

FINAL DRAINAGE REPORT
 FOR ELDORADO SPRINGS PPR-19-032

November 5, 2019

Revised February 5, 2020
Revised March 26, 2021

Prepared for:
Emery Chukly
5671 North Oracle Road Suite 1102
Tucson, AZ 85704

FINAL DRAINAGE REPORT FOR ELDORADO SPRINGS

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Chad D. Kuzbek, Colorado PE \#35751

Date

For and on behalf of WestWorks Engineering

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name

By: \qquad
Title: \qquad
Address: \qquad
\qquad

El Paso County, Colorado:

Filed in accordance with requirements of the Drainage Criteria Manual Volumes 1 and 2, El Paso County Engineering Criteria Manual, and Land Development Code, as amended.

Jennifer Irvine, P.E.
County Engineer/ECM Administrator
Conditions:

FINAL DRAINAGE REPORT FOR ELDORADO SPRINGS

TABLE OF CONTENTS
Purpose Page 3General Location and DescriptionDeveloped Conditions4-Step Process Discussion
Drainage Basins and SubbasinsPage 3
Existing ConditionsPage 3Page 3
Page 9
Summary Page 13Page 12
Drainage Design Criteria Page 13
Drainage Facility Design Page 13Floodplain Statement
Erosion Control PlanPage 13
Opinion of Probable Cost Page 14Page 14
Drainage Fees Page 15
Reference List Page 15
APPENDIX

Vicinity Map
Soils Map
Floodplain Map
Hydrologic Calculations (5-YR and 100-YR)
Hydraulic Calculations
Stormwater Facility Calculations
Previous Drainage Study Maps
Drainage Map

FINAL DRAINAGE REPORT FOR ELDORADO SPRINGS

PURPOSE

The purpose of this final drainage report (FDR) is to identify specific solutions to drainage problems on site and off-site resulting from the development and platting of this subdivision.

GENERAL LOCATION AND DESCRIPTION

Eldorado Springs includes 15.5 acres located in a portion of the southwest corner of Section 33, Township 14 South and in the northwest corner of Section 4, Township 15 South, Range 66 West of the $6^{\text {th }}$ P.M. in El Paso County, Colorado. More specifically, the site is located near the southeast corner of Venetucci Boulevard and Bob Johnson Drive, south of the World Arena facility. The site is bounded by unplatted land to the east and west, single family residential Stratmoor Subdivision to the south, and Venetucci Boulevard to the north.

The site is currently undeveloped and drains from south to north over moderate slopes. Proposed development includes a multi-family apartment complex. Existing soils in the study area consist mostly of Schamber-Razor complex (SCS Map Unit Symbol 82 - Hydrologic Soil Group A) with a small portion being Nunn Clay loam (SCS Map Unit Symbol 59-Hydrologic Soil Group C). The site is located in the Stratton Drainage Basin.

DRAINAGE BASINS AND SUB-BASINS

The site has been part of multiple drainage studies. Most recently, the site was previously studied in the, "Final Drainage Report for Independence Place at Cheyenne Mountain Filing No. 1," prepared by Classic Consulting Engineers \& Surveyors, dated 1/27/2011. The existing conditions drainage map and description is taken directly from this previous study and quoted below:

'Existing Drainage Characteristics:

The site is located within the Stratton Drainage Basin. This site was originally studied as a part of the "Master Drainage Plan Harrison Street - 1-25 Vicinity Cheyenne Mountain Ranch," by Hartzell - Pfeiffenberger and Associates, Inc. dated November 15, 1973. Since then the site was included in additional basin analysis reports; "Stratton and Fischer's Canyon Drainage Basin Planning Study, Draft Hydraulic Analysis," by Muller Engineering Co. dated May 31, 1990; the "Master Drainage Report for Cheyenne Mountain Center and Final Drainage Report for Cheyenne Mountain Center Filing No. 1 and Cheyenne Meadows Road," by Drexel Barrell, dated October 1985; the "Hydrology Report Stratton Drainage Basin Outfall Study," by Drexel Barrell, dated June 1994; and the "Preliminary and Final Drainage Report and Plan for World Arena Subdivision No. 1," by Obering, Wurth \& Associates, August 1994 revised March 1995.

The most recent master study drainage report for this area that included the proposed site was the "Hydrology Report Stratton Drainage Basin Outfall Study El Paso County, Colorado," by Drexel Barrell, dated June 9, 1994. This Hydrology Report by Drexel Barrell conforms to current El Paso County criteria and was performed based on minor modifications and revisions to TR-20 data prepared in the 1990 study by Muller Engineering Co. This Hydrology Report also updated the hydrologic modeling completed in the 1985 study by Drexel Barrell with the correct 2 hour and 24 hour storms that are utilized in the current criteria. This report provides the basis for the proposed site's allowable release rate since it sized and described the 90"/102" RCP storm outfall system (Sinton Outfall). This system runs parallel with the eastern site boundary, along the opposite site of Venetucci Blvd. A Drainage Map from the Drexel Barrell Hydrology Study is included in the appendix of this report for reference.

The proposed 15.46 acre site is included within Basin 009 of this previous study. At the time of the Drexel Barrell Hydrology Study, existing box culverts conveyed the runoff from Basin 009 under Venetucci Blvd./Old Hwy 85-87 to the existing 14' x 11.7' box culvert crossing under Interstate 25 and to the east into Fountain Creek. The development of Cheyenne Mountain Center constructed the 'Sinton Outfall' RCP storm sewer system that accepts the allowable release rates of the upstream parcels and conveys them along the historic drainage pattern of under I-25 and into the Sinton Channel, which connects to Fountain Creek. This large storm system consists of $102^{\prime \prime}$ RCP and 90" RCP storm main, with appropriate sized storm laterals to account for the flows quantified within the Drexel Barrell Hydrology Report. Basin 009 of this previous report consists of 0.147 square miles (94.08 acres) and was modeled using a CN value of 81 (SCS Method since entire study area was over 100 acres). Per the Drainage Criteria Manual Vol. 1 Table 5-5 a CN of 81 is equivalent to 1/3 acre home lots with all Group C soils, or about 1/6 acre home lots with all Group B soils. The existing Stratmoor Hills subdivision is also located within this Basin 009, with homes slightly over 2 lots per acre; and since these homes are within Group B soils, a more accurate CN value for the existing development would be around 71. Therefore, the remaining area of Basin 009 (the proposed Independence Place at Cheyenne Mountain Filing No. 1 site) is allowed to be substantially higher density than the calculated CN of 81. Also, runoff from Basin 008 of the previous report overflows the existing curb storm inlets and a portion drains onto the Venetucci Blvd. right-of-way within the Basin 009 area. Thus the actual total release from the developed site can be higher than the assumed Basin 009 flows ($Q_{100}=270 c f s, 24$ hour duration storm event).

When the World Arena was constructed to the immediate north of the proposed site, street improvements were made to Venetucci Blvd. that expanded the existing storm sewer facilities constructed with the Sinton Outfall main (Drexel Barrell Report). Many curb inlets were placed along the improved roadways at the Cheyenne Meadows Road intersection and Bob Johnson Drive intersection. Using the "Preliminary and Final Drainage Report and Plan for World Arena Subdivision No. 1," by Obering, Wurth \& Associates, August 1994 revised March 1995 and the "Roadway Improvement Package and Storm Sewer Package for US Highway 85187 (Venetucci Boulevard)," by Drexel Barrell including the as-built revisions; these storm modifications have been incorporated into this report and construction drawings
for the proposed development. The following will describe the existing runoff quantities and existing facilities in more detail at each of the existing design points.

Design Point 1 ($Q_{5}=25.0$ cfs, $Q_{100}=61.1$ cfs) consists of flows from Basins EX-1, EX-2, and EX-3 all of which are within the existing Stratmoor Hills subdivision to the south-west of the proposed site. Basin EX-1 is 6.13 acres of existing home lots that drains to the east, overtops Stratmoor Drive and into Basin EX-2. The combined flows from EX-1 \& EX-2 continue on the surface to the east and overtop Westcott Ave. drain into Basin EX-3. Roadside ditches along Chamberlin Ave. route all of the runoff from the three basins to DP-1, where an existing concrete storm pipe collects the water and routes it under Chamberlin Ave. and into the ravine to the east, within Basin EX-4. Although the density of the existing Stratmoor Hills subdivision is closer to 2 DU/Ac., C values corresponding with 3 DU/Ac. are used to conservatively estimate the runoff from the upstream basins $\left(C_{5}=0.40, C_{100}=0.55\right.$, Group B soils).

Design Point $2\left(Q_{5}=38.2\right.$ cfs, $Q_{100}=92.1$ cfs) consists of flows from DP-1 and Basins $E X-4, E X-5$, and EX-6. Basin EX-4 is 4.57 acres (B soils) of existing home lots that drains to the south into the outfall ravine from DP-1. Basin EX-5 is 4.93 acres (C soils) of existing roadway and home lots that drains into one of two ravines that meet at DP-2. Basin EX-6 is 3.96 acres (C soils) of existing home lots that drains to the north-east to DP-2. C soils were used throughout EX-5 \& EX-6 to calculate the storm runoff higher and therefore more conservatively. See soils map in Appendix for separation of B and C soil groups. All of the runoff from these basins combine at this confluence point and continue north-east onto the proposed site and toward DP-3.

Design Point 3 ($Q_{5}=45.2$ cfs, $Q_{100}=107.9$ cfs) consists of flows \&om DP-2 and Basins EX-7 and EX-8. Slightly upstream and west of DP-3, manmade berms were constructed at some point in the past that prevents the runoff \&om DP-2 \&om continuing north to the existing culverts under Venetucci Blvd (as the Stratton Basin Hydrology Study anticipated). This man made berm instead routes the entire flow from DP-2 onto Westmark Ave. (DP-3) where the flow combines with the runoff \&om Basins EX-7 \& EX-8. This runoff continues north-east as surface flow on Westmark Ave. to DP-4. Documentation of why and when this berm, along with others located on the actual proposed site, does not exist as a drainage report for this existing Stratmoor Hills subdivision is not on file with E1 Paso County and there is no mention of diverting the flows with the Hydrology Report or any of the World Arena Subdivision drainage reports.

Design Point $4\left(Q_{5}=49.6\right.$ cfs, $Q_{100}=118.3$ cfs $)$ consists of flows \&om DP-3 and Basins EX9 and EX-10. Basin EX-9 is 3.54 acres (C soils) of existing home lots and Westmark Ave. that drains down Westmark via curb and gutter and surface flow to the intersection of Venetucci Blvd. and Westmark Ave. (DP-4). Basin EX-10 is 1.11 acres (C soils) of on-site, undeveloped land that drains to this intersection and onto the roadway prior to the small culvert at DP-5. This combined runoff \&om DP-4 flows onto Venetucci Blvd. and the adjacent roadside swale to Design Point 8.

Design Point $5\left(Q_{5}=7.1 \mathrm{cfs}, Q_{100}=16.7 \mathrm{cfs}\right)$ consists of runoff \&om Basin EX-11, 3.83 acres (C soils) of mostly on-site, undeveloped land with a small portion of existing Stratmoor Hills homes and a portion of the western half of existing Venetucci Blvd. This runoff sheet flows to an existing 12" CMP storm pipe culvert that routes the runoff under Venetucci Blvd. and continues in the existing drainage pattern towards Interstate 25 . This runoff combines with that from DP-8 and continues around the future World Arena Subd. Lot 2, Fil. 5 site to the existing $48^{\prime \prime}$ RCP I-25 crossing. The final drainage report for this World Arena parcel does not acknowledge or quantify the off-site tributary flows.

Design Point $6\left(Q_{5}=10.4\right.$ cfs, $Q_{100}=25.3$ cfs) consists of runoff \&om Basin EX-12, 7.01 acres (C soils) of mostly on-site, undeveloped land with a small portion of existing Stratmoor Hills homes and a portion of the western half of existing Venetucci Blvd. This runoff sheet flows to this existing low point at DP-6. Previous reports drainage documents show an existing box culvert at this location that routes any runoff at this point under Venetucci Blvd. and directly toward the I-25 box culvert (Sinton Outfall). However, this box culvert has since been covered, or filled, with soil and is no longer functioning. Documentation on why this was done cannot be found on file with El Paso County. The Sinton Outfall storm system shown on the Drainage Map does provide a $48^{\prime \prime}$ RCP stub off the junction box that points directly to the DP-6 and this filled in box culvert. It is our understanding that this $48^{\prime \prime}$ stub was meant to connect to this low-point at DP-6, which would then leave the existing box culvert not needed. A field inspection of the manhole does indeed show only a capped $48^{\prime \prime}$ lateral toward DP-6, and it appears this runoff simply infiltrates into the ground at this location.

Design Point $7\left(Q_{5}=30.5\right.$ cfs, $Q_{100}=83.9$ cfs) consists of runoff from Basins EX-13 \& EX-14 and the flow by from DP-11. Basin EX-13 is 8.63 acres (C soils) of mostly on-site, undeveloped land, a portion of the western half of Venetucci Blvd. and a small portion of existing Stratmoor Hills homes. Basin EX-14 is 13.75 acres that consists of mostly undeveloped land and a small portion of the existing homes as well as a portion of the adjacent Stratmoor Hills United Methodist Church and the western half of Venetucci Blvd. A substantial amount of runoff at this point $\left(Q_{5}=3.1 \mathrm{cfs}, Q_{100}=21.2 \mathrm{cfs}\right)$ comes from the water not intercepted by the inlets at Design Points 9 -11. The existing curb along the west side of Venetucci Blvd. from the Cheyenne Meadows Rd. intersection ends just after the inlet at $D P-11$, thus the flow by drains into the roadside ditch to $D P-7$. The combined runoff is intercepted by an existing CDOT Type D storm inlet (3.5' x 8.5' inlet dimensions). This inlet was installed with the construction of the Sinton Outfall Storm System and an existing 48" RCP storm pipe conveys the intercepted runoff across Venetucci Blvd. and connects to the $90^{\prime \prime}$ main.

Design Point 8 ($Q_{5}=52.1$ cfs, $Q_{100}=124.2$ cfs) consists of flows from DP-4 and Basin EX-15. Basin EX-15 is 2.64 acres (C soils) of off-site, undeveloped land, including a portion of existing Venetucci Blvd. An existing elliptical CMP culvert conveys this runoff under Venetucci Blvd. to the north and into the existing drainage pattern. This culvert is very under-sized for $120+c f s$ and it can be assumed that significant ponding takes place at this location prior to flowing to the downstream facilities. The parcel to the north of DP-8 (across Venetucci Blvd.) is planned to be a hotel with surrounding parking. The development
of the site will maintain the historic drainage pattern around the future development, but does change the overall outfall of the existing runoff. This World Arena Lot 2, Filing No. 5 (hotel site) construction was stopped after overlot grading and utility infrastructure was completed. Per the "Final Drainage Report for World Arena Subdivision Filing No. 5, Lot \#2," by Matrix Design Group, Inc. (April 2008) the construction of Detention Pond \#1 was to be outside of the existing drainage path to the existing $48^{\prime \prime}$ RCP under I-25. However, a site visit confirmed that the outlet pipe for this Pond 1 has been connected to the existing $48^{\prime \prime}$ interstate crossing and the existing low point (entry into the $48^{\prime \prime}$) has been filled in. Now, the existing drainage ponds approximately 2.0^{\prime} and overtops into Pond \#1, where a D-9 grate inlet within the pond intercepts the flows and passes them into the existing culvert.

Design Point 9a ($Q_{5}=22.3$ cfs, $Q_{100}=47.6$ cfs) consists of runoff from Basin EX-20, 14.70 acres of existing single family subdivision and Cheyenne Meadows Road. An existing 8' D10 R at-grade curb inlet (4.5\% street slope) intercepts a portion of this runoff ($Q,=5.7 \mathrm{cfs}$, $Q, 00=5.9 \mathrm{cfs}$), while the rest continues down Cheyenne Meadows Rd. to the intersection with Venetucci Blvd.

Design Point 9b ($\left.Q_{5}=47.8 \mathrm{cfs}, Q_{100}=102.0 \mathrm{cfs}\right)$ consists of runoff from Basin EX-16, 31.48 acres of existing single family subdivision and Cheyenne Meadows Road. An existing 8' DIOR at-grade curb inlet (4.5% street slope) intercepts a portion of this runoff ($Q,=5.9 \mathrm{cfs}$, $Q, 00=12.7$ cfs), while the rest continues down Cheyenne Meadows Rd. to the intersection with Venetucci Blvd. The combined intercepted runoff from DP-9a \& DP-9b is routed in an existing $36^{\prime \prime}$ RCP storm pipe to the north to an existing channel, away from the Venetucci Blvd. and Cheyenne Meadows Rd. intersection. The large amount of flow-by ($Q_{5}=41.9 \mathrm{cfs}$, $Q_{100}=89.3 \mathrm{cfs}$) continues to the submerged inlets at DP-9c.

Design Point 9c $\left(Q_{5}=85.3 \mathrm{cfs}, Q_{100}=186.7 \mathrm{cfs}\right)$ consists of runoff from Basins EX-21 and $E X-22$, as well as the flow by from DP-9a \& DP-9b. Basin EX-21 is 14.83 acres of the existing single family Huckleberry Knoll Subdivision and Cheyenne Meadows Rd. Basin EX22 is 4.46 acres of existing Stratmoor Hills Subdivision, existing Stratmoor Hills United Methodist Church, and existing Cheyenne Meadows Rd. Two existing D10-R curb inlets (20' \& 30') exist on Cheyenne Meadows, west of Venetucci Blvd. The storm water at this point overtops the crown of the Cheyenne Meadows and completely submerges the inlets, thus changing the calculation used in quantifying the intercepted flow (See Calculations in Appendix). The total area of opening of the two combined inlets is 33.5 square feet (50.0' x 0'67), and based upon field as-builts of the curb return, the inlets only have 0.35' of depth before overtopping south down Venetucci Blvd. This results in both inlets only intercepting 57 cfs of both 5 and 100 year flows. The flow by from these inlets next hits the inlet at DP10 .

Design Point 10 ($Q_{5}=28.3$ cfs, $Q_{100}=129.7$ cfs) has a 20^{\prime} at-grade D10-R curb inlet that intercepts a large portion of the flow-by from DP-9c. Venetucci Blvd. has a slope of 1.3% at this inlet based upon field as- builts of the constructed curb. This 20' inlet intercepts $Q_{5}=$ 16.3 cfs and $Q_{100}=75.6$, while the remainder continues to the next existing inlet at $D P-11$.

Design Point 11 ($Q_{5}=12.0$ cfs, $Q_{100}=54.1$ cfs) has a 20' at-grade CDOT Type R curb inlet that intercepts a portion of the remaining flow-by from DP-9c \& DP-10. Venetucci Blvd. has a slope of 2.8% at this inlet based upon field as-builts of the constructed curb. This 20' inlet intercepts $Q_{5}=8.9 \mathrm{cfs}$ and $Q_{100}=32.9 \mathrm{cfs}$ while the remainder continues south down Venetucci Blvd. The existing curb and gutter along Venetucci ends just downstream of $D P-11$, therefore the flow-by $\left(Q,=3.1 \mathrm{cfs}, Q_{100}=21.2 \mathrm{cfs}\right)$ runs off the edge of asphalt and enters the roadside ditch, which drains to the grated inlet at DP-7.

Design Point $12\left(Q_{5}=3.1 \mathrm{cfs}, Q_{100}=6.0 \mathrm{cfs}\right)$ consists of runoff from Basin EX-17, 0.80 acres of existing Venetucci Blvd. and adjacent landscape area that drains to an existing 5' at-grade CDOT Type R curb inlet Based upon field as-builts Venetucci Blvd. has a slope of 3.0% at this inlet, resulting in intercepting $Q_{5}=1.9 \mathrm{cfs}$ and $Q_{100}=2.3$, while the remainder continues within the curb to DP-13.

Design Point $13\left(Q_{5}=3.4\right.$ cfs, $Q_{100}=8.2$ cfs) consists of runoff from the flow-by of DP-12 and Basin EX-18, 0.68 acres of existing Venetucci Blvd. and adjacent landscape area that drains to an existing 5' at-grade CDOT Type R curb inlet. Based upon field as-builts Venetucci Blvd. has a slope of 0.7% at this inlet, resulting in intercepting $Q,=2.2$ cfs and $Q_{100}=3.5 \mathrm{cfs}$. The non-intercepted runoff ($Q_{5}=1.2 \mathrm{cfs}, Q_{100}=4.7 \mathrm{cfs}$) continues within the curb and gutter onto Bob Johnson Drive and west toward the overall basin outfall corridor.

Design Point $14\left(Q_{5}=1.4 \mathrm{cfs}, Q_{100}=3.2 \mathrm{cfs}\right)$ consists of runoff from Basin EX-19, 0.58 acres of existing Venetucci Blvd. and adjacent undeveloped right of way area. An existing modified Type D grated inlet drains this area and conveys the runoff into the $90^{\prime \prime}$ RCP Sinton Outfall system via a $48^{\prime \prime}$ RCP storm lateral. As mentioned previously, the existing alignments and storm facilities have been established through the "Roadway Improvement Package and Storm Sewer Package for US Highway 85/87 (Venetucci Boulevard)," by Drexel Barrell including the as-built revisions and field survey data.

Summary of Existing Conditions

The existing Sinton Outfall Storm system was planned to intercept all of the Stratton Basin runoff at rates specified within the "Hydrology Report Stratton Drainage Basin Outfall Study El Paso County, Colorado," by Drexel Barrell, dated June 9, 1994. The construction of the large storm main system appears to have been completed in two separate phases, per the "M.D.D.P. for Cheyenne Mountain Center." The second phase included extending storm sewer laterals off of the main alignment to our proposed site location in order to convey the existing runoff as well as a future allowable runoff rate per the Hydrology Study. This extension of a $48^{\prime \prime}$ storm lateral was completed at the northernmost existing roadway crossing (Design Point 7). However, at Design Point 6, no such storm sewer extension off the main line was completed and it appears that the existing roadway culvert was filled in and does not pass historic runoff under Venetucci Blvd./Old Hwy 85/87. The construction plans for the $102^{\prime \prime}-90^{\prime \prime} R C P$ storm main show a $48^{\prime \prime}$ RCP stub pointed toward the filled in box culvert, but capped 8.0' outside of the manhole. It is our assumption that this $48^{\prime \prime}$ stub is meant to convey the runoff at this DP-6 location. Therefore, our proposed conditions will discuss extending this lateral under Venetucci Blvd. and into our proposed site. Drainage reports completed for the immediate downstream World Arena Subdivisions do not discuss any
off-site flows from the tributary area, including our site and the upstream Stratmoor Hills Subdivision, or mention extending this $48^{\prime \prime}$ stub to the edge of the Venetucci Blvd. right-ofway. The Hydrology Report specifies a developable 100-year flow rate from the proposed site and upstream Stratmoor Hills Subdivision as 270 cfs. The calculated combined 100-year existing flow rate at design points 6, 7, and 8 is 198 cfs. Therefore, substantial more development can be constructed with this Basin 009 before storm water detention is required.

Also, the construction of the diversion berms on the proposed site that re-route the upstream tributary area (Stratmoor Hills) runoff directly to the Westmark Ave. and Venetucci Blvd. intersection are un-documented and seem to have been completed to eliminate the historic runoff to the 'filled in' culvert at DP-6. The existing CMP culverts at DP-5 and DP-8 are not adequately sized to convey all of the existing storm runoff that they currently receive. However, since it appears this drainage path is not natural and not per the previous drainage studies, we are proposing. intercepting the upstream, existing runoff and conveying it through the proposed site's public storm system and directly to the 90"/102" RCP Sinton Outfall system."

Developed Drainage Characteristics:

Development of the site is a multi-family residential apartment complex with clubhouse, park space, pool and amenity areas, garages, paved parking and drive aisles, and landscaping. Development of this site also includes adjacent public roadway improvements along Venetucci Boulevard and a portion of Westmark Avenue.

Developed drainage overview:
On site runoff along with some off-site tributary runoff will be collected on site and routed into 2 private full-spectrum detention and stormwater quality facilities (Pond A and Pond B). A limited portion of the existing downstream drainage infrastructure has been adequately designed for developed runoff from this site (102" RCP). However, the existing 102" RCP combines with an existing 78"RCP and connects to an undersized existing 72" RCP. This scenario is believed through witness accounts to have caused flooding in the one-way road underpass under I-25. For this reason, Pond A and B will be full-spectrum detention facilities so as not to contribute excess runoff to this condition.

Details of Ponds A and B shall be included with the Site Construction Drawings. Details include dissipation basins, trickle channels, outfall structures, emergency overflows, and maintenance access.

Basins with designations of EX are taken directly from the existing conditions analysis. Basins with designations of OS are off-site basins. Basins with designations of A drain to Pond A. Basins with designations of B drain to Pond B . Basins with designations C do not drain to pond facility.

Developed Drainage Design Point Descriptions:
DP-25 [Q5 = 5 CFS/Q100 $=15$ CFS]
DP-25 is a proposed CDOT Type C grated inlet in sump. DP- 25 collects mostly off-site runoff from Basin OS-13C. Collected flows will by-pass Pond A and are routed via SD28 to SD25.

Design Point 1 (DP-1) [Q5 $=2$ CFS/Q $\mathbf{Q}_{100}=4$ CFS $]$
DP-1 is a proposed 5 ' wide Type R curb inlet in sump. DP-1 collects runoff from Basins OS13B and A1. Collected flows are routed via storm drain design point SD1 to SD2.

DP-2 $\left[\mathrm{Q}_{5}=2 \mathrm{CFS} / \mathrm{Q}_{100}=3 \mathrm{CFS}\right]$
DP-2 is a proposed 5^{\prime} wide Type R curb inlet in sump. DP-1 collects runoff from Basin A2. Collected flows are routed via SD2 to SD3.

DP-3 $\left[_{5}=2 \mathrm{CFS} / \mathrm{Q}_{100}=3 \mathrm{CFS}\right]$
DP-3 is a proposed CDOT Type C grate inlet in sump. DP-3 collects runoff from Basin A3. Collected flows are routed via SD3 to SD4.

DP-4 $\left[\mathrm{Q}_{5}=1 \mathrm{CFS} / \mathrm{Q}_{100}=2 \mathrm{CFS}\right]$
DP-4 is a proposed 5^{\prime} wide Type R curb inlet in sump. DP-4 collects runoff from Basin A4. Collected flows are routed via SD4 to SD5.

DP-5 [Q5 $\left.=1 \mathrm{CFS} / \mathrm{Q}_{100}=2 \mathrm{CFS}\right]$
DP-5 is a proposed 5^{\prime} wide Type R curb inlet in sump. DP-5 collects runoff from Basin A5. Collected flows are routed via SD6 ($\left.\mathrm{Q}_{5}=7 \mathrm{CFS} / \mathrm{Q}_{100}=14 \mathrm{CFS}\right)$ into Pond A. The discharge point into Pond A shall have a concrete energy dissipater.

DP-6 [Q5 = 4 CFS/Q100 $=11$ CFS]

DP-6 is a proposed 15 ' wide Type R curb inlet at grade. DP-6 collects runoff from Basins OS13 A and A6. Collected flows are routed via SD7 to SD8. Flow-by of $\mathrm{Q}_{5}=0 \mathrm{CFS} / \mathrm{Q}_{100}=1.5$ CFS will continue to DP-22.

DP-7 [Q5 = 1 CFS/Q100 $=3$ CFS]

DP-7 is a proposed system of landscape drains, pool deck grates, and roof drain collection for the clubhouse. DP-7 collects runoff from Basin A7. Collected flows are routed to the inlet at DP6.

DP-8 [Q5 $\left.=\mathbf{0 . 5} \mathrm{CFS} / \mathrm{Q}_{100}=1 \mathrm{CFS}\right]$

DP-8 is a proposed 5' wide Type R curb inlet at grade. DP-8 collects runoff from Basin A8. Collected flows are routed via SD8 ($\left.\mathrm{Q}_{5}=6 \mathrm{CFS} / \mathrm{Q}_{100}=12 \mathrm{CFS}\right)$ into Pond A. The discharge point into Pond A shall have a concrete energy dissipater.

DP-9 Q $_{5}=0.3$ CFS/Q100 $\left.=2 \mathrm{CFS}\right]$

DP-9 represents the sheet flow into Pond A.

DP-10 [Q5 = 2 CFS/Q $\left.{ }_{100}=3 \mathrm{CFS}\right]$

DP-10 is a proposed CDOT Type C grate inlet in sump. DP-10 collects runoff from Basin B1. Collected flows are routed via SD10 to SD12.

DP-11 [Q5 = $\left.1 \mathrm{CFS} / \mathrm{Q}_{100}=3 \mathrm{CFS}\right]$
DP-11 is a proposed 5^{\prime} wide Type R curb inlet in sump. DP-11 collects runoff from Basin B2. Collected flows are routed via SD11 to SD12.

DP-12 [Q5 = 2 CFS/Q ${ }_{100}=3$ CFS]
DP-12 is a proposed CDOT Type C grate inlet in sump. DP-12 collects runoff from Basin B3. Collected flows are routed via SD13 to SD16.

DP-13 [Q5 = 10 CFS/Q100 $=20 \mathrm{CFS}]$
DP-13 is a proposed 20' wide Type R curb inlet in sump. DP-13 collects runoff from Basins OS11 and B4. Collected flows are routed via SD14 to SD15.

DP-14 [Q5 $\left.=2 \mathrm{CFS} / \mathrm{Q}_{100}=3 \mathrm{CFS}\right]$
DP-14 is a proposed 5' wide Type R curb inlet in sump. DP-14 collects runoff from Basin B5. Collected flows are routed via SD16 to SD18.

DP-15 [Q5 $\left.=2 \mathrm{CFS} / \mathrm{Q}_{100}=4 \mathrm{CFS}\right]$
DP-15 is a proposed CDOT Type C grate inlet in sump. DP-15 collects runoff from Basin B6. Collected flows are routed via SD18 ($\left.\mathrm{Q}_{5}=23 \mathrm{CFS} / \mathrm{Q}_{100}=44 \mathrm{CFS}\right)$ into Pond B. The discharge point into Pond B shall have a concrete energy dissipater.

DP-16 [Q5 = 6 CFS/Q $100=11 \mathrm{CFS}$]
DP-16 is a proposed 10' wide Type R curb inlet in sump. DP-16 collects runoff from Basins OS12 and B7. Collected flows are routed via SD17 to SD18.

DP-24 [Q5 $\left.=2 \mathrm{CFS} / \mathrm{Q}_{100}=4 \mathrm{CFS}\right]$
DP-24 represents a series of landscape drains running behind the buildings along Venetucci Blvd. These landscape drains are intended to collect runoff and roofdrains in Basin B11. Collected flows are routed via SD27 to Pond B.

DP-17 [Q5 $=2$ CFS/Q $100=4 \mathrm{CFS}]$
DP-17 is a proposed 10 wide Type R curb inlet at grade. DP-17 collects runoff from Basin B8. Collected flows are routed via SD19 to SD20. Flow-by of $\mathrm{Q}_{5}=0 \mathrm{CFS} / \mathrm{Q}_{100}=0.1 \mathrm{CFS}$ will continue into Westmark Avenue.

DP-18 [Q5 = 0.7 CFS/Q100 $=1 \mathrm{CFS}]$

DP-18 is a proposed 5 ' wide Type R curb inlet at grade. DP-18 collects runoff from Basin B9. Collected flows are routed via SD20 $\left(\mathrm{Q}_{5}=2 \mathrm{CFS} / \mathrm{Q}_{100}=4 \mathrm{CFS}\right)$ into Pond B. The discharge point into Pond B shall have a concrete energy dissipater. Flow-by of $\mathrm{Q}_{5}=0 \mathrm{CFS} / \mathrm{Q}_{100}=0.1 \mathrm{CFS}$ will continue into Westmark Avenue.

DP-19 [Q5 $\left.=1 \mathrm{CFS} / \mathrm{Q}_{100}=\mathbf{2} \mathrm{CFS}\right]$
DP-19 represents the sheet flow into Pond B.
DP-20 $\left[\mathrm{Q}_{5}=40 \mathrm{CFS} / \mathrm{Q}_{100}=100 \mathrm{CFS}\right]$

DP-20 is a proposed $48^{\prime \prime}$ RCP culvert to pick up off-site flows tributary to the existing drainageway south of the site. The collected runoff is not routed through a Pond facility. Instead it bypasses the site via SD21. Flows in SD21 are combined with the discharge from Pond B in SD22 ($\mathrm{Q}_{5}=40 \mathrm{CFS} / \mathrm{Q}_{100}=105 \mathrm{CFS}$) will be routed under Venetucci Boulevard in a proposed $48^{\prime \prime}$ RCP storm tying to and existing 48" RCP stub that connects to an existing 102" RCP storm drain.

DP-21 [Q5 $\left.=29 \mathrm{CFS} / \mathrm{Q}_{100}=59 \mathrm{CFS}\right]$

DP-21 is a proposed pair of 20' wide Type R curb inlets at grade. DP-21 collects runoff from Basin OS-14 and existing flow-by from DP-OS11. DP-OS11 is the last in a series of at-grade inlets in or near Cheyenne Meadows Road. Venetucci Boulevard does not have capacity to carry all of the existing runoff. Runoff to the inlets at DP-21 is modeled at maximum street capacity. Collected flows are routed via SD24 to SD25. Flow-by of $\mathrm{Q}_{5}=0.2$ CFS/ $\mathrm{Q}_{100}=12 \mathrm{CFS}$ will continue to DP-22.

DP-22 $\left[\mathrm{Q}_{5}=1 \mathrm{CFS} / \mathrm{Q}_{100}=14 \mathrm{CFS}\right]$

DP-22 is a proposed 15 ' wide Type R curb inlet in sump. DP-22 collects runoff from Basin C1 and flow-by from DP-6 and DP-21. Collected flows are routed via SD23 to SD25. Flows in SD25 ($\mathrm{Q}_{5}=33 \mathrm{CFS} / \mathrm{Q}_{100}=73 \mathrm{CFS}$) are a combination of flows from SD9, SD23, and SD24. These combined storm pipes will tie to the existing CDOT Type D grate inlet in the roadside ditch near the site entrance. SD25 is an existing 48" RCP under Venetucci Boulevard connecting to the existing 90 " RCP running along the north side of Venetucci Boulevard.

DP-23 [Q5 = $\left.1 \mathrm{CFS} / \mathrm{Q}_{100}=6 \mathrm{CFS}\right]$

DP-23 is street flow in Venetucci Boulevard near the intersection with Westmark Avenue. This flow is less than the historic flow at existing conditions DP-5 ($\left.\mathrm{Q}_{5}=7 \mathrm{CFS} / \mathrm{Q}_{100}=17 \mathrm{CFS}\right)$.

DP-009 [Q5 = $\left.67 \mathrm{CFS} / \mathrm{Q}_{100}=172 \mathrm{CFS}\right]$

DP-009 represents the total flow from Basin 009 as referenced in the Drexel Barrell Report. The storm drain outfall infrastructure installed based on the Drexel Barrell Report anticipated flows of $\mathrm{Q}_{100}=270$ CFS. This means that the downstream infrastructure will not be additionally burdened by runoff from this site and even additional development in the Basin.

4-Step Process Discussion:

Step 1. Employ Runoff Reduction Practices.
The site layout was done to minimize paving and includes park and amenity areas. Site impervious area calculations are shown in the IRF spreadsheet in the Appendix.

Step 2. Implement BMPs That Provide WQCV with Slow Release.
Development of this site includes a full-spectrum detention facility providing WQCV and an outfall structure with a 40-hour drain time.

Step 3. Stabilize Drainageways.
There are no natural drainageways associated with this site. Drainage fees were be paid with the platting of this subdivision. These fees contribute to any necessary channel improvements within the major drainage basin.

Step 4. Implement Site Specific and Other Source Control BMPs.
There is no permanent outside storage associated with this site.

Summary:

The development of the Eldorado Springs apartment site accounts for up-stream off-site flows, on-site flows, and adjacent flows for a solution that can handle these flows and safely discharge them to adequately sized downstream stormwater infrastructure. The grading and drainage of this site is such that less than 1-acre of developed property drains off the site without going through a full-spectrum detention and stormwater quality facility.

DRAINAGE DESIGN CRITERIA

This drainage report was prepared in accordance to the criteria established in the County Drainage Criteria Manual, updated in May 2014.

WestWorks Engineering uses the rational method for drainage basin study areas of less than 90 acres. This methodology is implemented in accordance with the County Drainage Criteria Manual Guidelines.

For the Rational Method, flows are calculated for the 5-year and 100-year recurrence intervals. The average runoff coefficients, ' C ' values, are taken from Table 6-6 and the Intensity-DurationFrequency curves are taken from Figure 6-5 of the County Drainage Criteria Manual. Time of concentration for overland flow and storm drain or gutter flow are calculated per Section 3.2 of the County Drainage Criteria Manual. Calculations for the Rational Method are shown in the Appendix of this report. Detention volume is calculated in accordance with the County Drainage Criteria Manual Guidelines.

DRAINAGE FACILITY DESIGN

All inlets, storm drains, culverts, and open channels are sized using the procedures outlined in the City Drainage Criteria Manual. All of the drainage systems, including the streets, are designed to safely route the 5-year and 100-year storm flows. Hydraulic grade line calculations for the proposed storm drain design will be included with the storm drain constructions drawings.

FLOODPLAIN STATEMENT

No portion of this site is within a F.E.M.A. designated floodplain per Flood Insurance Rate Map Community Panel No. 08041C0741 G, effective December 7, 2018.

EROSION CONTROL PLAN

The El Paso County Drainage Criteria Manual specifies that an Erosion Control Plan and associated cost estimate be submitted in conjunction with the Final Drainage Report. WestWorks Engineering respectfully requests the Erosion Control Plan be submitted in conjunction with the Overlot Grading Plan and construction assurances posted prior to obtaining a grading permit.

OPINION OF PROBABLE COST

Private Drainage Facilities (non-reimbursable):

Item	Quantity	Unit Cost	Total Cost
18" RCP Storm Drain	$1,549 \mathrm{LF}$	$\$ 65 / \mathrm{LF}$	$\$ 100,425$
24" RCP Storm Drain	$1,041 \mathrm{LF}$	$\$ 78 / \mathrm{LF}$	$\$ 81,198$
30" RCP Storm Drain	376 LF	$\$ 9 / \mathrm{LF}$	$\$ 36,472$
5' Type R Inlet	8 EA	$\$ 4,000 / \mathrm{EA}$	$\$ 32,000$
10' Type R Inlet	2 EA	$\$ 5,500 / \mathrm{EA}$	$\$ 11,000$
15' Type R Inlet	1 EA	$\$ 8,000 / \mathrm{EA}$	$\$ 8,000$
20' Type R Inlet	1 EA	$\$ 8,000 / \mathrm{EA}$	$\$ 8,000$
CDOT Type C Inlet	5 EA	$\$ 3,300 / \mathrm{EA}$	$\$ 16,500$
Storm Manhole	8 EA	$\$ 4,600 / \mathrm{EA}$	$\$ 36,800$
Pond Outfall Structure	2 EA	$\$ 7,500 / \mathrm{EA}$	$\$ 15,000$
Riprap	33 CY	$\$ 75 / \mathrm{CY}$	$\$ 2,475$
		Sub-Total	$\$ 347,870$
		20\% Contingency	$\$ 69,574$
		TOTAL	$\$ 417,444$

Public Drainage Facilities (non-reimbursable):

Item	Quantity	Unit Cost	Total Cost
24" RCP Storm Drain	20 LF	$\$ 84 / \mathrm{LF}$	$\$ 1,680$
30" RCP Storm Drain	11 LF	$\$ 94 / \mathrm{LF}$	$\$ 1,034$
36" RCP Storm Drain	146 LF	$\$ 124 / \mathrm{LF}$	$\$ 18,104$
48" RCP Storm Drain	$1,225 \mathrm{LF}$	$\$ 178 / \mathrm{LF}$	$\$ 218,050$
15' Type R Inlet	1 EA	$\$ 8,000 / \mathrm{EA}$	$\$ 8,000$
20' Type R Inlet	2 EA	$\$ 8,000 / \mathrm{EA}$	$\$ 16,000$
Storm Manhole (Type 1)	4 EA	$\$ 8,600 / \mathrm{EA}$	$\$ 34,400$
		Sub-Total	$\$ 297,268$
		20\% Contingency	$\$ 59,454$
		TOTAL	$\$ 356,722$

This opinion of probable cost is made on the basis of experience and qualifications and represents WestWorks Engineering's best judgment as an experienced and qualified professional firm, familiar with the construction industry. WestWorks Engineering cannot and will not guarantee that actual construction costs will not vary from this opinion of probable cost.

DRAINAGE FEES

The study area is in the Stratton Drainage Basin. The site has already been platted and drainage fees paid at that time.

REFERENCE LIST

"Soil Survey of El Paso County Area, Colorado," prepared by United States Department of Agriculture Soil Conservation Service, issued June 1981
"FIRM Flood Insurance Rate Map," prepared by Federal Emergency Management Agency, effective date March 17, 1997

El Paso County Drainage Criteria Manual, updated May 2014
"Master Drainage Plan Harrison Street- I-25 Vicinity Cheyenne Mountain Ranch", by Hartzell-Pfeiffenberger and Associates, Inc. dated November 15, 1973
"Stratton and Fischer's Canyon Drainage Basin Planning Study, Draft Hydraulic Analysis," by Muller Engineering Co. dated May 31, 1990
"Master Drainage Report for Cheyenne Mountain Center and Final Drainage Report for Cheyenne Mountain Center Filing No. 1 and Cheyenne Meadows Road," by Drexel Barrell, dated October 1985
"Hydrology Report Stratton Drainage Basin Outfall Study," by Drexel Barrell, dated June 1994
"Preliminary and Final Drainage Report and Plan for World Arena Subdivision No. 1," by Obering, Wurth \& Associates, August 1994 revised March 1995
"Final Drainage Report for World Arena Subdivision Filing No. 5, Lot \#2," by Matrix Design Group, Inc., April 2008
"Drainage Report for Huckleberry Knoll Subdivision," by Drexel Barrell \& Company, dated June 15, 1983
"Roadway Improvement Package and Storm Sewer Package for US Highway 85/87 (Venetucci Boulevard)," by Drexel Barrell including the as-built revisions
"Final Drainage Report for Independence Place at Cheyenne Mountain Filing No. 1," prepared by Classic Consulting Engineers \& Surveyors, dated 1/27/2011

APPENDIX

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
59	Nunn clay loam, 0 to 3 percent slopes	C	0.6	4.0\%
82	Schamber-Razor complex, 8 to 50 percent slopes	A	14.7	96.0\%
Totals for Area of Interest			15.3	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

HYDROLOGIC CALCULATIONS

Time of Concentration Calcuations

Sub-Basin	Time of Concentration, Tc [min.]					Sub-Basin	Time of Concentration, Tc [min.]Flowline \mid L [ft.] H [ft.] $\mathrm{v}[\mathrm{ft} / \mathrm{s}]$ Tc [min.					Sub-Basin	Time of Concentration, Tc [min.]					
												Flowline	L [ft.]	H [ft.]	v [ft/s]	Tc [min.]		
A1	overland channel	$\begin{gathered} 1 \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	4	$\begin{aligned} & 0.3 \\ & \underline{0.3} \end{aligned}$	A6	overland channel	$\begin{aligned} & 110 \\ & 170 \end{aligned}$	$\begin{gathered} 4.0 \\ 12.0 \end{gathered}$	9	$\begin{gathered} 10.8 \\ \underline{0.3} \end{gathered}$		B1	overland channel	$\begin{aligned} & 10 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	6	$\begin{aligned} & 2.9 \\ & \underline{0.1} \end{aligned}$
	Total $\mathrm{Tc}=$						Total $\mathrm{Tc}=\mathbf{1 1}$						Total Tc =				5	
A2	overland channel	$\begin{array}{r} 70 \\ 50 \\ \hline \end{array}$	$\begin{gathered} 10.0 \\ 1.0 \\ \hline \end{gathered}$	5	$\begin{array}{r} 5.5 \\ \frac{0.2}{6} \\ \hline \end{array}$	A7	overland channel	$\begin{gathered} 30 \\ 130 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 0.5 \end{aligned}$	2	$\begin{array}{r} 4.6 \\ \frac{1.0}{6} \end{array}$	B2	overland channel	$\begin{aligned} & 70 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 1.0 \end{aligned}$	5	$\begin{aligned} & 5.9 \\ & \frac{0.2}{6} \end{aligned}$	
	Total $\mathrm{Tc}=6$						Total Tc $=\mathbf{6}$						Total Tc =					
A3	overland channel	$\begin{array}{r} 20 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & 0.6 \end{aligned}$	4	$\begin{aligned} & 5.2 \\ & \frac{0.3}{\mathbf{6}} \\ & \hline \end{aligned}$	A8	overland channel	$\begin{aligned} & 140 \\ & 120 \\ & \hline \end{aligned}$	$\begin{gathered} 42.0 \\ 4.0 \end{gathered}$	6	$\begin{array}{r} 6.1 \\ \underline{0.3} \\ \hline 6 \\ \hline \end{array}$	B3	overland channel	$\begin{aligned} & 20 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	5	$\begin{gathered} 4.2 \\ \frac{0.0}{5} \end{gathered}$	
	Total $\mathrm{Tc}=\mathbf{6}$						Total $\mathrm{Tc}=6$						Total $\mathrm{Tc}=$					
A4	overland channel	$\begin{array}{r} 10 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & 1.5 \\ & \hline \end{aligned}$	6	$\begin{gathered} 2.9 \\ \frac{0.1}{5} \\ \hline \end{gathered}$	A9	overland channel	$\begin{gathered} 250 \\ 1 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 48.0 \\ 1.0 \end{array}$	35	$\begin{gathered} 9.4 \\ \underline{0.0} \\ \hline 9 \end{gathered}$	B4	overland channel	$\begin{gathered} 20 \\ 160 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	4	$\begin{aligned} & 4.2 \\ & \frac{0.7}{\mathbf{5}} \end{aligned}$	
	Total $\mathrm{Tc}=\mathbf{5}$						Total $\mathrm{Tc}=9$						Total $\mathrm{Tc}=$					
A5	overland	40	6.0		4.1 $\underline{0.3}$		overland	1	1.0		$\begin{aligned} & 0.3 \\ & \underline{0.0} \end{aligned}$	B5	overland channel	7050	8.01.0	5	5.9	
	channel	90	2.0				channel	1	1.0	35							0.2	
	Total $\mathrm{Tc}=$						Total $\mathrm{Tc}=$						Total $\mathrm{Tc}=$				6	

Time of Concentration Calcuations

Sub-Basin	Time of Concentration, Tc [min.]					Sub-Basin	Time of Concentration, Tc [min.]					Sub-Basin	Time of Concentration, Tc [min.]				
					Tc [min.]		Flowline	$\mathrm{L}[\mathrm{ft} .]$	$\|\mathrm{H}[\mathrm{ft}]\|$	$\underline{\mathrm{v}[\mathrm{ft} / \mathrm{s}]}$	Tc [min.]						
B6	overland channel	$\begin{aligned} & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	5	4.2 $\underline{0.1}$ $\mathbf{5}$	C1	overland channel	$\begin{aligned} & 100 \\ & 320 \end{aligned}$	$\begin{gathered} 12.0 \\ 3.0 \end{gathered}$	3	$\begin{array}{r} 6.9 \\ \frac{1.6}{9} \\ \hline \end{array}$		overland channel	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	35	$\begin{aligned} & 0.3 \\ & \underline{0.0} \end{aligned}$
	Total $\mathrm{Tc}=\mathbf{5}$						Total $\mathrm{Tc}=\mathbf{9}$						Total $\mathrm{Tc}=$				
B7	overland channel	$\begin{aligned} & 50 \\ & 70 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 1.0 \end{aligned}$	4	$\begin{array}{r} 4.5 \\ \frac{0.3}{\mathbf{5}} \\ \hline \end{array}$	C2	overland channel	$\begin{aligned} & 110 \\ & 630 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	4	$\begin{aligned} & 8.0 \\ & 2.7 \\ & \hline 11 \\ & \hline \end{aligned}$		overland channel	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	35	$\begin{aligned} & 0.3 \\ & \underline{0.0} \end{aligned}$
	Total $\mathrm{Tc}=\mathbf{5}$						Total Tc $=11$						Total $\mathrm{Tc}=$				
B8	overland channel	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{gathered} 14.0 \\ 4.0 \end{gathered}$	9	$\begin{array}{r} 4.3 \\ \frac{0.1}{\mathbf{5}} \\ \hline \end{array}$		overland channel	1	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	35	$\begin{aligned} & 0.3 \\ & \underline{0.0} \end{aligned}$		overland channel	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	35	$\begin{aligned} & 0.3 \\ & \underline{0.0} \end{aligned}$
	Total $\mathrm{Tc}=\mathbf{5}$						Total Tc =						Total $\mathrm{Tc}=$				
B9	overland channel	$\begin{aligned} & 40 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	9	$\begin{aligned} & 4.7 \\ & \underline{0.1} \end{aligned}$		overland channel	1	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	35	$\begin{aligned} & 0.3 \\ & \underline{0.0} \end{aligned}$		overland channel	1	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	35	0.3 0.0
	Total $\mathrm{Tc}=$						Total $\mathrm{Tc}=$						Total $\mathrm{Tc}=$				5
B10	overland channel	$\begin{array}{r} 90 \\ 60 \end{array}$	$\begin{gathered} 14.0 \\ 5.0 \\ \hline \end{gathered}$	10	6.0 0.1	B11	overland channel		$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	6	3.3 0.1		overland channel	1	1.0 1.0	35	0.3 0.0
	Total $\mathrm{Tc}=$						Total $\mathrm{Tc}=$						Total $\mathrm{Tc}=$				

Subcatchment A1:

Runoff $=1.33 \mathrm{cfs} @ 0.08 \mathrm{hrs}$, Volume= 0.009 af , Depth= $0.38^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 5 -Year Duration=5 min, Inten=5.17 in/hr

Area (ac)	C	Description	
0.100	0.73	ROOFTOPS	
0.200	0.96	PAVEMENT	
0.300	0.88	Weighted Average	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 5.0 Direct Entry,			

Subcatchment A4:

Runoff $=1.27 \mathrm{cfs} @ 0.08 \mathrm{hrs}$, Volume $=0.009$ af, Depth $=0.36{ }^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr

Area (ac)	C	Description
0.100	0.73	ROOFTOP
0.200	0.90	PAVEMENT
0.300	0.84	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment A5:
Runoff $=0.95$ cfs @ 0.08 hrs, Volume $=0.007$ af, Depth= $0.27^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
El Paso County 5 -Year Duration=5 min, Inten=5.17 in/hr

Area (ac)	C	Description
0.100	0.08	LANDSCAPE
0.200	0.90	PAVEMENT
0.300	0.63	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment B1:
Runoff $=1.73$ cfs @ 0.08 hrs, Volume= 0.012 af, Depth= $0.37^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
El Paso County 5 -Year Duration=5 min, Inten=5.17 in/hr

Area (ac)	C	Description
0.100	0.73	ROOFTOP
0.300	0.90	PAVEMENT
0.400	0.86	Weighted Average

\(\left.$$
\begin{array}{rrrl}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
(\mathrm{feet})\end{array} & \begin{array}{r}\text { Slope } \\
(\mathrm{ft} / \mathrm{ft})\end{array} & \begin{array}{c}\text { Velocity } \\
(\mathrm{ft} / \mathrm{sec})\end{array}\end{array}
$$ \begin{array}{r}Capacity

(\mathrm{cfs})\end{array}\right)\) Description | Direct Entry, |
| :--- |

Subcatchment B11:

Runoff $=1.68 \mathrm{cfs}$ @ 0.08 hrs , Volume $=0.012$ af, Depth= $0.16{ }^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 5 -Year Duration=5 min, Inten=5.17 in/hr

Area (ac)	C	Description
0.400	0.73	ROOFTOP
0.500	0.08	LANDSCAPE
0.900	0.37	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment B3:

Runoff $=\quad 1.73$ cfs @ 0.08 hrs, Volume= 0.012 af, Depth= $0.37^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr

Subcatchment B4:

Runoff $=3.40 \mathrm{cfs} @ 0.08 \mathrm{hrs}$, Volume $=0.024$ af, Depth $=0.32{ }^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 5 -Year Duration=5 min, Inten=5.17 in/hr

Area (ac)	C	Description
0.100	0.08	LANDSCAPE
0.300	0.73	ROOFTOP
0.500	0.90	PAVEMENT
0.900	0.75	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment B5:

Runoff $=\quad 1.51 \mathrm{cfs} @ 0.08 \mathrm{hrs}$, Volume $=0.011$ af, Depth= $0.32{ }^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr

Area (ac)	C	Description
0.050	0.08	LANDSCAPE
0.100	0.73	ROOFTOP
0.250	0.90	PAVEMENT
0.400	0.75	Weighted Average

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct En

Subcatchment B7:

Runoff $=2.47 \mathrm{cfs} @ 0.08 \mathrm{hrs}$, Volume $=0.018 \mathrm{af}$, Depth= $0.30^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 5-Year Duration=5 min, Inten=5.17 in/hr

Area (ac)	C	Description
0.150	0.08	LANDSCAPE
0.100	0.73	ROOFTOP
0.450	0.90	PAVEMENT
0.700	0.70	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment B8:

Runoff $=1.94 \mathrm{cfs} @ 0.08 \mathrm{hrs}$, Volume= $\quad 0.014$ af, Depth= $0.24{ }^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs
El Paso County 5 -Year Duration=5 min, Inten=5.17 in/hr

Area (ac)	C	Description
0.300	0.08	LANDSCAPE
0.400	0.90	PAVEMENT
0.700	0.55	Weighted Averag

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment B9:
Runoff $=0.65 \mathrm{cfs} @ \quad 0.08 \mathrm{hrs}$, Volume= $\quad 0.005$ af, Depth= $0.28{ }^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 5 -Year Duration=5 min, Inten=5.17 in/hr

Area (ac)	C	Description
0.050	0.08	LANDSCAPE
0.050	0.73	ROOFTOP
0.100	0.90	PAVEMENT
0.200	0.65	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment OS-7A:

Runoff $=\quad 7.04 \mathrm{cfs} @ 0.08 \mathrm{hrs}$, Volume= $\quad 0.050$ af, Depth= $0.22^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5 -Year Duration=5 min, Inten=5.17 in/hr

Area (ac)	C	Description
2.800	0.50	FROM FDR

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD19:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.700 ac, Inflow Depth $=0.23^{\prime \prime}$	for $5-$ Year event	
Inflow	$=$	$1.60 \mathrm{cfs} @$	0.07 hrs, Volume $=$
Outflow	$=$	$1.60 \mathrm{cfs} @$	0.07 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD20:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.900 ac, Inflow Depth $=0.24 "$	for $5-$ Year event	
Inflow	$=$	$2.25 \mathrm{cfs} @$	0.08 hrs, Volume $=$
Outflow	$=$	$2.25 \mathrm{cfs} @$	0.08 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD27:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.900 ac , Inflow Depth $=0.16 "$	for	$5-$ Year event
Inflow	$=$	$1.68 \mathrm{cfs} @$	0.08 hrs, Volume $=$
Outflow	$=$	$1.68 \mathrm{cfs} @$	0.08 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD4:
[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.300 ac, Inflow Depth $=0.36$ "	for	$5-$ Year event
Inflow	$=$	$1.27 \mathrm{cfs} @$	0.08 hrs, Volume
Outflow	$=$	$1.27 \mathrm{cfs} @$	0.08 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 4:

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 5:

Inflow Area $=$	0.300 ac , Inflow Depth $=0.27 "$	for	$5-$ Year event
Inflow	$=$	$0.95 \mathrm{cfs} @$	0.08 hrs, Volume
Primary	$=$	$0.95 \mathrm{cfs} @$	0.08 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 10:

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 12:

Inflow Area $=$	0.400 ac, Inflow Depth $=0.37^{\prime \prime}$	for $5-$ Year event	
Inflow	$=$	$1.73 \mathrm{cfs} @$	0.08 hrs , Volume $=$
Primary	$=$	$1.73 \mathrm{cfs} @$	0.08 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 14:

Inflow Area $=$	0.400 ac, Inflow Depth $=0.32 "$	for $5-$ Year event	
Inflow	$=$	$1.51 \mathrm{cfs} @$	0.08 hrs, Volume $=$
Primary	$=$	$1.51 \mathrm{cfs} @$	0.08 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

5YR-DEVELOPED
Prepared by WestWorks Engineering
HydroCAD® $7.00 \mathrm{~s} / \mathrm{n} 002053$ © 1986-2003 Applied Microcomputer Systems

Link 17:

Inflow Area $=$	0.700 ac, Inflow Depth $=0.24 "$	for $5-$ Year event	
Inflow	$=$	$1.94 \mathrm{cfs} @$	0.08 hrs, Volume $=$
Primary	$=$	$1.60 \mathrm{cfs} @$	0.07 hrs , Volume=
Secondary $=$	$0.34 \mathrm{cfs} @$	0.08 hrs , Volume $=$	0.013 af, Atten=
		0.001 af	

Primary outflow $=$ Inflow below 1.60 cfs , Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 18:

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 24:

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Subcatchment A2:

Runoff $=1.66$ cfs @ 0.10 hrs , Volume= $\quad 0.014$ af, Depth= $0.41^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs
El Paso County 5 -Year Duration=6 min, Inten=4.90 in/hr

Area (ac)	C	Description
0.150	0.73	ROOFTOP
0.250	0.90	PAVEMENT
0.400	0.84	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment A3:
Runoff $=\quad 1.62$ cfs @ 0.10 hrs, Volume $=0.013$ af, Depth= $0.40^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 5 -Year Duration=6 min, Inten=4.90 in/hr

Area (ac)	C	Description
0.200	0.73	ROOFTOP
0.200	0.90	PAVEMENT
0.400	0.82	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment A7:

Runoff $=1.28 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume= $\quad 0.011$ af, Depth= $0.32^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs
El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr

Area (ac)	C	Description
0.100	0.08	LANDSCAPE
0.100	0.73	ROOFTOP
0.200	0.90	PAVEMENT
0.400	0.65	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment A8:

Runoff $=0.52 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume $=\quad 0.004$ af, Depth= $0.17^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 5 -Year Duration=6 min, Inten=4.90 in/hr

Area (ac)	C	Description
0.200	0.08	LANDSCAPE
0.100	0.90	PAVEMENT
0.300	0.35	Weighted Average

Description

Tc (min)	Length $($ feet $)$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment B10:

Runoff $=0.71 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume $=0.006$ af, Depth $=0.12{ }^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 5 -Year Duration=6 min, Inten=4.90 in/hr

Area (ac)	C	Description
0.450	0.08	LANDSCAPE
0.150	0.73	ROOFTOP
0.600	0.24	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment B2:
Runoff $=1.44 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume= $\quad 0.012$ af, Depth= $0.36^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 5 -Year Duration=6 min, Inten=4.90 in/hr

Area (ac)	C	Description
0.050	0.08	LANDSCAPE
0.150	0.73	ROOFTOP
0.200	0.90	PAVEMENT
0.400	0.73	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment B6:

Runoff $=1.90 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume= $\quad 0.016$ af, Depth= $0.38{ }^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 5 -Year Duration=6 min, Inten=4.90 in/hr

Area (ac)	C	Description
0.050	0.08	LANDSCAPE
0.150	0.73	ROOFTOP
0.300	0.90	PAVEMENT
0.500	0.77	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment OS-12:

$$
\text { Runoff }=3.21 \mathrm{cfs} @ 0.10 \mathrm{hrs} \text {, Volume }=\quad 0.027 \text { af, Depth= } 0.24^{\prime \prime}
$$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 5-Year Duration=6 min, Inten=4.90 in/hr
Area (ac) C Description
$1.300 \quad 0.50$ FROM FDR

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, FROM FDR |
| :--- |

Subcatchment OS-13A:

Runoff $=1.82 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume $=0.015 \mathrm{af}$, Depth= $0.11^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
El Paso County 5 -Year Duration=6 min, Inten=4.90 in/hr

Area (ac)	C	Description	
0.300	0.90	PAVEMENT/ROOF	
1.300	0.08	LANDSCAPE	
1.600	0.23	Weighted Average	
Tc Length Slope (min) (feet) (ft/ft) (ft/sec)	Capacity (cfs)	Description	
6.0			

Subcatchment OS-13B:

Runoff $=0.37$ cfs @ 0.10 hrs , Volume $=\quad 0.003$ af, Depth= $0.07{ }^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 5 -Year Duration=6 min, Inten=4.90 in/hr

Area (ac)	C	Description
0.500	0.15	LANDSCAPE

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | |
| :--- |
| 6.0 |

Subcatchment OS-13C:

Runoff $=\quad 4.69 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume $=0.039$ af, Depth $=0.12^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 5 -Year Duration=6 min, Inten=4.90 in/hr

Area (ac)	C	Description
0.800	0.90	PAVEMENT/ROOF
3.000	0.08	LANDSCAPE
3.800	0.25	Weighted Average

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD11:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.400 ac , Inflow Depth $=0.36 "$	for	$5-$ Year event
Inflow	$=$	$1.44 \mathrm{cfs} @$	0.10 hrs, Volume $=$
Outflow	$=$	$1.44 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD12:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.800 ac , Inflow Depth $=0.39$ "	for $5-$ Year event	
Inflow	$=$	$3.15 \mathrm{cfs} @$	0.10 hrs , Volume=
Outflow	$=$	$3.15 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD13:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	1.200 ac, Inflow Depth $=0.40 "$	for $5-$ Year event
Inflow	$=$	$4.87 \mathrm{cfs} @$
Outflow	$=$	$4.87 \mathrm{cfs} @$
		0.10 hrs, Volume $=$
0.040 af		

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD17:

[40] Hint: Not Described (Outflow=Inflow)
 Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD2:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	1.200 ac, Inflow Depth $=0.28 "$	for $5-$ Year event
Inflow	$=$	$3.34 \mathrm{cfs} @$
Outflow	$=$	$3.34 \mathrm{cfs} @$
		0.10 hrs , Volume $=$
Rrs, Volume $=$	0.028 af	
		0.028 af , Atten= $=0 \%$, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD28:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	3.80	flow Depth = 0.12"	for 5-
Inflow	4.69 cfs @	0.10 hrs , Volume=	0.039 af
Outflow	4.69 cfs @	0.10 hrs , Volume=	0.039 af ,

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$
Reach SD3:
[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	1.600 ac, Inflow Depth $=0.31 "$	for	$5-$ Year event
Inflow	$=$	$4.96 \mathrm{cs} @$	0.10 hrs , Volume $=$
Outflow	$=$	$4.96 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Reach SD5:
[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	1.900 ac , Inflow Depth $=0.32$ "	for	$5-\mathrm{Year}$ event
Inflow	$=$	$6.21 \mathrm{cfs} @$	0.10 hrs, Volume $=$
Outflow	$=$	$6.21 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs

Reach SD6:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	2.200 ac , Inflow Depth $=0.32$ "	for	$5-$ Year event
Inflow	$=$	$7.15 \mathrm{cfs} @$	0.10 hrs , Volume $=$
Outflow	$=$	$7.15 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 1:

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 2:

Inflow Area $=$	0.400 ac, Inflow Depth $=0.41 "$	for $5-$ Year event	
Inflow	$=$	$1.66 \mathrm{cfs} @$	0.10 hrs , Volume $=$
Primary	$=$	$1.66 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 3:

Inflow Area $=$	0.400 ac , Inflow Depth $=0.40 "$	for	$5-\mathrm{Year}$ event
Inflow	$=$	$1.62 \mathrm{cfs} @$	0.10 hrs, Volume $=$
Primary	$=$	$1.62 \mathrm{cfs} @$	0.10 hrs , Volume=

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 7:

Inflow Area $=$	0.400 ac , Inflow Depth $=0.32$ "	for	$5-\mathrm{Year}$ event
Inflow	$=$	$1.28 \mathrm{cfs} @$	0.10 hrs , Volume $=$
Primary	$=$	$1.28 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 8:

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 11:

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 15:

Inflow Area $=$	0.500 ac , Inflow Depth $=0.38^{\prime \prime}$	for	$5-$ Year event
Inflow	$=$	$1.90 \mathrm{cfs} @$	0.10 hrs , Volume $=$
Primary	$=$	$1.90 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 16:

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 19:

Inflow Area $=$	0.600 ac, Inflow Depth $=0.12 "$	for	$5-$ Year event
Inflow	$=$	$0.71 \mathrm{cfs} @$	0.10 hrs, Volume=
Primary	$=$	$0.71 \mathrm{cfs} @$	0.10 hrs , Volume=

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 25:

Inflow Area $=$	3.800 ac , Inflow Depth $=0.12$ "	for $5-$ Year event
Inflow	$=$	$4.69 \mathrm{cfs} @$
Primary	$=$	$4.69 \mathrm{cfs} @$
	0.10 hrs , Volume $=$	0.039 af

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Subcatchment OS-11:

Runoff $=\quad 7.06 \mathrm{cfs} @ \quad 0.12 \mathrm{hrs}$, Volume $=\quad 0.070 \mathrm{af}$, Depth= $0.30^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 5 -Year Duration=7 min, Inten=4.66 in/hr

Area (ac)	C	Description
2.800	0.55	FROM FDR

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Reach SD14:

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD15:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	4.	low Depth = 0.33"	for 5-Year event
Inflow	11.57 cfs @	0.12 hrs , Volume=	0.114 af
Outflow	11.57 cfs @	0.12 hrs , Volume=	0.114 af, Atten= 0\%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD16:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	5.300 ac ,	Inflow Depth = 0.36"	for 5-Year event
Inflow	16.04 cfs @	0.11 hrs, Volume=	0.158 af
Outflow	16.04 cfs @	0.11 hrs, Volume=	0.158 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD18:

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD26:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	10.200 ac ,	Inflow Depth = 0.04"	for 5-Year event
Inflow	0.16 cfs @	0.23 hrs, Volume=	0.037 af
Outflow	0.16 cfs @	0.23 hrs , Volume=	0.037 af, Atten= 0\%, Lag= 0.0

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 13:

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

5YR-DEVELOPED
Prepared by WestWorks Engineering
El Paso County 5-Year Duration=9 min, Inten=4.29 in/hr
HydroCAD® $7.00 \mathrm{~s} / \mathrm{n} 002053$ © 1986-2003 Applied Microcomputer Systems

Subcatchment A9:

Runoff $=0.32$ cfs @ 0.15 hrs , Volume $=0.004$ af, Depth $=0.10^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 5 -Year Duration=9 min, Inten=4.29 in/hr

Area (ac)	C	Description
0.500	0.15	LANDSCAPE

Link 9:

Inflow Area $=$	0.500 ac , Inflow Depth $=0.10 "$	for	$5-$ Year event
Inflow	$=$	$0.32 \mathrm{cfs} @$	0.15 hrs , Volume
Primary	$=$	$0.32 \mathrm{cfs} @$	0.15 hrs , Volume=

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Prepared by WestWorks Engineering

Subcatchment A6:

Runoff $=\quad 2.87 \mathrm{cfs} @ \quad 0.18 \mathrm{hrs}$, Volume= $\quad 0.044$ af, Depth= $0.48{ }^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 5-Year Duration=11 min, Inten=3.99 in/hr

Area (ac)	C	Description
0.300	0.08	LANDSCAPE
0.100	0.73	ROOFTOP
0.700	0.90	PAVEMENT
1.100	0.66	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment C2:

Runoff $=2.33 \mathrm{cfs} @ 0.18 \mathrm{hrs}$, Volume $=0.036 \mathrm{af}$, Depth= $0.36^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs
El Paso County 5 -Year Duration=11 min, Inten=3.99 in/hr

Area (ac)	C	Description
0.600	0.08	LANDSCAPE
0.600	0.90	PAVEMENT
1.200	0.49	Weighted Average

Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
11.0

Direct Entry,

Reach SD7:

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD8:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.400 ac	flow Depth $=0.31{ }^{\prime \prime}$	for 5-Y
Inflow	5.82 cfs @	0.18 hrs , Volume=	0.089 af
Outflow	5.82 cfs @	0.18 hrs , Volume=	0.089 af ,

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs

Reach SD9:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	6.100 ac, Inflow Depth $=0.05 "$	for	$5-$ Year event
Inflow	$=$	$0.11 \mathrm{cfs} @$	0.36 hrs , Volume $=$
Outflow	$=$	$0.11 \mathrm{cfs} @$	0.36 hrs, Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 6:

Inflow Area $=$	2.700 ac, Inflow Depth $=0.30 "$	for	$5-$ Year event
Inflow $=$	$4.35 \mathrm{cfs} @$	0.18 hrs, Volume	0.067 af
Primary $=$	$4.35 \mathrm{cfs} @$	0.18 hrs, Volume=	0.067 af , Atten= 0%, Lag $=0.0 \mathrm{~min}$
Secondary $=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume=	0.000 af

Primary outflow $=$ Inflow below 4.40 cfs , Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 23:

Inflow Area $=$	1.200 ac, Inflow Depth $=0.36 "$	for $5-$ Year event	
Inflow	$=$	$2.33 \mathrm{cfs} @$	0.18 hrs, Volume
Primary	$=$	$2.33 \mathrm{cfs} @$	0.18 hrs, Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD23:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.600 ac , Inflow Depth $=0.50 "$	for $5-$ Year event	
Inflow	$=$	$0.92 \mathrm{cfs} @$	0.15 hrs, Volume $=$
Outflow	$=$	$0.92 \mathrm{cfs} @$	0.15 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD24:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	78.100 ac , Inflow Depth $=0.12^{\prime \prime}$	for $5-$ Year event	
Inflow	$=$	$28.57 \mathrm{cfs} @$	0.33 hrs, Volume
Outflow	$=$	$28.57 \mathrm{cfs} @$	0.33 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD25:

[40] Hint: Not Described (Outflow=Inflow)

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Link 21:

Inflow Area =	78.100 ac,	Inflow Depth = 0.12"	for 5-Year event
Inflow	28.57 cfs @	0.33 hrs , Volume=	0.781 af
Primary	28.57 cfs @	0.33 hrs , Volume=	0.781 af, Atten= 0\%, Lag= 0.0 min
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0.000 af

Primary outflow $=$ Inflow below 28.80 cfs , Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 22:

Inflow Area $=$	0.600 ac , Inflow Depth $=0.50$ "	for
I-Year event		
Inflow	$=$	$0.92 \mathrm{cfs} @$
Primary	$=$	0.15 hrs, Volume
	$0.92 \mathrm{cfs} @$	0.15 hrs, Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

5YR-DEVELOPED

Prepared by WestWorks Engineering

Link DP-OS11: FLOW-BY

Inflow Area $=$	65.500 ac , Inflow Depth $=0.06 "$	for $5-$ Year event	
Inflow	$=$	$12.00 \mathrm{cfs} @$	0.33 hrs, Volume $=$
Primary	$=$	$12.00 \mathrm{cfs} @$	0.33 hrs , Volume=

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

| 23 Point hydrograph entered manually, $\mathrm{To}=0.00 \mathrm{hrs}, \mathrm{dt}=0.03$ | hrs, Area | $65.500 \mathrm{ac}, \mathrm{cfs}=$ | | | | | | | |
| :---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 1.10 | 2.20 | 3.30 | 4.40 | 5.50 | 6.50 | 7.60 | 8.70 | 9.80 |
| 10.90 | 12.00 | 10.90 | 9.80 | 8.70 | 7.60 | 6.50 | 5.50 | 4.40 | 3.30 |
| 2.20 | 1.10 | 0.00 | | | | | | | |

Reach SD21:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	2.800 ac, Inflow Depth $=5.96$	for	$5-\mathrm{Year}$ event	
Inflow	$=$	$39.95 \mathrm{cs} @$	0.42 hrs , Volume $=$	1.390 af
Outflow	$=$	$39.95 \mathrm{cfs} @$	0.42 hrs , Volume $=$	1.390 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD22:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	13.000 ac,	Inflow Depth $=1.35 "$	for
I-Year event			
Inflow	$=$	$40.26 \mathrm{cfs} @$	0.42 hrs , Volume
Outflow	$=$	$40.26 \mathrm{cfs} @$	0.42 hrs, Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Link 009: BASIN 009

Inflow Area $=$	101.600 ac , Inflow Depth $=0.29 "$	for	$5-$ Year event
Inflow	$=$	$66.86 \mathrm{cfs} @$	0.41 hrs, Volume
Primary	$=$	$66.86 \mathrm{cfs} @$	0.41 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 20:

Inflow Area =	2.800 ac ,	flow Depth $=5.96 "$	for 5-Year event
Inflow	39.95 cfs @	0.42 hrs , Volume=	1.390 af
Primary	39.95 cfs @	0.42 hrs , Volume=	1.390 af, Atten= 0\%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link DP-OS2:

Inflow	$=$	$36.20 \mathrm{cfs} @$	0.42 hrs, Volume $=$
Primary	$=$	$36.20 \mathrm{cfs} @$	0.42 hrs, Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

| 29 Point hydrograph entered manually, $\mathrm{To}=0.00 \mathrm{hrs}, \mathrm{dt}=0.03 \mathrm{hrs}$, Area= $0.000 \mathrm{ac}, \mathrm{cfs}=$ | | | | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.00 | 2.60 | 5.20 | 7.80 | 10.30 | 12.90 | 15.50 | 18.10 | 20.70 | 23.30 |
| 25.90 | 28.40 | 31.00 | 33.60 | 36.20 | 33.60 | 31.00 | 28.40 | 25.90 | 23.30 |
| 20.70 | 18.10 | 15.50 | 12.90 | 10.30 | 7.80 | 5.20 | 2.60 | 0.00 | |

Subcatchment A1:

Runoff $=\quad 2.31 \mathrm{cfs} @ 0.08 \mathrm{hrs}$, Volume= $\quad 0.016$ af, Depth $=0.66{ }^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr

Area (ac)	C	Description
0.100	0.81	ROOFTOPS
0.200	0.96	PAVEMENT
0.300	0.91	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment A4:

Runoff $=\quad 2.31 \mathrm{cfs} @ 0.08$ hrs, Volume $=0.016$ af, Depth $=0.66{ }^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr

Area (ac)	C	Description
0.100	0.81	ROOFTOP
0.200	0.96	PAVEMENT
0.300	0.91	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment A5:
Runoff $=\quad 1.93$ cfs @ 0.08 hrs, Volume $=0.014$ af, Depth= $0.55^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr

Area (ac)	C	Description
0.100	0.35	LANDSCAPE
0.200	0.96	PAVEMENT
0.300	0.76	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment B1:

Runoff $=\quad 3.11 \mathrm{cfs} @ 0.08$ hrs, Volume $=0.022$ af, Depth $=0.66{ }^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr

Area (ac)	C	Description
0.100	0.81	ROOFTOP
0.300	0.96	PAVEMENT
0.400	0.92	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment B11:

Runoff $=\quad 4.18 \mathrm{cfs} @ \quad 0.08 \mathrm{hrs}$, Volume= 0.030 af , Depth= $0.40^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr

Area (ac)	C	Description
0.400	0.81	ROOFTOP
0.500	0.35	LANDSCAPE
0.900	0.55	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Subcatchment B3:

Runoff $=3.11$ cfs @ 0.08 hrs, Volume $=0.022$ af, Depth= $0.66{ }^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County $100-$ Year Duration $=5 \mathrm{~min}$, Inten $=8.68 \mathrm{in} / \mathrm{hr}$
Area (ac) C Description
$0.100 \quad 0.81$ ROOFTOP
$0.300 \quad 0.96 \quad$ PAVEMENT
$0.400 \quad 0.92$ Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Subcatchment B4:

Runoff $=\quad 6.39 \mathrm{cfs} @ 0.08 \mathrm{hrs}$, Volume $=0.045$ af, Depth= $0.61^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County $100-$ Year Duration $=5 \mathrm{~min}$, Inten=8.68 in $/ \mathrm{hr}$

Area (ac)	C	Description
0.100	0.35	LANDSCAPE
0.300	0.81	ROOFTOP
0.500	0.96	PAVEMENT
0.900	0.84	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment B5:
Runoff $=\quad 2.87$ cfs @ 0.08 hrs , Volume $=0.020$ af, Depth= $0.61^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr

Area (ac)	C	Description
0.050	0.35	LANDSCAPE
0.100	0.81	ROOFTOP
0.250	0.96	PAVEMENT
0.400	0.85	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment B7:

Runoff $=\quad 4.79 \mathrm{cfs} @ 0.08 \mathrm{hrs}$, Volume= 0.034 af, Depth= $0.58^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 100 -Year Duration=5 min, Inten=8.68 in $/ \mathrm{hr}$

Area (ac)	C	Description
0.150	0.35	LANDSCAPE
0.100	0.81	ROOFTOP
0.450	0.96	PAVEMENT
0.700	0.81	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$
5.0	Capacity (cfs)	Description	
Subcatchment B8:			
Runoff $=$	$4.14 \mathrm{cfs} @ 0.08 \mathrm{hrs}$, Volume=	0.029 af, Depth= $0.51^{\prime \prime}$	

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 100 -Year Duration=5 min, Inten=8.68 in/hr

Area (ac)	C	Description
0.300	0.35	LANDSCAPE
0.400	0.96	PAVEMENT
0.700	0.70	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment B9:

Runoff $=\quad 1.30$ cfs @ 0.08 hrs , Volume= 0.009 af, Depth= $0.56^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County $100-$ Year Duration $=5 \mathrm{~min}$, Inten $=8.68 \mathrm{in} / \mathrm{hr}$

Area (ac)	C	Description
0.050	0.35	LANDSCAPE
0.050	0.81	ROOFTOP
0.100	0.96	PAVEMENT
0.200	0.77	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Subcatchment OS-7A:

Runoff $=14.19$ cfs @ 0.08 hrs, Volume $=0.101$ af, Depth $=0.43^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 100-Year Duration=5 min, Inten=8.68 in/hr

Area (ac)	C	Description
2.800	0.60	FROM FDR

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, FROM FDR |
| :--- |
| 5.0 |

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.400 ac , Inflow Depth $=0.66 "$	for $100-$ Year event
Inflow	$=$	$3.11 \mathrm{cfs} @$
Outflow	$=$	3.08 hrs, Volume $=$
	$3.11 \mathrm{cfs} @$	0.08 hrs, Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD19:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.700 ac ,	Inflow Depth $=0.41^{\prime \prime}$	for
100	Year event		
Inflow	$=$	$2.40 \mathrm{cfs} @$	0.05 hrs, Volume $=$
Outflow	$=$	$2.40 \mathrm{cfs} @$	0.05 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD20:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.900 ac, Inflow Depth $=0.44 "$	for $100-$ Year event	
Inflow	$=$	$3.61 \mathrm{cfs} @$	0.08 hrs, Volume $=$
Outflow	$=$	$3.61 \mathrm{cfs} @$	0.08 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD27:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.900 ac, Inflow Depth $=0.40 "$	for $100-$ Year event	
Inflow	$=$	$4.18 \mathrm{cs} @$	0.08 hrs, Volume $=$
Outflow	$=$	$4.18 \mathrm{cfs} @$	0.08 hrs, Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD4:
[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.300 ac, Inflow Depth $=0.66$ for	100-Year event	
Inflow	$=$	$2.31 \mathrm{css} @$	0.08 hrs , Volume $=$
Outflow	$=$	$2.31 \mathrm{cfs} @$	0.08 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 4:

Inflow Area =	0.300 ac	flow Depth $=0.66{ }^{\prime \prime}$	for 100-Year event
Inflow	2.31 cfs @	0.08 hrs, Volume=	0.016 af
Primary	2.31 cfs @	0.08 hrs , Volume=	0.016 af, Atten= 0\%, Lag= 0.0 m

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 5:

Inflow Area $=$	0.300 ac, Inflow Depth $=0.55^{\prime \prime}$	for $100-$ Year event
Inflow	$=$	$1.93 \mathrm{cfs} @$
Primary	$=$	$1.93 \mathrm{cfs} @$
	0.08 hrs, Volume $=$	0.014 af

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 10:

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 12:

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 14:

Inflow Area $=$	0.400 ac , Inflow Depth $=0.61 "$	for $100-$ Year event
Inflow	$=$	$2.87 \mathrm{cfs} @$
Primary	$=$	0.08 hrs, Volume
	$2.87 \mathrm{cfs} @$	0.08 hrs, Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 17:

Inflow Area $=$	0.700 ac, Inflow Depth $=0.51 "$	for $100-$ Year event	
Inflow	$=$	$4.14 \mathrm{cfs} @$	0.08 hrs, Volume $=$
Primary	$=$	$2.40 \mathrm{cfs} @$	0.05 hrs , Volume $=$
Secondary $=$	$1.74 \mathrm{cfs} @$	0.08 hrs , Volume $=$	0.024 af, Atten $=42 \%$, Lag $=0.0 \mathrm{~min}$
		0.006 af	

Primary outflow $=$ Inflow below 2.40 cfs , Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Link 18:

Inflow Area =	0.200 ac ,	Inflow Depth = 0.56"	for 100-Year event
Inflow	1.30 cfs @	0.08 hrs , Volume=	0.009 af
Primary	1.21 cfs @	0.08 hrs , Volume=	0.009 af , Atten $=7 \%$, Lag= 0.1 min
Secondary =	0.10 cfs @	0.08 hrs, Volume=	0.000 af

Primary outflow $=$ Inflow below 1.20 cfs , Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 24:

Inflow Area $=$	0.900 ac, Inflow Depth $=0.40$ "	for $100-$ Year event	
Inflow	$=$	$4.18 \mathrm{cs} @$	0.08 hrs, Volume $=$
Primary	$=$	$4.18 \mathrm{cfs} @$	0.08 hrs, Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Subcatchment A2:

Runoff $=2.98 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume $=\quad 0.025$ af, Depth= $0.74^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr

Area (ac)	C	Description
0.150	0.81	ROOFTOP
0.250	0.96	PAVEMENT
0.400	0.90	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment A3:

Runoff $=2.92 \mathrm{cfs} @ \quad 0.10 \mathrm{hrs}$, Volume $=0.024$ af, Depth $=0.72^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 100-Year Duration=6 min, Inten $=8.22 \mathrm{in} / \mathrm{hr}$

Area (ac)	C	Description
0.200	0.81	ROOFTOP
0.200	0.96	PAVEMENT
0.400	0.88	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment A7:

Runoff $=2.55 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume= 0.021 af, Depth= $0.63^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs
El Paso County $100-$ Year Duration $=6 \mathrm{~min}$, Inten $=8.22 \mathrm{in} / \mathrm{hr}$

Area (ac)	C	Description
0.100	0.35	LANDSCAPE
0.100	0.81	ROOFTOP
0.200	0.96	PAVEMENT
0.400	0.77	Weighted Average

| Tc
 (min) | Length
 $($ feet $)$ | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment A8:

Runoff $=\quad 1.37$ cfs @ 0.10 hrs, Volume $=0.011$ af, Depth= $0.45^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr

Area (ac)	C	Description
0.200	0.35	LANDSCAPE
0.100	0.96	PAVEMENT
0.300	0.55	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment B10:

Runoff $=2.34 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume $=0.019 \mathrm{af}$, Depth $=0.39^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs
El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr

Area (ac)	C	Description
0.450	0.35	LANDSCAPE
0.150	0.81	ROOFTOP
0.600	0.47	Weighted Average

Tc (min)
6.0

Subcatchment B2:

Runoff $=\quad 2.75 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume= 0.023 af , Depth= $0.68^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span=0.00-3.00 hrs, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr

Area (ac)	C	Description
0.050	0.35	LANDSCAPE
0.150	0.81	ROOFTOP
0.200	0.96	PAVEMENT
0.400	0.83	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment B6:

Runoff $=3.52 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume= 0.029 af, Depth= $0.70^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County $100-$ Year Duration $=6 \mathrm{~min}$, Inten $=8.22 \mathrm{in} / \mathrm{hr}$

Area (ac)	C	Description
0.050	0.35	LANDSCAPE
0.150	0.81	ROOFTOP
0.300	0.96	PAVEMENT
0.500	0.85	Weighted Average

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Subcatchment OS-12:

Runoff $=6.47 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume $=0.053 \mathrm{af}$, Depth= $0.49{ }^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr
Area (ac) C Description
$1.300 \quad 0.60 \quad$ FROM FDR

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment OS-13A:

Runoff $=6.10 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume $=0.050$ af, Depth $=0.38^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr

Area (ac)	C	Description
0.300	0.96	PAVEMENT/ROOF
1.300	0.35	LANDSCAPE
1.600	0.46	Weighted Average

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment OS-13B:

Runoff
$=\quad 1.66 \mathrm{cfs} @$
0.10 hrs , Volume=
0.014 af, Depth $=0.33{ }^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr

Area (ac)	C	Description
0.500	0.40	LANDSCAPE

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ |
| ---: | ---: | ---: | ---: | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, |
| :--- |

Subcatchment OS-13C:
Runoff $=\quad 15.12 \mathrm{cfs} @ \quad 0.10 \mathrm{hrs}$, Volume $=\quad 0.125$ af, Depth $=0.39{ }^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr

Area (ac)	C	Description	
0.800	0.96	PAVEMENT/ROOF	
3.000	0.35	LANDSCAPE	
3.800	0.48	Weighted Average	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, FROM FDR			

Subcatchment OS-14:

Runoff $=54.58 \mathrm{cfs} @ 0.10 \mathrm{hrs}$, Volume $=0.451$ af, Depth= $0.43^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
El Paso County 100-Year Duration=6 min, Inten=8.22 in/hr

Area (ac)	C	Description
12.600	0.54	FROM FDR

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Reach SD1:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.800 ac,	Inflow Depth $=0.49 "$	for $100-$ Year event
Inflow	$=$	$3.94 \mathrm{cfs} @$	0.10 hrs , Volume $=$
Outflow	$=$	$3.94 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD11:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	0.400 ac, Inflow Depth $=0.68$ "	for $100-$ Year event	
Inflow	$=$	$2.75 \mathrm{cfs} @$	0.10 hrs, Volume $=$
Outflow	$=$	$2.75 \mathrm{cfs} @$	0.10 hrs, Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD12:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.800	flow Depth $=0.72$ "	for 100-Year event
Inflow	5.82 cfs @	0.10 hrs , Volume=	0.048 af
Outflow	5.82 cfs @	0.10 hrs , Volume=	0.048 af , Atten= 0\%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD13:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	1.200 ac, Inflow Depth $=0.73^{\prime \prime}$	for $100-$ Year event
Inflow	$=$	$8.90 \mathrm{cfs} @$
Outflow	$=$	8.10 hrs , Volume $=$
	$80.073 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD17:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	2.000 ac,	Inflow Depth $=0.55^{\prime \prime}$	for
Inflow	100-Year event		
Outflow	$=$	$11.19 \mathrm{cfs} @$	0.10 hrs , Volume $=$
		$11.19 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Routing by Stor-Ind + Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Reach SD2:
[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	1.200 ac, Inflow Depth $=0.57 "$	for $100-$ Year event	
Inflow	$=$	$6.91 \mathrm{cfs} @$	0.10 hrs , Volume
Outflow	$=$	$6.91 \mathrm{cs} @$	0.10 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$
Reach SD28:
[40] Hint: Not Described (Outflow=Inflow)

Inflow Ar	3.800 ac ,	flow Depth = 0.39"	for 100-Year event
Inflow	15.12 cfs @	0.10 hrs , Volume=	0.125 af
Outflow	15.12 cfs @	0.10 hrs , Volume=	0.125 af , Atten= 0\%, Lag $=0.0 \mathrm{~m}$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Reach SD3:
[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	1.600 ac, Inflow Depth $=0.61 "$	for $100-$ Year event	
Inflow	$=$	$9.83 \mathrm{cfs} @$	0.10 hrs , Volume $=$
Outflow	$=$	$9.83 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD5:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	1.900 ac ,	fflow Depth $=0.63 "$	for 100-Year event
Inflow	12.10 cfs @	0.10 hrs , Volume=	0.100 af
Outflow	12.10 cfs @	0.10 hrs , Volume=	0.100 af, Atten $=0 \%, \operatorname{Lag}=0.0$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD6:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	2.200 ac , Inflow Depth $=0.63^{\prime \prime}$	for $100-$ Year event
Inflow	$=$	$14.01 \mathrm{cfs} @$
Outflow	$=$	$14.01 \mathrm{cfs} @$
		0.10 hrs , Volume $=$
		0.115 af
Volume $=$	0.115 af , Atten= 0%, Lag $=0.0 \mathrm{~min}$	

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Link 1:

Inflow Area $=$	0.800 ac, Inflow Depth $=0.49 "$	for $100-$ Year event	
Inflow	$=$	$3.94 \mathrm{cfs} @$	0.10 hrs , Volume $=$
Primary	$=$	$3.94 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 2:

Inflow Area $=$	0.400 ac , Inflow Depth $=0.74 "$	for	$100-$ Year event
Inflow	$=$	$2.98 \mathrm{cfs} @$	0.10 hrs , Volume $=$
Primary	$=$	$2.98 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 3:

Inflow Area $=$	0.400 ac, Inflow Depth $=0.72 "$	for $100-$ Year event	
Inflow	$=$	$2.92 \mathrm{cfs} @$	0.10 hrs , Volume=
Primary	$=$	$2.92 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 7:

Inflow Area $=$	0.400 ac , Inflow Depth $=0.63 "$	for $100-$ Year event	
Inflow	$=$	$2.55 \mathrm{cfs} @$	0.10 hrs , Volume $=$
Primary	$=$	$2.55 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 8:

Inflow Area $=$	0.300 ac, Inflow Depth $=0.45^{\prime \prime}$	for $100-$ Year event
Inflow	$=$	$1.37 \mathrm{cfs} @$
Primary	$=$	$1.37 \mathrm{cfs} @$
	0.10 hrs, Volume $=$	0.011 af

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 11:

Inflow Area =	0.400 ac ,	flow Depth $=0.68{ }^{\prime \prime}$	for 100-Year event
Inflow	2.75 cfs @	0.10 hrs , Volume=	0.023 af
Primary	2.75 cfs @	0.10 hrs , Volume=	0.023 af, Atten= 0\%, Lag= 0.0 m

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 15:

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 16:

Inflow Area =	2.000 ac ,	flow Depth $=0.55^{\prime \prime}$	for 100-Year event
Inflow	11.19 cfs @	0.10 hrs , Volume=	0.092 af
Primary	11.19 cfs @	0.10 hrs , Volume=	0.092 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~m}$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 19:

Inflow Area $=$	0.600 ac , Inflow Depth $=0.39$	for $100-$ Year event
Inflow	$=$	$2.34 \mathrm{cfs} @$
Primary	$=$	0.10 hrs , Volume $=$
	$2.34 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 25:

Inflow Area $=$	3.800 ac, Inflow Depth $=0.39 "$	for	100 - Year event
Inflow	$=$	$15.12 \mathrm{cs} @$	0.10 hrs, Volume $=$
Primary	$=$	$15.12 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Subcatchment OS-11:

Runoff $=13.79 \mathrm{cfs} @ 0.12 \mathrm{hrs}$, Volume $=0.136 \mathrm{af}$, Depth= $0.58^{\prime \prime}$

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs
El Paso County 100-Year Duration=7 min, Inten=7.83 in/hr

Area (ac)	C	Description
2.800	0.64	FROM FDR

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD15:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	$=$	4.100 ac, Inflow Depth $=0.64 "$	for $100-$ Year event
Inflow	$=$	$22.31 \mathrm{cfs} @$	0.12 hrs, Volume $=$
Outflow	$=$	$22.31 \mathrm{cfs} @$	0.12 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD16:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	$=$	5.300 ac , Inflow Depth $=0.68 "$	for $100-$ Year event
Inflow	$=$	$30.50 \mathrm{cfs} @$	0.11 hrs, Volume $=$
Outflow	$=$	$30.50 \mathrm{cfs} @$	0.11 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD18:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	7.800 ac ,	flow Depth $=0.67{ }^{\prime \prime}$	for 100-Year event
Inflow	44.43 cfs @	0.11 hrs, Volume=	0.436 af
Outflow	44.43 cfs @	0.11 hrs, Volume=	0.436 af , Atten $=0 \%$,

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD26:

[40] Hint: Not Described (Outflow=Inflow)
Inflow Area $=10.200$ ac, Inflow Depth $=0.09$ " for 100-Year event
Inflow $=0.32 \mathrm{cfs} @ 0.23 \mathrm{hrs}$, Volume= 0.074 af
Outflow $=0.32 \mathrm{cfs} @ \quad 0.23 \mathrm{hrs}$, Volume $=0.074 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 13:

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Subcatchment A9:

Runoff $=1.82 \mathrm{cfs} @ 0.15 \mathrm{hrs}$, Volume= $\quad 0.023$ af, Depth= $0.54^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
El Paso County 100-Year Duration=9 min, Inten=7.20 in/hr

Area (ac)	C	Description
0.500	0.50	LANDSCAPE

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | | Description |
| :--- |
| 9.0 |

Runoff $=2.83 \mathrm{cfs} @ 0.15 \mathrm{hrs}$, Volume $=0.035 \mathrm{af}$, Depth= $0.70^{\prime \prime}$
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= $0.00-3.00 \mathrm{hrs}$, dt= 0.01 hrs El Paso County 100 -Year Duration=9 min, Inten=7.20 in/hr

Area (ac)	C	Description	
0.300	0.35	LANDSCAPE	
0.300	0.96	PAVEMENT	
0.600	0.65	Weighted Average	
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) Description 9.0 Direct Entry,			

Link 9:

Inflow Area $=$	0.500 ac, Inflow Depth $=$	$0.54 "$	for $100-$ Year event
Inflow	$=$	$1.82 \mathrm{cfs} @$	0.15 hrs, Volume
Primary	$=$	$1.82 \mathrm{cfs} @$	0.15 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Subcatchment A6:

Reach SD7:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.	Inflow Depth = 0.74"	for 100-Year event
Inflow	11.28 cfs @	0.14 hrs , Volume=	0.190 af
Outflow	11.28 cfs @	0.14 hrs , Volume=	0.190 af , Atten= 0\%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD8:

[40] Hint: Not Described (Outflow=Inflow)

100YR-DEVELOPED
 El Paso County 100-Year Duration=11 min, Inten=6.69 in/hr

Prepared by WestWorks Engineering
HydroCAD® $7.00 \mathrm{~s} / \mathrm{n} 002053$ © 1986-2003 Applied Microcomputer Systems

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD9:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	6.100 ac , Inflow Depth $=0.15^{\prime \prime}$	for $100-$ Year event		
Inflow	$=$	$1.83 \mathrm{cfs} @$	0.32 hrs, Volume $=$	0.074 af
:---:				
Outflow				

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Link 6:

Inflow Area $=$	2.700 ac,	Inflow Depth $=0.72 "$	for $100-$ Year event	
Inflow	$=$	$10.65 \mathrm{cfs} @$	0.18 hrs, Volume $=$	0.163 af
Primary	$=$	$9.20 \mathrm{cfs} @$	0.14 hrs, Volume $=$	0.159 af, Atten $=14 \%$, Lag $=0.0 \mathrm{~min}$
Secondary	$=$	$1.45 \mathrm{cfs} @$	0.18 hrs, Volume $=$	0.004 af

Primary outflow $=$ Inflow below 9.20 cfs , Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 23:

Inflow Area $=$	1.200 ac , Inflow Depth $=0.89 "$	for $100-$ Year event	
Inflow	$=$	$6.07 \mathrm{cfs} @$	0.18 hrs, Volume $=$
Primary	$=$	$6.07 \mathrm{cfs} @$	0.18 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD23:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.600 ac ,	flow Depth = 5.92"	for 10
Inflow	14.15 cfs @	0.15 hrs, Volume=	0.296 af
Outflow	14.15 cfs @	0.15 hrs , Volume=	0.296 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~m}$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Reach SD24:
[40] Hint: Not Described (Outflow=Inflow)

Inflow Area $=$	78.100 ac ,	Inflow Depth $=0.27^{\prime \prime}$	for
Inflow	100-Year event		
Inflow	$=$	$46.90 \mathrm{cfs} @$	0.10 hrs , Volume $=$
Outflow	$=$	$46.90 \mathrm{cfs} @$	0.10 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs

Reach SD25:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	88.600 ac,	flow Depth = 0.34"	for 100-Year event
Inflow	72.52 cfs @	0.33 hrs , Volume=	2.528 af
Outflow	72.52 cfs @	0.33 hrs , Volume=	2.528 af, Atten= 0\%, Lag $=0.0 \mathrm{~m}$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 21:

Inflow Area $=$	78.100 ac,	Inflow Depth $=0.30 "$	for	$100-$ Year event
Inflow	$=$	$59.01 \mathrm{cfs} @$	0.15 hrs, Volume $=$	1.981 af
Primary	$=$	$46.90 \mathrm{cfs} @$	0.10 hrs, Volume $=$	1.741 af, Atten $=21 \%$, Lag $=0.0 \mathrm{~min}$
Secondary $=$	$12.11 \mathrm{cfs} @$	0.15 hrs , Volume $=$	0.240 af	

Primary outflow $=$ Inflow below 46.90 cfs , Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 22:

Inflow Area =	0.600 ac ,	flow Depth = 5.92"	for 100-Year eve
Inflow	14.15 cfs @	0.15 hrs , Volume=	0.296 af
Primary	14.15 cfs @	0.15 hrs , Volume=	0.296 af, Atten $=0 \%, \mathrm{Lag}=0.0$

Primary outflow $=$ Inflow, Time Span $=0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link DP-OS11: FLOW-BY

Inflow Area $=$	65.500 ac,	Inflow Depth $=0.27 "$	for $100-$ Year event
Inflow	$=$	$54.10 \mathrm{cfs} @$	0.33 hrs, Volume $=$
Primary	$=$	$23.40 \mathrm{cfs} @$	0.15 hrs , Volume $=$
Secondary $=$	$30.70 \mathrm{cfs} @$	0.33 hrs , Volume $=$	1.000 af
		0.475 af,	

Primary outflow $=$ Inflow below 23.40 cfs, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

| 23 Point hydrograph entered manually, $\mathrm{To}=0.00 \mathrm{hrs}, \mathrm{dt}=0.03$ | hrs, Area $=65.500 \mathrm{ac}, \mathrm{cfs}=$ | | | | | | | | |
| :---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 4.90 | 9.80 | 14.80 | 19.70 | 24.60 | 29.50 | 34.40 | 39.30 | 44.30 |
| 49.20 | 54.10 | 49.20 | 44.30 | 39.30 | 34.40 | 29.50 | 24.60 | 19.70 | 14.80 |
| 9.80 | 4.90 | 0.00 | | | | | | | |

Reach SD21:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	2.800 ac ,	flow Depth = 14.86"	for 100-Year event
Inflow	99.65 cfs @	0.42 hrs , Volume=	3.466 af
Outflow	99.65 cfs @	0.42 hrs , Volume=	3.466 af, Atten $=0 \%$, Lag $=0.0$

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Reach SD22:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	13.000 ac ,	flow Depth = 3.68"	for 100-Year event
Inflow	104.88 cfs @	0.42 hrs , Volume=	3.983 af
Outflow	104.88 cfs @	0.42 hrs , Volume=	3.983 af, Atten $=0 \%, L a g=0.0$

Routing by Stor-Ind+Trans method, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$

Link 009: BASIN 009

Inflow Area $=$	101.600 ac , Inflow Depth $=0.79 "$	for	$100-$ Year event
Inflow	$=$	$171.59 \mathrm{cfs} @$	0.42 hrs , Volume
Primary	$=$	$171.59 \mathrm{cfs} @$	0.42 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$

Link 20:

Inflow Area =	2.800 ac ,	flow Depth $=14.86 "$	for 100-Year event
Inflow	99.65 cfs @	0.42 hrs , Volume=	3.466 af
Primary	99.65 cfs @	0.42 hrs , Volume=	3.466 af, Atten= 0\%, Lag $=0.0 \mathrm{~m}$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link DP-OS2:

Inflow $=92.10 \mathrm{cfs} @$	0.42 hrs, Volume $=$	3.197 af
Primary $=$	$92.10 \mathrm{cfs} @$	0.42 hrs, Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-3.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
29 Point hydrograph entered manually, To= 0.00 hrs , dt= 0.03 hrs , Area= $0.000 \mathrm{ac}, \mathrm{cfs}=$

0.00	6.60	13.20	19.70	26.30	32.90	39.50	46.10	52.60	59.20
65.80	72.40	78.90	85.50	92.10	85.50	78.90	72.40	65.80	59.20
52.60	46.10	39.50	32.90	26.30	19.70	13.20	6.60	0.00	

HYDRAULIC CALCULATIONS

Version 4.05 Released March 2017

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ffft)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {bocal }}=$	3.00	300	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Γ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {tatio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value $0.50-0.70$)	$\mathrm{C}_{1}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value $0.60-0.80$)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	500	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {ver }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {stroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	6340	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{\text {f }}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$d_{\text {Graite }}=$	N/A	N/A	
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$R \mathrm{~F}_{\text {combination }}=$	0.77	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {cutb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_{\mathrm{a}}=$	5.4	5.4	cfs
Enlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peakrequired }}=$	2.0	4.0	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	300	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Γ Override Depths
Length of a Unit Grate	$L_{0}(G)=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$C_{1}(G)=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value $0.60-0.80$)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vent }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{1}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$R \mathrm{~F}_{\text {Combination }}=$	0.77	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {Curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.4	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {PEAK REQUIRED }}=$	2.0	3.0	cfs

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

$Q_{\text {allow }}=$| Minor Storm | Major Storm |
| :---: | :---: |
| SUMP | SUMP |

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) CDOT Type C Grate		MINOR MAJOR		inches
Type of Inlet -	Type =	CDOT Type C Grate		
Local Depression (additional to continuous gutter depression 'a' from above)		6.00	800	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches
Grate Information		MINOR	MAJOR	\ulcorner Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	2.92	2.92	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	2.92	292	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	0.70	070	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$C_{1}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	2.41	2.41	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.67	0.67	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	N/A	N/A	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {ver }}=$	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trooat }}=$	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{1}(\mathrm{C})=$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	N/A	N/	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{\circ}(\mathrm{C})=$	N/A	N/A	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	0.635	0.635	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	N/A	N/A	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$R \mathrm{~F}_{\text {combination }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {curb }}=$	N/A	N/A	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	0.95	0.95	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	4.2	4.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peak Requreo }}=$	2.0	3.0	cfs

Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)	MINOR MAJOR			inches
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	300	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Γ Override Depths
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$C_{t}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{1}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\mathrm{Combination}=}$	0.77	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {Curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.4	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peak reoured }}=$	1.0	2.0	cfs

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ftft)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

$\mathbf{Q}_{\text {allow }}=$| Minor Storm | Major Storm |
| :---: | :---: |
| SUMP | SUMP |
| | cfs |

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	300	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches
Grate Information		MINOR	MAJOR	O Override Depths
Length of a Unit Grate	$L_{0}(G)=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{1}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	500	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vent }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{1}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF $\mathrm{Combination}=$	0.77	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {Curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.4	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {PEAKREQUIRED }}=$	1.0	2.0	cfs

Version 4.05 Released March 2017

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Version 4.05 Released March 2017

Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ffft)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

$\mathbf{Q}_{\text {allow }}=$| | Minor Storm |
| :---: | :---: |
| 23.7 | Major Storm |

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	Type $=$	MINOR MAJORCDOT Type R Curb Opening		inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')				
	$\mathrm{a}_{\text {LOCAL }}=$	3.0	30	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\text {- }} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.5	1.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.1	cfs
Capture Percentage $=\mathrm{Q}_{2} / \mathrm{Q}_{0}=$	c\% =	100	94	\%

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) CDOT Type C Grate		MINOR	MAJOR	inches
Type of Inlet CDOT Type C Grate -	Type $=$	CDOT Type C Grate		
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {bocal }}=$	6.00	600	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	inches
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	
Grate Information		MINOR	MAJOR	feet Override Depths
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	2.92	2.92	
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	2.92	292	feet
Area Opening Ratio for a Grate (typical values $0.15-0.90$)	$A_{\text {totio }}=$	0.70	070	
Clogging Factor for a Single Grate (typical value $0.50-0.70$)	$\mathrm{C}_{\text {f }}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	2.41	241	
Grate Orifice Coefficient (typical value $0.60-0.80$)	$\mathrm{C}_{0}(\mathrm{G})=$	0.67	0.67	
Curb Opening Information		MINOR	MAJOR	feet inches
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	N/A	N/A	
Height of Vertical Curb Opening in Inches	$H_{\text {ven }}=$	N/A	N/A	
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {troas }}=$	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	N/A	N/A	$\begin{aligned} & \text { degrees } \\ & \text { feet } \end{aligned}$
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	N/A	N/A	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{1}(\mathrm{C})=$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Orifice Coefficient (typical value $0.60-0.70$) ${ }^{\text {a }}$ (${ }^{\text {a }}$ (C) $=$		N/A	N/A	
Low Head Performance Reduction (Calculated)	MINOR MAJOR			ft
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grato }}=$	0.635	0.635	
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {cutb }}=$	N/A	N/A	
Combination Inlet Performance Reduction Factor for Long Inlets	$R \mathrm{~F}_{\text {combination }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF ${ }_{\text {curb }}=$	N/A	N/A	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grato }}=$	0.95	0.95	
		MINOR	MAJOR	$\begin{aligned} & \text { cfs } \\ & \text { cfs } \end{aligned}$
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	4.2	4.2	
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peak reaureo }}=$	1.7	3.1	

Version 4.05 Released March 2017

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ffft$)$
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

NLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) \quad CDOT Type R Curb Opening		MINOR MAJOR		
Type of InletLocal Depression (additional to continuous gutter depression 'a' from above)	Type $=$	CDOT Ty	Opening	
	$\mathrm{a}_{\text {local }}=$	3.00	300	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	inches
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches F Override Depths
Grate Information		MINOR	MAJOR	
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	$F_{\text {feet }}$
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	NA	
Area Opening Ratio for a Grate (typical values $0.15-0.90$)	$\mathrm{A}_{\text {tatio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value $0.50-0.70$)	$C_{1}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		N/A	N/A	
		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(\mathrm{C})=$	5.00	500	
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {verf }}=$	6.00	6.00	- inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {mtroat }}=$	6.00	6.00	
	Theta $=$	63.40	6340	degrees feet
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\text {f }}(\mathrm{C})=$	0.10	0.10	feet
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {crate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {cuut }}=$	0.33	0.33	ft
Combination Inlet Perrformance Reduction Factor for Long Inlets	$R F_{\text {combination }}=$	0.77	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	$R \mathrm{~F}_{\text {cutb }}=$	1.00	1.00	
Grated inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)		MINOR	MAJOR	cfs
	$\mathrm{Q}_{\mathrm{a}}=$	5.4	5.4	
	$Q_{\text {peak Requred }}=$	1.0	3.0	

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 fffit$)$
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type C Grate	Type =	CDO	Grate	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	6.00	600	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Γ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	2.92	2.92	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	2.92	2.92	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	0.70	070	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$C_{1}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	2.41	241	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.67	067	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(\mathrm{C})=$	N/A	N/A	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	N/A	N/A.	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	N/A	N/A	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grato }}=$	0.635	0.635	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	N/A	N/A	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	N/A	N/A	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	0.95	0.95	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	4.2	4.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peak Required }}=$	1.7	3.0	cfs

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	300	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Y Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{1}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	500	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{1}(C)=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value $0.60-0.70$)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF $\mathrm{combination}=$	0.77	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.4	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {PEAK REQUIRED }}=$	1.5	3.0	cfs

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ffft)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

Version 4.05 Released March 2017

Design Information (Input) CDOT Type C Grate		MINOR	MAJOR	
Type of Inlet CDOT Type C Grate	Type $=$	CDO	Grate	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	6.00	600	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	2.92	2.92	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	2.92	2.92	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {rato }}=$	0.70	070	
Clogging Factor for a Single Grate (typical value $0.50-0.70$)	$\mathrm{C}_{1}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	2.41	241	
Grate Orifice Coefficient (typical value $0.60-0.80$)	$\mathrm{C}_{0}(\mathrm{G})=$	0.67	067	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	N/A	N/A	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {ven }}=$	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {troat }}=$	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{1}(\mathrm{C})=$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Orifice Coefficient (typical value $0.60-0.70$)	$\mathrm{C}_{0}(\mathrm{C})=$	N/A	N/A.	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	0.635	0.635	
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {cuib }}=$	N/A	N/A	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {combinaton }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	$R \mathrm{~F}_{\text {curb }}=$	N/A	N/A	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	0.95	0.95	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_{\mathrm{a}}=$	4.2	4.2	cfs
Enlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peak reoured }}=$	1.5	4.0	cfs

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)
Project:
Inlet ID:

$\|$Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor \& Major Storm Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	300	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches
Grate Information		MINOR	MAJOR	F Override Depths
Length of a Unit Grate	$L_{0}(G)=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$C_{1}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(\mathrm{C})=$	10.00	1000	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	3.00	3.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{1}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$C_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.25	0.25	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$R \mathrm{~F}_{\text {combination }}=$	0.57	0.57	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {Curb }}=$	0.93	0.93	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	6.1	6.1	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	$Q_{\text {peak required }}=$	5.6	11.0	cfs

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ffft)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (leave blank for no)

MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Spread Criterion Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

		Type $=$	MINOR MAJOR		inches
			CDOT T	Opening	
Local Depression (additional to continuous gutter depression 'a')		$a_{\text {LLCaL }}=$	3.0	30	
Total Number of Units in the Inlet (Grate or Curb Opening)		$\mathrm{No}=$	1	1	ft
Length of a Single Unit Inlet (Grate or Curb Opening)		$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)		$\mathrm{W}_{0}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)		$\mathrm{C}_{\Gamma} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)		$\mathrm{Cr}_{\mathrm{r}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'			MINOR	MAJOR	
Total Inlet Interception Capacity		$Q=$	0.7	1.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)		$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.1	cfs
Capture Percentage $=\mathbf{Q}_{3} / \mathbf{Q}_{0}=$		$\mathrm{C} \%=$	100	94	\%

Version 4.05 Released March 2017

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

$\mathrm{Q}_{\text {allow }}=$| Minor Storm | Major Storm |
| :---: | :---: |
| 22.5 | 59.1 |

WARNING: MINOR STORM max. allowable capacity is less than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening	Type $=$	MINOR	MAJOR	inches
Type of Inlet		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')		3.0	30	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	20.00	2000	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A.	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{Cr}_{\Gamma} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MINOR STORM'		MINOR	MAJOR	
Total Inlet Interception Capacity	$Q=$	28.8	46.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.2	12.1	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	C\% =	99	79	\%

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

$\mathbf{Q}_{\text {allow }}=$| Minor Storm | Major Storm |
| :---: | :---: |
| SUMP | SUMP |
| | cfs |

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)	MINOR MAJOR			inches
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)		3.00	300	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	8.2	inches
Grate Information		MINOR	MAJOR	$\sqrt{\square}$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A.	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {tatio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{1}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	15.00	1500	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{1}(C)=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C)=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value $0.60-0.70$)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.33	0.52	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$R \mathrm{~F}_{\text {Combination }}=$	0.57	0.77	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	0.79	0.90	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	9.7	21.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peak required }}=$	1.0	14.0	cfs

Version 4.05 Released March 2017

AREA INLET IN A SWALE

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Slope

Check one of the following soil types:		
Soil Type:	Max. Velocity $\left(V_{\text {max }}\right)$	Max Froude No. ($\mathrm{F}_{\text {max }}$)
Non-Cohesive	5.0 fps	0.60
Cohesive	7.0 fps	0.80
Paved	N/A	N/A

Max. Allowable Top Width of Channel for Minor \& Major Storm
Max. Allowable Water Depth in Channel for Minor \& Major Storm
Check one of the following soil types:

MINOR STORM Allowable Capacity is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Criterion
A, B, C, D or E

Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

AREA INLET IN A SWALE			
ELDORADO SPRINGS			
DP-25			
Inlet Design Information (Input)			
Type of Inlet \quad CDOT Type C (Depressed) $\quad \square \quad$ Inlet Type $=$	CDOT Type	ressed)	
Angle of Inclined Grate (must be $<=30$ degrees) θ		0.00	degrees
Width of Grate	W =	3.00	feet
Length of Grate	L=	3.00	feet
Open Area Ratio	$A_{\text {Ratio }}=$	0.70	
Height of Inclined Grate	$\mathrm{H}_{8}=$	0.00	feet
Clogging Factor	$\mathrm{C}_{\mathrm{t}}=$	0.50	
Grate Discharge CoefficientOrifice Coefficient	$\mathrm{C}_{\mathrm{d}}=$	0.84	
	$\mathrm{C}_{0}=$	0.56	
Weir Coefficient $\mathrm{C}_{w}=$		1.81	
Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) Total Inlet Interception Capacity (assumes clogged condition)	MINOR	MAJOR	
	1.71	2.08	
	18.6	20.5	cfs
Bypassed Flow, $Q_{b}=$	0.0	0.0	cfs
Capture Percentage $=Q_{2} / Q_{0}=C \%$	100	100	\%

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

STORMWATER FACILITY CALCULATIONS

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project: ELDORADO SPRINGS

Basin ID: POND A

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Underd	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	N/A	$\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
	N/A			N/A	
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	N/A	ft^{2}
Depth at top of Zone using Orifice Plate $=$	4.10	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row $=$	N/A	inches	Elliptical Slot Area =	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)
Row 8 (optional)							
Stage of Orifice Centroid (ft)	0.00	1.75	3.30				
Orifice Area (sq. inches)	0.79	0.79	0.99				

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

Invert of Vertical Orifice $=$ Depth at top of Zone using Vertical Orifice $=$ Vertical Orifice Diameter $=$	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches
	N/A	N/A	
	N/A	N/A	
	N/A	N/A	

Calculated Parameters for Vertical Orifice

	Calculated Parameters for Vertical Orfice	
	Not Selected	Not Selected
Vertical Orifice Area	ft	
	N / A	N / A
Vertical Orifice Centroid	$=\mathrm{N} / \mathrm{A}$	N / A

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)
 Overflow Weir Front Edge Length Overflow Weir Grate Slope $=$ Horiz. Length of Weir Sides = Overflow Grate Open Area \% = Debris Clogging \% =

Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stag feet
4.50	N/A	
4.00	N/A	
0.00	N/A	H:V
4.00	N/A	feet
70\%	N/A	\%, grate open area/total area
50\%	N/A	\%

	Height of Grate Upper Edg Overflow Weir Slope
	en A
	Grate Open Area w/o
	W Grate Op

Calculated Parameters for Overflow Weir

Zone 3 Weir	Not Selected
4.50	$\mathrm{~N} / \mathrm{A}$
feet	
4.00	$\mathrm{~N} / \mathrm{A}$
feet	
38.30	$\mathrm{~N} / \mathrm{A}$
11.20	$\mathrm{~N} / \mathrm{A}$
ft^{2}	
5.60	$\mathrm{~N} / \mathrm{A}$
ft^{2}	

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

	Zone 3 Restrictor	Not Selected	ft (distance below basin bott
Depth to Invert of Outlet Pipe $=$	0.25	N/A	
Restrictor Plate Height Above Pipe Invert $=$$=$	18.00	N/A	inches
	4.00	inches	
r Input: Emergency Spillway (Rectanqular or Trapezoidal)			
Spillway Invert Stage=	5.75	ft (relative to ba	bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	15.00	feet	
Spillway End Slopes =	4.00	H:V	
Freeboard above Max Water Surface $=$	1.00	feet	

Zone 3 Restrictor	Not Selected
0.29	$\mathrm{~N} / \mathrm{A}$
ft^{2}	
$=0$	N/A
feet	
0.20	N/A
0.98	radians

Routed Hydrograph Results

WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
0.108	0.367	0.272	0.359	0.429	0.556	0.661	0.799	1.095
N/A	N/A	0.272	0.359	0.429	0.556	0.661	0.799	1.095
N/A	N/A	0.1	0.1	0.2	2.1	3.4	5.0	8.6
N/A	N/A							
N/A	N/A	0.01	0.02	0.03	0.35	0.56	0.83	1.40
N/A	N/A	4.6	6.1	7.2	10.1	12.1	15.0	20.5
0.0	0.1	0.1	0.1	0.1	2.1	3.1	3.3	9.4
N/A	N/A	N/A	1.0	0.8	1.0	0.9	0.7	1.1
Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	N/A
N/A	N/A	N/A	N/A	N/A	0.2	0.3	0.3	0.3
N/A								
61	94	88	95	99	97	95	92	86
66	104	96	104	109	109	108	106	103
1.62	4.10	3.23	3.91	4.40	4.65	4.85	5.41	6.00
0.08	0.13	0.11	0.13	0.14	0.15	0.15	0.17	0.19
0.108	0.368	0.259	0.341	0.409	0.444	0.475	0.567	0.671

Update the pond design to meet Senate Bill 15-212 criteria for time to drain 97% of all of the runoff for rainfall events less than or equal to a 5 -year storm within 72 hours. Keep in mind that WQCV drain time for EDB should also be around 40 hrs.

Simple Broad-crested Weir Flow Calculator

POND A

FOREBAY NOTCH

Inputs		Results
Weir length, I	. 17	
Headwater height, h	1.3	Flow, Q 0.81
Weir coefficient, Cw?	3.2	

Notes
Weir Equation
$\mathrm{q}=\left.\mathrm{cw} *\right|^{*} \mathrm{~h}^{1.5}$

Pond POND A:

Inflow Area =	6.100 ac ,	Inflow Depth = 0.35"	for 5-Year event
Inflow	11.85 cfs @	0.18 hrs , Volume=	0.180 af
Outflow	0.13 cfs @	0.36 hrs , Volume=	0.029 af, Atten= 99\%, Lag $=10.9 \mathrm{~min}$
Primary =	0.13 cfs @	0.36 hrs, Volume=	0.029 af
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev=5,860.74' @ 0.36 hrs Surf.Area= 0.116 ac Storage= 0.177 af Plug-Flow detention time= 88.8 min calculated for 0.029 af (16% of inflow)
Center-of-Mass det. time $=83.2$ min (92.3-9.0)

Invert	Avail.Storage	e Storage Description	
5,85		af Cust	tage Data (P
Elevation (feet)	Surf.Area (acres)	Inc.Store (acre-feet)	Cum.Store (acre-feet)
5,859.00	0.074	0.000	0.000
5,860.00	0.103	0.089	0.089
5,862.00	0.137	0.240	0.329
5,863.00	0.162	0.150	0.478
5,864.00	0.185	0.173	0.652

	Routing	nve	Ou	
1	Primary	5,856.50'	6.8" x 120.0' long OUTLET W/ RESTRICTOR PLA $R C P$, square edge headwall, $K e=0.500$	
			Outlet Invert= 5,854.29' S=0.0184'/' $\mathrm{n}=$	
2	Device 1	5,859.00'	1.4" Vert. WQ ORIFICE C= 0.600	
3	Device 1	5,860.10'	1.4" Vert. WQ ORIFICE C= 0.600	
4	Device 1	5,860.25'	1.2" Vert. WQ ORIFICE $\mathrm{C}=0.600$	
5	Device 1 5,861.25'		$\mathrm{C}=0.600$	
6 Secondary 5,862.50'			15.0' long x 10.4' breadth EMERGENCY OVERFLOW Head (feet) $0.20 \quad 0.400 .600 .801 .001 .201 .401 .60$ Coef. (English) 2.512 .572 .702 .692 .682 .692 .67	
Primary OutFlow Max=0.13 cfs @ 0.36 hrs HW=5,860.74' (Free Discharge) $亡_{1}=0 U T L E T$ W/ RESTRICTOR PLATE (Passes 0.13 cfs of 1.59 cfs potential flow) $\mathbf{- 2 = W Q}$ ORIFICE (Orifice Controls 0.07 cfs @ 6.2 fps) $-3=$ WQ ORIFICE (Orifice Controls $0.04 \mathrm{cfs} @ 3.7 \mathrm{fps}$) 4=WQ ORIFICE (Orifice Controls $0.03 \mathrm{cfs} @ 3.2 \mathrm{fps}$) $-5=0 U T F A L L$ BOX PER EPC (Controls 0.00 cfs)				

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=5,859.00' (Free Discharge)
$\succ_{6=E M E R G E N C Y ~ O V E R F L O W ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond POND A:

Hydrograph

100YR-DEVELOPED El Paso County $100-$ Year Duration=11 min, Inten=7.04 in $/ \mathrm{hr}$
Prepared by WestWorks Engineering
HydroCAD® $7.00 \mathrm{~s} / \mathrm{n} 002053$ © 1986-2003 Applied Microcomputer Systems

Pond POND A:

Inflow Area =	6.100 ac ,	Inflow Depth = 0.83"	for 100-Year event
Inflow	26.30 cfs @	0.15 hrs, Volume=	0.423 af
Outflow	1.81 cfs @	0.32 hrs , Volume=	0.203 af, Atten= 93\%, Lag $=10.1 \mathrm{~min}$
Primary =	1.81 cfs @	0.32 hrs , Volume=	0.203 af
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev=5,862.45' @ 0.32 hrs Surf.Area= 0.148 ac Storage= 0.396 af Plug-Flow detention time= 50.3 min calculated for 0.203 af (48% of inflow)
Center-of-Mass det. time $=46.9 \mathrm{~min}(55.9-9.0)$

$\#$	Invert	Avail.Storage	Storage Description
1	$5,859.00$	0.652 af	Custom Stage Data (Prismatic)Listed below

Elevation (feet)	Surf.Area (acres)	Inc.Store (acre-feet)	Cum.Store (acre-feet)
$5,859.00$	0.074	0.000	0.000
$5,860.00$	0.103	0.089	0.089
$5,862.00$	0.137	0.240	0.329
$5,863.00$	0.162	0.150	0.478
$5,864.00$	0.185	0.173	0.652

	Routing	Inve	O
1	Primary	5,856.50'	6.8" x 120.0' long OUTLET W/ RESTRICT RCP, square edge headwall, $\mathrm{Ke}=0.500$
			Outlet Invert= 5,854.29' S=0.0184'/'
2	Device	5,859.00	1.4" Vert. WQ ORIFICE $\mathrm{C}=0.600$
3	Device 1	5,860.10'	1.4" Vert. WQ ORIFICE $\mathrm{C}=0.600$
4	Device 1	5,860.25'	1.2" Vert. WQ ORIFICE C= 0.600
5	Device 1	5,861.25'	4.00' x 4.00' Horiz. OUTFALL BOX PE $C=0.600$
6	Secon	,862.50	15.0' long x 10.4' breadth EMERGENCY OVE Head (feet) $0.20 \quad 0.400 .600 .801 .001 .201$ Coef. (English) $2.512 .572 .70 \quad 2.692 .68 \quad 2.6$
Primary OutFlow Max=1.81 cfs @ 0.32 hrs HW=5,862.45' (Free Discharge) —1=OUTLET W/ RESTRICTOR PLATE (Barrel Controls 1.81 cfs @ 7.2 fps) 2=WQ ORIFICE (Passes < 0.09 cfs potential flow) 3=WQ ORIFICE (Passes < 0.08 cfs potential flow) 4=WQ ORIFICE (Passes < 0.06 cfs potential flow) 5=OUTFALL BOX PER EPC (Passes < 68.95 cfs potential flow)			

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=5,859.00' (Free Discharge)
6=EMERGENCY OVERFLOW (Controls 0.00 cfs)

Pond POND A:

Hydrograph

MHFD-Detention, Version 4.03 (May 2020)

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Underd	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter $=$	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	N/A	$\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
	N/A			N/A	
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	$1.028 \mathrm{E}-02$	ft^{2}
Depth at top of Zone using Orifice Plate =	3.88	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	15.50	inches	Elliptical Slot Centroid $=$	N/A	feet
Orifice Plate: Orifice Area per Row =	1.48	sq. inches (diameter $=1-3 / 8$ inches)	Elliptical Slot Area =	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.29	2.59					
Orifice Area (sq. inches)	1.48	1.48	1.48					

| | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | |

er Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Vertical Orifice Area = Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected			Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A	
Vertical Orifice Diameter $=$	N/A	N/A					

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plater

Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Restrictor	Not Selected	ft (distance below basin bot	
	2.50	N/A		
	18.00	N/A	inches	
Restrictor Plate Height Above Pipe Invert $=$	5.20	inches		
User Input: Emergency Spillway (Rectangular or Trapezoidal)				
Spillway Invert Stage=	5.50	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) feet		
Spillway Crest Length =	15.00			
Spillway End Slopes =	4.00	$\mathrm{H}: \mathrm{V}$		
Freeboard above Max Water Surface $=$	1.00	feet		

Zone 3 Restrictor	Not Selected
	ft^{2}
0.42	
0.25	$\mathrm{~N} / \mathrm{A}$
1.13	feet
	N / A

Routed Hydrograph Results
Design Storm Return Period
One-Hour Rainfall Depth (in) $=$ CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) $=$ Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) $=$ Peak Outflow Q (cfs) low to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) $=$ Time to Drain 99\% of Inflow Volume (hours)

Maximum Ponding Depth (ft) $=$ Area at Maximum Ponding Depth (acres) $=$

Maximum Volume Stored (acre-ft) $=$

WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
0.185	0.647	0.460	0.610	0.729	0.907	1.081	1.300	1.775
N/A	N/A	0.460	0.610	0.729	0.907	1.081	1.300	1.775
N/A	N/A	0.1	0.2	0.3	2.7	5.2	8.4	14.8
N/A	N/A							
N/A	N/A	0.01	0.02	0.03	0.26	0.51	0.82	1.45
N/A	N/A	8.8	11.7	13.8	18.3	22.3	28.0	38.2
0.1	0.2	0.2	0.2	0.2	1.5	4.4	5.6	16.1
N/A	N/A	N/A	1.0	0.8	0.6	0.8	0.7	1.1
Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
N/A	N/A	N/A	N/A	N/A	0.1	0.4	0.5	0.5
N/A								
63	91	85	91	95	96	94	91	85
68	101	94 T	101	105	108	107	105	102
1.34	3.88	2.83	3.55	4.10	4.61	4.74	5.23	5.86
0.15	0.21	0.19	0.20	0.22	0.23	0.23	0.25	0.26
0.185	0.648	0.438	0.579	0.693	0.807	0.839	0.954	1.114

Update the pond design to meet Senate Bill 15-212 criteria for time to drain 97% of all of the runoff for rainfall events less than or equal to a 5 -year storm within 72 hours. Keep in mind that WQCV drain time for EDB should also be around 40 hrs .

Simple Broad-crested Weir Flow Calculator

POND B

FOREBAY NOTCH - STM-05

| Inputs | | |
| :--- | :--- | :--- | :--- |
| Weir length, I | .25 | Results |
| Headwater height, h | 2 | Flow, Q 2.33 |
| Weir coefficient, Cw ? | 3.3 | |

Notes
Weir Equation
$\mathrm{q}=\mathrm{cw} *{ }^{*} \mathrm{~h}^{1.5}$

Simple Broad-crested Weir Flow Calculator

POND B

FOREBAY NOTCH - STM-07
Inputs

Weir length, I	.08	Results	
Headwater height, h	1	Flow, Q	0.26
Weir coefficient, Cw ?	3.3		

Notes
Weir Equation
$\mathrm{q}=\mathrm{cw} *{ }^{*} \mathrm{~h}^{1.5}$

Pond POND B:

Inflow Area =	10.200 ac ,	Inflow Depth = 0.32"	for 5-Year event
Inflow	27.52 cfs @	0.11 hrs, Volume=	0.270 af
Outflow	0.10 cfs @	0.24 hrs , Volume=	0.024 af , Atten= 100\%, Lag= 7.5 min
Primary	0.10 cfs @	0.24 hrs , Volume=	0.024 af
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev=5,856.80' @ 0.24 hrs Surf.Area= 0.163 ac Storage= 0.269 af Plug-Flow detention time $=90.2$ min calculated for 0.024 af (9% of inflow)
Center-of-Mass det. time $=85.6 \mathrm{~min}(92.0-6.4)$

$\#$	Invert	Avail.Storage	Storage Description
1	$5,855.00^{\prime}$	1.164 af	Custom Stage Data (Prismatic)Listed below

Elevation (feet)	Surf.Area (acres)	Inc.Store (acre-feet)	Cum.Store (acre-feet)
$5,855.00$	0.124	0.000	0.000
$5,856.00$	0.145	0.134	0.134
$5,858.00$	0.191	0.336	0.470
$5,860.00$	0.239	0.430	0.900
$5,861.00$	0.289	0.264	1.164

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=5,855.00' (Free Discharge)
$\Psi_{6=E M E R G E N C Y}$ OVERFLOW (Controls 0.00 cfs)

Pond POND B:

Prepared by WestWorks Engineering	Page 1
HydroCAD® $7.00 \mathrm{~s} / \mathrm{n} 002053$ © 1986-2003 Applied Microcomputer Systems	$3 / 31 / 2021$

Pond POND B:

Inflow Area =	10.200 ac,	nflow Depth $=0.66 "$	for 100-Year event
Inflow	56.88 cfs @	0.11 hrs , Volume=	0.563 af
Outflow	0.21 cfs @	0.23 hrs , Volume=	0.049 af , Atten= 100\%, Lag= 7.5 min
Primary	0.21 cfs @	0.23 hrs , Volume=	0.049 af
Secondary =	0.00 cfs @	0.00 hrs , Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev=5,858.42' @ 0.23 hrs Surf.Area= 0.201 ac Storage= 0.561 af Plug-Flow detention time $=90.5 \mathrm{~min}$ calculated for 0.049 af (9% of inflow)
Center-of-Mass det. time $=85.9 \mathrm{~min}(92.3-6.4)$

$\#$	Invert	Avail.Storage	Storage Description
1	$5,855.00$	1.164 af	Custom Stage Data (Prismatic)Listed below

Elevation (feet)	Surf.Area (acres)	Inc.Store (acre-feet)	Cum.Store (acre-feet)
$5,855.00$	0.124	0.000	0.000
$5,856.00$	0.145	0.134	0.134
$5,858.00$	0.191	0.336	0.470
$5,860.00$	0.239	0.430	0.900
$5,861.00$	0.289	0.264	1.164

Primary OutFlow Max=0.21 cfs @ 0.23 hrs HW=5,858.42' (Free Discharge)
1=OUTLET W/ RESTRICTOR PLATE (Passes 0.21 cfs of 4.57 cfs potential flow)
-2=WQ ORIFICE (Orifice Controls $0.09 \mathrm{cfs} @ 8.8 \mathrm{fps}$)
-3=WQ ORIFICE (Orifice Controls 0.07 cfs @ 6.9 fps)
-4=WQ ORIFICE (Orifice Controls 0.04 cfs @ 4.2 fps)
$-5=E P C$ OUTFALL BOX (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=5,855.00' (Free Discharge)
$\Psi_{6=E M E R G E N C Y ~ O V E R F L O W ~(~ C o n t r o l s ~} 0.00 \mathrm{cfs}$)

Pond POND B:

Hydrograph

Stormwater Detention and Infiltration Design Data Sheet

Stormwater Facility Name: ELDORADO SPRINGS - POND A

Facility Location \& Jurisdiction: EL PASO COUNTY

WQCV Treatment Method $=$ Extended Detention

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

User Defined Stage [ft]	User Defined Area [ft^2]	User Defined Stage [ft]	User Defined Discharge [cfs]
0.00	3,230	0.00	0.10
1.00	4,490	1.00	0.20
3.00	5,950	3.00	0.20
4.00	7,070	4.00	2.90
4.70	7,800	4.70	3.20

Routed Hydrograph Results						
Design Storm Return Period = One-Hour Rainfall Depth =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year
	0.53	1.19	1.50	1.75	2.25	2.52
Calculated Runoff Volume $=$	0.108	0.259	0.344	0.425	0.656	0.802
OPTIONAL Override Runoff Volume =						
Inflow Hydrograph Volume =	0.108	0.258	0.344	0.424	0.656	0.802
Time to Drain 97\% of Inflow Volume =	8.5	17.0	21.9	23.2	23.1	23.1
Time to Drain 99\% of Inflow Volume =	8.8	17.6	22.6	24.2	24.5	24.7
Maximum Ponding Depth $=$	0.96	2.22	2.88	3.25	4.02	4.57
Maximum Ponded Area =	0.10	0.12	0.13	0.14	0.16	0.18
Maximum Volume Stored $=$	0.084	0.227	0.311	0.362	0.481	0.574

Stormwater Detention and Infiltration Design Data Sheet

Stormwater Detention and Infiltration Design Data Sheet

Stormwater Facility Name: ELDORADO SPRINGS - POND B

Facility Location \& Jurisdiction: EL PASO COUNTY

User Input: Watershed Characteristics		
Watershed Slope =	0.060	$\mathrm{ft} / \mathrm{ft}$
Watershed Length $=$	840	ft
Watershed Area =	10.20	acres
Watershed Imperviousness $=$	53.9\%	percent
Percentage Hydrologic Soil Group A =	100.0\%	percent
Percentage Hydrologic Soil Group B =	0.0\%	percent
Percentage Hydrologic Soil Groups C/D $=$	0.0\%	percent

Location for 1-hr Rainfall Depths (use dropdown): User Input

WQCV Treatment Method $=$ Extended Detention

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/guh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

User Defined Stage [ft]	User Defined Area [ft^2]	User Defined Stage [ft]	User Defined Discharge [cfs]
0.00	5,400	0.00	0.10
1.00	6,320	1.00	0.10
3.00	8,320	3.00	0.20
5.00	10,410	5.00	4.50
5.50	11,100	5.50	5.60
7.00	12,570	7.00	10.00

Routed Hydrograph Results						
Design Storm Return Period = One-Hour Rainfall Depth =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year
	0.53	1.19	1.50	1.75	2.25	2.52
Calculated Runoff Volume $=$	0.185	0.443	0.581	0.713	1.085	1.324
OPTIONAL Override Runoff Volume $=$						
Inflow Hydrograph Volume =	0.184	0.442	0.580	0.712	1.084	1.323
Time to Drain 97\% of Inflow Volume =	21.5	41.2	45.3	45.5	45.1	44.6
Time to Drain 99\% of Inflow Volume =	21.9	42.2	46.7	47.2	47.7	47.7
Maximum Ponding Depth $=$	1.23	2.72	3.28	3.70	4.78	5.41
Maximum Ponded Area =	0.15	0.18	0.20	0.21	0.23	0.25
Maximum Volume Stored $=$	0.169	0.417	0.525	0.609	0.846	1.000

Stormwater Detention and Infiltration Design Data Sheet

PREVIOUS DRAINAGE STUDY MAPS

DRAINAGE MAPS

