Early Grading Permit - Final Drainage Report

Overlook at Homestead Subdivision Filing No. 1 El Paso County, Colorado

Prepared for:
PT Overlook LLC
1864 Woodmoor Drive, Suite 100
Monument, CO 80132

Prepared by:

Kimley-Horn and Associates, Inc. 2 North Nevada Avenue, Suite 900 Colorado Springs, Colorado 80903 (719) 453-0180

Contact: Kevin Kofford, P.E.

Project #: 196239003

PCD Filing No.:

Prepared: January 24, 2024

CERTIFICATION

DESIGN ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparation of this report.

SIGNATURE (Affix S	eal):	Data
	Kevin Kofford, P.E.	Date
OWNER/DEVELOR	PER'S STATEMENT	
I, the developer, have Report and Plan.	e read and will comply with all of the re-	quirements specified in this Drainag
PT Overlook LLC		
Name of Developer		
Authorized Signature	Date	
Joe DesJardin		
Printed Name		
Director of Entitlemen	nts	
Title		
1864 Woodmoor Driv	re Suite 100, Monument, CO 80132	
Address	<u> </u>	
EL PASO COUNT	/	
	vith the requirements of the Drainage Cering Criteria Manual and Land Develo	
Joshua Palmer, P.E. County Engineer/ EC	Date M Administrator	9
Conditions:		

TABLE OF CONTENTS

CERTIFICATION	1
DESIGN ENGINEER'S STATEMENTOWNER/DEVELOPER'S STATEMENTEL PASO COUNTY	′
TABLE OF CONTENTS	
INTRODUCTION	3
PURPOSE AND SCOPE OF STUDYLOCATIONDESCRIPTION OF PROPERTY	3
FLOODPLAIN STATEMENT	
DRAINAGE BASINS	
COMPLIANCE WITH PREVIOUS FINAL DRAINAGE REPORT EXISTING SUB-BASIN DESCRIPTIONSPROPOSED SUB-BASIN DESCRIPTIONS	4
DRAINAGE DESIGN CRITERIA	
DEVELOPMENT CRITERIA REFERENCE	
HYDROLOGIC CRITERIA	9
THE FOUR STEP PROCESS	.10
DRAINAGE FACILITY DESIGN	.11
GENERAL CONCEPT	
DRAINAGE FEES	.11
FEES	.11
SUMMARY	.11
REFERENCES	11
APPENDIX	• '
APPENDIX A: VICINITY MAP APPENDIX B: FEMA MAP & SOILS REPORT APPENDIX C: HYDROLOGY	

APPENDIX C: HYDROLOGY APPENDIX D: HYDRUALICS

APPENDIX E: EL PASO COUNTY DRAINAGE BASIN MAP

APPENDIX F: APEX RANCH DRAINAGE REPORT

APPENDIX G: DRAINAGE MAPS

INTRODUCTION

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and to document the drainage design methodology in support of the proposed Overlook at Homestead Subdivision Filing No. 1("the Project") on behalf of PT Overlook LLC. The finalized hydraulic design and associated calculations for the early grading stage of this project will be provided with the Final Drainage Report. The Project is located within the jurisdictional limits of El Paso County ("the County"). Therefore, the hydrologic and hydraulic design is based on the County's criteria which is described in further detail within the report.

LOCATION

The Project Site located east of Elbert Road within El Paso County, Colorado including parcels 4122000005, 4100000255, 4100000256. More specifically, the site is a Portion of Section 22 and a Portion of Section 27, Township 11 South, Range 64 West of the 6th PM, County of El Paso, State of Colorado. North of the project site is agricultural and rural residential land, to the east is Homestead Ranch Park owned and maintained by El Paso County, and to the south and west is Homestead Ranch subdivisions. Filing No.1 consists of 36, five acre lots and is located just south the Apex Ranch Subdivision and the large butte. A vicinity map has been provided in the **Appendix** of this report.

The Site is currently owned by PT Overlook LLC and will be developed by PT Overlook LLC.

DESCRIPTION OF PROPERTY

The entire Overlook project is approximately 350.8 acres consisting of mostly vacant, undeveloped land with native vegetation and a rural single-family residential home situated in the northwest corner of the Site and is classified as Agricultural Grazing Land to be subdivided into 62 total lots. Filing No. 1 consists of approximately 202.72 acres which will be subdivided into 36 5-acre parcels. Vegetation within the site is characterized primarily by prairie grasses along with some area of scrub brush and trees. The Site does not currently provide water quality or detention for the Project area.

The existing topography consists of slopes ranging from 1% to 33% with an existing butte covering much of the northern portion of the Site. Filing No. 1 includes a roadway and temporary cul-desac on the top of the existing butte, but the majority of the site is located south of the butte. Flows in the existing conditions run off site into one of four major drainage basins. Filing No. 1 only discharges into the Upper Black Squirrel Cree and La Vega Ranch drainage basins, to the south. Detailed descriptions of the existing major drainage basins can be found later in the report.

According to NRCS soil mapping data, USCS Type B soils are the primary soil type within the site. Type B soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained, or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Soils mapping information has been provided in the **Appendix**.

The Filing No. 1 development of this site will consist of 36, five acre residential lots with roadway improvements, roadway grading, three full spectrum detention ponds, roadside ditches, culverts, and drainage swales.

FLOODPLAIN STATEMENT

The Site is located outside the 100-year floodplain and within Zone X (an area of minimal flood hazard) as noted on the FEMA FIRM Map No. 08041C0350G revised on December 7, 2018 (See **Appendix**).

DRAINAGE BASINS

MAJOR BASIN DESCRIPTIONS

The Project Site is tributary to four major drainage basins in the El Paso County Drainage Basin Map. Bijou Creek, East Kiowa Creek, Upper Black Squirrel, and La Vega Ranch Drainage Basins. These drainage basins are located in the north central portion of El Paso County. The northeast portion of the site is tributary to Bijou Creek Drainage Basin, the northwest portion of the site is tributary to Upper Black Squirrel Drainage Basin, and the southeast portion of the site is tributary to Upper Black Squirrel Drainage Basin, and the southeast portion of the site is tributary to La Vega Ranch Drainage Basins. Filing No. 1 only discharges into the Upper Black Squirrel Creek and La Vega Ranch Drainage Basins, to the south. In an effort to simplify basin nomenclature, the following naming conventions have been used for both existing and proposed drainage subbasins labeling. Proposed Basins have been designed in effort to keep runoff within the same existing basins, as to not transfer runoff between basins.

- A Upper Black Squirrel Drainage Basin (CHBS2000)
- B La Vega Ranch Drainage Basin (CHBR0400)
- C East Kiowa Creek Drainage Basin (KIKI0400)
- D Bijou Creek Drainage Basin (BIBI0200)

El Paso County Drainage Basin map has been provided in the **Appendix**. A summary of flows in existing and proposed conditions has been added to the **Appendix**.

COMPLIANCE WITH PREVIOUS FINAL DRAINAGE REPORT

A portion of the proposed Project Site falls within the existing approved "Final Drainage Report for Apex Ranch Estates" by Terra Nova Engineering, Inc. approval date September 3, 2008. Flows from these basins will be at or below history values. These flows are not included in the calculation for the existing detention facility for Filing No. 1. Excerpts from the previously approved FDR have been provided in the **Appendix**.

A Preliminary Drainage Report was submitted to the County as part of the SP238 Application for the Preliminary Plat. The existing and proposed hydrology for this Final Drainage Report are consistent with the hydrology presented in the Preliminary Drainage Report.

EXISTING SUB-BASIN DESCRIPTIONS

Historically the runoff from the Site drains into one of two major drainage basins for Filing No. 1 as described above. Slopes vary from 2-33% throughout the site with various natural features. The Site has been divided into 8 onsite basins A1-A2, B1, B3, and B3A, and 2 offsite basins OS-A1 and OS-A2. The offsite basins are located west of the Site and generally flow west towards to existing stormwater infrastructure. Descriptions of each individual sub-basin can be found below.

Sub-Basin A1

This on-site sub-basin consists of an area of 19.92 acres, located in the southwest corner of the Site. Drainage flows overland from the northeast to the southwest where it is captured by an existing culvert at DP 1 and outfalls west of Elbert Rd. The weighted imperviousness for this sub-basin is 8%. Runoff during the 5-year and 100-year events are 8.43 cfs and 38.41 cfs respectively. Refer to the **Appendix** for the Existing Conditions Drainage Map.

Sub-Basin A2

This on-site sub-basin consists of an area of 61.50 acres, located in the southwest corner of the Site. Drainage flows overland from the northeast to the southwest where it flows offsite at DP 2 into Reata subdivision south of the Site. The weighted imperviousness for this sub-basin is 1%. Runoff during the 5-year and 100-year events are 13.00 cfs and 87.58 cfs respectively. Refer to the **Appendix** for the Existing Conditions Drainage Map.

Sub-Basin B1

This on-site sub-basin consists of an area of 45.75 acres, located in the south-central portion of the Site. Drainage flows overland from the north to the south where it flows offsite at DP 3 into Reata subdivision south of the Site. The weighted imperviousness for this sub-basin is 0%. Runoff during the 5-year and 100-year events are 9.87 cfs and 72.48 cfs respectively. Refer to the **Appendix** for the Existing Conditions Drainage Map.

Sub-Basin B2

This on-site sub-basin consists of an area of 42.42 acres, located in the south-central portion of the Site. Drainage flows overland from the north to the south where it flows offsite at DP 4 into Reata subdivision south of the Site. The weighted imperviousness for this sub-basin is 0%. Runoff during the 5-year and 100-year events are 9.41 cfs and 69.09 cfs respectively. Refer to the **Appendix** for the Existing Conditions Drainage Map.

Sub-Basin B3

This on-site sub-basin consists of an area of 25.42 acres, located in the southeast portion of the Site. Drainage flows overland from the north to the south where it flows offsite at DP 5 into Reata subdivision south of the Site. The weighted imperviousness for this sub-basin is 0%. Runoff during the 5-year and 100-year events are 5.91 cfs and 43.40 cfs respectively. Refer to the **Appendix** for the Existing Conditions Drainage Map.

Sub-Basin B3A

This on-site sub-basin consists of an area of 24.23 acres, located in the southeast corner of the Site. Drainage flows overland from the north to the south where it flows offsite at DP 5A into Reata subdivision south of the Site. The weighted imperviousness for this sub-basin is 0%. Runoff during the 5-year and 100-year events are 5.99 cfs and 43.98 cfs respectively. Refer to the **Appendix** for the Existing Conditions Drainage Map.

Sub-Basin OS-A1

The off-site sub-basin consists of an area of 4.06 acres, located in the western central portion of the drainage study area. Drainage flows overland from the northeast to southwest where it is captured by an existing drainage culvert at DP 14 and directed west of Elbert Road. The weighted imperviousness for this sub-basin is 19%. Runoff during the 5-year and 100-year events are 3.76 cfs and 12.49 cfs respectively. Refer to the **Appendix** for the Existing Conditions Drainage Map.

Sub-Basin OS-A2

The off-site sub-basin consists of an area of 4.45 acres, located in the central portion of the drainage study area. Drainage flows overland from the north to south where it enters sub-basin

A2 at DP 15 and follows the patterns described in sub-basin A2. The weighted imperviousness for this sub-basin is 19%. Runoff during the 5-year and 100-year events are 3.76 cfs and 12.49 cfs respectively. Refer to the **Appendix** for the Existing Conditions Drainage Map.

PROPOSED SUB-BASIN DESCRIPTIONS

For the proposed condition, stormwater will generally maintain historic flow patterns. The proposed roadways will alter some of the existing flow paths. The roadway ditches will capture runoff from the roadways and direct flows via proposed culverts back to the existing flow paths, which will ultimately follow historic patterns or be capture by one of the three (3) proposed storm water ponds. The proposed Site has been divided into 10 onsite basins A1-A2, B1-B3, B6-B8, and 2 offsite basins OS-A1 and OS-A2. Descriptions of each individual sub-basin can be found below. The off-site basins are fully developed and no changes to the upstream basins are anticipated. Per Final Drainage Report for Apex Ranch Estates by Terra Nova Engineering, dated September 3, 2008, the existing extended detention basin, on the northwest corner of Apex Ranch Road and Fletcherville Lane was designed and sized to provide water quality for the entire basins A-J of the Apex Ranch Estates Final Drainage Report. This area includes all the proposed roadway extensions through the ROW preservation within the Apex Ranch Estates Subdivision. This project does not rely on the water quality or detention volumes provided by the existing detention basin within Apex Ranch Estates.

The three proposed full spectrum extended detention basins will be designed to release developed flows from Filing No. 1 at less than or equal to historic rates for this project before passing the property line. The full design of these full spectrum extended detention basins will be provided at the Final Plat-Final Drainage Report. Temporary Sediment Basins will be provided during the Early Grading phase of the project. More detail regarding the proposed Temporary Sediment Basins can be found in the detention basin section of this report.

Sub-Basin A1

This on-site sub-basin consists of an area of 19.55 acres, located in the southwest corner of the Site. Drainage flows overland from the northeast to the southwest where it is captured by an existing culvert at DP 1 and outfalls west of Elbert Rd. There are no proposed improvements in sub-basin A1. The weighted imperviousness for this sub-basin is 15%. Runoff during the 5-year and 100-year events are 10.41 cfs and 41.24 cfs respectively. Due to the slight increase in sub-basin imperviousness, the 100-yr runoff increases from 38.41 to 41.24 cfs. The additional runoff will be accepted and mitigated through the nearly 1500 ft long, 50 ft wide existing drainage channel located within the sub-basin. Flows from this basin will be collected in roadside ditches along Elbert Rd and routed under Elbert Road. The runoff from this basin will not impact the Reata subdivision south of the Site. The minor increase in flows is not anticipated to impact the capacity of the existing culvert. Refer to the **Appendix** for the Proposed Conditions Drainage Map.

Sub-Basin A2

This on-site sub-basin consists of an area of 58.27 acres, located in the southwest corner of the Site. Improvements within this sub-basin include proposed roads, roadside ditches, culverts, and proposed private full spectrum detention basin A2. Drainage flows overland from the northeast to the southwest where it flows into proposed roadside ditches, is conveyed through proposed stormwater culverts, and is ultimately captured by propose private full spectrum detention basin A2 at DP 2. The weighted imperviousness for this sub-basin is 12%. Runoff during the 5-year and 100-year events are 20.99 cfs and 92.96 cfs respectively. Due to the increase in sub-basin imperviousness, the 100-yr runoff for DP 2 is anticipated to increases from 87.58 cfs to 92.96 cfs. The additional runoff will be collected and released at less than historic rates via a proposed private full spectrum detention basin. Flows from this basin will exit into the Reata subdivision

south of the Site via existing, vegetated natural drainage channels and outfall to an existing stock pond within the adjacent property south of the Site. The minor increase in flows will be mitigated by the proposed full spectrum detention basin A2 and released a less than historic rates. Refer to the **Appendix** for the Proposed Conditions Drainage Map.

Sub-Basin B1

This on-site sub-basin consists of an area of 40.74 acres, located in the south-central portion of the Site. Improvements within this sub-basin include proposed roads, roadside ditches, culverts, and proposed private full spectrum detention basin B1. Drainage flows overland from the north to the south where it flows into proposed roadside ditches, is conveyed through proposed stormwater culverts, and is ultimately captured by propose private full spectrum detention basin B1 at DP 3. The weighted imperviousness for this sub-basin is 10%. Runoff during the 5-year and 100-year events are 16.77 cfs and 80.40 cfs respectively. Due to the increase in sub-basin imperviousness, the 100-yr runoff for DP 3 is anticipated to increases from 72.48 cfs to 80.40 cfs. The additional runoff will be collected and released at less than historic rates via a proposed private full spectrum detention basin. Flows from this basin will exit into the Reata subdivision south of the Site via existing, vegetated natural drainage channels and outfall to an existing stock pond within the adjacent property south of the Site. The minor increase in flows will be mitigated by the proposed full spectrum detention basin B1 and released a less than historic rates. Refer to the **Appendix** for the Proposed Conditions Drainage Map.

Sub-Basin B2

This on-site sub-basin consists of an area of 16.00 acres, located in the south-central portion of the Site. Drainage flows overland from the north to the south where it flows offsite at DP 4. Improvements within this sub-basin include proposed public roads. This sub-basin includes an approx. 14,351 sq ft improved area of roadway that will not be receiving water quality treatment. A detailed discussion regarding water quality treatment has been included in Step-2 of the Four Step Process. The weighted imperviousness for this sub-basin is 9%. Runoff during the 5-year and 100-year events are 7.82 cfs and 38.64 cfs respectively. It is anticipated in a 100-yr storm event the total runoff for DP 4 will reduce from 69.09 cfs to 38.64 cfs, as the proposed roadway will cut off much of the upstream portion of the existing drainage basin and route those flows to a proposed full spectrum detention basin. As such there are no anticipated downstream impacts. Refer to the **Appendix** for the Proposed Conditions Drainage Map.

Sub-Basin B3

This on-site sub-basin consists of an area of 19.11 acres, located in the southeastern portion of the Site. Drainage flows overland from the northwest to southeast where it flows off site at DP 5. There are no proposed public improvements within this sub-basin, but single-family homes will be constructed and excluded the large lot exclusion I.7.1.B.5 and discussed in step 2 of the four-step process. The weighted imperviousness for this sub-basin is 7%. Runoff during the 5-year and 100-year events are 7.83 cfs and 42.71 cfs respectively. In the proposed conditions, it is anticipated in a 100-yr storm event the total runoff for DP 5A (DP 5 in proposed conditions) will reduce from 43.98 to 42.71, as such there are no anticipated downstream impacts. Refer to the **Appendix** for the Proposed Conditions Drainage Map.

Sub-Basin B6

This on-site sub-basin consists of an area of 53.31 acres, located in the central portion of the Site. Improvements within this sub-basin include proposed roads, roadside ditches, and culverts. Drainage flows overland from the northeast to the southwest where it flows into proposed roadside ditches, is conveyed through a proposed stormwater culvert at DP 8, and into sub-basin B8. From there, flows will follow path as described in sub-basin B8 where it will ultimately be captured in proposed full spectrum detention basin B8. The weighted imperviousness for this sub-basin is

10%. Runoff during the 5-year and 100-year events are 22.55 cfs and 106.95 cfs respectively. Refer to the **Appendix** for the Proposed Conditions Drainage Map.

Sub-Basin B7

This on-site sub-basin consists of an area of 2.46 acres, located in the southern portion of the Site. Drainage flows overland from the north to south where it flows off site at DP 9. There are no proposed improvements within this sub-basin. The weighted imperviousness for this sub-basin is 7%. Runoff during the 5-year and 100-year events are 1.13 cfs and 6.17 cfs respectively. Refer to the **Appendix** for the Proposed Conditions Drainage Map.

Sub-Basin B8

This on-site sub-basin consists of an area of 9.52 acres, located in the southern portion of the Site. Drainage flows overland from the north to south where it is captured by proposed private full spectrum extended detention basin B8 at DP 10. It should be noted that sub-basin B8 accepts flows from sub-basin B6 at DP 8. Refer to sub-basin B6 for information regarding the proposed flows from sub-basin B6. Aside from the proposed extended detention basin there are no proposed improvements within this sub-basin. The weighted imperviousness for this sub-basin is 7%. Runoff during the 5-year and 100-year events are 4.22 cfs and 23.05 cfs respectively. In addition to the increase of imperviousness, sub-basin B8 is also accepting flows from sub-basin B6 to the north. The combination of these factors results in a proposed increase of flows at DP 10 (DP 5 in existing conditions) from 43.40 cfs to 130.00 cfs. The additional runoff will be collected and released at less than historic rates via a proposed private full spectrum detention basin. Flows from this basin will exit into the Reata subdivision south of the Site via existing, vegetated natural drainage channel and outfall to an existing established vegetated area within the adjacent property south of the Site. The minor increase in flows will be mitigated by the proposed full spectrum detention basin B8 and released a less than historic rates. Refer to the Appendix for the Proposed Conditions Drainage Map.

Sub-Basin OS-A1

The off-site sub-basin consists of an area of 4.06 acres, located in the western central portion of the drainage study area. Drainage flows overland from the northeast to southwest where it is captured by an existing drainage culvert at DP 18 and directed west of Elbert Road. The weighted imperviousness for this sub-basin is 25%. Runoff during the 5-year and 100-year events are 4.12 cfs and 12.86 cfs respectively. Refer to the **Appendix** for the Proposed Conditions Drainage Map.

Sub-Basin OS-A2

The off-site sub-basin consists of an area of 4.45 acres, located in the central portion of the drainage study area. Drainage flows overland from the north to south where it enters sub-basin A2 at DP 19 and follows the patterns described in sub-basin A2. The weighted imperviousness for this sub-basin is 7%. Runoff during the 5-year and 100-year events are 2.10 cfs and 11.46 cfs respectively. Refer to the **Appendix** for the Proposed Conditions Drainage Map.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with El Paso County "Drainage Criteria Manual (DCM)" dated October 2018 ("the MANUAL"), El Paso County "Engineering Criteria Manual" ("the Engineering Manual"), Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014 ("the Colorado Springs MANUAL"), and Mile High Flood District (MHFD), Urban Drainage and Flood Control District

Drainage Criteria Manuals (UDFCDCM), (Volumes 1, 2 and 3), prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.

Site drainage is not significantly impacted by such constraints as utilities or existing development.

A Preliminary Drainage Report was completed for the overall Overlook Subdivision (SP238). This Final Drainage Report uses the Preliminary Drainage Report to assist with the drainage design for Filing No. 1.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the proposed drainage system per chapter 6 of the CRITERIA. Table 6-2 of the CRITERIA is the source for rainfall data for the 5-year and 100-year design storm events. Design runoff was calculated using the Rational Method for developed conditions as established in the CRITERIA and MANUAL. Runoff coefficients for the proposed development were determined using Table 6-6 of the CRITERIA by calculating weighted impervious values for each specific site basin as outlined and shown in the Preliminary Drainage Report.

HYDRAULIC CRITERIA

Applicable design methods were utilized to analyze the proposed ponds, culverts, and existing drainage channels which includes the use of the UD-Detention spreadsheet, rational calculations spreadsheet, and FlowMaster, and UD-Culvert.

Proposed Drainage features on-site have been analyzed and sized for the following design storm events:

• Major Storm: 100-year Storm Event

Three temporary sediment basins are proposed in order to capture eroded or disturbed soil transported in storm runoff prior to discharge from the site. The temporary sediment basins will contain perforated outlet pipes with a release time of approximately 72 hours. The table below outlines the sediment basin sizing, which was based on MHFD temporary sediment basin sizing calculations

Temporary Sediment Basin ID	Tributary Basin Area (Acres)	TSB Volume (Ac-ft)
TSB A2	58.3	3.42
TSB B1	40.7	2.23
TSB B8	62.8	3.48

The existing natural drainage channels and proposed roadside ditches are designed to carry flows to the temporary sediment basins. The natural channels have varying bottom widths, slopes, and side slopes. The Project intends on using existing natural drainage channels to convey flow where appropriate. Natural channels through Filing No. 1 have been labeled and identified on the Proposed Drainage Map. Channel calculations and summary table have been provided in the **Appendix.** It is not anticipated channel upgrades or improvements will be required for this project. Proposed drainage easements have been proposed on the Early Grading Plans in locations where the natural channels convey flow a substantial amount of flow between properties.

Roadside ditches are provided along the proposed roadways to route flows to the proposed culverts. The roadside ditches are sized to convey the major event flow. The roadside ditched

have been designed to have an average depth of 3 feet, a v-ditch, a left-side slope of 3:1, and a right-side slope of 4:1. No channels were determined to have velocities above the allowable permissible velocities for grass lines channels. Roadside ditch calculations and summary table has been provided in the **Appendix**.

Culverts were sized to convey flows from the ditches and channels, underneath the sites paved roads. The proposed culverts range from 18" to 36" and have been designed to convey the 100-year storm event. Culvert calculations and summary table has been provided in the **Appendix**.

THE FOUR STEP PROCESS

The Project was designed in accordance with the four-step process to minimize adverse impacts of urbanization, as outlined in the El Paso County Engineering Manual for BMP selection as noted below:

Step 1. Employ Runoff Reduction Practices – The project is proposing a low-density residential development that will be designed to minimize the impact to the current existing terrain. Per Section I.7.1B of Appendix I of the ECM, the single-family residences fall under the large lot exemption as the total impervious area is less than 10% of the area. Homes are typically placed in the center of the lot and provide long distances for infiltration across natural terrain. The Site's proposed paved roadways will increase the Site's impervious area; however, roadside ditches and channels will be constructed to slow down the runoff velocity and reduce runoff peaks. The three proposed detention ponds will be used to capture stormwater, provide water quality treatment, and maintain flows discharging off site at or below historic levels.

Step 2. Provide a Water Quality Capture Volume – Permanent water quality measures and detention facilities will be necessary for the Project. Temporary water quality and erosion control measures will be provided during construction to prevent sediment laden water from discharging from the Site. Water quality measures are being used for all stormwater that contacts roadways. Per ECM Appendix I Section I.7.B.5: Large Lot Single Family exclusion, most of the proposed site will be excluded from water quality, lot imperviousness shall be limited to 10 percent or less. Per ECM Appendix I Section 1.7.C.1.a., 20% of the development site or less than 1 acre can be excluded from providing water quality. As mentioned, 0.99 acres (43,197 sq ft) of impervious area will not be able to be treated which is less than 20% of the overall site.

Step 3 Stabilize Drainageways– Stabilizing proposed roadside ditches, and channels by designing them with slopes that control the flow rates. Placement of riprap upstream and downstream of culverts to help reduce erosion of the roadside ditches. Existing drainage ways will be graded to reduce the velocity of the water to minimize erosion. The existing natural channels have been analyzed for width and velocity for the 100-yr storm event. Easements are proposed to accommodate the full width of the major storm event.

Step 4. Implement Site Specific and Other Source Control BMPs – The erosion control construction BMPs of the Project were designed to reduce contamination. Source control BMPs include the use of vehicle tracking control, culvert protection, stockpile management, and stabilized staging areas.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed drainage patterns will match historic patterns. To maintain historic flows, three full spectrum detention ponds are being proposed and will capture and control the flows from the proposed development into a serious of channels and culverts. The Temporary Sediment Basins described in this report TSB A2, B1, B8 will be converted into the extended detention basins as part of the Final Drainage Report to be processed with the Final Plat application.

DRAINAGE FEES

FEES

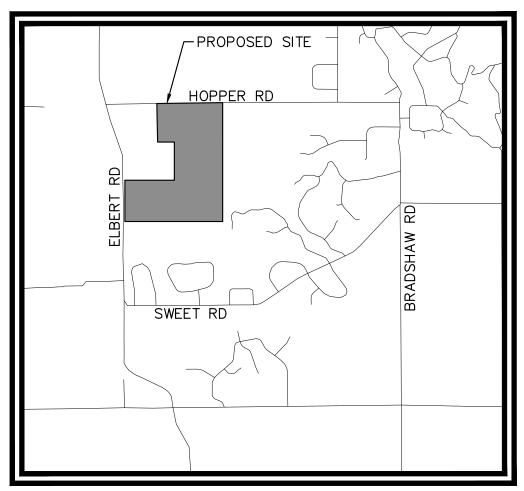
The project is within the Upper Black Squirrel Drainage Basin (CHBS2000), La Vega Ranch Drainage Basin (CHBR0400), East Kiowa Creek Drainage Basin (KIKI0400), and Bijou Creek Drainage Basin (BIBI0200) all four of which are not part of the El Paso County Drainage Basin Fee Program. As such, no drainage fees are due with this Project.

SUMMARY

This report has been prepared in accordance with El Paso County stormwater criteria. It outlines the Site design for the 5-year and 100-year storm events drainage system. The drainage design presented within this report conforms to the criteria presented in the MANUAL Additionally, as the proposed pond release rates are to be designed less than historic rates, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments.

REFERENCES

- Final Drainage Report for Apex Ranch Estates by Terra Nova Engineering, Inc. dated September 3, 2008
- 2. El Paso County "Engineering Criteria Manual" Volumes 1 & 2, dated October 31, 2018
- 3. Natural Resources Conservation Service, Web Soil Survey, dated June 21, 2023.
- Urban Drainage and Flood Control District Drainage Criteria Manuals (UDFCDCM), (Volumes 1, 2 and 3), prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.
- Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 08041C0350G, Effective Date December 7, 2018, prepared by the Federal Emergency Management Agency (FEMA).



APPENDIX

APPENDIX A: VICINITY MAP

VICINITY MAP

SCALE: 1":5000'

APPENDIX B: FEMA MAP & SOILS REPORT

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**.For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

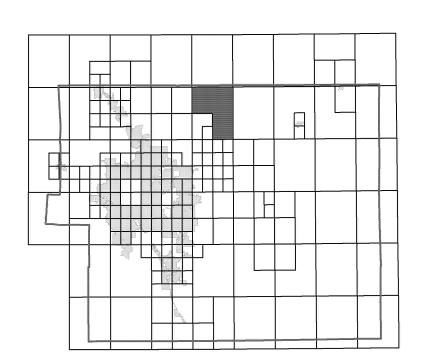
To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channe distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile aselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

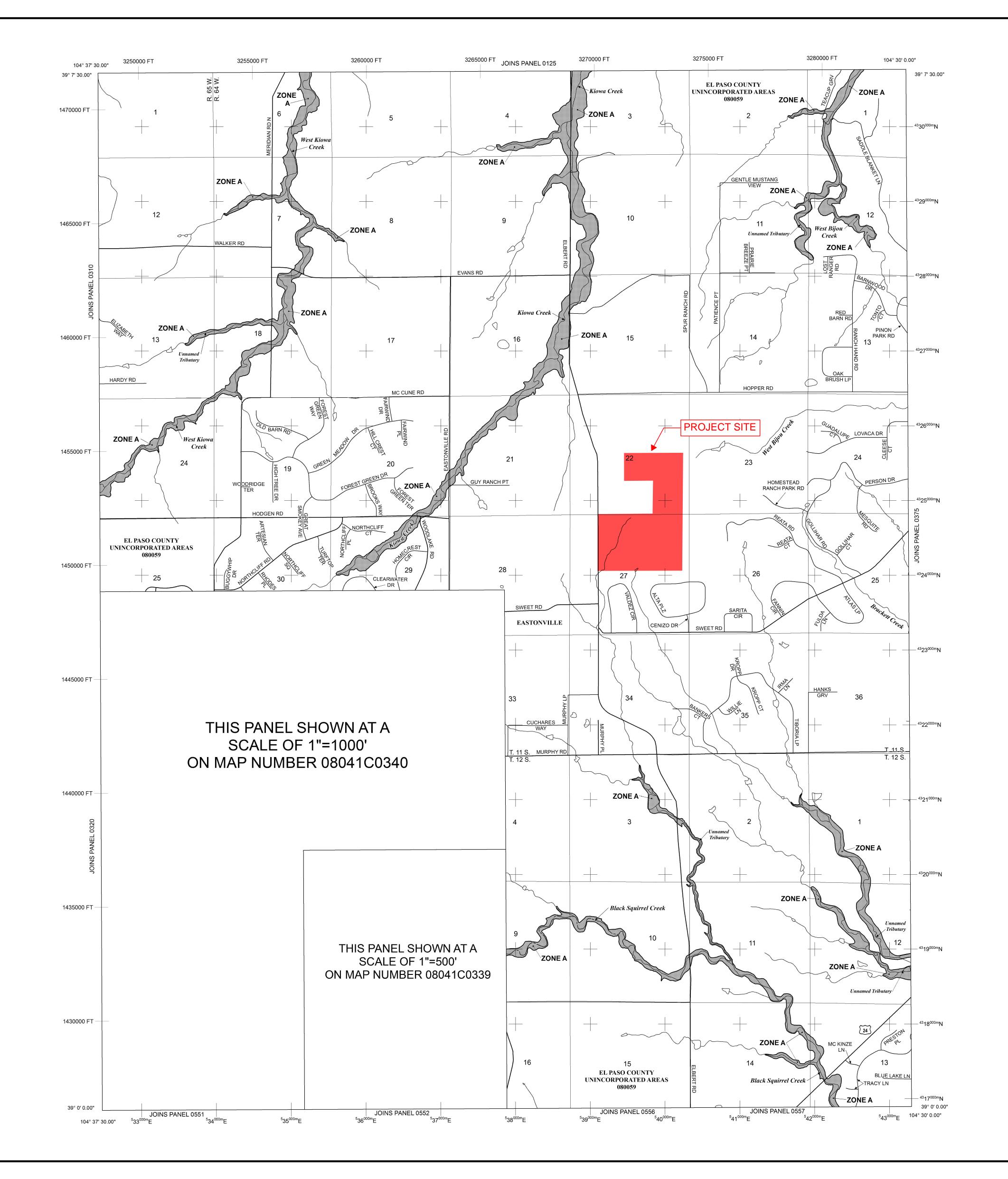
Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is


Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website http://www.msc.fema.gov/.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

> El Paso County Vertical Datum Offset Table Flooding Source

> > Panel Location Map


REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

ZONE A No Base Flood Elevations determined. Base Flood Elevations determined.

Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood

ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also

ZONE AR Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.

ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations

Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined Coastal flood zone with velocity hazard (wave action); Base Flood

FLOODWAY AREAS IN ZONE AE

Elevations determined.

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

OTHER AREAS

Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.

Floodplain boundary Floodway boundary Zone D Boundary

••••••• CBRS and OPA boundary

Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities. Base Flood Elevation line and value; elevation in feet*

Base Flood Elevation value where uniform within zone;

elevation in feet* * Referenced to the North American Vertical Datum of 1988 (NAVD 88)

Cross section line

(EL 987)

97° 07' 30 00" Geographic coordinates referenced to the North American 32° 22' 30.00" Datum of 1983 (NAD 83)

1000-meter Universal Transverse Mercator grid ticks,

5000-foot grid ticks: Colorado State Plane coordinate 6000000 FT system, central zone (FIPSZONE 0502),

Bench mark (see explanation in Notes to Users section of

this FIRM panel)

MAP REPOSITORIES Refer to Map Repositories list on Map Index

EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP MARCH 17, 1997

EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL DECEMBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision.

For community map revision history prior to countywide mapping, refer to the Community Map History Table located in the Flood Insurance Study report for this jurisdiction.

To determine if flood insurance is available in this community, contact your insurance

agent or call the National Flood Insurance Program at 1-800-638-6620.

PANEL 0350G

FIRM

EL PASO COUNTY, **COLORADO** AND INCORPORATED AREAS

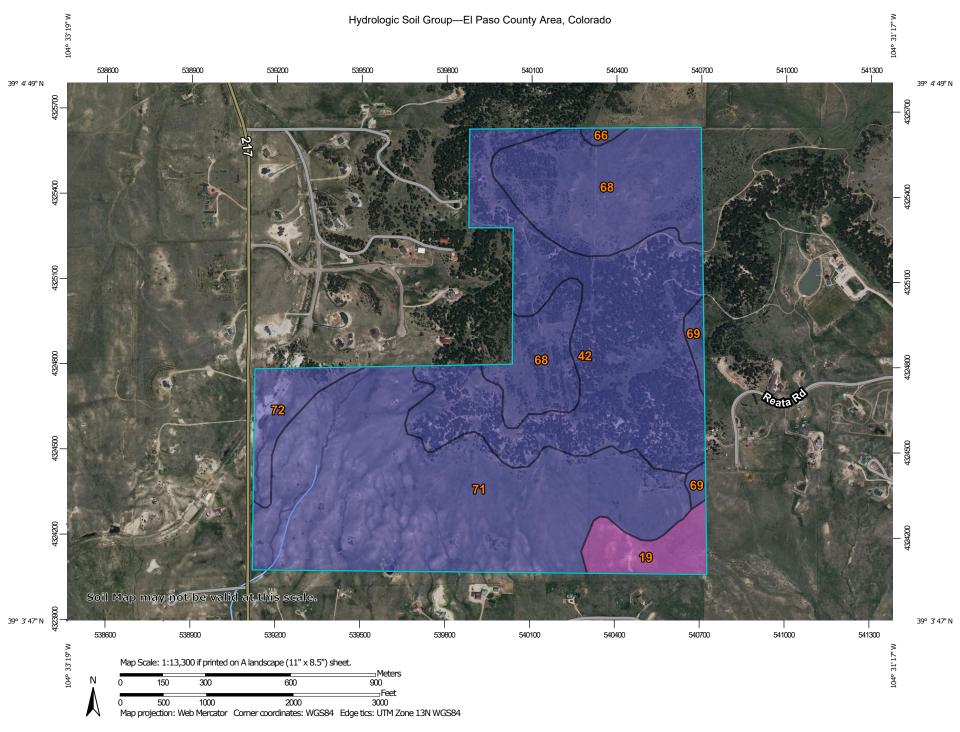
FLOOD INSURANCE RATE MAP

PANEL 350 OF 1300

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

<u>PANEL</u>

Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the



MAP REVISED DECEMBER 7, 2018

MAP NUMBER

08041C0350G

Federal Emergency Management Agency

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 20, Sep 2, 2022 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Jun 9, 2021—Jun 12. 2021 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	18.1	4.1%
42	Kettle-Rock outcrop complex	В	135.4	30.8%
66	Peyton sandy loam, 1 to 5 percent slopes	В	1.7	0.4%
68	Peyton-Pring complex, 3 to 8 percent slopes	В	91.1	20.7%
69	Peyton-Pring complex, 8 to 15 percent slopes	В	5.6	1.3%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	171.8	39.0%
72	Pring coarse sandy loam, 8 to 15 percent slopes	В	16.2	3.7%
Totals for Area of Inter	rest		440.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

APPENDIX C: HYDROLOGY

Kimley » Horn

STANDARD FORM SF-1 RUNOFF COEFFICIENTS - IMPERVIOUS CALCULATION EXISTING CONDITIONS

PROJECT NAME: Overlook PROJECT NUMBER: 196239003 CALCULATED BY: GKS

DATE: 1/24/2024

CHECKED B											
SOIL: B		RESIDENTIAL (>5AC)	PASTURE/MEADOW (SOIL GROUP A/B)	PAVEMENT							
	LAND USE:	AREA	AREA	AREA	AREA						
	2-YEAR COEFF.	0.05	0.02	0.89							
	5-YEAR COEFF.	0.12	0.08	0.90							
	10-YEAR COEFF.	0.20	0.15	0.92							
	100-YEAR COEFF.	0.39	0.35	0.96							
	IMPERVIOUS %	7%	0%	100%							
		RESIDENTIAL (>5AC)	PASTURE/MEADOW (SOIL GROUP A/B)	PAVEMENT		TOTAL					
DESIGN	DESIGN	AREA	AREA	AREA	AREA	AREA			l.		
BASIN	POINT	(AC)	(AC)	(AC)	(AC)	(AC)	C(2)	C(5)	C(10)	C(100)	Imp %
FDR Basins											
Al	1		18.28	1.64		19.92	0.09	0.15	0.21	0.40	8%
A2	2		60.84	0.66		61.50	0.03	0.09	0.16	0.36	1%
B1	3		45.75			45.75	0.02	0.08	0.15	0.35	0%
B2	4		42.42			42.42	0.02	0.08	0.15	0.35	0%
B3	5		25.42			25.42	0.02	0.08	0.15	0.35	0%
B3A	5A		24.23			24.23	0.02	0.08	0.15	0.35	0%
OS-A1	14		3.29	0.77		4.06	0.19	0.24	0.30	0.47	19%
OS-A2	15	4.45				4.45	0.05	0.12	0.20	0.39	7%
TOTAL	OVERALL	4.45	220.23	3.07	0.00	227.75	0.03	0.09	0.16	0.36	1%
IOIAL-	OVERALL	2%	97%	1%	0%	100%					

CALCULATED BY: GKS

STANDARD FORM SF-2 Time of Concentration

EXISTING CONDITIONS

PROJECT NAME: Overlook EXISTING PROJECT NUMBER: 196239003

CHEC	CKED BY:	KRK														
SUB-B	BASIN		I	NITIAL			TR	AVEL TIM	E				те СНЕС	CK		FINAL
DA	TA		T	'IME (T _i)				$(\mathbf{T}_{\mathbf{t}})$				(UI	RBANIZED	BASINS)		Tc
DESIGN	AREA	C5	LENGTH	SLOPE	T_{i}	LENGTH	SLOPE	C_{v}	VEL	T_t	COMP.	TOTAL	TOTAL	TOTAL	Tc	
BASIN	Ac		Ft	%	Min.	Ft.	%		fps	Min.	tc	LENGTH	SLOPE	IMP.	Min.	Min.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	
FDR Basins																
A1	19.92	0.15	300	18.0%	11.5	2,066	5.7%	2.5	0.6	57.7	69.2	2366	7.3%	8%	23.1	23.1
A2	61.50	0.09	300	18.0%	12.3	3,677	5.7%	2.5	0.6	102.7	114.9	3977	6.6%	1%	32.1	32.1
B1	45.75	0.08	300	25.0%	11.1	2,577	6.5%	2.5	0.6	67.4	78.5	2877	8.4%		26.0	26.0
B2	42.42	0.08	300	6.9%	17.0	2,347	10.3%	2.5	0.8	48.8	65.8	2647	9.9%		24.7	24.7
В3	25.42	0.08	300	23.0%	11.4	1,968	9.9%	2.5	0.8	41.7	53.1	2268	11.6%		22.6	22.6
B3A	24.23	0.08	300	20.0%	11.9	1,500	10.0%	2.5	0.8	31.6	43.6	1800	11.7%		20.0	20.0
OS-A1	4.06	0.24	300	5.0%	16.1	161	5.0%	2.5	0.6	4.8	20.9	461	5.0%	19%	12.6	12.6
OS-A2	4.45	0.12	250	10.0%	13.2			2.5			13.2	250	10.0%	7%	11.4	11.4

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_0^{0.33}}$ $t_c = \frac{L}{180} + 10$ $V = C_v S_w^{0.5}$

Note: Conveyance coefficient from Table 6-7 of DCM

DATE: 1/24/2024

STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 2 YEAR EVENT

PROJECT NAME: Overlook PROJECT NUMBER: 196239003 CALCULATED BY: GKS EXISTING CONDITIONS DATE: 1/24/2024

CHECKED BY:	KRK																				
				DIRE	CT RUN	OFF			T	OTAL I	RUNO	FF	STR	EET]	PIPE		TRAV	EL TI	ME	REMARKS
STORM	DESIGN POINT	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	Q (cfs)	tc(max)	S(C*A) (ac)	I (in/hr)	O (cfs)	SLOPE (%)	STREET FLOW(cfs	DESIGN FLOW(cfs)	SLOPE (%)	PIPE SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
	1	A1	19.92	0.09	23.14	1.83	2.30	4.19													
	2	A2	61.50	0.03	32.09	1.80	1.91	3.44													
	3	B1	45.75	0.02	25.98	0.92	2.16	1.98													
	4	B2	42.42	0.02	24.71	0.85	2.22	1.88													
	5	В3	25.42	0.02	22.60	0.51	2.32	1.18													
	5A	B3A	24.23	0.02	20.00	0.48	2.47	1.20	·												
	14	OS-A1	4.06	0.19	12.56	0.75	3.02	2.27													
	15	OS-A2	4.45	0.05	11.39	0.22	3.14	0.70	·												

Note: Rainfall intensity from Figure 6-5 IDF Equations

 $I_2 = -1.19 \ln(t_{c,min}) + 6.035$

STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 5 YEAR EVENT

PROJECT NAME: Overlook PROJECT NUMBER: 196239003 CALCULATED BY: GKS EXISTING CONDITIONS DATE: 1/24/2024

CHECKED BY:																					
				DIRE	CT RUN	OFF			T	OTAL I	RUNO	FF	STRI	EET]	PIPE		TRAV	EL TI	ME	REMARKS
STORM	DESIGN	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	(cfs)	tc(max)	S(C*A) (ac)	I (in/hr)	O (cfs)	SLOPE (%)	STREET FLOW(cfs		SLOPE (%)	PIPE SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
	1	A1	19.92	0.15	23.14	2.94	2.87	8.43													
	2	A2	61.50	0.09	32.09	5.46	2.38	13.00													
	3	B1	45.75	0.08	25.98	3.66	2.70	9.87													
	4	B2	42.42	0.08	24.71	3.39	2.77	9.41													
	5	В3	25.42	0.08	22.60	2.03	2.91	5.91													
	5A	B3A	24.23	0.08	20.00	1.94	3.09	5.99													
	14	OS-A1	4.06	0.24	12.56	0.96	3.79	3.62													
	15	OS-A2	4.45	0.12	11.39	0.53	3.93	2.10						·							

Note: Rainfall intensity from Figure 6-5 IDF Equations

 $I_5 = -1.5 \ln(t_{c,min}) + 7.583$

STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 100 YEAR EVENT

PROJECT NAME: Overlook PROJECT NUMBER: 196239003 CALCULATED BY: GKS EXISTING CONDITIONS DATE: 1/24/2024

				DIRE	CT RUN	OFF			T	OTAL I	RUNO	FF	STR	EET		PIPE		TRAV	EL TI	ME	REMARKS
STORM	DESIGN	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	Q (cfs)	tc(max)	S(C*A) (ac)	I (in/hr)	Q (cfs)	SLOPE (%)	STREET FLOW(cfs	DESIGN FLOW(cfs)	SLOPE (%)	PIPE SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
	1	A1	19.92	0.40	23.14	7.97	4.82	38.41													
	2	A2	61.50	0.36	32.09	21.93	3.99	87.58													
	3	B1	45.75	0.35	25.98	16.01	4.53	72.48													
	4	B2	42.42	0.35	24.71	14.85	4.65	69.09													
	5	В3	25.42	0.35	22.60	8.90	4.88	43.40													
	5A	B3A	24.23	0.35	20.00	8.48	5.19	43.98													
	14	OS-A1	4.06	0.47	12.56	1.89	6.36	12.02													
	15	OS-A2	4.45	0.39	11.39	1.74	6.60	11.46													

Note: Rainfall intensity from Figure 6-5 IDF Equations

 $I_{100} = -2.52 \ln(t_{c,min}) + 12.735$

PROJECT NAME: Overlook 1/24/2024

PROJECT NUMBER: 196239003 CALCULATED BY: GKS CHECKED BY: KRK

EXIS	STING COND	ITIONS RATIONAL	CALCULA	TIONS S	UMMAR'	Y
DESIGN POINT	TRIBUTARY	TRIBUTARY AREA		CFS		% IMPERVIOUS
DESIGN POINT	BASINS	(AC)	Q2	Q5	Q100	% IIVIPERVIOUS
FDR Basins						
1	A1	19.92	4.19	8.43	38.41	8%
2	A2	61.50	3.44	13.00	87.58	1%
3	B1	45.75	1.98	9.87	72.48	0%
4	B2	42.42	1.88	9.41	69.09	0%
5	В3	25.42	1.18	5.91	43.40	0%
5A	B3A	24.23	1.20	5.99	43.98	0%
14	OS-A1	4.06	2.27	3.62	12.02	19%
15	OS-A2	4.45	0.70	2.10	11.46	7%
ON-SITE BASIN TOTA	AL					
BASIN A TO	TAL	81.42	7.63	21.43	125.99	3%
BASIN B TO	TAL	137.82	6.24	31.18	228.94	0%
ON-SITE TO	TAL	219.24	13.87	52.61	354.92	1%
OFF-SITE BASIN TOT	TAL					
OFF-SITE BA	SIN A	8.51	2.97	5.72	23.48	13%
OFF-SITE TO	OTAL	8.51	2.97	5.72	23.48	13%
SITE TOT.	AL	227.75	16.84	58.33	378.41	1%

Kimley » Horn

STANDARD FORM SF-1 RUNOFF COEFFICIENTS - IMPERVIOUS CALCULATION PROPOSED CONDITIONS

PROJECT NAME: Overlook PROJECT NUMBER: 196239003

DATE: 1/24/2024

SOIL: B		RESIDENTIAL	PASTURE/MEADOW	PAVEMENT							
		(>5AC)	(SOIL GROUP A/B)								
	LAND USE:		AREA	AREA	AREA	-					
	2-YEAR COEFF.		0.02	0.89							
	5-YEAR COEFF.		0.08	0.90							
	10-YEAR COEFF.		0.15	0.92							
	100-YEAR COEFF.	0.39	0.35	0.96							
	IMPERVIOUS %	7%	0%	100%							_
			PASTURE/MEADOW								
		RESIDENTIAL (>5AC)	(SOIL GROUP A/B)	PAVEMENT		TOTAL					
DESIGN	DESIGN	AREA	AREA	AREA	AREA	AREA					
			1.1.00	(4.60)	(AC)	(100)	C(2)	C(5)	C(10)	C(100)	Imp
BASIN	POINT	(AC)	(AC)	(AC)	(AC)	(AC)	C(2)	C(3)	C(10)	C(100)	mı
OR Basins	POINT		(AC)		(AC)						15
		17.91 55.40	(AC)	1.64 2.87	(AC)	19.55 58.27	0.12	0.19	0.26	0.44 0.42	
OR Basins	1	17.91	(AC)	1.64	(AC)	19.55	0.12	0.19	0.26	0.44	15
Al A2	1 2	17.91 55.40	(AC)	1.64 2.87	(AC)	19.55 58.27	0.12	0.19 0.16	0.26	0.44	15 12 10
Al A2 B1	1 2 3	17.91 55.40 39.58	(AC)	1.64 2.87 1.16	(AC)	19.55 58.27 40.74	0.12 0.09 0.07	0.19 0.16 0.14	0.26 0.24 0.22	0.44 0.42 0.41	15
A1 A2 B1 B2	1 2 3 4	17.91 55.40 39.58 15.66	(AC)	1.64 2.87 1.16	(AC)	19.55 58.27 40.74 16.00	0.12 0.09 0.07 0.07	0.19 0.16 0.14 0.14	0.26 0.24 0.22 0.22	0.44 0.42 0.41 0.40	15° 12° 10° 99
A1 A2 B1 B2 B3	1 2 3 4 5 5	17.91 55.40 39.58 15.66 19.11	(AC)	1.64 2.87 1.16 0.34	(AC)	19.55 58.27 40.74 16.00 19.11	0.12 0.09 0.07 0.07 0.05	0.19 0.16 0.14 0.14 0.12	0.26 0.24 0.22 0.22 0.20	0.44 0.42 0.41 0.40 0.39	15 12 10 99 79
A1 A2 B1 B2 B3 B6	1 2 3 3 4 5 5 8	17.91 55.40 39.58 15.66 19.11 51.65	(AC)	1.64 2.87 1.16 0.34	(AC)	19.55 58.27 40.74 16.00 19.11 53.31	0.12 0.09 0.07 0.07 0.05 0.08	0.19 0.16 0.14 0.14 0.12 0.12	0.26 0.24 0.22 0.22 0.20 0.20	0.44 0.42 0.41 0.40 0.39 0.41	15 12 10 99 79 10
A1 A2 B1 B2 B3 B6 B7	1 2 3 4 4 5 8 8 9	17.91 55.40 39.58 15.66 19.11 51.65 2.46	(AC)	1.64 2.87 1.16 0.34	(AC)	19.55 58.27 40.74 16.00 19.11 53.31 2.46	0.12 0.09 0.07 0.07 0.05 0.08	0.19 0.16 0.14 0.14 0.12 0.14	0.26 0.24 0.22 0.22 0.20 0.22 0.20	0.44 0.42 0.41 0.40 0.39 0.41	15 12 10 99 79 10 79
A1 A2 B1 B2 B3 B6 B7 B8	1 2 3 4 4 5 8 9 10	17.91 55.40 39.58 15.66 19.11 51.65 2.46 9.52	(AC)	1.64 2.87 1.16 0.34 1.66	(AC)	19.55 58.27 40.74 16.00 19.11 53.31 2.46 9.52	0.12 0.09 0.07 0.07 0.05 0.08 0.05	0.19 0.16 0.14 0.14 0.12 0.14 0.12	0.26 0.24 0.22 0.22 0.20 0.22 0.20 0.20	0.44 0.42 0.41 0.40 0.39 0.41 0.39	15 12 10 99 79 10 79 79 25
A1 A2 B1 B2 B3 B6 B7 B8 OS-A1 OS-A2	1 2 2 3 4 4 5 5 8 9 110 118	17.91 55.40 39.58 15.66 19.11 51.65 2.46 9.52 3.29	(AC)	1.64 2.87 1.16 0.34 1.66	0.00	19.55 58.27 40.74 16.00 19.11 53.31 2.46 9.52 4.06	0.12 0.09 0.07 0.07 0.05 0.08 0.05 0.05	0.19 0.16 0.14 0.12 0.12 0.12 0.12 0.12 0.12	0.26 0.24 0.22 0.22 0.20 0.20 0.20 0.20 0.34	0.44 0.42 0.41 0.40 0.39 0.41 0.39 0.39	15° 12° 10° 99 79

STANDARD FORM SF-2 Time of Concentration

PROPOSED CONDITIONS

DATE: 1/24/2024

PROJECT NAME: Overlook
PROJECT NUMBER: 196239003
CALCULATED BY: GKS
CHECKED BY: KRK

Note: Conveyance coefficient from Table 6-7 of DCM

SUB-B DA				NITIAL TIME (T _i)			TRA	AVEL TIM (T _t)	IE .		Tc CHECK (URBANIZED BASINS)					
DESIGN BASIN (1)	AREA Ac (2)	C5 (3)	LENGTH Ft (4)	SLOPE % (5)	T _i Min. (6)	LENGTH Ft. (7)	% (8)	C _v (9)	VEL fps (11)	T _t Min. (12)	COMP. tc (13)	TOTAL LENGTH (14)	TOTAL SLOPE (15)	TOTAL IMP. (16)	Tc Min. (17)	Min.
FDR Basins																
A1	19.55	0.19	300	18.0%	11.1	2,066	5.0%	2.5	0.6	61.6	72.7	2366	6.6%	15%	23.1	23.1
A2	58.27	0.16	300	18.0%	11.4	4,100	4.0%	2.5	0.5	136.7	148.1	4400	5.0%	12%	34.4	34.4
B1	40.74	0.14	300	8.0%	15.2	2,000	4.5%	2.5	0.5	62.9	78.1	2300	5.0%	10%	22.8	22.8
B2	16.00	0.14	300	7.0%	16.0	500	6.0%	2.5	0.6	13.6	29.6	800	6.4%	9%	14.4	14.4
В3	19.11	0.12	300	21.0%	11.3	800	8.0%	2.5	0.7	18.9	30.1	1100	11.5%	7%	16.1	16.1
B6	53.31	0.14	300	22.0%	10.8	1,900	3.0%	2.5	0.4	73.1	84.0	2200	5.6%	10%	22.2	22.2
В7	2.46	0.12	300	6.0%	17.1	100	6.0%	2.2	0.5	3.1	20.2	400	6.0%	7%	12.2	12.2
B8	9.52	0.12	300	6.0%	17.1	300	10.0%	2.5	0.8	6.3	23.5	600	8.0%	7%	13.3	13.3
OS-A1	4.06	0.27	300	5.0%	15.5	161	5.0%	2.5	0.6	4.8	20.3	461	5.0%	25%	12.6	12.6
OS-A2	4.45	0.12	250	10.0%	13.2			2.5			13.2	250	10.0%	7%	11.4	11.4

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{{S_0}^{0.33}}$

 $t_c=\frac{L}{180}+10$

 $V = C_v S_w^{0.5}$

STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 2 YEAR EVENT

PROJECT NAME: Overlook PROJECT NUMBER: 196239003 CALCULATED BY: GKS PROPOSED CONDITIONS

DATE: 1/24/2024

CHECKED BY:	KRK																				
			DIRECT RUNOFF								RUNO	FF	STR	EET	PIPE			TRAV	EL TI	ME	REMARKS
STORM	DESIGN POINT	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	(sjɔ)	tc(max)	S(C*A) (ac)	I (in/hr)	(sj3) O	(%) 3FOPE	STREET FLOW(cfs	DESIGN FLOW(cfs)	SLOPE (%)	PIPE SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
	1	A1	19.55	0.12	23.14	2.36	2.30	5.41													
	2	A2	58.27	0.09	34.44	5.32	1.82	9.71													
	3	B1	40.74	0.07	22.78	3.01	2.32	6.97													
	4	B2	16.00	0.07	14.44	1.09	2.86	3.10													
	5	В3	19.11	0.05	16.11	0.96	2.73	2.61													
	8	В6	53.31	0.08	22.22	4.06	2.34	9.52													
	9	В7	2.46	0.05	12.22	0.12	3.06	0.38													
	10	В8	9.52	0.05	13.33	0.48	2.95	1.41													
	18	OS-A1	4.06	0.21	12.56	0.85	3.02	2.57													
	19	OS-A2	4.45	0.05	11.39	0.22	3.14	0.70										· · · · · ·			

Note: Rainfall intensity from Figure 6-5 IDF Equations

 $I_2 = -1.19 \ln(t_{c,min}) + 6.035$

STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 5 YEAR EVENT

PROJECT NAME: Overlook PROJECT NUMBER: 196239003 CALCULATED BY: GKS PROPOSED CONDITIONS

DATE: 1/24/2024

CHECKED BY:																					
				DIRE	CT RUN	OFF			TOTAL RUNOFF STREET				PIPE			TRAV	EL TI	ME	REMARKS		
STORM	DESIGN	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	O O	tc(max)	S(C*A) (ac)	I (in/hr)	Q (cfs)	(%) 3TODE	STREET FLOW(cfs	DESIGN FLOW(cfs)	SLOPE (%)	PIPE SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
	1	A1	19.55	0.19	23.14	3.63	2.87	10.41													
	2	A2	58.27	0.16	34.44	9.23	2.27	20.99													
	3	B1	40.74	0.14	22.78	5.79	2.89	16.77													
	4	B2	16.00	0.14	14.44	2.19	3.58	7.82													
	5	В3	19.11	0.12	16.11	2.29	3.41	7.83													
	8	В6	53.31	0.14	22.22	7.69	2.93	22.55													
	9	В7	2.46	0.12	12.22	0.30	3.83	1.13				·									
	10	B8	9.52	0.12	13.33	1.14	3.70	4.22				-									
	18	OS-A1	4.06	0.27	12.56	1.09	3.79	4.12										•			
	19	OS-A2	4.45	0.12	11.39	0.53	3.93	2.10													

Note: Rainfall intensity from Figure 6-5 IDF Equations

 $I_5 = -1.5 \ln(t_{c,min}) + 7.583$

STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 100 YEAR EVENT

PROJECT NAME: Overlook PROJECT NUMBER: 196239003 CALCULATED BY: GKS PROPOSED CONDITIONS DATE: 1/24/2024

CHECKED BY				DIRE	CT RUI	NOFF	DIRECT RUNOFF				TOTAL RUNOFF			EET		PIPE		TRAVEL TIME			REMARKS
STORM	DESIGN	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	Q (cfs)	tc(max)	S(C*A) (ac)	I (in/hr)	Q (cfs)	SLOPE (%)	STREET FLOW(cfs	DESIGN FLOW(cfs)	SLOPE (%)	PIPE SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
	1	A1	19.55	0.44	23.14	8.56	4.82	41.24													
	2	A2	58.27	0.42	34.44	24.36	3.82	92.96													
	3	B1	40.74	0.41	22.78	16.55	4.86	80.40													
	4	B2	16.00	0.40	14.44	6.43	6.01	38.64													
	5	В3	19.11	0.39	16.11	7.45	5.73	42.71													
	8	В6	53.31	0.41	22.22	21.74	4.92	106.95													
	9	В7	2.46	0.39	12.22	0.96	6.43	6.17													
	10	B8	9.52	0.39	13.33	3.71	6.21	23.05													
	18	OS-A1	4.06	0.50	12.56	2.02	6.36	12.86													
	19	OS-A2	4.45	0.39	11.39	1.74	6.60	11.46													

Note: Rainfall intensity from Figure 6-5 IDF Equations

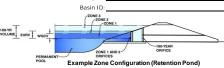
 $I_{100} = -2.52 \ln(t_{c,min}) + 12.735$

PROJECT NAME: Overlook 1/24/2024

PROJECT NUMBER: 196239003 CALCULATED BY: GKS CHECKED BY: KRK

DDOD	OCED CONE	NITIONIC DATIONAL	CALCIII /	TIONE)V
PRUF		DITIONS RATIONAL	_ CALCULA		SUIVIIVIAR	()
DESIGN POINT	TRIBUTARY	TRIBUTARY AREA		CFS		% IMPERVIOUS
DESIGN FOINT	BASINS	(AC)	Q2	Q5	Q100	% IIVIPER VIOUS
PDR Basins						
1	A1	19.55	5.41	10.41	41.24	15%
2	A2	58.27	9.71	20.99	92.96	12%
3	B1	40.74	6.97	16.77	80.40	10%
4	B2	16.00	3.10	7.82	38.64	9%
5	В3	19.11	2.61	7.83	42.71	7%
8	В6	53.31	9.52	22.55	106.95	10%
9	В7	2.46	0.38	1.13	6.17	7%
10	В8	9.52	1.41	4.22	23.05	7%
18	OS-A1	4.06	2.57	4.12	12.86	25%
19	OS-A2	4.45	0.70	2.10	11.46	7%
ON-SITE BASIN TOTA	L					
BASIN A TO	TAL	77.82	15.12	31.40	134.20	12%
BASIN B TO	TAL	141.14	23.98	60.32	297.91	9%
ON-SITE TO	TAL	218.96	23.98	60.32	297.91	10%
OFF-SITE BASIN TOT	AL					
OFF-SITE BAS	SIN A	8.51	3.27	6.22	24.32	15%
OFF-SITE TO	TAL	8.51	3.27	6.22	24.32	15%
SITE TOTA	AL	227.47	27.25	66.54	322.23	10%

APPENDIX D: HYDRUALICS



DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

acre-feet 1.19 inches 1.50 inches 1.75 inches 2.00 inches

inches

Watershed Information

	Selected BMP Type =	EDB	
	Watershed Area =	2.87	acres
	Watershed Length =	1,000	ft
	Watershed Length to Centroid =	500	ft
	Watershed Slope =	0.030	ft/ft
	Watershed Imperviousness =	100.00%	percent
F	Percentage Hydrologic Soil Group A =	0.0%	percent
1	Percentage Hydrologic Soil Group B =	100.0%	percent
erc	entage Hydrologic Soil Groups C/D =	0.0%	percent
	Target WQCV Drain Time =	40.0	hours

VOLUME USED

Target WOCV Drain Time = 40.0 hours
Location for 1-br Rainfall Depths = Denver - Capitol Building

IN POND SIZING

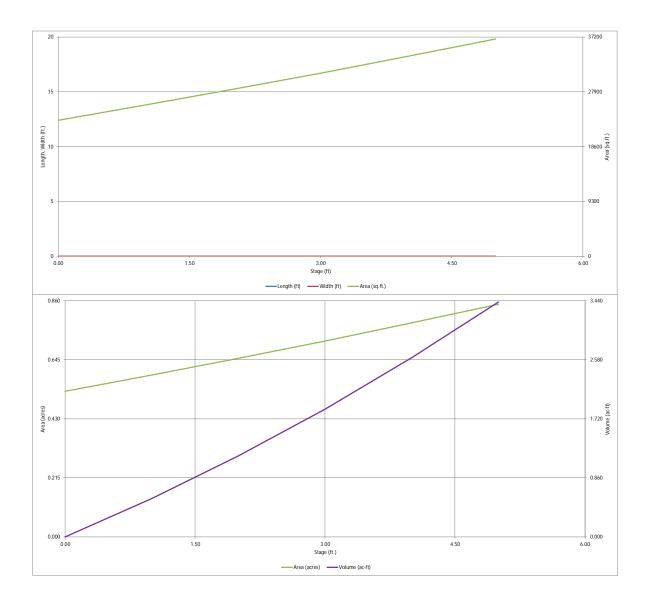
or providing regions I inputs above including 1-hour rainfall this, click "Run CUIPP" to perate runoff hydrographs using the embedded colorated by those has owned by providing the providing the complete of colorated by the providing the complete of the providing the complete of colorated by the providing the complete of colorated by the providing the colorated of colorated by the providing the colorated of colorated by the providing the colorated of colorated by the providing the provi

the embedded Colorado Urban Vy	graph Procedu	re.
Water Quality Capture Volume (WQCV) =	0.120	acre-feet
Excess Urban Runoff Volume (EURV) =	0.324	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.281	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.360	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.424	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.487	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.550	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.619	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.777	acre-feet
Approximate 2-yr Detention Volume =	0.263	acre-feet
Approximate 5-yr Detention Volume =	0.340	acre-feet
Approximate 10-yr Detention Volume =	0.412	acre-feet
Approximate 25-yr Detention Volume =	0.442	acre-feet
Approximate 50-yr Detention Volume =	0.458	acre-feet
Approximate 100-yr Detention Volume =	0.470	acre-feet

Dellille	Zuries	anu	Daziii	Geometr	٧.
					_

acre-fee	0.120	Zone 1 Volume (WQCV) =
acre-fee	0.205	Zone 2 Volume (EURV - Zone 1) =
acre-fee	0.146	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-fee	0.470	Total Detention Basin Volume =
ft ³	16	Initial Surcharge Volume (ISV) =
ft		Initial Surcharge Depth (ISD) =
ft		Total Available Detention Depth (H _{total}) =
ft		Depth of Trickle Channel (H _{TC}) =
ft/ft		Slope of Trickle Channel (S _{TC}) =
H:V		Slopes of Main Basin Sides (Smain) =
		Basin Length-to-Width Ratio (R _{L/W}) =

Basin Length-to-Width Ratio (R _{L/W}) =	
Initial Surcharge Area (A _{ISV}) =	ft ²
Surcharge Volume Length (L _{ISV}) =	ft
Surcharge Volume Width (W _{ISV}) =	ft
Depth of Basin Floor (H _{FLOOR}) =	ft
Length of Basin Floor (LFLOOR) =	ft
Width of Basin Floor (WFLOOR) =	ft
Area of Basin Floor (A _{FLOOR}) =	ft ²
Volume of Basin Floor (V _{FLOOR}) =	ft 3
Depth of Main Basin (H _{MAIN}) =	ft
Length of Main Basin $(L_{MAIN}) =$	ft
Width of Main Basin (W _{MAIN}) =	ft
Area of Main Basin (A _{MAIN}) =	ft ²
Volume of Main Basin (V _{MAIN}) =	ft 3
Calculated Total Basin Volume (Vtotal) =	acre-fee


Depth Increment =		ft				Cottonal		,	
Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width	Area	Optional Override	Area	Volume	Volume (ac-ft)
Description Top of Micropool	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
<u> </u>									
<u> </u>									
<u> </u>									
<u> </u>									
<u> </u>									

MHFD-Detention_v4-06_A2_WQCV.xlsm, Basin 7/18/2023, 11:07 AM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

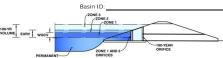
DETENTION BASIN STAGE-STORAGE TABLE BUILDER														
Destant	0	2 Deelles De	- d Ciri	MHFE	D-Detention, Version	n 4.06 (Ju	ıly 2022)							
,	Overlook A	2 Prelim Po	ind Sizing											
Basin ID:	100													
. / -2	2 ONE 1		_											
100-YR VOLUME EURV WQCV			_											
1 7000	LANDS	100-YE ORIFIC	AR E		Depth Increment =		ft							
PERMANENT Example Zone	1 AND 2 CES				Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Example 2011	e Comigura	ilion (Neter	illon Fond)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Watershed Information		_			Top of Micropool		0.00				23,106	0.530		
Selected BMP Type =	EDB						1.00				25,662	0.589	24,384	0.560
Watershed Area =	58.27	acres					2.00				28,319	0.650	51,375	1.179
Watershed Length = Watershed Length to Centroid =	3,500 1,750	ft					3.00 4.00				31,076 33,934	0.713	81,072 113,577	1.861 2.607
Watershed Englit to Certifold = Watershed Slope =	0.100	ft/ft	Steen Slop	e > 0.06 ft/	/ft		5.00				36,892	0.847	148,990	3.420
Watershed Imperviousness =	12.00%	percent												
Percentage Hydrologic Soil Group A =	0.0%	percent												
Percentage Hydrologic Soil Group B =	100.0%	percent												
Percentage Hydrologic Soil Groups C/D = Target WQCV Drain Time =	0.0% 40.0	percent												
Location for 1-hr Rainfall Depths =														
After providing required inputs above inc		-												
depths, click 'Run CUHP' to generate run	off hydrograph	ns using												
the embedded Colorado Urban Hydro		_	Optional Use	-										
Water Quality Capture Volume (WQCV) =	0.120	acre-feet	0.120	acre-feet										
Excess Urban Runoff Volume (EURV) = 2-yr Runoff Volume (P1 = 1.19 in.) =	0.667	acre-feet acre-feet	1.19	acre-feet inches										
5-yr Runoff Volume (P1 = 1.5 in.) =	1.836	acre-feet	1.50	inches										
10-yr Runoff Volume (P1 = 1.75 in.) =	2.787	acre-feet	1.75	inches										
25-yr Runoff Volume (P1 = 2 in.) =	4.448	acre-feet	2.00	inches				-						
50-yr Runoff Volume (P1 = 2.25 in.) =	5.593	acre-feet	2.25	inches										
100-yr Runoff Volume (P1 = 2.52 in.) = 500-yr Runoff Volume (P1 = 3.14 in.) =	7.228 10.226	acre-feet acre-feet	2.52	inches										
Approximate 2-yr Detention Volume =	0.434	acre-feet		IIICHES										
Approximate 5-yr Detention Volume =	0.670	acre-feet												
Approximate 10-yr Detention Volume =	1.290	acre-feet						-						
Approximate 25-yr Detention Volume =	1.747	acre-feet												
Approximate 50-yr Detention Volume = Approximate 100-yr Detention Volume =	1.835 2.346	acre-feet acre-feet												
Approximate 100-yr Determion Volume =	2.340	acre-reet												
Define Zones and Basin Geometry														
Zone 1 Volume (WQCV) =	0.120	acre-feet												
Zone 2 Volume (EURV - Zone 1) =	0.547	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) = Total Detention Basin Volume =	1.679 2.346	acre-feet acre-feet												
Initial Surcharge Volume (ISV) =	user	ft 3												
Initial Surcharge Depth (ISD) =	user	ft						-						
Total Available Detention Depth (H _{total}) =	user	ft												
Depth of Trickle Channel (H_{TC}) =	user	ft												
Slope of Trickle Channel (S_{TC}) = Slopes of Main Basin Sides (S_{main}) =	user	ft/ft H:V												
Basin Length-to-Width Ratio (R _{L/W}) =	user	n.v												
, , , , , , , , , , , , , , , , , , ,		-						-						
Initial Surcharge Area (A _{ISV}) =	user	ft ²												
Surcharge Volume Length (L _{ISV}) =	user	ft												
Surcharge Volume Width (W_{ISV}) = Depth of Basin Floor (H_{FLOOR}) =	user	ft												
Length of Basin Floor (L _{FLOOR}) =	user	ft												
Width of Basin Floor (W _{FLOOR}) =	user	ft												
Area of Basin Floor (A_{FLOOR}) =	user	ft ²						-						
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³												
Depth of Main Basin $(H_{MAIN}) =$ Length of Main Basin $(L_{MAIN}) =$	user	ft												
Width of Main Basin (W _{MAIN}) =	user	ft												
Area of Main Basin (A _{MAIN}) =	user	ft ²												
Volume of Main Basin (V _{MAIN}) =	user	ft ³												
Calculated Total Basin Volume (V_{total}) =	user	acre-feet												
						-								
													\vdash	
						-								
														

M#FD-Detention_w4-06_A2_xtsm, Basin 8/2/2023, 1:11 PM

M#FD-Detention_w4-06_A2_xtsm, Basin 8/2/2023, 1:11 PM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)


Proje	ct: Overlook B	1 WQCV		IVINFD	-Detention, Versi	UII 4.UO (JL	IIy 2022)							
Basin I														
ZONE ZONE	ZONE 1		_											
100-YM EURV WOCY														
2	ONE 1 AND 2	ORIFIC	EAR CE		Depth Increment =		ft Optional	I		I	Optional			
	ne Configura	tion (Rete	ntion Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
Watershed Information					Top of Micropool	(11)	Stage (II)	(11)	(11)	(11)	Alea (It)	(acre)	(11)	(ac-it)
Selected BMP Type														
Watershed Arez Watershed Length		acres												
Watershed Length to Centroic		ft												
Watershed Slope		ft/ft	Steep Slop	e > 0.06 ft/	ft									
Watershed Imperviousness Percentage Hydrologic Soll Group A		percent												
Percentage Hydrologic Soil Group E	= 100.0%	percent												
Percentage Hydrologic Soil Groups C/E Target WOCV Drain Time		percent hours												-
VOLUME USED Location for 1-hr Rainfall Depths														
IN I DONID CIZINIO er providing required inputs above	including 1-hour	rainfall												
IN POND SIZING this, click 'Run CUHP' to generate the embedded Colorado Urban No	onorr nydrograpi graph Proced		Optional Use	r Overrides										
Water Quality Capture Volume (WQCV)		acre-feet		acre-feet										
Excess Urban Runoff Volume (EURV) 2-yr Runoff Volume (P1 = 1.19 in.)		acre-feet acre-feet	1.19	acre-feet inches										
5-yr Runoff Volume (P1 = 1.5 in.)	-	acre-feet	1.50	inches										
10-yr Runoff Volume (P1 = 1.75 in.) 25-yr Runoff Volume (P1 = 2 in.)		acre-feet	1.75 2.00	inches										
25-yr Runoff Volume (P1 = 2 In.) 50-yr Runoff Volume (P1 = 2.25 in.)		acre-feet acre-feet	2.00	inches inches										
100-yr Runoff Volume (P1 = 2.52 in.)	-	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = 3.14 in.) Approximate 2-yr Detention Volume		acre-feet acre-feet		inches										
Approximate 5-yr Detention Volume	-	acre-feet												
Approximate 10-yr Detention Volume Approximate 25-yr Detention Volume		acre-feet acre-feet												
Approximate 50-yr Detention Volume	-	acre-reet acre-feet												
Approximate 100-yr Detention Volume	-	acre-feet												
Define Zones and Basin Geometry														
Select Zone 1 Storage Volume (Required)		acre-feet												
Select Zone 2 Storage Volume (Optional) Select Zone 3 Storage Volume (Optional)		acre-feet acre-feet												
Total Detention Basin Volume		acre-feet												
Initial Surcharge Volume (ISV) Initial Surcharge Depth (ISD)		ft ³												
Total Available Detention Depth (H _{total}	-	ft												
Depth of Trickle Channel (H_{TC}) Slope of Trickle Channel (S_{TC})		ft ft/ft												
Slopes of Main Basin Sides (S _{main}		H:V												
Basin Length-to-Width Ratio (R _{L/W})	=													
Initial Surcharge Area (A _{ISV})	=	ft ²												
Surcharge Volume Length (L _{ISV})	=	ft												
Surcharge Volume Width ($W_{\rm ISV}$) Depth of Basin Floor ($H_{\rm FLOOR}$)	_	ft												
Length of Basin Floor (L _{FLOOR})	=	ft												
Width of Basin Floor (W _{FLOOR}) Area of Basin Floor (A _{FLOOR})	=	ft ft ²												-
Volume of Basin Floor (V _{FLOOR})	=	ft ³												
Depth of Main Basin (H _{MAIN})	=	ft												
Length of Main Basin (L _{MAIN}) Width of Main Basin (W _{MAIN})		ft												
Area of Main Basin (A _{MAIN})	=	ft ²												
Volume of Main Basin (V _{MAIN}) Calculated Total Basin Volume (V _{Iotal})	=	ft 3 acre-feet												
						1								

MHFD-Detention_v4-06_B1_WQCV.xtern, Basin

7/18/2023, 11:24 AM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Project: Overlook B1 Prelim Pond Sizing

Watershed Information

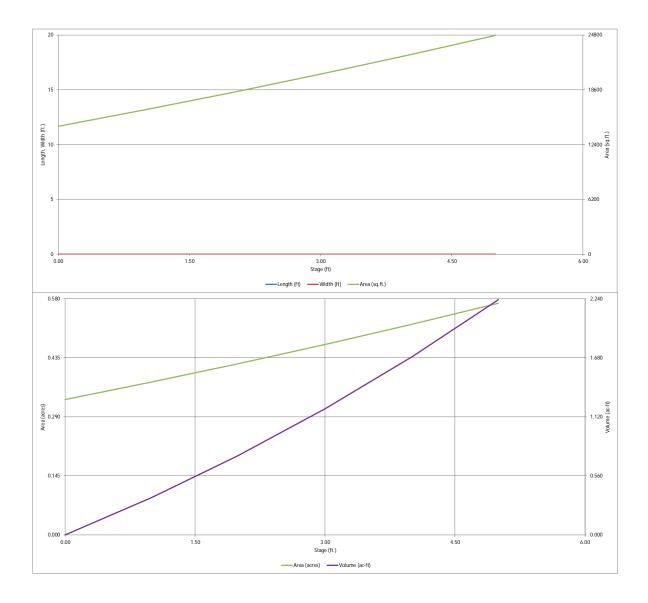
100-YR	ZONE 3 ZONE 2 ZONE 1	
VOLUME EURY WOCV		
PERMANENT-	ZONE 1 AND 2 ORIFICES	100-YEAR ORIFICE
POOL	Example Zone Configura	ation (Retention Pond)

tersifed information					
Selected BMP Type =	EDB				
Watershed Area =	40.74	acres			
Watershed Length =	3,000	ft			
Watershed Length to Centroid =	1,500	ft			
Watershed Slope =	0.045	ft/ft			
Watershed Imperviousness =	10.00%	percent			
Percentage Hydrologic Soil Group A =	0.0%	percent			
Percentage Hydrologic Soil Group B =	100.0%	percent			
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			
Target WQCV Drain Time =	40.0	hours			
Legation for 1 by Dainfall Danths - Danuar - Capital Building					

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydrograph Procedure.						
Water Quality Capture Volume (WQCV) =	0.048	acre-feet				
Excess Urban Runoff Volume (EURV) =	0.383	acre-feet				
2-yr Runoff Volume (P1 = 1.19 in.) =	0.544	acre-feet				
5-yr Runoff Volume (P1 = 1.5 in.) =	1.202	acre-feet				
10-yr Runoff Volume (P1 = 1.75 in.) =	1.858	acre-feet				
25-yr Runoff Volume (P1 = 2 in.) =	3.027	acre-feet				
50-yr Runoff Volume (P1 = 2.25 in.) =	3.825	acre-feet				
100-yr Runoff Volume (P1 = 2.52 in.) =	4.973	acre-feet				
500-yr Runoff Volume (P1 = 3.14 in.) =	7.066	acre-feet				
Approximate 2-yr Detention Volume =	0.244	acre-feet				
Approximate 5-yr Detention Volume =	0.383	acre-feet				
Approximate 10-yr Detention Volume =	0.796	acre-feet				
Approximate 25-yr Detention Volume =	1.112	acre-feet				
Approximate 50-yr Detention Volume =	1.163	acre-feet				
Approximate 100-yr Detention Volume =	1.503	acre-feet				
		-				

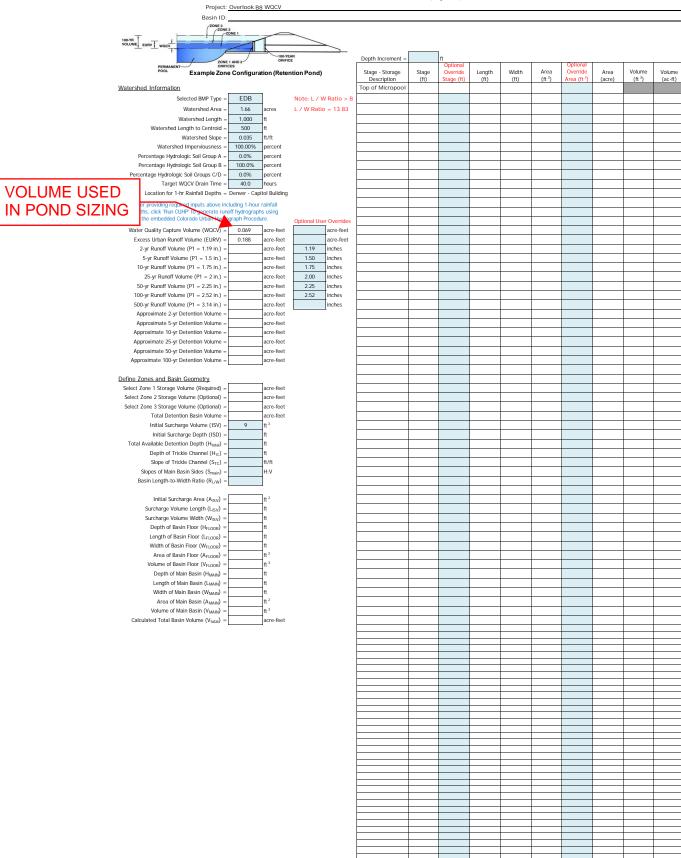
Optional User Overrides					
acre-feet					
acre-feet					
inches					


Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.048	acre-fee
Zone 2 Volume (EURV - Zone 1) =	0.335	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	1.120	acre-fee
Total Detention Basin Volume =	1.503	acre-fee
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

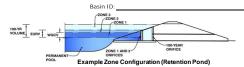
Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

Г		1							
Depth Increment =		ft Optional				Optional			
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft 2)	Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
Top of Micropool		0.00				14,485	0.333		
		1.00				16,343	0.375	15,414	0.354
		2.00				18,301	0.420	32,736	0.752
		3.00 4.00				20,359 22,519	0.467 0.517	52,066 73,505	1.195
		5.00				24,778	0.569	97,153	2.230
	-								
	**								


MHFD-Detention_v4-06_B1.xlsm, Basin 8/2/2023, 1:27 PM

M#FD-Detention_w4-06_B1.xksm, Basin 8/2/2023, 1:27 PM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


MHFD-Detention, Version 4.06 (July 2022)

MHFD-Detention_v4-06_B3_WOCV.xism, Basin 7/18/2023, 11:32 AM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

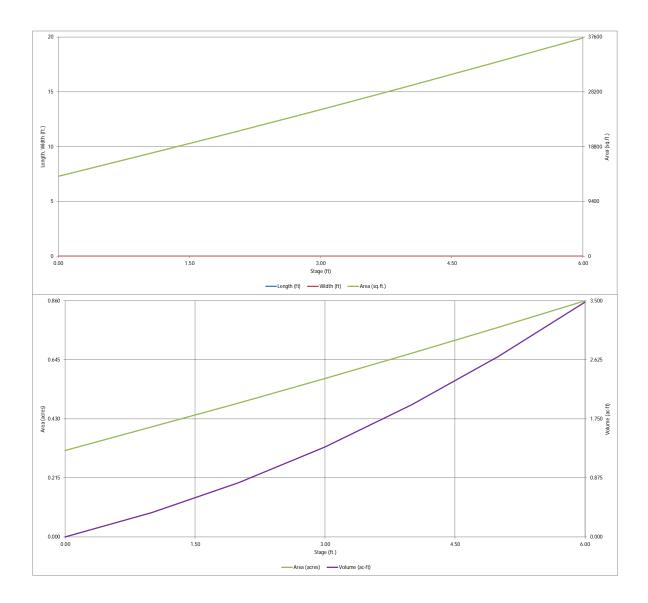
Watershed Information

Selected BMP Type =	EDB					
Watershed Area =	62.83	acres				
Watershed Length =	4,000	ft				
Watershed Length to Centroid =	2,000	ft				
Watershed Slope =	0.050	ft/ft				
Watershed Imperviousness =	9.00%	percent				
Percentage Hydrologic Soil Group A =	0.0%	percent				
Percentage Hydrologic Soil Group B =	100.0%	percent				
Percentage Hydrologic Soil Groups C/D =	0.0%	percent				
Target WQCV Drain Time =	40.0	hours				
Location for 1-hr Rainfall Depths = Denver - Capitol Building						

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.						
Water Quality Capture Volume (WQCV) =	0.069	acre-feet				
Excess Urban Runoff Volume (EURV) =	0.527	acre-feet				
2-yr Runoff Volume (P1 = 1.19 in.) =	0.793	acre-feet				
5-yr Runoff Volume (P1 = 1.5 in.) =	1.795	acre-feet				
10-yr Runoff Volume (P1 = 1.75 in.) =	2.801	acre-feet				
25-yr Runoff Volume (P1 = 2 in.) =	4.614	acre-feet				
50-yr Runoff Volume (P1 = 2.25 in.) =	5.843	acre-feet				
100-yr Runoff Volume (P1 = 2.52 in.) =	7.619	acre-feet				
500-yr Runoff Volume (P1 = 3.14 in.) =	10.846	acre-feet				
Approximate 2-yr Detention Volume =	0.333	acre-feet				
Approximate 5-yr Detention Volume =	0.527	acre-feet				
Approximate 10-yr Detention Volume =	1.146	acre-feet				
Approximate 25-yr Detention Volume =	1.628	acre-feet				
Approximate 50-yr Detention Volume =	1.697	acre-feet				
Approximate 100-yr Detention Volume =	2.207	acre-feet				

Optional User Overrides					
0.069	acre-feet				
	acre-feet				
1.19	inches				
1.50	inches				
1.75	inches				
2.00	inches				
2.25	inches				
2.52	inches				
	inches				


Define Zones and Basin Geometry

Jenne Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.069	acre-fee
Zone 2 Volume (EURV - Zone 1) =	0.458	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	1.680	acre-fee
Total Detention Basin Volume =	2.207	acre-fee
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W_{FLOOR}) =		ft
Area of Basin Floor (A_{FLOOR}) =		ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

Depth Increment =		ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00				13,730	0.315	45 570	0.050
		1.00				17,427	0.400	15,578	0.358
		2.00 3.00				21,230 25,133	0.487	34,907 58,088	0.801
		4.00				29,138	0.669	85,224	1.956
		5.00				33,243	0.763	116,414	2.673
		6.00				37,448	0.860	151,759	3.484
			-						
			-						
			-						
								-	-
									-
			-						,
	1		1						
	1		1						
	-		-						
			-						
	1		1 1						
			-						
			-						
			-						
	-		-						
									-
			-						
			-						
						1			

M#FD-Detention_v4-06_88.xkm, Basin 8/7/2023, 4:03 PM

M#FD-Detention_w4-06_B8.xksm, Basin 8/7/2023, 4:03 PM

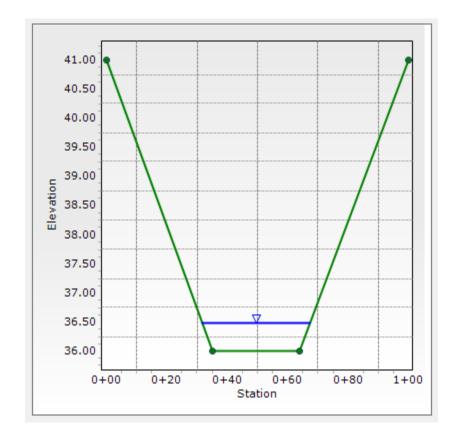
	Natural Channels Flow Summary						
Channel ID	Contributing Basins	Tributary Area (ac)	Basin Area (ac)	Basin 100-yr Flow (cfs)	Channel 100-yr Flow (cfs)	Velocity (ft/s)	Normal Depth (ft)
A1-1	A1	19.55	19.55	41.24	41.24	2.62	0.48
A2-1	A2, OS-A2	32.76 (A2) + 3.25 (OS-A2)	58.72 (A2) + 4.45 (OS-A2)	92.96 (A2) + 11.46 (OS-A2)	60.42	3.82	0.59
A2-2	A2	9.06	58.27	92.96	14.45	2.48	0.18
A2-3	A2	11.45	58.27	92.96	18.27	3.09	0.40
A2-4	A2	1.70	58.27	92.96	2.71	1.49	0.02
A2-5	A2, B1	7.75 (A2) + 3.44 (B1)	58.72 (A2) + 40.74 (B1)	92.96 (A2) + 80.40 (B1)	19.06	2.17	0.30
A2-6	A2, B1	2.46 (A2) + 3.44 (B1)	58.72 (A2) + 40.74 (B1)	92.96 (A2) + 80.40 (B1)	10.72	1.86	0.18
B1-1	B1	10.19	40.74	80.40	20.11	2.71	0.28
B1-2	B1	14.29	40.74	80.40	28.20	3.76	0.24
B1-3	B1	13.43	40.74	80.40	26.50	3.46	0.47
B1-4	B1	4.03	40.74	80.40	7.95	2.52	0.02
B1-5	B1	2.54	40.74	80.40	5.01	1.68	0.11
B1-6	B1	2.72	40.74	80.40	5.37	1.84	0.17
B2-1	B2	4.92	16.00	38.64	11.88	2.69	0.25
B2-2	B2	9.77	16.00	38.64	23.59	3.54	0.29
B6-1	B6	11.58	53.31	106.95	23.23	6.67	0.29
B7-1	B7	2.25	2.46	6.17	5.64	1.91	0.23
B8-1	B8, B6	3.32 (B8) + 53.31 (B6)	9.52 (B8) + 53.31 (B6)	23.05 (B8) + 106.95 (B6)	114.99	5.39	0.63

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.015 ft/ft	
Discharge	41.24 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	41.00
0+35	36.00
0+64	36.00
1+00	41.00

Roughness Segment Definitions


Start Station	Ending Station	Roughness Coefficient
(0+00, 41.00)	(0+35, 36.00)	0.040
(0+35, 36.00)	(0+64, 36.00)	0.040
(0+64, 36.00)	(1+00, 41.00)	0.040

Options	
Current Roughness Weighted Method	Pavlovskii's Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method

Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Range Method Pavlovskii's Method Pavlovskii's Method Addition Solution Solution Addition Solution Solution Solution Solution Solution Addition Solution Solut
Normal Depth 5.8 in Roughness Coefficient 0.040 Elevation 36.48 ft Elevation Range ft
Roughness Coefficient 0.040 Elevation 36.48 ft Elevation Range ft
Elevation 36.48 ft Elevation Range 36.0 to 41.0 ft
Elevation Range 36.0 to 41.0 ft
Elevation Range ft
Flow Area 15.7 ft ²
Wetted Perimeter 36.0 ft
Hydraulic Radius 5.3 in
Top Width 35.89 ft
Normal Depth 5.8 in
Critical Depth 4.6 in
Critical Slope 0.033 ft/ft
Velocity 2.62 ft/s
Velocity Head 0.11 ft
Specific Energy 0.59 ft
Froude Number 0.698

Drainage Channels.fm8 1/17/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

	11011101	
Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	5.8 in	
Critical Depth	4.6 in	
Channel Slope	0.015 ft/ft	
Critical Slope	0.033 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.028 ft/ft	
Discharge	60.42 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	47.00
0+66	42.00
0+87	42.00
1+25	47.75

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00, 47.00)	(0+66, 42.00)	0.040
(0+66, 42.00)	(0+87, 42.00)	0.040
(0+87, 42.00)	(1+25, 47.75)	0.040

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	

Method	Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Metriod	WetHod		
Results			
Normal Depth	7.1 in		
Roughness Coefficient	0.040		
Elevation	42.59 ft		
Elevation Range	42.0 to 47.8 ft		
Flow Area	15.8 ft ²		
Wetted Perimeter	32.7 ft		
Hydraulic Radius	5.8 in		
Top Width	32.67 ft		
Normal Depth	7.1 in		
Critical Depth	6.9 in		
Critical Slope	0.030 ft/ft		
Velocity	3.82 ft/s		
Velocity Head	0.23 ft		
Specific Energy	0.82 ft		
Froude Number	0.969		

Drainage Channels.fm8 1/17/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

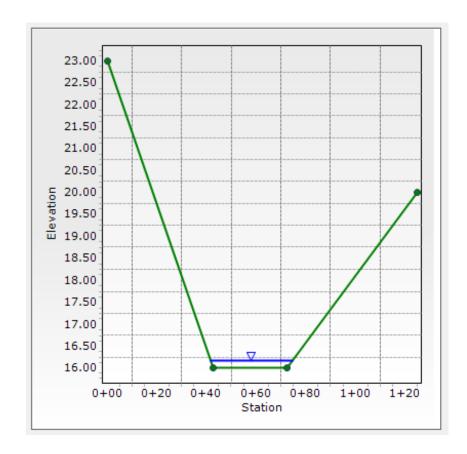
Worksheet for A2-1		
Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	7.1 in	
Critical Depth	6.9 in	
Channel Slope	0.028 ft/ft	
Critical Slope	0.030 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.046 ft/ft	
Discharge	14.45 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	
0+43	16.00
0+72	16.00
1+25	20.00

Roughness Segment Definitions


Start Station	Ending Station	Roughness Coefficient
(0+00, 23.00)	(0+43, 16.00)	0.040
(0+43, 16.00)	(0+72, 16.00)	0.040
(0+72, 16.00)	(1+25, 20.00)	0.040

Options	
Current Roughness Weighted Method	Pavlovskii's Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method

Method	Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	2.2 in	
Roughness Coefficient	0.040	
Elevation	16.18 ft	
Elevation Range	16.0 to 23.0 ft	
Flow Area	5.8 ft ²	
Wetted Perimeter	33.3 ft	
Hydraulic Radius	2.1 in	
Top Width	33.30 ft	
Normal Depth	2.2 in	
Critical Depth	2.3 in	
Critical Slope	0.041 ft/ft	
Velocity	2.48 ft/s	
Velocity Head	0.10 ft	
Specific Energy	0.28 ft	
Froude Number	1.048	

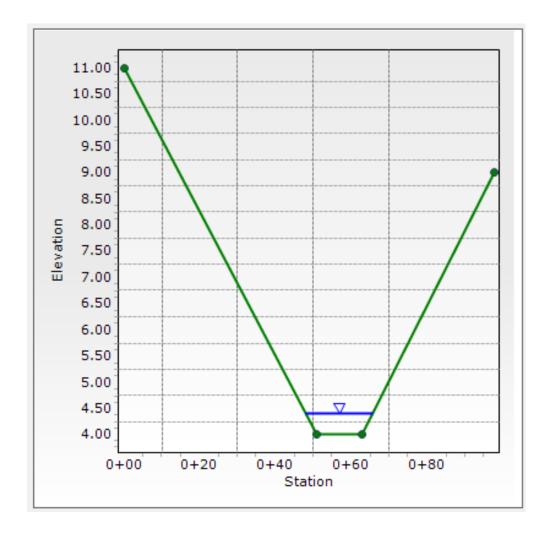
Drainage Channels.fm8 1/17/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

WORKSHEET TO A2-2		
Results		
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.2 in	
Critical Depth	2.3 in	
Channel Slope	0.046 ft/ft	
Critical Slope	0.041 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.030 ft/ft	
Discharge	18.27 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	11.00
0+51	4.00
0+63	4.00
0+98	9.00


Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00, 11.00)	(0+51, 4.00)	0.040
(0+51, 4.00)	(0+63, 4.00)	0.040
(0+63, 4.00)	(0+98, 9.00)	0.040

Options	
Current Roughness Weighted	Pavlovskii's
Method	Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method

Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	4.8 in	
Roughness Coefficient	0.040	
Elevation	4.40 ft	
Elevation Range	4.0 to 11.0 ft	
Flow Area	5.9 ft ²	
Wetted Perimeter	17.7 ft	
Hydraulic Radius	4.0 in	
Top Width	17.69 ft	
Normal Depth	4.8 in	
Critical Depth	4.6 in	
Critical Slope	0.034 ft/ft	
Velocity	3.09 ft/s	
Velocity Head	0.15 ft	
Specific Energy	0.55 ft	
Froude Number	0.942	
Flow Type	Subcritical	

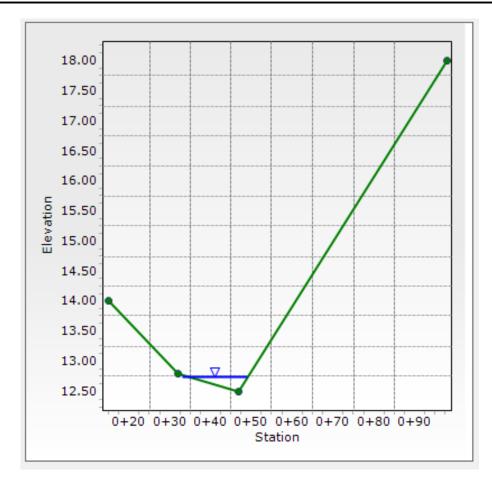
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	4.8 in	
Critical Depth	4.6 in	
Channel Slope	0.030 ft/ft	
Critical Slope	0.034 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.029 ft/ft	
Discharge	2.71 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+15	14.00
0+32	12.75
0+47	12.50
0+98	18.00

Roughness Segment Definitions


Start Station	Ending Station	Roughness Coefficient	
(0+15, 14.00)	(0+32, 12.75)	0.040	
(0+32, 12.75)	(0+47, 12.50)	0.040	
(0+47, 12.50)	(0+98, 18.00)	0.040	

Options	
Current Roughness Weighted	Pavlovskii's
Method	Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method

Method	Method	
Closed Channel Weighting	Pavlovskii's	
Method	Method	
Results		
Normal Depth	2.7 in	
Roughness Coefficient	0.040	
Elevation	12.73 ft	
Elevation Range	12.5 to 18.0 ft	
Flow Area	1.8 ft ²	
Wetted Perimeter	15.9 ft	
Hydraulic Radius	1.4 in	
Top Width	15.86 ft	
Normal Depth	2.7 in	
Critical Depth	2.5 in	
Critical Slope	0.050 ft/ft	
Velocity	1.49 ft/s	
Velocity Head	0.03 ft	
Specific Energy	0.26 ft	
Froude Number	0.778	

Drainage Channels.fm8 1/17/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

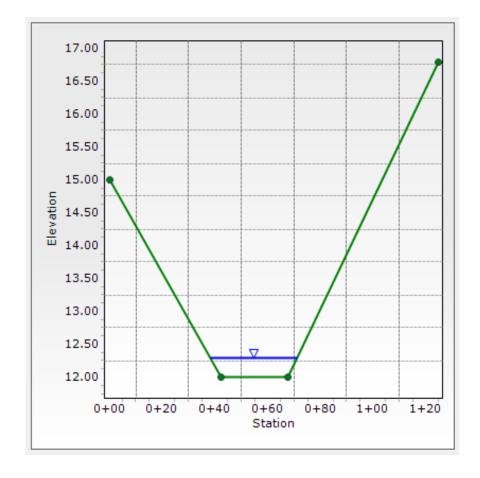
	Works	11001 101 712 1
Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	2.7 in	
Critical Depth	2.5 in	
Channel Slope	0.029 ft/ft	
Critical Slope	0.050 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.020 ft/ft	
Discharge	19.06 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	15.00
0+43	12.00
0+68	12.00
1+25	16.75

Roughness Segment Definitions


Start Station	Ending Station	Roughness Coefficient
(0+00, 15.00)	(0+43, 12.00)	0.040
(0+43, 12.00)	(0+68, 12.00)	0.040
(0+68, 12.00)	(1+25, 16.75)	0.040

Options	
Current Roughness Weighted	Pavlovskii's
Method	Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method

Method	Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth	3.6 in		
Roughness Coefficient	0.040		
Elevation	12.30 ft		
Elevation Range	12.0 to 16.8 ft		
Flow Area	8.8 ft ²		
Wetted Perimeter	33.2 ft		
Hydraulic Radius	3.2 in		
Top Width	33.18 ft		
Normal Depth	3.6 in		
Critical Depth	3.0 in		
Critical Slope	0.038 ft/ft		
Velocity	2.17 ft/s		
Velocity Head	0.07 ft		
Specific Energy	0.37 ft		
Froude Number	0.742		

Drainage Channels.fm8 1/17/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

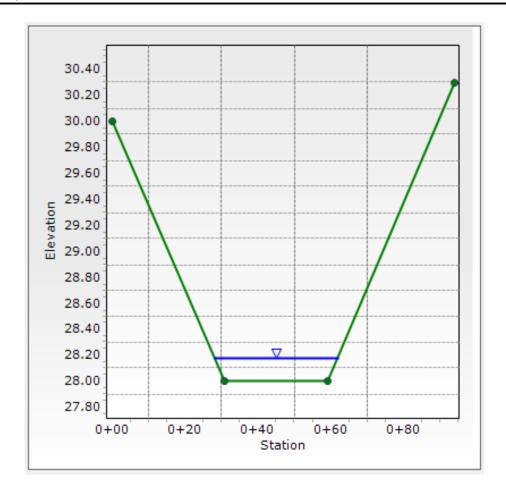
	WORKSHEET FOR F	12-3
Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	3.6 in	
Critical Depth	3.0 in	
Channel Slope	0.020 ft/ft	
Critical Slope	0.038 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.027 ft/ft	
Discharge	10.72 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	30.00
0+31	28.00
0+59	28.00
0+94	30.25

Roughness Segment Definitions


Start Station	Ending Station	Roughness Coefficient
(0+00, 30.00)	(0+31, 28.00)	0.040
(0+31, 28.00)	(0+59, 28.00)	0.040
(0+59, 28.00)	(0+94, 30.25)	0.040

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	

Method Closed Channel Weighting Method	Method Pavlovskii's Method	
Results		
Normal Depth	2.2 in	
Roughness Coefficient	0.040	
Elevation	28.18 ft	
Elevation Range	28.0 to 30.3 ft	
Flow Area	5.8 ft ²	
Wetted Perimeter	34.2 ft	
Hydraulic Radius	2.0 in	
Top Width	34.16 ft	
Normal Depth	2.2 in	
Critical Depth	1.9 in	
Critical Slope	0.044 ft/ft	
Velocity	1.86 ft/s	
Velocity Head	0.05 ft	
Specific Energy	0.24 ft	
Froude Number	0.800	

Drainage Channels.fm8 1/17/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

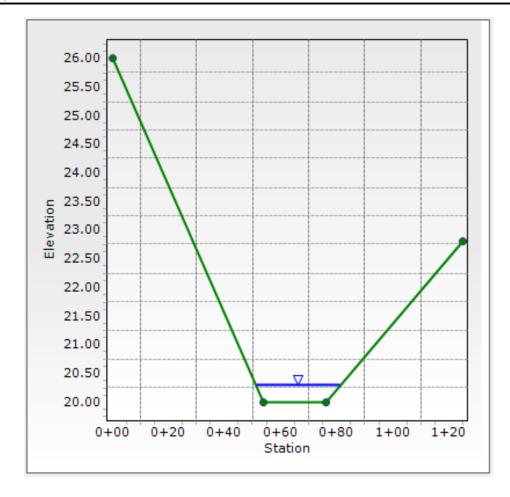
	WORSHEELIOFA	2-0
Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	2.2 in	
Critical Depth	1.9 in	
Channel Slope	0.027 ft/ft	
Critical Slope	0.044 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.034 ft/ft	
Discharge	20.11 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	26.00
0+54	20.00
0+76	20.00
1+25	22.75

Roughness Segment Definitions


Start Station	Ending Station	Roughness Coefficient
(0+00, 26.00)	(0+54, 20.00)	0.040
(0+54, 20.00)	(0+76, 20.00)	0.040
(0+76, 20.00)	(1+25, 22.75)	0.040

Options	
Current Roughness Weighted	Pavlovskii's
Method	Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method

Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
	2. 4 to	
Normal Depth	3.4 in	
Roughness Coefficient	0.040	
Elevation	20.29 ft	
Elevation Range	20.0 to 26.0 ft	
Flow Area	7.4 ft ²	
Wetted Perimeter	29.7 ft	
Hydraulic Radius	3.0 in	
Top Width	29.69 ft	
Normal Depth	3.4 in	
Critical Depth	3.3 in	
Critical Slope	0.037 ft/ft	
Velocity	2.71 ft/s	
Velocity Head	0.11 ft	
Specific Energy	0.40 ft	
Froude Number	0.958	

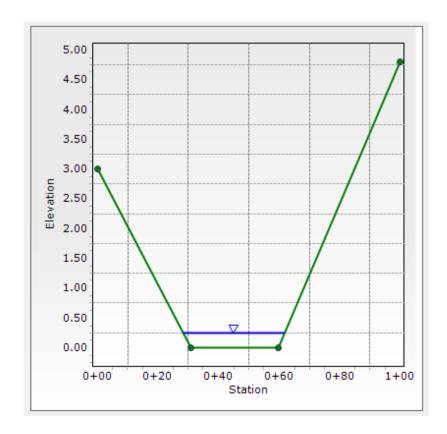
Drainage Channels.fm8 1/17/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

	11011101	
Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	3.4 in	
Critical Depth	3.3 in	
Channel Slope	0.034 ft/ft	
Critical Slope	0.037 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.075 ft/ft	
Discharge	28.20 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	3.00
0+31	0.00
0+60	0.00
1+00	4.84


Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00, 3.00)	(0+31, 0.00)	0.040
(0+31, 0.00)	(0+60, 0.00)	0.040
(0+60, 0.00)	(1+00, 4.84)	0.040

Options	
Current Roughness Weighted	Pavlovskii's
Method	Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method

Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	2.9 in	
Roughness Coefficient	0.040	
Elevation	0.24 ft	
Elevation Range	0.0 to 4.8 ft	
Flow Area	7.5 ft ²	
Wetted Perimeter	33.4 ft	
Hydraulic Radius	2.7 in	
Top Width	33.34 ft	
Normal Depth	2.9 in	
Critical Depth	3.6 in	
Critical Slope	0.036 ft/ft	
Velocity	3.76 ft/s	
Velocity Head	0.22 ft	
Specific Energy	0.46 ft	
Froude Number	1.396	
Flow Type	Supercritical	

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.9 in	
Critical Depth	3.6 in	
Channel Slope	0.075 ft/ft	
Critical Slope	0.036 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.033 ft/ft	
Discharge	26.50 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	19.00
0+45	14.00
0+56	14.00
0+98	18.00

Roughness Segment Definitions

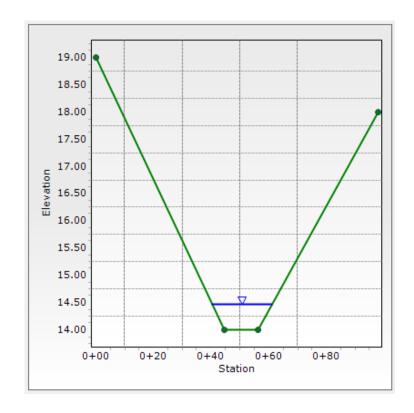
Start Station	Ending Station	Roughness Coefficient
(0+00, 19.00)	(0+45, 14.00)	0.040
(0+45, 14.00)	(0+56, 14.00)	0.040
(0+56, 14.00)	(0+98, 18.00)	0.040

Options	
Current Roughness Weighted	Pavlovskii's
Method	Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method

Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	5.6 in	
Roughness Coefficient	0.040	
Elevation	14.47 ft	
Elevation Range	14.0 to 19.0 ft	
Flow Area	7.7 ft ²	
Wetted Perimeter	20.9 ft	
Hydraulic Radius	4.4 in	
Top Width	20.85 ft	
Normal Depth	5.6 in	
Critical Depth	5.7 in	
Critical Slope	0.033 ft/ft	
Velocity	3.46 ft/s	
Velocity Head	0.19 ft	

0.66 ft

1.005


Drainage Channels.fm8 1/17/2024

Specific Energy

Froude Number

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

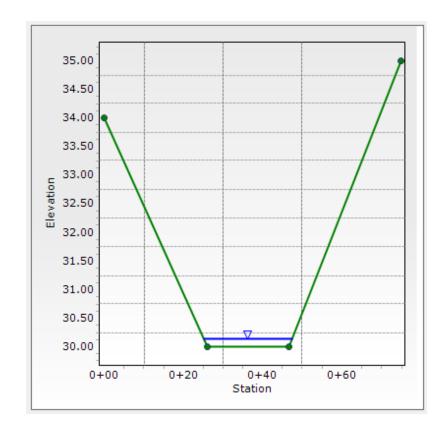
	Works	STICEL TOLD I O
Results		
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	5.6 in	
Critical Depth	5.7 in	
Channel Slope	0.033 ft/ft	
Critical Slope	0.033 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.063 ft/ft	
Discharge	7.95 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	34.00
0+26	30.00
0+47	30.00
0+75	35.00

Roughness Segment Definitions


Start Station	Ending Station	Roughness Coefficient
(0+00, 34.00)	(0+26, 30.00)	0.040
(0+26, 30.00)	(0+47, 30.00)	0.040
(0+47, 30.00)	(0+75, 35.00)	0.040

Options	
Current Roughness Weighted	Pavlovskii's
Method	Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method

Method	Method	
Closed Channel Weighting	Pavlovskii's	
Method	Method	
Results		
Normal Depth	1.8 in	
Roughness Coefficient	0.040	
Elevation	30.15 ft	
Elevation Range	30.0 to 35.0 ft	
Flow Area	3.2 ft ²	
Wetted Perimeter	22.5 ft	
Hydraulic Radius	1.7 in	
Top Width	22.52 ft	
Normal Depth	1.8 in	
Critical Depth	2.0 in	
Critical Slope	0.043 ft/ft	
Velocity	2.52 ft/s	
Velocity Head	0.10 ft	
Specific Energy	0.24 ft	
Froude Number	1.185	

Drainage Channels.fm8 1/17/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Results		
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.8 in	
Critical Depth	2.0 in	
Channel Slope	0.063 ft/ft	
Critical Slope	0.043 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.039 ft/ft	
Discharge .	5.01 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	35.00
0+29	32.00
0+54	32.00
0+73	35.00

Roughness Segment Definitions

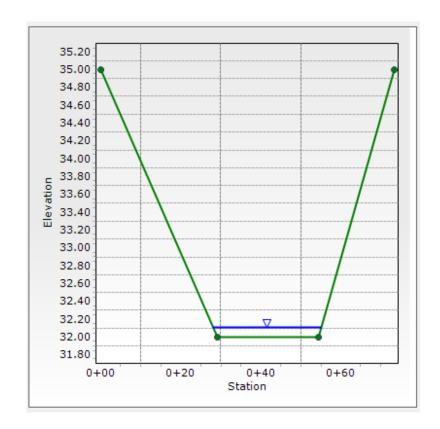
Start Station	Ending Station	Roughness Coefficient
(0+00, 35.00)	(0+29, 32.00)	0.040
(0+29, 32.00)	(0+54, 32.00)	0.040
(0+54, 32.00)	(0+73, 35.00)	0.040

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	

Method	Method	
Closed Channel Weighting	Pavlovskii's	
Method	Method	
Results		
Normal Depth	1.4 in	
Roughness Coefficient	0.040	
Elevation	32.11 ft	
Elevation Range	32.0 to 35.0	
Elevation Range	ft	
Flow Area	3.0 ft ²	
Wetted Perimeter	27.1 ft	
Hydraulic Radius	1.3 in	
Top Width	27.07 ft	
Normal Depth	1.4 in	
Critical Depth	1.3 in	
Critical Slope	0.050 ft/ft	
Velocity	1.68 ft/s	
Velocity Head	0.04 ft	
=		

Drainage Channels.fm8 1/17/2024

Specific Energy


Froude Number

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

0.16 ft

0.894

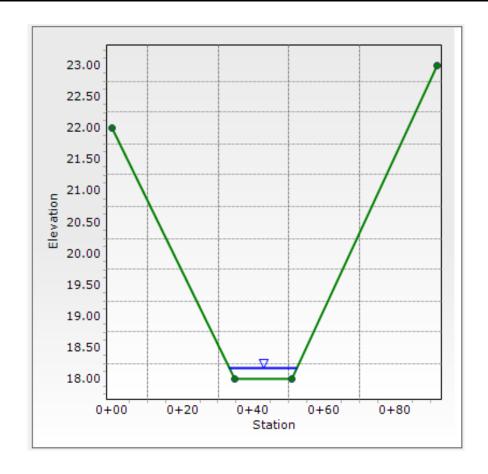
	1101110	
Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	1.4 in	
Critical Depth	1.3 in	
Channel Slope	0.039 ft/ft	
Critical Slope	0.050 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.030 ft/ft	
Discharge	5.37 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	22.00
0+35	18.00
0+51	18.00
0+92	23.00

Roughness Segment Definitions


Start Station	Ending Station	Roughness Coefficient
(0+00, 22.00)	(0+35, 18.00)	0.040
(0+35, 18.00)	(0+51, 18.00)	0.040
(0+51, 18.00)	(0+92, 23.00)	0.040

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	

Method	
Pavlovskii's Method	
2.0 in	
0.040	
18.17 ft	
18.0 to 23.0 ft	
2.9 ft ²	
19.1 ft	
1.8 in	
19.04 ft	
2.0 in	
1.8 in	
0.045 ft/ft	
1.84 ft/s	
0.05 ft	
0.22 ft	
0.829	
	2.0 in 0.040 18.17 ft 18.0 to 23.0 ft 2.9 ft² 19.1 ft 1.8 in 19.04 ft 2.0 in 1.8 in 0.045 ft/ft 1.84 ft/s 0.05 ft 0.22 ft

Drainage Channels.fm8 1/17/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

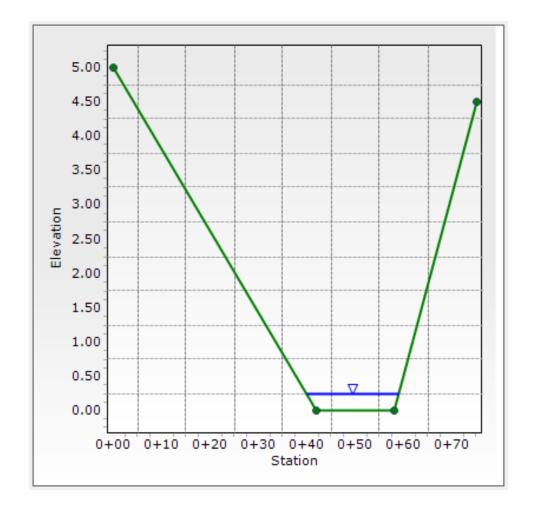
Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	2.0 in	
Critical Depth	1.8 in	
Channel Slope	0.030 ft/ft	
Critical Slope	0.045 ft/ft	

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.037 ft/ft	
Discharge	11.88 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	5.00
0+42	0.00
0+58	0.00
0+75	4.50

Roughness Segment Definitions


5	Start Station	Ending Station	Roughness Coefficient	
(0+00, 5.00)		(0+42, 0.00)		0.040
(0+42, 0.00)		(0+58, 0.00)		0.040
(0+58, 0.00)		(0+75, 4.50)		0.040

Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			

Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	3.0 in	
Roughness Coefficient	0.040	
Elevation	0.25 ft	
Elevation Range	0.0 to 5.0 ft	
Flow Area	4.4 ft ²	
Wetted Perimeter	19.1 ft	
Hydraulic Radius	2.8 in	
Top Width	19.07 ft	
Normal Depth	3.0 in	
Critical Depth	3.0 in	
Critical Slope	0.038 ft/ft	
Velocity	2.69 ft/s	
Velocity Head	0.11 ft	
Specific Energy	0.36 ft	
Froude Number	0.984	
Flow Type	Subcritical	

Worksheet for B2-1

0.0 in	
0.0 ft	
0	
0.0 in	
N/A	
0.00 ft	
0.00 ft/s	
0.00 ft/s	
3.0 in	
3.0 in	
0.037 ft/ft	
0.038 ft/ft	
	0.0 ft 0 0.0 in N/A 0.00 ft 0.00 ft/s 0.00 ft/s 3.0 in 3.0 in 0.037 ft/ft

Worksheet for B2-2

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.054 ft/ft	
Discharge	23.59 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	13.00
0+38	8.00
0+59	8.00
0+96	13.00

Roughness Segment Definitions


Start Station	Ending Station	Roughness Coefficient
(0+00, 13.00)	(0+38, 8.00)	0.040
(0+38, 8.00)	(0+59, 8.00)	0.040
(0+59, 8.00)	(0+96, 13.00)	0.040

Options	
Current Roughness Weighted	Pavlovskii's
Method	Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method

Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	3.5 in	
Roughness Coefficient	0.040	
Elevation	8.29 ft	
Elevation Range	8.0 to 13.0 ft	
Flow Area	6.7 ft ²	
Wetted Perimeter	25.4 ft	
Hydraulic Radius	3.2 in	
Top Width	25.31 ft	
Normal Depth	3.5 in	
Critical Depth	3.9 in	
Critical Slope	0.035 ft/ft	
Velocity	3.54 ft/s	
Velocity Head	0.19 ft	
Specific Energy	0.48 ft	
Froude Number	1.217	
Flow Type	Supercritical	

Worksheet for B2-2

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.5 in	
Critical Depth	3.9 in	
Channel Slope	0.054 ft/ft	
Critical Slope	0.035 ft/ft	

Worksheet for B8-1

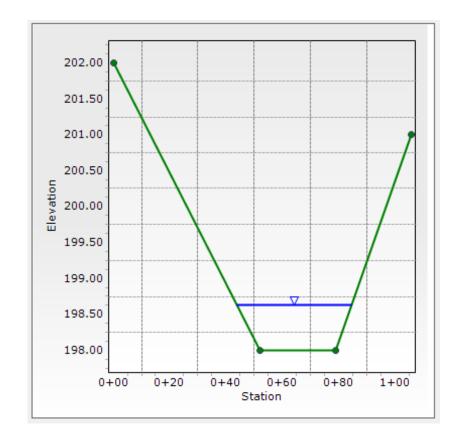
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.050 ft/ft	
Discharge	114.99 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	202.00
0+52	198.00
0+79	198.00
1+06	201.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00, 202.00)	(0+52, 198.00)	0.040
(0+52, 198.00)	(0+79, 198.00)	0.040
(0+79, 198.00)	(1+06, 201.00)	0.040


Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	

Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	7.6 in	
Roughness Coefficient	0.040	
Elevation	198.63 ft	
Elevation Range	198.0 to 202.0 ft	
Flow Area	21.4 ft ²	
Wetted Perimeter	40.9 ft	
Hydraulic Radius	6.3 in	
Top Width	40.85 ft	
Normal Depth	7.6 in	
Critical Depth	8.9 in	
Critical Slope	0.028 ft/ft	
Velocity	5.39 ft/s	
Velocity Head	0.45 ft	
Specific Energy	1.08 ft	
Froude Number	1.313	

Drainage Channels.fm8 1/17/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2

Worksheet for B8-1

	110.110	
Results		
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	7.6 in	
Critical Depth	8.9 in	
Channel Slope	0.050 ft/ft	
Critical Slope	0.028 ft/ft	

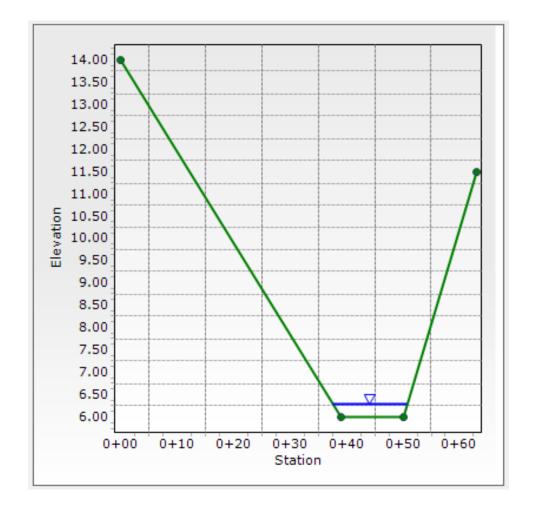
Worksheet for B6-1

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.190 ft/ft	
Discharge	23.23 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	14.00
0+39	6.00
0+50	6.00
0+63	11.50

Roughness Segment Definitions


Start Station	Ending Station	Roughness Coefficient
(0+00, 14.00)	(0+39, 6.00)	0.040
(0+39, 6.00)	(0+50, 6.00)	0.040
(0+50, 6.00)	(0+63, 11.50)	0.040

Options	
Current Roughness Weighted	Pavlovskii's
Method	Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	Method

Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	3.5 in	
Roughness Coefficient	0.040	
Elevation	6.29 ft	
Elevation Range	6.0 to 14.0 ft	
Flow Area	3.5 ft ²	
Wetted Perimeter	13.2 ft	
Hydraulic Radius	3.2 in	
Top Width	13.09 ft	
Normal Depth	3.5 in	
Critical Depth	5.9 in	
Critical Slope	0.031 ft/ft	
Velocity	6.67 ft/s	
Velocity Head	0.69 ft	
Specific Energy	0.98 ft	
Froude Number	2.280	
Flow Type	Supercritical	

Worksheet for B6-1

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.5 in	
Critical Depth	5.9 in	
Channel Slope	0.190 ft/ft	
Critical Slope	0.031 ft/ft	

Worksheet for B7-1

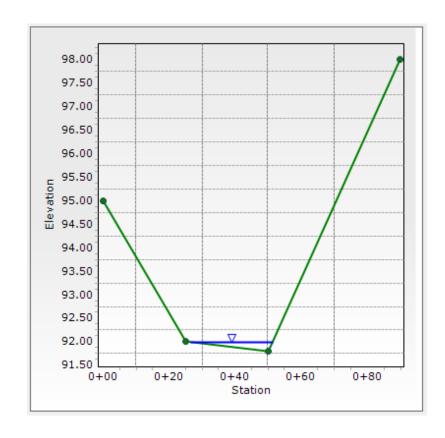
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.046 ft/ft	
Discharge	5.64 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	95.00
0+25	92.00
0+50	91.75
0+90	98.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00, 95.00)	(0+25, 92.00)	0.040
(0+25, 92.00)	(0+50, 91.75)	0.040
(0+50, 91.75)	(0+90, 98.00)	0.040

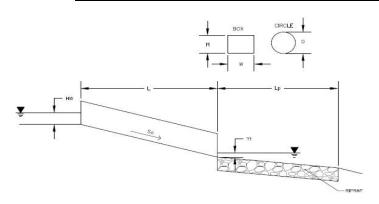

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	

Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	2.8 in	
Roughness Coefficient	0.040	
Elevation	91.99 ft	
Elevation Range	91.8 to 98.0 ft	
Flow Area	2.9 ft ²	
Wetted Perimeter	25.1 ft	
Hydraulic Radius	1.4 in	
Top Width	25.05 ft	
Normal Depth	2.8 in	
Critical Depth	2.8 in	
Critical Slope	0.048 ft/ft	
Velocity	1.91 ft/s	
Velocity Head	0.06 ft	
Specific Energy	0.29 ft	
Froude Number	0.983	

Drainage Channels.fm8 1/17/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2

Worksheet for B7-1

Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	2.8 in	
Critical Depth	2.8 in	
Channel Slope	0.046 ft/ft	
Critical Slope	0.048 ft/ft	

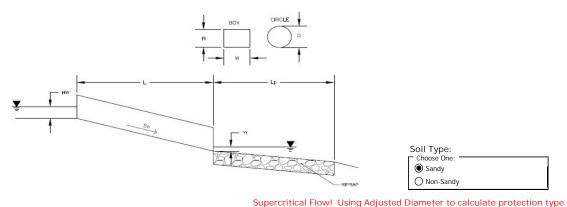

ROADSIDE DITCH SUMMARY TABLE

						CHANNEL			Q100	TOOMINIAN	DITCH		Q100		
ROADWAY	FROM STA	TO STA	PROPOSED	SIDE	SIDE SLOPE	DEPTH	FRICTION	BASIN	FLOW	DITCH FLOW	FLOW	Q100 DEPTH		CH LINING	NOTES
NO/IBW/	11101110111	100171	SLOPE (%)	OIDE	0.02 0201 2	(FT)	FACTOR	27.0114	(CFS)	% OF BASIN	(CFS)	(FT)	(FT/S)	011 2111110	110120
HATBAND DRIVE	1+30	2+80	2.75%	LEFT	4:1/3:1	3	0.04 A	1	41.29	100.0%	41.29	1.53	5.02 GRA	ASS	
HATBAND DRIVE	1+30	3+40	2.75%		4:1/3:1	3	0.04 A		92.96	1.0%	0.93	0.37	1.95 GRA		
HATBAND DRIVE	2+80	3+80	2.75%	LEFT	4:1/3:1	3	0.04 A	2	92.96	1.0%	0.93	0.37	1.95 GRA	ASS	
HATBAND DRIVE	4+90	7+20	2.75%	LEFT	4:1/3:1	3	0.04 A	2	92.96	1.0%	0.93	0.37	1.95 GRA	ASS	
HATBAND DRIVE	6+13	7+20	2.75%	RIGHT	4:1/3:1	3	0.04 A	2	92.96	1.0%	0.93	0.37	1.95 GRA	ASS	
HATBAND DRIVE	12+60	15+00	1.00%	LEFT	4:1/3:1	3	0.04 B	1	80.40	0.7%	0.56	0.37	1.17 GRA	ASS	
HATBAND DRIVE	12+60	15+00	1.00%	RIGHT	4:1/3:1	3	0.04 B	1	80.40	0.5%	0.40	0.33	1.08 GRA	ASS	
HATBAND DRIVE	15+00	18+00	2.00%	LEFT	4:1/3:1	3	0.04 B	1	80.40	25.0%	20.10	1.24	3.72 GRA	ASS	
HATBAND DRIVE	15+00	18+00	2.00%	RIGHT	4:1/3:1	3	0.04 B	1	80.40	0.6%	0.48	0.31	1.46 GRA	ASS	
HATBAND DRIVE	19+75	20+45	3.00%	RIGHT	4:1/3:1	3	0.04 B	1	80.40	0.1%	0.08	0.14	1.09 GRA	ASS .	
HATBAND DRIVE	20+45	22+00	2.00%	RIGHT	4:1/3:1	3	0.04 B	2	38.64	1.0%	0.39	0.28	1.39 GRA	ASS .	
HATBAND DRIVE	20+20	22+75	2.40%	LEFT	4:1/3:1	3	0.04 B	1	80.40	1.3%	1.05	0.40	1.90 GRA	ASS .	
SALOON DRIVE	3+30	5+70	1.25%	LEFT	4:1/3:1	3	0.04 A	2	92.96	0.40%	0.37	0.30	1.15 GRA	ASS	
SALOON DRIVE	3+30	6+10	1.50%	RIGHT	4:1/3:1	3	0.04 A		92.96	45.0%	41.83	1.75	4.02 GRA	ASS	
SALOON DRIVE	7+00	10+80	6.00%	LEFT	4:1/3:1	3	0.04 A	2	92.96	2.0%	1.86	0.42	3.10 GRA	ASS	
SALOON DRIVE	10+80	END	1.30%	LEFT	4:1/3:1	3	0.04 A	2	92.96	1.0%	0.93	0.43	1.47 GRA	ASS	
CAMPOUT DRIVE	7+95	8+90	9.50%	RIGHT	4:1/3:1	3	0.04 B	1	80.40	0.2%	0.16	0.15	1.99 GRA	ASS	
CAMPOUT DRIVE	11+10	12+40	7.75%	RIGHT	4:1/3:1	3	0.04 B	1	80.40	0.4%	0.32	0.20	2.20 GRA	ASS	
CAMPOUT DRIVE	11+20	14+50	5.15%	LEFT	4:1/3:1	3	0.04 B	6	106.95	23.0%	24.60	1.13	5.58 GRA	ASS	
CAMPOUT DRIVE	16+80	25+80	1.00%	LEFT	4:1/3:1	3	0.04 B	6	106.95	85.0%	90.91	2.49	4.19 GRA	ASS	
CAMPOUT DRIVE	25+80	END	1.00%	LEFT	4:1/3:1	3	0.04 B	6	106.95	13.0%	13.90	1.23	2.62 GRA	ASS	
CAMPOUT DRIVE	27+80	29+60	1.00%		4:1/3:1	3	0.04 B		106.95	0.3%	0.28	0.28	0.99 GRA		
APEX RANCH ROAD	START	3+65	2.20%		4:1/3:1	3	0.04 C		59.93	4.3%	15.90*	1.12	3.64 GRA		* INLCUDES FOLW FROM SUB-BASINS OS-C1, OS-A2, AND A2
APEX RANCH ROAD	3+65	4+85	4.65%		4:1/3:1	3	0.04 C		11.46	27.0%	13.31*	0.91	4.62 GRA		* INLCUDES FLOW FROM SUB-BASINS OS-A2, AND A2
APEX RANCH ROAD	3+70	4+30	4.20%	RIGHT	4:1/3:1	3	0.04		11.46	1.4%	0.16	0.18	1.47 GRA		
APEX RANCH ROAD	12+20	16+60	10.00%		4:1/3:1	3	0.04 A		92.96	2.0%	1.86	0.38	3.75 GRA		
APEX RANCH ROAD	16+60	18+30	5.15%		4:1/3:1	3	0.04 A		92.96	0.7%	0.65	0.28	2.25 GRA		
APEX RANCH ROAD	12+65	16+60	10.00%		4:1/3:1	3	0.04 B		106.95	2.0%	2.14	0.40	3.89 GRA		
APEX RANCH ROAD	16+60	18+65	5.15%	RIGHT	4:1/3:1	3	0.04 B	6	106.95	0.4%	0.43	0.25	2.03 GRA	ASS	

	Culvert & Riprap Summary												
	Culvert Details								Riprap Det	tails			
Culvert ID	Basin	Q100 flow (cfs)	Flow % of Basin	Flows (cfs)	HW/D Ratio	Diameter (in)	Length (ft)	Width (ft)	D50 Type	D50 Size (in)	D50 Thickness (in)	Normal Depth in Pipe (ft)	Upstream Headwater Elevation (ft)
A1	A1	41.42	100.00%	41.42	1.13	36	19	7	L	9	18	2.32	7208.06
A2-A	A2	92.96	10.00%	9.30	1.39	18	7	4	VL	6	12	0.75	7211.83
A2-B	A2	92.96	8.00%	7.44	1.12	18	5	3	VL	6	12	0.56	7221.28
A2-C	A2	92.96	49.00%	45.55	1.21	36	21	8	L	9	18	1.17	7223.80
A2-D	A2	92.96	11.00%	10.23	0.86	24	6	4	VL	6	12	0.89	7315.02
B1-A	B1	80.40	28.00%	22.51	0.99	30	11	5	VL	6	12	0.85	7218.23
B1-B	B1	80.40	34.00%	27.34	1.16	30	14	6	L	9	18	1.52	7221.92
В6	В6	106.95	100.00%	106.95	1.01	36 (3 Barrels)	30	15	L	9	18	1.50	7231.07

MHFD-Culvert, Version 4.00 (May 2020)

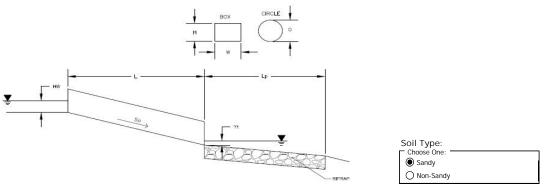
Project: OVERLOOK
ID: CULVERT A1



Design Info	rmation:			
	Design Discharge	Q =	41.42 cfs	
Circular Culve		- F		
	Barrel Diameter in Inches	D =	36 inches	
	Inlet Edge Type (Choose from pull-down list)	Square Ed	ge with Headwall	
	<u>R:</u>			
Box Culvert:			OR	
	Barrel Height (Rise) in Feet	H (Rise) =	ft	
	Barrel Width (Span) in Feet	W (Span) =	ft	
	Inlet Edge Type (Choose from pull-down list)			
	Number of Barrels	# Barrels =	1	
	Inlet Elevation	Elev IN =	7204.67 ft	
	Outlet Elevation <u>OR</u> Slope	Elev OUT =	7204.42 ft	
	- ·			
	Culvert Length Manning's Roughness	L = n =	68.15 ft 0.012	
	Bend Loss Coefficient	n =	0.012	
	Exit Loss Coefficient	$k_b = k_v = k_v$	1	
	Tailwater Surface Elevation	^	ft	
		Y _{t, Elevation} =	5 ft/s	
	Max Allowable Channel Velocity	V =	5 11/5	
Calculated F	Results:			
	Culvert Cross Sectional Area Available	A =	7.07 ft ²	
	Culvert Normal Depth	Y _n =	2.32 ft	
	Culvert Critical Depth	Y _c =	2.10 ft	
	Froude Number	Fr =	0.81	
	Entrance Loss Coefficient	k _e =	0.50	
	Friction Loss Coefficient	k _f =	0.42	
	Sum of All Loss Coefficients	k _s =	1.92 ft	
		·		
Headwater:		_		
	Inlet Control Headwater	$HW_1 =$	3.39 ft	
	Outlet Control Headwater	$HW_O =$	3.32 ft	
	Design Headwater Elevation	HW =	7208.06 ft	
	Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	HW/D =	1.13	
Outlet Protect	rtion:			
Juliot 1 10101	Flow/(Diameter^2.5)	Q/D^2.5 =	2.66 ft ^{0.5} /s	
	Tailwater Surface Height	Y _t =	1.20 ft	
	Tailwater/Diameter	Yt/D =	0.40	
	Expansion Factor	$1/(2*tan(\Theta)) =$	4.85	
	Flow Area at Max Channel Velocity	A _t =	8.28 ft ²	
	Width of Equivalent Conduit for Multiple Barrels	$W_{eq} =$	- ft	
	Length of Riprap Protection	L _p =	19 ft	
	Width of Riprap Protection at Downstream End	T =	7 ft	
	·	<u> </u>		
	Adjusted Diameter for Supercritical Flow	Da =	ft	
	Minimum Theoretical Riprap Size	d ₅₀ min=	7 in	
	Nominal Riprap Size	d ₅₀ nominal=	9 in	
	MHFD Riprap Type	Type =	L	

MHFD-Culvert, Version 4.00 (May 2020)

Project: OVERLOOK
ID: CULVERT A2-A

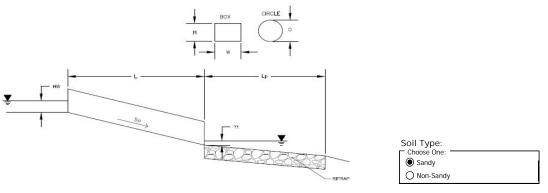


Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Barrel Width (Span) in Feet Unlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Elevation Outlet Elev		Sl	upercritical Flow! Using Adjusted [Diameter to calcu	ulate protection type.
Design Discharge	Design Infor	mation:			
Dame			O =	9.3	cfs
Barrel Diameter in Inches D B		g			
Barrel Diameter in Inches D B	Circular Culvo	rt.			
Intel Edge Type (Choose from pull-down list) OR Box Culvert: Barrel Height (Rise) in Feet	Circulai Cuivei			10	T
DR Barrel Height (Rise) in Feet Barrel Height (Rise) in Feet Barrel Height (Rise) in Feet He					
Box Culvert: Barrel Height (Rise) in Feet H (Rise)		9 3	Square	Edge with Headwa	II.
Barrel Height (Rise) in Feet H (Rise) T T T T T T T T T	<u>OR</u>	<u>.</u>			
Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list) Inlet Edge Type (Choose from pull-down list)	Box Culvert:			OR	
Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list) Inlet Edge Type (Choose from pull-down list)		Barrel Height (Rise) in Feet	H (Rise) =		Tft .
Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels 1 7209.75 1 1 1 1 1 1 1 1 1		9	W (Span) =		T _{ft}
Number of Barrels # Barrels			(,		1
Inlet Elevation QIS Slope		Thet Lage Type (Choose from pall-down list)			
Inlet Elevation QIS Slope		Number of December	# Damala	1	⊣
Outlet Elevation OR Slope					_
Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coefficient Exit Loss Coefficient Exit Loss Coefficient Exit Loss Coefficient Exit Loss Coefficient Max Allowable Channel Velocity Calculated Results: Culvert Cross Sectional Area Available Culvert Normal Depth Culvert Normal Depth Proude Number Culvert Normal Depth Froude Number Frough Number Entrance Loss Coefficient Entrance Loss					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Outlet Elevation OR Slope	Elev OUT =	7207.31	ft
Bend Loss Coefficient Exit Loss Coefficient Exit Loss Coefficient Tallwater Surface Elevation Max Allowable Channel Velocity Calculated Results: Culvert Cross Sectional Area Available Culvert Normal Depth Yn = 0.75 ft Culvert Critical Depth Yn = 0.75 ft Culvert Critical Depth Yn = 0.75 ft Culvert Critical Depth Yn = 0.05 ft Froude Number Froude Number Froude Number Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Sum of All Loss Coefficient Find Headwater United Control Headwater Outlet Control Headwater Outlet Control Headwater HW0 = N/A ft Design Headwater Elevation Headwater/Diameter QR Headwater/Rise Ratio Headwater/Diameter QR Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: Flow (Diameter ^2.5) Tallwater Surface Height Tallwater Surface Height Ty = 0.60 It I - 0		Culvert Length	L =	93	ft
Bend Loss Coefficient Exit Loss Coefficient Exit Loss Coefficient Tallwater Surface Elevation Max Allowable Channel Velocity Calculated Results: Culvert Cross Sectional Area Available Culvert Normal Depth Yn = 0.75 ft Culvert Critical Depth Yn = 0.75 ft Culvert Critical Depth Yn = 0.75 ft Culvert Critical Depth Yn = 0.05 ft Froude Number Froude Number Froude Number Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Sum of All Loss Coefficient Find Headwater United Control Headwater Outlet Control Headwater Outlet Control Headwater HW0 = N/A ft Design Headwater Elevation Headwater/Diameter QR Headwater/Rise Ratio Headwater/Diameter QR Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: Flow (Diameter ^2.5) Tallwater Surface Height Tallwater Surface Height Ty = 0.60 It I - 0		Manning's Roughness	n =	0.012	
Exit Loss Coefficient Taliwater Surface Elevation Max Allowable Channel Velocity Calculated Results: Culvert Cross Sectional Area Available Culvert Normal Depth Culvert Critical Depth V, = 0.75 ft Culvert Critical Depth V, = 0.75 ft Culvert Critical Depth V, = 1.18 ft Froude Number Fr = 2.40 Supercritical! Entrance Loss Coefficient Sum of All Loss Coefficient V, = 0.50 Friction Loss Coefficient V, = 1.44 Sum of All Loss Coefficient V, = 1.44 Sum of All Loss Coefficient V, = 1.44 Sum of All Loss Coefficient V, = 1.44 Supercritical! Headwater: Inlet Control Headwater Outlet Control Headwater Outlet Control Headwater Outlet Control Headwater Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: Flow/(Diameter ^2.5) Taliwater/Diameter Flow (Diameter ^2.5) Taliwater Surface Height Taliwater/Diameter Flow Area at Max Channel Velocity Flow Area at Max Channel Velocity Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Use Taliwater Surface Under Control Headwater Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Use Taliwater Surface Under Control Headwater Under Con					1
Tailwater Surface Elevation Max Allowable Channel Velocity Calculated Results: Culvert Cross Sectional Area Available Culvert Normal Depth Culvert Normal Depth Ve = 1.18 ft Culvert Critical Depth Ve = 1.18 ft Froude Number Entrance Loss Coefficient Friction Loss Coefficient Sum of All Loss Coefficient Ve = 1.14 Sum of All Loss Coefficients Ve = 1.14 Sum of All Loss Coefficient Ve = 1.14 Sum of All Loss Coefficients Ve = 1.18 Sum of All Loss Coe					†
Max Allowable Channel Velocity V 5					+ _{ft}
Calculated Results: Culvert Cross Sectional Area Available Culvert Normal Depth Culvert Critical Depth Prode Number Entrance Loss Coefficient Friction Loss Coefficient Sum of All Loss Coefficient Friction Loss Coefficient Results: Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: Flow/(Diameter ^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Factor Flow Area at Max Channel Velocity Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection to Das Institute I				_	
Culvert Cross Sectional Area Available $A = \begin{bmatrix} 1.77 & \text{ft}^2 \\ \text{Culvert Normal Depth} & Y_n & 0.75 & \text{ft} \\ \text{Culvert Critical Depth} & Y_c & 1.18 & \text{ft} \\ \text{Froude Number} & Fr & 2.40 & \text{Supercritical!} \\ \text{Entrance Loss Coefficient} & k_s & 0.50 & \text{Friction Loss Coefficient} \\ \text{Firdiance Loss Coefficient} & k_s & 0.50 & \text{ft} \\ \text{Sum of All Loss Coefficients} & k_s & 2.94 & \text{ft} \\ \text{Sum of All Loss Coefficients} & k_s & 2.94 & \text{ft} \\ \text{Headwater:} & HW_i & 2.08 & \text{ft} \\ \text{Outlet Control Headwater} & HW_0 & N/A & \text{ft} \\ \text{Design Headwater Elevation} & HW & 7211.83 & \text{ft} \\ \text{Headwater/Diameter QR Headwater/Rise Ratio} & HW/D & 1.39 & \text{Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required} \\ \text{Outlet Protection:} & Q/D^2.5 & 3.37 & \text{ft}^{0.5}/\text{S} \\ \text{Tailwater Culculations Height} & Y_1 & 0.60 & \text{ft} \\ \text{Tailwater Surface Height} & Y_1 & 0.60 & \text{ft} \\ \text{Tailwater Plaimeter} & Yt/D & 0.40 & \text{the Expansion Factor} \\ \text{Flow Area at Max Channel Velocity} & A_t & 1.86 & \text{ft}^2 \\ \text{Width of Equivalent Conduit for Multiple Barrels} & W_{eq} & - & \text{ft} \\ \text{Length of Riprap Protection} & D_p & 7 & \text{ft} \\ \text{Width of Riprap Protection at Downstream End} & T & 4 & \text{ft} \\ \text{Adjusted Diameter for Supercritical Flow} & Da & 1.13 & \text{ft} \\ \text{Minimum Theoretical Riprap Size} & d_{50} \text{nominal} & 6 & \text{in} \\ \text{Nominal Riprap Size} & d_{50} \text{nominal} & 6 & \text{in} \\ \end{array}$		Max Allowable Channel Velocity	V =	5	_tt/s
Culvert Cross Sectional Area Available $A = \begin{bmatrix} 1.77 & \text{ft}^2 \\ \text{Culvert Normal Depth} & Y_n & 0.75 & \text{ft} \\ \text{Culvert Critical Depth} & Y_c & 1.18 & \text{ft} \\ \text{Froude Number} & Fr & 2.40 & \text{Supercritical!} \\ \text{Entrance Loss Coefficient} & k_s & 0.50 & \text{Friction Loss Coefficient} \\ \text{Firdiance Loss Coefficient} & k_s & 0.50 & \text{ft} \\ \text{Sum of All Loss Coefficients} & k_s & 2.94 & \text{ft} \\ \text{Sum of All Loss Coefficients} & k_s & 2.94 & \text{ft} \\ \text{Headwater:} & HW_i & 2.08 & \text{ft} \\ \text{Outlet Control Headwater} & HW_0 & N/A & \text{ft} \\ \text{Design Headwater Elevation} & HW & 7211.83 & \text{ft} \\ \text{Headwater/Diameter QR Headwater/Rise Ratio} & HW/D & 1.39 & \text{Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required} \\ \text{Outlet Protection:} & Q/D^2.5 & 3.37 & \text{ft}^{0.5}/\text{S} \\ \text{Tailwater Culculations Height} & Y_1 & 0.60 & \text{ft} \\ \text{Tailwater Surface Height} & Y_1 & 0.60 & \text{ft} \\ \text{Tailwater Plaimeter} & Yt/D & 0.40 & \text{the Expansion Factor} \\ \text{Flow Area at Max Channel Velocity} & A_t & 1.86 & \text{ft}^2 \\ \text{Width of Equivalent Conduit for Multiple Barrels} & W_{eq} & - & \text{ft} \\ \text{Length of Riprap Protection} & D_p & 7 & \text{ft} \\ \text{Width of Riprap Protection at Downstream End} & T & 4 & \text{ft} \\ \text{Adjusted Diameter for Supercritical Flow} & Da & 1.13 & \text{ft} \\ \text{Minimum Theoretical Riprap Size} & d_{50} \text{nominal} & 6 & \text{in} \\ \text{Nominal Riprap Size} & d_{50} \text{nominal} & 6 & \text{in} \\ \end{array}$					
Culvert Normal Depth Culvert Critical Depth Culvert Critical Depth Froude Number Entrance Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficients Have a comparison of All Loss Coefficients Headwater: Inlet Control Headwater Outlet Control Headwater Outlet Control Headwater Have a comparison Have a c	Calculated Re	<u>esults:</u>			
Culvert Normal Depth Culvert Critical Depth Culvert Critical Depth Froude Number Entrance Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficient Friction Loss Coefficients Have a comparison of All Loss Coefficients Headwater: Inlet Control Headwater Outlet Control Headwater Outlet Control Headwater Have a comparison Have a c		Culvert Cross Sectional Area Available	A =	1.77	ft ²
Culvert Critical Depth $Y_c = 1.18$ ft Froude Number $Fr = 2.40$ Supercritical! Entrance Loss Coefficient $R_c = 0.50$ Friction Loss Coefficient $R_c = 0.50$ Friction Loss Coefficient $R_c = 0.50$ Friction Loss Coefficients $R_c = 0.50$ Ft $R_c $		Culvert Normal Depth	$Y_n =$	0.75	
Froude Number Entrance Loss Coefficient Entrance Loss Ent		· ·			
Entrance Loss Coefficient Friction Loss Coefficient Sum of All Loss Coefficients Readwater: Readwater Read		·	_		-
Friction Loss Coefficients $k_{r} = \frac{1.44}{1.44}$ Sum of All Loss Coefficients $k_{s} = \frac{1.44}{2.94}$ Headwater: Inlet Control Headwater $HW_{l} = \frac{2.08}{N/A} \text{ ft}$ Outlet Control Headwater $HW_{0} = \frac{N/A}{N/A} \text{ ft}$ Design Headwater Elevation $HW = \frac{7211.83}{7211.83} \text{ ft}$ Headwater/Diameter OR Headwater/Rise Ratio $HW/D = \frac{1.39}{1.39}$ Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: Flow/(Diameter^2.5) $O/D^2.5 = \frac{3.37}{1000000000000000000000000000000000000$					ouper or itical!
Sum of All Loss Coefficients $k_s = 2.94 \text{ ft}$ Headwater: Inlet Control Headwater					-∤
Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Factor Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Inlet Control Headwater HW, = 0.08 HW, = 0.21.83 To V/2 1.89					<u> </u>
Inlet Control Headwater Outlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Factor Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size		Sum of All Loss Coefficients	$k_s =$	2.94	<u>l</u> ft
Inlet Control Headwater Outlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Factor Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size					
Outlet Control Headwater Design Headwater Elevation Headwater/Diameter \underline{OR} Headwater/Rise Ratio Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Factor Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection at Downstream End Adjusted Diameter for Supercritical Flow Mominal Riprap Size Nominal Riprap Size Med Sign and Size Size Size Size Size Size Size Size	Headwater:				
Outlet Control Headwater Design Headwater Elevation Headwater/Diameter \underline{OR} Headwater/Rise Ratio Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Factor Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection at Downstream End Adjusted Diameter for Supercritical Flow Mominal Riprap Size Nominal Riprap Size Med Sign and Size Size Size Size Size Size Size Size		Inlet Control Headwater	$HW_1 =$	2.08	ft
Design Headwater Elevation		Outlet Control Headwater			T ft ∣
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: Flow/(Diameter ^2.5)		9			†``
Outlet Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Factor Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection Width of Riprap Protection at Downstream End Adjusted Diameter for Supercritical Flow Mominal Riprap Size Nominal Riprap Size					L Calculations Bassissed
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Outlet Dret		non wethou maccurate for LOW FIC	ow - backwater (Calculations Required
Tailwater Surface Height $Y_t = 0.60$ ft Tailwater/Diameter $Y_t/D = 0.40$ Expansion Factor $1/(2*tan(\Theta)) = 4.05$ Flow Area at Max Channel Velocity $A_t = 1.86$ ft Width of Equivalent Conduit for Multiple Barrels $W_{eq} = -\frac{1}{2}$ ft Width of Riprap Protection $W_{eq} = -\frac{1}{2}$ ft Width of Riprap Protection at Downstream End $W_{eq} = -\frac{1}{2}$ ft Adjusted Diameter for Supercritical Flow $W_{eq} = -\frac{1}{2}$ ft Minimum Theoretical Riprap Size $W_{eq} = -\frac{1}{2}$ ft $W_{eq} $	Outlet Protect				Tc05/
Tailwater/Diameter $Yt/D = \frac{0.40}{0.40}$ Expansion Factor $1/(2*tan(\Theta)) = \frac{4.05}{4.05}$ Flow Area at Max Channel Velocity $A_t = \frac{1.86}{0.40} \text{ ft}^2$ Width of Equivalent Conduit for Multiple Barrels $W_{eq} = \frac{-}{0.40} \text{ ft}$ Length of Riprap Protection $L_p = \frac{7}{0.40} \text{ ft}$ Width of Riprap Protection at Downstream End $T = \frac{4}{0.40} \text{ ft}$ Adjusted Diameter for Supercritical Flow $Da = \frac{1.13}{0.40} \text{ ft}$ Minimum Theoretical Riprap Size $d_{50} \text{ min} = \frac{5}{0.40} \text{ in}$ Nominal Riprap Size $d_{50} \text{ nominal} = \frac{6}{0.40} \text{ in}$		· · ·			→ ' ' '
Expansion Factor		Tailwater Surface Height	$Y_t =$		_ft
Flow Area at Max Channel Velocity $A_t = \begin{array}{c} 1.86 & \text{ft}^2 \\ \text{Width of Equivalent Conduit for Multiple Barrels} & W_{eq} = \begin{array}{c} - & \text{ft} \\ \text{Length of Riprap Protection} & L_p = \end{array} & 7 & \text{ft} \\ \text{Width of Riprap Protection at Downstream End} & T = \begin{array}{c} 4 & \text{ft} \\ \text{Minimum Theoretical Riprap Size} & d_{50} \text{ min} = \\ Nominal Riprap Size} & d_{50} \text{ nominal} = \begin{array}{c} 6 & \text{in} \\ \text{In Minimum Theoretical Riprap Size} & d_{50} \text{ nominal} = \end{array}$		Tailwater/Diameter	Yt/D =	0.40	<u> </u>
Flow Area at Max Channel Velocity $A_t = \begin{array}{c} 1.86 & \text{ft}^2 \\ \text{Width of Equivalent Conduit for Multiple Barrels} & W_{eq} = \begin{array}{c} - & \text{ft} \\ \text{Length of Riprap Protection} & L_p = \end{array} & 7 & \text{ft} \\ \text{Width of Riprap Protection at Downstream End} & T = \begin{array}{c} 4 & \text{ft} \\ \text{Minimum Theoretical Riprap Size} & d_{50} \text{ min} = \\ Nominal Riprap Size} & d_{50} \text{ nominal} = \begin{array}{c} 6 & \text{in} \\ \text{In Minimum Theoretical Riprap Size} & d_{50} \text{ nominal} = \end{array}$		Expansion Factor	$1/(2*tan(\Theta)) =$	4.05	7
		•			ft ²
Length of Riprap Protection $L_p = \begin{array}{c} 7 \\ \text{Width of Riprap Protection at Downstream End} \end{array}$ $T = \begin{array}{c} 4 \\ \text{ft} \end{array}$ Adjusted Diameter for Supercritical Flow $Da = \begin{array}{c} 1.13 \\ \text{Minimum Theoretical Riprap Size} \end{array}$ $d_{50} \text{ min} = \begin{array}{c} 5 \\ \text{in} \\ \text{Nominal Riprap Size} \end{array}$ $d_{50} \text{ nominal} = \begin{array}{c} 6 \\ \text{in} \end{array}$					
Width of Riprap Protection at Downstream End $T = \frac{4}{\text{ft}}$ Adjusted Diameter for Supercritical Flow $Da = \frac{1.13}{\text{Minimum Theoretical Riprap Size}}$ Nominal Riprap Size $d_{50} \text{ nominal} = \frac{5}{6} \text{ in}$		·	•		_
Adjusted Diameter for Supercritical Flow $ Da = $		=			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		wigth of Riprap Protection at Downstream E	na T =	4	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1	<u> </u>
Nominal Riprap Size d ₅₀ nominal= 6 in			Da =		_ft
		Minimum Theoretical Riprap Size	d ₅₀ min=	5	in
		Nominal Riprap Size	d _{so} nominal=	6	in l
5		·			†
		5prap 13pc	Турс –		-

MHFD-Culvert, Version 4.00 (May 2020)

Project: OVERLOOK

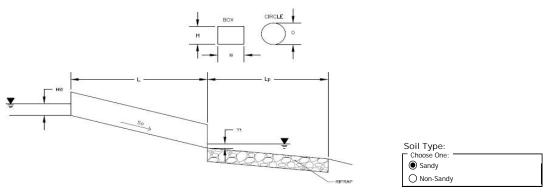
ID: CULVERT A2-B

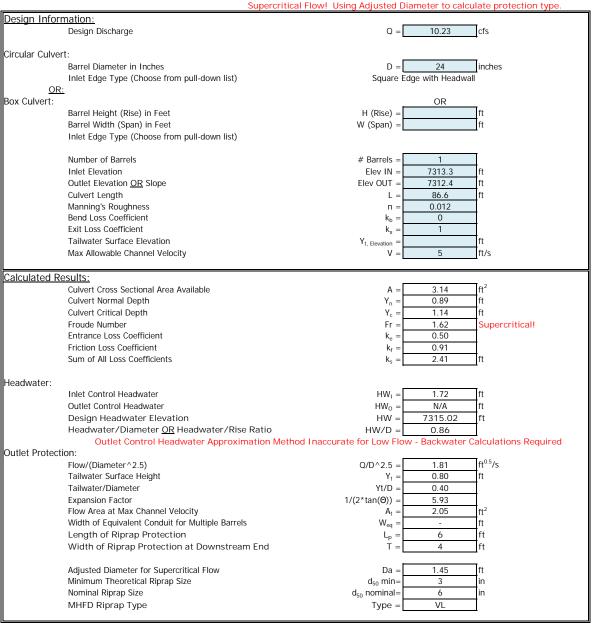


Supercritical Flow! Using Adjusted Diameter to calculate protection type Design Information: Design Discharge Q = 7.44 cfs Circular Culvert: Barrel Diameter in Inches D = 18 inches Inlet Edge Type (Choose from pull-down list) Square Edge with Headwall OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) Barrel Width (Span) in Feet W (Span) Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels : Elev IN Inlet Elevation 7219.6 Outlet Elevation OR Slope Elev OUT 7215.35 Culvert Length 87.8 ft L: Manning's Roughness 0.012 n = Bend Loss Coefficient $k_{b} \\$ 0 Exit Loss Coefficient k_{x} 1 Tailwater Surface Elevation $Y_{t,\;Elevation}$ 5 Max Allowable Channel Velocity ۷ : ft/s Calculated Results: Culvert Cross Sectional Area Available 1.77 Culvert Normal Depth 0.56 ft Y_n : Culvert Critical Depth Y_c = 1.06 ft Froude Number Fr : 3.39 Supercritical! Entrance Loss Coefficient 0.50 k, Friction Loss Coefficient k_{f} 1.36 Sum of All Loss Coefficients 2.86 Headwater: Inlet Control Headwater HW_I = 1.68 ft Outlet Control Headwater HW_{o} N/A ft HW = 7221 28 Design Headwater Elevation ft Headwater/Diameter OR Headwater/Rise Ratio HW/D =1.12 Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: ft^{0.5}/s Flow/(Diameter ^ 2.5) Q/D^2.5 = 2.70 Tailwater Surface Height 0.60 Y_{t} Tailwater/Diameter Yt/D 0.40 **Expansion Factor** $1/(2*tan(\Theta))$ 4.79 Flow Area at Max Channel Velocity A_t 1.49 W_{eq} = Width of Equivalent Conduit for Multiple Barrels ft Length of Riprap Protection 5 ft Width of Riprap Protection at Downstream End 3 Adjusted Diameter for Supercritical Flow Da : 1.03 ft Minimum Theoretical Riprap Size d₅₀ min= 4 in Nominal Riprap Size d₅₀ nominal= 6 in MHFD Riprap Type VI Type =

MHFD-Culvert, Version 4.00 (May 2020)

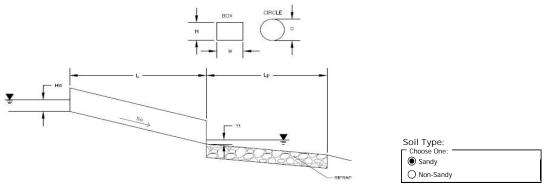
Project: OVERLOOK


ID: CULVERT A2-C

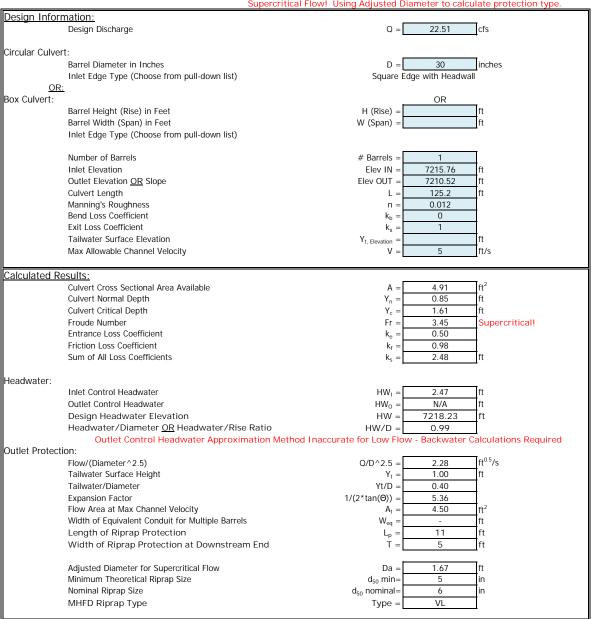

Supercritical Flow! Using Adjusted Diameter to calculate protection type Design Information: Design Discharge 45.55 Q = cfs Circular Culvert: Barrel Diameter in Inches D = 36 inches Inlet Edge Type (Choose from pull-down list) Square Edge with Headwall OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) Barrel Width (Span) in Feet W (Span) Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels : Elev IN Inlet Elevation 7220.18 Outlet Elevation OR Slope Elev OUT 7216.35 Culvert Length 101.4 ft L: Manning's Roughness 0.012 n = Bend Loss Coefficient $k_{b} \\$ 0 Exit Loss Coefficient k_{x} 1 Tailwater Surface Elevation $Y_{t,\;Elevation}$ 5 Max Allowable Channel Velocity ۷ : ft/s Calculated Results: Culvert Cross Sectional Area Available 7.07 Culvert Normal Depth 1.17 ft Y_n : Culvert Critical Depth Y_c = 2.20 ft Froude Number Fr : 3.35 Supercritical! Entrance Loss Coefficient 0.50 k, Friction Loss Coefficient 0.62 k_{f} Sum of All Loss Coefficients 2.12 Headwater: Inlet Control Headwater HW_I = 3.62 ft Outlet Control Headwater HW_{o} N/A ft HW = 7223 80 Design Headwater Elevation ft Headwater/Diameter OR Headwater/Rise Ratio HW/D =1.21 Outlet Control Headwater Approximation Method Inaccurate for Low Flow - Backwater Calculations Required Outlet Protection: ft^{0.5}/s Flow/(Diameter ^ 2.5) Q/D^2.5 = 2.92 Tailwater Surface Height 1.20 Y_{t} Tailwater/Diameter Yt/D : 0.40 **Expansion Factor** $1/(2*tan(\Theta))$ 4.49 Flow Area at Max Channel Velocity A_t 9.11 W_{eq} = Width of Equivalent Conduit for Multiple Barrels ft 21 Length of Riprap Protection ft Width of Riprap Protection at Downstream End 8 Adjusted Diameter for Supercritical Flow Da : 2 09 ft Minimum Theoretical Riprap Size d₅₀ min= 8 in Nominal Riprap Size d₅₀ nominal= 9 in MHFD Riprap Type Type =

MHFD-Culvert, Version 4.00 (May 2020)

Project: Overlook ID: A2-D

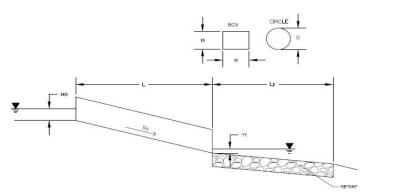


Supercritical Flow! Using Adjusted Diameter to calculate protection type



MHFD-Culvert, Version 4.00 (May 2020)

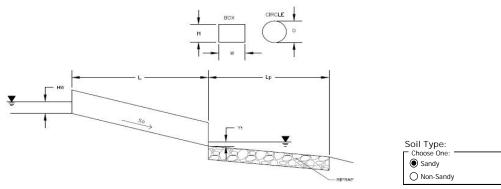
Project: OVERLOOK ID: CULVERT B1-A



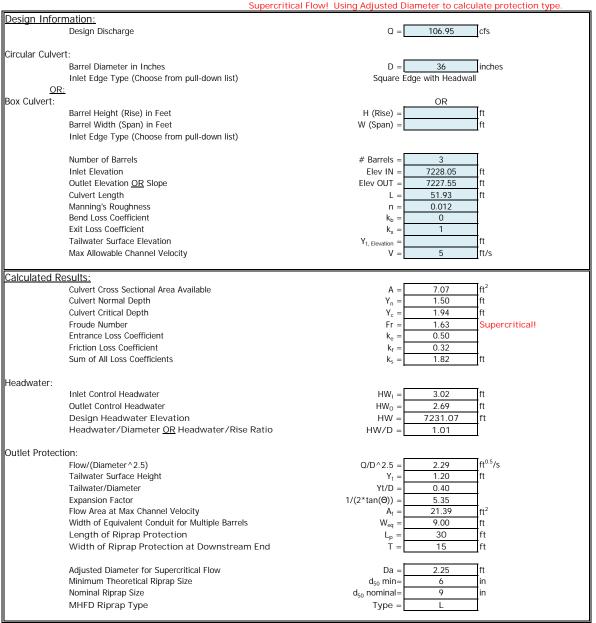
Supercritical Flow! Using Adjusted Diameter to calculate protection type

MHFD-Culvert, Version 4.00 (May 2020)

Project: OVERLOOK
ID: CULVERT B1-B

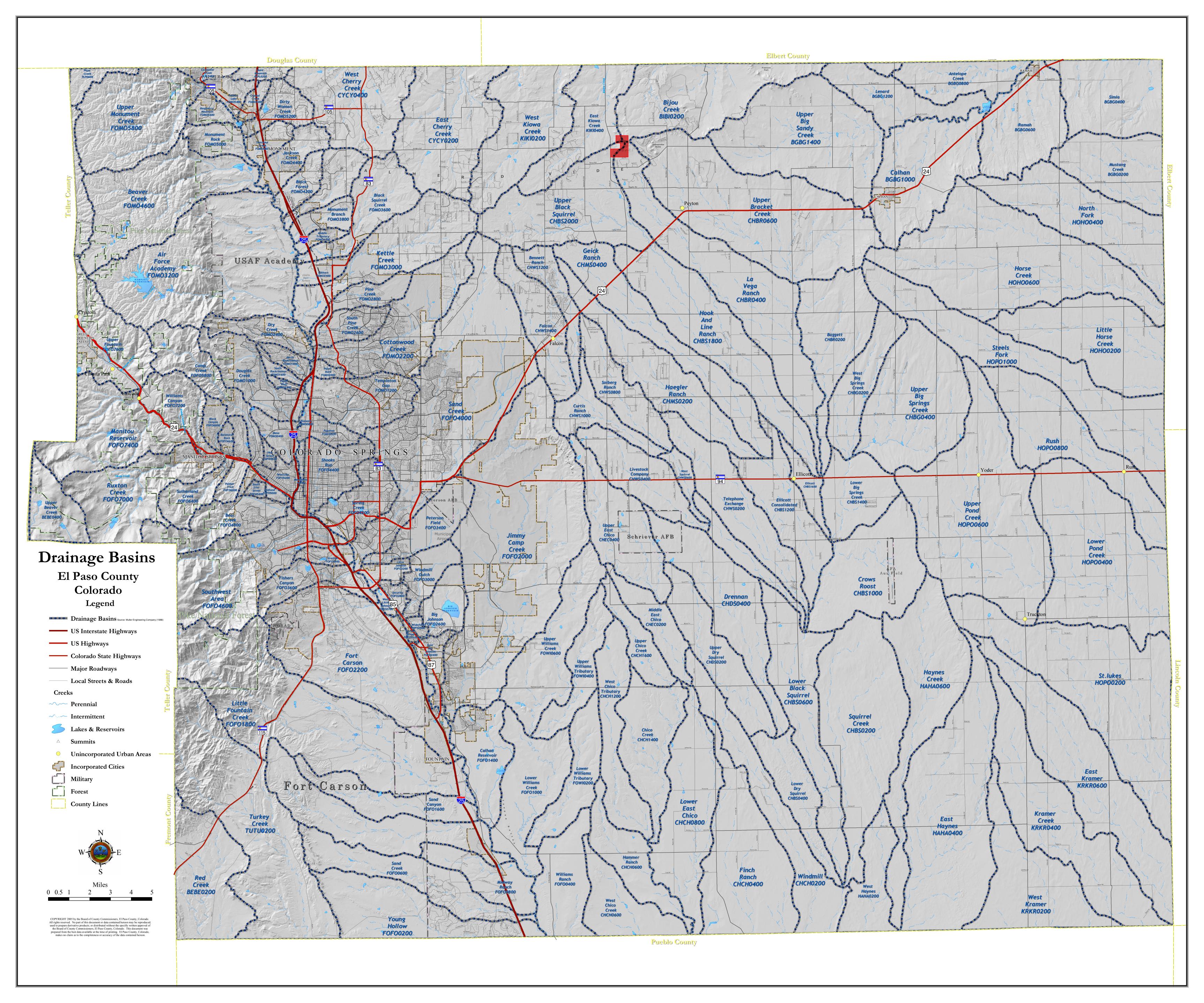


Supercritical Flow! Using Adjusted Diameter to calculate protection type


		al Flow! Using Adjusted Diameter to calculate protection type.
Design Infor	rmation:	
_	Design Discharge	Q = 27.34 cfs
		
Circular Culve	ert:	
	Barrel Diameter in Inches	D = 30 inches
	Inlet Edge Type (Choose from pull-down list)	Square Edge with Headwall
<u>OF</u>	9 31 1	. 1
Box Culvert:		OR
BOX GUIVEIT.	Barrel Height (Rise) in Feet	H (Rise) = ft
	Barrel Width (Span) in Feet	W (Span) = ft
		W (Spari) –
	Inlet Edge Type (Choose from pull-down list)	
	Number of Barrels	# Barrels = 1
	Inlet Elevation	Elev IN = 7219.01 ft
	Outlet Elevation OR Slope	Elev OUT = 7218.46 ft
	Culvert Length	L = 68.26 ft
	Manning's Roughness	n = 0.012
	Bend Loss Coefficient	$k_b = 0$
	Exit Loss Coefficient	$k_x = 1$
	Tailwater Surface Elevation	Y _{t, Elevation} =
	Max Allowable Channel Velocity	V = 5 ft/s
	•	
Calculated F	Results:	
	Culvert Cross Sectional Area Available	$A = 4.91 ft^2$
	Culvert Normal Depth	$Y_n = 1.52$ ft
	Culvert Critical Depth	Y _c = 1.78 ft
	Froude Number	Fr = 1.37 Supercritical!
	Entrance Loss Coefficient	'
	Friction Loss Coefficient	$k_f = 0.53$
	Sum of All Loss Coefficients	$k_s = 2.03$ ft
Headwater:	Library Control Hondon Control	100
	Inlet Control Headwater	$HW_1 = 2.91$ ft
	Outlet Control Headwater	$HW_O = 2.57$ ft
	Design Headwater Elevation	HW = 7221.92 ft
	Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	HW/D =
Outlet Protec		-05.
	Flow/(Diameter^2.5)	$Q/D^2.5 = 2.77$ ft ^{0.5} /s
	Tailwater Surface Height	$Y_t = 1.00$ ft
	Tailwater/Diameter	Yt/D = 0.40
	Expansion Factor	$1/(2*tan(\Theta)) = 4.70$
	Flow Area at Max Channel Velocity	$A_t = \frac{5.47}{ft^2}$
	Width of Equivalent Conduit for Multiple Barrels	W _{eq} = - ft
	Length of Riprap Protection	$L_p = 14$ ft
	Width of Riprap Protection at Downstream End	T = 6 ft
		
	Adjusted Diameter for Supercritical Flow	Da = 2.01 ft
	Minimum Theoretical Riprap Size	$d_{50} \text{ min} = 6 \text{ in}$
	Nominal Riprap Size	d ₅₀ nominal= 9 in
	MHFD Riprap Type	Type = L
	r ·r Jr·	Jr ·

MHFD-Culvert, Version 4.00 (May 2020)

Project: Overlook ID: CULVERT B6



Supercritical Flow! Using Adjusted Diameter to calculate protection type

APPENDIX E: EL PASO COUNTY DRAINAGE BASIN MAP

APPENDIX F: APEX RANCH DRAINAGE REPORT

Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility

Sheet 1 of 3

Designer: QUENTIN ARMIJO

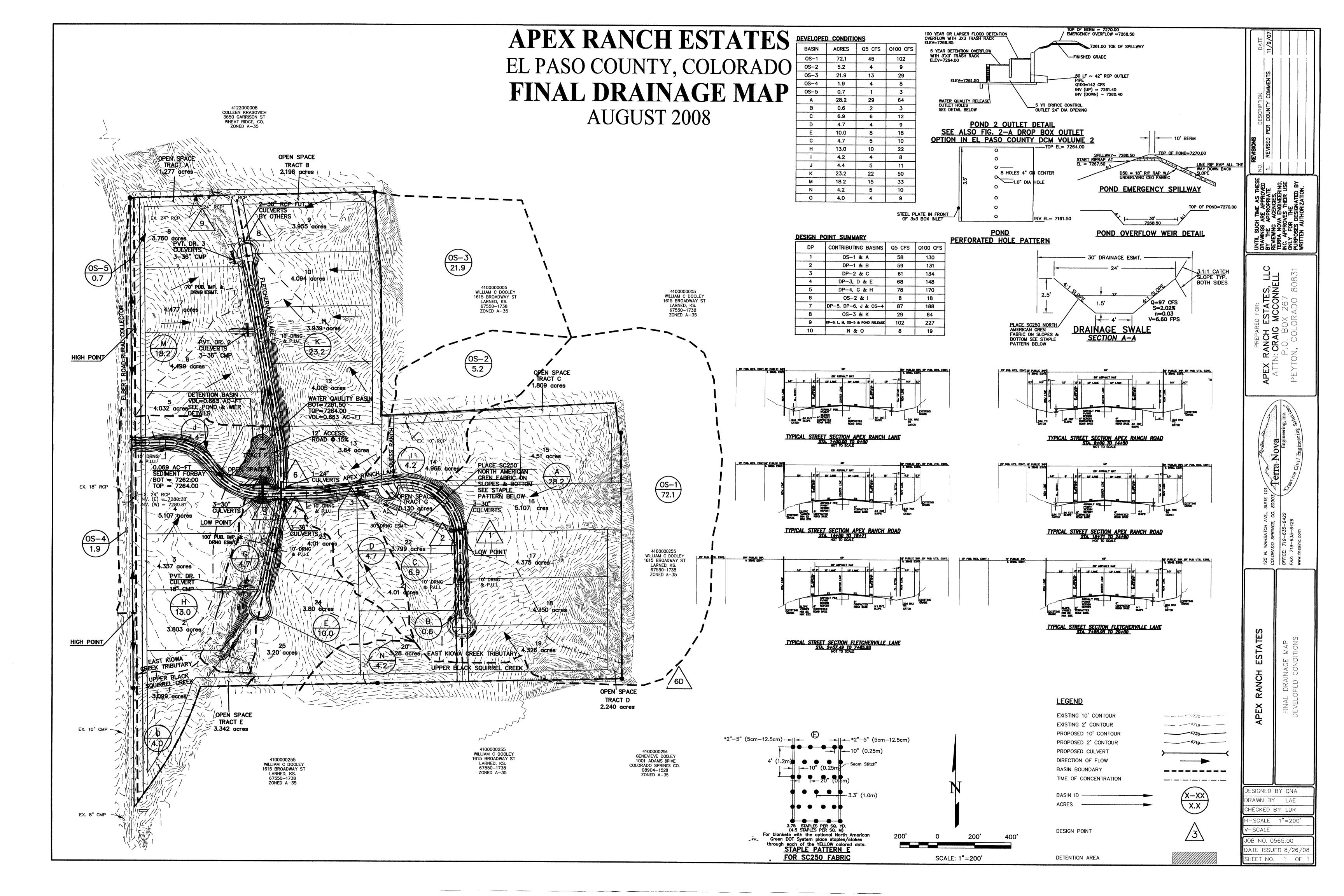
Company: TERRA NOVA ENG.

Date: April 2, 2008

Project: APEX RANCH ESTATES

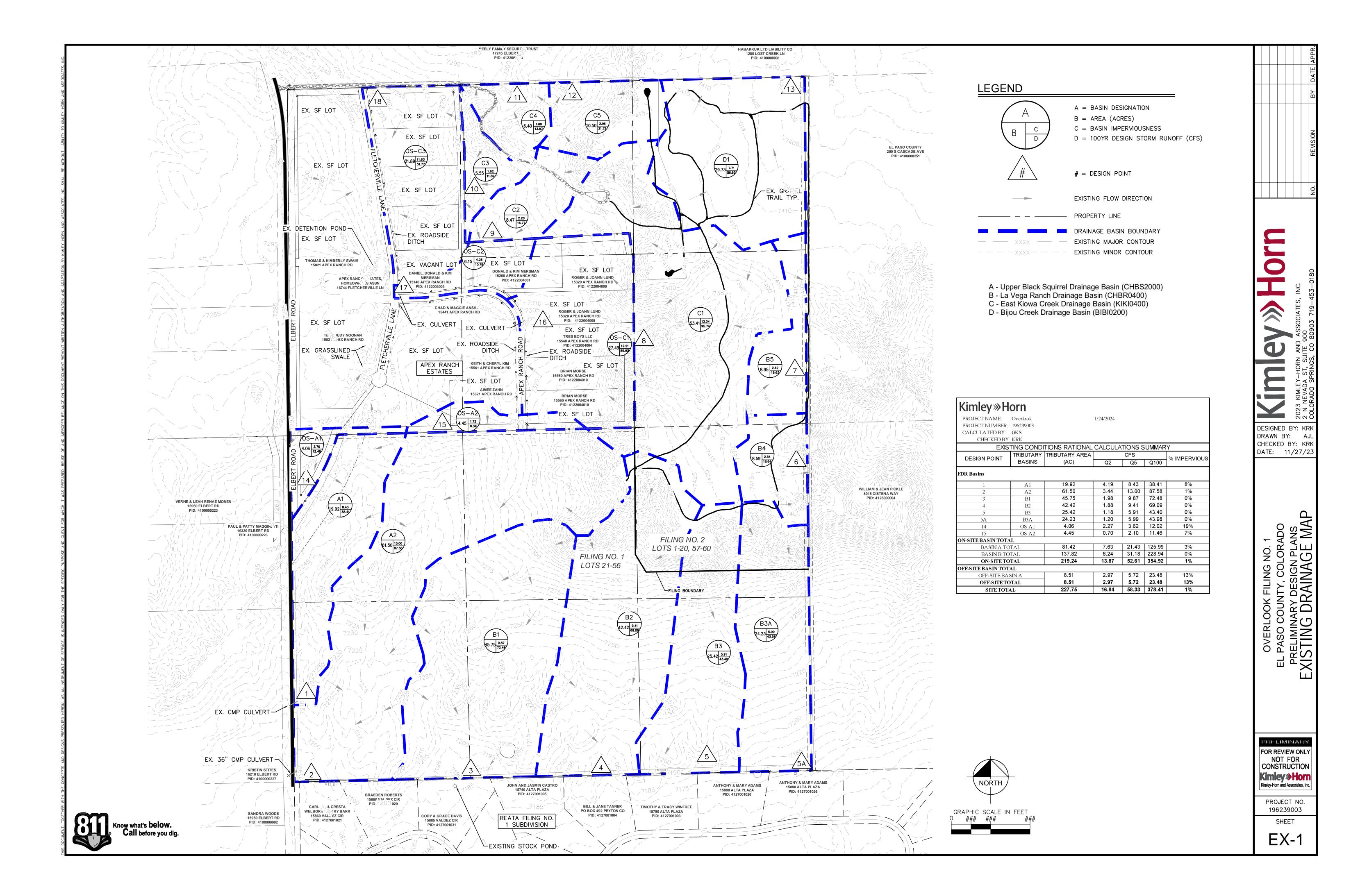
Location: PEYTON, CO 1. Basin Storage Volume 10.00 $l_a =$ A) Tributary Area's Imperviousness Ratio (i = I_a / 100) 0.10 i = B) Contributing Watershed Area (Area) 76.80 acres Area = C) Water Quality Capture Volume (WQCV) WQCV = 0.07 watershed inches $(WQCV = 1.0 * (0.91 * I^3 - 1.19 * I^2 + 0.78 * I))$ D) Design Volume: Vol = (WQCV / 12) * Area * 1.2 Vol = ...0.515 acre-feet 2. Outlet Works A) Outlet Type (Check One) Orifice Plate Perforated Riser Pipe Other: B) Depth at Outlet Above Lowest Perforation (H) H = 2.50 feet C) Required Maximum Outlet Area per Row, (A_o) 0.81 square inches D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR D =1.0000 inches, OR ii) 2" Height Rectangular Perforation Width W =inches E) Number of Columns (nc, See Table 6a-1 For Maximum) number nc = F) Actual Design Outlet Area per Row (A_o) 0.79 square inches G) Number of Rows (nr) nr = 8 number H) Total Outlet Area (Aot) $A_{ot} =$ 5.89 square inches 3. Trash Rack 200 square inches A) Needed Open Area: A_t = 0.5 * (Figure 7 Value) * A_{ot}

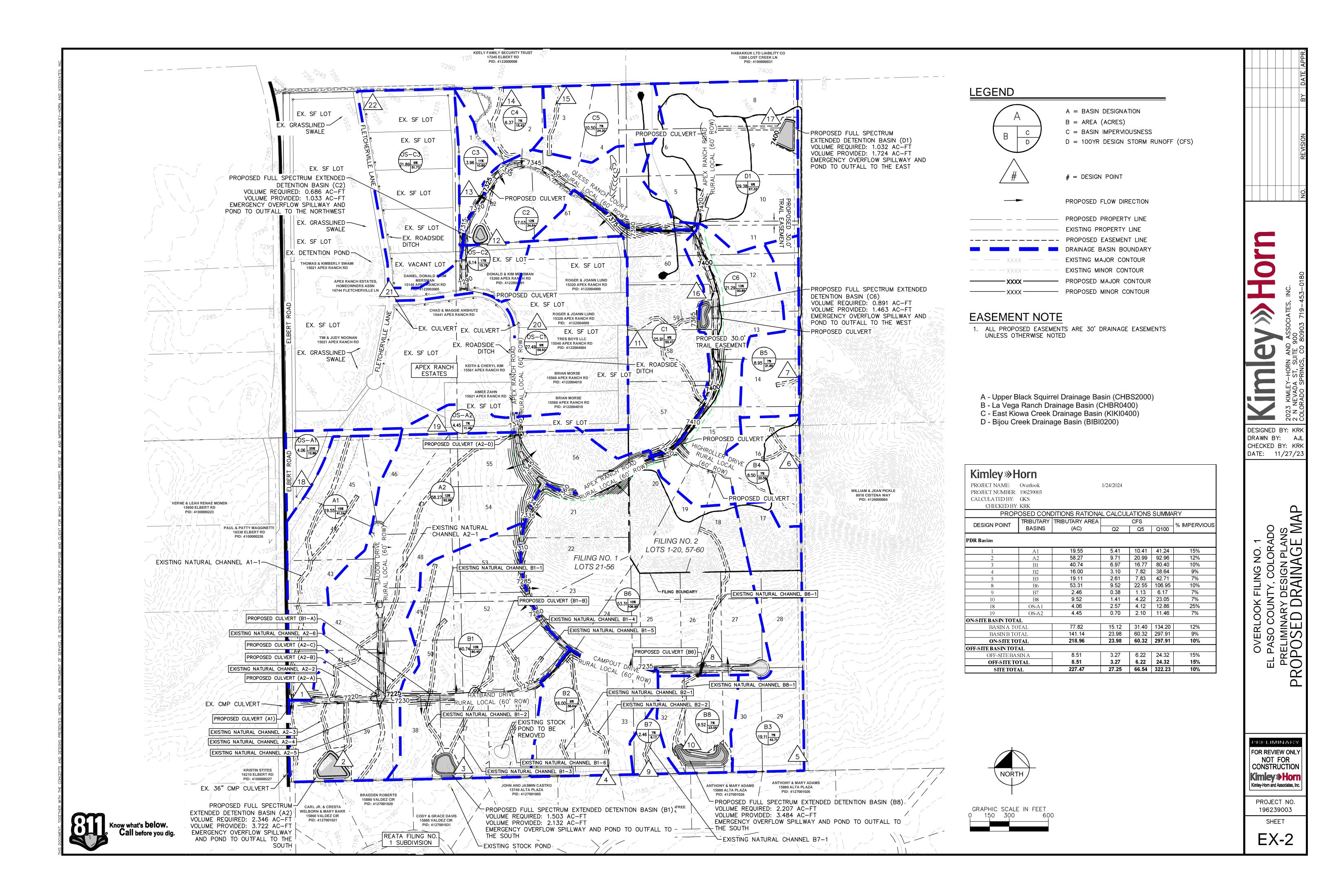
G) Number of Rows (nr)

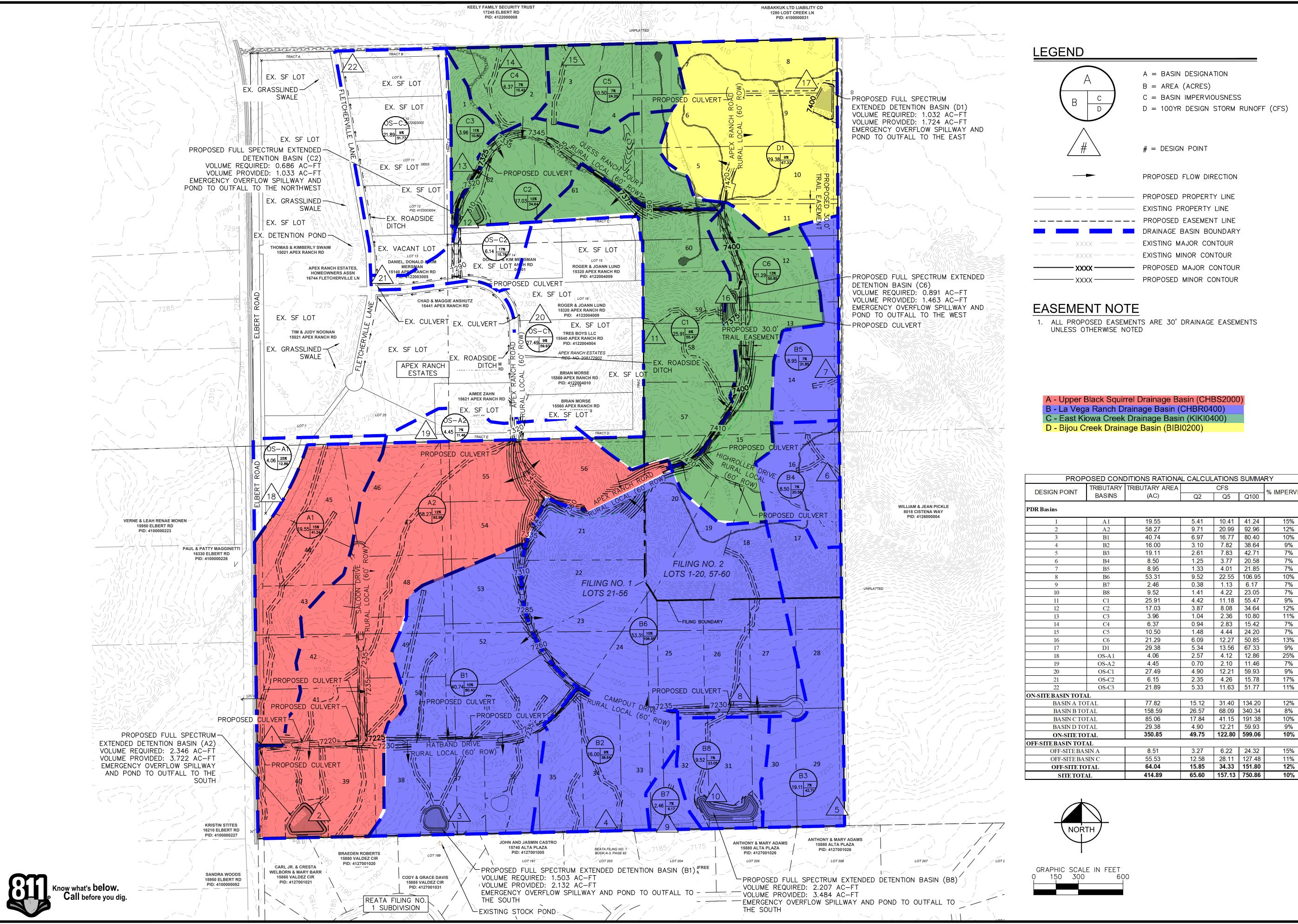

H) Total Outlet Area (A_{ot}) $A_{ot} = \underbrace{ 5.89}_{Supare inches}$ Trash Rack

A) Needed Open Area: A_t = 0.5 * (Figure 7 Value) * A_{ot}

B) Type of Outlet Opening (Check One) $X \leq 2^{"} \text{ Diameter } \underbrace{Round}_{Supare inches}$ C) For 2", or Smaller, Round Opening (Ref.: Figure 6a):


i) Width of Trash Rack and Concrete Opening (W_{conc}) from Table 6a-1

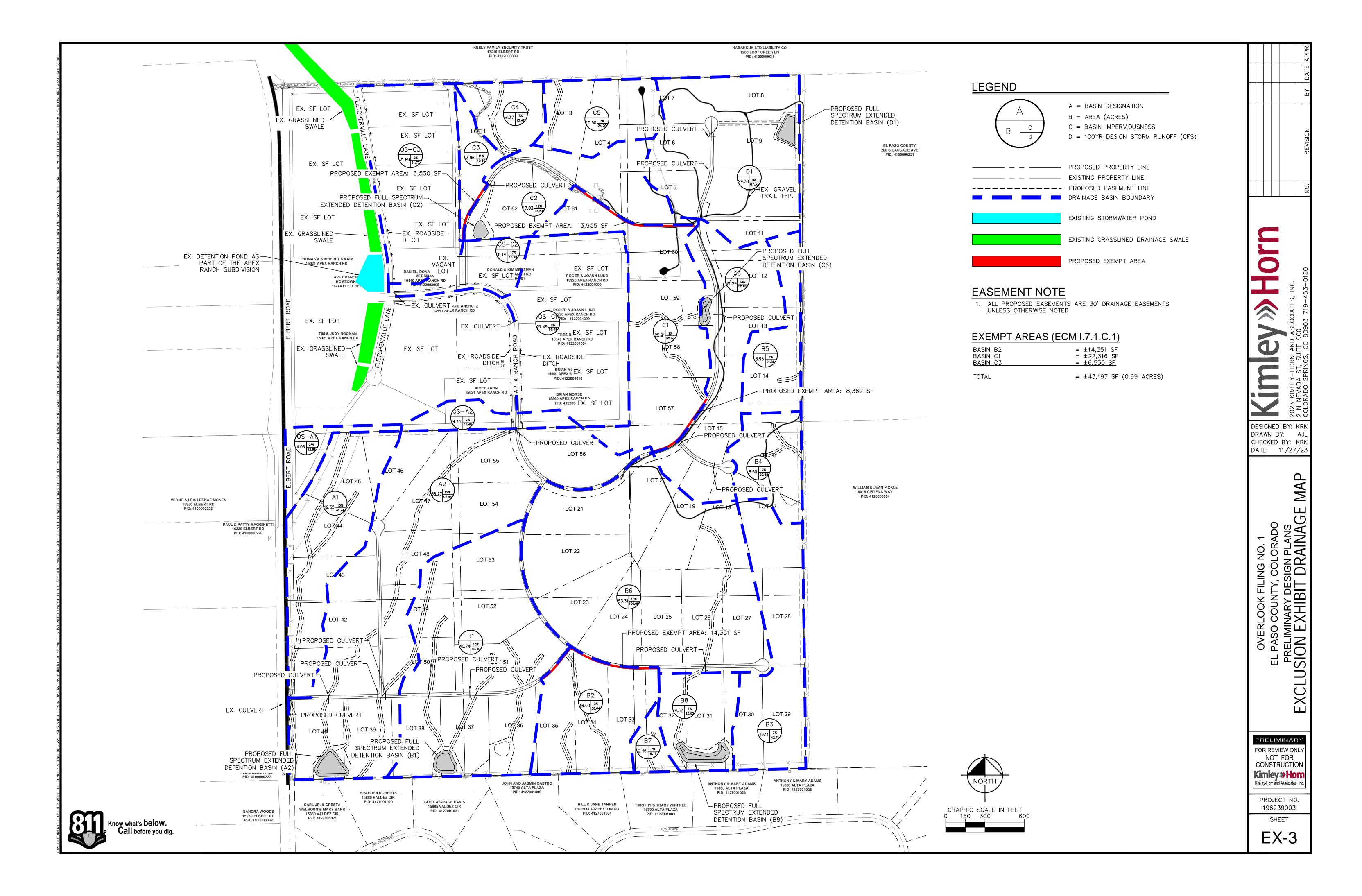

ii) Height of Trash Rack Screen (H_{TR}) $H_{TR} = \underbrace{54}_{Inches}$


APPENDIX G: DRAINAGE MAPS

Drainage Basin Exhibit

PROF	POSED CONI	DITIONS RATIONA	L CALCUL	ATIONS	SUMMA	RY
DECICAL DOINT	TRIBUTARY	TRIBUTARY AREA		CFS	A/ IMPEDIAGO	
DESIGN POINT	BASINS	(AC)	Q2	Q5	Q100	% IMPERVIOUS
PDR Basins						
1	A1	19.55	5.41	10.41	41.24	15%
2	A2	58.27	9.71	20.99	92.96	12%
3	B1	40.74	6.97	16.77	80.40	10%
4	B2	16.00	3.10	7.82	38.64	9%
5	В3	19.11	2.61	7.83	42.71	7%
6	B4	8.50	1.25	3.77	20.58	7%
7	B5	8.95	1.33	4.01	21.85	7%
8	В6	53.31	9.52	22.55	106.95	10%
9	B7	2.46	0.38	1.13	6.17	7%
10	B8	9.52	1.41	4.22	23.05	7%
11	C1	25.91	4.42	11.18	55.47	9%
12	C2	17.03	3.87	8.08	34.64	12%
13	СЗ	3.96	1.04	2.36	10.80	11%
14	C4	6.37	0.94	2.83	15.42	7%
15	C5	10.50	1.48	4.44	24.20	7%
16	C6	21.29	6.09	12.27	50.85	13%
17	D1	29.38	5.34	13.56	67.33	9%
18	OS-A1	4.06	2.57	4.12	12.86	25%
19	OS-A2	4.45	0.70	2.10	11.46	7%
20	OS-C1	27.49	4.90	12.21	59.93	9%
21	OS-C2	6.15	2.35	4.26	15.78	17%
22	OS-C3	21.89	5.33	11.63	51.77	11%
ON-SITE BASIN TOTA	AL					•
BASIN A TO		77.82	15.12	31.40	134.20	12%
BASIN B TO	OTAL	158.59	26.57	68.09	340.34	8%
BASIN C TOTAL		85.06	17.84	41.15	191.38	10%
BASIN D TO		29.38	4.90	12.21	59.93	9%
ON-SITE TO	DTAL	350.85	49.75	122.80	599.06	10%
OFF-SITE BASIN TOT	TAL					•
OFF-SITE BA	CONTRACTOR OF THE CONTRACTOR O	8.51	3.27	6.22	24.32	15%
OFF-SITE BA		55.53	12.58	28.11	127.48	11%
OFF-SITE TO		64.04	15.85	34.33	151.80	12%
SITE TOT		414.89	65.60	157.13	750.86	10%

EX-2


ζZ, DESIGNED BY: KRK

DRAWN BY: A CHECKED BY: KRK DATE: 11/27/2

> $\subseteq \overline{\Box}$ PR(

PRELIMINARY FOR REVIEW ONLY NOT FOR CONSTRUCTION Kimley»Horn Kimley-Horn and Associates, Inc

> PROJECT NO. 196239003 SHEET

