## DETENTION BASIN OUTLET STRUCTURE DESIGN

## MHFD-Detention, Version 4.03 (May 2020)



| Calculated Parameters for Underdrain |
| :---: |
|  |
| $\mathrm{ft}^{2}$ |

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter $=$ $\square$ ft (distance below the filtration media surface) inches

Underdrain Orifice Area = Underdrain Orifice Centroid =
$\square$ feet

| User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) |  |  |  | Calculated Parameters for Plate |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Invert of Lowest Orifice $=$ | 0.00 | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) | WQ Orifice Area per Row = | $1.326 \mathrm{E}-02$ | $\mathrm{ft}^{2}$ |
| Depth at top of Zone using Orifice Plate $=$ | 4.84 | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) | Elliptical Half-Width $=$ | N/A | feet |
| Orifice Plate: Orifice Vertical Spacing = | 19.40 | inches | Elliptical Slot Centroid | N/A | feet |
| Orifice Plate: Orifice Area per Row $=$ | 1.91 | sq. inches (diameter $=1-9 / 16$ inches) | Elliptical Slot Area $=$ | N/A | $\mathrm{ft}^{2}$ |

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

|  | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) | Row 8 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stage of Orifice Centroid (ft) | 0.00 | 1.61 | 3.23 |  |  |  |  |  |
| Orifice Area (sq. inches) | 1.91 | 1.91 | 1.91 |  |  |  |  |  |


|  | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stage of Orifice Centroid (ft)Orifice Area (sq. inches) |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |


| User Input: Vertical Orifice (Circular or Rectangular) |  |  | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) <br> ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) inches | Calculated Parameters for Vertical Orifice |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Not Selected | Not Selected |  | Vertical Orifice Area = Vertical Orifice Centroid = | Not Selected | Not Selected |
| Invert of Vertical Orifice $=$ | N/A | N/A |  |  | N/A | N/A |
| Depth at top of Zone using Vertical Orifice $=$ | N/A | N/A |  |  | N/A | N/A |
| Vertical Orifice Diameter = | N/A | N/A |  |  |  |  |


| ser Input: Overflow Weir (Dropbox with Flat |  | Pipe | rapezoidal Weir (and No Outl | Pipe) | Calculated Parameters for Overflow Weir |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Zone 3 Weir | Not Selected | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ | ft) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ Overflow Weir Slope Length $=$ | Zone 3 Weir | Not Selected |  |
| Overflow Weir Front Edge Height, $\mathrm{Ho}=$ | 4.85 | N/A |  |  | 4.85 | N/A | feet |
| Overflow Weir Front Edge Length = | 8.00 | N/A | feet |  | 3.50 | N/A | t |
| Overflow Weir Grate Slope $=$ | 0.00 | N/A | $\mathrm{H}: \mathrm{V}$ Gr | Grate Open Area / 100-yr Orifice Area $=$ | 12.82 | N/A |  |
| Horiz. Length of Weir Sides = | 3.50 | N/A | feet <br> \%, grate open area/total area | Overflow Grate Open Area w/o Debris = Overflow Grate Open Area w/ Debris = | 19.60 | N/A | $\mathrm{ft}^{2}$ |
| Overflow Grate Open Area \% = | 70\% | N/A |  |  | 9.80 | N/A | $\mathrm{ft}^{2}$ |
| Debris Clogging \% = | 50\% | V/A |  |  |  |  |  |

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

| Depth to Invert of Outlet Pipe = Outlet Pipe Diameter $=$ | Zone 3 Restrictor | Not Selected |  |
| :---: | :---: | :---: | :---: |
|  | 0.25 | N/A | ft (distance below basin bottom at Stage $=0 \mathrm{ft}$ ) |
|  | 24.00 | N/A | inches |
| Restrictor Plate Height Above Pipe Invert = | 11.75 |  | inches Half-Central An | inches Restrictor Plate Height Above Pipe Invert =

ser Input: Emergency Spillway (Rectanqular or Trapezoidal)

| Spillway Invert Stage= | 6.00 | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) |
| :---: | :---: | :---: |
| Spillway Crest Length $=$ | 25.00 | feet |
| Spillway End Slopes = | 4.00 | H:V |
| Freeboard above Max Water Surface = | 1.00 | feet |

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate


|  | Calculated Parameters for Spillway |  |
| :---: | :---: | :---: |
| Spillway Design Flow Depth= | 0.78 | feet |
| Stage at Top of Freeboard = | 7.78 | feet |
| Basin Area at Top of Freeboard = | 1.01 | acres |
| Basin Volume at Top of Freeboard = | 3.99 | acre-ft |


| Routed Hydrograph Results | The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WQCV | EURV | 2 Year | 5 Year | 10 Year | 25 Year | 50 Year | 100 Year | 500 Year |
| One-Hour Rainfall Depth (in) = | N/A | N/A | 1.19 | 1.50 | 1.75 | 2.00 | 2.25 | 2.52 | 3.14 |
| CUHP Runoff Volume (acre-ft) = | 0.453 | 1.518 | 1.391 | 1.867 | 2.267 | 2.732 | 3.149 | 3.640 | 4.697 |
| Inflow Hydrograph Volume (acre-ft) $=$ | N/A | N/A | 1.391 | 1.867 | 2.267 | 2.732 | 3.149 | 3.640 | 4.697 |
| CUHP Predevelopment Peak Q (cfs) = | N/A | N/A | 1.8 | 5.1 | 7.8 | 14.1 | 17.7 | 22.6 | 31.6 |
| OPTIONAL Override Predevelopment Peak Q (cfs) $=$ | N/A | N/A |  |  |  |  |  |  |  |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | N/A | N/A | 0.10 | 0.27 | 0.40 | 0.73 | 0.91 | 1.17 | 1.63 |
| Peak Inflow Q (cfs) = | N/A | N/A | 22.9 | 30.6 | 36.1 | 44.8 | 51.6 | 60.4 | 77.4 |
| Peak Outflow Q (cfs) = | 0.2 | 0.3 | 0.3 | 3.7 | 7.8 | 15.9 | 16.8 | 17.5 | 36.4 |
| Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$ | N/A | N/A | N/A | 0.7 | 1.0 | 1.1 | 1.0 | 0.8 | 1.2 |
| Structure Controlling Flow = | Plate | Plate | Plate | Overflow Weir 1 | Overflow Weir 1 | Overflow Weir 1 | Outlet Plate 1 | Outlet Plate 1 | Spillway |
| Max Velocity through Grate 1 (fps) = | N/A | N/A | N/A | ${ }^{0.2}$ | 0.4 | 0.8 | 0.8 | 0.9 | 0.9 |
| Max Velocity through Grate 2 (fps) = | N/A |
| Time to Drain 97\% of Inflow Volume (hours) = | 38 | 82 | 78 | 84 | 82 | 81 | 80 | 78 | 76 |
| Time to Drain 99\% of Inflow Volume (hours) $=$ | 40 | 87 | 83 | $\lambda$ 20 入 | 89 | 88 | 88 | 87 | 86 |
| Maximum Ponding Depth (ft) = | 2.98 | 4.84 | 4.56 | 5.02 | 5.13 | 5.31 | 5.54 | 5.98 | 6.38 |
| Area at Maximum Ponding Depth (acres) $=$ | 0.47 | 0.67 | 0.64 | 0.69 | 0.71 | 0.73 | 0.75 | 0.80 | 0.85 |
| Maximum Volume Stored (acre-ft) $=$ | 0.453 | 1.519 | 1.335 | 1.635 | 1.719 | 1.848 | 2.011 | 2.352 | 2.682 |

## Stormwater Detention and Infiltration Design Data Sheet

## Stormwater Facility Name: Dwire Storage Yard

Facility Location \& Jurisdiction: 38.88423 Latitude, -104.67879 Longitude, El Paso County


| Routed Hydrograph Results |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Design Storm Return Period $=$ <br> One-Hour Rainfall Depth = | WQCV | 2 Year | 5 Year | 10 Year | 50 Year | 100 Year |
|  | 0.53 | 1.19 | 1.50 | 1.75 | 2.25 | 2.52 |
| Calculated Runoff Volume = | 0.460 | 1.287 | 1.706 | 2.151 | 3.092 | 3.621 |
| OPTIONAL Override Runoff Volume = |  |  |  |  |  |  |
| Inflow Hydrograph Volume = | 0.460 | 1.286 | 705 | 2.150 | 3.092 | 3.620 |
| Time to Drain 97\% of Inflow Volume = | 72.5 | 103.4 | 101.3 | 98.9 | 93.4 | 90.7 |
| Time to Drain 99\% of Inflow Volume = | 75.4 | 110.1 | 109.8 | 188.8 | 106.9 | 105.8 |
| Maximum Ponding Depth $=$ | 2.95 | 4.17 | 4.55 | 4.91 | 5.54 | 5.86 |
| Maximum Ponded Area $=$ | 0.48 | 0.62 | 0.65 | 0.68 | 0.75 | 0.79 |
| Maximum Volume Stored $=$ | 0.441 | 1.117 | 1.354 | 1.593 | 2.047 | 2.294 |

