Early Grading Permit - Final Drainage Report

Overlook at Homestead Subdivision Filing No. 1
 El Paso County, Colorado

Prepared for:
PT Overlook LLC
1864 Woodmoor Drive, Suite 100
Monument, CO 80132

Prepared by:
Kimley-Horn and Associates, Inc.
2 North Nevada Avenue, Suite 900 Colorado Springs, Colorado 80903 (719) 453-0180

Contact: Kevin Kofford, P.E.

NOTED. PCD NUMBER ADDED TO COVER SHEET

Kimley»"Horn

CERTIFICATION

DESIGN ENGINEER'S STATEMENT
The attached drainage plan and report were prepared und are correct to the best of my knowledge and belief. Said according to the criteria established by the County for dr conformity with the master plan of the drainage basin.

SIGNATURES AND STAMPS
TO BE ADDED UPON SUBMITTAL FOR APPROVAL. caused by any negligent acts, errors or omissions on my part in preparation of this report.

Sign and stamp

SIGNATURE (Affix Seal):
Kevin Kofford, P.E.

OWNER/DEVELOPER'S STATEMENT
I, the developer, have read and will comply with all of the requirements specified in this Drainage Report and Plan.

PT Overlook LLC

Authorized Signature Date
Joe DesJardin
Printed Name

Director of Entitlements

Title
1864 Woodmoor Drive Suite 100, Monument, CO 80132
Address

EL PASO COUNTY

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

TABLE OF CONTENTS

CERTIFICATION 1
DESIGN ENGINEER'S STATEMENT 1
OWNER/DEVELOPER'S STATEMENT 1
EL PASO COUNTY 1
TABLE OF CONTENTS 2
INTRODUCTION 3
PURPOSE AND SCOPE OF STUDY 3
LOCATION 3
DESCRIPTION OF PROPERTY 3
FLOODPLAIN STATEMENT 4
DRAINAGE BASINS 4
MAJOR BASIN DESCRIPTIONS 4
COMPLIANCE WITH PREVIOUS FINAL DRAINAGE REPORT 4
EXISTING SUB-BASIN DESCRIPTIONS 4
PROPOSED SUB-BASIN DESCRIPTIONS 6
DRAINAGE DESIGN CRITERIA 8
DEVELOPMENT CRITERIA REFERENCE 8
HYDROLOGIC CRITERIA 9
HYDRAULIC CRITERIA 9
THE FOUR STEP PROCESS 10
DRAINAGE FACILITY DESIGN 11
GENERAL CONCEPT 11
DRAINAGE FEES 11
FEES 11
SUMMARY 11
REFERENCES 11
APPENDIX
APPENDIX A: VICINITY MAP
APPENDIX B: FEMA MAP \& SOILS REPORT
APPENDIX C: HYDROLOGY
APPENDIX D: HYDRUALICS
APPENDIX E: EL PASO COUNTY DRAINAGE BASIN MAP
APPENDIX F: APEX RANCH DRAINAGE REPORT
APPENDIX G: DRAINAGE MAPS

INTRODUCTION

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and to document the drainage design methodology in support of the proposed Overlook at Homestead Subdivision Filing No. 1("the Project") on behalf of PT Overlook LLC. The finalized hydraulic design and associated calculations for the early grading stage of this project will be provided with the Final Drainage Report. The Project is located within the jurisdictional limits of El Paso County ("the County"). Therefore, the hydroloaic and hvdraulic desian is based on the County's criteria which is described in furthe detail with Hydraulic analysis for

LOCATION

currently proposed
storm pipes shall be
provided within this
The Project Site located east of FDR.
so County, Colorado including parcels 4122000005, 4100000255, 410cuoucuu. ivivie onecuivany, the site is a Portion of Section 22 and a Portion of Section 27, Township 11 South/Range 64 West of the 6 th PM, County of El Paso, State of Colorado. North of the project site is ogricultural and rural residential land, to the east is Homestead Ranch Park owned and maintained by El Paso County, and to the south and west is
 Appendix of this report.

The Site is currently owned by PT Overlook LLC and w

DESCRIPTION OF PROPERTY

The entire Overlook project is approximately 350.8 acres consisting of mostly vacant, undeveloped land with native vegetation and a rural single-family residential home situated in the northwest corner of the Site and is classified as Agricultural Grazing Land to be subdivided into 62 total lots. Filing No. 1 consists of approximately 202.72 acres which will be subdivided into 36 5 -acre parcels. Vegetation within the site is characterized primarily by prairie grasses along with some area of scrub brush and trees. The Site does not currently provide water quality or detention for the Project area.
The existing topography consists of slopes ranging from 1% to 33% with an existing butte covering much of the northern portion of the Site. Filing No. 1 includes a roadway and temporary cul-desac on the top of the existing butte, but the majority of the site is located south of the butte. Flows in the existing conditions run off site into one of four major drainage basins. Filing No. 1 only discharges into the Upper Black Squirrel Cree and La Vega Ranch drainage basins, to the south. Detailed descriptions of the existing major drainage basins can be found later in the report.

According to NRCS soil mapping data, USCS Type B soils are the primary soil type within the site. Type B soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained, or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Soils mapping information has been provided in the Appendix.

The Filing No. 1 development of this site will consist of 36, five acre residential lots with roadway improvements, roadway grading, three full spectrum detention ponds, roadside ditches, culverts, and drainage swales.

FLOODPLAIN STATEMENT

The Site is located outside the 100-year floodplain and within Zone X (an area of minimal flood hazard) as noted on the FEMA FIRM Map No. 08041C0350G revised on December 7, 2018 (See Appendix).

DRAINAGE BASINS

MAJOR BASIN DESCRIPTIONS

The Project Site is tributary to four major drainage basins in the El Paso County Drainage Basin Map. Bijou Creek, East Kiowa Creek, Upper Black Squirrel, and La Vega Ranch Drainage Basins. These drainage basins are located in the north central portion of El Paso County. The northeast portion of the site is tributary to Bijou Creek Drainage Basin, the northwest portion of the site is tributary to East Kiowa Creek Drainage Basin, the southwest portion of the site is tributary to Upper Black Squirrel Drainage Basin, and the southeast portion of the site is tributary to La Vega Ranch Drainage Basin. Filing No. 1 only discharges into the Upper Black Squirrel Creek and La Vega Ranch Drainage Basins, to the south. In an effort to simplify basin nomenclature, the following naming conventions have been used for both existing and proposed drainage subbasins labeling. Proposed Basins have been designed in effort to keep runoff within the same existing basins, as to not transfer runoff between basins.

A - Upper Black Squirrel Drainage Basin (CHBS2000)
B - La Vega Ranch Drainame Basin (CHBRO400)
C - East Kiowa Noted, statement po)
D - Bijou Creet
El Pasp Count existing and pr removed to avoid
proposed
conditions for the
PRELIM

COMPLIANCE WITH PREVIOUS FINAL DRAINAGE REPORT

A portion of the proposed Project Site falls within the existing approv for Apex Ranch Estates" by Terra Nova Engineering, Inc. approval Flows from these basins will be at or below history values. These flo calculation for the existing detention facility for Filing No. 1. Excerpts frd FDR have been provided in the Appendix.

A Preliminary Drainage Report was submitted to the County as part of the SP238 Application for the Preliminary Plat. The existing and proposed hydrology for this Final Drainage Report are consistent with the hydrology presented in the Preliminary Drainage Report.

EXISTING SUB-BASIN DESCRIPTIONS

Historically the runoff from the Site drains into one of two major drainage basins for Filing No. 1 as described above. Slopes vary from $2-33 \%$ throughout the site with various natural features. The Site has been divided into 8 onsite basins A1-A2, B1, 43 , and B3A, and 2 offsite basins OSA1 and OS-A2. The offsite basins are located west of the Site and generally flow west towards to existing stormwater infrastructure. Descriptions of each individual sub-basin can be found below.

Sub-Basin A1

This on-site sub-basin consists of an area of 19.92 acres, located in the southwest corner of the

Site. Drainage flows $0 \sqrt[0]{ }$ Please provide a brief discussion of how the existing culvert at DP 1 basin is 8%. Runoff duri Refer to the Appendix
existing runoff flow interacts with the existing natural channels shown on the proposed drainage map.

Sub-Basin A2

This on-site sub-basin consists of an area of 61.50 acres, located in the southwest corner of the Site Drainane flow overland from the northeact to the sputhwest where it flows offsite at DP 2 Hydraulic analysis of channels has been ed inperviousness for this sub-basin is 1%. added to appendix. Discussion added har. including reference to appendix. Channels now shown on existing drainage map.
the Site. Drainage flows overland from the north to the south where it flows offsite at DP 3 into Reata subdivision south of the Site. The weighted imperviousness for this sub-basin is 0%. Runoff during the 5 -year and 100-year events are 9.87 cfs and 72.48 cfs respectively. Refer to the Appendix for the Existing Conditions Drainage Map.

Sub-Basin B2

This on-site sub-basin consists of an area of 42.42 acres, located in the south-central portion of the Site. Drainage flows overland from the north to the south where it flows offsite at DP 4 into Reata subdivision south of the Site. The weighted imperviousness for this sub-basin is 0\%. Runoff during the 5 -year and 100-year events are 9.41 cfs and 69.09 cfs respectively. Refer to the Appendix for the Existing Conditions Drainage Map.

Sub-Basin B3

This on-site sub-basin consists of an area of 25.42 acres, located in the southeast portion of the Site. Drainage flows overland from the north to the south where it flows offsite at DP 5 into Reata subdivision south of the Site. The weighted imperviousness for this sub-basin is 0%. Runoff during the 5 -year and 100-year events are 5.91 cfs and 43.40 cfs respectively. Refer to the Appendix for the Existing Conditions Drainage Map.

Sub-Basin B3A

This on-site sub-basin consists of an area of 24.23 acres, located in the southeast corner of the Site. Drainage flows overland from the north to the south where it flows offsite at DP 5A into Reata subdivision south of the Site. The weighted imperviousness for this sub-basin is 0%. Runoff during the 5 -year and 100-year events are 5.99 cfs and 43.98 cfs respectively. Refer to the Appendix for the Existing Conditions Drainage Map.

Sub-Basin OS-A1

The off-site sub-basin consists of an area of 4.06 acres, located in the western central portion of the drainage study area. Drainage flows overland from the northeast to southwest where it is captured by an existing drainage culvert at DP 14 and directed west of Elbert Road. The weighted imperviousness for this sub-basin is 19\%. Runoff during the 5-year and 100-year events are 3.76 cfs and 12.49 cfs respectively. Refer to the Appendix for the Existing Conditions Drainage Map.

Sub-Basin OS-A2

The off-site sub-basin consists of an area of 4.45 acres, located in the central portion of the drainage study area. Drainage flows overland from the north to south where it enters sub-basin

A2 at DP 15 and follows the patterns described in sub-kasin A2. The weighted imperviousness for this sub-basin is 19%. Runoff during the 5 -year and 100 -year events are 3.76 cfs and 12.49 cfs respectively. Refer to the Appendix for the Existing Conditions Drainage Map.

Add clarifying text that in the early grading condition
PROPOSED SUB-BASIN DESCRIPTIONS these three EDBs will be TSBs and they will not be fully constructed until final plat and final design.
For the proposed condition, stormwater will generally maintain historic flow patterns. The proposed roadways will alter some of the existing flow paths. The roadway ditches will capture runoff from the roadways and direct flows via proposed culverts back to the existing flow paths, which will ultimately follow historic patterns or be capture by o water nonds. The pronosed Site has been divided into 10 on

> Discussion regarding channels and erosion protection has been added to report. TRM now called out on channel analysis.

Discussion
regarding
culvert design
added to text.
ed storm
Descriptions of each veloped and no char pr Apex Ranch Estates d detention basin, on th ed and sized to provide water qualitiy tor the entire basins Drainage Report. This area includes all the proposed roadway extensions through the ROW preservation within the Apex Ranch Estates Subdivision. This project dpes not rely on the water quality or detention folumes provided by the existing detention basin within Apex Ranch Estates.

The three proposed full spectrum extended detention basins will be designed to release develoned flows fron Filing No 1 at less than or equal to historic rates for this project before

Please provide a brief discussion of how the proposed runoff flow interacts with the existing natural channels shown on the proposed drainage map. Note that if the proposed storm water flows are increased, please explain how these channels can handle the proposed flows. I spectrum extended detention basins will be emp Please provide discussion provided e dd all proposed pipes, and emporary se inlets within this project.
acres, located in the southwest corner of the p the southwest where it is captured by an Rd. There are no proposed improvements in sub-basin A1. The weighted imperviousness for this sub-basin is 15%. Runoff during the 5 -year and 100 -year events are 10.41 cfs and 41.24 cfs respectively. Dye to the slight increase in subhacin imnervinusnecs the 100 -vr runoff increases from 38.41 to 41.24 cfs . The additional runoff

The change in imperviousness

 represents future development. As this EG FDR requires hydraulic analysis of culverts, TSBs, ditches, \& natural channels it is important we properly size storm water infrastructure based on the proposed conditions.igh the nearly 1500 ft long, 50 ft wide existing drainage
Flows from this basin will be collected in roadside ditches ert Road. The runoff from this basin will not impact the Reata or increase in flows is not anticipated to impact the capacity ppendix for the Proposed Conditions Drainage Map.

Explain in the narrative how WQ is being addressed for all basins including exclusions.
area of 58.27 acres, located in the southwest/forner of the sin include proposed roads, roadside ditches. culverts, and on basin A2. Drainage flows overland from the northeast to oposed roadside ditches, is conveyed through proposed captured by propose private full snectrum detention hasip

A2 at DP 2. The weighted mperviousness for this sub-basin is 12%. R Explanation of 100 -yeay events are 20.99 cfs and 92.96 cfs respectively. Due to As there is no development occuring within this basin, the impervious \% should be the same as existing. It appears that each of these basins is taking into account the future development to occur on site but only the rough grading should be accounted for at this stage. Update the increases ss than his in will exit drainage plan also.
Discussion regarding the pond outfall for
south of th
pond withi
by the prof
the Appen Ponds A2, B1, \& B8 has been included in text.
$\begin{array}{lll} & \begin{array}{l}\text { Explain how } \\ \text { Early Gra }\end{array} \\ \text { discharge from TSB }\end{array}$
Sub-Basirtot
This on-site sub-basin consists of an area of 40.74 acres, located in the south-central portion of the Site. Improvements within this sub-basin include proposed roads, roadside ditches, culverts, and proposed private full spectrum detention basin B1. Drainage flows overland from the north to the south where it flows into proposed roadside ditches, is conveyed through proposed stormwater culverts, and is ultimately captured by propose private full spectrum detention basin B1 at DP 3. The weighted imperviousness for this sub-basin is 10%. Runoff during the 5 -year and 100 -year events are 16.77 cfs and 80.40 cfs respectively. Due to the increase in sub-basin imperviousness, the $100-\mathrm{yr}$ runoff for DP 3 is anticipated to increases from 72.48 cfs to 80.40 cfs . Ther additional yunbftwir be collected and released at iess than historic fates via a proposed private full spectrum detention basin. Flows from this basin will exit into the Reata subdivision south of the Site via existing, vegetated natural drainage channels and outfall to an existing stock pond within the adjacent property south of the Site. The minor increase in flows will be mitigated by the proposed full spectrum detention basin B1 and released a less than historic rates. Refer to the Appendix for the Proposed Conditions Drainage Map.

Sub-Basin B2

This on-site sub-basin consists of an area of 16.00 acres, located in the south-central portion of the Site. Drainage flows overland from the north to the south where it flows offsite at DP 4. Improvements within this sub-basin include proposed public roads. This sub-basin includes an approx. $14,351 \mathrm{sq} \mathrm{ft}$ improved area of roadway that will not be receiving water quality treatment. A detailed discussion regarding water quality treatment has been included in Step-2 of the Four Step Process. The weighted imperviousness for this sub-basin is 9%. Runoff during the 5 -year and 100-year events are 7.82 cfs and 38.64 cfs respectively. It is anticipated in a $100-\mathrm{yr}$ storm event the total runoff for DP 4 will reduce from 69.09 cfs to 38.64 cfs , as the proposed roadway will cut off much of the upstream portion of the existing drainage basin and route those flows to a proposed full spectrum detention basin. As such there are no anticipated downstream impacts. Refer to the Appendix for the Proposed Conditions Drainage Map.

Sub-Basin B3

This on-site sub-basin consists of an area of 19.11 acres, located in the southeastern portion of the Site. Drainage flows overland from the northwest to southeast where it flows off site at DP 5. There are no proposed public improvements within this sub-basin, but single-family homes will be constructed and excluded the large lot exclusion I.7.1.B.5 and discussed in step 2 of the four-step process. The weighted imperviousness for this sub-basin is 7%. Runoff during the 5 -year and 100 -year events are 7.83 cfs and 42.71 cfs respectively. In the proposed conditions, it is anticipated in a 100-yr storm event the total runoff for DP 5A (DP 5 in proposed conditions) will reduce from 43.98 to 42.71, as such there are no anticipated downstream impacts. Refer to the Appendix for the Proposed Conditions Drainage Map.

Sub-Basin B6

This on-site sub-basin consists of an area of 53.31 acres, located in the central portion of the Site. Improvements within this sub-basin include proposed roads, roadside ditches, and culverts. Drainage flows overland from the northeast to the southwest where it flows into proposed roadside ditches, is conveyed through a proposed stormwater culvert at DP 8, and into sub-basin B8. From there, flows will follow path as described in sub-basin B8 where it will ultimately be captured in proposed full spectrum detention basin B8. The weighted imperviousness for this sub-basin is

Abstract

ring the 5 -year and 100-year events are 22.55 cfs and 106.95 cfs respectively. endix for the Proposed Conditions Drainage Map.

Sub-Basin B8

> -basin cat Please revise the proposed private ows overla full spectrum extended detention rements w to a temporary pond throughout in the $5-\mathrm{y}$ t the entire FDR, unless you are for the Pr planning to install the full spectrum ponds at this stage.

in the southern portion of the ; off site at DP 9. There are no viousness for this sub-basin is 1d 6.17 Cfs respectively. Refer

This on-site sub-basin consists of an area of 9.52 acres, located in the southern pdrtion of the Site. Drainage flows overland from the north to south where it is captured by proposed private full spectrum extended detention basin B8 at DP 10. It should be noted that sub-basin B8 accepts flows from sub-basin B6 at DP 8. Refer to sub-basin B6 for information regarding the proposed flows from sub-basin B6. Aside from the proposed extended detention basin there are no proposed improvements within this sub-basin. The weighted imperviousness for this sub-basin is 7%. Runoff during the 5 -year and 100 -year events are 4.22 cfs and 23.05 cfs respectively. In addition to the increase of imperviousness, sub-basin B8 is also accepting flows from sub-basin B 6 to the north. The combination of these factors results in a proposed increase of flows at DP 10 (DP 5 in existing conditions) from 43.40 cfs to 130.00 cfs. The additional runoff will be collected and released at less than historic rates via a proposed private full spectrum detention basin. Flows from this basin will exit into the Reata subdivision south of the Site via existing, vegetated natural drainage channel and outfall to an existing established vegetated area within the adjacent property south of the Site. The minor increase in flows will be mitigated by the proposed full spectrum detention basin B8 and refeased a lese than hictnrin ratoc Rofortn tho Appendix for the Proposed Conditions Drainage Marp. Increase from 43.40 cfs to 130 cfs is not a minor increase. Please ensure that the
proposed temporary sediment tral portion of The off-site sub-basin consists of an area of -4.0 the drainage study area. Drainage flows overle cantured bv an existina drainade culvert at DP 1 \& pond B8 has capacity to
is 25%. Purnof er to the Appendix tor the Proposed Conditions Drainage Map.
an area of 4.45 acres, located in the central portion of the drainage study area. Drainage flows overland from the north to south where it enters sub-basin A2 at DP 19 and follows the patterns described in sub-basin A2. The weighted imperviousness for this sub-basin is 7\%. Runoff during the 5-year and 100-year events are 2.10 cfs and 11.46 cfs respectively. Refer to the Appendix for the Proposed Conditions Drainage Map.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with El Paso County "Drainage Criteria Manual (DCM)" dated October 2018 ("the MANUAL"), El Paso County "Engineering Criteria Manual" ("the Engineering Manual"), Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014 ("the Colorado Springs MANUAL"), and Mile High Flood District (MHFD), Urban Drainage and Flood Control District

Site drainage is not significantly impacted by such constraints as utilities or existing development.
A Preliminary Drainage Report was completed for the overall Overlook Subdivision (SP238). This Final Drainage Report uses the Preliminary Drainage Report to assist with the drainage design for Filing No. 1.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the proposed drainage system per chapter 6 of the CRITERIA. Table 6-2 of the CRITERIA is the source for rainfall data for the 5 -year and 100-year design storm events. Design runoff was calculated using the Rational Method for developed conditions as established in the CRITERIA and MANUAL. Runoff coefficients for the proposed development were determined using Table 66 of the CRITERIA by calculating weighted impervious values for each specific site basin as outlined and shown in the Preliminary Drainage Report.

HYDRAULIC CRITERIA

Applicable design methods were utilized to analyze the proposed ponds, culverts, and existing drainage channels which includes the use of the UD-Detention spreadsheet, rational calculations spreadsheet, and FlowMaster, and UD-Culvert.

Proposed Drainage features on-site have been analyzed and sized for the following design storm events:

- Major Storm: 100-year Storm Event

Three temporary sediment basins are proposed in order to capture eroded or disturbed soil transported in storm runoff prior to discharge from the site. The temporary sediment basins will contain perforated outlet pipes with a release time of approximately 72 hours. The table below outlines the sediment basin sizing, which was based on MHFD temporary sediment basin sizing calculations

Temporary Sediment Basin ID	Tributary Basin Area (Acres)	TSB Volume (Ac-ft)
TSB A2	58.3	3.42
TSB B1	40.7	2.23
TSB B8	62.8	3.48

The existing natural drainage channels and proposed roadside ditches are designed to carry flows to the temporary sediment basins. The natural channels have varying bottom widths, slopes, and side slopes. The Project intends on using existing natural drainage channels to convey flow where appropriate. Natural channels through Filing No. 1 have been labeled and identified on the Proposed Drainage Map. Channel calculations and summary table have been provided in the Appendix. It is not anticipated channel upgrades or improvements will be required for this project. Proposed drainage easements have been proposed on the Early Grading Plans in locations where the natural channels convey flow a substantial amount of flow between properties.

Roadside ditches are provided along the proposed roadways to route flows to the proposed culverts. The roadside ditches are sized to convey the major event flow. The roadside ditched
have been designed to have an average depth of 3 feet, a v-ditch, a left-side slope of $3: 1$, and a right-side slope of $4: 1$. No channels were determined to have velocities above the allowable permissible velocities for grass lines channels. Roadside ditch calculations and summary table has been provided in the Appendix.

Culverts were sized to convey flows from the ditches and channels, underneath the sites paved roads. The proposed culverts range from 18 " to 36 " and have been designed to convey the $100-$ year storm event. Culvert calculations and summary table has been provided in the Appendix.

THE FOUR STEP PROCESS

The Project was designed in accordance with the four-step process to minimize adverse impacts of urbanization, as outlined in the El Paso County Engineering Manual for BMP selection as noted below:

Step 1. Employ Runoff Reduction Practices - The project is proposing a low-density residential development that will be designed to minimize the impact to the current existing terrain. Per Section I.7.1B of Appendix I of the ECM, the single-family residences fall under the large lot $\&$ Noted clarifying ervious area is less than 10% of the area. Homes are typically p natural terrail text added. ot and provide long distances for infiltration across area; howa area; howevet, roaustue umures antucrannels will be constructed to slow down the runoff velocity and reduce runoff peaks. The three prokosed detention ponds will be used to capture stormwater, provide water quality treatmed, and maintain flows discharging off site at or below historic levels. Clarify that 3 TSBs specifically will treat the areas not excluded with the large lot exclusions or the 20% exclusion.
Step 2. Provide a Water Quality Capture Volume - Permanent water quality measures and detention facilities will be necessary for the Project. Temporary water quality and erosion control measures will be provided during construction to prevent sediment laden water from discharging from the Site. Water quality measures are being used for all stormwater that contacts roadways. Per ECM Appendix I Section I.7.B.5: Large Lot Single Family exclusion, most of the proposed site will be excluded from water quality, lot imperviousness shall be limited to 10 percent or less. Per ECM Appendix I Section 1.7.C.1.a., 20% of the development site or less than 1 acre can be excluded from providing water quality. As mentioned, 0.99 acres ($43,197 \mathrm{sq} \mathrm{ft}$) of impervious area will not be able to be treated which is less than 20% of the overall site.

Step 3 Stabilize Drainageways- Stabilizing proposed roadside ditches, and channels by designing them with slopes that control the flow rates. Placement of riprap upstream and downstream of culverts to help reduce erosion of the roadside ditches. Existing drainage ways will be graded to reduce the velocity of the water to minimize erosion. The existing natural channels have been analyzed for width and velocity for the $100-\mathrm{yr}$ storm event. Easements are proposed to accommodate the full width of the major storm event.

Step 4. Implement Site Specific and Other Source Control BMPs - The erosion control construction BMPs of the Project were designed to reduce contamination. Source control BMPs include the use of vehicle tracking control, culvert protection, stockpile management, and stabilized staging areas.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed drainage patterns will match historic patterns. To maintain historic flows, three full spectrum detention ponds are being proposed and will capture and control the flows from the proposed development into a serious of channels and culverts. The Temporary Sediment Basins described in this report TSB A2, B1, B8 will be converted into the extended detention basins as part of the Final Drainage Report to be processed with the Final Plat application.

DRAINAGE FEES

FEES

The project is within the Upper Black Squirrel Drainage Basin (CHBS2000), La Vega Ranch Drainage Basin (CHBR0400), East Kiowa Creek Drainage Basin (KIKI0400), and Bijou Creek Drainage Basin (BIBIO200) all four of which are not part of the El Paso County Drainage Basin Fee Program. As such, no drainage fees are due with this Project.

SUMMARY

This report has been prepared in accordance with El Paso County stormwater criteria. It outlines the Site design for the 5 -year and 100-year storm events drainage system. The drainage design presented within this report conforms to the criteria presented in the MANUAL Additionally, as the proposed pond release rates are to be designed less than historic rates, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments.

REFERENCES

1. Final Drainage R Proposed pond replaced ing, hr. dated September 3, 200
2. El Paso County 3. Natural Resource been included in appendix. with temporary sediment basins. Detailed design has
ctober 31, 2018
21, 2023.
 (Volumes 1, 2 and 3), prepared by Whight-M\&Laughlin Engineers, June 2001, with latest revisions.
3. Flood Insurance Rate Map, El Paso County, Cplorado and Incorporated Areas, Map Number 08041C0350G, Effective Date December 7, 2018, prepared by the Federal Emergency Management Agency (FEMA).

Clarify, is this in the final condition? In the interim Early Grading condition the flows would likely be close to historic due to the lack of increase in impervious area. The TSBs associated with early grading do not have supporting calculations to support release rates. Tailor this summary to focus on early grading and clarify when statements apply to conformance in the final condition with the full spectrum detention that will eventually be constructed

APPENDIX

Kimley»Horn

APPENDIX A: VICINITY MAP

Kimley»Horn

MAP LEGEND

Area of Interest (AOI)	\square	C
\square Area of Interest (AOI)	\square	C/D
Soils \square		
Soil Rating Polygons \square		
$\square \mathrm{A}$	\square	Not rated or not available
A/D	Water Fe	ures
	\sim	Streams and Canals
B		
	Transpo	tion
B/D	H+	Rails
C	-	Interstate Highways
C/D	-	US Routes
D	\approx	Major Roads
Not rated or not available	\cdots	Local Roads
Soil Rating Lines	Backgro	
\cdots A		Aerial Photography
\cdots A/D		
\cdots		
\cdots B/D		
$\cdots \mathrm{C}$		
$\cdots \mathrm{C} / \mathrm{D}$		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \quad \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
$\square \mathrm{B} / \mathrm{D}$		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 20, Sep 2, 2022
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 9, 2021—Jun 12, 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	18.1	4.1\%
42	Kettle-Rock outcrop complex	B	135.4	30.8\%
66	Peyton sandy loam, 1 to 5 percent slopes	B	1.7	0.4\%
68	Peyton-Pring complex, 3 to 8 percent slopes	B	91.1	20.7\%
69	Peyton-Pring complex, 8 to 15 percent slopes	B	5.6	1.3\%
71	Pring coarse sandy loam, 3 to 8 percent slopes	B	171.8	39.0\%
72	Pring coarse sandy loam, 8 to 15 percent slopes	B	16.2	3.7\%
Totals for Area of Interest			440.0	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

APPENDIX C: HYDROLOGY

Kimley >> Horn		STANDARD FORM SF-1RUNOFF COEFFICIENTS - IMPERVIOUS CALCULATIONEXISTING CONDITIONS							DATE: 1/24/2024		
PROJECT NAME: Overlook PROJECT NUMBER: 196239003 CALCULATED BY: GKS CHECKED BY: KRK											
SOIL: B		$\underset{(>5 \mathrm{AC})}{\text { RESIDENTIAL }}$ (35 AC)	PASTUREMEADOW (SOLL GROUP A/B)	Pavement							
	LAND USE:	AREA	AREA	AREA	AREA						
	2-YEAR COEFF.	0.05	0.02	0.89							
	5 -Year coeff.	0.12	0.08	0.90							
	10-YEAR COEFF.	0.20	0.15	0.92							
	100-YEAR COEFF.	0.39	0.35	0.96							
	IMPERVIOUS \%	7\%	0\%	100\%							
$\begin{aligned} & \text { DESIGN } \\ & \text { BASII } \end{aligned}$	design POINT	$\begin{gathered} \text { RESIDENTIAL (}>5 \mathrm{AC}) \\ \frac{\text { AREA }}{(\mathrm{AC})} \\ \hline \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { PASTURE/MEADOW } \\ \text { (SOIL GROUP A/B) } \\ \frac{\text { AREA }}{\text { (AC) }} \\ \hline \end{array} \end{aligned}$	$\begin{gathered} \text { PAVEMENT } \\ \frac{\text { AREA }}{(\mathrm{AC})} \\ \hline \end{gathered}$	$\frac{\text { AREA }}{(\mathrm{AC})}$	$\begin{gathered} \text { TOTAL } \\ \text { AREA } \\ \text { (AC) } \end{gathered}$	C (2)	$\mathrm{C}(5)$	$\mathrm{C}(10)$	C(100)	$\operatorname{lmp} \%$
FDR Basins											
Al	1		18.28	1.64		19.92	0.09	0.15	0.21	0.40	8\%
A2	2		60.84	0.66		61.50	0.03	0.09	0.16	0.36	1\%
B1	3		45.75			45.75	0.02	0.08	0.15	0.35	0\%
B2	4		42.42			42.42	0.02	0.08	0.15	0.35	0\%
B3	5		25.42			25.42	0.02	0.08	0.15	0.35	0\%
B3A	5A		24.23			24.23	0.02	0.08	0.15	0.35	0\%
OS-A1	14		3.29	0.77		4.06	0.19	0.24	0.30	0.47	19\%
OS-A2	15	4.45				4.45	0.05	0.12	0.20	0.39	7\%
total-overall		4.45	220.23	3.07	0.00	227.75	0.03	0.09	0.16	0.36	1\%
		2\%	97\%	1\%	0\%	100\%					

Kimley»)Horn

STANDARD FORM SF-2

Time of Concentration
EXISTING CONDITIONS
DATE: 1/24/2024
PROJECT NAME: Overlook $\begin{array}{ll}\text { PROJECT NUMBER: } & 196239003 \\ \text { CALCUUATED BY: }\end{array}$
CALCULATED BY: GKS

SUB-BASINDATA			$\begin{gathered} \hline \text { INITIAL } \\ \text { TIME (} \left.\mathbf{T}_{\mathrm{i}}\right) \end{gathered}$			$\underset{\left(T_{t}\right)}{\text { TRAVEL TIME }}$					Tc CHECK (URBANIZED BASINS)					$\begin{gathered} \text { FINAL } \\ \text { Tc } \\ \hline \end{gathered}$
DESIGN BASIN (1)	$\begin{gathered} \hline \text { AREA } \\ \text { Ac } \\ \text { (2) } \\ \hline \end{gathered}$	C5 (3)	 LENGTH Ft (4)	SLOPE \% (5)	$\begin{gathered} \hline T_{i} \\ \text { Min. } \\ (\mathbf{6}) \end{gathered}$	LENGTH Ft. (7)	$\begin{gathered} \text { SLOPE } \\ \% \\ (8) \\ \hline \end{gathered}$	C_{v} (9)	$\begin{gathered} \hline \text { VEL } \\ \text { fps } \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{T}_{\mathrm{t}} \\ \text { Min. } \\ (\mathbf{1 2)} \end{gathered}$	$\begin{gathered} \text { COMP. } \\ \text { tc } \\ (13) \\ \hline \end{gathered}$	TOTAL LENGTH (14)	TOTAL SLOPE (15)	TOTAL IMP. (16)	$\begin{gathered} \hline \text { Tc } \\ \text { Min. } \\ (17) \end{gathered}$	Min.
FDR Basins																
A1	19.92	0.15	300	18.0\%	11.5	2,066	5.7\%	2.5	0.6	57.7	69.2	2366	7.3\%	8\%	23.1	23.1
A2	61.50	0.09	300	18.0\%	12.3	3,677	5.7\%	2.5	0.6	102.7	114.9	3977	6.6\%	1\%	32.1	32.1
B1	45.75	0.08	300	25.0\%	11.1	2,577	6.5\%	2.5	0.6	67.4	78.5	2877	8.4\%		26.0	26.0
B2	42.42	0.08	300	6.9\%	17.0	2,347	10.3\%	2.5	0.8	48.8	65.8	2647	9.9\%		24.7	24.7
B3	25.42	0.08	300	23.0\%	11.4	1,968	9.9\%	2.5	0.8	41.7	53.1	2268	11.6\%		22.6	22.6
B3A	24.23	0.08	300	20.0\%	11.9	1,500	10.0\%	2.5	0.8	31.6	43.6	1800	11.7\%		20.0	20.0
OS-A1	4.06	0.24	300	5.0\%	16.1	161	5.0\%	2.5	0.6	4.8	20.9	461	5.0\%	19\%	12.6	12.6
OS-A2	4.45	0.12	250	10.0\%	13.2			2.5			13.2	250	10.0\%	7\%	11.4	11.4

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L_{i}}}{S_{0}^{0.33}} \quad t_{c}=\frac{L}{180}+10 \quad V=C_{v} S_{w}{ }^{0.5}
$$

Note: Conveyance coefficient from Table 6-7 of DCM

Kimley»"Horn

PROJECT NAME: Overlook PROJECT NUMBER: 196239003 CALCULATED BY: GKS
CHECKED BY: KRK

		DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			REMARKS
			$\begin{aligned} & \mathbb{4} 0 \\ & \frac{1}{4} \\ & \frac{3}{4} \end{aligned}$			类	$-\frac{\tilde{G}}{\tilde{E}}$	$0 \stackrel{\frac{0}{6}}{6}$	$\begin{aligned} & \text { 免 } \\ & \text { gy } \end{aligned}$	$\underset{\sim}{\underset{\sim}{*}} \underset{\sim}{\mathscr{E}}$	$-\underset{i}{E} \mid$	$0 \stackrel{\frac{0}{e}}{6}$	$\frac{1}{6} \underset{6}{6}$					${\underset{y y}{3}}_{\substack{\pi}}$	$\begin{aligned} & \text { F } \\ & 0 \\ & 0 \\ & y y y \\ & y \end{aligned}$	$=\widehat{B}$	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
	1	A1	19.92	0.09	23.14	1.83	2.30	4.19													
	2	A2	61.50	0.03	32.09	1.80	1.91	3.44													
	3	B1	45.75	0.02	25.98	0.92	2.16	1.98													
	4	B2	42.42	0.02	24.71	0.85	2.22	1.88													
	5	B3	25.42	0.02	22.60	0.51	2.32	1.18													
	5A	B3A	24.23	0.02	20.00	0.48	2.47	1.20													
	14	OS-A1	4.06	0.19	12.56	0.75	3.02	2.27													
	15	OS-A2	4.45	0.05	11.39	0.22	3.14	0.70													

Kimley»»Horn PROJECT NAME：Overlook PROJECT NUMBER： 196239003 CALCULATED BY：GKS CHECKED BY：KRK		STANDARD FORM SF－3 STORM DRAINAGE DESIGN－RATIONAL METHOD 5 YEAR EVENT																			
		DIRECT RUNOFF							Existing conditions				STREET					DATE：1／24／2024			REMARKS
									TOTAL RUNOFF						PIPE			TRAVEL TIME			
	$\begin{aligned} & Z_{0}^{2} \\ & \text { vin } \\ & \text { yonc } \end{aligned}$		$\begin{aligned} & 40 \\ & 4 \\ & 4 \end{aligned}$		CBy	官	$-\underset{\text { E }}{\text { E }}$	$0 \frac{0}{e}$	黹	$\underset{\sim}{\underset{\sim}{*}} \underset{\sim}{\overparen{E}}$	－	$0 \stackrel{\frac{0}{6}}{6}$				$\frac{\pi}{2}$		$\sum_{i=1}^{T} \cong$		$=$ 回	
（1）	（2）	（3）	（4）	（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）	（14）	（15）	（16）	（17）	（18）	（19）	（20）	（21）	（22）
	1	A1	19.92	0.15	23.14	2.94	2.87	8.43													
	2	A2	61.50	0.09	32.09	5.46	2.38	13.00													
	3	B1	45.75	0.08	25.98	3.66	2.70	9.87													
	4	B2	42.42	0.08	24.71	3.39	2.77	9.41													
	5	B3	25.42	0.08	22.60	2.03	2.91	5.91													
	5A	B3A	24.23	0.08	20.00	1.94	3.09	5.99													
	14	OS－A1	4.06	0.24	12.56	0.96	3.79	3.62													
	15	OS－A2	4.45	0.12	11.39	0.53	3.93	2.10													

$$
I_{5}=-1.5 \ln \left(t_{c, \text { min }}\right)+7.583
$$

Kimley»)Horn

PROJECT NAME: Overlook
PROJECT NUMBER: 196239003
CALCULATED BY: GKS
CHECKED BY: KRK

EXISTING CONDITIONS RATIONAL CALCULATIONS SUMMARY						
DESIGN POINT	TRIBUTARY BASINS	TRIBUTARY AREA (AC)	CFS			
	Q2	Q100	\% IMPERVIOUS			

FDR Basins

1	A1	19.92	4.19	8.43	38.41	8%
2	A2	61.50	3.44	13.00	87.58	1%
3	B1	45.75	1.98	9.87	72.48	0%
4	B2	42.42	1.88	9.41	69.09	0%
5	B3	25.42	1.18	5.91	43.40	0%
5 A	B3A	24.23	1.20	5.99	43.98	0%
14	OS-A1	4.06	2.27	3.62	12.02	19%
15	OS-A2	4.45	0.70	2.10	11.46	7%

ON-SITE BASIN TOTAL

BASIN A TOTAL	81.42	7.63	21.43	125.99	3%
BASIN B TOTAL	137.82	6.24	31.18	228.94	0%
ON-SITE TOTAL	$\mathbf{2 1 9 . 2 4}$	13.87	52.61	354.92	$\mathbf{1} \%$
OFF-SITE BASIN TOTAL	8.51	2.97	5.72	23.48	13%
OFF-SITE BASIN A	8.51	2.97	5.72	$\mathbf{2 3 . 4 8}$	$\mathbf{1 3} \%$
OFF-SITE TOTAL	$\mathbf{2 2 7 . 7 5}$	$\mathbf{1 6 . 8 4}$	58.33	$\mathbf{3 7 8 . 4 1}$	$\mathbf{1 \%}$
SITE TOTAL					

Kimley >> Horn			STANDARD FORM SF-2 Time of Concentration													
PROJECT NAME: Overlook PROJECT NUMBER: 196239003 CALCULAED BY: GKS CHECKED BY: KRK			PROPOSED CONDITIONS DATE: 1/24/2024													
$\begin{gathered} \hline \text { SUB-BASIN } \\ \text { DATA } \end{gathered}$			$\begin{gathered} \hline \text { INITIAL } \\ \text { TIME (} \left.\mathbf{T}_{\mathrm{i}}\right) \end{gathered}$			$\begin{gathered} \text { TRAVEL TIME } \\ \left(\mathbf{T}_{t}\right) \end{gathered}$					$\begin{gathered} \hline \text { Tc CHECK } \\ \text { (URBANIZED BASINS) } \end{gathered}$					$\begin{gathered} \hline \text { FINAL } \\ \text { Tc } \end{gathered}$
$\begin{aligned} & \hline \text { DESIGN } \\ & \text { BASIN } \end{aligned}$ (1)	$\begin{gathered} \hline \text { AREA } \\ \text { Ac } \\ \text { (2) } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{C} 5 \\ & (3) \end{aligned}$	LENGTH Ft (4)	$\begin{gathered} \text { SLOPE } \\ \% \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{T}_{\mathbf{i}} \\ \text { Min. } \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LENGTH } \\ \text { Ft. } \\ \hline \end{gathered}$	$\begin{gathered} \text { SLOPE } \\ \% \\ (8) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{C}_{v} \\ & (9) \end{aligned}$	$\begin{gathered} \hline \text { VEL } \\ \text { fps } \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} T_{T_{t}} \\ \text { Min. } \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { COMP. } \\ \text { tc } \\ (13) \\ \hline \end{gathered}$	TOTAL LENGTH (14)	TOTAL SLOPE (15)	$\begin{gathered} \text { TOTAL } \\ \text { IMP. } \\ \text { (16) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Tc} \\ \text { Min. } \\ (17) \end{gathered}$	Min.
FDR Basins																
A1	19.55	0.19	300	18.0\%	11.1	2,066	5.0\%	2.5	0.6	61.6	72.7	2366	6.6\%	15\%	23.1	23.1
A2	58.27	0.16	300	18.0\%	11.4	4,100	4.0\%	2.5	0.5	136.7	148.1	4400	5.0\%	12\%	34.4	34.4
B1	40.74	0.14	300	8.0\%	15.2	2,000	4.5\%	2.5	0.5	62.9	78.1	2300	5.0\%	10\%	22.8	22.8
B2	16.00	0.14	300	7.0\%	16.0	500	6.0\%	2.5	0.6	13.6	29.6	800	6.4\%	9\%	14.4	14.4
B3	19.11	0.12	300	21.0\%	11.3	800	8.0\%	2.5	0.7	18.9	30.1	1100	11.5\%	7\%	16.1	16.1
B6	53.31	0.14	300	22.0\%	10.8	1,900	3.0\%	2.5	0.4	73.1	84.0	2200	5.6\%	10\%	22.2	22.2
B7	2.46	0.12	300	6.0\%	17.1	100	6.0\%	2.2	0.5	3.1	20.2	400	6.0\%	7\%	12.2	12.2
B8	9.52	0.12	300	6.0\%	17.1	300	10.0\%	2.5	0.8	6.3	23.5	600	8.0\%	7\%	13.3	13.3
OS-A1	4.06	0.27	300	5.0\%	15.5	161	5.0\%	2.5	0.6	4.8	20.3	461	5.0\%	25\%	12.6	12.6
OS-A2	4.45	0.12	250	10.0\%	13.2			2.5			13.2	250	10.0\%	7\%	11.4	11.4

Note: Rainfall intensity from Figure 6-5 IDF Equations
$I_{100}=-2.52 \ln \left(t_{c, \min }\right)+12.735$

Kimley»)Horn

PROJECT NAME: Overlook
PROJECT NUMBER: 196239003
CALCULATED BY: GKS CHECKED BY: KRK

PROPOSED CONDITIONS RATIONAL CALCULATIONS SUMMARY						
DESIGN POINT	TRIBUTARY BASINS	TRIBUTARY AREA (AC)	CFS			\% IMPERVIOUS
			Q2	Q5	Q100	

PDR Basins

1	A1	19.55	5.41	10.41	41.24	15%
2	A2	58.27	9.71	20.99	92.96	12%
3	B1	40.74	6.97	16.77	80.40	10%
4	B2	16.00	3.10	7.82	38.64	9%
5	B3	19.11	2.61	7.83	42.71	7%
8	B6	53.31	9.52	22.55	106.95	10%
9	B7	2.46	0.38	1.13	6.17	7%
10	B8	9.52	1.41	4.22	23.05	7%
18	OS-A1	4.06	2.57	4.12	12.86	25%
19	OS-A2	4.45	0.70	2.10	11.46	7%

ON-SITE BASIN TOTAL

BASIN A TOTAL	77.82	15.12	31.40	134.20	12%
BASIN B TOTAL	141.14	23.98	60.32	297.91	9%
ON-SITE TOTAL	$\mathbf{2 1 8 . 9 6}$	$\mathbf{2 3 . 9 8}$	60.32	$\mathbf{2 9 7 . 9 1}$	$\mathbf{1 0 \%}$
OFF-SITE BASIN TOTAL	8.51	3.27	6.22	24.32	15%
OFF-SITE BASIN A	$\mathbf{8 . 5 1}$	$\mathbf{3 . 2 7}$	$\mathbf{6 . 2 2}$	$\mathbf{2 4 . 3 2}$	$\mathbf{1 5 \%}$
OFF-SITE TOTAL	$\mathbf{2 2 7 . 4 7}$	$\mathbf{2 7 . 2 5}$	$\mathbf{6 6 . 5 4}$	$\mathbf{3 2 2 . 2 3}$	$\mathbf{1 0 \%}$
SITE TOTAL					

Increment $=$									
Stage - Storage	Stage (t)	$\begin{array}{\|l\|l} \hline \text { Optional } \\ \text { overide } \\ \text { Stage (ft) } \end{array}$	$\begin{gathered} \text { Length } \\ (\mathrm{ft}) \end{gathered}$	$\underbrace{\text { c) }}_{\substack{\text { width } \\(t)}}$	Area	$\begin{aligned} & \text { Optional } \\ & \text { Overide } \\ & \text { Area }\left(t^{2}\right)^{\prime} \end{aligned}$	Area (acre)	($\begin{gathered}\text { Volume } \\ \left(t t^{3}\right)\end{gathered}$	(${ }_{\text {Volume }}^{\text {(actt) }}$
Top of Micropool									
[
-									

daren									
Stage - Storage Descrition	Stage	$\begin{array}{\|l\|l\|} \hline \text { Optional } \\ \text { Override } \\ \text { Stage (ft) } \end{array}$	$\begin{gathered} \text { Length } \\ (\mathrm{ft}) \end{gathered}$	$\underset{\text { Width }}{\text { (tt) }}$	Area $\left(t^{2}\right)$	$\begin{aligned} & \text { Optional } \\ & \text { Override } \\ & \text { Area (} \mathrm{ft}^{2} \text {) } \end{aligned}$	Area	(Volume	(${ }_{\text {Volume }}^{\text {(actt) }}$
Top of Micropool									

MHFD-Detention, Version 4.06 (July 2022)															
Project: Overlook B1 Prelim Pond Sizing Basin ID:															
			Depth Increment $=$												
			Stage - Storage Description	$\begin{gathered} \text { Stage } \\ (\mathrm{tt}) \end{gathered}$	$\begin{aligned} & \text { Override } \\ & \text { Stage (ft) } \end{aligned}$	$\begin{gathered} \text { Length } \\ \text { (ft) } \end{gathered}$	$\begin{gathered} \text { Width } \\ (\text { (t) } \end{gathered}$	Area $\left(t t^{2}\right)$	$\begin{array}{\|c} \text { Override } \\ \text { Area }\left(\mathrm{t}^{2}\right) \end{array}$	$\begin{gathered} \text { Area } \\ \text { (acre) } \end{gathered}$	$\begin{gathered} \text { Volume } \\ \left(\left(t^{3}\right)\right. \end{gathered}$	$\begin{gathered} \text { Volume } \\ \text { (ac-ft) } \end{gathered}$			
Watershed Information						Top of Micropool	..	0.00	--	--	--	14,485	0.333		
$\begin{aligned} \text { Selected BMP Type } & = \\ \text { Watershed Area } & = \\ & =\end{aligned}$	acres			..	1.00	..	-	-	16,343	0.375	15,414	0.354			
				-	2.00	-	-	-	18,301	0.420	32,736	0.752			
	ft			-	3.00	.	--	-	20,359	0.467	52,066	1.195			
				\cdots	4.00	\cdots	\cdots	\cdots	22,519	0.517	73,505	1.687			
Watershed Length to Centroid $=$ Watershed Slope $=$	ft / t			-	5.00	\cdots	-	-	24,778	0.569	97,153	2.230			
Watershed Imperviousess $=$	10.00\% percent			.-		..	.-	.-							
Percentage Hydrologic Soil Group $\mathrm{A}=$	0.0\% percent			-		..	.-	..							
Percentage Hydrologic Soil Group $\mathrm{B}=$	percent			-		\cdots	-	\cdots							
Percentage Hydrologic Soil Groups C/D $=$	${ }_{\text {a }}^{\text {percent }}$			-		..	\cdots	.-							
Target wocv Drain Time $=$				\cdots		\cdots	-	\cdots							
Location for 1-hr Rainfall Depths = Denver - Capitol Builiding				-		-	--	-							
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.				\cdots		\cdots	\cdots	-							
		Optional User Overrides		-		--	-	.-							
			-		.-	.-	.-								
Water Quality Capture Volume (WoCV) $=$	acre-feet		0.048 acre-feet		\cdots		-.	-	-						
Excess Urban Runoff Volume (EURV) $=$ 2-yr Runoff Volume ($\mathrm{P} 1=1.19 \mathrm{in}$.) $=$ 5 -yr Runoff Volume ($\mathrm{Pl}=1.5 \mathrm{in}$.) =	acre-feet	acre-feet		.-		..	-	-							
				-		..	.-	-							
	acre-feet	1.50 inches		.-		.-	-	-							
10-yr Runoff Volume ($\mathrm{P} 1=1.75$ in.) $=$ 25 -yr Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}.)=$	acre-feet	1.75 inches		-		-	-	-							
	acre-feet	2.00 inches		.-		\cdots	-	\cdots							
$50-\mathrm{yr}$ Runoff Volume ($\mathrm{Pl}=2.25 \mathrm{in}$.) $=$ 100 -yr Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$.) $=$ 500 -yr Runoff Volume ($\mathrm{P} 1=3.14 \mathrm{in}$.) $=$	acre-feet	2.25 inches		-		-	-	-							
	acre-feet acre-feet	2.52 inches		-		.-	-	-							
	7.066 acre-feet	inches		-		-	-	-							
500 -yr Runoff Volume ($\mathrm{P}=3.14 \mathrm{in}$. $)=$ Approximate 2 -yr Detention Volume $=$	acre-feet			.-		\cdots	.-	.-							
Approximate 5.yr Detention Volume $=$	acre-feet			.-		-	-	-							
Approximate 10-yr Detention Volume $=$	acre-feet			..		-	--	-							
Approximate 25-yr Detention Volume $=$	acre-feet			..		-	-	\cdots							
Approximate 100 -yr Detention Volume $=$				\cdots		.	-	..							
	acre-feet			.		.-	.-	.							
				-		.-	.-	.-							
$\frac{\text { Define Zones and Basin Geometry }}{\text { Zone } 1 \text { Volume (WQCV) })}=$	acre-feet			-		\cdots	-	\cdots							
				-		\cdots	\cdots	.-							
Zone 2 Volume (EURV - Zone 1) = Zone 3 Volume (100 -year - Zones $1 \& 2$) =	acre-feet			.		-	.-	-							
	acre-feet acre-feet			-		-	-	\cdots							
Total Detention Basin Volume $=$ Initial Surcharge Volume (ISV) = Initial Surcharge Depth (ISD) $=$				-		\cdots	-	-							
	$\mathrm{arce-feet}^{\text {a }}$			-		-	-	\cdots							
	ft			\cdots		-	-	-							
Total Available Detention Depth $\left(\mathrm{H}_{\text {total }}\right)=$ Depth of Trickle Channel $\left(H_{T C}\right)=$ Slope of Trickle Channel $\left(S_{T C}\right)=$ Slopes of Main Basin Sides $\left(\mathrm{S}_{\text {main }}\right)=$ Basin Length-to-Width Ratio $\left(R_{L / W}\right)=$	ft			-		\cdots	-	\cdots							
	$\mathrm{ft}_{\mathrm{tt} / \mathrm{t}}$			\cdots		-	-	-							
	$f_{\text {ft/t }}^{\text {H:v }}$			-		-	-	-							
	$\mathrm{H}: \mathrm{v}$			-		-	\cdots	\cdots							
				.-		-	-	-							
Basin Length-to-Width Ratio $\left(R_{L / W}\right)=$				-		\cdots	-	-							
	$7 \mathrm{t}^{2}$			-		-	-	-							
Surcharge Volume Length (LIsv) =	${ }^{\text {t }}$			-		-	-	-							
Surcharge Volume Width ($W_{\text {L5V }}$) $=$	t			-		\cdots	-	-							
Depth of Basin Floor (Hflook) =	${ }^{\text {t }}$..		-	.-	-							
Length of Basin Floor (Lfiook) $=$	ft			-		-	-	-							
Width of Basin Floor ($\left.\mathrm{W}_{\text {flook }}\right)=$..		-	.-	.-							
Area of Basin Floor (Aflion) $=$	ft^{2}			..		-	.-	.-							
Volume of Basin Floor ($\left.\mathrm{V}_{\text {FLIook }}\right)=$	ft^{3}			\cdots		\cdots	\cdots	\cdots							
Depth of Main Basin ($\mathrm{H}_{\text {man }}$) $=$	t			-		-	-	-							
Length of Main Basin (Luman) =				-		-	-	-							
Width of Main Basin ($\mathrm{W}_{\text {Matw }}$) $=$	ft			-		.-	.-	.-							
Area of Main Basin (Aman) $=$	ft^{2}			.-		-	-	-							
Volume of Main Basin $\left(V_{\text {Man }}\right)=$	ft^{3} acre-feet			\cdots		\cdots	-	\cdots							
Calculated Total Basin Volume (V total $^{\text {a }}=$				-		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				.		.-	-	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				\cdots		\cdots	\cdots	\cdots							
				-		-							

Project: Overlook B8 Preliminary Pond Sizing

Deth Increment									
Stage - Storage Description	$\begin{gathered} \text { Stage } \\ (\mathrm{tt}) \end{gathered}$	$\left.\begin{array}{\|c\|c\|} \hline \text { Optional } \\ \text { Overide } \\ \text { Stage (t) } \end{array}\right)$	$\begin{gathered} \text { Length } \\ \text { ((t) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Width } \\ (\mathrm{it}) \end{gathered}$	$\begin{aligned} & \text { Area a } \\ & \left(t^{2}\right) \end{aligned}$	$\left.\begin{array}{\|c\|c\|} \hline \text { Optional } \\ \text { override } \\ \text { Area }\left(\mathrm{ft}^{2}\right. \end{array}\right)$	$\begin{aligned} & \text { Area } \\ & \text { (acre) } \end{aligned}$	$\begin{gathered} \text { Volume } \\ \left(\mathrm{ft}^{3}\right) \end{gathered}$	($\begin{gathered}\text { Volume } \\ (\text { actut) }\end{gathered}$
Top of Micropool	--	0.00	--	--	--	13,730	0.315		
	-	1.00	--	-	-	17,427	0.400	15,578	0.358
	\cdots	2.00	-	-	-	21,230	0.487	34,907	0.801
	\cdots	3.00	\cdots	\cdots	--	25,133	0.577	58,088	1.334
	\cdots	4.00	-	-	\cdots	29,138	0.669	85,224	1.956
	\cdots	5.00	.-	-	.-	33,243	0.763	116,414	2.673
	.-	6.00-	37,448	0.860	151,759	3.484
	-	-				
	-		.-	..	-				
	-		.-	.-	.-				
	-	-				
	\cdots		-	-	-				
	-		.-	.-	-				
	-		-	-	.-				
	-		-	--	--				
	-		-	-	-				
	-		-	-	-				
	.-		.-	.-	.-				
	.-		.-	.-	.-				
	.-		.-	.-	.-				
	.-		.-	.-	..				
	.-		.-	.-	.-				
	-		.-	.-	-				
	\cdots		\cdots	\cdots	\cdots				
	-		-	-	-				
	-		.-	.-	.-				
	-		\cdots	\cdots	-				
	-		..	-	.-				
	.-		-.	.-	.-				
	.-		.-	.-	.-				
	-		.-	-	-				
	-		-	-	-				
	-		.-	.-	.-				
	-		-	-	-				
	\cdots		\cdots	\cdots	\cdots				
	-		-	.-	.-				
	\cdots		-	-	-				
	-		-	-	-				
	-		-	.-	.-				
	-		-	-	-				
	-		-	-	-				
	-		.-	.-	.-				
	\cdots		\cdots	\cdots	\cdots				
	-		-	-	-				
	-		-	-	-				
	-		.-	-	-				
	-		-	-	-				
	\cdots		--	--	--				
	-		-	-	-				
	-		-	.-	.-				
	-		.-	.-	.-				
	-		.-	.-	.-				
	-		-	-	-				
	-		-	-	-				
	-		-	.-	-.				
	-		-	-	-				
	..		.-	.-	.-				
	..		.-	.-	.-				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	-		\cdots	.-	.-				
	\cdots		\cdots	\cdots	..				
	\cdots		\cdots	\cdots	\cdots				
	-		-				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	.-	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		.-	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				

Natural Channels Flow Summary							
Channel ID	Contributing Basins	Tributary Area (ac)	Basin Area (ac)	Basin 100-yr Flow (cfs)	Channel 100-yr Flow (cfs)	Velocity (ft/ s)	Normal Depth (ft)
A1-1	A1	19.55	19.55	41.24	41.24	2.62	0.48
A2-1	A2, OS-A2	32.76 (A2) +3.25 (OS-A2)	58.72 (A2) +4.45 (OS-A2)	92.96 (A2) +11.46 (OS-A2)	60.42	3.82	0.59
A2-2	A2	9.06	58.27	92.96	14.45	2.48	0.18
A2-3	A2	11.45	58.27	92.96	18.27	3.09	0.40
A2-4	A2	1.70	58.27	92.96	2.71	1.49	0.02
A2-5	A2, B1	7.75 (A2) +3.44 (B1)	58.72 (A2) + 40.74 (B1)	92.96 (A2) +80.40 (B1)	19.06	2.17	0.30
A2-6	A2, B1	2.46 (A2) +3.44 (B1)	58.72 (A2) + 40.74 (B1)	92.96 (A2) +80.40 (B1)	10.72	1.86	0.18
B1-1	B1	10.19	40.74	80.40	20.11	2.71	0.28
B1-2	B1	14.29	40.74	80.40	28.20	3.76	0.24
B1-3	B1	13.43	40.74	80.40	26.50	3.46	0.47
B1-4	B1	4.03	40.74	80.40	7.95	2.52	0.02
B1-5	B1	2.54	40.74	80.40	5.01	1.68	0.11
B1-6	B1	2.72	40.74	80.40	5.37	1.84	0.17
B2-1	B2	4.92	16.00	38.64	11.88	2.69	0.25
B2-2	B2	9.77	16.00	38.64	23.59	3.54	0.29
B6-1	B6	11.58	53.31	106.95	23.23	6.67	0.29
B7-1	B7	2.25	2.46	6.17	5.64	1.91	0.23
B8-1 B8, B6		3.32 (B8) +53.31 (B6)	9.52 (B8) +53.31 (B6)	23.05 (B8) +106.95 (B6)	114.99	5.39	0.63
		Noted protec noted	erosion tion now in table		vide tection for B6-1 as above the elocity in hapter 10, Please hannels y erosion needed.		

Worksheet for A1-1

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Channel Slope	$0.015 \mathrm{ft} / \mathrm{ft}$
Discharge	41.24 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+35$	
	$0+64$	
	$1+00$	
		31.00
		36.00
		41.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,41.00)$	$(0+35,36.00)$	0.040
$(0+35,36.00)$	$(0+64,36.00)$	0.040
$(0+64,36.00)$	$(1+00,41.00)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method Method
Pavlovskii's Channel Weighting Method Method	Pavlovskii's Method
Closed Channel Weighting	
Method	
Results	5.8 in
Normal Depth	0.040
Roughness Coefficient	36.48 ft
Elevation	36.0 to 41.0
Elevation Range	ft
Flow Area	15.7 ft 2
Wetted Perimeter	36.0 ft
Hydraulic Radius	5.3 in
Top Width	35.89 ft
Normal Depth	5.8 in
Critical Depth	4.6 in
Critical Slope	$0.033 \mathrm{ft} / \mathrm{ft}$
Velocity	$2.62 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.11 ft
Specific Energy	0.59 ft
Froude Number	0.698
	Bentley Systems, Inc. Haestad Methods Solution
Crainage Channels.fm8	27 Siemon Company Drive Suite 200 W
$1 / 17 / 2024$	Watertown, CT 06795 USA +1-203-755-1666

Worksheet for A1-1

Results	Subcritical
Flow Type	
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	$0.00 \mathrm{ft} / \mathrm{s}$
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Upstream Velocity	5.8 in
Normal Depth	4.6 in
Critical Depth	$0.015 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.033 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Worksheet for A2-1

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Channel Slope	$0.028 \mathrm{ft} / \mathrm{ft}$
Discharge	60.42 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+66$	
	$0+87$	
	$1+25$	47.00
		42.00
		42.00
		47.75

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,47.00)$	$(0+66,42.00)$	0.040
$(0+66,42.00)$	$(0+87,42.00)$	0.040
$(0+87,42.00)$	$(1+25,47.75)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method Method
Pavlovskii's Channel Weighting Method Method	Pavlovskii's Method
Closed Channel Weighting	
Method	
Results	7.1 in
Normal Depth	0.040
Roughness Coefficient	42.59 ft
Elevation	42.0 to 47.8
Elevation Range	ft
Flow Area	15.8 ft 2
Wetted Perimeter	32.7 ft
Hydraulic Radius	5.8 in
Top Width	32.67 ft
Normal Depth	7.1 in
Critical Depth	6.9 in
Critical Slope	$0.030 \mathrm{ft} / \mathrm{ft}$
Velocity	$3.82 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.23 ft
Specific Energy	0.82 ft
Froude Number	0.969
	Bentley Systems, Inc. Haestad Methods Solution
Crainage Channels.fm8	27 Siemon Company Drive Suite 200 W
1/17/2024	Watertown, CT 06795 USA +1-203-755-1666

Worksheet for A2-1

Results	
Flow Type	Subcritical
GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N / A
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	7.1 in
Critical Depth	6.9 in
Channel Slope	$0.028 \mathrm{ft} / \mathrm{ft}$
Critical Slope	$0.030 \mathrm{ft} / \mathrm{ft}$

Bentley Systems, Inc. Haestad Methods Solution

Worksheet for A2-2

Project Description	Manning Formula
Friction Method	Normal Depth
Solve For	
Input Data	$0.046 \mathrm{ft} / \mathrm{ft}$
Channel Slope	14.45 cfs
Discharge	

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+43$	
	$0+72$	
	$1+25$	
		16.00
		16.00
		20.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,23.00)$	$(0+43,16.00)$	0.040
$(0+43,16.00)$	$(0+72,16.00)$	0.040
$(0+72,16.00)$	$(1+25,20.00)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method Method
Pavlovskii's Channel Weighting Method Method	Pavlovskii's Method
Closed Channel Weighting	
Method	
Results	2.2 in
Normal Depth	0.040
Roughness Coefficient	16.18 ft
Elevation	16.0 to 23.0
Elevation Range	ft
Flow Area	5.8 ft 2
Wetted Perimeter	33.3 ft
Hydraulic Radius	2.1 in
Top Width	33.30 ft
Normal Depth	2.2 in
Critical Depth	2.3 in
Critical Slope	$0.041 \mathrm{ft} / \mathrm{ft}$
Velocity	$2.48 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.10 ft
Specific Energy	0.28 ft
Froude Number	1.048
	Bentley Systems, Inc. Haestad Methods Solution
Crainage Channels.fm8	27 Siemon Company Drive Suite 200 W
$1 / 17 / 2024$	Watertown, CT 06795 USA +1-203-755-1666

Worksheet for A2-2

Results	
Flow Type	Supercritical
GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N / A
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	2.2 in
Critical Depth	2.3 in
Channel Slope	$0.046 \mathrm{ft} / \mathrm{ft}$
Critical Slope	$0.041 \mathrm{ft} / \mathrm{ft}$

Bentley Systems, Inc. Haestad Methods Solution

Worksheet for A2-3

Project Description	
Friction Method	Manning Formula Solve For
Normal Depth	
Input Data	
Channel Slope	$0.030 \mathrm{ft} / \mathrm{ft}$
Discharge	18.27 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+51$	
	$0+63$	
	$0+98$	
		4.00
		4.00
		9.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,11.00)$	$(0+51,4.00)$	0.040
$(0+51,4.00)$	$(0+63,4.00)$	0.040
$(0+63,4.00)$	$(0+98,9.00)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method
Method Open Channel Weighting Method Cloved Channel Weighting Method	
Pavlovskii's	
Mesults	
Normal Depth	4.8 in
Roughness Coefficient	0.040
Elevation	4.40 ft
Elevation Range	4.0 to 11.0 ft
Flow Area	$5.9 \mathrm{ft}{ }^{2}$
Wetted Perimeter	17.7 ft
Hydraulic Radius	4.0 in
Top Width	17.69 ft
Normal Depth	4.8 in
Critical Depth	4.6 in
Critical Slope	$0.034 \mathrm{ft} / \mathrm{ft}$
Velocity	$3.09 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.15 ft
Specific Energy	0.55 ft
Froude Number	0.942
Flow Type	Subcritical

	Bentley Systems, Inc. Haestad Methods Solution	Center
Drainage Channels.fm8	27 Siemon Company Drive Suite 200 W	FlowMaster
$1 / 17 / 2024$	Watertown, CT 06795 USA +1-203-755-1666	Page 1 of 2

Worksheet for A2-3

GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	$0.00 \mathrm{ft} / \mathrm{s}$
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Upstream Velocity	4.8 in
Normal Depth	4.6 in
Critical Depth	$0.030 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.034 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Bentley Systems, Inc. Haestad Methods Solution

Worksheet for A2-4

Project Description	Manning
Friction Method	Formula
Solve For	Normal Depth
Input Data	
Channel Slope	$0.029 \mathrm{ft} / \mathrm{ft}$
Discharge	2.71 cfs

Section Definitions

Station (ft)	Elevation (ft)		
	$0+15$		14.00
	$0+32$		12.75
	$0+47$		12.50
	$0+98$		18.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+15,14.00)$	$(0+32,12.75)$	0.040
$(0+32,12.75)$	$(0+47,12.50)$	0.040
$(0+47,12.50)$	$(0+98,18.00)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method
Method Open Channel Weighting Method	Pavlovkkii's Closed Channel Weighting Pavlovskii's Method
Method	
Results	
Normal Depth	2.7 in
Roughness Coefficient	0.040
Elevation	12.73 ft
Elevation Range	12.5 to 18.0
Flow Area	ft
Wetted Perimeter	$1.8 \mathrm{ft}{ }^{2}$
Hydraulic Radius	15.9 ft
Top Width	1.4 in
Normal Depth	15.86 ft
Critical Depth	2.7 in
Critical Slope	2.5 in
Velocity	$0.050 \mathrm{ft} / \mathrm{ft}$
Velocity Head	$1.49 \mathrm{ft} / \mathrm{s}$
Specific Energy	0.03 ft
Froude Number	0.26 ft
	0.778

Worksheet for A2-4

Results	
Flow Type	Subcritical
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	$0.00 \mathrm{ft} / \mathrm{s}$
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Upstream Velocity	2.7 in
Normal Depth	2.5 in
Critical Depth	$0.029 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.050 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Worksheet for A2-5

Project Description	
Friction Method	Manning Formula Solve For
Normal Depth	
Input Data	
Channel Slope	$0.020 \mathrm{ft} / \mathrm{ft}$
Discharge	19.06 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+43$	
	$0+68$	
	$1+25$	
		12.00
		12.00
		16.75

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,15.00)$	$(0+43,12.00)$	0.040
$(0+43,12.00)$	$(0+68,12.00)$	0.040
$(0+68,12.00)$	$(1+25,16.75)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method
Method Open Channel Weighting Method	Method Closed Channel Weighting Pavlovkkii's Method
Method	
Results	
Normal Depth	3.6 in
Roughness Coefficient	0.040
Elevation	12.30 ft
Elevation Range	12.0 to 16.8
Flow Area	ft
Wetted Perimeter	$8.8 \mathrm{ft}{ }^{2}$
Hydraulic Radius	33.2 ft
Top Width	3.2 in
Normal Depth	33.18 ft
Critical Depth	3.6 in
Critical Slope	3.0 in
Velocity	$0.038 \mathrm{ft} / \mathrm{ft}$
Velocity Head	$2.17 \mathrm{ft} / \mathrm{s}$
Specific Energy	0.07 ft
Froude Number	0.37 ft
	0.742

Worksheet for A2-5

Results	Subcritical
Flow Type	
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	$0.00 \mathrm{ft} / \mathrm{s}$
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Upstream Velocity	3.6 in
Normal Depth	3.0 in
Critical Depth	$0.020 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.038 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Worksheet for A2-6

Project Description	
Friction Method	Manning Formula Solve For
Normal Depth	
Input Data	
Channel Slope	$0.027 \mathrm{ft} / \mathrm{ft}$
Discharge	10.72 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+31$	
	$0+59$	
	$0+94$	
		28.00
		28.00
		30.25

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,30.00)$	$(0+31,28.00)$	0.040
$(0+31,28.00)$	$(0+59,28.00)$	0.040
$(0+59,28.00)$	$(0+94,30.25)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method Method
Pavlovskii's Channel Weighting Method Method	Pavlovskii's Method
Closed Channel Weighting	
Method	
Results	2.2 in
Normal Depth	0.040
Roughness Coefficient	28.18 ft
Elevation	28.0 to 30.3
Elevation Range	ft
Flow Area	5.8 ft 2
Wetted Perimeter	34.2 ft
Hydraulic Radius	2.0 in
Top Width	34.16 ft
Normal Depth	2.2 in
Critical Depth	1.9 in
Critical Slope	$0.044 \mathrm{ft} / \mathrm{ft}$
Velocity	$1.86 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.05 ft
Specific Energy	0.24 ft
Froude Number	0.800
	Bentley Systems, Inc. Haestad Methods Solution
Crainage Channels.fm8	27 Siemon Company Drive Suite 200 W
$1 / 17 / 2024$	Watertown, CT 06795 USA +1-203-755-1666

Worksheet for A2-6

Results	Subcritical
Flow Type	
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	$0.00 \mathrm{ft} / \mathrm{s}$
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Upstream Velocity	2.2 in
Normal Depth	1.9 in
Critical Depth	$0.027 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.044 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Bentley Systems, Inc. Haestad Methods Solution

Worksheet for B1-1

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Channel Slope	$0.034 \mathrm{ft} / \mathrm{ft}$
Discharge	20.11 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+54$	
	$0+76$	
	$1+25$	26.00
		20.00
		22.00
		2

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,26.00)$	$(0+54,20.00)$	0.040
$(0+54,20.00)$	$(0+76,20.00)$	0.040
$(0+76,20.00)$	$(1+25,22.75)$	0.040

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	3.4 in	
Roughness Coefficient	0.040	
Elevation	20.29 ft	
Elevation Range	20.0 to 26.0	
Flow Area	$7.4 \mathrm{ft}^{2}$	
Wetted Perimeter	29.7 ft	
Hydraulic Radius	3.0 in	
Top Width	29.69 ft	
Normal Depth	3.4 in	
Critical Depth	3.3 in	
Critical Slope	$0.037 \mathrm{ft} / \mathrm{ft}$	
Velocity	$2.71 \mathrm{ft} / \mathrm{s}$	
Velocity Head	0.11 ft	
Specific Energy	0.40 ft	
Froude Number	0.958	
Drainage Channels.fm8 1/17/2024	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	$\begin{array}{r} \text { FlowMaster } \\ \text { [10.03.00.03] } \\ \text { Page } 1 \text { of } 2 \end{array}$

Worksheet for B1-1

Results	Subcritical
Flow Type	
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	$0.00 \mathrm{ft} / \mathrm{s}$
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Upstream Velocity	3.4 in
Normal Depth	3.3 in
Critical Depth	$0.034 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.037 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Bentley Systems, Inc. Haestad Methods Solution

Worksheet for B1-2

Project Description	Manning Formula
Friction Method	Normal Depth
Solve For	
Input Data	$0.075 \mathrm{ft} / \mathrm{ft}$
Channel Slope	28.20 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+31$	
	$0+60$	
	$1+00$	
		0.00
		0.00
		4.84

Roughness Segment Definitions

	Start Station	Ending Station
$(0+00,3.00)$	$(0+31,0.00)$	Roughness Coefficient
$(0+31,0.00)$	$(0+60,0.00)$	0.040
$(0+60,0.00)$	$(1+00,4.84)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method
Method Open Channel Weighting Method Cloved Channel Weighting Method	Method Pavlovskii's Method
Results	
Normal Depth	2.9 in
Roughness Coefficient	0.040
Elevation	0.24 ft
Elevation Range	0.0 to 4.8 ft
Flow Area	$7.5 \mathrm{ft}{ }^{2}$
Wetted Perimeter	33.4 ft
Hydraulic Radius	2.7 in
Top Width	33.34 ft
Normal Depth	2.9 in
Critical Depth	3.6 in
Critical Slope	$0.036 \mathrm{ft} / \mathrm{ft}$
Velocity	$3.76 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.22 ft
Specific Energy	0.46 ft
Froude Number	1.396
Flow Type	Supercritical

	Bentley Systems, Inc. Haestad Methods Solution	Center
Drainage Channels.fm8	FlowMaster	
$1 / 17 / 2024$	27 Siemon Company Drive Suite 200 W	$[10.03 .00 .03]$
Page 1 of 2		

Worksheet for B1-2

GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N / A
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	2.9 in
Critical Depth	3.6 in
Channel Slope	$0.075 \mathrm{ft} / \mathrm{ft}$
Critical Slope	$0.036 \mathrm{ft} / \mathrm{ft}$

Worksheet for B1-3

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Channel Slope	$0.033 \mathrm{ft} / \mathrm{ft}$
Discharge	26.50 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+45$	
	$0+56$	
	$0+98$	
		19.00
		14.00
		18.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,19.00)$	$(0+45,14.00)$	0.040
$(0+45,14.00)$	$(0+56,14.00)$	0.040
$(0+56,14.00)$	$(0+98,18.00)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method Method
Open Channel Weighting Method	Method Pavlovskii's Closed Channel Weighting Method
Results	
Normal Depth	5.6 in
Roughness Coefficient	0.040
Elevation	14.47 ft
Elevation Range	14.0 to 19.0
Flow Area	ft
Wetted Perimeter	$7.7 \mathrm{ft}{ }^{2}$
Hydraulic Radius	20.9 ft
Top Width	4.4 in
Normal Depth	20.85 ft
Critical Depth	5.6 in
Critical Slope	5.7 in
Velocity	$0.033 \mathrm{ft} / \mathrm{ft}$
Velocity Head	$3.46 \mathrm{ft} / \mathrm{s}$
Specific Energy	0.19 ft
Froude Number	0.66 ft
	1.005
Drainage Channels.fm8	Bentley Systems, Inc. Haestad Methods Solution
1/17/2024 Center	
	22 Siemon Company Drive Suite 200 W

Worksheet for B1-3

Results	
Flow Type	Supercritical
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	Infinity ft/s
Downstream Velocity	Infinity ft/s
Upstream Velocity	5.6 in
Normal Depth	5.7 in
Critical Depth	$0.033 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.033 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Worksheet for B1-4

Project Description	
Friction Method	Manning Formula Solve For
Normal Depth	
Input Data	
Channel Slope	$0.063 \mathrm{ft} / \mathrm{ft}$
Discharge	7.95 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+26$	
	$0+47$	
	$0+75$	34.00
		30.00
		35.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,34.00)$	$(0+26,30.00)$	0.040
$(0+26,30.00)$	$(0+47,30.00)$	0.040
$(0+47,30.00)$	$(0+75,35.00)$	0.040

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	1.8 in	
Roughness Coefficient	0.040	
Elevation	30.15 ft	
Elevation Range	$\begin{array}{r} 30.0 \text { to } 35.0 \\ \mathrm{ft} \end{array}$	
Flow Area	$3.2 \mathrm{ft}^{2}$	
Wetted Perimeter	22.5 ft	
Hydraulic Radius	1.7 in	
Top Width	22.52 ft	
Normal Depth	1.8 in	
Critical Depth	2.0 in	
Critical Slope	$0.043 \mathrm{ft} / \mathrm{ft}$	
Velocity	$2.52 \mathrm{ft} / \mathrm{s}$	
Velocity Head	0.10 ft	
Specific Energy	0.24 ft	
Froude Number	1.185	
Drainage Channels.fm8 1/17/2024	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	$\begin{array}{r} \text { FlowMaster } \\ \text { [10.03.00.03] } \\ \text { Page } 1 \text { of } 2 \end{array}$

Worksheet for B1-4

Results	
Flow Type	Supercritical
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	Infinity ft/s
Downstream Velocity	Infinity ft/s
Upstream Velocity	1.8 in
Normal Depth	2.0 in
Critical Depth	$0.063 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.043 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Worksheet for B1-5

Project Description	
Friction Method	Manning
Solve For	Normula
Input Data	
Channel Slope	$0.039 \mathrm{ft} / \mathrm{ft}$
Discharge	5.01 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+29$	
	$0+54$	
	$0+73$	
		35.00
		32.00
		35.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,35.00)$	$(0+29,32.00)$	0.040
$(0+29,32.00)$	$(0+54,32.00)$	0.040
$(0+54,32.00)$	$(0+73,35.00)$	0.040

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	1.4 in	
Roughness Coefficient	0.040	
Elevation	32.11 ft	
Elevation Range	$\begin{array}{r} 32.0 \text { to } 35.0 \\ \mathrm{ft} \end{array}$	
Flow Area	$3.0 \mathrm{ft}^{2}$	
Wetted Perimeter	27.1 ft	
Hydraulic Radius	1.3 in	
Top Width	27.07 ft	
Normal Depth	1.4 in	
Critical Depth	1.3 in	
Critical Slope	$0.050 \mathrm{ft} / \mathrm{ft}$	
Velocity	$1.68 \mathrm{ft} / \mathrm{s}$	
Velocity Head	0.04 ft	
Specific Energy	0.16 ft	
Froude Number	0.894	
Drainage Channels.fm8 1/17/2024	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	$\begin{array}{r} \text { FlowMaster } \\ \text { [10.03.00.03] } \\ \text { Page } 1 \text { of } 2 \end{array}$

Worksheet for B1-5

Results	
Flow Type	Subcritical
GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	0.00 ft
Profile Headloss	$0.00 \mathrm{ft} / \mathrm{s}$
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Upstream Velocity	1.4 in
Normal Depth	1.3 in
Critical Depth	$0.039 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.050 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Worksheet for B1-6

Project Description	Manning Friction Method Solve For
Normal Depth	
Input Data	
Channel Slope	$0.030 \mathrm{ft} / \mathrm{ft}$
Discharge	5.37 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+35$	22.00
	$0+51$	
	$0+92$	
		18.00
		23.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,22.00)$	$(0+35,18.00)$	0.040
$(0+35,18.00)$	$(0+51,18.00)$	0.040
$(0+51,18.00)$	$(0+92,23.00)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method Method Open Channel Weighting Method
Pavlovskii's Method Closed Channel Weighting Method	Pavlovskii's Method
Results	
Normal Depth	2.0 in
Roughness Coefficient	0.040
Elevation	18.17 ft
Elevation Range	18.0 to 23.0
Flow Area	ft
Wetted Perimeter	2.9 ft 2
Hydraulic Radius	19.1 ft
Top Width	1.8 in
Normal Depth	19.04 ft
Critical Depth	2.0 in
Critical Slope	1.8 in
Velocity	$0.045 \mathrm{ft} / \mathrm{ft}$
Velocity Head	$1.84 \mathrm{ft} / \mathrm{s}$
Specific Energy	0.05 ft
Froude Number	0.22 ft
	0.829
Drainage Channels.fm8	Bentley Systems, Inc. Haestad Methods Solution
1/17/2024 Center	27 Siemon Company Drive Suite 200 W
	Watertown, CT 06795 USA +1-203-755-1666

Worksheet for B1-6

Results	
Flow Type	Subcritical
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	0.00 ft
Profile Description	$0.00 \mathrm{ft} / \mathrm{s}$
Profile Headloss	$0.00 \mathrm{ft} / \mathrm{s}$
Downstream Velocity	2.0 in
Upstream Velocity	1.8 in
Normal Depth	$0.030 \mathrm{ft} / \mathrm{ft}$
Critical Depth	$0.045 \mathrm{ft} / \mathrm{ft}$
Channel Slope	
Critical Slope	

Worksheet for B2-1

Project Description	Manning Formula
Friction Method	Normal Depth
Solve For	
Input Data	$0.037 \mathrm{ft} / \mathrm{ft}$
Channel Slope	11.88 cfs
Discharge	

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+42$	
	$0+58$	
	$0+75$	
		0.00
		0.00
		4.50

Roughness Segment Definitions

	Start Station	Ending Station
$(0+00,5.00)$	$(0+42,0.00)$	Roughness Coefficient
$(0+42,0.00)$	$(0+58,0.00)$	0.040
$(0+58,0.00)$	$(0+75,4.50)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's
Method	Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method
Results	
Normal Depth	3.0 in
Roughness Coefficient	0.040
Elevation	0.25 ft
Elevation Range	0.0 to 5.0 ft
Flow Area	4.4 ft
Wetted Perimeter	19.1 ft
Hydraulic Radius	2.8 in
Top Width	19.07 ft
Normal Depth	3.0 in
Critical Depth	3.0 in
Critical Slope	$0.038 \mathrm{ft} / \mathrm{ft}$
Velocity	$2.69 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.11 ft
Specific Energy	0.36 ft
Froude Number	0.984
Flow Type	Subcritical

	Bentley Systems, Inc. Haestad Methods Solution	Center
Drainage Channels.fm8	27 Siemon Company Drive Suite 200 W	[10.03.00.03]
$1 / 17 / 2024$	Watertown, CT 06795 USA +1-203-755-1666	Page 1 of 2

Worksheet for B2-1

GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N / A
Profile Headloss	0.00 ft
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Upstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Normal Depth	3.0 in
Critical Depth	3.0 in
Channel Slope	$0.037 \mathrm{ft} / \mathrm{ft}$
Critical Slope	$0.038 \mathrm{ft} / \mathrm{ft}$

Worksheet for B2-2

Project Description	
Friction Method	Manning Formula Solve For
Normal Depth	
Input Data	
Channel Slope	$0.054 \mathrm{ft} / \mathrm{ft}$
Discharge	23.59 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+38$	13.00
	$0+59$	
	$0+96$	
		8.00
		13.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,13.00)$	$(0+38,8.00)$	0.040
$(0+38,8.00)$	$(0+59,8.00)$	0.040
$(0+59,8.00)$	$(0+96,13.00)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method
Method Open Channel Weighting Method Cloved Chanskii's Method	
Method	
Results	Pavlovskii's
Method	

	Bentley Systems, Inc. Haestad Methods Solution	Center
Drainage Channels.fm8	27 Siemon Company Drive Suite 200 W	[10.03.00.03]
$1 / 17 / 2024$	Page 1 of 2	

Worksheet for B2-2

GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N / A
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	3.5 in
Critical Depth	3.9 in
Channel Slope	$0.054 \mathrm{ft} / \mathrm{ft}$
Critical Slope	$0.035 \mathrm{ft} / \mathrm{ft}$

Bentley Systems, Inc. Haestad Methods Solution

Worksheet for B8-1

Project Description	Manning Formula Friction Method Solve For
Normal Depth	
Input Data	
Channel Slope	$0.050 \mathrm{ft} / \mathrm{ft}$
Discharge	114.99 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+52$	
	$0+79$	
	$1+06$	

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,202.00)$	$(0+52,198.00)$	0.040
$(0+52,198.00)$	$(0+79,198.00)$	0.040
$(0+79,198.00)$	$(1+06,201.00)$	0.040

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	7.6 in	
Roughness Coefficient	0.040	
Elevation	198.63 ft	
Elevation Range	$\begin{aligned} & 198.0 \mathrm{to} \\ & 202.0 \mathrm{ft} \end{aligned}$	
Flow Area	$21.4 \mathrm{ft}^{2}$	
Wetted Perimeter	40.9 ft	
Hydraulic Radius	6.3 in	
Top Width	40.85 ft	
Normal Depth	7.6 in	
Critical Depth	8.9 in	
Critical Slope	$0.028 \mathrm{ft} / \mathrm{ft}$	
Velocity	$5.39 \mathrm{ft} / \mathrm{s}$	
Velocity Head	0.45 ft	
Specific Energy	1.08 ft	
Froude Number	1.313	
Drainage Channels.fm8 1/17/2024	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	$\begin{array}{r} \text { FlowMaster } \\ \text { [10.03.00.03] } \\ \text { Page } 1 \text { of } 2 \end{array}$

Worksheet for B8-1

Results	
Flow Type	Supercritical
GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	0.00 ft
Profile Headloss	Infinity ft/s
Downstream Velocity	Infinity ft/s
Upstream Velocity	7.6 in
Normal Depth	8.9 in
Critical Depth	$0.050 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.028 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Worksheet for B6-1

Project Description	Manning Formula
Friction Method	Normal Depth
Solve For	
Input Data	$0.190 \mathrm{ft} / \mathrm{ft}$
Channel Slope	23.23 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+39$	
	$0+50$	
	$0+63$	

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,14.00)$	$(0+39,6.00)$	0.040
$(0+39,6.00)$	$(0+50,6.00)$	0.040
$(0+50,6.00)$	$(0+63,11.50)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method
Method	Pavlovskii's
Open Channel Weighting	Method
Method	Pavlovskii's
Closed Channel Weighting	Method
Method	
Results	3.5 in
Normal Depth	0.040
Roughness Coefficient	6.29 ft
Elevation	6.0 to 14.0 ft
Elevation Range	$3.5 \mathrm{ft}{ }^{2}$
Flow Area	13.2 ft
Wetted Perimeter	3.2 in
Hydraulic Radius	13.09 ft
Top Width	3.5 in
Normal Depth	5.9 in
Critical Depth	$0.031 \mathrm{ft} / \mathrm{ft}$
Critical Slope	$6.67 \mathrm{ft} / \mathrm{s}$
Velocity	0.69 ft
Velocity Head	0.98 ft
Specific Energy	2.280
Froude Number	Supercritical
Flow Type	

	Bentley Systems, Inc. Haestad Methods Solution	Center
Drainage Channels.fm8	FlowMaster	
$1 / 17 / 2024$	27 Siemon Company Drive Suite 200 W	$[10.03 .00 .03]$
Page 1 of 2		

Worksheet for B6-1

GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N / A
Profile Headloss	Infinity ft/s
Downstream Velocity	Infinity ft/s
Upstream Velocity	3.5 in
Normal Depth	5.9 in
Critical Depth	$0.190 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.031 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Bentley Systems, Inc. Haestad Methods Solution

Worksheet for B7-1

Project Description	
Friction Method	Manning
Solve For	Formula
Input Data	
Channel Slope	$0.046 \mathrm{ft} / \mathrm{ft}$
Discharge	5.64 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+25$	
	$0+50$	
	$0+90$	
		95.00
		91.00
		98.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00,95.00)$	$(0+25,92.00)$	0.040
$(0+25,92.00)$	$(0+50,91.75)$	0.040
$(0+50,91.75)$	$(0+90,98.00)$	0.040

Options	
Current Roughness Weighted	Pavlovskii's Method Method
Open Channel Weighting Method	Method Pavlovskii's Closed Channel Weighting Method
Method	
Results	2.8 in
Normal Depth	0.040
Roughness Coefficient	91.99 ft
Elevation	91.8 to 98.0
Elevation Range	ft
Flow Area	$2.9 \mathrm{ft}{ }^{2}$
Wetted Perimeter	25.1 ft
Hydraulic Radius	1.4 in
Top Width	25.05 ft
Normal Depth	2.8 in
Critical Depth	2.8 in
Critical Slope	$0.048 \mathrm{ft} / \mathrm{ft}$
Velocity	$1.91 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.06 ft
Specific Energy	0.29 ft
Froude Number	0.983
	Bentley Systems, Inc. Haestad Methods Solution
Crainage Channels.fm8	27 Siemon Company Drive Suite 200 W
1/17/2024	Watertown, CT 06795 USA +1-203-755-1666
	FlowMaster
Page 100.03] 2	

Worksheet for B7-1

Results	
Flow Type	Subcritical
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	$0.00 \mathrm{ft} / \mathrm{s}$
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Upstream Velocity	2.8 in
Normal Depth	2.8 in
Critical Depth	$0.046 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.048 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

ROADSIDE DTTCHSUMMARYTABLE

ROADWAY	RROM STA	TOSTA	$\begin{array}{\|l\|l\|} \hline \text { PROPOSED } \\ \text { SOPE (\%) } \end{array}$	SIDE	SDESLOPE	$\begin{gathered} \hline \text { OHANNH } \\ \text { DEPTH } \\ \text { (FT) } \end{gathered}$	RICTION FACTOR	BASN	$\begin{aligned} & \text { Q100 } \\ & \text { ROW } \\ & \text { (CFS) } \end{aligned}$	Dtanfow \%OFBASN	DTCH HOW (CFS)	Q100DEPTH (F)	$\begin{gathered} \hline \text { Q100 } \\ \text { vEOGTY } \\ \text { (FT/S) } \\ \hline \end{gathered}$	DTTCHUNING	NOTES
HATBANDDRIVE	1+30	2+80	2.75\%	LEFT	4:1/3:1	3	0.04	A1	41.29	100.0\%	41.29	1.53	5.02	GRASS	
HATBANDDRIVE	1+30	$3+40$	2.75\%	RIGHT	4:1/3:1	3	0.04 A	A2	92.96	1.0\%	0.93	0.37	1.95	GRASS	
HATBANDDRIVE	2+80	3+80	2.75\%	LEFT	4:1/3:1	3	0.04 A	A2	92.96	1.0\%	0.93	0.37	1.95	GRASS	
HATBANDDRIVE	4+90	7+20	2.75\%	LEFT	4:1/3:1	3	0.04 A	A2	92.96	1.0\%	0.93	0.37	1.95	GRASS	
HATBANDDRVE	6+13	7+20	2.75\%	RIGHT	4:1/3:1	3	0.04 A	A2	92.96	1.0\%	0.93	0.37	1.95	GRASS	
HATBANDDRIVE	12+60	15+00	1.00\%	LEFT	4:1/3:1	3	0.04	B1	80.40	0.7\%	0.56	0.37	1.17	GRASS	
HATBANDDRIVE	12+60	15+00	1.00\%	RIGHT	4:1/3:1	3	0.04	B1	80.40	0.5\%	0.40	0.33	1.08	GRASS	
HATBANDDRIVE	15+00	18+00	2.00\%	LEFT	4:1/3:1	3	0.04	B1	80.40	25.0\%	20.10	1.24	3.72	GRASS	
HATBANDDRIVE	15+00	18+00	2.00\%	RIGHT	4:1/3:1	3	0.04	B1	80.40	0.6\%	0.48	0.31	1.46	GRASS	
HATBANDDRIVE	19+75	20+45	3.00\%	RIGHT	4:1/3:1	3	0.04	B1	80.40	0.1\%	0.08	0.14	1.09	GRASS	
HATBANDDRIVE	20+45	22+00	2.00\%	RIGHT	4:1/3:1	3	0.04	B2	38.64	1.0\%	0.39	0.28	1.39	GRASS	
HATBANDDRIVE	20+20	22+75	2.40\%	LEFT	4:1/3:1	3	0.04	B1	80.40	1.3\%	1.05	0.40	1.90	GRASS	
SALOON DRIVE	3+30	5+70	1.25\%	LEFT	4:1/3:1	3	0.04 A	A2	92.96	0.40\%	0.37	0.30	1.15	GRASS	
SALOON DRIVE	$3+30$	6+10	1.50\%	RIGHT	4:1/3:1	3	0.04 A	A2	92.96	45.0\%	41.83	1.75	4.02	GRASS	
SALOON DRIVE	7+00	10+80	6.00\%	LEFT	4:1/3:1	3	0.04 A		92.96	2.0\%	1.86	0.42	3.10	GRASS	
SALOON DRIVE	10+80	END	1.30\%	LEFT	4:1/3:1	3	0.04 A		92.96	1.0\%	0.93	0.43	1.47	GRASS	
CAMPOUT DRVE	7+95	8+90	9.50\%	RIGHT	4:1/3:1	3	0.04	B1	80.40	0.2\%	0.16	0.15	1.99	GRASS	
CAMPOUT DRVE	11+10	12+40	7.75\%	RGFTT	4:1/3:1	3	0.04	B1	80.40	0.4\%	0.32	0.20	2.20	GRASS	
CAMPOUT DRVE	11+20	14+50	5.15\%	LEFT	4:1/3:1	3	0.04 B	B6	106.95	23.0\%	24.60	1.13	5.58	GRASS	
CAMPOUTDRVE	16+80	25+80	1.00\%	LEFT	4:1/3:1	3	0.04	B6	106.95	85.0\%	90.91	2.49	4.19	GRASS	
CAMPOUT DRVE	25+80	END	1.00\%	LEFT	4:1/3:1	3	0.04	B6	106.95	13.0\%	13.90	1.23	2.62	GRASS	
CAMPOUT DRVE	27+80	29+60	1.00\%	RIGHT	4:1/3:1	3	0.04	B6	106.95	0.3\%	0.28	0.28	0.99	GRASS	
APEXRANCHROAD	START	3+65	2.20\%	LEFT	4:1/3:1	3	0.04	OS-C1	59.93	4.3\%	15.90*	1.12	3.64	GRASS	* INLOUDESFOLW FROM SUB-BASINSOS-C1, OS-A2, ANDA2
APEXRANCHROAD	3+65	$4+85$	4.65\%	LEFT	4:1/3:1	3	0.04	OSA2	11.46	27.0\%	13.31*	0.91	4.62	GRASS	* INLLUDES FLOW FROM SUB-BASINSOS-A2, AND A2
APEXRANCHROAD	3+70	$4+30$	4.20\%	RIGHT	4:1/3:1	3	0.04	OSA2	11.46	1.4\%	0.16	0.18	1.47	GRASS	
APEXRANCHROAD	12+20	16+60	10.00\%	LEFT	4:1/3:1	3	0.04 A	A2	92.96	2.0\%	1.86	0.38	3.75	GRASS	
APEXRANCHROAD	16+60	18+30	5.15\%	LEFT	4:1/3:1	3	0.04 A		92.96	0.7\%	0.65	0.28	2.25	GRASS	
APEXRANCHROAD	12+65	16+60	10.00\%	RIGHT	4:1/3:1	3	0.04	B6	106.95	2.0\%	2.14	0.40	3.89	GRASS	
APEXRANCHROAL	16+60	18+65	5.15\%/R	RIGHT	4:1/3:1	3	0.04 E		106.95	0.4\%	0.43	0.25	2.03	GRASS	

Culvert \& Riprap Summary													
Clvert Details							Riprap Details						
Culvert ID	Basin	Q100 flow (cfs)	Flow \% of Basin	Flows (cfs)	HW/D Ratio	Diameter (in)	Length (ft)	Width (ft)	D50 Type	D50 Size (in)	D50 Thickness (in)	Normal Depth in Pipe (ft)	Upstream Headwater Elevation (ft)
A1	A1	41.42	100.00\%	41.42	1.13	36	19	7	L	9	18	2.32	7208.06
A2-A	A2	92.96	10.00\%	9.30	1.39	18	7	4	VL	6	12	0.75	7211.83
A2-B	A2	92.96	8.00\%	7.44	1.12	18	5	3	VL	6	12	0.56	7221.28
A2-C	A2	92.96	49.00\%	45.55	1.21	36	21	8	L	9	18	1.17	7223.80
A2-D	A2	92.96	11.00\%	10.23	0.86	24	6	4	VL	6	12	0.89	7315.02
B1-A	B1	80.40	28.00\%	22.51	0.99	30	11	5	VL	6	12	0.85	7218.23
B1-B	B1	80.40	34.00\%	27.34	1.16	30	14	6	L	9	18	1.52	7221.92
B6	B6	106.95	100.00\%	106.95	1.01	36 (3 Barrels)	30	15	L	9	18	1.50	7231.07

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION
Project: OVERLOOK
ID: CULVERT A1

Design Information:		
Design Discharge	$Q=$	41.42 cfs
Circular Culvert:		
Barrel Diameter in Inches	$\mathrm{D}=$	36 inches
Inlet Edge Type (Choose from pull-down list)	Square	with Headwall
OR:		
Box Culvert:		OR
Barrel Height (Rise) in Feet	H (Rise) $=$	ft
Barrel Width (Span) in Feet	W (Span) $=$	ft
Inlet Edge Type (Choose from pull-down list)		
Number of Barrels	\# Barrels $=$	1
Inlet Elevation	Elev $1 \mathrm{~N}=$	7204.67
Outlet Elevation OR Slope	Elev OUT $=$	7204.42 ft
Culvert Length	$\mathrm{L}=$	68.15
Manning's Roughness	n	0.012
Bend Loss Coefficient	$\mathrm{k}_{\mathrm{b}}=$	0
Exit Loss Coefficient Tailwater Surface Elevation	$\mathrm{k}_{\mathrm{x}}=$	1
	$\mathrm{Y}_{\mathrm{t} \text {, Elevation }}=$	ft
Max Allowable Channel Velocity	V	$5 \mathrm{ft} / \mathrm{s}$
Calculated Results:		
Culvert Cross Sectional Area Available	$\mathrm{A}=$	7.07 ftt ${ }^{2}$
Culvert Normal Depth	$Y_{n}=$	2.32
Culvert Critical Depth	$\mathrm{Y}_{\mathrm{c}}=$	2.10
Froude Number	$\mathrm{Fr}=$	0.81
Entrance Loss Coefficient	$\mathrm{k}_{\mathrm{e}}=$	0.50
Friction Loss Coefficient	$\mathrm{k}_{\mathrm{f}}=$	0.42
Sum of All Loss Coefficients	$\mathrm{k}_{\mathrm{s}}=$	1.92 ft
Headwater:		
Inlet Control Headwater	$\mathrm{HW}_{1}=$	3.39 ft
Outlet Control Headwater	$\mathrm{HW}_{0}=$	3.32 ft
Design Headwater Elevation	HW =	7208.06 ft
Headwater/ Diameter OR Headwater/ Rise Ratio	HW/ D =	1.13
Outlet Protection:		
Flow/(Diameter^2.5)	Q/D^2.5 $=$	2.66 ft ${ }^{0.5} / \mathrm{s}$
Tailwater Surface Height	$Y_{t}=$	1.20 ft
Tailwater/Diameter	Yt/D $=$	0.40
Expansion Factor	$1 /\left(2^{*} \tan (\Theta)\right)=$	4.85
Flow Area at Max Channel Velocity	$A_{t}=$	8.28 ft ${ }^{2}$
Width of Equivalent Conduit for Multiple Barrels	$\mathrm{W}_{\text {eq }}=$	ft
Length of Riprap Protection Width of Riprap Protection at Downstream End	$L_{p}=$	19 ft
	T=	7 ft
Adjusted Diameter for Supercritical FlowMinimum Theoretical Riprap Size	$\mathrm{Da}=$	ft
	$\mathrm{d}_{50} \mathrm{~min}=$	7 in
Minimum Theoretical Riprap Size	d_{50} nominal $=$	9 in
MHFD Riprap Type	Type =	L

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION

Project: OVERLOOK
ID: CULVERT A2-A

Supercritical Flow! Using Adjusted Diameter to calculate protection type.

Supercritical Flow! Using Adjusted Diameter to calculate protection				
Design Information:				
Design Discharge	$Q=$	9.3	cfs	
Circular Culvert:				
Barrel Diameter in Inches	$\mathrm{D}=$	18	inches	
Inlet Edge Type (Choose from pull-down list)	Square	with Head		
OR:				
Box Culvert:	OR			
Barrel Height (Rise) in Feet	$\begin{aligned} \mathrm{H}(\text { Rise }) & = \\ \mathrm{W}(\text { Span }) & = \end{aligned}$		$\left\lvert\, \begin{aligned} & \mathrm{ft} \\ & \mathrm{ft} \end{aligned}\right.$	
Inlet Edge Type (Choose from pull-down list)				
Number of Barrels		$\begin{array}{r} \text { \# Barrels }= \\ \text { Elev IN }= \end{array}$	1	ft
Inlet Elevation	7209.75			
Outlet Elevation OR Slope	$\begin{array}{r} \text { Elev IN }= \\ \text { Elev OUT }= \end{array}$	7207.31	ft	
Culvert Length	$\begin{aligned} \mathrm{L} & = \\ \mathrm{n} & =\end{aligned}$	93	ft	
Manning's Roughness		0.012		
Bend Loss Coefficient	$\begin{aligned} \mathrm{k}_{\mathrm{b}} & = \\ \mathrm{k}_{\mathrm{x}} & = \\ \mathrm{Y}_{\mathrm{t}, \text { Elevation }} & = \\ \mathrm{V} & = \end{aligned}$	0		
Exit Loss Coefficient		1		
Tailwater Surface Elevation			ft	
Max Allowable Channel Velocity		5	ft / s	
Calculated Results:				
Culvert Cross Sectional Area Available	$\mathrm{A}=$	1.77	ft^{2}	
Culvert Normal Depth	$Y_{\text {n }}=$	0.75	ft	
Culvert Critical Depth	$Y_{c}=$	1.18	ft	
Froude Number	$\mathrm{Fr}=$	2.40	Supercritical!	
Entrance Loss Coefficient	$\mathrm{k}_{\mathrm{e}}=$	0.50		
Friction Loss Coefficient	$\mathrm{k}_{\mathrm{f}}=$	1.44		
Sum of All Loss Coefficients	$\mathrm{k}_{\mathrm{s}}=$	2.94	ft	
Headwater:				
Inlet Control Headwater	$\mathrm{HW}_{1}=$	2.08	ft	
Outlet Control Headwater	$\mathrm{HW}_{0}=$	N/A	ft	
Design Headwater Elevation	HW =	7211.83	ft	
Headwater/ Diameter OR Headwater/ Rise Ratio	HW/ D =	1.39		

Outlet Control Headwater Approximation Method I naccurate for Low Flow - Backwater Calculations Required Outlet Protection:

Flow/(Diameter^2.5)
Tailwater Surface Height
Tailwater/Diameter
Expansion Factor
Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels
Length of Riprap Protection
Width of Riprap Protection at Downstream End

Adjusted Diameter for Supercritical Flow
Minimum Theoretical Riprap Size
Nominal Riprap Size
MHFD Riprap Type

$\begin{array}{r} \mathrm{Da}= \\ \mathrm{d}_{50} \mathrm{~min}= \\ \mathrm{d}_{50} \text { nominal}= \\ \text { Type }= \end{array}$	1.13
	5
	6
	VL

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION

Project: OVERLOOK
ID: CULVERT A2-B

Supercritical Flow! Using Adjusted Diameter to calculate protection type.

Supercritical Flow! Using Adjusted Diameter to calculate protection			
Design Information:			
Design Discharge	$Q=$	7.44	cfs
Circular Culvert:			
Barrel Diameter in Inches	$\mathrm{D}=$	18	inches
Inlet Edge Type (Choose from pull-down list)	Square	with Head	
OR:			
Box Culvert:		OR	
Barrel Height (Rise) in Feet	H (Rise) $=$		ft
Barrel Width (Span) in Feet	W (Span) $=$		ft
Inlet Edge Type (Choose from pull-down list)			
Number of Barrels	\# Barrels $=$	1	
Inlet Elevation	Elev $\mathrm{IN}=$	7219.6	ft
Outlet Elevation OR Slope	Elev OUT =	7215.35	ft
Culvert Length	$\mathrm{L}=$	87.8	ft
Manning's Roughness	$\mathrm{n}=$	0.012	
Bend Loss Coefficient	$\mathrm{k}_{\mathrm{b}}=$	0	
Exit Loss Coefficient	$\mathrm{k}_{\mathrm{x}}=$	1	
Tailwater Surface Elevation	$\mathrm{Y}_{\mathrm{t} \text {, Elevation }}=$		ft
Max Allowable Channel Velocity	$\mathrm{V}=$	5	ft / s
Calculated Results:			
Culvert Cross Sectional Area Available	$\mathrm{A}=$	1.77	ft^{2}
Culvert Normal Depth	$Y_{\text {n }}=$	0.56	ft
Culvert Critical Depth	$Y_{c}=$	1.06	ft
Froude Number	$\mathrm{Fr}=$	3.39	Supercritical!
Entrance Loss Coefficient	$\mathrm{k}_{\mathrm{e}}=$	0.50	
Friction Loss Coefficient	$\mathrm{k}_{\mathrm{f}}=$	1.36	
Sum of All Loss Coefficients	$\mathrm{k}_{\mathrm{s}}=$	2.86	ft
Headwater:			
Inlet Control Headwater	$\mathrm{HW}_{1}=$	1.68	ft
Outlet Control Headwater	$\mathrm{HW}_{0}=$	N/A	ft
Design Headwater Elevation	HW =	7221.28	ft
Headwater/ Diameter OR Headwater/ Rise Ratio	HW/ D =	1.12	

Outlet Control Headwater Approximation Method I naccurate for Low Flow - Backwater Calculations Required Outlet Protection:

Flow/(Diameter^2.5)
Tailwater Surface Height
Tailwater/Diameter
Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels
Length of Riprap Protection
Width of Riprap Protection at Downstream End

Adjusted Diameter for Supercritical Flow
Minimum Theoretical Riprap Size
Nominal Riprap Size
MHFD Riprap Type

$\begin{aligned} \mathrm{Da} & = \\ \mathrm{d}_{50} \mathrm{~min} & = \\ \mathrm{d}_{50} \text { nominal } & = \\ \text { Type } & = \end{aligned}$	1.03
	4
	6
	VL

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION
Project: OVERLOOK
ID: CULVERT A2-C

Supercritical Flow! Using Adjusted Diameter to calculate protection type.

Design Information:		
Design Discharge	Q =	45.55
Circular Culvert:		
Barrel Diameter in Inches	$\mathrm{D}=$	36
Inlet Edge Type (Choose from pull-down list)	Square	with Headwall
Box Culvert:		
		OR
Barrel Height (Rise) in Feet	H (Rise) $=$	
Barrel Width (Span) in Feet	W (Span) $=$	
Inlet Edge Type (Choose from pull-down list)		
Number of Barrels	\# Barrels $=$	1
Inlet Elevation	Elev $1 \mathrm{~N}=$	7220.18
Outlet Elevation OR Slope	Elev OUT =	7216.35
Culvert Length	$\mathrm{L}=$	101.4
Manning's Roughness	$\mathrm{n}=$	0.012
Bend Loss Coefficient	$\mathrm{k}_{\mathrm{b}}=$	0
Exit Loss Coefficient	$\mathrm{k}_{\mathrm{x}}=$	1
Tailwater Surface Elevation	$\mathrm{Y}_{\mathrm{t}, \text { Elevation }}=$	
Max Allowable Channel Velocity	$\mathrm{V}=$	5
Calculated Results:		
Culvert Cross Sectional Area Available	$\mathrm{A}=$	7.07
Culvert Normal Depth	$Y_{n}=$	1.17
Culvert Critical Depth	$Y_{c}=$	2.20
Froude Number	$\mathrm{Fr}=$	3.35
Entrance Loss Coefficient	$\mathrm{k}_{\mathrm{e}}=$	0.50
Friction Loss Coefficient	$\mathrm{k}_{\mathrm{f}}=$	0.62
Sum of All Loss Coefficients	$\mathrm{k}_{\mathrm{s}}=$	2.12
Headwater:		
Inlet Control Headwater	$\mathrm{HW}_{1}=$	3.62
Outlet Control Headwater	$\mathrm{HW}_{0}=$	N/A
Design Headwater Elevation	HW =	7223.80
Headwater/ Diameter OR Headwater/ Rise Ratio	HW/ D =	1.21

Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection:

Flow/(Diameter^2.5)
Tailwater Surface Height
Tailwater/Diameter
Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels
Length of Riprap Protection
Width of Riprap Protection at Downstream End

Adjusted Diameter for Supercritical Flow
Minimum Theoretical Riprap Size
Nominal Riprap Size
MHFD Riprap Type

$\begin{array}{r} \mathrm{Da}= \\ \mathrm{d}_{50} \mathrm{~min}= \end{array}$	2.09
	8
d_{50} nominal $=$	9
Type $=$	L

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION
Project: Overlook
ID: A2-D

Supercritical Flow! Using Adjusted Diameter to calculate protection type.
 Outlet Protection:

Flow/(Diameter^2.5)
Tailwater Surface Height
Tailwater/Diameter
Expansion Factor
Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels
Length of Riprap Protection
Width of Riprap Protection at Downstream End

Adjusted Diameter for Supercritical Flow
Minimum Theoretical Riprap Size
Nominal Riprap Size
MHFD Riprap Type

$\begin{array}{r} \mathrm{Da}= \\ \mathrm{d}_{50} \min = \end{array}$	1.45
	3
d_{50} nominal=	6
Type $=$	VL

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION
Project: OVERLOOK
ID: CULVERT B1-A

Supercritical Flow! Using Adjusted Diameter to calculate protection type.

Design Information:		
Design Discharge	$\mathrm{Q}=$	22.51
Circular Culvert:		
Barrel Diameter in Inches	$\mathrm{D}=$	30
Inlet Edge Type (Choose from pull-down list)	Square E	with Headwall
OR:		
Box Culvert:		OR
Barrel Height (Rise) in Feet	H (Rise) $=$	
Barrel Width (Span) in Feet	W (Span) $=$	
Inlet Edge Type (Choose from pull-down list)		
Number of Barrels	\# Barrels =	1
Inlet Elevation	Elev IN =	7215.76
Outlet Elevation OR Slope	Elev OUT =	7210.52
Culvert Length	$\mathrm{L}=$	125.2
Manning's Roughness	$\mathrm{n}=$	0.012
Bend Loss Coefficient	$\mathrm{k}_{\mathrm{b}}=$	0
Exit Loss Coefficient	$\mathrm{k}_{\mathrm{x}}=$	1
Tailwater Surface Elevation	$\mathrm{Y}_{\mathrm{t} \text {, Elevation }}=$	
Max Allowable Channel Velocity	$\mathrm{V}=$	5
Calculated Results:		
Culvert Cross Sectional Area Available	$A=$	4.91
Culvert Normal Depth	$\mathrm{Y}_{\mathrm{n}}=$	0.85
Culvert Critical Depth	$\mathrm{Y}_{\mathrm{c}}=$	1.61
Froude Number	$\mathrm{Fr}=$	3.45
Entrance Loss Coefficient	$\mathrm{k}_{\mathrm{e}}=$	0.50
Friction Loss Coefficient	$\mathrm{k}_{\mathrm{f}}=$	0.98
Sum of All Loss Coefficients	$\mathrm{k}_{\mathrm{s}}=$	2.48
Headwater:		
Inlet Control Headwater	$\mathrm{HW}_{1}=$	2.47
Outlet Control Headwater	$\mathrm{HW}_{0}=$	N/A
Design Headwater Elevation	HW =	7218.23
Headwater/ Diameter OR Headwater/ Rise Ratio	HW/ D =	0.99

Flow/(Diameter^2.5)
Tailwater Surface Height
Tailwater/Diameter
Expansion Factor
Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels
Length of Riprap Protection
Width of Riprap Protection at Downstream End

Adjusted Diameter for Supercritical Flow
Minimum Theoretical Riprap Size
Nominal Riprap Size
MHFD Riprap Type

$\begin{array}{r} \mathrm{Da}= \\ \mathrm{d}_{50} \min = \end{array}$	1.67
	5
d_{50} nominal=	6
Type $=$	VL

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION

Project: OVERLOOK

I D: CULVERT B1-B

Supercritical Flow! Using Adjusted Diameter to calculate protection type.

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION
Project: Overlook
ID: CULVERT B6

Supercritical Flow! Using Adjusted Diameter to calculate protection type.

APPENDIX E: EL PASO COUNTY DRAINAGE BASIN MAP

Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility

Designer:
Company:
Date:
Project:
Location:

QUENTIN ARMIJO
TERRA NOVA ENG.
April 2, 2008
APEX RANCH ESTATES
PEYTON, CO

1. Basin Storage Volume
A) Tributary Area's Imperviousness Ratio ($i=I_{a} / 100$)
B) Contributing Watershed Area (Area)
C) Water Quality Capture Volume (WQCV) (WQCV $=1.0$ * $\left.\left(\left.0.91 *\right|^{3}-1.19 * 1^{2}+0.78 * 1\right)\right)$
D) Design Volume: Vol $=(\mathrm{WQCV} / 12) *$ Area * 1.2
2. Outlet Works
A) Outlet Type (Check One)
B) Depth at Outlet Above Lowest Perforation (H)
C) Required Maximum Outlet Area per Row, $\left(\mathrm{A}_{0}\right)$
D) Perforation Dimensions (enter one only):
i) Circular Perforation Diameter OR
ii) 2" Height Rectangular Perforation Width
E) Number of Columns (nc, See Table 6a-1 For Maximum)
F) Actual Design Outlet Area per Row (A_{0})
G) Number of Rows (nr)
H) Total Outlet Area (A_{ot})
3. Trash Rack
A) Needed Open Area: $A_{t}=0.5^{*}\left(\right.$ Figure 7 Value) ${ }^{*} A_{o t}$
B) Type of Outlet Opening (Check One)
C) For 2", or Smaller, Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening ($\mathrm{W}_{\text {conc }}$) from Table 6a-1
ii) Height of Trash Rack Screen $\left(H_{T R}\right)$
$i_{a}=\frac{10.00}{i=0.10} \%$

Area $=$ \qquad acres

WQCV $=$ \qquad watershed inches
$\mathrm{Vol}=0.515$ acre-feet
\underline{x}

Orifice Plate
Perforated Riser Pipe
Other:
\qquad feet
$A_{0}=\quad 0.81 \quad$ square inches
$D=1.0000$ inches, OR
$W=\sim$ inches
$n c=$ \qquad number
$A_{0}=$ \qquad square inches
$\mathrm{nr}=$ \qquad number
$\mathrm{A}_{\mathrm{ot}}=$ \qquad square inches

APPENDIX G: DRAINAGE MAPS

The early grading project is for Overlook at Homestead Filing 1. Remove Filing 2 or grey out to clearly identify what basins are applicable to this filing specifically.

> FILING 2 NOW GRAYED OUT

