

ENTECH ENGINEERING, INC.

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

SOIL, GEOLOGY, & GEOLOGIC HAZARD STUDY THE VILLAGES AT STERLING RANCH EAST PRELIMINARY PLAN NO. 3 – PARCEL NOS. 14, 15, 20, & 21 EL PASO COUNTY, COLORADO

SF2439

Prepared for

Classic SRJ

2138 Flying Horse Club Drive Colorado Springs, Colorado 80921

Attn: Loren Moreland

Due to the date of the report, attach memo that conditions are essentially the same and nothing has changed or provide updated/newer report

April 13, 2022

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Logan L. Langford, P.G.

Geologist

LLL/am

Encl.

Entech Job No. 220573 AAprojects/2022/220573 countysoil/geo Reviewed by:

Joseph C. Goode, Jr., P.E.

President

TABLE OF CONTENTS

1.0	SUMMARY	3
2.0	GENERAL SITE CONDITIONS AND PROJECT DESCRIPTION	4
3.0	SCOPE OF THE REPORT	5
4.0	FIELD INVESTIGATION	5
5.0	SOIL, GEOLOGY AND ENGINEERING GEOLOGY	6
	5.1 General Geology	6
	5.2 Soil Conservation Survey	6
	5.3 Site Stratigraphy	7
	5.4 Soil Conditions	7
	5.5 Groundwater	9
6.0	ENGINEERING GEOLOGY – IDENTIFICATION AND MITIGATION OF GEOLOGIC	
	HAZARDS	9
	6.1 Relevance of Geologic Conditions to Land Use Planning	2
7.0	ECONOMIC MINERAL RESOURCES1	3
8.0	EROSION CONTROL1	4
9.0	ROADWAY AND EMBANKMENT CONSTRUCTION RECOMMENDATIONS1	4
10.0	CLOSURE1	6
BIB	LIOGRAPHY1	7
Tab	RLES le 1: Summary of Laboratory Test Results le 2: Depth to Bedrock and Groundwater	
Figu Figu Figu Figu Figu Figu Figu	URES Ire 1: Vicinity Map Ire 2: USGS Map Ire 3: Preliminary Concept Plan Ire 4: Development Plan/Test Boring Location Map Ire 5: Soil Survey Map Ire 6: Falcon NW Quadrangle Geology Map Ire 7: Geology Map/Engineering Geology Ire 8: Floodplain Map Ire 9: Typical Perimeter Drain Details	
APF APF APF	PENDIX A: Site Photographs PENDIX B: Test Boring and Test Pit Logs PENDIX C: Laboratory Test Results PENDIX D: Test Boring Logs from Entech Job No. 82556 PENDIX E: Soil Survey Descriptions	

1.0 SUMMARY

Project Location

The project lies in portions of the W½ of Section 34, Township 12 South, Range 65 West of the

6th Principal Meridian in El Paso County, Colorado. The site is located approximately one-mile

northeast of Colorado Springs, Colorado.

Project Description

Total acreage involved The Villages at Sterling Ranch East is approximately 39.22 acres, and

two hundred and forty-six (246) lots are proposed got the four parcels. The proposed

development is to consist of single-family residential. The development will be serviced by

Sterling Ranch Metropolitan District.

Scope of Report

This report presents the results of our geologic evaluation and treatment of engineering geologic

hazard study.

Land Use and Engineering Geology

This site was found to be suitable for the proposed development. Areas were encountered

where the geologic conditions will impose some constraints on development and land use.

These include areas of expansive soils, erosion, hydrocompaction, potentially unstable slopes,

and potentially seasonally shallow groundwater areas. Based on the proposed development

plan, it appears that these areas will have some impact on the development. These conditions

will be discussed in greater detail in the report.

In general, it is our opinion that the development can be achieved if the observed geologic

conditions on site are either avoided or properly mitigated. All recommendations are subject to

the limitations discussed in the report.

3

Soil, Geology, & Geologic Hazard Study The Villages at Sterling Ranch East Preliminary Plan No. 3 – Parcel Nos. 14, 15, 20, & 21

El Paso County, Colorado Job No. 220573

2.0 GENERAL SITE CONDITIONS AND PROJECT DESCRIPTION

The site is located in portions of the W½ of Section 34, Township 12 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado. The site is located approximately one-mile northeast of Colorado Springs, Colorado, at the southeast corner of future Briargate Parkway and Sterling Ranch Road. The location of the site is as shown on the Vicinity Map, Figure 1.

The topography of the site is generally gradually sloping to the south, with moderate to steep slopes along a cut slope in the western portion of the site. The western portion of the site has been used a borrow area for fill used in other portions of Sterling Ranch. Minor drainage swales and surface drainage on site flows in a southerly direction through the central portion of the site. Water was not observed in any of the drainage swales at the time of this investigation. Groundwater was observed to the south of the site in a stock pond, and to the west of the site at the southwest corner of future Briargate Parkway and Sterling Ranch Road. The site boundaries are indicated on the USGS Map, Figure 2. Previous land uses have included a fill borrow area, grazing and pasture land. The site contains primarily field grasses, cacti, yucca, and weeds. Site photographs, taken March 14, 2022, are included in Appendix A.

Total acreage involved in The Villages at Sterling Ranch East is approximately 39.22 acres. Two hundred and forty-six (246) single-family residential lots are proposed. Final grading plans were not available at the time of this report. The proposed housing has crawl spaces or garden level entry levels. The Development Plan is presented in Figure 3, and the Site Plan/Test Boring Location Map is presented in 4.

3.0 SCOPE OF THE REPORT

The scope of the report will include a general geologic analysis utilizing published geologic data. Detailed site-specific mapping will be conducted to obtain general information in respect to major geographic and geologic features, geologic descriptions and their effects on the development of the property.

4.0 FIELD INVESTIGATION

Our field investigation consisted of the preparation of a geologic map of any bedrock features and significant surficial deposits. The Natural Resource Conservation Service (NRCS), previously the Soil Conservation Service (SCS) survey was also reviewed to evaluate the site. The position of mappable units within the subject property are shown on the Geologic Map. Our mapping procedures involved both field reconnaissance and measurements and air photo reconnaissance and interpretation. The same mapping procedures have also been utilized to produce the Engineering Geology Map which identified pertinent geologic conditions affecting development. The field mapping was performed by personnel of Entech Engineering, Inc. on March 14, 2022.

Geologic Hazard Studies were previously performed by Entech Engineering, Inc. for the entire Sterling Ranch development, October 31, 2006 (Reference 3) and January 20, 2009 (Reference 4). One of the test borings from the previous investigations was located on the subject site (Test Boring No. 16). The location of the test boring is indicated on Figure 4. The Test Boring Log is included in Appendix D. Information from these reports was used in evaluating the site.

Four additional Test Borings were drilled as part of this investigation to determine general soil and bedrock characteristics. The locations of the test borings are indicated on the Development Plan/Test Boring Location Map, Figure 4. The Test Boring Logs are presented in Appendix B. Results of this testing will be discussed later in this report.

Laboratory testing was also performed on some of the soils to classify and determine the soils engineering characteristics. Laboratory tests included grain-size analysis ASTM D-422, Atterberg Limits ASTM D-4318, volume change testing using Swell/Consolidation test. Sulfate testing was performed on select samples to evaluate potential for below grade concrete

degradation due to sulfate attack. Results of the laboratory testing are included in Appendix C. A Summary of Laboratory Test Results is presented in Table 1.

5.0 SOIL, GEOLOGY AND ENGINEERING GEOLOGY

5.1 General Geology

Physiographically, the site lies in the western portion of the Great Plains Physiographic Province. Approximately 12½ miles to the west is a major structural feature known as the Rampart Range Fault. This fault marks the boundary between the Great Plains Physiographic Province and the Southern Rocky Mountain Province. The site exists within the southeastern edge of a large structural feature known as the Denver Basin. Bedrock in the area tends to be very gently dipping in a northeasterly direction (Reference 1). The rocks in the area of the site are sedimentary in nature and typically Upper Cretaceous in age. The bedrock underlying the site consists of the Dawson Formation. Overlying this formation are unconsolidated deposits of eolian and alluvial soils of Quaternary Age. The alluvial soils were deposited by water on site and as stream terraces along Sand Creek and the drainages located on the site. Man-made soils exist as fill piles located in the southern portion of the site. The site's stratigraphy will be discussed in more detail in Section 5.3.

5.2 Soil Conservation Survey

The Natural Resource Conservation Service (Reference 2), previously the Soil Conservation Service (Reference 3) has mapped three soil types on the site (Figure 4). In general, the soils classify as coarse sandy loam. The soils are described as follows:

<u>Type</u>	<u>Description</u>
8	Blakeland Loamy Sand, 1 to 9% slopes
19	Columbine Gravelly Sandy Loam, 0 to 3% slopes

Complete descriptions of each soil type are presented in Appendix D. The soils have generally been described to have moderate to moderately rapid permeabilities. Possible hazards with soil erosion are present on the site. The erosion potential can be controlled with vegetation. The majority of the soils have been described to have moderate erosion hazards.

5.3 Site Stratigraphy

The Falcon NW Quadrangle Geology Map showing the site is presented in Figure 6 (Reference

4). The Geology Map prepared for the site is presented in Figure 7. Two mappable units were

identified on this site which are described as follows:

Qes Eolian Sand of Quaternary Age: These deposits are fine to medium grained soil

deposited on the site by the action of prevailing winds from the west and northwest.

They typically occur as large dune deposits or narrow ridges. These soil types are

typically tan to brown in color and tend to have very uniform or well-sorted gradation,

and tend to have a relatively high permeability and low density.

Qao₁ Old alluvium two of Holocene Age: These materials consist of stream-deposited

alluvium, typically classified as a silty to well-graded sand, brown to dark brown in

color and of moderate density occurring as terrace deposits. Old Alluvium One is

The bedrock underlying the site consists of the Dawson Formation of Tertiary to Cretaceous

Age. The Dawson Formation typically consists of arkosic sandstone with interbedded fine-

grained sandstone, siltstone and claystone. Overlying this formation is a variable layer of

residual soil. The residual soils were derived from the in-situ weathering of the bedrock

materials on-site. These soils consisted of silty to clayey sands and sandy clays.

The soils listed above were mapped from site-specific mapping, the *Geologic Map of the Falcon*

NW Quadrangle distributed by the Colorado Geological Survey in 2003 (Reference 4), the

Geologic Map of the Colorado Springs-Castle Rock Area, distributed by the US Geological

Survey in 1978 (Reference 5), and the Geologic Map of the Pueblo 1° x 2° Quadrangle,

distributed by the US Geological Survey in 1981 (Reference 6). The Test Borings were also

used in evaluating the site and are included in Appendix B. The Geology Map prepared for the

site is presented in Figure 7.

5.4 Soil Conditions

The soils encountered in the Test Borings can be grouped into four general soil types. The soils

7

were classified using the Unified Soil Classification System (USCS).

Soil, Geology, & Geologic Hazard Study The Villages at Sterling Ranch East Preliminary Plan No. 3 – Parcel Nos. 14, 15, 20, & 21

El Paso County, Colorado Job No. 220573

Soil Type 1 slightly silty to silty sand (SM-SW, SM, SC), was encountered in all of Test Borings

at depths ranging from the existing ground surface to 4 feet and extending to depths ranging

from 12 to 19 feet bgs. These soils were encountered at loose to dense states and at moist

conditions. The majority of the soils were encountered and medium dense states. Samples

tested had 9 to 13 percent of the soil sized particles passing the No. 200 Sieve. Sulfate testing

resulted in 0.01 percent sulfate by weight indicating the sand exhibits negligible potential for

below grade concrete degradation.

Soil Type 2 very sandy clay-silt (CL-ML), encountered in Test Boring No. 2 at the existing

surface grade and extending to an approximate depth of 4 feet bgs. These soils were

encountered at stiff consistencies and moist conditions. Samples tested had 54 percent of the

soil sized particles passing the No. 200 Sieve. Atterberg Limits Testing resulted in a liquid limit

of 23 and aplastic index of 6. Swell/Consolidation Testing resulted in a volume change of 0.6

percent, indicated a low expansion potential. Sulfate testing resulted in 0.03 percent sulfate by

weight indicating the clay-silt exhibits negligible potential for below grade concrete degradation.

Soil Type 3 silty sandstone (SM), encountered in Test Boring Nos. 3 and 4 at depths ranging

from 14 to 19 feet bgs and extending to the termination of the test borings (20 feet). The

sandstone was encountered at dense to very dense states and at moist conditions. Samples

tested had 22 percent of the soil sized particles passing the No. 200 Sieve.

Soil Type 4 very sandy claystone (CL), encountered in Test Boring Nos. 4 and 5 at depths

ranging from 7 to 9 feet bgs and extending to depths ranging from 16 to 19 feet bgs. The

claystone was encountered at hard consistencies and at moist conditions. Samples tested had

54 of the soil sized particles passing the No. 200 Sieve. Atterberg Limits Testing resulted in a

liquid limit of 29 and aplastic index of 11. Swell/Consolidation Testing resulted in a volume

change of 0.6 percent, which indicates a low expansion potential. Highly expansive claystone is

common in the area. Sulfate testing resulted in 0.03 percent sulfate by weight indicating the

claystone exhibits negligible potential for below grade concrete degradation.

The Test Boring Logs are presented in Appendix B. Laboratory Test Results are presented in

Appendix C. A Summary of Laboratory Test Results is presented in Table 1.

8

5.5 Groundwater

Groundwater was encountered in one of the test borings at a depth 10 feet, water was not

encountered in the remaining borings which were drilled to 20 feet. Areas of water, seasonal

shallow groundwater water, and potential seasonal shallow groundwater have been mapped

along the minor drainage swale on-site. These areas are discussed in the following section.

Fluctuation in groundwater conditions may occur due to variations in rainfall and other factors

not readily apparent at this time.

It should be noted that in the sandy materials on-site, some groundwater conditions might be

encountered due to the variability in the soil profile. Isolated sand and gravel layers within the

soils, sometimes only a few feet in thickness and width, can carry water in the subsurface.

Groundwater may also flow on top of the underlying bedrock. Builders and planners should be

cognizant of the potential for the occurrence of such subsurface water features during

construction on-site and deal with each individual problem as necessary at the time of

construction.

6.0 ENGINEERING GEOLOGY – IDENTIFICATION AND MITIGATION

OF GEOLOGIC HAZARDS

As mentioned previously, detailed mapping has been performed on this site to produce an

Engineering Geology Map Figure 7. This map shows the location of various geologic conditions

of which the developers should be cognizant during the planning, design and construction

stages of the project. These hazards and the recommended mitigation techniques are as

follows:

Artificial Fill - constraint

No areas of artificial fill were observed on the site.

Collapsible Soils - constraint

The majority of the soils encountered on-site do not exhibit collapsible characteristics, however,

areas of loose soils were encountered in the test borings drilled on site. Additionally, areas

mapped as Qes (eolian sand) have the potential for hydrocompation.

9

Soil, Geology, & Geologic Hazard Study The Villages at Sterling Ranch East Preliminary Plan No. 3 – Parcel Nos. 14, 15, 20, & 21

minary Plan No. 3 – Parcel Nos. 14, 15, 20, & 21 El Paso County, Colorado

Mitigation: Should loose or collapsible soils be encountered beneath foundations, recompaction

and moisture conditioning of the upper 2 feet of soil at 95% of its maximum Modified Proctor Dry

Density ASTM D-1557 will be required. Exterior flatwork and parking areas may also

experience movement. Proofrolling and recompaction of soft areas should be performed during

site work.

Expansive Soils - constraint

Expansive soils were encountered in the test borings drilled on site. These occurrences are

typically sporadic; therefore, none have been indicated on the maps. The clays and claystone,

if encountered at foundation grade, can cause differential movement in structures. These

occurrences should be identified and dealt with on an individual basis.

Mitigation Should expansive soils be encountered beneath foundations: mitigation will be

necessary. Mitigation of expansive soils will require special foundation design. Overexcavation

3 to 5 feet and replacement with non-expansive soils at a minimum of 95% of its maximum

Modified Proctor Dry Density, ASTM D-1557 is a suitable mitigation, which is common in the

Floor slabs on expansive soils should be expected to experience movement. area.

Overexcavation and replacement has been successful in minimizing slab movements. The use

of structural floors should be considered for basement construction on highly expansive clays.

Final recommendations should be determined after additional investigation of each building site.

Areas of Erosion - constraint

These are areas that are undergoing erosion by water and sheetwash producing gullies and rill

erosion. The areas significant erosion observed on the site are located in the former borrow

areas where most of the vegetation had been removed.

Mitigation: Due to the nature of the soils on this site, virtually all the soils are subject to erosion

by wind and water. Other minor areas of erosion were observed on site other than those

mapped, particularly where some rill erosion has occurred. Areas of erosion can occur across

the entire site, particularly if the soils are disturbed during construction. Vegetation reduces the

potential for erosion. The areas identified where erosion is actually taking place may require

check dams, regrading and revegetation using channel lining mats to anchor vegetation.

Further recommendations for erosion control are discussed under Section 8.0 "Erosion Control"

of this report. Recommendations pertaining to revegetation may require input from a qualified

10

Soil, Geology, & Geologic Hazard Study

The Villages at Sterling Ranch East Preliminary Plan No. 3 - Parcel Nos. 14, 15, 20, & 21 El Paso County, Colorado

landscape architect and/or the Natural Resource Conservation Service (previously Soil

Conservation Service).

Groundwater and Floodplain Areas - constraint

The site is not mapped within floodplain zones according to the FEMA Map No. 08041CO535G,

Figure 8 (Reference 7). Areas within the minor drainage swales on-site have been identified as

areas of potentially seasonal groundwater areas, but were dry at the time of our site

observations. Standing water was observed in a pond to the south of the site, and to the west

of the site at the northwest corner of future Briargate Parkway and Sterling Ranch Road. These

areas are discussed as follows:

Potentially Seasonal Shallow Groundwater Area - constraint

In these areas, we would anticipate the potential for periodically high subsurface moisture

conditions, frost heave potential and highly organic soils. These areas lie within minor drainage

swales which will likely be regraded during grading of the development.

Mitigation: Foundations must have a minimum 30-inch depth for frost protection. In areas where

high subsurface moisture conditions are anticipated periodically, subsurface perimeter drains

are recommended to help prevent the intrusion of water into areas below grade. Typical drain

details are presented in Figure 9. Any grading in these areas should be done to direct surface

flow around construction to avoid areas of ponded water. Structures should not block drainages.

All organic material should be completely removed prior to any fill placement. Finished floor

levels must be located a minimum of one foot above floodplain levels.

Potentially Unstable Slope Areas - hazard

These slopes are considered stable in their present condition; however, considerable care must

be exercised in these areas not to create a condition which would tend to activate instability.

These areas are primarily located along the cut slope of the former borrow area in the western

portion of the site.

Mitigation: Building should be avoided in these areas unless properly mitigated. These areas

will likely be regraded during the site development. Fill placed along these slopes should be

properly benched into the slope as to not create unstable conditions.

Soil, Geology, & Geologic Hazard Study The Villages at Sterling Ranch East Preliminary Plan No. 3 – Parcel Nos. 14, 15, 20, & 21 El Paso County, Colorado

Radon - hazard

Radon levels for the area have been reported by the Colorado Geologic Survey in the open file, Report No. 91-4 (Reference 9). Average Radon levels for the 80908-zip code is 3.40 pCi/l. The following is a table of radon levels in this area:

<u>80908</u>	
0 < 4 pCi/l	50.00%
4 < 10 pCi/l	50.00%
10 < 20 pCi/l	0.00%
> 20 pCi/l	0.00%

Mitigation:

The potential for high radon levels is present for the site. Build-up of radon gas can usually be mitigated by providing increased ventilation of basement and crawlspace and sealing joints. Specific requirements for mitigation should be based on site specific testing.

6.1 Relevance of Geologic Conditions to Land Use Planning

As mentioned earlier in this report, we understand that the development will be single-family residential. It is our opinion that the existing geologic and engineering geologic conditions will impose some constraints on the proposed development and construction. The most significant problems affecting development will be those associated with the potentially unstable slopes on site that will primarily be mitigated by the site grading. The minor drainage swales will also be mitigated by site grading. Other hazards on site can be satisfactorily mitigated through proper engineering design and construction practices.

The upper materials are typically at loose to dense states. The granular soils encountered in the upper soil profiles of the test borings should provide good support for foundations. Loose soils if encountered at foundation depth will require mitigation. Foundations anticipated for the site are standard spread footings possibly in conjunction with overexcavation in areas of expansive soils or recompaction in areas of loose soils. Excavation is anticipated to be moderate with rubber-tired equipment for the site sand materials, and will require track mounted equipment for the dense sandstone. Expansive layers may also be encountered in the soil and bedrock on this site. Areas of expansive soils encountered on site are sporadic; therefore, none

have been indicated on the maps. Expansive soils, if encountered, will require special

foundation design and/or overexcavation. These soils will not prohibit development.

Areas of potentially seasonal high groundwater were observed on site. These areas will likely

be mitigated with site grading. Drains may be necessary for structures adjacent to these areas

to help prevent the intrusion of water into areas below grade. The proposed structures do not

have basements. Typical drain details are presented in Figure 9. The site does not lie within

any floodplain zones according to the FEMA Map No. 08041CO535G, dated December 7, 2108

(Figure 8, Reference 8). Exact locations of floodplain and specific drainage studies are beyond

the scope of this report.

Areas of erosion and gullying may require the construction of check dams and revegetation of

the site soils after construction. General recommendations for erosion control are discussed

under Section 8.0 "Erosion Control".

Potentially unstable slope areas were observed in the western portion of the site along a cut of

the former borrow area. Regrading of the slopes will be required in this area. Any fill placed

along the slope should be properly benched into the slope. Any retaining walls proposed should

be designed for the global slope stability by a qualified professional engineer. This includes

cuts made for terracing in backyards. Proper control of drainage at both the surface and

subsurface is important. Saturation of materials should be avoided that may create unstable

conditions.

In summary, development of the site can be achieved if the items mentioned above are

mitigated. These items can be mitigated through proper design and construction or through

avoidance. Investigation on each lot is recommended prior to construction.

7.0 ECONOMIC MINERAL RESOURCES

Some of the sandy materials on-site could be considered a low-grade sand resource.

According to the El Paso County Aggregate Resource Evaluation Map (Reference 8), the area

is not mapped with any aggregate deposits. According to the Atlas of Sand, Gravel and Quarry

Aggregate Resources, Colorado Front Range Counties distributed by the Colorado Geological

Survey (Reference 9), areas of the site are not mapped with any resources. According to the

13

Soil, Geology, & Geologic Hazard Study
The Villages at Sterling Ranch East

Preliminary Plan No. 3 – Parcel Nos. 14, 15, 20, & 21 El Paso County, Colorado

Evaluation of Mineral and Mineral Fuel Potential (Reference 10), the area of the site has been

mapped as "Fair" for industrial minerals. However, considering the silty nature of much of these

materials and abundance of similar materials through the region and the close proximity to

developed land, they would be considered to have little significance as an economic resource.

According to the Evaluation of Mineral and Mineral Fuel Potential of El Paso County State

Mineral Lands (Reference 10), the site is mapped within the Denver Basin Coal Region.

However, the area of the site has been mapped as "Poor" for coal resources. No active or

inactive mines have been mapped in the area of the site. No metallic mineral resources have

been mapped on-site (Reference 10).

The site has been mapped as "Fair" for oil and gas resources (Reference 10). No oil or gas

fields have been discovered in the area of the site. The sedimentary rocks in the area may lack

the geologic structure for trapping oil or gas; therefore, it may not be considered a significant

resource. Hydraulic fracturing is a new method that is being used to extract oil and gas from

rocks. It utilizes pressurized fluid to extract oil and gas from rocks that would not normally be

productive. The area of the site has not been explored to determine if the rocks underlying the

site would be commercially viable utilizing hydraulic fracturing. The practice of hydraulic

fracturing has come under review due to concerns about environmental impacts, health and

safety.

8.0 EROSION CONTROL

The soil types observed on the site are mildly to highly susceptible to wind erosion, and

moderately to highly susceptible to water erosion. A minor wind erosion and dust problem may

be created for a short time during and immediately after construction. Should the problem be

considered severe enough during this time, watering of the cut areas or the use of chemical

palliative may be required to control dust. However, once construction has been completed and

vegetation re-established, the potential for wind erosion should be considerably reduced.

With regard to water erosion, loosely compacted soils will be the most susceptible to water

erosion, residually weathered soils become increasingly less susceptible to water erosion. For

the typical soils observed on-site, allowable velocities or unvegetated and unlined earth

channels would be on the order of 3 to 4 feet/second, depending upon the sediment load carried

14

Soil, Geology, & Geologic Hazard Study
The Villages at Sterling Ranch East

Preliminary Plan No. 3 – Parcel Nos. 14, 15, 20, & 21 El Paso County, Colorado

by the water. Permissible velocities may be increased through the use of vegetation to something on the order of 4 to 7 feet/second, depending upon the type of vegetation established. Should the anticipated velocities exceed these values, some form of channel lining material may be required to reduce erosion potential. These might consist of some of the synthetic channel lining materials on the market or conventional riprap. In cases where ditchlining materials are still insufficient to control erosion, small check dams or sediment traps may be required. The check dams will serve to reduce flow velocities, as well as provide small traps for containing sediment. The determination of the amount, location and placement of ditch linings, check dams and of the special erosion control features should be performed by or in conjunction with the drainage engineer who is more familiar with the flow quantities and velocities.

Cut and fill slope areas will be subjected primarily to sheetwash and rill erosion. Unchecked rill erosion can eventually lead to concentrated flows of water and gully erosion. The best means to combat this type of erosion is, where possible, the adequate re-vegetation of cut and fill slopes. Cut and fill slopes having gradients more than three (3) horizontal to one (1) vertical become increasingly more difficult to revegetate successfully. Therefore, recommendations pertaining to the vegetation of the cut and fill slopes may require input from a qualified landscape architect and/or the Soil Conservation Service.

9.0 ROADWAY AND EMBANKMENT CONSTRUCTION RECOMMENDATIONS

In general, the site soils are suitable for the proposed roadways and embankments. Groundwater should be expected to be encountered in deeper cuts and along drainages and low-lying areas. If excavations encroach on the groundwater level unstable soil conditions may be encountered. Excavation of saturated soils will be difficult with rubber-tired equipment. Stabilization using shot rock or geogrids may be necessary.

Any areas to receive fill should have all topsoil, organic material or debris removed. Prior to fill placement Entech should observe the subgrade. Fill must be properly benched and compacted to minimize potentially unstable conditions in slope areas. Fill slopes should be 3:1. The subgrade should be scarified and moisture conditioned to within 2% of optimum moisture content and compacted to a minimum of 95% of its maximum Modified Proctor Dry Density,

15

ASTM D-1557, prior to placing new fill. Areas receiving fill may require stabilization with rock or

fabric if shallow groundwater conditions are encountered.

New fill should be placed in thin lifts not to exceed 6 inches after compaction while maintaining

at least 95% of its maximum Modified Proctor Dry Density, ASTM D-1557. These materials

should be placed at a moisture content conducive to compaction, usually 0 to ±2% of Proctor

optimum moisture content. The placement and compaction of fill should be observed and

tested by Entech during construction. Entech should approve any import materials prior to

placing or hauling them to the site. Additional investigation will be required for pavement

designs once roadway grading is completed and utilities are installed.

10.0 CLOSURE

It is our opinion that the existing geologic engineering and geologic conditions will impose some

constraints on development and construction of the site. The majority of these conditions can

be mitigated through proper engineering design and construction practices. The proposed

development and use are consistent with anticipated geologic and engineering geologic

conditions.

It should be pointed out that because of the nature of data obtained by random sampling of such

variable and non-homogeneous materials as soil and rock, it is important that we be informed of

any differences observed between surface and subsurface conditions encountered in

construction and those assumed in the body of this report. Individual investigations for building

sites will be required prior to construction. Construction and design personnel should be made

familiar with the contents of this report. Reporting such discrepancies to Entech Engineering,

Inc. soon after they are discovered would be greatly appreciated and could possibly help avoid

construction and development problems.

This report has been prepared for Classic SRJ. for application to the proposed project in

accordance with generally accepted geologic soil and engineering practices. No other warranty

expressed or implied is made.

We trust that this report has provided you with all the information that you required. Should you

require additional information, please do not hesitate to contact Entech Engineering, Inc.

16

Soil, Geology, & Geologic Hazard Study
The Villages at Sterling Ranch East

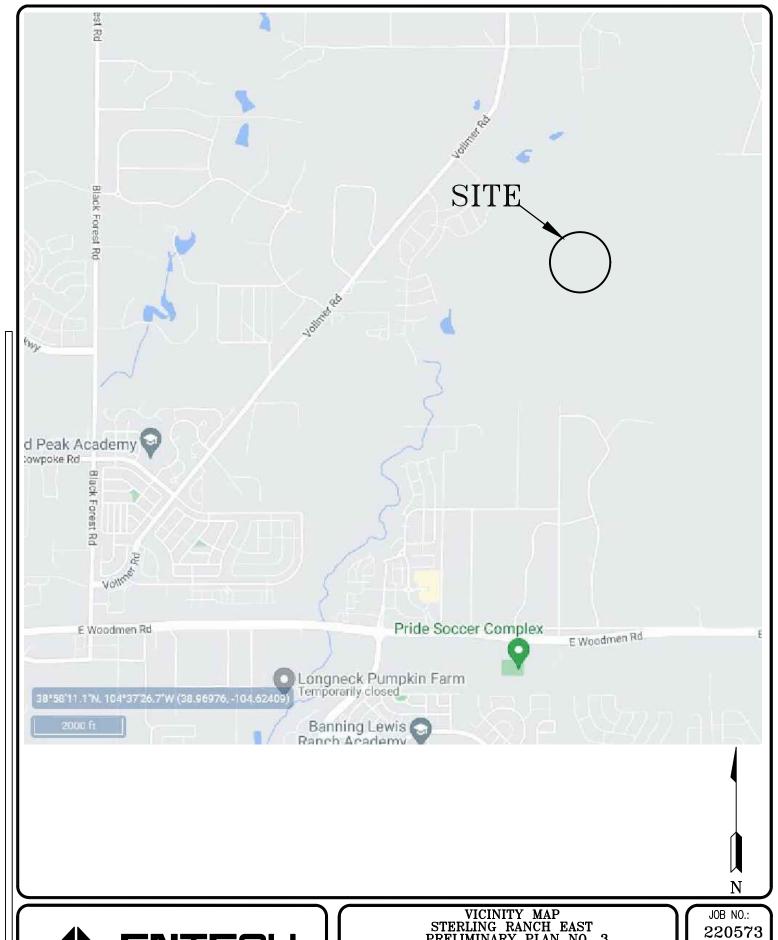
Preliminary Plan No. 3 – Parcel Nos. 14, 15, 20, & 21 El Paso County, Colorado

BIBLIOGRAPHY

- 1. Scott, Glen R., Taylor, Richard B., Epis, Rudy C., and Wobus, Reinhard A. 1978. *Geologic Structure Map of the Pueblo 1° x 2° Quadrangle, North-Central Colorado*. Sheet 2. U.S. Geologic Survey. Map I-1022.
- 2. Natural Resource Conservation *Service*, September 22, 2015. *Web Soil Survey*. United States Department Agriculture, http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm.
- 3. United States Department of Agriculture Soil Conservation Service. June 1981. *Soil Survey of El Paso County Area, Colorado.*
- 4. Entech Engineering, Inc. October 31, 2006. *Geologic Hazard/Land Use Study and Preliminary Subsurface Soil Investigation, Sterling Ranch. El Paso County, Colorado.* Entech Job No. 82556.
- 5. Entech Engineering, Inc. January 20, 2009. *Geologic Hazard Evaluation, Sterling Ranch Residential, El Paso County, Colorado.* Entech Job No. 30898.
- 6. Madole, Richard F., 2003. *Geologic Map of the Falcon NW Quadrangle, El Paso County, Colorado*. Colorado Geological Survey. Open-File Report 03-8.
- 7. Trimble, Donald E. and Machette, Michael N. 1979. *Geologic Map of the Colorado Springs-Castle Rock Area, Front Range Urban Corridor, Colorado*. USGS, Map I-857-F.
- 8. Scott, Glen R., Taylor, Richard B., Epis, Rudy C., and Wobus, Reinhard A. 1978. *Geologic Map of the Denver 1° x 2° Quadrangle, North-Central Colorado*. U.S. Geologic Survey. Map 1-1022.
- 9. Federal Emergency Management Agency. December 7, 2018. Flood Insurance Rate Maps for El Paso County, Colorado and Incorporated Areas. Map Number 08041CO533G.
- 10. Kirkman, Robert M. and Rogers, William P. 1981. *Earthquake Potential in Colorado*. Colorado Geological Survey. Bulletin 43.
- 11. Colorado Geological Survey. 1991. Results of the 1987-88 EPA Supported Radon Study in Colorado. Open-file Report 91-4.
- 12. El Paso County Planning Development. December 1995. El Paso County Aggregate Resource Evaluation Maps.
- 13. Schwochow, S.D.; Shroba, R.R. and Wicklein, P.C. 1974. Atlas of Sand, Gravel, and Quarry Aggregate Resources, Colorado Front Range Counties. Colorado Geological Survey. Special Publication 5-B.
- 14. Keller, John W.; TerBest, Harry and Garrison, Rachel E. 2003. Evaluation of Mineral and Mineral Fuel Potential of El Paso County State Mineral Lands Administered by the Colorado State Land Board. Colorado Geological Survey. Open-File Report 03-07.

TABLE 1

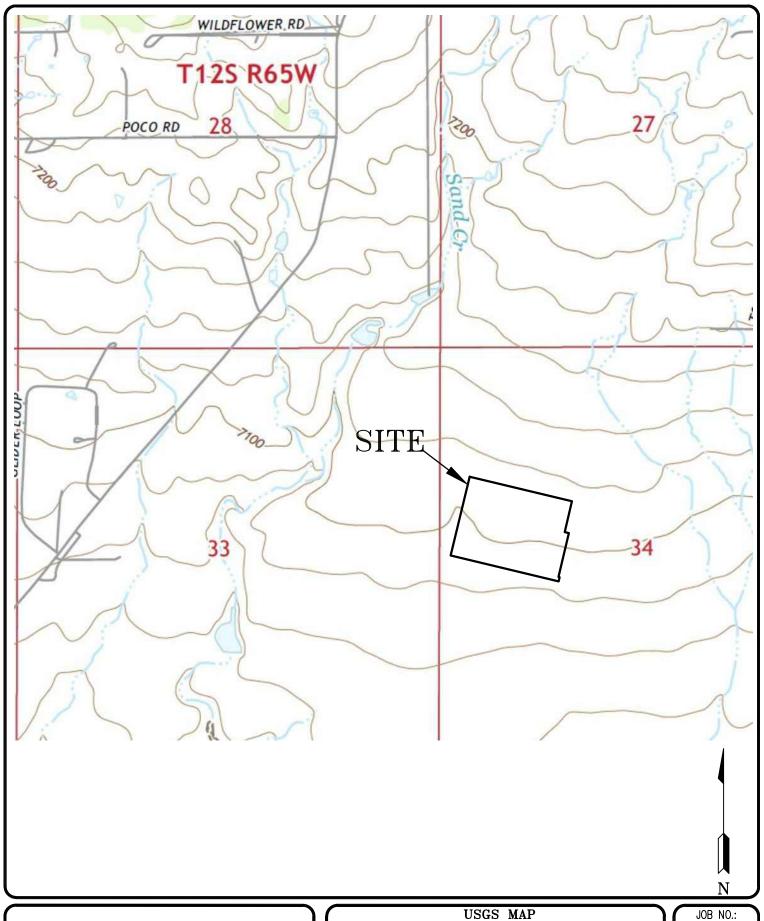
SUMMARY OF LABORATORY TEST RESULTS


CLASSIC SRJ STERLING RANCH, PLAN 3 220573 CLIENT PROJECT JOB NO.

		_	-	_	_		
	SOIL DESCRIPTION	SAND, SLIGHTLY SILTY	SAND, SILTY	SAND, SLIGHTLY SILTY	CLAY-SILT, VERY SANDY	SANDSTONE, SILTY	CLAYSTONE, VERY SANDY
	UNIFIED CLASSIFICATION	SM-SW	SM	SM-SW	CL-ML	SM	ರ
SWELL	CONSOL (%)				9.0		0.5
FHA	SWELL (PSF)						
	SULFATE (WT %)		10.0		60.03		60.03
PLASTIC	INDEX (%)				9		11
LIQUID	LIMIT (%)				23		59
PASSING	DENSITY NO. 200 SIEVE (PCF) (%)	9.5	13.1	11.9	53.8	22.2	53.6
DRY	DENSITY (PCF)				113.4		112.6
	DEPTH WATER (FT) (%)				12.5		13.3
	DEPTH (FT)	5	5	ည	2-3	20	20
TEST	BORING NO.	+-	3	4	2	4	1
	SOIL	-	-	-	2	3	4

TABLE 2: Summary of Depth of Bedrock and Groundwater

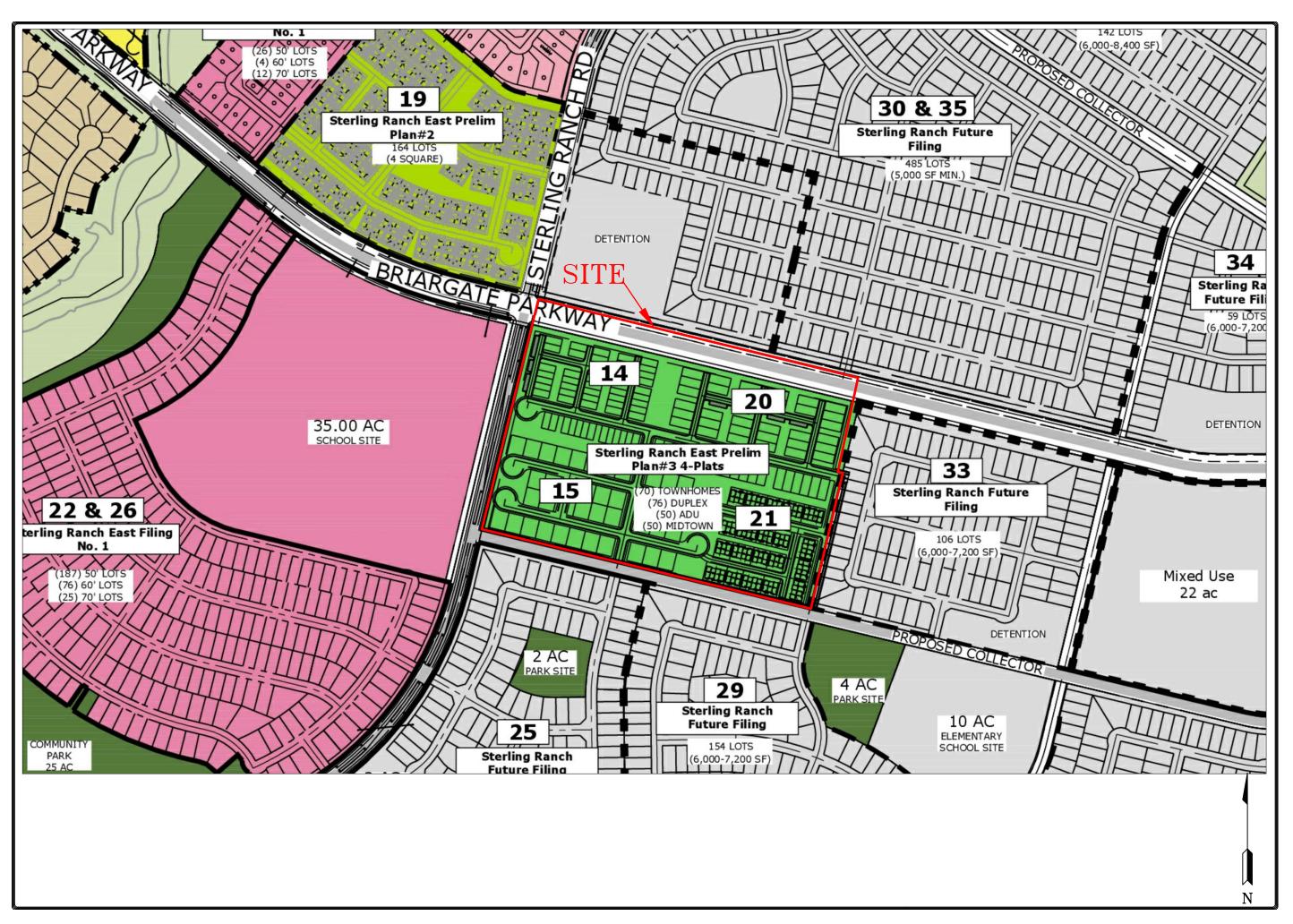
Test Boring No.	Depth of Bedrock (ft.)	Depth of Groundwater (ft.)		
1	12	10		
2 >20		>20		
3	19	>20		
4 14		>20		
Previous Job No. 82556				
16	15	>19		

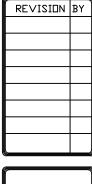


VICINITY MAP
STERLING RANCH EAST
PRELIMINARY PLAN NO. 3
COLORADO SPRINGS, CO.
FOR: CLASSIC SRJ

DATE: 4/8/22 DRAWN: CHECKED: DATE: LLL

FIG NO.: 1



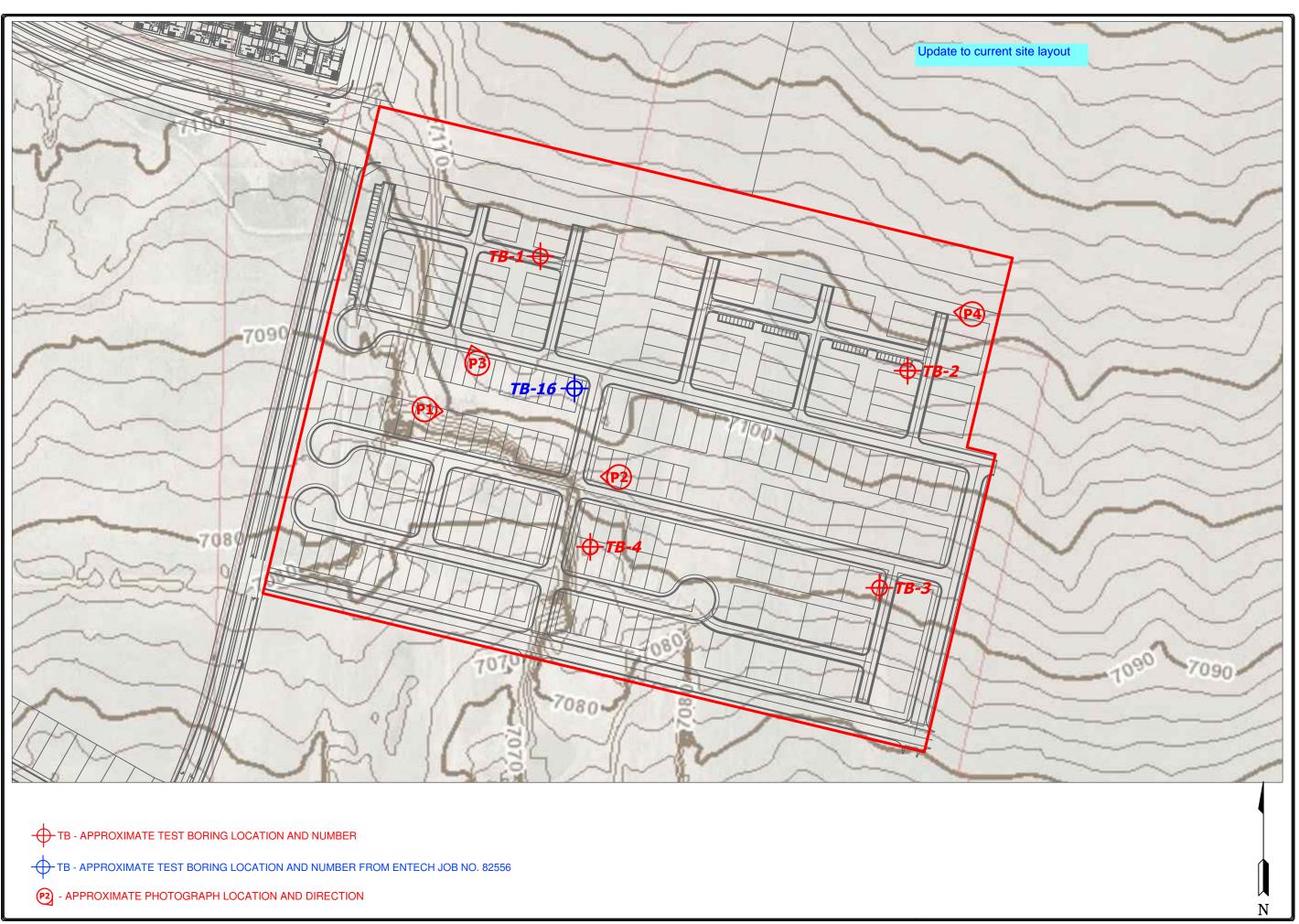


	STERLING DEPELIMINAR COLORADO	S MAP RANCH EAST Y PLAN NO. SPRINGS, CO SSIC SRJ	3
DRAWN: LLL	DATE: 4/8/22	CHECKED:	DAT

DATE:

220573 FIG NO.: 2

ENGINEERING, INC.
505 ELKTON DRIVE
(719) 531-5599

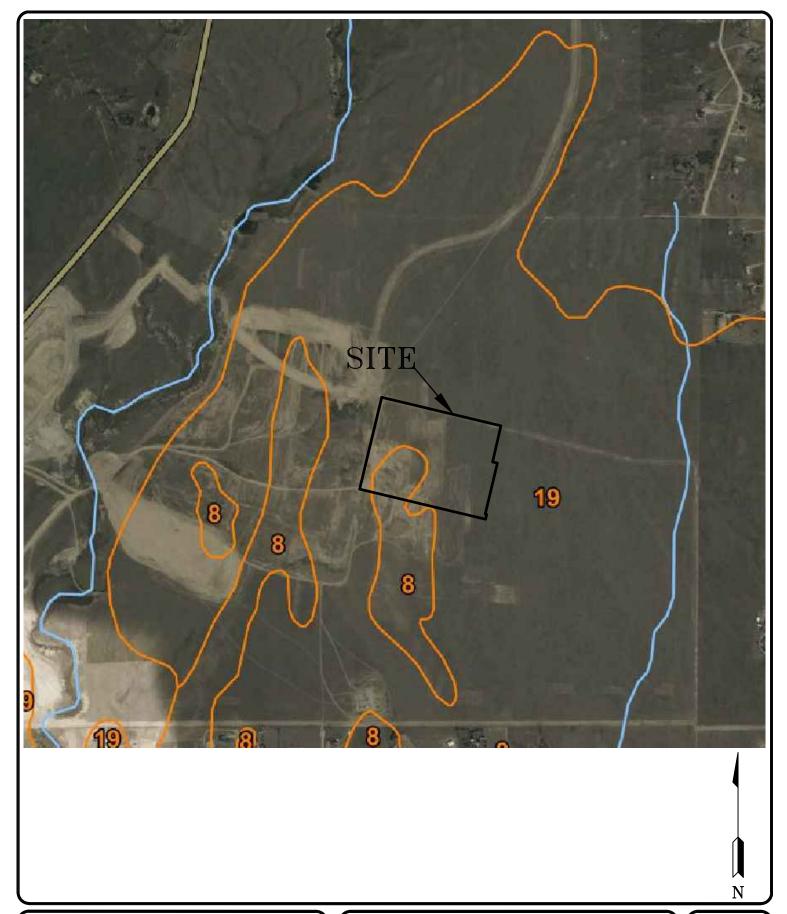


DEVELOPMENT PLAN STERLING RANCH EAST PRELIMINARY PLAN NO. 3 COLORADO SPRINGS, CO. FOR: CLASSIC SRJ

DRAWN
LILL
CHECKED

DAITE
4/8/22

SCALE
AS SHOWN
JOB NO.
220573
FIGURE No.

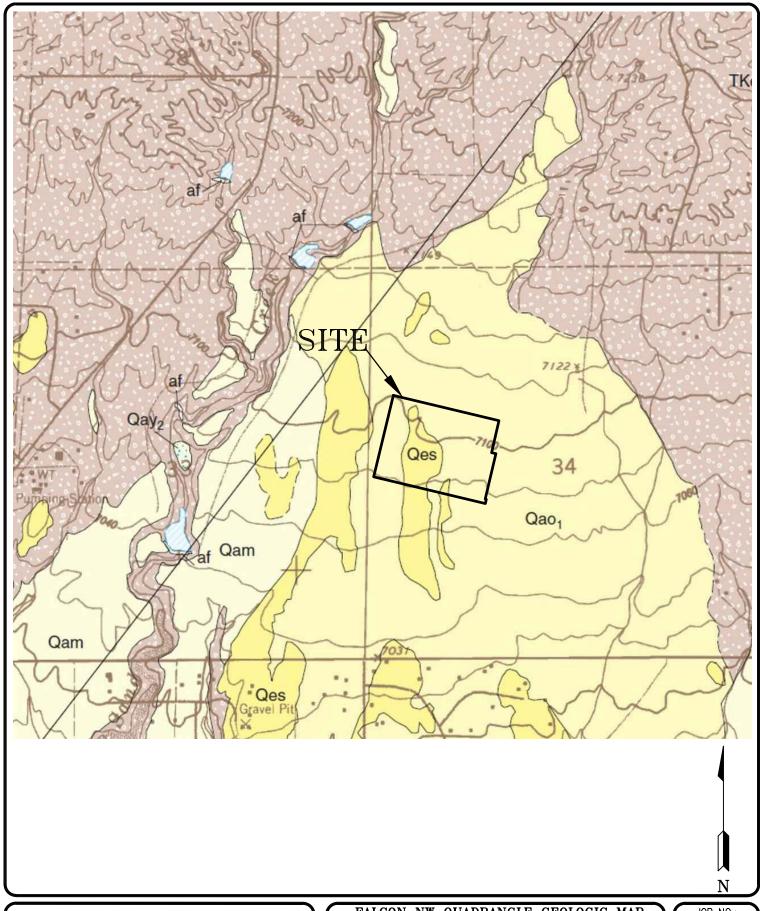

ENGINEERING, INC.
505 ELKTON DRIVE
COLURADO SPRINGS, CD, 80907
(719) 531-5599

REVISI□N BY

SITE PLAN/TEST BORING LOCATION MAP STERLING RANCH EAST PRELIMINARY PLAN NO. 3 COLORADO SPRINGS, CO. FOR: CLASSIC SRJ

DRAWN
LILL
CHECKED

DATE
4/8/22
SCALE
AS SHOWN
JOB MO.
220573
FIGURE No.

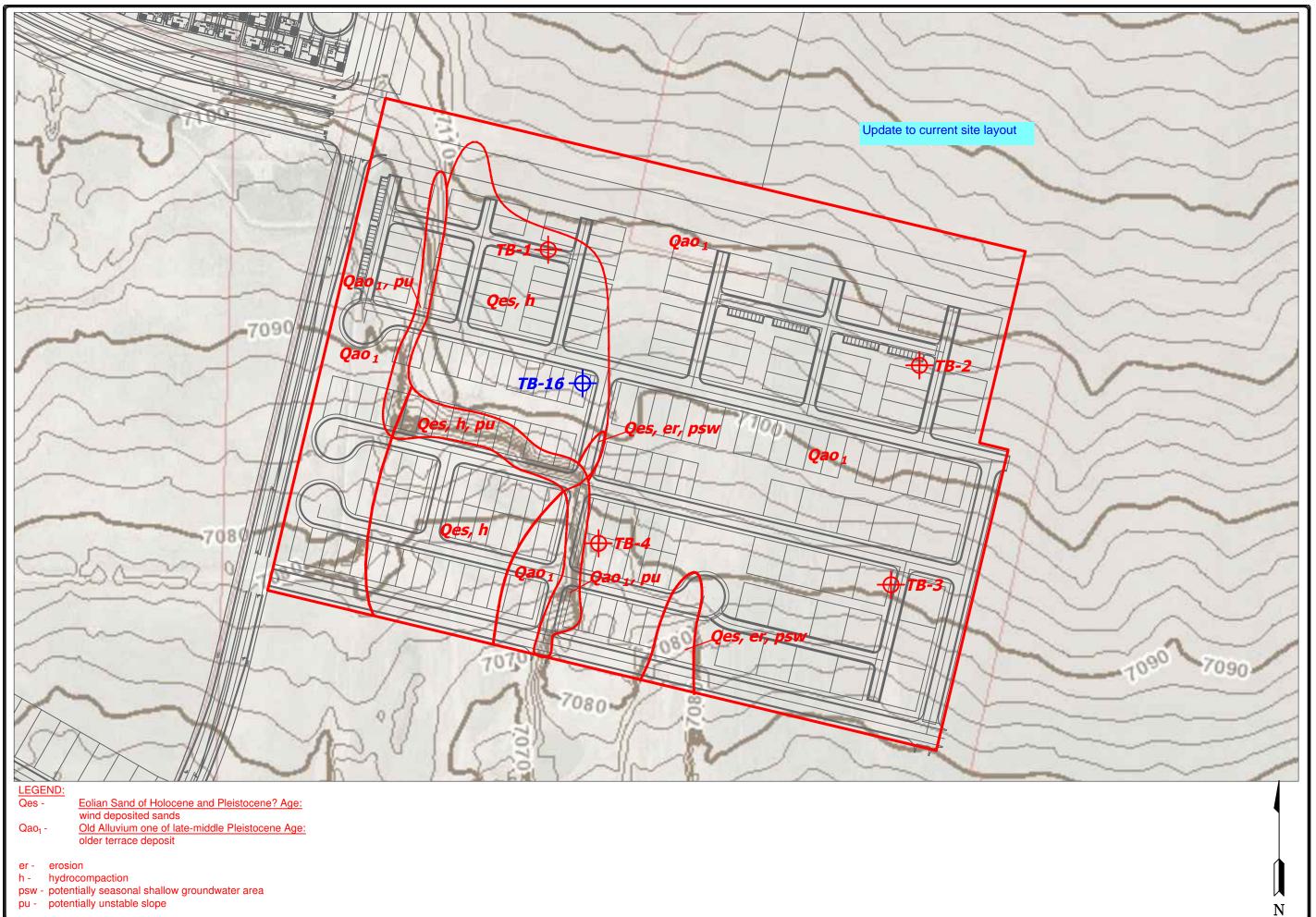


SOIL SURVEY MAP
STERLING RANCH EAST
PRELIMINARY PLAN NO. 3
COLORADO SPRINGS, CO.
FOR: CLASSIC SŔĴ

DRAWN: DATE: CHECKED: DATE: LLL 4/8/22

JOB NO.: 220573

FIG NO.: **5**



_			=
	FALCON	NW QUADRANGLE GEOLOGIC MAP	
	IMECOI		
		STERLING RANCH EAST	
		SIERLING RANCH EASI	
		DESCRIPTION DE LA SIGNA	
		PRELIMINARY PLAN NO. 3	
		COLORADO SPRINGS, CO.	
		COLONADO SI MINGS, CO.	
		EAD, CLASSIC SDI	
		FOR: CLASSIC SRJ	

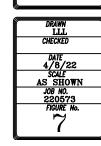
DRAWN: DATE: CHECKED: DATE:
LLL 4/8/22

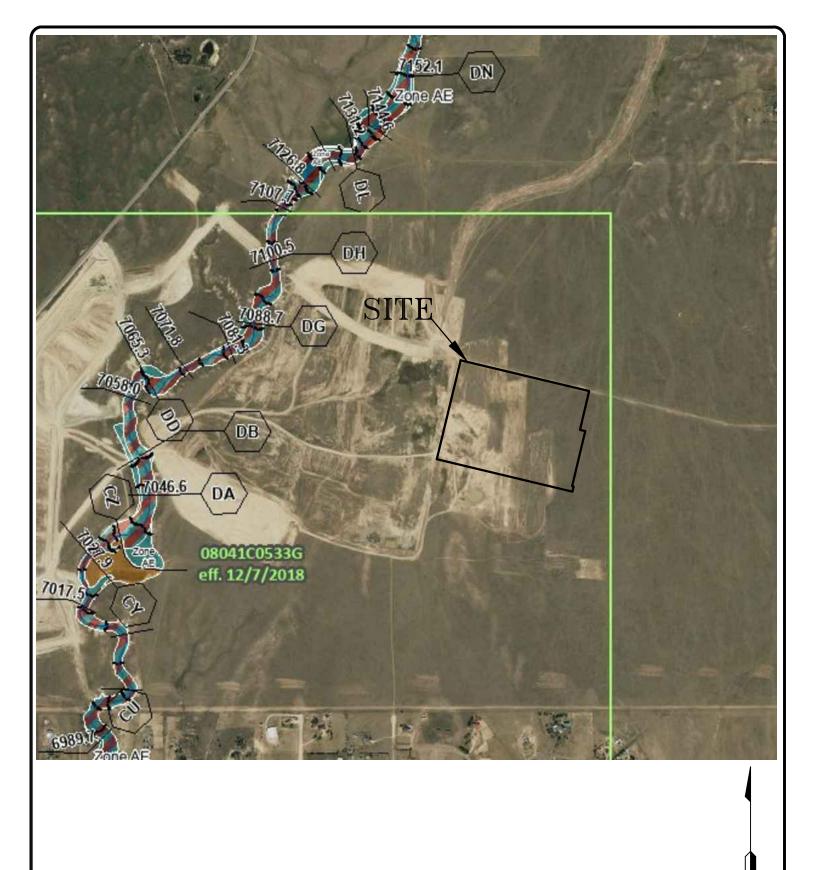
JOB NO.: 220573

FIG NO.: **6**

ENGINEERING, INC.

SOS ELKTIN DRIVE

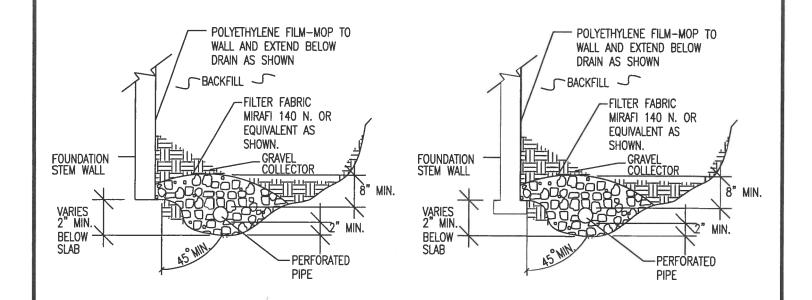

CILLERADI SPRINGS, CI. 80907


(719) 531-5599

REVISI□N BY

GEOLOGY/ENGINEERING GEOLOGY N STERLING RANCH EAST PRELIMINARY PLAN NO. 3 COLORADO SPRINGS, CO. FOR: CLASSIC SRJ

MAP


FLOODPLAIN MAP STERLING RANCH EAST PRELIMINARY PLAN NO. 3 COLORADO SPRINGS, CO. FOR: CLASSIC SRJ

DRAWN: DATE: CHECKED: DATE:
LLL 4/8/22

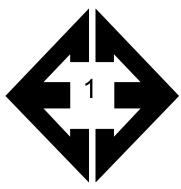
JOB NO.: **220573**

N

FIG NO.: **8**

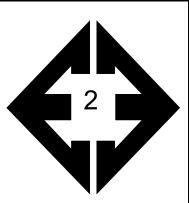
NOTES:

- -GRAVEL SIZE IS RELATED TO DIAMETER OF PIPE PERFORATIONS-85% GRAVEL GREATER THAN 2x PERFORATION DIAMETER.
- -PIPE DIAMETER DEPENDS UPON EXPECTED SEEPAGE. 4-INCH DIAMETER IS MOST OFTEN USED.
- -ALL PIPE SHALL BE PERFORATED PLASTIC. THE DISCHARGE PORTION OF THE PIPE SHOULD BE NON-PERFORATED PIPE.
- -FLEXIBLE PIPE MAY BE USED UP TO 8 FEET IN DEPTH, IF SUCH PIPE IS DESIGNED TO WITHSTAND THE PRESSURES. RIGID PLASTIC PIPE WOULD OTHERWISE BE REQUIRED.
- -MINIMUM GRADE FOR DRAIN PIPE TO BE 1% OR 3 INCHES OF FALL IN 25 FEET.
- -DRAIN TO BE PROVIDED WITH A FREE GRAVITY OUTFALL, IF POSSIBLE. A SUMP AND PUMP MAY BE USED IF GRAVITY OUT FALL IS NOT AVAILABLE.



	PERIMETER .	DRAIN DETAIL	,
DRAWN:	DATE:	DESIGNED:	CHECKED
DRAWN:	DATE:	DESIGNED:	CHECKED

JOB NO.: 220573 FIG NO.: 9

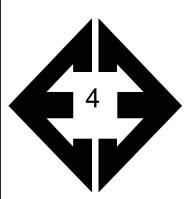


Looking east from the western portion of the site.

March 14, 2022

Looking west from the central portion of the site.

March 14, 2022



Looking north from the west-central portion of the site.


March 14, 2022

Looking west from the northeastern portion of the site.

March 14, 2022

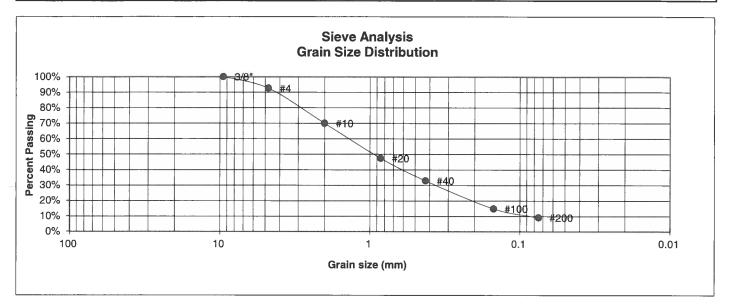
TEST BORING NO. TEST BORING NO. 2 DATE DRILLED 3/22/2022 DATE DRILLED 3/22/2022 Job# 220573 CLIENT **CLASSIC SRJ** LOCATION STERLING RANCH, PLAN 3 REMARKS REMARKS Watercontent % Watercontent % Blows per foot Blows per foot Soil Type Soil Type Depth (ft) Depth (ft) Samples Samples Symbol Symbol WATER AT 10', 3/28/22 DRY TO 20', 3/28/22 SAND, SLIGHTLY SILTY, FINE CLAY-SILT, VERY SANDY, TAN, TO COARSE GRAINED, TAN, STIFF, MOIST LOOSE, MOIST 6 3.0 1 19 5.2 2 6 4.0 9 SAND, SILTY, FINE TO COARSE 3.4 1 GRAINED, TAN, LOOSE TO DENSE, MOIST 27 111.7 1 **BLACK ORGANIC LENS** 10 10 11 4.2 1 CLAYSTONE, VERY SANDY, GRAY BROWN, HARD, MOIST 15 50 9.9 4 15 31 7.1 1 6" <u>50</u> | 15.6 27 9.7 1

	TE	EST BORING LO	og
DRAWN:	DATE:	CHECKED:	DATE: 4/8/22

JOB NO.: 220573 FIG NO.: **B**-1


TEST BORING NO. 3 TEST BORING NO. 3/24/2022 DATE DRILLED 3/23/2022 DATE DRILLED Job# 220573 CLIENT **CLASSIC SRJ** LOCATION STERLING RANCH, PLAN 3 REMARKS REMARKS Watercontent % Watercontent % Blows per foot Blows per foot Soil Type Soil Type Depth (ft) Samples Depth (ft) Samples Symbol Symbol DRY TO 20', 3/28/22 DRY TO 20', 3/28/22 SAND, SILTY, FINE TO COARSE SAND, SILTY, FINE TO COARSE GRAINED, TAN, MEDIUM DENSE, GRAINED, TAN, MEDIUM DENSE, 16 7.0 21 MOIST 1 MOIST 3.0 1 19 3.9 1 5 28 6.1 1 20 | 6.0 10 1 10 -26 1 4.4 15 28 3.3 15 SANDSTONE, SILTY, FINE TO <u>50</u> 9.4 3 COARSE GRAINED, TAN, VERY 10" DENSE, MOIST SANDSTONE, SILTY, FINE TO 20 50 12.9 20 8.2 3 <u>50</u> COARSE GRAINED, TAN, VERY

4	ENTECH
	ENGINEERING, INC.
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907


DENSE, MOIST

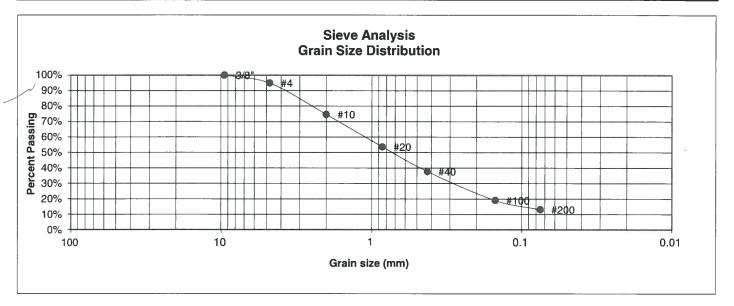
	TE	ST BORING L	og
DRAWN:	DATE:	CHECKED:	DATE: 4/8/2-2

JOB NO.: 220573 FIG NO.: B-Z

UNIFIED CLASSIFICATION	SM-SW	CLIENT	CLASSIC SRJ
SOIL TYPE #	1	PROJECT	STERLING RANCH, PLAN 3
TEST BORING #	1	JOB NO.	220573
DEPTH (FT)	5	TEST BY	BL

U.S.	Percent	Atterberg
Sieve #	<u>Finer</u>	<u>Limits</u>
3"		Plastic Limit
1 1/2"		Liquid Limit
3/4"		Plastic Index
1/2"		
3/8"	100.0%	
4	92.5%	<u>Swell</u>
10	70.0%	Moisture at start
20	47.4%	Moisture at finish
40	33.0%	Moisture increase
100	14.9%	Initial dry density (pcf)
200	9.2%	Swell (psf)

DRAWN:



LABORATOR RESULTS	ORY TEST	
DATE:	CHECKED:	DATE: 4/8/22

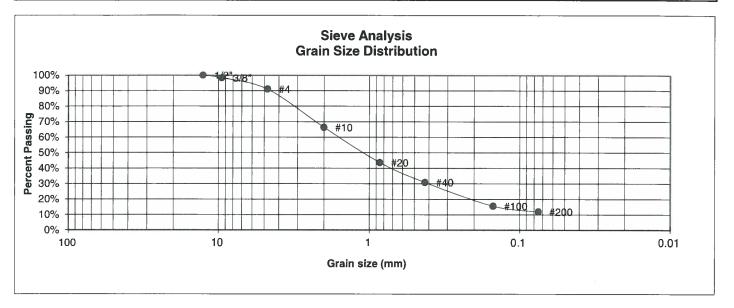
JOB NO.: 220573

FIG NO.:

UNIFIED CLASSIFICATION	SM	CLIENT	CLASSIC SRJ
SOIL TYPE #	1	PROJECT	STERLING RANCH, PLAN 3
TEST BORING #	3	JOB NO.	220573
DEPTH (FT)	5	TEST BY	BL

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u> 100.0%	Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index
4	94.9%	<u>Swell</u>
10	74.6%	Moisture at start
20	53.6%	Moisture at finish
40	37.7%	Moisture increase
100	19.0%	Initial dry density (pcf)
200	13.1%	Swell (psf)

DRAWN:



LABORATORY TEST RESULTS			
DATE:	CHECKED:	DATE: 4/8/17	

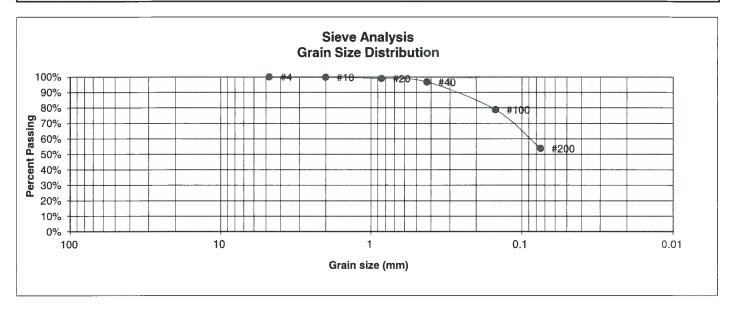
JOB NO.: 220573

FIG NO.:

UNIFIED CLASSIFICATION	SM-SW	CLIENT	CLASSIC SRJ
SOIL TYPE #	1	PROJECT	STERLING RANCH, PLAN 3
TEST BORING #	4	JOB NO.	220573
DEPTH (FT)	5	TEST BY	BL

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent Finer 100.0% 98.3%	Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index
4	91.0%	<u>Swell</u>
10	66.3%	Moisture at start
20	43.6%	Moisture at finish
40	30.8%	Moisture increase
100	15.6%	Initial dry density (pcf)
200	11,9%	Swell (psf)
		\(\(\frac{1}{2}\)

LABORATORY TEST	
RESULTS	


DRAWN: DATE: CHECKED: DATE: LLL 4/8/22

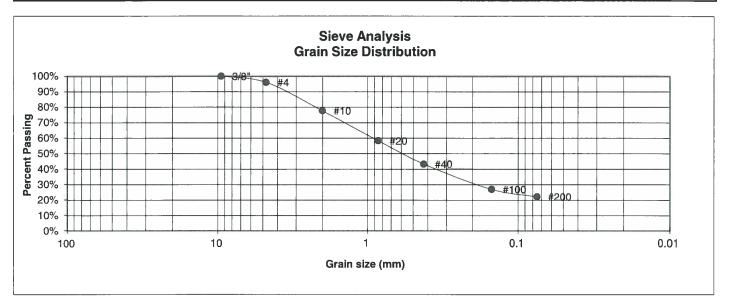
JOB NO.: 220573

FIG NO.:

4-3

UNIFIED CLASSIFICATION	CL-ML	CLIENT	CLASSIC SRJ
	CL-IVIL	OLILIVI	
SOIL TYPE #	2	<u>PROJECT</u>	STERLING RANCH, PLAN 3
TEST BORING #	2	JOB NO.	220573
DEPTH (FT)	2-3	TEST BY	BL

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit 17 Liquid Limit 23 Plastic Index 6
4 10 20 40 100 200	100.0% 99.8% 99.0% 96.7% 78.8% 53.8%	Swell Moisture at start Moisture at finish Moisture increase Initial dry density (pcf) Swell (psf)


LABORATORY	TEST	
RESULTS		

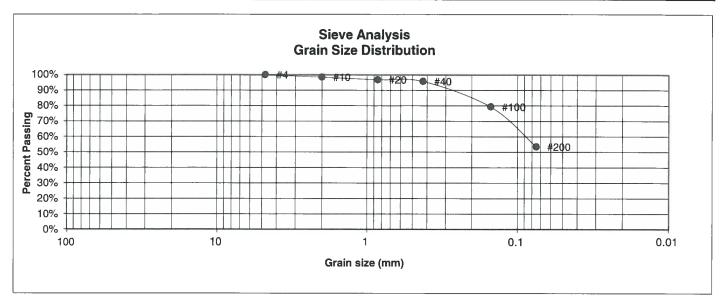
DRAWN: DATE: CHECKED: DATE: 4/8/22

JOB NO.: 220573

FIG NO.:

UNIFIED CLASSIFICATION	SM	CLIENT	CLASSIC SRJ
SOIL TYPE #	3	PROJECT	STERLING RANCH, PLAN 3
TEST BORING #	4	JOB NO.	220573
DEPTH (FT)	20	TEST BY	BL

U.S. <u>Sieve #</u> 3" 1 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit
3/4"		Liquid Limit Plastic Index
1/2"		r ladio madx
3/8"	100.0%	
4	96.1%	<u>Swell</u>
10	77.7%	Moisture at start
20	58.4%	Moisture at finish
40	43.3%	Moisture increase
100 200	27.0% 22.2%	Initial dry density (pcf) Swell (psf)



RESULTS				
DRAWN:	DATE:	CHECKED:	DATE:	

JOB NO.: 220573

FIG NO.:

UNIFIED CLASSIFICATION	CL	CLIENT	CLASSIC SRJ
SOIL TYPE #	4	PROJECT	STERLING RANCH, PLAN 3
TEST BORING #	1	JOB NO.	220573
DEPTH (FT)	20	TEST BY	BL

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u>	Atterberg Limits Plastic Limit 18 Liquid Limit 29 Plastic Index 11
4	100.0%	Swell
10	98.4%	Moisture at start
20	96.8%	Moisture at finish
40	95.7%	Moisture increase
100 200	79.3% 53.6%	Initial dry density (pcf) Swell (psf)

	LABORAT RESULTS	ORY TEST	
DRAWN:	DATE:	CHECKED:	DATE: 4/8/22

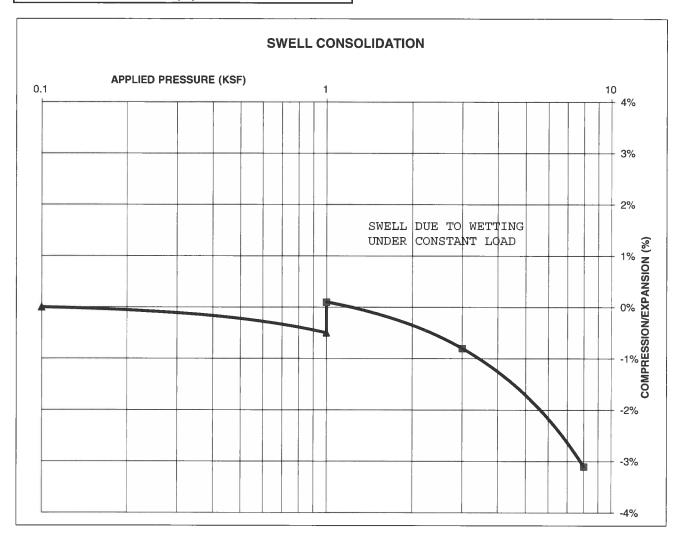

JOB NO.: 220573

FIG NO.:

CONSOLIDATION TEST RESULTS

TEST BORING # 2 DEPTH(ft) 2-3
DESCRIPTION CL-ML SOIL TYPE 2
NATURAL UNIT DRY WEIGHT (PCF) 113
NATURAL MOISTURE CONTENT 12.5%
SWELL/CONSOLIDATION (%) 0.6%

JOB NO. 220573
CLIENT CLASSIC SRJ
PROJECT STERLING RANCH, PLAN 3

SWELL CONSOLIDATION TEST RESULTS			
DRAWN:	DATE:	CHECKED:	DATE: 4/8/22

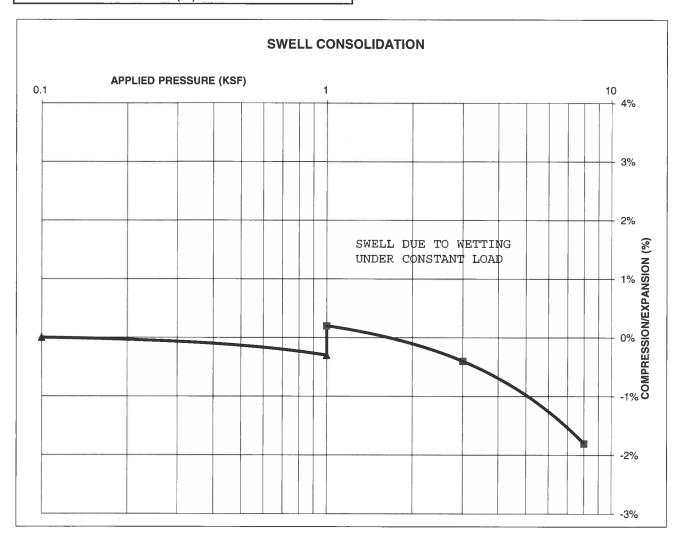

JOB NO.: 220573

FIG NO.:

CONSOLIDATION TEST RESULTS

TEST BORING #	1	DEPTH(ft)	20
DESCRIPTION	CL	SOIL TYPE	4
NATURAL UNIT DRY	WEIGH	HT (PCF)	113
NATURAL MOISTURI	E CON	TENT	13.3%
SWELL/CONSOLIDA	TION (9	%)	0.5%

JOB NO. 220573
CLIENT CLASSIC SRJ
PROJECT STERLING RANCH, PLAN 3

	ELL CONSOLIE T RESULTS	DATION	
DRAWN:	DATE:	CHECKED:	DATE: 4/ 1/22_

JOB NO.: 220573

FIG NO.:

CLIENT	CLASSIC SRJ	JOB NO.	220573
PROJECT	STERLING RANCH, PLAN 3	DATE	3/28/2022
LOCATION	STERLING RANCH, PLAN 3	TEST BY	BL

BORING NUMBER	DEPTH, (ft)	SOIL TYPE NUMBER	UNIFIED CLASSIFICATION	WATER SOLUBLE SULFATE, (wt%)
TB-1	20	4	CL	0.03
TB-2	2-3	2	CL-ML	0.03
TB-3	5	1	SM	0.01
	,			

QC BLANK PASS

LABORATORY TEST SULFATE RESULTS				
DRAWN:	DATE:	CHECKED:	DATE: 4/8/22	

JOB NO.: **220573**

FIG NO.:

APPENDIX D: Test Boring Logs from Entech Job No. 82556

TEST BORING NO. TEST BORING NO. 15 16 8/14/2006 DATE DRILLED 8/9/2006 DATE DRILLED **CLIENT MORLEY BENTLEY** Job# 82556 LOCATION STERLING RANCH REMARKS REMARKS Watercontent % foot Blows per foot Watercontent Blows per Soil Type Samples DRY TO 20', 8/9/06 Symbol Symbol Depth (CAVED TO 19', **DRY TO 15',** 8/10/06, DRY 8/16/06 SAND, SILTY, FINE TO COARSE SAND, SILTY, FINE TO COARSE GRAINED, TAN, MEDIUM DENSE, GRAINED, BROWN TO TAN, 5.9 1 MOIST 12 11.6 MEDIUM DENSE TO DENSE, 14 MOIST TO VERY MOIST 15 9.3 1 <u>50</u> 10.4 3 SANDSTONE, SILTY, FINE TO 9" COARSE GRAINED, LIGHT GRAY TO BROWN, VERY DENSE, MOIST 25 10 5.9 1 10 <u>50</u> 9.0 3 5" 31 | 13.5 15 <u>50</u> 9.6 4^H SANDSTONE, SILTY, FINE TO COARSE GRAINED, BROWN, VERY DENSE, MOIST 3 20 <u>50</u> 6.7

TEST BORING LOG

DRAWN: DATE: CHECKED: DATE:

JOB NO.:

82556

FIG NO .:

APPENDIX E: Soil S	Survey Descriptions	

El Paso County Area, Colorado

8—Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet

Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 46 to 48 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent

Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats

Landform position (three-dimensional): Side slope, talf

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock and/or

eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand

C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High to

very high (5.95 to 19.98 in/hr)

Depth to water table: More than 80 inches Frequency of flooding: None

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: R049XB210CO - Sandy Foothill

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 1 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021

El Paso County Area, Colorado

19—Columbine gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 367p Elevation: 6,500 to 7,300 feet

Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 50 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Columbine and similar soils: 97 percent

Minor components: 3 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Columbine

Setting

Landform: Flood plains, fan terraces, fans

Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 14 inches: gravelly sandy loam
C - 14 to 60 inches: very gravelly loamy sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High to

very high (5.95 to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: R049XY214CO - Gravelly Foothill

Hydric soil rating: No

Minor Components

Fluvaquentic haplaquolls

Percent of map unit: 1 percent

Landform: Swales Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021

V1_Soils & Geology Report.pdf Markup Summary

Text Box (4) 43U COUN I Subject: Text Box SF2439 Page Label: SF2439 Author: CDurham Date: 2/14/2025 10:06:58 AM Status: Color: Layer: Space: Subject: Text Box Due to the date of the report, attach memo that Page Label: conditions are essentially the same and nothing Author: CDurham has changed or provide updated/newer report Date: 2/14/2025 10:10:15 AM Status: Color: Layer: Space: Subject: Text Box Update to current site layout Page Label: [1] fp map Author: CDurham Date: 2/14/2025 10:12:08 AM Status: Color: Layer: Space: Subject: Text Box Update to current site layout Page Label: [1] fp map Author: CDurham Date: 2/14/2025 10:12:28 AM Status: Color: Layer: Space: