$\left(\right)$	$\boldsymbol{\gamma}$	Y	γ	γ	Y	\mathbf{Y}	\mathbf{Y}	Y	γ	γ	γ		
4	EΡ	C S	TOF	RWN	/ATE	ER R	REVI	EW	CO	MN	IEN [®]	TS	
	IN	OR/	ANG	ΕB	OXE	SW	/ITH	BL/	ACK	(TE	ΣT		\prec
	< l	X	X	Y	λ	λ.	λ.	λ	X	X	X	X)

FINAL DRAINAGE REPORT

For

MAYBERRY, COLORADO SPRINGS – FILING NO. 3

PREPARED FOR:

COLORADO SPRINGS MAYBERRY, LLC 3296 DEVINE HEIGHTS #208 COLORADO SPRINGS, CO 80922

PREPARED BY:

R & R ENGINEERS - SURVEYORS, INC. 1635 W. 13[™] AVE, SUITE 310 DENVER, CO 80204 CONTACT: CLIF DAYTON, P.E. (303) 753-6730

> R&R JOB #MC22110 EPC PROJECT NO. SF2219

ORIGINAL SUBMITTAL: MAY 2022 2ND SUBMITTAL: SEPTEMBER 2022 3RD SUBMITTAL: JANUARY 2023

1635 West 13th Avenue - Suite 310, Denver, Colorado 80204 Phone - (303) 753-6730 Fax - (303) 753-6568

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

SIGNATURE:

Clif Dayton, P.E. Registered Professional Engineer State of Colorado No. 51674

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

SIGNATURE: _____

John Mick Colorado Springs Mayberry, LLC 3296 Devine Heights #208 Colorado Springs, CO 80922

EL PASO COUNTY'S STATEMENT:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

SIGNATURE:

Joshua Palmer, P.E. County Engineer/ECM Administrator

TABLE OF CONTENTS

I.	GENERAL LOCATION AND DESCRIPTION
A.	Background1
В.	Scope 1
C.	Site Location and Description1
D.	General Soil Conditions2
E.	References
II.	DRAINAGE BASINS AND SUB-BASINS
A.	Major Drainage Basins3
В.	Floodplain Impacts
C.	Sub-Basin Description
III.	DRAINAGE DESIGN CRITERIA
A.	Development Criteria Reference5
В.	Hydrologic Criteria5
C.	Hydraulic Criteria
D.	Detention and Water Quality Criteria7
IV.	DRAINAGE PLANNING FOUR STEP PROCESS
V.	GENERAL DRAINAGE RECOMMENDATIONS9
VI.	DRAINAGE FACILITY DESIGN9
A.	General Concept9
В.	Specific Details
C.	Emergency Conditions Analysis15
D.	Comparison of Developed to Historic Discharges15
E.	Detention Design
F.	Onsite Drainage Facility Design
G.	Analysis of Existing and Proposed Downstream Facilities
Н.	Anticipated Drainage Problems and Solutions19
VII.	EROSION CONTROL 19
VIII.	COST ESTIMATE AND DRAINAGE FEES
IX.	MAINTENANCE

Х.	SUMMARY	20
XI.	APPENDICES	21
А	Appendix A - Hydrologic Computations	21
A	Appendix B – Hydraulic Computations	21
А	Appendix C – Reference Information	21

I. GENERAL LOCATION AND DESCRIPTION

A. Background

Mayberry, Colorado Springs (formerly known as "Ellicott Town Center") is a proposed subdivision located west of Ellicott, Colorado in El Paso County. The development is located on the south side of State Highway 94, approximately 1-1/2 miles west of Ellicott Highway, as shown in Appendix C. The approved Ellicott Town Center Sketch Plan and Overall PUD includes a total of 1,048 single-family dwelling units and 32 acres of commercial space. The Amended Mayberry, Colorado Springs Phase 1 PUD was approved by BOCC in April 2022, which maintained the originally approved 240 Phase 1 lots, but revised various street and lot configurations based on current market conditions. Filing No. 3 comprises the easterly 142 residential lots within the Amended Phase 1 PUD.

B. Scope

This report has been prepared in support of the Final Plat application for Mayberry, Colorado Springs Filing No. 3. The report is intended to fulfill the El Paso County requirements for a Final Drainage Report (FDR).

The report will provide a summary of site drainage issues impacting the proposed development, including analysis of impacts from upstream drainage patterns, site-specific developed drainage patterns, and impacts on downstream facilities. This drainage report was prepared based on the guidelines and criteria presented in the El Paso County Drainage Criteria Manual, providing preliminary design of required drainage facilities for this phase of the project.

C. Site Location and Description

The Mayberry, Colorado Springs (Ellicott Town Center) parcel comprises the west half of Section 14 along with the contiguous east quarter of Section 15, as well the west half of the northeast quarter of Section 14, Township 14 South, Range 63 West of the 6th Principal Meridian. The site is located at an elevation of approximately 6,060 feet above mean sea level. Filing No. 3 comprises 105.8-acres in the northeast area of the Mayberry development.

State Highway 94 borders Filing 3 to the north along with Filing 2, and unplatted agricultural properties (zoned A35) border Filing 3 on the east and south sides. Unplatted property zoned PUD and Filing 1 border Filing 3 to the west.

The primary access to Filing 3 will be provided by construction of Springs Road, which will run through the site from north to south as a minor collector roadway (65' right-

of-way). Additionally, Filing 3 will be accessed by New Log Road via Village Main Street (60' right-of-way). Both roads intersect SH94 to the north.

The intermittent streams throughout this area drain into the Black Squirrel Creek Basin which ultimately outfalls into the Arkansas River. Filing 3 is located within the Ellicott Consolidated Drainage Basin (CHBS1200). This basin conveys surface drainage to the West Fork of Black Squirrel Creek, which is located east of this parcel between the site and Ellicott Highway.

The terrain is generally flat with gentle northwest to southeast slopes ranging from one to two percent. Historic drainage patterns from the site are conveyed overland to the south and east boundaries of the site. The entire site is covered with native grasses.

D. General Soil Conditions

According to the Soil Survey of El Paso County prepared by the Soil Conservation Service, on-site soils are comprised primarily of "Blakeland series (type 8)" soils (see Appendix C). The Blakeland soils are characterized as well-drained loamy sand with rapid permeability, slow surface runoff rates, and moderate hazard of erosion. These soils are classified as hydrologic soils group "A" for drainage analysis purposes.

E. References

City of Colorado Springs "Drainage Criteria Manual, Vol 1 & 2", May 2014.

CDOT, "CDOT Drainage Design Manual," 2004.

David R. Sellon & Associates Inc., "Antelope Park Ranchettes Interior Drainage Plan," March, 1972.

El Paso County "Drainage Criteria Manual County of El Paso, Colorado – Volumes 1 and 2" dated October 31, 2018. (Referred to throughout as EPC DCM)

El Paso County Planning Department, "Ellicott Valley Comprehensive Plan," March, 1989.

El Paso County "Engineering Criteria Manual," January 9, 2006.

El Paso County Resolution No. 15-042 (El Paso County adoption of "Chapter 6: Hydrology" and "Chapter 13, Section 3.2.1: Full Spectrum Detention" of the City of Colorado Springs Drainage Criteria Manual dated May 2014).

JPS Engineering, "Master Development Drainage Plan for Ellicott Town Center,"

November 22, 2005 (approved by El Paso County 12/02/05).

JPS Engineering, "Master Development Drainage Plan and Preliminary Drainage Report for Springs East Village," March 21, 2002 (approved by El Paso County 10/23/02).

JPS Engineering, "Master Development Drainage Plan and Preliminary Drainage Report for Viewpoint Village," January 28, 2002 (approved by El Paso County 9/11/02).

JPS Engineering, "Preliminary Drainage Report for Ellicott Town Center - Phase 1," January 15, 2007.

JPS Engineering, "Preliminary & Final Drainage Report for Mayberry, Colorado Springs - Filing No. 1," revised October 27, 2020 (approved by El Paso County November 5, 2020).

JPS Engineering, "Preliminary Drainage Report Amendment for Mayberry, Colorado Springs – Phase 1 PUD," revised February 2022

Leigh Whitehead & Associates, Inc., "Master Development Drainage Plan for Sunset Village," May, 2000 (approved by El Paso County 8/31/00).

Pacific Summits Engineering, "Final Drainage Report for Viewpoint Estates," January 6, 1998 (approved by El Paso County 10/6/99).

United Planning and Engineering, "Preliminary Drainage Plan & Report for Springs East," November 19, 1999.

United Planning and Engineering, "Drainage Plan & Report for Viewpoint Subdivision," May, 2000.

USDA/NRCS, "Soil Survey of El Paso County Area, Colorado," June, 1981.

II. DRAINAGE BASINS AND SUB-BASINS

A. Major Drainage Basins

The proposed development lies primarily within the Ellicott Consolidated Drainage Basin (CHBS1200) as classified by El Paso County. This basin is comprised of the area tributary to the West Fork of Black Squirrel Creek, with the majority of the basin bounded by SH94 to the north and Ellicott Highway to the east. No drainage planning study has been completed for the Ellicott Consolidated Drainage Basin or any adjacent drainage basins.

The major drainage basins lying in and around the proposed development are depicted in Figure EX1 and is sourced from the Phase 1 PUD Amended Drainage Report. Mayberry, Colorado Springs is located primarily within the Ellicott Consolidated Drainage Basin, which comprises a tributary area of about 13 square miles, or 8,320 acres. The proposed subdivision represents a total of 551 acres of development, or 7 percent of the total basin area. An "on-site" drainage planning approach has been proposed based on the relatively small developed area in comparison to the remaining undeveloped basin area, which is primarily agricultural land.

The existing site topography has one off-site drainage basin (EC-10) that enters the northeast corner of Filing 3. Triple 30-inch CMP culverts cross SH94 at this location combining with on-site flows, following existing grass-lined swales southeasterly through the site. Filing 3 historically consists of one major basin conveying flows towards the south and eastern boundaries of the site, as shown in Figure EX2. Flows from Filing 3 combine with the tributary areas from Filing 1 and surrounding offsite areas downstream of the site, flowing southeasterly to an existing natural channel towards Black Squirrel Creek.

B. Floodplain Impacts

Mayberry – Filing 3, Colorado Springs is located approximately one mile southwest of the 100-year floodplain limits for the West Fork of Black Squirrel Creek, as delineated by the Federal Emergency Management Agency (FEMA). The floodplain limits in the vicinity of the site are shown in Flood Insurance Rate Map (FIRM) Number 08041C0810G, dated December 7, 2018 (see Appendix C).

C. Sub-Basin Description

The developed drainage basins lying within Filing 3 are depicted in Figure D1. The interior site layout has been delineated into several major drainage basins (C-E) based on the proposed interior road layout and grading scheme. The natural drainage patterns will be impacted through development by site grading and concentration of runoff in subdivision street gutters, storm drains, and channels. Most sub-basins drain to the southeast, collecting in the interior roads and drainage channels. On-site flows will be diverted to a proposed extended detention basin (EDB) located at the southeast boundary of the site, and detained flows will discharge to the east, following historic drainage paths.

III. DRAINAGE DESIGN CRITERIA

A. Development Criteria Reference

The Ellicott Consolidated Drainage Basin has not had a Drainage Basin Planning Study performed for the basin. Most areas within the basin are comprised of agricultural lands and rural residential uses.

A "Master Development Drainage Plan (MDDP) for Ellicott Town Center" was approved concurrent with the original Overall PUD, and a Preliminary Drainage Report for Ellicott Town Center Phase One was approved with the original Phase One PUD and Preliminary Plan.

JPS Engineering prepared the "Preliminary & Final Drainage Report for Mayberry, Colorado Springs - Filing No. 1," revised October 27, 2020 (approved by El Paso County November 5, 2020) in support of the final approval and recording of Filing No. 1.

This "Final Drainage Report for Mayberry, Colorado Springs – Filing No. 3" fully conforms to the previously approved MDDP and Preliminary/Final Drainage Reports, along with the "Preliminary Drainage Report Amendment for Mayberry, Colorado Springs Phase 1 PUD" dated February, 2022 prepared in support of the Phase 1 PUD Amendment.

B. Hydrologic Criteria

SCS procedures were utilized for analysis of major basin flows impacting the site. In accordance with El Paso County drainage criteria, SCS hydrologic calculations were based on the following assumptions:

 Design storm (minor) 	5-year
 Design storm (major) 	100-year
 Storm distribution 	SCS Type IIA (eastern Colorado)
 100-year, 24-hour rainfall 	4.4 inches per hour (NOAA isopluvial map)
 5-year, 24-hour rainfall 	2.6 inches per hour (NOAA isopluvial map)
 Hydrologic soil type 	A

- SCS curve number undeveloped conditions 61 (pasture / range)
- SCS curve number developed conditions 80 (1/8-1/4 acre lots)
- SCS curve number developed conditions 92 (commercial areas)

Hydraflow Hydrographs was utilized for the modeling of these storms.

Rational method procedures were utilized for calculation of peak flows within the on-site drainage basins. Rational method hydrologic calculations were based on the following assumptions:

•	Design storm (minor)	5-year	
•	Design storm (major)	100-year	
•	Rainfall Intensities	El Paso Count	ty I-D-F Curve
•	Hydrologic soil type	А	
		C5	C100
•	Runoff Coefficients - undeveloped:		
	Existing pasture/range areas	0.25	0.35
•	Runoff Coefficients - developed:		
	Proposed Residential (1/8-1/4 acre lots)	0.375	0.545
	Proposed Neighborhood Commercial	0.49	0.62

Composite runoff coefficients for the developed residential areas have been calculated based on average lot sizes between 1/8-acre and 1/4-acre. A rational method spreadsheet was utilized for modeling these flows.

C. Hydraulic Criteria

Streets and Inlets

Street and inlet capacities were calculated using the UD_Inlet utilizing the street geometries at each inlet. The criteria used for design was that of Local/Residential/Collector roads from Table 6-1 of the EPC DCM. The criteria states that for the 5 year storm, flow depths would not exceed 6 inches or overtop the street crown while for the 100 year storm, the depth of water at the flow line would not exceed 12 inches.

Underground Storm Sewer Pipe Systems

Three pipe systems are proposed as part of the Filing 3 development. Pipes are sized so that the 100 year HGLs are a minimum of 1 foot below finished grades. HGLs are derived using Bentley StormCAD software. Velocities in pipes do not exceed 18 fps as stated in the EPC DCM. All peak flows for pipes were derived via the Rational Method.

Channels

Four grass lined channels are proposed as part of the Filing 3 development: C2, D, E, and F. Channels are sized so that there is a minimum of 1 foot of freeboard between the 100 year water surface elevation and the top of channels. Where channels make defined bends, additional freeboard is provided per Equation 10-4 of the EPC DCM. Channels are designed to not exceed velocities of 5 fps and will be lined with native grasses.

Because the EPC DCM does not give specific guidance on the use of native grasses for channel lining, Table 12-6 of the Colorado Springs DCM Vol. 1 was utilized to establish maximum velocities and roughness coefficients. Peak flows for Channels C2 and D were derived via the Rational Method while peak flows for Channels E and F were obtained using the SCS method due to the size of the offsite basins being routed through these channels.

Additional criteria has been referenced for the analysis of an existing roadside ditch along Log Road. Table 6-1 of the EPC DCM states that during the 100 Year storm, the flow shall not exceed 6 inches at the shoulder.

Rip-Rap and Plunge Pools

Rip-Rap and plunge pools were sized for the 100 year storm per UDFCD Chapter 9 Section 3.2.1 and 3.2.2. Rip-rap is placed where all pipes discharge into channels across the site and is sized to reduce velocities to 5 fps. A plunge pool is proposed where flows from the site enter the Log Road ROW. The plunge pool is sized to reduce velocities to 1.3 fps to ensure flows entering the ROW are as non erosive as possible.

<u>Culverts</u>

Two temporary culverts are proposed beneath temporary cul-de-sacs east of the proposed development. The culverts are designed so that during the 100 year storm event, water levels do not exceed 12 inches above finished grade when overtopping the roadway above per Table 6-4 of EPC DCM.

D. Detention and Water Quality Criteria

Detention volumes and required release rates will be calculated using the UD_Detention Spreadsheet from UDFCD. An extended detention basin will be utilized to provide water quality and detention for Filing 3. The facility is designed to pass and release the water quality captured volume (WQCV), excess urban runoff volume (EURV), and 100 year storm to meet all local and state regulations by means of a multi-stage outlet structure.

The WQCV will be routed through an orifice plate installed within the outlet structure and sized to have a 40 hour draw down time. The orifice plate will also drain 97% the EURV within 72 hours. Finally, a restrictor plate and weir combination will pass the 100 year flow at 90% of the pre-developed rate.

Per El Paso County Engineering Criteria Manual Section 1.7.1.C.1, up to one acre of development may be exempt from stormwater treatment. Due to the requirement that temporary cul-de-sacs be provided for fire department access to Union Pacific and El Reno Way, these developed areas are unable to drain to the proposed detention pond. These areas will drain to Channel E and flow offsite undetained.

These cul-de-sac areas total to 0.3 acres, so well below the 1 acre requirement.

IV. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in DCM Volume 2, the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

- Minimize Impacts: The approved Planned Unit Development includes significant open space, play areas, and parks, resulting in a moderate level of impervious site development.
- Minimize Directly Connected Impervious Areas (MDCIA): The proposed development will include landscaped areas adjoining the proposed building and parking lots, providing for impervious areas to drain across pervious areas where feasible.
- Grass Swales: The proposed drainage plan incorporates grass-lined swales in selected locations to encourage stormwater infiltration while providing positive drainage through the site.

Step 2: Stabilize Drainageways

• Proper erosion control measures will be implemented along the grass-lined drainage channels to provide stabilized drainageways within the site.

Step 3: Provide Water Quality Capture Volume (WQCV)

- EDB: The developed areas of the site will drain through proposed Full-Spectrum Extended Detention Basins (EDB) southeast of the developed areas. Site drainage will be routed through the extended detention basins, which will capture and slowly release the WQCV over an extended release period.
- Stormwater detention and WQCV for Filing as well as future Filings 2 and 4 will be provided by EDB-D.

Step 4: Consider Need for Industrial and Commercial BMPs

• No industrial or commercial land uses are proposed as part of the Filing No. 3 residential development.

V. GENERAL DRAINAGE RECOMMENDATIONS

The developed drainage plan for the site is to provide and maintain positive drainage away from structures and conform to the established drainage patterns for the overall site. Positive drainage shall be established and maintained away from all structures within the site in conformance with applicable building codes and geotechnical engineering recommendations.

Site grading and drainage improvements performed as a part of subdivision infrastructure development includes overlot grading and subdivision drainage improvements depicted on the subdivision construction drawings. Individual lot grading is the sole responsibility of the individual builders and property owners. Final grading of each home site should establish proper protective slopes and positive drainage in accordance with HUD guidelines and building codes. In general, main floor elevations for each home should be established approximately 2 feet above the top of curb of the adjoining street.

In general, we recommend a minimum of 6 inches clearance from the top of concrete foundation walls to adjacent finished site grades. Positive drainage slopes should be maintained away from all structures, with a minimum recommended slope of 5 percent for the first 10 feet away from buildings in landscaped areas, a minimum recommended slope of 2 percent for the first 10 feet away from buildings in paved areas, and a minimum slope of 1 percent for paved areas beyond buildings.

VI. DRAINAGE FACILITY DESIGN

A. General Concept

Consistent with generally accepted practices in eastern El Paso County, the general concept for management of stormwater from development of Mayberry – Filing 3 will be to construct an extended detention basin along the southeast boundary of the site to mitigate the impacts of developed runoff flows from the site.

Development of the Mayberry – Filing 3 project will require site grading and paving, resulting in additional impervious areas across the site. The general drainage pattern will consist of grading away from home sites to drainage swales and gutters along the internal roads within the subdivision, conveying runoff flows through the site. The Amended PUD includes 4-foot minimum side-lot drainage easements, and the proposed easements are adequate for the required side-lot drainage swales to accommodate proper grading of the individual home sites.

Runoff from the site will flow by street gutters to curb inlets at low points and road intersections, thence by storm drains and drainage channels to the proposed detention ponds. The storm inlets and storm sewer system within the development

will be designed as the "minor" drainage system, sized for 5-year developed peak flows. The internal road system, drainage channels, and detention pond will be designed as the "major" drainage system, sized for 100-year peak flows. Street flows within subdivision streets will be maintained below allowable levels in accordance with El Paso County drainage criteria.

Due to an offsite basin north of SH94 flowing onto the subject property, the site has been designed to convey this flow through the site via a series of temporary swales and culverts. The offsite flow will be routed around the proposed development and will combine with the pond discharge via a swale that conveys flow east of the site.

B. Specific Details

Existing Basins

Historic drainage conditions for Filing 3 are depicted in Figure EX2. The site has been divided into two major basins (EX-D1 and EX-D2). The undeveloped site currently has no drainage facilities within the area. The existing off-site drainage basins north of Filing 3 generally combine with on-site basins as shown on Sheet EX2, flowing southeasterly through the site within existing grass-lined drainage swales and channels.

Basin EX-D2 flows offsite to the south towards Design Point 4-A while Basin EX-D1 flows southeasterly towards Design Point EX-5. Off-site flows from Basin EC10 north of this property cross State Highway 94 in a triple 30-inch CMP culvert crossing near the northeast corner of this site. Additionally, basin OS-1 which consists of water from the CDOT ROW flows south onto the site. Flows from EX-D1 combined with offsite flows from Basin EC10 and OS-1 at Design Point EX-5 with 5 year and 100 year peak flows of 23.7 and 183.9 cfs respectively.

From here flows are stopped by an existing berm along the southern property line and are forced eastward, combining with offsite basins EX-E and LOG. Basin EX-E is east of the subject property and generally flows southeast towards Log Road. Basin LOG consists of the Lot Road ROW. Flows from design point EX-5 combine with basins EX-E and LOG at design point EX-6 with 5 year and 100 year peak flows of 30.5 cfs and 231.4 cfs respectively.

An existing roadside swale along Log Road conveys flows to the south and combines with an offsite Basin EX-Z at design point EX-7 with 5 year and 100 year peak flows of 36.9 cfs and 285.4 cfs respectively.

From here flows turn east and follow the southerly ditch of Handle Road to its confluence with the main channel of the Middle Fork of Black Squirrel Creek.

An analysis of the major downstream drainage patterns comparing the historic and developed flows in more detail is discussed later in this report.

Developed Drainage Basins

The developed drainage basins and projected flows are shown in Sheets D1.1-D1.5. The developed Filing 3 site has been divided into three major basins (C2, D and E) and one major design point (EX-5), as shown on the enclosed Drainage Plans. Hydrologic flow schematics and calculations are enclosed in Appendix B.

Major Basin C2 (Sub-basins C2.1-C2.4, C3.0) will be routed to the extended detention basin via Channel C2 where it will combine with major basin D (Sub-basins D1.1-D1.11, C2.0-D2.1). Channels C2 and D are also sized to convey future flows from the area south of Filing 3 which is currently undeveloped. Offsite basin EC-10 will combine with onsite major Basin E (Sub-basin E1) revised develop at Channel E. Basin EC-10 will be routed around Filing 3 and will combine with Pond D's discharge downstream of the pond at Channel F.

All onsite basin peak flows were derived via the Rational Method while the offsite basins EC-10 and OS-1 were analyzed by the SCS Method due to the tributary area. Detailed breakdowns of each sub-basin are listed below:

Sub-basin C2.1 is a 0.77 acre onsite area that is collected by a curb inlet. This basin consists of single family lots and a portion of Solaire Loop. Runoff from this basin drains to the street curb and gutter and enters the public storm sewer system. The 5 year and 100 year developed peak flows are 1.1 and 2.7 cfs respectively

Sub-basin C2.2 is a 0.33 acre onsite area that is collected by a curb inlet. This basin consists of single family lots and a portion of Solaire Loop. Runoff from this basin drains to the street curb and gutter and enters the public storm sewer system. The 5 year and 100 year developed peak flows are 0.6 and 1.4 cfs respectively

Sub-basin C2.3 is a 1.81 acre onsite area that is collected by a curb inlet in Mayberry Drive. This basin consists of single family lots and a portion of Mayberry Drive. Runoff from this basin is routed via curb/gutter, enters a Type R curb inlet, and is discharged into the piped storm sewer system. The 5 year and 100 year developed peak flows are 2.1 and 5.2 cfs respectively.

Sub-basin C2.4 is a 1.16 acre onsite area that will not be fully developed until future phases. In the future the basin will be collected by a curb inlet on the south side of Mayberry Drive. This basin consists of south section of the Mayberry Drive ROW. Runoff from this basin will be routed via curb/gutter, enter a Type R curb inlet, and will be discharged into the piped storm sewer system. A stub will be installed during Filing 3 and the future Type R inlet will discharge to the main storm sewer system via this stub. The 5 year and 100 year developed peak flows are 4.1 and 7.8 cfs

respectively.

Sub-basin C2.5 is a 9.61 acre onsite area that is collected by a curb inlet in Mayberry Drive. This basin consists of single family lots and a portion of Solaire Loop, Galveston Terrace, Cattlemen Run, Achison Way, and Village Main Street. Runoff from this basin is routed via curb/gutter and crosspans, enters a Type R curb inlet, and is discharged into the piped storm sewer system. The 5 year and 100 year developed peak flows are 14.2 and 34.6 cfs respectively.

Sub-basin C3.0* is a 35.40 acre basin south of the Filing 3 development. The basin was analyzed for future development and assumed to comprise both single family lots and park area. During the interim condition the basin will be undeveloped with part of the basin bypassing Pond D following existing drainage patterns. Once fully developed, the entire basin will ultimately drain to Pond D via future storm sewer improvements. The 5 year and 100 year developed peak flows are 22 and 72.7 cfs respectively.

***C3.0** was also analyzed using an interim condition that represents the runoff patterns prior to development. Under this condition the basin would flow southeast and southwest into Channel C2, ultimately discharging into Pond D. The 5 year and 100 year undeveloped peak flows are 7.4 and 54.4 cfs respectively.

Sub-basin D1.1 is a 1.73 acre basin comprising commercial lots of Filing 2. The basin was analyzed for future development of Filing 2. The developed basin will drain via a swale along the southern Filing 2 boundary and enter the Springs Road storm system via a flared end section. The 5 year and 100 year developed peak flows are 6.7 and 12.2 cfs respectively.

Sub-basin D1.2 is a 2.56 acre basin comprising single family lots and portions of Solaire Loop and Besseyi Way. Runoff from this basin is routed via curb/gutter and crosspans, enters a Type R curb inlet on the south side of Besseyi Way, and is discharged into the piped storm sewer system. The 5 year and 100 year developed peak flows are 3.4 and 8.3 cfs respectively.

Sub-basin D1.3 is a 2.02 acre basin comprising single family lots and portions of Union Pacific Way and El Reno Way. Runoff from this basin is routed via curb/gutter and crosspans, enters a Type R curb inlet on the north side of El Reno Way, and is discharged into the piped storm sewer system. The 5 year and 100 year developed peak flows are 3.1 and 7.5 cfs respectively.

Sub-basin D1.4 is a 3.75 acre basin comprising single family lots and portions of Besseyi Way, Union Pacific Way, Springs Road and El Reno Way. Runoff from this basin is routed via curb/gutter and crosspans, enters a Type R curb inlet on the south side of El Reno Way, and is discharged into the piped storm sewer system. The 5 year and 100 year developed peak flows are 5.4 and 12.7 cfs respectively.

Sub-basin D1.5* is a 9.88 acre basin comprising the future Filing 4 area and is assumed to be Commercial/Industrial in nature. Developed runoff from this basin will be routed via curb/gutter and crosspans and enter inlets within the future development. The inlets will be piped to the proposed piping to the south of the basin that will be stubbed as part of Filing 3. The 5 year and 100 year developed peak flows are 31.6 and 57.6 cfs respectively.

***D1.5** was also analyzed using an interim condition that represents the runoff patterns prior to development. Under this condition the basin would flow east into Channel E, combining with offsite basins EC-10 and OS-1 along with onsite basin E1. The flows would ultimately be routed to the Log Road ROW. The basin was analyzed using the SCS method due to the combining with the large offsite basins. The 5 year and 100 year undeveloped peak flows are 1.4 and 12.2 cfs respectively.

Sub-basin D1.6 is a 1.96 acre basin comprising single family lots and portions of Union Pacific Way. Runoff from this basin is routed via curb/gutter and crosspans, enters a Type R curb inlet on the north side of Union Pacific Way, and is discharged into the piped storm sewer system to the east. The 5 year and 100 year developed peak flows are 2.6 and 6.3 cfs respectively.

Sub-basin D1.7 is a 1.56 acre basin comprising single family lots and portions of Union Pacific Way. Runoff from this basin is routed via curb/gutter, enters a Type R curb inlet on the south side of Union Pacific Way, and is discharged into the piped storm sewer system to the east. The 5 year and 100 year developed peak flows are 2.1 and 5.0 cfs respectively.

Sub-basin D1.8 is a 1.27 acre basin comprising single family lots and portions of El Reno Way. Runoff from this basin is routed via curb/gutter, enters a Type R curb inlet on the north side of El Reno Way, and is discharged into the piped storm sewer system to the east. The 5 year and 100 year developed peak flows are 1.8 and 4.3 cfs respectively.

Sub-basin D1.9 is a 0.54 acre basin comprising single family lots and portions of El Reno Way. Runoff from this basin is routed via curb/gutter, enters a Type R curb inlet on the south side of El Reno Way, and is discharged into the piped storm sewer system to the east. The 5 year and 100 year developed peak flows are 0.9 and 2.1 cfs respectively.

Sub-basin D1.10 is a 2.13 acre onsite area that will not be fully developed until future phases. In the future the basin will be collected by a curb inlet on the south side of Mayberry Drive. This basin consists of the north section of the Mayberry Drive ROW. Runoff from this basin will be routed via curb/gutter, enter a Type R curb inlet, and will be discharged into the piped storm sewer system. A stub will be installed during

the 5' inlet (DP17) in this basin is on the north side. revise accordingly.

- 13 -

Filing 3 and the future Type R inlet will discharge to the main storm sewer system via this stub. The 5 year and 100 year developed peak flows are 3.3 and 8.0 cfs respectively.

Sub-basin D1.11 is a 1.23 acre onsite area that will not be fully developed until future phases. In the future the basin will be collected by a curb inlet on the south side of Mayberry Drive. This basin consists of the south section of the Mayberry Drive ROW. Runoff from this basin will be routed via curb/gutter, enter a Type R curb inlet, and will be discharged into the piped storm sewer system. A stub will be installed during Filing 3 and the future Type R inlet will discharge to the main storm sewer system via this stub. The 5 year and 100 year developed peak flows are 4 and 7.7 cfs respectively.

Sub-basin D1.12 is a 3.42 acre basin comprising single family lots and portions of Cattlemen Run, Solaire Loop, and Besseyi Way. The basin drains via curb and gutter to a Type R inlet on the north side of Besseyi Way. The 5 year and 100 year developed peak flows are 3.8 and 9.3 cfs respectively.

Sub-basin D1.13 is a 3.07 acre basin comprising commercial lots of Filing 2. The basin was analyzed for future development of Filing 2. The developed basin will drain into a future road's curb and gutter system and enter the Springs Road storm system via a Type R inlet within Springs Road. The 5 year and 100 year developed peak flows are 10.9 and 19.9 cfs respectively.

Sub-basin D1.14 is a 0.91 acre basin comprising both single family lots and the southeast commercial lots of Filing 2. The basin was analyzed for future development of Filing 2. The basin drains via curb and gutter to a Type R inlet on the north side of Besseyi Way. The 5 year and 100 year developed peak flows are 1.8 and 3.9 cfs respectively.

Sub-basin D2.0* is a 11.90 acre basin south of the Filing 3 development. The basin was analyzed for future development and assumed to comprise both single family lots and park area. The basin will ultimately drain to Pond D via future storm sewer improvements. The 5 year and 100 year developed peak flows are 10.3 and 27.7 cfs respectively.

***D3.0** was also analyzed using an interim condition that represents the runoff patterns prior to development. Under this condition the basin would flow southeast into Channel D, ultimately discharging into Pond D. The 5 year and 100 year undeveloped peak flows are 2.4 and 17.9 cfs respectively.

Sub-basin D2.1 is a 3.15 acre basin south of the Filing 3 development. The basin comprises the area around Detention Pond D. The basin will ultimately surface flow. The 5 year and 100 year developed peak flows are 0.9 and 6.6 cfs respectively.

Sub-basin E1 is a 3.92 acre basin east/northeast of the Filing 3 development. The basin comprises Channel E south of SH94 and bypasses the site to the east, ultimately discharging into Channel F to the east of Pond D. The basin also comprises the temporary cul-de-sacs required at the ends of El Reno Way and Union Pacific Drive. The basin was analyzed using the SCS method due to it combining with the large upstream offsite basin EC10. The 5 year and 100 year developed peak flows are 0.3 and 2.8 cfs respectively.

Sub-basin OS-1 is a 2.65 acre offsite basin North of the Filing 3 development. The basin comprises of CDOT ROW which drains into a roadside ditch that flows east into Channel E south of SH94 and bypasses the site to the east, ultimately discharging into Channel F to the east of Pond D. The basin was analyzed using the SCS method due to it combining with the large upstream offsite basin EC10. The 5 year and 100 year developed peak flows are 1.4 and 4.3 cfs respectively.

Sub-basin EC-10 is a 320 acre agricultural basin north of SH94 and drains into Channel E via culverts beneath SH94. The basin combines with flows generated by Basin E1 and OS-1 and bypasses the site to the east, ultimately discharging into Channel F to the east of Pond D. Due to the size of the basin, the generated peak flows were derived via the SCS Method. The 5 year and 100 year peak flows are 18.4 and 144.7 cfs respectively.

C. Emergency Conditions Analysis

In the event of clogging, the storm inlets within the Filing 3 development area will overflow to the adjoining public streets, which all generally flow southeasterly. Emergency overflows would sheet flow southeasterly along the public streets, flowing into Channels C2, D, and Detention Pond D.

Pond D also has measures in place to mitigate an emergency condition. A buried riprap emergency spillway will route emergency flows over the embankment and into a swale that will carry flows east of the site.

D. Comparison of Developed to Historic Discharges

Based on the hydrologic calculations in the Appendix, the total developed flows from the site will exceed historic flows from the parcel. Due to the increased impervious areas in the developed site, the total undetained flow from the site would be significantly higher than the historic flow. The increase in developed flows will be mitigated by an on-site extended detention basin.

Histor	c to Post Developed Comparison						
	5 Year Flow (cfs)	100 Year Flow (cfs)					
Historic Site (Basin	9.6	86.2					
EX-D1 and EX-D2)	9.0	80.2					
Post Developed Site	98.5	237.8					
Undetained (DP22)	90.5	237.8					
Post Developed Site							
Detained (Pond D	1.2	39.5					
Discharge – DP23)							

E. Detention Design

The total developed storm runoff downstream of the Filing No. 3 development along with the future developments of Filings 2, 2A, 4, and the area south of Filing 3 area will be maintained at historic levels by routing flows through the proposed Detention Pond D located at the southeast corner of the subdivision. The proposed detention facility has been sized to attenuate onsite peak flows through the pond, mitigating developed drainage impacts.

The total volume requiring storage is equivalent to the 100 Year + ½ WQCV produced by the onsite developed area. The required pond volume was determined using the ultimate buildout conditions for all areas tributary to the pond. The calculated volume to be stored is 9.1 ac-ft and was calculated by means of the UD_Detention spreadsheet. The detention volume will be routed through the extended detention basin by means of a modified CDOT Type C structure. The WQCV and EURV will be controlled by a multi-stage orifice plate within the Type C structure while the 100-year volume will be routed through a 36" pipe with restrictor plate within the Type C structure.

Two scenarios for Pond D have been examined for design purposes within and downstream of the pond: Interim Condition and Ultimate Development. The interim condition assumes all tributary basins except Basins D1.5, D2.0, and C3.0 are fully developed while ultimate development assumes all tributary basins are fully developed. The proposed Type C outlet structure and multi-stage orifice plate proposed with Filing 3 will meet the required release rates during the interim condition with the intention that with the development of future filings the orifice plate and restrictor plate will be replaced as needed to ensure release rates remain in compliance.

Release rates for ultimate development were utilized for sizing riprap and channels downstream of the pond to ensure these facilities will not need to be replaced as the tributary area upstream is developed.

The proposed detention pond will be privately owned and maintained by the Metropolitan District, under the terms of a "Private Detention Basin Maintenance

Agreement" recorded during final platting. Gravel maintenance access roads will be provided around the perimeter of the detention ponds to facilitate maintenance access.

The pond outlet structures have been designed to release historic flows southeast of the site towards the existing natural swales downstream. Based on the proposed approach of reducing developed flows to historic levels at the site boundaries, no significant downstream drainage impacts are anticipated, and no downstream drainage improvements are proposed.

F. Onsite Drainage Facility Design

Storm Sewer System Layout

Generally, streets are designed with cross slopes of 2%, pushing water from the centerlines to curb and gutter systems. The streets convey flows to low points at various points around the site where Type R curb inlets are proposed to convey street flows to an underground storm sewer system. The storm sewer system contains reinforced concrete pipes (RCP) with minimum sizes of 18 inches and minimum slopes of 0.5%.

Basins C2.1-C2.5 drain to a dedicated storm sewer system that discharged to channel C2. Basins D1.1-D1.4 and D1.10-D1.14 drain to another dedicated storm sewer system that discharges into Channel D at DP19. Basins D1.5-D1.9 drain into a third dedicated storm sewer system on the eastern edge of the Filing 3 boundary. This system also discharges into Channel D at DP19. Both channels ultimately drain to Detention Pond D.

Open Channel System Layout

Four open channels are proposed as part of this development: C2, D, E, and F. These channels will generally be designed as stable native grass-lined channels with subcritical flow regimes. Drainage channels will be designed to convey 100-year flows, with trapezoidal cross-sections, side slopes of 4:1, and minimum freeboard of 1-foot.

Channel C2 conveys flows from DP4 along with flows from future basin C3.0. The channel is trapezoidal with a bottom width of 8 feet and a depth of 3 feet. The channel will be lined with a native grass mixture.

Channel D conveys flows from DP19 along with flows from future basin D2.0. The channel is trapezoidal with a bottom width of 8 feet and a depth of 4 feet. The channel will be lined with a native grass mixture.

Channel E conveys flows from offsite basins EC-10 and OS-1 along with flows from onsite basins E1 and undeveloped basin D1.5. The channel is trapezoidal with a bottom width of 8 feet and a depth of 3.25 feet. Where channel E discharges into Channel F, riprap protection has been provided to lower velocities at this bend. By lowering the velocity to

3 fps, adequate freeboard is provided as the channel bends into Channel F. The channel will be lined with a native grass mixture.

Channel F conveys flows from the outfalls of Detention Pond D and combines with Channel E downstream of the pond. Where channel E discharges into Channel F, riprap protection has been provided to lower velocities at this bend. Additionally, a riprap plunge pool has been placed upstream of the Log Road ROW to ensure velocities are non erosive. The plunge pool also acts as a level spreader, forcing water to sheet flow into the roadside ditch as opposed to entering the as erosive concentrated flow. The channel will convey flows to the eastern ditch adjacent to Log Road. The channel is trapezoidal with a bottom width of 8 feet and a depth of 4 feet. The channel will be lined with a native grass mixture.

G. Analysis of Existing and Proposed Downstream Facilities

The general concept of the proposed drainage plan is to attenuate peak flows from the developed site by routing flows through the proposed on-site detention pond D. An analysis of drainage patterns downstream of the site was performed as part of this report to ensure historic drainage patterns are maintained. Historic and developed flows were compared at key design points downstream of the site. The design points are EX-5, EX-6, and EX-7. This is illustrated as Filing 3 – Log Road Drainage Plan on Sheet D1.7 in the Appendix. In addition to this sheet, a Sheet D1.8 shows cross sections at Design Points EX-5, EX-6, and EX-7 illustrating what the 100 year flow looks like in the developed condition at each of these design points. In general, developed flows are lower than historic rates at each design point.

Design Point EX-5 is located at the eastern property line where flows from the subject property combine with offsite flows from Basins EC10 and OS-1. In the existing condition flows are conveyed east by means of an existing berm to the south. In the proposed condition, these flows will be conveyed by Channel F in the same easterly direction. The historic and developed 100 year flows are 183.9 and 177.6 cfs respectively.

Design Point EX-6 is located where flows from EX-5 enter the Log Road ROW. This is the case for both the historic and developed condition. At this design point, flows from EX-5 combine with Basins EX-E (offsite eastern basin) and LOG (offsite basin comprising the Log Road ROW) and enter an existing roadside ditch along Log Road. The historic and developed 100 year flows are 231.4 and 203.5 cfs respectively with the developed 100 year flow depth less than 6 inches deep at the Log Road Shoulder.

Design Point EX-7 is located near the intersection of Log Road and Handle Road. In both the historic and developed conditions, flows from EX-6 are diverted to the east along Handle Road. At this design point, flows from EX-6 combine with Basins EX-Z (offsite basin south of the Site) and enters an existing roadside ditch along Handle Road. The historic and developed 100 year flows are 285.4 and 240.4 cfs respectively with the developed 100 year flow depth less than 6 inches deep at the Log Road Shoulder.

Combined flows from the Mayberry site flow southeasterly towards the existing Middle Fork of Black Squirrel Creek. The existing channels downstream of the site consist of broad grass-lined swales with no signs of active erosion. As previously discussed, there is an existing drainage crossing of Ellicott Highway approximately 2-1/2 miles downstream of this site where a future culvert should be installed. Recognizing that this historically deficient crossing is miles downstream of the site, no cost contribution to this off-site drainage improvement was requested during previous approval of the Ellicott Town Center MDDP, and no contribution is proposed at this time.

H. Anticipated Drainage Problems and Solutions

The proposed stormwater detention pond is designed to mitigate the impacts of developed drainage from this project. The overall drainage plan for the subdivision includes a system of improved public streets with curb and gutter, storm inlets, and storm sewers conveying developed flows to improved drainage channels running through the site. The primary drainage problems anticipated within this development will consist of maintenance of these storm sewer systems, culverts, drainage channels, and detention pond facilities. Care will need to be taken to implement proper erosion control measures in the proposed channels and swales, which will be designed to meet allowable velocity criteria.

A trail system will be constructed along the major drainage channels to provide maintenance access to the drainage facilities throughout the development. Proper construction and maintenance of the proposed detention facilities will minimize downstream drainage impacts. The proposed public streets will be owned and maintained by El Paso County. The proposed detention ponds and channels running through open space tracts and storm drains through private alleys will be privately owned and maintained by the homeowners association or metropolitan district.

VII. EROSION CONTROL

The Contractor will be required to implement best management practices (BMP's) for erosion control during construction. The proposed erosion control plan is included in the Grading & Erosion Control (GEC) Plans submitted with the subdivision construction drawings. Erosion control measures will include installation of silt fence at the toe of disturbed slopes and hay bales protecting drainage ditches. Cut and fill slopes will be stabilized during excavation if necessary and vegetation will be established for stabilization of the disturbed areas. All ditches have been designed to meet El Paso County criteria for slope and velocity. Additionally, gravel vehicle tracking pads will be installed at construction access points and inlet protection will be provided to minimize conveyance of sediment into storm inlets.

VIII. COST ESTIMATE AND DRAINAGE FEES

The developer will pay all capital costs for roadway and drainage improvements. As detailed in Appendix C, the engineer's estimate for Filing 3 drainage improvements is approximately \$1,088,557.80. Filing 3 is located entirely within the Ellicott Consolidated Drainage Basin, which currently does not have a drainage or bridge fee requirement. As such, no drainage basin fees are applicable.

IX. MAINTENANCE

All proposed road and drainage construction within the Mayberry – Filing 3, Colorado Springs project will be performed to El Paso County Standards. Interior roads will be dedicated as public right-of-way. Roads and drainage facilities within the public right-of-way will be maintained by El Paso County upon final acceptance of these facilities after the warranty period. The Metropolitan District will maintain drainage channels and stormwater detention pond within the proposed open space areas.

X. SUMMARY

The Mayberry – Filing 3, Colorado Springs consists of 142 residential lots in the northeast part of the master development, with access connections to State Highway 94 at Springs Road. The residential lots are platted within Filing 3. The development will generate an increase in developed runoff from the site, which will be mitigated through on-site stormwater detention and water quality facility.

The proposed drainage patterns will remain consistent with historic conditions, and new drainage facilities constructed to El Paso County standards will safely convey runoff to adequate outfalls. Construction of the proposed Detention Pond D southeast of the development areas will ensure that developed flows remain below historic levels. Construction and proper maintenance of the proposed drainage and erosion control facilities will ensure that this subdivision has no significant adverse drainage impacts on downstream or surrounding areas.

XI. APPENDICES

Appendix A - Hydrologic Computations

- 1. Hydrologic References
- 2. Pre Developed Flow Rates
- 3. Post Developed Flow Rates

Appendix B – Hydraulic Computations

- 1. Detention and Water Quality Facility Design
- 2. Storm Sewer Capacity
- 3. Inlet and Street Capacity
- 4. Rip Rap Calculations
- 5. Channel Design

Appendix C – Reference Information

- 1. Cost Estimate
- 2. NRCS Soils Report
- 3. FEMA Flood Insurance Maps
- 4. Drainage Maps

APPENDIX A - HYDROLOGIC COMPUTATIONS

Land Use or	Percent	Runof	f Coeffic	cients									
Surface Characteristics	Impervious	2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	<mark>95</mark>	0.79	0.80	<mark>0.81</mark>	0.82	0.83	0.84	0.85	0.87	0.87	0.88	<mark>0.88</mark>	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential	Lots are 1/6 acre, used								ots are 1 cre, use				
% Acre or less	<mark>65</mark>	0.41	0.45	<mark>0.4</mark> 5	0.49	0.49	0.54	0.54	0.59	0.57	0.62	<mark>0.59</mark>	0.65
<mark>) 1⁄4 Acre</mark>	<mark>40</mark>	0.23	0.28	<mark>0.3</mark> 0	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
⅓ Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
½ Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55

Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis— Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

El Paso County, CO Drainage Criteria Manual

Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	<mark>100</mark>	0.89	0.89	<mark>0.90</mark>	0.90	0.92	0.92	0.94	0.94	0.95	0.95	<mark>0.96</mark>	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	<mark>0.35</mark>	0.50

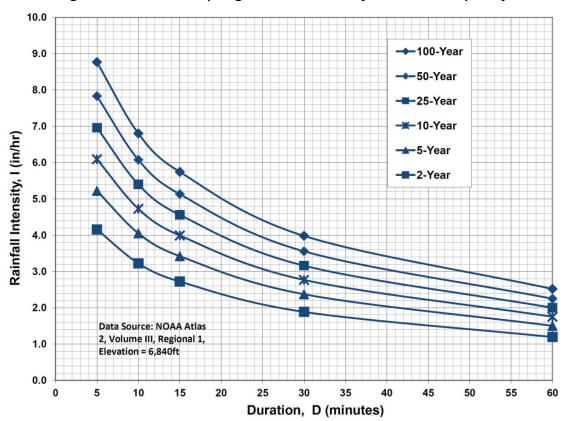


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations $I_{100} = -2.52 \ln(D) + 12.735$ $I_{50} = -2.25 \ln(D) + 11.375$ $I_{25} = -2.00 \ln(D) + 10.111$ $I_{10} = -1.75 \ln(D) + 8.847$ $I_{5} = -1.50 \ln(D) + 7.583$ $I_{2} = -1.19 \ln(D) + 6.035$ Note: Values calculated by equations may not precisely duplicate values read from figure. 7/22/22, 12:26 PM 4.0. - NRCS CURVE NUMBER LOSS AND DIMENSIONLESS UNIT HYDROGRAPH METHOD | Drainage Criteria Manual | EI P... TABLE 6-10. NRCS CURVE NUMBERS FOR FRONTAL STORMS & THUNDERSTORMS FOR DEVELOPED CONDITIONS (ARCII)

Fully Developed Urban	Treatment	Hydrologic	% I	Pre-Development CN					
Areas (vegetation established) ¹		Condition		HSG A	HSG B	HSG C	HSG D		
Open space (lawns, parks, golf courses, cemeteries, etc.):									
Poor condition (grass cover < 50%)				68	79	86	89		
Fair condition (grass cover 50% to 75%)				49	69	79	84		
Good condition (grass cover > 75%)				39	<mark>61</mark>	74	80		
Impervious areas:									
Paved parking lots, roofs, driveways, etc. (excluding right-of-way				98	98	98	98		
Streets and roads:									
Paved; curbs and storm sewers (excluding right-of-way)				98	<mark>98</mark>	98	98		
Paved; open ditches (including right-of-way)				83	89	92	93		
Gravel (including right- of-way)				76	85	89	91		
Dirt (including right-of- way)				72	82	87	89		
Western desert urban areas:									
Natural desert landscaping (pervious areas only)		_		63	77	85	88		
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders)				96	96	96	96		
Urban districts:									

Commercial and			85	89	92	94	95	1	
ousiness			65	09	92	34	95		
Industrial			72	81	88	91	93		
Residential districts by average lot size:									
% acre or less (town) houses)			65	77	85	90	92		1/6 AC - USE 80
% acre			38	61	75	83	87		032 00
½ acre			30	57	72	81	86		
½ acre			25	54	70	80	85		
1 acre			20	51	68	79	84		
2 acres			12	46	65	77	82		
Developing Urban Areas ¹	Treatment ²	Hydrologic Condition ³	% I	HSG A	HSG B	HSG C	HSG D		
Newly graded areas (pervious areas only, no vegetation)				77	86	91	94		
Cultivated Agricultural Lands ¹	Treatment	Hydrologic Condition	% I	HSG A	HSG B	нsg c	HSG D		
Fallow	Bare soil			77	86	91	94		
	Crop	Poor		76	85	90	93		
	residue cover (CR)	Good		74	83	88	90		
Row crops	cover (CR) Straight	Good Poor		74 72	83 81	88 88	90 91		
Row crops	cover (CR)								
Row crops	cover (CR) Straight	Poor		72	81	88	91		
Row crops	cover (CR) Straight row (SR)	Poor Good		72 67	81 78	88 85	91 89		
Row crops	cover (CR) Straight row (SR) SR + CR Contoured	Poor Good Poor	 	72 67 71	81 78 80	88 85 87	91 89 90		
Row crops	cover (CR) Straight row (SR) SR + CR	Poor Good Poor Good		72 67 71 64	81 78 80 75	88 85 87 82	91 89 90 85		
Row crops	cover (CR) Straight row (SR) SR + CR Contoured	Poor Good Poor Good Poor	 	72 67 71 64 70	81 78 80 75 79	88 85 87 82 84	91 89 90 85 88		
Row crops	cover (CR) Straight row (SR) SR + CR Contoured (C)	Poor Good Poor Good Poor Good	 	72 67 71 64 70 65	81 78 80 75 79 75	88 85 87 82 84 82	91 89 90 85 88 88		
Row crops	cover (CR) Straight row (SR) SR + CR Contoured (C) C + CR Contoured	Poor Good Poor Good Poor Good Poor		72 67 71 64 70 65 69	81 78 80 75 79 75 78	88 85 87 82 84 82 83	91 89 90 85 88 88 86 87		
Row crops	cover (CR) Straight row (SR) SR + CR Contoured (C) C + CR	Poor Good Poor Good Poor Good Poor Good		72 67 71 64 70 65 69 64	81 78 80 75 79 75 78 78 74	88 85 87 82 84 82 83 83 81	91 89 90 85 88 88 86 87 85		
Row crops	cover (CR) Straight row (SR) SR + CR Contoured (C) C + CR Contoured & terraced	Poor Good Poor Good Poor Good Good Poor Good		72 67 71 64 70 65 69 64 66	81 78 80 75 79 75 78 78 74 74	88 85 87 82 84 82 83 83 83 81 80	91 89 90 85 88 86 87 85 85 82		

Good -- 61 70 77 80

https://library.municode.com/co/el_paso_county/codes/drainage_criteria_manual?nodeId=VO1UP_CH6HY_4.0NRCUNULODIUNHYME

EXPAND

https://library.municode.com/co/el_paso_county/codes/drainage_criteria_manual?nodeId=VO1UP_CH6HY_4.0NRCUNULODIUNHYME

4.0. - NRCS CURVE NUMBER LOSS AND DIMENSIONLESS UNIT HYDROGRAPH METHOD | Drainage Criteria Manual | EI P... 7/22/22, 12:26 PM

Small grain	SR	Poor		65	76	84	88
		Good		63	75	83	87
	SR + CR	Poor		64	75	83	86
		Good		60	72	80	84
	с	Poor		63	74	82	85
		Good		61	73	81	84
	C + CR	Poor		62	73	81	84
	Poor	Good		60	72	80	83
	C&T	Poor		61	72	79	82
		Good		59	70	78	81
	C&T+ CR	Poor		60	71	78	81
		Good		58	69	77	80
Pasture, grassland, or		Poor		68	79	86	89
range—continuous forage for grazing ⁴	_	Fair		49	69	79	84
longe for grazing	_	Good		39	<mark>61</mark>	74	80
Meadow-continuous				30	58	71	78
grass, protected from grazing and generally mowed for hay							
Brush-brush-weed-grass		Poor		48	67	77	83
mixture with brush the major element ⁵	_	Fair		35	56	70	77
	_	Good		30	48	65	73
Woods-grass		Poor		57	73	82	86
combination (orchard or tree farm) 6	_	Fair		43	65	76	82
uee laini) -	_	Good		32	58	72	79
Woods 7		Poor		45	66	77	83
	_	Fair		36	60	73	79
	-	Good		30	55	70	77
Farmsteads-buildings,				59	74	82	86
lanes, driveways, and			-	28	/4	d2	60
surrounding lots		-					
surrounding lots Arid and Semi-arid Rangelands ¹	Treatment	Hydrologic Condition ⁸	%1	HSG A	HSG B	HSG C	HSG D

1/4

3/4

growing brush, with brush the minor element - Fair 71 81 89 Good - Good 62 74 85 Oak-aspen-mountain brush mixture of oak brush, sepen, mountain mapole, and other brush, maple, and other brush, Poor 66 74 79 Pinyon-juniper-pinyon, juniper, or both; grass Good 48 57 63 Pinyon-juniper-pinyon, juniper-pinyon, juniper-pinyon, Poor 58 73 80
Oak-aspen-mountain brush mixture of oak Poor 66 74 79 brush aspen, mountain mahogany, bitter brush, maple, and other brush Fair 48 57 63 Pinyon-juniper-pinyon, impler, othork grass Good 30 41 48
brush mixture of oak Fair 48 57 63 mahogany, bitter brush, maple, and ther brush uple, and ther brush programmer, provide marked and the brush uple mathematical strength and the brush uple mathema
brush, aspen, mountain mahogany, titter brush, maple, and other brush Fair 48 57 63 Pinyon-Juniper-pinyon, Juniper, otholing mass Good 30 41 48
maple, and other brush — Good — 30 41 48 Pinyon-juniper-pinyon, juniper, or both, grass — Poor 75 85 89
juniper, or both; grass
Good 41 61 71
Sagebrush with grass —— Poor — — 67 80 85
Desert shrub-major — Poor — 63 77 85 88 plants include salbush,
greasewood, Fair 55 72 81 86 Diackhrush, bursage,
palo verde, mos ge, Good 49 68 79 84 and cactus
¹ la = 0.1 S
$^2\rm Crop$ residue cover applies only if residue is on at least 5% of the surface throughout the year.
³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including
(a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good ≥ 20%),
and (e) degree of surface roughness. Poor: Factors impair infiltration and tend to increase runoff. Good: Factors encourage average and better than average infiltration and tend to
decrease runoff.
⁴ Poor: <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Good: > 75% ground cover and lightly or only occasional
⁵ Poor: <50% ground cover. Fair: 50 to 75% ground cover. Good: >75% ground cover.
⁴ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods
⁷ Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are
protected from grazing, and litter and brush adequately cover the soil.
⁸ Poor: <30% ground cover (litter, grass, and brush overstory). Fair: 30 to 70% ground cover. Good: > 70% ground cover.

2/4

4/4

4.0. - NRCS CURVE NUMBER LOSS AND DIMENSIONLESS UNIT HYDROGRAPH METHOD | Drainage Criteria Manual | EI P. 7/22/22 12:26 PM Table 6-9. NRCS Curve Numbers for Pre-Development Thunderstorms Conditions (ARC I)

Fully Developed Urban	Treatment	Hydrologic	% I	Pre-D	Development CN			
Areas (vegetation established) ¹		Condition		HSG A	HSG B	HSG C	HSG D	
Open space (lawns, parks, golf courses, cemeteries, etc.):								
Poor condition (grass cover < 50%)	-	-	-	47	61	72	77	
Fair condition (grass cover 50% to 75%)	-	-	-	29	48	61	69	
Good condition (grass cover > 75%)	-	-	-	21	40	54	63	
Impervious areas:								
Paved parking lots, roofs, driveways, etc. (excluding right-of-way)	-	-	-	95	95	95	95	
Streets and roads:								
Paved; curbs and storm sewers (excluding right-of-way)	-	-	_	95	95	95	95	
Paved; open ditches (including right-of-way)	-	-	-	67	77	83	85	
Gravel (including right- of-way)	-	-	-	57	70	77	81	
Dirt (including right-of- way)	-	-	-	52	66	74	77	
Western desert urban areas:								
Natural desert landscaping (pervious areas only)	-	-	_	42	58	70	75	
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders)	_	_	-	91	91	91	91	
Developing Urban Areas ¹	Treatment ²	Hydrologic Condition ³	%1	HSG A	HSG B	HSG C	HSG D	

Newly graded areas (pervious areas only, no vegetation)	-	-	-	58	72	81	87
Cultivated Agricultural Lands ¹	Treatment	Hydrologic Condition	%1	HSG A	HSG B	HSG C	HSG D
Fallow	Bare soil	-	-	58	72	81	87
	Crop residue	Poor	-	57	70	79	85
	cover (CR)	Good	-	54	67	75	79
Row crops	Straight row (SR)	Poor	-	52	64	75	81
	IOW (SR)	Good	-	46	60	70	77
	SR + CR	Poor	-	51	63	74	79
		Good	-	43	56	66	70
	Contoured (C)	Poor	-	49	61	69	75
	(C)	Good	-	44	56	66	72
	C + CR	Poor	-	48	60	67	74
		Good	-	43	54	64	70
	Contoured & terraced	Poor	-	45	54	63	66
	(C&T)	Good	-	41	51	60	64
	C&T+ CR	Poor	-	44	53	61	64
		Good	-	40	49	58	63
Small grain	SR	Poor	-	44	57	69	75
		Good		42	56	67	74
	SR + CR	Poor		43	56	67	72
		Good	-	39	52	63	69
	с	Poor	-	42	54	66	70
		Good	-	40	53	64	69
	C + CR Poor	Poor	-	41	53	64	69
		Good	-	39	52	63	67
	C&T	Poor	-	40	52	61	66
		Good	-	38	49	60	64
	C&T+ CR	Poor	-	39	51	60	64
		Good	-	37	48	58	63

INIT HYDROGRAPH METHOD | Drainage Criteria Manual | El P...

https://library.municode.com/co/el_paso_county/codes/drainage_criteria_manual?nodeld=VO1UP_CH6HY_4.0NRCUNULODIUNHYME

2/4

4/4

Close-seeded or SR Poor 45 58 70 77 broadcast legumes or Good 37 52 64 70 -rotation meadow 67 43 56 с Poor 70 Good 34 48 60 67 C&T Poor ___ 42 53 63 67 30 46 57 63 Good Pasture, grassland, or Poor 47 61 72 77 range-continuous forage 29 48 61 69 Fair for grazing ⁴ Good _ 21 40 54 63 Meadow-continuous _ 15 37 51 60 grass, protected from grazing and generally mowed for hay Brush-brush-weed-grass mixture with brush the Poor 28 46 58 67 _ 18 35 49 58 Fair major element ⁵ 28 44 53 15 Good Woods-grass Poor 36 53 66 72 ion (orchard or Fair 24 44 57 66 tree farm) 6 17 37 52 61 Good Woods 7 Poor _ 26 45 58 67 Fair 19 39 53 61 15 58 34 49 Good Farmsteads-buildings 38 54 66 72 lanes, driveways, and surrounding lots Arid and Semi-arid Hydrologic % I HSG HSG HSG HSG Treatment Rangelands¹ Condition в с D Herbaceous-mixture of Poor 63 74 85 grass, weeds, and low-64 51 77 Fair growing brush, with brush the minor element Good 41 54 70 _ Oak-aspen-mountain 45 54 61 Poor brush mixture of oak Fair 28 36 42 brush, aspen, mountair mahogany, bitter brush,

Good

Poor

maple, and other brush

Pinyon-juniper-pinyon,

_ _ 15 23 28

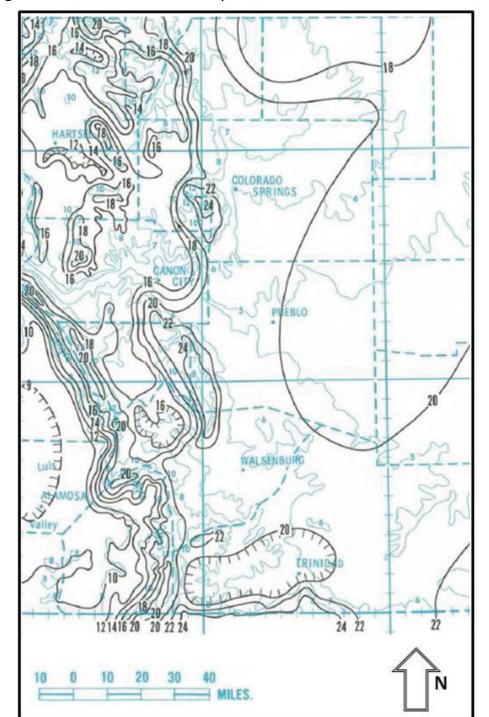
_ _

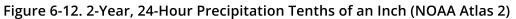
7/22/22 12:26 PM

4.0 - NRCS CURVE NUMBER LOSS AND DIMENSIONLESS UNIT HYDROGRAPH METHOD I Drainage Criteria Manual I ELP

1/4

3/4


https://library.municode.com/co/el_paso_county/codes/drainage_criteria_manual?nodeld=VO1UP_CH6HY_4.0NRCUNULODIUNHYME


4.0 - NRCS CURVE NUMBER LOSS AND DIMENSIONI ESS UNIT HYDROGRAPH METHOD I Drainage Criteria Manual I ELP 7/22/22 12:26 PM juniper, or both; grass Fair 37 53 63 understory Good 23 40 51 46 63 Sagebrush with grass Poor 70 -understory Fair _ _ 30 42 49 Good 18 27 34 58 75 Desert shrub-major Poor _ 42 70 plants include salt greasewood, 52 72 Fair 34 64 creosotebush blackbrush, bursage alo verde, mesquite, 69 Good 29 47 61 and cactus Average runoff condition, and Ia = 0.1S. ² Crop residue cover applies only if residue is on at least 5% of the surface throughout the vear. 3. Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good ≥ 20%), and (e) degree of surface roughness. Poor: Factors impair infiltration and tend to increase runoff. Good: Factors encourage average and better than average infiltration and tend to decrease runoff ⁴ Poor: <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Good: > 75% ground cover and lightly or only occasionally grazed. ^{5.} Poor: <50% ground cover. Fair: 50 to 75% ground cover. Good: >75% ground cover. 6 CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture. ⁷ Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil

³ Poor: <30% ground cover (litter, grass, and brush overstory). Fair: 30 to 70% ground cover</p> Good: > 70% ground cover

77

70

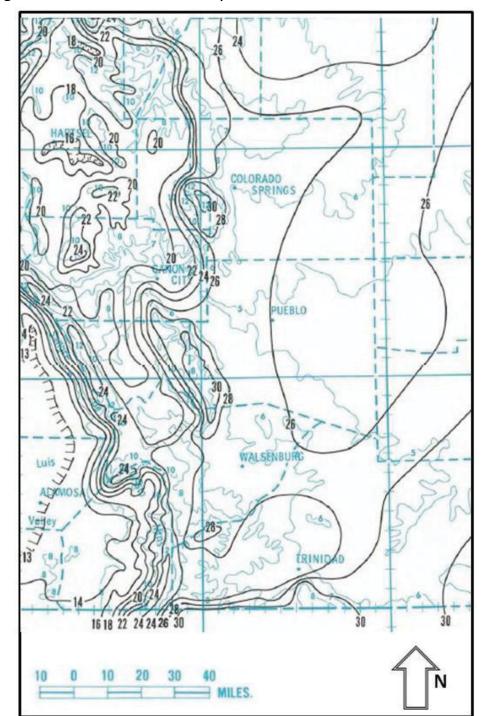
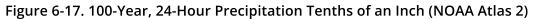
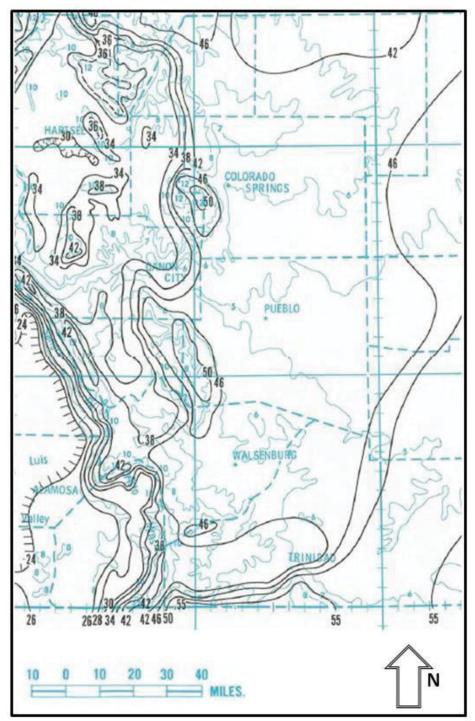




Figure 6-13. 5-Year, 24-Hour Precipitation Tenths of an Inch (NOAA Atlas 2)

EX DEVELOPMENT CN VALUES

Designer: ESJ		Global Parameters	s ¹
Company: R&R Engineers-Surveyors		Land Use	CN
Date: 1/5/2023		PASTURE/GRASS - GOOD	61
Project: Mayberry Filing 3	RER	ROAD	98
Location: El Paso County	ROR		
	ENGINEERS Z		

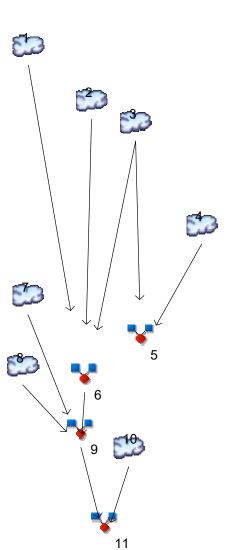
Basin Name (ac)		NRCS Hydrologic Soil Group	PASTURE/GRASS - GOOD		ROAD		% Check	SCS CN
	······	Area (ac)	%	Area (ac)	%		CN	
EC10	320.00	А	320.00	100.0%	0.00	0.0%		61
EX-D1	93.50	А	93.50	100.0%	0.00	0.0%		61
EX-D2	11.50	А	11.50	100.0%	0.00	0.0%		61
EX-E	76.00	А	76.00	100.0%	0.00	0.0%		61
EX-LOG	1.80	А	0.00	0.0%	1.80	100.0%		98
EX-Z	83.50	A	81.94	98.1%	1.56	1.9%		62
OS-1	2.65	А	1.74	65.7%	0.91	34.3%		74

1	

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Watershed Model Schematic.....1


5 - Year	
Summary Report	2
Hydrograph Reports	3
Hydrograph No. 1, SCS Runoff, EC10	3
TR-55 Tc Worksheet	4
Hydrograph No. 2, SCS Runoff, OS-1	5
TR-55 Tc Worksheet	6
Hydrograph No. 3, SCS Runoff, EX-D1	7
TR-55 Tc Worksheet	8
Hydrograph No. 4, SCS Runoff, EX-D2	9
TR-55 Tc Worksheet	10
Hydrograph No. 5, Combine, TOTAL ONSITE FLOW	11
Hydrograph No. 6, Combine, DP EX-5	12
Hydrograph No. 7, SCS Runoff, EX-E	13
TR-55 Tc Worksheet	14
Hydrograph No. 8, SCS Runoff, EX-LOG	15
TR-55 Tc Worksheet	
Hydrograph No. 9, Combine, DP EX-6	
Hydrograph No. 10, SCS Runoff, EX-Z	18
TR-55 Tc Worksheet	19
Hydrograph No. 11, Combine, DP EX-7	20

100 - Year

Summary Report	21
Hydrograph Reports	22
Hydrograph No. 1, SCS Runoff, EC10	
Hydrograph No. 2, SCS Runoff, OS-1	23
Hydrograph No. 3, SCS Runoff, EX-D1	24
Hydrograph No. 4, SCS Runoff, EX-D2	25
Hydrograph No. 5, Combine, TOTAL ONSITE FLOW	
Hydrograph No. 6, Combine, DP EX-5	27
Hydrograph No. 7, SCS Runoff, EX-E	
Hydrograph No. 8, SCS Runoff, EX-LOG	29
Hydrograph No. 9, Combine, DP EX-6	30
Hydrograph No. 10, SCS Runoff, EX-Z	31
Hydrograph No. 11, Combine, DP EX-7	32
F Report	33

Watershed Model Schematic

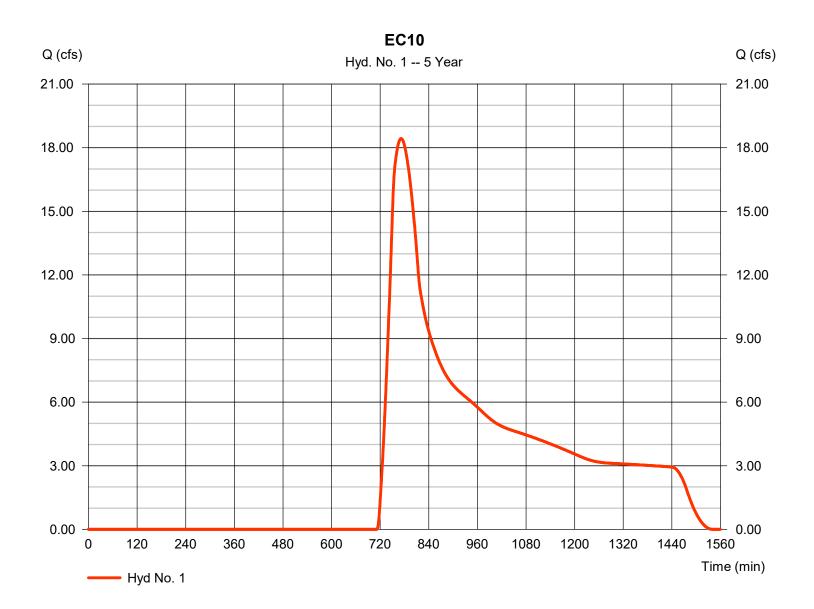
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

<u>Legend</u>

<u>Hyd.</u>	<u>Origin</u>	Description
1	SCS Runoff	EC10
2	SCS Runoff	OS-1
3	SCS Runoff	EX-D1
4	SCS Runoff	EX-D2
5	Combine	TOTAL ONSITE FLOW
6	Combine	DP EX-5
7	SCS Runoff	EX-E
8	SCS Runoff	EX-LOG
9	Combine	DP EX-6
10	SCS Runoff	EX-Z
11	Combine	DP EX-7

Thursday, 01 / 5 / 2023

Hydrograph Summary Report


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

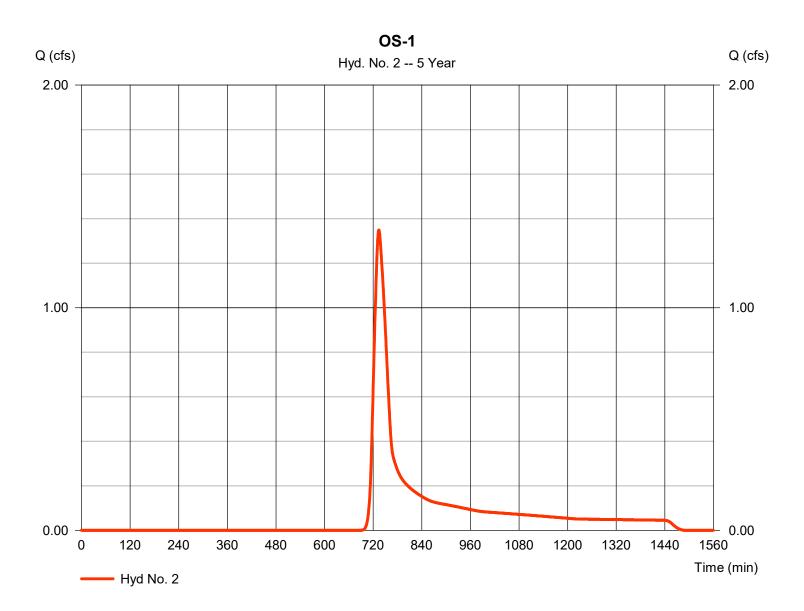
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	18.43	1	772	262,007				EC10
2	SCS Runoff	1.349	1	734	6,442				OS-1
3	SCS Runoff	8.399	1	737	76,243				EX-D1
4	SCS Runoff	1.367	1	728	9,340				EX-D2
5	Combine	9.557	1	735	85,583	3, 4			TOTAL ONSITE FLOW
6	Combine	23.73	1	755	344,692	1, 2, 3,			DP EX-5
7	SCS Runoff	6.054	1	745	62,432				EX-E
8	SCS Runoff	3.682	1	729	15,373				EX-LOG
9	Combine	30.51	1	752	422,497	6, 7, 8			DP EX-6
10	SCS Runoff	8.146	1	742	76,284				EX-Z
11	Combine	38.16	1	751	498,780	9, 10			DP EX-7
SC	S ROUTING	- Existing	Downstr	eam Ana	lysBetnm F	Period: 5 V	ear	Thursday	01 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

Hydrograph type	= SCS Runoff	Peak discharge	= 18.43 cfs
Storm frequency	= 5 yrs	Time to peak	= 772 min
Time interval	= 1 min	Hyd. volume	= 262,007 cuft
Drainage area	= 320.000 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 63.00 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 1


EC10

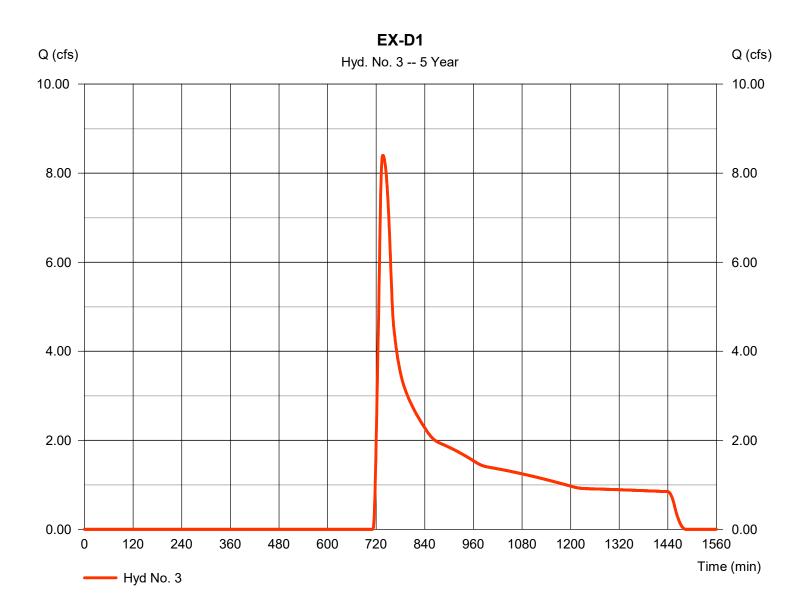
Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 300.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.85	+	0.00	+	0.00	=	7.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 6086.00 = 1.30 = Unpave =1.84		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 55.14	+	0.00	+	0.00	=	55.14
Channel Flow							
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.00 = 0.00 = 0.015		0.00 0.00 0.015		0.00 0.00 0.015		
Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.015 0.00	+	0.00 0.00 0.015 0.00	=	0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.349 cfs
Storm frequency	= 5 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 6,442 cuft
Drainage area	= 2.650 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.10 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 2


OS-1

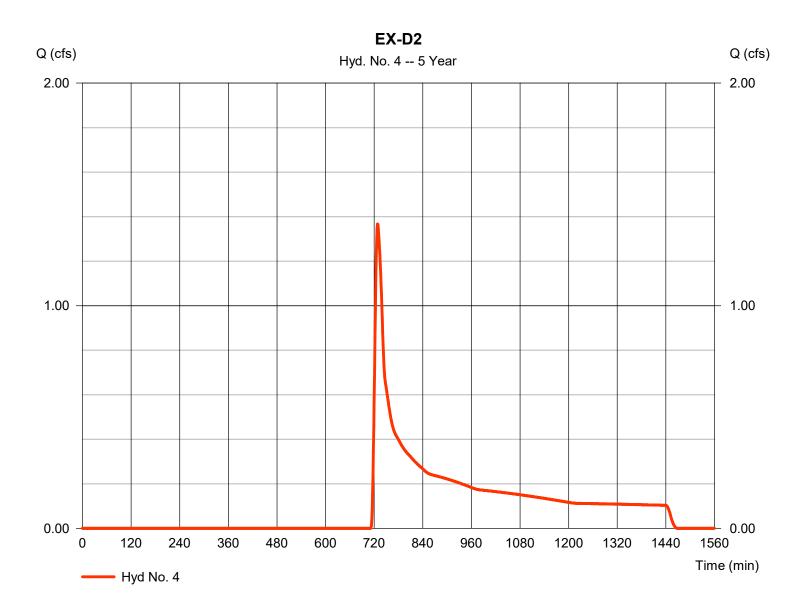
Description	Α		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.013 = 50.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.96	+	0.00	+	0.00	=	0.96
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2525.00 = 0.70 = Unpave =1.35		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 31.17	+	0.00	+	0.00	=	31.17
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							32.10 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 8.399 cfs
Storm frequency	= 5 yrs	Time to peak	= 737 min
Time interval	= 1 min	Hyd. volume	= 76,243 cuft
Drainage area	= 93.500 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.60 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 3


EX-D1

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 300.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.85	+	0.00	+	0.00	=	7.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2845.00 = 2.00 = Unpaved =2.28		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 20.78	+	0.00	+	0.00	=	20.78
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc						28.60 min	

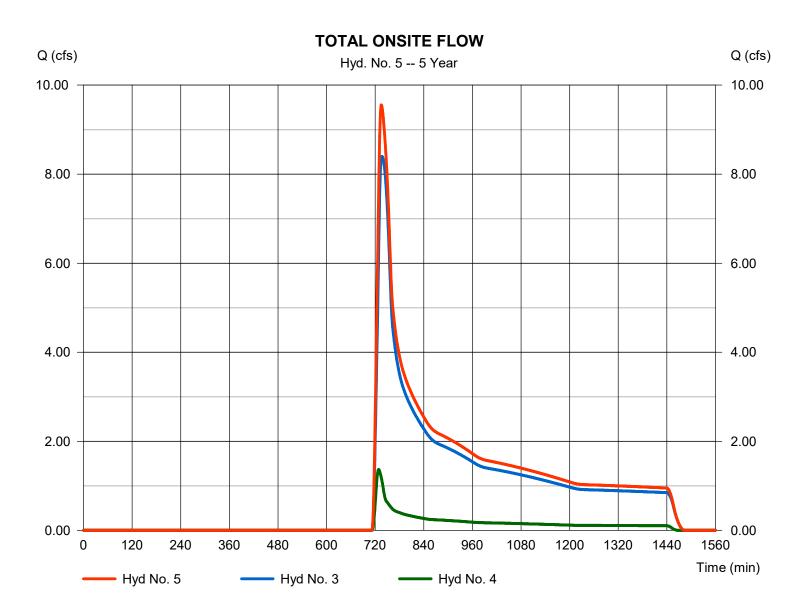
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

Hydrograph type	= SCS Runoff	Peak discharge	= 1.367 cfs
Storm frequency	= 5 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 9,340 cuft
Drainage area	= 11.500 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.00 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 4

EX-D2

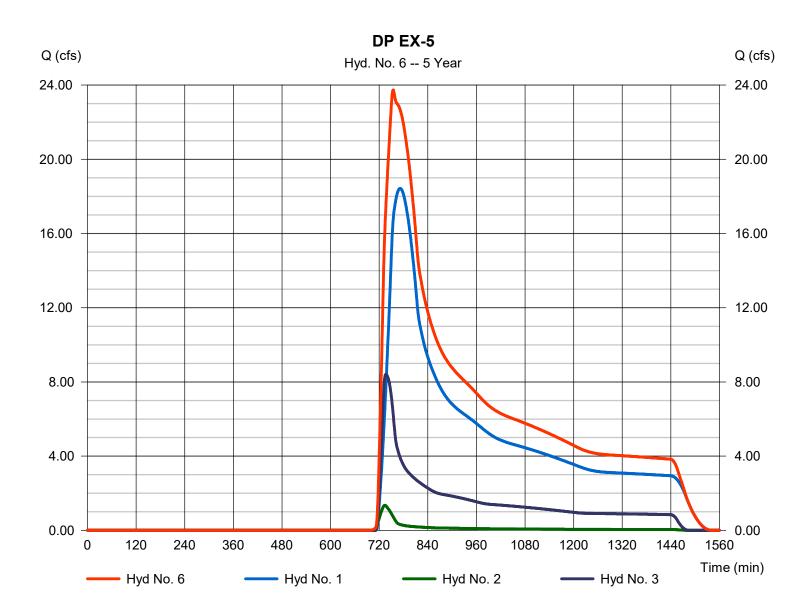

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 300.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.85	+	0.00	+	0.00	=	7.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 1395.00 = 2.00 = Unpave =2.28		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 10.19	+	0.00	+	0.00	=	10.19
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

TOTAL ONSITE FLOW

Hydrograph type	 = Combine = 5 yrs = 1 min = 3, 4 	Peak discharge	= 9.557 cfs
Storm frequency		Time to peak	= 735 min
Time interval		Hyd. volume	= 85,583 cuft
Inflow hyds.		Contrib. drain. area	= 105.000 ac
Inflow hyds.	= 3, 4	Contrib. drain. area	= 105.000 ac

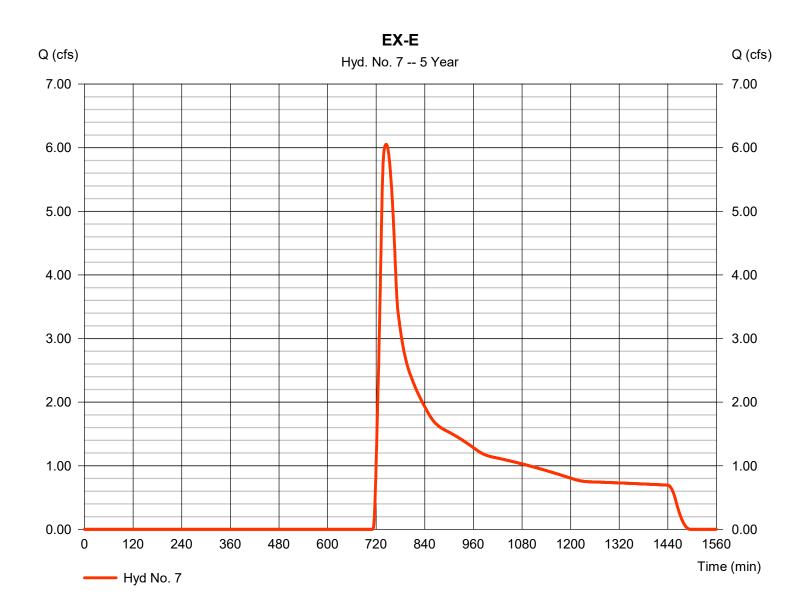


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

DP EX-5

Hydrograph type	= Combine	Peak discharge	= 23.73 cfs
Storm frequency	= 5 yrs	Time to peak	= 755 min
Time interval	= 1 min	Hyd. volume	= 344,692 cuft
Inflow hyds.	= 1, 2, 3	Contrib. drain. area	= 416.150 ac



Thursday, 01 / 5 / 2023

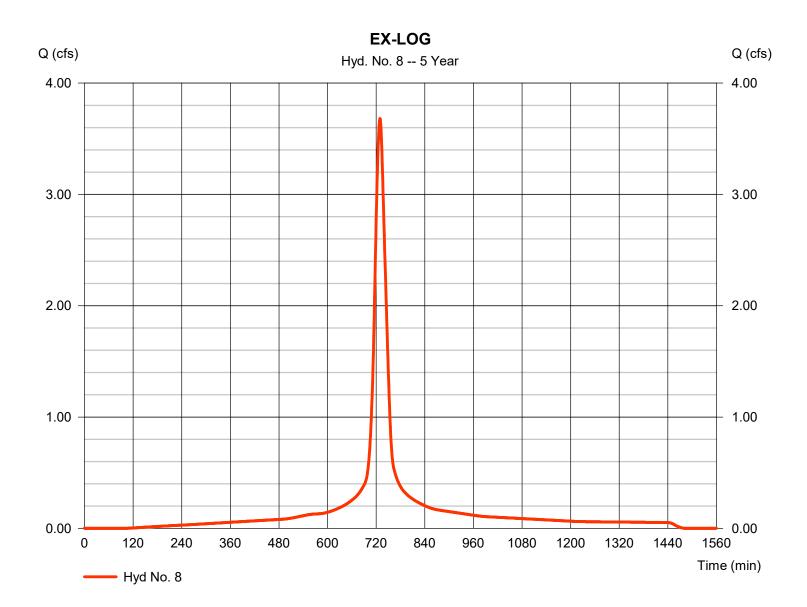
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

SCS Runoff	Peak discharge	= 6.054 cfs
5 yrs	Time to peak	= 745 min
1 min	Hyd. volume	= 62,432 cuft
76.000 ac	Curve number	= 61
0.0 %	Hydraulic length	= 0 ft
TR55	Time of conc. (Tc)	= 34.20 min
2.60 in	Distribution	= Type II
24 hrs	Shape factor	= 484
	5 yrs I min 76.000 ac 0.0 % FR55 2.60 in	5 yrsTime to peak1 minHyd. volume76.000 acCurve number0.0 %Hydraulic lengthTR55Time of conc. (Tc)2.60 inDistribution

Hyd. No. 7

EX-E


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 300.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.85	+	0.00	+	0.00	=	7.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2546.00 = 1.00 = Unpave =1.61		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 26.30	+	0.00	+	0.00	=	26.30
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.00 = 0.00 = 0.015		0.00 0.00 0.015		0.00 0.00 0.015		
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.015 0.00	+	0.00 0.00 0.015 0.00	=	0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

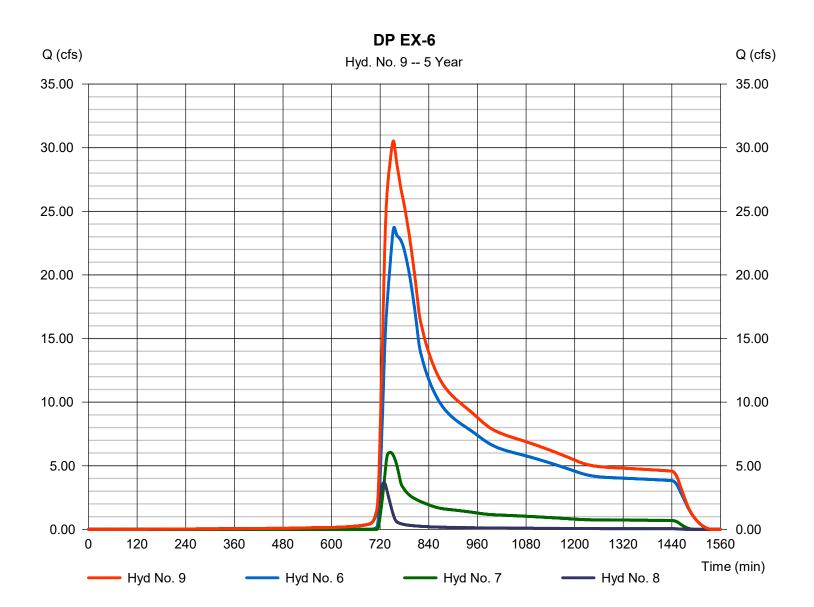
EX-LOG

Hydrograph type	= SCS Runoff	Peak discharge	= 3.682 cfs
Storm frequency	= 5 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 15,373 cuft
Drainage area	= 1.800 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.06 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Thursday, 01 / 5 / 2023

Hyd. No. 8

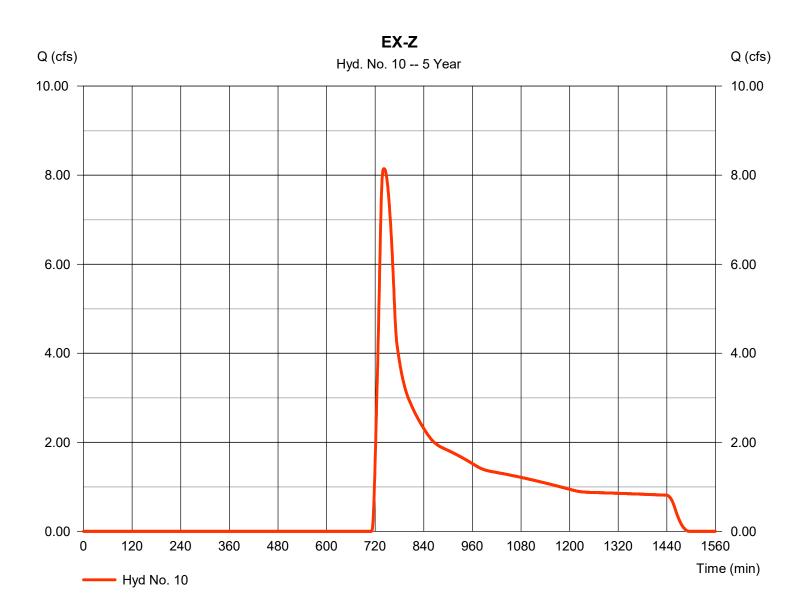
EX-LOG


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.013 = 11.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.29	+	0.00	+	0.00	=	0.29
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2592.00 = 1.00 = Unpave =1.61		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 26.77	+	0.00	+	0.00	=	26.77
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							27.06 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

DP EX-6


Hydrograph type	= Combine	Peak discharge	= 30.51 cfs
Storm frequency	= 5 yrs	Time to peak	= 752 min
Time interval	= 1 min	Hyd. volume	= 422,497 cuft
Inflow hyds.	= 6, 7, 8	Contrib. drain. area	= 77.800 ac

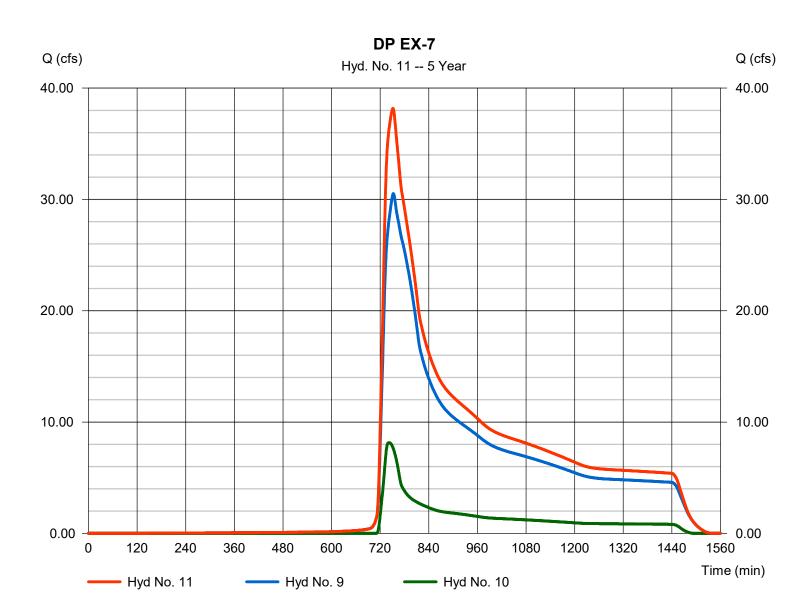
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Hydrograph type	= SCS Runoff	Peak discharge	= 8.146 cfs
Storm frequency	= 5 yrs	Time to peak	= 742 min
Time interval	= 1 min	Hyd. volume	= 76,284 cuft
Drainage area	= 83.500 ac	Curve number	= 62
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.00 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 10

EX-Z


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 300.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.85	+	0.00	+	0.00	=	7.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2627.00 = 1.00 = Unpaved =1.61		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 27.14	+	0.00	+	0.00	=	27.14
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

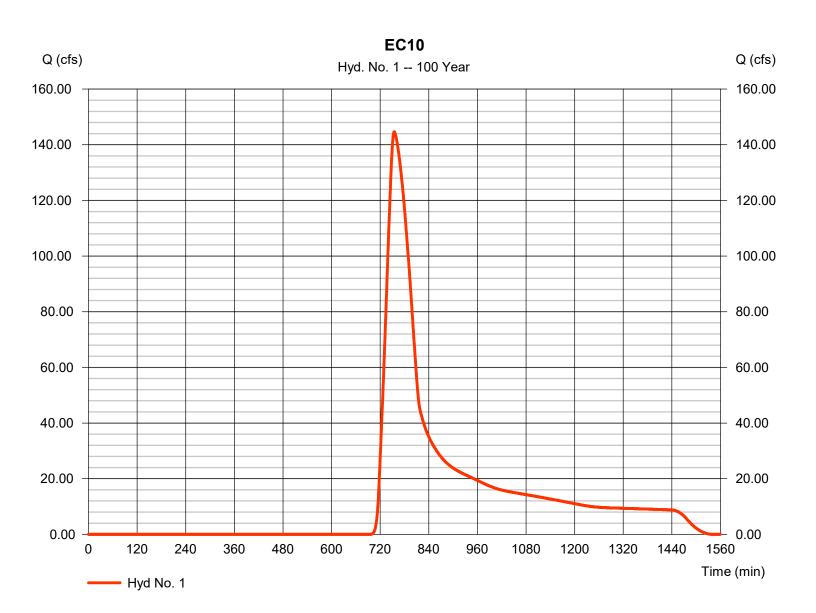
Hyd. No. 11

DP EX-7

Hydrograph type	= Combine	Peak discharge	= 38.16 cfs
Storm frequency	= 5 yrs	Time to peak	= 751 min
Time interval	= 1 min	Hyd. volume	= 498,780 cuft
Inflow hyds.	= 9, 10	Contrib. drain. area	= 83.500 ac

Thursday, 01 / 5 / 2023

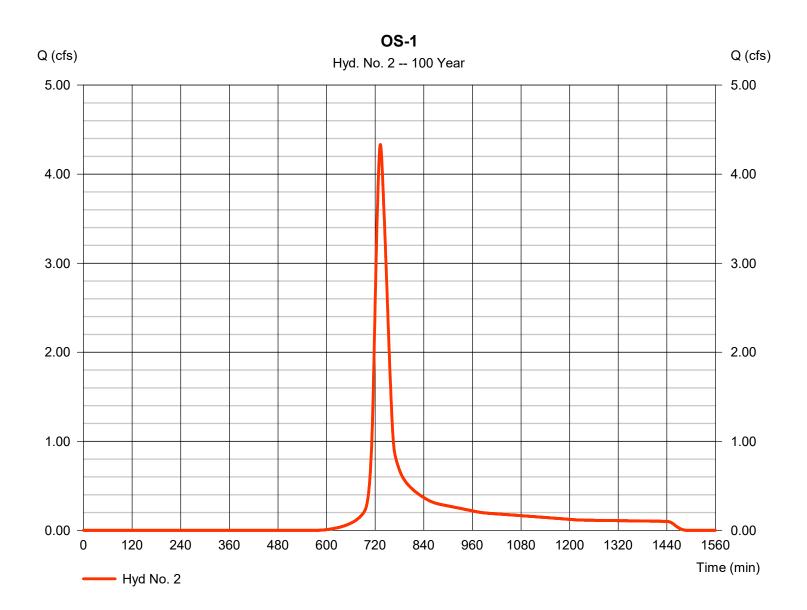
Hydrograph Summary Report


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	144.67	1	755	1,185,497				EC10
2	SCS Runoff	4.333	1	733	18,356				OS-1
3	SCS Runoff	76.23	1	732	344,975				EX-D1
4	SCS Runoff	12.54	1	725	42,259				EX-D2
5	Combine	86.19	1	731	387,234	3, 4			TOTAL ONSITE FLOW
6	Combine	183.85	1	749	1,548,829	1, 2, 3,			DP EX-5
7	SCS Runoff	53.32	1	736	282,485				EX-E
8	SCS Runoff	6.317	1	729	27,009				EX-LOG
9	Combine	231.35	1	745	1,858,321	6, 7, 8			DP EX-6
10	SCS Runoff	63.40	1	736	328,266				EX-Z
11	Combine	289.85	1	740	2,186,588	9, 10			DP EX-7
SC	S ROUTING	- Existina	Downstr	eam Ana	lys Riediona P	eriod: 100	Year	Thursday	01 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

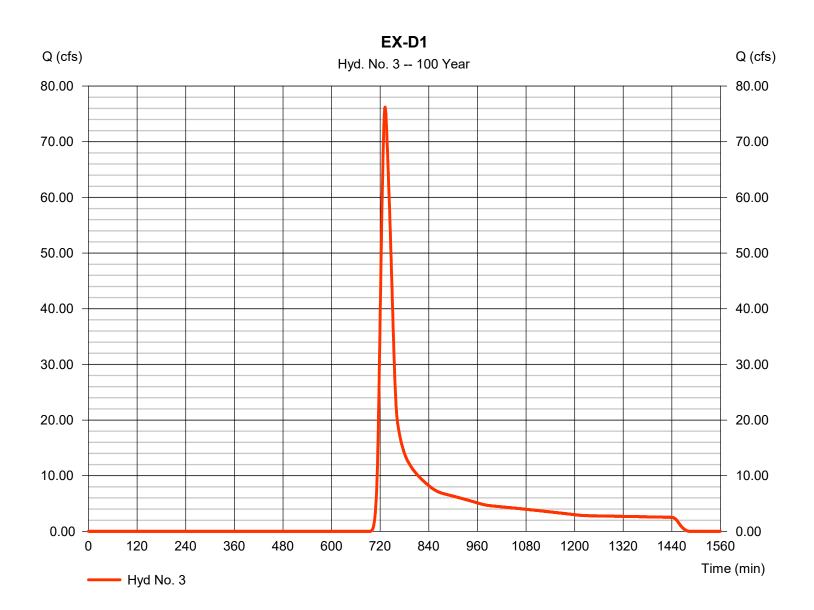
Hyd. No. 1


Hydrograph type	= SCS Runoff	Peak discharge	= 144.67 cfs
Storm frequency	= 100 yrs	Time to peak	= 755 min
Time interval	= 1 min	Hyd. volume	= 1,185,497 cuft
Drainage area	= 320.000 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 63.00 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

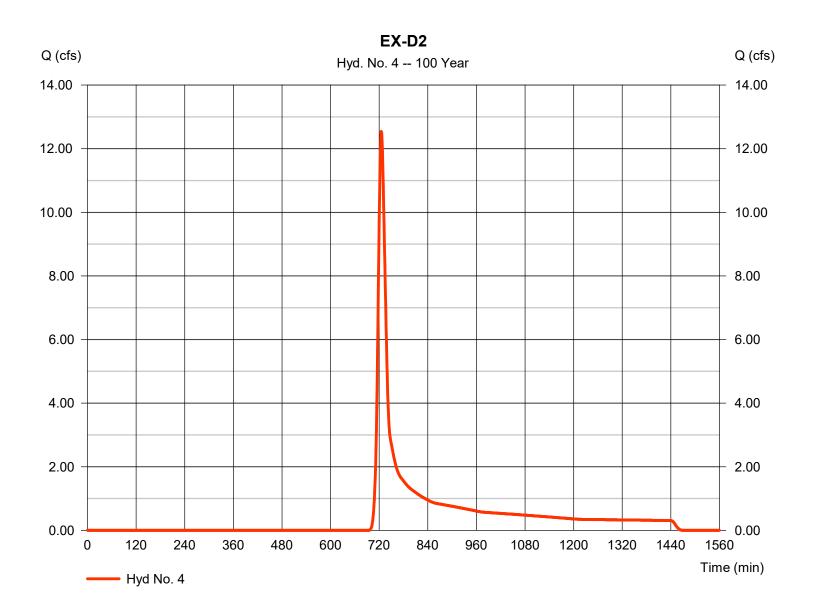
Hydrograph type	= SCS Runoff	Peak discharge	= 4.333 cfs
Storm frequency	= 100 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 18,356 cuft
Drainage area	= 2.650 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.10 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Thursday, 01 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

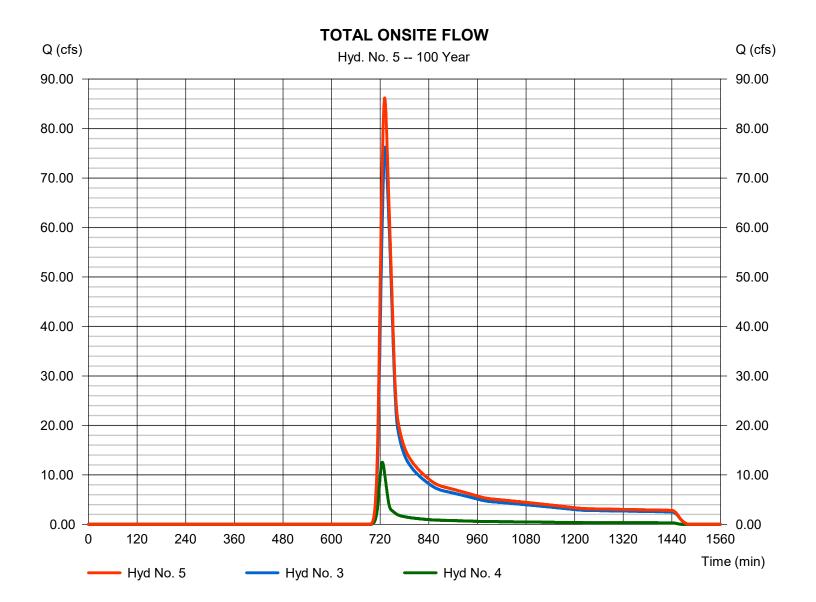
Hyd. No. 3


Hydrograph type	= SCS Runoff	Peak discharge	= 76.23 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 344,975 cuft
Drainage area	= 93.500 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 28.60 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

Hydrograph type	= SCS Runoff	Peak discharge	= 12.54 cfs
Storm frequency	= 100 yrs	Time to peak	= 725 min
Time interval	= 1 min	Hyd. volume	= 42,259 cuft
Drainage area	= 11.500 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 18.00 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

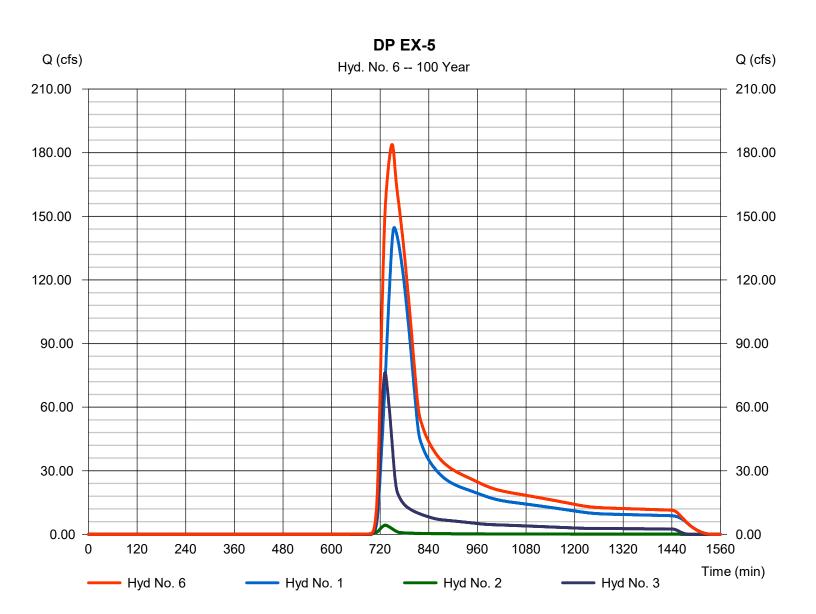


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

TOTAL ONSITE FLOW

Hydrograph type	Combine100 yrs	Peak discharge	= 86.19 cfs
Storm frequency		Time to peak	= 731 min
Time interval	= 1 min	Hyd. volume	= 387,234 cuft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 105.000 ac

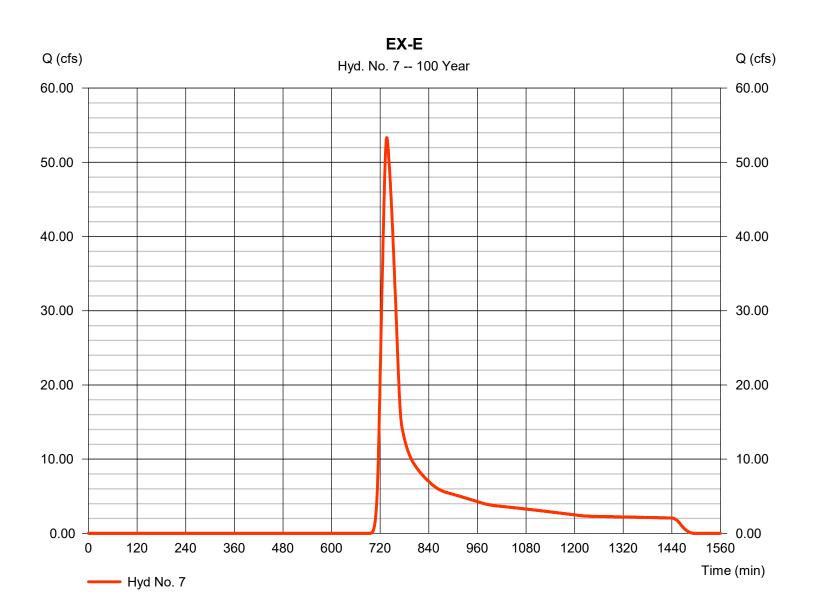

Thursday, 01 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

DP EX-5

Hydrograph type	= Combine	Peak discharge	= 183.85 cfs
Storm frequency	= 100 yrs	Time to peak	= 749 min
Time interval	= 1 min	Hyd. volume	= 1,548,829 cuft
Inflow hyds.	= 1, 2, 3	Contrib. drain. area	= 416.150 ac

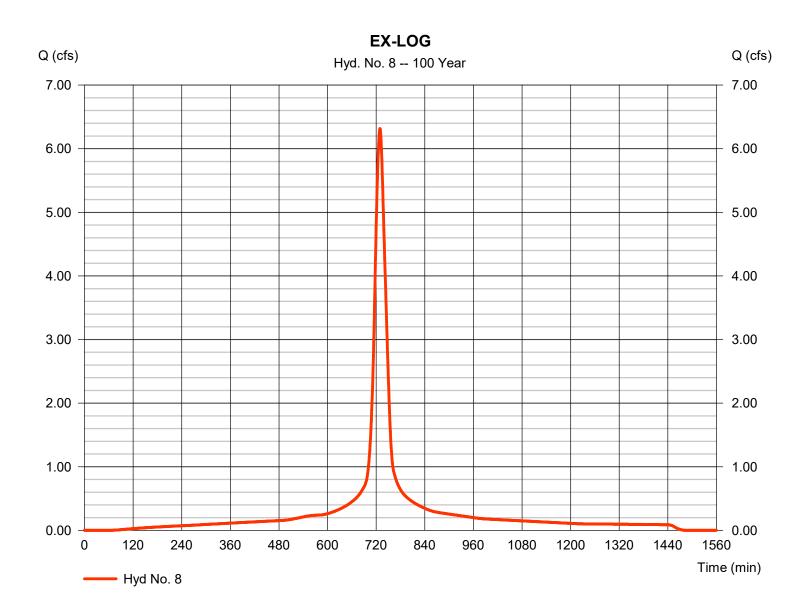


Thursday, 01 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7

Hydrograph type	= SCS Runoff	Peak discharge	= 53.32 cfs
Storm frequency	= 100 yrs	Time to peak	= 736 min
Time interval	= 1 min	Hyd. volume	= 282,485 cuft
Drainage area	= 76.000 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.20 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

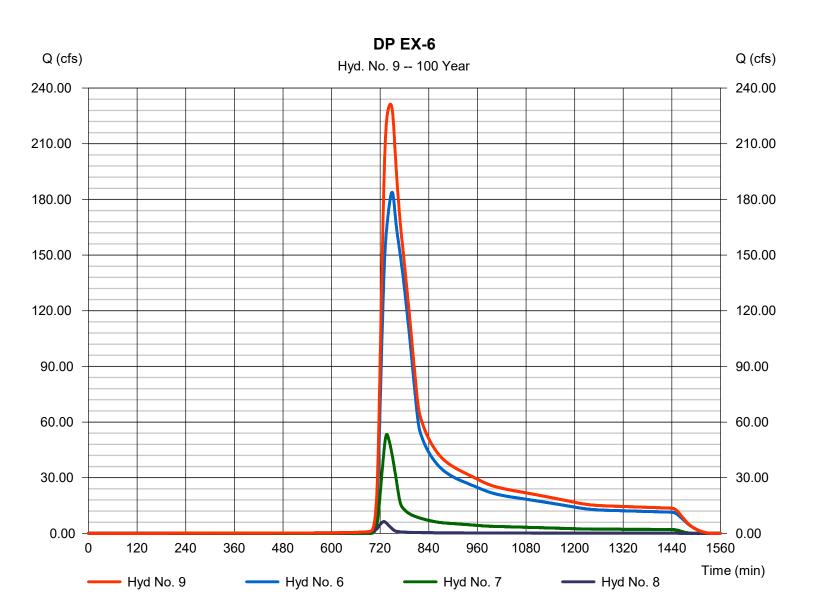


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8

EX-LOG

Hydrograph type	= SCS Runoff	Peak discharge	= 6.317 cfs
Storm frequency	= 100 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 27,009 cuft
Drainage area	= 1.800 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.06 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

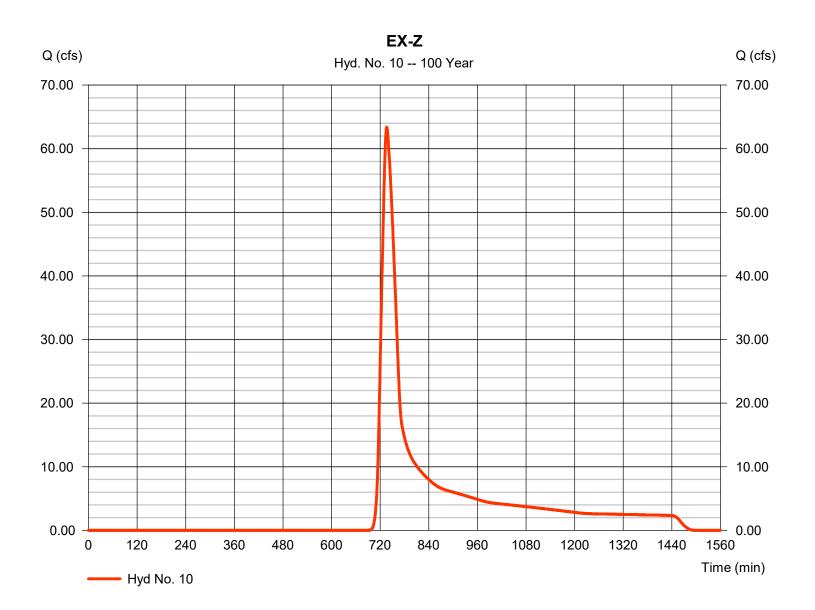


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

DP EX-6

Hydrograph type	= Combine	Peak discharge	= 231.35 cfs
Storm frequency	= 100 yrs	Time to peak	= 745 min
Time interval	= 1 min	Hyd. volume	= 1,858,321 cuft
Inflow hyds.	= 6, 7, 8	Contrib. drain. area	= 77.800 ac

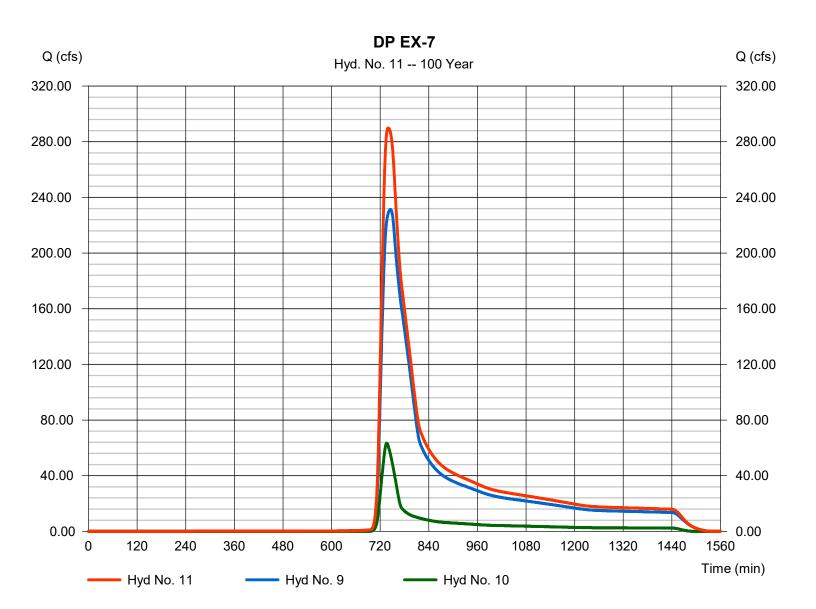


Thursday, 01 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 10

Hydrograph type	= SCS Runoff	Peak discharge	= 63.40 cfs
Storm frequency	= 100 yrs	Time to peak	= 736 min
Time interval	= 1 min	Hyd. volume	= 328,266 cuft
Drainage area	= 83.500 ac	Curve number	= 62
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.00 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Thursday, 01 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 11

DP EX-7

Hydrograph type	= Combine	Peak discharge	= 289.85 cfs
Storm frequency	= 100 yrs	Time to peak	= 740 min
Time interval	= 1 min	Hyd. volume	= 2,186,588 cuft
Inflow hyds.	= 9, 10	Contrib. drain. area	= 83.500 ac
millow nyus.	- 9, 10	Contrib. drain. area	- 05.500 ac

	Precip. file name: Sample.pc Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
SCS 24-hour		2.20		2.60				4.40		

Precip. file name: Sample.pcp

POST-DEVELOPMENT C VALUES

Date: 1/5/2 Project: Mayb Location: El Pas Basin Name C2.1 C2.2 C2.3 C2.4 C2.5	berry Filing 3	NRCS Hydrologic Soil		RERS FERS	L SF LOTS (1/6 A Hardscape Commercial Landscape/Park		% Imp. 47.5 100 95	C ₅ 0.375 0.9	C ₁₀₀ 0.545 0.96		Total Area (ac) Composite Impervious	561.92 33.1%					
Project: Mayb Location: El Pas Basin Name C2.1 C2.2 C2.3 C2.4 C2.5	berry Filing 3 so County Area (ac)				Hardscape Commercial		100 95	0.9			Composite Impervious	33.1%					
Basin Name C2.1 C2.2 C2.3 C2.4 C2.5	so County Area (ac)				Hardscape Commercial		95		0.96								
Location:El PasBasin NameC2.1C2.2C2.3C2.4C2.5	so County Area (ac)					:		0.01									
Basin Name C2.1 C2.2 C2.3 C2.4 C2.5	Area (ac)			YORS INC				0.81	0.88				1	¹ From Table 6-6 in El Paso County DCN			CM
C2.1 C2.2 C2.3 C2.4 C2.5 C2.5	(ac)						2	0.08	0.35						e 6-6 in El Pas	-	
C2.1 C2.2 C2.3 C2.4 C2.5	(ac)						2	0.00	0.55		Cells of this color are fo	ar required user input			. 0-0 111 211 83		
C2.1 C2.2 C2.3 C2.4 C2.5	(ac)		SELOT					J			Cells of this color are fo						
C2.1 C2.2 C2.3 C2.4 C2.5		Crown	51 201	S (1/6 AC)	н	ardscape	Comm	ercial	Landsca	pe/Park	% Check	Percent Imperviousness		Run	off Coefficie	nt, C ²	
C2.2 C2.3 C2.4 C2.5	0.77	Group	Area (ac)	%	Area (ac)	%	Area (ac)	%	Area (ac)	%		-	2-yr	5-yr	10-yr	25-yr	100-yr
C2.3 C2.4 C2.5		А	0.77	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
C2.4 C2.5	0.33	А	0.33	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
C2.5	1.81	А	1.81	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
	1.16	А	0.00	0.0%	0.93	80.0%	0.00	0.0%	0.23	20.0%	100.00%	80%		0.74			0.84
62.0	9.61	А	9.61	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
C3.0	35.40	A	17.70	50.0%	0.00	0.0%	0.00	0.0%	17.70	50.0%	100.00%	25%		0.23			0.45
D1.1	1.73	A	0.00	0.0%	0.00	0.0%	1.73	100.0%	0.00	0.0%	100.00%	95%		0.81			0.88
D1.2	2.56	A	2.56	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.3	2.02	A	2.02	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.4	3.75	A	3.52	93.9%	0.00	0.0%	0.23	6.1%	0.00	0.0%	100.00%	50%		0.40			0.57
D1.5	9.88	A	0.00	0.0%	0.00	0.0%	9.88	100.0%	0.00	0.0%	100.00%	95%		0.81			0.88
D1.6	1.96	A	1.96	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.7	1.56	A	1.56	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.8	1.27	A	1.27	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.9	0.54	A	0.54	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
D1.10	2.13	A	2.13	100.0% 0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00% 100.00%	47.5%		0.38			0.55
D1.11	1.23	A	0.00		0.98	80.0%	0.00	0.0%	0.25	20.0%		80%		0.74			0.84
D1.12	3.42	A	3.42 0.00	100.0% 0.0%	0.00	0.0% 0.0%	0.00	0.0%	0.00	0.0%	100.00% 100.00%	47.5% 95%		0.38			0.55
D1.13 D1.14	3.07 0.91	A	0.60	65.9%	0.00	0.0%	3.07	34.1%	0.00	0.0%	100.00%	64%		0.81			0.88
D1.14 D2.0	11.90	A	9.50	79.8%	0.00	0.0%	0.31	0.0%	2.40	20.2%	100.00%	38%		0.32			0.66
E1	3.92	A	0.00	0.0%	0.00	0.0%	0.00	0.0%	3.92	100.0%	100.00%	2%		0.32			0.31
D2.1	3.15	A	0.00	0.0%	0.00	0.0%	0.00	0.0%	3.15	100.0%	100.00%	2%		0.08			0.35
OS-1	2.65	A	0.00	0.0%	0.91	34.3%	0.00	0.0%	1.74	65.7%	100.00%	36%		0.08			0.55
03-1	2.05	A	0.00	0.0%	0.91	54.570	0.00	0.078	1.74	05.770	100.0076	30%		0.30			0.50
C Basins	49.08	А	30.22	61.6%	0.93	1.9%	0.00	0.0%	17.93	36.5%	100.00%	32%		0.28			0.48
D Basins	51.08	A	29.08	56.9%	0.98	1.9%	15.22	29.8%	2.65	5.2%	93.83%	57%		0.48			0.61
				50.000		1.00/		45.00/		0.0 50/	00.000/	450/					
Pond - Developed	100.16	A	59.30	59.2%	1.91	1.9%	15.22	15.2%	20.58	20.5%	96.86%	45%		0.38			0.55
D1.5 (pre-dev)	9.88	A	0.00	0.0%	0.00	0.0%	0.00	0.0%	9.88	100.0%	100.00%	2%		0.08			0.35
D2.0 (pre-dev)	11.90	A	0.00	0.0%	0.00	0.0%	0.00	0.0%	11.90	100.0%	100.00%	2%		0.08			0.35
C3.0 (pre-dev)	35.40	A	0.00 32.10	0.0%	0.00	0.0% 1.9%	0.00	0.0%	35.40	100.0% 60.7%	100.00% 100.00%	2% 23%		0.08			0.35
Pond - F2 & F3 Dev only	100.16	A	32.10	32.0%	1.91	1.9%	5.34	5.5%	60.81	00.7%	100.00%	23%					┨────┦
*highlighted basins are																	
tributary to Pond D in																	
Interim condition																	
GALV	4.44	A	4.44	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	47.5%		0.38			0.55
C Basins - Pre Dev	49.08	Α	12.52	25.5%	0.93	1.9%	0.00	0.0%	35.63	72.6%	100.00%	15.5%		0.17			0.41
D Basins - Pre Dev	47.93	A	12.52	40.9%	0.93	2.1%	5.34	11.1%	22.03	46.0%	100.00%	33.0%		0.30			0.41

POST-DEVELOPMENT CN VALUES

Designer: ESJ	Global Paramet	Global Parameters ¹			
Company: R&R Engineers-Surveyors	Land Use				
Date: 1/5/2023	SF LOTS (1/6 AC)				
Project: Mayberry Filing 3	PASTURE - GOOD				
Location: El Paso County	COMMERCIAL				
	SURVEYORS PAVED STREETS				

Basin Name (ac)		NRCS Hydrologic Soil Group	SF LOTS (1/6 AC)		PASTURE - GOOD		COMMERCIAL		OPEN SPACE - GOOD		PAVED STREETS		% Check	SCS CN
	(ac)		Area (ac)	%	Area (ac)	%	Area (ac)	%	Area (ac)	%	Area (ac)	%		CN
E1	3.92	A	0.00	0.0%	0.00	0.0%	0.00	0.0%	3.92	100.0%	0.00	0.0%	100.00%	61
EC10	320.00	А	0.00	0.0%	320.00	100.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	100.00%	61
D1.5 (pre-dev)	9.88	А	0.00	0.0%	0.00	0.0%	0.00	0.0%	9.88	100.0%	0.00	0.0%	100.00%	61
OS-1	2.65	A	0.00	0.0%	0.00	0.0%	0.00	0.0%	1.74	65.7%	0.91	34.3%	100.00%	74

TIME OF CONCENTRATION

												Non Urban Li ma	w = 200'					
Designer:	FSI			ו ד	$t_{i} = \frac{0.395}{1000}$	$\frac{5(1.1 - C_5)}{S_i^{0.33}}$		mputed $t_c = t$	$+t_n t_n$	_{ninimum} = 5 (urb	an)	Urban Li Max = 1						
· · ·	R&R Engineers-S	Survoyors			·1	S _i ^{0.33}		inputed t _c = t	t _n	_{ninimum} = 10 (no	n-urban)		100					
		Surveyors			+ _ ^I	L _t _L	't											
	1/5/2023	2			ι _t = 60Η	$\frac{L_t}{\zeta \sqrt{S_t}} = \frac{L}{60}$	V _t Sel	ected t _c = ma	x{t _{minimum} ,n	nin(Computed t	; , Regional t _c)	}			R&R			
	Mayberry Filing	3						L _a					1					
Location:	El Paso County			1	Regional t	_c = (26 –	$17i) + \frac{1}{60(14)}$	$\frac{-i}{(1+\alpha)\sqrt{s}}$		Cells of this c	olor are for requir	ed user-input	J					
				-			1)00											
	Subbasin I	Data			d (Initial) Flo	ow lime		Chanr	nelized (Travel) F	low lime			10	me of Concentration				
Basin	Area	% Impervious	C5	Overland Flow Length L _i (ft)	Overland Flow Slope S _i (ft/ft)	Overland Flow Time t _i (min)	Channelized Flow Length L _t (ft)	Channelized Flow Slope S _t (ft/ft)	NRCS Conveyance Factor K	Channelized Flow Velocity V _t (ft/sec)	Channelized Flow Time t _t (min)	Computed t _c (min)	Regional t _c (min)	Selected t _c (min)	Remarks			
C2.1	0.77	47.5%	0.38	100.00	0.020	10.41	242.00	0.020	20	2.83	1.43	11.84	19.75	11.84				
C2.2	0.33	47.5%	0.38	36.00	0.020	6.25	152.00	0.020	20	2.83	0.90	7.14	19.07	7.14				
C2.3	1.81	47.5%	0.38	100.00	0.020	10.41	1033.00	0.010	20	2.00	8.61	19.02	28.93	19.02				
C2.4	1.16	80.4%	0.74	12.00	0.020	1.81	534.00	0.009	20	1.90	4.69	6.50	16.96	6.50				
C2.5	9.61	47.5%	0.38	36.00	0.020	6.25	513.00	0.007	20	1.67	5.11	11.36	24.45	11.36				
C3.0	35.40	24.8%	0.23	100.00	0.020	12.53	1536.00	0.010	20	2.00	12.80	25.33	42.33	25.33				
D1.1	1.73	95.0%	0.81	100.00	0.020	4.17	405.00	0.020	20	2.83	2.39	6.55	11.99	6.55				
D1.2	2.56	47.5%	0.38	100.00	0.020	10.41	533.00	0.010	20	2.00	4.44	14.86	23.60	14.86				
D1.3	2.02	47.5%	0.38	36.00	0.020	6.25	495.00	0.010	20	2.00	4.13	10.37	23.20	10.37				
D1.4	3.75	50.4%	0.40	100.00	0.020	10.03	634.00	0.014	20	2.37	4.47	14.50	22.99	14.50				
D1.5	9.88	95.0%	0.81	100.00	0.020	4.17	856.00		20	2.00	7.13	11.30	16.25	11.30				
D1.6	1.96	47.5%	0.38	100.00	0.020	10.41	534.00	0.010	20	2.00	4.45	14.86	23.61	14.86				
D1.7	1.56	47.5%	0.38	100.00	0.020	10.41	530.00	0.010	20	2.00	4.42	14.83	23.57	14.83				
D1.8	1.27	47.5%	0.38	100.00	0.020	10.41	325.00	0.010	20	2.00	2.71	13.12	21.39	13.12				
D1.9	0.54	47.5%	0.38	36.00	0.020	6.25	389.00	0.010	20	2.00	3.24	9.49	22.07	9.49				
D1.10	2.13	47.5%	0.38	36.00	0.020	6.25	465.00	0.010	20	2.00	3.88	10.12	22.88	10.12				
D1.11	1.23	80.4%	0.74	12.00	0.020	1.81	962.00	0.017	20	2.61	6.15	7.96	18.40	7.96				
D1.12	3.42	47.5%	0.38	100.00	0.020	10.41	1356.00	0.010	20	2.00	11.30	21.71	32.37	21.71				
D1.13	3.07	95.0%	0.81	100.00	0.020	4.17	456.00	0.008	20	1.79	4.25	8.41	13.66	8.41				
D1.14	0.91	63.7%	0.52	100.00	0.020	8.28	400.00	0.008	20	1.79	3.73	12.01	19.33	12.01				
D2.0	11.90	38.3%	0.32	100.00	0.020	11.27	1750.00	0.011	20	2.10	13.90	25.17	38.84	25.17				
D2.1	3.15	2.0%	0.08	100.00	0.021	14.42						14.42		14.42				
E1	3.92	2.0%	0.08				2811.00	0.008							Tc calculated using TR55 - see Hydraflow Hydrographs Model			
EC10	320.00		0.08	300.00	0.020		5250.00	0.013							Tc calculated using TR55 - see Hydraflow Hydrographs Model			
OS-1	2.65	35.7%	0.36	50.00	0.020		2525.00	0.007							Tc calculated using TR55 - see Hydraflow Hydrographs Model			
GALV	4.44	47.5%	0.38	36.00	0.020	6.25	1007.00	0.010	20	2.00	8.39	14.64	28.65	14.64				
D2.0 (pre-dev)	11.90	2.0%	0.08	100.00	0.020	14.65	1750.00	0.011	20	2.10	13.90	28.56	55.63	28.56				
C3.0 (pre-dev)	35.40	2.0%	0.08	100.00	0.020	14.65	1536.00	0.010	20	2.00	12.80	27.45	53.25	27.45				

Designer:	ESJ
Company:	R&R Engineers-Surveyors
Date:	1/5/2023
Project:	Mayberry Filing 3
Location:	El Paso County

Cells of this color are for required user-input Cells of this color are for optional user-input

$I_5 = -1.50 \ln(D) + 7.583$

	DIRECT RUNOFF							TOTAL RUNOFF						BYPASS		PIPE			TRAVE	EL TIME			
DESGIN POINT	STREET/ CONTRIBUTING BASINS	Basin Name	Area	Coeff	Тс	C*A	I	Q	Тс	Sum Area	Sum C*A	I	Q	Slope	Street Q	Design Q	Slope	PIPE	L	VEL	Tt	Q add'l	Remarks
			(ac)	с	(min)	(ac)		(cfs)	(min)	(ac)	(ac)	in/hr	cfs	%	cfs	cfs	%	SIZE	ft	ft/sec	min		
		C2.1	0.77	0.38	11.8	0.29	3.88	1.12															
1	C2.1								11.8	0.77	0.29	3.88	1.12						33	4	0.10		
		C2.2	0.33	0.38	7.1	0.12	4.63	0.57															
2	DP1, C2.2								11.9	1.10	0.41	3.86	1.59						450	4	1.90		
		C2.5	9.61	0.38	11.4	3.60	3.94	14.19											10	4	0.00		
3A	C2.5								11.4	9.61	3.60	3.94	14.19						196	4	0.80		
		C2.3	1.81	0.38	19.0	0.68	3.16	2.15															
3B	C2.3, DP3A	62.4	1.16	0.74	6.5	0.05	4 77	4.00	19.0	12.52	4.70	3.16	14.86						70	4	0.30		
4	C2 4 5525	C2.4	1.16	0.74	6.5	0.85	4.77	4.08	10.2	12.00		2.1.1	47.40				-		4500		6.60		
4	C2.4, DP3B	D1 12	2.42	0.20	21.7	1 20	2.07	2.90	19.3	13.68	5.55	3.14	17.43						1590	4	6.60		
5A	D1 12	D1.12	3.42	0.38	21.7	1.28	2.97	3.80	21.7	2 4 2	1.28	2.97	3.80						72	4	0.30		
JA	D1.12	D1.14	0.91	0.52	12.0	0.48	3.85	1.83	21.7	3.42	1.28	2.97	5.60						12	4	0.50		
5B	D1.14, DP5A	D1.14	0.91	0.52	12.0	0.40	5.65	1.05	22.0	4.33	1.76	2.95	5.18						28	Δ	0.10		
56	DI.14, DFJA	D1.2	2.56	0.38	14.9	0.96	3.54	3.39	22.0	4.55	1.70	2.95	5.10						20	4	0.10		
6	D1.2	01.2	2.50	0.58	14.5	0.50	5.54	5.55	14.9	2.56	0.96	3.54	3.39						10	4	0.00		
0	01.2								14.5	2.50	0.50	5.54	5.55						10		0.00		
7A	DP5B, DP6								22.1	6.89	2.72	2.94	7.99						44	4	0.20		
	51 55, 51 5	D1.13	3.07	0.81	8.4	2.49	4.39	10.91		0.05	2.72	2.51	7.55							•	0.20		
7B	D1.13								8.4	3.07	2.49	4.39	10.91						150	4	0.60		
		D1.1	1.73	0.81	6.6	1.40	4.76	6.67	-														
7C	D1.1								6.6	1.73	1.40	4.76	6.67						63	4	0.30		
7D	DP7B, DP7C								9.0	4.80	3.89	4.28	16.66						280	4	1.20		
7E	DP7D, DP7A								22.3	11.69	6.61	2.93	19.33						513	4	2.10		
		D1.3	2.02	0.38	10.4	0.76	4.07	3.09															
8	D1.3								10.4	2.02	0.76	4.07	3.09						27	4	0.10		
9	DP7, DP8								24.41	13.71	7.36	2.79	20.55						10	4	0.00		
		D1.4	3.75	0.40	14.5	1.51	3.57	5.38															
10	DP9, D1.4								24.41	17.5	8.9	2.79	24.75						827	4	3.40		
													18.43										Offsite flow, Input from Hydraflow
		EC10	320.00		0.0																		Hydrographs, Calculated via SCS Method
			a										1.40										Offsite flow, Input from Hydraflow
		OS-1	2.65		0.0											ļ							Hydrographs, Calculated via SCS Method
		E1	3.92		0.0								0.30										Input from Hydraflow Hydrographs, Calculated via SCS Method
11			5.52		0.0								18.00						2011 0	4	11 70		Input from Hydraflow Hydrographs,
11	EC10, OS-1, E1												18.90						2811.6	4	11.70		Calculated via SCS Method

	DIRECT RUNOFF							т	OTAL RUN	OFF		STREET	BYPASS		PIPE			TRAVE					
DESGIN POINT	STREET/ CONTRIBUTING BASINS	Basin Name	Area	Coeff	Тс	C*A	I	Q	Тс	Sum Area	Sum C*A		Q	Slope		Design Q		PIPE	L	VEL	Tt	Q add'l	Remarks
			(ac)	С	(min)	(ac)		(cfs)	(min)	(ac)	(ac)	in/hr	cfs	%	cfs	cfs	%	SIZE	ft	ft/sec	min		
		D1.5	9.88	0.81	11.3	8.00	3.95	31.6															
12	D1.5								11.3	9.88	8.00	3.95	31.58						135	4	0.60		
		D1.6	1.96	0.38	14.9	0.74	3.53	2.6															
13	DP12, D1.6								14.86	11.8	8.7	3.53	30.88						35	4	0.10		
		D1.7	1.56	0.38	14.8	0.59	3.54	2.1															
14	DP13, D1.7								14.96	13.4	9.3	3.52	32.86						232	4	1.00		
		D1.8	1.27	0.38	13.1	0.48	3.72	1.8															
15	DP14, D1.8								15.96	14.7	9.8	3.43	33.59						35	4	0.10		
		D1.9	0.54	0.38	9.5	0.20	4.21	0.9															
16	DP15, D1.9	54.40		0.00		0.00		2.2	16.06	15.2	10.0	3.42	34.19						137	4	0.60		
47	D1 40	D1.10	2.13	0.38	10.1	0.80	4.11	3.3	10.12	2.4	0.0		2.20						20		0.10		
17	D1.10	D1 11	1 2 2	0.74		0.91	4.47	4.0	10.12	2.1	0.8	4.11	3.28						20	4	0.10		
10	D1 11 DD17 DD10	D1.11	1.23	0.74	8.0	0.91	4.47	4.0	27.8	20.8	10.0	2.59	27.44						10 63	4			
18	D1.11, DP17, DP10								27.8	20.8	10.6	2.59	27.44						03	4	0.30		
19	DP16, DP18								28.1	36.0	20.6	2.58	53.06						1024	4	4.30		Total into upper Channel D
		D2.0	11.9	0.32	25.2	3.75	2.74	10.3															
20	DP19, D2.0								32.41	47.9	24.3	2.37	57.54										
		C3.0	35.4	0.23	25.3	8.05	2.73	22.0															
21	DP4, C3.0								25.9	49.1	13.6	2.70	36.73										To channel C2
		D2.1	3.15	0.08	14.4	0.25	3.58	0.9															
22	D2.1, DP20, DP21								28.1	100.2	38.2	2.58	98.46										
23	POND D OUTFLOW												1.20										5 YEAR RELEASE RATE FOR POND D
24	CHANNEL E OUTFLOW												17.60										Input from Hydraflow Hydrographs,
27													17.00										Calculated via SCS Method
													18.70										Input from Hydraflow Hydrographs,
EX5	DP23, DP24																						Calculated via SCS Method
		GALV	4.44	0.38	14.6	1.67	3.56	5.9															
		DD D D D D D D D D 																					
		D2.0 (pre- dev)	11.9	0.08	28.6	0.95	2.56	2.4															
		C3.0 (pre- dev)	35.4	0.08	27.5	2.83	2.61	7.4															
		D1.5 (pre- dev)	9.88	0.08	21.8	0.79	2.96	2.3															

Company: R&R Engineers-Surveyors

Date: 1/5/2023

Project: Mayberry Filing 3

Location: El Paso County

Cells of this color are for required user-input Cells of this color are for optional user-input

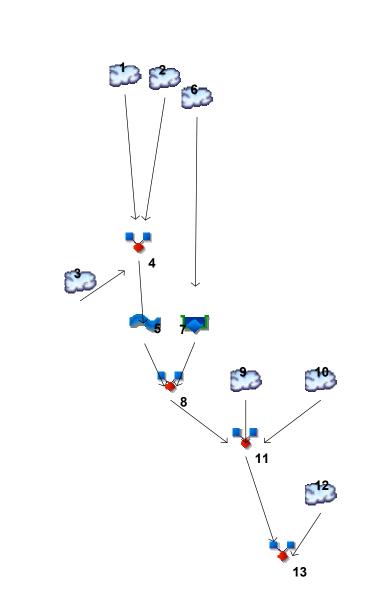
$I_{100} = -2.52 \ln(D) + 12.735$

		DIRECT RUNOFF						TOTAL RUNOFF						BYPASS		PIPE			TRAVE	LTIME			
DESGIN	STREET/ CONTRIBUTING	Basin Name	Area	Coeff	Тс	C*A	I	Q	Тс	Sum Area	Sum C*A	I	Q	Slope	Street Q	Design Q	Slope	PIPE	L	VEL	Tt	Q add'l	Remarks
POINT	BASINS		(ac)	с	(min)	(ac)		(cfs)	(min)	(ac)	(ac)	in/hr	cfs	%	cfs	cfs	%	SIZE	ft	ft/sec	min		
		C2.1	0.77	0.55	11.8	0.42	6.51	2.73															
1	C2.1								11.8	0.77	0.42	6.51	2.73						33	4	0.10		
		C2.2	0.33	0.55	7.1	0.18	7.78	1.40															
2	DP1, C2.2								11.9	1.10	0.60	6.49	3.89						450	4	1.90		
		C2.5	9.61	0.55	11.4	5.24	6.61	34.63											10	4	0.00		
3A	C2.5								11.4	9.61	5.24	6.61	34.63						196	4	0.80		
		C2.3	1.81	0.55	19.0	0.99	5.31	5.24															
3B	C2.3, DP3A								19.0	12.52	6.82	5.31	36.25						70	4	0.30		
		C2.4	1.16	0.84	6.5	0.97	8.02	7.79															
4	C2.4, DP3B								19.3	13.68	7.80	5.27	41.10						1590	4	7.60		
		D1.12	3.42	0.55	21.7	1.86	4.98	9.28															
5A	D1.12								21.7	3.42	1.86	4.98	9.28						72	4	0.30		
		D1.14	0.91	0.66	12.0	0.60	6.47	3.88													0.40		
5B	D1.14, DP5A	51.5		0.55		4.40	5.04	0.00	22.0	4.33	2.46	4.94	12.18						28	4	0.10		
C.	54.5	D1.2	2.56	0.55	14.9	1.40	5.94	8.28		2.56	1.10	5.04	0.20						10		0.00		
6	D1.2								14.9	2.56	1.40	5.94	8.28						10	4	0.00		
7.0	DP5B, DP6								22.1	6.89	3.86	4.93	19.03						44	4	0.20		
7A	DPSB, DP6	D1.13	3.07	0.88	8.4	2.70	7.37	19.90	22.1	0.89	3.80	4.95	19.05						44	4	0.20		
7B	D1.13	D1.13	3.07	0.00	8.4	2.70	7.57	19.90	8.4	3.07	2.70	7.37	19.90						150	4	0.70		
76	D1.15	D1.1	1.73	0.88	6.6	1.52	8.00	12.18	0.4	5.07	2.70	7.57	19.90						150	4	0.70		
7C	D1.1	01.1	1.75	0.00	0.0	1.52	8.00	12.10	6.6	1.73	1.52	8.00	12.18						63	4	0.30		
10	01.1								0.0	1.75	1.52	0.00	12.10						0.5		0.50		
7D	DP7B, DP7C								9.1	4.80	4.22	7.17	30.27						280	4	1.30		
	22, 2e								0.12				00.27								1.00		
7E	DP7D, DP7A								22.3	11.69	8.08	4.91	39.69						513	4	2.40		
		D1.3	2.02	0.55	10.4	1.10	6.84	7.53												-			
8	D1.3		-			-	_		10.4	2.02	1.10	6.84	7.53						27	4	0.10		
9	DP7E, DP8								24.71	13.71	9.18	4.65	42.73						10	4	0.00		
		D1.4	3.75	0.57	14.5	2.12	6.00	12.72															
10	DP9, D1.4					ļ		ļ	24.71	17.5	11.3	4.65	52.59			ļ			827	4	3.90		
		EC10	320.00		0.0								144.70										Offsite flow, Input from Hydraflow Hydrographs, Calculated via SCS Method
										1			4.30										Offsite flow, Input from Hydraflow Hydrographs,
		OS-1	2.65		0.0								4.30										Calculated via SCS Method
													2.90										Input from Hydraflow Hydrographs, Calculated via
		E1	3.92		0.0								2.90										SCS Method
11	EC10, OS-1, E1												148.50						2811.6	4	11.70		Input from Hydraflow Hydrographs, Calculated via
													110.00						2011.0	-	11.70		SCS Method
		D1.5	9.88	0.88	11.3	8.69	6.62	57.6															

	STREET/			DIRE	CT RUNOFI	F				Т	OTAL RUNC	DFF		STREET	BYPASS		PIPE	TRAVE		
DESGIN POINT	CONTRIBUTING	Basin Name	Area	Coeff	Тс	C*A	I	Q	Тс	Sum Area	Sum C*A	I	Q	Slope	Street Q	Design Q	Slope	PIPE	L	VEL
	DASING		(ac)	С	(min)	(ac)		(cfs)	(min)	(ac)	(ac)	in/hr	cfs	%	cfs	cfs	%	SIZE	ft	ft/sec
12	D1.5								11.3	9.88	8.69	6.62	57.60						135	4
		D1.6	1.96	0.55	14.9	1.07	5.93	6.3												
13	DP12, D1.6								14.86	11.8	9.8	5.93	57.93						35	4
		D1.7	1.56	0.55	14.8	0.85	5.94	5.0												
14	DP13, D1.7								14.96	13.4	10.6	5.92	62.79						232	4
		D1.8	1.27	0.55	13.1	0.69	6.25	4.3												
15	DP14, D1.8	54.0	0.54	0.55	0.5	0.20	7.00	2.4	16.06	14.7	11.3	5.74	64.87						35	4
10		D1.9	0.54	0.55	9.5	0.29	7.06	2.1	15.15	45.2	11.0	F 70	66.20						107	
16	DP15, D1.9	D1 10	2 1 2	0.55	10.1	1.16	6.90	8.0	16.16	15.2	11.6	5.72	66.38						137	4
17	D1.10	D1.10	2.13	0.55	10.1	1.10	0.90	8.0	10.12	2.1	1.2	6.90	8.01						20	4
17	D1.10	D1.11	1.23	0.84	8.0	1.03	7.51	7.7	10.12	2.1	1.2	0.90	8.01						10	4
18	D1.11, DP17, DP10	01.11	1.25	0.84	8.0	1.05	7.51	7.7	28.6	20.8	13.5	4.28	57.81						63	4
10	51.11, 51 17, 51 10								20.0	20.0	13.5	4.20	57.01						00	
19	DP16, DP18								28.9	36.0	25.1	4.26	106.83						1024	4
		D2.0	11.9	0.51	25.2	6.02	4.61	27.7			-	-								
20	DP19, D2.0								33.21	47.9	31.1	3.91	121.58							
		C3.0	35.4	0.45	25.3	15.84	4.59	72.7												
21	DP4, C3.0								26.9	49.1	23.6	4.44	104.87							
		D2.1	3.15	0.35	14.4	1.10	6.01	6.6												
22	D2.1, DP20, DP21								28.9	100.2	55.9	4.26	237.76			237.8				
23	POND D OUTFLOW												39.60							
24	CHANNEL E OUTFLOW												138.50							
EX5	DP23, DP24												177.50							
		GALV	4.44	0.55	14.6	2.42	5.97	14.5								14.5				
		D2.0 (pre- dev)	11.9	0.35	28.6	4.17	4.29	17.9												
																				ļ
		C3.0 (pre- dev)	35.4	0.35	27.5	12.39	4.39	54.4												
		D1.5 (pre- dev)	9.88	0.35	21.8	3.46	4.97	17.2												
20 - Pre Dev	DP4, C3.0 (pre-dev)								27.5	49.1	20.19	4.39	88.57			88.6				
21 - Pre Dev	DP19, D2.0 Pre-Dev, D1.5 (pre-dev)								33.2	47.9	24.0	3.91	93.88			93.9				

/E	LTIME		
	Tt	Q add'l	Remarks
	min		
	0.60		
	0.10		
	1.10		
	1.10		
	0.10		
	0.60		
	0.10		
	0.00		
	0.50		
	4.30		Total into upper Channel D
			T 02
			To channel C2
			100 YEAR RELEASE RATE FOR POND D
			Input from Hydraflow Hydrographs, Calculated via
			SCS Method
			Input from Hydraflow Hydrographs, Calculated via SCS Method
			Used for sizing for interim forebay release rate
			Used for sizing for interim forebay release rate

Hydraflow Table of Contents


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

5 - Year	
Summary Report	2
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, EC10 - PRESENT	3
TR-55 Tc Worksheet	
Hydrograph No. 2, SCS Runoff, E1	5
TR-55 Tc Worksheet	6
Hydrograph No. 3, SCS Runoff, OS-1	7
TR-55 Tc Worksheet	
Hydrograph No. 4, Combine, DP11	
Hydrograph No. 5, Reach, CHANNEL TO DP24	10
Hydrograph No. 6, SCS Runoff, BASIN D	11
Hydrograph No. 7, Reservoir, POND D	
Hydrograph No. 8, Combine, EX-5	
Hydrograph No. 9, SCS Runoff, EX-E	14
TR-55 Tc Worksheet	
Hydrograph No. 10, SCS Runoff, EX-LOG	16
TR-55 Tc Worksheet	
Hydrograph No. 11, Combine, EX-6	
Hydrograph No. 12, SCS Runoff, EX-Z	
TR-55 Tc Worksheet	
Hydrograph No. 13, Combine, EX-7	21

100 - Year

Summary Report	22
Hydrograph Reports	23
Hydrograph No. 1, SCS Runoff, EC10 - PRESENT	23
Hydrograph No. 2, SCS Runoff, E1	. 24
Hydrograph No. 3, SCS Runoff, OS-1	. 25
Hydrograph No. 4, Combine, DP11	. 26
Hydrograph No. 5, Reach, CHANNEL TO DP24	
Hydrograph No. 6, SCS Runoff, BASIN D	
Hydrograph No. 7, Reservoir, POND D	. 29
Hydrograph No. 8, Combine, EX-5	
Hydrograph No. 9, SCS Runoff, EX-E	
Hydrograph No. 10, SCS Runoff, EX-LOG.	32
Hydrograph No. 11, Combine, EX-6	. 33
Hydrograph No. 12, SCS Runoff, EX-Z	
Hydrograph No. 13, Combine, EX-7	
DF Report	36

Watershed Model Schematic

<u>Legend</u>

<u>Hyd.</u>	<u>Origin</u>	Description
1	SCS Runoff	EC10 - PRESENT
2	SCS Runoff	E1
3	SCS Runoff	OS-1
4	Combine	DP11
5	Reach	CHANNEL TO DP24
6	SCS Runoff	BASIN D
7	Reservoir	POND D
8	Combine	EX-5
9	SCS Runoff	EX-E
10	SCS Runoff	EX-LOG
11	Combine	EX-6
12	SCS Runoff	EX-Z
13	Combine	EX-7

Project: SCS ROUTING POST DEV.gpw

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	18.43	1	772	262,007				EC10 - PRESENT
2	SCS Runoff	0.320	1	742	3,200				E1
3	SCS Runoff	1.349	1	734	6,442				OS-1
4	Combine	18.93	1	771	271,649	1, 2, 3			DP11
5	Reach	17.61	1	789	271,640	4			CHANNEL TO DP24
6	SCS Runoff	61.50	1	730	256,733				BASIN D
7	Reservoir	1.722	1	1443	150,906	6	6031.02	201,385	POND D
8	Combine	18.66	1	789	422,546	5, 7			EX-5
9	SCS Runoff	6.054	1	745	62,432				EX-E
10	SCS Runoff	3.682	1	729	15,373				EX-LOG
11	Combine	21.86	1	784	500,351	8, 9, 10			EX-6
12	SCS Runoff	8.146	1	742	76,284				EX-Z
13	Combine	26.53	1	761	576,634	11, 12			EX-7
open alys s se	e see the U idix B for al is and the I ection for pe ry to Pond	l release Rational eak flow	e rate a Metho	nd volur d printo	uts in				
SC	S ROUTING I	POST DE	V.gpw		Return P	Period: 5 Ye	ear	Thursday, (01 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

EC10 - PRESENT

Hydrograph type	= SCS Runoff	Peak discharge	= 18.43 cfs
Storm frequency	= 5 yrs	Time to peak	= 772 min
Time interval	= 1 min	Hyd. volume	= 262,007 cuft
Drainage area	= 320.000 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 63.00 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 1

EC10 - PRESENT

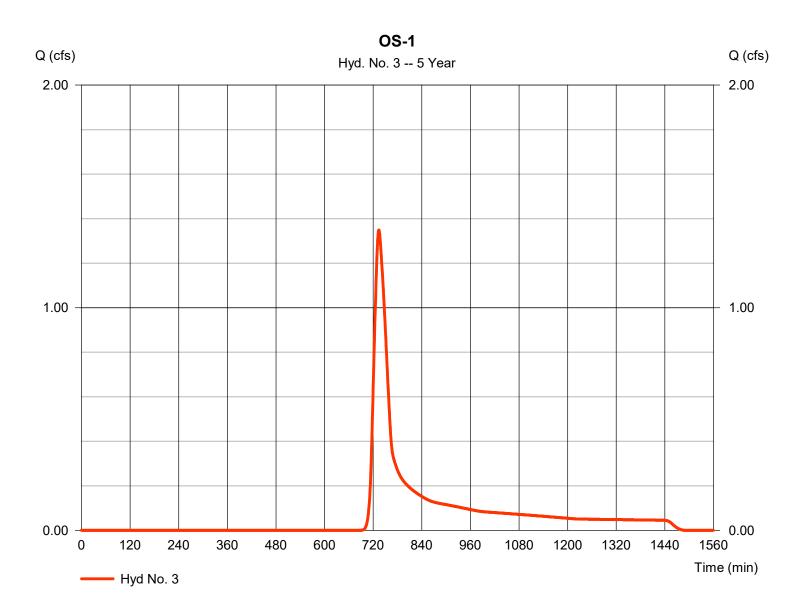
Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 300.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.85	+	0.00	+	0.00	=	7.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 6086.00 = 1.30 = Unpaved =1.84		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 55.14	+	0.00	+	0.00	=	55.14
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
• • • •	((-))						
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.320 cfs
Storm frequency	= 5 yrs	Time to peak	= 742 min
Time interval	= 1 min	Hyd. volume	= 3,200 cuft
Drainage area	= 3.920 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.50 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 2


E1

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.011 = 0.0 = 0.00 = 0.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2811.00 = 0.80 = Unpave =1.44		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 32.46	+	0.00	+	0.00	=	32.46
Travel Time (min) Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 32.46 = 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015 0.00	=	32.46
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.00 = 0.00 = 0.00 = 0.015	+	0.00 0.00 0.00 0.015	+	0.00 0.00 0.00 0.015	=	32.46
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015 0.00	=	32.46 0.00

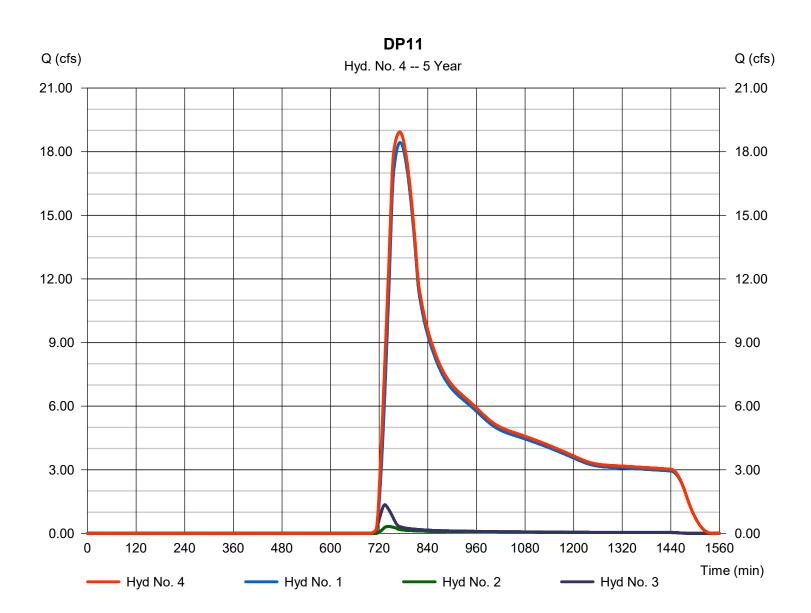
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 1.349 cfs
Storm frequency	= 5 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 6,442 cuft
Drainage area	= 2.650 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.10 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 3

OS-1

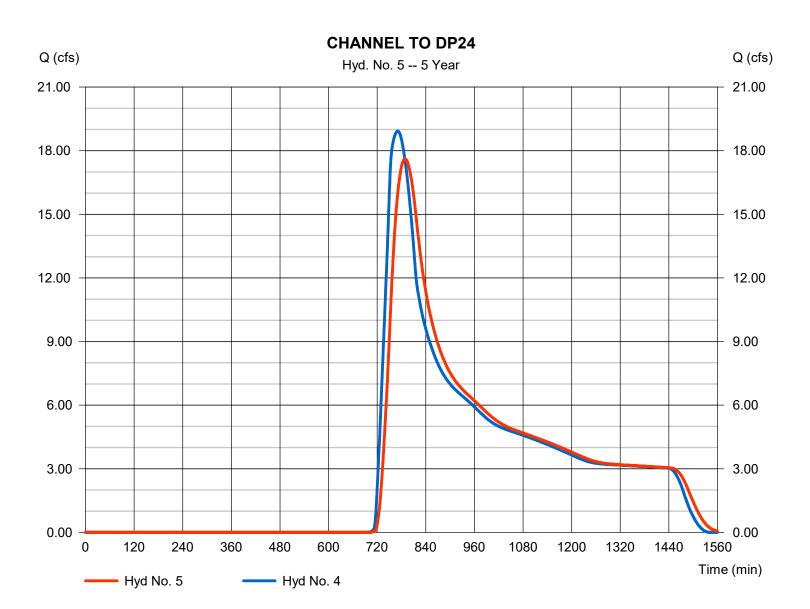

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.013 = 50.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.96	+	0.00	+	0.00	=	0.96
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2525.00 = 0.70 = Unpave =1.35		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 31.17	+	0.00	+	0.00	=	31.17
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							32.10 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

DP11

Hydrograph type	 Combine 5 yrs 1 min 	Peak discharge	= 18.93 cfs
Storm frequency		Time to peak	= 771 min
Time interval		Hyd. volume	= 271,649 cuft
Inflow hyds.	= 1, 2, 3	Contrib. drain. area	= 326.570 ac


9

Hyd. No. 5

CHANNEL TO DP24

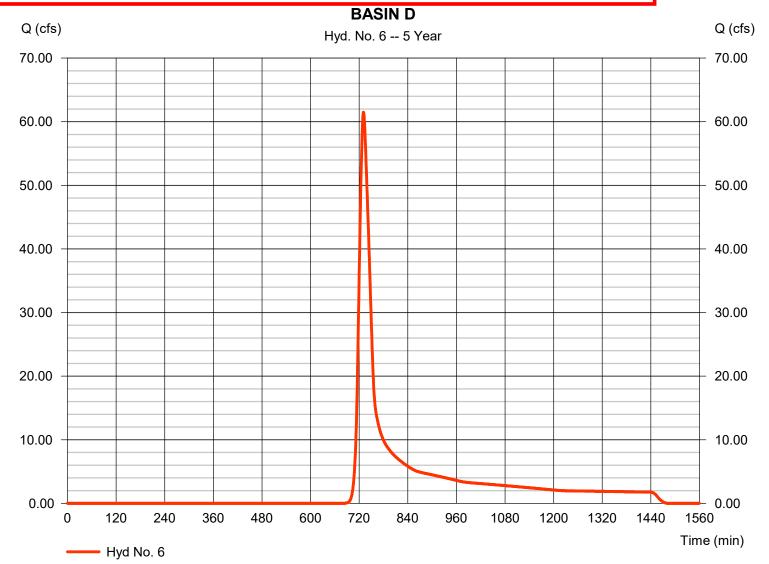
= Reach	Peak discharge	= 17.61 cfs
= 5 yrs	Time to peak	= 789 min
= 1 min	Hyd. volume	= 271,640 cuft
= 4 - DP11	Section type	= Trapezoidal
= 2902.0 ft	Channel slope	= 0.8 %
= 0.030	Bottom width	= 8.0 ft
= 4.0:1	Max. depth	= 3.3 ft
= 1.110	Rating curve m	= 1.349
= 0.00 ft/s	Routing coeff.	= 0.0625
	= 5 yrs = 1 min = 4 - DP11 = 2902.0 ft = 0.030 = 4.0:1 = 1.110	= 5 yrsTime to peak= 1 minHyd. volume= 4 - DP11Section type= 2902.0 ftChannel slope= 0.030Bottom width= 4.0:1Max. depth= 1.110Rating curve m

Modified Att-Kin routing method used.

10

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Thursday, 01 / 5 / 2023


Hyd. No. 6

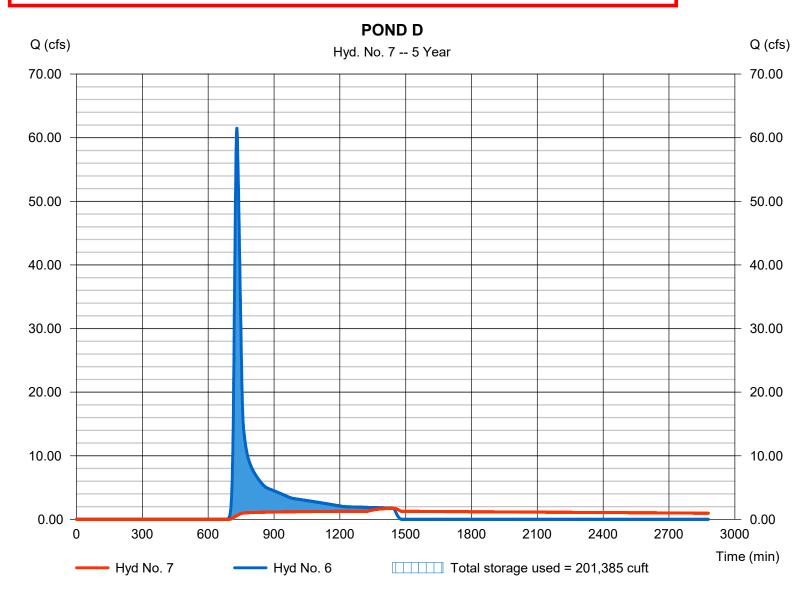
BASIN D

Hydrograph type= SCS RunoffStorm frequency= 5 yrsTime interval= 1 minDrainage area= 100.800 acBasin Slope= 0.0 %Tc method= UserTotal precip.= 2.60 inStorm duration= 24 hrs	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	 = 61.50 cfs = 730 min = 256,733 cuft = 74.7 = 0 ft = 27.00 min = Type II = 484
---	---	---

Basin D and Pond D (Hyd. #6 and #7) is included only to ensure Pond Release Rates are incorporated into the SCS model to accurately model downstream flows.

Please see the UD Detention printout in Appendix B for all release rate and volume analysis and the Rational Method printouts in this section for peak flow generations in areas tributary to Pond D

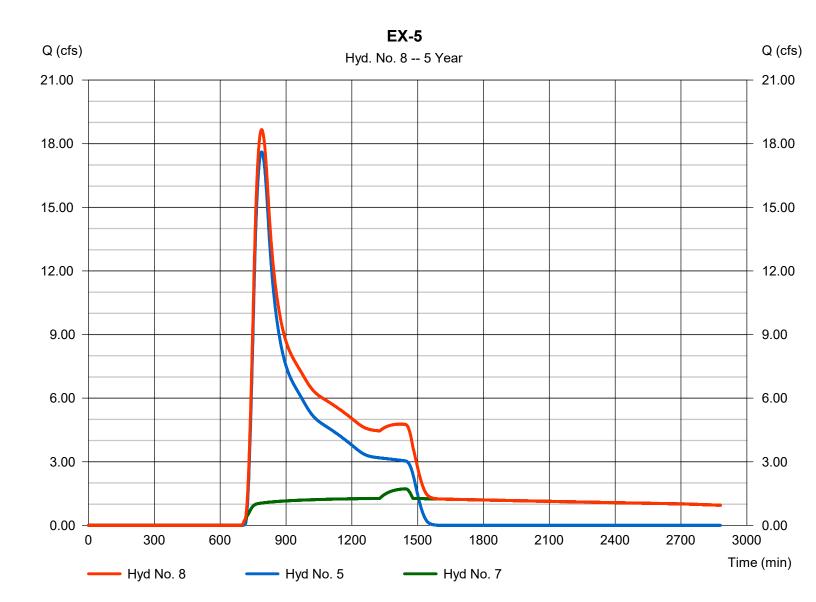
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Hyd. No. 7

Hydrograph type	= Reservoir	Peak discharge	= 1.722 cfs
Storm frequency	= 5 yrs	Time to peak	= 1443 min
Time interval	= 1 min	Hyd. volume	= 150,906 cuft
Inflow hyd. No.	= 6 - BASIN D	Max. Elevation	= 6031.02 ft
Reservoir name	= D	Max. Storage	= 201,385 cuft

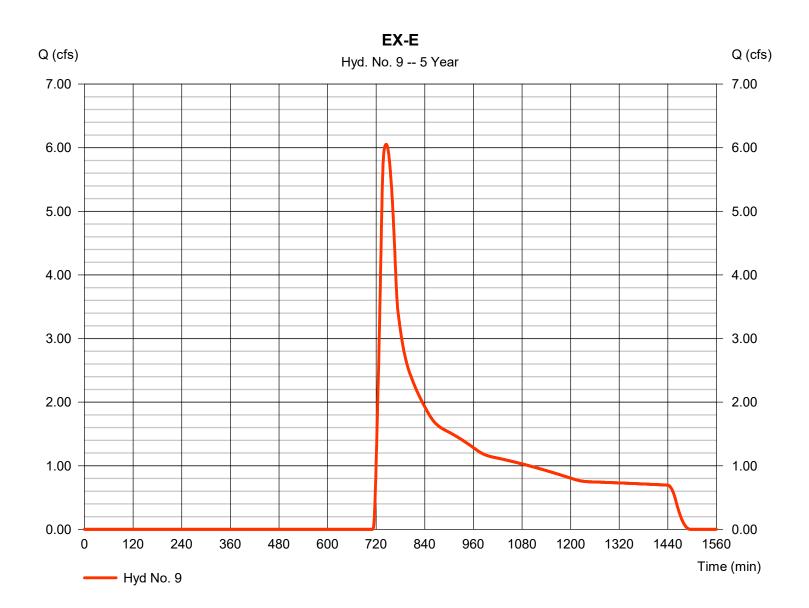
Storage Indication method used.

Basin D and Pond D (Hyd. #6 and #7) is included only to ensure Pond Release Rates are incorporated into the SCS model to accurately model downstream flows.


Please see the UD Detention printout in Appendix B for all release rate and volume analysis and the Rational Method printouts in this section for peak flow generations in areas tributary to Pond D

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 8


EX-5

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

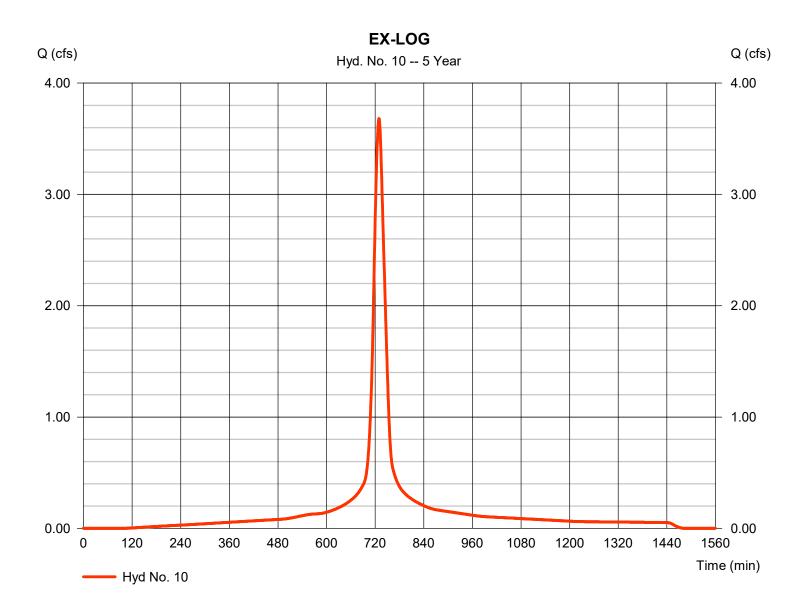
Hyd. No. 9

Hydrograph type	= SCS Runoff	Peak discharge	= 6.054 cfs
Storm frequency	= 5 yrs	Time to peak	= 745 min
Time interval	= 1 min	Hyd. volume	= 62,432 cuft
Drainage area	= 76.000 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.20 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

14

Hyd. No. 9

EX-E


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 300.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.85	+	0.00	+	0.00	=	7.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2546.00 = 1.00 = Unpave =1.61	-	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 26.30	+	0.00	+	0.00	=	26.30
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							34.20 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

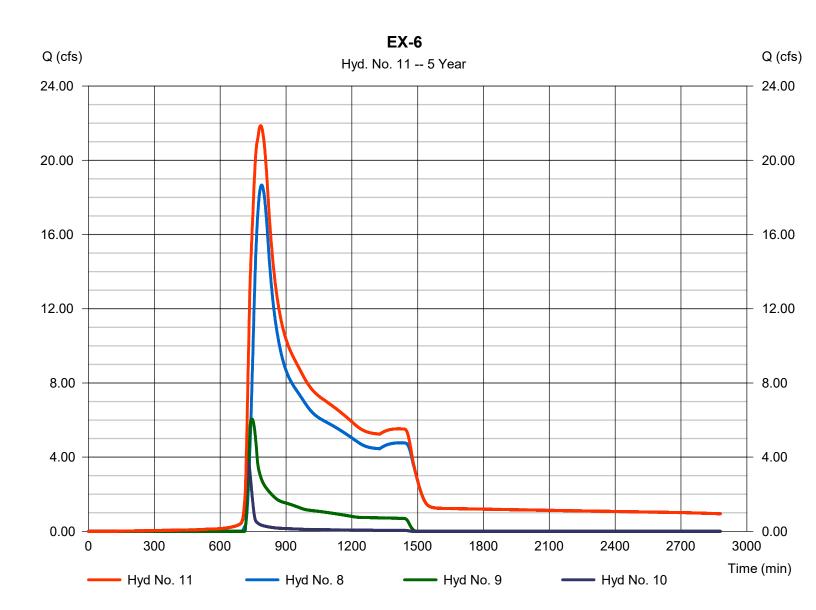
Hyd. No. 10

EX-LOG

Hydrograph type	= SCS Runoff	Peak discharge	= 3.682 cfs
Storm frequency	= 5 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 15,373 cuft
Drainage area	= 1.800 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 10

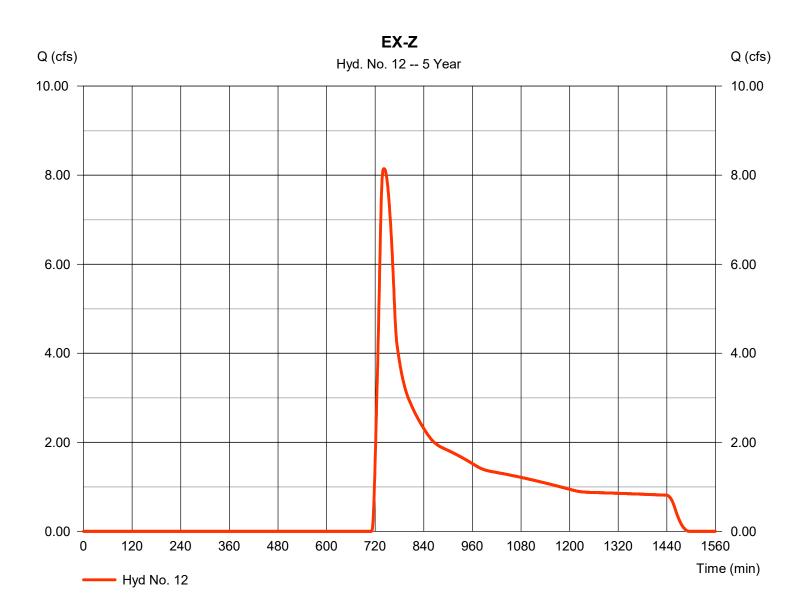
EX-LOG


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.013 = 11.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.29	+	0.00	+	0.00	=	0.29
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2592.00 = 1.00 = Unpaved =1.61		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 26.77	+	0.00	+	0.00	=	26.77
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%)	= 0.00 = 0.00 = 0.00		0.00 0.00		0.00 0.00		
Manning's n-value Velocity (ft/s)	= 0.00 = 0.015 =0.00		0.00 0.015 0.00		0.00 0.015 0.00		
Manning's n-value	= 0.015		0.015		0.015		
Manning's n-value Velocity (ft/s)	= 0.015 =0.00	+	0.015 0.00	+	0.015 0.00	=	0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 11

EX-6

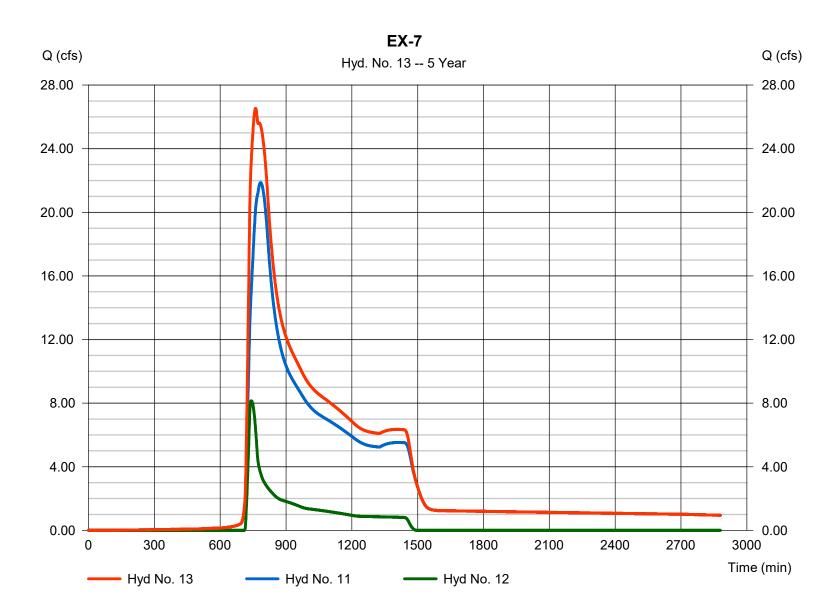

Inflow hyds. = 8, 9, 10 Contrib. drain. area = 77.800 ac	Hydrograph type	= Combine	Peak discharge	= 21.86 cfs
	Storm frequency	= 5 yrs	Time to peak	= 784 min
	Time interval	= 1 min	Hyd. volume	= 500,351 cuft
	Inflow hyds.	= 8, 9, 10	Contrib. drain. area	= 77.800 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 12

Hydrograph type	= SCS Runoff	Peak discharge	= 8.146 cfs
Storm frequency	= 5 yrs	Time to peak	= 742 min
Time interval	= 1 min	Hyd. volume	= 76,284 cuft
Drainage area	= 83.500 ac	Curve number	= 62
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.00 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 12


EX-Z

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 300.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.85	+	0.00	+	0.00	=	7.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2627.00 = 1.00 = Unpaved =1.61		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 27.14	+	0.00	+	0.00	=	27.14
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							35.00 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

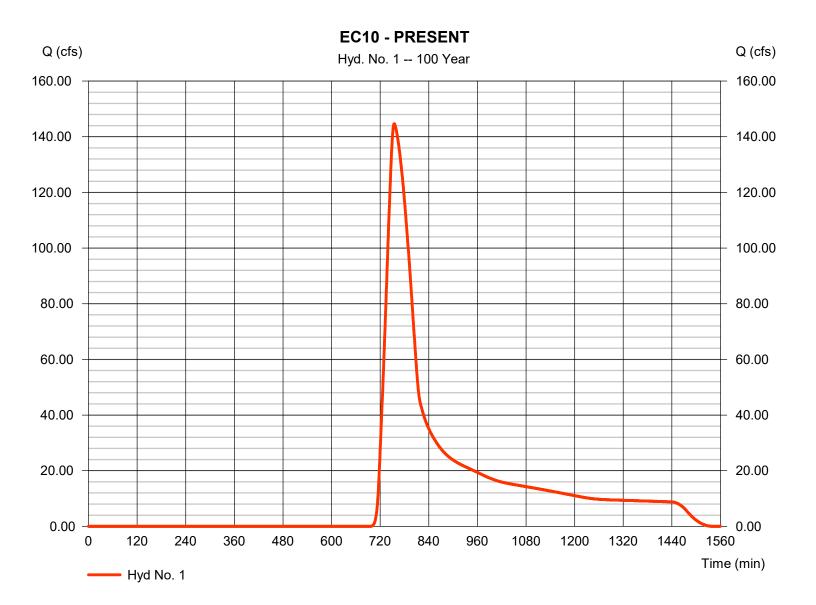
Hyd. No. 13

EX-7

21

Hydrograph Summary Report

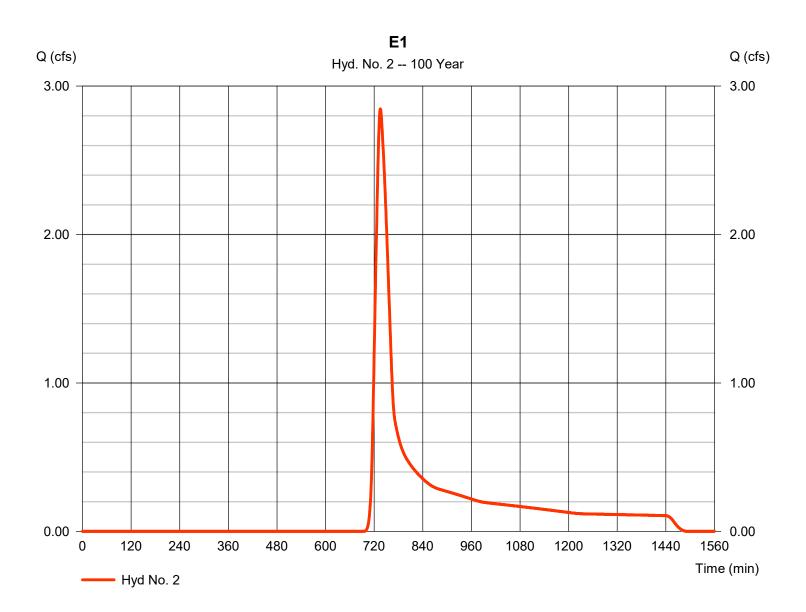
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	144.67	1	755	1,185,497				EC10 - PRESENT
2	SCS Runoff	2.846	1	735	14,479				E1
3	SCS Runoff	4.333	1	733	18,356				OS-1
4	Combine	148.45	1	754	1,218,333	1, 2, 3			DP11
5	Reach	138.52	1	766	1,218,326	4			CHANNEL TO DP24
6	SCS Runoff	190.38	1	730	718,796				BASIN D
7	Reservoir	39.58	1	759	610,089	6	6032.21	333,480	POND D
8	Combine	177.50	1	765	1,828,414	5, 7			EX-5
9	SCS Runoff	53.32	1	736	282,485				EX-E
10	SCS Runoff	6.317	1	729	27,009				EX-LOG
11	Combine	204.65	1	758	2,137,908	8, 9, 10			EX-6
12	SCS Runoff	63.40	1	736	328,266				EX-Z
13	Combine	244.45	1	754	2,466,175	11, 12			EX-7
cura ease	corporated i itely model see the U	nto the downst D Deter	SCS m ream fle	ows. intout in					
cura ease pen alys s se	tely model	nto the downstr D Deter I release Rational eak flow	SCS m ream fl ntion pri e rate a Metho	iodel to ows. intout in ind volur id printo	me uts in				
cura ease pen alys s se	tely model see the U dix B for all is and the I ction for pe	nto the downstr D Deter I release Rational eak flow	SCS m ream fl ntion pri e rate a Metho	iodel to ows. intout in ind volur id printo	me uts in				

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

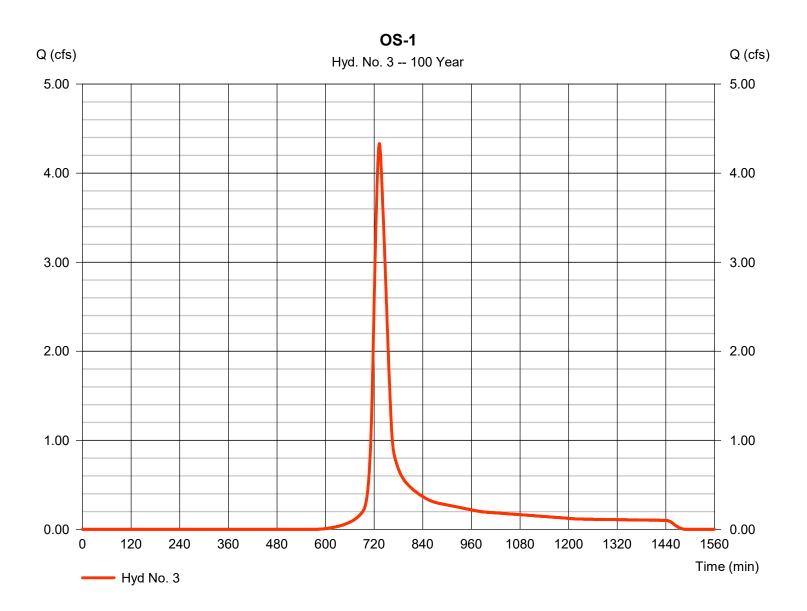
Hyd. No. 1

EC10 - PRESENT


Hydrograph type	= SCS Runoff	Peak discharge	= 144.67 cfs
Storm frequency	= 100 yrs	Time to peak	= 755 min
Time interval	= 1 min	Hyd. volume	= 1,185,497 cuft
Drainage area	= 320.000 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 63.00 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

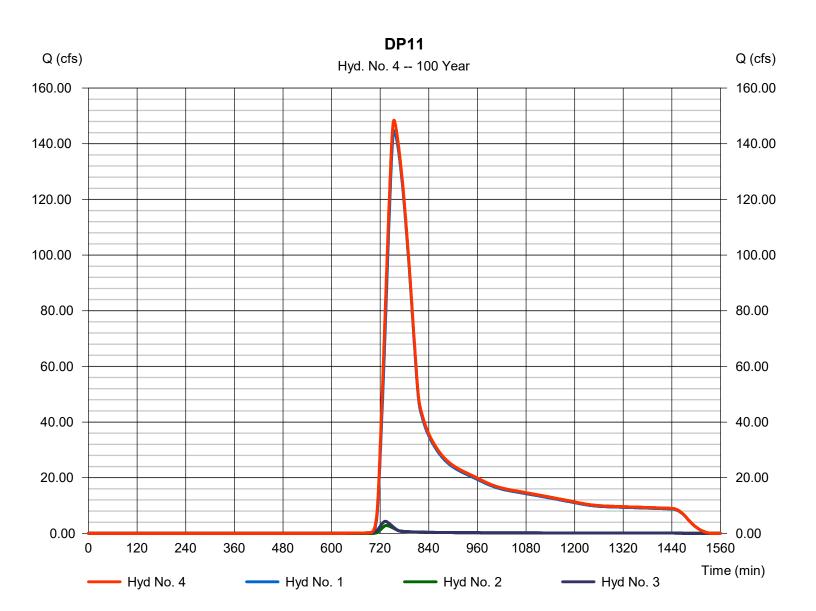
Hyd. No. 2


Hydrograph type	= SCS Runoff	Peak discharge	= 2.846 cfs
Storm frequency	= 100 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 14,479 cuft
Drainage area	= 3.920 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.50 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 4.333 cfs
Storm frequency	= 100 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 18,356 cuft
Drainage area	= 2.650 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.10 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

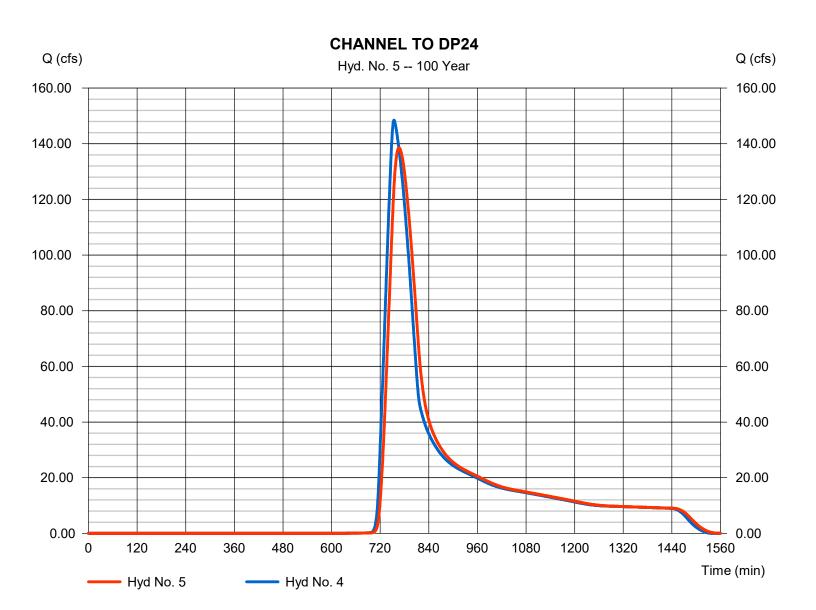


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

DP11

Hydrograph type	= Combine	Peak discharge	= 148.45 cfs
Storm frequency	= 100 yrs	Time to peak	= 754 min
Time interval	= 1 min	Hyd. volume	= 1,218,333 cuft
Inflow hyds.	= 1, 2, 3	Contrib. drain. area	= 326.570 ac
-			



Hyd. No. 5

CHANNEL TO DP24

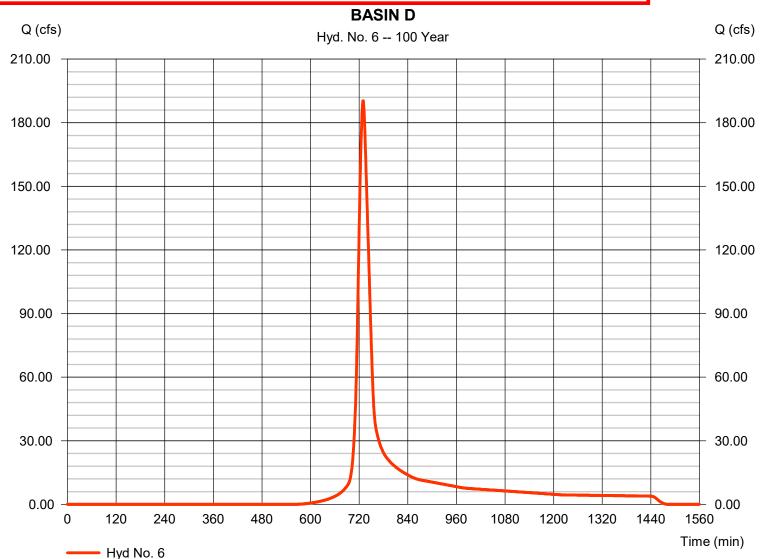
Hydrograph type	= Reach	Peak discharge	= 138.52 cfs
Storm frequency	= 100 yrs	Time to peak	= 766 min
Time interval	= 1 min	Hyd. volume	= 1,218,326 cuft
Inflow hyd. No.	= 4 - DP11	Section type	= Trapezoidal
Reach length	= 2902.0 ft	Channel slope	= 0.8 %
Manning's n	= 0.030	Bottom width	= 8.0 ft
Side slope	= 4.0:1	Max. depth	= 3.3 ft
Rating curve x	= 1.110	Rating curve m	= 1.349
Ave. velocity	= 0.00 ft/s	Routing coeff.	= 0.1042

Modified Att-Kin routing method used.

27

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Thursday, 01 / 5 / 2023


Hyd. No. 6

BASIN D

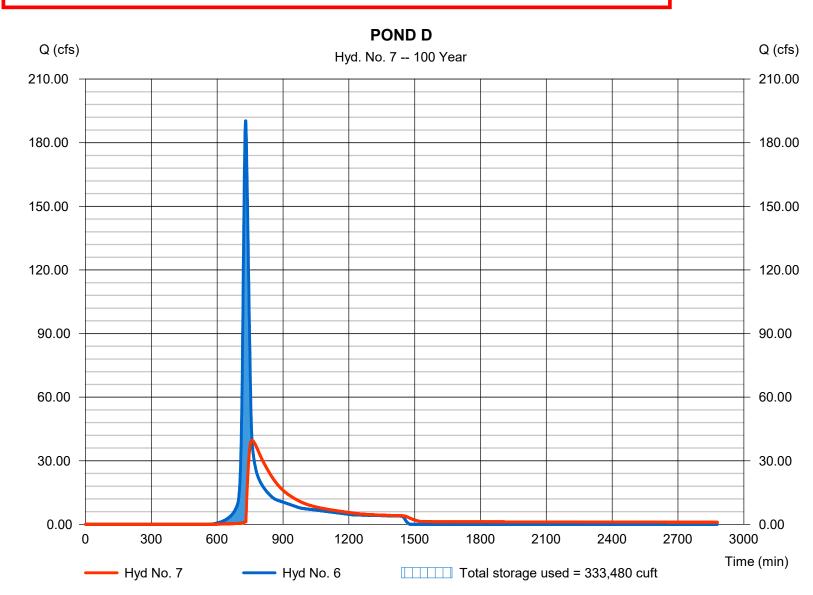
Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration	 SCS Runoff 100 yrs 1 min 100.800 ac 0.0 % User 4.40 in 24 hrs 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	 = 190.38 cfs = 730 min = 718,796 cuft = 74.7 = 0 ft = 27.00 min = Type II = 484
---	--	---	--

Basin D and Pond D (Hyd. #6 and #7) is included only to ensure Pond Release Rates are incorporated into the SCS model to accurately model downstream flows.

Please see the UD Detention printout in Appendix B for all release rate and volume analysis and the Rational Method printouts in this section for peak flow generations in areas tributary to Pond D

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 7


POND D

Hydrograph type	= Reservoir	Peak discharge	= 39.58 cfs
Storm frequency	= 100 yrs	Time to peak	= 759 min
Time interval	= 1 min	Hyd. volume	= 610,089 cuft
Inflow hyd. No.	= 6 - BASIN D	Max. Elevation	= 6032.21 ft
Reservoir name	= D	Max. Storage	= 333,480 cuft

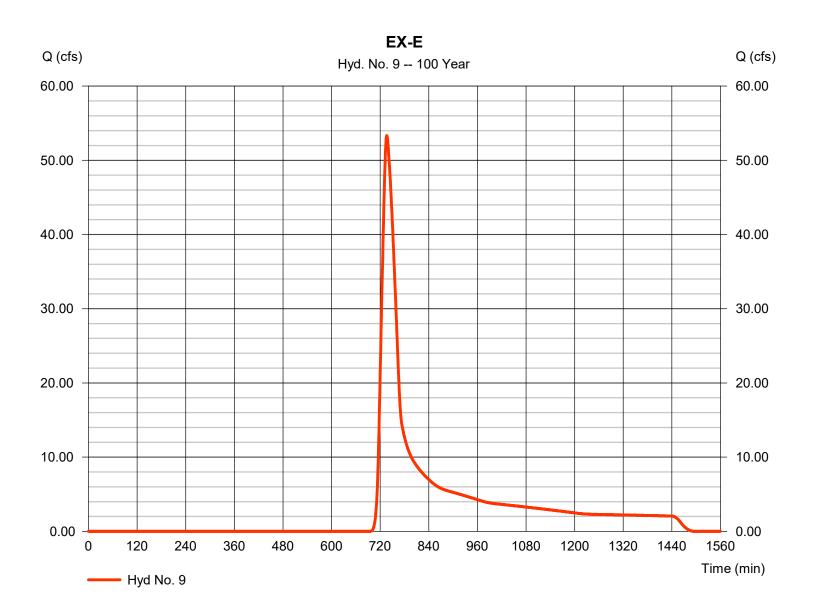
Storage Indication method used.

Basin D and Pond D (Hyd. #6 and #7) is included only to ensure Pond Release Rates are incorporated into the SCS model to accurately model downstream flows.

Please see the UD Detention printout in Appendix B for all release rate and volume analysis and the Rational Method printouts in this section for peak flow generations in areas tributary to Pond D

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

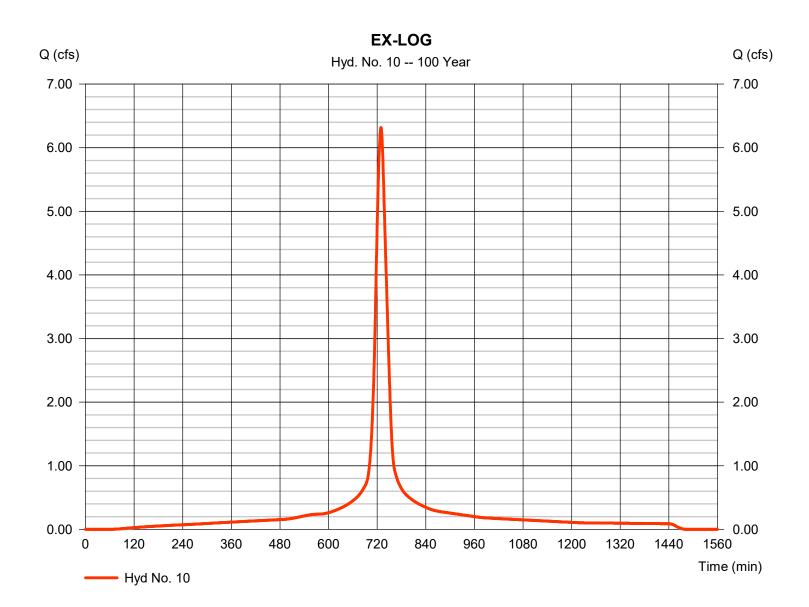
Hyd. No. 8


EX-5

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 9

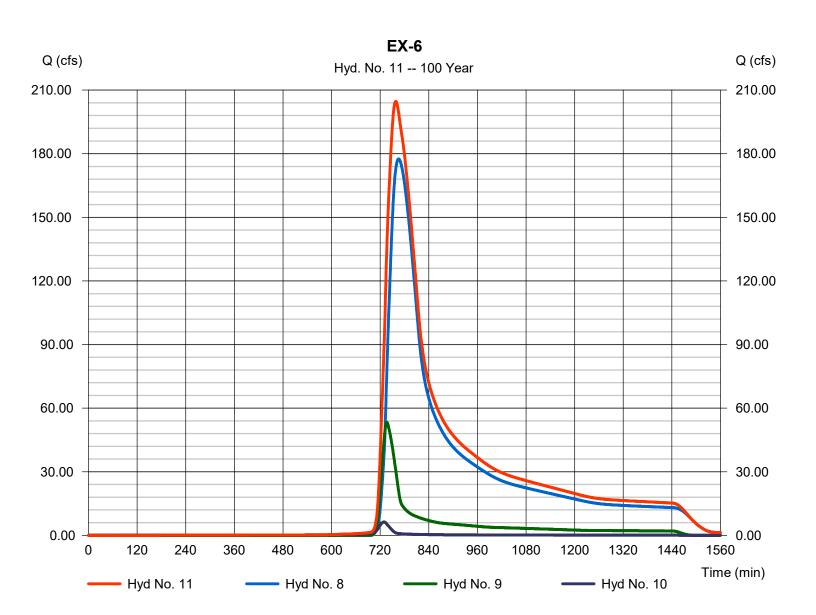
Hydrograph type	= SCS Runoff	Peak discharge	= 53.32 cfs
Storm frequency	= 100 yrs	Time to peak	= 736 min
Time interval	= 1 min	Hyd. volume	= 282,485 cuft
Drainage area	= 76.000 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 34.20 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

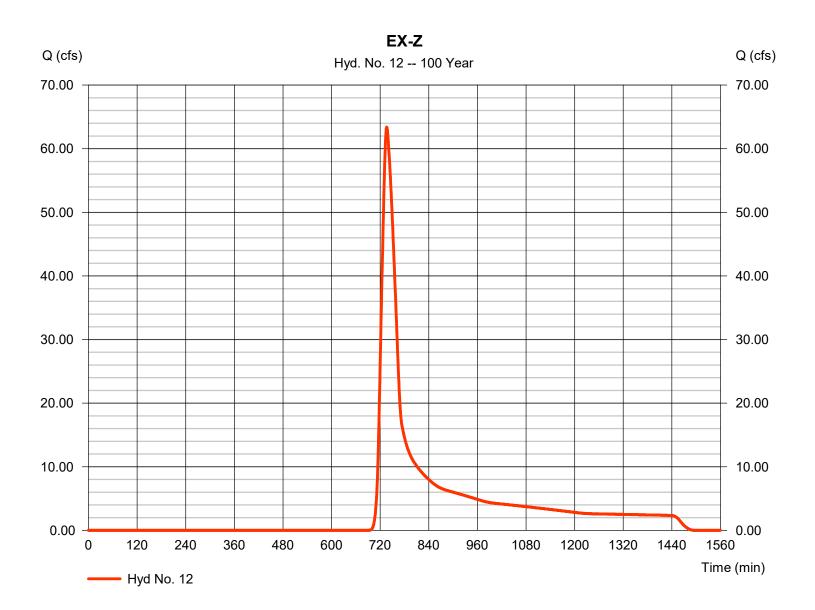
Hyd. No. 10

EX-LOG


Hydrograph type	= SCS Runoff	Peak discharge	= 6.317 cfs
Storm frequency	= 100 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 27,009 cuft
Drainage area	= 1.800 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

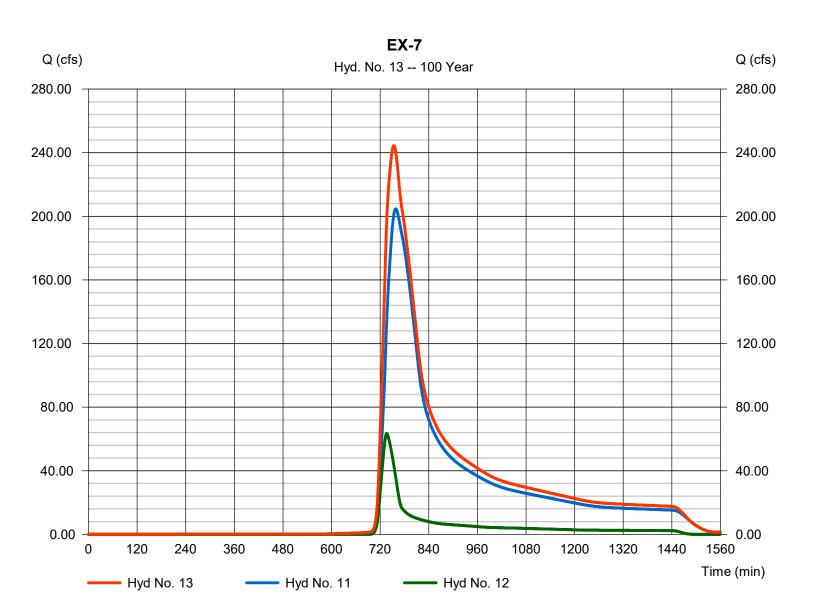
Hyd. No. 11


EX-6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 12

Hydrograph type	= SCS Runoff	Peak discharge	= 63.40 cfs
Storm frequency	= 100 yrs	Time to peak	= 736 min
Time interval	= 1 min	Hyd. volume	= 328,266 cuft
Drainage area	= 83.500 ac	Curve number	= 62
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.00 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

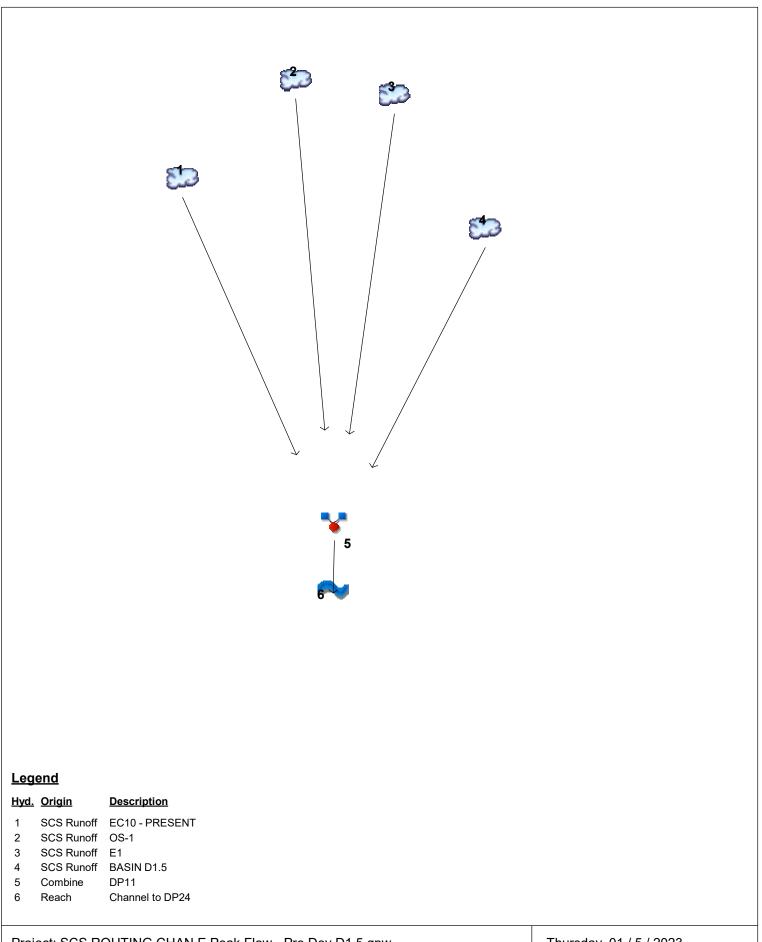
Hyd. No. 13

EX-7

Hydrograph type	= Combine	Peak discharge	= 244.45 cfs
Storm frequency	= 100 yrs	Time to peak	= 754 min
Time interval	= 1 min	Hyd. volume	= 2,466,175 cuft
Inflow hyds.	= 11, 12	Contrib. drain. area	= 83.500 ac

		Precip. file name: Sample.pc Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr			
SCS 24-hour		2.20		2.60				4.40			

Precip. file name: Sample.pcp


Hyd. No. 1

EC10 - PRESENT

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 300.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.85	+	0.00	+	0.00	=	7.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 6086.00 = 1.30 = Unpaved =1.84		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 55.14	+	0.00	+	0.00	=	55.14
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
• • • •	((-))						
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Project: SCS ROUTING CHAN E Peak Flow - Pre Dev D1.5.gpw

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	18.43	1	772	262,007				EC10 - PRESENT
2	SCS Runoff	1.349	1	734	6,442				OS-1
3	SCS Runoff	0.320	1	742	3,200				E1
4	SCS Runoff	1.348	1	726	8,116				BASIN D1.5
5	Combine	19.29	1	770	279,765	1, 2, 3,			DP11
6	Reach	18.66	1	783	279,759	4 5			Channel to DP24
SC	S ROUTING	CHAN E	 Peak Flo	 w - Pre E)e∨R2etu5rgf	 Rveriod: 5 Yo	ear	Thursday,	01 / 5 / 2023

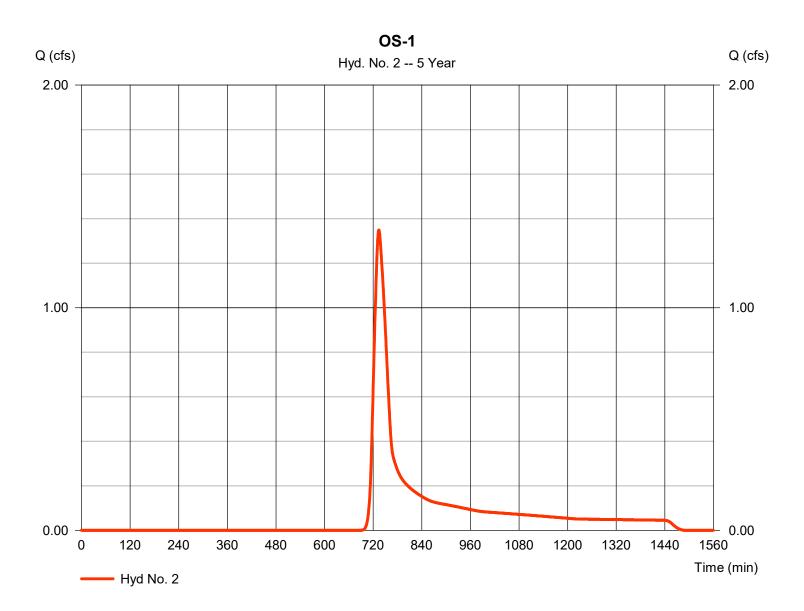
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 1

EC10 - PRESENT

Hydrograph type	= SCS Runoff	Peak discharge	= 18.43 cfs
Storm frequency	= 5 yrs	Time to peak	= 772 min
Time interval	= 1 min	Hyd. volume	= 262,007 cuft
Drainage area	= 320.000 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 63.00 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 1


EC10 - PRESENT

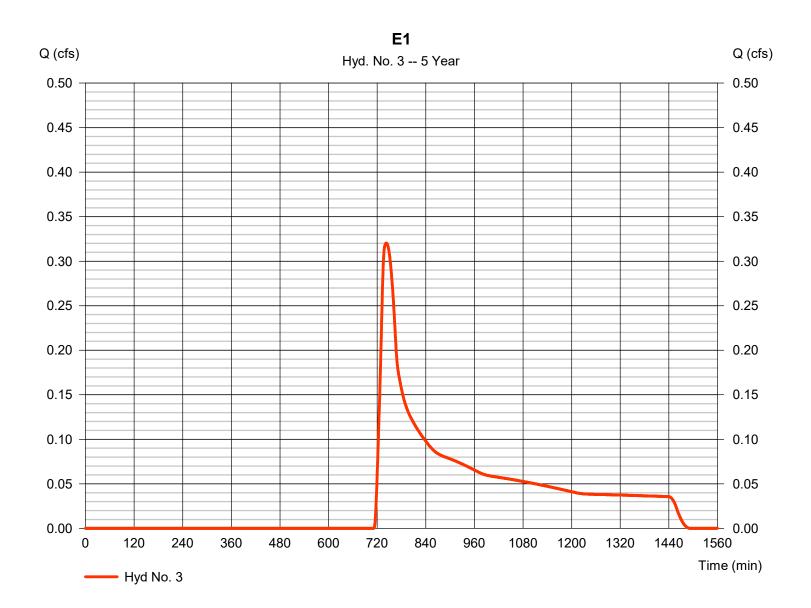
Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.030 = 300.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 7.85	+	0.00	+	0.00	=	7.85
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 6086.00 = 1.30 = Unpaved =1.84		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 55.14	+	0.00	+	0.00	=	55.14
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
• • • •	((-))						
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.349 cfs
Storm frequency	= 5 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 6,442 cuft
Drainage area	= 2.650 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.10 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 2


OS-1

Description	Α		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.013 = 50.0 = 2.20 = 2.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.96	+	0.00	+	0.00	=	0.96
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2525.00 = 0.70 = Unpave =1.35		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 31.17	+	0.00	+	0.00	=	31.17
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							32.10 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

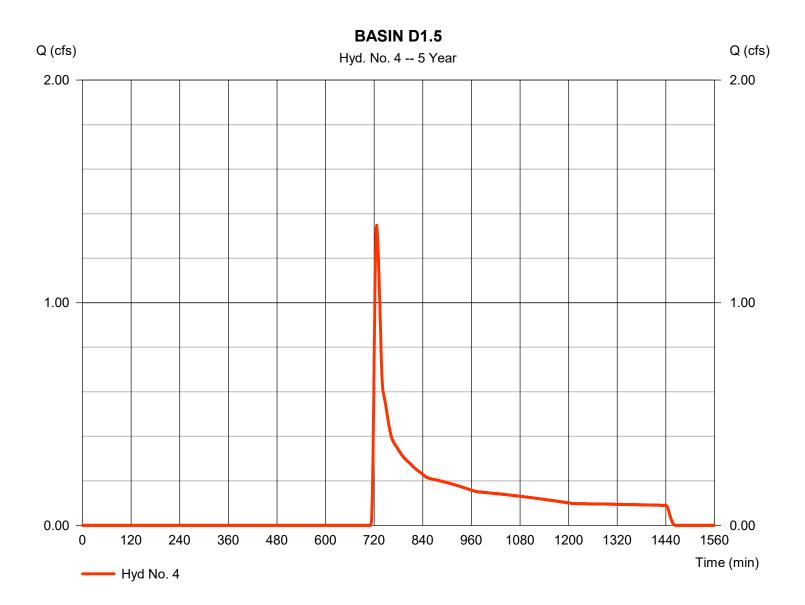
Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.320 cfs
Storm frequency	= 5 yrs	Time to peak	= 742 min
Time interval	= 1 min	Hyd. volume	= 3,200 cuft
Drainage area	= 3.920 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.50 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

7

Hyd. No. 3

E1


Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.011 = 0.0 = 0.00 = 0.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2811.00 = 0.80 = Unpave =1.44		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 32.46	+	0.00	+	0.00	=	32.46
Travel Time (min) Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 32.46 = 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015 0.00	=	32.46
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.00 = 0.00 = 0.00 = 0.015	+	0.00 0.00 0.00 0.015	+	0.00 0.00 0.00 0.015	=	32.46
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.00 0.015 0.00	+	0.00 0.00 0.00 0.015 0.00	=	32.46 0.00

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

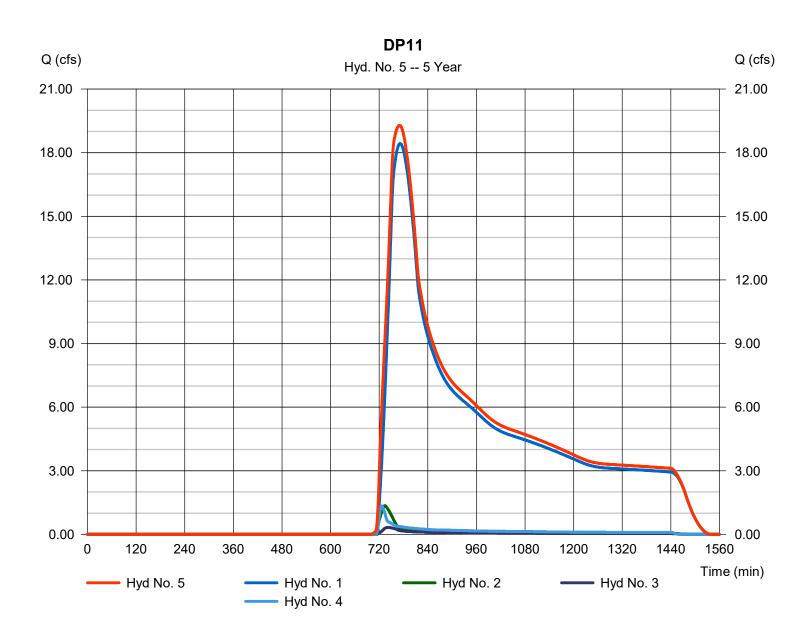
Hyd. No. 4

BASIN D1.5

Hydrograph type	= SCS Runoff	Peak discharge	= 1.348 cfs
Storm frequency	= 5 yrs	Time to peak	= 726 min
Time interval	= 1 min	Hyd. volume	= 8,116 cuft
Drainage area	= 9.880 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 14.00 min
Total precip.	= 2.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hyd. No. 4

BASIN D1.5

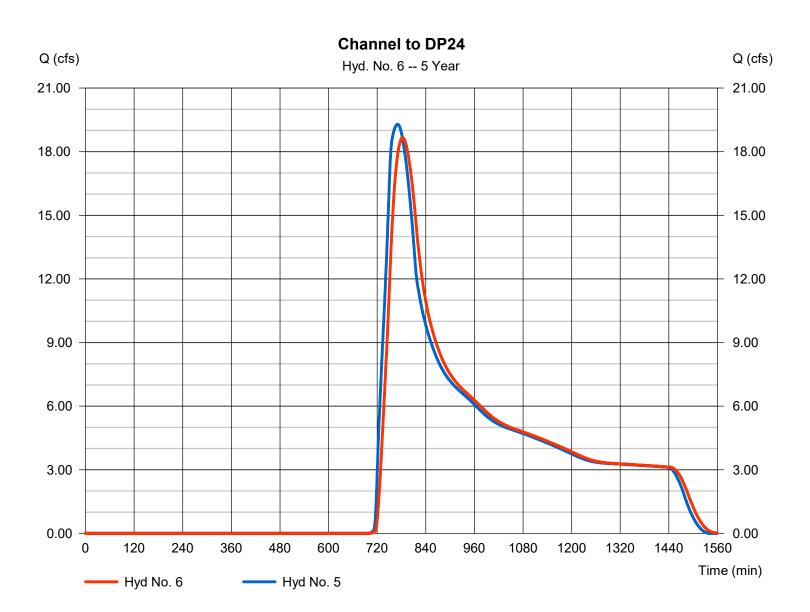

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.030 = 300.0 = 2.20 = 2.00 = 7.85	+	0.011 0.0 0.00 0.00 0.00	+	0.011 0.0 0.00 0.00 0.00	=	7.85
	- 7.00	•	0.00	•	0.00	_	7.00
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 840.00 = 2.00 = Unpaved =2.28	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 6.14	+	0.00	+	0.00	=	6.14
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc						14.00 min	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

DP11

Hydrograph type	= Combine	Peak discharge	= 19.29 cfs
Storm frequency Time interval	= 5 yrs = 1 min	Time to peak Hyd. volume	= 770 min = 279,765 cuft
Inflow hyds.	= 1, 2, 3, 4	Contrib. drain. area	= 336.450 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 6

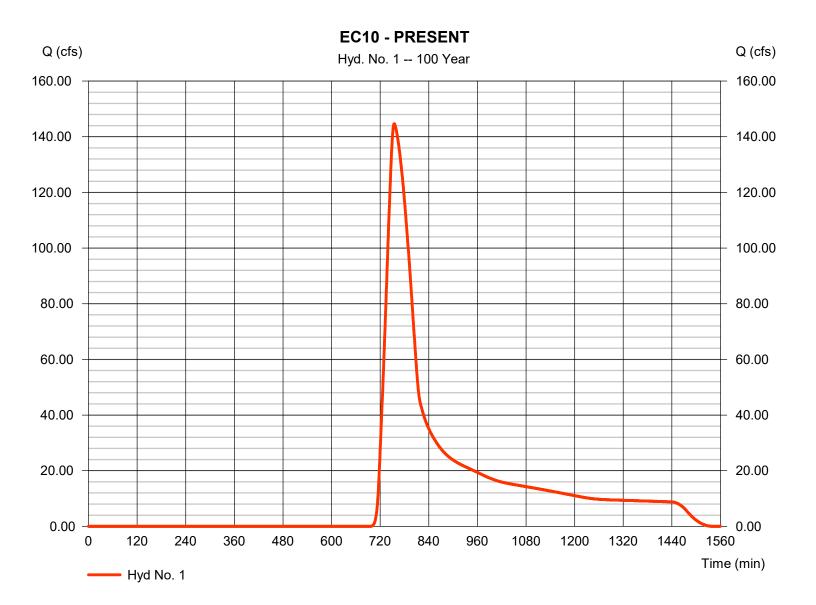
Channel to DP24

Hydrograph type	= Reach	Peak discharge	= 18.66 cfs
Storm frequency	= 5 yrs	Time to peak	= 783 min
Time interval	= 1 min	Hyd. volume	= 279,759 cuft
Inflow hyd. No.	= 5 - DP11	Section type	= Trapezoidal
Reach length	= 1976.0 ft	Channel slope	= 0.8 %
Manning's n	= 0.030	Bottom width	= 8.0 ft
Side slope	= 4.0:1	Max. depth	= 3.3 ft
Rating curve x	= 1.110	Rating curve m	= 1.349
Ave. velocity	= 0.00 ft/s	Routing coeff.	= 0.0909
Side slope Rating curve x	= 4.0:1 = 1.110	Max. depth Rating curve m	= 3.3 ft = 1.349

Modified Att-Kin routing method used.

Hydrograph Summary Report

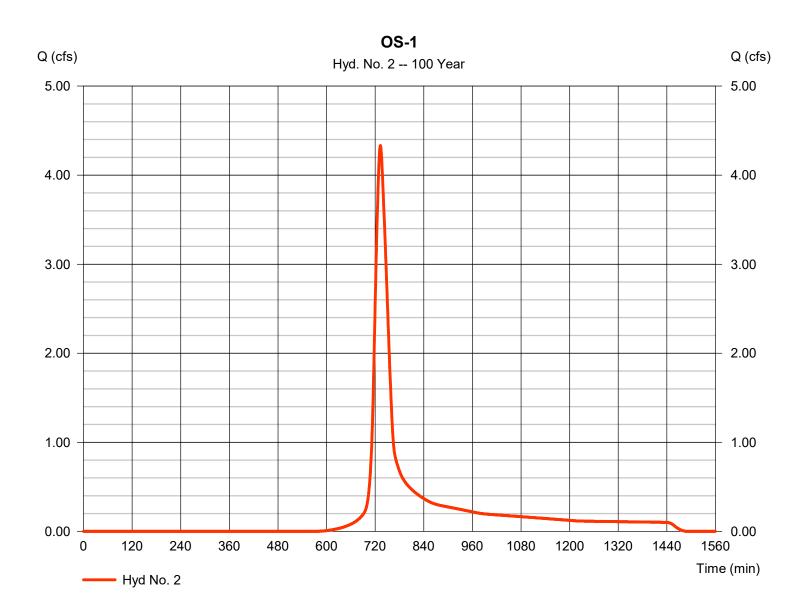
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	144.67	1	755	1,185,497				EC10 - PRESENT
2	SCS Runoff	4.333	1	733	18,356				OS-1
3	SCS Runoff	2.846	1	735	14,479				E1
4	SCS Runoff	12.23	1	723	36,723				BASIN D1.5
5	Combine	150.44	1	754	1,255,054	1, 2, 3, 4			DP11
6	Reach	144.76	1	762	1,255,052	5			Channel to DP24
SC	S ROUTING	CHAN E	│ Peak Flo	w - Pre D)evReturne	keriod: 100	Year	Thursday.	01 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

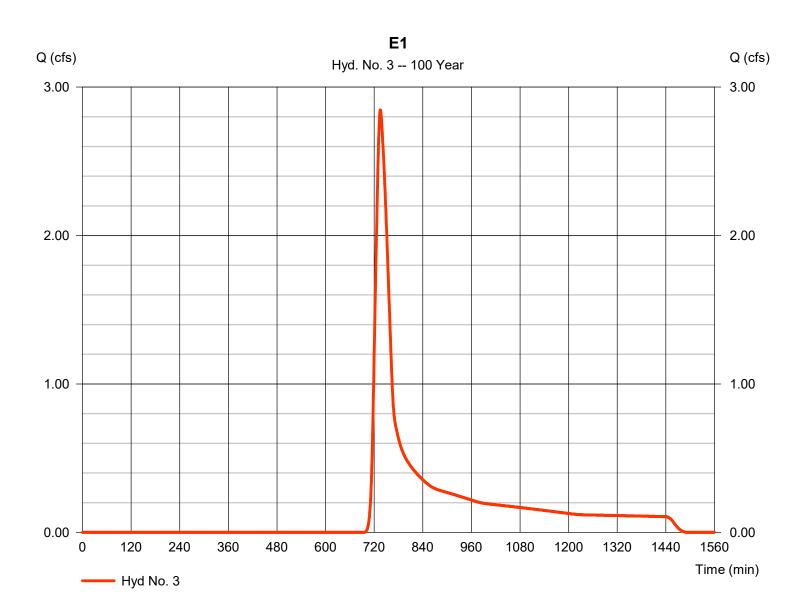
Hyd. No. 1

EC10 - PRESENT


Hydrograph type	= SCS Runoff	Peak discharge	= 144.67 cfs
Storm frequency	= 100 yrs	Time to peak	= 755 min
Time interval	= 1 min	Hyd. volume	= 1,185,497 cuft
Drainage area	= 320.000 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 63.00 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

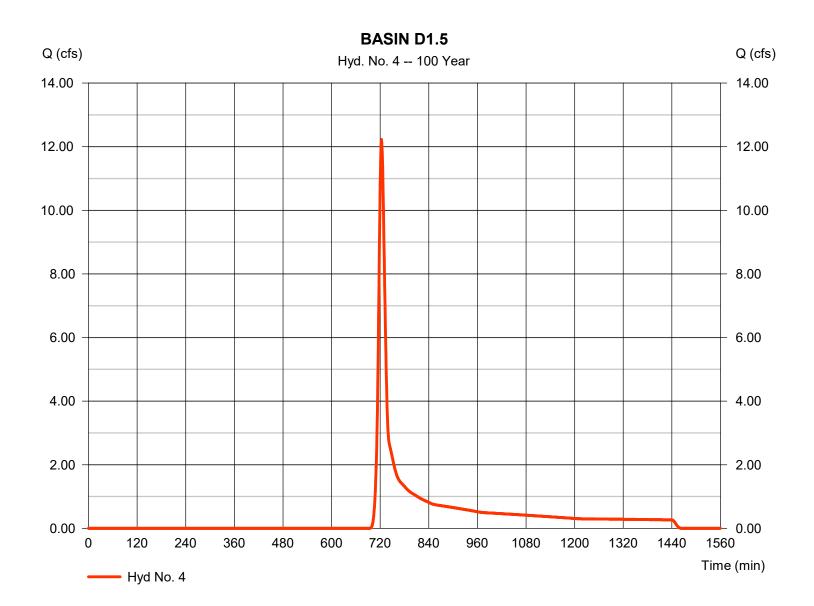
Hyd. No. 2


Hydrograph type	= SCS Runoff	Peak discharge	= 4.333 cfs
Storm frequency	= 100 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 18,356 cuft
Drainage area	= 2.650 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.10 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
Basin Slope Tc method Total precip.	= 0.0 % = TR55 = 4.40 in	Hydraulic length Time of conc. (Tc) Distribution	= 0 ft = 32.10 min = Type II

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 2.846 cfs
Storm frequency	= 100 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 14,479 cuft
Drainage area	= 3.920 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 32.50 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

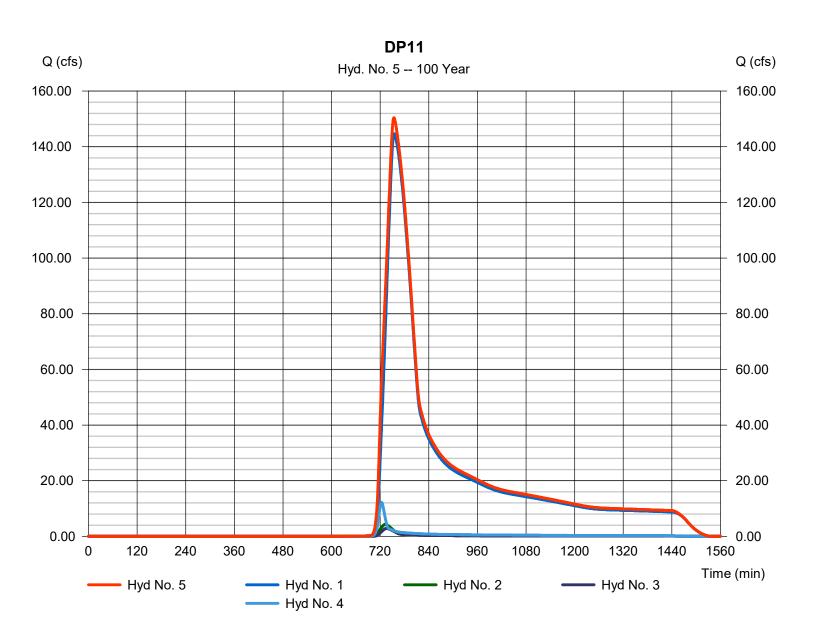

16

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 4

BASIN D1.5

Hydrograph type	= SCS Runoff	Peak discharge	= 12.23 cfs
Storm frequency	= 100 yrs	Time to peak	= 723 min
Time interval	= 1 min	Hyd. volume	= 36,723 cuft
Drainage area	= 9.880 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 14.00 min
Total precip.	= 4.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

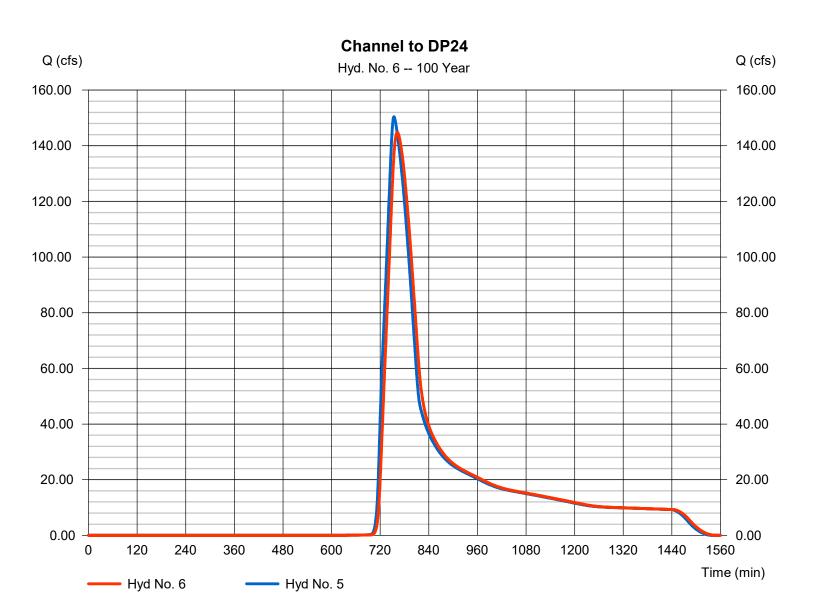


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Hyd. No. 5

DP11

Hydrograph type	= Combine	Peak discharge	= 150.44 cfs
Storm frequency	= 100 yrs	Time to peak	= 754 min
Time interval	= 1 min	Hyd. volume	= 1,255,054 cuft
Inflow hyds.	= 1, 2, 3, 4	Contrib. drain. area	= 336.450 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

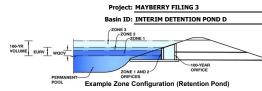
Hyd. No. 6

Channel to DP24

Hydrograph type	= Reach	Peak discharge	= 144.76 cfs
Storm frequency	= 100 yrs	Time to peak	= 762 min
Time interval	= 1 min	Hyd. volume	= 1,255,052 cuft
Inflow hyd. No.	= 5 - DP11	Section type	= Trapezoidal
Reach length	= 1976.0 ft	Channel slope	= 0.8 %
Manning's n	= 0.030	Bottom width	= 8.0 ft
Side slope	= 4.0:1	Max. depth	= 3.3 ft
Rating curve x	= 1.110	Rating curve m	= 1.349
Ave. velocity	= 0.00 ft/s	Routing coeff.	= 0.1499

Modified Att-Kin routing method used.

19


		F	Rainfall I	Precipita	tion Tab	ole (in)		
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
SCS 24-hour		2.20		2.60				4.40

Precip. file name: Sample.pcp

APPENDIX B - HYDRAULIC COMPUTATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

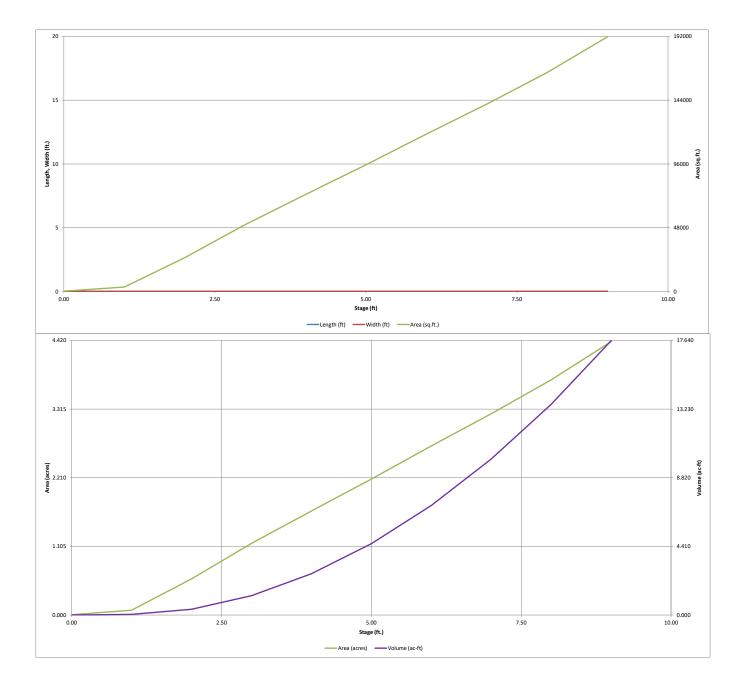
Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	100.20	acres
Watershed Length =	2,867	ft
Watershed Length to Centroid =	1,433	ft
Watershed Slope =	0.010	ft/ft
Watershed Imperviousness =	23.00%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

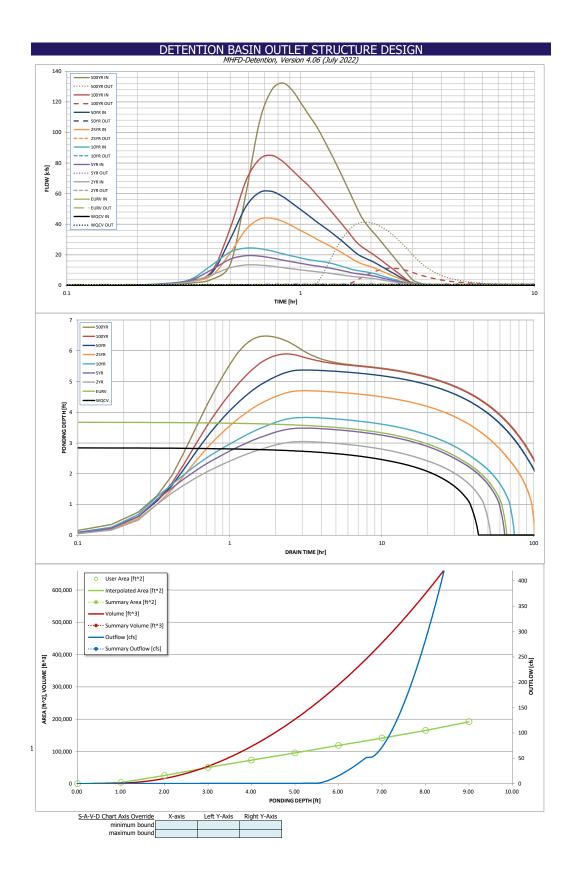
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

	the embedded Colorado Urban Hydro	graph Procedu	ire.	Optional User	Overri
١	Vater Quality Capture Volume (WQCV) =	1.065	acre-feet		acre-fe
	Excess Urban Runoff Volume (EURV) =	2.138	acre-feet		acre-fe
	2-yr Runoff Volume (P1 = 1.19 in.) =	1.404	acre-feet	1.19	inches
	5-yr Runoff Volume (P1 = 1.5 in.) =	1.992	acre-feet	1.50	inches
	10-yr Runoff Volume (P1 = 1.75 in.) =	2.522	acre-feet	1.75	inches
	25-yr Runoff Volume (P1 = 2 in.) =	4.117	acre-feet	2.00	inches
	50-yr Runoff Volume (P1 = 2.25 in.) =	5.623	acre-feet	2.25	inches
	100-yr Runoff Volume (P1 = 2.52 in.) =	7.666	acre-feet	2.52	inches
	500-yr Runoff Volume (P1 = 3.14 in.) =	12.108	acre-feet	3.14	inches
	Approximate 2-yr Detention Volume =	1.329	acre-feet		
	Approximate 5-yr Detention Volume =	1.785	acre-feet		
	Approximate 10-yr Detention Volume =	2.259	acre-feet		
	Approximate 25-yr Detention Volume =	2.902	acre-feet		
	Approximate 50-yr Detention Volume =	3.440	acre-feet		
	Approximate 100-yr Detention Volume =	4.428	acre-feet		
			-		

Define Zones and Basin Geometry


Zone 1 Volume (WQCV) =	1.065	acre-feet
Zone 2 Volume (EURV - Zone 1) =	1.073	acre-feet
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	2.823	acre-feet
Total Detention Basin Volume =	4.961	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S_{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	1

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet


_	\geq	Depth Increment =		ft							
				Optional			_	Optional			
		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
		Top of Micropool		0.00				170	0.004	(12)	(2211)
		6027		1.00				3,344	0.077	1,757	0.040
		6028		2.00				25,396	0.583	16,127	0.370
		6029	-	3.00	-		-	50,286	1.154	53,968	1.239
		6030	-	4.00	-		-	72,956	1.675	115,589	2.654
		6031		5.00				95,393	2.190	199,763	4.586
		6032		6.00				118,525	2.721	306,722	7.041
		6033 6034		7.00				141,085	3.239	436,527	10.021
		6035		8.00 9.00			-	164,866 191,669	3.785 4.400	589,503 767,770	13.533 17.626
		0055		5.00				151,005	1.100	707,770	17.020
		-									
			-				-				
							-				
_	Overrides										
_	acre-feet										
	acre-feet						-				
	inches inches										
	inches						-				
	inches										
	inches										
_	inches						-		_		
	inches										
							-				
							-				
							-				
							-				
							-				
							-				
		-									
							-				
							-				
			-		-		-				
							-				
									n 		
							-				
			-								
							1 1		[<u> </u>		
			-								
					: :		1 1		<u> </u>		
					-						
							1 1		[<u> </u>		
			-								
							1 1		[<u> </u>		
					1 1		1 1		[<u> </u>		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

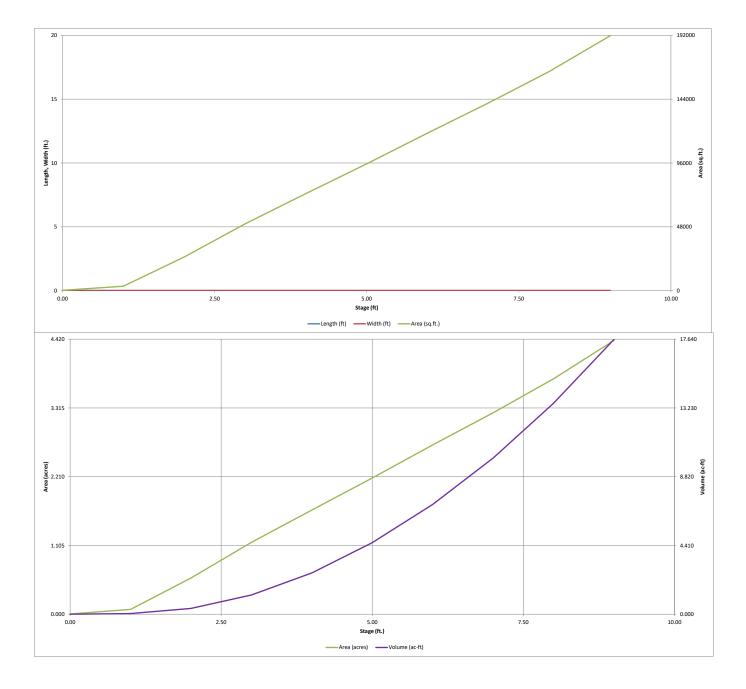
MHFD-Detention, Version 4.06 (July 2022)

	DI		BASIN OUT			SIGN			
	MAYBERRY FILIN	G 3	1HFD-Detention, V	ersion 4.06 (July 2	2022)				
ZONE 3	INTERIM DETENT.	ION POND D		Estimated	Estimated				
ZONE 2 ZONE 1				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	2.85	1.065	Orifice Plate]		
	100-YEAR ORIEICE		Zone 2 (EURV)	3.68	1.073	Orifice Plate			
PERMANENT ORIFICES	UNIFICE		Z3 (100+1/2WQCV)	5.17	2.823	Weir&Pipe (Restrict)			
Example Zone C	Configuration (Rete	ention Pond)		Total (all zones)	4.961				
er Input: Orifice at Underdrain Outlet (typically								ters for Underdrain	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A N/A	ft (distance below inches	the filtration media s	surface)		rdrain Orifice Area = in Orifice Centroid =	N/A N/A	ft ² feet	
Underdrain Onlice Diameter =	N/A	Incries			Underdra	in Onnce Centroid =	N/A	lieet	
er Input: Orifice Plate with one or more orifice	s or Elliptical Slot W	eir (typically used t	o drain WQCV and/o	r EURV in a sedime	ntation BMP)		Calculated Parame	ters for Plate	
Centroid of Lowest Orifice =	0.00	-	bottom at Stage =		•	ifice Area per Row =	N/A	ft²	
Depth at top of Zone using Orifice Plate =	3.60		bottom at Stage =	0 ft)		lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	14.40 N/A	inches sq. inches				tical Slot Centroid = Elliptical Slot Area =	N/A N/A	feet ft ²	
office flate. Office Area per Now -	N/A	sq. menes				Linplical Slot Area -	N/A	Jit	
ser Input: Stage and Total Area of Each Orifice		-	i			1		1	-
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	-
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	0.00 4.00	1.20 4.00	2.40 4.00						
Unite Area (sq. inches)	4.00	4.00	4.00						L
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
er Input: Vertical Orifice (Circular or Rectangul	lar)						Calculated Parame	ters for Vertical Orif	ice
	Not Selected	Not Selected	1				Not Selected	Not Selected	Ī
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin	bottom at Stage =	0 ft) Ve	ertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin	bottom at Stage =	0 ft) Vertic	al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir 5.50 7.00	Not Selected N/A N/A	ft (relative to basin t	oottom at Stage = 0	t) Height of Gra	te Upper Edge H -	Zone 3 Weir 5.50	Not Selected	feet
Overflow Weir Grate Slope =			feet			Weir Slope Length =	6.00	N/A N/A	feet
	0.00	N/A	H:V		Overflow Trate Open Area / 1	Weir Slope Length = 100-yr Orifice Area =	6.00 6.46	N/A N/A	feet
Horiz. Length of Weir Sides =	6.00	N/A		C	Overflow arate Open Area / 1 Overflow Grate Ope	Weir Slope Length = L00-yr Orifice Area = n Area w/o Debris =	6.00 6.46 29.23	N/A N/A N/A	feet ft ²
Overflow Grate Type =	6.00 Type C Grate	N/A N/A	H:V feet	C	Overflow arate Open Area / 1 Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area =	6.00 6.46	N/A N/A	feet
Overflow Grate Type = Debris Clogging % =	6.00 Type C Grate 50%	N/A N/A N/A	H:V feet %	C	Overflow Grate Open Area / 1 Iverflow Grate Ope Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris =	6.00 6.46 29.23 14.62	N/A N/A N/A N/A	feet ft ² ft ²
Overflow Grate Type = Debris Clogging % =	6.00 Type C Grate 50% (Circular Orifice, Re	N/A N/A N/A strictor Plate, or Rec	H:V feet %	C	Overflow Grate Open Area / 1 Iverflow Grate Ope Overflow Grate Op	Weir Slope Length = L00-yr Orifice Area = n Area w/o Debris =	6.00 6.46 29.23 14.62 s for Outlet Pipe w/	N/A N/A N/A N/A	feet ft ² ft ²
Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (6.00 Type C Grate 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor	N/A N/A N/A strictor Plate, or Rev Not Selected	H:V feet % tangular Orifice)	C	Overflow 0 irate Open Area / 1 iverflow Grate Ope Overflow Grate Op	Weir Slope Length = L00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = Calculated Parameter	6.00 6.46 29.23 14.62 s for Outlet Pipe w, Zone 3 Restrictor	N/A N/A N/A / Flow Restriction Pic Not Selected	feet ft ² ft ²
Overflow Grate Type = Debris Clogging % =	6.00 Type C Grate 50% (Circular Orifice, Re	N/A N/A N/A strictor Plate, or Rec	H:V feet %	C	Overflow U irate Open Area / 1 iverflow Grate Ope Overflow Grate Op <u>(</u> = 0 ft)	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris =	6.00 6.46 29.23 14.62 s for Outlet Pipe w/	N/A N/A N/A N/A	feet ft ² ft ²
Overflow Grate Type = Debris Clogging % = <u>er Input: Outlet Pipe w/ Flow Restriction Plate (</u> Depth to Invert of Outlet Pipe =	6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00	N/A N/A N/A strictor Plate, or Red Not Selected N/A	H:V feet % tangular Orifice) ft (distance below ba	(asin bottom at Stage	Overflow U irate Open Area / 1 iverflow Grate Ope Overflow Grate Op Overflow Grate Op = 0 ft) (0 Outh	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area =	6.00 6.46 29.23 14.62 s for Outlet Pipe w Zone 3 Restrictor 4.53	N/A N/A N/A / Flow Restriction Pli Not Selected N/A	feet ft ² ft ² ft ²
Overflow Grate Type = Debris Clogging % = eer Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00	N/A N/A N/A strictor Plate, or Red Not Selected N/A	H:V feet % <u>stangular Orifice)</u> ft (distance below ba inches	(asin bottom at Stage	Overflow U irate Open Area / 1 iverflow Grate Ope Overflow Grate Op Overflow Grate Op = 0 ft) (0 Outh	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid =	6.00 6.46 29.23 14.62 s for Outlet Pipe w Zone 3 Restrictor 4.53 1.04 1.79	N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² <u>ate</u> ft ² fteet
Overflow Grate Type = Debris Clogging % = eer Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = eer Input: Emergency Spillway (Rectangular or 1	6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal)	N/A N/A N/A Strictor Plate, or Red Not Selected N/A N/A	H:V feet % ft (distance below be inches inches	C asin bottom at Stage Half-Cer	Overflow 1 irate Open Area / 1 iverflow Grate Ope Overflow Grate Ope (= 0 ft) (Outil tral Angle of Restr	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe =	6.00 6.46 29.23 14.62 s for Outlet Pipe w, Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame	N/A N/A N/A N/A N/A Not Selected N/A N/A N/A ters for Spillway	feet ft ² ft ² <u>ate</u> ft ² fteet
Overflow Grate Type = Debris Clogging % = eer Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = eer Input: Emergency Spillway (Rectangular or T Spillway Invert Stage=	6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75	N/A N/A N/A strictor Plate, or Rev Not Selected N/A N/A ft (relative to basin	H:V feet % <u>stangular Orifice)</u> ft (distance below ba inches	C asin bottom at Stage Half-Cer	Overflow i irate Open Area / J Vverflow Grate Ope Overflow Grate Ope () = 0 ft) () () utral Angle of Restr Spillway	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = Calculated Parameter Cultet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth=	6.00 6.46 29.23 14.62 Zone 3 Restrictor 4.53 1.04 1.79 <u>Calculated Parame</u> 0.65	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet	feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or 1	6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal)	N/A N/A N/A Strictor Plate, or Red Not Selected N/A N/A	H:V feet % ft (distance below be inches inches	C asin bottom at Stage Half-Cer	Overflow (irate Open Area / 1 Vverflow Grate Ope Overflow Grate Op (= 0 ft) (Outh tral Angle of Restr Spillway Stage at	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = <u>Calculated Parameter</u> Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe =	6.00 6.46 29.23 14.62 s for Outlet Pipe w, Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame	N/A N/A N/A N/A N/A Not Selected N/A N/A N/A ters for Spillway	feet ft ² ft ² <u>ate</u> ft ² fteet
Overflow Grate Type = Debris Clogging % = eer Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = eer Input: Emergency Spillway (Rectangular or 1 Spillway Invert Stage= Spillway Crest Length =	6.00 Type C Grate 50% Circular Orlfice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00	N/A N/A N/A strictor Plate, or Rev Not Selected N/A N/A ft (relative to basin feet	H:V feet % ft (distance below be inches inches	C asin bottom at Stage Half-Cer	Overflow 1 irate Open Area / 1 iverflow Grate Ope Overflow Grate Ope () = 0 ft) () Util tral Angle of Restr Spillway Stage at Basin Area at	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = Calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard =	6.00 6.46 29.23 14.62 20ne 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet	feet ft ² ft ² <u>ate</u> ft ² fteet
Overflow Grate Type = Debris Clogging % = eer Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = eer Input: Emergency Spillway (Rectangular or T Spillway (Rest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 (rapezoidal) 6.75 50.00 4.00 1.00	N/A N/A N/A Not Selected N/A N/A N/A ft (relative to basin feet H:V feet	H:V feet % ft (distance below be inches inches	(isin bottom at Stage Half-Cer 0 ft)	Overflow 1 irate Open Area / 1 iverflow Grate Ope Overflow Grate Ope (= 0 ft) (0 utral Angle of Restr Spillway Stage at Basin Area at Basin Volume at	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = Calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	6.00 6.46 29.23 14.62 5 for Outlet Pipe w Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Grate Type = Debris Clogging % = eer Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = eer Input: Emergency Spillway (Rectangular or T Spillway (Rest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 (rapezoidal) 6.75 50.00 4.00 1.00	N/A N/A N/A Not Selected N/A N/A N/A ft (relative to basin feet H:V feet	H:V feet % ft (distance below be inches inches	(isin bottom at Stage Half-Cer 0 ft)	Overflow 1 irate Open Area / 1 iverflow Grate Ope Overflow Grate Ope (= 0 ft) (0 utral Angle of Restr Spillway Stage at Basin Area at Basin Volume at	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = Calculated Parameter Calculated Parameter Cutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	6.00 6.46 29.23 14.62 5 for Outlet Pipe w Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet ft ² ft ² <u>ate</u> ft ² fteet
Overflow Grate Type = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = er Input: Emergency Spillway (Rectangular or T Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Deted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 (rapezoidal) 6.75 50.00 4.00 1.00 The user can over WQCV N/A	N/A N/A N/A N/A Strictor Plate, or Rec Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A	H:V feet 9% ft (distance below be inches inches h bottom at Stage = 1/P hydrographs and 2 Year 1.19	(usin bottom at Stage Half-Cer 0 ft) <u>runoff volumes by of</u> <u>5 Year</u> 1.50	Overflow 1 irate Open Area / 1 iverflow Grate Ope Overflow Grate Ope () = 0 ft) () () () () () () () () () ()	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = Calculated Parameter Calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = i top of Freeboard = s in the Inflow Hydro 25 Year 2.00	6.00 6.46 29.23 14.62 s for Outlet Pipe w Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 graphs table (Colur 50 Year 2.25	N/A N/A N/A N/A N/A You Selected N/A N/A N/A N/A N/A ters for Spillway feet acres acre-ft mns W through AF). 100 Year 2.52	feet ft ² ft ² ft ² ft ² ft ² feet radians
Overflow Grate Type = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = er Input: Emergency Spillway (Rectangular or T Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Surface = Freeboard above Max Water Surface = one-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	6.00 Type C Grate 50% (Circular Orlfice, Re Zone 3 Restrictor 0.00 36.00 22.00 (Trapezoidal) 6.75 50.00 4.00 1.00 (The user can over WQCV N/A 1.065	N/A N/A N/A strictor Plate, or Res Not Selected N/A N/A ft (relative to basir feet H:V feet H:V feet H:V feet CURV N/A 2.138	H:V feet 9% tangular Orifice) ft (distance below ba inches h bottom at Stage = 1 bottom at Stage = 1.19 1.404	(asin bottom at Stage Half-Cer 0 ft) 5 Year 1.50 1.592	Overflow 1 irate Open Area / 1 iverflow Grate Ope Overflow Grate Ope () = 0 ft) () () itral Angle of Restr Spillway Stage at Basin Area at Basin Volume at Intering new value: 10 Year 1.75 2.522	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = Calculated Parameter Calculated Parameter Cutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = S in the Inflow Hydro 25 Year 2.00 4.117	6.00 6.46 29.23 14.62 S for Outlet Pipe w, Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 graphs table (Colum 50 Year 2.25 5.623	N/A N/A N/A N/A N/A V Flow Restriction Pit Not Selected N/A N/A N/A N/A N/A N/A N/A inters for Spillway feet acres acre-ft 100 Year 2.52 7.666	feet ft ² ft ² ft ² ft ² feet radians
Overflow Grate Type = Debris Clogging % = Debris Clogging % = Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Stopes = Freeboard above Max Water Surface = Detender Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hytograph Volume (acre-ft) = CUHP Predevelopment Peak Q(cfs) =	6.00 Type C Grate 50% <u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00 36.00 22.00 <u>Trapezoidal</u> 6.75 50.00 4.00 1.00 <u>The user can over</u> <u>WQCV</u> N/A 1.065 N/A N/A	N/A N/A N/A N/A Strictor Plate, or Rec Not Selected N/A N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 2.138 N/A N/A	H:V feet 9% ft (distance below be inches inches h bottom at Stage = 1/P hydrographs and 2 Year 1.19	(usin bottom at Stage Half-Cer 0 ft) <u>runoff volumes by of</u> <u>5 Year</u> 1.50	Overflow 1 irate Open Area / 1 iverflow Grate Ope Overflow Grate Ope () = 0 ft) () () () () () () () () () ()	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = Calculated Parameter Calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = i top of Freeboard = s in the Inflow Hydro 25 Year 2.00	6.00 6.46 29.23 14.62 s for Outlet Pipe w Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 graphs table (Colur 50 Year 2.25	N/A N/A N/A N/A N/A You Selected N/A N/A N/A N/A N/A ters for Spillway feet acres acre-ft mns W through AF). 100 Year 2.52	feet ft² ft² ft² feet feet radians
Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or 1 Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Rundf Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Rundf Predevelopment PeakQ (Cfs) =	6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Frapezoidal) 6.75 50.00 4.00 1.00 The user can overn WQCV N/A N/A N/A	N/A N/A N/A N/A strictor Plate, or Res Not Selected N/A N/A fect H:V feet H:V feet H:V feet H:V feet N/A N/A N/A N/A N/A	H:V feet 9% ft (distance below be inches inches bottom at Stage = 1/P hydrographs and 2 Year 1.19 1.404 1.404 0.6	(asin bottom at Stage Half-Cer 0 ft) 5 Year 1.50 1.992 1.2	Overflow irate Open Area / 1 iverflow Grate Ope Overflow Grate Ope () = 0 ft) () Outl itral Angle of Restr Spillway Stage at Basin Area at Basin Area at Basin Volume at Intering new value: 10 Year 1.75 2.522 2.522 1.7	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = Calculated Parameter Calculated Parameter Calculated Parameter Colifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Fre	6.00 6.46 29.23 14.62 S for Outlet Pipe w, Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 S0 Year 2.25 5.623 5.623 31.3	N/A N/A N/A N/A N/A N/A Not Selected N/A Interval Interval Interval Interval Inter Inter <td>feet ft² ft² ft² feet radians 500 Ye 3.14 12.10 12.10 94.2</td>	feet ft ² ft ² ft ² feet radians 500 Ye 3.14 12.10 12.10 94.2
Overflow Grate Type = Debris Clogging % = Debris Clogging % = Dept to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Stopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rinfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CHP Predevelopment Peak Q (cfs) =	6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can over WQCV N/A 1.065 N/A N/A	N/A N/A N/A N/A Strictor Plate, or Rec Not Selected N/A N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 2.138 N/A N/A	H:V feet <u>tangular Orifice</u>) ft (distance below be inches inches bottom at Stage = <u>IP hydrographs and</u> <u>2 Year</u> <u>1.19</u> <u>1.404</u>	(asin bottom at Stage Half-Cer 0 ft) 5 Year 1.50 1.992 1.992	Overflow 1 irate Open Area / 1 iverflow Grate Ope Overflow Grate Ope () = 0 ft) () () () () () () () () () ()	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = Calculated Parameter Calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of	6.00 6.46 29.23 14.62 5 for Outlet Pipe w, Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 graphs table (Colum 50 Year 2.25 5.623 5.623	N/A N/A N/A N/A N/A N/A Not Selected N/A N/A N/A ters for Spillway feet acres acre-ft 100 Year 2.52 7.666	feet ft ² ft ² ft ² feet radians 500 Ye 3.14 12.10 94.2
Overflow Grate Type = Debris Clogging % = Clogging % = Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or 1) Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (In) = CUHP Predevelopment Peak Q (cfs) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Untflow Q (cfs) = Peak Untflow Q (cfs) = Peak Untflow Q (cfs) =	6.00 Type C Grate 50% Circular Orlfice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can oven WQCV N/A 1.065 N/A N/A N/A N/A N/A 0.5	N/A N/A N/A N/A strictor Plate, or Ree Not Selected N/A N/A fet (relative to basir feet H:V feet H:V feet EURV N/A 2.138 N/A N/A N/A N/A N/A N/A O.6	H:V feet feet ft (distance below ba inches inches hottom at Stage = 1.19 1.404 0.6 0.01 1.3.3 0.5	0 ft) 1.50 1.992 1.2 0.01 1.9.4 0.6	Overflow 1 rate Open Area J 1 vverflow Grate Ope Overflow Grate Ope Overflow Grate Op () = 0 ft) () () () () () () () () () ()	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of	6.00 6.46 29.23 14.62 5 for Outlet Pipe w, Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 graphs table (Colum 50 Year 2.25 5.623 31.3 0.31 61.4 0.8	N/A N/A N/A N/A N/A Not Selected N/A N/A N/A Image: selected science of the selected science of t	feet ft² ft² ft² feet radians 500 Ye 3.14 12.10 12.10 94.2 94.2 94.2 132.2
Overflow Grate Type = Debris Clogging % = Debris Clogging % = Dept Clogging % = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = Spillway (Rectangular or T Spillway (Rectangular or T Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = CUHP Predevelopment Peak Q (cfs) = PriONAL Override Predevelopment Peak Q (cfs) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can over WQCV N/A 1.065 N/A N/A N/A N/A N/A	N/A N/A N/A N/A Strictor Plate, or Ree N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 2.138 N/A N/A N/A N/A N/A N/A N/A N/A	H:V feet 9% tangular Orifice) ft (distance below be inches inches bottom at Stage = 10 bottom at Stage = 119 1.404 1.404 1.404 1.404 0.6 0.01 13.3 0.5 N/A	(asin bottom at Stage Half-Cer 0 ft) 5 Year 1.50 1.992 1.992 1.992 1.2 	Overflow I rate Open Area / 1 iverflow Grate Ope Overflow Grate Ope Overflow Grate Ope () = 0 ft) () () () () () () () () () ()	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Calculated Parameter Couldet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop	6.00 6.46 29.23 14.62 Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 graphs table (Colur 50 Year 2.25 5.623 3.1.3 0.31 61.4 0.8 0.0	N/A N/A N/A N/A N/A N/A Not Selected N/A Iters for Spillway feet acres acres acres acres acres 100 Year 2.52 7.666 51.8 0.52 85.0 11.2 0.2	feet ft ² ft ² ft ² feet radians 500 Yee 3.14 12.10 12.10 94.2.2 94.2.2 41.4 0.94
Overflow Grate Type = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = spillway (Rectangular or 1 Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Nolume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Pack Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 (rapezoidal) 6.75 50.00 4.00 1.00 The user can over WQCV N/A 1.065 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Strictor Plate, or Res Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	H:V feet 9% ft (distance below be inches inches h bottom at Stage = 1/P hydrographs and 2 Year 1.19 1.404 0.6 0.01 1.3.3 0.5 N/A Plate N/A	0 ft) 1.50 1.992 1.2 0.01 1.91 1.92 0.01 0.5 Plate N/A	Overflow lirate Open Area / 1 iverflow Grate Ope Overflow Grate Ope () = 0 ft) () itral Angle of Restr Spillway Stage at Basin Volume at Basin Volume at Intering new value 10 Year 1.75 2.522 1.7 0.02 24.4 0.6 0.4 Plate N/A	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 100 of Freeboard = 2 Year 2.00 4.117 4.117 15.6 0.16 43.9 0.7 0.0 Plate N/A	6.00 6.46 29.23 14.62 5 for Outlet Pipe w Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 graphs table (Colum 50 Year 2.25 5.623 31.3 0.31 61.4 0.8 0.0 Piate N/A	N/A N/A N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A N/A Image: state s	feet ft ² ft ² ft ² ft ² feet radians 500 Ye a.14 12.10 12.10 94.2 - - - - - - - - - - - - -
Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate / Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or 1 Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Ruorf Volume (acre-ft) = UHP Ruorf Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Piok, n(fors/qc(fs) = Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 (Trapezoidal) 6.75 50.00 4.00 1.00 The user can over WQCV N/A N/A N/A N/A N/A Plate N/A N/A N/A N/A	N/A N/A N/A N/A strictor Plate, or Res Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	H:V feet 9% ft (distance below ba inches hottom at Stage = 1.19 1.404 0.6 0.01 1.3.3 0.5 N/A Plate N/A N/A	(ssin bottom at Stage Half-Cer 0 ft) 5 Year 1.592 1.994 1.992 1.994 1.992 1.994 1.994 1.992 1.994 1.9	Overflow 1 rate Open Area / 1 iverflow Grate Ope Overflow Grate Ope Overflow Grate Ope () = 0 ft) () () () () () () () () () ()	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Calculated Parameter Counce Area = et Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Freeboard = 10 of 11 15.6 0.16 43.9 0.7 0.0 Plate N/A N/A	6.00 6.46 29.23 14.62 S for Outlet Pipe w Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 graphs table (Colur 50 Year 2.25 5.623 5.623 3.1.3 0.31 61.4 0.8 0.0 Plate N/A N/A	N/A N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Inters for Spillway feet acres acre-ft 100 Year 7.666 7.666 51.8 0.52 85.0 11.2 0.2 Overflow Weir 1 0.3 N/A	feet ft ² ft ² ft ² ft ² feet radians 500 Ye radians 12.10 12.10 12.10 12.10 14.14 0.9 41.22 0.94 132.2 41.4 0.94 1.4 N/A
Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway (Rectangular or 1 Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfail Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Nesults OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	6.00 Type C Grate 50% Circular Orifice, Re Zone 3 Restrictor 0.00 36.00 22.00 (rapezoidal) 6.75 50.00 4.00 1.00 The user can over WQCV N/A 1.065 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Strictor Plate, or Res Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	H:V feet 9% ft (distance below be inches inches n bottom at Stage = 1/P hydrographs and 2 Year 1.19 1.404 0.6 0.01 1.3.3 0.5 N/A Plate N/A	0 ft) 1.50 1.992 1.2 0.01 1.91 1.92 0.01 0.5 Plate N/A	Overflow lirate Open Area / 1 iverflow Grate Ope Overflow Grate Ope () = 0 ft) () itral Angle of Restr Spillway Stage at Basin Volume at Basin Volume at Intering new value 10 Year 1.75 2.522 1.7 0.02 24.4 0.6 0.4 Plate N/A	Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 100 of Freeboard = 2 Year 2.00 4.117 4.117 15.6 0.16 43.9 0.7 0.0 Plate N/A	6.00 6.46 29.23 14.62 5 for Outlet Pipe w Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 graphs table (Colum 50 Year 2.25 5.623 31.3 0.31 61.4 0.8 0.0 Piate N/A	N/A N/A N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A N/A Image: state s	feet ft ² ft ² ft ² ft ² feet radians 500 Ye 3.14 12.10 12.10 12.10 12.10 12.10 12.10 12.13 94.2 - 0.94 132.3 41.4 0.4 Dverflow V 1.4 1.4 0.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1
Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (In) = CUHP Predevelopment Paka Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/care) = Peak Inflow Hydrograph Volume (acreft) = CUHP Predevelopment PeakQ (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) =	6.00 Type C Grate 50% Circular Orlfice, Ree Zone 3 Restrictor 0.00 36.00 22.00 Trapezoidal) 6.75 50.00 4.00 1.00 The user can oven WQCV N/A 1.065 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A strictor Plate, or Ree Not Selected N/A N/A feet H:V feet H:V feet EURV N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	H:V feet feet ft (distance below be inches inches hottom at Stage = hottom at Stage	0 ft) Half-Cet 0 ft) 0 ft) 1.50 1.992 1.392 1.392 1.392 1.392 1.392 1.392 1.993 1.893 1.895 1.895 1.895 1.895 1.895 1.895 1.895 1.895 1.895 1.895 1.895 1.895 1.895 1.895 1.992 1.995 1.945	Overflow lirate Open Area J J iverflow Grate Ope Overflow Grate Ope Overflow Grate Ope G = 0 ft) (C Outling Spillway Stage at Basin Area at Basin Area at Basin Area at Basin Volume at Control Spillway Stage at Spillway Stage at Spillway Stage at Spillway Stage at Spillway Stage at Spillway Stage at Spillway Stage at Spillway Stage at Spillway Stage at Spillway Spillway Stage at Spillway Stage at Spillway Stage at Spillway Spillway Stage at Spillway Spillw	Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = en Area w/o Debris = en Area w/o Debris = Calculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = 200 4.117 15.6 0.16 43.9 0.7 0.0 Plate N/A N/A N/A	6.00 6.46 29.23 14.62 5 for Outlet Pipe w, Zone 3 Restrictor 4.53 1.04 1.79 Calculated Parame 0.65 8.40 4.03 15.10 graphs table (Colum 50 Year 2.25 5.623 31.3 0.31 61.4 0.8 0.0 Plate N/A N/A N/A 112	N/A N/A N/A N/A N/A Not Selected N/A N/A N/A N/A Image: selected science N/A Image: selected science N/A Image: selected science acres acres acres acres acres 2.52 7.666 51.8 0.52 85.0 11.2 Overflow Weir 1 0.3 N/A 118	feet ft² ft² ft² feet feet radians 500 Yee 3.14 12.10 94.2 94

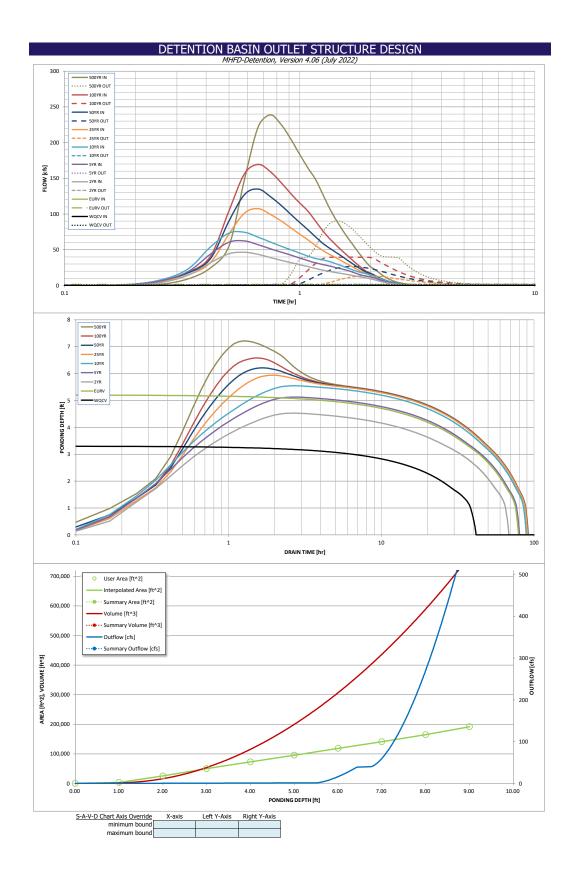
DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

	SOURCE	CUHP	CUHP	CUHP	CUHP	with inflow hydr	CUHP	CUHP	CUHP	CUHP
me Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs
	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 min	0:05:00									
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.01 0.88	0.19
	0:20:00	0.00	0.00	2.21	3.02	3.61	2.32	2.77	2.90	3.93
	0:25:00	0.00	0.00	6.84	10.28	13.24	6.42	8.22	9.22	13.63
	0:30:00	0.00	0.00	11.56	17.17	21.81	21.20	30.19	37.45	60.06
	0:35:00	0.00	0.00	13.31	19.38	24.37	36.53	51.53	68.30	106.83
	0:40:00	0.00	0.00	13.29	19.14	24.06	43.28	60.70	82.43	127.49
	0:45:00	0.00	0.00	12.57	17.98	22.51	43.90	61.45	85.01	132.35
	0:50:00	0.00	0.00	11.64	16.64 15.49	20.75	42.00	58.29 53.86	81.36 75.47	127.98
	0:55:00 1:00:00	0.00	0.00	10.85		19.26	38.96			119.59 111.45
	1:05:00	0.00	0.00	10.15 9.52	14.42 13.44	17.93 16.79	35.90 33.17	49.52 45.60	70.00 65.06	104.31
	1:10:00	0.00	0.00	8.96	12.71	16.05	30.40	41.73	59.52	95.89
	1:15:00	0.00	0.00	8.42	12.03	15.46	27.99	38.44	54.32	87.69
·	1:20:00	0.00	0.00	7.88	11.28	14.65	25.79	35.33	49.47	79.73
	1:25:00	0.00	0.00	7.34	10.49	13.59	23.60	32.22	44.70	71.79
	1:30:00	0.00	0.00	6.79	9.69	12.44	21.40	29.10	40.13	64.24
	1:35:00	0.00	0.00	6.27	8.93	11.32	19.25	26.03	35.71	56.97
	1:40:00	0.00	0.00	5.80	8.15	10.32	17.16	23.07	31.46	50.01
	1:45:00	0.00	0.00	5.49	7.60	9.69	15.30	20.46	27.72	44.02
	1:50:00	0.00	0.00	5.29	7.19	9.21	14.00	18.67	25.06	39.74
	1:55:00	0.00	0.00	5.01	6.80	8.75	13.02	17.30	23.03	36.32
	2:00:00 2:05:00	0.00	0.00	4.69 4.29	6.41 5.88	8.24	12.16	16.09	21.24 19.36	33.29 30.22
	2:10:00	0.00	0.00	3.84	5.88	7.55	11.14 10.04	14.71 13.25	19.36	27.12
	2:15:00	0.00	0.00	3.41	4.68	5.99	8.96	11.81	15.51	24.13
	2:20:00	0.00	0.00	3.00	4.12	5.25	7.92	10.42	13.70	21.28
·	2:25:00	0.00	0.00	2.62	3.58	4.55	6.93	9.09	11.97	18.58
	2:30:00	0.00	0.00	2.26	3.08	3.90	5.98	7.81	10.28	15.92
	2:35:00	0.00	0.00	1.91	2.59	3.29	5.05	6.56	8.62	13.31
	2:40:00	0.00	0.00	1.58	2.13	2.70	4.14	5.34	6.99	10.74
	2:45:00	0.00	0.00	1.26	1.69	2.14	3.27	4.15	5.39	8.22
	2:50:00	0.00	0.00	0.98	1.30	1.64	2.43	3.01	3.85	5.80
	2:55:00	0.00	0.00	0.77	1.02	1.32	1.68	2.01	2.50	3.79
	3:00:00 3:05:00	0.00	0.00	0.64	0.85	1.10 0.93	1.21 0.94	1.44	1.70 1.26	2.62
	3:10:00	0.00	0.00	0.34	0.72	0.93	0.94	0.88	0.95	1.90
	3:15:00	0.00	0.00	0.39	0.51	0.67	0.61	0.00	0.74	1.04
·	3:20:00	0.00	0.00	0.33	0.43	0.56	0.50	0.58	0.57	0.78
	3:25:00	0.00	0.00	0.28	0.36	0.47	0.41	0.47	0.44	0.57
	3:30:00	0.00	0.00	0.23	0.30	0.38	0.33	0.38	0.34	0.43
	3:35:00	0.00	0.00	0.19	0.24	0.31	0.27	0.30	0.28	0.35
	3:40:00	0.00	0.00	0.15	0.20	0.24	0.22	0.24	0.23	0.28
	3:45:00	0.00	0.00	0.12	0.15	0.19	0.17	0.19	0.18	0.22
	3:50:00	0.00	0.00	0.09	0.12	0.15	0.13	0.15	0.14	0.17
	3:55:00 4:00:00	0.00	0.00	0.07	0.09	0.11	0.10	0.11	0.10	0.13
	4:00:00	0.00	0.00	0.05	0.06	0.08	0.07	0.08	0.07	0.09
	4:10:00	0.00	0.00	0.02	0.04	0.03	0.03	0.03	0.03	0.03
	4:15:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.01	0.02
	4:20:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


MHFD-Detention, Version 4.06 (July 2022)

Project:	Mayberry Fi	iling 3	MHF	D-Detention, Versio	n 4.06 (Jul	y 2022)							
		-	ONDITION										
ZONE 3	2	_				ULTI	MATE C	ONDITIC	N IS INC	CLUDED	TO PRO	JECT R	ELEASE
		T				RATE	ES IN TH	IE FULL	Y DEVEL	OPED C	ONDITI	ON. DOV	VNSTRE/
wacy +		Lon VE				CHA	NNELS /	AND RIP	RAP AR	E SIZED	FOR TH	IESE RE	LEASE R
	1 AND 2	0RIFICI	E	Depth Increment =		ft Optional		1	1	Optional			
POOL Example Zone		n (Retentio	n Pond)	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Watershed Information				Description Top of Micropool	(ft) 	Stage (ft) 0.00	(ft) 	(ft) 	(ft ²)	Area (ft ²) 170	(acre) 0.004	(ft 3)	(ac-ft)
Selected BMP Type =	EDB			6027		1.00				3,344	0.077	1,757	0.040
Watershed Area =	100.20	acres		6028		2.00				25,396	0.583	16,127	0.370
Watershed Length =	2,867	ft		6029		3.00				50,286	1.154	53,968	1.239
Watershed Length to Centroid =	1,433	ft		6030		4.00				72,956	1.675	115,589	2.654
Watershed Slope =	0.010	ft/ft		6031		5.00				95,393	2.190	199,763	4.586
Watershed Imperviousness =	45.00%	percent		6032		6.00				118,525	2.721	306,722	7.041
Percentage Hydrologic Soil Group A =	100.0%	percent		6033		7.00				141,085	3.239	436,527	10.021
Percentage Hydrologic Soil Group B =	0.0%	percent		6034		8.00				164,866	3.785	589,503	13.533
Percentage Hydrologic Soil Groups C/D = Target WQCV Drain Time =	0.0%	percent hours		6035		9.00				191,669	4.400	767,770	17.626
Location for 1-hr Rainfall Depths =		liours											
After providing required inputs above in		rainfall											
depths, click 'Run CUHP' to generate run	off hydrograph	hs using											
the embedded Colorado Urban Hydro	ograph Proced	ure.	Optional User Overrides										
Water Quality Capture Volume (WQCV) =	1.611	acre-feet	acre-feet										
Excess Urban Runoff Volume (EURV) =	5.048	acre-feet	acre-feet										
2-yr Runoff Volume (P1 = 1.19 in.) =	3.827	acre-feet	1.19 inches								<u> </u>		
5-yr Runoff Volume (P1 = 1.5 in.) =	5.115	acre-feet	1.50 inches										
10-yr Runoff Volume (P1 = 1.75 in.) = 25-yr Runoff Volume (P1 = 2 in.) =	6.145 7.908	acre-feet acre-feet	1.75 inches 2.00 inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	9.626	acre-feet	2.25 inches										
100-yr Runoff Volume (P1 = 2.52 in.) =		acre-feet	2.52 inches										
500-yr Runoff Volume (P1 = 3.14 in.) =	16.637	acre-feet	3.14 inches										
Approximate 2-yr Detention Volume =	3.231	acre-feet							-				
Approximate 5-yr Detention Volume =	4.265	acre-feet											
Approximate 10-yr Detention Volume =	5.231	acre-feet											
Approximate 25-yr Detention Volume =	6.442	acre-feet											
Approximate 50-yr Detention Volume =	7.233	acre-feet											
Approximate 100-yr Detention Volume =	8.260	acre-feet											
Define Zones and Basin Geometry													
Zone 1 Volume (WQCV) =	1.611	acre-feet											
Zone 2 Volume (EURV - Zone 1) =	3.437	acre-feet											
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	4.018	acre-feet											
Total Detention Basin Volume =	9.065	acre-feet											
Initial Surcharge Volume (ISV) =	user	ft ³											
Initial Surcharge Depth (ISD) =	user	ft											
Total Available Detention Depth (H _{total}) = Depth of Trickle Channel (H _{TC}) =	user	ft											
Slope of Trickle Channel (S_{TC}) =	user	ft/ft											
Slopes of Main Basin Sides (S _{main}) =	user	H:V											
Basin Length-to-Width Ratio (R _{L/W}) =	user												
Initial Surcharge Area (A _{ISV}) =	user	ft ²											
Surcharge Volume Length $(L_{ISV}) =$	user	ft											
Surcharge Volume Width (W _{ISV}) =	user	ft											
Depth of Basin Floor (H _{FLOOR}) =	user	ft									<u> </u>		
Length of Basin Floor (L _{FLOOR}) = Width of Basin Floor (W) =		ft ft											
Width of Basin Floor (W _{FLOOR}) = Area of Basin Floor (A _{FLOOR}) =	user	ft ft ²											
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³									-	-	
Depth of Main Basin (H _{MAIN}) =	user	ft											
Length of Main Basin $(L_{MAIN}) =$	user	ft											
Width of Main Basin (W_{MAIN}) =	user	ft											
Area of Main Basin (A _{MAIN}) =	-	ft ²									1	L	
Volume of Main Basin (V _{MAIN}) =	user	ft ³											
Calculated Total Basin Volume (V_{total}) =	user	acre-feet											
												L	


POND D - MHFD-Detention .xlsm, Basin

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

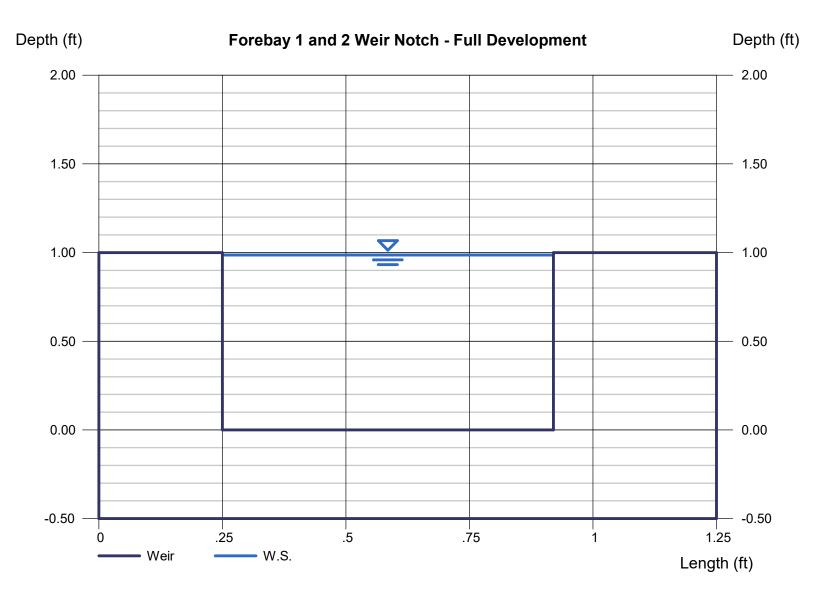
	DE	TENTION	BASIN OUT	LET STRU	CTURE DES	SIGN			
Proiect:	Mayberry Filing 3		IHFD-Detention, V						
Basin ID:									
ZONE 3 ZONE 2 -ZONE 1				Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	-		
VOLUME_EURV Wacv			Zone 1 (WQCV)	3.31	1.611	Orifice Plate	_		
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	5.21	3.437	Orifice Plate			
PERMANENT ORIFICES			Z3 (100+1/2WQCV)	6.70	4.018	Weir&Pipe (Restrict)			
Example Zone C	onfiguration (Rete			Total (all zones)	9.065				
ser Input: Orifice at Underdrain Outlet (typically	-	T					Calculated Paramet		
Underdrain Orifice Invert Depth =		· ·	the filtration media	surface)		drain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrai	n Orifice Centroid =	N/A	feet	
ser Input: Orifice Plate with one or more orifice	s or Elliptical Slot W	eir (typically used to	drain WOCV and/o	r EURV in a sedime	ntation BMP)		Calculated Paramet	ters for Plate	
Centroid of Lowest Orifice =		T	bottom at Stage =			ice Area per Row =		ft ²	
Depth at top of Zone using Orifice Plate =	4.97	ft (relative to basin	bottom at Stage =	0 ft)	-	iptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches			Ellipt	tical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	sq. inches			E	Elliptical Slot Area =	N/A	ft ²	
ser Input: Stage and Total Area of Each Orifice	Row (numbered fro	m lowest to highest	<u>.)</u>						_
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.66	3.30						4
Orifice Area (sq. inches)	6.00	8.30	8.30						1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)	Row 9 (optional)	NOW TO (Optional)	NOW 11 (Optional)	NOW 12 (Optional)	NOW 15 (optional)	Row 14 (optional)	ROW 15 (Optional)	NOW 10 (Optional)	1
Orifice Area (sq. inches)									1
	H	ł	ł	ł	ł	ł		ł	4
ser Input: Vertical Orifice (Circular or Rectangu	<u>ar)</u>	0	2				Calculated Paramet	ters for Vertical Orifi	ice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A		bottom at Stage =	0 ft) Ve	rtical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A								1
Vertical Orifice Diameter =		N/A N/A		bottom at Stage =	0 ft) Vertica	al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches	bottom at Stage =	0 ft) Vertica	al Orifice Centroid =	N/A	N/A	feet
	N/A	N/A	inches	-		al Orifice Centroid =			1
	N/A Sloped Grate and O	N/A utlet Pipe OR Recta	inches	-		al Orifice Centroid =	Calculated Paramet	ters for Overflow We]
ser Input: Overflow Weir (Dropbox with Flat or	N/A Sloped Grate and O Zone 3 Weir	N/A utlet Pipe OR Recta Not Selected	inches	Weir and No Outlet	Pipe)		Calculated Paramet	ters for Overflow We Not Selected	<u>eir</u>
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho =	N/A Sloped Grate and O	N/A utlet Pipe OR Recta	inches	Weir and No Outlet	<u>Pipe)</u> ft) Height of Grat	e Upper Edge, H _t =	Calculated Paramet	ters for Overflow We]
ser Input: Overflow Weir (Dropbox with Flat or	N/A Sloped Grate and O Zone 3 Weir 5.50	N/A utlet Pipe OR Recta Not Selected N/A	inches ngular/Trapezoidal ' ft (relative to basin t	Weir and No Outlet	<u>Pipe)</u> ft) Height of Grat	e Upper Edge, H _t = Veir Slope Length =	Calculated Paramet	ters for Overflow We Not Selected N/A	<u>eir</u> feet
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00	N/A utlet Pipe OR Recta Not Selected N/A N/A	inches ngular/Trapezoidal ' ft (relative to basin t feet	Weir and No Outlet	Pipe)	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area =	Calculated Paramet Zone 3 Weir 5.50 6.00	ters for Overflow We Not Selected N/A N/A	<u>eir</u> feet
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A	inches ngular/Trapezoidal 1 ft (relative to basin t feet H:V	Weir and No Outlet	Pipe) ft) Height of Grat Overflow V irate Open Area / 10	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51	ters for Overflow We Not Selected N/A N/A N/A	eir feet feet
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A	inches ngular/Trapezoidal 1 ft (relative to basin t feet H:V	Weir and No Outlet	Pipe) tt) Height of Grat Overflow V irate Open Area / 10 overflow Grate Open	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris =	Calculated Paramete Zone 3 Weir 5.50 6.00 8.51 29.23	ters for Overflow We Not Selected N/A N/A N/A N/A	<u>eir</u> feet feet ft ²
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50%	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A N/A	inches ngular/Trapezoidal ' ft (relative to basin t feet H:V feet %	Weir and No Outlet	Pipe) t) Height of Grat Overflow V irate Open Area / 11 Overflow Grate Open Overflow Grate Open	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A	eir feet feet ft ² ft ²
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, Res	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A N/A Strictor Plate, or Rec	inches ngular/Trapezoidal ' ft (relative to basin t feet H:V feet %	Weir and No Outlet	Pipe) t) Height of Grat Overflow V irate Open Area / 11 Overflow Grate Open Overflow Grate Open	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 rs for Outlet Pipe w/	ters for Overflow We Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla	eir feet feet ft ² ft ²
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor	N/A utlet Pipe OR Recta N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	inches ngular/Trapezoidal 1 ft (relative to basin t feet H:V feet % tangular Orifice)	Weir and No Outlet pottom at Stage = 0 t C	Pipe) tt) Height of Grat Overflow V overflow Grate Oper Overflow Grate Oper Overflow Grate Oper Grate Oper	e Upper Edge, H _t = Veir Slope Length = 900-yr Orifice Area = Area w/ Debris = en Area w/ Debris = alculated Parameter	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor	ters for Overflow We Not Selected N/A N/A N/A N/A Flow Restriction Pla Not Selected	eir feet feet ft ² ft ²
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate = Depth to Invert of Outlet Pipe =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% (Circular Orifice, Res	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A N/A Strictor Plate, or Rec	inches ngular/Trapezoidal 1 ft (relative to basin t feet H:V feet % tangular Orifice)	Weir and No Outlet	Pipe) ft) Height of Grat Overflow V irate Open Area / 10 vverflow Grate Open Overflow Grate Open Ci = 0 ft) 0	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 rs for Outlet Pipe w/	ters for Overflow We Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla	eir feet feet ft ² ft ²
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A Strictor Plate, or Recc Not Selected N/A	inches ngular/Trapezoidal ! ft (relative to basin t feet H:V feet % tangular Orifice) ft (distance below ba	Weir and No Outlet	Pipe) ft) Height of Grat Overflow V irate Open Area / 10 vverflow Grate Open Overflow Grate Open Ci = 0 ft) 0	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = n Area w/ Debris = alculated Parameter hutlet Orifice Area = et Orifice Centroid =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43	ters for Overflow Wy Not Selected N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	eir feet feet ft ² ft ² ft ²
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate = Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A Strictor Plate, or Recc Not Selected N/A	inches ngular/Trapezoidal ! ft (relative to basin l feet H:V feet % tangular Orifice) ft (distance below ba inches	Weir and No Outlet	Pipe) t) Height of Grat Overflow V irate Open Area / 10 verflow Grate Open Overflow Grate Open Courtie = 0 ft) O Outle	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = n Area w/ Debris = alculated Parameter hutlet Orifice Area = et Orifice Centroid =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55	ters for Overflow We Not Selected N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A	eir feet feet ft ² ft ² tte ft ²
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Ser Input: Emergency Spillway (Rectangular or 1	N/A Sloped Grate and Q Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 rrapezoidal)	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ngular/Trapezoidal 1 ft (relative to basin t feet H:V feet % tangular Orifice) ft (distance below ba inches inches	Weir and No Outlet bottom at Stage = 0 1 C C asin bottom at Stage Half-Cer	Pipe) ft) Height of Grat Overflow V irate Open Arate Open Overflow Grate Open Overflow Grate Open Co Co Co Co Co Co Co Co Co Co	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet	ters for Overflow Wo Not Selected N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A ters for Spillway	eir feet feet ft ² ft ² tte ft ²
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75	N/A utlet Pipe OR Recta N/A N/A N/A N/A N/A N/A N/A N/A	inches ngular/Trapezoidal ! ft (relative to basin l feet H:V feet % tangular Orifice) ft (distance below ba inches	Weir and No Outlet bottom at Stage = 0 1 C C asin bottom at Stage Half-Cer	Pipe) Tt) Height of Grat Overflow V irate Open Area / 10 verflow Grate Open Overflow Grate Open Contect = 0 ft) O Outle tral Angle of Restrict Spillway D	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = n Area w/ Debris = alculated Parameter hutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth=	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97	ters for Overflow We Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla N/A N/A N/A N/A N/A ters for Spillway feet	eir feet feet ft ² ft ² tte ft ²
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Frapezoidal) 6.75 50.00	N/A utlet Pipe OR Recta N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Rec N/A N/A I trictor Plate, or Rec N/A N/A I ft (relative to basin feet	inches ngular/Trapezoidal 1 ft (relative to basin t feet H:V feet % tangular Orifice) ft (distance below ba inches inches	Weir and No Outlet bottom at Stage = 0 1 C C asin bottom at Stage Half-Cer	Pipe) The Height of Grat Overflow V rate Open Area / 11 Overflow Grate Open Overflow Grate Open Overflow Grate Open Co Co Co Co Co Co Co Co Co Co	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = an Area w/ Debris = alculated Parameter tutlet Orifice Area = tt Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 rs for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72	ters for Overflow We Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla N/A N/A N/A N/A ters for Spillway feet feet	eir feet feet ft ² ft ² tte ft ²
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Concular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	inches ngular/Trapezoidal 1 ft (relative to basin t feet H:V feet % tangular Orifice) ft (distance below ba inches inches	Weir and No Outlet bottom at Stage = 0 1 C C asin bottom at Stage Half-Cer	Pipe) Tt) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open C C = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at	e Upper Edge, H _t = Veir Slope Length = Oo-yr Orifice Area = Area w/ Debris = alculated Parameter butlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22	ters for Overflow We Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A ters for Spillway feet feet acres	eir feet feet ft ² ft ² tte ft ²
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Frapezoidal) 6.75 50.00	N/A utlet Pipe OR Recta N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Rec N/A N/A I trictor Plate, or Rec N/A N/A I ft (relative to basin feet	inches ngular/Trapezoidal 1 ft (relative to basin t feet H:V feet % tangular Orifice) ft (distance below ba inches inches	Weir and No Outlet bottom at Stage = 0 1 C C asin bottom at Stage Half-Cer	Pipe) Tt) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open C C = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = an Area w/ Debris = alculated Parameter tutlet Orifice Area = tt Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22	ters for Overflow We Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla N/A N/A N/A N/A ters for Spillway feet feet	eir feet feet ft ² ft ² tte ft ²
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes = Spillway End Slopes = Freeboard above Max Water Surface =	N/A Sloped Grate and Q Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Concular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.00	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	Inches ngular/Trapezoidal 1 ft (relative to basin t feet H:V feet % tangular Orifice) ft (distance below ba inches inches bottom at Stage =	Weir and No Outlet pottom at Stage = 0 f C asin bottom at Stage Half-Cer 0 ft)	Pipe) Tt) Height of Grat Overflow V rate Open Area / 10 Verflow Grate Open Overflow Grate Open Overflow Grate Open C C = 0 ft) O Outle tral Angle of Restrict Spillway I Stage at Basin Volume at	e Upper Edge, H, = Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = en Area w/ Debris = alculated Parameter butlet Orifice Area = et Orifice Area = to Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38	ters for Overflow We Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft	eir feet feet ft ² ft ² tte ft ²
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Ser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outled Hydrograph Results	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.00	N/A utlet Pipe OR Recta N/A N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or Rec Not Selected N/A N/A ft (relative to basin feet H:V feet ide the default CUH	Inches Inches Inches Inches It (relative to basin the feet It:V feet It:V feet It:V feet It (distance below basin the feet It (distance below basin the basi	Weir and No Outlet bottom at Stage = 0 1 C C asin bottom at Stage Half-Cer 0 ft)	Pipe). The Height of Grat Overflow V irate Open Area / 11 iverflow Grate Open Overflow Grate Open Overflow Grate Open Comparison of Comparison Comparison of Compariso	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = alculated Parameter butlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe W/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum	ters for Overflow We Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	eir feet ft² ft² ft² ft² feet radians
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outled Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	N/A Sloped Grate and Q Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.00	N/A utlet Pipe OR Recta N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or Rec Not Selected N/A N/A trictor to basin feet H:V feet EURV N/A	Inches Inches Inches Inches It (relative to basin the feet It:V feet % tangular Orifice) It (distance below basin the feet inches bottom at Stage = It Phydrographs and 2 Year 1.19	Weir and No Outlet pottom at Stage = 0 1 C asin bottom at Stage Half-Cer 0 ft) Trunoff volumes by c 5 Year 1.50	Pipe) tt) Height of Grat Overflow Grate Open Area / 10 Verflow Grate Open Overflow Grate Open Overflow Grate Open Content	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = alculated Parameter butlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Iop of Freeboard = <i>In the Inflow Hydro</i> 25 Year 2.00	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum S0 Year 2.25	ters for Overflow We Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52	eir feet feet ft ² ft ² feet radians
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outlet Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Rundf Volume (acre-ft) =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.00 The user can over WQCV N/A	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or Rec Not Selected N/A N/A (t (relative to basin feet H:V feet EURV N/A 5.048	Inches Inches Inches Inches It (relative to basin the feet It: (relative to basin the feet It: (relative to basin the feet It: (relative to basin the feet It (distance below basin the feet It (distance below basin the belo	Weir and No Outlet pottom at Stage = 0 1 C asin bottom at Stage Half-Cer 0 ft) runoff volumes by c 5 Year 1.50 5.115	Pipe) The Height of Grat Overflow V orate Open Area / 11 Overflow Grate Open Overflow Grate Open Overflow Grate Open Contention of the State of the State of Restrict Spillway I Stage at Basin Area at Basin Volume at Contention of the State State of the	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = alculated Parameter Nutlet Orifice Area = to Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2 Stear 2.00 7.908	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum 50 Year 2.25 9.626	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	eir feet feet ft ² ft ² ft ² feet radians
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Outlet Pipe Diameter = Spillway (Rectangular or Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (care-ft) = Inflow Hydrograph Volume (care-ft) =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.00 The user can overn WQCV N/A 1.611 N/A	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or Rect N/A N/A Science N/A N/A N/A N/A N/A N/A N/A N/A N/A	Inches In	Weir and No Outlet pottom at Stage = 0 1 C asin bottom at Stage Half-Cer 0 ft) 7 Year 1.50 5.115 5.115	Pipe). Tt) Height of Grat Overflow V rate Open Area / 10 Verflow Grate Open Overflow Grate Open Overflow Grate Open C C = 0 ft) O Outle Atral Angle of Restrict Spillway D Stage at Basin Volume at C C C C C C C C C C C C C	e Upper Edge, H _t = Veir Slope Length = Oo-yr Orifice Area = Area w/ Debris = alculated Parameter butlet Orifice Area = tt Orifice Centroid = tt Orifice Centroid = tt Orifice Centroid = ttor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>In the Inflow Hydro</u> <u>25 Year</u> <u>2.00</u> 7.908	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum 50 Year 2.25 9.626	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 11.845	feet feet ft ² ft ² ft ² ft ² feet radians
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Outlet Pipe Diameter = Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Linflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Frapezoidal) 6.75 50.00 4.00 1.00	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or Rec Not Selected N/A N/A feet H:V feet ide the default CU/H EURV N/A S.048 N/A N/A N/A	Inches In	Weir and No Outlet pottom at Stage = 0 1 C C asin bottom at Stage Half-Cer 0 ft) 7 Year 1.50 5.115 5.115 1.2	Pipe). The Height of Grat Overflow V rate Open Area / 11 Overflow Grate Open Overflow Grate Open Overflow Grate Open Contention of the Contention of the Content Contention of the Contention of the Conte	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = alculated Parameter utlet Orifice Area = tt Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>10 the Inflow Hydro</u> 25 Year 2.00 7.908 7.908 15.6	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 rs for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 S0 Year 2.25 9.626 9.626 31.3	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acres acres 11.845 11.845 51.8	eir feet feet ft ² ft ² ft ² fteet radians 500 Yea 3.14 16.637 16.637 94.2
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Length Slopes = Freeboard above Max Water Surface = Outlet Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.00 The user can overr N/A N/A N/A N/A N/A N/A	N/A utlet Pipe OR Recta N/A N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or Rec Not Selected N/A N/A trictor Plate, or Recta test test N/A	Inches Inches Inches Inches Inches It (relative to basin I feet It:V feet % tangular Orifice) It (distance below basinches bottom at Stage = P hydrographs and 2 Year 1.19 3.827 3.827 0.6 0.01	Weir and No Outlet pottom at Stage = 0 1 C asin bottom at Stage Half-Cer 0 ft) runoff volumes by c 5 Year 1.50 5.115 5.115 1.2 0.01	Pipe). t) Height of Grat Overflow V Grate Open Area / 11 Verflow Grate Open Overflow Grate Open Overflow Grate Open C = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at : Basin Area at : Basin Area at : Basin Volume at Entering new values 10 Year 1.75 6.145 6.145 1.7 0.02	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = alculated Parameter butlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = <u>10 the Inflow Hydro</u> <u>2.00</u> 7.908 7.908 1.5.6 0.16	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum 9.626 9.626 31.3	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 11.845 51.8 0.52	eir feet feet ft ² ft ² feet radians 500 Yea 3.14 16.637 16.637 94.2
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe wether Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outlet Hydrograph Neulus CHHP Rundr Volume (acre-ft) = CHHP Prodevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.60 The user can overr WQCV N/A N/A N/A N/A	N/A utlet Pipe OR Recta Not Selected N/A N/A N/A N/A N/A N/A N/A trictor Plate, or Rec Not Selected N/A trictor Plate, or Rec Not Selected N/A N/A trictor Plate or Basin feet H:V feet EURV N/A EURV N/A S.048 N/A	Inches Inches Inches Inches Inches It (relative to basin the feet It (distance below basin the feet It (distance basin th	Weir and No Outlet pottom at Stage = 0 1 C C asin bottom at Stage Half-Cer 0 ft) runoff volumes by c 5 Year 1.50 5.115 5.115 1.2 0.01 62.3	Pipe) t) Height of Grat Overflow V rate Open Area / 11 Overflow Grate Open Overflow Grate Open Overflow Grate Open C = 0 ft) O Outle tral Angle of Restrict Spillway I Stage at Basin Area at Basin Volume at 	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = alculated Parameter Nutlet Orifice Area = tt Orifice Centroid = ttor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 7.908 7.908 7.908 15.6 0.16 107.5	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum 50 Year 2.25 9.626 9.626 31.3 0.31 134.9	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	eir feet feet ft ² ft ² feet radians 500 Yea 3.14 16.637 16.637 16.637 94.2 94.2 94.2 94.2
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfail Depth (in) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.00 The user can overr N/A N/A N/A N/A N/A N/A	N/A utlet Pipe OR Recta N/A N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or Rec Not Selected N/A N/A trictor Plate, or Recta test test N/A	Inches Inches Inches Inches Inches It (relative to basin I feet It:V feet % tangular Orifice) It (distance below basinches bottom at Stage = P hydrographs and 2 Year 1.19 3.827 3.827 0.6 0.01	Weir and No Outlet pottom at Stage = 0 1 CC asin bottom at Stage Half-Cer 0 ft) runoff volumes by c 5 Year 1.50 5.115 5.115 5.115 1.2 0.01 62.3 1.1	Pipe). t) Height of Grat Overflow V irate Open Area / 11 iverflow Grate Open Overflow Grate Open Overflow Grate Open Comparison of the open Co	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = alculated Parameter hutlet Orifice Area = et Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>10 pof Freeboard =</u> <u>25 Year</u> <u>2000</u> 7.908 7.908 7.908 15.6 0.16 0.16 0.9	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum 9.626 9.626 31.3 0.31 134.9 26.6 0.9	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	eir feet feet ft ² ft ² feet radians 500 Yea 3.14 16.637 16.637 94.2
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outlet Hydrograph Results Design Storm Return Period = Other Rundf Volume (acreft) = LOHP Rundf Volume (acreft) = CUHP Rrodevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Structure Controlling Flow =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.00 The user can overr WQCV N/A N/A N/A N/A N/A N/A N/A	N/A utiet Pipe OR Recta N/A	Inches In	Weir and No Outlet pottom at Stage = 0 1 CO asin bottom at Stage Half-Cer 0 ft) Tunoff volumes by e 5 Year 1.50 5.115 5.115 5.115 1.2 0.01 62.3 1.3 1.1 Plate	Pipe). Tt) Height of Grat Overflow V rate Open Area / 11 Overflow Grate Open Overflow Grate Open Overflow Grate Open C = 0 ft) 0 Outle tral Angle of Restrict Spillway I Stage at Basin Area at Basin Volume at I.75 6.145 6.145 1.77 0.02 74.4 1.82 1.1 Overflow Weir 1	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris = alculated Parameter utlet Orifice Area = tt Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>10 the Inflow Hydro</u> 25 Year 2.00 7.908 7.908 15.6 0.16 107.5 13.5 0.9 Overflow Weir 1	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 's for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum 50 Year 2.25 9.626 9.626 31.3 134.9 26.6 0.9 Overflow Weir 1	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft 11.845 11.845 11.845 11.845 11.845 6.9.4 39.6 0.8 Outlet Plate 1	eir feet feet ft ² ft ² ft ² ft ² feet radians 500 Yea 3.14 16.637 16.637 94.2 90.2 90.2 90.2 1.10 Spillwa
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Prodevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Untflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.00 The user can overr N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A utlet Pipe OR Recta N/A N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or Rec Not Selected N/A N/A trictor Plate, or Recta trictor Plate, or Recta N/A N/A trictor Plate or Basin feet ft (relative to basin feet EURV N/A S.048 N/A	Inches In	Weir and No Outlet sottom at Stage = 0 I C C asin bottom at Stage Half-Cer 0 ft) runoff volumes by c 5 Year 1.15 5.115 5.115 1.2 0.01 62.3 1.3 1.1 Plate N/A	Pipe). ft) Height of Grat Overflow V Grate Open Area / 11 Verflow Grate Open Overflow Grate Open Overflow Grate Open C = 0 ft) O Stage at Basin Area at Basin Volume at Basin Volume at Entering new values 1.75 6.145 6.145 1.7 0.02 74.4 1.82 1.1 Overflow Weir 1 0.0	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = alculated Parameter butlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>10 the Inflow Hydro</u> <u>25 Year</u> <u>2.00</u> 7.908 7.908 15.6 <u>0.16</u> 107.5 13.5 0.9 Overflow Weir 1 0.4	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum 9.626 9.626 9.626 31.3 0.31 134.9 26.6 0.9 Overflow Weir 1 0.9	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	eir feet feet ft ² ft ² feet radians 500 Yea 3.14 16.637 16.637 94.2 0.94 238.9 90.2 1.0 Spillway 1.4
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Rundf Volume (acreft) = CUHP ProdevElopment Peak Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.00 The user can overr WQCV N/A N/A N/A N/A N/A N/A N/A	N/A utiet Pipe OR Recta N/A	Inches In	Weir and No Outlet pottom at Stage = 0 1 CO asin bottom at Stage Half-Cer 0 ft) Tunoff volumes by e 5 Year 1.50 5.115 5.115 5.115 1.2 0.01 62.3 1.3 1.1 Plate	Pipe). Tt) Height of Grat Overflow V rate Open Area / 11 Overflow Grate Open Overflow Grate Open Overflow Grate Open C = 0 ft) 0 Outle tral Angle of Restrict Spillway I Stage at Basin Area at Basin Volume at I.75 6.145 6.145 1.77 0.02 74.4 1.82 1.1 Overflow Weir 1	e Upper Edge, H _t = Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris = alculated Parameter utlet Orifice Area = tt Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>10 the Inflow Hydro</u> 25 Year 2.00 7.908 7.908 15.6 0.16 107.5 13.5 0.9 Overflow Weir 1	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 's for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum 50 Year 2.25 9.626 9.626 31.3 134.9 26.6 0.9 Overflow Weir 1	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft 11.845 11.845 11.845 11.845 11.845 6.9.4 39.6 0.8 Outlet Plate 1	eir feet feet ft ² ft ² feet radians 500 Yea 3.14 16.637 16.637 94.2 94.2 94.2 38.9 90.2 1.0 Spillway 1.4 N/A
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Edge Strate Strate Strate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Invert Stage Spillway Inver Stage Spillway Invert Stage	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.611 N/A N/A </td <td>N/A utlet Pipe OR Recta N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>Inches Inches In</td> <td>Weir and No Outlet pottom at Stage = 0 C asin bottom at Stage Half-Cer 0 ft) runoff volumes by e 5 Year 1.50 5.115 5.115 1.2 0 1.3 1.1 Plate N/A 71 77</td> <td>Pipe). t) Height of Grat Overflow V irate Open Area / 11 Verflow Grate Open Overflow Grate Open Overflow Grate Open C = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Volume at Basin Volume at Pasin Volume at Pas</td> <td>e Upper Edge, H_t = Veir Slope Length = 0/-yr Orfifce Area = n Area w/o Debris = alculated Parameter hutlet Orfifce Area = et Orfifce Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>10 the Inflow Hydro</u> 25 Year 2.00 7.908 7.908 7.908 7.908 15.6 0.16 107.5 13.5 0.9 0.9 Overflow Weir 1 0.4 N/A 78 85</td> <td>Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum 50 Year 2.25 9.626 3.1.3 0.31 134.9 26.6 0.9 N/A 77 85</td> <td>ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>eir feet feet ft² ft² feet radians 500 Yeau a.14 16.637 94.2 94.2 99.0.2 1.0 Spillway 1.0 Spillway 1.0 Spillway 72 82</td>	N/A utlet Pipe OR Recta N/A	Inches In	Weir and No Outlet pottom at Stage = 0 C asin bottom at Stage Half-Cer 0 ft) runoff volumes by e 5 Year 1.50 5.115 5.115 1.2 0 1.3 1.1 Plate N/A 71 77	Pipe). t) Height of Grat Overflow V irate Open Area / 11 Verflow Grate Open Overflow Grate Open Overflow Grate Open C = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Volume at Basin Volume at Pasin Volume at Pas	e Upper Edge, H _t = Veir Slope Length = 0/-yr Orfifce Area = n Area w/o Debris = alculated Parameter hutlet Orfifce Area = et Orfifce Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = <u>10 the Inflow Hydro</u> 25 Year 2.00 7.908 7.908 7.908 7.908 15.6 0.16 107.5 13.5 0.9 0.9 Overflow Weir 1 0.4 N/A 78 85	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 graphs table (Colum 50 Year 2.25 9.626 3.1.3 0.31 134.9 26.6 0.9 N/A 77 85	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	eir feet feet ft ² ft ² feet radians 500 Yeau a.14 16.637 94.2 94.2 99.0.2 1.0 Spillway 1.0 Spillway 1.0 Spillway 72 82
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage Spillway End Slopes = Freeboard above Max Water Surface = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acce) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Max Velocity through Grate 1 (fps) Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	N/A Sloped Grate and O Zone 3 Weir 5.50 7.00 0.00 6.00 Type C Grate 50% Circular Orifice, Res Zone 3 Restrictor 0.00 36.00 17.60 Trapezoidal) 6.75 50.00 4.00 1.00 The user can overn WQCV N/A N/A <tr td=""></tr>	N/A utilet Pipe OR Recta N/A	Inches In	Weir and No Outlet pottom at Stage = 0 1 C C asin bottom at Stage Half-Cer 0 ft) 7unoff volumes by c 5 Year 1.50 5.115 5.115 1.2 0.01 62.3 1.3 1.3 1.3 1.3 1.3 N/A N/A N/A 71	Pipe). tt) Height of Grat Overflow V irate Open Area / 10 Verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open CO = 0 ft) O Outle thral Angle of Restrict Spillway L Stage at Basin Volume at Entering new values 10 Year 1.75 6.145 6.145 1.7 0.02 74.4 1.82 1.1 Overflow Weir I 0.0 N/A 78	e Upper Edge, H _t = Veir Slope Length = Vo-yr Orifice Area = a Area w/o Debris = alculated Parameter utlet Orifice Area = to Orifice Area	Calculated Paramet Zone 3 Weir 5.50 6.00 8.51 29.23 14.62 s for Outlet Pipe w/ Zone 3 Restrictor 3.43 0.85 1.55 Calculated Paramet 0.97 8.72 4.22 16.38 orgaphs table (Colum 50 Year 2.25 9.626 31.3 0.31 134.9 26.6 0.9 N/A N/A	ters for Overflow We Not Selected N/A N/A N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 11.845 11.845 51.8 0.52 169.4 39.6 0.8 0.018 13 13 0.75	eir feet feet ft ² ft ² ft ² ft ² feet radians 500 Year 3.637 94.2 0.94 238.9 90.2 1.0 5pillway 1.4 N/A 72

Extended Detention Basin Interim Condition - Forebay 1 Sizing Calculations (DP21)

SEDIMENT FOREBAY S	SIZING	
Contributing Tributary Area	47.90	AC
Imperviousness	33.0%	
Contributing Area WQCV	0.161	watershed inches
Required WQCV	0.641 27,909	AC-ft ft ³
Contributing Impervious Acres	> 20	Acres
Req. % of WQCV	3%	
Minimum Forebay Volume	837	ft ³
Maximum Forebay Depth	2.5	ft
Provided Forebay Depth	1.00	ft
Provided Forebay Volume	1,360	ft ³
FOREBAY RELEASE RATE CALCULATIO)NS - Resti	ictor Plate
Depth from Notch Bottom to Top of Restrictor Plate	0.50	H (ft) 0.41
Notch Width	0.67	W (ft) UD-BMP for Forebay 1 calculates a 9.1" notch
Undetained 100-Year Peak Flow	93.3	cfs MHFD weir calc: W=Qf/(3.33*(Df/12)^1.5)*12+0.2*Df
Required Outlet Flow (q)	1.9	cfs
Provided Max Outlet Flow	1.7	cfs $Q = CA(2gH)^{0.5}$,

Extended Detention Basin Fully Developed - Forebay 1 Sizing Calculations

SEDIMENT FOREBAY	SIZING	
Contributing Tributary Area	47.90	AC
Imperviousness	57.0%	
Contributing Area WQCV	0.226	watershed inches
Required WQCV	0.904 39,382	AC-ft ft ³
Contributing Impervious Acres	> 20	Acres
Req. % of WQCV	3%	
Minimum Forebay Volume	1,181	ft ³
Maximum Forebay Depth	2.5	ft
Drawidad Carabay Darth	1.00	<i>t</i>
Provided Forebay Depth	1.00	ft
Provided Forebay Volume	1,360	ft ³
FOREBAY RELEASE RATE CA	ALCULATION	NS
Notch Width	0.67	ft UD-BMP for Forebay 1 calculates a 11.2" noto
Undetained 100-Year Peak Flow	121.6	cfs
Required Outlet Flow (q)	2.4	cfs
Provided Max Outlet Flow	2.1	cfs * From Hydraflow
		Express

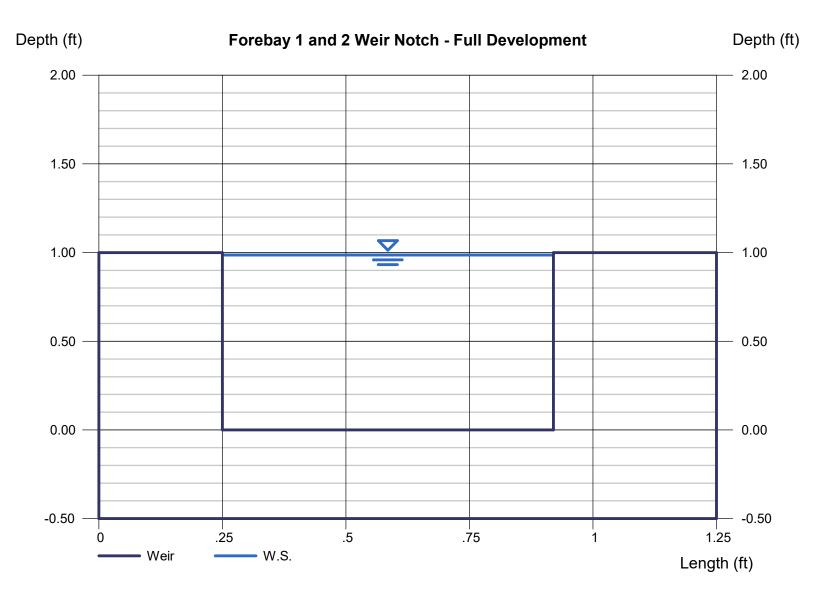

Extended Detention Basin Interim Condition - Forebay 2 Sizing Calculations (DP20)

SEDIMENT FOREBAY S	SIZING	
Contributing Tributary Area	49.10	AC
Imperviousness	16.0%	
Contributing Area WQCV	0.098	watershed inches
Required WQCV	0.401 17,478	AC-ft ft ³
Contributing Impervious Acres	5-20	Acres
Req. % of WQCV	3%	
Minimum Forebay Volume	524	ft ³
Maximum Forebay Depth	2.5	ft
Provided Forebay Depth	1.00	ft
Provided Forebay Volume	1,370	ft ³
FOREBAY RELEASE RATE CALCULATIO)NS - Restr	ictor Plate
Depth from Notch Bottom to Top of Restrictor Plate	0.50	H (ft) 0.41
Notch Width	0.67	W (ft) UD-BMP for Forebay 2 calculates a 8.8" notch
Undetained 100-Year Peak Flow	88.6	cfs
Required Outlet Flow (q)	1.8	cfs
Provided Max Outlet Flow	1.7	cfs $Q = CA(2gH)^{0.5}$,

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Forebay 1 and 2 Weir Notch - Full Development

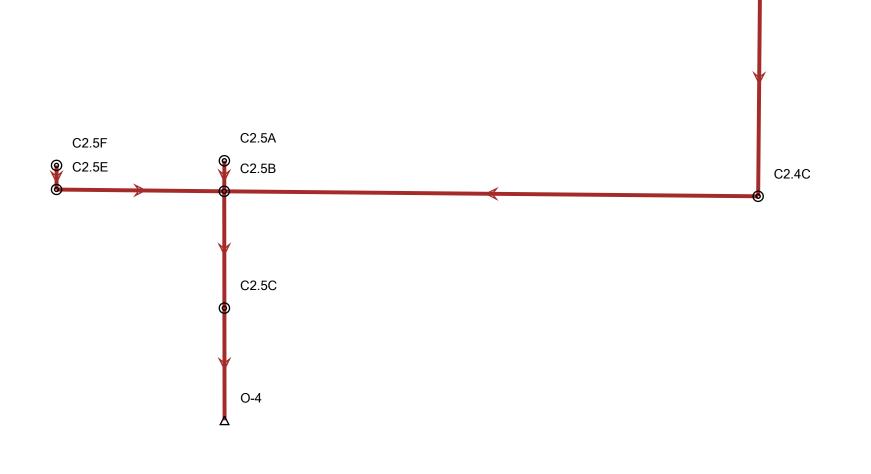
Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.99
Bottom Length (ft)	= 0.67	Q (cfs)	= 2.100
Total Depth (ft)	= 1.00	Area (sqft)	= 0.66
		Velocity (ft/s)	= 3.18
Calculations		Top Width (ft)	= 0.67
Weir Coeff. Cw	= 3.20		
Compute by:	Known Q		
Known Q (cfs)	= 2.10		


Extended Detention Basin Fully Developed - Forebay 2 Sizing Calculations

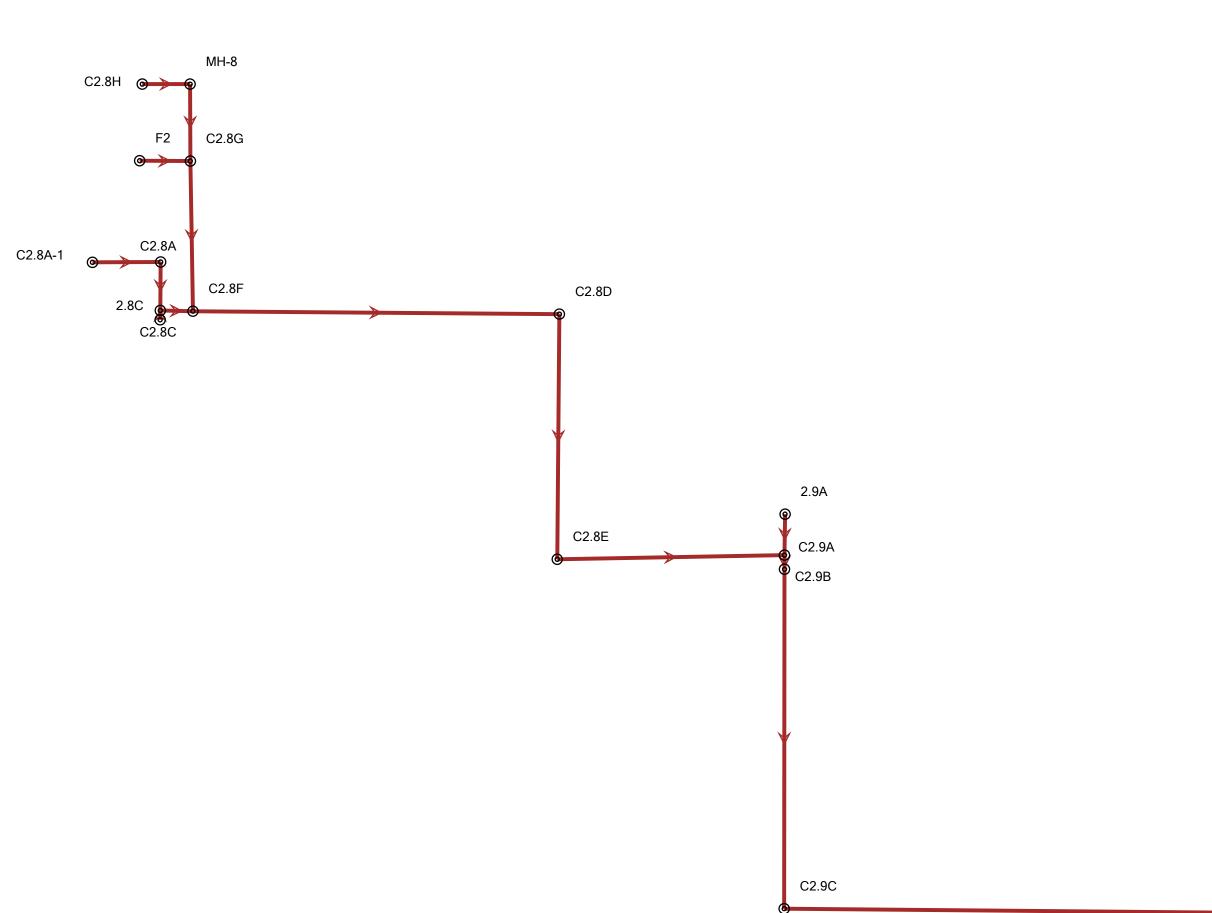
SEDIMENT FOREBAY S	SIZING	
Contributing Tributary Area	49.10	AC
Imperviousness	32.0%	
Contributing Area WQCV	0.158	watershed inches
Required WQCV	0.645 28,083	AC-ft ft ³
Contributing Impervious Acres	5-20	Acres
Req. % of WQCV	3%	
Minimum Forebay Volume	842	ft ³
Maximum Forebay Depth	2.5	ft
Provided Forebay Depth	1.00	ft
Provided Forebay Volume	1,370	ft ³
FOREBAY RELEASE RATE CA	LCULATION	NS
Notch Width	0.67	ft UD-BMP for Forebay 2 calculates a 10" notch
Undetained 100-Year Peak Flow	105.0	cfs
Required Outlet Flow (q)	2.1	cfs
Provided Max Outlet Flow	2.1	cfs * From Hydraflow Express

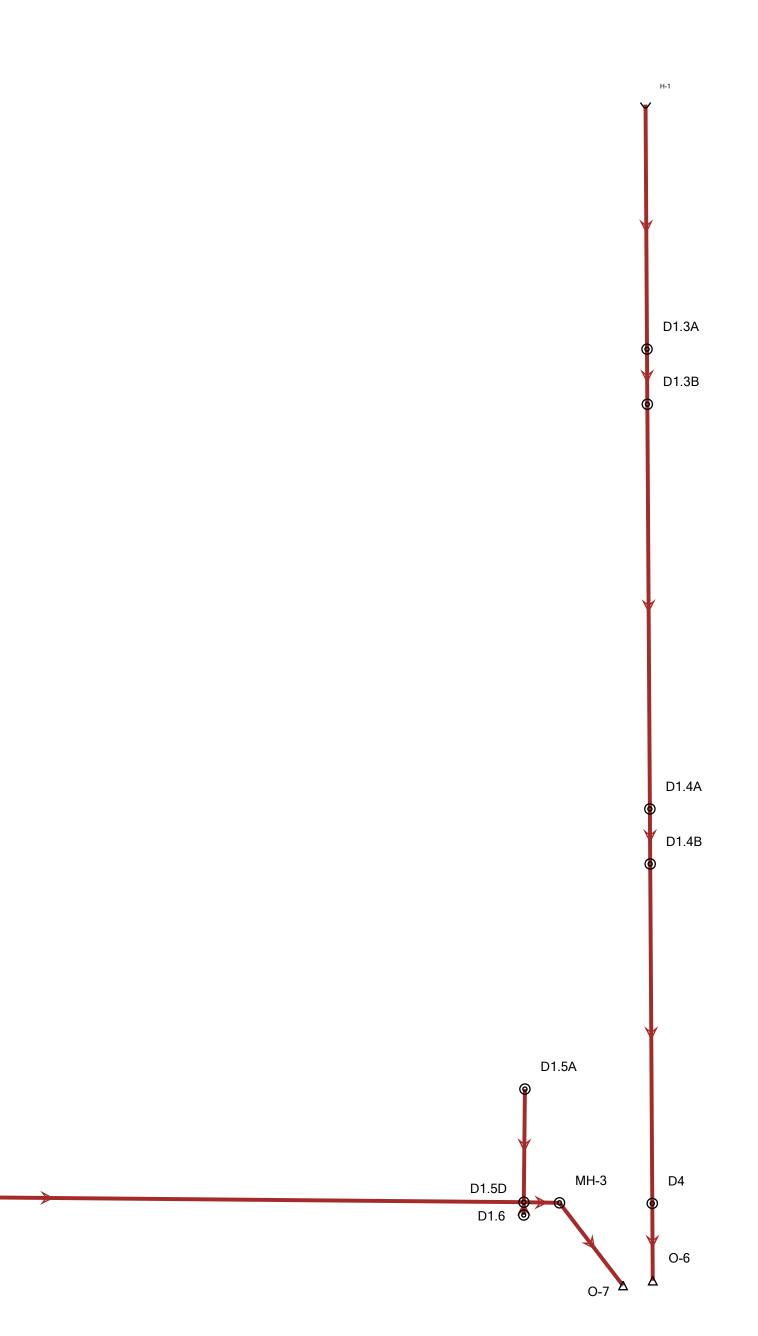
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Forebay 1 and 2 Weir Notch - Full Development


Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.99
Bottom Length (ft)	= 0.67	Q (cfs)	= 2.100
Total Depth (ft)	= 1.00	Area (sqft)	= 0.66
		Velocity (ft/s)	= 3.18
Calculations		Top Width (ft)	= 0.67
Weir Coeff. Cw	= 3.20		
Compute by:	Known Q		
Known Q (cfs)	= 2.10		

	Design Procedure Fo	rm: Extended Detention Basin (EDB)	
		-BMP (Version 3.07, March 2018)	Sheet 1 of 3
Designer:	ESJ R&R ENGINEERS		
Company: Date:	December 30, 2022		
Project:	Mayberry, Colorado Springs		
Location:	Detention Basin D - Interim		
1. Basin Storage	Volume		
A) Effective Imp	perviousness of Tributary Area, I _a	I _a = 23.0 %	
B) Tributary Are	ea's Imperviousness Ratio (i = l _a / 100)	i = 0.230	
C) Contributing	g Watershed Area	Area = 100.200 ac	
	heds Outside of the Denver Region, Depth of Average ducing Storm	d ₆ = in	
E) Design Con (Select EUR	ccept {V when also designing for flood control)	Choose One Q Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)	
	ume (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = <u>1.065</u> ac-ft	
Water Qual	heds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume $_{\rm R}$ = (d_6^*(V_{\rm DESIGN}0.43))	V _{DESIGN OTHER} =ac-ft	
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft	
i) Percenta ii) Percenta	ologic Soil Groups of Tributary Watershed age of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils tage of Watershed consisting of Type C/D Soils	$\begin{array}{c} HSG_{A} = & 100 \\ HSG_{B} = & 0 \\ HSG_{CD} = & 0 \\ \end{array} $	
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume : EURV ₆ = 1.68 * 1 ^{1.28} :: EURV ₆ = 1.36 * 1 ^{1.08} D/: EURV ₆₀ = 1.20 * 1 ^{1.08}	EURV _{DESIGN} = ac-f t	
K) User Input of	of Excess Urban Runoff Volume (EURV) Design Volume fferent EURV Design Volume is desired)	EURV _{DESIGN USER} =	
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1	
3. Basin Side Slop	pes		
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft	
4. Inlet			
	· · · · · · · · · · · · ·	Concrete Forebay	
 A) Describe m inflow locati 	eans of providing energy dissipation at concentrated ions:		
5. Forebay			
A) Minimum Fo	· · · · · · · · · · · · · · · · · · ·	V _{FMIN} = 0.032 ac-ft	
(V _{FMIN} B) Actual Fore	= <u>3%</u> of the WQCV)	$V_r = 0.060$ ac-ft	
C) Forebay Dep		v _F – <u>0.000 a</u> dvit	
(D _F	= <u>30</u> inch maximum)	D _F = <u>12.0</u> in	
D) Forebay Dis	-		
	ed 100-year Peak Discharge	Q ₁₀₀ = <u>181.90</u> cfs	
ii) Forebay (Q _F = 0.0	Discharge Design Flow 12 * Q ₁₀₀)	$Q_F = 3.64$ cfs	
E) Forebay Dis	charge Design	Choose One O Berm With Pipe Wall with Rect. Notch O Wall with V-Notch Weir	
	ipe Size (minimum 8-inches)	Calculated $D_p =$ in	
F) Discharge P	ipe oize (minimum o-mones)		


	501	Sheet 2 o
Designer: Company:	ESJ R&R ENGINEERS	
Date:	December 30, 2022	
Project:	Mayberry, Colorado Springs	
Location:	Detention Basin D - Interim	
		Choose One
6. Trickle Chanr	nel	Concrete
A) Type of Tr	ickle Channel	O Soft Bottom
F) Slope of T	rickle Channel	S = 0.0050 ft / ft
7. Micropool and	d Outlet Structure	
A) Depth of M	/licropool (2.5-feet minimum)	$D_{\rm M} = 2.5$ ft
		$A_{\rm M} = 170$ sq ft
	rea of Micropool (10 ft ² minimum)	
C) Outlet Typ	be	Choose One
		Orifice Plate
		O Other (Describe):
	Dimension of Orifice Opening Based on Hydrograph Routing	
(Use UD-Dete		D _{ortifice} = <u>2.00</u> inches
E) Total Outle	at Area	A _{ot} = <u>16.50</u> square inches
8. Initial Surchar	ge Volume	
A) Depth of I	nitial Surcharge Volume	$D_{15} = 4$ in
	recommended depth is 4 inches)	
	nitial Surcharge Volume	V _{IS} = 139 cu ft
	volume of 0.3% of the WQCV)	
C) Initial Surc	harge Provided Above Micropool	V₅= <u>56.7</u> cu ft
9. Trash Rack		
A) Water Qua	ality Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A ₁ = 525 square inches
B) Type of Sc	reen (If specifying an alternative to the materials recommended	Aluminum Amico-Klemp SR Series with Cross Rods 2" O.C.
in the USDCN	 Λ, indicate "other" and enter the ratio of the total open are to the re for the material specified.) 	
	Other (Y/N): N	
C) Ratio of To	otal Open Area to Total Area (only for type 'Other')	User Ratio =
	er Quality Screen Area (based on screen type)	A _{total} = 740 sq. in.
	esign Volume (EURV or WQCV)	H= 3.68 feet
	n design concept chosen under 1E)	
F) Height of V	Vater Quality Screen (H_{TR})	H _{TR} = 72.16 inches
G) Width of M	/ater Quality Screen Opening (W _{opening})	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.


Sheet 3 of
Buried Riprap Spillway Ze = 4.00 ft / ft Choose One O Irrigated Invigated
Periodic inspection and sediment removal as required; Access ramp provided to pond bottom

C2.4A

C2.4B

Scenario: 5 year Current Time Step: 0.000 h FlexTable: Conduit Table

Start Node	Stop Node	Section Type	Span (ft)	Rise	(ft)	Diameter (in)	Manning's n	Length (User Defined) (ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Slope (Calculated) (ft/ft)	Flow (cfs)	Velocity (ft/s)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
C2.4C	C2.5B	Circle	-	-		24.0	0.013	313.6	6,046.92	6,045.04	0.006	1.60	3.47	6,047.36	6,046.80
C2.4A	C2.4B	Circle	-	-		18.0	0.013	37.3	6,048.57	6,048.35	0.006	1.10	3.19	6,048.96	6,048.72
C2.4B	C2.4C	Circle	-	-		24.0	0.013	138.3	6,047.85	6,047.02	0.006	1.60	3.47	6,048.29	6,047.43
C2.5B	C2.5C	Circle	-	-		36.0	0.013	68.6	6,044.94	6,044.60	0.005	14.90	5.90	6,046.57	6,046.58
C2.5A	C2.5B	Circle	-	-		30.0	0.013	5.4	6,045.09	6,045.04	0.009	8.50	6.42	6,046.72	6,046.73
C2.5C	0-4	Circle	-	-		36.0	0.013	65.9	6,044.50	6,044.17	0.005	17.40	6.17	6,046.53	6,046.52
2.8C	C2.8F	Circle	-	-		36.0	0.013	44.2	6,042.53	6,042.31	0.005	8.00	4.96	6,044.18	6,044.18
C2.8C	2.8C	Circle	-	-		18.0	0.013	5.5	6,042.85	6,042.82	0.005	3.40	4.11	6,044.19	6,044.19
C2.8A	2.8C	Circle	-	-		30.0	0.013	27.5	6,043.21	6,043.03	0.007	9.70	5.87	6,044.25	6,043.97
C2.9C	D1.5D	Ellipse	3.8		2.4	-	0.013	559.5	6,037.56	6,034.76	0.005	24.80	6.65	6,038.91	6,036.29
C2.8D	C2.8E	Circle	-	-		36.0	0.013	144.0	6,041.07	6,039.92	0.008	19.30	7.53	6,042.48	6,041.76
C2.8E	C2.9A	Circle	-	-		36.0	0.013	133.6	6,039.82	6,038.89	0.007	19.30	7.16	6,041.23	6,040.11
C2.9A	C2.9B	Ellipse	3.8		2.4	-	0.013	5.7	6,038.79	6,038.76	0.005	20.50	6.39	6,040.01	6,040.01
C2.9B	C2.9C	Ellipse	3.8		2.4	-	0.013	199.3	6,038.66	6,037.66	0.005	24.80	6.66	6,040.01	6,039.48
2.9A	C2.9A	Circle	-	-		30.0	0.013	32.5	6,039.73	6,039.39	0.010	3.10	5.00	6,040.45	6,040.50
D1.3B	D1.4A	Ellipse	3.8		2.4	-	0.013	237.7	6,038.48	6,036.82	0.007	32.90	8.13	6,040.05	6,038.14
D1.3A	D1.3B	Ellipse	3.8		2.4	-	0.013	32.3	6,039.00	6,038.78	0.007	30.90	7.91	6,040.52	6,040.12
D1.4B	D4	Ellipse	3.8		2.4	-	0.013	199.4	6,036.42	6,034.71	0.009	34.20	8.84	6,038.02	6,035.99
D1.4A	D1.4B	Ellipse	3.8		2.4	-	0.013	32.3	6,036.72	6,036.52	0.006	33.60	7.84	6,038.30	6,037.95
D4	0-6	Ellipse	3.8		2.4	-	0.013	45.4	6,034.18	6,033.86	0.007	34.20	8.25	6,035.78	6,035.51
D1.5D	MH-3	Ellipse	3.8		2.4	-	0.013	34.5	6,034.66	6,034.48	0.005	27.40	6.95	6,036.09	6,035.79
D1.6	D1.5D	Circle	-	-		18.0	0.013	7.5	6,035.01	6,034.86	0.020	4.00	7.14	6,036.28	6,036.29
D1.5A	D1.5D	Circle	-	-		18.0	0.013	66.5	6,035.53	6,034.86	0.010	3.30	5.27	6,036.22	6,036.29
H-1	D1.3A	Ellipse	3.8		2.4	-	0.013	136.0	6,039.79	6,039.11	0.005	31.60	7.15	6,041.34	6,040.55
MH-3	0-7	Ellipse	4.4		2.8	-	0.013	63.3	6,034.38	6,034.06	0.005	27.40	6.72	6,035.74	6,035.51
C2.5E	C2.5B	Circle	-	-		24.0	0.013	189.3	6,046.32	6,045.37	0.005	7.80	5.07	6,047.31	6,046.63
C2.5F	C2.5E	Circle	-	-		24.0	0.013	5.5	6,046.45	6,046.42	0.005	7.80	5.23	6,047.69	6,047.69
C2.8A-1	C2.8A	Circle	-	-		24.0	0.013	74.4	6,044.05	6,043.31	0.010	3.80	5.34	6,044.73	6,044.81
C2.8F	C2.8D	Circle	-	-		36.0	0.013	189.3	6,042.21	6,041.27	0.005	19.30	6.32	6,043.62	6,042.93
MH-8	C2.8G	Circle	-	-		24.0	0.013	142.8	6,046.57	6,045.21	0.010	9.20	6.71	6,047.65	6,046.88
C2.8H	MH-8	Circle	-	-		24.0	0.013	7.5	6,046.74	6,046.67	0.009	9.20	6.66	6,048.09	6,048.10
C2.8G	C2.8F	Circle	-	-		30.0	0.013	279.8	6,045.11	6,042.31	0.010	15.90	7.83	6,046.46	6,044.07
F2	C2.8G	Circle	-	-		24.0	0.013	62.4	6,047.47	6,046.37	0.018	6.70	7.70	6,048.39	6,047.02

\192.168.100.23\Projects\MC22110 Mayberry Filing No. 3\Engineering\3 Documents\Drainage\Calcs\Hydraulics\StormCAD\Filing 3 StormCAD.stsw

Scenario: 100 Year Current Time Step: 0.000 h FlexTable: Conduit Table

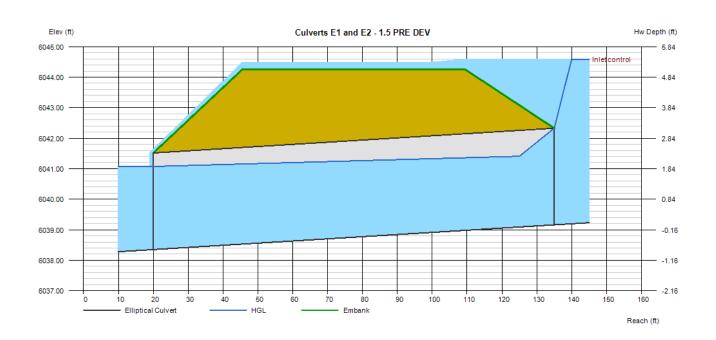
Start Node	Stop Node	Section Type	Span (ft)	Rise (ft)	Diameter (in)	Manning's n	Length (User Defined) (ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Slope (Calculated) (ft/ft)	Flow (cfs)	Velocity (ft/s)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
C2.4C	C2.5B	Circle	-	-	24.0	0.013	313.6	6,046.92	6,045.04	0.006	3.90	4.49	6,048.35	6,048.27
C2.4A	C2.4B	Circle	-	-	18.0	0.013	37.3	6,048.57	6,048.35	0.006	2.73	4.12	6,049.20	6,048.95
C2.4B	C2.4C	Circle	-	-	24.0	0.013	138.3	6,047.85	6,047.02	0.006	3.90	4.49	6,048.54	6,048.38
C2.5B	C2.5C	Circle	-	-	36.0	0.013	68.6	6,044.94	6,044.60	0.005	36.20	7.33	6,047.86	6,047.67
C2.5A	C2.5B	Circle	-	-	30.0	0.013	5.4	6,045.09	6,045.04	0.009	28.50	5.81	6,047.82	6,047.80
C2.5C	0-4	Circle	-	-	36.0	0.013	65.9	6,044.50	6,044.17	0.005	41.10	5.81	6,047.53	6,047.28
2.8C	C2.8F	Circle	-	-	36.0	0.013	44.2	6,042.53	6,042.31	0.005	19.00	2.69	6,046.48	6,046.45
C2.8C	2.8C	Circle	-	-	18.0	0.013	5.5	6,042.85	6,042.82	0.005	8.30	4.70	6,046.32	6,046.29
C2.8A	2.8C	Circle	-	-	30.0	0.013	27.5	6,043.21	6,043.03	0.007	12.20	2.49	6,046.58	6,046.56
C2.9C	D1.5D	Ellipse	3.8	2.4	-	0.013	559.5	6,037.56	6,034.76	0.005	52.60	7.34	6,040.79	6,037.20
C2.8D	C2.8E	Circle	-	-	36.0	0.013	144.0	6,041.07	6,039.92	0.008	39.70	5.62	6,044.86	6,044.35
C2.8E	C2.9A	Circle	-	-	36.0	0.013	133.6	6,039.82	6,038.89	0.007	39.70	5.62	6,043.89	6,043.42
C2.9A	C2.9B	Ellipse	3.8	2.4	-	0.013	5.7	6,038.79	6,038.76	0.005	42.70	5.96	6,042.85	6,042.83
C2.9B	C2.9C	Ellipse	3.8	2.4	-	0.013	199.3	6,038.66	6,037.66	0.005	52.60	7.34	6,042.83	6,041.55
2.9A	C2.9A	Circle	-	-	30.0	0.013	32.5	6,039.73	6,039.39	0.010	7.50	1.53	6,043.46	6,043.45
D1.3B	D1.4A	Ellipse	3.8	2.4	-	0.013	237.7	6,038.48	6,036.82	0.007	62.80	8.77	6,041.57	6,039.40
D1.3A	D1.3B	Ellipse	3.8	2.4	-	0.013	32.3	6,039.00	6,038.78	0.007	57.90	8.08	6,042.06	6,041.81
D1.4B	D4	Ellipse	3.8	2.4	-	0.013	199.4	6,036.42	6,034.71	0.009	66.40	9.27	6,038.82	6,036.87
D1.4A	D1.4B	Ellipse	3.8	2.4	-	0.013	32.3	6,036.72	6,036.52	0.006	64.90	9.06	6,039.26	6,038.94
D4	0-6	Ellipse	3.8	2.4	-	0.013	45.4	6,034.18	6,033.86	0.007	66.40	9.27	6,036.67	6,036.18
D1.5D	MH-3	Ellipse	3.8	2.4	-	0.013	34.5	6,034.66	6,034.48	0.005	57.75	8.06	6,037.00	6,036.74
D1.6	D1.5D	Circle	-	-	18.0	0.013	7.5	6,035.01	6,034.86	0.020	7.70	4.36	6,037.24	6,037.20
D1.5A	D1.5D	Circle	-	-	18.0	0.013	66.5	6,035.53	6,034.86	0.010	8.00	4.53	6,037.58	6,037.20
H-1	D1.3A	Ellipse	3.8	2.4	-	0.013	136.0	6,039.79	6,039.11	0.005	57.60	8.08	6,043.17	6,042.11
MH-3	0-7	Ellipse	4.4	2.8		0.013	63.3	6,034.38	6,034.06	0.005	57.75	8.34	6,036.39	6,036.18
C2.5E	C2.5B	Circle	-	-	24.0	0.013	189.3	6,046.32	6,045.37	0.005	11.30	3.60	6,048.62	6,048.15
C2.5F	C2.5E	Circle	-	-	24.0	0.013	5.5	6,046.45	6,046.42	0.005	11.30	3.60	6,048.81	6,048.79
C2.8A-1	C2.8A	Circle	-	-	24.0	0.013	74.4	6,044.05	6,043.31	0.010	8.40	2.67	6,046.75	6,046.65
C2.8F	C2.8D	Circle	-	-	36.0	0.013	189.3	6,042.21	6,041.27	0.005	39.70	5.62	6,045.97	6,045.30
MH-8	C2.8G	Circle	-	-	24.0	0.013	142.8	6,046.57	6,045.21	0.010	12.80	7.29	6,047.86	6,047.51
C2.8H	MH-8	Circle	-	-	24.0	0.013	7.5	6,046.74	6,046.67	0.009	12.80	7.23	6,048.48	6,048.47
C2.8G	C2.8F	Circle	-	-	30.0	0.013	279.8	6,045.11	6,042.31	0.010	25.00	8.77	6,047.22	6,046.29
F2	C2.8G	Circle	-	-	24.0	0.013	62.4	6,047.47	6,046.37	0.018	12.20	9.06	6,048.73	6,047.28

\192.168.100.23\Projects\MC22110 Mayberry Filing No. 3\Engineering\3 Documents\Drainage\Calcs\Hydraulics\StormCAD\Filing 3 StormCAD.stsw

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jan 5 2023


Culverts E1 and E2 - 1.5 PRE DEV

Invert Elev Dn (ft)	= 6038.35	Calculations	
Pipe Length (ft)	= 115.00	Qmin (cfs)	= 50.44
Slope (%)	= 0.70	Qmax (cfs)	= 150.44
Invert Elev Up (ft)	= 6039.16	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 38.0		
Shape	= Elliptical	Highlighted	
Span (in)	= 60.0	Qtotal (cfs)	= 150.44
No. Barrels	= 1	Qpipe (cfs)	= 113.52
n-Value	= 0.013	Qovertop (cfs)	= 36.92
Culvert Type	 Horizontal Ellipse Concrete 	Veloc Dn (ft/s)	= 9.76
Culvert Entrance	= Square edge w/headwall (H)	Veloc Up (ft/s)	= 11.48
Coeff. K,M,c,Y,k	= 0.01, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6041.07
		HGL Up (ft)	= 6041.44
Embankment		Hw Elev (ft)	= 6044.59
Top Elevation (ft)	= 6044.25	Hw/D (ft)	= 1.71

p Elevation (ft) . Top Width (ft) Crest Width (ft)

6044.25 = 64.00 = 60.80

	_	110.02
Qovertop (cfs)	=	36.92
Veloc Dn (ft/s)	=	9.76
Veloc Up (ft/s)	=	11.48
HGL Dn (ft)	=	6041.07
HGL Up (ft)	=	6041.44
Hw Elev (ft)	=	6044.59
Hw/D (ft)	=	1.71
Flow Regime	=	Inlet Control

INLET MANAGEMENT

Norksheet Protected

INLET NAME	<u>C2.3 - DP3</u>	<u>C2.1 - DP1</u>	<u>C2.2</u>	<u>D1.12 - DP5</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET	STREET
Hydraulic Condition	In Sump	In Sump	In Sump	On Grade
Inlet Type	CDOT Type R Curb Opening			

USER-DEFINED INPUT

User-Defined Design Flows						
	Minor Q _{Known} (cfs)	2.1	1.1	0.6	3.8	
	Major Q _{Known} (cfs)	5.2	2.7	1.4	9.3	

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	n: User-Defin		No Bypass Flow Received	No Bypass Flow Received	User-Defined	
Minor Bypass Flow Received, Q _b (cfs)	6.4	0.0	0.0	0.0	
Major Bypass Flow Received, Q_b (cfs)	23.3	0.0	0.0	0.0	

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

	Design Storm Return Period, T _r (years)		
L	One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	8.5	1.1	0.6	3.8
Major Total Design Peak Flow, Q (cfs)	28.5	2.7	1.4	9.3
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A	0.9
	•		•	

INLET MANAGEMENT

Vorksheet Protected

INLET NAME	<u>D1.2 - DP6</u>	<u>D1.3 - DP8</u>	<u>D1.4</u>	<u>D1.6</u>	<u>D1.7</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET	STREET	STREET
Hydraulic Condition	In Sump				
Inlet Type	CDOT Type R Curb Opening				

USER-DEFINED INPUT

User-Defined Design Flows							
Minor Q _{Known} (cfs)	3.4	3.1	5.4	2.6	2.1		
Major Q _{Known} (cfs)	8.3	7.5	12.7	6.3	5.0		

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received				
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0

Watershed Characteristics

L	Subcatchment Area (acres)			
L	Percent Impervious			
L	NRCS Soil Type			

Watershed Profile

Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope (ft/ft)			
Channel Length (ft)			

Minor Storm Rainfall Input

	Design Storm Return Period, T _r (years)					
L	One-Hour Precipitation, P_1 (inches)					

Major Storm Rainfall Input

	Design Storm Return Period, T _r (years)					
	One-Hour Precipitation, P ₁ (inches)					

Minor Total Design Peak Flow, Q (cfs)	3.4	3.1	5.4	2.6	2.1
Major Total Design Peak Flow, Q (cfs)	8.3	7.5	12.7	6.3	5.0
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A	N/A	N/A

INLET MANAGEMENT

Vorksheet Protected

INLET NAME	<u>D1.8</u>	<u>D1.9</u>	<u>D1.10</u>	Mayberry Drive	50' ROW - 6" Rollover Curb
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET	STREET	STREET
Hydraulic Condition	In Sump	In Sump	In Sump	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening		

USER-DEFINED INPUT

Г	User-Defined Design Flows						
	Minor Q _{Known} (cfs)	1.8	0.9	3.3	14.2	5.4	
	Major Q _{Known} (cfs)	4.3	2.1	8.0	34.6	12.7	

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received				
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)			
Percent Impervious			
NRCS Soil Type			

Watershed Profile

Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope (ft/ft)			
Channel Length (ft)			

Minor Storm Rainfall Input

	Design Storm Return Period, T _r (years)					
L	One-Hour Precipitation, P_1 (inches)					

Major Storm Rainfall Input

Des	sign Storm Return Period, T _r (years)					
One	e-Hour Precipitation, P ₁ (inches)					

Minor Total Design Peak Flow, Q (cfs)	1.8	0.9	3.3	14.2	5.4
Major Total Design Peak Flow, Q (cfs)	4.3	2.1	8.0	34.6	12.7
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A		
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A		
		•			•

INLET MANAGEMENT

Norksheet Protected

INLET NAME	<u>C2.4</u>	Galveston Ter.	<u>C2.5</u>	<u>D1.13</u>	<u>D1.14 - DP5B</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET	STREET	STREET
Hydraulic Condition	In Sump	On Grade	On Grade	On Grade	In Sump
Inlet Type	CDOT Type R Curb Opening		CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

Г	User-Defined Design Flows					
	Minor Q _{Known} (cfs)	4.1	5.9	14.2	10.9	1.8
	Major Q _{Known} (cfs)	7.8	14.5	34.6	19.9	3.9

Bypass (Carry-Over) Flow from Upstream

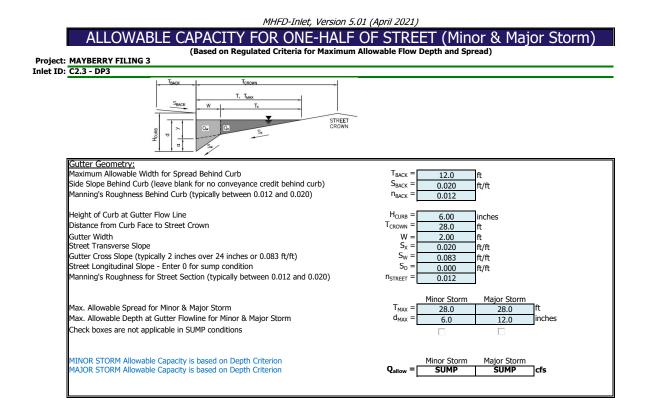
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	User-Defined	User-Defined
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	1.7
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	8.0

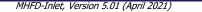
Watershed Characteristics

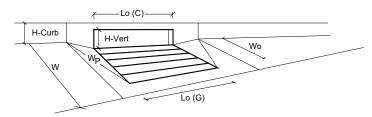
Subcatchment Area (acres)			
Percent Impervious			
NRCS Soil Type			

Watershed Profile

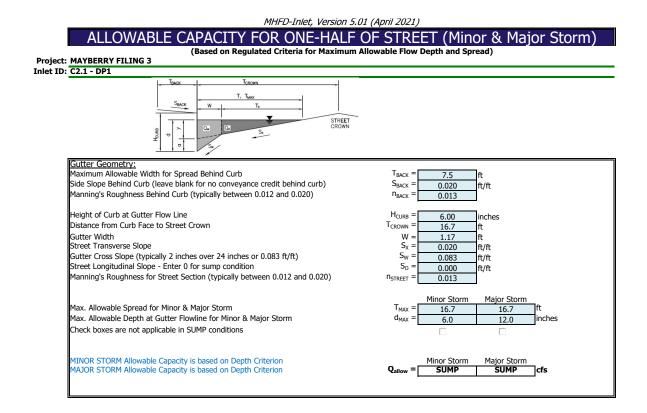
Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope (ft/ft)			
Channel Length (ft)			

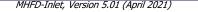

Minor Storm Rainfall Input

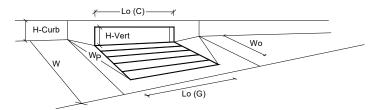

	Design Storm Return Period, T _r (years)							
L	One-Hour Precipitation, P_1 (inches)							

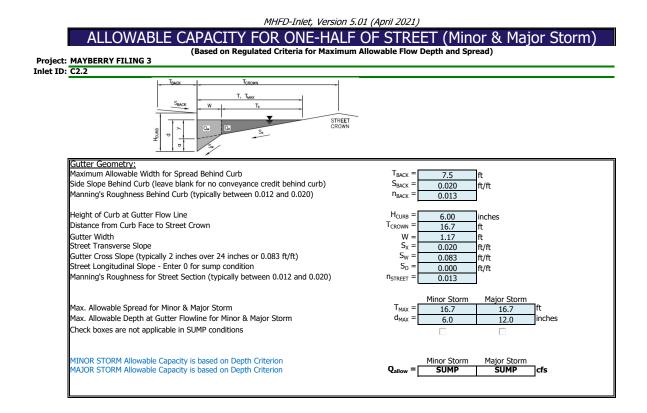

Major Storm Rainfall Input

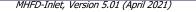
Des	sign Storm Return Period, T _r (years)							
One	e-Hour Precipitation, P ₁ (inches)							

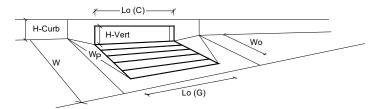

Minor Total Design Peak Flow, Q (cfs)	4.1	5.9	14.2	10.9	3.5
Major Total Design Peak Flow, Q (cfs)	7.8	14.5	34.6	19.9	11.9
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A		6.4	1.7	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	N/A		23.3	7.1	N/A

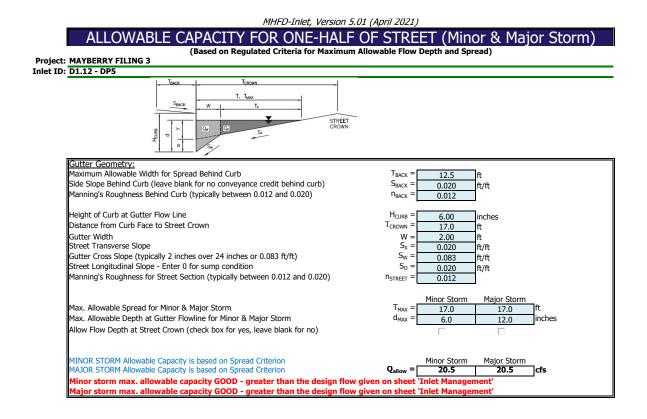


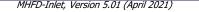


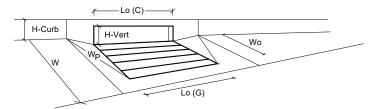

CDOT Type R Curb Opening				
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	 Override Depths
Grate Information	-	MINOR	MAJOR	
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	L	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
Resultant Street Conditions	E	MINOR	MAJOR	
Total Inlet Length	L =	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	18.7	43.7	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	3.8	inches
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	39.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	8.5	28.5	cfs

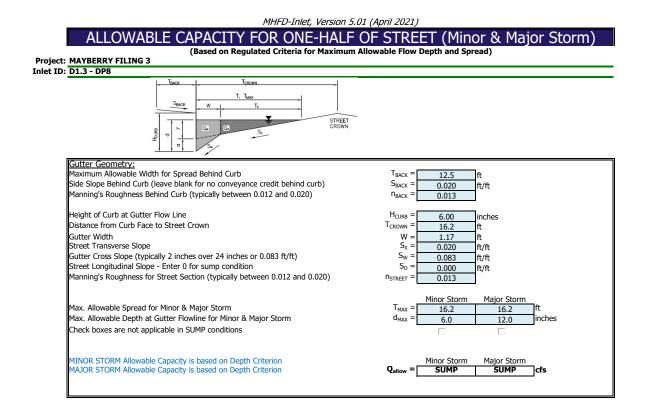


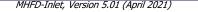


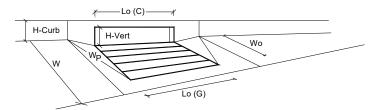

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	-
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.9	4.9	inches
Grate Information	r onding Deput	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	L	MINOR	MAJOR	-4
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)	_	MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Grate} =	0.31	0.31	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.63	0.63	10
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	1.00	1.00	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	-
diated friet renormance reduction ractor for Eong friets	Grate -	in/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.0	4.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.1	2.7	cfs

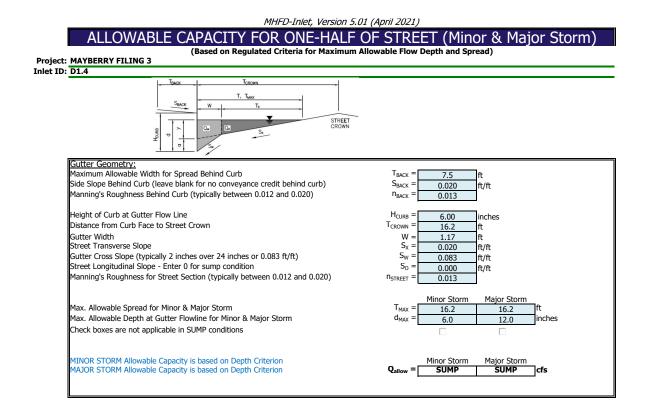


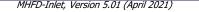

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
	No =		3.00	linches
Number of Unit Inlets (Grate or Curb Opening)		1	1	
Water Depth at Flowline (outside of local depression) Grate Information	Ponding Depth =	4.9 MINOR	4.9 MAJOR	inches
Length of a Unit Grate	$L_{0}(G) =$	N/A	MAJOR N/A	Override Depths
Width of a Unit Grate	$U_0(0) = W_0 = 0$	N/A N/A	,	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A N/A	N/A N/A	ieet
Clogging Factor for a Single Grate (typical values 0.15-0.50)	$A_{ratio} = C_f(G) =$	N/A N/A	N/A	_
55 5 ()	C _f (G) = C _w (G) =			
Grate Weir Coefficient (typical value 2.15 - 3.60)		N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	74.1
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
	d _[ft
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.31	0.31	π
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.63	0.63	-
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.0	4.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.6	1.4	cfs

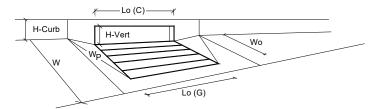

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021) ____Lo (C) _____/ ۴ H-Curb H-Vert Wo W Lo (G) MINOR MAJOR CDOT Type R Curb Opening Design Information (Input) Type of Inlet CDOT Type R Curb Opening -Type = Type of Iniet Local Depression (additional to continuous gutter depression 'a') Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W, Gutter Width) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Street Hydraulics: OK - Q < Allowable Street Capacity' Total Value Technologica Grantity a_{LOCAL} = No = 3.0 inches 1 15.00 N/A L_o = W_o = ft ft N/A C_f-G = N/A N/A C_f-C = 0.10 MINOR 0.10 MAJOR Total Inlet Interception Capacity Q = 3.8 8.4 cfs Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q_a/Q_0 = cfs % \mathbf{Q}_{b} = 0.0 0.9 C% = 100 90

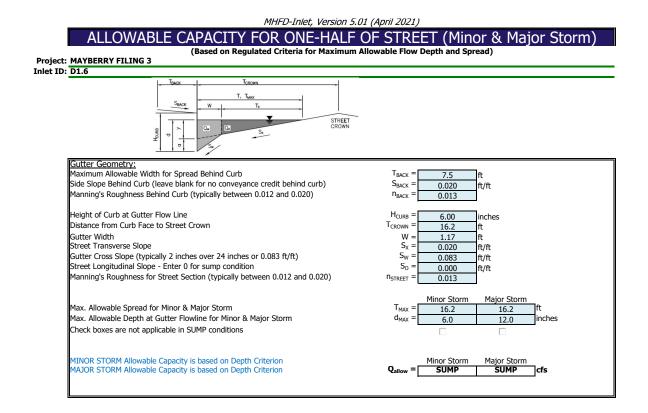


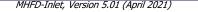


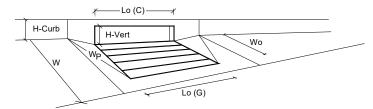

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	-	Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	nuci
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.72	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Jolet Interception Capacity (accumes cleaged condition)	Q _a =[4.6	MAJOR 12.3	cfs
Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.4	8.3	cfs
	2.2.2.1.AEQUIAED		5.0	

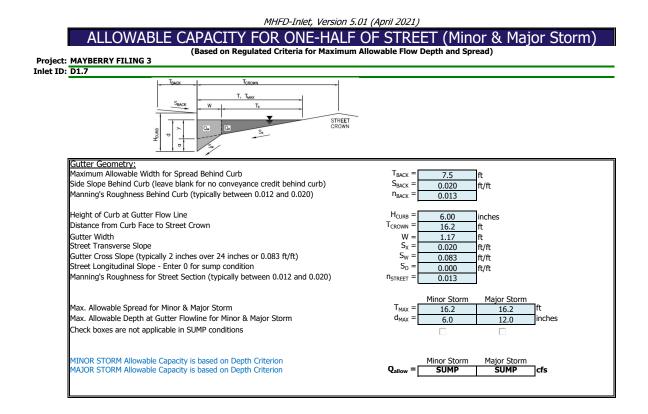


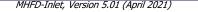


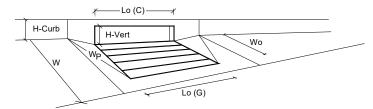

Design Information (Innuk)		MINOD	MAJOD	
Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	7
Type of Inlet	Type =		Curb Opening	la sha sa
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	12.0	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
	=			
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.90	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.61	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
			•	-
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	3.8	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.1	7.5	cfs

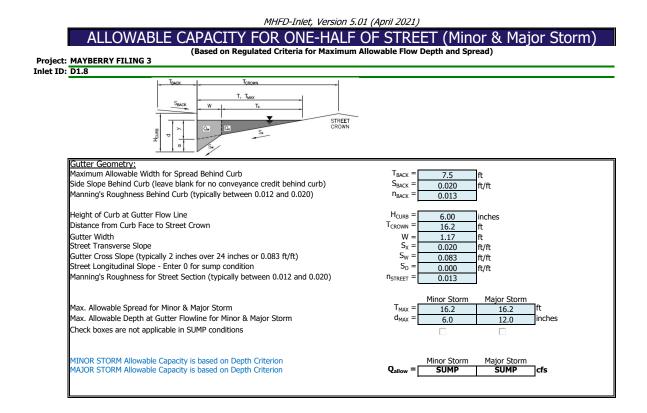


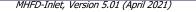


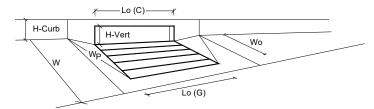

Design Information (Innut)		MINOD	MAJOD	
Design Information (Input) Tures of Inlat CDOT Type R Curb Opening		MINOR	MAJOR	-
Type of Inlet	Type =		Curb Opening	la sha sa
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	12.0	inches
<u>Grate Information</u>	. (0)	MINOR	MAJOR	 Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_0(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.90	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.45	1.00	- ¹
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.85	1.00	4
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	-
oraced filee renormance reduction ractor for Eorig filets	Grate =	N/A	N/A	_]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.8	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.4	12.7	cfs

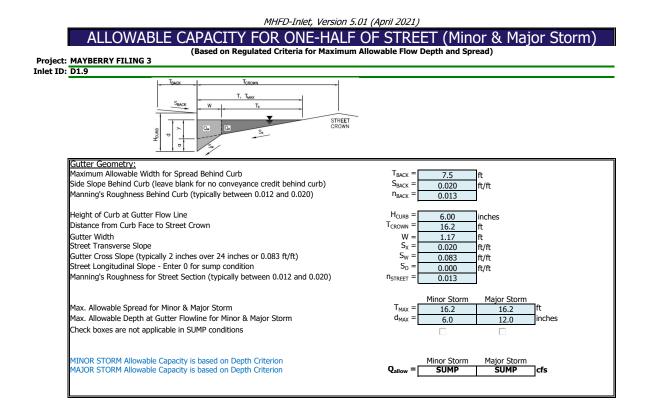


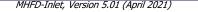


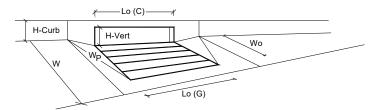

Design Information (Inno.)		MINOR	111100	
Design Information (Input) CDOT Type R Curb Opening	-	MINOR	MAJOR	-
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	12.0	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	ieet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
	=		•	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.90	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.61	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.8	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text{PEAK REQUIRED}} =$	2.6	6.3	cfs

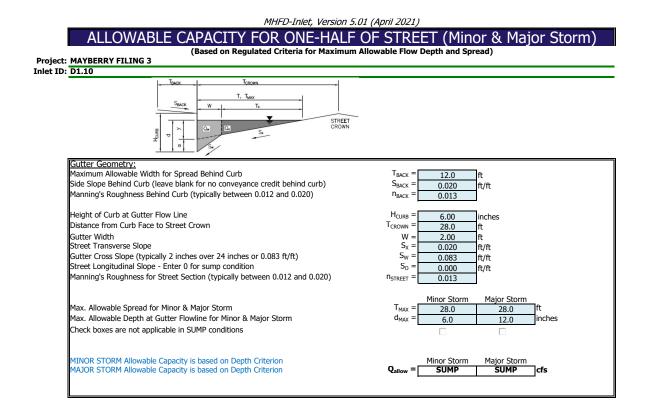


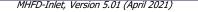


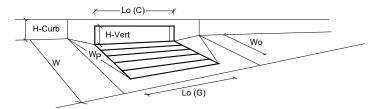

		MINOR	111100	
Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	-
Type of Inlet	Type =		Curb Opening	la ale a a
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	4
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	12.0	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	ICCL
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_0(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Grate} =	0.30	0.90	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.61	1.00	- ¹
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	4
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	-
Stated The Ferninance Reduction Factor for Long Thes	Grate -	N/A	N/A	_
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.8	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.1	5.0	cfs

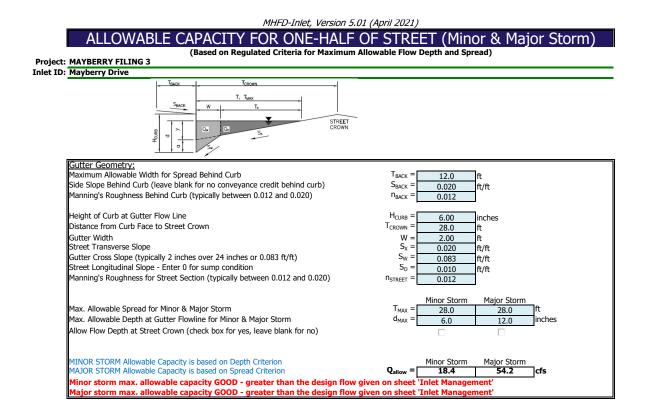




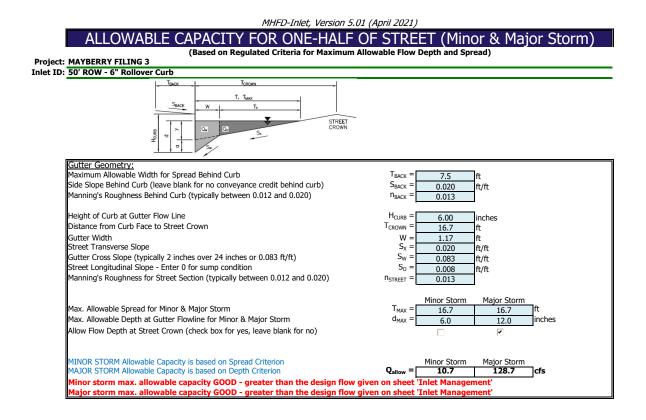

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	-
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	12.0	inches
Grate Information	ronding beptir -	MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	lieer
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information	L	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
	-			
Low Head Performance Reduction (Calculated)	-	MINOR	MAJOR	-
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.90	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.61	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	_
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	Q _a =[MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q PEAK REQUIRED =	3.8 1.8	12.3 4.3	cfs cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	✓ PEAK REQUIRED —	1.0	4.5	us

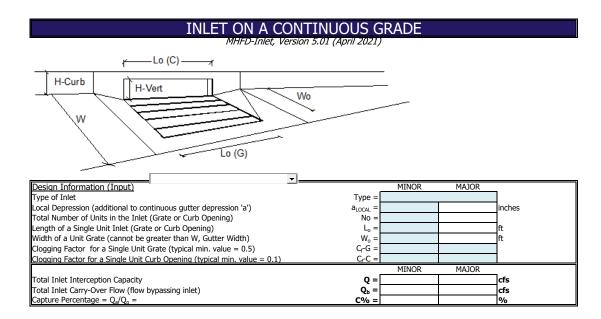


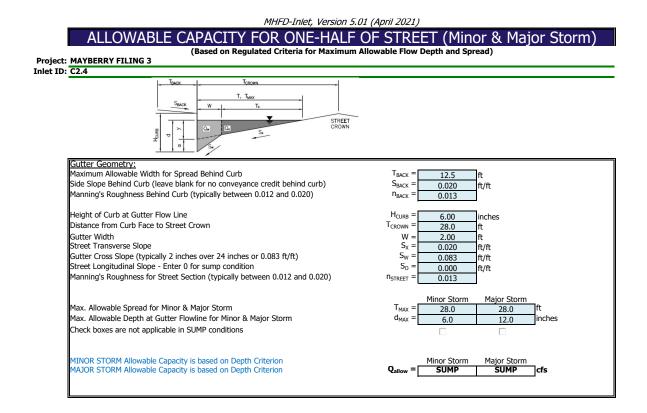


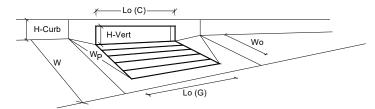

Design Information (Innut)		MINOD	MA 100	
Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	-
Type of Inlet	Type =		Curb Opening	la de se
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	12.0	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)	-	MINOR	M410D	_
······································			MAJOR	٦.
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.90	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.61	1.00	4
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	4
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.8	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.9	2.1	cfs

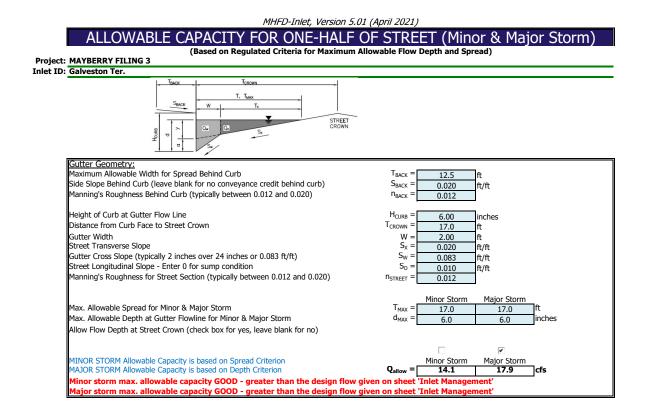


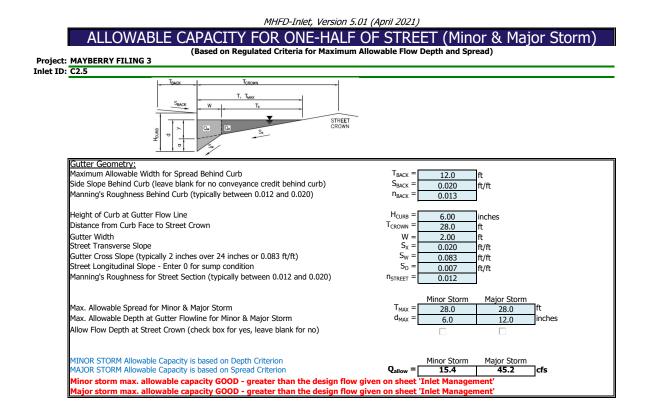


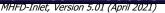


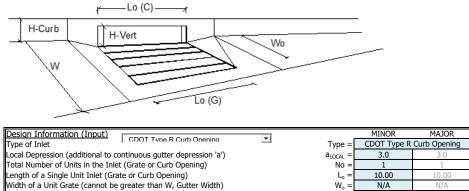

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	8.2	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	reet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.52	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_			
	0 -1	MINOR	MAJOR	7.4
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	9.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.3	8.0	cfs





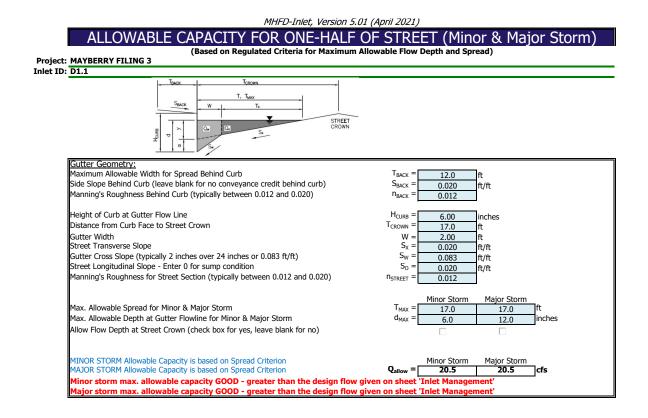


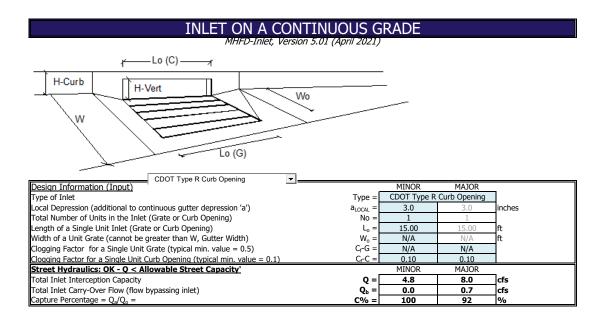

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	8.2	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.52	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.78	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.90	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =[MINOR 9.7	MAJOR 21.7	cfs
	V PEAK REQUIRED =	4.1	7.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	CT D IN REQUIRED			5.0

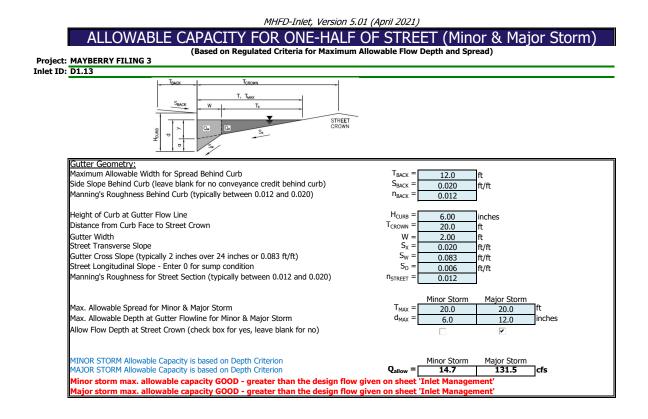


INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021) —Lo (C) — ¥ 7 H-Curb H-Vert Wo W Lo (G) Design Information (Input) Type of Inlet MINOR MAJOR • Type = Type of Inlet Local Depression (additional to continuous gutter depression 'a') Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W, Gutter Width) Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) $a_{LOCAL} =$ $N_0 =$ $L_0 =$ $W_0 =$ $C_f - G =$ inches ft ft <u>C_f-C =</u> MINOR MAJOR Total Inlet Interception Capacity Q = cfs Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = $Q_a/Q_o =$ Q_b = C% = cfs %

INLET ON A CONTINUOUS GRADE

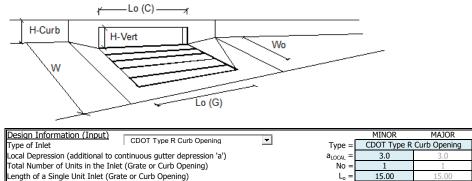


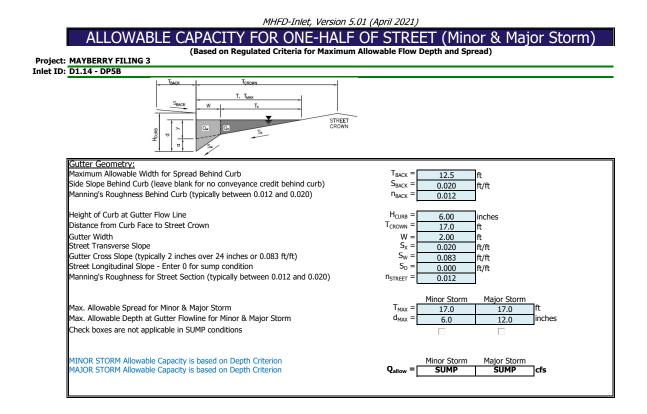


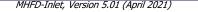


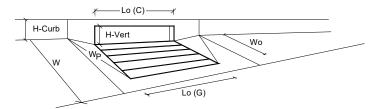
inches

ft



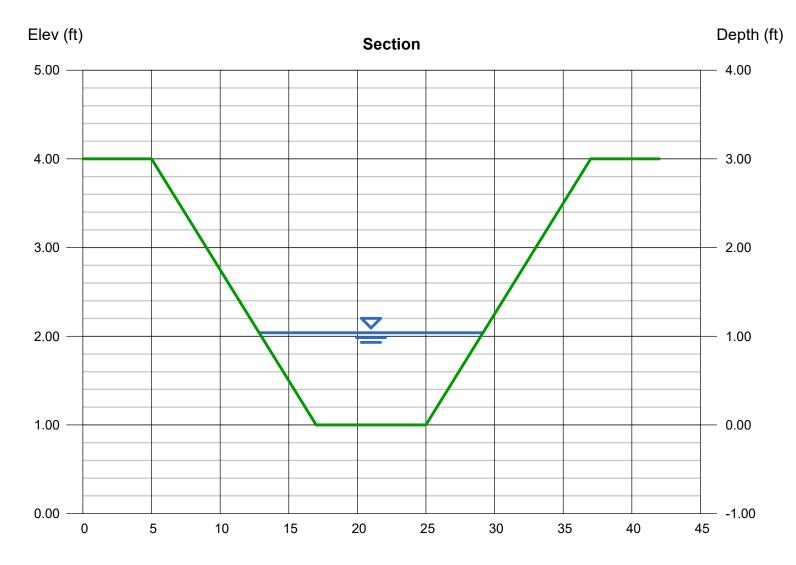

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)





Length of a Single Onit Thet (Grate of Curb Opening)	L ₀ =	15.00	15.00	IL I	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	N/A	N/A		
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10		
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR		
Total Inlet Interception Capacity	Q =	9.2	12.8	cfs	
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	1.7	7.1	cfs	
Capture Percentage $= 0.70$	C % -	Q/I	64	9/2	

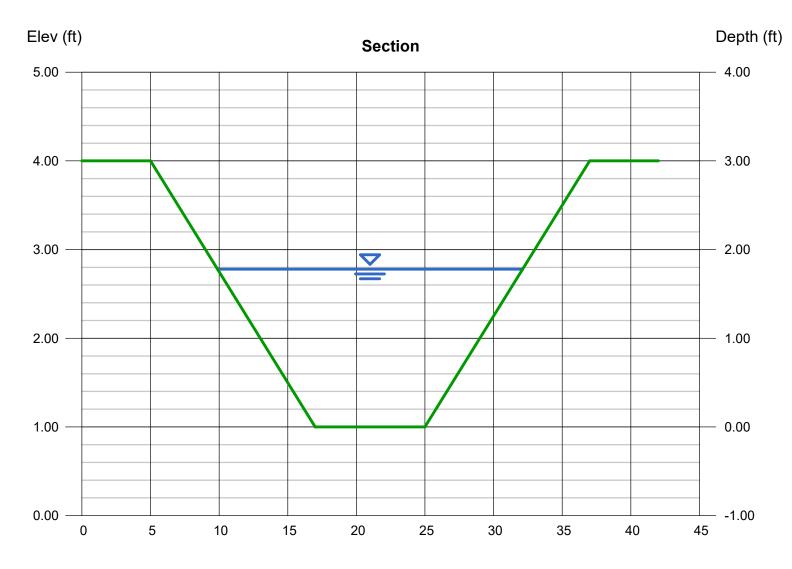
inches


Dasian Information (Innut)		MINOD	MAJOD	
Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	-
Type of Inlet	Type =		Curb Opening	la sha sa
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	reet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
	-			
Low Head Performance Reduction (Calculated)	_	MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_			
		MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	39.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.5	11.9	cfs

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Dec 30 2022

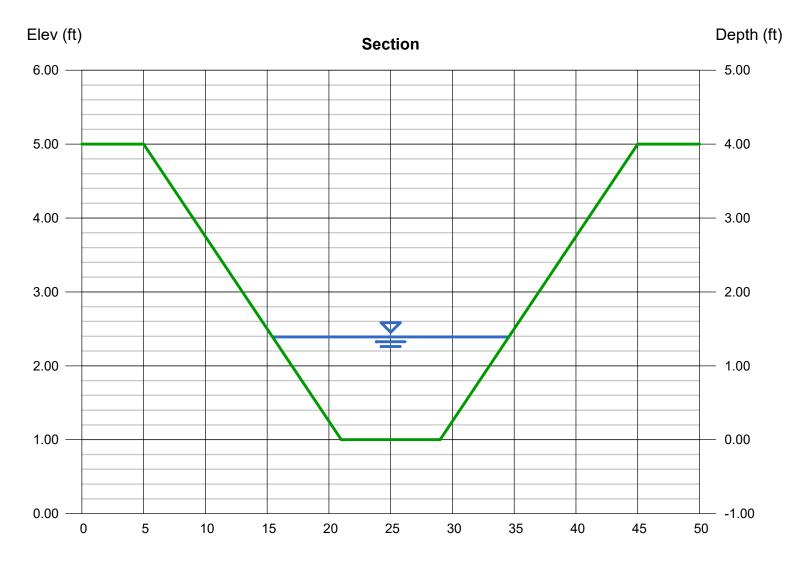
Channel C2 - 5 Year (DP21)


Trapezoidal		Highlighted	
Bottom Width (ft)	= 8.00	Depth (ft)	= 1.04
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 36.70
Total Depth (ft)	= 3.00	Area (sqft)	= 12.65
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.90
Slope (%)	= 0.50	Wetted Perim (ft)	= 16.58
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.76
		Top Width (ft)	= 16.32
Calculations		EGL (ft)	= 1.17
Compute by:	Known Q		
Known Q (cfs)	= 36.70		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Channel C2 - 100 Year (DP21)

	Highlighted	
= 8.00	Depth (ft)	= 1.78
= 4.00, 4.00	Q (cfs)	= 104.90
= 3.00	Area (sqft)	= 26.91
= 1.00	Velocity (ft/s)	= 3.90
= 0.50	Wetted Perim (ft)	= 22.68
= 0.030	Crit Depth, Yc (ft)	= 1.39
	Top Width (ft)	= 22.24
	EGL (ft)	= 2.02
Known Q		
= 104.90		
	= 4.00, 4.00 = 3.00 = 1.00 = 0.50 = 0.030 Known Q	= 8.00 Depth (ft) = 4.00, 4.00 Q (cfs) = 3.00 Area (sqft) = 1.00 Velocity (ft/s) = 0.50 Wetted Perim (ft) = 0.030 Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Known Q Known Q

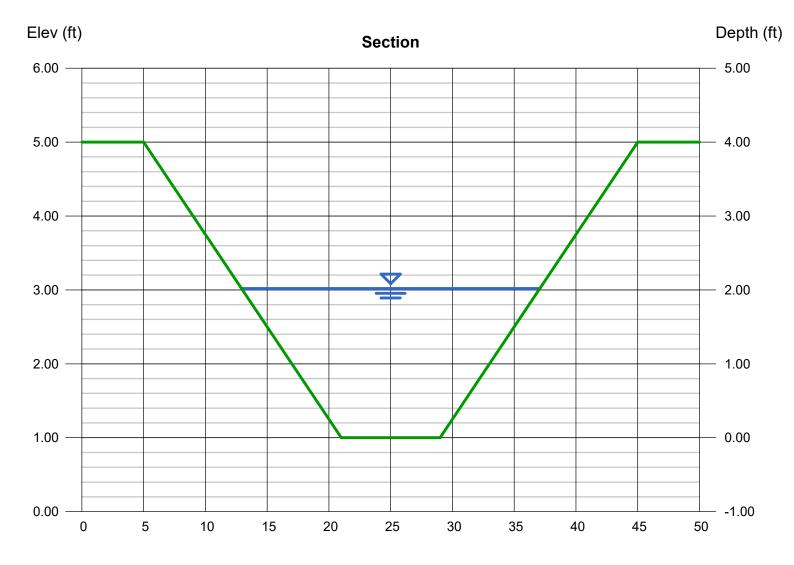

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Channel D - DP20 5 YEAR FLOW

Trapezoidal

Trapezoidal		Highlighted	
Bottom Width (ft)	= 8.00	Depth (ft)	= 1.39
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 57.50
Total Depth (ft)	= 4.00	Area (sqft)	= 18.85
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.05
Slope (%)	= 0.40	Wetted Perim (ft)	= 19.46
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.99
		Top Width (ft)	= 19.12
Calculations		EGL (ft)	= 1.53
Compute by:	Known Q		
Known Q (cfs)	= 57.50		


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

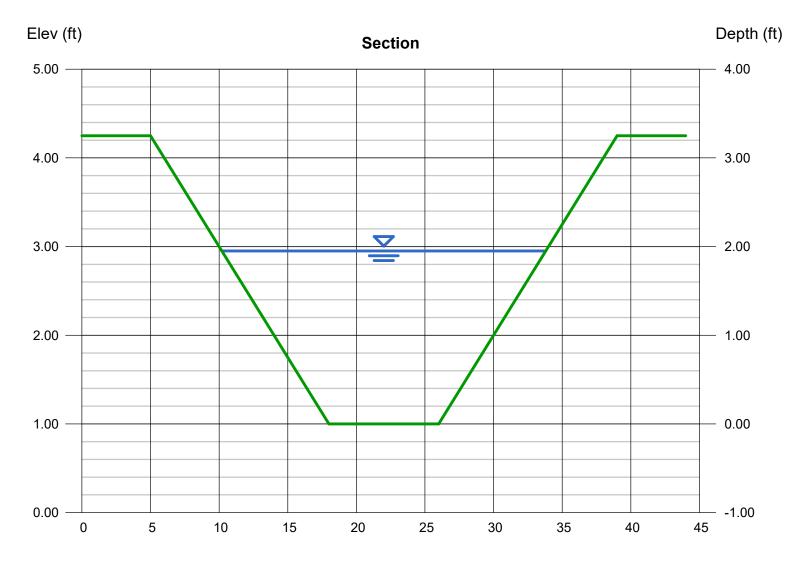
Friday, Dec 30 2022

Channel D - DP20 100 YEAR

Trapezoidal

Trapezoidal		Highlighted	
Bottom Width (ft)	= 8.00	Depth (ft)	= 2.02
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 121.60
Total Depth (ft)	= 4.00	Area (sqft)	= 32.48
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.74
Slope (%)	= 0.40	Wetted Perim (ft)	= 24.66
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.50
		Top Width (ft)	= 24.16
Calculations		EGL (ft)	= 2.24
Compute by:	Known Q		
Known Q (cfs)	= 121.60		

Reach (ft)

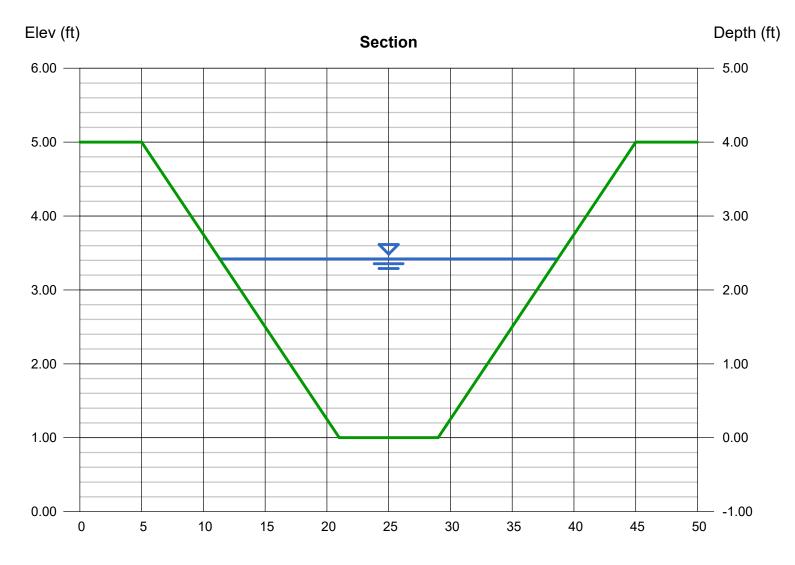

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jan 5 2023

Channel E PRE DEV D1.5 -100 Year

Trapezoidal

Trapezoidal		Highlighted	
Bottom Width (ft)	= 8.00	Depth (ft)	= 1.95
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 150.44
Total Depth (ft)	= 3.25	Area (sqft)	= 30.81
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 4.88
Slope (%)	= 0.70	Wetted Perim (ft)	= 24.08
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.68
		Top Width (ft)	= 23.60
Calculations		EGL (ft)	= 2.32
Compute by:	Known Q		
Known Q (cfs)	= 150.44		


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jan 5 2023

CHANNEL F - 100 YEAR FLOW

Trapezoidal

Trapezoidal		Highlighted	
Bottom Width (ft)	= 8.00	Depth (ft)	= 2.42
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 177.50
Total Depth (ft)	= 4.00	Area (sqft)	= 42.79
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 4.15
Slope (%)	= 0.40	Wetted Perim (ft)	= 27.96
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.84
		Top Width (ft)	= 27.36
Calculations		EGL (ft)	= 2.69
Compute by:	Known Q		
Known Q (cfs)	= 177.50		

Reach (ft)

Channel E - Superelevation Calculation			
С	0.5		
Velocity (V - fps)	4.88	*From Hydraflow Express	
Channel Width (W - ft)	23.6	*From Hydraflow Express	
g - constant (ft/sec^2)	32.2		
Channel /Bend Radius (ft)	50		
H - additional freeboard - (ft)	0.17		
Total Freeboard Required	1.17	1 foot + additional	
Depth at 100 Year Flow (ft)	1.95	*From Hydraflow Express	
Channel Depth Provided (ft)	3.25		
Total Freeboard Provided (ft)	1.30		

$$H = C \frac{v^2 W}{gR}$$

(10-4)

where:

C = coefficient;

- = 0.5, subcritical flow, simple curve
- = 1.0, supercritical flow, simple curve

v = average velocity of flow in channel, in fps;

W = channel width at level water surface

g = acceleration of gravity constant, 32.2 ft/sec²;

R = channel centerline radius of curvature, in ft; and

H = additional height of freeboard on outside edge of channel, in ft.

Channel E/F Confluence - Superelevation Calculation			
С	0.5		
Velocity (V - fps)	3	*From Channel E RipRap	
	9	Calculation	
Channel Width (W - ft)	27.96	*From Hydraflow Express	
g - constant (ft/sec^2)	32.2		
Channel /Bend Radius (ft)	10		
H - additional freeboard - (ft)	0.39		
Total Freeboard Required	1.39	1 foot + additional	
Depth at 100 Year Flow (ft)	2.40	*From Hydraflow Express	
Channel Depth Provided (ft)	4		
Total Freeboard Provided (ft)	1.60		

$$H = C \frac{v^2 W}{gR}$$

where:

C = coefficient;

- = 0.5, subcritical flow, simple curve
- = 1.0, supercritical flow, simple curve

v = average velocity of flow in channel, in fps;

W = channel width at level water surface

g = acceleration of gravity constant, 32.2 ft/sec²;

- R = channel centerline radius of curvature, in ft; and
- H = additional height of freeboard on outside edge of channel, in ft.

(10-4)

Mayberry Filing 3 Flow into Channel C2 (DP4)

Per UDFCD Section 3.2.1 - Riprap Apron

Parameter	Unit	Value
Diameter of Conduit	ft	3
Design Discharge	ft ³ /s	41.1
Tailwater Depth	ft	1.78
Allowable Velocity	ft/s	5
Required Area of Flow	ft ²	8.22
Froude Parameter		2.64
Tailwater Depth/Conduit Diameter		0.59
Expansion Factor		6.6
Length of Protection	ft	11
Length of Protection *Length will extend until tie out to e		11
0		11 4.332314
*Length will extend until tie out to e	xisting grade	
*Length will extend until tie out to e	xisting grade	
*Length will extend until tie out to e Expansion Angle Width of Protection	xisting grade degrees	4.332314
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38)	xisting grade degrees	4.332314 5
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38) Q/D^1.5	xisting grade degrees	4.332314 5 7.91
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38)	xisting grade degrees	4.332314 5
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38) Q/D^1.5	xisting grade degrees	4.332314 5 7.91

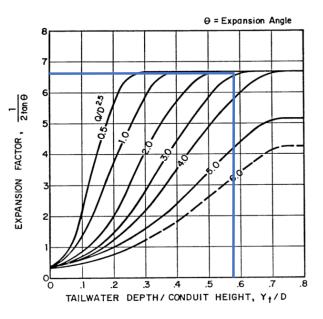
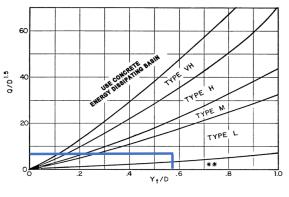



Figure 9-35. Expansion factor for circular conduits

RIPRAP DESIGNATION	% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION (INCHES)	D ₅₀ * (INCHES)	
TYPE VL	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	12 9 6 2	6	
TYPE L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15 12 9 3	9	-
TYPE M	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	21 18 12 4	12	
TYPE H	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	30 24 18 6	18	
*D ₅₀ = MEAN ROCK SIZ	'E			

Figure 8-34. Riprap and soil riprap placement and gradation (part 1 of 3)

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for Q/D2.5 \leq 6.0)

Mayberry Filing 3 Flow into Channel D (DP19)

Per UDFCD Section 3.2.1 - Riprap Apron

Parameter	Unit	Value
Diameter of Conduit	ft	3.75
Design Discharge	ft³/s	106.8
Tailwater Depth	ft	2
Allowable Velocity	ft/s	5
Required Area of Flow	ft ²	21.36
Froude Parameter		3.92
Tailwater Depth/Conduit Diameter		0.53
Expansion Factor		5.8
Length of Protection	ft	41
Length of Protection *Length will extend until tie out to e		41
0		41 4.92711
*Length will extend until tie out to e	existing grade	
*Length will extend until tie out to e	existing grade	
*Length will extend until tie out to e Expansion Angle Width of Protection	visting grade degrees	4.92711
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38)	visting grade degrees	4.92711 11
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38) Q/D^1.5	visting grade degrees	4.92711 11 14.71
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38)	visting grade degrees	4.92711 11
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38) Q/D^1.5	visting grade degrees	4.92711 11 14.71

RIPRAP DESIGNATION	% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION (INCHES)	D ₅₀ * (INCHES)	
TYPE VL	70 - 100 50 - 70 35 - 50 2 - 10	12 9 6 2	6	
TYPE L	70 - 100 50 - 70 35 - 50 2 - 10	15 12 9 3	9	0/0 ^{1.5}
TYPE M	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	21 18 12 4	12	
TYPE H	70 - 100 50 - 70 35 - 50 2 - 10	30 24 18 6	18	
*D50 = MEAN ROCK SIZ	ZE	-		

Figure 8-34. Riprap and soil riprap placement and gradation (part 1 of 3)

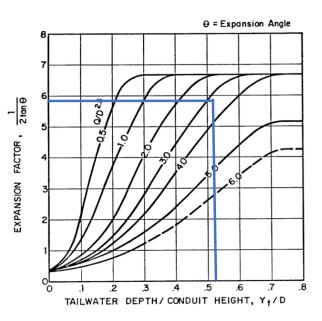
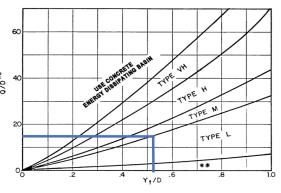



Figure 9-35. Expansion factor for circular conduits

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for Q/D2.5 \leq 6.0)

Mayberry Filing 3 POND D OUTFALL (DP23)

Per UDFCD Section 3.2.1 - Riprap Apron

Parameter	Unit	Value
Diameter of Conduit	ft	3
Design Discharge	ft ³ /s	39.6
Tailwater Depth	ft	2.42
Allowable Velocity	ft/s	1.3
· · · · · · · · ,		-
Required Area of Flow	ft ²	30.46154
Required filed of flow		50.40154
Froude Parameter		2.54
Tailwater Depth/Conduit Diameter		0.81
Expansion Factor		6.8
Expansion ractor		0.0
Length of Protection	ft	66
0		66
*Length will extend until tie out to e	xisting grade	
0		66 4.205357
*Length will extend until tie out to e	xisting grade	
*Length will extend until tie out to e Expansion Angle	xisting grade degrees	4.205357
*Length will extend until tie out to e Expansion Angle	xisting grade degrees	4.205357
*Length will extend until tie out to e Expansion Angle Width of Protection	xisting grade degrees	4.205357
*Length will extend until tie out to ex Expansion Angle Width of Protection RipRap Size (Figure 9-38) Q/D^1.5	xisting grade degrees	4.205357 13
*Length will extend until tie out to ex Expansion Angle Width of Protection RipRap Size (Figure 9-38)	xisting grade degrees	4.205357 13 7.62
*Length will extend until tie out to ex Expansion Angle Width of Protection RipRap Size (Figure 9-38) Q/D^1.5	xisting grade degrees	4.205357 13 7.62

% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION (INCHES)	D ₅₀ * (INCHES)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	12 9 6 2	6
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15 12 9 3	9
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	21 18 12 4	12
70 - 100 50 - 70 35 - 50 2 - 10	30 24 18 6	18
	GIVEN SIZE BY WEIGHT BY 70 - 100 50 - 70 35 - 50 2 - 10 70 - 100 50 - 70 35 - 50 2 - 10 70 - 100 55 - 50 2 - 10 70 - 100 55 - 50 2 - 10	GIVEN SIZE BY WEIGHT DIMENSION (INCHES) 70 - 100 50 - 70 35 - 50 2 - 10 12 9 2 70 - 100 50 - 70 35 - 50 2 - 10 15 12 35 9 3 70 - 100 50 - 70 35 - 50 2 - 10 15 12 3 70 - 100 35 - 50 2 - 10 12 3 70 - 100 35 - 50 2 - 10 12 3 70 - 100 35 - 50 12 2 - 10 21 4 70 - 100 50 - 70 24

Figure 8-34. Riprap and soil riprap placement and gradation (part 1 of 3)

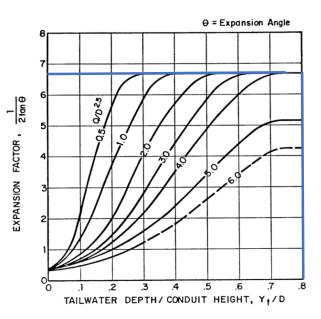
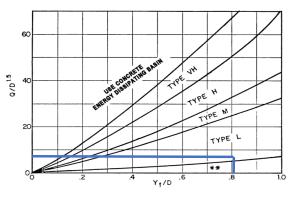



Figure 9-35. Expansion factor for circular conduits

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for $Q/D2.5 \le 6.0$)

Mayberry Filing 3 HWY 94

Per UDFCD Section 3.2.1 - Riprap Apron

Parameter	Unit	Value
Diameter of Conduit	ft	5
Design Discharge	ft ³ /s	144.7
Tailwater Depth	ft	1.96
Allowable Velocity	ft/s	5
Required Area of Flow	ft ²	28.94
Froude Parameter		2.59
Tailwater Depth/Conduit Diameter		0.39
Expansion Factor		4.8
Length of Protection	ft	47
Length of Protection *Length will extend until tie out to e		47
•		47 5.946863
*Length will extend until tie out to e Expansion Angle	existing grade degrees	5.946863
*Length will extend until tie out to e	existing grade	
*Length will extend until tie out to e Expansion Angle Width of Protection	existing grade degrees	5.946863
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38)	existing grade degrees	5.946863 15
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38) Q/D^1.5	existing grade degrees	5.946863 15 12.94
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38)	existing grade degrees	5.946863 15
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38) Q/D^1.5	existing grade degrees	5.946863 15 12.94

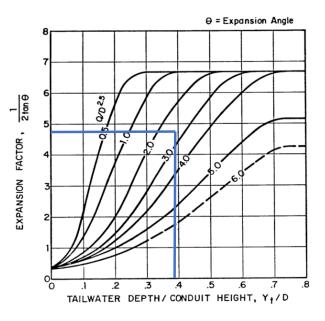
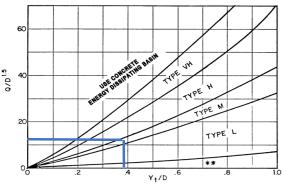



Figure 9-35. Expansion factor for circular conduits

RIPRAP DESIGNATION	% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION (INCHES)	D ₅₀ * (INCHES)	
TYPE VL	70 - 100 50 - 70 35 - 50 2 - 10	12 9 6 2	6	
TYPE L	70 - 100 50 - 70 35 - 50 2 - 10	15 12 9 3	9	-
TYPE M	70 - 100 50 - 70 35 - 50 2 - 10	21 18 12 4	12	
TYPE H	70 - 100 50 - 70 35 - 50 2 - 10	30 24 18 6	18	
*D ₅₀ = MEAN ROCK SIZ	'E		1	

Figure 8-34. Riprap and soil riprap placement and gradation (part 1 of 3)

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for Q/D2.5 \leq 6.0)

Mayberry Filing 3 CULVERTS E1 & E2

Per UDFCD Section 3.2.1 - Riprap Apron

Parameter	Unit	Value
Diameter of Conduit	ft	5
Design Discharge	ft ³ /s	150.8
Tailwater Depth	ft	1.95
Allowable Velocity	ft/s	5
Required Area of Flow	ft ²	30.16
Froude Parameter		2.70
Tailwater Depth/Conduit Diameter		0.39
Expansion Factor		4.4
Length of Protection	ft	47
Length of Protection *Length will extend until tie out to e		47
-		47 6.483074
*Length will extend until tie out to e	existing grade	
*Length will extend until tie out to e	existing grade	
*Length will extend until tie out to e Expansion Angle Width of Protection	existing grade degrees	6.483074
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38)	existing grade degrees	6.483074 16
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38) Q/D^1.5	existing grade degrees	6.483074 16 13.49
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38)	existing grade degrees	6.483074 16
*Length will extend until tie out to e Expansion Angle Width of Protection RipRap Size (Figure 9-38) Q/D^1.5	existing grade degrees	6.483074 16 13.49

RIPRAP DESIGNATION	% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION (INCHES)	D ₅₀ * (INCHES)
TYPE VL	70 - 100 50 - 70 35 - 50 2 - 10	12 9 6 2	6
TYPE L	70 - 100 50 - 70 35 - 50 2 - 10	15 12 9 3	9
TYPE M	70 - 100 50 - 70 35 - 50 2 - 10	21 18 12 4	12
TYPE H	70 - 100 50 - 70 35 - 50 2 - 10	30 24 18 6	18
*D ₅₀ = MEAN ROCK SIZ	Έ		

Figure 8-34. Riprap and soil riprap placement and gradation (part 1 of 3)

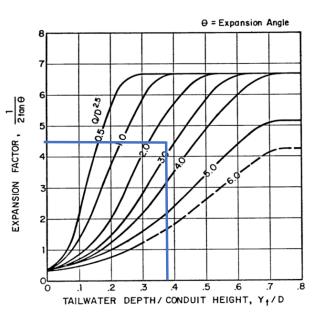
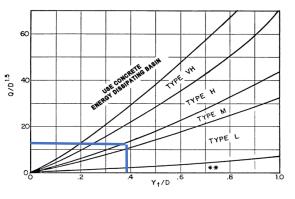



Figure 9-35. Expansion factor for circular conduits

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for $Q/D2.5 \le 6.0$)

Mayberry Filing 3 Channel E Confluence with channel F (EX-5)

Per UDFCD Section 3.2.1 - Riprap Apron

Parameter	Unit	Value
Diameter of Conduit	ft	8
Design Discharge	ft³/s	150.5
Tailwater Depth	ft	2.42
Allowable Velocity	ft/s	3
Required Area of Flow	ft ²	50.16667
Froude Parameter		0.83
Tailwater Depth/Conduit Diameter		0.30
Expansion Factor		6.67
Length of Protection	ft	85
*Length will extend until tie out to ex	xisting grade	
*Length will extend until tie out to ex Expansion Angle	xisting grade degrees	4.287018
		4.287018 21
Expansion Angle Width of Protection RipRap Size (Figure 9-38)	degrees	21
Expansion Angle Width of Protection RipRap Size (Figure 9-38) Q/D^1.5	degrees	21 6.65
Expansion Angle Width of Protection RipRap Size (Figure 9-38)	degrees	21

RIPRAP DESIGNATION	% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION (INCHES)	D ₅₀ * (INCHES)	
TYPE VL	70 - 100 50 - 70 35 - 50 2 - 10	12 9 6 2	6	
TYPE L	70 - 100 50 - 70 35 - 50 2 - 10	15 12 9 3	9	
TYPE M	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	21 18 12 4	12	
TYPE H	70 - 100 50 - 70 35 - 50 2 - 10	30 24 18 6	18	
*D50 = MEAN ROCK SIZE				

Figure 8-34. Riprap and soil riprap placement and gradation (part 1 of 3)

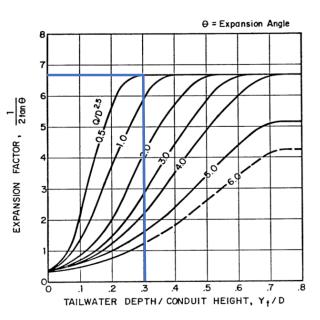
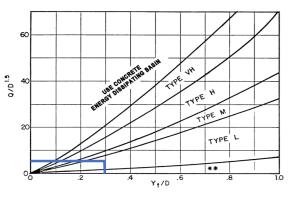
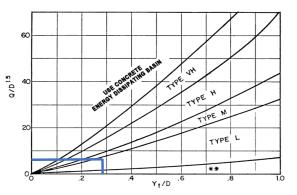



Figure 9-35. Expansion factor for circular conduits

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for Q/D2.5 \leq 6.0)


Mayberry Filing 3 Channel F Plunge Pool

Per UDFCD Section 3.2.1 - Riprap Apron

Parameter	Unit	Value
Diameter of Conduit	ft	8
Design Discharge	ft³/s	177.5
Tailwater Depth	ft	3
Allowable Velocity	ft/s	1.3
RipRap Size (Figure 9-38)		
Q/D^1.5		7.84
Yt/D		0.38
RipRap Size (Figure 9-38)		Type L

RIPRAP DESIGNATION	% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION (INCHES)	D ₅₀ * (INCHES)
TYPE VL	70 - 100 50 - 70 35 - 50 2 - 10	12 9 6 2	6
TYPE L	70 - 100 50 - 70 35 - 50 2 - 10	15 12 9 3	9
TYPE M	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	21 18 12 4	12
TYPE H	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	30 24 18 6	18
*D ₅₀ = MEAN ROCK SIZE			

Figure 8-34. Riprap and soil riprap placement and gradation (part 1 of 3)

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for Q/D2.5 \leq 6.0)

DP EX-6 (EX. 100 YEAR FLOW)

Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	0.010 ft/ft	

Section Definitions

Station (ft)	Elevation (ft)
12+21	6,023.20
14+15	6,022.90
15+21	6,022.50
15+30	6,021.50
15+38	6,022.90
15+50	6,023.20

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(12+21, 6,023.20)	(15+38, 6,022.90)	0.025
(15+38, 6,022.90)	(15+50, 6,023.20)	0.013

Options		
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Pavlovskii's Method Pavlovskii's Method Pavlovskii's	
Method	Method	
Results		
Discharge	231.42 cfs	
Roughness Coefficient	0.025	
Elevation Range	6,021.5 to 6,023.2 ft	
Flow Area	86.7 ft ²	
Wetted Perimeter	293.2 ft	
Hydraulic Radius	3.5 in	
Top Width	293.05 ft	
Normal Depth	19.8 in	
Critical Depth	19.3 in	
Critical Slope	0.014 ft/ft	
Velocity	2.67 ft/s	
Velocity Head	0.11 ft	
Specific Energy	1.76 ft	
Froude Number	0.865	
Log Road Section.fm8 1/5/2023	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	FlowMaster [10.03.00.03] Page 1 of 2

DP EX-6 (EX. 100 YEAR FLOW)

Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	19.8 in	
Critical Depth	19.3 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.014 ft/ft	

Log Road Section.fm8 1/5/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

DP EX-7 (EX. 100 YEAR FLOW)

Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	0.010 ft/ft	

Section Definitions

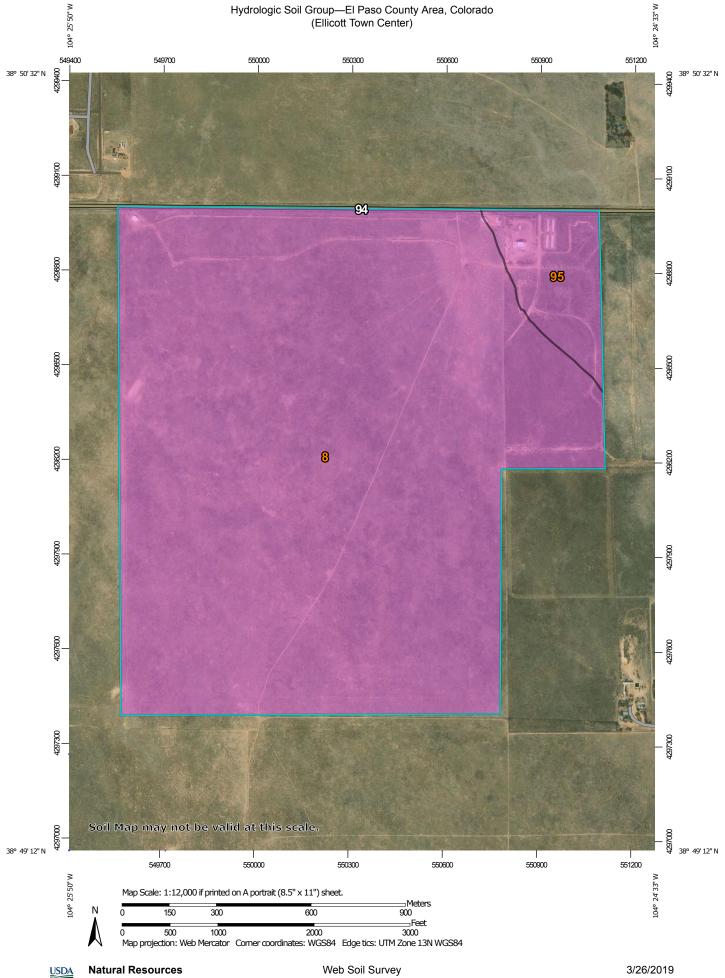
Station (ft)	Elevation (ft)
13+06	6,001.10
13+22	6,000.72
15+41	6,000.72
15+51	5,999.65
15+59	6,001.10
15+71	6,001.39

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(13+06, 6,001.10)	(15+59, 6,001.10)	0.025
(15+59, 6,001.10)	(15+71, 6,001.39)	0.013

Options		
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method	
Results		
Discharge	289.90 cfs	
Roughness Coefficient	0.025	
Elevation Range	5,999.7 to 6,001.4 ft	
Flow Area	94.0 ft ²	
Wetted Perimeter	251.7 ft	
Hydraulic Radius	4.5 in	
Top Width	251.48 ft	
Normal Depth	17.1 in	
Critical Depth	16.7 in	
Critical Slope	0.013 ft/ft	
Velocity	3.08 ft/s	
Velocity Head	0.15 ft	
Specific Energy	1.57 ft	
Froude Number	0.889	
Log Road Section.fm8 1/5/2023	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	FlowMaster [10.03.00.03] Page 1 of 2

DP EX-7 (EX. 100 YEAR FLOW)


Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	17.1 in	
Critical Depth	16.7 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.013 ft/ft	

Log Road Section.fm8 1/5/2023 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2 **APPENDIX C – REFERENCE INFORMATION**

ENGINEER'S OPINION OF PROBABLE COSTS FOR Mayberry Filing 3 - Drainage Improvements

Item	Description	Total Work Units		Unit Price		Total Cost
Riprap		15 Ton		89.00 Ton		1,340.34
18" RCP		104 LF	\$	70.00 LF	\$	7,280.00
24" RCP		1,592 LF	\$	83.00 LF	\$	132,136.00
30" RCP		989 LF	\$	104.00 LF	\$	102,856.00
36" RCP		2,712 LF	\$	128.00 LF	\$	347,136.00
48" RCP		927 LF	\$	209.00 LF	\$	193,743.00
5' Type R			\$	'	\$	36,828.00
10' Type R		6 EA	\$	8,447.00 EA	\$	50,682.00
15' Type R		7 EA	\$	10,984.00 EA	\$	76,888.00
Storm Manhole		18 EA	\$	7,082.00 EA	\$	127,476.00
36" FES			\$		\$	744.00
60" FES		6 EA	\$	1,788.00 EA	\$	10,728.00
Pond Forebay		2 EA	\$	12,000.00 EA	\$	24,000.00
Pond Outlet Structure		1 EA	\$	12,000.00 EA	\$	12,000.00
Grass Channels		3 AC	6	1,520.00 EA	\$	4,560.00
SUBTOTAL		3 AC	Φ	1,520.00 EA	э \$	1,123,837.34
Contingency (15%)					ֆ \$	168,575.60
TOTAL					\$	1,292,412.94

Conservation Service

Web Soil Survey National Cooperative Soil Survey is severely eroded and blowouts have developed, the new seeding should be fertilized.

Windbreaks and environmental plantings are generally suited to this soil. Soil blowing is the main limitation for the establishment of trees and shrubs. This limitation can be overcome by cultivating only in the tree rows and leaving a strip of vegetation between the rows. Supplemental irrigation may be necessary when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mountain juniper eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. In cropland areas, habitat favorable for ring-necked pheasant, mourning dove, and many nongame species can be developed by establishing areas for nesting and escape cover. For pheasant, the provision of undisturbed nesting cover is vital and should be included in plans for habitat development. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for use as homesites. Shallow excavation is severely limited because cut banks cave in. This sandy soil requires special management practices to reduce water erosion and soil blowing. Capability subclasses IIIe, irrigated, and IVe, nonirrigated.

7—Bijou sandy loam, 3 th 8 percent slopes. This deep, well drained soil is on flood plains, terraces, and uplands. It formed in sandy alluvium and eolian material derived from arkose deposits. Elevation ranges from 5,400 to 6,200 feet. The average annual precipitation is about 13 inches, the average annual air temperature is about 49 degrees F, and the average frost-free period is about 145 days.

Typically, the surface layer is brown sandy loam about 4 inches thick. The subsoil is brown or grayish brown sandy loam about 24 inches thick. The substratum is pale brown loamy coarse sand.

Included with this soil in mapping are small areas of Olney sandy loam, 3 to 5 percent slopes; Walent sand, 1 to 9 percent slopes; Vona sandy loam, 3 to 9 percent slopes; and Wigton bamy sand, 1 to 8 percent slopes.

Permeability of this Bijou soil is rapid. Effective rooting depth is 60 inches or more. Available water capacity is moderate. Organic matter content of the surface layer is low. Surface runoff is slow, and the hazards of erosion and soil/blowing are moderate.

Almost all areas of this soil are used for range.

This soil is suited to the production of native vegetation suitable for grazing. Because of the hazards of water erosion and soil blowing, the soil is not suited to nonirrigated crops.

Native vegetation is dominantly blue grama, sand dropseed, needleandthread, side-oats grama, and buckwheat. Seeding is a suitable practice if the range has deterorated. Seeding the native grasses is a good practice. If the range is severely eroded and blowouts have developed, the new seeding should be fertilized. Brush control and grazing management may be needed to improve the depleted range. Grazing should be managed so that enough forage is left standing to protect the soil from blowing, to increase infiltration of water, and to catch and hold snow.

Windbreaks and environmental plantings are generally suited to this soil. Soil blowing is the main limitation for the establishment of thees and shrubs. This limitation can be overcome by cultivating only in the tree rows and leaving a strip of vegetation between the rows. Supplemental irrigation may be needed when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mountain Juniper, eastern redcedar, ponderosa pine, Siberiar elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, by properly managing livestock grazing, and by reseeding range where needed.

This soil has good potential for use as homesites Shallow excavation is severely limited because cut banks cave in. This soil requires special management practices to reduce water erosion and soil blowing. Capability subclass VIe.

8—Blakeland loamy sand, 1 to 9 percent slopes. This deep, somewhat excessively drained soil formed in alluvial and eolian material derived from arkosic sedimentary rock on uplands. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the average frost-free period is about 135 days.

Typically, the surface layer is dark grayish brown loamy sand about 11 inches thick. The substratum, to a depth of 27 inches, is brown loamy sand; it grades to pale brown sand that extends to a depth of 60 inches.

Included with this soil in mapping are small areas of Bresser sandy loam, 0 to 3 percent slopes; Bresser sandy loam, 3 to 5 percent slopes; Truckton sandy loam, 0 to 3 percent slopes; Truckton sandy loam, 3 to 9 percent slopes; and Stapleton sandy loam, 3 to 8 percent slopes. In some areas, mainly north of Colorado Springs in the Cottonwood Creek area, arkosic beds of sandstone and shale are at a depth of 0 to 40 inches.

Permeability of this Blakeland soil is rapid. Effective rooting depth is 60 inches or more. Available water capacity is low to moderate. Organic matter content of the surface layer is medium. Surface runoff is slow, the hazard of erosion is moderate, and the hazard of soil blowing is severe.

Most areas of this soil are used for range, homesites, and wildlife habitat.

Native vegetation is dominantly western wheatgrass, side-oats grama, and needleandthread. This soil is best suited to deep-rooted grasses.

Proper range management is necessary to prevent excessive removal of plant cover from the soil. Interseeding improves the existing vegetation. Deferment of grazing in spring increases plant vigor and soil stability. Proper location of livestock watering facilities helps to control grazing.

Windbreaks and environmental plantings are fairly well suited to this soil. Blowing sand and low available water capacity are the main limitations for the establishment of trees and shrubs. The soil is so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for urban development. Soil blowing is a hazard if protective vegetation is removed. Special erosion control practices must be provided to minimize soil losses. Capability subclass VIe.

. 9-Blakeland complex, 1 to 9 percent slopes. This complex is on uplands, mostly in the Falcon area. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the crost-free period is about 135 days.

This complex is about 60 percent Blakeland loamy sand, about 30 percent Fluvaquentic Haplaquolls, and 10 percent other soils.

Included with these soils in mapping are areas of Columbine gravelly sandy loam, 0 to 3 percent slopes, Ellicott loamy coarse sand, 0 to 5 percent slopes, and Ustic Torrifluvents, loamy.

The Blakeland soil is in the more sloping areas. It is deep and somewhat excessively drained. It formed in sandy alluvium and eolian material derived from arkosic sedimentary rock. Typically, the surface layer is dark grayish brown loamy sand about 11 inches thick. The substratum, to a depth of 27 inches, is brown loamy sand; it grades to pale brown sand that extands to a depth of 60 inches or more.

Permeability of the Blakeland soil is rapid. The effective rooting depth is more than 60 inches. The available water capacity is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate.

The Fluvaquentic Haplaquolls are in swale areas. They are deep, poorly drained soils. They formed in alluvium derived from arkosic sedimentary rock. Typically, the surface layer is brown. The texture is variable throughout. The water table is at a depth of 0 to 3 feet. The Blakeland soil is well suited to deep-rooted grasses. Native vegetation is dominantly western wheatgrass, side-oats grama, and needleandthread. Rangeland vegetation on the Fluvaquentic Haplaquolls is dominantly tall grasses, including sand bluestem, switchgrass, prairie cordgrass, little bluestem, and sand reedgrass. Cattails and bulrushes are common in the swampy areas.

Proper range management is needed to prevent excess removal of plant cover from these soils. It is also needed to maintain the productive grasses. Interseeding improves the existing vegetation. Deferment of grazing during the growing season increases plant vigor and soil stability, and it helps to maintain and improve range condition. Proper location of livestock watering facilities helps to control grazing of animals.

Windbreaks and environmental plantings are fairly well suited to these soils. Blowing sand and low available water capacity are the main limitations to the establishment of trees and shrubs. The soils are so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

The Blakeland soil is well suited to wildlife habitat. It is best suited to habitat for penland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed. Wetland wildlife can be attracted to the Fluvaquentic Haplaquolls and the wetland habitat can be enhanced by several means. Shallow water developments can be created by digging or by blasting potholes to create open-water areas. Fencing to control livestock grazing is beneficial/and it allows wetland plants such as cattails, reed canarygrass, and rushes to grow. Control of unplanned burning/and prevention of drainage that would remove water from the wetlands are good practices. Openland wildlife use the vegetation on these soils for nesting and escape cover. These shallow marsh areas are especially important for winter cover if natural vegetation is allowed to grow.

The Blakeland soil has good potential for homesites, roads, and streets. It needs to be protected from erosion, when vegetation has been removed from building sites. The Fluvaquentic Haplaquolls have poor potential for homesites. Their main limitations for this use are the high water table and the hazard of flooding. Capability subclass VIe.

10—Blendon sandy loam, 0 to 3 percent sldpes. This deep, well drained soil formed in sandy arkosic alluvium on alluvial fans and terraces. The average annual precipitation is about 15 inches, the mean annual air temperature is about 47 degrees F, and the average frostfree period is about 135 days. Permeability of the Crowfoot soil is moderate. Effective rooting depth is 60 inches or more. Available water capacity is moderate. Surface runoff is medium, and the hazard of erosion is moderate. Some gullies are present in some drainageways and along stock trails.

The soils in this complex are used as rangeland, for recreation and wildlife habitat, and as homesites.

Native vegetation is mainly mountain muhly, bluestem, mountain brome, needleandthread, and blue grama. These soils are subject to invasion by Kentucky bluegrass and Gambel oak. Noticeable forbs are hairy goldenrod, geranium, milkvetch, low larkspur, fringed sage, and buckwheat.

Proper location of livestock watering facilities helps to control grazing. Timely deferment of grazing is needed to protect the plant cover.

Windbreaks and environmental plantings are fairly well suited to these soils. Blowing sand and moderate available water capacity are the main limitations for the establishment of trees and shrubs. The soils are so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrab.

These soils are best suited to habitat for openland wildlife species, such as pronghorn antelope and sharp-tailed grouse. Although sharp-tailed grouse are not plentiful, they could be encouraged on these soils, especially where brush species are interspersed with grasses and forbs. If these soils are used as rangeland, wildlife production can be increased by managing livestock grazing to preclude overuse of the more desirable grass species and depletion of the various brush species.

The main limitations for urban uses are frost-action potential and slope on the Crowfoot soil and slope on the Tomah soil. Buildings and roads must be designed to overcome these limitations. Access roads must have adequate cut-slope grade and be provided with drains to control surface runoff. Maintaining the existing vegetation on building sites during construction helps to control erosion. Capability subclass VIe.

94—Travessilla-Rock outcrop complex 8 to 90 percent slopes. This moderately sloping to extremely steep complex is mostly on rocky uplands (fig. 5). Elevation ranges from 6,200 to 6,700 feet. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the average frostfree period is about 140 days.

The Travessilla soil makes up about 45 percent of the complex Rock outcrop about 30 percent, and included areas about 25 percent.

Included with this complex in mapping are areas of Bresser sandy loam, 5 to 9 percent slopes, Elbeth sandy loam, 8 to 15 percent slopes, Kettle gravelly loamy sand, 8 to 40 percent slopes, and Louviers silty clay loam, 3 to 18 percent slopes. The Elbeth and Kettle soils commonly are of the north-facing slopes. The Travessilla soil is shallow and well drained. It formed in residuum derived from sandstone. Typically, the surface layer is light brownish gray sandy loam about 3 inches thick. The underlying material is pale brown sandy loam about 8 inches thick. Hard arkosic sandstone that has some fractures is at a depth of about 11 inches.

Permeability of the Travessilla soil is moderately rapid. Effective rooting depth is 6 to 20 inches. Available water capacity is low. Surface runoff is medium to rapid, and the hazard of erosion is high. Gullies are common along drainageways and trails.

Rock outcrop occurs mostly as ledges/on cliffs.

This complex is used for urban development, as homesites, and for recreation and wildlife habitat.

This complex is suited to the production of ponderosa pine. The main limitations are the presence of stones and rock outcrop on the surface and a high hazard of erosion. Stones on the surface can hinder felling, yarding, and other operations involving the use of equipment. Practices must be used to minimize soll erosion when harvesting timber. The low available water capacity can influence seedling survival.

Wildlife on these solds is limited mostly to small animals such as cottontail, squirrel, and birds because of the extent of urban development. Ponderosa pine, mountainmahogany, Gambel oak, and various grasses provide food, cover, and nesting areas.

This complex is extensively used for urban development and as homesites (fig. 6). The main limitations for these uses are depth to bedrock, rock outcrop, and steep slopes. Septic tank absorption fields do not function properly because of the depth to bedrock. Special designs for buildings and roads and streets are needed to overcome the limitations. Plans for homesite development should provide for the preservation of as many trees as possible because of their esthetic value. Capability subclass VIIe.

95—Truckton loamy sand, 1 to 9 percent slopes. This deep, well drained soil formed in alluvium and residuum derived from arkosic sedimentary rock on uplands. Elevation ranges from 6,000 to 7,000 feet. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the average frostfree period is about 135 days.

Typically, the surface layer is grayish brown loamy sand about 8 inches thick. The subsoil is brown sandy loam about 18 inches thick. The substratum is light yellowish brown coarse sandy loam to a depth of 60 inches or more.

Included with this soil in mapping are small areas of Blakeland loamy sand, 1 to 9 percent slopes; Bresser sandy loam, 3 to 5 percent sloeps; Bresser sandy loam, 5 to 9 percent slopes; Truckton sandy loam, 0 to 3 percent slopes; and Truckton sandy loam, 3 to 9 percent slopes.

Permeability of this Truckton soil is moderately rapid. Effective rooting depth is 60 inches or more. Available water capacity is moderate. Surface runoff is slow, and the hazard of erosion is moderate to high. Almost all areas of this soil are used as rangeland. A few areas of crops such as alfalfa and corn are grown under sprinkler irrigation.

This soil is well suited to the production of native vegetation suitable for grazing. It is best suited to deeprooted grasses. The native vegetation is mainly cool- and warm-season grasses such as western wheatgrass, sideoats grama, and needleandthread.

Proper range management is needed to prevent excessive removal of the plant cover. Interseeding is used to improve the existing vegetation. Deferment of grazing in spring increases plant vigor and soil stability. Properly locating livestock watering facilities helps to control grazing.

Windbreaks and environmental plantings are fairly well suited to this soil. Blowing sand is the main limitation for the establishment of trees and shrubs. The soil is so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to openland and rangeland wildlife habitat. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed. This soil has good potential for use as homesites. The main limitation of this soil for roads and streets is frost action potential. Special designs for roads are needed to minimize this limitation. Practices are needed to control soil blowing and water erosion on construction sites where the plant cover has been removed. Capability subclass VIe, nonirrigated.

96—Truckton sandy loam, 0 to 3 percent slopes. This deep, well drained soil formed in alluvium and residuum derived from arkosic sedimentary rock on uplands. Elevation ranges from 6,000 to 7,000 feet. The average annual precipitation is about 15 inches, the average annual air temperatue is about 47 degrees F, and the average frostfree period is about 135 days.

Typically, the surface layer is grayish brown sandy loam about 5 inches thick. The next layer is dark grayish brown sandy loam about 3 inches thick. The subsoil is brown sandy loam about 16 inches thick. The substratum is light yellowish brown coarse sandy loam to a depth of 60 inches or more.

Included with this soil in mapping are small areas of Blakeland loamy sand, 1 to 9 percent slopes; Bresser sandy loam, 0 to 3 percent slopes; Ellicott loamy coarse sand, 0 to 5 percent slopes; and Ustic Torrifluvents, loamy.

Permeability of this Truckton soil is moderately rapid. Effective rooting depth is 60 inches or more. Available water capacity is moderate. Surface runoff is slow, and the pazards of erosion and soil blowing are moderate. This soil is used mainly for cultivated crops. It is also used for livestock grazing, for wildlife habitat, and as homesites.

Crops are commonly grown in combination with summer fallow because moisture is insufficient for annual cropping. Alfalfa can also be grown on this soil. When this soil is used as cropland, crop residue management and minimum tillage are necessary conservation practices.

This soil is well suited to the production of native vegetation suitable for grazing (fig. 7). It favors deeprooted grasses. The native vegetation is mainly cool- and warm-season grasses such as western wheatgrass, sideoats grama, and needleandthread.

Proper range management is needed to prevent excessive removal of the plant cover. Interseeding is used to improve the existing vegetation. Deferment of grazing in spring increases plant vigor and soil stability. Properly locating livestock watering facilities helps to control grazing.

Windbreaks and environmental plantings generally are suited to this soil. Soil blowing is the main limitation to the establishment of trees and shrubs. This limitation can be overcome by cultivating only in the tree rows and leaving a strip of vegetation between the rows. Supplemental irrigation may be needed when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. In cropland areas, habitat favorable for ring-necked pheasant, mourning dove, and many nongame species can be developed by establishing areas for nesting and escape cover. For pheasant, undisturbed nesting cover is vital and should be provided in plans for habitat development. This is especially true in areas of intensive farming. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for use as homesites. The main limitation of this soil for roads and streets is frostaction potential. Special designs for roads are needed to overcome this limitation. Capability subclasses IIIe, nonirrigated, and IIe, irrigated.

97—Truckton sandy loam, 3 to 9 percent slopes. This deep, well drained soil formed in alluvium and residuum derived from arkosic sedimentary rock on uplands. Elevation ranges from 6,000 to 7,000 feet. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the average frostfree period is about 135 days.

Typically, the surface layer is grayish brown sandy loam about 5 inches thick. The next layer is dark grayish brown sandy loam about 3 inches thick. The subsoil is brown sandy loam about 16 inches thick. The substratum is light yellowish brown coarse sandy loam to a depth of 60 inches or more.

60

EL PASO COUNTY AREA, COLORADO

TABLE 16. -- SOIL AND WATER FEATURES

[Absence of an entry indicates the feature is not a concern. See "flooding" in Glossary for definition of terms as "rare," "brief," and "very brief." The symbol > means greater than]

	1	T	Flooding		l Be	1	
Soil name and map symbol	Hydro- logic group	Frequency	Duration	Months	Depth	Hardness	Potential frost action
Alamosa:					In		
1	с	Frequent	Brief	May-Jun	>60		High.
scalon: 2, 3	В	None			>60		Moderate:
adland: 4	D						
Bijou: 5, 6, 7	В	None			>60		Low.
Blakeland: 8	A	None			>60		Low.
¹ 9: Blakeland part-	A	None			>60		Low.
Fluvaquentic Haplaquolls part	D	Common	Very brief	Mar-Aug	>60		High.
lendon: 10	В	None	·		>60		Moderate.
resser: 11, 12, 13	В	None			>60		Low.
russett: 14, 15	В	None			>60		Moderate.
haseville: 16, 17	A	None			>60		Low.
118: Chaseville part	A	None			>60		Low.
Midway part	D	None			10-20	Rippable	Moderate.
olumbine: 19	A	None to rare			>60		Low.
onnerton: 120: Connerton part-	в	None			>60		High.
Rock outcrop part	D						
ruckton: 21	В	None			>60		Moderate.
ushman: 22, 23	с	None			20-40	Rippable	Moderate.
¹ 24: Cushman part	с	None			20-40	Rippable	Moderate.
Kutch part	С	None			20-40	Rippable	Moderate.
1beth: 25, 26	В	None			>60		Moderate.
127: Elbeth part	В	None			>60		 Moderate.

See footnote at end of table.

EL PASO COUNTY AREA, COLORADO

TABLE 16. -- SOIL AND WATER FEATURES -- Continued

	1	1	Flooding	1 Be			
Soil name and map symbol	Hydro- logic group	Frequency	Duration	Months	Depth	Hardness	Potential frost action
		1			In		
Tomah: 192, 193: Tomah part	В	None			>60		Moderate.
Crowfoot part	В	None			>60		Moderate.
Travessilla: 194:							
Travessilla part	D	None			6-20	Hard	Low.
Rock outerop part	D						
Truckton: 95, 96, 97	B	None			>60		Moderate.
198: Truckton part	В	None			>60		Moderate.
Blakeland part-	A	None			>60		Low.
199, ¹ 100: Truckton part	В	None			>60		Moderate.
Bresser part	В	None			>60		Low.
Ustic Torrifluvents: 101	В	Occasional	Very brief	Mar-Aug	>60		Moderate.
Valent: 102, 103	A	None			>60		Low.
Vona: 104, 105	В	None			>60		Moderate.
Wigton: 106	A	None			>60		Low.
Wiley: 107, 108	в	None			>60		Low.
Yoder: 109, 110	В	None			>60		Low.

¹This map unit is made up of two or more dominant kinds of soil. See map unit description for the composition and behavior characteristics of the map unit.

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the **North American Vertical Datum** of **1988** (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services

NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202

1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

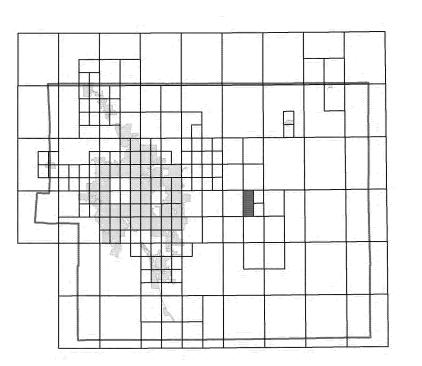
Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date **stream channel configurations and floodplain delineations** than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

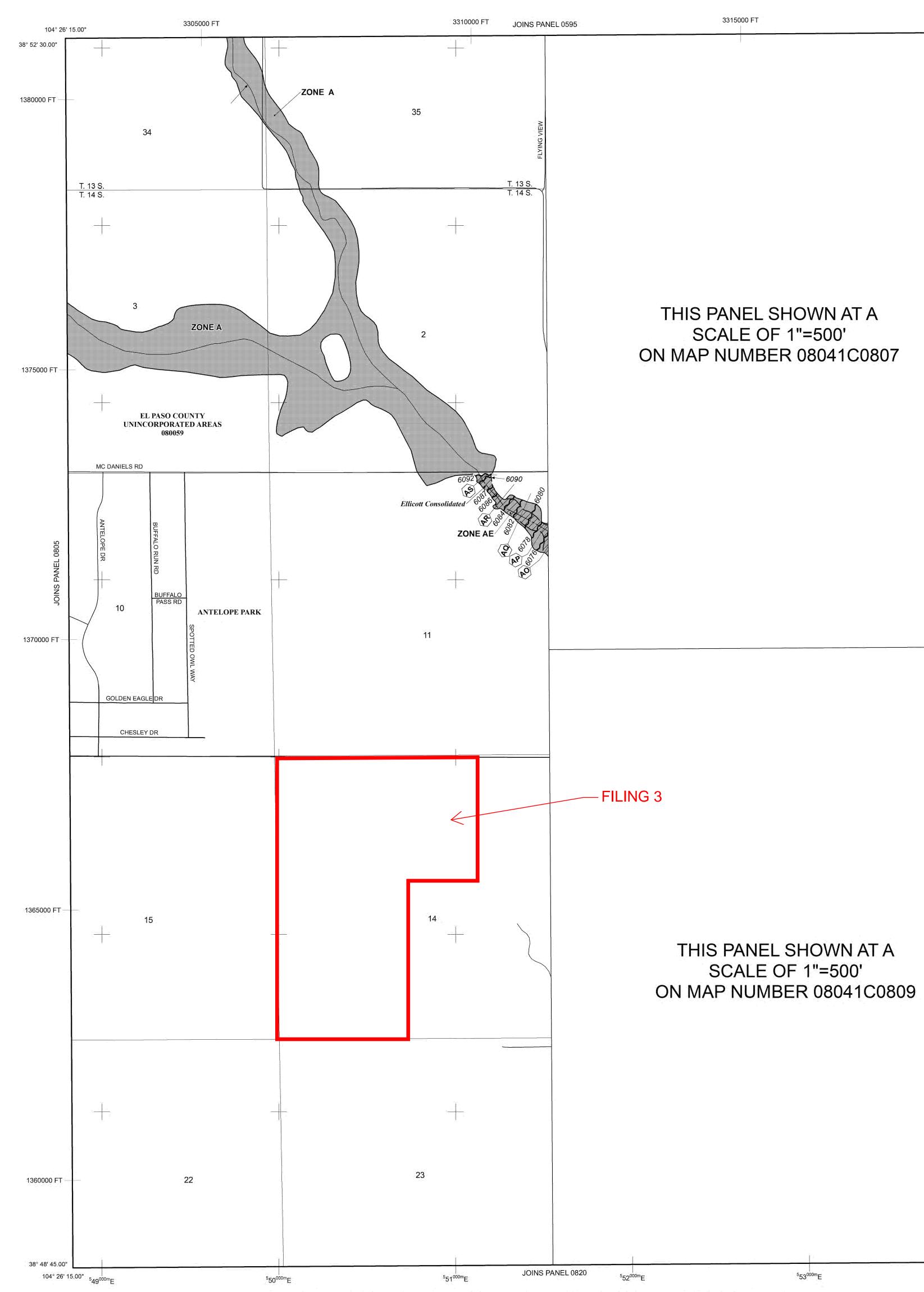
Contact **FEMA Map Service Center** (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

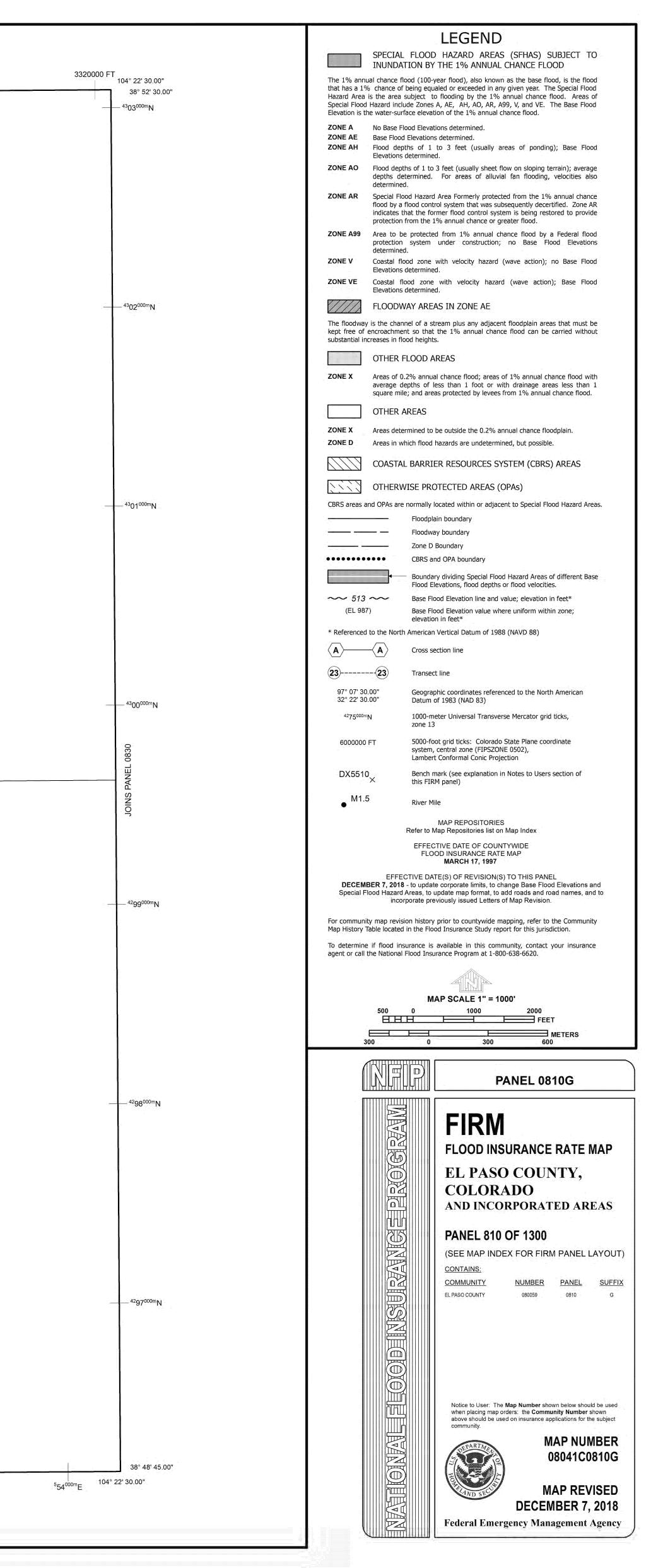

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

Flooding Source

El Paso County Vertical Datum Offset Table Vertical Datum

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map


This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 13 SOUTH, RANGE 63 WEST, AND TOWNSHIP 14 SOUTH, RANGE 63 WEST.

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the **North American Vertical Datum** of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway

Silver Spring, MD 20910-3282

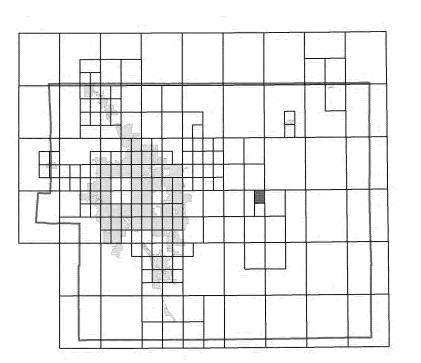
To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date **stream channel configurations and floodplain delineations** than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

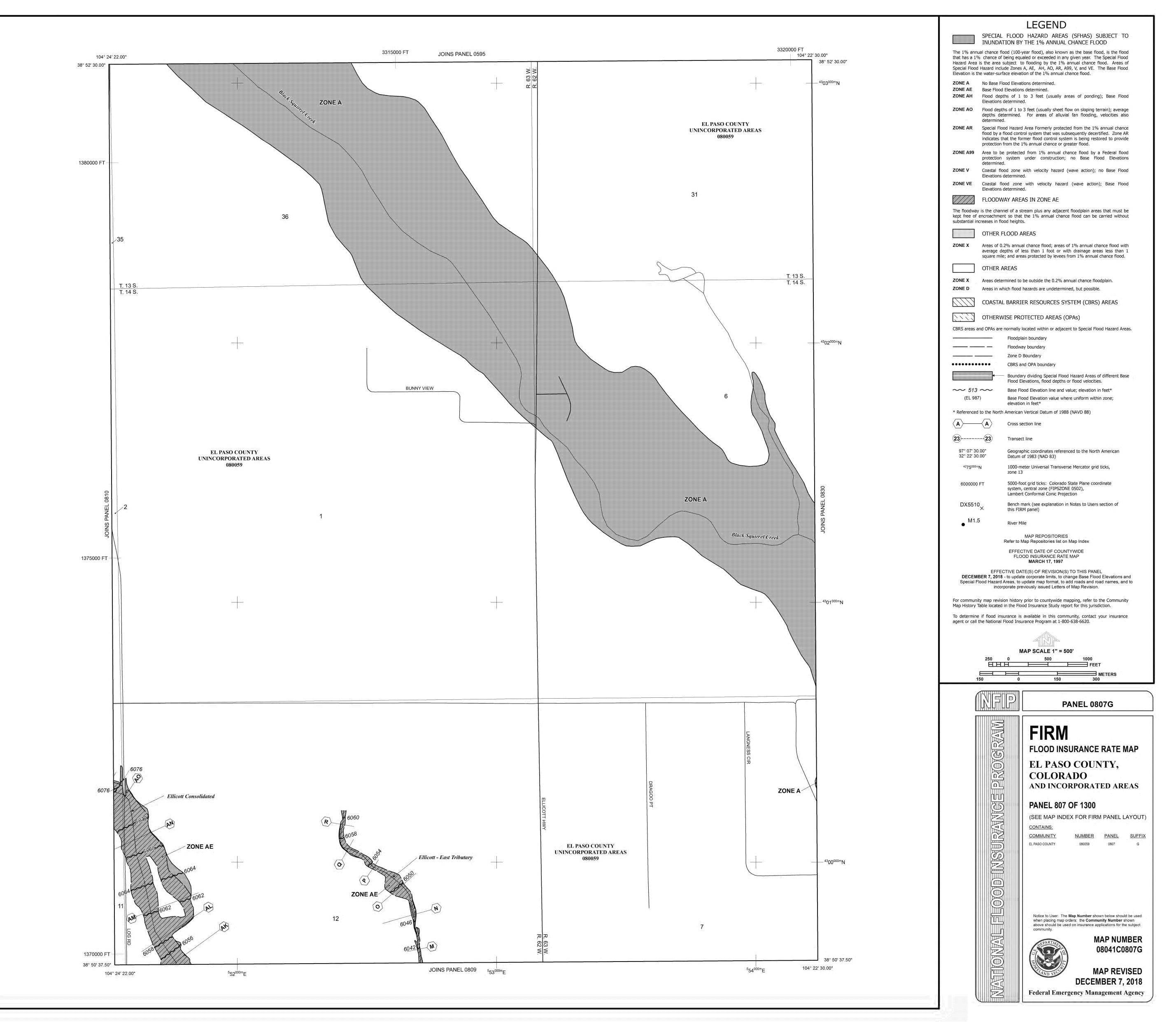
Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.


Contact **FEMA Map Service Center** (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County Vertical Datum Offset Table Vertical Datum Flooding Source Offset (ft)

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202

1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

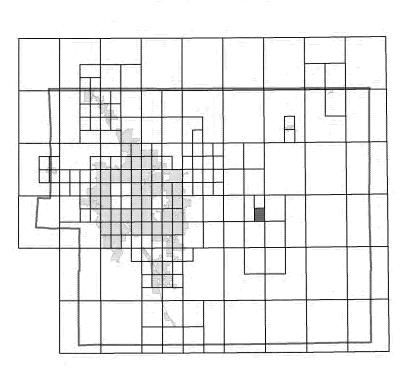
This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

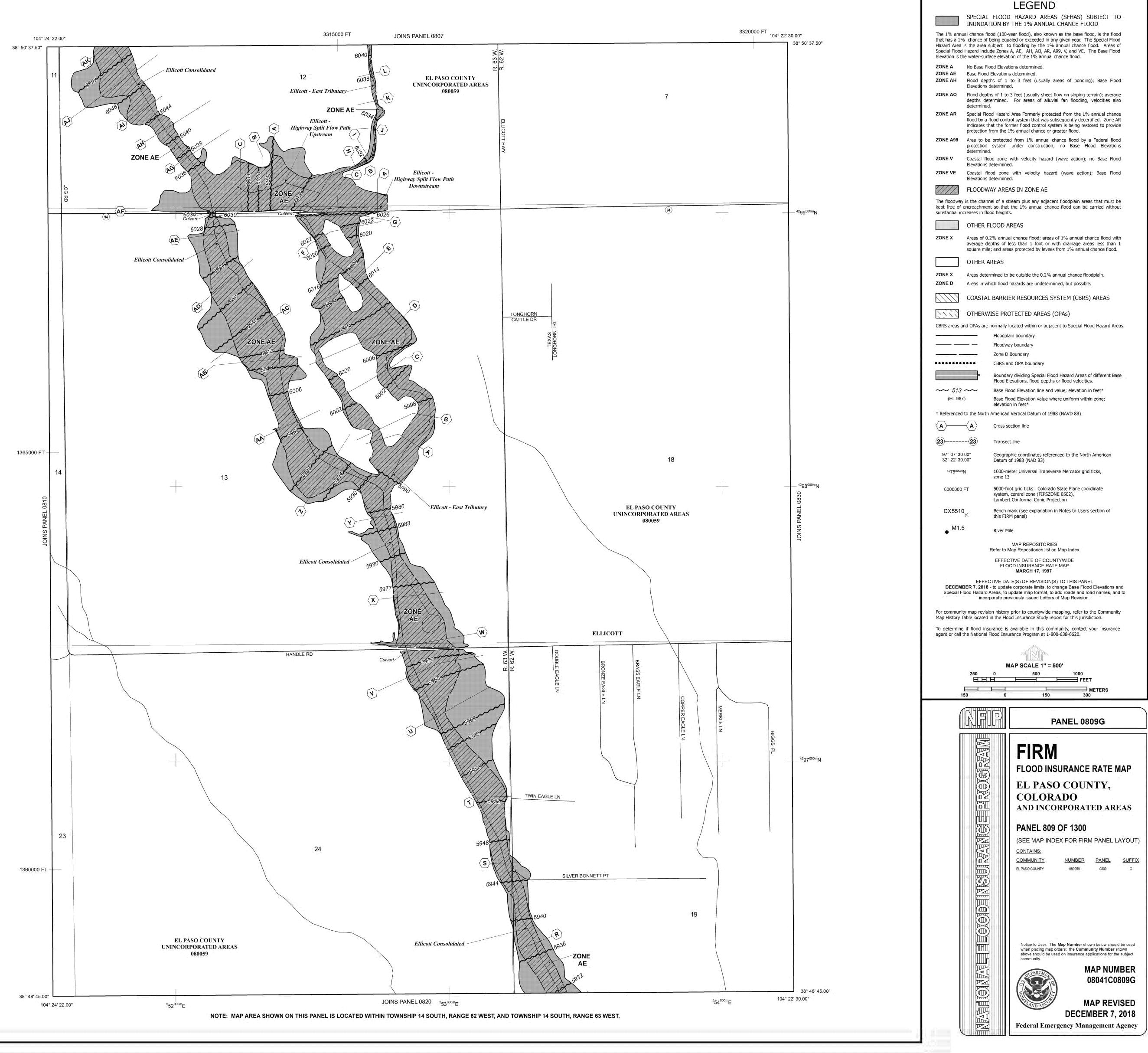
If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

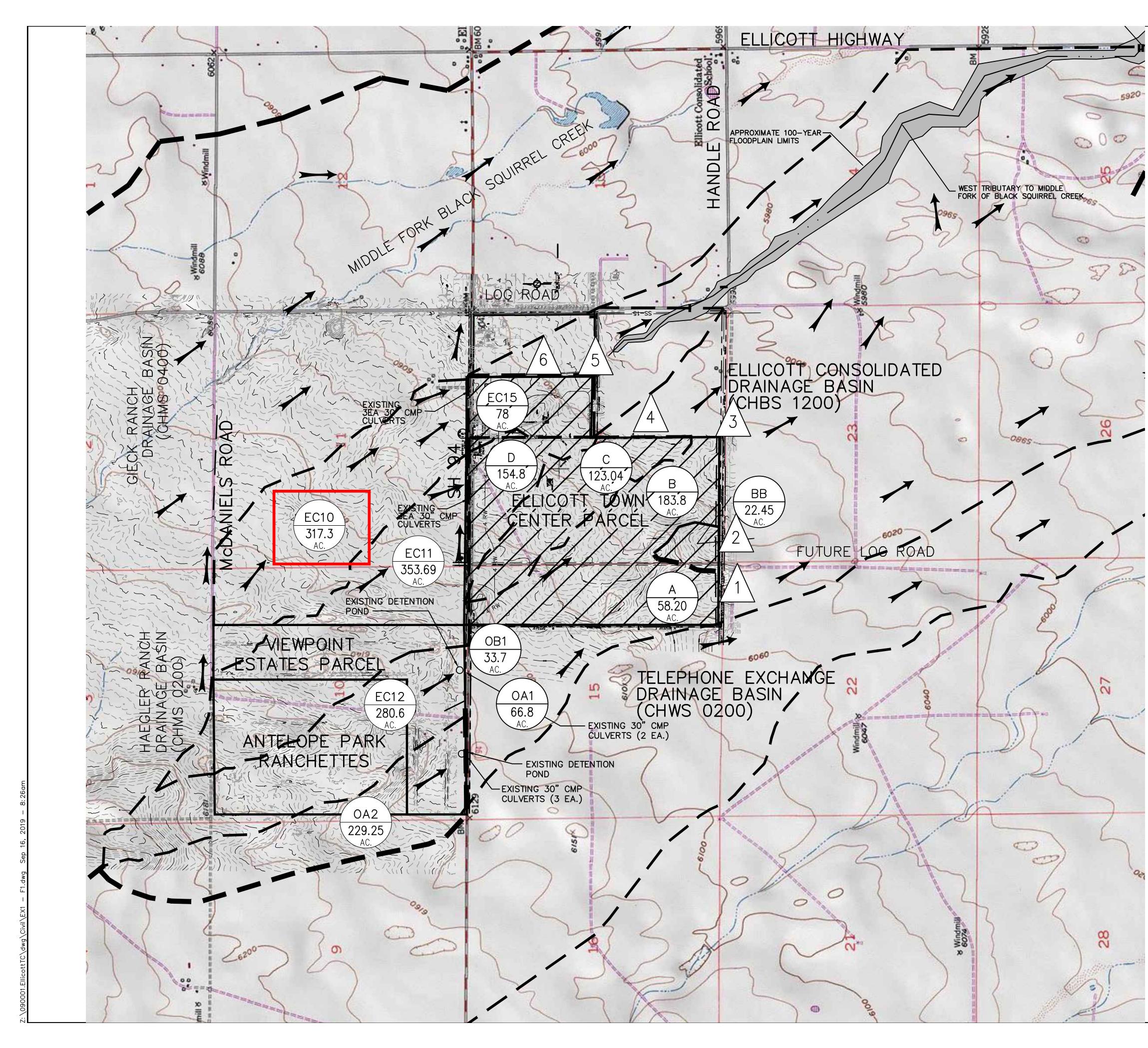

El Paso County Vertical Datum Offset Table Vertical Datum

Flooding Source

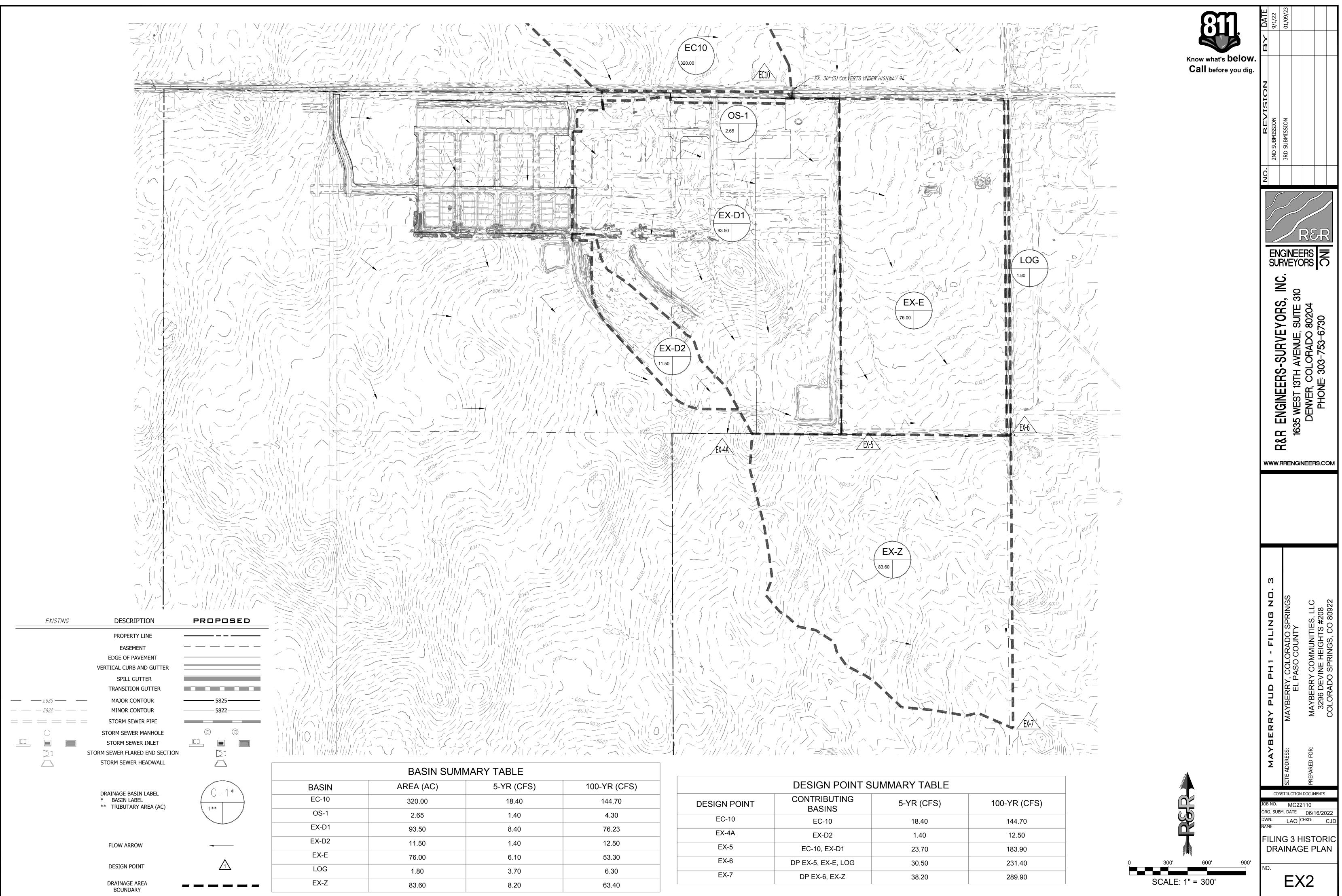
REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

Offset (ft)

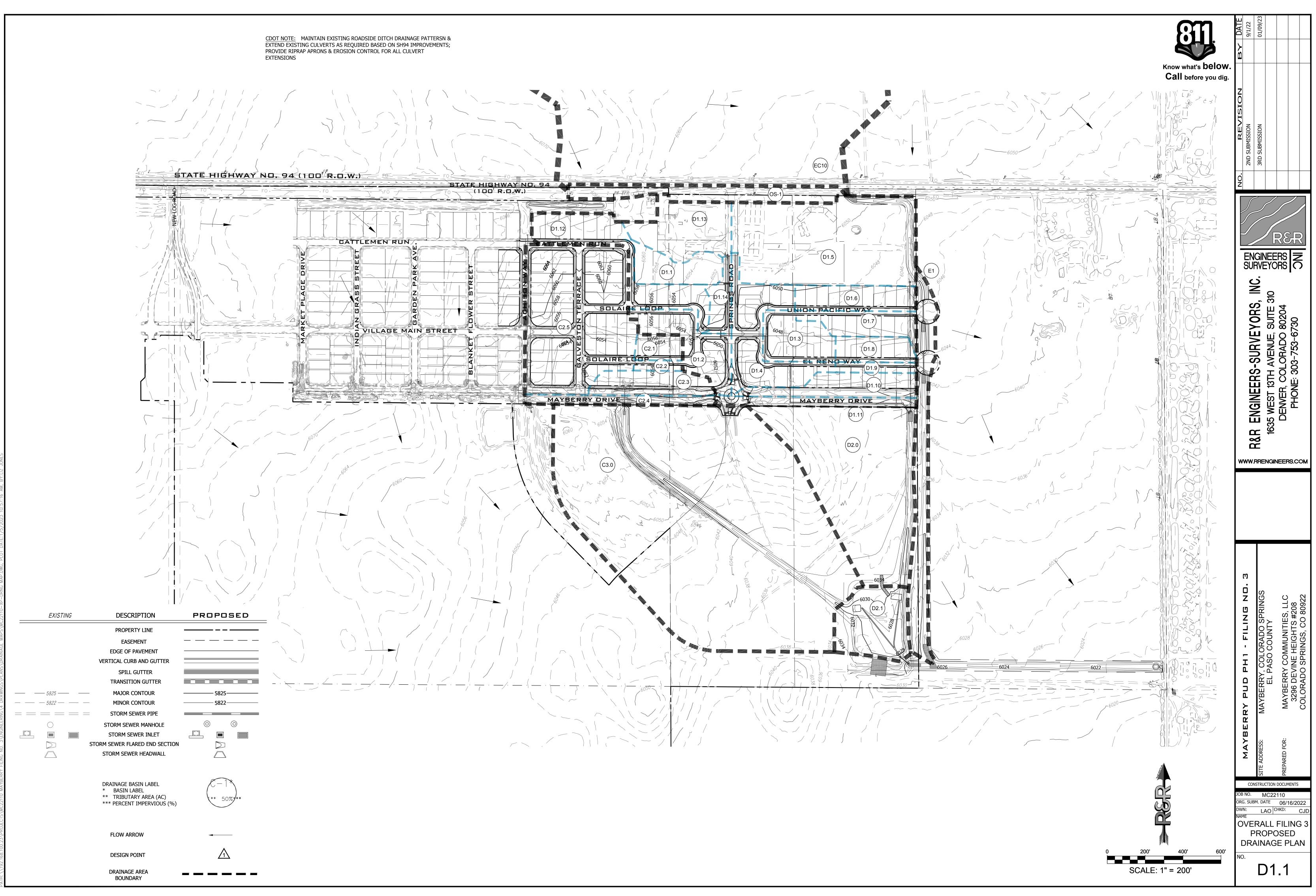

Panel Location Map

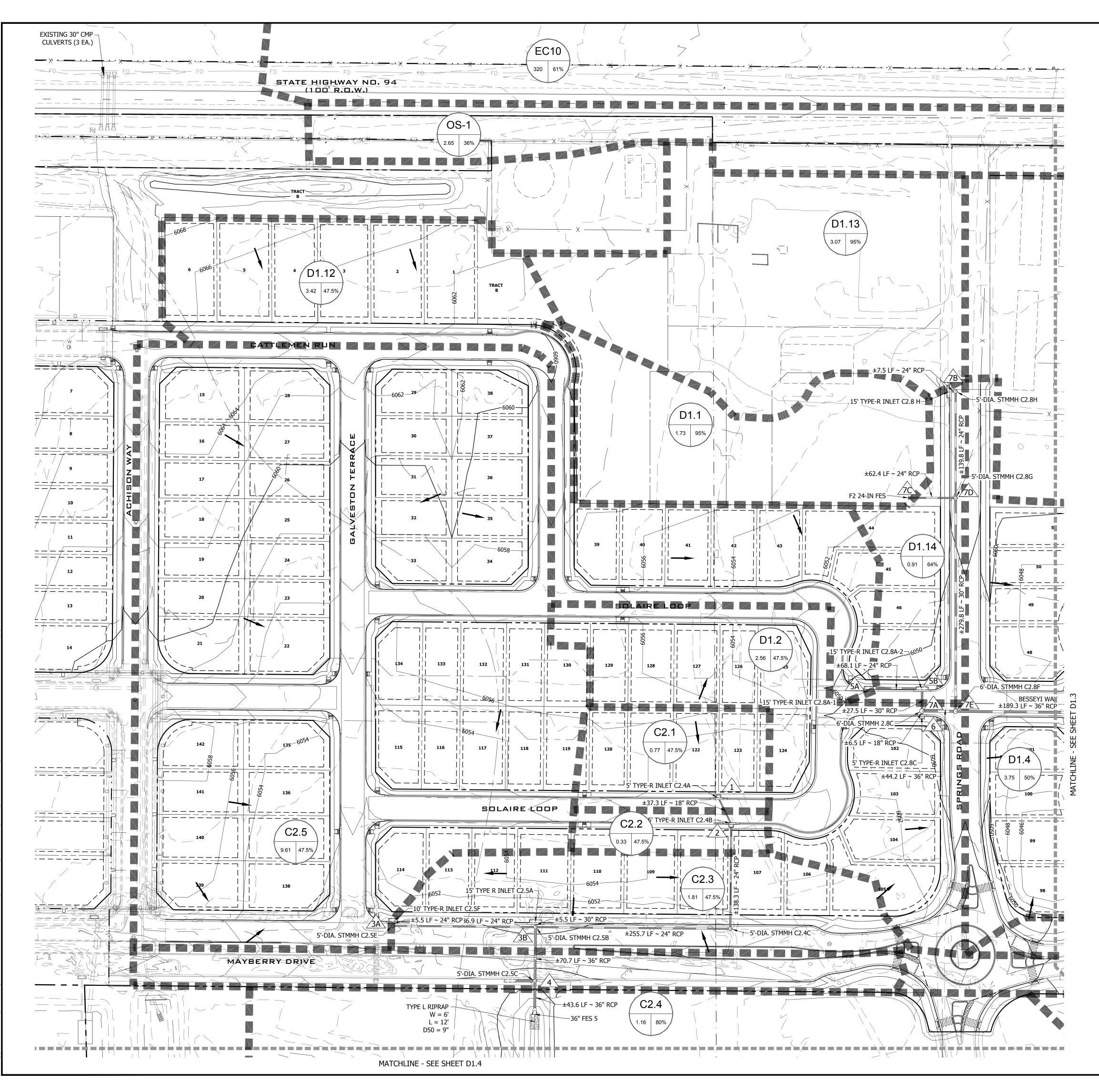


This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

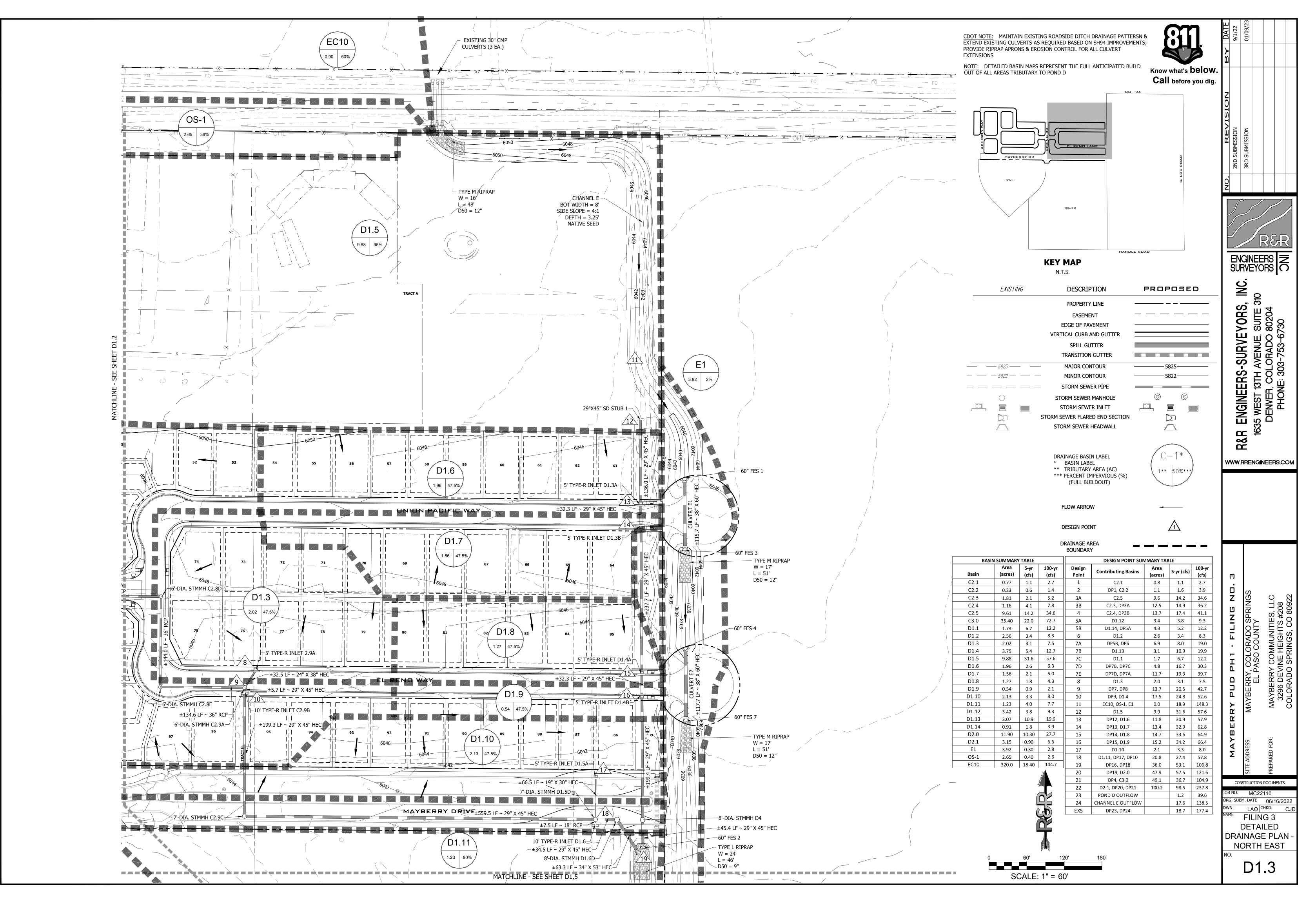


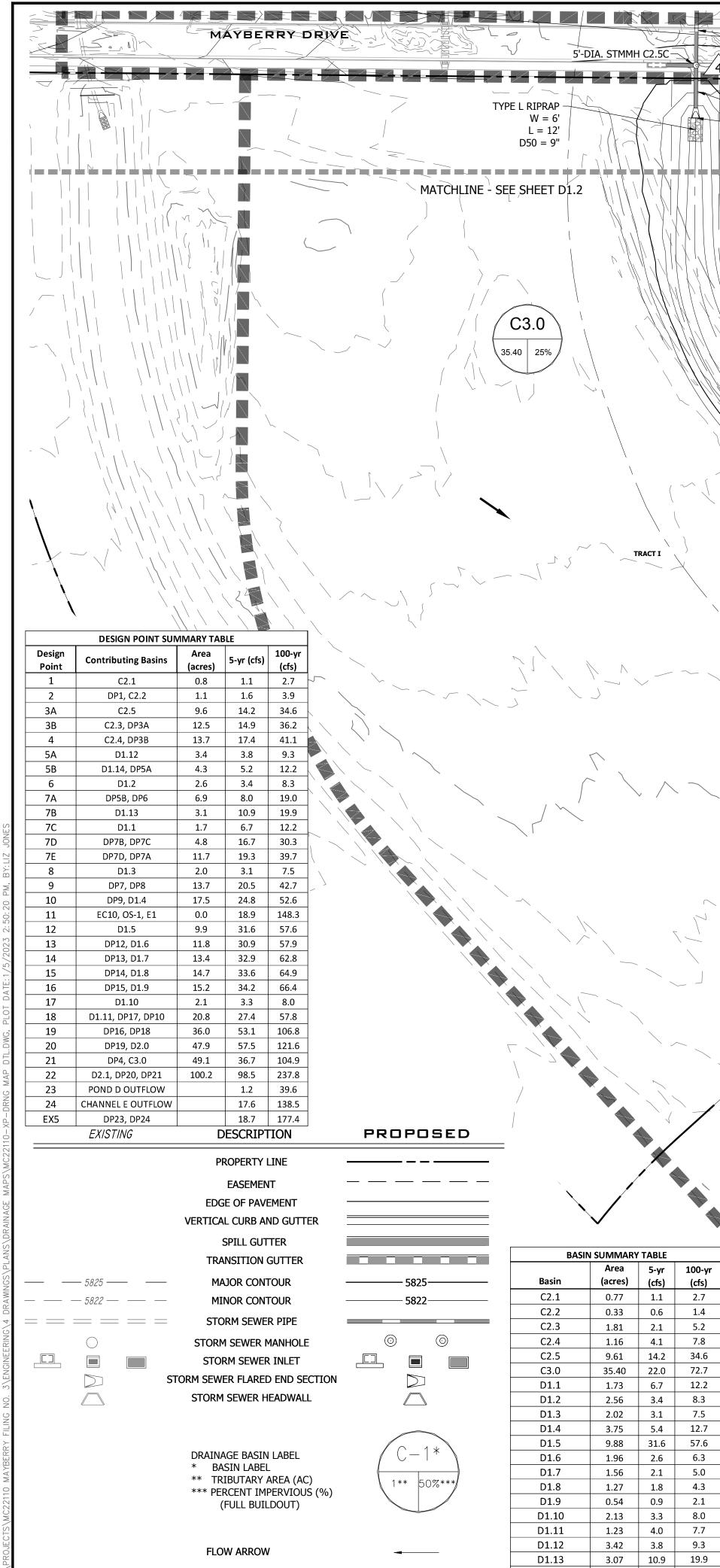
Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.




		19 Ca 80	DISCUSSION OF THE STREEM OF TH
		F/	call UTILITY NOTIFICATION CENTER OF COLORADO CENTER OF COLORADO CENTER OF COLORADO Dibsendr.com Dibsendr.com CALL 2-BUSINESS DAYS IN ADVANCE CALL 2-BUSINESS DAYS IN ADVANCE CALL 2-BUSINESS DAYS IN ADVANCE FOR THE MARKING OF UNDERGROUND MEMBER UTILITIES.
DESIGN Q5 POINT (CFS) 1 4.9 2 11.3 3 8.7 4 5.5 (REFER TO MDDP) 5 30.6 6 19.1		DTT TOWN CE	
UEGEI	ND DRAINAGE BASIN AREA (AC) DESIGN POINT		ORIC
	MAJOR BASIN LINE BASIN LINE		MAJOR BASIN / HIST DRAINAGE PLAN
ORIGINAL S	CALE: 1"=1000' 1000 2000	HORZ. SCALE: 1°=1000 VERT. SCALE: N/A SURVEYED: UP&E CREATED: 12/3/00 PROJECT NO: 09000 SHEET:	DESIGNED: JPS CHECKED: LAST MODIFIED: 9/12/19 MODIFIED BY:

5-YR (CFS)	100-YR (CFS)
18.40	144.70
1.40	4.30
8.40	76.23
1.40	12.50
6.10	53.30
3.70	6.30
8.20	63.40


		••••••
DESIGN POINT CONTRIBUTING BASINS		5-YR (CF
EC-10	EC-10	18.40
EX-4A	EX-D2	1.40
EX-5	EC-10, EX-D1	23.70
EX-6	DP EX-5, EX-E, LOG	30.50
EX-7	DP EX-6, EX-Z	38.20
		·



Path: \\192.168.100.23\PROJECTS\MC22110 MAYBERRY FILING NO. 3\ENGINEERING\4 DRAWINGS\PLANS\DRAINAGE MAPS\MC22110-XP-DRNG MAP DTL.DWG, PLOT DATE: 1/5/2023 2:50:12 PM, BY:LIZ JONES

DESIGN POINT

DRAINAGE AREA BOUNDARY

D1.13

D1.14

D2.0

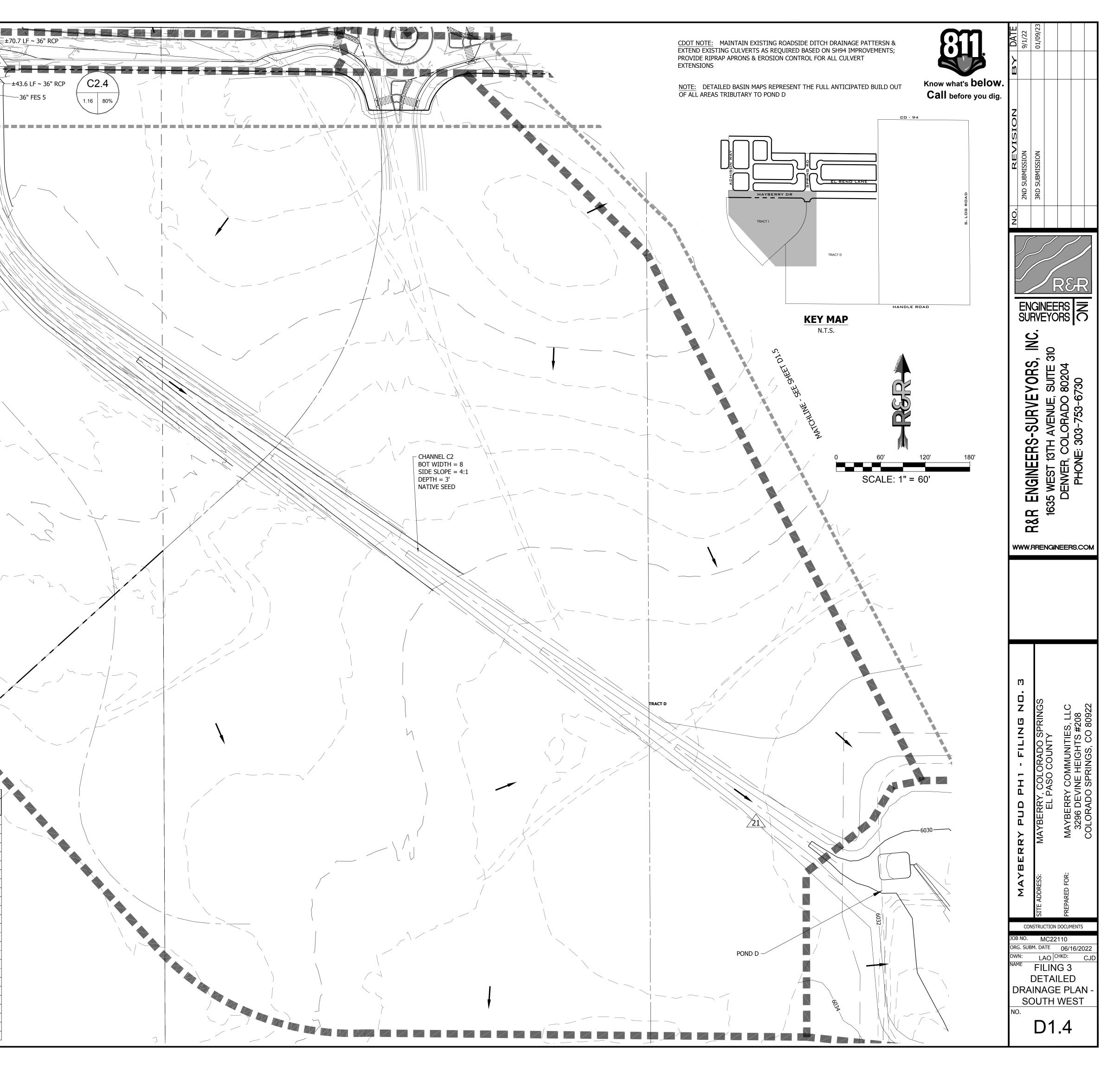
D2.1

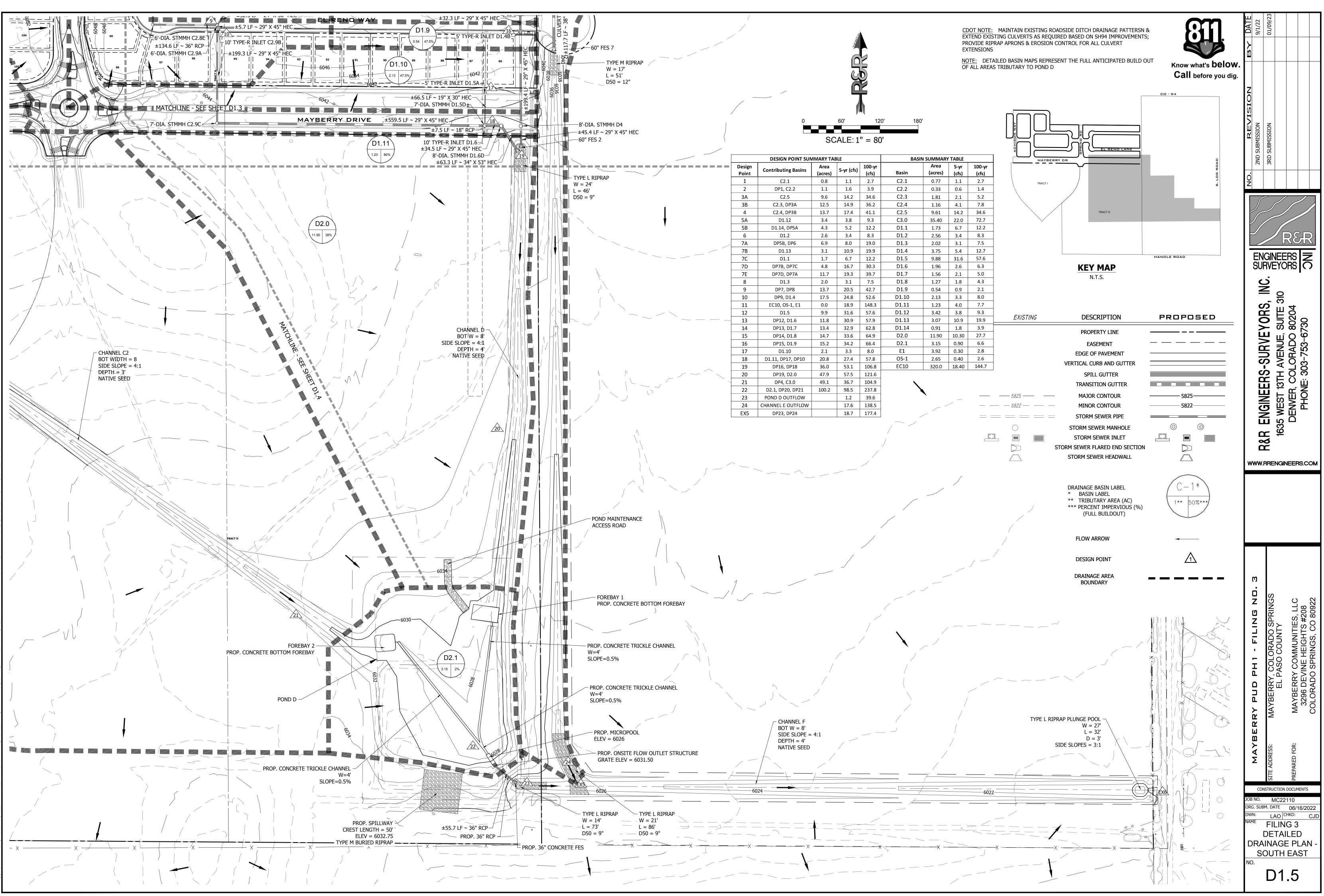
E1

OS-1

EC10

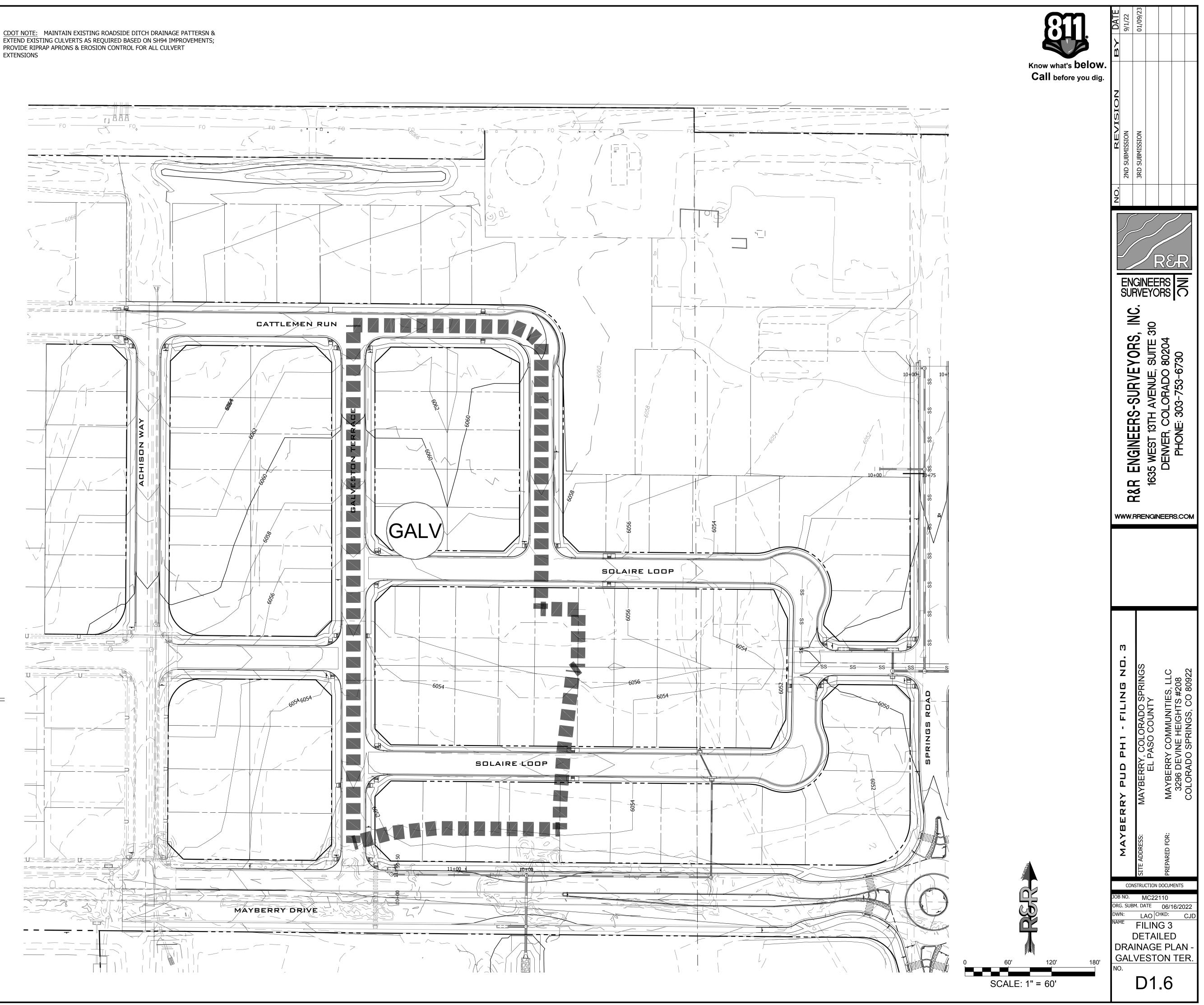
0.91 1.8 3.9

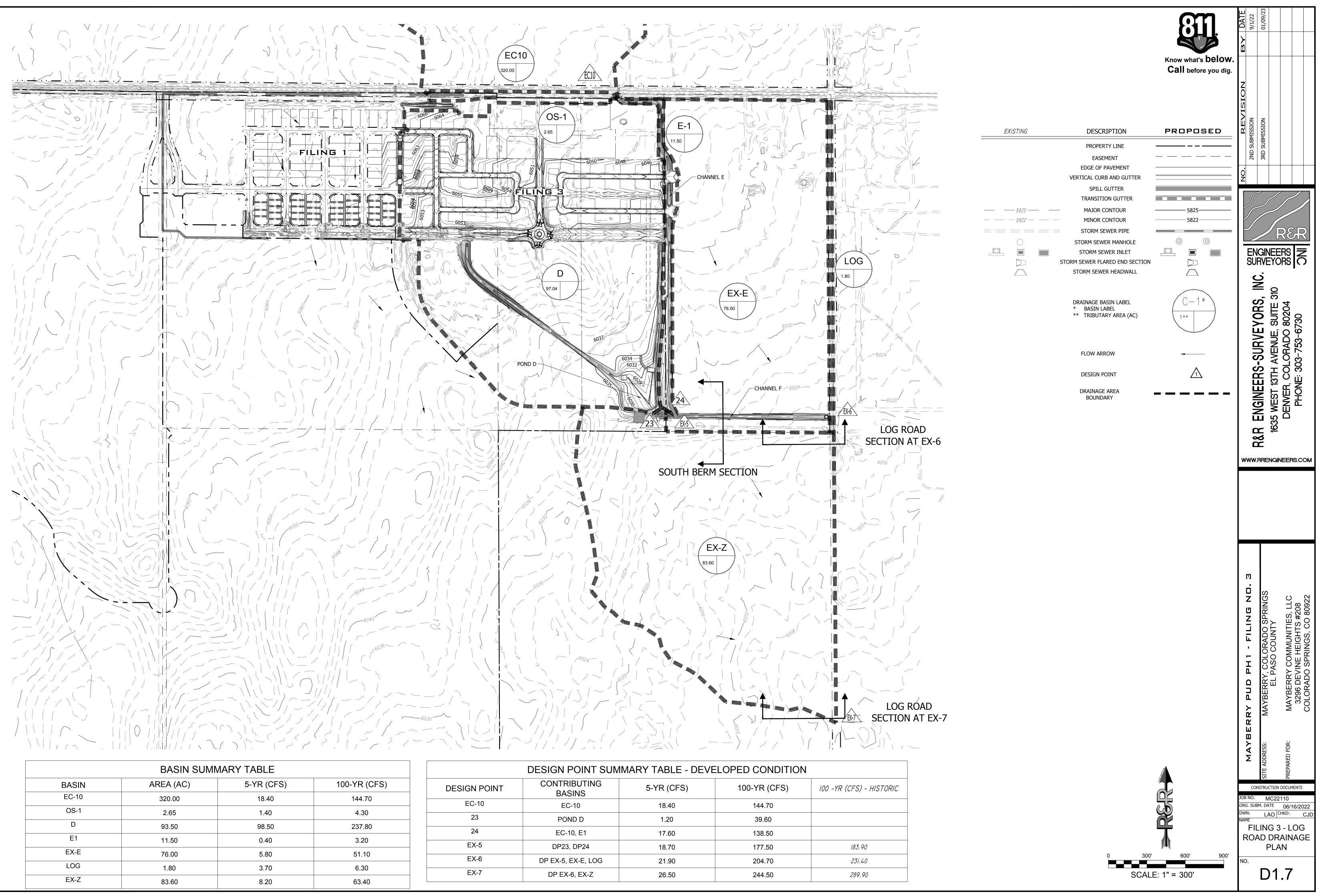

11.90 10.30 27.7


3.15 0.90 6.6

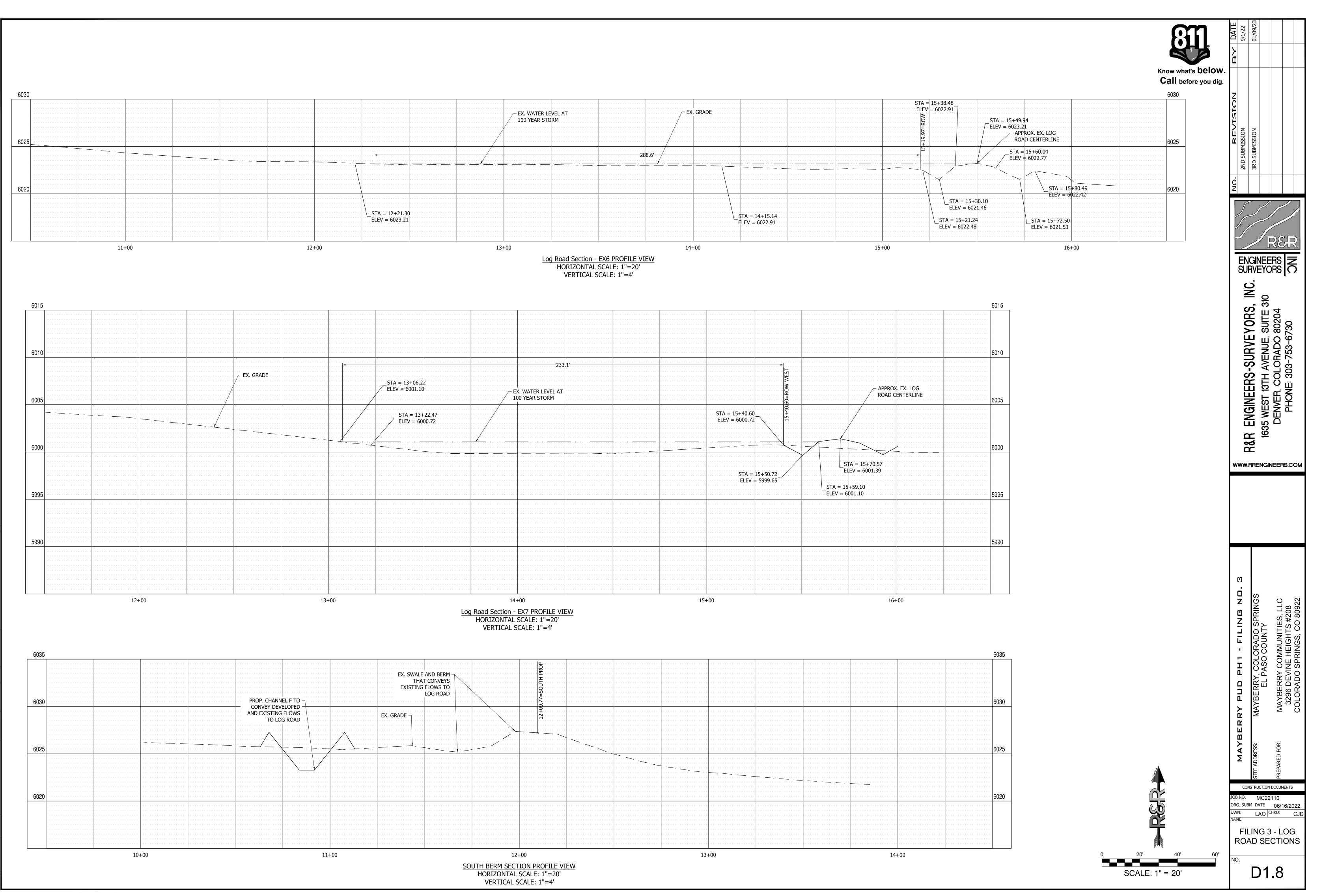
2.65 0.40 2.6

320.0 18.40 144.7


3.92 0.30 2.8


ATH: \\192.168.100.23\PROJECTS\MC22110 MAYBERRY FILING NO. 3\ENGINEERING\4 DRAWINGS\PLANS\DRAINAGE MAPS\MC22110-XP-DRNG MAP DTL.DWG, PLOT DATE: 1/5/2023 2:50:24 PM, BY:LIZ JONES

PROVIDE RIPRAP APRONS & EROSION CONTROL FOR ALL CULVERT EXTENSIONS



EXISTING	DESCRIPTION	PROPOSED
	PROPERTY LINE EASEMENT EDGE OF PAVEMENT VERTICAL CURB AND GUTTER SPILL GUTTER TRANSITION GUTTER	
5825 5822 	MAJOR CONTOUR MINOR CONTOUR STORM SEWER PIPE	5825
	STORM SEWER MANHOLE STORM SEWER INLET STORM SEWER FLARED END SECTION STORM SEWER HEADWALL	
	DRAINAGE BASIN LABEL * BASIN LABEL ** TRIBUTARY AREA (AC) *** PERCENT IMPERVIOUS (%)	C−1* ** 50%***
	FLOW ARROW	-
	DESIGN POINT	Λ

DRAINAGE AREA BOUNDARY

	BASIN SUMMARY TABLE				DESIGN POINT SUM	DESIGN POINT SUMMARY TABLE - DEVELOPED CONDITION				
BASIN	AREA (AC)	5-YR (CFS)	100-YR (CFS)	DESIGN POINT	CONTRIBUTING	5-YR (CFS)	100-YR (CFS)	100 -YR (CFS) - HISTORIC		
EC-10	320.00	18.40	144.70	EC-10	BASINS	40.40	444.70			
OS-1	2.65	1.40	4.30		EC-10	18.40	144.70			
D	93.50	98.50	237.80	23	POND D	1.20	39.60			
E1	11.50	0.40	3.20	24	EC-10, E1	17.60	138.50			
EX-E	76.00	5.80	51.10	EX-5	DP23, DP24	18.70	177.50	183.90		
LOG				EX-6	DP EX-5, EX-E, LOG	21.90	204.70	231.40		
	1.80	3.70	6.30	EX-7	DP EX-6, EX-Z	26.50	244.50	289.90		
EX-Z	83.60	8.20	63.40		<u> </u>					

