CIVIL CONSULTANTS, INC.

July 7, 2023

El Paso County
Planning \& Community Development
2880 International Circle, Suite 110
Colorado Springs, CO 80910

Attn.: Project Manager

RE: Timberline Storage Yard
Private Detention/Stormwater Quality Pond

Dear Project Manager:

Per the approved construction drawings for "Timberline Storage Yard" improvements were made to construct a water quality facility in compliance with the current El Paso County Drainage Criteria and the approved Final Drainage Report for this project.

Based upon this information and periodic site visits to the project during significant/key phases of the stormwater BMP installation, M\&S Civil Consultants, Inc. is of the opinion that the stormwater BMPs have been constructed in general compliance with the approved design plans, and specifications as filed with El Paso County.

Statement Of Engineer In Responsible Charge

To the best of my knowledge, information and belief, for the referenced project above, the improvements have been constructed in general compliance with the approved design plans and specifications as filed with El Paso County to provide the required storage volume and meet the required release rates documented by the SDI design form, the stage areas, elevations and outlet dimensions. In addition, to the best of my knowledge, information and belief, for the referenced project above, the site and adjacent properties (as affected by work performed under the County permit) are stable with respect to settlement and subsidence, sloughing of cut and fill slopes, revegetation or other ground cover, and that the improvements (public improvements, common development improvements, site grading and paving) meet or exceed the minimum design requirements.

Virgil A. Sanchez
Colorado P.E. No. 37160
For and on behalf of M\&S Civil

Consultants, Inc.

 Seed Mix for Temporary Vegetation

Seed Mix tor Permanent Revegetation

Temporary and Permanent Seeding (TS/PS) EC-2

	$\substack{\text { Batamal } \\ \text { Vamame }}$	Stiomb			
${ }_{\text {Buegma }}$		wem	Satiming	82, 0_{00}	
Camere itiob hasesm		Namm	Bume	$22^{20,00}$	
Primisesmexted		wem	Oensom	27,000	
Smad topeed			Bmand	S.20,	
	Some	wam	${ }_{\text {sod }}$	19,000	
Amble wesem memeges	Asemonen simitu	Cool	sod	H1,000	
Have Ca, Recery Foomilis					
		${ }^{\text {cool }}$	${ }_{\text {soal }}$	${ }^{13,000}$	
Oine hememitue wemeram		${ }^{\text {cool }}$	${ }_{\text {sod }}$	H5,900	
Vasism itaeas smam	Ste	womm	sod	91,00	
Linenon momontrome		${ }^{\text {cool }}$	${ }_{\text {sod }}$	S8,000	
Ambuesem mbeagas	Aspopmem mixit urnh	dor	sod		
All of the above seeding mixes and rates are based on drill seeding followed by crimped straw mulch. These rates should bedoubled if seed is broadcast and should be increased by 50 percent if the seeding is done using a Brillion Drill or is appliedthrough hydraulic seeding. Hydraulic seeding may be substituted for drilling only where slopes are steeper than 3:1. If - See Table TSPPS-3 for seeding dates.					
If site is to be irrigated, the transition turf seed rates should be doubled.Crested wheatgrass should not be used on slopes steeper than 6 H to 1 V .					

Temporary and Permanent Seeding (TS/PS) EC-2
 mporiales secing das
 ENGINEERING RECORD DRAWINGS

EC-2 Temporary and Permanent Seeding (TS/PS)

come	$\substack{\text { Bamamea } \\ \text { Veme }}$		${ }_{\text {comem }}^{\substack{\text { cromum } \\ \text { form }}}$	$\substack{\text { Semede } \\ \text { Remad }}$	
		com	Bumb	1,3,0.a00	0.25
Buin iute	Elpmesemeat		Bumb	Is,	
Sole		${ }_{\substack{\text { coml } \\ \text { comol }}}^{\text {com }}$	Sod	tomeno	¢
Arinemesm whereas		coll	sad	H0,00	${ }^{5}$
dembereme	+		5		
Duant hardisace	memmemmen	${ }^{\text {com }}$	Bumb		1.0
Licesen smont home		${ }^{\text {cosid }}$	sod	${ }^{\text {B3,0,00 }}$	${ }_{30}$
		${ }_{\substack{\text { coll } \\ \mathrm{Coll}}}^{\text {col }}$	coid	$\xrightarrow{\text { rapaw }}$	${ }_{2}^{25}$
	Aspopmesmuturamme		sod	H0,00	${ }_{\substack{1.0 \\ 125}}$
mataver Thals sals sed Mix					
	Alomeampame	${ }^{\text {cool }}$	${ }^{\text {sada }}$	so.aco	
${ }_{\text {Rectangengas }}$		$\xrightarrow{\text { coml }}$	cos	Stam	${ }_{0}^{10.5}$
Lineol smont bowe	comet	${ }_{\text {cool }}$	sod	Ba,000	${ }^{3} 0$
		${ }_{\text {wam }}$	sod	3sp,ao	${ }^{1.0}$
Aluatal wheegass	Stameme	${ }^{\text {cool }}$	Bumh	9,900	${ }_{5} 5$
Dual hard fesue	mimatameaclat	${ }_{\text {coll }}$	Bumb		
Chamornemal		${ }_{\text {cols }}$			${ }^{30}$
Lincoln smath home		${ }_{\text {coil }}$	sad	Ba,000	${ }_{30}$

EC-4
Mulching (MU)

 -

and Removal

EROSION CONTROL CRITERIA

Natin

STANDARD CONSTRUCTION NOTES

EC-2 Temporary and Permanent Seeding (TS/PS)

			Pereminial Crases	
Sceding Dates	Warm	Cool	Warm	cool
Janary 1-March 15				
March 16-April 30	4	${ }_{1}^{12,3}$	\checkmark	\checkmark
May 1 May 15	4		\checkmark	
May 16 -Jun 30	4,5,6,7			
July 1-uly 15	5,6,7			
Jul 16 - -ugut 31				
Sepemerer 1-Seperener 30		${ }^{8,9,10,11}$		
October -December 31			\checkmark	\checkmark

Nulch

Maintenance and Removal

Seeded ares may
stobece cescsasay.

Silt Fence（SF）

Sill

为

 Sento

为

为

 soment in

 Mon

Straw Bale Barrier（SBB）
SC－3
Straw Bale Barrier（SBB）

 \qquad
1.

 Mat

crating and erosion contro notes．

．

13．

15．Cocrincoic simil ．
18．TRackne of sis

AS-BUILT

 ENGINEERING RECORD DRAWINGSEC-6 Rolled Erosion Control Products (RECP)

Naten

 ntilal

$\underline{\text { Stabilized Staging Area (SSA) }}$

EC-6 Rolled Erosion Control Products (RECP

Product T.jpe	Applifetions	Chamel Appricatios	
	0.5:(HV)		
	0.51((tiv)		
	0.51((H)V)		

SM-6
Stabilized Staging Area (SSA)
Nimimining Long:Tecm Sabiliatain Requirem
Witation Regiricenets.

- Comider we or fa beat

Maintenance and Removal

 Sut

Extended Detention Basin (EDB)

 PERM

Sediment Basin (SB) SC-7

简

[^0]
AS-BUILT

 ENGINEERING RECORD DRAWINGS

8. ANY temporary signage and strpmg shall comply wth el paso countr pcd and mutco criterna

STORM SEWER GENERAL NOTES

2. All storm semer beenos ano wes shown on the plan shall be preabarcated.
horzontal ano vertacl benos are nolcated on the plans.

MLET OMENSons shown on plans refer to distances from mside faces of box between tue moths and leneths

8. Steps shall be regured when the manhole depth exceed 3^{3} - $6^{"}$ and shall de in accoopdance wth ashto m 199 .

4. CHECK WTH THE LOCAL oovernment Authorit for any aditional storm sewer specificatons, detalls, or reguatons

STRUCTURAL CONCRETE NOTES:

AS-BUILT

DESIGNED

Detention Basin Outlet Structure Design

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.47	2.94					
Orifice Area (sq. inches)	2.51	2.30	1.50					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Vertical Orifice Diameter $=$	N/A	N/A	inches

Calculated Parameters for Vertical Orifice	
	Not Selected
Vertical Orifice Area $=$	Not Selected
N/A	N / A
ft^{2}	
Vertical Orifice Centroid	$=$N/A feet

Detention Basin Outlet Structure Design

[^0]:

