

Final Drainage Report

Freedom Springs

Project No. 61090

March 5, 2018

PCD File No. PPR-18-040

Final Drainage Report

for

Freedom Springs Multifamily Residential Community

Project No. 61090

March 5, 2018

prepared for

Freedom Springs, LP 444 S. Campbell Avenue Springfield, CO 65806 417.720.1577

prepared by

MVE, Inc. 1903 Lelaray Street, Suite 200 Colorado Springs, CO 80909 719.635.5736

Copyright © MVE, Inc., 2018 61090-Freedom Springs-Final Drainage Report.odt

Statements and Acknowledgments

Engineer's Statement

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

David R. Gorman, P.E. For and on Behalf of MVE, Inc. Colorado No. 31672

Date

Developer's Statement

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

Printed Name: Title: Freedom Springs, LP 444 S. Campbell Avenue Springfield, CO 65806 Date

El Paso County

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E., County Engineer / ECM Administrator Date

Contents

St	tatements and Acknowledgments	iii
С	ontents	v
Fi	inal Drainage Report	1
1	General Location and Description	1
	1.1 Location	1
	1.2 Description of Property	1
2	Drainage Basins and Sub-Basins	2
	2.1 Major Basin Descriptions	2
	2.2 Sub-Basin Description	2
3	Drainage Design Criteria	3
	3.1 Development Criteria Reference	3
	3.2 Hydrologic Criteria	3
4	Drainage Facility Design	4
	4.1 General Concept	4
	4.2 Specific Details	4
	4.3 Erosion Control	7
	4.4 Water Quality Enhancement Best Management Practices	7
5	Opinion of Probable Cost for Drainage Facilities	7
6	Drainage and Bridge Fees	8
7	Conclusion	8

References	. 9
Appendices	. 10
8 General Maps and Supporting Data	. 10
9 Hydrologic Calculations	. 11
10 Hydraulic Calculations	. 33
11 Report Maps	. 41

The purpose of this Final Drainage Report is to identify drainage patterns and quantities within and affecting the proposed Freedom Springs project located in Lot 2, Western Hills Filing No. 2. This project is the development of the existing platted lot having an area of approximately 3.87± Acres with a multi-family use. The report will "identify specific solutions to problems on-site and off-site resulting from the proposed project.¹ The report and included maps present results of hydrologic and drainage facilities analyses. The report will discuss the recommended drainage improvements to the site and identify drainage requirements relative to the proposed project. This report has been prepared and submitted in accordance with the requirements of the El Paso County land development approval process. An Appendix is included with this report with pertinent calculations and graphs used in the drainage analyses and design.

1 General Location and Description

1.1 Location

The proposed Freedom Springs site is located within the southeast one-quarter of Section 7, Township 14 South, Range 66 west of the 6th principal meridian in El Paso County, Colorado. The 3.87± acre site is situated on the north side of Western Drive, east of Hathaway Drive and west of Dale Road. The proposed site is platted as Lot 2, Western Hills Filing No. 2 in 1994. A **Vicinity Map** is included in the **Appendix**.

65

The unplatted property to the southwest of the site contains a manufacturing facility and is zoned M (Industrial). The property to the northwest of the site, platted as a portion of Aerospace Gardens, is zoned R-4 (Planned Development) and used as multi-family residential. A Multi-family residential property, zoned R-4, and platted as Lots 1 and 3, Block 1, Western Hills Subdivision and Lot 1 Western Hills Subdivision Filing No. 2 is adjacent to the site on the north. Western Drive, a paved public road with concrete curb and gutter in a 60 foot right-of-way, borders the site along the south. A golf course, platted as Lot 1, Cimarron Southeast Filing No. 2B is adjacent to Western Drive on the northeast. Vacant commercial lots, platted as Lot 1, Cimarron Southeast Filing No. 2C, is adjacent to the Western Drive on the southwestern side.

1.2 Description of Property

The Freedom Springs project contains 3.87± acres and is zoned R-4 (Planned Development), which is an obsolete county zone. The property contains no structures, but has a paved access road in and easement and various utilities with easements.

The site is covered with native prairie grasses and weeds in good condition. There are also sparse trees around the site. The existing site topography slopes to the south towards Western Drive with grades that range from 1% to 6% with isolated areas of up to 20%.

There are no major drainageways in the Freedom Springs site. All storm runoff flows south or southeast to Western Drive that collects the flows and conveys it to the southwest. There is no storm drain system in the Western Drive or or the surrounding area. The site is located in the Sand

¹ DCM

2 Final Drainage Report

Creek Major Drain Basin. The flows from the site continue south in Western Drive and eventually enters the East Fork of Sand Creek, continuing southwest.

According to the National Resource Conservation Service, the dominant soil in the immediate area of the Freedom Springs site is Blakeland loamy sand (map unit 8). The Blakeland loamy sand is typically deep and somewhat excessively drained. Permeability is rapid, surface runoff is slow, and the hazard of erosion is moderate. Blakeland loamy sand is classified as being part of Hydrologic Soil Group A.A portion of the **Soil Map** and data tables from the National Cooperative Soil Survey and relevant **Official Soil Series Descriptions (OSD)** are included in the **Appendix**.^{2 3}

The current Flood Insurance Study of the region includes Flood Insurance Rate Maps (FIRMs), effective March 17, 1997.^{4 5} The project site is included in Community Panel Number 08041C0754 F of the FIRMs for El Paso County, Colorado. No portion of the site lies within FEMA designated Special Flood Hazard Areas (SFHAs). An excerpt of the current **FEMA Flood Insurance Rate Maps** with the site delineated is included in the **Appendix**.

A new multi-family residential facility will be constructed on the site. The proposed building and parking area will be located on the western side if the site. The development will include a new building, parking lot, landscaping and recreational open area. Also, the east side of the site will be improved with a new Full Spectrum Sand Filter Basin (FS SFB) which will collect, detain and treat the flows from the new development.

2 Drainage Basins and Sub-Basins

2.1 Major Basin Descriptions

Freedom Springs site is located in the Sand Creek Major Drainage Basin (FOFO4000) on the east side of Colorado Springs, which contains properties in both City of Colorado Springs and unincorporated El Paso County jurisdictions. The basin is a studied basin with an approved and operative Drainage Basin Planning Study (DBPS). The Basin stretches for approximately 17 miles on the east side of Colorado Springs and drains from northeast to southwest into Fountain Creek at a point just north of the crossing of Interstate 25 and US Highway 85-87. The site is located in the southeastern portion of the Sand Creek Major Drainage Basin, in the East Fork sub-area and eventually drains into the East Fork of Sand Creek. A copy of a portion of the "*Drainage Area Identification Study*" map, showing the site location within the Basin is included in the **Appendix**. ⁶

The Drainage Basin Planning Study for the Sand Creek Major Drainage Basin was completed in 1996 by Kiowa Engineering Corporation.⁷ The site is contained within sub-basin 3, located just upstream of Design Point No. 3, as indicated in the 1996 report. There are not drainage improvements noted in the DBPS for the site.

A drainage report for Western Hills Subdivision was prepared in 1971 by G.L. Williams and Partners, LTD. No other drainage reports for this or any of the adjacent properties were available for review during the course of preparing this drainage report.

2.2 Sub-Basin Description

2.2.1 Existing Drainage Patterns (Off-Site)

Off-site drainage flows enter the north edge of the Freedom Springs property from two off-site drainage basins located north of the site. The hydrologic analyses used in the drainage design of the proposed subdivision considered the existing Land Use Conditions of the offsite sub-basins. The off-site drainage sub-basins are depicted on the included **Offsite Drainage Basin Map**.

2 WSS

³ OSD 4 FIS

⁵ FIRM, Map No. 08041C0754 F

⁶ Drain. Area Ident. Study 7 1996 DBPS

not found?

dom Springs-Final Drainage Report.odt

Existing off-site sub-basin OS1 is located north of the western portion of the site (west of the existing paved access drive), and contains an existing multi-family residential development. The basin runoff flows south towards the site and enters exiting sub-basin A1 by way of the existing paved access drive. These flows continue to drain south towards Western Drive in the sub-basin A1, but remain mostly separated from sub-basin A1 runoff. The flows enter Western Drive and flow northeast in the street.

Existing off-site sub-basin OS2 is located north of the eastern portion of the site (west of the existing paved access drive). The sub-basin contains a part of the existing multi-family residential development, including the clubhouse and swimming pool area. The basin runoff flows southeast towards the site and enters exiting sub-basin B1 by overland sheet flow. These flows enter the site and join other flows generated in sub-basing B1 and continue to drain southeast towards Western Drive.

2.2.2 Existing Drainage Patterns (On-Site)

The site is mostly undeveloped, except for the existing paved access drive that extends north from Western Drive to the existing multi-family development north of the site. The entire site drains from north to south and southeast to Western Drive. However, the existing paved drive conveys most of the offsite flows from existing off-site sub-basing OS1 to Western Drive. All off-site and on-site runoff reaches Western Drive and travely northwesterly in the existing concrete curb and gutter. There is no storm drain in Western Drive adjacent to the site, but two storm drain inlets located northeast of the site collect storm flows which drain into the pond adjacent to the south side of Western Drive. The existing drainage patterns for the site are described by two on-site basins. The drainage subbasins are shown on the included Existing Drainage Map. northeast?

Existing sub-basin A1 is located on the western side of the site and contains open field (meadow) and paved access drive along the east side of the basin. Sub-basin A1 accepts the flows form offsite sub-basin OS1. These offsite flows travel south through the site, mostly contained in the paved drive, to Western Drive on the south. Storm runoff from sub-basin A1 also flows south to Western Drive and enters the street. Once in the street, all the flows from OS1 and A1 travely northwest in the street.

Existing sub-basin B1 contains the eastern portion of the property and contains grassed field (meadow) and trees. The basin accepts the sheet flow from off-site sub-basin OS2 on the north. The combined flows from drain toward Western Drive on the southeast, joining the flows from from OS1, A1, and other off-site flows in the street. The combined flows continue northwest in the street to an off-site inlet that drains into the existing pond located on the south side of Western Drive. These flows eventually reach the east fork of sand creek and continue to the southeast in the creek.

3 Drainage Design Criteria

northeast?

3.1 Development Criteria Reference

This Final Drainage Report for Freedom Springs has been prepared according to the report guidelines presented in the latest edition of El Paso County Drainage Criteria Manual (DCM)⁸. The County has also adopted portions of the City of Colorado Springs Drainage Criteria Manual Volumes 1 and 2, especially concerning the calculation of rainfall runoff flow rates.^{9 10} The hydrologic analysis is based on a collection of data from the DCM, the NRCS Web Soil Survey¹¹, Existing topographic data and proposed site plan by by Land Development Consultants, Inc.

3.2 Hydrologic Criteria

For this Final Drainage Report, the Rational Method as described in the Drainage Criteria Manual has been used for all Storm Runoff calculations, as the development and all sub-basins are less than

northeast?

DCM Section 4.3 and Section 4.4

CS DCM Vol 1 CS DCM Vol 2

¹⁰ WSS 11

4 Final Drainage Report

130 acres in area. "Colorado Springs Rainfall Intensity Duration Frequency" curves, Figure 6-5 in the DCM, was used to obtain the design rainfall values; a copy is included in the **Appendix**. The "Overland (Initial) Flow Equation" (Eq. 6-8) in the DCM, and Manning's equation with estimated depths were used in time of concentration calculations. "Runoff Coefficients for Rational Method", Table 6-6 in the DCM, was utilized as a guide in estimating runoff coefficient and Percent Impervious values; a copy is included in the Appendix. Peak runoff discharges were calculated for each drainage sub-basin for both the 5-year storm event and the 100-year storm event with the Rational Method formula, (Eq. 6-5) in the DCM.¹²

The Water Quality Control Volume procedure, Section 3.3 of the Urban Drainage and Flood Control District Drainage Criteria Manual, Volume 3 (UDFCD) was used for water quality volume calculations with the aid of the worksheet "UD-BMP v3.06" spreadsheet developed by the Urban Drainage and Flood Control District.^{13 14} Full Spectrum Detention utilizing the Excess Urban Runoff Volume (EURV) concept was sized and storm routing calculations were performed in accordance with Urban Drainage and Flood Control District Drainage Criteria Manual, Volume 2 using the aid of the detention design spreadsheet, "UD-Detention v3.07", developed by the Urban Drainage and Flood Control District. ¹⁵ ¹⁶

4 Drainage Facility Design

4.1 General Concept

The intent of the drainage concept presented in this Final Drainage Report is to maintain the existing drainage patterns & quantities on the site. Major and minor storm flows will continue to be safely conveyed through the site and downstream. The runoff from all developed areas will drain to the proposed Full Spectrum Sand Filter Basin (FS SFB). A proposed private on-site storm drain system will collect the flow from the various developed on-site sub-basin and convey them to the proposed FS SFB. The developed flows will be detained and released to Western Drive at flow rates less than the calculated existing flow rates.

The existing and proposed drainage hydrologic conditions are described in more detail below. Input data and results for all calculations are included in the **Appendix**. Drainage maps for the hydrology are also included in the **Appendix**.

4.2 Specific Details

4.2.1 Existing Hydrologic Conditions

The off-site drainage area north of the western portion of the site, sub-basin OS1, contains the existing adjacent multi-family residential development known as Western Hills Apartments. The subbasin is 2.84 acres in area and drains southerly towards the northeast corner of existing on-site subbasin A1 at the paved access drive that extends from Western Drive. Basin OS1 generates peak storm runoff discharges of $Q_5 = 4.7$ cfs and $Q_{100} = 10.4$ cfs (existing flows). These flows continue south through sub-basin A1 to Western Drive.

Existing off-site sub-basin OS2 is located north of the eastern portion of the site and also contains a portion of existing Western Hills Apartments. The sub-basin is 0.57 acres in area and drains southeasterly towards the northeast corner of the site with peak discharges of $Q_5 = 1.1$ cfs and $Q_{100} =$ 2.5 cfs (existing flows). These flows enter existing on-site sub-basin B1 and continue southeast towards Western Drive.

Existing on-site sub-basin A1 is 2.72 acres in area and comprises the western portion of the site. containing the existing paved access drive and open field area. The sub-basin accepts the offsite flows from sub-basin OS1 as described above. Sub-basin A1 produces peak discharges of $Q_5 = 1.7$ cfs and Q_{100} = 7.2 cfs (existing flows) which drain southerly towards Western Drive. The combined

DCM 13

UDFCDV.3

¹⁴ UDFCD 15 UDFCD V.2

¹⁶ UDFCD

flow rate of the runoff from sub-basins OS1 and A1 are $Q_5 = 6.2$ cfs and $Q_{100} = 17.0$ cfs (existing flows). These flows enter Western all along the street frontage, however concentrated flows, mostly from off-site sub-basin OS1, enter the street at the existing drive connection. The combined flows of continue northeast in the street.

Existing sub-basin B1 (1.16 acres) is comprised of the east side of the site, east of the existing paved access drive. The sub-basin accepts the off-site sheet flows from sub-basin OS2. Sub-basin B1 contains open field area and drains southeast towards Western Drive. The peak discharges generated by sub-basin B1 are $Q_5 = 0.4$ cfs and $Q_{100} = 2.8$ cfs (existing flow), which joins with the off-site flows for combined peak discharges of $Q_5 = 1.4$ cfs and $Q_{100} = 5.0$ cfs (existing flow). These flows enter Western Drive and are directed to the northeast in street.

The existing combined total flows entering Western Drive from the off-site and on-site basins are Q_5 = 7.6 cfs and Q_{100} = 22.0 cfs (existing flow).

Western Drive an existing public 39 ft wide, paved street with concrete curb on both sides in a 60' right-of-way. The roadway drains to the northeast and does not contain a storm drain system adjacent to the site. However, there are two curb inlets located approximately 110 feet to the northeast of the site. The inlets drain street flows to the existing pond adjacent to the south side of the road.

The **Existing Drainage Map** depicts the existing topographic mapping, drainage basin delineations, drainage patterns, existing streets, drainage facilities, and runoff quantities with a data table including drainage areas and flow rates.

4.2.2 Proposed Hydrologic Conditions

The off-site drainage basin, OS1 (2.84 acres), will continue to drain south toward the site as in existing conditions. The discharges are $Q_5 = 4.7$ cfs and $Q_{100} = 10.4$ cfs (proposed flow), which drain to the north edge of the site and into proposed sub-basins H1.

Proposed sub-basin H1 (0.45 acres) consists of the north edge of the site together with with the improved access drive to Western Drive. This sub-basin will accept the flows from off-site sub-basin OS1, which will continue south in the access drive to Western Drive as in existing conditions. Sub-basin H1 will produce runoff at peak flow rates of $Q_5 = 1.6$ cfs and $Q_{100} = 3.1$ cfs (proposed flow), which drains to the access drive and then south towards Western Drive. The combined discharges of sub-basins OS1 and H1 are $Q_5 = 5.7$ cfs and $Q_{100} = 12.3$ cfs (proposed flow). A proposed single Type 16 combination inlet at Design Point 4 (DP4) will collect the developed 100-year discharge from on-site sub-basin H1 of 3.1 cfs and allow the existing offsite flows from sub-basin OS1 to continue to flow by and reach Western Drive as in existing conditions. The collected flows will be carried to the proposed FS SFB located east of the access drive.

Proposed sub-basin A1 (0.63 acres) will consist of the paved parking area on the south side of the proposed building. The discharges generated by A1 are $Q_5 = 2.7$ cfs and $Q_{100} = 4.9$ cfs (proposed flow), which drain southerly in the parking lot to a proposed double Type 16 combination inlet in sump condition at DP1. The collected storm runoff will be conveyed to the proposed FS SFB in the proposed private storm drain line.

Proposed sub-basin B1 (0.17 acres) is parking lot area located east of sub-basin A1. Sub-basin B1 drains to a proposed single Type 16 combination inlet in sump condition at DP2 with peak discharges of $Q_5 = 0.7$ cfs and $Q_{100} = 1.3$ cfs (proposed flow). The inlet will collect up to the 100-year flows and the flows will be conveyed to the FS SFB in the storm drain system.

Proposed sub-basin C1 (0.11 acres) is comprised of the parking, drive and landscape area located north of sub-basin B1. The discharges from sub-basin C1 are $Q_5 = 0.4$ cfs and $Q_{100} = 0.8$ cfs (proposed flows) which drain south to DP3, being the location of a proposed single Type 16 combination inlet on grade. The proposed inlet will collect flows of $Q_5 = 0.3$ cfs and $Q_{100} = 0.5$ cfs and bypass flows of $Q_5 = 0.1$ cfs and $Q_{100} = 0.3$ cfs to sub-basin H1.

Proposed sub-basin D1 (0.36 acres) consists of the proposed building footprint on the western side of the site. The sub-basin generates storm runoff peak discharges of $Q_5 = 1.4$ cfs and $Q_{100} = 2.6$ cfs

Address proposed type of landscaping

(proposed flows). Building roof drains will direct all flows to the underground drainage system and then to the FS SFB.

Proposed sub-basin E1 (0.17 acres) will consist of the recreation yard on the north side of the building. The discharges generated by E1 are $Q_5 = 0.1$ cfs and $Q_{100} = 0.5$ cfs (proposed flow), which drain to a low point in the center of the basin (DP5). A proposed grated area inlet in sump condition will collect the flows which will be conveyed to the proposed FS SFB in the proposed private storm drain line.

Proposed sub-basin F1 (0.17 acres) is also part of the recreation yard on the north side of the building. Sub-basin F1 drains to a proposed area inlet in sump condition at DP6 with peak discharges of $Q_5 = 0.3$ cfs and $Q_{100} = 0.8$ cfs (proposed flow). The inlet will collect up to the 100-year flows and the flows will be conveyed to the FS SFB in the storm drain system.

Proposed sub-basin G1 (0.58 acres) contains open landscape area and the proposed FS SFB located on the east side of the existing paved access drive at DP7. The discharges from sub-basin G1 are $Q_5 = 0.2$ cfs and $Q_{100} = 1.3$ cfs (proposed flows) which drain south into the FS SFB at DP7. The pond also collects the flows from sub-basins A1, B1, C1, D1, E1, F1, G1 and H1. The combined peak discharges of all in-flowing basins are $Q_5 = 7.2$ cfs and $Q_{100} = 15.2$ cfs (proposed flow). The proposed FS SFB will treat and detain the developed flows and release them to Western drive by way of a outlet pipe and County Standard curb opening with steel cover. The released flows are $Q_5 = 0.2$ cfs and $Q_{100} = 1.1$ cfs (proposed flow).

Proposed sub-basin J1 (0.46 acres) is comprised of open yard and landscape area adjacent to Western Drive on the westerly side of the site. The basin will drain south by sheet flow into Western Drive as this area does in the existing condition. Sub-basin J1 produces peak runoff discharges of $Q_5 = 0.1$ cfs and $Q_{100} = 1.1$ cfs (proposed flows).

Proposed sub-basin M1 (0.13 acres) consists of narrow landscape area on the west edge of the site. The area drains westerly into the adjacent site and generates storm runoff peak discharges of $Q_5 = 0.0$ cfs and $Q_{100} = 0.4$ cfs (proposed flows)

The off-site drainage basin, OS2 (0.57 acres), will continue to drain southeast toward the site as in existing conditions. The discharges are $Q_5 = 1.1$ cfs and $Q_{100} = 2.5$ cfs (proposed flow), which drain onto the site into proposed sub-basins L1.

Proposed sub-basin L1 (0.45 acres) consists of open landscape area along the east edge of the site. Grading contours will remain the same as existing conditions. Sub-basin L1 will continue to accept the off-site flows from sub-basin OS2. The discharges generated by L1 are $Q_5 = 0.1$ cfs and $Q_{100} = 1.1$ cfs (proposed flow), which drain to the southeast towards Western Drive. The combined flows of OS2 and L1 are $Q_5 = 1.1$ cfs and $Q_{100} = 3.3$ cfs (proposed flow), which enter Western Drive along the street frontage by sheet flow.

Proposed sub-basin K1 (0.15 acres) is the south edge of the eastern portion of the site. This basin consist of the landscaped area between the proposed FS SFB and Western Drive which drains southwest into the street. Proposed peak runoff discharges from this basin are $Q_5 = 0.1$ cfs and $Q_{100} = 0.4$ cfs (proposed flow).

The combined total developed flows entering Western Drive from the off-site and on-site basins are $Q_5 = 4.7$ cfs and $Q_{100} = 14.1$ cfs (proposed flow). These flows represent a decrease of 2.9 cfs in the 5-year rainfall event and a decrease of 7.9 cfs in the 100-year event. The flows that enter Western Drive will continue to drain northeast in the the street to the existing inlets located northeast of the site.

4.2.3 Proposed Drainage Facilities

The proposed on-site storm drain system will be owned and maintained by Freedom Springs. The pipe system will be 6", 12" and 18" HDPE material. The proposed inlets will be Type 16 combination inlets with concrete boxes and adjustable steel grate and curb openings. The area inlet will be PVC and non-traffic bearing located in landscaped areas. The proposed pipe system discharges into the Full Spectrum Sand Filter Basin, which is designed to detain the WQCV, EURV and 100-year developed runoff volumes. The proposed FS Sand Filter Basin has storage volume of 0.281 acre-

Compare to existing condition and discuss potential issues.

61090-Freedom Springs-Final Drainage Report.odt

7

feet. The facility is located in Type A soils and will be full-infiltration type. The EURV and 100-year flows will be regulated by a concrete outlet box with steel Orifice plate and outlet pipe. The facility will have an emergency spillway with 6' bottom width discharging to Western Drive and protected by riprap lining.

4.3 Erosion Control

- see comment letter

During future construction, best management practices (BMP's) for erosion control will be employed based on the previously referenced City of Colorado Springs Drainage Criteria Manual Volume 2 and the Erosion Control Plan to minimize erosion from the site. The BMP's will remain in place until the site is stabilized with the new hard surfacing or landscape seeding, planting and cover materials. Also, BMP's will be utilized as deemed necessary by the contractor, engineer, owner, or County inspector and are not limited to the measures described on the Erosion Control Plan.

4.4 Water Quality Enhancement Best Management Practices

The Full Spectrum Sand Filter Basin described above will provide storage for the WQCV, EURV and developed 100-year runoff volume for the site. A Grading and Erosion Control Plan for the construction of the site has been prepared in accordance with the provisions of the County's Engineering Criteria Manual. Placement of construction stormwater BMP's will as required by the plan will limit soil erosion and deposition by stormwater flowing over the site.

The El Paso County Engineering Criteria Manual (Appendix I, Section I.7.2) requires the consideration of a "Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long term source controls". The Four Step Process is incorporated in this project and the elements are discussed below.

1) Runoff Reduction Practices are employed in this project. Impervious surfaces have been reduced as much as practically possible. The parking lot contains landscape islands and the entire east side of the site will remain as pervious surface.

2) All drainage paths on the site are stabilized with pavement or appropriate landscape treatment. The Full Spectrum Sand Filter Basin will intercept flows from developed areas. Additionally, the pond outflow point will be stabilized with outlet protection.

3) The project contains no potentially hazardous uses. All developed areas drain into a proposed a WQCV BMP.

4) The site contains no storage of potentially harmful substances or use of potentially harmful substances. No Site Specific or Other Source Control BMP's are required.

5 Opinion of Probable Cost for Drainage Facilities

There are no public drainage improvements associated with this project. Costs for the private non-reimbursable drainage improvements for this project are listed in the table below:

	Freedom Springs P	Private Drainage	e Costs (Non-Reimbursable)	
1	Item	Quantity	Unit	Unit Cost	Cost
	Storm Drain Pipe with enances	1040	LF	\$45.00	\$46,800
Type 16	6 Combination Inlets	4	EA	\$3,800.00	\$15,200
Sand F	ilter Basin (Full Spectrum)	1	EA	\$10,500.00	\$10,500

61090-Freedom Springs Final Draines Discuss the total site area to be treated by WQCV and areas that are not.

GRAND TOTAL	\$72,500.

6 Drainage and Bridge Fees

The site is not being platted. No Drainage or Bridge Fees are due for this project.

7 Conclusion

This Final Drainage Report presents existing and proposed drainage conditions for the proposed Freedom Springs project. The development will have negligible and inconsequential effects on the existing site drainage and drainage conditions downstream. Full Spectrum Detention and Water Quality treatment will be provided. The proposed project will not, with respect to stormwater runoff, negatively impact the adjacent properties and downstream properties.

State that a Permanent BMP Maintenance Agreement and Easement is being provided along with an O&M Manual.

References

City of Colorado Springs/El Paso County Drainage Criteria Manual. City of Colorado Springs, Department of Public Works, Engineering Division; HDR Infrastructure, Inc.; El Paso County, Department of Public Works, Engineering Division (Colorado Springs: City of Colorado Springs, Revised November 1991).

NRCS Official Soil Series Descriptions. United States Department of Agriculture, Natural Resources Conservation Service ("http://soils.usda.gov/technical/classification/osd/index.html", accessed March, 2018).

NRCS Web Soil Survey. United States Department of Agriculture, Natural Resources Conservation Service ("http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx", accessed March 2018).

Flood Insurance Rate Map. Federal Emergency Management Agency, National Flood Insurance Program (Washington D.C.: FEMA, March 17, 1997).

Flood Insurance Study for El Paso County, Colorado and incorporated Areas. Federal Emergency Management Agency (Washington D.C.: FEMA, March 17, 1997).

Drainage Area Identification Study. Muller Engineering Company, Inc. (Lakewood, CO: , 1986).

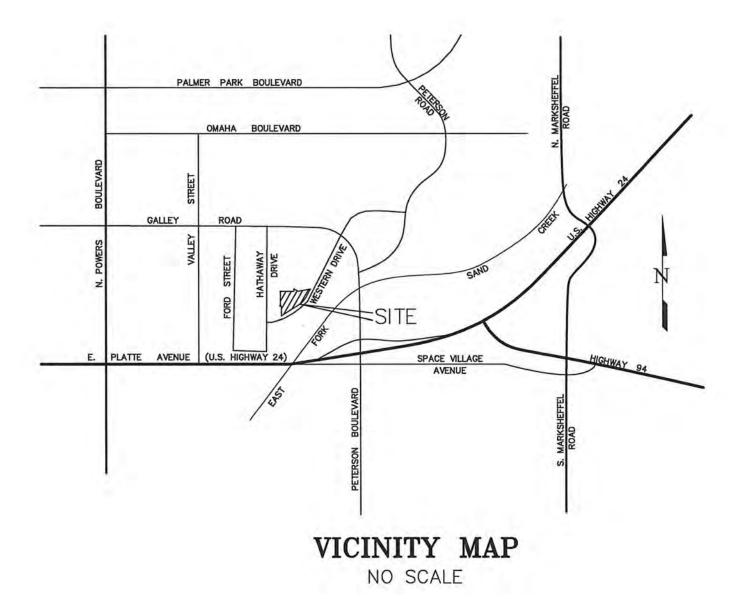
Sand Creek Drainage Basin Planning Study, Preliminary Design Report. Kiowa Engineering Corporation Inc. (Colorado Springs, Colorado: , March 1996).

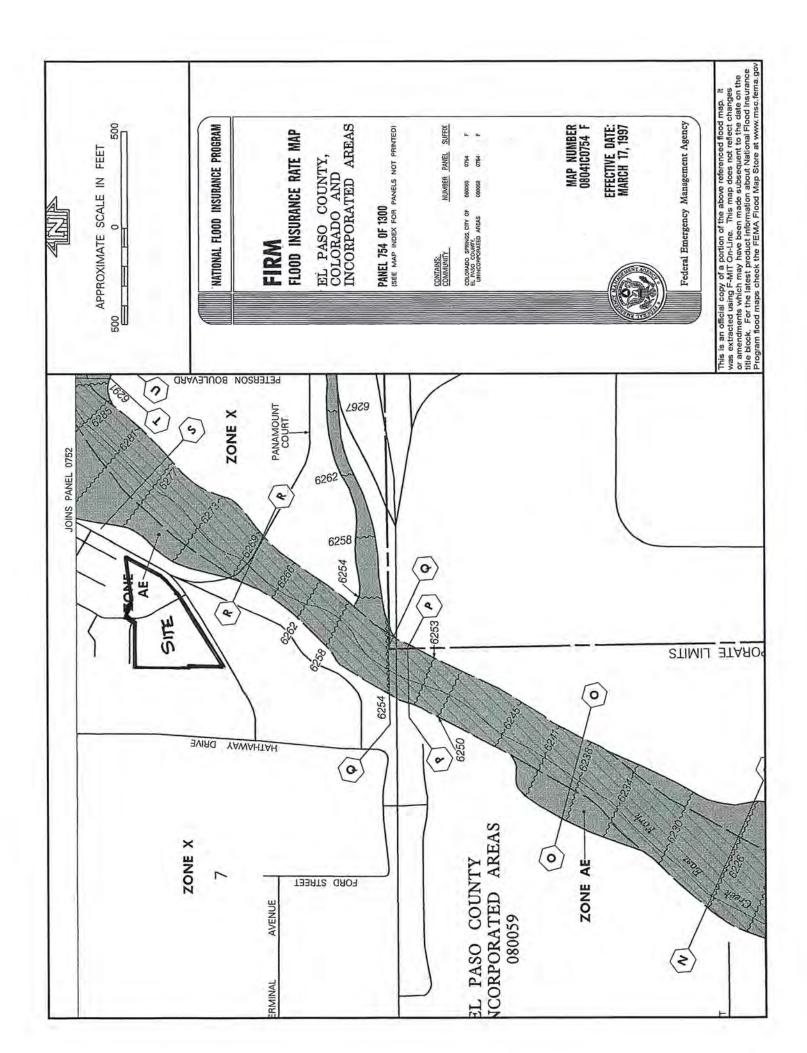
Drainage Criteria Manual Volume 2, Stormwater Quality Policies, Procedures and Best Management Practices (BMPs). City of Colorado Spring Engineering Division (Colorado Springs: , May 2014).

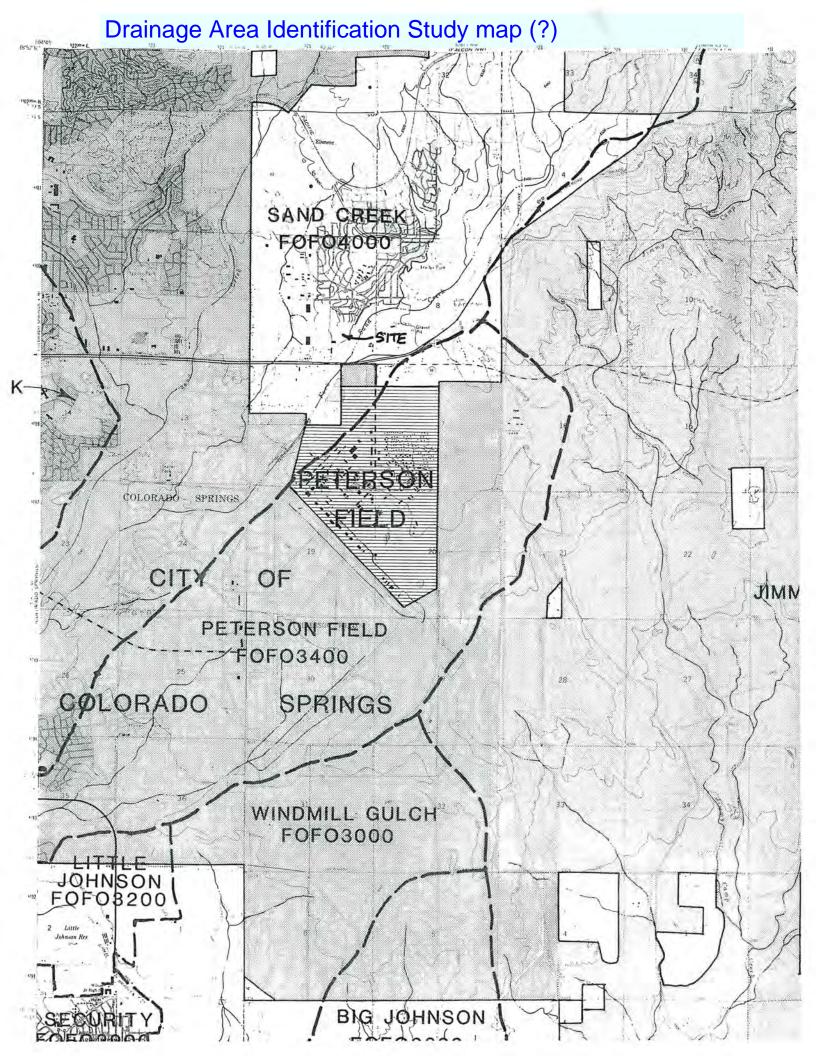
City of Colorado Springs Drainage Criterial Manual, Volume 1. City of Colorado Springs Engineering Division Staff, Matrix Desgin Group/Wright Water Engineers (Colorado Springs: , May 2014).

City of Colorado Springs Drainage Criteria Manual Volume 1. City of Colorado Springs Engineering Division with Matrix Design Group and Wright Water Engineers (Colorado Springs, Colorado: , May 2014).

Drainage Criteria Manual (Volume 2). Urban Drainage and Flood Control District (Denver, Colorado: Urban Drainage and Flood Control District, Rev. September 2017).


Urban Storm Drainage Criteria Manual Volume 3. Urban Drainage and Flood Control District (Denver, Colorado: , August, 2011).


Detention Design Spreadsheet. Urban Drainage and Flood Control District ("http://www.udfcd.org/downloads/software/UD-Detention_v2.2.xls", accessed February 2017).



8 General Maps and Supporting Data

Vicinity Map Portions of Flood Insurance Rate Map Portion of Drainage Area Identification Study Map NRCS Soil Map and Tables SCS Soil Type Descriptions Hydrologic Soil Group Map and Tables

National Cooperative Soil Survey

Conservation Service

Page 1 of 3

Soil Map—El Paso County Area, Colorado (Freedom Springs)

				INITE INFORMATION
Area of Int	Area of Interest (AOI)	03	Spoil Area	The soil surveys that comprise your AOI were mapped at
	Area of Interest (AOI)	0	Stony Spot	1:24,000.
Soils		8	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
]	Soil Map Unit Polygons	13	Wet Spot	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of manning and accuracy of soil
1	Soil Map Unit Points	0	Other	line placement. The maps do not show the small areas of
Snecial	Special Point Features	1	Special Line Features	contrasting soils that could have been shown at a more detailed scale.
Э	Blowout	Water Features	tures	Diease reiv on the har scale on each map sheet for map
Ø	Borrow Pit		Sifearins and Canals	measurements.
ж	Clay Spot	Iransportation HHH Rail	ation Rails	Source of Map: Natural Resources Conservation Service
0	Closed Depression	1	Interstate Highways	Web Soil Survey UKL: Coordinate System: Web Mercator (EPSG:3857)
×	Gravel Pit	2	US Routes	Maps from the Web Soil Survey are based on the Web Mercator
.:	Gravelly Spot	8	Major Roads	projection, which preserves direction and shape but distorts
0	Landfill		Local Roads	Albers equal-area conic projection, should be used if more
X	Lava Flow	Background	pu	accurate calculations of distance or area are required.
4	Marsh or swamp		Aerial Photography	This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
*	Mine or Quarry			Soil Survey Area: El Paso County Area. Colorado
0	Miscellaneous Water			
0	Perennial Water			Soil map units are labeled (as space allows) for map scales
2	Rock Outcrop			1:po,ooo or larger.
+	Saline Spot			Date(s) aerial images were photographed: Jun 3, 2014—Jun 17, 2014
**	Sandy Spot			The orthophoto or other base map on which the soil lines were
Ŵ	Severely Eroded Spot			compiled and digitized probably differs from the background
0	Sinkhole			imagery displayed on mese maps. As a result, some minor shifting of map unit boundaries may be evident.
A	Slide or Slip			
Ø	Sodic Spot			

3/5/2018 Page 2 of 3

Web Soil Survey National Cooperative Soil Survey

USDA Natural Resources Conservation Service

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	10.9	99.9%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	0.0	0.1%
Totals for Area of Interest		10.9	100.0%

is severely eroded and blowouts have developed, the new seeding should be fertilized.

Windbreaks and environmental plantings are generally suited to this soil. Soil blowing is the main limitation for the establishment of trees and shrubs. This limitation can be overcome by cultivating only in the tree rows and leaving a strip of vegetation between the rows. Supplemental irrigation may be necessary when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. In cropland areas, habitat favorable for ring-necked pheasant, mourning dove, and many nongame species can be developed by establishing areas for nesting and escape cover. For pheasant, the provision of undisturbed nesting cover is vital and should be included in plans for habitat development. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for use as homesites. Shallow excavation is severely limited because cut banks cave in. This sandy soil requires special management practices to reduce water erosion and soil blowing. Capability subclasses IIIe, irrigated, and IVe, nonirrigated.

7—Bijou sandy loam, 3 to 8 percent slopes. This deep, well drained soil is on flood plains, terraces, and uplands. It formed in sandy alluvium and eolian material derived from arkose deposits. Elevation ranges from 5,400 to 6,200 feet. The average annual precipitation is about 13 inches, the average annual air temperature is about 49 degrees F, and the average frost-free period is about 145 days.

Typically, the surface layer is brown sandy loam about 4 inches thick. The subsoil is brown or grayish brown sandy loam about 24 inches thick. The substratum is pale brown loamy coarse sand.

Included with this soil in mapping are small areas of Olney sandy loam, 3 to 5 percent slopes; Valent sand, 1 to 9 percent slopes; Vona sandy loam, 3 to 9 percent slopes; and Wigton loamy sand, 1 to 8 percent slopes.

Permeability of this Bijou soil is rapid. Effective rooting depth is 60 inches or more. Available water capacity is moderate. Organic matter content of the surface layer is low. Surface runoff is slow, and the hazards of erosion and soil blowing are moderate.

Almost all areas of this soil are used for range.

This soil is suited to the production of native vegetation suitable for grazing. Because of the hazards of water erosion and soil blowing, the soil is not suited to nonirrigated crops.

Native vegetation is dominantly blue grama, sand dropseed, needleandthread, side-oats grama, and buckwheat. Seeding is a suitable practice if the range has deteriorated. Seeding the native grasses is a good practice. If the range is severely eroded and blowouts have developed, the new seeding should be fertilized. Brush control and grazing management may be needed to improve the depleted range. Grazing should be managed so that enough forage is left standing to protect the soil from blowing, to increase infiltration of water, and to catch and hold snow.

Windbreaks and environmental plantings are generally suited to this soil. Soil blowing is the main limitation for the establishment of trees and shrubs. This limitation can be overcome by cultivating only in the tree rows and leaving a strip of vegetation between the rows. Supplemental irrigation may be needed when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, by properly managing livestock grazing, and by reseeding range where needed.

This soil has good potential for use as homesites. Shallow excavation is severely limited because cut banks cave in. This soil requires special management practices to reduce water erosion and soil blowing. Capability subclass VIe.

8—Blakeland loamy sand, 1 to 9 percent slopes. This deep, somewhat excessively drained soil formed in alluvial and eolian material derived from arkosic sedimentary rock on uplands. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the average frost-free period is about 135 days.

Typically, the surface layer is dark grayish brown loamy sand about 11 inches thick. The substratum, to a depth of 27 inches, is brown loamy sand; it grades to pale brown sand that extends to a depth of 60 inches.

Included with this soil in mapping are small areas of Bresser sandy loam, 0 to 3 percent slopes; Bresser sandy loam, 3 to 5 percent slopes; Truckton sandy loam, 0 to 3 percent slopes; Truckton sandy loam, 3 to 9 percent slopes; and Stapleton sandy loam, 3 to 8 percent slopes. In some areas, mainly north of Colorado Springs in the Cottonwood Creek area, arkosic beds of sandstone and shale are at a depth of 0 to 40 inches.

Permeability of this Blakeland soil is rapid. Effective rooting depth is 60 inches or more. Available water capacity is low to moderate. Organic matter content of the surface layer is medium. Surface runoff is slow, the hazard of erosion is moderate, and the hazard of soil blowing is severe.

Most areas of this soil are used for range, homesites, and wildlife habitat.

and the second second

Native vegetation is dominantly western wheatgrass, side-oats grama, and needleandthread. This soil is best suited to deep-rooted grasses.

Proper range management is necessary to prevent excessive removal of plant cover from the soil. Interseeding improves the existing vegetation. Deferment of grazing in spring increases plant vigor and soil stability. Proper location of livestock watering facilities helps to control grazing.

Windbreaks and environmental plantings are fairly well suited to this soil. Blowing sand and low available water capacity are the main limitations for the establishment of trees and shrubs. The soil is so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for urban development. Soil blowing is a hazard if protective vegetation is removed. Special erosion control practices must be provided to minimize soil losses. Capability subclass VIe.

9-Blakeland complex, 1 to 9 percent slopes. This complex is on uplands, mostly in the Falcon area. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the frost-free period is about 135 days.

This complex is about 60 percent Blakeland loamy sand, about 30 percent Fluvaquentic Haplaquolls, and 10 percent other soils.

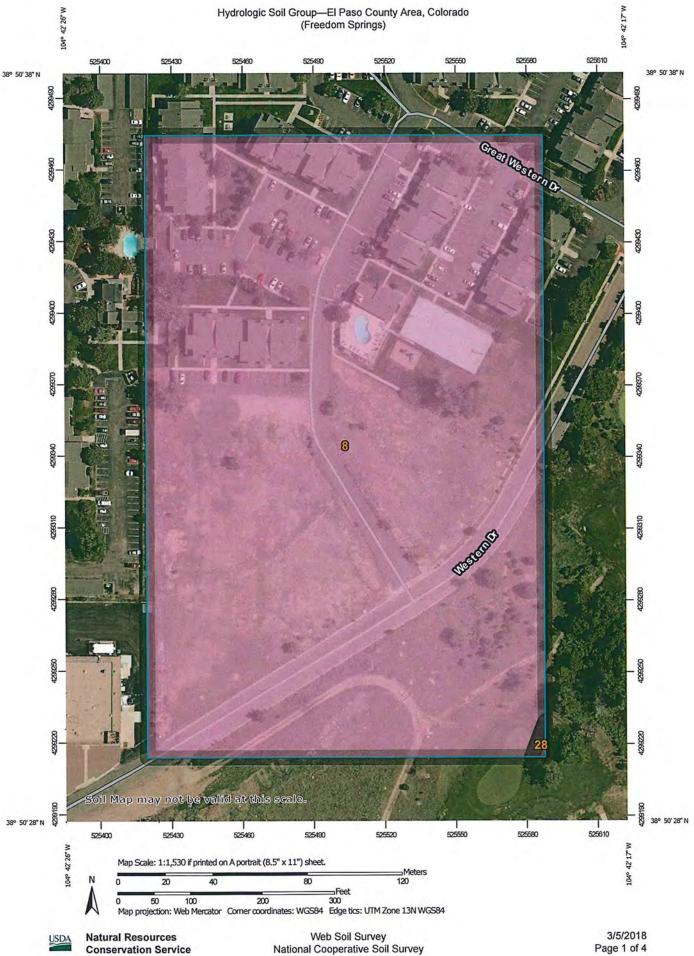
Included with these soils in mapping are areas of Columbine gravelly sandy loam, 0 to 3 percent slopes, Ellicott loamy coarse sand, 0 to 5 percent slopes, and Ustic Torrifluvents, loamy.

The Blakeland soil is in the more sloping areas. It is deep and somewhat excessively drained. It formed in sandy alluvium and eolian material derived from arkosic sedimentary rock. Typically, the surface layer is dark grayish brown loamy sand about 11 inches thick. The substratum, to a depth of 27 inches, is brown loamy sand; it grades to pale brown sand that extends to a depth of 60 inches or more.

Permeability of the Blakeland soil is rapid. The effective rooting depth is more than 60 inches. The available water capacity is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate.

The Fluvaquentic Haplaquolls are in swale areas. They are deep, poorly drained soils. They formed in alluvium derived from arkosic sedimentary rock. Typically, the surface layer is brown. The texture is variable throughout. The water table is at a depth of 0 to 3 feet.

The Blakeland soil is well suited to deep-rooted grasses. Native vegetation is dominantly western wheatgrass, side-oats grama, and needleandthread. Rangeland vegetation on the Fluvaquentic Haplaquolls is dominantly tall grasses, including sand bluestem, switchgrass, prairie cordgrass, little bluestem, and sand reedgrass. Cattails and bulrushes are common in the swampy areas.


Proper range management is needed to prevent excess removal of plant cover from these soils. It is also needed to maintain the productive grasses. Interseeding improves the existing vegetation. Deferment of grazing during the growing season increases plant vigor and soil stability, and it helps to maintain and improve range condition. Proper location of livestock watering facilities helps to control grazing of animals.

Windbreaks and environmental plantings are fairly well suited to these soils. Blowing sand and low available water capacity are the main limitations to the establishment of trees and shrubs. The soils are so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

The Blakeland soil is well suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed. Wetland wildlife can be attracted to the Fluvaquentic Haplaquolls and the wetland habitat can be enhanced by several means. Shallow water developments can be created by digging or by blasting potholes to create open-water areas. Fencing to control livestock grazing is beneficial, and it allows wetland plants such as cattails, reed canarygrass, and rushes to grow. Control of unplanned burning and prevention of drainage that would remove water from the wetlands are good practices. Openland wildlife use the vegetation on these soils for nesting and escape cover. These shallow marsh areas are especially important for winter cover if natural vegetation is allowed to grow.

The Blakeland soil has good potential for homesites, roads, and streets. It needs to be protected from erosion when vegetation has been removed from building sites. The Fluvaquentic Haplaquolls have poor potential for homesites. Their main limitations for this use are the high water table and the hazard of flooding. Capability subclass VIe.

10—Blendon sandy loam, 0 to 3 percent slopes. This deep, well drained soil formed in sandy arkosic alluvium on alluvial fans and terraces. The average annual precipitation is about 15 inches, the mean annual air temperature is about 47 degrees F, and the average frostfree period is about 135 days.

National Cooperative Soil Survey

Hydrologic Soil Group—El Paso County Area, Colorado (Freedom Springs)

Area of Interest (AOI) Area of Interest (AOI) Solis		
	O	The soil surveys that comprise your AOI were mapped at 1:24,000.
	D	Warning: Soil Map may not be valid at this scale.
Soil Rating Polygons	Not rated or not available	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
A/D Water Features	atures	line placement. The maps do not show the small areas of
	Streams and Canals	contrasting soils that could have been shown at a more used scale.
B/D +++	Rails	Please rely on the bar scale on each map sheet for map
°	Interstate Highways	measurements.
Cro	US Routes	Source of Map: Natural Resources Conservation Service
•	Major Roads	Web Soil Survey UKL: Coordinate System: Web Mercator (EPSG:3857)
Not rated or not available	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
Soil Rating Lines Background		projection, which preserves direction and shape but distorts
A A	Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection. should be used if more
AD		accurate calculations of distance or area are required.
8		This product is generated from the USDA-NRCS certified data as
B/D		of the version date(s) listed below.
0		Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 15, Oct 10, 2017
C/D		
• •		1:50,000 or larger.
 Not rated or not available 		Date(s) aerial images were photographed: Jun 3, 2014—Jun 17,
Soil Rating Points		2014
 		The orthophoto or other base map on which the soil lines were
avd D		imagery displayed on these maps. As a result, some minor
8		shifting of map unit boundaries may be evident.
D/8		

3/5/2018 Page 2 of 4

Web Soil Survey National Cooperative Soil Survey

Natural Resources Conservation Service

VOSD

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	10.9	99.9%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	A	0.0	0.1%
Totals for Area of Inter	rest		10.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

11

9 Hydrologic Calculations

Runoff Coefficients and Percent Imperviousness Table 6-6 Colorado Springs Rainfall Intensity Duration Frequency Table 6-5 Hydrologic Calculations Summary Form SF-1 for Existing & Developed Conditions Hydrologic Calculations Summary 5-yr Form SF-2 for Existing & Developed Conditions Hydrologic Calculations Summary 100-yr Form SF-2 for Existing & Developed Conditions

 Table 6-6. Runoff Coefficients for Rational Method

 (Source: UDFCD 2001)

eas sis (when ed)		land Ilee or Surface	Darrant						Runoff Co	Runoff Coefficients					
Bertines Nes data		Characteristics	Impervious	2-1	/ear	5-V	ear	10-y	ear	25-1	/ear	50-1	/ear	100	year
Business				HSG A&B		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSGC&D	HSG A&B	HSGCRI
Commercial Areas: 55 0.73 0.86 0.81 0.82 0.83 0.84 0.85 0.87 0.86 0.85		Business			-										
Meighborinood Areas 70 0.45 0.49 0.53 0.53 0.57 0.58 0.65 0.55 <th0.55< th=""> <th0.55< th=""> 0.55</th0.55<></th0.55<>		Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Residential Residential <thresidential< th=""> <thresidential< th=""></thresidential<></thresidential<>		Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Harter 5 0.41 0.45 0.45 0.45 0.45 0.45 0.57 0.62 0.59 0.55	15	Residential													
j4Acce 40 0.23 0.23 0.35 0.35 0.35 0.35 0.36 0.47 0.35 0.36 0.35 0.36 0.35 0.36 0.35 0.36 0.35 0.34 0.35 0.34 0.35 0.35 0.34 <th< td=""><td>(c. c.</td><td>1/8 Acre or less</td><td>65</td><td>0.41</td><td>0.45</td><td>0.45</td><td>0.49</td><td>0.49</td><td>0.54</td><td>0.54</td><td>0.59</td><td>0.57</td><td>0.62</td><td>(0.59)</td><td>0.65</td></th<>	(c. c.	1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	(0.59)	0.65
1/2 Acre 30 0.18 0.22 0.23 0.30 0.32 0.37 0.46 0.41 0.52 0.47 1/2 Acre 20 0.12 0.17 0.20 0.22 0.39 0.37 0.46 0.41 0.57 0.46 1/2 Acre 20 0.12 0.17 0.20 0.26 0.37 0.46 0.41 0.57 0.47 0.57 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.75 0.75 0.76 0.75 0.76 0.75 0.76 0.75 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 <td< td=""><td></td><td>1/4 Acre</td><td>40</td><td>0.23</td><td>0.28</td><td>0:30</td><td>0.35</td><td>0.36</td><td>0.42</td><td>0.42</td><td>0.50</td><td>0.46</td><td>0.54</td><td>050</td><td>0.58</td></td<>		1/4 Acre	40	0.23	0.28	0:30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	050	0.58
12 Acree 12 0.13 0.20 0.22 0.23 0.35 0.44 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.41 0.51 0.46 0.51 0.46 0.51 0.46 0.51 0.46 0.51 0.46 0.51 0.71 0.75 0.77 0.75 0.77 0.76 0.77 0.78 0.72 0.70 0.71 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.74 0.73 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 <		1/3 Acre	30	0.18	0.22	0.25	0:30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
IAree 20 0.17 0.20 0.26 0.27 0.34 0.36 0.40 0.50 0.44 Industrial Industrial 0 0.57 0.56 0.57 0.56 0.77 0.72 0.70 Industrial 80 0.57 0.66 0.59 0.66 0.77 0.72 0.70 0.83 0.72 0.70 0.84 0.71 0.77 0.79 0.74 0.59 0.61 0.50 0.59 0.61 0.57 0.77 0.70 0.74 0.59 0.77 0.70 0.77 0.74 0.59 0.74 0.51 0.70 0.55 0.54 0.54		1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
Industrial Industri Industria Industria<		1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Intervention 80 0.57 0.60 0.63 0.66 0.66 0.70 0.88 0.77 0.70 0.78 0.77 0.70 0.78 0.77 0.70 0.88 0.71 0.70 0.71 0.77 0.76 0.77 0.76 0.77 0.78 0.77 0.76 0.70 0.88 0.72 0.70 0.88 0.71 0.78 0.77 0.76 0.77 0.76 0.73 0.73 0.77 0.76 0.70 0.88 0.72 0.70 0.78 0.71 0.78 0.77 0.76 0.71 0.76 0.71 0.77 0.76 0.71 0.73 0.71 0.73 0.73 0.73 0.73 0.73 0.74 0.73 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0.74 0.75 0.74 0.76 0.75 0.75 0.75 0.74 0.74 0.75 0.74 0.75 0.75 0.75 0.75 0.74 0.74		Induction													
HeavyAreas 90 0.71 0.73 0.74 0.78 0.80 0.83 0.44 0.33 0.44 0.33 0.43 0.44 0.33 0.44 0.34 0.44 0.35 0.43 0.44 0.35 0.44 0.35 0.43 0.44 0.35 0.43 0.44 0.35 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.35 0.35 0.35 0.35 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35				110	0.00	0.00									
Interventeries 7 0.07 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.13 0.14 0.14 0.14 0.14 0.15 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.15 0.13 0.14 0.13 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.13 0.14 0.15 0.14 0.15 0.15 0.15 0.13 0.16 0.15 0.13 0.16 0.15		Light Areas	08	15.0	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Parks and Cemeteries 7 0.05 0.09 0.12 0.29 0.20 0.40 0.34 0.46 0.39 0.46 0.39 0.41 0.39 0.31 0.35 <th0.35< th=""> 0.35 0.35</th0.35<>		IJEGAY ALEGS	02	1/1	0./3	0./3	6/.0	0./5	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Playgrounds 13 0.07 0.15 0.15 0.24 0.31 0.32 0.42 0.37 0.48 0.41 Playgrounds 40 0.23 0.23 0.35 0.35 0.35 0.36 0.42 0.37 0.48 0.41 Undeveloped Areas 40 0.23 0.20 0.35 0.35 0.35 0.35 0.36 0.34 0.36 0.36 0.35 0.36 0.35 0.36 </td <td></td> <td>Parks and Cemeteries</td> <td>7</td> <td>0.05</td> <td>60.0</td> <td>0.12</td> <td>0.19</td> <td>0.20</td> <td>0.29</td> <td>0.30</td> <td>0.40</td> <td>0.34</td> <td>0.46</td> <td>0.39</td> <td>050</td>		Parks and Cemeteries	7	0.05	60.0	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	050
Railroad Yard Areas 40 0.23 0.28 0.36 0.42 0.42 0.42 0.50 0.46 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.56 0.54 0.50 0.54 0.50 0.54 0.50 0.54 0.50 0.56 0.35 0.35 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 <th0.35< th=""> <th0.35< th=""> 0.36</th0.35<></th0.35<>		Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Undeveloped Areas 1 0 0.17 0.26 0.26 0.38 0.31 0.45 0.35 0.36 0.35 0.35 0.37 0.36 0.35 0.35 0.35 0.35 0.35 0.36 0.35 0.35 0.35 0.36 0.35 0.35 0.35 0.36 0.35		Railroad Yard Areas	40	0.23	0.28	0:30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Historic Flow Analysis 2 0.03 0.05 0.09 0.16 0.17 0.26 0.38 0.31 0.45 0.36 0.35 0.35 0.35 0.31 0.45 0.35		Undeveloped Areas													
Pasture/Meadow 0 0.02 0.04 0.08 0.15 0.15 0.25 0.37 0.30 0.44 0.35 Forest 0 0.02 0.04 0.08 0.15 0.15 0.25 0.37 0.30 0.44 0.35 Forest 0 0.02 0.04 0.08 0.15 0.15 0.25 0.37 0.30 0.44 0.35 Exposed Rock 100 0.89 0.89 0.90 0.90 0.92 0.37 0.37 0.30 0.44 0.35 Offsite Flow Analysis (when 45 0.26 0.31 0.32 0.37 0.38 0.44 0.44 0.51	1	Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	60.0	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	051
Forest 0 0.02 0.04 0.08 0.15 0.15 0.25 0.37 0.30 0.44 0.35 Exposed Rock 100 0.89 0.89 0.90 0.90 0.92 0.94 0.95 0.95 0.96 Offsite Flow Analysis (when landuse is undefined) 45 0.26 0.31 0.32 0.37 0.34 0.94 0.95 0.95 0.96 Streets 0.26 0.31 0.32 0.37 0.38 0.44 0.51 0.48 0.51	101	Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	(0.35)	0.50
Exposed Rock 100 0.89 0.89 0.90 0.92 0.94 0.95 0.95 0.96 Offsite Flow Analysis (when landuse is undefined) 45 0.26 0.31 0.32 0.37 0.38 0.44 0.51 0.48 0.55 0.51 Ianduse is undefined) 45 0.26 0.31 0.32 0.37 0.38 0.44 0.51 0.48 0.55 0.51 Streets 100 0.89 0.89 0.50 0.59 0.52 0.53 0.56 <td>× . N</td> <td>Forest</td> <td>0</td> <td>0.02</td> <td>0.04</td> <td>0.08</td> <td>0.15</td> <td>0.15</td> <td>0.25</td> <td>0.25</td> <td>0.37</td> <td>0:30</td> <td>0.44</td> <td>0.35</td> <td>0.50</td>	× . N	Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0:30	0.44	0.35	0.50
Offsite Flow Analysis (when landuse is undefined) 45 0.26 0.31 0.32 0.37 0.38 0.44 0.51 0.48 0.55 0.51 Ianduse is undefined) 0 <td>-</td> <td>Exposed Rock</td> <td>100</td> <td>0.89</td> <td>0.89</td> <td>0.90</td> <td>0.90</td> <td>0.92</td> <td>0.92</td> <td>0.94</td> <td>0.94</td> <td>0.95</td> <td>0.95</td> <td>0.96</td> <td>0.96</td>	-	Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Streets 100 0.89 0.89 0.90 0.90 0.92 0.94 0.95 0.95 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.96 0.96 0.97 0.96 0.96 0.96 0.96 0.97 0.96 0.96 0.72 0.70 0.96 0.72 0.70 0.96 0.72 0.70 0.96 0.72 0.70 0.96 0.72 0.70 0.96 0.72 0.70 0.72 0.70 0.72 0.70 0.72 0.70 0.76 0.72 0.70 0.72 0.70 0.96 0.70 0.96 <		Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Paved 100 0.89 0.89 0.89 0.90 0.90 0.92 0.94 0.95 0.72 0.72 0.72 0.70 0		Streets													
Gravel 80 0.57 0.60 0.59 0.63 0.66 0.66 0.70 0.68 0.72 0.70 0 Drive and Walks 100 0.89 0.89 0.90 0.90 0.92 0.94 0.95 0.95 0.96 Roofs 90 0.71 0.73 0.73 0.75 0.77 0.78 0.80 0.84 0.82 0.94 0.95 0.96 1.96 <td< td=""><td>. ·</td><td>Paved</td><td>100</td><td>0.89</td><td>0.89</td><td>06.0</td><td>0.90</td><td>0.92</td><td>0.92</td><td>0.94</td><td>0.94</td><td>0.95</td><td>0.95</td><td>(0.96)</td><td>0.96</td></td<>	. ·	Paved	100	0.89	0.89	06.0	0.90	0.92	0.92	0.94	0.94	0.95	0.95	(0.96)	0.96
Drive and Walks 100 0.89 0.90 0.90 0.92 0.92 0.94 0.95 0.95 0.96 Roofs 90 0.71 0.73 0.75 0.75 0.77 0.78 0.80 0.82 0.81 Lawns 0 0.02 0.04 0.75 0.15 0.75 0.77 0.77 0.80 0.82 0.81	SI)	Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70)	0.74
Unive and Walks 100 0.89 0.89 0.90 0.90 0.92 0.92 0.94 0.95 0.95 0.96 0.96 Nofel Roofs 0.71 0.71 0.73 0.75 0.75 0.77 0.78 0.80 0.82 0.81 here and wants 1 average and the second)		X)	
→ Lawns 0 0.02 0.04 0.08 0.15 0.15 0.25 0.27 0.30 0.40 (0.35)	1	Urive and walks Roofs	00T	0.71	0.73	06.0	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	96.0
	1 13	Lawns	0	0.02	0.04	0.08	0.15	0.15	0.75	0.75	0.37	030	70.04	0 3E	050

EHST.

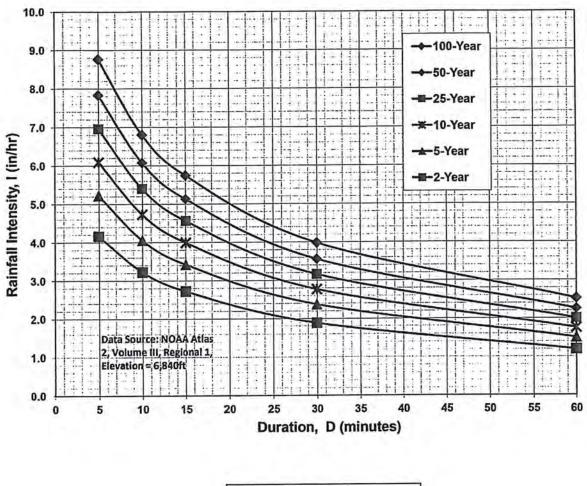


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations	
$I_{100} = -2.52 \ln(D) + 12.735$	
$I_{50} = -2.25 \ln(D) + 11.375$	
I ₂₅ = -2.00 ln(D) + 10.111	
$I_{10} = -1.75 \ln(D) + 8.847$	
I ₅ =-1.50 ln(D) + 7.583	
$I_2 = -1.19 \ln(D) + 6.035$	
Note: Values calculated by equations may not precisely duplicate values read from figure.	

3/22/18 10:03

Date: Calcs By: TJW Checked By:

61090 Freedom Springs

Job No.: Project:

Sub-Basin Ar Basin (Ac A1 B1 B1			Sub-Basin Data	1	0	Overland		S	Shallow Channel	hannel	1		Channelized	lelized		t _c Check	eck	
Basin (Ac				%	Lo	So So	t	Lot	Sot	Vosc	5+	Loc	Soc	Voc	\$¢	-	t _{c,alt}	÷,
		C _s	C100/CN	Imp.	(#)	(%)	(min)	(ft)	(ft/ft)	(ft/s)	(min)	(ft)	(ft/ft)	(ft/s)	(min)	(min)	(min)	(min)
	2.84	0.45	0.59	65%	95	1%	11.4	125	0.010	2.0	1.0	360	0.019	3.0	2.0	580	13.2	13.2
	0.57	0.49	0.65	65%	100	1%	11.0	06	0.020	1.0	1.5	0	0.000	0.0	0.0	190	11.1	11.1
	2.72	0.17	0.41	11%	100	4%	11.2	265	0.009	0.7	6.5	0	0.000	0.0	0.0	365	12.0	12.0
	1.16	0.09	0.36	2%	100	3%	12.4	145	0.041	1.4	1.7	0	0.000	0.0	0.0	245	11.4	11.4
	0.63	0.85	0.92	94%	100	2%	3.9	35	0.014	2.4	0.2	160	0.011	2.0	1.3	295	11.6	IJ.
	0.17	0.75	0.85	81%	100	8%	3.2	16	0.063	5.0	0.1	0	0.000	0.0	0.0	116	10.6	5.0
C1 C1	0.11	0.70	0.81	76%	32	2%	3.1	0	0.000	0.0	0.0	128	0.057	2.5	0.9	160	10.9	5.
	0.36	0.73	0.81	%06	30	1%	3.7	0	0.000	0.0	0.0	175	0.010	5.0	0.6	205	11.1	IJ.
	0.17	0.20	0.44	14%	87	3%	10.7	0	0.000	0.0	0.0	0	0.000	0.0	0.0	87	10.5	10.
	0.17	0.45	0.62	45%	87	2%	9.2	0	0.000	0.0	0.0	0	0.000	0.0	0.0	87	10.5	0
	0.58	0.08	0.35	%0	100	4%	11.7	160	0.063	1.8	1.5	0	0.000	0.0	0.0	260	11.4	1.
	0.45	0.73	0.83	%62	65	2%	4.7	0	0.000	0.0	0.0	245	0.045	3.0	1,4	310	11.7	6.0
	0.46	0.08	0.35	%0	100	4%	11.7	25	0.080	2.0	0.2	0	0.000	0.0	0.0	125	10.7	10.
	0.15	0.08	0.35	%0	33	11%	4.9	0	0.000	0.0	0.0	0	0.000	0.0	0.0	33	10.2	5.
	0.45	0.08	0.35	%0	100	%9	10.5	140	0.068	1.8	1.3	0	0.000	0.0	0.0	240	11.3	11.3
	0.13	0.08	0.35	%0	32	%6	5.1	0	0.000	0.0	0.0	0	0.000	0.0	0.0	32	10.2	ίΩ.
-	-																	

Z:\61090\Calcs\Hydrology\61090 Runoff Spreadsheet.xlsm Form SF-1

Page 1

Sub- Basin Sub- Basin Are Basin Are Are (Arith Are Are (Arith Basin Are (Arith Arith Are (Arith Arith Arith Are (Arith Arith Arith Arith Arith Arith Arith	Sub-Basic Inter Condition from State Action from Actin from Action from Action from Action from Action from A	Project: Design Storm: Inviscintion:	Freedom Springs	5-Year Storm		(20% Probability)	ability)										Checked By:		M			
Sk. Bain Ans Continuent (min) Continent (min) Continuent (min) <thcontin< th=""><th>Sub- letting Am Control function (min) Contro functi</th><th>מתוופתורמסווי</th><th></th><th></th><th></th><th></th><th></th><th>Sub-E</th><th>lasin and</th><th>I Combir</th><th>red Flow</th><th>S (Modified)</th><th>from Stand</th><th>ard Form</th><th>SF-2)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thcontin<>	Sub- letting Am Control function (min) Contro functi	מתוופתורמסווי						Sub-E	lasin and	I Combir	red Flow	S (Modified)	from Stand	ard Form	SF-2)							
Bab Area Col Col <th>Sub- international (2011) Ama (2011) Col (2011) Col (2011)</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th>Direct F</th> <th>Runoff</th> <th></th> <th></th> <th>Combined</th> <th>I Runoff</th> <th></th> <th>St</th> <th>reetflow</th> <th></th> <th>P</th> <th>pe Flow</th> <th></th> <th></th> <th>Trave</th> <th>Time</th>	Sub- international (2011) Ama (2011) Col (2011)		-				Direct F	Runoff			Combined	I Runoff		St	reetflow		P	pe Flow			Trave	Time
OSI 2.84 0.45 13.2 1.28 3.71 4.7 0S2 0.57 0.46 11.1 0.28 3.36 1.1 0S2 0.57 0.46 11.1 0.28 3.36 1.7 EXA1 1.16 0.00 11.4 0.11 3.34 0.4 EXA1 1.72 0.23 3.65 0.65 3.56 0.7 EXA1 1.72 0.21 1.24 0.23 3.64 1.1 II 0022, EKB1 1.17 0.20 3.65 0.55 5.5 0.54 5.07 3.64 II 0022, EKB1 1.72 0.21 0.27 5.17 0.07 3.64 II 1 0.26 0.28 5.00 5.00 5.17 0.07 3.64 II 1 0.28 0.27 5.17 0.07 5.14 0.26 3.64 II 1 0.28 0.28 0.28 4.26 0.27 5.14 1.14 1.13	051 2.84 0.46 132 128 371 47 022 057 0.46 111 0.28 3.46 111 1.28 3.51 4.7 051 EX.Ai 2.72 0.17 12.0 0.46 13.2 1.28 3.51 4.7 151 0.57 0.64 13.2 1.28 3.51 1.4 1.73 3.54 151 0.53 5.5 0.54 5.52 0.77 1.14 0.36 3.54 111 0.73 0.23 5.77 0.4 1.14 0.36 3.84 111 0.73 0.36 5.5 0.54 5.02 2.7 0.4 1.13 0.36 3.84 111 0.73 0.73 5.77 0.4 1.4 1.7 1.14 0.36 3.84 111 0.73 0.36 0.33 3.77 0.4 1.4 1.7 1.14 0.36 3.84 111	DP	Sub- Basin	Area (Acres)	S	t _e (min)	(Acres)	I5 (in/hr)	Q5 (cfs)	t _e (min)	CA (Acres)	I5 (in/hr)	Q5 (cfs)	Slope (%)	1.11	Q (cfs)	Slope (%)	Mnngs I n		-		-
OS1 2.84 0.46 11.1 0.28 3.85 1.1 0.28 3.85 1.1 0.28 3.85 1.1 0.28 3.85 1.1 0.28 3.85 1.1 0.28 3.85 1.1 0.28 3.85 1.1 0.28 3.85 1.1 0.28 3.85 1.1 0.28 3.85 1.1 0.28 3.85 1.1 0.28 0.26 0.28 3.85 0.1 3.34 0.4 1.12 0.35 0.36 0.36 0.36 3.35 0.11 0.36 0.36 3.35 0.34 0.34 0.34 0.35 0.36 0.35 0.36 <th0.36< th=""> <th0.36< th=""> <th0.36< th=""></th0.36<></th0.36<></th0.36<>	OSI 2.84 0.46 13.2 12.8 3.71 4.7 AI 052 0.57 0.46 11.1 0.28 3.86 1.7 AI 055 0.57 0.46 11.1 0.28 3.86 1.7 AI 055 0.04 11.6 0.00 11.4 0.11 3.34 AI 055 0.31 1.74 0.11 3.34 0.4 BI 055, EX H1 1.32 0.33 5.0 0.45 3.36 BI 055, EX H1 1.32 0.31 5.77 0.4 1.73 BI 055, EX H1 1.32 0.33 5.0 0.45 5.0 0.4 BI 0.17 0.75 5.0 0.33 5.77 0.77 5.36 1.14 1.73 3.34 BI 0.17 0.25 5.00 0.33 5.77 0.7 1.14 0.36 3.34 BI 0.35 0.01 5.1											-									-	-
0001 EXAI 0001 EXAI 0001 EXAI 0000 EXAI 0001 EXAI 0001 EXAI <t< td=""><td>0001 EXAM 0001 (XAM <t< td=""><td>Offsite</td><td>Poor</td><td>100</td><td>0.45</td><td>0 01</td><td>90.1</td><td>374</td><td>4.7</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	0001 EXAM 0001 (XAM 0001 (XAM <t< td=""><td>Offsite</td><td>Poor</td><td>100</td><td>0.45</td><td>0 01</td><td>90.1</td><td>374</td><td>4.7</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Offsite	Poor	100	0.45	0 01	90.1	374	4.7							_						
EXAI AI EXEN 2.72 5.56 0.17 0.16 120 0.03 0.46 11.4 3.86 0.11 1.7 3.94 3.86 0.11 1.7 3.94 3.86 0.17 1.7 0.25 3.86 0.23 1.7 11.4 1.73 0.26 3.86 3.84 1.7 0.26 3.86 3.84 1.7 0.26 3.84 0.23 3.84 0.11 1.17 0.26 3.84 0.23 3.84 0.11 1.17 0.26 3.84 0.23 3.84 0.11 1.14 0.236 3.84 0.26 3.84 0.26 3.84 0.11 3.84 0.26 3.84 0.11 3.84 0.26 3.84 0.26 </td <td>EXAT AI EXET 2.72 2.72 0.17 0.16 120 0.03 0.46 1.1 3.86 3.86 1.7 1.14 1.73 0.23 3.86 3.84 17 0.11 1.13 0.26 3.86 3.84 17 0.11 1.13 0.26 3.86 3.84 17 0.11 1.13 0.26 3.84 0.23 1.14 0.11 0.17 0.26 3.84 0.11 0.17 0.26 3.84 0.03 1.14 0.14 0.26 3.84 0.26 3.84 0.11 1.14 0.26 3.84 0.26 3.84 0.11 1.14 0.26 3.84 0.26 3.84 0.11 3.84 0.14 1.14 0.26 3.84 0.26 3.84 0.11 3.84 0.14 1.14 0.26 3.84 0.26 3.84 0.27 3.64 0.26 1.14 0.26 3.84 0.26 3.84</td> <td></td> <td>082</td> <td>0.57</td> <td>0.49</td> <td>11.1</td> <td>0.28</td> <td>3.98</td> <td>11</td> <td></td>	EXAT AI EXET 2.72 2.72 0.17 0.16 120 0.03 0.46 1.1 3.86 3.86 1.7 1.14 1.73 0.23 3.86 3.84 17 0.11 1.13 0.26 3.86 3.84 17 0.11 1.13 0.26 3.86 3.84 17 0.11 1.13 0.26 3.84 0.23 1.14 0.11 0.17 0.26 3.84 0.11 0.17 0.26 3.84 0.03 1.14 0.14 0.26 3.84 0.26 3.84 0.11 1.14 0.26 3.84 0.26 3.84 0.11 1.14 0.26 3.84 0.26 3.84 0.11 3.84 0.14 1.14 0.26 3.84 0.26 3.84 0.11 3.84 0.14 1.14 0.26 3.84 0.26 3.84 0.27 3.64 0.26 1.14 0.26 3.84 0.26 3.84		082	0.57	0.49	11.1	0.28	3.98	11													
All Dist. Link Dist. Dist. <thdist.< th=""> Dist.</thdist.<>	Mail Keil Tit 001 14.4 01.0 14.4 01.3 36.4 1 055, EX.B1 1.15 0.01 11.4 0.13 3.64 11.4 0.36 3.84 1 055, EX.B1 1.72 0.21 1.4 0.13 5.17 0.4 11.4 0.36 3.84 1 0.17 0.85 5.5 0.54 5.02 2.7 0.34 11.4 0.36 3.84 1 0.17 0.17 0.25 5.0 0.13 5.17 0.4 0.35 3.84 0.34 11.4 0.36 3.34 1 0.17 0.25 5.0 0.33 4.36 0.3 4.05 0.3 4.05 0.3 4.05 0.1 1.73 3.84 1 0.35 0.33 4.36 0.3 4.05 0.1 4.44 1.61 3.34 1 0.45 0.04 5.14 0.01 5.14 0.1 4	Existing		010	0.17	12.0	0.45	3 85	1 7					-								_
M 055, EXAT 5.56 0.31 H 052, EXAT 5.56 0.31 H 052, EXAT 5.56 0.31 H 0.22 5.0 0.38 5.5 0.34 5.02 C1 0.17 0.25 5.0 0.33 5.17 0.4 C1 0.17 0.25 5.0 0.03 5.17 0.4 C1 0.17 0.25 0.03 5.17 0.4 C1 0.16 0.03 5.17 0.4 C1 0.16 0.03 5.17 0.1 C1 0.17 0.20 5.12 0.00 5.17 0.1 C1 0.16 0.03 5.1 0.00 5.17 0.1 C1 0.16 0.03 5.1 0.00 5.17 0.1 C1 0.16 0.02 5.14 0.1 C	A1 055, EXA1 5.6 0.31 B1 052, EXA1 5.6 0.31 C1 023 026 5.5 0.54 5.02 2.7 C1 0.11 0.70 5.6 0.33 5.17 0.4 C1 0.11 0.70 5.6 0.03 5.17 0.4 C1 0.11 0.73 5.6 0.03 5.17 0.4 C1 0.13 0.03 10.5 0.00 1.5 1.4 0.1 C1 0.15 0.03 11.3 0.00 1.5 1.4 0.1 C1 0.15 0.03 11.3 0.00 1.5 1.4 0.1 C1 0.15 0.03 11.3 0.00 1.5 1.4 0.1 C1 1.12 0.25 0.26 0.35 A1.H1 2.26 0.36 5.1 0.01 5.14 0.1 A1.H1 2.26 0.36 5.1 0.01 5.14 0.1 C1 1.12 0.25 0.35 C1 1.40 2.20 3.34 A1.H1 2.26 0.35 C1 1.16 0.25 0.35 C1 1.16 0.25 0.35 C1 1.15 C1 7.50 0.35 C1 7.50 0.35 C1 1.15		EX B1	1.16	0.09	11.4	0.11	3.94	0.4			1	2	-	_							
Ai 0.63 0.863 0.86 5.5 0.54 5.02 2.7 C1 0.17 0.77 0.70 5.00 5.17 0.4 C1 0.17 0.70 5.0 0.13 5.17 0.4 C1 0.17 0.20 5.0 0.03 5.17 0.4 C1 0.17 0.20 5.0 0.03 5.17 0.4 C1 0.17 0.20 10.5 0.03 5.17 0.4 C1 0.17 0.20 10.5 0.03 5.17 0.4 C1 0.35 0.03 5.0 0.33 4.89 1.6 C1 0.46 0.03 10.7 0.03 4.89 1.6 C1 0.46 0.03 5.1 0.04 5.14 0.1 C1 0.43 0.06 5.1 0.04 5.14 0.1 C1 1.02 0.28 0.35 0.56 5.14 0.1 C3 0.43 0.06 5.14 0.1 0.1 C41H 2.65 0.56 0.56 5.14 0.1 C5 0.43 0.1 5.14 0.1 C61 0.	At 0.63 0.65 5.5 0.54 5.02 2.7 B1 0.17 0.275 5.0 0.13 5.17 0.4 D1 0.17 0.20 5.17 1.4 0.2 D1 0.17 0.20 5.17 0.4 D1 0.17 0.20 5.17 0.4 0.17 0.20 1.92 0.03 4.06 0.1 11 0.05 0.08 1.40 0.03 3.34 11 0.13 0.06 1.13 0.03 3.34 0.11 0.05 0.08 1.13 0.04 0.01 11 0.13 0.06 1.13 0.04 3.34 0.1 0.14 0.13 0.06 1.13 0.04 3.34 0.1 0.11 0.13 0.06 1.13 0.04 3.34 0.1 0.11 0.13 0.06 1.13 0.04 3.34 0.1 0.11 1.102 0.23 4.06 0.1 0.1 1.14 0.13 0.06 1.13 0.06 3.34 0.1 0.14 1.102 0.28 1.14 0.1 0.11 2	OS1+EX A1 OS2+EX B1	0S1, EX A1 0S2, EX B1	5.56 1.72	0.31					14.1 11.4	1.73	3.61 3.94	6.2		-							
A1 0.03 0.03 0.03 5.5 0.54 5.02 2.7 C1 0.17 0.75 5.0 0.13 5.17 0.7 C1 0.17 0.75 5.0 0.13 5.17 0.1 C1 0.17 0.26 5.0 0.13 5.17 0.4 C1 0.17 0.26 5.0 0.33 5.17 0.4 C1 0.17 0.20 10.5 0.03 5.17 0.4 C1 0.17 0.20 10.2 0.03 5.17 0.4 C1 0.17 0.26 0.03 5.17 0.4 C1 0.17 0.26 0.03 5.17 0.3 M1 0.46 0.03 10.7 0.03 3.93 M1 0.13 0.04 0.03 11.4 0.29 M1 0.13 0.01 5.14 0.1 11.4 0.29 M1 1.12 0.26 0.36 0.1 5.14 0.1 M1 2.06 0.36 0.16 5.14 0.1 M1 2.05 0.36 1.14 0.29 M1 2.06 0.36 1.14	A1 068 055 054 5.02 2.77 0.4 C1 0.17 0.75 5.0 0.35 5.17 0.4 C1 0.17 0.26 0.03 5.17 0.4 C1 0.17 0.26 0.03 5.0 0.35 5.17 0.4 C1 0.17 0.20 0.27 5.17 0.4 0.27 5.17 0.4 V1 0.26 0.73 5.0 0.23 4.89 0.1 0.4 0.27 5.17 0.4 V1 0.46 0.73 5.0 0.33 4.89 1.6 0.1 0.1 0.1 0.25 0.33 4.89 1.6 0.1	Developed																			-	
C1 0.11 0.73 5.0 0.03 5.17 0.4 C1 0.36 0.73 5.0 0.03 5.17 0.4 C1 0.27 5.0 0.03 5.17 0.4 C1 0.36 0.73 5.0 0.03 5.17 0.4 C1 0.45 0.73 5.0 0.03 4.06 0.1 J1 0.45 0.73 5.0 0.03 4.06 0.1 J1 0.45 0.03 4.05 0.03 4.05 0.1 J1 0.45 0.03 4.05 0.03 4.05 0.1 M1 0.15 0.08 5.1 0.01 5.17 0.01 M1 0.15 0.08 5.1 0.01 5.17 0.1 M1 0.13 0.08 5.17 0.01 5.17 0.1 M1 0.13 0.08 5.17 0.01 5.17 0.1 M1 1.102 0.28 5.17 0.01 5.14 0.1 M1 2.65 0.28 0.21 1.14 0.21 M1 2.65 0.28 0.24 6.2 1.48 M1 2.	C1 0.11 0.70 5.0 0.03 5.17 0.4 C1 0.35 0.73 5.0 0.03 5.17 0.4 C1 0.35 0.03 1.4 0.03 3.39 0.2 C1 0.45 0.03 1.4 0.05 3.39 0.2 M1 0.15 0.03 1.13 0.04 3.39 0.1 M1 0.15 0.03 1.13 0.04 3.39 0.1 M1 0.15 0.03 1.13 0.04 3.39 0.1 M1 0.13 0.04 3.04 3.34 0.1 M1 2.05 0.35 0.01 5.14 0.1 M1+H 2.25 0.39 1.14 0.23 3.34 M1+H 2.25 0.36 0.1 5.14 0.1 M1+H 2.25 0.36 1.49 4.84 M1+H 2.25 0.35 0.1 </td <td>DP1</td> <td>A1</td> <td>0.63</td> <td>0.85</td> <td>5.5</td> <td>0.54</td> <td>5.02</td> <td>2.7</td> <td></td>	DP1	A1	0.63	0.85	5.5	0.54	5.02	2.7													
Diff 0.35 0.73 5.0 0.27 5.17 1.4 F1 0.17 0.26 0.03 4.06 0.1 H1 0.17 0.45 0.03 4.06 0.1 J1 0.45 0.03 4.06 0.1 0.03 J1 0.45 0.03 4.06 0.1 0.03 J1 0.45 0.03 4.06 0.1 0.03 K1 0.45 0.03 4.05 0.01 5.17 0.1 M1 0.15 0.08 1.14 0.03 4.03 1.1 M1 0.13 0.08 5.1 0.01 5.17 0.1 M1 0.13 0.08 5.1 0.01 5.14 0.1 M1 2.65 0.26 5.1 0.14 0.1 5.1 A1+H1 2.65 0.56 0.56 0.56 1.14 1.14 A1+H1 2.65 0.56 0.56 0.5	Diff 0.36 0.73 5.0 0.27 5.17 1.4 F1 0.017 0.20 105 0.03 4.06 0.1 F1 0.017 0.20 105 0.03 4.06 0.1 J1 0.245 0.073 6.0 0.33 4.06 0.1 J1 0.45 0.03 4.06 0.1 0.03 4.06 0.1 J1 0.45 0.03 4.06 0.1 0.03 4.06 0.1 M1 0.05 0.03 4.06 0.1 0.14 0.03 4.06 0.1 M1 0.15 0.08 1.13 0.00 5.17 0.1 1.1.4 1.1.4 M1 0.13 0.01 5.14 0.11 1.1.4 0.1 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4 1.1.4	DP3	10	0.11	02.0	5.0	0.08	5.17	0.4													
Ef 0.17 0.20 10.5 0.03 4.06 0.1 1 0.17 0.28 0.03 4.06 0.1 1 0.17 0.36 0.03 4.05 0.3 1 0.46 0.03 4.05 0.03 4.05 0.3 1 0.45 0.03 4.05 0.04 4.03 0.1 1 0.15 0.03 4.03 0.1 0.1 0.1 1 1.1 0.15 0.03 4.05 0.1 1.1 0.15 0.03 1.1.3 0.04 4.03 0.1 1.1 0.13 0.03 1.1.3 0.01 5.1 0.01 5.14 0.1 M1H 2.05 0.56 5.1 0.01 5.14 0.1 1.61 3.36 A1H1 2.05 0.56 0.56 5.1 0.01 5.14 0.1 A1H1 2.05 0.56 0.56 3.34 1.14	Ef 0.17 0.20 105 0.03 4.06 0.1 1 0.17 0.45 0.03 4.06 0.1 1 0.17 0.45 0.03 4.06 0.1 1 0.45 0.03 4.06 0.1 0.22 1 0.45 0.03 4.06 0.1 0.22 1 0.45 0.03 4.03 0.1 0.22 1 0.15 0.08 1.13 0.04 4.03 0.1 1 0.15 0.08 1.13 0.04 4.01 1.1 0.051, H1 2.05 0.03 5.1 0.01 5.14 0.1 1 1.102 0.228 0.49 5.13 0.04 5.14 0.1 M1H1 2.65 0.28 0.24 0.1 1.14 0.26 0501, H1 2.05 0.28 0.24 0.1 1.14 0.26 A1H1 2.65 0.28 <t< td=""><td>5</td><td>54</td><td>0.36</td><td>0.73</td><td>5.0</td><td>0.27</td><td>5.17</td><td>1.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	5	54	0.36	0.73	5.0	0.27	5.17	1.4													
H 0.01 0.46 0.03 0.45 0.03 0.45 0.03 0.45 0.03 0.45 0.03 0.45 0.03 0.45 0.03 0.45 0.03 0.45 0.03 0.45 0.03 0.45 0.03 0.46 0.03 0.45 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.01 0.14 0.11 0.14 0.13 0.14 0.	H 0.11 0.45 0.03 5.12 0.03 5.23 0.03 5.23 0.03 5.23 0.03 5.23 0.03 5.23 0.03 5.23 0.03 5.23 0.03 5.23 0.03 5.23 0.03 5.23 0.03 5.24 0.01 5.17 0.11 0.03 5.24 0.01 5.17 0.01 5.14 0.11 0.03 5.33 0.03 5.17 0.01 5.14 0.11 0.03 5.00 0.01 5.17 0.01 5.14 0.11 0.03 5.14 0.01 5.14 0.11 0.03 5.00 0.01 5.14 0.11 0.03 5.00 0.01 5.14 0.11 0.13 0.04 0.13 0.04 0.13 0.03 5.14 0.11 0.12 0.03 5.03 0.04 0.13 0.04 0.13 0.14 0.11 0.14 0.13 0.04 0.14 0.11 0.14 0.11 0.14 0.14 0.	DP5	μ	0.17	0.20	10.5	0.03	4.06	0.1												-	
H H H H H H H H H H H H H H	H H H H H H H H H H H H H H	DP6	51	0.58	0.08	11.4	0.05	3.93	0.2													
J1 0.46 0.08 10.7 0.04 4.03 0.1 K1 0.15 0.08 5.0 0.01 5.17 0.1 M 0.13 0.08 5.1 0.01 5.17 0.1 M 0.13 0.08 5.1 0.01 5.14 0.1 OS2, L1 1.02 0.29 5.1 0.01 5.14 0.1 OS1, H1 3.29 0.49 5.1 0.01 5.14 0.1 OS1, H1 3.29 0.49 5.1 0.01 5.14 0.1 OS1, H1 3.29 0.49 5.1 0.01 5.14 0.1 A1-H1 2.65 0.56 5.1 0.01 5.14 0.1 DON: H1 2.65 0.56 5.1 0.01 5.14 0.1 A1-H1 2.65 0.56 5.14 0.1 1.14 0.29 DOM: L= C1*In (c) + C2 0.05 0.01 0.14 0.01 0.14	J1 0.46 0.08 10.7 0.04 4.03 0.1 L1 0.15 0.08 5.0 0.01 5.17 0.1 L1 0.45 0.08 5.1 0.01 5.17 0.1 Mri 0.13 0.08 5.1 0.01 5.17 0.1 0.13 0.08 11.3 0.00 5.14 0.1 0.51, H1 3.29 0.49 5.14 0.1 0.51, H1 3.29 0.49 5.14 0.1 0.51, H1 3.29 0.49 5.14 0.1 0.51, H1 2.65 0.56 1.49 4.84 0.51, H1 2.65 0.56 5.14 0.1 0.51, H1 2.65 0.56 1.49 4.84 0.51 1.61 0.5 5.14 0.29 0.51 2.65 0.56 1.49 4.84 0.51 1.61 1.61 1.61 0.51 1.53 0.55 1.49 4.84 0.51 1.51 0.55 5.14 0.1 0.51 1.51 0.55 5.14 0.1 0.51 1.51 0.51 5.14 0.1		H	0.45	0.73	6.0	0.33	4.89	1.6													
Ki 0.15 0.08 1.3 0.04 0.03 5.1 0.01 Mi 0.13 0.08 5.1 0.01 5.14 0.1 Mi 0.32 0.08 5.1 0.01 5.14 0.1 OS1, H1 3.29 0.46 5.4 0.1 1.42 1.61 OS1, H1 3.28 0.56 0.56 1.49 4.84 A1-H1 2.65 0.56 1.49 4.84 A1-H1 2.65 0.56 1.49 4.84 DCM: 1.61 3.56 1.49 4.84 6.2 1.40 6.2 1.49 4.84 6.2 1.40 1.61 5.25 0.56 0.04 1.14 0.29 3.84 1.61 4.84 0.14 1.61 1.61 6.2 1.49 4.84 0.04 1.14 0.26 5.4 1.49 4.84 0.04 1.14 0.26 5.4 </td <td>Ki 0.15 0.08 1.3 0.04 0.03 5.14 0.11 Mi 0.13 0.08 5.1 0.01 5.14 0.1 Mi 0.13 0.08 5.1 0.01 5.14 0.1 Mi 1.02 0.28 0.48 0.04 5.14 0.1 OS1, H1 3.28 0.49 5.14 0.11 0.28 3.84 A1-H1 2.85 0.56 0.56 1.49 4.84 A1-H1 2.85 0.56 5.34 1.61 A1-H1 2.85 0.56 5.14 0.1 A1-H1 2.85 0.56 5.24 5.2 A1-H1 2.83 5.2 1.49 4.84 A1-H1 2.61 1.61 5.2</td> <td></td> <td>5</td> <td>0.46</td> <td>0.08</td> <td>10.7</td> <td>0.04</td> <td>4.03</td> <td>0.1</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ki 0.15 0.08 1.3 0.04 0.03 5.14 0.11 Mi 0.13 0.08 5.1 0.01 5.14 0.1 Mi 0.13 0.08 5.1 0.01 5.14 0.1 Mi 1.02 0.28 0.48 0.04 5.14 0.1 OS1, H1 3.28 0.49 5.14 0.11 0.28 3.84 A1-H1 2.85 0.56 0.56 1.49 4.84 A1-H1 2.85 0.56 5.34 1.61 A1-H1 2.85 0.56 5.14 0.1 A1-H1 2.85 0.56 5.24 5.2 A1-H1 2.83 5.2 1.49 4.84 A1-H1 2.61 1.61 5.2		5	0.46	0.08	10.7	0.04	4.03	0.1					_			_					
Mi 0.13 0.08 5.1 0.01 5.14 0.1 OS2. L1 1.02 0.29 OS1. H1 2.65 0.56 A1-H1 2.65 0.56 A1-H1 2.65 0.56 DCM: I = C1*In (tc) + C2 DCM: I = C1*In (tc) + C2	Mi 0.13 0.08 5.1 0.01 5.14 0.1 OS2. L1 1.02 0.29 A1-H1 2.65 0.56 A1-H1 2.85 0.56 A1-H1 2.85 0.56 A1-H1 2.85 0.56 A1-H1 2.85 0.56 A1-H1 2.85 A1-H1 2.85 A1-H1 2.85 A1-H1 2.85 A1-H1 1.10 A1-H1 1.10 A1		2 5	0.45	0.08	11.3	0.04	3.94	0.1													
0S2, L1 1.02 0.29 3.94 0S1, H1 3.29 0.49 1.44 1.61 3.58 0S1, H1 2.65 0.56 6.2 1.49 4.84 14, H1 2.65 0.56 6.2 1.49 4.84 050, L1 1.61 3.56 0.56 6.2 1.49 4.84 050, L1 2.65 0.56 0.56 6.2 1.49 4.84 050, L1 2.65 0.56 0.56 0.56 0.56 050, L1 2.65 0.56 0.56 0.56	0S2, L1 1.02 0.29 3.94 0S1, H1 3.29 0.49 14.4 1.61 3.58 0S1, H1 3.26 0.56 0.56 1.49 4.84 14.4 1.61 3.58 6.2 1.49 4.84 0S1, H1 2.65 0.56 0.56 1.49 4.84 0S1, H1 2.65 0.56 0.56 1.49 4.84 0S1, H1 2.65 0.56 0.56 1.49 4.84 0S1, H2 2.65 0.56 0.56 1.49 4.84 11.5 1.4 1.61 2.65 1.49 4.84 0S2, L1 1.61 1.61 1.25 1.49 2.55 0S4 1.61 1.5 1.5 1.43 2.55 0S4 1.61 1.5 1.5 1.58 0S6 1.53 1.583 1.583 1.58		M1	0.13	0.08	5.1	0.01	5.14	0.1													
A1-H1 2.65 0.56 4.84 B000 B000 B000 B000 B000	A1+H1 2.65 0.56 4.84 A1 0 0 0 A1 0 0 <	OS2+L1 DP4	0S2, L1 0S1, H1	1.02 3.29	0.29 0.49					11.4 14.4	0.29	3.94	1.1 5.7									
1 = C1 + In (tc) + C2	1.583	DP7	A1-H1	2.65	0.56					6.2	1.49	4.84	7.2									
l= C1 * In (tc) + C2	1 = C1 * In (tc) + C2 1.5 7.583															-						
1 = C1 * In (tc) + C2	1 = C1 * In (tc) + C2 7.583																					
1 = C1 * In (tc) + C2	I = C1 * In (tc) + C2 1.5 7.583																					
											-											
															-							
															-							-
	7		DCM:		tc) + C2																	

2\61099\Calcs\HydrologY\61090 Runoff Spreadsheet.xlsm Farm SF-2 (Minor)

Page 1

DCM: 1 DCM: 1 DCM: 2 DCM: 1 DCM: 1	Project: Design Storm:	Freedom Springs	Igs 100-Year Storm		(1% Probability)	bility)										Checked By:	3y:				
	Jurisdiction:		DCM				Sub-E	asin and	Combin	ed Flows	(Modified fr	rom Standa	Ind Form S	F-2)							
Bub Area Corr L Corr Tito Corr Cor						Direct F	Runoff			Combined	Runoff		Stre	etflow		a	ipe Flow			Travel 7	ime
0001 024 026 023 026 023 026 023 026 023 026 023 026 023 026 023 026 023 026 023 026 023 026 026 026 023 026 026 023 026 026 023 026 026 023 026 <th>2</th> <th>Sub-</th> <th>Area</th> <th>0100</th> <th>te (min)</th> <th>CA</th> <th>1100 /in/hr/</th> <th>Q100</th> <th>te (min)</th> <th>CA</th> <th></th> <th></th> <th></th> <th>1.1</th> <th></th> <th>Slope</th> <th></th> <th>-</th> <th>-</th> <th></th> <th>_</th>	2	Sub-	Area	0100	te (min)	CA	1100 /in/hr/	Q100	te (min)	CA				1.1		Slope		-	-		_
OS1 2.84 0.59 13.2 1.88 6.23 10.4 EXAI 2.77 0.41 1.2 0.37 6.83 1.41 2.56 0.66 EXAI 2.77 0.41 1.20 1.12 6.47 7.2 EXAI 2.77 0.41 1.20 1.12 6.47 7.2 OS1, EXAI 5.56 0.41 0.24 6.51 7.2 OS2, EXAI 5.56 0.35 6.61 2.38 1.41 0.75 6.61 OS2, EXAI 5.56 0.35 6.05 6.55 0.35 6.61 2.86 6.06 O17 0.05 0.35 5.0 0.35 6.0 1.14 0.75 6.61 O17 0.35 0.35 0.35 0.36 6.35 0.36 6.61 1.14 0.75 6.61 O17 0.35 0.35 0.37 6.21 7.1 1.14 0.75 6.61 O17 0.35	5	Dasil	(conc)	000	/mm/	loonul	Internal	1001	/	Innul	1	10101	-		┞	1			┢	1-	-
OBSI 2.84 0.56 11.1 0.37 6.68 12.3 10.4 0S1 556 0.57 0.66 11.1 0.37 6.66 7.2 0S1 EXA1 1.22 0.41 1.22 0.41 1.22 6.61 7.2 0S1 EXA1 5.56 0.36 11.4 0.42 6.61 7.2 0S2 EXA1 1.72 0.44 1.22 0.41 1.22 6.61 0S2 0.56 0.36 5.5 0.36 8.43 4.9 7.2 6.61 11 0.35 5.0 0.36 5.6 0.36 8.68 0.3 11 0.35 0.35 5.0 0.36 8.68 0.3 1.14 0.75 6.61 11 0.37 0.35 1.14 0.25 0.31 1.14 0.75 6.61 11 0.37 0.35 1.14 0.25 0.31 1.14 0.75 6.61 <td>Offsite</td> <td></td>	Offsite																				
Art EXAT 2.22 (5.47) 0.41 (1.12) 1.22 (5.47) 0.41 (1.12) 1.22 (5.47) 0.41 (1.12) 2.81 (5.1) 0.23 (5.5) 0.44 (5.5) 7.22 (5.6) 1.14 (7.14) 0.27 (7.12) 6.67 (7.12) 7.21 (7.14) 1.14 (7.14) 0.27 (7.14) 6.60 (7.15) 1.14 (7.14) 0.27 (7.14) 6.60 (7.16) 1.14 (7.14) 0.27 (7.14) 6.60 (7.16) 1.14 (7.14) 0.27 (7.14) 6.60 (7.16) 1.14 (7.14) 0.27 (7.14) 6.60 (7.16) 1.14 (7.14) 0.27 (7.16) 6.60 (7.16) 1.14 (7.14) 0.27 (7.16) 6.60 (7.16) 1.14 (7.14) 0.27 (7.16) 6.60 (7.16) 1.14 (7.14) 0.27 (7.16) 6.61 (7.16) 1.14 (7.14) 0.27 (7.16) 6.61 (7.16) 1.14 (7.14) 0.27 (7.16) 6.61 (7.16) 1.14 (7.14) 0.27 (7.16) 6.61 (7.16) 1.14 (7.16) 0.26 (7.16) 6.61 (7.16) 1.14 (7.16) 0.26 (7.16) 1.14 (7.14) 0.27 (7.16) 6.61 (7.16) 1.14 (7.14) 0.27 (7.16) 6.61 (7.16) 1.14 (7.16) 0.26 (7.16) 6.61 (7.16) 1.14 (7.16) 0.26 (7.16) 1.114 0.27 (7.16) 0.21 (7.16) 0.21 (0S1 0S2	2.84	0.65	13.2		6.23	10.4													
EXAI 2.72 0.41 12.0 11.2 6.47 7.2 0551, EXAI 5.56 0.36 11.4 0.42 6.61 2.8 0551, EXAI 5.56 0.36 11.4 0.42 6.61 2.8 0551, EXAI 5.56 0.36 11.4 0.42 6.61 2.8 172 0.44 0.35 0.36 0.35 6.36 1.3 0.75 6.61 111 0.35 0.36 0.36 8.68 1.3 0.75 6.61 111 0.35 0.36 0.35 0.36 8.68 1.3 0.75 6.51 1.3 0.75 0.35 5.1 0.35 5.1 0.75 0.41 1.1.4 0.75 5.61 1.14 0.75 5.61 1.14 0.75 5.61 1.14 0.75 5.61 1.14 0.75 5.61 1.14 0.75 5.61 1.14 0.75 5.61 1.14 0.75 5.61 1.14	Existing																				
OSS, EXA1 5.10 (35, EXA1 0.00 (17) (12, 2, 0, 44) 1.12 (13, 2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		EX A1	2.72	0.41	12.0		6.47	7.2						_							
OS2, EX B1 1.72 0.44 1.14 0.75 0.61 A1 0.63 0.92 5.5 0.58 8.43 4.9 0.75 0.61 B1 0.17 0.83 0.92 5.5 0.58 8.43 4.9 0.75 0.61 D1 0.81 0.81 5.0 0.35 8.68 1.3 0.1 7.14 0.75 0.61 D1 0.77 0.81 5.0 0.30 8.68 0.3 0.1 7.14 0.65 0.1 7.14 0.75 0.61 0.7 0.86 2.6 0.35 0.1 7.14 0.5 0.1 7.14 0.6 0.3 0.6 0.37 8.21 0.1 0.4 0.7 0.4 0.5 0.1 1.1 0.4 0.5 0.1 0.4 0.5 0.1 0.4 0.5 0.1 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.4 0.5 0.4 0.4	OS1+EX A1	OS1, EX A1	5.56	0.50	1		0.0	2.7	14.1	2.80	6.06	17.0									
A A 0.65 0.85 0.82 5.5 0.58 8.43 4.9 E1 0.17 0.85 0.85 5.0 0.03 8.86 1.3 D1 0.85 0.017 0.85 5.0 0.03 8.86 1.3 D1 0.17 0.85 5.0 0.03 8.86 1.3 D1 0.17 0.85 5.0 0.03 8.86 1.3 0.17 0.45 0.87 0.35 1.03 6.6 0.3 1 0.45 0.35 0.01 7.14 0.26 0.3 1 0.46 0.35 1.07 0.35 1.3 0.6 1 0.46 0.35 1.1 0.26 0.35 1.1 0.5 0.17 0.46 0.35 1.1 0.35 1.1 0.5 0.5 0.35 5.1 0.05 8.83 0.4 0.5 0.5 0.35 5.1 0.05 8.83 0.4 0.5 0.5 0.35 5.1 0.05 8.83 0.4 0.5 0.5 0.35 5.1 0.05 8.83 0.4 0.5 0.5 0.5 <td>OS2+EX B1</td> <td>0S2, EX B1</td> <td>1.72</td> <td>0.44</td> <td></td> <td></td> <td></td> <td></td> <td>11.4</td> <td>0.75</td> <td>6.61</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	OS2+EX B1	0S2, EX B1	1.72	0.44					11.4	0.75	6.61	5.0									
M1 0.03 0.022 5.5 0.58 8.43 4.9 C1 0.17 0.85 5.0 0.17 0.85 5.0 0.13 0.13 C1 0.17 0.85 5.0 0.35 8.68 1.3 C1 0.17 0.81 5.0 0.35 8.68 1.3 C1 0.17 0.65 0.30 8.68 1.3 0.5 C1 0.17 0.44 10.5 0.07 0.31 8.21 3.1 U1 0.45 0.33 10.7 0.16 6.62 1.1 M1 0.15 0.35 1.1 0.05 8.69 0.4 M1 0.13 0.35 1.1 0.05 8.61 1.1 M1 0.35 0.17 0.35 8.13 0.4 0.49 6.61 M1 1.10 0.35 1.13 0.05 8.63 0.4 1.1 0.51 0.35 0.16 </td <td>Developed</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Developed											1									
61 0.17 0.03 5.0 0.03 5.0 0.03 5.0 0.03 61 0.17 0.04 10.5 0.07 5.81 0.5 61 0.17 0.62 0.30 5.66 0.30 5.66 0.30 61 0.17 0.63 0.33 5.0 0.01 7.14 0.8 11 0.46 0.35 114 0.25 0.30 5.66 0.3 11 0.46 0.35 5.0 0.37 8.26 1.1 11 0.46 0.35 5.1 0.05 8.68 0.4 11 0.46 0.35 5.1 0.05 8.68 0.4 11 0.45 0.35 5.1 0.05 8.68 0.4 11 0.43 0.35 5.1 0.05 8.68 0.4 11 0.43 0.35 5.1 0.05 8.69 0.4 11 0.48 0.35 5.1 0.05 8.69 0.4 11 1.02 0.48 0.71 1.12 0.49 5.61 0.51, H1 2.56 0.71 2.56 0.71 5.2 1.67 0.51, H1 </td <td>DP1</td> <td>AI</td> <td>0.63</td> <td>0.92</td> <td>5.5</td> <td></td> <td>8.43</td> <td>4.9</td> <td></td>	DP1	AI	0.63	0.92	5.5		8.43	4.9													
Diversion 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.011 7.14 0.08 C1 0.17 0.028 0.035 11.4 0.035 0.017 0.017 0.017 0.017 0.017 0.020 6.681 1.3 U1 0.058 0.035 0.035 10.7 0.15 0.035 10.7 0.15 0.035 11.4 0.08 K1 0.046 0.035 10.7 0.15 0.035 5.1 0.035 5.1 1.1 M1 0.13 0.035 5.1 0.055 8.68 0.4 1.1 1.1.4 0.68 0.4 M1 0.13 0.35 1.13 0.16 6.62 1.1 1.1.4 0.65 M1 0.13 0.35 1.13 0.16 6.62 1.1 1.1.4 0.49 M1 1.102 0.48 0.011 2.66 0.71 6.2 1.87 8.13 A1+H1 2.66 0.71 2.65 0.07 6.2 1.87 8.13 A1+H1 2.65 0.71 2.65 0.07 6.2 1.8	240	5 6	11.0	C8.0	0.0		0.00	8.0				_		_							_
Ef 0.17 0.44 10.5 0.07 6.81 0.5 11 0.45 0.38 0.35 11.4 0.8 0.35 11 0.45 0.38 10.5 0.11 7.14 0.8 11 0.45 0.38 10.7 0.16 6.59 1.3 11 0.45 0.38 10.7 0.16 6.59 1.3 11 0.45 0.35 10.7 0.16 6.57 1.1 11 0.45 0.35 11.3 0.16 6.57 1.1 11 0.45 0.35 5.0 0.05 8.63 0.4 11 1.02 0.48 0.35 1.1 0.49 6.61 0.51 0.13 0.35 0.71 0.65 1.1 1.4 0.51 0.35 0.71 0.35 8.63 0.4 11.1 1.02 0.68 1.1 0.49 6.61 0.51 1.32 0.65 0.71 1.4 0.49 6.61 11.4 2.06 0.71 2.16 1.4 0.49 6.01 11.4 0.65 0.71 1.14 0.49 6.01 11	210	56	0.36	0.81	5.0		8,68	2.6		_		_	_	_					_		
F1 0.17 0.62 9.2 0.11 7.14 0.8 H1 0.45 0.83 0.35 11.4 0.20 6.59 1.3 H1 0.46 0.33 5.0 0.35 6.59 1.3 K1 0.45 0.33 5.0 0.35 6.59 1.3 L1 0.45 0.35 5.0 0.05 8.68 0.4 N1 0.45 0.35 5.1 0.05 8.63 0.4 0.13 0.35 5.1 0.05 8.63 0.4 0.33 5.1 0.05 8.63 0.4 0.14 1.02 0.48 0.35 1.1 0.49 0.51 1.05 8.63 0.4 1.14 0.49 0.51 1.12 0.05 8.63 0.4 A1-H1 2.265 0.71 3.29 0.62 A1-H1 2.265 0.71 9.2 1.87 0.51 1.32 0.62 1.14 0.49 0.61 1.14 0.66 1.14 1.14 0.61 1.14 2.06 1.17 0.7 1.14 1.05 1.14 1.17 0.	DP5	E	0.17	0.44	10.5		6.81	0.5													
G1 0.58 0.35 11.4 0.20 6.59 1.3 K1 0.45 0.33 6.0 0.37 8.21 3.1 K1 0.45 0.35 5.0 0.35 6.0 0.37 8.27 3.1 M1 0.15 0.35 5.1 0.16 6.62 1.1 M1 0.13 0.35 5.1 0.05 8.63 0.4 M1 1.02 0.48 0.35 5.1 0.05 8.63 0.4 M1 2.65 0.71 3.05 8.63 0.4 8.13 A1-H1 2.65 0.71 1.02 0.48 6.61 1.14 053 1.1 1.02 0.48 6.61 1.14 2.05 6.01 A1-H1 2.65 0.71 2.65 6.07 1.44 2.05 6.01 A1-H1 2.65 0.71 8.13 6.2 1.87 8.13 DCM1 1.61/10	DP6	F1	0.17	0.62	9.2		7.14	0.8						_					-		
H 0.46 0.35 6.0 0.35 6.0 0.35 6.0 K1 0.45 0.35 10.7 0.16 6.22 1.1 Mi 0.13 0.35 5.1 0.16 6.62 1.1 Mi 0.13 0.35 5.1 0.05 8.63 0.4 SS2, Li 0.13 0.35 5.1 0.05 8.63 0.4 OSS, Li 1.02 0.48 0.16 6.62 1.1 OSS, Li 1.02 0.48 0.16 6.62 1.1 OSS, Li 3.229 0.03 8.63 0.4 OSS, Li 3.229 0.71 9.05 8.63 0.4 A1-H1 2.86 0.71 9.16 6.2 1.87 8.13 A1-H1 2.86 0.71 9.16 6.2 1.87 8.13 Distribution 2.86 0.71 9.13 6.2 1.87 8.13 A1-H1 2.86 0.71 9.16 6.2 1.87 8.13 Distribution 2.86 0.71 9.2 1.87 8.13 Cit 2.61 1.0.49 6.2 1.87 8.13 DOM: 1 = C1*n(15	0.58	0.35	11.4		6.59	1.3													
Ki 0.15 0.35 5.0 0.05 6.68 0.4 Ki 0.13 0.35 5.1 0.16 6.82 1.1 Mi 0.13 0.35 5.1 0.05 8.63 0.4 OS2, L1 0.13 0.35 5.1 0.05 8.63 0.4 OS1, H1 2.265 0.71 1.02 0.48 1.1.4 0.49 6.61 A1-H1 2.265 0.71 1.02 0.48 1.1.4 0.49 6.61 A1-H1 2.265 0.71 1.1.4 0.49 6.61 1.1.4 2.05 6.01 A1-H1 2.265 0.71 2.65 0.71 1.1.4 2.05 6.01 A1-H1 2.65 0.71 1.1.4 2.05 6.01 1.1.4 2.05 6.01 A1-H1 2.05 0.62 0.71 6.2 1.1.7 0.1.5 6.2 1.1.4 0.49 6.1 1.1.4 2.05 6.01		E -	0.45	0.83	10.9		8.21	- ÷ +													
Li 0.45 0.35 11.3 0.16 6.62 1.1 Mi 0.13 0.35 5.1 0.05 8.63 0.4 OS2, L1 1.02 0.48 0.05 8.63 0.4 OS1, H1 2.265 0.71 1.02 0.49 6.61 A1-H1 2.65 0.71 1.44 2.05 6.01 A1-H1 2.65 0.71 1.44 2.05 6.01 A1-H1 2.65 0.71 6.2 1.187 8.13 DCM: L1 1.02 0.48 1.44 2.05 6.01 A1-H1 2.65 0.71 6.2 1.187 8.13 DCM: L2 DCM: L2 DCM: L2 0.71 0.16 0.18		LX LX	0.15	0.35	5.0		8.68	0.4													_
M1 0.13 0.35 5.1 0.05 8.63 0.4 661 11.4 0.49 6.61 11.4 0.49 6.61 11.4 1.42 2.05 6.01 11.4 2.05 6.01 11.4 2.05 6.01 11.4 2.05 6.01 11.4 2.05 6.01 11.4 2.05 6.01 11.4 2.05 6.01 11.4 2.05 6.01 0.71 8.13 6.2 1.87 8.1		LI	0.45	0.35	11.3		6.62	1.1							_			-			
OS2,L1 1.02 0.48 0.661 OS1,H1 3.29 0.62 0.48 6.61 A1-H1 2.65 0.71 6.2 1.87 8.13 A1-H1 2.65 0.71 5.2 1.87 8.13 A1-H1 2.65 0.71 5.2 1.87 8.13 A1-H1 2.65 0.71 5.2 1.87 8.13 A1-H1 2.61 1.64 6.2 1.14 6.2		LM	0.13	0.35	5.1		8.63	0.4							_						
OST.H1 3.29 0.052 A1-H1 2.65 0.71 E2 1.87 8.13 E2 0.71 6.2 E2 1.87 8.13 E2 0.71 6.2 E2 1.87 8.13 E2 0.71 6.2 E2 1.87 8.13 E2 1.87 8.13 E3 0.71 6.2 E3 1.16	OS2+L1	0S2, L1	1.02	0.48					11.4	0.49	6.61	3.3									
DCM: 1=C1*h (tc)+C2 C1: 2.52	DP4 DP7	051, H1 A1-H1	3.29	0.71					6.2	1.87	8.13	15.2							-		
				5							-	1		_							
														_							
														_		_					
																			-		
												-									
										_											
															Ĩ				-		
		DCM		1-1 + C.3				1					-	-							_
		C1:		an . Init																	

Z:\61090\Calcs\Hydrolog\\61090 Runoff Spreadsheet.xism Form SF-2 (Major)

Page 1

Sub-Basin OS1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
		Checked by:	DRG	
Jurisdiction	DCM	Soil T	уре	Α
Runoff Coefficient	Surface Type	Urban	nization	Urban

Basin Land Use Characteristics

a second and a second second second	Area			Runo	off Coeffici	ent		1000	%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
1/8 Acre or less	123,800	2.84	0.41	0.45	0.49	0.54	0.57	0.59	65%
Combined	123,800	2.84	0.41	0.45	0.49	0.54	0.57	0.59	65.0%

Basin Travel Time

Shallow Channel Ground Cover Paved areas/shallow paved swales

	Lmax,Overland	100 f	ť		Cv	20
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	580	9				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Initial Time	95	1	0.010		11.4	13.2 DCM Eq. 6-8
Shallow Channel	125	1	0.010	2.0	1.0	- DCM Eq. 6-9
Channelized	360	7	0.019	3.0	2.0	- C&G
				tc	13.2	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.96	3.71	4.33	4.95	5.57	6.23
Runoff (cfs)	3.5	4.7	6.0	7.6	9.0	10.4
Release Rates (cfs/ac)	-		-	-	-	
Allowed Release (cfs)	3.5	4.7	6.0	7.6	9.0	10.4
DCM: I =	= C1 * In (ic) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10.111	11.375	12,735

Notes

Sub-Basin OS2 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
	The second s	Checked by:	DRG	
Jurisdiction	DCM	Soil T	уре	OS2
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics

	Area			Runo	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
1/8 Acre or less	24,712	0.57	0.45	0.49	0.54	0.59	0.62	0.65	65%
Combined	24,712	0.57	0.45	0.49	0.54	0.59	0.62	0.65	65.0%
	24712								

Basin Travel Time

Shallow Channel Ground Cover Short Pasture/Lawns

	Lmax, Overland	100 f	t		C,	7
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	190	3		-		100 A
Initial Time	100	1	0.010	0.00	11.0	11.1 DCM Eq. 6-8
Shallow Channel	90	2	0.020	1.0	1.5	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				tc	11.1	min.

Rainfall Intensity & Runoff

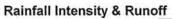
2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
3.18	3.98	4.64	5.31	5.97	6.68
0.8	1.1	1.4	1.8	2.1	2.5
-	-		-	-	-
0.8	1.1	1.4	1.8	2.1	2.5
C1 * In (to	:) + C2				
1,19	1.5	1.75	2	2.25	2.52
6.035	7.583	8.847	10.111	11.375	12,735
	3.18 0.8 - 0.8 C1 * In (to 1,19	3.18 3.98 0.8 1.1 - - 0.8 1.1 C1 * ln (tc) + C2 1.19 1.19 1.5	3.18 3.98 4.64 0.8 1.1 1.4 - - - 0.8 1.1 1.4 C1 * In (tc) + C2 1.19 1.5	3.18 3.98 4.64 5.31 0.8 1.1 1.4 1.8 - - - - 0.8 1.1 1.4 1.8 - - - - 0.8 1.1 1.4 1.8 C1 * In (tc) + C2 - - 1.19 1.5 1.75 2	3.18 3.98 4.64 5.31 5.97 0.8 1.1 1.4 1.8 2.1 - - - - - 0.8 1.1 1.4 1.8 2.1 - - - - - 0.8 1.1 1.4 1.8 2.1 C1 * In (tc) + C2 - - - 1.19 1.5 1.75 2 2.25

Notes

Sub-Basin EX A1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
		Checked by:	DRG	
Jurisdiction	DCM	Soil T	уре	А
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics


	Area		in a	Rund	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	103,361	2.37	0.02	0.08	0.15	0.25	0.3	0.35	0%
Paved	7,926	0.18	0.89	0.9	0.92	0.94	0.95	0.96	100%
Gravel	7,102	0.16	0.57	0.59	0.63	0.66	0.68	0.7	80%
Combined	118,389	2.72	0.11	0.17	0.23	0.32	0.37	0.41	11.5%
	118389								

Basin Travel Time

Shallow Channel Ground Cover Short Pasture/Lawns

-

onano	n ontainior oroa		ononer aote				
	Lmax, Overland	100	ft		Cv	7	
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	365	6	1.1.1.1.1	-	1.1.1	A	
Initial Time	100	4	0.035		11.2	12.0 DCM Eq. 6-8	
Shallow Channel	265	3	0.009	0.7	6.5	- DCM Eq. 6-9	
Channelized			0.000	0.0	0.0	- V-Ditch	
				tc	12.0	min.	

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
3.08	3.85	4.49	5.14	5.78	6.47
0.9	1.7	2.8	4.5	5.8	7.2
-	-		-	-	4
0.9	1.7	2.8	4.5	5.8	7.2
= C1 * In (to	:) + C2				
1.19	1.5	1.75	2	2.25	2.52
6.035	7.583	8.847	10.111	11,375	12.735
	3.08 0.9 - 0.9 = C1 * In (to 1,19	3.08 3.85 0.9 1.7 - - 0.9 1.7 = - 0.9 1.7 = C1 * ln (tc) + C2 1.19 1.5	3.08 3.85 4.49 0.9 1.7 2.8 - - - 0.9 1.7 2.8 - - - 0.9 1.7 2.8 - - - 0.9 1.7 2.8 - - - 0.9 1.7 2.8	3.08 3.85 4.49 5.14 0.9 1.7 2.8 4.5 - - - - 0.9 1.7 2.8 4.5 - - - - 0.9 1.7 2.8 4.5 = - - - 0.9 1.7 2.8 4.5 = - - - 0.9 1.7 2.8 4.5	3.08 3.85 4.49 5.14 5.78 0.9 1.7 2.8 4.5 5.8 - - - - - 0.9 1.7 2.8 4.5 5.8 - - - - - 0.9 1.7 2.8 4.5 5.8 - - - - - 0.9 1.7 2.8 4.5 5.8 = C1 * In (tc) + C2 1.19 1.5 1.75 2 2.25

Notes

Sub-Basin EX B1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
	And an a second se	Checked by:	DRG	
Jurisdiction	DCM	Soil T	ype	Α
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics

the second s	Area	Runoff Coefficient							
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Pasture/Meadow	49,443	1.14	0.02	0.08	0.15	0.25	0.3	0.35	0%
Paved	749	0.02	0.89	0.9	0.92	0.94	0.95	0.96	100%
Gravel	214	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%
Combined	50,406	1.16	0.04	0.09	0.16	0.26	0.31	0.36	1.8%
	50406				-				

Basin Travel Time

Shallow Channel Ground Cover Short Pasture/Lawns

	Lmax, Overland	100 f	t		Cv	7
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	245	9				1993 B. C. B. B.
Initial Time	100	3	0.032		12.4	11.4 DCM Eq. 6-8
Shallow Channel	145	6	0.041	1.4	1.7	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				tc	11.4	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	
Intensity (in/hr)	3.14	3.94	4.59	5.25	5.91	6.61	
Runoff (cfs)	0.1	0.4	0.9	1.6	2.1	2.8	
Release Rates (cfs/ac)	-	-	-	-	-	-	
Allowed Release (cfs)	0.1	0.4	0.9	1.6	2.1	2.8	
DCM: 1=	= C1 * In (to	c) + C2		1.1			
C1	1.19	1.5	1.75	2	2.25	2.52	
C2	6.035	7.583	8.847	10,111	11.375	12.735	

Includes Basins OS1 EX A1

Job No.:	61090	Date:	_	3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
		Checked by:	DRG	and the second
Jurisdiction	DCM	Soil T	уре	A
Runoff Coefficient	Surface Type	Urban	nization	Urban

Basin Land Use Characteristics

	Area	Runoff Coefficient							
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
1/8 Acre or less	123,800	2.84	0.41	0.45	0.49	0.54	0.57	0.59	65%
Pasture/Meadow	103,361	2.37	0.02	0.08	0.15	0.25	0.3	0.35	0%
Paved	7,926	0.18	0.89	0.9	0.92	0.94	0.95	0.96	100%
Gravel	7,102	0.16	0.57	0.59	0.63	0.66	0.68	0.7	80%
Combined	242,189	5.56	0.26	0.31	0.36	0.43	0.47	0.50	38.8%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ∆Z ₀ (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach	OS1		580	9					13.2
Channelized-1 Channelized-2 Channelized-3	V-Ditch	1	296	12	10	1 1	2	5.5	0.9
Total			876	21					
	1	I = Man-made,	Smooth, Stra	ight				t _c (min)	14.1

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing	Basins/Areas
	Q _{Minor}
	Q _{Major}

(cfs) - 5-year Storm (cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.88	3.61	4.21	4.82	5.42	6.06
Site Runoff (cfs)	4.23	6.24	8.51	11.59	14.17	16.95
OffSite Runoff (cfs)	-	0.00	-	-	-	0.00
Release Rates (cfs/ac) Allowed Release (cfs)		6.2	1		-	- 17.0
DCM: I	= C1 * In (to	c) + C2	1 Pro-			
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7,583	8.847	10 111	11 375	12.735

Notes

Includes Basins OS2 EX B1

Job No.:	61090	Date:	3/22/18 10:03	
Project:	Freedom Springs	Calcs by:	TJW	
		Checked by:	DRG	
Jurisdiction	DCM	Soil T	ype	A
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics

	Area	Runoff Coefficient							
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
1/8 Acre or less	24,712	0.57	0.41	0.45	0.49	0.54	0.57	0.59	65%
Pasture/Meadow	49,443	1.14	0.02	0.08	0.15	0.25	0.3	0.35	0%
Paved	749	0.02	0.89	0.9	0.92	0.94	0.95	0.96	100%
Gravel	214	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%
Combined	75,118	1.72	0.16	0.21	0.27	0.35	0.40	0.44	22.6%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ∆Z ₀ (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach Channelized-1 Channelized-2 Channelized-3	EX B1		245	9	*	1 1			11.4
Total			245	9				t,	11.4

(min) 11.4

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.14	3.94	4.59	5.25	5.91	6.61
Site Runoff (cfs)	0.86	1.44	2.15	3.20	4.04	4.97
OffSite Runoff (cfs)	-	0.00	÷	-	-	0.00
Release Rates (cfs/ac) Allowed Release (cfs)		1.4	-	-	-	5.0
DCM: 1	= C1 * In (to	:) + C2				
C1	1,19	1,5	1,75	2	2.25	2.52
C2	6,035	7 583	8.847	10.111	11.375	12.735

Notes

Sub-Basin A1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
	Checked by:	DRG		
Jurisdiction	DCM	Soil T	ype	А
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics

	Area		Runoff Coefficient						%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Driveways & Walks	25,793	0.59	0.89	0.9	0.92	0.94	0.95	0.96	100%
Lawns	1,662	0.04	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	27,455	0.63	0.84	0.85	0.87	0.90	0.91	0.92	93.9%

Basin Travel Time

Shallow Channel Ground Cover Paved areas/shallow paved swales

	Lmax, Overland	100 f	t		Cv	20
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	295	4		-		
Initial Time	100	2	0.015		3.9	11.6 DCM Eq. 6-8
Shallow Channel	35	1	0.014	2.4	0.2	- DCM Eq. 6-9
Channelized	160	2	0.011	2.0	1.3	- C&G
				t _c	5.5	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.00	5.02	5.86	6.69	7.53	8.43
Runoff (cfs)	2.1	2.7	3.2	3.8	4.3	4.9
Release Rates (cfs/ac)	-	-	-	-	-	
Allowed Release (cfs)	2.1	2.7	3.2	3.8	4.3	4.9
DCM: T	= C1 * In (to	c) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10.111	11.375	12,735

Sub-Basin B1 Runoff Calculations

Job No.:	61090	Date:	_	3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
101 Sec. 10		Checked by:	DRG	
Jurisdiction	DCM	Soil Ty	ype	А
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics

	Area		Runoff Coefficient						%	
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
Driveways & Walks	6,096	0.14	0.89	0.9	0.92	0.94	0.95	0.96	100%	
Lawns	1,386	0.03	0.02	0.08	0.15	0.25	0.3	0.35	0%	
Combined	7,482	0.17	0.73	0.75	0.78	0.81	0.83	0.85	81.5%	

Basin Travel Time

Shallow Channel Ground Cover Paved areas/shallow paved swales

	Lmax, Overland	100 f	t		Cv	20
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	116	9	1.1.1	÷.		
Initial Time	100	8	0.080		3.2	10.6 DCM Eq. 6-8
Shallow Channel	16	1	0.063	5.0	0.1	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- C&G
				tc	5.0	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	0.5	0.7	0.8	1.0	1.1	1.3
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.5	0.7	0.8	1.0	1.1	1.3
DCM: 1	= C1 * In (to	:) + C2	1			
C1	1,19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8,847	10.111	11.375	12.735

Sub-Basin C1 Runoff Calculations

Job No.:	61090	Date:		3/22/18	10:03
Project:	Freedom Springs	Calcs by:	TJW		
		Checked by:	DRG	1	
Jurisdiction	DCM	Soil T	ype	А	
Runoff Coefficient	Surface Type	Urban	ization	Urban	

Basin Land Use Characteristics

The second second	Area		Runoff Coefficient						%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Driveways & Walks	3,650	0.08	0.89	0.9	0.92	0.94	0.95	0.96	100%
Lawns	1,169	0.03	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	4,819	0.11	0.68	0.70	0.73	0.77	0.79	0.81	75.7%

Basin Travel Time

Shallow Channel Ground Cover Paved areas/shallow paved swales

	Lmax, Overland	100 f	ft		C,	20
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	160	8	1.1	-1	-	
Initial Time	32	1	0.022		3.1	10.9 DCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	- DCM Eq. 6-9
Channelized	128	7	0.057	2.5	0.9	- C&G
				t _c	5.0	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	0.3	0.4	0.5	0.6	0.7	0.8
Release Rates (cfs/ac)		-	-	-	-	-
Allowed Release (cfs)	0.3	0.4	0.5	0.6	0.7	0.8
DCM: 1 =	= G1 * In (to	:) + C2				
C1	1.19	1.5	1,75	2	2,25	2.52
C2	6.035	7.583	8.847	10.111	11.375	12.735

Sub-Basin D1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
		Checked by:	DRG	
Jurisdiction	DCM	Soil T	уре	А
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics

12 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	Area	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
Roofs	15,888	0.36	0.71	0.73	0.75	0.78	0.8	0.81	90%	
Combined	15,888	0.36	0.71	0.73	0.75	0.78	0.80	0.81	90.0%	

Basin Travel Time

Shallow Channel Ground Cover Paved areas/shallow paved swales

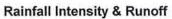
	Lmax, Overland	100 f	t		C,	20
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{All} (min)
Total	205	2				
Initial Time	30	0	0.010		3.7	11.1 DCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	- DCM Eq. 6-9
Channelized	175	2	0.010	5.0	0.6	- Pipe
				tc	5.0	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	1.1	1.4	1.6	2.0	2.3	2.6
Release Rates (cfs/ac)	-	1		-	-	-
Allowed Release (cfs)	1.1	1.4	1.6	2.0	2.3	2.6
DCM: 1	= C1 * In (to	c) + C2				1.1
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10,111	11:375	12.735

Sub-Basin E1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
	the second secon	Checked by:	DRG	
Jurisdiction	DCM	Soil Typ	be	A
Runoff Coefficient	Surface Type	Urbaniz	ation	Urban


Basin Land Use Characteristics

	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Driveways & Walks	1,047	0.02	0.89	0.9	0.92	0.94	0.95	0.96	100%
Lawns	6,356	0.15	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	7,403	0.17	0.14	0.20	0.26	0.35	0.39	0.44	14.1%

Basin Travel Time

Shallow Channel Ground Cover Short Pasture/Lawns

	Lmax, Overland	100 f	ť		C,	7
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	87	3				· · · · · · · · · · · · · · · · · · ·
Initial Time	87	3	0.029		10.7	10.5 DCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- C&G
				to	10.5	min.

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	
Intensity (in/hr)	3.24	4.06	4.73	5.41	6.09	6.81	
Runoff (cfs)	0.1	0.1	0.1 0.2 0.3 0.4		0.4	0.5	
Release Rates (cfs/ac)	-	-			-	-	
Allowed Release (cfs)	0.1	0.1	0.2	0.3	0.4	0.5	
DCM: 1=	= C1 * In (to	:) + C2			1.00		
C1	1,19	1.5	1,75	2	2.25	2.52	
C2	6.035	7.583	8,847	10.111	11.375	12.735	

Sub-Basin F1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	the first of a first
-		Checked by:	DRG	
Jurisdiction	DCM	Soil T	уре	A
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics

	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Driveways & Walks	3,305	0.08	0.89	0.9	0.92	0.94	0.95	0.96	100%
Lawns	4,102	0.09	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	7,407	0.17	0.41	0.45	0.49	0.56	0.59	0.62	44.6%

Basin Travel Time

Shallow Channel Ground Cover Short Pasture/Lawns

	Lmax, Overland	100 f	t		C,	7
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	87	2	-			1.
Initial Time	87	2	0.017		9.2	10.5 DCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- C&G
				tc	9.2	min.

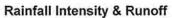
16

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.39	4.25	4.96	5.67	6.38	7.14
Runoff (cfs)	0.2	0.3	0.4	0.5	0.6	0.8
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.2	0.3	0.4	0.5	0.6	0.8
DCM: 1=	= C1 * In (to	c) + C2		_		1.
C1	1.19	1,5	1,75	2	2.25	2,52
C2	6,035	7.583	8.847	10.111	11.375	12.735

Sub-Basin G1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	Server and the server of the
		Checked by:	DRG	
Jurisdiction	DCM	Soil T	уре	A
Runoff Coefficient	Surface Type	Urban	ization	Urban


Basin Land Use Characteristics

Surface	Area	Area		Runoff Coefficient					
	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Lawns	25,376	0.58	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	25,376	0.58	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

Shallow Channel Ground Cover Short Pasture/Lawns

	Lmax, Overland	100 f	t		Cv	7
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	260	14				
Initial Time	100	4	0.040		11.7	11.4 DCM Eq. 6-8
Shallow Channel	160	10	0.063	1.8	1.5	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				to	11.4	min.

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.13	3.93	4.58	5.24	5.89	6.59
Runoff (cfs)	0.0	0.2	0.4	0.8	1.0	1.3
Release Rates (cfs/ac)	-	/-	1.00	-	-	
Allowed Release (cfs)	0.0	0.2	0.4	0.8	1.0	1.3
DCM: 1	= C1 * In (to	c) + C2	-			
C1	1 19	1.5	1,75	2	2.25	2.52
C2	6.035	7,583	8 847	10 111	11.375	12,735

Sub-Basin H1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
		Checked by:	DRG	
Jurisdiction	DCM	Soil T	ype	Α
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics

A COLOR MANY	Area		Runoff Coefficient						%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Driveways & Walks	15,473	0.36	0.89	0.9	0.92	0.94	0.95	0.96	100%
Lawns	4,028	0.09	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	19,501	0.45	0.71	0.73	0.76	0.80	0.82	0.83	79.3%

Basin Travel Time

Shallow Channel Ground Cover Paved areas/shallow paved swales

	Lmax, Overland	100 f	t		Cv	20	
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)	
Total	310	12			-		
Initial Time	65	1	0.015		4.7	11.7 DCM Eq. 6-8	
Shallow Channel			0.000	0.0	0.0	- DCM Eq. 6-9	
Channelized	245	11	0.045	3.0	1.4	- C&G	
				tc	6.0	min.	

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.90	4.89	5.71	6.52	7.34	8.21
Runoff (cfs)	1.2	1.6	1.9	2.3	2.7	3.1
Release Rates (cfs/ac)		-	-	-	-	-
Allowed Release (cfs)	1.2	1.6	1.9	2.3	2.7	3.1
DCM: 1=	= C1 * In (to	c) + C2				
C1	1.19	1.5	1.75	2	2.25	2:52
C2	6.035	7.583	8.847	10.111	11.375	12,735

Sub-Basin J1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
	2 1 A	Checked by:	DRG	
Jurisdiction	DCM	Soil T	уре	A
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics

Surface	Area		Runoff Coefficient						%	
	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
Lawns	20,091	0.46	0.02	0.08	0.15	0.25	0.3	0.35	0%	
Combined	20,091	0.46	0.02	0.08	0.15	0.25	0.30	0.35	0.0%	

Basin Travel Time

Shallow Channel Ground Cover Short Pasture/Lawns

	Lmax, Overland	100 1	t		C,	7
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	125	6		-	-	-
Initial Time	100	4	0.040		11.7	10.7 DCM Eq. 6-8
Shallow Channel	25	2	0.080	2.0	0.2	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				t _c	10.7	min.

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.22	4.03	4.70	5.37	6.04	6.76
Runoff (cfs)	0.0	0.1	0.3	0.6	0.8	1.1
Release Rates (cfs/ac)	-	-	-		-	-
Allowed Release (cfs)	0.0	0.1	0.3	0.6	0.8	1.1
DCM: =	= C1 * In (to	c) + C2				
C1	1.19	1.5	1.75	2	2.25	2,52
C2	6.035	7.583	8.847	10.111	11.375	12.735

Sub-Basin K1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
		Checked by:	DRG	
Jurisdiction	DCM	Soil T	уре	Α
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics

and the second second second	Area	Area		Runoff Coefficient					
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Lawns	6,322	0.15	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	6,322	0.15	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

Shallow Channel Ground Cover Paved areas/shallow paved swales

	Lmax, Overland	100 f	t		Cv	20
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	33	4	- C			
Initial Time	33	4	0.106	-	4.9	10.2 DCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- C&G
				tc	5.0	min.

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.12	5.17	6.03	6.89	7.75	8.68
Runoff (cfs)	0.0	0.1	0.1	0.3	0.3	0.4
Release Rates (cfs/ac)	-	-				-
Allowed Release (cfs)	0.0	0.1	0.1	0.3	0.3	0.4
DCM: 1	= C1 * In (to	:) + C2	-			100
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10,111	11.375	12.735

Sub-Basin L1 Runoff Calculations

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
100 M 100		Checked by:	DRG	
Jurisdiction	DCM	Soil T	уре	А
Runoff Coefficient	Surface Type	Urbar	nization	Urban

Basin Land Use Characteristics

Surface	Area	Area		Runoff Coefficient					
	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Lawns	19,790	0.45	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	19,790	0.45	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

Shallow Channel Ground Cover Short Pasture/Lawns

	Lmax, Overland	100 f	t		Cv	7
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	240	15		÷.		
Initial Time	100	6	0.055		10.5	11.3 DCM Eq. 6-8
Shallow Channel	140	10	0.068	1.8	1.3	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				tc	11.3	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.15	3.94	4.60	5.26	5.91	6.62
Runoff (cfs)	0.0	0.1	0.3	0.6	0.8	1.1
Release Rates (cfs/ac)	-	-		-	-	
Allowed Release (cfs)	0.0	0.1	0.3	0.6	0.8	1.1
DCM: 1 :	= C1 * In (to	:) + C2				100
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10,111	11.375	12,735

Sub-Basin M1 Runoff Calculations

Job No.:	61090	Date:		3/22/18	3 10:03
Project:	Freedom Springs	Calcs by:	TJW		
		Checked by:	DRG	DRG	
Jurisdiction	DCM	Soil T	уре	Α	
Runoff Coefficient	Surface Type	Urban	ization	Urban	

Basin Land Use Characteristics

E A TOTAL STREET	Area	Area		Runoff Coefficient					
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Lawns	5,771	0.13	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	5,771	0.13	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

Shallow Channel Ground Cover Short Pasture/Lawns

	L _{max,Overland}	100 f	ť		Cv	7
	L (ft)	ΔZ_0 (ft)	So (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	32	3		-		1997 - C. B.
Initial Time	32	3	0.088		5.1	10.2 DCM Eq. 6-8
Shallow Channel			0.000	0.0	0.0	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				tc	5.1	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	4.10	5.14	6.00	6.86	7.71	8.63
Runoff (cfs)	0.0	0.1	0.1	0.2	0.3	0.4
Release Rates (cfs/ac)	-	-		-	-	
Allowed Release (cfs)	0.0	0.1	0.1	0.2	0.3	0.4
DCM: 1=	= C1 = In (to	c) + C2				-
C1	119	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10.111	11.375	12.735

Includes Basins OS2 L1

Job No.:	61090	Date:		3/22/18 10:0	3
Project:	Freedom Springs	Calcs by:	TJW		
		Checked by:	DRG		
Jurisdiction	DCM	Soil T	ype	A	
Runoff Coefficient	Surface Type	Urban	ization	Urban	

Basin Land Use Characteristics

	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
1/8 Acre or less	24,712	0.57	0.41	0.45	0.49	0.54	0.57	0.59	65%
Lawns	19,790	0.45	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	44,502	1.02	0.24	0.29	0.34	0.41	0.45	0.48	36.1%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ∆Z ₀ (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach	OS2		190	3				14	11.1
Channelized-1 Channelized-2 Channelized-3	V-Ditch	2	76	12	2	1 1	2	4.0	0.3
Total			266	15					
	2	2 = Natural, Wi	nding, minima	l vegetation/sl	hallow grass			t _c	

3.---

(min) 11.4

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Bas	sins/Areas
	Q _{Minor}
	Q _{Major}

(cfs) - 5-year Storm (cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.14	3.94	4.59	5.25	5.90	6.61
Site Runoff (cfs)	0.76	1.15	1.59	2.20	2.71	3.26
OffSite Runoff (cfs)	-	0.00	-	-	-	0.00
Release Rates (cfs/ac) Allowed Release (cfs)	-	1.1	-		1	3.3
DCM: 1=	= C1 = In (to	;) + C2				
C1	1 19	1.5	1.75	2	2.25	2.52
C2	6.035	7.583	8.847	10.111	11.375	12 735

Notes

Includes Basins OS1 H1

Job No.:	61090	Date:		3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
		Checked by:	DRG	
Jurisdiction	DCM	Soil T	уре	A
Runoff Coefficient	Surface Type	Urbar	nization	Urban

Basin Land Use Characteristics

N. 27	Area		Runoff Coefficient						%	
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
1/8 Acre or less	123,800	2.84	0.41	0.45	0.49	0.54	0.57	0.59	65%	
Driveways & Walks	15,473	0.36	0.89	0.9	0.92	0.94	0.95	0.96	100%	
Lawns	4,028	0.09	0.02	0.08	0.15	0.25	0.3	0.35	0%	
Combined	143,301	3.29	0.45	0.49	0.53	0.58	0.60	0.62	67.0%	

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ∆Z ₀ (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach	OS1		580	9	-				13.2
Channelized-1 Channelized-2 Channelized-3	C&G	Asphalt	286	12	10	1 1	0	4.0	1.2
Total			866	21				tc	14.4

(min) 14.4

Contributing Offsite Flows	(Added to Runoff and Allowed Release, below.)	

Contributing	Basins/Areas

Q _{Minor}
~minor
QMaior

(cfs) - 5-year Storm (cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.86	3.58	4.18	4.77	5.37	6.01
Site Runoff (cfs)	4.24	5.75	7.24	9.03	10.66	12.32
OffSite Runoff (cfs)	-	0.00		-	-	0.00
Release Rates (cfs/ac)	-	-	,	-		1-12
Allowed Release (cfs)	-	5.7	÷	-	-	12.3
DCM: 1	= C1 * In (to	:) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52
C2	6 035	7.583	8.847	10 111	11.375	12.735

Notes

Includes Basins A1 B1 C1 D1 E1 F1 G1 H1

Job No.:	61090	Date:	-	3/22/18 10:03
Project:	Freedom Springs	Calcs by:	TJW	
		Checked by:	DRG	
Jurisdiction	DCM	Soil T	ype	Α
Runoff Coefficient	Surface Type	Urban	ization	Urban

Basin Land Use Characteristics

	Area		Runoff Coefficient						%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Roofs	15,888	0.36	0.71	0.73	0.75	0.78	0.8	0.81	90%
Driveways & Walks	55,364	1.27	0.89	0.9	0.92	0.94	0.95	0.96	100%
Lawns	44,079	1.01	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	115,331	2.65	0.53	0.56	0.60	0.65	0.68	0.71	60.4%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ∆Z ₀ (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach	A1		295	4				1 . C.	5.5
Channelized-1	Pipe	HDPE	119	5	5	1	0	5.9	0.3
Channelized-2 Channelized-3	Pipe	HDPE	116	4	5	1	0	5.4	0.4
Total			530	12				t,	62

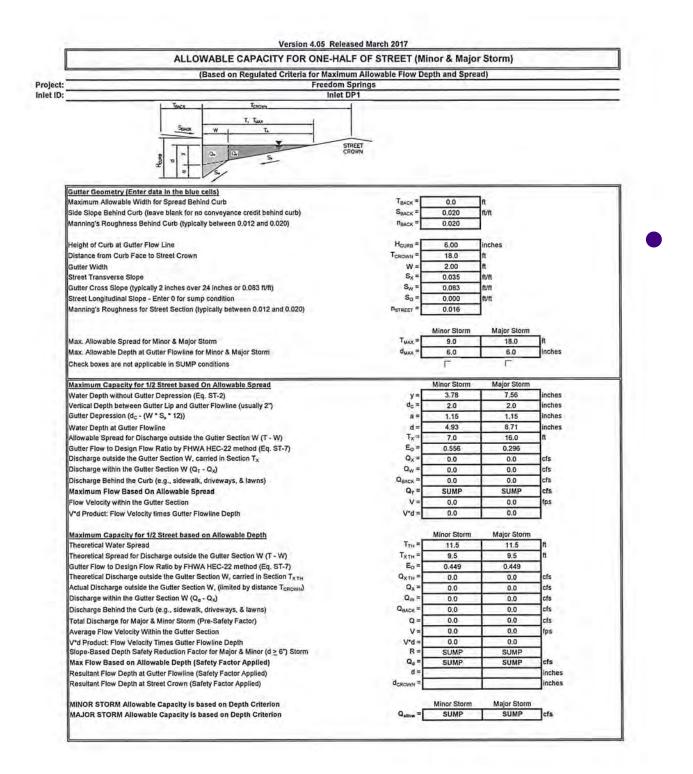
(min) 6.2

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

•	
Contributing	Basins/Areas

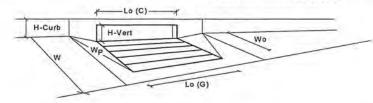
Q _{Minor}
Q _{Major}

(cfs) - 5-year Storm (cfs) - 100-year Storm

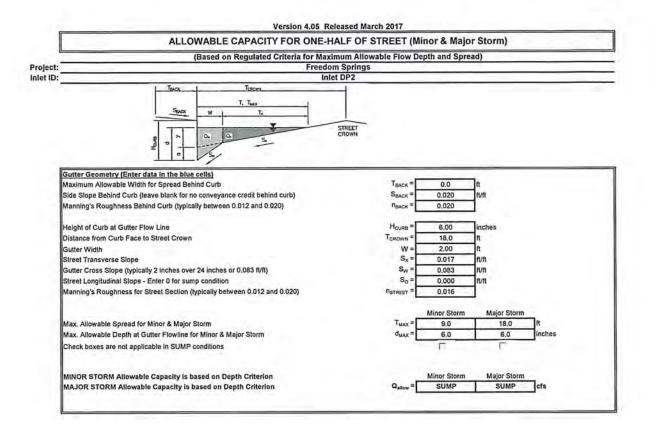

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.86	4.84	5.65	6.46	7.26	8.13
Site Runoff (cfs)	5.45	7.22	9.01	11.19	13.10	15.20
OffSite Runoff (cfs)		0.00	1	-	-	0.00
Release Rates (cfs/ac) Allowed Release (cfs)		7.2		-	1	15.2
DCM: 1	= C1 * In (to) + C2		-	1.1.1	
C1	1.19	1.5	1.75	2	2.25	2,52
C2	6.035	7,583	8.847	10.111	11.375	12.735

Notes

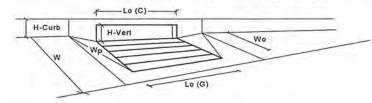

10 Hydraulic Calculations

Inlet Calculations Storm Drain Pipe Calculations Detention Pond Calculations

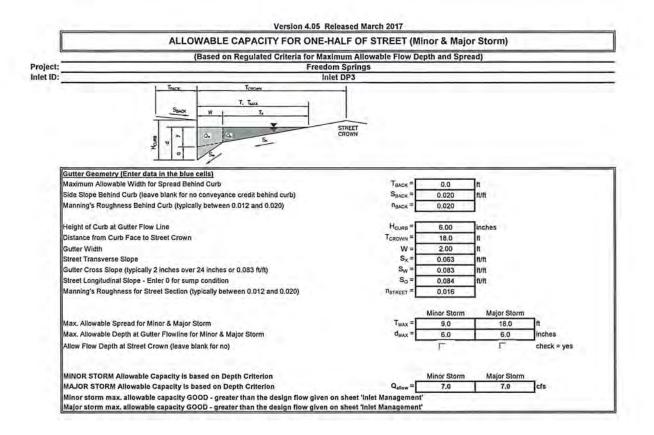


INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

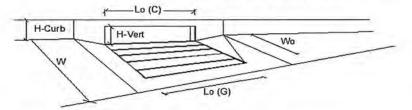


Design Information (Input)	Denver No. 16 Combination	1	MINOR	MAJOR	
Type of Inlet	Denver No. 16 Combination	Type =	Denver No. 1	6 Combination	
Local Depression (additional to o	continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or 6	Curb Opening)	No =	2	- <u>e</u>	
Water Depth at Flowline (outside	e of local depression)	Ponding Depth =	4.9	6.0	inches
Grate Information			MINOR	MAJOR	C Override Depth
Length of a Unit Grate		L _a (G) =	3.00	3.00	feet
Width of a Unit Grate		W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate	(typical values 0.15-0.90)	A _{rato} =	0.31	0.51	
Clogging Factor for a Single Gra	ate (typical value 0.50 - 0.70)	C ₁ (G) =	0.50	0.50	
Grate Weir Coefficient (typical v	alue 2.15 - 3.60)	C,, (G) =	3.60	3.50	
Grate Orifice Coefficient (typical	value 0.60 - 0.80)	C _a (G) =	0.60	0 60	
Curb Opening Information		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MINOR	MAJOR	
Length of a Unit Curb Opening		L _a (C) =	3.00	3.00	feet
Height of Vertical Curb Opening	in Inches	H _{vert} =	6.50	650	inches
Height of Curb Orifice Throat in	Inches	H _{pypat} =	5.25	5.25	inches
Angle of Throat (see USDCM Fi	gure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan	(typically the gutter width of 2 feet)	W _p =	1.00	1.80	feet
Clogging Factor for a Single Cu	rb Opening (typical value 0.10)	$C_t(C) =$	0.10	0.10	
Curb Opening Weir Coefficient	(typical value 2.3-3.7)	C,, (C) =	3.70	3.70	
Curb Opening Orifice Coefficien	nt (typical value 0.60 - 0.70)	C _o (C) =	0,66	0.66	
Low Head Performance Redu	ction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth		d _{Grate} =	0.434	0,523	n
Depth for Curb Opening Weir E	quation	d _{Curb} =	0.25	0.33	ft
Combination Inlet Performance	Reduction Factor for Long Inlets	RFcombination =	0.58	0.71	
Curb Opening Performance Rec	duction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduc	ction Factor for Long Inlets	RF _{Grate} =	0.58	0.71	1
A second second			MINOR	MAJOR	
Total Inlet Interception C	Capacity (assumes clogged condition)	Q _a =	3.6	6.2	cfs
Inlet Capacity IS GOOD for Mi	inor and Major Storms(>Q PEAK)	Q PEAK REQUIRED	2.7	4.9	cfs

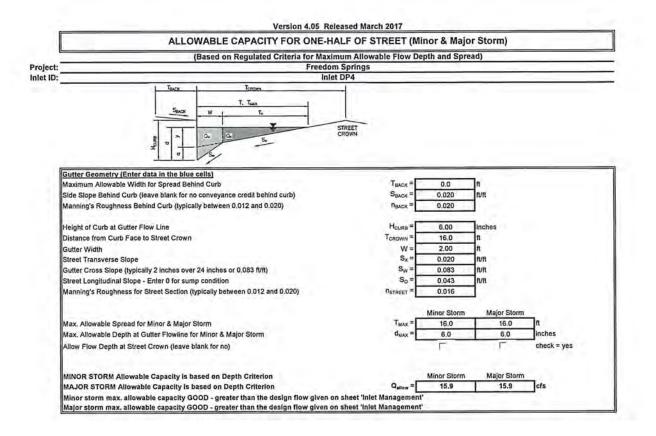


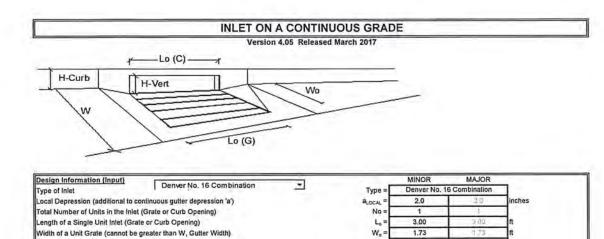
INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017



Design Information (Input)	Denver No. 16 Combination	0	MINOR	MAJOR	201
Type of Inlet	Denver No. 16 Combination	Type =	Denver No. 1	6 Combination	
Local Depression (additional to c	ontinuous gutter depression 'a' from above)	alocal =	2.00	2.00	inches
Number of Unit Inlets (Grate or C	urb Opening)	No =	13	1 = (t) =	
Water Depth at Flowline (outside	of local depression)	Ponding Depth =	3.4	5.3	inches
Grate Information			MINOR	MAJOR	C Override Depths
Length of a Unit Grate		L _a (G) =	3.00	3.00	feet
Width of a Unit Grate		W _o =	1,73	175.	feet
Area Opening Ratio for a Grate (typical values 0,15-0.90)	A _{vato} =	0.31	0.31	
Clogging Factor for a Single Gra	e (typical value 0.50 - 0.70)	C, (G) =	0.50	0.50	
Grate Weir Coefficient (typical va	lue 2.15 - 3.60)	C, (G) =	3,60	3.67	
Grate Orifice Coefficient (typical	value 0.60 - 0.80)	C _o (G) =	0.60	0,83	
Curb Opening Information		100 C 100 C	MINOR	MAJOR	
Length of a Unit Curb Opening		L _a (C) =	3.00	3.63	feet
Height of Vertical Curb Opening	in Inches	H _{vert} =	6.50	6.62	inches
Height of Curb Orifice Throat in I	nches	H _{pynat} =	5,25	5,25	inches
Angle of Throat (see USDCM Fig	ure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (ypically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curl	D Opening (typical value 0.10)	Cr (C) =	0.10	0.10	
Curb Opening Weir Coefficient (ypical value 2.3-3.7)	C. (C) =	3.70	370	
Curb Opening Orifice Coefficient	(typical value 0.60 - 0.70)	C _c (C) =	0.66	0.65	
Low Head Performance Reduc	tion (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth		d _{Grate} =	0,308	0.461	ft
Depth for Curb Opening Weir Eq	uation	d _{Curb} =	0.12	0.27	ft
Combination Inlet Performance F	Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.82	
Curb Opening Performance Red	uction Factor for Long Inlets	RFcurp =	1.00	1.00	1
Grated Inlet Performance Reduc	tion Factor for Long Intels	RF _{Grate} =	0.53	0.82	
			MINOR	MAJOR	
Total Inlet Interception C	apacity (assumes clogged condition)	Q _a =	0,9	2.9	cfs
Inlet Capacity IS GOOD for Mir	or and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.7	1.3	cfs




INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)				MINOR	MAJOR	
Type of Inlet	Denver No. 16 Combination	-	Type =	Denver No. 16	6 Combination	1.00
Local Depression (additional to co	ntinuous gutter depression 'a')		BLOCAL =	2.0	20	inches
Total Number of Units in the Inlet	Grate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate	e or Curb Opening)		Lo =	3.00	3 00	n
Width of a Unit Grate (cannot be greater than W, Gutter Width)			W _o =	1.73	1.73	n
Clogging Factor for a Single Unit	Grate (typical min. value = 0.5)		CrG =	0.50	0.50	
Clogging Factor for a Single Unit	Curb Opening (typical min. value = 0.1)		CrC =	0.10	0.10	4.1118
Street Hydraulics: OK - Q < Allo	wable Street Capacity			MINOR	MAJOR	
Total Inlet Interception Capacity			Q =	0.3	0.5	cfs
Total Inlet Carry-Over Flow (flow	v bypassing inlet)		Q. =	0.1	0.3	cfs
Capture Percentage = Q ₂ /Q ₀ =			C% =	69	66	%

CrG :

CrC =

Q=

Q., :

C% :

0,50

0.10

MINOR

2.3

3.4

40

0,50

0.10

MAJOR

3.1

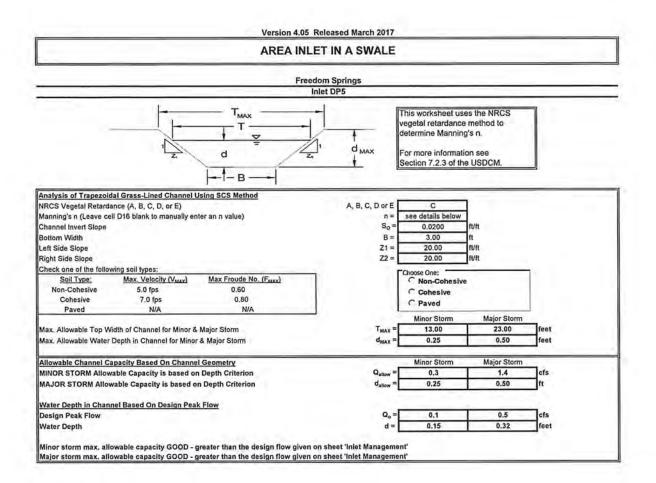
9.2

25

cfs

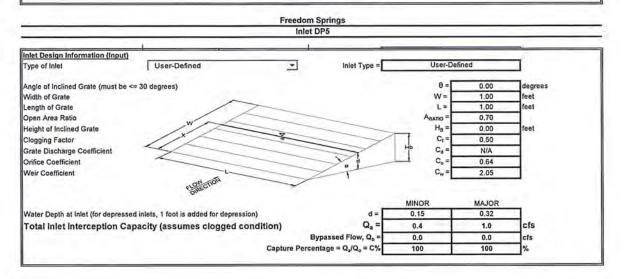
cfs

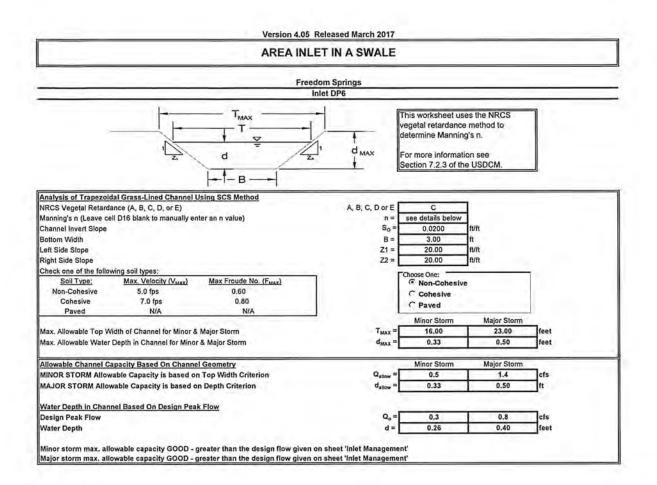
%


Clogging Factor for a Single Unit Grate (typical min. value = 0.5)

Total Inlet Carry-Over Flow (flow bypassing inlet)

Total Inlet Interception Capacity


Capture Percentage = Q₂/Q₀ =


Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Street Hydraulics: OK - Q < Allowable Street Capacity

Version 4.05 Released March 2017

AREA INLET IN A SWALE

Version 4.05 Released March 2017

AREA INLET IN A SWALE

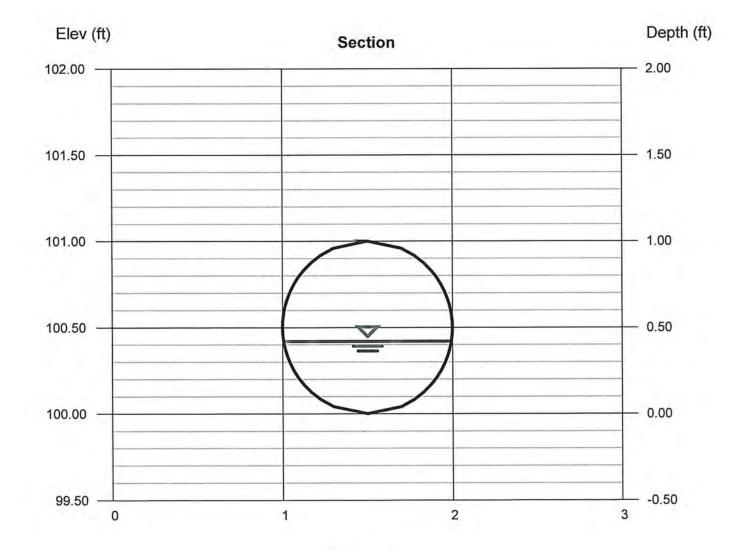


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Mar 7 2018

Pipe from DP1 inlet to MH1

Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.80
		Q (cfs)	= 4.900
		Area (sqft)	= 0.67
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.27
Slope (%)	= 2.00	Wetted Perim (ft)	= 2.22
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.92
		Top Width (ft)	= 0.80
Calculations		EGL (ft)	= 1.62
Compute by:	Known Q	2.1.1.1.1.1.1.1.1.1.1	
Known Q (cfs)	= 4.90		

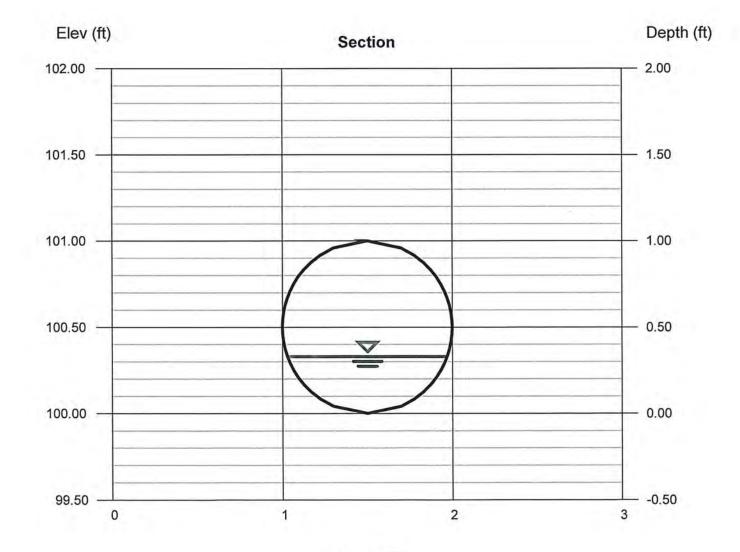

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Mar 7 2018

Pipe from DP2 inlet to MH1

Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.42
		Q (cfs)	= 1.300
		Area (sqft)	= 0.32
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.12
Slope (%)	= 1.00	Wetted Perim (ft)	= 1.41
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.48
		Top Width (ft)	= 0.99
Calculations		EGL (ft)	= 0.68
Compute by:	Known Q		
Known Q (cfs)	= 1.30		

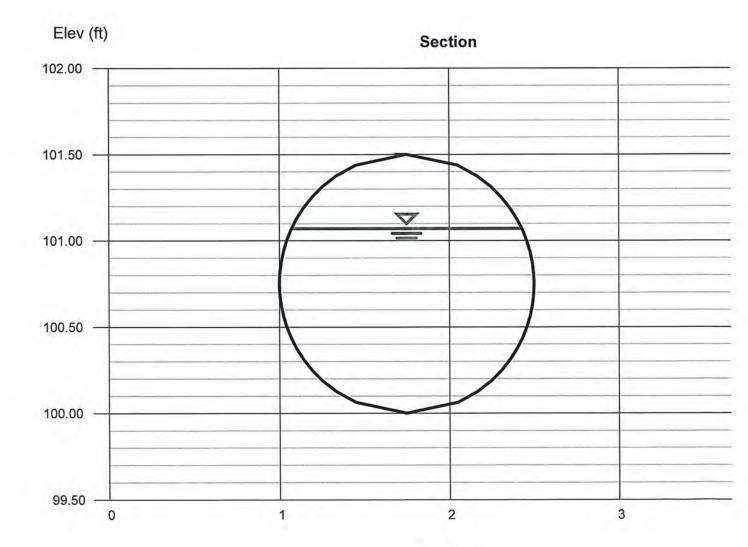

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Mar 7 2018

Pipe from DP3 inlet to MH1

Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.33
		Q (cfs)	= 0.800
		Area (sqft)	= 0.23
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.53
Slope (%)	= 1.00	Wetted Perim (ft)	= 1.22
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.38
		Top Width (ft)	= 0.94
Calculations		EGL (ft)	= 0.52
Compute by:	Known Q		
Known Q (cfs)	= 0.80		

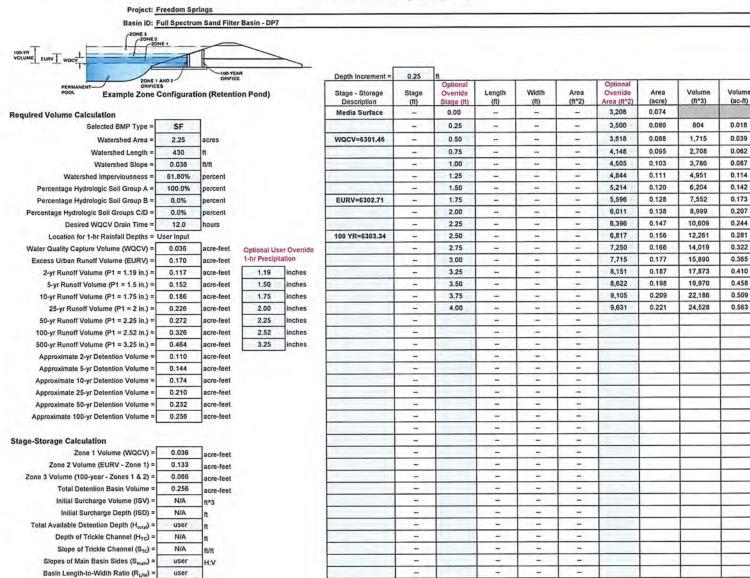

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

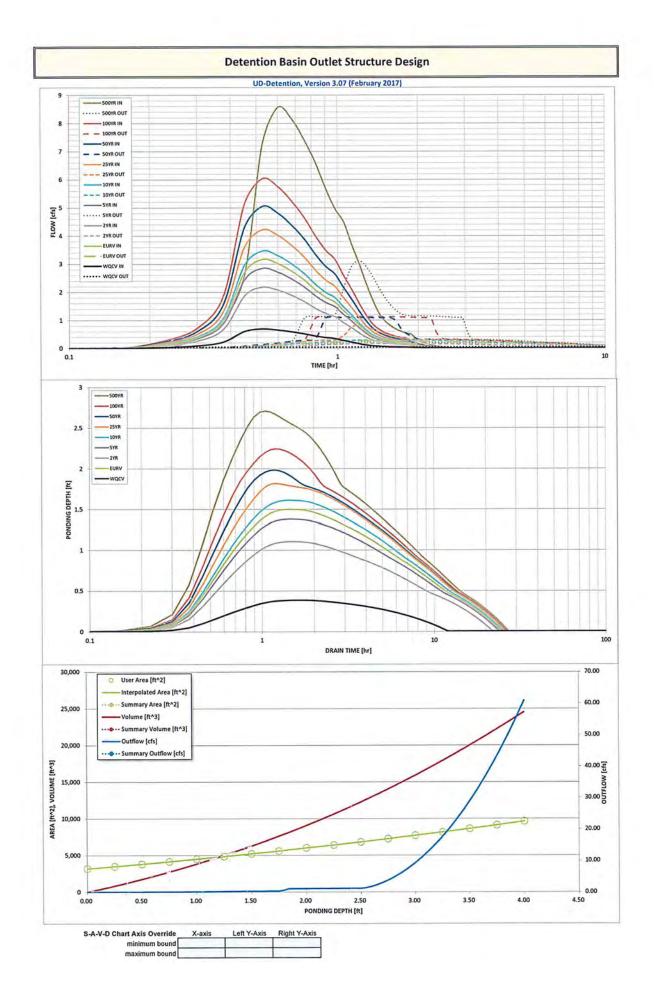
Wednesday, Mar 7 2018

Pipe from MH1 to Pond

Circular		Highlighted	
Diameter (ft)	= 1.50	Depth (ft)	= 1.07
· · ·		Q (cfs)	= 12.70
		Area (sqft)	= 1.35
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 9.40
Slope (%)	= 2.00	Wetted Perim (ft)	= 3.02
N-Value	= 0.013	Crit Depth, Yc (ft)	= 1.34
		Top Width (ft)	= 1.35
Calculations		EGL (ft)	= 2.44
Compute by:	Known Q		
Known Q (cfs)	= 12.70		

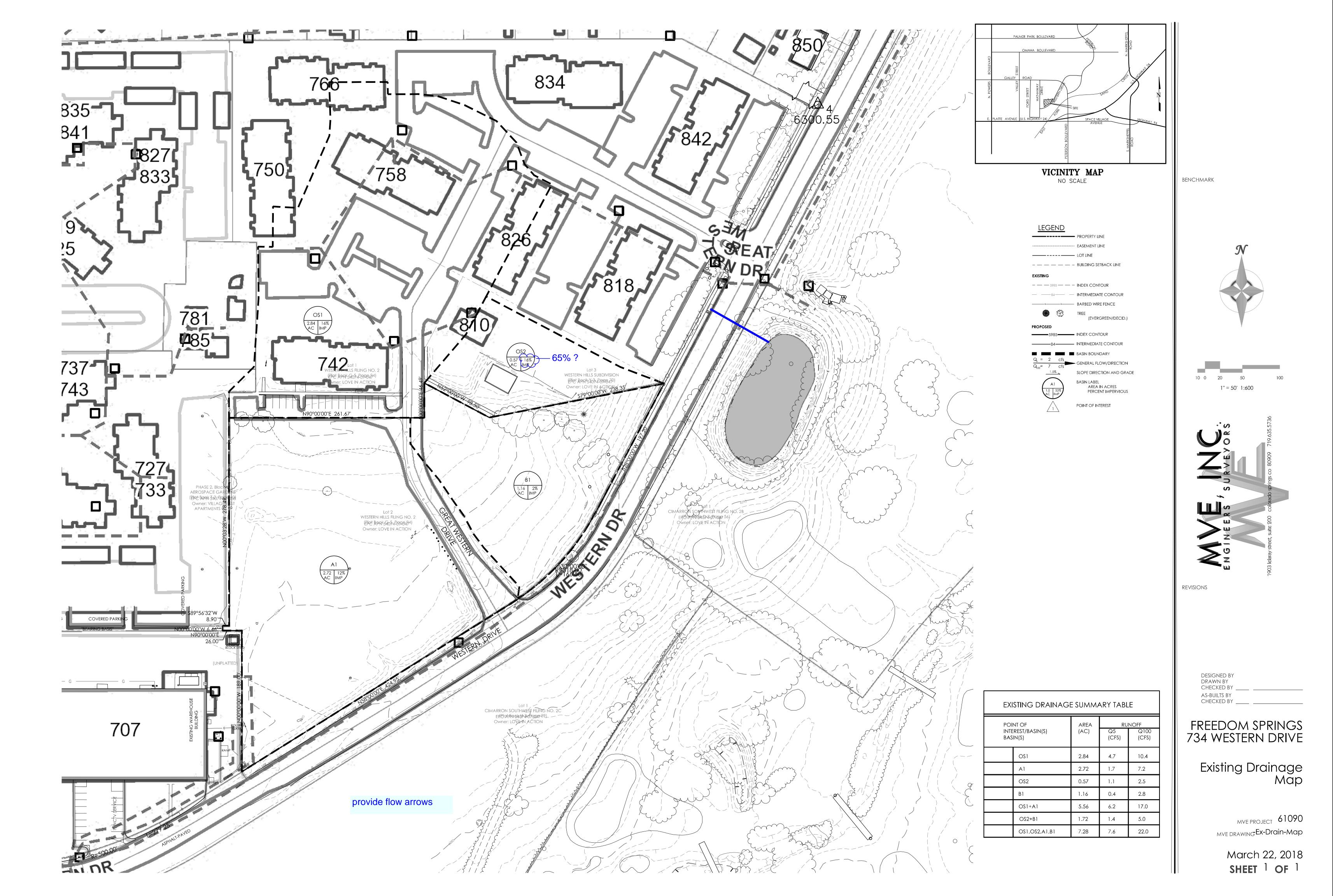


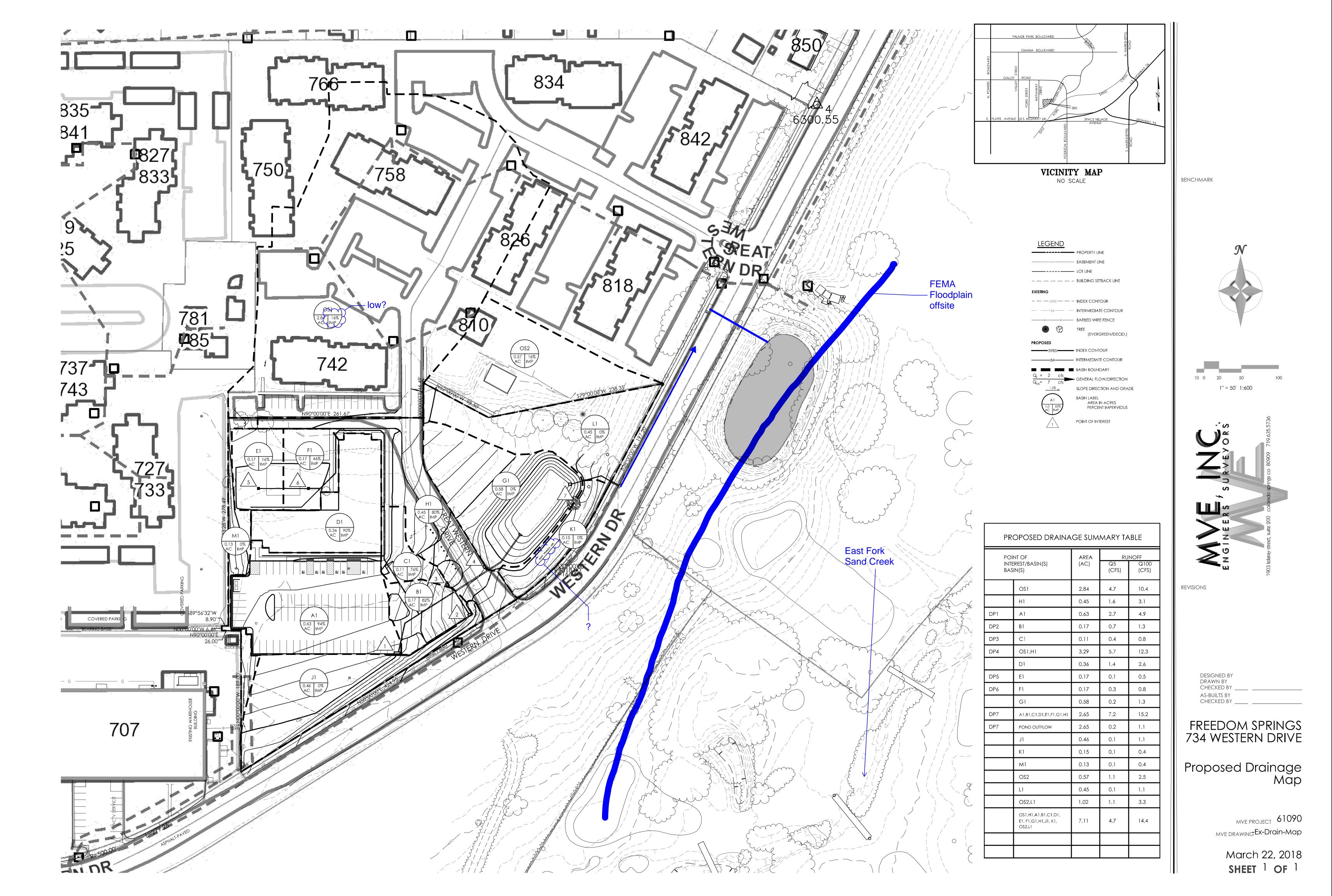
	UD-BMP (Version 3.0	3. November 2016)	Sheet 1 of
Designer:	TJW		
Company:	M.V.E., Inc.		
Date:	March 23, 2018		
Project:	Freedom Springs		
Location:	DP 7		
1. Basin Sto	orage Volume		
A) Effecti	ve Imperviousness of Tributary Area, Ia if all paved and roofed areas upstream of sand filter)	l _a = <u>61.8</u> %	
B) Tribut	ary Area's Imperviousness Ratio (i = I _a /100)	i =0.618	
	r Quality Capture Volume (WQCV) Based on 12-hour Drain Time CV= 0.8 * (0.91* i^3 - 1.19 * i^2 + 0.78 * $i)$	WQCV = watershed inches	
D) Contri	ibuting Watershed Area (including sand filter area)	Area =97,781sq ft	
	r Quality Capture Volume (WQCV) Design Volume _{SV} = WQCV / 12 * Area	V _{wacv} = <u>1,580</u> cu ft	
	/atersheds Outside of the Denver Region, Depth of age Runoff Producing Storm	d ₆ = <u>0.42</u> in	
	Vatersheds Outside of the Denver Region, r Quality Capture Volume (WQCV) Design Volume	Vwocv other = 1,543 cu ft	
	Input of Water Quality Capture Volume (WQCV) Design Volume if a different WQCV Design Volume is desired)	V _{WQCV USER} = cu ft	
2. Basin Ge	ometry		
A) WQC	V Depth	D _{wacv} =ft	
	Filter Side Slopes (Horizontal distance per unit vertical, flatter preferred). Use "0" if sand filter has vertical walls.	Z = 4.00 ft / ft	
C) Minim	um Filter Area (Flat Surface Area)	A _{Min} = <u>755</u> sq ft	
D) Actual	I Filter Area	A _{Actual} =sq ft	
E) Volum	e Provided	V _T = cu ft	
3. Filter Mal	terial	Choose One Ist CDOT Class B or C Filter Material Other (Explain):	
4. Underdra	ain System	Choose One	
A) Are ur	nderdrains provided?	Ores Inclusion of the second	
B) Under	drain system orifice diameter for 12 hour drain time		
	i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	y≃ <u>N/A</u> ft	
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = <u>N/A</u> cu ft	
	iii) Orifice Diameter, 3/8" Minimum	D _o = N/A in	


	Design Procedure	Form: Sand Filter (SF)
Destaura	TJW	Sheet 2 of :
Designer: Company:	M.V.E., Inc.	
Date:	March 23, 2018	
Project:	Freedom Springs	
Location:	DP 7	
A) Is an	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One OrES INO
	ttlet Works ribe the type of energy dissipation at inlet points and means of eying flows in excess of the WQCV through the outlet	Outflows are small and will discharge to concrete channel to Western Drive Emergency spillway lined with rip rap to Western Drive
Notes:		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)




		Dete	ntion Basin C	Juliet Struct	ure Design				
1 P			UD-Detention, Ver	rsion 3.07 (Februar	γ 2017)				
	Freedome Springs Full Spectrum Sand	Filler Basin - DP7							
ZONE 3	an operation out								
		~		Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
OLUME EURY WOCY			Zone 1 (WQCV)	0.46	0.036	Filtration Media			
	100-YEAR		Zone 2 (EURV)	1.72	0.133	Orifice Plate			
PERMANENT ORIFICES	ORIFICE		:one 3 (100-year)	2.34	0.086	Weir&Pipe (Restrict)			
	Configuration (Re	tention Pond)	tone 3 (100-year)	2.34	0.256	Total			
er Input: Orifice at Underdrain Outlet (typically us	ed to drain WOCV i	a Eiltration BMP)			0.230		d Parameters for U	nderdrain	
Underdrain Orifice Invert Depth =			e filtration media sur	rface)	Unde	rdrain Orifice Area =	0.0	ft2	
Underdrain Orifice Diameter =		inches			Underdra	in Orifice Centroid =	0.04	feet	
er Input: Orifice Plate with one or more orifices o					the second se	and the second	lated Parameters for	-	
Invert of Lowest Orifice =			oottom at Stage = 0 ft			rifice Area per Row = Iliptical Half-Width =	2.042E-02 N/A	ft ² feet	
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	1.75	inches	pottom at Stage = 0 ft	.)		ptical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =		sq. inches (diameter	= 1-15/16 inches)		cin	Elliptical Slot Area =	N/A	ft ²	
Contra Contra Contra Provide Contra		led managements						14	
ser Input: Stage and Total Area of Each Orifice F			The second second second	Builden	Dava E davata	David forther a	Daw 7 (setters 7	Daw & /anti-	1
Stage of Onfice Centroid (ft)	Row 1 (required) 0.46	Row 2 (optional) 0.89	Row 3 (optional) 1.32	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Orifice Area (sq. inches)	2.94	2.94	2.94				1	1	
childe Fires (54, hickes)[2,01	5.07						5
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)								1	0
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circo	ular or Postanoular)					Calculated	Parameters for Ver	tical Orifice	-
Oser Input: Vertical Office (Circi	Not Selected	Not Selected				Carculateo	Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 f	t) V	ertical Orifice Area =	N/A	N/A	ft2
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b			cal Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox) and Gr	rate /Fist or floored)					Calculator	Parameters for Ove	arflow Wair	
User input: Overnow wen (Dropbox) and G	Zone 3 Weir	Not Selected	1			Calculated	Zone 3 Weir	Not Selected	1
Our discussion of the second second	1.75	N/A	ft (relative to basin bo	ttom at Stage = 0 ft)	Height of G	rate Upper Edge, H, =	1.75	N/A	
Overnow weir Front Edge Height, Ho =									reet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	2.92	N/A	feet			Weir Slope Length =	2.92	N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	2.92	N/A N/A	feet H:V (enter zero for fl	lat grate)	Over Flow			-	
Overflow Weir Front Edge Length =				lat grate)	Over Flow Grate Open Area /	Weir Slope Length =	2.92	N/A	feet should be≥4 ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope =	0.00 2.92 81%	N/A N/A N/A	H:V (enter zero for fl		Over Flow Grate Open Area / Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area =	2.92 59.91	N/A N/A	feet should be≥4
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	0.00	N/A N/A	H:V (enter zero for fl feet		Over Flow Grate Open Area / Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	2.92 59.91 6.91	N/A N/A N/A	feet should be≥4 ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	0.00 2.92 81% 50%	N/A N/A N/A N/A	H:V (enter zero for fl feet %, grate open area/t %		Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	2.92 59.91 6.91 3.45	N/A N/A N/A N/A	feet should be≥4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	0.00 2.92 81% 50% ircular Orifice, Restr	N/A N/A N/A N/A ictor Plate, or Rectar	H:V (enter zero for fl feet %, grate open area/t %		Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	2.92 59.91 6.91 3.45	N/A N/A N/A N/A	feet should be≥4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate (C	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected	H:V (enter zero for f) feet %, grate open area/t % ngular Orifice)	total area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A N/A Kiow Restriction Pla Not Selected	feet should be ≥ 4 ft ² ft ² te
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % =	0.00 2.92 81% 50% ircular Orifice, Restr	N/A N/A N/A N/A ictor Plate, or Rectar	H:V (enter zero for fl feet %, grate open area/t %	total area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	2.92 59.91 6.91 3.45	N/A N/A N/A N/A	feet should be≥4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A	H:V (enter zero for f) feet %, grate open area/t % gular Orifice) ft (distance below bas	total area sin bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (tt) Out	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area =	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10	N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet should be ≥ 4 ft ² ft ² te ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cf Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	0.00 2.92 81% 50% ircular Orifice, Restri Zone 3 Restrictor 2.00 18.00 2.10	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	H:V (enter zero for fl feet %, grate open area/t % fugular Orifice) ft (distance below bas jinches	total area sin bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (tt) Out	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Paramete: Outlet Orifice Area = Jet Orifice Centroid = rictor Plate on Pipe =	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70	N/A N/A N/A N/A V Flow Restriction Pla Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal)	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bas linches Inches	total area sin bottom at Stage = 0 Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (tt) Out Central Angle of Rest	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = elet Orifice Centroid = rictor Plate on Pipe = Calculat	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 sted Parameters for	N/A N/A N/A N/A N/A V Flow Restriction Pla Not Selected N/A N/A N/A Spillway	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50	N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin)	H:V (enter zero for fl feet %, grate open area/t % fugular Orifice) ft (distance below bas jinches	total area sin bottom at Stage = 0 Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (tt) Out Central Angle of Rest Spillway	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = elet Orifice Centroid = rictor Plate on Pipe = Calcula y Design Flow Depth=	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 o.70 o.42	N/A N/A N/A N/A N/A V Flow Restriction Pla Not Selected N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A Ift (relative to basin) feet	H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bas linches Inches	total area sin bottom at Stage = 0 Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (tt) Central Angle of Rest Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centrold = rictor Plate on Pipe = Calcula y Design Flow Depth= at Top of Freeboard =	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 o.70 o.42 3.92	N/A N/A N/A N/A N/A / Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00 4.00	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V	H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bas linches Inches	total area sin bottom at Stage = 0 Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (tt) Central Angle of Rest Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = elet Orifice Centroid = rictor Plate on Pipe = Calcula y Design Flow Depth=	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 o.70 o.42	N/A N/A N/A N/A N/A V Flow Restriction Pla Not Selected N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A Ift (relative to basin) feet	H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bas linches Inches	total area sin bottom at Stage = 0 Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (tt) Central Angle of Rest Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Outlet Orifice Area = let Orifice Centrold = rictor Plate on Pipe = Calcula y Design Flow Depth= at Top of Freeboard =	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 o.70 o.42 3.92	N/A N/A N/A N/A N/A / Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet	feet should be ≥ 4 ft ² ft ² te ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00 4.00 1.00	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin) feet H:V feet	H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fl	total area sin bottom at Stage = 0 Half- t)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ((t) Central Angle of Rest Spillway Stage a Basin Area a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = ellet Orifice Centroid = rictor Plate on Pipe = Calcula y Design Flow Depth= at Top of Freeboard = at Top of Freeboard =	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 0.70 oted Parameters for 0.42 3.92 0.22	N/A N/A N/A N/A N/A V Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet feet acres	feet should be ≥ 4 ft ² ft ² ft ft feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz: Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00 4.00 1.00	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin) feet H:V feet H:V feet	H:V (enter zero for fl feet %, grate open area/t % agular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fl	total area sin bottom at Stage = 0 Half- t) 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ((t) (t) Central Angle of Rest Spillway Stage a Basin Area a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Paramete: Outlet Orifice Area = det Orifice Centroid = rictor Plate on Pipe = Calcula: y Design Flow Depth= at Top of Freeboard = t Top of Freeboard = 25 Year	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 0.70 0.42 3.92 0.22 50 Year	N/A N/A N/A N/A N/A V Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² te ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Retum Period = One-Hour Rainfall Depth (in) =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00 4.00 1.00	N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin i feet H:V feet EURV 1.07	H:V (enter zero for fl feet %, grate open area/t % ft (distance below bas linches Inches bottom at Stage = 0 fl 2 Year 1.19	total area sin bottom at Stage = 0 Half- t) <u>S Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O ((tt) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Paramete: Outlet Orifice Area = det Orifice Centrold = rictor Plate on Pipe = Calcula y Design Flow Depth= at Top of Freeboard = t Top of Freeboard = 25 Year 2.00	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 sted Parameters for 0.42 3.92 0.22	N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz: Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00 4.00 1.00	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin) feet H:V feet H:V feet	H:V (enter zero for fl feet %, grate open area/t % agular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fl	total area sin bottom at Stage = 0 Half- t) 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ((t) (t) Central Angle of Rest Spillway Stage a Basin Area a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Paramete: Outlet Orifice Area = det Orifice Centroid = rictor Plate on Pipe = Calcula: y Design Flow Depth= at Top of Freeboard = t Top of Freeboard = 25 Year	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 0.70 0.42 3.92 0.22 50 Year	N/A N/A N/A N/A N/A V Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz: Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict above Max Water Surface = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00 4.00 1.00 0.035	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet URV 1.07 0.170	H:V (enter zero for fl feet %, grate open area/t % agular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fl 2 Year 1.19 0.117 0.116	total area tin bottom at Stage = 0 Half- t) 5 Year 1.50 0.152 0.152	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O ((tt) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.186	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Paramete: Outlet Orifice Area = let Orifice Centrold = rictor Plate on Pipe = Calcula y Design Flow Depth= at Top of Freeboard = 25 Year 2.00 0.226	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 sted Parameters for 0.42 3.92 0.22 50 Year 2.25 0.272	N/A N/A N/A N/A N/A V Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.326	feet should be ≥ 4 ft ² ft ² ft ² ft ft feet radians 500 Yee 3.25 0.464
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Hundr Volume (acre-ft) = OPTIONAL Overnide Runoff Volume (acre-ft) = Inflow Hydrograph Nolume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00 4.00 1.00 WQCV 0.53 0.035 0.00	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A N/A fet (relative to basin i feet H:V feet EURV 1.07 0.170 0.169 0.00	H:V (enter zero for fl feet %, grate open area/t % ft (distance below bas inches inches bottom at Stage = 0 fl 2. Year 1.19 0.117 0.116 0.00	total area sin bottom at Stage = 0 Half- t) <u>5 Year</u> <u>1.50</u> 0.152 0.01	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (tt) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.186 0.185 0.01	Veir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Paramete: Outlet Orifice Area = Jet Orifice Centroid = rictor Plate on Pipe = Calcula y Design Flow Depth= at Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.226 0.03	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 sted Parameters for 0.42 3.92 0.22 50 Year 2.25 0.272 0.272 0.23	N/A N/A N/A N/A N/A V Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 0.325 0.55	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians 500 Yez 3.25 0.464 0.463 1.27
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 wlar or Trapezoidal) 2.50 6.00 4.00 1.00 0.53 0.036 0.035 0.00 0.0	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ift (relative to basin i feet H:V feet EURV 1.07 0.170 0.170 0.000 0.00	H:V (enter zero for fl feet %, grate open area/t % ft (distance below bas inches inches inches bottom at Stage = 0 fl 2.Year 1.19 0.117 0.116 0.00 0.00	total area tin bottom at Stage = 0 Half- t) 5 Year 1.50 0.152 0.01 0.0 0.0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ((t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.186 0.185 0.01 0.0	Veir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = Outlet Orifice Centroid = rictor Plate on Pipe = Calcula: y Design Flow Depth= at Top of Freeboard = at Top of Freeboard = 0.226 0.226 0.03 0.1	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 0.70 0.42 3.92 0.22 0.22 0.22 0.22 0.272 0.23 0.5	N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.326 0.325 0.55 1.2	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Yea 3.25 0.464 1.27 2.9
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz: Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Tlow, q (cfs/acre) = Predevelopment Unit Peak Q (cfs) = Peak Inflow Q (cfs) =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 2.10 2.50 6.00 4.00 1.00 0.03 0.035 0.035 0.00 0.0 0.0 0.0	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin) feet H:V feet EURV 1.07 0.170 0.169 0.00 0.0 3.2	H:V (enter zero for fl feet %, grate open area/t % ft (distance below bas inches inches inches bottom at Stage = 0 ft 0.117 0.116 0.00 0.0 2.2	total area sin bottom at Stage = 0 Half- t) 5 Year 1.50 0.152 0.152 0.01 0.0 2.8	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (tt) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.186 0.01 0.0 3.5	Veir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Paramete: Outlet Orifice Area = Jet Orifice Centroid = rictor Plate on Pipe = Calcula y Design Flow Depth= at Top of Freeboard = t Top of Freeboard = 25 Year 2.00 0.226 0.03	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 sted Parameters for 0.42 3.92 0.22 50 Year 2.25 0.272 0.272 0.23	N/A N/A N/A N/A N/A V Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 0.325 0.55	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians 500 Ye: 3.25 0.464 0.463 1.27
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 wlar or Trapezoidal) 2.50 6.00 4.00 1.00 0.53 0.036 0.035 0.00 0.0	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ift (relative to basin i feet H:V feet EURV 1.07 0.170 0.170 0.000 0.00	H:V (enter zero for fl feet %, grate open area/t % ft (distance below bas inches inches inches bottom at Stage = 0 fl 2.Year 1.19 0.117 0.116 0.00 0.00	total area tin bottom at Stage = 0 Half- t) 5 Year 1.50 0.152 0.01 0.0 0.0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ((t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.186 0.185 0.01 0.0	Veir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = Let Orifice Centroid = rictor Plate on Pipe = Calcula: y Design Flow Depth= at Top of Freeboard = 25 Year 2.00 0.226 0.03 0.1 4.2	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 0.70 0.42 3.92 0.22 50 Year 2.25 0.272 0.272 0.23 0.5 5.1	N/A N/A N/A N/A N/A N/A V Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 0.326 0.325 0.55 1.2 6.0	feet should be ≥ 4 ft ² ft ² te ft ² feet radians 500 Ye: 3.25 0.464 0.463 1.27 2.9 8.6
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restricted Runoff Volume (acre-ft) = One-Hour Rainfail Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Notw Q (cfs) = Peak Inflow Q (cfs) Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00 4.00 1.00 0.035 0.036 0.035 0.035 0.035 0.00 0.0 0.7 0.0 N/A Filtration Media	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet H:V feet 1.07 0.170 0.170 0.00 0.00 0.00 0.0 3.2 0.3 N/A Plate	H:V (enter zero for fl feet %, grate open area/t % ft (distance below bas inches inches inches inches 0.017 0.117 0.116 0.00 0.0 2.2 0.2 0.2 N/A Plate	total area tin bottom at Stage = 0 Half- t) 5 Year 1.50 0.152 0.152 0.01 0.0 2.8 0.2 17.5 Plate	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (tt) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 0.186 0.01 0.0 3.5 0.3 9.3 Plate	<pre>Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula: y Design Flow Depth= at Top of Freeboard = at Top of Freeboard = 25 Year 2.00 0.226 0.226 0.03 0.1 4.2 0.8 11.8 Overflow Grate 1</pre>	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 0.70 0.42 3.92 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.21 0.11 0.12 0.10 0.70 0.42 3.92 0.23 0.5 5.1 1.1 0.04 0.12 0.21 0.21 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	N/A N/A N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.326 0.55 1.2 6.0 1.1 0.9 Outlet Plate 1	feet should be ≥ 4 ft ² ft ² te ft ² feet radians 500 Yee 3.25 0.464 0.463 1.27 2.9 8.6 3.11 1.1 Spillwa
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Ind Slopes = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Catculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 ((ps) =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 2.10 2.50 6.00 4.00 1.00 0.00 0.035 0.036 0.035 0.00 0.7 0.0 N/A Filtration Media N/A	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin) feet H:V feet H:V feet EURV 1.07 0.170 0.00 0.00 0.00 3.2 0.3 N/A Plate N/A	H:V (enter zero for fl feet %, grate open area/t % ft (distance below bas inches inches inches bottom at Stage = 0 ft 0.117 0.116 0.00 0.0 2.2 0.2 N/A Plate N/A	total area total area Half- t) 5 Year 1.50 0.152 0.152 0.01 0.0 2.8 0.2 17.5 Plate N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate O ((t) Central Angle of Rest Spillway Stage a Basin Area a 0.185 0.185 0.01 0.0 3.5 0.3 9.3 Plate N/A	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Paramete: Outlet Orifice Area = let Orifice Centrold = rictor Plate on Pipe = Calcula y Design Flow Depth= at Top of Freeboard = 100 - 226 0.226 0.226 0.226 0.03 0.1 4.2 0.8 11.8 Overflow Grate 1 0.1	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 0.10 0.70 0.42 3.92 0.22 0.22 0.22 0.22 0.22 0.272 0.272 0.272 0.23 0.5 5.1 1.1 0.11 0.11 0.12 0.10 0.22 0.23 0.5 5.1 1.1 0.10 0.10 0.20 0.5 5.1 0.10 0.2 0.23 0.5 0.5 0.10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	N/A N/A N/A N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.326 0.325 0.55 1.2 6.0 1.1 0.9 Outlet Plate 1 0.1	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians 0.464 0.463 1.27 2.9 8.6 3.1 1.11 Spillwa 0.1
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Freeboard above Max Water Surface = Restrictor Plate Hydrograph Results Design Storm Retum Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-h) = Inflow Hydrograph Volume (acre-h) = Inflow Hydrograph Volume (acre-h) = Inflow Hydrograph Volume (acre-h) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Unitow Q (cfs) = Peak Unitow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	0.00 2.92 81% 50% ircular Orifice, Restri Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00 4.00 1.00 0.00 0.035 0.035 0.035 0.035 0.035 0.00 0.7 0.0 N/A Filtration Media N/A	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A N/A ft (relative to basin I feet H:V feet EURV 1.07 0.170 0.169 0.00 0.0 3.2 0.3 N/A Plate N/A N/A	H:V (enter zero for fl feet %, grate open area/t % ft (distance below bas inches inches bottom at Stage = 0 fl 2 Year 1.19 0.117 0.116 0.00 0.0 2.2 0.2 N/A Plate N/A N/A	total area total area Half- t) 5 Year 1.50 0.152 0.0152 0.01 2.8 0.2 17.5 Plate N/A N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O ((tt) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 0.185 0.185 0.01 0.0 3.5 0.3 9.3 Plate N/A N/A	Weir Slope Length = 100-yr Orifice Area = en Area w/a Debris = pen Area w/a Debris = Calculated Parameter Outlet Orifice Area = Outlet Orifice Centroid = rictor Plate on Pipe = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calculated Parameter Calculated orifice Centroid = 25 Year 2.00 0.226 0.226 0.226 0.226 0.3 0.1 4.2 0.8 11.8 Overflow Grate 1 0.1 N/A	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 sted Parameters for 0.42 3.92 0.22 0.22 0.22 0.272 0.272 0.272 0.272 0.272 0.272 0.272 0.272 0.23 0.5 5.1 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0	N/A N/A N/A N/A N/A N/A Version Not Selected N/A N/A N/A N/A N/A Spillway feet feet acres 0.0325 0.325 0.55 1.1 0.9 Outlet Plate 1 0.1 N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Yes a.25 0.464 0.463 1.27 2.9 8.6 3.11 1.1 Spillwa 0.11 N/A
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Nolume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Calculated Controlling Flow = Max Velocity through Grate 1 (fps) =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 2.10 2.50 6.00 4.00 1.00 0.00 0.035 0.036 0.035 0.00 0.7 0.0 N/A Filtration Media N/A	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin) feet H:V feet H:V feet EURV 1.07 0.170 0.00 0.00 0.00 3.2 0.3 N/A Plate N/A	H:V (enter zero for fl feet %, grate open area/t % ft (distance below bas inches inches inches bottom at Stage = 0 ft 0.117 0.116 0.00 0.0 2.2 0.2 N/A Plate N/A	total area total area Half- t) 5 Year 1.50 0.152 0.152 0.01 0.0 2.8 0.2 17.5 Plate N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate O ((t) Central Angle of Rest Spillway Stage a Basin Area a 0.185 0.185 0.01 0.0 3.5 0.3 9.3 Plate N/A	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Paramete: Outlet Orifice Area = let Orifice Centrold = rictor Plate on Pipe = Calcula y Design Flow Depth= at Top of Freeboard = 100 - 226 0.226 0.226 0.226 0.03 0.1 4.2 0.8 11.8 Overflow Grate 1 0.1	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 0.10 0.70 0.42 3.92 0.22 0.22 0.22 0.22 0.22 0.272 0.272 0.272 0.23 0.5 5.1 1.1 0.11 0.11 0.12 0.10 0.22 0.23 0.5 5.1 1.1 0.10 0.10 0.20 0.5 5.1 0.10 0.2 0.23 0.5 0.5 0.10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	N/A N/A N/A N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.326 0.325 0.55 1.2 6.0 1.1 0.9 Outlet Plate 1 0.1	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians 0.464 0.463 1.27 2.9 8.6 3.1 1.1 1.1 5pillwa 0.1
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = iser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Invert Stage= Spillway Invert Stage= Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Hydrograph Results Design Storm Retum Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-h) = Inflow Hydrograph Volume (acre-h) = Inflow Hydrograph Volume (acre-h) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	0.00 2.92 81% 50% ircular Orifice, Restr Zone 3 Restrictor 2.00 18.00 2.10 ular or Trapezoidal) 2.50 6.00 4.00 1.00 0.53 0.036 0.035 0.036 0.035 0.00 0.0 0.0 0.0 0.0 N/A Filtration Media N/A 12	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet EURV 1.07 0.170 0.170 0.169 0.00 0.00 0.0 3.2 0.3 N/A Plate N/A N/A 23	H:V (enter zero for fl feet %, grate open area/t % ft (distance below bas inches inches inches bottom at Stage = 0 fl 0.117 0.117 0.116 0.00 0.0 2.2 0.2 N/A Plate N/A 21	total area tin bottom at Stage = 0 Half- t) 5 Year 1.50 0.152 0.01 0.0 2.8 0.2 17.5 Plate N/A N/A 22	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (tt) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a O.185 O.186 O.185 O.01 O.185 O.185 O.185 O.13 O.3 S.3 Plate N/A N/A Z3	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = Outlet Orifice Centroid = rictor Plate on Pipe = Calculated Parameter Querter Plate on Pipe = Querter Plate on Pipe = Querter Plate on Pipe = 0.1 4.2 0.8 11.8 Overflow Grate 1 0.1 N/A	2.92 59.91 6.91 3.45 rs for Outlet Pipe w/ Zone 3 Restrictor 0.12 0.10 0.70 	N/A N/A N/A N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet feet acres 0.025 0.55 1.2 6.0 1.1 0.9 Outlet Plate 1 0.1 N/A 23	feet should be ≥ 4 ft ² ft ² ft ² feet radians

11 Report Maps

Existing Condition Hydraulic Analysis Map (Map Pocket) Proposed Condition Hydraulic Analysis Map (Map Pocket)

Markup Summary

dsdrice (26)		
ch 5, 2018 ⊯™a <mark>PPR-18-040</mark>	Subject: Text Box Page Label: 1 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:18 PM Color:	PPR-18-040
Ny singes to The south towards Western Drive eas of up to 20%. Son Springs ale. All geffin Finder Rever sout we and conversite to the southerst. There is surrounding area. The single shall also also all in northeast?	Subject: Cloud+ Page Label: 6 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:20 PM Color:	northeast?
a the Freedom Springe property from two distant the quark of the Streeton of the streeton that is the result of the Streeton of the streeton that is the result of the Streeton of the streeton of the streeton of the note for the streeton of the streeton of the streeton of the note for the streeton of the streeton of the streeton of the note for the streeton of the streeton of the streeton of the note for the streeton of the streeton of the streeton of the streeton of the streeton of the streeton of the streeton of the note for the streeton of the streeton of the streeton of the streeton of the streeton of the streeton of the streeton of the streeton of the street	Subject: Cloud+ Page Label: 7 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:21 PM Color:	not found?
solution is according with the regulatoretic of the interaction of the solution of the solution of the interaction is a solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the solution of the solution of the interaction of the solution of the sol	Subject: Cloud+ Page Label: 6 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:23 PM Color:	65
northeast? A manufacture of the set events of the set	Subject: Cloud+ Page Label: 7 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:24 PM Color:	northeast?
In side of Western Drive, sins. The dramage sub- continent of the sub- point of the sub- top on field (manday) to contained in the payled to contained in the payled to contained the payled to contained the payled to containe grassed field backs OCP on the most	Subject: Cloud+ Page Label: 8 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:25 PM Color:	northeast?
roperty and contains grassed teid off-site sub-basin OS2 on the north, subteat, joing-the from from from on so south obd. d. 3, Wenn Drive tinue to the southeast in the creek. Northeast?	Subject: Cloud+ Page Label: 8 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:25 PM Color:	northeast?

Subject: Cloud+ northeast? Page Label: 8 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:26 PM Color: 📘 -----..... Subject: Callout Compare to existing condition and discuss Page Label: 11 potential issues. Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:27 PM Color: _____ Subject: Callout Address proposed type of landscaping Page Label: 11 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:27 PM Color: 📃 Subject: Cloud+ see comment letter Page Label: 12 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:29 PM Color: Subject: Highlight Page Label: 12 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:29 PM Color: Subject: Callout Discuss the total site area to be treated by WQCV Page Label: 12 and areas that are not. Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:30 PM Color: _____ Subject: Text Box State that a Permanent BMP Maintenance Page Label: 13 Agreement and Easement is being provided along Lock: Locked with an O&M Manual. Author: dsdrice Date: 10/2/2018 12:27:32 PM Color: Subject: Highlight Page Label: 56 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:33 PM Color:

Subject: Text Box Drainage Area Identification Study map (?) Page Label: 18 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:33 PM Color: _____ ×/ Subject: Text Box provide flow arrows Page Label: 78 provide flow arrow Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:35 PM Color: _____ Subject: Line Ex. Storm Drain Page Label: 78 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:37 PM Color: _____ Subject: Cloud+ 65%? Page Label: 78 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:37 PM Color: _____ Subject: Line Ex. Storm Drain Page Label: 79 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:38 PM Color: Subject: Highlight Page Label: 79 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:39 PM Color: _____ Subject: Callout FEMA Floodplain offsite Page Label: 79 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:40 PM Color: Subject: Arrow flow direction? Page Label: 79 Lock: Locked Author: dsdrice

Date: 10/2/2018 12:27:41 PM

Color:

12 ON	M	۶Ľ	10108004	-0.12
%Q)\////		< . E		2
10882501	X	>20 E	24	1
MARCEN V	$\sim D \sim$	192 -		1.0
	× 1/ 1/1	XX E	*	11
March Sta	- J //	8°24 🗄	10.1	1.0
Stran No	C. /%L	1011 H	0	10
Mile and	N 1973	ŧl∕r Ε		10
711 500	411	17 E	1 Million Automatical	1.1
JI Carlo / 1	- 167 - 5	' //L 🖻	DEPON.	1.0
		WE E	1	-
	14221	(/) E	00	1.0
5 3 3 V V	$\mathcal{M} \in \mathcal{V}$	いる日		1.4
135008	W/D	ಗೀ⊢	These sectors and	÷

_____ Subject: Callout Page Label: 79 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:41 PM Color: 📘

East Fork Sand Creek

_____ Subject: Cloud+ Page Label: 79 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:42 PM Color:

_____ Subject: Cloud+ Page Label: 79 Lock: Locked Author: dsdrice Date: 10/2/2018 12:27:43 PM Color: 📘

low?

?