PRELIMINARY DRAINAGE PLAN PUD/SP 20-003

FINAL DRAINAGE PLAN CDR 20-007

THE HILLS AT LORSON RANCH

MAY, 2020 REVISED 7/23/2020

Prepared for:

Lorson, LLC 212 N. Wahsatch Ave, Suite 301 Colorado Springs, Colorado 80903 (719) 635-3200

Prepared by:

Core Engineering Group, LLC 15004 1ST Avenue South Burnsville, MN 55306 (719) 570-1100

Project No. 100.061

Engineering Review

08/25/2020 9:59:28 AM dsdrice JeffRice@elpasoco.com (719) 520-7877 EPC Planning & Community Development Department

TABLE OF CONTENTS

ENGINEER'S STATEMENT1
OWNER'S STATEMENT1
FLOODPLAIN STATEMENT
1.0 LOCATION and DESCRIPTION
2.0 DRAINAGE CRITERIA
3.0 EXISTING HYDROLOGICAL CONDITIONS
4.0 DEVELOPED HYDROLOGICAL CONDITIONS
5.0 HYDRAULIC SUMMARY
6.0 DETENTION and WATER QUALITY PONDS
7.0 DRAINAGE and BRIDGE FEES
8.0 FOUR STEP PROCESS
9.0 CONCLUSIONS
10.0 REFERENCES

APPENDIX A

VICINITY MAP, SCS SOILS INFORMATION, FEMA FIRM MAP

APPENDIX B

HYDROLOGY CALCULATIONS

APPENDIX C

HYDRAULIC CALCULATIONS

APPENDIX D

POND CALCULATIONS

APPENDIX E

STORM SEWER SCHEMATIC and HYDRAFLOW STORM SEWER CALCS

APPENDIX F – 2019 ANNUAL DRAINAGE/BRIDGE FEE CREDITS WORKSHEET

BACK POCKET

EXISTING CONDITIONS DRAINAGE MAP DEVELOPED CONDITIONS DRAINAGE MAPS FULL SPECTRUM OUTLET STRUCTURES

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Richard L. Schindler, P.E. #33997 For and on Behalf of Core Engineering Group, LLC

OWNER'S STATEMENT

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

Lorson, LLC

By Jeff Mark

Title

Manager

Address

212 N. Wahsatch Avenue, Suite 301, Colorado Springs, CO 80903

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development is not located within a designated floodplain as shown on Flood Insurance Rate Map Panel No. and 08041C0976 G, dated December 7, 2018. (See Appendix A, FEMA FIRM Exhibit)

Richard L. Schindler, #33997

Date

Date

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volume 1 and 2, and Engineering Criteria Manual, As Amended.

Jennifer Irvine County Engineer/ECM Administrator

Conditions:

Date

Date

1.0 LOCATION and DESCRIPTION

The Hills at Lorson Ranch is located east of the East Tributary of Jimmy Camp Creek. The site is located on approximately 123.167 acres of vacant land. This project will develop this site into single-family residential developments. The land for the residential lots is currently owned by Lorson LLC or its nominees for Lorson Ranch.

The site is located in the North 1/2 of Sections 24 and the South ½ of Section 13, Township 15 South and Range 65 West of the 6th Principal Meridian. The site is bounded on the north by unplatted land in Lorson Ranch, on the west by Lorson Ranch East Filing No. 3 and Filing No. 4, on the east by unplatted land in Lorson Ranch, and the south by unplatted land in Lorson Ranch. For reference, a vicinity map is included in Appendix A of this report.

Conformance with applicable Drainage Basin Planning Studies

There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson & Company in 1987, and is referenced in this report. The only major drainage improvements for this study area according to the 1987 Wilson study was the reconstruction of the East Tributary of Jimmy Camp Creek (East Tributary). In 2014 and in 2018 the East Tributary was reconstructed from downstream of Lorson Boulevard north to the northern property line of Lorson Ranch in accordance with the 1987 study. The last section of the East Tributary (to the south property line of Lorson Ranch) has been designed by Kiowa Engineering and will be completed in 2020. There are no further improvements to be made on the East Tributary. On March 9, 2015 a new DBPS for Jimmy Camp Creek and the East Tributary was completed by Kiowa Engineering. The Kiowa Engineering DBPS for Jimmy Camp Creek has not been adopted by El Paso County but is allowed for concept design. The concept design includes the East Tributary armoring concept and the full spectrum detention pond requirements. The Kiowa DBPS did not calculate drainage fees so current El Paso County drainage/bridge fees apply to this development.

Conformance with Lorson East MDDP by Core Engineering Group

Core Engineering Group has an approved MDDP for Lorson East which covers this study area. This PDR conforms to the MDDP for Lorson East and is referenced in this report. The major infrastructure to be constructed in this site includes Detention/WQ Ponds C1, C2.1, C2.2, C2.3, C3 and C4. Ponds C1 and C3 were graded in the Early Grading Plans for Lorson Ranch East under PUDSP-16-003. There are also two bridges over the East Tributary that were built in 2018 to provide access to this development across the East Tributary. The bridges are located at Fontaine Boulevard and Lorson Boulevard.

The Hills at Lorson Ranch is located within the "*Jimmy Camp Creek Drainage Basin*", which is a fee basin in El Paso County.

2.0 DRAINAGE CRITERIA

The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November, 1991, the El Paso County "Engineering Criteria Manual", Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, and the UDFCD "Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 for inlet sizing and full spectrum ponds. No deviations from these published criteria are requested for this site.

The Rational Method as outlined in Section 6.3.0 of the May 2014 "Drainage Criteria Manual" and in Section 3.2.8.F of the El Paso County "Engineering Criteria Manual" was used for basins less than 130 acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County states the if detention is necessary, Full Spectrum Detention will be included in the design, based on this criteria, Full Spectrum Detention will be required for this development.

3.0 EXISTING HYDROLOGICAL CONDITIONS

This site is currently undeveloped with native vegetation (grass with no shrubs) and moderate to steep slopes in a westerly direction the East Tributary of Jimmy Camp Creek.

The Soil Conservation Service (SCS) classifies the soils within the Lorson Ranch East property as Manzanola clay loam; Midway Clay Loam, Nelson-Tassel fine Sandy loam; Razor clay loam; and Wiley silt loam [3]. The sandy and silty loams are considered hydrologic soil group B soils with moderate to moderately rapid permeability. The Midway and Razor clay loams are considered hydrologic soil group C/D soils with slow permeability. All of these soils are susceptible to erosion by wind and water, have low bearing strength, moderate shrink-swell potential, and high frost heave potential (see table 3.1 below). The clay loams are difficult to vegetate and comprise of a small portion of the study area. These soils can be mitigated easily by limiting their use as topsoil since they comprise of a small portion of the study area. Weathered bedrock may be encountered beneath some of the site but it can be excavated using conventional techniques.

Soil	Hydro. Group	Shrink/Swell Potential	Permeability	Surface Runoff Potential	Erosion Hazard
52-Manzanola Clay Loam	С	High	Slow	Medium	Moderate
54-Midway Clay Loam	D	High	Slow	Medium	Moderate
56-Nelson – Tassel Fine Sandy Loam	В	Moderate	Moderately Rapid	Slow	Moderate
75-Razor Clay Loam	С	High	Slow	Medium	Moderate
108-Wiley Silt Loam	В	Moderate	Moderate	Medium	Moderate

 Table 3.1:
 SCS Soils Survey

Excerpts from the SCS "Soil Survey of El Paso County Area, Colorado" are provided in *Appendix A* for further reference.

For the purpose of preparing hydrologic calculations for this report, the soil of each basin are assumed to be wholly comprised of the majority soil hydrologic group.

An existing electrical easement, with existing transmission towers, is located west side of this site and will be set aside as open space. It is the intent to utilize some of the open space under the towers for detention of storm flow.

This site is not located within the delineated 100-year floodplain of the East Tributary of Jimmy Camp Creek per the Federal Emergency Management Agency (FEMA) Flood Rate Insurance Map (FIRM) number 08041C10976 G, effective December 7, 2018.

Basin C1.1-ex

This existing basin consists of existing flow from undeveloped areas east of the PUD boundary. Runoff flows overland to the west and drains into Existing Pond C1 excavated as part of Lorson Ranch East Filing No. 4 grading. The existing runoff is 3.2cfs and 21cfs for the 5-year and 100-year events.

Basin C1.2-ex

This existing basin consists of existing flow from undeveloped areas east of the electric transmission line. Runoff flows overland to the west and drains into Existing Pond C1 excavated as part of Lorson Ranch East Filing No. 4 grading. The existing runoff is 10.6cfs and 71.2cfs for the 5-year and 100-year events.

Design Point 1x

Design Point 1x is the total existing flow entering Existing Pond C1. Existing Pond C1 was excavated as part of Lorson Ranch East Filing No. 4 grading and includes an 18" RCP pipe outlet. The existing runoff is 11.7cfs and 78.8cfs for the 5-year and 100-year events.

Basin C2.1-ex

This existing basin consists of existing flow from undeveloped areas east of the PUD boundary. Runoff flows overland to the west and drains to Design Point 2x at the east end of Fontaine Boulevard where an existing 54" pipe collects the flow. The existing runoff is 6.1cfs and 40.2cfs for the 5-year and 100-year events.

Basin C2.2-ex

This existing basin consists of existing flow from undeveloped areas east of the PUD boundary. Runoff flows overland to the west and drains to Design Point 2x at the east end of Fontaine Boulevard where an existing 54" pipe collects the flow. The existing runoff is 12.2cfs and 81.8cfs for the 5-year and 100-year events.

Basin C2.3-ex

This existing basin consists of existing flow from undeveloped areas east of the electric transmission liens. Runoff flows overland to the west and drains to Design Point 2x at the east end of Fontaine Boulevard where an existing 54" pipe collects the flow. The existing runoff is 7.9cfs and 45.7cfs for the 5-year and 100-year events.

Basin C2.4-ex

This existing basin consists of existing flow from undeveloped areas east of the electric transmission liens. Runoff flows overland to the west and drains to Design Point 2x at the east end of Fontaine Boulevard where an existing 54" pipe collects the flow. The existing runoff is 3.8cfs and 20.5cfs for the 5-year and 100-year events.

Design Point 2x

Design Point 2x is the total existing flow entering an existing 54" RCP storm sewer at the east end of Fontaine Boulevard. The 54" RCP was constructed as part of Lorson Ranch East Filing No. 1 early grading. The existing runoff is 24.8cfs and 155.1cfs for the 5-year and 100-year events.

Basin C3.1-ex

This existing basin consists of existing flow from undeveloped areas east of the PUD boundary. Runoff flows overland to the west and drains into Existing Pond C3 excavated as part of Lorson Ranch East Filing No. 2 final grading. The existing runoff is 2.6cfs and 15.0cfs for the 5-year and 100-year events.

Basin C3.2-ex

This existing basin consists of existing flow from undeveloped areas east of the electric transmission lines. Runoff flows overland to the west and drains into Existing Pond C3 excavated as part of Lorson Ranch East Filing No. 2 final grading. The existing runoff is 7.5cfs and 40.2cfs for the 5-year and 100-year events.

Design Point 3x

Design Point 3x is the existing flow entering Existing Pond C3 from Basins C3.1-ex and C3.2-ex. Existing Pond C3 was excavated as part of Lorson Ranch East Filing No. 2 final grading and includes a 24" RCP pipe outlet. The existing runoff is 7.7cfs and 42.4cfs for the 5-year and 100-year events from these two basins.

Basin C4.1-ex

This existing basin consists of existing flow from offsite undeveloped areas east of Lorson Ranch. Runoff flows overland to the west to the existing electric transmission lines and then drains south into Existing Pond C3 excavated as part of Lorson Ranch East Filing No. 2 final grading. The existing runoff is 1.2cfs and 8.0cfs for the 5-year and 100-year events.

Basin C4.2-ex

This existing basin consists of existing flow from undeveloped areas east of the PUD boundary. Runoff flows overland to the west to the existing electric transmission lines and then drains south into Existing Pond C3 excavated as part of Lorson Ranch East Filing No. 2 final grading. The existing runoff is 15.0cfs and 85.1cfs for the 5-year and 100-year events.

Design Point 4x

Design Point 4x is the existing flow at the electric transmission lines from Basins C4.1-ex and C4.2-ex. The existing runoff is 15.3cfs and 87.7cfs for the 5-year and 100-year events from these two basins. This flow is then routed south into Existing Pond C3.

Basin C5.1-ex

This existing basin consists of existing flow from offsite undeveloped areas north of Lorson Ranch. Runoff flows overland to the south to the existing electric transmission lines and then drains south into Existing Pond C3 excavated as part of Lorson Ranch East Filing No. 2 final grading. The existing runoff is 1.6cfs and 9.6cfs for the 5-year and 100-year events.

Basin C5.2-ex

This existing basin consists of existing flow from undeveloped areas north of the PUD boundary. Runoff flows overland to the south to the existing electric transmission lines and then drains south into Existing Pond C3 excavated as part of Lorson Ranch East Filing No. 2 final grading. The existing runoff is 3.2cfs and 21.8cfs for the 5-year and 100-year events.

Design Point 5x

Design Point 5x is the existing flow at the electric transmission lines from Basins C5.1-ex and C5.2-ex. The existing runoff is 4.2cfs and 27.2cfs for the 5-year and 100-year events from these two basins. This flow is then routed south into Existing Pond C3.

Basin C6-ex and Design Point 6x

This existing basin consists of existing flow from undeveloped areas west of the electric transmission lines. Runoff flows overland to the west to Lamprey Drive then drains south into an existing 15' Type R inlet constructed as part of Lorson Ranch East Filing No. 3. The existing runoff is 6.3cfs and 35.6cfs for the 5-year and 100-year events.

Basin D1-ex

This existing basin consists of existing flow from undeveloped areas southeast of the PUD boundary. Runoff flows overland to the west to Lorson Boulevard into an existing temporary sediment basin constructed as part of Lorson Ranch East Filing No. 1. The existing runoff is 2.6cfs and 17.5cfs for the 5-year and 100-year events.

Basin D2-ex

This existing basin consists of existing flow from undeveloped areas east of the electric transmission lines north of Lorson Boulevard. Runoff flows overland to the west to Lorson Boulevard into an existing

temporary sediment basin constructed as part of Lorson Ranch East Filing No. 1. The existing runoff is 1.5cfs and 10.1cfs for the 5-year and 100-year events.

Design Point 7x

Design Point 7x is the existing flow at the electric transmission lines from Basins D1-ex and D2-ex. The existing runoff is 3.9cfs and 26.4cfs for the 5-year and 100-year events from these two basins and drains into an existing temporary sediment basin and 36" RCP in Lorson Boulevard constructed as part of Lorson Ranch East Filing No. 1

4.0 DEVELOPED HYDROLOGICAL CONDITIONS

Hydrology for the **The Hills at Lorson Ranch** drainage report was based on the City of Colorado Springs/El Paso County Drainage Criteria. Sub-basins that lie within this project were determined and the 5-year and 100-year peak discharges for the developed conditions have been presented in this report. Based on these flows, storm inlets will be added when the street capacity is exceeded.

Soil type B/C/D has been assumed for the developed hydrologic conditions. See Appendix A for SCS Soils Map.

The time of concentration for each basin and sub-basin was developed using an overland, ditch, street and pipe flow components. The maximum overland flow length for developed conditions was limited to 100 feet. Travel time velocities ranged from 2 to 6 feet per second. The travel time calculations are included in the back of this report.

Runoff coefficients for the various land uses were obtained from Table 6-6 dated May, 2014 from the updated City of Colorado Springs/El Paso County Drainage Criteria Manual. See Appendix B.

Drainage concepts for each of the basins are briefly discussed as follow:

Basin C1.1

This basin consists of runoff from future residential development and Walleye Drive. Runoff will be directed west to Walleye Drive, then south to Design Point 1 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 2.5cfs and 5.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.2

This basin consists of runoff from future residential development and Walleye Drive. Runoff will be directed west to Walleye Drive, then to Design Point 1 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 2.3cfs and 5.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.3

This basin consists of runoff from future residential development and the future Lorson Boulevard east of Walleye Dr. Runoff will be directed to the future Lorson Boulevard, then west to Design Point 1a in future curb/gutter. The future developed flow from this basin is 16.3cfs and 35.9cfs for the 5/100-year storm event. A portion of this future flow will be allowed to flow to Design Point 1. See design point discussions. See the appendix for detailed calculations.

Basin C1.4

This basin consists of runoff from future residential development northeast of Walleye Dr./Lorson Blvd. Runoff will be directed southwest to Design Point 1a by a future storm sewer sized to handle the entire 100-year storm event from this basin. The future developed flow from this basin is 8.8cfs and 19.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.5

This basin consists of runoff from the west side of Walleye Drive. Runoff will be directed south to Design Point 1b in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 1.3cfs and 2.9cfs for the 5/100-year storm event. See the appendix for detailed calculations. Basin C1.6

This basin consists of runoff from future residential development southeast of Walleye Dr./Lorson Blvd at Design Point 1c. Runoff will be directed north to Design Point 1a by a future storm sewer sized to handle a portion of the 100-year storm event from this basin. The remaining runoff will continue west in a future street to Design Point 3. The future developed flow from this basin is 12.8cfs and 28.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.7

This basin consists of runoff from future residential development and Lorson Blvd. Runoff will be directed north to Lorson Boulevard, then west in curb/gutter to Design Point 3 where it will be collected by a future Type R inlet. The developed flow from this basin is 5.4cfs and 11.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.8

This basin consists of runoff from future residential development south of Lorson Blvd. Runoff will be directed west in future streets then north to Design Point 3 where it will be collected by a future Type R inlet. The developed flow from this basin is 8.1cfs and 17.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2.1

This basin consists of runoff from residential development and Pikeminnow Place. Runoff will be directed west to Design Point 5a in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 3.3cfs and 7.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2.2

This basin consists of runoff from residential development and Saugeye Street. Runoff will be directed west to Design Point 5d in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 6.1cfs and 13.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2.3

This basin consists of runoff from residential development and Saugeye Street. Runoff will be directed west to Wiper Way, then north to Design Point 5 in curb/gutter. The developed flow from this basin is 8.0cfs and 17.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2.4

This basin consists of runoff from residential development and Splake Street. Runoff will be directed west to Design Point 6 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 5.6cfs and 12.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2.5

This basin consists of runoff from residential development and Pikeminnow Place. Runoff will be directed west to Design Point 5b in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 9.3cfs and 20.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2.6

This basin consists of runoff from residential development and Wiper Way. Runoff will be directed north to Design Point 7 in curb/gutter where it will be collected by a Type R inlet. The developed flow

from this basin is 0.9cfs and 1.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2.7

This basin consists of runoff from residential development and Splake Street. Runoff will be directed west to Design Point 7 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 5.8cfs and 12.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2.8

This basin consists of runoff from residential development and Shadbush Lane. Runoff will be directed west to Design Point 9 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 3.4cfs and 7.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2.9

This basin consists of runoff from residential development and Lake Trout Drive. Runoff will be directed west to Design Point 9 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 4.5cfs and 9.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2.10

This basin consists of runoff from residential development and Shadbush Lane. Runoff will be directed west to Design Point 10a in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 2.8cfs and 6.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2.11

This basin consists of runoff from residential development, open space under the electric transmission lines, and from existing Pond C1. Runoff will flow overland directly to existing Pond C1. The developed flow from this basin is 5.2cfs and 16.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Overall Basin C2

This basin is the overall flow from the C2 basins which flow to existing Pond C1. The developed flow from this overall 36.3ac basin is 39.4cfs and 90.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.1

This basin consists of runoff from future residential development located east of Walleye Drive. Runoff will flow north and west to Design Point 13a at Lake Trout Drive in future streets. A portion of the runoff will be collected by future inlets at this design point and the remaining runoff will continue north in a future street to Design Point 13b. The future developed flow from this basin is 75.9cfs and 167.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.1

This basin consists of runoff from future residential development and future Fontaine Boulevard located east of Walleye Drive and south of Fontaine Boulevard. Runoff will flow north to Design Point 12a located at Fontaine Boulevard in future streets. A portion of the runoff will be collected by future inlets at this design point and the remaining runoff will continue north in Fontaine Boulevard to Design Point 12. The future developed flow from this basin is 6.8cfs and 14.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.2

This basin consists of runoff from future residential development and future Fontaine Boulevard located east of Walleye Drive and south of Fontaine Boulevard. Runoff will flow north to Fontaine Boulevard, then west in the future Fontaine Boulevard to future inlets at Design Point 12. A portion of the runoff will be collected by future inlets at this design point and the remaining runoff will continue downstream to Design Point 13. The future developed flow from this basin is 6.7cfs and 14.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.3

This basin consists of runoff from future residential development located east of Walleye Drive. Runoff will flow north to Design Point 13b in future streets. The runoff will be collected by storm sewer and future inlets/pipes/manholes at this design point. The future developed flow from this basin is 4.3cfs and 9.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.4

This basin consists of runoff from future residential development located east of Walleye Drive and Walleye Drive. Runoff will flow west and north to Design Point 13 in Walleye Drive and will be collected by a Type R inlet. The developed flow from this basin is 5.7cfs and 12.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.5

This basin consists of runoff from residential development located west of Walleye Drive and Walleye Drive. Runoff will flow east and north to Design Point 13e in Walleye Drive and will be collected by a Type R inlet. The developed flow from this basin is 2.9cfs and 5.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.6

This basin consists of runoff from residential development located west of Walleye Drive and Pond C2.1. Runoff will flow overland directly to Pond C2.1. The developed flow from this basin is 4.3cfs and 14.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.1

This basin consists of runoff from future residential development located east of Walleye Drive and north of Fontaine Boulevard. Runoff will flow southwest to Design Point 16a at Fontaine Boulevard and will be collected by a storm sewer stub and future inlets/manholes. The developed flow from this basin is 42.3cfs and 92.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.2

This basin consists of runoff from future residential development located east of Walleye Drive. Runoff will flow west to Walleye Drive then south to Design Point 16 and will be collected by a Type R inlet. The developed flow from this basin is 3.7cfs and 8.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.3

This basin consists of runoff from future residential development and future Fontaine Boulevard. Runoff will flow south to Fontaine Boulevard then west to Design Point 16 and will be collected by a Type R inlet. The developed flow from this basin is 4.2cfs and 9.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.4

This basin consists of runoff from the west side of Walleye Drive. Runoff will flow to Walleye Drive then south to Design Point 17 and will be collected by a Type R inlet. The developed flow from this basin is 3.4cfs and 6.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.5

This basin consists of runoff from residential development and Fontaine Boulevard. Runoff will flow south to Fontaine Boulevard then west to Design Point 19 and will be collected by a Type R inlet. The developed flow from this basin is 4.7cfs and 10.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C6.1

This basin consists of runoff from residential development and Lake Trout Drive. Runoff will be directed northwest to Design Point 20 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 2.7cfs and 6.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C6.2

This basin consists of runoff from residential development and Rushpink Street. Runoff will be directed west to Design Point 20 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 6.4cfs and 14.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C6.3

This basin consists of runoff from residential development, Kitfox Court, and Rushpink Street. Runoff will be directed north and west to Design Point 21 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 1.1cfs and 2.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C6.4

This basin consists of runoff from residential development, Palafoxia Place, and Rushpink Street. Runoff will be directed north and west to Design Point 22 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 6.8cfs and 15.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C6.5

This basin consists of runoff from residential development and Palafoxia Place. Runoff will be directed north to Design Point 22 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 0.7cfs and 1.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C6.6

This basin consists of runoff from the south side of Fontaine Boulevard west of Walley Drive. Runoff will flow west in Fontaine Boulevard to Design Point 23a and will be collected by a Type R inlet. The developed flow from this basin is 6.4cfs and 11.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C6.7

This basin consists of runoff from residential development, open space under the electric transmission lines, and from Pond C2.3. Runoff will flow overland directly to Pond C2.3. The developed flow from this basin is 4.7cfs and 13.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C7.1

This basin consists of runoff from residential development, Sanderling Street, and Whistling Duck Way. Runoff will be directed south and west to Design Point 26 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 5.0cfs and 11.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C7.2

This basin consists of runoff from residential development, Big Bird Drive, and Whistling Duck Way. Runoff will be directed west and south to Design Point 26 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 1.7cfs and 3.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C7.3

This basin consists of runoff from residential development, Godwit Lane, and Piping Plover Place. Runoff will be directed west and south to Design Point 26 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 1.7cfs and 3.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C7.4

This basin consists of runoff from residential development, Godwit Lane, and Piping Plover Place. Runoff will be directed north and west to Design Point 27 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 4.7cfs and 10.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C7.5

This basin consists of runoff from residential development and Big Bird Drive. Runoff will be directed south to Design Point 27 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 1.1cfs and 2.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C7.6

This basin consists of runoff from residential development, open space under the electric transmission lines, and from Pond C2.2. Runoff will flow overland directly to Pond C2.2. The developed flow from this basin is 3.9cfs and 15.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.1

This basin consists of runoff from future residential development located east of Walleye Drive at Sanderling Street. Runoff will flow to Design Point 31a at Sanderling Street in future streets. A portion of the runoff will be collected by future inlets at this design point and the remaining runoff will continue north in a future street to Design Point 31. The future developed flow from this basin is 13.9cfs and 30.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.2

This basin consists of runoff from future residential development and the east side Walleye Drive. Runoff will flow west and north to Design Point 31 in Walleye Drive and will be collected by a Type R inlet. The developed flow from this basin is 4.5cfs and 10.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.3

This basin consists of runoff from future residential development located northeast of Walleye Drive and Grayling Drive. Runoff will flow to Design Point 30 in future streets. A portion of the runoff will be collected by future inlets at this design point and the remaining runoff will continue south in future Walleye Drive to Design Point 31. The future developed flow from this basin is 23.0cfs and 50.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.4

This basin consists of runoff from future residential development east of Walleye Drive and Grayling Drive. Runoff flows west and a portion of the runoff will be collected by future inlets at Design Point 31b and the remaining runoff will continue south in a future street to Design Point 31a. The developed flow

from this basin is 13.2cfs and 29.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.5

This basin consists of runoff from future residential development located northeast of Walleye Drive and Grayling Drive. Runoff will flow to Design Point 33 at Scrub Jay Trail and Grayling Drive. The future developed flow from this basin is 7.4cfs and 16.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.6

This basin consists of runoff from the west side of Walleye Drive and the north side of Grayling Drive. Runoff will flow west to Design Point 33 at Scrub Jay Trail and Grayling Drive. The developed flow from this basin is 3.6cfs and 6.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.7

This basin consists of runoff from future residential development located north of Grayling Drive and Scrub Jay Trail. Runoff will flow south to Design Point 33 in future streets. A portion of the runoff will be collected by future inlets at this design point and the remaining runoff will continue west to Design Point 34. The future developed flow from this basin is 30.9cfs and 69.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.8

This basin consists of runoff from future residential development, Pond C4, and open space under the electric transmission line located northwest of Grayling Drive and Scrub Jay Trail. Overland runoff will flow south directly to Pond C4. The future developed flow from this basin is 5.9cfs and 21.8 cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C10.1

This basin consists of runoff from residential development, Wigeon Way, Walleye Drive, and Grayling Drive. Runoff will be directed west to Design Point 36 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 6.1cfs and 13.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C10.2

This basin consists of runoff from residential development, Wigeon Way, and Scrub Jay Trail. Runoff will be directed west to Design Point 36 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 1.1cfs and 2.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C10.3

This basin consists of runoff from residential development and Big Bird Drive. Runoff will be directed north to Design Point 36 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 0.6cfs and 1.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C10.4

This basin consists of runoff from residential development and Big Bird Drive. Runoff will be directed west to Design Point 36a in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 5.2cfs and 11.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C10.5

This basin consists of runoff from residential development and the south side of Grayling Drive. Runoff will be directed northwest to Design Point 40 in curb/gutter where it will be collected by a Type R inlet.

The developed flow from this basin is 1.8cfs and 4.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C10.6

This basin consists of runoff from the north side of Grayling Drive. Runoff will be directed west to Design Point 39 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 1.3cfs and 3.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C10.7

This basin consists of runoff from future residential development northeast of Grayling Drive and Lamprey Drive. Runoff will be directed southwest to Design Point 38 in curb/gutter and will continue flowing south in Grayling Drive to Design Point 39 where it will be collected by a Type R inlet. The developed flow from this future basin is 5.0cfs and 11.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C10.8

This basin consists of runoff from future residential development and an existing water pumpstation north of Grayling Drive. Runoff will be directed south overland to Design Point 39 where it will be collected by a Type R inlet. The developed flow from this future basin is 3.4cfs and 7.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C10.9

This basin consists of runoff from future residential development and open space under the electric transmission line north of Grayling Drive. Runoff will be directed south overland to Design Point 39 where it will be collected by a Type R inlet. The developed flow from this future basin is 5.9cfs and 13.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C10.10

This basin consists of runoff from future residential development northeast of Grayling Drive and Lamprey Drive. Runoff will be directed southwest to Design Point 38a in future curb/gutter where it will be collected by a Type R inlet. Flows from this basin will be directed in storm sewer to Pond C4. The developed flow from this future basin is 11.5cfs and 25.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C10.11

This basin consists of runoff from residential development, open space under the electric transmission lines, and from Pond C3. Runoff will flow overland directly to Pond C3. The developed flow from this basin is 9.6cfs and 31.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C12.1

This basin consists of runoff from residential development and Yellowthroat Terrace. Runoff will be directed west to Design Point 41 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 2.4cfs and 5.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C12.2

This basin consists of runoff from residential development, House Finch Lane, and Bufflehead Lane. Runoff will be directed northwest to Design Point 42 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 5.0cfs and 11.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C12.3

This basin consists of runoff from residential development and Bufflehead Lane. Runoff will be directed northwest to Design Point 42 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 1.6cfs and 3.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C12.4

This basin consists of runoff from residential development and the west side of Murrelet Drive. Runoff will be directed north to Design Point 43. The developed flow from this basin is 3.0cfs and 6.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C12.5

This basin consists of runoff from residential development, the west side of House Finch Lane and the north side of Bobolink Terrace. Runoff will be directed north to Design Point 43. The developed flow from this basin is 4.3cfs and 9.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C12.6

This basin consists of runoff from residential development and the east side of Murrelet Drive. Runoff will be directed north to Design Point 44. The developed flow from this basin is 3.9cfs and 8.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C12.7

This basin consists of runoff from residential development and Anhinga Court. Runoff will be directed north to Design Point 44. The developed flow from this basin is 3.5cfs and 7.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C12.8

This basin consists of runoff from the south side of Lamprey Drive. Runoff will be directed southwest to Design Point 44. The developed flow from this basin is 2.1cfs and 3.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C12.9

This basin consists of runoff from the south side of Lamprey Drive. Runoff will be directed west to an existing 15' type R inlet at Design Point 45a. The developed flow from this basin is 1.0cfs and 2.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C12.10

This basin consists of runoff from open space and backyards of residential development south of Lamprey Drive. Runoff will be directed north to Design Point 46. The developed flow from this basin is 2.0cfs and 4.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C12.11

This basin consists of runoff from open space west of House Finch Lane. Runoff is already directed west to Grand Mountain School. The developed flow from this basin is 1.9cfs and 4.1cfs for the 5/100-year storm event and is the same as existing conditions. See the appendix for detailed calculations.

Basin D1.1

This basin consists of runoff from future residential development south of Lorson Blvd. Runoff will be directed north in future streets to Design Point 47a south of Lorson Boulevard at a future Type R inlet. The developed flow from this basin is 4.6cfs and 10.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D1.2

This basin consists of runoff from future residential development south of Lorson Blvd. Runoff will be directed north in future streets to Design Point 47b south of Lorson Boulevard at a future Type R inlet. The developed flow from this basin is 5.9cfs and 13.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D1.3

This basin consists of runoff from the south side of Lorson Blvd. Runoff and will be directed west to Design Point 47c at a Type R inlet. The developed flow from this basin is 3.2cfs and 6.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D1.4

This basin consists of runoff from the north side of Lorson Blvd, backyard runoff, and open space runoff. Runoff and will be directed south to Design Point 47d at a Type R inlet. The developed flow from this basin is 3.5cfs and 7.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D1.5

This basin consists of runoff south of Lorson Blvd from future backyards and open space runoff under the electric transmission line. Runoff and will be directed north to Design Point 47e at a Type R inlet in Lorson Boulevard. The developed flow from this basin is 2.6cfs and 9.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D1.6

This basin consists of runoff from Lorson Blvd and open space runoff under the electric transmission line. Runoff and will be directed south and west to an existing inlet at the NE corner of Lamprey Drive and Lorson Boulevard at Design Point 47f. The developed flow from this basin is 0.9cfs and 5.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

See the Developed Conditions Hydrology Calculations in the back of this report and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

5.0 HYDRAULIC SUMMARY

The sizing of the hydraulic structures and detentions ponds were prepared by using the *StormSewers* and *Hydrographs* computer software programs developed by Intellisolve, which conforms to the methods outlined in the "City of Colorado Springs/El Paso County Drainage Criteria Manual". Street capacities and Inlets were sized by Denver Urban Drainage's xcel spreadsheet UD-Inlet.

It is the intent of this drainage report to use the proposed curb/gutter and storm sewer in the streets to convey runoff to detention and water quality ponds then to the East Tributary of Jimmy Camp Creek. Inlet size and location are preliminary only as shown on the storm sewer layout in the appendix. See Appendix C for detailed hydraulic calculations and the storm sewer model.

	Residential Local		Residential Collector		Principal Arterial	
Street Slope	5-year	100-year	5-year	100-year	5-year	100-year
0.5%	6.3	26.4	9.7	29.3	9.5	28.5
0.6%	6.9	28.9	10.6	32.1	10.4	31.2
0.7%	7.5	31.2	11.5	34.6	11.2	33.7
0.8%	8.0	33.4	12.3	37.0	12.0	36.0
0.9%	8.5	35.4	13.0	39.3	12.7	38.2
1.0%	9.0	37.3	13.7	41.4	13.4	40.2
1.4%	10.5	44.1	16.2	49.0	15.9	47.6
1.8%	12.0	45.4	18.4	50.4	18.0	50.4
2.2%	13.3	42.8	19.4	47.5	19.5	47.5
2.6%	14.4	40.7	18.5	45.1	18.5	45.1
3.0%	15.5	39.0	17.7	43.2	17.8	43.2

Table 1: Street Capacities (100-year capacity is only ½ of street)

3.5%	16.7	37.2	16.9	41.3	17.0	41.3
4.0%	17.9	35.7	16.2	39.7	16.3	29.7
4.5%	19.0	34.5	15.7	38.3	15.7	38.3
5.0%	19.9	33.4	15.2	37.1	15.2	37.1

Note: all flows are in cfs (cubic feet per second)

Design Point 1a

Design Point 1a is located south of Lorson Boulevard and Walleye Drive and flow is from future development from Basin C1.6. A future storm sewer will be constructed from the future Lorson Boulevard north to this design point. The total future flow is 12.8cfs/28.3cfs in the 5/100-year storm events for this basin. In the 5-year storm event 12cfs will be routed north to Design Point 1b (in pipe) and 0.8cfs will be routed to Design Point 3 (surface flow in street). In the 100-year storm event 20cfs will be routed north to Design Point 1b (in pipe) and 8.3cfs will be routed to Design Point 3 (surface flow in street).

<u>Design Point 1b</u>

Design Point 1b is located at the east end of Lorson Boulevard and accepts flows from future development from Basin C1.3 and Basin C1.4 and pipe flow from Des. Pt 1a. A 36" RCP storm sewer will be stubbed out to collect future flow at this design point. The total future flow is 37.1cfs/75.3cfs in the 5/100-year storm events for this basin. In the 5-year storm event 37.1cfs will flow into the 36" storm sewer stub via future inlets/manholes. In the 100-year storm event 9.9cfs will be routed north (surface flow) to Design Point 1, 0.1cfs will be routed to Design Point 1c, and 65.3cfs will flow into the 36" storm sewer stub via future inlets/manholes.

Design Point 1b (existing flows, interim condition)

In existing conditions, Basin C1.1-ex will generate 3.2cfs/21.4cfs in the 5/100-year storm events. Runoff will be directed to a 48" standpipe and temporary sediment basin at this design point. The standpipe will be connected to a 36" storm sewer in Lorson Boulevard.

Design Point 1

Design Point 1 is located at the NE corner of Lorson Boulevard and Walleye Drive and accepts flows from future development and from Walleye Drive. This inlet has been designed for ultimate development upstream which is a more conservative for inlets and storm sewer. The developed future conditions are as follows:

(5-year storm) Tributary Basins: C1.1+C1.2 Upstream flowby:	Inlet/MH Number: Inlet DP1 Total Street Flow: 4.8cfs			
Flow Intercepted: 4.8cfs Inlet Size: 15' type R, sump	Flow Bypassed: 0			
Street Capacity: Street slope = 0.6%, capacity =	10.6cfs, okay			
(100-year storm) Tributary Basins: C1.1+C1.2 Upstream flowby: 9.9cfs from Des. Pt 1b	Inlet/MH Number: Inlet DP1 Total Street Flow: 20.3cfs			
Flow Intercepted: 20.3cfs Inlet Size: 15' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 0.6%, capacity = 32.1cfs (half street) is okay				

Design Point 1c

Design Point 1c is located at the NW corner of Lorson Boulevard and Walleye Drive and accepts flows from Walleye Drive (Basin C1.5).

(<u>5-year storm)</u> Tributary Basins: C1.5 Upstream flowby:	Inlet/MH Number: Inlet DP1c Total Street Flow: 1.3cfs			
Flow Intercepted: 1.3cfs Inlet Size: 5' type R, sump	Flow Bypassed: 0			
Street Capacity: Street slope = 0.6%, capacity =	10.6cfs, okay			
(100-year storm) Tributary Basins: C1.5 Upstream flowby: 0.1cfs from Des. Pt 1b	Inlet/MH Number: Inlet DP1c Total Street Flow: 3.0cfs			
Flow Intercepted: 3.0cfs Inlet Size: 5' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 0.6%, capacity = 32.1cfs (half street) is okay				

Design Point 2 (ultimate development conditions)

Design Point 2 is the storm sewer pipe flow in Walleye Drive from Design Pt's 1 and 1c. The total pipe flow is 6.1cfs/23.3cfs in the 5/100-year storm events in the storm sewer.

Design Point 2a (ultimate development conditions)

Design Point 2a is the storm sewer pipe flow in Lorson Boulevard west of Walleye Drive from Design Pt's 1b and 2. The total pipe flow is 43.2cfs/88.6cfs in the 5/100-year storm events in the storm sewer.

Design Point 2a (interim condition)

Design Point 2a is the interim storm sewer pipe flow in Lorson Boulevard west of Walleye Drive from Design Pt. 1b (interim flow) and Design Pt. 2. The total interim pipe flow is (3.2+6.1)=9.3cfs in the 5-year storm event and (21.4+23.3)cfs= 44.7cfs in the 100-year storm event in the storm sewer. The storm sewer is designed for ultimate development conditions which is significantly more flow than interim conditions.

Design Point 3 (ultimate development conditions)

Design Point 3 is located at the SE corner of Lorson Boulevard and a future street (southwest of Brooktrout Tr) and accepts flows from Lorson Boulevard and from future development to the south and east.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Total Street Flow: 14.3cfs				
	Flow Intercepted:14.3cfsFlow Bypassed:0Inlet Size:future inlets and manholes					
Street Capacity: St	reet slope = 0.6%, capacity =	10.6cfs, okay since half is from south				
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP1c Total Street Flow: 38.0cfs				
Flow Intercepted: Inlet Size: future in		Flow Bypassed:				
Street Capacity: S from south	Street slope = 0.6%, capacity	= 32.1cfs (half street) is okay since half is				

Design Point 4 (Ultimate fully developed upstream)

Design Point 4 is the storm sewer pipe flow in Lorson Boulevard from Design Pt's 2a and 3. The total pipe flow is 57.5cfs/126.6cfs in the 5/100-year storm events in the storm sewer.

<u>Design Point 5a</u> Design Point 5a is located on the east side of Wiper Way south of Saugeye Street

(<u>5-year storm)</u> Tributary Basins: C2.1 Upstream flowby:	Inlet/MH Number: Inlet DP5a Total Street Flow: 3.3cfs				
Flow Intercepted:2.4cfsFlow Bypassed:0.9cfs to Inlet DP6Inlet Size:5' type R, on-grade					
Street Capacity: Street slope = 2.5%, cap	acity = 13.3cfs, okay				
(100-year storm) Tributary Basins: C2.1 Upstream flowby:	Inlet/MH Number: Inlet DP5a Total Street Flow: 7.3cfs				
Flow Intercepted: 3.5cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 3.8cfs to Inlet DP6				
Street Capacity: Street slope = 2.5%, capacity = 42.8cfs (half street) is okay					

Design Point 5b Design Point 5b is located on the west side of Wiper Way south of Saugeye Street

(5-year storm) Tributary Basins: C2.5 Upstream flowby:	Inlet/MH Number: Inlet DP5a Total Street Flow: 9.3cfs				
Flow Intercepted:3.9cfsFlow Bypassed:5.4cfs to Inlet DP7Inlet Size:5' type R, on-grade					
Street Capacity: Street slope = 2.5%, cap	pacity = 13.3cfs, okay				
<u>(100-year storm)</u> Tributary Basins: C2.5 Upstream flowby:	Inlet/MH Number: Inlet DP5a Total Street Flow: 20.5cfs				
Flow Intercepted: 5.3cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 15.2cfs to Inlet DP7				
Street Capacity: Street slope = 2.5%, capacity = 42.8cfs (half street) is okay					

Design Point 5c

Design Point 5c is the storm sewer pipe flow in Wiper Way from Design Pt's 5a and 5b. The total pipe flow is 6.3cfs/8.8cfs in the 5/100-year storm events in the storm sewer.

Design Point 5d Design Point 5d is located on the north side of Saugeye Street east of Wiper Way

(5-year storm) Tributary Basins: C2.2 Upstream flowby:	Inlet/MH Number: Inlet DP5a Total Street Flow: 6.1cfs			
Flow Intercepted: 5.4cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 0.7cfs to Des. Pt 5			
Street Capacity: Street slope = 1.1%, cap	pacity = 9.0cfs, okay			
(100-year storm) Tributary Basins: C2.2 Upstream flowby:	Inlet/MH Number: Inlet DP5a Total Street Flow: 13.4cfs			
Flow Intercepted: 8.4cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 5.0cfs to Des. Pt 5			
Street Capacity: Street slope = 1.1%, capacity = 37.3cfs (half street) is okay				

Design Point 5

Design Point 5 is located on the east side of Wiper Way north of Saugeye Street and is the street flow on the east side of Wiper Way

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C2.3 0.7cfs from Des.Pt 5d	Inlet/MH Number: Total Street Flow: 8.7cfs	
Flow Intercepted: Inlet Size:		Flow Bypassed:	
Street Capacity: St	treet slope = 2%, capacity = 1	2.0cfs, okay	
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C2.3 5.0cfs from Des.Pt 5d	Inlet/MH Number: Total Street Flow: 22.5cfs	
Flow Intercepted: Inlet Size:		Flow Bypassed:	
Street Capacity: Street slope = 2%, capacity = 45cfs (half street) is okay			

Design Point 5e

Design Point 5e is the storm sewer pipe flow in Wiper Way from Design Pt's 5c and 5d. The total pipe flow is 11.7cfs/17.2cfs in the 5/100-year storm events in the storm sewer.

Design Point 6

Design Point 6 is located on the south side of Splake Street at a low point.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C2.4 8.7cfs from Des.Pt 5	Inlet/MH Number: Inlet DP6 Total Street Flow: 14.3cfs				
-	Flow Intercepted:14.3cfsFlow Bypassed:Inlet Size:30' type R, sump					
Street Capacity: St	reet slope = 3%, capacity =	15.5 cfs, okay				
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C2.4 22.5cfs from Des.Pt 5	Inlet/MH Number: Inlet DP6 Total Street Flow: 34.8cfs				
Flow Intercepted:34.8cfsFlow Bypassed:Inlet Size:30' type R, sump						
Street Capacity: Street slope = 3%, capacity = 39cfs (half street) is okay						

Design Point 7 Design Point 7 is located on the north side of Splake Street at a low point.

(5-year storm)				
	C2.6 & C2.7	Inlet/MH Number:	Inlet DP7	
	5.4cfs from Des.Pt 5b	Total Street Flow:	12.1cfs	
Flow Intercepted: 1	2.1cfs	Flow Bypassed:		
Inlet Size: 25' type R	R, sump			
Street Capacity: St	reet slope = 3%, capacity = 15.5 cfs,	okay		
(100-year storm)				
	C2.6 & C2.7	Inlet/MH Number:		
Upstream flowby:	15.2cfs from Des.Pt 5b	Total Street Flow:	29.9cts	
Eleve interesente de	20.0-6-			
Flow Intercepted:		Flow Bypassed:		
Inlet Size: 25' type	R, sump			
Street Capacity: Street slope = 3%, capacity = 39cfs (half street) is okay				
Street Capacity. Sti	reet slope – 5 %, capacity – 590's (lie	in street) is oray		
Design Point 8				
	storm sewer pipe flow west of Spla	ke Street from Desig	on Pt's 5a 5b 5d	6 &7
Design Point 8 is the storm sewer pipe flow west of Splake Street from Design Pt's 5a, 5b, 5d, 6,&7. The total pipe flow is 38.1cfs/81.9cfs in the 5/100-year storm events in the storm sewer.				
Design Point 8a		(\sim	
Design Point 8a is the storm sewer pipe flow into the southeast corner of Pond C2 from Splake Street			Street	
from Design Pt's 4 & 8. The total pipe flow is 95.6cfs/208.5cfs in the 5/100-year-storm events in the				
storm sewer.	···· FF · · · · · · · · · · · · · · · ·		,	
	(10		
Design Deint O			<u> </u>	

Design Point 9 Design Point 9 is located on the east side of Kitfox Court at a low point south of Lake Trout Drive.

(5-year storm) Tributary Basins: C2.8+C2.9 Upstream flowby:	Inlet/MH Number: Inlet DP9 Total Street Flow: 7.9cfs	
Flow Intercepted: 7.9cfs Inlet Size: 15' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.5%, capacity = 10.5 cfs, okay		
(100-year storm) Tributary Basins: C2.8+C2.9 Upstream flowby:	Inlet/MH Number: Inlet DP9 Total Street Flow: 17.2cfs	
Flow Intercepted: 17.2cfs Inlet Size: 15' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.5%, capacity = 44.1cfs (half street) is okay		

<u>Design Point 9a</u> Design Point 9a is located on the west side of Kitfox Court at a low point south of Lake Trout Drive.

(5-year storm) Tributary Basins: C2.10 Upstream flowby:	Inlet/MH Number: Inlet DP9a Total Street Flow: 2.8cfs	
Flow Intercepted: 2.8cfs Inlet Size: 10' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.5%, capacity = 10.5 cfs, okay		
(100-year storm) Tributary Basins: C2.10 Upstream flowby:	Inlet/MH Number: Inlet DP9a Total Street Flow: 6.2cfs	
Flow Intercepted: 6.2cfs Inlet Size: 10' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.5%, capacity = 44.1cfs (half street) is okay		

Design Point 10

Design Point 10 is the storm sewer pipe flow from Kitfox Court to Pond C1 from Design Pt's 9 and 9a. The total pipe flow is 10.7cfs/23.4cfs in the 5/100-year storm events in the storm sewer.

Design Point 11

Design Point 11 is the total developed flow into Pond C1 from the C1 basins and the C2 basins with a total area of 76acres. The total flow is 85.4cfs/192.4cfs in the 5/100-year storm events in the storm sewer using the Rational Method of runoff calculations and adding storm sewer flows (see xcel spreadsheet). These flow rates are slightly higher and more conservative than the peak inflow from the full spectrum pond spreadsheets (75.6cfs/170.4cfs in the 5/100-year storm events).

Design Point 11a

Design Point 11a is the total developed outflow from Pond C1 calculated using the Full Spectrum EDB Xcel design spreadsheet. The total outflow is 7.1cfs/18.1cfs in the 5/100-year storm events in the existing 18" storm sewer pipe constructed as part of Lorson Ranch East Filing No. 4. The outflow rates are similar to the allowable design flows in the Lorson Ranch East MDDP (4.0cfs/18.0cfs) and the Lorson Ranch East Filing No. 4 final drainage report.

Design Point 12a

Design Point 12a is located south of Fontaine Boulevard east of Walleye Drive and accepts flows from future development from Basin C4.1. A future storm sewer will be stubbed out to collect future flow at this design point and will convey it west to Design Point 12. The total future flow accepted is 6.8cfs/14.9cfs in the 5/100-year storm events in the storm sewer.

Design Point 12

Design Point 12 is located south of Fontaine Boulevard east of Walleye Drive and accepts flows from future development from Basin C4.2 and Design Point 12a. A future storm sewer will be stubbed out to collect a portion of the future flow at this design point and will convey it south to Design Point 13b. The remaining portion will flow south to Design Point 13 and will be collected by a Type R inlet. The total future flow is 13.5cfs/29.7cfs in the 5/100-year storm events in the storm sewer. It is estimated that 5.5cfs/12cfs in the 5/100-year storm events will be directed to Design Point 13 via curb/gutter. It is

estimated that 8.0cfs/17.7cfs in the 5/100-year storm events will be directed to Design Point 13b via a future storm sewer.

Design Point 13a (ultimate development conditions)

Design Point 13a is located south of Fontaine Boulevard east of Walleye Drive/Lake Trout Dr and accepts flows from future development from Basin C3.1. A storm sewer will be stubbed out from Walleye Drive to collect a portion of this future flow and will convey it north to Design Point 13d. The remaining flow will flow north in future streets to Design Point 13b. The total future flow is 75.9cfs/167.0cfs in the 5/100-year storm events in the storm sewer. It is estimated that 8.0cfs/30.0cfs in the 5/100-year storm events will be directed north to Design Point 13b via future curb/gutter. It is estimated that 69.7cfs/137cfs in the 5/100-year storm events will be directed to Walleye Drive and Design Point 13d via a 42" storm sewer stub in Walleye Drive. No flow will enter this storm sewer in interim conditions. Existing runoff from the east (Basin C2.2-ex) flows north/northwest to Design Point 13b where a storm sewer/standpipe/sediment basin captures the runoff.

Design Point 13b (ultimate development conditions)

Design Point 13b is located southeast corner of Fontaine Boulevard and Walleye Drive and accepts flows from future development from Basin C4.3, surface flowby from Design Point 13a (ultimate), and pipe flow from Design Point 12. A storm sewer will be stubbed out from Walleye Drive to collect this future flow and will convey it west to Design Point 13. It is estimated that 20.3cfs/57.1cfs in the 5/100-year storm events will be directed to Design Point 13 via a 42" storm sewer.

Design Point 13b (interim conditions)

Design Point 13b is located southeast corner of Fontaine Boulevard and Walleye Drive and accepts overland runoff from existing Basin C2.2-ex. Runoff flows overland in existing swales to this design point. A 42" storm sewer, 48" diameter standpipe, and temporary sediment basin will collect flows and convey them west in storm sewer to Design Point 13. In order to accommodate existing flow conditions, the 42" storm sewer has been oversized to accept 82cfs of existing flow from Basin C2.2-ex. The existing flow will enter the system via a 48" standpipe at this design point with a depth of 1.57'.

Design Point 13

Design Point 13 is located on the east side of Walleye Drive south of Fontaine Boulevard at a low point.

(5-year storm)Tributary Basins:C4.4Upstream flowby:5.5cfs from Des.Pt.12	Inlet/MH Number: Inlet DP13 Total Street Flow: 11.2cfs	
Flow Intercepted: 11.2cfs Inlet Size: 25' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.7%, capacity = 11.5 cfs, okay		
(100-year storm) Tributary Basins: C4.4 Upstream flowby: 12.0cfs from Des.Pt 12	Inlet/MH Number: Inlet DP13 Total Street Flow: 24.5cfs	
Flow Intercepted: 24.5cfs Inlet Size: 25' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.7%, capacity = 34.6cfs (half street) is okay		

Design Point 13c (ultimate development conditions)

Design Point 13c is the storm sewer pipe flow from Design Pt's 13 and 13b. The total pipe flow is 31.5cfs/81.6cfs in the 5/100-year storm events in the storm sewer for ultimate development conditions.

Design Point 13c (interim conditions)

Design Point 13c is the flow from Design Pt's 13 and the interim flow from Design Point 13b. The total pipe flow is (11.2+12.2)=23.4cfs in the 5-year storm event and (24.5+81.8)=106.30cfs in the 100-year storm events in the storm sewer. This short section of storm sewer was upsized to a 42" diameter pipe at 1% slope which has a free-flow capacity of 107cfs.

Design Point 13d (ultimate development conditions)

Design Point 13d is the storm sewer pipe flow from Design Pt's 13a (ultimate) and 13c (ultimate) in future developed conditions. Future developed conditions produce significantly more runoff than undeveloped interim conditions so the pipe was designed for the ultimate conditions. The total pipe flow is 101.2cfs/218.6cfs in the 5/100-year storm events in the storm sewer.

Design Point 13e

Design Point 13e is located on the west side of Walleye Drive south of Fontaine Boulevard at a low point.

(<u>5-year storm)</u> Tributary Basins: C4.5 Upstream flowby:	Inlet/MH Number: Inlet DP13e Total Street Flow: 2.9cfs	
Flow Intercepted: 2.9cfs Inlet Size: 10' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.7%, capacity = 11.5 cfs, okay		
(100-year storm) Tributary Basins: C4.5 Upstream flowby:	Inlet/MH Number: Inlet DP13e Total Street Flow: 5.2cfs	
Flow Intercepted: 5.2cfs Inlet Size: 10' type R, sump	Flow Bypassed:	

Street Capacity: Street slope = 0.7%, capacity = 34.6cfs (half street) is okay

Design Point 14 (ultimate development conditions)

Design Point 14 is the storm sewer pipe flow from Design Pt's 13e and 13d that flow into Pond C2.1. The total pipe flow is 104.1cfs/223.8cfs in the 5/100-year storm events and will be used to size the storm sewer.

Design Point 15 (ultimate development conditions)

Design Point 15 is the total developed flow into Pond C2.1 from the C3 basins and the C4 basins with a total area of 74.5 acres. The total flow is 85.6 cfs/213.2 cfs in the 5/100-year storm events in the storm sewer using the Rational Method of runoff calculations (see xcel spreadsheet). This number is slightly lower than Design Point 14 because this design point reduces flow for the increased time of concentration from the entire basin. These flow rates generally match the peak inflow from the full spectrum pond spreadsheets (91.4 cfs/201.7 cfs in the 5/100-year storm events)

Design Point 15a (ultimate development conditions)

Design Point 15a is the total future developed outflow from Pond C2.1 calculated using the Full Spectrum EDB Xcel design spreadsheet. The total outflow is 12.8cfs/65.0cfs in the 5/100-year storm events from the full spectrum outlet structure into a 30" storm sewer pipe outfall. The outflow rates are similar to the allowable design flows in the Lorson Ranch East MDDP (11.0cfs/63.3cfs) for Pond C2.1.

Design Point 15a (interim conditions)

The interim state assumes that there is no upstream development in the C3 and C4 basins and no full spectrum outlet structure. Runoff comes from existing Basin C2.2-ex into the storm system in a 48" standpipe at Design Point 13b and from Developed Basins C4.4, C4.5, & C4.6. Runoff will enter Pond C2.1, will be detained, and then released by a 30" storm sewer pipe located at the west end of the pond. Pond C2.1 in the interim state was modeled in hydraflow to make sure the outflow rates do not exceed the downstream 30" storm sewer capacity. The hydraflow model calculated the interim pond outflow into the 30" pipe outlet to be 11.42cfs/40.0cfs in the 5/100-year storm events which is less than the capacity of the designed downstream storm sewer system.

Design Point 16a

Design Point 16a is located in the NE of Fontaine Boulevard and Walleye Drive and accepts flows from future development from Basin C5.1. A storm sewer will be stubbed out from Fontaine Boulevard to collect all of this future flow and will convey it SW to Design Point 16a. The total future flow is 42.3cfs/92.5cfs in the 5/100-year storm events in the storm sewer. In the interim conditions a 48" standpipe and sediment basin will collect flow from existing Basin C2.1-ex at 6.1cfs/40.2cfs in the 5/100-year storm events that the designed future flows.

Design Point 16

Design Point 16 is located in the NE corner of Fontaine Boulevard/Walleye Drive at a low point.

<u>(5-year storm)</u> Tributary Basins: C5.2+C5.3 Upstream flowby:	Inlet/MH Number: Inlet DP16 Total Street Flow: 7.9cfs	
Flow Intercepted: 7.9cfs Inlet Size: 15' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.7%, capacity = 11.5 cfs, okay		
(100-year storm) Tributary Basins: C5.2+C5.3 Upstream flowby:	Inlet/MH Number: Inlet DP16 Total Street Flow: 17.7cfs	
Flow Intercepted: 17.7cfs Inlet Size: 15' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.7%, capacity = 34.6cfs (half street) is okay		

Design Point 17 Design Point 17 is located in the NW corner of Fontaine Boulevard/Walleye Drive at a low point.

(5-year storm) Tributary Basins: C5.4 Inlet/MH Number: Inlet DP17 Upstream flowby: Total Street Flow: 3.4cfs Flow Intercepted: 3.4cfs Flow Bypassed: Inlet Size: 10' type R, sump **Street Capacity:** Street slope = 0.7%, capacity = 11.5 cfs, okay (100-year storm) Tributary Basins: C5.4 Inlet/MH Number: Inlet DP17 Upstream flowby: Total Street Flow: 6.1cfs Flow Intercepted: 6.1cfs Flow Bypassed: **Inlet Size:** 10' type R, sump

Street Capacity: Street slope = 0.7%, capacity = 34.6cfs (half street) is okay

Design Point 17a

Design Point 17a is the storm sewer pipe flow from Design Pt's 16 and 17. The total pipe flow is 11.3cfs/23.8cfs in the 5/100-year storm events in the storm sewer.

Design Point 18

Design Point 18 is the storm sewer pipe flow from Design Pt's 16a and 17a. The total pipe flow is 53.6cfs/116.3cfs in the 5/100-year storm events in the storm sewer.

<u>Design Point 19</u> Design Point 19 is located on Fontaine Boulevard south of Pond C2.2

(<u>5-year storm)</u> Tributary Basins: C5.5 Upstream flowby:	Inlet/MH Number: Inlet DP19 Total Street Flow: 4.7 cfs	
Flow Intercepted: 4.7cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: Ocfs	
Street Capacity: Street slope = 3.0%, capacity = 17.7 cfs, okay		
(100-year storm) Tributary Basins: C5.5 Upstream flowby:	Inlet/MH Number: Inlet DP19 Total Street Flow: 10.4cfs	
Flow Intercepted: 9.7cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 0.7cfs	
Street Capacity: Street slope = 3.0%, capacity = 43.2cfs (half street) is okay		

Design Point 19a

Design Point 19a is the storm sewer pipe flow from Design Pt's 18 and 19. The total pipe flow is 58.3cfs/126.0cfs in the 5/100-year storm events in the storm sewer.

Design Point 20

Design Point 20 is located on the south side of Rushpink Street east of Kitfox Court at a low point.

(5-year storm) Tributary Basins: C6.1+C6.2 Upstream flowby:	Inlet/MH Number: Inlet DP20 Total Street Flow: 9.1cfs	
Flow Intercepted: 9.1cfs Inlet Size: 20' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.8%, capacity = 12.0cfs, okay		
(100-year storm) Tributary Basins: C6.1+C6.2 Upstream flowby:	Inlet/MH Number: Inlet DP20 Total Street Flow: 20.1cfs	
Flow Intercepted: 20.1cfs Inlet Size: 20' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.8%, capacity = 45.4cfs (half street) is okay		

Design Point 21 Design Point 21 is located on the north side of Rushpink Street east of Kitfox Court at a low point.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C6.3	Inlet/MH Number: Inlet DP21 Total Street Flow: 1.1cfs
Flow Intercepted: 1 Inlet Size: 5' type R,		Flow Bypassed:
Street Capacity: Str	reet slope = 1.8%, capacity = 12.0cfs	, okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C6.3	Inlet/MH Number: Inlet DP21 Total Street Flow: 2.4cfs
Flow Intercepted: Inlet Size: 5' type R		Flow Bypassed:
Street Capacity: Street slope = 1.8%, capacity = 45.4cfs (half street) is okay		

Design Point 21a

Design Point 21a is the storm sewer pipe flow from Design Pt's 20 and 21. The total pipe flow is 10.2cfs/22.5cfs in the 5/100-year storm events in the storm sewer.

Design Point 22

Design Point 22 is located at the north end of Palafoxia Place at a low point.

(5-year storm) Tributary Basins: C6.4+C6.5 Upstream flowby:	Inlet/MH Number: Inlet DP22 Total Street Flow: 7.5cfs	
Flow Intercepted: 7.5cfs Inlet Size: 10' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.4%, capacity = 10.5cfs	s, okay	
(100-year storm) Tributary Basins: C6.4+C6.5 Upstream flowby:	Inlet/MH Number: Inlet DP22 Total Street Flow: 16.2cfs	
Flow Intercepted: 16.2cfs Inlet Size: 10' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.4%, capacity = 44.1cfs (half street) is okay		

Design Point 23

Design Point 23 is the storm sewer pipe flow from Design Pt's 15a (future Pond C2.1 outflow) and Design Point 22. The total pipe flow is 20.3cfs/81.2cfs in the 5/100-year storm events in the storm sewer.

Design Point 23a Design Point 23a is located on Fontaine Boulevard north of Pond C2.3

<u>(5-year storm)</u> Tributary Basins: C6.6 Upstream flowby:	Inlet/MH Number: Inlet DP23a Total Street Flow: 6.4cfs	
Flow Intercepted: 6.4cfs Inlet Size: 15' type R, on-grade	Flow Bypassed:	
Street Capacity: Street slope = 3.0%, capacity = 17.76	cfs, okay	
(100-year storm) Tributary Basins: C6.6 Upstream flowby:	Inlet/MH Number: Inlet DP23a Total Street Flow: 11.5cfs	
Flow Intercepted: 10.4cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 1.1cfs	
Street Capacity: Street slope = 3.0%, capacity = 43.2cfs (half street) is okay		

Design Point 24

Design Point 24 is the storm sewer pipe flow from Design Pt's 21a, 23, and Design Point 23a. The total pipe flow is 36.9cfs/114.1cfs in the 5/100-year storm events in the storm sewer.

Design Point 24a

Design Point 24a is the total developed flow into Pond C2.3 from the C6 basins and from Pond C2.1 outflow. The total inflow was calculated by the full spectrum Xcel worksheets by adding the CUHP hydrograph for the C6 basins to the Pond C2.1 outflow hydrograph (see appendix for hydrograph spreadsheet). The total inflow to Pond C2.3 is 20.7cfs/95.3cfs in the 5/100-year storm events (see xcel spreadsheet). This number is slightly lower than the design flows in the stormsewer (Design Point 24) and is due to adding cumulative storm sewer flows without adjusting for the time of concentration. This will result in a slightly more conservative storm sewer sizing.

Design Point 25

Design Point 25 is the total developed outflow from Pond C2.3 calculated using the Full Spectrum EDB Xcel design spreadsheet. The total outflow is 5.5cfs/64.9cfs in the 5/100-year storm events in the 30" storm sewer pipe. The outflow rates are higher than the flows in the Lorson Ranch East MDDP (4.5cfs/52cfs) for this pond. The 1.0cfs/18.1cfs over the flows allowed by the MDDP will be compensated by reducing the outflow from Pond C2.2 located north of Fontaine Boulevard. See Design Point 29a. Both of these ponds flow to an existing 54" storm sewer located in Fontaine Boulevard.

Design Point 25 (Emergency Overflow Conveyance)

As discussed in the Lorson Ranch East MDDP, Pond C2.3 will include a full spectrum pond outlet structure and an emergency overflow conveyance structure just downstream of the full spectrum pond. A 30" storm sewer from the full spectrum outlet structure will connect to the conveyance structure. The conveyance structure is a 20' CDOT Type R inlet with an 18" throat opening and 2' high concrete inflow apron from the spillway to the structure designed to handle 70cfs per the Fontaine Boulevard FDR (CDR183). A 42" RCP outflow pipe will connect the conveyance structure to the existing 54" storm sewer in Fontaine Boulevard. The existing 54" storm sewer extends west and drains into Pond C5 which drains into the East Tributary of Jimmy Camp Creek per the Lorson Ranch East Filing No. 1 FDR.

Design Point 26

Design Point 26 is located at the east side of Big Bird Drive and Piping Plover Place at a low point.

(5-year storm) Tributary Basins: C7.1-C7.3 Upstream flowby:	Inlet/MH Number: Inlet DP26 Total Street Flow: 10.8cfs	
Flow Intercepted: 10.8cfs Inlet Size: 20' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.5%, capacity = 10.9cfs, okay		
(100-year storm) Tributary Basins: C7.1-C7.3 Upstream flowby:	Inlet/MH Number: Inlet DP26 Total Street Flow: 24.0cfs	
Flow Intercepted: 24.0cfs Inlet Size: 20' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.5%, capacity = 44.8cfs (half street) is okay		

<u>Design Point 27</u> Design Point 27 is located at the west side of Big Bird Drive and Piping Plover Place at a low point.

(5-year storm) Tributary Basins: C7.4+C7.5 Upstream flowby:	Inlet/MH Number: Inlet DP27 Total Street Flow: 5.6cfs			
Flow Intercepted: 5.6cfs Inlet Size: 10' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 1.5%, capacity = 10.9cfs, okay				
(100-year storm) Tributary Basins: C7.4+C7.5 Upstream flowby:	Inlet/MH Number: Inlet DP27 Total Street Flow: 12.5cfs			
Flow Intercepted: 12.5cfs Inlet Size: 10' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 1.5%, capacity = 44.8cfs (half street) is okay				

Design Point 28

Design Point 28 is the storm sewer pipe flow from Design Pt 26 and Design Point 27. The total pipe flow is 16.4cfs/36.5cfs in the 5/100-year storm events in the storm sewer.

Design Point 29

Design Point 29 is the total developed flow into Pond C2.2 from the C5 basins, C7 basins, and from Pond C3 outflow. The total inflow was calculated by the full spectrum Xcel worksheets by adding the CUHP hydrograph for the C5+C7 basins to the Pond C3 outflow hydrograph (see appendix for hydrograph spreadsheet). The total inflow to Pond C2.2 is 59.5cfs/131.3cfs in the 5/100-year storm events (see xcel spreadsheet).

Design Point 29a

Design Point 29a is the total developed outflow from Pond C2.2 calculated using the Full Spectrum EDB Xcel design spreadsheet. The total outflow is 2.7cfs/42.9cfs in the 5/100-year storm events in the 30" storm sewer pipe. The outflow rates are lower than the flows in the Lorson Ranch East MDDP (6cfs/61cfs) for this pond. The 3.3cfs/18.1cfs reduction in the pond release rate will compensate for the Pond C2.3 higher release rates. See Design Point 25. Both of these ponds flow to an existing 54" storm sewer located in Fontaine Boulevard.

Design Point 29a (Emergency Overflow Conveyance)

As discussed in the Lorson Ranch East MDDP, Pond C2.2 will include a full spectrum pond outlet structure and an emergency overflow conveyance structure just downstream of the full spectrum pond. A 30" storm sewer from the full spectrum outlet structure will connect to the conveyance structure. The conveyance structure is a 25' CDOT Type R inlet with an 18" throat opening and 2' high concrete inflow apron from the spillway to the structure designed to handle 130cfs per the Fontaine Boulevard FDR (CDR183) A 48" RCP outflow pipe will connect the conveyance structure to the existing 54" storm sewer in Fontaine Boulevard.

Design Point 30

Design Point 30 is located north of Walleye Drive/Grayling Drive and accepts flows from future development from Basin C8.3, C8.5, and C4.1-ex. A storm sewer will be stubbed out from Walleye Drive to collect a portion of this future flow and will convey it south in storm sewer to Design Point 32. The remaining flow will flow south in the future street to Design Point 31. The total future flow is 24.3cfs/59.4cfs in the 5/100-year storm events. It is estimated that 5.0cfs/10.0cfs in the 5/100-year storm events will be directed south to Design Point 31 via future curb/gutter. It is estimated that 19.3cfs/49.4cfs in the 5/100-year storm events will be directed south to Design Point 32 via a 30" storm sewer stub from Walleye Drive/Grayling Drive. Interim existing flows (prior to grading) from Basin C4.2ex will flow west overland to a temporary sediment basin at Design Point 34.

Design Point 31a

Design Point 31a is located north of Fontaine Boulevard at the NE corner of Walleye Drive/Sanderling Street and accepts flows from future development from Basin C8.1. A storm sewer will be stubbed out from Walleye Drive to collect the future flow and will convey it north in storm sewer to Design Point 31c. The remaining flow will flow north in the east side of Walleye Drive via curb/gutter to Design Point 31. The total future flow is 13.9cfs/30.9cfs in the 5/100-year storm events in the storm sewer. It is estimated that 5.0cfs/10.0cfs in the 5/100-year storm events will be directed north to Design Point 31 via curb/gutter. It is estimated that 8.9cfs/20.9cfs in the 5/100-year storm events will be directed to Design Point 31c via a 30" storm sewer stub at Sanderling Street. This design point is located at a high point and does not receive any interim existing flows from the undeveloped land east of Walley Drive.

Design Point 31b

Design Point 31b is located east of Walleye Drive/Grayling Drive and accepts flows from future development from Basin C8.4. A storm sewer will be stubbed out from Walleye Drive to collect this future flow and will convey it west in storm sewer to Design Point 32. The total future flow is 13.2cfs/29.4cfs in the 5/100-year storm events. These flows will be directed west to Design Point 32 via a 24" storm sewer stub from Walleye Drive/Grayling Drive. This design point is only for future flows into the storm sewer system which will be capped until development occurs to the east.

Design Point 31

Design Point 31 is located at the east side of Walleye Drive and Grayling Drive at a low point. Flow from existing Basin C3.1-ex (15.0cfs in 100-yr) will flow overland to curb/gutter to this design point before future development occurs in Basin C8.1 and C8.2. This inlet is designed for ultimate conditions which are higher flow rates than existing flows. Existing runoff is 15cfs in the 100-year storm event which is not likely to cause excessive erosion/sediment to be deposited in the street and the runoff is not a concentrated flow.

(<u>5-year storm)</u> Tributary Basins: C8.2 Upstream flowby: 10cfs from DP30 & DP31a	Inlet/MH Number: Inlet DP31 Total Street Flow: 14.5cfs			
Flow Intercepted: 14.5cfs Inlet Size: 25' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 0.6%, capacity = 10.6cfs, okay				
(100-year storm) Tributary Basins: C8.2 Upstream flowby: 20cfs from DP30 & DP31a	Inlet/MH Number: Inlet DP31 Total Street Flow: 30.0cfs			
Flow Intercepted: 30.0cfs Inlet Size: 25' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 0.6%, capacity = 32.1cfs (half street) is okay				

Design Point 31c

Design Point 31c is the storm sewer pipe flow (36" RCP) from Design Pt 31a (storm sewer) and Design Point 31. The total pipe flow is 23.4cfs/50.9cfs in the 5/100-year storm events in the storm sewer.

Design Point 32

Design Point 32 is the storm sewer pipe flow (42" RCP) from Design Pt 30 (storm sewer), Design Point 31b (storm sewer) and Design Point 31c. The total pipe flow is 45.1cfs/105.4cfs in the 5/100-year storm events in the storm sewer from the Xcel spreadsheets.

Design Point 33

Design Point 33 is located at the NE corner of Grayling Drive/Scrub Jay Trail and accepts flows from future development from Basin C8.5 and Basin C8.6. A future storm sewer will be stubbed out from Design Point 34 to collect this future flow. The total future flow is 7.3cfs/15.3cfs in the 5/100-year storm events.

Design Point 34

Design Point 34 is located at the NW corner of Grayling Drive/Scrub Jay Trail and accepts runoff from future Basin C8.7. It is estimated that 30.9cfs/69.2cfs in the 5/100-year storm events will be collected at this Design Point. A 25' Type R inlet will be constructed at this time to complete the downstream storm sewer system. A future storm sewer system and inlets connected to the storm sewer will need to be designed to collect flow from Basin C8.7 and Design Point 33 in Scrub Jay Trail.

Design Point 34a is located at the NW corner of Grayling Drive/Scrub Jay Trail and is the storm sewer flow (42" RCP) from future developed flow from Basins C8.5, C8.6, and C8.7 It is estimated that 38.2cfs/84.5cfs in the 5/100-year storm events is flowing in this storm sewer.

Design Point 34b

Design Point 34b is the storm sewer pipe flow (48" RCP) from Design Pt's 34a and Design Point 32. The total pipe flow is 83.3cfs/189.9cfs in the 5/100-year storm events in the storm sewer.

Design Point 35

Design Point 35 is the total developed future flow into Pond C4 from the C8 basins and Basin C10.10. The total inflow was calculated by the full spectrum Xcel worksheets. (see appendix for hydrograph spreadsheet). The total inflow to Pond C4 is 131.6cfs/277cfs in the 5/100-year storm events (see xcel spreadsheet).

Design Point 35a

Design Point 35a is the total developed outflow from Pond C4 calculated using the Full Spectrum EDB Xcel design spreadsheet. The total outflow is 16.5cfs/43.7cfs in the 5/100-year storm events in the 24" storm sewer pipe. The outflow rates are similar to the flows in the Lorson Ranch East MDDP (12.4cfs/40.5cfs) for this pond. In the interim state where there is no upstream development in the C8 basins and no full spectrum outlet structure, runoff comes from existing Basin C4.2-ex/C4.1-ex into the detention pond. Runoff will enter Pond C4 and will be detained/released by a 24" storm sewer pipe located at the west end of the pond. Pond C4 in the interim state was modeled in hydraflow to make sure the outflow rates do not exceed the future pond discharge downstream. The hydraflow model calculated the interim pond outflow (24" pipe outlet) to be 10.3cfs/21cfs in the 5/100-year storm events which is less than the designed future flows.

Design Point 36a Design Point 36a is located at the east side of Big Bird Drive at a low point.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C10.4 0 cfs	Inlet/MH Number: Inlet DP36a Total Street Flow: 5.2cfs		
Flow Intercepted: 5 Inlet Size: 5' type R,		Flow Bypassed:		
Street Capacity: Street slope = 0.82%, capacity = 8.0cfs, okay				
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C10.4 0 cfs	Inlet/MH Number: Inlet DP36a Total Street Flow: 11.6cfs		
Flow Intercepted: Inlet Size: 5' type F		Flow Bypassed: 2.3cfs to DP36		
Street Capacity: Street slope = 0.82%, capacity = 33.4cfs (half street) is okay				

Design Point 36

Design Point 36 is located at the west side of Big Bird Drive at a low point.

(<u>5-year storm)</u>					
j	C10.1-C10.3	Inlet/MH Number:	Inlet DP36		
Upstream flowby:	0 cfs	Total Street Flow:	7.2cfs		
Flow Intercepted: 7 Inlet Size: 15' type R		Flow Bypassed:			
Street Capacity: Street slope = 0.82%, capacity = 8.0cfs, okay					
(100-year storm)					
Tributary Basins:	C10.4	Inlet/MH Number:	Inlet DP36		
-	2.3cfs from Des.Pt.36a	Total Street Flow:	18.2cfs		
1					
Flow Intercepted: Inlet Size: 15' type		Flow Bypassed:	0		

Design Point 37

Design Point 37 is the storm sewer pipe flow from Design Pt 36a and Design Point 36. The total pipe flow is 12.4cfs/27.5cfs in the 5/100-year storm events in the storm sewer.

Design Point 37a

Design Point 37a is the total developed flow into Pond C3 from the C10 basins and from Pond C4 outflow. The total inflow was calculated by the full spectrum Xcel worksheets by adding the CUHP hydrograph for the C10 basins to the Pond C4 outflow hydrograph (see appendix for hydrograph spreadsheet). The total inflow to Pond C2.2 is 41.2cfs/111.6cfs in the 5/100-year storm events (see xcel spreadsheet).

Design Point 37b

Design Point 37b is the total developed outflow from Pond C3 calculated using the Full Spectrum EDB Xcel design spreadsheet. The total outflow is 4.9cfs/32.1cfs in the 5/100-year storm events in the existing 24" storm sewer pipe. The outflow rates are higher than the flows in the Lorson Ranch East MDDP (5.0cfs/18.0cfs) for this pond but the overall downstream flow is reduced in Pond C2.2 located directly downstream.

Design Point 38a (ultimate development conditions)

Design Point 38a is located west of Lamprey Drive and Grayling Drive and accepts flows from future development from Basin C10.10. When this basin in developed, a 24" storm sewer will be constructed from Pond C4 to collect flows at this design point and convey them east to Pond C4 for detention and water quality treatment. The total future flow accepted is 11.5cfs/25.3cfs in the 5/100-year storm events in the storm sewer.

Design Point 38a (interim conditions)

Design Point 38a is located within existing Basin C5.2-ex. In interim conditions, existing runoff from undeveloped areas in Basin C5.2-ex will flow overland to the southwest to Grayling Drive. Runoff will then travel southeast in curb/gutter to a Type R inlet at Design Point 40. Also see Design Point 39 for a analysis of the street capacity of the east side of Grayling Drive from Basin C5.2-ex.

Design Point 38

Design Point 38 is located at the NE corner of Grayling Drive and Lamprey Drive and accepts flows from future development from Basin C10.7 and C5.1-ex. The runoff will be conveyed to Design Point 39 via curb/gutter. The total future flow accepted is 6.8cfs/21.9cfs in the 5/100-year storm events.

Design Point 39 (ultimate development conditions)

Design Point 39 has been added to analyze the street flow on the east side of Grayling Drive north of Design Point 40. The total future flow accepted is from Basin C5.1-ex, C10.7, and C10.8 flowing in the curb/gutter on the north side of Grayling Drive. The total curb/gutter flow is 8.8cfs/25.7cfs in the 5/100-year storm events. The street capacity of Grayling Drive is 10.6cfs/32.1cfs in the 5/100-year storm events at a street slope of 0.6%.

Design Point 39 (interim conditions)

Design Point 39 has been added to analyze the street flow on the east side of Grayling Drive north of Design Point 40. In the interim conditions with no development east of Grayling Drive, runoff from basins C5.1-ex and C5.2-ex will flow overland to the east curb line of Grayling Drive then will flow southeast to Inlet DP-40. The total interim (existing) flow is 4.8cfs/31.4cfs in the 5/100-year storm events. The street capacity of Grayling Drive is 10.6cfs/32.1cfs in the 5/100-year storm events at a street slope of 0.6%. In comparison to the ultimate conditions at this design point the 5-year flow is less than ultimate and the 100-year is slightly above ultimate conditions at the downstream inlet DP-40. If the inlet at DP-40 is clogged or is under capacity for the 100-year storm, runoff will flow directly overland to Pond C3. The interim conditions can be handled by the storm sewer system in Grayling Drive.

Design Point 40

Design Point 40 is located on the north side of Grayling Drive at a low point.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C10.6+C10.8+C10.9+Des.Pt.38 0 cfs	Inlet/MH Number: Inlet DP40 Total Street Flow: 14.7cfs		
Flow Intercepted: 7 Inlet Size: 25' type F		Flow Bypassed:		
	street slope = 0.6%, capacity = 10 directly to Inlet DP40	.6cfs, street capacity okay since Basin		
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C10.6+C10.8+C10.9+Des.Pt.38 0cfs	Inlet/MH Number: Inlet DP40 Total Street Flow: 38.5cfs		
Flow Intercepted: Inlet Size: 25' type		w Bypassed: 2.9cfs to Des.Pt 40a		
Street Capacity: Street slope = 0.6%, capacity = 32.1cfs (half street) street capacity okay since Basin C10.9 (13.9cfs) flows directly to Inlet DP40				

In existing conditions Inlet DP40 accepts flow from Design Point 5x discussed in the existing hydrological conditions section of this report. (4.2cfs/27.2cfs in the 5/100-year storm events) which is less than the total developed flow.

Design Point 40a

Design Point 40a is located on the south side of Grayling Drive at a low point.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C10.5 0 cfs	Inlet/MH Number: Total Street Flow:	
Flow Intercepted: 1 Inlet Size: 5' type R,		Flow Bypassed:	
Street Capacity: Str	reet slope = 0.6%, capacity = 10.6cfs	, street capacity okag	ý
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C10.5 2.9cfs from Des.Pt. 40	Inlet/MH Number: Total Street Flow:	
Flow Intercepted: Inlet Size: 5' type R		Flow Bypassed:	0
Street Capacity: Str	reet slope = 0.6%, capacity = 32.1cfs	(half street) street ca	apacity okay

Design Point 40b

Design Point 40b is the storm sewer pipe flow from Design Pt. 40 and Design Point 40a . The total pipe flow is 16.5cfs/42.5cfs in the 5/100-year storm events in the storm sewer.

Design Point 40c

Design Point 40c is the storm sewer pipe flow from Design Pt. 35a (Pond C4 outflow) and Design Point 40b. The total pipe flow is 33.0cfs/86.2cfs in the 5/100-year storm events in the storm sewer.

Design Point 41

Design Point 41 is located on the south side of Yellowthroat Terrace at a low point.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C12.1 0 cfs	Inlet/MH Number: Inlet DP41 Total Street Flow: 2.4cfs		
Flow Intercepted: 2 Inlet Size: 5' type R		Flow Bypassed:		
Street Capacity: St	treet slope = 1.0%, capacity = 9.0cfs	s, street capacity okay		
(100-year storm) Tributary Basins: Upstream flowby:	C12.1	Inlet/MH Number: Inlet DP41 Total Street Flow: 5.4cfs		
Flow Intercepted: Inlet Size: 5' type F		Flow Bypassed: 0		
Street Capacity: St	treet slope = 1.0%, capacity = 37.3c	fs (half street) street capacity okay		
<u>Design Point 42</u> Design Point 42 is loc	cated on the south side of Bobolink	Trail west of Murrelet Drive.		
<u>(5-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP42 Total Street Flow: 6.4cfs		
Flow Intercepted: 6 Inlet Size: 15' type F		Flow Bypassed:		
Street Capacity: Street slope = 0.65%, capacity = 7.0cfs, street capacity okay				
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C12.2+C12.3	Inlet/MH Number: Inlet DP42 Total Street Flow: 14.1cfs		
Flow Intercepted: Inlet Size: 15' type		w Bypassed: 2.6cfs to Des.Pt.43		

Street Capacity: Street slope = 0.65%, capacity = 30.0cfs (half street) street capacity okay

Design Point 42a

Design Point 42a is the storm sewer pipe flow from Design Pt. 42 and Design Point 41. The total pipe flow is 8.8cfs/16.9cfs in the 5/100-year storm events in the storm sewer.

Design Point 43

Design Point 43 is located at the SW corner of Lamprey Drive and Murrelet Drive.

(<u>5-year storm)</u> Tributary Basins: Upstream flowby:	C12.4+C12.5 0 cfs	Inlet/MH Number: Inlet DP43 Total Street Flow: 7.3cfs
Flow Intercepted: Inlet Size:		Flow Bypassed: 7.3cfs to Des.Pt. 45a
Street Capacity: S	treet slope = 0.8%, capacity	v = 8.0cfs, street capacity okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C12.4+C12.5 2.6cfs from Des.Pt. 42	Inlet/MH Number: Inlet DP43 Total Street Flow: 18.9cfs
Flow Intercepted: Inlet Size:		Flow Bypassed: 18.9cfs to Des.Pt.45a
Street Capacity: Street	treet slope = 0.8%, capacity	v = 33.4cfs (half street) street capacity okay
<u>Design Point 44</u> Design Point 44 is loo	cated at the SE corner of La	amprey Drive and Murrelet Drive at a low point.
(5-year storm) Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP44 Total Street Flow: 8.2cfs
Flow Intercepted: Inlet Size: 10' type I		Flow Bypassed:
Street Capacity: S	treet slope = 1.0%, capacity	v = 9.0cfs, street capacity okay
(100-year storm) Tributary Basins: Upstream flowby:	C12.6-C12.8	Inlet/MH Number: Inlet DP44 Total Street Flow: 17.7cfs

Flow Intercepted: 8.3cfs Inlet Size: 10' type R, sump

Flow Bypassed: 9.4cfs to Des.Pt. 45a

Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) street capacity okay

Design Point 45

Design Point 45 is the storm sewer pipe flow from Design Pt. 42a and Design Point 44. The total pipe flow is 17.0cfs/25.2cfs in the 5/100-year storm events in the storm sewer.

<u>Design Point 45a</u> Design Point 45a is located on the south side of Lamprey Drive west of Murrelet Drive.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C12.9 7.3cfs from Des.Pt.43	Inlet/MH Number: Inlet DP45a Total Street Flow: 8.0cfs	
Flow Intercepted: Inlet Size: existing 1		Flow Bypassed: 0.1cfs	
Street Capacity: St	reet slope = 1.9%, capacity =	18.4cfs, street capacity okay	
	C12.9 23.3cfs from DP43+44	Inlet/MH Number: Inlet DP45a Total Street Flow: 30.6 cfs	
Flow Intercepted: Inlet Size: existing	17.5cfs 15' type R, on-grade	Flow Bypassed: 13.1cfs in Lamprey Drive	
Street Capacity: St	reet slope = 1.9%, capacity =	50.4cfs (half street) street capacity okay	

Design Point 46 (street flow)

Design Point 46 was added to analyze the street flow in the south side of Lamprey Drive. The allowable runoff bypassing Inlet DP45a is 0cfs/33.0cfs in the 5/100-year storm events per the final drainage report for CDR183. The total flow bypassing Inlet DP45a is 0.1cfs/13.1cfs in the 5/100-year storm events in the south curb/gutter of Lamprey Drive. Both storm events meets the CDR183 drainage report criteria.

Design Point 46 (storm sewer flow)

Design Point 46 is the storm sewer pipe flow from Design Pt. 45a and Design Point 45. The total pipe flow is 24.9cfs/40.0cfs in the 5/100-year storm events in the storm sewer. The allowable flow in the storm sewer is 33.0cfs/40.5cfs in the 5/100-year storm events in the storm sewer per the final drainage report for CDR183. The storm sewer system meets the CDR183 drainage report criteria.

Design Point 47a

Design Point 47a is located south of Lorson Boulevard east of Lamprey Drive and accepts flows from future development from Basin D1.1. An 18" RCP storm sewer will be stubbed out to collect future flow at this design point. The total future flow accepted is 4.6cfs/10.1cfs in the 5/100-year storm events in the storm sewer.

Design Point 47b

Design Point 47b is located south of Lorson Boulevard east of Lamprey Drive and accepts flows from future development from D1.2. An 18" RCP storm sewer will be stubbed out to collect future flow at this design point. The total future flow accepted is 5.9cfs/13.0cfs in the 5/100-year storm events in the storm sewer.

<u>Design Point 47c</u> Design Point 47c is located on the south side of Lorson Boulevard east of Lamprey Drive.

(<u>5-year storm)</u> Tributary Basins: D1.3 Upstream flowby:	Inlet/MH Number: Inlet DP47c Total Street Flow: 3.2cfs		
Flow Intercepted: 3.2cfs Inlet Size: 10' type R, on-grade	Flow Bypassed:		
Street Capacity: Street slope = 4.4%, cap	pacity = 16.2cfs, okay		
(100-year storm) Tributary Basins: D1.3 Upstream flowby:	Inlet/MH Number: Inlet DP47c Total Street Flow: 6.0cfs		
Flow Intercepted: 5.44cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 0.56cfs to Inlet DP47e		
Street Capacity: Street slope = 4.4%, capacity = 39.7cfs (half street) is okay			

<u>Design Point 47d</u>

Design Point 47d is located on the north side of Lorson Boulevard east of Lamprey Drive.

(5-year storm) Tributary Basins: D1.4 Upstream flowby:	Inlet/MH Number: Inlet DP47d Total Street Flow: 3.5cfs		
Flow Intercepted: 2.48cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 1.02cfs to Des. Pt 47g		
Street Capacity: Street slope = 4.4%, cap	acity = 16.2cfs, okay		
<u>(100-year storm)</u> Tributary Basins: D1.4 Upstream flowby:	Inlet/MH Number: Inlet DP47d Total Street Flow: 7.6cfs		
Flow Intercepted: 3.57cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 4.03cfs to Des. Pt 47g		
Street Capacity: Street slope = 4.4%, capacity = 39.7cfs (half street) is okay			

Design Point 47

Design Point 47 is the storm sewer pipe flow in Lorson Boulevard. A 24" RCP storm sewer will be constructed west to an existing manhole constructed as part of Lorson Ranch East Filing No. 4. The total pipe flow is 16.18cfs/32.11cfs in the 5/100-year storm events in the storm sewer. The allowable flow in this storm sewer per the Lorson Ranch East Filing No. 1 FDR (Des. Pt 59b) is 23cfs/60cfs in the 5/100-year storm events.

<u>Design Point 47e</u> Design Point 47e is located on the south side of Lorson Boulevard east of Lamprey Drive.

<u>(5-year storm</u> Tributary Basins: Upstream flowby:	D1.5	Inlet/MH Number: Inlet DP47e Total Street Flow: 2.60cfs	
Flow Intercepted: 2 Inlet Size: 10' type R		Flow Bypassed:	
Street Capacity: Str	reet slope = 2.7%, capa	acity = 18.5cfs, okay	
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP47e 47c Total Street Flow: 9.56cfs	
Flow Intercepted: Inlet Size: 10' type		Flow Bypassed: 2.1cfs downstream	
Street Capacity: Street slope = 2.7%, capacity = 45.1cfs (half street) is okay			

<u>Design Point 47f</u>

Design Point 47f is the total pipe flow in the existing 36" storm sewer in Lorson Boulevard. Flow in the pipe is from Design Point 47, Design Point 47e, and from Lorson Ranch East Filing No. 4 (Des. Pt. 59a). The total pipe flow is 20.88cfs/43.96cfs in the 5/100-year storm events in the storm sewer. The allowable flow in this storm sewer per the Lorson Ranch East Filing No. 4 FDR (Des. Pt 59c) is 25.7cfs/75.4cfs in the 5/100-year storm events.

Design Point 47g

Design Point 47g is located at an existing 15' Type R inlet at the NE corner of Lamprey Drive/Lorson Boulevard. This design point was added to analyze developed runoff at the existing inlet coming from the east. The runoff at Design Point 47g (from the east) is from Basin D1.6 and runby from Design Point 47d. The total street flow from the east is 1.92cfs/9.83cfs in the 5/100-year storm events in the storm sewer. The allowable street flow (from the east) per the Lorson Ranch East Filing No. 4 FDR (Basin D2.3) is 2.7cfs/9.7cfs in the 5/100-year storm events. The 100-year is slightly over the allowable but will not negatively impact downstream facilities. The existing inlet does not have to be modified.

6.0 DETENTION AND WATER QUALITY PONDS

Detention and Storm Water Quality for The Hills at Lorson Ranch is required per El Paso County criteria. We have implemented the Full Spectrum approach for detention for the Denver Urban Drainage Districts specifications. There are six permanent full spectrum ponds proposed for this development which will incorporate storm water quality features and comply with the Lorson Ranch East MDDP. The ponds have been sized and include access roads, outlet pipes, overflow structures, and low flow channels. This drainage report provides design information on the outlet structure, trickle channel, and the forebays.

Full Spectrum Pond Construction Requirements

There are two ponds that have been previously graded (Pond C1 and Pond C3) and four ponds that will be graded with this development (Pond C2.1, C2.2, C2.3, C4). Each pond will be discussed in this section including what type of structure is proposed and when the structures will be built. Structures built under CDR 20-007 will occur in 2020. Structures built under the first plat in The Hills will occur in 2020-2021. The remaining structures will be built in future plat submittals as development occurs east/north of this site.

Design calculations for all full spectrum ponds are included in this report. Grading of the ponds is shown on the Early Grading plans for The Hills at Lorson Ranch at this time in the Preliminary Plan submittal. The final design will include a 15' wide gravel access road at a maximum 10% slope to the pond bottom, forebay, and outlet structure. The final design of the full spectrum ponds will consist of an outlet structure, storm sewer outfall, concrete low flow channels, sediment forebays, and overflow weirs. Soil borings, embankment, slope, and compaction requirements for detention ponds can be found in the geotechnical report for the The Hills at Lorson Ranch prepared by RMG.

Detention Pond C1

This is an on-site permanent full spectrum detention pond that includes water quality and discharges downstream to a storm sewer system in Fontaine Boulevard. Pond C1 was graded in 2019 and will be made larger with this grading plan. The outlet Structure, low flow channel, forebays, and overflow wall will be built as part of the first final plat submittal. Pond C1 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. The full spectrum print outs are in the appendix of this report. See Design Point 11a for discussion on outflow comparisons between the Lorson Ranch East MDDP and this final design. See map in appendix for watershed areas.

- Watershed Area: 76 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B
- Zone 1 WQCV: 1.397ac-ft, WSEL: 5747.04
- Zone 2 EURV: 4.505ac-ft, WSEL: 5749.21, Top outlet structure set at 5749.50, 3'x6' outlet structure
- (5-yr): 5.006ac-ft, WSEL: 5749.54, 7.1cfs
- Zone 3 (100-yr): 10.736ac-ft, WSEL: 5752.80, 18.1cfs
- Pipe Outlet: 18" RCP at 0.5%
- Overflow Spillway: 28' wide bottom, elevation=5753.40, 4:1 side slopes, flow depth=1.44' 1.16' freeboard
- Micropool Elevation: 5743.40

Detention Pond C2.1

This is an on-site permanent full spectrum detention pond that includes water quality and discharges downstream to Pond C2.3. Pond C2.1 will be graded with this grading plan. The outlet Structure and overflow wall will be built as part of the first final plat. The pond forebay and low flow channel will be built as part of the CDR 20-007 project. Pond C2.1 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. The full spectrum print outs are in the appendix of this report. See Design Point 15a for discussion on outflow comparisons between the Lorson Ranch East MDDP and this final design. See map in appendix for watershed areas.

- Watershed Area: 74.5 acres (Future Area)
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B
- Zone 1 WQCV: 1.377ac-ft, WSEL: 5763.42
- Zone 2 EURV: 4.415ac-ft, WSEL: 5766.20, Top outlet structure set at 5766.20, 8'x6' outlet structure
- (5-yr): 4.694ac-ft, WSEL: 5766.44, 12.8cfs
- Zone 3 (100-yr): 7.829ac-ft, WSEL: 5768.80, 65.0cfs
- Pipe Outlet: 30" RCP at 0.5%
- Overflow Spillway: 25' wide bottom, elevation=5769.30, 4:1 side slopes, flow depth=1.69' 1.01' freeboard
- Micropool Elevation: 5760.00

Detention Pond C2.2

This is an on-site permanent full spectrum detention pond that includes water quality and discharges downstream to an existing storm sewer in Fontaine Boulevard. Inflow to this pond is from direct tributary development and outflow from Pond C3. The inflow hydrograph has been modeled in the full spectrum spreadsheets by adding the direct tributary area CUHP hydrograph to the upstream pond outflow hydrograph of Pond C3. This combined hydrograph can be found in the appendix of this report. Pond C2.2 will be graded with this grading plan. The outlet structure, overflow wall, pond forebay and low flow channel will be built as part of the CDR 20-007 project. Pond C2.2 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum print outs are in the appendix of this report. See Design Point 29a for discussion on outflow comparisons between the Lorson Ranch East MDDP and this final design. See map in appendix for watershed areas. Pond C2.2 will require an emergency overflow conveyance structure located downstream of the full spectrum outlet in accordance with the Lorson Ranch East MDDP. See Design Point 29a for discussion of the comparison of the conveyance structure.

- Watershed Area: 45.0 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B (95%), Group C/D (5%)
- Zone 1 WQCV: 0.829ac-ft, WSEL: 5747.25
- Zone 2 EURV: 2.658ac-ft, WSEL: 5749.17, Top outlet structure set at 5751.00, 8'x6' outlet structure
- (5-yr): 4.475ac-ft, WSEL: 5760.88, 2.7cfs
- Zone 3 (100-yr): 6.67ac-ft, WSEL: 5752.75, 42.9cfs
- Pipe Outlet: 30" RCP
- Overflow Spillway: 20' wide bottom, elevation=5754.00, 4:1 side slopes, flow depth=1.51' 1.49' freeboard

• Micropool Elevation: 5744.00

Detention Pond C2.3

This is an on-site permanent full spectrum detention pond that includes water quality and discharges downstream to an existing storm sewer in Fontaine Boulevard. Inflow to this pond is from direct tributary development and outflow from Pond C2.1. The inflow hydrograph has been modeled in the full spectrum spreadsheets by adding the direct tributary area CUHP hydrograph to the upstream pond outflow hydrograph from Pond C2.1. This combined hydrograph can be found in the appendix of this report. Pond C2.2 will be graded with this grading plan. The outlet structure, overflow wall, pond forebay and low flow channel will be built as part of the CDR 20-007project. Pond C2.3 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum print outs are in the appendix of this report. See Design Point 25 for discussion on outflow comparisons between the Lorson Ranch East MDDP and this final design. See map in appendix for watershed areas. Pond C2.3 will require an emergency overflow conveyance structure located downstream of the full spectrum outlet in accordance with the Lorson Ranch East MDDP. See Design Point 25 for discussion of the conveyance structure.

- Watershed Area: 16.0 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B (40%), Group C/D (60%)
- Zone 1 WQCV: 0.296ac-ft, WSEL: 5746.57
- Zone 2 EURV: 0.887ac-ft, WSEL: 5747.61, Top outlet structure set at 5751.67, 8'x6' outlet structure
- (5-yr): 1.993ac-ft, WSEL: 5749.27, 5.5cfs
- Zone 3 (100-yr): 5.014ac-ft, WSEL: 5752.96, 64.9cfs
- Pipe Outlet: 30" RCP
- Overflow Spillway: 20' wide bottom, elevation=5753.50, 4:1 side slopes, flow depth=1.17' 1.33' freeboard
- Micropool Elevation: 5744.17

Detention Pond C3

This is an on-site permanent full spectrum detention pond that includes water quality and discharges downstream to Pond C2.2. Inflow to this pond is from direct tributary development and outflow from Pond C4. The inflow hydrograph has been modeled in the full spectrum spreadsheets by adding the direct tributary area CUHP hydrograph to the upstream pond outflow hydrograph of Pond C4. This combined hydrograph can be found in the appendix of this report. Pond C3 was graded in 2018 as part of the Lorson Ranch East Filing No. 2 final plat. The outlet Structure, low flow channel, forebays, and overflow wall will be built as part of the first final plat submittal. Pond C3 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. The full spectrum print outs are in the appendix of this report. See Design Point 37b for discussion on outflow comparisons between the Lorson Ranch East MDDP and this final design. See map in appendix for watershed areas.

- Watershed Area: 26.0 acres
- Watershed Imperviousness: 52%
- Hydrologic Soils Group B (20%), Group C/D (80%)
- Zone 1 WQCV: 0.463ac-ft, WSEL: 5758.01
- Zone 2 EURV: 1.322ac-ft, WSEL: 5759.08, Top outlet structure set at 5761.90, 6'x6' outlet structure
- (5-yr): 3.348ac-ft, WSEL: 5760.92, 4.9cfs
- Zone 3 (100-yr): 7.459ac-ft, WSEL: 5764.02, 32.1cfs

- Pipe Outlet: 24" RCP at 0.5%
- Overflow Spillway: 20' wide bottom, elevation=5764.50, 4:1 side slopes, flow depth=1.32' 1.68' freeboard
- Micropool Elevation: 5755.17

Detention Pond C4

This is a permanent full spectrum detention pond that includes water quality and discharges downstream to Pond C3. Pond C4 will be graded with this grading plan. The outlet Structure and overflow wall will be built in the future. The pond forebay and low flow channel will be built as part of the CDR 20-007 project. Pond C4 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. The full spectrum print outs are in the appendix of this report. See Design Point 35a for discussion on outflow comparisons between the Lorson Ranch East MDDP and this final design. See map in appendix for watershed areas.

- Watershed Area: 81.00 acres (Future Area)
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B (40%), Group C/D (60%)
- Zone 1 WQCV: 1.488ac-ft, WSEL: 5767.97
- Zone 2 EURV: 4.477ac-ft, WSEL: 5770.41, Top outlet structure set at 5770.50, 6'x6' outlet structure
- (5-yr): 3.934ac-ft, WSEL: 5770.84, 16.5cfs
- Zone 3 (100-yr): 10.152ac-ft, WSEL: 5774.34, 43.7cfs
- Pipe Outlet: 24" RCP at 0.5%
- Overflow Spillway: 30' wide bottom, elevation=5775.00, 4:1 side slopes, flow depth=1.87' 1.13' freeboard
- Micropool Elevation: 5765.00

C12 basins

Developed runoff from the "C12" basins will be treated for water quality/detention by existing Pond C5 located downstream next to the East Tributary of Jimmy Camp Creek per the Lorson Ranch East Filing No. 1 drainage report. The flows are in conformance with the design of Pond C5. See Lorson Ranch East Filing No. 1 FDR.

D1 basins

Developed runoff from the "D1" basins will be treated for water quality/detention by existing Pond D2 located downstream next to the East Tributary of Jimmy Camp Creek per the Lorson Ranch East Filing No. 1 drainage report.

Water Quality Design

Water quality will be provided by these six permanent extended detention basins for the entire PUD Area and for the CDR 20-007 area. Temporary sediment basins have been added along the east side of the PUD area to prevent sediment from entering streets and storm sewer system with the exception of two areas. Existing Basin C3.1-ex (8.36ac) will be allowed to flow overland to Walleye Drive. Existing Basin C5.1-ex/C5.2-ex will be allowed to flow overland to Grayling Drive. Both of these areas will be monitored to ensure sediment does not deposit into the streets/storm sewer. Rock check dams or other semi-permanent erosion control measure could be constructed should erosion occur.

7.0 DRAINAGE AND BRIDGE FEES

The Hills at Lorson Ranch is located within the Jimmy Camp Creek drainage basin which is currently a

fee basin in El Paso County. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land as part of the plat recordation process.

Lorson Ranch Metro District will compile and submit to the county on a yearly basis the Drainage and bridge fees for the approved plats and shall show all credits they have received for the same yearly time frame.

Item	Quantity	Unit	Unit Cost	Item Total
Rip Rap	100	CY	\$50/CY	\$5,000
Inlets/Manholes	82	EA	\$3000/EA	\$246,000
18" Storm	1490	LF	\$35	\$52,150
24" Storm	2204	LF	\$40	\$88,160
30" Storm	625	LF	\$45	\$28,125
36" Storm	926	LF	\$55	\$50,930
42" Storm	3065	LF	\$65	\$199,225
48" Storm	442	LF	\$85	\$37,570
54" Storm	80	LF	\$100	\$8,000
			Subtotal	\$715,160
			Eng/Cont (10%)	\$71,516
			Total Est. Cost	\$786,676

 Table 7.1: Public Drainage Facility Costs (non-reimbursable)

Table 7.2: Lorson Ranch Metro District Drain	age Facility Costs	(non-reimbursable)
--	--------------------	--------------------

Item	Quantity	Unit	Unit Cost	Item Total
Full Spectrum Ponds and Outlet	6	LS	\$80,000	\$480,000
			Subtotal	\$480,000
			Eng/Cont (15%)	\$72,000
			Total Est. Cost	\$552,000

8.0 FOUR STEP PROCESS

The site has been developed to minimize wherever possible the rate of developed runoff that will leave the site and to provide water quality management for the runoff produced by the site as proposed on the development plan. The following four step process should be considered and incorporated into the storm water collection system and storage facilities where applicable.

Step 1: Employ Runoff Reduction Practices

The Hills at Lorson Ranch has employed several methods of reducing runoff.

- The street configuration was laid out to minimize the length of streets. Many streets are straight and perpendicular resulting in lots with less wasted space.
- There are large open space buffers under the 325' wide electric transmission easement
- Construct six Full Spectrum Detention Ponds. The full spectrum detention mimics existing storm discharges and includes water quality.

Step 2: Implement BMP's that Slowly Release the Water Quality Capture Volume

Treatment and slow release of the water quality capture volume (WQCV) is required. The Hills at Lorson Ranch will construct six full spectrum stormwater detention pond which includes Water Quality Volumes and WQ outlet structures.

Step 3: Stabilize Drainageways

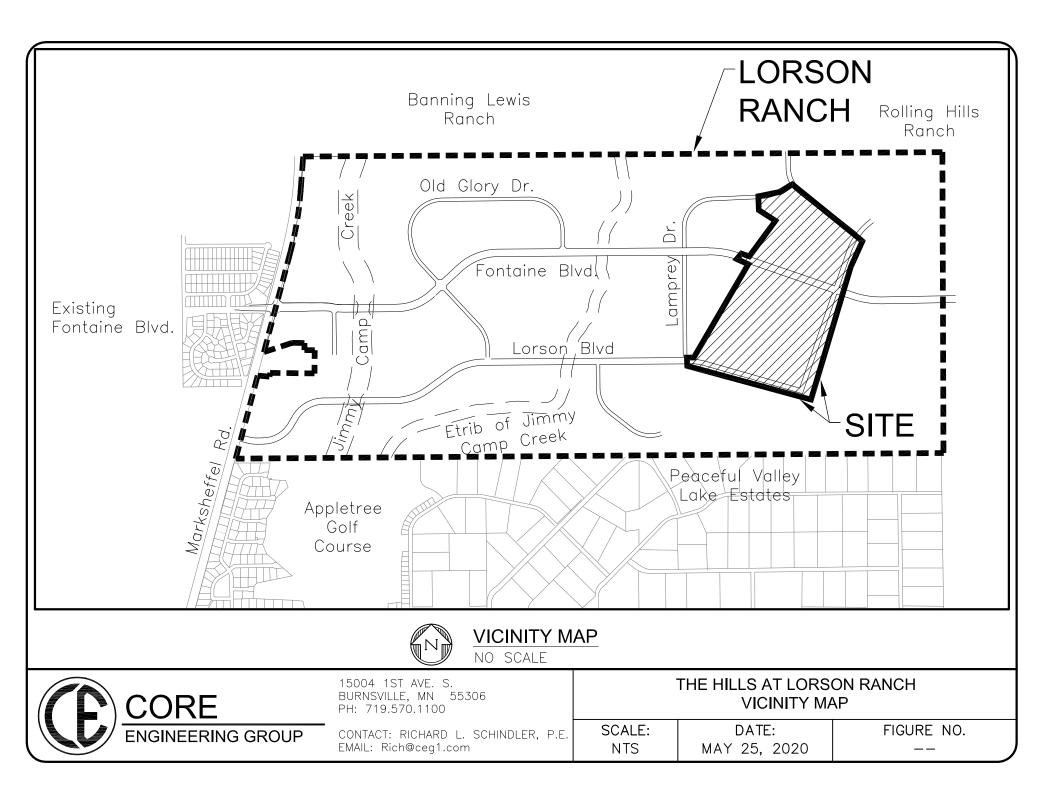
East Tributary of Jimmy Camp Creek is a major drainageway located west of this site. In 2014 and in 2018 the East Tributary of JCC was reconstructed and stabilized per county criteria. The design included a natural sand bottom and armored sides.

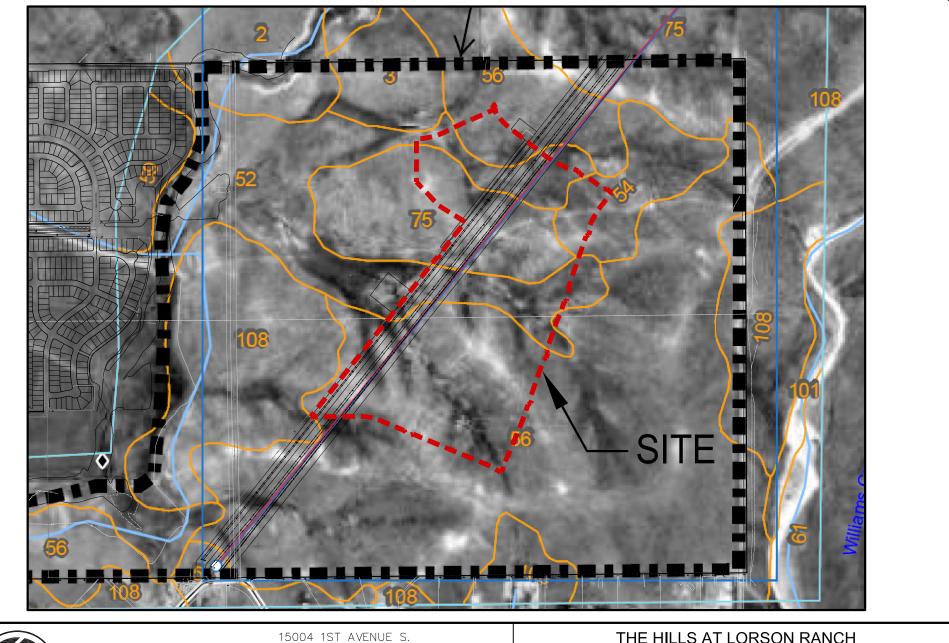
Step 4: Implement Site Specific & Source Control BMP's

There are no potential sources of contaminants that could be introduced to the County's MS4. During construction source control will be provided with the proper installation of erosion control BMPs to limit erosion and transport of sediment. Area disturbed by construction will be seeded and mulched. Cut and fill slopes will be reseeded, and the slopes equal to or greater than three-to-one will be protected with erosion control fabric. Silt fences will be placed at the bottom of re-vegetated and rough graded slopes. Inlet protection will be used around proposed inlets. In addition, temporary sediment basins will be constructed so runoff will be treated prior to discharge. Construction BMPs in the form of vehicle tracking control, sediment basins, concrete washout area, rock socks, buffers, and silt fences will be utilized to protect receiving waters.

9.0 CONCLUSIONS

This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:


- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- The East Tributary of Jimmy Camp Creek has been reconstructed west of this study area
- Bridges over the East Tributary at Lorson Boulevard and Fontaine Boulevard and have been constructed providing access to this site.
- Detention and water quality for this site area will be provided in six permanent ponds


10.0 REFERENCES

- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM, dated November, 1991
- 2. Soil Survey of El Paso County Area, Colorado by USDA, SCS
- 3. Jimmy Camp Creek Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
- 4. City of Colorado Springs "Drainage Criteria Manual, Volume 2
- 5. El Paso County "Engineering Criteria Manual"
- 6. Lorson Ranch East MDDP, June 30, 2017 by Core Engineering.
- 7. El Paso County Resolution #15-042, El Paso County adoption of Chapter 6 and Section 3.2.1 of the City of Colorado Springs Drainage Criteria Manual dated May, 2014.
- 8. Lorson Ranch East MDDP prepared by Core Engineering Group, dated November 27, 2017

- 9. Final Drainage Report for Fontaine Boulevard prepared by Core Engineering Group, Reference CDR183, dated December 20, 2017
- 10. Final Drainage Report for Lorson Ranch East Filing No. 1 prepared by Core Engineering Group, Reference SF18-008, approved July 24, 2018
- 11. Final Drainage Report for Lorson Ranch East Filing No. 4 prepared by Core Engineering Group, Reference SF19-008, approved September 12, 2019

APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP

	THE HILLS AT LORSON RANCH SOILS MAP				
R, P.E.	SCALE: NTS	DATE: MAY, 2020	FIGURE NO.		

MR 19-08-0805P eff. 5442020

one Al

OOD.WAY

GAG

NSO COUNTRY

site

AREA OF MINIMAL FLOX & HAZARD Zome X 08041C0976 G eff. 12/7/2018 Zone A

		NG GROU	IP	Date: A	April 8, 2	<u>020</u> eonard	d Beasl		I	Total	Runoff		Projec Desigr	2: <u>100.06</u> 1: The H 1 Storm: reet	ills at Lo				ravel Tir	me	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tو و	CA		σ	tc	Σ (CA)	. <u> </u>	a	Slope	Street	Design Flow	Slope	Pipe Size	Length	Velocity	#	
	õ	Are	ac.	Ű	min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	L
C1.1-ex			12.49	0.09	23.8	1.12	2.83	3.2												1	╞
C1.2-ex			46.00	0.09	28.5	4.14	2.56	10.6													┝
C1-ex	1X	58.49							35.5	5.26	2.23	11.7									-
C2.1-ex			26.58	0.10	33.6	2.66	2.31	6.1													
C2.2-ex			60.28	0.09	35.1	5.43	2.25	12.2													
C2.3-ex			25.65	0.13	32.5	3.33	2.36	7.9					-								
C2.4-ex			11.14	0.16	37.4	1.78	2.15	3.8												<u> </u>	
C2-ex	2X	123.65						-	44.9	13.20	1.88	24.8									
C3.1-ex		120.00	8.36	0.12	28.6	1.00	2.55	2.6		10.20	1.00	20									
C3.2-ex				0.12	29.6	3.01	2.50	7.5													
			18.79	0.16	29.0	3.01	2.50	7.5													
C3-ex	3X	27.15							43.4	4.01	1.93	7.7	-								T
C4.1-ex			4.39	0.10	20.9	0.44	3.03	1.3													t
C4.2-ex			47.93	0.13	31.6	6.23	2.41	15.0													t
C4-ex	4X	52.32							34.1	6.67	2.29	15.3									┝
																					┢
																					╞
C5.1-ex			4.81	0.11	21.6	0.53	2.97	1.6									1			1	F
C5.2-ex			13.32	0.09	25.8	1.20	2.71	3.2													L
C5-ex	5X	18.13							31.5	1.73	2.41	4.2									
C6-ex	6X		14.92	0.14	20.9	2.09	3.03	6.3													
D1-ex			12.58	0.09	33.9	1.13	2.30	2.6													
D2-ex			6.44	0.09	27.8	0.58	2.59	1.5													L
	77	40.00	0.44	0.08	21.0	0.00	2.09	1.0	22.0	4 74	0.00	2.0									Γ
D1&D2-ex	7X	19.02							33.9	1.71	2.30	3.9									ſ
																					t
																					t
																					t
																					┢
																		<u> </u>			╞
													┣──								ŀ
																					Ļ
													1					1			1

	DRE INEER	ING GRO		Date: A	April 8, 2	eonard			1	Total	Runoff		Project Design		<u>51</u> ills at Lo 100-Ye			tina)	ravel Tir	ne	1
Street Basin	Design Point	a Design	Area (A)	Runoff Coeff. (C)	2	CA		σ	tc	Σ (CA)	-	σ	Slope	Street	Design Flow	Slope	Pipe Size	Length	Velocity	#	
		Area	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	L
C1.1-ex			12.49	0.36	23.8	4.50	4.75	21.4													Г
C1.2-ex			46.00	0.36	28.5	16.56	4.30	71.2													+
C1-ex	1X	58.49							35.5	21.06	3.74	78.8									╞
C2.1-ex			26.58	0.39	33.6	10.37	3.88	40.2													-
C2.2-ex			60.28	0.36	35.1	21.70	3.77	81.8													-
C2.3-ex			25.65	0.45	32.5	11.54	3.96	45.7													L
C2.4-ex			11.14	0.51	37.4	5.68	3.61	20.5													L
C2-ex	2X	123.65							44.9	49.29	3.15	155.1									L
C3.1-ex			8.36	0.42	28.6	3.51	4.28	15.0	<u> </u>												L
C3.2-ex			18.79	0.51	29.6	9.58	4.20	40.2													
	27	07.45	10.75	0.51	25.0	3.50	4.20	40.2	40.4	40.00	2.04	40.4									
C3-ex	3X	27.15							43.4	13.09	3.24	42.4									
C4.1-ex			4.39	0.39	20.9	1.71	5.08	8.7													Γ
C4.2-ex			47.93	0.44	31.6	21.09	4.04	85.1													ľ
C4-ex	4X	52.32							34.1	22.80	3.84	87.7									F
																					F
																					┢
C5.1-ex			4.81	0.40	21.6	1.92	4.99	9.6								-	1			-	-
C5.2-ex			13.32	0.36	25.8	4.80	4.54	21.8													-
C5-ex	5X	18.13							31.5	6.72	4.05	27.2									-
C6-ex	6X		14.92	0.47	20.9	7.01	5.08	35.6													
D1-ex			12.58	0.36	33.9	4.53	3.86	17.5													L
D2-ex			6.44	0.36	27.8	2.32	4.36	10.1													
D2-ex	7X	19.02	0.17	0.00	2	2.02			33.9	6.85	3.86	26.4									
D1&D2-CX	1	15.02							33.9	0.03	5.00	20.4									1
																					Ι
																					Γ
																					t
																					t
																					╀
																					┢
																					L
													1								L

15004 1st Ave Burnsville, N	IN 55306	DUP						PROJECT NAME PROJECT NUMI ENGINEER: LAE DATE: April 7, 20	3	n Ranch
	DITIONS COL	EFFICIENT Hydro	"C" CALCULAT				0.400			
BASIN	Soil No.	Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	Impervious	Type of Cover
C2.1-ex	56	В	20.95	78.82%	0.09	0.07	0.36	0.28	100%	Undeveloped
	52/54	С	5.63	21.18%	0.16	0.03	0.51	0.11	80%	Undeveloped
			26.58	100.00%		0.10		0.39		
C2.2-ex	56	В	58.51	97.06%	0.09	0.09	0.36	0.35	10%	Undeveloped
	52	С	1.77	2.94%	0.16	0.00	0.51	0.01	10%	Undeveloped
			60.28	100.00%		0.09		0.36		
C2.3-ex	56	в	10.52	41.01%	0.09	0.04	0.36	0.15	10%	Undeveloped
02.0 0	52/75	C/D	15.13	58.99%	0.16	0.09	0.51	0.30	10%	Undeveloped
	02/10	0,0	25.65	100.00%	0.10	0.03	0.01	0.45	1070	ondeveloped
C3.1-ex	56	В	4.95	59.21%	0.09	0.05	0.36	0.21	10%	Undeveloped
	54	D	3.41	40.79%	0.16	0.07	0.51	0.21	10%	Undeveloped
			8.36	100.00%		0.12		0.42		
C4.1-ex	56	В	3.54	80.64%	0.09	0.07	0.36	0.29	10%	Undeveloped
	75	D	0.85	19.36%	0.16	0.03	0.51	0.10	10%	Undeveloped
			4.39	100.00%		0.10		0.39		
C4.2-ex	56/108	В	21.23	44.29%	0.09	0.04	0.36	0.16	10%	Lindovolonod
04.2-67	52/54/75	D	26.70	44.29% 55.71%	0.09	0.04	0.50	0.10	10%	Undeveloped Undeveloped
	52/54/75	U	47.93	100.00%	0.10	0.09	0.51	0.28	10 %	Undeveloped
C5.1-ex	56	В	3.37	70.06%	0.09	0.06	0.36	0.25	10%	Undeveloped
	75	D	1.44	29.94%	0.16	0.05	0.51	0.15	10%	Undeveloped
			4.81	100.00%		0.11		0.40		
C5.2-ex	56	В	13.01	97.67%	0.09	0.09	0.36	0.35	10%	Undeveloped
-	75	D	0.31	2.33%	0.16	0.00	0.51	0.01	10%	Undeveloped
	-		13.32	100.00%		0.09		0.36		
00.00	50	P	4.47	07.05%	0.00	0.00	0.00	0.10	400/	
C6-ex	56 52/75	B C	4.17 10.75	27.95% 72.05%	0.09	0.03	0.36	0.10	10% 10%	Undeveloped Undeveloped
	02110	~	14.92	100.00%	0.10	0.12	0.01	0.37	1070	Chaevelopeu

		DRE			Standard F	orm SF-1.	Time of C	oncentration	-Current				
C			NG GRC	DUP	Calculated Date: <u>April</u>	8, 2019				Job No: <u>100.</u> Project: <u>The</u>	061 Hills at Lorsc	n Ranch	
	Sub-Ba	asin Data		li	nitial Overlar				T	ravel Time (t	it)		Final tc
BASIN or	C₅	AREA (A)	NRCS Convey.	LENGTH (L)	SLOPE (S)	VELOCITY (V)	Ti	LENGTH (L)	SLOPE (S)	VELOCITY (V)	Lt minutes	Computed tC	USDCM Recommended tc=ti+tt (min)
DESIGN C1.1-ex	0.09	acres 12.49	7.0	feet 300.00	% 5.40%	ft/sec 0.28	minutes 18.16	feet 434.00	% 5.50%	ft/sec 1.64	4.41	Minutes	cc-ci+cc (min)
			15.0					225.00	4.44%	3.16	1.19	23.75	23.75
C1.2-ex	0.09	46.00	7.0	300.00	5.88%	0.28	17.65	346.00	5.88%	1.70	3.40		
			15.0					1100.00	2.73%	2.48	7.40	28.45	28.45
(C1-ex)	0.09	58.49	7.0	300.00	5.40%	0.28	18.16	434.00	5.50%	1.64	4.41		
1X			15.0					2015.00	3.00%	2.60	12.93	35.49	35.49
C2.1-ex	0.10	26.58	7.0	300.00	5.33%	0.28	18.06	1347.00	5.72%	1.67	13.41		
			15.0					266.00	1.88%	2.06	2.16	33.62	33.62
C2.2-ex	0.09	60.28	7.0	140.00	3.57%	0.16	14.22	1216.00	4.28%	1.45	13.99		
			15.0					1123.00	3.29%	2.72	6.88	35.10	35.10
C2.3-ex	0.13	25.65	7.0	300.00	4.80%	0.28	18.13	685.00	4.90%	1.55	7.37		
			15.0					880.00	1.93%	2.08	7.04	32.54	32.54
C2.4-ex	0.16	11.14	7.0	300.00	3.20%	0.25	20.09	1102.00	3.24%	1.26	14.58		
			15.0					344.00	2.03%	2.14	2.68	37.35	37.35
(C2-ex) 2X	0.11	123.65	7.0	140.00	3.57%	0.17	13.94	1216.00	4.28%	1.45	13.99		
24			15.0					1123.00	3.29%	2.72	6.88		
			15.0					1333.00	2.15%	2.20	10.10	44.92	44.92
C3.1-ex	0.12	8.36	7.0	300.00	6.00%	0.29	17.01	1052.00	6.10%	1.73	10.14		
			15.0					152.00	1.32%	1.72	1.47	28.63	28.63
C3.2-ex	0.16	18.79	7.0	220.00	4.09%	0.23	15.87	670.00	2.54%	1.12	10.01		
			15.0					553.00	2.71%	2.47	3.73	29.61	29.61
(C3-ex) 3X	0.15	27.15	7.0	300.00	6.00%	0.30	16.49	1055.00	6.10%	1.73	10.17		
571			15.0					152.00	1.32%	1.72	1.47		
			7.0					824.00	2.91%	1.19	11.50		
			15.0					553.00	2.71%	2.47	3.73	43.37	43.37
C4.1-ex	0.10	4.39	7.0	300.00	4.50%	0.26	19.10	143.00	4.60%	1.50	1.59	20.68	20.68
C4.2-ex	0.13	47.93	7.0	300.00	5.25%	0.28	17.60	500.00	5.25%	1.60	5.20		
			15.0					1307.00	2.75%	2.49	8.76	31.55	31.55
(C4-ex) 4X	0.13	52.32	7.0	300.00	4.50%	0.27	18.52	143.00	4.60%	1.50	1.59		
			7.0					500.00	5.25%	1.60	5.20		
			15.0					1307.00	2.75%	2.49	8.76	34.06	34.06
C5.1-ex	0.11	4.81	7.0	300.00	4.80%	0.27	18.51	285.00	4.80%	1.53	3.10	21.60	21.60
C5.2-ex	0.09	13.32	7.0	300.00	4.80%	0.26	18.88	644.00	4.90%	1.55	6.93	25.81	25.81
(C5-ex) 5X	0.10	18.13	7.0	300.00	4.80%	0.27	18.69	285.00	4.80%	1.53	3.10		
			15.0					940.00	1.17%	1.62	9.66	31.45	31.45
(C6-ex) 6X	0.14	14.92	7.0	112.00	5.36%	0.18	10.57	362.00	3.04%	1.22	4.94		
			15.0					592.00	1.52%	1.85	5.34	20.85	20.85
D1-ex	0.09	12.58	7.0	215.00	2.33%	0.18	20.30	1084.00	4.43%	1.47	12.26		
			15.0					215.00	3.26%	2.71	1.32	33.89	33.89
D2-ex	0.09	6.44	7.0	152.00	3.29%	0.17	15.23	1030.00	3.80%	1.36	12.58	27.81	27.81
(D1&2-ex) 7X	0.09	19.02	7.0	215.00	2.33%	0.18	20.30	1084.00	4.43%	1.47	12.26		
			15.0					215.00	3.26%	2.71	1.32	33.89	33.89
			13.0					210.00	0.2070	<u></u>	1.02	00.00	

		NG GROU	JP	Calcula Date: A		Leonar	d Beas	ley						o: <u>100.0</u> t: The H	<u>61</u> ills at Lo	Irson D	anch				
				Checke	ed By: <u>L</u>	eonard	Beasle	v					Desigr	Storm:	<u>5 - Yea</u>						
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	ect Rur بع	Noff S		a	tc	Total (C Y) Z	Runoff .–	a	St edols	Street Flow	Design Flow	Pipe Slope	Pipe Size	Length	ravel Tin Aelocity Velocity	tt tt	Remarks
01.1		Ar	ac.	0.45	min.	0.00	in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C1.1			1.38	0.45	11.0	0.62	3.98	2.5													
C1.2			1.06	0.45	6.5	0.48	4.77	2.3													
C1.3			13.47	0.45	26.0	6.06	2.69	16.3													
C1.4			5.19	0.45	12.7	2.34	3.78	8.8													
C1.1-C1.4	1	21.10							26.0	9.50	2.69	25.6									
C1.5			0.70	0.45	9.5	0.32	4.21	1.3													
C1.1-C1.5	2	21.80							26.3	9.81	2.68	26.3									
C1.6			9.35	0.45	20.5	4.21	3.05	12.8													
C1.7			3.18	0.45	12.6	1.43	3.78	5.4													
C1.8			5.59	0.45	18.4	2.52	3.21	8.1													
C1.6-C1.8	3	18.12							28.2	8.15	2.58	21.0									
C1.1-C1.8	4	39.92							28.2	17.96	2.57	46.2									-
C2.1			2.18	0.45	16.4	0.98	3.39	3.3													
C2.2			3.81	0.45	14.8	1.71	3.55	6.1													
C2.3			4.79	0.45	13.4	2.16	3.69	8.0													
C2.1-C2.3	5	10.78							17.0	4.85	3.33	16.2									
C2.4			2.86	0.45	8.7	1.29	4.35	5.6													
C2.1-C2.4	6	13.64							18.2	6.14	3.23	19.9									
C2.5			6.42	0.45	18.4	2.89	3.22	9.3													
C2.6			0.43	0.45	7.8	0.19	4.51	0.9													
C2.7			3.31	0.45	11.7	1.49	3.89	5.8													
C2.5-C2.7	7	10.16							20.5	4.57	3.05	13.9									
C2.1-C2.7	8	23.80								10.71	3.05										
C2.8	-		1.78	0.45	9.4	0.80	4.22	3.4													
C2.9			2.73		13.9	1.23	3.64	4.5													
C2.8-C2.9	9	4.51	2.75	0.40	10.0	1.20	5.04	4.5	12.0	2.03	3.64	74									
C2.10	3	4.51	1.70	0.45	13.5	0.77	3.68	2.8	13.9	2.03	3.04	7.4									
	40	0.04	1.70	0.45	13.5	0.77	3.00	2.0	11.0	0.70	2.02	10.1									
C2.8-C2.10	10	6.21			15.0		o /=		14.0	2.79	3.62	10.1									
C2.11			6.29	0.23	15.6	1.45	3.47	5.0													
C2.1-C2.11	11	36.30							27.3	14.95	2.62	39.2									
C3.1			55.11			24.80		75.9													
C4.1			4.61	0.45	17.7	2.07	3.27	6.8													
C4.2			3.66	0.45	10.3	1.65	4.08	6.7													
C4.1-C4.2	12	8.27							19.7	3.72	3.12	11.6									
C4.3			2.61	0.46	14.3	1.20	3.59	4.3													
C4.4			2.99	0.46	9.8	1.38	4.15	5.7													
C4.1-C4.4	13	13.87							21.1	6.30	3.01	19.0									
C4.5			0.63	0.90	5.0	0.57	5.17	2.9	_												
C4.1-C4.5	14	14.50							21.2	6.86	3.00	20.6									

		NG GRO	JP		ated By: April 17,		d Beas	ley						o: <u>100.00</u> t: The H		nson D	anch				
				Checke	ed By: <u>L</u>	eonard	Beasle	v					Desigr	Storm:		r Event					
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C) g	ect Rur بع	y S		a	, tc	Total (C Y) Z	Runoff 	Ø	Slope	Street Flow	Design Flow	Pipe adols	. Pipe Size	Length	ravel Tin Celocity	tt	Remarks
C4.6		A	ac. 3.69	0.32	min. 13.6	1.18	in/hr 3.67	cfs 4.3	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C4.1-C4.6	15	18.19	0.00	0.02	10.0	1.10	0.01	1.0	30.6	8.05	2.45	19.7									
C5.1	10	10.10	25.14	0.46	13.7	11.56	3.65	42.3	00.0	0.00	2.10	10.1									
C5.2			1.71	0.40	8.5	0.84	4.37	3.7													
C5.3			2.26	0.49	10.3	1.04	4.09	4.2													
C5.2-C5.3	16	3.97	2.20	0.40	10.5	1.04	4.05	4.2	10.3	1.88	4.09	7.7									
	10	3.97	0.70	0.00	5.0	0.00	E 47	2.4	10.5	1.00	4.09	1.1									
C5.4	47	4.70	0.73	0.90	5.0	0.66	5.17	3.4	0.0	0.50	4.40	40.0									
C5.2-C5.4	17	4.70							9.6	2.53	4.19	10.6									
C5.1-C5.4	18	29.84							13.7	14.10	3.66	51.6									
C5.5			2.27	0.49	9.5	1.11	4.21	4.7													
C5.1-C5.5	19	32.11							15.1	15.21	3.51	53.4									
C6.1			1.21	0.45	5.7	0.54	4.98	2.7													
C6.2			4.35	0.45	17.6	1.96	3.28	6.4													
C6.1-C6.2	20	5.56							17.6	2.50	3.28	8.2									
C6.3			0.56	0.45	8.4	0.25	4.39	1.1													
C6.1-C6.3	21	6.12							17.8	2.75	3.26	9.0	-								
C6.4			4.02	0.45	13.0	1.81	3.73	6.8													
C6.5			0.33	0.47	7.1	0.16	4.64	0.7													
C6.4-C6.5	22	4.35							17.6	1.96	3.28	6.4									
C6.6			1.44	0.90	5.8	1.30	4.96	6.4													
C6.1-C6.6	24	11.91							17.7	6.01	3.28	19.7									
C6.7			3.83	0.32	12.2	1.23	3.83	4.7													
C6.1-C6.7	25	15.74							18.1	7.24	3.24	23.5									
C7.1			2.35	0.49	8.5	1.15	4.38	5.0													
C7.2			0.84	0.49	9.9	0.41	4.14	1.7													
C7.3			1.99	0.49	9.3	0.98	4.25	4.1													
C7.1-C7.3	26	5.18							9.3	2.54	4.25	10.8									
C7.4			2.71	0.49	14.5	1.33	3.58	4.7													
C7.5			0.50	0.49	7.5	0.25	4.57	1.1													
C7.4-C7.5	27	3.21							14.5	1.57	3.58	5.6									
C7.1-C7.5	28	8.39							14.5	4.11	3.58	14.7									
C7.6		5.00	4.42	0.24	13.2	1.06	3.72	3.9			5.50										
C7.1-C7.6	29	12.81		J.LT	.0.2		5.12	0.0	16.5	5.17	3.38	17.5									
C8.1	23	12.01	8.11	0.46	13.2	3.73	3.71	13.9	10.0	5.17	0.00	11.0									
C8.1			8.11 2.12		8.9	1.04	4.31	4.5													
C4.1-ex			4.39	0.10	20.9	0.44	3.03	1.3													
C8.3	•	00	16.38	0.47	21.5	7.70	2.98	23.0	<u> </u>		0.07	<u></u>									
C4.1-ex & C8.3	30	20.77							21.5	8.14	2.98	24.3		1							

	NEERII	NG GROU	JP	Date: A	April 17,	<u>2020</u> .eonard	d Beasl Beasle	-	1	Total	Runoff		Projec Desigr	Storm:	<u>61</u> ills at Lo <u>5 - Yea</u>	r Event				<u></u>	
Street or Basin	Design Point	Area Design	p Area (A)	Runoff Coeff. (C)	ect Rur بع min.	CA	 in/hr	C cfs	ې min	Σ (CA)		O cfs	Slope %	cfs	besign Flow	Pipe Slobe	ai Pipe Size	⊐ Length	ravel Tir Alicology Alicology ft/sec	ne جر min	Remarks
C8.4		4	6.70	0.46	9.0	3.08	4.28	13.2				015	70	013	013	70			10'Sec		
8.1-C8.4 & C4.1- ex	32	37.70							24.0	15.99	2.82	45.1									
C8.5			3.49	0.49	8.7	1.71	4.34	7.4													
C8.6			0.79	0.90	5.3	0.71	5.08	3.6													
C8.5-C8.6	33	4.28							21.1	2.42	3.01	7.3									
C8.7			23.61	0.48	25.4	11.33	2.73	30.9													
C8.5-C8.7		27.89							25.4	13.75	2.73	37.6									
C8.8			7.80	0.22	15.6	1.72	3.46	5.9													
C8.1-C8.8	35	73.39							27.5	31.46	2.61	82.2									
C10.1			2.65	0.49	7.0	1.30	4.66	6.1													
C10.2			0.50	0.49	6.9	0.25	4.69	1.1													
C10.3			0.26	0.49	6.8	0.13	4.71	0.6													
C10.1-C10.3	36	3.41							9.0	1.67	4.28	7.2									
C10.4			2.64	0.49	10.7	1.29	4.03	5.2													
C10.1-C10.4	37	6.05							10.8	2.96	4.02	11.9									
C10.5			0.90	0.48	10.1	0.43	4.12	1.8													
C10.6			0.56	0.49	6.1	0.27	4.88	1.3													
C5.1-ex			4.81	0.11	21.6	0.53	2.97	1.6													
C10.7			3.36	0.45	16.9	1.51	3.34	5.0													
C5.1-ex & C10.7	38	8.17							16.9	2.04	3.34	6.8									
C10.8			1.89	0.45	11.2	0.85	3.95	3.4													
C10.7-C10.8 & C5.1-ex	39	10.06							20.6	2.89	3.05	8.8									
C10.9			3.73	0.46	15.7	1.72	3.45	5.9													
C10.6-C10.9 & C5.1-ex	40	14.35							21.1	4.88	3.01	14.7									
C10.10			6.86	0.45	13.2	3.09	3.72	11.5													
C10.11			9.10	0.29	13.9	2.64	3.63	9.6										-			
C10		37.26							23.3	14.00	2.86	40.1									
C12.1	41		1.23	0.48	10.5	0.59	4.05	2.4													
C12.2			2.69	0.49	12.3	1.32	3.82	5.0													
C12.3			0.76	0.49	9.4	0.37	4.23	1.6													
C12.2-C12.3	42	3.45							12.8	1.69	3.76	6.4									
C12.4			1.58	0.49	11.5	0.77	3.92	3.0													
C12.5			2.60	0.49	16.7	1.27	3.36	4.3													
C12.2-C12.5	43	7.63							16.7	3.74	3.36	12.6									
C12.6			1.85	0.47	7.7	0.87	4.52	3.9													
C12.7			2.09	0.45	13.2	0.94	3.71	3.5													
C12.8			0.54	0.76	5.0	0.41	5.17	2.1													
C12.6-C12.8	44	4.48							13.2	2.22	3.71	8.2									
C12.1-C12.8	45	13.34							16.7	6.55	3.36	22.0									

		IG GROL	JP	Calcula Date: <u>A</u>	ated By: April 17,	<u>Leonar</u> 2020	m SF-2. Id Beasl Beaslev	<u>ey</u>	Draina	ge Sys	tem Des	sign (R	Job No Project	o: <u>100.0</u> :: The H	<u>61</u> ills at Lo	orson R	anch t (Propo	osed)			
	it			Dir	ect Rur	noff				Total	Runoff			reet		Pipe			ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		σ	tc	Σ (CA)		a	Slope	Street Flow		Slope	Pipe Size	Length	Velocity	tt.	Remarks
	-	Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C12.9			0.47	0.49	8.2	0.23	4.42	1.0					-								
C12.10			0.87	0.49	7.3	0.43	4.60	2.0					-								
C12.9-C12.10	46	1.34							9.3	0.66	4.24	2.8									
C12.11			0.86	0.49	8.2	0.42	4.42	1.9													
D1.1			2.23	0.45	7.5	1.00	4.56	4.6													
D1.2			3.44	0.45	12.2	1.55	3.83	5.9													
D1.3			0.88	0.75	6.3	0.66	4.82	3.2													
D1.4			1.92	0.45	10.8	0.86	4.02	3.5													
D1.1-D1.4	47	8.47							12.4	4.08	3.81	15.5]								
D1.5			3.25	0.21	13.0	0.68	3.74	2.6													
D1.6			2.67	0.09	14.2	0.24	3.61	0.9													

		NG GROU	JP	Date: A	April 17,								Projec	o: <u>100.06</u> t: The H i Storm:	ills at Lo	orson R	anch	nosod	\ \		
				Dir	ed By: <u>L</u> rect Rur	eonard.	Beasle	Y		Total	Runoff		Design	reet	<u> 100 - Y</u>	Pipe	ent (Pro	posea T	<u>)</u> ravel Tin	ne	Т
Street or Basin	Design Point	Area Design	p Area (A)	Runoff Coeff. (C)	ੂਤ min.	CA	 in/hr	O cfs	ي min	Σ (CA)	 in/hr	O cfs	% Slope	Street	cts Flow	Slope %	 Pipe Size 	th Length	Celocity ft/sec	≠ min	
C1.1			1.38	0.59	11.0	0.81	6.69	5.4				0.0									F
C1.2			1.06	0.59	6.5	0.63	8.01	5.0													┢
C1.3			13.47	0.59	26.0	7.95	4.52	35.9													╞
C1.4			5.19	0.59	12.7	3.06	6.34	19.4													-
C1.1-C1.4	1	21.10							26.0	12.45	4.52	56.3									-
C1.5			0.70	0.59	9.5	0.41	7.07	2.9													+
C1.1-C1.5	2	21.80							26.3	12.86	4.50	57.8									+
C1.6			9.35	0.59	20.5	5.52	5.12	28.3													╞
C1.7			3.18	0.59	12.6	1.88	6.34	11.9													╞
C1.8			5.59	0.59	18.4	3.30	5.39	17.8					<u> </u>								╞
C1.6-C1.8	3	18.12							28.2	10.69	4.32	46.2									╞
C1.1-C1.8	4	39.92							28.2	23.55	4.32	101.7	- 								_
C2.1			2.18	0.59	16.4	1.29	5.69	7.3													_
C2.2			3.81	0.59	14.8	2.25	5.95	13.4													L
C2.3			4.79	0.59	13.4	2.83	6.20	17.5													L
C2.1-C2.3	5	10.78							17.0	6.36	5.59	35.5								L	_
C2.4			2.86	0.59	8.7	1.69	7.30	12.3													F
C2.1-C2.4	6	13.64							18.2	8.05	5.43	43.7									_
C2.5			6.42	0.59	18.4	3.79	5.40	20.5													_
C2.6			0.43	0.59	7.8	0.25	7.57	1.9													L
C2.7			3.31	0.59	11.7	1.95	6.54	12.8													_
C2.5-C2.7	7	10.16							20.5	5.99	5.12	30.7									_
C2.1-C2.7	8	23.80							20.6	14.04	5.11	71.8									_
C2.8			1.78	0.59	9.4	1.05	7.08	7.4													+
C2.9			2.73	0.59	13.9	1.61	6.10	9.8													+
C2.8-C2.9	9	4.51							13.9	2.66	6.10	16.2									╞
C2.10			1.70	0.59	13.5	1.00	6.19	6.2													╞
C2.8-C2.10	10	6.21	-						14.0	3.66	6.08	22.3									╞
C2.11			6.29	0.46	15.6	2.89	5.82	16.8													╞
C2.1-C2.11	11	36.30							27.3	20.60	4.40	90.7									Ļ
C3.1			55.11	0.59	20.4	32.51	5.14	167.0													Ļ
C4.1			4.61	0.59	17.7	2.72	5.49	14.9												L	Ļ
C4.2			3.66	0.59	10.3	2.16	6.86	14.8													t
	12	8.27							19.7	4.88	5.23	25.5	1							l	l

		NG GROI	JP	Date: A	pril 17,	<u>Leonar</u> 2020	d Beasl	ley	Drama				Job No Projec	b: <u>100.00</u> t: The H n Storm:	<u>61</u> ills at Lo	orson R		oposed)		
	int			Dir	ect Rur					Total	Runoff			reet		Pipe	1	Т	ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	ţ	CA	. <u> </u>	a	ţ	Σ (CA)	. <u> </u>	a	Slope	Street Flow	Design Flow	Slope	Pipe Size	a Length	Velocity	#	Remarks
C4.3		∢	ac. 2.61	0.60	min. 14.3	1.57	in/hr 6.03	cfs 9.4	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C4.4			2.99	0.60	9.8	1.79	6.98	12.5					-								
C4.1-C4.4	13	13.87							21.1	8.24	5.05	41.6	-								
C4.5			0.63	0.96	5.0	0.60	8.68	5.2					-								
C4.1-C4.5	14	14.50							21.2	8.84	5.03	44.5	-								
C4.6			3.69	0.65	13.6	2.40	6.16	14.8					-								
C4.1-C4.6	15	18.19							30.6	11.24	4.11	46.2									
C5.1			25.14	0.60	13.7	15.08	6.14	92.5													
C5.2			1.71	0.65	8.5	1.11	7.33	8.2													
C5.3			2.26	0.61	10.3	1.38	6.86	9.5					-								
C5.2-C5.3	16	3.97							10.3	2.49	6.86	17.1	-								
C5.4			0.73	0.96	5.0	0.70	8.68	6.1					-								
C5.2-C5.4	17	4.70							9.6	3.19	7.03	22.4									
C5.1-C5.4	18	29.84							13.7	18.27	6.15	112.3									
C5.5			2.27	0.65	9.5	1.48	7.06	10.4													
C5.1-C5.5	19	32.11							15.1	19.75	5.90	116.4									
C6.1			1.21	0.59	5.7	0.71	8.36	6.0													
C6.2			4.35	0.59	17.6	2.57	5.51	14.1													
C6.1-C6.2	20	5.56							17.6	3.28	5.51	18.1									
C6.3			0.56	0.59	8.4	0.33	7.37	2.4													
C6.1-C6.3	21	6.12							17.8	3.61	5.48	19.8									
C6.4			4.02	0.60	13.0	2.41	6.27	15.1													
C6.5			0.33	0.62	7.1	0.20	7.78	1.6													
C6.4-C6.5	22	4.35							17.6	2.62	5.51	14.4									
C6.6			1.44	0.96	5.8	1.38	8.32	11.5													
C6.1-C6.6	24	11.91							17.7	7.61	5.50	41.8									-
C6.7			3.83	0.56	12.2	2.14	6.42	13.8													-
C6.1-C6.7	25	15.74							18.1	9.75	5.44	53.1									
C7.1			2.35	0.65	8.5	1.53	7.35	11.2													-
C7.2			0.84	0.65	9.9	0.55	6.95	3.8													
C7.3			1.99	0.65	9.3	1.29	7.13	9.2													-
C7.1-C7.3	26	5.18							9.3	3.37	7.13	24.0									
C7.4			2.71	0.65	14.5	1.76	6.00	10.6													-
C7.5			0.50	0.65	7.5	0.33	7.67	2.5													├

ENGI	NEERI	NG GROU		Date: A	pril 17,	Leonar 2020 eonard							Projec	o: <u>100.0</u> t: The H n Storm:	ills at Lo			nneed	`		
	t			Dir	ect Rur	off	Deasie	<u>y</u>		Total	Runoff			reet	100 - 1	Pipe			1 ravel Tir	ne	Γ
Street or Basin	Design Point	Area Design	ନ୍ଧି Area (A)	Runoff Coeff. (C)	्र min.	CA	 in/hr	O cfs	ප min	Σ (CA)	 in/hr	C cfs	% Slope	street Flow	g Besign Flow	% Slope	Fipe Size	⊐ Length	Velocity t/sec	ت min	
C7.4-C7.5	27	3.21	ac.					013	14.5	2.09	6.00	12.5	70	013	013	70			10360		
C7.1-C7.5	28	8.39							14.5	5.45	6.00	32.7									
C7.6			4.42	0.55	13.2	2.43	6.24	15.2													
C7.1-C7.6	29	12.81							16.5	7.88	5.67	44.7									
C8.1			8.11	0.61	13.2	4.95	6.24	30.9													
C8.2			2.12	0.65	8.9	1.38	7.23	10.0													_
C4.1-ex			4.39	0.39	20.9	1.71	5.08	8.7													
C8.3			16.38	0.62	21.5	10.16	5.01	50.8													_
C4.1-ex & C8.3	30	20.77							21.5	11.87	5.01	59.4									╞
C8.1-C8.3 & C4.1- ex		31.00							24.0	18.19	4.73	86.0									
C8.4			6.70	0.61	9.0	4.09	7.19	29.4													
C8.1-C8.4 & C4.1- ex	32	37.70							24.0	22.28	4.73	105.4									
C8.5			3.49	0.65	8.7	2.27	7.28	16.5													
C8.6			0.79	0.96	5.3	0.76	8.53	6.5													
C8.5-C8.6	33	4.28							21.1	3.03	5.05	15.3									
C8.7			23.61	0.64	25.4	15.11	4.58	69.2													
C8.5-C8.7		27.89							25.4	18.14	4.58	83.1									
C8.8			7.80	0.48	15.6	3.74	5.81	21.8													
C8.1-C8.8	35	73.39							27.5	44.16	4.39	193.7									
C10.1			2.65	0.65	7.0	1.72	7.83	13.5													
C10.2			0.50	0.65	6.9	0.33	7.88	2.6													_
C10.3			0.26	0.65	6.8	0.17	7.92	1.3													
C10.1-C10.3	36	3.41							9.0	2.22	7.19	15.9									
C10.4			2.64	0.65	10.7	1.72	6.76	11.6													
C10.1-C10.4	37	6.05							10.8	3.93	6.75	26.5									\vdash
C10.5			0.90	0.64	10.1	0.58	6.92	4.0													╞
C10.6			0.56	0.65	6.1	0.36	8.19	3.0													
C5.1-ex			4.81	0.40	21.6	1.92	4.99	9.6						<u> </u>			<u> </u>				F
C10.7			3.36	0.59	16.9	1.98	5.60	11.1													\vdash
C5.1-ex & C10.7	38	8.17							16.9	3.91	5.60	21.9									-
C10.8			1.89	0.59	11.2	1.12	6.64	7.4													
C10.7-C10.8 & C5.1-ex	39	10.06							20.6	5.02	5.12	25.7									
C10.9			3.73	0.60	15.7	2.24	5.79	13.0													
C10.6-C10.9 & C5.1-ex	40	14.35							21.1	7.62	5.05	38.5	1								

	RE				<u>Standa</u>	ard For	m SF-2.	Storm	Draina	ige Syst	tem De:	sign (R	ational	Metho	d Proce	dure)					
		NG GROU	JP		ated By: April 17,		d Beas	ey						o: <u>100.0</u> :t: The H		oreon P	anch				
ļ		1		Checke	ed By: <u>L</u>	eonard	Beasle	Y					Desig	n Storm:		ear Eve					
<u> </u>	oint				rect Rur	noff					Runoff			reet		Pipe	e		ravel Tir	ne	s
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc.	CA		a	t;	Σ (CA)		a	Slope	Street	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
C10.10		∢	ac. 6.86	0.59	min. 13.2	4.05	in/hr 6.24	cfs 25.3	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C10.11			9.10	0.57	13.9	5.19	6.10	31.6													<u> </u>
C10		37.26							23.3	21.37	4.80	102.6									<u> </u>
C12.1	41		1.23	0.64	10.5	0.79	6.80	5.4													
C12.2			2.69	0.65	12.3	1.75	6.41	11.2													
C12.3			0.76	0.65	9.4	0.49	7.10	3.5													<u> </u>
C12.2-C12.3	42	3.45							12.8	2.24	6.31	14.1									<u> </u>
C12.4			1.58	0.65	11.5	1.03	6.58	6.8													<u> </u>
C12.5			2.60	0.65	16.7	1.69	5.64	9.5													
C12.2-C12.5	43	7.63							16.7	4.96	5.64	28.0									
C12.6			1.85	0.62	7.7	1.15	7.59	8.7						1					1		
C12.7			2.09	0.59	13.2	1.23	6.24	7.7													
C12.8			0.54	0.84	5.0	0.45	8.68	3.9													
C12.6-C12.8	44	4.48							13.2	2.83	6.24	17.7									
C12.1-C12.8	45	13.34							16.7	8.58	5.64	48.4									
C12.9			0.47	0.65	8.2	0.31	7.42	2.3													
C12.10			0.87	0.65	7.3	0.57	7.72	4.4													
C12.9-C12.10	46	1.34							9.3	0.87	7.12	6.2									
C12.11			0.86	0.65	8.2	0.56	7.42	4.1													
D1.1			2.23	0.59	7.5	1.32	7.66	10.1													
D1.2			3.44	0.59	12.2	2.03	6.43	13.0													
D1.3			0.88	0.84	6.3	0.74	8.10	6.0													
D1.4			1.92	0.59	10.8	1.13	6.74	7.6													
D1.1-D1.4	47	8.47							12.4	5.22	6.40	33.4									
D1.5			3.25	0.44	13.0	1.43	6.28	9.0													
D1.6			2.67	0.36	14.2	0.96	6.05	5.8													

ſ

PROJECT NAME: The Hills at Lorson Ranch PROJECT NUMBER: 100.061 ENGINEER: LAB DATE: April 16, 2019

BASIN	Soil No.	Hydro Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	Impervious	Type of Cover
C1.1	56	В	1.38		0.45		0.59		65%	1/8 ac. Single Fam
C1.2	56	В	1.06		0.45		0.59		65%	1/8 ac. Single Fam
C1.3	56	В	13.47		0.45		0.59		65%	1/8 ac. Single Fam
C1.4										-
	56	В	5.19		0.45		0.59		65%	1/8 ac. Single Fam
C1.5	56	В	0.70		0.45		0.59		65%	1/8 ac. Single Fam
C1.6	56/108	В	9.35		0.45		0.59		65%	1/8 ac. Single Fam
C1.7	56	В	3.18		0.45		0.59		65%	1/8 ac. Single Fam
C1.8	56	В	5.59		0.45		0.59		65%	1/8 ac. Single Fam
C2.1	56	В	2.18		0.45		0.59		65%	1/8 ac. Single Fan
C2.2	56	В	3.81		0.45		0.59		65%	1/8 ac. Single Fam
C2.3	56	В	4.79		0.45		0.59		65%	1/8 ac. Single Fam
C2.4	56	В	2.86		0.45		0.59		65%	1/8 ac. Single Fan
C2.5	56	В	6.42		0.45		0.59		65%	1/8 ac. Single Fan
C2.6	56	В	0.43		0.45		0.59		65%	1/8 ac. Single Fan
C2.7	56	В	3.31		0.45		0.59		65%	1/8 ac. Single Fan
C2.8	56	В	1.78		0.45		0.59		65%	1/8 ac. Single Fan
C2.9	56	В	2.73		0.45		0.59		65%	1/8 ac. Single Fam
C2.10	56	В	1.70		0.45		0.59		65%	1/8 ac. Single Fan
C2.11	56	В	4.69	74.56%	0.16	0.12	0.41	0.31	13%	Pond / Open Spa
	56	В	1.60	25.44%	0.45	0.11	0.59	0.15	65%	1/8 ac. Single Fan
			6.29	100.00%		0.23		0.46		
C3.1	56	в	55.11		0.45		0.59		65%	1/8 ac. Single Fam
C4.1	56	В	4.61		0.45		0.59		65%	1/8 ac. Single Fam
C4.2	56	В	3.66		0.45		0.59		65%	1/8 ac. Single Fam
C4.3	56	В	2.04	78.16%	0.45	0.35	0.59	0.46	65%	1/8 ac. Single Fam
	52	С	0.57	21.84%	0.49	0.11	0.65	0.14	65%	1/8 ac. Single Fan
			2.61	100.00%		0.46		0.60		
C4.4	56	В	2.29	76.59%	0.45	0.34	0.59	0.45	65%	1/8 ac. Single Fan
	52	C	0.70	23.41%	0.49	0.11	0.65	0.45	65%	1/8 ac. Single Fan
			2.99	100.00%	0.40	0.46	0.00	0.60	0070	ao. onigie i dil
			2.33	100.00 /0		0.70		0.00		
C4.5	56	В	0.26	/1 27%	0.90	0.37	0.96	0.40	100%	Roadway
04.0				41.27%						Roadway
	52	С	0.37	58.73%	0.90	0.53	0.96	0.56	100%	Roadway
			0.63	100.00%		0.90		0.96		
<u></u>										
C4.6	52	С	2.34	63.41%	0.23	0.15	0.54	0.34	13%	Pond / Open Spa
	56	В	0.32	8.67%	0.45	0.04	0.59	0.05	65%	1/8 ac. Single Farr

PROJECT NAME: The Hills at Lorson Ranch PROJECT NUMBER: 100.061 ENGINEER: LAB

DATE: April 16, 2019

			3.69	100.00%		0.32		0.58		
05.4	50		04.07	00.000/	0.45	0.00	0.50	0.54	05%	4/0 01
C5.1	56	В	21.87	86.99%	0.45	0.39	0.59	0.51	65%	1/8 ac. Single Fa
	52	С	3.27	13.01%	0.49	0.06	0.65	0.08	65%	1/8 ac. Single Fa
			25.14	100.00%		0.46		0.60		
C5.2	52	С	1.71		0.49		0.65		65%	1/8 ac. Single Fa
C5.3	56	В	1.50	66.37%	0.45	0.30	0.59	0.39	65%	1/8 ac. Single Fa
	52	С	0.76	33.63%	0.49	0.16	0.65	0.22	65%	1/8 ac. Single Fa
			2.26	100.00%		0.46		0.61		
C5.4	52	С	0.73		0.90		0.96		100%	Roadway
C5.5	52	С	2.27		0.49		0.65		65%	1/8 ac. Single Fa
C6.1	56	В	1.21		0.45		0.59		65%	1/8 ac. Single Fa
C6.2	56	В	4.35		0.45		0.59		65%	1/8 ac. Single Fa
C6.3	56	В	0.56		0.45		0.59		65%	1/8 ac. Single Fa
C6.4	56	В	3.52	87.56%	0.45	0.39	0.59	0.52	65%	1/8 ac. Single Fa
	52	С	0.50	12.44%	0.49	0.06	0.65	0.08	65%	1/8 ac. Single Fa
			4.02	100.00%		0.45		0.60		
C6.5	56	В	0.14	42.42%	0.45	0.19	0.59	0.25	65%	1/8 ac. Single Fa
	52	С	0.19	57.58%	0.49	0.28	0.65	0.37	65%	1/8 ac. Single Fa
			0.33	100.00%		0.47		0.62		
C6.6	52	С	1.44		0.90		0.96		100%	Roadway
C6.7	56	В	0.24	6.27%	0.16	0.01	0.41	0.03	13%	Pond / Open Sp
	52	С	2.19	57.18%	0.23	0.13	0.54	0.31	13%	Pond / Open Sp
	56	В	0.51	13.32%	0.45	0.06	0.59	0.08	65%	1/8 ac. Single Fa
	52	С	0.89	23.24%	0.49	0.11	0.65	0.15	65%	1/8 ac. Single Fa
			3.83	100.00%		0.32		0.56		
C7.1	54/75	D	2.35		0.49		0.65		65%	1/8 ac. Single Fa
C7.2	75	D	0.84		0.49		0.65		65%	1/8 ac. Single Fa
C7.3	75	D	1.99		0.49		0.65		65%	1/8 ac. Single Fa
C7.4	52/54/75	C/D	2.71		0.49		0.65		65%	1/8 ac. Single Fa
C7.5	75	D	0.50		0.49		0.65		65%	1/8 ac. Single Fa
C7.6	75	D	0.25	5.66%	0.49	0.03	0.65	0.04	65%	1/8 ac. Single Fa
	75	D	4.17	94.34%	0.23	0.22	0.54	0.51	13%	Pond / Open Sp
			4.42	100.00%		0.24		0.55		1

PROJECT NAME: The Hills at Lorson Ranch PROJECT NUMBER: 100.061 ENGINEER: LAB DATE: April 16, 2019

C8.1	56	В	5.25	64.73%	0.45	0.29	0.59	0.38	65%	1/8 ac. Single Fai
	54	D	2.86	35.27%	0.49	0.17	0.65	0.23	65%	1/8 ac. Single Fa
			8.11	100.00%		0.46		0.61		
C8.2	52	С	2.12		0.49		0.65		65%	1/9 ag Singlo Fa
00.2	52	C	2.12		0.49		0.05		05%	1/8 ac. Single Fa
C4.1-ex	56	В	3.54	80.64%	0.09	0.07	0.36	0.29	2%	Historic / Offsit
	75	D	0.85	19.36%	0.16	0.03	0.51	0.10	2%	Historic / Offsit
			4.39	100.00%		0.10		0.39		
C8.3	56	В	7.50	45.79%	0.45	0.21	0.59	0.27	65%	1/8 ac. Single Fa
	54/75	C/D	8.88	54.21%	0.49	0.27	0.65	0.35	65%	1/8 ac. Single Fa
			16.38	100.00%		0.47		0.62		
C8.4	56	В	4.89	72.99%	0.45	0.33	0.59	0.43	65%	1/8 ac. Single Fa
	54	С	1.81	27.01%	0.49	0.13	0.65	0.18	65%	1/8 ac. Single Fa
			6.70	100.00%		0.46		0.61		
~ -										
C8.5	75	D	3.49		0.49		0.65		100%	1/8 ac. Single Fa
C8.6	54	D	0.79		0.90		0.96		100%	Street
00.0	54	D	0.79		0.90		0.96		100%	Street
C8.7	56	в	3.68	15.59%	0.45	0.07	0.59	0.09	65%	1/8 ac. Single Fa
	52/54/75	C/D	19.93	84.41%	0.49	0.41	0.65	0.55	65%	1/8 ac. Single Fa
	02/04/10	0,0	23.61	100.00%	0.40	0.48	0.00	0.64	0070	no do. Olíngio i d
C8.8	56	В	3.85	49.36%	0.16	0.08	0.41	0.20	13%	Pond / Open Spa
	52	С	3.08	39.49%	0.23	0.09	0.54	0.21	13%	Pond / Open Spa
	56	В	0.63	8.08%	0.45	0.04	0.59	0.05	65%	1/8 ac. Single Fa
	52	С	0.24	3.08%	0.49	0.02	0.65	0.02	65%	1/8 ac. Single Fa
			7.80	100.00%		0.22		0.48		
C10.1	54	D	2.65		0.49		0.65		65%	1/8 ac. Single Fa
C10.2	52	C	0.50		0.49		0.65		65%	1/8 ac. Single Fa
C10.3	52/75	C/D	0.26		0.49		0.65		65%	1/8 ac. Single Fa
C10.4	52/54/75	C/D	2.64		0.49		0.65		65%	1/8 ac. Single Fa
C10.5	56	В	0.14	15.56%	0.45	0.07	0.59	0.09	65%	1/8 ac. Single Fa
	52	С	0.76	84.44%	0.49	0.41	0.65	0.55	65%	1/8 ac. Single Fa
			0.90	100.00%		0.48		0.64		
C10.6	52	С	0.56		0.49		0.65		65%	1/8 ac. Single Fa
C5.1-ex	56	в	3.37	70.06%	0.09	0.06	0.36	0.25	2%	Historic / Offsit
	75	D	1.44	29.94%	0.16	0.05	0.51	0.15	2%	Historic / Offsit
			4.81	100.00%		0.11		0.40		

PROJECT NAME: The Hills at Lorson Ranch PROJECT NUMBER: 100.061 ENGINEER: LAB

DATE: April 16, 2019

C10.7	56	В	3.23	96.13%	0.45	0.43	0.59	0.57	65%	1/8 ac. Single Farr
	75	D	0.13	3.87%	0.49	0.02	0.65	0.03	65%	1/8 ac. Single Fan
		-	3.36	100.00%	0.10	0.45	0.00	0.59		no dei enigio i di
			0.00	100.0078		0.43		0.55		
C10.8	56	В	1.80		0.45		0.50		65%	1/9 op. Single For
010.0	56	D	1.89		0.45		0.59		05%	1/8 ac. Single Far
C10.9	56	в	3.17	84.99%	0.45	0.38	0.59	0.50	65%	1/8 ac. Single Far
010.3	52	С	0.56	15.01%	0.49	0.07	0.65	0.10	65%	1/8 ac. Single Far
	52	C	3.73	100.00%	0.49	0.46	0.05	0.60	05 %	1/6 ac. Siligle Fai
			5.75	100.00 %		0.40		0.00		
C10.10	EG	P	6 71	07.919/	0.45	0.44	0.50	0.59	659/	1/8 op. Single For
010.10	56	В	6.71	97.81%	0.45	0.44	0.59	0.58	65%	1/8 ac. Single Far
	75	D	0.15	2.19%	0.49	0.01	0.65	0.01	65%	1/8 ac. Single Far
			6.86	100.00%		0.45		0.59		
040.44	50.77	0	0.07	75 1001	0.00	0.17	0.71	0.11	4000	Devil (C)
C10.11	52/75	C/D	6.87	75.49%	0.23	0.17	0.54	0.41	13%	Pond / Open Spa
	56	В	0.10	1.10%	0.45	0.00	0.59	0.01	65%	1/8 ac. Single Far
	52	С	2.13	23.41%	0.49	0.11	0.65	0.15	65%	1/8 ac. Single Far
			9.10	100.00%		0.29		0.57		
C12.1	56	В	0.30	24.39%	0.45	0.11	0.59	0.14	65%	1/8 ac. Single Fan
	52/75	C/D	0.93	75.61%	0.49	0.37	0.65	0.49	65%	1/8 ac. Single Far
			1.23	100.00%		0.48		0.64		
C12.2	75	D	2.69		0.49		0.65		65%	1/8 ac. Single Far
C12.3	75	D	0.76		0.49		0.65		65%	1/8 ac. Single Far
C12.4	52/75	C/D	1.58		0.49		0.65		65%	1/8 ac. Single Far
C12.5	75	D	2.60		0.49		0.65		65%	1/8 ac. Single Far
C12.6	56	в	0.91	49.19%	0.45	0.22	0.59	0.29	65%	1/8 ac. Single Far
	52	С	0.94	50.81%	0.49	0.25	0.65	0.33	65%	1/8 ac. Single Far
			1.85	100.00%		0.47		0.62		
C12.7	56	В	2.09		0.45		0.59		65%	1/8 ac. Single Far
0 (0 ⁻										
C12.8	56	В	0.37	68.52%	0.90	0.62	0.96	0.66	65%	Roadway
	56	В	0.17	31.48%	0.45	0.14	0.59	0.19	65%	1/8 ac. Single Far
			0.54	100.00%		0.76		0.84		
C12.9	52/75	C/D	0.47		0.49		0.65		65%	1/8 ac. Single Far
C12.10	75	D	0.87		0.49		0.65		65%	1/8 ac. Single Far
C12.11	75	D	0.86		0.49		0.65		65%	1/8 ac. Single Far
	-									
D1.1	56	В	2.23		0.45		0.59		65%	1/8 ac. Single Far
D1.12	56	B	3.44		0.45		0.59		65%	1/8 ac. Single Far
D1.3	56	В	0.29	32.95%	0.45	0.15	0.59	0.19	65%	1/8 ac. Single Fan

15004 1st Av Burnsville, M Preliminary D	IN 55306 rainage Plan	ERING G	ROUP	ATIONS				PROJECT NAMI PROJECT NUM ENGINEER: LAL DATE: April 16,	BER: 100.061 3	orson Ranch
	56	В	0.59	67.05%	0.90	0.60	0.96	0.64	65%	Roadway
			0.88	100.00%		0.75		0.84		
D1.4	56	В	1.92		0.45		0.59		65%	1/8 ac. Single Family
D1.5	56	В	2.13	65.54%	0.09	0.06	0.36	0.24	13%	Pond / Open Space
	56	В	1.12	34.46%	0.45	0.16	0.59	0.20	65%	1/8 ac. Single Family
			3.25	100.00%		0.21		0.44		
D1.6	56	В	2.67		0.09		0.36		13%	Pond / Open Space

Standard Form SF-1. Time of Concentration-Proposed

Calculated By: <u>Leonard Beasley</u> Date: <u>April 17, 2020</u>

Job No: <u>100.061</u> Project: <u>The Hills at Lorson Ranch</u>

					Checked I		_	v			Project: <u>T</u>	ne milis al l	Lorson Ranci	<u>1</u>	
Ś	Sub-Ba	sin Data		Ini	tial Overla	,			Tr	avel Time (tt)			(urbanized sins)	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C1.1	0.45	1.38	20.0	54.00	2.00%	0.13	6.89	170.00	2.60%	3.22	0.88				
			20.0					510.00	1.71%	2.62	3.25	11.02	734.00	14.08	11.02
C1.2	0.45	1.06	7.0	50.00	16.00%	0.25	3.33	70.00	5.57%	1.65	0.71				
			20.0					285.00	0.91%	1.91	2.49	6.53	405.00	12.25	6.53
C1.3	0.45	13.47	7.0	100.00	2.20%	0.18	9.08	70.00	2.40%	1.08	1.08				
			20.0					2805.00	2.17%	2.95	15.87	26.03	2975.00	26.53	26.03
C1.4	0.45	5.19	7.0	80.00	2.00%	0.16	8.38	28.00	2.00%	0.99	0.47				
			20.0					784.00	3.37%	3.67	3.56				
			20.0					72.00	6.00%	4.90	0.24	12.66	964.00	15.36	12.66
DP-1	0.45	21.10	7.0	100.00	2.20%	0.18	9.08	70.00	2.40%	1.08	1.08				
			20.0					2805.00	2.17%	2.95	15.87	26.03	2975.00	26.53	26.03
C1.5	0.45	0.70	20.0	27.00	2.00%	0.09	4.87	650.00	1.38%	2.35	4.61	9.48	677.00	13.76	9.48
DP-2	0.45	21.80	7.0	100.00	2.20%	0.18	9.08	70.00	2.40%	1.08	1.08				
			20.0					2805.00	2.17%	2.95	15.87				
			RCP					115.00	1.00%	7.20	0.27	26.29	3090.00	27.17	26.29
C1.6	0.45	9.35	20.0	81.00	2.90%	0.18	7.46	2102.00	1.80%	2.68	13.06	20.52	2183.00	22.13	20.52
C1.7	0.45	3.18	7.0	40.00	15.50%	0.22	3.01	105.00	6.00%	1.71	1.02				
			20.0					1033.00	1.00%	2.00	8.61	12.64	1178.00	16.54	12.64
C1.8	0.45	5.59	7.0	100.00	2.00%	0.18	9.37	62.00	2.00%	0.99	1.04				
			20.0					1357.00	1.85%	2.72	8.31	18.73	1519.00	18.44	18.44
DP-3	0.45	18.12	20.0	81.00	2.90%	0.18	7.46	3350.00	1.82%	2.70	20.69	28.15	3431.00	29.06	28.15
DP-4	0.45	39.92	7.0	100.00	2.20%	0.18	9.08	70.00	2.40%	1.08	1.08				
			20.0					2805.00	2.17%	2.95	15.87				
			RCP					115.00	1.00%	7.20	0.27				
			RCP					970.00	1.00%	8.36	1.93	28.23	4060.00	32.56	28.23
C2.1	0.45	2.18	20.0	52.00	2.00%	0.13	6.76	1450.00	1.58%	2.51	9.61	16.37	1502.00	18.34	16.37
C2.2	0.45	3.81	7.0	100.00	3.80%	0.22	7.58	195.00	3.80%	1.36	2.38				
			20.0					882.00	2.35%	3.07	4.79	14.76	1177.00	16.54	14.76
C2.3	0.45	4.79	20.0	100.00	4.00%	0.22	7.45	1065.00	2.23%	2.99	5.94	13.39	1165.00	16.47	13.39
DP-5	0.45	10.78	20.0	52.00	2.00%	0.13	6.76	1585.00	1.65%	2.57	10.28	17.04	1637.00	19.09	17.04
C2.4	0.45	2.86	20.0	32.00	3.13%	0.12	4.57	963.00	3.88%	3.94	4.07	8.65	995.00	15.53	8.65
DP-6	0.45	13.64	20.0	52.00	2.00%	0.13	6.76	1795.00	1.72%	2.62	11.41	18.16	1847.00	20.26	18.16

Calculated By: <u>Leonard Beasley</u> Date: <u>April 17, 2020</u>

	Checked By: Leonard Beasle														
:	Sub-Ba	sin Data		Ini	tial Overla	nd Time (ti)		Tr	avel Time	(tı)		tc Check Ba	Final tc	
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	ti minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C2.5	0.45	6.42	7.0	54.00	8.33%	0.21	4.30	81.00	2.13%	1.02	1.32				
			20.0					1910.00	1.56%	2.50	12.74	18.36	2045.00	21.36	18.36
C2.6	0.45	0.43	20.0	36.00	2.00%	0.11	5.62	373.00	2.14%	2.93	2.12	7.75	409.00	12.27	7.75
C2.7	0.45	3.31	20.0	86.00	2.91%	0.19	7.68	946.00	3.85%	3.92	4.02	11.70	1032.00	15.73	11.70
DP-7	0.45	10.16	7.0	54.00	8.33%	0.21	4.30	81.00	2.13%	1.02	1.32				
			20.0					2294.00	1.64%	2.56	14.93	20.54	2429.00	23.49	20.54
DP-8	0.45	23.80	7.0	54.00	8.33%	0.21	4.30	81.00	2.13%	1.02	1.32				
			20.0					2294.00	1.64%	2.56	14.93				
			RCP					35.00	1.00%	10.46	0.06	20.60	2464.00	23.69	20.60
C2.8	0.45	1.78	20.0	34.00	2.00%	0.10	5.47	873.00	3.38%	3.68	3.96	9.42	907.00	15.04	9.42
C2.9	0.45	2.73	7.0	100.00	3.30%	0.21	7.94	107.00	3.40%	1.29	1.38				
			20.0					890.00	2.62%	3.24	4.58	13.90	1097.00	16.09	13.90
DP-9	0.45	4.51	7.0	100.00	3.30%	0.21	7.94	107.00	3.40%	1.29	1.38				
			20.0					890.00	2.62%	3.24	4.58	13.90	1097.00	16.09	13.90
C2.10	0.45	1.70	7.0	100.00	2.88%	0.20	8.31	56.00	2.88%	1.19	0.79				
			20.0					929.00	3.15%	3.55	4.36	13.45	1085.00	16.03	13.45
DP-10	0.45	6.21	7.0	100.00	3.30%	0.21	7.94	107.00	3.40%	1.29	1.38				
			20.0					890.00	2.62%	3.24	4.58				
			RCP					60.00	1.00%	7.20	0.14	14.04	1157.00	16.43	14.04
C2.11	0.24	6.29	20.0	79.00	6.33%	0.17	7.53	277.00	3.61%	3.80	1.21				
			20.0					60.00	31.67%	11.26	0.09				
			20.0					584.00	0.50%	1.41	6.88	15.71	1000.00	15.56	15.56
DP-11 (C2)	0.41	36.30	7.0	54.00	8.33%	0.20	4.56	81.00	2.13%	1.02	1.32				
			20.0					2294.00	1.64%	2.56	14.93				
			RCP					215.00	3.00%	19.80	0.18				
			20.0					535.00	0.50%	1.41	6.31	27.29	3179.00	27.66	27.29
C3.1	0.45	55.11	20.0	72.00	2.50%	0.16	7.39	2550.00	2.67%	3.27	13.00	20.39	2622.00	24.57	20.39
C4.1	0.45	4.61	7.0	52.00	11.54%	0.23	3.78	169.00	3.08%	1.23	2.29				
			20.0					1650.00	1.39%	2.36	11.66	17.74	1871.00	20.39	17.74
C4.2	0.45	3.66	20.0	41.00	2.00%	0.11	6.00	1079.00	4.37%	4.18	4.30	10.30	1120.00	16.22	10.30
DP-12	0.45	8.27	7.0	52.00	11.54%	0.23	3.78	169.00	3.08%	1.23	2.29				
			20.0					2637.00	2.62%	3.24	13.58	19.65	2858.00	25.88	19.65

Calculated By: <u>Leonard Beasley</u> Date: <u>April 17, 2020</u>

Checked By: <u>Leonard Beasle</u>							÷						<u></u>		
:	Sub-Ba	sin Data		Ini	tial Overla	nd Time (1	ti)		Tr	avel Time (tı)		tc Check Ba	Final tc	
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	ti minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min
C4.3	0.46	2.61	7.0	100.00	2.90%	0.20	8.16	80.00	2.90%	1.19	1.12				
			20.0					600.00	0.80%	1.79	5.59	14.87	780.00	14.33	14.33
C4.4	0.46	2.99	20.0	25.00	2.00%	0.09	4.61	1047.00	2.80%	3.35	5.21	9.83	1072.00	15.96	9.83
DP-13	0.45	13.87	7.0	52.00	11.54%	0.23	3.78	169.00	3.08%	1.23	2.29				
			20.0					2900.00	2.59%	3.22	15.02	21.09	3121.00	27.34	21.09
C4.5	0.90	0.63	20.0	56.00	3.93%	0.54	1.73	384.00	2.86%	3.38	1.89	3.62	440.00	12.44	3.62
DP-14	0.43	14.50	7.0	52.00	11.54%	0.22	3.90	169.00	3.08%	1.23	2.29				
			20.0					2900.00	2.62%	3.24	14.93				
			RCP					60.00	1.00%	8.36	0.12	21.24	3181.00	27.67	21.24
C4.6	0.32	3.69	7.0	100.00	6.42%	0.22	7.65	62.00	6.42%	1.77	0.58				
			7.0					51.00	31.77%	3.95	0.22				
			7.0					436.00	0.60%	0.54	13.40	21.85	649.00	13.61	13.61
DP-15 (C4)	0.43	18.19	7.0	54.00	8.33%	0.20	4.43	169.00	3.08%	1.23	2.29				
(01)			20.0					2900.00	2.62%	3.24	14.93				
			RCP					160.00	1.00%	8.36	0.32				
			7.0					430.00	0.60%	0.54	13.22	35.19	3713.00	30.63	30.63
C5.1	0.46	25.14	7.0	42.00	2.38%	0.12	5.65	45.00	24.44%	3.46	0.22				
			15.0					123.00	2.44%	2.34	0.87				
			20.0					1647.00	4.49%	4.24	6.48				
			RCP					300.00	2.00%	9.89	0.51	13.72	2157.00	21.98	13.72
C5.2	0.49	1.71	20.0	38.00	2.63%	0.13	4.95	677.00	2.48%	3.15	3.58	8.53	715.00	13.97	8.53
C5.3	0.46	2.26	20.0	42.00	2.00%	0.12	5.98	1115.00	4.68%	4.33	4.30	10.28	1157.00	16.43	10.28
DP-16	0.46	3.97	20.0	42.00	2.00%	0.12	5.98	1115.00	4.68%	4.33	4.30	10.28	1157.00	16.43	10.28
C5.4	0.90	0.73	20.0	26.00	2.00%	0.29	1.47	578.00	2.37%	3.08	3.13	4.60	604.00	13.36	4.60
DP-17	0.54	4.70	7.0	100.00	3.23%	0.24	6.89	197.00	3.23%	1.26	2.61				
			RCP					53.00	1.00%	7.20	0.12	9.62	350.00	11.94	9.62
DP-18	0.47	25.14	7.0	42.00	2.38%	0.13	5.56	45.00	24.44%	3.46	0.22				
			15.0					123.00	2.44%	2.34	0.87				
			20.0					1647.00	4.49%	4.24	6.48				
			RCP					430.00	2.00%	13.34	0.54	13.66	2287.00	22.71	13.66
C5.5	0.49	2.27	20.0	43.00	2.00%	0.12	5.77	783.00	3.07%	3.50	3.72	9.49	826.00	14.59	9.49
		<u></u>			<u> </u>										

Calculated By: <u>Leonard Beasley</u> Date: <u>April 17, 2020</u>

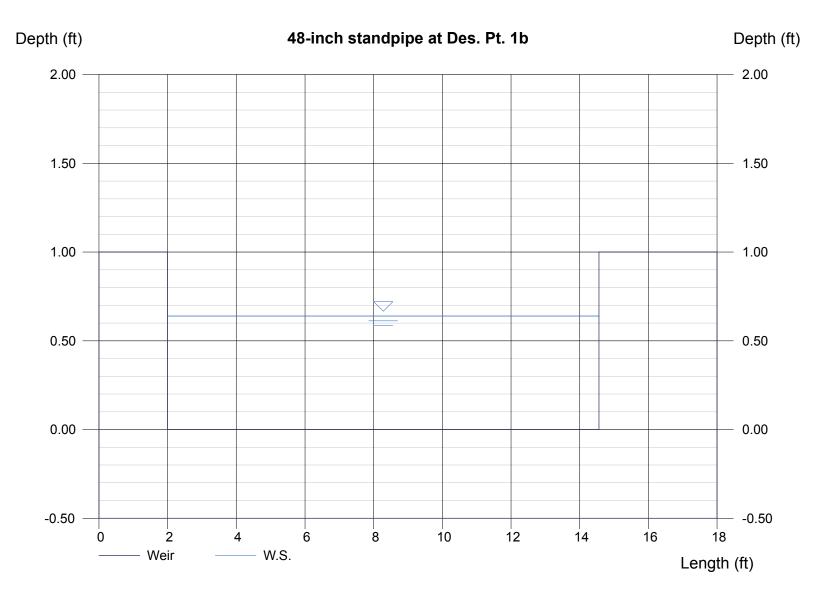
Checked By: <u>Leonard Beasley</u>													<u> </u>		
Ş	Sub-Ba	sin Data		Ini	tial Overla	ind Time (ti)		Tr	avel Time (tt)		tc Check Ba	Final tc	
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	ti minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
DP-19	0.47	25.14	7.0	42.00	2.38%	0.13	5.56	45.00	24.44%	3.46	0.22				
			15.0					123.00	2.44%	2.34	0.87				
			20.0					1647.00	4.49%	4.24	6.48				
			RCP					1237.00	2.00%	13.34	1.55	14.67	3094.00	27.19	14.67
C6.1	0.45	1.21	20.0	36.00	2.00%	0.11	5.62	9.28	2.60%	3.22	0.05	5.67	45.28	10.25	5.67
C6.2	0.45	4.35	20.0	60.00	3.00%	0.16	6.35	1312.00	0.93%	1.93	11.34	17.69	1372.00	17.62	17.62
DP-20	0.45	5.56	20.0	60.00	3.00%	0.16	6.35	1312.00	0.93%	1.93	11.34	17.69	1372.00	17.62	17.62
C6.3	0.45	0.56	20.0	43.00	2.00%	0.12	6.15	271.00	1.00%	2.00	2.26	8.40	314.00	11.74	8.40
DP-21	0.45	6.12	20.0	60.00	3.00%	0.16	6.35	1312.00	0.93%	1.93	11.34				
			RCP					63.00	1.00%	7.20	0.15	17.83	1435.00	17.97	17.83
C6.4	0.45	4.02	20.0	32.00	3.75%	0.12	4.31	1656.00	2.50%	3.16	8.73	13.03	1688.00	19.38	13.03
C6.5	0.47	0.33	20.0	43.00	2.00%	0.12	5.96	237.00	2.83%	3.36	1.17	7.13	280.00	11.56	7.13
DP-22	0.45	4.35	20.0	60.00	3.00%	0.16	6.35	1312.00	0.93%	1.93	11.34	17.69	1372.00	17.62	17.62
C6.6	0.90	1.44	20.0	67.00	2.84%	0.53	2.10	770.00	3.08%	3.51	3.66	5.76	837.00	14.65	5.76
DP-24	0.50	11.91	20.0	60.00	3.00%	0.17	5.86	1312.00	0.93%	1.93	11.34				
			RCP					63.00	1.00%	7.20	0.15				
			RCP					245.00	4.00%	14.40	0.28				
			RCP					50.00	4.50%	20.02	0.04	17.67	1730.00	19.61	17.67
C6.7	0.32	3.83	7.0	48.00	12.92%	0.19	4.20	132.00	4.92%	1.55	1.42				
			7.0					46.00	30.43%	3.86	0.20				
			7.0					209.00	0.60%	0.54	6.42	12.24	435.00	12.42	12.24
DP-25	0.46	15.74	20.0	60.00	3.00%	0.16	6.25	1312.00	0.93%	1.93	11.34				
			RCP					63.00	1.00%	7.20	0.15				
			RCP					245.00	4.00%	14.40	0.28				
			RCP					50.00	4.50%	20.02	0.04	18.06	1730.00	19.61	18.06
C7.1	0.49	2.35	20.0	58.00	2.60%	0.16	6.14	506.00	3.28%	3.62	2.33	8.47	564.00	13.13	8.47
C7.2	0.49	0.84	20.0	65.00	2.00%	0.15	7.09	536.00	2.48%	3.15	2.84	9.93	601.00	13.34	9.93
C7.3	0.49	1.99	20.0	34.00	2.00%	0.11	5.13	700.00	2.00%	2.83	4.12	9.25	734.00	14.08	9.25
DP-26	0.49	5.18	20.0	65.00	2.00%	0.15	7.09	536.00	2.48%	3.15	2.84	9.93	601.00	13.34	9.93
C7.4	0.49	2.71	7.0	100.00	2.40%	0.20	8.28	61.00	2.40%	1.08	0.94				
			20.0					642.00	1.36%	1.36	7.87	17.09	803.00	14.46	14.46

Calculated By: <u>Leonard Beasley</u> Date: <u>April 17, 2020</u>

	Checked By: <u>Leonard Beasley</u>														
;	Sub-Ba	sin Data		Ini	tial Overla	nd Time (ti)		Tr	avel Time (tt)			(urbanized sins)	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended Tc=Ti+Tt (min)
C7.5	0.49	0.50	20.0	32.00	2.00%	0.11	4.98	450.00	2.27%	3.01	2.49	7.46	482.00	12.68	7.46
DP-27	0.49	3.21	7.0	100.00	2.40%	0.20	8.28	61.00	2.40%	1.08	0.94				
			20.0					642.00	1.36%	1.36	7.87	17.09	803.00	14.46	14.46
DP-28	0.49	4.42	7.0	100.00	2.40%	0.20	8.28	61.00	2.40%	1.08	0.94				
			20.0					642.00	1.36%	1.36	7.87	17.09	803.00	14.46	14.46
C7.6	0.24	4.42	7.0	64.00	3.44%	0.13	8.29	16.00	31.25%	3.91	0.07				
			7.0					228.00	2.63%	1.14	3.35				
			7.0					49.00	32.65%	4.00	0.20				
			7.0					208.00	0.80%	0.63	5.54	17.45	565.00	13.14	13.14
DP-29	0.40	12.81	7.0	100.00	2.40%	0.18	9.50	61.00	2.40%	1.08	0.94				
			20.0					642.00	1.36%	2.33	4.59				
			RCP					140.00	12.00%	24.94	0.09				
			20.0					225.00	0.80%	1.79	2.10	17.22	1168.00	16.49	16.49
C8.1	0.46	8.11	20.0	45.00	2.00%	0.12	6.19	1670.00	3.96%	3.98	6.99	13.18	1715.00	19.53	13.18
C8.2	0.49	2.12	20.0	50.00	4.20%	0.17	4.87	385.00	0.64%	1.60	4.01	8.88	435.00	12.42	8.88
C4.1-ex	0.10	4.39	7.0	300.00	4.50%	0.26	19.10	143.00	4.60%	1.50	1.59	20.68	443.00	12.46	20.68
C8.3	0.47	16.38	7.0	50.00	23.20%	0.29	2.85	115.00	2.09%	1.01	1.89				
			20.0					1900.00	3.52%	1.36	23.28	28.03	2065.00	21.47	21.47
DP-30	0.39	20.77	7.0	50.00	23.20%	0.26	3.22	115.00	2.09%	1.01	1.89				
			20.0					1900.00	3.52%	1.36	23.28	28.39	2065.00	21.47	21.47
DP-31	0.41	31.00	7.0	50.00	23.20%	0.27	3.13	115.00	2.09%	1.01	1.89				
			20.0					2350.00	3.03%	3.48	11.25	16.27	2515.00	23.97	23.97
C8.4	0.46	6.70	20.0	25.00	5.20%	0.12	3.36	1343.00	3.88%	3.94	5.68	9.04	1368.00	17.60	9.04
DP-32	0.47	37.70	7.0	50.00	23.20%	0.29	2.85	115.00	2.09%	1.01	1.89				
			20.0					2350.00	3.03%	1.36	28.80	33.55	2515.00	23.97	23.97
C8.5	0.49	3.49	20.0	12.00	2.00%	0.07	3.05	1225.00	3.25%	3.61	5.66	8.71	1237.00	16.87	8.71
C8.6	0.90	0.79	20.0	25.00	2.80%	0.32	1.29	730.00	2.30%	3.03	4.01	5.30	755.00	14.19	5.30
DP-33	0.57	4.28	20.0	12.00	2.00%	0.08	2.64	1980.00	2.87%	3.39	9.74	12.38	1992.00	21.07	21.07
C8.7	0.48	23.61	7.0	20.00	18.50%	0.17	1.91	99.00	2.42%	1.09	1.52				
			20.0					2654.00	2.15%	1.36	32.52	35.95	2773.00	25.41	25.41
DP-34	0.48	27.89	7.0	20.00	18.50%	0.17	1.91	99.00	2.42%	1.09	1.52				
			20.0					2654.00	2.15%	1.36	32.52	35.95	2773.00	25.41	25.41
	L	1	I	1	1	I	1	l	1	1				1	1

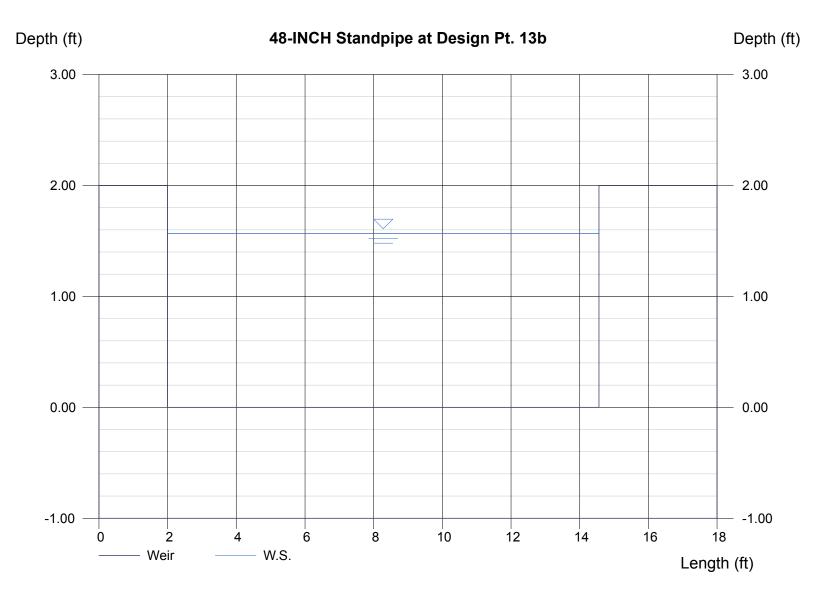
Calculated By: <u>Leonard Beasley</u> Date: <u>April 17, 2020</u> Checked By: Leonard Beasley

	Checked By: Leonard Beasle						<u>y</u>			t. Chook	(urbanized				
	Sub-Ba	sin Data	r		tial Overla		, 	Travel Time (tt)					Ba	sins)	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C8.8	0.22	7.80	7.0	100.00	2.00%	0.13	12.69	611.00	5.48%	1.64	6.21				
			7.0					53.00	33.00%	4.02	0.22				
			7.0					245.00	0.60%	0.54	7.53	26.65	1009.00	15.61	15.61
DP-35	0.43	73.39	7.0	20.00	18.50%	0.16	2.07	99.00	2.42%	1.09	1.52				
			20.0					2654.00	2.15%	2.93	15.08				
			RCP					566.00	5.30%	21.72	0.43				
			7.0					272.00	0.60%	0.54	8.36	27.46	3611.00	30.06	27.46
C10.1	0.49	2.65	20.0	28.00	3.60%	0.12	3.82	590.00	2.37%	3.08	3.19	7.01	618.00	13.43	7.01
C10.2	0.49	0.50	20.0	28.00	3.57%	0.12	3.83	334.00	0.84%	1.83	3.04	6.87	362.00	12.01	6.87
C10.3	0.49	0.26	20.0	33.00	3.00%	0.12	4.40	220.00	0.60%	1.55	2.37	6.77	253.00	11.41	6.77
DP-36	0.49	3.41	20.0	28.00	3.60%	0.12	3.82	868.00	1.92%	2.77	5.22	9.04	896.00	14.98	9.04
C10.4	0.49	2.64	20.0	76.00	2.12%	0.17	7.49	550.00	2.04%	2.86	3.21	10.70	626.00	13.48	10.70
DP-37	0.49	6.05	20.0	76.00	2.12%	0.17	7.49	550.00	2.04%	2.86	3.21				
			RCP					40.00	1.46%	11.41	0.06	10.76	666.00	13.70	10.76
C10.5	0.48	0.90	7.0	100.00	3.20%	0.22	7.65	30.00	3.30%	1.27	0.39				
			20.0					353.00	2.15%	2.93	2.01	10.05	483.00	12.68	10.05
C10.6	0.49	0.56	20.0	16.00	2.00%	0.08	3.50	490.00	2.51%	3.17	2.58	6.08	506.00	12.81	6.08
C5.1-ex	0.11	4.81	7.0	300.00	4.80%	0.27	18.51	285.00	4.80%	1.53	3.10	21.60	585.00	13.25	21.60
C10.7	0.45	3.36	7.0	100.00	2.00%	0.18	9.37	72.00	2.78%	1.17	1.03				
			20.0					807.00	4.56%	4.27	3.15				
			20.0					315.00	0.60%	1.55	3.39	16.94	1294.00	17.19	16.94
DP-38	0.25	8.17	7.0	100.00	2.00%	0.14	12.26	72.00	2.78%	1.17	1.03				
			20.0					807.00	4.56%	4.27	3.15				
			20.0					315.00	0.60%	1.55	3.39	19.82	1294.00	17.19	17.19
C10.8	0.45	1.89	7.0	100.00	3.23%	0.21	8.00	197.00	3.23%	1.26	2.61				
			20.0					59.00	0.60%	1.55	0.63	11.24	356.00	11.98	11.24
DP-39	0.29	8.17	7.0	100.00	2.00%	0.14	11.68	72.00	2.78%	1.17	1.03				
			20.0					807.00	4.56%	4.27	3.15				
			20.0					922.00	0.60%	1.55	9.92	25.78	1901.00	20.56	20.56
C10.9	0.46	3.73	7.0	100.00	5.00%	0.24	6.81	932.00	4.61%	1.50	10.34	17.15	1032.00	15.73	15.73
C10.10	0.45	6.86	20.0	100.00	3.00%	0.20	8.20	1141.00	3.68%	3.84	4.96	13.15	1241.00	16.89	13.15
DP-40	0.34	10.06	7.0	100.00	2.00%	0.15	10.96	72.00	2.78%	1.17	1.03				
			20.0					807.00	4.56%	4.27	3.15				
			20.0					1027.00	0.60%	1.55	11.05	26.19	2006.00	21.14	21.14

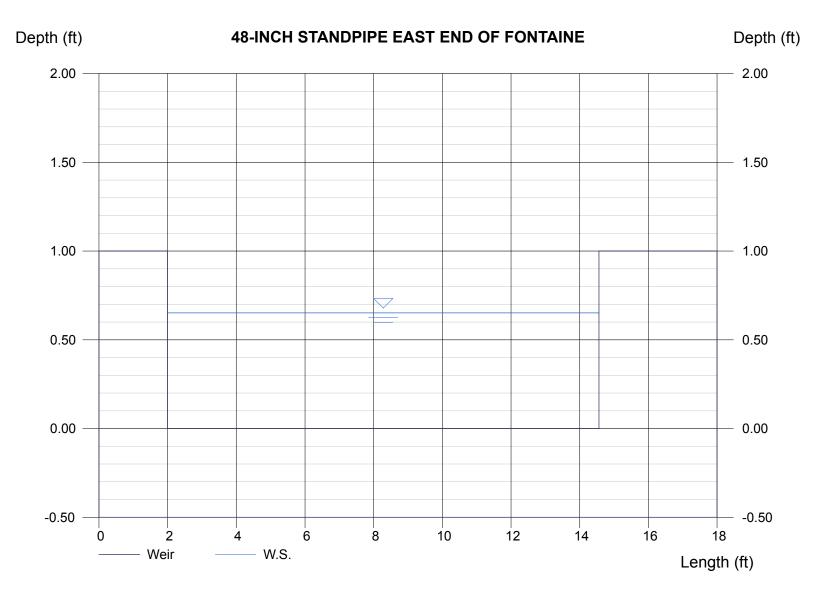

Calculated By: <u>Leonard Beasley</u> Date: <u>April 17, 2020</u>

	Date: <u>April 17, 2020</u> Checked By: <u>Leonard Beasle</u>														
:	Sub-Ba	sin Data		Ini	tial Overla				Tr	avel Time	(t t)		tc Check	Final tc	
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	sins) Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C10.11	0.22	9.10	7.0	77.00	2.20%	0.12	10.79	12.00	33.33%	4.04	0.05				
			7.0					102.00	2.94%	1.20	1.42				
			7.0					45.00	33.33%	4.04	0.19				
			7.0					468.00	0.66%	0.57	13.72	26.16	704.00	13.91	13.91
C10	0.34	37.26	7.0	100.00	2.00%	0.15	10.96	72.00	2.78%	1.17	1.03				
			20.0					807.00	4.56%	4.27	3.15				
			20.0					1027.00	0.60%	1.55	11.05				
			RCP					385.00	1.00%	9.44	0.68	26.86	2391.00	23.28	23.28
C12.1 (DP-41)	0.48	1.23	20.0	70.00	2.00%	0.16	7.48	355.00	0.94%	1.94	3.05	10.53	425.00	12.36	10.53
C12.2	0.49	2.69	7.0	100.00	2.38%	0.20	8.30	72.00	2.38%	1.08	1.11				
			20.0					401.00	1.32%	2.30	2.91	12.32	573.00	13.18	12.32
C12.3	0.49	0.76	20.0	56.00	2.14%	0.15	6.44	437.00	1.56%	2.50	2.92	9.35	493.00	12.74	9.35
DP-42	0.49	3.45	7.0	100.00	2.38%	0.20	8.30	72.00	2.38%	1.08	1.11				
			20.0					461.00	1.28%	2.26	3.40	12.81	633.00	13.52	12.81
C12.4	0.49	1.58	7.0	100.00	2.20%	0.20	8.52	51.00	2.20%	1.04	0.82				
			20.0					335.00	1.71%	2.62	2.13	11.48	486.00	12.70	11.48
C12.5	0.49	2.60	7.0	100.00	2.00%	0.19	8.80	12.00	2.00%	0.99	0.20				
			20.0					1094.00	1.12%	2.12	8.61	17.61	1206.00	16.70	16.70
DP-43	0.49	2.60	7.0	100.00	2.00%	0.19	8.80	12.00	2.00%	0.99	0.20				
			20.0					1094.00	1.12%	2.12	8.61	17.61	1206.00	16.70	16.70
C12.6	0.47	1.85	20.0	26.00	2.00%	0.09	4.63	491.00	1.78%	2.67	3.07	7.70	517.00	12.87	7.70
C12.7	0.45	2.09	7.0	100.00	2.00%	0.18	9.37	68.00	2.00%	0.99	1.14				
			20.0					438.00	1.88%	2.74	2.66	13.18	606.00	13.37	13.18
C12.8	0.76	0.54	20.0	21.00	3.79%	0.19	1.82	331.00	4.05%	4.02	1.37	3.19	352.00	11.96	3.19
DP-44	0.45	4.48	7.0	100.00	2.00%	0.18	9.37	68.00	2.00%	0.99	1.14				
			20.0					438.00	1.88%	2.74	2.66	13.18	606.00	13.37	13.18
DP-45	0.49	13.34	7.0	100.00	2.00%	0.19	8.80	12.00	2.00%	0.99	0.20				
			20.0					1094.00	1.12%	2.12	8.61	17.61	1206.00	16.70	16.70
C12.9	0.49	0.47	7.0	100.00	3.15%	0.22	7.57	5.00	3.15%	1.24	0.07				
			20.0					108.00	2.22%	2.98	0.60	8.24	213.00	11.18	8.24
C12.10	0.49	0.87	7.0	60.00	3.33%	0.17	5.76	26.00	16.92%	2.88	0.15				
			7.0					21.00	2.00%	0.99	0.35				
			20.0					190.00	2.22%	2.98	1.06	7.32	297.00	11.65	7.32

		DRE			<u>Standard</u>	Form SF	-1. Time c	of Concen	tration-Pr	oposed					
			ING GR	OUP	Date: Apri	Calculated By: Leonard Beasley Job No: 100.061 Date: April 17, 2020 Project: The Hills at Lorson Ranch Checked By: Leonard Beasley Project: The Hills at Lorson Ranch								<u>h</u>	
5	Sub-Ba	sin Data		Ini	tial Overla	nd Time (1	ti)	- Travel Time (tt)						(urbanized sins)	Final t _c
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
DP-46	0.49	1.34	7.0	100.00	3.15%	0.22	7.57	5.00	3.15%	1.24	0.07				
			20.0					298.00	2.22%	2.98	1.67	9.30	403.00	12.24	9.30
C12.11	0.49	0.86	7.0	97.00	2.33%	0.20	8.24	0.00	0.00%	0.00	0.00	8.24	97.00	10.54	8.24
D1.1	0.45	2.33	7.0	25.00	25.20%	0.21	2.03	133.00	3.01%	1.21	1.83				
			20.0					410.00	0.88%	1.88	3.64	7.49	568.00	13.16	7.49
D1.2	0.45	3.44	7.0	100.00	3.80%	0.22	7.58	27.00	3.70%	1.35	0.33				
			20.0					671.00	1.68%	2.59	4.31	12.23	798.00	14.43	12.23
D1.3	0.75	0.88	20.0	31.00	2.00%	0.18	2.81	800.00	3.68%	3.84	3.48	6.29	831.00	14.62	6.29
D1.4	0.45	1.92	20.0	50.00	2.00%	0.13	6.63	887.00	3.17%	3.56	4.15	10.78	937.00	15.21	10.78
DP-47	0.45	8.57	7.0	100.00	3.80%	0.22	7.58	27.00	3.70%	1.35	0.33				
			20.0					671.00	1.68%	2.59	4.31				
			RCP					55.00	1.00%	7.20	0.13	12.35	853.00	14.74	12.35
D1.5	0.21	3.25	7.0	100.00	11.00%	0.23	7.30	243.00	2.00%	0.99	4.09				
			20.0					334.00	3.14%	3.54	1.57	12.96	677.00	13.76	12.96
D1.6	0.09	2.67	7.0	100.00	4.20%	0.15	11.39	139.00	4.50%	1.48	1.56				
			20.0					512.00	2.83%	3.36	2.54	15.49	751.00	14.17	14.17


48-inch standpipe at Des. Pt. 1b

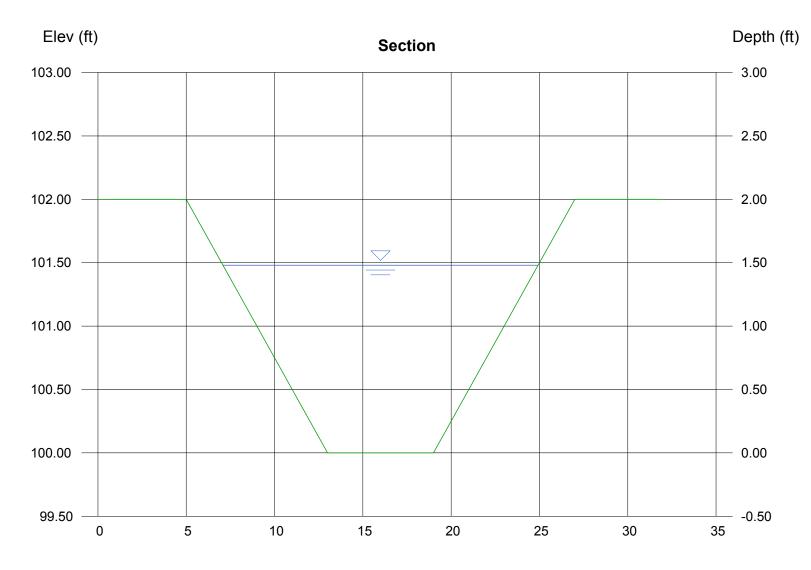
	Highlighted	
= Sharp	Depth (ft)	= 0.64
= 12.56	Q (cfs)	= 21.40
= 1.00	Area (sqft)	= 8.03
	Velocity (ft/s)	= 2.66
	Top Width (ft)	= 12.56
= 3.33		
Known Q		
= 21.40		
	= 12.56 = 1.00 = 3.33 Known Q	= Sharp Depth (ft) = 12.56 Q (cfs) = 1.00 Area (sqft) Velocity (ft/s) Top Width (ft) = 3.33 Known Q


48-INCH Standpipe at Design Pt. 13b

Rectangular Weir		Highlighted
Crest	= Sharp	Depth (ft) = 1.57
Bottom Length (ft)	= 12.56	Q (cfs) = 82.00
Total Depth (ft)	= 2.00	Area (sqft) = 19.68
		Velocity (ft/s) = 4.17
Calculations		Top Width (ft) = 12.56
Weir Coeff. Cw	= 3.33	
Compute by:	Known Q	
Known Q (cfs)	= 82.00	

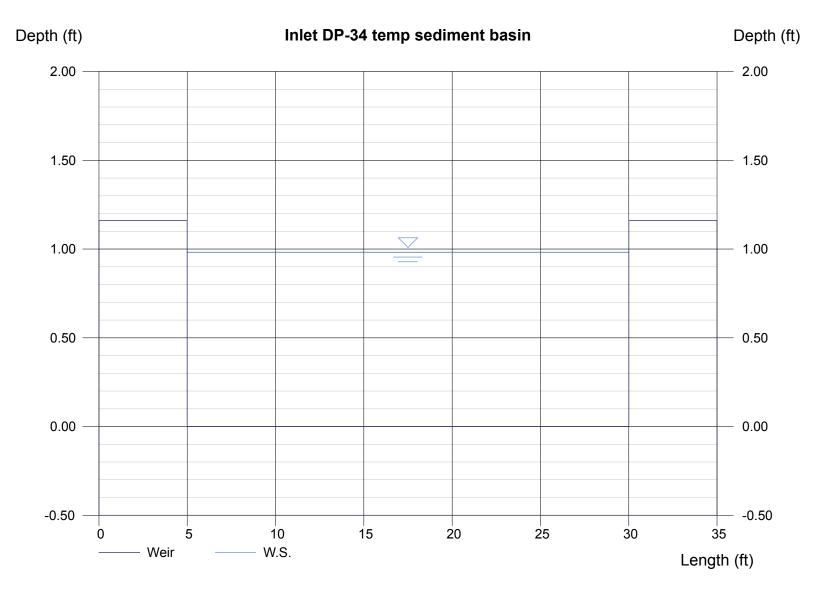
48-INCH STANDPIPE EAST END OF FONTAINE

Rectangular Weir	,	Highlighted	
Crest	= Sharp	Depth (ft)	= 0.65
Bottom Length (ft)	= 12.56	Q (cfs)	= 22.00
Total Depth (ft)	= 1.00	Area (sqft)	= 8.18
		Velocity (ft/s)	= 2.69
Calculations		Top Width (ft)	= 12.56
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 22.00		



Channel Report

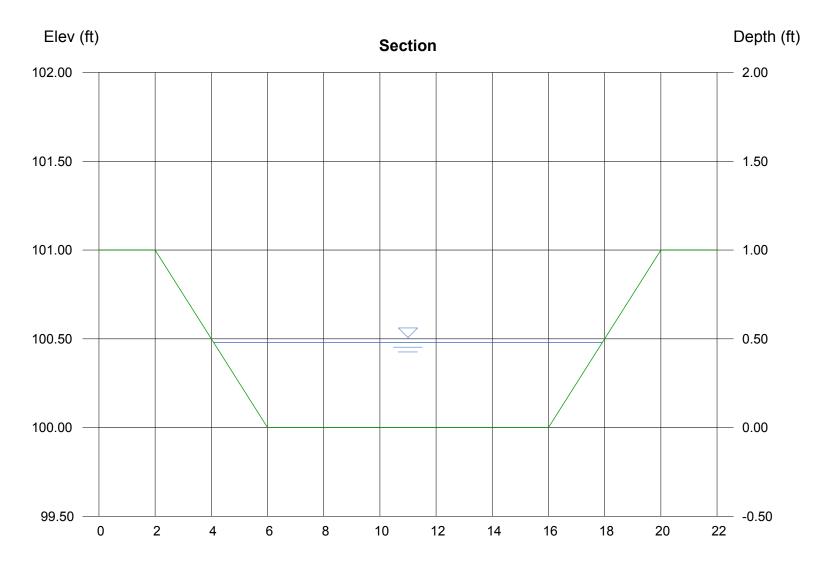
Hydraflow Express by Intelisolve


Diversion Swale C4.2-ex

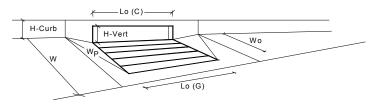
Trapezoidal		Highlighted	
Botom Width (ft)	= 6.00	Depth (ft)	= 1.48
Side Slope (z:1)	= 4.00	Q (cfs)	= 85.10
Total Depth (ft)	= 2.00	Area (sqft)	= 17.64
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.82
Slope (%)	= 0.70	Wetted Perim (ft)	= 18.20
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.37
		Top Width (ft)	= 17.84
Calculations		EGL (ft)	= 1.84
Compute by:	Known Q		
Known Q (cfs)	= 85.10		

Inlet DP-34 temp sediment basin

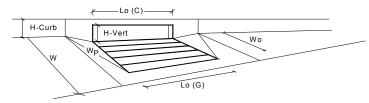
0.98
81.00
24.55
3.30
25.00
823



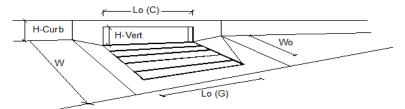
Channel Report


Hydraflow Express by Intelisolve

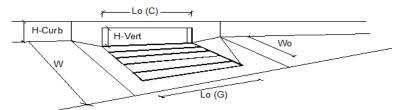
Overflow Swale #1


Trapezoidal		Highlighted	
Botom Width (ft)	= 10.00	Depth (ft) =	0.48
Side Slope (z:1)	= 4.00	Q (cfs) =	27.50
Total Depth (ft)	= 1.00	Area (sqft) =	5.72
Invert Elev (ft)	= 100.00	Velocity (ft/s) =	4.81
Slope (%)	= 1.40	Wetted Perim (ft) =	13.96
N-Value	= 0.020	Crit Depth, Yc (ft) =	0.57
		Top Width (ft) =	13.84
Calculations		EGL (ft) =	0.84
Compute by:	Known Q		
Known Q (cfs)	= 27.50		

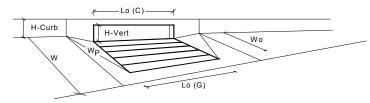
Reach (ft)



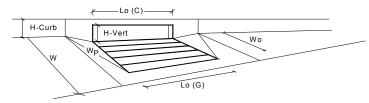
		MINOR	MAJOR	
Design Information (Input) CDOT Type R Curb Opening				-
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.5	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.29	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.52	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.75	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	3
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.6	20.3	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	4.8	20.3	cfs

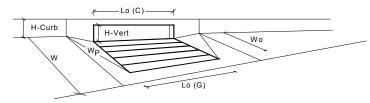

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.5	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.29	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.71	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.4	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.3	3.0	cfs

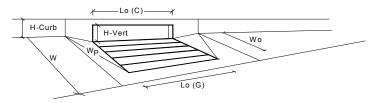
Design Information (Input)	1	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.4	3.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.9	3.8	cfs
Capture Percentage = Q _a /Q _o =	C% =	72	48	%

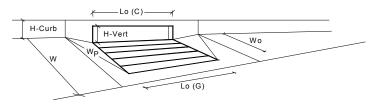


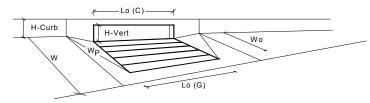
Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.9	5.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	5.4	15.2	cfs
Capture Percentage = Q _a /Q _o =	С% =	41	26	%

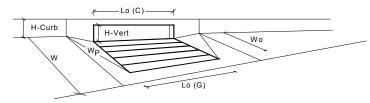


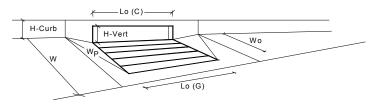

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.4	8.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.7	5.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	89	63	%


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	30.00	30.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	14.8	35.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	14.3	34.8	cfs


Design Information (Innut)		MINOR	MAJOR	
Design Information (Input) Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	-
Local Depression (additional to continuous gutter depression 'a' from above)	i ype = a _{local} =	3.00	3.00	inches
	No =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening) Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.8	inches
Grate Information	Fonding Depth -	MINOR	MAJOR	Verride Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A N/A	N/A N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)		N/A N/A	N/A	ieel
	A _{ratio} = C _f (G) =			_
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)		N/A	N/A	_
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.49	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	3
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	12.5	30.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	12.1	29.9	cfs

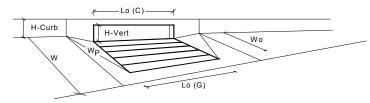

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.74	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.88	7
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.0	19.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	7.9	17.2	cfs


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.42	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.66	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	0.99	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.9	12.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.8	6.2	cfs

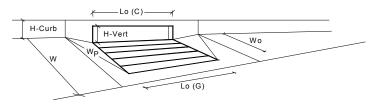

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	12.5	29.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	11.2	24.5	cfs

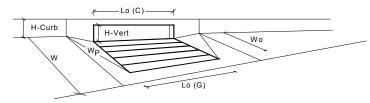
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	-
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	inches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	5.6	inches
Grate Information	I onding Deptil -	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.53	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.9	6.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.9	5.2	cfs

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	-
	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	3
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.0	19.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	7.9	17.7	cfs

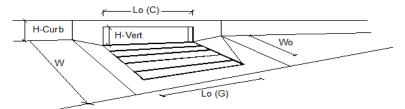


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
ength of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.53	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.9	6.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.4	6.1	cfs

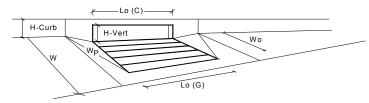



Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.7	9.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	93	%

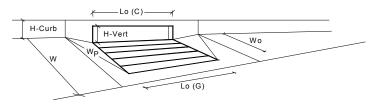
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.3	24.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	9.1	20.1	cfs

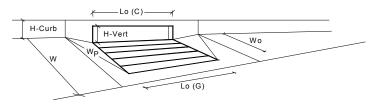


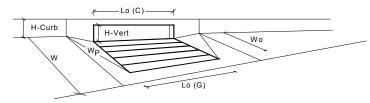
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L ₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.72	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.6	4.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.1	2.4	cfs

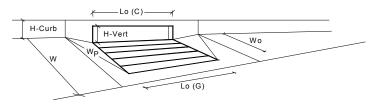


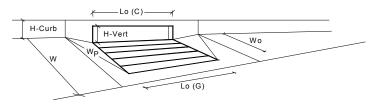
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	19.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	7.5	16.2	cfs

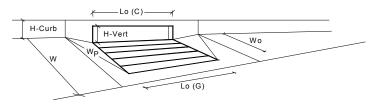


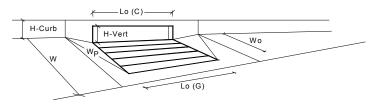

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.4	10.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	90	%


		MINOR	MAJOR	
Design Information (Input) CDOT Type R Curb Opening	Type =		Curb Opening	-
		•••		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.7	7.7	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.31	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.54	0.73	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.77	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.8	24.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	10.8	24.0	cfs

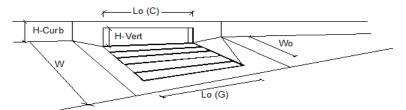

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.2	7.1	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.27	0.42	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.49	0.67	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.88	0.99	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.6	12.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.6	12.5	cfs


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.49	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.56	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.78	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	14.5	30.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	14.5	30.0	cfs

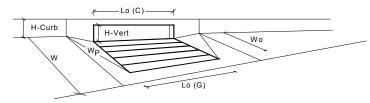

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	-
Type of met	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.4	7.7	inches
Grate Information	L (0) -	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.28	0.47	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.51	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.75	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	3
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.2	18.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	7.2	18.2	cfs


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.76	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.2	9.3	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	5.2	11.6	cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	8.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L ₀ (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.53	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.56	0.79	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.78	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	14.7	35.6	cfs
WARNING: Inlet Capacity less than Q Peak for Minor and Major Storms	Q PEAK REQUIRED =	14.7	38.5	cfs



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.7	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L ₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.40	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	0.86	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	6.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.8	6.9	cfs



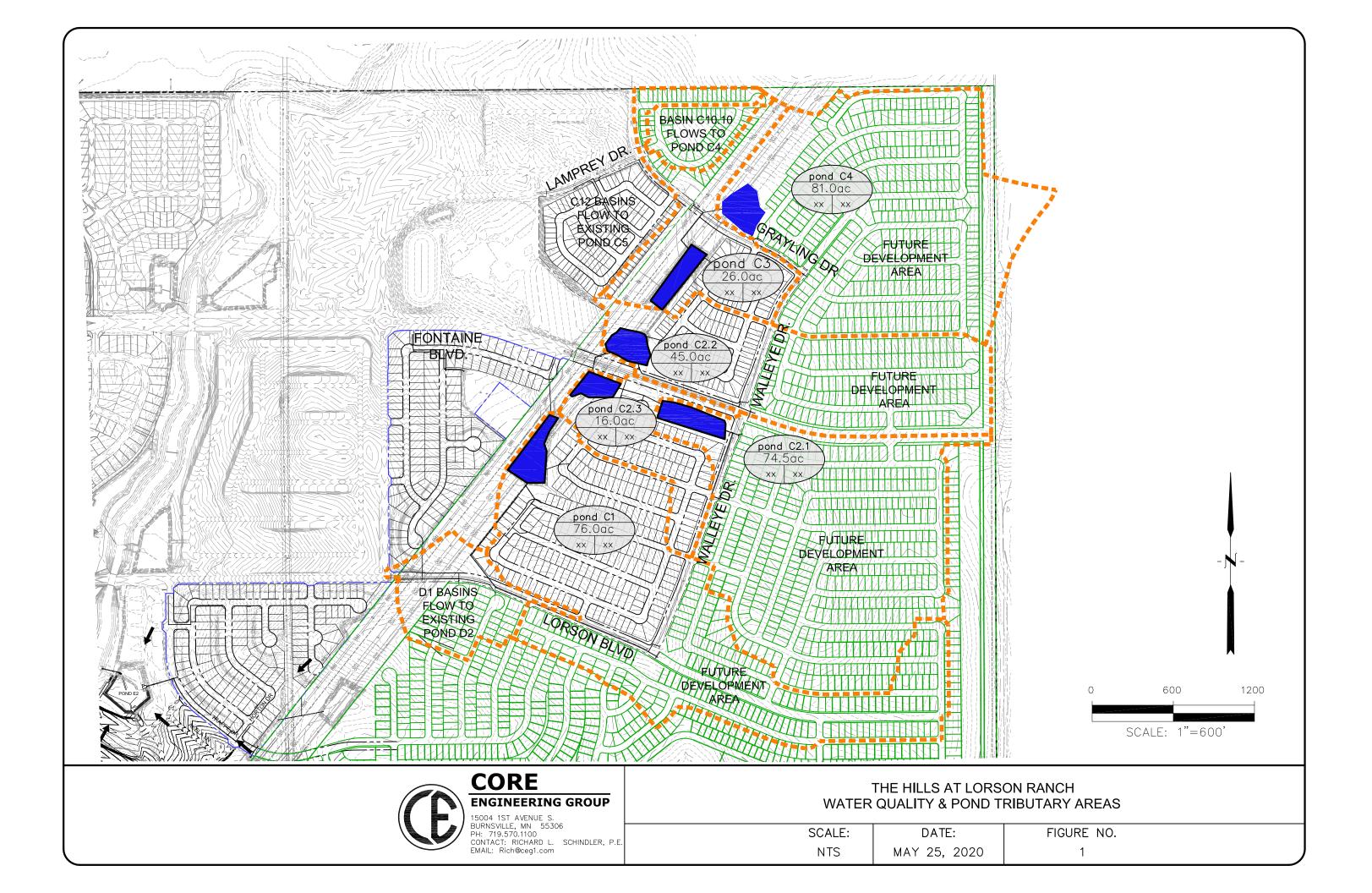
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
ength of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.20	0.34	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.56	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.4	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.4	5.4	cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.4	11.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.6	cfs
Capture Percentage = Q _a /Q _o =	С% =	100	82	%

		MINOR	MAJOR	
Design Information (Input) CDOT Type R Curb Opening	Type =		MAJOR Curb Opening	-
Type of Inlet Local Depression (additional to continuous gutter depression 'a' from above)	i ype = a _{local} =	3.00	3.00	inches
			3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No = Ponding Depth =	1 6.0	1 6.0	inches
Water Depth at Flowline (outside of local depression) Grate Information	Ponding Depth =	MINOR	MAJOR	Verride Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W ₀ =		N/A N/A	
		N/A		feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	_
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	٦.
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.57	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	0.93	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.2	8.3	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	8.2	17.7	cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	7
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q., =	8.0	30.6	cfs
Water Spread Width	т=	14.0	20.0	ft
Water Depth at Flowline (outside of local depression)	d =	4.9	7.2	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.9	inches
Ratio of Gutter Flow to Design Flow	E, =	0.426	0.249	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	4.6	22.6	cfs
Discharge within the Gutter Section W	Q _w =	3.4	7.5	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.6	cfs
Flow Area within the Gutter Section W	A _W =	0.64	1.04	sq ft
Velocity within the Gutter Section W	V _W =	5.3	7.2	fps
Water Depth for Design Condition	d _{LOCAL} =	7.9	10.2	inches
Grate Analysis (Calculated)	FLOCAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E = E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	-o-GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	v₀ = R _f =	N/A	N/A	103
Interception Rate of Side Flow	R _x =	N/A N/A	N/A N/A	-
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	Qi -	MINOR	MAJOR	CIS
	GrateCoef =	N/A	N/A	-
Clogging Coefficient for Multiple-unit Grate Inlet		N/A N/A		
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A N/A	N/A N/A	6
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =			ft fr -
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A N/A	N/A	_
Interception Rate of Side Flow	R _x =		N/A	- 6-
Actual Interception Capacity	Q, =	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	- -	MINOR	MAJOR	-
Equivalent Slope S_e (based on grate carry-over)	S _e =	0.100	0.067	ft/ft
Required Length L _T to Have 100% Interception	L _T =	15.90	37.60	ft
Under No-Clogging Condition		MINOR	MAJOR	٦.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	15.00	15.00	ft
Interception Capacity	Q _i =	8.0	18.0	cfs
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.31	1.31	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	4
Effective (Unclogged) Length	L _e =	13.03	13.03	ft
Actual Interception Capacity	Q _a =	7.9	17.5	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.1	13.1	cfs
Summary		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	7.9	17.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	13.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	99	57	%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q _o =	3.2	6.0	cfs
Water Spread Width	T =	7.5	10.2	ft
Water Depth at Flowline (outside of local depression)	d =	3.3	4.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.722	0.571	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.9	2.6	cfs
Discharge within the Gutter Section W	Q _w =	2.3	3.4	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.38	0.49	sq ft
Velocity within the Gutter Section W	V _W =	6.0	7.0	fps
Water Depth for Design Condition	d _{LOCAL} =	6.3	7.0	inches
Grate Analysis (Calculated)	-LOCAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	, in the second se
Under No-Clogging Condition	-O-GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	195
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	Q -	MINOR	MAJOR	CIG
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	-
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	v _o = R _f =	N/A	N/A	ips
Interception Rate of Flow	R _x =	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	Q _a =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	æ _b –	MINOR	MAJOR	015
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.156	0.127	ft/ft
Required Length L _T to Have 100% Interception	- 3 _e - L _τ =	8.57		ft
	LT -	0.57 MINOR	12.95 MAJOR	ⁿ
Under No-Clogging Condition	F	8.57	10.00	ft
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L=			
Interception Capacity	Q _i =	3.2	5.6	cfs
Under Clogging Condition	.	MINOR	MAJOR	- I
Clogging Coefficient	CurbCoef =	1.25	1.25	-
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	- <u> </u>
Effective (Unclogged) Length	L, =	8.75	8.75	ft
Actual Interception Capacity	Q, =	3.2	5.4	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	0.6	cfs
Summary		MINOR	MAJOR	٦. ا
Total Inlet Interception Capacity	Q =	3.2	5.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	91	%


Design Information (Input)		MINOR	MAJOR	1
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')		3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	1	1	inches
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	n.
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.5)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'	0 _f -0 -	MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q _o =	3.5	7.6	cfs
Water Spread Width	u₀ = ⊺ =	7.8	11.3	ft
Water Depth at Flowline (outside of local depression)	d =	3.4	4.2	inches
Water Depth at Street Crown (or at T_{MAX})	d _{cROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.700	0.521	inches
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	1.1	3.6	cfs
Discharge within the Gutter Section W	Q _x =	2.4	4.0	cfs
Discharge Behind the Curb Face	· · · · · ·	0.0	4.0	cfs
0	Q _{BACK} =	0.40	0.0	
Flow Area within the Gutter Section W Velocity within the Gutter Section W	A _W = V _W =	6.1	0.54	sq ft fps
Water Depth for Design Condition	d _{LOCAL} =	6.4	7.2	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	_ L=	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	_	MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.151	0.118	ft/ft
Required Length L_T to Have 100% Interception	L _T =	9.09	15.14	ft
Under No-Clogging Condition	_	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L =	5.00	5.00	ft
Interception Capacity	Q _i =	2.7	3.9	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.00	1.00	ן ו
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	1
Effective (Unclogged) Length	L _e =	4.50	4.50	ft
Actual Interception Capacity	Q _a =	2.5	3.6	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	1.0	4.0	cfs
Summary		MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	2.5	3.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.0	4.0	cfs
Capture Percentage = Q_a/Q_a =	C% =	71	47	%
	070 -		77	

Design Information (Input)			MINOR	MAJOR	1
Type of Inlet	DOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continue	ous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate		No =	1	1	
Length of a Single Unit Inlet (Grate or C		L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greate		W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable			MINOR	MAJOR	
Design Discharge for Half of Street (Q ₀ =	2.6	9.0	cfs
Water Spread Width	- ,	T =	7.6	13.5	ft
Water Depth at Flowline (outside of loca	al depression)	d =	3.3	4.7	inches
Water Depth at Street Crown (or at T_{MA}	(x	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow		E ₀ =	0.713	0.441	
Discharge outside the Gutter Section W	/, carried in Section T _x	Q _x =	0.8	5.0	cfs
Discharge within the Gutter Section W		Q _w =	1.9	4.0	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W		A _W =	0.39	0.62	sq ft
Velocity within the Gutter Section W		V _W =	4.7	6.4	fps
Water Depth for Design Condition		d _{LOCAL} =	6.3	7.7	inches
Grate Analysis (Calculated)			MINOR	MAJOR	
Total Length of Inlet Grate Opening		L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		L	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash	-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	5	R _f =	N/A	N/A	
Interception Rate of Side Flow		R _x =	N/A	N/A	
Interception Capacity		Q _i =	N/A	N/A	cfs
Under Clogging Condition		· •	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit G	rate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate		GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash		V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	
Interception Rate of Side Flow		R _x =	N/A	N/A	
Actual Interception Capacity		Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applie	d to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analys	is (Calculated)	•	MINOR	MAJOR	
Equivalent Slope S _e (based on grate ca	rry-over)	S _e =	0.154	0.103	ft/ft
Required Length L _T to Have 100% Inter	rception	L _T =	7.54	17.08	ft
Under No-Clogging Condition		· •	MINOR	MAJOR	
Effective Length of Curb Opening or Slo	otted Inlet (minimum of L, L_T)	L =	7.54	10.00	ft
Interception Capacity		Q; =	2.6	7.2	cfs
Under Clogging Condition		ст Т	MINOR	MAJOR	
Clogging Coefficient		CurbCoef =	1.25	1.25	ן ר
Clogging Factor for Multiple-unit Curb C	Opening or Slotted Inlet	CurbClog =	0.06	0.06	- 1
Effective (Unclogged) Length		L _a =	8.75	8.75	ft
Actual Interception Capacity		Q _a =	2.6	6.9	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a		Q _b =	0.0	2.1	cfs
Summary			MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	2.6	6.9	cfs
Total Inlet Carry-Over Flow (flow byp	bassing inlet)	Q _b =	0.0	2.1	cfs
Capture Percentage = Q_a/Q_o =	<u> </u>	C% =	100	77	%
		- ,,			

APPENDIX D – POND AND ROUTING CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.02 (February 2020)

-100-YEAR ORIFICE

ZONE 1 AND 2 ORIFICES Example Zone Configuration (Retention Pond) PERMA

Watershed Information

atersneu information		
Selected BMP Type =	EDB	
Watershed Area =	76.00	acres
Watershed Length =	4,800	ft
Watershed Length to Centroid =	2,100	ft
Watershed Slope =	0.040	ft/ft
Watershed Imperviousness =	55.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	-

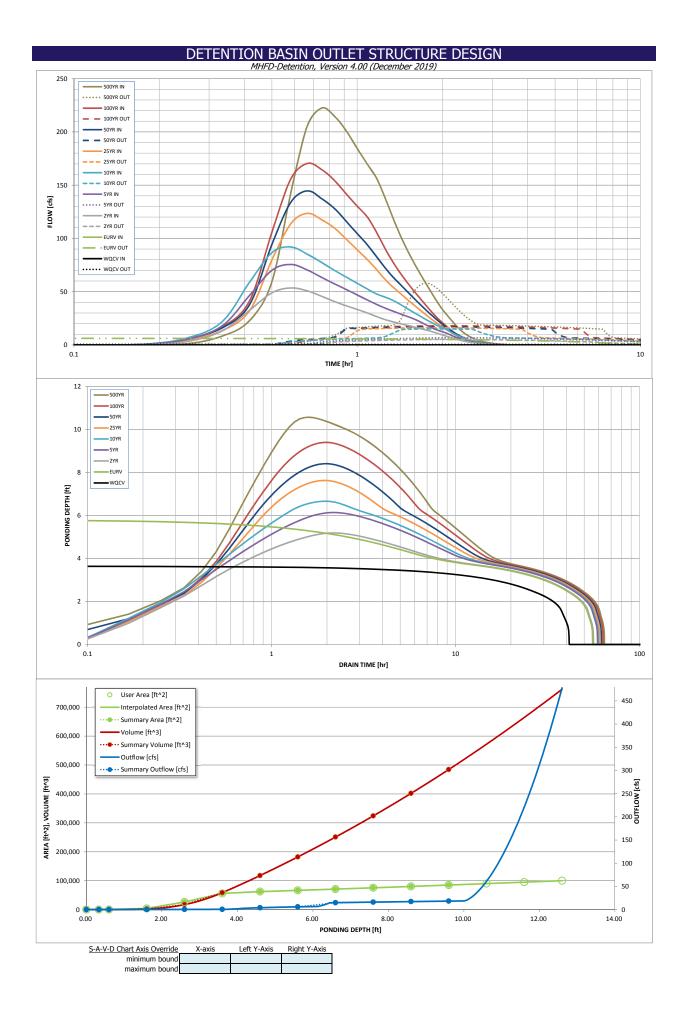
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nydrograph nocedare.					
Water Quality Capture Volume (WQCV) =	1.396	acre-feet			
Excess Urban Runoff Volume (EURV) =	4.503	acre-feet			
2-yr Runoff Volume (P1 = 1.19 in.) =	4.251	acre-feet			
5-yr Runoff Volume (P1 = 1.5 in.) =	5.966	acre-feet			
10-yr Runoff Volume (P1 = 1.75 in.) =	7.456	acre-feet			
25-yr Runoff Volume (P1 = 2 in.) =	9.398	acre-feet			
50-yr Runoff Volume (P1 = 2.25 in.) =	11.003	acre-feet			
100-yr Runoff Volume (P1 = 2.52 in.) =	13.015	acre-feet			
500-yr Runoff Volume (P1 = 3.14 in.) =	17.139	acre-feet			
Approximate 2-yr Detention Volume =	3.431	acre-feet			
Approximate 5-yr Detention Volume =	4.666	acre-feet			
Approximate 10-yr Detention Volume =	6.090	acre-feet			
Approximate 25-yr Detention Volume =	6.620	acre-feet			
Approximate 50-yr Detention Volume =	6.911	acre-feet			
Approximate 100-yr Detention Volume =	7.625	acre-feet			

Define	70000	and	Dacin	Geometry	
Derine	Zones	and	Basin	Geometry	

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	1.396	acre-feet
Zone 2 Volume (EURV - Zone 1) =	3.107	acre-feet
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	3.820	acre-feet
Total Detention Basin Volume =	8.323	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
		-

ft 2	user	Initial Surcharge Area (A _{ISV}) =
ft	user	Surcharge Volume Length $(L_{ISV}) =$
ft	user	Surcharge Volume Width (W _{ISV}) =
ft	user	Depth of Basin Floor (H _{FLOOR}) =
ft	user	Length of Basin Floor $(L_{FLOOR}) =$
ft	user	Width of Basin Floor $(W_{FLOOR}) =$
ft ²	user	Area of Basin Floor (A _{FLOOR}) =
ft ³	user	Volume of Basin Floor (V _{FLOOR}) =
ft	user	Depth of Main Basin $(H_{MAIN}) =$
ft	user	Length of Main Basin $(L_{MAIN}) =$
ft	user	Width of Main Basin $(W_{MAIN}) =$
ft 2	user	Area of Main Basin $(A_{MAIN}) =$
ft ³	user	Volume of Main Basin (V _{MAIN}) =


Calculated Total Basin Volume (V_{total}) = **user** acre-feet

		r		1							
3		Depth Increment =	0.20	ft							
tion Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
		Top of Micropool		0.00				40	0.001		
		5743.73		0.33	-			52	0.001	15	0.000
		5744		0.60				300	0.007	63	0.001
		5745		1.60	-			4,017	0.092	2,221	0.051
		5745		2.60				26,320	0.604	17,389	0.399
					-					58,588	
		5747		3.60	-			56,078	1.287		1.345
		5748		4.60				62,238	1.429	117,746	2.703
		5749		5.60	-			66,563	1.528	182,147	4.182
		5750		6.60	-			70,969	1.629	250,913	5.760
		5751		7.60	-			75,495	1.733	324,145	7.441
		5752		8.60	-			80,136	1.840	401,960	9.228
		5753		9.60				85,057	1.953	484,557	11.124
		5754		10.60	-			90,000	2.066	572,085	13.133
		5755		11.60	-			95,000	2.181	664,585	15.257
Optional Use	er Overrides	5756		12.60	-			100,000	2.296	762,085	17.495
	acre-feet										
	acre-feet				-						
1.19	inches						-				
1.50	inches						-				
1.75	inches				-						
2.00	inches										
2.25	inches										1
2.52	inches										
	inches										
					-	-	-				
					-						
					-						
			-								
					-						
					-						
					-						
					-						
					-						
					-		-				
					-						
					-						
					-						
					-						
					-						
					-						
					-						
					-						
					-						
					-				1		
					-	-					
					-						
					-						
					-						
					1 1	1 1	-				
					1	-					
					-						
					-						
					-						
			-		-	-	-				
					-						
					-		-				
					1 1						
						-	-				
					-						
							-				
					1 1	1 1					
					-						
											-
					-					L	L
					-	-				1	1

pond bottom=5743.40

DETENTION BASIN OUTLET STRUCTURE DESIGN 1HFD-Detention, Version 4.02 (February 2020 Project: The Hills at Lorson Ranch Basin ID: Pond C1 Estimated Estimated ZONE 1 Outlet Type Stage (ft) Volume (ac-ft) Zone 1 (WQCV) Orifice Plate 3.64 1.396 Zone 2 (FURV) 3.107 Rectangular Orifice 5.81 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 8.11 3.820 Weir&Pipe (Restrict) PERMAN Example Zone Configuration (Retention Pond) Total (all zones) 8.323 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) N/A ft² Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet Calculated Parameters for Plate User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 2.597E-02 ft^2 Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet 3.64 Orifice Plate: Orifice Vertical Spacing 14.60 Elliptical Slot Centroid N/A feet inches ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 3.74 sq. inches (use rectangular openings) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 1.21 2.43 Orifice Area (sq. inches) 3.74 3.74 3.74 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 3.64 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.82 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice 5.81 N/A Vertical Orifice Centroid 0.25 N/A Vertical Orifice Height 6.00 N/A inches Vertical Orifice Width = 19.74 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 6.10 N/A Height of Grate Upper Edge, H_t N/A ft (relative to basin bottom at Stage = 0 ft) 6.10 Overflow Weir Front Edge Length 5.66 N/A feet Overflow Weir Slope Length 3.00 N/A Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 9.41 N/A Horiz. Length of Weir Sides : N/A Overflow Grate Open Area w/o Debris 11.89 N/A 3.00 feet Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 5.94 N/A Debris Clogging % = N/A 50% User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A Outlet Orifice Area N/A ft (distance below basin bottom at Stage = 0 ft) 1.26 Outlet Pipe Diameter 18.00 N/A inches Outlet Orifice Centroid 0.57 N/A Restrictor Plate Height Above Pipe Invert = 12.10 inches Half-Central Angle of Restrictor Plate on Pipe = 1.92 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 10.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.44 feet Spillway Crest Length : 28.00 feet Stage at Top of Freeboard = 12.60 feet H:V Basin Area at Top of Freeboard Spillway End Slopes 4.00 2.30 acres Freeboard above Max Water Surface = 1.16 Basin Volume at Top of Freeboard = 17.50 feet acre-ft pond bottom = 0 = 5743.40 Routed Hydrograph Results in the Inflow Hyp hs table (Columns W through AF erride the c ault CLIHP hv nhs and i ff volumes hv i na new values Design Storm Return Period WOCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 9.398 11.003 CUHP Runoff Volume (acre-ft) 1.396 4.503 4.251 5.966 7.456 Inflow Hydrograph Volume (acre-ft) 4.251 N/A N/A 5.966 7.456 9.398 11.003 13.015 CUHP Predevelopment Peak Q (cfs) N/A N/A 5.7 16.2 25.0 45.9 57.7 74.5 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.21 0.98 Predevelopment Unit Peak Flow, g (cfs/acre) 0.08 0.33 0.60 0.76 N/A N/A Peak Inflow Q (cfs) N/A N/A 53.5 75.6 91.9 123.5 144.7 170.4 5.3 Peak Outflow Q (cfs) 0.6 6.3 7.1 15.0 16.2 17.0 18.1 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.4 0.6 0.4 0.3 0.2 Structure Controlling Flow Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice erflow Weir Outlet Plate Outlet Plate Outlet Plate Outlet Plate 1 Max Velocity through Grate 1 (fps) N/A N/A N/A 0.0 0.6 0.6 0.6 0.6 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A 47 Time to Drain 97% of Inflow Volume (hours) 38 48 49 50 49 48 46 Time to Drain 99% of Inflow Volume (hours) 40 52 53 55 55 55 55 56 Maximum Ponding Depth (ft) 3.64 5.81 5.19 6.14 6.66 7.63 8.41 9.40 Area at Maximum Ponding Depth (acres) 1.49 3.548 1.74 7.493 1.82 1.93 10.736 1.58 1.64 5.858 1.397 4.505

Maximum Volume Stored (acre-ft)

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.									
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]			500 Year [cfs]
	0:00:00									
5.00 min	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.00	0.00	0.00 4.37	0.36	0.04	1.17 8.30
	0:20:00	0.00	0.00	13.15	17.89	21.81	13.53	16.01	16.83	22.90
	0:25:00	0.00	0.00	32.51	46.49	58.89	32.12	37.80	41.36	59.51
	0:30:00	0.00	0.00	49.01	70.15	86.70	79.84	94.50	105.98	143.35
	0:35:00	0.00	0.00	53.50	75.56	91.94	113.93	134.11	156.12	205.77
	0:40:00	0.00	0.00	50.76	70.34	85.18	123.53	144.65	170.44	222.50
	0:45:00 0:50:00	0.00	0.00	45.62 40.68	63.33 57.25	77.42 69.85	117.46 109.47	137.22 127.83	164.57 154.14	214.42 200.67
	0:55:00	0.00	0.00	36.68	51.94	63.56	99.08	115.78	141.50	184.45
	1:00:00	0.00	0.00	33.32	46.99	57.93	89.35	104.59	130.33	170.05
	1:05:00	0.00	0.00	30.16	42.30	52.71	80.48	94.37	120.48	157.26
	1:10:00	0.00	0.00	26.80	38.16	48.05	71.14	83.50	106.47	139.23
	1:15:00	0.00	0.00	23.93	34.81	45.03	62.00	72.87	91.26	120.06
	1:20:00	0.00	0.00	21.79	31.93	42.03	54.66	64.30	78.39	103.47
	1:25:00 1:30:00	0.00	0.00	20.06 18.49	29.26 26.81	38.18 34.21	48.56 42.90	57.10 50.35	67.84 58.80	89.53 77.50
	1:35:00	0.00	0.00	16.99	20.01	30.55	42.90 37.64	44.04	50.99	67.10
	1:40:00	0.00	0.00	15.50	21.77	27.14	32.80	38.24	43.80	57.54
	1:45:00	0.00	0.00	14.01	18.85	23.90	28.26	32.83	37.08	48.66
	1:50:00	0.00	0.00	12.61	16.16	20.96	24.03	27.80	30.90	40.50
	1:55:00 2:00:00	0.00	0.00	10.93	13.95	18.31	20.21	23.27	25.43	33.31
	2:00:00	0.00	0.00	9.49 7.95	12.47 10.63	16.37 13.90	17.03 13.96	19.54 16.01	20.89 16.79	27.55 22.24
	2:10:00	0.00	0.00	6.45	8.62	11.29	10.99	12.60	13.04	17.30
	2:15:00	0.00	0.00	5.19	6.89	9.06	8.59	9.84	9.97	13.24
	2:20:00	0.00	0.00	4.19	5.52	7.27	6.74	7.71	7.64	10.15
	2:25:00	0.00	0.00	3.35	4.42	5.78	5.30	6.05	5.81	7.73
	2:30:00	0.00	0.00	2.67	3.51	4.56	4.15	4.71	4.40	5.85
	2:35:00 2:40:00	0.00	0.00	2.11	2.75	3.53	3.21	3.63	3.33	4.41
	2:45:00	0.00	0.00	1.67 1.31	2.12	2.71 2.07	2.47 1.90	2.78	2.57 1.99	3.39 2.62
	2:50:00	0.00	0.00	1.02	1.26	1.62	1.90	1.67	1.55	2.02
	2:55:00	0.00	0.00	0.77	0.95	1.24	1.14	1.28	1.22	1.61
	3:00:00	0.00	0.00	0.56	0.69	0.91	0.86	0.96	0.91	1.20
	3:05:00	0.00	0.00	0.38	0.48	0.64	0.61	0.68	0.65	0.85
	3:10:00	0.00	0.00	0.24	0.32	0.41	0.40	0.45	0.43	0.56
	3:15:00 3:20:00	0.00	0.00	0.13	0.19	0.24	0.24	0.27	0.25	0.33
	3:25:00	0.00	0.00	0.00	0.03	0.03	0.04	0.04	0.04	0.05
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00 3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

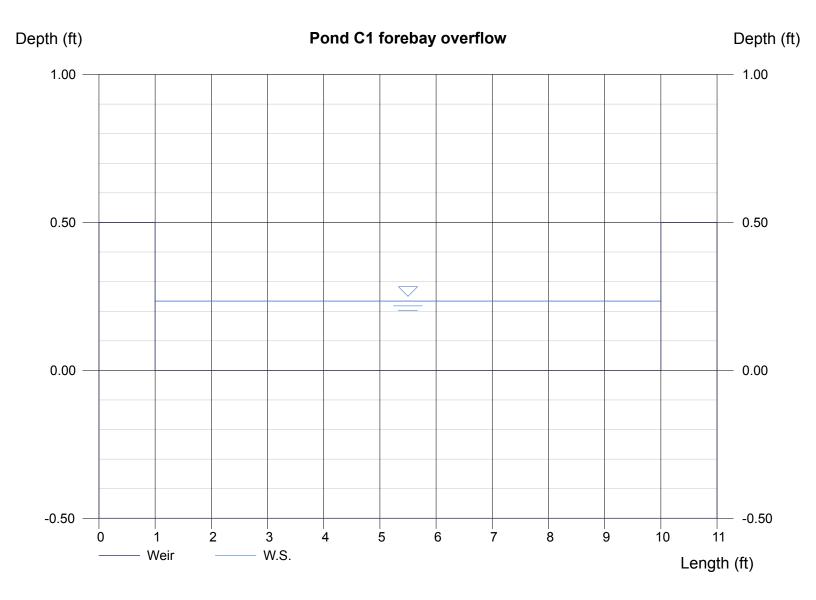
DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.02 (February 2020) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Outflow [cfs]	
micropool	0.00	40	0.001	0	0.000	0.00	For best results, include the
surcharge	0.33	52	0.001	15	0.000	0.07	stages of all grade slope
5744	0.60	300	0.007	63	0.001	0.10	changes (e.g. ISV and Floor
5745	1.60	4,017	0.092	2,221	0.051	0.24	from the S-A-V table on
5746	2.60	26,320	0.604	17,389	0.399	0.40	Sheet 'Basin'.
5747	3.60	56,078	1.287	58,588	1.345	0.57	Also include the inverts of a
5748	4.60	62,238	1.429	117,746	2.703	4.02	outlets (e.g. vertical orifice,
5749	5.60	66,563	1.528	182,147	4.182	5.96	overflow grate, and spillway
5750	6.60	70,969	1.629	250,913	5.760	14.94	where applicable).
5751	7.60	75,495	1.733	324,145	7.441	16.13	
5752	8.60	80,136	1.840	401,960	9.228	17.24	
5753	9.60	85,057	1.953	484,557	11.124	18.28	
	1						
							-
							-
							_
							-
	1						-
							4
							-
							4
							_
							_
	-						
							_
							_
							_
							1
							_
							_
							-
							4
							-1
]
							_
							4
							4
							1
		-	-	-			1
							1
]
							4
							4
					1		

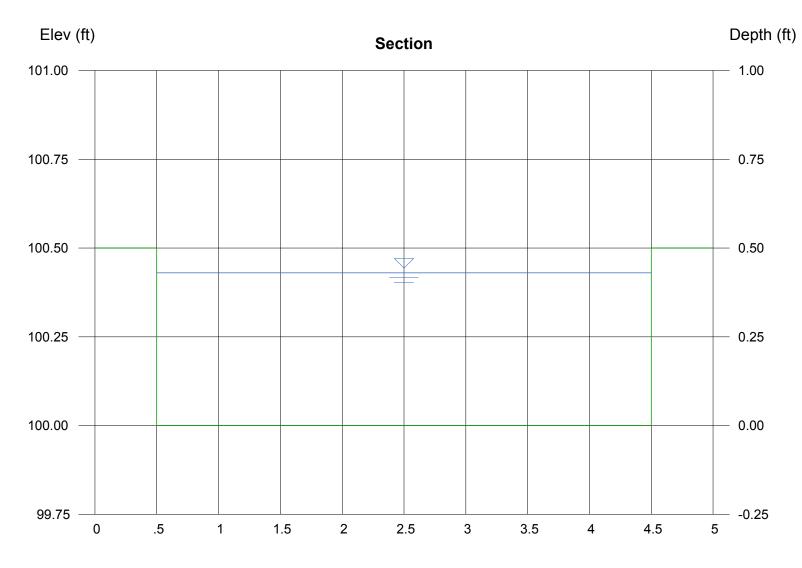
	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company:	Core Engineering Group	
Date: Project:	April 30, 2020 The Hills at Lorson Ranch	
Location:	Pond C1	
1. Basin Storage V	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = 55.0 %
B) Tributary Are	a's Imperviousness Ratio (i = l _a / 100)	i = <u>0.550</u>
C) Contributing	Watershed Area	Area = 76.000 ac
	neds Outside of the Denver Region, Depth of Average	d ₆ = in
Runoff Prod	ucing Storm	Choose One
E) Design Cond		Water Quality Capture Volume (WQCV)
(Select EUR	V when also designing for flood control)	C Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 1.396 ac-ft
	I.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
	neds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} = ac-ft
	$_{R}^{2} = (d_{6}^{*}(V_{\text{DESIGN}}/0.43))$	
H) User Input o	f Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} = ac-ft
	ferent WQCV Design Volume is desired)	
I) NRCS Hydro	logic Soil Groups of Tributary Watershed	
	ge of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$HSG_{R} = $ %
	age of Watershed consisting of Type D colls	$HSG_{CD} = \frac{1}{3}$ %
J) Excess Urba	in Runoff Volume (EURV) Design Volume	
For HSG A	: EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = ac-f t
	: EURV _B = 1.36 * i ^{1.08} /D: EURV _{C/D} = 1.20 * i ^{1.08}	
K) User Innut o	f Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} ac-ft
	ferent EURV Design Volume is desired)	
2 Pasin Shano: L	ength to Width Ratio	L:W= 2.0 : 1
	to width ratio of at least 2:1 will improve TSS reduction.)	
Basin Side Slop	es	
A) Basin Maxin	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = <u>3.00</u> ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
(Horizontal C		
4. Inlet		
A) Describe me	eans of providing energy dissipation at concentrated	
inflow location		
5. Forebay		
A) Minimum Fo		V _{FMIN} = 0.042 ac-ft
(V _{FMIN}	= <u>3%</u> of the WQCV)	
B) Actual Foreit	bay Volume	V _F = 0.045 ac-ft
C) Forebay Dep		
(D _F	= <u>30</u> inch maximum)	$D_{\rm F} = 24.0$ in
D) Forebay Disc	charge	
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 170.00 cfs
ii) Forebav	Discharge Design Flow	Q _F = 3.40 cfs
$(Q_F = 0.02)$		
E) Forebay Disc	charge Design	Choose One
		O Berm With Pipe
		Wall with Rect. Notch
		O Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangular	Notch Width	Calculated W _N = 9.1 in


Design Procedure Form	: Extended Detention Basin (EDB)
Designer: Richard Schindler Company: Core Engineering Group Date: April 30, 2020 Project: The Hills at Lorson Ranch Location: Pond C1	Sheet 2 of 3
6. Trickle ChannelA) Type of Trickle ChannelF) Slope of Trickle Channel	Choose One Choose One Concrete Soft Bottom S = 0.0050 ft / ft
 7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type 	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{50}_{O} \text{ sq ft}$ $\underbrace{Choose One}_{\textcircled{O} Orifice Plate}_{\textcircled{O} Other (Describe):}$
 D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) E) Total Outlet Area 	$D_{\text{ortifice}} = $ 1.93 inches $A_{\text{ot}} = $ 6.45 square inches
 8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool 	$D_{is} =$ 4 in $V_{is} =$ 182 cu ft $V_s =$ 16.7 cu ft
 9. Trash Rack A) Water Quality Screen Open Area: At = At * 38.5*(e^{-0.066D}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Other (Y/N): y C) Ratio of Total Open Area to Total Area (only for type 'Other') D) Total Water Quality Screen Area (based on screen type) E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) F) Height of Water Quality Screen (H_{TR}) 	$A_t =$ 207 square inches Other (Please describe below)
G) Width of Water Quality Screen Opening (W _{opening}) (Minimum of 12 inches is recommended)	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

Hydraflow Express by Intelisolve

Friday, May 1 2020, 8:58 AM

Pond C1 forebay overflow


Rectangular Weir		Highlighted
Crest	= Sharp	Depth (ft) = 0.23
Bottom Length (ft)	= 9.00	Q(cfs) = 3.400
Total Depth (ft)	= 0.50	Area (sqft) = 2.11
		Velocity (ft/s) = 1.61
Calculations		Top Width (ft) = 9.00
Weir Coeff. Cw	= 3.33	
Compute by:	Known Q	
Known Q (cfs)	= 3.40	

Hydraflow Express by Intelisolve

pond C1 low flow channel (2 x forebay release = 6.8cfs)

Rectangular		Highlighted	
Botom Width (ft)	= 4.00	Depth (ft)	= 0.43
Total Depth (ft)	= 0.50		= 6.800 = 1.72
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.95
Slope (%)	= 0.50	Wetted Perim (ft)	= 4.86
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.45
		Top Width (ft)	= 4.00
Calculations		EGL (ft) :	= 0.67
Compute by:	Known Q		
Known Q (cfs)	= 6.80		

Reach (ft)

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.02 (February 2020)

Project: The Hills at Lorson Ranch
Basin ID: Pond C2.1
 ZONE 3 ZONE 2 ZONE 1

100-YR EURV WOCV -100-YEAR ORIFICE

ZONE 1 AND 2-ORIFICES PERM Example Zone Configuration (Retention Pond)

Watershed Information

EDB	
74.50	acres
2,500	ft
2,000	ft
0.038	ft/ft
55.00%	percent
0.0%	percent
100.0%	percent
0.0%	percent
40.0	hours
User Input	
	74.50 2,500 2,000 0.038 55.00% 0.0% 100.0% 0.0% 40.0

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban hydro	graphi Floceuc	ie.
Water Quality Capture Volume (WQCV) =	1.368	acre-feet
Excess Urban Runoff Volume (EURV) =	4.414	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	4.152	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	5.828	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	7.285	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	9.182	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	10.750	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	12.716	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	16.746	acre-feet
Approximate 2-yr Detention Volume =	3.363	acre-feet
Approximate 5-yr Detention Volume =	4.574	acre-feet
Approximate 10-yr Detention Volume =	5.970	acre-feet
Approximate 25-yr Detention Volume =	6.490	acre-feet
Approximate 50-yr Detention Volume =	6.774	acre-feet
Approximate 100-yr Detention Volume =	7.475	acre-feet

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	1.368	acre-feet
Zone 2 Volume (EURV - Zone 1) =	3.045	acre-feet
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	3.745	acre-feet
Total Detention Basin Volume =	8.159	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	1
		•

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

_	-					top microp	001-5760.0	U			
				1							
		Depth Increment =	0.20	ft Ontional		1	1	Optional		T	,
ion Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
ion Fonu)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
		Top of Micropool		0.00				42	0.001		
										10	0.000
		5760.33		0.33				50	0.001	15	0.000
		5761		1.00	-			1,264	0.029	455	0.010
		5762		2.00	-			20,478	0.470	11,326	0.260
		5763		3.00	-			41,417	0.951	42,274	0.970
		5764		4.00				44,796	1.028	85,380	1.960
		5765		5.00				48,239	1.107	131,898	3.028
		5766		6.00				51,758	1.188	181,896	4.176
		5767		7.00				55,348	1.271	235,449	5.405
		5768		8.00				59,010	1.355	292,628	6.718
					-			-			
		5769		9.00				62,743	1.440	353,505	8.115
		5770		10.00			-	66,548	1.528	418,150	9.599
		5771		11.00				70,423	1.617	486,636	11.172
		5772		12.00	-			74,434	1.709	559,064	12.834
Optional Use	r Overrides				-						
	acre-feet										
	acre-feet				-						
1.19	inches										
1.50	inches										
1.30	inches				-					1	
	+						-				
2.00	inches									<u> </u>	┝───┤
2.25	inches	-								I	
2.52	inches										
	inches				-						
					-		-				
										+	
					-						
					-		-				
					-						
					-						
					-						
					-						
					-						
										+	
										1	
							-				
									-		
		-								+	
										+	
					-						
										+	
					-				-		
										+	
					-						
			-		-				-		
										+	
					-					+	
					-						
		-			-					<u> </u>	
					-					1	
					-		-			1	
					-					+	
										1	
					-						
					-					L	
		-								+	
										1	
					-						
										<u> </u>	┝───┤
							-			1	

DETENTION BASIN OUTLET STRUCTURE DESIGN 1HFD-Detention, Version 4.02 (February 2020 Project: The Hills at Lorson Ranch Basin ID: Pond C2.1 Estimated Estimated ZONE 1 Outlet Type Stage (ft) Volume (ac-ft) VOLUME EURV WQCV Zone 1 (WQCV) 1.368 Orifice Plate 3.42 Zone 2 (FURV) 3.045 Rectangular Orifice 6.20 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 9.04 3.745 Weir&Pipe (Restrict) PERMAN Example Zone Configuration (Retention Pond) Total (all zones) 8.159 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) N/A ft² Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 2.819E-02 ft^2 Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet 3.42 Orifice Plate: Orifice Vertical Spacing 13.70 Elliptical Slot Centroid N/A feet inches ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 4.06 sq. inches (use rectangular openings) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 1.14 2.28 Orifice Area (sq. inches) 4.06 4.06 4.06 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 3.42 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.61 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice 6.20 N/A Vertical Orifice Centroid 0.25 N/A Vertical Orifice Height 6.00 N/A inches Vertical Orifice Width = 14.59 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 6.20 N/A Height of Grate Upper Edge, H_t N/A ft (relative to basin bottom at Stage = 0 ft) 6.20 Overflow Weir Front Edge Length 8.00 N/A feet Overflow Weir Slope Length 6.00 N/A Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 6.84 N/A Horiz. Length of Weir Sides : N/A Overflow Grate Open Area w/o Debris = 33.60 N/A 6.00 feet Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 16.80 N/A Debris Clogging % = N/A 50% User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A Outlet Orifice Area 4.91 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Pipe Diameter 30.00 N/A inches Outlet Orifice Centroid 1.25 N/A Restrictor Plate Height Above Pipe Invert = 30.00 inches Half-Central Angle of Restrictor Plate on Pipe = 3.14 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 9.30 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.69 feet Spillway Crest Length : 25.00 feet Stage at Top of Freeboard = 12.00 feet H:V Spillway End Slopes 4.00 Basin Area at Top of Freeboard 1.71 acres Freeboard above Max Water Surface = 1.01 Basin Volume at Top of Freeboard = 12.83 feet acre-ft top micropool = 5760 = stage 0 Routed Hydrograph Results in the Inflow Hv hs table (Columns W through AF r can override the o ault CUH nhs and r mes hv na new values Design Storm Return Period WOCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 10.750 12.716 CUHP Runoff Volume (acre-ft) 1.368 4.414 4.152 5.828 7.285 9.182 Inflow Hydrograph Volume (acre-ft) N/A N/A 4.152 5.828 7.285 9.182 10.750 12.716 CUHP Predevelopment Peak Q (cfs) N/A N/A 21.2 32.2 57.6 72.4 92.1 7.5 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.43 0.97 Predevelopment Unit Peak Flow, g (cfs/acre) 0.10 0.28 0.77 1.24 N/A N/A Peak Inflow Q (cfs) N/A N/A 63.8 91.4 112.2 146.0 171.6 201.7 4.8 Peak Outflow Q (cfs) 0.6 5.6 12.8 31.2 57.7 60.5 65.0 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.6 0.8 0.7 1.0 1.0 Structure Controlling Flow Vertical Orifice 1 rflow Weir 1 Vertical Orifice erflow Weir erflow Weir 1 Outlet Plate Outlet Plate Outlet Plate 1 Max Velocity through Grate 1 (fps) N/A N/A N/A 0.2 0.8 1.51.6 1.7 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A 43 Time to Drain 97% of Inflow Volume (hours) 38 48 48 49 47 45 41 Time to Drain 99% of Inflow Volume (hours) 40 52 53 54 53 52 52 51 Maximum Ponding Depth (ft) 3.42 6.20 5.45 6.44 6.76 7.20 7.79 8.80

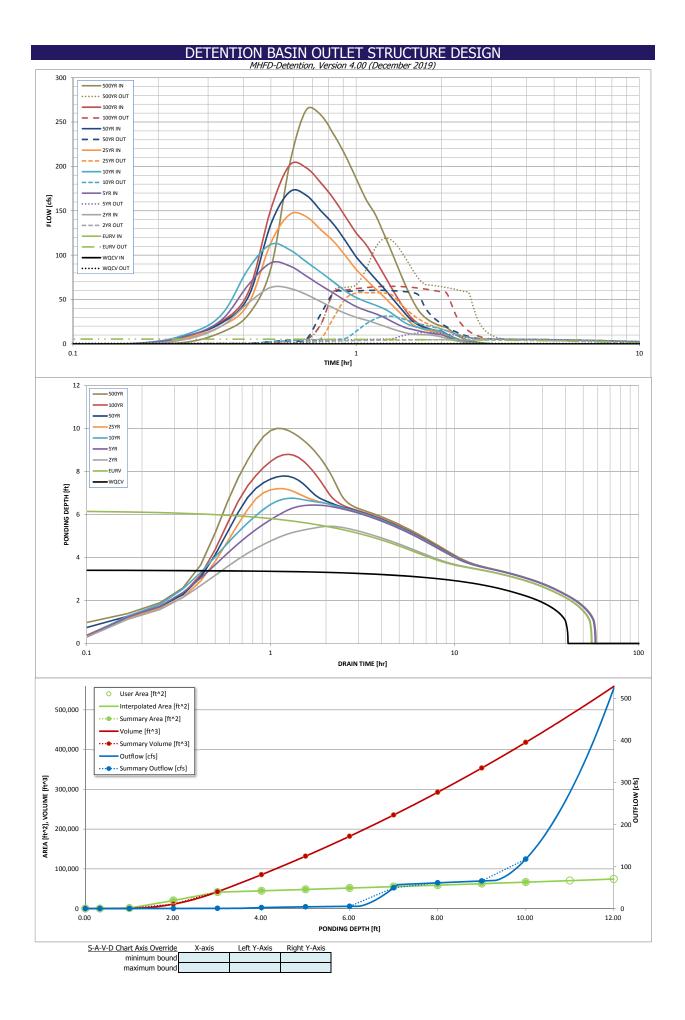
1.14 3.534

1.22

1.25

1.29

1.34


1.42 7.829

Area at Maximum Ponding Depth (acres)

Maximum Volume Stored (acre-ft)

0.98

1.20

Inflow Hydrographs

								l in a separate pro	-	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.59	0.06	1.91
	0:15:00	0.00	0.00	5.22	8.54	10.59	7.11	9.03	8.69	12.94
	0:20:00 0:25:00	0.00	0.00	19.89	26.61 66.84	32.39	19.92	23.33 53.57	24.81	33.21 85.49
	0:30:00	0.00	0.00	46.47 63.77	91.36	85.05 112.23	45.56 114.18	135.21	58.95 152.14	203.98
	0:35:00	0.00	0.00	62.57	87.72	105.94	146.00	171.56	201.73	263.77
	0:40:00	0.00	0.00	55.70	76.50	92.49	143.34	167.40	198.39	257.96
	0:45:00	0.00	0.00	47.59	65.90	80.77	128.66	150.06	181.55	235.82
	0:50:00	0.00	0.00	40.32	57.13	69.55	115.30	134.50	163.30	212.14
	0:55:00	0.00	0.00	34.42	48.76	59.53	99.33	116.01	143.36	186.25
	1:00:00 1:05:00	0.00	0.00	29.96 26.93	42.11	52.29 47.58	83.84 72.69	98.09	125.09 111.97	162.81 146.17
	1:10:00	0.00	0.00	23.58	37.69 34.19	43.72	62.57	85.28 73.59	95.11	146.17
	1:15:00	0.00	0.00	20.26	30.12	39.98	53.50	63.03	78.69	103.88
	1:20:00	0.00	0.00	17.23	25.50	34.67	44.42	52.30	63.05	83.27
	1:25:00	0.00	0.00	14.49	21.34	28.37	36.12	42.44	49.07	64.63
	1:30:00	0.00	0.00	12.33	18.09	23.14	28.26	33.06	37.14	48.88
	1:35:00	0.00	0.00	11.11	16.33	20.17	21.86	25.47	27.88	36.96
	1:40:00	0.00	0.00	10.58	14.63	18.35	18.19	21.12	22.45	29.88
	1:45:00 1:50:00	0.00	0.00	10.28 10.11	13.15 12.11	17.06 16.15	15.89 14.38	18.35 16.52	19.04 16.67	25.36 22.22
	1:55:00	0.00	0.00	9.09	11.32	15.20	14.30	15.24	15.02	22.22
	2:00:00	0.00	0.00	8.00	10.49	13.83	12.66	14.40	13.84	18.42
	2:05:00	0.00	0.00	6.32	8.33	10.89	10.10	11.46	10.78	14.34
	2:10:00	0.00	0.00	4.73	6.18	8.03	7.42	8.39	7.80	10.35
	2:15:00	0.00	0.00	3.55	4.59	5.92	5.50	6.20	5.78	7.65
	2:20:00	0.00	0.00	2.63	3.40	4.33	4.06	4.57	4.29	5.66
	2:25:00 2:30:00	0.00	0.00	1.93	2.46	3.15	2.96	3.32	3.16	4.16
	2:35:00	0.00	0.00	1.39 0.98	1.74	2.27	2.12	2.37	2.27	2.99 2.15
	2:40:00	0.00	0.00	0.98	0.84	1.12	1.08	1.71	1.15	1.52
	2:45:00	0.00	0.00	0.41	0.55	0.72	0.71	0.79	0.76	0.99
	2:50:00	0.00	0.00	0.22	0.32	0.40	0.42	0.46	0.44	0.58
	2:55:00	0.00	0.00	0.09	0.15	0.18	0.20	0.22	0.21	0.27
	3:00:00	0.00	0.00	0.03	0.05	0.05	0.06	0.07	0.06	0.08
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00 3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00 3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

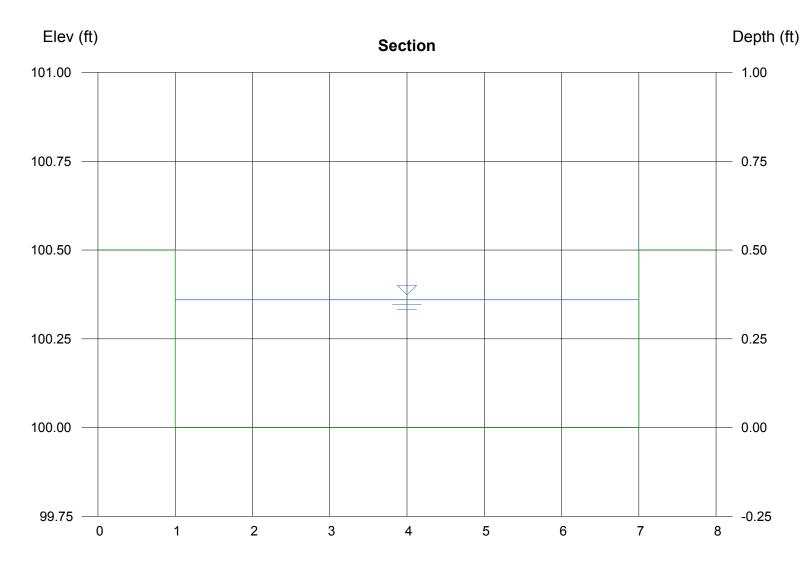
DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.02 (February 2020) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
top micropool	0.00	42	0.001	0	0.000	0.00	For best results, include the
surcharge	0.33	50	0.001	15	0.000	0.08	stages of all grade slope
5761	1.00	1,264	0.029	455	0.010	0.14	changes (e.g. ISV and Floor
5762	2.00	20,478	0.470	11,326	0.260	0.32	from the S-A-V table on Sheet 'Basin'.
5763	3.00	41,417	0.951	42,274	0.970	0.54	
5764	4.00	44,796	1.028	85,380	1.960	2.36	Also include the inverts of a
5765	5.00	48,239	1.107	131,898	3.028	4.17	outlets (e.g. vertical orifice,
5766	6.00	51,758	1.188	181,896	4.176	5.36	overflow grate, and spillway where applicable).
5767	7.00	55,348	1.271 1.355	235,449	5.405 6.718	49.52 61.41	
5768 5769	8.00 9.00	59,010 62,743	1.355	292,628 353,505	8.115	65.80	-
5770	10.00	66,548	1.528	418,150	9.599	117.77	_
5770	10.00	00,010	11520	110/100	510555	11/10/	
							_
							_
							_
							_
					-		
							_
	-				ł		-
							_
							_
							-
							_
	-				-		_
	-						-
							_
					-		
							4
							-
					1		1
]
							4
							-
							-
						L	1
]
		1	1	1	1		1
							-

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company: Date:	Core Engineering Group May 2, 2020	
Project:	The Hills at Lorson Ranch	
Location:	Pond C2.1	
1. Basin Storage V		
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = <u>55.0</u> %
B) Tributary Are	a's Imperviousness Ratio (i = $I_a/100$)	i = 0.550
C) Contributing	Watershed Area	Area = 74.500 ac
	neds Outside of the Denver Region, Depth of Average	d ₆ = in
Runoff Prod	lucing Storm	Choose One
E) Design Cone (Select EUR)	cept V when also designing for flood control)	Water Quality Capture Volume (WQCV)
,		O Excess Urban Runoff Volume (EURV)
F) Design Volu (V _{DESIGN} = (1)	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} <mark>≕1.368</mark> ac-ft
	neds Outside of the Denver Region,	V _{DESIGN OTHER} =ac-ft
Water Quali	ity Capture Volume (WQCV) Design Volume _R = (d ₆ *(V _{DESIGN} /0.43))	
	of Water Quality Capture Volume (WQCV) Design Volume	
	ferent WQCV Design Volume is desired)	V _{DESIGN USER} ≡ ac-ft
	logic Soil Groups of Tributary Watershed	
	ige of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$HSG_A = $ % $HSG_B = $ %
	age of Watershed consisting of Type C/D Soils	HSG _{CD} = %
	an Runoff Volume (EURV) Design Volume	
For HSG B	: EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} = ac-f t
For HSG C	/D: EURV _{C/D} = 1.20 * i ^{1.08}	
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} ac-ft
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1
(A basin length		
3. Basin Side Slop	les	
A) Basin Maxin	num Side Slopes	Z = 3.00 ft / ft
(Horizontal o	distance per unit vertical, 4:1 or flatter preferred)	DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4. Inlet		
	eans of providing energy dissipation at concentrated	
inflow locatio		
5. Forebay		
A) Minimum Fo (V _{FMIN}	rebay Volume = <u>3%</u> of the WQCV)	V _{FMIN} = 0.041 ac-ft
B) Actual Foret		$V_{\rm F} = 0.045$ ac-ft
C) Forebay Dep		
(D _F		D _F = 24.0 in
D) Forebay Disc	charge	
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 202.00 cfs
	Discharge Design Flow	$Q_F = 4.04$ cfs
$(Q_F = 0.02)$		
E) Forebay Disc	charge Design	Choose One
		O Berm With Pipe
		Wall with Rect. Notch Wall with V-Notch Weir
E) Discharge D	no Cizo (minimum 9 inches)	
	pe Size (minimum 8-inches)	
G) Rectangular	Notch Width	Calculated $W_N = 9.9$ in

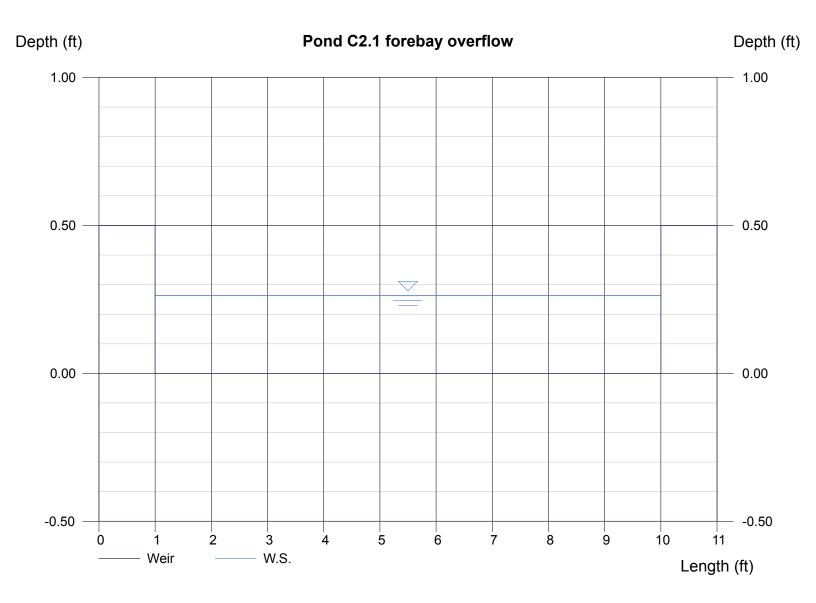

	Design Procedure Form:	Extended Detention Basin (EDB)		
Designer: Company: Date: Project: Location:	Richard Schindler Shee Core Engineering Group May 2, 2020 The Hills at Lorson Ranch Pond C2.1			
 6. Trickle Channel A) Type of Trick F) Slope of Trick 	kle Channel	Choose One Concrete Soft Bottom S = 0.0050 ft / ft		
	cropool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = \underbrace{2.5}_{50} \text{ ft}$ $A_{M} = \underbrace{50}_{0} \text{ sq ft}$ $\underbrace{\text{Choose One}}_{0} \text{ Orifice Plate}$ $\underbrace{\text{Other (Describe):}}$		
D) Smallest Dir (Use UD-Detent E) Total Outlet A		$D_{\text{ortice}} = 2.01$ inches $A_{\text{ct}} = 12.60$ square inches		
(Minimum re B) Minimum Initi (Minimum vol	e Volume ial Surcharge Volume commended depth is 4 inches) ial Surcharge Volume lume of 0.3% of the WQCV) arge Provided Above Micropool	$D_{iS} = $ $V_{iS} = $ 179 cu ft $V_s = $ 16.7 cu ft		
B) Type of Scre in the USDCM, i	ty Screen Open Area: $A_t = A_{ot} * 38.5^{\circ}(e^{-0.095D})$ een (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): y	A _t = 401 square inches <i>Other (Please describe below)</i> wellscreen stainless		
D) Total Water (E) Depth of Des (Based on o F) Height of Wa G) Width of Wa	al Open Area to Total Area (only for type 'Other') Quality Screen Area (based on screen type) sign Volume (EURV or WQCV) design concept chosen under 1E) ater Quality Screen (H _{TR}) ter Quality Screen Opening (W _{opening}) inches is recommended)	User Ratio = 0.6 $A_{total} = 668$ sq. in. Based on type 'Other' screen ratio H = 3.42 feet $H_{TR} = 69.04$ inches $W_{opening} = 12.0$ inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.		

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group May 2, 2020 The Hills at Lorson Ranch Pond C2.1	Sheet 3 of 3
B) Slope of O	ankment embankment protection for 100-year and greater overtopping: verflow Embankment I distance per unit vertical, 4:1 or flatter preferred)	Ze = ft / ft
11. Vegetation		Choose One O Irrigated O Not Irrigated
12. Access A) Describe S	Sediment Removal Procedures	
Notes:		

Hydraflow Express by Intelisolve

pond C2.1 low flow channel (2 x forebay release = 8.08cfs)

Rectangular		Highlighted	
Botom Width (ft)	= 6.00	Depth (ft) =	0.36
Total Depth (ft)	= 0.50	Q (cfs) =	8.080
		Area (sqft) =	2.16
Invert Elev (ft)	= 100.00	Velocity (ft/s) =	3.74
Slope (%)	= 0.50	Wetted Perim (ft) =	6.72
N-Value	= 0.013	Crit Depth, Yc (ft) =	0.39
		Top Width (ft) =	6.00
Calculations		EGL (ft) =	0.58
Compute by:	Known Q		
Known Q (cfs)	= 8.08		



Reach (ft)

Hydraflow Express by Intelisolve

Pond C2.1 forebay overflow

Rectangular Weir		Highlighted
Crest	= Sharp	Depth (ft) = 0.26
Bottom Length (ft)	= 9.00	Q (cfs) = 4.040
Total Depth (ft)	= 0.50	Area (sqft) = 2.36
		Velocity (ft/s) = 1.71
Calculations		Top Width (ft) = 9.00
Weir Coeff. Cw	= 3.33	
Compute by:	Known Q	
Known Q (cfs)	= 4.04	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

, Version 4.02 (February 2020)

		DET	ENTIO		IN STAGE-S	
				MHFD-L	etention, Version	4.02 (Fel
		Lorson Rai	nch			
	Pond C2.2					
	2 ONE 1		-			
					micropool = 0 = 5	744.00
T T	1	100-YE	P			
ZONE	1 AND 2	ORIFIC	E		Depth Increment =	0.20
POOL Example Zon	e Configura	ation (Reter	tion Pond)		Stage - Storage	Stage
Watershed Information					Description Top of Micropool	(ft)
Selected BMP Type =	EDB	1			5744.33	
Watershed Area =	45.00	acres			5745	
Watershed Length =	2,500	ft			5745	
Watershed Length to Centroid =	1,200	ft			5747	
Watershed Slope =	0.045	ft/ft			5748	
Watershed Imperviousness =	55.00%	percent			5749	
Percentage Hydrologic Soil Group A =	0.0%	percent			5750	
Percentage Hydrologic Soil Group B =	95.0%	percent			5751	
Percentage Hydrologic Soil Groups C/D =	5.0%	percent			5752	
Target WQCV Drain Time =	40.0	hours			5753	
Location for 1-hr Rainfall Depths =					5754	
After providing required inputs above inc depths, click 'Run CUHP' to generate run						
the embedded Colorado Urban Hydro			Optional Use	r Overrides		
Water Quality Capture Volume (WQCV) =	0.827	acre-feet		acre-feet		
Excess Urban Runoff Volume (EURV) =	2.651	acre-feet		acre-feet		
2-yr Runoff Volume (P1 = 1.19 in.) =	2.510	acre-feet	1.19	inches		
5-yr Runoff Volume (P1 = 1.5 in.) =	3.521	acre-feet	1.50	inches		
10-yr Runoff Volume (P1 = 1.75 in.) =	4.403	acre-feet	1.75	inches		
25-yr Runoff Volume (P1 = 2 in.) =	5.541	acre-feet	2.00	inches		
50-yr Runoff Volume (P1 = 2.25 in.) =	6.487	acre-feet	2.25	inches		
100-yr Runoff Volume (P1 = 2.52 in.) = 500-yr Runoff Volume (P1 = 3.14 in.) =	7.671	acre-feet acre-feet	2.52	inches inches		
Approximate 2-yr Detention Volume =	2.035	acre-feet		linches		
Approximate 5-yr Detention Volume =	2.778	acre-feet				
Approximate 10-yr Detention Volume =	3.600	acre-feet				
Approximate 25-yr Detention Volume =	3.912	acre-feet				
Approximate 50-yr Detention Volume =	4.081	acre-feet				
Approximate 100-yr Detention Volume =	4.507	acre-feet				
Define Zones and Basin Geometry	0.027					
Zone 1 Volume (WQCV) = Zone 2 Volume (EURV - Zone 1) =	0.827	acre-feet acre-feet				
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	2.269	acre-feet				
Total Detention Basin Volume =	4.920	acre-feet				
Initial Surcharge Volume (ISV) =	user	ft ³				
Initial Surcharge Depth (ISD) =	user	ft				
Total Available Detention Depth $(H_{total}) =$	user	ft				
Depth of Trickle Channel $(H_{TC}) =$	user	ft				-
Slope of Trickle Channel (S _{TC}) =	user	ft/ft				
Slopes of Main Basin Sides (S_{main}) = Basin Length-to-Width Ratio ($R_{L/W}$) =	user	H:V				
basin Lengu-to-Width Katio (KL/W) =	user	-				
Initial Surcharge Area (A _{ISV}) =	user	ft ²				
Surcharge Volume Length (L_{ISV}) =	user	ft				
Surcharge Volume Width (W _{ISV}) =	user	ft				
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft				
Length of Basin Floor (L_{FLOOR}) =	user	ft				
Width of Basin Floor (W _{FLOOR}) =	user	ft				
Area of Basin Floor $(A_{FLOOR}) =$	user	ft 2				
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³ ft				-
Depth of Main Basin $(H_{MAIN}) =$	user	pic .				

user user user user user д 3

ĥ

acre-feet

Depth of Main Basin $(H_{MAIN}) =$ Length of Main Basin $(L_{MAIN}) =$ Width of Main Basin (W_{MAIN}) = Area of Main Basin (A_{MAIN}) =

Area of Main Basin (A_{MAIN}) = user Volume of Main Basin (V_{MAIN}) = user Calculated Total Basin Volume (V_{total}) = **user**

	5744.33	 0.33				50	0.001	15	0.000
	5745	 1.00				255	0.006	117	0.003
	5746	 2.00	-		-	6,998	0.161	3,743	0.086
	5747	 3.00	-			38,392	0.881	26,438	0.607
	5748	 4.00				40,927	0.940	66,098	1.517
	5749	 5.00				43,534	0.999	108,328	2.487
	5750	 6.00				46,212	1.061	153,201	3.517
	5751	 7.00	-	-	-		1.125		4.610
						48,991		200,803	
	5752	 8.00				51,837	1.190	251,217	5.767
	5753	 9.00				54,731	1.256	304,501	6.990
	5754	 10.00				58,033	1.332	360,883	8.285
			-						
s			-		-				
			-						
			-	-					
					-				
			-						
			-						
			-		-				
			-						
			-		-				
			-		-				
			-						
			-		-				
				-					
			-						
			-	-	-				
			-		-				
			-						
		 	-						
			-		-				
			-						
			-						
							-		
			-						
			-		-			-	-
			-						
				1 1 1			-		
			1 1						
			-						
			-		-				
									L
							-		
			-	1 1					
			-						
			-						
			-	1 1					
			-						
							-		
			-						
	1				-	1	1	1	1

Width (ft)

Area (ft²)

Override

Area (ft²) 40

Length (ft)

Override

Stage (ft) 0.00

Area (acre) 0.001

Volume (ft³)

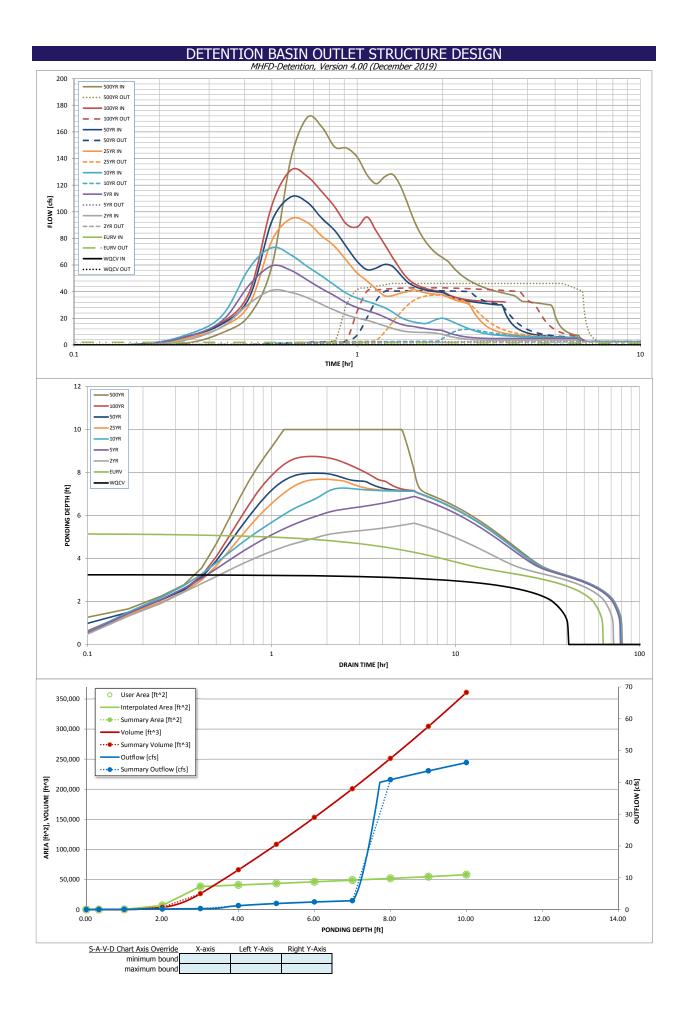
Volume (ac-ft)

MHFD-Detention_v4-02-Pond C2.2, Basin

Pond C2.2 Developed Inflow Hydrograph---- Pond C3 outflow + C5 Basin + C7 Basin

	eveloped iiii	ow Hydrograp		2yr		basin	5yr			10yr			25yr			50yr			100yr			500yr
	_	2 Year	CUHP	Combined	5 Year	CUHP	Combined	10 Year	CUHP	Combined	25 Year	CUHP	Combined	50 Year	CUHP	Combined	100 Year	CUHP	Combined	500 Year	CUHP	Combined
Time [hr]	Time [min]	Pond C3 Outflow2 - [cfs]	2 Year [cfs]	Hydrograph	Pond C3 Outflow2 - [cfs]	5 Year [cfs]	Hydrograph	Ponc C3 Outflow2 - [cfs]	10 Year [cfs]	Hydrograph	Pond C3 Outflow2 - [cfs]	25 Year [cfs]	Hydrograph	Pond C3 Outflow2 - [cfs]	50 Year [cfs]	Hydrograph	Pond C3 Outflow2 - [cfs]	100 Year [cfs]	Hydrograph	Pond C3 Outflow2 - [cfs]	500 Year [cfs]	Hydrograph
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.03	0.02	0.00	0.02	0.03	0.00	0.03
0.08	5.00	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.04	0.00	0.04	0.03	0.00	0.03	0.04	0.00	0.04
0.25	15.00	0.10	3.74	3.84	0.11	6.11	6.22	0.11	7.57	7.68	0.10	5.09	5.19	0.10	6.38	6.48	0.10	6.20	6.30	0.12	9.01	9.13
0.33	20.00	0.14	13.60	13.74	0.16	18.00	18.16	0.17	21.92	22.09	0.14	13.38	13.52	0.15	15.61	15.76	0.16	16.68	16.84	0.17	22.29	22.46
0.42	25.00	0.17	31.11	31.28	0.20	45.07	45.27	0.52	57.54	58.06	0.19	30.50	30.69	0.24	35.87	36.11	0.39	39.63	40.02	1.63	57.77	59.40
0.50	30.00 35.00	0.24	40.82 38.60	41.06 39.47	1.21 2.10	58.25 53.89	59.46 55.99	1.95 2.57	71.19 65.04	73.14 67.61	1.68 2.72	76.90 92.11	78.58 94.83	2.14 3.16	91.05 108.06	93.19 111.22	2.56 3.60	102.55 127.72	105.11 131.32	3.27 4.27	136.67 166.67	139.94 170.94
0.67	40.00	1.66	33.84	35.50	2.52	46.24	48.76	2.99	55.88	58.87	3.44	88.47	91.91	3.89	103.22	107.11	4.32	122.26	126.58	4.98	158.77	163.75
0.75	45.00	2.01	28.43	30.44	2.81	39.40	42.21	3.35	48.41	51.76	3.99	77.76	81.75	4.43	90.67	95.10	4.86	110.23	115.09	5.54	143.17	148.71
0.83	50.00	2.25	23.82	26.07	3.03	33.85	36.88	3.70	41.10	44.80	4.43	69.49	73.92	4.85	81.04	85.89	5.29	98.35	103.64	20.24	127.67	147.91
0.92	55.00 60.00	2.44 2.59	20.11 17.63	22.55 20.22	3.21 3.38	28.41 24.74	31.62 28.12	4.03 4.33	34.74 30.90	38.77 35.23	4.78 5.08	58.63 48.90	63.41 53.98	5.19 5.49	68.45 57.23	73.64 62.72	5.65 15.15	85.07 73.51	90.72 88.66	30.72 31.92	110.43 95.81	141.15 127.73
1.08	65.00	2.70	15.89	18.59	3.55	22.20	25.75	4.58	28.16	32.74	5.33	42.78	48.11	6.30	50.23	56.53	29.72	66.37	96.09	34.49	86.66	121.15
1.17	70.00	2.79	13.63	16.42	3.70	19.91	23.61	4.81	25.58	30.39	5.55	36.41	41.96	14.94	42.84	57.78	30.21	55.34	85.55	53.73	72.60	126.33
1.25	75.00	2.87	11.46	14.33	3.84	17.10	20.94	5.01	23.01	28.02	6.25	30.66	36.91	24.32	36.16	60.48	30.53	44.97	75.50	68.71	59.42	128.13
1.33 1.42	80.00 85.00	2.93 2.99	9.51 7.93	12.44 10.92	3.97 4.09	14.14 11.69	18.11 15.78	5.18 5.32	19.48 15.58	24.66 20.90	12.33 19.28	24.76 19.60	37.09 38.88	29.87 30.07	29.17 23.03	59.04 53.10	30.79 31.01	34.93 26.23	65.72 57.24	73.88 72.67	46.13 34.55	120.01 107.22
1.42	90.00	3.05	6.97	10.92	4.09	10.29	15.78	5.44	13.16	18.60	25.17	19.80	39.99	30.07	17.32	47.57	31.01	19.11	57.24	68.71	25.36	94.07
1.58	95.00	3.10	6.50	9.60	4.30	9.58	13.88	5.55	11.74	17.29	29.61	11.96	41.57	30.41	13.95	44.36	31.37	14.90	46.27	64.29	19.87	84.16
1.67	100.00	3.15	6.27	9.42	4.40	8.56	12.96	5.64	10.76	16.40	29.92	10.21	40.13	30.56	11.85	42.41	31.53	12.39	43.92	60.59	16.55	77.14
1.75	105.00 110.00	3.20 3.24	6.14 6.04	9.34 9.28	4.48	7.72	12.20 11.66	6.07 8.15	10.05 9.57	16.12 17.72	30.03 30.13	9.08 8.29	39.11 38.42	30.69 30.82	10.48 9.52	41.17 40.34	31.67 31.81	10.63 9.43	42.30 41.24	57.81 55.69	14.20 12.60	72.01 68.29
1.83	110.00	3.24	5.34	9.28	4.55	6.67	11.66	10.36	9.57	17.72	30.13	7.79	38.42	30.82	9.52	40.34 39.83	31.81	9.43	41.24 40.52	54.06	12.60	65.51
2.00	120.00	3.32	4.68	8.00	4.67	6.16	10.83	12.00	8.10	20.10	30.31	7.44	37.75	31.04	8.45	39.49	32.05	7.98	40.03	52.58	10.64	63.22
2.08	125.00	3.35	3.59	6.94	4.71	4.72	9.43	12.85	6.16	19.01	30.35	5.71	36.06	31.13	6.47	37.60	32.15	6.02	38.17	51.05	8.02	59.07
2.17	130.00	3.37	2.65	6.02	4.75	3.44	8.19	13.03	4.45	17.48	30.34	4.14	34.48	31.20	4.68	35.88	32.24	4.36	36.60	49.59	5.80	55.39
2.25 2.33	135.00 140.00	3.39 3.41	1.95	5.34 4.83	4.77 4.79	2.52	7.29 6.62	12.75 12.18	3.22 2.34	15.97 14.52	30.26 30.12	3.01 2.20	33.27 32.32	31.26 31.31	3.40 2.48	34.66 33.79	32.32 32.38	3.19 2.35	35.51 34.73	48.23 46.99	4.22 3.11	52.45 50.10
2.42	145.00	3.43	1.02	4.45	4.80	1.28	6.08	11.47	1.67	13.14	29.95	1.56	31.51	31.35	1.75	33.10	32.44	1.68	34.12	45.87	2.22	48.09
2.50	150.00	3.44	0.71	4.15	4.81	0.88	5.69	10.72	1.17	11.89	28.62	1.10	29.72	31.39	1.23	32.62	32.49	1.18	33.67	44.86	1.56	46.42
2.58	155.00	3.46	0.49	3.95	4.81	0.61	5.42	10.00	0.82	10.82	23.64	0.79	24.43	31.37	0.88	32.25	32.54	0.84	33.38	43.95	1.11	45.06
2.67 2.75	160.00 165.00	3.47 3.48	0.31	3.78 3.65	4.82 4.82	0.41	5.23 5.06	9.36 8.83	0.53	9.89 9.14	19.85 16.93	0.52	20.37 17.25	31.27 31.13	0.59	31.86 31.48	32.58 32.61	0.56	33.14 32.95	43.11 42.34	0.74	43.85 42.78
2.83	170.00	3.50	0.08	3.58	4.83	0.12	4.95	8.39	0.15	8.54	14.67	0.32	17.23	30.96	0.18	31.14	32.64	0.17	32.93	41.64	0.22	41.86
2.92	175.00	3.51	0.03	3.54	4.83	0.04	4.87	8.03	0.05	8.08	12.93	0.05	12.98	30.76	0.06	30.82	32.66	0.06	32.72	40.98	0.07	41.05
3.00	180.00	3.52	0.00	3.52	4.84	0.00	4.84	7.72	0.00	7.72	11.61	0.00	11.61	30.54	0.00	30.54	32.67	0.00	32.67	40.37	0.00	40.37
3.08 3.17	185.00 190.00	3.53 3.54		3.53 3.54	4.84 4.85	0.00	4.84 4.85	7.47 7.25	0.00	7.47	10.59 9.79	0.00	10.59 9.79	30.31 30.07	0.00	30.31 30.07	32.62 32.51	0.00	32.62 32.51	39.78 39.21	0.00	39.78 39.21
3.25	195.00	3.55		3.55	4.85		4.85	7.06		7.06	9.15	0.00	9.15	29.82	0.00	29.82	32.37	0.00	32.37	38.66	0.00	38.66
3.33	200.00	3.56		3.56	4.86		4.86	6.90		6.90	8.63	0.00	8.63	23.98	0.00	23.98	32.19		32.19	38.13	0.00	38.13
3.42	205.00	3.57		3.57	4.86		4.86	6.76		6.76	8.21	0.00	8.21	19.59	0.00	19.59	31.99		31.99	37.60	0.00	37.60
3.50 3.58	210.00 215.00	3.58 3.59		3.58 3.59	4.86 4.87		4.86 4.87	6.63 6.52		6.63 6.52	7.86		7.86	16.49 14.25	0.00	16.49 14.25	31.78 31.55		31.78 31.55	37.04 35.80	0.00	37.04 35.80
3.67	220.00	3.59		3.59	4.87		4.87	6.42		6.42	7.32		7.32	14.25		14.25	31.33		31.33	33.93	0.00	33.93
3.75	225.00	3.60		3.60	4.87		4.87	6.32		6.32	7.11		7.11	11.31		11.31	31.07		31.07	32.74	0.00	32.74
3.83	230.00	3.61		3.61	4.88		4.88	6.24		6.24	6.92		6.92	10.33		10.33	30.82		30.82	32.57	0.00	32.57
3.92 4.00	235.00 240.00	3.61 3.62		3.61 3.62	4.88 4.88		4.88 4.88	6.17 6.10		6.17	6.76 6.62		6.76 6.62	9.56 8.94		9.56 8.94	30.57 30.32		30.57 30.32	32.38 32.17	0.00	32.38 32.17
4.00	240.00	3.63		3.63	4.88		4.88	6.04		6.04	6.50		6.50	8.44		8.44	30.32		30.32	31.94		31.94
4.17	250.00	3.63		3.63	4.88		4.88	5.98		5.98	6.39		6.39	8.03		8.03	29.77		29.77	31.71		31.71
4.25	255.00	3.64		3.64	4.88		4.88	5.93		5.93	6.29		6.29	7.69		7.69	23.75		23.75	31.47		31.47
4.33 4.42	260.00 265.00	3.64 3.65		3.64 3.65	4.89 4.89		4.89 4.89	5.88 5.84		5.88 5.84	6.21 6.13		6.21 6.13	7.41 7.17		7.41 7.17	19.39 16.31		19.39 16.31	31.22 30.98		31.22 30.98
4.42	265.00	3.65		3.65	4.89		4.89	5.84		5.84	6.05		6.13	6.96		6.96	16.31 14.07		16.31 14.07	30.98		30.98
4.58	275.00	3.65		3.65	4.89		4.89	5.76		5.76	5.99		5.99	6.78		6.78	12.41		12.41	30.48		30.48
4.67	280.00	3.66		3.66	4.89		4.89	5.74		5.74	5.93		5.93	6.63		6.63	11.14		11.14	30.22		30.22
4.75	285.00	3.66		3.66	4.89		4.89	5.71		5.71	5.88		5.88	6.49		6.49	10.17		10.17	29.97		29.97
4.83	290.00 295.00	3.66 3.67		3.66 3.67	4.89 4.89		4.89 4.89	5.70 5.69		5.70 5.69	5.83 5.79		5.83 5.79	6.37 6.27		6.37 6.27	9.40 8.78		9.40 8.78	27.51 21.96		27.51 21.96
5.00	300.00	3.67		3.67	4.89		4.89	5.69		5.69	5.75		5.75	6.17		6.17	8.29		8.29	18.12		18.12
5.08	305.00	3.67		3.67	4.89		4.89	5.69		5.69	5.73		5.73	6.09		6.09	7.88		7.88	15.38		15.38
5.17	310.00	3.67		3.67	4.89		4.89	5.68		5.68	5.70		5.70	6.01		6.01	7.54		7.54	13.38		13.38
5.25	315.00 320.00	3.67 3.67		3.67 3.67	4.89 4.89		4.89 4.89	5.68 5.68		5.68 5.68	5.69 5.69		5.69 5.69	5.94 5.88		5.94 5.88	7.26		7.26	11.87 10.72		11.87 10.72
5.42	325.00	3.67		3.67	4.88		4.88	5.67		5.67	5.69		5.69	5.83		5.83	6.81		6.81	9.83		9.83
5.50	330.00	3.67		3.67	4.88		4.88	5.67		5.67	5.68		5.68	5.78		5.78	6.64		6.64	9.12		9.12
5.58	335.00	3.67		3.67	4.88		4.88	5.66		5.66	5.68		5.68	5.75		5.75	6.48		6.48	8.55		8.55
5.67	340.00	3.67		3.67	4.88		4.88	5.66		5.66	5.68		5.68	5.72		5.72	6.35		6.35	8.09		8.09
5.75	345.00	3.67		3.67	4.88		4.88	5.65		5.65	5.67		5.67	5.70		5.70	6.23		6.23	7.71		7.71

DETENTION BASIN OUTLET STRUCTURE DESIGN 1HFD-Detention, Version 4.02 (February 2020 Project: The Hills at Lorson Ranch Basin ID: Pond C2.2 Estimated Estimated ZONE 1 Outlet Type Stage (ft) Volume (ac-ft) VOLUME EURV WQCV Zone 1 (WQCV) 0.827 Orifice Plate 3.25 Zone 2 (FURV) 1.824 Rectangular Orifice 5.17 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 7.28 2.269 Weir&Pipe (Restrict) PERMAN Example Zone Configuration (Retention Pond) Total (all zones) 4.920 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) N/A ft² Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 1.535E-02 ft^2 Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet 3.25 Orifice Plate: Orifice Vertical Spacing 13.00 inches Elliptical Slot Centroid N/A feet ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 2.21 sq. inches (diameter = 1-11/16 inches) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 1.08 2.17 Orifice Area (sq. inches) 2.21 2.21 2.21 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 3.25 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.25 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice 5.17 N/A Vertical Orifice Centroid 0.25 N/A Vertical Orifice Height 6.00 N/A inches Vertical Orifice Width = 6.00 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 7.00 N/A Height of Grate Upper Edge, H_t 7.00 N/A ft (relative to basin bottom at Stage = 0 ft) Overflow Weir Front Edge Length 8.00 N/A feet Overflow Weir Slope Length 6.00 N/A Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 10.58 N/A Horiz. Length of Weir Sides : N/A Overflow Grate Open Area w/o Debris = 33.60 N/A 6.00 feet Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 16.80 N/A Debris Clogging % = N/A 50% User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A Outlet Orifice Area N/A ft (distance below basin bottom at Stage = 0 ft) 3.18 Outlet Pipe Diameter 30.00 N/A inches Outlet Orifice Centroid 0.87 N/A Restrictor Plate Height Above Pipe Invert = 18.50 inches Half-Central Angle of Restrictor Plate on Pipe = 1.81 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 10.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.51 feet Spillway Crest Length : 20.00 feet Stage at Top of Freeboard = 13.00 feet H:V Spillway End Slopes 4.00 Basin Area at Top of Freeboard 1.33 acres Freeboard above Max Water Surface = 1.49 Basin Volume at Top of Freeboard = 8.28 feet acre-ft micropool = 0 = 5744.00 Routed Hydrograph Results anhs and in the Inflow Hvo ns table (Columns W through AF erride the c es hv na new values 100 Year Design Storm Return Period WOCV 2 Year 5 Year 10 Year 25 Year 50 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 4.403 5.541 7.671 CUHP Runoff Volume (acre-ft) 0.827 2.651 2.510 3.521 6.487 User Override Inflow Hydrograph Volume (acre-ft) N/A N/A 11.034 CUHP Predevelopment Peak Q (cfs) N/A N/A 5.0 13.5 20.5 36.5 45.7 58.2 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.30 Predevelopment Unit Peak Flow, g (cfs/acre) 0.11 0.46 0.81 1.02 1.29 N/A N/A Peak Inflow Q (cfs) N/A N/A 41.1 59.5 73.1 94.8 111.2 131.3 42.9 Peak Outflow Q (cfs) 0.3 2.0 2.2 2.7 11.7 37.5 40.7 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.2 0.6 0.9 0.7 1.0 Structure Controlling Flow Plate Vertical Orifice Vertical Orifice Vertical Orifice erflow Weir 1 erflow Wei Outlet Plate Outlet Plate 1 Max Velocity through Grate 1 (fps) N/A N/A N/A N/A 0.3 1.0 1.1 1.2 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) 38 56 62 66 64 59 55 50 Time to Drain 99% of Inflow Volume (hours) 40 61 68 73 73 71 69 67 Maximum Ponding Depth (ft) 7.28 7.69 7.97 8.75


Area at Maximum Ponding Depth (acres) Maximum Volume Stored (acre-ft)

3.25 5.17 5.64 6.88 0.90 1.04 3.139 1.01

1.12 1.14 1.17 5.390

1.19

1.24

DETENTION BASIN OUTLET STRUCTURE DESIGN

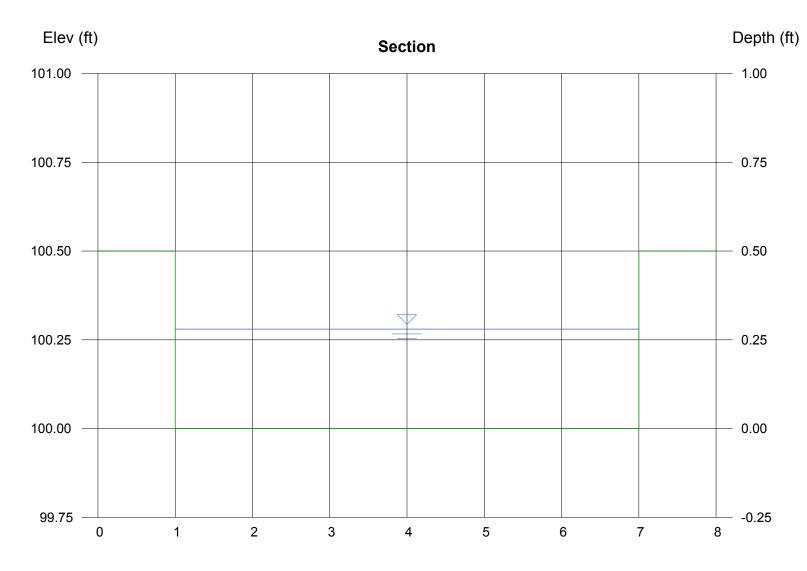
Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.									
	SOURCE	CUHP	CUHP	USER	USER	USER	USER	USER	USER	USER
Time Interval	TIME				5 Year [cfs]					500 Year [cfs]
		WQCV [cfs]	EURV [cfs]	2 Year [cfs]		10 Year [cfs]		50 Year [cfs]		
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.02	0.03
	0:05:00	0.00	0.00	0.03	0.03	0.03	0.03	0.04	0.03	0.04
	0:10:00	0.00	0.00	0.06	0.07	0.08	0.07	0.50	0.11	1.45
	0:15:00	0.00	0.00	3.84	6.22	7.68	5.19	6.48	6.30	9.13
	0:20:00 0:25:00	0.00	0.00	13.74	18.16	22.09	13.52	15.76	16.84	22.46
	0:30:00	0.00	0.00	31.28 41.06	45.27 59.46	58.06 73.14	30.69 78.58	36.11 93.19	40.02 105.11	59.40 139.94
	0:35:00	0.00	0.00	39.47	55.99	67.61	94.83	111.22	131.32	170.94
	0:40:00	0.00	0.00	35.50	48.76	58.87	91.91	107.11	126.58	163.75
	0:45:00	0.00	0.00	30.44	42.21	51.76	81.75	95.10	115.09	148.71
	0:50:00	0.00	0.00	26.07	36.88	44.80	73.92	85.89	103.64	147.91
	0:55:00	0.00	0.00	22.55	31.62	38.77	63.41	73.64	90.72	141.15
	1:00:00	0.00	0.00	20.22	28.12	35.23	53.98	62.72	88.66	127.73
	1:05:00	0.00	0.00	18.59	25.75	32.74	48.11	56.53	96.09	121.15
	1:10:00	0.00	0.00	16.42	23.61	30.39	41.96	57.78	85.55	126.33
	1:15:00	0.00	0.00	14.33	20.94	28.02	36.91	60.48	75.50	128.13
	1:20:00	0.00	0.00	12.44	18.11	24.66	37.09	59.04	65.72	120.01
	1:25:00	0.00	0.00	10.92	15.78	20.90	38.88	53.10	57.24	107.22
	1:30:00 1:35:00	0.00	0.00	10.02	14.49	18.60	39.99	47.57	50.31	94.07
	1:40:00	0.00	0.00	9.60 9.42	13.88 12.96	17.29 16.40	41.57 40.13	44.36 42.41	46.27 43.92	84.16 77.14
	1:45:00	0.00	0.00	9.42	12.96	16.40	39.11	42.41	43.92	72.01
	1:50:00	0.00	0.00	9.28	11.66	17.72	38.42	40.34	41.24	68.29
	1:55:00	0.00	0.00	8.62	11.29	19.34	38.01	39.83	40.52	65.51
	2:00:00	0.00	0.00	8.00	10.83	20.10	37.75	39.49	40.03	63.22
	2:05:00	0.00	0.00	6.94	9.43	19.01	36.06	37.60	38.17	59.07
	2:10:00	0.00	0.00	6.02	8.19	17.48	34.48	35.88	36.60	55.39
	2:15:00	0.00	0.00	5.34	7.29	15.97	33.27	34.66	35.51	52.45
	2:20:00	0.00	0.00	4.83	6.62	14.52	32.32	33.79	34.73	50.10
	2:25:00	0.00	0.00	4.45	6.08	13.14	31.51	33.10	34.12	48.09
	2:30:00	0.00	0.00	4.15	5.69	11.89	29.72	32.62	33.67	46.42
	2:35:00 2:40:00	0.00	0.00	3.95 3.78	5.42 5.23	10.82 9.89	24.43 20.37	32.25 31.86	33.38 33.14	45.06 43.85
	2:45:00	0.00	0.00	3.65	5.06	9.14	17.25	31.48	32.95	42.78
	2:50:00	0.00	0.00	3.58	4.95	8.54	14.83	31.14	32.81	41.86
	2:55:00	0.00	0.00	3.54	4.87	8.08	12.98	30.82	32.72	41.05
	3:00:00	0.00	0.00	3.52	4.84	7.72	11.61	30.54	32.67	40.37
	3:05:00	0.00	0.00	3.53	4.84	7.47	10.59	30.31	32.62	39.78
	3:10:00	0.00	0.00	3.54	4.85	7.25	9.79	30.07	32.51	39.21
	3:15:00	0.00	0.00	3.55	4.85	7.06	9.15	29.82	32.37	38.66
	3:20:00	0.00	0.00	3.56	4.86	6.90	8.63	23.98	32.19	38.13
	3:25:00	0.00	0.00	3.57	4.86	6.76	8.21	19.59	31.99	37.60
	3:30:00	0.00	0.00	3.58	4.86	6.63	7.86	16.49	31.78	37.04
	3:35:00 3:40:00	0.00	0.00	3.59	4.87	6.52	7.57	14.25	31.55	35.80
	3:40:00	0.00	0.00	3.59 3.60	4.87 4.87	6.42 6.32	7.32	12.58 11.31	31.31 31.07	33.93 32.74
	3:50:00	0.00	0.00	3.60	4.88	6.24	6.92	10.33	30.82	32.74
	3:55:00	0.00	0.00	3.61	4.88	6.17	6.76	9.56	30.57	32.37
	4:00:00	0.00	0.00	3.62	4.88	6.10	6.62	8.94	30.32	32.17
	4:05:00	0.00	0.00	3.63	4.88	6.04	6.50	8.44	30.07	31.94
	4:10:00	0.00	0.00	3.63	4.88	5.98	6.39	8.03	29.77	31.71
	4:15:00 4:20:00	0.00	0.00	3.64 3.64	4.88 4.89	5.93 5.88	6.29 6.21	7.69 7.41	23.75 19.39	31.47 31.22
	4:20:00	0.00	0.00	3.64	4.89	5.88	6.13	7.41	19.39	31.22
	4:30:00	0.00	0.00	3.65	4.89	5.80	6.05	6.96	14.07	30.73
	4:35:00	0.00	0.00	3.65	4.89	5.76	5.99	6.78	12.41	30.48
	4:40:00 4:45:00	0.00 0.00	0.00	3.66 3.66	4.89 4.89	5.74 5.71	5.93 5.88	6.63 6.49	11.14 10.17	30.22 29.97
	4:50:00	0.00	0.00	3.66	4.89	5.70	5.83	6.37	9.40	29.97
	4:55:00	0.00	0.00	3.67	4.89	5.69	5.79	6.27	8.78	21.96
	5:00:00	0.00	0.00	3.67	4.89	5.69	5.75	6.17	8.29	18.12
	5:05:00 5:10:00	0.00	0.00	3.67 3.67	4.89 4.89	5.69 5.68	5.73 5.70	6.09 6.01	7.88 7.54	15.38 13.38
	5:15:00	0.00	0.00	3.67	4.89	5.68	5.69	5.94	7.26	11.87
	5:20:00	0.00	0.00	3.67	4.89	5.68	5.69	5.88	7.02	10.72
	5:25:00 5:30:00	0.00	0.00	3.67 3.67	4.88	5.67 5.67	5.69 5.68	5.83 5.78	6.81 6.64	9.83 9.12
	5:35:00	0.00	0.00	3.67	4.88	5.66	5.68	5.75	6.48	8.55
	5:40:00	0.00	0.00	3.67	4.88	5.66	5.68	5.72	6.35	8.09
	5:45:00	0.00	0.00	3.67	4.88	5.65	5.67	5.70	6.23	7.71
	5:50:00 5:55:00	0.00	0.00	3.67 3.67	4.87 4.87	5.65 5.64	5.67 5.66	5.69 5.69	6.13 6.04	7.39 7.13
	6:00:00	0.00	0.00	3.67	4.87	5.63	5.65	5.69	5.81	6.62

MHFD-Detention, Version 4.02 (February 2020) Summary Stage-Area-Volume-Discharge Relationships

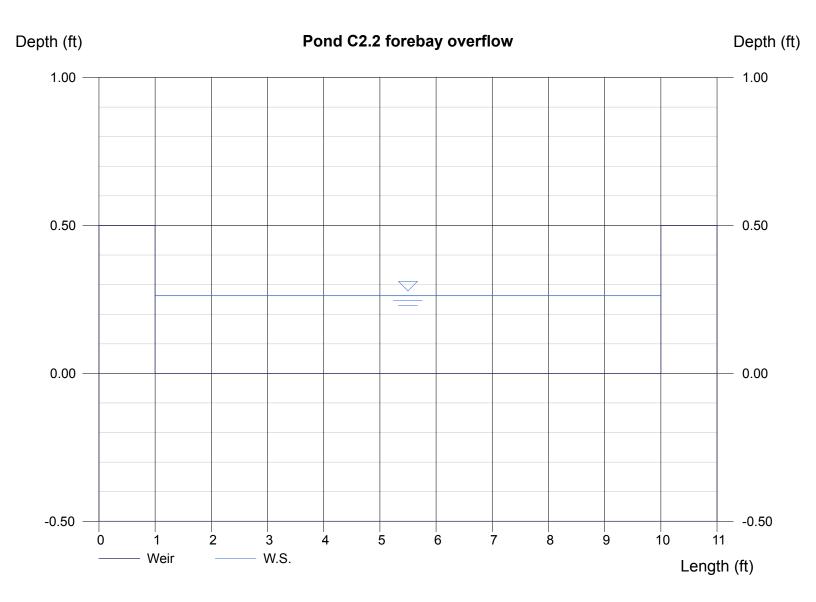
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.


Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	L
micropool	0.00	40	0.001	0	0.000	0.00	For best results, include the
surcharge	0.33	50	0.001	15	0.000	0.04	stages of all grade slope
5745	1.00	255	0.006	117	0.003	0.07	changes (e.g. ISV and Floor
5746	2.00	6,998	0.161	3,743	0.086	0.18	from the S-A-V table on Sheet 'Basin'.
5747	3.00	38,392	0.881	26,438	0.607	0.30	Sheet Basin.
5748	4.00	40,927	0.940	66,098	1.517	1.23	Also include the inverts of a
5749	5.00	43,534	0.999	108,328	2.487	1.91	outlets (e.g. vertical orifice,
5750	6.00	46,212	1.061	153,201	3.517	2.39	overflow grate, and spillway where applicable).
5751	7.00	48,991	1.125	200,803	4.610	2.79	
5752 5753	8.00 9.00	51,837 54,731	1.190 1.256	251,217 304,501	5.767 6.990	40.84 43.61	-
5754	10.00	58,033	1.332	360,883	8.285	46.21	_
5751	10.00	50,000	1002	500,005	0.205	10121	-
							-
							-
							_
							4
	_						4
							-
							-
	-				-		-
							-
							-
							-
							-
							-
							_
							_
	_				-		-
					-		-
							-
							-
							-
							-
							-
							-
							_
							_
							-
							-
							-
							4
							4
							4
							1
]
							4
							-
	+				ł		4

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company: Date:	Core Engineering Group May 2, 2020	
Project:	The Hills at Lorson Ranch	
Location:	Pond C2.2	
1. Basin Storage V	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = <u>55.0</u> %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.550
C) Contributing	Watershed Area	Area = 45.000 ac
Runoff Prod	eds Outside of the Denver Region, Depth of Average ucing Storm	
E) Design Cono (Select EUR)	cept V when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volu (V _{DESIGN} = (1	me (WQCV) Based on 40-hour Drain Time I.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.827 ac-ft
Water Quali	neds Outside of the Denver Region, ty Capture Volume $_{R} = (d_{6}^{*}(V_{DESIGN}/0.43))$	V _{DESIGN OTHER} ≡ac-ft
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
i) Percenta ii) Percenta	logic Soil Groups of Tributary Watershed ge of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	HSG _A = % HSG _B = % HSG _{OD} = %
For HSG A: For HSG B:	in Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08} /D: EURV _{CD} = 1.20 * i ^{1.08}	EURV _{DESION} =ac-ft
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} ≕ 1 ac-f t
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1
3. Basin Side Slop	es	
A) Basin Maxim		Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4. Inlet		
	eans of providing energy dissipation at concentrated	
inflow location		
5. Forebay A) Minimum Fo		V _{FMIN} = 0.025 ac-ft
	= <u>3%</u> of the WQCV)	V - 0.020 +
B) Actual Foreb		$V_F = 0.028$ ac-ft
C) Forebay Dep (D _F		D _F = 24.0 in
D) Forebay Disc		
	ed 100-year Peak Discharge	Q ₁₀₀ = 131.00 cfs
ii) Forebay (Q _F = 0.02	Discharge Design Flow 2 * Q ₁₀₀)	Q _F = <u>2.62</u> cfs
E) Forebay Disc		Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir
	pe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangular	Notch Width	Calculated W _N = 8.1 in

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group May 2, 2020 The Hills at Lorson Ranch Pond C2.2	Sheet 2 of 3
 6. Trickle Channel A) Type of Trick F) Slope of Trick 	kle Channel	Choose One Concrete Soft Bottom S = 0.0050 ft / ft
	cropool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = \underbrace{2.5}_{50} \text{ ft}$ $A_{M} = \underbrace{50}_{9} \text{ sq ft}$ $\underbrace{\text{Choose One}}_{0} \text{ Orifice Plate}$ $\underbrace{\text{Other (Describe):}}$
D) Smallest Din (Use UD-Detent E) Total Outlet A		$D_{\text{ortice}} = $ 1.48 inches $A_{\text{ct}} = $ 6.63 square inches
(Minimum re B) Minimum Initi (Minimum vol	e Volume tial Surcharge Volume commended depth is 4 inches) ial Surcharge Volume lume of 0.3% of the WQCV) arge Provided Above Micropool	$D_{iS} = $ 4 in $V_{iS} = $ 108 cu ft $V_s = $ 16.7 cu ft
B) Type of Scre in the USDCM, total screen are	ty Screen Open Area: $A_t = A_{ot} * 38.5^{\circ}(e^{-0.095D})$ een (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): y	A _t = 222 square inches Other (Please describe below) wellscreen stainless
D) Total Water (E) Depth of Des (Based on o F) Height of Wa G) Width of Wa	al Open Area to Total Area (only for type 'Other') Quality Screen Area (based on screen type) sign Volume (EURV or WQCV) design concept chosen under 1E) ater Quality Screen (H _{TR}) ter Quality Screen Opening (W _{opening}) inches is recommended)	User Ratio = 0.6 A _{total} = 370 sq. in. Based on type 'Other' screen ratio H= 3.25 feet H _{TR} = 67 inches W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

pond C2.2 low flow channel (2 x forebay release = 5.24cfs)


Rectangular		Highlighted	
Botom Width (ft)	= 6.00	Depth (ft)	= 0.28
Total Depth (ft)	= 0.50	Q (cfs)	= 5.240
		Area (sqft)	= 1.68
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.12
Slope (%)	= 0.50	Wetted Perim (ft)	= 6.56
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.29
		Top Width (ft)	= 6.00
Calculations		EGL (ft)	= 0.43
Compute by:	Known Q		
Known Q (cfs)	= 5.24		

Reach (ft)

Pond C2.2 forebay overflow

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.26
Bottom Length (ft)	= 9.00	Q (cfs)	= 4.040
Total Depth (ft)	= 0.50	Area (sqft)	= 2.36
		Velocity (ft/s)	= 1.71
Calculations		Top Width (ft)	= 9.00
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 4.04		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.02 (February 2020)

Optional User Overrides acre-feet acre-feet 1.19 inches
 1.10
 inches

 1.50
 inches

 1.75
 inches

 2.00
 inches
 2.25 inches 2.52 inches inches

-100-YEAR ORIFICE

ZONE 1 AND 2 ORIFICES Example Zone Configuration (Retention Pond) PERMA

Watershed Information

EDB	
16.00	acres
1,700	ft
800	ft
0.030	ft/ft
55.00%	percent
0.0%	percent
40.0%	percent
60.0%	percent
40.0	hours
User Input	
	16.00 1,700 800 0.030 55.00% 0.0% 40.0% 60.0% 40.0

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban hydro	graphi Floceuc	ie.
Water Quality Capture Volume (WQCV) =	0.294	acre-feet
Excess Urban Runoff Volume (EURV) =	0.883	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.924	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.299	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.627	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	2.016	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	2.357	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	2.775	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	3.648	acre-feet
Approximate 2-yr Detention Volume =	0.736	acre-feet
Approximate 5-yr Detention Volume =	1.046	acre-feet
Approximate 10-yr Detention Volume =	1.257	acre-feet
Approximate 25-yr Detention Volume =	1.358	acre-feet
Approximate 50-yr Detention Volume =	1.409	acre-feet
Approximate 100-yr Detention Volume =	1.570	acre-feet

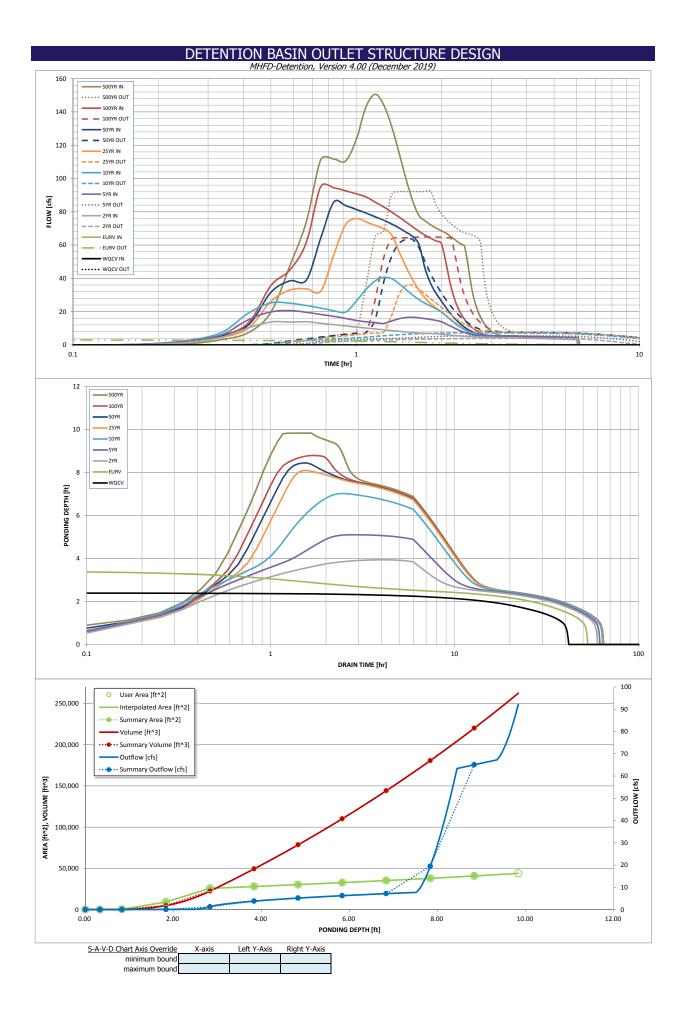
Define	Zones	and	Basin	Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.294	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.589	acre-feet
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	0.834	acre-feet
Total Detention Basin Volume =	1.717	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

user	ft 2
user	ft
	ft 2
user	ft ³
user	ft
user	ft
user	ft
	ft ²
user	ft ³
	user user user user user user user user

Volume of Main Basin (V_{MAIN}) =		ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

Depth Increment =	0.20								
1		ft Optional				Optional			
Stage - Storage Description	Stage	Override	Length	Width	Area	Override	Area	Volume (ft ³)	Volume
Top of Micropool	(ft) 	Stage (ft) 0.00	(ft) 	(ft) 	(ft ²)	Area (ft ²) 40	(acre) 0.001	(10)	(ac-ft)
5744.5		0.33				50	0.001	15	0.000
5745		0.33	-		-	412	0.001	130	0.000
5746		1.83				9,243	0.212	4,958	0.114
5747		2.83				25,797	0.592	22,478	0.516
5748		3.83				28,015	0.643	49,384	1.134
5749		4.83				30,331	0.696	78,557	1.803
5750		5.83				32,748	0.752	110,096	2.527
5751		6.83				35,264	0.810	144,102	3.308
5752		7.83				37,880	0.870	180,674	4.148
5753		8.83	-			40,817	0.937	220,023	5.051
5754		9.83	-			44,000	1.010	262,431	6.025
			-		-				
			-						
					-				
			-						
			-						
			-						
			-						
			-						
									-
			-						
					-				
			-						
			-						
			-						
			-						
			-						<u> </u>
			-						
			-						
			-						
			-						
							_		
			-						
			-						
					-				
			-						
			-						
					-				
			-						
						1			


Pond C2.3 Developed Inflow Hydrograph---- Pond C2.1 outflow + C3 Basin + C4 Basin

Pond C2.5 D	veveloped mil	IOW HYDrograp	on Pona C	2yr	+ C3 Basin + C	4 Dasiri	5yr			10yr			25yr			50yr			100yr			500yr
		2 Year	CUHP	Combined	5 Year	CUHP	Combined	10 Year	CUHP	Combined	25 Year	CUHP	Combined	50 Year	CUHP	Combined	100 Year	CUHP	Combined	500 Year	CUHP	Combined
Time [hr]	Time [min]	Ponc C2.1 Outflow2 - [cfs]	2 Year [cfs]	Hydrograph	Ponc C2.1 Outflow2 - [cfs]	5 Year [cfs]	Hydrograph	Ponc C2.1 Outflow2 - [cfs]	10 Year [cfs]	Hydrograph	Ponc C2.1 Outflow2 - [cfs]	25 Year [cfs]	Hydrograph	Ponc C2.1 Outflow2 - [cfs]	50 Year [cfs]	Hydrograph	Ponc C2.1 Outflow2 - [cfs]	100 Year [cfs]	Hydrograph	Ponc C2.1 Outflow2 - [cfs]	500 Year [cfs]	Hydrograph
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.08	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.10	0.04	0.00	0.04	0.12	0.00	0.12
0.17	10.00 15.00	0.14	0.00	0.14	0.19	0.00	0.19 2.19	0.20	0.00 2.37	0.20 2.66	0.18	0.00	0.18	0.20	0.13	0.33	0.19 0.28	0.01	0.21 2.22	0.23	0.43	0.65 3.10
0.33	20.00	0.33	4.21	4.55	0.40	5.61	6.01	0.45	6.91	7.36	0.34	4.12	4.46	0.35	4.81	5.16	0.38	5.14	5.52	0.46	7.03	7.49
0.42	25.00	0.48	9.83	10.31	0.54	14.69	15.23	0.58	18.61	19.20	0.52	9.65	10.17	0.55	11.51	12.06	0.57	12.82	13.39	1.01	18.71	19.72
0.50	30.00 35.00	0.56	13.28 12.88	13.84 13.71	1.04 2.85	18.82 17.81	19.86 20.66	2.46 3.68	22.84 21.42	25.30 25.10	1.63 3.81	24.57 29.19	26.19 33.00	2.69 4.42	28.96 34.09	31.65 38.51	3.20 4.92	32.54 40.16	35.73 45.09	4.38 21.56	43.29 52.46	47.67 74.02
0.67	40.00	2.15	11.77	13.92	3.65	15.99	19.64	4.41	19.25	23.66	4.87	28.83	33.70	5.47	33.53	39.00	22.18	39.47	61.65	60.08	51.34	111.42
0.75	45.00 50.00	2.84 3.28	10.24 8.93	13.08 12.21	4.18 4.57	14.14 12.65	18.32 17.22	4.93 5.32	17.24 15.26	22.17 20.58	6.06 29.98	26.34 24.16	32.41 54.14	33.77 57.77	30.62 28.08	64.39 85.85	58.30 60.60	36.96 33.83	95.25 94.43	63.77 66.54	47.98 43.91	111.74 110.45
0.83	55.00	3.28	7.84	12.21	4.57	12.65	17.22	6.22	13.49	20.58	29.98 51.01	24.16	72.28	57.77	24.75	83.75	62.28	30.40	94.43	83.88	39.47	123.35
1.00	60.00	3.84	6.88	10.72	5.10	9.62	14.72	14.35	11.94	26.29	57.40	18.58	75.98	59.80	21.64	81.44	63.51	27.30	90.81	107.73	35.43	143.17
1.08	65.00 70.00	4.04 4.19	6.17 5.44	10.20 9.64	5.30 5.46	8.60 7.90	13.89 13.36	22.57 28.29	10.89 10.19	33.46 38.48	57.66 57.67	16.29 14.12	73.95 71.79	60.27 60.45	19.00 16.54	79.26 76.99	64.36 64.83	24.59 20.97	88.95 85.80	118.61 116.88	31.98 27.41	150.59 144.29
1.17	75.00	4.19	4.83	9.64	5.79	7.15	12.94	31.11	9.58	40.69	57.67	14.12	69.89	60.45	14.62	75.01	64.95	18.02	85.80	110.88	23.67	144.29
1.33	80.00	4.40	4.29	8.70	8.07	6.33	14.39	31.24	8.56	39.80	55.45	10.74	66.19	60.08	12.61	72.69	64.77	15.09	79.86	95.59	19.81	115.41
1.42	85.00 90.00	4.48 4.53	3.78 3.29	8.25 7.82	10.19 11.64	5.55 4.82	15.74 16.46	29.51 27.10	7.32 6.18	36.84 33.28	46.93 39.29	9.19 7.64	56.12 46.93	59.55 58.81	10.77 8.94	70.32 67.75	64.32 63.64	12.49 10.21	76.81 73.85	83.32 73.03	16.38 13.37	99.70 86.40
1.50	90.00	4.55	2.84	7.82	11.64	4.18	16.46	24.75	5.20	29.95	39.29	6.21	39.11	57.92	7.26	65.18	62.81	8.15	73.85	67.05	10.66	77.71
1.67	100.00	4.62	2.49	7.12	12.80	3.49	16.28	22.71	4.46	27.17	27.91	4.97	32.88	54.45	5.81	60.26	61.88	6.37	68.25	66.27	8.35	74.62
1.75	105.00 110.00	4.66 4.70	2.31 2.22	6.97 6.92	12.76 12.52	3.04 2.77	15.80 15.29	20.99 19.53	4.04 3.77	25.03 23.30	24.09 21.17	4.05 3.51	28.14 24.68	41.15 32.72	4.74 4.11	45.90 36.83	60.87 59.81	5.07 4.28	65.94 64.09	65.42 64.51	6.70 5.68	72.12 70.19
1.05	115.00	4.73	1.98	6.71	12.17	2.57	13.29	19.55	3.51	21.70	18.94	3.16	22.10	27.12	3.71	30.83	58.70	3.77	62.47	63.55	5.01	68.56
2.00	120.00	4.75	1.77	6.51	11.57	2.37	13.94	16.69	3.18	19.86	16.96	2.93	19.89	22.93	3.43	26.36	57.53	3.39	60.92	62.52	4.53	67.05
2.08	125.00 130.00	4.75 4.75	1.41 1.09	6.16 5.84	10.67 9.62	1.88 1.45	12.55 11.08	14.90 13.04	2.52 1.95	17.42 14.98	14.92 12.94	2.30 1.76	17.22 14.69	19.31 16.19	2.69 2.06	22.01 18.24	45.28 32.26	2.61 1.94	47.89 34.21	61.40 60.18	3.49 2.60	64.88 62.77
2.25	135.00	4.73	0.85	5.58	8.59	1.13	9.72	11.30	1.50	12.80	11.16	1.34	12.50	13.58	1.57	15.15	23.92	1.45	25.37	58.88	1.93	60.81
2.33	140.00	4.72	0.65	5.37	7.65	0.86	8.52	9.77	1.13	10.91	9.63	1.02	10.64	11.44	1.19	12.62	18.31	1.08	19.40	57.52	1.45	58.97
2.42	145.00 150.00	4.69 4.67	0.50	5.20	6.84 6.18	0.66	7.49 6.67	8.48 7.42	0.85	9.33 8.05	8.34 7.30	0.77	9.11 7.87	9.70 8.31	0.90 0.67	10.60 8.98	14.39 11.58	0.82	15.22 12.20	43.18 29.70	1.10 0.82	44.28 30.53
2.58	155.00	4.64	0.29	4.93	5.72	0.36	6.08	6.58	0.47	7.05	6.48	0.43	6.91	7.22	0.50	7.72	9.52	0.46	9.99	21.43	0.62	22.05
2.67	160.00	4.61	0.21 0.15	4.82	5.56	0.26 0.19	5.82	5.95	0.35	6.30	5.89	0.32	6.21	6.39	0.37	6.77	8.00	0.35	8.36	16.08	0.47	16.54
2.75	165.00 170.00	4.58 4.54	0.15	4.73 4.65	5.53 5.50	0.19	5.72 5.62	5.58 5.54	0.26	5.84	5.57 5.54	0.24	5.80 5.70	5.81 5.56	0.28 0.19	6.09 5.75	6.89 6.09	0.26	7.14 6.27	12.46 9.94	0.34	12.80 10.18
2.92	175.00	4.51	0.06	4.57	5.46	0.08	5.55	5.51	0.11	5.62	5.50	0.11	5.61	5.53	0.12	5.65	5.62	0.12	5.74	8.17	0.15	8.32
3.00 3.08	180.00 185.00	4.48 4.44	0.03	4.51 4.45	5.43 5.40	0.05	5.48 5.42	5.48 5.44	0.06	5.54 5.47	5.47 5.44	0.06	5.53 5.47	5.50 5.46	0.07 0.03	5.57	5.54 5.51	0.07	5.61 5.54	6.92 6.08	0.09	7.01 6.12
3.17	190.00	4.41	0.01	4.41	5.37	0.02	5.37	5.41	0.01	5.42	5.41	0.01	5.42	5.43	0.01	5.44	5.48	0.01	5.49	5.61	0.01	5.62
3.25	195.00	4.37	0.00	4.37	5.33	0.00	5.33	5.38	0.00	5.38	5.38	0.00	5.38	5.40	0.00	5.40	5.45	0.00	5.45	5.54	0.00	5.54
3.33 3.42	200.00 205.00	4.34 4.30	0.00	4.34 4.30	5.30 5.27	0.00	5.30 5.27	5.35 5.31	0.00	5.35	5.34 5.31	0.00	5.34 5.31	5.37 5.33	0.00	5.37 5.33	5.41 5.38	0.00	5.41 5.38	5.51 5.48	0.00	5.51 5.48
3.50	210.00	4.26	0.00	4.26	5.23	0.00	5.23	5.28	0.00	5.28	5.28	0.00	5.28	5.30	0.00	5.30	5.35	0.00	5.35	5.44	0.00	5.44
3.58	215.00	4.23	0.00	4.23	5.20	0.00	5.20	5.25	0.00	5.25	5.24	0.00	5.24	5.27	0.00	5.27	5.32	0.00	5.32	5.41	0.00	5.41
3.67 3.75	220.00 225.00	4.19 4.16	0.00	4.19 4.16	5.17 5.14	0.00	5.17 5.14	5.21 5.18	0.00	5.21 5.18	5.21 5.18	0.00	5.21 5.18	5.24 5.20	0.00	5.24	5.28 5.25	0.00	5.28 5.25	5.38 5.35	0.00	5.38 5.35
3.83	230.00	4.12	0.00	4.12	5.10	0.00	5.10	5.15	0.00	5.15	5.14	0.00	5.14	5.17	0.00	5.17	5.22	0.00	5.22	5.31	0.00	5.31
3.92	235.00 240.00	4.09 4.05	0.00	4.09 4.05	5.07 5.04	0.00	5.07 5.04	5.11 5.08	0.00	5.11 5.08	5.11 5.08	0.00	5.11 5.08	5.14 5.10	0.00	5.14 5.10	5.18 5.15	0.00	5.18 5.15	5.28 5.25	0.00	5.28 5.25
4.00	240.00	4.05	0.00	4.05	5.04	0.00	5.04	5.08	0.00	5.08	5.08	0.00	5.08	5.10	0.00	5.10	5.15	0.00	5.15	5.25	0.00	5.25
4.17	250.00	3.98	0.00	3.98	4.97	0.00	4.97	5.01	0.00	5.01	5.01	0.00	5.01	5.04	0.00	5.04	5.08	0.00	5.08	5.18	0.00	5.18
4.25	255.00 260.00	3.94 3.91	0.00	3.94 3.91	4.93 4.90	0.00	4.93 4.90	4.98 4.95	0.00	4.98 4.95	4.98 4.94	0.00	4.98 4.94	5.00 4.97	0.00	5.00	5.05 5.02	0.00	5.05 5.02	5.15 5.12	0.00	5.15 5.12
4.42	265.00	3.87	0.00	3.87	4.90	0.00	4.87	4.91	0.00	4.91	4.91	0.00	4.91	4.94	0.00	4.94	4.98	0.00	4.98	5.08	0.00	5.08
4.50	270.00	3.83	0.00	3.83	4.83	0.00	4.83	4.88	0.00	4.88	4.88	0.00	4.88	4.90	0.00	4.90	4.95	0.00	4.95	5.05	0.00	5.05
4.58	275.00 280.00	3.80 3.76	0.00	3.80 3.76	4.80 4.76	0.00	4.80 4.76	4.85 4.81	0.00	4.85 4.81	4.84 4.81	0.00	4.84 4.81	4.87 4.83	0.00	4.87	4.92 4.88	0.00	4.92 4.88	5.02 4.98	0.00	5.02 4.98
4.75	285.00	3.70	0.00	3.72	4.73	0.00	4.73	4.78	0.00	4.78	4.77	0.00	4.77	4.80	0.00	4.80	4.85	0.00	4.85	4.95	0.00	4.95
4.83	290.00	3.69	0.00	3.69	4.70	0.00	4.70	4.74	0.00	4.74	4.74	0.00	4.74	4.77	0.00	4.77	4.81	0.00	4.81	4.91	0.00	4.91
4.92 5.00	295.00 300.00	3.65 3.61	0.00	3.65 3.61	4.66 4.63	0.00	4.66 4.63	4.71 4.67	0.00	4.71 4.67	4.71 4.67	0.00	4.71 4.67	4.73 4.70	0.00	4.73 4.70	4.78 4.75	0.00	4.78 4.75	4.88 4.85	0.00	4.88 4.85
5.08	305.00	3.57	0.00	3.57	4.59	0.00	4.59	4.64	0.00	4.64	4.64	0.00	4.64	4.66	0.00	4.66	4.71	0.00	4.71	4.81	0.00	4.81
5.17	310.00	3.54	0.00	3.54	4.56	0.00	4.56	4.61	0.00	4.61	4.60	0.00	4.60	4.63	0.00	4.63	4.68	0.00	4.68	4.78	0.00	4.78 4.74
5.25	315.00 320.00	3.50 3.46	0.00	3.50 3.46	4.52 4.49	0.00	4.52 4.49	4.57 4.54	0.00	4.57 4.54	4.57 4.53	0.00	4.57 4.53	4.59 4.56	0.00	4.59 4.56	4.64 4.61	0.00	4.64 4.61	4.74 4.71	0.00	4.74
5.42	325.00	3.42	0.00	3.42	4.45	0.00	4.45	4.50	0.00	4.50	4.50	0.00	4.50	4.52	0.00	4.52	4.57	0.00	4.57	4.68	0.00	4.68
5.50 5.58	330.00 335.00	3.39 3.35	0.00	3.39 3.35	4.42 4.38	0.00	4.42 4.38	4.47 4.43	0.00	4.47 4.43	4.46 4.43	0.00	4.46 4.43	4.49 4.45	0.00	4.49 4.45	4.54 4.50	0.00	4.54 4.50	4.64 4.61	0.00	4.64 4.61
5.58	340.00	3.35	0.00	3.35	4.35	0.00	4.38	4.43	0.00	4.43	4.43	0.00	4.43	4.45	0.00	4.45	4.50	0.00	4.50	4.61	0.00	4.61
5.75	345.00	3.27	0.00	3.27	4.31	0.00	4.31	4.36	0.00	4.36	4.36	0.00	4.36	4.38	0.00	4.38	4.43	0.00	4.43	4.54	0.00	4.54
5.83 5.92	350.00 355.00	3.23 3.20	0.00	3.23 3.20	4.28 4.24	0.00	4.28 4.24	4.33	0.00	4.33 4.29	4.32 4.29	0.00	4.32	4.35	0.00	4.35	4.40 4.36	0.00	4.40 4.36	4.50 4.47	0.00	4.50 4.47
6.00	360.00	3.16	0.00	3.16	4.24	0.00	4.24	4.29	0.00	4.29	4.25	0.00	4.29	4.31	0.00	4.31	4.33	0.00	4.33	4.47	0.00	4.43

DETENTION BASIN OUTLET STRUCTURE DESIGN 1HFD-Detention, Version 4.02 (February 2020 Project: The Hills at Lorson Ranch Basin ID: Pond C2.3 Estimated Estimated ZONE 1 Outlet Type Stage (ft) Volume (ac-ft) VOLUME EURV WQCV Zone 1 (WQCV) 2.40 0.294 Orifice Plate Zone 2 (FURV) 3.44 0.589 Rectangular Orifice 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 4.71 0.834 Weir&Pipe (Restrict) PERMAN Example Zone Configuration (Retention Pond) Total (all zones) 1.717 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A N/A ft² Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 6.806E-03 ft^2 Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet 2.44 Orifice Plate: Orifice Vertical Spacing 9.80 Elliptical Slot Centroid N/A feet inches ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 0.98 sq. inches (diameter = 1-1/8 inches) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 0.81 1.63 Orifice Area (sq. inches) 0.98 0.98 0.98 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 2.44 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.71 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice 3.64 N/A Vertical Orifice Centroid 0.25 N/A Vertical Orifice Height 6.00 N/A inches Vertical Orifice Width = 17.00 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 7.50 N/A Height of Grate Upper Edge, H_t N/A ft (relative to basin bottom at Stage = 0 ft) 7.50 Overflow Weir Front Edge Length 8.00 N/A feet Overflow Weir Slope Length 6.00 N/A Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 6.84 N/A Horiz. Length of Weir Sides : N/A Overflow Grate Open Area w/o Debris = 33.60 N/A 6.00 feet Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 16.80 N/A Debris Clogging % = N/A 50% User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A Outlet Orifice Area 4.91 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Pipe Diameter 30.00 N/A inches Outlet Orifice Centroid 1.25 N/A Restrictor Plate Height Above Pipe Invert = 30.00 inches Half-Central Angle of Restrictor Plate on Pipe = 3.14 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 9.33 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.17 feet Spillway Crest Length : 20.00 feet Stage at Top of Freeboard = 11.83 feet H:V Spillway End Slopes 4.00 Basin Area at Top of Freeboard 1.01 acres Freeboard above Max Water Surface = 1.33 Basin Volume at Top of Freeboard = 6.02 feet acre-ft micropool = 0 = 5744.17 Routed Hydrograph Results anhs and in the Inflow Hyp ns table (Columns W through AF erride the c es hv na new values 100 Year Design Storm Return Period WOCV 2 Year 5 Year 10 Year 25 Year 50 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 2.775 CUHP Runoff Volume (acre-ft) 0.294 0.883 0.924 1.299 1.627 2.016 User Override Inflow Hydrograph Volume (acre-ft) N/A N/A CUHP Predevelopment Peak Q (cfs) N/A N/A 2.2 5.0 7.2 11.8 14.6 18.5 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.31 Predevelopment Unit Peak Flow, g (cfs/acre) 0.14 0.45 0.74 0.91 N/A 1.16 N/A Peak Inflow Q (cfs) N/A N/A 13.9 20.7 40.7 76.0 85.9 95.3 0.1 4.0 64.9 Peak Outflow Q (cfs) 3.1 5.5 7.3 35.8 63.4 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 1.1 1.0 Structure Controlling Flow Plate Vertical Orifice 1 Vertical Orifice Vertical Orifice Vertical Orifice 1 Overflow Weir 1 Outlet Plate 1 Outlet Plate 1 Max Velocity through Grate 1 (fps) N/A N/A N/A N/A N/A 0.8 1.6 1.7 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A 43 Time to Drain 97% of Inflow Volume (hours) 30 46 39 35 28 22 17 Time to Drain 99% of Inflow Volume (hours) 40 50 53 52 51 48 45 42 Maximum Ponding Depth (ft) 2.40 3.44 3.94 5.10 7.02 8.09 8.44 8.79 0.65 0.71 0.82 0.89 0.91 0.93 5.014

Area at Maximum Ponding Depth (acres) 0.43 Maximum Volume Stored (acre-ft)

0.62

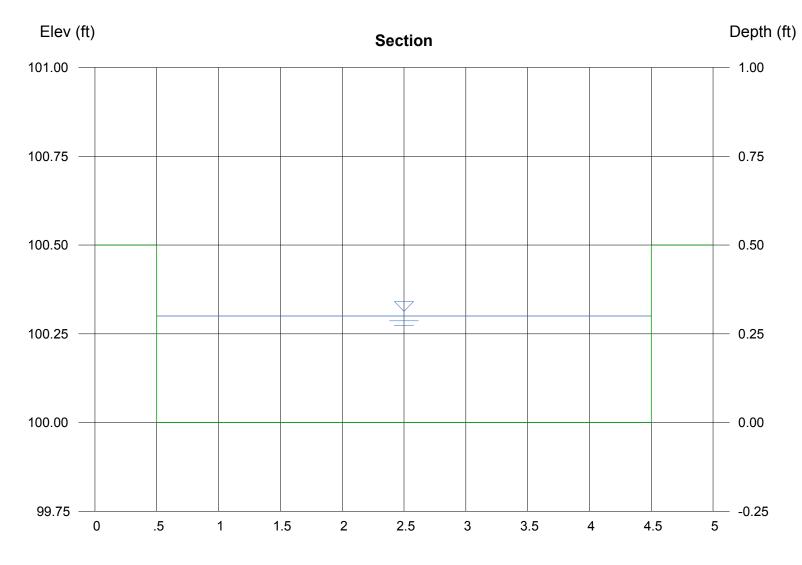
Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

Solicit Out/P Out/P USR USR <th< th=""><th></th><th>The user can or</th><th></th><th>lated inflow hyd</th><th>rographs from t</th><th>nis workbook wi</th><th>th inflow hydrog</th><th>raphs developed</th><th>l in a separate pro</th><th>ogram.</th><th></th></th<>		The user can or		lated inflow hyd	rographs from t	nis workbook wi	th inflow hydrog	raphs developed	l in a separate pro	ogram.	
5.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01		SOURCE	CUHP	CUHP	USER	USER	USER	USER	USER	USER	USER
5.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01	Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
0.0500 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.1500 0.00 0.00 1.4 0.15 0.27 2.22 2.22 3.16 0.2500 0.00 0.00 0.00 1.03 1.20 1.26 1.32 1.26 0.2500 0.00 0.00 1.31 1.523 1.20 1.32 1.02 0.300 0.00 0.00 1.31 1.53 1.20 1.35 1.26 1.33 1.42 0.400 0.00 0.00 1.31 1.23 1.26 1.33 1.26 1.14 0.400 0.00 0.00 1.01 1.29 2.16 2.37 2.36 1.14 </td <td>5.00 min</td> <td>0:00:00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	5.00 min	0:00:00							0.00	0.00	0.00
0.1000 0.00 0.44 0.19 0.28 1.18 0.21 0.21 0.21 0.21 0.21 0.22 0.30 0.2000 0.00 0.03 4.45 6.01 7.38 4.46 5.16 5.52 7.74 0.500 0.00 0.03 13.34 1.928 3.17 12.06 3.13 1.92 0.500 0.00 0.03 1.512 1.064 3.10 3.105 3.53 1.11/2 0.4600 0.00 0.03 1.512 1.064 3.10 9.00 6.16 1.11/2 0.4600 0.00 0.03 1.021 1.122 1.022 1.024 6.25 0.26 0.02 0.02 1.010 <td></td> <td>0:05:00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0:05:00									
0.1500 0.00 0.00 1.43 2.29 2.26 1.30 1.57.3 19.30 10.17 12.36 11.39 19.72 0.3500 0.00 0.00 1.134 18.46 25.10 33.00 38.51 45.07 76.77 0.5500 0.00 0.00 1.124 16.46 25.10 33.00 38.51 45.07 74.07 0.4500 0.00 0.00 1.124 16.44 24.64 33.70 39.00 6.65 111.42 0.45100 0.00 0.00 1.124 12.44 24.64 23.70 38.61 44.31 11.164 0.5500 0.00 0.00 1.124 12.42 2.42 2.59 7.58 1.44 98.81 13.31 13.01 </td <td></td> <td>0:10:00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0:10:00									
0.2500 0.00 0.01 15.32 19.27 12.06 13.73 17.67 0.5500 0.00 0.00 13.71 0.66 25.30 33.00 38.51 45.60 76.67 0.5500 0.00 0.00 13.72 19.24 12.44 33.00 38.51 45.60 74.67 0.5500 0.00 0.00 13.82 19.44 21.43 92.24 11.74 10.75 92.64 11.74 0.5500 0.00 0.00 11.43 15.22 12.7 72.38 81.74 95.68 11.44 90.61 11.517 11500 0.00 0.00 0.02 13.29 33.64 73.55 79.28 88.81 14.32 11500 0.00 0.00 0.01 12.44 46.69 0.29 79.88 11.31 12000 0.00 0.00 7.22 15.36 71.41 71.71 71.71 11.45 14.84 14.84 14.29 11.51 <		0:15:00									
0.3000 0.00 0.344 1986 25.30 26.30 26.45 37.40 0.4000 0.00 0.00 13.32 15.64 23.16 33.30 85.15 14.32 0.4500 0.00 0.00 13.32 15.64 13.32 33.00 85.15 14.14 0.5500 0.00 0.00 11.43 15.22 17.22 12.38 15.75 92.06 11.23 10500 0.00 0.00 11.43 15.32 13.34 13.35 19.44 99.05 16.03 11.35 10500 0.00 0.00 1.34 13.46 17.35 79.29 88.06 14.33 11000 0.00 0.00 1.34 49.09 95.07 71.48 49.70 11300 0.00 0.00 1.42 49.40 0.39 76.14 49.70 11300 0.00 0.00 7.44 14.20 72.0 72.48 49.77 11300 0.00		0:20:00	0.00	0.00	4.55	6.01	7.36	4.46	5.16	5.52	7.49
0.5500 0.00 0.00 1371 2066 2330 3330 3930 61.65 11142 0.5500 0.00 0.00 1338 1832 22.17 23.41 64.39 95.28 111.44 0.5500 0.00 0.00 11.43 1552 19.72 72.88 81.74 92.88 19.32 10030 0.00 0.00 11.43 1552 19.72 83.75 81.64 92.88 19.33 11000 0.00 0.00 14.41 12.54 83.84 71.79 76.99 85.80 14.429 11500 0.00 0.00 1.42 12.54 84.84 56.12 72.92 76.86 11.54 12500 0.00 0.00 7.42 16.46 73.83 84.40 11.54 12.54 13.54 15.44 13.56 11.64 13.56 13.64 14.53 67.72 73.58 84.40 13.54 14.52 14.62 14.53 11.54 <											
0-4000 0.00 0.00 13.90 13.94 12.266 33.70 39.00 64.55 111.74 0-5500 0.00 0.00 12.21 17.22 20.38 54.14 65.85 94.23 113.35 10500 0.00 0.00 11.92 152.9 19.72 72.38 63.75 92.68 19.53 11000 0.00 0.00 10.22 13.86 73.95 72.66 88.95 19.53 111000 0.00 0.00 0.64 13.36 18.48 71.79 75.89 88.95 19.53 111000 0.00 0.00 6.37 14.33 19.30 66.17 72.60 73.85 86.07 11500 0.00 0.00 6.27 15.83 15.03 3.03 45.90 67.7 73.85 86.07 11500 0.00 0.00 6.27 15.83 15.03 13.03 45.90 67.97 73.8 86.07 73.9 73.8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
9-45:00 0.00 0.00 11.04 11.04 9.2.1 11.21 11.22 12.21 12.21 12.22 22.28 64.18 65.85 94.43 11.045 0.55:00 0.00 0.00 11.40 15.92 15.27 72.28 61.75 92.64 13.33 1.50:00 0.00 0.00 14.20 13.89 33.46 73.99 72.86 85.80 144.33 1.15:00 0.00 0.60 6.44 13.53 38.48 73.99 75.84 85.80 144.33 1.15:00 0.00 0.00 6.44 13.34 15.34 15.34 13.36 1.25:00 0.00 0.00 7.22 16.66 33.28 66.19 7.29 7.88 86.40 1.35:00 0.00 0.00 6.62 15.23 12.30 12.46 33.34 45.90 66.94 7.21 1.50:00 0.00 6.51 13.541 13.84 13.91 13.91 13.91 </td <td></td>											
0.5000 0.00 0.00 11.21 17.22 19.28 94.14 10.85 94.43 10.14 1.0500 0.00 0.00 10.22 14.72 25.29 75.38 61.44 10.31 1.0500 0.00 0.00 10.20 11.83 31.46 77.35 73.66 88.98 11.03.91 1.1500 0.00 0.00 9.14 12.34 44.80 69.89 75.01 85.90 11.34 1.2500 0.00 0.00 8.70 14.33 39.80 66.19 72.59 78.86 11.54 1.2500 0.00 0.00 7.42 16.64 78.58 67.75 77.38 78.66 1.3500 0.00 0.00 6.57 15.50 25.33 22.14 30.83 62.77 71.1 1.9000 0.00 0.00 6.57 13.54 19.86 13.84 19.86 13.84 13.84 13.84 13.84 13.84 13.84 13.84											
05500 0.00 0.00 11.40 1522 17.22 72.28 61.74 92.68 123.17 10500 0.00 0.00 10.20 13.80 13.34 73.95 71.44 98.81 153.97 11500 0.00 0.00 61.4 12.34 140.69 66.39 72.61 83.97 113.46 11500 0.00 0.00 8.70 143.9 39.86 66.19 72.60 78.81 97.01 12500 0.00 0.00 8.70 143.9 39.86 66.19 72.60 78.81 97.01 13500 0.00 0.00 7.42 16.66 32.84 66.32 67.57 78.81 68.04 13500 0.00 0.00 6.67 15.80 25.03 28.14 45.90 65.94 72.12 15500 0.00 0.00 6.51 13.44 19.89 26.16 69.92 7.75 11090 0.00 0.00 5.54 <td></td>											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
1:0:00 0.00 9.44 13.36 38.48 71.27 75.91 85.90 144.43 1:20:00 0.00 0.00 8.70 14.39 39.80 66.19 72.61 72.95 71.81 92.70 1:20:00 0.00 0.00 7.82 15.74 15.84 56.19 72.73 73.85 86.40 1:30:00 0.00 0.00 7.42 16.66 29.93 91.11 65.18 70.77 1:40:00 0.00 0.00 6.97 15.80 25.01 23.81 64.04 77.71 1:50:00 0.00 0.67 15.73 12.80 13.81 64.07 70.19 1:55:00 0.00 0.61 12.55 17.42 17.72 22.01 30.81 62.47 68.56 2:00:00 0.00 5.98 3.72 12.30 12.05 15.31 64.14 45.11 62.77 2:10:00 0.00 5.98 3.72 12.32 12.46		1:00:00	0.00	0.00	10.72	14.72	26.29	75.98	81.44	90.81	143.17
11500 0.00 9.00 8.70 4139 388 66.19 72.69 72.64 72.64 72.64 72.64 72.64 72.64 72.64 72.64 72.64 72.64 72.64 72.64 72.65 72.71 1.3500 0.00 0.00 7.42 16.66 32.23 46.63 60.22 66.25 66.25 66.25 66.25 66.25 74.22 15.90 0.00 6.02 77.17 72.98 60.25 66.25 74.22 15.90 0.03 0.00 6.57 11.50 22.00 0.03 0.00 6.51 13.44 17.20 72.10 70.50 20.500 0.00 0.00 6.51 13.34 19.86 28.36 0.02 6.05 6.07 22.10 6.03 6.02 6.03 6.04 6.05 7.47 72.13 72.15 75.35 6.62 6.05 7.47 7.21 7.95 6.05 7.00 7.00 7.00 7.00 7.05 7.00											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
1.2500 0.00 8.25 15.74 35.84 56.12 70.22 76.81 99.70 1.3500 0.00 0.00 7.82 15.66 32.94 46.53 77.75 73.85 86.40 1.4500 0.00 0.00 6.97 15.80 25.01 20.14 45.90 85.94 72.12 1.4500 0.00 0.00 6.97 15.80 23.01 20.14 45.90 85.43 64.64 70.19 1.5500 0.00 0.00 6.51 13.44 11.70 72.11 47.85 60.62 60.57 60.83 60.22 67.66 2.0500 0.00 0.00 5.84 17.24 17.22 11.24 47.83 64.84 9.77 2.250 60.01 0.00 5.89 72.12 12.90 15.15 5.27 60.81 5.25 15.25 2.27 60.81 5.91 5.91 2.250 60.00 6.00 4.82 5.84 5.81 5.84 <											
13000 0.00 0.00 7.42 16.66 32.28 64.33 67.37 72.85 86.40 14000 0.00 0.00 7.12 16.58 72.12 32.88 60.26 62.7 77.1 15000 0.00 0.00 6.67 15.59 22.01 82.14 45.30 66.25 74.62 15500 0.00 0.00 6.671 14.74 21.70 22.10 30.63 6.479 68.56 2.0000 0.00 0.00 6.61 12.55 17.42 17.22 2.01 47.49 64.83 2.1000 0.00 0.00 5.58 6.72 12.80 12.50 15.15 2.5.7 60.81 2.1500 0.00 0.00 5.55 6.67 8.67 7.72 8.98 2.203 30.51 2.7500 0.00 0.00 4.52 5.47 6.51 7.77 8.98 2.203 30.53 2.7500 0.00 0.00											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
2-00-00 0.00 6.51 13.34 19.86 19.89 26.36 60.92 67.05 210:00 0.00 5.04 11.08 11.496 11.64 11.											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2:25:00	0.00	0.00		7.49					44.28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.00	0.00	5.05	6.67	8.05	7.87	8.98	12.20	30.53
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3:10:00	0.00	0.00	4.41	5.37	5.42	5.42	5.44	5.49	5.62
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.00	0.00	4.37	5.33	5.38	5.38	5.40	5.45	5.54
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		3:45:00									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.00	0.00	4.12		5.15				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4:20:00									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4:40:00	0.00	0.00	3.76	4.76	4.81	4.81	4.83	4.88	4.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5:00:00	0.00	0.00	3.61	4.63	4.67	4.67	4.70	4.75	4.85
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
5:30:00 0.00 0.00 3.39 4.42 4.47 4.46 4.49 4.54 4.64 5:35:00 0.00 0.00 3.35 4.38 4.43 4.43 4.45 4.50 4.61 5:40:00 0.00 0.00 3.31 4.35 4.40 4.39 4.42 4.47 4.57 5:45:00 0.00 0.00 3.27 4.31 4.36 4.38 4.43 4.54 5:50:00 0.00 0.00 3.27 4.31 4.36 4.38 4.43 4.54 5:50:00 0.00 0.00 3.22 4.28 4.33 4.32 4.30 4.50 5:55:00 0.00 0.00 3.20 4.24 4.29 4.29 4.31 4.36 4.47		5:20:00	0.00	0.00	3.46	4.49	4.54	4.53	4.56	4.61	4.71
5:35:00 0.00 0.00 3.35 4.38 4.43 4.43 4.45 4.50 4.61 5:40:00 0.00 0.00 3.31 4.35 4.40 4.39 4.42 4.47 4.57 5:45:00 0.00 0.00 3.27 4.31 4.36 4.38 4.43 4.43 4.54 5:50:00 0.00 0.00 3.27 4.28 4.33 4.32 4.38 4.43 4.54 5:50:00 0.00 0.00 3.20 4.24 4.29 4.29 4.31 4.36 4.47 5:55:00 0.00 0.00 3.20 4.24 4.29 4.29 4.31 4.36 4.47											
5:40:00 0.00 0.00 3.31 4.35 4.40 4.39 4.42 4.47 4.57 5:45:00 0.00 0.00 3.27 4.31 4.36 4.36 4.38 4.43 4.54 5:50:00 0.00 0.00 3.23 4.28 4.33 4.32 4.35 4.40 4.50 5:55:00 0.00 0.00 3.20 4.24 4.29 4.29 4.31 4.36 4.47											
5:50:00 0.00 0.00 3.23 4.28 4.33 4.32 4.35 4.40 4.50 5:55:00 0.00 0.00 3.20 4.24 4.29 4.29 4.31 4.36 4.47		5:40:00	0.00	0.00	3.31	4.35	4.40	4.39	4.42	4.47	4.57
5:55:00 0.00 0.00 3.20 4.24 4.29 4.29 4.31 4.36 4.47											

MHFD-Detention, Version 4.02 (February 2020) Summary Stage-Area-Volume-Discharge Relationships

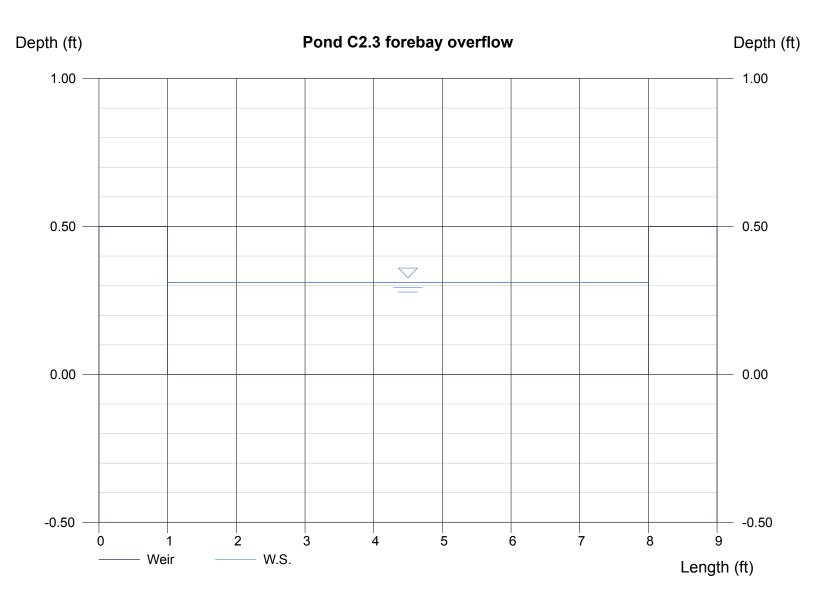
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.


Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
micropool	0.00	40	0.001	0	0.000	0.00	For best results, include the
surcharge	0.33	50	0.001	15	0.000	0.02	stages of all grade slope
5745	0.83	412	0.009	130	0.003	0.03	changes (e.g. ISV and Floor)
5746	1.83	9,243	0.212	4,958	0.114	0.09	from the S-A-V table on Sheet 'Basin'.
5747	2.83	25,797	0.592	22,478	0.516	1.23	Sneet Basin'.
5748	3.83	28,015	0.643	49,384	1.134	3.81	Also include the inverts of all
5749	4.83	30,331	0.696	78,557	1.803	5.19	outlets (e.g. vertical orifice,
5750	5.83	32,748	0.752	110,096	2.527	6.26	overflow grate, and spillway,
5751	6.83	35,264	0.810	144,102	3.308	7.18	where applicable).
5752	7.83	37,880	0.870	180,674	4.148	19.44	
5753	8.83	40,817	0.937	220,023	5.051	65.07	
							-
	1						-
							-
							1
	1						1
]
							4
	+					ļ	4
							4
							1
							4

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company: Date:	Core Engineering Group May 3, 2020	
Project:	The Hills at Lorson Ranch	
Location:	Pond C2.3	
1. Basin Storage V	/olumo	
-		
	erviousness of Tributary Area, I _a	l _a = 55.0 %
B) Tributary Are	a's Imperviousness Ratio (i = l _a / 100)	i = 0.550
C) Contributing	Watershed Area	Area = 16.000 ac
	reds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in
E) Design Cond		Choose One
	V when also designing for flood control)	Water Quality Capture Volume (WQCV)
		O Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time I.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.294 ac-ft
	neds Outside of the Denver Region,	V _{DESIGN OTHER} =ac-ft
	ty Capture Volume (WQCV) Design Volume $_{x} = (d_{e}^{*}(V_{DESIGN}/0.43))$	
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} ≡ac-ft
I) NRCS Hydrol	logic Soil Groups of Tributary Watershed	
	ge of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	HSG _A = % HSG _B = %
	age of Watershed consisting of Type C/D Soils	HSG _{CD} = %
	In Runoff Volume (EURV) Design Volume	
For HSG B:	$: EURV_A = 1.68 * i^{1.28}$ $: EURV_B = 1.36 * i^{1.08}$	EURV _{DESIGN} =ac.ft
	/D: EURV _{C/D} = 1.20 * i ^{1.08}	
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-ft
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1
3. Basin Side Slop	es	
A) Basin Maxim	num Side Slopes	Z = 3.00 ft / ft
(Horizontal o	distance per unit vertical, 4:1 or flatter preferred)	DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4. Inlet		
A) Describe me	eans of providing energy dissipation at concentrated	
inflow locatio		
5. Forebay		
,		V = 0.000 = 3 = 0
A) Minimum Fo (V _{FMIN}	= <u>3%</u> of the WQCV)	V _{FMIN} = 0.009 ac-ft
B) Actual Foreb	bay Volume	V _F = 0.020 ac-ft
C) Forebay Dep (D _F		$D_F = 24.0$ in DF > DF MAXIMUM
D) Forebay Disc		
	-	
	ed 100-year Peak Discharge	Q ₁₀₀ = 96.00 cfs
ii) Forebay (Q _F = 0.02	Discharge Design Flow 2 * Q ₁₀₀)	Q _F = <u>1.92</u> cfs
E) Forebay Disc	sharge Design	Choose One
		Berm With Pipe Flow too small for berm w/ pipe Wall with Rect. Notch
		O Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangular	Notch Width	Calculated W _N = 7.2 in

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group May 3, 2020 The Hills at Lorson Ranch Pond C2.3	Sheet 2 of 3
 6. Trickle Channel A) Type of Trick F) Slope of Tricl 		Choose One Concrete Soft Bottom S = 0.0050 ft / ft
	utlet Structure ropool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{50}_{O} \text{ sq ft}$ $\underbrace{Choose One}_{Onfice Plate}_{O Other (Describe):}$
D) Smallest Din (Use UD-Detent E) Total Outlet A		D _{orffice} = <u>1.48</u> inches A _{ot} = <u>6.63</u> square inches
(Minimum rec B) Minimum Initia (Minimum volu	Volume al Surcharge Volume commended depth is 4 inches) al Surcharge Volume ume of 0.3% of the WQCV) rge Provided Above Micropool	$D_{is} =$ 4 in $V_{is} =$ 38 cu ft $V_{s} =$ 16.7 cu ft
 B) Type of Screet in the USDCM, it total screen are C) Ratio of Total D) Total Water C E) Depth of Desi (Based on d) 	y Screen Open Area: A _t = A _{ct} * 38.5*(e ^{-0.065D}) en (If specifying an alternative to the materials recommended ndicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): y I Open Area to Total Area (only for type 'Other') Quality Screen Area (based on screen type) ign Volume (EURV or WQCV) lesign concept chosen under 1E) ter Quality Screen (H _{TR})	$A_t =$ 222 square inches Other (Please describe below)
G) Width of Wat	ter Quality Screen (H _{τπ}) er Quality Screen Opening (W _{opening}) inches is recommended)	H _{TR} = <u>67</u> inches W _{opening} = <u>12.0</u> inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

pond C2.3 low flow channel (2 x forebay release = 3.84cfs)


Rectangular		Highlighted	
Botom Width (ft)	= 4.00	Depth (ft)	= 0.30
Total Depth (ft)	= 0.50	Q (cfs)	= 3.840
		Area (sqft)	= 1.20
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.20
Slope (%)	= 0.50	Wetted Perim (ft)	= 4.60
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.31
		Top Width (ft)	= 4.00
Calculations		EGL (ft)	= 0.46
Compute by:	Known Q		
Known Q (cfs)	= 3.84		

Reach (ft)

Pond C2.3 forebay overflow

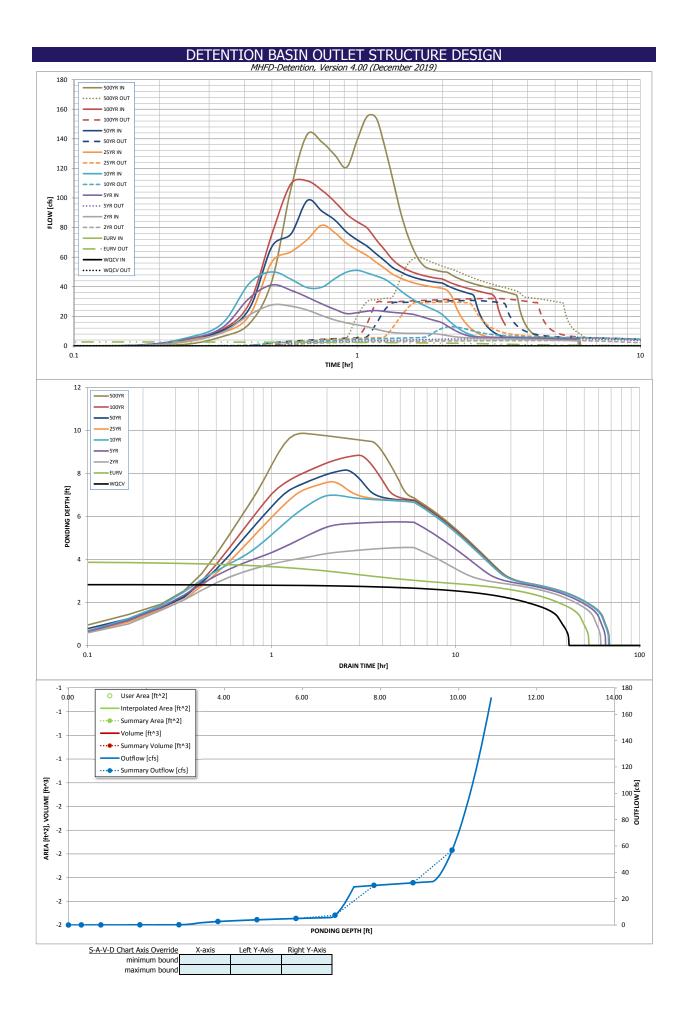
Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.31
Bottom Length (ft)	= 7.00	Q (cfs)	= 4.040
Total Depth (ft)	= 0.50	Area (sqft)	= 2.17
		Velocity (ft/s)	= 1.86
Calculations		Top Width (ft)	= 7.00
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 4.04		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

		DET		MHFD-L	Detention, Version	4.02 (Feb.	ruary 202
Project: Basin ID:	The Hills at Pond C3	Lorson Ran	ich				
ZONE 3	2 ONE 1	(
100-YR VOLUME, EURY WOCV		T			micropool = 0 = 52	755.17	
± ± +		100-YEA ORIFICE	NR .		Depth Increment =	0.20	ft
	1 AND 2						Optional
POOL Example Zon	e Configura	ation (Reten	ition Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)
Watershed Information		-			Top of Micropool		0.00
Selected BMP Type =	EDB	-			5755.5		0.33
Watershed Area = Watershed Length =	26.00 1,800	acres			5756 5757	-	0.83
Watershed Length to Centroid =	600	ft			5758		2.83
Watershed Slope =	0.040	ft/ft			5759		3.83
Watershed Imperviousness =	52.00%	percent			5760		4.83
Percentage Hydrologic Soil Group A = Percentage Hydrologic Soil Group B =	0.0%	percent percent			5761 5762		5.83 6.83
Percentage Hydrologic Soil Groups C/D =	80.0%	percent			5763		7.83
Target WQCV Drain Time =	40.0	hours			5764		8.83
Location for 1-hr Rainfall Depths =	User Input	_			5765		9.83
After providing required inputs above in					5766		10.83
depths, click 'Run CUHP' to generate run the embedded Colorado Urban Hydro			Optional Use	or Overrides			
Water Quality Capture Volume (WQCV) =	0.459	acre-feet	, particular date	acre-feet			
Excess Urban Runoff Volume (EURV) =	1.316	acre-feet		acre-feet			
2-yr Runoff Volume (P1 = 1.19 in.) =	1.426	acre-feet	1.19	inches			
5-yr Runoff Volume (P1 = 1.5 in.) = 10-yr Runoff Volume (P1 = 1.75 in.) =	2.032	acre-feet acre-feet	1.50 1.75	inches inches			
25-yr Runoff Volume (P1 = 2 in.) =	3.174	acre-feet	2.00	inches			
50-yr Runoff Volume (P1 = 2.25 in.) =	3.723	acre-feet	2.25	inches			
100-yr Runoff Volume (P1 = 2.52 in.) =	4.395	acre-feet	2.52	inches			
500-yr Runoff Volume (P1 = 3.14 in.) = Approximate 2-yr Detention Volume =	5.785	acre-feet		inches			
Approximate 5-yr Detention Volume =	1.128	acre-feet acre-feet					
Approximate 10-yr Detention Volume =	1.925	acre-feet					
Approximate 25-yr Detention Volume =	2.083	acre-feet					
Approximate 50-yr Detention Volume =	2.160	acre-feet					
Approximate 100-yr Detention Volume =	2.433	acre-feet					
Define Zones and Basin Geometry							
Zone 1 Volume (WQCV) =	0.459	acre-feet					
Zone 2 Volume (EURV - Zone 1) =	0.858	acre-feet					
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) = Total Detention Basin Volume =	1.346 2.663	acre-feet acre-feet				-	
Initial Surcharge Volume (ISV) =	2.003 user	ft ³					
Initial Surcharge Depth (ISD) =	user	ft					
Total Available Detention Depth $(H_{total}) =$	user	ft					
Depth of Trickle Channel (H _{TC}) =	user	ft #/#					
Slope of Trickle Channel (S_{TC}) = Slopes of Main Basin Sides (S_{main}) =	user	ft/ft H:V					
Basin Length-to-Width Ratio (R _{L/W}) =	user	1					
	·	-					
Initial Surcharge Area (A _{ISV}) =		ft ²					
Surcharge Volume Length $(L_{ISV}) =$ Surcharge Volume Width $(W_{ISV}) =$	user	ft ft					
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft					
Length of Basin Floor $(L_{FLOOR}) =$	user	ft					
Width of Basin Floor (W _{FLOOR}) =	user	ft					
Area of Basin Floor (A _{FLOOR}) = Volume of Basin Floor (V _{FLOOR}) =	user	ft ² ft ³					
Volume of Basin Floor (V_{FLOOR}) = Depth of Main Basin (H_{MAIN}) =	user	π- ft				-	
Length of Main Basin $(L_{MAIN}) =$	user	ft					
Width of Main Basin (W_{MAIN}) =	user	ft					
Area of Main Basin $(A_{MAIN}) =$ Volume of Main Basin $(V_{MAIN}) =$	user	ft ² ft ³					
Calculated Total Basin Volume (V _{MAIN}) =	user user	acre-feet				-	
('toal)							

Depth Increment =	0.20	ft				Ontional			
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00				40	0.001		
5755.5		0.33	-		-	50	0.001	15	0.000
5756		0.83				200	0.005	280	0.006
5757		1.83	-			1,969	0.045	3,687	0.085
5758		2.83			-	15,395	0.353	19,909	0.457
5759		3.83	-			35,435	0.813	54,260	1.246
5760		4.83			-	46,802	1.074	100,093	2.298
5761		5.83			-	50,425	1.158	150,528	3.456
5762		6.83			-	54,122	1.242	204,661	4.698
5763		7.83	-			57,909	1.329	262,582	6.028
5764		8.83			-	61,796	1.419	324,293	7.445
5765		9.83	-			65,000	1.492	389,393	8.939
5766		10.83	-			69,000	1.584		
			-						
			-						
					-				
					-				
			-						
			ł						
			-						
			ł						
			-						
			I						
			-						
			-						
					-				
					-				
					-				
			-						
			-						
			-		-				
			-						
					-				
			-						
			-						
								1	
			-						
								1	
								1	
					-			1	
			-						
						-			
			-						
								<u> </u>	
			-		-				
			-						
			-						
			-				-		_
					-				
			1 1		-				
			-		-		-		_
			1 1						
	-		-		-		-		
						-			
			-					-	
			-						
								<u> </u>	
			-		-				
								-	-
			-			-			
						1		1	
			-						
					-				

		2 Year	CUHP	2yr Combined	5 Year	CUHP	5yr Combined	10 Year	CUHP	10yr Combined	25 Year	CUHP	25yr Combined	50 Year	CUHP	50yr Combined	100 Year
Time	Time	Pond C4 Outflow2	2 Year [cfs]	Hydrograph	Pond C4 Outflow2	5 Year [cfs]	Hydrograph	Pond C4 Outflow2	10 Year [cfs]	Hydrograph	Pond C4 Outflow2	25 Year [cfs]	Hydrograph	Pond C4 Outflow2		Hydrograph	Pond C4 Outflow
[hr] 0.00	[min] 0.00	- [cfs] 0.00	0.00	0.00	- [cfs] 0.00	0.00	0.00	- [cfs] 0.00	0.00	0.00	- [cfs] 0.00	0.00	0.00	- [cfs] 0.00	0.00	0.00	- [cfs] 0.00
0.08	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.00	0.14	0.06
0.17	10.00 15.00	0.25	0.00	0.25	0.27	0.00 4.14	0.27 4.48	0.27	0.00 5.13	0.27 5.48	0.26	0.00 3.45	0.26	0.27	0.29 4.27	0.56 4.60	0.27
0.33	20.00	0.43	8.76	9.19	0.51	11.77	12.27	0.55	14.53	15.08	0.44	8.43	8.86	0.47	9.78	10.25	0.49
0.42	25.00	0.58	20.44	21.02	0.78	31.71	32.49	2.08	40.41	42.49	0.64	20.03	20.67	0.97	24.46	25.43	1.54
0.50	30.00 35.00	0.98	26.78 24.15	27.76 26.90	3.25 4.32	37.99 33.33	41.24 37.65	4.16 5.15	45.89 39.98	50.04 45.13	3.79 5.41	53.09 58.17	56.88 63.58	4.50 7.69	62.73 67.93	67.24 75.61	5.01 28.85
0.58	40.00	3.53	20.70	20.90	4.97	27.98	32.95	5.79	33.64	39.43	17.83	54.13	71.97	35.35	62.96	98.31	37.19
0.75	45.00	4.00	16.52	20.53	5.41	22.99	28.40	11.61	28.10	39.71	35.22	46.38	81.60	37.23	53.91	91.14	39.38
0.83	50.00 55.00	4.32 4.55	13.25 11.05	17.57	5.73 5.99	19.04 15.88	24.77 21.87	22.62 30.27	22.85 19.61	45.47 49.88	36.40 37.18	40.15 32.28	76.55 69.46	38.54 39.42	46.60 37.57	85.14 76.99	40.94 42.07
0.92	60.00	4.55	9.54	15.61 14.26	8.92	13.57	21.87	30.27	19.61	49.88	37.18	27.13	69.46	40.00	31.66	76.99 71.67	42.07
1.08	65.00	4.84	8.16	13.01	12.03	11.50	23.53	34.38	14.96	49.34	37.95	23.19	61.14	40.34	27.12	67.46	43.42
1.17	70.00	4.93	6.38	11.31	14.28	9.65	23.92	34.38	12.91	47.29	38.01	18.55	56.56	40.46	21.79	62.25	43.66
1.25 1.33	75.00 80.00	4.99 5.05	4.93 4.06	9.92 9.11	15.63 16.29	7.69 6.44	23.32 22.73	33.90 32.02	11.26 9.60	45.15 41.62	37.94 37.78	14.54 10.73	52.49 48.51	40.45 40.33	17.18 12.68	57.62 53.02	43.69 43.58
1.33	80.00	5.05	3.65	8.75	16.29	5.79	22.73	29.59	9.60	41.62 37.66	37.78	8.55	48.51 46.10	40.33	12.00	53.02	43.58
1.50	90.00	5.14	3.42	8.56	16.52	5.37	21.89	27.15	7.00	34.15	37.27	6.82	44.09	39.90	8.07	47.97	43.11
1.58	95.00	5.18	3.31 3.23	8.50	16.23	5.10	21.33	24.92	6.25 5.73	31.18	36.95	5.71 4.95	42.66	39.62	6.76 5.86	46.37	42.81
1.67 1.75	100.00 105.00	5.22 5.26	3.23 3.16	8.45 8.42	15.62 14.88	4.46 3.98	20.08 18.86	23.01 21.41	5.73	28.74 26.78	36.61 36.25	4.95	41.56 40.74	39.31 38.98	5.86	45.16 44.28	42.49 42.15
1.83	110.00	5.29	3.12	8.41	14.13	3.64	17.77	20.01	5.11	25.13	35.88	4.15	40.04	38.65	4.89	43.55	41.81
1.92	115.00	5.31	2.67	7.99	13.40	3.38	16.78	18.65	4.73	23.39	35.51	3.94	39.45	38.31	4.64	42.95	41.46
2.00	120.00 125.00	5.32 5.31	2.34 1.68	7.66	12.46 11.22	3.10 2.22	15.56 13.44	16.98 14.97	4.16 2.94	21.15 17.91	35.11 34.65	3.82 2.72	38.93 37.37	37.94 37.51	4.49 3.20	42.43 40.70	41.08 40.66
2.17	130.00	5.29	1.17	6.46	9.94	1.54	11.48	12.97	2.04	15.01	30.93	1.90	32.82	37.03	2.23	39.26	40.20
2.25	135.00	5.27	0.80	6.07	8.76	1.05	9.82	11.16	1.41	12.57	23.68	1.31	24.99	36.52	1.54	38.07	39.71
2.33 2.42	140.00 145.00	5.24 5.20	0.54 0.35	5.78	7.76 6.95	0.69 0.45	8.45 7.39	9.61 8.35	0.95 0.62	10.56 8.97	18.52 14.79	0.89 0.59	19.41 15.38	35.99 35.44	1.04 0.69	37.04 36.13	39.20 38.68
2.42	145.00	5.16	0.22	5.38	6.34	0.29	6.63	7.34	0.40	7.74	14.79	0.39	12.43	34.88	0.46	35.34	38.14
2.58	155.00	5.13	0.12	5.24	5.98	0.17	6.15	6.58	0.23	6.81	10.01	0.23	10.24	33.53	0.27	33.80	37.60
2.67	160.00	5.09	0.05	5.14	5.92	0.08	6.01	6.09	0.10	6.19	8.50	0.11	8.61	24.68	0.13	24.82	37.04
2.75 2.83	165.00 170.00	5.05 5.01	0.02	5.07	5.89 5.85	0.03	5.91 5.85	5.94 5.90	0.03	5.97 5.90	7.39 6.61	0.04 0.00	7.43	18.81 14.78	0.04 0.00	18.85 14.78	36.49 35.92
2.92	175.00	4.97	0.00	4.97	5.81	0.00	5.81	5.86	0.00	5.86	6.10	0.00	6.10	11.94	0.00	11.94	35.35
3.00	180.00	4.93	0.00	4.93	5.77	0.00	5.77	5.83	0.00	5.83	5.94	0.00	5.94	9.90	0.00	9.90	34.78
3.08 3.17	185.00 190.00	4.89 4.85	0.00	4.89 4.85	5.74 5.70	0.00	5.74 5.70	5.79	0.00	5.79 5.75	5.90 5.87	0.00	5.90 5.87	8.42 7.33	0.00	8.42 7.33	31.78 23.53
3.25	195.00	4.81	0.00	4.81	5.66	0.00	5.66	5.71	0.00	5.71	5.83	0.00	5.83	6.57	0.00	6.57	18.03
3.33	200.00	4.77	0.00	4.77	5.62	0.00	5.62	5.67	0.00	5.67	5.79	0.00	5.79	6.08	0.00	6.08	14.24
3.42 3.50	205.00 210.00	4.73 4.69	0.00	4.73 4.69	5.58 5.54	0.00	5.58 5.54	5.64 5.60	0.00	5.64	5.75 5.71	0.00	5.75 5.71	5.94 5.90	0.00	5.94 5.90	9.62
3.58	210.00	4.65	0.00	4.65	5.51	0.00	5.54	5.56	0.00	5.56	5.68	0.00	5.68	5.86	0.00	5.86	8.21
3.67	220.00	4.61	0.00	4.61	5.47	0.00	5.47	5.52	0.00	5.52	5.64	0.00	5.64	5.83	0.00	5.83	7.19
3.75	225.00	4.57	0.00	4.57	5.43	0.00	5.43	5.48	0.00	5.48	5.60	0.00	5.60	5.79	0.00	5.79	6.47
3.83 3.92	230.00 235.00	4.53 4.49	0.00	4.53 4.49	5.39 5.35	0.00	5.39 5.35	5.45 5.41	0.00	5.45 5.41	5.56 5.52	0.00	5.56 5.52	5.75 5.71	0.00	5.75 5.71	6.02 5.93
4.00	240.00	4.45	0.00	4.45	5.31	0.00	5.31	5.37	0.00	5.37	5.48	0.00	5.48	5.67	0.00	5.67	5.89
4.08	245.00	4.41	0.00	4.41	5.27	0.00	5.27	5.33	0.00	5.33	5.45	0.00	5.45	5.64	0.00	5.64	5.86
4.17 4.25	250.00 255.00	4.37 4.33	0.00	4.37 4.33	5.24 5.20	0.00	5.24 5.20	5.29 5.25	0.00	5.29 5.25	5.41 5.37	0.00	5.41 5.37	5.60 5.56	0.00	5.60 5.56	5.82 5.78
4.33	260.00	4.29	0.00	4.29	5.16	0.00	5.16	5.21	0.00	5.21	5.33	0.00	5.33	5.52	0.00	5.52	5.74
4.42	265.00	4.25	0.00	4.25	5.12	0.00	5.12	5.17	0.00	5.17	5.29	0.00	5.29	5.48	0.00	5.48	5.71
4.50 4.58	270.00 275.00	4.21 4.16	0.00	4.21 4.16	5.08 5.04	0.00	5.08 5.04	5.13 5.10	0.00	5.13 5.10	5.25 5.21	0.00	5.25 5.21	5.44 5.41	0.00	5.44 5.41	5.67 5.63
4.58	275.00	4.16	0.00	4.16	5.04	0.00	5.04	5.06	0.00	5.06	5.21	0.00	5.21	5.37	0.00	5.41	5.63
4.75	285.00	4.08	0.00	4.08	4.96	0.00	4.96	5.02	0.00	5.02	5.14	0.00	5.14	5.33	0.00	5.33	5.55
4.83 4.92	290.00 295.00	4.04 4.00	0.00	4.04	4.92 4.88	0.00	4.92 4.88	4.98 4.94	0.00	4.98	5.10 5.06	0.00 0.00	5.10 5.06	5.29 5.25	0.00	5.29 5.25	5.51 5.48
4.92 5.00	295.00	4.00	0.00	4.00 3.96	4.88	0.00	4.88	4.94	0.00	4.94 4.90	5.06	0.00	5.06	5.25	0.00	5.25	5.48
5.08	305.00	3.92	0.00	3.92	4.80	0.00	4.80	4.86	0.00	4.86	4.98	0.00	4.98	5.17	0.00	5.17	5.40
5.17	310.00	3.87	0.00	3.87	4.76	0.00	4.76	4.82	0.00	4.82	4.94	0.00	4.94	5.13	0.00	5.13	5.36
5.25 5.33	315.00 320.00	3.83 3.79	0.00	3.83	4.72 4.68	0.00	4.72 4.68	4.78 4.74	0.00	4.78 4.74	4.90 4.86	0.00 0.00	4.90 4.86	5.09 5.06	0.00	5.09 5.06	5.32 5.28
5.42	325.00	3.79	0.00	3.75	4.64	0.00	4.64	4.70	0.00	4.74	4.82	0.00	4.82	5.02	0.00	5.00	5.24
5.50	330.00	3.71	0.00	3.71	4.60	0.00	4.60	4.66	0.00	4.66	4.78	0.00	4.78	4.98	0.00	4.98	5.21
5.58 5.67	335.00 340.00	3.66 3.62	0.00	3.66 3.62	4.56 4.52	0.00	4.56	4.62	0.00	4.62	4.74 4.70	0.00	4.74	4.94 4.90	0.00	4.94 4.90	5.17
5.67	340.00	3.62	0.00	3.62 3.58	4.52	0.00	4.52 4.48	4.58	0.00	4.58 4.54	4.70	0.00	4.70 4.66	4.90	0.00	4.90	5.13
5.83	350.00	3.54	0.00	3.54	4.44	0.00	4.44	4.50	0.00	4.50	4.62	0.00	4.62	4.82	0.00	4.82	5.05
5.92	355.00	3.49	0.00	3.49	4.40	0.00	4.40	4.46	0.00	4.46	4.58	0.00	4.58	4.78	0.00	4.78	5.01
6.00	360.00	3.45	0.00	3.45	4.36	0.00	4.36	4.42	0.00	4.42	4.54	0.00	4.54	4.74	0.00	4.74	4.97


Pond C3 Developed Inflow Hydrograph --- Pond C4 Outflow + C10 Basin

	100yr			500yr
CUHP	Combined	500 Year	CUHP	Combined
0 Year [cfs]	Hydrograph	Pond C4 Outflow2 - [cfs]	500 Year [cfs]	Hydrograph
0.00	0.00	0.00	0.00	0.00
0.00	0.06	0.21	0.00	0.21
0.03 4.20	0.30 4.53	0.29	0.92	1.22 6.29
10.52	4.53	0.36	14.59	15.16
27.48	29.01	3.58	40.47	44.05
70.67	75.68	12.72	93.48	106.21
80.78	109.63	38.01	105.06	143.07
74.38	111.57	41.43	96.41	137.84
65.87	105.25	43.87	85.20	129.07
56.56 47.10	97.50 89.17	47.60 78.17	73.08 61.08	120.67 139.25
41.02	83.92	101.80	53.26	155.06
36.40	79.83	106.81	47.29	154.10
28.19	71.84	98.16	36.80	134.96
21.30	64.99	85.19	28.04	113.23
14.84 10.85	58.41 54.22	72.22 61.53	19.68 14.47	91.90 76.00
8.38	51.50	53.52	11.22	64.74
6.83	49.64	48.01	9.15	57.15
5.75	48.24	45.35	7.71	53.07
5.04	47.19	45.07	6.76	51.84
4.54	46.35	44.79	6.09	50.88
4.25 4.16	45.71	44.49	5.70 5.56	50.20
2.97	45.24 43.63	44.17 43.79	3.97	49.73 47.76
2.09	42.29	43.37	2.79	46.16
1.46	41.17	42.92	1.94	44.86
0.98	40.19	42.44	1.31	43.75
0.65	39.33	41.95	0.86	42.81
0.43	38.57	41.45	0.57	42.02
0.23	37.85 37.17	40.93 40.41	0.16	41.27 40.57
0.04	36.53	39.88	0.05	39.93
0.00	35.92	39.34	0.00	39.34
0.00	35.35	38.81	0.00	38.81
0.00	34.78	38.26	0.00	38.26
0.00	31.78	37.72	0.00	37.72
0.00	23.53 18.03	37.16 36.61	0.00	37.16 36.61
0.00	14.24	36.04	0.00	36.04
0.00	11.55	35.47	0.00	35.47
0.00	9.62	34.90	0.00	34.90
0.00	8.21	33.82	0.00	33.82
0.00	7.19 6.47	24.86 18.93	0.00	24.86 18.93
0.00	6.02	14.87	0.00	14.87
0.00	5.93	12.00	0.00	12.00
0.00	5.89	9.95	0.00	9.95
0.00	5.86	8.45	0.00	8.45
0.00	5.82	7.36	0.00	7.36
0.00	5.78 5.74	6.58 6.09	0.00	6.58 6.09
0.00	5.71	5.94	0.00	5.94
0.00	5.67	5.90	0.00	5.90
0.00	5.63	5.86	0.00	5.86
0.00	5.59	5.83	0.00	5.83
0.00	5.55	5.79	0.00	5.79
0.00	5.51 5.48	5.75 5.71	0.00	5.75 5.71
0.00	5.44	5.67	0.00	5.67
0.00	5.40	5.64	0.00	5.64
0.00	5.36	5.60	0.00	5.60
0.00	5.32	5.56	0.00	5.56
0.00	5.28	5.52	0.00	5.52
0.00	5.24 5.21	5.48 5.44	0.00	5.48 5.44
0.00	5.17	5.41	0.00	5.44
0.00	5.13	5.37	0.00	5.37
0.00	5.09	5.33	0.00	5.33
0.00	5.05	5.29	0.00	5.29
0.00	5.01	5.25	0.00	5.25
0.00	4.97	5.21	0.00	5.21

DETENTION BASIN OUTLET STRUCTURE DESIGN 1HFD-Detention, Version 4.02 (February 2020 Project: The Hills at Lorson Ranch Basin ID: Pond C3 Estimated Estimated ZONE 1 Outlet Type Stage (ft) Volume (ac-ft) VOLUME EURV WQCV Zone 1 (WQCV) 2.84 0.459 Orifice Plate Zone 2 (FURV) 3.91 0.858 Rectangular Orifice 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 5.16 1.346 Weir&Pipe (Restrict) PERMAN Example Zone Configuration (Retention Pond) Total (all zones) 2.663 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) N/A ft² Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 9.792E-03 ft^2 Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet 2.84 Orifice Plate: Orifice Vertical Spacing 11.40 inches Elliptical Slot Centroid N/A feet ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 1.41 sq. inches (diameter = 1-5/16 inches) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 0.95 1.89 Orifice Area (sq. inches) 1.41 1.41 1.41 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 2.84 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.58 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice 3.91 N/A Vertical Orifice Centroid 0.25 N/A Vertical Orifice Height 6.00 N/A inches Vertical Orifice Width = 14.00 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 6.73 N/A Height of Grate Upper Edge, H_t N/A ft (relative to basin bottom at Stage = 0 ft) 6.73 Overflow Weir Front Edge Length 6.00 N/A feet Overflow Weir Slope Length 6.00 N/A Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 10.94 N/A Horiz. Length of Weir Sides : N/A Overflow Grate Open Area w/o Debris = 25.20 N/A 6.00 feet Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 12.60 N/A Debris Clogging % = N/A 50% User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.30 N/A Outlet Orifice Area 2.30 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Pipe Diameter 24.00 N/A inches Outlet Orifice Centroid 0.77 N/A Restrictor Plate Height Above Pipe Invert = 16.50 inches Half-Central Angle of Restrictor Plate on Pipe = 1.96 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 9.33 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.32 feet Spillway Crest Length : 20.00 feet Stage at Top of Freeboard = 12.33 feet H:V Spillway End Slopes 4.00 Basin Area at Top of Freeboard 0.00 acres Freeboard above Max Water Surface = 1.68 Basin Volume at Top of Freeboard = **#VALUE!** feet acre-ft micropool = 0 = 5755.17 Routed Hydrograph Results anhs and in the Inflow Hyp ns table (Columns W through AF erride the c es hv na new values 100 Year Design Storm Return Period WOCV 2 Year 5 Year 10 Year 25 Year 50 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.723 4.395 CUHP Runoff Volume (acre-ft) 0.459 1.316 1.426 2.032 2.557 3.174 User Override Inflow Hydrograph Volume (acre-ft) N/A N/A 14.61 CUHP Predevelopment Peak Q (cfs) N/A N/A 5.6 12.2 17.2 27.0 33.3 41.0 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.22 0.47 1.58 Predevelopment Unit Peak Flow, g (cfs/acre) 0.66 N/A 1.04 1.28 N/A Peak Inflow Q (cfs) N/A N/A 27.8 41.2 51.1 81.6 98.3 111.6 4.9 30.8 Peak Outflow Q (cfs) 0.2 2.8 3.7 13.0 29.6 32.1 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.4 0.8 0.9 0.8 1.1 Structure Controlling Flow Vertical Orifice 1 Vertical Orifice Vertical Orifice 1 Vertical Orifice erflow Weir Outlet Plate Outlet Plate Outlet Plate 1 Max Velocity through Grate 1 (fps) N/A N/A N/A N/A 0.3 0.9 1.0 1.0 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A 47 Time to Drain 97% of Inflow Volume (hours) 46 45 43 37 33 28 Time to Drain 99% of Inflow Volume (hours) 40 49 55 56 56 54 52 49 Maximum Ponding Depth (ft) 2.84 3.91 4.56 5.75 7.00 7.62 8.16 8.85 Area at Maximum Ponding Depth (acres) 0.96 1.09 1.40 1.46 7.459 0.59 1.19 1.30

Maximum Volume Stored (acre-ft)

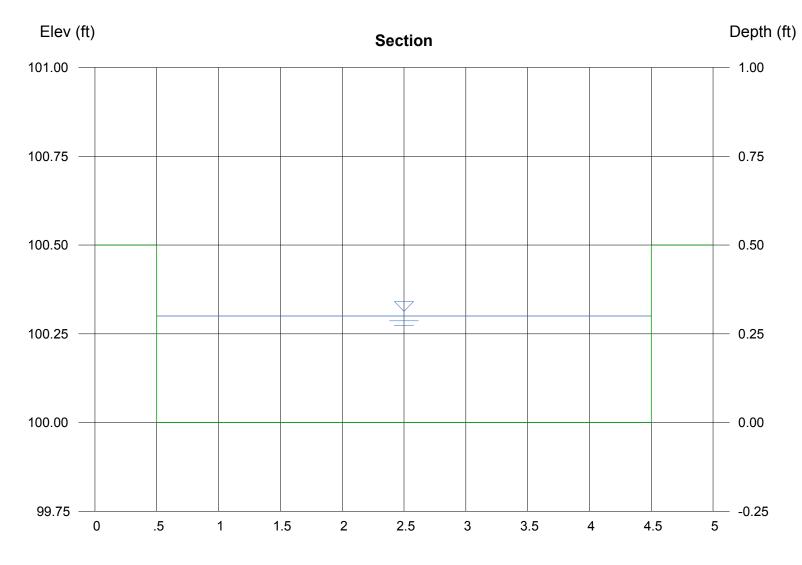
1.35

Inflow Hydrographs

	The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.									
	SOURCE	CUHP	CUHP	USER						
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.06	0.21
	0:10:00	0.00	0.00	0.25	0.27	0.27	0.26	0.56	0.30	1.22
	0:15:00	0.00	0.00	2.86	4.48	5.48	3.77	4.60	4.53	6.29
	0:20:00	0.00	0.00	9.19	12.27	15.08	8.86	10.25	11.01	15.16
	0:25:00 0:30:00	0.00	0.00	21.02 27.76	32.49 41.24	42.49 50.04	20.67 56.88	25.43 67.24	29.01 75.68	44.05 106.21
	0:35:00	0.00	0.00	26.90	37.65	45.13	63.58	75.61	109.63	143.07
	0:40:00	0.00	0.00	24.24	32.95	39.43	71.97	98.31	111.57	137.84
	0:45:00	0.00	0.00	20.53	28.40	39.71	81.60	91.14	105.25	129.07
	0:50:00	0.00	0.00	17.57	24.77	45.47	76.55	85.14	97.50	120.67
	0:55:00	0.00	0.00	15.61	21.87	49.88	69.46	76.99	89.17	139.25
	1:00:00	0.00	0.00	14.26	22.49	51.09	64.82	71.67	83.92	155.06
	1:05:00 1:10:00	0.00	0.00	13.01 11.31	23.53 23.92	49.34 47.29	61.14 56.56	67.46 62.25	79.83 71.84	154.10 134.96
	1:15:00	0.00	0.00	9.92	23.32	45.15	52.49	57.62	64.99	113.23
	1:20:00	0.00	0.00	9.11	22.73	41.62	48.51	53.02	58.41	91.90
	1:25:00	0.00	0.00	8.75	22.31	37.66	46.10	50.25	54.22	76.00
	1:30:00	0.00	0.00	8.56	21.89	34.15	44.09	47.97	51.50	64.74
	1:35:00	0.00	0.00	8.50	21.33	31.18	42.66	46.37	49.64	57.15
	1:40:00	0.00	0.00	8.45	20.08	28.74	41.56	45.16	48.24	53.07
	1:45:00	0.00	0.00	8.42	18.86	26.78	40.74	44.28	47.19	51.84
	1:50:00 1:55:00	0.00	0.00	8.41 7.99	17.77 16.78	25.13 23.39	40.04 39.45	43.55 42.95	46.35 45.71	50.88 50.20
	2:00:00	0.00	0.00	7.66	15.56	21.15	38.93	42.43	45.24	49.73
	2:05:00	0.00	0.00	6.99	13.44	17.91	37.37	40.70	43.63	47.76
	2:10:00	0.00	0.00	6.46	11.48	15.01	32.82	39.26	42.29	46.16
	2:15:00	0.00	0.00	6.07	9.82	12.57	24.99	38.07	41.17	44.86
	2:20:00	0.00	0.00	5.78	8.45	10.56	19.41	37.04	40.19	43.75
	2:25:00	0.00	0.00	5.55	7.39	8.97	15.38	36.13	39.33	42.81
	2:30:00 2:35:00	0.00	0.00	5.38	6.63	7.74	12.43	35.34	38.57	42.02
	2:40:00	0.00	0.00	5.24 5.14	6.15 6.01	6.81 6.19	10.24 8.61	33.80 24.82	37.85 37.17	41.27 40.57
	2:45:00	0.00	0.00	5.07	5.91	5.97	7.43	18.85	36.53	39.93
	2:50:00	0.00	0.00	5.01	5.85	5.90	6.61	14.78	35.92	39.34
	2:55:00	0.00	0.00	4.97	5.81	5.86	6.10	11.94	35.35	38.81
	3:00:00	0.00	0.00	4.93	5.77	5.83	5.94	9.90	34.78	38.26
	3:05:00	0.00	0.00	4.89	5.74	5.79	5.90	8.42	31.78	37.72
	3:10:00	0.00	0.00	4.85	5.70	5.75	5.87	7.33	23.53	37.16
	3:15:00 3:20:00	0.00	0.00	4.81	5.66	5.71	5.83	6.57	18.03	36.61
	3:25:00	0.00	0.00	4.77 4.73	5.62 5.58	5.67 5.64	5.79 5.75	6.08 5.94	14.24 11.55	36.04 35.47
	3:30:00	0.00	0.00	4.69	5.54	5.60	5.73	5.90	9.62	34.90
	3:35:00	0.00	0.00	4.65	5.51	5.56	5.68	5.86	8.21	33.82
	3:40:00	0.00	0.00	4.61	5.47	5.52	5.64	5.83	7.19	24.86
	3:45:00	0.00	0.00	4.57	5.43	5.48	5.60	5.79	6.47	18.93
	3:50:00	0.00	0.00	4.53	5.39	5.45	5.56	5.75	6.02	14.87
	3:55:00 4:00:00	0.00	0.00	4.49 4.45	5.35	5.41 5.37	5.52	5.71 5.67	5.93 5.89	12.00 9.95
	4:00:00	0.00	0.00	4.45	5.31 5.27	5.37	5.48 5.45	5.67	5.89	9.95 8.45
	4:10:00	0.00	0.00	4.37	5.24	5.29	5.41	5.60	5.82	7.36
	4:15:00	0.00	0.00	4.33	5.20	5.25	5.37	5.56	5.78	6.58
	4:20:00 4:25:00	0.00	0.00	4.29 4.25	5.16 5.12	5.21 5.17	5.33 5.29	5.52 5.48	5.74 5.71	6.09 5.94
	4:25:00	0.00	0.00	4.25	5.12	5.17	5.29	5.48	5.71	5.94
	4:35:00	0.00	0.00	4.16	5.04	5.10	5.21	5.41	5.63	5.86
	4:40:00 4:45:00	0.00 0.00	0.00	4.12 4.08	5.00 4.96	5.06 5.02	5.17 5.14	5.37 5.33	5.59 5.55	5.83 5.79
	4:45:00	0.00	0.00	4.08	4.96	4.98	5.14	5.33	5.55	5.79
	4:55:00	0.00	0.00	4.00	4.88	4.94	5.06	5.25	5.48	5.71
	5:00:00 5:05:00	0.00 0.00	0.00	3.96 3.92	4.84 4.80	4.90 4.86	5.02 4.98	5.21 5.17	5.44 5.40	5.67 5.64
	5:10:00	0.00	0.00	3.92	4.80	4.80	4.98	5.17	5.36	5.60
	5:15:00	0.00	0.00	3.83	4.72	4.78	4.90	5.09	5.32	5.56
	5:20:00 5:25:00	0.00	0.00	3.79 3.75	4.68	4.74 4.70	4.86 4.82	5.06 5.02	5.28 5.24	5.52 5.48
	5:30:00	0.00	0.00	3.75	4.60	4.66	4.62	4.98	5.24	5.44
	5:35:00	0.00	0.00	3.66	4.56	4.62	4.74	4.94	5.17	5.41
	5:40:00 5:45:00	0.00 0.00	0.00	3.62	4.52	4.58 4.54	4.70 4.66	4.90	5.13	5.37 5.33
	5:50:00	0.00	0.00	3.58 3.54	4.48	4.54	4.66	4.86 4.82	5.09 5.05	5.33
	5:55:00	0.00	0.00	3.49	4.40	4.46	4.58	4.78	5.01	5.25
	6:00:00	0.00	0.00	3.45	4.36	4.42	4.54	4.74	4.97	5.21

MHFD-Detention, Version 4.02 (February 2020) Summary Stage-Area-Volume-Discharge Relationships

The user create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

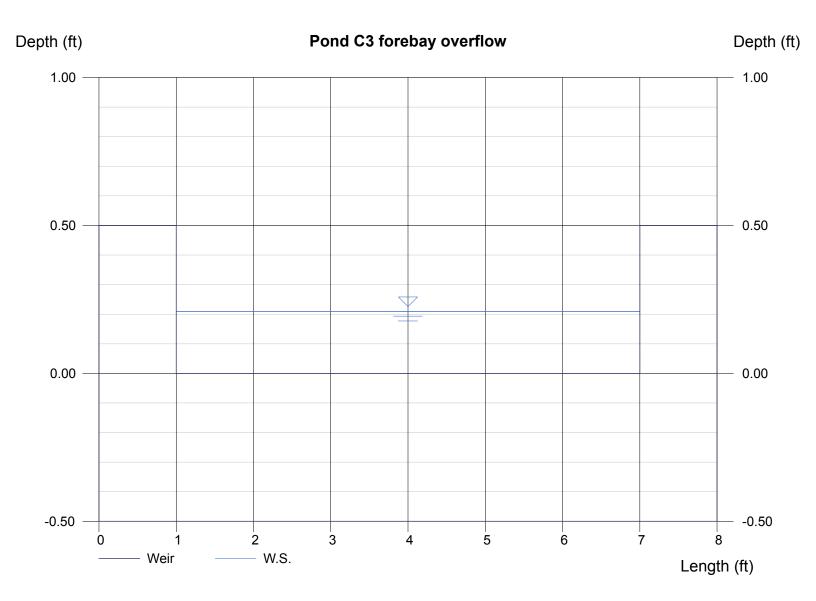

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
micropool	0.00	40	0.001	0	0.000	0.00	For best results, include the
surcharge	0.33	50	0.001	15	0.000	0.03	stages of all grade slope
5756	0.83	1,010	0.023	280	0.006	0.04	changes (e.g. ISV and Floor
5757	1.83	8,682	0.199	3,687	0.085	0.11	from the S-A-V table on Sheet 'Basin'.
5758	2.83	25,415	0.583	19,909	0.457	0.19	
5759	3.83	41,118	0.944	54,260	1.246	2.65	Also include the inverts of a
5760	4.83	48,613	1.116	100,093	2.298	3.98	outlets (e.g. vertical orifice,
5761	5.83	52,273	1.200	150,528	3.456	4.96	overflow grate, and spillway where applicable).
5762	6.83	56,015	1.286 1.374	204,661	4.698 6.028	7.41 30.08	mere applicable)
5763 5664	7.83 8.83	59,852 63,398	1.374	262,582 324,293	7.445	30.08	-
5765	9.83	67,000	1.538	389,393	8.939	56.83	_
5705	5.05	07,000	1.550	565/555	0.555	50100	-
							1
							_
							_
							_
							_
							_
							_
	1						-
							_
							_
							-
							_
							_
	-						_
		-					-
							_
							_
							4
							-
							1
]
							4
							-
							-
		L				L	1
]
							1

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company: Date:	Core Engineering Group May 3, 2020	
Project:	The Hills at Lorson Ranch	
Location:	Pond C3	
1. Basin Storage V	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = <u>52.0</u> %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.520
C) Contributing	Watershed Area	Area = 26.000 ac
Runoff Prod	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in
E) Design Cond	cept	Choose One
	V when also designing for flood control)	Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volur	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 0.459 ac-ft
	.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
	neds Outside of the Denver Region,	V _{DESIGN OTHER} = ac-ft
	ty Capture Volume (WQCV) Design Volume $_{R} = (d_{6}^{*}(V_{DESIGN}/0.43))$	
H) User Input o	f Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} =ac-ft
	ferent WQCV Design Volume is desired)	
	logic Soil Groups of Tributary Watershed	
	ge of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$HSG_{R} = $ %
	age of Watershed consisting of Type C/D Soils	HSG _{C/D} = %
	n Runoff Volume (EURV) Design Volume	
	$EURV_A = 1.68 * i^{1.28}$ $EURV_B = 1.36 * i^{1.08}$	EURV _{DESIGN} = ac-ft
	/D: EURV _{C/D} = 1.20 * i ^{1.08}	
	f Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} = ac-f t
(Only if a diff	ferent EURV Design Volume is desired)	
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1
(A basin length		
3. Basin Side Slop	es	
A) Basin Maxim	num Side Slopes	Z = 3.00 ft / ft
(Horizontal o	distance per unit vertical, 4:1 or flatter preferred)	DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4 1-1-4		
4. Inlet		
 A) Describe me inflow location 	eans of providing energy dissipation at concentrated ons:	
5. Forebay		
A) Minimum Fo	rebay Volume	V _{FMIN} = 0.014 ac-ft
	= <u>3%</u> of the WQCV)	
B) Actual Foreb	bay Volume	V _F = 0.020 ac-ft
C) Forebay Dep		
(D _F	= <u>18</u> inch maximum)	D _F = 24.0 in DF > DF MAXIMUM
D) Forebay Disc	sharge	
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 96.00 cfs
ii) Forebay (Q _F = 0.02	Discharge Design Flow * Q ₁₀₀)	Q _F = cfs
E) Forebay Disc	charge Design	r Choose One
,,		O Berm With Pipe Flow too small for berm w/ pipe
		Wall with Rect. Notch
		O Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangular	Notch Width	Calculated W _N = 7.2 in

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project:	Richard Schindler Core Engineering Group May 3, 2020 The Hills at Lorson Ranch	Sheet 2 of 3
Location:	Pond C3	
 6. Trickle Channel A) Type of Trick F) Slope of Trick 	kle Channel	Choose One Concrete Soft Bottom S = 0.0050 ft / ft
	cropool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{50}_{Sq} \text{ sq ft}$ $\underbrace{\text{Choose One}}_{Orifice Plate}$ $\underbrace{\text{O Other (Describe):}}$
D) Smallest Dir (Use UD-Detent E) Total Outlet A		$D_{\text{ortice}} = $ 1.48 inches $A_{\text{ct}} = $ 6.63 square inches
8. Initial Surcharge	e Volume	
A) Depth of Initi	ial Surcharge Volume commended depth is 4 inches)	D _{IS} = in
	ial Surcharge Volume lume of 0.3% of the WQCV)	V _{IS} = 60 cu ft
C) Initial Surcha	rge Provided Above Micropool	V _s =16.7cu ft
9. Trash Rack		
A) Water Qualit	ty Screen Open Area: $A_t = A_{ot} * 38.5^{*}(e^{-0.095D})$	A _t = 222 square inches
in the USDCM,	en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.)	Other (Please describe below) wellscreen stainless
	Other (Y/N): y	
C) Ratio of Tota	I Open Area to Total Area (only for type 'Other')	User Ratio = 0.6
D) Total Water (Quality Screen Area (based on screen type)	A _{total} = 370 sq. in. Based on type 'Other' screen ratio
	sign Volume (EURV or WQCV) design concept chosen under 1E)	H= 3.25 feet
F) Height of Wa	ter Quality Screen (H _{TR})	H _{TR} = 67 inches
	ter Quality Screen Opening (W _{opening}) inches is recommended)	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

pond C3 low flow channel (2 x forebay release = 3.84cfs)

Rectangular		Highlighted	
Botom Width (ft)	= 4.00	Depth (ft)	= 0.30
Total Depth (ft)	= 0.50	Q (cfs)	= 3.840
		Area (sqft)	= 1.20
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.20
Slope (%)	= 0.50	Wetted Perim (ft)	= 4.60
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.31
		Top Width (ft)	= 4.00
Calculations		EGL (ft)	= 0.46
Compute by:	Known Q		
Known Q (cfs)	= 3.84		



Reach (ft)

Sunday, May 3 2020, 3:31 PM

Pond C3 forebay overflow

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.21
Bottom Length (ft)	= 6.00	Q (cfs)	= 1.920
Total Depth (ft)	= 0.50	Area (sqft)	= 1.26
		Velocity (ft/s)	= 1.53
Calculations		Top Width (ft)	= 6.00
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 1.92		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.02 (February 2020)

100-YEAR ORIFICE

ZONE 1 AND 2-ORIFICES PERM Example Zone Configuration (Retention Pond)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	81.00	acres
Watershed Length =	2,300	ft
Watershed Length to Centroid =	1,200	ft
Watershed Slope =	0.050	ft/ft
Watershed Imperviousness =	55.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	40.0%	percent
Percentage Hydrologic Soil Groups C/D =	60.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Orban Hydro	igraph Procedu	re.
Water Quality Capture Volume (WQCV) =	1.488	acre-feet
Excess Urban Runoff Volume (EURV) =	4.468	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	4.607	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	6.475	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	8.109	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	10.045	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	11.748	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	13.830	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	18.178	acre-feet
Approximate 2-yr Detention Volume =	3.723	acre-feet
Approximate 5-yr Detention Volume =	5.293	acre-feet
Approximate 10-yr Detention Volume =	6.364	acre-feet
Approximate 25-yr Detention Volume =	6.876	acre-feet
Approximate 50-yr Detention Volume =	7.136	acre-feet
Approximate 100-yr Detention Volume =	7.948	acre-feet

Define	70000	and	Dacin	Geometry	
Denne	ZUHES	anu	Dasin	Geometry	

Zone Zone 3 (100yr +

efine Zones and Basin Geometry		
· · · · · · · · · · · · · · · · · · ·		1
Zone 1 Volume (WQCV) =	1.488	acre-feet
Zone 2 Volume (EURV - Zone 1) =	2.980	acre-feet
ne 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	4.225	acre-feet
Total Detention Basin Volume =	8.692	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$		ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

		Depth Increment =	0.20	ft							
				Optional	المتحر مع	Width	Area	Optional Override	Ar	Volume	Volume
ion Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	(ft)	(ft ²)	Area (ft ²)	Area (acre)	(ft 3)	Volume (ac-ft)
		Top of Micropool		0.00				40	0.001	()	(32 10)
		5765.33		0.33				50	0.001	15	0.000
		5766		1.00					0.001	243	0.000
		5767		2.00				630 40,811	0.014		
		5767		3.00				40,811 49,929	1.146	20,962 66,332	0.481 1.523
		5769		4.00			-	49,929 52,779	1.140	117,686	2.702
		5769		4.00				52,779	1.212	117,686	3.947
		5771		6.00			-	55,690	1.276	229,096	5.259
		5772		7.00	-		-	61,704	1.417	289,278	6.641
		5773		8.00	-		-	64,811	1.488	352,535	8.093
		5774		9.00	-		-	67,980	1.561	418,931	9.617
		5775		10.00				71,215	1.635	488,528	11.215
		5776		11.00				75,000	1.722	561,636	12.893
		5770		11.00				75,000	1.7 22	501,050	12:055
Optional Use	er Overrides										
	acre-feet										
	acre-feet										
1.19	inches		-								
1.50	inches										
1.75	inches		-								
2.00	inches										
2.25	inches										
2.52	inches										
	inches										
		-									
							-				
					-		-				
			-								
					-						
					-						
			-								
							-				
					-		-				
			-								
											⊢]
			1 1								
			1 1				-				
]

micropool = 0 = 5765

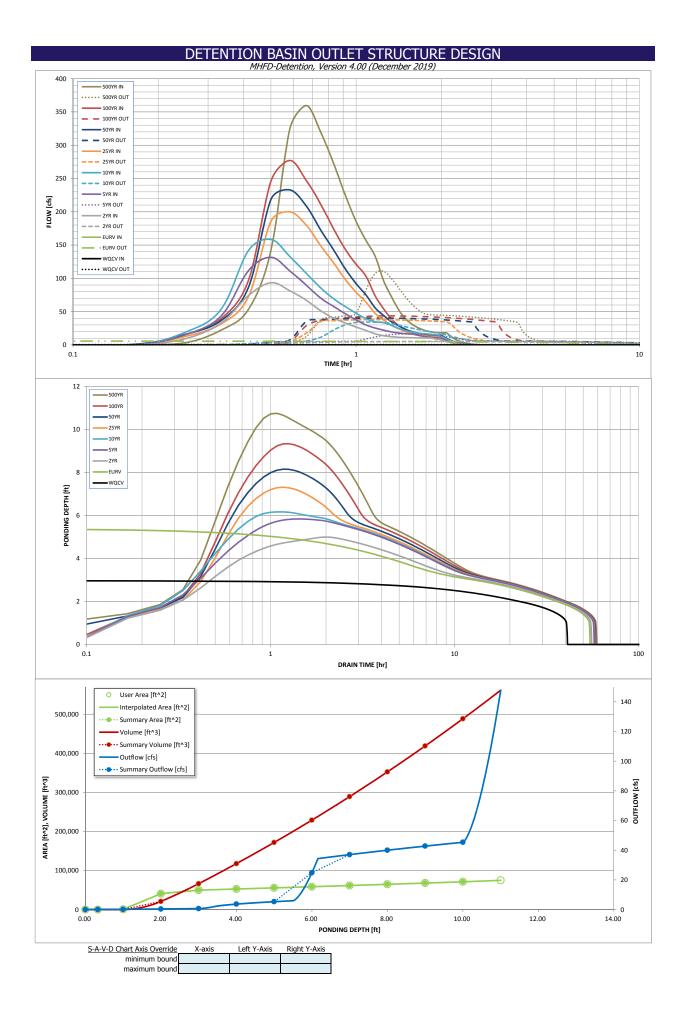
MHFD-Detention_v4-02-pond C4, Basin

DETENTION BASIN OUTLET STRUCTURE DESIGN 1HFD-Detention, Version 4.02 (February 2020 Project: The Hills at Lorson Ranch Basin ID: Pond C4 Estimated Estimated ZONE 1 Outlet Type Stage (ft) Volume (ac-ft) Zone 1 (WQCV) 2.97 1.488 Orifice Plate Zone 2 (FURV) 2,980 Rectangular Orifice 5.41 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 8.40 4.225 Weir&Pipe (Restrict) PERMAN Example Zone Configuration (Retention Pond) Total (all zones) 8.692 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) N/A ft² Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 3.250E-02 ft^2 Depth at top of Zone using Orifice Plate = 2.97 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing 11.90 Elliptical Slot Centroid N/A feet inches ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 4.68 sq. inches (use rectangular openings) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 0.99 1.98 Orifice Area (sq. inches) 4.68 4.68 4.68 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 2.97 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.68 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice 5.41 N/A Vertical Orifice Centroid 0.25 N/A Vertical Orifice Height 6.00 N/A inches Vertical Orifice Width = 16.39 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 5.50 N/A Height of Grate Upper Edge, H_t N/A ft (relative to basin bottom at Stage = 0 ft) 5.50 Overflow Weir Front Edge Length 6.00 N/A feet Overflow Weir Slope Length 6.00 N/A Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 8.02 N/A Horiz. Length of Weir Sides : N/A Overflow Grate Open Area w/o Debris = 25.20 N/A 6.00 feet Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 12.60 N/A Debris Clogging % = N/A 50% User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A Outlet Orifice Area N/A ft (distance below basin bottom at Stage = 0 ft) 3.14 Outlet Pipe Diameter 24.00 N/A inches Outlet Orifice Centroid 1.00 N/A Restrictor Plate Height Above Pipe Invert = 24.00 inches Half-Central Angle of Restrictor Plate on Pipe = 3.14 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 10.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.87 feet Spillway Crest Length : 30.00 feet Stage at Top of Freeboard = 13.00 feet H:V Spillway End Slopes 4.00 Basin Area at Top of Freeboard 1.72 acres Freeboard above Max Water Surface = 1.13 Basin Volume at Top of Freeboard = 12.89 feet acre-ft micropool = 0 = 5765Routed Hydrograph Results anhs and i in the Inflow Hv hs table (Columns W through AF erride the c ff volumes hv na new values Design Storm Return Period WOCV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 13.830 CUHP Runoff Volume (acre-ft) 1.488 4.468 4.607 6.475 8.109 10.045 11.748 Inflow Hydrograph Volume (acre-ft) N/A N/A 4.607 6.475 8.109 10.045 11.748 13.830 CUHP Predevelopment Peak Q (cfs) N/A N/A 17.5 39.6 56.8 90.6 111.9 138.5 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.49 0.70 1.71 Predevelopment Unit Peak Flow, g (cfs/acre) 0.22 1.38 N/A 1.12 N/A Peak Inflow Q (cfs) N/A N/A 93.5 131.6 158.6 200.0 232.9 277.2 34.4 38.0 40.5 43.7 Peak Outflow Q (cfs) 0.6 5.8 5.3 16.5 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.4 0.6 0.4 0.4 0.3 Structure Controlling Flow Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 erflow Wei Outlet Plate Outlet Plate Outlet Plate Outlet Plate 1 Max Velocity through Grate 1 (fps) N/A N/A N/A 0.4 1.4 1.1 1.2 1 3 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A 47 44 Time to Drain 97% of Inflow Volume (hours) 30 48 49 49 45 42 Time to Drain 99% of Inflow Volume (hours) 40 52 53 54 53 53 53 52 Maximum Ponding Depth (ft) 2.97 5.41 5.00 5.84 6.17 7.31 8.15 9.34 Area at Maximum Ponding Depth (acres) 1.44

1.28 3.934

1.34 5.031

1.36 5.476


1.59

1.50

1.14

Maximum Volume Stored (acre-ft)

4.477

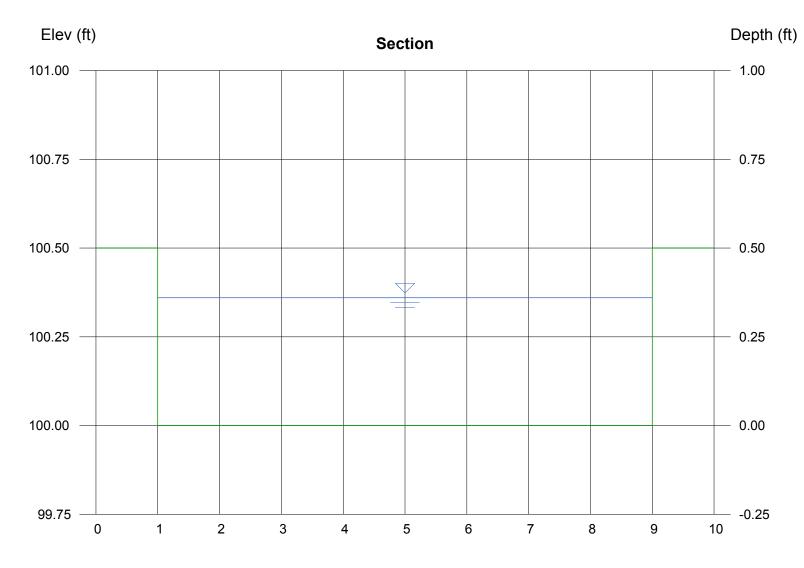
Outflow Hydrograph Workbook Filename: ...Outflow Hydrographs-pond C4.xlsx

Inflow Hydrographs

	The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.									
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]		10 Year [cfs]		50 Year [cfs]	100 Year [cfs]	
	0:00:00									
5.00 min		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00 0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	1.08	0.11	3.48
	0:20:00	0.00	0.00	9.55 32.92	15.60 43.38	19.32 53.47	12.98 31.67	16.07 36.70	15.80 39.53	22.32 53.64
	0:25:00	0.00	0.00	74.34	111.85	142.03	72.79	86.79	97.17	142.25
	0:30:00	0.00	0.00	93.50	131.62	158.60	185.73	218.67	246.14	324.95
	0:35:00	0.00	0.00	81.33	111.11	132.69	199.96	232.94	277.21	359.64
	0:40:00	0.00	0.00	67.06	89.76	107.50	179.81	208.60	246.90	319.22
	0:45:00	0.00	0.00	51.28	70.23	85.54	148.69	172.31	211.27	272.12
	0:50:00	0.00	0.00	40.21	57.70	69.19	122.99	142.40	173.74	224.11
	0:55:00	0.00	0.00	32.87	46.75	57.49	97.93	113.76	143.17	185.13
	1:00:00	0.00	0.00	26.74	37.48	47.65	78.91	91.95	121.14	156.73
	1:05:00	0.00	0.00	21.83	29.98	39.43	64.22	74.98	103.05	133.25
	1:10:00 1:15:00	0.00	0.00	16.70 13.82	25.41 22.23	34.92 33.34	47.41 37.17	55.74 44.19	73.66 54.17	96.29 72.10
	1:20:00	0.00	0.00	12.38	19.62	29.44	29.18	34.65	38.85	51.95
	1:25:00	0.00	0.00	11.55	17.93	29.44	29.13	28.54	28.70	38.45
	1:30:00	0.00	0.00	11.12	16.83	21.38	19.70	23.24	22.76	30.51
	1:35:00	0.00	0.00	10.79	16.17	19.14	16.72	19.67	18.74	25.11
	1:40:00	0.00	0.00	10.57	14.11	17.68	14.89	17.48	16.17	21.68
	1:45:00	0.00	0.00	10.43	12.53	16.70	13.64	15.97	14.54	19.48
	1:50:00	0.00	0.00	10.39	11.49	15.99	12.96	15.14	13.84	18.51
	1:55:00	0.00	0.00	8.80	10.81	14.89	12.55	14.64	13.56	18.10
	2:00:00	0.00	0.00	7.56	10.02	13.19	12.34	14.40	13.50	18.01
	2:05:00	0.00	0.00	5.14	6.81	8.96	8.46	9.87	9.31	12.40
	2:10:00 2:15:00	0.00	0.00	3.31	4.38	5.83	5.51	6.42	6.07	8.07
	2:20:00	0.00	0.00	2.13	2.77	3.73 2.28	3.57 2.18	4.15	3.92 2.39	5.21 3.17
	2:25:00	0.00	0.00	0.73	1.09	1.36	1.35	1.57	1.48	1.96
	2:30:00	0.00	0.00	0.36	0.56	0.70	0.74	0.85	0.80	1.06
	2:35:00	0.00	0.00	0.14	0.23	0.27	0.31	0.35	0.33	0.43
	2:40:00	0.00	0.00	0.03	0.05	0.05	0.06	0.07	0.06	0.08
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00 3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00 4:10:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.02 (February 2020) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

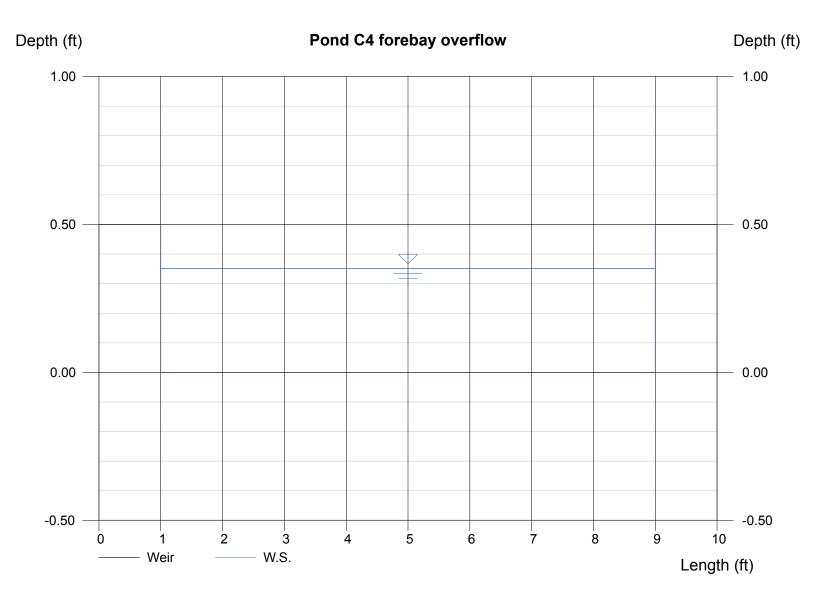

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
micropool	0.00	40	0.001	0	0.000	0.00	For best results, include the
surcharge	0.33	50	0.001	15	0.000	0.09	stages of all grade slope
5766	1.00	630	0.014	243	0.006	0.17	changes (e.g. ISV and Floor
5767	2.00	40,811	0.937	20,962	0.481	0.40	from the S-A-V table on Sheet 'Basin'.
5768	3.00	49,929	1.146	66,332	1.523	0.66	
5769	4.00	52,779	1.212	117,686	2.702	3.71	Also include the inverts of a
5770	5.00	55,690	1.278	171,921	3.947	5.32	outlets (e.g. vertical orifice,
5771	6.00	58,660	1.347	229,096	5.259	24.83	overflow grate, and spillway where applicable).
5772	7.00	61,704	1.417 1.488	289,278	6.641 8.093	37.05 40.02	mere applicable)
5773 5774	8.00 9.00	64,811 67,980	1.466	352,535 418,931	9.617	40.02	_
5775	10.00	71,215	1.635	488,528	11.215	45.38	_
							_
							4
							_
	-						-
							_
							_
							-
							_
							_
	-				-		_
							_
							_
	-						_
							_
							_
							_
							1
							-
							-
							1
							4
							-
					1		1
]
							_
							4
							-
					1		1
					1		-

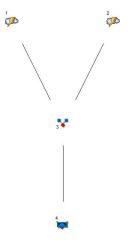
	Design Procedure Form:	Extended Detention Basin (EDB)				
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3				
Designer:	Richard Schindler					
Company: Date:	Core Engineering Group May 4, 2020					
Project:	The Hills at Lorson Ranch					
Location:	Pond C4					
1. Basin Storage V	/olume					
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = <u>55.0</u> %				
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.550				
	Watershed Area	Area = 81.000 ac				
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in				
E) Design Con (Select EUR)	cept V when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV)				
(· · · · · · · · · · · · · · · · · · ·	O Excess Urban Runoff Volume (EURV)				
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =1.488ac-ft				
	neds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} =ac-ft				
(Vwqcv other	$_{R} = (d_{6}^{*}(V_{DESIGN}/0.43))$					
	of Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft				
	logic Soil Groups of Tributary Watershed					
	ige of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	HSG _A = % HSG _B = %				
iii) Percent	age of Watershed consisting of Type C/D Soils	HSG _{C/D} =%				
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08} /D: EURV _{CD} = 1.20 * i ^{1.08}	EURV _{DESIGN} =ac-f t				
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} ≡ac-ft				
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1				
3. Basin Side Slop	les					
,	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE				
(Hohzontary						
4. Inlet						
	eans of providing energy dissipation at concentrated					
inflow location	ons:					
5. Forebay						
A) Minimum Fo		V _{FMIN} =0.045 ac-ft				
(V _{FMIN} B) Actual Foreb	= <u>3%</u> of the WQCV) bay Volume	V _F = 0.050 ac-ft				
C) Forebay Dep (D _F		D _F = 24.0 in				
D) Forebay Disc	charge					
		Q ₁₀₀ = 277.00 cfs				
i) Undetained 100-year Peak Discharge						
$(Q_F = 0.02)$		$Q_F = 5.54$ cfs				
E) Forebay Disc	charge Design	Choose One Berrn With Pipe Wall with Rect. Notch Wall with V-Notch Weir				
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =in				
G) Rectangular	Notch Width	Calculated W _N = 11.9 in				

Design Procedure Form: E	Extended Detention Basin (EDB)			
Designer: Richard Schindler Company: Core Engineering Group Date: May 4, 2020 Project: The Hills at Lorson Ranch Location: Pond C4	Sheet 2 of 3			
6. Trickle ChannelA) Type of Trickle ChannelF) Slope of Trickle Channel	Choose One Concrete S soft Bottom S = 0.0050 ft / ft			
 7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type 	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{50}_{SQ} \text{ sq ft}$ $\underbrace{\text{Choose One}}_{Q} \text{ Orifice Plate}}_{Q} \text{ Other (Describe):}$			
 D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) E) Total Outlet Area 	D _{orifice} = 2.16 inches A _{ot} = 14.04 square inches			
 8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool 	$D_{1S} = $ in $V_{1S} = $ 194 cu ft $V_s = $ 16.7 cu ft			
 9. Trash Rack A) Water Quality Screen Open Area: A_t = A_{xt} * 38.5*(e^{-0.095D}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Other (Y/N): y C) Ratio of Total Open Area to Total Area (only for type 'Other') D) Total Water Quality Screen Area (based on screen type) E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) F) Height of Water Quality Screen (H_{TR}) G) Width of Water Quality Screen Opening (W_{opening}) (Minimum of 12 inches is recommended) 	$A_i =$ 440 square inches Other (Please describe below)			

pond C4 low flow channel (2 x forebay release = 11.08cfs)

Rectangular		Highlighted	
Botom Width (ft)	= 8.00	Depth (ft)	= 0.36
Total Depth (ft)	= 0.50	Q (cfs)	= 11.08
		Area (sqft)	= 2.88
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.85
Slope (%)	= 0.50	Wetted Perim (ft)	= 8.72
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.40
		Top Width (ft)	= 8.00
Calculations		EGL (ft)	= 0.59
Compute by:	Known Q		
Known Q (cfs)	= 11.08		




Reach (ft)

Monday, May 4 2020, 6:49 AM

Pond C4 forebay overflow

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.35
Bottom Length (ft)	= 8.00	Q (cfs)	= 5.540
Total Depth (ft)	= 0.50	Area (sqft)	= 2.81
		Velocity (ft/s)	= 1.97
Calculations		Top Width (ft)	= 8.00
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 5.54		

Legend

Origin

Hyd.

Description

1RationalBasin C2.2-ex2RationalBasins C4.4, 4.5, 4.63CombinePond C2.1 interim inflow4ReservoirPond C2.1 Interim Out

Hydraflow Hydrographs Model

Project: pond c2.1 existing-5yr.gpw

Thursday, May 7 2020, 6:47 AM

Hydrograph Summary Report

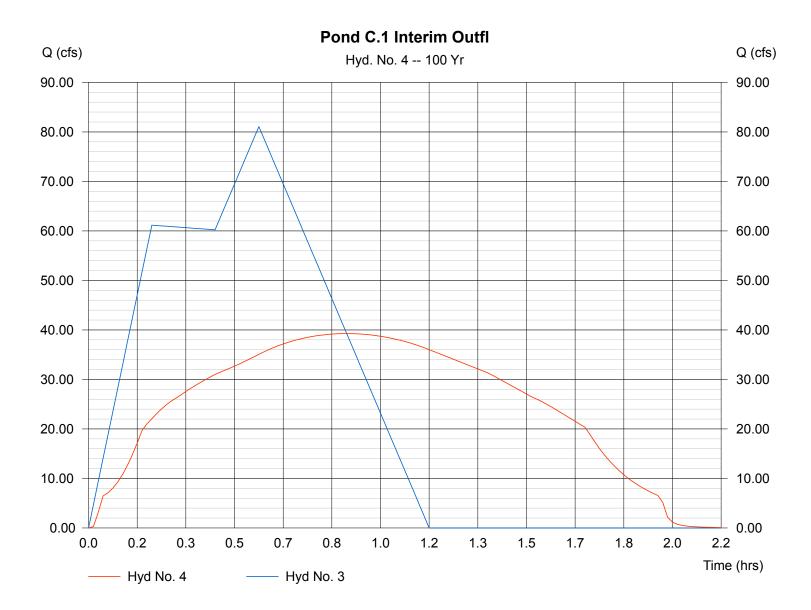
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	12.08	1	35	25,368				Basin C2.2-ex
2	Rational	12.82	1	13	9,997				Basins C4.4, 4.5, 4.6
3	Combine	17.30	1	13	35,364	1, 2			Pond C2.1 interim inflow
4	Reservoir	11.42	1	22	35,363	3	5761.40	5,010	Pond C.1 Interim Outfl
pone	d c2.1 exist	ing-5yr.	gpw		Return	Period: 5	Year	Thursday,	May 7 2020, 6:46 AM

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	81.07	1	35	170,249				Basin C2.2-ex
2	Rational	31.05	1	13	24,219				Basins C4.4, 4.5, 4.6
3	Combine	81.07	1	35	194,469	1, 2			Pond C2.1 interim inflow
4	Reservoir	39.26	1	53	194,468	3	5764.01	86,040	Pond C.1 Interim Outfl
pone	d c2.1 exist	ing-100	yr.gpw		Return	Period: 10)0 Year	Thursday,	May 7 2020, 6:42 AM

Hydrograph Plot

Hydraflow Hydrographs by Intelisolve


Hyd. No. 4

Pond C.1 Interim Outfl

Hydrograph type	= Reservoir	Peak discharge	= 39.26 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Inflow hyd. No.	= 3	Max. Elevation	= 5764.01 ft
Reservoir name	= Pond C2.1	Max. Storage	= 86,040 cuft

Storage Indication method used.

Hydrograph Volume = 194,468 cuft

Thursday, May 7 2020, 6:42 AM

Pond Report

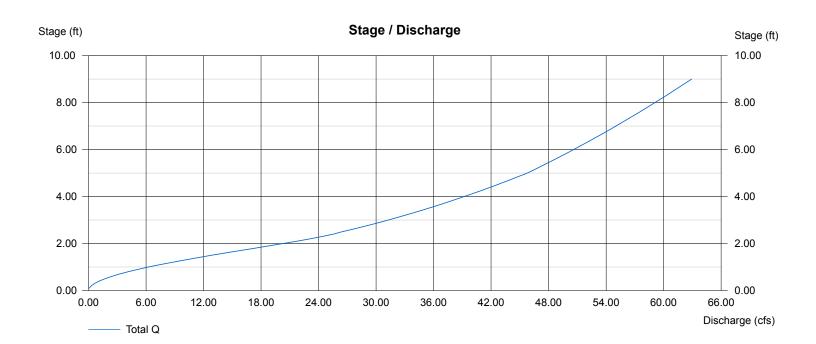
Hydraflow Hydrographs by Intelisolve

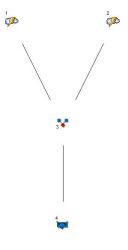
Pond No. 1 - Pond C2.1

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	5760.00	42	0	0	
1.00	5761.00	1,264	653	653	
2.00	5762.00	20,478	10,871	11,524	
3.00	5763.00	41,417	30,948	42,472	
4.00	5764.00	44,796	43,107	85,578	
5.00	5765.00	48,239	46,518	132,096	
6.00	5766.00	51,758	49,999	182,094	
7.00	5767.00	55,348	53,553	235,647	
8.00	5768.00	59,010	57,179	292,826	
9.00	5769.00	62,743	60,877	353,703	


Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 30.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 30.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 0.00	0.00	0.00	0.00
Invert El. (ft)	= 5760.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 200.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 1.00	0.00	0.00	0.00	-				
N-Value	= .013	.000	.000	.000					
Orif. Coeff.	= 0.60	0.00	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	.000 in/hr (Con	tour) Tailw	ater Elev. =	= 0.00 ft

Weir Structures

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Legend

<u>Hyd.</u>

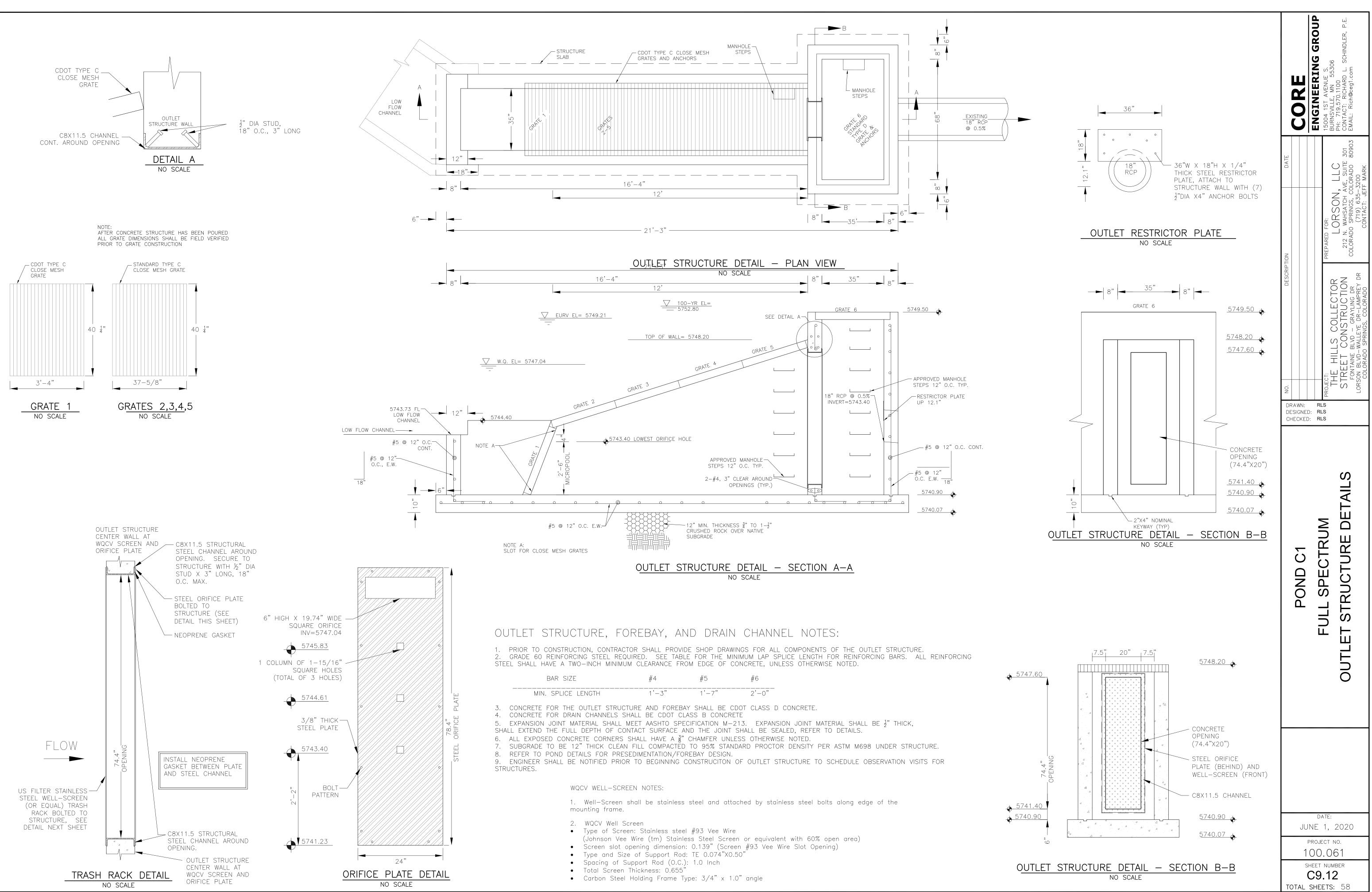
<u>Origin</u>

Description

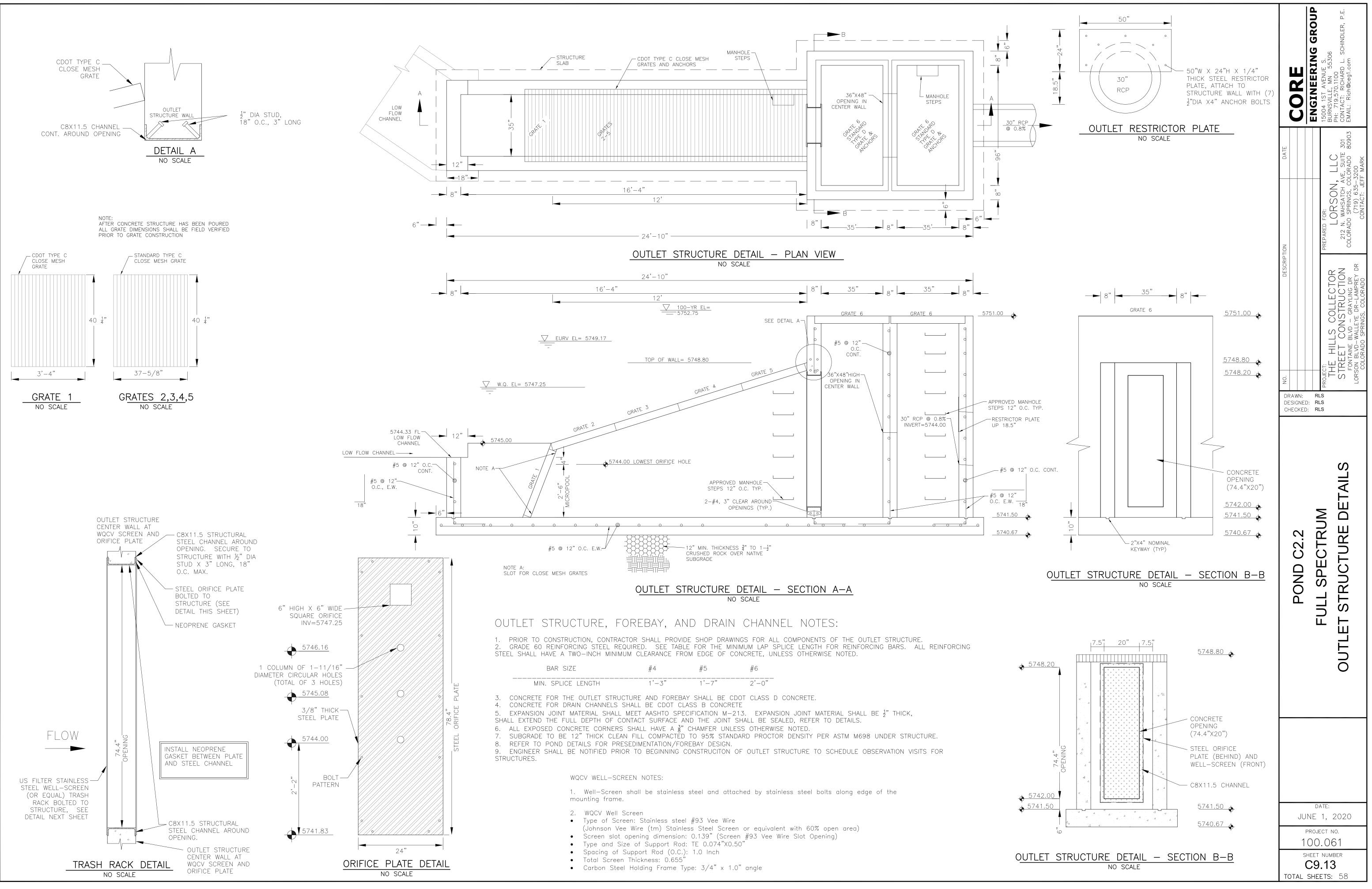
1RationalBasin C4.2-ex2RationalBasins C4.1-ex3CombinePond C4 interim inflow4ReservoirPond C4 Interim Outflo

Hydraflow Hydrographs Model

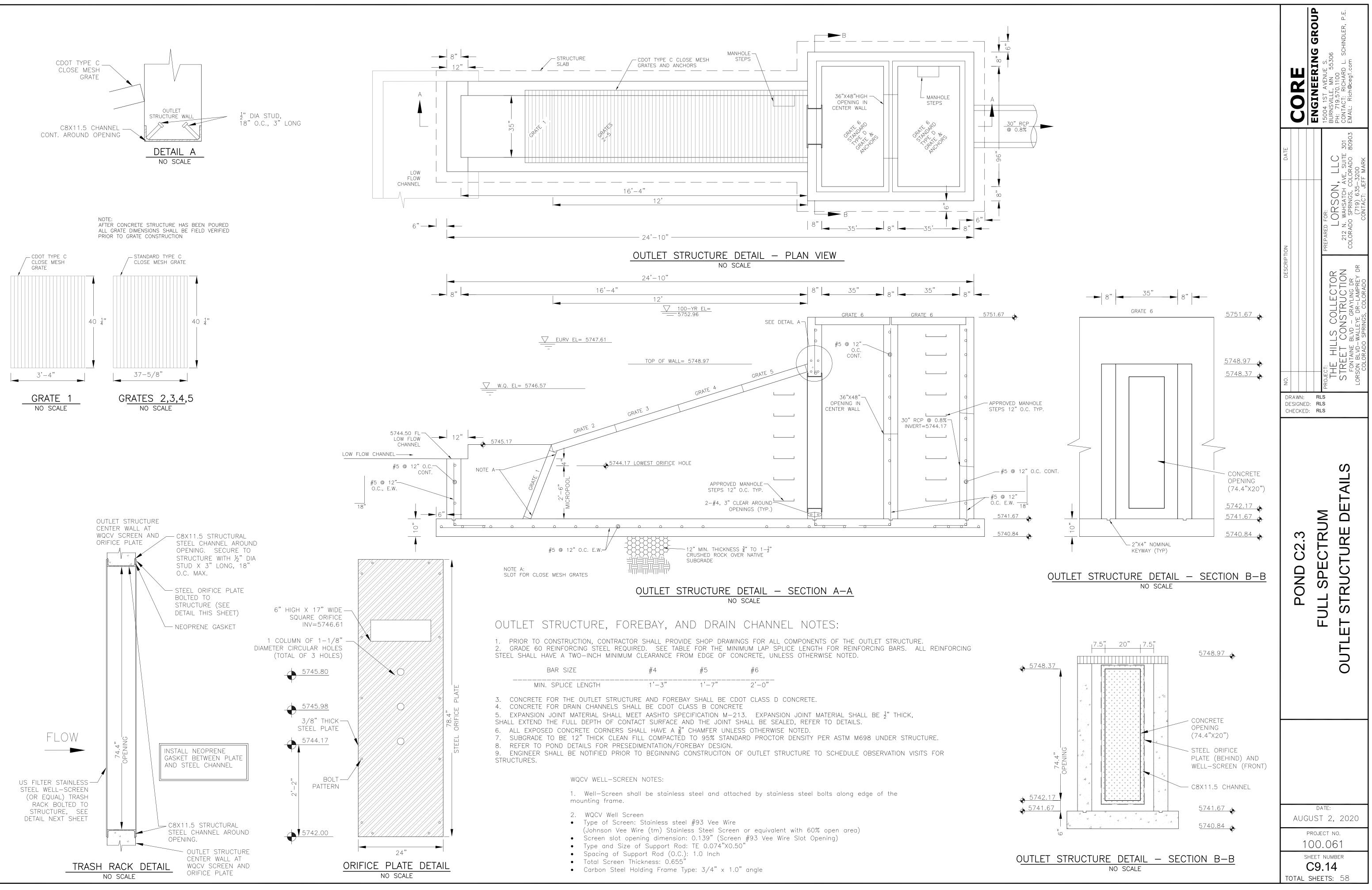
Project: pond c4 existing-5yr.gpw

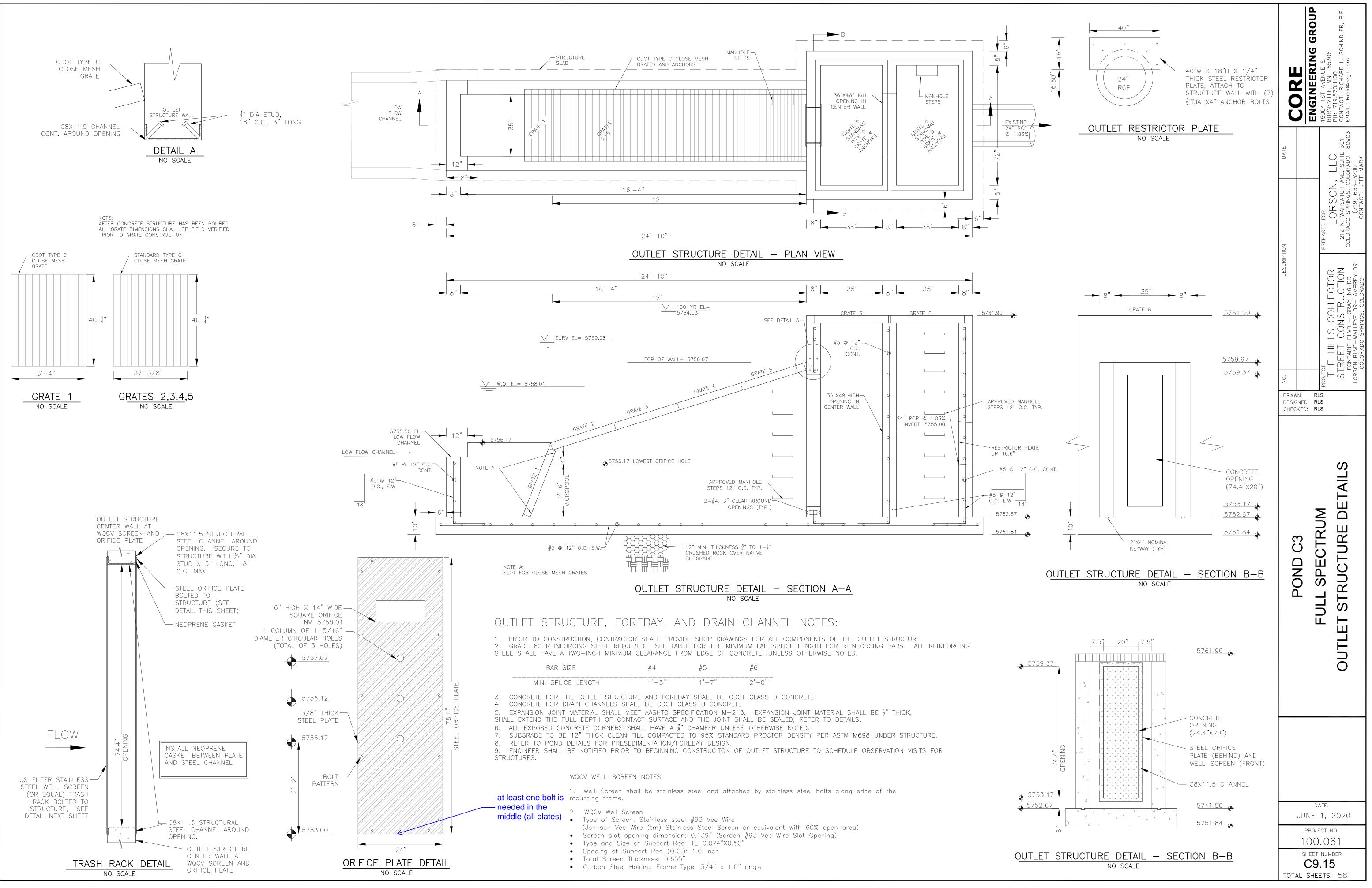

Monday, May 18 2020, 4:06 PM

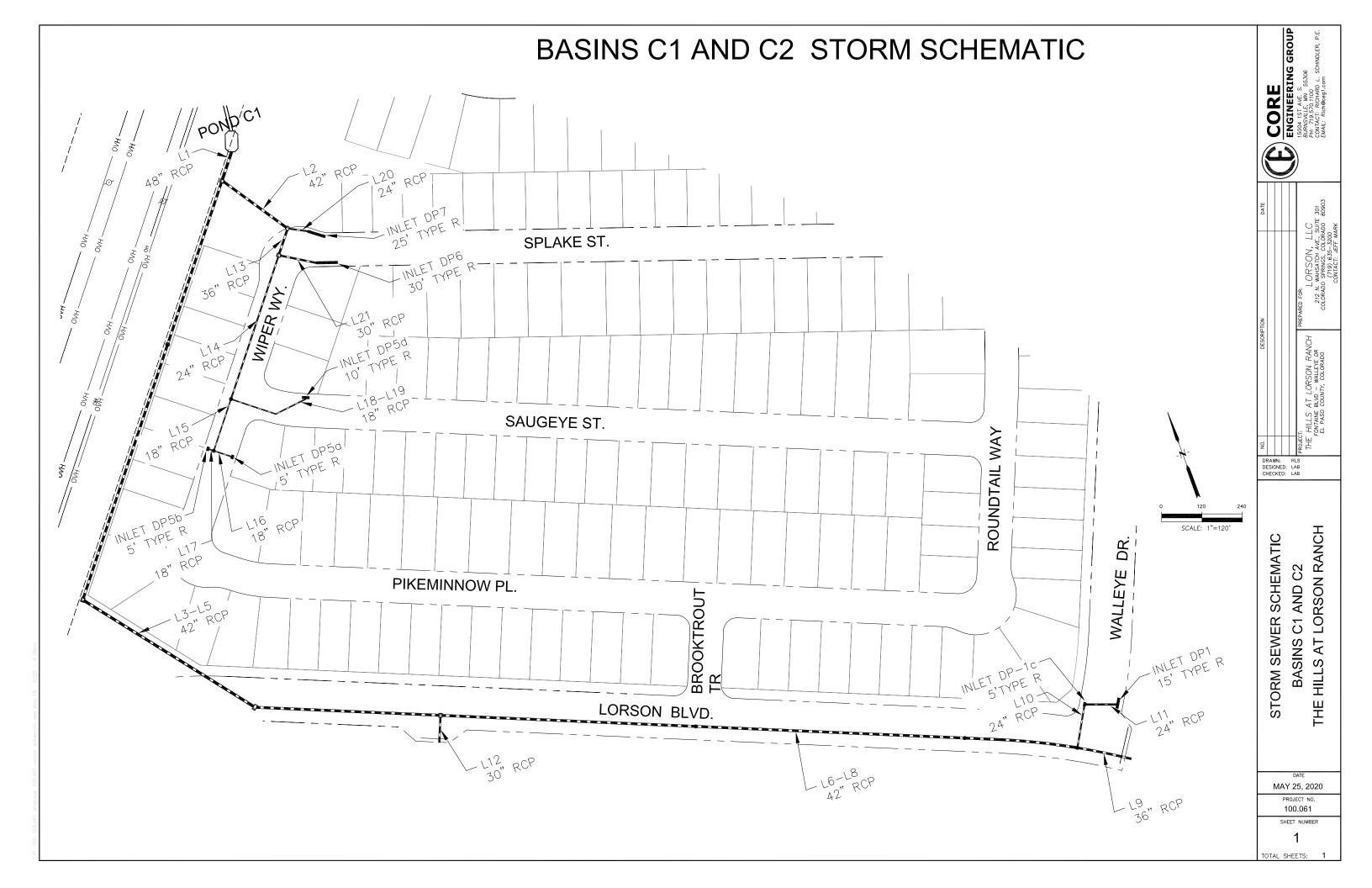
Hydrograph Summary Report


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	19.25	1	21	24,254				Basin C4.2-ex
2	Rational	1.356	1	21	1,709				Basins C4.1-ex
3	Combine	20.61	1	21	25,962	1, 2			Pond C4 interim inflow
4	Reservoir	10.26	1	32	25,962	3	5766.47	10,139	Pond C4 Interim Outflo
	d c4 existing	a-5vr ar			Return	Period: 5 `	Vear	Monday I	May 18 2020, 4:07 PM

Hydrograph Summary Report

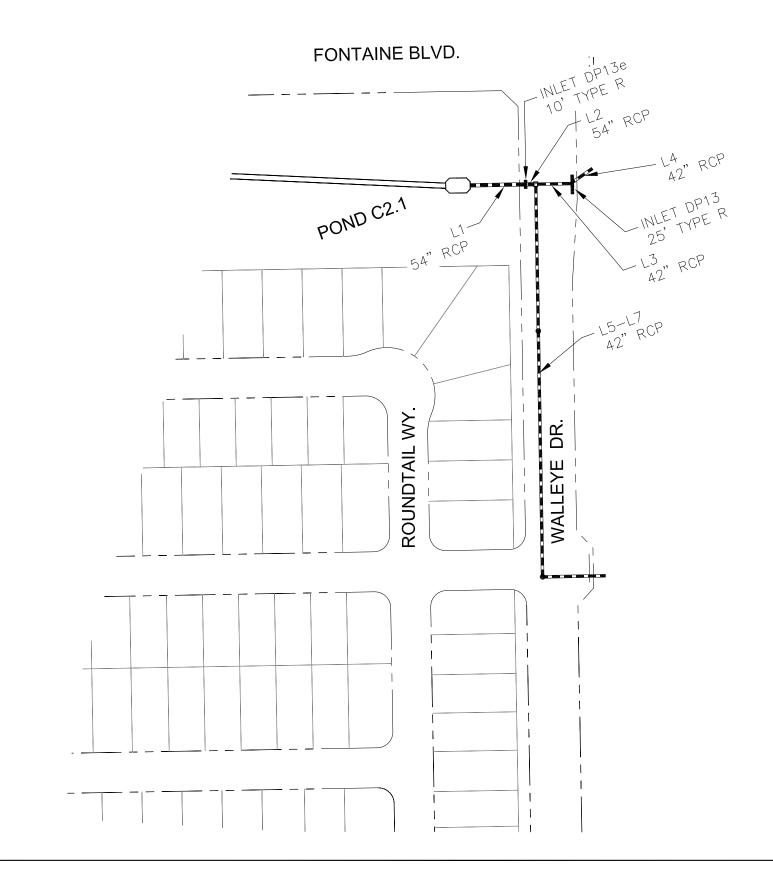

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	96.84	1	21	122,021				Basin C4.2-ex
2	Rational	8.870	1	21	11,176				Basins C4.1-ex
3	Combine	105.71	1	21	133,197	1, 2			Pond C4 interim inflow
4	Reservoir	21.16	1	38	133,196	3	5768.59	96,844	Pond C4 Interim Outflo
on	d c4 existin	g-100yr	.gpw		Return	Period: 10	00 Year	Monday, M	May 18 2020, 4:20 PM

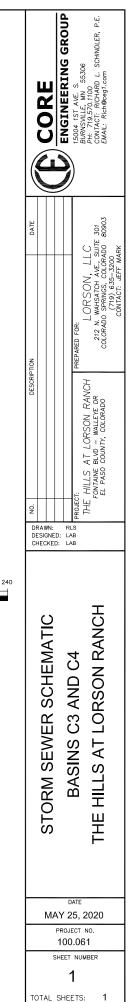

	BAR SIZE	#4	#5	#6	
	MIN. SPLICE LENGTH	1'-3"	1'-7"	2'-0"	
	CONCRETE FOR THE OUTLET STRUCTURE CONCRETE FOR DRAIN CHANNELS SHALL			CLASS D CONCRETE.	
SHA	ALL EXTEND THE FULL DEPTH OF CONTAC	T SURFACE AND	THE JOINT SHA		
C	ALL EVROSED CONCRETE CORVERS SUAL		INMEED LINEECC		

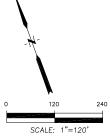

BAR SIZE	#4	#5	#6

BAR SIZE #4 #5 #6

APPENDIX E- STORM SEWER SCHEMATIC AND HYDRAFLOW STORM SEWER CALCS

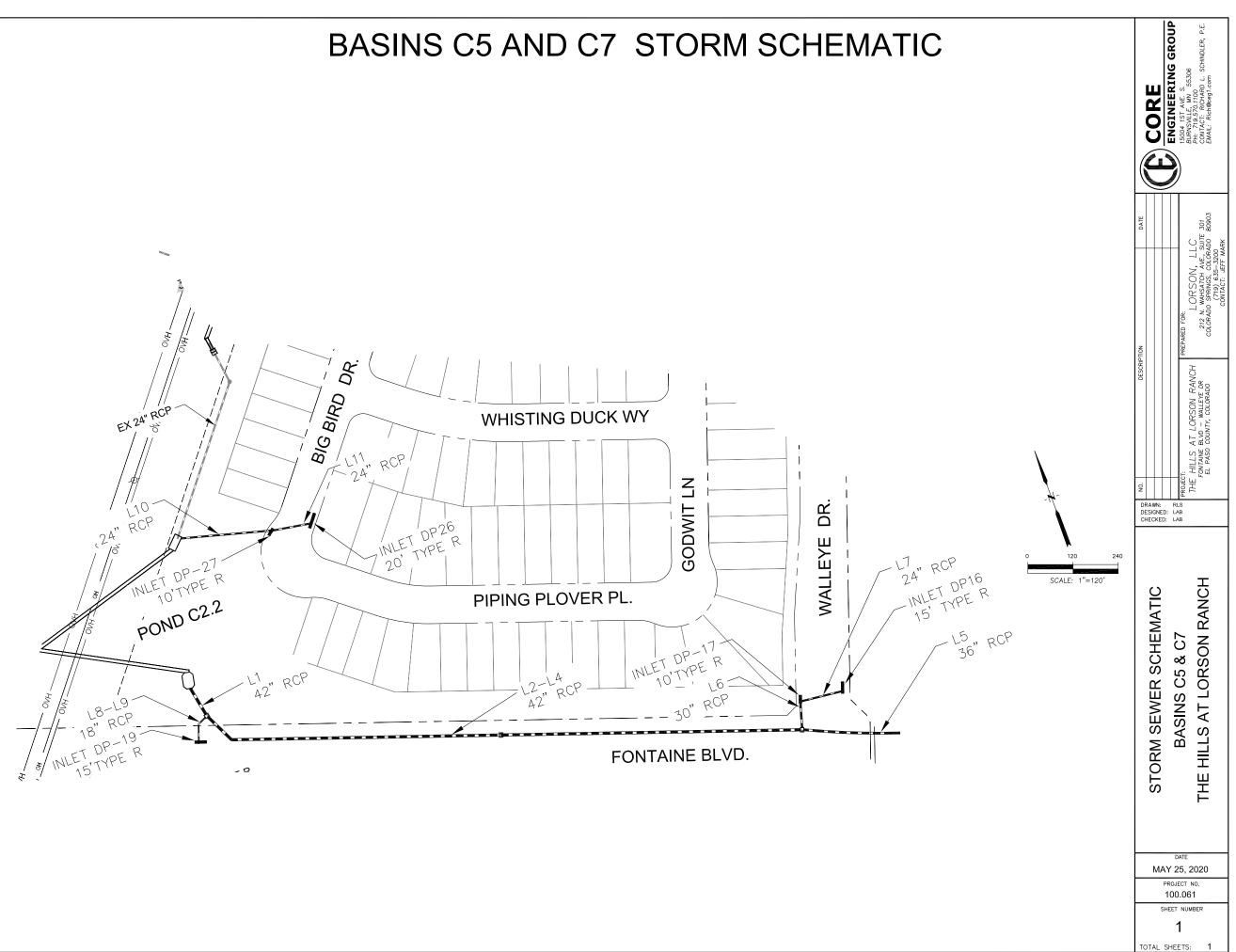

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	1	95.60	48 c	48.1	5747.75	5752.32	9.509	5752.81	5755.21	1.43	5755.21	End
2	2	38.10	42 c	120.3	5752.82	5760.52	6.402	5756.47	5762.41	n/a	5762.41 j	1
3	3	57.50	42 c	656.0	5753.00	5770.06	2.601	5756.16	5772.38	1.10	5772.38	1
4	4	57.50	42 c	303.8	5770.40	5775.41	1.649	5772.95	5777.73	0.64	5777.73	3
5	5	57.50	42 c	272.1	5775.60	5784.99	3.451	5778.30	5787.31	1.12	5787.31	4
6	6	43.20	42 c	385.0	5785.00	5788.08	0.800	5788.12	5790.09	n/a	5790.09 j	5
7	7	43.20	42 c	405.9	5788.20	5792.99	1.180	5790.66	5795.00	n/a	5795.00 j	6
8	8	43.20	42 c	161.5	5793.10	5794.39	0.799	5795.57	5796.40	n/a	5796.40 j	7
9	9	37.10	36 c	80.6	5795.50	5797.11	1.998	5796.86	5799.13	0.84	5799.97	8
10	10	6.10	24 c	67.1	5796.00	5796.67	0.998	5797.23	5797.55	n/a	5797.55 j	8
11	11	4.80	24 c	47.0	5797.20	5797.58	0.808	5797.86	5798.36	0.28	5798.64	10
12	12	14.30	30 c	43.8	5785.99	5786.08	0.205	5788.27	5788.31	0.15	5788.46	5
13	13	26.00	36 c	36.2	5761.02	5761.50	1.328	5763.00	5763.13	0.69	5763.13	2
14	14	11.70	24 c	230.8	5763.65	5767.81	1.802	5764.51	5769.02	n/a	5769.02	13
15	15	6.30	18 c	81.3	5768.30	5770.33	2.498	5769.36	5771.29	n/a	5771.29 j	14
16	16	2.40	18 c	26.5	5770.80	5771.01	0.793	5771.69	5771.66	0.16	5771.83	15
17	17	3.90	18 c	11.0	5770.80	5770.91	1.003	5771.65	5771.67	n/a	5771.96 j	15
18	18	5.40	18 c	73.0	5768.30	5769.03	1.000	5769.41	5769.92	n/a	5769.92 j	14
19	19	5.40	18 c	48.6	5769.03	5769.52	1.009	5770.16	5770.41	n/a	5770.41 j	18
20	20	12.10	24 c	35.5	5762.02	5762.38	1.014	5763.06	5763.68	0.49	5764.17	2
21	21	14.30	30 c	61.8	5762.00	5762.62	1.004	5763.68	5763.88	n/a	5763.88 j	13
22	22	10.70	24 c	122.0	5747.11	5765.29	14.902	5748.27	5766.45	n/a	5766.45 j	End
23	23	7.90	18 c	61.2	5766.80	5768.63	2.992	5767.49	5769.70	n/a	5769.70	22
The H	ills-C1 basins 5-yr						Nun	nber of line	s: 23	Run I	Date: 05-19	-2020


NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.

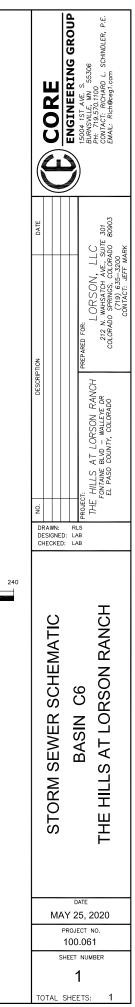

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	1	208.5	48 c	48.1	5747.75	5752.32	9.509	5752.81	5756.19	n/a	5756.19	Enc
2	2	81.90	42 c	120.3	5752.82	5760.52	6.402	5759.43	5763.29	1.50	5763.29	1
3	3	126.6	42 c	656.0	5753.00	5770.06	2.601	5757.86	5773.36	n/a	5773.36	1
4	4	126.6	42 c	303.8	5770.40	5775.41	1.649	5773.49	5778.71	n/a	5778.71	3
5	5	126.6	42 c	272.1	5775.60	5784.99	3.451	5778.84	5788.29	n/a	5788.29	4
6	6	88.60	42 c	385.0	5785.00	5788.08	0.800	5789.79*	5792.78*	0.20	5792.98	5
7	7	88.60	42 c	405.9	5788.20	5792.99	1.180	5792.98	5795.87	n/a	5795.87	6
8	8	88.60	42 c	161.5	5793.10	5794.39	0.799	5796.25	5797.27	n/a	5797.27	7
9	9	65.30	36 c	80.6	5795.50	5797.11	1.998	5797.64	5799.71	n/a	5799.71	8
10	10	23.30	24 c	67.1	5796.00	5796.67	0.998	5798.12*	5798.83*	1.28	5800.11	8
11	11	20.30	24 c	47.0	5797.20	5797.58	0.808	5800.32*	5800.70*	0.65	5801.35	10
12	12	38.00	30 c	43.8	5785.99	5786.43	1.004	5790.18*	5790.55*	0.93	5791.49	5
13	13	52.00	36 c	42.0	5761.03	5761.51	1.143	5764.01	5764.08	1.01	5765.09	2
14	14	17.20	24 c	225.0	5763.76	5767.81	1.800	5765.64	5769.28	n/a	5769.28 j	13
15	15	8.80	18 c	81.3	5768.30	5770.33	2.498	5769.65	5771.46	n/a	5771.46 j	14
16	16	3.50	18 c	26.5	5770.80	5771.01	0.793	5771.87	5771.85	0.18	5772.03	15
17	17	5.30	18 c	11.0	5770.80	5770.91	1.003	5771.91	5771.87	0.31	5772.18	15
18	18	8.40	18 c	73.0	5768.30	5769.03	1.000	5769.68	5770.14	n/a	5770.14 j	14
19	19	8.40	18 c	48.6	5769.03	5769.52	1.009	5770.35	5770.63	n/a	5770.63 j	18
20	20	29.90	24 c	35.5	5762.01	5762.37	1.015	5764.01*	5764.63*	1.41	5766.04	2
21	21	34.80	30 c	60.0	5762.01	5762.61	1.000	5765.32*	5765.75*	0.78	5766.54	13
22	22	23.40	24 c	122.0	5747.11	5765.28	14.897	5748.83	5767.00	n/a	5767.00	En
23	23	17.20	18 c	58.6	5766.80	5768.56	3.003	5767.96*	5770.29*	1.47	5771.76	22
The H	ills-C1 basins 100-yr						Nun	nber of line	s: 23	Run	Date: 05-19	-2021

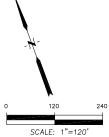
NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

BASINS C3 AND C4 STORM SCHEMATIC



No.		rate (cfs)	size (in)	Line length (ft)	EL Dn (ft)	EL Up (ft)	slope (%)	down (ft)	up (ft)	loss (ft)	Junct (ft)	Dns line No.
1	1	104.1	54 c	69.0	5763.50	5773.78	14.901	5766.52	5776.71	0.70	5776.71	Enc
2	2	101.2	54 c	13.8	5774.55	5774.86	2.248	5777.48	5777.75	1.37	5777.75	1
3	3	31.50	42 c	43.6	5776.00	5776.44	1.009	5778.78	5778.72	0.31	5779.02	2
4	4	20.30	42 c	34.0	5776.94	5777.28	1.000	5779.13	5779.07	0.26	5779.33	3
5	5	69.70	42 c	184.4	5776.50	5779.82	1.801	5778.30	5782.38	0.20	5782.38	2
6	6	69.70	42 c	306.0	5779.92	5787.52	2.483	5782.89	5790.08	1.33	5790.08	5
7	7	69.70	42 c	78.4	5787.82	5788.60	0.995	5790.59	5791.16	1.33	5791.16	6
								nber of line) 9-202(

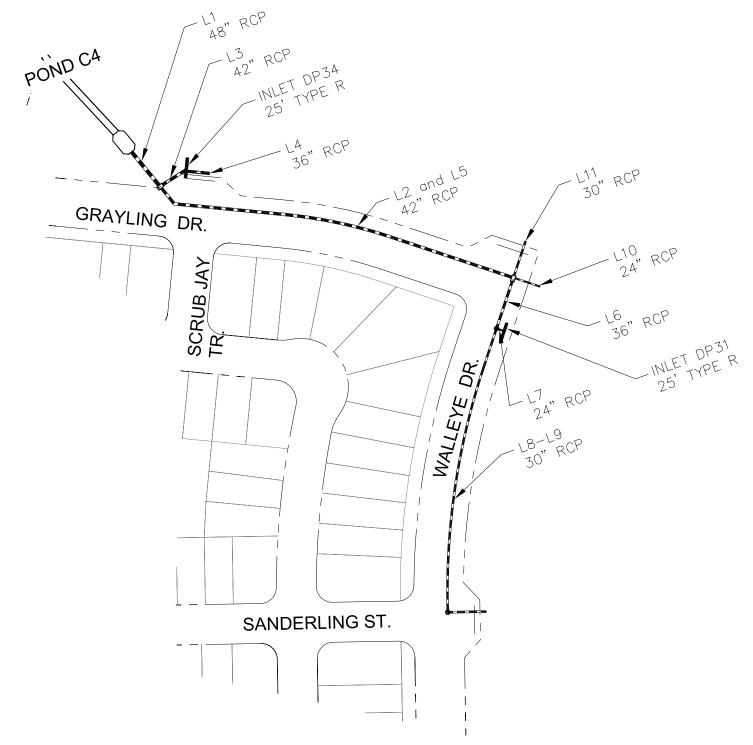

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	223.8	54 c	69.0	5763.50	5773.78	14.901	5768.00	5777.96	1.64	5777.96	Enc
2	2	218.6	54 c	13.8	5774.25	5774.53	2.029	5778.30	5778.68	n/a	5778.68	1
3	3	81.60	42 c	43.6	5775.93	5776.44	1.169	5780.72*	5781.01*	0.97	5781.98	2
4	4	57.10	42 c	34.2	5776.94	5777.28	0.993	5782.55*	5782.66*	0.55	5783.21	3
5	5	137.0	42 c	184.4	5776.08	5779.82	2.029	5778.82*	5783.72*	0.47	5784.19	2
6	6	137.0	42 c	306.0	5779.92	5787.52	2.483	5784.19	5790.87	n/a	5790.87	5
7	7	137.0	42 c	78.4	5787.82	5788.60	0.995	5791.32*	5792.78*	3.15	5795.93	6
	ills-C3-C4 basins 100y						Nun	nber of line:		Bup	Date: 05-19	

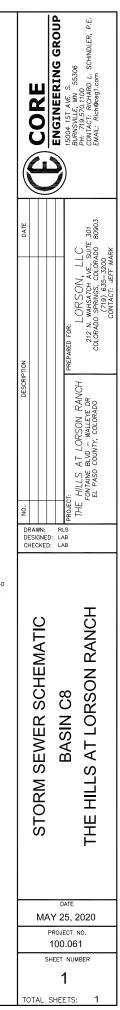


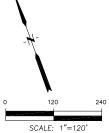
		rate (cfs)	size (in)	length (ft)	EL Dn (ft)	EL Up (ft)	slope (%)	down (ft)	up (ft)	loss (ft)	Junct (ft)	line No.
1	1	58.30	42 c	47.9	5747.40	5753.79	13.343	5750.90	5756.13	n/a	5756.13	End
2	2	53.60	42 c	44.9	5754.00	5755.49	3.322	5756.78	5757.73	n/a	5757.73 j	1
3	3	53.60	42 c	357.9	5755.49	5767.41	3.330	5758.30	5769.65	n/a	5769.65 j	2
4	4	53.60	42 c	399.3	5767.70	5777.48	2.449	5770.22	5779.72	n/a	5779.72 j	3
5	5	42.30	36 c	130.1	5778.00	5780.47	1.899	5780.22	5782.54	n/a	5782.54 j	4
6	6	11.30	30 c	38.5	5778.70	5779.11	1.063	5780.53	5780.45	0.41	5780.86	4
7	7	7.90	24 c	55.3	5779.75	5780.29	0.977	5781.04	5781.29	n/a	5781.29 j	6
8	8	4.70	18 c	17.6	5755.81	5755.99	1.023	5757.07	5757.05	0.14	5757.19	1
9	9	4.70	18 c	24.5	5755.99	5756.24	1.019	5757.27	5757.26	0.21	5757.47	8
10	10	16.40	24 c	124.0	5748.00	5765.36	14.000	5749.43	5766.79	n/a	5766.79	Enc
11	11	10.80	24 c	47.9	5767.10	5767.58	1.002	5768.07	5768.75	0.50	5769.25	10
	ills-C5 basins 5-yr							nber of line:			Date: 05-19	

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	1	126.0	42 c	47.9	5747.40	5753.79	13.343	5750.90	5757.08	2.74	5757.08	Enc
2	2	116.3	42 c	44.9	5754.00	5755.49	3.322	5757.61	5758.72	1.81	5758.72	1
3	3	116.3	42 c	357.9	5755.49	5767.41	3.330	5758.89	5770.64	0.37	5770.64	2
4	4	116.3	42 c	399.3	5767.70	5777.48	2.449	5770.81	5780.71	2.45	5780.71	3
5	5	92.50	36 c	130.1	5778.00	5780.47	1.899	5780.71	5783.33	n/a	5783.33	4
6	6	23.80	30 c	38.5	5778.70	5779.11	1.063	5782.79*	5782.92*	0.54	5783.46	4
7	7	17.70	24 c	55.3	5779.75	5780.29	0.977	5783.46*	5783.80*	0.49	5784.29	6
8	8	9.70	18 c	17.6	5755.81	5755.99	1.023	5759.41*	5759.56*	0.34	5759.91	1
9	9	9.70	18 c	24.5	5755.99	5756.24	1.019	5759.91*	5760.12*	0.47	5760.58	8
10	10	36.50	24 c	124.0	5748.00	5765.36	14.000	5749.93	5767.29	1.07	5767.29	En
11	11	24.00	24 c	47.2	5767.10	5767.57	0.995	5768.89	5769.36	1.02	5770.38	10
The H	ills-C5 basins 100-yr						Num	ber of line	s: 11	Run I	Date: 05-19	-202

BASIN C6 STORM SCHEMATIC 8 POND C2.1 13, RCP 30, RCP INLET DP-230 INLET 5'TYPE R 18" E POND C2.3 L1-42" RCP RCP 18" INLET DP22 410 5 ,,, 15 PALAFOXIA PL. L4-L5-24" RCP 01/1 / DP-21 INLET DP-21 5 TYPE R RUSHPINK ST. KITFOX CT. 1- 16, RCP 24, RCP DP20 LINLET DP20 20, TYPE R-8/ - HNO -

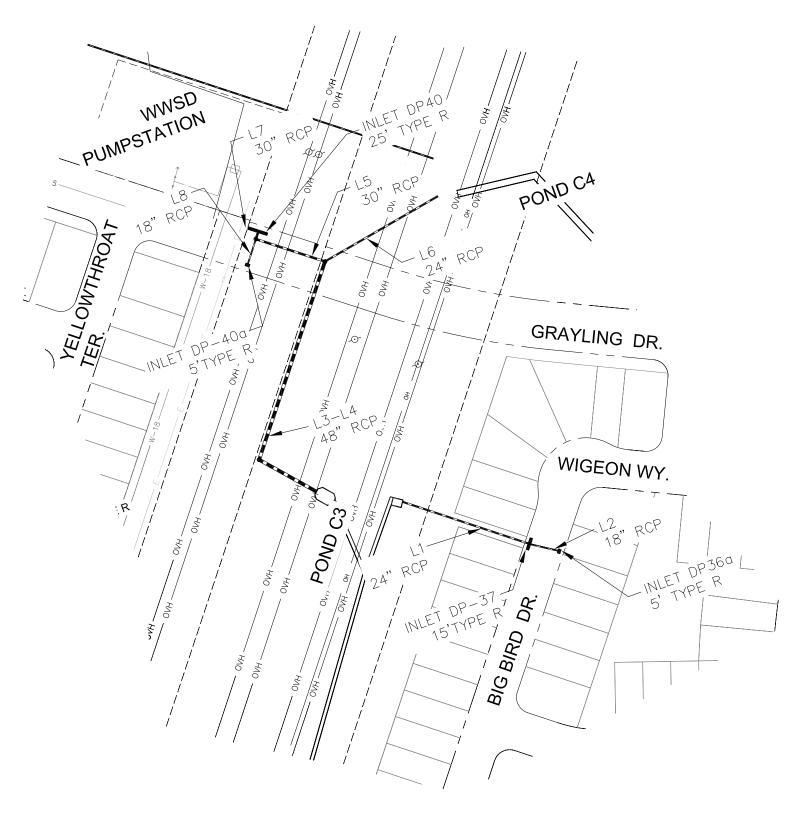

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	1	36.90	42 c	32.3	5746.50	5751.31	14.899	5752.81	5753.17	0.78	5753.17	End
2	2	20.30	36 c	158.3	5751.90	5757.92	3.803	5753.83	5759.36	n/a	5759.36 j	1
3	3	12.80	30 c	156.9	5758.50	5759.91	0.899	5759.82	5761.11	n/a	5761.11 j	2
4	4	10.20	24 c	237.6	5753.50	5766.57	5.500	5754.10	5767.70	0.35	5767.70	1
5	5	10.20	24 c	28.4	5766.90	5767.18	0.988	5768.02	5768.31	0.32	5768.31	4
6	6	9.10	24 c	35.5	5767.30	5767.65	0.987	5768.66	5768.72	n/a	5768.72 j	5
7	7	7.50	18 c	42.2	5760.00	5764.01	9.506	5760.49*	5765.78*	0.28	5766.06	2
8	8	6.40	18 c	101.8	5753.31	5754.37	1.042	5754.15	5755.34	0.44	5755.34	1
Гhe H	ills- C6basins 5-yr						Nun	nber of line	s: 8	Run I	Date: 05-19	-202

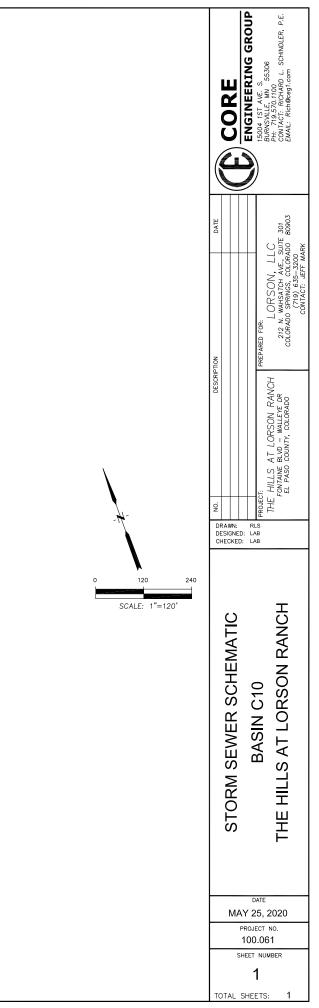

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.


Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1		114.1	42 c	32.3	5746.50	5751.31	14.899	5752.81	5754.52	2.37	5754.52	Enc
2		81.20	36 c	158.3	5751.90	5757.92	3.803	5754.84	5760.71	n/a	5760.71	1
3		65.00	30 c	156.9	5758.50	5759.91	0.899	5761.00*	5764.94*	2.73	5767.67	2
4		22.50	24 c	237.6	5753.50	5766.57	5.500	5756.09	5768.25	n/a	5768.25 j	1
5		22.50	24 c	28.4	5766.90	5767.18	0.988	5768.54	5768.86	0.65	5769.52	4
6		20.10	24 c	35.5	5767.30	5767.65	0.987	5769.87*	5770.15*	0.64	5770.78	5
7		16.20	18 c	42.2	5760.00	5764.01	9.506	5761.59	5765.44	n/a	5765.44 j	2
8		10.40	18 c	101.8	5754.00	5755.02	1.002	5756.35*	5757.35*	0.54	5757.89	1
1	- C6basins 100-yr				I			ber of line:	I		Date: 05-19	

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

BASINS C8 STORM SCHEMATIC

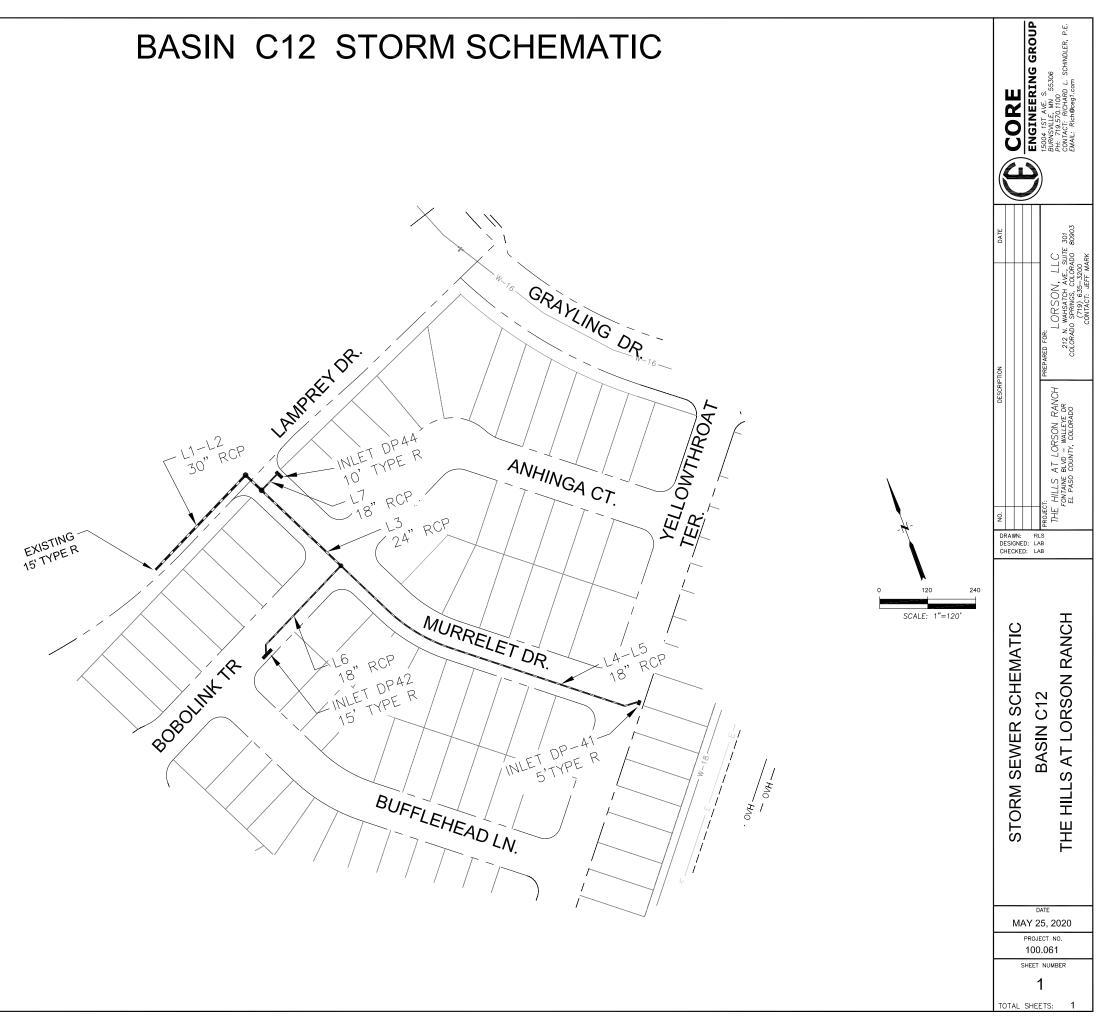




Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	1	83.30	48 c	52.0	5767.90	5773.12	10.043	5770.89	5775.82	0.00	5775.82	Enc
2	2	45.10	42 c	28.0	5778.11	5778.83	2.572	5779.38*	5782.63*	0.00	5782.63	1
3	3	38.20	42 c	36.0	5777.61	5777.97	1.001	5779.11	5780.32	0.00	5780.32	1
4	4	7.30	36 c	31.0	5778.47	5778.84	1.192	5780.76	5780.75	0.00	5780.75	3
5	5	45.10	42 c	436.0	5778.83	5790.00	2.562	5782.63	5792.06	n/a	5792.06 j	2
6	6	23.40	36 c	67.0	5790.50	5791.51	1.507	5792.80	5793.05	n/a	5793.05 j	5
7	7	14.50	30 c	10.0	5792.51	5792.71	2.002	5793.55	5793.99	0.00	5793.99	6
8	8	8.90	30 c	362.0	5792.01	5794.41	0.663	5793.64	5795.41	n/a	5795.41 j	6
9	9	8.90	30 c	48.0	5794.71	5795.19	1.000	5795.73	5796.19	n/a	5796.19 j	8
10	10	13.20	24 c	35.0	5791.50	5792.35	2.427	5792.70	5793.64	n/a	5793.64	5
11	11	19.30	30 c	48.0	5791.00	5791.67	1.396	5792.73	5793.14	n/a	5793.14	5
Projec	t File: 100.061Basin C8	. 5vr flow.s	tm				Nun	ber of lines	s: 11	Run I	Date: 05-28	3-2020

1 1 189.9 48 c 52.0 576.70 577.12 10.03 577.76.9 578.76 0.00 578.376 1 2 2 105.4 42 c 36.0 577.61 577.87 578.07 578.76 0.00 578.378 1 3 3 44.0 15.30 36 c 31.0 577.64 577.84 112 578.242 578.07 578.378 0.00 578.243 3.0 5 5 105.4 42 c 438.0 577.61 579.77 1.001 578.378 10.0 579.48 0.00 579.31 2.0 6 5 5 105.4 42 c 438.0 579.21 1.00 579.49 0.00 579.49 0.00 579.49 0.00 579.47 6 6 8 2.090 30 c 48.0 579.17 579.49 1.000 579.49 0.00 579.49 0.00 579.47 1.00 10 10 2.090 30 c 48.0 579.15 579.17 1.30 579.36 579.46 </th <th>Line No.</th> <th>Line ID</th> <th>Flow rate (cfs)</th> <th>Line size (in)</th> <th>Line length (ft)</th> <th>Invert EL Dn (ft)</th> <th>Invert EL Up (ft)</th> <th>Line slope (%)</th> <th>HGL down (ft)</th> <th>HGL up (ft)</th> <th>Minor loss (ft)</th> <th>HGL Junct (ft)</th> <th>Dns line No.</th>	Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
3 3 84.50 42 c 36.0 5777.61 5777.97 1.001 5780.07 5781.20 0.00 5781.20 1 4 4 15.30 36 c 31.0 5778.47 578.40 1.192 5782.42* 5782.43* 0.00 5782.43* 0.00 5782.43* 0.00 5782.43* 0.00 5782.43* 0.00 5782.43* 0.00 5782.43* 0.00 5782.43* 0.00 5782.43* 0.00 5782.43* 0.00 5782.43* 0.00 5793.13 0.00 5793.13 0.00 5793.13 0.00 5793.13 0.00 5793.13 0.00 5793.13 0.00 5793.13 0.00 5793.13 0.00 5794.78* 0.00 5794.78* 0.00 5794.78* 0.00 5794.78* 0.00 5794.98* 6794.98* 5794.98* 5794.98* 0.00 5794.98* 6	1	1	189.9	48 c	52.0	5767.90	5773.12	10.039	5771.78	5776.94	0.00	5776.94	Enc
4415.3036 c31.05778.475778.841.1925782.42*5782.43*0.005782.4335105.442 c436.05778.835790.002.5625783.785793.130.005793.1326650.9036 c67.05790.505791.511.5075794.39*5794.78*0.005794.7857730.0024 c10.05792.515792.712.0025794.78*5794.96*0.005794.9668820.9030 c362.05792.015794.410.6635795.305796.210.005796.2169920.9030 c48.05791.515795.191.0005796.405796.72n/a5796.728101029.4024 c35.05791.505792.352.4295793.86*5794.46*0.005794.465	2	2	105.4	42 c	28.0	5778.11	5778.83	2.572	5780.17*	5783.78*	0.00	5783.78	1
5 105.4 42 c 436.0 5778.83 5790.00 2.562 5783.78 5793.13 0.00 5793.13 2 6 50.90 36 c 67.0 5790.50 5791.51 1.507 5794.39* 5794.78* 0.00 5794.78 0.00 5794.78* 0.00 5794.78* 0.00 5794.78* 0.00 5794.78* 0.00 5794.78* 0.00 5794.78* 0.00 5794.98* 0.00 5794.98* 0.00 5794.98* 0.00 5794.98* 0.00 5794.98* 0.00 5794.98* 0.00 5794.98* 0.00 5794.98* 0.00 5794.98* 0.00 5794.98* 0.00 5794.98* 0.00 5794.98* 0.00 5794.98* 0.00 5796.21 0.00 5796.21 0.00 5796.72 n/a 5796.72 n/a 5796.72 n/a 5796.72 n/a 5796.72 1 10 10 10 29.40 24 c 35.0 5791.50 5792.35 2.429 5793.86* 5794.46* 0.00 5794.46* 0.00 5794.46* 0.00 5794.46*	3	3	84.50	42 c	36.0	5777.61	5777.97	1.001	5780.07	5781.20	0.00	5781.20	1
6 50.90 36 c 67.0 5790.50 5791.51 1.507 5794.39* 5794.78* 0.00 5794.78 5 7 7 30.00 24 c 10.0 5792.51 5792.71 2.002 5794.78* 5794.96* 0.00 5794.96 6 8 8 20.90 30 c 362.0 5792.01 5794.41 0.663 5795.30 5796.21 0.00 5796.21 6 9 9 20.90 30 c 48.0 5794.71 5795.19 1.000 5796.21 0.00 5796.72 n/a 5796.72 8 10 10 29.40 24 c 35.0 5791.50 5792.35 2.429 5793.86* 5794.46* 0.00 5794.46 5794.46 5	4	4	15.30	36 c	31.0	5778.47	5778.84	1.192	5782.42*	5782.43*	0.00	5782.43	3
7 7 30.00 24 c 10.0 5792.51 5792.71 2.002 5794.78* 5794.96* 0.00 5794.96 6 8 20.90 30 c 362.0 5792.01 5794.41 0.663 5795.30 5796.21 0.00 5796.21 6 9 9 20.90 30 c 48.0 5794.71 5795.19 1.000 5796.22 n/a 5796.72 8 10 10 29.40 24 c 35.0 5791.50 5792.35 2.429 5793.86* 5794.46* 0.00 5794.46 5	5	5	105.4	42 c	436.0	5778.83	5790.00	2.562	5783.78	5793.13	0.00	5793.13	2
8 8 20.90 30 c 362.0 5792.01 5794.41 0.663 5795.30 5796.21 0.00 5796.21 6 9 9 20.90 30 c 48.0 5794.71 5795.19 1.000 5796.22 n/a 5796.72 8 10 10 29.40 24 c 35.0 5791.50 5792.35 2.429 5793.86* 5794.46* 0.00 5794.46 5	6	6	50.90	36 c	67.0	5790.50	5791.51	1.507	5794.39*	5794.78*	0.00	5794.78	5
9 20.90 30 c 48.0 5794.71 5795.19 1.000 5796.40 5796.72 n/a 5796.72 8 10 10 29.40 24 c 35.0 5791.50 5792.35 2.429 5793.86* 5794.46* 0.00 5794.46 5	7	7	30.00	24 c	10.0	5792.51	5792.71	2.002	5794.78*	5794.96*	0.00	5794.96	6
10 10 29.40 24 c 35.0 5791.50 5792.35 2.429 5793.86* 5794.46* 0.00 5794.46 5	8	8	20.90	30 c	362.0	5792.01	5794.41	0.663	5795.30	5796.21	0.00	5796.21	6
	9	9	20.90	30 c	48.0	5794.71	5795.19	1.000	5796.40	5796.72	n/a	5796.72	8
11 11 11 49.40 30 c 48.0 5790.50 5791.17 1.396 5793.65* 5794.35* 0.00 5794.35 5	10	10	29.40	24 c	35.0	5791.50	5792.35	2.429	5793.86*	5794.46*	0.00	5794.46	5
	11	11	49.40	30 c	48.0	5790.50	5791.17	1.396	5793.65*	5794.35*	0.00	5794.35	5

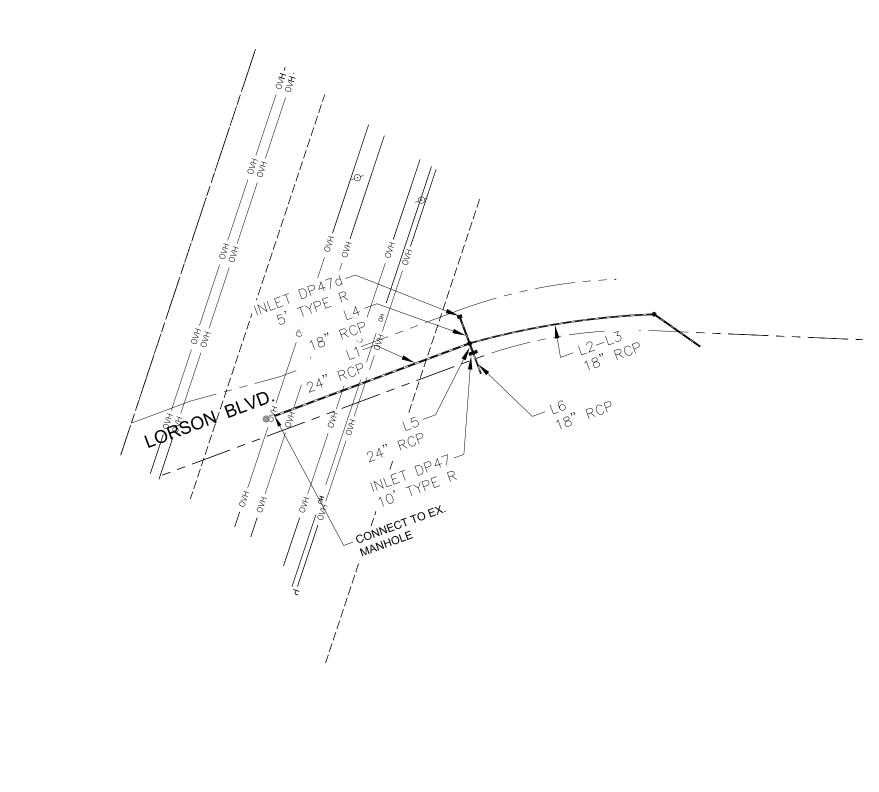
BASIN C10 STORM SCHEMATIC

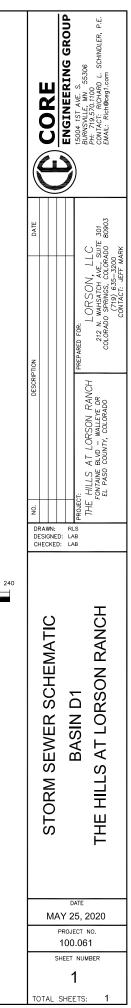


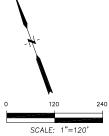
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	12.40	24 c	171.4	5759.50	5775.53	9.352	5761.50	5776.78	n/a	5776.78 j	End
2	2	5.20	18 c	29.9	5776.30	5776.60	1.005	5777.21	5777.47	n/a	5777.47 j	1
3	3	33.00	48 c	82.6	5759.68	5760.10	0.509	5762.69	5762.69	0.23	5762.92	Enc
4	4	33.00	48 c	261.9	5760.20	5761.51	0.500	5763.04	5763.21	n/a	5763.21 j	3
5	5	16.50	30 c	91.4	5763.00	5764.90	2.078	5763.90	5766.26	n/a	5766.26	4
6	6	16.50	24 c	163.0	5763.50	5764.97	0.902	5764.81	5766.41	n/a	5766.41	4
7	7	14.70	30 c	10.1	5765.00	5765.40	3.948	5766.69	5766.68	n/a	5766.68	5
8	8	1.80	18 c	32.4	5766.40	5766.66	0.803	5766.85	5767.18	0.17	5767.35	5
	ills-C10 basins 5-yr						Nur	nber of line	s: 8	Run	Date: 05-19	-202

Hydraflow Storm Sewers 2005

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	27.50	24 c	171.4	5759.50	5775.53	9.352	5761.50	5777.35	n/a	5777.35 j	End
2	2	9.30	18 c	29.9	5776.30	5776.60	1.005	5778.23*	5778.46*	0.43	5778.89	1
3	3	86.20	48 c	82.6	5759.68	5760.10	0.509	5762.69	5762.86	1.34	5764.20	End
4	4	86.20	48 c	261.9	5760.20	5761.51	0.500	5764.82*	5765.77*	0.73	5766.50	3
5	5	42.50	30 c	91.4	5763.00	5764.90	2.078	5766.50*	5767.48*	1.17	5768.65	4
6	6	43.70	24 c	163.0	5763.50	5764.97	0.902	5766.50*	5772.58*	3.01	5775.59	4
7	7	35.60	30 c	10.1	5765.00	5765.40	3.948	5768.99*	5769.07*	0.82	5769.89	5
8	8	6.90	18 c	32.4	5766.40	5766.66	0.803	5769.57*	5769.71*	0.24	5769.95	5
	IIs-C10 basins 100-yr			<u> </u>	1	1		hber of line:	•		Date: 05-19	


NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.




Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dn: line No.
1	1	17.00	30 c	164.2	5747.30	5750.58	1.998	5752.81	5753.08	0.19	5753.26	Enc
2	2	17.00	30 c	25.9	5752.00	5752.52	2.004	5753.26	5753.90	n/a	5753.90	1
3	3	8.80	24 c	136.2	5753.50	5754.86	0.998	5754.37	5755.91	0.43	5755.91	2
4	4	2.40	18 c	81.2	5755.36	5756.17	0.998	5756.31	5756.76	n/a	5756.76 j	3
5	5	2.40	18 c	334.4	5756.27	5762.96	2.000	5756.95	5763.55	n/a	5763.55 j	4
6	6	6.40	18 c	142.2	5755.36	5756.78	0.999	5756.21	5757.75	0.44	5757.75	3
7	7	8.20	18 c	26.2	5754.00	5754.26	0.992	5755.00	5755.36	0.55	5755.90	2
he H	ills-C12 basins 5-yr						Nun	nber of line	s: 7	Run I	Date: 05-19	9-202

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	1	25.20	30 c	164.2	5747.30	5750.58	1.998	5752.81*	5753.43*	0.41	5753.84	End
2	2	25.20	30 c	25.9	5752.00	5752.52	2.004	5753.84	5754.20	n/a	5754.20	1
3	3	16.90	24 c	136.2	5753.50	5754.86	0.998	5754.79	5756.32	0.74	5756.32	2
4	4	5.40	18 c	81.2	5755.36	5756.17	0.998	5756.91	5757.06	n/a	5757.24 j	3
5	5	5.40	18 c	334.4	5756.27	5762.96	2.000	5757.47	5763.85	n/a	5763.85 j	4
6	6	11.50	18 c	142.2	5755.36	5756.78	0.999	5756.86*	5758.57*	0.66	5759.22	3
7	7	8.30	18 c	26.2	5754.00	5754.26	0.992	5755.01	5755.36	0.55	5755.92	2
The H	ills-C12 basins 100-y	r					Nur	nber of line	s: 7	Run	Date: 05-19	-2020

BASIN D1 STORM SCHEMATIC

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	line d1	16.18	24 c	270.0	5750.92	5761.45	3.900	5752.35	5762.88	n/a	5762.88 j	Enc
2	line d2	4.60	18 c	232.8	5763.05	5774.23	4.802	5763.51	5775.05	0.25	5775.05	1
3	line d3	4.60	18 c	77.2	5774.37	5775.14	0.998	5775.28	5775.96	n/a	5775.96 j	2
4	line d4	2.48	18 c	36.6	5763.05	5763.34	0.792	5763.58	5763.95	0.21	5764.16	1
5	line d5	9.10	24 c	14.2	5761.55	5761.69	0.989	5763.42	5763.43	0.08	5763.50	1
6	line d6	5.90	18 c	18.3	5762.30	5762.48	0.984	5763.50	5763.44	0.38	5763.82	5
'ho H	ills-D basins 5-yr						Nur	nber of line	s [.] 6	Run	Date: 05-19	-202

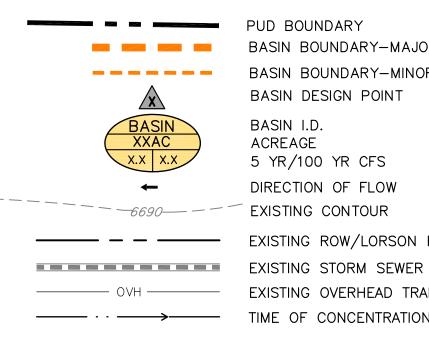
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	line d1	32.11	24 c	270.0	5750.92	5761.45	3.900	5752.81	5763.34	n/a	5763.34	End
2	line d2	10.10	18 c	232.8	5763.05	5774.23	4.802	5764.53	5775.44	n/a	5775.44 j	1
3	line d3	10.10	18 c	77.2	5774.37	5775.14	0.998	5775.61	5776.35	n/a	5776.35 j	2
4	line d4	3.57	18 c	36.6	5763.05	5763.34	0.792	5764.97*	5765.02*	0.06	5765.08	1
5	line d5	18.44	24 c	14.2	5761.55	5761.69	0.989	5764.50*	5764.60*	0.27	5764.86	1
6	line d6	13.00	18 c	18.3	5762.30	5762.48	0.984	5764.86*	5765.14*	0.84	5765.99	5
he H	ills-D basins 100-yr						Nun	nber of line:	s: 6	Run I	Date: 05-19	-202

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

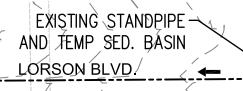
APPENDIX F – 2019 Annual Report of Drainage/Bridge Fee Credits

			Lorson Ranch D	Drair	nage/Surety Fees and D	raina	age Fee Report			
	Subdivision Name	D	rainage Fee		Surety		pay out	Credits	C	redit balance
06-491	credit established							\$ 6,804,637.69	\$	6,804,637.69
06-491	payout					\$	(403,041.97)		\$	6,401,595.72
07-485	payout					\$	(223,130.33)		\$	6,178,465.39
	Ponderosa Filing No. 1	\$	(151,208.00)			<u>^</u>	(000,000,00)		\$	6,027,257.39
	payout payout					\$ \$	(238,680.00) (65,250.00)		\$ \$	5,788,577.39 5,723,327.39
		\$	(400 705 00)			φ	(03,230.00)			
	Ponderosa Filing No. 2	-	(192,765.00)						\$	5,530,562.39
	Pioneer Landing	\$	(219,500.00)	-					\$	5,311,062.39
12-117	Townhomes at Lorson	\$	(68,512.50)						\$	5,242,549.89
	payout					\$	(187,200.00)		\$	5,055,349.89
13-478	payout	_				\$	(146,790.00)		\$	4,908,559.89
15-015	Ponderosa Filing No. 2			\$	(89,957.00)				\$	4,818,602.89
15-015	Pioneer Landing			\$	(102,433.00)				\$	4,716,169.89
15-015	Townhomes at Lorson			\$	(31,972.50)				\$	4,684,197.39
15-015	Buffalo Crossing No. 2	\$	(182,228.00)	\$	(85,040.00)				\$	4,416,929.39
15-239	payout					\$	(145,620.00)		\$	4,271,309.39
15-473	payout	\$	(149,292.00)						\$	4,122,017.39
16-091	credit established							\$ 745,604.28	\$	4,867,621.67
	Meadows Filing No. 1	\$	(181,578.00)	\$	(84,736.00)				s	4,601,307.67
	Meadows Filing No. 2	\$	(224,587.00)		(104,808.00)				ŝ	4,271,912.67
	Allegiant at Lorson	\$	(162,021.00)		(75,610.00)				\$	4,034,281.67
	Buffalo Crossing No. 1	\$	(78,975.00)		(36,855.00)				s	3,918,451.67
		Ψ	(10,915.00)	Ψ	(30,003.00)				ş	3,918,451.67
	Meadows 3	\$	(287,820.00)	\$	(134,316.00)				\$	3,496,315.67
	Meadows 4	\$	(464,200.00)		(216,626.00)				\$	2,815,489.67
	Pioneer Landing 2	\$	(370,756.00)		(165,095.00)				\$	2,279,638.67
	Carriage Meadows South	\$	(844,538.00)		(376,066.00)				ş Ş	1,059,034.67
	Carriage Meadows South	\$ \$	(296,184.00)		(132,618.00)				э S	630,232.67
		э \$	(15,832.00)		(132,618.00)					
	Pioneer Landing 3					<u> </u>			\$	607,311.67
	Lorson Ranch East Filing No. 1	\$	(899,058.00)	\$	(380,859.00)				\$	(672,605.33)
20-17	credit established							\$ 984,434.42	\$	311,829.09

´	s		1					
Subdivision Name		Drainage Fee		Surety	pay out	Credits	C	redit bal
CDR 19-002 (CD's not approved yet)						\$ 2,074,670.20	\$	2,07
Lorson Ranch East Filing No. 2	\$	(322,236.00)	\$	(136,506.00)			\$	1,61
Lorson Ranch East Filing No. 3	\$	(177,213.00)	\$	(70,354.00)			ŝ	1,36
Creekside at Lorson filing 1	\$	(429,894.00)	\$	(170,669.00)			\$	76
	\$ \$							\$ \$

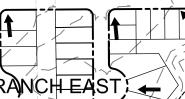

confirmed with resolution
current credit balance

	Subdivision Name	Bridge Fee	Total
1	Partial Reimbursement	\$ 26,579.14 \$	\$ 26,579.1
2	Partial Reimbursement		
3	Partial Reimbursement		
4	Partial Reimbursement		
5	Partial Reimbursement		
6	Partial Reimbursement		
7	Partial Reimbursement		
8	Partial Reimbursement		
9	Ponderosa Filing No. 1	\$ 5,481.00 \$	\$ 5,481.0
10	Ponderosa Filing No. 2	\$ 7,556.00 \$	\$ 7,556.0
11	Pioneer Landing		\$ 9,278.0
12	Meadows Filing No. 1		\$ 8,134.0
13	Meadows Filing No. 2		\$ 9,493.0
14	Townhomes at Lorson		\$ 2,896.0
15	Allegiant at Lorson	\$ 6,848.00 \$	\$ 6,848.0
16	Buffalo Crossing No. 1	¥ - j	\$ 3,538.0
17	Buffalo Crossing No. 2		\$ 8,164.0
18	Meadows 3		\$ 12,894.0
19	Meadows 4		\$ 20,796.0
20	Pioneer Landing 2		\$ 17,335.0
21	Carriage Meadows South		\$ 39,486.0
22	Carriage Meadows North		\$ 13,853.0
23	Pioneer Landing 3		\$ 741.0
24	Lorson Ranch East Filing No. 1		\$ 42,033.0
25	Lorson Ranch East Filing No. 2		\$ 15,064.0
26	Lorson Ranch East Filing No. 3		\$ 8,286.0
27	Creekside at Lorson Ranch Filing No. 1	\$ 20,100.00 \$	\$ 20,100.0
	Totals	\$ 278,555.14	\$ 278,555.1
		_	
		_	
	Total Bridge Fee Credits \$ 3,663,376.23	3 (2	2,330,713.90+1,332,662.3
	Total Bridge Fees \$ 278,555.14		_,,002.0
	Remaining \$ 3,384,821.09		


MAP POCKET

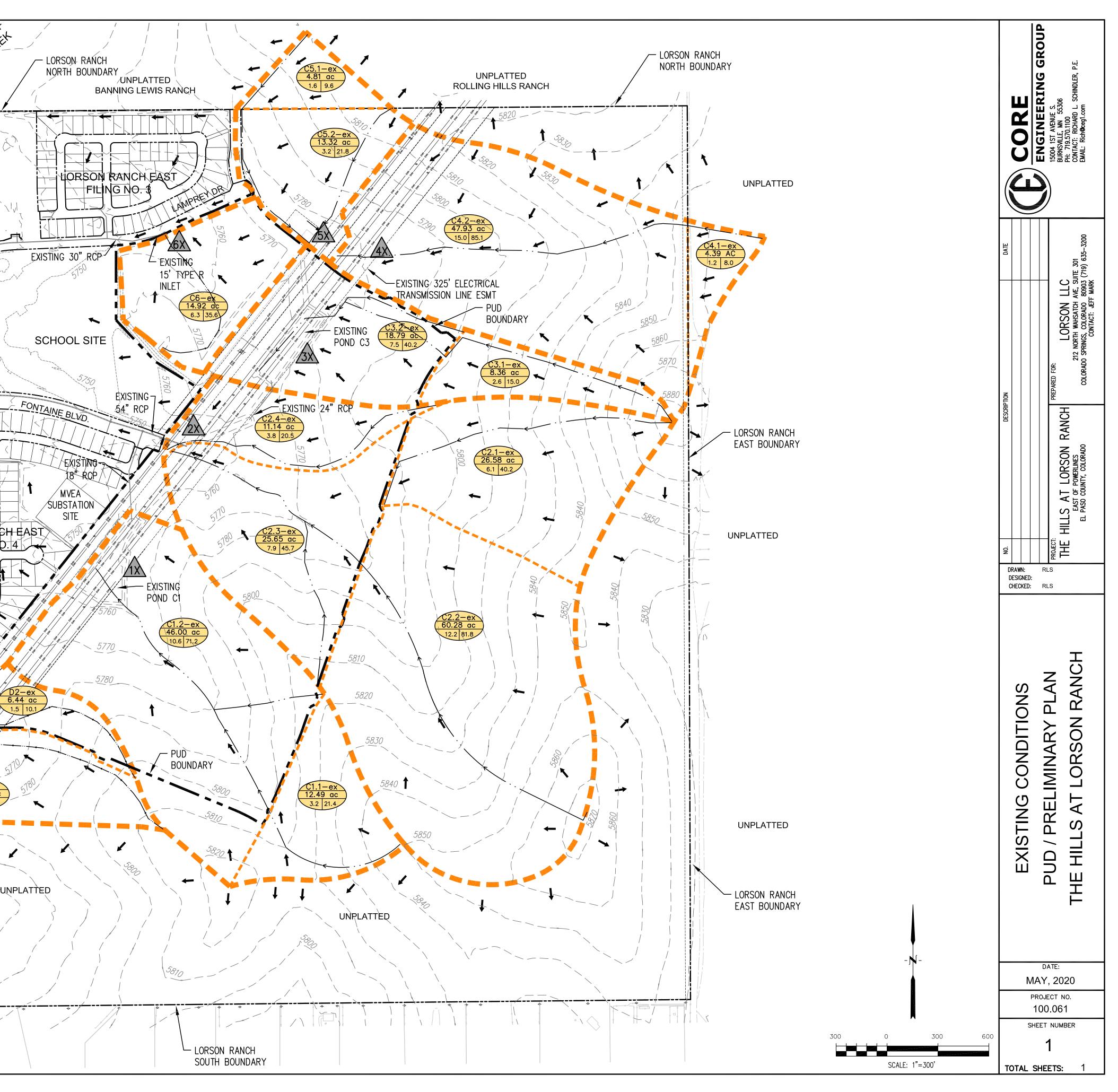
וט	ESIGN P	DINT SUM			
DESIGN POINT	BASIN	DRAINAGE AREA (AC)	RUNOFF 5 YR (CFS)	RUNOFF 100 YR (CFS)	COMMENT
1X	C1-ex	58.49	11.7cfs	78.8cfs	EX. FLOW INTO EX. POND C1
2X	C2-ex	123.65	24.8cfs	155.1cfs	EX. FLOW AT FONTAINE BLVD.
3X	C3-ex	27.15	7.7cfs	42.4cfs	EX. FLOW (C3.1-ex & C3.2-ex) INTO EX. POND C3
4X	C4-ex	52.32	15.2cfs	87.7cfs	EX. FLOW
5X	C5-ex	18.13	4.2cfs	27.2cfs	EX. FLOW
6X	C6-ex	14.92	6.3cfs	35.6cfs	EX. FLOW AT EX. INLET ON LAMPREY DR
7X	D2-ex	19.02	3.9cfs	26.4cfs	EX. FLOW AT EX. STANDPIPE-LORSON BLVD.

LEGEND

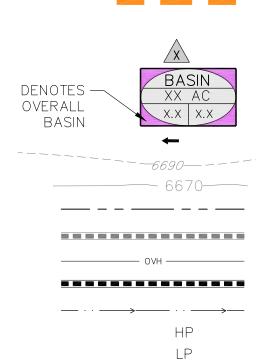

PUD BOUNDARY BASIN BOUNDARY-MAJOR BASIN BOUNDARY-MINOR BASIN DESIGN POINT BASIN I.D. ACREAGE 5 YR/100 YR CFS DIRECTION OF FLOW EXISTING CONTOUR EXISTING ROW/LORSON RANCH BOUNDARY EXISTING OVERHEAD TRANSMISSION LINES TIME OF CONCENTRATION

2.6 17.5

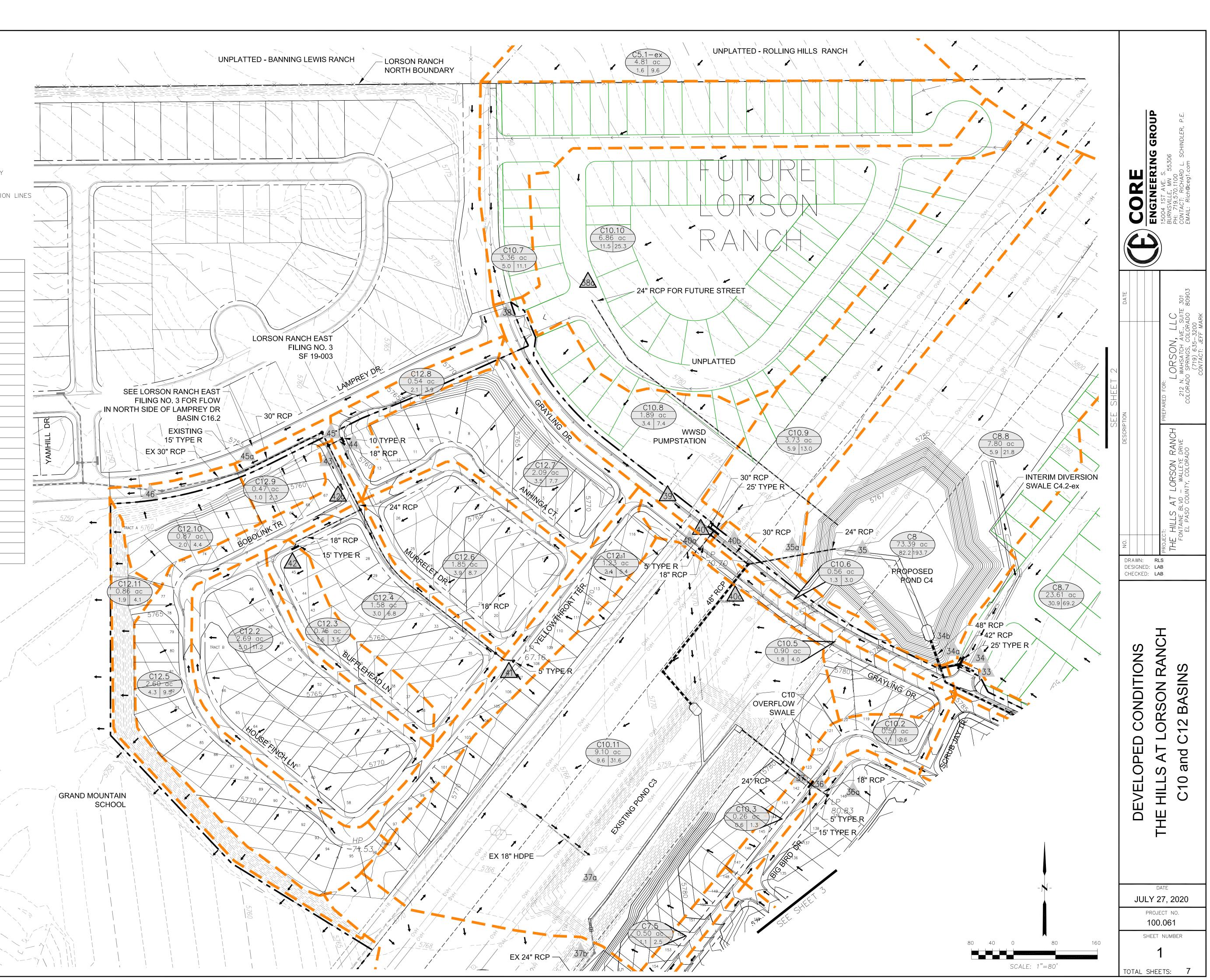
LORSON RANCH EAST

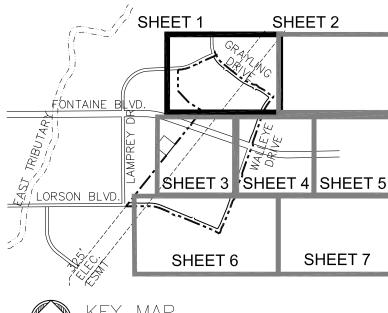

FILING NO. 4

5J10



<u>LEGEND</u>

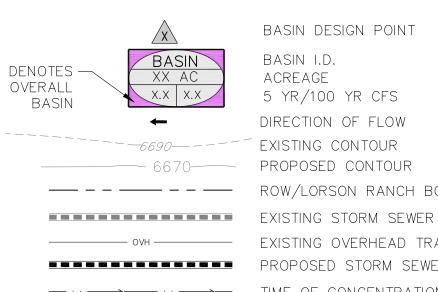

PUD BOUNDARY BASIN BOUNDARY

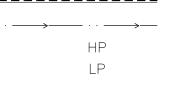


	BASIN DESIGN POINT
	BASIN I.D. ACREAGE 5 YR/100 YR CFS
	DIRECTION OF FLOW
_	EXISTING CONTOUR PROPOSED CONTOUR
	ROW/LORSON RANCH BOUNDARY
	EXISTING STORM SEWER
	EXISTING OVERHEAD TRANSMISSION PROPOSED STORM SEWER
	TIME OF CONCENTRATION

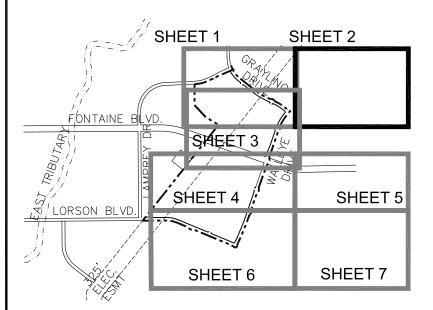
HIGH POINT LOW POINT

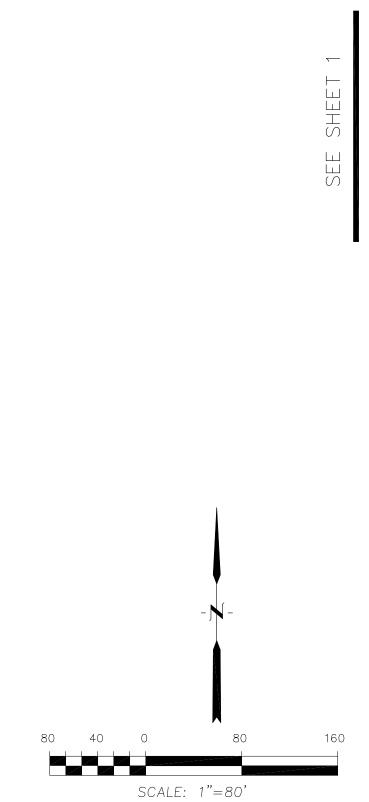
	RI	JNOFF SL	JMMARY
D.P.	5 YEAR cfs	100 YEAR cfs	NOTES
33	7.3	15.3	FLOW IN STORM SEWER
34	30.9	69.2	STREET FLOW
34a	38.2	84.5	FLOW IN STORM SEWER
34b	83.3	189.9	FLOW IN STORM SEWER
35	131.6	277.0	POND C4 INFLOW
35a	16.5	43.7	POND C4 OUTFLOW
36a	5.2	11.6	STREET FLOW
36	7.2	18.2	STREET FLOW
37	12.4	27.5	FLOW IN STORM SEWER
37a	41.2	111.6	POND C3 INFLOW
37b	4.9	32.1	POND C3 OUTFLOW
38a	11.5	25.3	FLOW IN STORM SEWER
38	6.8	21.9	STREET FLOW
39	8.8	25.7	STREET FLOW
40a	1.8	6.9	STREET FLOW
40	14.7	38.5	STREET FLOW
40b	16.5	42.5	FLOW IN STORM SEWER
40c	33.0	86.2	FLOW IN STORM SEWER
41	2.4	5.4	STREET FLOW
42	6.4	14.1	STREET FLOW
42a	8.8	16.9	FLOW IN STORM SEWER
43	7.3	18.9	STREET FLOW
44	8.2	9.4	STREET FLOW
45	 17.0	25.2	FLOW IN STORM SEWER
45a	8.0	30.6	STREET FLOW
46	24.9	40.0	FLOW IN STORM SEWER

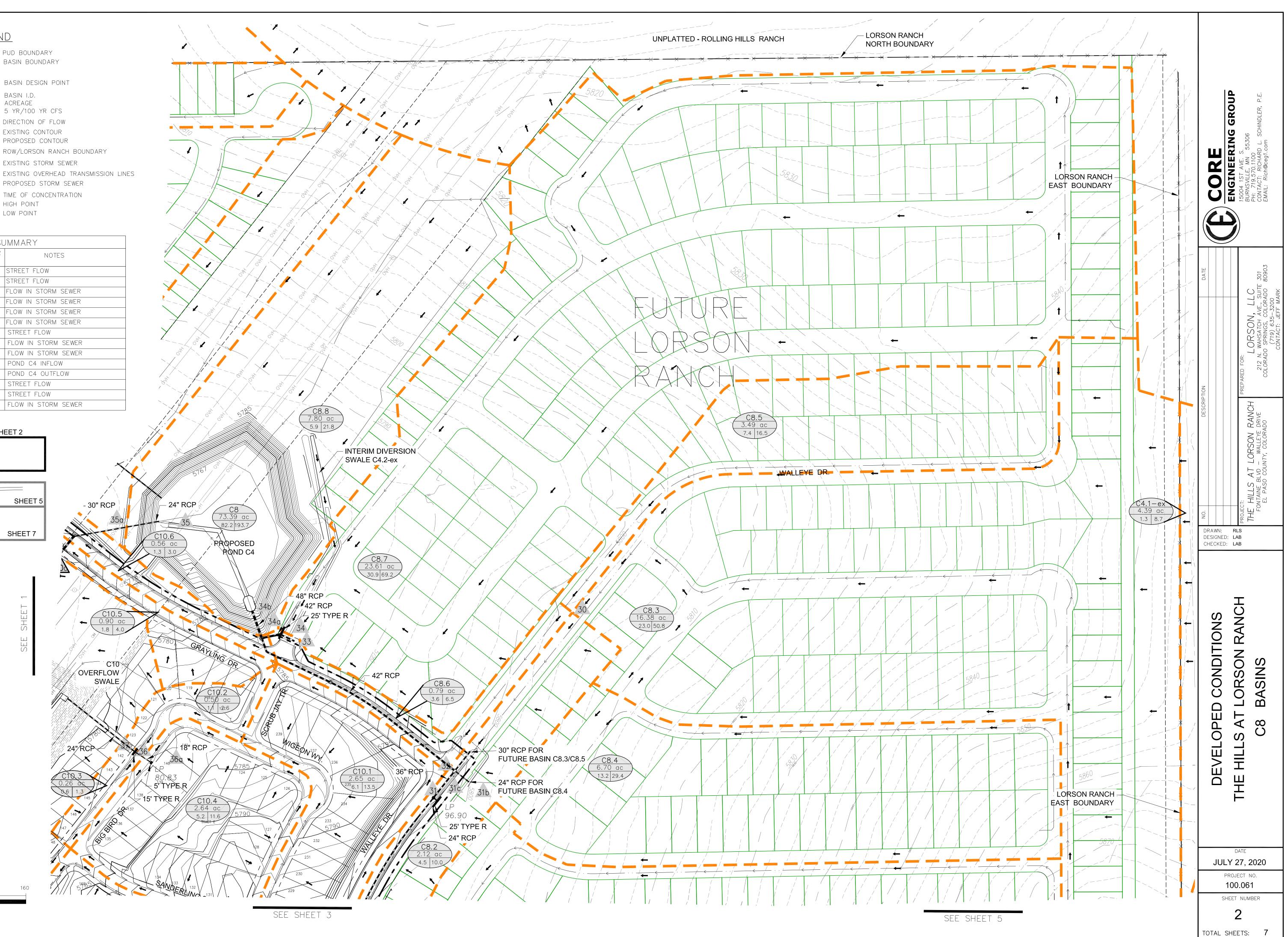

KEY MAP no scale

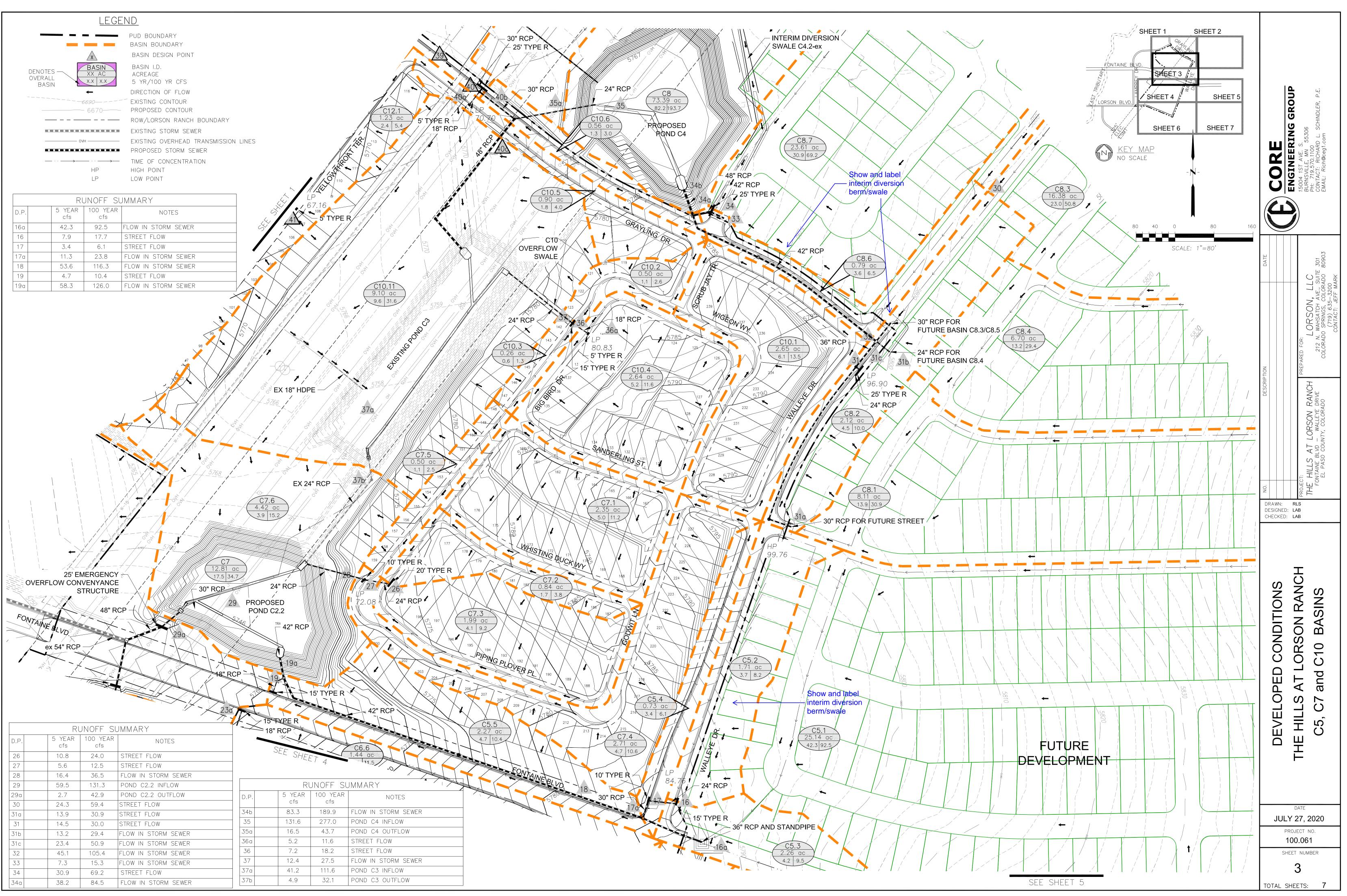


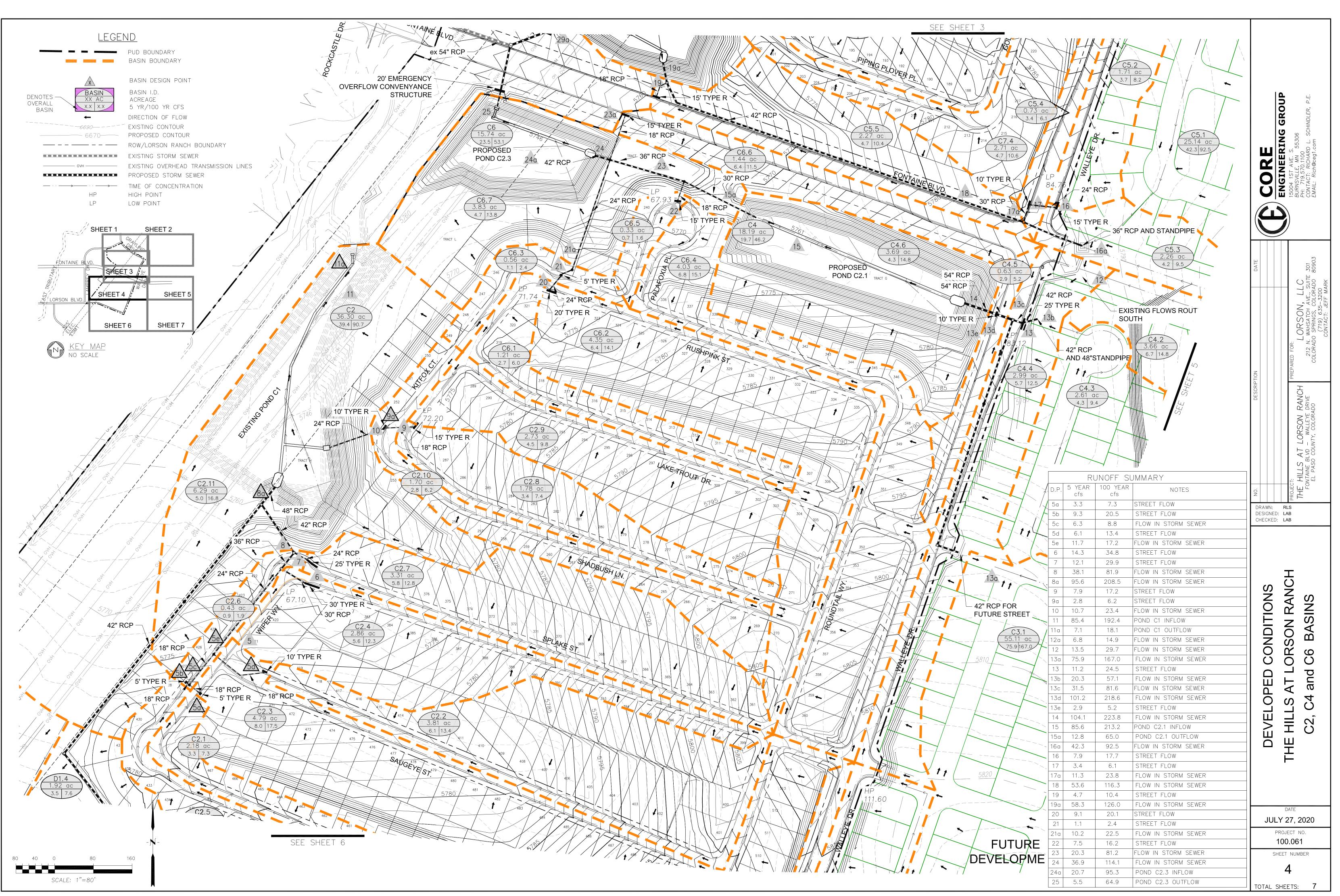
BASIN I.D.

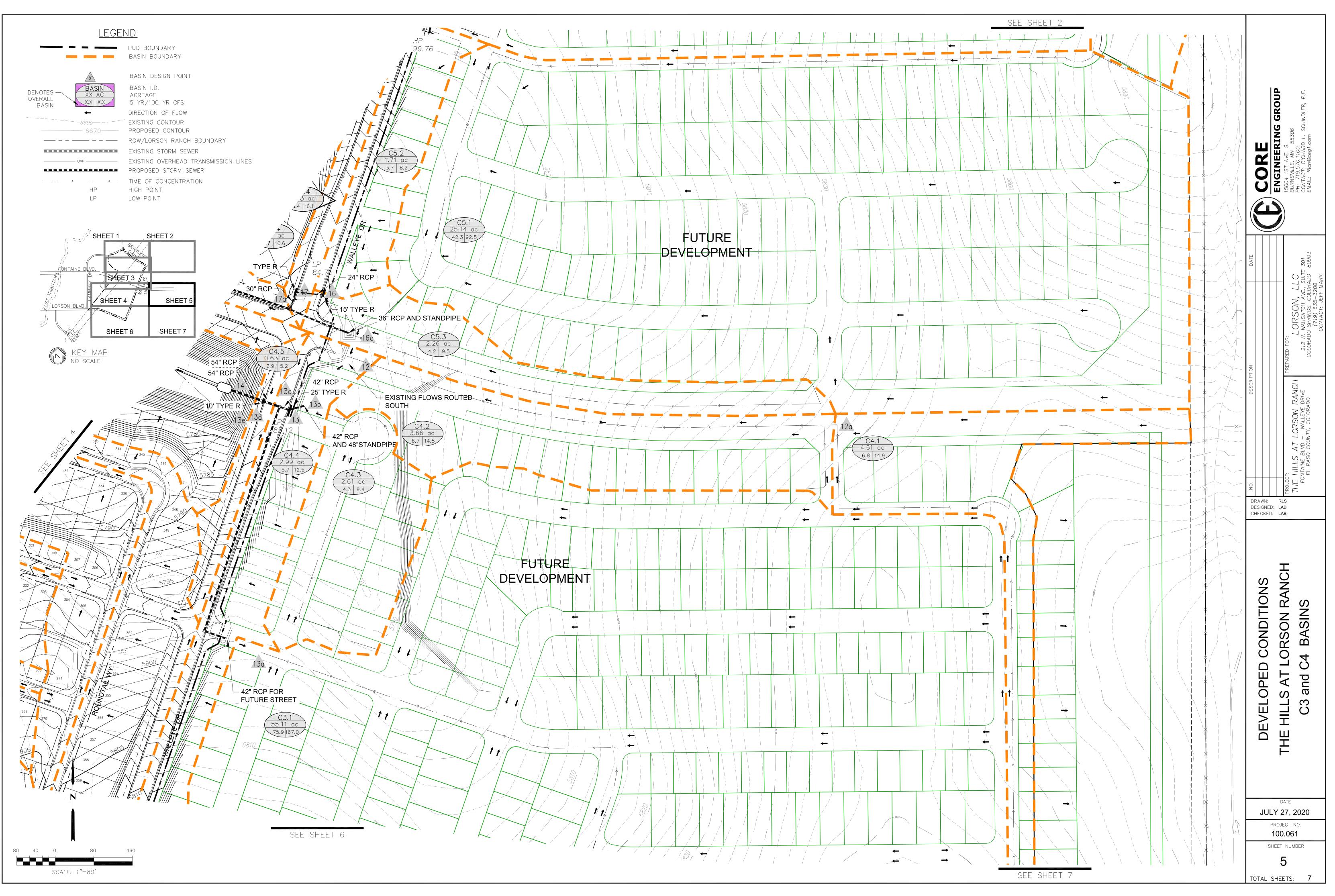

ACREAGE

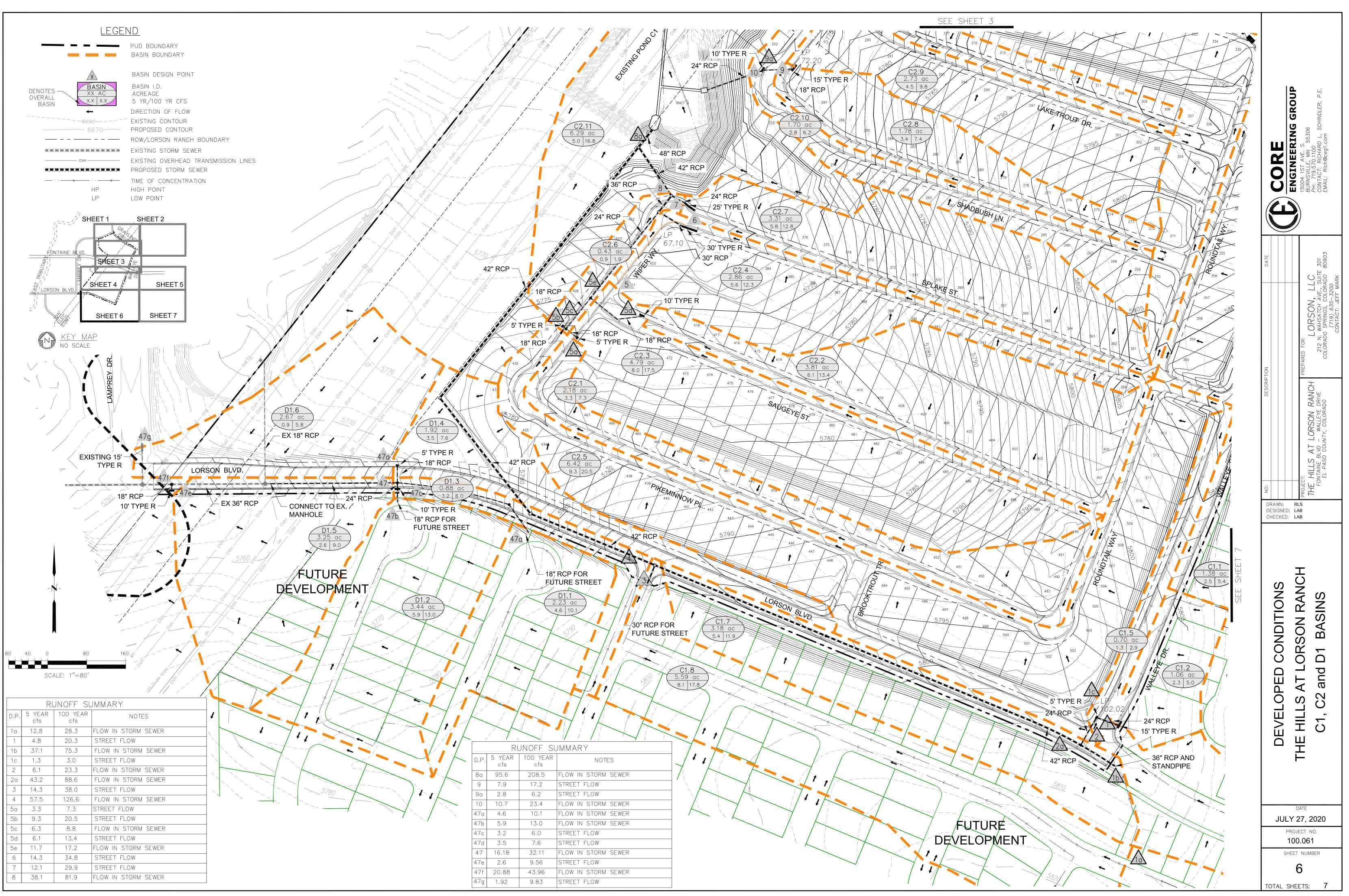


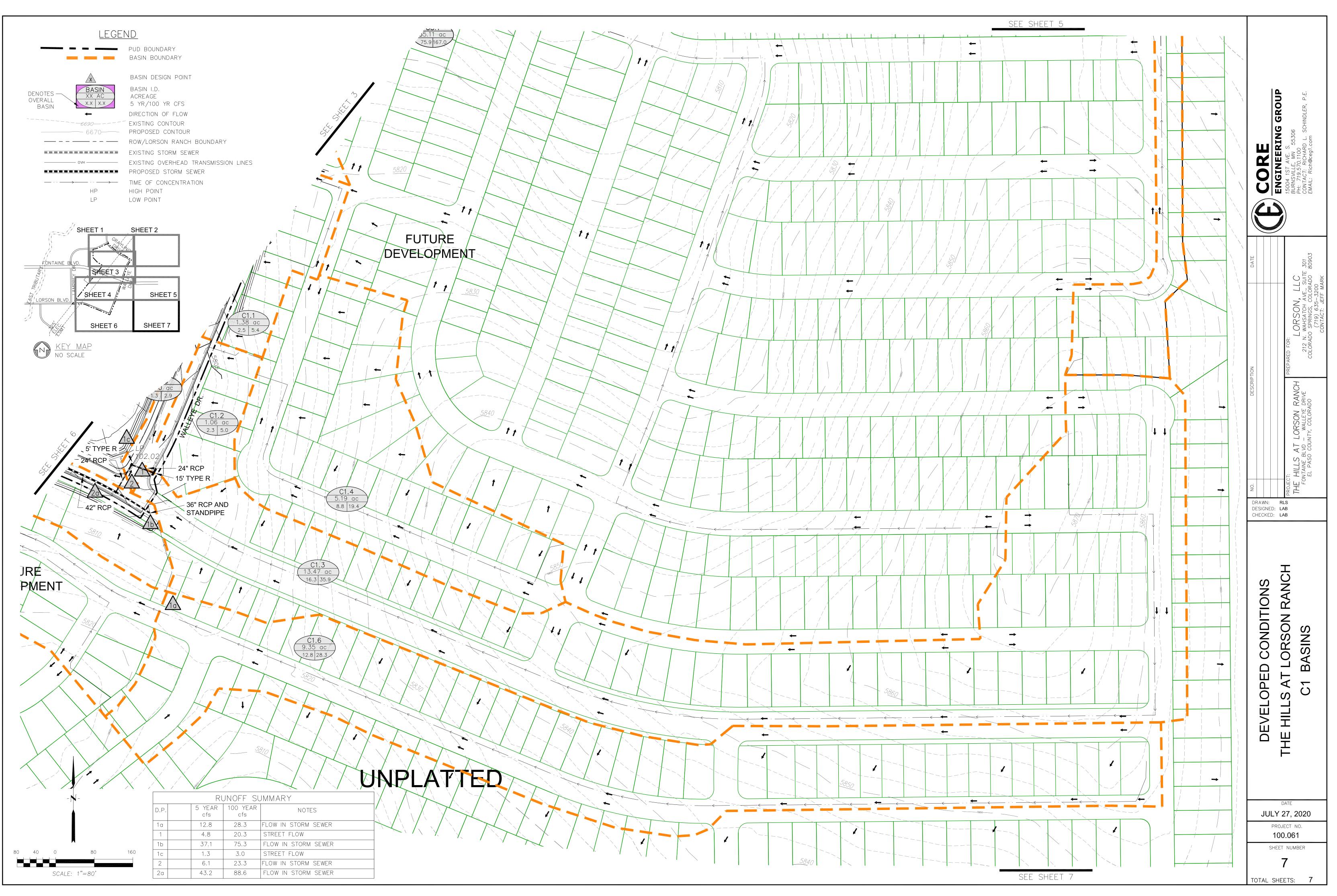

5 YR/100 YR CFS DIRECTION OF FLOW EXISTING CONTOUR PROPOSED CONTOUR PROPOSED STORM SEWER ------ TIME OF CONCENTRATION HIGH POINT LOW POINT


	Rl	JNOFF SL	JMMARY
D.P.	5 YEAR cfs	100 YEAR cfs	NOTES
30	24.3	59.4	STREET FLOW
31	14.5	30.0	STREET FLOW
31b	13.2	29.4	FLOW IN STORM SEWER
31c	23.4	50.9	FLOW IN STORM SEWER
32	45.1	105.4	FLOW IN STORM SEWER
33	7.3	15.3	FLOW IN STORM SEWER
34	30.9	69.2	STREET FLOW
34a	38.2	84.5	FLOW IN STORM SEWER
34b	83.3	189.9	FLOW IN STORM SEWER
35	131.6	277.0	POND C4 INFLOW
35a	16.5	43.7	POND C4 OUTFLOW
36a	5.2	11.6	STREET FLOW
36	7.2	18.2	STREET FLOW
37	12.4	27.5	FLOW IN STORM SEWER








□ □ 00 □ 00.061 □ drainage □ 00.061 − DevConditions.dwg Jul 24, 2020 − 11:

-: □00 □ 00.061 □drainage □ 00.061 – DevConditions.dwg Jul 24, 2020 – 11

