Final Drainage Report
 for
 SEC of Marksheffel Rd. \& Constitution Ave.

Located in the $\mathbf{N} 1 / 2$ of the NW $1 / 4$ of Section 4, Township 14 South, Range 65 West, of the $6^{\text {th }}$ Principal Meridian, El Paso County, State of Colorado

Date: July 20, 2015
Revised: September 14, 2015

Prepared for:

Evergreen Devco, Inc.
2390 East Camelback Road, Suite 410
Phoenix, Arizona 85016

Prepared by:

Galloway \& Company, Inc.
6162 S. Willow Drive, Suite 320
Greenwood Village, CO 80111
Phone (303) 770-8884
Fax (303) 770-3636 \quad Per DCM section 4.5, a "Letter Type"
Attn: Gary Iwata, P.E. drainage report is required for a replat of property for which a complete drainage report has previously been approved by the County Engineer and significant changes from such report is not proposed.
-Add "PCD File No. VR-18-011" to new drainage letter

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent errors, or omissions on my part in preparing this report.

Gary Iwata, P.E. \#37642
Date
Galloway \& Company

DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all the requirements specified in this drainage report and plan

Evergreen Devco, Inc.
Business Name

By: \qquad

Tite: \qquad

Address: 2390 East Camelback Road, Suite 410

Phoenix, Arizona 85016

EL PASO COUNTY

Filed in accordance with Section 51.1 of the El Paso Land Development Code, as amended.

County Engineer/Director
Conditions:

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, EI Paso County, Colorado
September 14, 2015
Page 1 of 18

Table of Contents

I. General Location and Description 2
Location 2
Description of Property 2
II. Drainage Basins and Sub-Basins 3
Major Basin Descriptions 3
Sub-basin Description 4
III. Drainage Design Criteria 12
Development Criteria Reference 12
Hydrologic Criteria 13
IV. Drainage Facility Design 14
General Concept 14
Specific Details 15
V. Summary 17
VI. References 18
Appendices:
A. Vicinity Map, FEMA, and Soils Information
B. City IDF \& Runoff Coefficients
C. Rational Method Spreadsheets
D. Hydraulic Calculations
a. Inlet and Street Capacity Calculations
b. StormCAD
c. Storm Drain Plan \& Profiles
E. Water Quality Pond Calculations
F. Map Pocket - Drainage Map

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, El Paso County, Colorado
September 14, 2015
Page 2 of 18

I. General Location and Description

This Final Drainage Report has been prepared by Galloway \& Company, Inc. for Evergreen Devco, Inc., the developer of the site, to fulfill the drainage requirements of El Paso County, Colorado. The purpose of the report is to analyze and quantify expected development runoff from the proposed development, and to exhibit conformance with the proposed development of previous studies.

Location

The site is located in El Paso County, Colorado. The site is at the Southeast corner of Marksheffel Road and Constitution Avenue. The site lies within the North $1 / 2$ of the Northwest $1 / 4$ of Section 4, Township 14 South, Range 65 West, of the $6{ }^{\text {th }}$ Principal Meridian.

The property is vacant and roughly rectangular in shape and is located at the southeast corner of Marksheffel Rd. and Constitution Ave. The north side of the site fronts Constitution Avenue, the east side of the side is bound by an existing drainage channel (East Fork Sub Tributary of Sand Creek), south side of the site is bound by Claremont Ranch Filing No. 8 single-family subdivision, and the west side of the site is bound by Marksheffel Rd..

Description of Property

The project site consists of 23.5 acres that is generally covered in native grasses. The site slopes generally $2-3 \%$ from the north to the south.

According to the NRCA National Cooperative Soil Survey - Web Soil Survey the development area consists mostly of Blendon Sandy Loam with some Ellicott Loamy coarse Sand which are hydrologic soil group B and A respectively. Since the site is mostly comprised of Group B soils the hydrologic calculations will be based upon Group

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, El Paso County, Colorado
September 14, 2015
Page 3 of 18
B. Group B soils are defined as having moderate infiltration rates when thoroughly wet and having a moderate rate of water transmission.

Improvements on the site include existing waterlines within a 50 easement on the western portion of the site paralleling Marksheffel Road, and dry utilities fronting Constitution Ave. In the eastern portion of the site a 15 " sanitary sewer runs north and south within a 30' Cherokee Water and Sanitation District Easement. There are no known existing irrigation facility encumbrances on the project site.

II. Drainage Basins and Sub-Basins

Major Basin Descriptions

Existing Basins

The site falls within the East Fork of Sand Creek drainage basin and is adjacent to the East Fork Sub Tributary of Sand Creek. The site currently drains from the north to the south and then to the west along the property line, ultimately discharging into a 36" RCP stub provided by Claremont Ranch Filing No. 8.. The existing 36" RCP is routed through Claremont and ultimately discharges into the East Fork of Sand Creek.

The project resides within Basins M1, K-1 and L-1 of the approved Final Master Development Drainage Plan (MDDP) for the Claremont Ranch (East) and Claremont Ranch West (ref 5). Based upon the MDDP the proposed project meets the planned commercial/industrial land use. Although the MDDP states that developments are not required to provide onsite detention, El Paso County is requiring onsite water quality treatment via EURV detention ponds.

Proposed Major Basins

The site will consist of four major basins (Basin A, B, C, D) that drains to two proposed on-site private EURV Detention Ponds. All four major basins are comprised mostly of

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, EI Paso County, Colorado
September 14, 2015
Page 4 of 18
parking, curb and gutter, landscaping, and the building roof. The proposed private storm sewer systems will capture flows within onsite inlets and convey runoff for the 100-year storm event. Developed flows are routed to the onsite private EURV water quality ponds / detention ponds. One pond is located in the southeast corner of the site adjacent to East Fork Sub Tributary of Sand Creek and the second pond is located at the southwest portion of the site. Flows from the southeast pond are released into East Fork Sub Tributary of Sand Creek. Flows from the southwest pond are released into the 36 " RCP stub provided by Claremont Filing 8. There are some flows (described in the sub-basin section below) that sheet flow offsite into Marksheffel Rd. but are less than the designed flows. Per the approved MDDP, Marksheffel Road was designed to accommodate undetained developed flows from the site. Developed flows of 5.3 cfs and 9.7 cfs in the 5-year and 100-year storm event, respectfully, can be discharged into Marksheffel Road.

FEMA FIRM Information

The Federal Emergency Management Agency's Flood Insurance Rate Map (FIRM) for El Paso County, Colorado and Incorporated Areas, Map Number 08041C0756 F, dated March 17, 1997 Revised to Reflect LOMAR dated December 29, 2004 indicates the project site to be in Zone X - "Areas determined to be outside 500-year floodplain."

Sub-basin Description

Major Basin \mathbf{A} is broken into seven smaller sub-basins (sub-basins A-1 to A-3), each draining to a specific inlet or design point.

Basin A-1 is approximately 1.73 acres that is located just north of the proposed King Soopers grocer. The majority of the basin is comprised of parking and landscaping. Drainage from Basin A-1 sheet flows to a Type-C area inlet located in a sump condition (Inlet 1A; Design Point 1). Flows collected in the inlet will be conveyed to the proposed

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, EI Paso County, Colorado
September 14, 2015
Page 5 of 18
southeast detention pond via proposed storm sewer system. Basin A-1 contributes approximately 7.2 cfs and 13.4 cfs in the 5-year and 100-year storm event, respectfully.

Basin A-2 is approximately 2.39 acres that is located just north of the proposed King Soopers grocer. The majority of the basin is comprised of parking, and landscaping. Drainage from Basin A-2 sheet flows to a Type-C area inlet located in a sump condition (Inlet 1B; Design Point 2). Flows collected in the inlet will be conveyed to the proposed southeast detention pond via proposed storm sewer system. Basin A-2 contributes approximately 9.8 cfs and 18.2 cfs in the 5-year and 100-year storm event, respectfully.

Basin A-3 is approximately 2.16 acres that is located just north of the proposed King Soopers grocer. The majority of the basin is comprised of parking but also includes the northeast entrance drive, landscaping, and a portion of the fueling station. Drainage from Basin A-3 sheet flows to a Type-C area inlet located in a sump condition (Inlet A3; Design Point 3). Flows collected in the inlet will be conveyed to the proposed southeast detention pond via proposed storm sewer system. Basin A-3 contributes approximately 8.7 cfs and 16.3 cfs in the 5-year and 100-year storm event, respectfully.

Major Basin B is broken into four smaller sub-basins (sub-basins B-1 to B-4), each draining to a specific inlet or design point

Basin B-1 is approximately 0.11 acres that is located on the south side of the site, just behind King Soopers. It is comprised of the west loading dock area. Basin B-1 conveys developed flows via sheet flow and curb and gutter to an area inlet (Inlet 2A1; Design Point 5). Peak flows from Basin B-1 are approximately 0.5 cfs and 0.9 cfs in the 5 -year and 100-year storm event, respectfully, that ultimately drain to the southeast detention pond.

Basin B-2 is approximately 0.97 acres that comprises the central portion of the King Soopers' roof. Basin B-2 conveys developed flows via roof drain system to the

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, EI Paso County, Colorado
September 14, 2015
Page 6 of 18
proposed storm sewer system south of the building (Design Point 6). Peak flows from Basin B-2 are approximately 3.58 cfs and 6.66 cfs in the 5 -year and 100-year storm event, respectfully, that ultimately drain to the southeast detention pond.

Basin B-3 is approximately 0.88 acres that comprises the eastern portion of the King Soopers' roof. Basin B-3 conveys developed flows via roof drain system to the proposed storm sewer system south of the building (Design Point 7). Peak flows from Basin B-3 are approximately 3.2 cfs and 6.0 cfs in the 5 -year and 100-year storm event, respectfully, that ultimately drain to the southeast detention pond.

Basin B-4 is approximately 0.11 acres that is located on the south side of the site, just behind King Soopers. It is comprised of the east loading dock area. Basin B-4 conveys developed flows via sheet flow and curb and gutter to an area inlet (Inlet 2B1; Design Point 8). Peak flows from Basin B-4 are approximately 0.5 cfs and 0.9 cfs in the 5 -year and 100-year storm event, respectfully, that ultimately drain to the southeast detention pond.

Major Basin C is broken into three smaller sub-basins (sub-basins C-1 to C-3), each draining to a specific inlet or design point.

Basin C-1 is approximately 2.1 acres that is located in the northeastern portion of the site. It consists of a future commercial pad site, which consists of a building, parking, drive lanes and landscaping. Basin C-1 conveys developed flows via curb and gutter to a future inlet (Design Point 9). The inlet discharges flows directly to the southeast detention pond. Peak flows from Basin C-1 are approximately 7.1 cfs and 12.9 cfs in the 5 -year and 100-year storm event, respectfully.

Basin C-2 is approximately 2.09 acres that is located just east of the King Soopers grocer. It is mostly comprised of parking, and drive lanes. Basin C-2 conveys developed flows via curb and gutter to a Type-R inlet (Inlet 7A; Design Point 10). The

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, El Paso County, Colorado
September 14, 2015
Page 7 of 18
inlet discharges flows directly to the detention pond. Peak flows from Basin C-2 are approximately 6.7 cfs and 12.5 cfs in the 5-year and 100-year storm event, respectfully.

Basin C-3 is approximately 1.6 acres that is located in the northeastern portion of the site. It consists of the southeast detention pond and landscaping. Basin $\mathrm{C}-3$ conveys developed flows via trickle channels to a modified Type-C outlet structure (Design Point 11). Peak flows from Basin C-3 are approximately 7.5 cfs and 13.4 cfs in the 5 -year and 100-year storm event, respectfully.

Major Basin D is broken into three smaller sub-basins (sub-basins D-1 to D-8), each draining to a specific inlet or design point.

Basin D-1 is approximately 1.03 acres that is located at the northwest corner of the site. It consists of a future commercial pad site, which consists of a building, parking, drive lanes and landscaping. Drainage from Basin D-1 will be conveyed to the storm sewer stub (Design Point 12). Peak flows from Basin D-1 are approximately 4.2 cfs and 7.7 cfs in the 5-year and 100-year storm event, respectfully, that ultimately drain to the southeast detention pond.

Basin D-2 is approximately 0.87 acres that is located at the northwest corner of the site. It consists of a future commercial pad site, which consists of a building, parking, drive lanes and landscaping. Drainage from Basin D-2 will be conveyed to the storm sewer stub (Design Point 13). Peak flows from Basin D-2 are approximately 3.6 cfs and 6.6 cfs in the 5-year and 100-year storm event, respectfully, that ultimately drain to the southeast detention pond.

Basin D-3 is approximately 0.49 acres that is located in the northwestern portion of the site. It is comprised mostly of the northwestern entrance drive with some landscaping. Drainage from Basin D-3 conveys developed flows via curb and gutter to an on-grade Type R curb inlet (Inlet 3B1; Design Point 14). All flow from a 5-year storm event is

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, EI Paso County, Colorado
September 14, 2015
Page 8 of 18
captured, while only 0.3 cfs will not be caught in a 10-year storm event. Peak flows from Basin D-3 are approximately 1.6 cfs and 3.3 cfs in the 5-year and 100-year storm event, respectfully, that ultimately drain to the southeast detention pond.

Basin D-4 is approximately 0.97 acres that is located just north of the proposed King Soopers grocer. The majority of the basin is comprised of parking and landscaping. Drainage from Basin D-4 sheet flows to a Type-C area inlet located in a sump condition (Inlet 3B; Design Point 15). Flows collected in the inlet will be conveyed to the proposed southeast detention pond via proposed storm sewer system. Basin D-4 contributes approximately 4.1 cfs and 7.6 cfs in the 5-year and 100-year storm event, respectfully, that ultimately drain to the southeast detention pond

Basin D-5 is approximately 0.86 acres that is located in the west portion of the site. It consists of a future commercial pad site, which consists of a building, parking, drive lanes and landscaping. Drainage from Basin D-5 will be conveyed to the storm sewer stub (Design Point 16). Peak flows from Basin D-5 are approximately 3.6 cfs and 6.6 cfs in the 5-year and 100-year storm event, respectfully, that ultimately drain to the southwest detention pond.

Basin D-6 is approximately 0.63 acres that is located just west of the King Soopers grocer. It is mostly comprised of parking. Basin D-6 conveys developed flows via sheet flow to a Type R inlet (Inlet 3C; Design Point 17) located in a sump. Peak flows from Basin D-6 are approximately 2.1 cfs and 4.2 cfs in the 5 -year and 100-year storm event, respectfully, that ultimately drain to the southwest detention pond.

Basin D-7 is approximately 0.55 acres that is located in southwest portion of the site. It consists of a future commercial pad site, which consists of a building, parking, drive lanes and landscaping. Drainage from Basin D-7 will be conveyed to the southwest detention pond (Design Point 18). Peak flows from Basin D-7 are approximately 2.3 cfs and 4.2 cfs in the 5-year and 100-year storm event, respectfully.

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, EI Paso County, Colorado
September 14, 2015
Page 9 of 18

Basin D-8 is approximately 0.67 acres that is located just west of the King Soopers grocer. It is mostly comprised of drive lanes, and landscaping. Basin D-8 conveys developed flows via curb and gutter to two on-grade Type-R inlets (Inlet 4A; Design Point 19). The inlets discharge flows directly to the southwest detention pond. Peak flows from Basin D-8 are approximately 2.4 cfs and 4.6 cfs in the 5-year and 100-year storm event, respectfully. The on-grade inlets intercept 100\% of the minor storm and bypass 0.3 cfs in the major storm. Bypass flows are discharged into basin OS-2.

Basin D-9 is approximately 0.89 acres that comprises the western portion of the King Soopers' roof. Basin D-9 conveys developed flows via roof drains (Design Point 4) directly to the southwest water quality pond. Peak flows from Basin D-9 are approximately 3.3 cfs and 6.1 cfs in the 5-year and 100-year storm event, respectfully.

Off-site Basins - There are four off-site basins, which are basins that discharge offsite without being detained. These basins are described below in more detail.

Basin OS-1 is approximately 0.4 acres that is located in the southern portion of the site adjacent to Claremont Ranch Filing No. 8. It is comprised mostly of landscaping and a retaining wall. The majority of the developed flows from Basin OS-1 will be intercepted by a french-drain that parallels the retaining wall and the lot line and discharges in the 36" RCP stub provided by Claremont Filing No. 8. Peak flows from Basin OS-1 are approximately 0.1 cfs and 0.8 cfs in the 5-year and 100-year storm event, respectfully.

Basin OS-2 is approximately 1.7 acres that is located in the western portion of the site. It is comprised mostly of the southwestern and western entrances drive and landscaping. Drainage from Basin OS-2 conveys flows via curb and gutter to Marksheffel Rd. Peak flows from Basin OS-2 are approximately 4.0 cfs and 9.0 cfs in the 5 -year and 100-year storm event, respectfully. There is an additional 0.3 cfs of bypass flows from Basin D-8 for a total of 9.3 cfs in the 100-year storm that discharges

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, El Paso County, Colorado
September 14, 2015
Page 10 of 18
into Marksheffel Road. Per the MDDP, Marksheffel Road was designed to accommodate undetained developed flows from the site. As stated in the MDDP, developed flows of 5.3 cfs and 9.7 cfs in the 5-year and 100-year storm event, respectfully, can be discharged into Marksheffel Road.

Basin OS-3 is approximately 0.4 acres that is located in the northeastern portion of the site. It is comprised mostly of landscaping. Drainage from Basin OS-3 conveys flows via sheet flow to East Fork Sub Tributary of Sand Creek. Peak flows from Basin OS-3 are approximately 0.2 cfs and 1.2 cfs in the 5-year and 100-year storm event, respectfully.

Basin OS-4 is approximately 0.1 acres that is located in the southeastern portion of the site. It is comprised mostly of landscaping. Drainage from Basin OS-4 is conveyed via sheet flow directly to East Fork Sub Tributary of Sand Creek. Peak flows from Basin OS-3 are approximately 0.1 cfs and 0.2 cfs in the 5-year and 100-year storm event, respectfully.

Basin OS-5 is approximately 0.1 acres that is located in the southeastern portion of the site adjacent to Claremont Ranch Filing No. 8. It is comprised mostly of landscaping. The majority of the developed flows from Basin OS-5 will sheet flow into existing Norte Way within Claremont Rand Filing No. 8. Peak flows from Basin OS-5 are approximately 0.05 cfs and 0.39 cfs in the 5-year and 100-year storm event, respectfully. Per the approved MDDP, Notre Way is a 35 ' back-of-curb to back-of-curb street section with a street capacity of $\mathrm{Q}_{5}=9.0$ cfs and $\mathrm{Q}_{100}=34.3$ cfs. Existing Basin flows tributary to Norte Way $\left(Q_{5}=5.4\right.$ cfs and $\left.Q_{100}=11.9\right)$ and the addition of Basin OS-1 do not exceed street capacity nor do they exceed the capacity of the existing 10' TypeR inlet at the intersection of Norte Way and Bucolo Avenue. The inlet located in a sump with a capacity of 13 cfs .

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, EI Paso County, Colorado
September 14, 2015
Page 11 of 18

Drainage Facilities/Proposed Cost Estimate

The on-site drainage facilities required for the Claremont Ranch Filing \#8 site are listed below.

These on-site facilities are Private, non-reimbursable drainage facilities:

ITEM	QUANTITY	UNIT PRICE	EXT. COST
5" CDOT/Denver 13 Valley Grate	1 EA	\$3,000	\$3,000
10" CDOT/Denver 13 Valley Grate	2 EA	\$4,500	\$9,000
15" CDOT/Denver 13 Valley Grate	1 EA	\$6,000	\$6,000
5" CDOT Type R Curb Opening	2 EA	\$3,791.00	\$7,582.00
10" CDOT Type R Curb Opening	3 EA	\$5,528.00	\$16,584.00
Grated Inlet (Type C)	1 EA	\$3,270.00	\$3,270.00
Grated Inlet (Type D)	2 EA	\$3,908.00	\$7,816.00
Flared End Section RCP	4 EA	\$750.00	\$3,000.00
6" PVC	375 LF	\$34.00	\$12,750.00
12" PVC	85 LF	\$43.00	\$3,655.00
$12^{\prime \prime} \mathrm{RCP}$	125 LF	\$55.00	\$6,875.00
18 " RCP	830 LF	\$69.00	\$57,270.00
24 " RCP	810 LF	\$84.00	\$68,040.00
$30^{\prime} \mathrm{RCP}$	235 LF	\$94.00	\$22,090.00
36 " RCP	495 LF	\$124.00	\$61,380.00
5' Dia Manhole	6 EA	\$4,575.00	\$27,450.00
Insert-a-Tee	5 EA	\$750.00	\$3,750.00
Sub-total: 15\% Engineering and Consistency: Total:			\$319,512.00
			\$47,927.00
			\$367,439.00

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, El Paso County, Colorado
September 14, 2015
Page 12 of 18

Drainage and Bridge Fees

The site is located entirely within the Sand Creek Drainage Basin. The 2014 Drainage and Bridge Fees per El Paso County for this site are listed below.

Drainage Fee: \$15,000/Impervious acre
Bridge Fee: \$4,544/Impervious acre
The impervious area for the site was calculated from the site plan.

The total platted acreage for the site is 23.54 acres with a calculated 84% impervious value. Therefore, the calculated impervious area is 19.74 acres (84\%).

Drainage Fee: \$15,000/Impervious acre x 84\% Impervious = \$12,600/ac.
Bridge Fee: \$4,544/Impervious acre x 84\% Impervious = \$3,817/ac.
Total fees due per platted acreage $=\$ 16,417 / \mathrm{ac}$.

The total fee obligation for the site is summarized as follows:
Drainage fees for subdivision: \$12,600/ac x 23.54 ac $=\$ 296,604$
Bridge fees for subdivision: \$3,817/ac x 23.54 ac $=\quad \$ 89,852$
Total fees for subdivision: \$16,417/ac x 23.54 ac = \$386,456

III. Drainage Design Criteria

Development Criteria Reference

Where not otherwise specifically discussed, all storm water runoff, conveyance, and management facilities are designed using the guidance of the updated City of Colorado Springs, "Drainage Criteria Manual", Volumes 1 and 2. The proposed water quality/ detention pond are designed in accordance with the Urban Drainage and Flood Control District's (UDFCD), Urban Storm Drainage Criteria Manual, Volume III (USDCM).

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, EI Paso County, Colorado
September 14, 2015
Page 13 of 18

Hydrologic Criteria

The drainage calculations were based on the City of Colorado Springs drainage criteria manual Figure 6-5 and IDF equations to determine the intensity.

Table 1 - Precipitation Data

Return Period	One Hour Depth (in.)	Intensity
5-year	1.44	5.17
100-year	2.42	8.68

Calculations for time of concentration (t_{c}) was calculated and due to the small basin sizes for the site, produced a 5 minute minimum t_{c} for most basins.

The rational method was used to calculate peak flows as the tributary areas are less than 100 acres. The rational method has been proven to be accurate for basins of this size and is based on the following formula:

$$
\mathrm{Q}=\mathrm{CIA}
$$

Where:
$Q=$ Peak Discharge (cfs)
C = Runoff Coefficient
I = Runoff intensity (inches/hour)
A = Drainage area (acres)

The runoff coefficients are calculated based on land use, percent imperviousness, and design storm for each basin, as shown in the Colorado Springs/El Paso County drainage criteria manual. The runoff coefficient for commercial impervious basins was 0.88 (100-year) and 0.81 (5-year) per Colorado Springs drainage criteria. The appendix contains runoff coefficient calculations for basins that were not 100% impervious.

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, El Paso County, Colorado
September 14, 2015
Page 14 of 18
The 100-year event was used as the major storm event for pipes and inlets. The 5 -year event was used as the minor event and hydraulic results are shown in the appendix.

Inlet calculations and street capacity for the sump and on-grade inlets was performed by the UDFCD Street Capacity and Inlet Sizing spreadsheets (UD-Inlet v3.14). Results are included in the appendix. The 100-year event was used as the major storm event for pipes and inlets which will be a private storm sewer system.

Standard SF-1 and SF-2 forms were created to determine the t_{c} and intensities and input into StormCAD software to calculate pipe hydraulics and HGL's. The resultant flows from StormCAD were used for the design of the outlet structures and pipe sizing. Losses and loss coefficients are provided in the appendix and are determined from StormCAD using Colorado Springs and UDFCD criteria. Total head losses are due to friction, changes in velocities, changes in direction of flow, and the shape of the structure. See the appendix for more information.

Detention and water quality is required for the project site. The detention and water quality ponds and outlet structures were designed using UDFCD software, specifically the UD-Detention_v2.35 spreadsheet. These spreadsheets can be found in the appendix.

IV. Drainage Facility Design

General Concept

As discussed, the site will consist of four major basins (Basin A, B, C, D) that drain to the proposed on-site private EURV Detention Pond and a private water quality pond. The private detentionlwater quality ponds will discharge into the East Fork Sub Tributary of Sand Creek. Each private pond has two feet of freeboard. Generally, the site grades follow the existing drainage pattern. The detention volume of the southeast pond is 2.5

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, EI Paso County, Colorado
September 14, 2015
Page 15 of 18
acre-feet while the water quality volume of the southwest pond is 1.0 acre-foot. The existing topography slopes from the north to the south at approximately $2-3 \%$ grade.

Proposed drainage patterns will generally follow existing conditions. Due to the building footprint location and the four entrance drives the site becomes a fill site to allow for a 3% maximum grade in the parking lot area to ensure ADA conformance. Due to the aforementioned site constraints we are not able to design the site to be "self-contained"; meaning to keep all drainage on site and run it through the water quality pond prior to discharging into the East Fork Sub Tributary of Sand Creek. Coordination is on-going with the overall developer to provide a design that benefits all of the final users within the development.

The existing site is undeveloped. Due to the proposed improvements the developed impervious area and runoff are increased from historic levels.

The on-site private detention and water quality pond will be used for treatment of the project site. It is not anticipated to be used to treat any offsite basins or drainage from Constitution Ave. The private water quality pond will be maintained by Evergreen Development Co. The outlet structure is designed to discharge at the allowable 100year release rate. An emergency overflow weir is designed to discharge into the East Fork Sub Tributary of Sand Creek in the event the outlet structure is clogged.

Specific Details

The proposed development depicted on the associated drainage plan and described above will generate 5 -year and 100-year onsite runoff to be captured and conveyed in the proposed storm sewer systems. The majority of on-site developed flows will be captured in the proposed storm sewer system and conveyed to the proposed detention and water quality ponds. The southeast pond will discharge directly into the East Fork Sub Tributary of Sand Creek. While the southwest pond will discharge into the 36 " storm sewer stub provided by Claremont Ranch Filing 8.

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, EI Paso County, Colorado
September 14, 2015
Page 16 of 18

Southeast Pond - The private EURV detention and water quality pond is located on the southeast corner of the site. The shape of the detention and water quality pond is rectangular in shape with $3: 1$ side slopes and a retaining wall. The outfall of the pond will be from the south end of the pond and directed to the East Fork Sub Tributary of Sand Creek. A 10' maintenance access is provided at the northwest side of the pond.

The pond has been designed as a EURV detention pond. The average width of the pond is 150 feet and the length is 315 feet. The depth is approximately 4.5 feet from the bottom of the pond to the water quality water surface elevation (WSEL), providing a WQCV of 2.1 acre-feet. The outlet structure is designed to allow the pond to fill up using a 72 hour drain time and to allow flows over the WQCV to spill over the top of the outlet structure through a trash rack. The 100-year WSEL is approximately 6436. Two feet of freeboard is provided above the 100-year WSEL. The southeast pond will release the EURV at 1.1 cfs and the 100-year release at 8.2 cfs into the East Fork Sub Tributary of Sand Creek. The MDDP anticipated that the eastern portion of the site, (MDDP basin K-1), will discharge 27.7 cfs and 44.5 cfs into the East Fork Sub Tributary of Sand Creek in the 10-year and 100-year storms, respectively. The proposed southeast pond's discharge is considerably less; therefore there are no negative impacts to the East Fork Sub Tributary of Sand Creek. In the event the outlet structure becomes clogged, flows in excess of the 100-year WSEL will overtop the detention pond through the emergency overflow weir and outfall into the East Fork Sub Tributary of Sand Creek.

During construction the southeast pond will be used as a sedimentation pond for the entire site. Flows will be routed to the pond via diversion ditch.

Southwest Pond - The private water quality only pond is located in the southwest portion of the site. The shape of the water quality pond is rectangular in shape with $3: 1$ side slopes and a retaining wall. The outfall of the pond will be from the southwest end of the pond and will be piped to the existing 36 " RCP stub provided by Claremont Ranch

Evergreen Devco, Inc.
SEC Marksheffel \& Constitution, El Paso County, Colorado
September 14, 2015
Page 17 of 18
Filing No. 8. Per the MDDP the 36 " RCP was designed to convey 48.6 cfs and 88.3 cfs in the 5 -year and 100-year developed flows respectively. The southwest pond will release EURV 1.1 cfs and 50.6 cfs in the 100-year storm which are less than the anticipated MDDP flows.

The pond has been designed as a EURV water quality pond. The average width of the pond is 95 feet and the length is 115 feet. The depth is approximately 8 feet from the bottom of the pond to the water quality water surface elevation (WSEL), providing a WQCV of 1.0 acre-feet. The outlet structure is designed to allow the pond to fill up using a 72 hour drain time and to allow flows over the WQCV to spill over the top of the outlet structure through a trash rack. The 100-year WSEL is approximately 6439. Two foot of freeboard is provided above the 100-year WSEL. In the event the outlet structure becomes clogged, flows in excess of the 100-year WSEL will overtop the detention pond through the emergency overflow weir and outfall into adjacent drive.

V. Summary

The proposed construction of the Southeast Corner of Marksheffel Rd. and Constitution Ave. will not adversely affect the downstream and surrounding developments. It is in general conformance with the drainage design and analysis in the approved Master Development Drainage Plan for Claremont Ranch (East \& West). The site is following the design standards and guidelines as set forth by the City of Colorado Springs Drainage Criteria Manual, Volumes 1 and 2, as well as Urban Drainage Flood Control District Volumes 1, 2, and 3.

VI. References

1. The City of Colorado Springs, Colorado, Drainage Criteria Manual, Volumes 1 and 2, May 2014.
2. Urban Storm Drainage Criteria Manual, Urban Drainage and Flood Control District, March 2006 (with current revisions).
3. Flood Insurance Rate Map - El Paso County, Colorado and Incorporated Areas Community Panel No. 08041C0756 F, Effective March 17, 1997.
4. Soil Map - El Paso County Area, Colorado as available through the Natural Resources Conservation Service National Cooperative Soil Survey web site via Web Soil Survey 2.0.
5. Final Master Development Drainage Plan (MDDP) for the "Claremont Ranch (East)" \& "Claremont Ranch West", by Matrix Design Group, Inc., Revised February 6, 2001.

Appendix A

Vicinity Map, FEMA, and Soils Information

MAP LEGEND				MAP INFORMATION
Area of Interest (AOI)		\square	C	The soil surveys that comprise your AOI were mapped at 1:24,000.
-	Area of Interest (AOI)	\square	C/D	Warning: Soil Map may not be valid at this scale.
Soils		\square	D	Enlargement of maps beyond the scale of mapping can cause
\square	A Polygons	\square	Not rated or not available	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting
,	A/D	Water Features		soils that could have been shown at a more detailed scale.
	B	Transportation		Please rely on the bar scale on each map sheet for map
\square	B/D	+	Rails	measurements.
\square	C	\sim	Interstate Highways	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
\square	C/D	\sim	US Routes	$\begin{aligned} & \text { Web Soil Survey URL: inttp://websoilsurvey:nrcs.usda.gov } \\ & \text { Coordinate System: Web Mercator (EPSG:3857) } \end{aligned}$
	D	\approx	Major Roads	Maps from the Web Soil Survey are based on the Web Mercator
\square	Not rated or not available	\sim	Local Roads	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
Soil Rating Lines		Background		Albers equal-area conic projection, should be used if more accurate
\cdots	A	5	Aerial Photography	calculations of distance or area are required.
\cdots	A/D			This product is generated from the USDA-NRCS certified data as of
\cdots	B			the version date(s) listed below.
\cdots	B/D			Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 12, Sep 29, 2014
\cdots	C			Soil map units are labeled (as space allows) for map scales 1:50,000
\cdots	C/D			or larger.
\cdots	D			Date(s) aerial images were photographed: Apr 15, 2011-Jun 17,
**	Not rated or not available			2014
Soil Rating Points				The orthophoto or other base map on which the soil lines were
\square	A			compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting
\square	A/D			of map unit boundaries may be evident.
\square	B			
\square	B/D			

Hydrologic Soil Group

Hydrologic Soil Group-Summary by Map Unit - El Paso County Area, Colorado (CO625)				
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
10	Blendon sandy loam, 0 to 3 percent slopes	B	29.3	78.6\%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	A	8.0	21.4\%
Totals for Area of Interest			37.3	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Appendix B

City IDF \& Runoff Coefficients

			$\begin{aligned} & \text { * Table 6-6 in CO Springs, Drainage Criteria } \\ & \text { Manual Revised May } 2014 \end{aligned}$			$\stackrel{\circ}{\infty}$		$\frac{\stackrel{\circ}{6}}{6}$		ลั龴⿵冂人	oి̀	 	ஃ๐	ஃ๐	oi io io 웅	응	ঃ๐	ஃㅇํ	ถํ
					$\stackrel{B}{\infty}$				$\begin{array}{lll} \infty & \infty \\ 0 & \infty \\ 0 & 0 \\ \hline \end{array}$		$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$	$\infty \propto \infty$ －0000000					$\stackrel{\square}{\infty}$	$\stackrel{\sim}{0} 0$	¢
					$\mathfrak{\infty} \times \operatorname{Nom}_{\infty}^{\infty}$		Nை N N N N N				$\begin{aligned} & \text { N } \\ & \hline \mathbf{O} \end{aligned}$	$\infty_{\infty}^{\infty} \infty \infty_{\infty}^{\infty} \infty_{\infty}^{\infty} \underset{\infty}{\infty}$ －0．000000			$\frac{n}{\square}$		N	$\frac{10}{\vdots} \frac{6}{0}$	$\stackrel{\sim}{\circ}$
									$\underset{\infty}{\infty}$		$\stackrel{\circ}{\circ}$	ธ －00000000			$\infty \circ \infty \circ_{\circ}^{\infty} \circ$ 0000		N	$\begin{array}{ll} \infty \\ 0 \\ 0 & 0 \\ 0 \end{array}$	$\stackrel{\circ}{\circ}$
					$\stackrel{\text { gN }}{\substack{\circ \\ 0}}$						$\stackrel{\infty}{\stackrel{\infty}{0}}$	－o ooosoo			No N N N N 0000		\checkmark	N N N O.	N
					000	0	0000	\bigcirc	$\frac{\varnothing}{\infty}$	$\frac{\stackrel{M}{5}}{\stackrel{\circ}{\circ}}$	$\begin{aligned} & \stackrel{(}{\Gamma} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$			¢ N－ ¢	00000	0	N－	00	0
			O		$\bigcirc \stackrel{0}{0}_{\infty}^{\infty} \stackrel{\infty}{\stackrel{\infty}{5}}$	$\begin{aligned} & 0 \\ & \mathscr{N}_{\infty}^{\infty} \\ & \infty^{-} \end{aligned}$	$\circ \frac{\stackrel{N}{N}}{\underset{\sim}{\infty}} \underset{\sim}{\infty}$	$\begin{aligned} & \text { N్ } \\ & \text { ल } \\ & \text { © } \end{aligned}$	000	0	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\infty} \end{aligned}$	$000000000 \begin{gathered} \text { N } \\ 0 \\ \infty \\ 0_{0} \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { N } \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	00000	0	N／ N N	00	0
			g				$\stackrel{\underset{\sim}{N}}{\underset{\sim}{c}} \circ \circ \stackrel{\infty}{\infty}$	$\begin{aligned} & \bar{ल} \\ & \text { On } \end{aligned}$		N	N					$\begin{aligned} & \text { or } \\ & \text { م } \\ & \mathbf{0} \\ & \hline \mathbf{N} \end{aligned}$	m － N－1	00	0
			0			$\begin{aligned} & \text { no } \\ & \text { + } \\ & \text { + } \end{aligned}$	0000	0	$\stackrel{\stackrel{N}{\tilde{n}} 0}{\underset{\sim}{N}}$	$\xrightarrow{\text { N }}$	N		$\begin{aligned} & \text { N} \\ & \text { N్ల్ } \end{aligned}$	$\begin{gathered} \mathbb{N} \\ \underset{N}{N} \end{gathered}$	$\stackrel{\sim}{\sim} \sim_{\sim}^{\infty} \stackrel{\circ}{\sim}$ NM MOO 	$\frac{\stackrel{N}{-}}{\stackrel{-}{\infty}}$	$\stackrel{N}{\stackrel{N}{\text { ¢ }}}$	$\begin{aligned} & 8 \text { N } \\ & \infty \\ & \infty \\ & \infty \\ & 0 \\ & i \end{aligned}$	
						$\begin{aligned} & \hat{N} \\ & \\ & \underset{N}{n} \end{aligned}$		$\begin{aligned} & \bar{\circ} \\ & \stackrel{0}{0} \\ & \boxed{\infty} \end{aligned}$		＋	$\begin{aligned} & \stackrel{\infty}{0} \\ & \underset{\omega}{6} \\ & \hline \end{aligned}$			Nos	눙 ∞ กo 0 O 			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	
					安等咎	$\begin{aligned} & \mathbb{\nwarrow} \\ & \stackrel{1}{太} \\ & \stackrel{O}{1} \end{aligned}$			ડ̇ べ ư		$\text { aNOd ヨS OЬ 7 } \forall \perp \text { O\& }$		$\begin{aligned} & \text { ロ } \\ & \frac{1}{k} \\ & \stackrel{1}{6} \end{aligned}$	0 2 0 0 3 0 0 1 \vdots \vdots 1				「	

Appendix C

Rational Method Spreadsheets

PROJECT: Marksheffel/Constitution Project Site

Time of Concentration, 5 Year Coefficient

Use minimum Time of Concentration $=5$ minutes
Use composite coefficients

Appendix D

Hydraulic Calculations

Warning 02: Max Allowable Depth for Minor Storm is greater than the Curb Height.

Project $=$ \qquad
Inlet ID =

Warning 02: Max Allowable Depth for Minor Storm is greater than the Curb Height.

Project $=$ \qquad
Inlet ID =

[^0]Project $=$ \qquad SEC Marksheffel \& Constitution
Inlet ID = Inlet-1C

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	Inlet Type =	CDOT/Denver 13 Valley Grate		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	$\mathrm{a}_{\text {local }}=$	2.00	2.00	
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	\square Override Depths
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	12.0	12.0	
Grate Information		MINOR	MAJOR	
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	3.00	3.00	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	1.73	1.73	
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	0.43	0.43	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	3.30	3.30	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	feet inches
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	N/A	N/A	
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	N/A	N/A	
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	N/A	N/A	degrees feet
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	N/A	N/A	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Orifice Coefficient (typical value $0.60-0.70$)	$\mathrm{C}_{0}(\mathrm{C})=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	21.6	21.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	$Q_{\text {peak required }}=$	8.7	16.3	

Project $=$ \qquad SEC Marksheffel \& Constitution
Inlet ID = Inlet-2A-1

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	Inlet Type =	CDOT/Denver 13 Valley Grate		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	$\mathrm{a}_{\text {local }}=$	2.00	2.00	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	\square Override Depths
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	12.0	12.0	
Grate Information		MINOR	MAJOR	
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	3.00	3.00	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	1.73	1.73	
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	0.43	0.43	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	3.30	3.30	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	feet inches
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	N/A	N/A	
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	N/A	N/A	
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	N/A	N/A	degrees feet
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	N/A	N/A	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Orifice Coefficient (typical value $0.60-0.70$)	$\mathrm{C}_{0}(\mathrm{C})=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.6	5.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	$Q_{\text {peak required }}=$	0.5	0.9	

Project $=$ \qquad SEC Marksheffel \& Constitution
Inlet ID =

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	Inlet Type =	CDOT/Denver 13 Valley Grate		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	$\mathrm{a}_{\text {Iocal }}=$	2.00	2.00	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	\square Override Depths
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	12.0	12.0	
Grate Information		MINOR	MAJOR	
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	3.00	3.00	feet feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	1.73	1.73	
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	0.43	0.43	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	3.30	3.30	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	feet inches
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	N/A	N/A	
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	N/A	N/A	
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {troat }}=$	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	N/A	N/A	degrees feet
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	N/A	N/A	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.6	5.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	$Q_{\text {peak required }}=$	0.5	0.9	cfs

[^1]Project $=$ \qquad SEC Marksheffel \& Constitution
Inlet ID = Inlet-3B

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	Inlet Type =	CDOT/Denver 13 Valley Grate		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	$\mathrm{a}_{\text {local }}=$	2.00	2.00	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	\square Override Depths
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	12.0	12.0	
Grate Information		MINOR	MAJOR	
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	3.00	3.00	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	1.73	1.73	
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	0.43	0.43	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	3.30	3.30	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	feet inches
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	N/A	N/A	
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	N/A	N/A	
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	N/A	N/A	degrees feet
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	N/A	N/A	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Orifice Coefficient (typical value $0.60-0.70$)	$\mathrm{C}_{0}(\mathrm{C})=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.6	5.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	$Q_{\text {peak required }}=$	0.5	0.9	

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	$\begin{aligned} \text { Type } & = \\ a_{\text {LOCAL }} & = \end{aligned}$	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')		3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W from Q-Allow)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value =0.1)	$\mathrm{C}_{+}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.64	3.29	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	C\% =	100	100	\%

Project $=$ \qquad SEC Marksheffel \& Constitution
Inlet ID = Inlet-3C

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	Inlet Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	$\mathrm{a}_{\text {local }}=$	3.00	3.00	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	\square Override Depths
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.7	
Grate Information		MINOR	MAJOR	
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	feet inches
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees feet
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value $0.60-0.70$)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.4	6.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	$Q_{\text {peak required }}=$	2.1	4.2	

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	$\text { Type }=$	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')		3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W_{o} =	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{r}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet ' Q -Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.40	4.28	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.3	cfs
Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathrm{Q}_{0}=$	C\% =	100	94	\%

Project $=$ \qquad
Inlet ID =

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	Inlet Type =	CDOT Type R Curb Opening		
	$\mathrm{a}_{\text {ibal }}=$	3.00	3.00	
Number of Unit Inlets (Grate or Curb Opening)	No $=$	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	8.7	nches
Grate Information		MINOR	MAJOR	Override Deph
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	w_{0} =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\text {f }}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Oifice Coefficient (typical value $0.60-0.80$)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	eet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}$	6.00	6.00	inches
Height of Curb Oifice Throat in Inches	$\mathrm{H}_{\text {troat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.4	3.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{w}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{\text {f }}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Oifitice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condii	$\mathbf{u}_{\mathrm{a}}=$	10.5	21.4	cfs
Inlet Capacity IS GOOD for Minor and Maj or Storms (>Q PEAK)	$\mathrm{Q}_{\text {peakrequired }}=$	6.6	12.5	cfs

$\stackrel{i}{6}$
SE EURV POND

Scenario: 5-year

Current Time Step: $\mathbf{0 . 0 0 0 H r}$

Conduit FlexTable: Combined Pipe/Node Report

Label	Start Node	Stop Node	Diameter (in)	Length (Unified) (ft)	Capacity (Full Flow) ($\mathrm{ft}^{3} / \mathrm{s}$)	Velocity (Average) (ft/s)	Invert (Upstream) (ft)	Invert (Downstream) (ft)	Slope (ft/ft)	Manning's n	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
P - (20)	CB-8	T-4	12.0	42.0	5.93	4.13	6,436.13	6,434.96	0.028	0.013	6,437.47	6,437.12
P - (21)	CB-6	MH-1	12.0	26.2	10.08	6.71	6,437.80	6,435.70	0.080	0.013	6,437.95	6,437.28
P - (22)	CB-11	CB-19	18.0	8.0	14.85	2.05	6,436.92	6,436.76	0.020	0.013	6,438.68	6,438.67
P - (23)	CB-19	CB-12	18.0	70.4	14.87	2.97	6,436.56	6,435.15	0.020	0.013	6,438.60	6,438.43
P - (24)	MH-1	T-3	24.0	172.0	14.33	3.87	6,435.35	6,434.66	0.004	0.013	6,437.27	6,437.22
P-(25)	T-3	T-4	24.0	50.4	14.25	2.37	6,434.66	6,434.46	0.004	0.013	6,437.18	6,437.12
P - (26)	T-2	MH - (45)	24.0	94.5	14.34	3.56	6,434.18	6,433.80	0.004	0.013	6,436.78	6,436.55
P-(27)	MH - (45)	OF-3	24.0	175.6	14.28	3.56	6,433.70	6,433.00	0.004	0.013	6,436.43	6,436.00
P - (31)	CB-1	CB-2	24.0	193.0	14.29	4.56	6,435.89	6,435.12	0.004	0.013	6,436.90	6,436.61
P-(32)	CB-2	T-7	36.0	76.2	42.19	5.59	6,435.02	6,434.72	0.004	0.013	6,436.40	6,436.40
P- (33)	T-7	CB-3	36.0	116.8	42.54	5.63	6,434.72	6,434.24	0.004	0.013	6,436.24	6,436.24
P - (34)	CB-3	OF-1	36.0	261.3	40.00	5.97	6,434.04	6,433.10	0.004	0.013	6,436.00	6,436.00
P-(37)	CB-4	OF-2	24.0	53.1	14.23	2.12	6,433.25	6,433.04	0.004	0.013	6,435.32	6,435.27
P-(38)	CB-10	MH-3A	18.0	75.8	12.88	6.53	6,439.20	6,438.06	0.015	0.013	6,439.79	6,438.90
P-(39)	MH-3A	CB-12	18.0	181.0	12.85	6.52	6,437.86	6,435.15	0.015	0.013	6,438.64	6,438.43
P - (44)	CB-5	MH - (67)	12.0	42.3	2.26	4.28	6,435.88	6,435.71	0.004	0.013	6,437.75	6,437.37
P - (45)	CB-7	T-3	12.0	21.7	10.08	11.74	6,436.90	6,435.16	0.080	0.013	6,437.37	6,437.22
P - (46)	CB-9	T-2	12.0	74.0	2.52	0.62	6,435.05	6,434.68	0.005	0.013	6,436.89	6,436.88
P - (68)	CB-12	CB-14	36.0	197.9	81.71	1.93	6,434.95	6,431.98	0.015	0.013	6,438.39	6,438.31
P- (69)	CB-14	OF-4	36.0	31.8	81.89	2.74	6,430.48	6,430.00	0.015	0.013	6,438.23	6,438.20
P - (70)	CB-13	CB-14	18.0	70.7	14.83	2.04	6,433.39	6,431.98	0.020	0.013	6,438.39	6,438.31
P-(71)	CB-15	CB-16	18.0	8.0	14.85	1.29	6,432.86	6,432.70	0.020	0.013	6,438.36	6,438.36
P - (72)	CB-17	MH - (129)	30.0	69.0	53.41	4.31	6,429.42	6,428.25	0.017	0.013	6,429.67	6,428.50
P-(73)	MH - (129)	MH - (130)	30.0	164.2	53.28	4.30	6,428.05	6,425.28	0.017	0.013	6,428.30	6,425.59
P - (74)	MH - (130)	OF-8	36.0	38.6	140.30	5.87	6,425.08	6,423.37	0.044	0.013	6,425.27	6,423.56
P-(75)	CB-18	OF-6	18.0	86.5	7.80	0.61	6,431.15	6,430.67	0.006	0.013	6,435.01	6,435.00
P-(76)	CB-16	OF-5	18.0	60.2	14.85	2.54	6,431.20	6,430.00	0.020	0.013	6,438.31	6,438.20
P-(77)	MH-(67)	MH-1	18.0	39.6	6.68	1.90	6,435.61	6,435.45	0.004	0.013	6,437.32	6,437.28
P-(78)	T-4	T-2	24.0	70.2	14.29	3.40	6,434.46	6,434.18	0.004	0.013	6,437.03	6,436.88

H:IEvergreen DevelopmentlCO, Colorado Springs EDI000008.01 - Constitution Ave. \& Marksheffl Roadl3. Permit Const Docsl3.04 Grading-Drainage Studiesl3.04.2 Proposed Drainage ReportsInfolStormCADIEDI08.1.stc

- HGL Line

 (

$8418 \cdot(75)$
8.5
18.01
1.07
0.006

 \because

Scenario: 100-year
(

Scenario: 100-year

Current Time Step: 0.000 Hr

Conduit FlexTable: Combined Pipe/Node Report

Label	Start Node	Stop Node	Diameter (in)	Length (Unified) (ft)	Capacity (Full Flow) ($\mathrm{ft}^{3} / \mathrm{s}$)	Velocity (Average) (ft/s)	Invert (Upstream) (ft)	Invert (Downstream) (ft)	Slope (ft/ft)	Manning's n	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
P - (20)	CB-8	T-4	12.0	42.0	5.93	1.12	6,436.13	6,434.96	0.028	0.013	6,437.65	6,437.63
P - (21)	CB-6	MH-1	12.0	26.2	10.08	11.51	6,437.80	6,435.70	0.080	0.013	6,438.20	6,437.80
P-(22)	CB-11	CB-19	18.0	8.0	14.85	3.74	6,436.92	6,436.76	0.020	0.013	6,439.88	6,439.85
P-(23)	CB-19	CB-12	18.0	70.4	14.87	5.60	6,436.56	6,435.15	0.020	0.013	6,439.60	6,438.98
P - (24)	MH-1	T-3	24.0	172.0	14.33	1.35	6,435.35	6,434.66	0.004	0.013	6,437.79	6,437.73
P - (25)	T-3	T-4	24.0	50.4	14.25	2.41	6,434.66	6,434.46	0.004	0.013	6,437.68	6,437.63
P - (26)	T-2	MH - (45)	24.0	94.5	14.34	4.61	6,434.18	6,433.80	0.004	0.013	6,437.31	6,436.92
P-(27)	MH - (45)	OF-3	24.0	175.6	14.28	4.61	6,433.70	6,433.00	0.004	0.013	6,436.72	6,436.00
P-(31)	CB-1	CB-2	24.0	193.0	14.29	4.26	6,435.89	6,435.12	0.004	0.013	6,439.11	6,438.43
P-(32)	CB-2	T-7	36.0	76.2	42.19	4.47	6,435.02	6,434.72	0.004	0.013	6,438.28	6,438.11
P-(33)	T-7	CB-3	36.0	116.8	42.54	4.47	6,434.72	6,434.24	0.004	0.013	6,437.95	6,437.69
P-(34)	CB-3	OF-1	36.0	261.3	40.00	6.61	6,434.04	6,433.10	0.004	0.013	6,437.28	6,436.00
P - (37)	CB-4	OF-2	24.0	53.1	14.23	3.99	6,433.25	6,433.04	0.004	0.013	6,436.16	6,436.00
P - (38)	CB-10	MH-3A	18.0	75.8	12.88	7.61	6,439.20	6,438.06	0.015	0.013	6,440.54	6,440.19
P - (39)	MH-3A	CB-12	18.0	181.0	12.85	4.36	6,437.86	6,435.15	0.015	0.013	6,439.95	6,438.98
P - (44)	CB-5	MH - (67)	12.0	42.3	2.26	1.16	6,435.88	6,435.71	0.004	0.013	6,437.84	6,437.81
P - (45)	CB-7	T-3	12.0	21.7	10.08	4.24	6,436.90	6,435.16	0.080	0.013	6,437.92	6,437.73
P - (46)	CB-9	T-2	12.0	74.0	2.52	7.69	6,435.05	6,434.68	0.005	0.013	6,439.60	6,437.47
P - (68)	CB-12	CB-14	36.0	197.9	81.71	3.56	6,434.95	6,431.98	0.015	0.013	6,438.86	6,438.58
P - (69)	CB-14	OF-4	36.0	31.8	81.89	5.11	6,430.48	6,430.00	0.015	0.013	6,438.29	6,438.20
P - (70)	CB-13	CB-14	18.0	70.7	14.83	3.71	6,433.39	6,431.98	0.020	0.013	6,438.85	6,438.58
P - (71)	CB-15	CB-16	18.0	8.0	14.85	2.35	6,432.86	6,432.70	0.020	0.013	6,438.77	6,438.76
P - (72)	CB-17	MH - (129)	30.0	69.0	53.41	10.31	6,429.42	6,428.25	0.017	0.013	6,433.97	6,432.92
P- (73)	MH - (129)	MH - (130)	30.0	164.2	53.28	10.31	6,428.05	6,425.28	0.017	0.013	6,431.93	6,429.43
P - (74)	MH - (130)	OF-8	36.0	38.6	140.30	18.24	6,425.08	6,423.37	0.044	0.013	6,426.33	6,424.62
P - (75)	CB-18	OF-6	18.0	86.5	7.80	4.73	6,431.15	6,430.67	0.006	0.013	6,435.55	6,435.00
P-(76)	CB-16	OF-5	18.0	60.2	14.85	4.73	6,431.20	6,430.00	0.020	0.013	6,438.58	6,438.20
P- (77)	MH - (67)	MH-1	18.0	39.6	6.68	0.51	6,435.61	6,435.45	0.004	0.013	6,437.81	6,437.80
P-(78)	T-4	T-2	24.0	70.2	14.29	2.69	6,434.46	6,434.18	0.004	0.013	6,437.57	6,437.47

H:\Evergreen DevelopmentlCO, Colorado Springs EDI000008.01 - Constitution Ave. \& Marksheffl Road 3 . Permit Const Docs 3 3.04 Grading-Drainage Studiesl3.04.2 Proposed Drainage ReportsInfolStormCADIEDI08.1.stc

[^2]
Basin D Mid Lateral - 100-year

> | $61 P$ - (71) |
| :---: |
| 6.3 |
| 18.01 |
| 4.16 |
| 0.020 | $\begin{array}{r}105(\mathrm{c}-16 \\ \hline 644.14 \\ \hline 643.20 \\ \hline 8.0\end{array}$

Appendix E

Water Quality Pond Calculations

SE POND CALCULATIONS

Tributary Area, A $($ acres $)$	$=$
Excess Urban Runoff Volume $($ acre-ft $)$	$=$
100 year Volume $($ acre-ft $)$	$=$
	2.01
	2.42

$\begin{array}{rc}\text { Excess Urban Runoff Volume Elevation }(\mathbf{f t})= & \mathbf{6 4 3 5 . 2 9} \\ \text { Excess Urban Runoff Depth }(\mathbf{f t}) & = \\ 100 \text { year Eevation }(\mathbf{f t}) & = \\ 100 \text { year Depth }(\mathbf{f t}) & = \\ \mathbf{1 0 4 3 5 . 7 0} \\ \text { Emergency Overflow Elevation }(\mathbf{f t}) & = \\ & \mathbf{6 4 3 6 . 1 4}\end{array}$

Project: Marksheffel / Constitution
Basin ID: SE Pond

Notes:

1) Effective imperviousness is based on Figure ND-1 of the Urban Storm Drainage Criteria Manual (USDCM).
2) Results shown reflect runoff reduction from Level 1 or 2 MDCIA and are plotted at the watershed's total imperviousness value; the impact of MDCIA is reflected by the results being below the curves.
3) Maximum allowable release rates for 100-year event are based on Table SO-1. Outlet for the Excess Urban Runoff Volume (EURV) to be designed to empty out the EURV in 72 hours. Outlet design is similar to one for the WQCV outlet of an extended detention basin (i.e., perforated plate with a micro-pool) and extends to top of EURV water surface elevation.
4) EURV approximates the difference between developed and pre-developed runoff volume.
5) $100-\mathrm{yr}$ detention volume includes EURV. No need to add more volume for WQCV or EURV

STAGE-STORAGE SIZING FOR DETENTION BASINS

Project: Marksheffel / Constitution Basin ID: SE Pond

Design Information (Input)
Width of Basin Bottom, W =
Length of Basin Bottom, $\mathrm{L}=$ Dam Side-slope $(\mathrm{H}: \mathrm{V}), \mathrm{Z}_{\mathrm{d}}=4.00$

Check Basin Shape
 OR..
OR..
OR.. OR...
(Use Overide values in cells G32:G52)

Stage-Storage Relationship:

Labels for WQCV, Minor \& Major Storage Stages (input)	Water Surface Elevation ft (input)	$\begin{gathered} \hline \text { Side } \\ \text { Slope } \\ \text { (H:V) } \\ \text { ft/t } \\ \text { Below El. } \end{gathered}$	Basin Width at Stage ft (output)	Basin Length at Stage ft (output)	Surface Area at Stage ft^{2} (output)	Surface Area at Stage ft^{2} User Overide	Volume Below Stage ft^{3} (output)	Surface Area at Stage acres (output)	Volume Below Stage acre-ft (output)	Target Volumes for WQCV, Minor, \& Major Storage Volumes (for goal seek)
	6431.60	(input)				0		0.000	0.000	
	6432.00		0.00	0.00		1,586	317	0.036	0.007	
	6433.00		0.00	0.00		17,974	10,097	0.413	0.232	
	6434.00		0.00	0.00		35,641	36,905	0.818	0.847	3.646
	6435.00		0.00	0.00		43,869	76,660	1.007	1.760	6,435.25
	6435.50		0.00	0.00		45,657	99,041	1.048	2.274	6,435.63
	6436.00		0.00	0.00		47,444	122,316	1.089	2.808	
	6437.00		0.00	0.00		50,972	171,524	1.170	3.938	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	
							\#N/A		\#N/A	

Project:
Basin ID

STAGE-STORAGE CURVE FOR THE POND

STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (WQCV) OUTLET

Project: Marksheffel / Constitution
Basin ID: SE Pond
x

Sizing the Restrictor Plate for Circular Vertical Orifices or Pipes (lnput)
Water Surface Elevation at Design Depth
Pipe/Vertical Orifice Entrance Invert Elevation
Required Peak Flow through Orifice at Design Depth
Pipe/Vertical Orifice Diameter (inches)
Orifice Coefficient
Full-flow Capacity(Calculated)
Full-flow area
Half Central Angle in Radians
Full-flow capacity

Calculation of Orifice Flow Condition

Half Central Angle ($0<$ Theta <3.1416)
Flow area
Top width of Orifice (inches)
Height from Invert of Orifice to Bottom of Plate (feet)
Elevation of Bottom of Plate
Resultant Peak Flow Through Orifice at Design Depth

Width of Equiv alent Rectangular Vertical Orifice

	\#1 Vertical Orifice	\#2 Vertical Orifice
Elev: WS =	6,436.00	
Elev: Invert =	6,431.00	
$Q=$	8.28	
Dia $=$	18.0	
$\mathrm{C}_{0}=$	0.65	

| Af | $=1.77$ | |
| ---: | ---: | :--- | :--- |
| Theta | $=\begin{array}{ll}\mathrm{sq} \mathrm{ft} \\ \mathrm{rad}\end{array}$ | |
| Qf | $=19.14$ | |
| cfs | | |

Equiv alent Width $=$ \qquad

StAGE-DISCHARGE CURVE FOR THE OUTLET STRUCTURE

SE SEDIMENT POND CALCULATIONS

Tributary Area, A $($ acres $)$	$=$	$\mathbf{2 3 . 5 0}$
Required Volume per Acre $(\mathbf{C u F t})$	$=$	$\mathbf{1 , 8 0 0 . 0 0}$
Total Reqd Sed Volum $(\mathbf{a c r e - f t})$	$=$	$\mathbf{0 . 9 7}$

$$
\begin{array}{rcc}
\text { Sediment Basin Volume Elevation }(\mathbf{f t})= & \mathbf{6 4 3 4 . 1 9} \\
\text { Sediment Basin Depth }(\mathbf{f t}) & = & 2.63 \\
\text { Emergency Overflow Elevation }(\mathbf{f t}) & = & \mathbf{6 4 3 6 . 2 5}
\end{array}
$$

Required Area per Row (Table SB-1)

1.78 sq in

Circular Perforation Sizing (Table SB-2)

Number of columns of perforations 1
(4" between perforations)
Hole Diameter (in.) 1.5

Tributary Area, A (acres)	$=$
Water Quality Volume (acre-ft)	$=$
	1.07

Prismoidal Method					
Elevation	Area $\left(\mathbf{f t}^{\mathbf{2}}\right)$	Volume $\left(\mathbf{f t}^{\mathbf{3}}\right)$	Volume $_{\text {sum }}$ $\left.\mathbf{(f t}^{\mathbf{3}}\right)$	Volume $_{\text {sum }}$ $(\mathbf{A c - f t})$	
6430.0	2,571	0	0	0.00	
6431.0	3,223	2,891	2,891	0.07	
6432.0	3,947	3,579	6,470	0.15	
6433.0	4,743	4,339	10,808	0.25	
6434.0	5,621	5,176	15,984	0.37	
6435.0	6,587	6,098	22,082	0.51	
6436.0	7,647	18,413	29,221	0.67	
6437.0	8,093	25,376	36,184	0.83	
6438.0	8,503	36,485	42,955	0.99	
6439.0	9,744	42,572	53,381	1.23	
6440.0	16,639	63,861	79,846	1.83	

Water Quality Volume Elevation (ft) = 6438.06
Water Quality Runoff Depth (ft) = 8.06
Emergency Overflow Elevation (ft) = 6439.06

DETENTION VOLUME BY THE FULL SPECTRUM METHOD

Project: Marksheffel / Constitution

Basin ID: SW Pond

Notes:

1) Effective imperviousness is based on Figure ND-1 of the Urban Storm Drainage Criteria Manual (USDCM).
2) Results shown reflect runoff reduction from Level 1 or 2 MDCIA and are plotted at the watershed's total imperviousness value; the impact of MDCIA is reflected by the results being below the curves.
3) Maximum allowable release rates for 100-year event are based on Table SO-1. Outlet for the Excess Urban Runoff Volume (EURV) to be designed to empty out the EURV in 72 hours. Outlet design is similar to one for the WQCV outlet of an extended detention basin (i.e., perforated plate with a micro-pool) and extends to top of EURV water surface elevation.
4) EURV approximates the difference between developed and pre-developed runoff volume.
5) 100-yr detention volume includes EURV. No need to add more volume for WQCV or EURV

Project：
Basin ID：

Excess Urban Runoff Volume（From＇Full－Spectrum Sheet＇）$\quad 1.714$ watershed inches

$\left\lvert\, \begin{aligned} & \underset{\sim}{\infty} \\ & \vdots \\ & \vdots \\ & \end{aligned}\right.$																						
$\begin{aligned} & \underset{\sim}{\tilde{N}} \\ & z_{\alpha} \end{aligned}$																						
	io io ib ib	bote		0_{0}°				$\frac{y}{\hat{4}}$	信剖				$\sum_{\#}^{2}$		㐬㑑	養玄		氡业玄	部蕆	気気気交	氯蔞畜	－
	iol io ib	bob bib		oig io	ob od od dib					亩		細信畜		啷畜		\＃				$\sum_{i=1}^{n}$	畜気畜	
	0	bob		Biblio		Nom	畜気莮		離缡			$\sum_{\#}^{1} \sum_{\# \#}^{1} \sum_{\#}^{1}$	$\sum_{\#}^{y}$	$\sum_{i}^{\{ }$	\sum_{i}	$\sum_{i}^{x} \sum_{\#}^{x}$	$\sum_{\#}^{\substack{n}} \sum_{\#}^{1}$	$\sum_{i} \sum_{\#}^{x} \sum_{\#}^{x}$		$\sum_{i=1}^{\{ } \sum_{\#}^{n}$		O
	Biblotio	bob		θ_{0}^{8}	y		符滀畜畜			剖		細信畜	\sum_{n}^{x}				$\sum_{i=1}^{n}$			剖畜畜	畜氯畜	$\begin{array}{ll} 0 \\ 0 \end{array}$
	bob	bob		0_{0}°	멍 M M Mo						倍噰峦		录畜	x_{i}		言畜			$\sum_{\#}^{\sum}$	$\sum_{i=1}^{n}$		O
	ob	bob		o_{0}^{8}	con er er	$\begin{array}{c\|c} 7 \\ \hline \end{array}$		彩高畜畜		\sum_{n}			$\sum_{i n}^{n}$	x_{i}	気畜弃	良					\sum_{n}	
	bibl bib	bobiob		No :	.o. on on on ed		気会畜畜畜	y_{i}^{2}		畜	䍚畜		氯気			\＃	录录盲		$\sum_{i n}^{n}$	$\sum_{n} \sum_{n}^{n} \sum_{n}^{n}$	部部交	0
	$\begin{aligned} & n \\ & \hline \end{aligned}$	bot		Mo			舜畜	畜畜畜畜	令緲青	気気㐬			§	部缡	部部	新畜		$\frac{y}{\mid}$	$\sum_{\#}^{\sum \sum}$	氮畜畜	$\sum_{\#}^{n} \sum_{n}^{1}$	
		bobiob		on of ex	oro				\sum_{\sharp}^{y}	y_{i}^{x}	\mathfrak{y}	隹氯渵	\＃	玄玄	\＃		䨿荘荘	$\sum \sum \sum \sum \sum$	谉	$\sum_{\#}^{1} \sum_{\#}^{1} \sum_{\#}^{n}$	$\sum_{\#}^{x} \sum_{\#}^{x}$	
			8	on on on	No	one no				気喊			気令	畜畜		閨気㐬		氮弃弃		氮畜畜		
		응		2u no			骨畜畜畜	y_{i}^{2}	\sum_{n}^{n}	剖	$\sum_{i=1}^{n}$	㩊畜畜	\sum_{i}^{x}			采畜莅	㩊畜畜	$\sum_{i} \sum_{i=1}^{n}$	采孪畜	氞畜畜	部育畜	O io wi
	0	0.80			No er er ex	$\begin{aligned} & \text { 管哲合 } \\ & 0 \end{aligned}$	彥畜畜畜	y_{i}^{2}				畜畜畜	気畜			涼	$\sum_{i}^{x} \sum_{i=1}^{n}$			$\sum_{i=1}^{n}$		
	응잉	$\ddot{o b}_{0}^{\circ}$		$\begin{gathered} \infty \\ \\ \\ 0 \\ \hline \end{gathered}$			菌畜畜泫			氯交			氮畜	倞妥		閨気㐬				氮畜畜	部畜畜	
	Oto	O		on			宫畜畜畜	y_{i}^{2}				㩊畜畜	気畜	気畜畜		交交				$\sum_{i=1}^{n}$	畜高畜	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
	bobio	$0_{0}^{\circ} 80_{0}^{\circ}$		92		$\begin{aligned} & \circ \\ & \hline 0.0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\leftrightarrow}{\circ}$	$\sum_{i=1}^{\sum} \sum_{\#}^{\infty} \sum_{\#}^{n}$	$\sum_{\#}^{4}$		$\sum_{i n} \sum_{n} \sum_{n} \sum_{n}^{n}$	$\sum_{\#}^{x} \sum_{\#}^{x}$			\＃\＃	\＃\＃		曅业妞	氯妞			
	¢ לob	Bo	0_{0}^{0}	$\begin{aligned} & \text { Nu } \\ & \substack{0 \\ \hline \\ \hline \\ \hline \\ \hline} \end{aligned}$			嗗畜畜畜						氯気	部喊		部念令	気畜畜	纙畜	晾弃気	気稱畜		
	0	Bo io io io io					免畜畜華		\mathfrak{y}	氯畜			㫄畜	気気㐬		新畜畜					部畜畜	
	לobio			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						倞玄		畜畜畜	氯畜	（気畜		畜気畜					部畜畜	
	0	y	On	$\begin{aligned} & n \\ & \\ & \\ & 0 \end{aligned} \hat{0}$	$\overbrace{0}^{N}$		릉	$y_{i n}^{2}$		氯畜			喊畜	気気交		新畜畜				氞畜畜	部畜畜	（1）
	0				od					氯畜		畜流畜	\＃	采畜畜	（妥帹		部畜離		纙畜		囬氯蓄	
	Oito	Oid ${ }_{0}^{0}$	9		Ao					気谋		$\sum_{\#}^{\infty} \sum_{\#}^{x} \sum_{\#}^{1}$		$\sum_{n}^{x} \sum_{n}^{x}$	$\sum_{i} \sum_{n} \sum_{n}^{\sum}$		$\sum_{i=1}^{n} \sum_{\#}^{\sum}$		$\sum_{\#}^{\{ } \sum_{\#}^{\{ } \sum_{n}^{n}$			
			¢	O．	－	－	－		I		\|											

Routing 3: Single Stage - Water flows through WQCV plate and \#1 horizontal opening into \#1 vertical opening. This flow will be applied to culvert sheet (\#2 vertical \& horizontal openings is not used).

			Horizontal Orifices				Vertical Orifices			
Labels for WQCV, Minor, \& Major Storage W.S. Elevations (input)	Water Surface Elevation ft (linked)	WQCV Plate/Riser Flow cfs (User-linked)	\#1 Horiz. Weir Flow cfs (output)	\#1 Horiz. Orifice Flow cfs (output)	\#2 Horiz. Weir Flow cfs (output)	\#2 Horiz. Orifice Flow cfs (output)	\#1 Vert. Collection Capacity cfs (output)	\#2 Vert. Collection Capacity cfs (output)	Total Collection Capacity cfs (output)	Target Volumes for WQCV, Minor, \& Major Storage Volumes (link for goal seek)
	6430.00	0.00	0.00	0.00	0.00	0.00	2.56	0.00	0.00	
	6431.00	0.06	0.00	0.00	0.00	0.00	13.30	0.00	0.06	
	6432.00	0.15	0.00	0.00	0.00	0.00	28.63	0.00	0.15	
	6433.00	0.28	0.00	0.00	0.00	0.00	38.41	0.00	0.28	
	6434.00	0.42	0.00	0.00	0.00	0.00	46.16	0.00	0.42	
	6435.00	0.58	0.00	0.00	0.00	0.00	52.79	0.00	0.58	
	6436.00	0.76	0.00	0.00	0.00	0.00	58.67	0.00	0.76	
	6437.00	0.95	0.00	0.00	0.00	0.00	64.01	0.00	0.95	
	6437.80	1.07	0.00	0.00	0.00	0.00	67.99	0.00	1.07	
	6438.00	1.09	6.57	63.45	0.00	0.00	68.94	0.00	7.66	
	6438.80	1.22	73.46	141.88	0.00	0.00	72.65	0.00	72.65	
	6439.00		96.57	155.43	0.00	0.00	73.55	0.00	73.55	
	6440.00		239.72	210.45	0.00	0.00	77.87	0.00	77.87	
	6441.00		420.53	253.81	0.00	0.00	81.98	0.00	81.98	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	
			\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	0.00	\#N/A	

Project: Marksheffel / Constitution
Basin ID: \qquad

Appendix F

Map Pocket - Drainage Map

Markup Summary

-Per DCM section 4.5, a "Letter Type" drainage report is required for a replat of property for which a complete drainage report has

Uume usuO 80111- Per DCM section 4.5, a "Letter Type*drainage report is required for a replatof property for which a completedrainage report has previously beenapproved by the County Engineer andsignificant changes from such report isnot proposed.*Add "PCD File No. VR-18-011" to newdrainage letter

[^3]-Per DCM section 4.5, a "Letter Type" drainage report is required for a replat of property for which a complete drainage report has previously been approved by the County Engineer and significant changes from such report is not proposed.
-Add "PCD File No. VR-18-011" to new drainage letter

[^0]: Warning 02: Max Allowable Depth for Minor Storm is greater than the Curb Height

[^1]: Warning 02: Max Allowable Depth for Minor Storm is greater than the Curb Height

[^2]:

[^3]: Subject: Text Box
 Page Label: 1
 Lock: Locked
 Author: Daniel Torres
 Date: 8/6/2018 10:36:33 AM
 Color:

