with native vegetation (grass with no shrubs) and moderate to steep slopes in a westerly direction the East Tributary of Jimmy Camp Creek.

The Soil Conservation Service (SCS) classifies the soils within the Lorson Ranch East property as Manzanola clay loam; Nelson-Tassel fine Sandy loam; Razor clay loam; and Wiley silt loam [3]. The sandy and silty loams are considered hydrologic soil group B soils with moderate to moderately rapid permeability. The Midway and Razor clay loams are considered hydrologic soil group C soils with slow permeability. All of these soils are susceptible to erosion by wind and water, have low bearing strength, moderate shrink-swell potential, and high frost heave potential (see table 3.1 below). The clay loams are difficult to vegetate and comprise of a small portion of the study area. These soils can be mitigated easily by limiting their use as topsoil since they comprise of a small portion of the study area. Weathered bedrock will be encountered beneath some of the site but it can be excavated using conventional techniques.

Soil	Hydro. Group	Shrink/Swell Potential	Permeability	Surface Runoff Potential	Erosion Hazard
52-Manzanola Clay Loam	С	High	Slow	Medium	Moderate
56-Nelson – Tassel Fine Sandy Loam	В	Moderate	Moderately Rapid	Slow	Moderate
75-Razor Clay Loam	С	High	Slow	Medium	Moderate
108-Wiley Silt Loam	В	Moderate	Moderate	Medium	Moderate

 Table 3.1:
 SCS Soils Survey

Excerpts from the SCS "Soil Survey of El Paso County Area, Colorado" [2] are provided in *Appendix A* for further reference.

For the purpose of preparing hydrologic calculations for this report, the soil of each basin are assumed to be wholly comprised of the majority soil hydrologic group.

An existing electrical easement, within existing transmission towers, is adjacent to this site on the east side of this portion of the development and will be set aside as open space in the future. It is the intent of this drainage report to utilize some of the open space under the towers for detention of storm flows.

The FMIC (irrigation canal) that runs parallel with the East Tributary through this site was decommissioned in 2006 and will be filled in during the early grading process. For the purpose of existing drainage calculations the canal was ignored and all flow was assumed to flow to the East Tributary.

Portions of the site are located within the delineated 100-year floodplain of the East Tributary of Jimmy Camp Creek per the Federal Emergency Management Agency (FEMA) Flood Rate Insurance Map (FIRM) number 08041C0957 F & 08041C1000 F, effective 17 March 1997 [2]. Floodplain along the East Tributary was modified per LOMR Case No. 14-08-0534P (see appendix). Floodplain designations include Zone AE and Zone X within the property boundary. A portion of this map is provided in *Appendix A* for reference. A CLOMR for the creek and bridge construction which includes grading to remove some areas from the current floodplain is currently submitted to FEMA under Case No. 17-08-1043R.

north of Fontaine Blvd.

The existing basins for this large site were taken from the Lorson Ranch East MDDP East of the East Tributary. A map from the MDDP has been included in the appendix.

Overall Basin EX-C flows to Design Point 2

This is the largest existing basin at 452.97 acres which includes approximately the northern half of the site. This basin is an overall existing basin including Basins EX-C1 to EX-C10. There are two offsite basins (OS-C6.1 and OS-C5.1) which flow onto the site from the north and east and are included in the flow at Design Point 2. Under existing conditions, this basin contributes 141.0 cfs and 458.0 cfs for the 5-year and 100-year events respectively at Design Point 2. Design Point 2 is located at the East Tributary and all flow is routed to the East Tributary in an existing swale that is eroded and is not armored.

Overall Basin EX-D flows to Design Point 3

Overall Basin EX-D is located adjacent to and southwest of Basin Ex-C and is 109.55 acres in size. This basin is an overall existing on-site basin. The existing runoff of 29.7cfs and 166.5cfs for the 5-year and 100-year-events at Design Point 3 respectively and investigation of the East Tributany.

and Addressnearly grading and conditions when that is complete.

This report should pick up from there.

4.0 DEVELOPED HYDROLOGICAL CONDITIONS

Hydrology for the **Lorson Ranch East** drainage report was based on the City of Colorado Springs/El Paso County Drainage Criteria. Sub-basins that lie within this project were determined and the 5-year and 100-year peak discharges for the developed conditions have been presented in this report. Based on these flows, storm inlets will be added when the street capacity is exceeded.

Soil type C/D has been assumed for the hydrologic conditions because mass grading will occur and soil types will be moved around. This approach will provide a more conservative approach to designing the storm sewer infrastructure. See Appendix A for SCS Soils Map.

The time of concentration for each basin and sub-basin was developed using an overland, ditch, street and pipe flow components. The maximum overland flow length for developed conditions was limited to 100 feet. Travel time velocities ranged from 2 to 6 feet per second. The travel time calculations are included in the back of this report.

Runoff coefficients for the various land uses were obtained from the City of Colorado Springs/El Paso County Drainage Criteria Manua, Add: "update (see

The hydrology analysis necessary for strong of the system is preliminary only and will be finalized when the construction documents are prepared.

Drainage concepts for each of the basins are briefly discussed as follow:

Overall Basin C

Overall Basin C includes all of the "C" basins that drain to Pond C5. This basin was included to provide sizing data to design Pond C5 WQ and EURV in the full spectrum worksheets. The total size of this basin is 171 acres and comprises of residential development. There is runoff from a future school site which has been included for water quality in Pond C5. The future school site will be required to detain

Address interim condition offsite flows and future conditions.

_and offsite undeveloped areas (EX1-EX3?)

This is the FDR!

include in this report also

runoff to existing flow rates to several storm outfall points provided on Lamprey Drive and Fontaine Boulevard. This basin has been studied in the Final Drainage Report for Fontaine Boulevard and is not included.

Overall Basin D

— Address sub-basin D1-ex

Overall Basin D includes all of the "D" basins that drain to Pond D2. This basin was included to provide sizing data to design Pond D2 in the full spectrum worksheets. The total size of this basin is 89 acres and comprises of residential development.

Basin C15.14 See Fontaine FDR for this design.

These basins consist of runoff from residential development and Lamprey Drive. Runoff will be directed north to Design Point 29 in curb/gutter where it will be collected by a Type R inlet on Lamprey Drive. The developed flow from this basin is 2.9cfs and 6.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.15-See Fontaine FDR for this design.

These basins consist of runoff from residential development and Lamprey Drive. Runoff will be directed north to Design Point 30 in curb/gutter where it will be collected by a Type R inlet on Lamprey Drive. The developed flow from this basin is 7.2cfs and 16.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.1

Basin C17.1 consists of residential development located in Weiser and Matta Drives. Runoff is directed northwest in curb/gutter to Design Point 38 to a proposed Type "R" inlet in Matta Drive. The peak developed flow from this basin is 5.9cfs and 13.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.1a

Basin C17.1a consists of residential development located in Weiser, Pigeon, and Aliso Drives. Runoff is directed north in curb/gutter to Design Point 28 to a proposed Type "R" inlet in Weiser Drive. The peak developed flow from this basin is 5.3cfs and 11.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.2

Basin C17.2 consists of residential development located in Chaplin, Pigeon, Aliso, and Matta Drives. Runoff is directed north in curb/gutter to Design Point 39 to a proposed Type "R" inlet in Matta Drive. The peak developed flow from this basin is 8.6cfs and 19.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.3

Basin C17.3 consists of residential development located in Lamine and Matta Drives. Runoff is directed north in curb/gutter to Design Point 40 to a proposed Type "R" inlet in Lamine Drive. The peak developed flow from this basin is 4.5cfs and 10.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.4

Basin C17.4 consists of residential development located in Matta Drive. Runoff is directed west in curb/gutter to Design Point 40 to a proposed Type "R" inlet in Lamine Drive. The peak developed flow from this basin is 3.2cfs and 7.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.5

Basin C17.5 consists of residential development and Fontaine Boulevard. Runoff is directed west in curb/gutter to Design Point 40 to a proposed Type "R" inlet in Lamine Drive. The peak developed flow

from this basin is 6.7cfs and 22.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.6

Basin C17.6 consists of residential development located in Lamine Drive. Runoff is directed north in curb/gutter to Design Point 41 to a proposed Type "R" inlet in Lamine Drive. The peak developed flow from this basin is 1.9cfs and 6.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.7

Basin C17.7 consists of backyards of houses on Lamine Drive, East Tributary, and open space. Runoff is directed overland to the East Tributary. See Section 6.0 for water quality discussions for backyards. See the appendix for detailed calculations

Basin C17.8

Basin C17.8 consists of residential development and Fontaine Boulevard on the north side. Runoff is directed west in curb/gutter to Design Point 42 to a proposed Type "R" inlet in Fontaine Boulevard. The peak developed flow from this basin is 3.2cfs and 7.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.9

Basin C17.9 consists of existing residential development in Meadows 3 and Fontaine Boulevard. Runoff is directed in curb/gutter to Design Point 47 to a proposed Type "R" inlet in Fontaine Boulevard on the south side. The peak developed flow from this basin is 7.8cfs and 13.9cfs for the 5/100-year storm event. See the appendix for detailed calculations. This basin will flow north to existing Pond B1. Pond B1 has been sized for this flow per the Pioneer Landing Filing No. 2 Final drainage report.

Basin C17.10

Basin C17.10 consists of existing residential development in Pioneer Landing and Fontaine Boulevard. Runoff is directed in curb/gutter to Design Point 48 to a proposed Type "R" inlet in Fontaine Boulevard on the north side. The peak developed flow from this basin is 8.9cfs and 16.0cfs for the 5/100-year storm event. See the appendix for detailed calculations. This basin will flow north to existing Pond B1. Pond B1 has been sized for this flow per the Pioneer Landing Filing No. 2 final drainage report.

Basin D1.1 & D1.2

Basin D1.1 & D1.2 consists of residential development, Saco Drive, Weiser Drive, and Lamprey Drive. Runoff is directed south and west in curb/gutter to Design Point 50 to a proposed Type "R" inlet in Saco Drive on the south side. See the appendix for detailed calculations.

Basin D1.3

Basin D1.3 consists of residential development, Saco Drive, and Lamine Drive. Runoff is directed west and north in curb/gutter to Design Point 56 to a proposed Type "R" inlet in Lamine Drive. See the appendix for detailed calculations. The peak developed flow from this basin is 1.7cfs and 3.8cfs for the 5/100-year storm event.

Basin D1.4 & D1.5

Basin D1.4 & D1.5 consists of residential development. Runoff is directed south in curb/gutter to Design Point 52 in Chaplin Drive. See the appendix for detailed calculations.

Basin D1.6

provide flows

Basin D1.6 consists of residential development, Yuba Drive, and Chaplin Drive. Runoff is directed south and west in curb/gutter to Design Point 53 to a proposed Type "R" inlet in Yuba Drive. See the appendix for detailed calculations. The peak developed flow from this basin is 8.4cfs and 18.7cfs for the 5/100-year storm event.

Basin D1.7

Basin D1.7 consists of residential development and Lamine Drive. Runoff is directed south in curb/gutter to Design Point 54 in Lamine Drive. See the appendix for detailed calculations. The peak developed flow from this basin is 7.0cfs and 15.5cfs for the 5/100-year storm event.

Basin D1.8

Basin D1.8 consists of residential development, Chaplin Drive, and Yuba Drive. Runoff is directed south and west in curb/gutter to Design Point 53 in Yuba Drive. See the appendix for detailed calculations. The peak developed flow from this basin is 3.2cfs and 7.1cfs for the 5/100-year storm event.

Basin D1.9 & D1.10

Basin D1.9 & D1.10 consists of residential development, Saco Drive, Lamine Drive, and Yuba Drive. Runoff is directed west in curb/gutter to Design Point 55 in Lamine Drive. See the appendix for detailed calculations.

Basin D1.11

Basin D1.11 consists of residential development and Lamine Drive. Runoff is directed south in curb/gutter to Design Point 56 to a proposed Type "R" inlet in Lamine Drive. See the appendix for detailed calculations. The peak developed flow from this basin is 2.6cfs and 5.8cfs for the 5/100-year storm event.

Basin D1.12

Basin D1.12 consists of residential development and Pond D2. Runoff is directly tributary to Pond D2. See the appendix for detailed calculations. The peak developed flow from this basin is 3.9 cfs and 15.4cfs for the 5/100-year storm evAnddress interim and future conditions flows

Basin D2.1 & D2.3 Basin D2.1 & D2.3 consists of residential development, open space under the electric easement, Vedder Drive, Lamprey Drive, and Lorson Boulevard. Runoff is directed south and west in curb/gutter to Design Point 59d in Lamprey Drive. See the appendix for detailed calculations. **provide flows**

Basin D2.2

Basin D2.2 consists of residential development and Tillamook Drive. Runoff is directed south in curb/gutter to Design Point 59a. See the appendix for detailed calculations. The peak developed flow from this basin is 2.1cfs and 4.7cfs for the 5/100-year storm event.

Basin D2.4

Basin D2.4 consists of residential development, Lorson Boulevard, and open space area under the electric easement. Runoff is directed west in curb/gutter in Lorson Boulevard to Design Point 59f. See the appendix for detailed calculations. The peak developed flow from this basin is 3.6cfs and 11.9cfs for the 5/100-year storm event.

Basin D2.5

Basin D2.5 consists of residential development, Skuna Drive, and Witcher Drive. Runoff is directed north in curb/gutter to Lorson Boulevard to Design Point 59f. See the appendix for detailed calculations. The peak developed flow from this basin is 8.8cfs and 19.6cfs for the 5/100-year storm event.

Basin D2.6 & D2.7

Basin D2.6 & D2.7 consists of residential development, Skuna Drive, Abita Drive, Witcher Drive, and Yocona Drive. Runoff is directed west in curb/gutter to Design Point 61 in Witcher Drive. See the appendix for detailed calculations.

Basin D2.8

Basin D2.8 consists of residential development, Volga Drive, and Witcher Drive. Runoff is directed west and south in curb/gutter to Design Point 62 in Volga Drive. The peak developed flow from this basin is 7.7cfs and 17.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D2.9

Basin D2.9 consists of residential development, Volga Drive, Trappe Drive, and Witcher Drive. Runoff is directed west and north in curb/gutter to Design Point 60 in Trappe Drive. The peak developed flow from this basin is 5.5cfs and 12.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D2.10

Basin D2.10 consists of Trappe Drive and adjacent areas. Runoff is directed north in curb/gutter in Trappe Drive to Design Point 64. See the appendix for detailed calculations. The peak developed flow from this basin is 1.9cfs and 5.0cfs for the 5/100-year storm event.

Basin D2.11

Basin D2.11 consists of runoff from Lorson Boulevard on the south side. Runoff is directed west in curb/gutter to Design Point 65a in Lorson Boulevard. The peak developed flow from this basin is 2.0cfs and 3.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D2.12

Basin D2.12 consists of runoff from residential development and Lorson Boulevard on the south side. Runoff is directed west in curb/gutter to Design Point 60 in Trappe Drive. The peak developed flow from this basin is 5.4cfs and 12.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D2.13

Basin D2.13 consists of runoff from Lorson Boulevard on the north side. Runoff is directed west in curb/gutter to Design Point 65b in Lorson Boulevard. The peak developed flow from this basin is 4.0cfs and 9.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

See the Developed Conditions Hydrology Calculations in the back of this report and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

5.0 HYDRAULIC SUMMARY

The sizing of the hydraulic structures and detentions ponds were prepared by using the *StormSewers* and *Hydrographs* computer software programs developed by Intellisolve, which conforms to the methods outlined in the "City of Colorado Springs/El Paso County Drainage Criteria Manual". Street capacities and Inlets were sized by Denver Urban Drainage's xcel spreadsheet UD-Inlet.

It is the intent of this drainage report to use the proposed curb/gutter and storm sewer in the streets to convey runoff to detention and water quality ponds then to the East Tributary of Jimmy Camp Creek. Inlet size and location are preliminary only as shown on the storm sewer layout in the appendix. See Appendix C for detailed hydraulic calculations and the storm sewer model.

	Residen	tial Local	Residentia	I Collector	Principa	I Arterial
Street Slope	5-year	100-year	5-year	100-year	5-year	100-year
0.5%	6.3	26.4	9.7	29.3	9.5	28.5
0.6%	6.9	28.9	10.6	32.1	10.4	31.2

Table 1: Street Capacities (100-year capacity is only ½ of street)

0.7%	7.5	31.2	11.5	34.6	11.2	33.7
0.8%	8.0	33.4	12.3	37.0	12.0	36.0
0.9%	8.5	35.4	13.0	39.3	12.7	38.2
1.0%	9.0	37.3	13.7	41.4	13.4	40.2
1.4%	10.5	44.1	16.2	49.0	15.9	47.6
1.8%	12.0	45.4	18.4	50.4	18.0	50.4
2.2%	13.3	42.8	19.4	47.5	19.5	47.5
2.6%	14.4	40.7	18.5	45.1	18.5	45.1
3.0%	15.5	39.0	17.7	43.2	17.8	43.2
3.5%	16.7	37.2	16.9	41.3	17.0	41.3
4.0%	17.9	35.7	16.2	39.7	16.3	29.7
4.5%	19.0	34.5	15.7	38.3	15.7	38.3
5.0%	19.9	33.4	15.2	37.1	15.2	37.1

Note: all flows are in cfs (cubic feet per second)

It is the intent of this report to construct inlets on Fontaine Boulevard located at the ultimate 4-lane curb location so reconstruction of inlets will not be necessary when Fontaine is widened.

Design Point 28

Design Point 28 is located on Weiser Drive north of Pigeon Drive.

(5-year storm) Tributary Basins: C17.1a Upstream flowby:	Inlet/MH Number: Inlet DP28 Total Street Flow: 5.3cfs	
Flow Intercepted: 5.3cfs Inlet Size: 15' type R, on-grade	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, cap	pacity = 9.0cfs, okay	
(100-year storm) Tributary Basins: C17.1a Upstream flowby:	Inlet/MH Number: Inlet DP28 Total Street Flow: 11.56cfs	
Flow Intercepted: 10.36cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 1.2cfs to Inlet DP38	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 38 Design Point 38 is located in the SE corner of Chaplin Drive and Matta Drive.

(5-year storm) Tributary Basins: C17.1 Upstream flowby:	Inlet/MH Number: Inlet DP38 Total Street Flow: 5.9cfs	
Flow Intercepted: 5.9cfs Inlet Size: 15' type R, on-grade	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, cap	acity = 9.0cfs is okay	
(100-year storm) Tributary Basins: C17.1 Upstream flowby: 1.2cfs	Inlet/MH Number: Inlet DP39 Total Street Flow: 14.43cfs	
Flow Intercepted: 11.83cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 2.6cfs to Inlet DP39	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 39 Design Point 39 is located in the SW corner of Chaplin Drive and Matta Drive.

(5-year storm) Tributary Basins: C17.2 Upstream flowby:	Inlet/MH Number: Inlet DP39 Total Street Flow: 8.61cfs	
Flow Intercepted: 8.41cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 0.2cfs to Inlet DP40	
Street Capacity: Street slope = 3.5%, capa	acity = 16.7cfs is okay	
(100-year storm) Tributary Basins: C17.2 Upstream flowby: 24.0cfs	Inlet/MH Number: Inlet DP39 Total Street Flow: 21.53cfs	
Flow Intercepted: 14.93cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 6.6cfs to Inlet DP40	
Street Capacity: Street slope = 3.5%, capacity = 37.2cfs (half street) is okay		

<u>Design Point 50</u> Design Point 50 is located on the south side of Saco Drive just east of Willapa Drive.

(5-year storm) Tributary Basins: D1.1 & D1.2 Upstream flowby:	Inlet/MH Number: Inlet DP50 Total Street Flow: 10.01cfs
Flow Intercepted: 7.34cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 2.7cfs to DP56
Street Capacity: Street slope = 2.2%, ca	pacity = 13.3cfs is okay
(100-year storm) Tributary Basins: D1.1 & D1.2 Upstream flowby:	Inlet/MH Number: Inlet DP50 Total Street Flow: 22.27cfs
Flow Intercepted: 10.77cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 11.5cfs to DP56
Street Capacity: Street slope = 2.2%, ca	pacity = 42.8cfs (half street) is okay

Design Point 51

Design Point 51 is located downstream of Design Point 50 in Saco Drive just west of Willapa Drive and is the flow in the storm sewer. The total flow in the storm sewer (Line 3) is 14.68cfs/21.60cfs in the 5/100-year storm events in the storm sewer.

Design Point 52 Design Point 52 is located on the east side of Chaplin Drive north of Yuba Drive

(<u>5-year storm)</u> Tributary Basins: D1.4+D1.5 Upstream flowby:	Inlet/MH Number: Inlet DP52 Total Street Flow: 15.44cfs
Flow Intercepted: 12.44cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 3.0cfs to DP53
Street Capacity: Street slope = 3.8%, cap	oacity = 16.9cfs is okay
<u>(100-year storm)</u> Tributary Basins: D1.4+D1.5 Upstream flowby:	Inlet/MH Number: Inlet DP52 Total Street Flow: 34.7cfs
Flow Intercepted: 18.8cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 15.9cfs to DP53
Street Capacity: Street slope = 3.8%, cap	oacity = 36cfs (half street) is okay

Design Point 53 Design Point 53 is located at Chaplin Drive and Yuba Drive on the north side of the street.

(5-year storm) Tributary Basins: D1.6, D1.8 Upstream flowby: 3.0cfs	Inlet/MH Number: Inlet DP53 Total Street Flow: 14.65cfs
Flow Intercepted: 14.05cfs Inlet Size: 20' type R, on-grade	Flow Bypassed: 0.6cfs to DP-55
Street Capacity: Street slope = 3.5%, cap	pacity = 16.7cfs, okay
(100-year storm) Tributary Basins: D1.6, D1.8 Upstream flowby: 15.9cfs	Inlet/MH Number: Inlet DP53 Total Street Flow: 41.47cfs
Flow Intercepted: 25.97cfs Inlet Size: 20' type R, on-grade	Flow Bypassed: 15.50cfs to DP55
Street Capacity: Street slope = 3.5%, cap	pacity = 37.2cfs (half street) flow tops crown

Design Point 54 Design Point 54 is located at Lamine Drive and Yuba Drive on the northeast corner

(5-year storm) Tributary Basins: D1.7 Upstream flowby:	Inlet/MH Number: Inlet DP54 Total Street Flow: 7.26cfs
Flow Intercepted: 7.26cfs Inlet Size: 15' type R, on-grade	Flow Bypassed:
Street Capacity: Street slope = 1.2%, cap	pacity = 10 cfs, okay
(100-year storm) Tributary Basins: D1.7 Upstream flowby:	Inlet/MH Number: Inlet DP54 Total Street Flow: 15.5cfs
Flow Intercepted: 12.6cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 3.0cfs to DP55
Street Capacity: Street slope = 1.2%, cap	pacity = 37cfs (half street)

Design Point 55a Design Point 55a is located on the north side of Saco Drive west of Willapa Drive

(5-year storm) Tributary Basins: D1.10 Upstream flowby:	Inlet/MH Number: Inlet DP55a Total Street Flow: 10.18cfs	
Flow Intercepted: 7.38cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 2.8cfs to DP55	
Street Capacity: Street slope = 2.5%, capacity = 14.0cfs, okay		
(100-year storm) Tributary Basins: D1.10 Upstream flowby:	Inlet/MH Number: Inlet DP55a Total Street Flow: 22.63cfs	
Flow Intercepted: 10.83cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 11.80cfs to DP55	
Street Capacity: Street slope = 2.5%, capacity = 40.0cfs (half street) is okay		

Design Point 55 Design Point 55 is located on the east side of Lamine Drive at a low point south of Yuba Drive.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP55 Total Street Flow: 7.8cfs
Flow Intercepted: 7 Inlet Size: 25' type F		Flow Bypassed:
Street Capacity: St	reet slope = 1.9%, cap	pacity = 12.0cfs, okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP55 Total Street Flow: 40.0cfs
Flow Intercepted: Inlet Size: 25' type		Flow Bypassed: 8.3cfs to Inlet DP56
Street Capacity: St	reet slope = 1.9%, cap	oacity = 45cfs (half street) is okay

Design Point 56 Design Point 56 is located on the west side of Lamine Drive at a low point south of Yuba Drive..

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP56 Total Street Flow: 7.2cfs
Flow Intercepted: 7 Inlet Size: 25' type F		Flow Bypassed:
Street Capacity: Street slope = 1.9%, capacity = 12.0cfs, okay		
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP56 Total Street Flow: 29.7cfs
Flow Intercepted:29.7cfsFlow Bypassed:Inlet Size:25' type R, sump		
Street Capacity: Street slope = 1.9%, capacity = 45cfs (half street) is okay		
The trapezoidal overflow swale between the lots is sized for 150cfs, 2.0' deep, 4:1 side slopes, 8' wide bottom, 2% slope, velocity of 8.38cfs, and has a flow depth of 1.34 feet.		

Design Point 57

Design Point 57 is located in a low point in Lamine Drive south of Yuba and is the flow in the pipe to Pond D2 from Lamine Drive. The total pipe flow is 63.6cfs/122cfs in the 5/100 year storm events.

Design Point 58

Design Point 58 is the total flow into Pond D2. The total pond inflow is 118.2cfs/277.1cfs in the 5/100year storm events taken from the full spectrum worksheets.

Design Point 58a

Design Point 58a flow is from Pond D2 which is modeled in the full spectrum excel worksheets. The release rates are directly from the spreadsheet and are less than the existing. There are no ponds in series for this basin. The total pond out flow is 12.5cfs/132.cfs in the 5/100-year storm events from the full spectrum excel worksheets and complies with discharge similar to existing conditions. See Pond D2 for more information.

<u>Design Point 59a</u>

Design Point 59a is located at the south end of future Tillamook Drive in a cul-de-sac

<u>(5-year storm)</u> Tributary Basins: D2.2 Upstream flowby:	Inlet/MH Number: Inlet DP59a Total Street Flow: 2.2cfs	
Flow Intercepted: 2.2cfs Inlet Size: 5' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs, okay		
(100-year storm) Tributary Basins: D2.2 Upstream flowby:	Inlet/MH Number: Inlet DP59a Total Street Flow: 4.8cfs	
Flow Intercepted: 4.8cfs Inlet Size: 5' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 59b

Design Point 59b is located south of Lorson Boulevard under the electric easement and is the flow in the pipe from future Basin D1. The total future pipe flow (Line 27) is 23cfs/60cfs in the 5/100-year storm events.

Design Point 59c

Design Point 59c is located east of Lorson Boulevard and Lamprey Drive and is the flow in the pipe to Design Point 59e. The total pipe flow is 25.7cfs/75.4cfs in the 5/100 year storm events.

Design Point 59d

Design Point 59d is located in the northeast corner of Lorson Boulevard and Lamprey Drive.

(5-year storm) Tributary Basins: D2.1 & D2.3 Upstream flowby:	Inlet/MH Number: Inlet DP59d Total Street Flow: 10.7cfs	
Flow Intercepted: 10.7cfs Inlet Size: 15' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.7%, capacity = 11.5cfs, okay		
(100-year storm) Tributary Basins: D2.1 & D2.3 Upstream flowby:	Inlet/MH Number: Inlet DP59d Total Street Flow: 23.7cfs	
Flow Intercepted:20.3cfsFlow Bypassed:3.7cfs to Inlet DP65bInlet Size:15' type R, sump		
Street Capacity: Street slope = 0.7%, capacity = 34.6cfs (half street) is okay		

Design Point 59e

Design Point 59e is located west of Lorson Boulevard and Lamprey Drive and is the flow in the pipe (Line 24) in Lorson Boulevard flowing west to Trappe Drive. The total pipe flow is 36.4cfs/93.2cfs in the 5/100 year storm events.

<u>Design Point 59f</u> Design Point 59f is located at the SW corner of Lorson Boulevard and Skuna Drive.

(<u>5-year storm)</u> Tributary Basins: D2.4 & D2.5 Upstream flowby:	Inlet/MH Number: Inlet DP59f Total Street Flow: 13.68cfs	
Flow Intercepted: 8.58cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 5.1cfs to Inlet DP60	
Street Capacity: Street slope = 1.9%, capacity Lorson Blvd.= 18.4cfs, okay		
(100-year storm) Tributary Basins: D2.4 & D2.5 Upstream flowby:	Inlet/MH Number: Inlet DP59f Total Street Flow: 30.47cfs	
Flow Intercepted: 12.37cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 18.1cfs to Inlet DP60	
Street Capacity: Street slope = 1.9%, capacity Lorson Blvd. = 50.4cfs (half street) is okay		

Design Point 59g

Design Point 59g is located on Lorson Boulevard west of Skuna Drive and is the flow in the pipe (Line 23) in Lorson Boulevard flowing west to Trappe Drive. The total pipe flow is 45.0cfs/104.2cfs in the 5/100 year storm events.

<u>Design Point 60</u>

Design Point 60 is located in the SE corner of Lorson Boulevard and Trappe Drive

(<u>5-year storm)</u> Tributary Basins: D Upstream flowby:	,	Inlet/MH Number: Inlet DP60 Total Street Flow: 15.8cfs
Flow Intercepted: 7 Inlet Size: 25' type F		Flow Bypassed:
Street Capacity: Street slope = 1.8%, capacity = 18.4cfs, okay		
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	D2.9, D2.12 32.1cfs	Inlet/MH Number: Inlet DP60 Total Street Flow: 55.9cfs
Flow Intercepted: Inlet Size: 25' type		Flow Bypassed: 24.2cfs to Design Point 64
Street Consolity	$t_{\rm rest}$ along $-1.00/$	anasity - EQ (afa (half streat) is skey since half is

Street Capacity: Street slope = 1.8%, capacity = 50.4cfs (half street) is okay since half is from Lorson Blvd and half is from Trappe Drive.

Design Point 61 Design Point 61 is located on Witcher Drive just west of Yocona Drive.

(<u>5-year storm)</u> Tributary Basins: D2.6 & D2.7 Upstream flowby:	Inlet/MH Number: Inlet DP61 Total Street Flow: 10.57cfs	
Flow Intercepted: 7.57cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 3.0cfs to Design Point 62	
Street Capacity: Street slope = 3.1%, capacity = 15.5cfs, okay		
(100-year storm) Tributary Basins: D2.6 & D2.7 Upstream flowby:	Inlet/MH Number: Inlet DP61 Total Street Flow: 23.68cfs	
Flow Intercepted: 11.07cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 12.6cfs to Design Point 62	
Street Capacity: Street slope = 3.1%, capacity = 39.0cfs (half street) is okay		

Design Point 62 Design Point 62 is located on the east side of Volga Drive at Magothy Drive.

-	
<u>(5-year storm)</u> Tributary Basins: D2.8 Upstream flowby:	Inlet/MH Number: Inlet DP62 Total Street Flow: 10.1cfs
Flow Intercepted: 10.1cfs Inlet Size: 10' type R, sump	Flow Bypassed:
Street Capacity: Street slop	be = 1.0%, capacity = 9.0cfs, okay
<u>(100-year storm)</u> Tributary Basins: D2.8 Upstream flowby:	Inlet/MH Number: Inlet DP62 Total Street Flow: 30.3cfs
Flow Intercepted: 16.3cfs Inlet Size: 10' type R, sump	
Street Capacity: Street slop	be = 1.0%, capacity = 37.3cfs (half street) is okay

Design Point 63

Design Point 63 is located in the SE corner of Magothy Drive and Volga Drive and is the flow in the pipe (Line 35) in Magothy Drive flowing west to Trappe Drive. The total pipe flow is 17.67cfs/27.38cfs in the 5/100 year storm events.

Design Point 64 Design Point 64 is located in the SW corner of Lorson Boulevard and Trappe Drive

(<u>5-year storm)</u> Tributary Basins: D2.10 Upstream flowby:	Inlet/MH Number: Inlet DP64 Total Street Flow: 3.2cfs	
Flow Intercepted: 3.2cfs Inlet Size: 25' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.8%, cap	oacity = 18.4cfs, okay	
(100-year storm) Tributary Basins: D2.10 Upstream flowby: 24.2cfs	Inlet/MH Number: Inlet DP64 Total Street Flow: 29.2cfs	
Flow Intercepted: 29.2cfs Inlet Size: 25' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.8%, capacity = 50.4cfs, okay		

Design Point 65

Design Point 65 is located at the SW corner of Lorson Boulevard and Trappe Drive and is the flow in the pipe north (Line 30) to Design Point 65c. The total pipe flow is 36.60cfs/88.3cfs in the 5/100 year storm events.

Design Point 65a Design Point 65a is located on the south side of Lorson Boulevard west of Trappe Drive

(<u>5-year storm)</u> Tributary Basins: D2.11 Upstream flowby:	Inlet/MH Number: Inlet DP65a Total Street Flow: 2.0cfs	
Flow Intercepted: 2.0cfs Inlet Size: 5' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.66%, c	apacity = 10.6 cfs, okay	
(100-year storm) Tributary Basins: D2.11 Upstream flowby:	Inlet/MH Number: Inlet DP65a Total Street Flow: 3.6cfs	
Flow Intercepted: 3.6cfs Inlet Size: 5' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.66%, capacity = 32.1cfs (half street) is okay		

<u>Design Point 65b</u> Design Point 65b is located on the north side of Lorson Boulevard west of Trappe Drive

(5-year storm) Tributary Basins: D2.13 Upstream flowby:	Inlet/MH Number: Inlet DP65b Total Street Flow: 4.2cfs	
Flow Intercepted: 4.2cfs Inlet Size: 5' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.66	%, capacity = 10.6cfs, okay	
(100-year storm) Tributary Basins: D2.13 Upstream flowby: 3.7cfs	Inlet/MH Number: Inlet DP65b Total Street Flow: 12.7cfs	
Flow Intercepted: 12.7cfs Inlet Size: 5' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.66%, capacity = 32.1cfs (half street) is okay		

Design Point 65c

Design Point 65c is located west of Lorson Boulevard and Trappe Drive and is the flow in the pipe (Line 17) north to Pond D2. The total pipe flow is 88.3cfs/174.2cfs in the 5/100 year storm events.

Design Point 70 and 71

Design Point 70 is located on the north side of Lorson Boulevard east of Stingray Lane. Flow at this design point is half of Basin B7.1 which was taken from the Meadows No. 3 final drainage report. The flow captured in the 10' type R inlets is 9.3cfs/19.1cfs in the 5/100 year storm events. This amount was rounded up to 10cfs/20cfs in the 5/100yr storm events. Each inlet will capture half of the total flow.

Design Point 72

Design Point 72 is located on Lorson Boulevard west of Stingray Lane and is the flow in the pipe. The total pipe flow is 10cfs/20cfs in the 5/100 year storm events which matches the allowable flow rate per the Meadows Filing No. 3 final drainage report. Water quality and detention for this basin was also provided by The Meadows Filing No. 3 final drainage report.

This needs to be designed and modeled completely for the interim condition. Provide calculations for both interim (Filing 1 plus undeveloped offsite) and ultimate conditions.

DETENTION AND WATER QUALITY PONDS 6.0

Detention and Storm Water Quality for Lorson Ranch East is required per El Paso County criteria. We have implemented the Full Spectrum approach for detention for Lorson Ranch East per the Denver Urban Drainage Districts specifications. There are two permanent full spectrum ponds proposed for this development. The two full spectrum ponds (Pond C5 and Pond D2) and one interim pond (Interim Pond E2) incorporate storm water quality features and comply with the Lorson Ranch East MDDP. These two ponds have been sized, graded, access roads, outlet pipes, overflow structures are provided with the Lorson Ranch East Early Grading. This final drainage report provides design information for the construction drawings on the outlet structure, trickle channel, and the forebays.

Full Spectrum Pond Construction Requirements

Design calculations for full spectrum Ponds C5 and D2 are included in this report. Rough grading of the ponds is shown on the Early Grading plans for Lorson Ranch East at this time in the Preliminary Plan submittal. The final design will include a 10' wide gravel access road on a 15' wide bench at a maximum 10% slope to the pond bottom. The final design of the full spectrum ponds consists of an outlet structure, storm sewer outfall to the East Tributary, concrete low flow channels, sediment forebays, and overflow weirs to the East Tributary. Soil borings, embankment, slope, and compaction requirements for detention ponds can be found in the geotechnical report for the Lorson Ranch East prepared by RMG Is this pond really necessary for Filing 1? Include

details in report if so.

Detention Pond C5 (Full Spectrum and Hydraflow Design)

This is an on-site permanent full spectrum detention pond that includes water quality and discharges directly into the East Tributary. Pond 25 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes only. The 5-year and 100-year flow rates are taken from the Lorson East MDDP and have been modeled in a hydraulic modeling software. See MDDP (Table 6.2) for pre/post development release rates into the East Tributary at this location. Pond C5 is required to release runoff (5-yr/100-yr) so it closely mimics the pre-developed flow rates into the East Tributary. The outlet structure is a triple CDOT type D outlet in parallel and the overflow spillway is a wier set slightly above the outlet structure so it releases the 5yr/100yr storm events quickly to match predeveloped rates. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas.

• Watershed Ares: 171 acres <-

Provide

- Watershed Imperviousness: 63%
- undeveloped/developed area for interim condiiton.
- Hydrologic Soils Group C/D
- Forebay: 3.51ac-ft (see spreadsheet in appendix) divided between two forebays
- Zone 1 WQCV: 3.298ac-ft, WSEL: 5709.92
- Zone 2 EURV: 9.524ac-ft, WSEL: 5712.27, Top outlet structure set at 5712.60, 3'x18' triple CDOT Type D outlets in parallel.
- (5-yr): 13.06ac-ft, WSEL: 5713.49, 126.3cfs (hydraflow)
- Zone 3 (100-yr): 15.86ac-ft, WSEL: 5714.42, 453.2cfs (hydraflow)
- Pipe Outlet: 48" RCP at 0.5%
- Overflow Spillway: 52' wide bottom, elevation=5713, 4:1 side slopes, flow depth=2.0' at 519cfs inflow, 1' freeboard
- Pre-development release rate into East Tributary=141cfs/458cfs in the 5yr/100 yr storm at this pond outfall (Design Pt. 2, Table 6.2 in MDDP). See Design Point 46 for discussion on flows in creek from this pond
- Pond Bottom Elevation: 5706.00

Desian:	Composite.	WQ/EURV by	/ Full S	pectrum Excel	Worksheets.	5/100vr	by Hydraflow
_ ee.g					,	••••••	

	WQ	EURV	5-yr	100-yr	
Peak Inflow	63.1cfs	181.4cfs	167.5cfs	519.1cfs	
Peak Outflow	1.4cfs	7.3cfs	126.3cfs	453.2cfs	
Ponding Depth	3.92ft	6.27ft	7.49ft	8.42ft	
Stored Volume	3.29ac-ft	9.52ac-ft	13.01ac-ft	15.86ac-ft	
Spillway Stage	7.00ft, 52' wide	Э			
Structure Type:	3'x18' flat top 6.60ft	outlet structure	(cdot type d) wi	th top at stage	

Detention Pond D2 (Full Spectrum Design)

—? Explain.

This is an on-site permanent full spectrum detention pond that includes water quality and discharges directly into the East Tributary. Pond D2 is designed using only the UDCF Full Spectrum spreadsheets and does not include any upstream pond flows. The outlet structure is a standard 4'x20' full spectrum sloped outlet structure and the overflow spillway is a weir set above the outlet structure designed by the full spectrum spreadsheets to match pre-developed rates. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Ares: 89 acres
- Watershed Imperviousness: 55%

• Hydrologic Soils Group C/D

Provide interim and ultimate modeling and narrative.

- Forebay: 1.635ac-ft (see spreadsheet in appendix) divided between two forebays
- Zone 1 WQCV: 1.53ac-ft, WSEL: 5697.52
- Zone 2 EURV: 3.95ac-ft, WSEL: 5699.14, Top EURV set at 5699.60, 4'x20' outlet with 10:1 slope, 8.9cfs
- (5-yr): 5.13ac-ft, WSEL: 5699.81, 12.5cfs
- Zone 3 (100-yr): 8.73ac-ft, WSEL: 5701.68, 132cfs
- Pipe Outlet: 54" RCP at 0.5% with no restrictor plate
- Overflow Spillway: 30' wide bottom, elevation=5702.00, 4:1 side slopes, flow depth=1.64' at 277.1cfs
- Pre-development release rate into creek compliance from full spectrum pond spreadsheets
- Pond Bottom Elevation: 5695.00

•

Design: Full Spectrum Excel Worksheets Only

	WQ	EURV	5-yr	100-yr								
Peak Inflow	32.1cfs	90.1cfs	118.2cfs	277.1cfs								
Peak Outflow	0.6cfs	8.9cfs	12.6cfs	132cfs								
Ponding Depth	2.73ft	4.14ft	4.81ft	6.68ft								
Stored Volume	1.53ac-ft	5.13ac-ft	8.73ac-ft									
Spillway Stage	7.00ft, 30' wide	7.00ft, 30' wide										
Structure Type: 4'x20' outlet structure with 10:1 slopes. Top at stage 6.60ft												

Water Quality Design

Is this buffer to be constructed and maintained in accordance with

Water Quality Design Water quality will be provided by the two permanent extended detention basins for 98.42% of the 126.25acre site. Approximately 1.58% of the total 126.25-acre final plat area consists of backyards that drain directly to the East Tributary over a grass buffer. Final platting of these areas includes a deviation from county criteria and a grass buffer bmp. Water Quality for the "C" and "D" basins is provided by the two on-site full spectrum ponds Pond C5 and Pond D2.

7.0 DRAINAGE AND BRIDGE FEES

Lorson Ranch East is located within the Jimmy Camp Creek drainage basin which is currently a fee basin in El Paso County. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land as part of the plat recordation process.

Lorson Ranch Metro District will compile and submit to the county on a yearly basis the Drainage and bridge fees for the approved plats, and shall show all credits they have received for the same yearly time frame.

Lorson East Filing No. 1 contains 126.25 acres. The 126.25 acres will be assessed Drainage, Bridge and Surety fees. The 2018 drainage fees are \$17,197, bridge fees are \$804 and Drainage Surety fees are \$7,285 per impervious acre per Resolution 17-348. The drainage and bridge fees are calculated when the final plat is submitted. The fees are due at plat recordation. The following table details the drainage fees for the platted area.

re-calculate

Type of Land Use	Total Area	Imperviousness	Drainage	Bridge	Surety Fee
Residential Area	99.51	55%	\$941,200	\$44,003	\$398,711
Open Space, Landscape Tracts, Detention Ponds, Jimmy Camp Creek	26.74	2%	\$9,196	\$430	\$3,896
(γ	Total	\$950,396	\$44,433	\$402,607

Table 1: Drainage/Bridge Fees

Table 7.1: Public Drainage Facility Costs (non-reimbursable)

ltem	Quantity	Unit	Unit Cost	Item Total
Rip Rap	100	CY	\$50/CY	\$5,000
Inlets/Manholes	34	EA	\$3000/EA	\$102,000
18" Storm	570	LF	\$35	\$19,950
24" Storm	1263	LF	\$40	\$50,520
30" Storm	260	LF	\$45	\$11,700
36" Storm	1840	LF	\$55	\$101,200
42" Storm	52	LF	\$65	\$3,380

48" Storm	rm 270		\$85	\$22,950
			Subtotal	\$316,700
			Eng/Cont (15%)	\$47,505
			Total Est. Cost	\$364,205

Table 7.2: Lorson Ranch Metro District Drainage Facility Costs (non-reimbursable)

Item	Quantity	Unit	Unit Cost	Item Total
Full Spectrum Ponds and Outlet	2	LS	\$150,000	\$300,000
			Subtotal	\$300,000
			Eng/Cont (15%)	\$45,000
			Total Est. Cost	\$345,000

8.0 FOUR STEP PROCESS

The site has been developed to minimize wherever possible the rate of developed runoff that will leave the site and to provide water quality management for the runoff produced by the site as proposed on the development plan. The following four step process should be considered and incorporated into the storm water collection system and storage facilities where applicable.

Step 1: Employ Runoff Reduction Practices

Lorson Ranch East Filing No. 1 has employed several methods of reducing runoff.

- The street configuration was laid out to minimize the length of streets. Many streets are straight and perpendicular resulting in lots with less wasted space.
- East Tributary of Jimmy Camp Creek with a natural sand bottom and vegetated slopes has been preserved through this site
- Lots on the west side of the site discharge runoff westward over an open space buffer prior to discharge into the creek
- A buffer tract has been added along the SDS watermain easement which reduces impervious areas
- Construct Full Spectrum Detention Pond C5 and D2. The full spectrum detention mimics existing storm discharges

Step 2: Implement BMP's that Slowly Release the Water Quality Capture Volume

Treatment and slow release of the water quality capture volume (WQCV) is required. Lorson Ranch East Filing No. 1 will construct two full spectrum stormwater detention pond which includes Water Quality Volumes and WQ outlet structures.

Step 3: Stabilize Drainageways

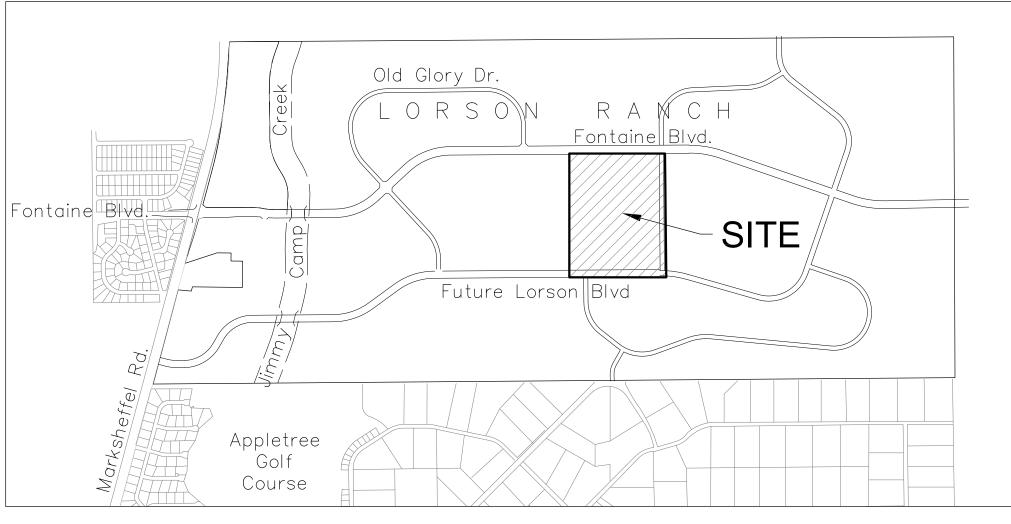
East Tributary of Jimmy Camp Creek is a major drainageway located within this site. In 2014 the East Tributary of JCC was reconstructed and stabilized per county criteria. The design included a natural sand bottom and armored sides.

Step 4: Implement Site Specific & Source Control BMP's

There are no potential sources of contaminants that could be introduced to the County's MS4. During construction source control will be provided with the proper installation of erosion control BMPs to limit erosion and transport of sediment. Area disturbed by construction will be seeded and mulched. Cut and fill slopes will be reseeded, and the slopes equal to or greater than three-to-one will be protected with erosion control fabric. Silt fences will be placed at the bottom of re-vegetated and rough graded slopes. Inlet protection will be used around proposed inlets. In addition, temporary sediment basins will be constructed so runoff will be treated prior to discharge. Construction BMPs in the form of vehicle tracking control, sediment basins, concrete washout area, rock socks, buffers, and silt fences will be utilized to protect receiving waters.

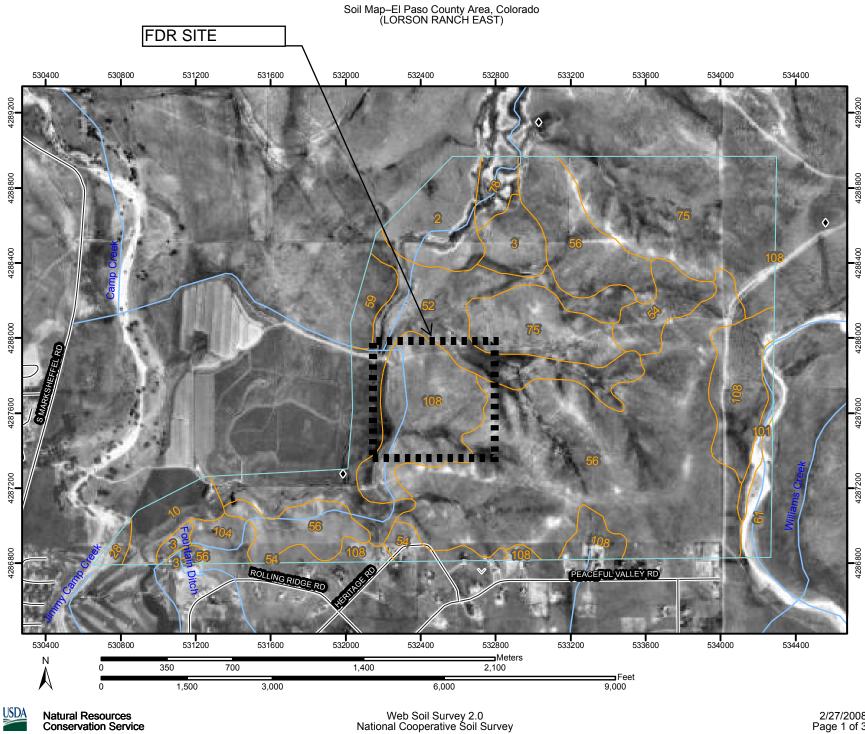
9.0 CONCLUSIONS

This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:

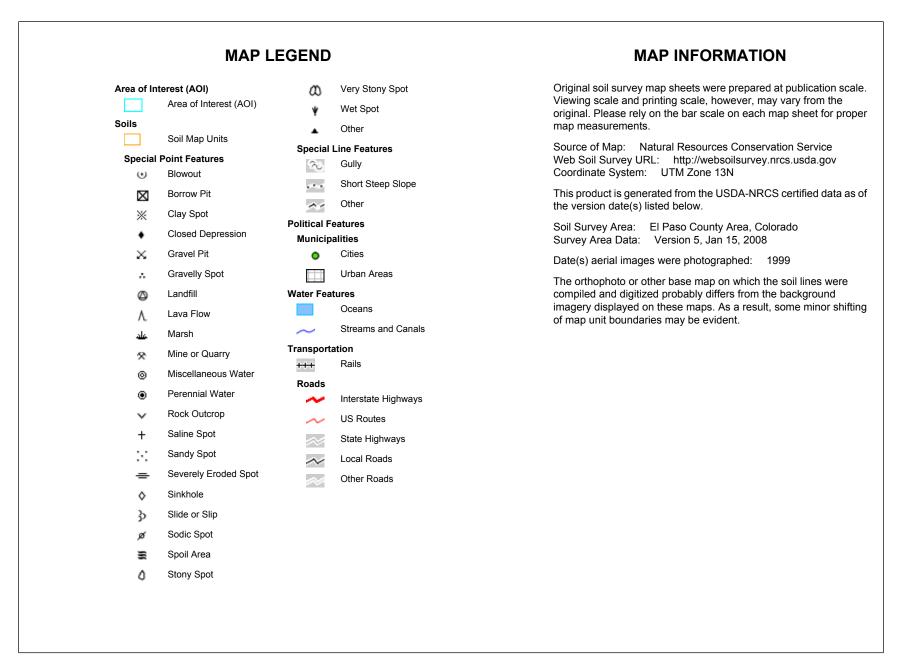

- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- The East Tributary of Jimmy Camp Creek has been reconstructed within this study area
- Bridges over the East Tributary will be required at Lorson Boulevard and Fontaine Boulevard and have been previously designed by Kiowa Engineering providing access to this site.
- Detention and water quality for this site area will be provided in two permanent ponds

10.0 REFERENCES

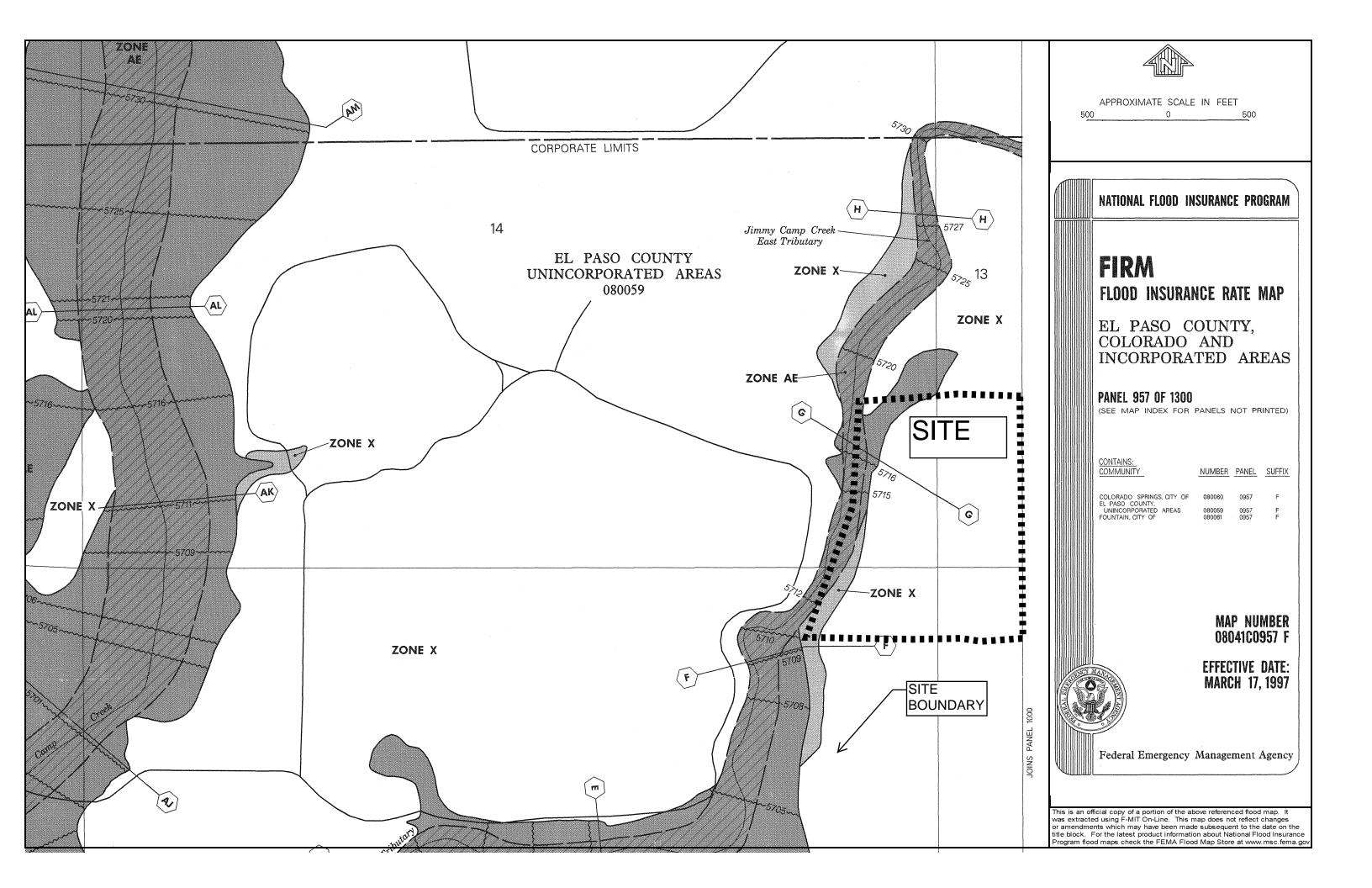
- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM, dated November, 1991
- 2. Soil Survey of El Paso County Area, Colorado by USDA, SCS
- 3. Jimmy Camp Creek Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
- 4. City of Colorado Springs "Drainage Criteria Manual, Volume 2
- 5. El Paso County "Engineering Criteria Manual"
- 6. Lorson Ranch East MDDP, June 30, 2017 by Core Engineering.
- 7. Final Drainage Report for Fontaine Boulevard, Old Glory Drive, and Marksheffel Road Phase 1 Improvements, Dated February 6, 2006, Revised September 7, 2006, by Pentacor Engineering.
- 8. Final construction plans "Fontaine Boulevard and East Fork Jimmy Camp Creek Channel Design", Dated March 10, 2017, by Kiowa Engineering Corporation
- 9. El Paso County Resolution #15-042, El Paso County adoption of Chapter 6 and Section 3.2.1 of the City of Colorado Springs Drainage Criteria Manual dated May, 2014.
- 10. Kiowa Engineering Corporation "Final Bridge and Channel Design Report, CDR 16-009" revised August 24, 2017
- 11. Lorson Ranch East MDDP prepared by Core Engineering Group, dated November 27, 2017
- 12. Lorson Ranch East PDR prepared by Core Engineering Group, dated December 18, 2017
- 13. Final Drainage Report for Fontaine Boulevard prepared by Core Engineering Group, Reference CDR183, dated December 20, 2017

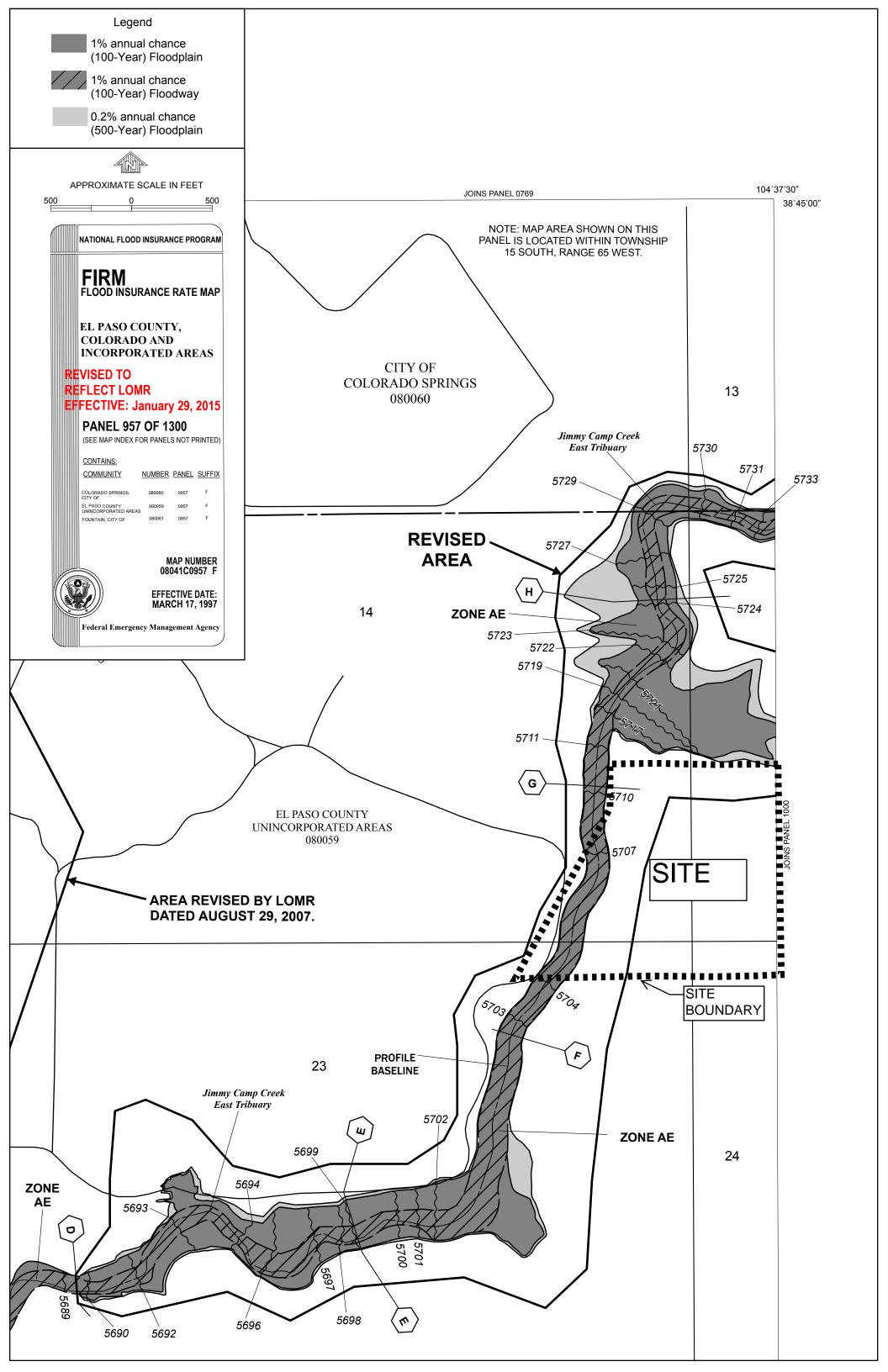

Address maintenance access to EFJCC.

APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP



LORSON RANCH EAST FILING NO. 1




2/27/2008 Page 1 of 3

Map Unit Legend

	El Paso County Area, C	Colorado (CO625)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
2	Ascalon sandy loam, 1 to 3 percent slopes	54.4	4.2%
3	Ascalon sandy loam, 3 to 9 percent slopes	32.6	2.5%
10	Blendon sandy loam, 0 to 3 percent slopes	29.0	2.2%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	5.5	0.4%
52	Manzanola clay loam, 1 to 3 percent slopes	180.3	14.0%
54	Midway clay loam, 3 to 25 percent slopes	46.2	3.6%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	476.6	37.0%
59	Nunn clay loam, 0 to 3 percent slopes	16.8	1.3%
61	Olney sandy loam, 3 to 5 percent slopes	18.8	1.5%
75	Razor-Midway complex	213.9	16.6%
78	Sampson loam, 0 to 3 percent slopes	16.4	1.3%
101	Ustic Torrifluvents, loamy	11.3	0.9%
104	Vona sandy loam, 1 to 3 percent slopes	17.4	1.4%
108	Wiley silt loam, 3 to 9 percent slopes	170.2	13.2%
Totals for Area of Interest (A	OI)	1,289.3	100.0%

Land Use or Surface	Percent	Runoff Coefficients											
Characteristics	Impervious	2-y	2-year		rear	10-year		25-year		50-year		100-year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial								-					
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

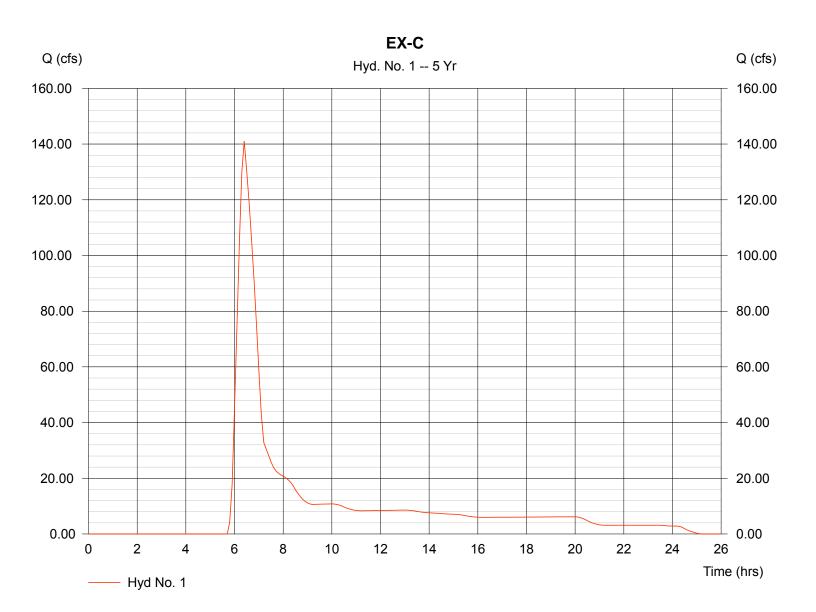
One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Standard Form SF-2. Storm ENGINEERING GROUP Calculated By: Leonard Beasley Date: June, 2017 Checked By: Leonard Beasley									Draina				Job No Projec Desigr	o: <u>100.0</u> t: <u>Lorsc</u> i Storm:	<u>13</u> on Rar	<u>nch Ea</u> ear Ev	st MDD	isting (Conditic		
	Point				ect Run	off					Runoff		St	reet		Pipe			ravel Tin	ne	6
Street or Basin	Design Po	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA	.–	Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-A1			4.28	0.08	18.6	0.34	3.20	1.1													
EX-C	DP-2		452.97	CN	= 67					SC	:S =	141.0									
EX-D	DP-3		109.55	0.12	34.7	13.15	2.26	29.7													
EX-E	DP-4		187.30	CN	=73					SC	:S =	100.0									

		IG GRO		Date: <u>A</u> Checke	ated By: April 28, ed By: <u>L</u>	<u>Leonar</u> 2016 eonard	d Beasl	ey	Draina				Job Nc Project Design	: <u>100.0</u> :: <u>Lorsc</u> Storm:	<u>13</u> on Rar	<u>ich Ea</u> Year	st MDD	Existin	g Condi		
	÷			Dir	ect Run	off				Total I	Runoff		Str	reet		Pipe	;	Т	ravel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	СА		Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
	_	Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-A1			4.28	0.35	18.6	1.50	5.37	8.0													
EX-C	DP-2		452.97	CN	= 67					SC	S =	458.0									
																					$\left - \right $
EX-D	DP-3		109.55	0.40	34.7	43.82	3.80	166.5													
EX-E	DP-4		187.30	CN	= 73					SC	S =	280.0									

Hydrograph Plot


Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

EX-C

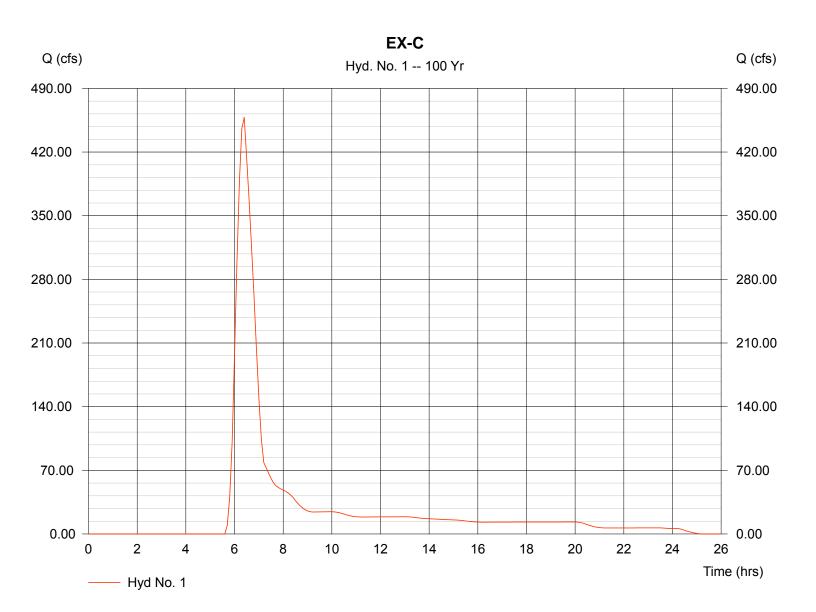
Hydrograph type	 SCS Runoff 5 yrs 452.970 ac 0.0 % USER 2.80 in 	Peak discharge	= 140.99 cfs
Storm frequency		Time interval	= 6 min
Drainage area		Curve number	= 69
Basin Slope		Hydraulic length	= 7400 ft
Tc method		Time of conc. (Tc)	= 49.50 min
Total precip.		Distribution	= Custom
Total precip.	= 2.80 in= CSpring_IIA-6min.cds	Distribution	= Custom
Storm duration		Shape factor	= 484

Hydrograph Volume = 905,484 cuft

1

Monday, Jun 5 2017, 4:1 PM

Hydrograph Plot


Hydraflow Hydrographs by Intelisolve

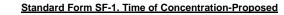
Hyd. No. 1

EX-C

Hydrograph type	= SCS Runoff	Peak discharge	= 458.13 cfs
Storm frequency	= 100 yrs	Time interval	= 6 min
Drainage area	= 452.970 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 7400 ft
Tc method	= USER	Time of conc. (Tc)	= 49.50 min
Total precip.	= 4.40 in	Distribution	= Custom
Storm duration	= CSpring_IIA-6min.cds	Shape factor	= 484

Hydrograph Volume = 2,456,980 cuft

3


Monday, Jun 5 2017, 4:1 PM

		NG GROL	IP	Date: A	ited By: lugust 1 ed By: Lo ect Runc	<u>6, 2016</u> eonard	, June 3	30, 201	<u>7</u>	Total	Runoff		Project Design	: <u>100.04</u> :: <u>Lorso</u> Storm: :eet	n Rancl	<u>n East P</u> r Event Pipe	Prelimin , Prop o	osed Co	nage ondition avel Tir	<u>s</u>
Street or Basin	Design Point	Area Design	p Area (A)	Runoff Coeff. (C)		CA	 in/hr	O cfs	្ន min	Σ (CA)	 in/hr	O cfs	Slope %	sjo Flow	sjo Flow	Slope %	i Pipe Size	t Length	Aclocity ft/sec	# min
C17.1a			2.81	0.49	12.11	1.38	3.84	5.3												
C17.1			2.68	0.49	7.69	1.31	4.52	5.9												
C17.2			4.11	0.49	9.19	2.01	4.26	8.6												
C17.3			2.21	0.49	9.78	1.08	4.16	4.5												
C17.4			1.98	0.49	17.58	0.97	3.28	3.2												
C17.5			3.72	0.49	13.41	1.82	3.69	6.7												
C17.6			1.04	0.49	13.89	0.51	3.64	1.9												
C17.7			2.68	0.49	7.62	1.31	4.54	6.0												
C17.7-2 yr sto	orm		2.68	0.04	7.62	0.11	4.54	0.5												
C17.8			1.52	0.55	12.41	0.84	3.81	3.2												
C17.9			1.73	0.90	5.65	1.56	4.99	7.8												
C17.10			2.34	0.90	9.34	2.11	4.23	8.9												
D1.1			5.09	0.49	18.38	2.49	3.22	8.0												
D1.2			1.10	0.49	6.86	0.54	4.69	2.5												
D1.3			0.86	0.49	10.65	0.42	4.03	1.7												
D1.4			2.80	0.49	12.39	1.37	3.81	5.2												L
D1.5			5.15	0.49	9.43	2.52	4.22	10.6												
D1.6			5.10	0.49	16.74	2.50	3.36	8.4												
D1.7			3.50	0.49	10.40	1.72	4.07	7.0												
D1.8			1.70	0.49	12.37	0.83	3.81	3.2												
D1.9			2.20	0.49	12.70	1.08	3.77	4.1												<u> </u>
D1.10			5.50	0.49	13.39	2.70	3.69	9.9												
D1.11			1.40	0.49	12.38	0.69	3.81	2.6												
D1.12			4.45	0.24	14.08	1.07	3.62	3.9												<u> </u>
D2.1			3.14	0.49	14.87	1.54	3.53	5.4												
D2.2			1.11	0.49	11.93	0.54	3.86	2.1												
D2.3			2.80	0.27	14.09	0.76	3.61	2.7												
D2.4			3.33	0.29	13.48	0.97	3.68	3.6												
D2.5			3.93	0.49	7.40	1.93	4.58	8.8												
D2.6			2.13	0.49	10.37	1.04	4.07	4.3												
D2.7			2.98	0.49	7.22	1.46	4.62	6.7	<u> </u>											

		ig grou	JP	Calcula Date: <u>A</u> Checke Dir	ated By: August 1 ed By: <u>L</u> ect Runc	Leonar 6, 2016 eonard	<u>d Beasle</u> <u>), June 3</u> Beasley	<u>ev</u> 30, 201 (7	Total	Runoff		Job No Projec Desigr St	o: <u>100.04</u> t: <u>Lorso</u> n Storm: reet	<u>40</u> <u>n Ranc'</u> 5 - Yea	<u>h East F</u> ar Event Pipe	<u>^{>}relimin</u> t, Propo	<u>ary Drai</u> 2sed Co	inage onditions ravel Tim	<u>s</u> ne	Т
Street or Basin	Design Point	Area Design	_	Runoff Coeff. (C)	tc (CA	 in/hr	O cfs	ې min	Σ (CA)	 in/hr	O cfs	Slope %	Street Flow Flow	Design Flow		u: Pipe Size	t Length	Celocity ft/sec	tt	
D2.8			3.70	0.49	min. 9.24	1.81	4.25	7.7			01/11	615	/υ	015	615	70				min	
D2.9			3.15	0.49	14.83	1.54	3.54	5.5							 	 T		 	 T		╞
D2.10			0.80	0.80	6.24	0.64	4.84	3.1							<u> </u>		<u> </u>				╞
D2.11			0.40	0.90	3.68	0.36	5.63	2.0											<u> </u>		╞
D2.12			2.78	0.49	11.27	1.36	3.95	5.4											$\left \right $		+
D2.13			2.51	0.49	17.67	1.23	3.28	4.0					<u> </u>						$\left - \right $		+
D1-ex			17	0.15	17.78	2.55	3.27	8													+
	<u> </u>	— –	[Ē	-		-					-							ļ	
					$\left \right $					<u> </u>										ļ	
			 		$\left \right $	<u> </u>							-							 	ļ
						<u> </u>										ļ				 	+
			\vdash			<u> </u>														───	+
														<u> </u>	<u> </u>		<u> </u>		ļ]	 	ļ
														<u> </u>	<u> </u>		<u> </u>		ļ]	 	ļ
														<u> </u>	<u> </u>		<u> </u>	<u> </u>	ļ]	 	ļ
		├ ───┦	 							<u> </u>											F
			 	i		 				 											F
			 	i		 				 				+							T
			 	i		 		ļ		 				+							t
			 	i		 		ļ													t
	 		 																		t
		<u> </u>	 							 											ł
	i		 			<u> </u>		<u> </u>													F
	i		 			<u> </u>		<u> </u>													t
			 			<u> </u>											-				T
			 																		t
			 			<u> </u>															T
			 																		t
			 			<u> </u>		<u> </u>													l
			 			<u> </u>				<u> </u>											ļ
			 			<u> </u>		<u> </u>					-								Ī
			 			<u> </u>				<u> </u>											Ī
			 			<u> </u>														 	T
		'	1			1		I		1					<u> </u>			<u> </u>	<u> </u>		+

	ORE				<u>Stand</u> ;	ard For	<u>m SF-2</u>	. Storm	Draina	<u>qe Syst</u>	tem Desi	ign (Ra	tional N	<u>/lethod </u>	Proced	<u>ure)</u>					
	INEERI	ING GRO		Date: A	ated By: <u>August 1</u>	16, 2016	6, June 3	30, 2017	7				Project	lo: <u>100.04</u> ct: <u>Lorso</u>	on Rancl	<u>ch East</u>	Prelimir	nary Dra	<u>iinage</u>		
		Τ		Dire	ed By: <u>L</u> rect Run	eonaru off	Beasie	<u>¥</u>		Total	I Runoff			n Storm: treet	<u>100 - 1</u>	Pipe			ravel Tir		Ţ'
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)		CA		σ	tc	Σ (CA)		a	Slope	Street Flow		Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.	<u> </u>	in/hr	cfs	min	<u> </u>	in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
			+			<u> </u>				<u> </u>			-								
C15.14		+	1.32	0.65	8.11	0.86	7.46	6.4						+			+	+			
C15.15		<u> </u>	4.02	0.65	13.72	2.61	6.14	16.0		<u> </u>				+			+	+			<u> </u> !
C17.1a		+	2.81	0.65	12.11	1.83	6.45	11.8		<u> </u>			-	<u> </u>							
C17.1		+	2.68		7.69	1.74	7.59	13.2		<u> </u>		$\left \right $	-	<u> </u>				<u> </u>			!
C17.2		+	4.11	0.65	9.19	2.67	7.15	19.1			+		-		<u> </u>						<u> </u>
C17.3	 		2.21	0.65	9.78	1.44	6.99	10.0					-				+		+		-
C17.4	l		1.98	0.65	17.58	1.29	5.51	7.1						+			+	+	+		
C17.5			3.72	0.96	13.41	3.57	6.19	22.1						+	-		+		+		
C17.6	 		1.04	0.96	13.89	1.00	6.10	6.1		<u> </u>	 	<u> </u>		+-	-	-	+	+	+		-
C17.7	ł	_	2.68		7.62	1.74	7.62			 	 	<u> </u>		+			+	+	+		
C17.8	 	<u> </u>	1.52							 	 -		_	+	<u> </u>		+	<u>+</u>	+		
C17.9	 		1.73	0.96	5.65	1.66	8.37	13.9	↓	 	- -		_	+			+	+	+		
C17.10	i		2.34	0.96	9.34	2.25	7.10	16.0													
	I																				
D1.1			5.09	0.65	18.38	3.31	5.40	17.9							—			—			F
D1.2	I	<u> </u>	1.10	0.65	6.86	0.72	7.88	5.6		<u> </u>	 _			+		-	+	-	+		
D1.3	I	<u> </u>	0.86						ا ا	<u> </u>	I	<u> </u>		+			+	+	+		
D1.4	 	<u> </u>	2.80							<u> </u>	I			+			+	\vdash			
D1.5	l		5.15				7.08			 	 -			+			+	+			
D1.6			5.10							<u> </u>			-	+		<u> </u>	+		+		
D1.7	I		3.50							<u> </u>			_	1							
D1.8	[1.70				6.40			<u> </u>		+	_								
D1.9 D1.10		-	2.20 5.50							<u> </u>	-		-				T		T		
D1.10			1.40				-			<u> </u>											
D1.12		+	4.45]	<u> </u>	+	-	-								
										<u> </u>			-		-			 			<u> </u>
D2.1			3.14	0.65	14.87	2.04	5.93	12.1					- 	+	-	<u> </u>	+				
D2.2			1.11	0.65	11.93	0.72	6.49	4.7					1	+			+	+			
D2.3			2.80	0.57	14.09	1.60	6.07	9.7					-	+			+	+			

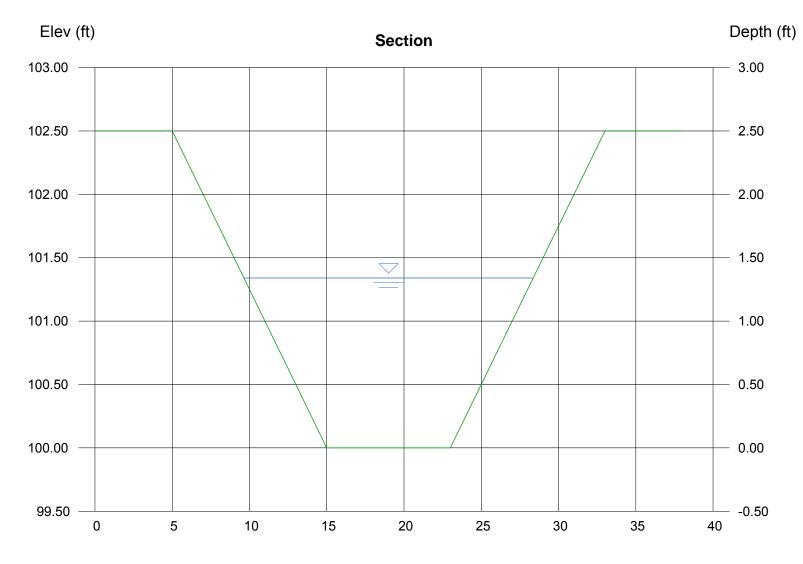
	JINEERI	NG GROI		Date: A	ated By: August 10	6,2016	3, June 3	30, 201	7				Projec	o: <u>100.0</u> ₄ t: <u>Lorso</u>	n Rancl	h East F	Prelimin	nary Dra	inage		
,	. 			Checke	ed By: <u>Le</u>	eonard	Beasley	/	-	Total	Dunoff		Desigr	n Storm:	<u> 100 - Y</u>	ear Eve	ent, Pro	oposed	Conditi	ons	—
	2int				ect Rund	off					Runoff			reet		Pipe	e,		ravel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA	.—	a	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	1
D2.4	i		3.33	0.58	13.48	1.93	6.18	11.9						 							E
D2.5	1		3.93	0.65	7.40	2.55	7.69	19.6					<u> </u>				1	<u> </u>			F
D2.6	1		2.13	0.65	10.37	1.38	6.84	9.5													Ļ
D2.7			2.98	0.65	7.22	1.94	7.75	15.0													Ļ
D2.8	Ī		3.70	0.65	9.24	2.41	7.13	17.2													Ļ
D2.9	[3.15	0.65	14.83	2.05	5.94	12.2													<u> </u>
D2.10			0.80	0.90	6.24	0.72	8.12	5.8													L
D2.11			0.40	0.96	3.68	0.38	9.45	3.6													
D2.12			2.78		11.27	1.81	6.63	12.0													
D2.12			2.51			1.63	5.50	9.0					-								
								•••													
	<u> </u>	<u> </u>	<u> </u>	\vdash									-	T	T	「	T	T	T		[
		\square		<u> </u>									$\left[\right]$	\top			Γ_		\square		Ť_
														$\left \right $							F
	ĺ		P	rov	ida	int	orir		ff_S		220	n	-								t
	ĺ			alcu	-Lat	-11-14 	5111		11-5		Jasi	11									╞
	t			ALL	Han	(OL)	R											1	1 .		
	ļ				ulat		9.						-								
							5.						-								
													-								
													-								
									· · · · · · · · · · · · · · · · · · ·												

Calculated By: <u>Leonard Beasley</u> Date: <u>August 16, 2016, June 30, 2017</u> Checked By: <u>Leonard Beasley</u> Job No: <u>100.040</u> Project: <u>Lorson Ranch East Preliminary Drainage</u>

	<u></u>				Checked			<u>Y</u>					tc Check	(urbanized	Final tc
	Sub-Ba	sin Data	NDOG		tial Overla			LENGTH		avel Time	(t t)		Ba	sins)	
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C15.4	0.49	1.25	15.0	91.00	7.14%	0.28	5.49	100.0	2.60%	1.41	1.18				
			20.0					406.0	2.02%	2.84	2.38	9.05	597.00	13.32	9.05
C15.5	0.49	2.90	20.0	35.00	2.00%	0.11	5.18	979.0	3.04%	3.49	4.68	9.86	1014.00	15.63	9.86
C15.6	0.49	1.80	15.0	59.00	1.36%	0.13	7.64	100.0	2.00%	2.12	0.79				
			20.0					731.0	1.87%	2.73	4.45	12.88	890.00	14.94	12.88
C15.7	0.49	2.07	20.0	39.00	2.05%	0.12	5.43	966.0	1.63%	2.55	6.31	11.73	1005.00	15.58	11.73
C15.8	0.40	3.76	15.0	100.00	7.00%	0.25	6.65	89.0	11.35%	5.05	0.29				
			15.0					463.0	0.60%	1.16	6.64				
			20.0					240.0	1.08%	2.08	1.92	15.51	892.00	14.96	15.51
C15.9	0.49	2.27	15.0	53.00	1.20%	0.12	7.55	96.0	3.02%	2.61	0.61				
			20.0					8.6	1.61%	2.54	0.06	8.22	157.55	10.88	8.22
C15.10	0.49	0.60	15.0	100.00	2.20%	0.20	8.49	37.0	2.20%	2.22	0.28				
			20.0					160.0	1.51%	2.46	1.09	9.85	297.00	11.65	9.85
C15.11	0.49	3.20	20.0	74.00	4.19%	0.21	5.90	1105.0	2.63%	3.24	5.68	11.58	1179.00	16.55	11.58
C15.12	0.49	0.61	15.0	100.00	2.16%	0.20	8.54	34.0	2.16%	2.20	0.26				
			20.0					321.0	1.00%	2.00	2.68	11.47	455.00	12.53	11.47
C15.13	0.49	2.35	20.0	52.00	2.12%	0.14	6.20	967.0	2.32%	3.05	5.29	11.49	1019.00	15.66	11.49
C15.14	0.49	1.32	20.0	33.00	1.82%	0.11	5.19	595.0	2.89%	3.40	2.92	8.11	628.00	13.49	8.11
C15.15	0.49	4.02	20.0	100.00	2.88%	0.21	7.77	1111.0	2.42%	3.11	5.95	13.72	1211.00	16.73	13.72
C17.1a	0.49	2.81	20.0	90.00	2.00%	0.18	8.31	733.0	2.58%	3.21	3.80	12.11	823.00	14.57	12.11
C17.1	0.49	2.68	15.0	28.00	18.57%	0.21	2.22	160.0	2.88%	2.55	1.05				
			20.0					530.0	1.00%	2.00	4.42	7.69	718.00	13.99	7.69
C17.2	0.49	4.11	20.0	33.00	2.00%	0.11	5.03	903.0	3.27%	3.62	4.16	9.19	936.00	15.20	9.19
C17.3	0.49	2.21	15.0	100.00	8.40%	0.31	5.46	152.0	4.47%	3.17	0.80				
			20.0					416.0	0.97%	1.97	3.52	9.78	668.00	13.71	9.78
C17.4	0.49	1.98	20.0	36.00	2.00%	0.11	5.26	1579.0	1.14%	2.14	12.32	17.58	1615.00	18.97	17.58
C17.5	0.49	3.72	15.0	66.00	7.73%	0.24	4.56	77.0	4.63%	3.23	0.40				
			20.0					1050.0	1.07%	2.07	8.46	13.41	1193.00	16.63	13.41
C17.6	0.49	1.04	20.0	94.00	1.06%	0.15	10.47	527.0	1.65%	2.57	3.42	13.89	621.00	13.45	13.89
C17.7	0.49	2.68	15.0	90.00	4.44%	0.23	6.39	107.0	0.93%	1.45	1.23	7.62	197.00	11.09	7.62
C17.8	0.55	1.52	20.0	100.00	3.00%	0.24	6.91	643.0	0.95%	1.95	5.50	12.41	743.00	14.13	12.41
C17.9	0.90	1.73	20.0	31.00	2.00%	0.32	1.60	464.0	0.91%	1.91	4.05	5.65	495.00	12.75	5.65
C17.10	0.90	2.34	20.0	45.00	2.00%	0.39	1.93	723.0	0.66%	1.62	7.42	9.34	768.00	14.27	9.34
D1.1	0.49	5.09	20.0	100.00	1.50%	0.17	9.63	1484.0	2.00%	2.83	8.74	18.38	1584.00	18.80	18.38
D1.2	0.49	1.10	15.0	65.00	7.85%	0.24	4.50	81.0	2.72%	2.47	0.55				

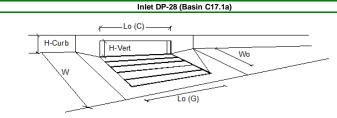
Standard Form SF-1. Time of Concentration-Proposed

Calculated By: <u>Leonard Beasley</u> Date: <u>August 16, 2016, June 30, 2017</u> Checked By: <u>Leonard Beasley</u> Job No: <u>100.040</u> Project: <u>Lorson Ranch East Preliminary Drainage</u>


BASIN AREA NRCS LENGTH SLOPE VELOCITY LENGTH SLOPE VELOCITY Computed TOTAL Regional tc USDCM or C ₅ (A) Convey. (L) (S) (V) Ti (L) (S) (V) Tt tc LENGTH tc=(L/180)+10			·				By: <u>Leona</u>		Y					tc Check	(urbanized	Final tc
m c L M b C L M b C L M C L M C L M C L M C L M D C L <th< td=""><td></td><td>Sub-Ba</td><td></td><td>NIDCC</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td>(tt)</td><td>Commuted</td><td>Ba</td><td>sins)</td><td></td></th<>		Sub-Ba		NIDCC			•					(tt)	Commuted	Ba	sins)	
D13 0.48 0.28 100.00 2.60% 0.21 8.03 4200 1.79% 2.68 2.82 10.65 520.00 12.89 10.65 D14 0.40 2.80 15.0 100.00 1.60% 0.18 9.43 33.0 2.42% 2.33 0.24 1.239 715.00 13.87 12.39 D15 0.40 5.15 20.0 9.00 1.44% 0.16 9.21 1210 2.51% 3.17 7.47 16.74 151.00 18.39 16.49 D1.6 0.49 5.10 2.00 9.00 1.44% 0.11 71.47 16.74 16.40 978.00 15.33 16.40 D1.7 0.49 1.70 2.00 45.00 1.11% 0.11 71.41 10.40 2.59 5.23 12.37 10.40.00 15.83 12.37 D1.10 0.49 2.00 4.00% 0.20 7.00% 13.60 14.45 3.10 1.50 1.11	or	C ₅	(A)		(L)	(S)	(V)	ti	(L)	(S)	(∨)		tc	LENGTH	tc=(L/180)+10	Recommended tc=ti+tt (min)
D14 0.49 2.80 15.0 1000 1.80% 0.18 9.43 33.0 2.42% 2.33 0.24 1.50 0.50 1.44% 0.16 9.26 1.421 2.51% 3.17 7.47 16.74 1.510 1.60 1.74 0.17 0.43 5.0 0.00 1.23% 0.33 4.56 107.0 3.74% 2.49 0.61 4.40 978.00 158.3 10.40 0.18 0.49 1.70 2.00 4500 1.11% 0.11 7.14 1040 2.65% 1.20 1.33 10.40 1.63 12.37 0.10 0.49 5.00 2.00 7.00 1.35 14.23 1.00.00 1.55% 12.39				20.0					309.0	2.01%	2.84	1.82	6.86	455.00	12.53	6.86
Image: bord bord bord bord bord bord bord bord	D1.3	0.49	0.86	20.0	100.00	2.60%	0.21	8.03	420.0	1.79%	2.68	2.62	10.65	520.00	12.89	10.65
D15 0.49 5.15 2.00 36.00 4.2% 0.15 4.11 1132.0 31.4% 3.84 5.32 9.43 1168.00 16.49 9.43 D1.6 0.49 5.10 20.0 90.00 1.44% 0.16 9.26 1421.0 2.51% 3.17 7.47 16.74 1511.00 16.39 16.74 D1.7 0.49 3.50 15.0 90.00 12.33% 0.33 4.56 107.0 3.74% 2.90 0.61 7 16.74 10.49 57.3 12.37 1049.00 15.33 11.40 D1.8 0.49 1.70 2.00 50.00 2.00% 0.13 6.20 156.0 2.23 10.49 14.83 11.82.03 10.43 50.0 10.00 2.45% 0.20 1.84 3.12 7.80 13.35 150.70 11.33 13.50 17.11 12.30 D1.10 0.49 1.40 50.0 7.16% 0.20 7.80 1.64 </td <td>D1.4</td> <td>0.49</td> <td>2.80</td> <td>15.0</td> <td>100.00</td> <td>1.60%</td> <td>0.18</td> <td>9.43</td> <td>33.0</td> <td>2.42%</td> <td>2.33</td> <td>0.24</td> <td></td> <td></td> <td></td> <td></td>	D1.4	0.49	2.80	15.0	100.00	1.60%	0.18	9.43	33.0	2.42%	2.33	0.24				
D16 0.49 5.10 20.0 90.00 1.44% 0.16 9.26 14210 2.51% 3.17 7.47 16.74 151.100 16.39 16.74 0.17 0.49 3.50 15.0 90.00 12.33% 0.33 4.56 107.0 3.74% 2.90 0.61 10.40 978.00 15.43 10.40 0.18 0.49 1.70 2.00 45.00 1.11% 0.11 7.41 10040 2.50 2.32 10.40 978.00 15.83 12.37 0.10 0.49 2.20 2.00 500 2.00% 0.13 6.20 12.65% 3.24 6.50 12.70 1315.00 17.11 12.70 0.110 0.49 3.40 2.00 2.49% 0.44 5.50 16.80 13.80 100100 15.83 13.30 107.00 16.84 14.08 0.112 0.24 4.44 15.0 0.00 2.32% 0.20				20.0					582.0	3.18%	3.57	2.72	12.39	715.00	13.97	12.39
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D1.5	0.49	5.15	20.0	36.00	4.22%	0.15	4.11	1132.0	3.14%	3.54	5.32	9.43	1168.00	16.49	9.43
Image: Probability of the state of	D1.6	0.49	5.10	20.0	90.00	1.44%	0.16	9.26	1421.0	2.51%	3.17	7.47	16.74	1511.00	18.39	16.74
D1.8 0.49 1.70 200 45.00 1.11% 0.11 7.14 1004.0 2.58% 3.20 5.23 12.37 1049.00 15.83 12.37 D1.9 0.49 2.00 200 500 2.00% 0.13 6.20 1265 2.63% 3.24 6.50 12.70 13.500 17.31 12.70 D1.10 0.49 5.50 2.00 47.00 2.49% 0.14 5.59 160.0 2.4% 3.12 7.80 13.39 150.00 18.37 13.39 D1.11 0.49 1.40 2.00 5.00 7.0% 0.20 7.90 17.0 6.7% 3.91 0.76 1.2 1.00.0 1.6.0 14.08 1	D1.7	0.49	3.50	15.0	90.00	12.33%	0.33	4.56	107.0	3.74%	2.90	0.61				
D19 0.49 2.20 200 50.0 20.0% 0.13 6.20 1265.0 2.63% 3.24 6.50 12.70 1315.00 17.31 12.70 D1.10 0.49 5.50 20.0 47.00 2.4% 0.14 5.59 1460.0 2.4% 3.12 7.80 13.39 1507.00 18.37 13.39 D1.11 0.49 3.14 15.0 50.00 2.0% 0.13 6.20 951.0 1.64% 2.56 6.19 12.38 1001.00 15.56 12.38 D1.12 0.24 4.45 15.0 95.00 7.16% 0.20 7.90 17.0 6.7% 3.91 0.76 14.08				20.0					781.0	1.55%	2.49	5.23	10.40	978.00	15.43	10.40
D1.100.495.502.0047.002.49%0.145.5914002.43%3.127.8013.391507.0018.3713.39D1.110.491.402.006.002.00%0.136.20951.018.4%2.566.1912.38100.0015.5612.38D1.120.244.4515.095.007.16%0.207.90177.06.76%3.910.7677 <td>D1.8</td> <td>0.49</td> <td>1.70</td> <td>20.0</td> <td>45.00</td> <td>1.11%</td> <td>0.11</td> <td>7.14</td> <td>1004.0</td> <td>2.56%</td> <td>3.20</td> <td>5.23</td> <td>12.37</td> <td>1049.00</td> <td>15.83</td> <td>12.37</td>	D1.8	0.49	1.70	20.0	45.00	1.11%	0.11	7.14	1004.0	2.56%	3.20	5.23	12.37	1049.00	15.83	12.37
D1.110.491.402.006.002.00%0.136.2095.016.4%2.566.1912.38100.0015.5612.38D1.120.244.451.5095.007.16%0.207.90177.06.78%3.910.767.8335.0014.0814.08D2.10.493.141.5010002.32%0.208.3490.02.32%2.280.667.8337.0014.0814.08D2.10.493.141.5010002.32%0.208.3490.02.32%2.280.667.8318.8716.87.014.0814.87D2.20.491.111.5010001.70%0.189.2416.703.47%2.791.007.8318.87.0016.0414.87D2.20.491.111.5010001.70%0.189.2416.703.47%2.791.007.8318.87.0016.0414.87D2.30.491.111.5010001.70%0.1411.7334.404.7%3.281.751.9345.0012.6913.84D2.40.293.331.5010002.10%1.113.441.752.16%3.843.7614.0914.09D2.40.293.331.5010.004.5%0.198.903.606.3%3.761.711.67.7014.047.601.40%D2.50.49<	D1.9	0.49	2.20	20.0	50.00	2.00%	0.13	6.20	1265.0	2.63%	3.24	6.50	12.70	1315.00	17.31	12.70
D1.12 0.24 4.45 15.0 95.00 7.16% 0.20 7.90 17.0 6.76% 9.91 0.76 1	D1.10	0.49	5.50	20.0	47.00	2.49%	0.14	5.59	1460.0	2.43%	3.12	7.80	13.39	1507.00	18.37	13.39
1 1 1 1 1 1 4 4 6 1	D1.11	0.49	1.40	20.0	50.00	2.00%	0.13	6.20	951.0	1.64%	2.56	6.19	12.38	1001.00	15.56	12.38
D2.1 0.49 3.14 15.0 100.00 2.32% 0.20 8.34 90.0 2.32% 2.28 0.66 1 3 1 1 1 1 3 4 0 1	D1.12	0.24	4.45	15.0	95.00	7.16%	0.20	7.90	177.0	6.78%	3.91	0.76				
n n				15.0					463.0	0.50%	1.06	7.28	15.93	735.00	14.08	14.08
D2.20.491.1115.0100.001.70%0.189.24167.03.47%2.791.001.001.001.0012.6911.33D2.30.272.8015.0100.002.10%0.1411.73344.04.77%3.281.751.001.0014.0914.09D2.40.293.3315.0100.004.50%0.198.90386.06.30%3.761.711.48736.0014.0914.09D2.40.293.3315.0100.004.50%0.198.90386.06.30%3.761.711.48736.0015.4113.48D2.50.493.9315.061.0014.75%0.293.54219.02.19%2.221.6416.477.0015.4113.48D2.50.493.9315.061.0014.75%0.293.54219.02.19%2.221.647.607.7014.047.40D2.60.492.1315.0100.003.0%0.227.6620.02.50%2.370.147.22665.0013.647.22656.0013.647.22D2.80.492.791.5035.0015.71%0.222.63162.02.34%3.712.847.22656.0013.647.22D2.40.492.9820.025.002.00%0.104.38631.03.44%3.712.847.22656.	D2.1	0.49	3.14	15.0	100.00	2.32%	0.20	8.34	90.0	2.32%	2.28	0.66				
$1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3$				20.0					897.0	1.62%	2.55	5.87	14.87	1087.00	16.04	14.87
D2.30.272.8015.0100.002.10%0.1411.73344.04.77%3.281.75 $(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$	D2.2	0.49	1.11	15.0	100.00	1.70%	0.18	9.24	167.0	3.47%	2.79	1.00				
Image: bit				20.0					218.0	1.15%	2.14	1.69	11.93	485.00	12.69	11.93
D2.40.293.3315.0100.004.50%0.198.90386.06.30%3.761.7111111D2.40.293.3315.0100.004.50%0.198.90386.06.30%3.761.711111111D2.50.493.9315.061.0014.75%0.293.54219.02.19%2.221.641114.047.40D2.60.492.1315.0100.003.00%0.227.6620.02.50%2.370.1411<	D2.3	0.27	2.80	15.0	100.00	2.10%	0.14	11.73	344.0	4.77%	3.28	1.75				
Image: boot boot boot boot boot boot boot boo				20.0					292.0	3.20%	3.58	1.36	14.84	736.00	14.09	14.09
D2.5 0.49 3.93 15.0 61.00 14.75% 0.29 3.54 219.0 2.19% 2.22 1.64 1	D2.4	0.29	3.33	15.0	100.00	4.50%	0.19	8.90	386.0	6.30%	3.76	1.71				
Image: Constraint of the state of				20.0					487.0	2.00%	2.83	2.87	13.48	973.00	15.41	13.48
D2.6 0.49 2.13 15.0 100.00 3.00% 0.22 7.66 20.0 2.50% 2.37 0.14 Image: Constraint of the co	D2.5	0.49	3.93	15.0	61.00	14.75%	0.29	3.54	219.0	2.19%	2.22	1.64				
1 1				20.0					447.0	2.82%	3.36	2.22	7.40	727.00	14.04	7.40
D2.7 0.49 2.98 20.0 25.00 2.00% 0.10 4.38 631.0 3.44% 3.71 2.84 7.22 656.00 13.64 7.22 D2.8 0.49 3.70 15.0 35.00 15.71% 0.22 2.63 162.0 2.34% 2.29 1.18	D2.6	0.49	2.13	15.0	100.00	3.00%	0.22	7.66	20.0	2.50%	2.37	0.14				
D2.8 0.49 3.70 15.0 35.00 15.71% 0.22 2.63 162.0 2.34% 2.29 1.18 Image: Constraint of the				20.0					528.0	2.94%	3.43	2.57	10.37	648.00	13.60	10.37
Image: Note of the local base of th	D2.7	0.49	2.98	20.0	25.00	2.00%	0.10	4.38	631.0	3.44%	3.71	2.84	7.22	656.00	13.64	7.22
D2.9 0.49 3.15 20.0 75.00 1.87% 0.16 7.76 1342.0 2.50% 3.16 7.07 14.83 1417.00 17.87 14.83 D2.10 0.49 0.80 20.0 17.00 2.00% 0.08 3.61 392.0 1.54% 2.48 2.63 6.24 409.00 12.27 6.24 D2.11 0.90 0.40 20.0 10.00 2.00% 0.18 0.91 278.0 0.70% 1.67 2.77 3.68 288.00 11.60 3.68 D2.12 0.49 2.78 20.0 100.00 5.20% 0.26 6.39 1009.0 2.97% 3.45 4.88 11.27 1109.00 16.16 11.27 D2.12 0.49 2.78 20.0 100.00 5.20% 0.26 6.39 1009.0 2.97% 3.45 4.88 11.27 1109.00 16.16 11.27	D2.8	0.49	3.70	15.0	35.00	15.71%	0.22	2.63	162.0	2.34%	2.29	1.18				
D2.10 0.49 0.80 20.0 17.00 2.00% 0.08 3.61 392.0 1.54% 2.48 2.63 6.24 409.00 12.27 6.24 D2.11 0.90 0.40 20.0 10.00 2.00% 0.18 0.91 278.0 0.70% 1.67 2.77 3.68 288.00 11.60 3.68 D2.12 0.49 2.78 20.0 100.00 5.20% 0.26 6.39 1009.0 2.97% 3.45 4.88 11.27 1109.00 16.16 11.27 J				20.0					665.0	1.04%	2.04	5.43	9.24	862.00	14.79	9.24
D2.11 0.90 0.40 20.0 10.00 2.00% 0.18 0.91 278.0 0.70% 1.67 2.77 3.68 288.00 11.60 3.68 D2.12 0.49 2.78 20.0 100.00 5.20% 0.26 6.39 1009.0 2.97% 3.45 4.88 11.27 1109.00 16.16 11.27	D2.9	0.49	3.15	20.0	75.00	1.87%	0.16	7.76	1342.0	2.50%	3.16	7.07	14.83	1417.00	17.87	14.83
D2.12 0.49 2.78 20.0 100.00 5.20% 0.26 6.39 1009.0 2.97% 3.45 4.88 11.27 1109.00 16.16 11.27	D2.10	0.49	0.80	20.0	17.00	2.00%	0.08	3.61	392.0	1.54%	2.48	2.63	6.24	409.00	12.27	6.24
	D2.11	0.90	0.40	20.0	10.00	2.00%	0.18	0.91	278.0	0.70%	1.67	2.77	3.68	288.00	11.60	3.68
D2.13 0.49 2.51 20.0 20.00 2.00% 0.09 3.92 2334.0 2.00% 2.83 13.75 17.67 2354.00 23.08 17.67	D2.12	0.49	2.78	20.0	100.00	5.20%	0.26	6.39	1009.0	2.97%	3.45	4.88	11.27	1109.00	16.16	11.27
	D2.13	0.49	2.51	20.0	20.00	2.00%	0.09	3.92	2334.0	2.00%	2.83	13.75	17.67	2354.00	23.08	17.67

Hydraflow Express by Intelisolve

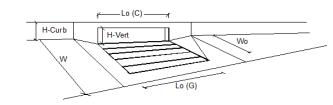
Wednesday, Mar 8 2017, 6:4 AM


Lamine low point to Pond D2 Overflow Swale - Design Point 56

Trapezoidal		Highlighted	
Botom Width (ft)	= 8.00	Depth (ft)	= 1.34
Side Slope (z:1)	= 4.00	Q (cfs)	= 150.00
Total Depth (ft)	= 2.50	Area (sqft)	= 17.90
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 8.38
Slope (%)	= 2.00	Wetted Perim (ft)	= 19.05
N-Value	= 0.024	Crit Depth, Yc (ft)	= 1.68
		Top Width (ft)	= 18.72
Calculations		EGL (ft)	= 2.43
Compute by:	Known Q		
Known Q (cfs)	= 150.00		

Reach (ft)

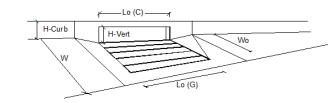
Project: Inlet ID: Lorson East Prelim Plan #100.040



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	1
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	5.3	11.5	cfs
Water Spread Width	Т =	10.8	15.1	ft
Water Depth at Flowline (outside of local depression)	d =	4.1	5.1	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.541	0.396	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	2.4	7.0	cfs
Discharge within the Gutter Section W	Q _w =	2.9	4.6	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	1.29	2.39	sq ft
Velocity within the Gutter Section W	V _W =	4.1	4.8	fps
Water Depth for Design Condition	d _{LOCAL} =	7.1	8.1	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	-
Under No-Clogging Condition	-	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	-
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	_
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	•
Equivalent Slope S_e (based on grate carry-over)	S _e =	0.122	0.094	ft/ft
Required Length L _T to Have 100% Interception	L _T =	12.04	20.09	ft
Under No-Clogging Condition	-	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	12.04	15.00	ft
Interception Capacity	Q _i =	5.3	10.5	cfs
Under Clogging Condition	-	MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	1
Effective (Unclogged) Length	L _e =	13.03	13.03	ft
Actual Interception Capacity	Q _a =	5.3	10.4	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	1.2	cfs
Summary	•	MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	5.30	10.36	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.2	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	90	%

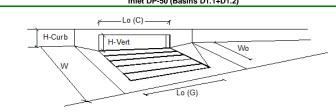
Project: Inlet ID:

Lorson East Prelim Plan #100.040 Inlet DP-38 (Basin C17.1+bypass from Inlet DP-28)



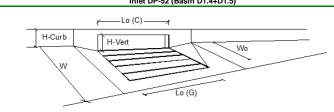
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	-
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	•
Design Discharge for Half of Street (from Sheet Q-Peak)	Q., =	5.9	14.4	cfs
Water Spread Width	т =	13.6	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	4.8	6.2	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.6	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.437	0.304	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	3.3	10.0	cfs
Discharge within the Gutter Section W	Q _w =	2.6	4.4	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	1.98	3.91	sq ft
Velocity within the Gutter Section W	V _w =	3.0	3.7	fps
Water Depth for Design Condition	d _{LOCAL} =	7.8	9.2	inches
Grate Analysis (Calculated)	GLOCAL	MINOR	MAJOR	monoo
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	-11
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	0.0
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	•8 = R _f =	N/A	N/A	100
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	^D -	MINOR	MAJOR	013
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.102	0.077	ft/ft
Required Length L_T to Have 100% Interception	L _T =	13.12	23.51	ft
Under No-Clogging Condition	L	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	13.12	15.00	ft
Interception Capacity	Q; =	5.9	12.1	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	7
Clogging Sector for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	-
Effective (Unclogged) Length	L _e =	13.03	13.03	ft
Actual Interception Capacity	C _e =	5.9	11.8	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	0.0	2.6	cfs
	ч _b =	MINOR	MAJOR	310
<u>Summary</u> Total Inlet Interception Capacity	a =	5.90	11.83	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q = Q _b =	0.0	2.6	cis
r otal inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q _a /Q _o =				crs %
$a_{a}/a_{0} =$	C% =	100	82	%

Project: Inlet ID:


Lorson East Prelim Plan #100.040 Inlet DP-39 (Basin C17.2+bypass from Inlet DP-38)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	-
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	1
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	•
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	8.6	21.6	cfs
Water Spread Width	Т =	12.5	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	4.5	5.9	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.3	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.473	0.326	1
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	4.5	14.5	cfs
Discharge within the Gutter Section W	Q _w =	4.1	7.0	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	1.69	3.45	sq ft
Velocity within the Gutter Section W	V _w =	5.1	6.2	fps
Water Depth for Design Condition	d _{LOCAL} =	7.5	8.9	inches
Grate Analysis (Calculated)	LOONE	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	· •	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	-
Interception Rate of Side Flow	R, =	N/A	N/A	-
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.109	0.081	ft/ft
Required Length L _T to Have 100% Interception	L _T =	16.50	30.17	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	15.00	15.00	ft
Interception Capacity	Q _i =	8.5	15.3	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	1
Effective (Unclogged) Length	L _e =	13.03	13.03	ft
Actual Interception Capacity	Q _a =	8.4	14.9	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.2	6.6	cfs
Summary	•	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.41	14.93	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.2	6.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	98	69	%

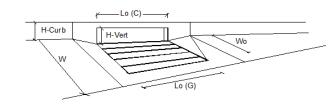
Project: Inlet ID:


Lorson East Prelim Plan #100.040 Inlet DP-50 (Basins D1.1+D1.2)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	1
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	10.1	22.3	cfs
Water Spread Width	т=	14.6	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.0	6.4	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.8	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.408	0.296	mones
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	6.0	15.7	cfs
Discharge within the Gutter Section W	Q _w =	4.1	6.6	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	2.25	4.09	sq ft
Velocity within the Gutter Section W	V _w =	4.5	4.09	fps
Water Depth for Design Condition	-	8.0	9.4	inches
	d _{LOCAL} =	MINOR	9.4 MAJOR	ITICITES
Grate Analysis (Calculated)	L =	N/A	MAJOR N/A	
Total Length of Inlet Grate Opening	-			ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	_
Under No-Clogging Condition		MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	4
Interception Rate of Side Flow	R _x =	N/A	N/A	4.
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	_
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	_
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	_	MINOR	MAJOR	_
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.097	0.076	ft/ft
Required Length L_T to Have 100% Interception	L _T =	18.43	30.94	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	Q _i =	7.6	11.2	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	7
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	7.3	10.8	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	2.7	11.5	cfs
Summary		MINOR	MAJOR	•
Total Inlet Interception Capacity	Q =	7.34	10.77	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	2.7	11.5	cfs
Capture Percentage = $Q_a/Q_o =$	с% =	73	48	%

Project: Inlet ID:

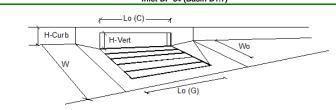
Lorson East Prelim Plan #100.040 Inlet DP-52 (Basin D1.4+D1.5)



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	Cr-C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	Q., =	15.5	34.7	cfs
Water Spread Width	T =	16.5	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.5	7.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	1.4	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.362	0.265	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	9.9	25.2	cfs
Discharge within the Gutter Section W	Q _w =	5.6	9.1	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.4	cfs
Flow Area within the Gutter Section W	A _w =	2.85	5.00	sq ft
Velocity within the Gutter Section W	V _w =	5.4	6.9	fps
Water Depth for Design Condition	d _{LOCAL} =	8.5	10.0	inches
Grate Analysis (Calculated)	-LOOAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	-
Under No-Clogging Condition	-0-GIVATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q; =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	0.0
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	٦
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	.0	MINOR	MAJOR	
Equivalent Slope Se (based on grate carry-over)	S _e =	0.088	0.070	ft/ft
Required Length L_T to Have 100% Interception	L _T =	24.34	40.62	ft
Under No-Clogging Condition	· •	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	15.00	15.00	ft
Interception Capacity	Q _i =	12.7	19.3	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	-
Effective (Unclogged) Length	L _e =	13.03	13.03	ft
Actual Interception Capacity	Q _a =	12.4	18.8	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	аа Q _b =	3.0	15.9	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	12.44	18.80	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	3.0	15.9	cfs
. can anot early over 1 low (new sypassing milet)		0.0	13.3	

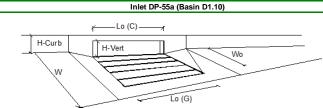
Project: Inlet ID:

Lorson East Prelim Plan #100.040


Inlet DP-53 (Basin D1.6+D1.8+bypass from Inlet DP-52)

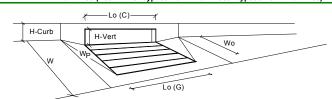
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	Cr-C =	0.10	0.10	1
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	14.6	41.5	cfs
Water Spread Width	Т =	15.6	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.3	7.2	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	1.6	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.382	0.256	-
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	9.1	30.3	cfs
Discharge within the Gutter Section W	Q _w =	5.6	10.4	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.8	cfs
Flow Area within the Gutter Section W	A _W =	2.57	5.32	sq ft
Velocity within the Gutter Section W	V _W =	5.7	7.7	fps
Water Depth for Design Condition	d _{LOCAL} =	8.3	10.2	inches
Grate Analysis (Calculated)	GLOCAL -	MINOR	MAJOR	inches
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	Lo-GRAIE -	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
	v _o = R _f =	N/A N/A	N/A N/A	ips
Interception Rate of Frontal Flow Interception Rate of Side Flow	R ₁ =	N/A	N/A	-
Interception Capacity	R _x =	N/A N/A	N/A N/A	cfs
Under Clogging Condition	Qi -	MINOR	MAJOR	CIS
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	MAJOR N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A N/A	N/A N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A N/A	N/A N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A N/A	N/A N/A	fps
Interception Rate of Frontal Flow	v _o = R _f =	N/A N/A	N/A	ips
Interception Rate of Side Flow	R _x =	N/A N/A	N/A N/A	-
Actual Interception Capacity	$Q_a =$	N/A N/A	N/A N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A N/A	N/A N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	u b -	MINOR	MAJOR	613
Equivalent Slope Se (based on grate carry-over)	S _e =	0.092	0.068	ft/ft
Required Length L_T to Have 100% Interception	υ _e = L _T =	23.41	45.23	ft
Under No-Clogging Condition	LT -	MINOR	45.25 MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	20.00	20.00	ft
Interception Capacity	L = Q _i =	14.2	26.5	cfs
Under Clogging Condition		MINOR	20.5 MAJOR	010
Clogging Coefficient	CurbCoef =	1.33	1.33	7
Clogging Coefficient	CurbClog =	0.03	0.03	4
	L _e =	17.34	17.34	ft
Effective (Unclogged) Length	L _e = Q _a =	17.34	26.0	π cfs
Actual Interception Capacity		0.6	26.0 15.5	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =			CIS
Summary	_ Г	MINOR	MAJOR	1.4
Total Inlet Interception Capacity	Q =	14.05	25.97	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.6	15.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	96	63	%

Lorson East Prelim Plan #100.040 Inlet DP-54 (Basin D1.7)


Project: Inlet ID:

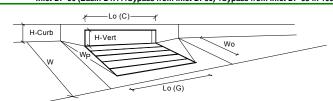
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	Cr-C =	0.10	0.10	-
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet <i>Q-Peak</i>)	Q ₀ =	7.3	16.1	cfs
Water Spread Width	т =	14.6	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.0	6.4	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.8	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.408	0.296	inches
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	4.3	11.3	cfs
Discharge within the Gutter Section W	Q _w =	3.0	4.8	cfs
Discharge Behind the Curb Face	-	0.0	4.8	cfs
-	Q _{BACK} =	2.26	4.09	
Flow Area within the Gutter Section W	A _W =	3.2	4.09	sq ft foc
Velocity within the Gutter Section W	V _w =			fps
Water Depth for Design Condition	d _{LOCAL} =	8.0	9.4	inches
Grate Analysis (Calculated)	L =	MINOR N/A	MAJOR N/A	ft
Total Length of Inlet Grate Opening				- ⁿ
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A MINOR	N/A MAJOR	
Under No-Clogging Condition		-	-	٦.
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	_
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	_
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	_	MINOR	MAJOR	_
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.097	0.076	ft/ft
Required Length L _T to Have 100% Interception	L _T =	15.05	25.23	ft
Under No-Clogging Condition	_	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_{\text{T}})$	L =	15.00	15.00	ft
Interception Capacity	Q _i =	7.3	12.9	cfs
Under Clogging Condition	_	MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	L _e =	13.03	13.03	ft
Actual Interception Capacity	Q _a =	7.3	12.6	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	3.5	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.26	12.63	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	3.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	78	%

Project: Inlet ID:

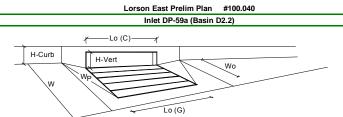

Lorson East Prelim Plan #100.040

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	10.2	22.6	cfs
Water Spread Width	T =	14.7	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.0	6.4	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.8	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.406	0.295	-
Discharge outside the Gutter Section W, carried in Section T_x	 Q _x =	6.1	15.9	cfs
Discharge within the Gutter Section W	Q _w =	4.1	6.7	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	2.28	4.13	sq ft
Velocity within the Gutter Section W	V _w =	4.5	4.13 5.5	fps
Velocity within the Gutter Section w Water Depth for Design Condition		4.5 8.0	5.5 9.4	inches
	d _{LOCAL} =	MINOR	9.4 MAJOR	liticities
Grate Analysis (Calculated)	Г	N/A	MAJOR N/A	ft
Total Length of Inlet Grate Opening	L=			π.
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	_
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	_
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope Se (based on grate carry-over)	S _e =	0.096	0.075	ft/ft
Required Length L _T to Have 100% Interception	L _T =	18.57	31.20	ft
Under No-Clogging Condition		MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L=	10.00	10.00	ft
Interception Capacity	Q _i =	7.6	11.3	cfs
Under Clogging Condition	-	MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	1
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	7.4	10.8	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	2.8	11.8	cfs
Summary		MINOR	MAJOR	•
Fotal Inlet Interception Capacity	Q =	7.38	10.83	cfs
Fotal Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	2.8	11.8	cfs
Capture Percentage = $Q_a/Q_a =$	⊂₀ = C% =	72	48	%

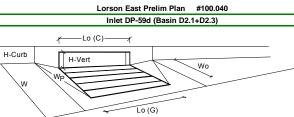
Project = Inlet ID =


Lorson East Prelim Plan #100.040 Inlet DP-55 (Basin D1.9+bypass from Inlet DP55a+bypass from Inlet DP53)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inches
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-4
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
- Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	٦
Clogging Factor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	-ondo	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	1
Clogging Eactor for Multiple Units	Clog =	0.03	0.03	4
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	olog -	MINOR	MAJOR	4
Interception without Clogging	Q _{wi} =	19.14	32.57	cfs
Interception with Clogging	Q _{wa} =	18.63	31.70	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	··wa	MINOR	MAJOR	J
Interception without Clogging	Q _{oi} =	50.55	55.95	cfs
Interception with Clogging	Q _{oa} =	49.20	54.47	cfs
Curb Opening Capacity as Mixed Flow	-oa	MINOR	MAJOR	J
Interception without Clogging	Q _{mi} =	28.92	39.70	cfs
Interception with Clogging	Q _{ma} =	28.16	38.64	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	18.63	31.70	cfs
Resultant Street Conditions	«curb –	MINOR	MAJOR	0.0
Total Inlet Length	L =	25.00	25.00	feet
Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry)	L = T =	25.00	25.00	ft.>T-Crown
Resultant Street Flow Spread (based on sheet G-Anow geometry)	l = d _{CROWN} =	20.7	27.0	inches
Acoultant Flow Depth at Street Grown	CROWN -	0.9 MINOR	Z.4 MAJOR	niches
	0 -	18.6	MAJOR 31.7	cfs
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =			

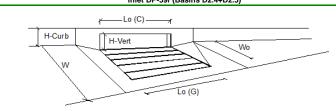

Project = Inlet ID =

Lorson East Prelim Plan #100.040 Inlet DP-56 (Basin D1.11+bypass from Inlet DP50) +bypass from Inlet DP-55 in 100yr


Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Nater Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inche <u>s</u>
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	1
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	•	MINOR	MAJOR	4
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	4
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	L	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	-oraid	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	7
Clogging Factor for Multiple Units	Clog =	0.03	0.03	4
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	olog	MINOR	MAJOR	4
Interception without Clogging	Q _{wi} =	19.14	32.57	cfs
Interception with Clogging	Q _{wa} =	18.63	31.70	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	wd	MINOR	MAJOR	.
Interception without Clogging	Q _{oi} =	50.55	55.95	cfs
Interception with Clogging	Q _{oa} =	49.20	54.47	cfs
Curb Opening Capacity as Mixed Flow	-04	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	28.92	39.70	cfs
Interception with Clogging	Q _{ma} =	28.16	38.64	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	18.63	31.70	cfs
Resultant Street Conditions	«curo –	MINOR	MAJOR	0.0
Fotal Inlet Length	L =	25.00	25.00	feet
Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry)	L = T =	25.00	25.00	ft.>T-Crown
	l = d _{CROWN} =	20.7	27.0	inches
	GROWN -	U.9	2.4	1101105
Resultant Flow Depth at Street Grown	-	MINOR	MALOR	
Resultant Flow Depth at Street Crown Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	MINOR 18.6	MAJOR 31.7	cfs

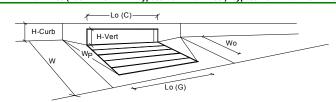
Project = Inlet ID =

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)	-0(-)	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	٦
Clogging Factor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	Clog -	MINOR	MAJOR	4
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
	Q _{wa} =	N/A N/A	N/A	cfs
Interception with Clogging Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	Q _{wa} –	MINOR	MAJOR	CIS
	Q _{oi} =	N/A	N/A	cfs
Interception without Clogging		N/A N/A	N/A	cfs
Interception with Clogging	Q _{oa} =			cis
Grate Capacity as Mixed Flow	Q _{mi} =	MINOR	MAJOR	- <i>t</i> -
Interception without Clogging	Q _{mi} = Q _{ma} =	N/A N/A	N/A N/A	cfs cfs
Interception with Clogging				-
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	T
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	_
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	o - F	MINOR	MAJOR	- (-
Interception without Clogging	Q _{wi} =	7.06	10.97	cfs
Interception with Clogging	Q _{wa} =	6.35	9.87	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	o - F	MINOR	MAJOR	- (-
Interception without Clogging	Q _{oi} =	10.11	11.19	cfs
Interception with Clogging	Q _{oa} =	9.10	10.07	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	7.86	10.30	cfs
Interception with Clogging	Q _{ma} =	7.07	9.27	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	6.35	9.27	cfs
Resultant Street Conditions	_	MINOR	MAJOR	-
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	20.7	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.9	2.4	inches
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.4	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	2.2	4.8	cfs


Project = Inlet ID =

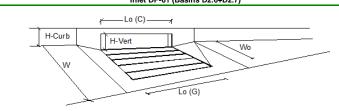
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inche <u>s</u>
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)	•	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	· •	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	L.	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	1
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	12.45	21.18	cfs
Interception with Clogging	Q _{wa} =	11.90	20.25	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	30.33	33.57	cfs
Interception with Clogging	Q _{oa} =	29.00	32.11	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	18.07	24.80	cfs
Interception with Clogging	Q _{ma} =	17.28	23.72	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	11.90	20.25	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	15.00	15.00	feet
Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry)	Т=	20.7	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.9	2.4	inches
······		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.9	20.3	cfs
WARNING: Inlet Capacity less than Q Peak for MAJOR Storm	Q PEAK REQUIRED =	10.7	23.7	cfs

Project: Inlet ID:


Lorson East Prelim Plan #100.040 Inlet DP-59f (Basins D2.4+D2.5)

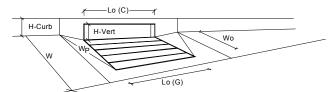
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)		N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	-
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'	010	MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet <i>Q-Peak</i>)	Q, =	13.6	30.5	cfs
Water Spread Width		15.8	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.3	6.8	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	1.2	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.378	0.275	Inches
Discharge outside the Gutter Section W, carried in Section T _x	L ₀ =	8.5	22.0	cfs
Discharge within the Gutter Section W	Q _x =	5.2	8.3	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.2	cfs
-		2.61		_
Flow Area within the Gutter Section W	A _W =	-	4.66	sq ft
Velocity within the Gutter Section W	V _w =	5.2	6.5	fps
Water Depth for Design Condition	d _{LOCAL} =	8.3	9.8	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	_ L=	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	_
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	-	MINOR	MAJOR	_
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.091	0.072	ft/ft
Required Length L_T to Have 100% Interception	L _T =	22.42	37.58	ft
Under No-Clogging Condition	_	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_{\text{T}})$	L =	10.00	10.00	ft
Interception Capacity	Q _i =	8.9	12.9	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	8.6	12.4	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	5.1	18.1	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.58	12.37	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	5.1	18.1	cfs
Capture Percentage = Q_a/Q_o =	C% =	63	41	%

Project = Inlet ID =


Lorson East Prelim Plan #100.040 Inlet DP-60 (Basin D2.9+D2.12+bypass from Inlet DP59f)+bypass from Inlet DP62 in 100year

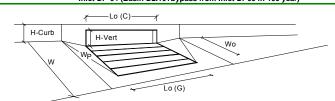
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Nater Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inche <u>s</u>
Grate Information		MINOR	MAJOR	Override Depth
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
- Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	olog	MINOR	MAJOR	4
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	-wa	MINOR	MAJOR	010
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	Soa	MINOR	MAJOR	013
	Q _{mi} =	N/A	N/A	cfs
Interception without Clogging	Q _{mi} =	N/A N/A	N/A N/A	cfs
nterception with Clogging		N/A	N/A	
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =			cfs
Curb Opening Flow Analysis (Calculated)	I	MINOR	MAJOR	7
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	_
Clogging Factor for Multiple Units	Clog =	0.03	0.03	_
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	o -	MINOR	MAJOR	7.4
nterception without Clogging	Q _{wi} =	19.14	32.57	cfs
nterception with Clogging	Q _{wa} =	18.63	31.70	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	_ _	MINOR	MAJOR	- (-
nterception without Clogging	Q _{oi} =	50.55	55.95	cfs
nterception with Clogging	Q _{oa} =	49.20	54.47	cfs
Curb Opening Capacity as Mixed Flow	~ r	MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	28.92	39.70	cfs
nterception with Clogging	Q _{ma} =	28.16	38.64	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	18.63	31.70	cfs
Resultant Street Conditions		MINOR	MAJOR	-
Fotal Inlet Length	L =	25.00	25.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	20.7	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.9	2.4	inches
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	18.6	31.7	cfs
WARNING: Inlet Capacity less than Q Peak for MAJOR Storm	Q PEAK REQUIRED =	15.8	55.9	cfs

Project: Inlet ID:


Lorson East Prelim Plan #100.040 Inlet DP-61 (Basins D2.6+D2.7)

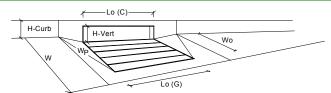
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	Cr-C =	0.10	0.10	-
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	10.6	23.6	cfs
Water Spread Width	T =	14.0	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	4.9	6.2	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.6	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.424	0.307	linonido
Discharge outside the Gutter Section W, carried in Section T_x	 Q_ =	6.1	16.4	cfs
Discharge within the Gutter Section W	Q _w =	4.5	7.3	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	2.09	3.85	sq ft
Velocity within the Gutter Section W	V _W =	5.1	6.1	fps
Water Depth for Design Condition	d _{LOCAL} =	7.9	9.2	inches
	ULOCAL -	MINOR	9.2 MAJOR	inches
Grate Analysis (Calculated)	L =	N/A	MAJOR N/A	ft
Total Length of Inlet Grate Opening				-"
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	4
Interception Rate of Side Flow	R _x =	N/A	N/A	4.
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	-
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	_
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	-	MINOR	MAJOR	_
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.100	0.078	ft/ft
Required Length L_T to Have 100% Interception	L _T =	19.00	32.06	ft
Under No-Clogging Condition	_	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	Q _i =	7.9	11.6	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	7.6	11.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	3.0	12.6	cfs
Summary	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.57	11.08	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	3.0	12.6	cfs
Capture Percentage = Q_a/Q_o =	C% =	71	47	%

Project = Inlet ID =


Lorson East Prelim Plan #100.040 Inlet DP-62 (Basin D2.8+bypass from Inlet DP61)

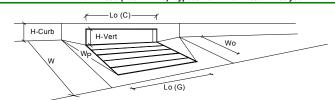
Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inche <u>s</u>
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)	-0(-)	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	٦
Clogging Factor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	Ciby -	MINOR	MAJOR	4
	Q _{wi} =	N/A	N/A	cfs
Interception without Clogging		N/A N/A	N/A N/A	cfs
Interception with Clogging	Q _{wa} =			cis
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	o - F	MINOR	MAJOR	- (-
Interception without Clogging	Q _{oi} =	N/A	N/A N/A	cfs
Interception with Clogging	Q _{oa} =	N/A		cfs
Grate Capacity as Mixed Flow	o - F	MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	-
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	~ -	MINOR	MAJOR	٦.
Interception without Clogging	Q _{wi} =	10.72	17.34	cfs
Interception with Clogging	Q _{wa} =	10.05	16.26	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	20.22	22.38	cfs
Interception with Clogging	Q _{oa} =	18.96	20.98	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	13.69	18.32	cfs
Interception with Clogging	Q _{ma} =	12.84	17.18	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	10.05	16.26	cfs
Resultant Street Conditions	_	MINOR	MAJOR	_
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	20.7	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.9	2.4	inches
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.1	16.3	cfs
WARNING: Inlet Capacity less than Q Peak for Minor and Major Storms	Q PEAK REQUIRED =	11.1	30.3	cfs

Project = Inlet ID =


Lorson East Prelim Plan #100.040 Inlet DP-64 (Basin D2.10+bypass from Inlet DP60 in 100 year)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =		Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inches
Grate Information	• · ·	MINOR	MAJOR	Override Depti
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	1001
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)	-0(-)	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	٦
Clogging Factor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	olog –	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	Q _{wa} –	MINOR	MAJOR	CIS
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
	Q _{oa} =	N/A	N/A	cfs
Interception with Clogging	Gioa -			CIS
Grate Capacity as Mixed Flow	Q _{mi} =	MINOR N/A	MAJOR N/A	cfs
Interception without Clogging	Q _{mi} =	N/A	N/A N/A	cfs
Interception with Clogging		N/A N/A	N/A	cis
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =			CIS
Curb Opening Flow Analysis (Calculated)	а <i>с</i> Г	MINOR	MAJOR	7
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	_
Clogging Factor for Multiple Units	Clog =	0.03	0.03	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	o - F	MINOR	MAJOR	- <i>t</i> -
Interception without Clogging	Q _{wi} =	19.14	32.57	cfs
Interception with Clogging	Q _{wa} =	18.63	31.70	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	o - F	MINOR	MAJOR	1.4
Interception without Clogging	Q _{oi} =	50.55	55.95	cfs
Interception with Clogging	Q _{oa} =	49.20	54.47	cfs
Curb Opening Capacity as Mixed Flow	~ F	MINOR	MAJOR	- (-
Interception without Clogging	Q _{mi} =	28.92	39.70	cfs
Interception with Clogging	Q _{ma} =	28.16	38.64	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	18.63	31.70	cfs
Resultant Street Conditions	-	MINOR	MAJOR	٦.
Total Inlet Length	L =	25.00	25.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	20.7	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.9	2.4	inches
		MINOR	MAJOR	- .
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	18.6	31.7	cfs
nlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	3.2	29.2	cfs

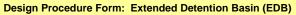
Project = Inlet ID =



Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inches
Grate Information		MINOR	MAJOR	 Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	7.06	10.97	cfs
Interception with Clogging	Q _{wa} =	6.35	9.87	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	10.11	11.19	cfs
Interception with Clogging	Q _{oa} =	9.10	10.07	cfs
Curb Opening Capacity as Mixed Flow	··· L	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	7.86	10.30	cfs
Interception with Clogging	Q _{ma} =	7.07	9.27	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	6.35	9.27	cfs
Resultant Street Conditions	Salb	MINOR	MAJOR	
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	τ=	20.7	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.9	2.4	inches
	-010111	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.4	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	2.0	4.0	cfs

Project = Inlet ID =

Lorson East Prelim Plan #100.040 Inlet DP-65b (Basin D2.13)+bypass from Inlet DP59d in 100 year



Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inches
Grate Information		MINOR	MAJOR	Override Depth:
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{o}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
- Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	٦
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	L	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	Horate	MINOR	MAJOR	0.0
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7
Clogging Factor for Multiple Units	Clog =	0.06	0.06	-
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	olog -	MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	10.72	17.34	cfs
Interception with Clogging	Q _{wa} =	10.05	16.26	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	-wa	MINOR	MAJOR	010
Interception without Clogging	Q _{oi} =	20.22	22.38	cfs
Interception with Clogging	Q _{oa} =	18.96	22.30	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	010
Interception without Clogging	Q _{mi} =	13.69	18.32	cfs
Interception with Clogging	Q _{ma} =	12.84	17.18	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	10.05	16.26	cfs
Resultant Street Conditions	scurb -	MINOR	MAJOR	0.0
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry)	τ= Τ=	20.7	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.9	27.0	inches
resolution in the partial Street Grown	GROWN -	0.9 MINOR	2.4 MAJOR	110165
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.1	16.3	cfs

APPENDIX D – POND AND ROUTING CALCULATIONS

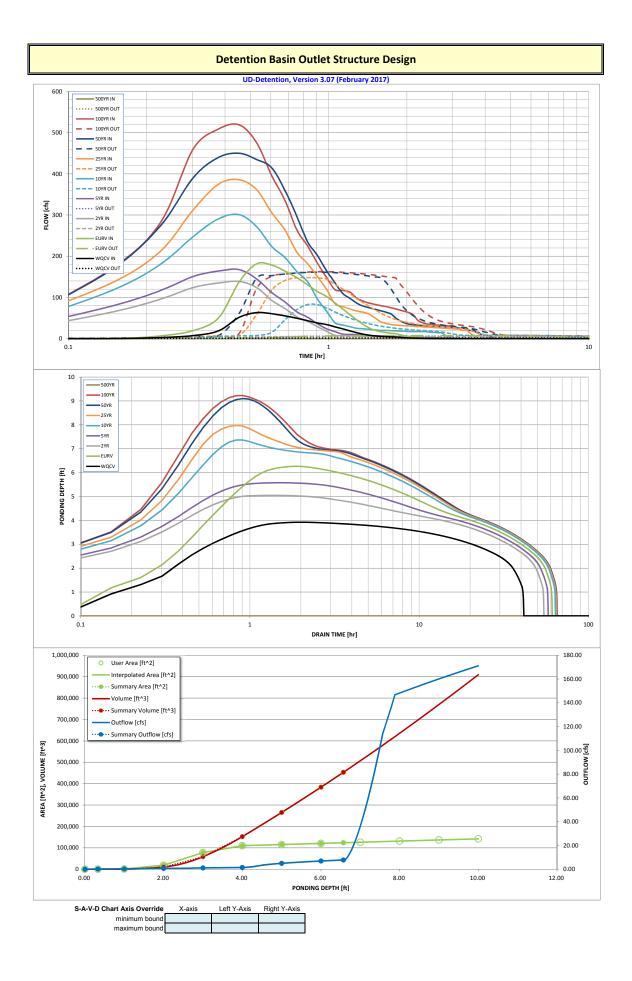
		Form: Grass Buffer (GB)
Designer:	UD-BMP (Versi	ion 3.06, November 2016) Sheet 1
Company:	Core Engineering Group	
Date:	February 27, 2018	
Project:	Lorson Ranch East Filing No. 1	
Location:	Lorson Ranch	
Location:		
1. Design D	ischarge	
-	-	
A) 2-Year	Peak Flow Rate of the Area Draining to the Grass Buffer	$Q_2 = 0.5$ cfs
2. Minimum	Width of Grass Buffer	$W_{G} = 10$ ft
3. Length of	f Grass Buffer (14' or greater recommended)	L _G = <u>14</u> ft
4. Buffer Slo	ope (in the direction of flow, not to exceed 0.1 ft / ft)	$S_{G} = 0.100$ ft / ft
5. Flow Cha	racteristics (sheet or concentrated)	
	, , , , , , , , , , , , , , , , , , ,	
	runoff flow into the grass buffer across the width of the buffer?	Yes O No
B) Water	rshed Flow Length	F _L = <u>60</u> ft
C) Interfa	ace Slope (normal to flow)	S _I = <u>0.002</u> ft / ft
D) Type	of Flow	SHEET FLOW
Sheet	t Flow: F _L * S _I <u><</u> 1	
Conce	entrated Flow: $F_{L} * S_{I} > 1$	
		Choose One
6. Flow Dist	ribution for Concentrated Flows	None (sheet flow)
		O Slotted Curbing
		Other (Explain):
7 Soil Prepa	aration	
	e soil amendment)	4" topsoil
8 Vegetatio	on (Check the type used or describe "Other")	Choose One
o vegetatio	(Check the type used of describe "Other")	Existing Xeric Turf Grass
		O Irrigated Turf Grass O Other (Explain):
		Choose One
9. Irrigation	less if suisting buffer are the 000/	O Temporary
	None if existing buffer area has 80% vegetation not be disturbed during construction.)	O Permanent
		None*
10 Outflow C	Collection (Check the type used or describe "Other")	
		O Grass Swale O Street Gutter
		O Storm Sewer Inlet
		Other (Explain):
		Etrib of Jimmy Camp Creek
Notes:		

	Design Procedure Form	n: Extended Detention Basin (EDB)	
	UD-BM	P (Version 3.06, November 2016) Sh	eet 1 of 4
Designer:	Richard Schindler		
Company:	Core Engineering Group		
Date:	February 13, 2018		
Project:	Lorson Ranch East PDR - Pond c5 forebay design		
Location:	Pond C5 forebay design (split forebay in two parts)		
1. Basin Storage V	/olume		
A) Effective Imp	perviousness of Tributary Area, I_a	l _a = <u>63.0</u> %	
	a's Imperviousness Ratio (i = l _a / 100)	i = 0.630	
,	Watershed Area	Area = <u>171.000</u> ac	
	eds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in	
E) Design Cond	cept	Choose One	
	V when also designing for flood control)	Water Quality Capture Volume (WQCV)	
		C Excess Urban Runoff Volume (EURV)	
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = <u>3.515</u> ac-ft	
Water Quali	neds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume $_{\rm R}$ = (d_e^*(V_{\rm DESIGN}/0.43))	V _{DESIGN OTHER} =ac-ft	
	of Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = <u>3.300</u> ac-ft	
I) Predominant	Watershed NRCS Soil Group	Choose One A B C / D WQCV selected. Soil group not required.	
/	n Runoff Volume (EURV) Design Volume : EURV₄ = 1.68 * i ^{1.28}	EURV = ac-ft	
	$: EURV_{A} = 1.06 \text{ I}$ $: EURV_{B} = 1.36 \text{ * } \text{i}^{1.08}$		
	/D: EURV _{C/D} = 1.20 * i ^{1.08}		
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = <u>2.0</u> : 1	
3. Basin Side Slop	es		
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = <u>0.33</u> ft / ft TOO STEEP (< 3)	
	and the point of the state of t		
4. Inlet			
A) Describe me	eans of providing energy dissipation at concentrated	· · · · · · · · · · · · · · · · · · ·	
inflow location			

	Design i rosedure i offi	Extended Detention Basin (EDB)	<u> </u>
Designer:	Richard Schindler	Sheet	2 of 4
Company:	Core Engineering Group		
Date:	February 13, 2018		
Project:	Lorson Ranch East PDR - Pond c5 forebay design		
Location:	Pond C5 forebay design (split forebay in two parts)		
5. Forebay			
A) Minimum For (V _{FMIN} =	ebay Volume =	V _{FMIN} = <u>0.099</u> ac-ft	
B) Actual Foreba	ay Volume	V _F = <u>0.150</u> ac-ft	
C) Forebay Dept (D _F =	h = <u>30</u> inch maximum)	D _F = in	
D) Forebay Disch	narge		
	i) Undetained 100-year Peak Discharge	Q ₁₀₀ = <u>484.00</u> cfs	
	ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	Q _F = <u>9.68</u> cfs	
E) Forebay Disch	narge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir	
F) Discharge Pip	e Size (minimum 8-inches)	Calculated $D_P =$ in	
G) Rectangular N	Jotch Width	Calculated $W_N = 14.8$ in	
6. Trickle Channel		Choose One	
A) Type of Trick	le Channel	Soft Bottom	
F) Slope of Trick	de Channel	S = <u>0.0040</u> ft / ft	
7. Micropool and O	utlet Structure		
A) Depth of Micr	ropool (2.5-feet minimum)	$D_{M} = 2.5$ ft	
B) Surface Area	of Micropool (10 ft ² minimum)	A _M =sq ft	
C) Outlet Type			
.,		Choose One Orifice Plate Other (Describe):	
D) Smallest Dim (Use UD-Deter	ension of Orifice Opening Based on Hydrograph Routing ntion)	D _{orifice} =3.03inches	
E) Total Outlet A	rea	A _{ot} = <u>27.63</u> square inches	

	Design Procedure Form	n: Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group February 13, 2018 Lorson Ranch East PDR - Pond c5 forebay design Pond C5 forebay design (split forebay in two parts)	Sheet 3 of
8. Initial Surcharge	Volume	
	al Surcharge Volume ommended depth is 4 inches)	D _{IS} = in
	al Surcharge Volume me of 0.3% of the WQCV)	$V_{IS} = $ 431.2 cu ft
C) Initial Surchar	ge Provided Above Micropool	V _s = <u>29.3</u> cu ft
9. Trash Rack		
A) Water Quality	v Screen Open Area: $A_t = A_{ot} * 38.5^{*}(e^{-0.095D})$	A _t = 798 square inches
in the USDCM, in	 n (If specifying an alternative to the materials recommended ndicate "other" and enter the ratio of the total open are to the or the material specified.) 	Other (Please describe below) stainless steel wellscreen
	Other (Y/N): Y	
C) Ratio of Total	Open Area to Total Area (only for type 'Other')	User Ratio = 0.6
D) Total Water Q	auality Screen Area (based on screen type)	A _{total} = <u>1329</u> sq. in. Based on type 'Other' screen ratio
	gn Volume (EURV or WQCV) ign concept chosen under 1E)	H= <u>3</u> feet
F) Height of Wate	er Quality Screen (H _{TR})	H _{TR} = 64 inches
	er Quality Screen Opening (W _{opening}) 2 inches is recommended)	W _{opening} =20.8 inches

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


UD-Detention, Version 3.07 (February 2017)

Project:	Lorson East	MDDP (100.	.013)		,	
Basin ID:						
/20HE 3	201					
	SNE 1	-	~			
VOLUME EUNY WOOV		-	_	~		
	_	-100-YEA	AR .		Depth Increment =	0.2
PERMANENT ORUS	T AND 2					
Pool Example Zone	e Configurat	tion (Reter	ntion Pond)		Stage - Storage Description	Stage (ft)
Required Volume Calculation					Top of Micropool	
Selected BMP Type =	EDB	1			5706.33	
Watershed Area =	171.00	acres			5707	
Watershed Length =	3,200	ft			5708	
Watershed Slope =	0.018	ft/ft			5709	
Watershed Imperviousness =	63.00%	percent			5710	
Percentage Hydrologic Soil Group A =	0.0%	percent			5711	-
Percentage Hydrologic Soil Group B =	0.0%	percent			5712	
Percentage Hydrologic Soil Groups C/D =		percent			5713	
Desired WQCV Drain Time =		hours			5714	
Location for 1-hr Rainfall Depths =					5715	
Water Quality Capture Volume (WQCV) =		acre-feet acre-feet	Optional Use 1-hr Precipit	er Override ation	5716	-
Excess Urban Runoff Volume (EURV) = 2-yr Runoff Volume (P1 = 1.16 in.) =		acre-feet	1.16	inches		
5-yr Runoff Volume (P1 = 1.44 in.) =	13.459	acre-feet	1.44	inches		
10-yr Runoff Volume (P1 = 1.68 in.) =		acre-feet	1.68	inches		
25-yr Runoff Volume (P1 = 1.92 in.) =		acre-feet	1.92	inches		
50-yr Runoff Volume (P1 = 2.16 in.) =	25.205	acre-feet	2.16	inches		
100-yr Runoff Volume (P1 = 2.42 in.) =	29.878	acre-feet	2.42	inches		-
500-yr Runoff Volume (P1 = 3.14 in.) =		acre-feet		inches		
Approximate 2-yr Detention Volume =		acre-feet				-
Approximate 5-yr Detention Volume =		acre-feet				
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =		acre-feet acre-feet				
Approximate 25-yr Detention Volume = Approximate 50-yr Detention Volume =		acre-feet				-
Approximate 100-yr Detention Volume =		acre-feet				-
sproximate roo yi beteritori fotane -	11.000					
Stage-Storage Calculation						
Zone 1 Volume (WQCV) =	3.515	acre-feet				-
Zone 2 Volume (EURV - Zone 1) =	6.868	acre-feet				
Zone 3 Volume (100-year - Zones 1 & 2) =		acre-feet				
Total Detention Basin Volume =	17.508	acre-feet				-
Initial Surcharge Volume (ISV) =		ft^3				-
Initial Surcharge Depth (ISD) = Total Available Detention Depth (H _{total}) =	user	ft				
Depth of Trickle Channel (H _{TC}) =	user	ft ft				
Slope of Trickle Channel (S _{TC}) =	user	π ft/ft				-
Slopes of Main Basin Sides (Smain) =	user	HV				
Basin Length-to-Width Ratio (R _{L/W}) =	user	1				
		-				
Initial Surcharge Area (A _{tsv}) =	user	ft'2				-
Surcharge Volume Length (L _{ISV}) =	user	ft				-
Surcharge Volume Width (W _{15V}) =	user	ft				
Depth of Basin Floor (H _{FLOOR}) =	user	ft				
Length of Basin Floor (L _{FLOOR}) = Width of Basin Floor (W _{FLOOR}) =	user	ft ft				-
Area of Basin Floor (M _{FLOOR}) =	user	π ft*2				-
Volume of Basin Floor (V _{FLOOR}) =	user	ft/3				
Depth of Main Basin (H _{MAIN}) =	user	ft				
Length of Main Basin (L _{MAIN}) =	user	ft				-
Width of Main Basin (W _{MAIN}) =	user	ft				
Area of Main Basin (A _{MAIN}) =	user	ft*2				-
Volume of Main Basin (V _{MAIN}) =	user	ft″3				
Calculated Total Basin Volume (V _{total}) =	user	acre-feet				
						-

Depth Increment =	0.2	ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft'2)	Area (ft/2)	(acre)	(ft/3)	(ac-ft)
Top of Micropool		0.00			-	50	0.001		
5706.33		0.33			-	100	0.002	24	0.001
5707		1.00	-		-	1,000	0.023	383	0.009
5708		2.00			-	18,898	0.434	10,154	0.233
5709		3.00			-	77,432	1.778	58,507	1.343
5710		4.00	-		-	110,270	2.531 2.650	152,358	3.498
5711 5712		5.00 6.00	-		-	115,455 120,720	2.650	265,220 383,308	6.089 8.800
5712	-	7.00	-	-	-	126,045	2.894	506,690	11.632
5714		8.00				131,696	3.023	635,561	14.590
5715		9.00				136,745	3.139	769,781	17.672
5716		10.00				141,857	3.257	909,082	20.870
	-		-		-				
	-		-						
			-						
			-		-				
			-						
	-		-	-					
	-		-	-	-				
			-					1	
			-						
	-		-						_
			-						
			-	-	-				
			-		-				
	-		-	-	-				
	-		-	-	-				
					-				
			-		-				
			-		-				
					-				
			-		-				
			-		-				
			-		-				
	-		-	-	-				
					-				
			-		-				
			-		-				
					-				
			-		-				
			-		-				
	-		-	-	-				
	-		-	-	-				-
					-				
			-		-				
	-		-		-				
	-		-	-	-				
	-		-		-				
					-				
-	-		-		-	_			_
	-		-	-	-				
					-				
	-		-	-	-				
			-		-				_
			-		-				
			-		-				
	~		-		-				
	-		-		-				
			-		-				
	-		-	-	-				
	-		-		-				
			-	-	-				
			-		-				
	-		-		-				
			-		-				
	~		-		-				
			-	-	-				
					-				
	-		1 1		-				
			111		-				

why not?

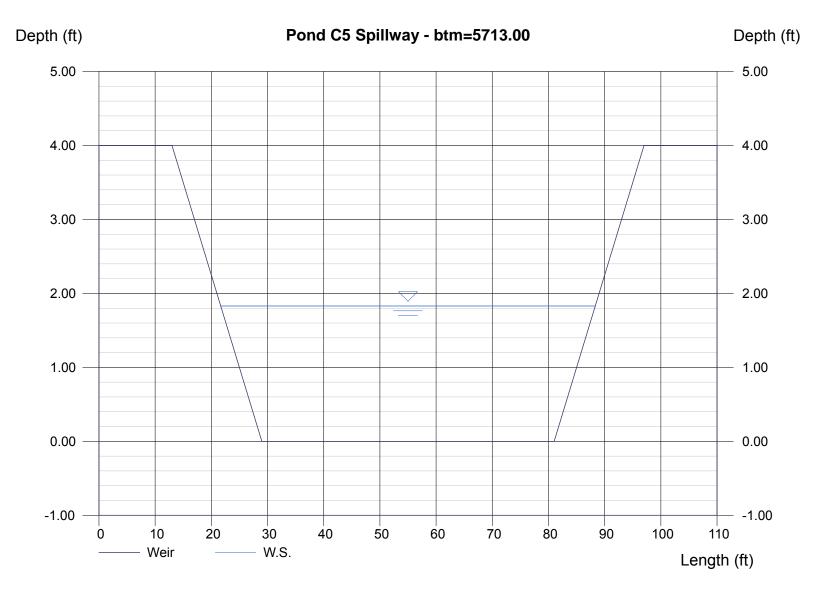
		Dete	ention Basin (Outlet Struct	ure Design				
		Bell		rsion 3.07 (Eebrua					
	Lorson East MDDP		YYY	YYY	γ				
Basin ID:	Pond C5 (only used	I for WQCV and EU) Do not use for 2	-100-yr Storm Event	····· <u> </u>				
ZONE 2 ZONE 2 ZONE 1			UU	\sim		Outlet Type			
100-YR VOLUME EURV WQCV			Zone 1 (WQCV)	Stage (ft) 4.01	Zone Volume (ac-ft) 3.515	Orifice Plate	1		
± ± +	100-YEA	R	Zone 2 (EURV)	6.57	6.868	Rectangular Orifice			
PERMANENT ORIFICES	ORIFICE		lone 3 (100-year)	8.95	7.126	Weir&Pipe (Restrict)			
POOL Example Zone Configuration (Retention Pond) 17:508 Total									
User Input: Orifice at Underdrain Outlet (typically u		7					ed Parameters for Ur		
Underdrain Orifice Invert Depth =	N/A	• ·	ne filtration media sur	rface)		erdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdra	ain Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orifices of	or Elliptical Slot Weir	(typically used to dr	ain WQCV and/or EU	RV in a sedimentation	on BMP)	Calcu	lated Parameters for	Plate	
Invert of Lowest Orifice =	0.00	- ·	oottom at Stage = 0 ft			rifice Area per Row =	6.396E-02	ft ²	
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	4.01 16.00	ft (relative to basin t inches	oottom at Stage = 0 ft	:)		Iliptical Half-Width = ptical Slot Centroid =	N/A N/A	feet feet	
Orifice Plate: Orifice Area per Row =	9.21	sq. inches (use recta	ngular openings)		Liii	Elliptical Slot Area =	N/A	ft ²	
		-							
User Input: Stage and Total Area of Each Orifice I	ow (numbered f	lowest to higher							
Sour input. Stage and Total Area of Each Office I	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	0.00	1.34	2.67						
Orifice Area (sq. inches)	9.21	9.21	9.21						
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)	(optional)	(optional)	(optional)	(optional)	(optional)	(optional)	(optional)	(optional)	
Orifice Area (sq. inches)									J
User Input: Vertical Orifice (Cire	ular or Rectangular)					Calculater	Parameters for Vert	ical Orifice	
Oser input. Vertical Office (eff	Zone 2 Rectangular	Not Selected	1			Calculatee	Zone 2 Rectangular	Not Selected	1
Invert of Vertical Orifice =	4.01	N/A		oottom at Stage = 0 f		ertical Orifice Area =	0.78	N/A	ft²
Depth at top of Zone using Vertical Orifice =	6.57	N/A		oottom at Stage = 0 f	t) Vertie	cal Orifice Centroid =	0.25	N/A	feet
Vertical Orifice Height = Vertical Orifice Width =	6.00 18.68	N/A	inches inches						
		1							
User Input: Overflow Weir (Dropbox) and G						Calculated	Parameters for Ove	rflow Weir	
		Not Coloctod	1						1
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 6.60	Not Selected	ft (relative to basin bo	ttom at Stage = 0 ft)	Height of Gr		Zone 3 Weir	Not Selected	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =		Not Selected N/A N/A	ft (relative to basin bo feet	ttom at Stage = 0 ft)		ate Upper Edge, H _t = Weir Slope Length =		Not Selected	feet feet
Overflow Weir Front Edge Length = Overflow Weir Slope =	6.60 18.00 0.00	N/A N/A N/A	feet H:V (enter zero for fl		Over Flow Grate Open Area /	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 6.60 3.00 3.65	Not Selected N/A N/A N/A	feet should be <u>></u> 4
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	6.60 18.00 0.00 3.00	N/A N/A N/A N/A	feet H:V (enter zero for fl feet	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 6.60 3.00 3.65 45.90	Not Selected N/A N/A N/A N/A	feet should be≥4 ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope =	6.60 18.00 0.00	N/A N/A N/A	feet H:V (enter zero for fl	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 6.60 3.00 3.65	Not Selected N/A N/A N/A	feet should be <u>></u> 4
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % =	6.60 18.00 0.00 3.00 85% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95	Not Selected N/A N/A N/A N/A N/A	feet should be \geq 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri	N/A N/A N/A N/A N/A Ctor Plate, or Rectan	feet H:V (enter zero for fl feet %, grate open area/t %	lat grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat	feet should be \geq 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % =	6.60 18.00 0.00 3.00 85% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	lat grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95	Not Selected N/A N/A N/A N/A N/A	feet should be \geq 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	lat grate) total area	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A	feet should be ≥ 4 ft ² ft ² te
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi	lat grate) total area in bottom at Stage = 0 l	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet should be ≥ 4 ft ² ft ² te ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches	lat grate) total area in bottom at Stage = 0 l	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (t)	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00	N/A N/A N/A N/A N/A tor Plate, or Rectan Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches	lat grate) kotal area in bottom at Stage = 0 l Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan, Spillway Invert Stage= Spillway Crest Length =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	lat grate) kotal area in bottom at Stage = 0 l Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14	Not Selected N/A	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan, Spillway Crest Length = Spillway End Slopes =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A tr (relative to basin the feet H:V	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	lat grate) kotal area in bottom at Stage = 0 l Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan, Spillway Invert Stage= Spillway Crest Length =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	lat grate) kotal area in bottom at Stage = 0 l Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14	Not Selected N/A	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan, Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal)	N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet H:V feet	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft	lat grate) total area in bottom at Stage = 0 I Half- t)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² te ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A tr (relative to basin the feet H:V	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	lat grate) kotal area in bottom at Stage = 0 l Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14	Not Selected N/A	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal) WQCV	N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A ft (relative to basin t feet H:V feet EURV	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year	lat grate) total area in bottom at Stage = 0 f Half- t) 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ((t) Central Angle of Restu Spillway Stage a Basin Area a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 50 Year	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A spillway feet feet acres 100 Year	feet should be ≥ 4 ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan, Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Plate Height Above Pipe Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515	N/A N/A N/A N/A N/A ctor Plate, or Rectan NA N/A ft (relative to basin the feet H:V feet EURV 1.07 10.382	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.16</u> 9.641	lat grate) total area in bottom at Stage = 0 1 Half- t) 5 Year 1.44 13.459	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op C Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 16.659	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.92 2.1.433	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 2004 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 50 Year 2.16 25.205	Not Selected N/A	feet should be \geq 4 ft ² ft ² ft ft feet radians 500 Year 3.14 41.092
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Lend Stopes = Freeboard above Max Water Surface = New Max Water Surface = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00	N/A N/A N/A N/A N/A N/A N/A Image: selected model N/A N/A Image: selected model N/A Image: selected model N/A Image: selected model Image: selected m	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 9.641 6.877 0.02	lat grate) total area in bottom at Stage = 0 1 Half- t) 5 Year 1.44 13.459 8.575 0.14	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op () (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 16.659 17.689 0.37	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 26.716 0.85	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 34.728 1.12	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Platf Not Selected N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.42 29.878 37.807 1.46	feet should be ≥ 4 ft ² ft ² te ft ² feet radians 500 Year 3.14 41.092 0.000 2.19
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan, Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Noted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak (D(st)) = Predevelopment Peak Q (cfs) =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00 0.0	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A ft (relative to basin t feet H:V feet 1.07 10.382 10.386 0.00 0.0	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.16</u> 9.641 <u>6.877</u> 0.02 2.8	lat grate) total area in bottom at Stage = 0 1 Half- .) 5 Year 1.44 1.44 1.459 8.575 0.14 2.3.2	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.92 2.1.433 26.716 0.85 145.3	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 50 Year 2.16 2.5205 3.4.728 1.12 191.8	Not Selected N/A Selected Italia Italia Italia	feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.14 41.092 0.000 2.19 374.8
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Lend Stopes = Freeboard above Max Water Surface = Restricter Plate Height Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00	N/A N/A N/A N/A N/A N/A N/A Image: selected model N/A N/A Image: selected model N/A Image: selected model N/A Image: selected model Image: selected m	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 9.641 6.877 0.02	lat grate) total area in bottom at Stage = 0 1 Half- t) 5 Year 1.44 13.459 8.575 0.14	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op () (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 16.659 17.689 0.37	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 26.716 0.85	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 34.728 1.12	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Platf Not Selected N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.42 29.878 37.807 1.46	feet should be ≥ 4 ft ² ft ² te ft ² feet radians 500 Year 3.14 41.092 0.000 2.19
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan, Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restricted Runoff Volume (acre-ft) = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow to Predevelopment Q = Ratio Peak Outflow to Predevelopment Detak Flow, q (cfs) =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal) wQCV 0.53 3.515 3.517 0.00 0.00 63.1 1.4 N/A	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A Not Selected N/A ft (relative to basin the feet H:V feet H:V feet 1.07 10.382 10.386 0.00 0.0 181.4 7.3 N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.16</u> <u>9.641</u> <u>6.877</u> <u>0.02</u> <u>2.8</u> <u>138.8</u> <u>5.1</u> N/A	at grate) total area in bottom at Stage = 0 1 Half- 1.44 1.44 1.3.459 8.575 0.14 23.2 1.67.5 6.2 0.3	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Open Spillway Stage a Basin Area a 10 Year 1.68 16.659 17.689 0.37 63.2 301.0 82.7 1.3	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.92 2.1.433 - 2.6.716 0.85 1.45.3 3.85.7 147.9 1.0	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 50 Year 2.16 2.5.205 34.728 1.12 191.8 450.0 161.2 0.8	Not Selected N/A A A A A	feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.14 4.1.092 0.000 2.19 3.74.8
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = Spillway (rest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak (O(5)) = Predevelopment Deak (O(5)) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00 0.0 63.1 1.4	N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectan Not Selected N/A N/A ft (relative to basin the feet H:V feet 1.07 1.0382 10.386 0.00 0.181.4 7.3	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 9.641 6.877 0.02 2.8 138.8 5.1	at grate) total area in bottom at Stage = 0 1 Half- 1.44 13.459 8.575 0.14 23.2 167.5 6.2	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Control Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 16.659 0.37 63.2 301.0 82.7	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.92 21.433 26.716 0.85 145.3 385.7 147.9	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 34.728 1.12 191.8 450.0 161.2	Not Selected N/A Spillway feet acres 100 Year 2.42 29.878 37.807 1.46 249.0 519.1 162.7	feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.14 41.092 0.000 2.19 374.8
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan, Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Auflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet H:V feet H:O 1.07 10.382 0.00 0.01 181.4 7.3 N/A Vertical Orifice 1 N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.16 9.641 <u></u>	at grate) total area in bottom at Stage = 0 1 Half- 1.44 1.44 1.459 	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Spillway Stage a Basin Area a 10 Year 1.68 16.659 17.689 0.37 63.2 301.0 82.7 1.3 Overflow Grate 1 1.6 N/A	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 192 21.433 26.716 0.85 145.3 385.7 147.9 1.0 Outlet Plate 1 3.0 N/A	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 	Not Selected N/A Spillway feet feet acres 100 Year 2.42 29.878 37.807 1.46 249.0 519.1 162.7 0.7 Outlet Plate 1 3.3 N/A	feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.14 41.092 0.000 2.19 374.8
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = None-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak G(ds) Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours)	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan NA NA NA N/A ft (relative to basin the feet H:V feet H:V feet 0.0382 0.00 181.4 7.3 N/A Vertical Orifice 1 N/A 54	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.16</u> <u>9.641</u> <u>0.02</u> <u>2.8</u> <u>138.8</u> <u>5.1</u> <u>N/A</u> Vertical Orifice 1 <u>N/A</u> <u>50</u>	at grate) total area in bottom at Stage = 0 1 Half- 5 Year 1.44 1.44 1.459 	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Control Angle of Rest Spillway Stage a Basin Area a Doverflow Grate 1 1.6 82.7 1.3 Overflow Grate 1 1.6 N/A 54	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 26.716 0.85 145.3 385.7 147.9 1.0 Outlet Plate 1 3.0 N/A 50	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 34.728 1.12 191.8 450.0 161.2 0.8 Outlet Plate 1 3.3 N/A 48	Not Selected N/A Spillway feet feet	feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.14 41.092 0.000 2.19 374.8
Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan, Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Unflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet H:V feet H:O 1.07 10.382 10.386 0.00 0.181.4 7.3 N/A Vertical Orifice 1 N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.16 9.641 <u></u>	at grate) total area in bottom at Stage = 0 1 Half- 1.44 1.44 1.459 	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Spillway Stage a Basin Area a 10 Year 1.68 16.659 17.689 0.37 63.2 301.0 82.7 1.3 Overflow Grate 1 1.6 N/A	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 192 21.433 26.716 0.85 145.3 385.7 147.9 1.0 Outlet Plate 1 3.0 N/A	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 	Not Selected N/A Spillway feet feet acres 100 Year 2.42 29.878 37.807 1.46 249.0 519.1 162.7 0.7 Outlet Plate 1 3.3 N/A	feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.14 41.092 0.000 2.19 374.8
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = Spillway (rest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow Inflow Volume (burg) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 9% of Inflow Volume (hours) =	6.60 18.00 0.00 3.00 85% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00 0.0 63.1 1.4 N/A Plate N/A N/A Plate N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectan Not Selected N/A N/A ft (relative to basin the feet H:V feet 1.0.7 10.386 0.00 181.4 7.3 N/A Vertical Orifice 1 N/A 54 58	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 9.641 0.02 1.38.8 5.1 N/A Vertical Orifice 1 N/A N/A N/A	at grate) total area in bottom at Stage = 0 1 Half- 1.44 1.3.459 8.575 0.14 23.2 1.67.5 6.2 0.3 Vertical Orifice 1 N/A N/A 52 55	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C tit) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.68 16.659 17.689 0.37 63.2 301.0 82.7 301.0 82.7 1.3 Overflow Grate 1 1.6 N/A 54 59	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 26.716 0.85 145.3 385.7 147.9 1.0 Outlet Plate 1 3.0 N/A 50 59	Zone 3 Weir 6.60 3.00 3.65 45.90 22.95 200 3.14 ted Parameters for S 50 Year 2.16 25.205 34.728 1.12 1.12 1.12 1.12 0.8 Outlet Plate 1 3.3 N/A 48 58	Not Selected N/A Solution 100 Year 2.42 29.878 37.807 1.46 249.0 519.1 162.7 0.7 Outlet Plate 1 3.3 N/A 47 57	feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.14 41.092 0.000 2.19 374.8

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

Time Interval 4.53 min Hydrograph Constant 1.105	SOURCE TIME 0:00:00 0:04:32 0:09:04 0:13:35 0:18:07 0:22:39 0:27:11 0:31:43 0:36:14 0:36:14	WORKBOOK WQCV [cfs] 0.00 0.00 2.65 7.32 18.80 51.57 63.09	WORKBOOK EURV [cfs] 0.00 0.00 0.00 6.62 19.57	USER 2 Year [cfs] 0.00 29.00 66.00	USER 5 Year [cfs] 0.00	USER 10 Year [cfs]	USER 25 Year [cfs]	USER 50 Year [cfs]	USER 100 Year [cfs]	USER 500 Year [cfs
4.53 min Hydrograph Constant	0:00:00 0:04:32 0:09:04 0:13:35 0:18:07 0:22:39 0:27:11 0:31:43 0:36:14 0:40:46	0.00 0.00 2.65 7.32 18.80 51.57	0.00 0.00 0.00 6.62 19.57	0.00 29.00	0.00		25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs
Hydrograph Constant	0:04:32 0:09:04 0:13:35 0:18:07 0:22:39 0:27:11 0:31:43 0:36:14 0:40:46	0.00 0.00 2.65 7.32 18.80 51.57	0.00 0.00 6.62 19.57	29.00						
Constant	0:09:04 0:13:35 0:18:07 0:22:39 0:27:11 0:31:43 0:36:14 0:40:46	0.00 2.65 7.32 18.80 51.57	0.00 6.62 19.57			0.00	0.00	0.00	0.00	0.00
Constant	0:13:35 0:18:07 0:22:39 0:27:11 0:31:43 0:36:14 0:40:46	2.65 7.32 18.80 51.57	6.62 19.57	00.00	36.00 81.00	51.00 120.00	62.00 139.00	64.00 173.00	65.00 175.00	0.00
1.105	0:22:39 0:27:11 0:31:43 0:36:14 0:40:46	7.32 18.80 51.57	19.57	96.00	117.00	120.00	213.00	275.00	283.00	0.00
	0:27:11 0:31:43 0:36:14 0:40:46	51.57		124.00	151.00	248.00	313.00	391.00	461.00	0.00
	0:31:43 0:36:14 0:40:46		50.29	135.00	164.00	291.00	375.00	440.00	509.00	0.00
	0:36:14 0:40:46	63.09	137.40	138.80	167.50	301.00	385.70	450.00	519.10	0.00
	0:40:46	60.59	181.40 178.56	124.00 93.00	145.00 112.00	272.00 224.00	362.00 306.00	435.00 415.00	476.00 396.00	0.00
- - - - - - - - -		55.14	164.07	73.00	89.00	197.00	264.00	360.00	336.00	0.00
-	0:45:18	49.64	148.07	53.00	65.00	163.00	210.00	297.00	264.00	0.00
-	0:49:50	43.37	130.43	42.00	52.00	138.00	182.00	235.00	225.00	0.00
-	0:54:22 0:58:53	37.83	114.23	29.00	36.00	96.00	151.00	202.00	183.00	0.00
	1:03:25	34.19 28.61	102.31 86.89	18.00 8.00	24.00 17.00	67.00 39.00	120.00 85.00	165.00 136.00	149.00 119.00	0.00
-	1:07:57	23.68	72.31	7.40	11.00	33.00	78.00	109.80	117.00	0.00
	1:12:29	18.72	58.12	6.90	10.00	29.00	72.00	98.00	113.00	0.00
F	1:17:01	14.42	45.40	6.30	10.00	25.00	67.00	86.00	98.00	0.00
F	1:21:32	10.74	34.41	5.70	8.40	24.00	64.00	79.00	91.00	0.00
F	1:26:04	8.07 6.51	25.42 20.14	5.40 4.70	7.50 6.80	22.00 21.00	59.00 50.00	75.00 71.00	86.00 83.00	0.00
F	1:35:08	5.48	16.87	4.50	6.10	20.00	41.00	68.00	80.00	0.00
Ľ	1:39:40	4.77	14.58	4.00	5.60	20.00	37.00	64.00	78.00	0.00
F	1:44:11	4.27	12.98	3.60	5.20	19.00	34.00	60.00	75.00	0.00
-	1:48:43 1:53:15	3.92 2.91	11.84	3.10 3.00	4.80 4.40	19.00 18.00	33.00 32.00	50.00 42.90	72.00 69.00	0.00
F	1:57:47	2.91	9.12 6.57	2.50	4.40	18.00	31.00	38.00	66.00	0.00
	2:02:19	1.56	4.88	2.40	3.80	17.00	31.00	35.00	63.00	0.00
Ľ	2:06:50	1.16	3.62	2.30	3.50	17.00	30.00	34.00	58.00	0.00
_	2:11:22	0.85	2.68	2.20	3.20	17.00	29.00	33.00	46.00	0.00
-	2:15:54 2:20:26	0.61	1.94 1.40	1.90 1.70	3.00	17.00	29.00 28.00	32.00 31.00	40.00 37.00	0.00
-	2:24:58	0.44	1.40	1.50	3.00	16.00	28.00	30.00	35.00	0.00
Ē	2:29:29	0.20	0.66	1.30	3.00	15.00	27.00	30.00	35.00	0.00
_	2:34:01	0.11	0.40	1.00	2.30	15.00	27.00	29.00	33.00	0.00
-	2:38:33	0.05	0.20	0.90	2.00	14.00	26.00	29.00	33.00	0.00
_	2:43:05 2:47:37	0.01	0.06	0.80	1.80	14.00 9.00	26.00 25.00	28.00 28.00	32.00 32.00	0.00
F	2:52:08	0.00	0.00	0.20	1.60	5.00	25.00	27.00	31.00	0.00
	2:56:40	0.00	0.00	0.00	1.00	3.00	24.00	27.00	31.00	0.00
-	3:01:12	0.00	0.00		0.90	2.00	24.00	27.00	31.00	0.00
-	3:05:44 3:10:16	0.00	0.00		0.00	1.00	23.00	26.00	30.00	0.00
-	3:10:16	0.00	0.00		0.00	0.00	23.00	26.00 25.00	30.00 28.00	0.00
F	3:19:19	0.00	0.00		0.00	0.00	20.00	25.00	28.00	0.00
	3:23:51	0.00	0.00			0.00	20.00	25.00	28.00	0.00
F	3:28:23	0.00	0.00			0.00	15.00	20.00	25.00	0.00
F	3:32:55	0.00	0.00				10.00 5.00	20.00	25.00	0.00
F	3:37:26	0.00	0.00				5.00	20.00	25.00	0.00
F	3:46:30	0.00	0.00				0.00	15.00	20.00	0.00
Ē	3:51:02	0.00	0.00				0.00	10.00	16.00	0.00
ŀ	3:55:34 4:00:05	0.00	0.00					10.00 8.00	16.00 11.00	0.00
F	4:04:37	0.00	0.00					8.00	11.00	0.00
F	4:09:09	0.00	0.00					6.00	8.00	0.00
ŀ	4:13:41 4:18:13	0.00	0.00					4.00 2.00	6.00 4.00	0.00
Ŀ	4:22:44	0.00	0.00					1.00	2.00	0.00
F	4:27:16	0.00	0.00					0.00	1.00	0.00
ŀ	4:31:48 4:36:20	0.00	0.00					0.00	0.00	0.00
E	4:40:52	0.00	0.00						0.00	0.00
F	4:45:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:49:55 4:54:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:58:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:03:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:08:02 5:12:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:17:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E	5:21:38 5:26:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Detention Basin Outlet Structure Design


UD-Detention, Version 3.07 (February 2017) Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Outflow	
Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
	0.00	50	0.001	0	0.000	0.00	For best results, include t
		98	0.002	24	0.001	0.17	stages of all grade slope
	0.33						changes (e.g. ISV and Floc
	1.00	987	0.023	383	0.009	0.31	from the S-A-V table on
	2.00	18,719	0.430	10,154	0.233	0.68	Sheet 'Basin'.
	3.00	77,432	1.778	58,507	1.343	1.11	
	4.00	110,270	2.531	152,358	3.498	1.47	Also include the inverts o
	5.00	115,455	2.650	265,220	6.089	4.97	outlets (e.g. vertical orific
	6.00	120,720	2.771	383,308	8.800	6.92	overflow grate, and spillw
	6.57	123,755	2.841	452,983	10.399	7.80	where applicable).
							_
							_
							_
							1
							1
							-
							-
							-
							-
							-
							-
							-
							-
							_
			-				
			L				4
							4
							1
							1
							1
						1	1
							1
]

Hydraflow Express by Intelisolve

Pond C5 Spillway - btm=5713.00

Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.83
Bottom Length (ft)	= 52.00	Q (cfs)	= 443.00
Total Depth (ft)	= 4.00	Area (sqft)	= 108.56
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 4.08
		Top Width (ft)	= 66.64
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Known Q		
Known Q (cfs)	= 443.00		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

0.2

Stage (ft)

Length (ft)

Width (ft)

Area (ft^2)

Area (acre)

Volume (ft^3)

Volume (ac-ft)

UD-Detention, Version 3.07 (February 2017)

Project: Lorson East MDDP Basin ID: Pond D2 - Lorson Blvd a et Tribu

2.16 2.42

Depth Increment = Stage - Storage Description

		-
EUNV WOOV		-
		100 YEAR
	20ME 1 AND 2	Contract

Required Volume Calculation			
Selected BMP Type =	EDB		
Watershed Area =	89.00	acres	
Watershed Length =	2,200	ft	
Watershed Slope =	0.025	ft/ft	
Watershed Imperviousness =	55.00%	percent	
Percentage Hydrologic Soil Group A =	0.0%	percent	
Percentage Hydrologic Soil Group B =	0.0%	percent	
Percentage Hydrologic Soil Groups C/D =	100.0%	percent	
Desired WQCV Drain Time =	40.0	hours	
Location for 1-hr Rainfall Depths =	User Input	-	
Water Quality Capture Volume (WQCV) =	1.635	acre-feet	Optional L
Excess Urban Runoff Volume (EURV) =	4.666	acre-feet	1-hr Preci
2-yr Runoff Volume (P1 = 1.16 in.) =	4.303	acre-feet	1.16
5-yr Runoff Volume (P1 = 1.44 in.) =	6.164	acre-feet	1.44
10-yr Runoff Volume (P1 = 1.68 in.) =	7.797	acre-feet	1.68
25-yr Runoff Volume (P1 = 1.92 in.) =	10.390	acre-feet	1.92
50-yr Runoff Volume (P1 = 2.16 in.) =	12.380	acre-feet	2.16
100-yr Runoff Volume (P1 = 2.42 in.) =	14.861	acre-feet	2.42
500-yr Runoff Volume (P1 = 0 in.) =	0.000	acre-feet	
Approximate 2-yr Detention Volume =	4.036	acre-feet	
Approximate 5-yr Detention Volume =	5.809	acre-feet	
Approximate 10-yr Detention Volume =	6.624	acre-feet	
Approximate 25-yr Detention Volume =	7.126	acre-feet	
Approximate 50-yr Detention Volume =	7.365	acre-feet	
Approximate 100-yr Detention Volume =	8.261	acre-feet	

	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
	Top of Micropool		0.00			_	20	0.000		
	5695.33		0.33				100	0.002	19	0.000
	5696		1.00				1,074	0.025	402	0.009
	5697		2.00				48,988	1.125	24,956	0.573
				-						
	5698		3.00				72,821	1.672	86,348	1.982
	5699		4.00				76,610	1.759	161,063	3.698
	5700		5.00				80,493	1.848	239,615	5.501
							00,465			
	5701		6.00				84,486	1.940	322,104	7.394
	5702		7.00				88,582	2.034	408,638	9.381
	5703		8.00				92,768	2.130	499,313	11.463
			9.00					2.229	594,234	13.642
	5704						97,074			
Override	5705		10.00				102,033	2.342	693,788	15.927
Override on	5706		11.00				106,000	2.433	797,804	18.315
							,			
nches										
nches										
nches										
nches										
nches										
nches										
nches										
		-		-						
					-					
		-		-						
								-		
				-						
		-			-					
				-						
		-		-						
				-						
		-		-						
						-				
				1 1						
					1 1	-			-	
				-						
				-						
				-						
						-				
				-						
				-		-				
				-	-					
				-						
					-	-				
				-						
		-		-	-				-	
				-						
				-						
					-					
		-								
				-						
				-		-				
		-		-	-					
				-						
		-		-		-				

Stage-Storage Calculation

VOLUME

acre-feet	1.635	Zone 1 Volume (WQCV) =
acre-feet	3.032	Zone 2 Volume (EURV - Zone 1) =
acre-feet	3.595	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-feet	8.261	Total Detention Basin Volume =
ft^3	user	Initial Surcharge Volume (ISV) =
ft	user	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth (H _{total}) =
ft	user	Depth of Trickle Channel (H _{TC}) =
ft/ft	user	Slope of Trickle Channel (S _{tc}) =
H:V	user	Slopes of Main Basin Sides (S _{main}) =
	user	Basin Length-to-Width Ratio (R _{L/W}) =
ft^2	user	Initial Surcharge Area (A _{SV}) =
0	user	Surcharge Volume Length (Lev) =

Surcharge volume cengin (c _{6v}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3

Calculated Total Basin Volume (V_{total}) = user

		Dete	ntion Basin C	Jutlet Struct	ure Design						
				rsion 3.07 (Februar	-						
-	: Lorson Ranch East : Pond D2 - Lorson B		w of JCC								
ZONE 3	Fond D2 - Lorson I		y 01 300								
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type					
			Zone 1 (WQCV)	2.79	1.635	Orifice Plate					
ZONE 1 AND 2	100-YEA ORIFICE	R	Zone 2 (EURV)	4.55	3.032	Rectangular Orifice					
PERMANENT ORIFICES	e Configuration (Re	tention Dand)	'one 3 (100-year)	6.45	3.595	Weir&Pipe (Restrict)					
				l	8.261	Total					
ser Input: Orifice at Underdrain Outlet (typically u Underdrain Orifice Invert Depth =	N/A	-	e filtration media sur	face)	Linde	calculate = rdrain Orifice Area	ed Parameters for Un N/A	derdrain ft ²			
Underdrain Orifice Diameter =	N/A	inches		ucc)		in Orifice Centroid =	N/A	feet			
ser Input: Orifice Plate with one or more orifices							lated Parameters for				
Invert of Lowest Orifice = = Depth at top of Zone using Orifice Plate	= 0.00 = 2.80		ottom at Stage = 0 ft) ottom at Stage = 0 ft)			rifice Area per Row = lliptical Half-Width =	2.917E-02 N/A	ft² feet			
Orifice Plate: Orifice Vertical Spacing =	9.00	inches	orton at stage orto			ptical Slot Centroid =	N/A	feet			
Orifice Plate: Orifice Area per Row =	4.20	sq. inches (use recta	ngular openings)			Elliptical Slot Area =	N/A	ft²			
ser Input: Stage and Total Area of Each Orifice	Row (numbered fro	m lowest to highest									
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)			
Stage of Orifice Centroid (ft	· · · · · · · · · · · · · · · · · · ·	0.60	1.20								
Orifice Area (sq. inches) 4.20	4.20	4.20						l		
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]		
Stage of Orifice Centroid (ft			/						1		
Orifice Area (sq. inches									l		
User Input: Vertical Orifice (Cir	cular or Rectangular)					Calculated	Parameters for Vert	ical Orifice			
	Zone 2 Rectangular	Not Selected				carculatee	Zone 2 Rectangular	Not Selected	1		
Invert of Vertical Orifice =	2.79	N/A	ft (relative to basin b	ottom at Stage = 0 ft)	v	ertical Orifice Area =	1.75	N/A	ft ²		
Depth at top of Zone using Vertical Orifice =	4.55	N/A	-	ottom at Stage = 0 ft)	Vertie	al Orifice Centroid =	0.42	N/A	feet		
Vertical Orifice Height = Vertical Orifice Width =	= 10.00	N/A	inches inches								
	-										
User Input: Overflow Weir (Dropbox) and			1			Calculated	Parameters for Ove		1		
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 4.60	Not Selected N/A	ft (relative to basin bot	ttom at Stage = 0 ft)	Height of Gr	ate Upper Edge, H, =	Zone 3 Weir 6.60	Not Selected N/A	feet		
Overflow Weir Front Edge Length; Ho	4.00	N/A	feet	tom at stage - o tty	-	Weir Slope Length =	20.10	N/A	feet		
Overflow Weir Slope =	10.00	N/A	H:V (enter zero for fla	at grate)		100-yr Orifice Area =	3.54	N/A	should be <u>></u> 4		
Horiz. Length of Weir Sides =	20.00	N/A	feet		Overflow Grate Ope		56.28	N/A	ft ²		
Overflow Grate Open Area % =	= 70% 50%	N/A	%, grate open area/to %	otal area	Overflow Grate Op	oen Area w/ Debris =	28.14	N/A	ft ²		
	50%	NA	/0	Debris Clogging % = 50% N/A %							
lser Input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restric	tor Plate, or Rectang	ular Orifice)		c	Calculated Parameter	s for Outlet Pipe w/	Flow Restriction Plat	e		
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected			
Depth to Invert of Outlet Pipe =	Zone 3 Restrictor	Not Selected	ft (distance below basi	n bottom at Stage = 0 f	it)	Outlet Orifice Area =	Zone 3 Restrictor 15.90	Not Selected N/A	ft ²		
	Zone 3 Restrictor 0.00 54.00	Not Selected N/A N/A		-	it)	Outlet Orifice Area = let Orifice Centroid =	Zone 3 Restrictor	Not Selected			
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Restrictor 0.00 54.00	Not Selected N/A N/A	ft (distance below basi inches	-	it) Outl	Outlet Orifice Area = let Orifice Centroid =	Zone 3 Restrictor 15.90 2.25	Not Selected N/A N/A	ft ² feet		
Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan	Zone 3 Restrictor 0.00 54.00 54.00 gular or Trapezoidal)	Not Selected N/A N/A	ft (distance below basi inches inches	Half-C	t) Outi Central Angle of Restr	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S	Not Selected N/A N/A N/A pillway	ft ² feet		
Depth to Invert of Outlet Pipe Outlet Pipe Diameter - Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage=	Zone 3 Restrictor = 0.00 = 54.00 = 54.00 sgular or Trapezoidal) = 7.00	Not Selected N/A N/A ft (relative to basin b	ft (distance below basi inches	Half-C	t) Outl Central Angle of Rest Spillway	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64	Not Selected N/A N/A N/A pillway feet	ft ² feet		
Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan	Zone 3 Restrictor 0.00 54.00 54.00 gular or Trapezoidal)	Not Selected N/A N/A	ft (distance below basi inches inches	Half-C	t) Central Angle of Restu Spillway Stage a	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S	Not Selected N/A N/A N/A pillway	ft ² feet		
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage= Spillway Crest Length =	Zone 3 Restrictor = 0.00 = 54.00 = 54.00 = 54.00 = 7.00 = 30.00	Not Selected N/A N/A ft (relative to basin b feet	ft (distance below basi inches inches	Half-C	t) Central Angle of Restu Spillway Stage a	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64	Not Selected N/A N/A N/A pillway feet feet	ft ² feet		
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Restrictor = 0.00 = 54.00 = 54.00 = 7.00 = 30.00 = 4.00 = 3.00	Not Selected N/A N/A ft (relative to basin b feet H:V	ft (distance below basi inches inches	Half-C	t) Central Angle of Restu Spillway Stage a	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64	Not Selected N/A N/A N/A pillway feet feet	ft ² feet		
Depth to Invert of Outlet Pipe - Outlet Pipe Diameter - Restrictor Plate Height Above Pipe Invert - User Input: Emergency Spillway (Rectan Spillway Invert Stage- Spillway Crest Length - Spillway End Slopes -	Zone 3 Restrictor 0.00 54.00 54.00 cular or Trapezoidal) 7.00 30.00 4.00 3.00 5	Not Selected N/A N/A ft (relative to basin b feet H:V	ft (distance below basi inches inches	Half-C	t) Central Angle of Restu Spillway Stage a	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64	Not Selected N/A N/A N/A pillway feet feet	ft ² feet		
Depth to Invert of Outlet Pipe : Outlet Pipe Diameter : Restrictor Plate Height Above Pipe Invert : User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length - Spillway End Slopes : Freeboard above Max Water Surface : Routed Hydrograph Result Design Storm Return Period = One-Hour Rainfall Depth (in) :	Zone 3 Restrictor 0.00 54.00 54.00 20 30.00 4.00 3.00 5 5 5 5 5 5 5 5 5 5 5 5 5	Not Selected N/A N/A ft (relative to basin b feet H:V feet <u>EURV</u> 1.07	ft (distance below basi inches inches ottom at Stage = 0 ft) <u>2 Year</u> 1.16	5 <u>Year</u> 1.44	t) Central Angle of Restr Spillway Stage a Basin Area a <u>10 Year</u> 1.68	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 1.92	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 50 Year 2.16	Not Selected N/A N/A N/A N/A Pillway feet feet acres 100 Year 2.42	ft ² feet radians 500 Year 0.00		
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Result Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	Zone 3 Restrictor 0.00 54.00 current State current State current State St	Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV	ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year	Half-C 5 Year	t) Central Angle of Restr Spillway Stage a Basin Area a 10 Year	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 50 Year	Not Selected N/A N/A N/A N/A Pillway feet feet acres 100 Year	ft ² feet radians 500 Year		
Depth to Invert of Outlet Pipe Outlet Pipe Diameter - Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage: Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Result Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Restrictor 0.00 54.00 0.01 0.02 0.02 0.02 0.00	Not Selected N/A N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 4.666 4.661	ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 1.16 4.303 4.297	Half-C 5 Year 1.44 6.164 6.155	t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.797 7.781	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 1.92 10.390 <u>10.375</u>	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 50 Year 2.16 12.380 12.358	Not Selected N/A N/A N/A pillway feet feet 2.42 14.861 14.837	ft ² feet radians 500 Year 0.00 0.000 #N/A		
Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway End Stopes Freeboard above Max Water Surface = Design Storm Return Period One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Restrictor = 0.00 = 54.00 = 54.00 = 7.00 = 30.00 = 4.00 = 4.00 = 0.53 = 0.53 = 1.632 = 0.00	Not Selected N/A N/A N/A It (relative to basin b feet H:V feet EURV 1.07 4.666 4.661 0.00	ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 1.16 4.303 4.297 0.02	5 Year 1.44 6.164 6.155 0.15	t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.797 7.781 0.41	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 1.92 10.390 <u>10.375</u> 0.93	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 S0 Year 2.16 12.380 12.358 1.23	Not Selected N/A N/A N/A Pillway feet feet acres 100 Year 2.42 14.861 14.837 1.59	ft ² feet radians 500 Year 0.00 0.000 		
Depth to Invert of Outlet Pipe Outlet Pipe Diameter - Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage: Spillway Crest Length Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Result Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Restrictor 0.00 54.00 0.01 0.02 0.02 0.02 0.00	Not Selected N/A N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 4.666 4.661	ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 1.16 4.303 4.297	Half-C 5 Year 1.44 6.164 6.155	t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.797 7.781	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 1.92 10.390 <u>10.375</u>	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 50 Year 2.16 12.380 12.358	Not Selected N/A N/A N/A pillway feet feet 2.42 14.861 14.837	ft ² feet radians 500 Year 0.00 0.000 #N/A		
Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Result Design Storm Return Period One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Outflow Q (cfs) =	Zone 3 Restrictor 0.00 54.00 24.00 27.00 30.00 4.00 4.00 0.53 1.635 1.632 0.00 0.0 32.1 0.6	Not Selected N/A N/A N/A It (relative to basin b feet H:V feet 1.07 4.666 0.00 0.01 90.1 8.9	ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 1.16 4.303 4.297 0.02 1.6 83.2 8.2	Half-C 5 Year 1.44 6.164 6.155 0.15 13.5 118.2 12.5	t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.797 7.781 0.41 36.4 148.6 26.2	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 1.92 10.390 <u>10.375</u> 0.93 82.9 196.4 60.9	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 50 Year 2.16 12.380 1.23 1.09.4 2.32.5 9.1.6	Not Selected N/A N/A N/A Pillway feet feet acres 2.42 14.861 	ft ² feet radians 0.00 0.000 #N/A #N/A #N/A		
Depth to Invert of Outlet Pipe 3 Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length - Spillway Crest Length - Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs) a Peak Linflow Q (cfs) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) =	Zone 3 Restrictor 0.00 54.00 54.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 N/A	Not Selected N/A N/A Image: selected select	ft (distance below basi inches inches ottom at Stage = 0 ft) <u>2 Year</u> 1.16 4.303 <u>4.297</u> 0.02 1.6 8.3.2 N/A	5 Year 1.44 6.164 6.155 0.15 118.2 118.2 12.5 0.9	t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.797 7.781 0.41 36.4 148.6 2.6.2 0.7	Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 1.92 10.390 <u>10.375</u> 0.93 82.9 196.4 60.9 0.7	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 50 Year 2.16 12.380 12.358 1.23 109.4 232.5 91.6 0.8	Not Selected N/A N/A N/A Pillway feet feet acres 100 Year 2.42 14.861 2.42 14.861 1.59 141.5 2.77.1 131.5 0.9	ft ² feet radians 0.00 0.000 0.000 0.000 0.000 mN/A mN/A mN/A mN/A		
Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Untflow Q (cfs) =	Zone 3 Restrictor 0.00 54.00 2.54.00 30.00 4.00 30.00 4.00 3.00 5 5 5 5 5 6 1.632 0.00 1.632 1.632 0.00 0.00 1.632 0.00 0.	EURV 1.07 4.666 0.00 0.01 8.9 N/A	ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 1.16 4.303 4.297 0.02 1.6 8.3.2 8.2 N/A Vertical Orifice 1 N/A	Half-O 5 Year 1.44 6.164 6.155 0.15 118.2 118.2 12.5 0.9 Overflow Grate 1 0.0	t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.797 7.781 0.41 36.4 148.6 26.2 0.7 Overflow Grate 1 0.2	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> <u>1.92</u> <u>10.390</u> <u>10.375</u> <u>0.93</u> <u>8.2.9</u> <u>196.4</u> <u>60.9</u> <u>0.7</u> Overflow Grate 1 <u>0.8</u>	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 50 Year 2.16 12.380 12.358 1.23 109.4 232.5 91.6 0.8 Overflow Grate 1 1.3	Not Selected N/A N/A N/A pillway feet feet acres 100 Year 2.42 14.861 14.837 1.59 141.5 277.1 131.5 0.9 Overflow Grate 1 2.0	500 Year radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A		
Depth to Invert of Outlet Pipe : Outlet Pipe Diameter : Restrictor Plate Height Above Pipe Invert : User Input: Emergency Spillway (Rectar Spillway Invert Stage: Spillway Crest Length - Spillway Crest Length - Spillway End Slopes : Freeboard above Max Water Surface : Routed Hydrograph Result Design Storm Return Period One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs) = Peak unflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	Zone 3 Restrictor 0.00 54.00 54.00 2.54.00 30.00 4.00	Not Selected N/A N/A N/A ft (relative to basin b feet H:V feet 1.07 4.666 4.661 0.00 90.1 8.9 N/A Vertical Orifice 1 N/A	ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 1.16 4.303 4.297 0.02 1.6 8.32 8.2 N/A Vertical Orifice 1 N/A N/A	Half-O 5 Year 1.44 6.164 6.155 0.15 13.5 118.2 12.5 0.9 Overflow Grate 1 0.0 N/A	t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.797 7.781 0.41 36.4 148.6 2.6.2 0.7 Overflow Grate 1 0.2 0.2 0.7	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 10.375 0.93 10.375 0.93 82.9 196.4 66.9 0.7 Overflow Grate 1 0.8 N/A	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 50 Year 2.16 12.380 12.358 1.23 109.4 232.5 91.6 0.8 Overflow Grate 1 1.3 N/A	Not Selected N/A N/A N/A Pillway feet feet acres 100 Year 2.42 14.861 14.837 1.59 141.5 277.1 131.5 0.9 Overflow Grate 1 2.0 N/A	ft ² feet radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A #N/A		
Depth to Invert of Outlet Pipe : Outlet Pipe Diameter : Restrictor Plate Height Above Pipe Invert : User Input: Emergency Spillway (Rectan Spillway Crest Length - Spillway Crest Length - Calculated Runoff Volume (acreft) - Calculated Runoff Volume (acreft) - Inflow Hydrograph Volume (acreft) - Inflow Hydrograph Volume (acreft) - Predevelopment Unit Peak Flow, q (cfs) - Peak Nottor Q (cfs) - Peak Nottor Q (cfs) - Peak Nottore Controlling Flow - Max Velocity through Grate 1 (fps) -	Zone 3 Restrictor 0.00 54.00 2.54.00 30.00 4.00 30.00 4.00 3.00 5 5 5 5 5 6 1.632 0.00 1.632 1.632 0.00 0.00 1.632 0.00 0.	EURV 1.07 4.666 0.00 0.01 8.9 N/A	ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 1.16 4.303 4.297 0.02 1.6 8.3.2 8.2 N/A Vertical Orifice 1 N/A	Half-O 5 Year 1.44 6.164 6.155 0.15 118.2 118.2 12.5 0.9 Overflow Grate 1 0.0	t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.797 7.781 0.41 36.4 148.6 26.2 0.7 Overflow Grate 1 0.2	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> <u>1.92</u> <u>10.390</u> <u>10.375</u> <u>0.93</u> <u>8.2.9</u> <u>196.4</u> <u>60.9</u> <u>0.7</u> Overflow Grate 1 <u>0.8</u>	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 50 Year 2.16 12.380 12.358 1.23 109.4 232.5 91.6 0.8 Overflow Grate 1 1.3	Not Selected N/A N/A N/A pillway feet feet acres 100 Year 2.42 14.861 14.837 1.59 141.5 277.1 131.5 0.9 Overflow Grate 1 2.0	500 Year radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A		
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stages Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Design Storm Return Period One-Hour Rainfall Depth (in) Calculated Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) Inflow Hydrograph Volume (acreft) Predevelopment Unit Peak Flow, q (cfs) Predevelopment Unit Peak Kork, q (cfs) Peak Nufflow Q (cfs) Peak Nufflow Q (cfs) Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow Max Velocity through Grate 1 (fps) Max Velocity through Grate 2 (fps) Time to Drain 93% of Inflow Volume (hours) Time to Drain 93% of Inflow Volume (hours)	Zone 3 Restrictor 0.00 54.00 24.00 30.00 4.00 30.00 4.00 3.00 4.00 3.00 4.00 3.00 4	EURV 1.07 4.661 0.00 90.1 8.9 N/A Vertical Orifice 1 N/A 4.9 52 4.14	ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 1.16 4.303 4.297 0.02 1.6 8.3 9.2 8.2 N/A Vertical Orifice 1 N/A N/A 49 52 3.98	Half-O 5 Year 1.44 6.164 6.155 0.15 118.2 12.5 0.9 Overflow Grate 1 0.0 N/A 49 53 4.81	t) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.68 7.797 0.41 36.4 0.41 36.4 26.2 0.7 0.41 36.4 26.2 0.7 0verflow Grate 1 0.2 N/A 48 53 5.37	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 10.375 0.93 10.375 0.93 82.9 196.4 66.9 0.7 Overflow Grate 1 0.8 N/A 46 52 5.99	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 50 Year 2.16 12.380 12.358 1.23 109.4 232.5 91.6 0.8 Overflow Grate 1 1.3 N/A 44 52 6.33	Not Selected N/A N/A N/A N/A pillway feet feet acres 2.42 14.861 2.42 14.861 14.837 1.59 141.5 2.77.1 131.5 0.9 Overflow Grate 1 2.0 N/A 42 51 6.68	500 Year radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A		
Depth to Invert of Outlet Pipe Outlet Pipe Diameter - Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage: Spillway Crest Length - Spillway Crest Length - Spillway Crest Length - Spillway End Slopes - Freeboard above Max Water Surface - Design Storm Return Period - One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) - OPTIONAL Override Runoff Volume (acre-ft) - Inflow Hydrograph Volume (acre-ft) - Predevelopment Unit Peak Flow, q (cfs/acre) Predevelopment Peak Q (cfs) - Peak Unflow Q (cfs) - Peak Unflow Volume (acre Structure Controlling Flow - Max Velocity through Grate 1 (fps) - Max Velocity through Grate 2 (fps) Time to Drain 97% of Inflow Volume (hours) -	Zone 3 Restrictor 0.00 54.00 0.01 0.02 0.02 0.02 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00	Not Selected N/A N/A N/A ft (relative to basin b feet H:V feet 1.07 4.666 0.00 90.1 8.9 N/A Vertical Orifice 1 N/A VA 90.1 8.9 N/A Vertical Orifice 1 N/A YA	ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 1.16 4.303 4.297 0.02 1.6 83.2 8.2 1.6 83.2 8.2 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A 49 52	Half-O 5 Year 1.44 6.164 6.155 0.15 13.5 118.2 12.5 0.9 Overflow Grate 1 0.0 N/A 49 53	t) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.68 7.797 7.781 0.41 3.6.4 1.48.6 2.6.2 0.7 Overflow Grate 1 0.2 N/A 48 5.3	Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.92 10.375 0.93 82.9 196.4 60.9 0.7 Overflow Grate 1 0.8 N/A 46 52	Zone 3 Restrictor 15.90 2.25 3.14 ted Parameters for S 1.64 11.64 2.43 50 Year 2.16 12.380 12.380 1.23 109.4 232.5 9.16 0.8 Overflow Grate 1 1.3 N/A 44 52	Not Selected N/A N/A N/A N/A pillway feet feet acres 100 Year 2.42 14.861 14.837 1.59 141.5 277.1 131.5 0.9 Overflow Grate 1 2.0 N/A 42 51	ft ² feet radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A #N/A #N/A		

Design Procedure Form	: Extended Detention Basin (EDB)
UD-BMP Designer: Richard Schindler Company: Core Engineering Group Date: February 13, 2018 Project: Lorson Ranch East PDR - Pond D2 forebay design Location:	2 (Version 3.06, November 2016) Sheet 1 of 4
 Basin Storage Volume A) Effective Imperviousness of Tributary Area, I_a B) Tributary Area's Imperviousness Ratio (i = I_a / 100) C) Contributing Watershed Area D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm E) Design Concept (Select EURV when also designing for flood control) 	$l_{a} = \underbrace{55.0}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
 F) Design Volume (WQCV) Based on 40-hour Drain Time (V_{DESIGN} = (1.0 * (0.91 * i³ - 1.19 * i² + 0.78 * i) / 12 * Area) G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume (V_{WQCV OTHER} = (d₆*(V_{DESIGN}/0.43)) H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) I) Predominant Watershed NRCS Soil Group J) Excess Urban Runoff Volume (EURV) Design Volume 	$V_{\text{DESIGN}} = \underbrace{1.635}_{\text{ac-ft}} \text{ ac-ft}$ $V_{\text{DESIGN USER}} = \underbrace{1.390}_{\text{C} \text{ or } \text{ ac-ft}} \text{ ac-ft}$ $V_{\text{DESIGN USER}} = \underbrace{1.390}_{\text{C} \text{ or } \text{ ac-ft}} \text{ ac-ft}$ $W_{\text{DESIGN USER}} = \underbrace{1.390}_{\text{C} \text{ or } \text{ ac-ft}} \text{ ac-ft}$ $W_{\text{DESIGN USER}} = \underbrace{1.390}_{\text{C} \text{ or } \text{ ac-ft}} \text{ ac-ft}$ $W_{\text{DESIGN USER}} = \underbrace{1.390}_{\text{C} \text{ or } \text{ ac-ft}} \text{ ac-ft}$
 c) Exected Statistical relation for the state of the state of	EURV = ac-f t L : W = : 1
 Basin Side Slopes A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) 4. Inlet 	Z = <u>0.33</u> ft / ft TOO STEEP (< 3)
 A) Describe means of providing energy dissipation at concentrated inflow locations: 	

Design Procedure Form: Extended Detention Basin (EDB)

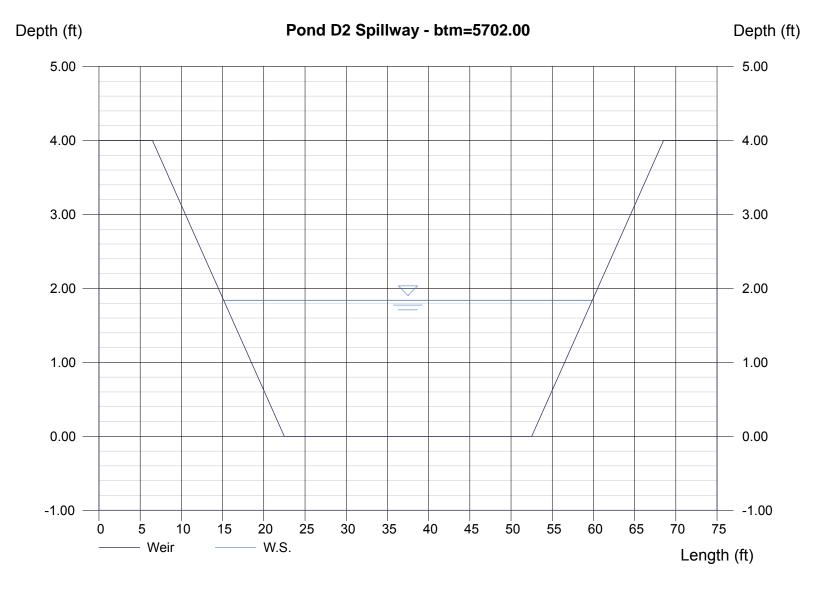
		Sheet 2 c
Designer:	Richard Schindler	
Company:	Core Engineering Group	
Date:	February 13, 2018 Lorson Ranch East PDR - Pond D2 forebay design	
Project: Location:	LOISON Kanch East PDK - Pond D2 lorebay design	
Looutem		
5. Forebay		
A) Minimum Fo (V _{FMIN}	orebay Volume = <u>3%</u> of the WQCV)	V _{FMIN} = <u>0.042</u> ac-ft
B) Actual Fore	bay Volume	V _F =0.045 ac-ft
C) Forebay De (D _F		D _F =in
D) Forebay Dis	charge	
I	i) Undetained 100-year Peak Discharge	$Q_{100} = 243.00$ cfs
l	ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	$Q_F = 4.86$ cfs
E) Forebay Dis	charge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge P	ipe Size (minimum 8-inches)	Calculated $D_P =$ in
G) Rectangular	Notch Width	Calculated $W_N = 10.4$ in
6. Trickle Channe	1	Choose One
A) Type of Tric	kle Channel	O Soft Bottom
F) Slope of Tri	ckle Channel	S = <u>0.0050</u> ft / ft
7. Micropool and	Outlet Structure	
A) Depth of Mi	icropool (2.5-feet minimum)	$D_{M} = 2.5$ ft
B) Surface Are	ea of Micropool (10 ft ² minimum)	$A_{\rm M} = $ 121 sq ft
C) Outlet Type		
		Choose One Orifice Plate
		Other (Describe):
D) Smallest Di (Use UD-Det	mension of Orifice Opening Based on Hydrograph Routing ention)	D _{orifice} = <u>3.05</u> inches
E) Total Outlet	Area	A _{ot} = 26.85 square inches

	Design Procedure Form	Extended De	tention Basi	n (EDB)	
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group February 13, 2018 Lorson Ranch East PDR - Pond D2 forebay design				Sheet 3 of 4
8. Initial Surcharge	Volume				
	al Surcharge Volume commended depth is 4 inches)	D _{IS} =	4	in	
	al Surcharge Volume ume of 0.3% of the WQCV)	V _{IS} =	181.6	cu ft	
C) Initial Surchar	rge Provided Above Micropool	V _s =	40.3	cu ft	
9. Trash Rack					
A) Water Qualit	y Screen Open Area: $A_t = A_{ot} * 38.5^* (e^{-0.095D})$	A _t =	774	square	inches
in the USDCM, i	en (If specifying an alternative to the materials recommended ndicate "other" and enter the ratio of the total open are to the for the material specified.)		Other (Please d	w)	
	Other (Y/N): Y				
C) Ratio of Total	Open Area to Total Area (only for type 'Other')	User Ratio =	0.6		
D) Total Water C	Quality Screen Area (based on screen type)	A _{total} =	1289	sq. in.	Based on type 'Other' screen ratio
	ign Volume (EURV or WQCV) sign concept chosen under 1E)	H=	2.7	feet	
F) Height of Wat	ter Quality Screen (H _{TR})	H _{TR} =	60.4	inches	
	er Quality Screen Opening (W _{opening}) 2 inches is recommended)	$W_{opening} =$	21.3	inches	

Hydraflow Express by Intelisolve

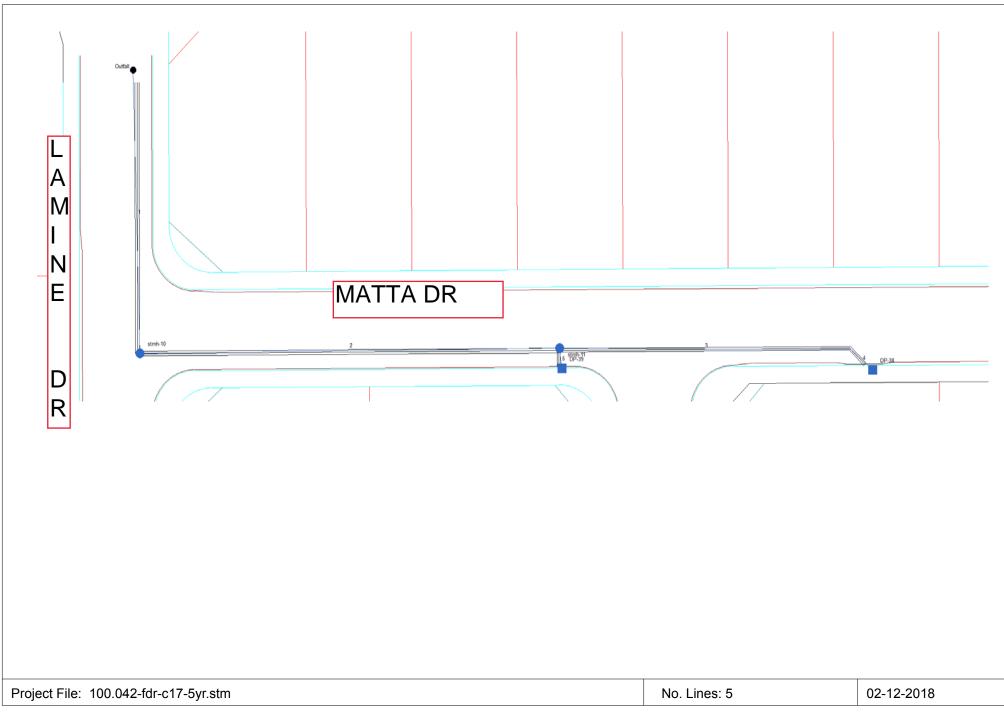
Pond D2 Spillway - btm=5702.00

Trapezoidal Weir

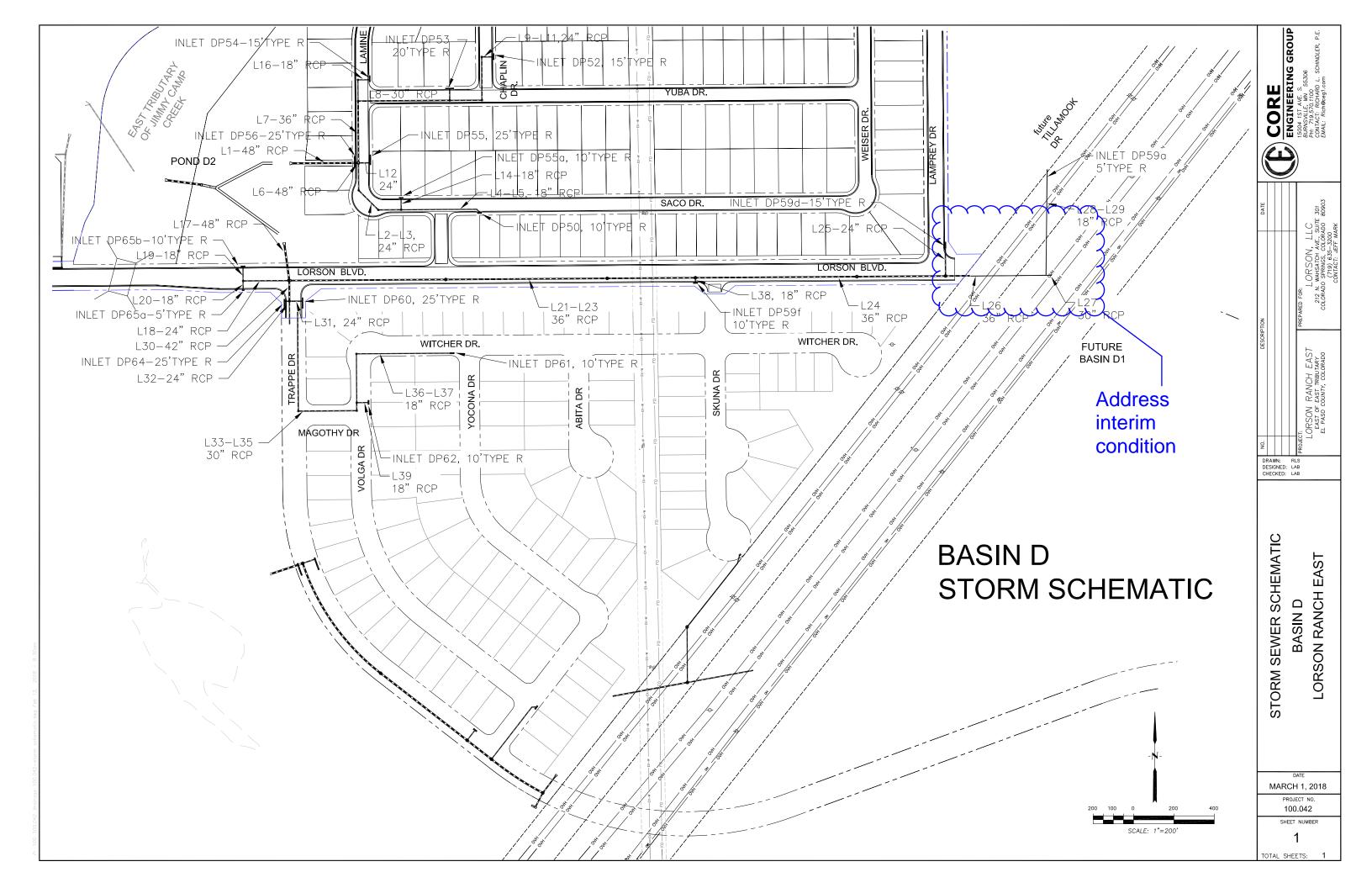

Crest	= Sharp
Bottom Length (ft)	= 30.00
Total Depth (ft)	= 4.00
Side Slope (z:1)	= 4.00

Calculations

Weir Coeff. Cw	= 3.10
Compute by:	Known Q
Known Q (cfs)	= 277.10


Highlighted

Depth (ft)	= 1.84
Q (cfs)	= 277.10
Area (sqft)	= 68.74
Velocity (ft/s)	= 4.03
Top Width (ft)	= 44.72


Provide for all storm systems serving Filing No. 1, including interim conditions accommodating offsite flows.

Hydraflow Plan View

ine Io.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
		13.91	24 c	122.5	5713.91	5716.81	2.367	5715.26	5718.13	n/a	5718.13 j	Enc
		13.97	24 c	199.0	5717.11	5722.80	2.860	5718.44	5724.12	n/a	5724.12 j	1
		5.88	18 c	137.9	5724.70	5726.36	1.203	5725.46	5727.29	0.12	5727.29	2
		5.91	18 c	13.6	5726.36	5726.48	0.886	5727.52	5727.50	0.03	5727.53	3
		8.43	18 c	8.8	5723.80	5724.01	2.382	5724.57*	5725.68*	0.11	5725.79	2

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1		26.76	24 c	122.5	5713.91	5716.81	2.367	5715.72	5718.62	n/a	5718.62 j	Enc
2		26.76	24 c	199.0	5717.11	5722.80	2.860	5718.74	5724.61	0.37	5724.61	1
3		11.83	18 c	137.9	5724.70	5726.36	1.203	5725.97	5727.86	0.21	5728.07	2
4		11.83	18 c	13.6	5726.36	5726.48	0.886	5728.07*	5728.24*	0.07	5728.31	3
5		14.93	18 c	8.8	5723.80	5724.01	2.382	5724.94*	5725.70*	0.33	5726.04	2

.1 .2 .3 .4 .5 .6 .7 .8	63.59 14.68 14.68 7.34 7.34 41.62	48 c 24 c 24 c 18 c 18 c	151.0 134.6 64.8 186.0	5697.00 5706.29 5708.24 5710.17	5702.09 5708.14 5709.42	3.371 1.376 1.819	5699.36 5707.35 5709.81	5704.45 5709.50 5710.78	n/a n/a n/a	5704.45 5709.50 5710.78 j	End 1 2
.3 .4 .5 .6 .7	14.68 7.34 7.34	24 c 18 c	64.8 186.0	5708.24	5709.42						
4 5 6 .7	7.34 7.34	18 c	186.0			1.819	5709.81	5710.78	n/a	5710.78 j	2
.5 .6 .7	7.34			5710.17	5745 A4						2
.6 .7		18 c			5715.01	2.602	5711.16	5716.04	0.10	5716.04	3
.7	41.62		10.0	5715.11	5715.38	2.700	5716.27	5716.41	0.45	5716.41	4
		48 c	9.0	5702.59	5704.23	18.224	5705.34	5706.14	0.31	5706.14	1
.8	33.79	36 c	147.3	5705.33	5707.67	1.588	5706.65	5709.52	0.34	5709.52	6
	26.49	30 c	226.5	5708.37	5713.87	2.428	5709.91	5715.59	0.25	5715.59	7
9	12.44	24 c	78.4	5714.92	5718.39	4.425	5716.19	5719.64	n/a	5719.64 j	8
.10	12.44	24 c	83.9	5718.68	5720.50	2.168	5719.96	5721.75	n/a	5721.75 j	9
.11	12.44	24 c	24.9	5720.70	5721.08	1.525	5722.07	5722.33	n/a	5722.33	10
.12	7.83	24 c	25.3	5706.33	5707.11	3.087	5706.93	5708.71	0.00	5708.71	6
.13	7.29	30 c	6.0	5707.13	5707.37	4.004	5707.63	5709.37	0.00	5709.37	1
.14	7.34	18 c	26.6	5710.44	5710.86	1.577	5711.24	5712.07	0.32	5712.39	3
.15	14.05	24 c	29.2	5715.08	5716.06	3.360	5716.12	5717.39	0.00	5717.39	8
.16	7.30	18 c	58.9	5709.75	5710.83	1.832	5710.51	5711.86	n/a	5711.86	7
.17	87.73	48 c	100.0	5697.00	5699.50	2.500	5699.78	5702.27	0.56	5702.27	En
.18	6.17	18 c	101.3	5701.90	5702.93	1.017	5703.47	5703.88	n/a	5703.88 j	17
.19	4.16	18 c	30.6	5703.13	5703.45	1.048	5704.22	5704.23	n/a	5704.23 j	18
.20	2.00	18 c	20.0	5703.33	5703.73	2.000	5704.29	5704.27	n/a	5704.27 j	18
.21	44.98	36 c	403.4	5700.75	5715.00	3.533	5703.03	5717.14	n/a	5717.14 j	17
.22	44.98	36 c	400.0	5715.30	5725.70	2.600	5717.59	5727.84	n/a	5727.84 j	21
.23	44.98	36 c	217.3	5726.00	5732.00	2.762	5728.29	5734.14	n/a	5734.14 j	22
.24	36.40	36 c	621.3	5732.00	5743.26	1.812	5734.81	5745.18	n/a	5745.18 j	23
.25	10.66	24 c	67.0	5745.16	5745.96	1.192	5746.08	5747.12	n/a	5747.12	24
.26	25.74	36 c	248.8	5743.86	5748.50	1.865	5745.88	5750.12	n/a	5750.12 j	24
.27	23.56	30 c	19.8	5749.50	5749.69	0.962	5750.88	5751.60	0.00	5751.60	26
.28	2.19	18 c	249.0	5752.72	5762.38	3.879	5753.05	5762.94	n/a	5762.94	26
.29	2.19	18 c	10.0	5762.38	5762.68	3.003	5763.12	5763.25	n/a	5763.25 j	28
.30	36.58	42 c	53.0	5700.23	5701.27	1.962	5703.43	5703.12	n/a	5703.12	17
.31	15.76	24 c	28.1	5702.57	5703.37	2.852	5703.51	5705.36	0.00	5705.36	30
.32	3.15	24 c	12.5	5702.97	5703.53	4.493	5703.89	5704.16	n/a	5704.16 j	30
	12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	127.83137.29147.341514.05167.301787.73186.17194.16202.002144.982244.982344.982436.402510.662625.742723.56282.19292.193036.583115.76	127.8324 c137.2930 c147.3418 c1514.0524 c167.3018 c1787.7348 c186.1718 c194.1618 c202.0018 c2144.9836 c2244.9836 c2344.9836 c2436.4036 c2510.6624 c2625.7436 c2723.5630 c282.1918 c292.1918 c3036.5842 c3115.7624 c	127.8324 c25.3137.2930 c6.0147.3418 c26.61514.0524 c29.2167.3018 c58.91787.7348 c100.0186.1718 c30.6202.0018 c20.02144.9836 c403.42244.9836 c403.42344.9836 c217.32436.4036 c621.32510.6624 c67.02625.7436 c248.82723.5630 c19.8282.1918 c10.03036.5842 c53.03115.7624 c53.0	127.8324 c25.35706.33137.2930 c6.05707.13147.3418 c26.65710.441514.0524 c29.25715.08167.3018 c58.95709.751787.7348 c100.05697.00186.1718 c30.65703.13202.0018 c20.05703.332144.9836 c403.45700.752244.9836 c400.05715.302344.9836 c217.35726.002436.4036 c621.35732.002510.6624 c67.05745.162625.7436 c248.85743.862723.5630 c19.85749.50282.1918 c249.05752.72292.1918 c53.05702.333036.5842 c53.05702.333115.7624 c28.15702.57	12 7.83 24 c 25.3 5706.33 5707.11 13 7.29 30 c 6.0 5707.13 5707.37 14 7.34 18 c 26.6 5710.44 5710.86 15 14.05 24 c 29.2 5715.08 5716.06 16 7.30 18 c 58.9 5709.75 5710.83 17 87.73 48 c 100.0 5697.00 5699.50 18 6.17 18 c 30.6 5703.13 5702.93 19 4.16 18 c 30.6 5703.33 5703.73 20 2.00 18 c 20.0 5703.33 5703.73 21 44.98 36 c 403.4 5700.75 5715.00 22 44.98 36 c 217.3 5726.00 5732.00 23 44.98 36 c 217.3 5726.00 5743.26 24 36.40 36 c 24.8 5743.86 5745.96 24 36.40 36 c 24.8 5743.86 5745.96 25<	127.8324 c25.35706.335707.113.087137.2930 c6.05707.135707.374.004147.3418 c26.65710.445710.861.5771514.0524 c29.25715.085716.063.360167.3018 c58.95709.755710.831.8321787.7348 c100.05697.005699.502.500186.1718 c30.65703.135703.451.048202.0018 c30.65703.335703.732.0002144.9836 c403.45700.755715.003.5332244.9836 c217.35726.005732.002.7622344.9836 c217.3573.005743.261.1922436.4036 c217.3573.005743.261.8122510.6624 c67.05745.165745.961.1922625.7436 c248.85743.865748.501.8652723.5630 c19.85749.505749.690.962282.1918 c249.05752.725762.383.0033036.5842 c53.05700.235701.271.9623115.7624 c28.15702.575703.372.852	127.8324 c25.35706.335707.113.0875706.93137.2930 c6.05707.135707.374.0045707.63147.3418 c26.65710.445710.861.5775711.241514.0524 c29.25715.085716.603.3605716.12167.3018 c58.95709.755710.831.8325710.511787.7348 c100.05697.005699.502.5005699.78186.1718 c30.65703.135703.451.0485704.22202.0018 c20.05703.335703.732.0005704.292144.9836 c403.45700.755715.003.5335703.032244.9836 c217.35726.005732.002.7625728.292344.9836 c621.35732.005743.261.8125734.812510.6624 c67.05745.165745.961.1925746.082625.7436 c248.85743.865748.501.8655745.882723.5630 c19.85749.50574.690.9625750.88282.1918 c24.905752.725762.383.8795753.05292.1918 c10.05762.385762.683.0035763.123036.5842 c53.05702.235701.27 <td< td=""><td>127.8324 c25.35706.335707.113.0875706.935708.71137.2930 c6.05707.135707.374.0045707.635709.37147.3418 c26.65710.445710.661.5775711.245712.071514.0524 c29.25715.085716.063.3605716.125717.39167.3018 c58.95709.755710.831.8325710.515711.861787.7348 c100.05697.005699.502.5005699.785702.27186.1718 c30.65703.135703.451.0485704.225704.23194.1618 c30.65703.335703.732.0005704.295704.23202.0018 c20.05703.33573.732.0005704.295704.242144.9836 c400.45705.5571.503.5335703.035717.142244.9836 c217.35726.005732.002.7625728.295734.142344.9836 c217.35745.665745.661.8125745.865745.862436.4036 c248.85743.865745.661.8125745.865751.502436.6024 c67.05745.665745.865745.865745.865751.502510.6624 c67.05745.865745.865745.86575</td><td>12 7.83 24 c 25.3 5706.33 5707.11 3.087 5706.93 5708.71 0.01 13 7.29 30 c 6.0 5707.13 5707.37 4.004 5707.63 5709.37 0.01 14 7.34 18 c 26.6 5710.44 5710.86 1.577 5711.24 5712.97 0.32 15 14.05 24 c 29.2 5715.08 5710.83 1.832 5710.51 5711.86 r/4 16 7.30 18 c 100.0 5697.00 5695.00 2.500 569.78 5702.27 0.56 18 6.17 18 c 101.3 5701.33 5703.73 1.017 5703.47 5704.23 n/4 19 4.16 18 c 30.6 5703.13 5703.73 2.000 5704.23 5704.23 n/4 20 18 c 20.0 5703.33 5703.73 2.000 5704.23 5704.23 n/4 21 44.98 36 c 217.3 5726.00 573.00 2.600 5715.90 5734.81 574.14</td><td>12 7.83 24 c 25.3 5706.33 5707.11 3.087 5706.93 5708.71 0.00 5709.77 13 7.29 30 c 6.0 5707.13 5707.37 4.004 570.63 5709.37 0.00 5709.37 14 7.34 18 c 26.6 5710.44 5710.86 5716.12 5711.24 5712.07 0.32 5712.39 15 14.05 24 c 29.2 5715.08 5716.06 3.360 5716.12 571.39 0.00 5717.39 16 7.30 18 c 58.9 5709.75 571.83 1.832 5702.71 571.86 6702.77 0.56 5702.27 18 6.17 18 c 101.3 5701.93 5703.73 1.017 5703.47 5703.88 n/a 5703.38 19 4.16 18 c 30.6 5703.73 5703.73 2.000 5704.27 n/a 5704.23 20 18 c 20.0 5715.00 5.533 5703.03 571.41 n/a 572.41 21 44.98 3</td></td<>	127.8324 c25.35706.335707.113.0875706.935708.71137.2930 c6.05707.135707.374.0045707.635709.37147.3418 c26.65710.445710.661.5775711.245712.071514.0524 c29.25715.085716.063.3605716.125717.39167.3018 c58.95709.755710.831.8325710.515711.861787.7348 c100.05697.005699.502.5005699.785702.27186.1718 c30.65703.135703.451.0485704.225704.23194.1618 c30.65703.335703.732.0005704.295704.23202.0018 c20.05703.33573.732.0005704.295704.242144.9836 c400.45705.5571.503.5335703.035717.142244.9836 c217.35726.005732.002.7625728.295734.142344.9836 c217.35745.665745.661.8125745.865745.862436.4036 c248.85743.865745.661.8125745.865751.502436.6024 c67.05745.665745.865745.865745.865751.502510.6624 c67.05745.865745.865745.86575	12 7.83 24 c 25.3 5706.33 5707.11 3.087 5706.93 5708.71 0.01 13 7.29 30 c 6.0 5707.13 5707.37 4.004 5707.63 5709.37 0.01 14 7.34 18 c 26.6 5710.44 5710.86 1.577 5711.24 5712.97 0.32 15 14.05 24 c 29.2 5715.08 5710.83 1.832 5710.51 5711.86 r/4 16 7.30 18 c 100.0 5697.00 5695.00 2.500 569.78 5702.27 0.56 18 6.17 18 c 101.3 5701.33 5703.73 1.017 5703.47 5704.23 n/4 19 4.16 18 c 30.6 5703.13 5703.73 2.000 5704.23 5704.23 n/4 20 18 c 20.0 5703.33 5703.73 2.000 5704.23 5704.23 n/4 21 44.98 36 c 217.3 5726.00 573.00 2.600 5715.90 5734.81 574.14	12 7.83 24 c 25.3 5706.33 5707.11 3.087 5706.93 5708.71 0.00 5709.77 13 7.29 30 c 6.0 5707.13 5707.37 4.004 570.63 5709.37 0.00 5709.37 14 7.34 18 c 26.6 5710.44 5710.86 5716.12 5711.24 5712.07 0.32 5712.39 15 14.05 24 c 29.2 5715.08 5716.06 3.360 5716.12 571.39 0.00 5717.39 16 7.30 18 c 58.9 5709.75 571.83 1.832 5702.71 571.86 6702.77 0.56 5702.27 18 6.17 18 c 101.3 5701.93 5703.73 1.017 5703.47 5703.88 n/a 5703.38 19 4.16 18 c 30.6 5703.73 5703.73 2.000 5704.27 n/a 5704.23 20 18 c 20.0 5715.00 5.533 5703.03 571.41 n/a 572.41 21 44.98 3

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
33	L33	17.67	24 c	273.9	5702.93	5707.47	1.658	5704.06	5708.96	0.31	5708.96	30
34	L34	17.67	24 c	145.5	5707.81	5710.70	1.987	5709.24	5712.19	0.31	5712.19	33
35	L35	17.67	24 c	19.4	5711.00	5711.30	1.548	5712.47	5712.79	0.31	5712.79	34
36	L36	7.57	18 c	120.7	5711.80	5713.30	1.242	5713.27	5714.35	n/a	5714.35 j	35
37	L37	7.57	18 c	219.8	5713.60	5719.23	2.562	5714.58	5720.28	0.00	5720.28	36
38	L38	8.58	18 c	13.6	5733.60	5733.93	2.430	5734.85	5735.05	0.00	5735.05	23
39	L39	10.10	18 c	28.3	5711.80	5712.09	1.023	5713.05	5713.31	0.00	5713.31	35
orso	n East fdr-D Basins-	5yr					Nun	nber of line	s: 39	Run	Date: 02-13	3-2018

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	122.0	48 c	141.4	5697.00	5702.09	3.601	5700.27	5705.36	0.77	5705.36	End
2	L2	21.57	24 c	134.2	5706.09	5707.84	1.304	5707.49	5709.49	0.19	5709.49	1
3	L3	21.60	24 c	61.7	5708.24	5709.42	1.910	5709.70	5711.07	0.28	5711.07	2
4	L4	10.76	18 c	186.4	5710.17	5715.01	2.597	5711.44	5716.26	n/a	5716.26 j	3
5	L5	10.77	18 c	10.0	5715.11	5715.38	2.700	5716.41	5716.63	0.65	5716.63	4
6	L6	109.9	48 c	8.5	5702.59	5704.23	19.305	5706.08	5707.33	n/a	5707.33	1
7	L7	57.07	36 c	146.7	5705.33	5707.67	1.594	5708.03	5710.08	n/a	5710.08	6
8	L8	44.73	30 c	226.5	5708.37	5713.87	2.428	5710.15	5716.10	n/a	5716.10	7
9	L9	18.65	24 c	78.4	5714.92	5718.39	4.425	5717.01	5719.92	n/a	5719.92 j	8
10	L10	18.77	24 c	83.9	5718.68	5720.50	2.168	5720.18	5722.04	0.25	5722.04	9
11	L11	18.80	24 c	24.9	5720.70	5720.98	1.123	5722.30	5722.52	0.00	5722.52	10
12	L12	31.70	24 c	25.6	5706.33	5707.11	3.051	5707.69*	5709.78*	0.00	5709.78	6
13	L13	29.70	30 c	6.0	5707.13	5707.37	4.004	5708.17*	5711.41*	0.00	5711.41	1
14	L14	10.83	18 c	26.6	5710.44	5710.86	1.577	5711.48	5712.28	0.55	5712.83	3
15	L15	25.53	24 c	29.2	5715.08	5716.06	3.360	5716.53	5717.84	0.00	5717.84	8
16	L16	12.63	18 c	58.9	5709.75	5710.83	1.832	5710.85	5712.17	0.00	5712.17	7
17	L17	173.6	48 c	100.0	5697.00	5699.50	2.500	5700.75	5703.25	1.25	5703.25	Eno
18	L18	15.99	24 c	101.3	5701.50	5702.63	1.115	5705.97*	5706.48*	0.16	5706.64	17
19	L19	12.70	18 c	30.6	5702.93	5703.25	1.046	5706.64*	5707.09*	0.00	5707.09	18
20	L20	3.59	18 c	20.0	5702.93	5703.33	2.000	5706.98*	5707.00*	0.00	5707.00	18
21	L21	103.3	36 c	400.0	5700.75	5715.00	3.563	5703.25	5717.91	n/a	5717.91	17
22	L22	103.9	36 c	400.0	5715.30	5725.70	2.600	5717.93	5728.61	0.00	5728.61	21
23	L23	104.2	36 c	217.3	5726.00	5732.00	2.762	5728.65	5734.91	1.03	5734.91	22
24	L24	93.04	36 c	621.3	5732.00	5743.26	1.812	5735.66*	5747.75*	1.08	5748.83	23
25	L25	20.30	24 c	67.0	5745.06	5745.96	1.343	5750.87*	5751.41*	0.00	5751.41	24
26	L26	75.38	36 c	251.2	5744.56	5749.20	1.847	5749.75*	5752.96*	0.53	5753.49	24
27	L27	60.85	30 c	27.3	5750.00	5750.49	1.793	5753.49*	5754.10*	0.00	5754.10	26
28	L28	4.84	18 c	249.0	5752.72	5762.38	3.879	5755.15	5763.22	n/a	5763.22 j	26
29	L29	4.85	18 c	10.0	5762.38	5762.68	3.003	5763.45	5763.52	n/a	5763.52 j	28
30	L30	88.30	42 c	53.7	5700.23		1.935	5705.07*		0.52	5706.01	17
31	L31	31.70	24 c	28.1	5702.97	5703.77	2.843	5706.01*		0.00	5706.56	30
32	L32	29.20	24 c	13.0	5702.97	5703.48	3.934	5706.01*		0.40	5706.63	30
Lorso	n East fdr- D Basins-1	00y					Nun	nber of line:	s: 39	Run	Date: 02-13	 3-2018

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

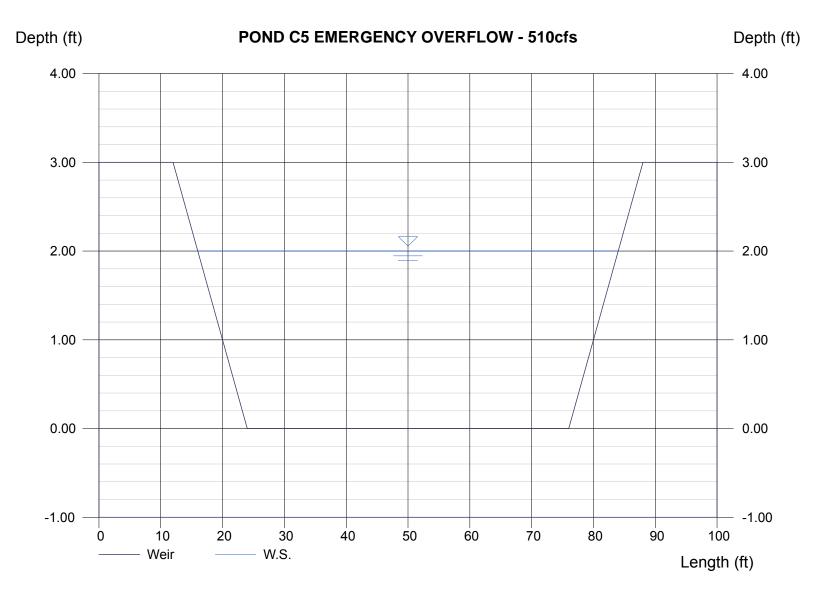
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
33	L33	27.33	24 c	272.5	5702.98	5707.49	1.655	5706.14*	5710.12*	0.35	5710.47	30
34	L34	27.37	24 c	144.3	5707.81	5710.40	1.795	5710.47*	5712.58*	0.35	5712.94	33
35	L35	27.38	24 c	19.4	5710.70	5711.20	2.581	5712.94	5713.20	0.47	5713.67	34
36	L36	11.08	18 c	120.7	5711.70	5714.00	1.905	5714.24	5715.46	0.19	5715.65	35
37	L37	11.08	18 c	219.8	5714.20	5719.23	2.288	5715.66	5720.50	n/a	5720.50 j	36
38	L38	12.37	18 c	13.6	5733.60	5733.93	2.430	5737.59*	5737.78*	0.00	5737.78	23
39	L39	16.30	18 c	28.3	5711.80	5712.09	1.023	5713.67*	5714.35*	0.00	5714.35	35
.orso	n East fdr- D Basins-	100y					Nun	nber of lines	s: 39	Run I	Date: 02-13	8-201

APPENDIX F –INTERIM POND CALCULATIONS BY HYDRAFLOW

Hydraflow Express by Intelisolve

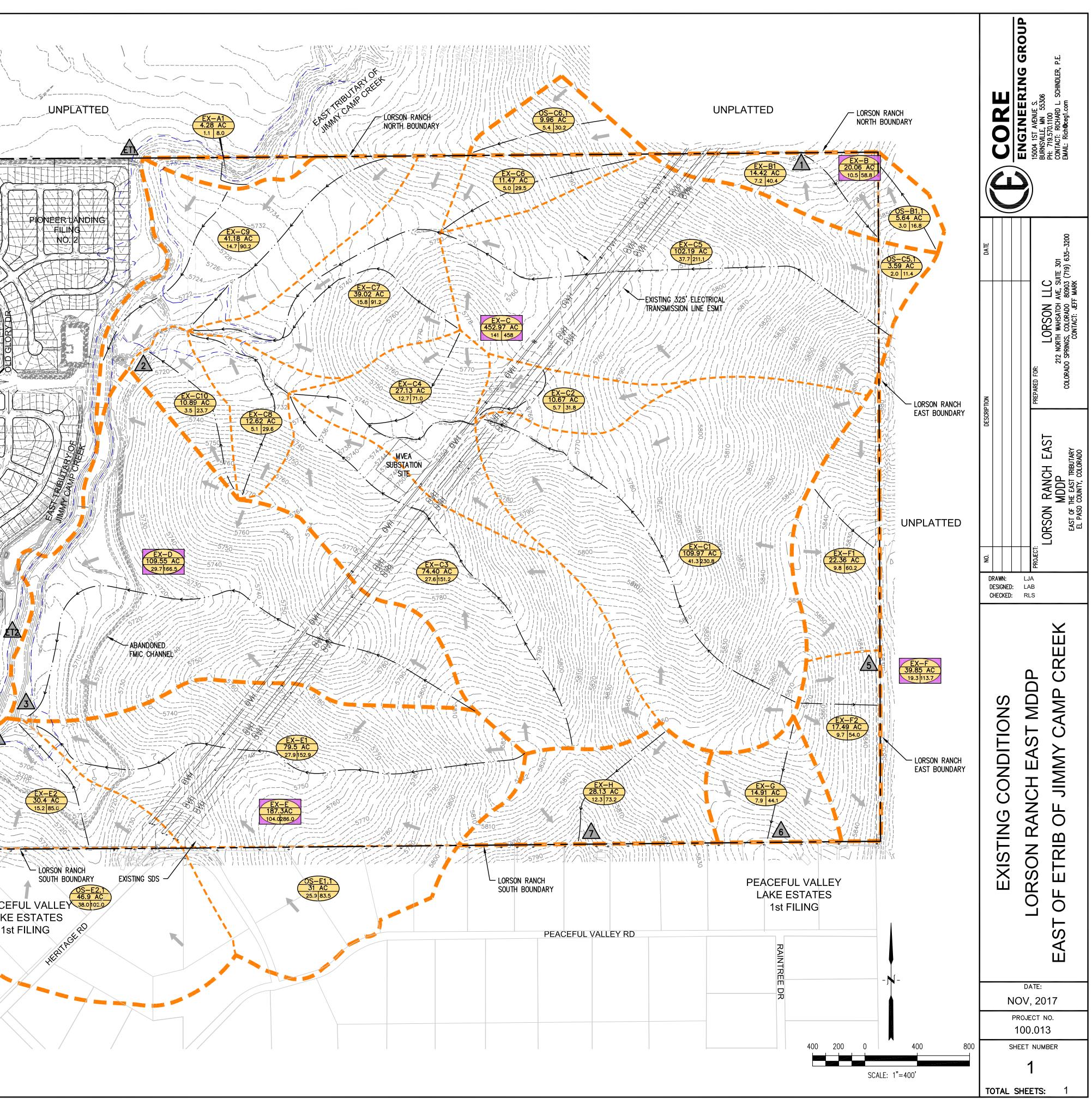
POND C5 EMERGENCY OVERFLOW - 510cfs

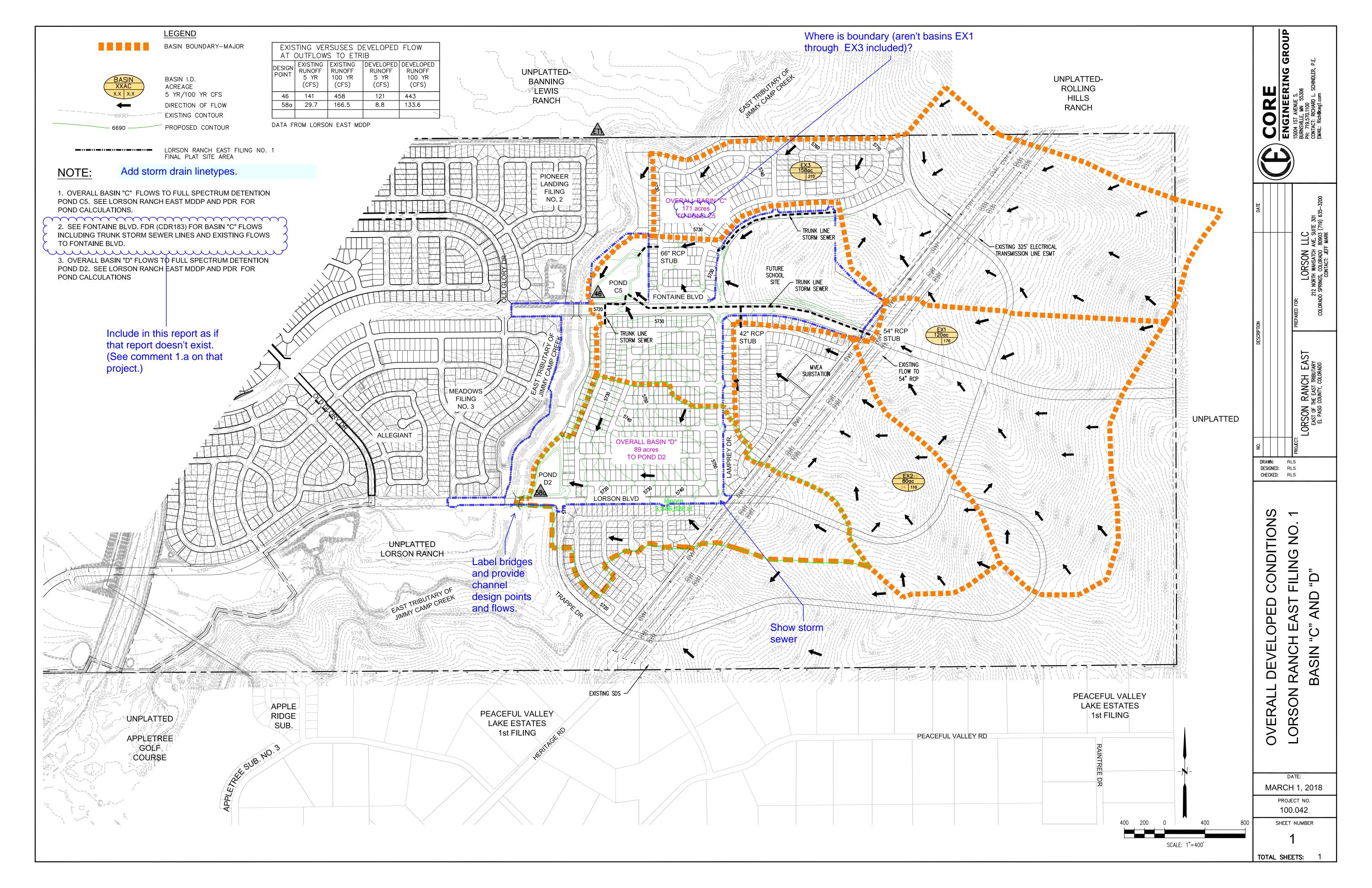
Trapezoidal Weir

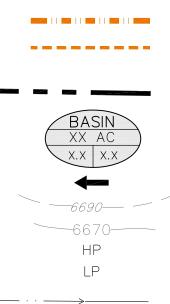

= Sharp
= 52.00
= 3.00
= 4.00

Calculations

Weir Coeff. Cw	= 3.10
Compute by:	Known Q
Known Q (cfs)	= 510.00


Highlighted


Depth (ft)	= 2.00
Q (cfs)	= 510.00
Area (sqft)	= 120.00
Velocity (ft/s)	= 4.25
Top Width (ft)	= 68.00


MAP POCKET

	POINT SUN									
BASIN	DRAINAGE	E RUNOFF	RUNOFF	RUNOFF	RUNOFF	RUNOFF	RUNOFF			·,
POINT	AREA (AC)	2 YR (CFS)	5 YR (CFS)	10 YR (CFS)	25 YR (CFS)	50 YR (CFS)	100 YR (CFS)			
1 EX-B	20.06		10.5				58.8			
2 EX-C'		17.1	141.0	189.0	263.8	368.7	458.0			
3 EX-D	109.55		29.7				166.5		-	- \
4 EX-E*	187.30	22.4	104.0	135.4	179.3	237.6	286.0		(/
5 EX-F	39.85		19.3				113.7		· · · · · · · · · · · · · · · · · · ·	`
6 EX-G 7 EX-H	14.91		7.9				44.1			
EX-H	28.13		12.3				73.2			
B EX-I	32.92		12.4				74.1			
9 EX-J 0 EX-K	25.78 7.57		9.0 2.1				55.9 15.2			X13
2, 10, 25, 5				E EXISTING		L AT ETRIB	13.2			\times
2, 10, 20, 0	D TEAK STO									
EAST TRIB			TRIBUTA							
FEMA FLOW			FLOW DA	A I A				्रम्यू हार्हराह		
SIGN RUNOF	RUNOFF	RUNOFF	RUNOFF 100 YR							\sim
OINT (CFS)	(CFS)	(CFS)	(CFS)							\sum
T1 2400	4750	100	4220				<u>ل</u>			X.
ET2 2600	5200	110	4530				(T			N. H
ET3 2800	5500	110	4570				┵┽┸			
ET4 2800	5500	120	4600				$\langle \langle \rangle \rangle$			L.
										1/H
							$\sqrt{//}$			
						. \`	ATTT '			
						,X	ITT			FI.
	-	LEGEND								
/ /	[BASIN BOU	NDARY-MA	JOR			- LLL	FONTAINE B		
		BASIN BOU	NDARY-MIN	IOR	Ň	\bigvee		ALITIT		TTT
X	ł	BASIN DES	GN POINT		ر بر	\sim			<u> </u>	
BAS	N	BASIN I.D.			J.	\checkmark				
		ACREAGE					$\langle \rangle \rangle \land$			-+/-,
X.X	×	5 YR/100	YR CFS			-	\mathcal{Y}			
-		DIRECTION	OF FLOW		\checkmark				MEADOWS FILL	NG
6690		EXISTING C	ONTOUR	$\langle \rangle$	1,5108-7		$\mathbf{A} \mathbf{A} \mathbf{A}$		M TNO 3Vet	
		TIME OF CO		ON A	- In KI	FXXX	\V k		571 -571	L'X
						$\langle \chi \rangle$		CHATTER MA	TAXAK	XĽ
— · — · — · —	<i>.</i>	100-YR FL	.00DPLAIN		(H)	XX		XXXXXXXXX		X
				FAI		XXXX			A CONTRACT	5.7.
					THE H		K K K K K K K K K K K K K K K K K K K	XXXXXXX	THE AND	ST.
				目目的	VEEL		\mathcal{X}	ALLEGIANT	MARTHAR	
			17	HR	R-FTTX		<u>AH</u>			K H
					KX IX	XXX	XXJ K			K-ad
				ADXX		\bowtie	X	HE AND FELL		, Mi
		1.		VIANA V		THAT	1-5/11			~ <u>}</u>
				HA H						ster /
				MEADO	WSFILING	YLTT				
				VIIVE	JOA C					N
				JHH.K	TY /				5706-	
	-/-			HH WE	XXX					
			THE A	FERR		568	9		EXISTING 100 YR - FLOOD PLAIN	
			MX L							
· · · · · · · · · · · · · · · · · · ·			FIFF	EFFF				5700		
			K-t-t-L-		<i>∭</i> +−	S 221		5700		-7,
			5700	\sim	- 77 1	No Frank			ET3	
		, î			· · · ·					
		56 56			10-145-				5100	
		RELO FMIC	CATED		1015-				5100	
		FMIC							5700	
	The second s	FMIC	X-K1 59 AC						5700	
	IP CREEK	FMIC -5699E 5.1							5700	
	CAMP THE A	FMIC 569 5. 5. EX-K 7.57 AC	X-K1 59 AC 6 11.5			XJ1 5.42 AC		18 EX-II 16.96 AC	5100	
	CAMPCREEK	FMIC -5699E 5.1	X-K1 59 AC 6 11.5						5700 5710 720	
	CAMPCAEL	FMIC 569 5. 5. EX-K 7.57 AC	X-K1 59 AC 6 11.5			X-J1 5.42 AC 4.7 31.5		18 EX-II 18 EX-II 16.96 AC 3.8 49.1 5724 5720 EX	5700	
	CAMPCHER	FMIC 5699 E 5.1 1.1 EX-K 7.57 AC 2.1 15.2	X-K1 59 AC 6 11.5			X-J 5.42 AC 4.7 31.5 EX-J 25.78 AC		B B 18 EX-II 18 EX-II 16.96 AC 3.8 49.1 5724 5720 726 32.93	2 AC	
		FMIC 569 5. 5. EX-K 7.57 AC	X-K1 59 AC 6 11.5			X-J1 5.42 AC 4.7 31.5		B B O 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	2 AC	
	COMPANY CONTRACT	FMIC 5699 E 5.1 1.1 EX-K 7.57 AC 2.1 15.2	X-K1 59 AC 6 11.5			X-J 5.42 AC 4.7 31.5 EX-J 25.78 AC		B B 18 EX-II 18 EX-II 16.96 AC 3.8 49.1 5724 5720 726 32.93	2 AC	
		FMIC 569 E 5.9 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E	X-K1 59 AC 6 11.5			X-JI 5.42 AC 4.7 31.5 10 EX-J 25.78 AC 90 55.3 90 55.3	OS-J1.1 12.36 AC 5.4 31.1	B B O 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	74.1	
		FMIC 5.5 5.5 5.5 5.5 5.5 7.57 7.57 2.1 15.2 2.1 15.2	X-K1 59 AC 6 11.5	05-K1.1 1.98 AC		X-JI 5.42 AC 1.7 31.5 25.78 AC 9.0 35.9 LE	OS-J1.1 12.36 AC	B B O 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	2 AC 74.1 757. 0S-11.1 15.96 AC	
		FMIC 56 5. 5. 5. 5. 5. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	X-K1 59 AC 6 11.5		APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B B O 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	AC 74.1 05-11.1	PEA
		FMIC 5.5 5.5 5.5 5.5 5.5 7.57 7.57 2.1 15.2 2.1 15.2	X-K1 59 AC 6 11.5	05-K1.1 1.98 AC		X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B B O 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	2 AC 74.1 757. 0S-11.1 15.96 AC	
		FMIC 5.9 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
		FMIC 5.9 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5.9 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B B O 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PE
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	05-K1.1 1.98 AC	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PE
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PE

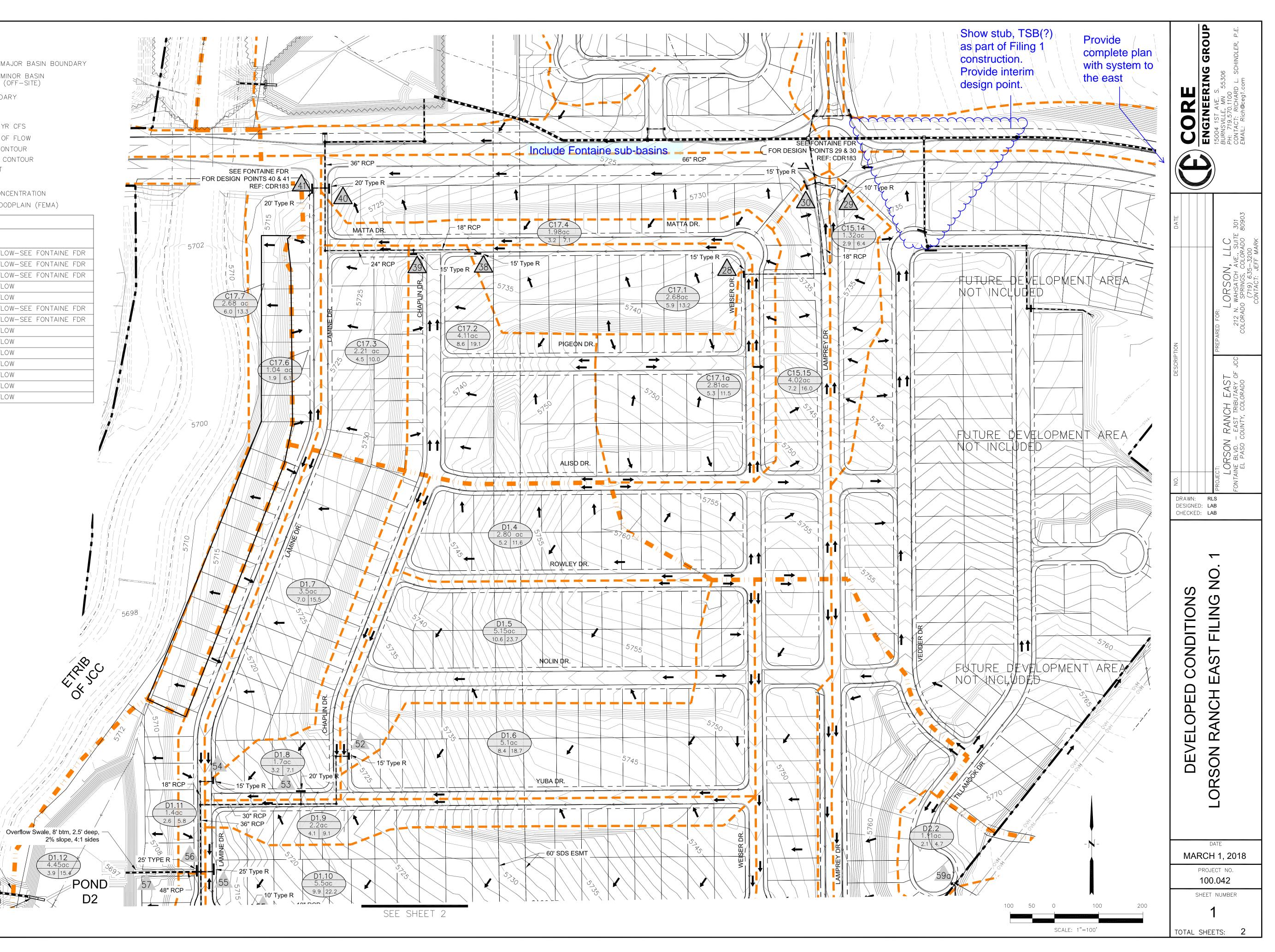
<u>LEGEND</u>

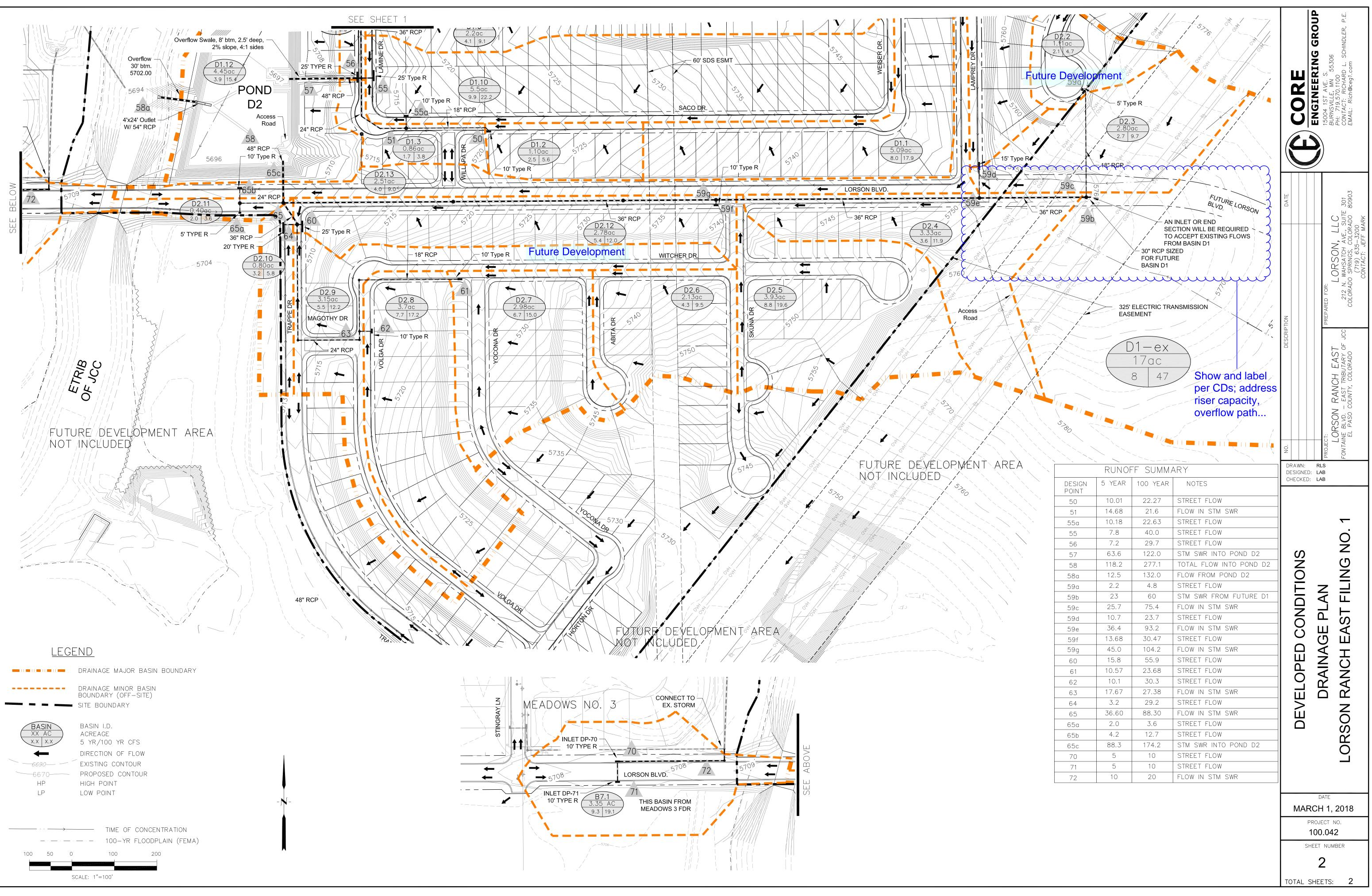
DRAINAGE MAJOR BASIN BOUNDARY ---- DRAINAGE MINOR BASIN BOUNDARY (OFF-SITE)

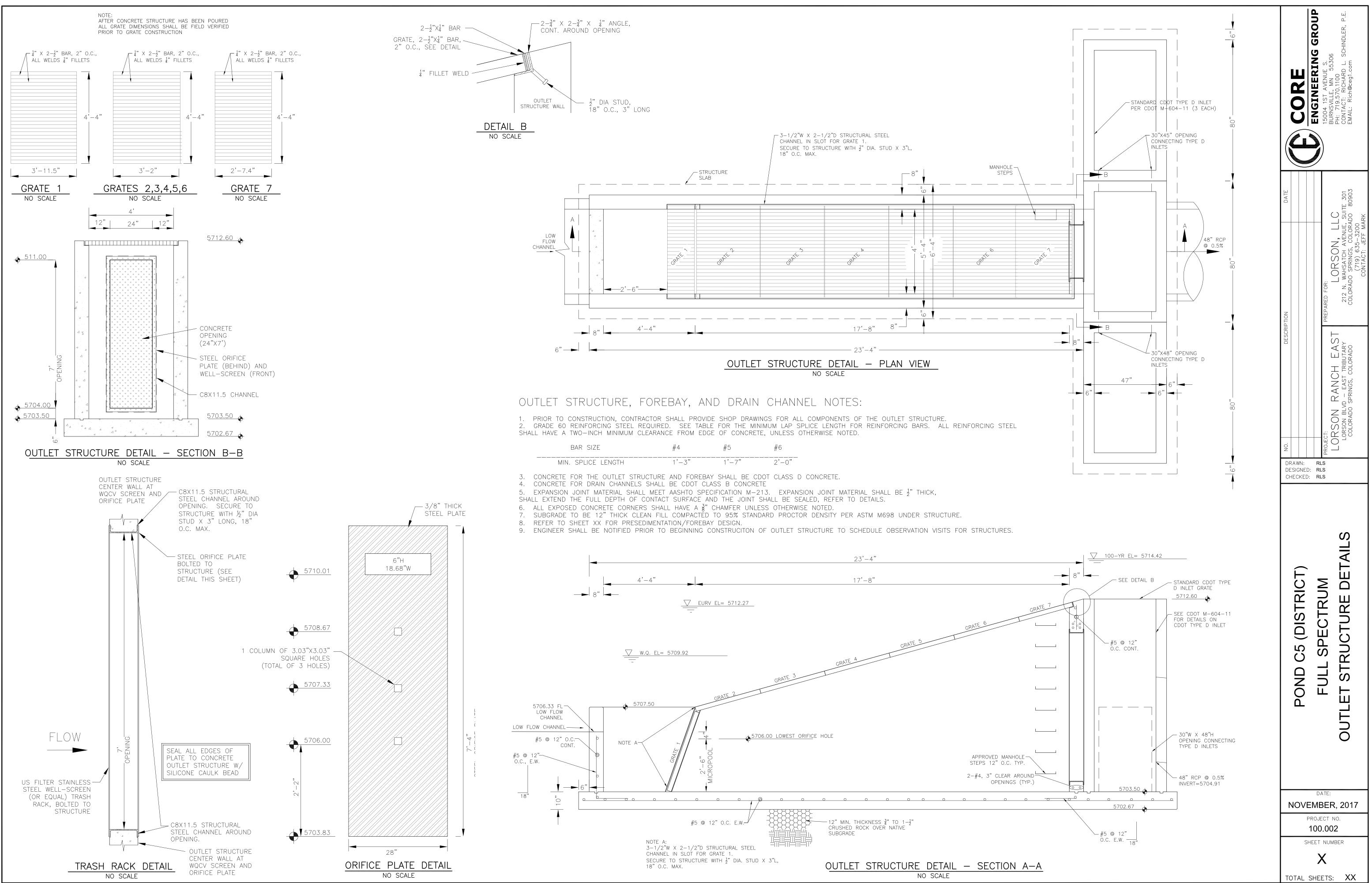
> SITE BOUNDARY BASIN I.D. ACREAGE 5 YR/100 YR CFS DIRECTION OF FLOW EXISTING CONTOUR PROPOSED CONTOUR HIGH POINT LOW POINT TIME OF CONCENTRATION

RUNOFF SUMMARY

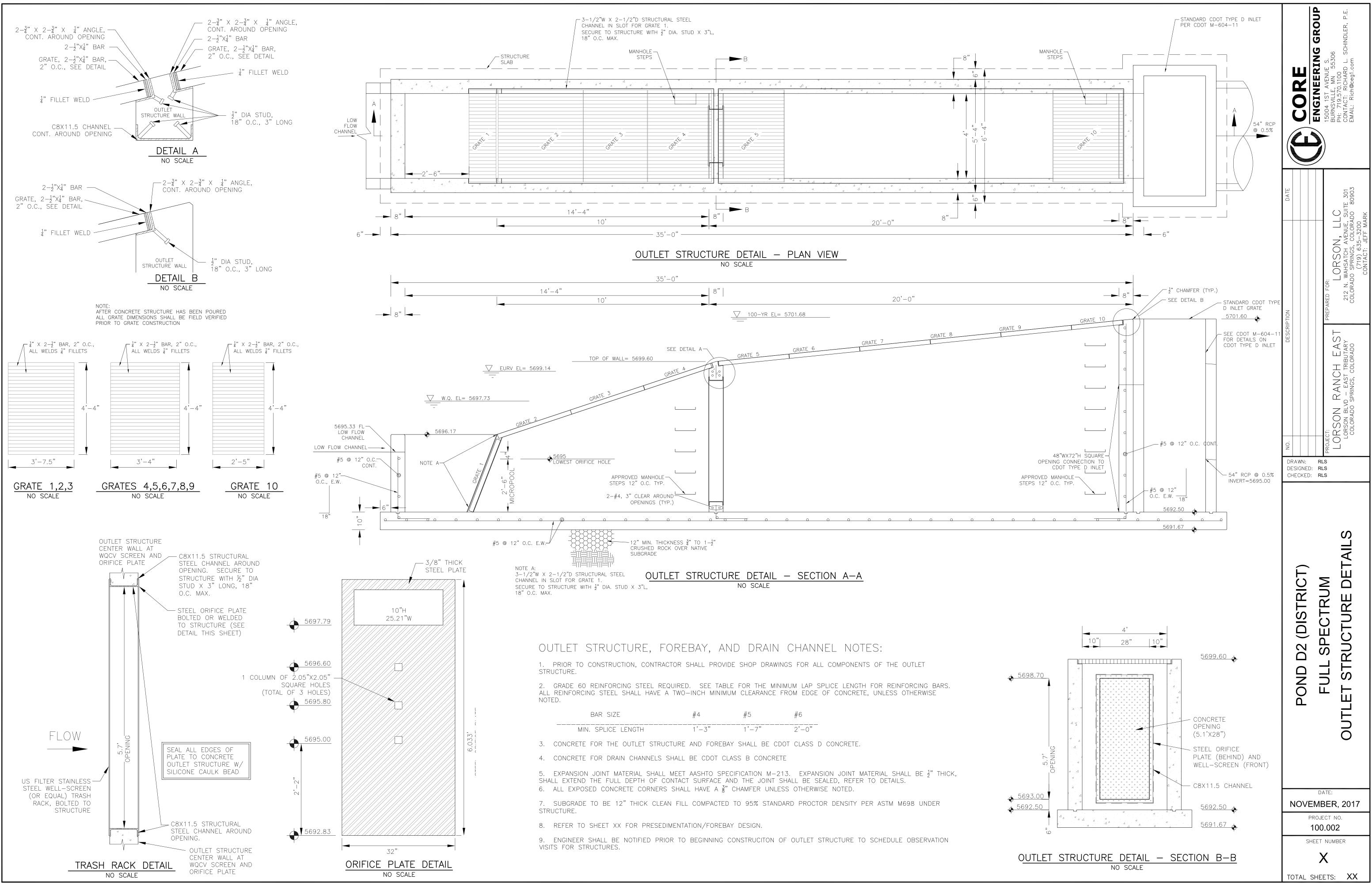
DESIGN POINT	5 YEAR	100 YEAR	NOTES
28	5.3	11.56	STREET FLOW-SEE FONTAINE FDR
29	8.6	20.8	STREET FLOW-SEE FONTAINE FDR
30	7.2	20.1	STREET FLOW-SEE FONTAINE FDR
38	5.9	14.43	STREET FLOW
39	8.61	21.53	STREET FLOW
40	12.9	39.4	STREET FLOW-SEE FONTAINE FDR
41	2.0	19.3	STREET FLOW-SEE FONTAINE FDR
52	15.44	34.7	STREET FLOW
53	14.65	41.47	STREET FLOW
54	7.26	15.5	STREET FLOW
55a	10.18	22.63	STREET FLOW
55	7.8	40.0	STREET FLOW
56	7.2	29.7	STREET FLOW
59a	2.2	4.8	STREET FLOW


Overflow 30' btm. 5702.00


5694


58a

Parata


3.9 15.4

BAR SIZE	#4	#5	#6
MIN. SPLICE LENGTH	1'3"	<u>1'_7"</u>	2'-0"

BAR SIZE	#4	#5	#6
MIN. SPLICE LENGTH	1'_3"	1'-7"	2'-0"

Markup Summary

RSchindler (10)		
	Subject: Callout Page Label: 29 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 2/13/2018 10:24:25 AM Color:	FDR SITE
	Subject: Rectangle Page Label: 29 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 2/13/2018 10:24:14 AM Color: ■	
SITE BOUNDARY	Subject: Callout Page Label: 32 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 6/28/2017 8:49:26 AM Color:	SITE BOUNDARY
	Subject: Polygonal Line Page Label: 32 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 2/13/2018 1:15:08 PM Color:	
SITE	Subject: Text Box Page Label: 32 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 6/28/2017 8:48:07 AM Color:	SITE
SITE BOUNDARY	Subject: Callout Page Label: 33 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 2/13/2018 1:16:57 PM Color:	SITE BOUNDARY

	Subject: Polygonal Line Page Label: 33 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 2/13/2018 1:16:50 PM Color:	
	Subject: Text Box Page Label: 33 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 6/28/2017 8:52:33 AM Color: ■	SITE
MATTA DR	Subject: Text Box Page Label: 85 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 2/13/2018 7:39:58 AM Color:	MATTA DR
	Subject: Text Box Page Label: 85 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 2/13/2018 7:40:54 AM Color:	LAMINE DR
dsdrice (59)		
CH EAST FILING NO. 1 ARCH 1, 2018 SF-19000 008	Subject: Cloud+ Page Label: 1 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 9:46:58 AM Color:	008
and is rere le forebays Frading Pla	Subject: Delete Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:39:49 AM Color:	Delete

 Maria C. C.	Subject: Callout Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:42:05 AM Color:	Address improvements north of Fontaine.
We may the under the the the the set of t	Subject: Callout Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:37:32 AM Color:	and PDR
The grant dynamic were constructed in 2014-000. The second	Subject: Cloud+ Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:43:42 AM Color:	graded (?)
	Subject: Callout Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:36:57 AM Color:	south of Fontaine Blvd.
oup ast which covers this final n East and is referenced in ides <mark>the forebays for</mark> Dete Early Grading Plans for Lc	Subject: Highlight Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:49:56 AM Color:	Delete
An altern on reactions of program the set operated of PSA and PSA and	Subject: Cloud+ Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:39:08 AM Color:	final plat

which 1200 kink an exceedence with the will 1 take integration to any exceedence of the start of the fact of the start of	Subject: Callout Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:38:21 AM Color:	and PDR
<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>	Subject: Callout Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:43:28 AM Color:	address bridges
s adjacent space in th	Subject: Delete Page Label: 5 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:48:25 AM Color:	Delete
t, the soil of each basin are ass rs, is adjacent to this site on the en space in the future. It is the towers for detention of storm fic at Tributary through this site	Subject: Highlight Page Label: 5 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:49:41 AM Color:	Delete
to be wholly comprised of th An existing electrical easen side of this portion of the de of this damage report to uti The FMIC (irrigation can decommissioned in 2006 ε existing drainage calculatic	Subject: Highlight Page Label: 5 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 3:38:19 PM Color:	future Lorson East development?
And the strength of the streng	Subject: Callout Page Label: 5 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 10:46:05 AM Color:	(prior to early grading)

A share a straight of the stra	Subject: Text Box Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:53:04 PM Color:	Address interim condition offsite flows and future conditions.
<text><text><text><text><text><text><text></text></text></text></text></text></text></text>	Subject: Text Box Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:51:44 PM Color:	Address early grading and conditions when that is complete. This report should pick up from there.
set * can use use the set of the	Subject: Callout Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 4:20:21 PM Color:	and offsite undeveloped areas (EX1-EX3?)
<text><text><text><text><text></text></text></text></text></text>	Subject: Callout Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/11/2018 3:29:12 PM Color:	north of Fontaine Blvd.
und. The Spectral of gravity is may connected regression to the land and and and and and spectra in the spectra of the spect	Subject: Callout Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 3:45:44 PM Color:	Add: "update (see Appendix B.)"
	Subject: Cloud+ Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 3:44:05 PM Color:	This is the FDR!

www.en. entry provide of Language Data and Federate	Subject: Callout Page Label: 7	Address sub-basin D1-ex
Address rate starts (* 1976)	Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:27:11 PM Color:	
	Subject: Cloud+ Page Label: 7 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:04:46 PM Color:	Include
UNITY OF THE OWNER OF THE OWNER OWN	Subject: Cloud+ Page Label: 7 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 4:19:28 PM Color:	include in this report also
	Subject: Cloud+ Page Label: 7 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:05:17 PM Color:	Include
rive, Weiser Drive, and Lamprey E 50 to a proposed Type "R" inlet in : 	Subject: Text Box Page Label: 8 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:15:31 PM Color:	provide flows
er Yr met in Lamme Lime. See the It de baain is 17 de and 3 dick be the and 1 de decide south in contrigutor to adhaldano. provide flows provide flows 	Subject: Text Box Page Label: 8 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:14:50 PM Color:	provide flows

 Amine Drive, and Yuba Drive. Ive. See the appendix for detailed provide flows Runoff is directed south in ine Drive. See the appendix for 3cfs and 5.8cfs for the 5/100-vear 	Subject: Text Box Page Label: 9 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:15:44 PM Color:	provide flows
ıt,	Subject: Highlight Page Label: 9 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:16:31 PM Color:	
	Subject: Text Box Page Label: 9 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:28:27 PM Color:	Address interim and future conditions flows and conveyances for each of the basins below.
ar the electric easement, th and west in curb/gutter ons. provide flows noff is directed south in The peak developed flow	Subject: Text Box Page Label: 9 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:17:06 PM Color:	provide flows
in	Subject: Highlight Page Label: 10 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:24:13 PM Color:	
•	Subject: Highlight Page Label: 10 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:55:58 PM Color:	

-----Subject: Highlight Page Label: 10 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:56:05 PM Color: _____ Subject: Highlight Page Label: 12 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 2:10:00 PM Color: Subject: Cloud+ This needs to be designed and modeled Page Label: 22 completely for the interim condition. Provide Lock: Unlocked calculations for both interim (Filing 1 plus Status: undeveloped offsite) and ultimate conditions. Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 3:43:38 PM Color: _____ Subject: Cloud+ Is this pond really necessary for Filing 1? Include Page Label: 22 details in report if so. Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 3:42:40 PM Color: Subject: Callout Provide undeveloped/developed area for interim Page Label: 22 condiiton. Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 3:44:47 PM Color: _____ Subject: Cloud+ ? Explain. Page Label: 23 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 3:46:56 PM Color:

S

1

Subject: Text Box Provide interim and ultimate modeling and Page Label: 23 narrative. Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 3:46:36 PM Color: _____ Subject: Cloud+ 126.26 arres. The 126.26 arres will be anarosed Drainage, Bridge op loss are \$17.107.107.107.000 are \$300 and Drainage Every how the descent of \$1.01. re-calculate Page Label: 24 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 12:45:52 PM Color: _____ Subject: Callout Is this buffer to be constructed and maintained in Page Label: 24 accordance with DCM2? Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 2:56:58 PM Color: Subject: Text Box Address maintenance access to EFJCC. Page Label: 26 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 2:58:04 PM Color: -----..... Subject: Text Box Provide interim off-site basin calculations. Page Label: 43 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 3:02:10 PM Color: 📃 Subject: Highlight Page Label: 73 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 3:35:15 PM Color:

why not?	Subject: Cloud+ Page Label: 73 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 3:21:31 PM Color:	why not?
The second	Subject: Text Box Page Label: 84 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 4:05:49 PM Color:	Provide for all storm systems serving Filing No. 1, including interim conditions accommodating offsite flows.
	Subject: Cloud+ Page Label: 88 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 4:03:41 PM Color:	Address interim condition
And the second s	Subject: Cloud+ Page Label: 97 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 11:47:04 AM Color:	Include in this report as if that report doesn't exist. (See comment 1.a on that project.)
	Subject: Cloud+ Page Label: 97 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 3:59:03 PM Color:	Where is boundary (aren't basins EX1 through EX3 included)?
	Subject: Callout Page Label: 97 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 11:30:38 AM Color:	Show storm sewer

FULL SPECTRUM DETENT

WE TO FULL SPECTRUM DETENTION

DRTAINE BLVD, FDR (CDR188) FDR BASIN ST FLONG NG TEXNE STORE SEMER LINES AND EXTENSI FLOWS (MRS 8) 70

_____ _____ Subject: Callout Label bridges and provide channel design points Page Label: 97 and flows. Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 3:59:54 PM Color: Subject: Text Box Add storm drain linetypes. Page Label: 97 Lock: Unlocked Status: **d** Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 4:00:48 PM Color: Subject: Area Measurement 3,846,826 sf Page Label: 97 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 3:55:58 PM Color: Subject: Text Box Include Fontaine sub-basins Page Label: 98 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 4:37:50 PM Color: Subject: Callout Provide complete plan with system to the east Page Label: 98 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 11:35:27 AM Color: 📃

Subject: Cloud+ Page Label: 98 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/13/2018 11:32:38 AM Color:

Show stub, TSB(?) as part of Filing 1 construction. Provide interim design point.

.....

Future Development	Subject: Text Box Page Label: 99 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:29:32 PM Color:	Future Development
Further Development	Subject: Text Box Page Label: 99 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:29:45 PM Color:	Future Development
	Subject: Cloud+ Page Label: 99 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 4/15/2018 1:48:02 PM Color:	Show and label per CDs; address riser capacity, overflow path
alex.dabdub (2)		
January 29, 2015 . 957 OF 1300 NDEX FOR PANELS NOT PRINTED)	Subject: Text Box Page Label: 33 Lock: Unlocked Status: Checkmark: Unchecked Author: alex.dabdub Date: 9/16/2014 1:47:49 PM Color:	January 29, 2015
COLORADO AND INCORPORATED AI REVISED TO REFLECT LOMR EFFECTIVE: PANEL 957 OF 1300 PEEL MAD MIDEY FOR DAMER S MI	Subject: LOMR Stamp Page Label: 33 Lock: Unlocked Status: Checkmark: Unchecked Author: alex.dabdub Date: 9/16/2014 1:47:49 PM Color:	