# EPCD File No. SF-19-004/CDR-20-012

# **Prepared For:**

SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

> June 16, 2021 Project No. 25188.00

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593



# **ENGINEER'S STATEMENT:**

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. # 32314
For and On Behalf of JR Engineering, LLC

32314 GOVE BRAME 32314 GOVAL ENGINE

# **DEVELOPER'S STATEMENT:**

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: SR Land, LLC

By:

Title: Address:

20 Boulder Crescent, Suite 210

Colorado Springs, CO 80903

# El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

# APPROVED Engineering Department 04/14/2022 2:38:52 PM dsdnijkamp

EPC Planning & Community Development Department

Jennifer Irvine, P.E.

County Engineer/ ECM Administrator

Date

Conditions:



# **Table of Contents**

| PURPOSE                                                            | I |
|--------------------------------------------------------------------|---|
| PROPSED DRAINAGE CHARACTERISTICS                                   | I |
| Detailed Drainage Discussion (Design Points)                       | I |
| Water Quality Provisions                                           | 2 |
| Construction Cost opinion – homestead at sterling ranch fil. no. 2 | 3 |

# **REVISED APPENDIX MATERIALS**

SF-3 Minor Basins X1, X2, W1, & Y1

SF-3 Major Basins X1, X2, W1, & Y1

MHFD Detention workbook Sand Filter 1

MHFD Detention workbook Sand Filter 2

Proposed basin map (limited to Basins X1, X2, W1, & Y1)



# **PURPOSE**

This document is an Addendum to the Final Drainage Report for Homestead at Sterling Ranch Filing No. 2. The purpose of this report is to update the approved "Final Drainage Report for Homestead at Sterling Ranch Filing No. 2". The scope of the updates included in this addendum are limited to proposed Basins W1, X1, X2, & Y1. More specifically, this Addendum proposes to replace the proposed individual lot Sand Filters for lots 13-24, 28-35, and 36-41 with two common Sand Filters, one to serve basin X1, lots 36-41, and one to serve basins W1, X2, & Y1, lots 13-24 & 28-35.

The text below replaces the original corresponding text from the Final Drainage Report for Homestead at Sterling Ranch Filing No. 2. The revised sections of the original report are marked in the table of contents below, and also crossed out/highlighted in the attached original report. Crossed out text is replaced and highlighted text is modified or discussed further herein.

# PROPSED DRAINAGE CHARACTERISTICS

# **DETAILED DRAINAGE DISCUSSION (DESIGN POINTS)**

**BASIN X1** (0.78 acres), consists of proposed residential backyards of lots 36-41 along the eastern boundary of the site with runoff coefficients of 0.22 for the 5 year and 0.46 for the 100 year. Runoff in this basin will be directed via backyard swales/berms towards the rear of the lots where it will be collected in a 12" Nyoplast Drain Basin w/ a 12" dome grate placed in the rear southwest corner of each lot. Each lot will have a half foot berm/swale along the rear and low side of lot that directs water to each inlet, see the detail included on the drainage map, GESC, and Storm plans. Should the inlet in any lot become clogged, the berm will overtop, and flow will continue to Sand Creek. Per the original drainage report by MandS, the estimated flows per each lot in basin X1 = 0.2 cfs for the 100 year storm. The 12" Nyoplast Drain Basins are sized to collect all flows (Q5 = 0.6 cfs, Q100 = 2.3 cfs) in both the 5 and 100 year storms. Collected flows will then be piped to a proposed full-spectrum sand filter, with a 12-hour drain time and a 4" perforated underdrain. The treated flows from the sand filter will be discharged via an outlet structure to the adjacent Sand Creek.

**BASIN X2** (1.04 acres), consists of proposed residential backyards of lots 28-35 along the southern boundary of the site with runoff coefficients of 0.22 for the 5 year and 0.46 for the 100 year. Runoff in this basin will be directed via backyard swales/berm towards the rear of the lots where it will be collected in a 12" Nyoplast Drain Basin w/ a 12" dome grate placed in the rear southwest corner of each lot (DP2). Each lot will have a half foot berm/swale along the rear and low side of lot that directs water to each inlet, see the detail included on the drainage map, GESC, and Storm plans. Should the inlet in any lot become clogged, the berm will overtop, and flow will continue to Sand Creek, per existing drainage patterns. The 12" Nyoplast Drain Basins are sized to collect all flows



(Q5 = 0.9 cfs, Q100 = 3.0 cfs) in both the 5 and 100 year storms. Collected flows will then be piped west via 12" HDPE pipe following the rear lot lines towards DP3.1, where flows in the pipe combine with collected flows from Basin W1. See below for DP 3.1 flows.

**BASIN W1** (0.86 acres), consists of proposed residential backyards of lots 19-24 along the southeastern boundary of the site with runoff coefficients of 0.22 for the 5 year and 0.46 for the 100 year. Runoff in this basin will be directed via backyard swales towards the rear of the lots where it will be collected in a 12" Nyoplast Drain Basin w/ a 12" dome grate placed in the rear corner of each lot (DP3). Each lot will have a half foot berm/swale along the rear and low side of lot that directs water to each inlet, see the detail included on the drainage map, GESC, and Storm plans. Should the inlet in any lot become clogged, the berm will overtop, and flow will continue to Sand Creek per existing drainage patterns. The 12" Nyoplast Drain Basins are sized to collect all flows (Q5 = 0.6 cfs, Q100 = 2.2 cfs) in both the 5 and 100 year storms. Collected flows will then be piped southwest via 12" HDPE pipe following the rear lot lines towards DP3.1, where flows in the pipe combine with collected flows from Basin X2 (Q5 = 1.3 cfs, Q100 = 4.6 cfs).

Flows in the pipe at DP3.1 are then piped to DP4.1 where they combine with collected flows from Basin Y1 (Q5 = 1.7 cfs, Q100 = 6.4 cfs).

**BASIN Y1** (0.84 acres), consists of proposed residential backyards of lots 13-18 along the southeastern boundary of the site with runoff coefficients of 0.22 for the 5 year and 0.46 for the 100 year. Runoff in this basin will be directed via backyard swales towards the rear of the lots where it will be collected in a 12" Nyoplast Drain Basin w/ a 12" dome grate placed in the rear corner of each lot (DP4). Each lot will have a half foot berm/swale along the rear and low side of lot that directs water to each inlet, see the detail included on the drainage map, GESC, and Storm plans. Should the inlet in any lot become clogged, the berm will overtop, and flow will continue to Sand Creek per existing drainage patterns. The 12" Nyoplast Drain Basins are sized to collect all flows (Q5 = 0.7 cfs, Q100 = 2.5 cfs) in both the 5 and 100 year storms. Collected flows will then be piped southwest via 12" HDPE pipe following the rear lot lines to a proposed full spectrum sand filter at DP4.1, where flows combine with collected flows from Basin X2 and W1 (Q5 = 1.7 cfs, Q100 = 6.4 cfs).

The basin characteristics, hydrologic parameters, runoff and rational calcs for Basins X1, X2, W1, and Y1 have remained consistent with the approved Final Drainage Report for Homestead at Sterling Ranch Filing No. 2. However, the routing of the basins has changed and therefore revised SF-2 & SF-3 forms are included in the appendix section of this report. A revised basin map, showing the changes within the above described basins is also attached to this report.

# WATER QUALITY PROVISIONS

Runoff produced within the residential backyard lots, of Basin X1 will be conveyed in backyard swales, collected in drain basins and directed to a full-spectrum sand filter (sand filter 1). The treated



flows will be collected by private storm sewer systems and discharged into the Sand Creek Channel. Sand filter basin 1 is designed to provide 0.007 ac-ft of water quality storage (WQCV), 0.013 ac-feet of excess urban runoff volume (EURV) and 0.03 ac-ft of 100-year storage for a total design volume of 0.027 ac-ft. Sand filter basin 1 was designed to have a 12 hour WQCV drain time and a peak outflow for the 100 year design storm of 0.7 cfs which roughly equates to 90% of pre-development peak flows. The sand filter will outfall via an orifice controlled 12" HDPE pipe and FES directly to the adjacent Sand Creek channel. Sand filter basin 1 will also include a 4" perforated underdrain system and emergency overflow spillway designed to pass the undetained peak 100-yr flow rate with one foot of freeboard above the design water surface elevation. The peak discharge rate of the proposed sand filter is at or below the historic flows for the basin which it serves.

Runoff produced within the residential backyard lots, of Basins X2, W1, and Y1 will be conveyed in backyard swales, collected in drain basins and directed to a full-spectrum sand filter (sand filter 2). The treated flows will be collected by private storm sewer systems and discharged, ultimately, into the Sand Creek Channel. The sand filter will outfall via an orifice controlled 15" HDPE pipe that is directly connected to the existing 60" RCP storm sewer outfall pipe of existing "Pond 4".

Sand filter basin 2 is designed to provide 0.025 ac-ft of water quality storage (WQCV), 0.045 ac-feet of excess urban runoff volume (EURV) and 0.094 ac-ft of 100-year storage for a total minimum design volume of 0.163 ac-ft. Sand filter basin 2 was designed to have a 12 hour WQCV drain time and a peak outflow for the 100 year design storm of 2.7 cfs which is less than or equal to predevelopment peak flow rates. The sand filter will outfall via an orifice controlled 15" HDPE pipe directly connected to the existing 60" RCP pipe to the south that serves as the outfall to "Pond 4" constructed with Sterling Ranch Filing No. 1. Sand filter basin 2 will also include a 4" perforated underdrain system and emergency overflow spillway designed to pass the peak 100-yr flow rate with one foot of freeboard above the design water surface elevation. The peak discharge rate of the proposed sand filter is at or below the historic flows for the basins which it serves.

# **MAINTENANCE ENTITY**

Both proposed sand filters are contained within existing Tract D, of the Homestead at Sterling Ranch Filing No. 2 development. The proposed sand filter facilities are to be maintained by the Sterling Ranch Metropolitan District. Access to maintain these sand filter basins is from the forthcoming maintenance access road that is being designed as part of the naturalized channel design being completed by JR Engineering.

The proposed sand filters were sized using the MHFD Detention workbook and printouts are included in the Hydraulic Calculations section of this report.

CONSTRUCTION COST OPINION – HOMESTEAD AT STERLING RANCH FIL. NO. 2



Drainage improvements are planned with the development of Homestead at Sterling Ranch Filing No. 2. A majority of the construction costs have been accounted for in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017. Any additional improvements and costs are listed below.

The following list of drainage improvements is Non-Reimbursable.

| ltem | Description                                 | <b>Quantity Prev</b> | <b>Quantity Now</b> | Unit | Uı | nit Cost |     | Cost   |
|------|---------------------------------------------|----------------------|---------------------|------|----|----------|-----|--------|
| 1    | 18" RCP                                     | 31                   | 31                  | LF   | \$ | 40       | \$  | 1,24   |
| 2    | 24" RCP                                     | 127                  | 127                 | LF   | \$ | 50       | \$  | 6,35   |
| 3    | 30" RCP                                     | 998                  | 998                 | LF   | \$ | 85       | \$  | 84,83  |
| 4    | 36" RCP                                     | 8                    | 8                   | LF   | \$ | 105      | \$  | 84     |
| 5    | 42" RCP                                     | 699                  | 699                 | LF   | \$ | 185      | \$1 | 129,31 |
| 6    | 24" FES                                     | 1                    | 1                   | EA   | \$ | 750      | \$  | 75     |
| 8    | 42" FES                                     | 1                    | 1                   | EA   | \$ | 1,250    | \$  | 1,25   |
| 9    | 5.0'x4.5' CDOT Type R Sump Inlet            | 1                    | 1                   | EA   | \$ | 4,000    | \$  | 4,00   |
| 10   | 10' CDOT Type R Sump Inlet                  | 4                    | 4                   | EA   | \$ | 4,700    | \$  | 18,80  |
| 11   | 15' CDOT Type R At-Grade Inlet              | 2                    | 2                   | EA   | \$ | 6,000    | \$  | 12,00  |
| 12   | 4.0' Type II MH                             | 1                    | 1                   | EA   | \$ | 3,500    | \$  | 3,50   |
| 13   | 5.0' Type II MH                             | 2                    | 2                   | EA   | \$ | 4,000    | \$  | 8,00   |
| 14   | 6.0' Type II MH                             | 1                    | 1                   | EA   | \$ | 4,500    | \$  | 4,50   |
| 17   | 5.0'x6.0' MH                                | 2                    | 2                   | EA   | \$ | 6,500    | \$  | 13,00  |
| 18   | 5.5'x5.5' MH                                | 1                    | 1                   | EA   | \$ | 6,500    | \$  | 6,50   |
| 19   | Headwall/Wingwall                           | 1                    | 1                   | EA   | \$ | 6,000    | \$  | 6,00   |
| 20   | Full Spectrum Det. Pond 1                   | 1                    | 1                   | EA   | \$ | 15,000   | \$  | 15,00  |
| 21   | FSD Pond 1 Outlet Structure                 | 1                    | 1                   | EA   | \$ | 12,600   | \$  | 12,60  |
| 22   | Ind. Lot Sand filter                        | 26                   | 0                   | EA   | \$ | 2,000    | \$  | -      |
| 23   | 18" Drain basin MH                          | 27                   | 0                   | EA   | \$ | 1,000    | \$  | -      |
| 24   | 12" Storm pipe                              | 1,658                | 1,960               | LF   | \$ | 26       | \$  | 50,96  |
| 25   | 15" Storm pipe                              | 0                    | 473                 | LF   | \$ | 32       | \$  | 15,13  |
| 26   | 12" Nyloplast Drain basin w/ 12" dome grate | 0                    | 28                  | EA   | \$ | 1,000    | \$  | 28,00  |
| 27   | Sand Filter Basin 1                         | 0                    | 1                   | LS   | \$ | 4,000    | \$  | 4,00   |
| 28   | Sand Filter Basin 2                         | 0                    | 1                   | LS   | \$ | 6,000    | \$  | 6,00   |
| 29   | 12"- 15" FES                                | 0                    | 4                   | EA   | \$ | 350      | \$  | 1,40   |
|      |                                             |                      |                     |      |    | TOTAL    | \$4 | 133,97 |



# **REVISED APPENDIX MATERIALS**



# **STANDARD FORM SF-2** TIME OF CONCENTRATION

**Subdivision:** Homestead at Sterling Ranch Filing No. 2 **Location:** Colorado Springs

Project Name: Homestead at Sterling Ranch Filing No. 2 Project No.: 2000-5188.00 Calculated By: REB Checked By: **Date:** 3/18/21

|       |      | SUB-        | BASIN      |                       |                  | INITI | AL/OVERI          | LAND  |                |                                      | TRAVEL TII | ME     | tc CHECK |                      |                   |                 |                |  |  |       |       |
|-------|------|-------------|------------|-----------------------|------------------|-------|-------------------|-------|----------------|--------------------------------------|------------|--------|----------|----------------------|-------------------|-----------------|----------------|--|--|-------|-------|
|       |      | D/          | <b>ATA</b> |                       |                  |       | (T <sub>i</sub> ) |       |                | (T <sub>t</sub> ) (URBANIZED BASINS) |            |        |          |                      | (T <sub>t</sub> ) |                 |                |  |  | SINS) | FINAL |
| BASIN | D.A. | Hydrologic  | Impervious | <b>C</b> <sub>5</sub> | C <sub>100</sub> | L     | S <sub>o</sub>    | t,    | L <sub>t</sub> | S <sub>t</sub>                       | К          | VEL.   | t t      | COMP. t <sub>c</sub> | TOTAL             | Urbanized $t_c$ | t <sub>c</sub> |  |  |       |       |
| ID    | (ac) | Soils Group | (%)        |                       |                  | (ft)  | (%)               | (min) | (ft)           | (%)                                  |            | (ft/s) | (min)    | (min)                | LENGTH (ft)       | (min)           | (min)          |  |  |       |       |
|       |      |             |            |                       |                  |       |                   |       |                |                                      |            |        |          |                      |                   |                 |                |  |  |       |       |
| W1    | 0.86 | В           | 25%        | 0.22                  | 0.46             | 100   | 2.0%              | 12.6  | 50             | 0.0%                                 | 20.0       | 0.2    | 4.2      | 16.8                 | 150.0             | 28.4            | 16.8           |  |  |       |       |
| X1    | 0.78 | В           | 25%        | 0.22                  | 0.46             | 100   | 2.0%              | 12.6  | 50             | 2.5%                                 | 20.0       | 3.2    | 0.3      | 12.9                 | 150.0             | 22.2            | 12.9           |  |  |       |       |
| X2    | 1.04 | В           | 25%        | 0.22                  | 0.46             | 100   | 2.0%              | 12.6  | 50             | 2.5%                                 | 20.0       | 3.2    | 0.3      | 12.9                 | 150.0             | 22.2            | 12.9           |  |  |       |       |
| Y1    | 0.84 | В           | 25%        | 0.22                  | 0.46             | 100   | 2.0%              | 12.6  | 50             | 2.5%                                 | 20.0       | 3.2    | 0.3      | 12.9                 | 150.0             | 22.2            | 12.9           |  |  |       |       |

#### NOTES:

 $t_c = t_i + t_t$ 

Equation 6-2

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$$

Equation 6-3

Where:

 $t_c$  = computed time of concentration (minutes)

 $t_i$  = overland (initial) flow time (minutes)

 $t_t$  = channelized flow time (minutes).

$$t_t = \frac{L_t}{60K_0/S_c} = \frac{L_t}{60V_0}$$

Where:

 $t_i$  = overland (initial) flow time (minutes)

 $L_1$  = overland (initial) row talk (initials)  $L_2$  = runoff coefficient for 5-year frequency (from Table 6-4)  $L_3$  = length of overland flow (ft)

 $S_0$  = average slope along the overland flow path (ft/ft).

$$=\frac{L_t}{60K\sqrt{S_o}}=\frac{L_t}{60V_t}$$

Equation 6-4

$$t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$$

Equation 6-5

 $t_t$  = channelized flow time (travel time, min)

 $L_t$  = waterway length (ft)

 $S_o = \text{waterway slope (ft/ft)}$ 

 $V_t$  = travel time velocity (ft/sec) = K $\sqrt{S_o}$ K = NRCS conveyance factor (see Table 6-2). Where:

 $t_c$  = minimum time of concentration for first design point when less than  $t_c$  from Equation 6-1.

 $L_t$  = length of channelized flow path (ft)

i = imperviousness (expressed as a decimal)  $S_t = \text{slope of the channelized flow path (ft/ft)}.$ 

Use a minimum  $t_c$  value of 5 minutes for urbanized areas and a minimum  $t_c$  value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration

#### Table 6-2. NRCS Conveyance factors, K

|                                      | .,                   |
|--------------------------------------|----------------------|
| Type of Land Surface                 | Conveyance Factor, K |
| Heavy meadow                         | 2.5                  |
| Tillage/field                        | 5                    |
| Short pasture and lawns              | 7                    |
| Nearly bare ground                   | 10                   |
| Grassed waterway                     | 15                   |
| Paved areas and shallow paved swales | 20                   |

# STANDARD FORM SF-3

#### STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

|                                                       | Project Name:  | Homestead at Sterling Ranch Filing No. 2 |
|-------------------------------------------------------|----------------|------------------------------------------|
| Subdivision: Homestead at Sterling Ranch Filing No. 2 | Project No.:   | 2000-5188.                               |
| Location: Colorado Springs                            | Calculated By: | REB                                      |
| Design Storm: 5-Year                                  | Checked By:    |                                          |
|                                                       | Date:          | 3/18/21                                  |

|        |              |          |           | DIRE          | CT RUI      | NOFF      |         |         | TO       | OTAL I    | RUNO      | FF      |                         | PIP      | E         |                    | TRAV        | EL TIN         | ΛE               |                                                                                                                      |
|--------|--------------|----------|-----------|---------------|-------------|-----------|---------|---------|----------|-----------|-----------|---------|-------------------------|----------|-----------|--------------------|-------------|----------------|------------------|----------------------------------------------------------------------------------------------------------------------|
| STREET | Design Point | Basin ID | Area (Ac) | Runoff Coeff. | $t_c$ (min) | C* A (Ac) | (in/hr) | Q (cfs) | tc (min) | C* A (ac) | / (in/hr) | Q (cfs) | Q <sub>pipe</sub> (cfs) | C*A (ac) | Slope (%) | Pipe Size (inches) | Length (ft) | Velocity (fps) | $t_{ m r}$ (min) | REMARKS                                                                                                              |
|        | 1            | X1       | 0.78      | 0.22          | 12.9        | 0.17      | 3.75    | 0.6     |          |           |           |         | 0.6                     | 0.17     | 0.5       | 18                 | 250         | 1.7            | 2.5              | Runoff from Basin X1, collected by private 12" Nyoplast Drain Basins, Piped via 12" HDPE to pvt. sand filter @ DP1.1 |
|        | 2            | X2       | 1.04      | 0.22          | 12.9        | 0.23      | 3.75    | 0.9     |          |           |           |         | 0.9                     | 0.23     | 1.5       | 12                 | 950         | 2.8            | 5.6              | Runoff from Basin X2, collected by private 12" Nyoplast Drain Basins, Piped via 12" HDPE to DP3.1                    |
|        | 3            | W1       | 0.86      | 0.22          | 16.8        | 0.19      | 3.35    | 0.6     |          |           |           |         | 0.6                     | 0.19     | 1.5       | 12                 | 250         | 2.6            | 1.6              | Runoff from Basin W1, collected by private 12" Nyoplast Drain Basins, Piped via 12" HDPE to DP3.1                    |
|        | 3.1          |          |           |               |             |           |         |         | 20.1     | 0.42      | 3.08      | 1.3     |                         |          |           |                    |             |                |                  | Combined flow in private 12" HDPE pipe @ DP3.1, piped to private sand filter @ DP-4.1                                |
|        | 4            | Y1       | 0.84      | 0.22          | 12.9        | 0.18      | 3.75    | 0.7     |          |           |           |         | 0.7                     | 0.18     | 1.5       | 15                 | 350         | 2.4            |                  | Runoff from Basin Y1, collected by private 12" Nyoplast Drain Basins, Piped via 15" HDPE to DP4.1                    |
|        | 4.1          |          |           |               |             |           |         |         | 22.5     | 0.60      | 2.91      | 1.7     |                         |          |           |                    |             |                |                  | Combined flow in private 15" HDPE pipe @ DP4.1, inflow to proposed private sand filter                               |

Notes:

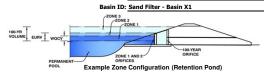
Street and Pipe C\*A values are determined by Q/i using the catchment's intensity value All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

#### STANDARD FORM SF-3

#### STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

|                                                       | Project Name: Homestead at Sterling Ranch Filing No. 2 |  |
|-------------------------------------------------------|--------------------------------------------------------|--|
| Subdivision: Homestead at Sterling Ranch Filing No. 2 | Project No.: 2000-5188.                                |  |
| Location: Colorado Springs                            | Calculated By: REB                                     |  |
| Design Storm: 100-Year                                | Checked By:                                            |  |
|                                                       | Date: 3/18/21                                          |  |
|                                                       |                                                        |  |


|             |              |          |           | DIR           | ECT RI      | JNOFF    |           |         | TO       | OTAL R   | UNOF    | F       |                         | PII      | PE        |                    | TRAV        | EL TIN         | ME                   |                                                                                                                      |
|-------------|--------------|----------|-----------|---------------|-------------|----------|-----------|---------|----------|----------|---------|---------|-------------------------|----------|-----------|--------------------|-------------|----------------|----------------------|----------------------------------------------------------------------------------------------------------------------|
| Description | Design Point | Basin ID | Area (ac) | Runoff Coeff. | $t_c$ (min) | C*A (ac) | / (in/hr) | Q (cfs) | tc (min) | C*A (ac) | (in/hr) | Q (cfs) | Q <sub>pipe</sub> (cfs) | C*A (ac) | Slope (%) | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                                                              |
|             | 1            | X1       | 0.78      | 0.46          | 12.9        | 0.36     | 6.29      | 2.3     |          |          |         |         | 2.3                     | 0.36     | 0.5       |                    | 250         | 2.2            |                      | Runoff from Basin X1, collected by private 12" Nyoplast Drain Basins, Piped via 12" HDPE to pvt. sand filter @ DP1.1 |
|             | 2            | X2       | 1.04      | 0.46          | 12.9        | 0.48     | 6.29      | 3.0     |          |          |         |         | 3.0                     | 0.48     | 1.0       | 12                 | 950         | 3.1            | 5.1                  | Runoff from Basin X2, collected by private 12" Nyoplast Drain Basins, Piped via 12" HDPE to DP3.1                    |
|             | 3            | W1       | 0.86      | 0.46          | 16.8        | 0.40     | 5.62      | 2.2     |          |          |         |         | 2.2                     | 0.40     | 1.0       | 12                 | 250         | 2.9            | 1.4                  | Runoff from Basin W1, collected by private 12" Nyoplast Drain Basins, Piped via 12" HDPE to DP3.1                    |
|             | 3.1          |          |           |               |             |          |           |         | 19.4     | 0.88     | 5.26    | 4.6     |                         |          |           |                    |             |                |                      | Combined flow in private 12" HDPE pipe @ DP3.1, piped to private sand filter @ DP-4.1                                |
|             | 4            | Y1       | 0.84      | 0.46          | 12.9        | 0.39     | 6.29      | 2.5     |          |          |         |         | 2.5                     | 0.39     | 1.5       | 15                 | 350         | 3.3            | 1.8                  | Runoff from Basin Y1, collected by private 15" Nyoplast Drain Basins, Piped via 12" HDPE to DP4.1                    |
| 1           | 4.1          |          |           |               |             |          |           |         | 21.1     | 1.27     | 5.05    | 6.4     |                         |          |           |                    |             |                |                      | Combined flow in private 15" HDPE pipe @ DP4.1, inflow to proposed private sand filter                               |

Notes:
Street and Pipe C\*A values are determined by Q/i using the catchment's intensity value.
All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

# DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

#### Project: Homestead at Sterling Ranch Filing No. 2



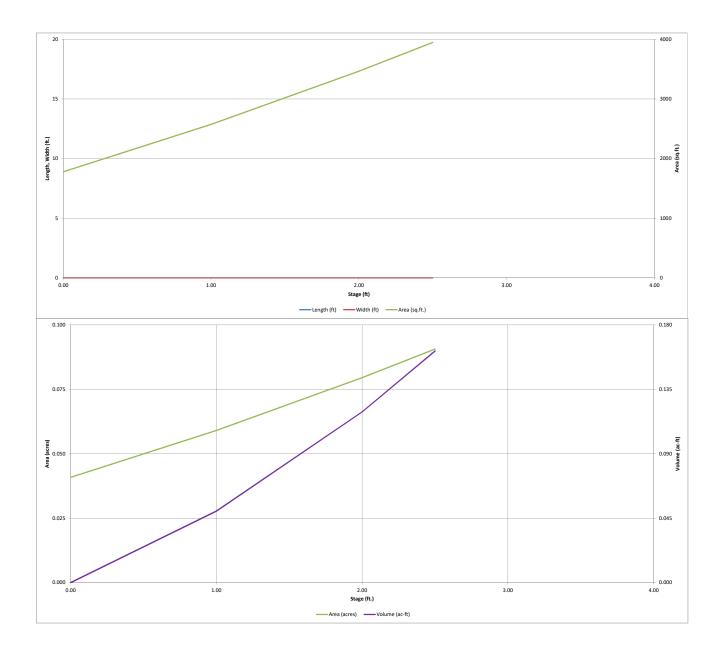
#### Watershed Information

| Selected BMP Type =                     | SF         |         |
|-----------------------------------------|------------|---------|
| Watershed Area =                        | 0.78       | acres   |
| Watershed Length =                      | 450        | ft      |
| Watershed Length to Centroid =          | 225        | ft      |
| Watershed Slope =                       | 0.020      | ft/ft   |
| Watershed Imperviousness =              | 25.00%     | percent |
| Percentage Hydrologic Soil Group A =    | 0.0%       | percent |
| Percentage Hydrologic Soil Group B =    | 100.0%     | percent |
| Percentage Hydrologic Soil Groups C/D = | 0.0%       | percent |
| Target WQCV Drain Time =                | 12.0       | hours   |
| Location for 1-hr Rainfall Depths =     | User Input |         |

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

| the embedded Colorado Urban Hydro      | graph Procedu | re.       |
|----------------------------------------|---------------|-----------|
| Water Quality Capture Volume (WQCV) =  | 0.007         | acre-feet |
| Excess Urban Runoff Volume (EURV) =    | 0.020         | acre-feet |
| 2-yr Runoff Volume (P1 = 1.19 in.) =   | 0.020         | acre-feet |
| 5-yr Runoff Volume (P1 = 1.5 in.) =    | 0.035         | acre-feet |
| 10-yr Runoff Volume (P1 = 1.75 in.) =  | 0.048         | acre-feet |
| 25-yr Runoff Volume (P1 = 2 in.) =     | 0.069         | acre-feet |
| 50-yr Runoff Volume (P1 = 2.25 in.) =  | 0.085         | acre-feet |
| 100-yr Runoff Volume (P1 = 2.52 in.) = | 0.106         | acre-feet |
| 500-yr Runoff Volume (P1 = 3.14 in.) = | 0.146         | acre-feet |
| Approximate 2-yr Detention Volume =    | 0.014         | acre-feet |
| Approximate 5-yr Detention Volume =    | 0.020         | acre-feet |
| Approximate 10-yr Detention Volume =   | 0.031         | acre-feet |
| Approximate 25-yr Detention Volume =   | 0.037         | acre-feet |
| Approximate 50-yr Detention Volume =   | 0.039         | acre-feet |
| Approximate 100-yr Detention Volume =  | 0.046         | acre-feet |
|                                        |               |           |

#### Optional User Overrides


| Optional osci | Overrides |
|---------------|-----------|
|               | acre-feet |
|               | acre-feet |
| 1.19          | inches    |
| 1.50          | inches    |
| 1.75          | inches    |
| 2.00          | inches    |
| 2.25          | inches    |
| 2.52          | inches    |
|               | inches    |
|               |           |

#### Define Zones and Basin Geometry

| acre-feet       | 0.007 | Zone 1 Volume (WQCV) =                            |
|-----------------|-------|---------------------------------------------------|
| acre-feet       | 0.013 | Zone 2 Volume (EURV - Zone 1) =                   |
| acre-feet       | 0.027 | Zone 3 Volume (100-year - Zones 1 & 2) =          |
| acre-feet       | 0.046 | Total Detention Basin Volume =                    |
| ft <sup>3</sup> | N/A   | Initial Surcharge Volume (ISV) =                  |
| ft              | N/A   | Initial Surcharge Depth (ISD) =                   |
| ft              | user  | Total Available Detention Depth (Htotal) =        |
| ft              | N/A   | Depth of Trickle Channel $(H_{TC})$ =             |
| ft/ft           | N/A   | Slope of Trickle Channel $(S_{TC}) =$             |
| H:V             | user  | Slopes of Main Basin Sides (S <sub>main</sub> ) = |
|                 | user  | Basin Length-to-Width Ratio (R <sub>L/W</sub> ) = |

| Initial Surcharge Area $(A_{ISV}) =$                  | user | ft <sup>2</sup> |
|-------------------------------------------------------|------|-----------------|
| Surcharge Volume Length $(L_{ISV}) =$                 | user | ft              |
| Surcharge Volume Width $(W_{ISV}) =$                  | user | ft              |
| Depth of Basin Floor $(H_{FLOOR}) =$                  | user | ft              |
| Length of Basin Floor $(L_{FLOOR}) =$                 | user | ft              |
| Width of Basin Floor $(W_{FLOOR}) =$                  | user | ft              |
| Area of Basin Floor $(A_{FLOOR}) =$                   | user | ft <sup>2</sup> |
| Volume of Basin Floor $(V_{FLOOR}) =$                 | user | ft <sup>3</sup> |
| Depth of Main Basin (H <sub>MAIN</sub> ) =            | user | ft              |
| Length of Main Basin $(L_{MAIN}) =$                   | user | ft              |
| Width of Main Basin $(W_{MAIN}) =$                    | user | ft              |
| Area of Main Basin $(A_{MAIN}) =$                     | user | ft <sup>2</sup> |
| Volume of Main Basin (V <sub>MAIN</sub> ) =           | user | ft <sup>3</sup> |
| Calculated Total Basin Volume (V <sub>total</sub> ) = | user | acre-fe         |
|                                                       |      |                 |

| Double Townson                 |               | ft                     |                |               |                |                                     |                |                              |                   |
|--------------------------------|---------------|------------------------|----------------|---------------|----------------|-------------------------------------|----------------|------------------------------|-------------------|
| Depth Increment =              |               | Optional               |                |               |                | Optional                            |                |                              |                   |
| Stage - Storage<br>Description | Stage<br>(ft) | Override<br>Stage (ft) | Length<br>(ft) | Width<br>(ft) | Area<br>(ft 2) | Override<br>Area (ft <sup>2</sup> ) | Area<br>(acre) | Volume<br>(ft <sup>3</sup> ) | Volume<br>(ac-ft) |
| Media Surface                  |               | 0.00                   |                |               |                | 1,780                               | 0.041          | , , ,                        | (30.0)            |
| 7088.5                         |               | 1.00                   |                |               |                | 2,572                               | 0.059          | 2,176                        | 0.050             |
| 7089.5                         | 1             | 2.00                   | 1              | 1             | 1              | 3,463                               | 0.079          | 5,193                        | 0.119             |
| 7090                           | -             | 2.50                   | -              |               | -              | 3,947                               | 0.091          | 7,046                        | 0.162             |
|                                |               |                        |                |               |                |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              | -             | 1              |                                     |                |                              |                   |
|                                |               |                        |                |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              | -             | 1              |                                     |                |                              |                   |
|                                | -             |                        | -              |               |                |                                     |                |                              |                   |
|                                |               |                        |                |               | -              |                                     |                |                              |                   |
|                                | _             |                        | _              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              | -             | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               |                |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               |                |                                     |                |                              |                   |
|                                | -             |                        |                |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               |                |                                     |                |                              |                   |
|                                | -             |                        | -              | -             | -              |                                     |                |                              |                   |
|                                | 1             |                        | 1              | -             | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                |               |                        | -              |               |                |                                     |                |                              |                   |
|                                |               |                        |                |               |                |                                     |                |                              |                   |
|                                | -             |                        | -              | -             | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                |               |                        |                |               | -              |                                     |                |                              |                   |
|                                |               |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              | -             | -              |                                     |                |                              |                   |
|                                | -             |                        | -              | 3             | -              |                                     |                |                              |                   |
|                                |               |                        |                |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              | -             | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              | 3             | -              |                                     |                |                              |                   |
|                                |               |                        |                |               |                |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | _             |                        | _              |               | _              |                                     |                |                              |                   |
|                                | 1             |                        | 1              | ı             | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                |               |                        |                |               |                |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              | -             | -              |                                     |                |                              |                   |
|                                | 1 1           |                        | -              |               | -              |                                     |                |                              |                   |
|                                | -             |                        | 1 1            |               | -              |                                     |                |                              |                   |
|                                | -             |                        |                |               | -              |                                     | 1              |                              |                   |
|                                | -             |                        | -              |               |                |                                     |                |                              |                   |
|                                | 1 1           |                        | 1 1            | 1 1           | -              |                                     |                |                              |                   |
|                                | -             |                        |                |               | -              |                                     |                |                              |                   |
|                                |               |                        |                |               | -              |                                     |                |                              |                   |
|                                | 1 1           |                        | 1 1            | 1 1           | 1 1            |                                     |                |                              |                   |
|                                | -             |                        |                |               | -              |                                     | 1              |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | 1 1           |                        | 1 1            | 1 1           | 1 1            |                                     |                |                              |                   |
|                                | -             |                        |                |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                              |                   |
|                                | 1 1           |                        | 1 1            | 1 1           | 1 1            |                                     |                |                              |                   |
|                                | -             |                        |                |               |                |                                     | 1              |                              |                   |
|                                | -             |                        | -              | -             |                |                                     |                |                              |                   |
|                                | 1 1           |                        | 1 1            | 1 1           | -              |                                     |                |                              |                   |
|                                | -             |                        |                |               | -              |                                     |                |                              |                   |
|                                | 1 1           |                        | 1 1            | 1 1           | 1 1            |                                     |                |                              |                   |
|                                | -             |                        |                |               |                |                                     |                |                              |                   |
|                                | -             |                        |                |               | -              |                                     |                |                              |                   |
|                                | 1 1           |                        | 1 1            | 1 1           | 1 1            |                                     |                |                              |                   |
|                                | -             |                        | 1 1            |               | -              |                                     |                |                              |                   |
|                                | -             |                        | -              | -             | -              |                                     |                |                              |                   |



### DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Project: Homestead at Sterling Ranch Filing No. 2 Rasin ID: Sand Filter - Basin X1

|                                 | 240111 221 24114 1 11461 240111 7/12               |
|---------------------------------|----------------------------------------------------|
| 100-YR EURY WOCY PERMANENT POOL | ZONE 3 ZONE 2 ZONE 1 ZONE 1 AND 2 ORIFICES ORIFICE |
| POOL                            | Example Zone Configuration (Retention Pond)        |
|                                 |                                                    |

|                   | Estimated         | Estimated      |                      |
|-------------------|-------------------|----------------|----------------------|
|                   | Stage (ft)        | Volume (ac-ft) | Outlet Type          |
| Zone 1 (WQCV)     | 0.17              | 0.007          | Filtration Media     |
| Zone 2 (EURV)     | 0.44              | 0.013          | Rectangular Orifice  |
| Zone 3 (100-year) | 0.94              | 0.027          | Weir&Pipe (Restrict) |
| •                 | Total (all zones) | 0.046          |                      |

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) 2.10 Underdrain Orifice Diameter = 0.42

Calculated Parameters for Underdrain Underdrain Orifice Area 0.0 Underdrain Orifice Centroid = 0.02

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) ft (relative to basin bottom at Stage = 0 ft) Invert of Lowest Orifice = N/A

Depth at top of Zone using Orifice Plate = N/A ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A inches Orifice Plate: Orifice Area per Row = N/A

Calculated Parameters for Plate WQ Orifice Area per Row = N/A Elliptical Half-Width = N/A feet Elliptical Slot Centroid = N/A feet Elliptical Slot Area = N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Row 1 (optional) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) N/A N/A N/A N/A N/A N/A N/A N/A Orifice Area (sq. inches) N/A N/A N/A N/A N/A

Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) N/A Orifice Area (sq. inches) N/A N/A N/A N/A

User Input: Vertical Orifice (Circular or Rectangular)

Calculated Parameters for Vertical Orifice Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice = 0.35 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area = 0.06 N/A 0.44 Depth at top of Zone using Vertical Orifice = N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = 0.08 N/A Vertical Orifice Height = 2.00 N/A Vertical Orifice Width = 4.00 inches

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Zone 3 Weir Not Selected

Overflow Weir Front Edge Height, Ho 0.75 N/A Overflow Weir Front Edge Length = 2.21 N/A Overflow Weir Grate Slope = H:V 0.00 N/A Horiz. Length of Weir Sides = 2.21 N/A feet Overflow Grate Type : N/A Type C Grate Debris Clogging % = 50% N/A

Height of Grate Upper Edge, H. ft (relative to basin bottom at Stage = 0 ft) Overflow Weir Slope Length Grate Open Area / 100-yr Orifice Area Overflow Grate Open Area w/o Debris Overflow Grate Open Area w/ Debris

|   | Calculated Paramet | ters for Overflow V | Veir            |
|---|--------------------|---------------------|-----------------|
|   | Zone 3 Weir        | Not Selected        |                 |
| = | 0.75               | N/A                 | fee             |
| = | 2.21               | N/A                 | fee             |
| = | 42.55              | N/A                 |                 |
| = | 3.40               | N/A                 | ft <sup>2</sup> |
| = | 1.70               | N/A                 | ft²             |

feet

feet

acres

acre-ft

feet

radians

500 Year

3 14

0.146

0.146

1.0

1.30

1.2

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

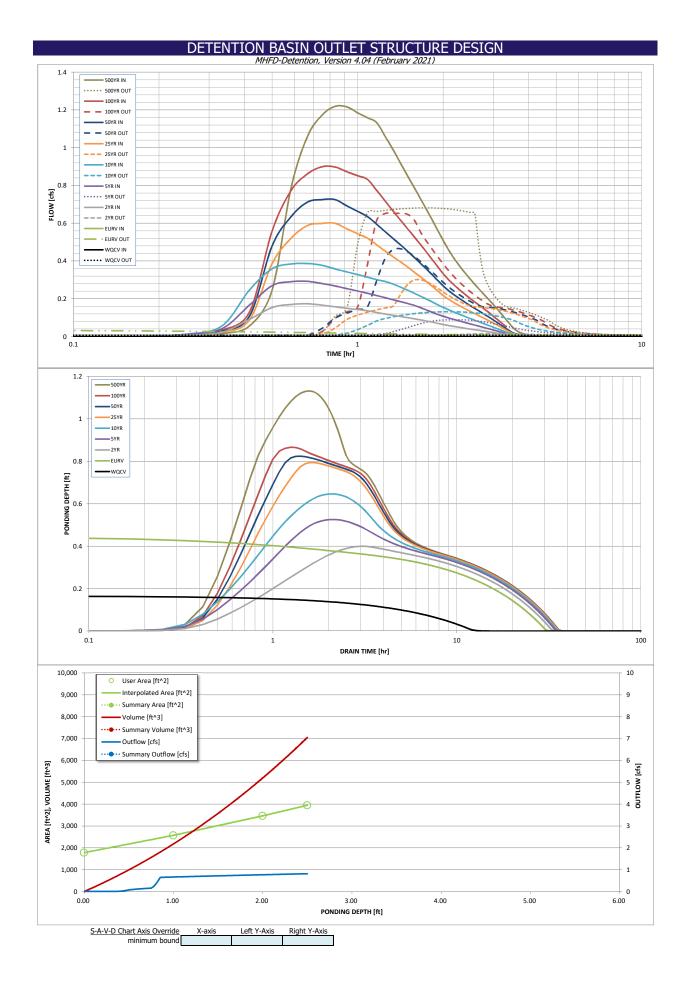
Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe N/A 2.10 ft (distance below basin bottom at Stage = 0 ft) Outlet Pipe Diameter 12.00 N/A inches Restrictor Plate Height Above Pipe Invert = 1.90 inches

Zone 3 Restrictor Not Selected Outlet Orifice Area 0.08 N/A Outlet Orifice Centroid 0.09 N/A Half-Central Angle of Restrictor Plate on Pipe = N/A 0.82

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage= ft (relative to basin bottom at Stage = 0 ft) 2.50 Spillway Crest Length = 5.00 feet Spillway End Slopes = 4.00 H:V Freeboard above Max Water Surface = eet


Calculated Parameters for Spillway Spillway Design Flow Depth= 0.14 Stage at Top of Freeboard = 4.14 Basin Area at Top of Freeboard = 0.09 Basin Volume at Top of Freeboard = 0.16

ophs table (Columns W through Al Routed Hydrograph Results aphs and runoff volumes by ring new values in the Inflow Hvdi Design Storm Return Period WQCV **EURV** 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1 50 2.00 CUHP Runoff Volume (acre-ft) 0.007 0.020 0.020 0.035 0.048 0.069 0.085 0.106 Inflow Hydrograph Volume (acre-ft) N/A N/A 0.020 0.035 0.048 0.069 0.085 0.106 CUHP Predevelopment Peak Q (cfs) N/A N/A 0.2 0.2 0.4 0.7 0.1 0.6 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A Predevelopment Unit Peak Flow, q (cfs/acre) N/A N/A 0.07 0.20 0.31 0.58 0.72 0.93 N/A Peak Inflow O (cfs) N/A 0.3 0.4 0.6 0.7 0.9 0.2 Peak Outflow Q (cfs) Ratio Peak Outflow to Predevelopment Q

Structure Controlling Flow Max Velocity through Grate 1 (fps) Max Velocity through Grate 2 (fps) Time to Drain 97% of Inflow Volume (hours) Time to Drain 99% of Inflow Volume (hours) Maximum Ponding Depth (ft)

Area at Maximum Ponding Depth (acres)

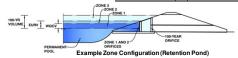
| o Peak Outflow to Predevelopment Q = | N/A              | N/A                | N/A                | 0.6                | 0.5                | 0.7             | 0.8             | 0.9            | 0.7            |
|--------------------------------------|------------------|--------------------|--------------------|--------------------|--------------------|-----------------|-----------------|----------------|----------------|
| Structure Controlling Flow =         | Filtration Media | Vertical Orifice 1 | Vertical Orifice 1 | Vertical Orifice 1 | Vertical Orifice 1 | Overflow Weir 1 | Overflow Weir 1 | Outlet Plate 1 | Outlet Plate 1 |
| Max Velocity through Grate 1 (fps) = | N/A              | N/A                | N/A                | N/A                | N/A                | 0.0             | 0.1             | 0.1            | 0.1            |
| Max Velocity through Grate 2 (fps) = | N/A              | N/A                | N/A                | N/A                | N/A                | N/A             | N/A             | N/A            | N/A            |
| Drain 97% of Inflow Volume (hours) = | 12               | 30                 | 32                 | 33                 | 33                 | 32              | 31              | 30             | 28             |
| Drain 99% of Inflow Volume (hours) = | 13               | 31                 | 33                 | 34                 | 34                 | 35              | 34              | 34             | 34             |
| Maximum Ponding Depth (ft) =         | 0.17             | 0.45               | 0.40               | 0.53               | 0.65               | 0.79            | 0.82            | 0.87           | 1.13           |
| a at Maximum Ponding Depth (acres) = | 0.04             | 0.05               | 0.05               | 0.05               | 0.05               | 0.06            | 0.06            | 0.06           | 0.06           |
| Maximum Volume Stored (acre-ft) =    | 0.007            | 0.020              | 0.017              | 0.024              | 0.030              | 0.038           | 0.040           | 0.042          | 0.058          |



# DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

### Inflow Hydrographs


The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

| İ             |                    |            |            |              |              |               |               | in a separate pro |                | CHILD          |
|---------------|--------------------|------------|------------|--------------|--------------|---------------|---------------|-------------------|----------------|----------------|
|               | SOURCE             | CUHP       | CUHP       | CUHP         | CUHP         | CUHP          | CUHP          | CUHP              | CUHP           | CUHP           |
| Time Interval | TIME               | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs]     | 100 Year [cfs] | 500 Year [cfs] |
| 5.00 min      | 0:00:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 0:05:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 0:10:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 0:15:00            | 0.00       | 0.00       | 0.01         | 0.01         | 0.01          | 0.01          | 0.01              | 0.01           | 0.02           |
|               | 0:20:00            | 0.00       | 0.00       | 0.02         | 0.04         | 0.06          | 0.02          | 0.03              | 0.03           | 0.06           |
|               | 0:25:00<br>0:30:00 | 0.00       | 0.00       | 0.09         | 0.17         | 0.25          | 0.09          | 0.11              | 0.13           | 0.25           |
|               | 0:35:00            | 0.00       | 0.00       | 0.15<br>0.17 | 0.27<br>0.29 | 0.36<br>0.38  | 0.39<br>0.52  | 0.48              | 0.56<br>0.77   | 0.79<br>1.06   |
|               | 0:40:00            | 0.00       | 0.00       | 0.17         | 0.29         | 0.39          | 0.59          | 0.03              | 0.77           | 1.17           |
|               | 0:45:00            | 0.00       | 0.00       | 0.17         | 0.28         | 0.38          | 0.60          | 0.73              | 0.90           | 1.22           |
|               | 0:50:00            | 0.00       | 0.00       | 0.16         | 0.27         | 0.36          | 0.60          | 0.73              | 0.90           | 1.22           |
|               | 0:55:00            | 0.00       | 0.00       | 0.15         | 0.25         | 0.34          | 0.57          | 0.69              | 0.87           | 1.18           |
|               | 1:00:00            | 0.00       | 0.00       | 0.14         | 0.24         | 0.33          | 0.54          | 0.66              | 0.85           | 1.16           |
|               | 1:05:00            | 0.00       | 0.00       | 0.14         | 0.23         | 0.31          | 0.52          | 0.64              | 0.83           | 1.13           |
|               | 1:10:00            | 0.00       | 0.00       | 0.13         | 0.22         | 0.30          | 0.49          | 0.59              | 0.77           | 1.06           |
|               | 1:15:00            | 0.00       | 0.00       | 0.12         | 0.21         | 0.29          | 0.45          | 0.56              | 0.72           | 0.99           |
|               | 1:20:00            | 0.00       | 0.00       | 0.11         | 0.20         | 0.28          | 0.42          | 0.52              | 0.66           | 0.92           |
|               | 1:25:00            | 0.00       | 0.00       | 0.11         | 0.18         | 0.26          | 0.39          | 0.49              | 0.62           | 0.85           |
|               | 1:30:00<br>1:35:00 | 0.00       | 0.00       | 0.10         | 0.17<br>0.16 | 0.25<br>0.23  | 0.37<br>0.34  | 0.45<br>0.42      | 0.57<br>0.53   | 0.79<br>0.73   |
|               | 1:40:00            | 0.00       | 0.00       | 0.09         | 0.15         | 0.23          | 0.34          | 0.42              | 0.53           | 0.73           |
|               | 1:45:00            | 0.00       | 0.00       | 0.09         | 0.13         | 0.21          | 0.32          | 0.39              | 0.49           | 0.62           |
|               | 1:50:00            | 0.00       | 0.00       | 0.08         | 0.13         | 0.18          | 0.26          | 0.33              | 0.41           | 0.56           |
|               | 1:55:00            | 0.00       | 0.00       | 0.07         | 0.12         | 0.17          | 0.24          | 0.30              | 0.37           | 0.51           |
|               | 2:00:00            | 0.00       | 0.00       | 0.06         | 0.11         | 0.15          | 0.22          | 0.27              | 0.33           | 0.46           |
|               | 2:05:00            | 0.00       | 0.00       | 0.06         | 0.10         | 0.14          | 0.20          | 0.24              | 0.30           | 0.42           |
|               | 2:10:00            | 0.00       | 0.00       | 0.05         | 0.09         | 0.13          | 0.18          | 0.22              | 0.28           | 0.39           |
|               | 2:15:00            | 0.00       | 0.00       | 0.05         | 0.08         | 0.12          | 0.17          | 0.21              | 0.26           | 0.36           |
|               | 2:20:00            | 0.00       | 0.00       | 0.05         | 0.08         | 0.11          | 0.16          | 0.19              | 0.24           | 0.33           |
|               | 2:25:00            | 0.00       | 0.00       | 0.04         | 0.07         | 0.10          | 0.14          | 0.18              | 0.22           | 0.30           |
|               | 2:30:00            | 0.00       | 0.00       | 0.04         | 0.07         | 0.09          | 0.13          | 0.16              | 0.20           | 0.28           |
|               | 2:35:00<br>2:40:00 | 0.00       | 0.00       | 0.04         | 0.06         | 0.09          | 0.12          | 0.15              | 0.18           | 0.25           |
|               | 2:45:00            | 0.00       | 0.00       | 0.03         | 0.06         | 0.08<br>0.07  | 0.11<br>0.10  | 0.14              | 0.17<br>0.15   | 0.23<br>0.21   |
|               | 2:50:00            | 0.00       | 0.00       | 0.03         | 0.03         | 0.06          | 0.10          | 0.12              | 0.13           | 0.19           |
|               | 2:55:00            | 0.00       | 0.00       | 0.02         | 0.04         | 0.06          | 0.08          | 0.10              | 0.12           | 0.17           |
|               | 3:00:00            | 0.00       | 0.00       | 0.02         | 0.03         | 0.05          | 0.07          | 0.09              | 0.11           | 0.15           |
|               | 3:05:00            | 0.00       | 0.00       | 0.02         | 0.03         | 0.04          | 0.06          | 0.08              | 0.09           | 0.13           |
|               | 3:10:00            | 0.00       | 0.00       | 0.02         | 0.03         | 0.04          | 0.05          | 0.06              | 0.08           | 0.11           |
|               | 3:15:00            | 0.00       | 0.00       | 0.01         | 0.02         | 0.03          | 0.04          | 0.05              | 0.07           | 0.09           |
|               | 3:20:00            | 0.00       | 0.00       | 0.01         | 0.02         | 0.02          | 0.03          | 0.04              | 0.05           | 0.07           |
|               | 3:25:00            | 0.00       | 0.00       | 0.01         | 0.01         | 0.02          | 0.03          | 0.03              | 0.04           | 0.05           |
|               | 3:30:00            | 0.00       | 0.00       | 0.01         | 0.01         | 0.01          | 0.02          | 0.02              | 0.03           | 0.04           |
|               | 3:35:00<br>3:40:00 | 0.00       | 0.00       | 0.00         | 0.01         | 0.01          | 0.01          | 0.02              | 0.02           | 0.03           |
|               | 3:45:00            | 0.00       | 0.00       | 0.00         | 0.01         | 0.01          | 0.01          | 0.01              | 0.01           | 0.02           |
|               | 3:50:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.01          | 0.01          | 0.01              | 0.01           | 0.02           |
|               | 3:55:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.01          | 0.00          | 0.01              | 0.01           | 0.01           |
|               | 4:00:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.01           |
|               | 4:05:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 4:10:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 4:15:00<br>4:20:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 4:20:00<br>4:25:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 4:30:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 4:35:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 4:40:00<br>4:45:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 4:45:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 4:55:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 5:00:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 5:05:00<br>5:10:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 5:15:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 5:20:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 5:25:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 5:30:00<br>5:35:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 5:40:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 5:45:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 5:50:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
|               | 5:55:00<br>6:00:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00              | 0.00           | 0.00           |
| l.            |                    |            |            |              |              |               |               |                   |                |                |

# DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

# Project: <u>Homestead at Sterling Ranch Filing No. 2</u> Basin ID: <u>Sand Filter - Basin Y1, W1, X2</u>

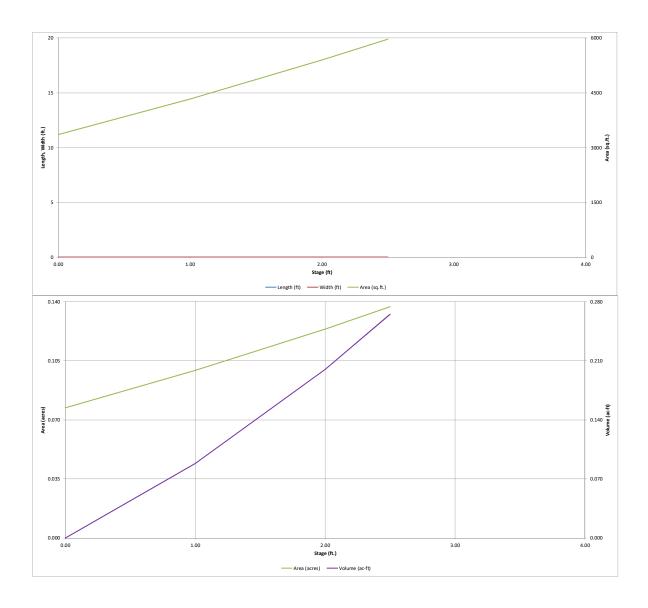


#### Watershed Information

| coronica zinormacion                    |            |         |
|-----------------------------------------|------------|---------|
| Selected BMP Type =                     | SF         |         |
| Watershed Area =                        | 2.74       | acres   |
| Watershed Length =                      | 900        | ft      |
| Watershed Length to Centroid =          | 300        | ft      |
| Watershed Slope =                       | 0.020      | ft/ft   |
| Watershed Imperviousness =              | 25.00%     | percent |
| Percentage Hydrologic Soil Group A =    | 0.0%       | percent |
| Percentage Hydrologic Soil Group B =    | 100.0%     | percent |
| Percentage Hydrologic Soil Groups C/D = | 0.0%       | percent |
| Target WQCV Drain Time =                | 12.0       | hours   |
| Location for 1-hr Rainfall Denths =     | User Innut |         |

# After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure

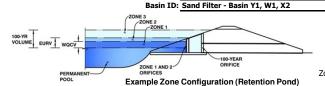
| the embedded Colorado Urban Hydrograph Procedure. |       |           |  |  |  |
|---------------------------------------------------|-------|-----------|--|--|--|
| Water Quality Capture Volume (WQCV) =             | 0.025 | acre-feet |  |  |  |
| Excess Urban Runoff Volume (EURV) =               | 0.069 | acre-feet |  |  |  |
| 2-yr Runoff Volume (P1 = 1.19 in.) =              | 0.072 | acre-feet |  |  |  |
| 5-yr Runoff Volume (P1 = 1.5 in.) =               | 0.123 | acre-feet |  |  |  |
| 10-yr Runoff Volume (P1 = 1.75 in.) =             | 0.170 | acre-feet |  |  |  |
| 25-yr Runoff Volume (P1 = 2 in.) =                | 0.245 | acre-feet |  |  |  |
| 50-yr Runoff Volume (P1 = 2.25 in.) =             | 0.300 | acre-feet |  |  |  |
| 100-yr Runoff Volume (P1 = 2.52 in.) =            | 0.374 | acre-feet |  |  |  |
| 500-yr Runoff Volume (P1 = 3.14 in.) =            | 0.516 | acre-feet |  |  |  |
| Approximate 2-yr Detention Volume =               | 0.049 | acre-feet |  |  |  |
| Approximate 5-yr Detention Volume =               | 0.071 | acre-feet |  |  |  |
| Approximate 10-yr Detention Volume =              | 0.108 | acre-feet |  |  |  |
| Approximate 25-yr Detention Volume =              | 0.128 | acre-feet |  |  |  |
| Approximate 50-yr Detention Volume =              | 0.135 | acre-feet |  |  |  |
| Approximate 100-yr Detention Volume =             | 0.163 | acre-feet |  |  |  |
|                                                   |       | ē'        |  |  |  |


| Optional User Overrides |           |  |  |  |  |
|-------------------------|-----------|--|--|--|--|
|                         | acre-feet |  |  |  |  |
|                         | acre-feet |  |  |  |  |
| 1.19                    | inches    |  |  |  |  |
| 1.50                    | inches    |  |  |  |  |
| 1.75                    | inches    |  |  |  |  |
| 2.00                    | inches    |  |  |  |  |
| 2.25                    | inches    |  |  |  |  |
| 2.52                    | inches    |  |  |  |  |
|                         | inches    |  |  |  |  |
|                         |           |  |  |  |  |

# Define Zones and Basin Geometry

| erine Zones and Basin Geometry                          |       |                 |
|---------------------------------------------------------|-------|-----------------|
| Zone 1 Volume (WQCV) =                                  | 0.025 | acre-f          |
| Zone 2 Volume (EURV - Zone 1) =                         | 0.045 | acre-f          |
| Zone 3 Volume (100-year - Zones 1 & 2) =                | 0.094 | acre-f          |
| Total Detention Basin Volume =                          | 0.163 | acre-f          |
| Initial Surcharge Volume (ISV) =                        | N/A   | ft <sup>3</sup> |
| Initial Surcharge Depth (ISD) =                         | N/A   | ft              |
| Total Available Detention Depth (H <sub>total</sub> ) = | user  | ft              |
| Depth of Trickle Channel $(H_{TC}) =$                   | N/A   | ft              |
| Slope of Trickle Channel $(S_{TC}) =$                   | N/A   | ft/ft           |
| Slopes of Main Basin Sides (Smain) =                    | user  | H:V             |
| Basin Length-to-Width Ratio (R <sub>L/W</sub> ) =       | user  | 1               |

| Initial Surcharge Area $(A_{ISV}) =$          | user | ft <sup>2</sup> |
|-----------------------------------------------|------|-----------------|
| Surcharge Volume Length $(L_{ISV}) =$         | user | ft              |
| Surcharge Volume Width $(W_{ISV}) =$          | user | ft              |
| Depth of Basin Floor $(H_{FLOOR}) =$          | user | ft              |
| Length of Basin Floor $(L_{FLOOR})$ =         | user | ft              |
| Width of Basin Floor $(W_{FLOOR}) =$          |      | ft              |
| Area of Basin Floor $(A_{FLOOR}) =$           |      | ft <sup>2</sup> |
| Volume of Basin Floor $(V_{FLOOR}) =$         | user | ft <sup>3</sup> |
| Depth of Main Basin (H <sub>MAIN</sub> ) =    | user | ft              |
| Length of Main Basin $(L_{MAIN}) =$           | user | ft              |
| Width of Main Basin $(W_{MAIN}) =$            | user | ft              |
| Area of Main Basin (A <sub>MAIN</sub> ) =     |      | ft <sup>2</sup> |
| Volume of Main Basin (V <sub>MAIN</sub> ) =   | user | ft <sup>3</sup> |
| Calculated Total Basin Volume $(V_{total}) =$ | user | acre-feet       |
|                                               |      |                 |


| Depth Increment =              |               | ft                     |                |               |                |                                     |                |                  |                   |
|--------------------------------|---------------|------------------------|----------------|---------------|----------------|-------------------------------------|----------------|------------------|-------------------|
|                                |               | Optional               |                | 145 (1)       |                | Optional                            |                | Makama           | M. I              |
| Stage - Storage<br>Description | Stage<br>(ft) | Override<br>Stage (ft) | Length<br>(ft) | Width<br>(ft) | Area<br>(ft 2) | Override<br>Area (ft <sup>2</sup> ) | Area<br>(acre) | Volume<br>(ft 3) | Volume<br>(ac-ft) |
| Media Surface                  |               | 0.00                   |                |               |                | 3,358                               | 0.077          | ()               | (GC IL)           |
| 7062                           |               | 1.00                   | _              |               | -              |                                     | 0.099          | 3,842            | 0.088             |
|                                |               |                        |                |               |                | 4,326                               |                |                  |                   |
| 7063                           |               | 2.00                   | -              |               | -              | 5,395                               | 0.124          | 8,702            | 0.200             |
| 7063.5                         |               | 2.50                   | -              |               | -              | 5,967                               | 0.137          | 11,543           | 0.265             |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               |                |                                     |                |                  |                   |
|                                |               |                        | _              |               | -              |                                     |                |                  |                   |
|                                |               |                        |                |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        |                |               |                |                                     |                |                  | <b> </b>          |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  | <b> </b>          |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        |                |               | -              |                                     |                |                  | <b> </b>          |
|                                |               |                        | -              |               |                |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                | -                |                   |
|                                |               |                        |                |               |                |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  | -                 |
|                                |               |                        |                |               |                |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  | <b> </b>          |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        |                |               |                |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        |                |               |                |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | _              |               | _              |                                     |                |                  |                   |
|                                |               |                        |                |               |                |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        |                |               |                |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  | -                 |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        |                |               |                |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        |                |               | -              |                                     |                | <del></del>      |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | 1              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                | -             |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               |                |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | 1 1            |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              | <u> </u>      |                |                                     |                |                  |                   |
|                                |               |                        | 1 1            |               |                |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              | <br><br>      |                |                                     |                |                  |                   |
|                                |               |                        |                |               |                |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | 1 1            |               | -              |                                     |                |                  |                   |
|                                |               |                        |                |               | -              |                                     |                |                  |                   |
|                                |               |                        | 1 1            |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               |                |                                     |                |                  |                   |
|                                |               |                        | 1              |               | -              |                                     |                |                  | -                 |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | -              |               | -              |                                     |                |                  |                   |
|                                |               |                        | 1 1            |               | -              |                                     |                |                  |                   |
|                                |               |                        |                |               |                |                                     |                |                  |                   |



#### DETENTION BASIN OUTLET STRUCTURE

MHFD-Detention, Version 4.04 (February 2021)

Project: Homestead at Sterling Ranch Filing No. 2



|                  | Estimated         | Estimated      |                      |
|------------------|-------------------|----------------|----------------------|
|                  | Stage (ft)        | Volume (ac-ft) | Outlet Type          |
| Zone 1 (WQCV)    | 0.31              | 0.025          | Filtration Media     |
| Zone 2 (EURV)    | 0.81              | 0.045          | Rectangular Orifice  |
| one 3 (100-year) | 1.70              | 0.094          | Weir&Pipe (Restrict) |
| •                | Total (all zones) | 0.163          |                      |

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = 2.10 Underdrain Orifice Diameter = 0.80 inches

| <u> </u>                      | Calculated Paramet | ters for Underdrain |
|-------------------------------|--------------------|---------------------|
| Underdrain Orifice Area =     | 0.0                | ft <sup>2</sup>     |
| Underdrain Orifice Centroid = | 0.03               | feet                |

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = N/A ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A inches Orifice Plate: Orifice Area per Row = N/A inches

| <u>IP)</u>                 | Calculated Paramet | ters for Plate  |
|----------------------------|--------------------|-----------------|
| Q Orifice Area per Row =   | N/A                | ft <sup>2</sup> |
| Elliptical Half-Width =    |                    | feet            |
| Elliptical Slot Centroid = | N/A                | feet            |
| Elliptical Slot Area =     | N/A                | ft <sup>2</sup> |

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

|                                | Row 1 (optional) | Row 2 (optional) | Row 3 (optional) | onal) Row 4 (optional) Row 5 (optio |     | Row 6 (optional) | Row 7 (optional) | nal) Row 8 (optional) |  |
|--------------------------------|------------------|------------------|------------------|-------------------------------------|-----|------------------|------------------|-----------------------|--|
| Stage of Orifice Centroid (ft) | N/A              | N/A              | N/A              | N/A                                 | N/A | N/A              | N/A              | N/A                   |  |
| Orifice Area (sq. inches)      | N/A              | N/A              | N/A              | N/A                                 | N/A | N/A              | N/A              | N/A                   |  |

|                                | Row 9 (optional) | Row 10 (optional) Row 11 (optional) Row 12 (optional) |     | Row 13 (optional) Row 14 (optional) |     | Row 15 (optional) | Row 16 (optional) |     |
|--------------------------------|------------------|-------------------------------------------------------|-----|-------------------------------------|-----|-------------------|-------------------|-----|
| Stage of Orifice Centroid (ft) | N/A              | N/A                                                   | N/A | N/A                                 | N/A | N/A               | N/A               | N/A |
| Orifice Area (sq. inches)      | N/A              | N/A                                                   | N/A | N/A                                 | N/A | N/A               | N/A               | N/A |

User Input: Vertical Orifice (Circular or Rectangular)

Zone 2 Rectangula Not Selected Invert of Vertical Orifice : N/A ft (relative to basin bottom at Stage = 0 ft) 0.33 Depth at top of Zone using Vertical Orifice = N/A ft (relative to basin bottom at Stage = 0 ft) 0.81 Vertical Orifice Height = 2.00 N/A inches Vertical Orifice Width = 4.00

|                             | Calculated Paramet | ers for Vertical Orif | <u>îce</u>      |
|-----------------------------|--------------------|-----------------------|-----------------|
|                             | Zone 2 Rectangular | Not Selected          |                 |
| Vertical Orifice Area =     | 0.06               | N/A                   | ft <sup>2</sup> |
| Vertical Orifice Centroid = | 0.08               | N/A                   | feet            |

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

| input: ordinor tres (bropber marriage) | Diopea Grace and | outlet i ipe on nee | tangalar, mapezolaar men (ana no oatiet npe)                                    |
|----------------------------------------|------------------|---------------------|---------------------------------------------------------------------------------|
|                                        | Zone 3 Weir      | Not Selected        |                                                                                 |
| Overflow Weir Front Edge Height, Ho =  | 1.00             | N/A                 | ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, $H_t$ |
| Overflow Weir Front Edge Length =      | 2.21             | N/A                 | feet Overflow Weir Slope Length                                                 |
| Overflow Weir Grate Slope =            | 0.00             | N/A                 | H:V Grate Open Area / 100-yr Orifice Area                                       |
| Horiz. Length of Weir Sides =          | 2.21             | N/A                 | feet Overflow Grate Open Area w/o Debris                                        |
| Overflow Grate Type =                  | Type C Grate     | N/A                 | Overflow Grate Open Area w/ Debris                                              |
| Debris Clogging % =                    | 50%              | N/A                 | %                                                                               |
|                                        |                  |                     |                                                                                 |

|         | Calculated Parameters for Overflow We |              |                 |  |  |  |  |
|---------|---------------------------------------|--------------|-----------------|--|--|--|--|
|         | Zone 3 Weir                           | Not Selected |                 |  |  |  |  |
| $H_t =$ | 1.00                                  | N/A          | feet            |  |  |  |  |
| th =    | 2.21                                  | N/A          | feet            |  |  |  |  |
| ea =    | 10.98                                 | N/A          |                 |  |  |  |  |
| is =    | 3.40                                  | N/A          | ft <sup>2</sup> |  |  |  |  |
| is =    | 1.70                                  | N/A          | ft <sup>2</sup> |  |  |  |  |
|         |                                       |              |                 |  |  |  |  |

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

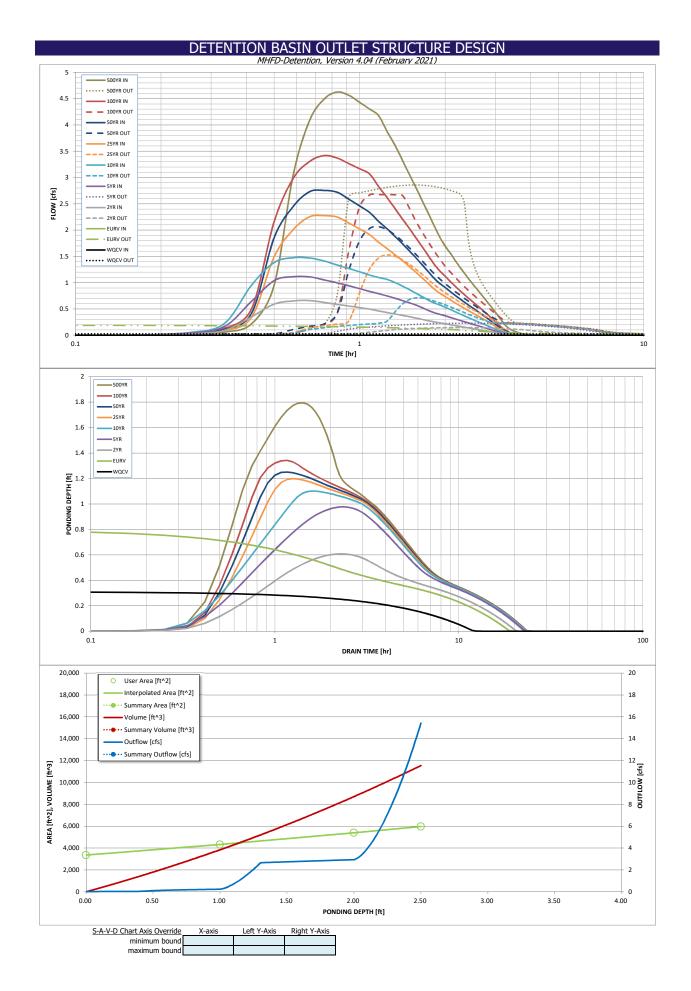
|                                             | Zone 3 Restrictor | Not Selected |           |
|---------------------------------------------|-------------------|--------------|-----------|
| Depth to Invert of Outlet Pipe =            | 2.10              | N/A          | ft (dista |
| Outlet Pipe Diameter =                      | 15.00             | N/A          | inches    |
| Restrictor Plate Height Above Pipe Invert = | 4.50              |              | inches    |
|                                             |                   |              |           |

ft (distance below basin bottom at Stage = 0 ft) inches

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Outlet Orifice Area Outlet Orifice Centroid Half-Central Angle of Restrictor Plate on Pipe

|   | Zone 3 Restrictor | Not Selected |                 |
|---|-------------------|--------------|-----------------|
| = | 0.31              | N/A          | ft <sup>2</sup> |
| = | 0.22              | N/A          | feet            |
| = | 1.16              | N/A          | radians         |
|   | `                 |              |                 |

User Input: Emergency Spillway (Rectangular or Trapezoidal)


ft (relative to basin bottom at Stage = 0 ft) Spillway Invert Stage= 2.00 Spillway Crest Length = 10.00 feet Spillway End Slopes = H:V 4.00 Freeboard above Max Water Surface = 1.50 feet

Calculated Parameters for Spillway Spillway Design Flow Depth= 0.22 feet Stage at Top of Freeboard = feet 3.72 Basin Area at Top of Freeboard = 0.14 acres Basin Volume at Top of Freeboard = 0.26 acre-ft

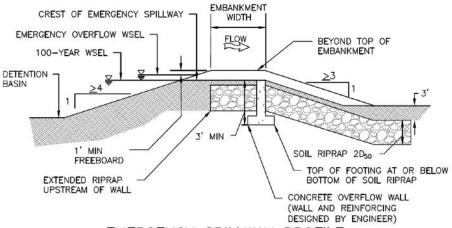
Routed Hydrograph Results Design Storm Return Perio One-Hour Rainfall Depth (in CUHP Runoff Volume (acre-fi Inflow Hydrograph Volume (acre-fi CUHP Predevelopment Peak Q (cf: OPTIONAL Override Predevelopment Peak Q (cfs Predevelopment Unit Peak Flow, q (cfs/acre Peak Inflow Q (cf

Peak Outflow Q (cfs Ratio Peak Outflow to Predevelopment Structure Controlling Flow Max Velocity through Grate 1 (fps Max Velocity through Grate 2 (fp. Time to Drain 97% of Inflow Volume (hours Time to Drain 99% of Inflow Volume (hour Maximum Ponding Depth (f Area at Maximum Ponding Depth (acres

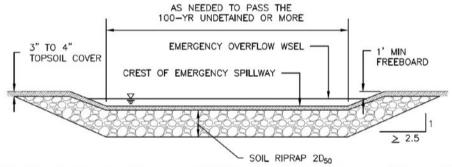
| ograph Results                         | The user can overr | ide the default CUF | HP hydrographs and | runoff volumes by  | entering new value | s in the Inflow Hyd | rographs table (Col | lumns W through A | F).            |
|----------------------------------------|--------------------|---------------------|--------------------|--------------------|--------------------|---------------------|---------------------|-------------------|----------------|
| Design Storm Return Period =           | WQCV               | EURV                | 2 Year             | 5 Year             | 10 Year            | 25 Year             | 50 Year             | 100 Year          | 500 Year       |
| One-Hour Rainfall Depth (in) =         | N/A                | N/A                 | 1.19               | 1.50               | 1.75               | 2.00                | 2.25                | 2.52              | 3.14           |
| CUHP Runoff Volume (acre-ft) =         | 0.025              | 0.069               | 0.072              | 0.123              | 0.170              | 0.245               | 0.300               | 0.374             | 0.516          |
| Inflow Hydrograph Volume (acre-ft) =   | N/A                | N/A                 | 0.072              | 0.123              | 0.170              | 0.245               | 0.300               | 0.374             | 0.516          |
| CUHP Predevelopment Peak Q (cfs) =     | N/A                | N/A                 | 0.2                | 0.6                | 0.9                | 1.7                 | 2.1                 | 2.7               | 3.8            |
| verride Predevelopment Peak Q (cfs) =  | N/A                | N/A                 |                    |                    |                    |                     |                     |                   |                |
| lopment Unit Peak Flow, q (cfs/acre) = | N/A                | N/A                 | 0.08               | 0.22               | 0.34               | 0.62                | 0.78                | 1.00              | 1.40           |
| Peak Inflow Q (cfs) =                  | N/A                | N/A                 | 0.7                | 1.1                | 1.5                | 2.3                 | 2.8                 | 3.4               | 4.6            |
| Peak Outflow Q (cfs) =                 | 0.0                | 0.2                 | 0.1                | 0.2                | 0.7                | 1.5                 | 2.1                 | 2.7               | 2.9            |
| o Peak Outflow to Predevelopment Q =   | N/A                | N/A                 | N/A                | 0.4                | 0.8                | 0.9                 | 1.0                 | 1.0               | 0.7            |
| Structure Controlling Flow =           | Filtration Media   | Vertical Orifice 1  | Vertical Orifice 1 | Vertical Orifice 1 | Overflow Weir 1    | Overflow Weir 1     | Overflow Weir 1     | Outlet Plate 1    | Outlet Plate 1 |
| Max Velocity through Grate 1 (fps) =   | N/A                | N/A                 | N/A                | N/A                | 0.1                | 0.4                 | 0.5                 | 0.7               | 0.7            |
| Max Velocity through Grate 2 (fps) =   | N/A                | N/A                 | N/A                | N/A                | N/A                | N/A                 | N/A                 | N/A               | N/A            |
| Drain 97% of Inflow Volume (hours) =   | 12                 | 18                  | 20                 | 21                 | 21                 | 20                  | 19                  | 18                | 16             |
| Drain 99% of Inflow Volume (hours) =   | 12                 | 19                  | 20                 | 22                 | 22                 | 22                  | 22                  | 22                | 21             |
| Maximum Ponding Depth (ft) =           | 0.32               | 0.81                | 0.61               | 0.98               | 1.10               | 1.20                | 1.25                | 1.34              | 1.80           |
| a at Maximum Ponding Depth (acres) =   | 0.08               | 0.10                | 0.09               | 0.10               | 0.10               | 0.10                | 0.11                | 0.11              | 0.12           |
| Maximum Volume Stored (acre-ft) =      | 0.026              | 0.070               | 0.050              | 0.085              | 0.098              | 0.108               | 0.114               | 0.123             | 0.174          |
|                                        |                    |                     |                    |                    |                    |                     |                     |                   |                |



# DETENTION BASIN OUTLET STRUCTURE DESIGN


Outflow Hydrograph Workbook Filename:

Inflow Hydrographs


The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

|               | SOURCE             | CUHP       | CUHP       | CUHP         | CUHP         | CUHP         | CUHP          | CUHP          | CUHP         | CUHP           |
|---------------|--------------------|------------|------------|--------------|--------------|--------------|---------------|---------------|--------------|----------------|
| Time Interval | TIME               | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] |              | 25 Year [cfs] | 50 Year [cfs] |              | 500 Year [cfs] |
|               | 0:00:00            |            |            |              |              |              |               |               |              |                |
| 5.00 min      | 0:05:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 0:10:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 0:15:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.01           |
|               | 0:20:00            | 0.00       | 0.00       | 0.02         | 0.16         | 0.03         | 0.03          | 0.04          | 0.04         | 0.06           |
|               | 0:25:00            | 0.00       | 0.00       | 0.35         | 0.65         | 0.95         | 0.34          | 0.42          | 0.50         | 0.95           |
|               | 0:30:00            | 0.00       | 0.00       | 0.59         | 1.04         | 1.38         | 1.49          | 1.85          | 2.16         | 3.04           |
|               | 0:35:00            | 0.00       | 0.00       | 0.65         | 1.11         | 1.47         | 2.01          | 2.45          | 2.98         | 4.09           |
|               | 0:40:00            | 0.00       | 0.00       | 0.66         | 1.11         | 1.47         | 2.25          | 2.73          | 3.30         | 4.49           |
|               | 0:45:00            | 0.00       | 0.00       | 0.62         | 1.05         | 1.41         | 2.28          | 2.75          | 3.42         | 4.63           |
|               | 0:50:00            | 0.00       | 0.00       | 0.59         | 1.00         | 1.33         | 2.25          | 2.72          | 3.37         | 4.56           |
|               | 0:55:00            | 0.00       | 0.00       | 0.55         | 0.94         | 1.27         | 2.13          | 2.59          | 3.26         | 4.43           |
|               | 1:00:00<br>1:05:00 | 0.00       | 0.00       | 0.53         | 0.89         | 1.21         | 2.02          | 2.46          | 3.17<br>3.07 | 4.30           |
|               | 1:10:00            | 0.00       | 0.00       | 0.50<br>0.46 | 0.83<br>0.79 | 1.15<br>1.10 | 1.91<br>1.77  | 2.34          | 2.83         | 4.18<br>3.87   |
|               | 1:15:00            | 0.00       | 0.00       | 0.43         | 0.75         | 1.06         | 1.65          | 2.02          | 2.62         | 3.61           |
|               | 1:20:00            | 0.00       | 0.00       | 0.40         | 0.70         | 1.00         | 1.53          | 1.88          | 2.41         | 3.32           |
|               | 1:25:00            | 0.00       | 0.00       | 0.38         | 0.66         | 0.93         | 1.42          | 1.74          | 2.21         | 3.05           |
|               | 1:30:00            | 0.00       | 0.00       | 0.35         | 0.62         | 0.86         | 1.30          | 1.60          | 2.02         | 2.79           |
|               | 1:35:00            | 0.00       | 0.00       | 0.33         | 0.57         | 0.80         | 1.19          | 1.46          | 1.84         | 2.54           |
|               | 1:40:00            | 0.00       | 0.00       | 0.30         | 0.52         | 0.73         | 1.08          | 1.33          | 1.67         | 2.30           |
|               | 1:45:00            | 0.00       | 0.00       | 0.27         | 0.47         | 0.66         | 0.98          | 1.20          | 1.50         | 2.07           |
|               | 1:50:00            | 0.00       | 0.00       | 0.25         | 0.43         | 0.61         | 0.88          | 1.08          | 1.34         | 1.86           |
|               | 1:55:00<br>2:00:00 | 0.00       | 0.00       | 0.23<br>0.22 | 0.40         | 0.57<br>0.54 | 0.80          | 0.98<br>0.91  | 1.22         | 1.70<br>1.56   |
|               | 2:05:00            | 0.00       | 0.00       | 0.22         | 0.34         | 0.49         | 0.67          | 0.91          | 1.12         | 1.43           |
|               | 2:10:00            | 0.00       | 0.00       | 0.18         | 0.31         | 0.45         | 0.62          | 0.76          | 0.94         | 1.30           |
|               | 2:15:00            | 0.00       | 0.00       | 0.17         | 0.28         | 0.41         | 0.56          | 0.70          | 0.85         | 1.19           |
|               | 2:20:00            | 0.00       | 0.00       | 0.15         | 0.26         | 0.37         | 0.51          | 0.63          | 0.78         | 1.08           |
|               | 2:25:00            | 0.00       | 0.00       | 0.14         | 0.23         | 0.33         | 0.47          | 0.58          | 0.70         | 0.98           |
|               | 2:30:00            | 0.00       | 0.00       | 0.13         | 0.21         | 0.30         | 0.42          | 0.52          | 0.64         | 0.88           |
|               | 2:35:00            | 0.00       | 0.00       | 0.11         | 0.19         | 0.27         | 0.38          | 0.47          | 0.57         | 0.79           |
|               | 2:40:00            | 0.00       | 0.00       | 0.10         | 0.16         | 0.24         | 0.34          | 0.41          | 0.51         | 0.70           |
|               | 2:45:00<br>2:50:00 | 0.00       | 0.00       | 0.09         | 0.14<br>0.12 | 0.21<br>0.18 | 0.30<br>0.25  | 0.36<br>0.31  | 0.45         | 0.62<br>0.53   |
|               | 2:55:00            | 0.00       | 0.00       | 0.07         | 0.12         | 0.15         | 0.23          | 0.31          | 0.32         | 0.55           |
|               | 3:00:00            | 0.00       | 0.00       | 0.05         | 0.08         | 0.12         | 0.17          | 0.21          | 0.26         | 0.36           |
|               | 3:05:00            | 0.00       | 0.00       | 0.04         | 0.06         | 0.09         | 0.13          | 0.16          | 0.20         | 0.27           |
|               | 3:10:00            | 0.00       | 0.00       | 0.03         | 0.05         | 0.07         | 0.10          | 0.12          | 0.15         | 0.20           |
|               | 3:15:00            | 0.00       | 0.00       | 0.02         | 0.03         | 0.05         | 0.07          | 0.08          | 0.10         | 0.14           |
|               | 3:20:00            | 0.00       | 0.00       | 0.02         | 0.03         | 0.04         | 0.05          | 0.06          | 0.07         | 0.10           |
|               | 3:25:00            | 0.00       | 0.00       | 0.01         | 0.02         | 0.04         | 0.04          | 0.05          | 0.05         | 0.08           |
|               | 3:30:00            | 0.00       | 0.00       | 0.01         | 0.02         | 0.03         | 0.03          | 0.04          | 0.04         | 0.06           |
|               | 3:35:00<br>3:40:00 | 0.00       | 0.00       | 0.01         | 0.02         | 0.03         | 0.02          | 0.03          | 0.03<br>0.02 | 0.04           |
|               | 3:45:00            | 0.00       | 0.00       | 0.01         | 0.01         | 0.02         | 0.02          | 0.02          | 0.02         | 0.03           |
|               | 3:50:00            | 0.00       | 0.00       | 0.01         | 0.01         | 0.01         | 0.01          | 0.01          | 0.01         | 0.02           |
|               | 3:55:00            | 0.00       | 0.00       | 0.00         | 0.01         | 0.01         | 0.01          | 0.01          | 0.01         | 0.01           |
|               | 4:00:00            | 0.00       | 0.00       | 0.00         | 0.01         | 0.01         | 0.01          | 0.01          | 0.01         | 0.01           |
|               | 4:05:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.01         | 0.01          | 0.01          | 0.01         | 0.01           |
|               | 4:10:00<br>4:15:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.01           |
|               | 4:15:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 4:25:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 4:30:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 4:35:00<br>4:40:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 4:45:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 4:50:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 4:55:00<br>5:00:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 5:05:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 5:10:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 5:15:00<br>5:20:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 5:25:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 5:30:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 5:35:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 5:40:00<br>5:45:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 5:50:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 5:55:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |
|               | 6:00:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00         | 0.00          | 0.00          | 0.00         | 0.00           |

Chapter 12 Storage



# EMERGENCY SPILLWAY PROFILE



# EMERGENCY SPILLWAY SECTION AND SPILLWAY CHANNEL

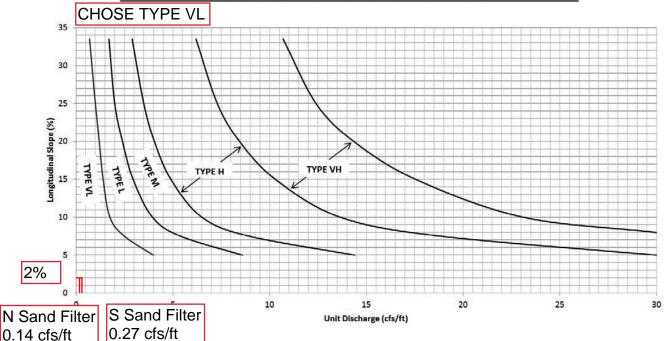
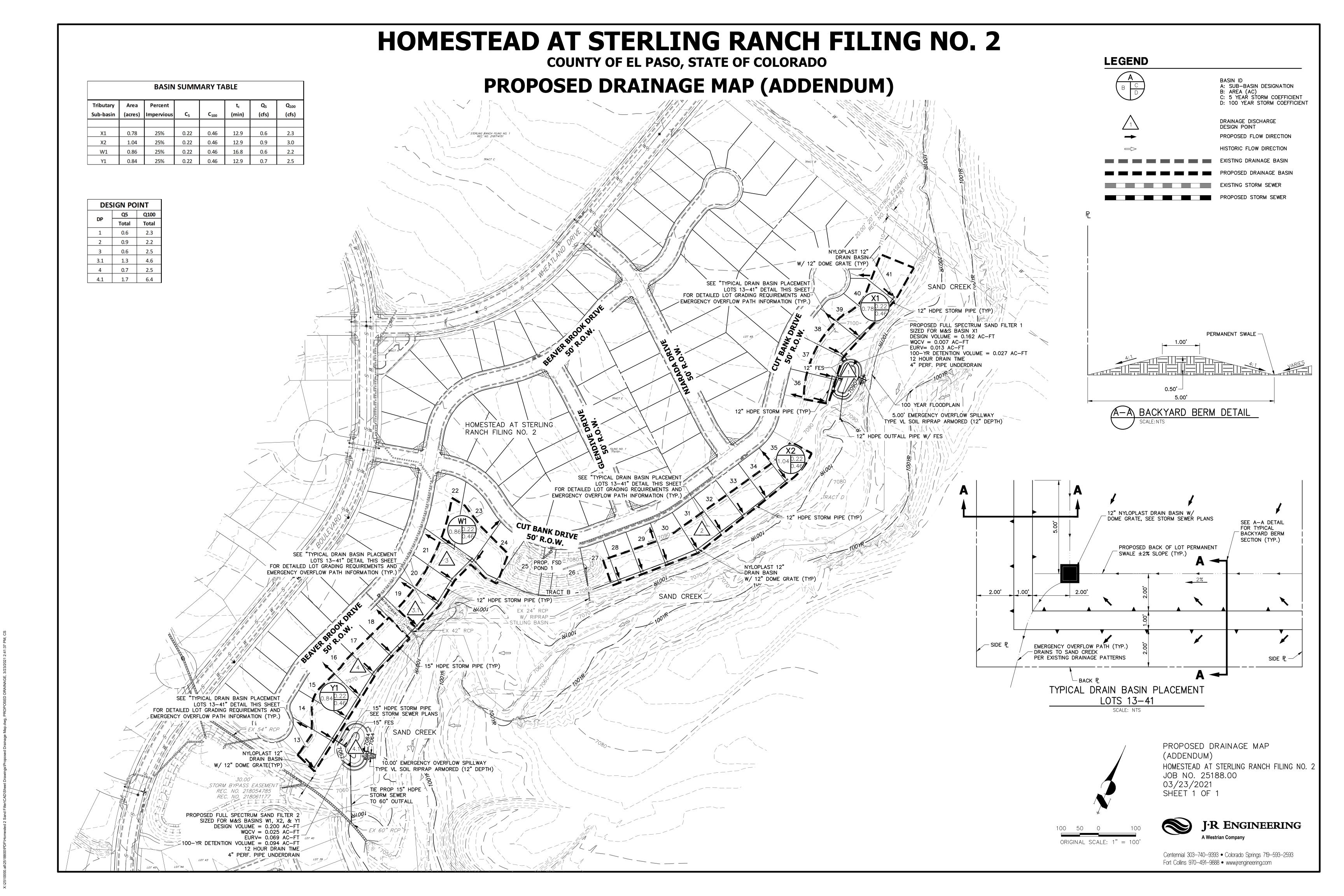




Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)



# FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO.2

# **EL PASO COUNTY, COLORADO**

March 2020

Prepared for: SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

Prepared by:



102 E. Pikes Peak, Suite 500 Colorado Springs, CO 80903 (719) 955-5485

> Project #09-007 SF-19-004

# FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

### DRAINAGE PLAN STATEMENTS

# **ENGINEERS STATEMENT**

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

|                                                                                | 3/160                 |   |
|--------------------------------------------------------------------------------|-----------------------|---|
| Virgil A. Sanchez, P.E. #37160 For and on Behalf of M&S Civil Consultants, Inc | THE SONAL ENGINEERING | ī |

### DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drain age report and plan.

| BY: Jams May     |  |
|------------------|--|
| James F Morley   |  |
| TITLE: Manager   |  |
| DATE: 3-31-12020 |  |
|                  |  |

ADDRESS: SR Land, LLC

20 Boulder Crescent, Suite 210 ColoradoSprings, CO80903

# EL PASO COUNTY'S STATEMENT

Filedinaccordancewith the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

| BY:                     | DATE:        |  |
|-------------------------|--------------|--|
| Jennifer Irvine, P.E.   |              |  |
| County Engineer / ECM A | dministrator |  |

# FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

# **TABLE OF CONTENTS**

| PURPUSE                         | 4  |
|---------------------------------|----|
| GENERALLOCATIONANDDESCRIPTION   | 4  |
| SOILS                           | 4  |
| HYDROLOGICCALCULATIONS          | 4  |
| HYDRAULICCALCULATIONS           | 5  |
| FLOODPLAINSTATEMENT             | 5  |
| DRAINAGECRITERIA                | 5  |
| FOUR STEP PROCESS               | 5  |
| EXISTINGDRAINAGECONDITIONS      | 6  |
| PROPOSEDDRAINAGECHARACTERISTICS | 6  |
| CHANNEL IMPROVEMENTS            | 9  |
| WATER QUALITY PROVISIONS        | 9  |
| EROSIONCONTROL                  | 10 |
| CONSTRUCTION COST OPINION       | 10 |
| DRAINAGE & BRIDGE FEES          | 11 |
| STERLING RANCH FIL. NO.1 - SIA  | 11 |
| SUMMARY                         | 12 |
| REFERENCES                      | 13 |

# **APPENDIX**

VicinityMap
SoilsMap
FIRMPanelW/Revised LOMR
HydrologicCalculations
HydraulicCalculations
DrainageMaps

# FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

# **PURPOSE**

Additional language added in Addendum above

This document is the Final Drainage Report for Homestead at Sterling Ranch Filing No. 2. This report was previously discussed, as a preliminary drainage report, in the "Master Development Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual. The following report is an analysis of the drainage for Homestead at Sterling Ranch Filing No. 2, single family lots, onsite and offsite drainage.

### GENERAL LOCATION AND DESCRIPTION

Homestead at Sterling Ranch Filing No. 2 is located in the SE ¼ of the NW ¼, the SW ¼ of the NE ¼, andthe NW ¼ of the NE ¼ of Section 33, Township 12 South, Range 65 West of the 6<sup>th</sup> Principal Meridian, and the NE ¼ of the SW ¼ of Section 33, Township 12 South, Range 65 West of the 6<sup>th</sup> Principal Meridianwithin unincorporated El Paso County, Colorado. The site is bound on the south by an existing detention pond, to the north by Briargate Parkway and to the east by Sand Creek. ExistingDines Boulevard runs along the western site boundary. An existing residential development, Homestead at Sterling Ranch Filing No. 1, bounds the site to the west and a future commercial parcel bounds the site to the northwest. Sterling Ranch lies within the Sand Creek Drainage Basin. Flows from this site are tributary to Sand Creek.

Homestead at Sterling Ranch Filing No. 2consists of 29.658 acresand is presently undeveloped. Vegetation is sparse, consisting of native grasses. Existing site terrain generally slopes from north to southwest at grade rates that vary between 2% and 6%.

Land use for Homestead at Sterling Ranch Filing No. 2is currently listed as AG(Grazing Land). Improvements proposed for the site include pavedstreets, trails, a full spectrum detention pond, and utilities as normally constructed for a residential development.

### **SOILS**

Soils for this project are delineated by the map in the appendix as Pring Coarse Sandy Loam (71) and is characterized as Hydrologic Soil Types "B". Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area". Vegetation is sparse, consisting of native grasses and weeds.

# HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Urban Storm Drainage Criteria Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

# HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual. The relevant data sheets can be found in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017 and in the appendix of this report.

# FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain as determined by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0533G, effective date December 7, 2018.An annotated FIRM Panel is included in the Appendix.

# DRAINAGE CRITERIA

This drainage analysis has been prepared in accordance with the current City of Colorado Springs/El Paso County Drainage Criteria Manual, Volumes I & II, dated November 1991, including subsequent updates. El Paso County has also adopted Chapter 6 and Section 3.2.1 of Chapter 13 in the City of Colorado Springs & El Paso County Drainage Criteria Manual Volumes I and II, dated May 2014. (Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008). In addition to the ECM, the Urban Storm Drainage Criteria Manuals, Volumes 1-3, published by the Urban Drainage and Flood Control District (Volumes 1 & 2 dated January 2016, Volume 3 dated November 2010 and updates. Calculations were performed to determine runoff quantities for the 5-year and 100-year frequency storms for developed conditions using the Rational Method.July 2019 ECM updated for MS4 permit.

### FOUR STEP PROCESS

- **Step 1 Employ Runoff Reduction Practices**. Roof drains will be directed to side yard swales and as possible to grass lined swales to aid in minimizing direct connection of impervious surfaces.
- **Step 2 Implement BMPs that provide a water quality capture volume with slow release.** An existing Full Spectrum Detention Facility (see Sterling Ranch Filing Nos. 1&2 MDDP, Pond 4)was planned and constructed to handle tributary flows for the southwest portion of the site. All remaining tributary areas from the site will be treated in a proposed temporary Full Spectrum Detention Facility, Interim Pond 1. Both ponds will incorporate water quality capture volumes that are intended to slowly drain in 40 hours and excess urban runoff volumes that are intended to drain within 72 hours.
- **Step 3 Stabilize streams.** With the full spectrum detention facilities in place, the runoff from the proposed residential development will be reduced to predevelopment conditions. The developed discharge from the site is less that existing and therefore is not anticipated to have negative effects on downstream drainageways. Additionally, the Sand Creek Channel will be reinforced with selected areas of rip rap bank protection, vegetative slope stabilization, check structures and drop structures.
- **Step 4** Consider need for Industrial and Commercial BMPs. No industrial or commercial land uses are proposed with this development. The proposed residential development area will implement a Stormwater Management Plan (SWMP) incorporation proper housekeeping procedures. Onsite drainage will be routed through proposed private temporary Full Spectrum Detention Facility (FSD), Interim Pond 1, to minimize introduction of contaminates to the county's public drainage systems.

### **EXISTING DRAINAGE CONDITIONS**

The Homestead at Sterling Ranch Filing No. 2 site consists of 29.658 acres and is situated west of the Sand Creek Watershed. This area was previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996. More recently the area was studied in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017 (henceforth referred to as "Sterling Ranch Filing Nos. 1&2 MDDP").

See the Historic conditions map, the Homestead at Sterling Ranch Filing No. 2 site lies within the Basin EX-4 (Q5 = 71 cfs, Q100 = 352 cfs) and is a 330 acre area of land located on the western portion of the site, including the Sand Creek channel. A portion of this basin extends off-site to the northwest of Vollmer Road, and at the time this map was created was undeveloped property. Runoff from the basin generally travels from north to south until it reaches the northern boundary of the site, being conveyed in the Sand Creek channel. Homestead at Sterling Ranch Filing No. 2 and the surrounding areas, with the exception of the existing Barbarick Subdivision; have already been graded during the overlot of the subdivision. Please refer to the Sterling Ranch Filing Nos. 1&2 MDDP by MS Civil Consultants for information on existing conditions and overlot drainage patterns. A copy of the historic and existing conditions map has been provided in the appendix.

# PROPOSED DRAINAGE CHARACTERISTICS

# **General Concept Drainage Discussion**

The following is a description of the onsite basins, offsite bypass flows and the overall drainage characteristics for the development of Sterling Ranch Filing No. 2. The development of Sterling Ranch Filing No. 2 consists of residential streets and cul-de-sacs, proposedstorm drainage improvements, and lots located within the filing boundary. The proposed development results in drainage patterns and flow values that the same or less thanthose in the Sterling Ranch Filing Nos. 1&2 MDDP. Surface flow is designated as Design Points (DP). The following DPs and Basins were determined using the Rational Method since this method offers a more conservative approach to drainage. It should be noted that all calculations and drainage basins have been revised to reflect the new criteria updates by the El Paso County/City of Colorado Springs Drainage Criteria Manual. For comparison, the **asterisk** (\*) symbol in the detailed drainage discussions below represents each Basin or Design Point as labeled in the Sterling Ranch Filing Nos. 1&2 MDDP. Asterisk symbols on the Proposed Drainage Map in the appendix also represent Basins, Design Points and Pipe Runs as presented in the Sterling Ranch Filing Nos. 1&2 MDDP.

# **Detailed Drainage Discussion (Design Points)**

**DP2\***, 5.39 acres, consists ofBasin B\*planned residential lots and streets with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year. Developed runoff of Q5=8.0 cfs and Q100=19.3 cfs has been calculated for DP2\*. The surface runoff is routed via overlot grading and planned swales to two existing 15' CDOT Type R at-grade inlets. The flows are routed east via a 36" RCP to DP5.

**DP3\***, 2.92 acres, consists ofBasin C\* residential lots within Homestead at Sterling Ranch Filing No. 1, and streets with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year. Developed runoff of Q5=4.2 cfs and Q100=10.1 cfs has been calculated for DP3\*. The surface runoff is routed via overlot grading and proposed swales to an existing 5' CDOT type R sump inlet. The flows captured by the inlet are routed to existing Detention Pond 4.

**DP4\***, 9.36 acres, consists ofBasin D\* and Basin E\*residential lots within Homestead at Sterling Ranch Filing No. 1 and streets with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year and BasinF\* (Dines Boulevard) with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year. Developed runoff of Q5=16.1 cfs and Q100=36.7 cfs has been calculated for DP4. The surface runoff is routed via overlot grading and curb and gutter to DP4\* which will be collected by a 15' CDOT type R atgrade inlet. The intercepted flow (Q5=13.3 cfs and Q100=20.0 cfs) will combine with flows from DP3\* and be routed east via a 30" RCP (PR6\*, Q5=16.8 cfs and Q100=29.4 cfs) to existing Detention Pond 4.

**DP5\***,0.80 acres, consists ofBasin G\* residential lots with runoff coefficients of 0.22 for the 5-year and 0.46 for the 100-year, Basin H\* existing Dines Boulevard, with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year and flowby from Sterling Ranch Filing Nos. 1&2 MDDP DP4\*. Developed runoff of Q5=4.2 and Q100=19.7cfs has been calculated for DP5\*. The surface runoff is routed via overlot grading and curb and gutter to DP5\* which is collected by an existing 15' CDOT type R at-grade inlet. DP5\* has an intercepted flow of (Q5=4.2cfs and Q100=14.7cfs) and of flowby of (Q5=0.0cfs and Q100=5.0cfs). Flowby from DP5\* continues on toPond FSD13, east of Dines Boulevard.See, Sterling Ranch Filing MDDP Proposed Hydrologic Conditions Map.

**DP6\***, 4.68 acres, consists of Sterling Ranch Filing Nos. 1&2 MDDP Basins J\* and K\*planned residential lots with runoff coefficients of 0.22 for the 5-year and 0.46 for the 100-year, Sterling Ranch Filing Nos. 1&2 MDDP Basin I\* (Wheatland Drive) and Basin L\*(Dines Boulevard) with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year. Developed runoff of Q5=14.1 cfs and Q100=26.7cfs has been calculated for DP6\*. The surface runoff is routed via overlot grading and curb and gutter to DP6\* which is collected by an existing 15' CDOT type R at-grade inlet. DP6\* has an intercepted flow of (Q5=12.1cfs and Q100=17.2cfs) and of flowby of (Q5=2.0 cfs and Q100=9.5cfs). Flowby from DP6\* continues on to Pond FSD13, east of Dines Boulevard. See, Sterling Ranch Filing MDDP Proposed Hydrologic Conditions Map.

**DP7**,4.42 acres, consists ofBasin Pproposed residential lots with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year. Developed runoff of Q5=5.7 and Q100=13.8cfs has been calculated for DP7. Surface runoff is routed via overlot grading and curb and gutter to DP7 which is collected by a proposed 10' CDOT type R sump inlet. Flows captured by the proposed 10' CDOT type R sump inlet are routed to existing Detention Pond 4 by proposed RCP storm sewer. The flows from DP7 were anticipated in the sizing of Pond 4 per the Sterling Ranch Filing No. 1 Final Drainage Report.

**DP8**,3.78, acres, consists ofBasin Qproposed residential lots with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year. Developed runoff of Q5=4.9 and Q100=11.8cfs has been calculated for DP8. Surface runoff is routed via overlot grading and curb and gutter to DP8 which is collected by a proposed 10' CDOT type R sump inlet. Flows captured by the proposed 10' CDOT type R sump inlet are routed to existing Detention Pond 4 by proposed RCP storm sewer. The flows from DP8 were anticipated in the sizing of Pond 4 per the Sterling Ranch Filing No. 1 Final Drainage Report.

**DP9**, acres, consists ofBasin Rproposed residential lots with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year. Developed runoff of Q5=2.2 and Q100=5.4cfs has been calculated for DP9. Surface runoff is routed via overlot grading and curb and gutter to DP9 which is collected by a proposed 5' CDOT type R sump inlet. Flows captured by the proposed 10' CDOT type R sump inletcombine with capturedflows contributed from Design Points 7 & 8 and are routed to existing Detention Pond 4 by Pipe Run 4 (Q5=12.4 and Q100=30.1cfs). Pipe Run 4 connects to existing Sterling Ranch Filing Nos. 1&2 MDDP Pipe Run 10\* (Q5=12.5 and Q100=30.4 cfs) and is discharged into the forebay of existing Detention Pond 4. Flows contributed to the forebay of existing Pond 4 are approximately equal to those anticipated by the MDDP, therefore Pond 4 has the capacity for SWQ and Full Spectrum Detention for these flows.

**DP10,** 9.14, acres, consists ofBasin T proposed residential lots with runoff coefficients of 0.30 for the 5-year and 0.50 for the 100-year. Developed runoff of Q5=9.4 and Q100=15.6cfs has been calculated for

DP10. Surface runoff is routed via overlot grading and curb and gutter to DP10 which is collected by a proposed 15' CDOT type R at-grade inlet. DP10 has an intercepted flow of (Q5=9.1 cfs and Q100=12.7cfs) and of flowby of (Q5=0.3cfs and Q100=2.9cfs). Flows captured by the proposed 15' CDOT type R at-grade inletare routed southwest to the proposed full spectrum detention Pond 1 by proposed RCP storm sewer.

**DP11,**1.48, acres, consists ofBasin V1proposed residential lots with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year. Developed runoff of Q5=1.9 and Q100=15.6 cfs has been calculated for DP11. Surface runoff is routed via overlot grading and curb and gutter to DP11 which is collected by a proposed 15' CDOT type R at-grade inlet. DP11 has an intercepted flow of (Q5=1.9cfs and Q100=12.7cfs) and of flowby of (Q5=0.0cfs and Q100=2.9cfs). Flows captured by the proposed 15' CDOT type R at-grade inlet are routed southwest to the proposed full spectrum detention Pond 1 by proposed RCP storm sewer.

**DP12,**4.50, acres, consists ofBasin Uproposed residential lots with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year and flowby from DP10. Developed runoff of Q5=6.2cfs and Q100=17.2 cfs has been calculated for DP12. Surface runoff is routed via overlot grading and curb and gutter to DP12 which is collected by a proposed 10' CDOT type R sump inlet. Flows captured by the proposed 10' CDOT type R sump inlet are routed to the proposed full spectrum detention Pond 1 by proposed RCP storm sewer.

**DP13,**0.83, acres, consists ofBasin V2proposed residential lots with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year and flowby from DP11. Developed runoff of Q5=1.2 and Q100=5.9cfs has been calculated for DP13. Surface runoff is routed via overlot grading and curb and gutter to DP13 which is collected by a proposed modified 5' length by 4.5' wide CDOT type R sump inlet.

**DP14,**0.56, acres, consists ofBasin W3proposed full spectrum detention Pond 1with runoff coefficients of 0.08 for the 5-year and 0.35 for the 100-year and contributed flow from pipe run 9. Developed runoff of Q5=19.6cfs and Q100=52.4cfs has been calculated for DP14. All flows captured by inlets at Design Points DP10, DP11, DP12 and DP13 are routed by Pipe Run 9 (PR9, Q5=17.9 and Q100=47.1 cfs) to the forebay inPond 1 and combine withsurface runoff within Basin W1. An outlet structure with an orifice plate and restrictor plate regulates release rates and provides treatment to all flows tributary to DP14. See the Water Quality Provisions discussion in this report for more information on Pond 1.

Basins labeled on the Proposed Drainage Map marked with a "\*", were previously analyzed and shown in the Final Drainage report for Sterling Ranch Filing No. 1. These basins are; B\*, C\*, D\*, E\*, F\*, G\*, H\*, I\*, L\*, &S\*. They are shown on the Proposed Drainage Map for continuity. Basins K & J additionally contribute to Design Points 3, 4, 5 &6. Therefore, the inlets sizing at these design points has been verified.

# **Detailed Drainage Discussion (Drainage Basins)**

Basins X1, X2,W1, and Y1(0.78, 1.04, 0.86 and 0.084 acres respectively), consists of proposedresidential backyard lotslocated along the eastern boundary of the sitewith runoff coefficients of 0.22for the 5-year and 0.46for the 100-year. Developed runoff of (Q5=0.8, 1.1, 0.2, and 0.8cfs and Q100=2.8, 3.7, 1.7, and 3.0 cfsrespectively has been calculated for the basins. Runoff produced within the residential backyard lots, of Basins X1, X2, W1 and Y1 will be conveyed in backyard swalesand as sheet flow to a Sand Filter Basin within each lot. The treated flows will be collected by private storm sewer systems and discharged into the Sand Creek Channel. A 20' wide typical drainage easement is provided within the lots to accommodate the BMP's. The facilities constructed are to be privately maintained by the Sterling Ranch metro district.

**Basins X, W2, and Y** (0.22, 0.26, and 0.09 acres respectively), consists primarily of vegetated tracts and portion of residential backyards that will discharge as sheet flow to the Sand Creek Channel. The developed flow rates from Basins X, W2, and Y are Q5=0.2, 0.1, 0.1 cfs andQ100=0.8, 0.8, and 0.3 respectively. The total combined developed area being discharge to the channel is less than one acre. It

is not practicable to provide WQCV for these areas, as stated earlier in this paragraph, areas consists primarily of vegetated tracts with no development.

# **CHANNEL IMPROVEMENTS**

Slope grading and intermittent channel bank lining has been proposed for portions of the developable areas adjacent to Sand Creek to protect the developed lots and prevent excessive erosion until the DBPS recommended Sand Creek Channel improvements are installed. The proposed slope grading is intended to reduce outer bankgrades and bring uniformity to areas where significant riling and destabilization has occurred. Proposed channel stabilization improvements includes placement of soil riprap and turf reinforcement matting along embankment toes and along embankment slopes, both of which will function to retain soils and vegetation during heavy rains or larger flood flow events. All disturbed areas, not hardscaped will be re-vegetated with native species grasses, per El Paso County erosion control standards. Storm sewer outfalls into Sand Creek shall be protected by low-tailwater riprap basins. The outfall protection is shown on the accompanying drainage map in the appendix. Refer to the Homestead Filing No.2 Grading and Erosion Control Plans for riprap and turf reinforcement map placement and construction details.

Permanently installed check structures and rip-rap channel lining will be installed within Sand Creek Channel to handle the runoff from fully developed Sterling Ranch and up-gradient watershed in accordance with the Sand Creek DBPS. A discussion regarding the timing of these channel improvements is provided in a subsequent paragraph titled Sterling Ranch Filing No. 1 Subdivision Improvement agreement which follows the Construction Costs segment of this report. Financial Assurance shall be posted for the proposed Sand Creek Channel Improvements and Bank Stabilization (Slope Protection and grade control structures).

# WATER QUALITY PROVISIONS

The proposed Full Spectrum Detention Facility, Pond 1 functions to provide detention storage and water quality facility facility from tributary Basins T, U, V1, V2 and W3. This water quality facility is designed to treat 0.245 ac-ft of water quality storage (WQCV), 0.741 ac-feet of excess urban runoff volume (EURV) and 1.331 ac-ft of 100-year storage. A rolled erosion control blanketed emergency spillway, concrete forebay, trickle channel and outlet structure, and gravel maintenance access road has been designed for Pond 1.

A 24" RCP pipeextending from the proposed modified 6'x2.9' CDOT Type D sump inlet (see Design Point 13) will convey discharge from the pond to Sand Creek. Runoff discharged to Sand Creek is anticipated to reach peak flow rates of Q5=0.7 cfs and Q100=23.4 cfs. A soil riprap stilling basin has been provided at the termination of the pipe to arrest erosion.

Runoff produced within the residential backyard lots, of Basins X1, X2, W1 and Y1 will be conveyed in backyard swales and as sheet flow to a Sand Filter Basin within each lot. The <u>treated</u> flows will be collected by private storm sewer systems and discharged into the Sand Creek Channel. This water quality facility, for each Sand Filter Basin, is designed to treat 0.001 ac-ft of water quality storage (WQCV), 0.005 ac-feet of excess urban runoff volume (EURV) and 0.014 ac-ft of 100-year storage. A 20' wide typical drainage easement is provided within the lots to accommodate the BMP's. The facilities constructed are to be privately maintained by the Sterling Ranch Metropolitan District. Access to maintain these sand filter basins is from the regional trail along sand creek.

The WQCV and EURV required for the site has been determined using the guidelines set forth in the City of Colorado Springs/El Paso County Drainage Criteria Manual - Volume II. Refer to the water quality

facility sizing calculations located within the appendix of this report(see UD-Detention Worksheet in appendix).

As previously discussed, refer to Sterling Ranch Filing Nos. 1&2 MDDP for additional information regarding existing FSD Pond 4. The previously approved FSD Pond was constructed with the Sterling Ranch Filing No. 1 construction drawings in 2018-2019.

### **EROSION CONTROL**

It is the policy of the El Paso County that a grading and erosion control plan be submitted with the drainage report. EPC approved "Early Grading Plan for Sterling Ranch Phase I <u>Onsite</u> Grading & Erosion Control", November 18, 2015. And "Early Grading Plan for Sterling Ranch Phase I <u>Offsite</u> Grading & Erosion Control", December 3, 2015. Grading and Erosion control operations are currently underway (July 2019). Grading and Erosion Control will cease with the final development of the site in the next 6-12 months.

### CONSTRUCTION COST OPINION – HOMESTEAD AT STERLING RANCH FIL. NO. 2

**Drainage Facilities:** 

Updated Cost Opinion included in Addendum above

Drainage improvements are planned with the development of Homestead at Sterling Ranch Filing No. 2. A majority of the construction costs have been accounted for in the "Master Development Drainage Report for Sterling Ranch Filing No. 1&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017. Any additional improvements and costs are listed below.

The following list of drainage improvements are **Non-Reimbursable**. The Reimbursable facilities are outlined in the Sterling Ranch Filing No. 1 Final Drainage Report and Sterling Ranch MDDP. Refer to the MDDP for Sterling Ranch Cost and Fee Analysis Report (February 2019).

| <b>Item</b>     | <b>Description</b>               | <b>Quantity</b> | Unit Cost    | Cost         |
|-----------------|----------------------------------|-----------------|--------------|--------------|
| 1.              | 18" RCP                          | 31 LF           | \$40 /LF     | \$1,240.00   |
| 2.              | 24" RCP                          | 127 LF          | \$50 /LF     | \$6,350.00   |
| 3.              | 30" RCP                          | 998 LF          | \$85 /LF     | \$84,830.00  |
| 4.              | 36" RCP                          | 8 LF            | \$105 /LF    | \$840.00     |
| 5.              | 42" RCP                          | 699 LF          | \$185 /LF    | \$129,315.00 |
| 6.—             | 24" FES                          | 1 EA            | \$750 /EA    | \$750.00     |
| 8.              | 42" FES                          | 1 EA            | \$1,250 /EA  | \$1,250.00   |
| 9.              | 5.0'x4.5' CDOT Type R Sump Inlet | 1 EA            | \$4,000 /EA  | \$4,000.00   |
| <del>10.</del>  | 10' CDOT Type R Sump Inlet       | 4 EA            | \$4,700 /EA  | \$18,800.00  |
| 11.             | 15' CDOT Type R At-Grade Inlet   | 2 EA            | \$6,000 /EA  | \$12,000.00  |
| <del>12.</del>  | 4.0' Type II MH                  | 1 EA            | \$3,500 /EA  | \$3,500.00   |
| <del>13</del> . | 5.0' Type II MH                  | 2 EA            | \$4,000 /EA  | \$8,000.00   |
| 14.             | 6.0' Type II MH                  | 1 EA            | \$4,500 /EA  | \$4,500.00   |
| <del>17.</del>  | 5.0'x6.0' MH                     | 2 EA            | \$6,500 /EA  | \$13,000.00  |
| 18.             | 5.5'x5.5' MH                     | 1 EA            | \$6,500 /EA  | \$6,500.00   |
| <del>19.</del>  | Headwall/Wingwall                | 1 EA            | \$6,000 /EA  | \$6,000.00   |
| <del>20.</del>  | Full Spectrum Det. Pond 1        | 1 EA            | \$15,000 /EA | \$15,000.00  |

| 21. | FSD Pond 1 Outlet Structure           | 1     | EA | \$12,600 | /EA |         | \$12,600.00 |
|-----|---------------------------------------|-------|----|----------|-----|---------|-------------|
| 22. | Ind. Lot Sand Filter Basins w/6" Pipe | 26    | EA | \$2,000  | /EA |         | \$52,000.00 |
| 23  | 18" Drain Basin Manholes w/Lids       | 27    | EA | \$1,000  | /EA |         | 27,000.00   |
| 24  | 12" ADS Pipe                          | 1,658 |    | \$26     | /LF |         | 43,108.00   |
|     | r                                     | ,     |    | * -      |     | T-4-1 0 | 0450 502 00 |

The following list of drainage improvements are **Reimbursable** for the improvements to the Sand Creek Channel adjacent to Homestead at Sterling Ranch Filing No.2. The reimbursement is up to the amount as shown in the DBPS or as adjusted through the City/EPC Drainage Board.

# **Sand Creek Channel Improvements**

| Item | Description                  | Quar  | Quantity |          | ost  |       | Cost         |
|------|------------------------------|-------|----------|----------|------|-------|--------------|
| 1.   | Rip Rap Protection           | 390   | Ton      | \$80     | /Ton |       | \$31,200.00  |
| 2.   | Drop/Check Structures        | 5     | EA       | \$75,000 | /EA  |       | \$375,000.00 |
| 3.   | Slope Stabilization Blankets | 7,435 | SY       | \$6      | /SY  | _     | \$44,610.00  |
|      |                              |       |          |          |      | Total | \$450,810.00 |

#### DRAINAGE & BRIDGE FEES – HOMESTEAD AT STERLING RANCH FIL. NO. 2

This site is within the Sand Creek Drainage Basin. The 2019 Drainageand BridgeFees per El Paso County for the HOMESTEAD AT STERLING RANCH FILING NO. 2site are as follows:

| Per Homesteadat Sterling Ranch Filing No. 2 Plat – |        |   |     |    | Total Area | 29.658 Acres |                            |  |
|----------------------------------------------------|--------|---|-----|----|------------|--------------|----------------------------|--|
| HOMESTEAD AT STERLING RANCH FILING NO. 2 FEES:     |        |   |     |    |            |              |                            |  |
| <b>Drainage Fees:</b>                              | 29.658 | X | 46% | \$ | 18,940.00  | =            | \$ 258,392.36              |  |
| <b>Bridge Fees:</b>                                | 29.658 | X | 46% | \$ | 5,559.00   | =            | \$ 75,839.66               |  |
| _                                                  |        |   |     |    |            |              | <b>Total \$ 334,232.02</b> |  |

# STERLING RANCH FILING NO. 1 - SUBDIVISION IMPROVEMENTS AGREEEMENT

Sterling Ranch Filing No. 1 final plat and SIA has been recorded, and addressed the following drainage improvements Not located/and located in the Sand Creek Channel. The following SIA paragraphs outlined drainage for Sterling Ranch in the following manner;

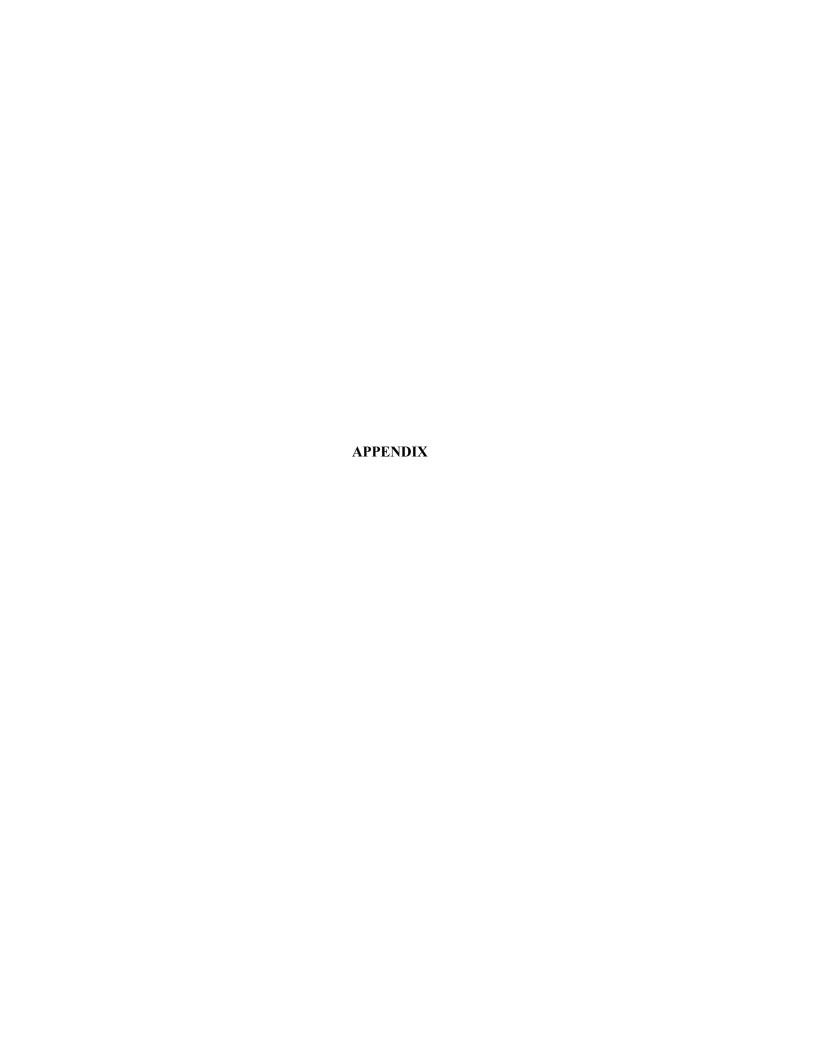
2. Drainage and Landscaping Tracts: Improvements on Tracts A, B, F, H, I, J, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, AA and CC as identified on the final plat of Filing No. 1 will be completed to the satisfaction of the County and District and, upon said completion, the improvements will be dedicated to and accepted by the District. Improvements on Tract D (Sand Creek) will be completed to the satisfaction of the County and upon said completion; the improvements will be dedicated to and accepted by the County. The ownership and maintenance of storm drain facilities and structures not located on the foregoing tracts shall be determined as follows. All storm pipes shall be owned and maintained by the District except where located in County road rights of way (see Paragraph 5 below), in which case the County shall own and maintain the storm drain facilities and structures, including but not limited to, inlets and manholes. A typical cross section describing the ownership and maintenance responsibilities of drainage improvements within County rights of way is attached as Exhibit C hereto.

### 7. Timing of Construction and Acceptance:

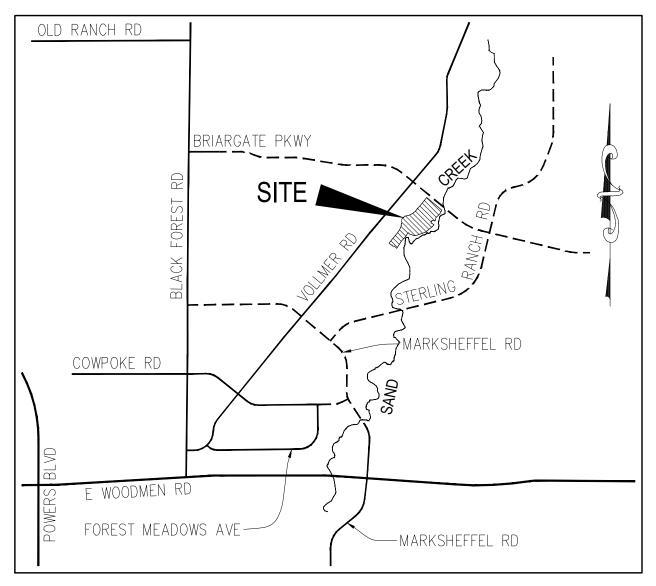
a. **Drainage Improvements Not Located in Sand Creek Channel**: Except as set forth below in subsection 6.b. (drainage improvements located in Sand Creek Channel), all drainage improvements described in <u>Exhibit A</u> and constructed within the Drainage and Landscaping Tracts identified in paragraph 2 above shall be completed by the

Subdivider and District, meeting all applicable standards for preliminary acceptance, prior to the recording of the first replat of Tracts C, E, G, K or BB. In the event that a portion of the drainage improvements are not completed prior to the recording of the first replat, then prior to such recording collaterial sufficient in the opinion of the County to assure completion of the improvements must be posted by the Subdivider and a deadline by which such drainage improvements shall be completed shall be established by written agreement.

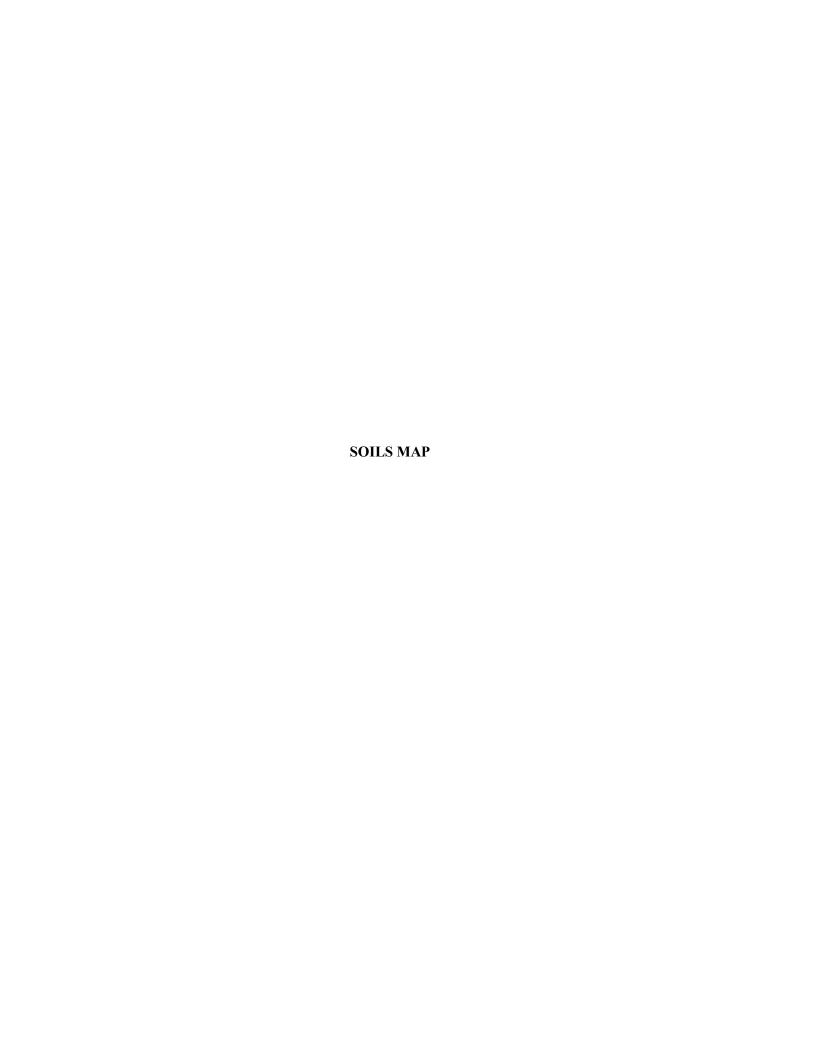
- b. **Drainage Improvements Located in Sand Creek Channel (Tract D):** The District agrees that it will construct or cause the construction of all drainage improvements to be located in Tract D as well as future tracts within Sterling Ranch containing the Sand Creek Channel in accordance with the following:
- i. Bank stabilization of the Sand Creek channel shall be required prior to any replats or other final plats adjacent to the channel. The design and installation of said improvements shall be accomplished and guaranteed through the normal subdivision review and collateralization process.
- ii. Other drainage improvements in Tract D and future tracts containing the Sand Creek Channel, such as drop structures, check structures and similar stabilization or protection improvements, will be designed and constructed by the District with the final construction drawings to be approved by the County no later than the final platting of the 700<sup>th</sup> single family lot within the boundaries of the approved Sterling Ranch Sketch Plan and the completion of all said improvements no later than the 800<sup>th</sup> single family lot with the boundaries of the approved Sterling Ranch Sketch Plan.
- iii. In order to assure completion of the drainage improvements required in Subsection 6.b.ii above as well as a fair apportionment of the costs of said drainage improvements amongst adjacent Sterling Ranch subdividers, the District agrees to establish a Sand Creek Channel Drainage Fee to be paid into a District Escrow Fund by adjacent subdividers at the time of final platting. The amount of the fee shall be a minimum of One Thousand Dollars (\$1,000.00) per single family lot. The details of the proposed Sand Creek Channel Drainage Fee and the District Escrow Fund shall be agreed to by the parties in advance of the submittal of the first replat of or subdivision of the Master Pad Sites or other property located within Sterling Ranch.


A full copy of the recorded SIA is located in the files of El Paso County and EPC Clerk and Recorders office under Reception No. 218714151


# **SUMMARY**


Development of this site will not adversely affect the surrounding development per this final drainage report with no negative impacts to the neighboring developments. The existing and proposed drainage facilities will adequately convey, detain and route runoff from tributary and onsite flows to the Sand Creek Drainage channel. Full Spectrum Detention and Water Quality Ponds will be used to discharge developed flows into Sand Creek per the Urban Drainage criteria flow rates, which are at or less than the historic flow. Care will be taken during construction to accommodate overland flow routes onsite and temporary drainage conditions. The development of the HOMESTEAD AT STERLING RANCH FILING NO. 2project(s)shall not adversely affect adjacent or downstream property.

# **REFERENCES**


- 1.) "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I & II".
- 2.) "Urban Storm Drainage Criteria Manuals, Volumes 1-3"
- 3.) NRSC Web Soil Survey Map for El Paso County. http://websoilsurvey.nrcs.usda.gov
- 4.) Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Effective date December 7, 2018.
- 5.) "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996
- 6.) "Sterling Ranch-Phase 1 Offsite Grading, Early Grading & Erosion Control Plans", prepared by M&S Civil Consultants, Inc., dated November 2015
- 7.) "Sterling Ranch-Phase 1 Onsite Grading, Early Grading & Erosion Control Plans", prepared by M&S Civil Consultants, Inc., dated November 2015
- 8.) "Master Development Drainage Report for Sterling Ranch Filing Nos. 1&2 and Final Drainage Report for Sterling Ranch Filing No. 1", prepared by M&S Civil Consultants, Inc., dated April 2017
- 9.) "Sterling Ranch Filing Nos. 1&2 MDDP" prepared by MS Civil Consultants, Inc., dated October 2018.







VICINITY MAP N.T.S.





### MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D **Soil Rating Polygons** Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 15, Oct 10, 2017 C/D Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. D Not rated or not available Date(s) aerial images were photographed: May 22, 2016—Mar 9. 2017 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

### **Hydrologic Soil Group**

| Map unit symbol           | Map unit name                                        | Rating | Acres in AOI | Percent of AOI |
|---------------------------|------------------------------------------------------|--------|--------------|----------------|
| 71                        | Pring coarse sandy<br>loam, 3 to 8 percent<br>slopes | В      | 29.0         | 100.0%         |
| Totals for Area of Intere | est                                                  | 29.0   | 100.0%       |                |

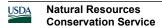
### **Description**

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

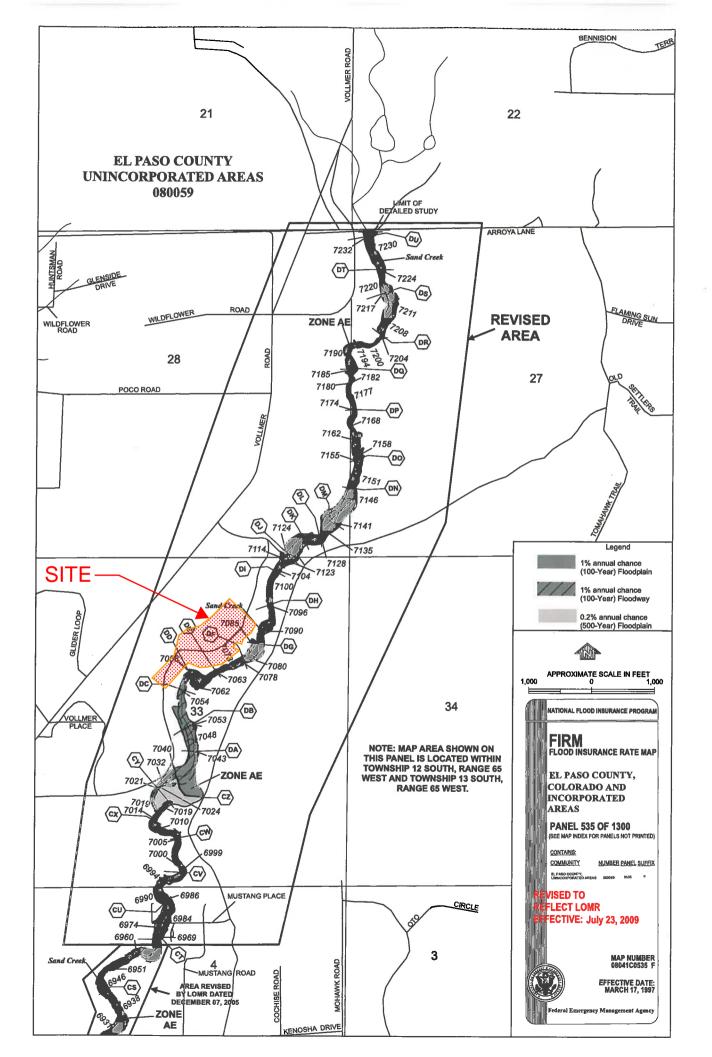
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

### Rating Options

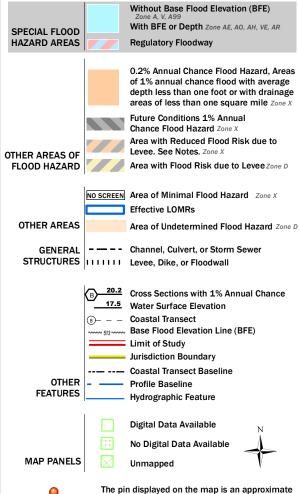

Aggregation Method: Dominant Condition



Component Percent Cutoff: None Specified

Tie-break Rule: Higher






### National Flood Hazard Layer FIRMette



### Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT




The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 1/23/2019 at 7:09:44 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.



Latitude: 38.964784

Longitude: 104.67180

NGVD 29 height:

Datum shift(NAVD 88 minus NGVD 29): 1.196 meter

1.196 meters = 3.92 feet

NAVD88 - 3.92 feet = NGVD29

### **STORM 4 Outfall to Sand Creek Channel**

Cross Section DE = 7071.8 NAVD88

7071.8 NAVD88 - 3.92 feet = 7067.88 NGVD29



# HOMESTEAD AT STERLING RANCH FILING NO. 2 FINAL DRAINAGE REPORT

### (Area Drainage Summary)

| From Area Runoff Coe | ficient Summa | ıry            |                  |                | OVER.  | LAND    |         | STRE    | ET / CH | ANNEL F  | LOW            | Time of T | Fravel ( $T_t$ ) | INTENS         | INTENSITY **     |                | TOTAL FLOWS      |  |
|----------------------|---------------|----------------|------------------|----------------|--------|---------|---------|---------|---------|----------|----------------|-----------|------------------|----------------|------------------|----------------|------------------|--|
| BASIN                | AREA<br>TOTAL | C <sub>5</sub> | C <sub>100</sub> | C <sub>5</sub> | Length | Height  | $T_{C}$ | Length  | Slope   | Velocity | T <sub>t</sub> | TOTAL     | СНЕСК            | I <sub>5</sub> | I <sub>100</sub> | Q <sub>5</sub> | Q <sub>100</sub> |  |
|                      | (Acres)       | From DCI       | A Table 5-1      |                | (ft)   | (ft)    | (min)   | (ft)    | (%)     | (fps)    | (min)          | (min)     | (min)            | (in/hr)        | (in/hr)          | (c.f.s.)       | (c.f.s.)         |  |
|                      |               |                |                  |                | Propo  | osed Ar | ea Dra  | inage S | ummai   | ry       |                |           |                  |                |                  |                |                  |  |
| ONSITE BASINS        |               |                |                  |                |        |         |         |         |         |          |                |           |                  |                |                  |                |                  |  |
| J                    | 0.43          | 0.22           | 0.46             | 0.22           | 90     | 1.8     | 12.0    | 0       | 2.0%    | 3.0      | 0.0            | 12.0      | 10.5             | 4.1            | 6.8              | 0.4            | 1.3              |  |
| <u>K</u>             | 0.61          | 0.22           | 0.46             | 0.22           | 75     | 1.5     | 10.9    | 0       | 2.0%    | 3.0      | 0.0            | 10.9      | 10.4             | 4.1            | 6.8              | 0.5            | 1.9              |  |
| P                    | 4.42          | 0.38           | 0.55             | 0.38           | 100    | 2       | 10.3    | 1100    | 2.5%    | 3.0      | 6.0            | 16.4      | 16.7             | 3.4            | 5.7              | 5.7            | 13.8             |  |
| Q                    | 3.78          | 0.38           | 0.55             | 0.38           | 100    | 2       | 10.3    | 1100    | 2.5%    | 3.0      | 6.0            | 16.4      | 16.7             | 3.4            | 5.7              | 4.9            | 11.8             |  |
| R                    | 1.57          | 0.38           | 0.55             | 0.38           | 100    | 2       | 10.3    | 450     | 1.6%    | 3.0      | 2.5            | 12.8      | 13.1             | 3.8            | 6.3              | 2.2            | 5.4              |  |
| T                    | 9.14          | 0.30           | 0.50             | 0.30           | 100    | 2       | 11.5    | 942     | 2.1%    | 3.0      | 5.2            | 16.7      | 15.8             | 3.4            | 5.8              | 9.4            | 26.4             |  |
| U                    | 4.50          | 0.38           | 0.55             | 0.38           | 100    | 2       | 10.3    | 457     | 1.5%    | 3.0      | 2.5            | 12.9      | 13.1             | 3.8            | 6.3              | 6.4            | 15.6             |  |
| V1                   | 1.48          | 0.38           | 0.55             | 0.38           | 100    | 2       | 10.3    | 600     | 2.0%    | 3.0      | 3.3            | 13.6      | 13.9             | 3.7            | 6.2              | 2.1            | 5.0              |  |
| V2                   | 0.83          | 0.38           | 0.55             | 0.38           | 100    | 2       | 10.3    | 360     | 1.6%    | 3.0      | 2.0            | 12.3      | 12.6             | 3.8            | 6.4              | 1.2            | 2.9              |  |
| W1                   | 0.86          | 0.22           | 0.46             | 0.22           | 80     | 6       | 7.3     | 0       | 0.0%    | 2.3      | 0.0            | 7.3       | 10.4             | 4.6            | 7.7              | 0.9            | 3.1              |  |
| W2                   | 0.26          | 0.08           | 0.35             | 0.08           | 35     | 8       | 3.9     | 0       | 0.3%    | 2.3      | 0.0            | 5.0       | 10.2             | 5.2            | 8.7              | 0.1            | 0.8              |  |
| W3                   | 0.56          | 0.08           | 0.35             | 0.08           | 35     | 8       | 3.9     | 160     | 0.5%    | 2.3      | 1.2            | 5.1       | 11.1             | 5.2            | 8.7              | 0.2            | 1.7              |  |
| X                    | 0.22          | 0.22           | 0.46             | 0.22           | 80     | 6       | 7.3     | 0       | 2.5%    | 2.3      | 0.0            | 7.3       | 10.4             | 4.6            | 7.7              | 0.2            | 0.8              |  |
| X1                   | 0.78          | 0.22           | 0.46             | 0.22           | 80     | 6       | 7.3     | 0       | 2.5%    | 2.3      | 0.0            | 7.3       | 10.4             | 4.6            | 7.7              | 0.8            | 2.8              |  |
| X2                   | 1.04          | 0.22           | 0.46             | 0.22           | 80     | 6       | 7.3     | 0       | 2.5%    | 2.3      | 0.0            | 7.3       | 10.4             | 4.6            | 7.7              | 1.1            | 3.7              |  |
| Y                    | 0.09          | 0.22           | 0.46             | 0.22           | 80     | 6       | 7.3     | 0       | 2.5%    | 2.3      | 0.0            | 7.3       | 10.4             | 4.6            | 7.7              | 0.1            | 0.3              |  |
| Y1                   | 0.84          | 0.22           | 0.46             | 0.22           | 80     | 6       | 7.3     | 0       | 2.5%    | 2.3      | 0.0            | 7.3       | 10.4             | 4.6            | 7.7              | 0.8            | 3.0              |  |
| Y2                   | 0.21          | 0.22           | 0.46             | 0.22           | 80     | 6       | 7.3     | 0       | 2.5%    | 2.3      | 0.0            | 7.3       | 10.4             | 4.6            | 7.7              | 0.2            | 0.7              |  |
| OFFSITE BASINS*      |               |                |                  |                |        |         |         |         |         |          |                |           | •                |                | •                |                |                  |  |
| <b>B</b> *           | 5.39          | 0.38           | 0.55             | 0.38           | 60     | 1.2     | 8.0     | 1381    | 2.8%    | 3.0      | 7.6            | 16.3      | 18.0             | 3.4            | 5.7              | 8.0            | 19.3             |  |
| C*                   | 2.92          | 0.38           | 0.55             | 0.38           | 100    | 1.2     | 12.2    | 411     | 3.0%    | 3.0      | 2.3            | 14.5      | 12.8             | 3.8            | 6.3              | 4.2            | 10.1             |  |
| D*                   | 2.90          | 0.38           | 0.55             | 0.38           | 100    | 2       | 10.3    | 245     | 2.1%    | 3.0      | 1.3            | 11.7      | 11.9             | 3.9            | 6.5              | 4.3            | 10.4             |  |
| E*                   | 5.34          | 0.38           | 0.55             | 0.38           | 100    | 2       | 10.3    | 61      | 3.3%    | 3.0      | 0.3            | 10.7      | 10.9             | 4.0            | 6.8              | 8.2            | 19.9             |  |
| F*                   | 1.12          | 0.90           | 0.96             | 0.90           | 10     | 0.2     | 0.9     | 1525    | 2.8%    | 3.0      | 8.4            | 9.3       | 18.5             | 4.2            | 7.1              | 4.3            | 7.7              |  |
| G*                   | 0.61          | 0.22           | 0.46             | 0.22           | 100    | 2       | 12.6    | 0       | 2.2%    | 3.0      | 0.0            | 12.6      | 10.6             | 4.0            | 6.8              | 0.5            | 1.9              |  |
| H*                   | 0.19          | 0.90           | 0.96             | 0.90           | 10     | 0.2     | 0.9     | 280     | 2.1%    | 3.0      | 1.5            | 5.0       | 11.6             | 5.2            | 8.7              | 0.9            | 1.6              |  |
| I*                   | 2.10          | 0.90           | 0.96             | 0.90           | 10     | 0.2     | 0.9     | 1082    | 2.5%    | 3.0      | 5.9            | 6.9       | 16.1             | 4.7            | 7.9              | 8.9            | 15.9             |  |
| $L^*$                | 1.54          | 0.90           | 0.96             | 0.90           | 10     | 0.2     | 0.9     | 1805    | 2.1%    | 3.0      | 9.9            | 10.8      | 20.1             | 4.0            | 6.7              | 5.6            | 10.0             |  |
| S*                   | 1.97          | 0.08           | 0.35             | 0.08           | 60     | 10      | 5.6     | 270     | 0.5%    | 2.3      | 2.0            | 7.6       | 11.8             | 4.5            | 7.6              | 0.7            | 5.3              |  |

<sup>\*</sup> For detailed information on Desing Points, Basins, Flowby, or Pipe Runs see Sterling Ranch Filing Nos. 1&2 MDDP prepared by MS Civil Consultants, dated April 2017

Calculated by: ET/CMN
Date: 1/14/2020

Checked by: VAS

<sup>\*\*</sup> Intensity equations assume a minimum travel time of 5 minutes.

### HOMESTEAD AT STERLING RANCH FILING NO. 2 FINAL DRAINAGE REPORT

(Basin Routing Summary)

|              |                                      |                 | - 1-              | 1              |                |        | 8       |        |       |          |                | I                      |                |                  |          |              | Tr                             |
|--------------|--------------------------------------|-----------------|-------------------|----------------|----------------|--------|---------|--------|-------|----------|----------------|------------------------|----------------|------------------|----------|--------------|--------------------------------|
|              | From Area Runoff Coefficient Summary |                 |                   |                |                | RLAND  |         |        |       | NNEL FLO |                | Time of Travel $(T_t)$ |                | SITY **          | TOTAL .  |              | <b>J</b>                       |
| DESIGN POINT | CONTRIBUTING BASINS                  | CA <sub>5</sub> | CA <sub>100</sub> | C <sub>5</sub> | Length         | Height | $T_{C}$ | Length | Slope | Velocity | T <sub>t</sub> | TOTAL                  | I <sub>5</sub> | I <sub>100</sub> | $Q_5$    | $Q_{100}$    | COMMENTS                       |
|              |                                      |                 |                   |                | (ft)           | (ft)   | (min)   | (ft)   | (%)   | (fps)    | (min)          | (min)                  | (in/hr)        | (in/hr)          | (c.f.s.) | (c.f.s.)     |                                |
|              |                                      | P.              | ROPOS             | ED L           | <b>PRAIN</b> A | IGE BA | SIN R   | OUTIN  | G SUM | MARY     |                |                        |                |                  |          |              |                                |
| 2*           | B*                                   | 2.34            | 3.39              |                |                |        |         |        |       |          |                | 16.3                   | 3.4            | 5.7              | 8.0      | 19.3         | (2) EX. 15' AT-GRADE INLETS    |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
| 3*           | C*                                   | 1.11            | 1.61              |                |                |        |         |        |       |          |                | 12.8                   | 3.8            | 6.3              | 4.2      | 10.1         | EX. 6' SUMP INLET              |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
| 4.5          | De De De                             |                 |                   |                |                |        |         |        |       |          |                |                        | 2.0            |                  | 1/1      | 26.7         |                                |
| 4*           | D*, E*, F*                           | 4.14            | 5.61              |                |                |        |         |        |       |          |                | 11.7                   | 3.9            | 6.5              | 16.1     | <b>36.</b> 7 | EX. 15' AT-GRADE INLET         |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
| 5*           | G*, H*, FLOWBY DP4*                  | 1.07            | 3.02              |                |                |        |         |        |       |          |                | 11.7                   | 3.9            | 6.5              | 4.2      | 10 7         | EX. 15' AT-GRADE INLET         |
| ,            | G , II , FLOWBI DI 4                 | 1.07            | 3.02              |                |                |        |         |        |       |          |                | 11.7                   | 3.9            | 0.5              | 4.2      | 17./         | EX. 15 A1-GRADE INLET          |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
| 6*           | I*, J, K, L*                         | 3.50            | 3.97              |                |                |        |         |        |       |          |                | 10.8                   | 4.0            | 6.7              | 14.1     | 26.7         | EX. 15' AT-GRADE INLET         |
|              | , , ,                                |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
| 7            | P                                    | 1.68            | 2.43              |                |                |        |         |        |       |          |                | 16.4                   | 3.4            | 5.7              | 5.7      | 13.8         | PROP. 10' SUMP INLET           |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
| 8            | Q                                    | 1.44            | 2.08              |                |                |        |         |        |       |          |                | 16.4                   | 3.4            | 5.7              | 4.9      | 11.8         | PROP. 10' SUMP INLET           |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
|              | D                                    | 0.60            | 0.06              |                |                |        |         |        |       |          |                | 12.0                   | 3.8            | 6.2              | 2.2      |              |                                |
| 9            | R                                    | 0.60            | 0.86              |                |                |        |         |        |       |          |                | 12.8                   | 3.8            | 6.3              | 2.2      | 5.4          | PROP. 10' SUMP INLET           |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
| 10           | T                                    | 2.74            | 2.69              |                |                |        |         |        |       |          |                | 15.8                   | 3.4            | 5.8              | 9.4      | 15.6         | PROP. 15' AT-GRADE INLET       |
| 10           | •                                    | 2.71            | 2.07              |                |                |        |         |        |       |          |                | 15.0                   | 5.1            | 2.0              | 7.4      |              | Total CA100=3.86 Split Between |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              | DP10 & DP11 For Crown Overflow |
| 11           | V1                                   | 0.56            | 2.69              |                |                |        |         |        |       |          |                | 15.8                   | 3.4            | 5.8              | 1.9      | 15.6         | PROP. 15' AT-GRADE INLET       |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              | Total CA100=3.86 Split Between |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                | <u> </u>         |          |              | DP10 & DP11 For Crown Overflow |
| 12           | U, FLOWBY DP10                       | 1.80            | 2.98              |                |                |        |         |        |       |          |                | 15.8                   | 3.4            | 5.8              | 6.2      | 17.2         | PROP. 10' SUMP INLET           |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              |                                |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              | Į                              |
| 13           | V2, FLOWBY DP11                      | 0.32            | 0.96              |                |                |        |         |        |       |          |                | 13.6                   | 3.7            | 6.2              | 1.2      | 5.9          | PROP. MODIFIED                 |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              | 5'x4.5' SUMP INLET             |
| 14           | W3, PR9                              | 5.25            | 0.52              |                |                |        |         |        |       |          |                | 13.6                   | 2.7            | (2               | 10.6     | 52.1         |                                |
| 14           | ws, rky                              | 5.35            | 8.52              |                |                |        |         |        |       |          |                | 13.6                   | 3.7            | 6.2              | 19.6     | 32.4         | CUMULATIVE<br>DETENTION DOND   |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        |                |                  |          |              | DETENTION POND                 |
|              |                                      |                 |                   |                |                |        |         |        |       |          |                |                        | 0.1            | 1 . 11           | ETT/CLOL |              | IL                             |

<sup>\*</sup> For detailed information on Desing Points, Basins, Flowby, or Pipe Runs see Sterling Ranch Filing Nos. 1&2 MDDP prepared by MS Civil Consultants, dated April 2017

\*\* Intensity equations assume a minimum travel time of 5 minutes.

Calculated by: ET/CMN Date: 1/14/2020 Checked by: VAS

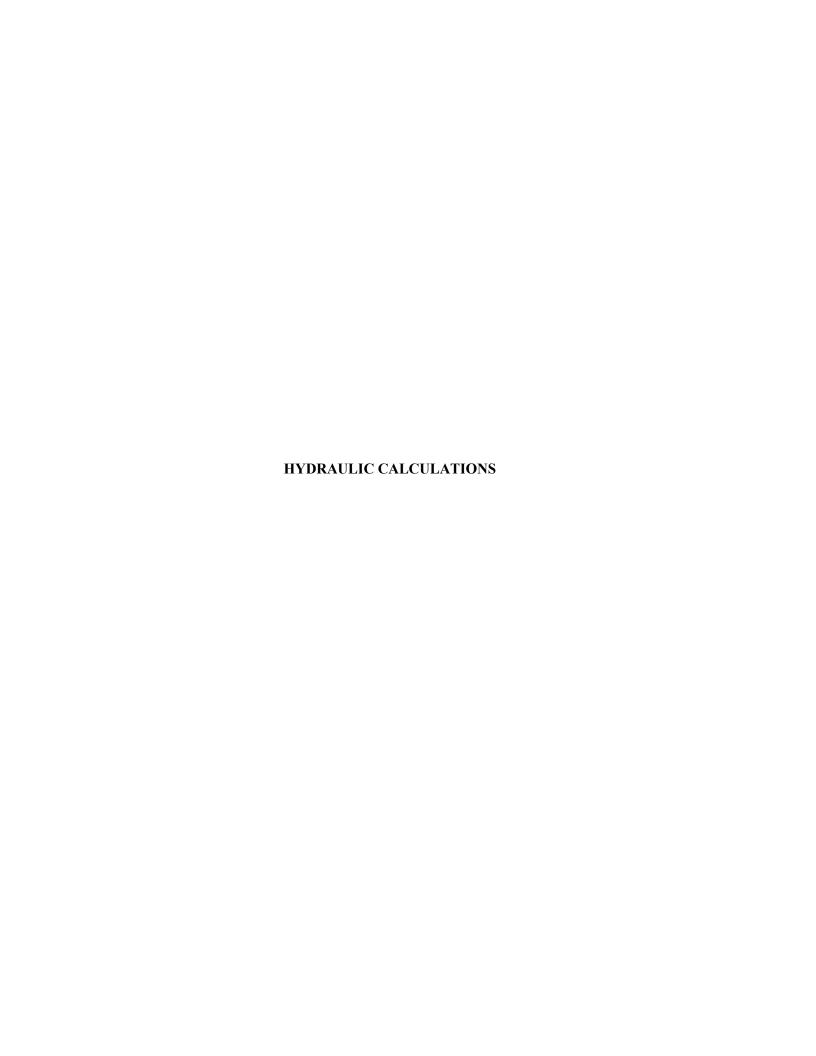
## HOMESTEAD AT STERLING RANCH FILING NO. 2 DRAINAGE CALCULATIONS

### (Storm Sewer Routing Summary)

|             |                                     |                    |                                 |                           | In       | tensity**    | Fle         | )w    | PIPE SIZE                  |
|-------------|-------------------------------------|--------------------|---------------------------------|---------------------------|----------|--------------|-------------|-------|----------------------------|
| PIPE<br>RUN | Contributing<br>Pipes/Design Points | Equivalent<br>CA 5 | Equivalent<br>CA <sub>100</sub> | Maximum<br>T <sub>C</sub> | $I_5$    | I 100        | <b>Q</b> 5  | Q 100 |                            |
| 1           | DP7                                 | 1.68               | 2.43                            | 16.4                      | 3.4      | 5.7          | 5.7         | 13.8  | 24" RCP                    |
| 2           | DP8                                 | 1.44               | 2.08                            | 16.4                      | 3.4      | 5.7          | 4.9         | 11.8  | 18" RCP                    |
| 3           | PR1, PR2                            | 3.12               | 4.51                            | 16.4                      | 3.4      | 5.7          | 10.6        | 25.7  | 24" RCP                    |
| 4           | DP9, PR3                            | 3.71               | 5.37                            | 17.0                      | 3.3      | 5.6          | 12.4        | 30.1  | 30" RCP                    |
| 5           | DP10                                | 2.64               | 2.20                            | 15.8                      | 3.4      | 5.8          | 9.1         | 12.7  | 18" RCP                    |
| 6           | DP11                                | 0.55               | 2.20                            | 15.8                      | 3.4      | 5.8          | 1.9         | 12.7  | 18" RCP                    |
| 7           | PR5, PR6                            | 3.19               | 4.39                            | 16.0                      | 3.4      | 5.7          | 10.9        | 25.3  | 30" RCP                    |
| 8           | DP12                                | 1.80               | 2.98                            | 15.8                      | 3.4      | 5.8          | 6.2         | 17.2  | 24" RCP                    |
| 9           | DP13, PR7, PR8                      | 5.31               | 8.33                            | 16.6                      | 3.4      | 5.7          | 17.9        | 47.1  | 42" RCP                    |
| 10          | UD-Detention_v3.07                  |                    |                                 |                           |          |              | <b>0.</b> 7 | 23.4  | Outlet Structure & 18" CMP |
| 11          | Pipe Run continued from MDDP DP1    | 5* to Sand Creek   | . Flow values ar                | e that of MDDF            | Pipe Run | 15* (PR15*). | 42.1        | 76.8  | 42" RCP                    |
| 12          | Lots 36-41                          |                    |                                 |                           |          |              | 0.0         | 1.3   | 12" ADS                    |
| 13          | Lots 28-35                          |                    |                                 | 0.0                       | 1.6      | 12" ADS      |             |       |                            |
| 14          | Lots 19-24                          |                    |                                 | 0.0                       | 1.5      | 12" ADS      |             |       |                            |
| <u>15</u>   | Lots 13-18                          |                    |                                 |                           |          |              | 0.0         | 1.4   | 12" ADS                    |

<sup>\*</sup> For detailed information on Desing Points, Basins, Flowby, or Pipe Runs see Sterling Ranch Filing Nos. 1&2 MDDP prepared by MS Civil Consultants, dated April 2017

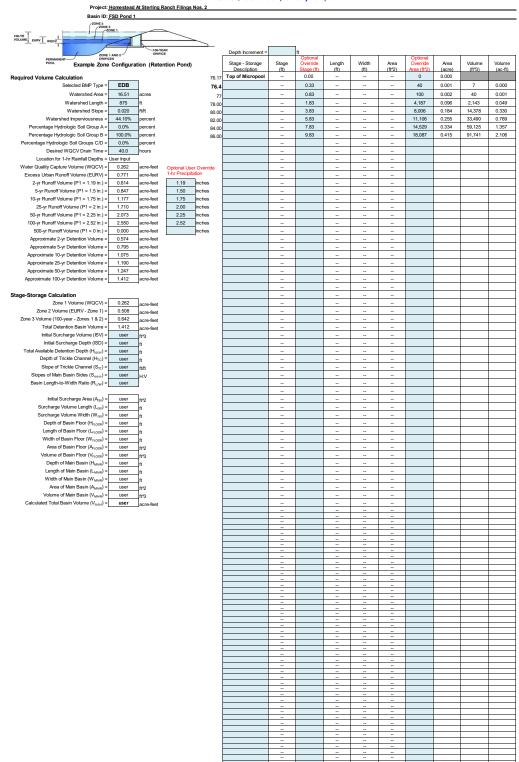
DP - Design Point EX - Existing Design Point FB- Flow By from Design Point INT- Intercepted Flow from Design Point


Calculated by: <u>CMN</u>

Date: <u>1/14/2020</u>

Checked by: <u>VAS</u>

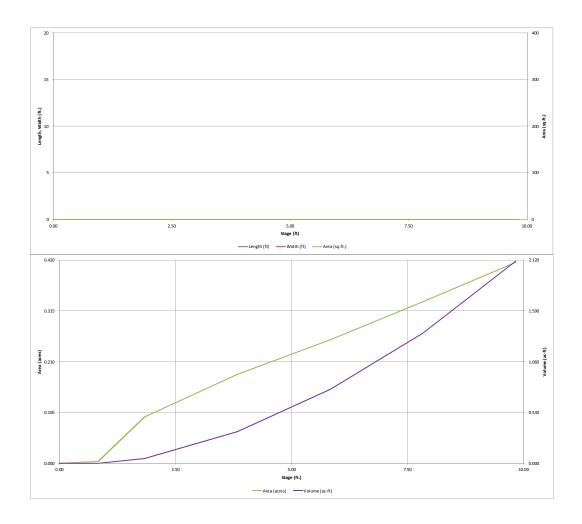
Updated SF-3 routing for Basins X1, X2, W1, & Y1 included in Addendum above.


<sup>\*\*</sup> Intensity equations assume a minimum travel time of 5 minutes.

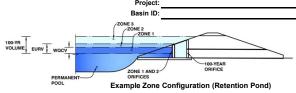


| Weig                         | Weighted Percent Imperviousness of FSD Pond 1 |      |                  |             |  |  |  |  |  |  |
|------------------------------|-----------------------------------------------|------|------------------|-------------|--|--|--|--|--|--|
| Contributing<br>Basins       | Area<br>(Acres)                               | C 5  | Impervious % (I) | (Acres)*(I) |  |  |  |  |  |  |
| T                            | 9.14                                          | 0.30 | 40               | 365.60      |  |  |  |  |  |  |
| $oldsymbol{U}$               | 4.50                                          | 0.38 | 53               | 238.50      |  |  |  |  |  |  |
| V1                           | 1.48                                          | 0.38 | 53               | 78.44       |  |  |  |  |  |  |
| V2                           | 0.83                                          | 0.38 | 53               | 43.99       |  |  |  |  |  |  |
| W1                           | 0.56                                          | 0.08 | 2                | 1.12        |  |  |  |  |  |  |
| Totals                       | 16.51                                         |      |                  | 727.65      |  |  |  |  |  |  |
| Imperviousness of FSD Pond 1 | 44.1                                          | %    |                  |             |  |  |  |  |  |  |

### **DETENTION BASIN STAGE-STORAGE TABLE BUILDER**


UD-Detention, Version 3.07 (February 2017)




UD-Peterition\_v3.07.x/sm, Basin 7/31/2019, 9:30 AM

### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)



### UD-Detention, Version 3.07 (February 2017)



|                   | Stage (ft) | Zone Volume (ac-ft) | Outlet Type          |
|-------------------|------------|---------------------|----------------------|
| Zone 1 (WQCV)     | 3.45       | 0.262               | Orifice Plate        |
| Zone 2 (EURV)     | 5.84       | 0.508               | Orifice Plate        |
| !one 3 (100-year) | 8.00       | 0.642               | Weir&Pipe (Restrict) |
| •                 |            | 1.412               | Total                |

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = N/A inches

| Calculate                     | ed Parameters for Un | derdrai         |
|-------------------------------|----------------------|-----------------|
| Underdrain Orifice Area =     | N/A                  | ft <sup>2</sup> |
| Underdrain Orifice Centroid = | N/A                  | feet            |

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

| Invert of Lowest Orifice =                 | 0.00  | ft (relative to basin bottom at Stage = 0 ft) |
|--------------------------------------------|-------|-----------------------------------------------|
| Depth at top of Zone using Orifice Plate = | 5.84  | ft (relative to basin bottom at Stage = 0 ft) |
| Orifice Plate: Orifice Vertical Spacing =  | 23.40 | inches                                        |
| Orifice Plate: Orifice Area per Row =      | 1.19  | sq. inches (diameter = 1-3/16 inches)         |

| Calculated Parameters for Plat |           |                 |  |  |  |  |  |  |
|--------------------------------|-----------|-----------------|--|--|--|--|--|--|
| WQ Orifice Area per Row =      | 8.264E-03 | ft <sup>2</sup> |  |  |  |  |  |  |
| Elliptical Half-Width =        | N/A       | feet            |  |  |  |  |  |  |
| Elliptical Slot Centroid =     | N/A       | feet            |  |  |  |  |  |  |
| Elliptical Slot Area =         | N/A       | ft <sup>2</sup> |  |  |  |  |  |  |

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

|                                | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) | Row 8 (optional) |
|--------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Stage of Orifice Centroid (ft) | 0.00             | 1.95             | 3.89             |                  |                  |                  |                  |                  |
| Orifice Area (sq. inches)      | 1.19             | 1.19             | 1.19             |                  |                  |                  |                  |                  |

|                                | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
|--------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Stage of Orifice Centroid (ft) |                  |                   |                   |                   |                   |                   |                   |                   |
| Orifice Area (sq. inches)      |                  |                   |                   |                   |                   |                   |                   |                   |

User Input: Vertical Orifice (Circular or Rectangular)

|                                               | Not Selected | Not Selected |                                               |
|-----------------------------------------------|--------------|--------------|-----------------------------------------------|
| Invert of Vertical Orifice =                  | N/A          | N/A          | ft (relative to basin bottom at Stage = 0 ft) |
| Depth at top of Zone using Vertical Orifice = | N/A          | N/A          | ft (relative to basin bottom at Stage = 0 ft) |
| Vertical Orifice Diameter =                   | N/A          | N/A          | inches                                        |

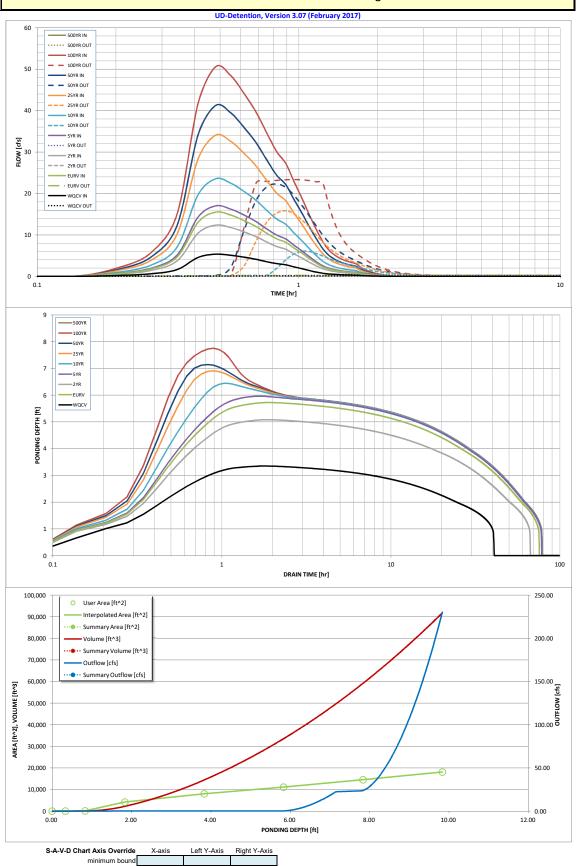
| Calculated Parameters for Vertical Orifice |              |              |                 |  |  |
|--------------------------------------------|--------------|--------------|-----------------|--|--|
|                                            | Not Selected | Not Selected |                 |  |  |
| Vertical Orifice Area =                    | N/A          | N/A          | ft <sup>2</sup> |  |  |
| Vertical Orifice Centroid =                | N/A          | N/A          | feet            |  |  |

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

|                                       | Zone 3 Weir | Not Selected |                                              |
|---------------------------------------|-------------|--------------|----------------------------------------------|
| Overflow Weir Front Edge Height, Ho = | 5.84        | N/A          | ft (relative to basin bottom at Stage = 0 ft |
| Overflow Weir Front Edge Length =     | 6.00        | N/A          | feet                                         |
| Overflow Weir Slope =                 | 3.00        | N/A          | H:V (enter zero for flat grate)              |
| Horiz. Length of Weir Sides =         | 2.91        | N/A          | feet                                         |
| Overflow Grate Open Area % =          | 70%         | N/A          | %, grate open area/total area                |
| Debris Clogging % =                   | 50%         | N/A          | %                                            |

| Calculated                              |       |     |                    |
|-----------------------------------------|-------|-----|--------------------|
|                                         |       |     |                    |
| Height of Grate Upper Edge, $H_t$ =     | 6.81  | N/A | feet               |
| Over Flow Weir Slope Length =           | 3.07  | N/A | feet               |
| Grate Open Area / 100-yr Orifice Area = | 7.21  | N/A | should be $\geq 4$ |
| Overflow Grate Open Area w/o Debris =   | 12.88 | N/A | ft <sup>2</sup>    |
| Overflow Grate Open Area w/ Debris =    | 6.44  | N/A | ft <sup>2</sup>    |
| <del>-</del>                            |       |     | _                  |

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)


| put: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectan |                   |              | gular Orifice)                                   | Calculated Parameters for Outlet Pipe w/ Flow Restriction P |                   |              | te              |
|-------------------------------------------------------------------------------------------|-------------------|--------------|--------------------------------------------------|-------------------------------------------------------------|-------------------|--------------|-----------------|
|                                                                                           | Zone 3 Restrictor | Not Selected |                                                  |                                                             | Zone 3 Restrictor | Not Selected |                 |
| Depth to Invert of Outlet Pipe =                                                          | 0.25              | N/A          | ft (distance below basin bottom at Stage = 0 ft) | Outlet Orifice Area =                                       | 1.79              | N/A          | ft <sup>2</sup> |
| Outlet Pipe Diameter =                                                                    | 24.00             | N/A          | inches                                           | Outlet Orifice Centroid =                                   | 0.63              | N/A          | feet            |
| Restrictor Plate Height Above Pipe Invert =                                               | 13.30             | •            | inches Half-Central Angle o                      | f Restrictor Plate on Pipe =                                | 1.68              | N/A          | radians         |

| User Input: Emerg | gency Spillway | (Rectangular or | Trapezoidal) |
|-------------------|----------------|-----------------|--------------|

| oser input zine.Benej spiniaj (nestanj | Saidi oi itapezoidai, |                                               |
|----------------------------------------|-----------------------|-----------------------------------------------|
| Spillway Invert Stage=                 | 7.80                  | ft (relative to basin bottom at Stage = 0 ft) |
| Spillway Crest Length =                | 17.00                 | feet                                          |
| Spillway End Slopes =                  | 4.00                  | H:V                                           |
| Freeboard above Max Water Surface =    | 1.00                  | feet                                          |

| Calcula                        | ted Parameters for S | pillway |
|--------------------------------|----------------------|---------|
| Spillway Design Flow Depth=    | 0.89                 | feet    |
| Stage at Top of Freeboard =    | 9.69                 | feet    |
| sin Area at Top of Freeboard = | 0.41                 | acres   |

| Routed Hydrograph Results                     |       |       |        |                  |                  |                  |                |                |          |
|-----------------------------------------------|-------|-------|--------|------------------|------------------|------------------|----------------|----------------|----------|
| Design Storm Return Period =                  | WQCV  | EURV  | 2 Year | 5 Year           | 10 Year          | 25 Year          | 50 Year        | 100 Year       | 500 Year |
| One-Hour Rainfall Depth (in) =                | 0.53  | 1.07  | 1.19   | 1.50             | 1.75             | 2.00             | 2.25           | 2.52           | 0.00     |
| Calculated Runoff Volume (acre-ft) =          | 0.262 | 0.771 | 0.614  | 0.847            | 1.177            | 1.710            | 2.073          | 2.550          | 0.000    |
| OPTIONAL Override Runoff Volume (acre-ft) =   |       |       |        |                  |                  |                  |                |                |          |
| Inflow Hydrograph Volume (acre-ft) =          | 0.262 | 0.771 | 0.614  | 0.847            | 1.176            | 1.710            | 2.074          | 2.551          | #N/A     |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | 0.00  | 0.00  | 0.02   | 0.03             | 0.27             | 0.84             | 1.16           | 1.55           | 0.00     |
| Predevelopment Peak Q (cfs) =                 | 0.0   | 0.0   | 0.3    | 0.4              | 4.4              | 13.9             | 19.2           | 25.5           | 0.0      |
| Peak Inflow Q (cfs) =                         | 5.3   | 15.5  | 12.4   | 17.0             | 23.5             | 34.1             | 41.2           | 50.5           | #N/A     |
| Peak Outflow Q (cfs) =                        | 0.1   | 0.2   | 0.2    | 0.7              | 6.0              | 15.8             | 22.3           | 23.4           | #N/A     |
| Ratio Peak Outflow to Predevelopment Q =      | N/A   | N/A   | N/A    | 1.5              | 1.4              | 1.1              | 1.2            | 0.9            | #N/A     |
| Structure Controlling Flow =                  | Plate | Plate | Plate  | Overflow Grate 1 | Overflow Grate 1 | Overflow Grate 1 | Outlet Plate 1 | Outlet Plate 1 | #N/A     |
| Max Velocity through Grate 1 (fps) =          | N/A   | N/A   | N/A    | 0.0              | 0.4              | 1.2              | 1.7            | 1.8            | #N/A     |
| Max Velocity through Grate 2 (fps) =          | N/A   | N/A   | N/A    | N/A              | N/A              | N/A              | N/A            | N/A            | #N/A     |
| Time to Drain 97% of Inflow Volume (hours) =  | 39    | 69    | 62     | 71               | 69               | 66               | 63             | 61             | #N/A     |
| Time to Drain 99% of Inflow Volume (hours) =  | 40    | 73    | 65     | 76               | 75               | 74               | 73             | 72             | #N/A     |
| Maximum Ponding Depth (ft) =                  | 3.35  | 5.72  | 5.08   | 5.96             | 6.44             | 6.91             | 7.15           | 7.75           | #N/A     |
| Area at Maximum Ponding Depth (acres) =       | 0.16  | 0.25  | 0.23   | 0.26             | 0.28             | 0.30             | 0.31           | 0.33           | #N/A     |
| Maximum Volume Stored (acre-ft) =             | 0.245 | 0.741 | 0.588  | 0.802            | 0.932            | 1.067            | 1.137          | 1.331          | #N/A     |



maximum bound

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

SOURCE WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK #N/A

|               | SOURCE             | WORKBOOK   | WORKBOOK   | WORKBOOK     | WORKBOOK     | WORKBOOK      | WORKBOOK      | WORKBOOK      | WORKBOOK       | #N/A           |
|---------------|--------------------|------------|------------|--------------|--------------|---------------|---------------|---------------|----------------|----------------|
| Time Interval | TIME               | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs] | 100 Year [cfs] | 500 Year [cfs] |
| 4.40          | 0:00:00            |            | 0.00       | 0.00         |              |               | 0.00          |               | 0.00           | 401/0          |
| 4.12 min      |                    | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 0:04:07            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
| Hydrograph    | 0:08:14            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
| Constant      | 0:12:22            | 0.24       | 0.68       | 0.55         | 0.75         | 1.03          | 1.47          | 1.77          | 2.15           | #N/A           |
| 1.214         | 0:16:29            | 0.64       | 1.85       | 1.48         | 2.02         | 2.79          | 4.01          | 4.84          | 5.91           | #N/A           |
|               | 0:20:36            | 1.65       | 4.74       | 3.79         | 5.20         | 7.16          | 10.30         | 12.42         | 15.18          | #N/A           |
|               | 0:24:43            | 4.55       | 13.03      | 10.43        | 14.28        | 19.66         | 28.29         | 34.10         | 41.64          | #N/A           |
|               | 0:28:50            | 5.34       | 15.51      | 12.37        | 17.02        | 23.54         | 34.08         | 41.22         | 50.54          | #N/A           |
|               | 0:32:58            | 5.08       | 14.81      | 11.80        | 16.25        | 22.50         | 32.61         | 39.48         | 48.45          | #N/A           |
|               | 0:37:05            | 4.62       | 13.48      | 10.75        | 14.80        | 20.49         | 29.69         | 35.94         | 44.09          | #N/A           |
|               | 0:41:12            | 4.11       | 12.05      | 9.59         | 13.23        | 18.35         | 26.64         | 32.27         | 39.64          | #N/A           |
|               | 0:45:19            | 3.53       | 10.41      | 8.28         | 11.44        | 15.90         | 23.13         | 28.07         | 34.53          | #N/A           |
|               | 0:49:26            | 3.08       | 9.07       | 7.22         | 9.96         | 13.83         | 20.09         | 24.40         | 30.06          | #N/A           |
|               | 0:53:34            | 2.79       | 8.22       | 6.54         | 9.03         | 12.54         | 18.22         | 22.11         | 27.22          | #N/A           |
|               | 0:57:41            | 2.73       | 6.79       | 5.39         | 7.47         | 10.41         | 15.18         | 18.44         | 22.73          | #N/A           |
|               | 1:01:48            |            |            |              |              |               |               |               |                |                |
|               |                    | 1.84       | 5.56       | 4.40         | 6.12         | 8.55          | 12.50         | 15.21         | 18.77          | #N/A           |
|               | 1:05:55            | 1.40       | 4.29       | 3.39         | 4.73         | 6.64          | 9.78          | 11.93         | 14.77          | #N/A           |
|               | 1:10:02            | 1.02       | 3.21       | 2.52         | 3.54         | 5.01          | 7.43          | 9.10          | 11.31          | #N/A           |
|               | 1:14:10            | 0.75       | 2.32       | 1.83         | 2.56         | 3.64          | 5.45          | 6.70          | 8.37           | #N/A           |
|               | 1:18:17            | 0.59       | 1.79       | 1.42         | 1.97         | 2.79          | 4.15          | 5.08          | 6.32           | #N/A           |
|               | 1:22:24            | 0.48       | 1.47       | 1.16         | 1.62         | 2.29          | 3.38          | 4.13          | 5.12           | #N/A           |
|               | 1:26:31            | 0.41       | 1.25       | 0.99         | 1.38         | 1.94          | 2.86          | 3.49          | 4.32           | #N/A           |
|               | 1:30:38            | 0.36       | 1.10       | 0.87         | 1.21         | 1.70          | 2.50          | 3.05          | 3.77           | #N/A           |
|               | 1:34:46            | 0.33       | 0.99       | 0.78         | 1.09         | 1.52          | 2.24          | 2.73          | 3.38           | #N/A           |
|               | 1:38:53            | 0.30       | 0.91       | 0.72         | 1.00         | 1.40          | 2.06          | 2.51          | 3.10           | #N/A           |
|               | 1:43:00            | 0.22       | 0.67       | 0.53         | 0.73         | 1.03          | 1.52          | 1.85          | 2.29           | #N/A           |
|               | 1:47:07            | 0.16       | 0.49       | 0.39         | 0.54         | 0.75          | 1.11          | 1.35          | 1.67           | #N/A           |
|               | 1:51:14            | 0.12       | 0.36       | 0.28         | 0.40         | 0.55          | 0.81          | 0.99          | 1.23           | #N/A           |
|               | 1:55:22            | 0.09       | 0.26       | 0.21         | 0.29         | 0.41          | 0.60          | 0.74          | 0.91           | #N/A           |
|               | 1:59:29            | 0.06       | 0.19       | 0.15         | 0.21         | 0.30          | 0.44          | 0.53          | 0.66           | #N/A           |
|               | 2:03:36            | 0.04       | 0.13       | 0.11         | 0.15         | 0.21          | 0.31          | 0.38          | 0.47           | #N/A           |
|               | 2:07:43            | 0.03       | 0.10       | 0.08         | 0.11         | 0.15          | 0.23          | 0.28          | 0.34           | #N/A           |
|               | 2:11:50            | 0.03       | 0.06       | 0.05         | 0.07         | 0.10          | 0.25          | 0.19          | 0.24           | #N/A           |
|               | 2:15:58            |            |            |              |              |               |               |               |                |                |
|               | 2:20:05            | 0.01       | 0.04       | 0.03         | 0.04         | 0.06          | 0.10          | 0.12          | 0.15           | #N/A           |
|               |                    | 0.00       | 0.02       | 0.01         | 0.02         | 0.03          | 0.05          | 0.06          | 0.08           | #N/A           |
|               | 2:24:12            | 0.00       | 0.01       | 0.00         | 0.01         | 0.01          | 0.02          | 0.03          | 0.04           | #N/A           |
|               | 2:28:19            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.01          | 0.01           | #N/A           |
|               | 2:32:26            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 2:36:34            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 2:40:41            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 2:44:48            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 2:48:55            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 2:53:02            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 2:57:10            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:01:17            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:05:24            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:09:31            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:13:38            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:17:46            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:21:53            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:26:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:30:07            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:34:14            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:38:22            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:42:29            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:46:36            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:50:43            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:54:50            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 3:58:58            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 4:03:05            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 4:07:12<br>4:11:19 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A<br>#N/A   |
|               | 4:11:19            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A<br>#N/A   |
|               | 4:19:34            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 4:23:41            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 4:27:48            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 4:31:55            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 4:36:02            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 4:40:10            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 4:44:17            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 4:48:24            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 4:52:31            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               | 4:56:38            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00          | 0.00           | #N/A           |
|               |                    |            |            |              |              |               |               |               |                |                |

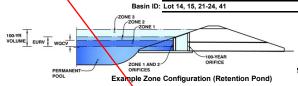


| PROJECT: | Homestead Filing No. 2 |
|----------|------------------------|
| DATE:    |                        |

| Micropool Surface Area                                   | Tribm      | tag Area  | = 16.51 AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------|------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIA IXA                                                  |            |           | = 44.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (0.441 x 1451)                                           |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIA = 7.3 ~ 8.0                                          | , in       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| From Micropool Sizing Chan                               | of (SA)    | Micropoof | SA = 40 st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                          |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Foreboy Volume for PSD Pa                                | _          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Topontary Area - 16.51.                                  |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Min. Forebuy Voiume - 3                                  | 1 1        |           | WOFED 7-5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , EDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Wacv for FoD Pond = a.                                   | 262 Ac-    | A         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Management and the second seco |
| Total Volume Regid. = 0.0                                | 3 (0.242   | 13540     | = 342cf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arca = 283 - 7 (wall) =                                  |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                          |            | Footb     | a 15 1 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ( forebay) (dust) (10/10                                 |            | 70.00     | y 15 depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TO THE PARTY OF TH |
| (torchan) (dysta) (volun proud                           |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                          |            | to 207 +1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Since notch in Forebry to<br>Q100 = 47.1 cfs => 0.02 x 5 | a comman   | CUOPEL    | T-5 EDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (4100 = 41.1 cts = 0.02 x 5                              | 7.7 = 0.99 | LUR       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Using Ret. Weir Egn.                                     | Q = 3.24   | 1121.118  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>H.</i> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Solve for L = 2.6" 0                                     | = 0,94     | // % ~    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | continues animateur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                          |            | use a 2.  | 6"notch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Annual Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                          |            |           | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| PROJECT: | Homestead Filing No. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| PROJECT: | North Control of the | _ |
| DATE:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |


| Q: os.                      | Apron For            | Panel 1       |                                                  |
|-----------------------------|----------------------|---------------|--------------------------------------------------|
| Riprop Sizina               | ) which I w          | Panel 1       |                                                  |
| Q100 = 47.1 cfs             | (Ping Bung)          |               |                                                  |
| D <sub>2</sub> = 42° = 3.5′ |                      |               |                                                  |
| 01.5 < 6 The                | n use Figure         | 9-38 (UDFC    | D Nol 5)                                         |
| 47.1 = 2.05                 | < 6 Therefore county | re use Figure | 9-38<br>01.5 - 17.1 = 7.19<br>01.5 (3.5)" = 7.19 |
| Use Type L                  | D <sub>50</sub> =9"  |               | (3, 5)                                           |
| Rioras Deptin               |                      |               |                                                  |
| T=2-0s                      |                      |               |                                                  |
| Law Teinheater Ripre        |                      |               |                                                  |
| FES                         | 9' 1-w=7'-1          | 6 1 X00       |                                                  |
| Toewall                     | 11.5'                |               |                                                  |

### **DETENTION BASIN STAGE-STORAGE TABLE BUILDER** UD-Detention, Version 3.07 (February 2017) Project: Homestead at Sterling Ranch Filing No.2 Basin ID: Lots 14, 15, 21-24, 41 Lot size 10,319 sq ft-15,049 sq ft Depth Increment = Example Zone Configuration (Retention Pond) Stage - Storage Stage Override Length Width Area Override Volume Volume Description (ft) (ft^2) (ac-ft) Media Surface 0.00 77 0.002 7065.27 **Required Volume Calculation** 152 Selected BMP Type = 0.50 0.003 0.001 7065.5 Watershed Area : 0.18 1.00 328 0.004 ------0.008 174 ote: L / W R 7066 82 1.50 543 0.012 390 0.009 Watershed Length = 7066.50 L/W.Ratio = Watershed Slope = 0.080 ft/ft 2.00 796 0.018 722 0.017 7067.00 Watershed Imperviousness = 42.00% --Percentage Hydrologic Soil Group A = Percentage Hydrologic Soil Group B = 100.0% percent Percentage Hydrologic Soil Groups C/D = ercent Desired WQCV Drain Time = 12.0 hours Location for 1-hr Rainfall Depths = User Input --Water Quality Capture Volume (WQCV) = 0.002 acre-feet Optional User Override 1-hr Precipitation Excess Urban Runoff Volume (EURV) = 0.008 acre-feet 2-yr Runoff Volume (P1 = 1.19 in.) = 0.006 acre-feet 1.19 inches 5-yr Runoff Volume (P1 = 1.5 in.) = 0.009 acre-feet 1.50 inches ------10-yr Runoff Volume (P1 = 1.75 in.) = 0.012 acre-feet 1.75 inches --25-yr Runoff Volume (P1 = 2 in.) = 0.018 acre-feet 2 00 inches 50-yr Runoff Volume (P1 = 2.25 in.) = 0.022 acre-feet 2.25 inches 100-yr Runoff Volume (P1 = 2.52 in.) = 0.027 acre-feet 2.52 inches ----500-yr Runoff Volume (P1 = 0 in.) = acre-feet Approximate 2-yr Detention Volume = 0.006 -acre-feet Approximate 5-yr Detention Volume = 0.008 acre-feet Approximate 10-yr Detention Volume = 0.011 acre-feet --Approximate 25-yr Detention Volume = 0.012 acre-feet --Approximate 50-yr Detention Volume = 0.013 acre-feet \_\_ --\_\_ Approximate 100-yr Detention Volume 0.015 acre-feet Stage-Storage Calculation ------Zone 1 Volume (WQCV) = 0.002 acre-feet Zone 2 Volume (EURV - Zone 1) = 0.006 acre-feet Zone 3 Volume (100-year - Zones 1 & 2) = 0.007 Total Detention Basin Volume 0.015 --Initial Surcharge Volume (ISV) = N/A Initial Surcharge Depth (ISD) = N/A ------Total Available Detention Depth (H<sub>total</sub>) = user Depth of Trickle Channel (H<sub>TC</sub>) = N/A --Slope of Trickle Channel (STC) = N/A ft/ft Slopes of Main Basin Sides (Smain)

UD-Detention v3.07 LOT 15.xlsm, Basin

UD-Detention, Version 3.07 (February 2017)

Project: Homestead at Sterling Ranch Filing No.2



|                  | Stage (ft) | Zone Volume (ac-ft) | Outlet Type         |
|------------------|------------|---------------------|---------------------|
| Zone 1 (WQCV)    | 0.71       | 0.002               | Filtration Media    |
| Zone 2 (EURV)    | 1.41       | 0.006               | Rectangular Orifice |
| one 3 (100-year) | 1.90       | 0.007               | Rectangular Orifice |
| •                |            | 0.015               | Total               |

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Death 2.10 ft (distance below the filtration media surface)
Underdrain Orifice Diamete 0.13 inches

| Calculate                     | ca i arameters for | <u>Onucian</u>          |
|-------------------------------|--------------------|-------------------------|
| Underdrain Orifice Area =     | 0.0                | <b>5</b> 6 <sup>2</sup> |
| Underdrain Orifice Centroid = | 0.01               | feet                    |

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

| Invert of Lowest Orifice =                 | N/A |               | ft (relative to basin bottom at Stage = 0 ft) |
|--------------------------------------------|-----|---------------|-----------------------------------------------|
| Depth at top of Zone using Orifice Plate = | W/A |               | ft (relative to basin bottom at Stage = 0 ft) |
| Orifice Plate: Orifice Vertical Spacing =  | N/X |               | inches                                        |
| Orifice Plate: Orifice Area per Row =      | N/A | $\overline{}$ | inches                                        |

| Calcu                      | Calculated Parameters for Pla |                 |  |  |  |  |
|----------------------------|-------------------------------|-----------------|--|--|--|--|
| WQ Orifice Area per Row =  | N/A                           | ft <sup>2</sup> |  |  |  |  |
| Elliptical Half-Width =    | N/A                           | feet            |  |  |  |  |
| Elliptical Slot Centroid = | N/A                           | feet            |  |  |  |  |
| Elliptical Slot Area =     | N/A                           | ft <sup>2</sup> |  |  |  |  |
| · ·                        |                               | _               |  |  |  |  |

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

|                                | Row 1 (optional) | Row 2 | (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row | (optional) | Row 7 (optional) | Row 8 (optional) |
|--------------------------------|------------------|-------|------------|------------------|------------------|------------------|-----|------------|------------------|------------------|
| Stage of Orifice Centroid (ft) | N/A              | 1     | N/A        | N/A              | N/A              | N/A              |     | N/A        | N/A              | N/A              |
| Orifice Area (sq. inches)      | N/A              | ì     | <b>W</b> A | N/A              | N/A              | N/A              | _   | N/A        | N/A              | N/A              |

|                                | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
|--------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Stage of Orifice Centroid (ft) | N/A              | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               |
| Orifice Area (sq. inches)      | N/A              | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               |

User Input: Vertical Orifice (Circular or Rectangular)

|                                               | Zone 2 Rectangular | Zone 3 Rectangular |                 |                               |
|-----------------------------------------------|--------------------|--------------------|-----------------|-------------------------------|
| Invert of Vertical Orifice =                  | 0.71               | 1.41               | ft (relative to | basin bottom at Stage = 0 ft) |
| Depth at top of Zone using Vertical Orifice = | 1.41               | 1.90               | ft (relative to | basin bottom at Stage = 0 ft) |
| Vertical Orifice Height =                     | 2.00               | 2.00               | inches          | \ /                           |
| Vertical Orifice Width =                      | 1.00               | 6.00               | inches          |                               |

| Calculated Parameters for Vertical Orifice |                    |                    |                 |  |  |  |
|--------------------------------------------|--------------------|--------------------|-----------------|--|--|--|
|                                            | Zone 2 Rectangular | Zone 3 Rectangular |                 |  |  |  |
| Vertical Orifice Area =                    | 0.01               | 0.08               | ft <sup>2</sup> |  |  |  |
| Vertical Orifice Centroid =                | 0.08               | 0.08               | feet            |  |  |  |

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

|                                       | Not Selected | Not Selected | Y                                             |
|---------------------------------------|--------------|--------------|-----------------------------------------------|
| Overflow Weir Front Edge Height, Ho = | 1.88         | N/A          | ft (relative to basin bottom at Stage = 0 ft) |
| Overflow Weir Front Edge Length =     | 1.00         | N/A          | feet                                          |
| Overflow Weir Slope =                 | 0.00         | N/A          | H:V (enter zero for flet grate)               |
| Horiz. Length of Weir Sides =         | 1.00         | N/A          | feet /                                        |
| Overflow Grate Open Area % =          | 70%          | N/A          | %, grate open area/total area                 |
| Debris Clogging % =                   | 50%          | N/A          | %                                             |
|                                       |              |              |                                               |

Not Selected

| Calculated F                                 | Calculated Parameters for Overflow Weir |              |                 |  |  |
|----------------------------------------------|-----------------------------------------|--------------|-----------------|--|--|
|                                              | Not Selected                            | Not Selected |                 |  |  |
| Height of Grate Upper Edge, H <sub>t</sub> = | 1.88                                    | N/A          | feet            |  |  |
| Over Flow Weir Slope Length =                | 1.00                                    | N/A          | feet            |  |  |
| Grate Open Area / 100-yr Orifice Area =      | N/A                                     | N/A          | should be       |  |  |
| Overflow Grate Open Area w/o Debris =        | 0.70                                    | N/A          | ft <sup>2</sup> |  |  |
| Overflow Grate Open Area w/ Debris =         | 0.35                                    | N/A          | ft <sup>2</sup> |  |  |
| <u> </u>                                     |                                         |              | _               |  |  |

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

| Depth to Invert of Outlet Pipe = | N/A | N/A | ft (distance below basin bottom at Stage = 0 ft) |
|----------------------------------|-----|-----|--------------------------------------------------|
| Circular Orifice Diameter =      | N/A | N/A | inches                                           |
| -                                |     |     | Half-Cen                                         |
|                                  |     |     |                                                  |

Not Selected

|                               | Not Selected | Not Selected |                 |
|-------------------------------|--------------|--------------|-----------------|
| Outlet Orifice Area =         | N/A          | N/A          | ft <sup>2</sup> |
| Outlet Orifice Centroid =     | N/A          | N/A          | feet            |
| of Restrictor Plate on Pipe = | N/A          | N/A          | radians         |

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

User Input: Emergency Spillway (Rectangular or Trapezoidal)

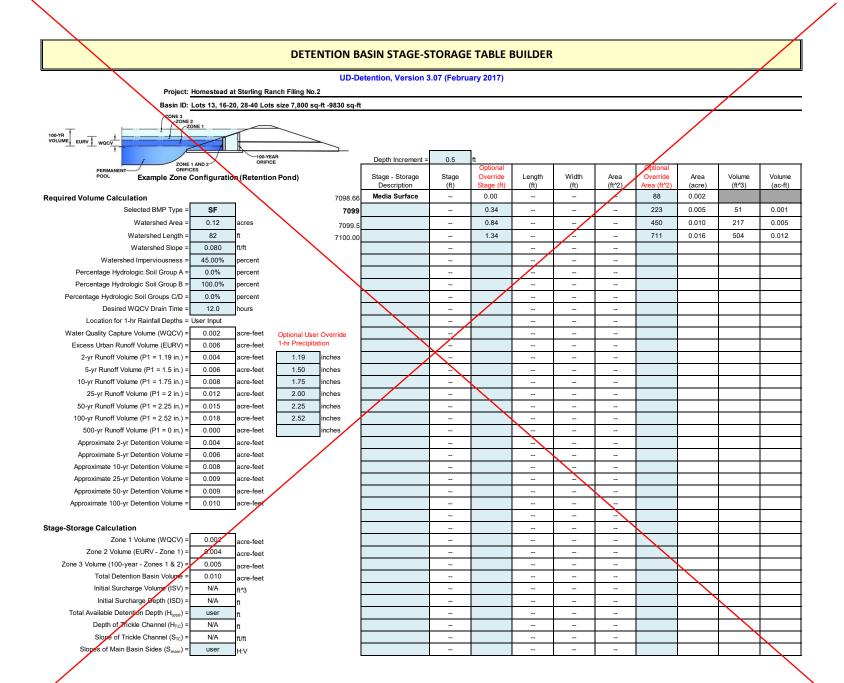
| Spillway Invert Stage=              | 1.90 | ft (relative to basin bottom at Stage = 0 ft) |
|-------------------------------------|------|-----------------------------------------------|
| Spillway Crest Length =             | 2.00 | feet                                          |
| Spillway End Slopes =               | 4.00 | H <b>√</b>                                    |
| Freeboard above Max Water Surface = | 0.25 | feet                                          |
| •                                   |      | •                                             |

| Calcula                        | ted Parameters for S | pillway |
|--------------------------------|----------------------|---------|
| Spillway Design Flow Depth=    | 0.14                 | feet    |
| Stage at Top of Preeboard =    | 2.29                 | feet    |
| sin Area at Top of Freeboard = | 0.02                 | acres   |
|                                | 0.00                 |         |

Ва

| Routed Hydrograph Results                     |                  |                    |                    |                    |                    |                    | \                  |                    |          |
|-----------------------------------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------|
| Design Storm Return Period =                  | WQQV             | EURV               | 2 Year             | 5 Year             | 10 Year            | 25 Year            | 50 Year            | 100 Year           | 500 Year |
| One-Hour Rainfall Depth (in) =                | 0.53             | 1.07               | 1.19               | 1.50               | 1.75               | 2.00               | 2.25               | 2.52               | 0.00     |
| Calculated Runoff Volume (acre-ft) =          | 0.002            | 0.008              | 0.006              | 0.009              | 0.012              | 0.018              | 0.022              | 0.027              | 0.000    |
| OPTIONAL Override Runoff Volume (acre-ft) =   |                  |                    |                    |                    |                    |                    |                    |                    |          |
| Inflow Hydrograph Volume (acre-ft) =          | 0.001            | 0.007              | 0.006              | 0.008              | 0.012              | 0.018              | 0.021              | 0.027              | #N/A     |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | 0.00             | 0.00               | 0.02               | 0.03               | 0.32               | 0.97               | 1.34               | 1.78               | 0.00     |
| Predevelopment Peak Q (cfs) =                 | 0.0              | 0.0                | 0.0                | 0.0                | 0.1                | 0.2                | 0.2                | 0.3                | 0.0      |
| Peak Inflow Q (ofs) =                         | 0.0              | 0.2                | 0.2                | 0.2                | 0.3                | 0.5                | 0.6                | 0.8                | #N/A     |
| Peak Outflow Q (cfs) =                        | 0.0              | 0.0                | 0.0                | 0.0                | 0.1                | 0.2                | 0.3                | 0.3                | #N/A     |
| Ratio Peak Outflow to Predevelopment Q =      | N/A              | N/A                | N/A                | 8.1                | 1.4                | 1.2                | 1.1                | 1.0                | #N/A     |
| Structure Controlling Flow =                  | Filtration Media | Vertical Orifice 1 | Vertical Orifice 1 | Vertical Orifice 1 | Vertical Orifice 2 | Vertical Orifice 2 | Vertical Orifice 2 | Vertical Orifice 2 | #N/A     |
| Max Velocity through Grate 1 (fps) =          | N/A              | N/A                | N/A                | N/A                | N/A                | N/A                | N/A                | N/A                | #N/A     |
| Max Velocity through Grate 2 (fps) =          | N/A              | N/A                | N/A                | N/A                | N/A                | N/A                | N/A                | N)A                | #N/A     |
| Time to Drain 97% of Inflow Volume (hours) =  | 12               | 40                 | 40                 | 39                 | 38                 | 35                 | 33                 | 30                 | #N/A     |
| Time to Drain 99% of Inflow Volume (hours) =  | 12               | 43                 | 43                 | 43                 | 43                 | 42                 | 41                 | 40                 | #N/A     |
| Maximum Ponding Depth (ft) =                  | 0.27             | 1.17               | 1.01               | 1.24               | 1.47               | 1.62               | 1.72               | 1.88               | #N/A     |
| Area at Maximum Ponding Depth (acres) =       | 0.00             | 0.01               | 0.01               | 0.01               | 0.01               | 0.01               | 0.02               | 0.02               | #N/A     |
| Maxipum Volume Stored (acre-ft) =             | 0.001            | 0.005              | 0.004              | 0.006              | 0.009              | 0.011              | 0.012              | 0.014              | #N/A     |
| <i>'</i>                                      |                  |                    |                    |                    |                    |                    |                    |                    |          |

### **Detention Basin Outlet Structure Design** UD-Detention, Version 3.07 (February 2017) - 500YR IN ----- 500YR OUT 0.7 - - 100YR OUT = 50YR IN - - 50YR OUT 0.6 - 25YR IN 25YR OUT 0.5 10YR OUT FLOW [cfs] 6.0 = 2YR IN === 2YR OUT - EURV IN 0.3 - EURV OUT ••••• WQCV OUT 0.2 0.1 TIME [hr] 1.8 1.6 -10YR -SYR —2YR 1.4 EURV -wqcv DONDING DEPTH [#] 1.2 0.6 0.4 0.2 0.1 100 DRAIN TIME [hr] 1.00 O User Area [ft^2] Interpolated Area [ft^2] 0.90 800 ··• ·· Summary Area [ft^2] Volume [ft^3] 0.80 700 ···• ·· Summary Volume [ft^3] 0.70 Outflow [cfs] AREA [ft^2], VOLUME [ft^3] 0.60 [cfs] 09:0 0.40 0.30 200 0.20 0.10 0.00 0.00

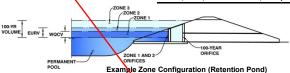

2.00

S-A-V-D Chart Axis Override Right Y-Axis minimum bound maximum bound

1.00

PONDING DEPTH [ft]

0.50




UD-Detention\_v3.07\_vOT 40.xlsm, Basin

### UD-Detention, Version 3.07 (February 2017)

Project: Homestead at Sterling Ranch Filing No.2

Basin ID: Lots 13, 16-20, 28-40 Lots size 7,800 sq-ft -9830 sq-ft



|                  | Stage (ft) | Zone Volume (ac-ft) | Outlet Type         |
|------------------|------------|---------------------|---------------------|
| Zone 1 (WQCV)    | 0.40       | 0.002               | Filtration Media    |
| Zone 2 (EURV)    | 0.89       | 0.004               | Rectangular Orifice |
| one 3 (100-year) | 1.24       | 0.005               | Rectangular Orifice |
| •                |            | 0.010               | Total               |

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depti = 2.10 ft (distance below the filtration media surface)
Underdrain Orifice Diameter 0.13 inches

Calculated Parameters for Underdrain

Underdrain Orifice Area = 0.0 ft²

Underdrain Orifice Centroid = 0.01 feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

| Invert of Lowest Orifice =                 | y | N/A |   | ft (relative to basin bottom at Stage = 0 ft) |
|--------------------------------------------|---|-----|---|-----------------------------------------------|
| Depth at top of Zone using Orifice Plate = | ١ | VΑ  |   | ft (relative to basin bottom at Stage = 0 ft) |
| Orifice Plate: Orifice Vertical Spacing =  | ١ | N/A | \ | inches                                        |
| Orifice Plate: Orifice Area per Row =      | 1 | N/A | 1 | inches                                        |

| Caicu                      | iated Paramete | ers for Plate   |
|----------------------------|----------------|-----------------|
| WQ Orifice Area per Row =  | N/A            | ft <sup>2</sup> |
| Elliptical Half-Width =    | N/A            | feet            |
| Elliptical Slot Centroid = | N/A            | feet            |
| Elliptical Slot Area =     | N/A            | ft <sup>2</sup> |

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

|                                | Row 1 (optional) | Row | 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row | 6 (optional) | Row 7 (optional) | Row 8 (optional) |
|--------------------------------|------------------|-----|--------------|------------------|------------------|------------------|-----|--------------|------------------|------------------|
| Stage of Orifice Centroid (ft) | N/A              |     | WA           | N/A              | N/A              | N/A              |     | N/A          | N/A              | N/A              |
| Orifice Area (sq. inches)      | N/A              |     | N/A          | N/A              | N/A              | N/A              | \   | N/A          | N/A              | N/A              |

|                                | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
|--------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Stage of Orifice Centroid (ft) | N/A              | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               |
| Orifice Area (sq. inches)      | N/A              | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               | N/A               |

User Input: Vertical Orifice (Circular or Rectangular)

|                                               | Zone 2 Rectangular | Zone 3 Rectangular |                   |                              |
|-----------------------------------------------|--------------------|--------------------|-------------------|------------------------------|
| Invert of Vertical Orifice =                  | 0.40               | 0.89               | ft (relative to   | asin bottom at Stage = 0 ft) |
| Depth at top of Zone using Vertical Orifice = | 0.89               | 1.24               | ft (relative to b | asin bottom at Stage = 0 ft) |
| Vertical Orifice Height =                     | 2.00               | 2.00               | inches            | \ /                          |
| Vertical Orifice Width =                      | 1.00               | 3.50               | inches            | \ /                          |

| Calculated Parameters for Vertical Orifice |                    |                    |                 |  |  |  |
|--------------------------------------------|--------------------|--------------------|-----------------|--|--|--|
|                                            | Zone 2 Rectangular | Zone 3 Rectangular |                 |  |  |  |
| Vertical Orifice Area =                    | 0.01               | 0.05               | ft <sup>2</sup> |  |  |  |
| Vertical Orifice Centroid =                | 0.08               | 0.08               | fee             |  |  |  |

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

|                                       | Not Selected | Not Selected |                                         |
|---------------------------------------|--------------|--------------|-----------------------------------------|
| Overflow Weir Front Edge Height, Ho = | 1.24         | N/A          | ft (relative to basin bottom at Stage = |
| Overflow Weir Front Edge Length =     | 1.00         | N/A          | feet                                    |
| Overflow Weir Slope =                 | 0.00         | N/A          | H:V (enter zero for f/at grate)         |
| Horiz. Length of Weir Sides =         | 1.00         | N/A          | feet                                    |
| Overflow Grate Open Area % =          | 70%          | N/A          | %, grate open rea/total area            |
| Debris Clogging % =                   | 50%          | N/A          | %                                       |
|                                       |              |              |                                         |

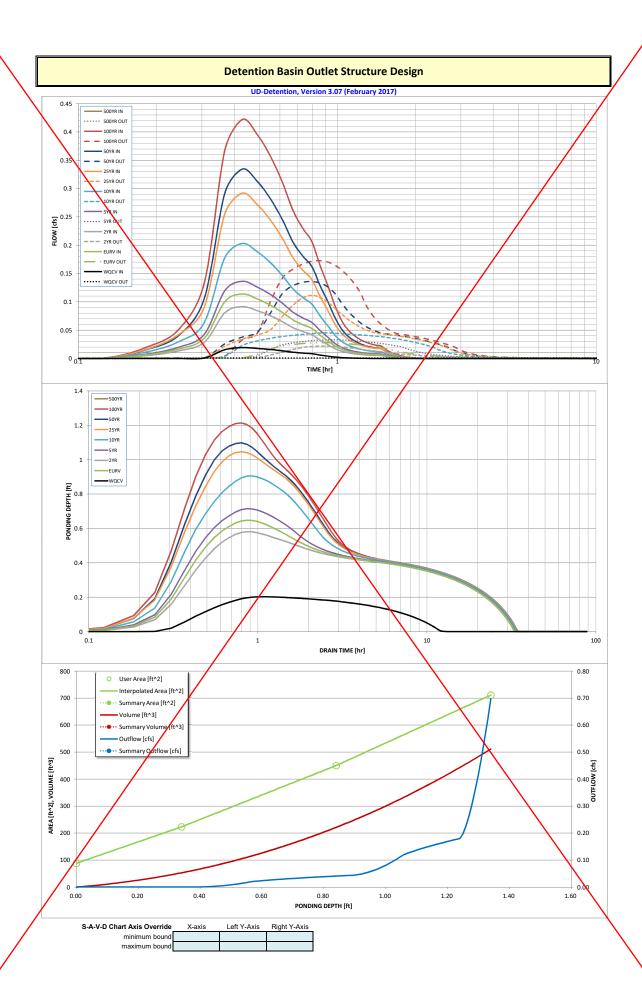
| Calculated                              | Parameters for Ove | rflow Weir   |                 |
|-----------------------------------------|--------------------|--------------|-----------------|
|                                         | Not Selected       | Not Selected |                 |
| Height of Grate Upper Edge, $H_t$ =     | 1.24               | N/A          | feet            |
| Over Flow Weir Slope Length =           | 1.00               | N/A          | feet            |
| Grate Open Area / 100-yr Orifice Area = | N/A                | N/A          | should be ≥ 4   |
| Overflow Grate Open Area w/o Debris =   | 0.70               | N/A          | ft <sup>2</sup> |
| Overflow Grate Open Area w/ Debris =    | 0.35               | N/A          | ft <sup>2</sup> |
| _                                       |                    |              | _               |

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

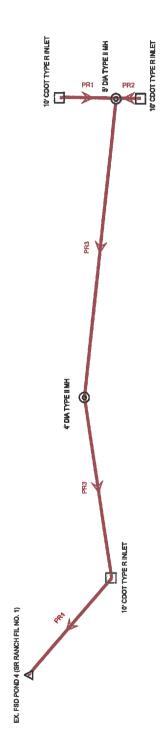
|                                  | Not Selected | Not Selected |                                                  | \     |
|----------------------------------|--------------|--------------|--------------------------------------------------|-------|
| Depth to Invert of Outlet Pipe = | N/A          | N/A          | ft (distance below basin bottom at Stage = 0 ft) | _/    |
| Circular Orifice Diameter =      | N/A          | N/A          | inches                                           | o     |
|                                  |              |              | Half-Central Angle                               | of Re |

|                            | Not Selected | Not Selected |                 |
|----------------------------|--------------|--------------|-----------------|
| Outlet Orifice Area =      | N/A          | N/A          | ft <sup>2</sup> |
| Outlet Orifice Centroid =  | N/A          | N/A          | feet            |
| Restrictor Plate on Pipe = | N/A          | N/A          | radians         |

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate


User Input: Emergency Spillway (Rectangular or Trapezoidal)

| Spillway Invert Stage=              | 1.24 | ft (relative to basin bottom at Stage = 0 ft) |
|-------------------------------------|------|-----------------------------------------------|
| Spillway Crest Length =             | 2.00 | feet /                                        |
| Spillway End Slopes =               | 4.00 | ну                                            |
| Freeboard above Max Water Surface = | 0.25 | reet                                          |
|                                     |      |                                               |

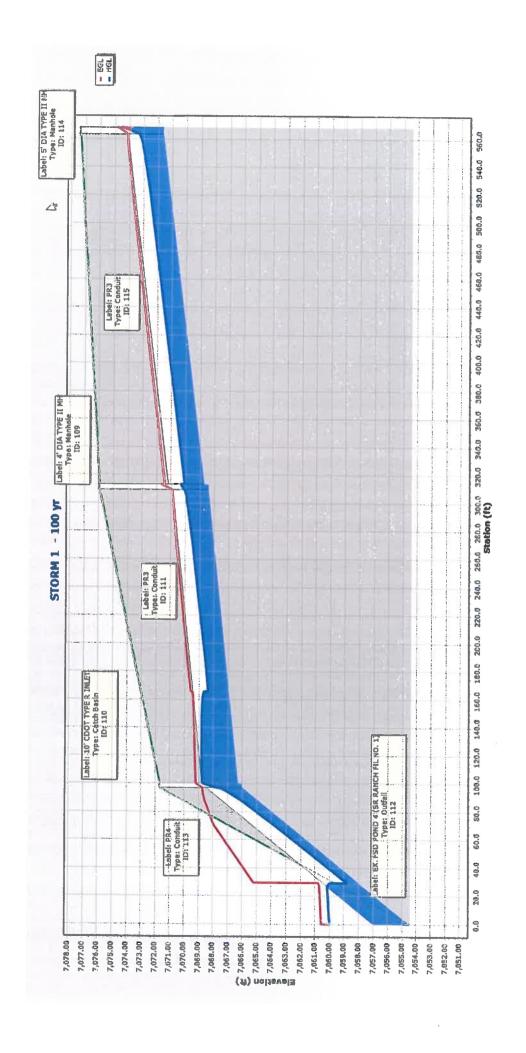

| ted Parameters for S | pillway      |
|----------------------|--------------|
| 0.14                 | feet         |
| 1.63                 | feet         |
| 0.02                 | acres        |
|                      | 0.14<br>1.63 |

Ва

| Routed Hydrograph Results                     |                  |                    |                    |                    |                    |                    |                    |                    |          |
|-----------------------------------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------|
| Design Storm Return Period =                  | WQC              | EURV               | 2 Year             | 5 Year             | 10 Year            | 25 Year            | 50 Year            | 100 Year           | 500 Year |
| One-Hour Rainfall Depth (in) =                | 0,83             | 1.07               | 1.19               | 1.50               | 1.75               | 2.00               | 2.25               | 2.52               | 0.00     |
| Calculated Runoff Volume (acre-ft) =          | Ø.002            | 0.006              | 0.004              | 0.006              | 0.008              | 0.012              | 0.015              | 0.018              | 0.000    |
| OPTIONAL Override Runoff Volume (acre-ft) =   |                  |                    |                    |                    |                    |                    |                    |                    |          |
| Inflow Hydrograph Volume (acre-ft) =          | 0.001            | 0.005              | 0.004              | 0.006              | 0.008              | 0.012              | 0.014              | 0.018              | #N/A     |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | 0.00             | 0.00               | 0.02               | 0.03               | 0.28               | 0.88               | 1.21               | 1.61               | 0.00     |
| Predevelopment Peak Q (cfs)                   | 0.0              | 0.0                | 0.0                | 0.0                | 0.0                | 0.1                | 0.1                | 0.2                | 0.0      |
| Peak Inflow Q (cfs) =                         | 0.0              | 0.1                | 0.1                | 0.1                | 0.2                | 0.3                | 0.3                | 0.4                | #N/A     |
| Peak Outflow Q (cfs) =                        | 0.0              | 0.0                | 0.0                | 0.0                | 0.0                | 0.1                | 0.1                | 0.2                | #N/A     |
| Ratio Peak Outflow to Predeveloppent Q =      | N/A              | N/A                | N/A                | 10.1               | 1.4                | 1.1                | 1.0                | 0.9                | #N/A     |
| Structure Controlling Flow =                  | Filtration Media | Vertical Orifice 1 | Vertical Orifice 1 | Vertical Orifice 1 | Vertical Orifice 2 | Vertical Orifice 2 | Vertical Orifice 2 | Vertical Orifice 2 | #N/A     |
| Max Velocity through Grate 1 (fps) =          | N/A              | N/A                | N/A                | N/A                | N/A                | N/A                | N/A                | N/A                | #N/A     |
| Max Velocity through Grate 2 (fps) =          | N/A              | N/A                | N/A                | N/A                | N/A                | N/A                | N/A                | N/A                | #N/A     |
| Time to Drain 97% of Inflow Volume (hours) =  | 12               | 31                 | 31                 | 30                 | 29                 | 28                 | 27                 | 25                 | #N/A     |
| Time to Drain 99% of Inflow Volume (hours) =  | 12               | 32                 | 32                 | 32                 | 33                 | 32                 | 32                 | 31                 | #N/A     |
| Maximum Ponding Depth (ft) =                  | 0.20             | 0.65               | 0.58               | 0.71               | 0.91               | 1.05               | 1.10               | 1.21               | #N/A     |
| Area at Maximum Ponding Depth (acres) =       | 0.00             | 0.01               | 0.01               | 0.01               | 0.01               | 0.01               | 0.01               | 0.01               | #N/A     |
| Maximum Volume Stored (acre-ft) =             | 0.001            | 0.003              | 0.003              | 0.004              | 0.006              | 0.007              | 0.008              | 0.010              | #N/A     |
| /                                             |                  |                    |                    |                    |                    |                    |                    |                    |          |

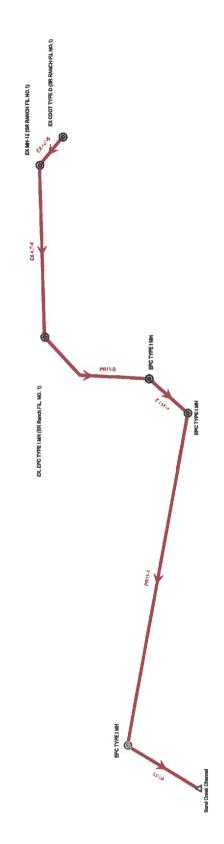


4




Bentley StormCAD CONNECT Edition [10.01.01.04] Page 1 of 1

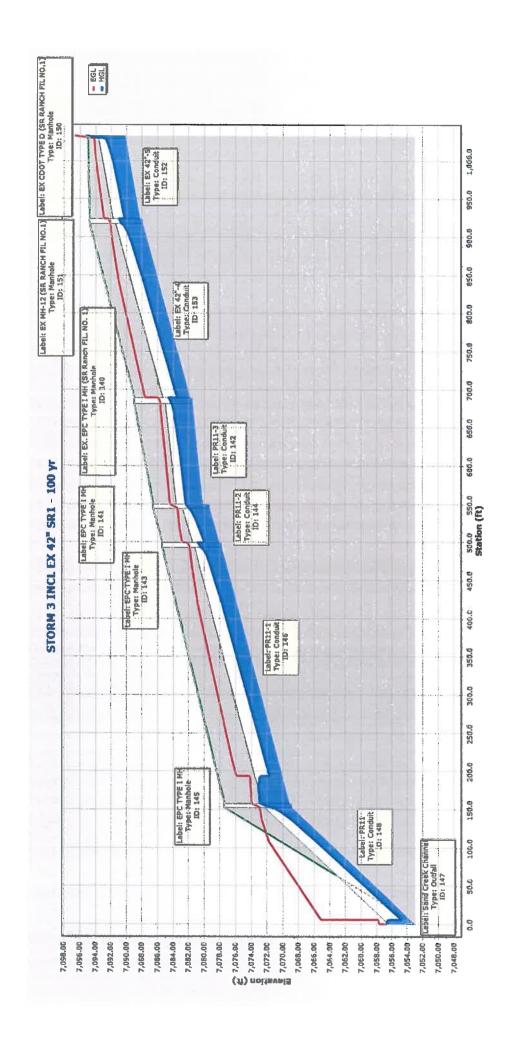
> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


# Conduit FlexTable: Table - 1 STRM 18.2

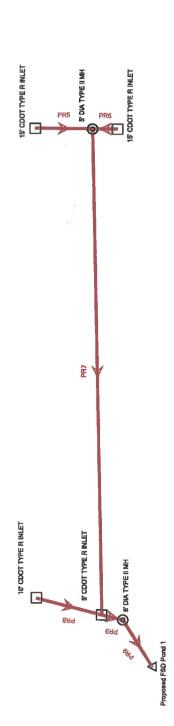
|                                      |                                       |               |                                                       | I ICA I ANICI                                                  | CONTRACTOR I ADDICTOR I OF INTERIOR              | TO MINICA                                 |                                     |                        |                          |
|--------------------------------------|---------------------------------------|---------------|-------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------|------------------------|--------------------------|
| Label                                | Upstream<br>Structure                 | Rise<br>(ft)  | How<br>(cfs)                                          | How / Capacity<br>(Design)<br>(%)                              | Length (Unified)<br>(ft)                         | Velocity<br>(ft/s)                        | Froude Number<br>(Normal)           | Depth (Normal)<br>(ft) | Depth (Critical)<br>(ft) |
| PR3                                  | 4' DIA TYPE II<br>MH                  |               | 25.70                                                 | 62.7                                                           | 213.1                                            | 8.82                                      | 1.432                               | 1.43                   | 1.73                     |
| PR4                                  | 10' CDOT TYPE<br>R INLET              |               | 30.10                                                 | 21.5                                                           | 68.7                                             | 22.71                                     | 5.300                               | 0.79                   | 1.87                     |
| PR3                                  | 5' DIA TYPE II<br>MH                  |               | 25.70                                                 | 58.4                                                           | 254.1                                            | 9.31                                      | 1.557                               | 1.37                   | 1.73                     |
| PR2.                                 | 10' CDOT TYPE<br>R INLET              |               | 11.80                                                 | 37.9                                                           | 3.2                                              | 3.76                                      | 2.023                               | 0.85                   | 1.23                     |
| PR1                                  | 10' CDOT TYPE<br>R INLET              |               | 13.80                                                 | 26.6                                                           | 27.2                                             | 13.97                                     | 3,425                               | 0.70                   | 1.34                     |
| Hydraulic Grade<br>Line (In)<br>(ft) | Hydraulic Grade<br>Line (Out)<br>(ft) | Headloss (ft) | Upstream<br>Structure<br>Hydraulic Grade<br>Line (In) | Upstream<br>Structure<br>Velocity (In-<br>Governing)<br>(ft/s) | Upstream<br>Structure<br>Headloss<br>Coefficient | Upstream<br>Structure<br>Headloss<br>(ft) | Elevation Ground<br>(Start)<br>(ft) | Invert (Start) (ft)    | Invert (Stop) (ft)       |
| 7,070.13                             | 7,068.77                              | 1.36          | 7,070.34                                              | 9.31                                                           | 0.270                                            | 0.21                                      | 7,075.93                            | 7,068.40               | 7,066.27                 |
| 7,067.84                             |                                       | 7.84          | 7,068.77                                              | 5.24                                                           | 1.020                                            | 0.93                                      | 7,071.69                            | 7,065.97               | 7,054.50                 |
| 7,073.35                             |                                       | 3.27          | 7,074.54                                              | 4.39                                                           | 1.520                                            | 1.19                                      | 7,077.37                            | 7,071.62               | 7,068.70                 |
| 7,074.55                             |                                       | 10.0          | 7,075.57                                              | 3.76                                                           | 1.000                                            | 1.02                                      | 7,077.10                            | 7,072.18               | 7,072.12                 |
| 7,074.89                             | 7,074.54                              | 0.35          | 7,075.49                                              | 6.18                                                           | 1.020                                            | 0.61                                      | 7,077.10                            | 7,073.55               | 7,072.12                 |
|                                      |                                       |               |                                                       |                                                                |                                                  |                                           |                                     |                        |                          |



Scenario: 100 yr


# STEM 3 THEL EXHZ" SRI

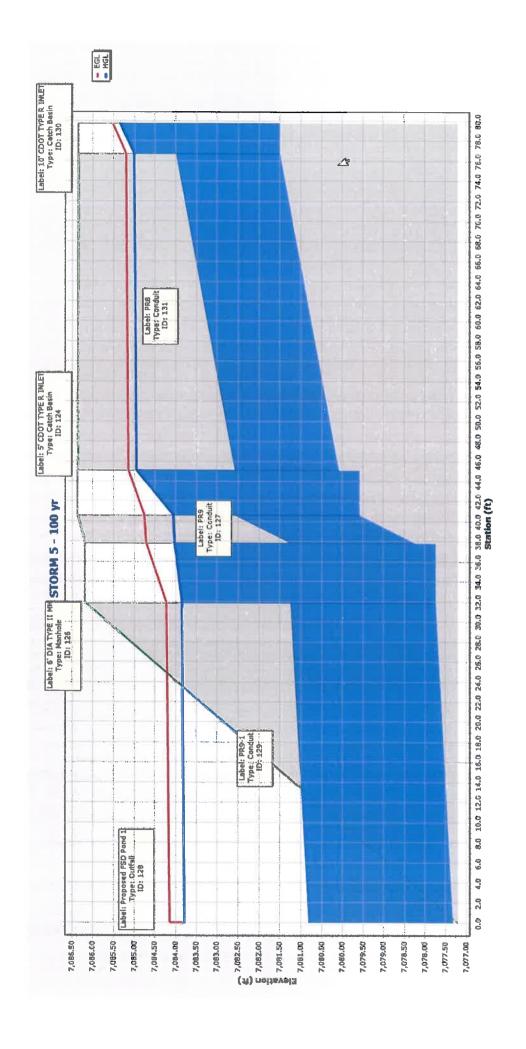


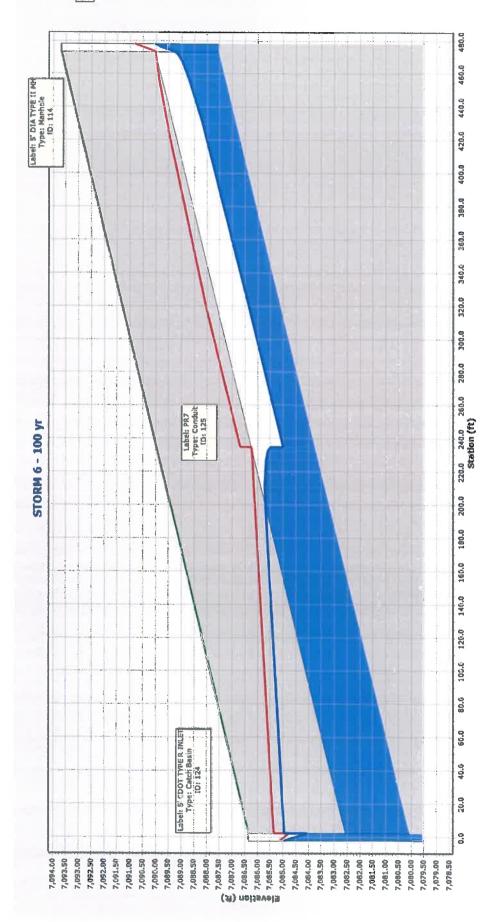

Bertley StormCAD CONNECT Edition [10.01.01.04] Page 1 of 1

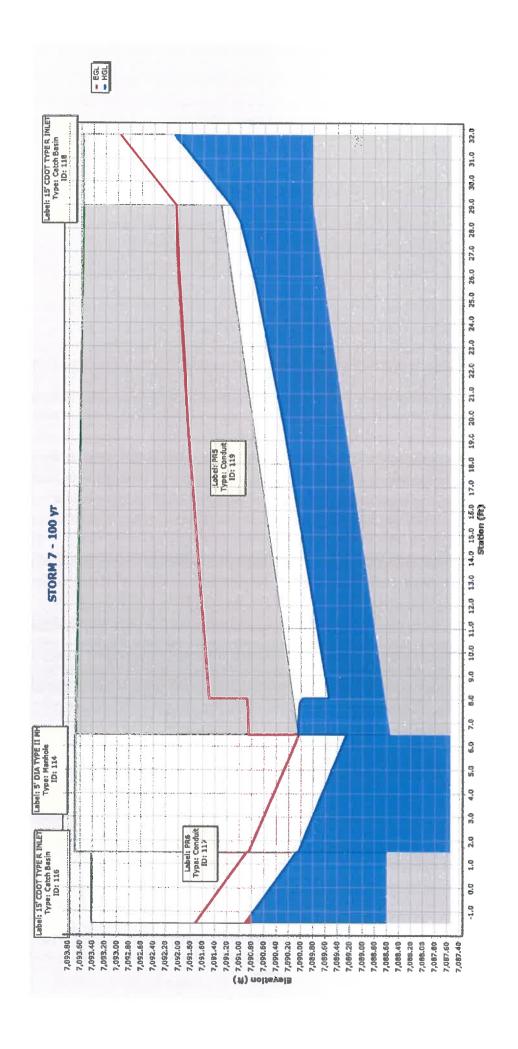
# Conduit FlexTable: Table - 1 STRM 3 INCL 42" SR1

|                  |                 |                                             |               |               |               |                             |              |                    | _                |                            |                      |          |          |          |          |          |          |
|------------------|-----------------|---------------------------------------------|---------------|---------------|---------------|-----------------------------|--------------|--------------------|------------------|----------------------------|----------------------|----------|----------|----------|----------|----------|----------|
| Depth (Critical) | (£)             | 2.74                                        | 2.74          | 2.74          | 2.74          | 2.74                        |              | 2.74               | Invert (Stop)    | <b>£</b>                   |                      | 7,080.11 | 7,078.00 | 7,069.11 | 7,053.00 | 7,088.21 | 7,081.79 |
| Depth (Normal)   | (£)             | 2.29                                        | 1.70          | 1.71          | 1.16          | 1.93                        |              | 1.69               | Invert (Start)   | £                          |                      | 7,081.49 | 7,079.31 | 7,077.70 | 7,068.81 | 7,090,07 | 7,087.91 |
| Froude Number    | (Normal)        | 1.432                                       | 2.541         | 2.507         | 5.244         | 1.992                       |              | 2.553              | Elevation Ground | (Start)                    |                      | 7,088.97 | 7,086.56 | 7,085.36 | 7,077.40 | 7,095.00 | 7,094.77 |
| Velocity         | (trys)          | 11.50                                       | 16.58         | 16.43         | 27.41         | 14.12                       |              | 16.64              | Upstream         | Structure                  | (F)                  | 0.38     | 0.38     | 0.38     | 1.43     | 2.48     | 0.38     |
| Length (Unified) | (ft)            | 138.4                                       | 20.8          | 341.2         | 155.1         | 110.4                       |              | 235.2              | Upstream         | Structure                  | Coefficient          | 0.270    | 0.270    | 0.270    | 1.020    | 1.770    | 0.270    |
| Flow / Capacity  | (Design)<br>(%) | 76.4                                        | 47.5          | 48.1          | 23.9          | 58.8                        |              | 47.3               | Upstream         | Structure<br>Velocity (In- | Governing)<br>(ft/s) | 9.24     | 11.32    | 9.24     | 7.98     | 9.50     | 9.24     |
| How              | (ds)            | 76.80                                       | 76.80         | 76.80         | 76.80         | 76.80                       |              | 76.80              | Upstream         | Structure                  | Line (In)            | 7,084.61 | 7,082.43 | 7,080.82 | 7,072.98 | 7,095.29 | 7,091.03 |
| Rise             | (ft)            |                                             |               |               |               |                             |              |                    | Headloss         | €                          |                      | 1.80     | 1.23     | 7.46     | 14.85    | 1.78     | 6.04     |
| Upstream         | Structure       | EX. EPC TYPE I<br>MH (SR Ranch<br>EII NO 1) | EPC TYPE I MH | EPC TYPE I MH | EPC TYPE I MH | EX CDOT TYPE<br>D (SR RANCH | EX MH-12 (SR | RANCH FIL<br>NO.1) | Hydraulic Grade  | Line (Out)                 | 3                    | 7,082.43 | 7,080.82 | 7,072.98 | 7,056.70 | 7,091.03 | 7,084.61 |
| Label            |                 | PR11-3                                      | PR11-2        | PR11-1        | PR11          | EX 42"-5                    |              | EX 42"-4           | Hydraulic Grade  | Line (In)                  | 3                    | 7,084.23 | 7,082.05 | 7,080.44 | 7,071.55 | 7,092.81 | 7,090.65 |




### STRM 5,6,7





## Conduit FlexTable: Table - 1 STRM 5,6,7

| Depth (Critical)<br>(ft)                           | 1.34                     | 1.34                     | 1.71                 | 2.24                    | 2.14                 | 1.40                     | Invert (Stop) (ft)                                             | 7,088.54 | 7,088.54 | 7,080.07 | 7,078.23 | 7,077.31 | 7,080.07 |
|----------------------------------------------------|--------------------------|--------------------------|----------------------|-------------------------|----------------------|--------------------------|----------------------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Depth (Normal)<br>(ft)                             | 1.07                     | 08.0                     | 1.24                 | 0.84                    | 1.60                 | 0.78                     | Invert (Start) (ft)                                            | 7,088.59 | 7,089.81 | 7,087.54 | 7,079.57 | 7,077.73 | 7,081.49 |
| Froude Number<br>(Normal)                          | 1.674                    | 2.948                    | 1.867                | 6.560                   | 1.755                | 3.114                    | Elevation Ground<br>(Start)<br>(ft)                            | 7,093.41 | 7,093.57 | 7,093.68 | 7,086.36 | 7,086.18 | 7,086.34 |
| Velocity<br>(ft/s)                                 | 7.19                     | 13.34                    | 10.43                | 99'9                    | 4.90                 | 3.50                     | Upstream<br>Structure<br>Headloss<br>(ft)                      | 0.82     | 0.92     | 1.17     | 0.88     | 0.18     | 0.34     |
| How / Capacity Length (Unified) Velocity (ft) (ft) | 2.5                      | 26.5                     | 475.5                | 8.0                     | 34.9                 | 35.4                     | Upstream<br>Structure<br>Headloss<br>Coefficient               | 1.020    | 1.020    | 1.520    | 1.280    | 0.470    | 1.770    |
| Flow / Capacity<br>(Design)                        | (%)                      | 55.2                     | 49.2                 | 17.3                    | 42.6                 | 20.9                     | Upstream<br>Structure<br>Velocity (In-<br>Governing)<br>(ft/s) | 7.19     | 7.62     | 7.19     | 3.50     | 99'9     | 3.50     |
| Flow<br>(cfs)                                      | 12.70                    | 12.70                    | 25.30                | 47.10                   | 47.10                | 17.20                    | Upstream<br>Structure<br>Hydraulic Grade<br>Line (In)<br>(ft)  | 7,091.28 | 7,092.07 | 7,090.43 | 7,084.94 | 7,084.02 | 7,085.34 |
| Rise (ft)                                          |                          |                          |                      |                         |                      |                          | Headloss (ft)                                                  | 0.04     | 0.72     | 4.31     | 0.04     | 0.08     | 90.0     |
| Upstream<br>Structure                              | 15' CDOT TYPE<br>R INLET | 15' CDOT TYPE<br>R INLET | 5' DIA TYPE II<br>MH | 5' CDOT TYPE R<br>INLET | 6' DIA TYPE II<br>MH | 10' CDOT TYPE<br>R INLET | Hydraulic Grade<br>Line (Out)<br>(ft)                          | 7,090.43 | 7,090.43 | 7,084,94 | 7,084.02 | 7,083.77 | 7,084.94 |
| Label                                              | PR6                      | PR5                      | PR7                  | PR9                     | PR9-1                | PR8                      | Hydraulic Grade<br>Line (In)<br>(ft)                           | 7,090.47 | 7,091.15 | 7,089.25 | 7,084.06 | 7,083.85 | 7,085.01 |

Storm 5, Storm 6, Storm 7.stsw 2/21/2019







### STRM 4 POND 1 OUTFALL INDEX MAP

Outlet Structure (FSD Pond 1)

PR10

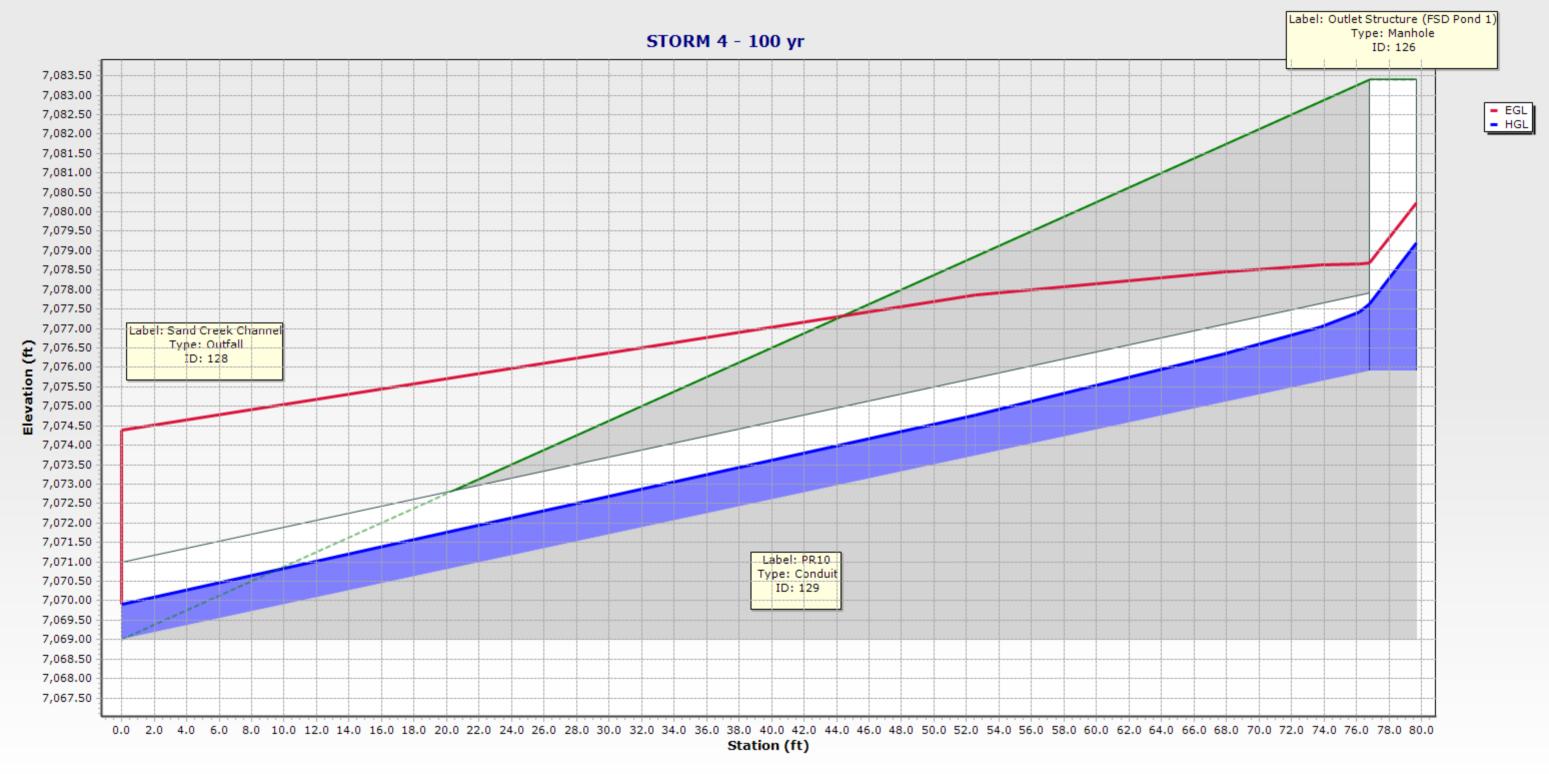
Sand Creek Channel

### Conduit FlexTable: STRM 4 POND 1 7-30-19

| Label                                       | ID                                               | Upstream<br>Structure                     | Flow<br>(cfs)                       | Flow / Capacity<br>(Design)<br>(%) | Length (Unified)<br>(ft) | Velocity<br>(ft/s) | Froude Number<br>(Normal) | Depth (Normal)<br>(ft) | Depth (Critical)<br>(ft) | Energy Grade<br>Line (In)<br>(ft) | Energy Grade<br>Line (Out)<br>(ft) | Hydraulic Grade<br>Line (In)<br>(ft) | Hydraulic Grade<br>Line (Out)<br>(ft) | Headloss<br>(ft) | Upstream<br>Structure<br>Hydraulic Grade<br>Line (In)<br>(ft) |
|---------------------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------|------------------------------------|--------------------------|--------------------|---------------------------|------------------------|--------------------------|-----------------------------------|------------------------------------|--------------------------------------|---------------------------------------|------------------|---------------------------------------------------------------|
| PR10                                        | 129                                              | Outlet Structure<br>(FSD Pond 1)          | 23.50                               | 40.3                               | 78.2                     | 17.56              | 3.772                     | 0.88                   | 1.72                     | 7,078.68                          | 7,074.39                           | 7,077.64                             | 7,069.91                              | 7.73             | 7,079.20                                                      |
| Upstream Structure Velocity (In- Governing) | Upstream<br>Structure<br>Headloss<br>Coefficient | Upstream<br>Structure<br>Headloss<br>(ft) | Elevation Ground<br>(Start)<br>(ft) | Invert (Start)<br>(ft)             | Invert (Stop)<br>(ft)    |                    |                           |                        |                          |                                   |                                    |                                      |                                       |                  |                                                               |

(ft/s)

8.17

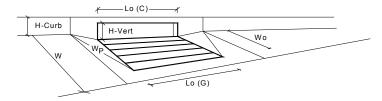

1.500

1.56

7,083.40

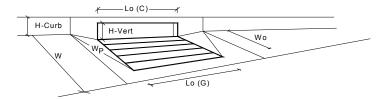
7,075.92

7,069.00




### ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Enter Your Project Name Here Inlet ID: Inlet DP 7 CRONN Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $H_{\text{CURB}}$ 6.00 Distance from Curb Face to Street Crown T<sub>CROWN</sub> 17.0 Gutter Width w: 2.00 Street Transverse Slope S<sub>X</sub> : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W$ 0.083 ft/ft S<sub>o</sub> : Street Longitudinal Slope - Enter 0 for sump condition 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n<sub>STREET</sub> : 0.020 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.1 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm

SUMP


SUMP

MAJOR STORM Allowable Capacity is based on Depth Criterion



| Design Information (Input)  CDOT Type R Curb Opening                 | -            |                             | MINOR       | MAJOR          | _               |
|----------------------------------------------------------------------|--------------|-----------------------------|-------------|----------------|-----------------|
| Type of Inlet                                                        |              | Type =                      | CDOT Type F | R Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' fro | m above)     | a <sub>local</sub> =        | 3.00        | 3.00           | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                        |              | No =                        | 2           | 2              |                 |
| Water Depth at Flowline (outside of local depression)                |              | Ponding Depth =             | 5.1         | 7.8            | inches          |
| Grate Information                                                    |              |                             | MINOR       | MAJOR          | Override Depths |
| Length of a Unit Grate                                               |              | L <sub>0</sub> (G) =        | N/A         | N/A            | feet            |
| Width of a Unit Grate                                                |              | W <sub>o</sub> =            | N/A         | N/A            | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)            |              | A <sub>ratio</sub> =        | N/A         | N/A            |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)       |              | $C_f(G) =$                  | N/A         | N/A            | Ī               |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                   |              | C <sub>w</sub> (G) =        | N/A         | N/A            | 1               |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                |              | C <sub>o</sub> (G) =        | N/A         | N/A            | 7               |
| Curb Opening Information                                             |              | _                           | MINOR       | MAJOR          | _               |
| Length of a Unit Curb Opening                                        |              | L <sub>0</sub> (C) =        | 5.00        | 5.00           | feet            |
| Height of Vertical Curb Opening in Inches                            |              | H <sub>vert</sub> =         | 6.00        | 6.00           | inches          |
| Height of Curb Orifice Throat in Inches                              |              | H <sub>throat</sub> =       | 6.00        | 6.00           | inches          |
| Angle of Throat (see USDCM Figure ST-5)                              |              | Theta =                     | 63.40       | 63.40          | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet) |              | W <sub>p</sub> =            | 2.00        | 2.00           | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)       |              | $C_f(C) =$                  | 0.10        | 0.10           |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                |              | C <sub>w</sub> (C) =        | 3.60        | 3.60           |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)         |              | C <sub>o</sub> (C) =        | 0.67        | 0.67           | ]               |
| Low Head Performance Reduction (Calculated)                          |              |                             | MINOR       | MAJOR          |                 |
| Depth for Grate Midwidth                                             |              | d <sub>Grate</sub> =        | N/A         | N/A            | ft              |
| Depth for Curb Opening Weir Equation                                 |              | d <sub>Curb</sub> =         | 0.26        | 0.48           | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets       |              | RF <sub>Combination</sub> = | 0.48        | 0.74           |                 |
| Curb Opening Performance Reduction Factor for Long Inlets            |              | RF <sub>Curb</sub> =        | 0.88        | 1.00           |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets            |              | RF <sub>Grate</sub> =       | N/A         | N/A            |                 |
|                                                                      |              | _                           | MINOR       | MAJOR          | _               |
| Total Inlet Interception Capacity (assumes clogge                    | l condition) | Q <sub>a</sub> =            | 6.7         | 18.7           | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK            |              | Q PEAK REQUIRED =           | 5.7         | 13.8           | cfs             |

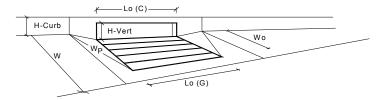
### ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: **Enter Your Project Name Here** Inlet ID: Inlet DP 8 CRONN Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $H_{\text{CURB}}$ 6.00 Distance from Curb Face to Street Crown T<sub>CROWN</sub> 17.0 Gutter Width w: 2.00 Street Transverse Slope S<sub>X</sub> : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W$ 0.083 ft/ft S<sub>o</sub> : Street Longitudinal Slope - Enter 0 for sump condition 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n<sub>STREET</sub> : 0.020 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.1 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP



| Design Information (Input)  CDOT Type R Curb Opening  ▼                      |                             | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 2           | 2            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.1         | 7.8          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | L <sub>0</sub> (G) =        | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          |                 |
| Curb Opening Information                                                     | _                           | MINOR       | MAJOR        | _               |
| Length of a Unit Curb Opening                                                | L <sub>0</sub> (C) =        | 5.00        | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_f(C) =$                  | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         | ]               |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.26        | 0.48         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.48        | 0.74         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.88        | 1.00         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                 |
|                                                                              |                             | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | $Q_a =$                     | 6.7         | 18.7         | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 4.9         | 11.8         | cfs             |

### Version 4.05 Released March 2017 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: **Enter Your Project Name Here** Inlet ID: Inlet DP 9 CRONN Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $H_{\text{CURB}}$ 6.00 Distance from Curb Face to Street Crown T<sub>CROWN</sub> 17.0 Gutter Width w: 2.00 Street Transverse Slope S<sub>X</sub> : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W$ 0.083 ft/ft S<sub>o</sub> : Street Longitudinal Slope - Enter 0 for sump condition 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n<sub>STREET</sub> : 0.020 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.1 Check boxes are not applicable in SUMP conditions

Minor Storm

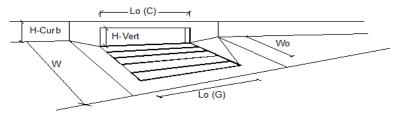

SUMP

Major Storm

SUMP

MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Depth Criterion

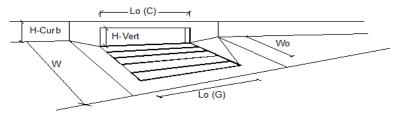



| Design Information (Input)                                                   |                              | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|------------------------------|-------------|--------------|-----------------|
| Type of Inlet  CDOT Type R Curb Opening                                      | Type =                       | CDOT Type F | Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =         | 3.00        | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                         | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =              | 5.1         | 7.8          | inches          |
| Grate Information                                                            |                              | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | L <sub>0</sub> (G) =         | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =             | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =         | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_f(G) =$                   | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | $C_w$ (G) =                  | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>0</sub> (G) =         | N/A         | N/A          |                 |
| Curb Opening Information                                                     |                              | MINOR       | MAJOR        | _               |
| Length of a Unit Curb Opening                                                | L <sub>0</sub> (C) =         | 5.00        | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =          | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =        | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                      | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =             | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_f(C) =$                   | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                   | 3.60        | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =         | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                              | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =         | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =          | 0.26        | 0.48         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> =  | 0.65        | 1.00         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =         | 1.00        | 1.00         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =        | N/A         | N/A          |                 |
|                                                                              |                              | MINOR       | MAJOR        |                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | $Q_a =$                      | 3.7         | 9.0          | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q <sub>PEAK REQUIRED</sub> = | 2.2         | 5.4          | cfs             |

### ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: **Enter Your Project Name Here** Inlet ID: Inlet DP 10 CRONN Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $H_{\text{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $T_{CROWN}$ Gutter Width w: 2.00 S<sub>X</sub> : Street Transverse Slope 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W$ 0.083 ft/ft S<sub>o</sub> : Street Longitudinal Slope - Enter 0 for sump condition 0.022 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n<sub>STREET</sub> : 0.020 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.1 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 29.1 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager

### INLET ON A CONTINUOUS GRADE




| Design Information (Input)  CDOT Type R Curb Opening                      |                      | MINOR       | MAJOR          | _      |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>0</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 9.1         | 12.7           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.3         | 2.9            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 97          | 82             | %      |

### ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: **Enter Your Project Name Here** Inlet ID: Inlet DP 11 CRONN Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $H_{\text{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $T_{CROWN}$ Gutter Width w: 2.00 S<sub>X</sub> : Street Transverse Slope 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W$ 0.083 ft/ft S<sub>o</sub> : Street Longitudinal Slope - Enter 0 for sump condition 0.022 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n<sub>STREET</sub> : 0.020 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.1 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 29.1 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manager

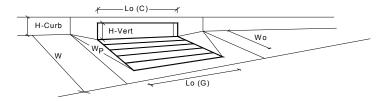
### INLET ON A CONTINUOUS GRADE



| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet CDOT Type R Curb Opening                                    | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.9         | 12.7           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 2.9            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 82             | %      |

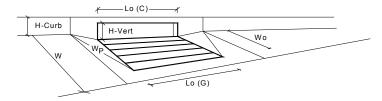
### ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Enter Your Project Name Here Inlet ID: Inlet DP 12 CRONN Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $H_{\text{CURB}}$ 6.00 Distance from Curb Face to Street Crown T<sub>CROWN</sub> 17.0 Gutter Width w: 2.00 Street Transverse Slope S<sub>X</sub> : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W$ 0.083 ft/ft S<sub>o</sub> : Street Longitudinal Slope - Enter 0 for sump condition 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n<sub>STREET</sub> : 0.020 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.1 Check boxes are not applicable in SUMP conditions

Minor Storm


SUMP

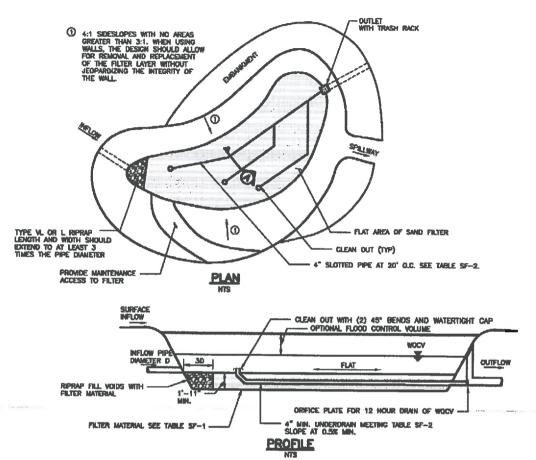
Major Storm

SUMP

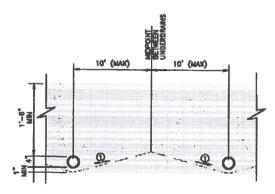

MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Depth Criterion




| Design Information (Input) CDOT Type R Curb Opening   ▼                      |                             | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening | 7               |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 2           | 2            |                 |
| Nater Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.1         | 7.8          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| ength of a Unit Grate                                                        | L <sub>0</sub> (G) =        | N/A         | N/A          | feet            |
| Nidth of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_f(G) =$                  | N/A         | N/A          | Ī               |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          |                 |
| Curb Opening Information                                                     | _                           | MINOR       | MAJOR        | _               |
| ength of a Unit Curb Opening                                                 | L <sub>0</sub> (C) =        | 5.00        | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_f(C) =$                  | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         | ]               |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.26        | 0.48         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.48        | 0.74         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.88        | 1.00         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          | ]               |
|                                                                              | _                           | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | $Q_a =$                     | 6.7         | 18.7         | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 6.2         | 17.2         | cfs             |

### ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Enter Your Project Name Here Inlet ID: Inlet DP 13 CRONN Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $H_{\text{CURB}}$ 6.00 Distance from Curb Face to Street Crown T<sub>CROWN</sub> 17.0 Gutter Width w: 2.00 Street Transverse Slope S<sub>X</sub> : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W$ 0.083 ft/ft S<sub>o</sub> : Street Longitudinal Slope - Enter 0 for sump condition 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n<sub>STREET</sub> : 0.020 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.1 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP




| Design Information (Input)           | ODOT To a DiOurk On suring                  |                              | MINOR       | MAJOR          |                 |
|--------------------------------------|---------------------------------------------|------------------------------|-------------|----------------|-----------------|
| Type of Inlet                        | CDOT Type R Curb Opening                    | Type =                       | CDOT Type F | R Curb Opening |                 |
| Local Depression (additional to co   | ontinuous gutter depression 'a' from above) | a <sub>local</sub> =         | 3.00        | 3.00           | inches          |
| Number of Unit Inlets (Grate or C    | urb Opening)                                | No =                         | 1           | 1              |                 |
| Water Depth at Flowline (outside     | of local depression)                        | Ponding Depth =              | 5.1         | 7.8            | inches          |
| Grate Information                    |                                             |                              | MINOR       | MAJOR          | Override Depths |
| Length of a Unit Grate               |                                             | L <sub>0</sub> (G) =         | N/A         | N/A            | feet            |
| Width of a Unit Grate                |                                             | W <sub>o</sub> =             | N/A         | N/A            | feet            |
| Area Opening Ratio for a Grate (t    | ypical values 0.15-0.90)                    | A <sub>ratio</sub> =         | N/A         | N/A            |                 |
| Clogging Factor for a Single Grat    | e (typical value 0.50 - 0.70)               | $C_f(G) =$                   | N/A         | N/A            |                 |
| Grate Weir Coefficient (typical va   | lue 2.15 - 3.60)                            | $C_w$ (G) =                  | N/A         | N/A            |                 |
| Grate Orifice Coefficient (typical v | /alue 0.60 - 0.80)                          | C <sub>0</sub> (G) =         | N/A         | N/A            |                 |
| Curb Opening Information             |                                             |                              | MINOR       | MAJOR          | _               |
| Length of a Unit Curb Opening        |                                             | L <sub>o</sub> (C) =         | 5.00        | 5.00           | feet            |
| Height of Vertical Curb Opening i    | n Inches                                    | H <sub>vert</sub> =          | 6.00        | 6.00           | inches          |
| Height of Curb Orifice Throat in Ir  | nches                                       | H <sub>throat</sub> =        | 6.00        | 6.00           | inches          |
| Angle of Throat (see USDCM Fig       | ure ST-5)                                   | Theta =                      | 63.40       | 63.40          | degrees         |
| Side Width for Depression Pan (t     | ypically the gutter width of 2 feet)        | W <sub>p</sub> =             | 2.00        | 2.00           | feet            |
| Clogging Factor for a Single Curb    | Opening (typical value 0.10)                | $C_f(C) =$                   | 0.10        | 0.10           |                 |
| Curb Opening Weir Coefficient (t     | ypical value 2.3-3.7)                       | C <sub>w</sub> (C) =         | 3.60        | 3.60           |                 |
| Curb Opening Orifice Coefficient     | (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =         | 0.67        | 0.67           | ]               |
| Low Head Performance Reduct          | tion (Calculated)                           |                              | MINOR       | MAJOR          |                 |
| Depth for Grate Midwidth             |                                             | d <sub>Grate</sub> =         | N/A         | N/A            | ft              |
| Depth for Curb Opening Weir Equ      | uation                                      | d <sub>Curb</sub> =          | 0.26        | 0.48           | ft              |
| Combination Inlet Performance R      | leduction Factor for Long Inlets            | RF <sub>Combination</sub> =  | 0.65        | 1.00           |                 |
| Curb Opening Performance Redu        | uction Factor for Long Inlets               | RF <sub>Curb</sub> =         | 1.00        | 1.00           |                 |
| Grated Inlet Performance Reduct      | ion Factor for Long Inlets                  | RF <sub>Grate</sub> =        | N/A         | N/A            | ]               |
|                                      |                                             |                              | MINOR       | MAJOR          | _               |
| Total Inlet Interception Ca          | apacity (assumes clogged condition)         | Q <sub>a</sub> =             | 3.7         | 9.0            | cfs             |
| Inlet Capacity IS GOOD for Min       | or and Major Storms(>Q PEAK)                | Q <sub>PEAK REQUIRED</sub> = | 1.2         | 5.9            | cfs             |

EDB AND SFB DETAILS



NOTE: THS DETAIL SHOWS A PARTIAL INFILTRATION SECTION. FOR FULL INFILTRATION ELIMINATE UNDERDRAIN AND PROVIDE 1'-6' OF FILTER MATERIAL FOR NO INFILTRATION PROVIDE IMPERIMEMBLE MEMBRANE SECURED TO CAST—IN-PLACE CONCRETE WALL SEE DETAILS SF-2 AND SF-3.



() SLOPE (STRAIGHT GRADE) SUBGRADE (2—10%) TO UNDERDRAIN TO REDUCE SATURATED SOIL CONDITIONS BETWEEN STORM EVENTS (OPTIONAL)



Figure SF-1. Sand Filter Plan and Sections

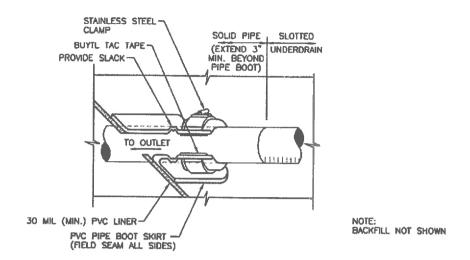



Figure SF-2. Geomembrane Liner/Underdrain Penetration Detail

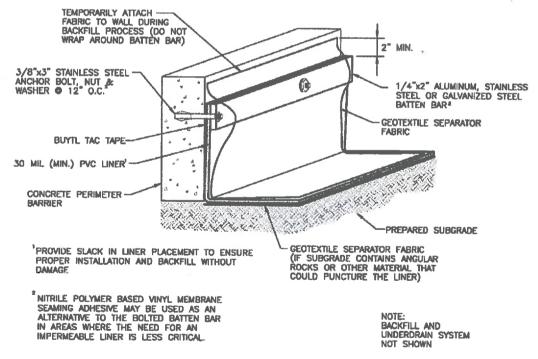



Figure SF-3. Geomembrane Liner/Concrete Connection Detail

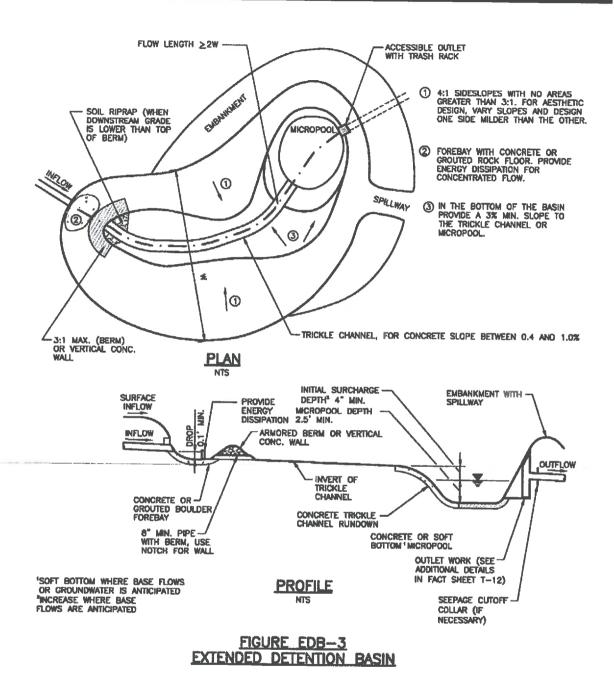
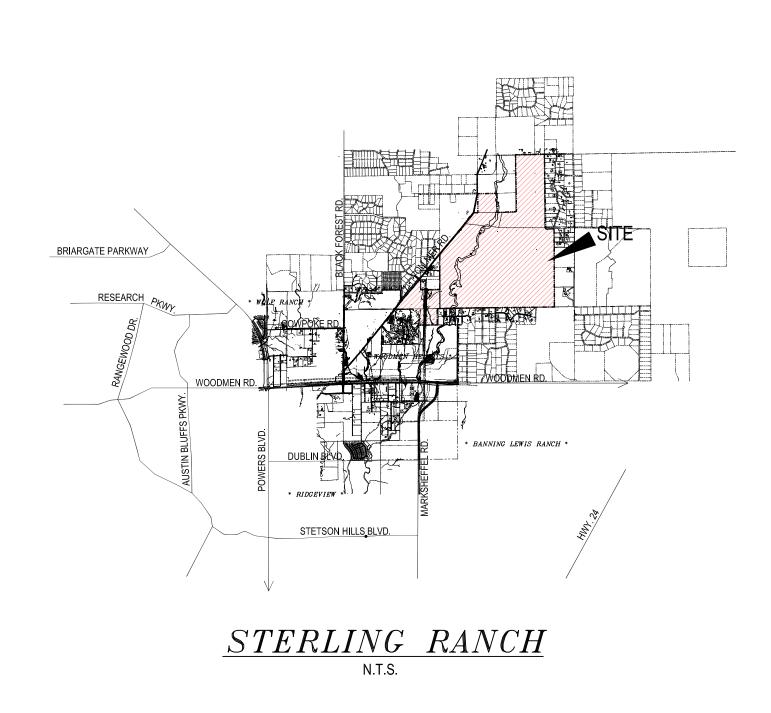
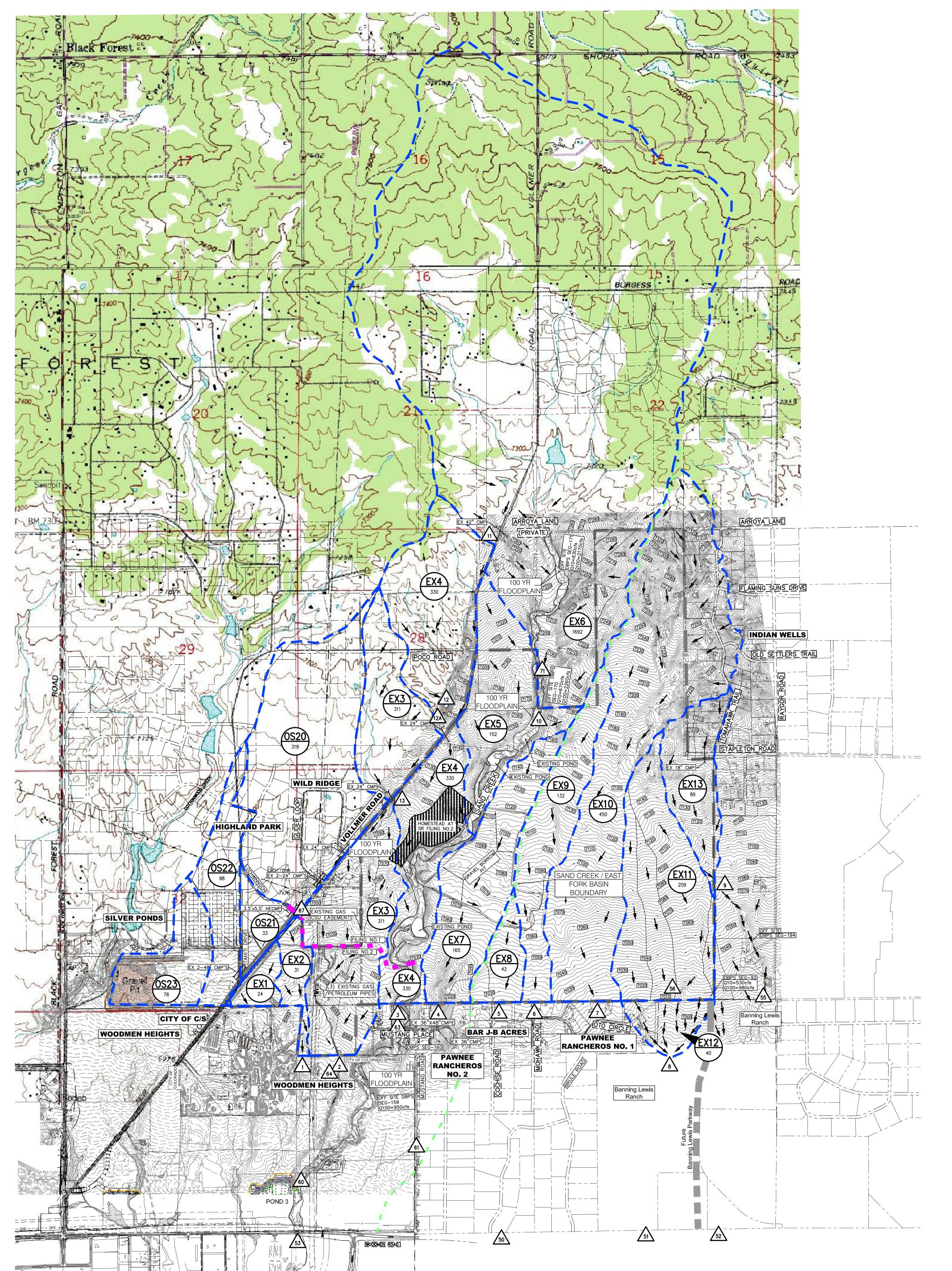




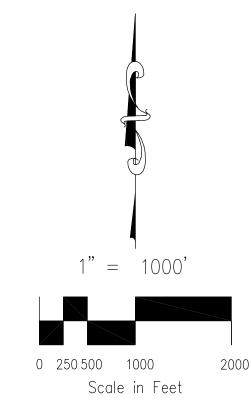

Figure EDB-3. Extended Detention Basin (EDB) Plan and Profile

Additional Details are provided in BMP Fact Sheet T-12. This includes outlet structure details including orifice plates and trash racks.

HISTORIC, EXISTING AND PROPOSED DRAINAGE MAPS





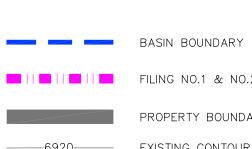

### HISTORIC CONDITION

| В     | ASIN S          | UMMAR`                  | Y             |
|-------|-----------------|-------------------------|---------------|
| BASIN | AREA<br>(acres) | Q <sub>5</sub><br>(CFS) | Q100<br>(CFS) |
| EX-1  | 24              | 3                       | 40            |
| EX-2  | 31              | 3                       | 45            |
| EX-3  | 311             | 49                      | 341           |
| EX-4  | 330             | 71                      | 352           |
| EX-5  | 152             | 14                      | 209           |
| EX-6  | 1692            | 118                     | 2168          |
| EX-7  | 165             | 12                      | 197           |
| EX-8  | 42              | 4                       | 64            |
| EX-9  | 132             | 11                      | 149           |
| EX-10 | 450             | 48                      | 474           |
| EX-11 | 209             | 17                      | 261           |
| EX-12 | 40              | 5                       | 65            |
| EX-13 | 89              | 6                       | 114           |
| OS-20 | 318             | 61                      | 310           |
| OS-21 | 33              | 8                       | 38            |
| OS-22 | 88              | 18                      | 91            |
| OS-23 | 78              | 34                      | 84            |

\* NOTE: BASIN S OS-22 & OS-23 NOT PART OF THIS REPORT. FLOWS FOLLOW HISTORIC PATTERNS ON THE WEST SIDE OF VOLLMER ROAD.

### HISTORIC CONDITION

|                 |                | <u> </u>                | <u> </u>                  | <u>ST NIC</u> | )                        |               |
|-----------------|----------------|-------------------------|---------------------------|---------------|--------------------------|---------------|
| DESIGN<br>POINT | SQ.<br>MI.     | Q <sub>5</sub><br>(CFS) | Q <sub>100</sub><br>(CFS) | SQ.<br>MI.    | DBPS<br>Q <sub>100</sub> | DBPS<br>DP/ID |
| 1               | 0.09           | 5                       | 84                        |               |                          | ,             |
| 2               | 0.49           | 49                      | 341                       | 0.74          | 465                      | 64            |
| 3               | 0.52           | 139                     | 2610                      | 4.33          | 2552                     | 63            |
| 4               | 0.26           | 12                      | 197                       |               |                          |               |
| 5               | 0.07           | 4                       | 64                        |               |                          |               |
| 6               | 0.21           | 11                      | 149                       |               |                          |               |
| 7               | 0.70           | 48                      | 474                       |               |                          |               |
| 8               | 0.39           | 18                      | 305                       |               |                          |               |
| 9               | 0.14           | 6                       | 114                       |               |                          |               |
| 10              | 2.64           | 122                     | 2245                      | 3.27          | 2245                     | 71            |
| 11              | 0.09           | 5                       | 83                        |               |                          |               |
| 12A             | 0.01           | 3                       | 16                        |               |                          |               |
| 12              | 0.27           | 10                      | 200                       |               |                          |               |
| 13              | 0.17           | 6                       | 126                       |               |                          |               |
| * NOTE:         |                | I A D [                 | - NOT                     | 0.48          | #                        | 55            |
| INO IL.         | SQ. M<br>Stant |                         | E NOT<br>ACH              | 0.53          | 1210                     | 56            |
| DESIG           |                |                         | -DBPS                     | 5.38          | 2629                     | 60            |




### <u>LEGEND</u>





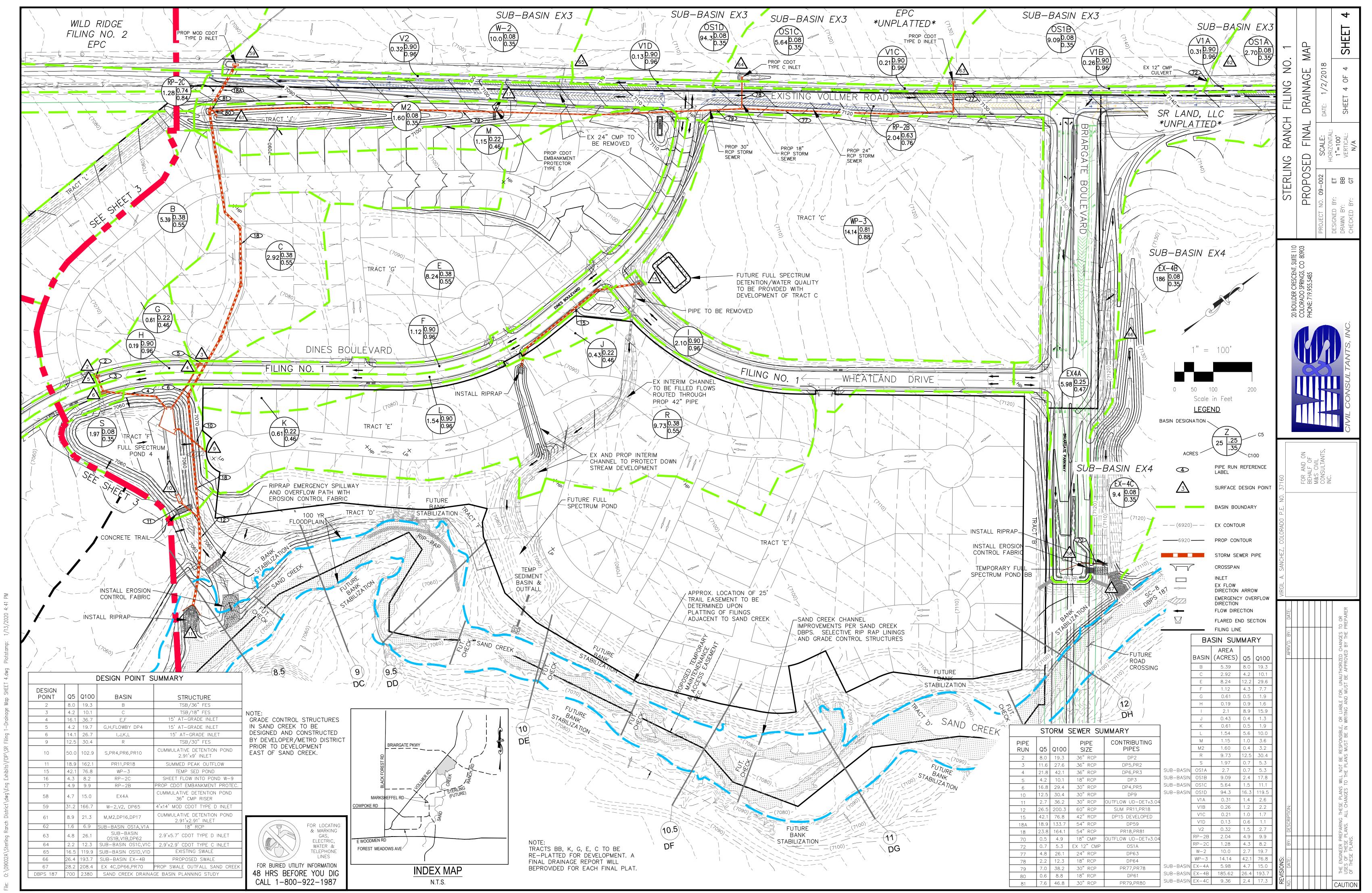
EXISTING FLOW RELEASE POINT

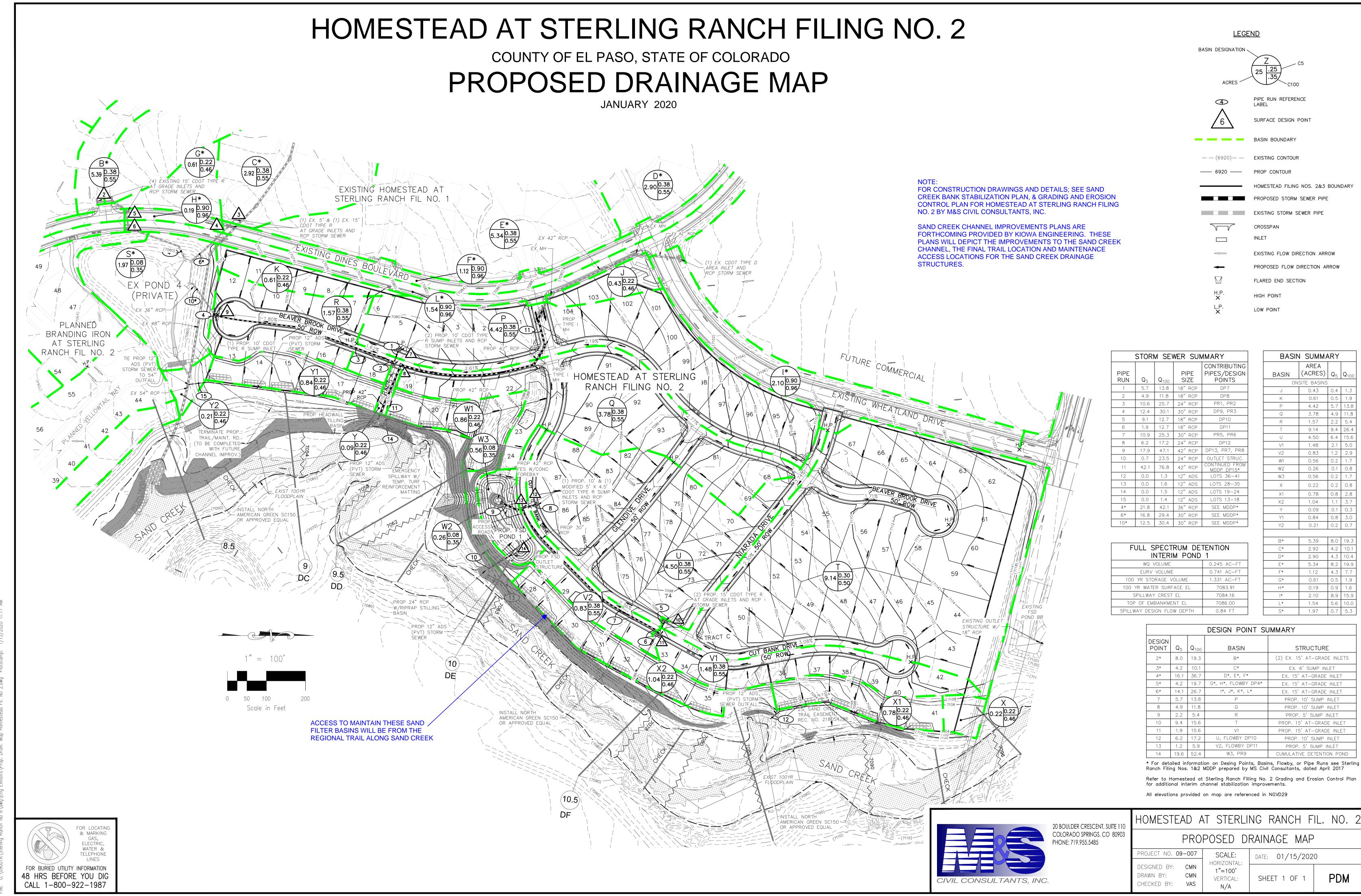


FILING NO.1 & NO.2 DIVISION LINE PROPERTY BOUNDARY -----6920----- EXISTING CONTOUR

CHECKED BY: VAS VERT: N/A

CULVERT PIPE





### STERLING RANCH

### HISTORIC - DRAINAGE MAP

PROJECT NO. 09-002 | FILE: O: \\dwg\Eng Exhibits\MDDP HISTORIC DATE: 2/6/17 DESIGNED BY: VAS VAS | HORIZ: 1"=1000' DRAWN BY:

SHEET 1 OF 1





File: 0:\09007A\Sterling Banch No 6\dwa\Fna Fxhibits\Prop. Drain. Map Homestead Fil. No 2.dwa Plotstamp: