Kimley»)Horn

Crossroads Mixed Use Filing \#2 Traffic Study

El Paso County, Colorado

Add EPC's EDARP
File Number:
SF2238" (with no
dashes or extras
zeros or extra spaces
Traffic Engineer's Statement in the file number)

The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Jeffrey R. Planck, P.E., PE \#53006

December 14, 2022
Date

Developer's Statement
I, the Developer, have read and will comply with all commitments made on my behalf within this report.

Ms. Kelly Nelson
Pikes Peak Investments LLC
c/o The Equity Group
90 South Cascade Avenue
Suite 1500
Colorado Springs, Colorado 80903

Date

Kimley»)Horn

December 14, 2022

Ms. Kelly Nelson
Pikes Peak Investments LLC
c/o The Equity Group
90 South Cascade Avenue
Suite 1500
Colorado Springs, Colorado 80903
Re: Crossroads Mixed Use Filing \#2 Traffic Study Letter SWC of Meadowbrook Parkway and Newt Drive
El Paso County, Colorado
Dear Ms. Nelson:
This traffic study letter has been prepared for the proposed Crossroads Mixed Use development to be located on the southwest corner of the Meadowbrook Parkway and Newt Drive intersection in El Paso County, Colorado. The Crossroads Mixed Use Traffic Study Letter completed in April 2022 included an evaluation for the development areas of both Filing \#1 and Filing \#2 and was submitted for approval of Filing \#1. The traffic study letter completed in April 2022 was an addendum to the Crossroads-Meadowbrook-Reagan Ranch Master Traffic Impact Study (MTIS) to provide a site-specific analysis for the Crossroads Mixed Use development. For the purposes of this analysis, this letter is provided for approval of Filing \#2 and will identify the appropriate off-site improvements associated separately with Filing \#1 and Filing \#2. For the purposes of this analysis, full buildout of Crossroads Mixed Use Filing \#2 will include 10,000 square feet of retail, a 14,000 square foot pharmacy, 8,000 square feet of sitdown restaurant, 11,000 square feet of fast-food restaurant, and a 2,500 square foot coffee shop while Filing \#1 was also included for evaluation which consists of 306 multifamily housing units. The retail Filing \#2 portion of the project is located on the east side of the site while the Filing \#1 residential portion is located on the west side of the site. A conceptual site plan of the project is attached. Consistent with the original MTIS, an initial phase of development was evaluated in a 2026 horizon while full buildout was evaluated in the long-term 2040 horizon.

A vicinity map illustrating the location of the property is attached as Figure 1. The surrounding area primarily consists of vacant land, industrial uses, and residential use. The existing site is comprised of undeveloped land while residential and industrial uses are located north and northeast of the project site, respectively. The site area is shown in the aerial of attached Figure 2.

The purpose of this study is to identify project traffic generation characteristics and potential project traffic related impacts on the local street system, as well as to develop mitigation measures required for identified impacts. The intersection of Meadowbrook Parkway and Newt Drive was incorporated into this traffic study in accordance with El Paso County standards and requirements. In addition, one private driveway access (west access) and two private street accesses (middle and east accesses) located on the south side of the future Meadowbrook Parkway extension were also evaluated.

Existing Roadway Network and Traffic Counts

Regional access to the project is provided by Interstate 25 (I-25) and US-24 while primary access to the project will be provided by Meadowbrook Parkway, State Highway 94 (SH-94), and Newt Drive. Direct access will be provided by three accesses located along the south side of Meadowbrook Parkway. The east private street access along Meadowbrook Parkway will be restricted to right-in/right/out movements while the west and middle accesses will provide full turning movements.

Kimley»Horn

Meadowbrook Parkway is an El Paso County Urban Non-Residential Collector roadway that provides one lane of travel in each direction, with a 35 mile per hour speed limit through the study area. Newt Drive extends northwest and southeast with one through lane of travel in each direction.

The Meadowbrook Parkway and Newt Drive intersection is a T-intersection with stop control on the northwestbound and southeastbound approaches of Newt Drive. The northwestbound approach of Newt Drive consists of one through lane and a right turn lane while the southeastbound approach includes a left turn lane and one through lane. The southwestbound approach of Meadowbrook Parkway includes a two-way left turn lane and a right turn lane. With the construction of the Crossroads Mixed Use project, a southwest leg will be constructed at this intersection as an extension of Meadowbrook Parkway adjacent to the development area. Existing intersection lane configurations and control for the key study area intersection are shown in attached Figure 3.

Existing peak hour turning movement counts were conducted and at the intersection of Meadowbrook Parkway and Newt Drive on Tuesday, June 2, 2020. The turning movement counts were grown based on data obtained from hourly counts from the Colorado Department of Transportation (CDOT) Online Transportation Information System (OTIS) and additional historical CDOT traffic information provided to Kimley-Horn to account for a COVID-19 adjustment for this area. Based on this information and through coordination with CDOT, the morning and afternoon peak hour counts were increased by 35 percent to account for normal traffic conditions prior to the COVID-19 pandemic. Existing turning movement counts are shown in attached Figure 4 while the adjusted turning movement counts are shown in Figure 5 with count sheets and COVID-19 count adjustment data attached.

Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land use to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the Trip Generation Manual ${ }^{1}$ published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. Project generated traffic volumes are identified on a weekday daily as well as on a morning peak hour and afternoon peak hour basis. The morning peak hour is the highest one-hour time period of adjacent street traffic during four consecutive 15-minute intervals during the morning peak hour, between 7:00 am and 9:00 am. The afternoon peak hour is the highest onehour time period of four consecutive 15 -minute intervals between the hours of $4: 00 \mathrm{pm}$ and 6:00 pm representing the afternoon peak hour.

As mentioned previously, the projects were evaluated with a Phase 12026 horizon and a full buildout 2040 horizon. For this study, Kimley-Horn used the ITE Trip Generation Manual average rates and fitted curve equations that apply to Shopping Center (ITE 820), Pharmacy (ITE 881), Sit-Down Restaurant (ITE 932), Fast-Food Restaurant with Drive Through (ITE 934), and Coffee/Donut Shop with Drive Through (ITE 937) for the Filing \#2 development area while Mid-Rise Multifamily Housing (ITE 221) was used for Filing \#1.

Since the project is proposed to contain a mix of uses, internal capture trips are expected to occur on site as well. These internal capture trips are shared trips from vehicles already within the internal street network. These shared trips reduce the number of total external trips and were calculated directly per the ITE procedure but were capped based on thresholds set forth by CDOT. Based on the CDOT access code, internal trip reductions cannot not exceed two percent for the AM peak or eight percent for PM peaks unless clearly justified and documented by actual studies. As such, an internal capture rate of two (2) percent was used during the morning peak hour and a rate of eight (8) percent during
the afternoon peak for areas that apply. Phase 1 development of Crossroads Mixed Use in 2026 is expected to generate approximately 9,756 daily weekday external vehicle trips with 944 of these trips occurring during the morning peak hour and 678 trips occurring during the afternoon peak hour. The Phase 1 retail development area of Filing \#2 is expected to generate approximately 8,938 total daily vehicle trips with 861 of these trips occurring during the morning peak hour and 607 trips occurring during the afternoon peak hour. Calculations were based on the procedure and information provided in the ITE Trip Generation Manual, 10th Edition - Volume 1: User's Guide and Handbook, 2017. Table 1 provides the estimated trip generation for Phase 1 of the project. The trip generation calculations are attached.

Table 1 - Crossroads Mixed Use Phase 1 Traffic Generation

With full project buildout of Crossroads Mixed Use, the project is expected to generate approximately 11,574 daily weekday external vehicle trips with 1,036 of these trips occurring during the morning peak hour and 846 trips occurring during the afternoon peak hour. The full buildout retail development area of Filing \#2 is expected to generate approximately 10,914 total daily vehicle trips with 955 of these trips occurring during the morning peak hour and 790 trips occurring during the afternoon peak hour. Table 2 provides the estimated trip generation for full buildout of the project.

Table 2 - Crossroads Mixed Use Buildout Traffic Generation

Filing	Use	\uparrow	Quantity	Daily	Weekday Vehicle Trips					
					AM Peak Hour			PM Peak Hour		
					In	Out	Total	In	Out	Total
Crossroads Mix Use										
\#1	Mid-Rise Multifamily Housing	(ITE 221)	306 Units	1,666	27	75	102	79	51	130
\#2	Shopping Center (TTE 820)		10,000 SF	1,256	97	60	157	48	51	99
	Pharmacy (ITE 881)		14,000 SF	1,528	29	25	54	72	72	144
	Sit Down Restaurant (ITE 9p2)		8,000 SF	898	44	36	80	48	30	78
	Fast Food Restaurant (ITE 93		11,000 SF	5,182	225	217	442	187	172	359
	Coffee Shop (ITE 937)		2,500 SF	2,050	113	109	222	55	55	110
Total Crossroads Mix Use Trips				12,580	535	522	1,057	489	431	920
Crossroads Mix Use Trips after nternal Capture				11,574	524	512	1,036	450	397	846

El Paso County has requested a trip generation comparison for the Crossroads Mixed Use project to identify traffic compliance with the original Crossroads-Meadowbrook-Reagan Ranch MTIS completed by Kimley-Horn in February 2022. The original traffic study included the same land uses and sizes for both phase 1 and buildout except the Mid-Rise Multifamily Housing use was evaluated with 300 dwelling units in the original traffic study and is now being evaluated with 306 dwelling units in the current proposal. This increase of six (6) additional dwelling units in anticipated to generate 30 more daily trips, two (2) more morning peak hour trips, and two (2) more afternoon peak hours trips than previously evaluated in the master taffic study. All of these increases equate to less than a tenth of one percent compared to the overall trips from master traffic study. Therefore, the project is believed to be in

Kimley»Horn

compliance with the original master traffic impact study. Applicable trip generation information from the original master traffic study is attached. Further, the exact intensity of uses was evaluated in the Crossroads Mixed Use Traffic Study Letter completed in April 2022; therefore, the project is in traffic compliance with the original site-specific traffic study.

Distribution, Assignment, and Total Traffic

Distribution of site traffic was based on the area street system characteristics, existing traffic patterns and volumes, and the proposed access system for the project. Separate distributions were prepared for the retail and residential portions of the site. Further, separate distributions were prepared for the short-term horizon and long-term horizons to account for the future connection of Meadowbrook Parkway to Peterson Road expected to occur by the 2040 horizon. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. The residential project trip distribution is illustrated in Figure 6 for both the short term and long-term horizons. Likewise, the retail project trip distribution is illustrated in Figure 7 for both the short term and long-term horizons.

Traffic assignment was obtained by applying the project trip distribution to the estimated project traffic generation of the development shown in the trip generation tables. The traffic assignment is shown in Figure 8 for 2026 and Figure 9 for 2040.

Total traffic volumes from the Crossroads-Meadowbrook-Reagan Ranch MTIS for years 2026 and 2040 with Crossroads Mixed Use project traffic volumes subtracted were used as a baseline for traffic volumes in this study. However, a portion of traffic volumes in 2040 were rerouted and added to Meadowbrook Parkway adjacent to the project site to account for the future connection of Meadowbrook Parkway to Peterson Road. Site traffic volumes were added to the 2026 and 2040 baseline traffic volumes to represent estimated short-term and long-term traffic conditions. These total traffic volumes for 2026 and 2040 are illustrated in Figure 10 and Figure 11, respectively. Traffic volume information from original MTIS is attached.

Traffic Operations Analysis

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies at the project key intersections for the 2026 short term and 2040 long term horizons. The acknowledged source for determining overall capacity is the Highway Capacity Manual.

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). El Paso County has an overall intersection, approach and movement LOS D as the minimum threshold for acceptable operations. The following Table 3 shows the definition of level of service for signalized and unsignalized intersections.

[^0]Table 3 - Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
A	≤ 10	≤ 10
B	>10 and ≤ 20	>10 and ≤ 15
C	>20 and ≤ 35	>15 and ≤ 25
D	>35 and ≤ 55	>25 and ≤ 35
E	>55 and ≤ 80	>35 and ≤ 50
F	>80	>50

Study area intersections were analyzed based on average total control delay analysis for signalized and unsignalized intersections. Under the unsignalized analysis, the level of service (LOS) for a twoway stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. Level of service for a two-way stop-controlled intersection is not defined for the intersection as a whole. Level of service for a signalized, roundabout, and four-way stop controlled intersections are defined for the overall intersection.

Calculations for the level of service at the key intersection and project accesses for the study area are attached. Synchro traffic analysis software was used to analyze the study area access intersections while Arcady software was utilized with the future roundabout intersection of Meadowbrook Parkway and Newt Drive. The Synchro Highway Capacity Manual (HCM) methodology reports were used to analyze intersection delay and level of service.

Meadowbrook Parkway and Newt Drive

The existing intersection of Meadowbrook Parkway and Newt Drive is a three-leg stop-controlled intersection with the northwest and southeast legs along Newt Drive providing stop control. With the construction of the project, a southwest leg of Meadowbrook Parkway will be constructed and extended to the west limits of the Crossroads Mixed Use property. By 2040, it is anticipated that Meadowbrook Parkway will connect with Peterson Road to the west. A single lane roundabout is currently planned at the intersection of Meadowbrook Parkway and Newt Drive. It is anticipated that the intersection will operate acceptably with LOS A during the peak hours throughout the 2040 horizon as a single lane roundabout. Table 4 provides the results of the level of service at this intersection.

Table 4 - Meadowbrook Parkway and Newt Drive LOS Results

	AM Peak Hour		PM Peak Hour	
Scenario	Control Delay (sec/veh)	LOS	Control Delay (sec/veh)	LOS
2026 Total Traffic Volumes (Roundabout Control)	6.9	A	5.9	A
2040 Total Traffic Volumes (Roundabout Control)	9.3	A	9.7	A

Project Access Spacing Requirements and Internal Roadway Classifications

With completion of the Crossroads Mixed Use project, one private driveway access and two private street accesses are proposed to be located on the south side of the future extension of Meadowbrook Parkway west of Newt Drive. The east access along Meadowbrook Parkway will be a private street providing access to the retail area and will be restricted to right-in/right out movements. The middle access along Meadowbrook Parkway will be a private street and will allow full turning movements. The

Kimley»Horn

Crossroads Mixed Use Filing \#2 09696015
west access along Meadowbrook Parkway will allow full turning movements and provide private driveway access to the multifamily residential area.

The east access along Meadowbrook Parkway is proposed to be located approximately 435 feet west of Newt Drive and 360 feet east of the middle access (measured centerline to centerlne). The west access along Meadowbrook Parkway is proposed to be located approximately 330 feet west of the middle access. These distances meet the El Paso County Urban Non-Residential Colleqtor spacing standards of 660 feet to other collectors and 330 feet to intersections with a local street. The west and east accesses along Meadowbrook Parkway meet El Paso County average daily traffic threshold standard of 3,000 vehicles per day for an Urban Local street. The middle access along Meadpwbrook Parkway meets the El Paso County average daily threshold standard of 10,000 and 20,000 yehicles per day for both Urban Residential and Urban Nonresidential Collectors, respectively. With the west side of the middle access street fronting the multifamily residential site, this roadway could meet the characteristics of an Urban Residential Collector. However, the project previously requested a deviation to allow for the middle access street to be constructed to a local street cross section. The middle access roadway will only extend approximately 850 feet south of Meadowbrook Parkway and will terminate prior to US-24. There is only one access (to the residential area) along the middle north-south street south of the east-west roadway on site; therefore, there will minimal conflicting movements at the eastwest roadway intersection with the middle access roadway. Attached Figure 12 illustrates the circulation plan and street classification map for roadways internal to Crossroads Mixed Use.

Project Accesses: Lane Configurations, Turn Lane Requirements, and Operational Analysis

All three project accesses along Meadowbrook Parkway are recommended to provide stop control and have R1-1 "STOP" signs installed for the exiting northbound approaches. Single northbound exiting lanes are expected to be sufficient at all three project accesses. To provide signage for restricting left turn movements at the proposed right-in/right-out east access, it is recommended that a R3-2 No Left Turn sign be placed underneath the STOP sign. Further, a R6-1(R) "ONE WAY" sign should also be installed within the raised center median of Meadowbrook Parkway.

The El Paso County ECM was used to determine if right turn lanes are warranted along Meadowbrook Parkway at the project accesses. El Paso County classifies Meadowbrook Parkway as an Urban NonResidential Collector. According to EI Paso County ECM guidelines for Minor Arterials and Lower Classifications, a right turn lane is required for any access with a projected peak hour right turning volume of 50 vehicles per hour or greater.

Based on 2040 traffic volume projections, right turn lane requirements at the project accesses along Meadowbrook Parkway are as follows:

- An eastbound right turn lane is not warranted for the Meadowbrook Parkway West Access based on projected 2040 total traffic volumes being 15 eastbound right turns during the peak hour and the threshold being 50 vehicles per hour.
- An eastbound right turn lane is not warranted for the Meadowbrook Parkway Middle Access based on projected 2040 total traffic volumes being 45 eastbound right turns during the peak hour and the threshold being 50 vehicles per hour.
- An eastbound right turn lane is not warranted for the Meadowbrook Parkway East Right-in/Right-out Access based on projected 2040 total traffic volumes being 30 eastbound right turns during the peak hour and the threshold being 50 vehicles per hour.

Likewise, the EI Paso County ECM was used to determine if left turn lanes are warranted at the studied intersections along Meadowbrook Parkway. For minor arterials or lower classifications, a left turn lane is required for any access with a projected peak hour ingress turning volume of 25 vehicles per hour or greater. Therefore, a westbound left turn lane will be required at the west access along Meadowbrook

Kimley»Horn

Parkway while a northbound and westbound left turn lane will be required at the middle access along Meadowbrook Parkway.

Based on El Paso County standards for a design speed of 40 miles per hour, the west access along Meadowbrook Parkway should provide a westbound left turn lane with a length of 205 feet (50 feet of storage plus 155 feet of deceleration lane length) plus a 160 -foot taper. However, there is approximately 260 feet of available space for a westbound left turn lane at the west access due to the proposed location of the middle access. As such, a deviation was previously provided to allow for the westbound left turn lane at the west access along Meadowbrook Parkway to provide a maximum possible length of 100 feet (standard 50 feet of storage and substandard 50 feet of deceleration lane length) plus a 160 -foot taper (standard) to accommodate the spacing restriction. It should be noted that there will not be an access on the north leg of the middle access along Meadowbrook Parkway due to the configuration of the single-family development to north. This prevents having to provide back-to-back left turn lanes in the future which allows additional space for the proposed left turn lane at the west access along Meadowbrook Parkway. The 95th percentile vehicle queues calculated within Synchro software demonstrate one (1) vehicle queue in the westbound left turn lane during the peak hour in 2026 and 2040. Further, CDOT guidelines for NR-C roadway (Non-Rural Arterial) and lower classifications identify left turn lane requirements as storage length plus taper length. Based on CDOT storage requirement of one foot per left turning vehicle during the peak hour and a speed limit of 40 miles per hour, the westbound left turn lane should provide 55 feet of length plus a 145 -foot taper based on CDOT standards. However, a minimum storage length of 100 feet is typically recommended when less than 100 vehicles are reported; therefore, the turn lane would be 100 feet plus a 145 -foot taper based on CDOT standards. Therefore, it is believed the 100-foot turn lane plus 160 -taper recommended in the deviation is sufficient.

A westbound left turn lane with a length of 405 feet (250 feet of storage plus 155 feet of deceleration lane length) plus a 160 -foot taper should be provided at the middle access along Meadowbrook Parkway. It should be noted the standards for left turn storage in El Paso County show a maximum of 250 feet or more and this length is generally one foot per turning movement during the peak hour. Based on this a storage length of 430 feet (430 vehicles during the peak hour) could be considered; however, with the $95^{\text {th }}$ percentile vehicles queues reporting a length of 50 feet, the maximum length listed in the El Paso County standards of 250 feet is recommended.

It is anticipated that a separate left turn lane and right turn lane will be warranted at the middle access along Meadowbrook Parkway when Meadowbrook Parkway is extended to Peterson Road. Based on El Paso County standards for a design speed of 30 miles per hour, a northbound left turn lane with a length of 215 feet (100 feet of storage and 115 feet of deceleration lane length) plus a 160 -foot taper should be provided at the middle access along Meadowbrook Parkway. This northbound left turn lane will not be triggered in the short-term; however, the project will include this left turn lane with the initial phase of construction to avoid restriping this intersection in the future. It should be noted that the storage length required at this northbound left turn lane in the short term is only 50 feet shorter than the storage length required for the long-term horizon; therefore, the long-term configuration is recommended for the short-term horizon. The northbound right turn lane at the middle access along Meadowbrook Parkway will be a continuous lane as the through lane will drop as a forced right turn movement.

With the recommended lane configurations and control of the three proposed accesses along Meadowbrook Parkway, the access intersections along Meadowbrook Parkway are expected to operate acceptably with LOS B or better during the peak hours in 2026. With the expected future connection of Meadowbrook Parkway to Peterson Road, the access intersections along Meadowbrook Parkway are expected to continue to operate acceptably with LOS C or better during the peak hours in 2040. Table 5 provides the results of the level of service at the key study area access intersections.

Table 5 - Meadowbrook Parkway Project Accesses LOS Results

Scenario	2026 Total Traffic				2040 Total Traffic			
	AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour	
	Delay (sec) veh)	LOS	Delay (sec/ veh)	LOS	Delay (sec/ veh)	LOS	Delay (sec/ veh)	LOS
Meadowbrook Parkway								
West Access (Residential)								
Northbound Approach	8.5	A	8.4	A	10.3	B	10.6	B
Westbound Left	7.2	A	7.3	A	7.7	A	8.0	A
Meadowbrook Parkway								
Middle Access								
Northbound Approach	9.3	A	8.9	A	21.2	C	15.8	C
Westbound Left	8.4	A	7.9	A	9.3	A	9.1	A
Meadowbrook Parkway								
East Access								
Northbound Right	11.8	B	10.2	B	13.5	B	13.0	B

Sight Distance Evaluation

It is recommended that appropriate sight distance triangles be provided at all site access points to give drivers exiting the development areas a clear view of oncoming traffic. Landscaping and objects within sight triangles must not obstruct drivers' views of the adjacent travel lanes. Intersection sight distances for left turn from stop and right turn from stop were analyzed for the proposed project accesses along Meadowbrook Parkway.

With El Paso County standards and a design speed of 40 miles per hour along Meadowbrook Parkway, the intersection sight distance for a vehicle turning from stop is 445 feet. Therefore, all obstructions for turning vehicles from stop should be clear to the right and left within the triangle created with a vertex point located 13 feet (10 feet from local roads) from the edge of the major road traveled way (typical position of the minor road driver's eye when stopped) and a line-of-sight distance of 445 feet located in the middle of the eastbound and westbound through lanes along Meadowbrook Parkway. It is believed that the accesses are appropriate at the current locations to provide the necessary sight distance needed but verification should be provided with sight distance triangles incorporated within the design plans.

Queuing Analysis

A queuing analysis was conducted for turn lanes at the access intersections. The queuing analysis was performed using the Synchro analysis software presenting the results of the 95th percentile queue length. Results are shown in the following Table 6 with calculations provided in the attached level of service operational outputs. Results of the queuing analysis indicate that vehicle queues are expected to be managed and contained within the provided turn lanes of the studied intersections. In addition, the westbound left turn lanes for the west and middle accesses have been designed per El Paso County standards or the requested deviations.

Table 6 - Turn Lane Length Analysis Results

Intersection Approach / Turn Lane	$\begin{array}{\|c} \text { Existing } \\ \text { Turn Lane } \\ \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	2026 Calculated Queue Length (feet)	2026 Recommended Turn Lane Length (feet)	2040 Calculated Queue Length (feet)	2040 Recommended Turn Lane Length (feet)
 Newt Drive					
Northbound Approach		75'	C	50^{\prime}	C
Southbound Approach		25	C	25	C
Eastbound Approach		75	C	$10{ }^{\prime}$	C
Westbound Approach		75'	C	100'	C
Meadowbrook Parkway					
West Access (Residential)					
Northbound Approach	DNE	25	C	25	C
Westbound Left	DNE	25	\$ 100' ${ }^{\prime} 160^{\prime}$ T	25^{\prime}	\$ 100' $+160^{\prime} \mathrm{T}$
Meadowbrook Parkway					
Northbound Left	DNE	25	215' + 120' T	75'	$215{ }^{\prime}+120$ T
Northbound Right	DNE	25	C	$2{ }^{\prime}$	C
Westbound Left	DNE	50^{\prime}	$405^{\prime}+160^{\prime}$	50'	$405^{\prime}+160^{\prime}$
Meadowbrook Parkway					
East Access Northbound Right	DNE	50'	C	50^{\prime}	C

DNE = Does Not Exist; C = Continuous Lane; T= Taper; \$ = Length deviated from standards due to spacing constraints

Bicycle and Pedestrian Access

Sidewalks are bike lanes currently do not exist along the south side of Newt Drive adjacent to the property frontage. Bike lanes currently do not exist along any of the roadways within the study limits. Sidewalks exist adjacent to surrounding development along Newt Drive and Meadowbrook Parkway with exception of along Newt Drive at the intersection with US-24.

Sidewalks are proposed with the project adjacent to the property frontages along both sides of Meadowbrook Parkway. Sidewalks and bike lanes are not proposed along the south side of Newt Drive from Meadowbrook Parkway to US-24 due to right-of-way constraints with the widened Newt Drive. Sidewalks are also proposed along both sides of all of the internal local streets of the project site.

A bike ramp is proposed on the south and east corners of the roundabout intersection of Newt Drive and Meadowbrook Parkway to allow bicyclists traveling east on Meadowbrook Parkway to exit the roadway and navigate the roundabout as a pedestrian. Bicycles traveling eastbound along Meadowbrook Parkway can exit the roadway at the proposed ramp located on the east side of the right-in/right-out project access along Meadowbrook Parkway or the proposed ramp located on the south corner of the Newt Drive and Meadowbrook Parkway intersection. Bicycles traveling eastbound along Meadowbrook Parkway can reenter the roadway at the proposed ramp located on the east corner of the Newt Drive and Meadowbrook Parkway intersection or at the proposed ramp currently located on the west side of the existing Circle K private access along Meadowbrook Parkway. In general, inexperienced bicyclists, who are uncomfortable navigating the roundabout as vehicles will utilize the bike ramps. Bicyclists traveling southeastbound along Newt Drive towards the intersection with US 24, are likely to be comfortable navigating the roundabout as a vehicle, and not likely to use bike ramps, and/or sidewalks to navigate the roundabout. Due to limited anticipated use, and to reduce confusion between ADA and bike ramps, and reduce the number of conflict points between vehicles and bicyclists,

Kimley»Horn

a bike ramp is not provided for bicyclists to re-enter the roadway on southeastbound Newt Drive towards the highway. A bike lane is not proposed along the segment of Newt Drive adjacent to the property frontage due to right-of-way constraints, limited anticipated bicycle usage in this area, and because US24 and SH-94 do not provide bike lanes.

School Routes Pedestrian Analysis

As identified in the EI Paso County ECM Appendix B.4.1.C, school routing plans per the MUTCD between the project and all schools within 2.0 miles of the project boundary should be evaluated. To establish a safer route to and from school for schoolchildren, the application of planning criterion for school walk routes might make it necessary for children to walk an indirect route to an established school crossing located where there is existing traffic control and to avoid the use of a direct crossing where there is no existing traffic control. Evans Elementary School, McAuliffe Elementary School, and Horizon Middle School are all located within 2.0 miles of the project boundary; therefore, pedestrian routes were evaluated from the project to all three of these schools.

Evans Elementary School is located in the northeast quadrant of the Omaha Boulevard and Peterson Road intersection. Trail paths are available in the vacant land west and northwest of the project site to connect pedestrians from the project site to the sidewalk connections located on the southeast corner of the Western Drive and Peterson Road intersection. From here, sidewalk connections are fully available on both sides of Peterson Road, Omaha Boulevard, and Winnebago Road in route to Evans Elementary School. It should be noted that there are curb ramps along Peterson Road but not any designated crosswalks for pedestrians traveling along Peterson Road to and from the school and the project. Likewise, there is not a crosswalk to along Omaha Boulevard for pedestrians to cross Omaha Boulevard.

McAuliffe Elementary is located in the southwest quadrant of the Galley Road and Hathaway intersection. Trail paths are available in the vacant land west of the project site to connect pedestrians from the project site to the sidewalk connections located on the southeast corner of the Peterson Road and Galley Road intersection. From the Peterson Road and Galley Road intersection, sidewalk connections are mostly available on both sides of Galley Road and fully available on both sides of Hathaway Drive in route to McAuliffe Elementary School. A dirt lot is located in a segment along the north side of Galley Road without sidewalk extending from Western Drive to Colorado Freedom Church. Sidewalk is not available along the south side of Galley Road and the west side of Peterson Road extending from Western Drive to the retail center located on the northwest corner of the US-24 and Peterson Road intersection. However, pedestrians can travel along the north side of Galley Road in this stretch. A crosswalk is located on the east and north sides of the signalized T-intersection of Peterson Road and Galley Road. Likewise, a designated crosswalk is located on the east and west sides of the Galley Road and Hathaway Drive signalized intersection.

Horizon Middle School is located in the northwest quadrant of the Piros Drive and Peterson Road intersection. Trail paths are available in the vacant land west and northwest of the project site to connect pedestrians from the project site to the sidewalk connections located on the southeast corner of the Western Drive and Peterson Road intersection. From here, sidewalks are fully available along both sides of Peterson Road and Piros Drive in route to Horizon Middle School. Crosswalks are not located at multiple intersections along Peterson Road from Galley Road to Palmer Park Boulevard. Designated crosswalks are available at the signalized intersections of Palmer Park Boulevard/Peterson Road and Piros Drive/Peterson Road.

Road Impact Fees

Road impact fees were evaluated based on the El Paso County Road Impact Fee Schedule. The road impact fee for the proposed Crossroads Mixed Use project is expected to be $\$ 999,556.00$ for the overall development and $\$ 277,456.00$ for the retail Filing \#2 development area. Road impact fee calculations

Kimley»Horn

are shown in Table 7. The road impact fees for Filing \#2 will be paid upfront while the project will choose to pay the road impact fees of the future lots up front or be included in one of the available public improvement districts with reduced upfront costs. The project team will determine payment methods with the submission of future final plats. Of note, El Paso County has determined that the proposed roundabout qualifies for automatic inclusion for credit in the Road Impact Fee Program.

Table 7 - Crossroads Mixed Use Road Impact Fees (Overall Development)

Filing	Use	Units	Per 1,000 SF or DU	Fee / Unit	Per Use Fee
\#1	Mid-Rise Multifamily Housing (TE 221)	300	300	2,407.00	\$722,100.00
\#2	Shopping Center (ITE 820)	10,000	10	4,958.00	\$49,580.00
	Pharmacy (ITE 881)	14,000	14	4,958.00	\$69,412.00
	Sit Down Restaurant (TE 932)	8,000	8	4,958.00	\$39,664.00
	Fast Food Restaurant (ITE 934)	11,000	11	8,800.00	\$96,800.00
	Coffee Shop (TE 937)	2,500	3	8,800.00	\$22,000.00
Filing \#2 Total					\$277,456.00
	Crossroads Mix Use	ad Impa			\$999,556.00

Improvement Summary

Based on the results of the intersection operational and vehicle queuing analysis, the recommended lane configurations and control at the key study area intersections are shown in Figure 13 for both 2026 and 2040.

The following improvements (identified in Table 8) recommended in the Crossroads-MeadowbrookReagan Ranch MTIS Study are proposed in association with the overall Crossroads Mixed Use development. Of note, all of the identified improvements with Crossroads Mixed Use will be constructed with Filing \#1 of the Crossroads Mixed Use project and are identified in Table 8. Therefore, the only improvements associated with Filing \#2 are internal streets and accesses to the retail lots.

Table 8 - Crossroads Mixed Use Improvement Summary

| Intersection / Roadway | $\begin{array}{c}\text { Improvements }\end{array}$ | $\begin{array}{c}\text { Crossroads } \\ \text { Mixed Use } \\ \text { Full } \\ \text { Development } \\ \text { Traffic }\end{array}$ |
| :--- | :--- | :---: | :--- |
| | | |\(\left.\quad \begin{array}{c}Associated

Development Area\end{array}\right]\)

Kimley»)Horn

Provide an update on improvements. Include estimated completion dates for each and include any additional requirements CDOT might have asked for for filing 2.

The recommended improvements are based on the global analysis provided for this area of Colorado Springs and El Paso County considering existing traffic volumes, background traffic volume growth from other development projects, and four project areas of Crossroads Mixed Use, Crossroads North, Meadowbrook Park, and Reagan Ranch. The improvements identified are not solely needed to accommodate Crossroads Mixed Use; however, these improvements will be constructed in association with Filing \#1 of the Crossroads Mixed 叫e development. The west leg of Meadowbrook Parkway at Newt Drive is current under construction, and this will be followed by construction of the roundabout at the Meadowbrook Parkway and Newt/Drive intersection and turn lane improvements at the Newt Drive and US-24 intersection.

The Colorado Department of Transportation (CDOT) has identified the potential need for an interchange at the US-24 and $/ \mathrm{SH}-94$ intersection. It should be noted that Right-of-Way reservation is not believed to be needed on the west side of US-24 at this intersection of SH-94 and US-24. The need for grade separation at the $\mathrm{SH}-94$ and US-24 intersection is primarily anticipated to be triggered by the westbound left turn movements from SH-94 to US-24. As such, it is believed that a westbound left turn flyover condition can be constructed without the need for ramp improvements on the west leg of the SH-94 and US-24 intersection. Detailed improvement exhibits at the SH-94 and US-24 intersection for the short-term 2026 and long-term 2040 with westbound triple left turn lanes is attached. It should be noted that these improvement exhibits do not provide the possible westbound left turn flyover ramp condition.

An access permit is being process with CDOT for the west leg of Newt Drive at the intersection with US-24. Roadway improvements will be detailed in the terms and conditions of the finalized access permit.

Conclusions and Recommendations

In summary, this traffic study provides project traffic generation estimates to identify potential project traffic related impacts on the local street system with the proposed Crossroads Mixed Use project. Based on the analysis presented in this study, Kimley-Horn believes the proposed Crossroads Mixed Use development will be successfully incorporated into the existing and future roadway network. Further, the project is believed to be in compliance with the Crossroads-Meadowbrook-Reagan Ranch MTIS completed by Kimley-Horn in February 2022.

With completion of the Crossroads Mixed Use project, one private driveway access and two private street accesses are proposed to be located on the south side of the future extension of Meadowbrook Parkway west of Newt Drive. The east access along Meadowbrook Parkway will be a private street providing access to the retail area and will be restricted to right-in/right out movements. The middle access along Meadowbrook Parkway will be a private street and will allow full turning movements. The west access along Meadowbrook Parkway will allow full turning movements and provide access to a private driveway to the multifamily residential area. All three project accesses along Meadowbrook Parkway are recommended to provide stop control and have R1-1 "STOP" signs installed for the exiting northbound approaches. To provide signage for restricting left turn movements at the proposed right-in/right-out east access, it is recommended that a R3-2 No Left Turn sign be placed underneath the STOP sign. A R6-1(R) "ONE WAY" sign should also be installed within the raised center median of Meadowbrook Parkway.

Based on El Paso County standards for a design speed of 40 miles per hour, a westbound left turn lane with a length of 205 feet (50 feet of storage plus 155 feet of deceleration lane length) plus a 160 -foot taper should be provided at the middle access along Meadowbrook Parkway. However, there is approximately 260 feet of available space for a westbound left turn lane at the west access due to the proposed location of the middle access. As such, a deviation was previously provided to allow for the westbound left turn lane at the west access along Meadowbrook Parkway to provide a maximum

Kimley»Horn

possible length of 100 feet (standard 50 feet of storage and substandard 50 feet of deceleration lane length) plus a 160 -foot taper (standard) to accommodate the spacing restriction.

The middle access along Meadowbrook Parkway should provide a westbound left turn lane with a length of 405 feet (250 feet of storage plus 155 feet of deceleration lane length) plus a 160 -foot taper. Further, the middle access along Meadowbrook Parkway should provide a northbound left turn lane with a length of 215 feet (100 feet of storage and 115 feet of deceleration lane length) plus a 160 -foot taper. The northbound right turn lane at the middle access along Meadowbrook Parkway will be a continuous lane as the through lane will drop as a forced right turn movement.

The west and east accesses along Meadowbrook Parkway meet El Pass County average daily traffic threshold standard of 3,000 vehicles per day for an Urban Local street. The middle access along meets the El Pas County average daily threshold standard of 10,000 and 20,000 vehicles per day for both Urban Residential and Urban Nonresidential Collectors, respectively. With the west side of the middle access street fronting the multifamily residential site, this roadway could meet the characteristics of an Urban Residential Collector. However, the project previously requested a deviation to allow for the middle access street to be constructed to a local street cross section and to allow for a single shared lane for the northbound approach of the intersection with Meadowbrook Parkway.

A single lane roundabout is currently planned at the intersection of Meadowbrook Parkway and Newt Drive. A design documentation package for the proposed roundabout was previously approved for construction of this roundabout.

If you have any questions or require anything further, please feel free to call me at (720) 943-9962.
Sincerely,
KIMLEY-HORN AND ASSOCIATES, INC.

Jeffrey R. Planck, P.E. Project Manager

Figures

FIGURE 2
Kimley») Horn

FIGURE 12
Kimley»Horn

Traffic Counts
 COVID-19 Adjustment Calculations

Location: Marksheffel @ Space Fiilleadeame : MARKSHEFFEL @ SPACE VILLAGE-THUR-WSP-3-20
Turning Movement Count Site Code : 00000000
Weather: Clear Start Date :3/12/2020
Comments: Heavy truck traffic Page No : 1

	MARKSHEFFEL From North				SPACE VILLAGE From East				MARKSHEFFEL From South				SPACE VILLAGE From West				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
06:00 AM	1	84	0	85	0	0	7	7	0	47	20	67	23	5	1	29	188
06:15 AM	4	140	0	144	0	2	2	4	2	68	33	103	17	9	1	27	278
06:30 AM	4	157	0	161	0	2	0	2	1	92	40	133	19	13	2	34	330
06:45 AM	13	164	0	177	0	6	8	14	2	109	54	165	26	9	4	39	395
Total	22	545	0	567	0	10	17	27	5	316	147	468	85	36	8	129	1191
07:00 AM	18	196	6	220	1	1	3	5	6	121	51	178	35	19	2	56	459
07:15 AM	37	201	0	238	1	4	3	8	1	110	62	173	35	8	2	45	464
07:30 AM	33	235	1	269	0	3	1	4	4	124	83	211	23	9	2	34	518
07:45 AM	31	227	1	259	0	3	1	4	1	117	77	195	21	6	1	28	486
Total	119	859	8	986	2	11	8	21	12	472	273	757	114	42	7	163	1927
*** BREAK ***																	
04:00 PM	7	147	0	154	0	4	4	8	3	210	40	253	55	8	3	66	481
04:15 PM	8	149	0	157	0	3	7	10	5	263	46	314	46	8	2	56	537
04:30 PM	5	122	1	128	0	2	10	12	6	228	56	290	52	10	1	63	493
04:45 PM	3	132	0	135	1	3	9	13	1	213	46	260	62	6	4	72	480
Total	23	550	1	574	1	12	30	43	15	914	188	1117	215	32	10	257	1991
05:00 PM	7	127	0	134	0	2	4	6	5	213	55	273	65	7	1	73	486
05:15 PM	4	155	2	161	0	1	2	3	1	226	48	275	58	10	4	72	511
05:30 PM	5	119	0	124	1	2	6	9	0	153	38	191	53	12	1	66	390
05:45 PM	2	111	0	113	0	3	1	4	0	152	31	183	46	6	2	54	354
Total	18	512	2	532	1	8	13	22	6	744	172	922	222	35	8	265	1741
Grand Total	182	2466	11	2659	4	41	68	113	38	2446	780	3264	636	145	33	814	6850
Apprch \%	6.8	92.7	0.4		3.5	36.3	60.2		1.2	74.9	23.9		78.1	17.8	4.1		
Total \%	2.7	36	0.2	38.8	0.1	0.6	1	1.6	0.6	35.7	11.4	47.6	9.3	2.1	0.5	11.9	

File Name : MARKSHEFFEL @ SPACE VILLAGE-THUR-WSP-3-20
Site Code : 00000000
Start Date : 3/12/2020
Page No : 2

Peak Hour Analysis From 06:00 AM to 05:45 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:15 PM

Peak Hour for		coct		at	PM												
04:15 PM	8	149	0	157	0	3	7	10	5	263	46	314	46	8	2	56	537
04:30 PM	5	122	1	128	0	2	10	12	6	228	56	290	52	10	1	63	493
04:45 PM	3	132	0	135	1	3	9	13	1	213	46	260	62	6	4	72	480
05:00 PM	7	127	0	134	0	2	4	6	5	213	55	273	65	7	1	73	486
Total Volume	23	530	1	554	1	10	30	41	17	917	203	1137	225	31	8	264	1996
\% App. Total	4.2	95.7	0.2		2.4	24.4	73.2		1.5	80.7	17.9		85.2	11.7	3		
PHF	. 719	. 889	. 250	. 882	. 250	. 833	. 750	. 788	. 708	. 872	. 906	. 905	. 865	. 775	500	. 904	. 929

Description: SH 94 E/O Marksheffel Rd, Colorado Springs

Station ID:	100851
Date:	$2 / 20 / 2020$
Route:	024 G

Route: $\quad 024 \mathrm{G}$

Description: ${ }^{\text {SH } 24 \text { NE/ }}$ SH 94 , Colorado Springs
COUNTDIR

Original Traffic Study Documents

T R A F F I C I M P A C T S T U D Y

Traffic Engineer's Statement
The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Curtis D. Rowe, P.E., PTOE, PE \#36355

February 11, 2022
Date

Developer's Statement
I, the Developer, have read and will comply with all commitments made on my behalf within this report.

Ms. Kelly Nelson

Date

Pikes Peak Investments LLC
c/o The Equity Group
90 South Cascade Avenue, Suite 1500
Colorado Springs, Colorado 80903

Crossroads-Meadowbrook-Reagan Ranch

PCD File No. CR201 \& SP207

Colorado Springs, Colorado
El Paso County, Colorado
Prepared for
Pikes Peak Investments LLC
c/o The Equity Group
90 South Cascade Avenue
Suite 1500
Colorado Springs, Colorado 80903
Prepared by
Kimley-Horn and Associates, Inc.
Curtis D. Rowe, P.E., PTOE
4582 South Ulster Street
Suite 1500
Denver, Colorado 80237
(303) 228-2300

February 2022

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of
and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.
information provided in the ITE Trip Generation Manual, $10^{\text {th }}$ Edition - Volume 1: User's Guide and Handbook, 2017. Table 1 provides the estimated trip generation for Phase 1 of the project. The trip generation calculations are included in Appendix C.

Table 1 - Phase 1 Project Traffic Generation

Use	Quantity	Daily	Weekday Vehicle Trips					
			AM Peak Hour			PM Peak Hour		
			In	Out	Total	In	Out	Total
Crossroads North								
Public Park (ITE 411)	20 Acres	16	0	0	0	1	1	2
Tire Superstore (ITE 849)	7,000 SF	144	6	3	9	7	8	15
Home Improvement Superstore (ITE 862)	127,000 SF	3,904	113	86	199	145	151	296
Furniture Store (ITE 890)	114,000 SF	720	21	9	30	28	31	59
Sit Down Restaurant (ITE 932)	11,000 SF	1,234	60	49	109	66	41	107
Fast-Food Restaurant (ITE 934)	2,500 SF	1,178	51	49	100	43	39	82
Gas Station Super Convenience (ITE 960)	6,000 SF	5,026	249	250	499	208	208	416
Total Crossroads North Trips		12,222	500	446	946	498	479	977
Crossroads North Trips after Internal	ture	11,246	490	437	927	458	441	899
Meadowbrook Park								
Single Family Housing (ITE 210)	67 Units	720	13	39	52	43	26	69
Meadowbrook Park Total Trips		720	13	39	52	43	26	69
Crossroads Mix Use								
Mid-Rise Multifamily Housing (ITE 221)	300 Units	1,634	26	74	100	77	50	127
Shopping Center (ITE 820)	10,000 SF	1,256	97	60	157	48	51	99
Sit Down Restaurant (ITE 932)	4,000 SF	450	22	18	40	24	15	39
Fast Food Restaurant (ITE 934)	11,000 SF	5,182	225	217	442	187	172	359
Coffee Shop (ITE 937)	2,500 SF	2,050	113	109	222	55	55	110
Total Crossroads Mix Use Trips		10,572	483	478	961	391	343	734
Crossroads Mix Use Trips after Internal	Capture	9,726	474	468	942	359	316	675
Reagan Ranch Northwest Area								
Industrial Park (ITE 130)	220,000 SF	742	71	17	88	18	70	88
Reagan Ranch Northwest Area Total Tri		742	71	17	88	18	70	88
Reagan Ranch Northeast Area								
Single Family Housing (ITE 210)	125 Units	1,276	22	72	94	79	47	126
Shopping Center (ITE 820)	30,000 SF	2,652	104	63	167	107	116	223
Total Reagan Ranch Northeast Area Trips		3,928	126	135	261	186	163	349
Reagan Ranch NE Area Trips after Inter	al Capture	3,614	124	132	256	171	150	321
Reagan Ranch Southeast Area								
Single Family Housing (ITE 210)	255 Units	2,460	45	141	186	156	94	250
Mid-Rise Multifamily Housing (ITE 221)	360 Units	1,962	31	89	120	93	59	152
Shopping Center (ITE 820)	70,000 SF	4,718	116	71	187	200	217	417
Total Reagan Ranch Southeast Area Trips		9,140	192	301	493	449	370	819
Reagan Ranch SE Area Trips after Internal Capture		8,410	188	295	483	413	340	753
Total Site Generated Trips		37,324	1,385	1,416	2,801	1,585	1,451	3,036
Total Site External Trips after Internal Capture		34,458	1,360	1,389	2,748	1,462	1,343	2,806

With full project buildout by 2040, the three development areas are expected to generate approximately 58,582 daily weekday external vehicle trips with 3,481 of these trips occurring during the morning peak hour and 5,121 trips occurring during the afternoon peak hour. Table 2 provides the estimated trip generation for full buildout of the project.

Table 2 - Full Buildout Project Traffic Generation

Use	Quantity	Daily	Weekday Vehicle Trips					
			AM Peak Hour			PM Peak Hour		
			In	Out	Total	In	Out	Total
Crossroads North								
Public Park (ITE 411)	20 Acres	16	0	0	0	1	1	2
Movie Theatre (ITE 444)	52,000 SF	4,062	5	6	11	302	19	321
Tire Superstore (ITE 849)	7,000 SF	144	6	3	9	7	8	15
Home Improvement Superstore (ITE 862)	127,000 SF	3,904	113	86	199	145	151	296
Furniture Store (ITE 890)	114,000 SF	720	21	9	30	28	31	59
Sit Down Restaurant (ITE 932)	11,000 SF	1,234	60	49	109	66	41	107
Fast-Food Restaurant (ITE 934)	5,000 SF	2,356	103	98	201	85	78	163
Gas Station Super Convenience (ITE 960)	6,000 SF	5,026	249	250	499	208	208	416
Total Crossroads North Trips		17,462	557	501	1,058	842	537	1,379
Crossroads North Trips after Internal Capture		16,066	546	491	1,037	775	494	1,269
Meadowbrook Park								
Single Family Housing (ITE 210)	67 Units	720	13	39	52	43	26	69
Meadowbrook Park Total Trips		720	13	39	52	43	26	69
Crossroads Mix Use								
Mid-Rise Multifamily Housing (ITE 221)	300 Units	1,634	26	74	100	77	50	127
Shopping Center (ITE 820)	10,000 SF	1,256	97	60	157	48	51	99
Pharmacy (ITE 881)	14,000 SF	1,528	29	25	54	72	72	144
Sit Down Restaurant (ITE 932)	8,000 SF	898	44	36	80	48	30	78
Fast Food Restaurant (ITE 934)	11,000 SF	5,182	225	217	442	187	172	359
Coffee Shop (ITE 937)	2,500 SF	2,050	113	109	222	55	55	110
Total Crossroads Mix Use Trips		12,548	534	521	1,055	487	430	917
Crossroads Mix Use Trips after Internal Capture		11,544	523	511	1,034	448	396	844
Reagan Ranch Northwest Area								
Industrial Park (ITE 130)	1365,000 SF	1,232	118	28	146	31	115	146
Reagan Ranch Northwest Area Total Trips		1,232	118	28	146	31	115	146
Reagan Ranch Northeast Area								
Single Family Housing (ITE 210)	200 Units	1,968	37	110	147	125	73	198
Shopping Center (ITE 820)	175,000 SF	8,796	148	91	239	395	427	822
Total Reagan Ranch Northeast Area Trips		10,764	185	201	386	520	500	1,020
Reagan Ranch NE Area Trips after Internal Capture		9,904	181	197	378	478	460	938
Reagan Ranch Southeast Area								
Single Family Housing (ITE 210)	393 Units	3,662	71	213	284	238	140	378
Mid-Rise Multifamily Housing (ITE 221)	360 Units	1,962	31	89	120	93	59	152
Office (ITE 710)	100,000 SF	1,062	103	17	120	18	96	114
Shopping Center (ITE 820)	350,000 SF	14,092	203	124	327	659	714	1,373
Total Reagan Ranch Southeast Area Trips		20,778	408	443	851	1,008	1,009	2,017
Reagan Ranch SE Area Trips after Internal Capture		19,116	400	434	834	928	928	1,856
Total Site Generated Trips		63,504	1,815	1,733	3,548	2,931	2,617	5,548
Total Site External Trips after Internal Capture		58,582	1,781	1,700	3,481	2,703	2,419	5,121

Trip Generation Worksheets

Kimley»Horn

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mixed Use)
Subject Trip Generation for Multifamily Housing (Mid-Rise)
$\begin{array}{llll}\text { Designed by _JRP } & \text { Date } \quad \text { February 08, 2021 } & \text { Job No. } & 096956015 \\ \text { Checked by } & \text { Date__ } & \text { Sheet No. } \quad \text { of ___ } & \end{array}$

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Fitted Curve Equations
Land Use Code - Multifamily Housing (Mid-Rise) (221)
Independant Variable - Dwelling Units (X)

```
X = 306
T = Average Vehicle Trip Ends
```


Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (Series 200 Page 74)

Directional Distribution: 26\% ent. 74\% exit.

```
Ln(T) = 0.98 Ln(X) - 0.98
Ln(T) = 0.98 * Ln(306.0) - 0.98
```

| $\mathrm{T}=$ | 102 | Average Vehicle Trip Ends |
| :---: | :---: | :---: | :---: |
| 27 | entering | $75 \quad$ exiting |
| | | |
| 27 | +75 | $=102$ |

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Series 200 Page 75)

```
Ln(T) = 0.96 Ln(X) - 0.63
Ln(T)=0.96 * Ln(306.0) - 0.63
```

$T=$	130	Average Vehicle Trip Ends
79	entering	
79	+51	$=130$

Weekday (Series 200 Page 73)
$(T)=5.45^{*}(X)-1.75$
$(T)=5.45$ * $306-1.75$

Peak Hour of Generator, Saturday (Series 200 Page 79)

Directional Distribution: 49% ent. 51% exit.
$(T)=0.42^{*}(X)+6.73$
$(T)=0.42$ * $306+6.73$
$\mathrm{T}=135 \quad$ Average Vehicle Trip Ends
66 entering 69 exiting
$66+69=135$

Kimley»)Horn

Project	Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use Phase 1)		
Subject	Trip Generation for Shopping Center		
Designed by JRP	Date	February 08, 2021	Job No.Jober Checked by\quad Sheet No.

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Fitted Curve Equations
Land Use Code - Shopping Center (820)
Independant Variable - 1000 Square Feet Gross Leasable Area (X)
Gross Leasable Area $=\quad 10,000 \quad$ Square Feet
$X=10.000$
T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (800 Series Page 140)

Directional Distribution: 48\% ent. 52\% exit.
$\operatorname{Ln}(\mathrm{T})=0.74 \operatorname{Ln}(\mathrm{X})+2.89$
$\operatorname{Ln}(\mathrm{~T})=0.74^{*} \quad \operatorname{Ln}(10)+2.89$
$\mathrm{T}=99 \quad$ Average Vehicle Trip Ends
$\operatorname{Ln}(\mathrm{T})=0.74$ * $\operatorname{Ln}(10) \quad+2.89$
48 entering 51 exiting

Weekday (800 Series Page 138)

Daily Weekday
$\operatorname{Ln}(T)=0.68 \operatorname{Ln}(X)+5.57$
$\operatorname{Ln}(T)=0.68 * * 5.57$

Directional Distribution: 50\% entering, 50\% exiting
T = $1256 \quad$ Average Vehicle Trip Ends
628 entering 628 exiting
Saturday Peak Hour of Generator (Page 144)
Average Saturday
$\operatorname{Ln}(\mathrm{T})=0 . .79 \operatorname{Ln}(\mathrm{X})+2.79$
$\operatorname{Ln}(\mathrm{~T})=0.79 * \quad \operatorname{Ln}(10)+2.79$

Directional Distribution: 52\% ent. 48\% exit.
$\begin{array}{clc}\mathrm{T}= & 100 & \text { Average Vehicle Trip Ends } \\ 52 & \text { entering } & 48 \\ \text { exiting }\end{array}$
Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017-Page 190)

AM Peak Hour $=$	IN	Non-Pass By	Put Peak Hour $=$	Total		
	On	Non-Pass By				
AM Peak	64	39	103			
PM Peak	32	34	65			
Daily	414	414	828	PM Peak Hour Rate Applied to Daily		

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017 -Page 190)

AM Peak Hour $=$	34%		Pass By	PM Peak Hour $=$	34%	Pass By
	IN	Out	Total			
AM Peak	33	20	54			
PM Peak	16	17	34			
Daily	214	214	428	PM Peak Hour Rate Applied to Daily		

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use Phase 1)
Subject Trip Generation for High-Turnover (Sit-Down) Restaurant

| Designed by __JRP | Date \quad February 08, 2021 | Job No. 096956015 |
| :--- | :--- | :--- | :--- |
| Checked by | Date \quad Sheet No. $\quad 1$ | |

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - High Turnover Sit-Down Restaurant (932)
Independant Variable - 1000 Square Feet Gross Floor Area (X)

```
Gross Floor Area = 4,000 Square Feet
X = 4.000
T = Average Vehicle Trip Ends
```

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series Page 97)
Average Weekday Directional Distribution: 55\% ent. 45\% exit.

$\mathrm{T}=9.94(\mathrm{X})$		$\mathrm{T}=$	40	Average Vehicle Trip Ends
$\mathrm{T}=9.94^{*}$	4.000	22	entering	18 exiting

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series Page 98)

Average Weekday Directional Distribution: 62\% ent. 38\% exit.

T = 9.77 (X)
T = $39 \quad$ Average Vehicle Trip Ends
$\mathrm{T}=9.77$ * 4.000
24 entering 15 exiting

Weekday (900 Series Page 96)
Average Weekday
Directional Distribution: 50\% entering, 50\% exiting
$\mathrm{T}=112.18(\mathrm{X}) \quad \mathrm{T}=450 \quad$ Average Vehicle Trip Ends
$\mathrm{T}=112.18$ * 4.000 225 entering 225 exiting
P.M. Peak Hour of Generator (900 Series Page 100)

| Average Weekday | Directional Distribution: | 52% | ent. | 48% | exit. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}=17.41(\mathrm{X})$ | 4.000 | $\mathrm{~T}=$ | 70 | Average Vehicle Trip Ends | |
| $\mathrm{T}=17.41^{*}$ | 46 | entering | 34 | exiting | |

Saturday Peak Hour of Generator 1900 Series Page 105

| Average Saturday | Directional Distribution: | 51% | ent. | 49% | exit. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}=11.19(\mathrm{X})$ | | $\mathrm{T}=$ | 46 | Average Vehicle Trip Ends | | |
| $\mathrm{T}=11.19^{*}$ | 4.000 | | 23 | entering | 23 | exiting |

Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017-Page 207)

AM Peak Hour $=$	57%	Non-Pass By		PM Peak Hour $=$	57%	Non-Pass By
	IN	Out	Total			
AM Peak	12	10	23			
PM Peak	14	8	22			
Daily	128	128	256	PM Peak Hour Rate Applied to Daily		

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017 -Page 207)

AM Peak Hour $=$	43%		Pass By	PM Peak Hour $=$	43%	Pass By
	IN	Out	Total			
AM Peak	9	8	18			
PM Peak	10	6	17			
Daily	97	97	194	PM Peak Hour Rate Applied to Daily		

Kimley»"Horn

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use Phase 1)
Subject Trip Generation for Fast-Food Restaurant with Drive-Through Window

Designed by	JRP	Date	February 08, 2021	Job No. 096956015
Checked by		Date		

```
TRIP GENERATION MANUAL TECHNIQUES
ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - Fast Food Restaurant With Drive-Through Window (934)
Independant Variable - }1000\mathrm{ Square Feet Gross Floor Area (X)
    Gross Floor Area = 11,000 Square Feet
    X = 11.000
    T = Average Vehicle Trip Ends
```

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series page 158)

Average Weekday		Directional Distribution:			51\% ent. 49\% exit.
$\mathrm{T}=40.19$ (X)		T =	442	Avera	Ve
$\mathrm{T}=40.19$ *	11.000	225	entering		217
		225	+ 217		442

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series page 159)
Average Weekday Directional Distribution: 52\% ent. 48\% exit.

$\mathrm{T}=32.67(\mathrm{X})$	
$\mathrm{T}=32.67^{*}$	11.000

$\mathrm{T}=$	359	Average Vehicle Trip Ends
187	entering	172
exiting		

 \(187+172=359\)

Weekday (900 Series page 157)

Average Weekday
$\mathrm{T}=470.95$ (X)
$\mathrm{T}=470.95^{*} \quad 11.000$
Directional Distribution: 50\% entering, 50% exiting $\mathrm{T}=5182 \quad$ Average Vehicle Trip Ends 2591 entering 2591 exiting $2591+2591=5182$

Saturday Peak Hour of Generator (900 Series page 163)

Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

AM Peak Hour $=$	51%	Non-Pass By		PM Peak Hour $=$	50%	Non-Pass By
AM Peak	115	Out	Total			
PM Peak	94	86	225			
Daily	1296	1296	2592	PM Peak Hour Rate Applied to Daily		

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

AM Peak Hour $=$	49%			Pass	By	PM Peak Hour $=$
	IN	Out	Total			Pass By
AM Peak	110	106	217			
PM Peak	94	86	180			
Daily	1295	1295	2590	PM Peak Hour Rate Applied to Daily		

Kimley»)Horn

Project \qquad Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use Phase 1)
Subject Trip Generation for Coffee/Donut Shop with Drive Through
Designed by _JRP Date_February 08, 2021
Checked by \qquad Date \qquad Job No.
Sheet No. \qquad 15 of \qquad

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - Coffee/Donut Shop with Drive Through (937)
Independant Variable - 1000 Square Feet Gross Floor Feet (X)
Gross Floor Area $=\quad 2,500$
$\mathrm{X}=2.5$
T = Average Vehicle Trip Ends
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (Series 900 Page 232)
Directional Distribution: 51\% ent. 49\% exit.
T = 88.99 (X) $\quad \mathrm{T}=222 \quad$ Average Vehicle Trip Ends
$\mathrm{T}=88.99$ * 2.5
113 entering 109 exiting

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Series 900 Page 233)
Directional Distribution: 50% ent. 50% exit.
$\mathrm{T}=43.38(\mathrm{X})$
T = 110 Average Vehicle Trip Ends
$\mathrm{T}=43.38$ *
2.5

55 entering 55 exiting

Weekday (Series 900 Page 231)
Average Weekday
$(\mathrm{T})=820.38(\mathrm{X})$
$(\mathrm{T})=820.38$ *
(2.5)

Directional Distribution: 50\% entering, 50\% exiting T = 2050 Average Vehicle Trip Ends 1025 entering 1025 exiting $1025+1025=2050$

Kimley»Horn

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use)
Subject Trip Generation for Multifamily Housing (Mid-Rise)
Designed by
JRP
Checked by
$\begin{aligned} & \text { Date } \quad \text { February 08, 2021 } \\ & \text { Date }\end{aligned}$
$\begin{array}{rc}\text { Job No. } & 096956015 \\ \text { Sheet No. }\end{array}$

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Fitted Curve Equations
Land Use Code - Multifamily Housing (Mid-Rise) (221)
Independant Variable - Dwelling Units (X)

$$
\begin{aligned}
& X=300 \\
& T=\text { Average Vehicle Trip Ends }
\end{aligned}
$$

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (Series 200 Page 74)

$$
\begin{array}{lll}
\operatorname{Ln}(\mathrm{T})=0.98 & \operatorname{Ln}(\mathrm{X})-0.98 \\
\operatorname{Ln}(\mathrm{~T})=0.98 & \operatorname{Ln}(300.0) & -0.98
\end{array}
$$

Directional Distribution: 26% ent. 74% exit.

$\mathrm{T}=$	100	Average Vehicle Trip Ends
26	entering	74
exiting		

$$
26+74=100
$$

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Series 200 Page 75)

$$
\begin{array}{lll}
\operatorname{Ln}(T)=0.96 \operatorname{Ln}(X) & -0.63 \\
\operatorname{Ln}(T)=0.96^{*} & \operatorname{Ln}(300.0) & -0.63
\end{array}
$$

Directional Distribution: 61\% ent. 39\% exit.
$\mathrm{T}=127 \quad$ Average Vehicle Trip Ends
77 entering 50 exiting

$$
77+50=127
$$

Weekday (Series 200 Page 73)

$(T)=5.45^{*}(X)-1.75$
$(T)=5.45$ * $300 \quad-1.75$
Directional Distribution: 50% ent. 50% exit. $\mathrm{T}=1634 \quad$ Average Vehicle Trip Ends 817 entering 817 exiting
$817+817=1634$

Peak Hour of Generator, Saturday (Series 200 Page 79)

$(T)=0.42^{*}(X)+6.73$
$(T)=0.42^{*} 300+6.73$

Directional Distribution: 49\% ent. 51\% exit. $\mathrm{T}=133 \quad$ Average Vehicle Trip Ends
$(T)=0.42$ * $300+6.73$
65 entering 68 exiting
$65+68=133$

Kimley»)Horn

Project	Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use)		
Subject	Trip Generation for Shopping Center		
Designed by JRP	Date	February 08, 2021	Job No.Jo96956015 Checked by\quad Sheet No.

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Fitted Curve Equations
Land Use Code - Shopping Center (820)
Independant Variable - 1000 Square Feet Gross Leasable Area (X)
Gross Leasable Area $=\quad 10,000 \quad$ Square Feet
$X=10.000$
T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (800 Series Page 140)

Directional Distribution: 48\% ent. 52\% exit.
$\operatorname{Ln}(\mathrm{T})=0.74 \operatorname{Ln}(\mathrm{X})+2.89$
$\operatorname{Ln}(\mathrm{~T})=0.74^{*} \quad \operatorname{Ln}(10)+2.89$
$\mathrm{T}=99 \quad$ Average Vehicle Trip Ends
$\operatorname{Ln}(T)=0.74$ * $\operatorname{Ln}(10)+2.89$
48 entering 51 exiting

Weekday (800 Series Page 138)

Daily Weekday
$\operatorname{Ln}(T)=0.68 \operatorname{Ln}(X)+5.57$
$\operatorname{Ln}(T)=0.68 * * 5.57$

Directional Distribution: 50\% entering, 50\% exiting
$\mathrm{T}=1256 \quad$ Average Vehicle Trip Ends
628 entering 628 exiting
Saturday Peak Hour of Generator (Page 144)
Average Saturday
$\operatorname{Ln}(\mathrm{T})=0 . .79 \operatorname{Ln}(\mathrm{X})+2.79$
$\operatorname{Ln}(\mathrm{~T})=0.79 * \quad \operatorname{Ln}(10)+2.79$

Directional Distribution: 52\% ent. 48\% exit.
$\begin{array}{clc}\mathrm{T}= & 100 & \text { Average Vehicle Trip Ends } \\ 52 & \text { entering } & 48 \\ \text { exiting }\end{array}$
Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017-Page 190)

AM Peak Hour $=$	IN	Non-Pass By	Put Peak Hour $=$	Total		
	On	Non-Pass By				
AM Peak	64	39	103			
PM Peak	32	34	65			
Daily	414	414	828	PM Peak Hour Rate Applied to Daily		

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017 -Page 190)

AM Peak Hour $=$	34%		Pass By	PM Peak Hour $=$	34%	Pass By
	IN	Out	Total			
AM Peak	33	20	54			
PM Peak	16	17	34			
Daily	214	214	428	PM Peak Hour Rate Applied to Daily		

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use)

Subject

 Trip Generation for Pharmacy/Drugstore with Drive-Through Window| Designe by by JRP | Date _ February 08, 2021 | Job No. 096956015 | | |
| :--- | :--- | :--- | :--- | :--- |
| Checked by | | | | |
| Sheet No. | | | | |

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - Pharmacy/Drugstore with Drive-Through Window (881)

```
Independant Variable-1000 Sq. Feet Gross Floor Area (X)
```

 \(S F=14000\)
 \(X=14.000\)
 T = Average Vehicle Trip Ends
 Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (page Series 800 Page 562)

Average Weekday		Directional Distribution:				53\%	47\%
$\mathrm{T}=3.84$ (X)		$\mathrm{T}=$	54	Average Vehicle Trip Ends			
$(\mathrm{T})=3.84^{\star}$	(14.0)	29	entering		25		
		29	+ 25	5	$=$	54	

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Series 800 page 563)

Weekday (Series 800 page 561)

Saturday Peak Hour of Generator (page 1807)

Non-Pass-by Trip Volumes (page 63, ITE Trip Generation Handbook, December 2012)

PM Average	Pass By Percentage:	51%		Pass By
	IN	Out	Total	
AM Peak	15	13	28	PM Rate Applied to AM Peak
PM Peak	37	37	73	
Daily	390	390	780	PM Rate Applied to Daily
Saturday	29	30	59	PM Rate Applied to Saturday

Pass-by Trip Volumes (page 63, ITE Trip Generation Handbook, December 2012)
PM Average Pass By Percentage: 49\% Pass By

	IN	Out	Total	
AM Peak	14	12	26	PM Rate Applied to AM Peak
PM Peak	35	35	71	
Daily	374	374	750	PM Rate Applied to Daily
Saturday	27	29	56	PM Rate Applied to Saturday

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use)
Subject Trip Generation for High-Turnover (Sit-Down) Restaurant

| Designed by __JRP | Date \quad February 08, 2021 | Job No. 096956015 |
| :--- | :--- | :--- | :--- |
| Checked by | Date \quad Sheet No. $\quad 1$ | |

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - High Turnover Sit-Down Restaurant (932)
Independant Variable - 1000 Square Feet Gross Floor Area (X)

```
Gross Floor Area = 8,000 Square Feet
X = 8.000
T = Average Vehicle Trip Ends
```

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series Page 97)
Average Weekday Directional Distribution: 55\% ent. 45\% exit.

$\mathrm{T}=9.94(\mathrm{X})$		$\mathrm{T}=$	80	Average Vehicle Trip Ends
$\mathrm{T}=9.94^{*}$	8.000	44	entering	36

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series Page 98)

Average Weekday Directional Distribution: 62\% ent. 38\% exit.
$\begin{array}{ll}\mathrm{T}=9.77(\mathrm{X}) & \\ \mathrm{T}=9.77^{*} & 8.000\end{array}$

$\mathrm{T}=$	78	Average Vehicle Trip Ends
48	entering	30

Weekday (900 Series Page 96)
Average Weekday
Directional Distribution: 50\% entering, 50\% exiting
$\mathrm{T}=112.18$ (X) $\quad \mathrm{T}=898 \quad$ Average Vehicle Trip Ends
$\mathrm{T}=112.18$ * 8.000 449 entering 449 exiting
P.M. Peak Hour of Generator (900 Series Page 100)

Saturday Peak Hour of Generator (900 Series Page 105

| Average Saturday | Directional Distribution: | 51% | ent. | 49% | exit. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}=11.19(\mathrm{X})$ | | $\mathrm{T}=$ | 90 | Average Vehicle Trip Ends | |
| $\mathrm{T}=11.19^{*}$ | 8.000 | 46 | entering | 44 | exiting |

Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017-Page 207)

AM Peak Hour $=$	IN	Non	Non-Pass By		PM Peak Hour $=$	57%
	Out	Total				
AM Peak	25	20	45			
PM Peak	28	17	45			
Daily	256	256	512	PM Peak Hour Rate Applied to Daily		

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017 -Page 207)

AM Peak Hour $=$	43%		Pass By	PM Peak Hour $=$	43%	Pass By
	IN	Out	Total			
AM Peak	19	15	35			
PM Peak	21	13	34			
Daily	193	193	386	PM Peak Hour Rate Applied to Daily		

Kimley»"Horn

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - Fast Food Restaurant With Drive-Through Window (934)
Independant Variable - 1000 Square Feet Gross Floor Area (X)
Gross Floor Area $=\quad 11,000$ Square Feet Fast
X = 11.000
T = Average Vehicle Trip Ends
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series page 158)

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series page 159)
Average Weekday Directional Distribution: 52\% ent. 48\% exit

$\mathrm{T}=32.67(\mathrm{X})$	
$\mathrm{T}=32.67^{*}$	11.000

T $=359 \quad$ Average Vehicle Trip Ends
187 entering 172 exiting
$187+172=359$

Weekday (900 Series page 157)

Average Weekday
$\mathrm{T}=470.95$ (X)
$\mathrm{T}=470.95^{\text {* }} \quad 11.000$
.

Directional Distribution: 50\% entering, 50\% exiting $\mathrm{T}=5182 \quad$ Average Vehicle Trip Ends 2591 entering 2591 exiting $2591+2591=5182$

Saturday Peak Hour of Generator (900 Series page 163)

Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

AM Peak Hour $=$	51%		Non-Pass By	
	IN	Out	Total	
AM Peak	115	111	225	
PM Peak	94	86	180	
Daily	1296	1296	2592	

PM Peak Hour Rate Applied to Daily

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

AM Peak Hour $=$	49%		Pass By	PM Peak Hour $=$	50%	Pass By
	IN	Out	Total			
AM Peak	110	106	217			
PM Peak	94	86	180			
Daily	1295	1295	2590	PM Peak Hour Rate Applied to Daily		

Kimley»)Horn

Project \qquad Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use)
Subject Trip Generation for Coffee/Donut Shop with Drive Through
Designed by JRP Date_ February 08, 2021
Checked by \qquad Date \qquad Job No.
Sheet No. \qquad 15 of \qquad

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - Coffee/Donut Shop with Drive Through (937)
Independant Variable - 1000 Square Feet Gross Floor Feet (X)
Gross Floor Area $=\quad 2,500$
$\mathrm{X}=\quad 2.5$
T = Average Vehicle Trip Ends
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (Series 900 Page 232)
Directional Distribution: 51% ent. 49% exit.
T = 88.99 (X) $\quad \mathrm{T}=222 \quad$ Average Vehicle Trip Ends
$\mathrm{T}=88.99$ * 2.5
113 entering 109 exiting

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Series 900 Page 233)
Directional Distribution: 50% ent. 50% exit.
$\mathrm{T}=43.38(\mathrm{X})$
$\mathrm{T}=43.38$ *
2.5

T = $110 \quad$ Average Vehicle Trip Ends
55 entering 55 exiting

Weekday (Series 900 Page 231)
Average Weekday
$(\mathrm{T})=820.38(\mathrm{X})$
$(\mathrm{T})=820.38$ *
(2.5)

Directional Distribution: 50\% entering, 50\% exiting T = $2050 \quad$ Average Vehicle Trip Ends 1025 entering 1025 exiting $1025+1025=2050$

Intersection Operational Outputs

Meadowbrook Parkway and Newt Drive

Overall 2026 \& 2040 Operations Summary

	AM									PM								
	$\begin{aligned} & \text { Set } \\ & \text { ID } \end{aligned}$	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	$\begin{aligned} & \text { Set } \\ & \text { ID } \end{aligned}$	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
	Single Lane Roundabout - 2026																	
1- WB Meadowbrook Pkwy	D1	0.8	2.8	6.74	0.44	A	6.86	A	56% [3-EB Meadowbrook Pkwy]	D2	0.8	2.7	6.52	0.45	A	5.89	A	$74 \%$$[1-$ WBMeadowbrookPkwy]
2 - SB Newt Drive		0.1	0.5	5.36	0.07	A					0.1	0.5	5.07	0.08	A			
3-EB Meadowbrook Pkwy 4 - NB Newt Drive		1.1	2.1	7.49	0.51	A					0.6	2.7	5.94	0.36	A			
		1.0	2.1	6.50	0.48	A					0.6	2.7	5.30	0.39	A			
	Single Lane Roundabout - 2040																	
1-WB Meadowbrook Pkwy	D3	1.8	3.4	10.62	0.63	B	9.31	A	$29 \%$$[1-$ WBMeadowbrook Pkwy]	D4	1.8	3.6	10.67	0.64	B	9.66	A	$28 \%$$[3-$ EBMeadowbrookPkwy]
2 - SB Newt Drive		0.2	0.5	6.78	0.14	A					0.2	0.5	6.63	0.16	A			
3 - EB Meadowbrook Pkwy		1.6	2.3	9.71	0.62	A					1.8	3.7	10.89	0.64	B			
4 - NB Newt Drive		1.3	1.8	7.90	0.55	A					1.2	2.0	7.73	0.53	A			

Meadowbrook Parkway and Newt Drive

2026 Total AM Peak Hour

Intersection Diagram

Volumes

From \To	1 - WB Meadowbrook Pkwy	2-SB Newt Drive	$3-$ EB Meadowbrook Pkwy	4 - NB Newt Drive	Total
1 - WB Meadowbrook Pkwy	0	5	135	250	390
2 - SB Newt Drive	10	0	10	30	50
$3-$ EB Meadowbrook Pkwy	135	10	0	330	475
4 - NB Newt Drive	145	10	330	0	485
Total	290	25	475	610	-

Meadowbrook Parkway and Newt Drive

2026 Total AM Peak Hour

From \To	1- WB Meadowbrook Pkwy	2-SB Newt Drive	Meadowbrook Pkwy	3- EB 4B Newt Drive	Average
1- WB Meadowbrook Pkwy	0	3	3	3	2
2-SB Newt Drive	3	0	3	3	2
- EB Meadowbrook Pkwy	3	3	0	3	2
4 - NB Newt Drive	3	3	3	0	2
Average	2	2	2	2	-

Geometry and Analysis Results

Leg	1 - WB Meadowbrook -	2 - SB Newt Drive	3 - EB Meadowbrook -	4 - NB Newt Drive
V - Approach road half-width (ft)	14.00	14.00	14.00	14.00
E - Entry width (ft)	14.00	14.00	14.00	14.00
I^{\prime} - Effective flare length (ft)	0.0	0.0	0.0	0.0
R - Entry radius (ft)	65.0	65.0	65.0	65.0
D - Inscribed circle diameter (ft)	130.0	130.0	130.0	130.0
PHI - Conflict (entry) angle (deg)	20.0	20.0	20.0	20.0
Exit only	\square	\square	\square	\square
Leg has bypass	\square	\square	\square	\square
Percentage intercept adjustment (\%)	90.00	90.00	90.00	90.00
Average Demand (PCE/hr)	390	50	475	485
Max Delay (s)	6.74	5.36	7.49	6.50
Max LOS	A	A	A	A
Max 95th percentile Queue (PCE)	2.8	0.5	2.1	2.1
Max V/C Ratio	0.44	0.07	0.51	0.48

Meadowbrook Parkway and Newt Drive

2026 Total PM Peak Hour

Intersection Diagram

From \To	1-WB Meadowbrook Pkwy	2-SB Newt Drive	3- EB Meadowbrook Pkwy	$4-$ NB Newt Drive	Total
1-WB Meadowbrook Pkwy	0	10	105	305	420
2 - SB Newt Drive	15	0	10	35	60
3- EB Meadowbrook Pkwy	90	5	0	225	320
4 - NB Newt Drive	135	40	225	0	400
Total	240	55	340	565	

Meadowbrook Parkway and Newt Drive

2026 Total PM Peak Hour

From \To Truck Percentages					
Meadowbrook Pkwy	2-SB Newt Drive	3- EB Meadowbrook Pkwy	- - NB Newt Drive	Average	
Meadowbrook Pkwy	0	3	3	3	2
2-SB Newt Drive	3	0	3	3	2
3-EB Meadowbrook Pky	3	3	0	3	2
4 - NB Newt Drive	0	3	3	0	2
Average	2	2	2	2	-

Geometry and Analysis Results

Leg	1 - WB Meadowbrook -	2 - SB Newt Drive	3 - EB Meadowbrook -	4 - NB Newt Drive
V - Approach road half-width (ft)	14.00	14.00	14.00	14.00
E - Entry width (ft)	14.00	14.00	14.00	14.00
I^{\prime} - Effective flare length (ft)	0.0	0.0	0.0	0.0
R - Entry radius (ft)	65.0	65.0	65.0	65.0
D - Inscribed circle diameter (ft)	130.0	130.0	130.0	130.0
PHI - Conflict (entry) angle (deg)	20.0	20.0	20.0	20.0
Exit only	\square	\square	\square	\square
Leg has bypass	\square	\square	\square	\square
Percentage intercept adjustment (\%)	90.00	90.00	90.00	90.00
Average Demand (PCE/hr)	420	60	320	400
Max Delay (s)	6.52	5.07	5.94	5.30
Max LOS	A	A	A	A
Max 95th percentile Queue (PCE)	2.7	0.5	2.7	2.7
Max V/C Ratio	0.45	0.08	0.36	0.39

Meadowbrook Parkway and Newt Drive

2040 Total AM Peak Hour

Intersection Diagram

Volumes					
From \To	1-WB Meadowbrook Pkwy	2-SB Newt Drive	3-EB Meadowbrook Pkwy	4-NB Newt Drive	Total
1-WB Meadowbrook Pkwy	0	5	260	285	550
$2-$ SB Newt Drive	10	0	35	35	80
3-EB Meadowbrook Pkwy	205	30	0	320	555
4 - NB Newt Drive	165	15	345	0	525
Total	380	50	640	640	

Meadowbrook Parkway and Newt Drive

2040 Total AM Peak Hour

Truck Percentages

From \To	Meadowbrook Pkwy	- SB Newt Drive	3-EB Meadowbrook Pkwy	4 - NB Newt Drive	Average
1 - WB Meadowbrook Pkwy	0	3	3	3	2
2 - SB Newt Drive	3	0	3	3	2
$3-$ EB Meadowbrook Pkwy	3	3	0	3	2
4 - NB Newt Drive	3	3	3	0	2
Average	2	2	2	2	-

Geometry and Analysis Results

The screen is locked to the current TYPE of item. Click the padlock again to lock to the current PARTICULAR item or s				
V - Approach road half-width (ft)	14.00	14.00	14.00	14.00
E - Entry width (ft)	14.00	14.00	14.00	14.00
I - Effective flare length (ft)	0.0	0.0	0.0	0.0
R - Entry radius (ft)	65.0	65.0	65.0	65.0
D - Inscribed circle diameter (f)	130.0	130.0	130.0	130.0
PHI - Conflict (entry) angle (deg)	20.0	20.0	20.0	20.0
Exit only	\square	\square	\square	\square
Leg has bypass	\square	\square	\square	\square
Percentage intercept adjustment (\%)	90.00	90.00	90.00	90.00
Average Demand (PCE/hr)	550	80	555	525
Max Delay (s)	10.62	6.78	9.71	7.90
Max LOS	B	A	A	A
Max 95th percentie Queue (PCE)	3.4	0.5	2.3	1.8
Max V/C Ratio	0.63	0.14	0.62	0.55

Meadowbrook Parkway and Newt Drive

2040 Total PM Peak Hour

Intersection Diagram

From \ To	1-WB Meadowbrook Pkwy	2-SB Newt Drive	Meadowbrook Pkwy	4 - NB Newt Drive	Total
1-WB Meadowbrook Pkwy	0	15	190	355	560
2 - SB Newt Drive	15	0	35	45	95
$3-$ EB Meadowbrook Pkwy	235	30	0	280	545
4 - NB Newt Drive	150	45	300	0	495
Total	400	90	525	680	

Meadowbrook Parkway and Newt Drive

2040 Total PM Peak Hour

Truck Percentages					
From \ To	1-WB Meadowbrook Pkwy	2-SB Newt Drive	Meadowbrook Pkwy	4 - NB Newt Drive	Average
1-WB Meadowbrook Pkwy	0	3	3	3	2
2 - SB Newt Drive	3	0	3	3	2
$3-$ EB Meadowbrook Pkwy	3	3	0	2	2
4 - NB Newt Drive	3	3	3	0	2
Average	2	2	2	2	-

Geometry and Analysis Results

Leg	1 - WB Meadowbrook -	2 - SB Newt Drive	3 - EB Meadowbrook -	4 - NB Newt Drive
V - Approach road half-width (ft)	14.00	14.00	14.00	14.00
E - Entry width (ft)	14.00	14.00	14.00	14.00
I^{\prime} - Effective flare length (ft)	0.0	0.0	0.0	0.0
R - Entry radius (ft)	65.0	65.0	65.0	65.0
D - Inscribed circle diameter (ft)	130.0	130.0	130.0	130.0
PHI - Conflict (entry) angle (deg)	20.0	20.0	20.0	20.0
Exit only	\square	\square	\square	\square
Leg has bypass	\square	\square	\square	\square
Percentage intercept adjustment (\%)	90.00	90.00	90.00	90.00
Average Demand (PCE/hr)	560	95	545	495
Max Delay (s)	10.67	6.63	10.89	7.73
Max LOS	B	A	B	A
Mex 95th percentie Queue (PCE)	3.6	0.5	3.7	2.0
Max V/C Ratio	0.64	0.16	0.64	0.53

Intersection						
Int Delay, s/veh	8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			A	Mr	
Traffic Vol, veh/h	0	0	20	0	0	55
Future Vol, veh/h	0	0	20	0	0	55
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	0	22	0	0	60

Intersection						
Int Delay, s/veh	7.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			A	Mr	
Traffic Vol, veh/h	0	0	55	0	0	35
Future Vol, veh/h	0	0	55	0	0	35
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	0	60	0	0	38

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\mathbf{7}$			A	Mr	
Traffic Vol, veh/h	195	5	15	260	15	45
Future Vol, veh/h	195	5	15	260	15	45
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	212	5	16	283	16	49

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	217	0	530	215
Stage 1	-	-	-	-	215	-
Stage 2	-	-	-	-	315	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1353	-	510	825
Stage 1	-	-	-	-	821	-
Stage 2	-	-	-	-	740	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1353	-	504	825
Mov Cap-2 Maneuver	-	-	-	-	581	-
Stage 1	-	-	-	-	821	-
Stage 2	-	-	-	-	731	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.4		10.3	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	2 WBL	WBT
Capacity (veh/h)		747	-	-	1353	-
HCM Lane V/C Ratio		0.087	-	-	0.012	-
HCM Control Delay (s)		10.3	-	-	7.7	-
HCM Lane LOS		B	-	-	A	-
HCM 95th \%tile Q(veh)		0.3	-	-	0	-

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow		1	4	Mr	
Traffic Vol, veh/h	260	15	45	195	10	30
Future Vol, veh/h	260	15	45	195	10	30
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	0	-
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	283	16	49	212	11	33

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	299	0	601	291
Stage 1	-	-	-	-	291	-
Stage 2	-	-	-	-	310	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1262	-	463	748
Stage 1	-	-	-	-	759	-
Stage 2	-	-	-	-	744	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1262	-	445	748
Mov Cap-2 Maneuver	-	-	-	-	539	-
Stage 1	-	-	-	-	759	-
Stage 2	-	-	-	-	715	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.5		10.6	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	2 WBL WBT	
Capacity (veh/h)		682	-	-	1262	-
HCM Lane V/C Ratio		0.064	-	-	0.039	-
HCM Control Delay (s)		10.6	-	-	8	-
HCM Lane LOS		B	-	-	A	-
HCM 95th \%tile Q(veh)		0.2	-	-	0.1	-

Intersection						
Int Delay, s/veh	7.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\mathbf{F}			A	I	$\mathbf{7}$
Traffic Vol, veh/h	55	0	460	20	0	160
Future Vol, veh/h	55	0	460	20	0	160
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	215	0
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	60	0	500	22	0	174

Intersection						
Int Delay, s/veh	6.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\mathbf{~}$			A	I	$\mathbf{7}$
Traffic Vol, veh/h	35	0	305	55	0	110
Future Vol, veh/h	35	0	305	55	0	110
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	215	0
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	38	0	332	60	0	120

Intersection						
Int Delay, s/veh	7.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\mathbf{7}$			A	l	\mathbf{F}
Traffic Vol, veh/h	195	45	430	205	70	150
Future Vol, veh/h	195	45	430	205	70	150
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	215	0
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	212	49	467	223	76	163

Intersection						
Int Delay, s/veh	5.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\mathbf{F}			A	I	$\mathbf{7}$
Traffic Vol, veh/h	250	35	335	185	55	115
Future Vol, veh/h	250	35	335	185	55	115
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	215	0
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	272	38	364	201	60	125

Intersection						
Int Delay, s/veh	3.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			个		$\mathbf{7}$
Traffic Vol, veh/h	210	0	0	475	0	260
Future Vol, veh/h	210	0	0	475	0	260
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	0	-	-	0	0	-
Grade, $\%$	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	228	0	0	516	0	283

Major/Minor	Major1	Major2	Minor1			
Conflicting Flow All	0	0	-	-	-	228

Stage 1 Stage 2
Critical Hdwy6.22

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy - - - - 3.318
Pot Cap-1 Maneuver - - 0 - 0811
Stage 1 - - 0 - 0
Stage 2 - $0 \quad 0 \quad 0 \quad$ -

Platoon blocked, \%
Mov Cap-1 Maneuver - 811

Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach	EB	WB	NB
HCM Control Delay, S	0	0	11.8

HCMLOS B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	811	-	-	-
HCM Lane V/C Ratio	0.348	-	-	-
HCM Control Delay (s)	11.8	-	-	-
HCM Lane LOS	B	-	-	-
HCM 95th \%ttile Q(veh)	1.6	-	-	-

Intersection						
Int Delay, s/veh	2.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			A		$\mathbf{7}$
Traffic Vol, veh/h	140	0	0	360	0	180
Future Vol, veh/h	140	0	0	360	0	180
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	0	-	-	0	0	-
Grade, $\%$	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	152	0	0	391	0	196

| Major/Minor | Major1 | Major2 | | Minor1 | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Conflicting Flow All | 0 | 0 | - | - | -152 |

Stage 1 Stage 2
Critical Hdwy6.22

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy - - - - 3.318
Pot Cap-1 Maneuver - - 0 - 0894
Stage 1 - - 0 - 0
Stage 2 - $0 \quad 0 \quad 0 \quad$ -

Platoon blocked, \%
Mov Cap-1 Maneuver - - - - . 894

Mov Cap-2 Maneuver
Stage 1
Stage 2

	EB	WB	NB
Approach	0	10.2	
HCM Control Delay, S	0	0	B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	894	-	-	-
HCM Lane V/C Ratio	0.219	-	-	-
HCM Control Delay (s)	10.2	-	-	-
HCM Lane LOS	B	-	-	-
HCM 95th \%tile Q(veh)	0.8	-	-	-

Intersection						
Int Delay, s/veh	2.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			个		$\mathbf{7}$
Traffic Vol, veh/h	310	30	0	635	0	245
Future Vol, veh/h	310	30	0	635	0	245
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	0	-	-	0	0	-
Grade, $\%$	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	337	33	0	690	0	266

| Major/Minor | Major1 | Major2 | Minor1 | | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Conflicting Flow All | 0 | 0 | - | - | -354 |

Stage 1 Stage 2
Critical Hdwy6.22

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy - - - - 3.318
Pot Cap-1 Maneuver - - 0 - 0690
Stage 1 - $\quad 0 \quad$ - 0
Stage 2 - $0 \quad 0 \quad 0 \quad$ -

Platoon blocked, \%
Mov Cap-1 Maneuver - - - - . 690

Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach	EB	WB	NB
HCM Control Delay, S	0	0	13.5

HCMLOS B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	690	-	-	-
HCM Lane V/C Ratio	0.386	-	-	-
HCM Control Delay (s)	13.5	-	-	-
HCM Lane LOS	B	-	-	-
HCM 95th \%tile Q(veh)	1.8	-	-	-

| Major/Minor | Major1 | Major2 | | Minor1 | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Conflicting Flow All | 0 | 0 | - | - | -389 |

Stage 1 Stage 2
Critical Hdwy6.22

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy - - - - 3.318
Pot Cap-1 Maneuver - - 0 - 0659
Stage 1 - $\quad 0 \quad$ - 0
Stage 2 - $0 \quad 0 \quad 0 \quad$ -

Platoon blocked, \%
Mov Cap-1 Maneuver - . - - . 659

Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach	EB	WB	NB
HCM Control Delay, s	0	0	13
HCM LOS			B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	659	-	-	-
HCM Lane V/C Ratio	0.322	-	-	-
HCM Control Delay (s)	13	-	-	-
HCM Lane LOS	B	-	-	-
HCM 95th \%tile Q(veh)	1.4	-	-	-

SH-94 and US-24 Improvement Exhibits

Proposed Site Plan

CROSSROADS AT MEADOWBROOK-MIXED USE
PRELIMINARY PLAN
LOCATED IN THE SOUTHWEST $1 / 4$ OF SECTION 8, T14S, R65W, OF THE 6th P.M., EL PASO COUNTY, COLORADO

V1_Traffic Impact Study.pdf Markup Summary

dsdlaforce (1)		
	Subject: Text Box Page Label: 4 Lock: Unlocked Author: dsdlaforce Date: 2/9/2023 1:04:50 PM Status: Color: Layer: Space:	Update tables. Only two lots are proposed with Filing 2. The two corresponding uses for these two lots should be within the Filing \#2 land use. Provide a third category that notes "Future Filing" and place the remaining uses in this group. Update the Road Impact Fee for the two lots only in Table 7.
lpackman (4)		
	Subject: Callout Page Label: 7 Lock: Unlocked Author: Ipackman Date: 1/31/2023 2:25:30 PM Status: Color: Layer: Space:	Include whether that deviation was approved or denied. If approved include what filing it was approved with as well. If proposing with this filing, include deviation in next submittal.
	Subject: Callout Page Label: 1 Lock: Unlocked Author: lpackman Date: 2/1/2023 3:12:23 PM Status: Color: Layer: Space:	Add EPC's EDARP File Number: SF2238" (with no dashes or extras zeros or extra spaces in the file number)
	Subject: Callout Page Label: 4 Lock: Unlocked Author: lpackman Date: 2/2/2023 11:04:28 AM Status: Color: Layer: Space:	Revise trip generation tables to show traffic amounts per filing and land use for existing and proposed conditions. Staff recommends the table is broken up into columns for each filing.
	Subject: Callout Page Label: 13 Lock: Unlocked Author: lpackman Date: 2/2/2023 12:01:35 PM Status: Color: Layer: Space:	Provide an update on improvements. Include estimated completion dates for each and include any additional requirements CDOT might have asked for for filing 2.

[^0]: 2 Transportation Research Board, Highway Capacity Manual, Sixth Edition, Washington DC, 2016.

