

LSC TRANSPORTATION CONSULTANTS, INC. 545 East Pikes Peak Avenue, Suite 210 Colorado Springs, CO 80903 (719) 633-2868 FAX (719) 633-5430 E-mail: <u>lsc@lsctrans.com</u> Website: http://www.lsctrans.com

Lorson Ranch PK-8 School Traffic Impact and Access Analysis (LSC #184180) May 11, 2018

Traffic Engineer's Statement

This traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Developer's Statement

I, the Developer, have read and will comply with all commitments made on my behalf within this report.

LSC TRANSPORTATION CONSULTANTS, INC. 545 East Pikes Peak Avenue, Suite 210 Colorado Springs, CO 80903 (719) 633-2868 FAX (719) 633-5430 E-mail: <u>lsc@lsctrans.com</u> Website: http://www.lsctrans.com

May 11, 2018

Mr. Dennis Neal Widefield School District 3645 Widefield Drive Colorado Springs, CO 80911

> RE: Lorson Ranch PK-8 School El Paso County, Colorado Traffic Impact and Access Analysis LSC #184180

Dear Mr. Neal:

LSC Transportation Consultants, Inc. has prepared this traffic impact analysis for the proposed Lorson Ranch school to be located within the Lorson Ranch East development in El Paso County, Colorado. The site location is shown on Figure 1.

REPORT CONTENTS

The report contains the following:

- Recent/current street and traffic conditions in the vicinity of the site and the recent report for Lorson Ranch East for identification of existing and planned street widths, lane geometries, traffic controls, posted speed limits, street classification, etc.
- Existing traffic volumes at the key intersections in the vicinity of the site and estimates of short-term and 2040 background traffic volumes.
- The projected average weekday and peak-hour vehicle trips to be generated by the proposed school.
- The assignment of the projected trips to the existing and planned street system.
- The resulting short-term and 2040 total traffic volumes on the street system.
- The resulting traffic impacts. The traffic impacts have been quantified by determining the future levels of service at the intersections of Marksheffel Road/Fontaine Boulevard, Lamprey Drive/Fontaine Boulevard and the proposed site access point intersections on Fontaine Boulevard.
- An estimate of the on-site vehicle stacking/queuing distances needed to accommodate buses and morning and afternoon peak parent drop-off and pick-up queues.
- Recommendations for street functional classification, traffic controls, and auxiliary turn lanes.

SITE DEVELOPMENT AND LAND USE

Land Use

A school for students from pre-school to eighth grade is planned to be located northeast of the future intersection of Fontaine Boulevard and Lamprey Drive within the Lorson Ranch development. The school is planned to be constructed in a single phase. At buildout the school is planned to support about 990 students. This includes about 90 preschool-aged students (45 students during the morning session and 45 students in the afternoon session) and 100 students in each grade from kindergarten to eighth grade.

The school district is currently in the process of updating their school boundary map, however they anticipate that a very high percentage of the students who will attend the proposed school would live within the Lorson Ranch development. A bell schedule has also not been set, however, based on the bell schedule of existing schools within the district and the constraints of the school bus schedules, it is anticipated that the middle level students (sixth through eighth grade) would start 30 to 45 minutes before the elementary level students and the preschool would start 30 minutes after the elementary level students.

Access Points

Provide times assumed in this report.

The site plan is shown in Figure 2. A bus loop is planned on the north side of the campus with access to Lamprey Drive about 1,250 feet northeast of Fontaine Boulevard aligning with Shavers Drive. The district estimates about four buses will serve the proposed school.

Access for staff and visitor parking and the parent pick-up and drop-off loop is proposed to Fontaine Boulevard. An entrance-only access is proposed about 955 feet east of Lamprey. A right-turn only exit is proposed about 480 feet to the west (475 feet east of Lamprey). Vehicles wishing to travel east on Fontaine Boulevard after exiting the school will be able to perform a U-turn at the Fontaine/Lamprey roundabout intersection.

Sight Distance

Figure 3 shows the sight distance analysis for the bus loop intersection to Lamprey Drive. The analysis is based on a design speed of 40 miles per hour.

Pedestrian and Bicycle Route Analysis

Figure 4 shows a pedestrian and bicycle route analysis for the school.

On-Site Circulation

The parent pick-up/drop-off loop shown on the site plan shows about 500 feet of on-site stacking distance. Based on an empirical formula developed by the Municipal School Transportation

Assistance (MSTA) for the North Carolina Department of Transportation (note: this is used locally by the City of Colorado Springs), a high demand stacking distance of 1,391 feet would be required during the elementary school peak period and 659 feet would be required during the middle school peak periods. The high demand queue length is a precaution for atypical events, including bad weather, school performances, and other special events. The proposed 30- to 45-minute offset between the middle level and elementary bell times should provide adequate time for the queues to dissipate such that it will only be necessary to provide the higher of the two predicted stacking lengths (1,391 feet). This queue distance is exclusive of a recommended five- to seven-vehicle-long drop-off/pick-up zone. Figure 5 shows the proposed circulation plan proposed by the applicant to be implemented during peak pick-up and drop-off times to prevent vehicles from queuing on public streets. As shown on Figure 5 the circulation plan provides for about 1,375 feet of stacking in addition to a 175-foot drop-off/pick-up zone.

ROADWAY AND TRAFFIC CONDITIONS

Area Roadways

Figure 1 shows the roadways in the vicinity of the site. The major roadways are identified below followed by a brief description of each.

- **Marksheffel Road** extends north from the Link Road/C&S Road intersection in Fountain, Colorado to north of Woodmen Road. Marksheffel Road is shown as a future four-lane Expressway on the County *Major Transportation Corridors Plan (MTCP)*. The posted speed limit on Marksheffel Road at Fontaine Boulevard is 45 miles per hour (mph). The PPRTA has completed the Marksheffel Road upgrade between Mesa Ridge Parkway and Bradley Road. This included intersection improvements at the Fontaine Boulevard intersection.
- Fontaine Boulevard is designated as a four-lane Urban Principal Arterial east of Marksheffel Road and it has been constructed as such from Marksheffel Road east to Old Glory Drive. As part of the Lorson Ranch East development Fontaine Boulevard will be extended east from Old Glory Drive. In the interim, an Urban Non-Residential Collector Street will be constructed east of Stingray Lane as development progresses. The posted speed limit on Fontaine Boulevard is 35 mph just east of (and a short distance west of) Marksheffel Road. The speed limit increases to 45 mph just east of the bridge over Jimmy Camp Creek.

Baseline Traffic Volumes

Figure 6 shows the recent traffic volumes at the intersection of Marksheffel Road/Fontaine Boulevard. These "baseline" traffic volumes were based on traffic counts conducted by LSC in March 2017. The traffic count reports are attached.

Baseline Levels of Service

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection. Level of service is indicated on a scale from "A" to "F." LOS A represents control delay of less than 10 seconds for unsignalized and signalized intersections. LOS F represents control delay of more than 50 seconds for unsignalized intersections and more than 80 seconds for signalized intersections. Table 1 shows the level of service delay ranges.

		Table 1 s of Service Delay Ra	anges											
	Signalized Inte	rsections	Unsignalized Intersections											
Level of Service	Average Control Delay (seconds per vehicle)	V/C ⁽¹⁾	Average Control Delay (seconds per vehicle) ⁽²⁾											
A 10.0 sec or less less than 0.60 10.0 sec or less														
В	10.1-20.0 sec	0.60-0.69	10.1-15.0 sec											
С	20.1-35.0 sec	0.70-0.79	15.1-25.0 sec											
D	35.1-55.0 sec	0.80-0.89	25.1-35.0 sec											
E	55.1-80.0 sec	0.90-0.99	35.1-50.0 sec											
F	80.1 sec or more	1.00 and greater	50.1 sec or more											
	insportation Research Circ lized intersections if V/C r		1.0 the level of service is LOS											

F regardless of the projected average control delay per vehicle.

The intersection of Marksheffel/Fontaine was analyzed to determine the baseline levels of service using Synchro. Figure 6 shows the level of service analysis results. As shown on the figure, all movements this intersection are level of service C or better during the peak hours. The level of service (LOS) reports are attached.

SHORT-TERM (YEAR 2020) BACKGROUND TRAFFIC

Background traffic is the traffic estimated to be on the roadways without the school traffic. Background traffic includes the baseline (from March 2017 counts) traffic and increases in through traffic on Marksheffel Road due to both regional growth and the recent extension of Mesa Ridge Parkway east to Marksheffel Road. The portion of the baseline traffic volumes was also assumed to be rerouted due to the extension of Mesa Ridge Parkway east to Marksheffel Road. A portion of the existing traffic that currently travels to and from the west on Fontaine Boulevard was assumed to shift to travel to and from the south on Marksheffel Road to this new connection. The short-term background traffic also includes traffic generated by buildout of the residential portion of Lorson Ranch subdivisions north of Lorson Boulevard between Jimmy Camp Creek and the east tributary, the Carriage Meadows North and Carriage Meadows South subdivisions located west of Jimmy Camp Creek, and Lorson Ranch East but assumes zero traffic generated by school. The short-term background volumes assume Lorson Boulevard has been constructed east of Marksheffel Road to serve the Carriage Meadows South subdivision (with a street connection north to Fontaine Boulevard) but does **not** cross Jimmy Camp Creek (main channel). The short-term background traffic volumes are shown in Figure 7.

2040 BACKGROUND TRAFFIC

Figure 8 shows the projected 2040 background traffic volumes. The 2040 background traffic volumes are based on estimates of traffic projected to be generated at buildout of the Lorson Ranch Sketch Plan (excluding the traffic projected to be generated by Lorson Ranch East) and traffic volumes shown in the *Marksheffel Road South Corridor Preservation Plan* dated July 2014. Appendix Table 1 shows the trip generation estimates for all existing and future land uses assumed to be built out by 2040 in the Lorson Ranch development. The 2040 background volumes also assume full buildout of the street network within Lorson Ranch but assume Meridian Road has not been extended south to Fontaine Boulevard.

TRIP GENERATION

Estimates of the traffic volumes expected to be generated by the site have been made using the nationally published trip generation rates found in *Trip Generation*, 10th Edition, 2017 by the Institute of Transportation Engineers (ITE). Table 2 shows the results of the trip generation estimates. Table 2 also shows a comparison of the trip generation estimate for this same site assumed in the *Lorson Ranch East Updated Traffic Impact and Access Analysis* by LSC dated November 9, 2017. The estimate contained in the Lorson Ranch East TIA assumed a school serving 1,000 students (500 elementary aged students and 500 middle school aged students). The estimate was made using the 9th edition of the *Trip Generation* manual. The trip generation rates shown in the current 10th edition showed an increase for both elementary and middle schools.

As shown in Table 2, the proposed school is projected to generate about 1,943 new vehicle trips on the average weekday, with about one-half of the vehicles entering and one-half of the vehicles exiting in a 24-hour period. This is about 488 more vehicle trips than were estimated in the Lorson Ranch East TIA. During the morning peak hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 344 vehicles would enter and 293 vehicles would exit the site. During the afternoon peak hour of the school, which was assumed to occur for one hour between 2:30 to 4:30 p.m., about 154 vehicles would enter and 186 vehicles would exit the site. During the afternoon peak hour of the adjacent street traffic, which generally occurs for one hour between 4:30 and 6:30 p.m., about 73 vehicles would enter and 76 vehicles would exit the site.

TRIP DISTRIBUTION AND ASSIGNMENT

The directional distribution of the site-generated traffic volumes on the street and roadway system serving the site is one of the most important factors in determining the site's traffic impacts. The number of vehicle trips assigned within the Lorson Ranch development were based on the internal trip estimates shown in Appendix Table 1. These trips were assigned based on number and location of existing and planned residential dwellings within Lorson Ranch. Figure 9

shows the external trip distribution estimates (external to Lorson Ranch). The directional distribution estimates have been based on the location of the site with respect to the regional residential, employment, commercial, and activity centers; the land use proposed; the access/roadway connections assumed; and the roadway network.

Figures 10 and 11 show the short-term and long-term site-generated traffic volume estimates, respectively. These volumes were determined by first assigning the internal vehicle trips to the street network based on the location of the existing and planned residential dwellings within Lorson Ranch. The short-term estimate assumes buildout of the residential portion of Lorson Ranch subdivisions north of Lorson Boulevard between Jimmy Camp Creek and the east tributary, the Carriage Meadows North and Carriage Meadows South subdivisions located west of Jimmy Camp Creek, and Lorson Ranch East Filing No. 1. The long-term site-generated traffic volumes assume buildout of the Lorson Ranch development. The external vehicle trips were then assigned to the street network by applying the trip distribution percentages (from Figure 9) to the external trip generation estimates. The internal and external site-generated traffic volumes were then summed to determine the total site-generated traffic volumes.

PROJECTED TOTAL TRAFFIC

Figure 12 shows the short-term total traffic volumes. These volumes are the sum of the short-term background traffic volumes (from Figure 7) plus the short-term site-generated traffic volumes (from Figure 10).

Figure 13 shows the 2040 total traffic volumes. These volumes are the sum of the 2040 background traffic volumes (from Figure 8) plus the long-term site-generated traffic volumes (from Figure11).

PROJECTED LEVELS OF SERVICE

The intersections of Marksheffel Road/Fontaine Boulevard and Fontaine/Lamprey and the site access points have been analyzed to determine the projected levels of service for the short-term and 2040 background and total traffic volumes based on the signalized method of analysis from Synchro and the unsignalized method of analysis procedures outlined in the *Highway Capacity Manual, 2010 Edition* by the Transportation Research Board. The level of service reports are attached. The results of the analysis are shown in Figures 7,8, 12, and 13.

Marksheffel/Fontaine

The signal-controlled Marksheffel Road/Fontaine Boulevard intersection is projected to continue to operate at a level of service D overall or better based on the short-term and 2040 background and total traffic conditions.

Fontaine/Lamprey

The intersection of Fontaine/Lamprey is planned to be constructed as a one-lane modern roundabout. The one-lane roundabout would work with the interim Non-Residential Collector cross-section and all approaches are projected to operate at a LOS D or better during peak hours based on the projected short-term and 2040 total traffic volumes.

Fontaine Boulevard Site Access Points

All movements at the site access points to Fontaine Boulevard are projected to operate at LOS D or better during the peak hours based on the projected short-term and 2040 total traffic volumes as two-way stop-sign-controlled intersections.

CONCLUSIONS AND RECOMMENDATIONS

Trip Generation

• The proposed school is projected to generate about 1,943 new vehicle trips on the average weekday, with about one-half of the vehicles entering and one-half of the vehicles exiting in a 24-hour period. During the morning peak hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 344 vehicles would enter and 293 vehicles would exit the site. During the afternoon peak hour of the school, which was assumed to occur for one hour between 2:30 to 4:30 p.m., about 154 vehicles would enter and 186 vehicles would exit the site. During the afternoon peak hour of the adjacent street traffic, which generally occurs for one hour between 4:30 and 6:30 p.m., about 73 vehicles would enter and 76 vehicles would exit the site.

Projected Levels of Service

- The signal-controlled Marksheffel Road/Fontaine Boulevard intersection is projected to continue to operate at level of service D or better based on the short-term and 2040 background and total traffic conditions.
- The intersection of Fontaine/Lamprey is planned to be constructed as a one-lane modern roundabout. The one-lane roundabout would work with the interim Non-Residential Collector cross section and all approaches are projected to operate at a LOS D or better during peak hours based on the projected short-term and 2040 total traffic volumes.
- All movements at the site access points to Fontaine Boulevard are projected to operate at LOS D or better during the peak hours based on the projected short-term and 2040 total traffic volumes as two-way stop-sign controlled intersections.

one?

Circulation

 During peak drop-off and pick-up times LSC recommends traffic cones be used to direct traffic in the pattern shown in Figure 5 to prevent vehicles from queuing on public streets. During afternoon parent pick-up time, as the proposed circulation plan routes parent pick-up vehicles through the parking lot drive aisles, parents will not be able to pull to a curb, temporarily park their vehicles (remaining in their vehicles) and wait for their children to exit the building and walk to the vehicles. Therefore, the school will need to develop a system using vehicle identification numbers and staff coordination whereby students are lined up in the loading zone ready to load the parent vehicles in order of position in queue.

Recommended Auxiliary Turn Lanes on Fontaine Boulevard

- Based on the projected long-term traffic volumes, a westbound right-turn deceleration lane would be required on Fontaine Boulevard approaching the proposed school entrance. This lane should be 235 feet long plus a 200-foot taper.
- Based on the projected long-term traffic volumes, an eastbound left-turn lane would be required on Fontaine Boulevard approaching the proposed school entrance. The Non-Residential Collector would provide one through lane in each direction plus a center two-way left-turn lane. This center painted median would accommodate left turns at this intersection.

Discuss if these improvements were (will be) provided with the Fontaine Blvd. improvements or will be provided by the school district, and when if your justified not to be constitueted initially escrowdenay be required.

LSC TRANSPORTATION CONSULTANTS, INC. Βv

Principal

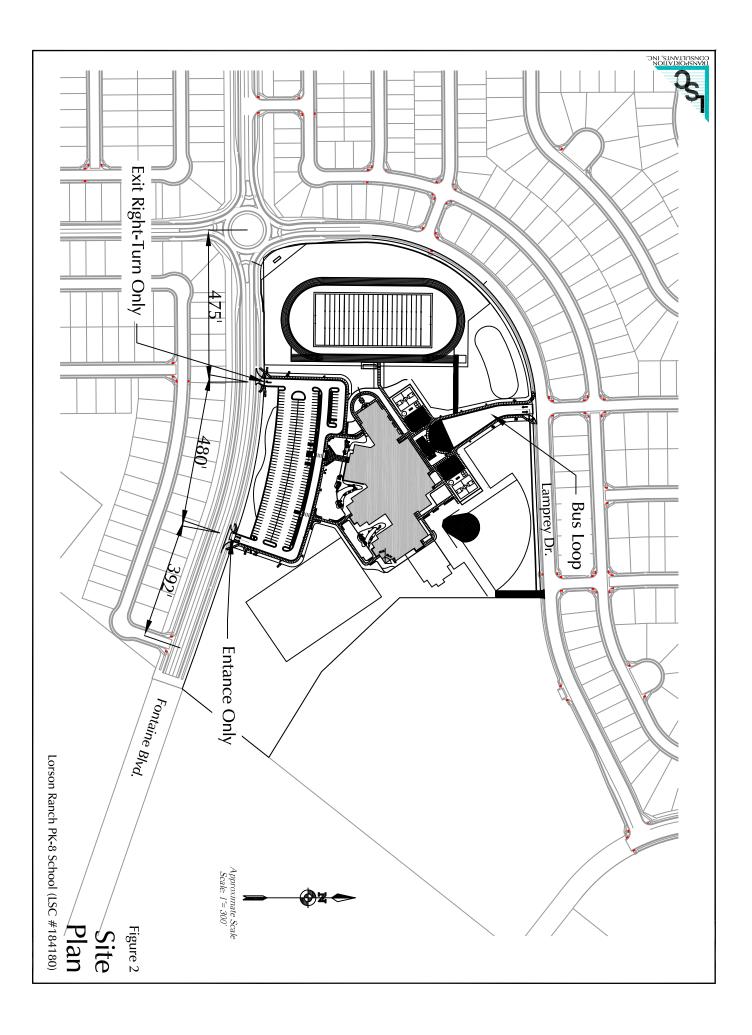
JCH:KDF:bjwb

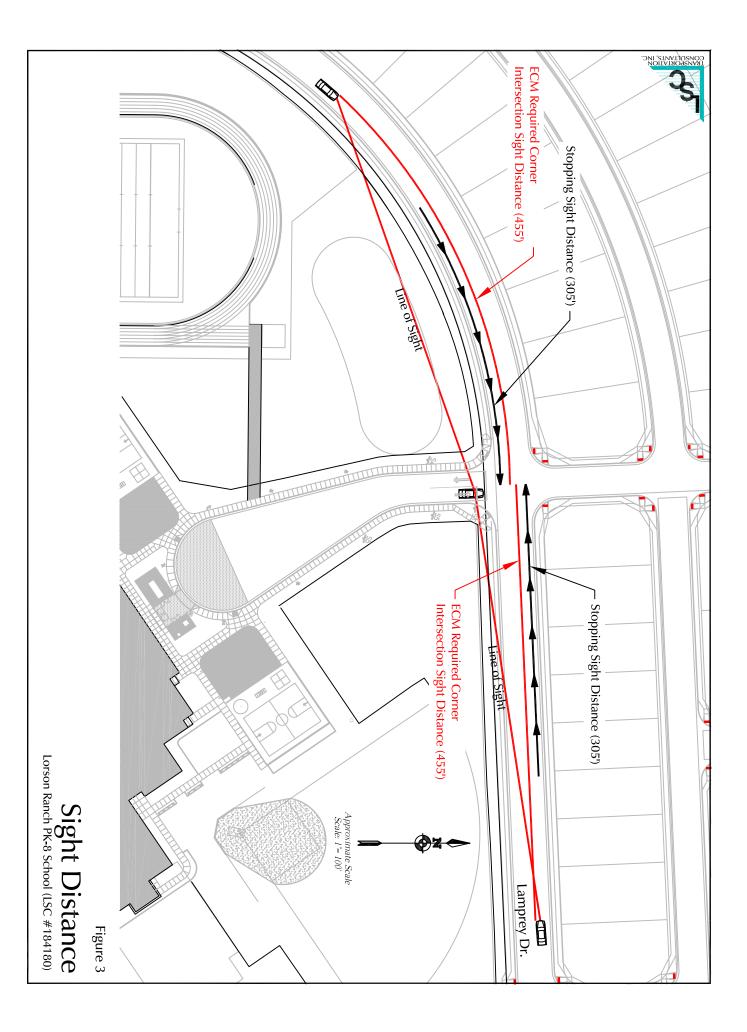
Enclosures: Table 2 Appendix Table 1 Figures 1-13 Traffic Count Reports Level of Service Reports Address the countywide traffic fee.

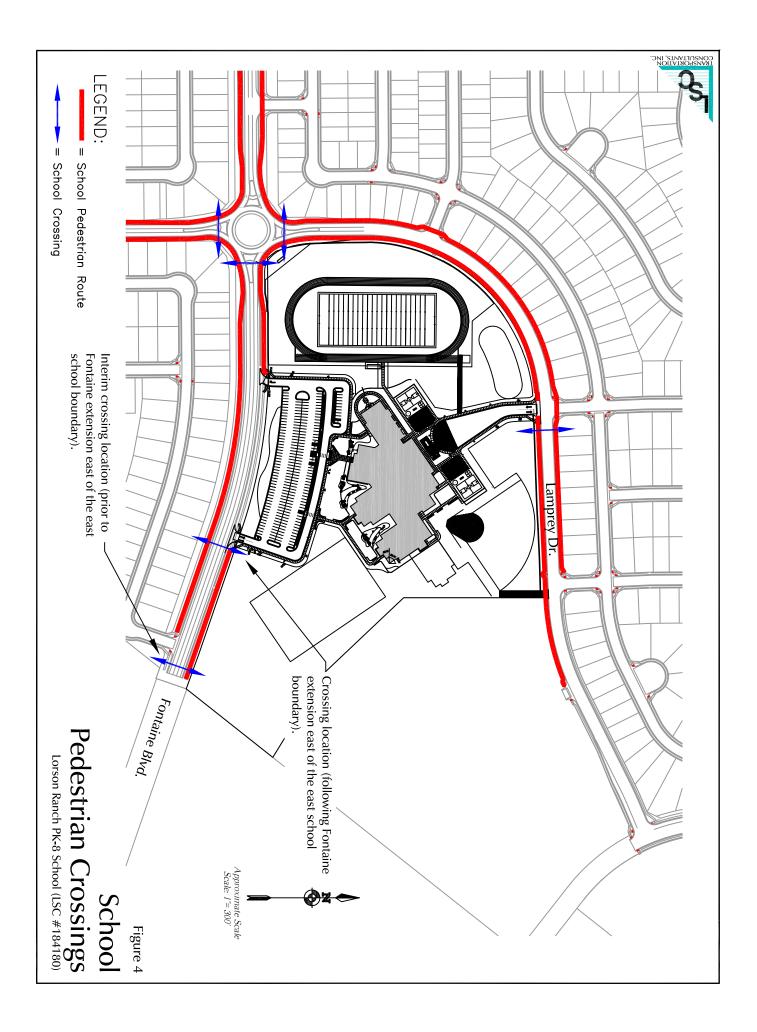
					rip Gene	Table 2 eration Es nch PK-8										
				1	Trip Gene	eration Ra	ates ⁽¹⁾					Total T	rips Gene	rated		
Land Use	Land Use	Trip Generation	Average Weekday		ning Hour		ernoon Hour		noon Hour	Average Weekday		rning K Hour		ternoon Hour		rnoon Hour
Code	Description	Units	Traffic	In	Out	In	Out	In	Out	Traffic	In	Out	In	Out	In	Out
Trin Go	neration for the Proposed Elementary S	School														
520	Elementary School	690 Students	1.89	0.36	0.31	0.15	0.19	0.07	0.08	1,304	250	213	106	129	51	53
522	Middle School/Junior High School	300 Students	2.13	0.31	0.27	0.16	0.19	0.07	0.08	639	94	80	48	57	22	23
	ő									1,943	344	293	154	186	73	76
Trip Gei	neration Estimate From the Lorson Rar	nch East Updated TIA	by LSC Nov	ember 9	, 2017											
520	Elementary School	500 Students	1.29	0.25	0.20			0.07	0.08	645	124	101			37	38
522	Middle School/Junior High School	500 Students	1.62	0.30	0.24			0.08	0.08	810	149	122			39	41
										1,455	273	223			76	79
					с	hange in	Trip Ger	eration	Estimate	488	71	70			-3	-3
Notes:	ce: "Trip Generation, 9th Edition, 2012" b	w the Institute of Trans	portation Engli	neers (IT												
. ,		y the institute of Trans	portation Engl	neers (II												
(2) See a	attached School Calculator Worksheet															
Source:	LSC Transportation Consultants, Inc.															

MSTA School Traffic Calculations

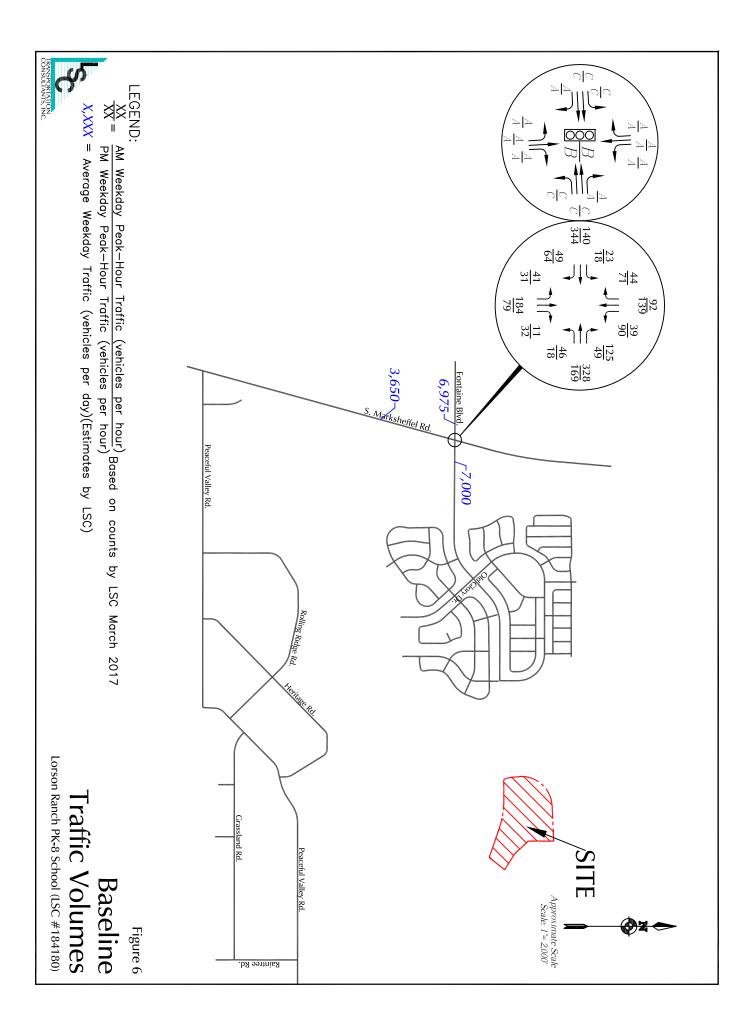
AM and PM Peak Traffic Estimates

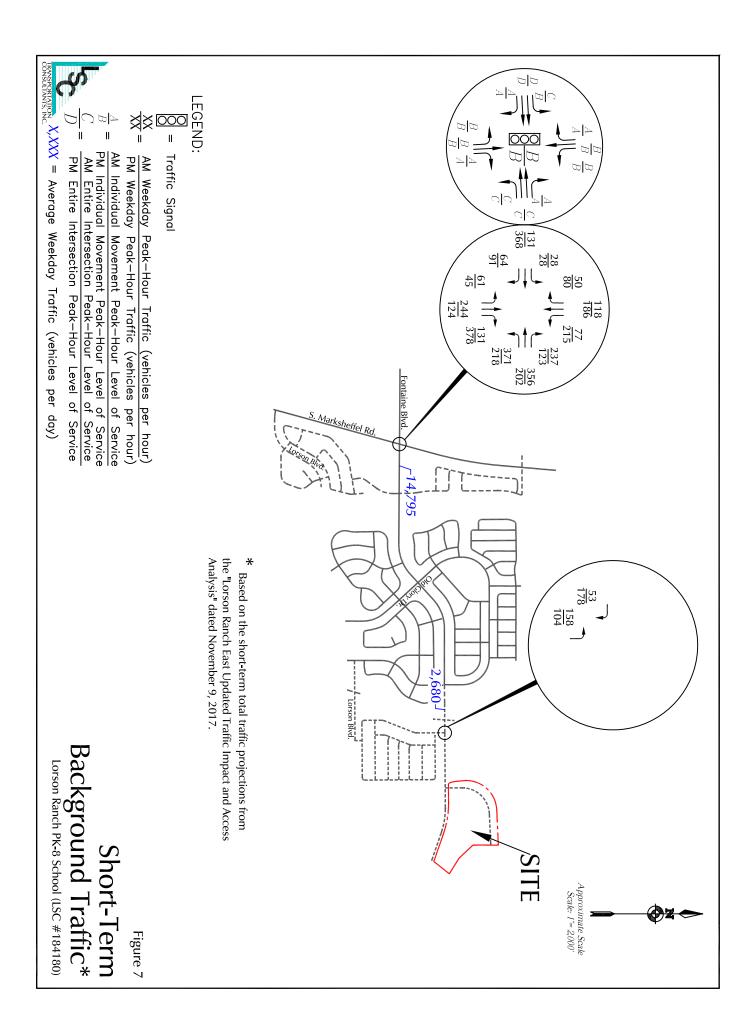

(These numbers do not reflect peak hour traffic volumes)

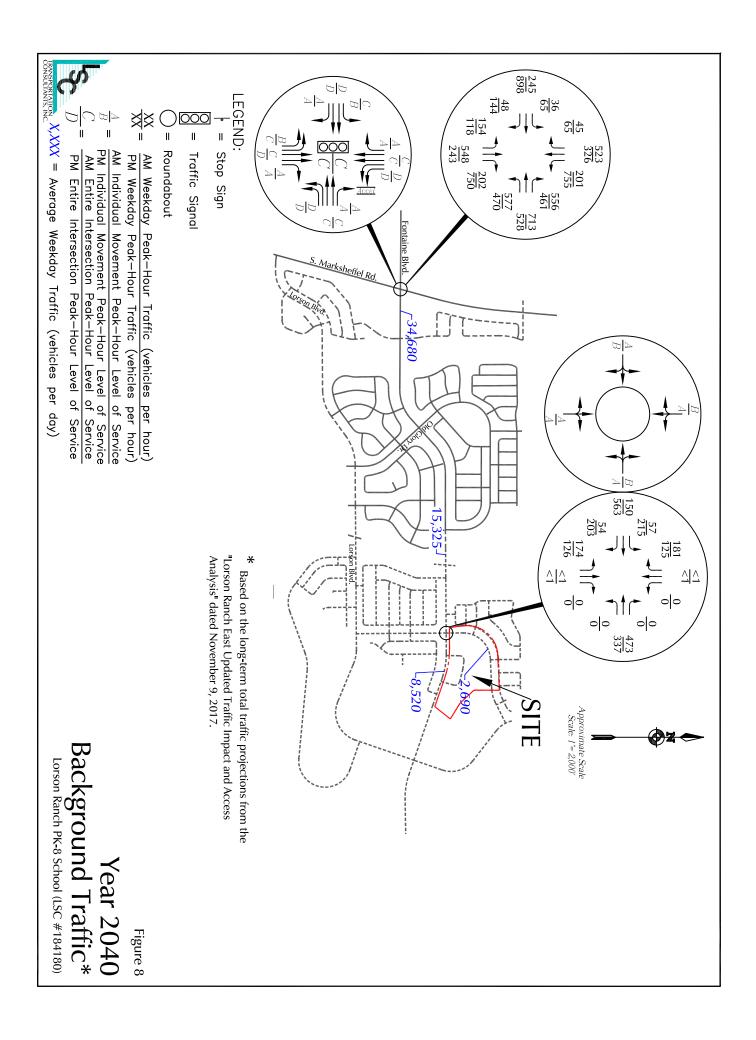

			School Name: Type:		PK-8 School	ses	l			Version	: 102816			
		MSTA S	chool Quei	ue Input				Calcu	lations					
	Type School	Student Population	Number of Buses	Staff Members	Student Drivers	PM Total Vehicles	PM Peak Vehicles	Average Queue Length	Total AM Trips	Total PM Trips	High Demand Length			
		0.45	_		1	100	40	1070			30%			
	Elementary	645	3 9	76 76		106	48	1070	551	215	1391			
	Middle	300	1	31		43	22	507	239	87	659			
			6	31										
	High													
								1577	790	302	2050 473			
	Elementary School Data													
	Elementary School Data AM Trips Generated PM Trips Generated													
	Direction	Parents	Buses	Staff	Trips	Parents	Buses	Staff	Trips					
	IN	236	3	76	315	106	Dusco	Otali	106					
	OUT	236			236	106	3		109		ADT			
	-		AM Eleme	ntary Trips	551		PM Eleme	ntary Trips	215		842			
	,													
					ddle School Da	ata	DM T	vine Concreted						
I	Direction	Parents	Buses	ips Generated Staff	Trips	Parents	Buses	rips Generated Staff	Trips					
	IN	104	1	31	136	43	Duses	Stall	43					
	OUT	104		01	100	43	1		40					
			AM Midd	lle Trips	239		PM Mid	dle Trips	87		357			
	-													
					ligh School Da	ta			te al		-			
			I Trips Generat	ed				A Trips Genera	ted		41			
ction N	Parents	Buses	Staff		Trips	Parents	Buses	Staff		Trips	- 1			
N JT											41			
01			AM Hig	h Trips				PM Hig	gh Trips					
			All AM TRIPS	In Out Total	451 340 790			Ali PM Trips	In Out Total	149 153 302	1199			

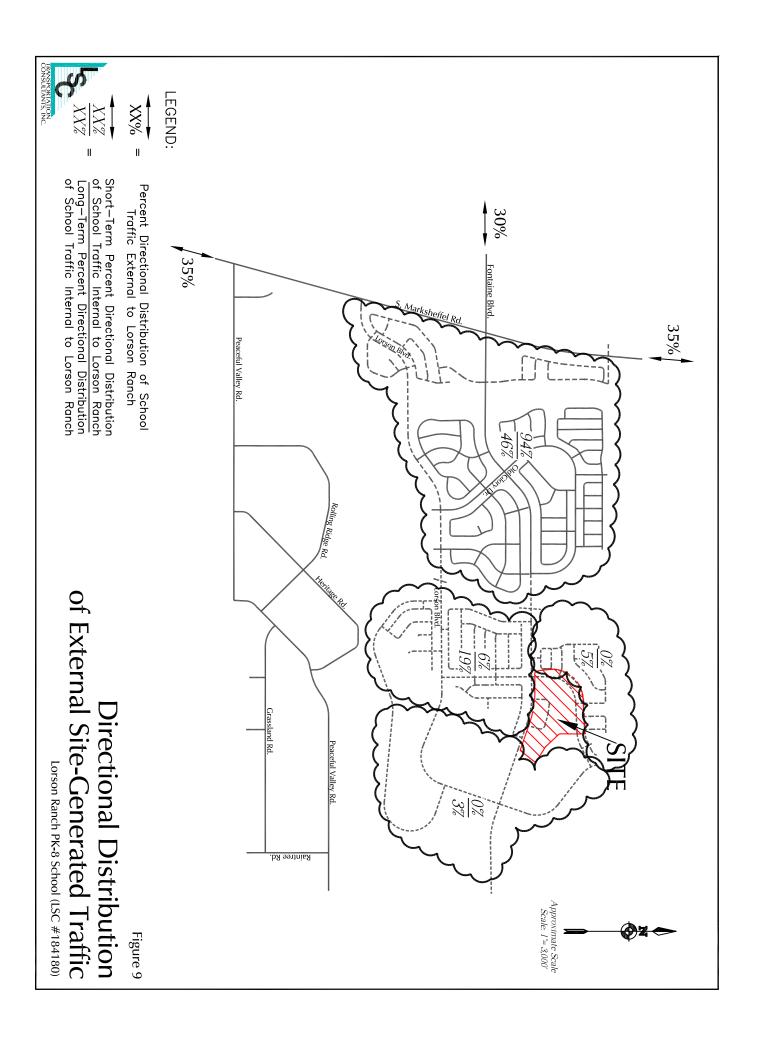

											L	Appen orson Ra Internal		School							
					Trin G	eneration	Rates ⁽¹⁾		Raw ITE 1	rip Gene	eration (In Trips)	dividual [Driveway			Perce	nt Interna	l Trine			т
	ITE					ak Hour		ak Hour		AM Pe	ak Hour	PM Pea	ak Hour]			ak Hour		ak Hour		
ITE Land Use	Code	Quantity	Unit	Daily	In	Out	In	Out	Daily	In	Out	In	Out		Daily	In	Out	In	Out	Daily	li
	I	1			1	1	1	1			1	1		1							
Single-Family Detached Housing	210	5,045	DU ⁽²⁾	9.52	0.19	0.56	0.63	0.37	48,028	946	2,838	3,178	1,867								
Residential Condominium/Townhouse	210	118	DU	5.81	0.07	0.37	0.35	0.17	686	9	43	41	20								
														School	3%	12%	8%	2%	2%	1,360	11
														Retail	12%	3%	3%	8%	6%	5,660	2
									48,714	955	2,881	3,219	1,887	Total	14%	15%	. 11%	10%	8%	7,020	14
														•							
Elementary School	520	690	Students	1.89	0.36	0.31	0.07	0.08	1,304	250	213	51	53		70%	70%	40%	40%	70%	913	17
Middle School/Junior High School	522	300	Students	2.13	0.31	0.27	0.07	0.08	639	94	80	22	23	1	70%	70%	40%	40%	70%	447	6
		1					To	tal School	1,943	344	293	73	76	1		1	1			1,360	24
														-							
Shopping Center	820	219	KSF ⁽³⁾	51.58	0.71	0.44	2.22	2.40	11,320	156	96	487	528		50%	50%	25%	25%	50%	5,660	7
		1				Tota	al School	and Retail	13,263	500	389	560	604	1		1	1			7,020	3.
Notes:																					
(1) Source: "Trip Generation, 9th Edition	n, 2012" by	the Institute	of Transp	ortation Er	ngineers ((ITE)															
(2) $DU = dwelling Unit$																					
(3) KSF = thousand square feet of floor	area																				
LSC Transportation Consultants, Inc.																					

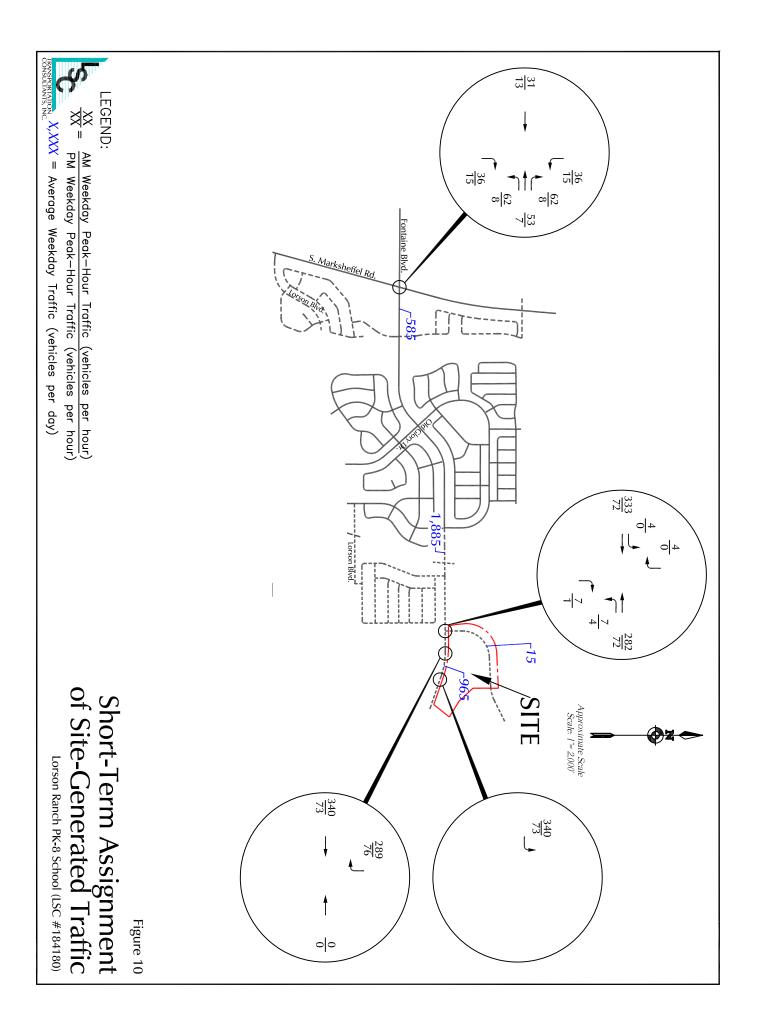
Pea	Internal T ak Hour		ak Hour			External ⊺ ak Hour		ak Hour
	Out	In	Out	Daily	In	Out	In	Out
7	241	53	29					
	78	264	122					
1	319	317	151	41,694	814	2,562	2,902	1,736
		•		,	•	_,	_,	.,
5	85	20	37	391	75	128	31	16
;	32	9	16	192	28	48	13	7
1	117	29	53	583	103	176	44	23
	24	122	264	5,659	77	72	365	263
9	141	151	317					
				47,936	994	2,810	3,311	2,022

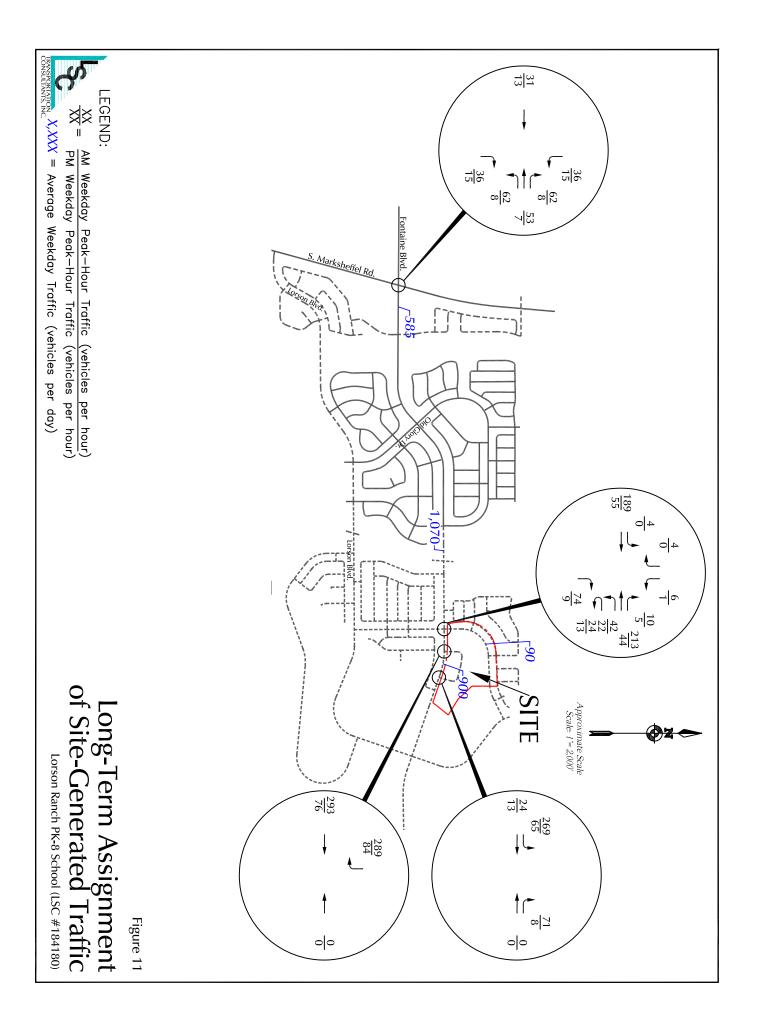


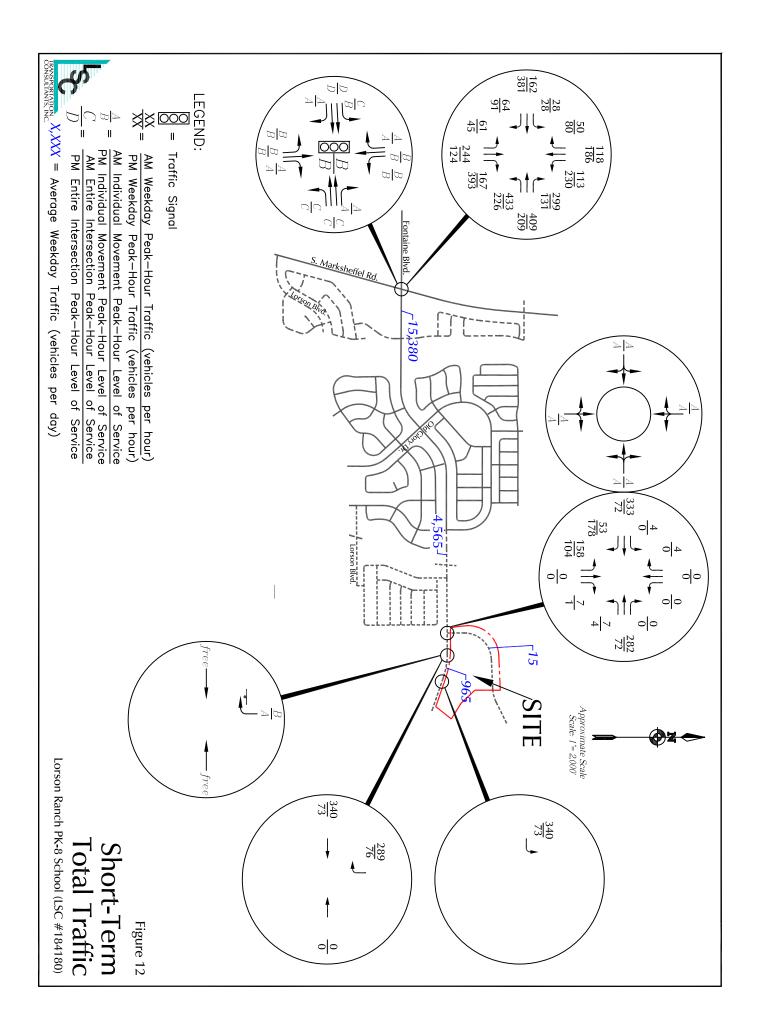


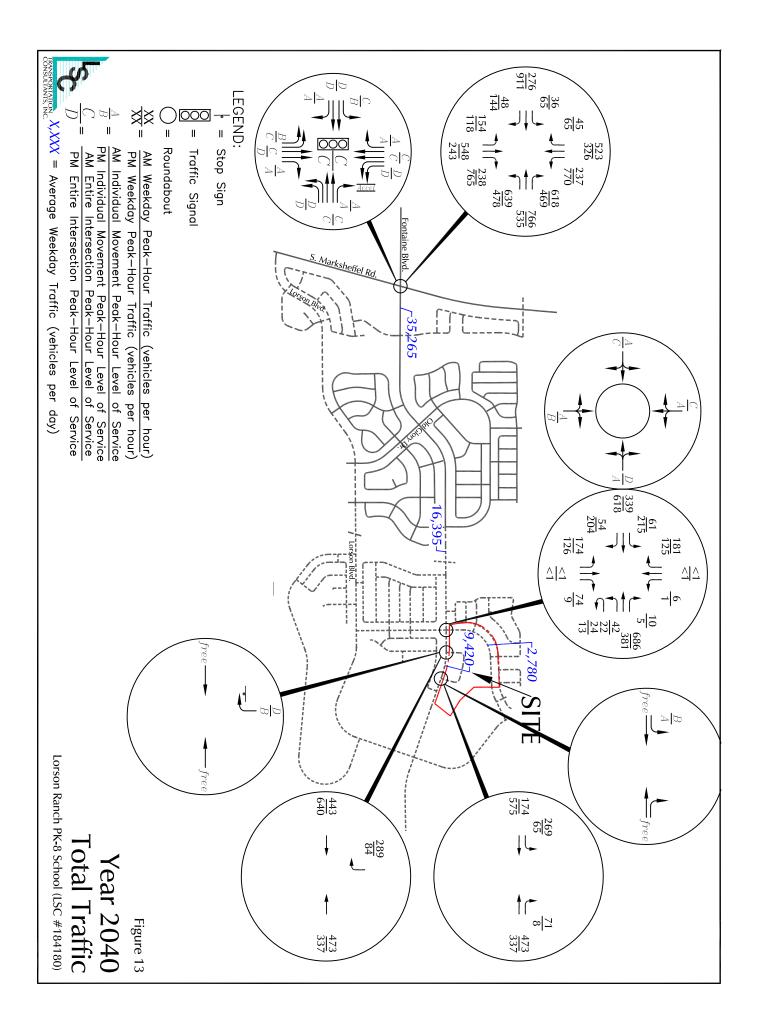












LSC Transportation Consultants, Inc.

File Name : Marksheffel Rd - Fontaine AM

Site Code : 00174860

Start Date : 12/05/2017

Page No : 1

										rayei	10					
					G	Froups F	Printed-	Unshift	ted							
Ν	Markshe	effel Rd			Fontain	e Blvd		Μ	larkshet	ffel Rd		F	ontaine	e Blvd		
	From I	North			From	East			From S	outh			From V	Vest		
Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
5	34	5	0	30	92	16	0	4	70	7	0	7	9	6	0	285
6	29	4	0	35	107	11	0	5	69	15	0	3	17	8	0	309
11	63	9	0	65	199	27	0	9	139	22	0	10	26	14	0	594
3	48	5	0	61	108	14	0	11	91 62	11	0	5	19	8	0	384 324
7		-	-			-	-	-			•		-		-	324 289
-			-	-	-	-	-	-		-	•				-	209 259
20	141	38	0	157	295	50	0	31	288	49	0	39	123	25	0	1256
2	27	8	0	22	90	10	0	4	35	9	0	4	37	3	0	251
3	35	7	0	19	92	9	0	5	40	8	0	11	37	4	0	270
36	266	62	0	263	676	96	0	49	502	88	0	64	223	46	0	2371
9.9 1.5	73.1 11.2	17.0 2.6	0.0 0.0	25.4 11.1	65.3 28.5	9.3 4.0	0.0 0.0	7.7 2.1	78.6 21.2	13.8 3.7	0.0 0.0	19.2 2.7	67.0 9.4	13.8 1.9	0.0 0.0	
	Right 1.0 5 6 11 3 7 5 5 20 20 2 3 36 9.9	From Right Thru 1.0 1.0 5 34 6 29 11 63 3 48 7 31 5 32 5 30 20 141 2 27 3 35 36 266 9.9 73.1	From North Right Thru Left 1.0 1.0 1.0 5 34 5 6 29 4 11 63 9 3 48 5 7 31 6 5 32 12 5 30 15 20 141 38 2 27 8 3 35 7 36 266 62 9.9 73.1 17.0	Right Thru Left Peds 1.0 1.0 1.0 1.0 5 34 5 0 6 29 4 0 11 63 9 0 3 48 5 0 7 31 6 0 5 32 12 0 5 30 15 0 20 141 38 0 2 27 8 0 3 35 7 0 36 266 62 0 9.9 73.1 17.0 0.0	From North Right Thru Left Peds Right 1.0 1.0 1.0 1.0 1.0 5 34 5 0 30 6 29 4 0 35 11 63 9 0 65 3 48 5 0 61 7 31 6 0 46 5 32 12 0 32 5 30 15 0 18 20 141 38 0 157 2 27 8 0 22 3 35 7 0 19 36 266 62 0 263 9.9 73.1 17.0 0.0 25.4	Marksheffel Rd Fontain From North From Right Thru Left Peds Right Thru 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5 34 5 0 30 92 6 29 4 0 35 107 11 63 9 0 65 199 3 48 5 0 61 108 7 31 6 0 46 85 5 32 12 0 32 48 5 30 15 0 18 54 20 141 38 0 157 295 2 27 8 0 22 90 3 35 7 0 19 92 36 266 62 0 263 676 9.9 73.1 17.0 0.0 25.4	Marksheffel Rd From North Fontaine Blvd From East Right Thru Left Peds Right Thru Left 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5 34 5 0 30 92 16 6 29 4 0 35 107 11 11 63 9 0 65 199 27 3 48 5 0 61 108 14 7 31 6 0 46 85 15 5 32 12 0 32 48 18 5 30 15 0 18 54 3 20 141 38 0 157 295 50 2 27 8 0 22 90 10 3 35 7 0 19 92 9	Marksheffel Rd From North Fontaine Bivd From East Right Thru Left Peds Right Thru Left Peds 1.0 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Groups Printed Unshifted Marksheffel Rd Fontaire Blvd Marksheffel Rd Fontaire Blvd Marksheffel Rd From North Right From East Peds Right Thru Left Peds Right Thru 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 5 34 5 0 30 92 16 0 4 70 6 29 4 0 35 107 11 0 5 69 11 63 9 0 65 199 27 0 4 62 5 32 12 0 32 48 18	Groups Printed-Unshifted Rd Marksheffel Rd From North Forntaine Blvd Marksheffel Rd From Last Marksheffel Rd From Last Peds Right Thru Left Right Thru Left Peds Right Thru Left Peds Right Thru Left 1.0	Groups Printed-Unshifted Rd Marksheffel Rd Fontaine Blvd Marksheffel Rd Marksheffel Rd Marksheffel Rd Marksheffel Rd Marksheffel Rd From South Marksheffel Rd From South Right Thru Left Peds 1.0 <td>Groups Printed- Unshifted Rd Marksheffel Rd Formtaine Blvd Marksheffel Rd Formtaine Blvd Marksheffel Rd From Suth Right Thru Left Peds Right 1.0</td> <td>Groups Printed-Unshifted Marksheffel Rd Formonut Formonut Formonut From Suth From Suth From Suth From North From North From Suth From North From Suth From North Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru 1.0</td> <td>Groups Printed Unshifted Marksheffel Rd Formare Blvd Marksheffel Rd Formare Blvd From North Formare Blvd From South Info 100 10.0</td> <td>Harksbeiffel Rd Fontaine Blvd Marksbeiffel Rd Fontaine Blvd Marksbeiffel Rd Fontaine Blvd From South Fontaine Blvd Right Thru Left Peds 1.0</td>	Groups Printed- Unshifted Rd Marksheffel Rd Formtaine Blvd Marksheffel Rd Formtaine Blvd Marksheffel Rd From Suth Right Thru Left Peds Right 1.0	Groups Printed-Unshifted Marksheffel Rd Formonut Formonut Formonut From Suth From Suth From Suth From North From North From Suth From North From Suth From North Right Thru Left Peds Right Thru Left Peds Right Thru Left Peds Right Thru 1.0	Groups Printed Unshifted Marksheffel Rd Formare Blvd Marksheffel Rd Formare Blvd From North Formare Blvd From South Info 100 10.0	Harksbeiffel Rd Fontaine Blvd Marksbeiffel Rd Fontaine Blvd Marksbeiffel Rd Fontaine Blvd From South Fontaine Blvd Right Thru Left Peds 1.0

Counts by LSC

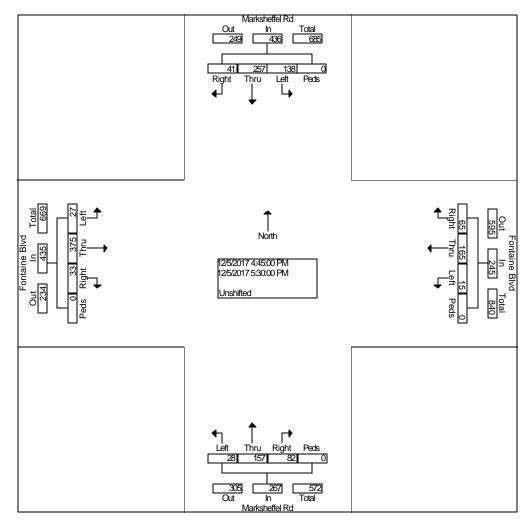
File Name: Marksheffel Rd - Fontaine AMSite Code: 00174860Start Date: 12/05/2017Page No: 2

			ksheff					ntaine					rkshef		ł			ontaine From \		ł	7
Start	Rig		om No Lef	Pe	App.	Rig	Thr	rom E	Pe	App.	Rig	Thr	rom S Lef	Pe	App.	Rig	Thr	Lef	Pe	App.	Int.
Time Peak Hour	ht From (u)6:30	t AM to	ds 08:1:	Total 5 AM -	ht Peak	u 1 of 1	t	ds	Total	ht	u	t	ds	Total	ht	u	t	ds	Total	Total
Intersecti on	06:4				-																
Volume	21	14 0	27	0	188	17 4	34 8	58	0	580	25	29 0	60	0	375	33	10 3	27	0	163	1306
Percent	11. 2	74. 5	14. 4	0.0		30. 0	60. 0	10. 0	0.0		6.7	77. 3	16. 0	0.0		20. 2	63. 2	16. 6	0.0		
07:00 Volume	3	48	5	0	56	61	10 8	14	0	183	11	91	11	0	113	5	19	8	0	32	384
Peak Factor																					0.850
High Int.	07:00	D AM			l	07:0	00 AM 10			l	07:0	00 AN	1		1	07:	15 AN	Л		I	
Volume	3	48	5	0	56	61	8	14	0	183	11	91	11	0	113	13	32	8	0	53	
Peak Factor					0.83 9					0.79 2					0.83 0					0.76 9	
											Aortich of										
										Out 491	larkshef In 1		Total 679								
									г	21	140	27									
									L		Thru		Peds								
											¥	•									
														L							
			Total 592		27 Left						↑						t	172 Righ	ي ٦	õ	
						•					Nort	ו					←	4 348 t Thru	55	Font	
			Itain		33 ayr					12/5/2017 12/5/2017							_	ы В	580	ontaine Blvd In	
			Dut Fol		s ≜ Riģ					Unshifte	d						Ŧ	ft P		1	
					Ped													o Peds	735	tal	
														Г							
										4	♠										
									Г	Left 1 60	T Thru I 290	Right 25	Peds 0								
									L												
										231 Out N	In Narkshef	75 fel Rd	606 Total								

LSC Transportation Consultants, Inc.

File Name : Marksheffel Rd - Fontaine PM

Site Code : 00174860 Start Date : 12/05/2017


Page No : 1

						G	Groups F	Printed-	Unshift	ted							
	1	Markshe	effel Rd			Fontain	e Blvd		N	larkshet	ffel Rd		F	ontaine	Blvd		
		From	North			From	East			From S	outh			From V	Vest		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
04:00 PM	10	56	30	0	12	36	1	0	13	46	10	0	14	74	4	0	306
04:15 PM	11	61	28	0	14	45	4	0	15	38	13	0	10	86	6	0	331
04:30 PM	9	55	36	0	15	38	8	0	18	40	8	0	15	81	7	0	330
04:45 PM	14	73	33	0	16	30	4	0	12	37	3	0	9	81	9	0	321
Total	44	245	127	0	57	149	17	0	58	161	34	0	48	322	26	0	1288
													1				
05:00 PM	12	64	40	0	16	45	5	0	28	46	4	0	6	105	6	0	377
05:15 PM	9	73	34	0	13	45	3	0	16	33	8	0	8	96	5	0	343
05:30 PM	6	47	31	0	20	45	3	0	26	41	13	0	10	93	7	0	342
05:45 PM	6	38	31	0	8	37	2	0	14	27	5	0	10	86	7	0	271
Total	33	222	136	0	57	172	13	0	84	147	30	0	34	380	25	0	1333
													1				
Grand Total	77	467	263	0	114	321	30	0	142	308	64	0	82	702	51	0	2621
Apprch %	9.5	57.9	32.6	0.0	24.5	69.0	6.5	0.0	27.6	59.9	12.5	0.0	9.8	84.1	6.1	0.0	
Total %	2.9	17.8	10.0	0.0	4.3	12.2	1.1	0.0	5.4	11.8	2.4	0.0	3.1	26.8	1.9	0.0	

Counts by LSC

File Name: Marksheffel Rd - Fontaine PMSite Code: 00174860Start Date: 12/05/2017Page No: 2

			ksheff				Fo	ntaine	Blvd					ffel Ro	1				e Blvd		
		Fr	om No	orth			F	From E	ast			F	rom S	outh			F	From \	Nest		
Start	Rig	Thr	Lef	Pe	App.	Rig	Thr	Lef	Pe	App.	Rig	Thr	Lef	Pe	App.	Rig	Thr	Lef	Pe	App.	Int.
Time	ht	u	t	ds	Total	ht	u	t	ds	Total	ht	u	t	ds	Total	ht	u	t	ds	Total	Total
Peak Hour I	From (04:00	PM to	05:45	PM - F	Peak 1	of 1														
Intersecti on	04:45	5 PM																			
Volume	41	25 7	13 8	0	436	65	16 5	15	0	245	82	15 7	28	0	267	33	37 5	27	0	435	1383
Percent	9.4	58. 9	31. 7	0.0		26. 5	67. 3	6.1	0.0		30. 7	58. 8	10. 5	0.0		7.6	86. 2	6.2	0.0		
05:00 Volume	12	64	40	0	116	16	45	5	0	66	28	46	4	0	78	6	10 5	6	0	117	377
Peak Factor																					0.917
High Int.	04:45	5 PM				05:3	0 PM				05:3	0 PM				05:0	00 PM				
Volume	14	73	33	0	120	20	45	3	0	68	26	41	13	0	80	6	10 5	6	0	117	
Peak					0.90					0.90					0.83					0.92	
Factor					8					1					4					9	

Timings 1: Marksheffel Rd & Fountaine Blvd

	۶	-	\mathbf{F}	4	-	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	- † †	1	- ሽ	- † †	1	ሻ	↑	1	<u>۲</u>	↑	1
Traffic Volume (vph)	23	140	49	46	328	125	41	184	11	39	92	44
Future Volume (vph)	23	140	49	46	328	125	41	184	11	39	92	44
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	4	4	4	8	8	8	2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	30.0	30.0	30.0	30.0	30.0	30.0	60.0	60.0	60.0	60.0	60.0	60.0
Total Split (%)	33.3%	33.3%	33.3%	33.3%	33.3%	33.3%	66.7%	66.7%	66.7%	66.7%	66.7%	66.7%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None	None	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	14.0	14.0	14.0	14.0	14.0	14.0	55.1	55.1	55.1	55.1	55.1	55.1
Actuated g/C Ratio	0.18	0.18	0.18	0.18	0.18	0.18	0.70	0.70	0.70	0.70	0.70	0.70
v/c Ratio	0.16	0.22	0.15	0.23	0.58	0.35	0.05	0.14	0.01	0.05	0.07	0.04
Control Delay	29.9	28.4	9.7	30.3	33.7	8.0	4.7	4.9	1.1	4.7	4.6	1.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	29.9	28.4	9.7	30.3	33.7	8.0	4.7	4.9	1.1	4.7	4.6	1.8
LOS	С	С	А	С	С	А	А	А	А	А	А	A
Approach Delay		24.2			26.9			4.7			3.9	
Approach LOS		С			С			А			А	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 79.1												
Natural Cycle: 40												
Control Type: Semi Act-Unco	ord											
Maximum v/c Ratio: 0.58												
Intersection Signal Delay: 18	.5			Ir	ntersectio	n LOS: B						
Intersection Capacity Utilizati				(CU Level	of Service	eΑ					
Analysis Period (min) 15												
- , ,												

✓↓ _{Ø2}	→ Ø4
60 s	30 s
↓ ø ₆	€ Ø8
60 s	30 s

Timings 1: Marksheffel Rd & Fountaine Blvd

	۶	-	\mathbf{F}	4	+	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	- ††	1	ሻ	- ††	1	<u>۲</u>	↑	1	<u>۲</u>	↑	1
Traffic Volume (vph)	18	344	64	18	169	49	31	79	32	90	139	71
Future Volume (vph)	18	344	64	18	169	49	31	79	32	90	139	71
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	4	4	4	8	8	8	2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	30.0	30.0	30.0	30.0	30.0	30.0	60.0	60.0	60.0	60.0	60.0	60.0
Total Split (%)	33.3%	33.3%	33.3%	33.3%	33.3%	33.3%	66.7%	66.7%	66.7%	66.7%	66.7%	66.7%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	None	None	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	13.0	13.0	13.0	13.0	13.0	13.0	55.1	55.1	55.1	55.1	55.1	55.1
Actuated g/C Ratio	0.17	0.17	0.17	0.17	0.17	0.17	0.71	0.71	0.71	0.71	0.71	0.71
v/c Ratio	0.09	0.59	0.21	0.17	0.36	0.19	0.04	0.06	0.03	0.12	0.13	0.08
Control Delay	28.1	34.3	9.4	30.4	30.4	9.5	4.3	4.3	1.8	4.6	4.4	1.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.1	34.3	9.4	30.4	30.4	9.5	4.3	4.3	1.8	4.6	4.4	1.3
LOS	С	С	А	С	С	А	А	А	А	А	А	А
Approach Delay		30.3			26.1			3.7			3.7	
Approach LOS		С			С			А			А	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 78.1												
Natural Cycle: 40												
Control Type: Semi Act-Unco	ord											
Maximum v/c Ratio: 0.59												
Intersection Signal Delay: 18	.3			I	ntersectio	n LOS: B						
Intersection Capacity Utilizati					CU Level		Α					
Analysis Period (min) 15												

✓↓ _{Ø2}	→ Ø4
60 s	30 s
↓ ø ₆	€ Ø8
60 s	30 s

Timings 1: Marksheffel Rd & Fountaine Blvd

	٨	+	7	1	+	*	1	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	††	*	٦	††	1	٦	†	1	٦	†	1
Traffic Volume (vph)	28	131	64	371	356	237	61	244	131	77	118	50
Future Volume (vph)	28	131	64	371	356	237	61	244	131	77	118	50
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	7	4	4	3	8	8	2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	4.0	5.0	5.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.0	10.0	10.0	9.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	10.0	11.0	11.0	35.0	36.0	36.0	44.0	44.0	44.0	44.0	44.0	44.0
Total Split (%)	11.1%	12.2%	12.2%	38.9%	40.0%	40.0%	48.9%	48.9%	48.9%	48.9%	48.9%	48.9%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes						
Recall Mode	None	None	None	None	None	None	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	11.0	6.0	6.0	31.5	27.8	27.8	39.2	39.2	39.2	39.2	39.2	39.2
Actuated g/C Ratio	0.14	0.07	0.07	0.39	0.34	0.34	0.49	0.49	0.49	0.49	0.49	0.49
v/c Ratio	0.16	0.54	0.28	0.74	0.33	0.37	0.11	0.29	0.17	0.17	0.14	0.06
Control Delay	20.5	45.5	2.7	28.1	21.1	4.6	13.7	14.8	3.1	14.5	13.4	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.5	45.5	2.7	28.1	21.1	4.6	13.7	14.8	3.1	14.5	13.4	0.1
LOS	С	D	А	С	С	А	В	В	А	В	В	A
Approach Delay		30.0			19.7			11.1			11.1	
Approach LOS		С			В			В			В	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 80.7	,											
Natural Cycle: 45												
Control Type: Semi Act-Unc	oord											
Maximum v/c Ratio: 0.74												
Intersection Signal Delay: 17	7.8			Ir	ntersectio	n LOS: B						
Intersection Capacity Utilization	tion 58.5%			10	CU Level	of Service	θB					
Analysis Period (min) 15												

1 ø2	√ Ø3	4 ₀₄
44 s	35 s	11 s
↓ Ø6	▶ _{Ø7} ♥ _{Ø8}	
44 s	10 s 36 s	

Timings <u>1: Marksheffel Rd & Fountaine Blvd</u>

	٨	+	1	4	+	*	1	t	1	4	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	††	1	7	- ††	1	٦	†	1	7	†	7
Traffic Volume (vph)	28	381	91	226	209	131	45	124	393	230	186	80
Future Volume (vph)	28	381	91	226	209	131	45	124	393	230	186	80
Turn Type	pm+pt	NA	Free	pm+pt	NA	Perm	Perm	NA	Free	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		Free	8		8	2		Free	6		6
Detector Phase	7	4		3	8	8	2	2		6	6	6
Switch Phase												
Minimum Initial (s)	4.0	5.0		4.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.0	10.0		9.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0
Total Split (s)	10.0	25.0		25.0	40.0	40.0	50.0	50.0		50.0	50.0	50.0
Total Split (%)	10.0%	25.0%		25.0%	40.0%	40.0%	50.0%	50.0%		50.0%	50.0%	50.0%
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	None		None	None	None	Max	Max		Max	Max	Max
Act Effct Green (s)	20.0	15.0	90.9	35.6	31.9	31.9	45.2	45.2	90.9	45.2	45.2	45.2
Actuated g/C Ratio	0.22	0.17	1.00	0.39	0.35	0.35	0.50	0.50	1.00	0.50	0.50	0.50
v/c Ratio	0.10	0.66	0.06	0.66	0.21	0.25	0.09	0.14	0.26	0.44	0.24	0.11
Control Delay	18.8	41.7	0.1	27.5	21.8	4.8	14.7	14.4	0.4	19.1	15.3	1.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.8	41.7	0.1	27.5	21.8	4.8	14.7	14.4	0.4	19.1	15.3	1.6
LOS	В	D	А	С	С	А	В	В	А	В	В	A
Approach Delay		32.8			20.2			4.6			14.9	
Approach LOS		С			С			А			В	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 90.9												
Natural Cycle: 50												
Control Type: Semi Act-Unc	oord											
Maximum v/c Ratio: 0.66												
Intersection Signal Delay: 17	7.7			Ir	ntersectio	n LOS: B						
Intersection Capacity Utilizat	tion 59.0%			10	CU Level	of Service	θB					
Analysis Period (min) 15												

•t _{ø2}	✓ Ø3
50 s	25 s 25 s
\$ Ø6	Ø7 ♥Ø8
50's	10 s 40 s

Timings <u>1: Marksheffel Rd & Fountaine Blvd</u>

	٨	+	7	1	+	*	1	1	1	4	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٢	^	*	ሻ	- ††	1	٦	†	7	7	†	1
Traffic Volume (vph)	28	162	64	433	409	299	61	244	167	113	118	50
Future Volume (vph)	28	162	64	433	409	299	61	244	167	113	118	50
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	7	4	4	3	8	8	2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	4.0	5.0	5.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	9.0	10.0	10.0	9.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	10.0	11.0	11.0	35.0	36.0	36.0	44.0	44.0	44.0	44.0	44.0	44.0
Total Split (%)	11.1%	12.2%	12.2%	38.9%	40.0%	40.0%	48.9%	48.9%	48.9%	48.9%	48.9%	48.9%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes						
Recall Mode	None	None	None	None	None	None	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	11.0	6.0	6.0	34.2	30.5	30.5	39.1	39.1	39.1	39.1	39.1	39.1
Actuated g/C Ratio	0.13	0.07	0.07	0.41	0.37	0.37	0.47	0.47	0.47	0.47	0.47	0.47
v/c Ratio	0.17	0.69	0.28	0.81	0.35	0.42	0.11	0.30	0.22	0.26	0.15	0.07
Control Delay	21.0	54.5	2.8	31.4	20.9	4.4	14.8	16.0	3.2	16.7	14.5	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	21.0	54.5	2.8	31.4	20.9	4.4	14.8	16.0	3.2	16.7	14.5	0.2
LOS	С	D	А	С	С	А	В	В	А	В	В	A
Approach Delay		37.8			20.6			11.3			12.9	
Approach LOS		D			С			В			В	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 83.4	ļ											
Natural Cycle: 50												
Control Type: Semi Act-Unc	oord											
Maximum v/c Ratio: 0.81												
Intersection Signal Delay: 19					ntersectio							
Intersection Capacity Utiliza	tion 64.2%			10	CU Level	of Service	эC					
Analysis Period (min) 15												

1 ø2	√ Ø3	4 ₀₄
44 s	35 s	11 s
↓ Ø6	▶ _{Ø7} ♥ _{Ø8}	
44 s	10 s 36 s	

Intersection					
Intersection Delay, s/veh 6.	2				
	4				
	-				
Approach	EB	WB	NB	SB	
Entry Lanes	1	1	1	1	
Conflicting Circle Lanes	1	1	1	1	
Adj Approach Flow, veh/h	504	362	177	4	
Demand Flow Rate, veh/h	514	369	180	4	
Vehicles Circulating, veh/h	9	175	457	540	
Vehicles Exiting, veh/h	535	462	66	4	
Ped Vol Crossing Leg, #/h	0	0	0	0	
Ped Cap Adj	1.000	1.000	1.000	1.000	
Approach Delay, s/veh	6.2	6.3	6.4	4.6	
Approach LOS	А	A	А	A	
Lane Le	ft	Left	Left	Left	
Designated Moves LT	२	LTR	LTR	LTR	
Assumed Moves LT	२	LTR	LTR	LTR	
RT Channelized					
Lane Util 1.00	0	1.000	1.000	1.000	
Follow-Up Headway, s 2.60	9	2.609	2.609	2.609	
Critical Headway, s 4.97	6	4.976	4.976	4.976	
Entry Flow, veh/h 51	4	369	180	4	
Cap Entry Lane, veh/h 136	7	1154	866	796	
Entry HV Adj Factor 0.98	1	0.981	0.983	1.000	
		000	177	4	
Flow Entry, veh/h 50	4	362	177	-	
Flow Entry, veh/h50Cap Entry, veh/h134		362 1132	851	796	
	1			•	
Cap Entry, veh/h 134	1 6	1132	851	796	
Cap Entry, veh/h134V/C Ratio0.37Control Delay, s/veh6.	1 6	1132 0.320	851 0.208	796 0.005	

Intersection

Int Delay, s/veh	4.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	1			1
Traffic Vol, veh/h	0	340	0	0	0	289
Future Vol, veh/h	0	340	0	0	0	289
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	200	-	-	-	-	0
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	75	80	95	95	75
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	453	0	0	0	385

Major/Minor	Major1	Ν	/lajor2	N	linor2	
Conflicting Flow All	-	0	_	0	-	1
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.319
Pot Cap-1 Maneuver	0	-	-	0	0	1083
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuve		-	-	-	-	1083
Mov Cap-2 Maneuve	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay,	s 0		0		10.1	
HCM LOS					В	
Minor Lane/Major M	/mt	EBT	WBT S	SBLn1		
Capacity (veh/h)		-	-	1083		
HCM Lane V/C Ratio)	-	-	0.356		
HCM Control Delay (s)	-	-	10.1		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(ve	eh)	-	-	1.6		

	٨	+	1	4	+	*	1	t	1	*	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	††	1	7	- ††	1	٦	^	1	٦	†	7
Traffic Volume (vph)	28	381	91	226	209	131	45	124	393	230	186	80
Future Volume (vph)	28	381	91	226	209	131	45	124	393	230	186	80
Turn Type	pm+pt	NA	Free	pm+pt	NA	Perm	Perm	NA	Free	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		Free	8		8	2		Free	6		6
Detector Phase	7	4		3	8	8	2	2		6	6	6
Switch Phase												
Minimum Initial (s)	4.0	5.0		4.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.0	10.0		9.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0
Total Split (s)	10.0	25.0		25.0	40.0	40.0	50.0	50.0		50.0	50.0	50.0
Total Split (%)	10.0%	25.0%		25.0%	40.0%	40.0%	50.0%	50.0%		50.0%	50.0%	50.0%
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	None		None	None	None	Max	Max		Max	Max	Max
Act Effct Green (s)	20.0	15.0	90.9	35.6	31.9	31.9	45.2	45.2	90.9	45.2	45.2	45.2
Actuated g/C Ratio	0.22	0.17	1.00	0.39	0.35	0.35	0.50	0.50	1.00	0.50	0.50	0.50
v/c Ratio	0.10	0.66	0.06	0.66	0.21	0.25	0.09	0.14	0.26	0.44	0.24	0.11
Control Delay	18.8	41.7	0.1	27.5	21.8	4.8	14.7	14.4	0.4	19.1	15.3	1.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.8	41.7	0.1	27.5	21.8	4.8	14.7	14.4	0.4	19.1	15.3	1.6
LOS	В	D	А	С	С	А	В	В	А	В	В	A
Approach Delay		32.8			20.2			4.6			14.9	
Approach LOS		С			С			А			В	
Intersection Summary												
Cycle Length: 100												
Actuated Cycle Length: 90.9)											
Natural Cycle: 50												
Control Type: Semi Act-Unc	oord											
Maximum v/c Ratio: 0.66												
Intersection Signal Delay: 17	7.7			Ir	ntersectio	n LOS: B						
Intersection Capacity Utilizat	tion 59.0%			IC	CU Level	of Service	θB					
Analysis Period (min) 15												

<1 ø₂	√ Ø3 →Ø4
50 s	25 s 25 s
↓ Ø6	Ø7 Ø8
50's	10 s 40 s

Intersection				
Intersection Delay, s/veh 4.0)			
Intersection LOS A				
	-			00
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	263	80	110	0
Demand Flow Rate, veh/h	269	82	112	0
Vehicles Circulating, veh/h	4	111	78	193
Vehicles Exiting, veh/h	189	79	195	0
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	4.3	3.5	3.6	0.0
Approach LOS	Α	A	А	-
Lane Left	t	Left	Left	Left
Designated Moves LTR	ł	LTR	LTR	LTR
Assumed Moves LTR	2	LTR	LTR	LTR
RT Channelized				
Lane Util 1.000		1.000	1.000	1.000
Follow-Up Headway, s 2.609		2.609	2.609	2.609
Critical Headway, s 4.976	;	4.976	4.976	4.976
Entry Flow, veh/h 269		82	112	0
Cap Entry Lane, veh/h 1374	•	1232	1274	1133
Entry HV Adj Factor 0.979		0.981	0.982	1.000
Flow Entry, veh/h 263	6	80	110	0
Cap Entry, veh/h 1346	i	1209	1252	1133
V/C Ratio 0.196	;	0.067	0.088	0.000
Control Delay, s/veh 4.3	}	3.5	3.6	3.2
LOS A	١	А	А	А
95th %tile Queue, veh 1				

Int Delay, s/veh	4.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	1			1
Traffic Vol, veh/h	0	73	0	0	0	76
Future Vol, veh/h	0	73	0	0	0	76
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	200	-	-	-	-	0
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	75	80	95	95	75
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	97	0	0	0	101

Yellow Time (s)3.0All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0	EBT 245 245 245 NA 4 4 4 4 4 4 0 9.0 15.0 16.7% 3.0 2.0	EBR 48 48 Perm 4 4 4 4 4 0 9.0 15.0 16.7%	WBL 577 577 Prot 3 3 4.0 9.0 25.0	WBT 713 713 NA 8 8 4.0 9.0	WBR 556 556 Free Free	NBL 154 154 pm+pt 5 2 5	NBT 548 548 NA 2 2	NBR 202 202 Free Free	SBL 201 201 Prot 1	SBT 523 523 NA 6	45 Perm
Traffic Volume (vph)36Future Volume (vph)36Turn Typepm+ptProtected Phases7Permitted Phases4Detector Phase7Switch Phase7Minimum Initial (s)4.0Minimum Split (s)9.0Total Split (s)10.0Total Split (s)10.0Total Split (s)3.0All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach LOSC	245 245 NA 4 4 4.0 9.0 15.0 16.7% 3.0	48 48 Perm 4 4 4.0 9.0 15.0	577 577 Prot 3 3 4.0 9.0	713 713 NA 8 8 4.0	556 556 Free	154 154 pm+pt 5 2	548 548 NA 2	202 202 Free	201 201 Prot 1	523 523 NA 6	45 45 Perm
Future Volume (vph)36Turn Typepm+ptProtected Phases7Permitted Phases4Detector Phase7Switch Phase7Minimum Initial (s)4.0Minimum Split (s)9.0Total Split (s)10.0Total Split (s)10.0Total Split (s)2.0Lost Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	245 NA 4 4 4.0 9.0 15.0 16.7% 3.0	48 Perm 4 4 4.0 9.0 15.0	577 Prot 3 3 4.0 9.0	713 NA 8 8	556 Free	154 pm+pt 5 2	548 NA 2	202 Free	201 Prot 1	523 NA 6	45 45 Perm
Turn Typepm+ptProtected Phases7Permitted Phases4Detector Phase7Switch Phase7Minimum Initial (s)4.0Minimum Split (s)9.0Total Split (s)10.0Total Split (s)10.0Total Split (s)2.0Lost Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead/Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach LOSC	NA 4 4.0 9.0 15.0 16.7% 3.0	Perm 4 4.0 9.0 15.0	Prot 3 3 4.0 9.0	NA 8 8 4.0	Free	pm+pt 5 2	NA 2	Free	Prot 1	NA 6	
Protected Phases7Permitted Phases4Detector Phase7Switch Phase7Switch Phase7Minimum Initial (s)4.0Minimum Split (s)9.0Total Split (s)10.0Total Split (s)10.0Total Split (s)11.1%Yellow Time (s)3.0All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	4 4 4.0 9.0 15.0 16.7% 3.0	4 4 4.0 9.0 15.0	3 3 4.0 9.0	8 8 4.0		5	2		1	6	
Permitted Phases4Detector Phase7Switch Phase7Minimum Initial (s)4.0Minimum Split (s)9.0Total Split (s)10.0Total Split (s)10.0Total Split (%)11.1%Yellow Time (s)3.0All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	4 4.0 9.0 15.0 16.7% 3.0	4 4.0 9.0 15.0	3 4.0 9.0	8 4.0	Free	2		Free	•		6
Detector Phase7Switch PhaseMinimum Initial (s)4.0Minimum Split (s)9.0Total Split (s)10.0Total Split (s)10.0Total Split (%)11.1%Yellow Time (s)3.0All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	4.0 9.0 15.0 16.7% 3.0	4 4.0 9.0 15.0	4.0 9.0	4.0	Free		2	Free	1		6
Switch PhaseMinimum Initial (s)4.0Minimum Split (s)9.0Total Split (s)10.0Total Split (s)10.0Total Split (%)11.1%Yellow Time (s)3.0All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	4.0 9.0 15.0 16.7% 3.0	4.0 9.0 15.0	4.0 9.0	4.0		5	2		1		0
Minimum Initial (s)4.0Minimum Split (s)9.0Total Split (s)10.0Total Split (%)11.1%Yellow Time (s)3.0All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	9.0 15.0 16.7% 3.0	9.0 15.0	9.0						1	6	6
Minimum Split (s)9.0Total Split (s)10.0Total Split (s)11.1%Yellow Time (s)3.0All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	9.0 15.0 16.7% 3.0	9.0 15.0	9.0								
Total Split (s)10.0Total Split (%)11.1%11Yellow Time (s)3.0All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	15.0 16.7% 3.0	15.0		0.0		4.0	4.0		4.0	4.0	4.0
Total Split (%)11.1%11Yellow Time (s)3.0All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	16.7% 3.0		25.0	9.0		9.0	9.0		9.0	9.0	9.0
Yellow Time (s)3.0All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach Delay	3.0	16.7%	20.0	30.0		10.0	35.0		15.0	40.0	40.0
All-Red Time (s)2.0Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS			27.8%	33.3%		11.1%	38.9%		16.7%	44.4%	44.4%
Lost Time Adjust (s)0.0Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	20	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
Total Lost Time (s)5.0Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lead/LagLeadLead-Lag Optimize?YesRecall ModeNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Lead-Lag Optimize?YesRecall ModeNoneNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0
Recall ModeNoneNoneAct Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	Lag	Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag
Act Effct Green (s)14.7Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	Yes	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes
Actuated g/C Ratio0.17v/c Ratio0.22Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach Delay	None	None	None	None		None	Max		None	Max	Max
v/c Ratio 0.22 Control Delay 22.7 Queue Delay 0.0 Total Delay 22.7 LOS C Approach Delay Approach LOS	9.7	9.7	18.8	27.6	88.5	35.6	30.6	88.5	9.4	35.0	35.0
Control Delay22.7Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	0.11	0.11	0.21	0.31	1.00	0.40	0.35	1.00	0.11	0.40	0.40
Queue Delay0.0Total Delay22.7LOSCApproach DelayApproach LOS	0.67	0.14	0.83	0.68	0.37	0.43	0.47	0.13	0.58	0.39	0.06
Total Delay 22.7 LOS C Approach Delay Approach LOS	47.3	0.8	44.7	31.3	0.7	18.1	24.7	0.2	44.7	20.5	0.2
LOS C Approach Delay Approach LOS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Approach Delay Approach LOS	47.3	0.8	44.7	31.3	0.7	18.1	24.7	0.2	44.7	20.5	0.2
Approach LOS	D	А	D	С	А	В	С	А	D	С	A
	37.8			26.3			18.1			25.7	
Intersection Summary	D			С			В			С	
Cycle Length: 90											
Actuated Cycle Length: 88.5											
Natural Cycle: 60											
Control Type: Actuated-Uncoordinated											
Maximum v/c Ratio: 0.83											
Intersection Signal Delay: 25.2			lr	tersection	LOS: C						
Intersection Capacity Utilization 62.9%			IC	CU Level c	of Service	B					
Analysis Period (min) 15											

Ø1	₫ Ø2	√ Ø3	→ Ø4
15 s	35 s	25 s	15 s
05	♥ Ø6	▶ _{Ø7} ← _{Ø8}	
10 s	40 s	10 s 30 s	

Intersection							
Intersection Delay, s/veh 8.2	2						
	4						
Approach	EB	WB		NB		SB	
		1					
Entry Lanes	1	1		1		1	
Conflicting Circle Lanes Adj Approach Flow, veh/h	278	573		185		193	
Demand Flow Rate, veh/h	283	575		189		193	
,	203 71	251		225		773	
Vehicles Circulating, veh/h	899	163					
Vehicles Exiting, veh/h	0	0		129 0		62 0	
Ped Vol Crossing Leg, #/h Ped Cap Adj	1.000	1.000	-	0		1.000	
	4.8	10.2		4.9		10.1	
Approach Delay, s/veh							
Approach LOS	A	В		A		В	
Lane Lef	ft I	_eft	Left		Left		
Designated Moves LTF	۶ L	TR	LTR		LTR		
Assumed Moves LTF	۶ L	TR	LTR		LTR		
RT Channelized							
Lane Util 1.000	0 1.0	000	1.000		1.000		
Follow-Up Headway, s 2.609		509	2.609		2.609		
Critical Headway, s 4.976		976	4.976		4.976		
Entry Flow, veh/h 283		584	189		197		
Cap Entry Lane, veh/h 1283)68	1097		627		
Entry HV Adj Factor 0.982		981	0.979		0.980		
Flow Entry, veh/h 278	8	573	185		193		
Cap Entry, veh/h 1260)48	1074		615		
V/C Ratio 0.220	0 0.	547	0.172		0.314		
Control Delay, s/veh 4.8	8 1	0.2	4.9		10.1		
LOS A	4	В	А		В		
95th %tile Queue, veh	1	3	1		1		

	٨	+	1	4	Ļ	*	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	**	1	ሻሻ	**	1	٦	^	1	ካካ	**	1
Traffic Volume (vph)	65	898	144	470	528	461	118	243	750	755	326	65
Future Volume (vph)	65	898	144	470	528	461	118	243	750	755	326	65
Turn Type	pm+pt	NA	Perm	Prot	NA	Free	pm+pt	NA	Free	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4			Free	2		Free			6
Detector Phase	7	4	4	3	8		5	2		1	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	9.0	9.0	9.0	9.0	9.0		9.0	9.0		9.0	9.0	9.0
Total Split (s)	10.0	30.0	30.0	19.0	39.0		10.0	14.0		27.0	31.0	31.0
Total Split (%)	11.1%	33.3%	33.3%	21.1%	43.3%		11.1%	15.6%		30.0%	34.4%	34.4%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		1.0	2.0		1.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.0	5.0	5.0	4.0	5.0		4.0	5.0		4.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None		None	Max		None	Max	Max
Act Effct Green (s)	31.9	25.0	25.0	14.8	35.8	89.8	16.5	9.5	89.8	22.5	26.0	26.0
Actuated g/C Ratio	0.36	0.28	0.28	0.16	0.40	1.00	0.18	0.11	1.00	0.25	0.29	0.29
v/c Ratio	0.19	0.95	0.25	0.87	0.39	0.31	0.52	0.69	0.50	0.91	0.33	0.12
Control Delay	14.2	51.7	2.1	53.7	20.9	0.5	29.0	49.7	1.1	49.1	26.3	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14.2	51.7	2.1	53.7	20.9	0.5	29.0	49.7	1.1	49.1	26.3	0.4
LOS	В	D	А	D	С	А	С	D	А	D	С	A
Approach Delay		42.9			24.9			14.7			39.8	
Approach LOS		D			С			В			D	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 89.8	}											
Natural Cycle: 90												
Control Type: Semi Act-Unc	oord											
Maximum v/c Ratio: 0.95												
Intersection Signal Delay: 30	0.2			Ir	ntersectior	LOS: C						
Intersection Capacity Utiliza)		(CU Level o	of Service	e D					
Analysis Period (min) 15												

Ø1		1 ø2	€ Ø3		
27 s		14 s	19 s		30 s
105	Ø6			← Ø8	
10 s	31 s		10 s	39 s	

Intersection				
Intersection Delay, s/veh	12.1			
Intersection LOS	В			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	1034	355	133	132
Demand Flow Rate, veh/h	1055	362	136	135
Vehicles Circulating, veh/h	0	367	836	498
Vehicles Exiting, veh/h	633	605	219	231
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	14.5	8.1	9.3	6.1
Approach LOS	В	А	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609	2.609
Critical Headway, s	4.976	4.976	4.976	4.976
Entry Flow, veh/h	1055	362	136	135
Cap Entry Lane, veh/h	1380	949	588	830
Entry HV Adj Factor	0.980	0.980	0.978	0.978
Flow Entry, veh/h	1034	355	133	132
Cap Entry, veh/h	1353	930	575	812
V/C Ratio	0.765	0.381	0.231	0.163
Control Delay, s/veh	14.5	8.1	9.3	6.1
LOS	В	А	А	А
95th %tile Queue, veh	8	2	1	1

	٨	-	7	1	+	*	1	1	1	4	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	††	1	ካካ	^	1	7	^	1	ሻሻ	^	7
Traffic Volume (vph)	36	276	48	639	766	618	154	548	238	237	523	45
Future Volume (vph)	36	276	48	639	766	618	154	548	238	237	523	45
Turn Type	pm+pt	NA	Perm	Prot	NA	Free	pm+pt	NA	Free	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4			Free	2		Free			6
Detector Phase	7	4	4	3	8		5	2		1	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	9.0	9.0	9.0	9.0	9.0		9.0	9.0		9.0	9.0	9.0
Total Split (s)	10.0	15.0	15.0	25.0	30.0		10.0	35.0		15.0	40.0	40.0
Total Split (%)	11.1%	16.7%	16.7%	27.8%	33.3%		11.1%	38.9%		16.7%	44.4%	44.4%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None		None	Max		None	Max	Max
Act Effct Green (s)	14.9	9.9	9.9	19.6	28.5	89.4	35.3	30.3	89.4	9.7	35.0	35.0
Actuated g/C Ratio	0.17	0.11	0.11	0.22	0.32	1.00	0.39	0.34	1.00	0.11	0.39	0.39
v/c Ratio	0.22	0.75	0.14	0.90	0.72	0.41	0.44	0.48	0.16	0.67	0.40	0.06
Control Delay	22.9	51.7	0.8	50.4	32.4	0.8	18.4	25.2	0.2	48.0	20.8	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.9	51.7	0.8	50.4	32.4	0.8	18.4	25.2	0.2	48.0	20.8	0.2
LOS	С	D	А	D	С	А	В	С	А	D	С	A
Approach Delay		42.0			28.4			17.8			27.7	
Approach LOS		D			С			В			С	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 89.4	ļ											
Natural Cycle: 60												
Control Type: Actuated-Unc	oordinated											
Maximum v/c Ratio: 0.90												
Intersection Signal Delay: 27	7.0			Ir	ntersection	n LOS: C						
Intersection Capacity Utiliza				10	CU Level	of Service	ЭC					
Analysis Period (min) 15												
, ,												

Ø1	₫ ø2	√ Ø3	₩ Ø4
15 s	35 s	25 s	15 s
1 Ø5	₽ Ø6	▶ _{Ø7} ← _{Ø8}	
10 s	40 s	10 s 30 s	

Intersection				
Intersection Delay, s/veh20.5				
Intersection LOS				
		14/5		05
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	574	959	284	201
Demand Flow Rate, veh/h	585	978	290	205
Vehicles Circulating, veh/h	98	255	535	1154
Vehicles Exiting, veh/h	1261	570	148	79
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	7.8	31.8	9.0	18.8
Approach LOS	А	D	А	С
Lane Lef	t	Left	Left	Left
Designated Moves LTR		LTR	LTR	LTR
Assumed Moves LTR	1	LTR	LTR	LTR
RT Channelized				
Lane Util 1.000		1.000	1.000	1.000
Follow-Up Headway, s 2.609		2.609	2.609	2.609
Critical Headway, s 4.976		4.976	4.976	4.976
Entry Flow, veh/h 585		978	290	205
Cap Entry Lane, veh/h 1249		1064	800	425
Entry HV Adj Factor 0.981		0.980	0.979	0.980
Flow Entry, veh/h 574		959	284	201
Cap Entry, veh/h 1225		1043	783	417
			0.000	0.482
V/C Ratio 0.469		0.919	0.363	0.402
Control Delay, s/veh 7.8		0.919 31.8	0.363 9.0	18.8
	;			

Int Delay, s/veh	7.7						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	ł
Lane Configurations		^	1			1	1
Traffic Vol, veh/h	0	443	473	0	0	289	ł
Future Vol, veh/h	0	443	473	0	0	289	ł
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None	;
Storage Length	200	-	-	-	-	0)
Veh in Median Storage	# -	0	0	-	0	-	-
Grade, %	-	0	0	-	0	-	-
Peak Hour Factor	95	75	80	95	95	75	;
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	0	591	591	0	0	385	;

Major/Minor	Major1	Ν	/lajor2	N	linor2	
Conflicting Flow All	-	0	-	0	-	591
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.319
Pot Cap-1 Maneuver	0	-	-	0	0	506
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver		-	-	-	-	506
Mov Cap-2 Maneuver	• -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	; 0		0		31.4	
HCM LOS			-		D	
	un t	грт		1 -1		
Minor Lane/Major Mv	mt	EBT	WBT S			
Capacity (veh/h)		-	-	506		
HCM Lane V/C Ratio	`	-		0.762		
HCM Control Delay (s	5)	-	-	31.4		
HCM Lane LOS	L \	-	-	D		
HCM 95th %tile Q(vel	n)	-	-	6.6		

Int Delay, s/veh	3.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٢	1	1	1		1
Traffic Vol, veh/h	269	174	473	71	0	0
Future Vol, veh/h	269	174	473	71	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	235	-	0
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	75	94	94	75	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	359	185	503	95	0	0

Major/Minor	Major1	Ν	/lajor2	1	Minor2	
Conflicting Flow All	598	0	-	0	-	503
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	4.12	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	2.218	-	-	-	-	3.318
Pot Cap-1 Maneuver	979	-	-	-	0	569
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	-	569
Mov Cap-2 Maneuver	· -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	7.1		0		0	
HCM LOS					A	
Minor Long/Major My	an t	EDI	ГОТ			
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR	SBLUI
Capacity (veh/h)		979	-	-	-	-
HCM Lane V/C Ratio		0.366	-	-	-	-
HCM Control Delay (s	5)	10.8	-	-	-	0
HCM Lane LOS	-)	B	-	-	-	А
HCM 95th %tile Q(ver	1)	1.7	-	-	-	-

	٨	+	1	4	ł	*	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	1	ካካ	**	1	٦	††	1	ካካ	- ††	1
Traffic Volume (vph)	65	911	144	478	535	469	118	243	765	770	326	65
Future Volume (vph)	65	911	144	478	535	469	118	243	765	770	326	65
Turn Type	pm+pt	NA	Perm	Prot	NA	Free	pm+pt	NA	Free	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4			Free	2		Free			6
Detector Phase	7	4	4	3	8		5	2		1	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	9.0	9.0	9.0	9.0	9.0		9.0	9.0		9.0	9.0	9.0
Total Split (s)	10.0	30.0	30.0	19.0	39.0		10.0	14.0		27.0	31.0	31.0
Total Split (%)	11.1%	33.3%	33.3%	21.1%	43.3%		11.1%	15.6%		30.0%	34.4%	34.4%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	1.0	2.0	2.0	1.0	2.0		1.0	2.0		1.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.0	5.0	5.0	4.0	5.0		4.0	5.0		4.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None	None	None	None		None	Max		None	Max	Max
Act Effct Green (s)	31.9	25.0	25.0	14.9	35.9	89.9	16.3	9.3	89.9	22.7	26.0	26.0
Actuated g/C Ratio	0.35	0.28	0.28	0.17	0.40	1.00	0.18	0.10	1.00	0.25	0.29	0.29
v/c Ratio	0.19	0.96	0.25	0.88	0.40	0.31	0.53	0.70	0.51	0.93	0.34	0.12
Control Delay	14.2	54.5	2.1	54.8	21.0	0.5	29.2	50.5	1.2	50.9	26.3	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14.2	54.5	2.1	54.8	21.0	0.5	29.2	50.5	1.2	50.9	26.3	0.4
LOS	В	D	А	D	С	А	С	D	А	D	С	A
Approach Delay		45.3			25.3			14.8			41.1	
Approach LOS		D			С			В			D	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 89.9	1											
Natural Cycle: 90												
Control Type: Semi Act-Unco	oord											
Maximum v/c Ratio: 0.96												
Intersection Signal Delay: 31	.2			lr	ntersectior	LOS: C						
Intersection Capacity Utilizat	tion 82.5%			10	CU Level o	of Service	еE					
Analysis Period (min) 15												

Ø1		¶ø₂	Ø 3		
27 s		14 s	19 s		30 s
105	Ø6		▶ Ø7	← Ø8	
10 s	31 s		10 s	39 s	

Intersection							
Intersection Delay, s/ve	h15.4						
Intersection LOS	С						
Approach		EB	WB		NB	SB	
Entry Lanes		1	1		1	1	
Conflicting Circle Lanes	5	1	1		1	1	
Adj Approach Flow, veł		1092	443		142	133	
Demand Flow Rate, ve	h/h	1114	452	,	145	136	
Vehicles Circulating, ve	h/h	39	367	8	396	583	
Vehicles Exiting, veh/h		680	674	, ,	257	236	
Ped Vol Crossing Leg,	#/h	0	0		0	0	
Ped Cap Adj		1.000	1.000		000	1.000	
Approach Delay, s/veh		19.4	9.7	1	0.3	6.8	
Approach LOS		С	А		В	А	
Lane	Left		Left	Left	Left		
Designated Moves	LTR		LTR	LTR	LTR		
Assumed Moves	LTR		LTR	LTR	LTR		
RT Channelized							
Lane Util	1.000		1.000	1.000	1.000		
Follow-Up Headway, s			2.609	2.609	2.609		
· · · · · · · · · · · · · · · · · · ·	4.976		4.976	4.976	4.976		
Entry Flow, veh/h	1114		452	145	136		
Cap Entry Lane, veh/h			949	553	761		
	0.980		0.980	0.979	0.978		
Flow Entry, veh/h	1092		443	142	133		
Cap Entry, veh/h	1300		930	542	745		
V/C Ratio	0.840		0.476	0.262	0.179		
Control Delay, s/veh	19.4		9.7	10.3	6.8		
LOS	С		A	В	A		
95th %tile Queue, veh	11		3	1	1		

Int Delay, s/veh	0.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- 11	•			7
Traffic Vol, veh/h	0	640	337	0	0	84
Future Vol, veh/h	0	640	337	0	0	84
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	200	-	-	-	-	0
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	674	355	0	0	88

Major/Minor	Major1	Ν	Major2	M	linor2	
Conflicting Flow All	-	0	-	0	-	355
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.319
Pot Cap-1 Maneuver		-	-	0	0	688
Stage 1	0	-	-	0	0	-
Stage 2	0	-	-	0	0	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver		-	-	-	-	688
Mov Cap-2 Maneuver	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	s 0		0		11	
HCM LOS					В	
		гот		<u>1</u> 1		
Minor Lane/Major Mv	mt	EBT	WBT S			
Capacity (veh/h)		-	-	688		
HCM Lane V/C Ratio		-		0.129		
HCM Control Delay (s	5)	-	-	11		
HCM Lane LOS	h)	-	-	В 0.4		
HCM 95th %tile Q(vel	(1)	-	-	0.4		

Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	1	1	1		1
Traffic Vol, veh/h	65	575	337	8	0	0
Future Vol, veh/h	65	575	337	8	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	235	-	0
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	68	605	355	8	0	0

Major/Minor	Major1	Ν	1ajor2	1	Minor2	
Conflicting Flow All	363	0	-	0	-	355
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	4.12	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	2.218	-	-	-	-	3.318
Pot Cap-1 Maneuver	1196	-	-	-	0	689
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	-	689
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.8		0		0	
HCM LOS					А	
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR \$	SBLn1
Capacity (veh/h)		1196	-	-	-	-
HCM Lane V/C Ratio		0.057	-	-	-	-
HCM Control Delay (s	5)	8.2	-	-	-	0
HCM Lane LOS		А	-	-	-	А
HCM 95th %tile Q(veh	ר)	0.2	-	-	-	-

Markup Summary

dsdrice (4)		
where waterce.	Subject: Text Box Page Label: 9 Author: dsdrice Date: 7/5/2018 11:52:56 AM Color:	Address the countywide traffic fee.
reners of spacing their shareholds years, beams respect to a balance set of all strates of perspective shareholds with the strates of the str	Subject: Text Box Page Label: 3 Author: dsdrice Date: 7/9/2018 4:27:20 PM Color:	Provide times assumed in this report.
or creat section and all approaches are projected to opport part hours hand on the projected above form and 2500 bits. Here the section of the section part of the section of the section of the section of the section part of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the operation of the section of the s	Subject: Cloud+ Page Label: 8 Author: dsdrice Date: 7/9/2018 4:39:35 PM Color:	one?
 A set of a set of	Subject: Text Box Page Label: 9 Author: dsdrice Date: 7/9/2018 4:41:12 PM Color:	Discuss if these improvements were (will be) provided with the Fontaine Blvd. improvements or will be provided by the school district, and when. If justified not to be constructed initially escrow may be required.