FINAL DRAINAGE REPORT: MARIAH TRAIL FILING NO. 1 MAJOR SUBDIVISION

A PORITION OF THE NORTHWEST QUARTER OF SECTION 17, TOWNSHIP 14 SOUTH, RANGE 66 WEST OF THE $6^{\text {TH }}$ P.M. COUNTY OF EL PASO, STATE OF COLORADO

Lots 1-6 Mariah Trail Filing No. 1
El Paso County, Colorado

Prepared for: Mr. Thomas Kirk, Jr.
19205 Mariah Trail
Colorado Springs, CO
EMAIL:

Latest revision date: May 3, 2023

Prepared by
Carlos Serrano, PE
Engineering Local Xperts

PROJECT No. 100678

Engineer's Statement

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the city/county for drainage reports and said report is in conformity with the master of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

SIGNATURE (Affix Seal):
Carlos David Serrano, Colorado P.E. No.: 52048
Date
For and on Behalf of Engineering Local Xperts

SEAL:

Developer's Statement

I, Mr. Thomas Kirk, Jr., the developer have read and will comply with all of the requirements specified in this drainage report and plan.

Name of Developer

Printed Name

Title

Address
Revise to state the following:
"El Paso County:
Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Table of Contents

1) Introduction 1
2) Existing Conditions 1
LOCATION 1
Existing Soils 1
Existing Drainage Conditions 1
3) Proposed Development 2
a) Proposed Drainage Conditions 3
4) Drainage Basins and Sub-Basins 4
a) Existing Major Drainage Basin and Sub-Basins 4
B) Developed Major Drainage Basin and Sub-Basins 6
C) Downstream Storm Infrastructure Evaluation 8
V. Summary 8
A. COMPLIANCE WITH StandardS 8
B. Drainage Basin and Bridge Fees 9
VI. References 9

Appendices

```
ApPendix A - Vicinity Map
APPENDIX B - FEMA FlOODPLAIN MAP
ApPENdix C - NRCS Soil Map
Appendix D - Replat and Site Plan
Appendix E - Hydrologic Computations
Appendix F - Hydraulic Computations
Appendix G - Hydrology Maps
```


1) Introduction

The purpose of this report is to identify on-site and offsite drainage patterns, assess stormwater conditions per delineated project sub-basins, demonstrate adequate design standards for storm water conveyance and release into the existing storm water system (on-site or off-site), and provide a narrative for any other drainage considerations on the development. The purpose of the project is to subdivide an existing 35 -acre RR-5 zoned parcel into six single-family residential lots as a Major Subdivision. A Drainage Letter is sufficient for the purposes of a final plat and "small subdivision" per County standards.

2) Existing Conditions

Location

The property of interest, henceforth referred to as the Site, addressed as 19205 Mariah Trail, is an unplatted 35 -acre RR-5 zoned parcel within El Paso County with Schedule No. 5100000511. The Site within the northwest quarter of Section 7, Township 11 South, Range 65 West of the sixth P.M.. The Site is south of the County's 60-foot right-of-way of Mariah Trail, a rural local gravel roadway. The property is accessed via a private access drive within a 16 -foot width common access easement (Reception No. 213070061). The adjacent properties or subdivisions are as follows:

North: El Creek Ranches Filing No. 1 (Lots 24-26)
East: 19275 Mariah Trail, Schedule No. 5100000512, Zoned RR-5, Unplatted 40.23 acre property
South: 18885 Brown Road, Schedule No. 5100000447, Zoned RR-5, Unplatted 61.55 acre property
West: Part of Section 12-11-66, Schedule No. 6100000224, Zoned RR-5, Unplatted 80 acre property

The Site is currently zoned RR-5 (Rural Residential), allowing 5-acre minimum lots with 25 -foot front, rear, and side setbacks for principal structures, and a 200-foot minimum lot frontage width.

Existing Solls

The soils indicative to the site are classified as Brussett loam and Peyton-Print complex by the USDA Soil Conservation Service and are listed as NRCS (National Resources Conservation Service) Hydrologic Soil Group B. A USDA Soil Map is provided in Appendix C.

Existing Drainage Conditions

The existing topography of the Site consists of slopes between 2.0 percent and 15 percent generally draining from the west to the east. There are several local topographic high points and grasslined swales across the property. The natural landscape comes to a swale located on the
eastern property boundary, central to the Site. The majority of the Site drains to this point where it continues to flow due east. The stormwater runoff to this area is via overland sheet flow and remains generally as sheet flow until the swale reduces in width downstream to channelized flow. The ultimate outfall location is East Cherry Creek approximately 1.5 miles east of the Site.

There are no major drainageways or existing facilities on the Site.
The Site lies within the East Cherry Creek Drainage Basin according to the El Paso County Drainage Basins map. There are no known non-stormwater discharges that contribute to the storm water systems on site and downstream, both private and public.

The project site does not lie within a designated floodplain according to information published in the Federal Emergency Management Agency Floodplain Map No. 08041C0305G, dated December 7, 2018. The FEMA FIRM panel is provided in Appendix B.

The existing percent imperviousness of the Site is less than 0.1% as evidence by aerial photography and site visits. The only non-vegetation land is a dirt path within a common access easement at the north of the Site. The existing vegetative cover of the Site is approximately 99.9\% with sparse native grasses and weeds, also as evidence by aerial photography and site visits.

3) Proposed Development

The proposed project scope is for a small subdivision for a total of six lots with a public 60^{\prime} width right-of-way extension for the roadway of Mariah Trail. A Final Plat and Major Development Plan show Lots 1 through 6 with minimum areas of 5 acres to meet RR-5 rural residential zoning standards. A 32' width gravel surface roadway is proposed as an extension of Mariah Trail with a cul-de-sac at the termination point of the proposed right-of-way for an emergency vehicle turnaround. The typical section of the roadway follows County Standard Detail SD-2-10, a 32' width gravel section with a 4% crown with roadside swales of minimum 2' depth within the 60' right-of-way section and an additional 5^{\prime} of public improvement easement on each side.

The small subdivision is to remain zoned as RR-5, allowing for single-family residences and accessory structures within the El Paso County zoning code's allowed land uses. Covenants for the Mariah Trail Filing No. 1 subdivision shall meet El Paso County land use and development standards at a minimum with the following minimum criteria per the County:

- Minimum 200' width lot frontage
- 25^{\prime} front, side, and rear principal building setbacks
- 25% maximum coverage
- 7\% Imperviousness (Table 3-1, Appendix L)

Proposed construction activity for the major subdivision is for the Mariah Trail right-of-way extension of the gravel roadway section and roadside ditch. Future developed lots are to connect

Per ECM Chap 3.2.8.B, "The proposed project or developed land use shall not change historical runoff values, cause downstream damage, or adversely impact adjacent properties." Increases from the historical flowrates are allowable (with or without full spectrum detention) if it is shown (via text and/or calcs) that the flow increase can be accommodated downstream (i.e., show that there is a suitable outfall, per ECM Chap 3.2.4). If applicable, reference the downstream facilities in a DBPS or MDDP. Per my comment on PDF pg 35 below, discuss the difference/increase in flows from existing to developed conditions.
to the gravel roadway with future driveways and $18^{\prime \prime}$ CMP culvert pipes within the roadside ditches. No driveway connections or culverts are proposed at this time.

The limits of disturbance and construction is to establish the roadway is approximately 4.0 acres or 11.4% of the total Site area. The interim developed condition is the initial roadway buildout of a gravel section with roadside ditches. Further interim conditions are to include driveways and culvert pipes from the roadway and lot development of single-family residences. The ultimate developed condition consists of a full build out of Lots 1 through 6 with single-family residences, driveways, hardscape, accessory structures, etc. to an assumed percent imperviousness of 7% per for the six lots per El Paso County criteria (Table 3-1, Appendix L). The total imperviousness of the Site is 8.82% for the ultimate developed condition which includes full development of all lots and the roadway.

This Drainage Letter demonstrates that Water Quality is met via the grass buffers of the large acre lots prior to exiting the Site within the concentrated swale area to the east. Runoff Reduction calculations are provided within the Appendix. While disturbance is over once acre for construction of the road, detention is not required for this rural major subdivision due to runoff reduction and infiltration within the site and a stabilized outfall exiting the site. A natural drainage swale exists on the eastern boundary that conveys stormwater due east toward the East Cherry Creek. This natural swale is not aformal drainageway and is a part of the existing topography of the Site. Appendix calculations show a cross section of the existing swale with calculations for stormwater velocities during the major and minor storm events.

The construction tirneline is anticipated to commence following the Subdivision Plat, Entitlements, and Construction Drawings processes with the County anticipated to be August 2023. Construction of the roadway is anticipated to take two months with final stabilization occurring in November of 2023. Erosion and sediment control measures for the Site are to be established prior to any disturbance or construction activity as required by the County and per the GEC Plan Set and Stormwater Management Report CDs and Drainage Map only show a riprap apron, which will not spread the flows. Flows will remain concentrated

a) Proposed Drainage Conditions

The final drainage pattern of the ultimate buildout of the small subdivision generally follows the existing conditions by sheet flowing west to east and flowing to the concentrated swale within the central east area of the Site. The difference between existing patterns and developed is that a gravel roadway will capture upstream (west) runoff in its swale and convey it to a culvert pipe at the low point of the roadway which will flow due east to a level spreader so that the stormwater will continue due east via overland sheet flow.

Increases in stormwater runoff due to impervious areas are treated for water quality via grass buffers as is expected in rural settings with large areas of undeveloped land. The gravel roadway extension experiences 100% water quality runoff reduction via grass buffers as shown in the Appendix calculations (UD-BMP).

There are no stream crossings located within the construction site boundary. The lots are not within a streamside boundary and there are no preservation easements or existing no-build areas on or within the vicinity of construction/disturbance. There are no anticipated negative impacts to surrounding or downstream developments or infrastructure as a result of development of this small subdivision.

The downstream outfall location of the site is along the east property boundary where a natural grasslined swale is located per existing topography. The major storm event does not have excessive stormwater velocities that would scour the natural swale and therefore is deemed stabilized.

4) Drainage Basins and Sub-Basins

a) Existing Major Drainage Basin and Sub-basins

Basin E1 (1.85 ac . ; $\mathrm{Q}_{5}=\mathbf{0 . 5 8} \mathbf{~ c f s}, \mathrm{Q}_{100}=\mathbf{4 . 2 3} \mathbf{~ c f s}$) is a sub-basin within the northwest corner of the Site that consists of undeveloped area with native grasses and open meadow/pasture. The drainage pattern of the sub-basin consist of overland sheet flow due northwest directed offsite to Design Point 1. There are no significant natural features or storm infrastructure that capture or convey the runoff and the stormwater continues due north offsite.

Basin E2 (28.42 ac. ; $Q_{5}=8.84$ cfs, $Q_{100}=64.91 \mathbf{c f s}$) is the sub-basin that consists of most of the undeveloped Site. The vast majority of the area consist of native grass and open meadow/pasture and the topography has natural grasslined swales that convey stormwater runoff due east toward the Site's outfall point at Design Point 2. There is existing fenceline and dirt trail within an existing access easement at the northeast area of the sub-basin. Most of the stormwater runoff is overland sheet flow and is concentrated within the existing natural grass swales that flow along the east property boundary. The outfall point at Design Point 2 is not a formal channel or drainage way and continues due east until it ultimately outfalling at the East Cherry Creek.

Basin E3 (0.83 ac . ; $\mathrm{Q}_{5}=\mathbf{0 . 2 6} \mathbf{c f s}, \mathrm{Q}_{100}=1.90 \mathrm{cfs}$) is a sub-basin within the southwest corner of the Site that consists of undeveloped area with native grasses and open meadow/pasture. The drainage pattern of the sub-basin consist of overland sheet flow due southeast directed offsite to Design Point 3. There are no significant natural features or storm infrastructure that capture or convey the runoff and the stormwater continues due southeast offsite toward East Cherry Creek.

Basin E4 (3.90 ac. ; $\mathrm{Q}_{5}=1.21 \mathrm{cfs}, \mathrm{Q}_{100}=8.91 \mathrm{cfs}$) is a sub-basin within the northeast corner of the Site that consists of undeveloped area with native grasses, open meadow/pasture, and a dirt pathway within an existing access easement. The drainage pattern of the sub-basin consist of overland sheet flow due northeast directed offsite to Design Point 4. There are no significant natural features or storm infrastructure that capture or convey the runoff and the stormwater continues due east offsite toward East Cherry Creek.

Basin OS1 ($0.64 \mathrm{ac} . ; \mathrm{Q}_{5}=\mathbf{0 . 2 0} \mathbf{~ c f s ,} \mathrm{Q}_{100}=1.46 \mathrm{cfs}$) is a relatively small sub-basin located off-site adjacent to the west property boundary of the Site. The stormwater runoff from this sub-basin contributes to sub-basin E2 and Design Point 2. There is a high point west of the Site that flows in all directions and this sub-basins drainage pattern is directed west through the Site via overland sheet flow. The area consist of native grasses and open meadow/pasture. The offsite basin is split into these two off-site sub-basins to be consistent with the developed conditions hydrology map's design points.

Basin OS2 (0.29 ac . ; $\mathrm{Q}_{5}=0.09 \mathrm{cfs}, \mathrm{Q}_{100}=\mathbf{0 . 6 6} \mathbf{c f s}$) is a relatively small sub-basin located off-site adjacent to the west property boundary of the Site. The stormwater runoff from this sub-basin contributes to sub-basin E2 and Design Point 2. There is a high point west of the Site that flows in all directions and this sub-basins drainage pattern is directed west through the Site via overland sheet flow. The area consist of native grasses and open meadow/pasture. The offsite basin is split into these two off-site sub-basins to be consistent with the developed conditions hydrology map's design points.

The total stormwater runoff for the existing conditions of the Site is 11.17 cfs for the minor (5year) storm event and 82.06 cfs for the major (100-year) storm event which includes offsite contributions.

The offsite stormwater runoff contribution to and through the Site is 0.29 cfs for the minor (5year) storm event and 2.12 cfs for the major (100-year) storm event.

The notable outfall point for the Site is Design Point 2, a grasslined swale that conveys stormwater runoff due east offsite toward East Cherry Creek. The existing conditions for the undeveloped Site contribute 9.13 cfs for the minor (5-year) storm event and 67.03 cfs for the major (100-year) storm event at this design point, including offsite contributions.

b) Developed Major Drainage Basin and Sub-basins

Basin D1 (1.85 ac. ; $Q_{5}=0.58 \mathrm{cfs}, \mathrm{Q}_{100}=4.23 \mathrm{cfs}$) is the sub-basin that corresponds to the Existing Conditions Hydrology Map's sub-basin E1. There are no changes to this sub-basin from existing undeveloped conditions because it is assumed that any Lot 1 development occurs within subbasin D2 to conservatively account for stormwater runoff to the developed roadway's ditch and culvert pipe. The sub-basin is within the northwest corner of the Site that consists of undeveloped area with native grasses and open meadow/pasture. The drainage pattern of the sub-basin consist of overland sheet flow due northwest directed offsite to Design Point 1. There are no significant natural features or storm infrastructure that capture or convey the runoff and the stormwater continues due north offsite.

Basin D2 (9.48 ac. ; $Q_{5}=\mathbf{5 . 6 5} \mathbf{c f s}, \mathrm{Q}_{100}=\mathbf{2 4 . 8 3} \mathbf{c f s}$) is a sub-basin on the west side of the developed gravel roadway, the extended Mariah Trail. The sub-basin consists of developed lots 1 and 2 with an assumed imperviousness of 7 percent. Undeveloped areas within the minimum 5-acre lots are assumed to remain meadow/pasture areas of native grasses. It also consists of the west side of the developed gravel roadway and it's roadside ditch that has a low point where a proposed 18 " CMP culvert pipe is located to flow under the roadway from west to east, at Design Point 5. The concentrated stormwater runoff from the culvert pipe continues east to Design Point 2, the existing grasslined swale that conveys most of the Site's stormwater runoff due east toward East Cherry Creek.

Basin D3 ($0.83 \mathrm{ac} . ; \mathrm{Q}_{5}=\mathbf{0 . 2 6} \mathbf{c f s}, \mathrm{Q}_{100}=1.90 \mathrm{cfs}$) is a sub-basin that corresponds to the Existing Conditions Hydrology Map's sub-basin E3. There are no changes to this sub-basin from existing undeveloped conditions because it is assumed that any Lot 3 development occurs within subbasin E4. The sub-basin is located within the southwest corner of the Site that consists of undeveloped area with native grasses and open meadow/pasture. The drainage pattern of the sub-basin consist of overland sheet flow due southeast directed offsite to Design Point 3. There are no significant natural features or storm infrastructure that capture or convey the runoff and the stormwater continues due southeast offsite toward East Cherry Creek.

Basin D4 (18.02 ac.; $Q_{5}=9.66$ cfs, $Q_{100}=45.97$ cfs) is a sub-basin that encompasses the south and east areas of the Site with developed lots $3,4,5$, and 6 with an assumed imperviousness of 7 percent. The sub-basin includes existing fenceline and some dirt trail within the existing access easement to the north of the Site. Undeveloped areas within the minimum 5-acre lots are assumed to remain meadow/pasture areas of native grasses. The sub-basin consists of overland sheet flow from the developed RR-5 lots toward existing natural topographic grasslined swales along the east property boundary that flow to Design Point 2 which conveys stormwater runoff due east offsite toward East Cherry Creek.

Basin D5 (0.92 ac. ; $Q_{5}=1.13$ cfs, $Q_{100}=3.07$ cfs) is a sub-basin that consists solely of the east side of the developed gravel roadway and roadside ditch. The sub-basin is delineated in order to model the capacity of the roadside ditch on the east side of the extended Mariah Trail roadway. The sub-basin consists of overland sheet flow from the developed gravel roadway into its east ditch where it is concentrated to a low point near the proposed $18^{\prime \prime}$ CMP culvert pipe outlet
point where the ditch outfalls along the lot line between lots 4 and 5. The stormwater runoff continues east to Design Point 2 which conveys stormwater runoff due east offsite toward East Cherry Creek.

Basin D6 (3.90 ac. ; $\mathbf{Q}_{5}=1.21$ cfs, $\mathrm{Q}_{100}=8.91$ cfs) is the sub-basin that corresponds to Existing Conditions Hydrology Map's sub-basin E4. There are no changes to this sub-basin from existing undeveloped conditions because it is assumed that any Lot 6 development occurs within subbasin D4 to conservatively account for stormwater runoff toward Design Point 2. It is the subbasin within the northeast corner of the Site that consists of undeveloped area with native grasses, open meadow/pasture, and a dirt pathway within an existing access easement. The drainage pattern of the sub-basin consist of overland sheet flow due northeast directed offsite to Design Point 4. There are no significant natural features or storm infrastructure that capture or convey the runoff and the stormwater continues due east offsite toward East Cherry Creek.

Basin OS1 ($\mathbf{0 . 6 4} \mathbf{~ a c .}$; $\mathrm{Q}_{5}=\mathbf{0 . 2 0} \mathbf{c f s}, \mathrm{Q}_{100}=1.46 \mathrm{cfs}$) is the sub-basin that corresponds to Existing Conditions Hydrology Map sub-basin OS1 and is unchanged from existing conditions. It is a relatively small sub-basin located off-site adjacent to the west property boundary of the Site. The stormwater runoff from this sub-basin contributes to sub-basin D2 and Design Point 5. There is a high point west of the Site that flows in all directions and this sub-basins drainage pattern is directed west through the Site via overland sheet flow. The area consist of native grasses and open meadow/pasture.

Basin OS2 (0.29 ac . ; $\mathrm{Q}_{5}=0.09 \mathrm{cfs}, \mathrm{Q}_{100}=0.66 \mathrm{cfs}$) is the sub-basin that corresponds to Existing Conditions Hydrology Map sub-basin OS1 and is unchanged from existing conditions. It is a relatively small sub-basin located off-site adjacent to the west property boundary of the Site. The stormwater runoff from this sub-basin contributes to sub-basin D4 and Design Point 2. There is a high point west of the Site that flows in all directions and this sub-basins drainage pattern is directed west through the Site via overland sheet flow. The area consist of native grasses and open meadow/pasture.

The total stormwater runoff for the existing conditions of the Site is 18.77 cfs for the minor (5year) storm event and 91.03 cfs for the major (100-year) storm event which includes offsite contributions. This is an increase of 7.6 cfs for the minor storm event and 8.97 cfs for the major storm event compared to existing undeveloped conditions. This is considered a relatively major increase in stormwater runoff due to development for a 35 acre onsite area with 0.93 acre offsite area.

The offsite stormwater runoff contribution to and through the Site remains 0.29 cfs for the minor (5-year) storm event and 2.12 cfs for the major (100-year) storm event.

The notable outfall point for the Site is Design Point 2, a grasslined swale that conveys stormwater runoff due east offsite toward East Cherry Creek. The developed conditions for the Site contribute 16.72 cfs for the minor (5-year) storm event and 76.00 cfs for the major (100year) storm event at this design point, including offsite contributions.

Update from 5.85 cfs to 26.30 cfs for the major storm or revise sentence to state design for the "minor storm"

Another notable design point is Design point 5 which culvert pipe that conveys stormwater runoff from b

See DCM 6-4 for overtopping requirements for rural roads. Update culvert analysis to include overtopping depth. Staff recommends HY-8 is used.
Size culvert accordingly. ravel roadway toward Design Point 2. The culvert pipe is to be sized for the major storm event which experiences 5.85 cfs . The emergency overflow condition of Design Point 5 consists of pooling within roadside ditch until overtopping the centerline of the roadway which is 2.64 feet above the culvert's inflow invert. Overtopping of the roadway results in overland flow due east toward Design Point 2. The emergency overflow conditions does not result in any negative impacts to onsite development of the lots nor downstream developments.

c) Downstream Storm Infrastructure Evaluation

There are no known drainage reports on file with El Paso County for this property or any nearby subdivisions that accqunt for this property as an offsite basin. However, due to the developed conditions of the Site remaining within the typical residential land use, it is anticipated that there will be no negative implacts to surrounding and downstream developments and infrastructure. An assessment of the existing natural drainage way on the east side of the Site is included within this report to demonstrate that the outfallof the major subdivision is stable and is an appropriate outfall that does not require detention or structural control measures to attenuate the stormwater runoff or provide additional energydissipation. The attachments did not include any information regarding velocity or froude numbers. Revise to include calculations for

V. Summary

The hydrology calculations presented in Appendix E and F channel and compare ECM requirements to existing channel parameters.
existing and developed hydrology maps presented in Appendix G visually present stormwater runoff drainage patterns for the Site and offsite areas. The developed conditions show the subdivided lots and the hydrology calculations and map quantify the developed roadway and each lot's runoff contribution to their respective design points. There is no alteration to the general drainage pattern of the Site and the proposed construction to the Site yields a minor increase to the total stormwater runloff from the onsite 35 acres and offsite 0.93 acres. It is anticipated that there will be no negatiye impacts to surrounding and downstream developments and infrastructure.

A. Compliance with Standards

The criteria used to design the storm water runoff volumes are formulas and figures within the El Paso County Engineering Criteria Manual, the El Paso County Drainage Criteria Manual, the City of Colorado Springs Drainage Manuals (DCM) Volumes 1 and 2. Tables 6-6 and Appendix L Table 3-1 of the EPC DCM was used for runoff coefficients for the Rational Method.

Appendix calculations show drainage way section calculations using Bentley's Flowmaster software. Water Quality Capture Volume is provided for the developed gravel roadway and developed lots via grass buffers of the naturally vegetated meadow/pasture areas of the Site, as shown in the Appendix with UD-BMP Runoff Reduction calculations. No onsite stormwater detention is required as the major subdivision consists of relatively major imperviousness
Per ECM 3.2.4 a suitable outfall is required for developed flows. Flows at this outfall increase by over 10% with development. Discuss in a narrative whether detention will be required based on the increase of the flows since the are not negligible at this moment.
Provide an analysis of the outfall and determine whether any protection improvements are necessary.
resulting in a relatively small increase to the stormwater runoff from the Site which is shown to have a stable outfall with capacity for the developed condition.

B. Drainage Basin and Bridge Fees

The Site is located within the East Cherry Creek drainage basin which does not have a drainage basin fee listed within the 2023 El Paso County Drainage, Bridge, and Pond Fee Schedule. All outstanding County fees are to be paid at the time of platting.

VI. References

El Paso County Engineering Criteria Manual, latest revision October 14, 2020
El Paso County Drainage Criteria Manual, latest revision October 31, 2018
City of Colorado Springs Drainage Manual Volumes I \& II (May 2014, Revised January 2021)
Mile High Flood District Drainage Criteria Manual, Volume I (January 2016)
FEMA Flood Map Service Center
United States Department of Agriculture National Resources Conservation Service

Appendix A: Vicinity Map

VICINITY MAP
MARIAH TRAIL FILING NO. 1
A PORTION OF THE NORTHWEST QUARTER OF SECTION 7, TOWNSHIP 11 SOUTH, RANGE 65 WEST, OF THE SIXTH PRINCIPAL MERIDIAN,

EL PASO COUNTY, COLORADO

Appendix B: FEMA Floodplain Map

National Flood Hazard Layer FIRMette

T11SR65W S007

0

250
1,000
eet

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT
SPECIAL FLOOD HAZARD AREAS
Without Base Flood Elevation (BFE) Zone A, V, A99 With BFE or Depth Zone AE, AO, AH, VE, AR
Regulatory Floodway

B- 20.2 Cross Sections with 1\% Annual Chance 17.5 Water Surface Elevation

- - - Coastal Transec
$m m 513 \mathrm{~mm}$ Base Flood Elevation Line (BFE)
L Limit of Study
— Jurisdiction Boundary
-- --- Coastal Transect Baseline
-

Hydrographic Feature

MAP PANELS
O

\therefore Digital Data Available

No Digital Data Available

Unmapped
The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 3/5/2023 at 10:49 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, egend, scale bar, map creation date, community identifiers, IRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Appendix C: NRCS Soils Map

MAP LEGEND

Area of Interest (AOI)	\square	C
\square Area of Interest (AOI)	\square	C/D
Soils \square		
Soil Rating Polygons \square		
$\square \mathrm{A}$	\square	Not rated or not available
A/D	Water Fe	ures
	\sim	Streams and Canals
B		
	Transpo	tion
B/D	H+	Rails
C	-	Interstate Highways
C/D	-	US Routes
D	\approx	Major Roads
Not rated or not available	\cdots	Local Roads
Soil Rating Lines	Backgro	
\cdots A		Aerial Photography
\cdots A/D		
\cdots		
\cdots B/D		
$\cdots \mathrm{C}$		
$\cdots \mathrm{C} / \mathrm{D}$		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \quad \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
$\square \mathrm{B} / \mathrm{D}$		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 20, Sep 2, 2022
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 9, 2021—Jun 12, 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
15	Brussett loam, 3 to 5 percent slopes	B	44.8	50.6%
69	Peyton-Pring complex, 8 to 15 percent slopes	B	43.7	49.4%
Totals for Area of Interest	$\mathbf{8 8 . 5}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C / D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Appendix D: Replat

Revise to remove this section.

Appendix E: Hydrology Calculations

Hydotogic Solit Tpe:

3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:
$t_{i}=$ overland (initial) flow time (min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	E1

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{C}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	80,586	1.85	0.08
At :	80,586	1.85	

$C_{c}=(0.08 * 1.85) / 1.85=$
0.08
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=\left(0.395^{*}(1.1-0.08)^{*} \operatorname{sqrt}(100)\right) /\left(0.039^{\wedge} 0.33\right)=$ \qquad mins

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).
$V=C_{v} S_{w}{ }^{0.5}$
(Eq. 6-9)

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

$V=C_{v} S_{w}{ }^{0.5}$	
$V=(20)(0.039)^{0.5}=$	$\mathbf{0 . 0 3} \mathrm{ft} / \mathrm{s}$
Flow Distance:	$\mathbf{0 . 0 0} \mathrm{ft}$
$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$	0.00
	$\mathbf{0 . 0 0} \mathrm{sec}$.
min.	

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$\mathbf{t}_{\mathrm{c}}=\mathrm{t}_{\mathrm{i}}+\mathrm{t}_{\mathrm{t}}=\quad \quad 11.75 \mathrm{~min}$.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes

Final t_{c} :
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:
$t_{i}=$ overland (initial) flow time (\min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	E2

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{C}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	$1,237,975$	28.42	0.08
At :	$1,237,975$	28.42	

$C_{c}=(0.08 * 28.42) / 28.42=$
0.08
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=(0.395 *(1.1-0.08) * \operatorname{sqrt}(300)) /\left(0.07^{\wedge} 0.33\right)=$ \qquad mins

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

$V=C_{v} S_{w}{ }^{0.5}$	
$V=(20)(0.059)^{0.5}=$	4.86
Flow Distance:	230.00
$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$	47.34
	0.79

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	\boldsymbol{C}_{v}		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$\mathbf{t}_{\mathbf{c}}=\mathrm{t}_{\mathbf{i}}+\mathbf{t}_{\mathbf{t}}=\quad 17.57$ min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes.

Final t_{c} :
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:
$t_{i}=$ overland (initial) flow time (\min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	E3

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{c}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	36,155	0.83	0.08
At :	36,155	0.83	

$C_{c}=(0.08 * 0.83) / 0.83=$
0.08
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=\left(0.395^{*}(1.1-0.08)^{*} \operatorname{sqrt}(100)\right) /\left(0.079^{\wedge} 0.33\right)=\quad 9.31 \mathrm{mins}$

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

$V=C_{v} S_{w}{ }^{0.5}$	
$V=(20)(0.079)^{0.5}=$	5.62
Flow Distance:	0.00
$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$	0.00
	0.00

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$\mathbf{t}_{\mathbf{c}}=\mathbf{t}_{\mathbf{i}}+\mathbf{t}_{\mathbf{t}}=\quad 9.31 \min$.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes

Final t_{c} :
9.31 min
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:

$$
t_{i}=\text { overland (initial) flow time (} \mathrm{min} \text {) }
$$

$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	E4

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{c}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	169,884	3.90	0.08
At :	169,884	3.90	

$C_{c}=(0.08 * 3.90) / 3.90=$
0.08
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=\left(0.395^{*}(1.1-0.08)^{*} \operatorname{sqrt}(100)\right) /\left(0.048^{\wedge} 0.33\right)=$ \qquad mins

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999)

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

$V=C_{v} S_{w}{ }^{0.5}$	
$V=(20)(0.048)^{0.5}=$	4.38
Flow Distance:	0.00
$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$	0.00
	0.00

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	\boldsymbol{C}_{v}		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$\mathbf{t}_{\mathbf{c}}=\mathbf{t}_{\mathbf{i}}+\mathbf{t}_{\mathbf{t}}=\quad 10.97$ min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes

Final t_{c} :
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:
$t_{i}=$ overland (initial) flow time (\min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	OS1
	[Table 6-6. Runoff Coefficients for Rational Method]
$\mathrm{C}_{5}:$	
$\mathrm{L}:$	$\mathbf{7 0}$
ft	
$\mathrm{S}:$	$\mathbf{0 . 0 1 6}$
$\mathrm{Syt} / \mathrm{ft}$	

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{C}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	27,878	0.64	0.08
At :	27,878	0.64	

$C_{c}=(0.08 * 0.64) / 0.64=$
0.08
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=\left(0.395^{*}(1.1-0.08)^{*} \operatorname{sqrt}(70)\right) /\left(0.016^{\wedge} 0.33\right)=\quad 13.19 \mathrm{~min}$

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999)

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)
$V=C_{v} S_{w}{ }^{0.5}$
$V=(20)(0.016)^{0.5}=\square \mathrm{ft} / \mathrm{s}$
Flow Distance:

$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$| $\mathbf{0 . 5 3} \mathrm{ft}$ |
| :--- |

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$\mathbf{t}_{\mathbf{c}}=\mathbf{t}_{\mathbf{i}}+\mathbf{t}_{\mathbf{t}}=\quad 13.19 \quad \min$.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes

Final t_{c} :
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:

$$
t_{i}=\text { overland (initial) flow time (} \mathrm{min} \text {) }
$$

$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	OS2

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{C}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	12,632	0.29	0.08
At :	12,632	0.29	

$C_{c}=(0.08 * 0.29) / 0.29=$
0.08
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=(0.395 *(1.1-0.08) * \operatorname{sqrt}(70)) /\left(0.021^{\wedge} 0.33\right)=$

12.06

 mins
3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:

$$
V=\text { velocity }(\mathrm{ft} / \mathrm{s})
$$

$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)
$V=C_{v} S_{w}{ }^{0.5}$
$V=(20)(0.021)^{0.5}=\square \mathrm{ft} / \mathrm{s}$
Flow Distance: $\quad \mathbf{0 . 9 0} \mathrm{ft}$

$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$| $\mathrm{0.00}$ | |
| :--- | :--- |
| $\mathrm{0.00}$ | $\mathrm{0.00}$ |
| min. | |

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$t_{c}=t_{i}+t_{t}=\quad 12.06$ min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes.

Final t_{c} :

| Hydrologicsoli Tyee: | B |
| :--- | :--- | :--- |

\square

[^0]

Cumulative Design Point Summary				
esign Point	Basis			$\alpha_{\text {a }}$
	DP5 +04, 05, 0, 02	${ }_{29,3}$		
		0.83		
	02,091	10.12		
Torat onssir			-18888	

3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:
$t_{i}=$ overland (initial) flow time (min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D1
[Table 6-6. Runoff Coefficients for Rational Method]	
$\mathrm{C}_{5}:$	$\mathbf{0 . 0 8}$
$\mathrm{L}:$	$\mathbf{1 0 0}$
$\mathrm{L}:$	ft
$\mathrm{S}:$	$\mathbf{0 . 0 3 9}$
$\mathrm{ft} / \mathrm{ft}$	

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{C}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	80,586	1.85	0.08
At :	80,586	1.85	

$C_{c}=(0.08 * 1.85) / 1.85=$
0.08
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=\left(0.395^{*}(1.1-0.08)^{*} \operatorname{sqrt}(100)\right) /\left(0.039^{\wedge} 0.33\right)=$ \qquad mins

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

$V=C_{v} S_{w}{ }^{0.5}$	
$V=(20)(0.039)^{0.5}=$	$\mathbf{0 . 0 3} \mathrm{ft} / \mathrm{s}$
Flow Distance:	$\mathbf{0 . 0 0} \mathrm{ft}$
$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$	0.00
	$\mathbf{0 . 0 0} \mathrm{sec}$.
min.	

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$\mathbf{t}_{\mathbf{c}}=\mathbf{t}_{\mathbf{i}}+\mathbf{t}_{\mathbf{t}}=\quad 11.75$ min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes

Final t_{c} :
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:

$$
t_{i}=\text { overland (initial) flow time (} \mathrm{min} \text {) }
$$

$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D2
[Table 6-6. Runoff Coefficients for Rational Method]	
$\mathrm{C}_{5}:$	$\mathbf{0 . 1 5}$
$\mathrm{L}:$	$\mathbf{1 0 0}$
$\mathrm{L}:$	ft
$\mathrm{S}:$	$\mathbf{0 . 0 6 2}$
$\mathrm{ft} / \mathrm{ft}$	

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	$\mathbf{C}_{\mathbf{5}}$
Roof + Hardscape	32,139	0.74	0.73
Gravel Roadway	18,448	0.42	0.59
Pasture/Meadow	362,363	8.32	0.08
At :	412,949	9.48	

$C_{c}=\left(0.73^{*} 0.74+0.59 * 0.42+0.08^{*} 8.32\right) / 9.48=$	0.15
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} \operatorname{sqrt}(L)\right) /\left(S^{\wedge} 0.33\right)$	
$t_{i}=\left(0.395^{*}(1.1-0.17)^{*} \operatorname{sqrt}(100)\right) /\left(0.062^{\wedge} 0.33\right)=\quad 9.36 \mathrm{mins}$	

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 6 25 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

$V=C_{v} S_{w}{ }^{0.5}$	
$V=(20)(0.02)^{0.5}=$	$\mathbf{2 . 8 3} \mathrm{ft} / \mathrm{s}$
Flow Distance:	$\mathbf{8 0 0 . 0 0} \mathrm{ft}$
$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$	$\mathrm{282.84} \mathrm{sec}$.

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	\boldsymbol{C}_{v}			
Heavy meadow	2.5			
Tillage/field	5			
Riprap (not buried) ${ }^{*}$	6.5			
Short pasture and lawns	7			
Nearly bare ground	10			
Grassed waterway	15			
Paved areas and shallow paved swales				20

$\mathbf{t}_{\mathbf{c}}=\mathrm{t}_{\mathbf{i}}+\mathbf{t}_{\mathbf{t}}=\quad 14.07 \mathrm{~min}$.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes

Final t_{c} :
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:
$t_{i}=$ overland (initial) flow time (\min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D3

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{c}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	36,155	0.83	0.08
At :	36,155	0.83	

$C_{c}=(0.08 * 0.83) / 0.83=$
0.08
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=\left(0.395^{*}(1.1-0.08)^{*} \operatorname{sqrt}(100)\right) /\left(0.079^{\wedge} 0.33\right)=\quad 9.31 \mathrm{mins}$

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)
$V=C_{v} S_{w}{ }^{0.5}$
$V=(20)(0.079)^{0.5}=\square \mathrm{ft} / \mathrm{s}$
Flow Distance: $\quad \mathbf{5 . 6 2} \mathrm{ft}$

$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$| $\mathrm{0.00}$ | |
| :--- | :--- |
| $\mathrm{0.00}$ | sec. |

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$\mathbf{t}_{\mathbf{c}}=\mathbf{t}_{\mathbf{i}}+\mathbf{t}_{\mathbf{t}}=\quad 9.31 \min$.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes

Final t_{c} :
9.31 min
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:
$t_{i}=$ overland (initial) flow time (\min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D4
	[Table 6-6. Runoff Coefficients for Rational Method]
$\mathrm{C}_{5}:$	
$\mathrm{L}:$	$\mathbf{1 0 0}$
ft	
$\mathrm{S}:$	$\mathbf{0 . 0 8 5}$
$\mathrm{Syt} / \mathrm{ft}$	

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	$\mathbf{C}_{\mathbf{5}}$
Roof + Hardscape	69,888	1.60	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	715,064	16.42	0.08
At :	784,951	18.02	

$C_{c}=(0.73 * 1.60+0.08 * 16.42) / 18.02=\quad 0.14$
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=\left(0.395^{*}(1.1-0.14)^{*} \operatorname{sqrt}(100)\right) /\left(0.085^{\wedge} 0.33\right)=\quad 8.57 \mathrm{mins}$

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999)

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

$V=C_{v} S_{w}{ }^{0.5}$
$V=(20)(0.042)^{0.5}=\frac{4.10}{} \mathrm{ft} / \mathrm{s}$
Flow Distance: $\quad \mathbf{9 0 0 . 0 0} \mathrm{ft}$
$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$
$\mathbf{2 1 9 . 5 8} \mathrm{sec}$.

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	\boldsymbol{C}_{v}		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$\mathbf{t}_{\mathbf{c}}=\mathrm{t}_{\mathbf{i}}+\mathrm{t}_{\mathrm{t}}=\quad 12.23 \quad \min$.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes

Final t_{c} :
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:
$t_{i}=$ overland (initial) flow time (\min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D5
	[Table 6-6. Runoff Coefficients for Rational Method]
$\mathrm{C}_{5}:$	
$\mathrm{L}:$	$\mathbf{2 8}$
ft	
$\mathrm{S}:$	$\mathbf{0 . 0 4}$
St	$\mathrm{ft} / \mathrm{ft}$

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{c}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	18,448	0.42	0.59
Pasture/Meadow	21,628	0.50	0.08
At :	40,075	0.92	

$C_{c}=(0.59 * 0.42+0.08 * 0.50) / 0.92=$
0.31
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=\left(0.395^{*}(1.1-0.31)^{*} \operatorname{sqrt}(28)\right) /\left(0.04^{\wedge} 0.33\right)=\quad 4.75 \mathrm{mins}$

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:

$$
V=\text { velocity }(\mathrm{ft} / \mathrm{s})
$$

$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

$V=C_{v} S_{w}{ }^{0.5}$	
$V=(20)(0.02)^{0.5}=$	2.83
Flow Distance:	840.00
$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$	296.98
	4.95

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$\mathrm{t}_{\mathrm{c}}=\mathrm{t}_{\mathrm{i}}+\mathrm{t}_{\mathrm{t}}=\quad 9.70$ min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes

Final t_{c} : \min.
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:
$t_{i}=$ overland (initial) flow time (\min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D6
[Table 6-6. Runoff Coefficients for Rational Method]	
$\mathrm{C}_{5}:$	$\mathbf{0 . 0 8}$
$\mathrm{L}:$	$\mathbf{1 0 0}$
$\mathrm{L}:$	ft
$\mathrm{S}:$	$\mathbf{0 . 0 4 8}$
fy	$\mathrm{ft} / \mathrm{ft}$

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{c}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	169,884	3.90	0.08
At :	169,884	3.90	

$C_{c}=(0.08 * 3.90) / 3.90=$
0.08
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=\left(0.395^{*}(1.1-0.08)^{*} \operatorname{sqrt}(100)\right) /\left(0.048^{\wedge} 0.33\right)=$ \qquad mins

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 6 25 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)
$V=C_{v} S_{w}{ }^{0.5}$
$V=(20)(0.048)^{0.5}=\square \mathrm{ft} / \mathrm{s}$
Flow Distance:

$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$| $\mathbf{0 . 3 8} \mathrm{ft}$ | |
| :--- | :--- |
| | 0.00 |
| $\mathrm{0.00}$ | min. |

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	\boldsymbol{C}_{v}		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$\mathbf{t}_{\mathbf{c}}=\mathbf{t}_{\mathbf{i}}+\mathbf{t}_{\mathbf{t}}=\quad 10.97$ min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes

Final t_{c} :
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:
$t_{i}=$ overland (initial) flow time (\min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	OS1
	[Table 6-6. Runoff Coefficients for Rational Method]
$\mathrm{C}_{5}:$	
$\mathrm{L}:$	$\mathbf{7 0}$
ft	
$\mathrm{S}:$	$\mathbf{0 . 0 1 6}$
$\mathrm{Syt} / \mathrm{ft}$	

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{C}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	27,878	0.64	0.08
At :	27,878	0.64	

$C_{c}=(0.08 * 0.64) / 0.64=$
0.08
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=\left(0.395^{*}(1.1-0.08)^{*} \operatorname{sqrt}(70)\right) /\left(0.016^{\wedge} 0.33\right)=\quad 13.19 \mathrm{~min}$

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999)

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)
$V=C_{v} S_{w}{ }^{0.5}$
$V=(20)(0.016)^{0.5}=\square \mathrm{ft} / \mathrm{s}$
Flow Distance:

$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$| $\mathbf{0 . 5 3} \mathrm{ft}$ |
| :--- |

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$\mathbf{t}_{\mathbf{c}}=\mathbf{t}_{\mathbf{i}}+\mathbf{t}_{\mathbf{t}}=\quad 13.19 \quad \min$.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes

Final t_{c} :
3.2.1 - Overland (Initial) Flow Time

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}}
$$

Where:

$$
t_{i}=\text { overland (initial) flow time (} \mathrm{min} \text {) }
$$

$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	OS2

Composite Runoff Coefficient Calculation:
$C_{c}=\left(C_{1} A_{1}+C_{2} A_{2}+C_{3} A_{3}+\ldots . . C_{i} A_{i}\right) / A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	\mathbf{C}_{5}
Roof + Hardscape	-	0.00	0.73
Gravel Roadway	-	0.00	0.59
Pasture/Meadow	12,632	0.29	0.08
At :	12,632	0.29	

$C_{c}=(0.08 * 0.29) / 0.29=$
0.08
$t_{i}=\left(0.395^{*}\left(1.1-C_{5}\right)^{*} s q r t(L)\right) /\left(S^{\wedge} 0.33\right)$
$t_{i}=(0.395 *(1.1-0.08) * \operatorname{sqrt}(70)) /\left(0.021^{\wedge} 0.33\right)=$

12.06

 mins
3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:

$$
V=\text { velocity }(\mathrm{ft} / \mathrm{s})
$$

$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)
$V=C_{v} S_{w}{ }^{0.5}$
$V=(20)(0.021)^{0.5}=\square \mathrm{ft} / \mathrm{s}$
Flow Distance: $\quad \mathbf{0 . 9 0} \mathrm{ft}$

$\mathrm{t}_{\mathrm{t}}=\mathrm{L} / \mathrm{V}=$| $\mathrm{0.00}$ | |
| :--- | :--- |
| $\mathrm{0.00}$ | $\mathrm{0.00}$ |
| min. | |

Table 6-7. Conveyance Coefficient, $\boldsymbol{C}_{\boldsymbol{v}}$

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$		
Heavy meadow	2.5		
Tillage/field	5		
Riprap (not buried) ${ }^{*}$	6.5		
Short pasture and lawns	7		
Nearly bare ground	10		
Grassed waterway	15		
Paved areas and shallow paved swales			20

$t_{c}=t_{i}+t_{t}=\quad 12.06$ min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes.

Final t_{c} :

Appendix F: Hydraulic Calculations

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: MARIAH TRAIL FILING NO. 1
Pipe ID: PIPE 1-18" CULVERT PIPE UNDER ROADWAY

Design Information (Input)			
Pipe Invert Slope	So $=$	0.0200	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0200	
Pipe Diameter	$\mathrm{D}=$	18.00	inches
Design discharge	Q =	5.85	cfs $<$
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	1.77	sq ft
Full-flow wetted perimeter	Pf $=$	4.71	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf $=$	9.68	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.69	radians
Flow area	An =	1.02	sq ft
Top width	$\mathrm{Tn}=$	1.49	ft
Wetted perimeter	$\mathrm{Pn}=$	2.54	ft
Flow depth	$\mathrm{Yn}=$	0.84	ft
Flow velocity	$\mathrm{Vn}=$	5.74	fps
Discharge	Qn =	5.85	cfs
Percent of Full Flow	Flow $=$	60.4\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.22	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.82	radians
Critical flow area	$\mathrm{Ac}=$	1.16	sq ft
Critical top width	$\mathrm{Tc}=$	1.45	ft
Critical flow depth	$\mathrm{Yc}=$	0.93	ft
Critical flow velocity	$\mathrm{Vc}=$	5.06	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

Section A-A

Project Description	
Friction Method	Manning
Solve For	Normula
Input Data	
Channel Slope	$0.047 \mathrm{ft} / \mathrm{ft}$
Normal Depth	7.3 in
Discharge	50.00 cfs

> Show section location on the drainage map

Section B-B

Show section location on the drainage map

Appendix G: Drainage Maps

[^0]: \square

