

15004 1<sup>st</sup> Avenue S. Burnsville, MN 55306 Telephone: (719) 570-1100 E-mail: rich@ceg1.com Date: April 5, 2018 (REV 6/23/2018)

Project Number: 100.043

# **MEMORANDUM**

| To: | El Paso County DSD                   | From:       | Richard Schindler                    |
|-----|--------------------------------------|-------------|--------------------------------------|
| Re: | Drainage Memo for Lorson Boulevard C | onstruction | from JCC to Stingray Ln (CDR 18-006) |

The following drainage memorandum is to provide drainage calculations for storm sewer design on Lorson Boulevard construction between Jimmy Camp Creek and Stingray Lane. Lorson Boulevard is a non-residential collector street and the proposed construction is approximately 2,400 feet and is built to a 40' wide asphalt street with curb & gutter on both sides. The proposed ROW width is an 80' minimum width with a utility/landscape tract on the north side. The south side is currently unplatted and does not contain any 100-year floodplain.

### **Existing Conditions:**

The adjacent areas north of the proposed Lorson Boulevard have been developed and consist of The Meadows at Lorson Ranch Filing No. 4, Allegiant at Lorson Ranch, and The Meadows at Lorson Ranch Filing No. 3. The adjacent area west of JCC has been developed as Carriage Meadows South at Lorson Ranch and the area to the east of Stingray Lane is currently being developed at Lorson Ranch East Filing No. 1. The adjacent area south of Lorson Boulevard is unplatted at this time. There is one existing Detention/WQ Pond within the project area called Pond C1. Pond C1 has been sized to accept runoff from Lorson Boulevard per the approved MDDP1 for Lorson Ranch and the final drainage report for Allegiant at Lorson Ranch. Pond C1 is a combined detention/WQ pond on the south side of Lorson Boulevard with a dual stage outlet that drains south to the East Tributary of JCC. There are no anticipated modifications to be made to Pond C1 for this construction.

#### **Proposed Conditions:**

Basin 3.1 – Basin 3.1 was taken from the final drainage report for The Meadows at Lorson Ranch Filing No. 4. This 2.05 acre basin drains the north side of Lorson Boulevard from a high point at Jimmy Camp Creek and flows east in the proposed curb/gutter to an existing 24' wide CDOT Type R inlet located in the NW corner of Kearsarge Drive and Lorson Boulevard. The existing inlet was sized for the runoff from this basin and the storm sewer drains southeast to Pond C1.

Basin D1 – Basin D1 is a 1.91 acre drainage basin taken from the Allegiant at Lorson Ranch final drainage report. This 1.91 acre basin drains the north side of Lorson Boulevard from a high point at Stingray Lane and flows west in the proposed curb/gutter to an existing 25' wide CDPT Type R inlet located in the NE corner of Old Glory Drive and Lorson Boulevard. The existing inlet was sized for the runoff from this basin and the storm sewer drains southwest to Pond C1.

Basin A – Basin A is a 5.0 acre drainage basin that drains the south side of Lorson Boulevard and future residential areas. The basin in bounded on the east side by a high point in Stingray Lane and the west side by a high point at the Jimmy Camp Creek Bridge. All flow on the south side of Lorson Boulevard flows to a low point just north of Pond C1 at proposed Inlet DP-2. The flow from this basin is estimated to be 11.4cfs and 20.2cfs in the 5/100-year storm events.

Basin B – Basin B is a 3.7 acre drainage basin that drains the north side of Lorson Boulevard and adjacent residential areas. The basin in bounded on the east side by a high point in Stingray Lane and the west side at Kearsarge Drive. The runoff flows to a low point in Lorson Boulevard just north of Pond C1 at proposed Inlet DP-1. The flow from this basin is estimated to be 11.3cfs and 23.1cfs in the 5/100-year storm events.

Inlet DP1 – Inlet DP1 is located at a low point in Lorson Boulevard on the north side and accepts runoff from Basin B. This inlet is sized per Urban Drainage Excel Spreadsheets in a sump condition. The proposed inlet is a 15' wide CDOT Type R inlet. The inlet collects 11.3cfs in the 5-year storm event and 20.3cfs in the 100-year storm event. Approximately 2.8cfs of runoff in the 100-year storm event that overtops the crown and is collected by Inlet DP2. Inlet DP1 flows south to Inlet DP2 in a proposed 18" storm sewer at a 1% slope. The street slope is 0.6% and the street capacity is 10.6cfs/32.1cfs for half the street in the 5/100year storm events. Since half the drainage basin flows to one side of the inlet the street capacities are not exceeded.

Inlet DP2 – Inlet DP2 is located at a low point in Lorson Boulevard on the south side and accepts runoff from Basin A. This inlet is sized per Urban Drainage Excel Spreadsheets in a sump condition. The proposed inlet is a 20' wide CDOT Type R inlet. The inlet collects 11.4cfs in the 5-year storm event and 23.0cfs (20.2+2.8) in the 100-year storm event. Inlet DP2 flows south to Pond C1 in a proposed 24" storm sewer at a 3.4% slope. A sedimentation forebay is proposed for the 24" storm sewer as it enters Pond C1. The street slope is 0.6% and the street capacity is 10.6cfs/32.1cfs for half the street in the 5/100year storm events. Since half the drainage basin flows to one side of the inlet the street capacities are not exceeded.

Pond C1 – Pond C1 was built in 2008 as part of the Allegiant at Lorson Ranch subdivision in accordance with the MDDP1 for Lorson Ranch. It detains and treats runoff from several subdivisions north of Lorson Boulevard and it is designed to accept runoff from Lorson Boulevard as well. Pond C1 does not require any modifications other than the sedimentation forebay required at the new 24" storm sewer outfall entering the pond.

| Cc: | Maps, drainage calcs. | From: F | Richard L. Schindler, P.E. |
|-----|-----------------------|---------|----------------------------|
|-----|-----------------------|---------|----------------------------|



# Standard Form SF-1. Time of Concentration-Proposed

Calculated By: Richard Schindler

Date: April 5, 2018

Job No: <u>100.043</u>

Project: Lorson Boulevard FDR

Checked By: Richard Schindler

|             | Checked By: Richard Schin |             |                 |                       |                   |                           |         |                       |                   |                           | t. Chaak   | Time 1.4       |                 |                              |                      |
|-------------|---------------------------|-------------|-----------------|-----------------------|-------------------|---------------------------|---------|-----------------------|-------------------|---------------------------|------------|----------------|-----------------|------------------------------|----------------------|
| ;           | Sub-Ba                    | sin Data    |                 | Ini                   | tial Overla       |                           |         |                       | Tr                | avel Time                 |            | tc Check<br>Ba | Final tc        |                              |                      |
| BASIN<br>or | C <sub>5</sub>            | AREA<br>(A) | NRCS<br>Convey. | LENGTH<br>(L)<br>feet | SLOPE<br>(S)<br>% | VELOCITY<br>(V)<br>ft/sec | ti      | LENGTH<br>(L)<br>feet | SLOPE<br>(S)<br>% | VELOCITY<br>(V)<br>ft/sec | <b>t</b> t | Computed tc    | TOTAL<br>LENGTH | Regional tc<br>tc=(L/180)+10 | USDCM<br>Recommended |
| DESIGN      |                           | acres       |                 |                       | ſ                 |                           | minutes |                       |                   |                           | minutes    | Minutes        | (L) feet        | minutes                      | tc=ti+tt (min)       |
| Α           | 0.90                      | 5.00        | 15.0            | 30.00                 | 2.00%             | 0.32                      | 1.57    | 2080.0                | 0.70%             | 1.25                      | 27.62      | 29.20          | 2110.00         | 21.72                        | 29.20                |
| В           | 0.70                      | 3.70        | 15.0            | 50.00                 | 4.00%             | 0.26                      | 3.23    | 400.0                 | 0.70%             | 1.25                      | 5.31       | 8.54           | 450.00          | 12.50                        | 8.54                 |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             | -                         |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 |                       |                   |                           |         |                       |                   |                           |            |                |                 |                              |                      |
|             |                           |             |                 | <u> </u>              |                   | ]                         |         |                       |                   |                           |            |                |                 |                              |                      |



#### Standard Form SF-2. Storm Drainage System Design (Rational Method Procedure)

Calculated By: <u>Leonard Beasley</u> Date: <u>April 5, 2018</u>

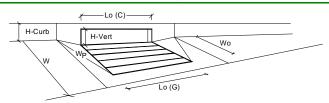
Job No: 100.043

Project: Lorson Boulevard

Checked By: Richard Schindler Direct Runoff Design Storm: 5 - Year Event, Proposed Conditions
Street Pipe Travel Time Total Runoff **Design Point** Remarks Area Design Pipe Size Area (A) Street Velocity Length (CA) Design Flow Slope Runoff Coeff. (C) Street Flow CA ಭ Ø or Ø ಧ # Basin in/hr cfs % ft ft/sec min ac. min. in/hr cfs min cfs % cfs in Α 5.00 0.90 29.00 4.50 2.53 11.4 В 3.70 0.70 8.50 2.59 4.37 11.3



#### Standard Form SF-2. Storm Drainage System Design (Rational Method Procedure)


Calculated By: <u>Leonard Beasley</u> Date: <u>APRIL 5, 2018</u>

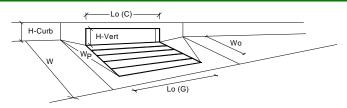
Job No: 100.043
Project: Lorson Blvd
Design Storm: 100 - Year Event, Proposed Conditions Checked By: rls

|                       | Checked By: <u>rls</u> Direct Runoff |             |          |                      |       |         |       |      | Total Runoff |        |       |     | Design   | Storm: | : 100 - Year Event, Proposed Conditions Pipe Travel Time |       |           |              |          |          |         |
|-----------------------|--------------------------------------|-------------|----------|----------------------|-------|---------|-------|------|--------------|--------|-------|-----|----------|--------|----------------------------------------------------------|-------|-----------|--------------|----------|----------|---------|
| Street<br>or<br>Basin | Design Point                         | Area Design | Area (A) | Runoff<br>Coeff. (C) | S S   | οπ<br>V |       | Ø    | tc           | Σ (CA) |       | Ø   | Slope    | Street | Design<br>Flow                                           | Slope | Pipe Size | Length       | Velocity | ne<br>#  | Remarks |
|                       |                                      | Ą           | ac.      |                      | min.  |         | in/hr | cfs  | min          |        | in/hr | cfs | %        | cfs    | cfs                                                      | %     | in        | ft           | ft/sec   | min      |         |
| Α                     |                                      |             | 5.00     | 0.95                 | 29.00 | 4.75    | 4.25  | 20.2 |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
| В                     |                                      |             | 3.70     | 0.85                 | 8.50  | 3.15    | 7.34  | 23.1 |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           | -            |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          | ,<br>    |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           | -            |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     | <u> </u> |        |                                                          |       | <u> </u>  |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     | 1        |        |                                                          |       |           |              |          | <u> </u> |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     | -        |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     | -        |        |                                                          |       |           | <u> </u>     |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          | ,<br>    |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     | -        |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        | -                                                        |       |           | <del> </del> |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           | <del> </del> |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     | <u> </u> |        |                                                          |       |           | <u> </u>     |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           | <u> </u>     |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     | 1        |        |                                                          |       |           |              |          | <br>     |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           | -            |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           | <del> </del> |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           | <u> </u>     |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          |          |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        |                                                          |       |           |              |          | <br>     |         |
|                       |                                      |             |          |                      |       |         |       |      |              |        |       |     |          |        | -                                                        |       |           | <del> </del> |          |          |         |
|                       |                                      |             | <u> </u> |                      |       |         |       |      | <u> </u>     |        |       |     | J        |        | I                                                        |       |           | I            |          |          | I       |

# INLET IN A SUMP OR SAG LOCATION

Project = Lorson Blvd FDR #100.043
Inlet ID = Inlet DP-1

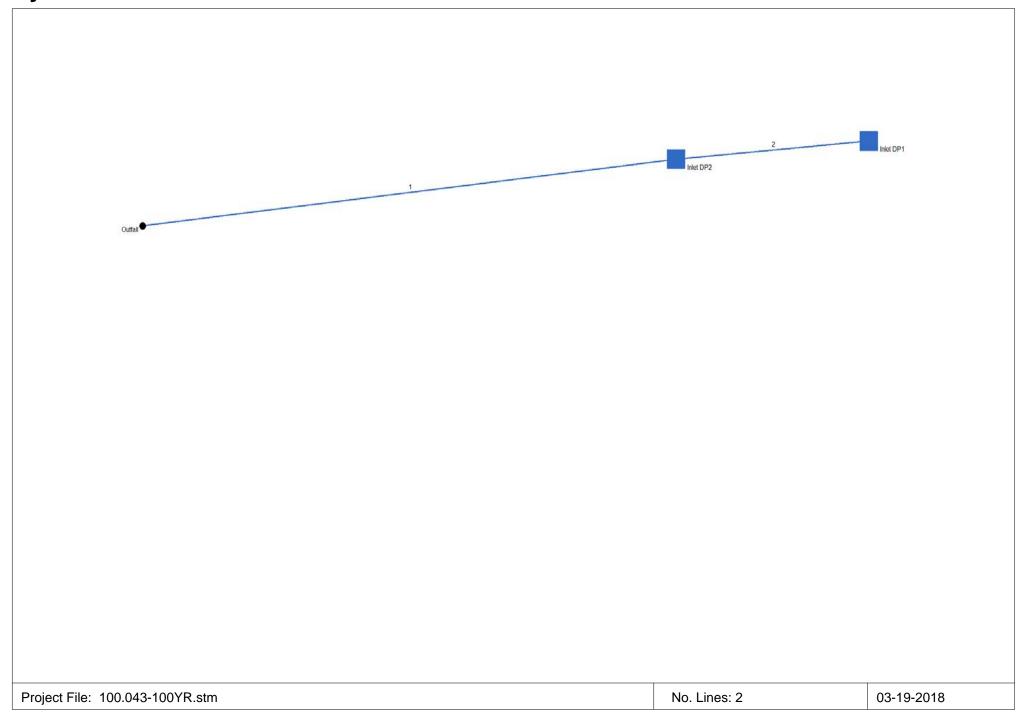



| Design Information (Input)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | MINOR | MAJOR        |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|--------------|-----------------|
| Type of Inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inlet Type =            |       | Curb Opening | ٦               |
| Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a <sub>local</sub> =    | 3.00  | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No =                    | 1     | 3.00         | liiches         |
| Water Depth at Flowline (outside of local depression)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ponding Depth =         | 6.5   | 8.0          | inches          |
| Grate Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Foliding Depth =        | MINOR | MAJOR        | Override Depths |
| Length of a Unit Grate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L <sub>o</sub> (G) =    | N/A   | N/A          | feet            |
| Width of a Unit Grate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W <sub>0</sub> =        | N/A   | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A <sub>ratio</sub> =    | N/A   | N/A          | 1001            |
| Clogging Factor for a Single Grate (typical values 0.150.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $C_f(G) =$              | N/A   | N/A          | +               |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>w</sub> (G) =    | N/A   | N/A<br>N/A   | -               |
| Grate Orifice Coefficient (typical value 2.15 - 3.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>o</sub> (G) =    | N/A   | N/A          | +               |
| II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00(0)                   | MINOR | MAJOR        | _               |
| Curb Opening Information Length of a Unit Curb Opening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L <sub>0</sub> (C) =    | 15.00 | 15.00        | feet            |
| Height of Vertical Curb Opening in Inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H <sub>vert</sub> =     | 6.00  | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H <sub>throat</sub> =   | 6.00  | 6.00         | inches          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Theta =                 | 63.40 | 63,40        |                 |
| Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>p</sub> =        | 2.00  | 2.00         | degrees<br>feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_f(C) =$              | 0.10  | 0.10         | leet            |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>w</sub> (C) =    | 3.60  | 3,60         | -               |
| Curb Opening Orifice Coefficient (typical value 2.3-3.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>0</sub> (C) =    | 0.67  | 0.67         | ┥               |
| Grate Flow Analysis (Calculated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00 (0) =                | MINOR | MAJOR        |                 |
| Clogging Coefficient for Multiple Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coef =                  | N/A   | N/A          | 7               |
| Clogging Factor for Multiple Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clog =                  | N/A   | N/A          | ┥               |
| Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Clog =                  | MINOR | MAJOR        | _               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q <sub>wi</sub> =       | N/A   | N/A          | cfs             |
| Interception without Clogging Interception with Clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q <sub>wa</sub> =       | N/A   | N/A<br>N/A   | cfs             |
| Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ∞ <sub>wa</sub> −       | MINOR | MAJOR        | cis             |
| Interception without Clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q <sub>oi</sub> =       | N/A   | N/A          | cfs             |
| Interception without clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Q_{oa} =$              | N/A   | N/A          | cfs             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oa −                    | MINOR | MAJOR        | cis             |
| Grate Capacity as Mixed Flow Interception without Clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q <sub>mi</sub> =       | N/A   | N/A          | cfs             |
| Interception without clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q <sub>ma</sub> =       | N/A   | N/A          | cfs             |
| Resulting Grate Capacity (assumes clogged condition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q <sub>Grate</sub> =    | N/A   | N/A          | cfs             |
| Curb Opening Flow Analysis (Calculated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Grate -                 | MINOR | MAJOR        | CIS             |
| Clogging Coefficient for Multiple Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coef =                  | 1.31  | 1.31         | 7               |
| Clogging Factor for Multiple Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clog =                  | 0.04  | 0.04         | +               |
| Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Clog =                  | MINOR | MAJOR        | _               |
| Interception without Clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Q_{wi} =$              | 12.45 | 21.18        | cfs             |
| Interception with Clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q <sub>wa</sub> =       | 11.90 | 20.25        | cfs             |
| Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -wa -                   | MINOR | MAJOR        | <b></b>         |
| Interception without Clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q <sub>oi</sub> =       | 30.33 | 33.57        | cfs             |
| Interception with Clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q <sub>oa</sub> =       | 29.00 | 32.11        | cfs             |
| Curb Opening Capacity as Mixed Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oa                      | MINOR | MAJOR        | <b></b>         |
| Interception without Clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q <sub>mi</sub> =       | 18.07 | 24.80        | cfs             |
| Interception with Clogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q <sub>ma</sub> =       | 17.28 | 23.72        | cfs             |
| Resulting Curb Opening Capacity (assumes clogged condition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q <sub>Curb</sub> =     | 11.90 | 20.25        | cfs             |
| Resultant Street Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~cuib =                 | MINOR | MAJOR        | 1               |
| Total Inlet Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L =                     | 15.00 | 15.00        | feet            |
| Resultant Street Flow Spread (based on sheet Q-Allow geometry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T =                     | 39.3  | 52.1         | ft.>T-Crown     |
| Resultant Flow Depth at Street Crown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d <sub>CROWN</sub> =    | 2.7   | 4.2          | inches          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                    | MINOR | MAJOR        | <b>_</b>        |
| Total Inlet Interception Capacity (assumes clogged condition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Q</b> <sub>a</sub> = | 11.9  | 20.3         | cfs             |
| WARNING: Inlet Capacity less than Q Peak for MAJOR Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q PEAK REQUIRED =       | 11.3  | 23.1         | cfs             |
| The state of the s | PEAK KEGOIKED =         | 11.0  | 20.1         | 0.0             |

INLET 1, Inlet In Sump 3/19/2018, 7:01 AM

# **INLET IN A SUMP OR SAG LOCATION**

 Project =
 Lorson Boulevard
 #100.043

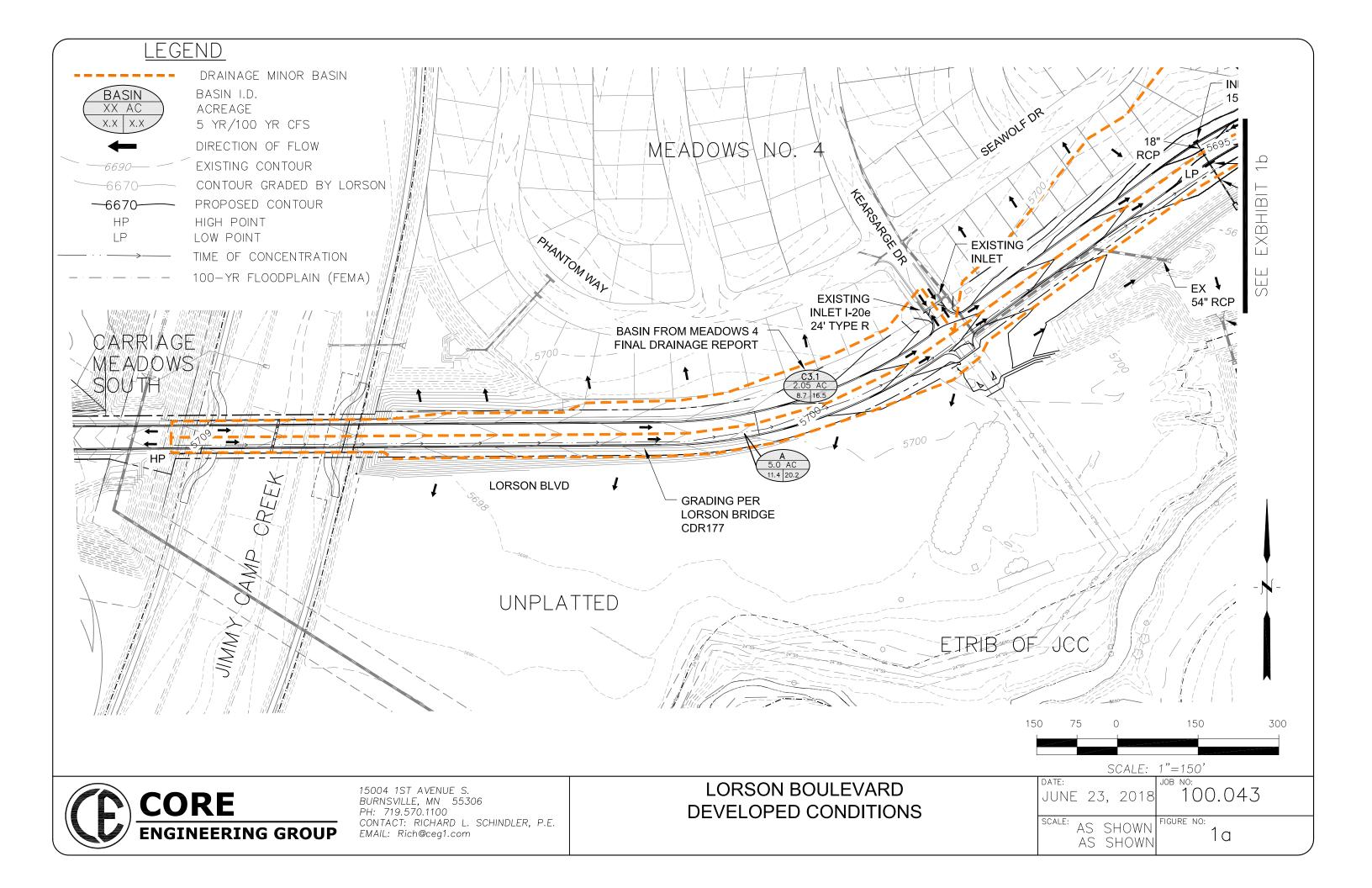

 Inlet ID =
 Inlet DP-2

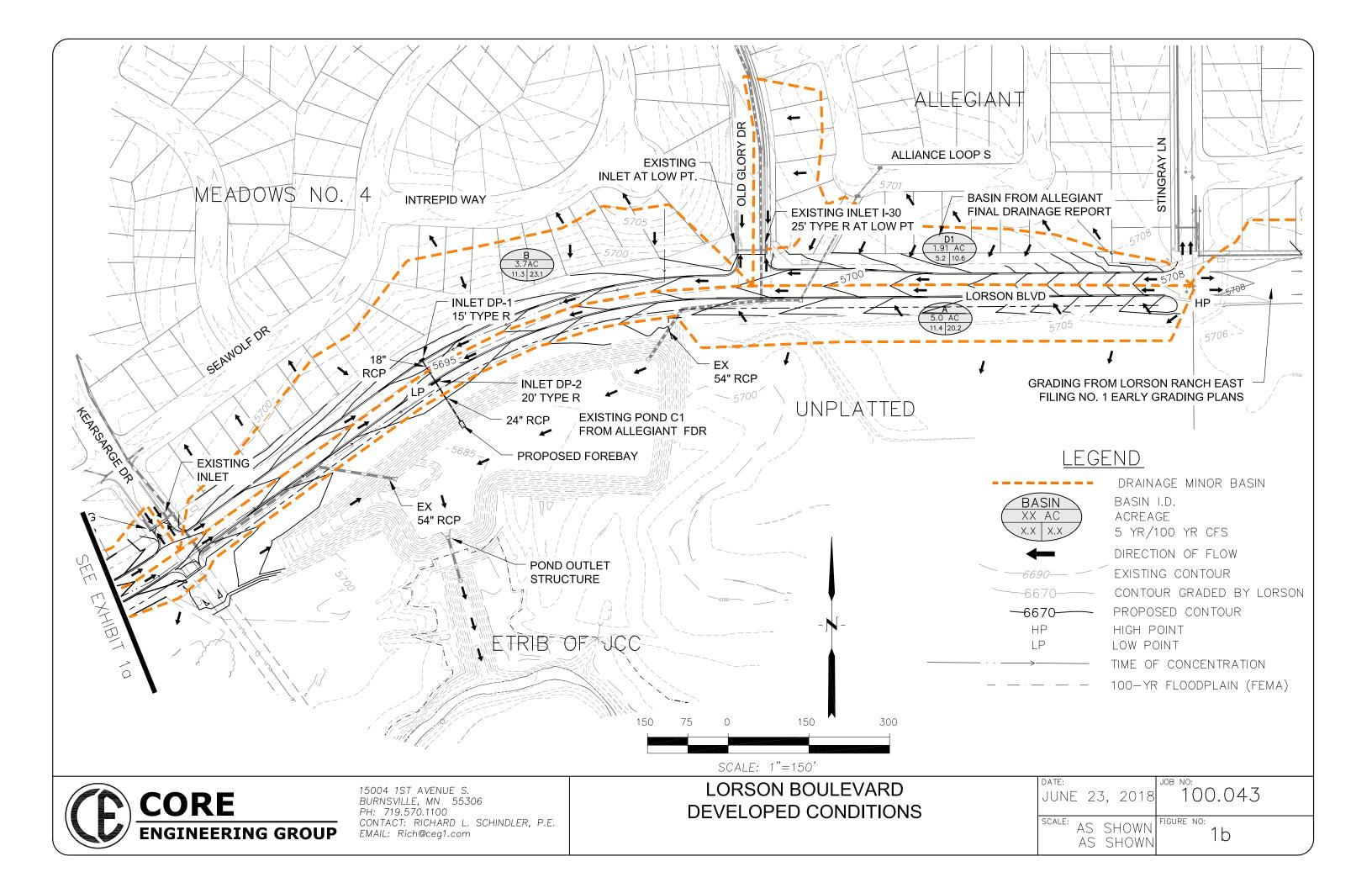


| Design Information (Input)                                                       |                      | MINOR       | MAJOR        |                   |
|----------------------------------------------------------------------------------|----------------------|-------------|--------------|-------------------|
| Type of Inlet                                                                    | Inlet Type =         | CDOT Type R | Curb Opening |                   |
| Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow') | a <sub>local</sub> = | 3.00        | 3.00         | inches            |
| Number of Unit Inlets (Grate or Curb Opening)                                    | No =                 | 1           | 1            |                   |
| Water Depth at Flowline (outside of local depression)                            | Ponding Depth =      | 6.5         | 8.0          | inches            |
| Grate Information                                                                |                      | MINOR       | MAJOR        | ✓ Override Depths |
| Length of a Unit Grate                                                           | L <sub>o</sub> (G) = | N/A         | N/A          | feet              |
| Width of a Unit Grate                                                            | W <sub>o</sub> =     | N/A         | N/A          | feet              |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                        | A <sub>ratio</sub> = | N/A         | N/A          | 1                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)                   | $C_f(G) =$           | N/A         | N/A          |                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                               | C <sub>w</sub> (G) = | N/A         | N/A          | 1                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                            | C <sub>o</sub> (G) = | N/A         | N/A          | 1                 |
| Curb Opening Information                                                         | •                    | MINOR       | MAJOR        | <del></del> -     |
| Length of a Unit Curb Opening                                                    | L <sub>o</sub> (C) = | 20.00       | 20.00        | feet              |
| Height of Vertical Curb Opening in Inches                                        | H <sub>vert</sub> =  | 6.00        | 6.00         | inches            |
| Height of Curb Orifice Throat in Inches                                          | $H_{throat} =$       | 6.00        | 6.00         | inches            |
| Angle of Throat (see USDCM Figure ST-5)                                          | Theta =              | 63.40       | 63.40        | degrees           |
| Side Width for Depression Pan (typically the gutter width of 2 feet)             | $W_p =$              | 2.00        | 2.00         | feet              |
| Clogging Factor for a Single Curb Opening (typical value 0.10)                   | $C_f(C) =$           | 0.10        | 0.10         |                   |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                            | C <sub>w</sub> (C) = | 3.60        | 3.60         |                   |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                     | C <sub>o</sub> (C) = | 0.67        | 0.67         |                   |
| Grate Flow Analysis (Calculated)                                                 |                      | MINOR       | MAJOR        |                   |
| Clogging Coefficient for Multiple Units                                          | Coef =               | N/A         | N/A          |                   |
| Clogging Factor for Multiple Units                                               | Clog =               | N/A         | N/A          | 1                 |
| Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)                       | •                    | MINOR       | MAJOR        | <del></del> -     |
| Interception without Clogging                                                    | $Q_{wi} =$           | N/A         | N/A          | cfs               |
| Interception with Clogging                                                       | Q <sub>wa</sub> =    | N/A         | N/A          | cfs               |
| Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)                    |                      | MINOR       | MAJOR        | _                 |
| Interception without Clogging                                                    | $Q_{oi} =$           | N/A         | N/A          | cfs               |
| Interception with Clogging                                                       | Q <sub>oa</sub> =    | N/A         | N/A          | cfs               |
| Grate Capacity as Mixed Flow                                                     |                      | MINOR       | MAJOR        | _                 |
| Interception without Clogging                                                    | $Q_{mi} =$           | N/A         | N/A          | cfs               |
| Interception with Clogging                                                       | Q <sub>ma</sub> =    | N/A         | N/A          | cfs               |
| Resulting Grate Capacity (assumes clogged condition)                             | Q <sub>Grate</sub> = | N/A         | N/A          | cfs               |
| Curb Opening Flow Analysis (Calculated)                                          | _                    | MINOR       | MAJOR        |                   |
| Clogging Coefficient for Multiple Units                                          | Coef =               | 1.33        | 1.33         |                   |
| Clogging Factor for Multiple Units                                               | Clog =               | 0.03        | 0.03         |                   |
| Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)                         | _                    | MINOR       | MAJOR        | _                 |
| Interception without Clogging                                                    | Q <sub>wi</sub> =    | 15.79       | 26.87        | cfs               |
| Interception with Clogging                                                       | $Q_{wa} =$           | 15.27       | 25.98        | cfs               |
| Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)                     | _                    | MINOR       | MAJOR        | _                 |
| Interception without Clogging                                                    | Q <sub>oi</sub> =    | 40.44       | 44.76        | cfs               |
| Interception with Clogging                                                       | Q <sub>oa</sub> =    | 39.09       | 43.28        | cfs               |
| Curb Opening Capacity as Mixed Flow                                              | _                    | MINOR       | MAJOR        | _                 |
| Interception without Clogging                                                    | Q <sub>mi</sub> =    | 23.50       | 32.26        | cfs               |
| Interception with Clogging                                                       | Q <sub>ma</sub> =    | 22.72       | 31.18        | cfs               |
| Resulting Curb Opening Capacity (assumes clogged condition)                      | Q <sub>Curb</sub> =  | 15.27       | 25.98        | cfs               |
| Resultant Street Conditions                                                      |                      | MINOR       | MAJOR        |                   |
| Total Inlet Length                                                               | L =                  | 20.00       | 20.00        | feet              |
| Resultant Street Flow Spread (based on sheet Q-Allow geometry)                   | T =                  | 39.3        | 52.1         | ft.>T-Crown       |
| Resultant Flow Depth at Street Crown                                             | d <sub>CROWN</sub> = | 2.7         | 4.2          | inches            |
|                                                                                  |                      | MINOR       | MAJOR        | _                 |
| Total Inlet Interception Capacity (assumes clogged condition)                    | $Q_a =$              | 15.3        | 26.0         | cfs               |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)                      | Q PEAK REQUIRED =    | 11.4        | 23.0         | cfs               |

INLET 2, Inlet In Sump 3/19/2018, 7:01 AM

# **Hydraflow Plan View**





NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs.

| Line<br>No. | Line ID | Flow<br>rate<br>(cfs) | Line<br>size<br>(in) | Line<br>length<br>(ft) | Invert<br>EL Dn<br>(ft) | Invert<br>EL Up<br>(ft) | Line<br>slope<br>(%) | HGL<br>down<br>(ft) | HGL<br>up<br>(ft)  | Minor<br>loss<br>(ft) | HGL<br>Junct<br>(ft) | Dns<br>line<br>No. |
|-------------|---------|-----------------------|----------------------|------------------------|-------------------------|-------------------------|----------------------|---------------------|--------------------|-----------------------|----------------------|--------------------|
| 1           |         | 22.70                 | 24 c                 | 63.0                   | 5686.50                 | 5689.02                 | 4.000                | 5688.19             | 5690.71            | 0.30                  | 5690.71              | End                |
| 1 2         |         | 22.70<br>11.30        | 24 c<br>18 c         | 63.0                   | 5686.50<br>5690.87      | 5689.02<br>5691.10      | 4.000                | 5688.19<br>5692.23  | 5690.71<br>5692.46 | 0.30                  | 5690.71<br>5692.67   | End<br>1           |
|             |         |                       |                      |                        |                         |                         |                      |                     |                    |                       |                      |                    |
|             |         |                       |                      |                        |                         |                         |                      |                     |                    |                       |                      |                    |

| Line<br>No. | Line ID             | Flow<br>rate<br>(cfs) | Line<br>size<br>(in) | Line<br>length<br>(ft) | Invert<br>EL Dn<br>(ft) | Invert<br>EL Up<br>(ft) | Line<br>slope<br>(%) | HGL<br>down<br>(ft) | HGL<br>up<br>(ft) | Minor<br>loss<br>(ft) | HGL<br>Junct<br>(ft) | Dns<br>line<br>No. |
|-------------|---------------------|-----------------------|----------------------|------------------------|-------------------------|-------------------------|----------------------|---------------------|-------------------|-----------------------|----------------------|--------------------|
| 1           |                     | 43.30                 | 24 c                 | 63.0                   | 5686.50                 | 5689.02                 | 4.000                | 5688.47             | 5690.99           | n/a                   | 5690.99              | End                |
| 2           |                     | 20.30                 | 18 c                 | 22.7                   | 5690.87                 | 5691.10                 | 1.013                | 5692.37*            | 5693.22*          | 0.62                  | 5693.84              | 1                  |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
|             |                     |                       |                      |                        |                         |                         |                      |                     |                   |                       |                      |                    |
| Project Fi  | le: 100.043-100YR.s | stm                   |                      |                        |                         |                         | Nun                  | hber of lines       | s: 2              | Run I                 | Date: 03-19          | <br>9-2018         |

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs.; \*Surcharged (HGL above crown).



