

FINAL DRAINAGE REPORT FOR ELDORADO SPRINGS PPR-19-032

November 5, 2019

Revised February 5, 2020 Revised March 26, 2021

Prepared for:

Emery Chukly 5671 North Oracle Road Suite 1102 Tucson, AZ 85704

WestWorks Job #91807

FINAL DRAINAGE REPORT FOR **ELDORADO SPRINGS**

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Chad D. Kuzbek, Colorado PE #35751 For and on behalf of WestWorks Engineering

Developer's Statement:

BRANSSIONAL ENGL I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

Date

35/751

Business Name

By: _____

Title:

Address:

El Paso County, Colorado:

Filed in accordance with requirements of the Drainage Criteria Manual Volumes 1 and 2, El Paso County Engineering Criteria Manual, and Land Development Code, as amended.

Jennifer Irvine, P.E. County Engineer/ECM Administrator

Date

Conditions:

FINAL DRAINAGE REPORT FOR ELDORADO SPRINGS

TABLE OF CONTENTS

Purpose	Page 3
General Location and Description	Page 3
Drainage Basins and Subbasins	Page 3
Existing Conditions	Page 3
Developed Conditions	Page 9
4-Step Process Discussion	Page 12
Summary	Page 13
Drainage Design Criteria	Page 13
Drainage Facility Design	Page 13
Floodplain Statement	Page 13
Erosion Control Plan	Page 14
Opinion of Probable Cost	Page 14
Drainage Fees	Page 15
Reference List	Page 15

APPENDIX

Vicinity Map Soils Map Floodplain Map Hydrologic Calculations (5-YR and 100-YR) Hydraulic Calculations Stormwater Facility Calculations Previous Drainage Study Maps Drainage Map

FINAL DRAINAGE REPORT FOR ELDORADO SPRINGS

PURPOSE

The purpose of this final drainage report (FDR) is to identify specific solutions to drainage problems on site and off-site resulting from the development and platting of this subdivision.

GENERAL LOCATION AND DESCRIPTION

Eldorado Springs includes 15.5 acres located in a portion of the southwest corner of Section 33, Township 14 South and in the northwest corner of Section 4, Township 15 South, Range 66 West of the 6th P.M. in El Paso County, Colorado. More specifically, the site is located near the southeast corner of Venetucci Boulevard and Bob Johnson Drive, south of the World Arena facility. The site is bounded by unplatted land to the east and west, single family residential Stratmoor Subdivision to the south, and Venetucci Boulevard to the north.

The site is currently undeveloped and drains from south to north over moderate slopes. Proposed development includes a multi-family apartment complex. Existing soils in the study area consist mostly of Schamber-Razor complex (SCS Map Unit Symbol 82 - Hydrologic Soil Group A) with a small portion being Nunn Clay loam (SCS Map Unit Symbol 59 - Hydrologic Soil Group C). The site is located in the Stratton Drainage Basin.

DRAINAGE BASINS AND SUB-BASINS

The site has been part of multiple drainage studies. Most recently, the site was previously studied in the, "Final Drainage Report for Independence Place at Cheyenne Mountain Filing No. 1," prepared by Classic Consulting Engineers & Surveyors, dated 1/27/2011. The existing conditions drainage map and description is taken directly from this previous study and quoted below:

"Existing Drainage Characteristics:

The site is located within the Stratton Drainage Basin. This site was originally studied as a part of the "Master Drainage Plan Harrison Street – 1-25 Vicinity Cheyenne Mountain Ranch," by Hartzell – Pfeiffenberger and Associates, Inc. dated November 15, 1973. Since then the site was included in additional basin analysis reports; "Stratton and Fischer's Canyon Drainage Basin Planning Study, Draft Hydraulic Analysis," by Muller Engineering Co. dated May 31, 1990; the "Master Drainage Report for Cheyenne Mountain Center Filing No. 1 and Cheyenne Meadows Road," by Drexel Barrell, dated October 1985; the "Hydrology Report Stratton Drainage Basin Outfall Study," by Drexel Barrell, dated June 1994; and the "Preliminary and Final Drainage Report and Plan for World Arena Subdivision No. 1," by Obering, Wurth & Associates, August 1994 revised March 1995.

The most recent master study drainage report for this area that included the proposed site was the "Hydrology Report Stratton Drainage Basin Outfall Study El Paso County, Colorado," by Drexel Barrell, dated June 9, 1994. This Hydrology Report by Drexel Barrell conforms to current El Paso County criteria and was performed based on minor modifications and revisions to TR-20 data prepared in the 1990 study by Muller Engineering Co. This Hydrology Report also updated the hydrologic modeling completed in the 1985 study by Drexel Barrell with the correct 2 hour and 24 hour storms that are utilized in the current criteria. This report provides the basis for the proposed site's allowable release rate since it sized and described the 90"/102" RCP storm outfall system (Sinton Outfall). This system runs parallel with the eastern site boundary, along the opposite site of Venetucci Blvd. A Drainage Map from the Drexel Barrell Hydrology Study is included in the appendix of this report for reference.

The proposed 15.46 acre site is included within Basin 009 of this previous study. At the time of the Drexel Barrell Hydrology Study, existing box culverts conveyed the runoff from Basin 009 under Venetucci Blvd./Old Hwy 85-87 to the existing 14' x 11.7' box culvert crossing under Interstate 25 and to the east into Fountain Creek. The development of Chevenne Mountain Center constructed the 'Sinton Outfall' RCP storm sewer system that accepts the allowable release rates of the upstream parcels and conveys them along the historic drainage pattern of under I-25 and into the Sinton Channel, which connects to Fountain Creek. This large storm system consists of 102" RCP and 90" RCP storm main, with appropriate sized storm laterals to account for the flows quantified within the Drexel Barrell Hydrology Report. Basin 009 of this previous report consists of 0.147 square miles (94.08 acres) and was modeled using a CN value of 81 (SCS Method since entire study area was over 100 acres). Per the Drainage Criteria Manual Vol. 1 Table 5-5 a CN of 81 is equivalent to 1/3acre home lots with all Group C soils, or about 1/6 acre home lots with all Group B soils. The existing Stratmoor Hills subdivision is also located within this Basin 009, with homes slightly over 2 lots per acre; and since these homes are within Group B-soils, a more accurate CN value for the existing development would be around 71. Therefore, the remaining area of Basin 009 (the proposed Independence Place at Cheyenne Mountain Filing No. 1 site) is allowed to be substantially higher density than the calculated CN of 81. Also, runoff from Basin 008 of the previous report overflows the existing curb storm inlets and a portion drains onto the Venetucci Blvd. right-of-way within the Basin 009 area. Thus the actual total release from the developed site can be higher than the assumed Basin 009 flows $(Q_{100} = 270 \text{ cfs}, 24 \text{ hour duration storm event}).$

When the World Arena was constructed to the immediate north of the proposed site, street improvements were made to Venetucci Blvd. that expanded the existing storm sewer facilities constructed with the Sinton Outfall main (Drexel Barrell Report). Many curb inlets were placed along the improved roadways at the Cheyenne Meadows Road intersection and Bob Johnson Drive intersection. Using the "Preliminary and Final Drainage Report and Plan for World Arena Subdivision No. 1," by Obering, Wurth & Associates, August 1994 revised March 1995 and the "Roadway Improvement Package and Storm Sewer Package for US Highway 85187 (Venetucci Boulevard)," by Drexel Barrell including the as-built revisions; these storm modifications have been incorporated into this report and construction drawings for the proposed development. The following will describe the existing runoff quantities and existing facilities in more detail at each of the existing design points.

Design Point 1 ($Q_5 = 25.0 \text{ cfs}$, $Q_{100} = 61.1 \text{ cfs}$) consists of flows from Basins EX-1, EX-2, and EX-3 all of which are within the existing Stratmoor Hills subdivision to the south-west of the proposed site. Basin EX-1 is 6.13 acres of existing home lots that drains to the east, overtops Stratmoor Drive and into Basin EX-2. The combined flows from EX-1 & EX-2 continue on the surface to the east and overtop Westcott Ave. drain into Basin EX-3. Roadside ditches along Chamberlin Ave. route all of the runoff from the three basins to DP-1, where an existing concrete storm pipe collects the water and routes it under Chamberlin Ave. and into the ravine to the east, within Basin EX-4. Although the density of the existing Stratmoor Hills subdivision is closer to 2 DU/Ac., C values corresponding with 3 DU/Ac. are used to conservatively estimate the runoff from the upstream basins ($C_5 = 0.40$, $C_{100} = 0.55$, Group B soils).

Design Point 2 ($Q_5 = 38.2 \text{ cfs}$, $Q_{100} = 92.1 \text{ cfs}$) consists of flows from DP-1 and Basins EX-4, EX-5, and EX-6. Basin EX-4 is 4.57 acres (B soils) of existing home lots that drains to the south into the outfall ravine from DP-1. Basin EX-5 is 4.93 acres (C soils) of existing roadway and home lots that drains into one of two ravines that meet at DP-2. Basin EX-6 is 3.96 acres (C soils) of existing home lots that drains to the north-east to DP-2. C soils were used throughout EX-5 & EX-6 to calculate the storm runoff higher and therefore more conservatively. See soils map in Appendix for separation of B and C soil groups. All of the runoff from these basins combine at this confluence point and continue north-east onto the proposed site and toward DP-3.

Design Point 3 ($Q_5 = 45.2 \text{ cfs}$, $Q_{100} = 107.9 \text{ cfs}$) consists of flows & om DP-2 and Basins EX-7 and EX-8. Slightly upstream and west of DP-3, manmade berms were constructed at some point in the past that prevents the runoff & om DP-2 & om continuing north to the existing culverts under Venetucci Blvd (as the Stratton Basin Hydrology Study anticipated). This man made berm instead routes the entire flow from DP-2 onto Westmark Ave. (DP-3) where the flow combines with the runoff & om Basins EX-7 & EX-8. This runoff continues north-east as surface flow on Westmark Ave. to DP-4. Documentation of why and when this berm, along with others located on the actual proposed site, does not exist as a drainage report for this existing Stratmoor Hills subdivision is not on file with E1 Paso County and there is no mention of diverting the flows with the Hydrology Report or any of the World Arena Subdivision drainage reports.

Design Point 4 ($Q_5 = 49.6 \text{ cfs}$, $Q_{100} = 118.3 \text{ cfs}$) consists of flows & om DP-3 and Basins EX-9 and EX-10. Basin EX-9 is 3.54 acres (C soils) of existing home lots and Westmark Ave. that drains down Westmark via curb and gutter and surface flow to the intersection of Venetucci Blvd. and Westmark Ave. (DP-4). Basin EX-10 is 1.11 acres (C soils) of on-site, undeveloped land that drains to this intersection and onto the roadway prior to the small culvert at DP-5. This combined runoff & om DP-4 flows onto Venetucci Blvd. and the adjacent roadside swale to Design Point 8. **Design Point 5** ($Q_5 = 7.1$ cfs, $Q_{100} = 16.7$ cfs) consists of runoff & m Basin EX-11, 3.83 acres (C soils) of mostly on-site, undeveloped land with a small portion of existing Stratmoor Hills homes and a portion of the western half of existing Venetucci Blvd. This runoff sheet flows to an existing 12" CMP storm pipe culvert that routes the runoff under Venetucci Blvd. and continues in the existing drainage pattern towards Interstate 25. This runoff combines with that from DP-8 and continues around the future World Arena Subd. Lot 2, Fil. 5 site to the existing 48" RCP I-25 crossing. The final drainage report for this World Arena parcel does not acknowledge or quantify the off-site tributary flows.

Design Point 6 ($Q_5 = 10.4$ cfs, $Q_{100} = 25.3$ cfs) consists of runoff & m Basin EX-12, 7.01 acres (C soils) of mostly on-site, undeveloped land with a small portion of existing Stratmoor Hills homes and a portion of the western half of existing Venetucci Blvd. This runoff sheet flows to this existing low point at DP-6. Previous reports drainage documents show an existing box culvert at this location that routes any runoff at this point under Venetucci Blvd. and directly toward the I-25 box culvert (Sinton Outfall). However, this box culvert has since been covered, or filled, with soil and is no longer functioning. Documentation on why this was done cannot be found on file with El Paso County. The Sinton Outfall storm system shown on the Drainage Map does provide a 48" RCP stub off the junction box that points directly to the DP-6 and this filled in box culvert. It is our understanding that this 48" stub was meant to connect to this low-point at DP-6, which would then leave the existing box culvert not needed. A field inspection of the manhole does indeed show only a capped 48" lateral toward DP-6, and it appears this runoff simply infiltrates into the ground at this location.

Design Point 7 ($Q_5 = 30.5$ cfs, $Q_{100} = 83.9$ cfs) consists of runoff from Basins EX-13 & EX-14 and the flow by from DP-11. Basin EX-13 is 8.63 acres (C soils) of mostly on-site, undeveloped land, a portion of the western half of Venetucci Blvd. and a small portion of existing Stratmoor Hills homes. Basin EX-14 is 13.75 acres that consists of mostly undeveloped land and a small portion of the existing homes as well as a portion of the adjacent Stratmoor Hills United Methodist Church and the western half of Venetucci Blvd. A substantial amount of runoff at this point ($Q_5 = 3.1$ cfs, $Q_{100} = 21.2$ cfs) comes from the water not intercepted by the inlets at Design Points 9 – 11. The existing curb along the west side of Venetucci Blvd. from the Cheyenne Meadows Rd. intersection ends just after the inlet at DP-11, thus the flow by drains into the roadside ditch to DP-7. The combined runoff is intercepted by an existing CDOT Type D storm inlet (3.5' x 8.5' inlet dimensions). This inlet was installed with the construction of the Sinton Outfall Storm System and an existing 48" RCP storm pipe conveys the intercepted runoff across Venetucci Blvd. and connects to the 90" main.

Design Point 8 ($Q_5 = 52.1 cfs$, $Q_{100} = 124.2 cfs$) consists of flows from DP-4 and Basin EX-15. Basin EX-15 is 2.64 acres (C soils) of off-site, undeveloped land, including a portion of existing Venetucci Blvd. An existing elliptical CMP culvert conveys this runoff under Venetucci Blvd. to the north and into the existing drainage pattern. This culvert is very under-sized for 120+ cfs and it can be assumed that significant ponding takes place at this location prior to flowing to the downstream facilities. The parcel to the north of DP-8 (across Venetucci Blvd.) is planned to be a hotel with surrounding parking. The development

of the site will maintain the historic drainage pattern around the future development, but does change the overall outfall of the existing runoff. This World Arena Lot 2, Filing No. 5 (hotel site) construction was stopped after overlot grading and utility infrastructure was completed. Per the "Final Drainage Report for World Arena Subdivision Filing No. 5, Lot #2," by Matrix Design Group, Inc. (April 2008) the construction of Detention Pond #1 was to be outside of the existing drainage path to the existing 48" RCP under I-25. However, a site visit confirmed that the outlet pipe for this Pond 1 has been connected to the existing 48" interstate crossing and the existing low point (entry into the 48") has been filled in. Now, the existing drainage ponds approximately 2.0' and overtops into Pond #1, where a D-9 grate inlet within the pond intercepts the flows and passes them into the existing culvert.

Design Point 9a ($Q_5 = 22.3$ cfs, $Q_{100} = 47.6$ cfs) consists of runoff from Basin EX-20, 14.70 acres of existing single family subdivision and Cheyenne Meadows Road. An existing 8' D-10R at-grade curb inlet (4.5% street slope) intercepts a portion of this runoff ($Q_7 = 5.7$ cfs, $Q_{100} = 5.9$ cfs), while the rest continues down Cheyenne Meadows Rd. to the intersection with Venetucci Blvd.

Design Point 9b ($Q_5 = 47.8 \text{ cfs}$, $Q_{100} = 102.0 \text{ cfs}$) consists of runoff from Basin EX-16, 31.48 acres of existing single family subdivision and Cheyenne Meadows Road. An existing 8' D-10R at-grade curb inlet (4.5% street slope) intercepts a portion of this runoff ($Q_{,} = 5.9 \text{ cfs}$, $Q_{,00} = 12.7 \text{ cfs}$), while the rest continues down Cheyenne Meadows Rd. to the intersection with Venetucci Blvd. The combined intercepted runoff from DP-9a & DP-9b is routed in an existing 36" RCP storm pipe to the north to an existing channel, away from the Venetucci Blvd. and Cheyenne Meadows Rd. intersection. The large amount of flow-by ($Q_5 = 41.9 \text{ cfs}$, $Q_{100} = 89.3 \text{ cfs}$) continues to the submerged inlets at DP-9c.

Design Point 9c ($Q_5 = 85.3 \text{ cfs}$, $Q_{100} = 186.7 \text{ cfs}$) consists of runoff from Basins EX-21 and EX-22, as well as the flow by from DP-9a & DP-9b. Basin EX-21 is 14.83 acres of the existing single family Huckleberry Knoll Subdivision and Cheyenne Meadows Rd. Basin EX-22 is 4.46 acres of existing Stratmoor Hills Subdivision, existing Stratmoor Hills United Methodist Church, and existing Cheyenne Meadows Rd. Two existing D10-R curb inlets (20' & 30') exist on Cheyenne Meadows, west of Venetucci Blvd. The storm water at this point overtops the crown of the Cheyenne Meadows and completely submerges the inlets, thus changing the calculation used in quantifying the intercepted flow (See Calculations in Appendix). The total area of opening of the curb return, the inlets only have 0.35' of depth before overtopping south down Venetucci Blvd. This results in both inlets only intercepting 57 cfs of both 5 and 100 year flows. The flow by from these inlets next hits the inlet at DP-10.

Design Point 10 ($Q_5 = 28.3 \text{ cfs}$, $Q_{100} = 129.7 \text{ cfs}$) has a 20' at-grade D10-R curb inlet that intercepts a large portion of the flow-by from DP-9c. Venetucci Blvd. has a slope of 1.3% at this inlet based upon field as-builts of the constructed curb. This 20' inlet intercepts $Q_5 = 16.3 \text{ cfs}$ and $Q_{100} = 75.6$, while the remainder continues to the next existing inlet at DP-11.

Design Point 11 ($Q_5 = 12.0 \text{ cfs}$, $Q_{100} = 54.1 \text{ cfs}$) has a 20' at-grade CDOT Type R curb inlet that intercepts a portion of the remaining flow-by from DP-9c & DP-10. Venetucci Blvd. has a slope of 2.8% at this inlet based upon field as-builts of the constructed curb. This 20' inlet intercepts $Q_5 = 8.9 \text{ cfs}$ and $Q_{100} = 32.9 \text{ cfs}$ while the remainder continues south down Venetucci Blvd. The existing curb and gutter along Venetucci ends just downstream of DP-11, therefore the flow-by ($Q_5 = 3.1 \text{ cfs}$, $Q_{100} = 21.2 \text{ cfs}$) runs off the edge of asphalt and enters the roadside ditch, which drains to the grated inlet at DP-7.

Design Point 12 ($Q_5 = 3.1 \text{ cfs}$, $Q_{100} = 6.0 \text{ cfs}$) consists of runoff from Basin EX-17, 0.80 acres of existing Venetucci Blvd. and adjacent landscape area that drains to an existing 5' at-grade CDOT Type R curb inlet Based upon field as-builts Venetucci Blvd. has a slope of 3.0% at this inlet, resulting in intercepting $Q_5 = 1.9 \text{ cfs}$ and $Q_{100} = 2.3$, while the remainder continues within the curb to DP-13.

Design Point 13 ($Q_5 = 3.4 \text{ cfs}$, $Q_{100} = 8.2 \text{ cfs}$) consists of runoff from the flow-by of DP-12 and Basin EX-18, 0.68 acres of existing Venetucci Blvd. and adjacent landscape area that drains to an existing 5' at-grade CDOT Type R curb inlet. Based upon field as-builts Venetucci Blvd. has a slope of 0.7% at this inlet, resulting in intercepting $Q_{,} = 2.2 \text{ cfs}$ and $Q_{100}= 3.5 \text{ cfs}$. The non-intercepted runoff ($Q_5 = 1.2 \text{ cfs}$, $Q_{100}= 4.7 \text{ cfs}$) continues within the curb and gutter onto Bob Johnson Drive and west toward the overall basin outfall corridor.

Design Point 14 ($Q_5 = 1.4 \text{ cfs}$, $Q_{100} = 3.2 \text{ cfs}$) consists of runoff from Basin EX-19, 0.58 acres of existing Venetucci Blvd. and adjacent undeveloped right of way area. An existing modified Type D grated inlet drains this area and conveys the runoff into the 90" RCP Sinton Outfall system via a 48" RCP storm lateral. As mentioned previously, the existing alignments and storm facilities have been established through the "Roadway Improvement Package and Storm Sewer Package for US Highway 85/87 (Venetucci Boulevard)," by Drexel Barrell including the as-built revisions and field survey data.

Summary of Existing Conditions

The existing Sinton Outfall Storm system was planned to intercept all of the Stratton Basin runoff at rates specified within the "Hydrology Report Stratton Drainage Basin Outfall Study El Paso County, Colorado," by Drexel Barrell, dated June 9, 1994. The construction of the large storm main system appears to have been completed in two separate phases, per the "M.D.D.P. for Cheyenne Mountain Center." The second phase included extending storm sewer laterals off of the main alignment to our proposed site location in order to convey the existing runoff as well as a future allowable runoff rate per the Hydrology Study. This extension of a 48" storm lateral was completed at the northernmost existing roadway crossing (Design Point 7). However, at Design Point 6, no such storm sewer extension off the main line was completed and it appears that the existing roadway culvert was filled in and does not pass historic runoff under Venetucci Blvd./Old Hwy 85/87. The construction plans for the 102"-90" RCP storm main show a 48" RCP stub pointed toward the filled in box culvert, but capped 8.0' outside of the manhole. It is our assumption that this 48" stub is meant to convey the runoff at this DP-6 location. Therefore, our proposed conditions will discuss extending this lateral under Venetucci Blvd. and into our proposed site. Drainage reports completed for the immediate downstream World Arena Subdivisions do not discuss any

off-site flows from the tributary area, including our site and the upstream Stratmoor Hills Subdivision, or mention extending this 48" stub to the edge of the Venetucci Blvd. right-ofway. The Hydrology Report specifies a developable 100-year flow rate from the proposed site and upstream Stratmoor Hills Subdivision as 270 cfs. The calculated combined 100-year existing flow rate at design points 6, 7, and 8 is 198 cfs. Therefore, substantial more development can be constructed with this Basin 009 before storm water detention is required.

Also, the construction of the diversion berms on the proposed site that re-route the upstream tributary area (Stratmoor Hills) runoff directly to the Westmark Ave. and Venetucci Blvd. intersection are un-documented and seem to have been completed to eliminate the historic runoff to the 'filled in' culvert at DP-6. The existing CMP culverts at DP-5 and DP-8 are not adequately sized to convey all of the existing storm runoff that they currently receive. However, since it appears this drainage path is not natural and not per the previous drainage studies, we are proposing. intercepting the upstream, existing runoff and conveying it through the proposed site's public storm system and directly to the 90"/102" RCP Sinton Outfall system."

Developed Drainage Characteristics:

Development of the site is a multi-family residential apartment complex with clubhouse, park space, pool and amenity areas, garages, paved parking and drive aisles, and landscaping. Development of this site also includes adjacent public roadway improvements along Venetucci Boulevard and a portion of Westmark Avenue.

Developed drainage overview:

On site runoff along with some off-site tributary runoff will be collected on site and routed into 2 private full-spectrum detention and stormwater quality facilities (Pond A and Pond B). A limited portion of the existing downstream drainage infrastructure has been adequately designed for developed runoff from this site (102" RCP). However, the existing 102" RCP combines with an existing 78"RCP and connects to an undersized existing 72" RCP. This scenario is believed through witness accounts to have caused flooding in the one-way road underpass under I-25. For this reason, Pond A and B will be full-spectrum detention facilities so as not to contribute excess runoff to this condition.

Details of Ponds A and B shall be included with the Site Construction Drawings. Details include dissipation basins, trickle channels, outfall structures, emergency overflows, and maintenance access.

Basins with designations of EX are taken directly from the existing conditions analysis. Basins with designations of OS are off-site basins. Basins with designations of A drain to Pond A. Basins with designations of B drain to Pond B. Basins with designations C do not drain to pond facility.

Developed Drainage Design Point Descriptions:

DP-25 [Q₅ = 5 CFS/Q₁₀₀ = 15 CFS]

DP-25 is a proposed CDOT Type C grated inlet in sump. DP-25 collects mostly off-site runoff from Basin OS-13C. Collected flows will by-pass Pond A and are routed via SD28 to SD25.

Design Point 1 (DP-1) $[Q_5 = 2 CFS/Q_{100} = 4 CFS]$

DP-1 is a proposed 5' wide Type R curb inlet in sump. DP-1 collects runoff from Basins OS-13B and A1. Collected flows are routed via storm drain design point SD1 to SD2.

DP-2 $[Q_5 = 2 CFS/Q_{100} = 3 CFS]$

DP-2 is a proposed 5' wide Type R curb inlet in sump. DP-1 collects runoff from Basin A2. Collected flows are routed via SD2 to SD3.

DP-3 $[Q_5 = 2 CFS/Q_{100} = 3 CFS]$

DP-3 is a proposed CDOT Type C grate inlet in sump. DP-3 collects runoff from Basin A3. Collected flows are routed via SD3 to SD4.

DP-4 $[Q_5 = 1 \text{ CFS}/Q_{100} = 2 \text{ CFS}]$

DP-4 is a proposed 5' wide Type R curb inlet in sump. DP-4 collects runoff from Basin A4. Collected flows are routed via SD4 to SD5.

DP-5 $[Q_5 = 1 CFS/Q_{100} = 2 CFS]$

DP-5 is a proposed 5' wide Type R curb inlet in sump. DP-5 collects runoff from Basin A5. Collected flows are routed via SD6 ($Q_5 = 7 \text{ CFS}/Q_{100} = 14 \text{ CFS}$) into Pond A. The discharge point into Pond A shall have a concrete energy dissipater.

DP-6 $[Q_5 = 4 \text{ CFS}/Q_{100} = 11 \text{ CFS}]$

DP-6 is a proposed 15' wide Type R curb inlet at grade. DP-6 collects runoff from Basins OS-13A and A6. Collected flows are routed via SD7 to SD8. Flow-by of $Q_5 = 0$ CFS/ $Q_{100} = 1.5$ CFS will continue to DP-22.

DP-7 $[Q_5 = 1 CFS/Q_{100} = 3 CFS]$

DP-7 is a proposed system of landscape drains, pool deck grates, and roof drain collection for the clubhouse. DP-7 collects runoff from Basin A7. Collected flows are routed to the inlet at DP6.

DP-8 $[Q_5 = 0.5 \text{ CFS}/Q_{100} = 1 \text{ CFS}]$

DP-8 is a proposed 5' wide Type R curb inlet at grade. DP-8 collects runoff from Basin A8. Collected flows are routed via SD8 ($Q_5 = 6 \text{ CFS}/Q_{100} = 12 \text{ CFS}$) into Pond A. The discharge point into Pond A shall have a concrete energy dissipater.

DP-9 $[Q_5 = 0.3 \text{ CFS}/Q_{100} = 2 \text{ CFS}]$

DP-9 represents the sheet flow into Pond A.

DP-10 $[Q_5 = 2 CFS/Q_{100} = 3 CFS]$

DP-10 is a proposed CDOT Type C grate inlet in sump. DP-10 collects runoff from Basin B1. Collected flows are routed via SD10 to SD12.

DP-11 $[Q_5 = 1 CFS/Q_{100} = 3 CFS]$

DP-11 is a proposed 5' wide Type R curb inlet in sump. DP-11 collects runoff from Basin B2. Collected flows are routed via SD11 to SD12.

DP-12 $[Q_5 = 2 CFS/Q_{100} = 3 CFS]$

DP-12 is a proposed CDOT Type C grate inlet in sump. DP-12 collects runoff from Basin B3. Collected flows are routed via SD13 to SD16.

DP-13 [Q₅ = 10 CFS/Q₁₀₀ = 20 CFS]

DP-13 is a proposed 20' wide Type R curb inlet in sump. DP-13 collects runoff from Basins OS-11 and B4. Collected flows are routed via SD14 to SD15.

DP-14 $[Q_5 = 2 \text{ CFS}/Q_{100} = 3 \text{ CFS}]$

DP-14 is a proposed 5' wide Type R curb inlet in sump. DP-14 collects runoff from Basin B5. Collected flows are routed via SD16 to SD18.

DP-15 $[Q_5 = 2 \text{ CFS}/Q_{100} = 4 \text{ CFS}]$

DP-15 is a proposed CDOT Type C grate inlet in sump. DP-15 collects runoff from Basin B6. Collected flows are routed via SD18 ($Q_5 = 23 \text{ CFS}/Q_{100} = 44 \text{ CFS}$) into Pond B. The discharge point into Pond B shall have a concrete energy dissipater.

DP-16 $[Q_5 = 6 \text{ CFS}/Q_{100} = 11 \text{ CFS}]$

DP-16 is a proposed 10' wide Type R curb inlet in sump. DP-16 collects runoff from Basins OS-12 and B7. Collected flows are routed via SD17 to SD18.

DP-24 $[Q_5 = 2 CFS/Q_{100} = 4 CFS]$

DP-24 represents a series of landscape drains running behind the buildings along Venetucci Blvd. These landscape drains are intended to collect runoff and roofdrains in Basin B11. Collected flows are routed via SD27 to Pond B.

DP-17 $[Q_5 = 2 CFS/Q_{100} = 4 CFS]$

DP-17 is a proposed 10' wide Type R curb inlet at grade. DP-17 collects runoff from Basin B8. Collected flows are routed via SD19 to SD20. Flow-by of $Q_5 = 0$ CFS/ $Q_{100} = 0.1$ CFS will continue into Westmark Avenue.

DP-18 $[Q_5 = 0.7 \text{ CFS}/Q_{100} = 1 \text{ CFS}]$

DP-18 is a proposed 5' wide Type R curb inlet at grade. DP-18 collects runoff from Basin B9. Collected flows are routed via SD20 ($Q_5 = 2 \text{ CFS}/Q_{100} = 4 \text{ CFS}$) into Pond B. The discharge point into Pond B shall have a concrete energy dissipater. Flow-by of $Q_5 = 0 \text{ CFS}/Q_{100} = 0.1 \text{ CFS}$ will continue into Westmark Avenue.

DP-19 $[Q_5 = 1 \text{ CFS}/Q_{100} = 2 \text{ CFS}]$

DP-19 represents the sheet flow into Pond B.

DP-20 $[Q_5 = 40 \text{ CFS}/Q_{100} = 100 \text{ CFS}]$

DP-20 is a proposed 48" RCP culvert to pick up off-site flows tributary to the existing drainageway south of the site. The collected runoff is not routed through a Pond facility. Instead it bypasses the site via SD21. Flows in SD21 are combined with the discharge from Pond B in SD22 ($Q_5 = 40 \text{ CFS}/Q_{100} = 105 \text{ CFS}$) will be routed under Venetucci Boulevard in a proposed 48" RCP storm tying to and existing 48" RCP stub that connects to an existing 102" RCP storm drain.

DP-21 $[Q_5 = 29 \text{ CFS}/Q_{100} = 59 \text{ CFS}]$

DP-21 is a proposed pair of 20' wide Type R curb inlets at grade. DP-21 collects runoff from Basin OS-14 and existing flow-by from DP-OS11. DP-OS11 is the last in a series of at-grade inlets in or near Cheyenne Meadows Road. Venetucci Boulevard does not have capacity to carry all of the existing runoff. Runoff to the inlets at DP-21 is modeled at maximum street capacity. Collected flows are routed via SD24 to SD25. Flow-by of $Q_5 = 0.2 \text{ CFS}/Q_{100} = 12 \text{ CFS}$ will continue to DP-22.

$DP-22 [Q_5 = 1 CFS/Q_{100} = 14 CFS]$

DP-22 is a proposed 15' wide Type R curb inlet in sump. DP-22 collects runoff from Basin C1 and flow-by from DP-6 and DP-21. Collected flows are routed via SD23 to SD25. Flows in SD25 ($Q_5 = 33 \text{ CFS}/Q_{100} = 73 \text{ CFS}$) are a combination of flows from SD9, SD23, and SD24. These combined storm pipes will tie to the existing CDOT Type D grate inlet in the roadside ditch near the site entrance. SD25 is an existing 48" RCP under Venetucci Boulevard connecting to the existing 90" RCP running along the north side of Venetucci Boulevard.

$DP-23 [Q_5 = 1 CFS/Q_{100} = 6 CFS]$

DP-23 is street flow in Venetucci Boulevard near the intersection with Westmark Avenue. This flow is less than the historic flow at existing conditions DP-5 ($Q_5 = 7 \text{ CFS}/Q_{100} = 17 \text{ CFS}$).

DP-009 [Q₅ = 67 CFS/Q₁₀₀ = 172 CFS]

DP-009 represents the total flow from Basin 009 as referenced in the Drexel Barrell Report. The storm drain outfall infrastructure installed based on the Drexel Barrell Report anticipated flows of $Q_{100} = 270$ CFS. This means that the downstream infrastructure will not be additionally burdened by runoff from this site and even additional development in the Basin.

4-Step Process Discussion:

Step 1. Employ Runoff Reduction Practices.

The site layout was done to minimize paving and includes park and amenity areas. Site impervious area calculations are shown in the IRF spreadsheet in the Appendix.

Step 2. Implement BMPs That Provide WQCV with Slow Release.

Development of this site includes a full-spectrum detention facility providing WQCV and an outfall structure with a 40-hour drain time.

Step 3. Stabilize Drainageways.

There are no natural drainageways associated with this site. Drainage fees were be paid with the platting of this subdivision. These fees contribute to any necessary channel improvements within the major drainage basin.

Step 4. Implement Site Specific and Other Source Control BMPs. There is no permanent outside storage associated with this site.

Summary:

The development of the Eldorado Springs apartment site accounts for up-stream off-site flows, on-site flows, and adjacent flows for a solution that can handle these flows and safely discharge them to adequately sized downstream stormwater infrastructure. The grading and drainage of this site is such that less than 1-acre of developed property drains off the site without going through a full-spectrum detention and stormwater quality facility.

DRAINAGE DESIGN CRITERIA

This drainage report was prepared in accordance to the criteria established in the County Drainage Criteria Manual, updated in May 2014.

WestWorks Engineering uses the rational method for drainage basin study areas of less than 90 acres. This methodology is implemented in accordance with the County Drainage Criteria Manual Guidelines.

For the Rational Method, flows are calculated for the 5-year and 100-year recurrence intervals. The average runoff coefficients, 'C' values, are taken from Table 6-6 and the Intensity-Duration-Frequency curves are taken from Figure 6-5 of the County Drainage Criteria Manual. Time of concentration for overland flow and storm drain or gutter flow are calculated per Section 3.2 of the County Drainage Criteria Manual. Calculations for the Rational Method are shown in the Appendix of this report. Detention volume is calculated in accordance with the County Drainage Criteria Manual Guidelines.

DRAINAGE FACILITY DESIGN

All inlets, storm drains, culverts, and open channels are sized using the procedures outlined in the City Drainage Criteria Manual. All of the drainage systems, including the streets, are designed to safely route the 5-year and 100-year storm flows. Hydraulic grade line calculations for the proposed storm drain design will be included with the storm drain constructions drawings.

FLOODPLAIN STATEMENT

No portion of this site is within a F.E.M.A. designated floodplain per Flood Insurance Rate Map Community Panel No. 08041C0741 G, effective December 7, 2018.

EROSION CONTROL PLAN

The El Paso County Drainage Criteria Manual specifies that an Erosion Control Plan and associated cost estimate be submitted in conjunction with the Final Drainage Report. WestWorks Engineering respectfully requests the Erosion Control Plan be submitted in conjunction with the Overlot Grading Plan and construction assurances posted prior to obtaining a grading permit.

OPINION OF PROBABLE COST

I TIVULE DI UNUSE I UCUII	es (non-reinioursuo	<i>ne)</i> .	
Item	Quantity	Unit Cost	Total Cost
18" RCP Storm Drain	1,549 LF	\$65/LF	\$100,425
24" RCP Storm Drain	1,041 LF	\$78/LF	\$ 81,198
30" RCP Storm Drain	376 LF	\$97/LF	\$ 36,472
5' Type R Inlet	8 EA	\$4,000/EA	\$ 32,000
10' Type R Inlet	2 EA	\$5,500/EA	\$ 11,000
15' Type R Inlet	1 EA	\$8,000/EA	\$ 8,000
20' Type R Inlet	1 EA	\$8,000/EA	\$ 8,000
CDOT Type C Inlet	5 EA	\$3,300/EA	\$ 16,500
Storm Manhole	8 EA	\$4,600/EA	\$ 36,800
Pond Outfall Structure	2 EA	\$7,500/EA	\$ 15,000
Riprap	33 CY	\$75/CY	\$ 2,475
		Sub-Total	\$347,870
		20% Contingency	<u>\$ 69,574</u>
		TOTAL	\$417,444

Private Drainage Facilities (non-reimbursable):

Public Drainage Facilities (non-reimbursable):

Item	Quantity	Unit Cost	Total Cost
24" RCP Storm Drain	20 LF	\$84/LF	\$ 1,680
30" RCP Storm Drain	11 LF	\$94/LF	\$ 1,034
36" RCP Storm Drain	146 LF	\$124/LF	\$ 18,104
48" RCP Storm Drain	1,225 LF	\$178/LF	\$218,050
15' Type R Inlet	1 EA	\$8,000/EA	\$ 8,000
20' Type R Inlet	2 EA	\$8,000/EA	\$ 16,000
Storm Manhole (Type 1)	4 EA	\$8,600/EA	\$ 34,400
		Sub-Total	\$297,268
		20% Contingency	<u>\$ 59,454</u>
		TOTAL	\$356,722

This opinion of probable cost is made on the basis of experience and qualifications and represents WestWorks Engineering's best judgment as an experienced and qualified professional firm, familiar with the construction industry. WestWorks Engineering cannot and will not guarantee that actual construction costs will not vary from this opinion of probable cost.

DRAINAGE FEES

The study area is in the Stratton Drainage Basin. The site has already been platted and drainage fees paid at that time.

REFERENCE LIST

"Soil Survey of El Paso County Area, Colorado," prepared by United States Department of Agriculture Soil Conservation Service, issued June 1981

"FIRM Flood Insurance Rate Map," prepared by Federal Emergency Management Agency, effective date March 17, 1997

El Paso County Drainage Criteria Manual, updated May 2014

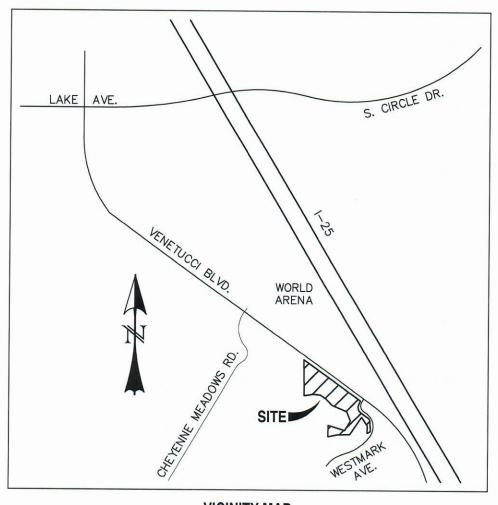
"Master Drainage Plan Harrison Street- I-25 Vicinity Cheyenne Mountain Ranch", by Hartzell-Pfeiffenberger and Associates, Inc. dated November 15, 1973

"Stratton and Fischer's Canyon Drainage Basin Planning Study, Draft Hydraulic Analysis," by Muller Engineering Co. dated May 31, 1990

"Master Drainage Report for Cheyenne Mountain Center and Final Drainage Report for Cheyenne Mountain Center Filing No. 1 and Cheyenne Meadows Road," by Drexel Barrell, dated October 1985

"Hydrology Report Stratton Drainage Basin Outfall Study," by Drexel Barrell, dated June 1994

"Preliminary and Final Drainage Report and Plan for World Arena Subdivision No. 1," by Obering, Wurth & Associates, August 1994 revised March 1995


"Final Drainage Report for World Arena Subdivision Filing No. 5, Lot #2," by Matrix Design Group, Inc., April 2008

"Drainage Report for Huckleberry Knoll Subdivision," by Drexel Barrell & Company, dated June 15, 1983

"Roadway Improvement Package and Storm Sewer Package for US Highway 85/87 (Venetucci Boulevard)," by Drexel Barrell including the as-built revisions

"Final Drainage Report for Independence Place at Cheyenne Mountain Filing No. 1," prepared by Classic Consulting Engineers & Surveyors, dated 1/27/2011

APPENDIX

VICINITY MAP SCALE: N.T.S.

National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
59	Nunn clay loam, 0 to 3 percent slopes	С	0.6	4.0%
82	Schamber-Razor complex, 8 to 50 percent slopes	A	14.7	96.0%
Totals for Area of Inter	est		15.3	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

National Flood Hazard Layer FIRMette

38°47'17.89"N

COLORADO SPRINGS

CITY OF 080060 This map complies with FEMA's standards for the use of The basemap shown complies with FEMA's basemap digital flood maps if it is not void as described below. accuracy standards

The pin displayed on the map is an approximate

Z

No Digital Data Available

Unmapped

MAP PANELS

Digital Data Available

Hydrographic Feature

AREA OF MINIMAL FLOOD HAZAR

08041 C0741 G eff. 12/7/2018 point selected by the user and does not represe

an authoritative property location.

authoritative NFHL web services provided by FEMA. This map was exported on 5/24/2019 at 2:39:54 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or The flood hazard information is derived directly from the become superseded by new data over time. This map image is void if the one or more of the following map legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for elements do not appear: basemap imagery, flood zone labels, unmapped and unmodernized areas cannot be used for regulatory purposes.

104°47'15.68"W

magery. Data refreshed April, 2019. 38°46'49.84"N 1:6,000 Feet 2,000 COUNTRY 1,500 So EF 1,000 500 250

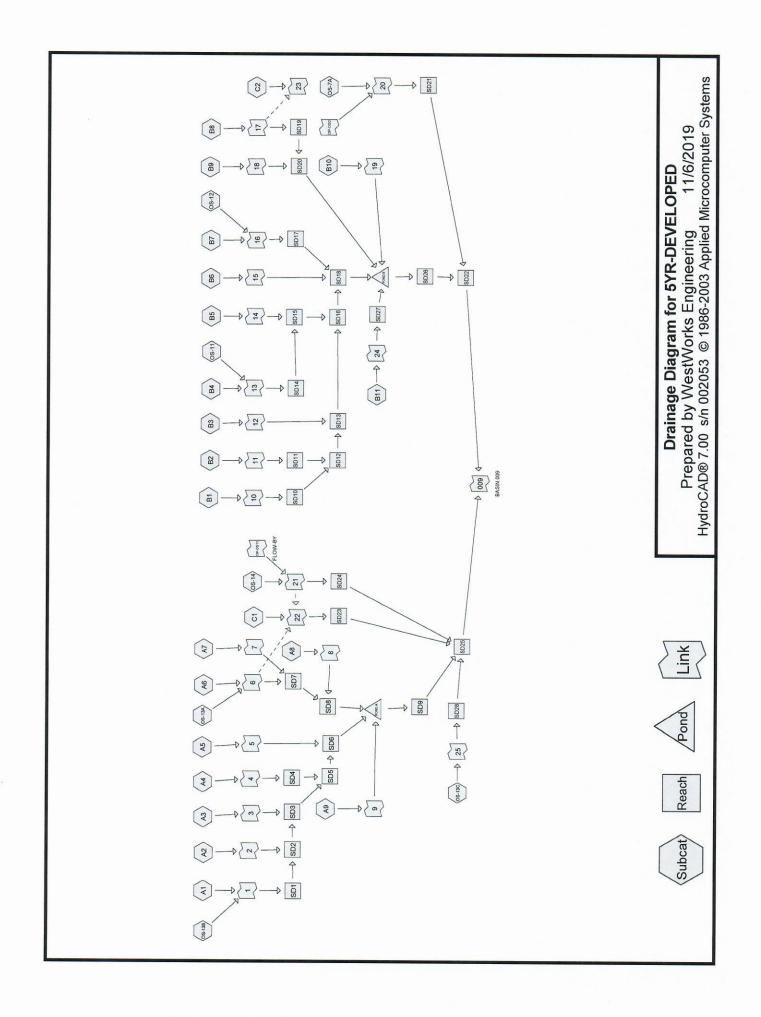
HYDROLOGIC CALCULATIONS

Time of Concentration Calcuations

Sub-Basin		e of Co	ncentrat	Time of Concentration, Tc [min.]		Sub-Basin	Time	of Cor	ncentrat	Time of Concentration. Tc [min.]	min.1	Sub-Basin	Time	of Co	ncentrat	Time of Concentration Te [min]	min 1
	Flowline L [ft.] H [ft.] v [ft/s] Tc [min.	L [ft.]	H [ft.]	v [ft/s]	_		Flowline L [$\hat{\mathfrak{h}}$.] H [$\hat{\mathfrak{h}}$.] v [$\hat{\mathfrak{h}}$ /s]	L [ft.]	H [ft.]	v [ft/s]	Tc [min.]		Flowline	L [ft.]	H [ft.]	v [ft/s]	Flowline L [ft.] H [ft.] v [ft/s] Tc [min.]
	overland	-	1.0		0.3		overland	110	4.0		10.8		overland	10	0.5		2.9
<u>A1</u>	channel	80	1.0	4	0.3	<u>A6</u>	channel	170	12.0	9	0.3	<u>B1</u>	channel	30	1.0	9	0.1
			Tot	Total $Tc =$	5				Tot	Total $Tc =$	п				Tot	Total Tc =	S
	overland	70	10.0		5.5		overland	30	2.0		4.6		overland	70	8.0		5.9
<u>A2</u>	channel	50	1.0	5	0.2	<u>A7</u>	channel	130	0.5	2	<u>1.0</u>	<u>B2</u>	channel	50	1.0	5	0.2
			Tot	Total $Tc =$	9				Tot	Total Tc =	6				Tot	Total $Tc =$	9
	overland	20	0.5		5.2		overland	140	42.0		6.1		overland	20	1.0		4.2
<u>A3</u>	channel	60	0.6	4	0.3	<u>A8</u>	channel	120	4.0	6	0.3	<u>B3</u>	channel	10	0.2	5	0.0
			Tot	Total $Tc =$	9				Tot	Total Tc =	9				Tot	Total Tc =	5
1	overland	10	0.5		2.9		overland	250	48.0		9.4		overland	20	1.0		4.2
<u>A4</u>	channel	50	1.5	6	0.1	<u>A9</u>	channel	-	1.0	35	0.0	<u>B4</u>	channel	160	2.0	4	0.7
			Tot	Total Tc =	5				Tot	Total $Tc =$	6				Tot	Total $Tc =$	S
8	overland	40	6.0		4.1		overland	1	1.0		0.3		overland	70	8.0		5.9
<u>A5</u>	channel	06	2.0	5	0.3		channel	1	1.0	35	0.0	<u>B5</u>	channel	50	1.0	5	0.2
			Tot	Total $Tc =$	2				Tot	Total Tc =	5				Tot	Total $Tc =$	9

Project: Eldorado Springs

91807	Chad Kuzbek, PE	5/24/2019
Job No.: 9	Engineer: (Date: 5


Time of Concentration Calcuations

Sub-Basin	and a second second second	e of Co L [ft.]	ncentrat H [ft.]	Time of Concentration, Tc [min.] dine L [ft.] H [ft.] v [ft/s] Tc I	Time of Concentration, Tc [min.] Flowline L [ft.1 H [ft.] v [ft/s1] Tc [min.]	Sub-Basin	Time of Concentration, Tc [min.] Flowline [1. ff 1] h [ff 1] v [ff/s1] Tc Imin	: of Cor L. Ift. 1	ncentrat H I ft 1	Time of Concentration, Tc [min.]	min.] Te Imin I	Sub-Basin	Time of Concentration, Tc	e of Co	In rentral	Time of Concentration, Tc [min.]	[min.] Te [min.]
]							[['11] TT	[cnt] A	1.0
	overland	20	1.0		4.2		overland	100	12.0		6.9		overland	-	1.0		0.3
<u>B6</u>	channel	30	0.5	5	0.1	<u>C1</u>	channel	320	3.0	3	1.6		channel	-	1.0	35	0.0
			To	Total $Tc =$	5				Tot	Total $Tc =$	6				To	Total $Tc =$	S
	overland	50	8.0		4.5		overland	110	10.0		8.0		overland	-	1.0		0.3
<u>B7</u>	channel	70	1.0	4	0.3	<u>C</u> 2	channel	630	8.0	4	2.7		channel	-	1.0	35	0.0
			To	Total Tc =	5				Tot	Total $Tc =$	11				To	Total $Tc =$	S
	overland	60	14.0		4.3		overland	-	1.0		0.3		overland	-	0		03
<u>B8</u>	channel	60	4.0	. 6	0.1		channel	-	1.0	35	0.0		channel	. –	1.0	35	0.0
			Tot	Total Tc =	5				Tot	Total Tc =	5				To	Total Tc =	N)
	overland	40	4.0		4.7		overland	-	1.0		0.3		overland	-	1.0		0.3
<u>B9</u>	channel	60	4.0	6	0.1		channel	1	1.0	35	0.0		channel	1	1.0	35	0.0
			Tot	Total Tc =	5				Tot	Total $Tc =$	S			-	Tot	Total $Tc =$	Ś
	overland	06	14.0		6.0		overland	20	2.0		3.3		overland	1	1.0		0.3
<u>B10</u>	channel	60	5.0	10	0.1	<u>B11</u>	channel	30	1.0	6	0.1		channel	1	1.0	35	0.0
			Tot	Total $Tc =$	9				Tot	Total $Tc =$	5				Tot	Total $Tc =$	S

Project: Eldorado Springs

Job No.: 91807 Engineer: Chad Kuzbek, PE Date: 5/24/2019

Subcatchment A1:

Runoff	=	1.33 cfs @	0.08 hrs,	Volume=	0.009 af,	Depth= 0.38"	

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr

Area (ac) C Description
0.100 0.73 ROOFTOPS
0.200 0.96 PAVEMENT 0.300 0.88 Weighted Average
0.300 0.88 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,
Subcatchment A4:
Runoff = 1.27 cfs @ 0.08 hrs, Volume= 0.009 af, Depth= 0.36"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr
Area (ac) C Description
0.100 0.73 ROOFTOP
0.200 0.90 PAVEMENT 0.300 0.84 Weighted Average
0.300 0.84 Weighted Average
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,
Subcatchment A5:
Subcatchment A5: Runoff = 0.95 cfs @ 0.08 hrs, Volume= 0.007 af, Depth= 0.27"
Runoff = 0.95 cfs @ 0.08 hrs, Volume= 0.007 af, Depth= 0.27" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr <u>Area (ac) C Description</u>
Runoff = 0.95 cfs @ 0.08 hrs, Volume= 0.007 af, Depth= 0.27" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) C Description 0.100 0.08 LANDSCAPE
Runoff = 0.95 cfs @ 0.08 hrs, Volume= 0.007 af, Depth= 0.27" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) C Description 0.100 0.08 LANDSCAPE 0.200 0.90 PAVEMENT
Runoff = 0.95 cfs @ 0.08 hrs, Volume= 0.007 af, Depth= 0.27" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) C Description 0.100 0.08 LANDSCAPE
Runoff = 0.95 cfs @ 0.08 hrs, Volume= 0.007 af, Depth= 0.27" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) C Description 0.100 0.08 LANDSCAPE 0.200 0.90 PAVEMENT

Subcatchment B1:

Runoff = 1.73 cfs @ 0.08 hrs, Volume= 0.012 af, Depth= 0.37"

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr

Area (ac) C Description
0.100 0.73 ROOFTOP
0.300 0.90 PAVEMENT 0.400 0.86 Weighted Average
0.400 0.86 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,
Subcatchment B11:
Runoff = 1.68 cfs @ 0.08 hrs, Volume= 0.012 af, Depth= 0.16"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr
Area (ac) C Description
0.400 0.73 ROOFTOP
0.500 0.08 LANDSCAPE 0.900 0.37 Weighted Average
0.900 0.37 Weighted Average
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
(min) (feet) (ft/ft) (ft/sec) (cfs)
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry,
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3:
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3: Runoff = 1.73 cfs @ 0.08 hrs, Volume= 0.012 af, Depth= 0.37" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) C Description
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3: Runoff = 1.73 cfs @ 0.08 hrs, Volume= 0.012 af, Depth= 0.37" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) C Description 0.100 0.73 ROOFTOP
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3: Runoff = 1.73 cfs @ 0.08 hrs, Volume= 0.012 af, Depth= 0.37" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) C Description 0.100 0.73 ROOFTOP 0.300 0.90 PAVEMENT
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3: Runoff = 1.73 cfs @ 0.08 hrs, Volume= 0.012 af, Depth= 0.37" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) C Description 0.100 0.73 ROOFTOP
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3: Runoff = 1.73 cfs @ 0.08 hrs, Volume= 0.012 af, Depth= 0.37" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) C Description 0.100 0.73 ROOFTOP 0.300 0.90 PAVEMENT

El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Page 3 Applied Microcomputer Systems 11/6/2019

Prepared by WestWorks Engineering HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems

Subcatchment B4:

Runoff = 3.40 cfs @ 0.08 hrs, Volume= 0.024 af, Depth= 0.32"

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr

Area (ac) C Description								
0.100 0.08 LANDSCAPE 0.300 0.73 ROOFTOP								
0.500 0.90 PAVEMENT								
0.900 0.75 Weighted Average								
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)								
5.0 Direct Entry,								
Subcatchment B5:								
Runoff = 1.51 cfs @ 0.08 hrs, Volume= 0.011 af, Depth= 0.32"								
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr								
Area (ac) C Description								
0.050 0.08 LANDSCAPE 0.100 0.73 ROOFTOP								
0.250 0.90 PAVEMENT								
0.400 0.75 Weighted Average								
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)								
5.0 Direct Entry,								
Subcatchment B7:								
Runoff = 2.47 cfs @ 0.08 hrs, Volume= 0.018 af, Depth= 0.30"								
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr								
Area (ac) C Description								
0.150 0.08 LANDSCAPE 0.100 0.73 ROOFTOP								
0.100 0.73 ROOFTOP 0.450 0.90 PAVEMENT								
0.700 0.70 Weighted Average								

5YR-DEVELOPED El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Prepared by WestWorks Engineering Page 4 HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems 11/6/2019 Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B8: Runoff = 1.94 cfs @ 0.08 hrs. Volume= 0.014 af, Depth= 0.24" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) C Description 0.300 0.08 LANDSCAPE 0.400 0.90 PAVEMENT 0.700 0.55 Weighted Average Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B9: Runoff = 0.65 cfs @ 0.08 hrs. Volume= 0.005 af. Depth= 0.28" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) С Description 0.050 0.08 LANDSCAPE 0.050 0.73 ROOFTOP 0.100 0.90 PAVEMENT 0.200 0.65 Weighted Average Tc Slope Length Velocity Capacity Description (feet) (min) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment OS-7A: Runoff 7.04 cfs @ 0.08 hrs, Volume= = 0.050 af, Depth= 0.22" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Area (ac) C Description 2.800 0.50 FROM FDR

El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr Page 5

HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems

Page 5 11/6/2019

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.0					Direct Entry, FROM FDR	

Reach SD10:

[40] Hint: Not Described (Outflow=Inflow)

Prepared by WestWorks Engineering

Inflow Are	ea =	0.400 ac, Ir	flow Depth = $0.37''$	for 5-Year event	
Inflow	=	1.73 cfs @	0.08 hrs, Volume=	0.012 af	
Outflow	=	1.73 cfs @	0.08 hrs, Volume=	0.012 af, Atten= 0%	, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD19:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.700 ac, Ir	flow Depth = $0.23''$	for 5-Year event	
Inflow	=	1.60 cfs @	0.07 hrs, Volume=	0.013 af	
Outflow	=	1.60 cfs @	0.07 hrs, Volume=	0.013 af, Atten= 0%, Lag= 0.	0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD20:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.900 ac, Ir	flow Depth = 0.24"	for 5-Year event	
Inflow	=	2.25 cfs @	0.08 hrs, Volume=	0.018 af	
Outflow	=	2.25 cfs @	0.08 hrs, Volume=	0.018 af, Atten= 0%	, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD27:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.900 ac, Ir	flow Depth = 0.16 "	for 5-Year event
Inflow	=	1.68 cfs @	0.08 hrs, Volume=	0.012 af
Outflow	=	1.68 cfs @	0.08 hrs, Volume=	0.012 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD4:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.300 ac, Ir	flow Depth = 0.36''	for 5-Year event	
Inflow	=		0.08 hrs, Volume=		
Outflow	=	1.27 cfs @	0.08 hrs, Volume=	0.009 af, Atten= 0%, Lag= 0.0 r	nin

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 4:

Inflow Are	ea =	0.300 ac, Inflow Depth = 0.36	6" for 5-Year event
Inflow	=	1.27 cfs @ 0.08 hrs, Volume	e= 0.009 af
Primary	=	1.27 cfs @ 0.08 hrs, Volume	e= 0.009 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 5:

Inflow Are	ea =	0.300 ac, Ir	nflow Depth = 0.27	" for 5-Year event	
Inflow	=	0.95 cfs @	0.08 hrs, Volume	= 0.007 af	
Primary	=	0.95 cfs @	0.08 hrs, Volume	= 0.007 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 10:

Inflow Are	ea =	0.400 ac, Ir	flow Depth = $0.37''$	for 5-Year event	
Inflow	=	1.73 cfs @	0.08 hrs, Volume=	0.012 af	
Primary	=	1.73 cfs @	0.08 hrs, Volume=	0.012 af, Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 12:

Inflow Are	ea =	0.400 ac, Ir	flow Depth = 0.37	" for 5-Year event
Inflow	=	1.73 cfs @	0.08 hrs, Volume	= 0.012 af
Primary	=	1.73 cfs @	0.08 hrs, Volume	= 0.012 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 14:

Inflow Are	ea =	0.400 ac, Ir	flow Depth = $0.32''$	for 5-Year event
Inflow	=	1.51 cfs @	0.08 hrs, Volume=	0.011 af
Primary	=	1.51 cfs @	0.08 hrs, Volume=	0.011 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

5YR-DEVELOPED	5YF	R-DE	/ELO	PED
----------------------	-----	------	-------------	-----

Link 17:

Inflow Area =	0.700 ac, Inf	flow Depth = $0.24''$	for 5-Year event
Inflow =	1.94 cfs @	0.08 hrs, Volume=	0.014 af
Primary =	1.60 cfs @	0.07 hrs, Volume=	0.013 af, Atten= 17%, Lag= 0.0 min
Secondary =	0.34 cfs @	0.08 hrs, Volume=	

Primary outflow = Inflow below 1.60 cfs, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 18:

Inflow Are	ea =	0.200 ac, In	flow Depth = 0.28"	for 5-Year event	
Inflow	=	0.65 cfs @	0.08 hrs, Volume=	0.005 af	
Primary	=	0.65 cfs @	0.08 hrs, Volume=	0.005 af, Atten= 0%, Lag= 0.0	min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 24:

Inflow Are	ea =	0.900 ac, Ir	flow Depth = 0.16"	for 5-Year event	
Inflow	=	1.68 cfs @	0.08 hrs, Volume=	0.012 af	
Primary	=	1.68 cfs @	0.08 hrs, Volume=	0.012 af, Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Subcatchment A2:

Runoff = 1.66 cfs @ 0.10 hrs, Volume= 0.014 af, Depth= 0.41"

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr

Area (ac) C Description					
0.150 0.73 ROOFTOP					
0.250 0.90 PAVEMENT 0.400 0.84 Weighted Average					
0.400 0.04 Weighted Average					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry,					
Subcatchment A3:					
Runoff = 1.62 cfs @ 0.10 hrs, Volume= 0.013 af, Depth= 0.40"					
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr					
Area (ac) C Description					
0.200 0.73 ROOFTOP					
0.200 0.90 PAVEMENT 0.400 0.82 Weighted Average					
0.400 0.82 Weighted Average					
Tc Length Slope Velocity Capacity Description					
(min) (feet) (ft/ft) (ft/sec) (cfs)					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,					
(min) (feet) (ft/ft) (ft/sec) (cfs)					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7:					
(min) (ff/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7: Runoff = 1.28 cfs @ 0.10 hrs, Volume= 0.011 af, Depth= 0.32" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7: Runoff = 1.28 cfs @ 0.10 hrs, Volume= 0.011 af, Depth= 0.32" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Area (ac) C Description 0.100 0.08 LANDSCAPE					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7: Runoff = 1.28 cfs @ 0.10 hrs, Volume= 0.011 af, Depth= 0.32" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Area (ac) C Description 0.100 0.08 LANDSCAPE 0.100 0.73 ROOFTOP					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7: Runoff = 1.28 cfs @ 0.10 hrs, Volume= 0.011 af, Depth= 0.32" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Area (ac) C Description 0.100 0.08 LANDSCAPE					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7: Runoff = 1.28 cfs @ 0.10 hrs, Volume= 0.011 af, Depth= 0.32" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Area (ac) C Description 0.100 0.08 LANDSCAPE 0.100 0.73 ROOFTOP 0.200 0.90 PAVEMENT					

5YR-DEVELOPED	El Paso County 5-Year Duration=6 min	, Inten=4.90 in/hr
Prepared by WestWorks Engineering		Page 2
HydroCAD® 7.00 s/n 002053 © 1986-2003 Ap	plied Microcomputer Systems	11/6/2019

Subcatchment A8:

Runoff = 0.52 cfs @ 0.10 hrs, Volume= 0.004 af, Depth= 0.17"

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr

Area (ac) C Description					
0.200 0.08 LANDSCAPE					
0.100 0.90 PAVEMENT 0.300 0.35 Weighted Average					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry,					
Subcatchment B10:					
Runoff = 0.71 cfs @ 0.10 hrs, Volume= 0.006 af, Depth= 0.12"					
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr					
Area (ac) C Description					
0.450 0.08 LANDSCAPE 0.150 0.73 ROOFTOP					
0.600 0.24 Weighted Average					
To Longth Slong Malasity Consists Description					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
(min) (feet) (ft/ft) (ft/sec) (cfs)					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2:					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 1.44 cfs @ 0.10 hrs, Volume= 0.012 af, Depth= 0.36" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Area (ac) C Description					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 1.44 cfs @ 0.10 hrs, Volume= 0.012 af, Depth= 0.36" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Area (ac) C Description 0.050 0.08 LANDSCAPE					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 1.44 cfs @ 0.10 hrs, Volume= 0.012 af, Depth= 0.36" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Area (ac) C Description					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 1.44 cfs @ 0.10 hrs, Volume= 0.012 af, Depth= 0.36" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Area (ac) C Description 0.050 0.08 LANDSCAPE 0.150 0.73 ROOFTOP					
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 1.44 cfs @ 0.10 hrs, Volume= 0.012 af, Depth= 0.36" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Area (ac) C Description 0.050 0.08 LANDSCAPE 0.150 0.73 ROOFTOP 0.200 0.90 PAVEMENT					

Subcatchment B6:

Runoff = 1.90 cfs @ 0.10 hrs, Volume= 0.016 af, Depth= 0.38"					
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr					
Area (ac) C Description					
0.050 0.08 LANDSCAPE					
0.150 0.73 ROOFTOP					
0.300 0.90 PAVEMENT 0.500 0.77 Weighted Average					
0.000 0.17 Weighted Average					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry,					
Subcatchment OS-12:					
Runoff = 3.21 cfs @ 0.10 hrs, Volume= 0.027 af, Depth= 0.24"					
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr					
Area (ac) C Description					
1.300 0.50 FROM FDR					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry, FROM FDR					
Orthonete harmont OO 104					
Subcatchment OS-13A:					
Runoff = 1.82 cfs @ 0.10 hrs, Volume= 0.015 af, Depth= 0.11"					
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr					
Area (ac) C Description					
0.300 0.90 PAVEMENT/ROOF					
1.300 0.08 LANDSCAPE 1.600 0.23 Weighted Average					
1.000 0.20 Weighted Average					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry, FROM FDR					

Subcatchment OS-13B:

Runoff = 0.37 cfs @ 0.10 hrs, Volume= 0.003 af, Depth= 0.07"					
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr					
Area (ac) C Description 0.500 0.15 LANDSCAPE					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry,					
Subcatchment OS-13C:					
Runoff = 4.69 cfs @ 0.10 hrs, Volume= 0.039 af, Depth= 0.12"					
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr					
Area (ac) C Description					
0.800 0.90 PAVEMENT/ROOF 3.000 0.08 LANDSCAPE					
3.800 0.25 Weighted Average					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
6.0 Direct Entry, FROM FDR					
Reach SD1:					
[40] Hint: Not Described (Outflow=Inflow)					
Inflow Area = 0.800 ac, Inflow Depth = 0.21" for 5-Year event Inflow = 1.69 cfs @ 0.10 hrs, Volume= 0.014 af Outflow = 1.69 cfs @ 0.10 hrs, Volume= 0.014 af, Atten= 0%, Lag= 0.0 min					
Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs					
Reach SD11:					
[40] Hint: Not Described (Outflow=Inflow)					

Inflow Are	ea =	0.400 ac, Ir	nflow Depth = 0.36"	for 5-Year event	
Inflow	=	1.44 cfs @	0.10 hrs, Volume=	0.012 af	
Outflow	=	1.44 cfs @	0.10 hrs, Volume=	0.012 af, Atten= 0%, Lag= 0.0	min

El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Prepared by WestWorks Engineering Page 5 HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems 11/6/2019

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD12:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.800 ac, Ir	flow Depth = 0.39''	for 5-Year event	
Inflow	=		0.10 hrs, Volume=		
Outflow	=	3.15 cfs @	0.10 hrs, Volume=	0.026 af, Atten=	0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD13:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	1.200 ac, Ir	flow Depth = 0.40''	for 5-Year event	
Inflow	=	4.87 cfs @	0.10 hrs, Volume=	0.040 af	
Outflow	=	4.87 cfs @	0.10 hrs, Volume=	0.040 af, Atten= 0%	, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD17:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	2.000 ac, Ir	flow Depth = 0.28''	for 5-Year event	
Inflow	=	5.64 cfs @	0.10 hrs, Volume=	0.047 af	
Outflow	=	5.64 cfs @	0.10 hrs, Volume=	0.047 af, Atten= 0%, Lag=	0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD2:

[40] Hint: Not Described (Outflow=Inflow)

.

Inflow Are	ea =	1.200 ac, Ir	flow Depth = $0.28''$	for 5-Year event	
Inflow	=	3.34 cfs @	0.10 hrs, Volume=	0.028 af	
Outflow	=	3.34 cfs @	0.10 hrs, Volume=	0.028 af, Atten= 0%	, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD28:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	3.800 ac, Ir	flow Depth = 0.12''	for 5-Year event	
Inflow	=	4.69 cfs @	0.10 hrs, Volume=	0.039 af	
Outflow	=	4.69 cfs @	0.10 hrs, Volume=	0.039 af, Atten= 0%	6, Lag= 0.0 min

5YR-DEVELOPED	El Paso County 5-Year Duration=6 mir	, Inten=4.90 in/hr
Prepared by WestWorks Engineering		Page 6
HydroCAD® 7.00 s/n 002053 © 1986-2003 Ap	plied Microcomputer Systems	11/6/2019

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD3:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	1.600 ac, Ir	flow Depth = 0.31''	for 5-Year event	
Inflow	=	4.96 cfs @	0.10 hrs, Volume=	0.041 af	
Outflow	=	4.96 cfs @	0.10 hrs, Volume=	0.041 af, Atten= 0%, I	_ag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD5:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	1.900 ac, Ir	nflow Depth = 0.32"	for 5-Year event	
Inflow	=	6.21 cfs @	0.10 hrs, Volume=	0.051 af	
Outflow	=	6.21 cfs @	0.10 hrs, Volume=	0.051 af, Atten= 0%, Lag	g= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD6:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	2.200 ac, Ir	flow Depth = 0.32"	for 5-Year event	
Inflow	=	7.15 cfs @	0.10 hrs, Volume=	0.059 af	
Outflow	=	7.15 cfs @	0.10 hrs, Volume=	0.059 af, Atten= 0%	%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 1:

Inflow Are	ea =	0.800 ac, Ir	flow Depth = 0.21 "	for 5-Year event	
Inflow	=	1.69 cfs @	0.10 hrs, Volume=	0.014 af	
Primary	=	1.69 cfs @	0.10 hrs, Volume=	0.014 af, Atten= 0%	, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 2:

Inflow Are	ea =	0.400 ac, Inflow Depth	= 0.41"	for 5-Year event
Inflow	=	1.66 cfs @ 0.10 hrs,		
Primary	=	1.66 cfs @ 0.10 hrs,	Volume=	0.014 af, Atten= 0%, Lag= 0.0 min

Prepared by WestWorks Engineering

El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Page 7

HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems

Page 7 11/6/2019

Link 3:

 Inflow Area =
 0.400 ac, Inflow Depth =
 0.40" for 5-Year event

 Inflow =
 1.62 cfs @
 0.10 hrs, Volume=
 0.013 af

 Primary =
 1.62 cfs @
 0.10 hrs, Volume=
 0.013 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 7:

Inflow Are	ea =	0.400 ac, Ir	flow Depth = 0.32 "	for 5-Year event	
Inflow	=	1.28 cfs @	0.10 hrs, Volume=	0.011 af	
Primary	=	1.28 cfs @	0.10 hrs, Volume=	0.011 af, Atten= 0%, Lag= 0.0 mir	n

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 8:

Inflow Are	ea =	0.300 ac, Inflow Depth	n = 0.17"	for 5-Year event
Inflow	=	0.52 cfs @ 0.10 hrs,	Volume=	0.004 af
Primary	=	0.52 cfs @ 0.10 hrs,	Volume=	0.004 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 11:

Inflow Are	ea =	0.400 ac, Ir	nflow Depth = 0.36"	for 5-Year event	
Inflow	=	1.44 cfs @	0.10 hrs, Volume=	0.012 af	
Primary	=	1.44 cfs @	0.10 hrs, Volume=	0.012 af, Atten= (0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 15:

Inflow Are	ea =	0.500 ac, Ir	nflow Depth = 0.38"	for 5-Year event	
Inflow	=	1.90 cfs @	0.10 hrs, Volume=	0.016 af	
Primary	=	1.90 cfs @	0.10 hrs, Volume=	0.016 af, Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 16:

Inflow Are	ea =	2.000 ac, Inflo	ow Depth = 0.28"	for 5-Year event	
Inflow	=	5.64 cfs @ 0	0.10 hrs, Volume=	0.047 af	
Primary	=	5.64 cfs @ 0	0.10 hrs, Volume=	0.047 af, Atten= 0%, Lag= 0.0 n	nin

El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr Prepared by WestWorks Engineering HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems Page 8 11/6/2019

Link 19:

Inflow Are	ea =	0.600 ac, Ir	flow Depth = 0.12''	for 5-Year event	
Inflow	=	0.71 cfs @	0.10 hrs, Volume=	0.006 af	
Primary	=	0.71 cfs @	0.10 hrs, Volume=	0.006 af, Atten= 0%, Lag= 0.0 mi	n

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 25:

Inflow Are	ea =	3.800 ac, Ir	nflow Depth = 0.12"	for 5-Year event	
Inflow	=	4.69 cfs @	0.10 hrs, Volume=	0.039 af	
Primary	=	4.69 cfs @	0.10 hrs, Volume=	0.039 af, Atten=	0%, Lag= 0.0 min

Subcatchment OS-11:

Runoff = 7.06 cfs @ 0.12 hrs, Volume= 0.070 af, Depth= 0.30"

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=7 min, Inten=4.66 in/hr

Area (ac) С Description 2.800 0.55 FROM FDR Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 7.0 **Direct Entry, FROM FDR**

Reach SD14:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	3.700 ac, Ir	flow Depth = $0.33''$	for 5-Year event	
Inflow	=	10.17 cfs @	0.12 hrs, Volume=	0.100 af	
Outflow	=	10.17 cfs @	0.12 hrs, Volume=	0.100 af, Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD15:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	4.100 ac, Ir	nflow Depth = 0.33"	for 5-Year event	
Inflow	=	11.57 cfs @	0.12 hrs, Volume=	0.114 af	
Outflow	=	11.57 cfs @	0.12 hrs, Volume=	0.114 af, Atten= 0%, Lag= 0.0 mi	in

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD16:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	5.300 ac, Ir	nflow Depth = 0.36"	for 5-Year event	
Inflow	=	16.04 cfs @	0.11 hrs, Volume=	0.158 af	
Outflow	=	16.04 cfs @	0.11 hrs, Volume=	0.158 af, Atten= 0%	, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

. .

Reach SD18:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	7.800 ac, In	flow Depth = $0.35''$	for 5-Year event	
Inflow	=		0.11 hrs, Volume=		
Outflow	=	23.18 cfs @	0.11 hrs, Volume=	0.227 af, Atten= 0%	, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD26:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	10.200 ac, Ir	flow Depth = 0.04	for 5-Year event	
Inflow	=	0.16 cfs @	0.23 hrs, Volume	= 0.037 af	
Outflow	=	0.16 cfs @	0.23 hrs, Volume	= 0.037 af, Atten=	0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 13:

Inflow Are	ea =	3.700 ac, Ir	flow Depth = $0.33''$	for 5-Year event	
Inflow	=	10.17 cfs @	0.12 hrs, Volume=	0.100 af	
Primary	=	10.17 cfs @	0.12 hrs, Volume=	0.100 af, Atten= 0%	, Lag= 0.0 min

Prepared by WestWorks Engineering HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems

Page 1 11/6/2019

Subcatchment A9:

Runoff = 0.32 cfs @ 0.15 hrs, Volume= 0.004 af, Depth= 0.10"

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=9 min, Inten=4.29 in/hr

Area (ac)	C Description
0.500	0.15 LANDSCAPE
Tc Leng (min) (fee	
9.0	Direct Entry,
	Subcatchment C1:
Runoff =	1.27 cfs @ 0.15 hrs, Volume= 0.016 af, Depth= 0.32"
	onal method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs y 5-Year Duration=9 min, Inten=4.29 in/hr
Area (ac)	C Description
0.300 0.300	0.08 LANDSCAPE 0.90 PAVEMENT
0.600	0.49 Weighted Average
Tc Lengt (min) (fee	
9.0	Direct Entry,
L- (1	Link 9:

Inflow Are	ea =	0.500 ac, Ir	nflow Depth = 0.10"	for 5-Year event	
Inflow	=	0.32 cfs @	0.15 hrs, Volume=	0.004 af	
Primary	=	0.32 cfs @	0.15 hrs, Volume=	0.004 af, Atten= 0%,	Lag= 0.0 min

Subcatchment A6:

Runoff = 2.87 cfs @ 0.18 hrs, Volume= 0.044 af, Depth= 0.48"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=11 min, Inten=3.99 in/hr
Area (ac) C Description
0.300 0.08 LANDSCAPE
0.100 0.73 ROOFTOP 0.700 0.90 PAVEMENT
1.100 0.66 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
11.0 Direct Entry,
Subcatchment C2:
ouscatemment 62.
Runoff = 2.33 cfs @ 0.18 hrs, Volume= 0.036 af, Depth= 0.36"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=11 min, Inten=3.99 in/hr
Area (ac) C Description
0.600 0.08 LANDSCAPE
0.600 0.90 PAVEMENT 1.200 0.49 Weighted Average
1.200 0.40 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
11.0 Direct Entry,
Reach SD7:
[40] Hint: Not Described (Outflow=Inflow)
Inflow Area = 3.100 ac, Inflow Depth = 0.32" for 5-Year event
Inflow = 5.40 cfs @ 0.18 hrs, Volume= 0.083 af Outflow = 5.40 cfs @ 0.18 hrs, Volume= 0.083 af Atten= 0% Lag= 0.0 min
Outflow = 5.40 cfs @ 0.18 hrs, Volume= 0.083 af, Atten= 0%, Lag= 0.0 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD8:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	3.400 ac, Ir	nflow Depth = 0.31"	for 5-Year event	
Inflow	=	5.82 cfs @	0.18 hrs, Volume=	0.089 af	
Outflow	=	5.82 cfs @	0.18 hrs, Volume=	0.089 af, Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD9:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	6.100 ac, Ir	flow Depth = $0.05''$	for 5-Year event
Inflow	=	0.11 cfs @	0.36 hrs, Volume=	0.024 af
Outflow	=	0.11 cfs @	0.36 hrs, Volume=	0.024 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 6:

Inflow Area =	2.700 ac, Inflow Dept	h = 0.30''	for 5-Year event
Inflow =	4.35 cfs @ 0.18 hrs	, Volume=	0.067 af
Primary =	4.35 cfs @ 0.18 hrs	, Volume=	0.067 af, Atten= 0%, Lag= 0.0 min
Secondary =	0.00 cfs @ 0.00 hrs	, Volume=	0.000 af

Primary outflow = Inflow below 4.40 cfs, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 23:

Inflow Are	ea =	1.200 ac, Ir	flow Depth = 0.36"	for 5-Year event	
Inflow	=	2.33 cfs @	0.18 hrs, Volume=	0.036 af	
Primary	=	2.33 cfs @	0.18 hrs, Volume=	0.036 af, Atten= 0%,	Lag= 0.0 min

Reach SD23:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.600 ac, Ir	flow Depth = 0.50''	for 5-Year event	
Inflow	=	0.92 cfs @	0.15 hrs, Volume=	0.025 af	
Outflow	=	0.92 cfs @	0.15 hrs, Volume=	0.025 af, Atten= 0%, La	g= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD24:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	78.100 ac, Ir	flow Depth = 0.12 "	for 5-Year event	
Inflow	=	28.57 cfs @	0.33 hrs, Volume=	0.781 af	
Outflow	=	28.57 cfs @	0.33 hrs, Volume=	0.781 af, Atten= 0	%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD25:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	88.600 ac, Ir	nflow Depth = 0.12"	for 5-Year event	
Inflow	=	32.59 cfs @	0.33 hrs, Volume=	0.920 af	
Outflow	=	32.59 cfs @	0.33 hrs, Volume=	0.920 af, Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 21:

Inflow Area =	78.100 ac, Ir	flow Depth = 0.12 "	for 5-Year event
Inflow =	28.57 cfs @	0.33 hrs, Volume=	0.781 af
Primary =	28.57 cfs @	0.33 hrs, Volume=	0.781 af, Atten= 0%, Lag= 0.0 min
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Primary outflow = Inflow below 28.80 cfs, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 22:

Inflow Are	ea =	0.600 ac, Inflo	w Depth = 0.50 "	for 5-Year event	
Inflow	=	0.92 cfs @ 0.	15 hrs, Volume=	0.025 af	
Primary	=	0.92 cfs @ 0.	15 hrs, Volume=	0.025 af, Atten= 0%	%, Lag= 0.0 min

El Paso County 5-Year Duration=20 min, Inten=3.09 in/hr Prepared by WestWorks Engineering HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems Page 2 11/6/2019

Link DP-OS11: FLOW-BY

Inflow Are	ea =	65.500 ac, Ir	nflow Depth = 0.06"	for 5-Year event	
Inflow	=	12.00 cfs @	0.33 hrs, Volume=	0.327 af	
Primary	=	12.00 cfs @	0.33 hrs, Volume=	0.327 af, Atten= 0%, Lag=	0.0 min

23 Point hyd	lrograph e	entered mar	nually, To	= 0.00 hrs,	dt= 0.03	hrs, Area	= 65.500	ac, cfs =	
0.00	1.10	2.20	3.30	4.40	5.50	6.50	7.60	8.70	9.80
10.90	12.00	10.90	9.80	8.70	7.60	6.50	5.50	4.40	3.30
2.20	1.10	0.00							

Reach SD21:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	2.800 ac, Ir	flow Depth = $5.96''$	for 5-Year event	
Inflow	=	39.95 cfs @	0.42 hrs, Volume=	1.390 af	
Outflow	=	39.95 cfs @	0.42 hrs, Volume=	1.390 af, Atten= 0%	, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD22:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	13.000 ac, Ir	nflow Depth = 1.35"	for 5-Year event	
Inflow	=	40.26 cfs @	0.42 hrs, Volume=	1.464 af	
Outflow	=	40.26 cfs @	0.42 hrs, Volume=	1.464 af, Atten= 0%,	Lag= 0.0 min

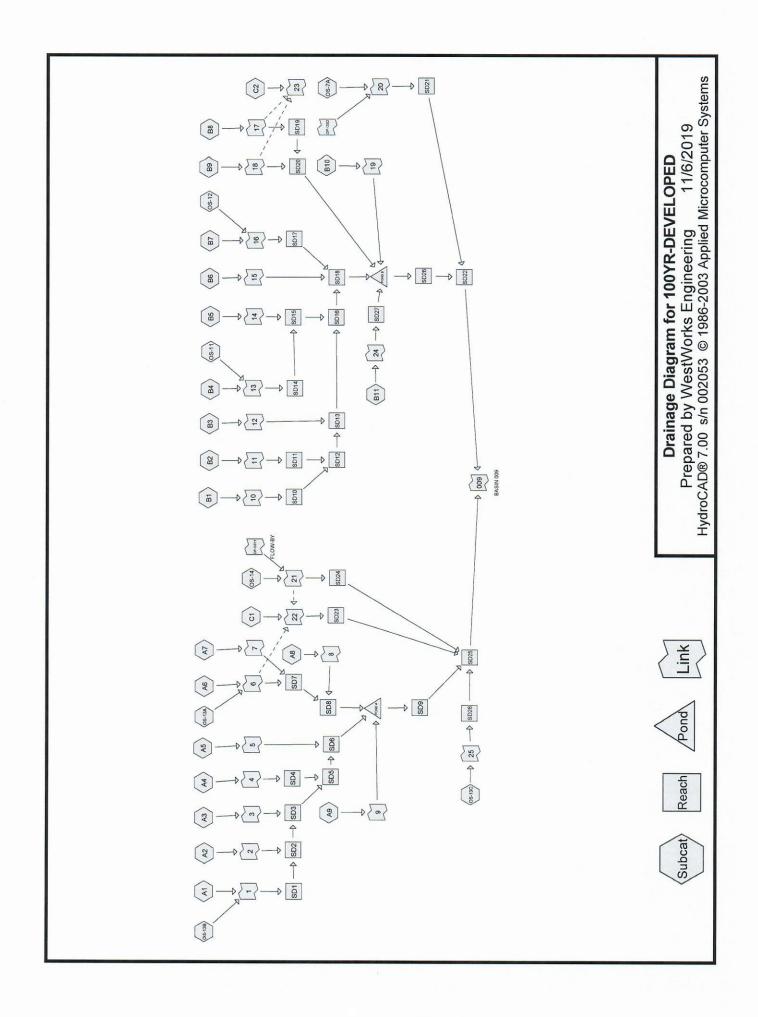
Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 009: BASIN 009

Inflow Are	ea =	101.600 ac, Ir	flow Depth = 0.29"	for 5-Year event	
Inflow	=	66.86 cfs @	0.41 hrs, Volume=	2.452 af	
Primary	=	66.86 cfs @	0.41 hrs, Volume=	2.452 af, Atten=	0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 20:


Inflow Are	ea =	2.800 ac, Ir	flow Depth = 5.96"	for 5-Year event	
Inflow	=	39.95 cfs @	0.42 hrs, Volume=	1.390 af	
Primary	=	39.95 cfs @	0.42 hrs, Volume=	1.390 af, Atten= 0	%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link DP-OS2:

Inflow	=	36.20 cfs @	0.42 hrs, Volume=	1.257 af
Primary		36.20 cfs @	0.42 hrs, Volume=	1.257 af, Atten= 0%, Lag= 0.0 min

2	9 Point hyd	Irograph e	entered ma	nually, To	o= 0.00 hrs,	dt= 0.0	3 hrs, Area	a= 0.000 a	ac, cfs =	
	0.00	2.60	5.20	7.80	10.30	12.90	15.50	18.10	20.70	23.30
	25.90	28.40	31.00	33.60	36.20	33.60	31.00	28.40	25.90	23.30
	20.70	18.10	15.50	12.90	10.30	7.80	5.20	2.60	0.00	

~~

Subcatchment A1:

Runoff	=	2.31 cfs @	0.08 hrs,	Volume=	0.016 af,	Depth= 0	.66''
Runoff by	Rational	method Rise	/Eall-1 0/1	0 xTo Timo	Span= 0.00.2	00 hrs dt-	0.01 hrs

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr

Area (ac) C Description 0.100 0.81 ROOFTOPS
0.200 0.96 PAVEMENT
0.300 0.91 Weighted Average
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,
Subcatchment A4:
Runoff = 2.31 cfs @ 0.08 hrs, Volume= 0.016 af, Depth= 0.66"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr
Area (ac) C Description
0.100 0.81 ROOFTOP
0.200 0.96 PAVEMENT
0.300 0.91 Weighted Average
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,
Subcatchment A5:
Runoff = 1.93 cfs @ 0.08 hrs, Volume= 0.014 af, Depth= 0.55"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs
El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr
Area (ac) C Description
0.100 0.35 LANDSCAPE
0.100 0.35 LANDSCAPE 0.200 0.96 PAVEMENT
0.100 0.35 LANDSCAPE
0.100 0.35 LANDSCAPE 0.200 0.96 PAVEMENT 0.300 0.76 Weighted Average
0.100 0.35 LANDSCAPE 0.200 0.96 PAVEMENT 0.300 0.76 Weighted Average

El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr g Page 2

Prepared by WestWorks Engineering HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems

Page 2 11/6/2019

Subcatchment B1:

Runoff = 3.11 cfs @ 0.08 hrs, Volume= 0.022 af, Depth= 0.66"

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr

Area (ac) C Description
0.100 0.81 ROOFTOP
0.300 0.96 PAVEMENT 0.400 0.92 Weighted Average
0.400 0.92 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,
Subcatchment B11:
oubcatchment DTT.
Runoff = 4.18 cfs @ 0.08 hrs, Volume= 0.030 af, Depth= 0.40"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr
Area (ac) C Description
0.400 0.81 ROOFTOP
0.500 0.35 LANDSCAPE 0.900 0.55 Weighted Average
0.900 0.55 Weighted Average
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
(min) (feet) (ft/ft) (ft/sec) (cfs)
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry,
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3:
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3: Runoff = 3.11 cfs @ 0.08 hrs, Volume= 0.022 af, Depth= 0.66" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr Area (ac) C Description
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3: Runoff = 3.11 cfs @ 0.08 hrs, Volume= 0.022 af, Depth= 0.66" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr Area (ac) C Description 0.100 0.81 ROOFTOP
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3: Runoff = 3.11 cfs @ 0.08 hrs, Volume= 0.022 af, Depth= 0.66" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr Area (ac) C Description 0.100 0.81 ROOFTOP 0.300 0.96 PAVEMENT
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3: Runoff = 3.11 cfs @ 0.08 hrs, Volume= 0.022 af, Depth= 0.66" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr Area (ac) C Description 0.100 0.81 ROOFTOP
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B3: Runoff = 3.11 cfs @ 0.08 hrs, Volume= 0.022 af, Depth= 0.66" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr Area (ac) C Description 0.100 0.81 ROOFTOP 0.300 0.96 PAVEMENT

El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr Prepared by WestWorks Engineering Page 3 HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems 11/6/2019

Subcatchment B4:

Runoff = 6.39 cfs @ 0.08 hrs, Volume= 0.045 af, Depth= 0.61"

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr

Area (ac) C Description
0.100 0.35 LANDSCAPE
0.300 0.81 ROOFTOP 0.500 0.96 PAVEMENT
0.900 0.84 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
5.0 Direct Entry,
Subcatchment B5:
oubcatchment B5.
Runoff = 2.87 cfs @ 0.08 hrs, Volume= 0.020 af, Depth= 0.61"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year_Duration=5 min,_Inten=8.68 in/hr
Area (ac) C Description
0.050 0.35 LANDSCAPE 0.100 0.81 ROOFTOP
0.250 0.96 PAVEMENT
0.400 0.85 Weighted Average
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry.
5.0 Direct Entry,
Subcatchment B7:
Runoff = 4.79 cfs @ 0.08 hrs, Volume= 0.034 af, Depth= 0.58"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr
Area (ac) C Description
0.150 0.35 LANDSCAPE
0.450 0.96 PAVEMENT 0.700 0.81 Weighted Average
0.700 0.81 Weighted Average

100YR-DEVELOPED El Paso County 100-Year Duration=5 min. Inten=8.68 in/hr Prepared by WestWorks Engineering Page 4 HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems 11/6/2019 Slope Velocity Capacity Tc Length Description (feet) (ft/ft) (min) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B8: Runoff 0.08 hrs, Volume= = 4.14 cfs @ 0.029 af, Depth= 0.51" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr Area (ac) С Description 0.300 0.35 LANDSCAPE 0.400 0.96 PAVEMENT 0.700 0.70 Weighted Average Tc Length Velocity Capacity Slope Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment B9: Runoff = 1.30 cfs @ 0.08 hrs, Volume= 0.009 af, Depth= 0.56" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr Area (ac) C Description 0.050 0.35 LANDSCAPE 0.050 0.81 ROOFTOP 0.100 0.96 PAVEMENT 0.200 0.77 Weighted Average Velocity Tc Length Slope Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry, Subcatchment OS-7A: Runoff 14.19 cfs @ 0.08 hrs. Volume= = 0.101 af, Depth= 0.43" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr Area (ac) C Description 2.800 0.60 FROM FDR

El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr Page 5

11/6/2019

HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.0					Direct Entry, FROM FDR	

Reach SD10:

[40] Hint: Not Described (Outflow=Inflow)

Prepared by WestWorks Engineering

Inflow Are	ea =	0.400 ac, Ir	nflow Depth = 0.66"	for 100-Year event
Inflow	=	3.11 cfs @	0.08 hrs, Volume=	0.022 af
Outflow	=	3.11 cfs @	0.08 hrs, Volume=	0.022 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD19:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.700 ac, Ir	flow Depth = 0.41 "	for 100-Year event
Inflow	=	2.40 cfs @	0.05 hrs, Volume=	0.024 af
Outflow	=	2.40 cfs @	0.05 hrs, Volume=	0.024 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD20:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.900 ac, Ir	nflow Depth = 0.44"	for 100-Year event	
Inflow	=	3.61 cfs @	0.08 hrs, Volume=	0.033 af	
Outflow	=	3.61 cfs @	0.08 hrs, Volume=	0.033 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD27:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.900 ac, Ir	nflow Depth = 0.40"	for 100-Year event
Inflow	=	4.18 cfs @	0.08 hrs, Volume=	0.030 af
Outflow	=	4.18 cfs @	0.08 hrs, Volume=	0.030 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD4:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.300 ac, Ir	nflow Depth = 0.66"	for 100-Year event
Inflow	=	2.31 cfs @	0.08 hrs, Volume=	0.016 af
Outflow	=	2.31 cfs @	0.08 hrs, Volume=	0.016 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 4:

Inflow Are	ea =	0.300 ac, Inflow Depth = 0.6	6" for 100-Year event
Inflow	=	2.31 cfs @ 0.08 hrs, Volum	e= 0.016 af
Primary	=	2.31 cfs @ 0.08 hrs, Volum	e= 0.016 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 5:

Inflow Are	ea =	0.300 ac, Ir	flow Depth = $0.55''$	for 100-Year event	
Inflow	=	1.93 cfs @	0.08 hrs, Volume=	0.014 af	
Primary	=	1.93 cfs @	0.08 hrs, Volume=	0.014 af, Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 10:

Inflow Are	ea =	0.400 ac, Ir	flow Depth = 0.66"	for 100-Year event
Inflow	=	3.11 cfs @	0.08 hrs, Volume=	0.022 af
Primary	=	3.11 cfs @	0.08 hrs, Volume=	0.022 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 12:

Inflow Are	ea =	0.400 ac, Ir	flow Depth = 0.66"	for 100-Year event
Inflow	=	3.11 cfs @	0.08 hrs, Volume=	0.022 af
Primary	=	3.11 cfs @	0.08 hrs, Volume=	0.022 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 14:

Inflow Are	ea =	0.400 ac, Infl	low Depth = 0.61"	for 100-Year event
Inflow	=	2.87 cfs @	0.08 hrs, Volume=	0.020 af
Primary	=	2.87 cfs @	0.08 hrs, Volume=	0.020 af, Atten= 0%, Lag= 0.0 min

El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr Prepared by WestWorks Engineering Page 7

HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems

11/6/2019

Link 17:

Inflow Area =	0.700 ac, Inflow Depth = 0.51 "	for 100-Year event
Inflow =	4.14 cfs @ 0.08 hrs, Volume=	0.029 af
Primary =	2.40 cfs @ 0.05 hrs, Volume=	0.024 af, Atten= 42%, Lag= 0.0 min
Secondary =	1.74 cfs @ 0.08 hrs, Volume=	0.006 af

Primary outflow = Inflow below 2.40 cfs, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 18:

Inflow Area =	0.200 ac, Ir	flow Depth = 0.56"	for 100-Year event
Inflow =	1.30 cfs @	0.08 hrs, Volume=	0.009 af
Primary =	1.21 cfs @	0.08 hrs, Volume=	0.009 af, Atten= 7%, Lag= 0.1 min
Secondary =	0.10 cfs @	0.08 hrs, Volume=	0.000 af

Primary outflow = Inflow below 1.20 cfs, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 24:

Inflow Are	ea =	0.900 ac, Inflow Depth = 0.40"	for 100-Year event
Inflow	=	4.18 cfs @ 0.08 hrs, Volume=	= 0.030 af
Primary	=	4.18 cfs @ 0.08 hrs, Volume=	0.030 af, Atten= 0%, Lag= 0.0 min

100YR-DEVELOPED	El Paso County 100-Year Duration=6 min,	Inten=8.22 in/hr
Prepared by WestWorks Engineering		Page 1
HydroCAD® 7.00 s/n 002053 © 1986-2003	Applied Microcomputer Systems	11/6/2019

Subcatchment A2:

Runoff = 2.98 cfs @ 0.10 hrs, Volume= 0.025 af, Depth= 0.74"

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr

Area (ac) C Description
0.150 0.81 ROOFTOP
0.250 0.96 PAVEMENT 0.400 0.90 Weighted Average
0.400 0.90 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,
Subcatchment A3:
oubcatchment A5.
Runoff = 2.92 cfs @ 0.10 hrs, Volume= 0.024 af, Depth= 0.72"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
Area (ac) C Description
0.200 0.81 ROOFTOP
0.200 0.96 PAVEMENT
0.400 0.88 Weighted Average
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,
(min) (feet) (ft/ft) (ft/sec) (cfs)
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7:
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7: Runoff = 2.55 cfs @ 0.10 hrs, Volume= 0.021 af, Depth= 0.63" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7: Runoff = 2.55 cfs @ 0.10 hrs, Volume= 0.021 af, Depth= 0.63" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Area (ac) C Description
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7: Runoff = 2.55 cfs @ 0.10 hrs, Volume= 0.021 af, Depth= 0.63" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7: Runoff = 2.55 cfs @ 0.10 hrs, Volume= 0.021 af, Depth= 0.63" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Area (ac) C Description 0.100 0.35 LANDSCAPE 0.100 0.81 ROOFTOP 0.200 0.96 PAVEMENT
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7: Runoff = 2.55 cfs @ 0.10 hrs, Volume= 0.021 af, Depth= 0.63" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Area (ac) C Description 0.100 0.35 LANDSCAPE 0.100 0.81 ROOFTOP
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment A7: Runoff = 2.55 cfs @ 0.10 hrs, Volume= 0.021 af, Depth= 0.63" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Area (ac) C Description 0.100 0.35 LANDSCAPE 0.100 0.81 ROOFTOP 0.200 0.96 PAVEMENT

Subcatchment A8:

Runoff = 1.37 cfs @ 0.10 hrs, Volume= 0.011 a	Depth=	0.45"
---	--------	-------

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr

Area (ac) C Description
0.200 0.35 LANDSCAPE
0.100 0.96 PAVEMENT
0.300 0.55 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,
Subcatchment B10:
Subcatchment B10:
Runoff = 2.34 cfs @ 0.10 hrs, Volume= 0.019 af, Depth= 0.39"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs
El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
Area (ac) C Description
0.450 0.35 LANDSCAPE
0.150 0.81 ROOFTOP
0.600 0.47 Weighted Average
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
C I V III V III V
(min) (feet) (ft/ft) (ft/sec) (cfs)
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2:
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 2.75 cfs @ 0.10 hrs, Volume= 0.023 af, Depth= 0.68" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 2.75 cfs @ 0.10 hrs, Volume= 0.023 af, Depth= 0.68" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 2.75 cfs @ 0.10 hrs, Volume= 0.023 af, Depth= 0.68" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Area (ac) C Description 0.050 0.35 LANDSCAPE 0.150 0.81 ROOFTOP
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 2.75 cfs @ 0.10 hrs, Volume= 0.023 af, Depth= 0.68" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Area (ac) C Description 0.050 0.35 LANDSCAPE 0.150 0.81 ROOFTOP 0.200 0.96 PAVEMENT
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 2.75 cfs @ 0.10 hrs, Volume= 0.023 af, Depth= 0.68" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Area (ac) C Description 0.050 0.35 LANDSCAPE 0.150 0.81 ROOFTOP
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 2.75 cfs @ 0.10 hrs, Volume= 0.023 af, Depth= 0.68" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Area (ac) C Description 0.50 0.35 LANDSCAPE 0.150 0.81 ROOFTOP 0.200 0.96 PAVEMENT 0.400 0.83 Weighted Average Tc Length Slope Velocity
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment B2: Runoff = 2.75 cfs @ 0.10 hrs, Volume= 0.023 af, Depth= 0.68" Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Area (ac) C Description 0.150 0.35 LANDSCAPE 0.150 0.81 ROOFTOP 0.200 0.96 PAVEMENT 0.400 0.83 Weighted Average

100YR-DEVELOPED	El Paso County 100-Year Duration=6 n	nin. Inten=8.22 in/hr
Prepared by WestWorks Engineering		Page 3
HydroCAD® 7.00 s/n 002053 © 1986-2003	Applied Microcomputer Systems	11/6/2019

Subcatchment B6:

Runoff = 3.52 cfs @ 0.10 hrs, Volume= 0.029 af, Depth= 0.70"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
Area (ac) C Description
0.050 0.35 LANDSCAPE
0.150
0.500 0.85 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,
Subcatchment OS-12:
Runoff = 6.47 cfs @ 0.10 hrs, Volume= 0.053 af, Depth= 0.49"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
Area (ac) C Description
1.300 0.60 FROM FDR
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, FROM FDR
Subcatchment OS-13A:
Runoff = 6.10 cfs @ 0.10 hrs, Volume= 0.050 af, Depth= 0.38"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
Area (ac) C Description
0.300 0.96 PAVEMENT/ROOF
<u>1.300 0.35 LANDSCAPE</u> 1.600 0.46 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, FROM FDR

100YR-DEVELOPEDEl Paso County 100-Year Duration=6 min, Inten=8.22 in/hrPrepared by WestWorks EngineeringPage 4HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems11/6/2019
Subcatchment OS-13B:
Runoff = 1.66 cfs @ 0.10 hrs, Volume= 0.014 af, Depth= 0.33"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
Area (ac) C Description
0.500 0.40 LANDSCAPE
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,
Subcatchment OS-13C:
Runoff = 15.12 cfs @ 0.10 hrs, Volume= 0.125 af, Depth= 0.39"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr <u>Area (ac) C Description</u> 0.800 0.96 PAVEMENT/ROOF
3.000 0.35 LANDSCAPE
3.800 0.48 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, FROM FDR
Subcatchment OS-14:
Runoff = 54.58 cfs @ 0.10 hrs, Volume= 0.451 af, Depth= 0.43"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
Area (ac) C Description
12.600 0.54 FROM FDR
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.2 Direct Entry, FROM FDR

El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Prepared by WestWorks Engineering Page 5 HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems 11/6/2019

Reach SD1:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.800 ac, Ir	flow Depth = 0.49''	for 100-Year event
Inflow	=		0.10 hrs, Volume=	
Outflow	=	3.94 cfs @	0.10 hrs, Volume=	0.032 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD11:

[40] Hint: Not Described (Outflow=Inflow)

. .

Inflow Are	ea =	0.400 ac, Ir	nflow Depth = 0.68"	' for 100-Year event	
Inflow	=		0.10 hrs, Volume=		
Outflow	=	2.75 cfs @	0.10 hrs, Volume=	= 0.023 af, Atten= 0%, Lag= 0.0 mir	۱

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD12:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	0.800 ac, Inflow Depth = 0.72" for 100-Year eve	ent
Inflow =	=	5.82 cfs @ 0.10 hrs, Volume= 0.048 af	
Outflow =	=	5.82 cfs @ 0.10 hrs, Volume= 0.048 af, /	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD13:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	1.200 ac, Ir	flow Depth = 0.73''	for 100-Year event
Inflow	=	8.90 cfs @	0.10 hrs, Volume=	0.073 af
Outflow	=	8.90 cfs @	0.10 hrs, Volume=	0.073 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD17:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	2.000 ac, li	flow Depth = 0.55''	for 100-Year event
Inflow	=	11.19 cfs @	0.10 hrs, Volume=	0.092 af
Outflow	=	11.19 cfs @	0.10 hrs, Volume=	0.092 af, Atten= 0%, Lag= 0.0 min

100YR-DEVELOPED	El Paso County 100-Year Duration=6 min,	Inten=8.22 in/hr
Prepared by WestWorks Engineering		Page 6
HydroCAD® 7.00 s/n 002053 © 1986-2003	Applied Microcomputer Systems	11/6/2019

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD2:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	1.200 ac, Ir	flow Depth = $0.57''$	for 100-Year event	
Inflow	=	6.91 cfs @	0.10 hrs, Volume=	0.057 af	
Outflow	=	6.91 cfs @	0.10 hrs, Volume=	0.057 af, Atten= 0%, Lag= 0.0 m	nin

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD28:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	3.800 ac, Ir	nflow Depth = 0.39"	for 100-Year event	
Inflow	=	15.12 cfs @	0.10 hrs, Volume=	= 0.125 af	
Outflow	=	15.12 cfs @	0.10 hrs, Volume=	= 0.125 af, Atten= 0%, Lag= 0.0 mi	n

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD3:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	1.600 ac, Ir	nflow Depth = 0.61"	for 100-Year event
Inflow	=	9.83 cfs @	0.10 hrs, Volume=	0.081 af
Outflow	=	9.83 cfs @	0.10 hrs, Volume=	0.081 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD5:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	1.900 ac, Ir	flow Depth = 0.63''	for 100-Year event	
Inflow	=	12.10 cfs @	0.10 hrs, Volume=	0.100 af	
Outflow	=	12.10 cfs @	0.10 hrs, Volume=	0.100 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD6:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	2.200 ac, Ir	nflow Depth = 0.63"	for 100-Year event	
Inflow	=	14.01 cfs @	0.10 hrs, Volume=	0.115 af	
Outflow	=	14.01 cfs @	0.10 hrs, Volume=	0.115 af, Atten= 0%, Lag= 0.0 min	

El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Prepared by WestWorks Engineering Page 7 HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems 11/6/2019

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 1:

Inflow Are	ea =	0.800 ac, Ir	nflow Depth = 0.49"	for 100-Year event
Inflow	=	3.94 cfs @	0.10 hrs, Volume=	0.032 af
Primary	=	3.94 cfs @	0.10 hrs, Volume=	0.032 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 2:

Inflow Are	ea =	0.400 ac, Inflow Depth =	= 0.74" f	for 100-Year event
Inflow	=	2.98 cfs @ 0.10 hrs, V	/olume=	0.025 af
Primary	=	2.98 cfs @ 0.10 hrs, V	/olume=	0.025 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 3:

Inflow Are	ea =	0.400 ac, Ir	flow Depth = $0.72''$	for 100-Year event
Inflow	=	2.92 cfs @	0.10 hrs, Volume=	0.024 af
Primary	=	2.92 cfs @	0.10 hrs, Volume=	0.024 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 7:

Inflow Are	ea =	0.400 ac, Ir	flow Depth = 0.63"	for 100-Year event
Inflow	=	2.55 cfs @	0.10 hrs, Volume=	0.021 af
Primary	=	2.55 cfs @	0.10 hrs, Volume=	0.021 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 8:

Inflow Are	ea =	0.300 ac, Ir	flow Depth = 0.45''	for 100-Year event
Inflow	=	1.37 cfs @	0.10 hrs, Volume=	0.011 af
Primary	=	1.37 cfs @	0.10 hrs, Volume=	0.011 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 11:

Inflow Are	ea =	0.400 ac, Ir	nflow Depth = 0.68"	for 100-Year event
Inflow	=	2.75 cfs @	0.10 hrs, Volume=	0.023 af
Primary	=	2.75 cfs @	0.10 hrs, Volume=	0.023 af, Atten= 0%, Lag= 0.0 min

El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr Prepared by WestWorks Engineering Page 8

HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems

11/6/2019

Link 15:

Inflow Area = 0.500 ac, Inflow Depth = 0.70" for 100-Year event Inflow = 3.52 cfs @ 0.10 hrs, Volume= 0.029 af 3.52 cfs @ 0.10 hrs, Volume= Primary = 0.029 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 16:

Inflow Are	ea =	2.000 ac, Ir	flow Depth = 0.55''	for 100-Year event
Inflow	=	11.19 cfs @	0.10 hrs, Volume=	0.092 af
Primary	=	11.19 cfs @	0.10 hrs, Volume=	0.092 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 19:

Inflow Are	ea =	0.600 ac, Inflow Depth = 0.39	for 100-Year event
Inflow	=	2.34 cfs @ 0.10 hrs, Volume	= 0.019 af
Primary	=	2.34 cfs @ 0.10 hrs, Volume	= 0.019 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 25:

Inflow Are	ea =	3.800 ac, Ir	flow Depth = 0.39"	for 100-Year event
Inflow	=	15.12 cfs @	0.10 hrs, Volume=	0.125 af
Primary	=	15.12 cfs @	0.10 hrs, Volume=	0.125 af, Atten= 0%, Lag= 0.0 min

Subcatchment OS-11:

Runoff = 13.79 cfs @ 0.12 hrs, Volume= 0.136 af, Depth= 0.58"

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=7 min, Inten=7.83 in/hr

Area (ac) С Description 2.800 0.64 FROM FDR Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 7.0 **Direct Entry, FROM FDR**

Reach SD14:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	3.700 ac, Ir	flow Depth = $0.63''$	for 100-Year event	
Inflow	=	19.66 cfs @	0.12 hrs, Volume=	0.194 af	
Outflow	=	19.66 cfs @	0.12 hrs, Volume=	0.194 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD15:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	4.100 ac, Ir	nflow Depth = 0.64"	for 100-Year event
Inflow	=	22.31 cfs @	0.12 hrs, Volume=	0.220 af
Outflow	=	22.31 cfs @	0.12 hrs, Volume=	0.220 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD16:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	5.300 ac, Ir	nflow Depth = 0.68"	for 100-Year event	
Inflow	=	30.50 cfs @	0.11 hrs, Volume=	0.301 af	
Outflow	=	30.50 cfs @	0.11 hrs, Volume=	0.301 af, Atten= 0%, Lag= 0.0 m	in

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD18:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	7.800 ac, Ir	flow Depth = 0.67''	for 100-Year event	
Inflow	=	44.43 cfs @	0.11 hrs, Volume=	0.436 af	
Outflow	=	44.43 cfs @	0.11 hrs, Volume=	0.436 af, Atten= 0%, Lag=	0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD26:

[40] Hint: Not Described (Outflow=Inflow)

.

Inflow Are	ea =	10.200 ac, Ir	nflow Depth = 0.09"	for 100-Year event
Inflow	=	0.32 cfs @	0.23 hrs, Volume=	0.074 af
Outflow	=	0.32 cfs @	0.23 hrs, Volume=	0.074 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 13:

Inflow Are	ea =	3.700 ac, Ir	flow Depth = 0.63"	for 100-Year event	
Inflow	=	19.66 cfs @	0.12 hrs, Volume=	0.194 af	
Primary	=	19.66 cfs @	0.12 hrs, Volume=	0.194 af, Atten= 0%, Lag= 0.0 min	۱

100YR-DEVELOPEDEl Paso County 100-Year Duration=9 min, Inten=7.20 in/hrPrepared by WestWorks EngineeringPage 1HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems11/6/2019
Subcatchment A9:
Runoff = 1.82 cfs @ 0.15 hrs, Volume= 0.023 af, Depth= 0.54"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=9 min, Inten=7.20 in/hr
Area (ac) C Description 0.500 0.50 LANDSCAPE
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
9.0 Direct Entry,
Subcatchment C1:
Runoff = 2.83 cfs @ 0.15 hrs, Volume= 0.035 af, Depth= 0.70"
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=9 min, Inten=7.20 in/hr
Area (ac) C Description
0.300 0.35 LANDSCAPE 0.300 0.96 PAVEMENT
0.600 0.65 Weighted Average
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
9.0 Direct Entry,
Link 9:
Inflow Area = 0.500 ac, Inflow Depth = 0.54" for 100-Year event Inflow = 1.82 cfs @ 0.15 hrs, Volume= 0.023 af Primary = 1.82 cfs @ 0.15 hrs, Volume= 0.023 af, Atten= 0%, Lag= 0.0 min
Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

100YR-DEVELOPED	El Paso County 100-Year Duration=11 min,	Inten=6.69 in/hr
Prepared by WestWorks Engineering		Page 1
HydroCAD® 7.00 s/n 002053 © 1986-2003	3 Applied Microcomputer Systems	11/6/2019

Subcatchment A6:

Runoff = 5.70 cfs @ 0.18 hrs, Volume= 0.088 af, Depth= 0.96"

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=11 min, Inten=6.69 in/hr

Area	(ac)	С	Descrip	otion					
0.	300	0.35	LANDS	CAPE					
0.	100	0.81	ROOF	TOP					
0.	700	0.96	PAVEN	IENT					
1.	100	0.78	Weight	ed Ave	rage				
Tc (min)	Lengt (feet		201	elocity ft/sec)	Capacity (cfs)	Description	ı		
11.0						Direct Ent	ry,		
	Subcatchment C2:								
Runoff	=	5.1	18 cfs @	0.18	3 hrs, Volu	me=	0.080 af,	Depth= 0.80"	
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs									

	Area	(ac)	С	Des	cription		
	0.	600	0.35	LAN	IDSCAPE		
_	0.	600	0.96	PA	/EMENT		
	1.	200	0.65	Wei	ghted Ave	rage	
_	Tc (min)	Leng (fee		ope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	11.0						Direct Entry,

Reach SD7:

[40] Hint: Not Described (Outflow=Inflow)

. .

Inflow Are	ea =	3.100 ac, Ir	nflow Depth = 0.74"	for 100-Year event	
Inflow	=	11.28 cfs @	0.14 hrs, Volume=	0.190 af	
Outflow	=	11.28 cfs @	0.14 hrs, Volume=	0.190 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

El Paso County 100-Year Duration=11 min, Inten=6.69 in/hr

Reach SD8:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	3.400 ac, Ir	flow Depth = $0.73''$	for 100-Year event
Inflow	=	12.39 cfs @	0.14 hrs, Volume=	0.207 af
Outflow	=	12.39 cfs @	0.14 hrs, Volume=	0.207 af, Atten= 0%, Lag= 0.0 min

100YR-DEVELOPEDEl Paso County 100-Year Duration=11 min, Inten=6.69 in/hrPrepared by WestWorks EngineeringPage 2HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems11/6/2019

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD9:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	6.100 ac, Ir	flow Depth = 0.15"	for 100-Year event	
Inflow	=	1.83 cfs @	0.32 hrs, Volume=	0.074 af	
Outflow	=	1.83 cfs @	0.32 hrs, Volume=	0.074 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 6:

Inflow Area =	2.700 ac, Inflow I	Depth = 0.72''	for 100-Year event
Inflow =	10.65 cfs @ 0.18	hrs, Volume=	0.163 af
Primary =	9.20 cfs @ 0.14	hrs, Volume=	0.159 af, Atten= 14%, Lag= 0.0 min
Secondary =	1.45 cfs @ 0.18	hrs, Volume=	

Primary outflow = Inflow below 9.20 cfs, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 23:

Inflow Are	ea =	1.200 ac, Ir	flow Depth = 0.89"	for 100-Year event
Inflow	=	6.07 cfs @	0.18 hrs, Volume=	0.089 af
Primary	=	6.07 cfs @	0.18 hrs, Volume=	0.089 af, Atten= 0%, Lag= 0.0 min

Reach SD23:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	0.600 ac, Ir	flow Depth = $5.92''$	for 100-Year event
Inflow	=		0.15 hrs, Volume=	
Outflow	=	14.15 cfs @	0.15 hrs, Volume=	0.296 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD24:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	78.100 ac, Ir	flow Depth = $0.27''$	for 100-Year event	
Inflow	=	46.90 cfs @	0.10 hrs, Volume=	1.741 af	
Outflow	=	46.90 cfs @	0.10 hrs, Volume=	1.741 af, Atten= 0%, Lag= 0.0 m	nin

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD25:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	88.600 ac, Ir	nflow Depth = 0.34"	for 100-Year event	
Inflow	=	72.52 cfs @	0.33 hrs, Volume=	2.528 af	
Outflow	=	72.52 cfs @	0.33 hrs, Volume=	2.528 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 21:

Inflow Area =	78.100 ac, Inflow Depth = 0.30	" for 100-Year event
Inflow =	59.01 cfs @ 0.15 hrs, Volume	= 1.981 af
Primary =	46.90 cfs @ 0.10 hrs, Volume	= 1.741 af, Atten= 21%, Lag= 0.0 min
Secondary =	12.11 cfs @ 0.15 hrs, Volume	

Primary outflow = Inflow below 46.90 cfs, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 22:

Inflow Are	ea =	0.600 ac, Ir	nflow Depth = $5.92''$	for 100-Year event	
Inflow	=	14.15 cfs @	0.15 hrs, Volume=	0.296 af	
Primary	=	14.15 cfs @	0.15 hrs, Volume=	0.296 af, Atten= 0%, La	g= 0.0 min

Link DP-OS11: FLOW-BY

Inflow Area =	65.500 ac, Inflow Dep	th = 0.27" fo	or 100-Year event	
Inflow =	54.10 cfs @ 0.33 hrs	s, Volume=	1.475 af	
Primary =	23.40 cfs @ 0.15 hrs	, Volume=	1.000 af, Atten= 57%, Lag= 0.0 min	
Secondary =	30.70 cfs @ 0.33 hrs	s, Volume=	0.475 af	

Primary outflow = Inflow below 23.40 cfs, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

23 Point hyd									
0.00	4.90	9.80	14.80	19.70	24.60	29.50	34.40	39.30	44.30
49.20	54.10	49.20	44.30	39.30	34.40	29.50	24.60	19.70	14.80
9.80	4.90	0.00							

Reach SD21:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		2.800 ac, Ir	nflow Depth = 14.86"	for 100-Year event	
Inflow	=	99.65 cfs @	0.42 hrs, Volume=	3.466 af	
Outflow	=	99.65 cfs @	0.42 hrs, Volume=	3.466 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD22:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	ea =	13.000 ac, Ir	nflow Depth = 3.68"	for 100-Year event	
Inflow	=	104.88 cfs @	0.42 hrs, Volume=	3.983 af	
Outflow	=	104.88 cfs @	0.42 hrs, Volume=	3.983 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

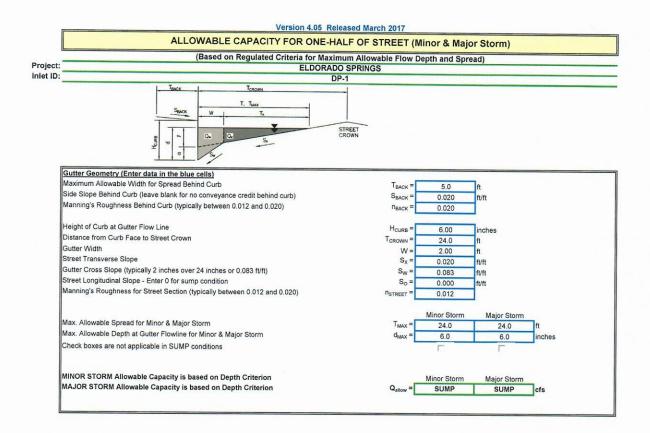
Link 009: BASIN 009

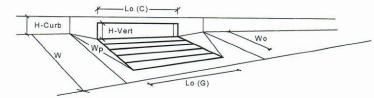
Inflow Are	ea =	101.600 ac, In	flow Depth = 0.79 "	for 100-Year event
Inflow	=	171.59 cfs @	0.42 hrs, Volume=	6.715 af
Primary	=	171.59 cfs @	0.42 hrs, Volume=	6.715 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

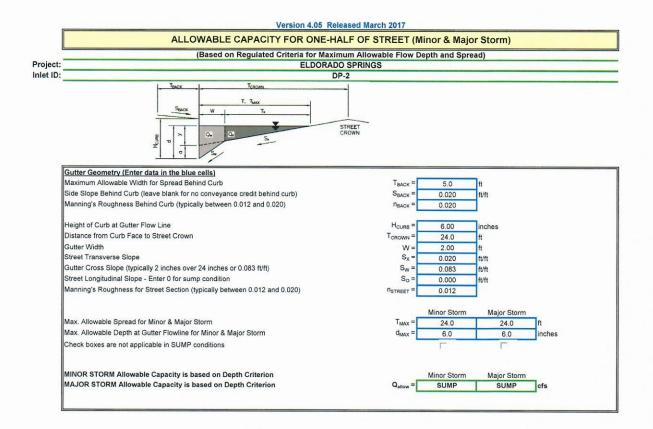
Link 20:

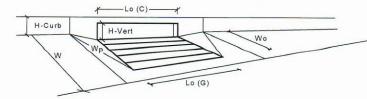
Inflow Are	ea =	2.800 ac, Ir	flow Depth = 14.86 "	for 100-Year event	
Inflow	=	99.65 cfs @	0.42 hrs, Volume=	3.466 af	
Primary	=	99.65 cfs @	0.42 hrs, Volume=	3.466 af, Atten= 0%, Lag= 0.0 min	

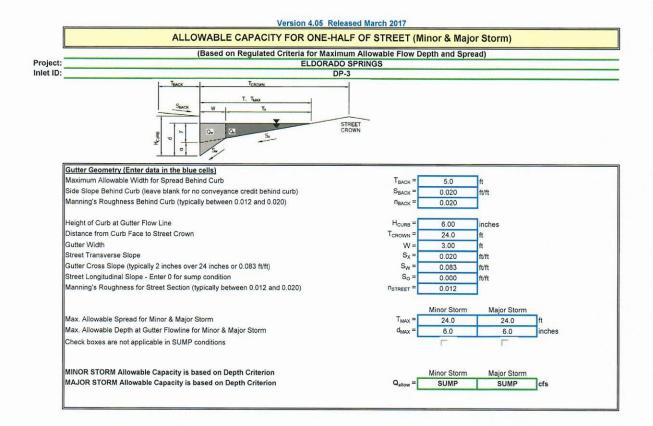

Primary outflow = Inflow, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

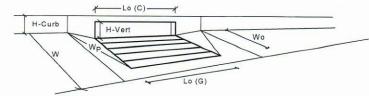

Link DP-OS2:

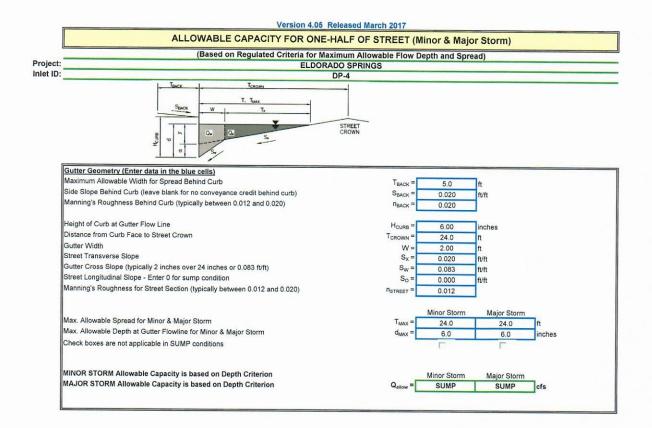
Inflow	=	92.10 cfs @	0.42 hrs, Volume=	3.197 af	
Primary	=	92.10 cfs @	0.42 hrs, Volume=	3.197 af, Atten= 0%, Lag= 0.0 min	

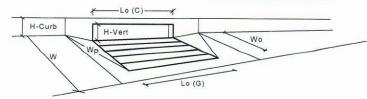

29	9 Point hyd	rograph	entered mai	nually, To	= 0.00 hrs,	dt= 0.03	3 hrs, Area	a= 0.000 a	ac, cfs =	
	0.00	6.60	13.20	19.70	26.30	32.90	39.50	46.10	52.60	59.20
	65.80	72.40	78.90	85.50	92.10	85.50	78.90	72.40	65.80	59.20
	52.60	46.10	39.50	32.90	26.30	19.70	13.20	6.60	0.00	

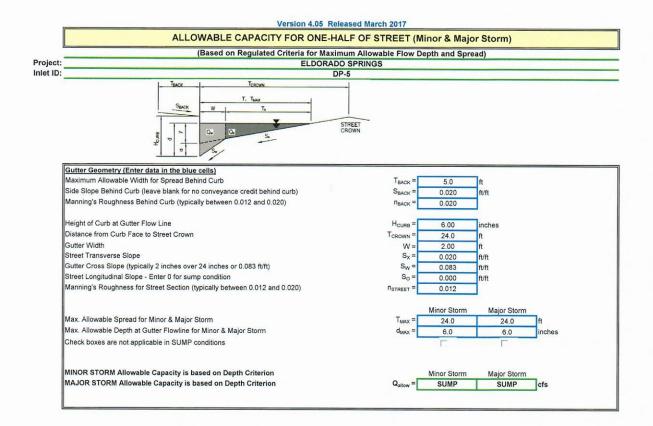

HYDRAULIC CALCULATIONS



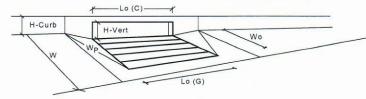

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3 00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5 00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6,00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3,60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Srated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	5.4	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	4.0	cfs

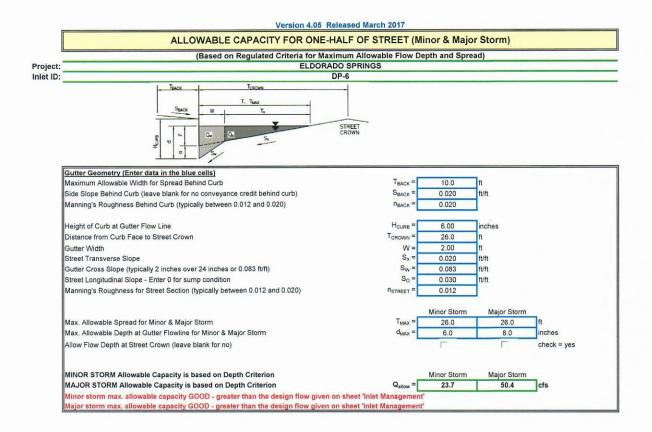


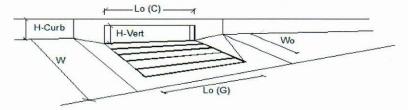

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3 00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Nater Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
leight of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3,60	3,60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	5.4	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	3.0	cfs



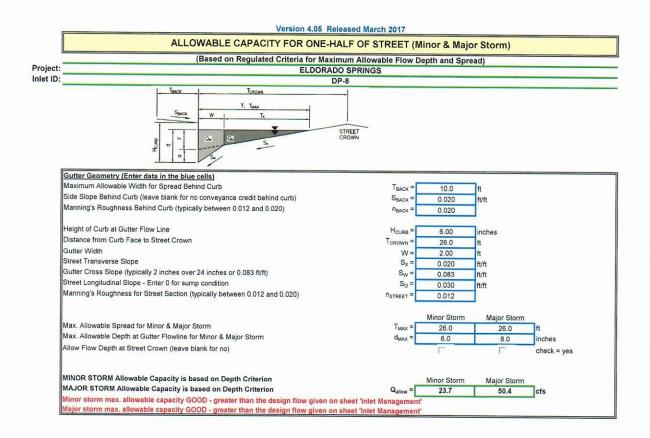
Design Information (Input) CDOT Type C Grate		MINOR	MAJOR	
Type of Infet	Type =	CDOT Ty	pe C Grate	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	6.00	6.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	2.92	2.92	feet
Width of a Unit Grate	W _o =	2.92	2.92	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.70	0 70	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	2.41	2.41	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.67	0.67	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_o(C) =$	N/A	N/A	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	N/A	N/A	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	N/A	N/A	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.635	0.635	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	N/A	N/A	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{curb} =	N/A	N/A	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.95	0.95	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.2	4.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	3.0	cfs



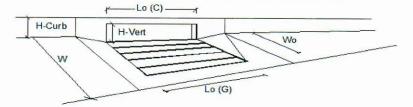

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	VV _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	2.0	cfs



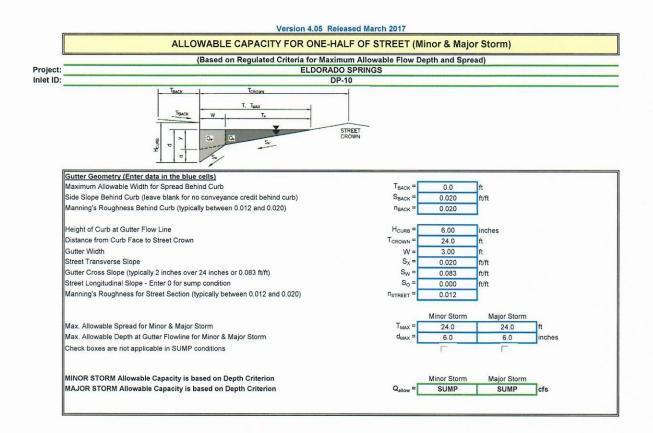
Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	10 P
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Coverride Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	2.0	cfs

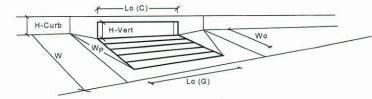


INLET ON A CONTINUOUS GRADE

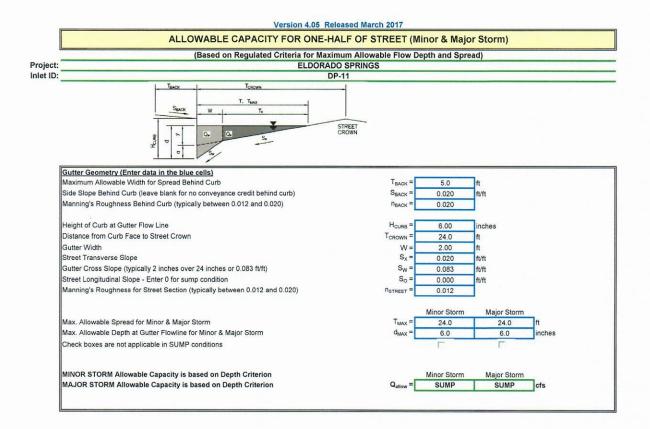


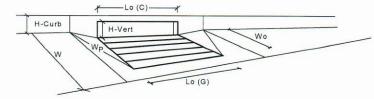
Design Information (Input)			MINOR	MAJOR	
Type of Inlet	<u> </u>	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')		a _{LOCAL} =	3.0	3 0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)		L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)		CrG =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)		C _r C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity			MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	4.4	9.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)		Q _b =	0.0	1.5	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	86	%

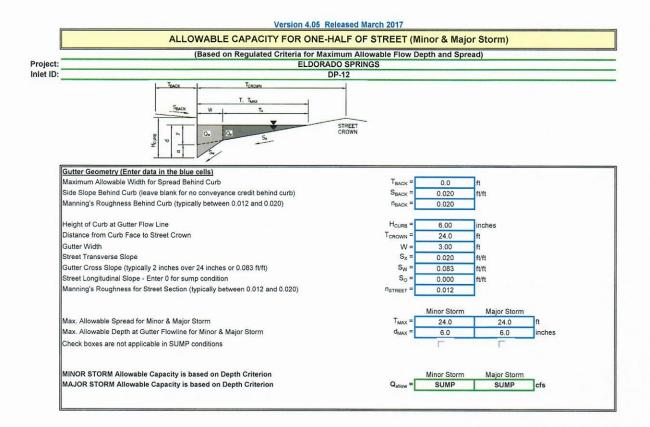


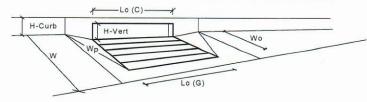

INLET ON A CONTINUOUS GRADE

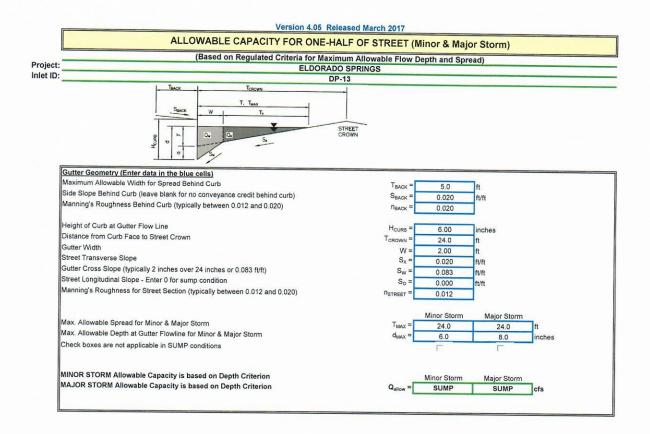
Version 4.05 Released March 2017



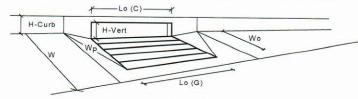

Design Information (Input) CDOT Type R Curb Opening		N	MINOR	MAJOR	
Type of Inlet	•	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)		L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)		Cr-G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)		CrC =	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity			MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	0.5	1.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)		Q _b =	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	94	%

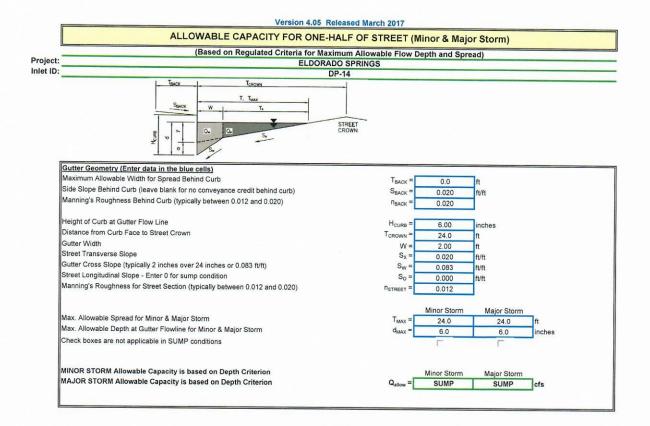


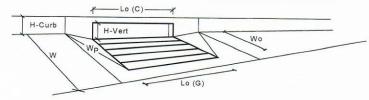

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type C Grate	Type =	CDOT Typ	e C Grate	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	6.00	6.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	2.92	2.92	feet
Width of a Unit Grate	W _o =	2.92	2.92	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.70	0.70	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	2.41	2.41	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.67	0.67	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	N/A	N/A	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	VV _p =	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	N/A	N/A	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	N/A	N/A	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.635	0.635	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	N/A	N/A	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{curb} =	N/A	N/A	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.95	0.95	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.2	4.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.7	3.1	cfs

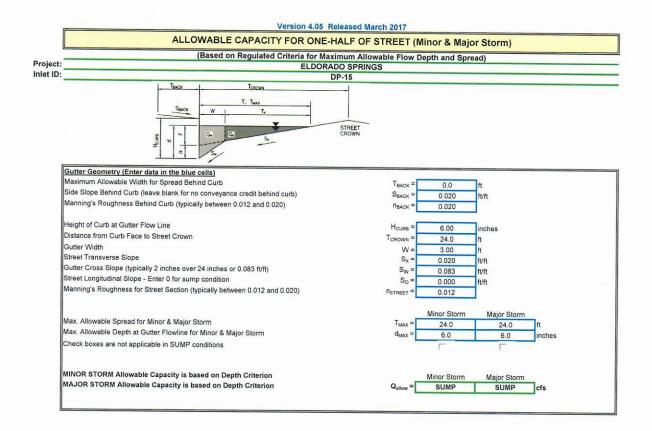


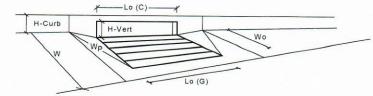
Design Information (Input) CDOT Type R Curb Opening	100 million (100 m	MINOR	MAJOR	-4.0
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Coverride Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5 00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	1
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	5.4	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	3.0	cfs

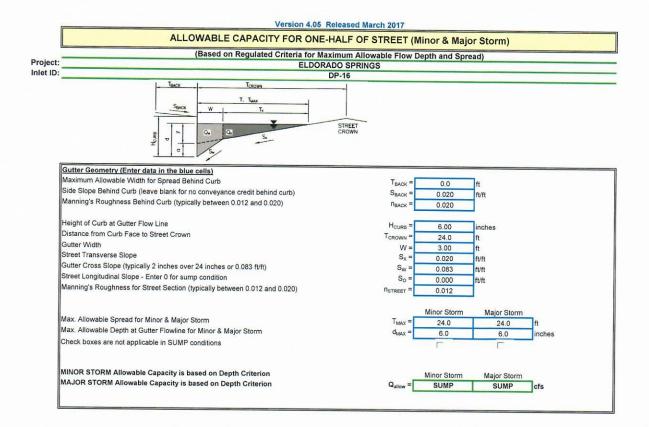



Design Information (Input) CDOT Type C Grate		MINOR	MAJOR	
Type of Inlet CDOT Type C Grate	Type =	CDOT Ty	oe C Grate	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	6.00	6.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	2.92	2.92	feet
Nidth of a Unit Grate	W _o =	2.92	2.92	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.70	0 70	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	2.41	2.41	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.67	0.67	
Curb Opening Information	and the second se	MINOR	MAJOR	-
ength of a Unit Curb Opening	L _o (C) =	N/A	N/A	feet
leight of Vertical Curb Opening in Inches	H _{vert} =	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	N/A	N/A	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	N/A	N/A	
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.635	0.635	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	N/A	N/A	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	N/A	N/A	
Srated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.95	0.95	3
		MINOR	MAJOR	
Fotal Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.2	4.2	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.7	3.0	cfs

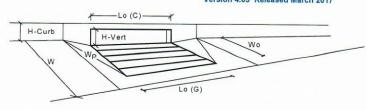


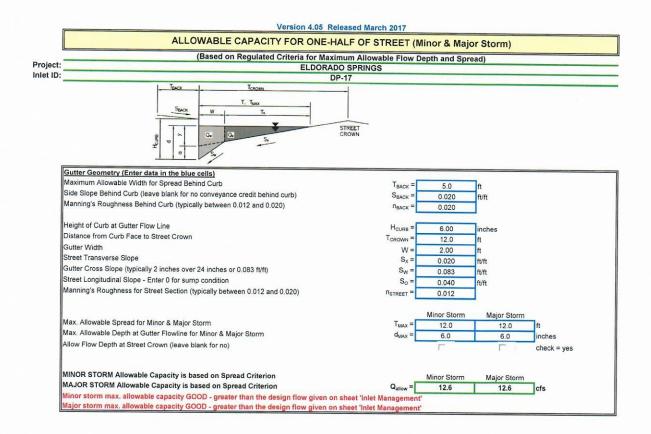


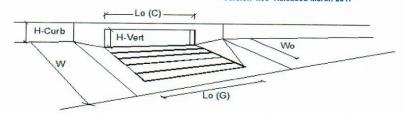

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.3	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	VV _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _r (G) =	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6:00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Tft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.69	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{curb} =	0.79	0.86	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	12.5	20.6	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	10.0	20.0	cfs

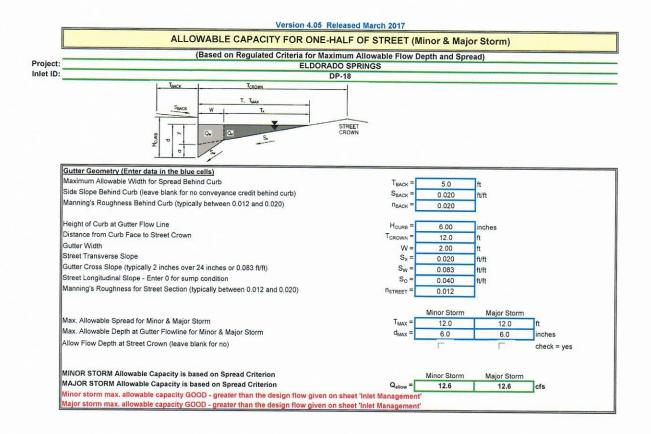


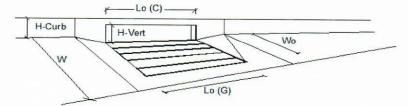
Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of met	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3 00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	VV _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	0.77	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	5.4	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.5	3.0	cfs

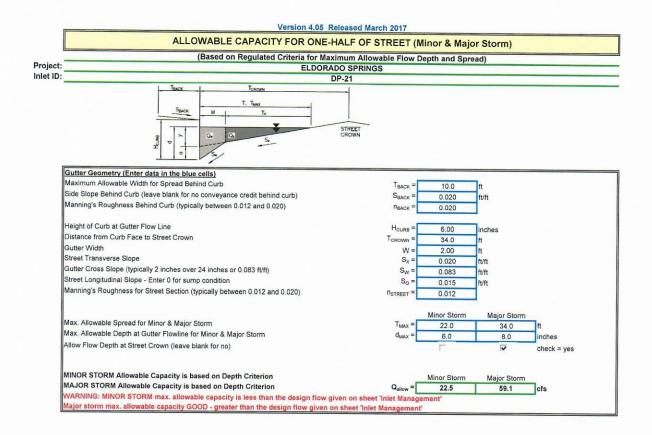


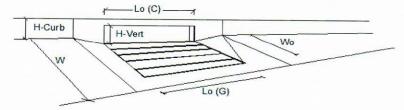

Design Information (Input) CDOT Type C Grate		MINOR	MAJOR	
Type of inlet	Type =	CDOT Type C Grate		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	6.00	6.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	-
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	2.92	2,92	feet
Width of a Unit Grate	W _o =	2.92	2.92	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.70	0.70	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	2.41	2.41	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.67	0.67	-
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	$L_o(C) =$	N/A	N/A	feet
leight of Vertical Curb Opening in Inches	H _{vert} =	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	VV _p =	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	N/A	N/A	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	N/A	N/A	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.635	0.635	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	N/A	N/A	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	N/A	N/A	
Brated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.95	0.95	
		MINOR	MAJOR	
Fotal Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.2	4.2	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.5	4.0	cfs

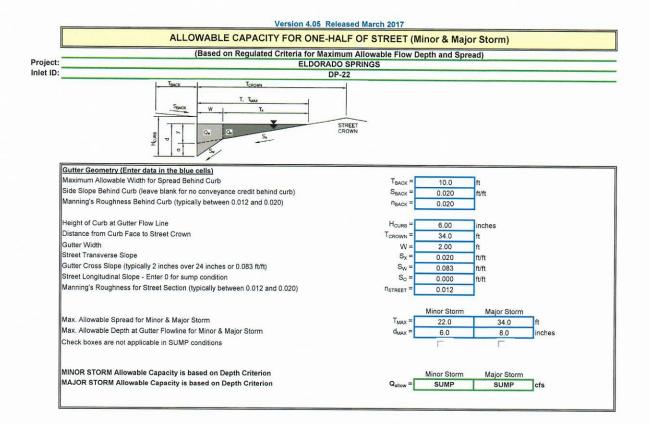

INLET IN A SUMP OR SAG LOCATION Version 4.05 Released March 2017


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	3.00	3.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.25	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.57	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	0.93	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.1	6.1	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	5.6	11.0	cfs

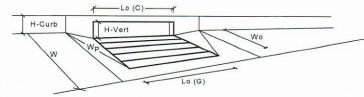

INLET ON A CONTINUOUS GRADE Version 4.05 Released March 2017


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0 1 10.00 N/A	3.0 1 10.00 N/A	inches ft
Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W, Gutter Width)	No =			
	L _o =			
	W _o =			
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	CrG =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	Cr-C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	2.0	3.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	96	%


INLET ON A CONTINUOUS GRADE

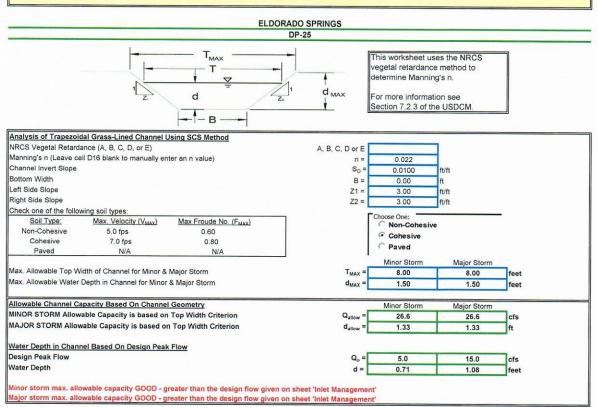

Design Information (Input) CDOT Type R Curb Opening			MINOR	MAJOR	
Type of Inlet		Type = a _{LOCAL} =	CDOT Type R	7	
Local Depression (additional to continuous gutter depression 'a')			3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No = L _o = W _o =	1 5.00 N/A	1 5.00 N/A	ft
Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W, Gutter Width)					
	Clogging Factor for a Single Unit Grate (typical min. value = 0.5)				
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)		C _r C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity			MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	0.7	1.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)		Q _b =	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	94	%

INLET ON A CONTINUOUS GRADE Version 4.05 Released March 2017

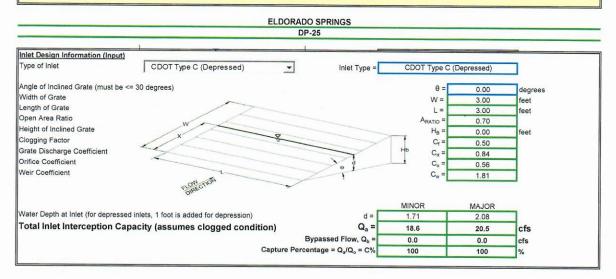


Design Information (Input) CDOT Type R Curb Opening	_		MINOR	MAJOR	
Type of Inlet	•	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')		aLOCAL =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W, Gutter Width)	L _o = W _o =	20.00 N/A	20.00 N/A	ft	
					Clogging Factor for a Single Unit Grate (typical min. value = 0.5)
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)		CrC =	0.10	0.10	-
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MINOR STOR	M'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	28.8	46.9	Cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)		Q _b =	0.2	12.1	cfs
Capture Percentage = Q _a /Q _o =		C% =	99	79	%

INLET IN A SUMP OR SAG LOCATION


Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening	15	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3 00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Nater Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	8.2	inches
Grate Information		MINOR	MAJOR	Verride Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C ₁ (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
leight of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.52	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{curb} =	0.79	0.90	
Srated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Fotal Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	21.5	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	14.0	cfs


Version 4.05 Released March 2017

AREA INLET IN A SWALE

Version 4.05 Released March 2017

AREA INLET IN A SWALE

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

STORMWATER FACILITY CALCULATIONS

			UD	-BMP (Versior	n 3.06, Novem	ber 2016)								
User Input														
Calculated cells				Designer:		Chad Kuzk	ok DE							
Calculated tens				Company:			ks Enginee	ring						
Design Storm: 1-Hour Rain Depth WQCV Event	0.60	inches		Date:		April 22, 2	-	•						
***Minor Storm: 1-Hour Rain Depth 10-Year Event	1.75	inches		Project:			O SPRINGS	5						
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:		POND A								
Optional User Defined Storm CUHP		r												
JHP) NOAA 1 Hour Rainfall Depth and Frequency 100-Year Event for User Defined Storm	2.52													
Vlax Intensity for Optional User Defined Storm 2.51496														
E INFORMATION (USER-INPUT)														
Sub-basin Identifier	A1	A2	A3	A4	A5	A6	A7	A8	A9	OS-13A	OS-13B			
Receiving Pervious Area Soil Type	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Sandy Loam	Sandy Loam	Sandy Lo
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) Directly Connected Impervious Area (DCIA, acres)	0.300	0.400	0.400	0.200	0.300	1.100	0.400	0.300	0.500	1.600	0.500			
Unconnected Impervious Area (UCA, acres)	0.000	0.000	0.400	0.200	0.200	0.000	0.000	0.000	0.000	0.000	0.000			
Receiving Pervious Area (RPA, acres)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Separate Pervious Area (SPA, acres)	0.000	0.000	0.000	0.000	0.100	0.300	0.100	0.200	0.500	1.300	0.400			
RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP)	v	v	v	v	v	v	v	v	v	v	v			
												MISSING	MISSING INPUT	MISSIN
LCULATED RESULTS (OUTPUT)														
Total Calculated Area (ac, check against input)	0.300	0.400	0.400	0.200	0.300	1.100	0.400	0.300	0.500	1.600	0.500			
Directly Connected Impervious Area (DCIA, %)	100.0%	100.0%	100.0%	100.0%	66.7%	72.7%	75.0%	33.3%	0.0%	18.8%	20.0%			
Unconnected Impervious Area (UIA, %)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			
Receiving Pervious Area (RPA, %) Separate Pervious Area (SPA, %)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			
A _e (RPA / UIA)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
I _a Check	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
f / I for WQCV Event:	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4			
f / I for 10-Year Event:	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2			
f / I for 100-Year Event:	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
f / I for Optional User Defined Storm CUHP: IRF for WOCY Event:	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12			
IRF for 10-Year Event:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
IRF for 100-Year Event:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
IRF for Optional User Defined Storm CUHP:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Total Site Imperviousness: I _{total}	100.0%	100.0%	100.0%	100.0%	66.7%	72.7%	75.0%	33.3%	0.0%	18.8%	20.0%			
Effective Imperviousness for WQCV Event:	100.0%	100.0%	100.0%	100.0%	66.7%	72.7%	75.0%	33.3%	0.0%	18.8%	20.0%			
Effective Imperviousness for 10-Year Event: Effective Imperviousness for 100-Year Event:	100.0%	100.0%	100.0%	100.0% 100.0%	66.7% 66.7%	72.7%	75.0% 75.0%	33.3% 33.3%	0.0%	18.8% 18.8%	20.0%			
Effective Imperviousness for Optional User Defined Storm CUHP:	100.0%	100.0%	100.0%	100.0%	66.7%	72.7%	75.0%	33.3%	0.0%	18.8%	20.0%			
D / EFFECTIVE IMPERVIOUSNESS CREDITS														
WQCV Event CREDIT: Reduce Detention By:	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
	0.0%	0.0%	0.0%	0.1%	0.1%	0.0%	0.0%	0.2%	N/A	0.1%	0.2%			-
10-Year Event CREDIT**: Reduce Detention By:	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	N/A 0.0%	0.0%	0.1%			
10-Year Event CREDIT**: Reduce Detention By: 100-Year Event CREDIT**: Reduce Detention By: User Defined CUHP CREDIT: Reduce Detention By:				1										
100-Year Event CREDIT**: Reduce Detention By:	Total Site Imp	erviousness:	51.7%		Notes:									
100-Year Event CREDIT**: Reduce Detention By: User Defined CUHP CREDIT: Reduce Detention By:				-		-Ampt average	e infiltration	rate values f	rom Table 3-	3.				
100-Year Event CREDIT**: Reduce Detention By:	viousness for \	WQCV Event:	51.7% 51.7%	-	* Use Green ** Flood cont	trol detentio	n volume cre		empirical eq	uations from		pter of USDCI		
100-Year Event CREDIT**: Reduce Detention By: User Defined CUHP CREDIT: Reduce Detention By: Total Site Effective Imper	viousness for V viousness for 10 ousness for 100	WQCV Event: D-Year Event: D-Year Event:	51.7%		* Use Green ** Flood cont	trol detentio	n volume cre	dits based on	empirical eq	uations from		pter of USDC lation purpos		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

	Project: Eldorado S	Springs
	Basin ID: Pond A	
VOLUME EURY WOCY	ZONE 3 ZONE 2 ZONE 1 ZONE 1 ZONE 1 AND 2 ZONE 1 ZONE 1 ZONE 1 ZONE 2 ZONE 2 ZONE 2 ZONE 2	100.YEAR ORIFICE tion (Retention Pond)

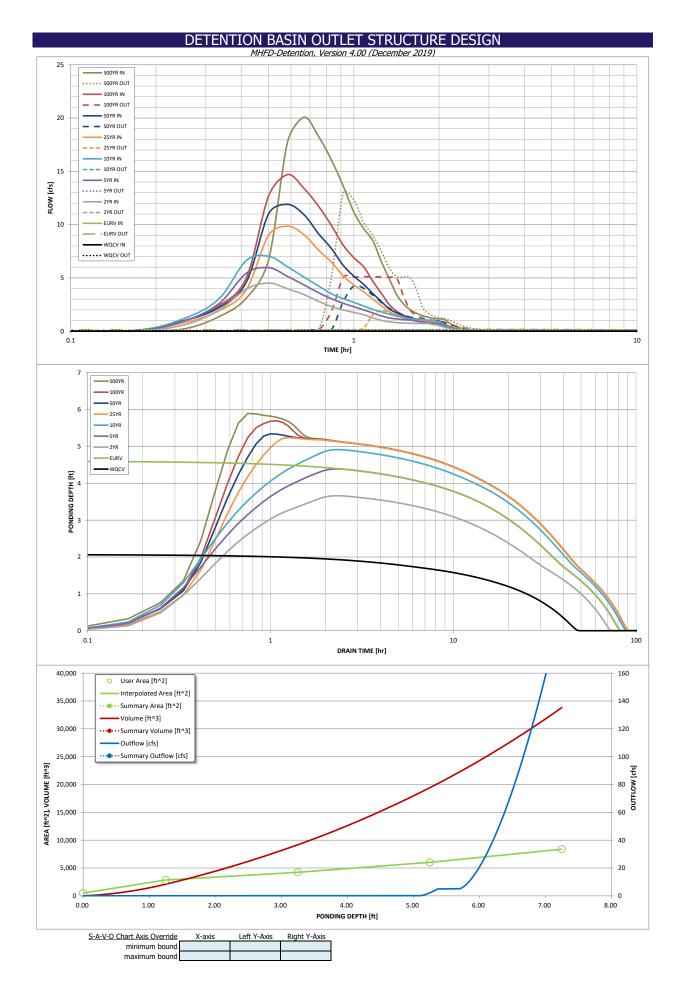
Depth Increment = _____ft

Watershed Information

EDB	
6.00	acres
840	ft
400	ft
0.060	ft/ft
52.50%	percent
90.0%	percent
0.0%	percent
10.0%	percent
40.0	hours
User Input	
	6.00 840 400 52.50% 90.0% 0.0% 10.0%

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	graph Procedu	ire.	Optional User	Override
Water Quality Capture Volume (WQCV) =	0.107	acre-feet		acre-fee
Excess Urban Runoff Volume (EURV) =	0.361	acre-feet		acre-fee
2-yr Runoff Volume (P1 = 1.19 in.) =	0.267	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.353	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.422	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	0.547	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	0.650	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	0.786	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	1.077	acre-feet		inches
Approximate 2-yr Detention Volume =	0.240	acre-feet		
Approximate 5-yr Detention Volume =	0.320	acre-feet		
Approximate 10-yr Detention Volume =	0.386	acre-feet		
Approximate 25-yr Detention Volume =	0.465	acre-feet		
Approximate 50-yr Detention Volume =	0.514	acre-feet		
Approximate 100-yr Detention Volume =	0.576	acre-feet		
		-		


Define Zones and Basin Geometry

ine zones and basin deomedy.		
Zone 1 Volume (WQCV) =	0.107	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.255	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.215	acre-feet
Total Detention Basin Volume =	0.576	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (STC) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft 3
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

	Depth Increment =		ft				Ontional		1	
	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				500	0.011		
			1.25				2,850	0.065	2,094	0.048
			3.25				4,230	0.097	9,174	0.211
			5.25				6,020	0.138	19,424	0.446
			7.25				8,370	0.192	33,814	0.776
						-				
Iser Overrides										
acre-feet acre-feet										
inches		-								
inches										
inches										
inches										
inches										
inches						-				
inches										
									ļ	
										┣───┤
									-	
		-							+	
						-				
						-				
						-				
						-				
						-				
									1	
									+	
]
						-				
						1 1			+	
									1	
						1 1			L	
						1 1				
									+	
									<u> </u>	
		-								
									+	
									1	
									I	L]

DETENTION BASIN OUTLET STRUCTURE DESIGN

	Eldenado Curtano		1HFD-Detention, V	. ,	020)				
Basin ID:	Eldorado Springs								
ZONE 3 ZONE 2	Folia A			Estimated	Estimated				
		311		Estimated	Estimated	Outlet Tures			
				Stage (ft)	Volume (ac-ft)	Outlet Type	1		
TORONT ENHALT WOCK			Zone 1 (WQCV)	2.07	0.107	Orifice Plate			
ZONE 1 AND 2	-100-YEAR ORIFICE		Zone 2 (EURV)	4.61	0.255	Orifice Plate			
PERMANENT ORIFICES			Zone 3 (100-year)	6.12	0.215	Weir&Pipe (Restrict)			
Example Zone	Configuration (Re	tention Pond)		Total (all zones)	0.576		•		
User Input: Orifice at Underdrain Outlet (typical	y used to drain WQ	CV in a Filtration BI	MP)				Calculated Parame	eters for Underdrain	<u>1</u>
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Underd	rain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrain	Orifice Centroid =		feet	
								•	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WQCV and	d/or EURV in a sedi	mentation BMP)		Calculated Parame	eters for Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basir	bottom at Stage =	0 ft)	WQ Orifi	ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	5.03	ft (relative to basir	bottom at Stage =	0 ft)	Elli	otical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches			Ellipti	cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches			E	liptical Slot Area =	N/A	ft ²	
								•	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to highe	<u>est)</u>						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.70	4.00						
Orifice Area (sq. inches)	0.79	0.99	0.79						
									_
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
,			•					•	-
User Input: Vertical Orifice (Circular or Rectang	ular)						Calculated Parame	eters for Vertical Ori	ifice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	bottom at Stage =	0 ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice = N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = N/A N/A feet									feet
Vertical Orifice Diameter =	N/A	N/A	inches	-				•	-
	/	,							
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	al Weir (and No Ou	tlet Pipe)		Calculated Parame	eters for Overflow V	Veir
	Zone 3 Weir	Not Selected		•			Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	5.10	N/A	ft (relative to basin b	ottom at Stage = 0 f	t) Height of Grate	Upper Edge, Ht =	5.10	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet	5		eir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope =	0.00								
	0.00	N/A	H:V	Gr	ate Open Area / 10	0-vr Orifice Area =	25.12		
Horiz. Length of Weir Sides =		N/A N/A	H:V feet		ate Open Area / 10 rerflow Grate Open	•	25.12 11.20	N/A	
Horiz. Length of Weir Sides = Overflow Grate Open Area % =	4.00	N/A	feet	Ov	erflow Grate Open	Area w/o Debris =	11.20	N/A N/A	ft²
Overflow Grate Open Area % =	4.00 70%	N/A N/A	feet %, grate open are	Ov		Area w/o Debris =		N/A	
-	4.00	N/A	feet	Ov	erflow Grate Open	Area w/o Debris =	11.20	N/A N/A	ft²
Overflow Grate Open Area % = Debris Clogging % =	4.00 70% 50%	N/A N/A N/A	feet %, grate open are %	Ov	verflow Grate Open overflow Grate Open	Area w/o Debris = n Area w/ Debris =	11.20 5.60	N/A N/A N/A	ft ² ft ²
Overflow Grate Open Area % =	4.00 70% 50% : (Circular Orifice, R	N/A N/A N/A estrictor Plate, or R	feet %, grate open are %	Ov	verflow Grate Open overflow Grate Open	Area w/o Debris = n Area w/ Debris =	11.20 5.60 s for Outlet Pipe w/	N/A N/A N/A	ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	4.00 70% 50%	N/A N/A N/A estrictor Plate, or R Not Selected	feet %, grate open are % ectangular Orifice)	Ov a/total area C	verflow Grate Open Iverflow Grate Oper	Area w/o Debris = n Area w/ Debris =	11.20 5.60	N/A N/A / Flow Restriction P Not Selected	ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	4.00 70% 50% e (Circular Orifice, R Zone 3 Restrictor 0.25	N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet %, grate open are % ectangular Orifice) ft (distance below ba	Ov	rerflow Grate Open Iverflow Grate Open <u>Ca</u> = 0 ft) Ot	Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area =	11.20 5.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.45	N/A N/A / Flow Restriction Pl Not Selected N/A	ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	4.00 70% 50% (Circular Orifice, R Zone 3 Restrictor 0.25 18.00	N/A N/A N/A estrictor Plate, or R Not Selected	feet %, grate open are % ectangular Orifice)	Ov a/total area C usin bottom at Stage a	rerflow Grate Open Iverflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = Orifice Centroid =	11.20 5.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.45 0.26	N/A N/A N/A Flow Restriction P Not Selected N/A N/A	ft ² ft ² ft ² ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	4.00 70% 50% e (Circular Orifice, R Zone 3 Restrictor 0.25	N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet %, grate open are % (ectangular Orifice) ft (distance below ba inches	Ov a/total area C usin bottom at Stage a	rerflow Grate Open Iverflow Grate Open <u>Ca</u> = 0 ft) Ot	Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = Orifice Centroid =	11.20 5.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.45	N/A N/A / Flow Restriction Pl Not Selected N/A	ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	4.00 70% 50% c (Circular Orifice, R Zone 3 Restrictor 0.25 18.00 5.40	N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet %, grate open are % (ectangular Orifice) ft (distance below ba inches	Ov a/total area C usin bottom at Stage a	rerflow Grate Open Iverflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = Orifice Centroid =	11.20 5.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.45 0.26	N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A	ft ² ft ² ft ² ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	4.00 70% 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 18.00 5.40 <u>Trapezoidal)</u>	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	feet %, grate open are % ectangular Orifice) ft (distance below ba inches inches	Ov a/total area C sin bottom at Stage Half-Cent	rerflow Grate Open Iverflow Grate Open <u>Ca</u> = 0 ft) Ot Outlet ral Angle of Restrict	Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = Orifice Centroid = tor Plate on Pipe =	11.20 5.60 S for Outlet Pipe w/ Zone 3 Restrictor 0.45 0.26 1.16 <u>Calculated Parame</u>	N/A N/A N/A V Flow Restriction P Not Selected N/A N/A N/A N/A N/A	ft ² ft ² ft ² ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	4.00 70% 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A	feet %, grate open are % ectangular Orifice) ft (distance below ba inches	Ov a/total area C sin bottom at Stage Half-Cent	rerflow Grate Open werflow Grate Open <u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway D	Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = Orifice Centroid = cor Plate on Pipe = esign Flow Depth=	11.20 5.60 Zone 3 Restrictor 0.45 0.26 1.16 <u>Calculated Parame</u> 0.29	N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet	ft ² ft ² ft ² ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00	N/A N/A N/A <u>estrictor Plate, or R</u> Not Selected N/A N/A N/A ft (relative to basir feet	feet %, grate open are % ectangular Orifice) ft (distance below ba inches inches	Ov a/total area C sin bottom at Stage Half-Cent	rerflow Grate Open Iverflow Grate Open (<u>Ca</u> = 0 ft) Ou Outlet ral Angle of Restrict Spillway D Stage at T	Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = Orifice Centroid = cor Plate on Pipe = esign Flow Depth= op of Freeboard =	11.20 5.60 Zone 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99	N/A N/A N/A VESTIN N/A N/A N/A N/A N/A N/A ters for Spillway feet feet	ft ² ft ² ft ² ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 <u>Trapezoidal)</u> 5.70 30.00 4.00	N/A N/A N/A <u>Not Selected</u> N/A N/A ft (relative to basir feet H:V	feet %, grate open are % ectangular Orifice) ft (distance below ba inches inches	Ov a/total area C sin bottom at Stage Half-Cent	rerflow Grate Open werflow Grate Open (<u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T	Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = Orifice Centroid = cor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard =	11.20 5.60 Zone 3 Restrictor 0.45 0.26 1.16 <u>Calculated Parame</u> 0.29 6.99 0.19	N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres	ft ² ft ² ft ² ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00	N/A N/A N/A <u>estrictor Plate, or R</u> Not Selected N/A N/A N/A ft (relative to basir feet	feet %, grate open are % ectangular Orifice) ft (distance below ba inches inches	Ov a/total area C sin bottom at Stage Half-Cent	rerflow Grate Open werflow Grate Open (<u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T	Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = Orifice Centroid = cor Plate on Pipe = esign Flow Depth= op of Freeboard =	11.20 5.60 Zone 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99	N/A N/A N/A VESTIN N/A N/A N/A N/A N/A N/A ters for Spillway feet feet	ft ² ft ² ft ² ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	4.00 70% 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet H:V feet	feet %, grate open are % (cectangular Orifice) ft (distance below ba inches inches hottom at Stage =	Ov a/total area C sin bottom at Stage = Half-Cent	rerflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T	Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = Orifice Centroid = cor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard =	11.20 5.60 Zone 3 Restrictor 0.45 0.26 1.16 <u>Calculated Parame</u> 0.29 6.99 0.19 0.73	N/A N/A N/A V Flow Restriction P Not Selected N/A N/A N/A ters for Spillway feet feet acres acres	ft ² ft ² ft ² ft ² feet radians
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	4.00 70% 50% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet H:V feet	feet %, grate open are % (cectangular Orifice) ft (distance below ba inches inches hottom at Stage =	Ov a/total area C sin bottom at Stage = Half-Cent	rerflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T	Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = iop of Freeboard = iop of Freeboard =	11.20 5.60 5 for Outlet Pipe w/ Zone 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73 drographs table (Col	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	ft ² ft ² ft ² feet radians
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet evise des	feet %, grate open are % rectangular Orifice) ft (distance below ba inches inches h bottom at Stage = ign. For f	Ov a/total area C usin bottom at Stage = Half-Cent 0 ft) Ull Spectru	erflow Grate Open Iverflow Grate Open Ca = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T	Area w/o Debris = a Area w/ Debris = lculated Parameter utlet Orifice Area = Orifice Centroid = cor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = es in the Inflow Hyy 25 Year	11.20 5.60 s for Outlet Pipe w// Zone 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Dumns W through. 100 Year	ft ² ft ² ft ² feet radians
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm F	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet evise des	feet %, grate open are % rectangular Orifice) ft (distance below ba inches inches h bottom at Stage = ign. For f	Ov a/total area C usin bottom at Stage = Half-Cent 0 ft) Ull Spectru	erflow Grate Open Iverflow Grate Open Ca = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T	Area w/o Debris = a Area w/ Debris = lculated Parameter atlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = es in the Inflow Hy 25 Year _ 2.00	11.20 5.60 Zone 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 0/umns W through . 100 Year 2.52	ft ² ft ² ft ² feet radians 500 Year 3.14
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm F One-Hour Rainfr CUHP Runoff Volt	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet evise des	feet %, grate open are % rectangular Orifice) ft (distance below ba inches inches h bottom at Stage = ign. For f	Ov a/total area C usin bottom at Stage = Half-Cent 0 ft) Ull Spectru	erflow Grate Open Iverflow Grate Open Ca = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T	Area w/o Debris = h Area w/ Debris = lculated Parameter atlet Orifice Area = Orifice Centroid = or Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = es in the Inflow Hyy 2 Year 2.00 0.547	11.20 5.60 5 for Outlet Pipe w// Zone 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73 drographs table (CC 50 Year 2.25 0.650	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft blumns W through. 100 Year 2.52 0.786	ft ² ft ² ft ² feet radians <u><i>A(F)</i></u> . <u>500 Year</u> <u>3.14</u> 1.077
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm F	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet evise des	feet %, grate open are % rectangular Orifice) ft (distance below ba inches inches h bottom at Stage = ign. For f	Ov a/total area C usin bottom at Stage = Half-Cent 0 ft) Ull Spectru	erflow Grate Open Iverflow Grate Open Ca = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T	Area w/o Debris = a Area w/ Debris = lculated Parameter atlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = es in the Inflow Hy 25 Year _ 2.00	11.20 5.60 Zone 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 0/umns W through . 100 Year 2.52	ft ² ft ² ft ² feet radians 500 Year 3.14
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm F One-Hour Rainfr OUHP Runoff Volu	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00 Colved. R h, these ra	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet evise des tio must k	feet %, grate open are % rectangular Orifice) ft (distance below ba inches inches bottom at Stage =	Ov a/total area C usin bottom at Stage Half-Cent 0 ft) Ull spectru D or less t	erflow Grate Open iverflow Grate Open ca ca = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T JIM han 1.0.	Area w/o Debris = h Area w/ Debris = lculated Parameter utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = es in the Inflow Hy 25 Year 2.00 0.547 2.1	11.20 5.60 5.60 20ne 3 Restrictor 0.45 0.26 1.16 <u>Calculated Parame</u> 0.29 6.99 0.19 0.73 drographs table (CC 50 Year 2.25 0.650 0.650 3.3	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 00 Year 2.52 0.786 0.786 0.786 4.9	AF). 500 Year 3.14 1.077 1.077
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm F One-Hour Rainfit OUHP Runoff Volu CUHP Predevelopment OPTIONAL Override Predevelopment OPTIONAL Override Predevelopment OPTIONAL Override Predevelopment	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00 Solved. R n, these ra	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet evise des tio must k	feet %, grate open are % ft (distance below ba inches inches bottom at Stage = ign. For f pe equal to 0.01	Ov a/total area C sin bottom at Stage - Half-Cent 0 ft) UII spectru 0 or less t	erflow Grate Open verflow Grate Open verflow Grate Open a of ft) Ou Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T Jum han 1.0.	Area w/o Debris = h Area w/ Debris = lculated Parameter: titlet Orifice Area = Orifice Centroid = cor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = es in the Inflow Hyy 2 Year 2.00 0.547 0.547 2.1 0.34	11.20 5.60 5 for Outlet Pipe w// Zone 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73 drographs table (Co 50 Year 2.25 0.650 0.650 3.3 0.55	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 00Wrear 2.52 0.786 0.786 4.9 0.82	AF). 500 Year 3.14 1.077 8.4 1.40
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm F One-Hour Rainf, OCHIP Runoff Volu CUHP Predevelopment OPTIONAL Override Predevelopment reak Q (US) = Predevelopment Unit Peak Flow, q (Cfs/arce) = Peak Inflow Q (cfs) =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00 Solved. R n, these ra	N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basir feet H:V feet H:V feet evise des tio must k	feet %, grate open are % ft (distance below be inches n bottom at Stage = ign. For f be equal to 0.01 4.5	Ov a/total area C usin bottom at Stage of Half-Cent 0 ft) Ull spectru D or less t 0.02 6.0	erflow Grate Open iverflow Grate Open verflow Grate Open = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Area at T Basin Volume at T Jum han 1.0.	Area w/o Debris = a Area w/ Debris = lculated Parameter: utlet Orifice Area = Orifice Centroid = cor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = iop of Freeboard = es in the Inflow Hy 25 Year 2.00 0.547 2.1 0.34 9.8	11.20 5.60 5.60 5.60 5.60 5.60 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 7.25 0.650 0.55 1.1.9	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft² ft² ft² ft² feet radians 500 Year 3.14 1.077 8.4 - 1.40 20.1
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reouted Hydrograph Results Design Storm F One-Hour Rainf, CUHP Runoff Volu Inflow Hydrograph Volu CUHP Predevelopment OPTIONAL Override Predevelopment reak y (us) = Predevelopment Unit Peak Flow, q (cfs/arce) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00 colved. R n, these raises r	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet evise des tio must k N/A N/A 0.1	feet %, grate open are % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = ign. For f be equal to 0.01 4.5 0.1	ov a/total area C sin bottom at Stage = Half-Cent 0 ft) UII spectru D or less t	erflow Grate Open verflow Grate Open verflow Grate Open (Ca) = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Area at T Basin Area at T Basin Volume at T Jum han 1.0.	Area w/o Debris = h Area w/ Debris = lculated Parameter atlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = es in the Inflow Hyy 25 Year 2.00 0.547 0.34 9.8 1.9	11.20 5.60 5.60 20ne 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73 drographs table (Col 50 Year 2.25 0.650 0.650 3.3 0.55 11.9 4.2	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 0.786 0.786 4.9 0.82 14.7 5.1	AF). 500 Year 3.14 1.077 1.077 8.4 20.1 1.29
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm F One-Hour Rainf, OCHIP Runoff Volu CUHP Predevelopment OPTIONAL Override Predevelopment reak Q (US) = Predevelopment Unit Peak Flow, q (Cfs/arce) = Peak Inflow Q (cfs) =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00 Solved. R n, these ra	N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basir feet H:V feet H:V feet evise des tio must k	feet %, grate open are % ft (distance below be inches n bottom at Stage = ign. For f be equal to 0.01 4.5	Ov a/total area C usin bottom at Stage of Half-Cent 0 ft) Ull spectru D or less t 0.02 6.0	erflow Grate Open iverflow Grate Open verflow Grate Open = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Area at T Basin Volume at T Jum han 1.0.	Area w/o Debris = a Area w/ Debris = lculated Parameter: utlet Orifice Area = Orifice Centroid = cor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = iop of Freeboard = es in the Inflow Hy 25 Year 2.00 0.547 2.1 0.34 9.8	11.20 5.60 5.60 5.60 5.60 5.60 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 7.25 0.650 0.55 1.1.9	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft² ft² ft² ft² feet radians 500 Year 3.14 1.077 8.4 - 1.40 20.1
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm F One-Hour Rainfr CUHP Runoff Volt Linflow Hydrograph Volt CUHP Predevelopment reak Q (US) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00 Colved. R h , these rational second se	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A tf (relative to basir feet H:V feet evise des tio must k N/A N/A 0.1 N/A	feet %, grate open are % rectangular Orifice) ft (distance below ba inches inches bottom at Stage = ign. For f pe equal to 0.01 4.5 0.1 N/A	Ov a/total area C sin bottom at Stage Half-Cent 0 ft) 0 ft) 0.02 6.0 0.1 1.1	erflow Grate Open werflow Grate Open verflow Grate Open ca = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T JIM han 1.0.	Area w/o Debris = h Area w/ Debris = lculated Parameter atlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = con of Freeboard = 100 0, 547 0.547 0.34 9.8 1.9 0.9	11.20 5.60 5.60 20ne 3 Restrictor 0.45 0.26 1.16 <u>Calculated Parame</u> 0.29 6.99 0.19 0.73 drographs table (CC 50 Year 2.25 0.650 0.650 0.55 1.11.9 4.2 1.3	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 00 Year 2.52 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.781 1.0	AF). 500 Year ate radians 4F). 500 Year 3.14 1.077 1.075 1.14 1.140 1.159 1.15 1.55 1
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm F One-Hour Rainf, OPH-Bur Rainf, CUHP Runoff Volu Inflow Hydrograph Volu CUHP Rendevelopment OPTIONAL Override Predevelopment OPTIONAL Override Predevelopment Peak Inflow Q (cfs) = Peak Outflow Q (cfs) Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00 colved. R n, these ra N/A N/A 0.1 N/A N/A N/A	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A tf (relative to basir feet H:V feet evise des tio must k N/A N/A 0.1 N/A Plate N/A N/A	feet %, grate open are % ft (distance below be inches inches h bottom at Stage = ign. For f be equal to 0.01 4.5 0.1 N/A Plate N/A N/A	ov a/total area C sin bottom at Stage = Half-Cent 0 ft) 0 of t) 0.02 6.0 0.1 1.1 Plate N/A N/A	erflow Grate Open werflow Grate Open verflow Grate Open Ca = 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Area at T Basin Area at T Basin Volume at T UM han 1.0.	Area w/o Debris = h Area w/ Debris = lculated Parameter atlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = es in the Inflow Hyy 25 Year 2.00 0.547 0.34 9.8 1.9 0.34 9.8 1.9 0.2 N/A	11.20 5.60 5 for Outlet Pipe w/ Zone 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73 0.73 drographs table (CC 50 Year 2.25 0.650 0.650 3.3 0.55 11.9 4.2 1.3 Overflow Weir 1 0.4 N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 0/umns W through . 100 Year 2.52 0.786 0.786 4.9 0.82 14.7 5.1 1.0 Outlet Plate 1 0.4 N/A	AF). 500 Year ate radians 4 <i>F</i>). 500 Year 3.14 1.077 1.077 8.4 1.40 20.1 12.9 1.5 Spillway 0.4 N/A
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm F One-Hour Rainft CUHP Runoff Volt Linflow Hydrograph Volt CUHP Predevelopment reak Q (US) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00 Colved. R N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A tr (relative to basin feet evise des tio must k N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet %, grate open are % ft (distance below ba inches inches bottom at Stage = ign. For f be equal to 0.01 4.5 0.1 N/A Plate N/A 64	ov a/total area C sin bottom at Stage - Half-Cent 0 ft) 0 ft) 0 0 ft) 0 0.02 6.0 0.1 1.1 Plate N/A 71	erflow Grate Open werflow Grate Open verflow Grate Open e 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Area at T Basin Volume at T UM han 1.0.	Area w/o Debris = h Area w/ Debris = lculated Parameter titlet Orifice Area = Orifice Centroid = for Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = iop of Freeboard = es in the Inflow Hy 2.500 0.547 0.547 0.547 0.34 9.8 1.9 0.9 Overflow Weir 1 0.2 N/A 76	11.20 5.60 5.60 20ne 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73 drographs table (CC 50 Year 2.25 0.650 0.650 0.55 1.1.9 4.2 1.3 Overflow Weir 1 0.4 N/A 74	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	AF). 500 Year 3.14 1.077 1.077 8.4 1.40 20.1 1.29 1.5 Spillway 0.4 N/A 68
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm F One-Hour Rainfi One-Hour Rainfi OUHP Predevelopment OPTIONAL Override Predevelopment OPTIONAL Override Predevelopment OPTIONAL Override Predevelopment Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00 5.70 30.00 4.00 1.00 5.70 30.00 4.00 1.00 5.70 1.00 5.70 30.00 4.00 1.00 5.70 5.70 1.00 5.70 1.00 5.70 5.70 1.00 5.70 5.70 5.70 5.70 1.00 5.70	N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basir feet H:V feet evise des tio must k N/A N/A N/A N/A N/A N/A N/A 71 77	feet %, grate open are % tectangular Orifice) ft (distance below ba inches nobottom at Stage = ign. For f pe equal to 0.01 4.5 0.1 N/A Plate N/A N/A 64 69	Ov a/total area C ssin bottom at Stage of Half-Cent 0 ft) 0 ft) 0 Or less t 0.02 6.0 0.1 1.1 Plate N/A N/A N/A N/A 71 77	erflow Grate Open iverflow Grate Open iverflow Grate Open ca = 0 ft) Ou Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Area Area Area Area Area Area Area Area	Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = Orifice Centroid = cor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard = cor of Freeboard = op of Freeboard = cor Plate on Pipe = esin the Inflow Hy 25 Year 2.00 0.547 2.1 0.34 9.8 1.9 0.9 Overflow Weir 1 0.2 N/A 76 83	11.20 5.60 5.60 5.60 5.60 5.60 5.60 5.60 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 6.99 0.19 0.73 7.25 0.650 0.650 0.650 3.3 0.55 11.9 4.2 1.3 Overflow Weir 1 0.4 N/A N/A 74 82	N/A N/A N/A N/A Not Selected N/A O deet feet acres acres	AF). 500 Year 3.14 1.077 1.077 8.4 1.40 20.1 1.29 1.5 Spillway 0.4 N/A N/A 68 79
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm F One-Hour Rainft CUHP Runoff Volt Linflow Hydrograph Volt CUHP Predevelopment reak Q (US) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	4.00 70% 50% 20ne 3 Restrictor 0.25 18.00 5.40 Trapezoidal) 5.70 30.00 4.00 1.00 Colved. R N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A tr (relative to basin feet evise des tio must k N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet %, grate open are % ft (distance below ba inches inches bottom at Stage = ign. For f be equal to 0.01 4.5 0.1 N/A Plate N/A 64	ov a/total area C sin bottom at Stage - Half-Cent 0 ft) 0 ft) 0 0 ft) 0 0.02 6.0 0.1 1.1 Plate N/A 71	erflow Grate Open werflow Grate Open verflow Grate Open e 0 ft) Or Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Area at T Basin Volume at T UM han 1.0.	Area w/o Debris = h Area w/ Debris = lculated Parameter titlet Orifice Area = Orifice Centroid = for Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = iop of Freeboard = es in the Inflow Hy 2.500 0.547 0.547 0.547 0.34 9.8 1.9 0.9 Overflow Weir 1 0.2 N/A 76	11.20 5.60 5.60 20ne 3 Restrictor 0.45 0.26 1.16 Calculated Parame 0.29 6.99 0.19 0.73 drographs table (CC 50 Year 2.25 0.650 0.650 0.55 1.1.9 4.2 1.3 Overflow Weir 1 0.4 N/A 74	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	AF). 500 Year 3.14 1.077 1.077 8.4 1.40 20.1 1.29 1.5 Spillway 0.4 N/A 68

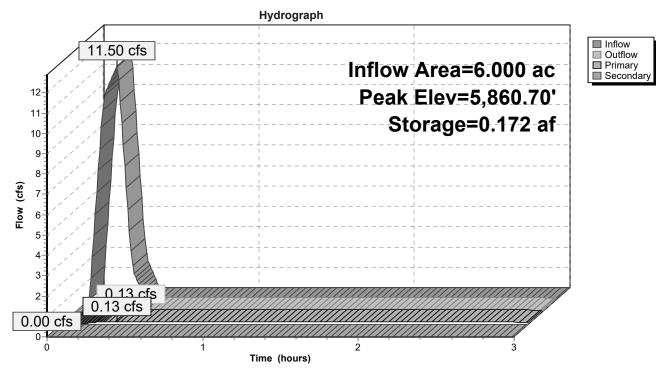
Simple Broad-crested Weir Flow Calculator

POND A FOREBAY NOTCH Inputs Weir length, 1 .17 Headwater height, h 1.3 Flow, Q 0.81 .17

Notes

Weir Equation

 $q = cw * I * h^{1.5}$

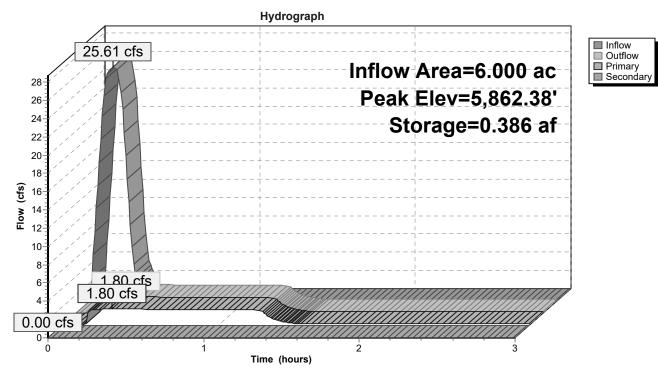

Pond POND A:

Inflov Outflo Prima	= wc	6.000 ad 11.50 cfs 0.13 cfs 0.13 cfs 0.00 cfs	 0.36 hrs, Volume= 0.028 af, Atten= 99%, Lag= 10.9 min 0.36 hrs, Volume= 0.028 af
Peak Plug-	Elev= 5,86 Flow deter	60.70' @ 0.3 ntion time= 8	Time Span= 0.00-3.00 hrs, dt= 0.01 hrs 6 hrs Surf.Area= 0.115 ac Storage= 0.172 af 9.0 min calculated for 0.028 af (16% of inflow) 3.1 min (92.2 - 9.1)
#	Inver	t Avail.Sto	prage Storage Description
1	5,859.00	' 0.6	52 af Custom Stage Data (Prismatic)Listed below
Elev	ation	Surf.Area	Inc.Store Cum.Store
	feet)	(acres)	(acre-feet) (acre-feet)
	9.00	0.074	0.000 0.000
,	0.00	0.103	0.089 0.089
	52.00	0.137	0.240 0.329
	3.00	0.162	0.150 0.478
	64.00	0.185	0.173 0.652
-,			
#	Routing	Invert	Outlet Devices
1	Primary	5,856.50'	6.8" x 120.0' long OUTLET W/ RESTRICTOR PLATE
	-		RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 5,854.29' S= 0.0184 '/' n= 0.013 Cc= 0.900
2	Device 1	5,859.00'	1.4" Vert. WQ ORIFICE C= 0.600
3	Device 1	5,860.10'	1.4" Vert. WQ ORIFICE C= 0.600
4	Device 1	5,860.25'	1.2" Vert. WQ ORIFICE C= 0.600
5	Device 1	5,861.25'	4.00' x 4.00' Horiz. OUTFALL BOX PER EPC Limited to weir flow
			C= 0.600
6	Secondar	y 5,862.50'	15.0' long x 10.4' breadth EMERGENCY OVERFLOW
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.51 2.57 2.70 2.69 2.68 2.69 2.67 2.64
_1=	OUTLET \ -2=WQ OF -3=WQ OF -4=WQ OF	N/ RESTRIC RIFICE (Orifi RIFICE (Orifi RIFICE (Orifi	8 cfs @ 0.36 hrs HW=5,860.70' (Free Discharge) TOR PLATE (Passes 0.13 cfs of 1.58 cfs potential flow) ce Controls 0.07 cfs @ 6.2 fps) ce Controls 0.04 cfs @ 3.5 fps) ce Controls 0.02 cfs @ 3.0 fps) R EPC (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=5,859.00' (Free Discharge) G=EMERGENCY OVERFLOW (Controls 0.00 cfs)

Prepared by WestWorks Engineering HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems

Pond POND A:

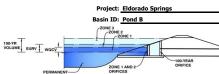

100YR-DEVELOPED	El Paso County 100-Year Duration=11 min,	Inten=7.04 in/hr
Prepared by WestWorks Engineerin	p	Page 1
HydroCAD® 7.00 s/n 002053 © 1986-200	03 Applied Microcomputer Systems	4/22/2021

Pond POND A:

Inflov Outflo Prima	= wc	6.000 a 25.61 cfs 1.80 cfs 1.80 cfs 0.00 cfs	 0.15 hrs, 0.32 hrs, 0.32 hrs, 	n = 0.82" Volume= Volume= Volume= Volume=	for 100-Year e 0.412 af 0.194 af 0.194 af 0.000 af	, Atten= 93%, Lag= 10.1 min
Peak Plug-	Elev= 5,86 Flow deter	62.38' @ 0.3 ntion time= 4		ea= 0.147 ac ated for 0.194	, dt= 0.01 hrs Storage= 0.3 4 af (47% of infl	
#	Inver		orage Storag			
1	5,859.00	0.6	52 af Custo	m Stage Dat	ta (Prismatic)L	isted below
	ation (feet)	Surf.Area (acres)	Inc.Store (acre-feet)	Cum.St (acre-fe		
	59.00	0.074	0.000		000	
	0.00	0.103	0.089		089	
	52.00	0.137	0.240		329	
	63.00 64.00	0.162	0.150		478	
5,60	64.00	0.185	0.173	0.6	652	
#	Routing	Invert	Outlet Device	S		
1	Primary	5,856.50'			ET W/ RESTRI	CTOR PLATE
					all, Ke= 0.500	
2	Davias 1					= 0.013 Cc= 0.900
2 3	Device 1 Device 1	5,859.00' 5,860.10'	1.4" Vert. W0 1.4" Vert. W0			
4	Device 1	5,860.25	1.2" Vert. WC			
5	Device 1	5,861.25				EPC Limited to weir flow
Ŭ	Device	0,001.20	C = 0.600			
6	Secondar	y 5,862.50'		10.4' breadt	th EMERGENC	Y OVERFLOW
						1.20 1.40 1.60
			Coef. (English	n) 2.51 2.57	7 2.70 2.69 2.	68 2.69 2.67 2.64
€_1=	:OUTLET \ -2=WQ OF -3=WQ OF -4=WQ OF	W/ RESTRIC RIFICE (Pas RIFICE (Pas RIFICE (Pas	CTOR PLATE (ses < 0.09 cfs ses < 0.08 cfs ses < 0.05 cfs	Barrel Contro potential flow potential flow potential flow	v)	7.1 fps)
C			0 00 efe @ 0 0			Discharge

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=5,859.00' (Free Discharge) G=EMERGENCY OVERFLOW (Controls 0.00 cfs)

Pond POND A:

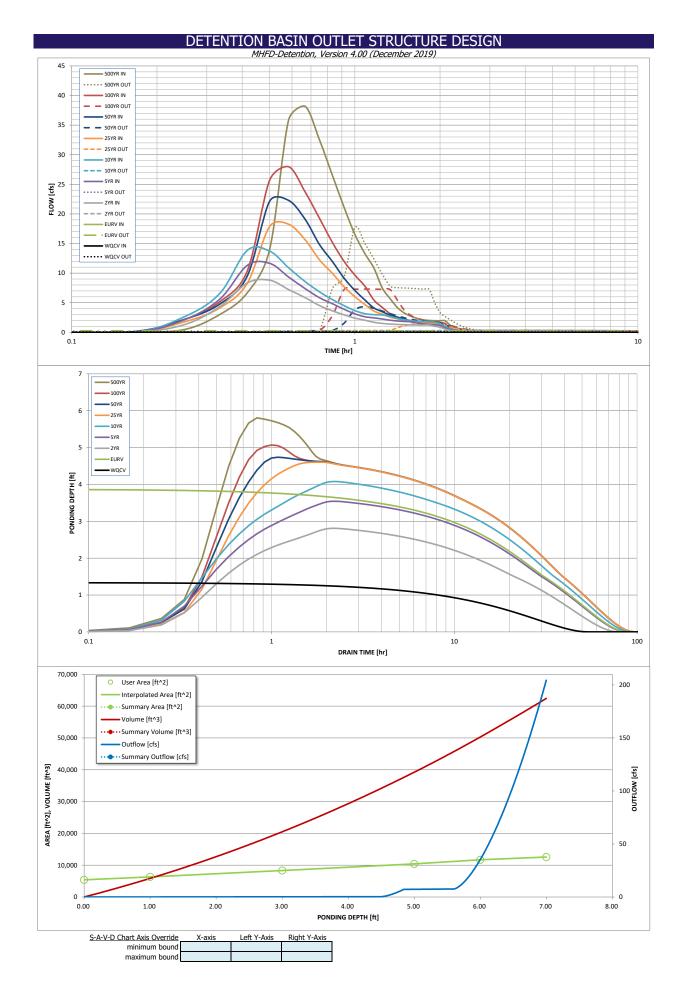


User Input														
	1		01	D-BMP (Versio	1 3.06, Noven	ber 2016)								
	-													
Calculated cells				Designer:		Chad Kuzk								
***Design Storm: 1-Hour Rain Depth WQCV Event	0.60	inches		Company:			ks Enginee	ring						
***Minor Storm: 1-Hour Rain Depth 10-Year Event	1.75	inches		Date: Project:		Novembe	O SPRINGS							
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:		POND B	o sr iaido							
Optional User Defined Storm CUHP														
IP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm	2.52]												
ax Intensity for Optional User Defined Storm 2.51496]													
INFORMATION (USER-INPUT)														
Sub-basin Identifie	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	OS-11	OS-12	B11	
Receiving Pervious Area Soil Typ	Clay Loam	Clay Loam	Clay Loop	Clay Lease	Chauters	Clay Loam	Clauder	chuit	Church					
			Clay Loam	Clay Loam	Clay Loam		Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loar
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA		0.400	0.400	0.900	0.400	0.500	0.700	0.700	0.200	0.600	2.800	1.300	0.900	
Directly Connected Impervious Area (DCIA, acres Unconnected Impervious Area (UIA, acres		0.350	0,400	0.800	0.350	0.450	0.550	0.400	0.150	0.150	0.800	0.300	0.400	
Receiving Pervious Area (OIA, acres		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Separate Pervious Area (SPA, acres)		0.050	0.000	0.100	0.050	0.050	0.150	0.300	0.050	0.450	2.000	1.000	0.500	
RPA Treatment Type: Conveyance (C		v	v	v	v	v	v	V	v	v	v			-
Volume (V), or Permeable Pavement (PF	· ·	· ·	v	v	v	v	V	V	v	V	v	v	v	
														MISSING
ULATED RESULTS (OUTPUT)														INPUT
Total Calculated Area (ac, check against input	0.400	0.400	0.400	0.900	0.400	0.500	0.700	0,700	0.200	0.600		1 000		
Directly Connected Impervious Area (DCIA, %		87.5%	100.0%	88.9%	87.5%	90.0%	78.6%	57.1%	75.0%	25.0%	2.800	1.300 23.1%	0.900	
Unconnected Impervious Area (UIA, %		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	25.0%	0.0%	0.0%	0.0%	
Receiving Pervious Area (RPA, %		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Separate Pervious Area (SPA, %	0.0%	12.5%	0.0%	11.1%	12.5%	10.0%	21.4%	42.9%	25.0%	75.0%	71.4%	76.9%	55.6%	
A _R (RPA / UIA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
I, Chec		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f / I for WQCV Event		0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
f / I for 10-Year Event f / I for 100-Year Event		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	
f/l for Optional User Defined Storm CUHP		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
IRF for WQCV Event		0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	
IRF for 10-Year Event		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	
IRF for 100-Year Event		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
IRF for Optional User Defined Storm CUHP	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Total Site Imperviousness: Iters	100.0%	87.5%	100.0%	88.9%	87.5%	90.0%	78.6%	57.1%	75.0%	25.0%	28.6%	23.1%	44.4%	
Effective Imperviousness for WQCV Event		87.5%	100.0%	88.9%	87.5%	90.0%	78.6%	57.1%	75.0%	25.0%	28.6%	23.1%	44.4%	
Effective Imperviousness for 10-Year Event		87.5%	100.0%	88.9%	87.5%	90.0%	78.6%	57.1%	75.0%	25.0%	28.6%	23.1%	44.4%	
Effective Imperviousness for 100-Year Event Effective Imperviousness for Optional User Defined Storm CUHP	100.0%	87.5%	100.0%	88.9%	87.5%	90.0%	78.6%	57.1%	75.0%	25.0%	28.6%	23.1%	44.4%	
chective imperviousness for Optional user Defined storm COHP	100.0%	87.5%	100.0%	88.9%	87.5%	90.0%	78.6%	57.1%	75.0%	25.0%	28.6%	23.1%	44.4%	
EFFECTIVE IMPERVIOUSNESS CREDITS	[
WQCV Event CREDIT: Reduce Detention By 10-Year Event CREDIT*: Reduce Detention By	N/A 0.0%	N/A 0.0%	N/A 0.0%	N/A 0.0%	N/A 0.0%	N/A 0.0%	N/A 0.0%	N/A 0.0%	N/A 0.1%	N/A 0.1%	N/A 0.0%	N/A 0.1%	N/A 0.0%	
100-Year Event CREDIT**: Reduce Detention By		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%	0.0%	0.1%	0.0%	
User Defined CUHP CREDIT: Reduce Detention By	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
	Total Site Imp		53.9%		Notes:									
Total Site Effective Imp			53.9%					rate values fr						
Total Site Effective Impen Total Site Effective Impen		and a second	53.9% 53.9%		Flood cont	rol detention	volume cred	lits based on	empirical eq	uations from	Storage Char	pter of USDCI	м.	
Total Site Effective Imperviousness for Option	al User Defined	Storm CUHP:			Wethod	assumes (na	ca-nour raint	ian depth is e	quivalent to	1-nour intens	sity for calcul	ation purpos	ea	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

ft

Optional



______ Depth Increment =

PERMANENT					Change Change	Channel	Optional	Louisth	ALC - AL	Area	Optional Override	A	Volume	Malana
POOL Example Zone	Configuratio	on (Retentio	on Pona)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	(ft ²)	Area (ft ²)	Area (acre)	(ft ³)	Volume (ac-ft)
Watershed Information					Top of Micropool		0.00				5,400	0.124		
Selected BMP Type =	EDB	1					1.00				6,320	0.145	5,860	0.135
Watershed Area =	10.20	acres					3.00				8,320	0.191	20,500	0.471
Watershed Length =	840	ft					5.00				10,410	0.239	39,230	0.901
Watershed Length to Centroid =	400	ft					6.00				11,700	0.269	50,285	1.154
Watershed Slope =	0.060	ft/ft					7.00				12,570	0.289	62,420	1.433
Watershed Imperviousness =	53.90%	percent												
Percentage Hydrologic Soil Group A =	100.0%	percent												
Percentage Hydrologic Soil Group B =	0.0%	percent												
Percentage Hydrologic Soil Groups C/D =	0.0%	percent												
Target WQCV Drain Time =	40.0	hours												
Location for 1-hr Rainfall Depths =	User Input													
After providing required inputs above inc					-									
depths, click 'Run CUHP' to generate rund the embedded Colorado Urban Hydro														
		-	Optional Use											
Water Quality Capture Volume (WQCV) = Excess Urban Runoff Volume (EURV) =	0.185	acre-feet		acre-feet acre-feet										
. ,	0.460	acre-feet acre-feet	1.19	inches										
2-yr Runoff Volume (P1 = 1.19 in.) = 5-yr Runoff Volume (P1 = 1.5 in.) =	0.480	acre-feet	1.19	inches	-									
10-yr Runoff Volume (P1 = 1.5 iii.) =	0.810	acre-feet	1.50	inches	-									
25-yr Runoff Volume (P1 = 2 in.) =	0.907	acre-feet	2.00	inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	1.081	acre-feet	2.00	inches		-								
100-yr Runoff Volume (P1 = 2.52 in.) =	1.300	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = 3.14 in.) =	1.775	acre-feet	2.52	inches		-								
Approximate 2-yr Detention Volume =	0.418	acre-feet	L]		-								
Approximate 2-yr Detention Volume =	0.549	acre-feet				-								
Approximate 3-yr Detention Volume =	0.667	acre-feet				-								
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =	0.813	acre-feet				-								
Approximate 25-yr Detention Volume = Approximate 50-yr Detention Volume =	0.903	acre-feet				-								
Approximate 100-yr Detention Volume =	1.009	acre-feet												
,, ,														
Define Zones and Basin Geometry														
Zone 1 Volume (WQCV) =	0.185	acre-feet												
Zone 2 Volume (EURV - Zone 1) =	0.463	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) =	0.362	acre-feet												
Total Detention Basin Volume =	1.009	acre-feet												
Initial Surcharge Volume (ISV) =	user	ft ³												
Initial Surcharge Depth (ISD) =	user	ft												
Total Available Detention Depth (H _{total}) =	user	ft												
Depth of Trickle Channel $(H_{TC}) =$	user	ft												
Slope of Trickle Channel (STC) =	user	ft/ft												
Slopes of Main Basin Sides (S _{main}) =	user	H:V												
Basin Length-to-Width Ratio (R _{L/W}) =	user													
		1												
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²												
Surcharge Volume Length (L _{ISV}) =	user	ft												
Surcharge Volume Width (W _{ISV}) =	user	ft												
Depth of Basin Floor (H _{FLOOR}) =	user	ft												
Length of Basin Floor (L _{FLOOR}) =	user	ft												
Width of Basin Floor (W _{FLOOR}) =	user	ft												
Area of Basin Floor (A _{FLOOR}) =	user	ft²												
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³												
Depth of Main Basin (H _{MAIN}) =	user	ft												
Length of Main Basin $(L_{MAIN}) =$	user	ft												
Width of Main Basin (W _{MAIN}) =	user	ft												
Area of Main Basin (A _{MAIN}) =	user	ft ²							-					
Volume of Main Basin (V_{MAIN}) =	user	ft ³												
Calculated Total Basin Volume (V_{total}) =	user	acre-feet				-								
						-								
												-		
						-								
												-		
						-								

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:	Eldorado Springs	M	INFD-Delention, Vi	ersion 4.03 (May .	2020)				
Basin ID:	Pond B								
				Estimated	Estimated				
100-YB				Stage (ft)	Volume (ac-ft)	Outlet Type	-		
			Zone 1 (WQCV)	1.34	0.185	Orifice Plate			
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	3.88	0.463	Orifice Plate			
PERMANENT ORIFICES			Zone 3 (100-year)	5.45	0.362	Weir&Pipe (Restrict)			
Example Zone	Configuration (Re	tention Pond)		Total (all zones)	1.009				
User Input: Orifice at Underdrain Outlet (typicall	<u>y used to drain WC</u>	CV in a Filtration Bl	<u>MP)</u>			-	Calculated Parame	ters for Underdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Under	drain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrair	n Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orific							Calculated Parame		
Invert of Lowest Orifice =	0.00	•	n bottom at Stage =	,		ice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	3.88 N/A	inches	n bottom at Stage =	= 0 ft)		iptical Half-Width = ical Slot Centroid =	N/A N/A	feet feet	
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	N/A N/A	inches				Elliptical Slot Area =	N/A	ft ²	
Office Place. Office Area per Row -	N/A	inches			L		N/A	ii.	
User Input: Stage and Total Area of Each Orifice	e Row (numbered f	rom lowest to high	est)						
oser input. Suge and rotal fired of Eden office	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)		1.50	3.50	Ron r (opcional)	rion o (optional)			non o (optional)	
Orifice Area (sq. inches)	2.07	1.77	2.07						
						•			
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectange			-				Calculated Parame	ters for Vertical Ori	fice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A		ft (relative to basin	-		rtical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A		ft (relative to basin	bottom at Stage =	= 0 ft) Vertica	I Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
		0.11.1.02.00.0					<u></u>		
User Input: Overflow Weir (Dropbox with Flat o			<u>tangular/Trapezoida</u>	al weir (and No Ou	itiet Pipe)		(ters for Overflow W	eir
Quarflow Wair Front Edge Height He -	Zone 3 Weir 4.50	Not Selected				o Upper Edgo H —	Zone 3 Weir	Not Selected	fact
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	4.00		ft (relative to basin b feet	bottom at Stage = 0 f		Veir Slope Length =	4.50 4.00	N/A N/A	feet feet
Overflow Weir Front Edge Length =	0.00	-	H:V	G		00-yr Orifice Area =	19.89	N/A N/A	Teet
Horiz. Length of Weir Sides =	4.00		feet		• •	Area w/o Debris =	11.20	N/A N/A	ft ²
Overflow Grate Open Area % =	70%	-	%, grate open area		•	n Area w/ Debris =	5.60		ft ²
Debris Clogging % =	50%		%				5.00	N/A	it.
	5070	14/1	1,0						
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, R	estrictor Plate, or R	Rectangular Orifice)		Ca	alculated Parameter	s for Outlet Pipe w/	Flow Restriction Pla	ate
···· • • · · · · · · · · · · · · · · ·	Zone 3 Restrictor	Not Selected	1				Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	2.50		ft (distance below ba	asin bottom at Stage	= 0 ft) O	utlet Orifice Area =	0.56	N/A	ft ²
Outlet Pipe Diameter =	18.00		inches	5		t Orifice Centroid =	0.31		feet
Restrictor Plate Height Above Pipe Invert =	6.40		inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =	1.28	N/A	radians
User Input: Emergency Spillway (Rectangular or	Trapezoidal)	_					Calculated Parame	ters for Spillway	
Spillway Invert Stage=	5.60	ft (relative to basin	n bottom at Stage =	= 0 ft)	Spillway D	Design Flow Depth=	0.40	feet	
Spillway Crest Length =	35.00	feet			Stage at	Top of Freeboard =	7.00	feet	
Spillway End Slopes =	4.00	H:V			Basin Area at	Top of Freeboard =	0.29	acres	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at	Top of Freeboard =	1.43	acre-ft	
Routed Hydrograph Results	The user can over	ride the default (U	HP hydrographs and	d runoff volumes h	v entering new valu	ues in the Inflow Hu	drographs table (C	olumns W through a	15)
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.185	0.647	0.460	0.610	0.729	0.907	1.081	1.300	1.775
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.460	0.610	0.729	0.907	1.081	1.300	1.775
			0.1	0.2	0.3	2.7	5.2	8.4	14.8
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	1	0.2					
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A			0.03	0.26	0.51	0.82	1 45
			0.01	0.02	0.03 13.8	0.26	0.51 22.3	0.82 28.0	1.45 38.2
OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	N/A N/A N/A 0.1	N/A N/A N/A 0.3	0.01 8.8 0.2	0.02 11.7 0.2	13.8 0.3	18.3 1.5	22.3 4.3	28.0 7.3	38.2 17.7
OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	N/A N/A 0.1 N/A	N/A N/A 0.3 N/A	0.01 8.8 0.2 N/A	0.02 11.7 0.2 1.0	13.8 0.3 1.0	18.3 1.5 0.6	22.3 4.3 0.8	28.0 7.3 0.9	38.2 17.7 1.2
OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	N/A N/A 0.1 N/A Plate	N/A N/A N/A 0.3 N/A Plate	0.01 8.8 0.2 N/A Plate	0.02 11.7 0.2 1.0 Plate	13.8 0.3 1.0 Plate	18.3 1.5 0.6 Overflow Weir 1	22.3 4.3 0.8 Overflow Weir 1	28.0 7.3 0.9 Outlet Plate 1	38.2 17.7 1.2 Spillway
OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	N/A N/A 0.1 N/A Plate N/A	N/A N/A 0.3 N/A Plate N/A	0.01 8.8 0.2 N/A Plate N/A	0.02 11.7 0.2 1.0 Plate N/A	13.8 0.3 1.0 Plate N/A	18.3 1.5 0.6 Overflow Weir 1 0.1	22.3 4.3 0.8 Overflow Weir 1 0.4	28.0 7.3 0.9 Outlet Plate 1 0.6	38.2 17.7 <u>1.2</u> Spillway 0.6
OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	N/A N/A 0.1 N/A Plate	N/A N/A 0.3 N/A Plate N/A N/A 72	0.01 8.8 0.2 N/A Plate	0.02 11.7 0.2 1.0 Plate	13.8 0.3 1.0 Plate	18.3 1.5 0.6 Overflow Weir 1	22.3 4.3 0.8 Overflow Weir 1	28.0 7.3 0.9 Outlet Plate 1	38.2 17.7 1.2 Spillway
OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	N/A N/A 0.1 N/A Plate N/A 45 49	N/A N/A 0.3 N/A Plate N/A N/A 72 79	0.01 8.8 0.2 N/A Plate N/A N/A 65 71	0.02 11.7 0.2 1.0 Plate N/A N/A 71 78	13.8 0.3 1.0 Plate N/A N/A 75 82	18.3 1.5 0.6 Overflow Weir 1 0.1 N/A 77 85	22.3 4.3 0.8 Overflow Weir 1 0.4 N/A 75 84	28.0 7.3 0.9 Outlet Plate 1 0.6 N/A 73 83	38.2 17.7 1.2 Spillway 0.6 N/A 68 81
OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	N/A N/A 0.1 N/A Plate N/A N/A 45	N/A N/A 0.3 N/A Plate N/A N/A 72	0.01 8.8 0.2 N/A Plate N/A N/A 65	0.02 11.7 0.2 1.0 Plate N/A N/A 71	13.8 0.3 1.0 Plate N/A N/A 75	18.3 1.5 0.6 Overflow Weir 1 0.1 N/A 77	22.3 4.3 0.8 Overflow Weir 1 0.4 N/A 75	28.0 7.3 0.9 Outlet Plate 1 0.6 N/A 73	38.2 17.7 1.2 Spillway 0.6 N/A 68

Simple Broad-crested Weir Flow Calculator

POND B

FOREBAY NOTCH - STM-05

Inputs Weir length, I .25 Headwater height, h 2 Flow, Q 2.33 Weir coefficient, Cw? 3.3

Notes

Weir Equation

 $q = cw * I * h^{1.5}$

Simple Broad-crested Weir Flow Calculator

POND B

FOREBAY NOTCH - STM-07

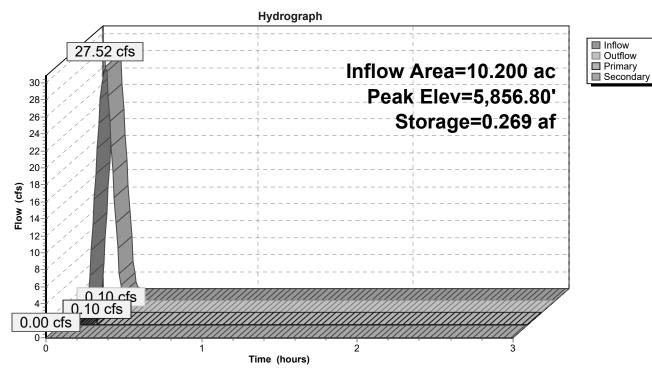
InputsWeir length, I.08Headwater height, h1Flow, Q0.26Weir coefficient, Cw?3.3

Notes

Weir Equation

 $q = cw * I * h^{1.5}$

Pond POND B:

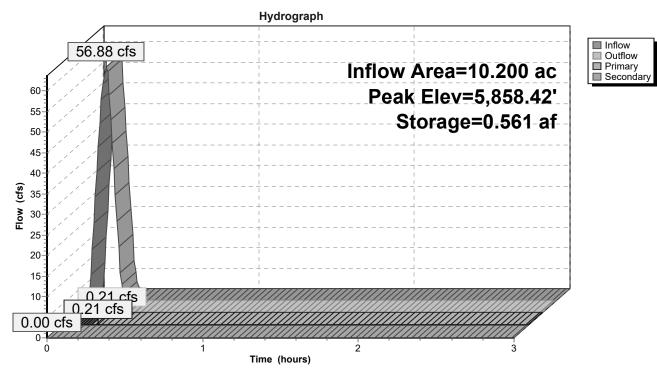

Inflow Outflo Prima Secon Routin Peak Plug-	ow = nry = ndary = ng by Stor Elev= 5,8 Flow deter	27.52 cfs 0.10 cfs 0.10 cfs 0.00 cfs -Ind method, 56.80' @ 0.2 ntion time= 9	 0.24 hrs, \ 0.24 hrs, \ 0.24 hrs, \ 	/olume= /olume= /olume= /olume= = 0.163 ac Sied for 0.024 af	0.024 af 0.000 af = 0.01 hrs torage= 0.26	Atten= 100%, 9 af	Lag= 7.5 min
#	Inver	rt Avail.Sto	orage Storage	Description			
1	5,855.00)' 1.1	64 af Custom	Stage Data (F	Prismatic)Lis	sted below	
Eleva	ation feet)	Surf.Area (acres)	Inc.Store (acre-feet)	Cum.Store (acre-feet)			
	5.00	0.124	0.000	<u>(acre-reer)</u> 0.000			
	6.00	0.124	0.000	0.000			
	8.00	0.191	0.336	0.470			
	0.00	0.239	0.430	0.900			
	1.00	0.289	0.264	1.164			
0,00		0.200	0.20				
#	Routing	Invert	Outlet Devices				
1	Primary	5,852.50'	8.8" x 38.0' lo			OR PLATE	
			RCP, square e				
-			Outlet Invert= 5			0.013 Cc= 0	.900
2	Device 1	5,855.00'	1.4" Vert. WQ				
3	Device 1	5,856.30'	1.4" Vert. WQ				
4	Device 1	5,857.60'	1.4" Vert. WQ				
5	Device 1	5,859.50'					flow C= 0.600
6	Seconda	ry 5,859.50'	15.0' long x 6.				
						.20 1.40 1.60	1.80 2.00 2.50
			3.00 3.50 4.00				
			Coef. (English)			8 2.67 2.65 2	2.65 2.65 2.65
			2.66 2.66 2.67	2.09 2.12 2	.10 2.83		
Prime	ary OutEl	w Max=0 1	0 cfs @ 0.24 hrs	HW=5 856 80)' (Free Dis	charge)	
			TOR PLATE (Pa				
			ce Controls 0.07				
			ce Controls 0.03				
			trole 0.00 efc)				

4=WQ ORIFICE (Controls 0.00 cfs) 5=EPC OUTFALL BOX (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=5,855.00' (Free Discharge) G=EMERGENCY OVERFLOW (Controls 0.00 cfs)

Prepared by WestWorks Engineering HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems

Pond POND B:

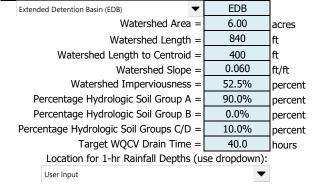

Pond POND B:

Inflow Area = 10.200 a Inflow = 56.88 cfs Outflow = 0.21 cfs Primary = 0.21 cfs Secondary = 0.00 cfs	a @ 0.23 hrs, Volume= 0.049 af, Atten= 100%, Lag= 7.5 min a @ 0.23 hrs, Volume= 0.049 af
Peak Elev= 5,858.42' @ 0.2 Plug-Flow detention time= 9 Center-of-Mass det. time= 8	
	torage Storage Description
1 5,855.00' 1.	164 af Custom Stage Data (Prismatic)Listed below
Elevation Surf.Area	Inc.Store Cum.Store
(feet) (acres)	(acre-feet) (acre-feet)
5,855.00 0.124	0.000 0.000
5,856.00 0.145	0.134 0.134
5,858.00 0.191	0.336 0.470
5,860.00 0.239	0.430 0.900
5,861.00 0.289	0.264 1.164
# Routing Invert	Outlet Devices
1 Primary 5,852.50'	8.8" x 38.0' long OUTLET W/ RESTRICTOR PLATE
	RCP, square edge headwall, Ke= 0.500
	Outlet Invert= 5,851.67' S= 0.0218 '/' n= 0.013 Cc= 0.900
2 Device 1 5,855.00'	1.4" Vert. WQ ORIFICE C= 0.600
3 Device 1 5,856.30' 4 Device 1 5,857.60'	1.4" Vert. WQ ORIFICE C= 0.600 1.4" Vert. WQ ORIFICE C= 0.600
5 Device 1 5,859.50'	4.00' x 4.00' Horiz. EPC OUTFALL BOX Limited to weir flow C= 0.600
6 Secondary 5,859.50'	15.0' long x 6.0' breadth EMERGENCY OVERFLOW
0 00001001 9 0,000.00	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50
	3.00 3.50 4.00 4.50 5.00 5.50
	Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65
	2.66 2.66 2.67 2.69 2.72 2.76 2.83
1=OUTLET W/ RESTRIC 2=WQ ORIFICE (Orid 3=WQ ORIFICE (Orid 4=WQ ORIFICE (Orid	21 cfs @ 0.23 hrs HW=5,858.42' (Free Discharge) CTOR PLATE (Passes 0.21 cfs of 4.57 cfs potential flow) fice Controls 0.09 cfs @ 8.8 fps) fice Controls 0.07 cfs @ 6.9 fps) fice Controls 0.04 cfs @ 4.2 fps) OX (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=5,855.00' (Free Discharge) 6=EMERGENCY OVERFLOW (Controls 0.00 cfs)

Prepared by WestWorks Engineering HydroCAD® 7.00 s/n 002053 © 1986-2003 Applied Microcomputer Systems

Pond POND B:



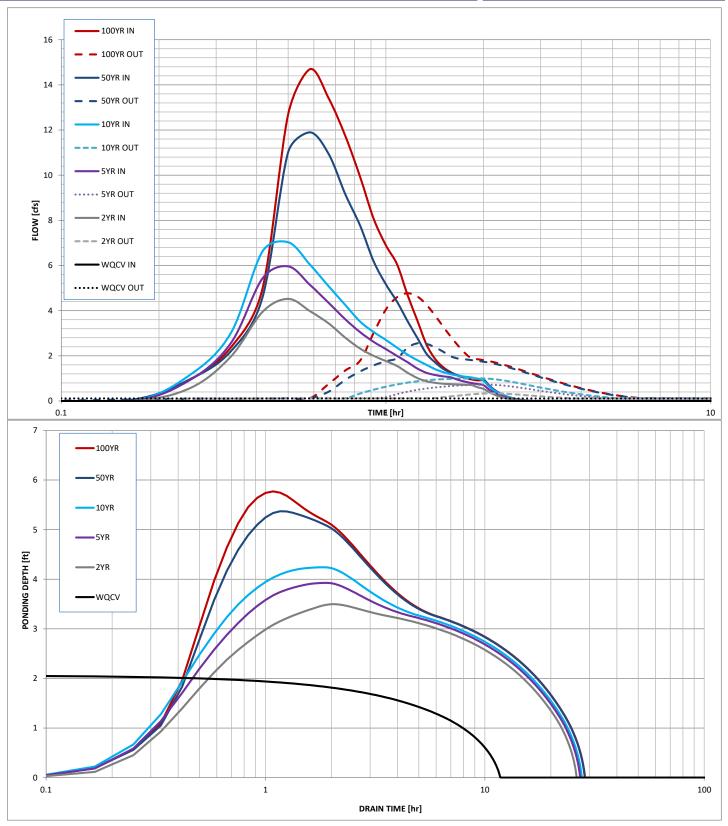
SDI-Design Data v2.00, Released January 2020

Stormwater Facility Name: ELDORADO SPRINGS - POND A

Facility Location & Jurisdiction: EL PASO COUNTY, COLORADO

User Input: Watershed Characteristics

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

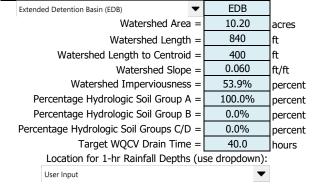

Once CUHP has been run and the Stage-Area-Discharge information has been provided, click 'Process Data' to interpolate the Stage-Area-Volume-Discharge data and generate summary results in the table below. Once this is complete, click 'Print to PDF'.

Stage [ft] Area [ft^2] Stage [ft] Discharge [cfs] 0.00 500 0.00 0.10 1.25 2,850 1.25 0.11 3.25 4,230 3.25 0.12 5.25 6,020 5.25 1.90 7.25 8,170 7.25 12.90	User Defined	User Defined	User Defined	User Defined
1.25 2,850 1.25 0.11 3.25 4,230 3.25 0.12 5.25 6,020 5.25 1.90	Stage [ft]	Area [ft^2]	Stage [ft]	Discharge [cfs]
3.25 4,230 3.25 0.12 5.25 6,020 5.25 1.90	0.00	500	0.00	0.10
5.25 6,020 5.25 1.90	1.25	2,850	1.25	0.11
	3.25	4,230	3.25	0.12
7.25 8,170 7.25 12.90	5.25	6,020	5.25	1.90
Image: Second	7.25	8,170	7.25	12.90
Image: Second				
Image: Second				
Image: Constraint of the second sec				

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif Create a new stormwater facility, and attach the PDF of this worksheet to that record.

Routed Hydrograph Results

Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	N/A	1.19	1.50	1.75	2.25	2.52	in
CUHP Runoff Volume =	0.107	0.267	0.353	0.422	0.650	0.786	acre-ft
Inflow Hydrograph Volume =	N/A	0.267	0.353	0.422	0.650	0.786	acre-ft
Time to Drain 97% of Inflow Volume =	11.4	25.3	26.0	26.3	26.3	25.9	hours
Time to Drain 99% of Inflow Volume =	11.7	25.9	26.8	27.3	27.8	27.8	hours
Maximum Ponding Depth =	2.07	3.50	3.93	4.24	5.37	5.77	ft
Maximum Ponded Area =	0.08	0.10	0.11	0.12	0.14	0.15	acres
Maximum Volume Stored =	0.107	0.235	0.280	0.316	0.462	0.520	acre-ft



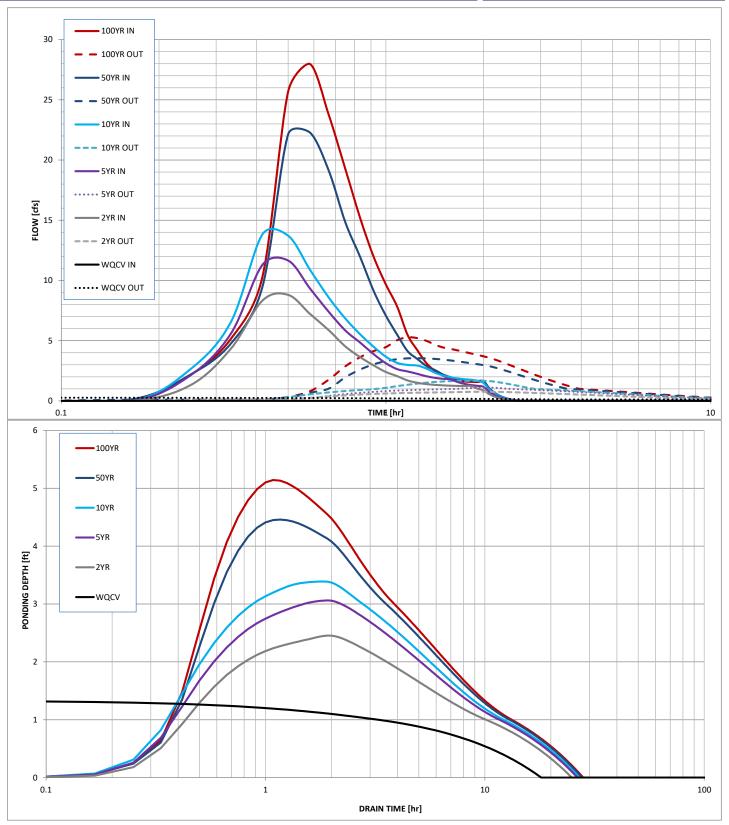
SDI-Design Data v2.00, Released January 2020

Stormwater Facility Name: ELDORADO SPRINGS - POND B

Facility Location & Jurisdiction: EL PASO COUNTY, COLORADO

User Input: Watershed Characteristics

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

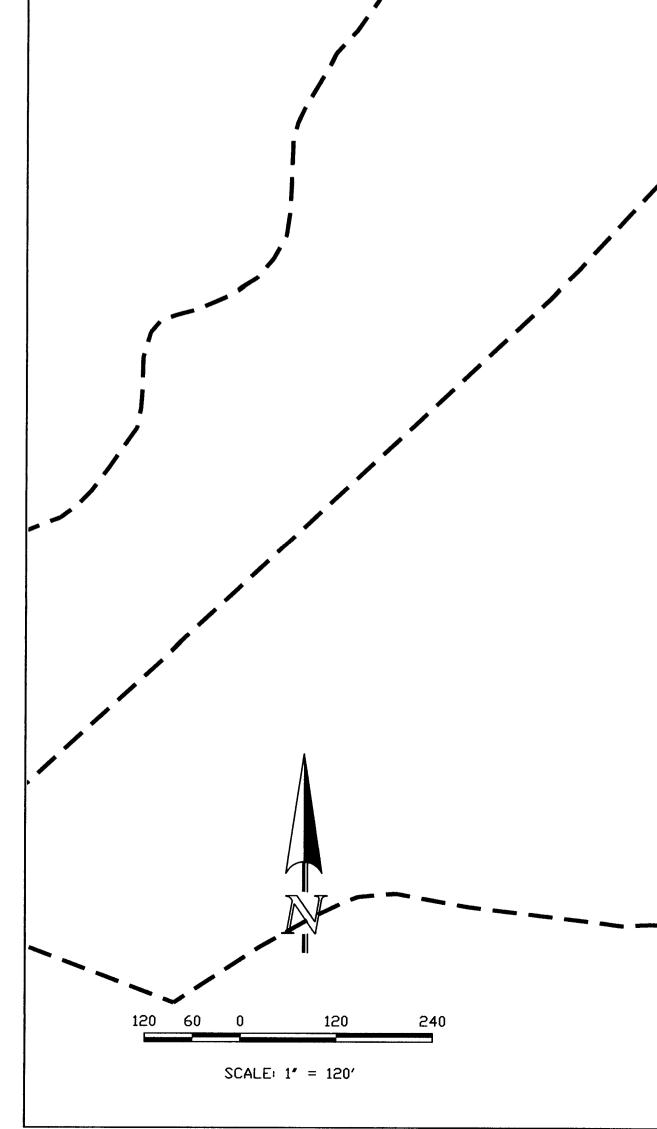

Once CUHP has been run and the Stage-Area-Discharge information has been provided, click 'Process Data' to interpolate the Stage-Area-Volume-Discharge data and generate summary results in the table below. Once this is complete, click 'Print to PDF'.

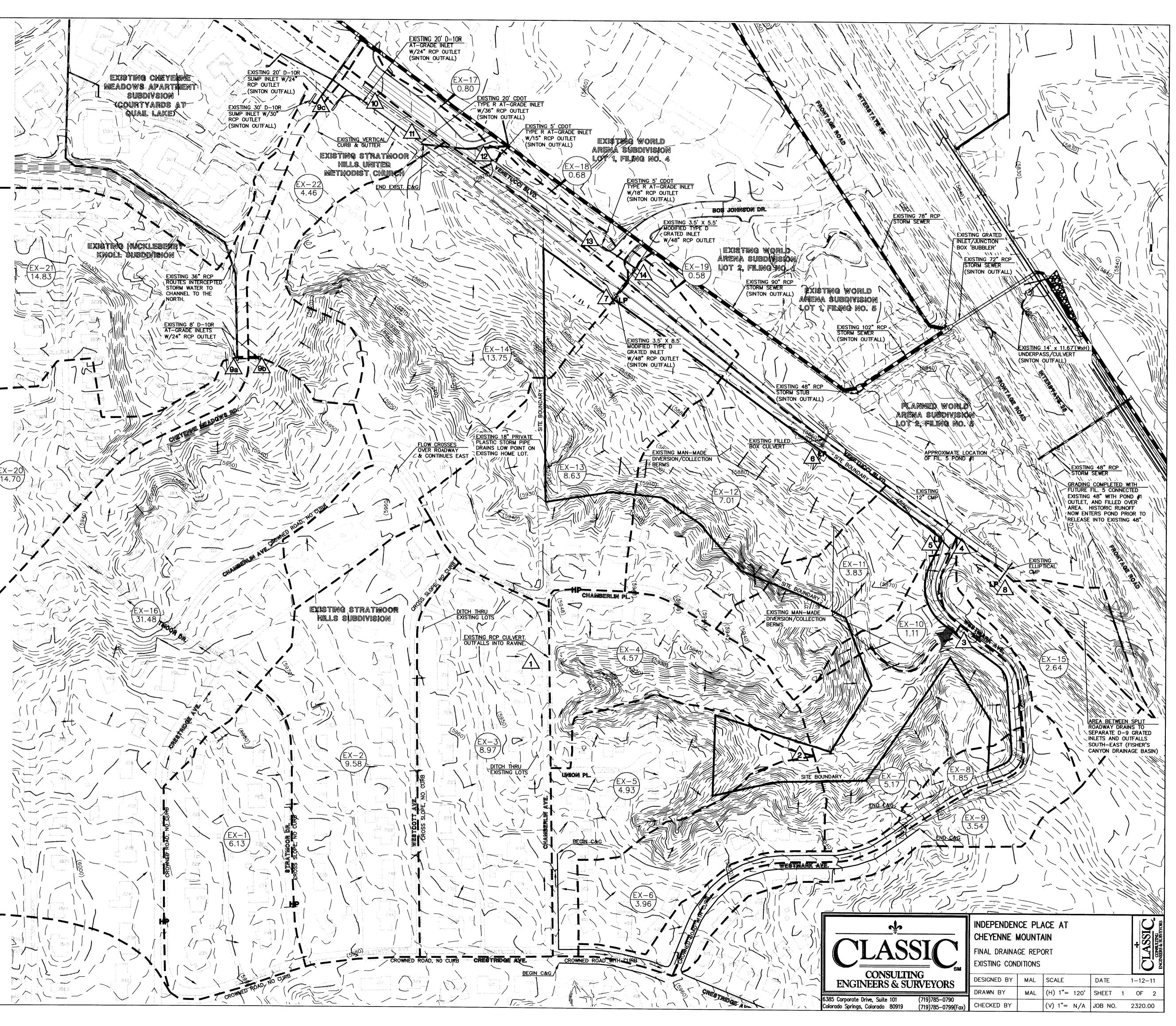
User Defined	User Defined	User Defined	User Defined
Stage [ft]	Area [ft^2]	Stage [ft]	Discharge [cfs]
0.00	5,400	0.00	0.10
1.00	6,320	1.00	0.12
3.00	8,320	3.00	1.00
5.00	10,410	5.00	4.50
5.50	11,700	5.50	7.30
7.00	12,570	7.00	17.70

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif Create a new stormwater facility, and attach the PDF of this worksheet to that record.

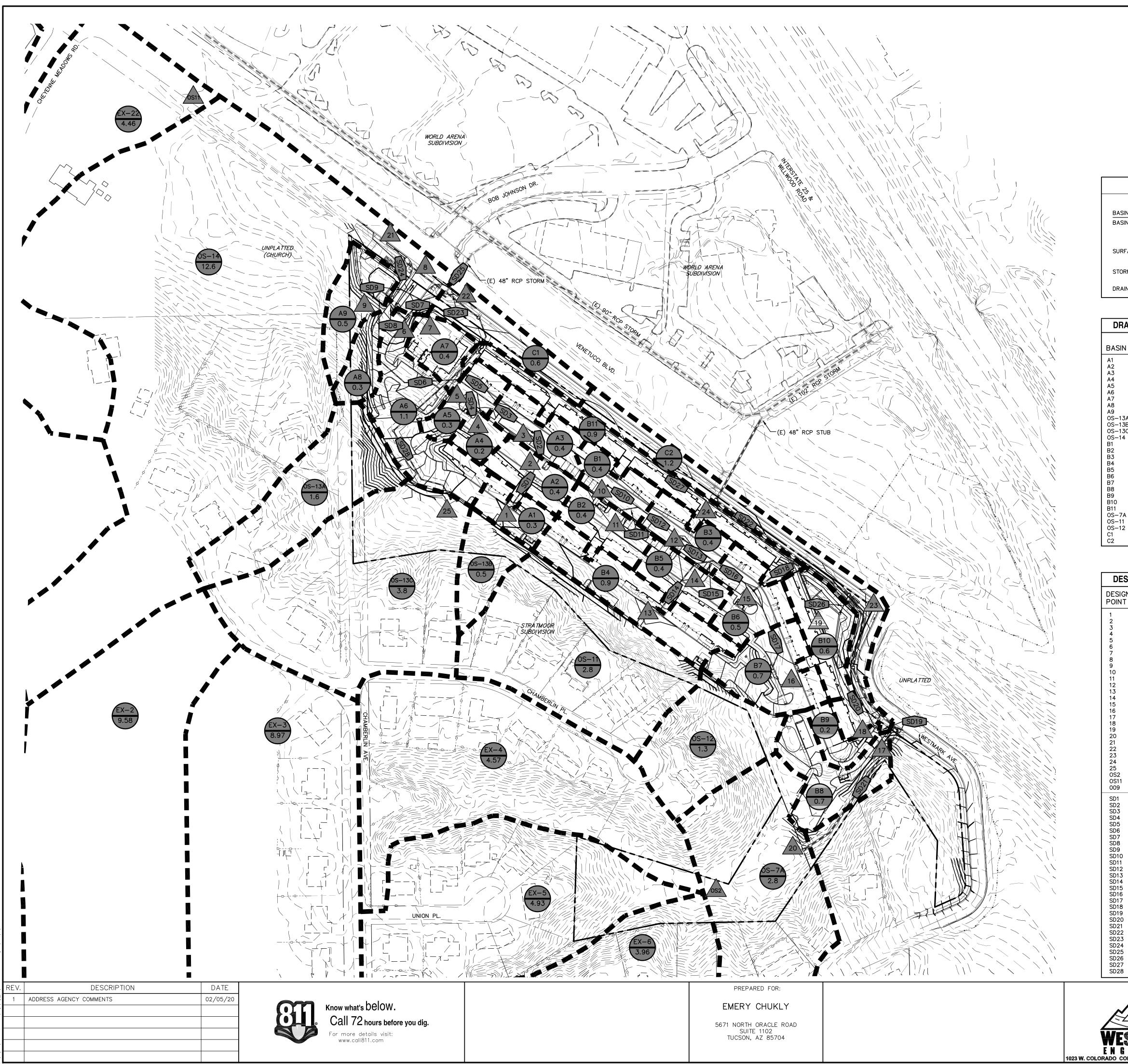
Routed Hydrograph Results

Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	N/A	1.19	1.50	1.75	2.25	2.52	in
CUHP Runoff Volume =	0.185	0.460	0.610	0.729	1.081	1.300	acre-ft
Inflow Hydrograph Volume =	N/A	0.460	0.610	0.729	1.081	1.300	acre-ft
Time to Drain 97% of Inflow Volume =	17.4	23.3	24.3	24.4	24.0	23.5	hours
Time to Drain 99% of Inflow Volume =	17.9	24.4	25.8	26.2	26.5	26.6	hours
Maximum Ponding Depth =	1.34	2.45	3.06	3.39	4.46	5.14	ft
Maximum Ponded Area =	0.15	0.18	0.19	0.20	0.23	0.25	acres
Maximum Volume Stored =	0.185	0.369	0.482	0.546	0.774	0.935	acre-ft




PREVIOUS DRAINAGE STUDY MAPS

BASIN R	UNOFF SUM	IMARY
BASIN	Q5 (CFS)	Q100 (CFS)
EX-1	9.9	24.3
EX-2	15.3	37.3
EX-3	16.9	41.3
EX-4	8.4	20.6
EX-5	8.3	20.4
EX-6	7.6	16.5
EX-7	10.6	24.5
EX-8	4.0	8.6
EX-9	5.9	13.8
EX-10	1.8	4.6
EX-11	7.1	16.7
EX-12	10.4	25.3
EX-13	14.6	33.8
EX-14	24.2	54.9
EX-15	4.4	10.6
EX-16	47.8	102.0
EX-17	3.1	6.0
EX-18	2.2	4.5
EX-19	1.4	3.2
EX-20	22.3	47.6
EX-21	35.8	75.3
EX-22	9.7	20.3


DE	SIGN	I POIN	TSUMMARY	
דואור	05	(CEC)	0100 (055)	

DESIGN POINT	Q5 (CFS)	Q1Q0 (CFS)	INLET SIZE
1	25.0	61.1	RCP CULVERT
2	38.2	92.1	SURFACE
3	45.2	107.9	ONTO WESTMARK
4	49.6	118.3	ONTO VENETUCCI
5	7.1	16.7	12" CMP
6	10.4	25.3	FILLED IN BOX
7	30.5	83.9	GRATED INLET
8	52.1	124.2	ELLIPTICAL CMP
9a	22.3	47.6	8' A.G. INLET
9Ь	47.8	102.0	8' A.G. INLET
9c	85.3	186.7	20' & 30' SUMPS
10	28.3	129.7	20' A.G. INLET
11	12.0	54.1	20' A.G. INLET
12	3.1	6.0	5' A.G. INLET
13	3.4	8.2	5' A.G. INLET
14	1.4	3.2	GRATED INLET

DRAINAGE MAPS

LEGEND EXISTING

PROPOSED FUTURE CURB AND GUTTER EASEMENT RIGHT-OF-WAY BOUNDARY RIGHT-OF-WAY LOT LINE EASEMENT (E) CONTOUR, INDEX (E) CONTOUR (P) CONTOUR, INDEX

(P) CONTOUR

(E) STORM SEWER, INLET, MH

(P) STORM SEWER, INLET, MH

(E) (P) (F) C&G ESMT ROW _____ _____ _____ — — 6940 — — _ __ __ __ __ ------6940 -------

X.XX

#

BASIN IDENTIFIER BASIN AREA [AC]

SURFACE DESIGN POINT IDENTIFIER

STORM DRAIN DESIGN POINT IDENTIFIER

DRAINAGE BASIN BOUNDARY

RA	AINAGE BASIN							
N	Q ₅ [CFS]	Q ₁₀₀ [CFS]						
3A 3B 3C 4 7A 1 2	1 2 1 1 3 0.5 0.3 2 0.4 5 25 2 1 2 3 2 2 2 2 2 2 2 2 2 2 7 7 3 1 2 7 7 3 1 2	2 3 3 2 2 6 3 1 2 6 2 15 5 3 3 3 6 3 4 5 4 1 2 4 14 14 6 3 5						

FSD EDB WQ POND A							
DESCRIPTION	5 _{YR}	100 _{YR}	UNITS				
INFLOW (*1)	12	25	[CFS]				
OUTFLOW	0.1	2	[CFS]				
WATER SURFACE ELEV.	5,860.8	5,862.4	[FT]				
OVERFLOW WEIR ELEV.	5,863.7	5,863.7	[FT]				
STORAGE VOLUME	0.18	0.39	[AF]				
*1							

*1 - INFLOW AREA = 10.2 AC

FSD EDB WQ POND B							
5 _{YR}	100 _{YR}	UNITS					
28	54	[CFS]					
0.2	0.3	[CFS]					
5,856.8	5,858.3	[FT]					
5,860.5	5,860.5	[FT]					
0.27	0.53	[AF]					
	5 _{YR} 28 0.2 5,856.8 5,860.5	5 100 28 54 0.2 0.3 5,856.8 5,858.3 5,860.5 5,860.5					

*2 - INFLOW AREA = 6.1 AC

DESIGN	POINT				
DESIGN POINT	Q ₅ [CFS]	Q ₁₀₀ [CFS]	DESCRIPTION		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 OS2 OS11 009 SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8 SD9 SD10 SD11 SD12 SD13 SD14 SD15 SD16 SD17 SD18 SD19 SD20 SD21 SD21 SD21 SD22 SD18 SD19 SD20 SD21 SD22 SD21 SD22 SD21 SD22 SD18 SD19 SD20 SD21 SD22 SD21 SD22 SD18 SD19 SD20 SD21 SD22 SD21 SD20 SD17 SD18 SD19 SD20 SD21 SD22 SD21 SD22 SD18 SD19 SD20 SD21 SD22 SD21 SD22 SD13 SD14 SD15 SD16 SD17 SD18 SD19 SD20 SD21 SD22 SD18 SD19 SD20 SD21 SD22 SD21 SD22 SD13 SD14 SD15 SD16 SD17 SD28 SD19 SD20 SD21 SD20 SD11 SD22 SD13 SD14 SD15 SD16 SD17 SD28 SD19 SD20 SD17 SD28 SD19 SD10 SD11 SD12 SD13 SD14 SD15 SD16 SD17 SD18 SD19 SD20 SD17 SD28 SD19 SD10 SD11 SD12 SD13 SD14 SD15 SD16 SD17 SD18 SD19 SD20 SD17 SD28 SD19 SD16 SD17 SD18 SD19 SD20 SD17 SD28 SD19 SD10 SD11 SD12 SD16 SD17 SD18 SD19 SD20 SD17 SD28 SD19 SD20 SD11 SD12 SD13 SD14 SD15 SD16 SD17 SD28 SD19 SD20 SD17 SD28 SD17 SD28 SD19 SD20 SD17 SD28 SD19 SD20 SD17 SD28 SD17 SD28 SD19 SD20 SD20 SD21 SD22 SD20 SD21 SD20 SD21 SD20 SD20 SD21 SD20 SD20 SD21 SD20	CFS 2 2 2 2 2 1 4 0.5 0.3 2 1 4 0.5 0.3 2 1 4 0.5 0.3 2 1 2 2 2 2 1 4 1 5 0.2 1 2 2 3 5 1 2 3 5 1 2 3 5 1 2 2 2 3 1 1 1 1 1 2 2	$\begin{array}{c} - & - \\ 4 \\ 3 \\ 2 \\ 2 \\ 11 \\ 3 \\ 1 \\ 2 \\ 3 \\ 3 \\ 20 \\ 3 \\ 4 \\ 11 \\ 2 \\ 3 \\ 3 \\ 20 \\ 3 \\ 4 \\ 11 \\ 4 \\ 1 \\ 2 \\ 100 \\ 59 \\ 14 \\ 6 \\ 4 \\ 15 \\ 92 \\ 54 \\ 172 \\ 4 \\ 7 \\ 10 \\ 2 \\ 12 \\ 14 \\ 11 \\ 12 \\ 2 \\ 3 \\ 6 \\ 9 \\ 20 \\ 22 \\ 31 \\ 11 \\ 44 \\ 2 \\ 4 \\ 100 \\ 105 \\ \end{array}$	<pre>(P) S' TYPE R CURB INLET IN SUMP [PRIVATE] (P) S' TYPE R CURB INLET IN SUMP [PRIVATE] (P) CDOT TYPE C GRATE INLET IN SUMP [PRIVATE] (P) S' TYPE R CURB INLET IN SUMP [PRIVATE] (P) S' TYPE R CURB INLET IN SUMP [PRIVATE] (P) AREA AND LANDSCAPE DRAINS [PRIVATE] (P) S' TYPE R CURB INLET AT GRADE [PRIVATE] (P) CDOT TYPE C GRATE INLET IN SUMP [PRIVATE] (P) 10' TYPE R CURB INLET AT GRADE [PRIVATE] (P) 10' TYPE R CURB INLET AT GRADE [PRIVATE] (P) 5' TYPE R CURB INLET AT GRADE [PRIVATE] (P) 5' TYPE R CURB INLET AT GRADE [PRIVATE] (P) 48'' RCP CULVERT [PUBLIC] (P) 15' TYPE R CURB INLET IN SUMP [PRIVATE] (P) 16'' RCP STORM MULTIPLE INLETS (P) 17AL FLOW TO HISTORIC BOX CULVERT UNDER VENETUCCI (P) 18'' RCP STORM DRAIN [PRIVATE] (P) 18'' RCP STORM DRAIN [</pre>	$0 \qquad 100$	200
SD23 SD24 SD25 SD26 SD27 SD28	29 33 0.2 2 5	14 47 73 0.3 4 15	(P) 24" RCP STORM DRAIN [PUBLIC] (P) 36" RCP STORM DRAIN [PUBLIC] (E) 48" RCP STORM DRAIN [PUBLIC] (P) 18" RCP STORM DRAIN [PRIVATE] (P) 12" HDPE STORM DRAIN [PRIVATE] (P) 24" RCP STORM DRAIN [PRIVATE] ELDORADO SPRINGS		DRAWN BY: CDK
		\mathcal{F}		SCALE: 1"=100'	DATE: 02/05/20
WEST		KS™ N G :0 80904 (719) 68	DRAINAGE MAP DEVELOPED CONDITIONS	JOB NUMBER 91807	SHEET 1 OF 1