MASTER DEVELOPMENT DRAINAGE PLAN FOR CONEXUS PHASES 2 AND 3

Prepared For:

CONEXUS, LLC 2 North Cascade, Ste. 1280 Colorado Springs, CO 80903

> January 2022 Project No. 25247.00

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593

CONEXUS PHASES 2 AND 3 DRAINAGE PLAN STATEMENTS

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the established criteria for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Bryan T. Law, P.E.	landa Na 25042	
Registered Professional Engineer State of Co	olorado No. 25043	
DEVELOPER STATEMENT		
I, the developer have read and will comply wreport and plan.	rith all of the requirer	ments specified in this drainage
Name of Developer		_
Authorized Signature	Date	_
Printed Name		
Title		
2 N. Cascade Ave. Suite 1280, Colorado Spring Address	gs, CO, 80903	
Director of Development Services	Date	_
Conditions:		

PURPOSE

This document is a Master Development Drainage Plan (MDDP) for the Preliminary PUD submittal for Conexus Phases 2 & 3. The purpose of this MDDP is to describe the proposed storm water management intent for the overall development. General flow patterns, impervious areas, pond locations, and general routing of flows are described to present a conceptual understanding of how storm water management is proposed.

GENERAL SITE LOCATION AND DESCRIPTION

LOCATION

Conexus Phases 2 and 3 development is located approximately 5,500 feet north of Baptist Road along the west side of Interstate 25 and east of Old Denver Highway in southwest, Monument Colorado. The site consists of approximately 146 acres of currently vacant land. The site is located within Sections 14 and 23, Township 11 South, Range 67 West of the 6th P.M., El Paso County, Colorado (see Figure 1). Conesus Phase 2 and 3 development is bound on the south by Teachout Creek, on the east by Interstate 25, on the west by Old Denver Road and on the north by Dirty Woman Creek and the north bound I-25 access ramp.

The site generally slopes from east to west toward Old Denver Highway at grades of approximately 2% to 5%. Teachout Creek is located at the south end of the development. Dirty Woman Creek is located at the north end of the site. Well established native grasses exist across the site. The Santa Fe Trail runs along the westerly boundary line of the site.

The exact type of proposed development is unknown at this time, but generally the land uses will consist of commercial, civic, office, light industrial, multi-use and medium to high density residential development. Old Denver Road will be realigned to direct through traffic through the proposed development, while the existing Old Denver Road will be converted to a local road way for residential access. Two access points to the existing Old Denver road are proposed.

SOIL CONDITIONS

According to the Soil Survey of El Paso County Area, Colorado, prepared by the U.S. Department of Agriculture Soil Conservation Service, the soil underlying this parcel consists of Tomah Crowfoot (Soil Type 92) as shown in the Appendix. The Tomah Crowfoot Soil type falls under hydrological group B soils. Runoff coefficients were selected based on the B type soils.

CLIMATE

This area of El Paso County can be described as the foothills, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry, and summers relatively warm and dry.

Precipitation ranges from 12 to 14 inches per year, with the majority of this moisture occurring in the spring and summer in the form of rainfall. Thunderstorms are common during the summer months.

FLOODPLAIN STATEMENT

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panels #08041C0278 G, dated December 7, 2019, 100 year flood plains exist just to the north and south of the proposed development (See Appendix). Note that it is the intent of this development to stay out of the floodplain limits.

DRAINAGE CRITERIA

Storm Drainage Analysis and Design Criteria for this project were implemented from the City of Colorado Springs "Drainage Criteria Manual Volumes 1 & 2" (DCM) and the "Urban Storm Drainage Criteria Manual" by Urban Drainage and Flood Control District (USDCM).

HYDROLOGIC CRITERIA

All hydrologic data was obtained from the "City of Colorado Springs Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the Colorado Springs Criteria. One hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the DCM. Time of concentrations were developed using equations from the DCM. All runoff calculations and applicable charts and graphs are included in Appendix B. The Urban Drainage detention spreadsheet was used to identify detention discharge and storage. Refer to Appendix C for the applicable detention and discharge calculations.

 Storm
 Rainfall (in.)

 5-year
 1.50

 100-year
 2.52

Table 1 - 1-hr Point Rainfall Data

HYDRAULIC CRITERIA

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site. The Manning's equation has been utilized as a preliminary sizing check for the proposed storm system. Refer to Appendix C for a pipe capacity calculation for the maximum flow rate in the proposed storm sewer system.

EXISTING DRAINAGE CONDITIONS

The site is split by a major basin boundary. The norther portion of the site is located in the Dirty Woman Creek Drainage basin, while the southern portion lies within the Teachout Drainage Basin. The existing terrain in the Dirty Woman Creek Drainage Basin generally slopes from east to west from I-25 to Old Denver Highway. The remaining portion of the site that lies within the Teachout Drainage basin generally flows west to Old Denver Road and then southerly to Teachout Creek.

At the time of writing this report no Drainage Basin Planning Study has been prepared for Teachout Creek. Flows form the proposed South Pond will be limited to historic rates in order to prevent downstream degradation of the creek. A field investigation will be necessary to analyze the current conditions of Teachout Creek for stability. If Teachout Creek is found to be unstable in its present condition, then improvements such as armament or drop structures may be warranted subject to environmental impacts including the Preble's Meadow Jumping Mouse Habitat.

Existing conditions of Dirty Woman Creek have been analyzed in *Dirty Woman Creek and Crystal Creek Drainage Bain Planning* prepared by Kiowa Engineering Corporation in 1993. This study found that in its current condition that Dirty Woman Creek will overtop the roadway when crossing I-25, causing potential for erosion and localized roadway destruction. To address this concern it is recommend that improvements to the creek and its associated infrastructure be made. For the reach of Dirty Woman Creek that transverses the site the DBPS recommends the addition of three drop structures, an additional 10'x8' concrete box culvert under I-25 and twin 10'x11' concrete box culverts under Old Denver Road. These improvements are subject to environmental impacts including the Preble's Meadow Jumping Mouse Habitat. Applicable excerpts and maps from the report are included in Appendix D.

Basin EX-1 contains Dirty Woman Creek major drainage way and is approximately 24.07 acres. Runoff generated from this basin is 5.57 cfs and 37.32 cfs for the 5 and 100 year storms respectively. Runoff from this basin overland flow directly into Dirty Women Creek at DP1.

Basin EX-2 is 8.22 acres of spares native vegetation. Runoff generated from this basin is 2.01 cfs and 13.49 cfs for the 5 and 100 year storms respectively. Runoff sheet flows to DP2 where flow enters Basin EX-1 and eventually outfall into Dirty Woman Creek.

Bain EX-3 in covered by native grasses and has a dirt trail that transvers the basin from north to south. This 38.03 acre basin generates 5.98 cfs in the 5 year storm and 40.16 cfs in the 100 year storm. Runoff sheet flows to the western property line before entering the existing swale that runs along Santa Fe Trail. Flow continues in the swale to DP4.

Basin EX-4 is 48.77 acres and is covered in spares native grasses. Runoff generated from this basin is 7.65 cfs and 51.36 cfs for the 5 and 100 year storms respectively. Runoff sheet flows to the western

property line before entering the existing swale along Santa Fe Trail. Flow continues in the swale to DP5.

Basin EX-5 is 13.15 acres of spares native vegetation. Runoff generated from this basin is 2.70 cfs and 18.19 cfs for the 5 and 100 year storms respectively. Runoff sheet flows to the western property line before entering the existing swale along Santa Fe Trail. Flows outfall to Teachout creak at DP5.

Basin EX-6 contains Teachout Creek and native vegetation. This 13.74 acres basin generates 3.01 cfs during the 5 year storm and 20.14 cfs during the 100 year storm. Runoff overland flows directly into Teachout Creek.

DEVELOPED DRAINAGE CONDITIONS

The Conexus development will consist of medium to high density residential, commercial, flex-office and light industrial developments. A proposed conditions drainage map is presented in Appendix E that depicts proposed drainage patterns and detention facilities.

Basin A comprises the existing Dirty Women Creek drainage way and consists of 23.8 acres that is open space. Runoff rates of 13.24 cfs and 49.99 cfs during the 5 and 100 year storms respectively. Flow generated by the basin will follow existing drainage patterns, by overland flowing into Dirty Women Creek, where flow exists the site at DP1.

Basin B consists of 2.9 acres of detention (North Pond). Runoff generated by this basin is 1.55 cfs and 5.89 cfs during the 5 and 100 year storms respectively. The North Pond is a proposed full spectrum water quality and detention pond. The pond will be sized and designed to release flow below historic rates into Dirty Woman Creek.

Basin C1 consists of 9.6 acre of commercial development with buildings, drive aisles, parking lot, sidewalks and landscaping. Runoff generated by this basin is 34.23 cfs and 62.42 cfs during the 5 and 100 year storms respectively. Runoff from this basin will be routed via sheet flow, curb and gutter, and possibly private storm sewer systems internal to Lot 4 that will outfall into the proposed North Pond. The North Pond is a proposed full spectrum water quality and detention pond. The pond will be sized and designed to release flow below historic rates into Dirty Woman Creek.

Basin C2 consists of 9.5 acre of commercial development with buildings, drive aisles, parking lot, sidewalks and landscaping. Runoff generated by this basin is 31.57 cfs and 57.55 cfs during the 5 and 100 year storms respectively. Runoff from this basin will be routed via sheet flow, curb and gutter, and enters the proposed storm sewer system at DP3. The proposed storm sewer system will carry flow south along the proposed Old Denver Road Re-alignment to the proposed South Pond. The South Pond is a proposed full spectrum water quality and detention pond. The pond will be sized and designed to release flow below historic rates into Teachout Creek.

Basin D consists of 42.4 acres of mix uses defined as flex-office and light industrial with buildings, drive aisles, parking lot, sidewalks, and landscaping. Runoff generated by this basin is 79.61 cfs and 158.52 cfs during the 5 and 100 year storms respectively. Runoff from this basin will be routed via sheet flow, curb and gutter, and enters the proposed storm sewer system at DP4. The proposed storm sewer carries flows to the proposed South Pond at DP5. The South Pond is a proposed full spectrum water quality and detention pond. The pond will be sized and designed to release flow below historic rates into Teachout Creek.

Basin E is 26.3 acres of medium density residential with buildings, drive aisles, parking lot, sidewalks, and landscaping. Runoff generated by this basin is 44.48 cfs and 97.88 cfs during the 5 and 100 year storms respectively. Runoff from this basin will be routed via sheet flow, curb and gutter, and enters the proposed storm sewer system. The proposed storm sewer carries flows to the proposed South Pond at DP6. The South Pond is a proposed full spectrum water quality and detention pond. The pond will be sized and designed to release flow below historic rates into Teachout Creek.

Basin F is 20.5 acres of high density residential with apartment buildings, drive aisles, parking lot, sidewalks, and landscaping. Runoff generated by this basin is 46.86 cfs and 97.35 cfs during the 5 and 100 year storms respectively. Runoff from this basin will be routed via sheet flow, curb and gutter, and then enters the proposed storm sewer system. The proposed storm sewer carries flows to the proposed South Pond at DP5. The South Pond is a proposed full spectrum water quality and detention pond. The pond will be sized and designed to release flow below historic rates into Teachout Creek.

Basin G consists of 5.6 acres of detention (South Pond). Runoff generated by this basin is 3.31cfs and 12.47 cfs during the 5 and 100 year storms respectively. Runoff from this basin is routed into the proposed South Pond via overland flow. The South Pond is a proposed full spectrum water quality and detention pond. The pond will be sized and designed to release flow below historic rates into Teachout Creek.

Basin H is 5.4 acres of open space. No development is proposed with in basin H and therefore runoff will follow existing drainage patterns. Runoff will sheet flow across the basin before entering Teachout creek in the middle of the basin. Flow will exit the site at DP7 through the existing box culvert (size unknown) under the existing Santa Fe Trail.

WATER QUALITY

Two full spectrum and water quality extended detention basins are proposed on the site to provide water quality for the proposed development. Ponds will be designed to release WQCV within 40 hours, the EURV will be released within 72 hours, and the 100-year will be released at or below the

pre-development flow rate. Both ponds will include forebays, trickle channel, outlet structure, emergency spillway and outlet pipe. These EDB/FSD's Ponds will be constructed to provide the necessary water quality capture volume (WQCV), Excessive Urban Runoff Volume (EURV), and Full Spectrum Detention.

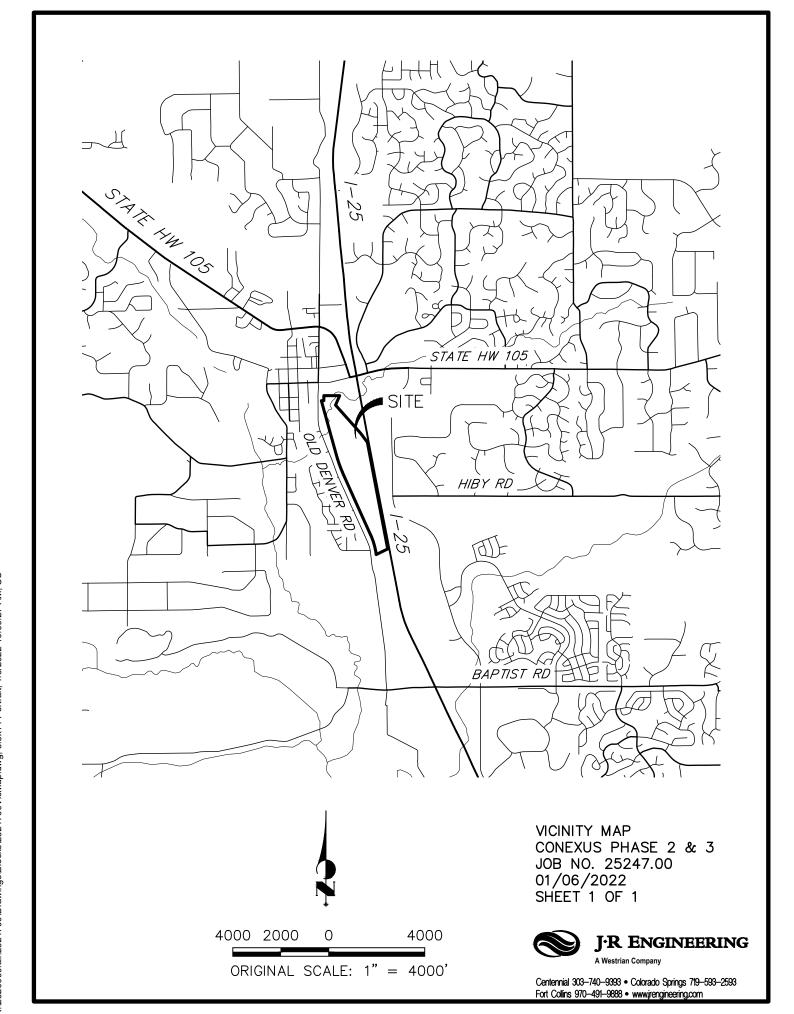
The Urban Drainage and Flood control District's UD Detention Spreadsheet was used in determining WQCV, EURV and FSD requirements. These calculations are presented in Appendix C of this report.

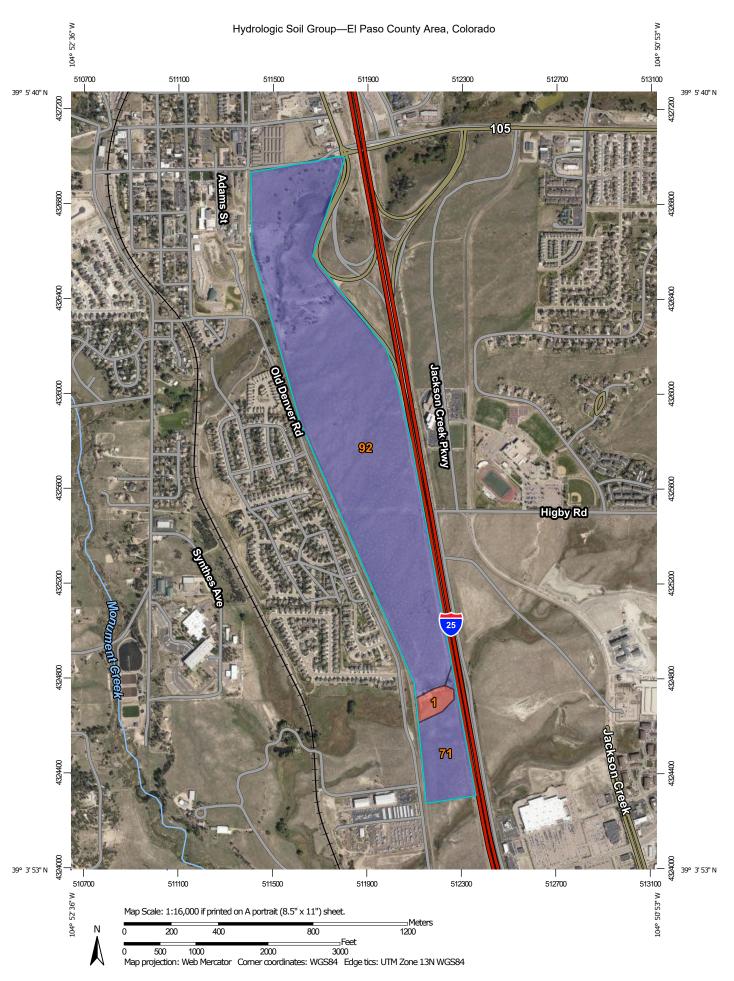
DRAINAGE FEES

Drainage fees will be paid per The City of Monument requirements based on impervious area. The exact fees to be paid will be determined at the time of final platting of the property.

SUMMARY

Runoff from the Conexus Phase 2 and 3 Development will be collected on site and conveyed to the two proposed FSD/EDB's as shown. Outfalls from the proposed Ponds will release flow at or below historic rates into the adjacent Creeks. No negative downstream impacts to drainage ways, facilities, or properties are expected with the development of Conexus Phases 2 &3. Final sizing, location, and sizing of these facilities will be determined later once more detailed land use and density information becomes available. At the time of development of individual parcels within the area identified in this MDDP, separate Final Drainage Reports will be required to be review and approved by the Town of Monument.




REFERENCES

- 1. City of Colorado Springs Drainage Criteria Manual (Volumes I & II), <u>City of Colorado Springs, Colorado</u>, Updated May, 2014.
- 2. Urban Storm Drainage Criteria Manual (Volumes 1, 2, and 3), <u>Urban Drainage and Flood Control District</u>, June 2001.
- 3. "Hydrologic Group Rating for El Paso County Area, Colorado", <u>USDA-Natural Resources</u> <u>Conservation Service</u>, <u>National Cooperative Soil Survey</u>. Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov.
- 4. "Flood Insurance Studies for Colorado springs and El Paso County, Colorado", prepared by the Federal Emergency Management Agency (FEMA), 1985.
- 5. "Dirty Woman Creek and Crystal Creek Drainage Bain Planning Study" prepared by Kiowa Engineering Corporation, 1993.

Appendix A

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Please rely on the bar scale on each map sheet for map Soils D measurements. Soil Rating Polygons Not rated or not available Α Source of Map: Natural Resources Conservation Service Web Soil Survey URL: **Water Features** A/D Coordinate System: Web Mercator (EPSG:3857) Streams and Canals В Maps from the Web Soil Survey are based on the Web Mercator Transportation projection, which preserves direction and shape but distorts B/D Rails distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more Interstate Highways accurate calculations of distance or area are required. C/D **US Routes** This product is generated from the USDA-NRCS certified data as D Major Roads of the version date(s) listed below. Not rated or not available -Local Roads Soil Survey Area: El Paso County Area, Colorado Soil Rating Lines Survey Area Data: Version 19, Aug 31, 2021 Background Aerial Photography Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Aug 19, 2018—Sep 23, 2018 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor C/D shifting of map unit boundaries may be evident. D Not rated or not available **Soil Rating Points** A/D B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Alamosa loam, 1 to 3 percent slopes	D	3.9	1.9%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	19.1	9.1%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	В	186.2	89.0%
Totals for Area of Inter	est	1	209.2	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

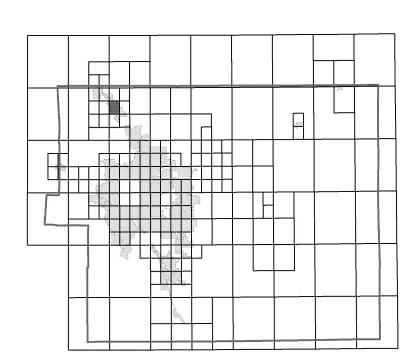
To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile aselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

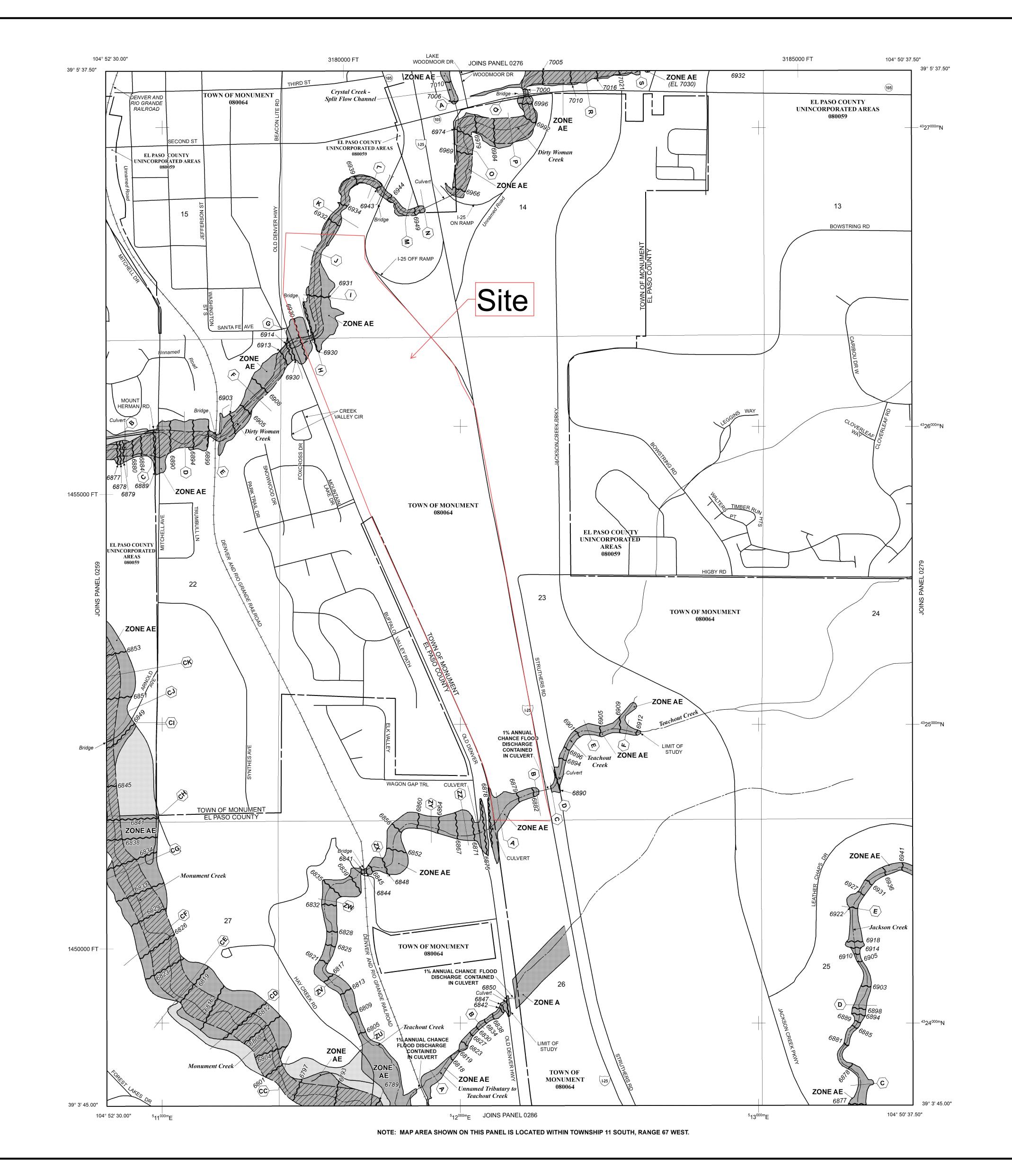
Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is


Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website a http://www.msc.fema.gov/.

f you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County Vertical Datum Offset Table Flooding Source REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY

FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A. AE. AH. AO. AR. A99. V. and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

ZONE A No Base Flood Elevations determined. Base Flood Elevations determined.

Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined

ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also

ZONE AR Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.

ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations

Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.

ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood

Elevations determined. FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

OTHER AREAS

Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.

Floodplain boundary Floodway boundary

.......... CBRS and OPA boundary Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.

~~ 513 ~~ Base Flood Elevation line and value; elevation in feet* (EL 987) Base Flood Elevation value where uniform within zone; elevation in feet*

* Referenced to the North American Vertical Datum of 1988 (NAVD 88)

Cross section line

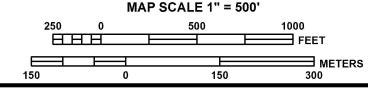
97° 07' 30.00" Geographic coordinates referenced to the North American 32° 22' 30.00" Datum of 1983 (NAD 83)

1000-meter Universal Transverse Mercator grid ticks,

5000-foot grid ticks: Colorado State Plane coordinate 6000000 FT system, central zone (FIPSZONE 0502),

Bench mark (see explanation in Notes to Users section of this FIRM panel)

MAP REPOSITORIES Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP


EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL DECEMBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision.

MARCH 17, 1997

For community map revision history prior to countywide mapping, refer to the Community

Map History Table located in the Flood Insurance Study report for this jurisdiction. To determine if flood insurance is available in this community, contact your insurance

agent or call the National Flood Insurance Program at 1-800-638-6620.

PANEL 0278G

FIRM FLOOD INSURANCE RATE MAP

EL PASO COUNTY, COLORADO AND INCORPORATED AREAS

PANEL 278 OF 1300

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

MONUMENT, TOWN OF 080064

this correction for details.

Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the

to make a correction. This version replaces any previous versions. See the Notice-to-User Letter that accompanied

MAP REVISED **DECEMBER 7, 2018**

MAP NUMBER

08041C0278G

Federal Emergency Management Agency

Appendix B

EXISTING COMPOSITE % IMPERVIOUS/C VALUE CALCULATIONS

 Subdivision:
 CONEXUS

 Location:
 El Paso County
 25247.00

 APL
 1/5/22

		Basin Tota	l Weighted	Basins Total Weighted %		
Basin ID	Total Area (ac)	C ₅	C ₁₀₀	lmp.		
EX-1	24.07	0.09	0.36	2.0%		
EX-2	8.22	0.09	0.36	2.0%		
EX-3	38.03	0.09	0.36	2.0%		
EX-4	48.77	0.09	0.36	2.0%		
EX-5	13.15	0.09	0.36	2.0%		
EX-6	13.74	0.09	0.36	2.0%		
TOTAL	145.98			2.0%		

EXISTING STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision:	CONEXUS	Project Name:	CONEXUS		
Location:	El Paso County	Project No.:	25247.00		
		Calculated By:	APL		
		Checked By:			
		Date:	1	1/5/22	

		SUB-	BASIN			INITI	AL/OVER	LAND		Т	RAVEL TIM	E					
		DA	ATA				(T _i)				(T _t)			(L	FINAL		
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t _i	L _t	S_t	К	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
EX-1	24.07	В	2%	0.09	0.36	300	10.2%	14.7	575	1.0%	7.0	0.7	13.7	28.4	875.0	36.0	28.4
EX-2	8.22	В	2%	0.09	0.36	300	2.7%	22.8	265	5.0%	7.0	1.6	2.8	25.6	565.0	27.8	25.6
EX-3	38.03	В	2%	0.09	0.36	300	2.1%	24.7	1530	1.4%	7.0	0.8	30.8	55.5	1830.0	48.9	48.9
EX-4	48.77	В	2%	0.09	0.36	300	2.5%	23.3	1485	1.3%	7.0	0.8	31.0	54.4	1785.0	49.1	49.1
EX-5	13.15	В	2%	0.09	0.36	300	3.0%	22.0	800	2.5%	7.0	1.1	12.0	34.0	1100.0	34.7	34.0
EX-6	13.74	В	2%	0.09	0.36	300	3.1%	21.7	690	3.0%	7.0	1.2	9.4	31.2	990.0	32.8	31.2

NOTES:

 $t_c = t_i + t_t$ Equation 6-2 Equation 6-3 Where: Where: t_c = computed time of concentration (minutes) t_i = overland (initial) flow time (minutes)

 t_i = overland (initial) flow time (minutes) C_5 = runoff coefficient for 5-year frequency (from Table 6-4) L_i = length of overland flow (ft) t_t = channelized flow time (minutes). S_0 = average slope along the overland flow path (ft/ft).

 $t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$ Where:

 t_t = channelized flow time (travel time, min) t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. L_t = waterway length (ft) L_t = length of channelized flow path (ft)

 S_o = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = $K\sqrt{S_o}$ i = imperviousness (expressed as a decimal) $S_t = \text{slope of the channelized flow path (ft/ft)}.$ K = NRCS conveyance factor (see Table 6-2).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Equation 6-5

EXISTING STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: CONEXUS
Subdivision: CONEXUS	Project No.: 25247.00
Location: El Paso County	Calculated By: APL
Design Storm: 5-Year	Checked By:
	Date: 1/5/22

					TOTAL RUNOFF				STREET			P	IPE		TRAVEL TIME								
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_c (min)	C*A (Ac)	/ (in/hr)	Q (cfs)	tc (min)	C*A (ac)	/ (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
	1		24.07	0.09	28.4		2.57	5.6	28.4		2.57	7.5											Overland flows to Dirty Women Creek and continues to the exsting box culvert at DP1
									20	2.52	2.57	7.5											Overland flows to DP2 then enters Basin EX-1
	2	EX-2	8.22	0.09	25.6	0.74	2.72	2.0															Flows combine in Dirty Woman Creek at DP1 Overland flows west to exisiting swale along
	3	EX-3	38.03	0.09	48.9	3.42	1.75	6.0															Santa Fe Trail to DP3 & then to DP4 Overland flows southwest to exisiting swale
	4	EX-4	48.77	0.09	49.1	4.39	1.74	7.7	49.1	7.81	1.74	13.6											along Santa Fe Trail to DP4 & then to DP5 Overland flows southwest to exisiting swale
	5	EX-5	13.15	0.09	34.0	1.18	2.29	2.7	49.1	8.99	1.74	15.7											along Santa Fe Trail to DP5 & then to DP6
	6	EX-6	13.74	0.09	31.2	1.24	2.42	3.0	49.1	10.23	1.74	17.8											Overland flows to exising swale, Flows enter Teachout Creek at DP6

Notes

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

EXISTING STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: CONEXUS
Subdivision: CONEXUS	Project No.: 25247.00
Location: El Paso County	Calculated By: APL
Design Storm: 100-Year	Checked By:
	Date: 1/5/22

		DIRECT RUNOFF							TOTAL RUNOFF				STREET			PIPE				TRAVEL TIME			
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	$t_{ m c}$ (min)	C*A (ac)	/ (in/hr)	Q (cfs)	tc (min)	C*A (ac)	/ (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
																							Overland flows to Dirty Women Creek and
	1	EX-1	24.07	0.36	28.4	8.67	4.30	37.3	28.4	11.63	4.30	50.1											continues to the exsting box culvert at DP1
																							Overland flows to DP2 then enters Basin EX-1
	2	EX-2	8.22	0.36	25.6	2.96	4.56	13.5															Flows combine in Dirty Woman Creek at DP1
	2	EV 2	20.02	0.20	40.0	12.00	2.02	40.3															Overland flows west to exisiting swale along
	3	EX-3	38.03	0.36	48.9	13.69	2.93	40.2								1							Santa Fe Trail to DP3 & then to DP4 Overland flows southwest to exisiting swale
	4	EX-4	48.77	0.36	49 1	17.56	2 92	51.4	49 1	31.25	2 92	91 4											along Santa Fe Trail to DP4 & then to DP5
	-	LX 7	40.77	0.50	73.1	17.50	2.52	31.4	73.1	31.23	2.52	31.4											Overland flows southwest to exisiting swale
	5	EX-5	13.15	0.36	34.0	4.73	3.85	18.2	49.1	35.98	2.92	105.2											along Santa Fe Trail to DP5 & then to DP6
																							Overland flows to exising swale, Flows enter
	6	EX-6	13.74	0.36	31.2	4.95	4.07	20.1	49.1	40.93	2.92	119.7											Teachout Creek at DP6

Notes

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

PROPOSED COMPOSITE % IMPERVIOUS/C VALUE CALCULATIONS

 Subdivision:
 CONEXUS

 Location:
 El Paso County
 25247.00

 APL
 1/5/22

			l Weighted	Basins Total Weighted %
Basin ID	Total Area (ac)	C _s	C ₁₀₀	Imp.
А	32.80	0.16	0.36	2.0%
В	2.90	0.16	0.36	2.0%
C1	9.60	0.81	0.88	95.0%
C2	9.50	0.81	0.88	95.0%
D	42.40	0.59	0.70	80.0%
E	26.30	0.45	0.59	65.0%
F	20.50	0.63	0.78	75.0%
G	5.60	0.16	0.36	2.0%
Н	5.40	0.16	0.36	2.0%
TOTAL	155.00			55.1%
TOTAL POND N	12.50			73.4%
TOTAL POND S	104.30			72.4%

PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: CONEXUS	Project Name: CONEXUS
Location: El Paso County	Project No.: 25247.00
	Calculated By: APL
	Checked By:
	Date: 1/5/22

		SUB-I	BASIN			INITI	AL/OVER	LAND		Т	RAVEL TIM	ΙE					
		DA	TA				(T _i)				(T _t)			(L	FINAL		
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t _i	L _t	S_t	К	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
Α	32.80	В	2%	0.16	0.36	300	19.00%	11.1	1150.00	0.5%	15.0	1.1	18.1	29.2	1450.0	54.9	29.2
В	2.90	В	2%	0.16	0.36	150	2.0%	16.5	0.00	0.0%	7.0	0.0	0.0	16.5	150.0	25.7	16.5
C1	9.60	В	95%	0.81	0.88	100	2.5%	3.9	850.00	2.5%	20.0	3.2	4.5	8.3	950.0	13.9	8.3
C2	9.50	В	95%	0.81	0.88	100	2.5%	3.9	1200.00	2.5%	20.0	3.2	6.3	10.2	1300.0	15.5	10.2
D	42.40	В	80%	0.59	0.70	100	2.7%	6.6	2400.00	2.7%	20.0	3.3	12.2	18.8	2500.0	24.5	18.8
Е	26.30	В	65%	0.45	0.59	150	2.8%	10.2	380.00	1.5%	20.0	2.4	2.6	12.8	530.0	17.8	12.8
F	20.50	В	75%	0.63	0.78	100	3.3%	5.7	1800.00	3.3%	20.0	3.6	8.3	14.0	1900.0	21.7	14.0
G	5.60	В	2%	0.16	0.36	100	2.0%	13.5	0.00	0.0%	7.0	0.0	0.0	13.5	100.0	25.7	13.5
Н	5.40	В	2%	0.16	0.36	300	4.0%	18.6	400	2.0%	7.0	1.0	6.7	25.3	700.0	30.7	25.3

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. t_r = length of channelized flow path (ft) t_c = imperviousness (expressed as a decimal) S_r = slope of the channelized flow path (ft/ft).

NOTES:

Where:

$$t_c = t_i + t_t \qquad \text{Equation 6-2} \qquad t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}} \qquad \text{Equation 6-3}$$
 Where:
$$t_t = \text{computed time of concentration (minutes)} \qquad \qquad t_t = \text{overland (initial) flow time (minutes)} \qquad t_t = \text{overland (initial) flow time (minutes)} \qquad t_t = \text{overland (initial) flow time (minutes)} \qquad t_t = \text{channelized flow time (minutes)} \qquad t_t = \text{length of overland flow (ft)} \qquad t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t} \qquad \text{Equation 6-4} \qquad t_t = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}} \qquad \text{Equation 6-5}$$

Where:

Table 6-2. NRCS Conveyance factors, K								
Type of Land Surface	Conveyance Factor, K							
Heavy meadow	2.5							
Tillage/field	5							
Short pasture and lawns	7							
Nearly bare ground	10							
Grassed waterway	15							
Paved areas and shallow paved swales	20							

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

 t_t = channelized flow time (travel time, min)

 $V_t = V_t$ which was thing V_t and V_t in the velocity (ft/sec) = V_t = V in the velocity (ft/sec) = V_t = NRCS conveyance factor (see Table 6-2).

 L_t = waterway length (ft)

PROPOSED STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: CONEXUS
Subdivision: CONEXUS	Project No.: 25247.00
Location: El Paso County	Calculated By: APL
Design Storm: 5-Year	Checked By:
·	Date: 1/5/22

		DIRECT RUNOFF				T	OTAL F	TAL RUNOFF STREET PIPE TRAVEL TIME			ΜE												
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_c (min)	C*A (Ac)	/ (in/hr)	Q (cfs)	tc (min)	C*A (ac)	/ (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
	1	А	32.80	0.16	29.2	5.25	2.52	13.2															Overland flows to Dirty Women Creek and exits site at DP1
		В	2.90	0.16	16.5	0.46	3.37	1.6															Overland flows to Proposed North Pond
	_									0.24	2 27	27.0											Overland flows to internal c&g, flows from Basin
	2	C1	9.60			7.78				8.24	3.37	27.8											B and C1 combine at North Pond, DP2 Flow is routed via overland flow to c&g to DP3,
	3	C2	9.50	0.81	10.2	7.70	4.10	31.6															flow continues to DP4 via storm sewer Flow is routed via overland flow and c&g to DP4
	4	D	42.40	0.59	18.8	25.02	3.18	79.6	18.8	32.72	3.18	104.1											and contuies to DP5 via storm sewer Flow is routed via c&g and storm sewer to DP5
	5	E	26.30	0.45	12.8	11.84	3.76	44.5	18.8	44.56	3.18	141.8											where flow continues to South Pond Flow is routed via c&g and storm sewer to DP6
	6	F	20.50	0.63	14.0	12.92	3.63	46.9															where flow continues to South Pond
	7	G	5.60	0.16	13.5	0.90	3.68	3.3	18.8	58.38	3.18	185.7											Overland flows to South Pond , flows from Basin G, DP5 & DP6 combine at DP7
	8	Н	5.40	0.16	25.3	0.86	2.73	2.4															Follows existing drainage pattern and enters exisitng swale ast DP8
																							-

Notes

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

PROPOSED STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

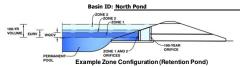
(RATIONAL METHOD PROCEDURE)

	Project Name: CONEXUS
Subdivision: CONEXUS	Project No.: 25247.00
Location: El Paso County	Calculated By: APL
Design Storm: 100-Year	Checked By:
	Date: 1/5/22

			DIRECT RUNOFF				T	OTAL I	RUNO	FF	STREET PIPE TRAVEL TIME			ΛE									
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	$t_{ m c}$ (min)	C*A (ac)	/ (in/hr)	Q (cfs)	tc (min)	C*A (ac)	/ (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
	1	А	32.80	0.36	29.2	11.81	4.23	50.0															Overland flows to Dirty Women Creek and exits site at DP1
		В	2.90	0.36	16.5	1.04	5.66	5.9															Overland flows to Proposed North Pond
	2	C1	9.60	0.88	8.3	8.45	7.39	62.4	16.5	9.49	5.66	53.8											Overland flows to internal c&g, flows from Basin B and C1 combine at North Pond, DP2
	3	C2	9.50	0.88	10.2	8.36	6.88	57.6															Flow is routed via overland flow to c&g to DP3, flow continues to DP4 via storm sewer
	4	D	42.40	0.70	18.8	29.68	5.34	158.5	18.8	38.04	5.34	203.2											Flow is routed via overland flow and c&g to DP4 and contuies to DP5 via storm sewer
	5	Е	26.30	0.59	12.8	15.52	6.31	97.9	18.8	53.56	5.34	286.1											Flow is routed via c&g and storm sewer to DP5 where flow continues to South Pond Flow is routed via c&g and storm sewer to DP6
	6	F	20.50	0.78	14.0	15.99	6.09	97.4															where flow continues to South Pond Overland flows to South Pond , flows from Basin
	7	G	5.60	0.36	13.5	2.02	6.18	12.5	18.8	71.57	5.34	382.2											G, DP5 & DP6 combine at DP7
	8	Н	5.40	0.36	25.3	1.94	4.59	8.9															Follows existing drainage pattern and enters exisitng swale ast DP8

Notes

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.


Appendix C

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

Project: Conexus Ph 2-3

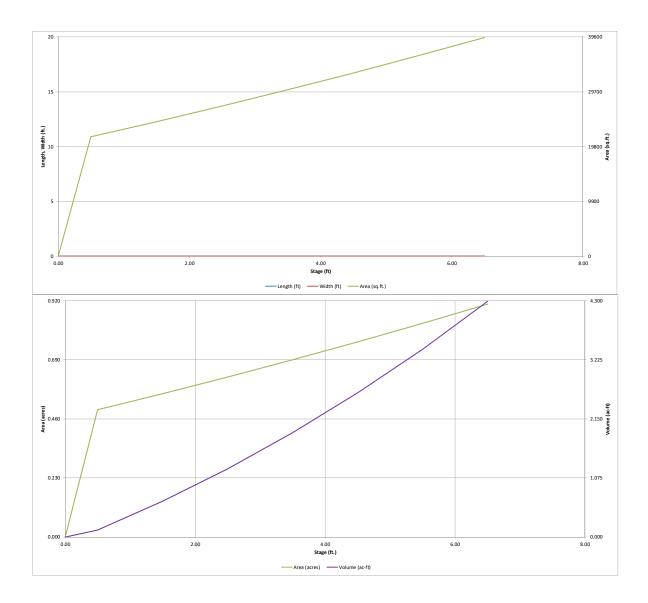
Watershed Information

terbired Information		
Selected BMP Type =	EDB	
Watershed Area =	12.50	acres
Watershed Length =	1,000	ft
Watershed Length to Centroid =	250	ft
Watershed Slope =	0.030	ft/ft
Watershed Imperviousness =	73.40%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-br Rainfall Denths =	User Innut	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.										
Water Quality Capture Volume (WQCV) =	0.303	acre-feet								
Excess Urban Runoff Volume (EURV) =	1.011	acre-feet								
2-yr Runoff Volume (P1 = 1.19 in.) =	0.856	acre-feet								
5-yr Runoff Volume (P1 = 1.5 in.) =	1.146	acre-feet								
10-yr Runoff Volume (P1 = 1.75 in.) =	1.389	acre-feet								
25-yr Runoff Volume (P1 = 2 in.) =	1.670	acre-feet								
50-yr Runoff Volume (P1 = 2.25 in.) =	1.923	acre-feet								
100-yr Runoff Volume (P1 = 2.52 in.) =	2.220	acre-feet								
500-yr Runoff Volume (P1 = 3.14 in.) =	2.860	acre-feet								
Approximate 2-yr Detention Volume =	0.794	acre-feet								
Approximate 5-yr Detention Volume =	1.054	acre-feet								
Approximate 10-yr Detention Volume =	1.323	acre-feet								
Approximate 25-yr Detention Volume =	1.419	acre-feet								
Approximate 50-yr Detention Volume =	1.476	acre-feet								
Approximate 100-yr Detention Volume =	1.572	acre-feet								
		='								

Optional User Overrides									
	acre-feet								
	acre-feet								
1.19	inches								
1.50	inches								
1.75	inches								
2.00	inches								
2.25	inches								
2.52	inches								
	inches								

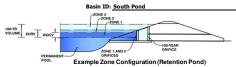

Define Zones and Basin Geometry

ocinic zones and basin ocomedy		
Zone 1 Volume (WQCV) =	0.303	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.708	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.560	acre-feet
Total Detention Basin Volume =	1.572	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$		ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin $(W_{MAIN}) =$	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume $(V_{total}) =$	user	acre-feet

1		1							
Depth Increment =	1.00	ft Optional				Optional			1
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description Top of Micropool	(ft)	Stage (ft) 0.00	(ft) 	(ft) 	(ft²)	Area (ft ²) 10	(acre) 0.000	(ft ³)	(ac-ft)
TOP OF MICTOPOOL								5.204	0.434
	-	0.50	-		-	21,570	0.495	5,394	0.124
		1.50 2.50	-		-	24,307 27,142	0.558 0.623	28,332 54,057	0.650 1.241
		3.50	-		-	30,079	0.623	82,667	1.898
		4.50	_		_	33,116	0.760	114,265	2.623
		5.50	-		-	36,254	0.832	148,950	3.419
		6.50	-		-	39,492	0.907	186,823	4.289
			-	-	-				
			-		-				
			-		-				
			-		-				
			-		-				
			_		_				
			-						
			-						
			1		-				
			-	-	-				
	-		-		-				
			-		-				
			-		-				
			-		-				
			_		-				-
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
			_	-	_				
			_	-					
			-		-				
			-		-				
	-		-		-				
			-	-	-				
			-		-				
			-		-				
			-		-				
			_	-	-				
			-		-				
			-		-				
			-		-				
			-	-	-				
			-		-				
			-		-				
			-		-				
			_		_				
	_		-		-				
			-		-				
			-		-				
			-		-				
			-		-				
			1 1		-			<u></u>	<u> </u>
			1 1		-		_		
			-		-				
					-				
			-		-				
			-		-				
	=		-	-	-				
			1		-				
			-		-				
			1 1 1		-			<u></u>	<u> </u>
			-		-		_		
			-	-	-				
	-				-				
			-		-				
			1 1		-				
			-		-				
			-		-				
					-				
			-		-				
	-		1 1		-				
			1 1		-				-
			-						
			1 1		-			<u> </u>	<u> </u>
					-			<u> </u>	

Pond North-MHFD-Detention_v4 03_APLxtsm, Basin 1/5/2022, 448 PM



Pond North-MHFD-Detention_v4 03_APL.xism, Basin 1/5/2022, 4:48 PM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

Project: Conexus Ph 2-3

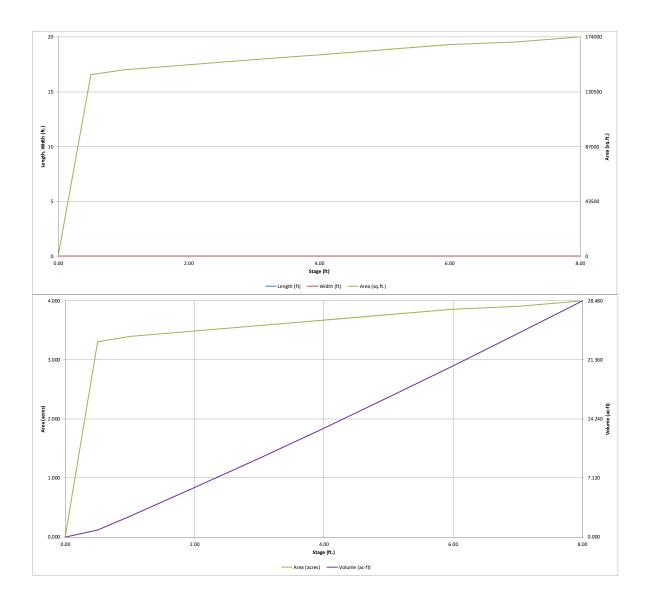
Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	104.30	acres
Watershed Length =	4,000	ft
Watershed Length to Centroid =	2,000	ft
Watershed Slope =	0.030	ft/ft
Watershed Imperviousness =	72.40%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.						
Water Quality Capture Volume (WQCV) =	2.488	acre-feet				
Excess Urban Runoff Volume (EURV) =	8.315	acre-feet				
2-yr Runoff Volume (P1 = 1.19 in.) =	7.573	acre-feet				
5-yr Runoff Volume (P1 = 1.5 in.) =	10.160	acre-feet				
10-yr Runoff Volume (P1 = 1.75 in.) =	12.331	acre-feet				
25-yr Runoff Volume (P1 = 2 in.) =	14.858	acre-feet				
50-yr Runoff Volume (P1 = 2.25 in.) =	17.121	acre-feet				
100-yr Runoff Volume (P1 = 2.52 in.) =	19.789	acre-feet				
500-yr Runoff Volume (P1 = 3.14 in.) =	25.525	acre-feet				
Approximate 2-yr Detention Volume =	6.520	acre-feet				
Approximate 5-yr Detention Volume =	8.664	acre-feet				
Approximate 10-yr Detention Volume =	10.889	acre-feet				
Approximate 25-yr Detention Volume =	11.690	acre-feet				
Approximate 50-yr Detention Volume =	12.156	acre-feet				
Approximate 100-yr Detention Volume =	12.967	acre-feet				

Optional Us	Optional User Overrides				
	acre-feet				
	acre-feet				
1.19	inches				
1.50	inches				
1.75	inches				
2.00	inches				
2.25	inches				
2.52	inches				
	inches				


Define Zones and Basin Geometry

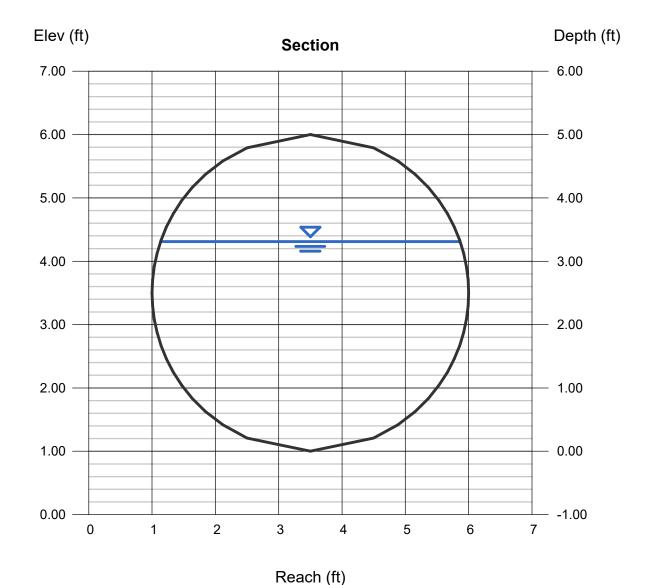
Jenne Zones and basin decinedly		
Zone 1 Volume (WQCV) =	2.488	acre-fe
Zone 2 Volume (EURV - Zone 1) =	5.827	acre-fe
Zone 3 Volume (100-year - Zones 1 & 2) =	4.652	acre-fe
Total Detention Basin Volume =	12.967	acre-fe
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$		ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin $(W_{MAIN}) =$	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume $(V_{total}) =$	user	acre-feet

Stage - Storage	1.00 Stage	Optional Override Stage (ft)	Length	Width	Area	Optional Override Area (ft ²)	Area	Volume (ft ³)	Volume (ac-ft)
Description Top of Micropool	(ft) 	Stage (ft) 0.00	(ft) 	(ft) 	(ft²)	Area (π -)	(acre) 0.011	(it')	(aC-IL)
Top or Theropoor		0.50	-		_	144,000	3.306	36,113	0.829
		1.00	_		_	148,000	3.398	109,113	2.505
	-	2.00	-				3.489		5.948
		3.00	-		-	152,000 156,000	3.581	259,113 413,113	9.484
	-	4.00	_		_	160,000	3.673	571,113	13.111
	-	5.00	_		_	164,000	3.765	733,113	16.830
		6.00	_		-	168,000	3.857	899,113	20.641
		7.00				170,000	3.903	1,068,113	24.520
		8.00	-		-	174,000	3.994	1,240,113	28.469
			-						
			-		-				
			-		-				
			-		-				
	-		-		-				
			-						
	-		_		-				
			_		_				
			_		_				
	-		-		-				
			-		-				
			-						
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
			_		-				
			_		-				
			-		-				
	-		-		-				
			1		-				
			-		-				
			-		-				
	-		-		-				
			-		-				
			-		-				
					_				
					-				
			-		-				
			-		=				
			1 1		 				
			1	 	- - -				
			1 1 1 1		- - - -				
	 		1 1 1 1	 	 				
			1 1 1 1		- - - -				

Pond South-MHFD-Detention_v4 03.x/sm, Basin 1/5/2022, 4:51 PM

Pond South-MHFD-Detention_v4 03.x/sm, Basin 1/5/2022, 4:51 PM


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Max Flow Check

Circular Diameter (ft)	= 5.00
Invert Elev (ft)	= 1.00
Slope (%)	= 2.00
N-Value	= 0.013

Calculations
Compute by: Known Q
Known Q (cfs) = 286.10

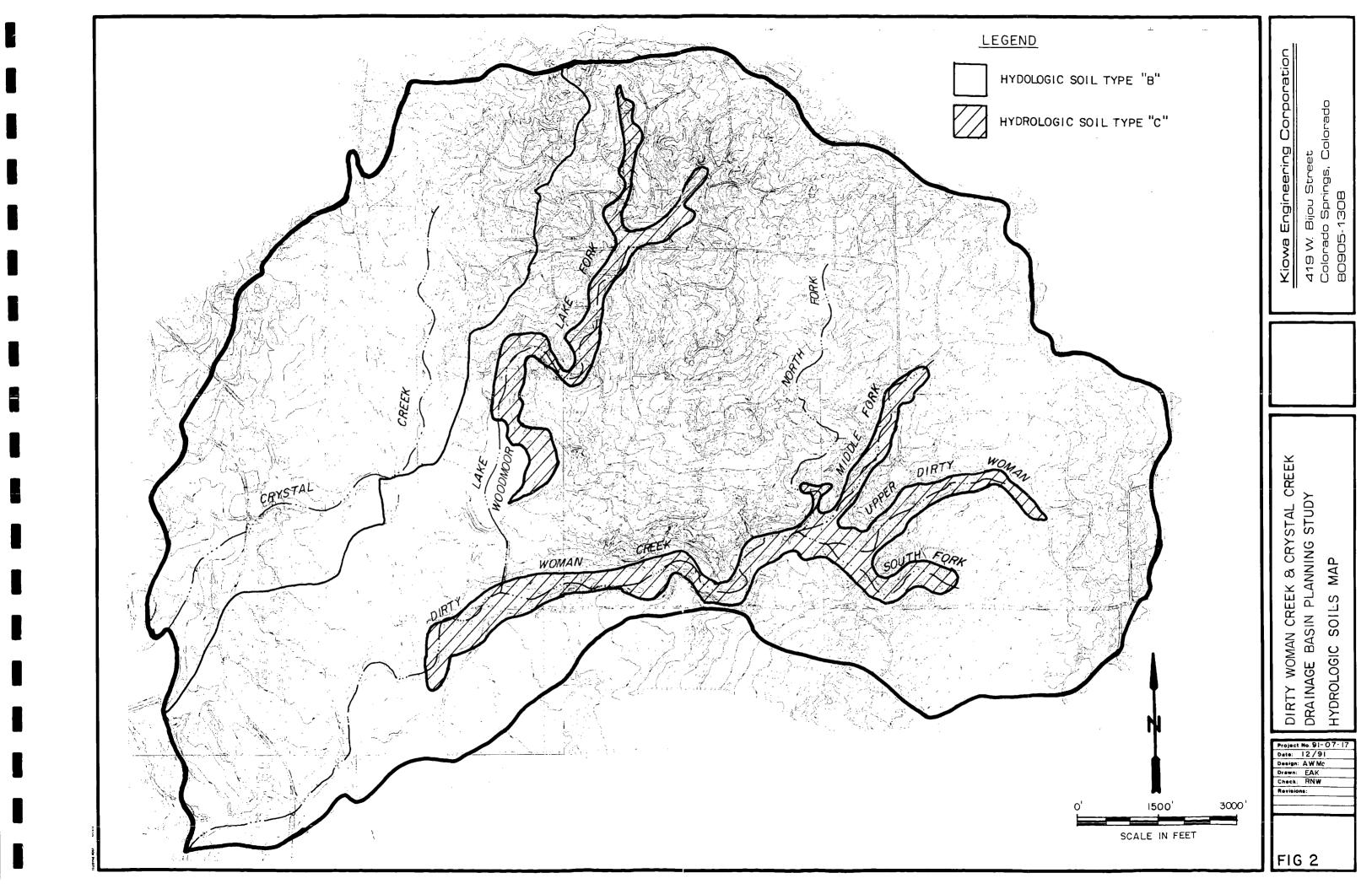
Highlighted Depth (ft) = 3.31Q (cfs) = 286.10Area (sqft) = 13.84 Velocity (ft/s) = 20.67Wetted Perim (ft) = 9.52Crit Depth, Yc (ft) = 4.61 Top Width (ft) = 4.72EGL (ft) = 9.95

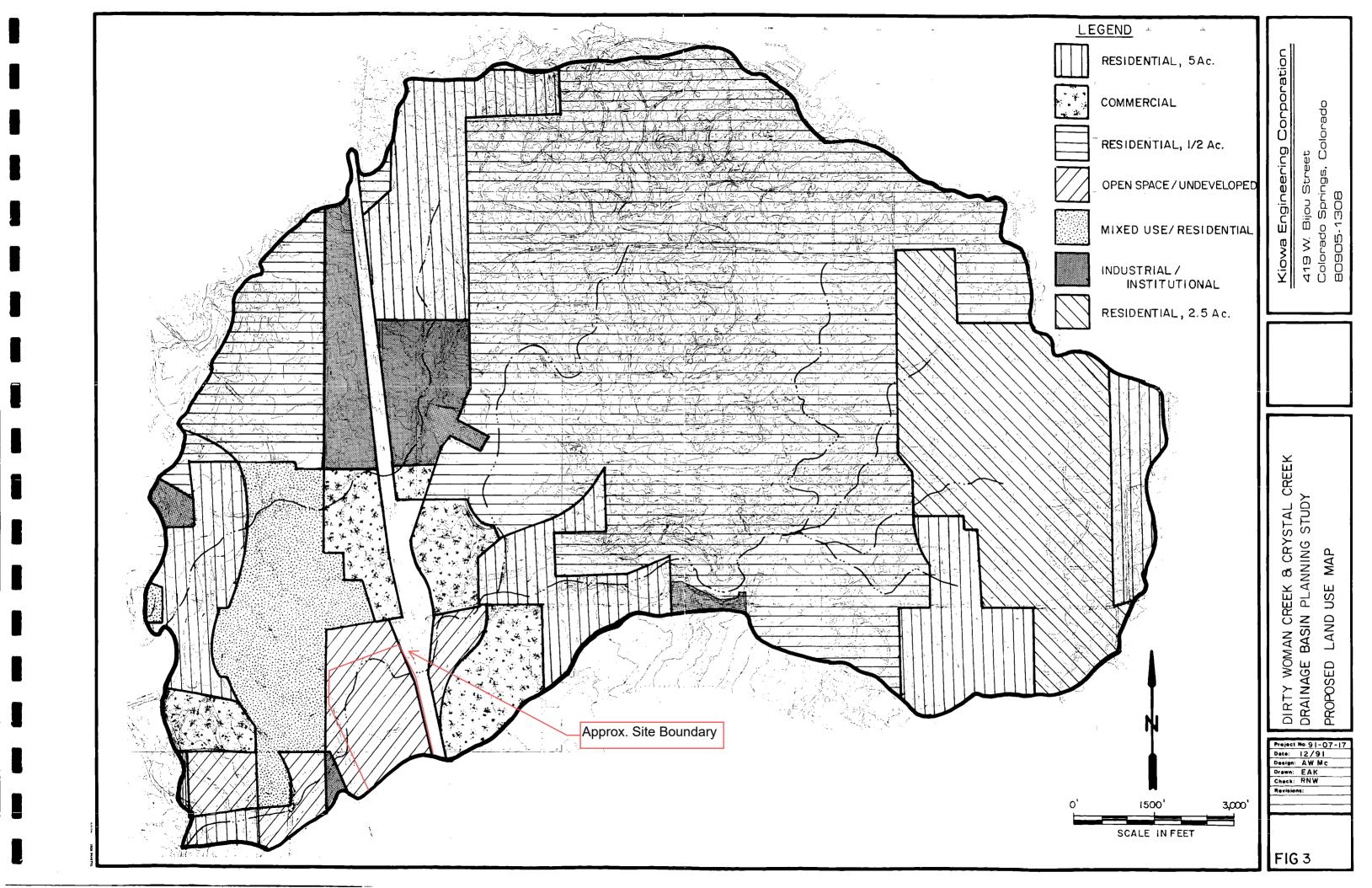
Appendix D

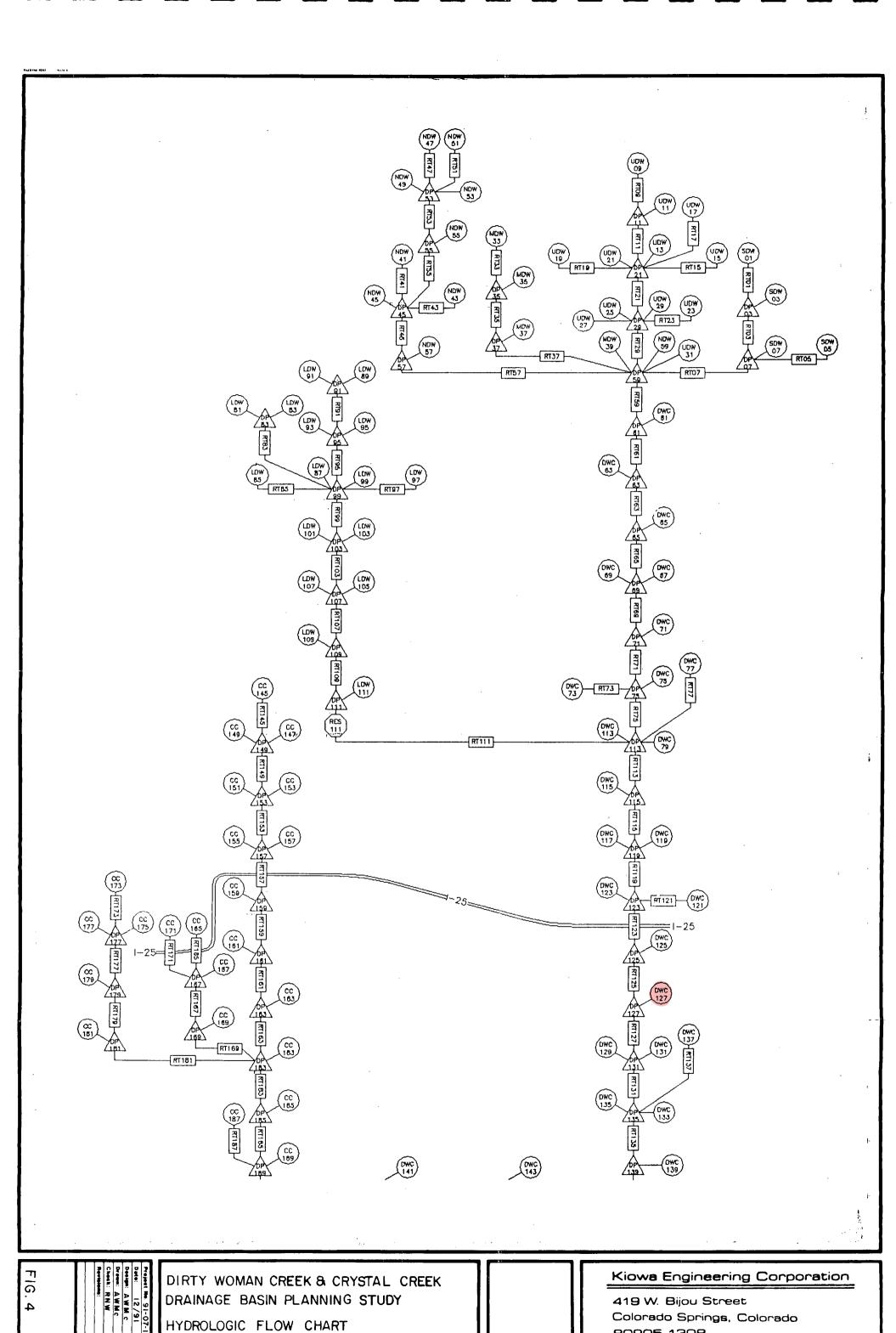
Approved
El Paso County
Planning Commission
This 2/day of July 19/3
Barbara C. Smith
Thairman
Olsine Julen, Steretary

DIRTY WOMAN CREEK and CRYSTAL CREEK DRAINAGE BASIN PLANNING STUDY PRELIMINARY DESIGN REPORT

Prepared for:


El Paso County Department of Public Works Stormwater Management Division 3105 North Stone Colorado Springs, CO 80907


Prepared by:


Kiowa Engineering Corporation 419 West Bijou Street Colorado Springs, CO 80905-1308

> KIOWA Project No. 91.07.17 D22/R191

> > February 1993 Revised April 1993 Revised May 1993 Revised June 1993

80905-1308

TABLE 1 Summary of Sub-basin Peak Discharges

	Future	Future		Future	Future		Future	Future
Basin	100 Year	10 Year	Basin	100 Year	10 Year	Basin	100 Year	10 Year
Designation	2 Hour	2 Hour	Designation	2 Hour	2 Hour	Designation	2 Hour	2 Hour
SDW01	147.	49	DWC79	118	42	CC157	111	46
SDW03	90	31	LDW81	136	54	CC159	22	9
SDW05	120	40	LDW83	74	28	CC161	132	57
SDW07	91	38	LDW85	47	18	CC163	127	51
UDW09	103	34	LDW87	112	43	CC165	121	52
UDW11	57	20	LDW89	94	35	CC167	116	49
UDW13	32	12	LDW91	26	10	CC169	119	37
UDW15	76	25	LDW93	46	18	CC171	90	40
UDW17	26	9	LDW95	53	20	CC173	56	24
UDW19	33	11	LDW97	50	19	CC175	46	15
UDW21	47	16	LDW99	57	25	CC177	89	32
UDW23	24	8	LDW101	170	66	CC179	42	13
UDW25	44	15	LDW103	136	50	CC181	49	15
UDW27	80	29	LDW105	95	38	CC183	136	50
UDW29	80	27	LDW107	47	18	CC185	111	36
UDW31	82	35	LDW109	131	53	CC187	96	37
MDW33	131	47	LDW111	215	89	CC189	64	23
MDW35	33	11	DWC113	44	15			
MDW37	81	29	DWC115	91	40			
MDW39	116	46	DWC117	198	84			
NDW41	146	56	DWC119	72	31			
NDW43	61	23	DWC121	211	88			
NDW45	87	33	DWC123	77	34			
NDW47	62	23	DWC125	73	31			
NDW49	14	5	DWC127	102	32			
NDW51	32	12	DWC129	137	58			
NDW53	17	6	DWC131	58	18			
NDW55	18	7	DWC133	102	38			
NDW57	153	57	DWC135	81	26			
NDW59	129	50	DWC137	65	25			
DWC61	76	29	DWC139	117	47			
DWC63	130	50	DWC141	, 79 .	32			
DWC65	59	23	DWC143	101	38			
DWC67	42	15	CC145	89	33			
DWC69	41	17	CC147	103	35			
DWC71	72	29	CC149	69	22			
DWC73	81	30	CC151	114	38			
DWC75	153	61	CC153	77	29			
DWC77	50	19	CC155	43	19	!		

TABLE 2 Summary of Peak Discharges

_		Existing	Existing	Future	Future
Des		100 Year	10 Year	100 Year _2 Hour	10 Year 2 Hour
Poi		2 Hour	2 Hour	Z FIOUI	Z HOUI
Dirty Wom		150	50	150	50
21		308	103	308	103
		506 514	172	508 514	172
29		108	40	108	40
53					43
55		117	43	117	
45		354	132	354 501	132 186
57		501 156	186 55	156	55
35			33 84	235	84
37		235	0 4 77	233 229	77
3 7		229 377	127	377	127
		1,876		1,876	663
59			663		692
61		1,952	692	1,952	
63		2,075	735	2,075	735
65		2,126	756 777	2,126	756
69		2,175	777	2,175	777
71		2,202	791	2,202	791
75		2,335	836	2,337	838
91		112	41	112	41
95		198	74	198	74
83		195	75	195	75
99		594	226	594	226
10		883	334	883	334
10		1016	381	1016	381
10		1107	417	1107	417
11		1240	413	1240	413
11		2,513	896	2,515	898
11		2,539	908	2,541	910
11		2,679	960	2,686	694
_12		2,810	1.000	2,868	1,031
12		2,850	1,015	2,909	1,046
12		2,879	1,028	2,943	1,057
13		2,989	1,068	3,055	1,098
13.		3,142	1,124	3,212	1,154
13		3,192	1,136	3,258	1,170
Crystal Cree	ek				
149		260	90	260	90
15		416	142	416	142
15		527	185	527	185
159		536	188	536	188
16	1 CC	594	211	594	211
16	3 CC	644	231	644	231
17		188	70	188	70
179		202	74	202	74
18		232	81	232	81
16		303	126	317	135
169		397	148	412	157
183	3 CC	1,213	423	1,223	430
18:		1,277	442	1,288	450
189		1,394	481	1,406	487

TABLE 3
Major Structure Inventory
Dirty Woman/Crystal Creek Drainage Basin Planning Study

Reach No.	Creek/ Station	Roadway	Existing Culvert Size	Q100 Q10 (cfs)
DW-A	Dirty Woman 11+30 Dirty Woman	Mitchell Street D&RGW	72" CMP	3,258 1,170 3,212 1,154
	18+20 Dirty Woman 32+30 Dirty Woman	RR Old Denver Highway Santa Fe	Stone Arch 64" CMP 23'x30'	3,055 1,098 3,055
	34+30 Dirty Woman 65+40	Trail I-25 Colorado	Stone Arch 8'x8' CBC 4'x64'	1,098 2,868 1,031 2,541
DW-B	Dirty Woman 85+60 Dirty Woman 107+70 Dirty Woman	Colorado Hwy 105 Knollwood Drive South Park	Conc. Bridge 36" CMP	910 2,337 838 2,126
	142+80 Dirty Woman 148+60 Dirty Woman	Drive Lake Woodmoor Drive Augusta	(2)-24" CMP (2)-24" CMP	756 2,075 735 2,075
UPDW-A NFDW-A	155+00 Upper Dirty Woman 188+30 North Fork Dirty Woman	Drive Furrow Road Augusta	(3)-48° RCP ? CMP	735 514 172 627
NFDW-B	5+80 North Fork Dirty Woman 60+50 North Fork Dirty Woman	Drive Tam-O-Shanter Way Woodmoor	Plugged ? Plugged ?	186 117 43 108
MFDW-A	69+70 Middle Fork Dirty Woman 14+00 Middle Fork Dirty Woman	Drive WIII O The Wiso Way Lost Creek	Plugged i%" CMP 24" CMP	40 349 129 235
	33+00 Middle Fork Dirty Woman 37+30 Middle Fork Dirty Woman	way Furrow Road Ajo	24" CMP 18" CMP	84 235 84 235
SFDW-A	45+00 South Fork Dirty Woman 10+30 South Fork Dirty Woman	Way Winding Meadows Way Winding Meadows	24" CMP 14"x22"	84 377 127 377
	10+90 South Fork Dirty Woman 26+20 South Fork Dirty Woman 42+00	Way Furrow Road Martingale Road	Arch CMP 36" CMP 18" CMP	127 229 77 90 31
LFDW-B	Lake Fork Dirty Woman 52+60 Lake Fork Dirty Woman 63+50	Autumn May Deer Creek Road	24" CMP 24" CMP	1.016 381 1,016 381
	Lake Fork Dirty Woman 87+60 Lake Fork Dirty Woman 93+20	Deer Creek Road Woodmoor Drive	18" CMP 24" CMP	883 334 594 226
CC-A	Crystal Creek 5+90 Crystal Creek 25+20	N Monument Lake Road D&RGW RR	(2)-72" CMP 14'x16' Stone Arch	1,288 450 644 231
CC-B	Crystal Creek 28+70 Crystal Creek 31+70	Washington Street Colorado Hwy 105	(2)-90° CMP 8.5'x30' Conc. Bridge	644 231 644 231
	Crystal Creek 34+50 Crystal Creek 43+00	Santa Fe Trail Beaconlite Road	10'x10' Stone Arch 36" CMP	644 231 594 211
cc-c	Crvstal Creek 56+40 Crystal Creek 58+50	i-25 Frontage Road	10'x14' CBC 24" RCP	536 188 527 185
	Crystal Creek 63+30 Crystal Creek 83+70	Willow Park Way Deer Creek Road	42" CMP 60" CMP	527 185 527 185
	Crystal Creek 89480	Immerant Trail East	(2)-24" CMP	416 139

Floodplains

Floodplains for the 100-year existing and future condition discharges have been delineated for Dirty Woman Creek and Crystal Creek. The floodplain was estimated in order to assess where hydraulic inadequacies exist along the major drainageways. Floodways were also delineated as part of the hydraulic analysis. This analysis assumed rigid boundary conditions to exist along the channel cross sections. The field inventory supplied roughness and bridge opening data for use in the HEC-2 modeling. These floodplains are presented on the Preliminary Design drawings. The previously mentioned technical addendum contains input and output data for the hydrology, floodplain and floodway analyses.

The most significant areas of existing flood hazard occurs along I-25, between Crystal Creek and Dirty Woman Creek. An inadequate capacity culvert under the I-25 Frontage Road forces the 100-year discharge in Crystal Creek to be diverted south along I-25 and into Dirty Woman Creek. Though no structures are threatened, Colorado Highway 105 and the northbound I-25 embankment could be eroded. The crossing of I-25 by Dirty Woman Creek will overtop the roadway in its current configuration. No structures are threatened, but the potential for erosion and localized roadway destruction is great. Elsewhere along Dirty Woman Creek, a single family residence in the vicinity of Augusta Drive lies within the 100-year floodplain. The floodplain at this location is wide because of the inadequate culverts under Augusta Drive and Lake Woodmoor Drive. Along Crystal Creek, there are two locations in which flooding potentially threatens a structure. The crossings of Crystal Creek at both Willow Park Way and Emigrant Trail East pose potential flooding problems. In general, habitable structures adjacent to Dirty Woman and Crystal Creeks have been elevated above the 100-year water surface.

TABLE 4: Evaluation of Channel Alternatives

Major Drainageway: Dirty Woman Creek / Crystal Creek Alternative Concept: Floodplain Preservation (do-nothing)

Parameter	1	Flood Hazard Habitat		Operations and Mainter	пацие	1	Open Space/Aesthetics		Water Quality		Comments			
Impact Reach No.	No Impact	Reduced Hazard/ Increased Hazard	Minimal	Impact Moderate	Major	Mitigation/Enhancement Opportunities	Reduced effort	Increased effort	Low Visual Quality	No Impact	Visually Enhanced	Degrades Quality	No Impact or Enhancement	
DW-B	Parkland loss within 100-yr Hood plain Structures are currently outside 100-yr floodplain One residence is currently within the 100-year floodplain	Unstable charmed banks could create flood damage in this reach Future flood bazards can be reduced using floodplain re gulation	x	x		Bank unstability negates potential for enhance ment.		Channel bank erocion in areas with residing sedimentation will cause higher anomal maintenance costs as this area develope. Manuenance costs could increase as development occurs in lower portion of reach	Ana between RR & 1-25 sould become visually blighted if left alone Development without floodplain control in lower portion of reach could reduce aesthetics		Opportunities exist to enissue the entire length of the reach. Portions of the reach are of high visual value currently. Opportunities exist to enhance the Open Space & aesthetics of the reach. High quality currently.	Area between RR & 1-25 could a suse water quality problems due to erasion	Existing welland areas provide significant water quality enhancement Existing welland areas provide significant water quality enhancement	Portions of the reach, apper & lower, lawe excellent wetland habitats. The middle portion of the reach is currently experiencing bank erosion. Future CDoT plans rould destroy prime wetland areas. The lower portion of the reach is subject to development which could encroach upon the creek
UFDW-A SFDW-A	No structures are currently within the 100-year floodylair. No structures are currently within the 100-year floodylair.	Undersized culvers are potentially dangerous Undersized culverts are potentially dangerous	x x					Increased O.& M costs due to undersused roadway culverts Increased O.& M costs due to undersized roadway culverts	was route 2 status	Buildout is nearly complete Most of the floodplam is privately owned Floodplain is privately owned	exists in the reach Opportunities exist to enhance the Open Space &	Short serm construction activity & readway erconor- impact water quality Short term construction activity & readway erosion	Existing welland areas provide significant water quality enhancement. Existing welland areas provide water quality	Areas enhatary to this reach are near complete buildont. Understoing of roadway culverts is biggest problem Undersizing of roadway culverts is biggest problem in this reach
MFDW:A	No structures are currently within the 100-year floodplass	Undersized culvers are potentially desperous Purrow Road is constraint to flood flow	x					Increased O & M costs due to undersized roadway culvers		Roodplain is presidly owned	sesthetics of the reach afforded by this concept Opportunities exist to enhance the Oren Souce & sesthetics of the reach afforded by this correspt	impact water quality Short term construction activity & roadway ereston impact water quality	enhancement Russing worland areas growide water quality enhancement	Understood & moreoperly located culterts are detrumented to flood flow in this mach particularily at Pursow Road
NFDW-A	No structures are currently within the 100-year floodplain	Undersized culvert at Augusta Dr. creates flooding hazard.	х			Existing floodplain well vegetated and stable.		Increased O & M costs due to undersized roadway culverts & inlets.		Floo Iplain is within drainage/preservation easement.			Existing wetland areas provide water quality enhancement	
NPDW-B	Golf course occupies the majority of floodybin in this reach	Understated culverte are constraints and are potentially hazardous	X					Increased O & M costs due to amborized madway culverts & miets		Roodplain is prevaintly owned, majority by Woodmoor CC	Opportunities exist to enhance the Open Space & academics of the reach afforded by this concept		Existing weitend areas provide water quality enhancement	Most of the reach is within Woodmoor CC and is currently a golf course. Undersared culverts are delegated to flood flow particularly at Woodmoor Drive
LFDW-A	Lake Woodmoor reduces the flood hazard in this reach. Some structures have been built on stilts over the lake	Lake Woodmoor spillway is potentially hazardous at road crossing		х				Increased O & M costs caused by spillway erosion	Low water level in Lake Woodmoor	Lake Woodmoor is privately owned & operated	Opportunities exist to enhance the Open Space & aesthetics of the reach afforded by this concept		Lake Woodmoor is water supply reservoir	Spillway and area below Lake Woodmoor is actively headcutting
LFDW-B	No structures are currently within the 100-year floodplain	Undersized & improperly located culverts are potentially hazardous	х					Increased O & M costs due to undersized & improperty located roadway & driveway culverts		Buildout is nearly complete Most of the floodplain is privately owned		Opportunities exist to increase water quality which directly enters reservoir	Existing wetland areas provide water quality enhancement	Roadway and driveway culverts currently are detrimental to flood flow in the reach. Since water directly enters water storage reservoir, water quality should be a major concern
CC-A	No structures are currently within the 100-year floodplass	Undersized culverts at N. Monument Lake Rd are construction	х					Increased O & M costs due to roadway crossings		Floodplain is privately owned	Opportunities exist to embance the Open Space & sestitutes of the reach afforded by this concept		Existing weiland areas provide water quality calancement	If farmland develops floodplan regulation is essential. Culverts at N. Momment Lake Road are not adequate for 100-year flow.
CC-B	Future flood hazards can be ruduced using floodplain regulation	Future development will increase flows	х				O & M costs should remain relatively the same		Development without floodplain control could reduce aesthetics		Opportunities exist to enhance the Open Space & aesthetics of the reach afforced by this concept	Development in area could result in loss of water quality		Monument currently has a detention and "no build" in floodplain policy in effect
ce-c	No structures are carrendly within the 100-year floodplain	Existing dam embandments could cause localized Booding if breached Roadway crossings are statestized	x					Increased O & M costs due to readway crossings			Opportunities exist to enhance the Open Space & aesthetics of the reach afforded by this concept		Existing wethout areas provide water quality enhancement	Understand culvert at Fromsee Road is single baggest concern in the reach

TABLE 5: Evaluation of Channel Alternatives

Major Drainageway: Dirty Woman Creek / Crystal Creek

Alternative Concept: Selective Channel Improvements

ımeter		Flood Hazard			Habitat		Operations and Mainten			Open Space/Aesthetics rual No Impact Visually		Water Quality Degrades No Impact		Comments
npact each	No Impact	Reduced Hazard/ Increased Hazard	Minimal	Impact Moderate	Major	Mitigation/Enhancement Opportunities	Reduced effort	effort	Low Visual Quality	No impact	Enhanced	Quality	or Enhancement	
No. W-A	Seructures are currently cutockle 100 yr floodplass	Potential exists to reduce tenth errorem at middle portion of the reach	x			Material of degrated segments possible by stabilization of banks and erven.	Charge! bank erosion can be peduced or eliminated			Promons of the reach are of high visual quality currently	Area between RR & 1-25 tan be enhanced using selective unprovenients		Enson can be reduced considered y which will create better water mailty. Existing wetland	Science improvements would be concern in the middle portion of the reach where the creck is relatively instable.
w-B		One structure within 100-yr floodplain may be removed from floodplain with improvements	x			•		Maintenance costs could increase as development occurs in lower portions of the reach		Portions of the reach are of high visual quality currently	Opportunities exist to enhance the Open Space & aesthetics of the reach		Existing wetland areas provide significant water quality enhancement. Wetland areas should remain	This reach appears relatively stable, however there is potential for high intensity development in lower portion of reach
JW-A	Structures are currently outside 100-ye floodplain	Providing properly sized culverts will reduce flooding potential	X				Reduced O & M coms due to proper roadway culvers sizing			Baildout is nearly complete. Most of the floodplam is privately owned		Short term construction activity & roadway erosion impact water makiny	Friening wetland areas provide arguificant water quality enhancement. Wetland areas should remaid	Readway culters siring needs to be evaluated to be evaluated with content and section and section of the saidressed. Minimal amprovements appear nations any
DW-A	Structures are currently outside 100-yr floodplain	Providing properly sized culverts will reduce flooding potential. Pond outlet improvements would reduce flood hazard	х				Reduced O & M costs due to proper roadway culvert sizing			Most of the floodplain is privately owned	High quality Open Space & aesthetics exist within the reach currently	Short term construction activity & roadway erosion impact water quality	Existing wetland areas provide significant water quality enhancement. Wetland areas should remain	Roadway culvert sizing should be increa The overflow of the pond should be impt to reduce flooding potential. Minimal improvements appear necessary
DW-A	Structures are currently ourside 100-yr floodylam	Providing grounds sized culverts will reduce flooding potential	x				Reduced O.&. M. coms due to proper roadway culvert saxing			Most of the floodplant is trivately owned	High quality Open Space & contestion exist within the reach currently	Short term construction activity & roadway erceson impact water quality	Existing wetland areas provide arginificant water quality enhancement. Wedand great should remaid	Minimal improvements appear necessar within the reach. Roadway culverts abould be upsized
DW-A	No structures within 100-year floodplain.		х				Culvert at Augusta Dr. would reduce O & M costs.			Most of floodpain within easement or private property.] ;	Culvert at Augusta Drive should be replaced.
D ₩- H	Structures are currently conside 100 yr Roodplain		x				Reduced O & M costs due to project readway culteen same. Most of the floodships a owned by Woodships CC	1		Most of the Roodplain is privately owned	High quality Open Space & aesthetics exist within the reach currently	Short term construction solvity & roadway eroquis impact water quality	Relatively fower wentered areas in their ratil, however the peads crowde a positive impact on water quality	Culvers at Woodmoor Drive should be improved. Most of the trach is controlled by Woodmoor CC
D W-A	Lake Woodmoor reduces the flood hazard in this reach. Some structures have been built on stilts over the lake		х				Improvements to spillway & channel could reduce O & M costs				Improvements to the spillway channel would improve aesthetics		Improvements to spillway channel would reduce erosion	Headcutting (crosion) of the spillway chamnel should be stopped. Habitat, aesthetics & water quality would all be increased
B-WC	Structures are currently outside 100-yr floodplain	Providing properly sued culverts will reduce flooding potential	X				Reduced O & M costs due to proper roadway culvest staing			Most of the floodplain is privately owned	High quality Open Space & sentherics exist within the reach currently	Opportunities exist to enhance water quality which directly enter reservoir	Ensure wetland areas provide significant water quality enhancement Wednard areas should notice	Water quality should be a major concer- in this reach. Roadway & drive way cal- are a hinderance to flood flow and should be upsized.
C-A	Structures are currently outside 100-yr floodplain	Improvements through the existing farmland would improve flood hazards as that area develops		x	,	Replacement of disturbed vegetation/habitat is possible throughout reach		As the undeveloped land develops, O & M costs will increase	Development without floodplain control could could reduce aesthetics		Opportunities exist to enhance the Open Space & aesthetics of the reach	Development in the reach could result in loss of water quality	Existing wetland areas provide significant water quality enhancement Wetland areas should remain	Existing farm/ranch land in reach is key. The reach is relatively stable as it exists however development could change tha Culverts at N. Monument Lake Road want pass the 100-yr flow.
УС -В	Structures are correptly outside 100-yr floodylain	Punie development will increase flood flows		x		Replacement of disturbed vegetation/habitat is possible throughout reach	O & M costs should remain the same or lower slightly			The reach is currently charactized with areas of Open Space & good habitat	Opportunities exist to enhance the Open Space & seatheries of the reach	Development in the reach could result in loss of water quality	Existing wetland areas provide significant water quality enhancement Wetland areas should remain	Monument's determine policy should be the flood flows near existing. Culvert strong at Beacon Lite. Road needs to be evaluated.
cc.c	Structures are currently outside 100-yr floodplain	Improvements at existing embankments & roadway culverts will reduce flooding hazards	x				Reduced O & M costs due to proper roadway culvert sizing				Opportunities exist to enhance the Open Space & aesthetics of the reach	Development in the reach could result in loss of water quality	Existing wetland areas provide significant water quality enhancement Wetland areas should remain	The characteristics of this reach closely resemble the characteristics of the forks of Dirty Woman Creek. The Frontage I culvert is grossly undersized &

1

TABLE 6: Evaluation of Channel Alternatives

Major Drainageway: Dirty Woman Creek / Crystal Creek Alternative Concept: Channelization

Parameter		Flood Hazard	1		Habitat		Operations and Maintenance Open Space/Aesthetics Water Quality		Comments					
Impact	No Impact	Reduced Hazard/ Increased Hazard	1	Impact	-	Mitigation/Enhancement Opportunities	Reduced effort	Increased effort	Low Visual Quality	No Impact	Visually Enhanced	Degrades Quality	No Impact or Enhancement	
Reach		increased riazard	Minimal	Moderate	Major	оррания.		1	`					1
No.														
DW-A	Structures are currently catactic 100-yr floodplain; No structural flood	Property flood hazards will be reduced by con- facing the flow to the		x			Proper sizing of colverts for new channels will reduce O & M	Increased O & M costs due to channel construction	In the upper & lower segments, channel constructs could lower the visual		In the middle portion of the reach, channel construction could enhance visual quality	Construction of channels could reduce the impact of the existing wetlands on water quality	The reduction of the channel crosson would increase water quality in the middle portion.	Channel improvements are seen to be commentment in the modific portion of of the reach where the atream is printable
	hezard exists	channel and culverts.							dastas		CHAIRE VISION QUAIN	OD WOLL SPEENS	of the reach	
DW-B		Property flood hazards & one residential structure will be reduced by conflining flow to the			x	Toe vegetation & overbank vegetation can be used to to provide habitat areas along channels		Increased O & M costs due to channel construction	Channel construction could lower the high visual quality of the creek			Construction of channels could reduce the impact of the existing wetlands on water quality		100-year channel would negatively im- pact the existing wetlands, open space and aesthetics of the reach. 10-year channel would reduce negative impacts.
		channel and culverts.		.		Toe vegetation & overhank	Proper sizing of culverts	Increased C & M costs	Charmel construction could			Construction of channels		The problems with this toach are
UFDW-A.	Structures are currently	Property flood hazards		1	×	Los vegeration es overcans.	i for new channels will	rice to chancel construction	hower the high visual			could reduce the impact		mesociated with madway culverts not the
	outside 100-yr floodplain.	will be toqueeq pa con-			· •	to provide habitat areas	redace O & M		assisy of the creek		1	of the existing wetlands		rmein channel. Full channelization would
	No structural flood	fining the flow to the channel and culverts:				along channels						on wester quality		non address this problem Channelization of the main stream will
SFDW-A	hazardexista Structures are currently	Property flood hazards		†	***************************************	Toe vegetation & overbank	Proper sizing of culverts	Increased O & M costs	Channel construction could			Construction of channels could reduce the impact	1	not address the main problem of
SrDW-A	outside 100-yr floodplain;	will be reduced by con-	1	1	x	vegetation can be used to	for new channels will	due to channel construction	lower the high visual		· l	of the existing wetlands	!	undersized roadway culverts
	No structural flood	fining flow to the	1	1	1	to provide habitat areas	reduce O & M		quality of the creek		1	on water quality	1	and large a rodd way carvers
	hazard exists	channel and culverts.		1	1	along charmels		Increased O & M costs	Changel construction could			Construction of changels		Charactization of the main stream will
MFDW-A	Structures are currently	Property flood bazards				For vegetation & overbank vegetation can be used to	Proper sizing of culverts for new channels will	due to channel construction	lower the high yearst			could reduce the impact		not address the main problem of undersized
	outside 100 yr floodplam;	will be reduced by con-		1		to provide habitat areas	reduce C & M	Last Williams (China	quality of the creek			of the existing wedlands		madway culverts. Most of the reach
	Nastructual flood	the flow to the channel		•		alone chancels			[*]			on water quality		is privately owned
	inzard exists	and road culverts		1	1						1		İ	
NFDW-A	No structures in 100-year floodplain.	Property flood hazards will be reduced by con- flow to channels and cuiverts.			х					-				
				. [Increased O & M costs	Channel construction could			Construction of channels		Most of the reach is privately owned.
NFDW-B	Structures are currently	Limited flood hazarda				The vegetation & overbank	Proper string of culverts	due to channel communication	lower the high visual			could reduce the impact		Channelization already exists through
	ostside 100-yr floodplam;	within golf course.		X		vegeration can be used to	for new channels will reduce O & M	die to chanses commission	quality & hum the			of the existing wedlands		most of the golf course.
	No spacemal flood					elong channels	ROBOE U A. M		arathetics of the golf			on water quality		
	lineard exists					Book trames			course in this reach					
		Property flood hazards			3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	Toe vegetation & overbank	Spillway maintenance	1		İ	Construction of a		The reduction of the	Headcutting (erosion) of the channel spillway should be stopped, this would
LFDW-A	Structures are currently outside 100-yr floodplain; No structural flood hazard exists	will be reduced by con- flow to the channel and road culverts.	ĺ	x	ļ	vegetation can be used to provide stabilization & habitat areas along and	would be reduced with the construction of a channel				spillway channel would enhance the reach		channel erosion would increase water quality	increase aesthetics, water quality and flooding hazards
						near the channel	Proper suring of culverts	Increased O & M costs	Channel construction could			Construction of channels		Channel construction does not address
LFDW-B	Structures are currently	Property flood hazarda		l x	1		for new channels will	due to channel construction	lower the high visual	1		could reduce the impact		the problem of water quality and culvert
	outside 100-yr floodplam;	will be reduced by con-		1 *			roduce O & M	to chapmen compared to	quality of the creek			of the existing werlands		undersizing in this reach
	No structural flood	fating flows to the charge! and oulverts.						1	1			os water quality		
CC-A	Instanti exists Structures are currently	Property flood hazards	··· p········	1	1	Toe vegetation & overbank		As this reach develops	Channel construction could			Construction of channels		As development of the existing farmland
CC-A	outside 100-yr floodplain; No structural flood	will be reduced by con- flow to the channel and			x	vegetation can be used to to provide habitat areas		O & M costs will increase	lower the visual quality of the creek			of water in the reach	İ	proceeds, channelization becomes more feasible
	hazard exists	culverts.		.1		along channels Toe vegetation & overbank	4	As this reach develops	Channel construction could	A portion of the reach			Relatively no impact	Existing lined charmel and the dopth
CC-B	Structures are carrently	1		1	v	vegetation can be used to		O& M costs will incress	lower the high visual	is already charactized.			on quality	of the existing charged lends itself to
	outside 100-yr floodglam, No structural flood			1	^	to provide habitat areas			quality of the creek	The remaining portion				charmelization.
	hazard exists			1		along charmels				deeply incised		Construction of channels		Channelization does not address the
CC-C	Structures are currently	Property flood hazards		1		Toe vegetation & overbank	Proper sizing of culverts	Increased O & M costs			1	could reduce the impact		problems of this reach.
CC-C	outside 100-yr floodplain;	will be reduced by	1	1	x	vegetation can be used to	for new channels will	due to channel construction			1	of the existing wetlands		provided of the reach
	No structural flood	confining the flood	1	1		to provide habitat areas	reduce O & M	1				on water quality		
	hazard exists	flow to the channel	ı	1	1	along channels	I	l .	1	1	•			=

TABLE 7
Calculated Acreage for Resources Along Dirty Woman and Crystal Creeks

REACH	MRW	IRW	RS	RG	HW	TOTAL
	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)
DW-A	6.91		5.47		1.03	13.41
DW-B	1.03		6.10_		12.78	19.91
UFDW-A			3.05		11.97	15.02
SFDW-A					7.90	7.90
MFDW-A			0.15		6.02	6.17
NFDW-A			2.94			2.94
LFDW-A			0.44		3.75	4.19
LFDW-B			0.15		1.95	2.10
CC-A		0.37			4.66	5.03
CC-B	0.29		1.76		1.91	3.96
CC-C			0.59		2.17	2.76
TOTAL	8.23	0.37	20.65	0.00	54.14	83.39

LEGEND

MRW Mature Riparian Woodland

Riparian - hydrologically associated with a waterway

IRW Immature Riparian Woodland

Immature trees - typically less than 5 years old

RS Riparian Shrubland

Shrubland - very little or no tree overstory

RG Riparian Grassland

Mostly grasses, some forbs

HW Herbaceous Wetland

Mostly forbs (sedges, spike rushes, etc.), some grasses

recommended plan. The selected culvert improvements are presented in Section VIII. Shown on Figure 9 are the locations of the various recommended channel treatments. Contained within the Technical Addendum to the *Development of Alternatives* report, is the alternative hydrologic, hydraulic and cost data used in the development and comparison of each of the alternatives.

Discussion of Recommended Plan

The recommendation of a particular method of treatment for each channel segment has been based upon the qualitative and quantitative data presented. For each segment the flood hazard, habitat impacts, operations and maintenance, visual impact, water quality, and cost aspects have been weighed for each alternative concept. The channel segment designations (e.g., DW-A-01, etc.), are coded with the drainageway name (DW or CC for Dirty Woman and Crystal creeks, respectively), the reach, and the channel segment number as shown on the Hydrology Map, Exhibit 1. Section VII Preliminary Design provides a discussion on the implementation of the final plan.

DW-A-01 through DW-A-03: For these segments selective improvements are recommended. Improvements to these segments include a 10'x10' triple concrete box culvert under Mitchell Avenue and an 10'x11' twin concrete box culvert under the Old Denver Highway to carry the 100-year flow. Inlet and outlet improvements are included for the culverts. Inlet improvements in the form of bank slope protection is proposed for the Denver & Rio Grande Western Railroad bridge. The segments also include the installation of five drop structures and four check structures.

DW-A-04: For this segment the floodplain preservation or do-nothing alternative is recommended.

DW-A-05 through DW-A-06: For these segments selective improvements are recommended. Improvements to these segments include 1,620 feet of bank slope protection along with four drop structures and nine check structures. Outlet stabilization at the Highway 105 bridge is also proposed.

DW-B-07 through DW-B-11: For these segments selective improvements are recommended. The improvements proposed for these segments include a 10'x5' twin concrete box culvert at South Park Drive to carry the 10-year flow. In order to carry the 10-year flows. A 10'x4' twin concrete box culvert at Lake Woodmoor Drive and a 12'X4' triple at Augusta Drive has been proposed. Outlet stabilization has been proposed for the South Park and Augusta Drive crossings. Outlet protection along with an 8'X6' twin concrete box culvert with a drop inlet with an overflow grate has been proposed for the Knollwood Drive crossing. Approximately 570 feet of bank slope protection is recommended along with three drop structures and eight check structures. In segment

TABLE 8: Matrix of Recommended Plan

		Channel Alternative	
Reach	Floodplain	Channelization	Selective
(1)	Preservation	10 or 100-year	Improvements
DW-A-01 DW-A-02			₩
DW-A-02			₩
DW-A-04			•
DW-A-05	•		*
DW-A-06			*
DW-B-07			\$
DW-B-08			8
DW-B-09			9
DW-B-10			8
DW-B-II			•
UFDW-A-12		1	\$
UFDW-A-13 SFDW-A-14	*		•
SFDW-A-14			•
SFDW-A-16			8
MFDW-A-17			8
MFDW-A-18		1	*
MFDW-A-19			⊕
MFDW-A-20			*
NFDW-A-21			₩
NFDW-B-22	•		
NFDW-B-23			•
NFDW-U-46	₩		
LFDW-A-24			*
LFDW-A-25 LFDW-B-26			8
LFDW-B-27			₩
LFDW-B-28			₩
LFDW-B-29			₩
LFDW-U-44		9	
LFDW-U-45	•		
CC-A-31		●	
CC-A-32	₩		
CC-B-33		49	
CC-B-34		*	
CC-B-35		•	e).
CC-B-36	d.		4
CC-B-37 CC-C-38	•		⊕
CC-C-39		1	₩
CC-C-39 CC-C-40			₩
CC-U-41	8		Ŭ
CC-U-42	*		
CC-U-43	•		

(1) Creek - Reach - channel segment # (See Exhibit 1)

The sizing of the drainageway improvements will need to be verified during the final design and layout of the proposed facilities. Land development activities may alter the location of design points, and therefore slight alterations in a sub-basin's length, slope and area may occur. The methods outlined in the City/County Drainage Criteria Manual should be adhered to during final design analysis. The rational method should be used to check the peak flow rates for all drainageways and drainage structures draining areas less than 100 acres in size.

Channels

The recommended drainageway improvements for each reach of Dirty Woman and Crystal Creeks have been outlined in Section VI of this report and are shown in the drawings contained in this report. In general, the Dirty Woman Creek and Crystal Creek channels will be lined with selectively located riprap bank protection such as at outside bends, bridge or culvert outlets, at confluences with side drainages and at dam spillways as shown on the Preliminary Drawings. In conjunction with the selective improvement measures, the 100-year floodplain should be preserved and regulated. Wherever the existing drainageways were judged to be adequate and relatively stable, no improvements have been recommended.

Drop Structures and Check Structures

Drop and check structures have been sited along Dirty Woman and Crystal Creeks in order to slow the channel velocity to the recommended 7 feet per second, and to prevent localized and long-term stream degradation from affecting the drainageway. In localized situations it may be necessary to limit velocities to less than 7 fps. Additional drop structures and checks may be used in these locations to provide adequate protection. In the reaches to be selectively lined, drops and check structures will protect the native vegetation from the detrimental effects of stream invert headcutting. Different types of structures may be considered for these drainageways, however the performance of these structures should be adequate to maintain the intent of this plan. For most channels reinforced concrete drops and checks are recommended. A maximum drop height of four feet is recommended. The methodology recommended for use when designing vertical structures is contained within the City of Colorado Springs and El Paso County Drainage Criteria Manual and Volume II of the Urban Storm Drainage Criteria Manual.

and horse back riding trails. The size and location of trail, if necessary, will be mostly dependent upon the type of development adjacent to that particular drainageway.

Maintenance and Revegetation

Maintenance of drainageway facilities is essential in preventing long term degradation of the creek and its environs. Along the drainageway, clearing of debris and dead vegetation should be considered within the low flow area of the creek and its tributaries. Trimming and thinning of shrubs and trees should be carried out if greater physical access to the creek is desired. On the overbanks and in most drainageways in Dirty Woman Creek and the upper portions of Crystal Creek, limited maintenance of the existing vegetative cover is recommended. Yearly clearing of trash and debris at roadway crossings is strongly recommended to ensure the culvert maintains its full design capacity, and to enhance the surroundings of the area. Sediment removed from all cleaning and maintenance operations should be disposed of properly, not left in an area such as on the stream overbank. This disturbs the native vegetation and creates a potential water quality concern if the dredgings are subsequently washed into the drainageway by natural erosion. In those reaches designated to be selectively lined and the floodplain preserved, maintenance activities should be carried out while minimizing the disturbances to native vegetation.

Right-of-Way

For the most part the main channels within the basin which pass through the developed portions of the basin are contained within previously dedicated drainage tracts, easements or right-of-ways. Where appropriate right-of-ways have not as yet been dedicated such as within the undeveloped portions of the basin, the required right-of-way can be obtained through the land development process. For those segments of the drainageway where floodplain preservation is the recommended plan, a combination of open space dedication (such as parklands and greenbelts), in combination with a more narrow dedicated right-of-way along the low flow area of the drainageway should be obtained through the land development process.

Roadway Bridge and Culvert Replacements

Bridge and culvert replacements shown on the preliminary design drawings have been sized in accordance with the City/County Drainage Criteria Manual. Bridges (major crossings) are defined as those structures conveying at least 1500 cubic feet per second, having a flow area

of at least 200 square feet or a span of 20 feet. There are two bridges within this study area, Mitchell Avenue over Dirty Woman Creek and Old Denver Highway over Dirty Woman Creek. Road crossings conveying flows less than 1500 cubic feet per second, smaller than 200 square feet in flow area and less than a 20 foot span have been included in the drainage basin fee evaluation and calculation. Structures over arterial roadways which have been defined as bridges have been included into the bridge fee evaluation and calculation.

Erosion and Sedimentation Control

Areas within the basin are subject to varying degrees of hazard resulting from sediment being transported to the drainageway(s). During the collection of field and drainage inventory data, areas were noted which were being impacted by either erosion (of one form or another), or sediment deposition. The areas impacted ranged from localized bank failures to roadway embankments and crossings. The soils of the basin are generally very erodible when exposed, and this is particularly the case in the upper portions of the drainage basins. The disturbance of the native vegetation and failure to properly revegetate areas has in some cases negatively affected downstream portions of the basin.

In general, it is the responsibility of the entity conducting any land disturbance activity to properly control surface runoff, erosion and sedimentation during and after the activity. Technical criteria identifying measures which help mitigate the impacts of erosion and sedimentation is available and is being used throughout the Front Range area. Minimum requirements must be developed to properly control erosion.

Erosion control is necessary to prevent environmental degradation caused by wind or water-borne soil. The following minimum criteria and standards are intended to prevent excessive erosion. El Paso County as well as other effected agencies reserve the right to enforce the Clean Water Act standards if the planned erosion control measures fail to perform satisfactorily. Evidence of visual erosion will determine the effectiveness (or lack thereof) of erosion control measures. Proper installation and maintenance is necessary to achieve the desired function of erosion control measures. By paying attention to quality and workmanship, reinstallation of the erosion control measures can be avoided. The general requirements for erosion control are as follows:

- 1. Any land disturbing activity shall be conducted so as to effectively reduce unacceptable erosion and resulting sedimentation.
- 2. All land disturbing activities shall be designed, constructed, and completed in such a manner that the exposure time of disturbed land shall be limited to the shortest possible period of time.

TABLE 12: DIRTY WOMAN & CRYSTAL CREEKS DRAINAGE BASIN PLANNING STUDY COST ESTIMATE -- SELECTIVE DRAINAGEWAY IMPROVEMENTS SELECTED ALTERNATIVE

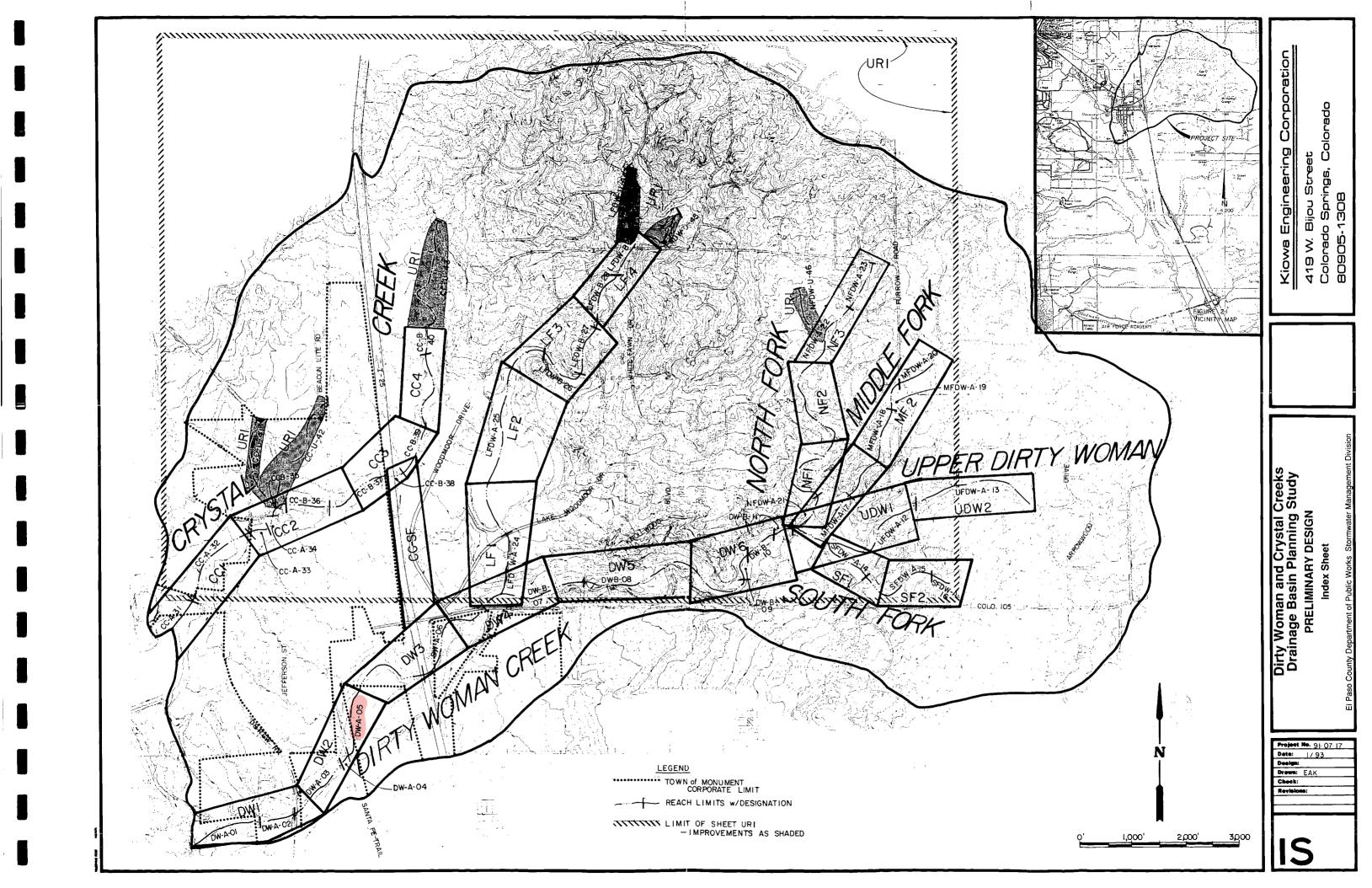
REACH NUMBER	REACH LENGTH (FT)	NUMBER CHECK STRUCTURES	CHECK LENGTH (FT)	NUMBER DROP STRUCTURES	DROP LENGTH (FT)	LENGTH BANK SLOPE PROTECT (FT)	LENGTH OF 100 YR CHANNEL (FT)	LENGTH OF 10 YR CHANNEL (FT)	LENGTH OF CHNL STAB. & REPAIR (FT)	LENGTH OF OUTLET PROTECT (FT)	LENGTH OF SPILLWAY PROTECT (FT)	LENGTH OF BERM PROTECT (FT)	MITIGATION (AC)	LAND ACQUISTION (AC)	TOTAL COST
DW-A-01 DW-A-02 DW-A-03	1,095 625 1,335	3	245 60	1 1 3	85 60 290	300 300 1530	130	125		95 80			0.70 0.38		\$144.182 \$45.672 \$158,690
DW-A-04 DW-A-05	120 2,870	3	220	3	290	1020				100		1	0.61		\$0 \$190,316
DW-A-06	1,820	6	785	1	65	700							0.71		\$236,752
DW-B-07 DW-B-08	2,150 3,455	2 5	185 610	i 1	120 120	370		100		90 50	100		0.94 0.46		\$129,645 \$211,935
DW-B-09	520	Ž		i	120	200		104		50			0.22	0.742	\$62,391
DW-B-10 DW-B-11	585	1	120	1	160					110	50	:040	0.25	1.265	\$114,250 \$48,512
UFDW-A-12	490 2,800	6	480	1	80 40	400				50	50	240	0.16 0.52		\$148,924
UFDW-A-13	2.335	1	75 95												\$18.600
SFDW-A-14 SFDW-A-15	1,010 1,540	1	75 95 160							60 90			0.11 0.06		\$29,290 \$47,857
SFDW-A-16	1,905	1	40	3	100					65		***************************************	***************************************		\$50 140
MFDW-A-17 MFDW-A-18	1,375 1,855	1 1	100 100	1	90	400 200				60 60		•	0.30 0.11		\$40,874 \$66,389
MFDW-A-19	375	i	120	i	40	170				70			0.23		\$54.727
MFDW-A-20	1,105	2	80	3	130	520				50			0.23		\$54,727 \$82,488
NFDW-A-21 NFDW-B-22	560 5,275	2 2	190 140	1 1	130 50	200				70 70	80		0.23 0.14		\$99,039 \$80,921
NFDW-B-23	850	2	95	2	80	200				40	00		0.07		\$54,955
NFDW-U-46 LFDW-A-24	1,060 1,265	3	160	6	280					70					\$0 \$142,440
LFDW-A-25	1.170	4	490	Ü	200					60	100		0.18		\$149,335
LFDW-B-26	1,035	2	220	1	80					60			0.24		\$88,404
LFDW-B-27 LFDW-B-28	845 1,460	1 2	200 240	1	110 150					80 90	50		0.18 0.07		\$106,225 \$119,465
LFDW-B-29	505	~	240	3	140			410		90		150	0.07		\$115,370
LFDW-B-30 LFDW-U-44	200 1.560			1	100			1250							\$34,500 \$162,500
LFDW-U-45	1.450							•							\$0
TOTAL DIRTY	Y WOMAN CRI	EEK		•											\$3,034,789
CC-A-31	565	2	160		<u> </u>			450		60			0.92		\$107,129
CC-A-32 CC-B-33	1,880 290						200								\$0 \$79,750
CC-B-34	290 250 235						290 250								\$68.750
CC-B-35 CC-B-36	235 780	,	140						230	70			0.40		\$59,084
CC-B-37	1,045	1	140							10			0.14		\$41,459 \$0
CC-C-38	45														\$0
CC-C-39 CC-C-40	2,445 550	4 1	330 80	1	80					90 6 0	75		0.22		\$134,605 \$25,12 0
CC-U-41	4,050	j	300							•••					\$74.400
CC-U-42 — CC-U-43	3,32 5 3,375	2	300												\$ 0
LL-U-41	1,3/3	<u></u>	300												\$74,400

TOTAL CRYSTAL CREEK

TABLE 13: Recommended Culvert Improvements

Dirty Woman	/Crystal Cre	ek Drainage Basin	Planning	g Study					
Roadway	Reach	Creek/	Existing	Q100	Description	One-41	17_24	Unit Cost	Amount
Location	Number Duly A OI	Station	Culvert	O10 3,258	Description Triple	Ouantit	Unit	COSL	Amount
Mitchell Avenue	DW-A-01	Dirty Woman 11+30	72" CMP	1.170	10'X10' CBC	80	If	\$1,323	\$105,800
Old Denver	DW-A-03	Dirty Woman	64" CMP	3,055	Twin				
Highway		32+30		1,098	10'x11' CBC	95	lf	\$1,303	\$123,750
1-25	DW-A-05	Dirty Woman 65+40	8'x8' CBC	2,868 1,031	Additional 10'x8' CBC	375	lf	\$363	\$136,250
Knollwood	DW-B-07	Dirty Woman	36" CMP	2,337	Twin 12'x8' CBC				9132,22
Drive		107+70	December 1997	838	w/ Drop Ilt & Ovrf	60	lf	\$1,433	\$86,000
South Park	DW-B-08	Dirty Woman	24" CMP	2,126	Twin	**		*****	671.050
Drive Lake Woodmoo	DW-B-09	142+80 Dirty Woman	(2) 24"	756 2,075	10'x6' CBC Twin	50	lf:	\$1,225	\$61,250
Drive	DW-B-09	148+60	CMP	735	10'x6' CBC	95	lf	\$1,441	\$136,875
Augusta	DW-B-11	Dirty Woman	(2) 24"	2,075	Triple				
Drive		155+00	CMP	735	12'x4' CBC	- 60	II	\$1,193	\$71,600
Furrow	UFDW-A-12	Upper Dirty Woman	(3) 48"	514 172	2-36" RCP (Additional)	60	lf	\$ 116	\$6,960
Road Augusta	NFDW-A-21	188+30 North Fork Dirty Wo	RCP ? CMP	627	3-42" CMP	, w		3110	3 0,700
Drive		5+80	Plugged	186		45	lf	\$351	\$15,800
Tam-O-Shanter	NFDW-A-23	North Fork Dirty Wo	? ČMP	117	53"x34"		۱,,	6110	¢22.100
Way	NFDW-A-23	60+50 North Fork Dirty Wo	Plugged	43 108	Ell. RCP 48" RCP	210	lf	\$110	\$23,100
Woodmoor Drive	NFDW-A-23	69+70	Plugged	40	40 ACr	60	ľ	\$80	\$4,800
Heatherdown	NFDW-U-46	North Fork Dirty Wo			3-24" CMP				
	Kontrolasson are anno anno anno anno anno anno anno ann	60+50		33	B 00 400 CCB 455	60	lf	\$ 75	\$4,500
Tam-O-Shanter	NFDW-U-46	North Fork Dirty Wo	18" CMP	87 33	3-24" CMP	60	lf	\$75	\$4,500
Way Will O The Wis	MFDW-A-17	69+70 Middle Fork Dirty W	18" CMP		2-60" CSP		20000 M	**************************************	
Way		14+00	10 01.11	129	200 00.	80	lf.	\$303	\$24,200
Lost Creek	MFDW-A-18		24" CMP		54" CSP				*****
Way		33+00	04" CM	84	2 40" DCD	80	Œ	\$100	\$8,000
Furrow Road	MFDW-A-19	Middle Fork Dirty W 37+30	24" CMP	235 84	3-42" RCP	50	l lf	\$325	\$16,250
Aio	MFDW-A-20		18" CMP	*	Twin 48" CMP			, Time	
Way		45+00		84		70	U	\$160	\$11,200
Winding Mead	SFDW-A-15	South Fork Dirty Wo	24" CMP		3-42" RCP		١,,	6705	670 500
Way Furrow	SFDW-A-16	10+30 South Fork Dirty Wo	36" CMP	127 229	w/ Otlt & Flow Cn Twin 54" RCP	100	lf	\$725	\$72.500
Road	21-D41-W-10	26+20	50 CM	77		70	lf	\$200	\$14,000
Martingale	SFDW-A-16	South Fork Dirty Wo	18" CMP	90	36" CSP	Ī			
Road		42+00		31	10000	60	lf	\$58	\$3,480
Lake Woodmoo Drive	LFDW-A-24	Lake Fork Dirry Won 12+50		480 0	16'x4' CBC	80	Ш	\$1,013	\$81,000
Autumn	LFDW-A-25		24" CMP		3-60" CSP	1			
Way		52+60		381		80	lf	\$ 360	\$28,800
Deer Creek	LFDW-B-26		24" CMP		Twin	 			ens noo
Road Deer Creek	LFDW-B-27	63+50 Lake Fork Dirty Worr	24" CMP	381 1,016	12°x5° CBC 4-60" CSP	80	lf	\$1,190	\$95,200
Road	LFDW-D-2/	72+50	27 CIVIF	381		60	lf	\$563	\$33,800
Deer Creek	LFDW-B-28		18" CMP	883	3-72" RCP				
Road		87+60		334		50	lf	\$700	\$35,000
Woodmoor	LFDW-B-29	Lake Fork Dirty Worr	24" CMP	594 226	2-60" RCP 1-72" RCP	50	lf	\$540	\$27,000
Drive Broken Fence	LFDW-U-44	93+20 Upper	24" CMP	195	4-30" RCP	J	L	3.74 U	327,000
Way		Lake Fork Dirty Won		75		50	IL	\$168	\$8,400
Fawnwood	LFDW-U-44	Upper	24" CMP	195	4-30" RCP		l	1	l
Road	l	Lake Fork Dirty Won	i	75	Distr. Woman Car.	50	l lf	\$168	\$8,400 \$1,248,415
					Dirty Woman Cree	er 10tal (Juiver	CUSIS	\$1, 640,4 15

Roadway Reach Creek/ Existing Q100 Unit Number CC-A-31 Description 2-72" CSP (Additional) Location Station Culvert 010 Cost Amount N. Monument Crystal Creek (2) 72" CMP 1,288 450 5+90 \$400 \$16,000 Beaconlite CC-B-36 Crystal Creek 36" CMP 594 2-66" CSP Road 43+00 211 210 lf \$364 \$76,400 527 185 527 Frontage CC-C-38 Crystal Creek 24" CMP 10'x5' CBC Road 58+50 If 120 \$1,042 \$125,000 Willow Park CC-C-39 Crystal Creek 42" CSP Way Deer Creek 2-72" CSP 84" CSP 63+30 \$400 \$24.000 CC-C-39 60" CMP Crystal Creek 527 Road lf 83+70 185 (Additional) 70 \$350 \$24,500 Emmigrant Trail East CC-C-40 Crystal Creek 89+80 (2) 24" CMP 416 3-48" CSP \$14,400 139 lf \$240 CC-U-41 630 235 Highway Upper 5'x7' CB 5'x7' CBC 105 Crystal Creek 120 lí (Additional) \$542 \$65,000 Santa Fe CC-U-41 Upper Crystal Creek 202 74 317 24" StJ 3-30" CSP Trail \$126 \$15,120 CC-U-42 Beaconlite 48" CMP Upper Twin 7'x4' CBC Road Crystal Creek 135 80 Œ **\$**613 \$49,000


Crystal Creek Total Culvert Costs

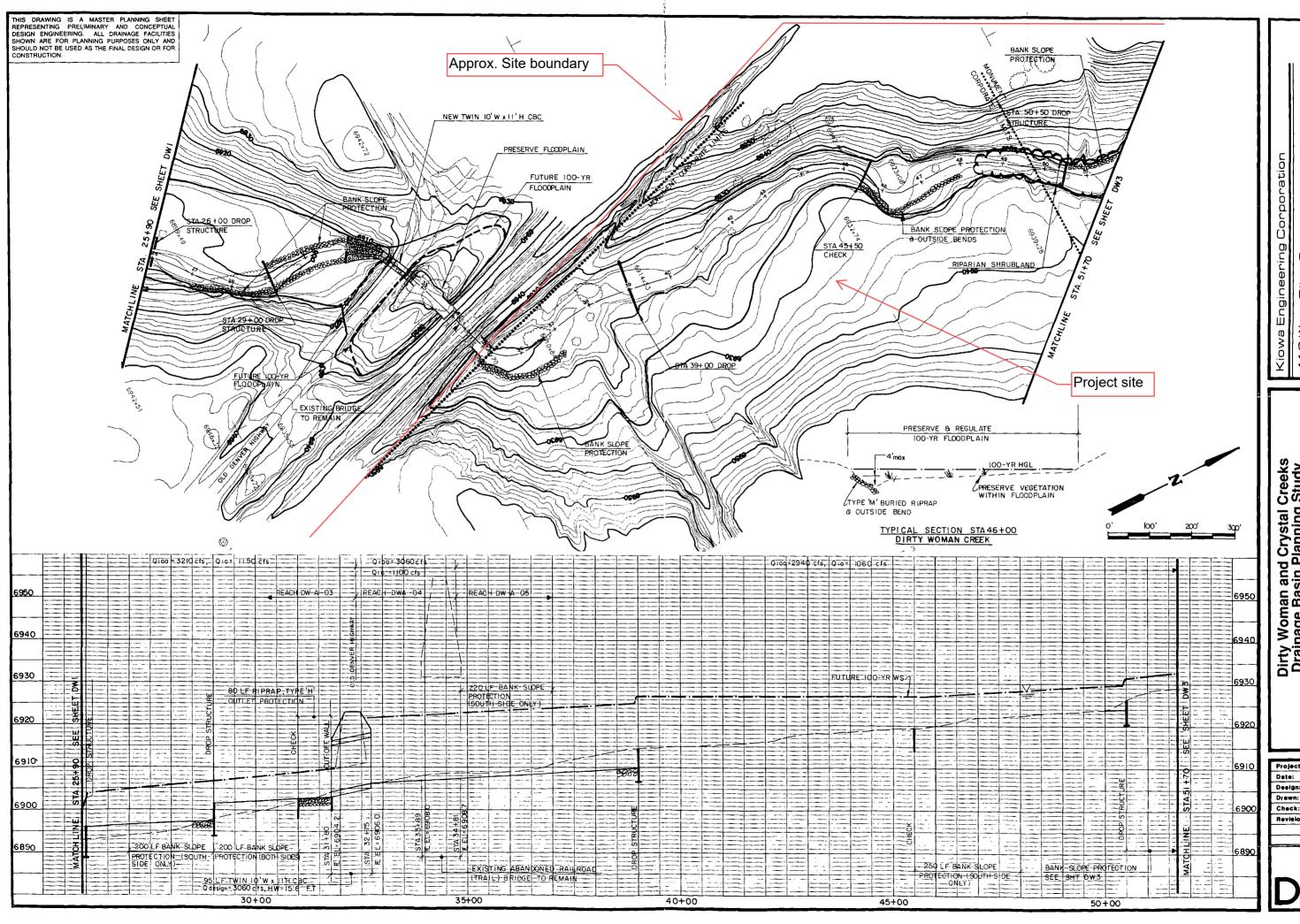
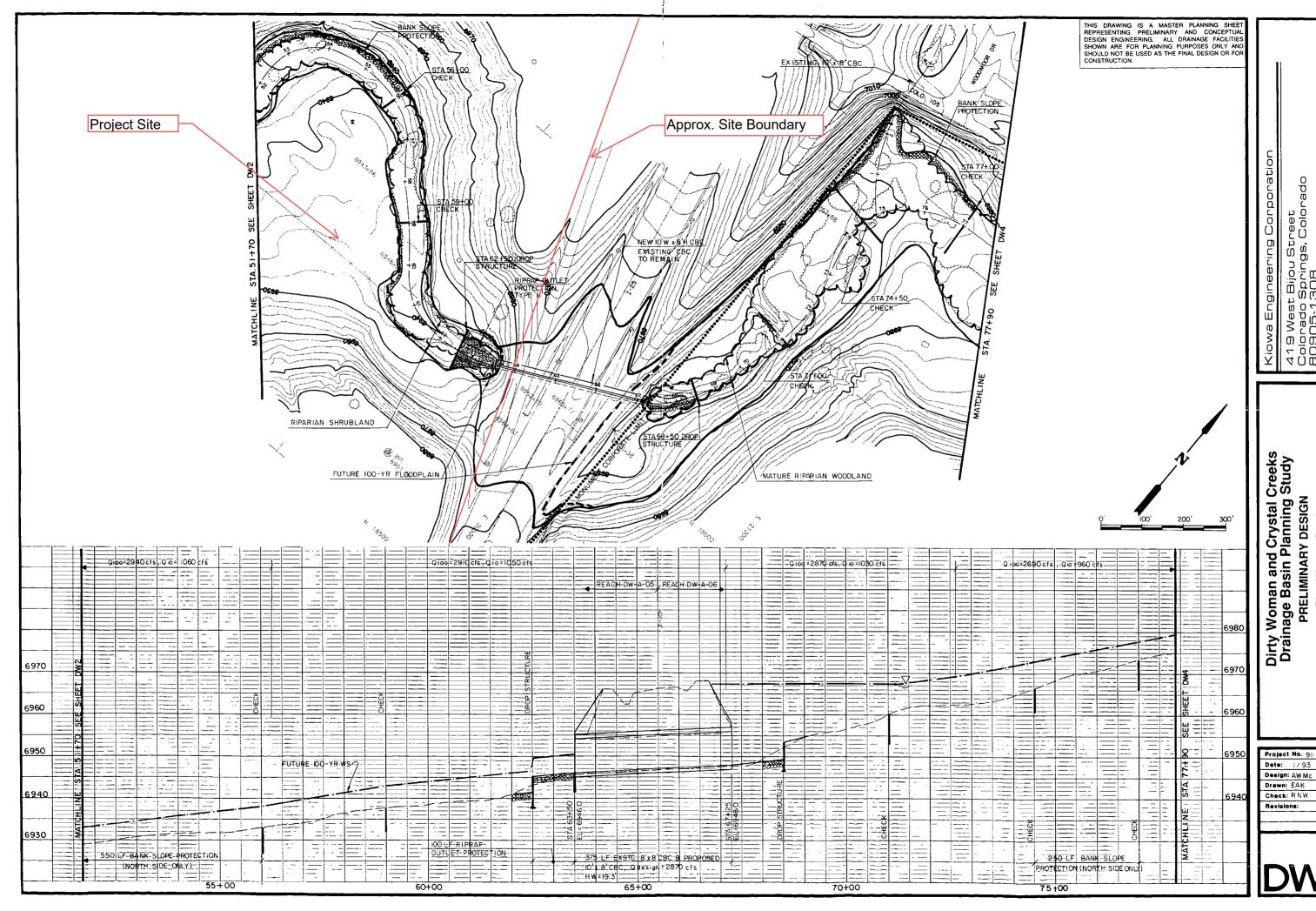

\$409,420

TABLE 14: DIRTY WOMAN & CRYSTAL CREEKS DRAINAGE BASIN PLANNING STUDY OVERALL COST ESTIMATE SELECTED ALTENATIVE

REACH	DRAINAGEWAY SUBTOTAL	CULVERT SUBTOTAL	OVERALL REACH	TOWN OF	REIMBURSIBLE COST	F ALLOCATION EL PASO	REIMBURSIB
NUMBER	COSTS	COSTS	COSTS	MONUMENT	CDoT	COUNTY	COSTS
DW-A-01 DW-A-02	\$144.182 \$45.672	\$105.800 \$0	\$249.982 \$45.672	\$105,800			\$144.
DW-A-03	\$158.690	\$123,750	\$282,440	\$45,672		\$123,750 (1)	\$158,6
DW-A-04	\$0	\$0	\$0		***************************************		
DW-A-05	\$190,316	\$136,250	\$326,566	\$73,490	\$136,250 (2)	į	\$116,
DW-A-06 DW-B-07	\$236.752 \$1 29.64 5	\$0 \$86,000	\$236.752 \$215.645	\$236,752		\$135,320	\$802
DW-B-08	\$211.935	\$61,250	\$273,185			\$107.050	\$166.
DW-B-09	\$62,391	\$136,875	\$199,266			\$199,266	
DW-B-10	\$114,250	\$0	\$114,250			\$114,250	
DW-B-11 UFDW-A-12	\$48,512 \$148.924	\$71,600 \$6.960	\$120,112 \$155.884	1		\$120,112 \$155.884	
UFDW-A-13	\$18.600	\$0.700 \$0	\$18,600			\$18,600	
SFDW-A-14	\$29,290	\$0	\$29 <u>,29</u> 0			\$29,290	
SFDW+A-15	\$47,857	\$72,500	\$120,357			\$120,357	
SFDW-A-16 MFDW-A-17	\$50,140 \$40.874	\$17,480 \$24,200	\$67,620 \$65,074			\$67,620 \$65,074	
MFDW-A-18	\$66,389	\$8,000	\$74,389	}		\$74,389	
MPDW-A-19	\$54,727	\$16,250	\$70,977			\$70,977	
MFDW-A-20	\$82.488	\$11,200	\$93.688			\$93.688	
NFDW-A-21 NFDW-B-22	\$99,039 \$80,921	\$15,800 \$0	\$114,839 \$80,921			\$114,839 \$80,921	
NFDW-B-23	\$54,955	\$27,900	\$82,855			\$82,855	
NFDW-U-46	\$0	\$9.000	\$9,000			\$9,000	*************
LFDW-A-24	\$142,440	\$81,000	\$223,440 \$178,135			\$178,135	\$223.4
LFDW-A-25 LFDW-B-26	\$149,335 \$88,404	\$28,800 \$95,200	\$183,604			\$178,133 \$183,604	
LFDW-B-27	\$106,225	\$33,800	\$140,025			\$140,025	***************************************
LFDW-B-28	\$119,465	\$35,000	\$154,465			\$154,465	
LFDW-B-29 LFDW-B-30	\$115,370	\$27,000	\$142,370			\$142,370	
LFDW-D-30	\$34,500 \$162,500	\$0 \$16.800	\$34,500 \$179,300			\$34,500 \$179,300	
LFDW-U-45	30	\$0	<u>sõ</u>			317,500	
TAL DIRTY W	OMAN CREEK		\$4,283,203	\$461,714	\$136,250	\$2,795,641	\$889,598
CC-A-31	\$107,129	\$16,000	\$123,129	\$123,129			
CC-A-32 CC-B-33	\$0 \$79.750	\$0 \$0	\$0 \$79.750	\$79,750			
CC-B-34	\$68.750	ŠÖ	\$68,750	\$68.750			
CC-B-35	\$59,084	\$0	\$59,084	\$59,084			
CC-B-36	\$41,459	\$76,400	\$117,859	\$117,859			
CC-B-37 CC-C-38	\$0 \$0	\$0 \$125,000	\$0 \$125,000		\$125,000	1	
CC-C-39	\$134,605	\$53.300	\$187,905		ψ143,000	[\$187.9
CC-C-40	\$25.120	\$14,400	\$39,520				\$392
CC-U-41	\$74,400	\$80,120	\$154,520	\$107,800			\$46,7
CC-U-42 CC-U-43	\$0 \$74,400	\$49,000 \$0	\$49,000 \$74,400	\$49,000			\$74.4
TAL CRYSTAL	CDEEK		\$1.078.917	\$605,372	\$125,000	\$0	\$348,545

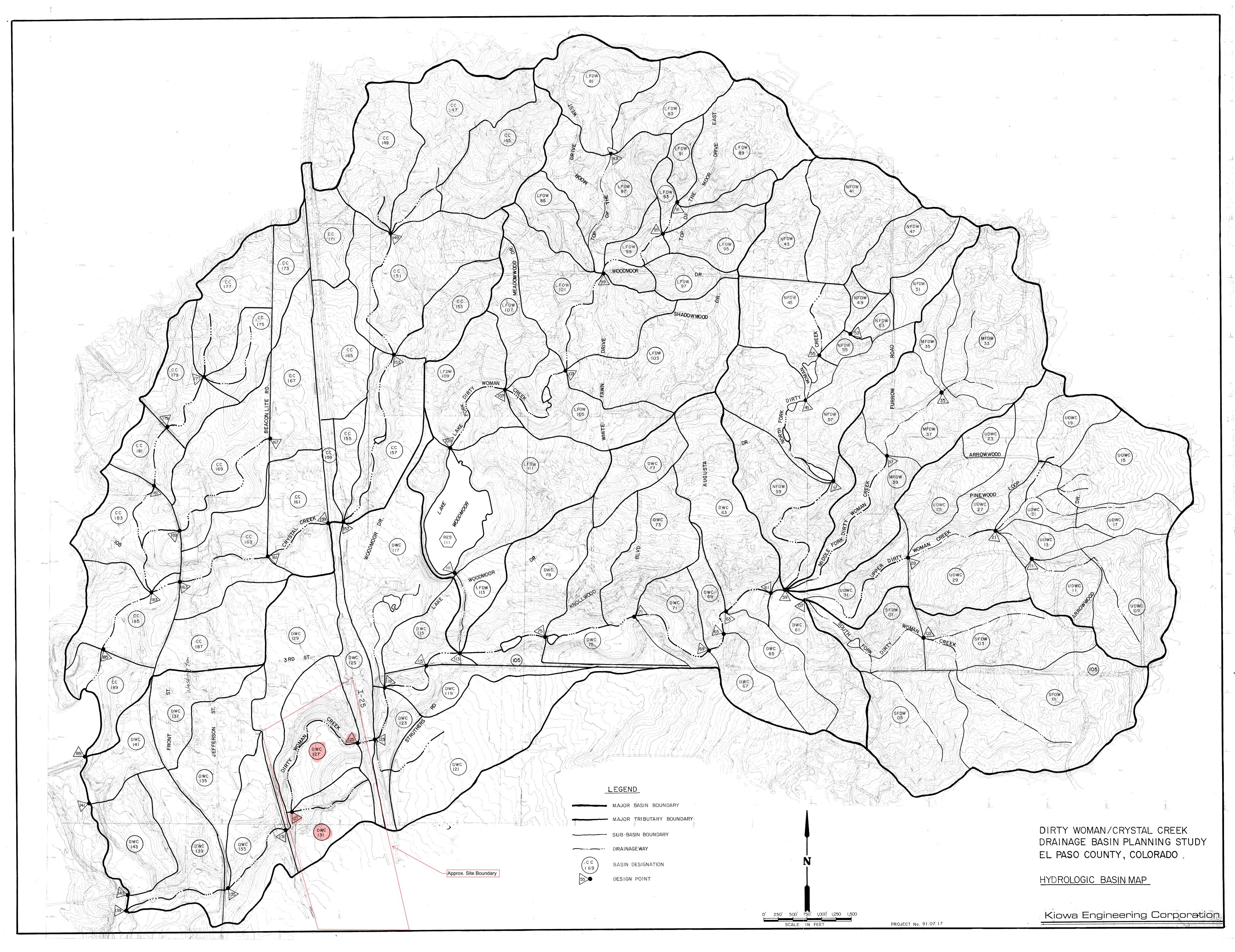
⁽¹⁾ A portion of this amount is reimbursible under County Bridge Fee (2) Considered a bridge by El Paso County

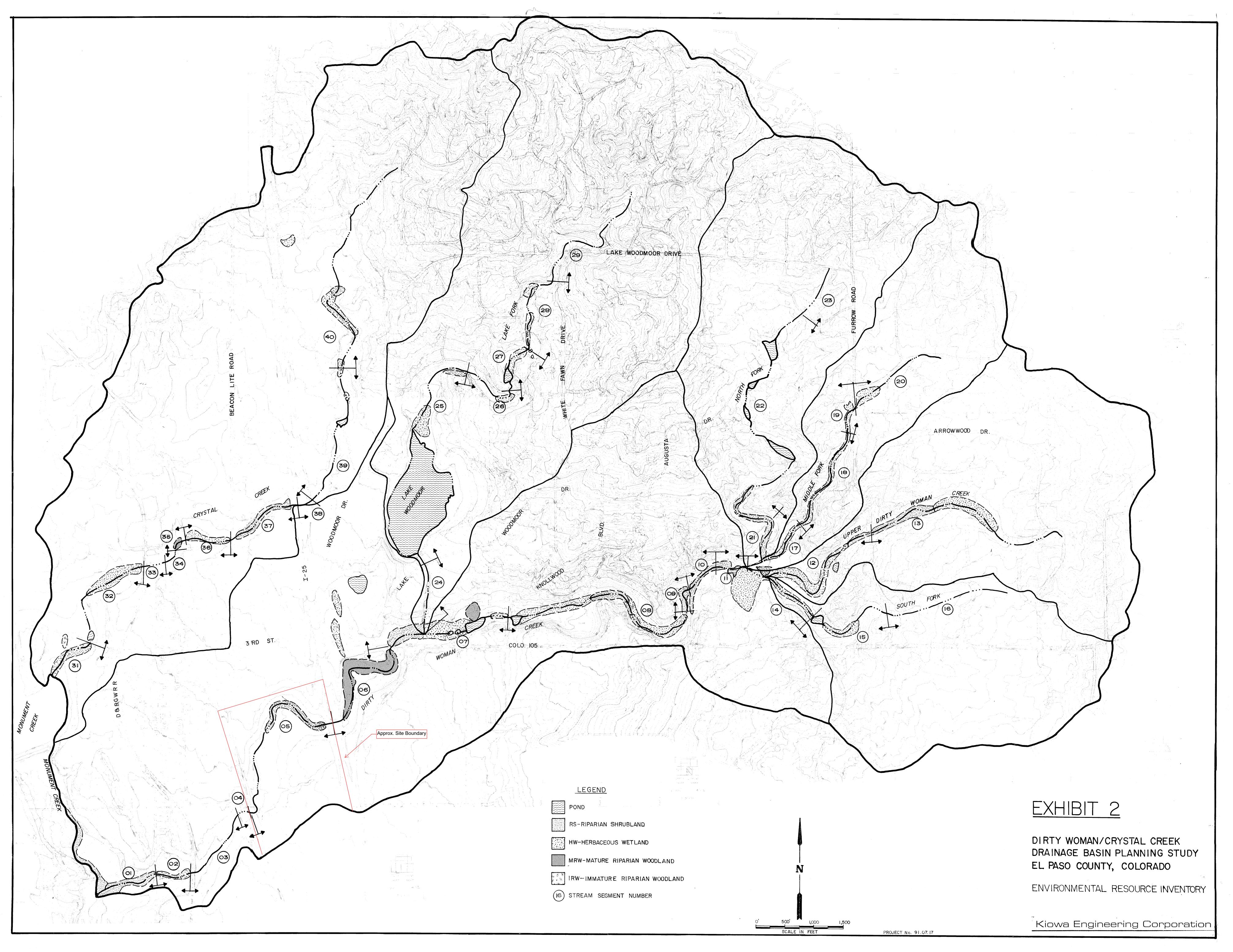


419 West Bijou Street Colorado Springs, Colorado 80905-1308

Dirty Woman and Crystal Creeks
Drainage Basin Planning Study
PRELIMINARY DESIGN
Dirty Woman Creek
Sta. 25+90 to Sta. 51+70

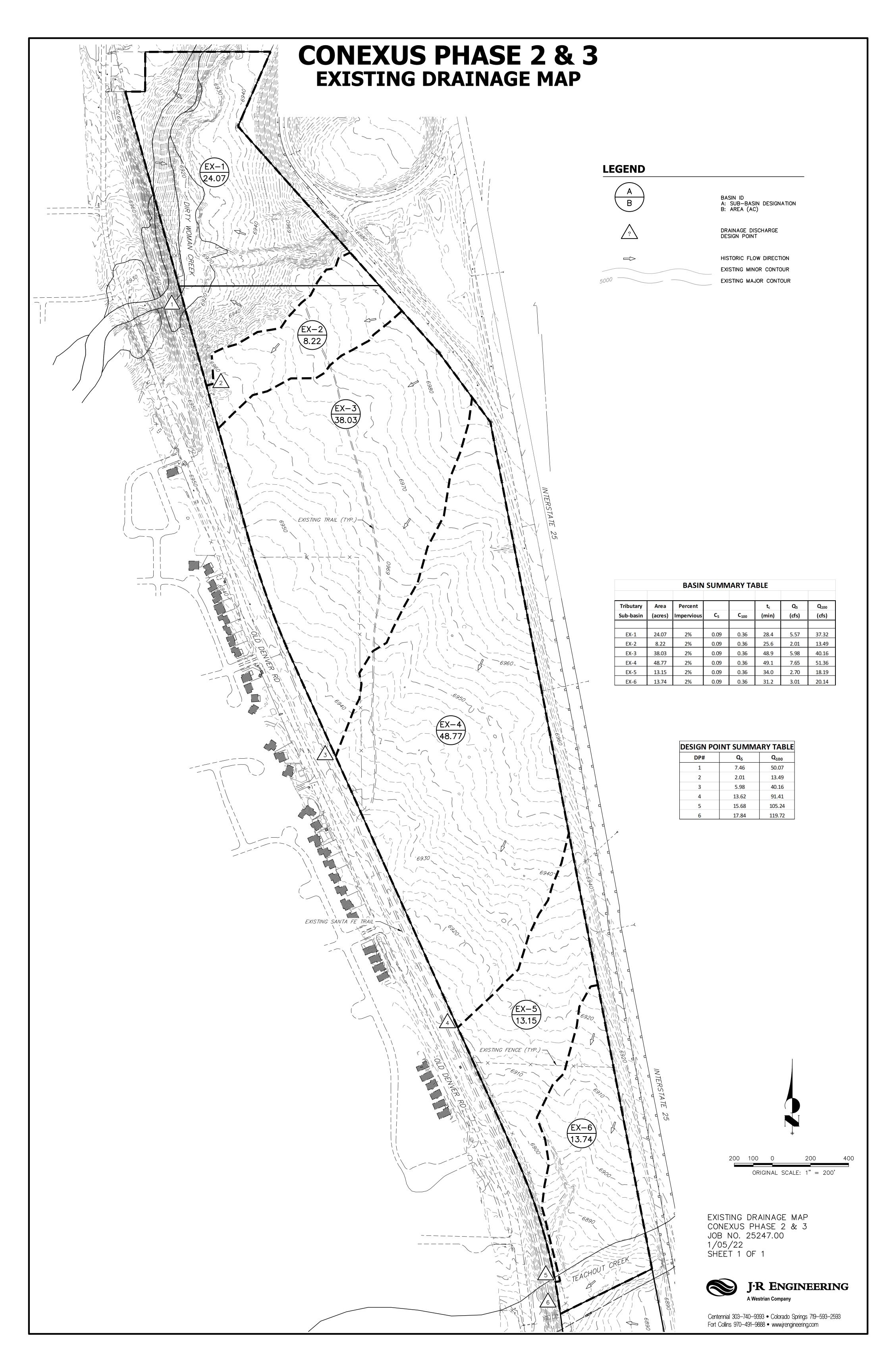
Project No. 91 07 17
Date: 1/93
Design: AW Mc
Drawn: EAK
Chack: RNW
Revisions:

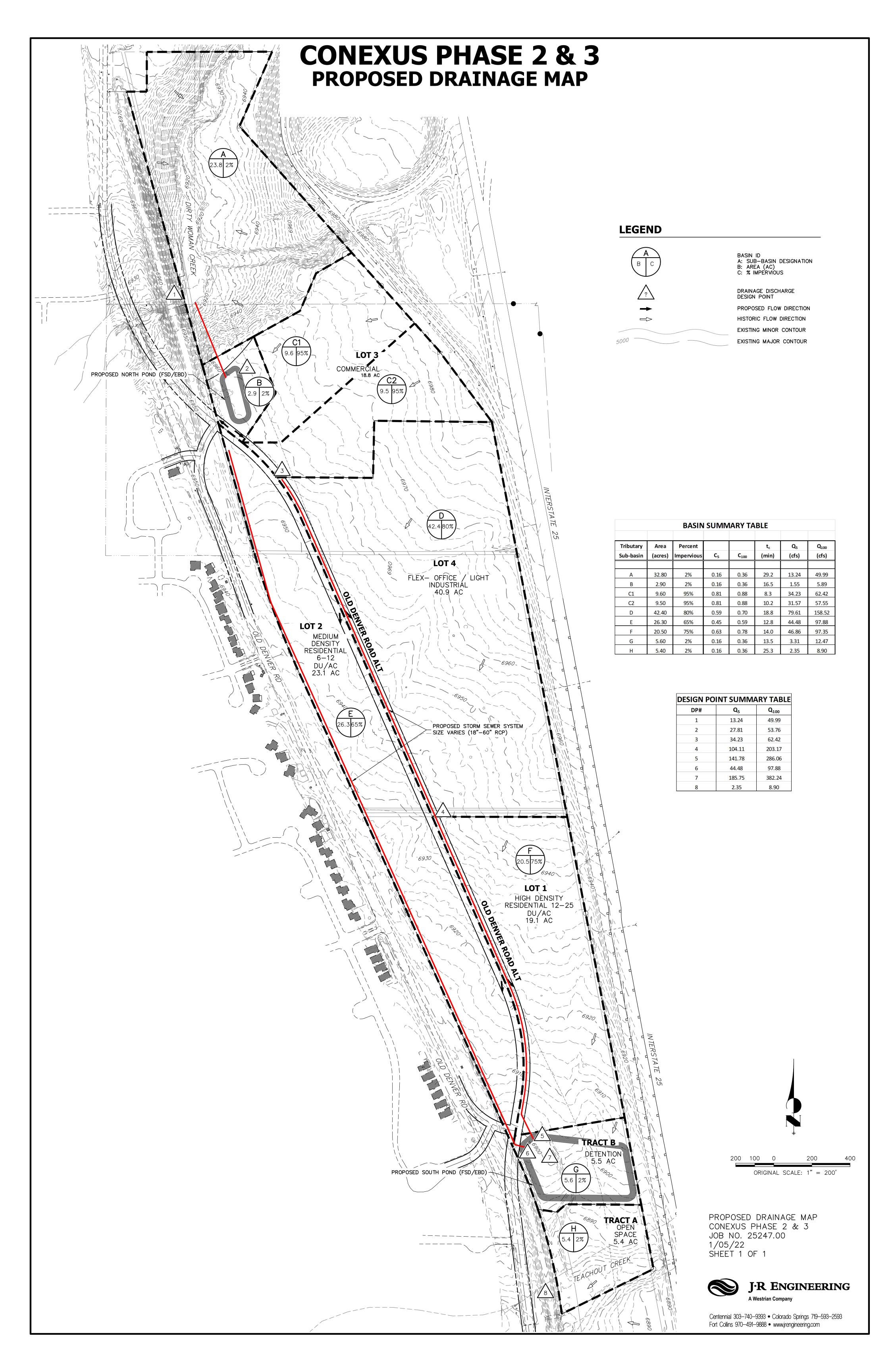



419 West Bijou Street Colorado Springs, Colorado 80905-1308

Dirty Woman Creek Sta. 51+70 to Sta. 77+90

Project No. 91-07-17 Date: 1/93 Design: AW Mc





Appendix E

II/2524700\Drawings\Sheet Dwgs\Drainage\2524700EX-DR01.dwg, EX-DR01, 1/5/2022 1:27:44 PM, CS

0000.all\2524700\Drawings\Sheet Dwgs\Drainage\2524700DR01.dwg, DR01, 1/5/2022 4:24:06