FINAL DRAINAGE PLAN

THE RIDGE AT LORSON RANCH

FILING NO. 1: SF 22-XX SF224

FILING NO. 2: SF22-XX SF225

FILING NO. 3: SF22-XX
SF227

JANUARY, 2022

Prepared for:

Lorson, LLC 212 N. Wahsatch Ave, Suite 301 Colorado Springs, Colorado 80903 (719) 635-3200

Prepared by:

Core Engineering Group, LLC 15004 1ST Avenue South Burnsville, MN 55306 (719) 570-1100

Project No. 100.066

TABLE OF CONTENTS

ENGINEER'S STATEMENT	1
OWNER'S STATEMENT	1
FLOODPLAIN STATEMENT	1
1.0 LOCATION and DESCRIPTION	2
2.0 DRAINAGE CRITERIA	2
3.0 EXISTING HYDROLOGICAL CONDITIONS	3
4.0 DEVELOPED HYDROLOGICAL CONDITIONS	5
5.0 HYDRAULIC SUMMARY	10
6.0 DETENTION and WATER QUALITY PONDS	37
7.0 DRAINAGE and BRIDGE FEES	41
8.0 FOUR STEP PROCESS	42
9.0 CONCLUSIONS	42
10.0 REFERENCES	43
APPENDIX A	
VICINITY MAP, SCS SOILS INFORMATION, FEMA FIRM MA. UNDERSTANDING WITH OFFSITE LANDOWNER	P, SAMPLE LETTER OF
APPENDIX B	
HYDROLOGY CALCULATIONS	
APPENDIX C	
HYDRAULIC CALCULATIONS	
APPENDIX D	
POND CALCULATIONS and RUNOFF REDUCTION METHOL	D
APPENDIX E	
STORM SEWER SCHEMATIC and HYDRAFLOW STORM SEW	'ER CALCS

BACK POCKET

EXISTING CONDITIONS DRAINAGE MAP

DEVELOPED CONDITIONS DRAINAGE MAPS

FULL SPECTRUM OUTLET STRUCTURES

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Richard L. Schindler, P.E. #33997	Date
For and on Behalf of Core Engineering Group, LLC	
OWNER'S STATEMENT	
I, the Owner, have read and will comply with all the requi	rements specified in the drainage report and
plan.	
Lorson, LLC	Date
By Leff Mark	
Jeff Mark Title	
Manager	
Address	
212 N. Wahsatch Avenue, Suite 301, Colorado Springs, C	O 80903
FLOODPLAIN STATEMENT	
To the best of my knowledge and belief, this development	t is not located within a designated floodplain
as shown on Flood Insurance Rate Map Panel No. and 08	
Appendix A, FEMA FIRM Exhibit)	,
Richard L. Schindler, #33997 Date	
,	
EL PASO COUNTY	
Filed in accordance with the requirements of the El Pasc	County Land Development Code Drainage
Criteria Manual, Volume 1 and 2, and Engineering Criteria	
Jennifer Irvine Date	
Jennifer Irvine Date County Engineer/ECM Administrator	
, 3	
Conditions:	
Outditions.	

1.0 LOCATION and DESCRIPTION

The Ridge at Lorson Ranch Filing No's. 1-3 is located east of the East Tributary of Jimmy Camp Creek. The entire three filings are located on approximately 206.473 acres of vacant land. This project will develop this site into a single-family residential development. The land for the residential lots is currently owned by Love In Action

The site is located in the NE 1/4 of Sections 24 and the SE 1/4 of Section 13, Township 15 South and Range 65 West of the 6th Principal Meridian. The site is bounded on the north by unplatted land owned by Bull Hill, LLC, on the west by The Hills at Lorson Ranch, on the east by unplatted land, and the south by unplatted land in Lorson Ranch. For reference, a vicinity map is included in Appendix A of this report.

Conformance with applicable Drainage Basin Planning Studies (DBPS)

There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson & Company in 1987, and is referenced in this report. The only major drainage improvements for this study area according to the 1987 Wilson study was the reconstruction of the East Tributary of Jimmy Camp Creek (East Tributary). In 2014 and in 2018 the East Tributary was reconstructed from downstream of Lorson Boulevard north to the northern property line of Lorson Ranch in accordance with the 1987 study. The last section of the East Tributary (to the south property line of Lorson Ranch) has been designed by Kiowa Engineering and will be completed in 2020. There are no further improvements to be made on the East Tributary. On March 9, 2015 a new DBPS for Jimmy Camp Creek and the East Tributary was completed by Kiowa Engineering. The Kiowa Engineering DBPS for Jimmy Camp Creek has not been adopted by El Paso County but is allowed for concept design. The concept design includes the East Tributary armoring concept and the full spectrum detention pond requirements. The Kiowa DBPS did not calculate drainage fees so current El Paso County drainage/bridge fees apply to this Reference Preliminary Report which was also

Conformance with Lorson East MDDP by Core Engineering Group

Core Engineering Group has an approved MDDP for Lorson East which covers this study area. This PDR conforms to the MDDP for Lorson East and is referenced in this report. The major infrastructure to be constructed in this site includes outlet structures in Detention/WQ Ponds C2.1 and C4 and WQ Pond F. Both detention ponds were graded, low flow channels, and forebays were constructed as part of The Hills at Lorson Ranch under PUDSP-20-003 and the WQ Pond F will be constructed with this project. There are also two bridges over the East Tributary that were built in 2018 to provide access to this development across the East Tributary. The bridges are located at Fontaine Boulevard and Lorson Boulevard.

The Ridge at Lorson Ranch is located within the "Jimmy Camp Creek Drainage Basin", which is a fee basin in El Paso County and a small portion (SE corner) within the "Upper Williams Creek Drainage Basin which does not have a DBPS.

2.0 DRAINAGE CRITERIA

The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November, 1991, the El Paso County "Engineering Criteria Manual", Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, and the UDFCD "Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 for inlet sizing and full spectrum ponds. No deviations from these published criteria are requested for this site.

The Rational Method as outlined in Section 6.3.0 of the May 2014 "Drainage Criteria Manual" and in Section 3.2.8.F of the El Paso County "Engineering Criteria Manual" was used for basins less than 130

acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County states the if detention is necessary, Full Spectrum Detention will be included in the design, based on this criteria, Full Spectrum Detention will be required for this development.

3.0 EXISTING HYDROLOGICAL CONDITIONS

This site is currently undeveloped with native vegetation (grass with no shrubs) and moderate to steep slopes in a westerly direction the East Tributary of Jimmy Camp Creek.

The Soil Conservation Service (SCS) classifies the soils within the site as Manzanola clay loam; Midway Clay Loam, Nelson-Tassel fine Sandy loam; Razor clay loam; and Wiley silt loam [3]. The sandy and silty loams are considered hydrologic soil group B soils with moderate to moderately rapid permeability. The Midway and Razor clay loams are considered hydrologic soil group C/D soils with slow permeability. All of these soils are susceptible to erosion by wind and water, have low bearing strength, moderate shrink-swell potential, and high frost heave potential (see table 3.1 below). The clay loams are difficult to vegetate and comprise of a small portion of the study area. These soils can be mitigated easily by limiting their use as topsoil since they comprise of a small portion of the study area. Weathered bedrock may be encountered beneath some of the site but it can be excavated using conventional techniques.

Table 3.1: SCS Soils Survey

Soil	Hydro. Group	Shrink/Swell Potential	Permeability	Surface Runoff Potential	Erosion Hazard
52-Manzanola Clay Loam	С	High	Slow	Medium	Moderate
54-Midway Clay Loam	D	High	Slow	Medium	Moderate
56-Nelson – Tassel Fine Sandy Loam	В	Moderate	Moderately Rapid	Slow	Moderate
75-Razor Clay Loam	С	High	Slow	Medium	Moderate
108-Wiley Silt Loam	В	Moderate	Moderate	Medium	Moderate

Excerpts from the SCS "Soil Survey of El Paso County Area, Colorado" are provided in *Appendix A* for further reference.

For the purpose of preparing hydrologic calculations for this report, the soil of each basin are assumed to be wholly comprised of the majority soil hydrologic group.

An existing electrical easement, with existing transmission towers, is located west side of this site and will be set aside as open space. It is the intent to utilize some of the open space under the towers for detention of storm flow.

This site is not located within the delineated 100-year floodplain of the East Tributary of Jimmy Camp Creek per the Federal Emergency Management Agency (FEMA) Flood Rate Insurance Map (FIRM) number 08041C10976 G, effective December 7, 2018.

Basin OS-B1.1

This existing offsite basin consists of existing flow from undeveloped areas east of Lorson Ranch. Runoff flows overland to the northwest and drains offsite at Design Point 1x. The existing runoff is 5.2cfs and 29.0cfs for the 5-year and 100-year events.

Basin EX-B1

This existing basin consists of existing flow from undeveloped areas within Lorson Ranch near the north property line. Runoff flows overland to the north and drains offsite at Design Point 1x. The existing runoff is 5.6cfs and 31.2cfs for the 5-year and 100-year events.

Design Point 1x

Design Point 1x is the total existing runoff flowing offsite to the north. The developed runoff flowing north will need to be lower than the existing runoff at this design point. The existing runoff is 9.7cfs and 54.2cfs for the 5-year and 100-year events.

Basin C1.1-ex

This existing basin consists of existing flow from undeveloped areas east of the Lorson Boulevard/Walleye Drive intersection. Runoff flows overland to the west and drains into an existing storm sewer system in Lorson/Walleye. The existing runoff is 3.2cfs and 21cfs for the 5-year and 100-year events.

Basin C2.1-ex

This existing basin consists of existing flow from undeveloped areas east of the Fontaine Boulevard/Walleye Drive intersection. Runoff flows overland to the west and drains into an existing storm sewer system in Fontaine/Walleye. The existing runoff is 6.1cfs and 40.2cfs for the 5-year and 100-year events.

Basin C2.2-ex

This existing basin consists of existing flow from undeveloped areas on west side of the site. Runoff flows overland to the west and drains to an existing 42" storm sewer that discharges west into Existing Pond C2.1. The existing runoff is 12.2cfs and 81.8cfs for the 5-year and 100-year events.

Basin C3.1-ex

This existing basin consists of existing flow from undeveloped areas on the central portion of the PUD. Runoff flows overland to the west and drains into an existing storm sewer system at the intersection of Walleye Drive/Grayling Drive. The existing runoff is 2.6cfs and 15.0cfs for the 5-year and 100-year events.

Basin C4.1-ex

This existing basin consists of existing flow from offsite undeveloped areas east of Lorson Ranch. Runoff flows overland to the west into Basin C4.2-ex. The existing runoff is 1.2cfs and 7.8cfs for the 5-year and 100-year events.

Basin C4.2-ex

This existing basin consists of existing flow from undeveloped areas in the northern portion of the PUD. Runoff flows overland to the west to Existing Pond C4 excavated as part of The Hills at Lorson Ranch. The existing runoff is 15.0cfs and 85.1cfs for the 5-year and 100-year events.

Design Point 4x

Design Point 4x is the existing flow entering Exising Pond C4 from Basin C4.1-ex and C4.2-ex. The existing runoff is 15.3cfs and 87.7cfs for the 5-year and 100-year events from these two basins. This flow is then routed south into Existing Pond C3.

Basin EX-F1

This existing basin consists of existing flow from undeveloped areas in the east portions of the PUD. Runoff flows overland eastward and offisite to the adjacent landowner located in the Upper Williams Creek Drainage Basin. The existing runoff is 6.3cfs and 38.5cfs for the 5-year and 100-year events.

Basin EX-F2

This existing basin consists of existing flow from undeveloped areas in the east portions of the PUD. Runoff flows overland southeast and offisite to the adjacent landowner located in the Upper Williams Creek Drainage Basin. The existing runoff is 9.1cfs and 51.1cfs for the 5-year and 100-year events.

Design Point 2x

Design Point 2x is the total existing flow at the east property line from Basins EX-F1 and EX-F2. The existing runoff is 12.4cfs and 72.7cfs for the 5-year and 100-year events from these two basins. This flows east overland and offsite in the Upper Williams Creek Drainage Basin. Per Colorado Water regulations Lorson Ranch will need to maintain existing runoff amounts into the Upper Williams Creek Drainage Basin.

Include discussion for Basins Ex-G and

4.0 DEVELOPED HYDROLOGICAL CONDITIONS

Ex-H, shown on existing drainage map

Hydrology for the **The Ridge at Lorson Ranch** drainage report was based on the City of Colorado Springs/El Paso County Drainage Criteria. Sub-basins that lie within this project were determined and the 5-year and 100-year peak discharges for the developed conditions have been presented in this report. Based on these flows, storm inlets will be added when the street capacity is exceeded.

Soil type B/C/D has been assumed for the developed hydrologic conditions. See Appendix A for SCS Soils Map.

The time of concentration for each basin and sub-basin was developed using an overland, ditch, street and pipe flow components. The maximum overland flow length for developed conditions was limited to 100 feet. Travel time velocities ranged from 2 to 6 feet per second. The travel time calculations are included in the back of this report.

Runoff coefficients for the various land uses were obtained from Table 6-6 dated May, 2014 from the updated City of Colorado Springs/El Paso County Drainage Criteria Manual. See Appendix B.

All detention ponds for this project have been constructed per The Hills at Lorson Ranch (SF21-010 & EGP 20-005) and WQ Pond F will be constructed with this project. See Section 6.0 for Detention Pond Discussions. The list below shows the ponds and the tributary drainage basins:

- 1. C1 Basins drain to Pond C1
- C3 & C4 Basins drain to Pond C2.1
- 3. C5 Basins drain to Pond C2.2
- 4. C8 Basins drain to Pond C4
- 5. F Basins drain to WQ Pond F

Drainage concepts for each of the basins are briefly discussed as follow:

Basin C1.1

This basin consists of runoff from residential development and the east side of Nystrom Terrace and the north side of Aspen Butte Terrace. Runoff will be directed west to Design Point 1 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 5.6cfs and 12.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

er

Basin C1.2

This basin consists of runoff from residential development and the west side of Nystrom Terrace and the south side of Aspen Butte Terrace. Runoff will be directed west to Design Point 2 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 2.7cfs and 5.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.3

This basin consists of runoff from residential development and the north side of Lorson Blvd. Runoff will be directed south and west in Lorson Boulevard to Design Point 4 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 14.1cfs and 30.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.4

Update flows to match hydrology spreadsheet

This basin consists of runoff from residential development, Nystrom Terrace, and Walleye Drive. Runoff will be directed west to Walleye Drive, then south to Design Point 1b in curb/gutter where it will be collected by an existing 15' Type R inlet. The developed flow from this basin is 4.2cfs and 9.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.5

This basin consists of runoff from future residential development and the south side of Lorson Blvd. Runoff will be directed north and west in Lorson Boulevard to Design Point 6 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 3.0cfs and 6.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.6

This basin consists of runoff from future residential development southeast of Walleye Dr./Lorson Blvd at Design Point 1a. Runoff will be directed north to Design Point 1a by future streets and a future storm sewer sized to handle a portion of the 100-year storm event from this basin. The remaining runoff will continue west in a future street to a future street intersection at Lorson Boulevard west of Brook Trout Trail. The future developed flow from this basin is 12.8cfs and 28.3cfs for the 5/100-year storm event. See the appendix for detailed calculations. This flow is only to be used to size a storm sewer stub from Design Point 6

Basin C3.1

This basin consists of runoff from residential development, Aspen Butte Terrace, Copper Butte Way, and the east half of Split Mountain Drive. Runoff will be directed west and north to Design Point 12 in curb/gutter of Split Mountain Drive where it will be collected by a Type R inlet. The developed flow from this basin is 9.9cfs and 21.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.2

This basin consists of runoff from residential development, Mission Peak Place, and the east half of Split Mountain Drive. Runoff will be directed west and north to Design Point 13 in curb/gutter of Split Mountain Drive where it will be collected by a Type R inlet. The developed flow from this basin is 7.9cfs and 17.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.3

This basin consists of runoff from residential development, Pearsoll Street, and the east half of Split Mountain Drive. Runoff will be directed west and north to Design Point 15 in curb/gutter of Split Mountain Drive where it will be collected by a Type R inlet. The developed flow from this basin is 8.5cfs and 18.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.4

This basin consists of runoff from residential development, Lost Peak Lane, and the east half of Split Mountain Drive. Runoff will be directed west and north to Design Point 17 in curb/gutter of Split Mountain Drive where it will be collected by a Type R inlet. The developed flow from this basin is 7.2cfs and 15.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.5

west side of Pearsoll

This basin consists of runoff from residential development, Split Mountain Drive, and Lake Trout Dr. Runoff will be directed north and west to Design Point 19 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 10.3cfs and 22.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.6a

This basin consists of runoff from residential development and the north side of Lake Trout Dr. Runoff will be directed west to Design Point 20a in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 5.6cfs and 12.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.6b

This basin consists of runoff from residential development and Lookout Peak Lane. Runoff will be directed west and south to Design Point 21 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 7.2cfs and 15.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.7

This basin consists of runoff from residential development, Dragontail Terrace, and the south side of Lake Trout Dr. Runoff will be directed north and west to Design Point 23 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 8.7cfs and 19.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.8

This basin consists of runoff from residential development, Foraker Lane, Raven Ridge Terrace, and the north side of Lake Trout Dr. Runoff will be directed west and south to Design Point 25 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 10.0cfs and 22.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.9

This basin consists of runoff from residential development, Raven Ridge Terrace, and the south side of Lake Trout Dr. Runoff will be directed north and west to Design Point 27 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 8.1cfs and 17.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.10

This basin consists of runoff from residential development, Nystrom Terrace, and the south side of Lake Trout Dr. Runoff will be directed north and west to Design Point 29 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 9.2cfs and 20.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

north side of Foraker Lane

Basin C4 1

This basin consists of runoff from residential development, Pearsoll Street, Buckner Way, and the south side of Fontaine Boulevard. Runoff will be directed north and west to Fontaine Boulevard where it will flow west to Design Point 31. The developed flow from this basin is 6.4cfs and 14.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.2

This basin consists of runoff from residential development and the south side of Fontaine Boulevard. Runoff will be directed north and west to Fontaine Boulevard to Design Point 31. The developed flow from this basin is 4.8cfs and 10.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.3

This basin consists of runoff from residential development, Lake Trout Dr, and Nystrom Terrace. Runoff will be directed north and west to Design Point 32 in curb/gutter of Nystrom Terrace where it will be collected by a Type R inlet. The developed flow from this basin is 5.7cfs and 12.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.4

This basin consists of runoff from residential development, Lake Trout Dr, and the west side of Walleye Drive. Runoff will be directed west and north to an existing 25' Type R inlet at Design Point 33 in curb/gutter of Walleye Drive. The developed flow from this basin is 6.2cfs and 13.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.1a

This basin consists of runoff from residential development and the south side of Sanderling Street. Runoff will be directed west and south to Design Point 39 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 4.2cfs and 9.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.1b

This basin consists of runoff from residential development and the north side of Gray Wolf Court. Runoff will be directed west to Design Point 36 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 11.4cfs and 25.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.1c

This basin consists of runoff from residential development and the south side of Gray Wolf Court. Runoff will be directed west to Design Point 37 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 7.4cfs and 16.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.1d

This basin consists of runoff from residential development and the north side of Snowfield Court. Runoff will be directed west and north to Design Point 41 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 9.3cfs and 20.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

open space. Buckner Ct and

north half of Fontaine Blvd

Basin C5.1e

This basin consists of runoff from residential development and the south side of Snowfield Court. Runoff will be directed west to Design Point 43 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 10.0cfs and 21.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.2

This basin consists of runoff from residential development and the west side of Walleye Drive. Runoff will be directed south to Design Point 45 in curb/gutter where it will be collected by an existing 15' Type R inlet. The developed flow from this basin is 3.7cfs and 8.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.3

This basin consists of runoff from residential development and the north side of Fontaine Boulevard. Runoff will be directed west to Design Point 45 in curb/gutter where it will be collected by an existing 15' Type R inlet. The developed flow from this basin is 4.3cfs and 9.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

westside of Danis Dr

Basin C8.1a

This basin consists of runoff from residential development and the south side of Meridith Ridge Way. Runoff will be directed west to Design Point 47 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 7.5cfs and 16.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.1b

This basin consists of runoff from residential development and the north side of Meridith Ridge Way and Donnas Drive. Runoff will be directed west and south to Design Point 49 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 6.3cfs and 13.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.1c

This basin consists of runoff from residential development and the north side of Sanderling Street. Runoff will be directed west to Design Point 48 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 3.4cfs and 7.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.2

This basin consists of runoff from residential development and the east side of Walleye Drive. Runoff will be directed west and north to Design Point 51 in curb/gutter where it will be collected by an existing 25' Type R inlet in Walleye Drive. The developed flow from this basin is 4.5cfs and 10.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin OS-C4a

This basin consists of runoff from undeveloped offsite land east of Lorson Ranch. Runoff will be directed northwest to a swale where the flow is conveyed north to Design Point 63a. The existing flow from this basin is 1.2cfs and 7.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.3a

This basin consists of runoff from residential development and the east side of Danis Drive. Runoff will be directed north to Design Point 53 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 10.5cfs and 23.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.3b east

This basin consists of runoff from residential development and the west side of Rikers Ridge Lane and the south side of Walley Drive. Runoff will be directed west to Design Point 54 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 6.0cfs and 13.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin OS-C4b

This basin consists of runoff from undeveloped offsite land east of Lorson Ranch. Runoff will be directed northwest to a swale where the flow is conveyed north to Design Point 63a. At Design Point 63a the concentrated flow will be dissipated by two rip rap pads to change the flow to be closer to overland sheet flow. Lorson Ranch owns the downstream offsite land (to the north) and a letter of understanding will be secured at the final plat stage to address maintenance of any erosion issues should they occur on the offsite area and to acknowledge the manner of which drainage enters the

offsite property has changed. The existing flow from this basin is 0.9cfs and 5.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.3c Walleye Dr

These basins consist of runoff from residential development and the south side of Rikers Ridge Lane and Danis Drive. Runoff will be directed west to Design Point 54 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 4.5cfs and 9.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.3d

This basin consists of runoff from residential development and the north side of Jasons Ridge Way, and Donnas Drive. Runoff will be directed northwest to Design Point 56 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 8.9cfs and 19.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.4

This basin consists of runoff from residential development and the south side of Jasons Ridge Way and Donnas Drive. Runoff will be directed southwest to Design Point 57 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 11.0cfs and 24.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.5

This basin consists of runoff from residential development and the west side of Rikers Ridge Way and north side of Walleye Drive. Runoff will be directed southwest to Design Point 59 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 7.0cfs and 15.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.6

This basin consists of runoff from residential development, west side of Walleye Drive, and the north side of Grayling Drive. Runoff will be directed west to Design Point 62 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 4.0cfs and 6.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

west side of Rik

Basin C8.7a

This basin consists of runoff from residential development and the north side of Logans Ridge Lane and the south side of Reagan Ridge Drive. Runoff will be directed west to Design Point 63 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 8.1cfs and 18.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.7b

This basin consists of runoff from residential development and the south side of Logans Ridge Lane. Runoff will be directed west to Design Point 63 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 3.4cfs and 7.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.7c

This basin consists of runoff from residential development and Cody Ridge Way. Runoff will be directed west to Design Point 64 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 9.4cfs and 21.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.7d

west sic

Portion of E

Ridge Ln

This basin consists of runoff from residential development and the east side of Reagan Ridge Drive. Runoff will be directed west to Design Point 66 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 0.6cfs and 1.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Broken

hydrology sp

Basin C8.7e

This basin consists of runoff from residential development, the east side of Reagan Ridge Drive, and Alpine Ridge Lane. Runoff will be directed southwest to Design Point 62 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 11.1cfs and 24.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin OS-B1

This basin consists of runoff from undeveloped offsite land east of Lorson Ranch. Runoff will be directed north to Design Point 63a in a swale. The existing flow from this basin is 5.2cfs and 29.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.8a

This basin consists of runoff from residential development, the west/north side of Reagan Ridge Drive. Runoff will be directed southwest to Design Point 69 in curb/gutter where it will be collected by an existing 25' Type R inlet. The developed flow from this basin is 7.9cfs and 17.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.8

This basin consists of runoff from residential development. Runoff will be directed south directly to existing Pond C4. The developed flow from this basin is 5.9cfs and 21.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin F1.1

This basin consists of runoff from residential development. Runoff will be directed east into Basin F1.2 as sheet flow. The developed flow from this basin is 7.5cfs and 16.5cfs for the 5/100-year storm event. See the appendix for detailed calculations. Water quality for this basin flowing offsite will be addressed by the Runoff Reduction method for sheet flows crossing open space in Basin F1.2. See water quality section.

Basin F1.2

This basin consists of runoff from open space and will be directed east offsite generally as sheet flow which will not significantly be changed from existing conditions and grading. The flow from this basin is 6.1cfs and 44.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

north side of Mission Peak Pl

Butte Terr & South half of Mission Peak Pl

Basin F1.3

This basin consists of runoff from residential development, the east/north-side of Kingston Peak Place. Runoff will be directed south to Design Point 35b in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 1.9cfs and 4.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

portions of Copper Butte Way, Aspen

Basin F1.4

This basin consists of runoff from residential development, the west/south-side of Kingston Peak Place. Runoff will be directed south to Design Point 35a in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 5.9cfs and 13.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Combined Flow From the "F" developed basins

Developed runoff flowing east into the Upper Williams Creek Drainage Basin is required to match existing conditions. See Design Point 35 for analysis of offsite flows to the east.

Interim Basin G1

This basin consists of existing runoff from undeveloped land. Runoff flows south to Design Point 35e located on the south property line of Lorson Ranch. This basin was added to analyze existing runoff rates before and after development flowing south in the Upper Williams Creek Drainage Basin at the Lorson Ranch south property line. See Design Point 35e for this analysis. The existing flow from this basin is 2.5cfs and 18.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

See the Developed Conditions Hydrology Calculations in the back of this report and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

Missing discussion on Basin C 4.5 & Interim Basin H1

5.0 HYDRAULIC SUMMARY

The sizing of the hydraulic structures and detentions ponds were prepared by using the *Storm Sewer* and *Hydrographs* computer software programs developed by Intellisolve, which conforms to the methods outlined in the "City of Colorado Springs/El Paso County Drainage Criteria Manual". Street capacities and Inlets were sized by Denver Urban Drainage's xcel spreadsheet UD-Inlet.

It is the intent of this drainage report to use the proposed curb/gutter and storm sewer in the streets to convey runoff to detention and water quality ponds then to the East Tributary of Jimmy Camp Creek. Inlet size and location are preliminary only as shown on the storm sewer layout in the appendix. See Appendix C for detailed hydraulic calculations and the storm sewer model.

Table 1: Street Capacities (100-year capacity is only ½ of street)

	Residen	tial Local	Residential Collector		Principal Arterial	
Street Slope	5-year	100-year	5-year	100-year	5-year	100-year
0.5%	6.3	26.4	9.7	29.3	9.5	28.5
0.6%	6.9	28.9	10.6	32.1	10.4	31.2
0.7%	7.5	31.2	11.5	34.6	11.2	33.7
0.8%	8.0	33.4	12.3	37.0	12.0	36.0
0.9%	8.5	35.4	13.0	39.3	12.7	38.2
1.0%	9.0	37.3	13.7	41.4	13.4	40.2
1.4%	10.5	44.1	16.2	49.0	15.9	47.6
1.8%	12.0	45.4	18.4	50.4	18.0	50.4
2.2%	13.3	42.8	19.4	47.5	19.5	47.5
2.6%	14.4	40.7	18.5	45.1	18.5	45.1
3.0%	15.5	39.0	17.7	43.2	17.8	43.2
3.5%	16.7	37.2	16.9	41.3	17.0	41.3
4.0%	17.9	35.7	16.2	39.7	16.3	29.7
4.5%	19.0	34.5	15.7	38.3	15.7	38.3
5.0%	19.9	33.4	15.2	37.1	15.2	37.1
2.370	. 3.0	23.1	. 3.2	<u> </u>	. 3.2	07.

Note: all flows are in cfs (cubic feet per second)

Design Point 1a

Design Point 1a is located south of Lorson Boulevard and Walleye Drive and flow is from future development from Basin C1.6. A 24" storm sewer will be stubbed out from Design Pt. 6 at Lorson Boulevard north towards this design point. The total future flow is 12.8cfs/28.3cfs in the 5/100-year storm events for this basin. In the 5-year storm event 12cfs will be routed north to Design Point 6 (in pipe) and 0.8cfs will be routed to west in the future street (surface flow in street). In the 100-year storm event 20cfs will be routed north to Design Point 6 (in pipe) and 8.3cfs will be routed west in the future street (surface flow in street).

e final

Design Point 1 is located at the NE corner of Nystrom Terrace and Aspen Butte Terrace at a knuckle and accepts flows from Basin C1.1 The developed conditions are as follows:

(5-year storm)

Tributary Basins: C1.1 Inlet/MH Number: Inlet DP1 Upstream flowby: Total Street Flow: 5.6cfs

Flow Intercepted: 5.6cfs Flow Bypassed: 0

Inlet Size: 10' type R, sump

Street Capacity: Street slope = 1.0%, capacity = 9cfs, okay

(100-year storm)

Tributary Basins: C1.1 Inlet/MH Number: Inlet DP1 Upstream flowby: Total Street Flow: 12.2cfs

Flow Intercepted: 12.2cfs Flow Bypassed:

Inlet Size: 10' type R, sump

Street Capacity: Street slope = 1.0%, capacity = 37cfs (half street) is okay

Design Point 2

Design Point 2 is located at the SW corner of Nystrom Terrace at a knuckle and accepts flows from Basin C1.2 The developed conditions are as follows:

(5-year storm)

Tributary Basins: C1.2 Inlet/MH Number: Inlet DP2
Upstream flowby: Total Street Flow: 2.7cfs

Flow Intercepted: 2.7cfs Flow Bypassed: 0

Inlet Size: 10' type R, sump

Street Capacity: Street slope = 1.0%, capacity = 9cfs, okay

(100-year storm)

Tributary Basins: C1.2 Inlet/MH Number: Inlet DP2
Upstream flowby: Total Street Flow: 5.9cfs

Flow Intercepted: 5.9cfs Flow Bypassed:

Inlet Size: 10' type R, sump

Street Capacity: Street slope = 1.0%, capacity = 37cfs (half street) is okay

Design Point 3

Design Point 3 is the storm sewer pipe flow from Nystrom Terrace to Lorson Boulevard from Design Pt's 1 and 2. The total pipe flow is 8.3cfs/18.1cfs in the 5/100-year storm events in the storm sewer.

Design Point 4 is located at the NE of Lorson Boulevard and Walleye Drive and accepts flows from Lorson Boulevard (Basin C1.3).

(5-year storm)

Tributary Basins: C1.3 Inlet/MH Number: Inlet DP4
Upstream flowby: Total Street Flow: 8.9cfs

Flow Intercepted: 13.5cfs Flow Bypassed: 0.6cfs to ex. 15' inlet

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 2.0%, capacity = 18cfs, okay

Inlet spreadsheet shows no pass flow from this inlett

(100-year storm)

Tributary Basins: C1.3 Inlet/MH Number: Inlet DP4
Upstream flowby: 1.9cfs Total Street Flow: 21.6cfs

Flow Intercepted: 18.0cfs Flow Bypassed: 3.6cfs to ex. 15' inlet

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 2.0%, capacity = 50cfs (half street) is okay

The existing 15' inlet was designed to accept 10cfs of upstream flow in the 100-year storm.

See final drainage report for CDR 20-007 at Design Point 1b and 1.

Design Point 5

Design Point 5 is the storm sewer pipe flow from Design Pt's 3 and 4. The total pipe flow is 17.2cfs/36.1cfs in the 5/100-year storm events in the storm sewer. Flows do not match the hydrology spread

Design Point 6

Design Point 6 is located at the SE of Lorson Boulevard and Walleye Drive and accepts flows from Lorson Boulevard (Basin C1.5).

(5-year storm)

Tributary Basins: C1.5 Inlet/MH Number: Inlet DP6 Upstream flowby: Total Street Flow: 3.0cfs

Flow Intercepted: 3.0cfs Flow Bypassed: 0cfs in curb downstream

Inlet Size: 10' type R, on-grade

Street Capacity: Street slope = 2.0%, capacity = 18cfs, okay

(100-year storm)

Tributary Basins: C1.5 Inlet/MH Number: Inlet DP6
Upstream flowby: Total Street Flow: 6.6cfs

Flow Intercepted: 5.7cfs Flow Bypassed: 0.9cfs in curb downstream

Inlet Size: 10' type R, on-grade

Street Capacity: Street slope = 2.0%, capacity = 50cfs (half street) is okay

Design Point 7 is the existing 36" storm sewer pipe flow located in Lorson Boulevard. The total pipe flow is 36.8cfs/65.8cfs in the 5/100-year storm events in the storm sewer. Per the drainage report for CDR 20-007 the allowable flow in the existing 36" is 37.1cfs/65.3cfs.

Flows do not match the hydrology sprea

Design Points 8-11 are not used

Design Point 12

Design Point 12 is located at the SE corner of Split Mountain Drive and Mission Peak Place and accepts flows from Basin C3.1.

(5-year storm)

Tributary Basins: C3.1 Inlet/MH Number: Inlet DP12 Upstream flowby: Total Street Flow: 9.9cfs

Flow Intercepted: 9.3cfs Flow Bypassed: 0.6cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.6%, capacity = 14.4cfs, okay

(100-year storm)

Tributary Basins: C3.1 Inlet/MH Number: Inlet DP12 Upstream flowby: Total Street Flow: 21.8cfs

Flow Intercepted: 14.8cfs Flow Bypassed: 7.0cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.6%, capacity = 40.7cfs (half street) is okay

Design Point 13

Design Point 13 is located at the SE corner of Split Mountain Drive and Pearsoll Street and accepts flows from Basin C3.2.

(5-year storm)

Tributary Basins: C3.2 Inlet/MH Number: Inlet DP13
Upstream flowby: 0.6cfs from Des. Pt 12
Total Street Flow: 8.5cfs

Flow Intercepted: 8.3cfs Flow Bypassed: 0.2cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.2%, capacity = 13.3cfs, okay

(100-year storm)

Tributary Basins: C3.2 Inlet/MH Number: Inlet DP13 Upstream flowby: 7.0cfs from Des. Pt 12 Total Street Flow: 24.3cfs

Flow Intercepted: 15.6cfs Flow Bypassed: 8.7cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.2%, capacity = 42.8cfs (half street) is okay

Design Point 14 is the storm sewer pipe flow from Design Pt's 12 and 13. The total pipe flow is 17.6cfs/30.4cfs in the 5/100-year storm events in the storm sewer. Flows do not match the hydrology spreads

Design Point 15

Design Point 15 is located at the SE corner of Split Mountain Drive and Lost Peak Lane and accepts flows from Basin C3.3.

(5-year storm)

Tributary Basins: C3.3 Inlet/MH Number: Inlet DP15 Upstream flowby: 0.2cfs from Des. Pt 13 Total Street Flow: 8.7cfs

Flow Intercepted: 8.4cfs Flow Bypassed: 0.3cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 1.9%, capacity = 12.2cfs, okay

(100-year storm)

Tributary Basins: C3.3 Inlet/MH Number: Inlet DP15 Upstream flowby: 8.7cfs from Des. Pt 13 Total Street Flow: 27.3cfs

Flow Intercepted: 16.5cfs Flow Bypassed: 10.8cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 1.9%, capacity = 44.0cfs (half street) is okay

Design Point 16

Design Point 16 is the storm sewer pipe flow from Design Pt's 14 and 15. The total pipe flow is 26.0cfs/46.9cfs in the 5/100-year storm events in the storm sewer. Flows do not match the hydrology spreads

Design Point 17

Design Point 17 is located at the SE corner of Split Mountain Drive and Lake Trout Dr and accepts flows from Basin C3.4.

(5-year storm)

Tributary Basins: C3.4 Inlet/MH Number: Inlet DP17 Upstream flowby: 0.3cfs from Des. Pt 15 Total Street Flow: 7.5cfs

Flow Intercepted: 7.5cfs Flow Bypassed: 0cfs in curb downstream

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 3.4%, capacity = 16.5cfs, okay

(100-year storm)

Tributary Basins: C3.4 Inlet/MH Number: Inlet DP17 Upstream flowby: 10.8cfs from Des. Pt 15 Total Street Flow: 26.7cfs

Flow Intercepted: 20.4cfs Flow Bypassed: 6.3cfs in curb downstream

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 3.4%, capacity = 37.0cfs (half street) is okay

Design Point 18 is the storm sewer pipe flow from Design Pt's 16 and 17. The total pipe flow is 33.5cfs/67.3cfs in the 5/100-year storm events in the storm sewer. Flows do not match the hydrology spreads

Design Point 19

Design Point 19 is located at the SW corner of Split Mountain Drive and Lake Trout Dr and accepts flows from Basin C3.5.

(5-year storm)

Tributary Basins: C3.5 Inlet/MH Number: Inlet DP19 Upstream flowby: Total Street Flow: 10.3cfs

Flow Intercepted: 10.3cfs Flow Bypassed: 0cfs in curb downstream

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 2.6%, capacity = 14.4cfs, okay

(100-year storm)

Tributary Basins: C3.5 Inlet/MH Number: Inlet DP19 Upstream flowby: 6.3cfs from Des. Pt 17 Total Street Flow: 28.8cfs

Flow Intercepted: 21.2cfs Flow Bypassed: 7.6cfs in curb downstream

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 2.6%, capacity = 40.7cfs (half street) is okay

Design Point 20

Design Point 20 is the storm sewer pipe flow from Design Pt's 18 and 19. The total pipe flow is 43.8cfs/88.5cfs in the 5/100-year storm events in the storm sewer.

Design Point 20a

Design Point 20a is located at the NE corner of Lookout Peak Lane and Lake Trout Dr and accepts flows from Basin C3.6a.

(5-year storm)

Tributary Basins: C3.6a Inlet/MH Number: Inlet DP20a Upstream flowby: Total Street Flow: 5.6cfs

Flow Intercepted: 5.6cfs Flow Bypassed: 0

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.1%, capacity = 13.0cfs, okay

(100-year storm)

Tributary Basins: C3.6a Inlet/MH Number: Inlet DP20a Upstream flowby: Total Street Flow: 12.3cfs

Flow Intercepted: 10.7cfs Flow Bypassed: 1.6cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.1%, capacity = 42.0cfs (half street) is okay

Design Point 20b

Design Point 20b is the storm sewer pipe flow from Design Pt's 20a and 20. The total pipe flow is 49.4cfs/99.2cfs in the 5/100-year storm events in the storm sewer. Flows do not match the hydrology spreads

Design Point 21

Design Point 21 is located at the NW corner of Lookout Peak Lane and Lake Trout Dr and accepts flows from Basin C3.6b.

(5-year storm)

Tributary Basins: C3.6b Inlet/MH Number: Inlet DP21 Upstream flowby: Total Street Flow: 7.2cfs

Flow Intercepted: 7.2cfs Flow Bypassed:

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.1%, capacity = 13.0cfs, okay

(100-year storm)

Tributary Basins: C3.6b Inlet/MH Number: Inlet DP21 Upstream flowby: 1.6cfs from Des. Pt 20a Total Street Flow: 17.5cfs

Flow Intercepted: 13.1cfs Flow Bypassed: 4.4cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.1%, capacity = 42.0cfs (half street) is okay

Design Point 22 not used

Design Point 23

Design Point 23 is located at the SW corner of Dragontail Terrace and Lake Trout Dr and accepts flows from Basin C3.7.

(5-year storm)

Tributary Basins: C3.7 Inlet/MH Number: Inlet DP23 Upstream flowby: Total Street Flow: 8.7cfs

Flow Intercepted: 8.4cfs Flow Bypassed: 0.3cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.0%, capacity = 13.0cfs, okay

(100-year storm)

Tributary Basins: C3.7 Inlet/MH Number: Inlet DP23 Upstream flowby: 7.6cfs from Des. Pt 19 Total Street Flow: 26.7cfs

Flow Intercepted: 16.3cfs Flow Bypassed: 10.4cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.0%, capacity = 42.0cfs (half street) is okay

Design Point 24 is the storm sewer pipe flow from Design Pt's 20b and 23. The total pipe flow is

57.8cfs/115.5cfs in the 5/100-year storm events in the storm sewer.

Flows do not match the hydrology sprea

Design Point 24a

Design Point 24a is the storm sewer pipe flow from Design Pt's 21 and 24. The total pipe flow is 65cfs/118.6cfs in the 5/100-year storm events in the storm sewer. Design point not in table

Design Point 25

Design Point 25 is located at the NW corner of Nystrom Terr and Lake Trout Dr and accepts flows from Basin C3.8.

(5-year storm)

Tributary Basins: C3.8 Inlet/MH Number: Inlet DP25 **Upstream flowby:** Total Street Flow: 10.0cfs

Flow Intercepted: 7.2cfs Flow Bypassed: 2.9cfs in curb downstream

Inlet Size: 10' type R, on-grade

Street Capacity: Street slope = 1.1%, capacity = 10.1cfs, okay

(100-year storm)

Tributary Basins: Inlet/MH Number: Inlet DP25 C3.8 Upstream flowby: 4.4cfs from Des. Pt 21 Total Street Flow: 26.4cfs

Flow Intercepted: 11.3cfs Flow Bypassed: 15.1cfs in curb downstream

Inlet Size: 10' type R, on-grade

Street Capacity: Street slope = 1.1%, capacity = 39.0cfs (half street) is okay

Design Point 26 - not used

Design Point 27

Design Point 27 is located at the SW corner of Raven Ridge Terrace and Lake Trout Dr and accepts flows from Basin C3.9.

(5-year storm)

Tributary Basins: C3.9Inlet/MH Number: Inlet DP27 Upstream flowby: Total Street Flow: 8.4cfs 0.3cfs from Des.Pt. 23

Flow Intercepted: 8.4cfs Flow Bypassed: Ocfs in curb downstream

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 1.7%, capacity = 11.9cfs, okay

(100-year storm)

Tributary Basins: C3.9 Inlet/MH Number: Inlet DP27 **Upstream flowby:** 10.4cfs from Des. Pt 23 Total Street Flow: 28.3cfs

Flow Intercepted: 20.7cfs Flow Bypassed: 7.6cfs in curb downstream

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 1.7%, capacity = 45.0cfs (half street) is okay

Design Point 28 is the storm sewer pipe flow from Design Pt's 27 and 24a. The total pipe flow is 73.4cfs/132.7cfs in the 5/100-year storm events in the storm sewer.

Design Point 28a

Design Point 28a is the storm sewer pipe flow from Design Pt's 28 and 25. The total pipe flow is 80.6cfs/133.4cfs in the 5/100-year storm events in the storm sewer.

Design point not in spreadsheet

Design Point 29

Design Point 29 is located at the SW corner of Nystrom Terrace and Lake Trout Dr and accepts flows from Basin C3.10.

(5-year storm)

Tributary Basins: C3.10 **Inlet/MH Number:** Inlet DP29

Upstream flowby: 0.3cfs from Des.Pt. 27 Total Street Flow: 9.2cfs 9.5

Flow Intercepted: 9.2cfs Flow Bypassed: 0cfs in curb downstream

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 1.0%, capacity = 9.2cfs, okay

(100-year storm)

Tributary Basins: C3.10 Inlet/MH Number: Inlet DP29 Upstream flowby: 7.6cfs from Des. Pt 27 Total Street Flow: 27.8cfs

Flow Intercepted: 20.5cfs Flow Bypassed: 7.3cfs in curb downstream

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay

Design Point 30

Design Point 30 is the storm sewer pipe flow from Design Pt's 28a and 29. The total pipe flow is 89.8cfs/153.9cfs in the 5/100-year storm events in the storm sewer.

Flows do not match the hydrology spreadshee

Design Point 31 is located east of Walleye Drive on the south side of Fontaine Boulevard and accepts flows from Basin C4.1 and C4.2.

(5-year storm)

Tributary Basins: C4.1+C4.2 Inlet/MH Number: Inlet DP31 Upstream flowby: Total Street Flow: 10.5cfs

Flow Intercepted: 9.7cfs Flow Bypassed: 0.8cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 4.8%, capacity = 15.7cfs, okay

(100-year storm)

Tributary Basins: C4.1+C4.2 Inlet/MH Number: Inlet DP31 Upstream flowby: Total Street Flow: 23.2cfs

Flow Intercepted: 15.3cfs Flow Bypassed: 7.9cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 4.8%, capacity = 38.3cfs (half street) is okay

Design Point 32 is located on the north end of Nystrom Terr in a cul-de-sac and accepts flows from Basin C4.3

(5-year storm)

Tributary Basins: C4.3 Inlet/MH Number: Inlet DP32 Upstream flowby: 2.8cfs from Des. Pt.25 Total Street Flow: 10.3 cfs

Flow Intercepted: 10.3cfs Flow Bypassed:

Inlet Size: 20' type R, sump

Street Capacity: Street slope = 1.0%, capacity = 9.2cfs, okay

(100-year storm)

Tributary Basins: C4.3 Inlet/MH Number: Inlet DP32 Upstream flowby: 15.1cfs from Des.Pt. 25 Total Street Flow: 27.5cfs

Flow Intercepted: 27.5cfs Flow Bypassed:

Inlet Size: 20' type R, sump

Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay

Design Point 32a

Design Point 32a is the storm sewer pipe flow from Design Pt's 31 and 32. The total pipe flow is 18.2cfs/42.8cfs in the 5/100-year storm events in the storm sewer.

Design point is not in spreadsheet

Design Point 33 is located on Walleye Drive south of Fontaine Boulevard and is an existing 25' type R inlet in a sump condition constructed as part of CDR 20-007.

(5-year storm)

Tributary Basins: C4.4 **Inlet/MH Number:** ex. 25' inlet DP33

Upstream flowby: 0.8cfs from Des.Pt. 31 **Total Street Flow:** 7.0cfs

Flow Intercepted: 7.0cfs Flow Bypassed:

Inlet Size: ex 25' type R, sump

Street Capacity: Street slope = 0.7%, capacity = 11.5cfs, okay

(100-year storm)

Tributary Basins: C4.4 **Inlet/MH Number:** ex. 25' inlet DP33

Upstream flowby: 7.3cfs from Des.Pt. 29

7.9cfs from Des. Pt. 31

Total Street Flow: 28.7cfs

Flow Intercepted: 28.7cfs Flow Bypassed:

Inlet Size: ex 25' type R, sump

Street Capacity: Street slope = 0.7%, capacity = 34.6cfs (half street) is okay

Design Point 34

Design Point 34 is the storm sewer pipe flow from Design Pt's 30, 32a, and 33. The total pipe flow is 115.0cfs/225.4cfs in the 5/100-year storm events in the existing 54" storm sewer constructed as part of CDR 20-007. The revised calculated flow in the existing 54" storm sewer is slightly more than the design flow in CDR 20-007 of 101.2cfs/218.6cfs in the 5/100-year storm events but the HGL's are not above the top of the 54" storm sewer.

Design Point 35a

Design Point 35a is located at the NW corner of Kingston Peak Place and Lorson Boulevard and accepts flows from Basin F1.4.

(5-year storm)

Tributary Basins: F1.4 Inlet/MH Number: Inlet DP29 Upstream flowby: Total Street Flow: 5.9cfs

Flow Intercepted: 5.9cfs Flow Bypassed: 0cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 0.9%, capacity = 9.2cfs, okay

(100-year storm)

Tributary Basins: F1.4 Inlet/MH Number: Inlet DP29 Upstream flowby: Total Street Flow: 13.2cfs

Flow Intercepted: 11.3cfs Flow Bypassed: 1.9cfs in curb downstream

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 0.9%, capacity = 37.3cfs (half street) is okay

Design Point 35b

Design Point 35b is located at the NE corner of Kingston Peak Place and Lorson Boulevard and accepts flows from Basin F1.3.

(5-year storm)

et has

Tributary Basins: F1.3 Inlet/MH Number: Inlet DP29 **Upstream flowby:** Total Street Flow: 1.9cfs

Flow intercepted: 1.9cfs Flow Bypassed: Ocfs in curb downstream

Inlet Size: 5' type R, sump

Street Capacity: Street slope = 0.9%, capacity = 9.2cfs, okay

(100-year storm)

Tributary Basins: F1.3 Inlet/MH Number: Inlet DP29 **Upstream flowby:** Total Street Flow: 4.6cfs

Flow Intercepted: Flow Bypassed: 0.2cfs

Inlet Size: 5' type R, sump

Street Capacity: Street slope = 0.9%, capacity = 37.3cfs (half street) is okay

Design Point 35c

Design Point 35c is the storm sewer pipe flow from Design Pt's 35a and 35b. The total pipe flow is 7.8cfs/15.7cfs in the 5/100-year storm events in the storm sewer. Stormwater enters WQ Pond F where it will be treated and released. WQ Pond F has been sized for water quality and the 5-100-year storm runoff will be allowed to flow through the pond with minimal detention.

Design point not in spreadsheet

Design Point 35

Design Point 35 is located on the east side of this site and is the total flow from Basins F1.1, F1.2, and Design Point 35d. The total flow from these basins and the WQ pond (Des.Pt. 35d) is 15.5cfs/69.5cfs in Flows do the 5/100-year storm events. The existing flow calculated at Design Point 2x flowing east offsite is 12.4cfs/72.7cfs in the 5/100-year storm events. The developed flow will remain sheet flow into the Upper Williams Creek Drainage Basin for the majority of the runoff along the east boundary of Lorson Ranch as in existing conditions and will discharge the same runoff rates as in existing flows. BJ Ranches, LLC is the downstream offsite landowner located east of Lorson Ranch. Lorson Ranch will try to secure a letter of understanding with the downstream landowner to address maintenance of any erosion issues should they occur on the offsite area and to acknowledge the manner of which drainage enters the offsite property has changed at the Pond F outfall. A spreader is proposed at the pond outfall to convert point discharges into sheet flow. See Design Point 35d for discussion of concentrated runoff from WQ Pond F.

Design Point 35d

Design Point 35d is located at the storm sewer outfall from WQ Pond F. The total pipe flow is 1.9cfs/8.4cfs in the 5/100-year storm events in the storm sewer per the full spectrum excel spreadsheets. Equation GB-1 from the Grass Buffer worksheet determines the length of the spreader (W=Q2/.05) required to convert point discharges into sheet flow to reduce the erosion potential. For a flow of 8.4cfs, the length of the spreader from the storm sewer outfall is required to be 168' long with 1.5" wide openings every 2' along the curb spreader. The curb spreader will be 4' wide with 8" tall curbs. In addition to the curb spreader, the flows will drain and additional 100' overland before exiting the Lorson Ranch property.

Include Grass buffer worksheet in appendix

Design Point 35e

Design Point 35e is located on the south property line of Lorson Ranch and is the total flow from Basin G1 which is 2.5cfs/18.2cfs in the 5/100-year storm events. The existing flow at this design point (Basin EX-G) is 2.9cfs/21.6cfs in the 5/100-year storm events. The runoff at the south property line of Lorson Ranch was reduced slightly due to grading north of Lorson Boulevard. The discharge is only slightly less than existing flows resulting in no negative impacts downstream.

Design Point 35f

Design Point 35f is located on the south property line of Lorson Ranch and is the total flow from Basin H1 which is 6.0cfs/40.2cfs in the 5/100-year storm events. The existing flow at this design point (Basin EX-H) is 6.1cfs/42.9cfs in the 5/100-year storm events. The runoff at the south property line of Lorson Ranch was reduced slightly due to grading north of Lorson Boulevard. The discharge is slightly less than existing flows resulting in no negative impacts downstream.

DP 35e & 35f missing from spreadsheet

Design Point 36 is located on the north side of Gray Wolf Court and accepts flows from Basin C5.1b

(5-year storm)

Tributary Basins: C5.1b Inlet/MH Number: Inlet DP36 Upstream flowby: Total Street Flow: 11.4cfs

Flow Intercepted: 4.1cfs Flow Bypassed: 7.3cfs in curb downstream

Inlet Size: 5' type R, on-grade

Street Capacity: Street slope = 2.7%, capacity = 14.4cfs, okay

(100-year storm)

Tributary Basins: C5.1b Inlet/MH Number: Inlet DP36 Upstream flowby: Total Street Flow: 25.2cfs

Flow Intercepted: 5.7cfs Flow Bypassed: 19.5cfs in curb downstream

Inlet Size: 5' type R, on-grade

Street Capacity: Street slope = 2.7%, capacity = 40.7cfs (half street) is okay

Design Point 37

Design Point 37 is located on the south side of Gray Wolf Court and accepts flows from Basin C5.1c

(5-year storm)

Tributary Basins: C5.1c Inlet/MH Number: Inlet DP37 Upstream flowby: Total Street Flow: 7.4cfs

Flow Intercepted: 3.4cfs Flow Bypassed: 4.0cfs in curb downstream

Inlet Size: 5' type R, on-grade

Street Capacity: Street slope = 2.0%, capacity = 12.5cfs, okay

(100-year storm)

Tributary Basins: C5.1c Inlet/MH Number: Inlet DP37 Upstream flowby: Total Street Flow: 16.3cfs

Flow Intercepted: 4.8cfs Flow Bypassed: 11.5cfs in curb downstream

Inlet Size: 5' type R, on-grade

Street Capacity: Street slope = 2.0%, capacity = 44.0cfs (half street) is okay

Design Point 38 is the storm sewer pipe flow from Design Pt's 36 and 37. The total pipe flow is 7.5cfs/10.5cfs in the 5/100-year storm events in the storm sewer. Flows do not match the hydrology spreadsly

Design Point 39

Design Point 39 is located at the southeast corner of Gray Wolf Court and Donnas Drive and accepts flows from Basin C5.1a.

(5-year storm)

Tributary Basins: C5.1a.b,c Inlet/MH Number: Inlet DP39

Upstream flowby: 20.2cfs – 4.1(inlet DP36) – 3.4(inlet DP37)

Total Street Flow: 12.7cfs

Flow Intercepted: 12.7cfs Flow Bypassed:

Inlet Size: 25' type R, on-grade

Street Capacity: Street slope = 1.9%, capacity = 14cfs, okay

(100-year storm)

Tributary Basins: C5.1a,b,c Inlet/MH Number: Inlet DP39

Total flow in street: 44.5cfs – 5.7(inlet DP36) – 4.8(inlet DP37)

Total Street Flow: 34.0cfs

Flow Intercepted: 27.0cfs Flow Bypassed: 7.0cfs in curb downstream

Inlet Size: 25' type R, on-grade

Street Capacity: Street slope = 1.9%, capacity = 45.4cfs (half street) is okay

Design Point 40

Design Point 40 is the storm sewer pipe flow from Design Pt's 38 and 39. The total pipe flow is 23.0cfs/37.0cfs in the 5/100-year storm events in the storm sewer.

Design point is not in spreadsheet

Design Point 41 is located south of Gray Wolf Court on the east side of Donnas Drive and accepts flows from Basin C5.1d.

(5-year storm)

Tributary Basins: C5.1d Inlet/MH Number: Inlet DP41 Upstream flowby: Total Street Flow: 9.3cfs

Flow Intercepted: 9.3cfs Flow Bypassed:

Inlet Size: 20' type R, SUMP

Street Capacity: Street slope = 1.4%, capacity = 10.5cfs, okay

(100-year storm)

Tributary Basins: C5.1d **Inlet/MH Number:** Inlet DP41 **Upstream flowby:** 7.0cfs from Des.Pt.39 **Inlet/MH Number:** Inlet DP41 **Total Street Flow:** 27.7cfs

Flow Intercepted: 25.1cfs Flow Bypassed: 2.6cfs to DP43

Inlet Size: 20' type R, SUMP (inlet overtops to Des. Pt. 43)

Street Capacity: Street slope = 1.4%, capacity = 44.1cfs (half street) is okay

Design Point 42

Design Point 42 is the storm sewer pipe flow from Design Pt's 40 and 41. The total pipe flow is 32.3cfs/62.1cfs in the 5/100-year storm events in the storm sewer. Flows do not match the hydrology spreads

Design Point 43

Design Point 43 is located south of Gray Wolf Court on the west side of Donnas Drive and accepts flows from Basin C5.1e and flowby from Des. Pt. 41. See Des.Pt. 44 for overflow conveyance.

(5-year storm)

Tributary Basins: C5.1e Inlet/MH Number: Inlet DP41 43

Upstream flowby: Total Street Flow: 10.0cfs

Flow Intercepted: 10.0cfs Flow Bypassed:

Inlet Size: 20' type R, SUMP

Street Capacity: Street slope = 1.4%, capacity = 10.5cfs, okay

(100-year storm)

Tributary Basins: C5.1e Inlet/MH Number: Inlet DP41
Upstream flowby: 2.6cfs from Des.Pt.41 Total Street Flow: 24.5cfs

Flow Intercepted: 24.5cfs Flow Bypassed:

Inlet Size: 20' type R, SUMP

Street Capacity: Street slope = 1.4%, capacity = 44.1cfs (half street) is okay

eadsheet

Design Point 44 is the storm sewer pipe flow from Design Pt's 42 and 43. The total pipe flow is 42.3cfs/87.1cfs in the 5/100-year storm events in the storm sewer. The FDR for CDR20-007 (Design Point 16a) was designed to accept 42.3cfs/92.5cfs in the existing 36" RCP stub in Fontaine Boulevard. This design point is also at a low point in Donnas Drive and in the event the inlet at Design Point 43 is clogged, runoff will flow overland through Tract G which has a 25' wide swale (depression) which is 1' lower than the adjacent lots.

Include calculations for overflow swale in appendix

Design Points 45 & 46

Design Points 45 & 46 are located at the NE corner of Walleye Drive and Fontaine Boulevard and is an existing 15' type R inlet in a sump condition constructed as part of CDR 20-007

(5-year storm)

Tributary Basins: C5.2 & C5.3 Inlet/MH Number: ex. 15' inlet Upstream flowby: Total Street Flow: 7.7cfs

Flow Intercepted: 7.7cfs Flow Bypassed:

Inlet Size: ex 15' type R, sump

Street Capacity: Street slope = 1.0%, capacity = 13.7cfs, okay

(100-year storm)

Tributary Basins: C5.2 & C5.3 **Inlet/MH Number:** ex. 15' inlet **Upstream flowby:** Total Street Flow: 17.1cfs

Flow Intercepted: 17.1cfs Flow Bypassed:

Inlet Size: ex 15' type R, sump

Street Capacity: Street slope = 1.0%, capacity = 41.4cfs (half street) is okay

The FDR for CDR 20-007 designed the existing inlet to accept 7.9cfs/17.7cfs in the 5/100 year storm events.

Design Point 47 is located in the SE corner of Meridith Ridge Way and Donnas Drive and accepts flows from Basin C8.1a.

(5-year storm)

Tributary Basins: C8.1a Inlet/MH Number: Inlet DP47 Upstream flowby: Total Street Flow: 7.5cfs

Flow Intercepted: 6.1cfs Flow Bypassed: 1.4cfs

Inlet Size: 10' type R, on-grade

Street Capacity: Street slope = 1.0%, capacity = 9.0cfs, okay

(100-year storm)

Tributary Basins: C8.1a Inlet/MH Number: Inlet DP47
Upstream flowby: Total Street Flow: 16.4cfs

Flow Intercepted: 9.1cfs Flow Bypassed: 7.3cfs

Inlet Size: 10' type R, on-grade

Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay

Design Point 48

Design Point 48 is located in the NE corner of Sanderling Street and Donnas Drive and accepts flows from Basin C8.1c.

(5-year storm)

Tributary Basins: C8.1c Inlet/MH Number: Inlet DP48
Upstream flowby: Total Street Flow: 3.4cfs

Flow Intercepted: 3.4cfs Flow Bypassed:

Inlet Size: 10' type R, on-grade

Street Capacity: Street slope = 1.5%, capacity = 11.0 cfs, okay

(100-year storm)

Tributary Basins: C8.1c Inlet/MH Number: Inlet DP48 Upstream flowby: Total Street Flow: 7.6cfs

Flow Intercepted: 6.2cfs Flow Bypassed: 1.4cfs

Inlet Size: 10' type R, on-grade

Street Capacity: Street slope = 1.5%, capacity = 44.5cfs (half street) is okay

Design Point 49 is located in the NW corner of Sanderling Street and Donnas Drive and accepts flows from Basin C8.1b.

(5-year storm)

Tributary Basins: C8.1b Inlet/MH Number: Inlet DP49
Upstream flowby: 1.4cfs from Des.Pt. 47
Total Street Flow: 7.7 cfs

Flow Intercepted: 7.7cfs Flow Bypassed:

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 2.8%, capacity = 14.4cfs, okay

(100-year storm)

Tributary Basins: C8.1b Inlet/MH Number: Inlet DP49

Upstream flowby: 7.3cfs from Des.Pt.47

1.4cfs from Des.Pt.48

5.1cfs from Des.Pt.57 **Total Street Flow:** 27.7cfs

Flow Intercepted: 20.8cfs Flow Bypassed: 6.9cfs

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 2.8%, capacity = 40.7cfs (half street) is okay

Design Point 50

Design Point 50 is the storm sewer pipe flow from Design Pt's 48 and 49. The total pipe flow is 11.1cfs/27.0cfs in the 5/100-year storm events in the storm sewer. The FDR for CDR20-007 (Design Point 31a) was designed to accept 8.9cfs/20.9cfs in the existing 30" RCP stub from Walleye Drive at Sanderling Street. However, the existing pipe has capacity to handle the additional pipe flow based on the HGL. See Design Point 52.

Design point not in spreadsheet

Design Point 51 is located at an existing 25' type R inlet in the SW corner of Grayling Drive and Walleye Drive and accepts flows from Basin C8.2.

(5-year storm)

Tributary Basins: C8.2 Inlet/MH Number: existing 25' Upstream flowby: Total Street Flow: 4.5 cfs

Flow Intercepted: 4.5cfs Flow Bypassed:

Inlet Size: ex 25' type R, SUMP

Street Capacity: Street slope (collector) = 1.0%, capacity = 13.7cfs, okay

(100-year storm)

Tributary Basins: C8.2 Inlet/MH Number: existing 25'

Upstream flowby: 6.9cfs from Des.Pt.49

9.1cfs from Des.Pt.56 **Total Street Flow:** 26.0cfs

Flow Intercepted: 26.0cfs Flow Bypassed:

Inlet Size: ex 25' type R, SUMP

Street Capacity: Street slope = 1.0% (collector), capacity = 41.4cfs (half street) is okay

The FDR for CDR 20-007 (Des.Pt. 31) designed the existing inlet to accept 14.5cfs/30.0cfs in the

5/100 year storm events.

Design Point 52

Design Point 52 is the storm sewer pipe flow from Design Pt's 50 and 51 in an existing 36" storm sewer in Walleye Drive. The total pipe flow is 15.6cfs/53.0cfs in the 5/100-year storm events in the storm sewer. The FDR for CDR20-007 (Design Point 31c) designed the storm sewer to accept 23.4cfs/50.9cfs in the existing 36" RCP storm sewer in Walleye Drive. The existing pipe has capacity to handle the slight increase in pipe flow in the 100yr storm event.

Design point not in spreadsheet

Design Point 53 is located in the SE corner of Danis Drive and Walleye Drive and accepts flows from Basin C8.3a. Basin OS-C4a existing and future flows will be diverted north to Des. Pt. 63a.

(5-year storm)

Tributary Basins: C8.3a Inlet/MH Number: Inlet DP53 Upstream flowby: Total Street Flow: 10.6cfs

Flow Intercepted: 9.7cfs Flow Bypassed: 0.9cfs

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 1.4%, capacity = 10.5cfs, okay

(100-year storm)

Tributary Basins: C8.3a Inlet/MH Number: Inlet DP53
Upstream flowby: Total Street Flow: 26.5cfs

Flow Intercepted: 16.2cfs Flow Bypassed: 10.3cfs

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 1.4%, capacity = 44.1cfs (half street) is okay

Design Point 54

Design Point 54 is located in the NE corner of Donnas Drive and Walleye Drive and accepts flows from Basin C8.3b& C8.3c.

Multiple DP-54's in

spreadsheet. Please

clarify what flows are used for inlet analysis

(5-year storm)

Tributary Basins: C8.3b & C8.3c Inlet/MH Number: Inlet DP54
Upstream flowby: 0.9cfs from Des.Pt.53 Total Street Flow: 11.8cfs

Flow Intercepted: 11.7cfs Flow Bypassed: 0.1cfs

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 1.5%, capacity = 11.8cfs, okay

(100-year storm)

Tributary Basins: C8.3b & C8.3c Inlet/MH Number: Inlet DP54 Upstream flowby: 10.3cfs from Des.Pt.53 Total Street Flow: 37.6cfs

Flow Intercepted: 24.0cfs Flow Bypassed: 13.6cfs

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 1.5%, capacity = 45.0cfs (half street) is okay

Design Point 55

Design Point 55 is the storm sewer pipe flow from Design Pt's 53 and 54. The total pipe flow is 21.4cfs/40.2cfs in the 5/100-year storm events in the storm sewer.

Design Point 56 is located on Walleye Drive south of Donnas Drive and accepts flows from Basin C8.3d

(5-year storm)

Tributary Basins: C8.3d Inlet/MH Number: Inlet DP56
Upstream flowby: 0.1cfs from Des.Pt.54 Total Street Flow: 9.0cfs

Flow Intercepted: 9.0cfs Flow Bypassed:

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 1.2%, capacity = 10.0cfs, okay

(100-year storm)

ot match

Tributary Basins: C8.3d Inlet/MH Number: Inlet DP56
Upstream flowby: 13.6cfs from Des.Pt.54 Total Street Flow: 32.8cfs

Flow Intercepted: >32.8cfs Flow Bypassed: 9.1cfs

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 1.2%, capacity = 38.0cfs (half street) is okay

Design Point 57

Design Point 57 is located at the NE corner of Donnas Drive and Meridith Ridge Way and accepts flows from Basin C8.4

(5-year storm)

Tributary Basins: C8.4 Inlet/MH Number: Inlet DP57 Upstream flowby: Total Street Flow: 11.0cfs

Flow Intercepted: 11.0cfs Flow Bypassed:

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 1.0%, capacity = 9.0cfs, okay

(100-year storm)

Tributary Basins: C8.4 Inlet/MH Number: Inlet DP57 Upstream flowby: Total Street Flow: 24.1cfs

Flow Intercepted: 19.0cfs Flow Bypassed: 5.1cfs to DP49

Inlet Size: 20' type R, on-grade

Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay

Design Point 58

Design Point 58 is the storm sewer pipe flow from Design Pt's 57 and 47. The total pipe flow is 17.1cfs/28.1cfs in the 5/100-year storm events in the storm sewer.

Design point not in spreadsheet

Design Point 59 is located on the north side of Walleye Drive south of Broken Top Drive and accepts flows from Basin C8.5

(5-year storm)

Tributary Basins: C8.5 Inlet/MH Number: Inlet DP59

Upstream flowby: Total Street Flow: 7.0cfs

Please provide inlet design spreadsheet for this design point

Flow Intercepted: 5.9cfs Flow Bypassed: 1.1cfs

Inlet Size: 10' type R, on-grade

Street Capacity: Street slope = 1.2%, capacity = 10.0cfs, okay

(100-year storm)

Tributary Basins: C8.5 Inlet/MH Number: Inlet DP59 Upstream flowby: Total Street Flow: 15.5cfs

Flow Intercepted: 8.9cfs Flow Bypassed: 6.6cfs

Inlet Size: 10' type R, on-grade

Street Capacity: Street slope = 1.2%, capacity = 38.0cfs (half street) is okay

Design Point 60

Design Point 60 is the storm sewer pipe flow from Design Pt's 55, 56 and 59. The total pipe flow is 32.7cfs/73.3cfs in the 5/100-year storm events in the storm sewer.

Design Point 61

Design Point 61 is the storm sewer pipe flow from Design Pt's 52, 58 and 60 from the C8.1, C8.3, C8.4, and C8.5 basins. The total pipe flow is 44.9cfs/104.1cfs in the 5/100-year storm events in the storm sewer. The FDR for CDR20-007 (Design Point 32) designed the storm sewer to accept 45.1cfs/105.4cfs in the existing 42" RCP storm sewer in Walleye Drive.

Both Design points (60 & 61) missing in spreadsheet

Design Point 62

Design Point 62 is located in the NE corner of Grayling Drive and Reagan Ridge Drive and accepts flows from Basin C8.6 & C8.7e.

(5-year storm)

Tributary Basins: C8.6 & C8.7e Inlet/MH Number: Inlet DP62 Upstream flowby: 1.1 cfs from Des.Pt.59 Total Street Flow: 14.3cfs

Flow Intercepted: 14.3cfs Flow Bypassed:

Inlet Size; 25' type R, SUMP

Street Capacity: Street slope = 2.5%, capacity = 14.2cfs, okay

(100-year storm)

Tributary Basins: C8.6 & C8.7e Inlet/MH Number: Inlet DP62

Upstream flowby: 6.6cfs from Des.Pt.59

2.7cfs from Des.Pt.66 **Total Street Flow:** 37.4cfs

Flow Intercepted: 37.4cfs Flow Bypassed:

Inlet Size: 25' type R, SUMP

Street Capacity: Street slope = 2.5%, capacity = 41.4cfs (half street) is okay

Design Point 63

Design Point 63 is located at the SE corner of Reagan Ridge Drive and Logans Ridge Lane and accepts flows from Basin C8.7a&b

(5-year storm)

Tributary Basins: C8.7a&b Inlet/MH Number: Inlet DP63 Upstream flowby: Total Street Flow: 11.5cfs

Flow Intercepted: 10.2cfs Flow Bypassed: 1.3cfs

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 1.6%, capacity = 11.5cfs, okay

(100-year storm)

Tributary Basins: C8.7a&b Inlet/MH Number: Inlet DP63 Upstream flowby: Total Street Flow: 25.6cfs

Flow Intercepted: 15.9cfs Flow Bypassed: 9.7cfs

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 1.6%, capacity = 45.0cfs (half street) is okay

Design Point 63a Design point not shown in spreadsheet

Design Point 63a is the existing offsite flow from areas west of Lorson Ranch from offsite Basins OS-B1, OS-C4a, and OS-C4b. These offsite basins will be routed north in a wide shallow swale onto adjacent land owned by Lorson Ranch. The proposed total flow in the swale is 7.3cfs/42.2cfs in the 5/100-year storm events which is less than existing total flow onto the adjacent property at Design Point 1x which is 9.7cfs/54.2cfs in the 5/100-year storm events (see existing conditions). Two rip rap pads will be constructed at the north end of the shallow swale to disperse the concentrated flow as it flows

Flows shown do not

match design point flows in spreadsheet

north onto the adjacent property owned by Lorson Ranch. Lorson Ranch owns the downstream offsite land (to the north) and a letter of understanding will be secured at the final plat stage to address maintenance of any erosion issues should they occur on the offsite area and to acknowledge the manner of which drainage enters the offsite property has changed.

Design Point 64

Design Point 64 is located at the SE corner of Reagan Ridge Drive and Cody Ridge Way and accepts flows from Basin C8.7c

(5-year storm)

Tributary Basins: C8.7c Inlet/MH Number: Inlet DP64
Upstream flowby: 1.3cfs from Des.Pt.63 Total Street Flow: 10.7cfs

Flow Intercepted: 9.8cfs Flow Bypassed: 0.9cfs

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 4.0%, capacity = 17.9cfs, okay

(100-year storm)

Tributary Basins: C8.7c Inlet/MH Number: Inlet DP64
Upstream flowby: 9.7cfs from Des.Pt.63 Total Street Flow: 30.6cfs

Flow Intercepted: 17.5cfs Flow Bypassed: 13.1cfs

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 4.0%, capacity = 35.7cfs (half street) is okay

Design Point 65

Design Point 65 is the storm sewer pipe flow from Design Pt's 63 and 64. The total pipe flow is 20.0cfs/33.4cfs in the 5/100-year storm events in the storm sewer.

Design Point not shown in spreadsheet

Design Point 66

Design Point 66 is located at the NE corner of Reagan Ridge Drive and Broken Top Drive and accepts flows from Basin C8.7d

(5-year storm)

Tributary Basins: C8.7d Inlet/MH Number: Inlet DP66
Upstream flowby: 0.9cfs from Des.Pt.64 Total Street Flow: 1.5cfs

Flow Intercepted: 1.5cfs Flow Bypassed:

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.0%, capacity = 12.5cfs, okay

(100-year storm)

Tributary Basins: C8.7d Inlet/MH Number: Inlet DP66
Upstream flowby: 13.1cfs from Des.Pt.64 Total Street Flow: 14.5cfs

Flow Intercepted: 11.8cfs Flow Bypassed: 2.7cfs

Inlet Size: 15' type R, on-grade

Street Capacity: Street slope = 2.0%, capacity = 44.0cfs (half street) is okay

Doesn't match DP flow shown in spreadsheet

Flows shown do not match

design point flows shown i

spreadsheet. Also, mutiple DP-64's shown. Clarify wh

flows are used for inlet des

Design Point 67

Design Point 67 is the storm sewer pipe flow from Design Pt's 65 and 66. The total pipe flow is 21.5cfs/45.2cfs in the 5/100-year storm events in the storm sewer.

Design point not in spreadsheet

Design Point 68

Design Point 68 is the storm sewer pipe flow from Basins C8.6-C8.7e and runby from Des.Pt. 59. The total pipe flow is 33.0cfs/76.5cfs in the 5/100-year storm events in the storm sewer. Flows do not match the

hydrology spreadsheet

Design Point 69

Design Point 69 is located at the NW corner of Reagan Ridge Drive and Walleye Drive at an existing 25' Type R sump inlet and accepts flows from Basin OS-B1 & C8.8a

(5-year storm)

Tributary Basins: C8.8a Inlet/MH Number: Inlet DP69
Upstream flowby: Total Street Flow: 7.9cfs

Flow Intercepted: 7.9cfs Flow Bypassed: Flows shown do not match DP

Inlet Size: Ex 25' type R, SUMP flows shown in spreadsheet

Street Capacity: Street slope = 2.0%, capacity = 12.5cfs, okay

(100-year storm)

Tributary Basins: C8.8a Inlet/MH Number: Inlet DP69
Upstream flowby: Total Street Flow: 17.3cfs

Flow Intercepted: 17.3cfs Flow Bypassed:

Inlet Size: Ex 25' type R, SUMP

Street Capacity: Street slope = 2.0%, capacity = 44.0cfs (half street) is okay

Design Point 70

Flows do not match the hydrology spreadsheet

Design Point 70 is the storm sewer pipe flow from the offsite basins, C8.7's, and C8.8a basins and runby from Des.Pt.59. The total pipe flow is 34.5cfs/86.3cfs in the 5/100-year storm events in the storm sewer from the xcel spreadsheet calculations. The FDR for CDR20-007 (Design Point 34a) designed the storm sewer to accept 38.2cfs/84.5cfs in the existing 42" RCP storm sewer in Walleye Drive. The storm sewer has capacity for these basins.

6.0 DETENTION AND WATER QUALITY PONDS

Detention and Storm Water Quality for The Ridge at Lorson Ranch is required per El Paso County criteria. We have implemented the Full Spectrum approach for detention for the Denver Urban Drainage Districts specifications. There are four permanent full spectrum ponds previously constructed in The Hills at Lorson Ranch for this development which will incorporate storm water quality features and comply with the Lorson Ranch East MDDP. In addition, one WQ pond will drain eastward as in existing condition into the Upper Williams Creek Drainage Basin required to match existing conditions. The ponds have been sized and include access roads, outlet pipes, overflow structures, and low flow channels. This drainage report provides design information on the outlet structure, trickle channel, and the forebays.

revise to "structures" (plural)

Full Spectrum Pond Construction Requirements

at Lorson Ranch (PUDSP 20-003) and include Pond C1, C2.1, C2.2, and C4. The Hills at Lorson Ranch constructed Existing Pond C1 and C2.2 which are complete full spectrum ponds that do not need to be modified and include the full spectrum outlet structure, forebays, outfall storm sewer, and low flow channels. Existing Pond C2.1 and Pond C4 were graded and constructed with forebays, outfall storm sewers, and low flow channels but did not include the full spectrum outlet structure. The outlet structure for these two ponds will be discussed in this section including what type of structure is proposed. Per the Lorson East MDDP, these four ponds and downstream Pond C5 (at Fontaine/East tributary) are part of an overall storm water system to be constructed by Lorson Ranch. Existing Pond C5 (including the final configuration of the orifice plate) was completed with Lorson Ranch East Filing No. 1 in 2018 and the entire stormwater system tributary to Pond C5 will be completed with this subdivision.

be treated unless excluded per ECM App I.7.1.

All four of the detention ponds required for this project have been previously graded as part of The Hills

Design calculations for Pond C2.1 and Pond C4 spectrum outlet structures are included in this report. The existing ponds currently have a 15' wide grayel access road at a maximum 10% slope to the pond bottom, forebay, storm sewer outfall, and concrete low flow channels. The final design of the Pond C2.1 and Pond C4 will consist of a full spectrum outlet structure and overflow weirs. Soil borings, embankment, slope, and compaction requirements for detention ponds can be found in the geotechnical report for the The Hills at Lorson Ranch prepared by RMG.

WQ Pond Construction Requirements

In addition to the four detention ponds Lorson Ranch is required to discharge the same runoff rates eastward into the Upper Williams which will require one WQ Pond to be constructed for a small area draining eastward. The WQ pond will have a 15' wide gravel access road at a maximum 10% slope to the pond bottom, forebay, and a concrete low flow channel.

<u>Detention Pond C1 (existing pond for information only, See CDR20-007)</u>

This is an existing permanent full spectrum detention pond that includes water quality and discharges downstream to a storm sewer system in Fontaine Boulevard. Pond C1 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. See map in appendix for watershed areas.

- Watershed Area: 71.1 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B
- Zone 1 WQCV: 1.307ac-ft, WSEL: 5746.97
- Zone 2 EURV: 4.212ac-ft, WSEL: 5749.02, Top outlet structure set at 5749.50, 3'x6' outlet structure
- (5-yr): 4.691ac-ft, WSEL: 5749.33, 6.4cfs
- Zone 3 (100-yr): 9.954ac-ft, WSEL: 5752.39, 17.7cfs
- Pipe Outlet: 18" RCP at 0.5%
- Overflow Spillway: 28' wide bottom, elevation=5753.40, 4:1 side slopes, flow depth=1.37'
 1.16' freeboard
- Micropool Elevation: 5743.40

Detention Pond C2.2 (existing pond for information only, see CDR 20-007)

This is a permanent full spectrum detention pond that includes water quality and discharges downstream to an existing storm sewer in Fontaine Boulevard. Inflow to this pond is from direct

tributary development and outflow from Pond C3. The inflow hydrograph has been modeled in the full spectrum spreadsheets by adding the direct tributary area CUHP hydrograph to the upstream pond outflow hydrograph of Pond C3. The outlet structure, overflow wall, pond forebay and low flow channel will be built as part of the CDR 20-007 project. Pond C2.2 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. See map in appendix for watershed areas.

- Watershed Area: 45.0 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B (95%), Group C/D (5%)
- Zone 1 WQCV: 0.829ac-ft, WSEL: 5747.25
- Zone 2 EURV: 2.658ac-ft, WSEL: 5749.17, Top outlet structure set at 5751.00, 8'x6' outlet structure
- (5-yr): 4.475ac-ft, WSEL: 5760.88, 2.7cfs
- Zone 3 (100-yr): 6.67ac-ft, WSEL: 5752.75, 42.9cfs
- Pipe Outlet: 30" RCP w/18" restrictor plate
- Overflow Spillway: 20' wide bottom, elevation=5754.00, 4:1 side slopes, flow depth=1.51' 1.49' freeboard
- Micropool Elevation: 5744.00

Detention Pond C2.1

This is a permanent full spectrum detention pond that includes water quality and discharges downstream to Pond C2.3. The outlet Structure and overflow wall will be built as part of the final plat for this project. The pond forebay and low flow channel were built as part of the CDR 20-007 project. Pond C2.1 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Area: 74.5 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B
- Zone 1 WQCV: 1.377ac-ft. WSEL: 5763.42
- Zone 2 EURV: 4.415ac-ft, WSEL: 5766.20, Top outlet structure set at 5766.20, 8'x6' outlet structure
- (5-yr): 4.694ac-ft, WSEL: 5766.44, 12.8cfs
- Zone 3 (100-yr): 7.829ac-ft, WSEL: 5768.80, 65.0cfs
- Pipe Outlet: 30" RCP at 0.5%
- Overflow Spillway: 25' wide bottom, elevation=5769.30, 4:1 side slopes, flow depth=1.69' 1.01' freeboard
- Micropool Elevation: 5760.00

Detention Pond C4

This is a permanent full spectrum detention pond that includes water quality and discharges downstream to Pond C3. Pond C4 has been graded. The outlet Structure and overflow wall will be built with the final plat of this project. The pond forebay and low flow channel were built as part of the CDR 20-007 project. Pond C4 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full

spectrum extended detention basin structure and will include an emergency overflow spillway. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Area: 81.00 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B (40%), Group C/D (60%)
- Zone 1 WQCV: 1.488ac-ft, WSEL: 5767.97
- Zone 2 EURV: 4.477ac-ft, WSEL: 5770.41, Top outlet structure set at 5770.50, 6'x6' outlet structure
- (5-yr): 3.934ac-ft, WSEL: 5770.84, 16.5cfs
- Zone 3 (100-yr): 10.152ac-ft, WSEL: 5774.34, 43.7cfs
- Pipe Outlet: 24" RCP at 0.5%
- Overflow Spillway: 30' wide bottom, elevation=5775.00, 4:1 side slopes, flow depth=1.87'
- 1.13' freeboard
 Micropool Elevation: 5765.00
 Note that all RPA areas will need to be within a no build/drainage easement and discussed in the maintenance agreement and
- O&M manual. Also show easement on GEC Plan.

Water Quality for Basin F1.1 (4.23ac) - - - - backyards of lots draining east offsite

Developed runoff from this basin flows east offsite (shallow sheet flow) and does not include a water quality pond. Runoff from this basin is from a standard 50'x110' lot with the back 90 feet of the residential lots which flows overland east across a 145' wide open space tract prior to discharging to the east. The Runoff Reduction Method procedure from the Mile High Flood Control District spreadsheet (UD-BMP-V3.07) calculations have been applied to a standard 50' wide lot to address water quality provisions for development in this basin (see appendix). The UIA area is 4500sf (50'x90') and the RPA area is 7250sf (50'x145') per lot which can then be applied to the remaining lots within the basin. The large 145' wide open space tract provides a 100% reduction in the water quality requirements for this basin. Grading within this basin should not channelize flow from backyards and flow should be allowed to pass under any backyard fencing without obstructing or channelizing the overland flow.

Water Quality Pond F (4.9ac)

This is a permanent water quality pond that discharges eastward overland into the Upper Williams Creek drainage basin. The pond forebay, low flow channel, and outlet structure will be built as part of this project. WQ Pond F is designed in the UDCF Full Spectrum spreadsheets for Water Quality. In order to maintain existing discharge rates to the east (see Design Pt. 35), this pond allow the 5-year and 100-year storms to discharge undetained through the pond outlet structure and discharge overland to the east. The outlet structure is a standard extended detention basin structure with an orifice plate. Point discharge of stormwater from the outlet pipe will be dispersed by a slotted concrete channel (See Des. Pt. 35d). In addition, the slotted channel is located 100' west of the Lorson Ranch property line and the sheet flow will drain across a 100' wide open space tract on Lorson Ranch before entering the offsite property. Lorson Ranch will try to secure a letter of understanding with the downstream landowner to address maintenance of any erosion issues should they occur on the offsite area and to acknowledge the manner in which drainage enters the offsite property has changed at the Pond F outfall. The pond print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Area: 4.90 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B (100%)
- Zone 1 WQCV: 0.09ac-ft, WSEL: 5845.04
- Zone 2 EURV: not used
- (5-yr): not used
- Zone 3 (100-yr): not usedMicropool Elevation: 5842.77

7.0 DRAINAGE AND BRIDGE FEES

The Ridge at Lorson Ranch is located within the Jimmy Camp Creek drainage basin which is currently a fee basin in El Paso County. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land as part of the plat recordation process.

\$989

The Ridge at Lorson Ranch Filing No. 1 contains 107.820acres. The 2022 drainage fees are \$19,752, bridge fees are \$924 and Drainage Surety fees are \$7,285 per impervious acre per Resolution. The drainage and bridge fees are calculated when the final plat is submitted and are due at plat recordation. Lorson Ranch intends to use the Bridge Fee credits for the bridge fees and pay drainage/surety fees unless the Jimmy Camp Creek DBPS drainage fee structure is updated by El Paso County. The following table details the drainage fees for this filing:

Table 1a: Filing No. 1 2021 Drainage/Bridge Fees (107.820ac)

Type of Land Use	Total Area (ac)	Imperviousness	Drainage Fee	Bridge Fee	Surety Fee
Residential Area	91.497	51%	\$921,696	\$43,117	\$339,943
Open Space, Landscape Tracts,	16.323	2%	\$6,448	\$301	\$2,378
		Total	\$928,144	\$43,418	\$342,321

Table 1b: Filing No. 2 2021 Drainage/Bridge Fees (57.898ac)

Type of Land Use	Total Area (ac)	Imperviousness	Drainage Fee	Bridge Fee	Surety Fee
Residential Area	50.744	51%	\$511,170	\$23,912	\$188,531
Open Space, Landscape Tracts,	7.154	2%	\$2,826	\$132	\$1,042
		Total	\$513,996	\$24,044	\$189,573

Table 1c: Filing No. 3 2021 Drainage/Bridge Fees (40.755ac)

Type of Land Use	Total Area (ac)	Imperviousness	Drainage Fee	Bridge Fee	Surety Fee
Residential Area	27.592	51%	\$277,948	\$13,002	\$102,513
Open Space, Landscape Tracts,	13.163	2%	\$5,199	\$243	\$1,917
		Total	\$283,147	\$13,245	\$104,430

Table 7.1: Public Drainage Facility Costs (Filing 1-3, non-reimbursable)

Item	Quantity	Unit	Unit Cost	Item Total
Inlets/Manholes	65	EA	\$5000/EA	\$325,000
18" Storm	1820	LF	\$35	\$63,700
24" Storm	720	LF	\$40	\$28,800
30" Storm	1330	LF	\$45	\$59,850
36" Storm	1130	LF	\$55	\$62,150
42" Storm	245	LF	\$65	\$15,925
48" Storm	400	LF	\$85	\$34,000
			Subtotal	\$589,425
			Eng/Cont (10%)	\$58,942
			Total Est. Cost	\$648,367

Table 7.2: Lorson Ranch Metro District Drainage Facility Costs (Filing 1-3, non-reimbursable)

Item	Quantity	Unit	Unit Cost	Item Total
Full Spectrum Outlets	2	LS	\$20,000	\$40,000
WQ Pond	1	LS	\$20,000	\$20,000
			Subtotal	\$60,000
			Eng/Cont (15%)	\$9,000
			Total Est. Cost	\$69,000

8.0 FOUR STEP PROCESS

The site has been developed to minimize wherever possible the rate of developed runoff that will leave the site and to provide water quality management for the runoff produced by the site as proposed on the development plan. The following four step process should be considered and incorporated into the storm water collection system and storage facilities where applicable.

Step 1: Employ Runoff Reduction Practices

The Ridge at Lorson Ranch has employed several methods of reducing runoff.

- The street configuration was laid out to minimize the length of streets. Many streets are straight and perpendicular resulting in lots with less wasted space.
- There are large open space buffers under the 325' wide electric transmission easement and on the east side
- Construct outlet structures for two Full Spectrum Detention Ponds. The full spectrum detention mimics existing storm discharges and includes water quality.

Step 2: Stabilize Drainageways

East Tributary of Jimmy Camp Creek is a major drainageway located west of this site. In 2014 and in 2018 the East Tributary of JCC was reconstructed and stabilized per county criteria. The design included a natural sand bottom and armored sides.

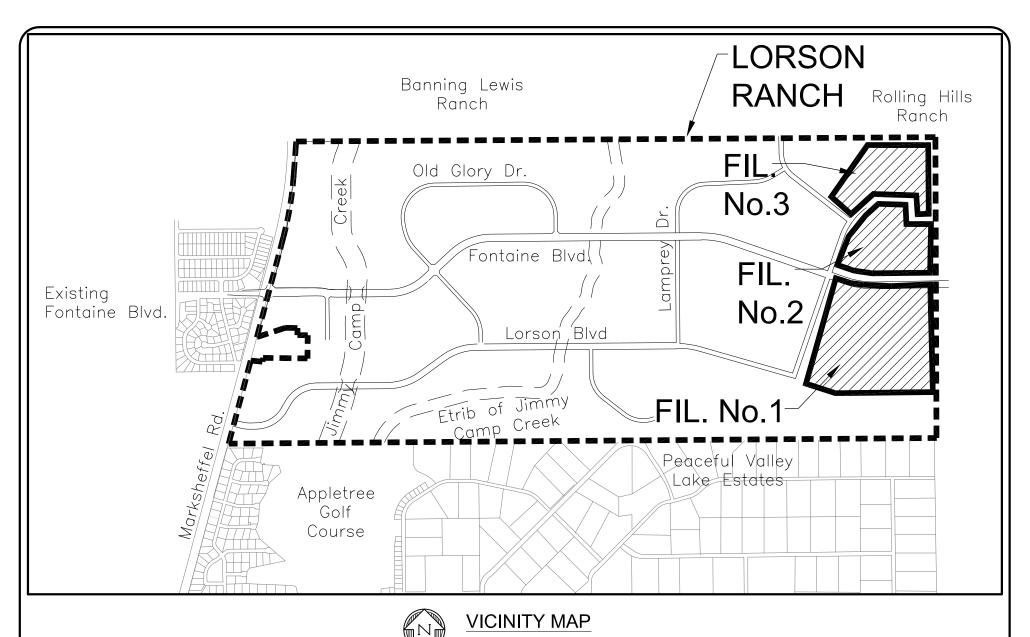
Step 3: Provide Water Quality Capture Volume

Treatment of the water quality capture volume (WQCV) is required for all new developments. The Ridge at Lorson Ranch will construct two full spectrum stormwater extended detention basins and one WQ pond which include Water Quality Volumes and WQ outlet structures.

Step 4: Consider Need for Industrial and Commercial BMP's

There are no commercial or industrial areas within this site.

9.0 CONCLUSIONS

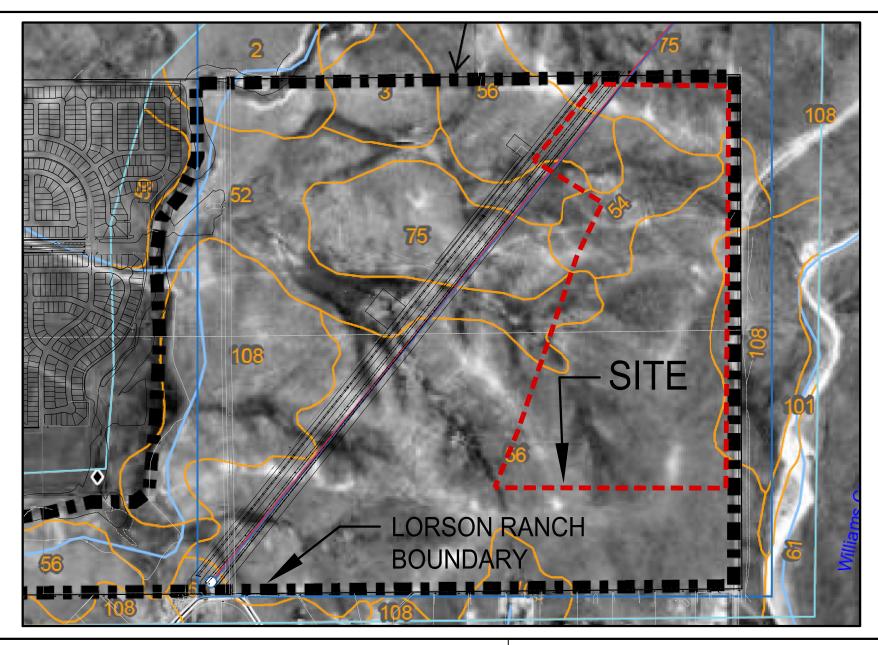

This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:

- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- The East Tributary of Jimmy Camp Creek has been reconstructed west of this study area
- Bridges over the East Tributary at Lorson Boulevard and Fontaine Boulevard and have been constructed providing access to this site.
- Detention and water quality for this site area will be provided in four permanent ponds and one runoff reduction area, and one WQ Pond.

10.0 REFERENCES

- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM, dated November, 1991
- 2. Soil Survey of El Paso County Area, Colorado by USDA, SCS
- 3. Jimmy Camp Creek Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
- 4. City of Colorado Springs "Drainage Criteria Manual, Volume 2
- 5. El Paso County "Engineering Criteria Manual"
- 6. Lorson Ranch East MDDP, June 30, 2017 by Core Engineering.
- 7. El Paso County Resolution #15-042, El Paso County adoption of Chapter 6 and Section 3.2.1 of the City of Colorado Springs Drainage Criteria Manual dated May, 2014.
- 8. Lorson Ranch East MDDP prepared by Core Engineering Group, dated November 27, 2017
- 9. Final Drainage Report for CDR 20-007 prepared by Core Engineering Group, dated October 22, 2020
- 10. Final Drainage Report for The Hills at Lorson Ranch Filing No. 1 prepared by Core Engineering Group, Reference SF 21-010

APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP


NO SCALE

15004 1ST AVE. S.
BURNSVILLE, MN 55306

CONTACT: RICHARD L. SCHINDLER, P.E. EMAIL: Rich@ceg1.com

THE RIDGE AT LORSON RANCH VICINITY MAP

SCALE: DATE: FIGURE NO.
NTS NOV, 2021 --

15004 1ST AVENUE S. BURNSVILLE, MN 55306 PH: 719.570.1100

THE RIDGE AT LORSON RANCH **SOILS MAP**

SCALE: DATE: FIGURE NO. NTS APRIL, 2021

<u>Letter of Understanding</u> The Ridge at Lorson Ranch Grading and Drainage Improvements

This Letter of Understanding ("LOU") is entered into in good faith between Lorson Ranch Metropolitan District and BJ Ranches, LLC, otherwise referred to as the Party or Parties. The intent of the LOU is to ensure the drainage flowing onto property owned by BJ Ranches, LLC (Parcel # 4500000082) located adjacent to and East of The Ridge at Lorson Ranch, is maintained at or below existing rates and to acknowledge the proposed grading in The Ridge at Lorson Ranch changes the manner in which drainage enters the unimproved subject property owned by BJ Ranches, LLC.

It is the intent of the Parties to minimize changes to the existing drainage patterns flowing from Lorson Ranch onto the subject property and to mimic the existing rate and sheet flow characteristics of drainage flowing onto the subject property as much as possible.

It is, however, acknowledged by the Parties that drainage from Lorson Ranch flowing downstream onto the subject property may cause erosion on the subject property after construction has occurred. The Lorson Ranch Metropolitan District or its assigns will be responsible for the mitigation and restoration of the subject property substantially to its existing condition.

Downstream Erosion Mitigation Protocol.

- The Lorson Ranch Metropolitan District representative and/or engineer and contractor will meet
 with the BJ Ranches, LLC representative and engineer; and County storm water inspector prior
 to the start of construction of the development and review the condition of the land at the
 property boundary and downstream of Lorson Ranch on the subject property.
- 2. The existing condition will be documented with photos/video and a written description to establish the baseline condition to be shared and documented between the Parties.
- 3. The condition of the BJ Ranches, LLC property will be monitored as required by the permits obtained by The Ridge at Lorson Ranch from the State and El Paso County. A BJ Ranches, LLC property representative may also make inspections with each storm event.
- 4. The inspections will be conducted until the upstream grading is complete is fully stabilized and vegetated as required by the permits referenced herein.
- 5. If erosion or sediment transmission impacts are measurable, the Parties shall meet on-site to mutually determine the best course of mitigation action. The mitigation will be conducted within 30 days of the event. If the Parties are not in agreement with the course of mitigation action, the Parties shall seek a final opinion from an engineering representative from El Paso County. The Parties shall then agree with whatever determination is made by these governing authorities.

- 6. If the mitigation is not undertaken within the 30-day period BJ Ranches, LLC or its assigns will undertake the necessary actions to return the area to its existing condition and Lorson Ranch Metropolitan District will be billed for reimbursement of the work, which bill will be paid within 30 days after receipt of the bill. If not timely paid, the amount due will accrue interest at the rate of 18% per annum from the date due.
- 7. In any action brought before a court or judge to enforce this LOU or collect damages on account of a party's breach of their obligations hereunder, the prevailing party shall be awarded their costs and reasonable attorney's fees. This shall include any action brought by BJ Ranches, LLC whereby the district is the prevailing party in which case District shall be awarded reasonable attorney's fees.

BJ Ranches, LLC

Lorson Ranch Metropolitan District
Jeff Mark, Manager

APPENDIX B – HYDROLOGY CALCULATIONS

Calculated By: <u>Leonard Beasley</u>

Date: Feb. 17, 2021

Job No: <u>100.064</u>

Project: The Ridge at Lorson Ranch

Checked By: <u>Leonard Beasley</u> Design Storm: <u>5 - Year Event (Current)</u>

					ect Run	off	Deasie	<u>Y</u>		Total	Runoff			reet	0 - 100	Pipe	. (Ouri		ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	ţ	SII O		Ø	t	Σ (CA)		Ø	Slope	Street	Design Flow	Slope	Pipe Size	Length	Velocity	#	Remarks
		Ā	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-B1			14.42	0.15	28.1	2.16	2.58	5.6													
OS-B1.1			11.47	0.15	21.0	1.72	3.02	5.2													
EX-B	1X	25.89							29.7	3.88	2.50	9.7									
C1.1-ex			12.49	0.09	23.8	1.12	2.83	3.2													
C2.1-ex Update	labol	to C4 1	26.58	0.10	33.6	2.66	2.31	6.1													
to match			.28	0.09	35.1	5.43	2.25	12.2													
C3.1-ex			8.36	0.12	28.6	1.00	2.55	2.6						Irology ate are							
OS-C4.1			3.90	0.10	20.7	0.39	3.04	1.2	a		ngly b				_						
C4.2-ex			47.93	0.13	31.6	6.23	2.41	15.0	u	Ocum	51113										
C4-ex	4X	51.83							34.1	6.62	2.29	15.2									
EX-F1			22.36	0.12	33.1	2.68	2.33	6.3													
EX-F2			17.49	0.15	15.4	2.62	3.48	9.1													
EX-F	2X	39.85							33.1	5.31	2.33	12.4									
EX-G			13.65	0.08	26.0	1.09	2.70	2.9						& H1 n map.	_						
Basin G1			10.61	0.08	22.3	0.85	2.93	2.5			P	lease	includ	de on	_						
ЕХ-Н			28.13	0.08	27.8	2.33	2.60	6.1					remo sheet	ve fror	n						
Basin H1			27.96	0.09	32.1	2.52	2.38	6.0													
									<u> </u>				j	1			l	I	1		i I

Calculated By: Leonard Beasley Checked By: Leonard Beasley

Date: Feb. 17, 2021

Job No: 100.064

Project: The Ridge at Lorson Ranch

Design Storm: 100-Year Event (Current)

	ıt				ect Rur	off		_		Total	Runoff		St	reet		Pipe		T	ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	tc	Σ (CA)		Ø	Slope	Street	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ā	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-B1			14.42	0.50	28.1	7.21	4.33	31.2													
OS-B1.1			11.47	0.50	21.0	5.74	5.06	29.0													
EX-B	1X	25.89							29.7	12.95	4.19	54.2									
C1.1-ex			12.49	0.36	23.8	4.50	4.75	21.4													
C2.1-ex			26.58	0.39	33.6	10.37	3.88	40.2													
C2.2-ex			60.28	0.36	35.1	21.70	3.77	81.8													
C3.1-ex			8.36	0.42	28.6	3.51	4.28	15.0													
C4.1-ex			3.90	0.39	20.7	1.52	5.10	7.8													
C4.2-ex			47.93	0.44	31.6	21.09	4.04	85.1													
C4-ex	4X	51.83							34.1	22.61	3.84	86.9									
EX-F1			22.36	0.44	33.1	9.84	3.91	38.5													
EX-F2			17.49	0.50	15.4	8.75	5.84	51.1													
EX-F	2X	39.85							33.1	18.58	3.91	72.7									
EX-G			13.65	0.35	26.0	4.78	4.52	21.6													
Basin G1			10.61	0.35	22.3	3.71	4.91	18.2													
EX-H			28.13	0.35	27.8	9.85	4.36	42.9													
Basin H1			27.96	0.36	32.1	10.07	3.99	40.2													

Calculated By: <u>Leonard Beasley</u>
Date: <u>Feb. 18, 2021</u>
Checked By: <u>Leonard Beasley</u>

Job No: <u>100.064</u>

Project: The Ridge at Lorson Ranch
Design Storm: **5 - Year Event (Proposed)**

	t			Dir	ect Rur	noff	Deasie			Total I	Runoff			eet		Pipe			avel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	tc	Σ (CA)		Ø	Slope	Street		Slope	Pipe Size	Length	Velocity	tt	Remarks
2		Ā	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C1.1	I-1		3.18	0.45	11.8	1.43	3.89	5.6													
C1.2	I-2		1.52	0.45	11.5	0.68	3.92	2.7													
C1.1-C1.2	3	4.70							11.8	2.12	3.89	8.2									
C1.3	I-4		6.71	0.45	21.8	3.02	2.96	8.9													
C1.1-C1.3	5	11.41							26.1	5.13	2.69	13.8									
C1.4			2.51	0.45	13.2	1.13	3.72	4.2													
C1.5	I-6		1.61	0.45	9.9	0.72	4.14	3.0													
C1.6			9.35	0.45	20.5	4.21	3.05	12.8													
C1.5-C1.6	7	10.96							20.5	6.06	3.05	18.5									
C3.1	I-12		6.20	0.45	14.7	2.79	3.55	9.9													
C3.2	I-13		5.01	0.45	15.3	2.25	3.49	7.9													
C3.1-C3.2	14	11.21							16.1	5.04	3.41	17.2									
C3.3	I-15		4.75	0.45	11.2	2.14	3.96	8.5													
C3.1-C3.3	16	15.96							18.1	7.18	3.24	23.3									
C3.4	I-17		3.77	0.45	9.4	1.70	4.23	7.2													
C3.1-C3.4	18	19.73							18.9	8.88	3.17	28.2									
C3.5	I-19		6.32	0.45	14.1	2.84	3.62	10.3													
C3.1-C3.5	20	26.05							19.9	11.72	3.10	36.3									
C3.6a	I-20a		3.15	0.45	11.2	1.42	3.96	5.6													
C3.1-C3.6a	20b	29.20							20.0	13.14	3.09	40.6									
C3.6b	I-21		4.80	0.45	16.8	2.16	3.35	7.2													
C3.7	I-23		4.58	0.45	9.4	2.06	4.22	8.7													
C3.1-C3.7	24	38.58							21.0	17.36	3.02	52.4									
C3.8	I-25		6.51	0.45	16.1	2.93	3.41	10.0													
C3.9	1-27		4.55	0.45	11.1	2.05	3.97	8.1													
C3.1-C3.9	28	49.64							22.3	22.34	2.93	65.4									
C3.10	I-29		6.01	0.45	16.4	2.70	3.39	9.2													
C3.1-C3.10	30	55.65							24.4	25.04	2.79	69.9									
C4.1			4.61	0.45	20.3	2.07	3.07	6.4													
C4.2			3.08	0.45	15.7	1.39	3.45	4.8													
C4.1-C4.2	31	7.69							20.6	3.46	3.04	10.5									
C4.3			3.07	0.46	10.7	1.41	4.02	5.7													
				•			<u>-</u>							<u> </u>							

Calculated By: Leonard Beasley Date: Feb. 18, 2021 Checked By: Leonard Beasley Direct Runoff

Job No: <u>100.064</u>

Project: The Ridge at Lorson Ranch
Design Storm: **5 - Year Event (Proposed)**Street Pipe Travel Time

	1	1		Checke	ed By: <u>L</u>	<u>eonard</u>	Beasle	<u>y</u>		Total	Dunoff		Desig	n Storm:	<u>5 - Yea</u>		t (Prop	osed)	royal Tir		
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	rect Rur ೨	1011 &		a	tc	Z (CA)	Runoff 	a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity Velocity	ne #	Remarks
		Are	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	1
C4.4			3.29	0.46	10.4	1.51	4.07	6.2													
C4.1-C4.4	34	14.05							22.6	6.39	2.91	18.6									
C4.5			0.63	0.90	5.0	0.57	5.17	2.9													
F1.1			4.23	0.45	11.3	1.90	3.94	7.5													
F1.2			19.06	0.08	11.0	1.52	3.98	6.1													
F1.3			1.15	0.46	13.6	0.53	3.67	1.9													
F1.4			3.75	0.45	15.3	1.69	3.49	5.9													
F1.1-F1.4	35	28.19							15.3	3.43	3.49	12.0									-
C5.1a	I-39		2.33	0.47	12.5	1.10	3.79	4.2													
C5.1b	I-36		6.32	0.45	10.8	2.84	4.02	11.4													
C5.1c	I-37		3.78	0.45	8.6	1.70	4.35	7.4													
C5.1b-C5.1c	38	10.10							10.8	4.55	4.02	18.3									
C5.1a-C5.1c	I-39 & 40	12.43							14.4	5.64	3.58	20.2									
C5.1d	I-41		5.67	0.45	14.0	2.58	3.62	9.3													
C5.1a-C5.1d	42	18.10							14.4	4.28	3.58	15.3									
C5.1e	I-43		6.44	0.46	16.5	2.96	3.38	10.0													
C5.1a-C5.1e	44	24.54							16.5	11.18	3.38	37.8									
C5.2			1.71	0.49	8.5	0.84	4.37	3.7													
C5.3			2.26	0.46	10.3	1.04	4.09	4.3													
C5.2-C5.3	I-45 & 46	3.97							10.3	1.88	4.09	7.7									
C8.1a	I-47		4.12	0.45	10.7	1.85	4.03	7.5													
C8.1b	I-49		3.69	0.48	14.6	1.77	3.56	6.3													
C8.1c	I-48		1.88	0.46	11.3	0.86	3.94	3.4													_
C8.1	I-49	9.69							14.6	4.49	3.56	16.0									
C8.2	I-51		2.12	0.49	8.9	1.04	4.31	4.5												<u> </u>	
OS-C4a			3.40	0.09	11.8	0.31	3.88	1.2													_
C8.3a	I-53		5.88	0.46	11.8	2.70	3.89	10.5													_
OS-C4a-C8.3a	I-54	9.28							14.0	3.01	3.62	10.9									

Calculated By: <u>Leonard Beasley</u>
Date: <u>Feb. 18, 2021</u>
Checked By: <u>Leonard Beasley</u>
Direct Runoff

Job No: 100.064

Project: The Ridge at Lorson Ranch
Design Storm: 5 - Year Event (Proposed)
Street Pine

	t			Dir	ect Run	off				Total I	Runoff		Str	eet		Pipe		Tr	avel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	t	Σ (CA)	į.	Ø	Slope	Street	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ari	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
OS-C4b			2.10	0.11	12.7	0.23	3.78	0.9													
C8.3b			3.46	0.48	14.2	1.66	3.61	6.0													
C8.3c (OS-C4b-C8.3c)	I-54	7.89	2.33	0.48	10.7	1.12	4.03	4.5	14.2	3.01	3.61	10.9									
OS-C4a-C8.3c	I-54	16.06							20.0	5.92	3.09	18.3									
C8.3d	I-56		5.26	0.48	15.1	2.52	3.51	8.9													
OS-C4a-C8.3d	I-56	21.32							20.6	8.45	3.05	25.7									
C8.4	I-57		6.70	0.46	14.5	3.08	3.57	11.0													
C8.1-C8.4	I-51	39.83							21.1	12.57	3.01	37.9									
C8.5	I-59		3.84	0.49	13.4	1.88	3.69	7.0													
C8.6			0.79	0.90	5.6	0.71	5.58	4.0													
C8.7a			4.52	0.49	13.7	2.21	3.66	8.1													
C8.7b	I-63		1.77	0.49	11.3	0.87	3.94	3.4													
C8.7a-C8.7b	I-63	6.29							13.9	3.08	3.63	11.2									
C8.7c	I-64		4.94	0.49	11.7	2.42	3.90	9.4													
C8.7a-C8.7c	I-64	11.23							14.4	5.50	3.59	19.7									
C8.7d	I-66		0.27	0.46	5.0	0.12	5.17	0.6													
C8.7e			6.09	0.47	11.9	2.86	3.87	11.1													
C8.6+C8.7e	I-62								13.4	3.57	3.69	13.2									
C8.7a-C8.7e		17.59							15.4	8.49	3.48	29.5									
C8.6-C8.7e	I-68	18.38							15.5	9.20	3.47	31.9									
OS-B1			5.11	0.15	12.7	0.77	3.77	2.9													<u> </u>
C8.8a			5.65	0.49	23.4	2.77	2.86	7.9													
OS-B1-C8.8a	I-69	10.76							27.3	3.54	2.62	9.3									
68+69	I-70	29.14							27.3	12.74	2.62	33.4									
C8.8			7.80	0.22	15.6	1.72	3.46	5.9													
C8			73.39	0.43	27.5	31.46	2.61	82.2													
Missing	hasir	ns H1	& G	1																	
comg			~ 0																		
		i	1	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	<u>I</u>		<u> </u>			1		<u> </u>		<u> </u>	<u> </u>		

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 19, 2021</u> Checked By: <u>Leonard Beasley</u>

Job No: 100.064
Project: The Ridge at Lorson Ranch
Design Storm: 100 - Year Event (Proposed)

				Checke	ed By: <u>L</u> ect Rur	eonard	Beasle	<u>Y</u>		Total I	Runoff		Design Storm Street	: 100 <u> - Y</u>	Pipe	ent (Pro	posed	<u>)</u> ravel Tin	ne .	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	t	V V	-	Ø	tc	Σ (CA)	·-	a	Slope Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	‡‡	Remarks
		Are	ac.		min.		in/hr	cfs	min		in/hr	cfs	% cfs	cfs	%	in	ft	ft/sec	min	
C1.1	I-1		3.18	0.59	11.8	1.88	6.52	12.2												
C1.2	I-2		1.52	0.59	11.5	0.90	6.58	5.9												
C1.1-C1.2	3	4.70							11.8	2.77	6.52	18.1								
C1.3	I-4		6.71	0.59	21.8	3.96	4.97	19.7												
C1.1-C1.3	5	11.41							26.1	6.73	4.52	30.4								
C1.4			2.51	0.59	13.2	1.48	6.24	9.2												
C1.5	I-6		1.61	0.59	9.9	0.95	6.96	6.6												
C1.6			9.35	0.59	20.5	5.52	5.12	28.3												
C1.5-C1.6	7	10.96							20.5	7.95	5.12	40.7								
C3.1	I-12		6.20	0.59	14.7	3.66	5.96	21.8												
C3.2	I-13		5.01	0.59	15.3	2.96	5.86	17.3												
C3.1-C3.2	14	11.21							16.1	6.61	5.73	37.9		1						
C3.3	I-15		4.75	0.59	11.2	2.80	6.65	18.6						-						
C3.1-C3.3	16	15.96							18.1	9.42	5.44	51.3								
C3.4	I-17		3.77	0.59	9.4	2.22	7.10	15.8												
C3.1-C3.4	18	19.73							18.9	11.64	5.32	62.0		1						
C3.5	I-19		6.32	0.59	14.1	3.73	6.07	22.6												
C3.1-C3.5	20	26.05							19.9	15.37	5.20	80.0		1						
C3.6a	I-20a		3.15	0.59	11.2	1.86	6.64	12.3						1						
C3.1-C3.6a	20b	29.20							20.0	17.23	5.19	89.3								
C3.6b	I-21		4.80	0.59	16.8	2.83	5.63	15.9												
C3.7	I-23		4.58	0.59	9.4	2.70	7.08	19.1												
C3.1-C3.7	24	38.58							21.0	22.76	5.06	115.2								
C3.8	I-25		6.51	0.59	16.1	3.84	5.73	22.0												
C3.9	1-27		4.55	0.59	11.1	2.68	6.66	17.9												
C3.1-C3.9	28	49.64							22.3	29.29	4.92	144.0								
C3.10	I-29		6.01	0.59	16.4	3.55	5.69	20.2												
C3.1-C3.10	30	55.65							24.4	32.83	4.69	153.9								
C4.1			4.61	0.59	20.3	2.72	5.15	14.0												
C4.2			3.08	0.59	15.7	1.82	5.79	10.5												
C4.1-C4.2	31	7.69						. 3.0	20.6	4.54	5.11	23.2								
C4.3	-		3.07	0.60	10.7	1.84	6.76	12.4			J.11									
C4.4			3.29	0.60	10.7	1.97	6.84	13.5												
C4.1-C4.4	34	14.05	J.23	3.00	10.4	1.51	J.U T	10.0	22.6	8.35	4.88	40.8								
04.1-04.4	34	14.00							22.0	0.33	4.00	40.0								

Calculated By: <u>Leonard Beasley</u>
Date: <u>Feb. 19</u>, 2021
Checked By: <u>Leonard Beasley</u>
Direct Runoff

Job No: 100.064
Project: The Ridge at Lorson Ranch
Design Storm: 100 - Year Event (Proposed)
Street Pipe Travel Time

	ı			Checke	ed By: <u>L</u> rect Rur	eonard	Beasle	<u>y</u>	1	Total	Runoff		Design	Storm: reet	100 <u>- Y</u>	ear Ev	ent (Pr	oposed	<u>)</u> ravel Tir	no.	т—
011	oint		$\overline{}$		ect Rui	IOII					Rulloll				_		g)			ie	· o
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	ţ	OA		Ø	ţ	Σ (CA)		Ø	Slope	Street	Design Flow	Slope	Pipe Size	Length	Velocity	#	Remarks
		Are	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C4.5			0.63	0.96	5.0	0.60	8.68	5.2													
F1.1			4.23	0.59	11.3	2.50	6.62	16.5													
F1.2			19.06	0.35	11.0	6.67	6.68	44.6													
F1.3			1.15	0.65	13.6	0.75	6.16	4.6													
F1.4			3.75	0.60	15.3	2.25	5.86	13.2													
F1.1-F4.4	35								15.3	12.16	5.86	71.3	-								
													-								
																				<u> </u>	
													-								_
																				L	
C5.1a	I-39		2.33	0.62	12.5	1.44	6.36	9.2											1		
C5.1b	I-36		6.32	0.59	10.8	3.73	6.75	25.2													
C5.1c	I-37		3.78	0.59	8.6	2.23	7.30	16.3													
C5.1b-C5.1c	38	10.10							10.8	5.96	6.75	40.2									-
C5.1a-C5.1c	I-39 & 40	12.43							14.4	7.40	6.01	44.5								<u> </u>	
C5.1d	I-41		5.67	0.60	14.0	3.40	6.08	20.7												<u> </u>	
C5.1a-C5.1d	42	18.10							14.4	10.81	6.01	64.9									1
C5.1e	I-43		6.44	0.60	16.5	3.86	5.68	21.9													
C5.1a-C5.1e	44	24.54							16.5	14.67	5.68	83.3									
C5.2			1.71	0.65	8.5	1.11	7.33	8.2													
C5.3			2.26	0.61	10.3	1.38	6.87	9.5													
C5.2-C5.3	I-45 & 46	3.97							10.3	2.49	6.87	17.1									
C8.1a	I-47		4.12	0.59	10.7	2.43	6.76	16.4													
C8.1b	I-49		3.69	0.63	14.6	2.32	5.97	13.9					-								<u> </u>
C8.1c	I-48		1.88	0.61	11.3	1.15	6.62	7.6													
C8.1	I-49	9.69							14.6	5.90	5.97	35.3									
C8.2	I-51		2.12	0.65	8.9	1.38	7.23	10.0													
OS-C4a			3.40	0.35	11.8	1.19	6.51	7.7													<u> </u>

Calculated By: <u>Leonard Beasley</u>
Date: <u>Feb. 19, 2021</u>
Checked By: <u>Leonard Beasley</u>

Job No: <u>100.064</u>
Project: The Ridge at Lorson Ranch
Design Storm: <u>100 - Year Event (Proposed)</u>

		1			ect Rur	eonard	beasie	<u>v</u>	1	Total	Runoff			eet	100 <u>- 1</u>	Pipe	ent (Pro		<u>ı</u> ravel Tir	20	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	ta ect Krii	o V	-	a	tc	Z (CA)		Ø	Slope	Street 9	Design Flow	Slope	Pipe Size	Length	Velocity	ne ≠	Remarks
		Are	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C8.3a	I-53		5.88	0.60	11.8	3.53	6.53	23.0													
OS-C4a-C8.3a	I-54	8.17							14.0	4.35	6.08	26.5									
OS-C4b			2.10	0.41	12.7	0.86	6.34	5.5													
C8.3b			3.46	0.63	14.2	2.18	6.06	13.2													
C8.3c (OS- C4b-C8.3c)	I-54	7.89	2.33	0.63	10.7	1.47	6.76	9.9	14.2	4.51	6.06	27.3									
OS-C4a-C8.3c	I-54	16.06							20.0	8.86	5.18	45.9									
C8.3d	I-56		5.26	0.62	15.1	3.26	5.89	19.2													
OS-C4a-C8.3d	I-56	21.32							20.6	11.30	5.12	57.8									
C8.4	I-57		6.70	0.60	14.5	4.02	5.99	24.1													
C8.1-C8.4	I-51	39.83							21.1	17.52	5.06	88.6									
C8.5	I-59		3.84	0.65	13.4	2.50	6.20	15.5													
C8.6			0.79	0.96	5.6	0.76	8.40	6.4													
C8.7a			4.52	0.65	13.7	2.94	6.14	18.0													
C8.7b	I-63		1.77	0.65	11.3	1.15	6.62	7.6												-	
C8.7a-C8.7b	I-63	6.29							13.9	4.09	6.10	24.9		T							
C8.7c	I-64		4.94	0.65	11.7	3.21	6.55	21.0													
C8.7a-C8.7c	I-64	11.23							14.4	7.30	6.01	43.8									
C8.7d			0.27	0.61	5.0	0.16	8.68	1.4													
C8.7a-C8.7d	I-66	11.50							15.0	7.46	5.91	44.1	-								
C8.7e			6.09	0.62	11.9	3.78	6.50	24.5													
C8.6+C8.7e	I-62								13.4	4.53	6.19	28.1									
C8.7a-C8.7e		17.59							15.4	11.24	5.84	65.7									
C8.6-C8.7e	1-68	18.38								12.00			-								
00.0-00.76	1-00	10.30							13.3	12.00	3.03	09.9									
OC D4			E 11	0.40	10.7	2.50	6 22	15.0													
OS-B1			5.11	0.49	12.7	2.50	6.33	15.8					-								
C8.8a			5.65	0.64	23.4	3.62	4.80	17.3													
OS-B1-C8.8a	I-69	10.76							27.3		4.40	26.9									
68+69	I-70	29.14							27.3	18.12	4.40	79.7									
C8.8			7.80	0.48	15.6	3.74	5.81	21.8													
C8			73.39	0.60	27.5	44.16	4.39	193.7													

PROJECT NAME: The Ridge at Lorson Ranch PROJECT NUMBER: 100.064 ENGINEER: LAB DATE: Feb. 17, 2021

Preliminary Drainage Plan
CURRENT CONDITIONS COEFFICIENT "C" CALCULATIONS

BASIN	Soil No.	Hydro Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	Impervious	Type of Cover
C2.1-ex	56	В	20.95	78.82%	0.09	0.07	0.36	0.28	100%	Undeveloped
	52/54	С	5.63	21.18%	0.16	0.03	0.51	0.11	80%	Undeveloped
			26.58	100.00%		0.10		0.39		
C2.2-ex	56	В	58.51	97.06%	0.09	0.09	0.36	0.35	10%	Undeveloped
	52	С	1.77	2.94%	0.16	0.00	0.51	0.01	10%	Undeveloped
			60.28	100.00%		0.09		0.36		
C3.1-ex	56	В	4.95	59.21%	0.09	0.05	0.36	0.21	10%	Undeveloped
	54	D	3.41	40.79%	0.16	0.07	0.51	0.21	10%	Undeveloped
			8.36	100.00%		0.12		0.42		
C4 1 ov	FG	В	2.54	80.64%	0.09	0.07	0.36	0.29	10%	Lindovalanad
C4.1-ex	56		3.54							Undeveloped
	75	D	0.85	19.36%	0.16	0.03	0.51	0.10	10%	Undeveloped
			4.39	100.00%		0.10		0.39		
C4.2-ex	56/108	В	21.23	44.29%	0.09	0.04	0.36	0.16	10%	Undeveloped
	52/54/75	D	26.70	55.71%	0.16	0.09	0.51	0.28	10%	Undeveloped
	33		47.93	100.00%		0.13		0.44	, 0	220.0.000
EX-F1	56/108	В	8.74	39.09%	0.08	0.03	0.35	0.14	10%	Undeveloped
	52	С	13.62	60.91%	0.15	0.09	0.50	0.30	10%	Undeveloped
			22.36	100.00%		0.12		0.44		
EX-F2	56/108	В	0.23	1.32%	0.08	0.00	0.35	0.00	10%	Undeveloped
	52	С	17.26	98.68%	0.15	0.15	0.50	0.49	10%	Undeveloped
			17.49	100.00%		0.15		0.50		
EX-G	56/108	В	13.27	100.00%	0.08	0.08	0.35	0.35	10%	Undeveloped
	52	С	0.00	0.00%	0.15	0.00	0.50	0.00	10%	Undeveloped
			13.27	100.00%		0.08		0.35		
EX-H	56/108	В	28.13	100.00%	0.08	0.08	0.35	0.35	10%	Undeveloped
	52	С	0.00	0.00%	0.15	0.00	0.50	0.00	10%	Undeveloped
			28.13	100.00%		0.08		0.35		

Standard Form SF-1. Time of Concentration-Current

Calculated By: Leonard Beasley

Date: Feb. 17, 2021

Checked By: Leonard Beasley

Job No: <u>100.064</u>

	Sub-Ba	sin Data		lı	nitial Overla	nd Time (ti))		Т	ravel Time (t	t)		Final tc
BASIN or DESIGN	C 5	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T t minutes	Computed tC Minutes	USDCM Recommended tc=ti+tt (min)
EX-B1	0.15	14.42	7.0	300.00	4.00%	0.27	18.80	575.00	4.00%	1.40	6.85		
			20.0					375.00	1.60%	2.53	2.47	28.12	28.12
OS-B1.1	0.15	11.47	20.0	300.00	4.00%	0.27	18.80	550.00	4.40%	4.20	2.19	20.99	20.99
(EX-B) 1X	0.15	20.06	20.0	300.00	2.00%	0.21	23.63	650.00	0.80%	1.79	6.06	29.69	29.69
C1.1-ex	0.09	12.49	7.0	300.00	5.40%	0.28	18.16	434.00	5.50%	1.64	4.41		
			15.0					225.00	4.44%	3.16	1.19	23.75	23.75
C2.1-ex	0.10	26.58	7.0	300.00	5.33%	0.28	18.06	1347.00	5.72%	1.67	13.41		
			15.0					266.00	1.88%	2.06	2.16	33.62	33.62
C2.2-ex	0.09	60.28	7.0	140.00	3.57%	0.16	14.22	1216.00	4.28%	1.45	13.99		
			15.0					1123.00	3.29%	2.72	6.88	35.10	35.10
C3.1-ex	0.12	8.36	7.0	300.00	6.00%	0.29	17.01	1052.00	6.10%	1.73	10.14		
			15.0					152.00	1.32%	1.72	1.47	28.63	28.63
OS-C4.1	0.10	4.39	7.0	300.00	4.50%	0.26	19.10	143.00	4.60%	1.50	1.59	20.68	20.68
C4.2-ex	0.13	47.93	7.0	300.00	5.25%	0.28	17.60	500.00	5.25%	1.60	5.20		
			15.0					1307.00	2.75%	2.49	8.76	31.55	31.55

Standard Form SF-1. Time of Concentration-Current

Calculated By: Leonard Beasley

Date: Feb. 17, 2021

Checked By: Leonard Beasley

Job No: <u>100.064</u>

	Sub-Ba	asin Data		Ir	nitial Overla	nd Time (ti))		Т	ravel Time (t	t)		Final t _c
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T t minutes	Computed tC Minutes	USDCM Recommended tc=ti+tt (min)
(C4-ex) 4X	0.13	52.32	7.0	300.00	4.50%	0.27	18.52	143.00	4.60%	1.50	1.59		
			7.0					500.00	5.25%	1.60	5.20		
			15.0					1307.00	2.75%	2.49	8.76	34.06	34.06
EX-F1	0.12	22.36	7.0	300.00	3.30%	0.24	20.67	950.00	3.30%	1.27	12.45	33.12	33.12
EX-F2	0.15	17.49	15.0	221.00	6.80%	0.27	13.55	406.00	5.90%	3.64	1.86	15.40	15.40
(EX-F) 2X	0.13	39.85	7.0	300.00	3.30%	0.24	20.46	390.00	3.30%	1.27	5.11	25.57	25.57
EX-G	0.08	13.27	7.0	300.00	4.80%	0.26	19.07	640.00	4.80%	1.53	6.96	26.02	26.02
Basin G1	0.08	10.61	7.0	300.00	4.80%	0.26	19.07	300.00	4.80%	1.53	3.26	22.33	22.33
EX-H	0.08	28.13	7.0	300.00	4.80%	0.26	19.07	800.00	4.80%	1.53	8.69	27.76	27.76
Basin H1	0.09	27.96	7.0	30.00	2.00%	0.06	7.98	880.00	1.20%	0.77	19.13		
			15.0					1000.00	5.00%	3.35	4.97	32.07	32.07

PROJECT NAME: The Ridge at Lorson Ranch

PROJECT NUMBER: 100.064

ENGINEER: LAB

DATE: Feb. 19, 2021

Preliminary Drainage Plan

	FROFOSED	CONDITIONS	COLITICIENT	"C" CALCULA				1	1	
BASIN	Soil No.	Hydro Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	Impervious	Type of Cover
C1.1	56	В	3.18		0.45		0.59		65%	1/8 ac. Single Family
C1.2	56	В	1.52		0.45		0.59		65%	1/8 ac. Single Family
C1.3	56	В	13.47		0.45		0.59		65%	1/8 ac. Single Family
C1.4	56	В	5.19		0.45		0.59		65%	1/8 ac. Single Family
C1.5	56	В	0.70		0.45		0.59		65%	1/8 ac. Single Family
C1.6	56/108	В	9.35		0.45		0.59		65%	1/8 ac. Single Family
C3.1	56	В	6.20		0.45		0.59		65%	1/8 ac. Single Family
C3.2	56	В	5.01		0.45		0.59		65%	1/8 ac. Single Family
C3.3	56	В	4.75		0.45		0.59		65%	1/8 ac. Single Family
C3.4	56	В	3.77		0.45		0.59		65%	1/8 ac. Single Family
C3.5	56	В	6.32		0.45		0.59		65%	1/8 ac. Single Family
C3.6a	56	В	3.15		0.45		0.59		65%	1/8 ac. Single Family
C3.6b	56	В	4.80		0.45		0.59		65%	1/8 ac. Single Family
C3.7	56	В	4.58		0.45		0.59		65%	1/8 ac. Single Family
C3.8	56	В	6.51		0.45		0.59		65%	1/8 ac. Single Family
C3.9	56	В	4.55		0.45		0.59		65%	1/8 ac. Single Family
C3.10	56	В	6.01		0.45		0.59		65%	1/8 ac. Single Family
C4.1	56	В	4.61		0.45		0.59		65%	1/8 ac. Single Family
C4.2	56	В	3.08		0.45		0.59		65%	1/8 ac. Single Family
C4.3	56	В	2.46	80.13%	0.45	0.36	0.59	0.47	65%	1/8 ac. Single Family
	52	С	0.61	19.87%	0.49	0.10	0.65	0.13	65%	1/8 ac. Single Family
			3.07	100.00%		0.46		0.60		
C4.1	56	В	4.61		0.45		0.59		65%	1/8 ac. Single Family
C4.2	56	В	3.08		0.45		0.59		65%	1/8 ac. Single Family
C4.3	56	В	2.46	80.13%	0.45	0.36	0.59	0.47	65%	1/8 ac. Single Family
	52	С	0.61	19.87%	0.49	0.10	0.65	0.13	65%	1/8 ac. Single Family
			3.07	100.00%		0.46		0.60		

PROJECT NAME: The Ridge at Lorson Ranch

PROJECT NUMBER: 100.064

ENGINEER: LAB

DATE: Feb. 19, 2021

Preliminary Drainage Plan

FROFUSED	CONDITION	3 COEFFICIENT	C CALCULA	IONS					
56	В	2.56	77.81%	0.45	0.35	0.59	0.46	65%	1/8 ac. Single Family
52	С	0.73	22.19%	0.49	0.11	0.65	0.14	65%	1/8 ac. Single Family
		3.29	100.00%		0.46		0.60		
56	В	0.26	41.27%	0.90	0.37	0.96	0.40	100%	Roadway
52	С	0.37	58.73%	0.90	0.53	0.96	0.56	100%	Roadway
		0.63	100.00%		0.90		0.96		
56	В	1.34	57.51%	0.45	0.26	0.59	0.34	65%	1/8 ac. Single Family
54/52	D/C	0.99	42.49%	0.49	0.21	0.65	0.28	65%	1/8 ac. Single Family
		2.33	100.00%		0.47		0.62		
56	В	5.96	94.30%	0.45	0.42	0.59	0.56	65%	1/8 ac. Single Family
52	С	0.36	5.70%	0.49	0.03	0.65	0.04	65%	1/8 ac. Single Family
		6.32	100.00%		0.45		0.59		
56	В	3.54	93.65%	0.45	0.42	0.59	0.55	65%	1/8 ac. Single Family
52	С	0.24	6.35%	0.49	0.03	0.65	0.04	65%	1/8 ac. Single Family
		3.78	100.00%		0.45		0.59		
56	В	4.98	87.83%	0.45	0.40	0.59	0.52	65%	1/8 ac. Single Family
52	С	0.69	12.17%	0.49	0.06	0.65	0.08	65%	1/8 ac. Single Family
		5.67	100.00%		0.45		0.60		
56	В	5.44	84.47%	0.45	0.38	0.59	0.50	65%	1/8 ac. Single Family
52	С	1.00	15.53%	0.49	0.08	0.65	0.10	65%	1/8 ac. Single Family
		6.44	100.00%		0.46		0.60		
52	С	1.71		0.49		0.65		65%	1/8 ac. Single Family
56	В	1.50	66.37%	0.45	0.30	0.59	0.39	65%	1/8 ac. Single Family
52	С	0.76	33.63%	0.49	0.16	0.65	0.22	65%	1/8 ac. Single Family
	56 52 56 52 56 54/52 56 52 56 52 56 52 56 52	56 B 52 C 56 B 52 C 56 B 52 C 56 B 54/52 D/C 56 B 52 C 56 B 52 C	56 B 2.56 52 C 0.73 3.29 3.29 56 B 0.26 52 C 0.37 0.63 0.63 56 B 1.34 54/52 D/C 0.99 2.33 0.24 0.32 56 B 5.96 52 C 0.36 56 B 3.54 52 C 0.24 3.78 0.69 0.69 56 B 4.98 52 C 0.69 56 B 5.44 52 C 1.00 6.44 0.44 52 C 1.71 56 B 1.50	56 B 2.56 77.81% 52 C 0.73 22.19% 3.29 100.00% 56 B 0.26 41.27% 52 C 0.37 58.73% 0.63 100.00% 56 B 1.34 57.51% 54/52 D/C 0.99 42.49% 2.33 100.00% 56 B 5.96 94.30% 52 C 0.36 5.70% 52 C 0.36 5.70% 56 B 3.54 93.65% 52 C 0.24 6.35% 3.78 100.00% 56 B 4.98 87.83% 52 C 0.69 12.17% 56 B 5.44 84.47% 52 C 1.00 15.53% 6.44 100.00% 52 C 1.71 56 B 5.44 84.47% 52 C 1.00 15.53% <	52 C 0.73 22.19% 0.49 3.29 100.00% 0.90 56 B 0.26 41.27% 0.90 52 C 0.37 58.73% 0.90 56 B 1.34 57.51% 0.45 54/52 D/C 0.99 42.49% 0.49 56 B 5.96 94.30% 0.45 52 C 0.36 5.70% 0.49 56 B 3.54 93.65% 0.45 52 C 0.24 6.35% 0.49 56 B 4.98 87.83% 0.45 52 C 0.69 12.17% 0.49 56 B 5.44 84.47% 0.45 52 C 1.00 15.53% 0.49 56 B 5.44 84.47% 0.45 52 C 1.00 15.53% 0.49 52 C 1.7	56 B 2.56 77.81% 0.45 0.35 52 C 0.73 22.19% 0.49 0.11 3.29 100.00% 0.46 56 B 0.26 41.27% 0.90 0.37 52 C 0.37 58.73% 0.90 0.53 0.63 100.00% 0.99 0.45 0.26 54/52 D/C 0.99 42.49% 0.49 0.21 2.33 100.00% 0.45 0.42 52 C 0.36 5.70% 0.49 0.21 56 B 5.96 94.30% 0.45 0.42 52 C 0.36 5.70% 0.49 0.03 56 B 3.54 93.65% 0.45 0.42 52 C 0.24 6.35% 0.49 0.03 3.78 100.00% 0.45 0.45 52 C 0.69 12.17% 0.49	56 B 2.56 77.81% 0.45 0.35 0.59 52 C 0.73 22.19% 0.49 0.11 0.65 3.29 100.00% 0.46 0.46 0.46 0.46 56 B 0.26 41.27% 0.90 0.37 0.96 52 C 0.37 58.73% 0.90 0.53 0.96 56 B 1.34 57.51% 0.45 0.26 0.59 54/52 D/C 0.99 42.49% 0.49 0.21 0.65 54/52 D/C 0.99 42.49% 0.49 0.21 0.65 54/52 D/C 0.99 42.49% 0.49 0.21 0.65 52 C 0.36 5.70% 0.49 0.03 0.65 52 C 0.36 5.70% 0.49 0.03 0.65 52 C 0.24 6.35% 0.49 0.00 0.65	56 B 2.56 77.81% 0.45 0.35 0.59 0.46 52 C 0.73 22.19% 0.49 0.11 0.65 0.14 52 C 0.73 22.19% 0.49 0.46 0.60 56 B 0.26 41.27% 0.90 0.37 0.96 0.40 52 C 0.37 58.73% 0.90 0.53 0.96 0.56 56 B 1.34 57.51% 0.45 0.26 0.59 0.34 54/52 D/C 0.99 42.49% 0.49 0.21 0.65 0.28 54/52 D/C 0.99 42.49% 0.49 0.21 0.65 0.28 56 B 5.96 94.30% 0.45 0.42 0.59 0.56 52 C 0.36 5.70% 0.49 0.03 0.65 0.04 52 C 0.24 6.35% 0.49 0.03	56 B 2.56 77.81% 0.45 0.35 0.59 0.46 65% 52 C 0.73 22.19% 0.49 0.11 0.65 0.14 65% 56 B 0.26 41.27% 0.90 0.37 0.96 0.40 100% 52 C 0.37 58.73% 0.90 0.53 0.96 0.56 100% 56 B 1.34 57.51% 0.45 0.26 0.59 0.34 65% 56 B 1.34 57.51% 0.45 0.26 0.59 0.34 65% 56 B 1.34 57.51% 0.45 0.26 0.59 0.34 65% 56 B 1.34 57.51% 0.49 0.21 0.65 0.28 65% 54/52 D/C 0.99 42.49% 0.49 0.21 0.65 0.59 0.56 65% 52 C 0.36 5.70%

PROJECT NAME: The Ridge at Lorson Ranch

PROJECT NUMBER: 100.064

ENGINEER: LAB

DATE: Feb. 19, 2021

Preliminary Drainage Plan

	1		0 002///0/2/1/	O OALOOLA		1			1	
C8.1a	56	В	3.81	92.48%	0.45	0.42	0.59	0.55	65%	1/8 ac. Single Family
	54	D	0.31	7.52%	0.49	0.04	0.65	0.05	65%	1/8 ac. Single Family
			4.12	100.00%		0.45		0.59		
C8.1b	56	В	1.36	36.86%	0.45	0.17	0.59	0.22	65%	1/8 ac. Single Family
	54	D	2.33	63.14%	0.49	0.31	0.65	0.41	65%	1/8 ac. Single Family
			3.69	100.00%		0.48		0.63		
C8.1c	56	В	1.31	69.68%	0.45	0.31	0.59	0.41	65%	1/8 ac. Single Family
	54	D	0.57	30.32%	0.49	0.15	0.65	0.20	65%	1/8 ac. Single Family
			1.88	100.00%		0.46		0.61		
C8.2	52	С	2.12		0.49		0.65		65%	1/8 ac. Single Family
OS-C4a	56	В	2.29		0.09		0.36		10%	Undeveloped
C8.3a	56	В	4.88	82.99%	0.45	0.37	0.59	0.49	65%	1/8 ac. Single Family
	54	C/D	1.00	17.01%	0.49	0.08	0.65	0.11	65%	1/8 ac. Single Family
			5.88	100.00%		0.46		0.60		
OS-C4b	56	В	1.36	64.76%	0.09	0.06	0.36	0.23	10%	Undeveloped
	75	D	0.74	35.24%	0.16	0.06	0.51	0.18	10%	Undeveloped
			2.10	100.00%		0.11		0.41		
C8.3b	56	В	1.09	31.50%	0.45	0.14	0.59	0.19	65%	1/8 ac. Single Family
	54	D	2.37	68.50%	0.49	0.34	0.65	0.45	65%	1/8 ac. Single Family
			3.46	100.00%		0.48		0.63		
C8.3c	56	В	0.87	37.34%	0.45	0.17	0.59	0.22	65%	1/8 ac. Single Family
	54	D	1.46	62.66%	0.49	0.31	0.65	0.41	65%	1/8 ac. Single Family
			2.33	100.00%		0.48		0.63		
DP-54	56	В	6.84	58.61%	0.45	0.26	0.59	0.35	65%	1/8 ac. Single Family

PROJECT NAME: The Ridge at Lorson Ranch

PROJECT NUMBER: 100.064

ENGINEER: LAB

DATE: Feb. 19, 2021

Preliminary Drainage Plan

	FROFUSED	CONDITIONS	S CUEFFICIEN I	C CALCULA	HONS					
	54	D	4.83	41.39%	0.49	0.20	0.65	0.27	65%	1/8 ac. Single Family
			11.67	100.00%		0.47		0.61		
C8.3d	56	В	0.81	15.40%	0.45	0.07	0.59	0.09	65%	1/8 ac. Single Family
	54	D	4.45	84.60%	0.49	0.41	0.65	0.55	65%	1/8 ac. Single Family
			5.26	100.00%		0.48		0.64		
C8.4	56	В	5.25	78.36%	0.45	0.35	0.59	0.46	65%	1/8 ac. Single Family
	54	D	1.45	21.64%	0.49	0.11	0.65	0.14	65%	1/8 ac. Single Family
			6.70	100.00%		0.46		0.60		
C8.5	54/75	D	3.84		0.49		0.65		100%	1/8 ac. Single Family
C8.6	54	D	0.79		0.90		0.96		100%	Street
C8.7a	75	D	6.29		0.49		0.65		100%	1/8 ac. Single Family
C8.7b	54/75	D	4.94		0.49		0.65		100%	1/8 ac. Single Family
C8.7c	75	D	4.94		0.49		0.65		100%	1/8 ac. Single Family
C8.7d	56	В	0.17	62.96%	0.45	0.28	0.59	0.37	65%	1/8 ac. Single Family
	54	D	0.10	37.04%	0.49	0.18	0.65	0.24	65%	1/8 ac. Single Family
			0.27	100.00%		0.46		0.61		
C8.7e	56	В	2.56	42.04%	0.45	0.19	0.59	0.25	65%	1/8 ac. Single Family
	52/54	C/D	3.53	57.96%	0.49	0.28	0.65	0.38	65%	1/8 ac. Single Family
			6.09	100.00%		0.47		0.62		
OS-B1	56	В	0.75	14.68%	0.09	0.01	0.36	0.05	10%	Undeveloped
	75	D	4.36	85.32%	0.16	0.14	0.51	0.44	10%	Undeveloped
			5.11	100.00%		0.15		0.49		
C8.8a	56	В	0.70	12.39%	0.45	0.06	0.59	0.07	65%	1/8 ac. Single Family
	52/54/75	C/D	4.95	87.61%	0.49	0.43	0.65	0.57	65%	1/8 ac. Single Family
			5.65	100.00%		0.49		0.64		
C8.8	56	В	3.85	49.36%	0.16	0.08	0.41	0.20	13%	Pond / Open Space
	52	С	3.08	39.49%	0.23	0.09	0.54	0.21	13%	Pond / Open Space

PROJECT NAME: The Ridge at Lorson Ranch

PROJECT NUMBER: 100.064

ENGINEER: LAB

DATE: Feb. 19, 2021

Preliminary Drainage Plan

	PROPOSED (CONDITION	S COEFFICIENT	T "C" CALCULAT	IONS					
	56	В	0.63	8.08%	0.45	0.04	0.59	0.05	65%	1/8 ac. Single Family
	52	С	0.24	3.08%	0.49	0.02	0.65	0.02	65%	1/8 ac. Single Family
			7.80	100.00%		0.22		0.48		
	50		4.00	70.000/	0.45	0.00	0.50	0.40	050/	4/0 as Oissis Famili
C8.4	56	В	4.89	72.99%	0.45	0.33	0.59	0.43	65%	1/8 ac. Single Famil
	54	С	1.81	27.01%	0.49	0.13	0.65	0.18	65%	1/8 ac. Single Famil
			6.70	100.00%		0.46		0.61		
C8.5	75	D	3.49		0.49		0.65		100%	1/8 ac. Single Family
C8.6	54	D	0.79		0.90		0.96		100%	Street
C8.7	56	В	3.68	15.59%	0.45	0.07	0.59	0.09	65%	1/8 ac. Single Famil
	52/54/75	C/D	19.93	84.41%	0.49	0.41	0.65	0.55	65%	1/8 ac. Single Famil
			23.61	100.00%		0.48		0.64		
C8.8	56	В	3.85	49.36%	0.16	0.08	0.41	0.20	13%	Pond / Open Space
	52	С	3.08	39.49%	0.23	0.09	0.54	0.21	13%	Pond / Open Space
	56	В	0.63	8.08%	0.45	0.04	0.59	0.05	65%	1/8 ac. Single Fami
	52	С	0.24	3.08%	0.49	0.02	0.65	0.02	65%	1/8 ac. Single Fami
			7.80	100.00%		0.22		0.48		
	52/75	C/D	0.93	10.65%	0.49	0.05	0.65	0.07	65%	1/8 ac. Single Fami
			8.73	110.65%		0.27		0.55		
H1	56	В	27.64	98.86%	0.08	0.08	0.35	0.35	13%	Open Space
	56	В	0.32	1.14%	0.90	0.01	0.96	0.01	65%	Roadway
			27.96	100.00%		0.09		0.36		

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 19, 2021</u>

Checked By: Leonard Beasley

Job No: <u>100.064</u>

					Checked	By: <u>Leona</u>	rd Beasle	<u>y</u> I				I	t- Chook	(urbanized	F114
	Sub-Ba	sin Data	ı			nd Time (1				avel Time	(tt)		Ba	sins)	Final tc
BASIN or DESIGN	C 5	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C1.1	0.45	3.18	7.0	100.00	3.00%	0.20	8.20	90.00	2.60%	1.13	1.33				
			20.0					350.00	1.71%	2.62	2.23	11.76	540.00	13.00	11.76
C1.2	0.45	1.52	20.0	67.00	2.00%	0.15	7.67	417.00	0.83%	1.82	3.81	11.49	484.00	12.69	11.49
DP-3	0.45	4.70	7.0	100.00	3.00%	0.20	8.20	90.00	2.60%	1.13	1.33				
			20.0					350.00	1.71%	2.62	2.23	11.76	540.00	13.00	11.76
C1.3	0.45	6.71	7.0	80.00	2.00%	0.16	8.38	87.00	1.40%	0.83	1.75				
			20.0					1400.00	1.39%	2.36	9.90				
			20.0					552.00	5.25%	4.58	2.01	22.04	2119.00	21.77	21.77
DP-5	0.45	16.31	7.0	100.00	2.00%	0.18	9.37	87.00	1.40%	0.83	1.75				
			20.0					2158.00	1.39%	2.36	15.25				
			20.0					552.00	5.25%	4.58	2.01	28.38	2897.00	26.09	26.09
C1.4	0.45	2.51	20.0	51.00	2.00%	0.13	6.69	685.00	2.10%	2.90	3.94				
			20.0					302.00	1.00%	2.00	2.52	13.15	1038.00	15.77	13.15
C1.5	0.45	1.61	20.0	23.00	2.00%	0.09	4.50	1220.00	3.52%	3.75	5.42	9.91	1243.00	16.91	9.91
C1.6	0.45	9.35	20.0	81.00	2.90%	0.18	7.46	2102.00	1.80%	2.68	13.06	20.52	2183.00	22.13	20.52
C3.1	0.45	6.20	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				
			20.0					150.00	3.67%	3.83	0.65	14.73	1105.00	16.14	14.73
C3.2	0.45	5.01	7.0	100.00	2.00%	0.18	9.37	120.00	2.20%	1.04	1.93				
			20.0					940.00	3.80%	3.90	4.02	15.32	1160.00	16.44	15.32
DP-14	0.45	11.21	7.0	100.00	2.00%	0.18	9.37	2.00	2.10%	1.01	0.03				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				
			20.0					150.00	3.67%	3.83	0.65				
			20.0					255.00	1.57%	2.51	1.70	16.13	1342.00	17.46	16.13
C3.3	0.45	4.75	7.0	55.00	7.82%	0.21	4.43	165.00	2.79%	1.17	2.35				
			20.0					631.00	4.90%	4.43	2.38				
			20.0					286.00	1.40%	2.37	2.01	11.17	1137.00	16.32	11.17
DP-16	0.45	15.96	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 19, 2021</u>

Checked By: Leonard Beasley

Job No: <u>100.064</u>

					Checked			У					t _c Check	(urbanized	Final to
	Sub-Ba	sin Data	NDCC		tial Overla			LENGTH		avel Time ((tt)		Ba	sins)	
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (mir
			20.0					150.00	3.67%	3.83	0.65				
			20.0					255.00	1.57%	2.51	1.70				
			20.0					247.00	1.62%	2.55	1.62	18.05	1607.00	18.93	18.05
C3.4	0.45	3.77	7.0	45.00	9.33%	0.20	3.78	130.00	2.31%	1.06	2.04				
			20.0					601.00	4.74%	4.35	2.30				
			20.0					225.00	2.22%	2.98	1.26	9.37	1001.00	15.56	9.37
DP-18	0.45	19.73	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				
			20.0					150.00	3.67%	3.83	0.65				
			20.0					255.00	1.57%	2.51	1.70				
			20.0					247.00	1.62%	2.55	1.62				
			20.0					166.00	2.41%	3.10	0.89	18.94	1773.00	19.85	18.94
C3.5	0.45	6.32	7.0	82.00	6.22%	0.23	5.83	100.00	2.80%	1.17	1.42				
			20.0					535.00	1.16%	2.15	4.14				
			20.0					559.00	5.01%	4.48	2.08				
			20.0					114.00	2.63%	3.24	0.59	14.06	1390.00	17.72	14.06
DP-20	0.45	26.05	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				
			20.0					150.00	3.67%	3.83	0.65				
			20.0					255.00	1.57%	2.51	1.70				
			20.0					247.00	1.62%	2.55	1.62				
			20.0					166.00	2.41%	3.10	0.89				
			20.0					162.00	2.16%	2.94	0.92	19.86	1935.00	20.75	19.86
C3.6a	0.45	3.15	20.0	63.00	2.00%	0.14	7.44	915.00	4.07%	4.03	3.78	11.22	978.00	15.43	11.22
C3.6b	0.45	4.80	7.0	100.00	2.00%	0.18	9.37	65.00	2.00%	0.99	1.09				
			20.0					301.00	0.90%	1.90	2.64				
			20.0					515.00	5.24%	4.58	1.87				
			20.0					318.00	2.20%	2.97	1.79	16.77	1299.00	17.22	16.77
C3.7	0.45	4.58	20.0	30.00	2.33%	0.10	4.88	364.00	1.73%	2.63	2.31				
			20.0					386.00	5.96%	4.88	1.32				
			20.0					154.00	1.95%	2.79	0.92	9.42	934.00	15.19	9.42
DP-24	0.45	38.58	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 19, 2021</u>

Checked By: <u>Leonard Beasley</u>

Job No: <u>100.064</u>

						By: <u>Leona</u>		<u>y</u> I					tr Check	(urbanized	Final tc
	Sub-Ba	sin Data				nd Time (1	ti)			avel Time ((tt)		Ba	sins)	
BASIN or DESIGN	C 5	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
			20.0					150.00	3.67%	3.83	0.65				
			20.0					255.00	1.57%	2.51	1.70				
			20.0					247.00	1.62%	2.55	1.62				
			20.0					166.00	2.41%	3.10	0.89				
			20.0					162.00	2.16%	2.94	0.92				
			20.0					236.00	2.97%	3.45	1.14	21.00	2171.00	22.06	21.00
C3.8	0.45	6.51	20.0	39.00	2.00%	0.11	5.85	569.00	1.28%	2.26	4.19				
			20.0					600.00	4.83%	4.40	2.28				
			20.0					539.00	1.39%	2.36	3.81	16.13	1747.00	19.71	16.13
C3.9	0.45	4.55	20.0	54.00	2.78%	0.15	6.18	1063.00	3.20%	3.58	4.95	11.13	1117.00	16.21	11.13
DP-28	0.45	45.09	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				
			20.0					150.00	3.67%	3.83	0.65				
			20.0					255.00	1.57%	2.51	1.70				
			20.0					247.00	1.62%	2.55	1.62				
			20.0					166.00	2.41%	3.10	0.89				
			20.0					162.00	2.16%	2.94	0.92				
			20.0					236.00	2.97%	3.45	1.14				
			20.0					246.00	2.64%	3.25	1.26	22.26	2417.00	23.43	22.26
C3.10	0.45	6.01	7.0	66.00	3.79%	0.18	6.16	118.00	2.37%	1.08	1.82				
			20.0					1076.00	2.39%	3.09	5.80				
			20.0					343.00	3.79%	3.89	1.47				
			20.0					146.00	1.23%	2.22	1.10	16.35	1749.00	19.72	16.35
DP-30	0.45	51.10	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				
			20.0					150.00	3.67%	3.83	0.65				
			20.0					255.00	1.57%	2.51	1.70				
			20.0					247.00	1.62%	2.55	1.62				
			20.0					166.00	2.41%	3.10	0.89				
			20.0					162.00	2.16%	2.94	0.92				
			20.0					236.00	2.97%	3.45	1.14				

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 19, 2021</u>

Checked By: Leonard Beasley

Job No: <u>100.064</u>

Checked By: Leonard Beasle													tc Check (urbanized		Final tc
Sub-Basin Data BASIN AREA NRCS				Initial Overland Time (ti) LENGTH SLOPE VELOCITY				Travel Time (tt) LENGTH SLOPE VELOCITY Computed				Computed	Basins) TOTAL Regional to		USDCM
or DESIGN	C ₅	(A) acres	Convey.	(L) feet	(S) %	(V) ft/sec	t i minutes	(L) feet	(S) %	(V) ft/sec	t t minutes	tc Minutes	LENGTH (L) feet	tc=(L/180)+10 minutes	Recommended tc=ti+tt (min)
			20.0					246.00	2.64%	3.25	1.26				
			20.0					245.00	0.94%	1.94	2.11	24.37	2662.00	24.79	24.37
C4.1	0.45	4.61	7.0	45.00	10.00%	0.20	3.69	128.00	2.58%	1.12	1.90				
			20.0					1680.00	1.45%	1.36	20.59	26.18	1853.00	20.29	20.29
C4.2	0.45	3.08	20.0	43.00	2.80%	0.13	5.50	124.00	2.72%	3.30	0.63				
			20.0					865.00	4.44%	1.36	10.60	16.73	1032.00	15.73	15.73
DP-31	0.45	7.69	7.0	45.00	10.00%	0.20	3.69	128.00	2.58%	1.12	1.90				
			20.0					1680.00	1.45%	2.41	11.63				
			20.0					865.00	4.44%	4.21	3.42	20.64	2718.00	25.10	20.64
C4.3	0.46	3.07	7.0	100.00	2.00%	0.18	9.23	85.00	2.00%	0.99	1.43				
			20.0					5.07	1.12%	1.36	0.06	10.72	190.07	11.06	10.72
C4.4	0.46	3.29	20.0	34.00	3.82%	0.13	4.34	900.00	3.08%	3.51	4.27				
			20.0					144.00	1.32%	1.36	1.76	10.38	1078.00	15.99	10.38
DP-33	0.45	14.05	7.0	45.00	10.00%	0.20	3.66	128.00	2.58%	1.12	1.90				
			20.0					1680.00	1.45%	2.41	11.63				
			20.0					1170.00	4.27%	4.13	4.72				
			20.0					84.00	1.07%	2.07	0.68	22.58	3107.00	27.26	22.58
C4.5	0.90	0.63	20.0	56.00	3.93%	0.54	1.73	384.00	2.86%	3.38	1.89	3.62	440.00	12.44	3.62
F1.1	0.45	4.23	15.0	88.00	20.00%	0.36	4.10	150.00	2.50%	2.37	1.05	5.16	238.00	11.32	11.32
F1.2	0.08	19.06	7.0	37.00	19.19%	0.15	4.23	150.00	2.50%	1.11	2.26	6.49	187.00	11.04	11.04
F1.3	0.46	1.15	7.0	10.00	2.00%	0.06	2.92	30.00	2.00%	0.99	0.51				
			20.0					830.00	1.00%	1.36	10.17	13.59	870.00	14.83	13.59
F1.4	0.46	3.75	7.0	50.00	2.00%	0.13	6.53	100.00	2.00%	0.99	1.68				
			20.0					580.00	1.00%	1.36	7.11	15.32	730.00	14.06	15.32
C5.1a & I-39	0.47	2.33	7.0	87.00	12.76%	0.32	4.59	141.00	2.13%	1.02	2.30				
			20.0					1159.00	5.13%	4.53	4.26				
			20.0					296.00	3.14%	3.54	1.39	12.54	1683.00	19.35	12.54
C5.1b & I-36	0.45	6.32	7.0	45.00	24.44%	0.27	2.75	255.00	3.53%	1.32	3.23				
			20.0					1212.00	5.07%	4.50	4.49				
			20.0					62.00	3.23%	3.59	0.29	10.75	1574.00	18.74	10.75
C5.1c & I-37	0.45	3.78	7.0	44.00	20.45%	0.25	2.88	47.00	2.55%	1.12	0.70				
			20.0					1335.00	4.85%	4.40	5.05	8.63	1426.00	17.92	8.63

Standard Form SF-1. Time of Concentration-Proposed

Date: Feb. 19, 2021

Job No: <u>100.064</u>

Project: The Ridge at Lorson Ranch

	Date: <u>Feb. 19, 2021</u> Checked By: <u>Leonard Beas</u> i							eV	Project: <u>The Ridge at Lorson Ranch</u>					ļ	
	Sub-Ba	sin Data		Ini	tial Overla				Tr	avel Time	(t _t)			(urbanized	Final tc
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C5.1d & I-41	0.45	5.67	7.0	83.00	15.30%	0.32	4.32	228.00	2.68%	1.15	3.32				
			20.0					1356.00	4.23%	4.11	5.49				
			20.0					115.00	1.13%	2.13	0.90	14.03	1782.00	19.90	14.03
DP-42	0.46	12.43	7.0	87.00	12.76%	0.31	4.66	141.00	2.13%	1.02	2.30				
			20.0					1159.00	5.13%	4.53	4.26				
			20.0					375.00	2.61%	3.23	1.93				
			20.0					123.00	0.65%	1.61	1.27	14.43	1885.00	20.47	14.43
C5.1e &	0.46	6.44	7.0	100.00	7.00%	0.27	6.13	191.00	6.00%	1.71	1.86				
DP-44	0.40	0.44	20.0	100.00	7.0070	0.27	0.10	742.00	1.62%	2.55	4.86				
			20.0					786.00	4.58%	4.28	3.06				
			20.0					104.00	2.40%	3.10	0.56	16.47	1923.00	20.68	16.47
C5.2	0.49	1.71	20.0	38.00	2.63%	0.13	4.95	677.00	2.48%	3.15	3.58	8.53	715.00	13.97	8.53
C5.3	0.46	2.26	20.0	42.00	2.00%	0.12	5.98	1115.00	4.68%	4.33	4.30	10.28	1157.00	16.43	10.28
	0.10	2.20	20.0	12.00	2.0070	0.12	0.00	1110.00	1.0070	1.00	1.00	10.20	1137.00	10.10	10.20
C8.1a	0.45	4.12	7.0	60.00	7.67%	0.21	4.65	163.00	2.45%	1.10	2.48				
			20.0					966.00	5.12%	4.53	3.56	10.69	1189.00	16.61	10.69
C8.1b	0.48	3.69	20.0	73.00	2.00%	0.16	7.64	929.00	5.30%	4.60	3.36				
			20.0					465.00	1.08%	2.08	3.73	14.73	1467.00	18.15	14.73
C8.1c	0.46	1.88	20.0	63.00	2.00%	0.14	7.30	1119.00	5.36%	4.63	4.03	11.32	1182.00	16.57	11.32
C8.1	0.45	9.68	7.0	57.00	8.07%	0.21	4.43	163.00	2.45%	1.10	2.48				
			20.0					1018.00	4.93%	4.44	3.82				
			20.0					363.00	1.29%	2.27	2.66	13.39	1601.00	18.89	13.39
C8.2	0.49	2.12	20.0	50.00	4.20%	0.17	4.87	385.00	0.64%	1.60	4.01	8.88	435.00	12.42	8.88
OS-C4a	0.09	2.29	7.0	100.00	4.30%	0.15	11.30	227.00	4.40%	1.47	2.58	13.88	327.00	11.82	11.82
C8.3a	0.46	5.88	7.0	61.00	18.85%	0.30	3.43	123.00	2.60%	1.13	1.82				
			20.0					1390.00	3.17%	3.56	6.51	11.75	1574.00	18.74	11.75
DP-53	0.38	8.17	7.0	100.00	4.30%	0.21	8.06	377.00	5.60%	1.66	3.79				
			20.0					548.00	4.50%	4.24	2.15	14.00	1025.00	15.69	14.00
OS-C4b	0.11	2.10	7.0	100.00	4.00%	0.15	11.35	378.00	5.00%	1.57	4.02	15.37	478.00	12.66	12.66
C8.3b	0.48	3.46	7.0	100.00	4.50%	0.24	6.84	28.00	16.00%	2.80	0.17				
			7.0					108.00	2.00%	0.99	1.82				
			20.0					672.00	2.40%	3.10	3.61	12.44	908.00	15.04	12.44
C8.3c	0.48	2.33	7.0	60.00	11.17%	0.26	3.92	148.00	2.36%	1.08	2.29				
			20.0					900.00	3.50%	3.74	4.01				
			20.0					93.00	2.69%	3.28	0.47	10.69	1201.00	16.67	10.69

Standard Form SF-1. Time of Concentration-Proposed

Calculated By: Leonard Beasley Date: Feb. 19, 2021

Job No: 100.064 Project: The Ridge at Lorson Ranch

Checked By: Leonard Beasley

tc Check (urbanized Final tc Sub-Basin Data Initial Overland Time (ti) Travel Time (tt) Basins) SLOPE VELOCITY VELOCITY Computed tc TOTAL BASIN ARFA NRCS LENGTH LENGTH SLOPE Regional tc USDCM τi **t**t Recommended C_5 (A) Convey (L) (S) (L) (S) LENGTH tc=(L/180)+10tc=ti+tt (min) (L) feet minutes minutes Minutes DESIGN feet % ft/sec feet % ft/sec minutes acres DP-54 0.36 16.06 7.0 100.00 4.00% 0.20 8.48 616.00 4.91% 1.55 6.62 20.0 1085.00 3.24% 3.60 5.02 20.13 1801.00 20.01 20.01 C8.3d 0.48 5.26 20.0 76.00 2.00% 0.16 7.79 700.00 5.19% 4.56 2.56 20.0 664.00 1.36% 2.33 4.74 15.10 1440.00 18.00 15.10 0.44 100.00 4.00% 0.22 7.57 4.91% 1.55 **DP-56** 21.32 7.0 616.00 6 62 20.0 1310.00 20.57 2.92% 3.42 6.39 20.57 2026.00 21.26 4.14% 6.70 7.16 1.42 C8.4 0.46 7.0 42.00 1.19% 0.10 157.00 1.84 20.0 89.00 3.37% 3.67 0.40 20.0 697.00 5.16% 4.54 2.56 20.0 374.00 1.48% 2.43 2.56 14.52 1359.00 17.55 14.52 DP-51 7.34 0.46 39.82 100.00 4.00% 0.23 616.00 4.91% 7.0 1.55 6.62 20.0 1310.00 2.92% 3.42 6.39 20.0 391.00 1.20% 9.15 0.71 21.06 2417.00 23.43 21.06 C8.5 0.49 3.84 7.0 45.00 2.20% 0.13 5.72 160.00 1.88% 0.96 2.78 20.0 683.00 4.25% 4.12 2.76 320.00 1.60% 2.53 13.36 16.71 13 36 20.0 2.11 1208.00 C8.6 0.90 0.79 20.0 25.00 2.00% 0.29 1.44 342.00 1.67% 2.58 2.21 20.0 400.00 2.98% 3.45 1.93 767.00 14.26 5.58 5.58 C8.7a 0.49 4.52 7.0 75.00 6.67% 0.24 5.11 108.00 2.50% 1.11 1.63 1040.00 20.0 857 00 1 05% 2 05 6.97 13 71 15 78 13 71 C8.7b 0.49 1.77 20.0 33.00 2.00% 0.11 5.05 1040.00 1.92% 2.77 6.25 11.31 1073.00 15.96 11.31 DP-63 0.49 6.29 75.00 6.67% 0.24 108.00 2.50% 7.0 5.11 1.11 1.63 20.0 885.00 1.05% 2.05 7.20 13.94 1068.00 15.93 13.94 C8.7c 0.49 4.94 20.0 60.00 2.10% 0.15 6.70 817.00 3.11% 3.53 3.86 1.74% 20.0 172.00 2.64 1.09 11.65 1049.00 15.83 11.65 DP-64 0.49 11.23 7.0 75.00 6.67% 0.24 5.11 108.00 2.50% 1.11 1.63 20.0 885.00 1.05% 2.05 7.20 **RCP** 270.00 1.00% 10.63 0.42 14.36 1338.00 17.43 14.36 C8.7d 0.46 0.27 7.0 20.00 16.50% 0.16 2.05 166.00 3.31% 1.27 2.17 4.23 186.00 11.03 4.23 C8.7e 0.47 6.09 7.0 40.00 20.00% 0.25 2.68 290.00 2.83% 1.18 4.10 20.0 1 06% 293 00 2.06 2 37 20.0 577.00 3.14% 3.54 2.71 11.87 1200.00 16.67 11.87 DP-62 0.48 7.0 75.00 6.67% 0.24 5.20 108.00 2.50% 17.59 1.11 1.63 C3.7a-e 20.0 885.00 1.05% 2.05 7.20 RCP 270.00 1.00% 10.63 0.42 RCP 777.00 3.40% 13.28 0.98 15.42 2115.00 21.75 15.42

Standard Form SF-1. Time of Concentration-Proposed

Calculated By: <u>Leonard Beasley</u>

Date: Feb. 19, 2021 Checked By: Leonard Beasley Job No: <u>100.064</u>

Project: The Ridge at Lorson Ranch

					Checked	By: <u>Leona</u>	ird Beasle	У							
	Sub-Ba	sin Data			tial Overla	•	•			avel Time	(tt)		Ba	(urbanized	Final tc
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min
DESIGN		acres		icet	70	17300		icci	70	Tysee			(-)		
DP-62															
C3.5-C3.7 0.50	22.22	7.0	45.00	2.20%	0.13	5.62	160.00	1.88%	0.96	2.78					
			20.0					683.00	4.25%	4.12	2.76				
			20.0					320.00	1.60%	2.53	2.11				
			20.0					342.00	1.67%	2.58	2.21				
			20.0					400.00	2.98%	3.45	1.93	17.41	1950.00	20.83	17.41
OS-B1	0.15	5.11	7.0	100.00	4.40%	0.16	10.55	388.00	4.30%	1.45	4.46	15.01	488.00	12.71	12.71
C8.8a	0.49	5.65	7.0	100.00	4.60%	0.25	6.68	133.00	4.36%	1.46	1.52				
			20.0					1457.00	1.41%	2.37	10.23				
			20.0					427.00	3.75%	3.87	1.84				
			20.0					650.00	3.06%	3.50	3.10	23.35	2767.00	25.37	23.35
DP-68	0.33	10.76	7.0	100.00	4.50%	0.20	8.49	488.00	2.42%	1.09	7.47				
			20.0					1457.00	1.41%	2.37	10.23				
			20.0					427.00	3.75%	3.87	1.84				
			20.0					650.00	0.60%	1.55	6.99	35.01	3122.00	27.34	27.34
C8.8	0.22	7.80	7.0	100.00	2.00%	0.13	12.69	611.00	5.48%	1.64	6.21				
			7.0					53.00	33.00%	4.02	0.22				
			7.0					245.00	0.60%	0.54	7.53	26.65	1009.00	15.61	15.61
C8	0.43	73.39	7.0	20.00	18.50%	0.16	2.07	99.00	2.42%	1.09	1.52				
			20.0					2654.00	2.15%	2.93	15.08				
			RCP					566.00	5.30%	21.72	0.43				
			7.0					272.00	0.60%	0.54	8.36	27.46	3611.00	30.06	27.46
		1	1	<u> </u>						1	1				

APPENDIX C – HYDRAULIC CALCULATIONS

Hydraflow Express by Intelisolve

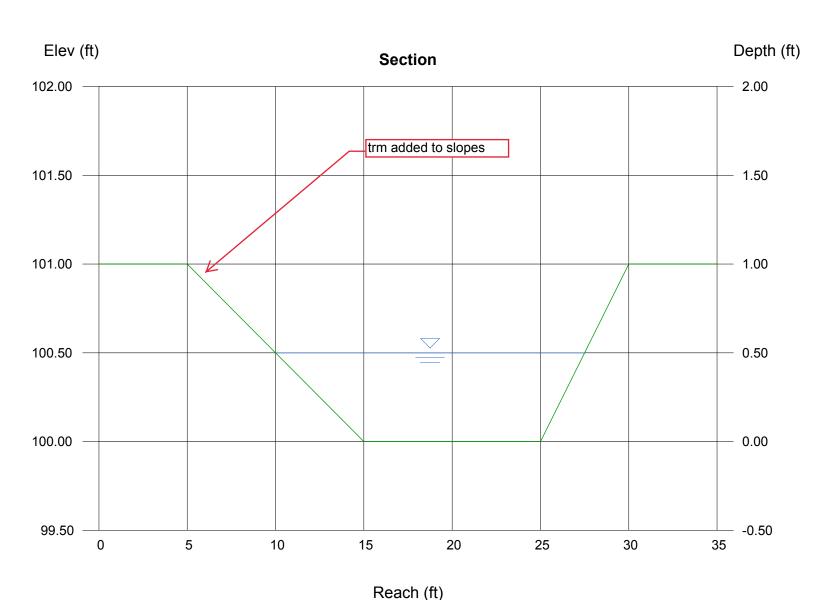
Thursday, Jun 17 2021, 9:45 AM

EAST SWALE 3%

Trapezoidal

Botom Width (ft) = 10.00 Side Slope (z:1) = 10.00 Total Depth (ft) = 1.00 Invert Elev (ft) = 100.00 Slope (%) = 3.00 N-Value = 0.020

Calculations


Compute by: Q vs Depth

No. Increments = 10

Highlighted

= 0.50Depth (ft) Q (cfs) = 47.31Area (sqft) = 6.88Velocity (ft/s) = 6.88Wetted Perim (ft) = 17.57Crit Depth, Yc (ft) = 0.59Top Width (ft) = 17.50EGL (ft) = 1.24

Include design information for TRM

Hydraflow Express by Intelisolve

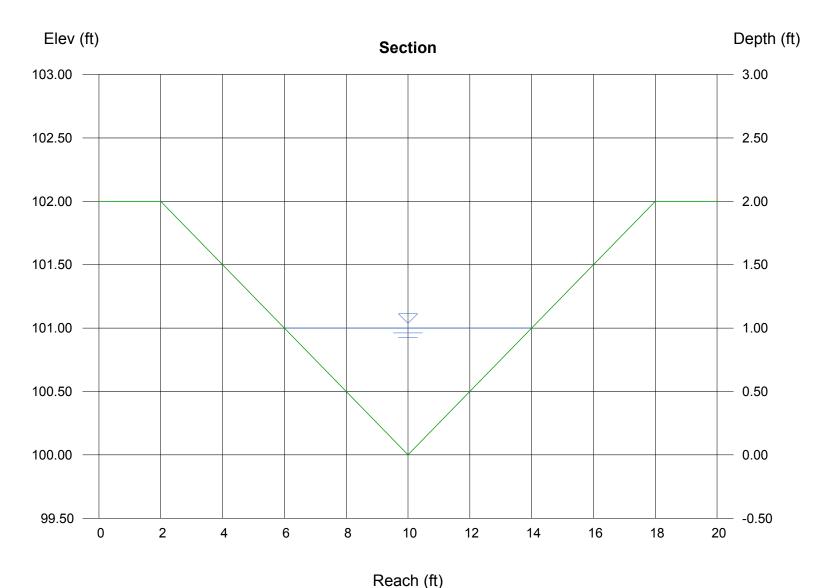
Wednesday, Sep 29 2021, 9:32 AM

EAST SWALE BY CUT/FILL (0.52%)

Triangular

Side Slope (z:1) = 4.00Total Depth (ft) = 2.00

Invert Elev (ft) = 100.00 Slope (%) = 0.52 N-Value = 0.020


Calculations

Compute by: Q vs Depth

No. Increments = 10

Highlighted

Depth (ft) = 1.00 Q (cfs) = 13.23Area (sqft) = 4.00Velocity (ft/s) = 3.31Wetted Perim (ft) = 8.25Crit Depth, Yc (ft) = 0.73Top Width (ft) = 8.00EGL (ft) = 1.17

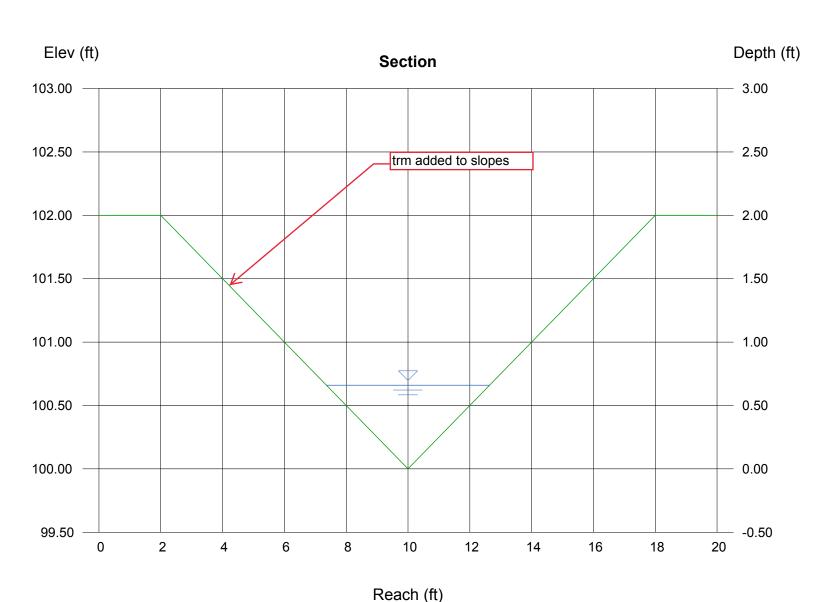
Hydraflow Express by Intelisolve

Wednesday, Sep 29 2021, 9:34 AM

EAST SWALE BY CUT/FILL (5.0%)

Triangular

Side Slope (z:1) = 4.00Total Depth (ft) = 2.00


Invert Elev (ft) = 100.00 Slope (%) = 5.00 N-Value = 0.020

Calculations

Compute by: Known Q Known Q (cfs) = 13.20 Highlighted

Depth (ft) = 0.66Q (cfs) = 13.20Area (sqft) = 1.74Velocity (ft/s) = 7.58Wetted Perim (ft) = 5.44 Crit Depth, Yc (ft) = 0.93Top Width (ft) = 5.28EGL (ft) = 1.55

Include design information for TRM

Hydraflow Express by Intelisolve

Friday, Nov 5 2021, 10:47 AM

Pond F spreader - 8-in curbhead

Rectangular

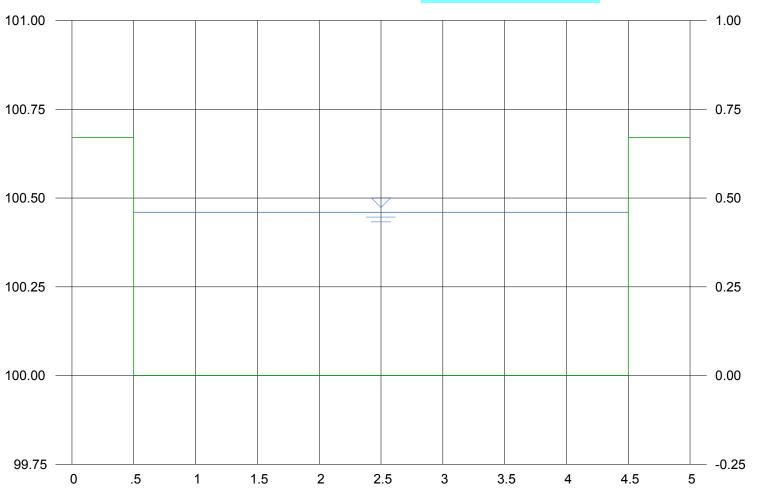
Botom Width (ft) = 4.00Total Depth (ft) = 0.67

Invert Elev (ft) = 100.00 Slope (%) = 0.60 N-Value = 0.013

Calculations

Compute by: Known Q Known Q (cfs) = 8.40 Highlighted

Depth (ft) = 0.46 Q (cfs) = 8.400 Area (sqft) = 1.84 Velocity (ft/s) = 4.57 Wetted Perim (ft) = 4.92 Crit Depth, Yc (ft) = 0.52 Top Width (ft) = 4.00


EGL (ft) = 0.78

Include calculation to size riprap for spreader.

Include design for overflow swale in Tract G for DP-44.

Depth (ft)

Reach (ft)

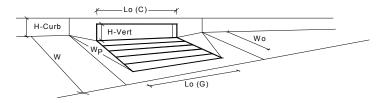
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-1 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line H_{CURB} 6.00 Distance from Curb Face to Street Crown $\mathsf{T}_{\mathsf{CROWN}}$ 17.0 Gutter Width 2.00 W Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Check boxes are not applicable in SUMP conditions Minor Storm Major Storm Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) 4.08 4.08 nches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") nches d_{C} 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) a: 1.51 1.51 inches Water Depth at Gutter Flowline d: 5 59 5 59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) T_{Y} : 15.0 15.0 Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Eο 0.350 0.350 Discharge outside the Gutter Section W, carried in Section Tx Q_{x} 0.0 0.0 Discharge within the Gutter Section W (Q_T - Q_X) Q_{W} 0.0 cfs 0.0 Q_{BACK} Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) 0.0 Maximum Flow Based On Allowable Spread Q_T SUMF cfs SUMF Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 0.0 Minor Storm Major Storm Maximum Capacity for 1/2 Street based on Allowable Depth T_{TH}: Theoretical Water Spread 17.0 26.7 Theoretical Spread for Discharge outside the Gutter Section W (T - W) Туты: 15.0 24.7 Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Eo 0.349 0.219 Theoretical Discharge outside the Gutter Section W, carried in Section TXTH Q_{X TH} 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) Q_{X} 0.0 0.0 cfs Discharge within the Gutter Section W (Q_d - Q_X) ${\sf Q}_{\sf W}$ 0.0 0.0 $\mathbf{Q}_{\mathsf{BACK}}$ Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) 0.0 0.0 cfs Total Discharge for Major & Minor Storm (Pre-Safety Factor) 0.0 0.0 Q cfs Average Flow Velocity Within the Gutter Section ۷: 0.0 0.0 fps V*d Product: Flow Velocity Times Gutter Flowline Depth V*d 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm SUMF SUMF Max Flow Based on Allowable Depth (Safety Factor Applied) Q_d SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} inches

100.064, Ridge Inlets, Inlet DP-1 2/28/2021, 11:42 AM

Minor Storm

SUMP


Major Storm

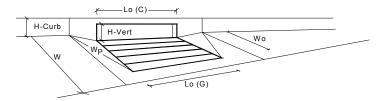
MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.2	7.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.27	0.42	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.49	0.66	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.88	0.99	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.6	12.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _{PEAK REQUIRED} =	5.6	12.2	cfs

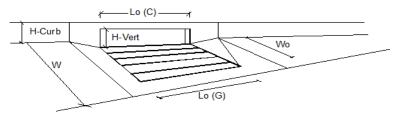

100.064, Ridge Inlets, Inlet DP-1 2/28/2021, 11:42 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-2 STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o Street Longitudinal Slope - Enter 0 for sump condition 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.017 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP

100.064, Ridge Inlets, Inlet DP-2 2/28/2021, 11:43 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017


Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	6.3	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.36	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	0.80	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.7	5.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _{PEAK REQUIRED} =	2.7	5.9	cfs

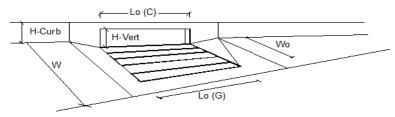
100.064, Ridge Inlets, Inlet DP-2 2/28/2021, 11:43 AM

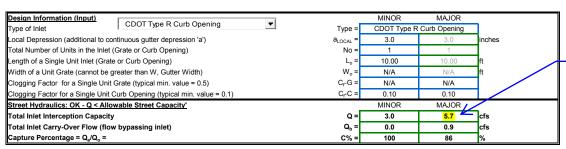
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-4 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 10.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown $\mathsf{T}_{\mathsf{CROWN}}$ 22.0 Gutter Width w: 2.00 S_X = Street Transverse Slope 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.026 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 22.0 22.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 17.5 44.5 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-4 7/15/2021, 12:00 PM

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR			1
Type of Inlet CDOT Type R Curb Opening	Type =		R Curb Opening	7		
Local Depression (additional to continuous gutter depression 'a')	**	3.0	3.0	inches		
Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	1	1	IIICIICS		
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft		
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft		
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	-"		
Clogging Factor for a Single Unit Crate (typical min. value = 0.3)	C _f -C =	0.10	0.10	-		
Street Hydraulics: OK - Q < Allowable Street Capacity'	0,0 -	MINOR	MAJOR			
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	8.9	21.6	cfs		
Water Spread Width	4 ₀ - ⊤ =	13.3	19.0	ft		
Water Depth at Flowline (outside of local depression)	d =	4.7	6.1	inches		
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches		
Ratio of Gutter Flow to Design Flow	E _o =	0.448	0.312	inches		
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	4.9	14.9	cfs		
		4.9	6.7	cfs		
Discharge within the Gutter Section W Discharge Behind the Curb Face	Q _w =	0.0	0.0	cfs		
Flow Area within the Gutter Section W	Q _{BACK} =	0.62	0.85	sq ft		
	A _W =	6.5	8.0			
Velocity within the Gutter Section W	V _W =	7.7	9.1	fps		
Water Depth for Design Condition	d _{LOCAL} =			inches		
Grate Analysis (Calculated)	. г	MINOR	MAJOR	٦.		
Total Length of Inlet Grate Opening	_ L=	N/A	N/A	ft		
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A			
Under No-Clogging Condition	F	MINOR	MAJOR	٦.		
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps		
Interception Rate of Frontal Flow	R _f =	N/A	N/A	4		
Interception Rate of Side Flow	R _x =	N/A	N/A	_		
Interception Capacity	Q _i =	N/A	N/A	cfs		
Under Clogging Condition	_	MINOR	MAJOR	_		
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A			
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A			
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft		
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps		
Interception Rate of Frontal Flow	R _f =	N/A	N/A			
Interception Rate of Side Flow	R _x =	N/A	N/A			
Actual Interception Capacity	Q _a =	N/A	N/A	cfs		
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs		
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR			
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.104	0.079	ft/ft		
Required Length L _T to Have 100% Interception	L _T =	17.27	30.89	ft		
Under No-Clogging Condition		MINOR	MAJOR	-		
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	17.27	20.00	ft		
Interception Capacity	Q _i =	8.9	18.3	cfs		
Under Clogging Condition	oq −L	MINOR	MAJOR	_		
Clogging Coefficient	CurbCoef =	1.33	1.33	1		
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.03	0.03	1		
Effective (Unclogged) Length	L _e =	17.34	17.34	ft		
Actual Interception Capacity	Q _a =	8.9	18.0	cfs		
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _a =	0.0	3.6	cfs	Hydr	ology
Summary	Qb =	MINOR	MAJOR	015		
					- sprea	adsheet ha
Total Inlet Interception Capacity	Q=	8.9	(18.0)	cfs		
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	3.6	cfs	Q10	0 = 19.7 at
Capture Percentage = Q _a /Q _o =	C% =	100	83	%		4


100.064, Ridge Inlets, Inlet DP-4 7/15/2021, 12:00 PM

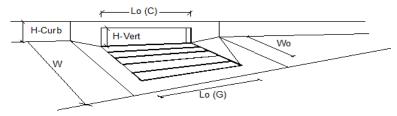

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-6 STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 10.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 22.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.025 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 18.5 22.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 44.8 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-6 2/28/2021, 11:54 AM

Version 4.05 Released March 2017

Hydrology spreadsheet h Q100 = 6.6 at


100.064, Ridge Inlets, Inlet DP-6 2/28/2021, 11:54 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-12 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_o : 0.026 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 34.6 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

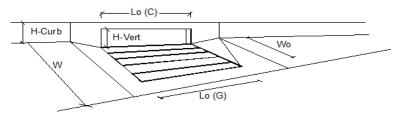
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-12 3/1/2021, 5:54 AM

Version 4.05 Released March 2017

Design Information (Input)	[MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type I	R Curb Opening	
Local Depression (additional to con-	tinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (C	Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)	L ₀ =	15.00	15.00	ft
Width of a Unit Grate (cannot be gre	W _o =	N/A	N/A	ft	
Clogging Factor for a Single Unit G	rate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Co	urb Opening (typical min. value = 0.1)	C_{f} - C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	able Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	9.3	14.8	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.6	7.0	cfs
Capture Percentage = Q _a /Q _o =		C% =	94	68	%

Hydrology spreadsheet has flows of 9.9 & 21.8 at DP-12


100.064, Ridge Inlets, Inlet DP-12 3/1/2021, 5:54 AM

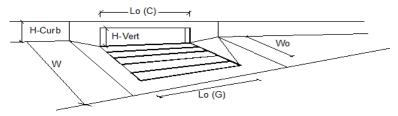
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-13 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.022 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 15.2 36.0 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-13 3/1/2021, 6:08 AM

Version 4.05 Released March 2017

Design Information (Input) Type of Inlet	CDOT Type R Curb Opening	Type =	MINOR	MAJOR R Curb Opening	
**	entinuous gutter depression 'a'\	a _{LOCAL} =	3.0	3.0	inches
Local Depression (additional to continuous gutter depression 'a') Total Number of Units in the Inlet (Grate or Curb Opening)			1	1	inches
Length of a Single Unit Inlet (Grate	e or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be g	greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit	Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit	Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allo	wable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	1	Q =	<mark>8.3</mark>	15.6	cfs
Total Inlet Carry-Over Flow (flow	w bypassing inlet)	Q _b =	0.2	8.7	cfs
Capture Percentage = Q _a /Q _o =		C% =	97	64	%


Hydrology spreadsheet has flows of 7.9 & 17.3 at DP-13

100.064, Ridge Inlets, Inlet DP-13 3/1/2021, 6:08 AM

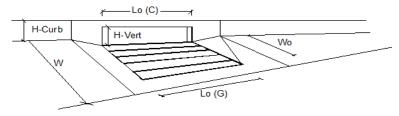
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-15 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.019 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 37.8 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-15 3/1/2021, 6:17 AM

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼	1	MINOR	MAJOR	
Type of Inlet	Type =		R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	3.0	3.0	inches	
Total Number of Units in the Inlet (Grate or Curb Opening)	1	1		
Length of a Single Unit Inlet (Grate or Curb Opening)	15.00	15.00	ft	
Width of a Unit Grate (cannot be greater than W, Gutter Width) $W_o =$			N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	8.4	16.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.3	10/8	cfs
Capture Percentage = Q _a /Q _o =	C% =	97	60	%

Hydrology spreadsheet has Q100 = 18.6 at DP-15


100.064, Ridge Inlets, Inlet DP-15 3/1/2021, 6:17 AM

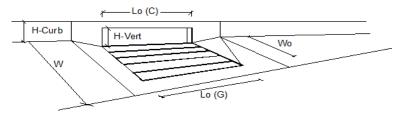
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-17 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.034 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 31.6 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-17 3/1/2021, 6:21 AM

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.5	20.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	6.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	77	%


100.064, Ridge Inlets, Inlet DP-17 3/1/2021, 6:21 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-19 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.026 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 34.5 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

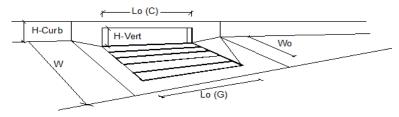
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managem

100.064, Ridge Inlets (2), Inlet DP-19 3/8/2021, 12:40 PM

Version 4.05 Released March 2017

Design Information (Input)	CDOT Time D Curb Opening		MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to cor	ntinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	e or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be g	reater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit	Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	Curb Opening (typical min. value = 0.1)	C_{f} - C =	0.10	0.10	
Street Hydraulics: OK - Q < Allov	wable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	10.3	21.2	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	7.6	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	74	%

Hydrology spreadsheet has Q100=22.6 at DP-19


100.064, Ridge Inlets (2), Inlet DP-19 3/8/2021, 12:40 PM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-20a STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 S_X = Street Transverse Slope 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.030 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 32.9 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

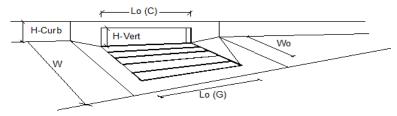
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets (2), Inlet DP-20a 3/8/2021, 10:49 AM

Version 4.05 Released March 2017

Design Information (Input)	CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to cor	ntinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be gr	reater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit (Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	Curb Opening (typical min. value = 0.1)	C_{f} C =	0.10	0.10	
Street Hydraulics: OK - Q < Allov	vable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	5.6	10.7	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	1.6	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	87	%

Hydrology spreadsheet has Q100=12.3 at DP-20a


100.064, Ridge Inlets (2), Inlet DP-20a 3/8/2021, 10:49 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-21 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.021 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 14.8 36.6 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

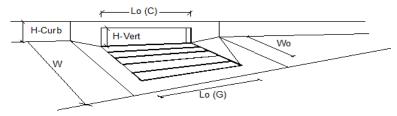
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managem

100.064, Ridge Inlets (2), Inlet DP-21 3/8/2021, 12:40 PM

Version 4.05 Released March 2017

Design Information (Input)	ODOT Tare Di Ovelt On series		MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to con	tinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (0	Total Number of Units in the Inlet (Grate or Curb Opening)			1	
Length of a Single Unit Inlet (Grate	or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be gr	W _o =	N/A	N/A	ft	
Clogging Factor for a Single Unit G	Clogging Factor for a Single Unit Grate (typical min. value = 0.5)			N/A	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	vable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	7.2	13.1	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	4.4	cfe
Capture Percentage = Q _a /Q _o =		C% =	100	75	%

Hydrology spreadsheet has Q100=15.9 at DP-21


100.064, Ridge Inlets (2), Inlet DP-21 3/8/2021, 12:40 PM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-23 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.020 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 14.5 37.1 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

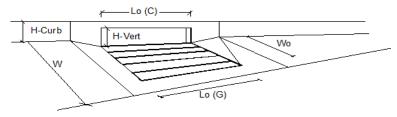
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managem

100.064, Ridge Inlets (2), Inlet DP-23 3/8/2021, 12:41 PM

Version 4.05 Released March 2017

Design Information (Input)	CDOT Type R Curb Opening		MINOR	MAJOR	_
Type of Inlet	CDO1 Type R Curb Opening	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)		L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)		C _r G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allov	wable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	8.4	16.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)		Q _b =	0.3	10.4	efs
Capture Percentage = Q _a /Q _o =		C% =	97	61	%

Hydrology spreadsheet has Q100=19.1 at DP-23


100.064, Ridge Inlets (2), Inlet DP-23 3/8/2021, 12:41 PM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-25 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.011 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 33.0 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

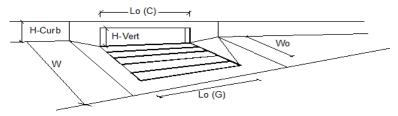
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managem

100.064, Ridge Inlets (2), Inlet DP-25 3/8/2021, 12:41 PM

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼	T	MINOR	MAJOR	
Type of Inlet	Type =	Type = CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')		3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_{f} - C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.2	11.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	2.9	15.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	71	43	%

Hydrology spreadsheet has flows of 10.0 & 22.0 at DP-25


100.064, Ridge Inlets (2), Inlet DP-25 3/8/2021, 12:41 PM

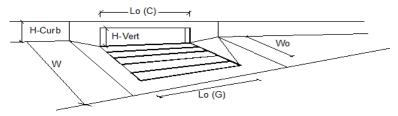
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-27 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.011 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 33.0 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managem

100.064, Ridge Inlets (2), Inlet DP-27 3/8/2021, 12:41 PM

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a') a _{LOCAL} =		3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)		20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)		N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)		N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)		0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.4	20.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)		0.0	7.6	cfs
Capture Percentage = Q_a/Q_o = $C\%$		100	73	%

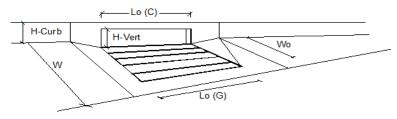

100.064, Ridge Inlets (2), Inlet DP-27 3/8/2021, 12:41 PM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-29 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.010 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 10.2 31.8 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managem

100.064, Ridge Inlets (2), Inlet DP-29 3/8/2021, 12:42 PM

Version 4.05 Released March 2017


Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.2	20.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	7.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	74	%

100.064, Ridge Inlets (2), Inlet DP-29 3/8/2021, 12:42 PM

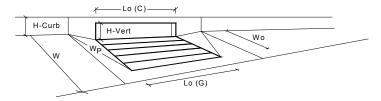
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-31 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 24.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 26.0 T_{CROWN} Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.048 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.017 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 26.0 26.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 14.5 115.2 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managem

100.064, Ridge Inlets (2), Inlet DP-31 3/8/2021, 12:44 PM

Version 4.05 Released March 2017

-				1
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	٦.
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	10.5	23.2	cfs
Water Spread Width	T =	12.4	17.2	ft
Water Depth at Flowline (outside of local depression)	. d=	4.5	5.6	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.477	0.346	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	5.5	15.2	cfs
Discharge within the Gutter Section W	Q _w =	5.0	8.0	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.58	0.77	sq ft
Velocity within the Gutter Section W	V _W =	8.6	10.4	fps
Water Depth for Design Condition	d _{LOCAL} =	7.5	8.6	inches
Grate Analysis (Calculated)	_	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	_	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	_	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	'
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q =	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	0	MINOR	MAJOR	0.0
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.110	0.085	ft/ft
Required Length L _T to Have 100% Interception	L _T =	19.05	32.09	ft
Under No-Clogging Condition	-1-	MINOR	MAJOR	"`
	⊏	15.00		
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L =		15.00	ft
Interception Capacity	$Q_i =$	9.9	15.7	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.31	1.31	_
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	L _e =	13.03	13.03	ft
Actual Interception Capacity	Q _a =	9.7	15.3	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.8	7.9	cfs
<u>Summary</u>	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.7	15.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.8	7.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	92	66	%

Hydrology spreadsheet has Q100=23.2 at DP-31


100.064, Ridge Inlets (2), Inlet DP-31 3/8/2021, 12:44 PM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-32 STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o Street Longitudinal Slope - Enter 0 for sump condition 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.017 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP

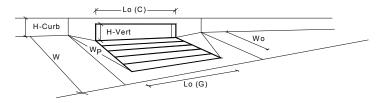
100.064, Ridge Inlets (2), Inlet DP-32 3/8/2021, 12:45 PM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	8.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.53	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.79	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.3	29.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	8.6	27.5	cfs

Please include DP-32 on hydrology spreadsheet to verify inlet flows


100.064, Ridge Inlets (2), Inlet DP-32 3/8/2021, 12:45 PM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-33 (Exist. 25' Type "R") STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o Street Longitudinal Slope - Enter 0 for sump condition 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.017 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP

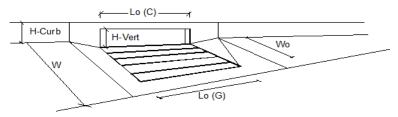
100.064, Ridge Inlets (2), Inlet DP-33 3/8/2021, 12:46 PM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	7
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	7.7	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.22	0.47	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.43	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.69	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.0	28.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	7.0	28.7	cfs

Please include DP-33 on hydrology spreadsheet to verify inlet flows


100.064, Ridge Inlets (2), Inlet DP-33 3/8/2021, 12:46 PM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-35a STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.090 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 23.5 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

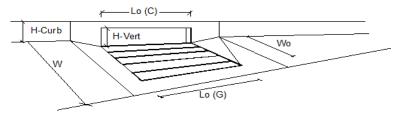
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-35a 7/15/2021, 8:45 AM

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼	Ī .	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.9	11.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	86	%

Include DP-35a on hydrology spreadsheet to verify inlet flows


100.064, Ridge Inlets, Inlet DP-35a 7/15/2021, 8:45 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-35b STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.006 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 24.2 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

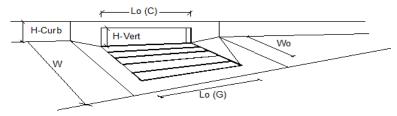
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-35b 7/17/2021, 9:28 AM

Version 4.05 Released March 2017

Design Information (Input)	ODOTT DO LO		MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to con	tinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (0	Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be gr	reater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit G	Grate (typical min. value = 0.5)	C _r G =	N/A	N/A	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	vable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	1.9	4.4	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	0.2	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	96	%

Include DP-35b on hydrology spreadsheet to verify inlet flows


100.064, Ridge Inlets, Inlet DP-35b 7/17/2021, 9:28 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-36 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.027 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 34.0 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

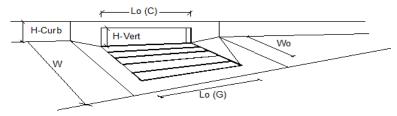
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managem

100.064, Ridge Inlets (2), Inlet DP-36 3/9/2021, 5:41 AM

Version 4.05 Released March 2017

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type	R Curb Opening	
Local Depression (additional to con-	tinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (C	Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be gre	eater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit G	rate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Co	urb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	able Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	4.1	5.7	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	7.3	19.5	cfs
Capture Percentage = Q _a /Q _o =		C% =	36	22	%

Hydrology spreadsheet has flows of 11.4 & 25.2 at DP-36


100.064, Ridge Inlets (2), Inlet DP-36 3/9/2021, 5:41 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-37 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.020 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 14.5 37.2 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

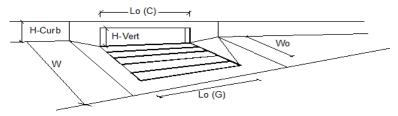
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managem

100.064, Ridge Inlets (2), Inlet DP-37 3/9/2021, 5:45 AM

Version 4.05 Released March 2017

Design Information (Input)	CDOT Time D Curb Opening		MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type	R Curb Opening	
Local Depression (additional to co	ntinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	e or Curb Opening)	L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be g	reater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit	Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit (Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	wable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	•	Q =	3.4	4.8	cfs
Total Inlet Carry-Over Flow (flow	v bypassing inlet)	Q _b =	4.0	11.5	cfs
Capture Percentage = Q _a /Q _o =		C% =	46	29	%

Hydrology spreadsheet has flows of 7.4 & 16.3 at DP-37


100.064, Ridge Inlets (2), Inlet DP-37 3/9/2021, 5:45 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-39 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 S_X = Street Transverse Slope 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.019 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 38.0 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

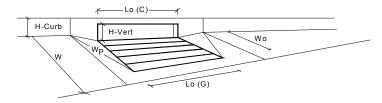
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-39 6/21/2021, 10:56 AM

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼	-	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	25.00	25.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q=	12.7	27.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	7.0	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	79	%

Include DP-39 on hydrology spreadsheet to verify inlet flows


100.064, Ridge Inlets, Inlet DP-39 6/21/2021, 10:56 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-41 STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_o 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.017 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP

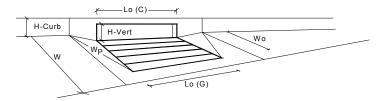
100.064, Ridge Inlets, Inlet DP-41 3/9/2021, 2:52 PM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.49	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.74	7
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.3	25.1	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q _{PEAK REQUIRED} =	9.3	27.7	cfs

inlet overtops and flows to Inlet DP-43


100.064, Ridge Inlets, Inlet DP-41 6/21/2021, 11:15 AM

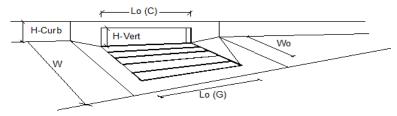
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-43 STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 35.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_o 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.017 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 35.0 35.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP

100.064, Ridge Inlets, Inlet DP-43 3/9/2021, 2:54 PM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.49	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.3	25.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	10.0	24.5	cfs


100.064, Ridge Inlets, Inlet DP-43 6/21/2021, 11:22 AM

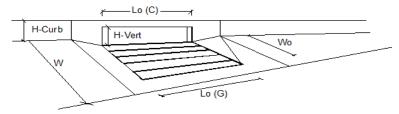
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-47 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.010 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 10.2 31.5 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-47 3/17/2021, 8:51 AM

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.1	9.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.4	7.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	81	56	%


100.064, Ridge Inlets, Inlet DP-47 3/17/2021, 8:51 AM

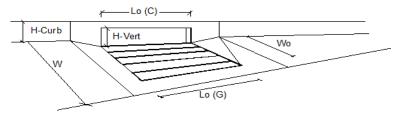
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-48 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.015 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 12.6 38.8 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-48 3/17/2021, 8:26 AM

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.4	6.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	81	%


100.064, Ridge Inlets, Inlet DP-48 3/17/2021, 8:26 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-49 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.028 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 33.6 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

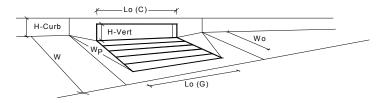
ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-49 3/17/2021, 8:50 AM

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q=	7.7	20.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	6.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	75	%

There are two DP-49's listed in hydrology spreadsheet. Please clarify which set of flows is used for inlet flow.


100.064, Ridge Inlets, Inlet DP-49 3/17/2021, 8:50 AM

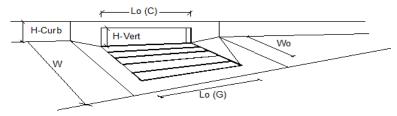
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-51 STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_o 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.017 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP

100.064, Ridge Inlets, Inlet DP-51 3/17/2021, 8:49 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	7.1	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.17	0.43	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.38	0.67	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.64	0.85	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.5	24.0	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	4.5	26.0	cfs


100.064, Ridge Inlets, Inlet DP-51 3/17/2021, 8:49 AM

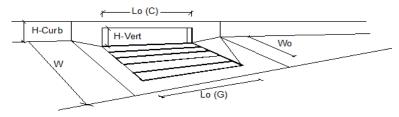
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-53 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.014 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 12.3 37.8 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-53 3/17/2021, 8:53 AM

Version 4.05 Released March 2017

Design Information (Input)	ODOT Tare Di Quello Origina		MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to con	tinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (0	Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be gr	reater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit G	Grate (typical min. value = 0.5)	C _r G =	N/A	N/A	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	vable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	9.7	16.2	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.9	10.3	efs
Capture Percentage = Q _a /Q _o =		C% =	91	61	%


Hydrology spreadsheet has Q100=23 at DP-53

100.064, Ridge Inlets, Inlet DP-53 3/17/2021, 8:53 AM

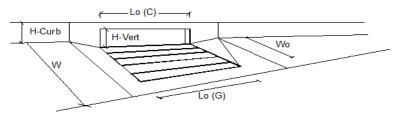
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-54 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.015 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 12.5 38.6 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-54 3/17/2021, 9:04 AM

Version 4.05 Released March 2017

Design Information (Input)	CDOT Time D Curb Opening		MINOR	MAJOR	_
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to cor	ntinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	e or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be g	reater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit	Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	Curb Opening (typical min. value = 0.1)	C_{f} - C =	0.10	0.10	
Street Hydraulics: OK - Q < Allov	wable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	11.7	24.0	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.1	13.6	cfs
Capture Percentage = Q _a /Q _o =		C% =	99	64	%

Hydrology spreadsheet has Q100=26.5 at DP-54


100.064, Ridge Inlets, Inlet DP-54 3/17/2021, 9:04 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-56 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 1.210 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 10.9 WARNING: MINOR STORM max. allowable capacity is less than the design flow given on sheet 'Inlet Management'

ARNING: MAJOR STORM max. allowable capacity is less than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-56 3/17/2021, 9:13 AM

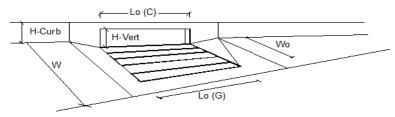
Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	_
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MINOR & MAJOR STORM		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.0	23.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	9.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	72	%

There are two DP-56's listed in hydrology spreadsheet. Please clarify which set of flows is used for inlet flow.

100.064, Ridge Inlets, Inlet DP-56 3/17/2021, 9:13 AM

Version 4.05 Released March 2017


ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-57 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 T_{CROWN} Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.010 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 10.2 31.5 WARNING: MINOR STORM max. allowable capacity is less than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

100.064, Ridge Inlets, Inlet DP-57 3/17/2021, 9:18 AM

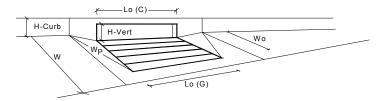
INLET ON A CONTINUOUS GRADE

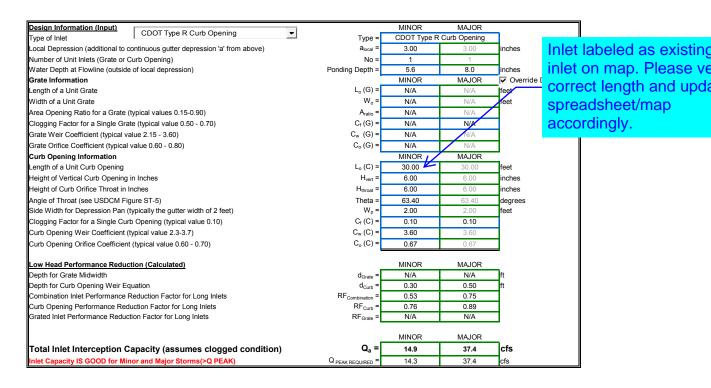
Version 4.05 Released March 2017

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to con	tinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (0	Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be gre	eater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit G	Grate (typical min. value = 0.5)	C _r G =	N/A	N/A	
Clogging Factor for a Single Unit Co	urb Opening (typical min. value = 0.1)	C_{f} - C =	0.10	0.10	
Street Hydraulics: WARNING: Q >	ALLOWABLE Q FOR MINOR STORM'		MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	11.0	19.0	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	5.1	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	79	%

Hydrology spreadsheet has Q100=24.1 at DP-57

100.064, Ridge Inlets, Inlet DP-57 3/17/2021, 9:18 AM


Version 4.05 Released March 2017

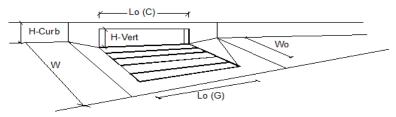

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-62 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o Street Longitudinal Slope - Enter 0 for sump condition 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.017 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP

100.064, Ridge Inlets, Inlet DP-62 3/18/2021, 11:05 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

100.064, Ridge Inlets, Inlet DP-62 3/18/2021, 11:05 AM


Version 4.05 Released March 2017

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-63 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.016 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 13.1 39.4 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-63 3/17/2021, 2:08 PM

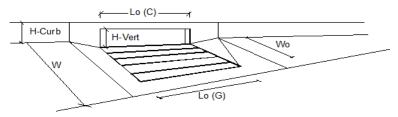
INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	10.2	15.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.3	9.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	89	62	%

There are two DP-63's listed on hydrology spreadsheet. Please clarify which set of flows are used for inlet flows

100.064, Ridge Inlets, Inlet DP-63 3/17/2021, 2:08 PM


Version 4.05 Released March 2017

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-64 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.040 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.017 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 15.3 30.2 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage ARNING: MAJOR STORM max. allowable capacity is less than the design flow given on sheet 'Inlet Manage

100.064, Ridge Inlets, Inlet DP-64 3/17/2021, 2:11 PM

INLET ON A CONTINUOUS GRADE

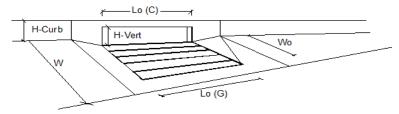
Version 4.05 Released March 2017

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.8	17.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.9	13.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	92	57	%

There are two DP-64's listed on hydrology spreadsheet. Please clarify which set of flows are used for inlet flows

100.064, Ridge Inlets, Inlet DP-64 3/17/2021, 2:11 PM

Version 4.05 Released March 2017


ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-66 STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 S_X = Street Transverse Slope 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.020 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.017 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 14.5 37.2 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managen

100.064, Ridge Inlets, Inlet DP-66 3/18/2021, 11:05 AM

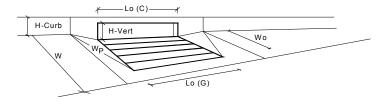
INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input) Type of Inlet CDOT Type R Curb Opening ▼	Type =	MINOR CDOT Type R	MAJOR Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.5	11.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	81	%

Hydrology spreadsheet has Q100 = 44.1 cfs at DP-66

100.064, Ridge Inlets, Inlet DP-66 3/18/2021, 11:05 AM

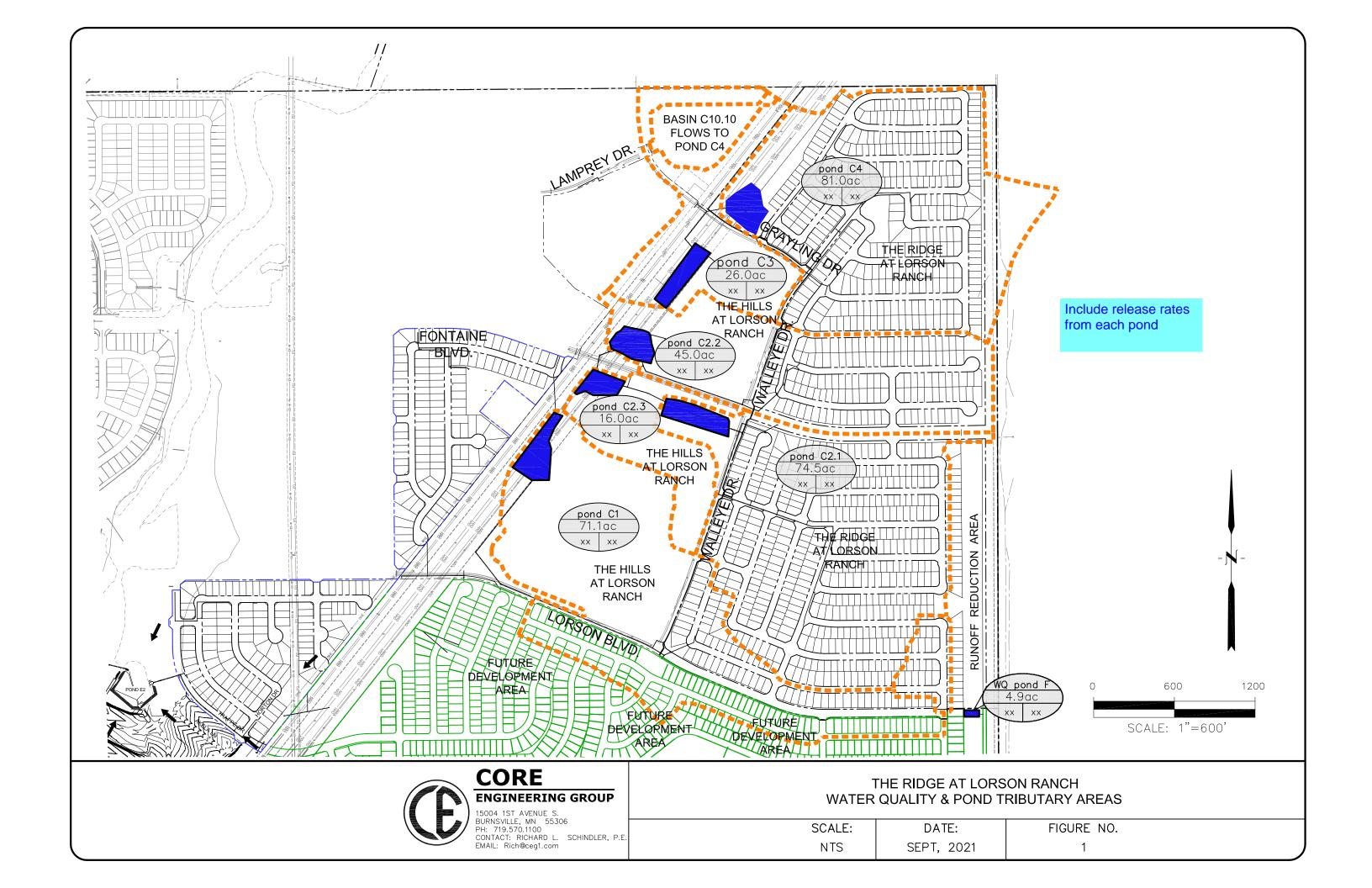

Version 4.05 Released March 2017

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: The Ridge at Lorson Ranch, #100.064 Inlet ID: Inlet DP-69 STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width w: 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w : 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_o 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.017 n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.6 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP

100.064, Ridge Inlets, Inlet DP-69 6/21/2021, 3:57 PM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017



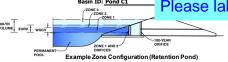
Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.5	7.8	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.29	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.52	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.75	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	12.0	29.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _{PEAK REQUIRED} =	7.9	17.3	cfs

100.064, Ridge Inlets, Inlet DP-69 6/21/2021, 3:57 PM

APPENDIX D - POND AND ROUTING CALCULATIONS

Please include spreadsheet/table listing contributing basins and % impervious to each pond.

Design Procedure Form: Runoff Reduction												
3	Richard Schin			UD-BMP (Ve	ersion 3.07, Mar	rch 2018)						Sheet 1 of 1
Designer: Company:	Core Engineer										-	
Date:	March 18, 202										•	
Project:	The Ridge at L		Mak	e note	that is	repres	sentati	ve for			•	
Location:	Basin F1										•	
			a sin	igle lot	, not tr	ie wno	ile bas	ın.			•	
	SITE INFORMATION (User Input in Blue Cells) WQCV Rainfall Depth Depth of Average Runoff Producing Storm, d _e = 0.43 inches (for Watersheds Outside of the Denver Region, Figure 3-1 in USDCM Vol. 3)											
Area Type												
Area ID		\vdash		ļ			<u> </u>	ļ!	<u> </u>	<u> </u>		
Downstream Design Point ID		 		 			 	 	 	\vdash	ļ	
Downstream BMP Type DCIA (ft²)	None	 		\vdash			 	 		\vdash	1	
UIA (ft²)	4,500	\vdash		\vdash	$\overline{}$		 	 	\vdash	\vdash		
RPA (ft²)								 				
SPA (ft²)												
HSG A (%)												
HSG B (%)					'	'						
HSG C/D (%)		\vdash	'	<u> </u>	<u> </u>	<u> </u>	ļ				ļ	ļI
Average Slope of RPA (ft/ft)		\vdash		 	 '	 '	ļ	 	<u> </u>	$\vdash \vdash \vdash$	ļ	
UIA:RPA Interface Width (ft)	145.00				لــــــــا	لــــــــا	<u> </u>			لـــــــــا	<u> </u>	<u> </u>
CALCULATED RUNOFF Area ID UIA:RPA Area (ft²) L / W Ratio	res. Lot 11,750											
UIA / Area	0.3830	 		++	\vdash	\vdash	 	 	 	\vdash		
Runoff (in)				 				 				
Runoff (ft ³)	0											
Runoff Reduction (ft ³)	188											
CALCULATED WQCV RE		 		1			г	1	Г		г	
Area ID WQCV (ft ³)	res. Lot 188	 		\vdash			 	 		\vdash	1	
WQCV (ft ³) WQCV Reduction (ft ³)		\vdash		\vdash	$\overline{}$	$\overline{}$	 	 	\vdash	\vdash		
WQCV Reduction (ft) WQCV Reduction (%)				 				 				
Untreated WQCV (ft ³)												
CALCULATED DESIGN F Downstream Design Point ID		LTS (sums res	ults from a	II columns w	ith the same	Downstream	ı Design Poir	nt ID)				
DOWNStream Design Point ID DCIA (ft²)		 		++	\vdash	\vdash	 	 	 	\vdash		
UIA (ft²)	4,500			 	$\overline{}$	$\overline{}$		 				1
RPA (ft²)								 				
SPA (ft²)												
Total Area (ft²)	11,750											
Total Impervious Area (ft²)	4,500											
WQCV (ft ³)				<u> </u>	<u> </u>	<u> </u>	ļ					<u> </u>
WQCV Reduction (ft ³)		 		ļ	 '	 '		ļ —	<u> </u>		ļ	
WQCV Reduction (%)		\vdash		 	 '	 '	ļ	 	<u> </u>	$\vdash \vdash \vdash$	ļ	
Untreated WQCV (ft ³)	0				لــــــــا	لـــــــا	<u> </u>			لــــــــا	<u>l</u>	
CALCULATED SITE RES	11,750	results from a	II columns	in workshee	t)							
Total Impervious Area (ft²)		l										
WQCV (ft ³)												
WQCV Reduction (ft ³) WQCV Reduction (%)												
Untreated WQCV (ft ³)												
Character (it)		•										


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.02 (February 2020)

Project: The Hills at Lorson Ranch

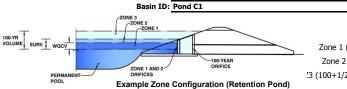
pond bottom=5743.40

		itersned information
	EDB	Selected BMP Type =
acres	71.10	Watershed Area =
ft	4,800	Watershed Length =
ft	2,100	Watershed Length to Centroid =
ft/ft	0.040	Watershed Slope =
percent	55.00%	Watershed Imperviousness =
percent	0.0%	Percentage Hydrologic Soil Group A =
percent	100.0%	Percentage Hydrologic Soil Group B =
percent	0.0%	Percentage Hydrologic Soil Groups C/D =
hours	40.0	Target WQCV Drain Time =
	User Input	Location for 1-hr Rainfall Denths =

After providing required inputs above including 1-hour rainfall depths, click 'Run CHHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.							
Water Quality Capture Volume (WQCV) =	1.306	acre-feet					
Excess Urban Runoff Volume (EURV) =	4.212	acre-feet					
2-yr Runoff Volume (P1 = 1.19 in.) =	3.975	acre-feet					
5-yr Runoff Volume (P1 = 1.5 in.) =	5.580	acre-feet					
10-yr Runoff Volume (P1 = 1.75 in.) =	6.975	acre-feet					
25-yr Runoff Volume (P1 = 2 in.) =	8.792	acre-feet					
50-yr Runoff Volume (P1 = 2.25 in.) =	10.293	acre-feet					
100-yr Runoff Volume (P1 = 2.52 in.) =	12.175	acre-feet					
500-yr Runoff Volume (P1 = 3.14 in.) =	16.033	acre-feet					
Approximate 2-yr Detention Volume =	3.210	acre-feet					
Approximate 5-yr Detention Volume =	4.365	acre-feet					
Approximate 10-yr Detention Volume =	5.698	acre-feet					
Approximate 25-yr Detention Volume =	6.193	acre-feet					
Approximate 50-yr Detention Volume =	6.465	acre-feet					
Approximate 100-yr Detention Volume =	7.133	acre-feet					

Optional Use	r Overrides
	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
	inches


Define Zones and Basin Geometry

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-fee

Depth Increment =	0.20	ft							
		Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Stage - Storage Description	Stage (ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00	-		-	40	0.001		
5743.73		0.33	-			52	0.001	15	0.000
5744	-	0.60	-		-	300	0.007	63	0.001
5745		1.60				4,017	0.092	2,221	0.051
5746		2.60	-		-	26,320	0.604	17,389	0.399
5747		3.60	-		-	56,078	1.287	58,588	1.345
5748		4.60	-		-	62,238	1.429	117,746	2.703
5749		5.60	-		-	66,563	1.528	182,147	4.182
5750		6.60	-		-	70,969	1.629	250,913	5.760
5751		7.60	-		-	75,495	1.733	324,145	7.441
5752		8.60	-			80,136	1.840	401,960	9.228
5753 5754		9.60 10.60	-		-	85,057		484,557	11.124 13.133
5755		11.60	-		_	90,000 95,000	2.066 2.181	572,085 664,585	15.153
5756		12.60	-		_	100,000	2.296	762,085	17.495
5750		12.00	_		-	100,000	LiLyo	702,003	17.155
			-						
			-						
			-		-				
			-						
			1		-		-		
			-		-				
			-		-				
					-				
					-				-
			_		-				
			-						-
			-		-				
			-	-	-				
					-				
					-				
			-		-				
			1		-				
			-		-				
			-		-				
			-		-				
			-						
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
					_				
			_						
			-						
	-		-						
			1		-				
			-		-				
	-		ł		-				
					-				
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
			-						
			1 1 1		-				
	-			-					
			-		-				
			1 1		-				
			-		-				
			1 1		-				
			1 1		-				-
			-						
			1 1 1		-				
					-				
			1 1		-				
					-				
			1 1		-		-		
			-		-				
			-		-		-		
					-			<u></u>	
			-		-		-		
			1 1 1		-				
				-					
			1		-				
			1 1						
					•				

MHFD-Detention_v4-02-pond C1, Basin 9/29/2021, 8:14 AM

MHFD-Detention, Version 4.02 (February 2020)

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	3.57	1.306	Orifice Plate
Zone 2 (EURV)	5.63	2.906	Rectangular Orifice
100+1/2WQCV)	7.80	3.574	Weir&Pipe (Restrict)
-	Total (all zones)	7 786	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) Underdrain Orifice Diameter = inches

Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Centroid = feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) 0.00 Depth at top of Zone using Orifice Plate = 3.57 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = 14.60 inches Orifice Plate: Orifice Area per Row = 3.55 sq. inches (use rectangular openings)

Project: The Hills at Lorson Ranch

Calculated Parameters for Plate WQ Orifice Area per Row 2.465E-02 ft² Elliptical Half-Width = N/A feet Elliptical Slot Centroid : N/A feet ft² Elliptical Slot Area = N/A

<u>User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)</u>

is received or Each office for (named a norm office to might est)									
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.20	2.40						
Orifice Area (sq. inches)	3.55	3.55	3.55						

	Row 9 (optional)	Pow 10 (optional)	Pow 11 (optional)	Pow 12 (ontional)	Pow 13 (ontional)	Pow 14 (ontional)	Row 15 (optional)	Pow 16 (ontional)
	Row 5 (optional)	Row 10 (optional)	ROW 11 (Optional)	ROW 12 (Optional)	ROW 13 (Optional)	ROW 14 (Optional)	ROW 13 (optional)	ROW 10 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User

er Input: Vertical Orifice (Circular or Rectangu	<u>ılar)</u>		_		Calculated Paramete	ers for Vertical Orifi
Zone 2 Rectangular Not Selected					Zone 2 Rectangular	Not Selected
Invert of Vertical Orifice =	3.64	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	0.82	N/A
Depth at top of Zone using Vertical Orifice =	5.63	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	0.25	N/A
Vertical Orifice Height =	6.00	N/A	inches		•	•
Vertical Orifice Width =	19.74		inches			

User Input: Overflow Weir (Dropbox with Flat or	Calculated Parameters for Overflow We				
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, Ho =	6.10	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	6.10	N/A
Overflow Weir Front Edge Length =	5.66	N/A	feet Overflow Weir Slope Length =	3.00	N/A
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	9.41	N/A
Horiz. Length of Weir Sides =	3.00	N/A	feet Overflow Grate Open Area w/o Debris =	11.89	N/A
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area	5.94	N/A
Debris Clogging % =	50%	N/A	%		

<u>User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)</u>

er imput. Outlet ripe w/ riow kestriction riate	(Circulai Orilice, Re	Strictor Plate, or Re	ectangular Office)	s for Outlet ripe w/ Flow Restriction i		
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.26	N/A
Outlet Pipe Diameter =	18.00	N/A	inches (Outlet Orifice Centroid =	0.57	N/A
Restrictor Plate Height Above Pipe Invert =	12.10		inches Half-Central Angle of Re	estrictor Plate on Pipe =	1.92	N/A

User Input: Emergency Spillway (Rectangular or Trapezoidal)

ıt: Emergency Spillway (Rectangular or]	<u>[rapezoidal]</u>	_	<u>.</u>	Calculated Parame	ters for Spillway
Spillway Invert Stage=	10.00	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	1.37	feet
Spillway Crest Length =	28.00	feet	Stage at Top of Freeboard =	12.53	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	2.29	acres
Freeboard above Max Water Surface =	1.16	feet	Basin Volume at Top of Freeboard =	17.33	acre-ft
		micropool	= 0 = 5743.40	•	-

Routed Hydrograph Results 7/1	he user can overn	ide the default CUH	IP hydrographs and	runoff volumes by e	entering new values	in the Inflow Hydro	ographs table (Colu	mns W through AF)
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	1.306	4.212	3.975	5.580	6.975	8.792	10.293	12.175
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	3.975	5.580	6.975	8.792	10.293	12.175
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	5.2	14.7	22.8	41.9	52.7	68.0
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.07	0.21	0.32	0.59	0.74	0.96
Peak Inflow Q (cfs) =	N/A	N/A	48.9	69.1	84.1	113.0	132.4	155.9
Peak Outflow Q (cfs) =	0.5	5.9	4.9	6.4	14.8	15.8	16.7	17.7
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.4	0.6	0.4	0.3	0.3
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.6	0.6	0.6	0.6
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	50	51	51	51	50	49	48
Time to Drain 99% of Inflow Volume (hours) =	40	54	54	56	57	57	57	58
Maximum Ponding Depth (ft) =	3.57	5.62	5.04	5.93	6.48	7.33	8.06	8.99
Area at Maximum Ponding Depth (acres) =	1.27	1.53	1.47	1.56	1.62	1.71	1.78	1.88
Maximum Volume Stored (acre-ft) =	1.307	4.212	3.327	4.691	5.549	6.977	8.250	9.954

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.00 (December 2019) 250 _____ 500YR IN ----- 500YR OUT 100YR IN — 100YR OUT 200 — 50YR OUT _ _ _ 25YR OUT 10YR IN ___ 10YR OUT 150 SYR IN cfs] · · · · · 5YR OUT FLOW 2YR IN === 2YR OUT EURV IN 100 - EURV OUT - WQCV IN · · · · · wqcv out 50 ----0.1 10 TIME [hr] ____500YR -100YR -50YR ____25YR -10YR -5YR -2YR -EURV -wqcv PONDING DEPTH [ft] 6 10 DRAIN TIME [hr] 450 O User Area [ft^2] 700,000 Interpolated Area [ft^2] 400 ···• ·· Summary Area [ft^2] Volume [ft^3] 600,000 350 ···• ·· Summary Volume [ft^3] Outflow [cfs] 500,000 300 · · • · · Summary Outflow [cfs] AREA [ftv3], VOLUME [ftt3], VOLUME [ftt3], VOLUME [ftt3], VOLUME [ftt3], VOLUME [ftt3], VOLUME [250 250 Conterow [cfs] 150 100 100,000 50 0 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 PONDING DEPTH [ft] S-A-V-D Chart Axis Override Left Y-Axis Right Y-Axis X-axis minimum bound maximum bound

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.33	0.03	1.07
	0:15:00	0.00	0.00	2.91	4.76	5.90	3.97	5.13	4.86	7.53
	0:20:00 0:25:00	0.00	0.00	11.94	16.24	19.80	12.28	14.54	15.28	20.80
	0:30:00	0.00	0.00	29.55 44.62	42.27 63.86	53.53 78.94	29.21 72.63	34.38 85.96	37.61 96.39	54.12 130.39
	0:35:00	0.00	0.00	48.91	69.09	84.11	103.79	122.18	142.20	187.48
	0:40:00	0.00	0.00	46.62	64.63	78.29	113.02	132.36	155.90	203.58
	0:45:00	0.00	0.00	42.09	58.47	71.49	107.92	126.10	151.17	197.03
	0:50:00	0.00	0.00	37.67	53.00	64.67	101.05	118.01	142.22	185.19
	0:55:00 1:00:00	0.00	0.00	34.10	48.28	59.11	91.69	107.16	130.90	170.68
	1:05:00	0.00	0.00	31.18 28.39	43.98 39.82	54.22 49.61	83.12 75.28	97.31 88.27	121.08 112.49	158.04 146.88
	1:10:00	0.00	0.00	25.32	36.08	45.39	67.00	78.65	100.07	130.93
	1:15:00	0.00	0.00	22.56	32.77	42.30	58.73	69.03	86.37	113.57
	1:20:00	0.00	0.00	20.51	30.02	39.44	51.59	60.68	74.05	97.72
	1:25:00	0.00	0.00	18.94	27.61	36.00	45.91	53.99	64.24	84.78
	1:30:00 1:35:00	0.00	0.00	17.54	25.44	32.45	40.74	47.82	55.98	73.80
	1:40:00	0.00	0.00	16.23 14.92	23.40 20.99	29.20 26.19	36.02 31.68	42.17 36.95	48.93 42.47	64.42 55.84
	1:45:00	0.00	0.00	13.62	18.41	23.32	27.65	32.14	36.46	47.87
	1:50:00	0.00	0.00	12.34	15.95	20.63	23.82	27.58	30.85	40.45
	1:55:00	0.00	0.00	10.72	13.82	18.07	20.30	23.41	25.76	33.72
	2:00:00	0.00	0.00	9.18	12.10	15.82	17.18	19.72	21.28	27.90
	2:05:00 2:10:00	0.00	0.00	7.61 6.19	10.19 8.30	13.31 10.85	13.78 10.80	15.79 12.38	16.77 12.96	22.12 17.16
	2:15:00	0.00	0.00	5.00	6.67	8.77	8.44	9.67	9.95	13.20
	2:20:00	0.00	0.00	4.07	5.39	7.09	6.66	7.62	7.66	10.18
	2:25:00	0.00	0.00	3.28	4.33	5.69	5.25	5.99	5.87	7.80
	2:30:00	0.00	0.00	2.63	3.48	4.54	4.15	4.72	4.48	5.95
	2:35:00	0.00	0.00	2.09	2.75	3.55	3.23	3.66	3.39	4.49
	2:40:00 2:45:00	0.00	0.00	1.66 1.32	2.15 1.66	2.75 2.12	2.50 1.93	2.82	2.59 2.01	3.43 2.65
	2:50:00	0.00	0.00	1.04	1.29	1.65	1.51	1.69	1.59	2.09
	2:55:00	0.00	0.00	0.80	0.99	1.28	1.18	1.32	1.25	1.65
	3:00:00	0.00	0.00	0.60	0.74	0.97	0.90	1.00	0.96	1.26
	3:05:00	0.00	0.00	0.43	0.53	0.70	0.66	0.74	0.70	0.92
	3:10:00 3:15:00	0.00	0.00	0.28	0.36	0.48	0.46	0.51	0.49	0.63
	3:20:00	0.00	0.00	0.17	0.23	0.30 0.16	0.29 0.17	0.33	0.31 0.17	0.40 0.22
	3:25:00	0.00	0.00	0.04	0.06	0.07	0.07	0.08	0.08	0.09
	3:30:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.02
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00 3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.02 (February 2020)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
micropool	0.00	40	0.001	0	0.000	0.00	Fo
surcharge	0.33	52	0.001	15	0.000	0.07	sta
5744	0.60	300	0.007	63	0.001	0.09	ch
5745	1.60	4,017	0.092	2,221	0.051	0.23	fro Sh
5746	2.60	26,320	0.604	17,389	0.399	0.38	
5747	3.60	56,078	1.287 1.429	58,588	1.345	0.54	_Als
5748 5749	4.60 5.60	62,238 66,563	1.429	117,746 182,147	2.703 4.182	3.99 5.92	ov
5750	6.60	70,969	1.629	250,913	5.760	14.94	wł
5751	7.60	75,495	1.733	324,145	7.441	16.13	
5752	8.60	80,136	1.840	401,960	9.228	17.24	
5753	9.60	85,057	1.953	484,557	11.124	18.28	
							-
							_
							-
							-
							=
							_
							-
							=
							=
							-
							-
							_
							-
							=
							-
							1
							1
							-
							1
							\dashv
							1
							4
							+
							4
							\exists
							1
							1
							-
							1
							_

For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.

Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

Design Procedure Form: Extended Detention Basin (EDB)						
		BMP (Version 3.07, March 2018) Sheet 1 of 3				
Designer:	Richard Schindler					
Company: Date:	Core Engineering Group April 30, 2020					
Project:	The Hills at Lorson Ranch					
Location:	Pond C1					
1 Pagin Storage	Valuma					
Basin Storage						
A) Effective Imp	perviousness of Tributary Area, I _a	I _a = 55.0 %				
B) Tributary Are	ea's Imperviousness Ratio (i = I _a / 100)	i =				
C) Contributing	g Watershed Area	Area = 76.000 ac				
	sheds Outside of the Denver Region, Depth of Average	d ₆ = in				
	ducing Storm	Choose One				
E) Design Cor (Select EUF	ncept RV when also designing for flood control)	Water Quality Capture Volume (WQCV)				
		Excess Urban Runoff Volume (EURV)				
F) Design Vol	ume (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 1.396 ac-ft				
	(1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	· DESIGN				
	sheds Outside of the Denver Region,	V _{DESIGN OTHER} = ac-ft				
	lity Capture Volume (WQCV) Design Volume $(d_e^*(V_{DESIGN}/0.43))$					
H) User Input	of Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} = ac-ft				
	ifferent WQCV Design Volume is desired)					
	ologic Soil Groups of Tributary Watershed	Hec -				
ii) Percent	age of Watershed consisting of Type A Soils tage of Watershed consisting of Type B Soils	$HSG_A = $				
iii) Percen	stage of Watershed consisting of Type C/D Soils	HSG _{C/D} =%				
	an Runoff Volume (EURV) Design Volume A: EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = ac-f t				
For HSG E	3: EURV _B = 1.36 * i ^{1.08}	Dealon				
	C/D: EURV _{C/D} = 1.20 * i ^{1.08}					
	of Excess Urban Runoff Volume (EURV) Design Volume ifferent EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t				
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L:W= 2.0 :1				
(/ t baoii iongai	To man rate of at least 2.1 mm improve ree recastion,					
3. Basin Side Slop	pes					
	mum Side Slopes	Z = 3.00 ft / ft				
(Horizontal	distance per unit vertical, 4:1 or flatter preferred)	DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE				
4. Inlet						
	leans of providing energy dissipation at concentrated					
inflow locat						
5. Forebay						
	orebay Volume $_{ m N}$ = 3% of the WQCV)	V _{FMIN} = 0.042 ac-ft				
B) Actual Fore		V _F = 0.045 ac-ft				
·	•	יך טיטייט מטיינו				
C) Forebay De (D _F	pth = = <u>30</u> inch maximum)	$D_F = $ 24.0 in				
D) Forebay Dis	scharge					
i) Undetained 100-year Peak Discharge		Q ₁₀₀ = 170.00 cfs				
ii) Forebay Discharge Design Flow		$Q_F = 3.40$ cfs				
(Q _F = 0.0		ч _г <u>0.70</u> 00				
E) Forebay Dis	scharge Design	Choose One				
		O Berm With Pipe				
		Wall with Rect. Notch Wall with V-Notch Weir				
El Discharge B	Pine Size (minimum 8-inches)	Calculated D _P = in				
	ipe Size (minimum 8-inches)					
G) Rectangular	r Notch Width	Calculated W _N = 9.1 in				

pond C1 forebay, EDB 4/30/2020, 5:28 PM

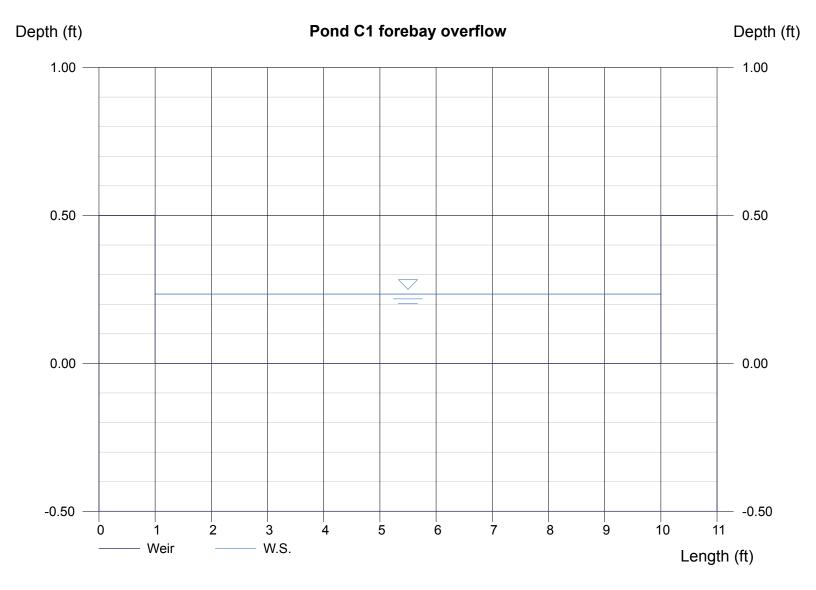
	Design Procedure Form: I	Extended Detention Basin (EDB) Sheet 2 of 3
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group April 30, 2020 The Hills at Lorson Ranch Pond C1	
Trickle Channel A) Type of Trick F) Slope of Tric		Choose One Concrete Soft Bottom S = 0.0050 ft / ft
	Outlet Structure eropool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = $
D) Smallest Din (Use UD-Detent E) Total Outlet A	·	$D_{\text{crifice}} = $
(Minimum red B) Minimum Initi (Minimum vol	e Volume al Surcharge Volume commended depth is 4 inches) al Surcharge Volume ume of 0.3% of the WQCV) rge Provided Above Micropool	$D_{1S} = $
B) Type of Scree in the USDCM, i total screen are	ty Screen Open Area: A _t = A _{ct} * 38.5*(e ^{-0.095D}) en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): y I Open Area to Total Area (only for type 'Other')	A _t = 207 square inches Other (Please describe below) wellscreen stainless User Ratio = 0.6
D) Total Water (CE) Depth of Des (Based on cE) Height of Water (GE) Width of Water (GE) Width of Water (DE)	Quality Screen Area (based on screen type) sign Volume (EURV or WQCV) design concept chosen under 1E) ter Quality Screen (H _{TR}) ter Quality Screen Opening (W _{opening}) inches is recommended)	User Natio = 0.6 A _{total} = 345 sq. in. Based on type 'Other' screen ratio H = 3.64 feet H _{TR} = 71.68 inches W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

pond C1 forebay, EDB 4/30/2020, 5:28 PM

Weir Report

Hydraflow Express by Intelisolve Friday, May 1 2020, 8:58 AM

Pond C1 forebay overflow


Rectangular Weir

Crest = Sharp Bottom Length (ft) = 9.00 Total Depth (ft) = 0.50

Calculations

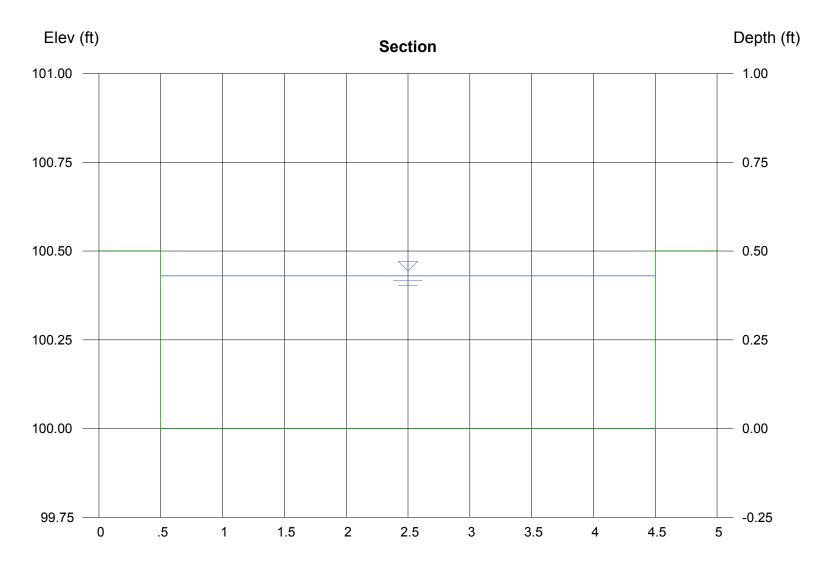
Weir Coeff. Cw = 3.33 Compute by: Known Q Known Q (cfs) = 3.40 Highlighted

Depth (ft) = 0.23 Q (cfs) = 3.400 Area (sqft) = 2.11 Velocity (ft/s) = 1.61 Top Width (ft) = 9.00

Channel Report

Hydraflow Express by Intelisolve Friday, May 1 2020, 6:2 AM

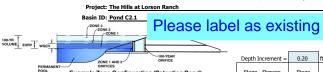
pond C1 low flow channel (2 x forebay release = 6.8cfs)


Rectangular Highlighted Botom Width (ft) = 4.00Depth (ft) = 0.43Total Depth (ft) = 0.50Q (cfs) = 6.800Area (sqft) = 1.72 Invert Elev (ft) = 100.00Velocity (ft/s) = 3.95Slope (%) = 0.50Wetted Perim (ft) = 4.86N-Value = 0.013Crit Depth, Yc (ft) = 0.45Top Width (ft) = 4.00

EGL (ft)

= 0.67

Calculations


Compute by: Known Q Known Q (cfs) = 6.80

Reach (ft)

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.02 (February 2020)

top micropool-5760.00

PERMANENT ORIFICE POOL Example Zone Configuration (Retention	on Pond)
--	----------

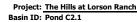
|--|

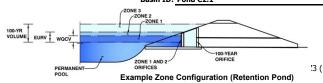
tersned information		
Selected BMP Type =	EDB	
Watershed Area =	74.50	acres
Watershed Length =	2,500	ft
Watershed Length to Centroid =	2,000	ft
Watershed Slope =	0.038	ft/ft
Watershed Imperviousness =	55.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Denths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro		
Water Quality Capture Volume (WQCV) =	1.368	acre-feet
Excess Urban Runoff Volume (EURV) =	4.414	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	4.152	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	5.828	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	7.285	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	9.182	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	10.750	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	12.716	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	16.746	acre-feet
Approximate 2-yr Detention Volume =	3.363	acre-feet
Approximate 5-yr Detention Volume =	4.574	acre-feet
Approximate 10-yr Detention Volume =	5.970	acre-feet
Approximate 25-yr Detention Volume =	6.490	acre-feet
Approximate 50-yr Detention Volume =	6.774	acre-feet
Approximate 100-yr Detention Volume =	7.475	acre-feet
		-

Optional Use	r Overrides
	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
	inches


Define Zones and Basin Geometry


Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	1.368	acre-f
Zone 2 Volume (EURV - Zone 1) =	3.045	acre-f
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	3.745	acre-f
Total Detention Basin Volume =	8.159	acre-f
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H_{TC}) =	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-fee

Spg.	Depth Increment =	0.20	ft							
Decorption (b) Suger (b) (c) (c)			Optional	Longth	Width	Area	Optional	Aron	Volume	Volumo
\$760.33										
\$794										
\$762	5760.33	-	0.33	1		-	50	0.001	15	0.000
5763	5761	1	1.00	1		-	1,264	0.029	455	0.010
5764	5762	-	2.00	-		-	20,478	0.470	11,326	0.260
5765	5763	-	3.00	1		-	41,417	0.951	42,274	0.970
\$1,766				-						
\$767										
3768										
3799										
3770										
\$771										
12.00										
Column		-		-		-				
				-		-				
		-		-						
				-						
				-						
						-				
				-						
				-						
		-		-		-				
				_						
				-						
		1		1		-				
		-		-		-				
		-		-		-				
				-						
				-						
				-						
				-						
				-		-				
				-		-				
		-		1		-				
				-		-				
				-						
1				-		-				
						-				
		-		-		-				
				-	-	-				
		-								<u> </u>
				-		-				
				-						
				-						
		-		-		-				
				-						
						-				
				-		-				

MHFD-Detention_v4-02-pond C2.1, Basin 5/2/2020, 7:30 AM

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	3.42	1.368	Orifice Plate
Zone 2 (EURV)	6.20	3.045	Rectangular Orifice
(100+1/2WQCV)	9.04	3.745	Weir&Pipe (Restrict)
•	Total (all zones)	8.159	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid = feet N/A

User Input: Orifice Plate with one or more orifice	s or Elliptical Slot V	Neir (typically used to drain WQCV and/or EURV in a sediment	ration BMP)	Calculated Param	eters for Plate
Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)	WQ Orifice Area per Row =	2.819E-02	ft²
Depth at top of Zone using Orifice Plate =	3.42	ft (relative to basin bottom at Stage = 0 ft)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	13.70	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	4.06	sg. inches (use rectangular openings)	Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

did rotar filed of Ederi Office	TOW (Hambered III	on lowest to manes	<u>1C)</u>					
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.14	2.28					
Orifice Area (sq. inches)	4.06	4.06	4.06					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

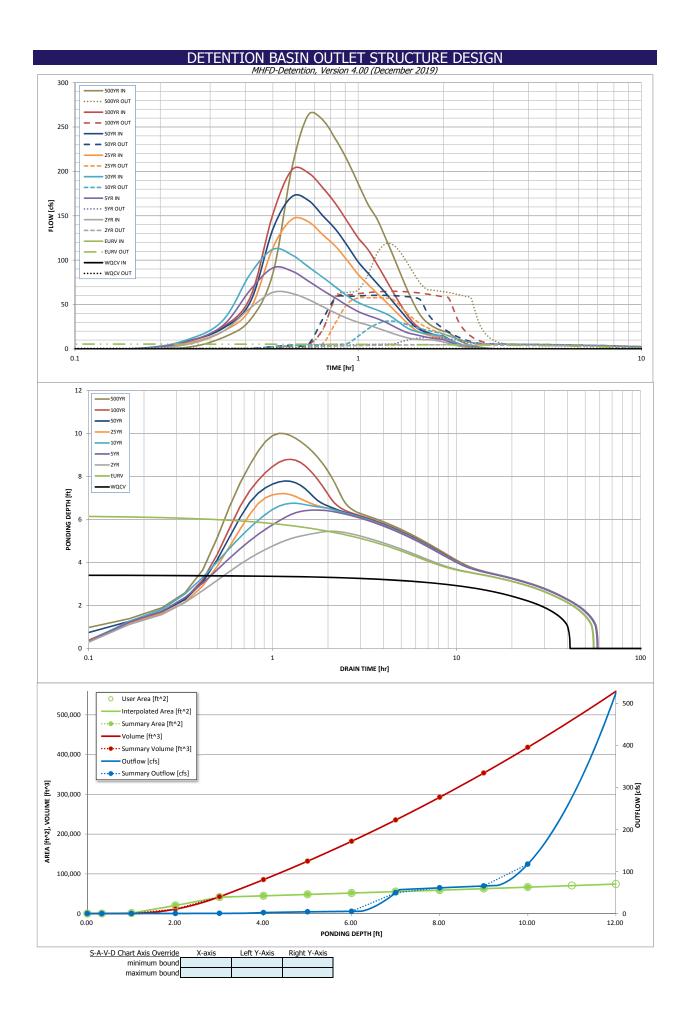
Use

<u>ser Input: Vertical Orifice (Circular or Rectangi</u>	<u>ılar)</u>			Calculated Paramet	ers for Vertical Or
	Zone 2 Rectangular	Not Selected		Zone 2 Rectangular	Not Selected
Invert of Vertical Orifice =	3.42	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area	= 0.61	N/A
Depth at top of Zone using Vertical Orifice =	6.20	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid	= 0.25	N/A
Vertical Orifice Height =	6.00	N/A	inches		
Vertical Orifice Width =	14.59		inches		

User Input: Overflow Weir (Dropbox with Flat or	Calculated Paramet	ers for Overflow We			
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, Ho =	6.20	N/A	ft (relative to basin bottom at Stage = 0 ft) $\frac{1}{2}$ Height of Grate Upper Edge, $\frac{1}{2}$	6.20	N/A
Overflow Weir Front Edge Length =	8.00	N/A	feet Overflow Weir Slope Length =	6.00	N/A
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	6.84	N/A
Horiz. Length of Weir Sides =	6.00	N/A	feet Overflow Grate Open Area w/o Debris =	33.60	N/A
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area Overflow Grate Open Area w/ Debris =	16.80	N/A
Debris Clogging % =	50%	N/A	%		

<u>User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)</u> Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0	ft) Outlet Orifice Area =	4.91	N/A
Outlet Pipe Diameter =	30.00	N/A	inches	Outlet Orifice Centroid =	1.25	N/A
Restrictor Plate Height Above Pipe Invert =	30.00		inches Half-Centra	I Angle of Restrictor Plate on Pipe =	3.14	N/A


User Input: Emergency Spillway (Rectangular or Trapezoidal)

OI

put: Emergency Spillway (Rectangular or	Trapezoidal)			Calculated Parame	ters for Spillway
Spillway Invert Stage=	9.30	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	1.69	feet
Spillway Crest Length =	25.00	feet	Stage at Top of Freeboard =	12.00	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	1.71	acres
Freeboard above Max Water Surface =	1.01	feet	Basin Volume at Top of Freeboard =	12.83	acre-ft
		top micropool = 5761= stage 0			-

Routed Hydrograph Results	The user can overr	ide the default CUH	IP hydrographs and	runoff volumes by	entering new values	in the Inflow Hydr	ographs table (Colu	mns W through AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CLIHD Punoff Volume (acre-ft) -	1 368	4 414	4 152	5 828	7 285	9 182	10.750	12 716

Design Storm Return Feriod –	WQCV	LOIV	Z ICUI	3 I Cui	10 1001	25 1 Cui	30 TCG1	100 1 Cui
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	1.368	4.414	4.152	5.828	7.285	9.182	10.750	12.716
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	4.152	5.828	7.285	9.182	10.750	12.716
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	7.5	21.2	32.2	57.6	72.4	92.1
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.10	0.28	0.43	0.77	0.97	1.24
Peak Inflow Q (cfs) =	N/A	N/A	63.8	91.4	112.2	146.0	171.6	201.7
Peak Outflow Q (cfs) =	0.6	5.6	4.8	12.8	31.2	57.7	60.5	65.0
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.6	1.0	1.0	0.8	0.7
Structure Controlling Flow =	Vertical Orifice 1	Overflow Weir 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.2	0.8	1.5	1.6	1.7
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	48	48	49	47	45	43	41
Time to Drain 99% of Inflow Volume (hours) =	40	52	53	54	53	52	52	51
Maximum Ponding Depth (ft) =	3.42	6.20	5.45	6.44	6.76	7.20	7.79	8.80
Area at Maximum Ponding Depth (acres) =	0.98	1.20	1.14	1.22	1.25	1.29	1.34	1.42
Maximum Volume Stored (acre-ft) =	1.377	4.415	3.534	4.694	5.090	5.661	6.435	7.829

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename: .|xxxxxxx.xlsx

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.59	0.06	1.91
	0:15:00	0.00	0.00	5.22	8.54	10.59	7.11	9.03	8.69	12.94
	0:20:00 0:25:00	0.00	0.00	19.89 46.47	26.61	32.39 85.05	19.92 45.56	23.33	24.81	33.21
	0:30:00	0.00	0.00	63.77	66.84 91.36	112.23	114.18	53.57 135.21	58.95 152.14	85.49 203.98
	0:35:00	0.00	0.00	62.57	87.72	105.94	146.00	171.56	201.73	263.77
	0:40:00	0.00	0.00	55.70	76.50	92.49	143.34	167.40	198.39	257.96
	0:45:00	0.00	0.00	47.59	65.90	80.77	128.66	150.06	181.55	235.82
	0:50:00	0.00	0.00	40.32	57.13	69.55	115.30	134.50	163.30	212.14
	0:55:00 1:00:00	0.00	0.00	34.42	48.76	59.53	99.33	116.01	143.36	186.25
	1:05:00	0.00	0.00	29.96 26.93	42.11 37.69	52.29 47.58	83.84 72.69	98.09 85.28	125.09 111.97	162.81 146.17
	1:10:00	0.00	0.00	23.58	34.19	43.72	62.57	73.59	95.11	124.77
	1:15:00	0.00	0.00	20.26	30.12	39.98	53.50	63.03	78.69	103.88
	1:20:00	0.00	0.00	17.23	25.50	34.67	44.42	52.30	63.05	83.27
	1:25:00	0.00	0.00	14.49	21.34	28.37	36.12	42.44	49.07	64.63
	1:30:00 1:35:00	0.00	0.00	12.33	18.09	23.14	28.26	33.06	37.14	48.88
	1:40:00	0.00	0.00	11.11 10.58	16.33 14.63	20.17 18.35	21.86 18.19	25.47 21.12	27.88 22.45	36.96 29.88
	1:45:00	0.00	0.00	10.28	13.15	17.06	15.89	18.35	19.04	25.36
	1:50:00	0.00	0.00	10.11	12.11	16.15	14.38	16.52	16.67	22.22
	1:55:00	0.00	0.00	9.09	11.32	15.20	13.33	15.24	15.02	20.01
	2:00:00	0.00	0.00	8.00	10.49	13.83	12.66	14.40	13.84	18.42
	2:05:00 2:10:00	0.00	0.00	6.32 4.73	8.33 6.18	10.89 8.03	10.10 7.42	11.46 8.39	10.78 7.80	14.34 10.35
	2:15:00	0.00	0.00	3.55	4.59	5.92	5.50	6.20	5.78	7.65
	2:20:00	0.00	0.00	2.63	3.40	4.33	4.06	4.57	4.29	5.66
	2:25:00	0.00	0.00	1.93	2.46	3.15	2.96	3.32	3.16	4.16
	2:30:00	0.00	0.00	1.39	1.74	2.27	2.12	2.37	2.27	2.99
	2:35:00	0.00	0.00	0.98	1.22	1.62	1.53	1.71	1.64	2.15
	2:40:00 2:45:00	0.00	0.00	0.66 0.41	0.84 0.55	1.12 0.72	1.08 0.71	1.21 0.79	1.15 0.76	1.52 0.99
	2:50:00	0.00	0.00	0.41	0.32	0.40	0.42	0.79	0.70	0.58
	2:55:00	0.00	0.00	0.09	0.15	0.18	0.20	0.22	0.21	0.27
	3:00:00	0.00	0.00	0.03	0.05	0.05	0.06	0.07	0.06	0.08
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00 3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00 3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.02 (February 2020)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
top micropool	0.00	42	0.001	0	0.000	0.00	Fo
surcharge	0.33	50	0.001	15	0.000	0.08	sta
5761	1.00	1,264	0.029	455	0.010	0.14	ch
5762	2.00	20,478	0.470	11,326	0.260	0.32	fro Sh
5763	3.00	41,417	0.951	42,274	0.970	0.54	_
5764	4.00	44,796	1.028	85,380	1.960	2.36	Als
5765	5.00	48,239 51,758	1.107 1.188	131,898 181,896	3.028 4.176	4.17 5.36	ou ov
5766 5767	6.00 7.00	55,348	1.271	235,449	5.405	49.52	wł
5768	8.00	59,010	1.355	292,628	6.718	61.41	╁
5769	9.00	62,743	1.440	353,505	8.115	65.80	1
5770	10.00	66,548	1.528	418,150	9.599	117.77	
							_
							_
							-
							-
							1
							_
							-
							-
							-
							1
							_
							-
							-
							-
							1
							1
							_
							_
							-
							1
							_
							-
							1
							-
							1
							1
							-
							1
							1
							4
							1
							1
							4
							-
							1
							-
		l .	L		l		_

For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.

Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

	Design Procedure For	m: Extended Detention Basin (EDB)
Designer:	UD- Richard Schindler	BMP (Version 3.07, March 2018) Sheet 1 of 3
Company:	Core Engineering Group	
Date:	May 2, 2020	
Project:	The Hills at Lorson Ranch Pond C2.1	
Location:	1 0Hd 02.1	
Basin Storage	Volume	
A) Effective Im	perviousness of Tributary Area, I _a	I _a = 55.0 %
B) Tributary Ar	rea's Imperviousness Ratio (i = I _a / 100)	i = 0.550
C) Contributin	g Watershed Area	Area = 74.500 ac
	sheds Outside of the Denver Region, Depth of Average ducing Storm	$d_6 =$ in
E) Design Cor (Select EUF	ncept RV when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
	ume (WQCV) Based on 40-hour Drain Time (1.0 * (0.91 * i³ - 1.19 * i² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 1.368 ac-ft
Water Qua	sheds Outside of the Denver Region, lifty Capture Volume (WQCV) Design Volume $_{\rm ER}$ = $(d_{\rm e}^{*}(V_{\rm DESIGN}/0.43))$	V _{DESIGN} OTHER ⁼ ac-ft
	of Water Quality Capture Volume (WQCV) Design Volume ifferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft
i) Percent ii) Percen	ologic Soil Groups of Tributary Watershed tage of Watershed consisting of Type A Soils tage of Watershed consisting of Type B Soils ttage of Watershed consisting of Type C/D Soils	$HSG_A = %$ $HSG_B = %$ $HSG_{CID} = %$
For HSG A	oan Runoff Volume (EURV) Design Volume A: $EURV_A = 1.68 * i^{1.28}$ B: $EURV_B = 1.36 * i^{1.08}$ C/D: $EURV_{OD} = 1.20 * i^{1.08}$	EURV _{DESIGN} = ac-f t
	of Excess Urban Runoff Volume (EURV) Design Volume ifferent EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t
	Length to Width Ratio n to width ratio of at least 2:1 will improve TSS reduction.)	L:W= 2.0 : 1
3. Basin Side Slo	pes	
	imum Side Slopes I distance per unit vertical, 4:1 or flatter preferred)	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4. Inlet		
A) Describe m inflow local	neans of providing energy dissipation at concentrated tions:	
E Ecolo		
	forebay Volume $_{ m N}$ = $\frac{3\%}{}$ of the WQCV)	V _{FMIN} = 0.041 ac-ft
B) Actual Fore	ebay Volume	$V_F = 0.045$ ac-ft
C) Forebay De	epth _F = <u>30</u> inch maximum)	D _F = 24.0 in
D) Forebay Dis	scharge	
i) Undetair	ned 100-year Peak Discharge	Q ₁₀₀ = 202.00 cfs
	y Discharge Design Flow 02 * Q ₁₀₀)	Q _F = 4.04 cfs
E) Forebay Dis	scharge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge F	Pipe Size (minimum 8-inches)	Calculated $D_P =$ in
G) Rectangula	r Notch Width	Calculated W _N = 9.9 in

pond C2.1 forebay, EDB 5/2/2020, 7:26 AM

	Design Procedure Form: I	Extended Detention Basin (EDB) Sheet 2 of 3
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group May 2, 2020 The Hills at Lorson Ranch Pond C2.1	
Trickle Channel A) Type of Trick F) Slope of Tric		Choose One Concrete Soft Bottom S = 0.0050 ft / ft
	Outlet Structure propool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = $
D) Smallest Din (Use UD-Detent E) Total Outlet A	·	$D_{\text{orifice}} = $
(Minimum red B) Minimum Initi (Minimum vol	e Volume al Surcharge Volume commended depth is 4 inches) al Surcharge Volume ume of 0.3% of the WQCV) rge Provided Above Micropool	$D_{1S} = $
B) Type of Scree in the USDCM, i	by Screen Open Area: $A_t = A_{ot} * 38.5^*(e^{-0.095D})$ en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.)	A _t = 401 square inches Other (Please describe below) wellscreen stainless
D) Total Water (CE) Depth of Des (Based on cEF) Height of Water (G) Width of Water (B)	I Open Area to Total Area (only for type 'Other') Quality Screen Area (based on screen type) ign Volume (EURV or WQCV) design concept chosen under 1E) ter Quality Screen (H _{TR}) ter Quality Screen Opening (W _{opening}) inches is recommended)	User Ratio = 0.6 A _{total} = 668 sq. in. Based on type 'Other' screen ratio H= 3.42 feet H _{TR} = 69.04 inches W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

pond C2.1 forebay, EDB 5/2/2020, 7:26 AM

	Design Procedure Form:	Extended Detention Basin (EDB)	
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group May 2, 2020 The Hills at Lorson Ranch Pond C2.1		Sheet 3 of 3
B) Slope of C	oankment embankment protection for 100-year and greater overtopping: Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	Ze = ft / ft Choose One O Irrigated O Not Irrigated	
12. Access A) Describe s	Sediment Removal Procedures		

pond C2.1 forebay, EDB 5/2/2020, 7:26 AM

Channel Report

Hydraflow Express by Intelisolve

Saturday, May 2 2020, 7:49 AM

= 0.58

pond C2.1 low flow channel (2 x forebay release = 8.08cfs)

Rectangular
Botom Width (ft) = 6.00
Total Depth (ft) = 0.50

Invert Elev (ft) = 100.00 Slope (%) = 0.50 N-Value = 0.013

Calculations

Compute by: Known Q Known Q (cfs) = 8.08

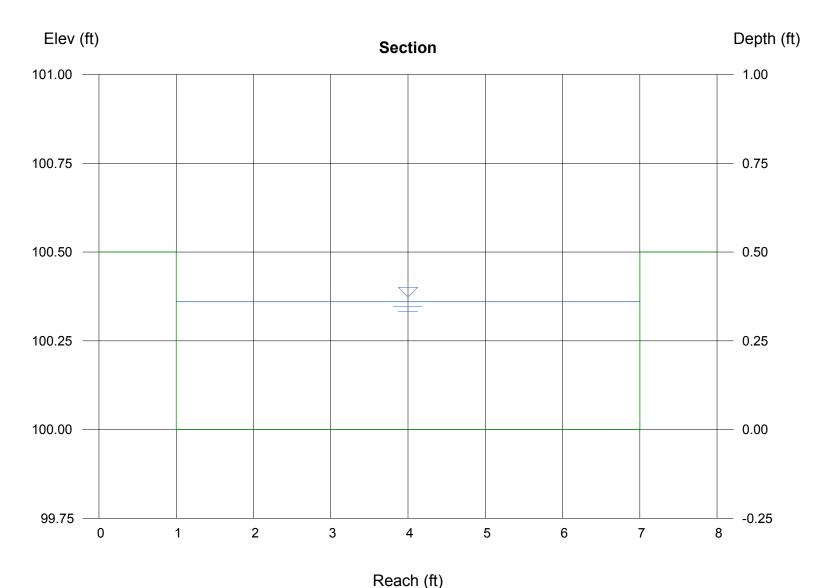
 Highlighted

 Depth (ft)
 = 0.36

 Q (cfs)
 = 8.080

 Area (sqft)
 = 2.16

Area (sqft) = 2.16


Velocity (ft/s) = 3.74

Wetted Perim (ft) = 6.72

Crit Depth, Yc (ft) = 0.39

Top Width (ft) = 6.00

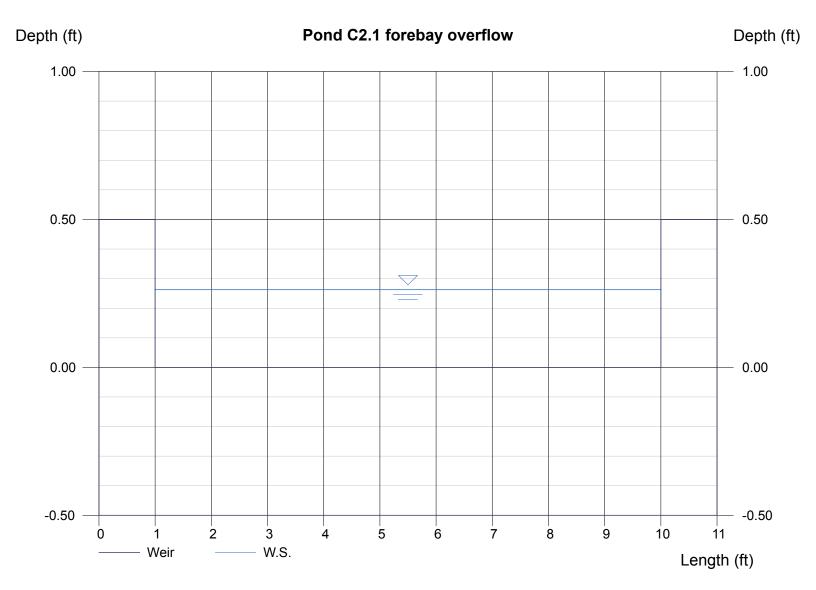
EGL (ft)

Weir Report

Hydraflow Express by Intelisolve

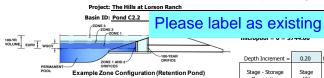
Saturday, May 2 2020, 7:52 AM

Pond C2.1 forebay overflow


Rectangular Weir

Crest = Sharp Bottom Length (ft) = 9.00 Total Depth (ft) = 0.50

Calculations


Weir Coeff. Cw = 3.33 Compute by: Known Q Known Q (cfs) = 4.04 Highlighted

Depth (ft) = 0.26 Q (cfs) = 4.040 Area (sqft) = 2.36 Velocity (ft/s) = 1.71 Top Width (ft) = 9.00

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.02 (February 2020)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	45.00	acres
Watershed Length =	2,500	ft
Watershed Length to Centroid =	1,200	ft
Watershed Slope =	0.045	ft/ft
Watershed Imperviousness =	55.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	95.0%	percent
Percentage Hydrologic Soil Groups C/D =	5.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-br Painfall Denths -	Hear Innut	

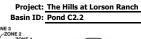
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

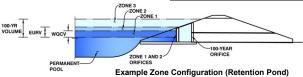
the embedded Colorado Urban Hydro	igraph Procedi	ire.
Water Quality Capture Volume (WQCV) =	0.827	acre-feet
Excess Urban Runoff Volume (EURV) =	2.651	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	2.510	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	3.521	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	4.403	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	5.541	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	6.487	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	7.671	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	10.104	acre-feet
Approximate 2-yr Detention Volume =	2.035	acre-feet
Approximate 5-yr Detention Volume =	2.778	acre-feet
Approximate 10-yr Detention Volume =	3.600	acre-feet
Approximate 25-yr Detention Volume =	3.912	acre-feet
Approximate 50-yr Detention Volume =	4.081	acre-feet
Approximate 100-yr Detention Volume =	4.507	acre-feet
		='

Optional User	r Overrides
	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
	inches

Define Zones and Basin Geometry

Define Lones and Dasin Geometry	
Zone 1 Volume (WQCV) = 0.827 a	acre-f
Zone 2 Volume (EURV - Zone 1) = 1.824 a	acre-f
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) = 2.269 a	acre-f
Total Detention Basin Volume = 4.920 a	acre-f
Initial Surcharge Volume (ISV) = user fi	t ³
Initial Surcharge Depth (ISD) = user fl	t
Total Available Detention Depth (H _{total}) = user fi	ŧ
Depth of Trickle Channel (H _{TC}) = user fi	t
Slope of Trickle Channel (S _{TC}) = user fi	t/ft
Slopes of Main Basin Sides (S _{main}) = user H	H:V
Basin Length-to-Width Ratio (R _{L/W}) = user	


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-fee


Depth Increment =	0.20	ft	,	,		Cational			
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00			-	40	0.001		
5744.33		0.33	-		-	50	0.001	15	0.000
5745		1.00	-		-	255	0.006	117	0.003
5746		2.00	-			6,998	0.161	3,743	0.086
5747		3.00	-		-	38,392	0.881	26,438	0.607
5748 5749		4.00	-		-	40,927	0.940	66,098	1.517 2.487
5749		5.00 6.00			-	43,534 46,212	1.061	108,328	3.517
5751		7.00	-		_	48,991	1.125	153,201 200,803	4.610
5752		8.00	_		-	51,837	1.190	251,217	5.767
5753		9.00	-		-	54,731	1.256	304,501	6.990
5754		10.00	-			58,033	1.332	360,883	8.285
					-				
			-						
			-		-				
					-				
			-		-				
					-				
					-				
			-						
			-		-				
					-				
			-		-			1	
					-				
			_		-				
			-						
					-				
					-				
					-				
			-		-				
					-				
			-		_				
			-		-				
			-		-				
			-		-				
			-						
			-		-				
			-						
					-				
			_						
			-						
			-						
			-						
			-						
			-		-				
			-		-			-	
			-		-				-
			-		-				<u> </u>
			-		-				
			-		-				l
			-						
					-				-
			-		-				
			-		-				
					-				
			-		-				
			-						
					-				
			-		-				
			-		-				
					-				
			-		-				
			-		-				
			-		-				
			-		-				
					-			<u> </u>	
			-		-				
			-		-				
			-		-				
					-				
					-				

MHFD-Detention_v4-02-Pond C2.2, Basin 5/2/2020, 9:11 AM

Pond C2.2 Developed Inflow Hydrograph---- Pond C3 outflow + C5 Basin + C7 Basin

	·			2yr			5yr			10yr			25yr			50yr			100yr			500yr
Time	Time	2 Year Pond C3 Outflow2	CUHP	Combined	5 Year Pond C3 Outflow2	CUHP	Combined	10 Year Ponc C3 Outflow2	CUHP	Combined	25 Year Pond C3 Outflow2	CUHP	Combined	50 Year Pond C3 Outflow2	CUHP F0 Year (efc)	Combined	100 Year Pond C3 Outflow2	CUHP	Combined	500 Year Pond C3 Outflow2	CUHP	Combined
[hr]	[min]	- [cfs]	2 Year [cfs]	Hydrograph	- [cfs]	5 Year [cfs]	Hydrograph	- [cfs]	10 Year [cfs]	Hydrograph	- [cfs]	25 Year [cfs]	Hydrograph	- [cfs]	50 Year [cfs]	Hydrograph	- [cfs]	100 Year [cfs]	Hydrograph	- [cfs]	500 Year [cfs]	Hydrograph
0.00	0.00 5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03 0.04	0.00	0.03	0.02	0.00	0.02	0.03 0.04	0.00	0.03
0.17	10.00	0.06	0.00	0.06	0.07	0.00	0.07	0.08	0.00	0.08	0.07	0.00	0.07	0.08	0.42	0.50	0.07	0.04	0.03	0.09	1.36	1.45
0.25	15.00	0.10	3.74	3.84	0.11	6.11	6.22	0.11	7.57	7.68	0.10	5.09	5.19	0.10	6.38	6.48	0.10	6.20	6.30	0.12	9.01	9.13
0.33	20.00	0.14	13.60	13.74	0.16	18.00	18.16	0.17	21.92	22.09	0.14	13.38	13.52	0.15	15.61	15.76	0.16	16.68	16.84	0.17	22.29	22.46
0.42	25.00	0.17	31.11	31.28	0.20	45.07	45.27	0.52	57.54	58.06	0.19	30.50	30.69	0.24	35.87	36.11	0.39	39.63	40.02	1.63	57.77	59.40
0.50	30.00	0.24	40.82	41.06	1.21	58.25	59.46	1.95	71.19	73.14	1.68	76.90	78.58	2.14	91.05	93.19	2.56	102.55	105.11	3.27	136.67	139.94
0.58	35.00 40.00	0.87 1.66	38.60	39.47 35.50	2.10	53.89 46.24	55.99 48.76	2.57	65.04 55.88	67.61 58.87	2.72 3.44	92.11 88.47	94.83 91.91	3.16 3.89	108.06 103.22	111.22 107.11	3.60 4.32	127.72 122.26	131.32 126.58	4.27 4.98	166.67 158.77	170.94 163.75
0.75	45.00	2.01	28.43	30.44	2.81	39.40	42.21	3.35	48.41	51.76	3.99	77.76	81.75	4.43	90.67	95.10	4.86	110.23	115.09	5.54	143.17	148.71
0.83	50.00	2.25	23.82	26.07	3.03	33.85	36.88	3.70	41.10	44.80	4.43	69.49	73.92	4.85	81.04	85.89	5.29	98.35	103.64	20.24	127.67	147.91
0.92	55.00	2.44	20.11	22.55	3.21	28.41	31.62	4.03	34.74	38.77	4.78	58.63	63.41	5.19	68.45	73.64	5.65	85.07	90.72	30.72	110.43	141.15
1.00	60.00	2.59	17.63	20.22	3.38	24.74	28.12	4.33	30.90	35.23	5.08	48.90	53.98	5.49	57.23	62.72	15.15	73.51	88.66	31.92	95.81	127.73
1.08	65.00 70.00	2.70 2.79	15.89	18.59 16.42	3.55 3.70	22.20 19.91	25.75 23.61	4.58 4.81	28.16 25.58	32.74 30.39	5.33 5.55	42.78 36.41	48.11 41.96	6.30 14.94	50.23 42.84	56.53 57.78	29.72 30.21	66.37 55.34	96.09 85.55	34.49 53.73	86.66 72.60	121.15 126.33
1.25	75.00	2.87	11.46	14.33	3.84	17.10	20.94	5.01	23.01	28.02	6.25	30.66	36.91	24.32	36.16	60.48	30.53	44.97	75.50	68.71	59.42	128.13
1.33	80.00	2.93	9.51	12.44	3.97	14.14	18.11	5.18	19.48	24.66	12.33	24.76	37.09	29.87	29.17	59.04	30.79	34.93	65.72	73.88	46.13	120.01
1.42	85.00	2.99	7.93	10.92	4.09	11.69	15.78	5.32	15.58	20.90	19.28	19.60	38.88	30.07	23.03	53.10	31.01	26.23	57.24	72.67	34.55	107.22
1.50	90.00	3.05	6.97	10.02	4.20	10.29	14.49	5.44	13.16	18.60	25.17	14.82	39.99	30.25	17.32	47.57	31.20	19.11	50.31	68.71	25.36	94.07
1.58	95.00 100.00	3.10 3.15	6.50	9.60	4.30	9.58 8.56	13.88 12.96	5.55 5.64	11.74	17.29	29.61 29.92	11.96	41.57	30.41 30.56	13.95	44.36 42.41	31.37 31.53	14.90	46.27 43.92	64.29	19.87 16.55	84.16
1.67	105.00	3.20	6.27	9.42 9.34	4.40 4.48	7.72	12.96	6.07	10.76 10.05	16.40 16.12	30.03	10.21 9.08	40.13 39.11	30.69	11.85 10.48	42.41	31.53	12.39 10.63	43.92	60.59 57.81	14.20	77.14 72.01
1.83	110.00	3.24	6.04	9.28	4.55	7.11	11.66	8.15	9.57	17.72	30.13	8.29	38.42	30.82	9.52	40.34	31.81	9.43	41.24	55.69	12.60	68.29
1.92	115.00	3.28	5.34	8.62	4.62	6.67	11.29	10.36	8.98	19.34	30.22	7.79	38.01	30.93	8.90	39.83	31.94	8.58	40.52	54.06	11.45	65.51
2.00	120.00	3.32	4.68	8.00	4.67	6.16	10.83	12.00	8.10	20.10	30.31	7.44	37.75	31.04	8.45	39.49	32.05	7.98	40.03	52.58	10.64	63.22
2.08	125.00	3.35	3.59	6.94	4.71	4.72	9.43	12.85	6.16	19.01	30.35	5.71	36.06	31.13	6.47	37.60	32.15	6.02	38.17	51.05	8.02	59.07
2.17	130.00 135.00	3.37 3.39	2.65 1.95	6.02 5.34	4.75 4.77	3.44 2.52	8.19 7.29	13.03 12.75	4.45 3.22	17.48 15.97	30.34 30.26	4.14 3.01	34.48 33.27	31.20 31.26	4.68 3.40	35.88 34.66	32.24 32.32	4.36 3.19	36.60 35.51	49.59 48.23	5.80 4.22	55.39 52.45
2.33	140.00	3.41	1.42	4.83	4.79	1.83	6.62	12.75	2.34	14.52	30.12	2.20	32.32	31.31	2.48	33.79	32.32	2.35	34.73	46.99	3.11	50.10
2.42	145.00	3.43	1.02	4.45	4.80	1.28	6.08	11.47	1.67	13.14	29.95	1.56	31.51	31.35	1.75	33.10	32.44	1.68	34.12	45.87	2.22	48.09
2.50	150.00	3.44	0.71	4.15	4.81	0.88	5.69	10.72	1.17	11.89	28.62	1.10	29.72	31.39	1.23	32.62	32.49	1.18	33.67	44.86	1.56	46.42
2.58	155.00	3.46	0.49	3.95	4.81	0.61	5.42	10.00	0.82	10.82	23.64	0.79	24.43	31.37	0.88	32.25	32.54	0.84	33.38	43.95	1.11	45.06
2.67	160.00	3.47	0.31	3.78	4.82	0.41	5.23	9.36	0.53	9.89	19.85	0.52	20.37	31.27	0.59	31.86	32.58	0.56	33.14	43.11	0.74	43.85
2.75	165.00 170.00	3.48 3.50	0.17	3.65 3.58	4.82 4.83	0.24 0.12	5.06 4.95	8.83 8.39	0.31 0.15	9.14 8.54	16.93 14.67	0.32 0.16	17.25 14.83	31.13 30.96	0.35 0.18	31.48 31.14	32.61 32.64	0.34 0.17	32.95 32.81	42.34 41.64	0.44	42.78 41.86
2.92	175.00	3.51	0.03	3.54	4.83	0.04	4.87	8.03	0.05	8.08	12.93	0.05	12.98	30.76	0.06	30.82	32.66	0.06	32.72	40.98	0.07	41.05
3.00	180.00	3.52	0.00	3.52	4.84	0.00	4.84	7.72	0.00	7.72	11.61	0.00	11.61	30.54	0.00	30.54	32.67	0.00	32.67	40.37	0.00	40.37
3.08	185.00	3.53		3.53	4.84	0.00	4.84	7.47	0.00	7.47	10.59	0.00	10.59	30.31	0.00	30.31	32.62	0.00	32.62	39.78	0.00	39.78
3.17	190.00	3.54		3.54	4.85		4.85	7.25		7.25	9.79	0.00	9.79	30.07	0.00	30.07	32.51	0.00	32.51	39.21	0.00	39.21
3.25	195.00 200.00	3.55 3.56		3.55 3.56	4.85 4.86		4.85 4.86	7.06 6.90		7.06 6.90	9.15 8.63	0.00	9.15 8.63	29.82 23.98	0.00	29.82 23.98	32.37 32.19		32.37 32.19	38.66 38.13	0.00	38.66 38.13
3.42	205.00	3.57		3.57	4.86		4.86	6.76		6.76	8.21	0.00	8.21	19.59	0.00	19.59	31.99		31.99	37.60	0.00	37.60
3.50	210.00	3.58		3.58	4.86		4.86	6.63		6.63	7.86		7.86	16.49	0.00	16.49	31.78		31.78	37.04	0.00	37.04
3.58	215.00	3.59		3.59	4.87		4.87	6.52		6.52	7.57		7.57	14.25		14.25	31.55		31.55	35.80	0.00	35.80
3.67	220.00	3.59		3.59	4.87		4.87	6.42		6.42	7.32		7.32	12.58		12.58	31.31		31.31	33.93	0.00	33.93
3.75	225.00	3.60		3.60	4.87		4.87	6.32		6.32	7.11		7.11	11.31		11.31	31.07		31.07	32.74	0.00	32.74
3.83	230.00 235.00	3.61 3.61		3.61 3.61	4.88 4.88		4.88 4.88	6.24		6.24	6.92 6.76		6.92 6.76	10.33 9.56		10.33 9.56	30.82 30.57		30.82 30.57	32.57 32.38	0.00	32.57 32.38
4.00	240.00	3.62		3.62	4.88		4.88	6.10		6.10	6.62		6.62	8.94		8.94	30.32		30.32	32.17	5.50	32.17
4.08	245.00	3.63		3.63	4.88		4.88	6.04		6.04	6.50		6.50	8.44		8.44	30.07		30.07	31.94		31.94
4.17	250.00	3.63		3.63	4.88		4.88	5.98		5.98	6.39		6.39	8.03		8.03	29.77		29.77	31.71		31.71
4.25	255.00	3.64		3.64	4.88		4.88	5.93		5.93	6.29		6.29	7.69		7.69	23.75		23.75	31.47		31.47
4.33 4.42	260.00 265.00	3.64 3.65		3.64 3.65	4.89 4.89		4.89 4.89	5.88 5.84		5.88 5.84	6.21 6.13		6.21 6.13	7.41 7.17		7.41 7.17	19.39 16.31		19.39 16.31	31.22 30.98		31.22 30.98
4.50	270.00	3.65		3.65	4.89		4.89	5.80		5.80	6.05		6.05	6.96		6.96	14.07		14.07	30.73		30.73
4.58	275.00	3.65		3.65	4.89		4.89	5.76		5.76	5.99		5.99	6.78		6.78	12.41		12.41	30.48		30.48
4.67	280.00	3.66		3.66	4.89		4.89	5.74		5.74	5.93		5.93	6.63		6.63	11.14		11.14	30.22		30.22
4.75	285.00	3.66		3.66	4.89		4.89	5.71		5.71	5.88		5.88	6.49		6.49	10.17		10.17	29.97		29.97
4.83 4.92	290.00 295.00	3.66 3.67		3.66 3.67	4.89 4.89		4.89 4.89	5.70 5.69		5.70 5.69	5.83 5.79		5.83 5.79	6.37 6.27		6.37 6.27	9.40 8.78		9.40 8.78	27.51 21.96		27.51 21.96
5.00	300.00	3.67		3.67	4.89		4.89	5.69		5.69	5.79		5.79	6.27		6.27	8.78		8.78	18.12		18.12
5.08	305.00	3.67		3.67	4.89		4.89	5.69		5.69	5.73		5.73	6.09		6.09	7.88		7.88	15.38		15.38
5.17	310.00	3.67		3.67	4.89		4.89	5.68		5.68	5.70		5.70	6.01		6.01	7.54		7.54	13.38		13.38
5.25	315.00	3.67		3.67	4.89		4.89	5.68		5.68	5.69		5.69	5.94		5.94	7.26		7.26	11.87		11.87
5.33	320.00	3.67		3.67	4.89		4.89	5.68		5.68	5.69		5.69	5.88		5.88	7.02		7.02	10.72		10.72
5.42 5.50	325.00	3.67 3.67		3.67 3.67	4.88 4.88		4.88 4.88	5.67 5.67		5.67 5.67	5.69 5.68		5.69 5.68	5.83 5.78		5.83 5.78	6.81 6.64		6.81	9.83		9.83 9.12
5.50 5.58	330.00 335.00	3.67		3.67	4.88		4.88	5.66		5.66	5.68		5.68	5.75		5.75	6.48		6.48	9.12 8.55		9.12 8.55
5.67	340.00	3.67		3.67	4.88		4.88	5.66		5.66	5.68		5.68	5.72		5.72	6.35		6.35	8.09		8.09
5.75	345.00	3.67		3.67	4.88		4.88	5.65		5.65	5.67		5.67	5.70		5.70	6.23		6.23	7.71		7.71

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	3.25	0.827	Orifice Plate
Zone 2 (EURV)	5.17	1.824	Rectangular Orifice
'.3 (100+1/2WQCV)	7.28	2.269	Weir&Pipe (Restrict)
	Total (all zones)	4.920	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid = feet N/A

Jser Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate								
Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)	WQ Orifice Area per Row =	1.535E-02	ft²			
Depth at top of Zone using Orifice Plate =	3.25	ft (relative to basin bottom at Stage = 0 ft)	Elliptical Half-Width =	N/A	feet			
Orifice Plate: Orifice Vertical Spacing =	13.00	inches	Elliptical Slot Centroid =	N/A	feet			
Orifice Plate: Orifice Area per Row =	2.21	sq. inches (diameter = 1-11/16 inches)	Elliptical Slot Area =	N/A	ft ²			

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

na rotarrica di Eacir dinice non (namberea non idvese to nigrese)									
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.08	2.17						
Orifice Area (sq. inches)	2.21	2.21	2.21						

i de la companya de								
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

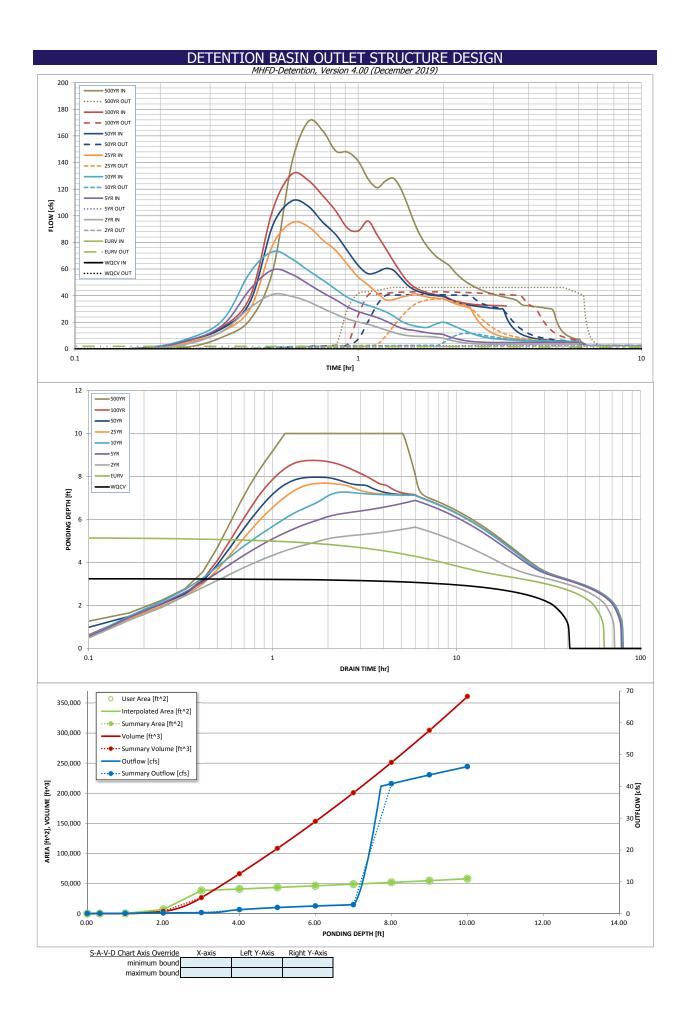
Use

Jser Input: Vertical Orifice (Circular or Rectange	ular)		_		Calculated Paramete	ers for Vertical Orifi
	Zone 2 Rectangular	Not Selected			Zone 2 Rectangular	Not Selected
Invert of Vertical Orifice =	3.25	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	0.25	N/A
Depth at top of Zone using Vertical Orifice =	5.17	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	0.25	N/A
Vertical Orifice Height =	6.00	N/A	inches		•	·
Vertical Orifice Width =	6.00		inches			

User Input: Overflow Weir (Dropbox with Flat or	Calculated Parameters for Overflow We				
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, Ho =	7.00	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	7.00	N/A
Overflow Weir Front Edge Length =	8.00	N/A	feet Overflow Weir Slope Length =	6.00	N/A
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	10.58	N/A
Horiz. Length of Weir Sides =	6.00	N/A	feet Overflow Grate Open Area w/o Debris =	33.60	N/A
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area	16.80	N/A
Debris Clogging % =	50%	N/A	%		_

<u>User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)</u>

utiet ripe w/ riow kestriction riate	Outlet Pipe Diameter = 30.00 N/A inches Outlet Orifice Centroid = 0.87 N/A					
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	3.18	N/A
Outlet Pipe Diameter =	30.00	N/A	inches	Outlet Orifice Centroid =	0.87	N/A
or Plate Height Above Pipe Invert =	18.50		inches Half-Central Angle of I	Restrictor Plate on Pipe =	1.81	N/A


User Input: Emergency Spillway (Rectangular or Trapezoidal)

Restrictor

ut: Emergency Spillway (Rectangular or	Calculated Parameters for Spillway				
Spillway Invert Stage=	10.00	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	1.51	feet
Spillway Crest Length =	20.00	feet	Stage at Top of Freeboard =	13.00	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	1.33	acres
Freeboard above Max Water Surface =	1.49	feet	Basin Volume at Top of Freeboard =	8.28	acre-ft
			·		•

micropool = 0 = 5744.00

Routed Hydrograph Results	The user can overr	ide the default CUH	IP hydrographs and	runoff volumes by	entering new values	in the Inflow Hydro	ographs table (Colu	mns W through AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	0.827	2.651	2.510	3.521	4.403	5.541	6.487	7.671
User Override Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	4.034	5.603	7.467	11.034	14.029	17.717
CUHP Predevelopment Peak Q (cfs) =		N/A	5.0	13.5	20.5	36.5	45.7	58.2
OPTIONAL Override Predevelopment Peak Q (cfs) =		N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.11	0.30	0.46	0.81	1.02	1.29
Peak Inflow Q (cfs) =	N/A	N/A	41.1	59.5	73.1	94.8	111.2	131.3
Peak Outflow Q (cfs) =	0.3	2.0	2.2	2.7	11.7	37.5	40.7	42.9
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.2	0.6	1.0	0.9	0.7
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =		N/A	N/A	N/A	0.3	1.0	1.1	1.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	56	62	66	64	59	55	50
Time to Drain 99% of Inflow Volume (hours) =	40	61	68	73	73	71	69	67
Maximum Ponding Depth (ft) =	3.25	5.17	5.64	6.88	7.28	7.69	7.97	8.75
Area at Maximum Ponding Depth (acres) =		1.01	1.04	1.12	1.14	1.17	1.19	1.24
Maximum Volume Stored (acre-ft) =	0.829	2.658	3.139	4.475	4.916	5.390	5.720	6.666

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	USER	USER	USER	USER	USER	USER	USER
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]	50 Year [cfs]		500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.02	0.03
3.00 11111	0:05:00	0.00	0.00	0.03	0.03	0.03	0.03	0.04	0.03	0.04
	0:10:00	0.00	0.00	0.06	0.07	0.08	0.07	0.50	0.11	1.45
	0:15:00	0.00	0.00	3.84	6.22	7.68	5.19	6.48	6.30	9.13
	0:20:00	0.00	0.00	13.74	18.16	22.09	13.52	15.76	16.84	22.46
	0:25:00	0.00	0.00	31.28	45.27	58.06	30.69	36.11	40.02	59.40
	0:30:00	0.00	0.00	41.06	59.46	73.14	78.58	93.19	105.11	139.94
	0:35:00	0.00	0.00	39.47	55.99	67.61	94.83	111.22	131.32	170.94
	0:40:00	0.00	0.00	35.50	48.76	58.87	91.91	107.11	126.58	163.75
	0:45:00	0.00	0.00	30.44 26.07	42.21 36.88	51.76 44.80	81.75 73.92	95.10 85.89	115.09 103.64	148.71 147.91
	0:55:00	0.00	0.00	22.55	31.62	38.77	63.41	73.64	90.72	147.91
	1:00:00	0.00	0.00	20.22	28.12	35.23	53.98	62.72	88.66	127.73
	1:05:00	0.00	0.00	18.59	25.75	32.74	48.11	56.53	96.09	121.15
	1:10:00	0.00	0.00	16.42	23.61	30.39	41.96	57.78	85.55	126.33
	1:15:00	0.00	0.00	14.33	20.94	28.02	36.91	60.48	75.50	128.13
	1:20:00	0.00	0.00	12.44	18.11	24.66	37.09	59.04	65.72	120.01
	1:25:00	0.00	0.00	10.92	15.78	20.90	38.88	53.10	57.24	107.22
	1:30:00	0.00	0.00	10.02	14.49	18.60	39.99	47.57	50.31	94.07
	1:40:00	0.00	0.00	9.60	13.88	17.29	41.57	44.36	46.27	84.16
	1:45:00	0.00	0.00	9.42 9.34	12.96 12.20	16.40 16.12	40.13 39.11	42.41 41.17	43.92 42.30	77.14 72.01
	1:50:00	0.00	0.00	9.28	11.66	17.72	38.42	40.34	41.24	68.29
	1:55:00	0.00	0.00	8.62	11.29	19.34	38.01	39.83	40.52	65.51
	2:00:00	0.00	0.00	8.00	10.83	20.10	37.75	39.49	40.03	63.22
	2:05:00	0.00	0.00	6.94	9.43	19.01	36.06	37.60	38.17	59.07
	2:10:00	0.00	0.00	6.02	8.19	17.48	34.48	35.88	36.60	55.39
	2:15:00	0.00	0.00	5.34	7.29	15.97	33.27	34.66	35.51	52.45
	2:20:00 2:25:00	0.00	0.00	4.83 4.45	6.62 6.08	14.52 13.14	32.32 31.51	33.79 33.10	34.73 34.12	50.10 48.09
	2:30:00	0.00	0.00	4.15	5.69	11.89	29.72	32.62	33.67	46.42
	2:35:00	0.00	0.00	3.95	5.42	10.82	24.43	32.25	33.38	45.06
	2:40:00	0.00	0.00	3.78	5.23	9.89	20.37	31.86	33.14	43.85
	2:45:00	0.00	0.00	3.65	5.06	9.14	17.25	31.48	32.95	42.78
	2:50:00	0.00	0.00	3.58	4.95	8.54	14.83	31.14	32.81	41.86
	2:55:00	0.00	0.00	3.54	4.87	8.08	12.98	30.82	32.72	41.05
	3:00:00	0.00	0.00	3.52	4.84	7.72	11.61	30.54	32.67	40.37
	3:05:00 3:10:00	0.00	0.00	3.53 3.54	4.84 4.85	7.47 7.25	10.59 9.79	30.31 30.07	32.62	39.78 39.21
	3:15:00	0.00	0.00	3.55	4.85	7.25	9.79	29.82	32.51 32.37	38.66
	3:20:00	0.00	0.00	3.56	4.86	6.90	8.63	23.98	32.19	38.13
	3:25:00	0.00	0.00	3.57	4.86	6.76	8.21	19.59	31.99	37.60
	3:30:00	0.00	0.00	3.58	4.86	6.63	7.86	16.49	31.78	37.04
	3:35:00	0.00	0.00	3.59	4.87	6.52	7.57	14.25	31.55	35.80
	3:40:00	0.00	0.00	3.59	4.87	6.42	7.32	12.58	31.31	33.93
	3:45:00 3:50:00	0.00	0.00	3.60 3.61	4.87 4.88	6.32 6.24	7.11 6.92	11.31 10.33	31.07 30.82	32.74 32.57
	3:55:00	0.00	0.00	3.61	4.88	6.17	6.76	9.56	30.57	32.38
	4:00:00	0.00	0.00	3.62	4.88	6.10	6.62	8.94	30.32	32.17
	4:05:00	0.00	0.00	3.63	4.88	6.04	6.50	8.44	30.07	31.94
	4:10:00	0.00	0.00	3.63	4.88	5.98	6.39	8.03	29.77	31.71
	4:15:00 4:20:00	0.00	0.00	3.64 3.64	4.88 4.89	5.93 5.88	6.29 6.21	7.69 7.41	23.75 19.39	31.47 31.22
	4:25:00	0.00	0.00	3.65	4.89	5.84	6.13	7.17	16.31	30.98
	4:30:00	0.00	0.00	3.65	4.89	5.80	6.05	6.96	14.07	30.73
	4:35:00 4:40:00	0.00	0.00	3.65 3.66	4.89 4.89	5.76 5.74	5.99 5.93	6.78 6.63	12.41 11.14	30.48 30.22
	4:45:00	0.00	0.00	3.66	4.89	5.71	5.88	6.49	10.17	29.97
	4:50:00	0.00	0.00	3.66	4.89	5.70	5.83	6.37	9.40	27.51
	4:55:00 5:00:00	0.00	0.00	3.67 3.67	4.89 4.89	5.69 5.69	5.79 5.75	6.27 6.17	8.78 8.29	21.96 18.12
	5:05:00	0.00	0.00	3.67	4.89	5.69	5.73	6.09	7.88	15.38
	5:10:00	0.00	0.00	3.67	4.89	5.68	5.70	6.01	7.54	13.38
	5:15:00 5:20:00	0.00	0.00	3.67 3.67	4.89 4.89	5.68 5.68	5.69 5.69	5.94 5.88	7.26 7.02	11.87 10.72
	5:25:00	0.00	0.00	3.67	4.88	5.67	5.69	5.83	6.81	9.83
	5:30:00	0.00	0.00	3.67	4.88	5.67	5.68	5.78	6.64	9.12
	5:35:00 5:40:00	0.00	0.00	3.67 3.67	4.88 4.88	5.66 5.66	5.68 5.68	5.75 5.72	6.48 6.35	8.55 8.09
	5:45:00	0.00	0.00	3.67	4.88	5.65	5.67	5.72	6.23	7.71
	5:50:00	0.00	0.00	3.67	4.87	5.65	5.67	5.69	6.13	7.39
	5:55:00	0.00	0.00	3.67	4.87	5.64	5.66	5.69	6.04	7.13
	6:00:00	0.00	0.00	3.65	4.86	5.63	5.65	5.68	5.81	6.62

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.02 (February 2020)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

The aser should graphically ex		ar, on rous				7-1-1	
Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
							┰
micropool	0.00	40	0.001	0	0.000	0.00	Fo
surcharge	0.33	50	0.001	15	0.000	0.04	sta
5745	1.00	255	0.006	117	0.003	0.07	cha
5746	2.00	6,998	0.161	3,743	0.086	0.18	fro Sh
5747	3.00	38,392	0.881	26,438	0.607	0.30	- 511
5748	4.00	40,927	0.940	66,098	1.517	1.23	Als
5749	5.00	43,534	0.999	108,328	2.487	1.91	ou
							ov
5750	6.00	46,212	1.061	153,201	3.517	2.39	wh
5751	7.00	48,991	1.125	200,803	4.610	2.79	VVI
5752	8.00	51,837	1.190	251,217	5.767	40.84	
5753	9.00	54,731	1.256	304,501	6.990	43.61	
5754	10.00	58,033	1.332	360,883	8.285	46.21	
							_
							-
							_
							4
							_
							1
							1
							-
	_						
							_
							_
							1
							_
							_
							1
	_						
							_
							1
							1
							-
	_						
							_
							_
							1
							1
							1
							_
			ļ	ļ	ļ	ļ	_
							4
			ļ			ļ	4
			1	1	1	 	4
			1	1	1	 	4
			1	 	 	1	-
			 	1	1	 	4
			 	1	1	 	4
				 	 		-
			 	1	1	 	4
				 	 		-
			-	 	 	1	-
			-	 	 	1	-
			-	 	 	-	-1
			l	L	L	i	

For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.

Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

	Design Procedure Form: Extended Detention Basin (EDB)							
		BMP (Version 3.07, March 2018) Sheet 1 of 3						
Designer:	Richard Schindler							
Company: Date:	Core Engineering Group May 2, 2020							
Project:	The Hills at Lorson Ranch							
Location:	Pond C2.2							
1. Basin Storage	Volume							
A) Effective Imp	perviousness of Tributary Area, I _a	I _a = 55.0 %						
B) Tributary Are	ea's Imperviousness Ratio (i = I _a / 100)	i = 0.550						
C) Contributing	g Watershed Area	Area = 45.000 ac						
	heds Outside of the Denver Region, Depth of Average ducing Storm	d ₆ = in						
E) Design Cor	ncept	Choose One						
(Select EURV when also designing for flood control)		Water Quality Capture Volume (WQCV) Super Michael Depth (SAM) (SAM) Super Michael Depth (SAM) Super Michael						
		Excess Urban Runoff Volume (EURV)						
F) Design Volu	ume (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 0.827 ac-ft						
	1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)							
G) For Watersheds Outside of the Denver Region,		V _{DESIGN OTHER} = ac-ft						
	lity Capture Volume (WQCV) Design Volume $_{ER} = (d_6^*(V_{DESIGN}/0.43))$							
H) User Input	of Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} = ac-ft						
	ifferent WQCV Design Volume is desired)	DEGIGN COLEY.						
	ologic Soil Groups of Tributary Watershed							
	age of Watershed consisting of Type A Soils tage of Watershed consisting of Type B Soils	$HSG_A = %$ $HSG_B = %$						
	tage of Watershed consisting of Type C/D Soils	HSG _{C/D} = %						
	an Runoff Volume (EURV) Design Volume							
	A: EURV _A = 1.68 * i ^{1.28} 3: EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} = ac-f t						
	C/D: EURV _{C/D} = 1.20 * j ^{1.08}							
K) User Input of Excess Urban Runoff Volume (EURV) Design Volume		EURV _{DESIGN USER} = ac-f t						
(Only if a di	ifferent EURV Design Volume is desired)							
2. Basin Shape: L	ength to Width Ratio	L:W = 2.0 :1						
	to width ratio of at least 2:1 will improve TSS reduction.)							
2. Donit Cide Cit	200							
Basin Side Slop								
	mum Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE						
4. Inlet								
	eans of providing energy dissipation at concentrated							
inflow locat	ions:							
5 Foreber								
5. Forebay								
A) Minimum Fo	prebay Volume $_{ m N} = 3\%$ of the WQCV)	V _{FMIN} = 0.025 ac-ft						
B) Actual Fore		V _F = 0.028 ac-ft						
·		V _F = 0.028 ac-ft						
C) Forebay De (D _F		D _F = 24.0 in						
D) Forebay Dis	·							
		0 - 1 - 10 - 10						
	ned 100-year Peak Discharge	Q ₁₀₀ = 131.00 cfs						
ii) Forebay (Q _F = 0.0	Discharge Design Flow 02 * Q ₁₀₀)	Q _F = 2.62 cfs						
E) Forebay Dis	charge Design	Choose One O Berm With Pipe						
		Wall with Rect. Notch						
		○ Wall with V-Notch Weir						
F) Discharge P	Pipe Size (minimum 8-inches)	Calculated D _P = in						
G) Rectangular	r Notch Width	Calculated W _N = 8.1 in						
,		•						

pond C2.2 forebay, EDB 5/2/2020, 9:10 AM

	Design Procedure Form: I	Extended Detention Basin (EDB) Sheet 2 of 3
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group May 2, 2020 The Hills at Lorson Ranch Pond C2.2	
Trickle Channel A) Type of Trick F) Slope of Trick		Choose One Concrete Soft Bottom S = 0.0050 ft / ft
	Outlet Structure Propool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = 2.5 \qquad \text{ft}$ $A_{M} = 50 \qquad \text{sq ft}$ Choose One Orifice Plate Other (Describe):
D) Smallest Dim (Use UD-Detent E) Total Outlet A	·	$D_{\text{orifice}} = $
(Minimum red B) Minimum Initia (Minimum volu	e Volume al Surcharge Volume commended depth is 4 inches) al Surcharge Volume ume of 0.3% of the WQCV) rge Provided Above Micropool	$D_{IS} = 4$ in $V_{IS} = 108$ cu ft $V_s = 16.7$ cu ft
B) Type of Screen in the USDCM, is	by Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$ en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): y	A _t = 222 square inches Other (Please describe below) wellscreen stainless
D) Total Water C E) Depth of Des (Based on d F) Height of Wat	I Open Area to Total Area (only for type 'Other') Quality Screen Area (based on screen type) ign Volume (EURV or WQCV) design concept chosen under 1E) ter Quality Screen (H _{TR}) ter Quality Screen Opening (W _{opening}) inches is recommended)	User Ratio = 0.6 A _{total} = 370 sq. in. Based on type 'Other' screen ratio H = 3.25 feet H _{TR} = 67 inches W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

pond C2.2 forebay, EDB 5/2/2020, 9:10 AM

Channel Report

Hydraflow Express by Intelisolve

Saturday, May 2 2020, 9:18 AM

pond C2.2 low flow channel (2 x forebay release = 5.24cfs)

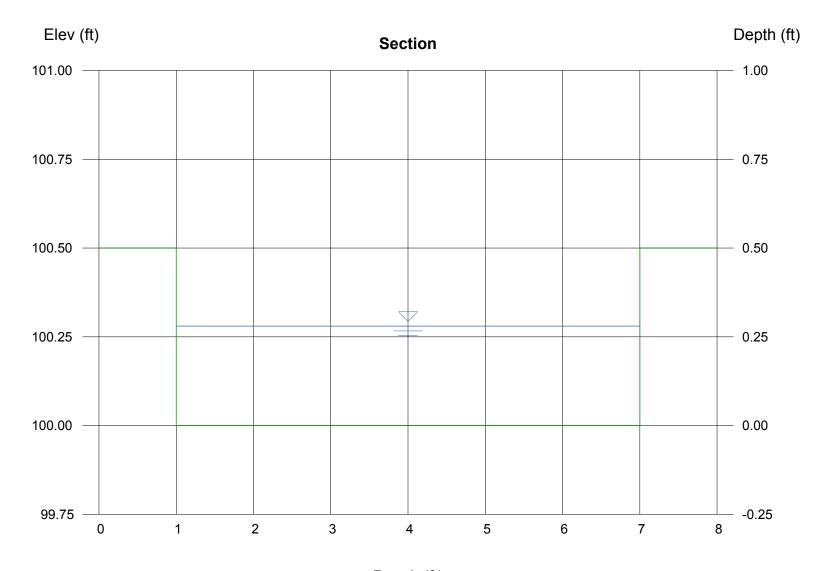
Rectangular
Botom Width (ft) = 6.00
Total Depth (ft) = 0.50

Invert Elev (ft) = 100.00 Slope (%) = 0.50 N-Value = 0.013

Calculations

Compute by: Known Q Known Q (cfs) = 5.24

 Highlighted


 Depth (ft)
 = 0.28

 Q (cfs)
 = 5.240

 Area (sqft)
 = 1.68

Area (sqft) = 1.68 Velocity (ft/s) = 3.12 Wetted Perim (ft) = 6.56 Crit Depth, Yc (ft) = 0.29 Top Width (ft) = 6.00

EGL (ft) = 0.43

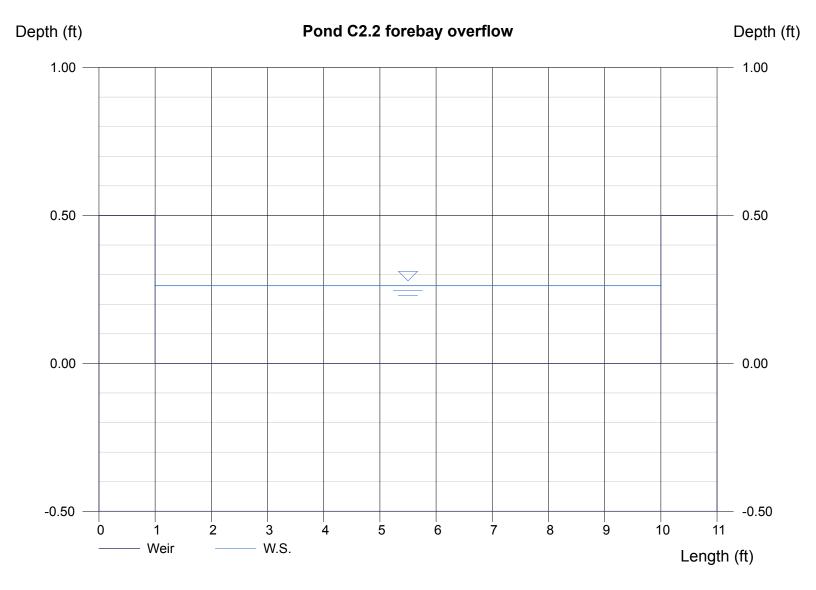
Reach (ft)

Weir Report

Hydraflow Express by Intelisolve

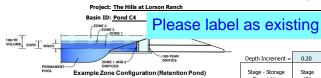
Saturday, May 2 2020, 9:19 AM

Pond C2.2 forebay overflow


Rectangular Weir

Crest = Sharp Bottom Length (ft) = 9.00 Total Depth (ft) = 0.50

Calculations


Weir Coeff. Cw = 3.33 Compute by: Known Q Known Q (cfs) = 4.04 Highlighted

Depth (ft) = 0.26 Q (cfs) = 4.040 Area (sqft) = 2.36 Velocity (ft/s) = 1.71 Top Width (ft) = 9.00

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.02 (February 2020)

micropool = 0 = 5765

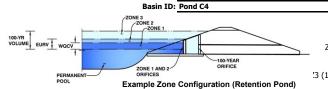
latershed Information		
Selected BMP Type =	EDB	
Watershed Area =	81.00	acres
Watershed Length =	2,300	ft
Watershed Length to Centroid =	1,200	ft
Watershed Slope =	0.050	ft/ft
Watershed Imperviousness =	55.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	40.0%	percent

Percentage Hydrologic Soil Groups C/D = 40.0% percent
Percentage Hydrologic Soil Groups C/D = 60.0% percent
Target WQCV Drain Time = 40.0 hours
Location for 1-hr Rainfall Depths = User Input

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Clorado Uhan Hydrograph Procedure.

the embedded Colorado Urban Hydro	graph Procedu	ire.
Water Quality Capture Volume (WQCV) =	1.488	acre-feet
Excess Urban Runoff Volume (EURV) =	4.468	acre-fee
2-yr Runoff Volume (P1 = 1.19 in.) =	4.607	acre-fee
5-yr Runoff Volume (P1 = 1.5 in.) =	6.475	acre-fee
10-yr Runoff Volume (P1 = 1.75 in.) =	8.109	acre-fee
25-yr Runoff Volume (P1 = 2 in.) =	10.045	acre-fee
50-yr Runoff Volume (P1 = 2.25 in.) =	11.748	acre-fee
100-yr Runoff Volume (P1 = 2.52 in.) =	13.830	acre-fee
500-yr Runoff Volume (P1 = 3.14 in.) =	18.178	acre-fee
Approximate 2-yr Detention Volume =	3.723	acre-fee
Approximate 5-yr Detention Volume =	5.293	acre-fee
Approximate 10-yr Detention Volume =	6.364	acre-fee
Approximate 25-yr Detention Volume =	6.876	acre-fee
Approximate 50-yr Detention Volume =	7.136	acre-fee
Approximate 100-yr Detention Volume =	7.948	acre-fee

Optional Use	r Overrides
	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
	inches


Define Zones and Basin Geometry

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-fee

Depth Increment =	0.20	ft							
		Optional	Laurath	145-Jek	Aron	Optional		Volumo	Maluma
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft 2)	Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
Top of Micropool		0.00	-			40	0.001		
5765.33		0.33	-		-	50	0.001	15	0.000
5766		1.00	-			630	0.014	243	0.006
5767		2.00	-		_	40,811	0.937	20,962	0.481
5768		3.00				49,929	1.146	66,332	1.523
5769		4.00	-			52,779	1.212	117,686	2.702
5770		5.00	1		-	55,690	1.278	171,921	3.947
5771		6.00	1		-	58,660	1.347	229,096	5.259
5772		7.00	-		-	61,704	1.417	289,278	6.641
5773		8.00	-			64,811	1.488	352,535	8.093
5774		9.00	-		-	67,980	1.561	418,931	9.617
5775		10.00	-		-	71,215	1.635	488,528	11.215
5776		11.00	-		-	75,000	1.722	561,636	12.893
			-		-				
			-		-				
			_		-				
	-		-		-				
			-		-				
			-						
			-						
			-		-				
	-		-						
			-		-				
			-		-				
			-		-				
					-				
			-		-				
			-		-				
			-		-				
			-		-				
					-				
					_				
			-						
	-		-		-				
			_		-				
			-		-				
			-		-				
	-		-						
			-		-				
			ł		1				
			-		-				
			-		-				
			-						
			-						
			-		-				
			-		-				
			_		-				
	-		-		-				
			_		-				
			-						
			-						
			-		-				
			-						
			-		-				
			-		-				
			1		-				
			-		-				
			-		-				
					-				
			1		-				
			-		-				
	-		-		-				
			1 1						
			-		-				
			1		-				
			-		-				
	-		-		-				
			-		-				
	-		-		-				
			-		-				
			-						
	-		-		-				
	-		1 1						-
			-		-				
			-		-				
			1						
			-		-				-
			-		-				
	-		-		-				
		-	-		-			1	

MHFD-Detention_v4-02-point C4, Basin 5/4/2020, 6:44 AM

MHFD-Detention, Version 4.02 (February 2020)

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.97	1.488	Orifice Plate
Zone 2 (EURV)	5.41	2.980	Rectangular Orifice
100+1/2WQCV)	8.40	4.225	Weir&Pipe (Restrict)
•	Total (all zones)	8 692	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Project: The Hills at Lorson Ranch

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid = N/A feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) ft² 0.00 3.250E-02 Depth at top of Zone using Orifice Plate = 2.97 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing = 11.90 Elliptical Slot Centroid : N/A feet inches ft² Orifice Plate: Orifice Area per Row = Elliptical Slot Area = N/A 4.68 sq. inches (use rectangular openings)

<u>User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)</u>

d Total Area of Each Office Now (Hambered from lowest to highest)									
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	0.99	1.98						
Orifice Area (sq. inches)	4.68	4.68	4.68						

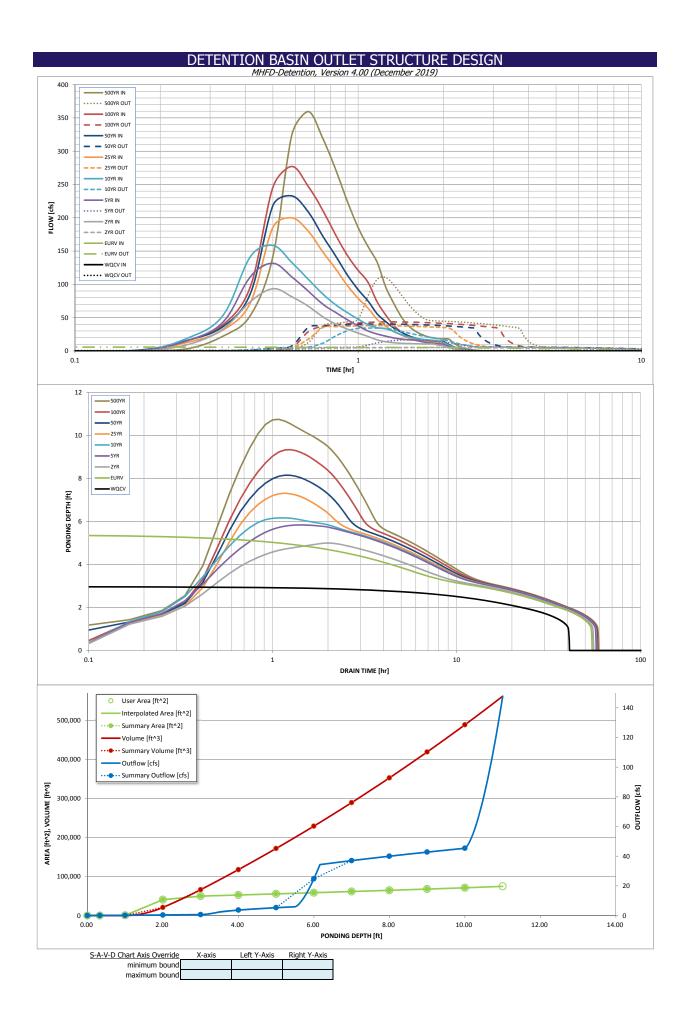
	Row 9 (optional)	Pow 10 (optional)	Pow 11 (optional)	Pow 12 (ontional)	Pow 13 (ontional)	Pow 14 (ontional)	Row 15 (optional)	Pow 16 (ontional)
	Row 3 (optional)	Row 10 (optional)	ROW 11 (Optional)	ROW 12 (Optional)	ROW 13 (Optional)	ROW 14 (Optional)	ROW 13 (optional)	ROW 10 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

Use

ser Input: Vertical Orifice (Circular or Rectangu	<u>ılar)</u>		_		Calculated Paramete	rs for Vertical Orifi
	Zone 2 Rectangular	Not Selected			Zone 2 Rectangular	Not Selected
Invert of Vertical Orifice =	2.97	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	0.68	N/A
Depth at top of Zone using Vertical Orifice =	5.41	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	0.25	N/A
Vertical Orifice Height =	6.00	N/A	inches		•	•
Vertical Orifice Width =	16.39		inches			

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)				Calculated Parameters for Overflow We	
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, Ho =	5.50	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	5.50	N/A
Overflow Weir Front Edge Length =	6.00	N/A	feet Overflow Weir Slope Length =	6.00	N/A
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	8.02	N/A
Horiz. Length of Weir Sides =	6.00	N/A	feet Overflow Grate Open Area w/o Debris =	25.20	N/A
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area Overflow Grate Open Area w/ Debris =	12.60	N/A
Debris Clogging % =	50%	N/A	%		

<u>User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)</u>


er imput. Oddet ripe wy riow Restriction riate (Circular Office, Restrictor riate, or Rectangular Office)		Calculated Parameters	s for Outlet Pipe w/	FIOW RESUICCION FIG		
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	3.14	N/A
Outlet Pipe Diameter =	24.00	N/A	inches (Outlet Orifice Centroid =	1.00	N/A
Restrictor Plate Height Above Pipe Invert =	24.00		inches Half-Central Angle of Re	estrictor Plate on Pipe =	3.14	N/A

<u>User Input: Emergency Spillway (Rectangular or Trapezoidal)</u>

put: Emergency Spillway (Rectangular or	Trapezoidal)			Calculated Parame	ters for Spillway
Spillway Invert Stage=	10.00	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	1.87	feet
Spillway Crest Length =	30.00	feet	Stage at Top of Freeboard =	13.00	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	1.72	acres
Freeboard above Max Water Surface =	1.13	feet	Basin Volume at Top of Freeboard =	12.89	acre-ft

micropool = 0 = 5765

			IIIICI OPOOI - 0 - 370	J				
Routed Hydrograph Results	The user can overr	ide the default CUH	IP hydrographs and	runoff volumes by	entering new values	in the Inflow Hydro	ographs table (Colu	mns W through AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	1.488	4.468	4.607	6.475	8.109	10.045	11.748	13.830
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	4.607	6.475	8.109	10.045	11.748	13.830
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	17.5	39.6	56.8	90.6	111.9	138.5
OPTIONAL Override Predevelopment Peak Q (cfs) =		N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.22	0.49	0.70	1.12	1.38	1.71
Peak Inflow Q (cfs) =	N/A	N/A	93.5	131.6	158.6	200.0	232.9	277.2
Peak Outflow Q (cfs) =	0.6	5.8	5.3	16.5	34.4	38.0	40.5	43.7
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.4	0.6	0.4	0.4	0.3
Structure Controlling Flow =	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.4	1.1	1.2	1.3	1.4
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	48	49	49	47	45	44	42
Time to Drain 99% of Inflow Volume (hours) =	40	52	53	54	53	53	53	52
Maximum Ponding Depth (ft) =	2.97	5.41	5.00	5.84	6.17	7.31	8.15	9.34
Area at Maximum Ponding Depth (acres) =	1.14	1.31	1.28	1.34	1.36	1.44	1.50	1.59
Maximum Volume Stored (acre-ft) =	1.488	4.477	3.934	5.031	5.476	7.083	8.317	10.152
•								

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename: ...Outflow Hydrographs-pond C4.xlsx

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	1.08	0.11	3.48
	0:15:00	0.00	0.00	9.55	15.60	19.32	12.98	16.07	15.80	22.32
	0:20:00 0:25:00	0.00	0.00	32.92 74.34	43.38 111.85	53.47 142.03	31.67 72.79	36.70 86.79	39.53 97.17	53.64 142.25
	0:30:00	0.00	0.00	93.50	131.62	158.60	185.73	218.67	246.14	324.95
	0:35:00	0.00	0.00	81.33	111.11	132.69	199.96	232.94	277.21	359.64
	0:40:00	0.00	0.00	67.06	89.76	107.50	179.81	208.60	246.90	319.22
	0:45:00	0.00	0.00	51.28	70.23	85.54	148.69	172.31	211.27	272.12
	0:50:00	0.00	0.00	40.21	57.70	69.19	122.99	142.40	173.74	224.11
	0:55:00 1:00:00	0.00	0.00	32.87 26.74	46.75 37.48	57.49 47.65	97.93 78.91	113.76 91.95	143.17 121.14	185.13 156.73
	1:05:00	0.00	0.00	21.83	29.98	39.43	64.22	74.98	103.05	133.25
	1:10:00	0.00	0.00	16.70	25.41	34.92	47.41	55.74	73.66	96.29
	1:15:00	0.00	0.00	13.82	22.23	33.34	37.17	44.19	54.17	72.10
	1:20:00	0.00	0.00	12.38	19.62	29.44	29.18	34.65	38.85	51.95
	1:25:00 1:30:00	0.00	0.00	11.55	17.93	24.66	24.13	28.54	28.70	38.45
	1:35:00	0.00	0.00	11.12 10.79	16.83 16.17	21.38 19.14	19.70 16.72	23.24 19.67	22.76 18.74	30.51 25.11
	1:40:00	0.00	0.00	10.57	14.11	17.68	14.89	17.48	16.17	21.68
	1:45:00	0.00	0.00	10.43	12.53	16.70	13.64	15.97	14.54	19.48
	1:50:00	0.00	0.00	10.39	11.49	15.99	12.96	15.14	13.84	18.51
	1:55:00	0.00	0.00	8.80	10.81	14.89	12.55	14.64	13.56	18.10
	2:00:00 2:05:00	0.00	0.00	7.56 5.14	10.02 6.81	13.19 8.96	12.34 8.46	14.40 9.87	13.50 9.31	18.01 12.40
	2:10:00	0.00	0.00	3.31	4.38	5.83	5.51	6.42	6.07	8.07
	2:15:00	0.00	0.00	2.13	2.77	3.73	3.57	4.15	3.92	5.21
	2:20:00	0.00	0.00	1.28	1.69	2.28	2.18	2.54	2.39	3.17
	2:25:00	0.00	0.00	0.73	1.04	1.36	1.35	1.57	1.48	1.96
	2:30:00 2:35:00	0.00	0.00	0.36	0.56	0.70	0.74	0.85	0.80	1.06
	2:40:00	0.00	0.00	0.14	0.23	0.27 0.05	0.31	0.35 0.07	0.33	0.43
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00 3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00 3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.02 (February 2020)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

The user should graphically ex	ompare are samm	iai, on rotae	ie to the run o r	· · · · · · · · · · · · · · · · · · ·	e chare to comm	ir it captares an	
Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
							_
micropool	0.00	40	0.001	0	0.000	0.00	Fo
surcharge	0.33	50	0.001	15	0.000	0.09	sta
5766	1.00	630	0.014	243	0.006	0.17	ch
5767	2.00	40,811	0.937	20,962	0.481	0.40	fro Sh
5768	3.00	49,929	1.146	66,332	1.523	0.66	- 311
5769	4.00	52,779	1.212	117,686	2.702	3.71	Als
			1.278				ou
5770	5.00	55,690		171,921	3.947	5.32	ov
5771	6.00	58,660	1.347	229,096	5.259	24.83	wh
5772	7.00	61,704	1.417	289,278	6.641	37.05	vvi
5773	8.00	64,811	1.488	352,535	8.093	40.02	
5774	9.00	67,980	1.561	418,931	9.617	42.78	
5775	10.00	71,215	1.635	488,528	11.215	45.38	
							_
							-
							-
							_
							7
							-
							-
							-
							_
							7
							-
				-	-		-
							_
							_
							_
							-
							_
							_
							_
							-
							-
							_
							_
							_
							_
							_
							-
							-
		1	1	 	 	1	\dashv
				†	†		\dashv
		1		†	†		\dashv
			1	†	†	1	\dashv
			1	†	†	1	\dashv
		1	1	†	†	1	┨
			Ì	1	1	Ì	┪
							1
			İ	1	1	İ	1
							1
							٦
							_]
			1			1	٦
							_

For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.

Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

	Design Procedure For	rm: Extended Detention Basin (EDB)
		-BMP (Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company: Date:	Core Engineering Group May 4, 2020	
Project:	The Hills at Lorson Ranch	
Location:	Pond C4	
4. Danier Otanana	Values	
Basin Storage		
A) Effective Imp	perviousness of Tributary Area, I _a	I _a = 55.0 %
B) Tributary Are	ea's Imperviousness Ratio (i = I _a / 100)	i =
C) Contributing	g Watershed Area	Area = 81.000 ac
	heds Outside of the Denver Region, Depth of Average	d _e = in
	ducing Storm	Choose One
E) Design Cor (Select EUF	ncept RV when also designing for flood control)	Water Quality Capture Volume (WQCV)
		C Excess Urban Runoff Volume (EURV)
F) Decian Val	ume (WQCV) Based on 40-hour Drain Time	V _{DESIGN} 1.488 ac-ft
	(1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	· DESIGN [1.700] BUTE
	sheds Outside of the Denver Region,	V _{DESIGN OTHER} = ac-ft
	lity Capture Volume (WQCV) Design Volume _{ER} = (d ₆ *(V _{DESIGN} /0.43))	
H) User Input	of Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} ac-ft
	ffferent WQCV Design Volume is desired)	1 1 1
	plogic Soil Groups of Tributary Watershed	H00
ii) Percent	age of Watershed consisting of Type A Soils tage of Watershed consisting of Type B Soils	HSG _A =
iii) Percen	tage of Watershed consisting of Type C/D Soils	HSG _{C/D} =%
	an Runoff Volume (EURV) Design Volume A: EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = ac-f t
For HSG E	3: EURV _B = 1.36 * i ^{1.08}	DESIGN
	C/D: EURV _{C/D} = 1.20 * i ^{1.08}	
	of Excess Urban Runoff Volume (EURV) Design Volume ifferent EURV Design Volume is desired)	EURV _{DESIGN USER} ac-f t
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L:W= 2.0 :1
(/ t 200 longu	man rate of at least 2.1 mm improve recordance	
3. Basin Side Slop	pes	
	mum Side Slopes	Z = 3.00 ft / ft
(Horizontal	distance per unit vertical, 4:1 or flatter preferred)	DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4. Inlet		
	eans of providing energy dissination at concentrated	
inflow locat	eans of providing energy dissipation at concentrated ions:	
5. Forebay		
A) Minimum Fo	orebay Volume _N = 3% of the WQCV)	V _{FMIN} = 0.045 ac-ft
B) Actual Fore		V _F = 0.050 ac-ft
•	•	V _F = 0.050 ac-ft
C) Forebay De (D _F		D _F = 24.0 in
D) Forebay Dis	scharge	
	ned 100-year Peak Discharge	Q ₁₀₀ = 277.00 cfs
		<u> </u>
(Q _F = 0.0	r Discharge Design Flow 12 * Q ₁₀₀)	Q _F = 5.54 cfs
E) Forebay Dis	charge Design	Choose One
		O Berm With Pipe
		Wall with Rect. Notch Wall with V-Notch Weir
EV BY: 1	line Circ (minimum 0 inches)	
	ipe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	r Notch Width	Calculated W _N = 11.9 in

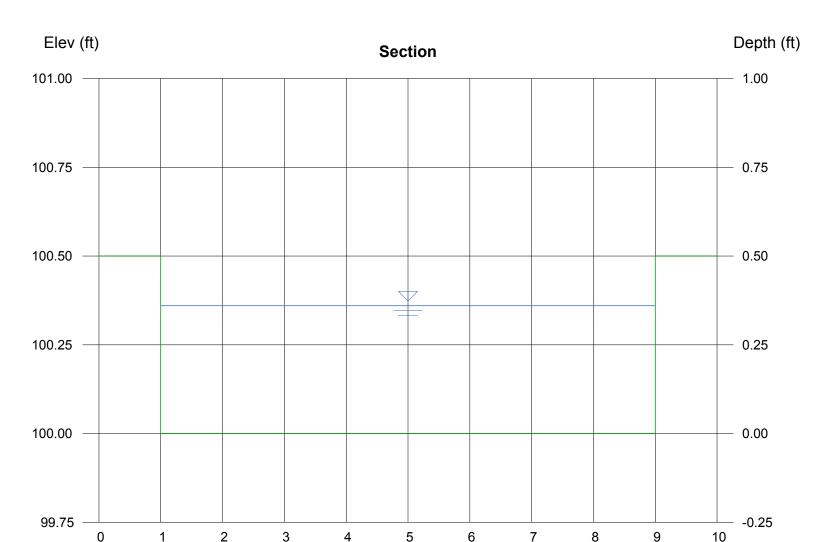
pond C4 forebay, EDB 5/4/2020, 6:57 AM

	Design Procedure Form: I	Extended Detention Basin (EDB) Sheet 2 of 3
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group May 4, 2020 The Hills at Lorson Ranch Pond C4	
Trickle Channel A) Type of Trick F) Slope of Tric		Choose One Concrete Soft Bottom S = 0.0050 ft / ft
	Outlet Structure propool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = $
D) Smallest Din (Use UD-Detent E) Total Outlet A	·	$D_{\text{crifice}} = $
(Minimum red B) Minimum Initi (Minimum vol	e Volume al Surcharge Volume commended depth is 4 inches) al Surcharge Volume ume of 0.3% of the WQCV) rge Provided Above Micropool	$D_{IS} = 4$ in $V_{IS} = 194$ cu ft $V_{s} = 16.7$ cu ft
B) Type of Scree in the USDCM, i	by Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D}) en (if specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): y	A _t = 440 square inches Other (Please describe below) wellscreen stainless
D) Total Water (CE) Depth of Des (Based on cEF) Height of Water (G) Width of Water (B)	I Open Area to Total Area (only for type 'Other') Quality Screen Area (based on screen type) ign Volume (EURV or WQCV) design concept chosen under 1E) ter Quality Screen (H _{TR}) ter Quality Screen Opening (W _{opening}) inches is recommended)	User Ratio = 0.6 A _{total} = 734 sq. in. Based on type 'Other' screen ratio H = 2.97 feet H _{TR} = 63.64 inches W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

pond C4 forebay, EDB 5/4/2020, 6:57 AM

Channel Report

Hydraflow Express by Intelisolve


Compute by: Known Q (cfs) Monday, May 4 2020, 6:54 AM

pond C4 low flow channel (2 x forebay release = 11.08cfs)

Known Q

= 11.08

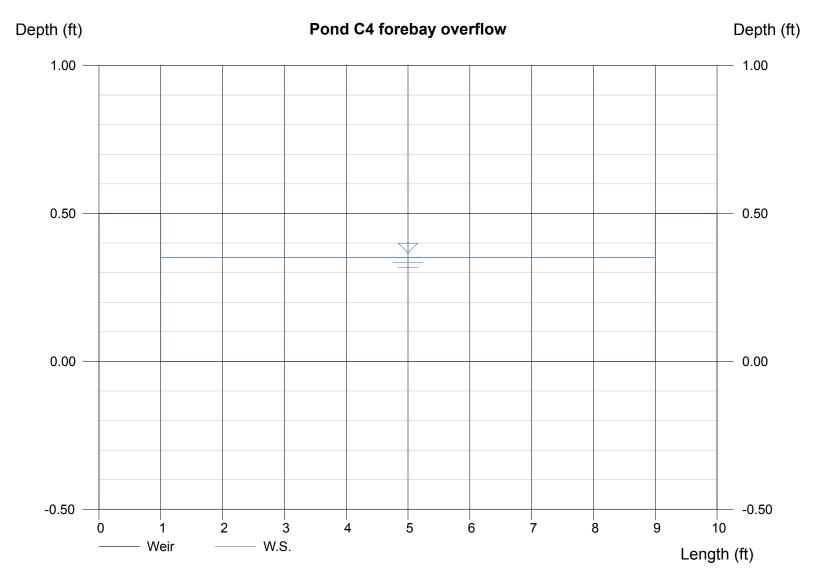
Rectangular Highlighted Botom Width (ft) = 8.00Depth (ft) = 0.36Total Depth (ft) = 0.50Q (cfs) = 11.08Area (sqft) = 2.88 Invert Elev (ft) = 100.00Velocity (ft/s) = 3.85Slope (%) = 0.50Wetted Perim (ft) = 8.72 N-Value = 0.013Crit Depth, Yc (ft) = 0.40Top Width (ft) = 8.00= 0.59EGL (ft) **Calculations**

Reach (ft)

Weir Report

Hydraflow Express by Intelisolve Monday, May 4 2020, 6:49 AM

Pond C4 forebay overflow


Rectangular Weir

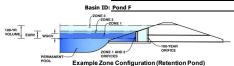
Crest = Sharp Bottom Length (ft) = 8.00 Total Depth (ft) = 0.50

Calculations

Weir Coeff. Cw = 3.33 Compute by: Known Q Known Q (cfs) = 5.54 Highlighted

Depth (ft) = 0.35 Q (cfs) = 5.540 Area (sqft) = 2.81 Velocity (ft/s) = 1.97 Top Width (ft) = 8.00

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


MHFD-Detention, Version 4.02 (February 2020)

acre-feet

inches

1.19 inches 1.50 inches 1.75 inches 2.00 inches

Project: The Ridge at Lorson Ranch

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	4.90	acres
Watershed Length =	900	ft
Watershed Length to Centroid =	450	ft
Watershed Slope =	0.009	ft/ft
Watershed Imperviousness =	55.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-br Painfall Denths -	Hear Innut	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Libba Madessando Parasido

the embedded Colorado Urban Hydro	graph Proced	ure.
Water Quality Capture Volume (WQCV) =	0.090	acre-feet
Excess Urban Runoff Volume (EURV) =	0.290	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.270	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.379	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.474	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.597	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.699	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.827	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	1.089	acre-feet
Approximate 2-yr Detention Volume =	0.221	acre-feet
Approximate 5-yr Detention Volume =	0.301	acre-feet
Approximate 10-yr Detention Volume =	0.393	acre-feet
Approximate 25-yr Detention Volume =	0.427	acre-feet
Approximate 50-yr Detention Volume =	0.446	acre-feet
Approximate 100-yr Detention Volume =	0.492	acre-feet

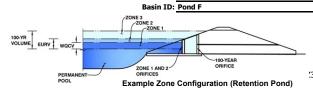
Define Zones and Basin Geometry

Define Lones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.090	acre-fe
Zone 2 Volume (EURV - Zone 1) =	0.200	acre-fe
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	0.246	acre-fe
Total Detention Basin Volume =	0.537	acre-fe
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (Htotal) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin $(W_{MAIN}) =$		ft
Area of Main Basin $(A_{MAIN}) =$		ft ²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume $(V_{total}) =$	user	acre-feet

Please include calculation for low flow channel in Pond & riprap sizing for spillway

top micropool-5842.77


Stage - Storage Description Top of Micropool	Stage (ft)	Optional Override Stage (ft) 0.00	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre) 0.001	Volume (ft ³)	Volum (ac-ft)
5844		1.23	_		-	1,180	0.027	744	0.017
5845	-	2.23	-		-		0.111		
						4,840		3,754	0.086
5846		3.23	-		-	6,608	0.152	9,478	0.218
5847		4.23	-		-	8,201	0.188	16,883	0.388
5848		5.23	-		-	9,600	0.220	25,783	0.592
5849		6.23	-			10,600	0.243	35,883	0.824
	-			-	-			1	
			-						
					-				
				-	-				
			1		-				
			-	-	-				
			-	-	-				
			-	-					
								 	
	-				-				
	-		_						-
			-		_				
	-		-		-				
			-						
					-				
			-	-	-				
			-	-	-			1	
			-	-	-				
			-						
			-		-				
	-		-						
			-		-				
	-				-				
					-				
				-	-				
					-				
			-	-	-				
			-		-				
			-	-	-				
			-					1	
	-			-	_				
	-		-		_				-
			_		_				
			-		-				
			-						
			-						
			-		-				
					-				
			-		-				
			-		-				
			-						
			_					 	
			-						
					_			 	
	-		-		-			-	-
			-					1	
			-	-	-			+	
			-		-				
			-		-			\vdash	\vdash
									-
			1		-				
				-					
			1 1 1		-				-
			_	1 1	-				-
			-		-				
					-				
			-		-			 	
			-	1 1	-				
			-	-					
			-		-				-
			-	1 1	-			+	
				-	-				
			-	1	-				
			-		-				_
			-		-			 	
	-		-	-	_			1	
			-		-		_		
			-	1 1	-			-	-
			1		-			†	
			-	-					
			1 1 1		-			\vdash	-
					1	1	ì	1	
			-	1 1	-				
			-		-				

MHFD-Detention_v4-02-pond F, Basin 9/27/2021, 2:53 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.02 (February 2020)

Project: The Ridge at Lorson Ranch

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.27	0.090	Orifice Plate
Zone 2 (EURV)	3.69	0.200	Rectangular Orifice
(100+1/2WQCV)	4.98	0.246	Weir&Pipe (Restrict)
•	Total (all zones)	0.537	

<u>User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)</u>

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft)

Depth at top of Zone using Orifice Plate = 2.27 ft (relative to basin bottom at Stage = 0 ft)

Orifice Plate: Orifice Vertical Spacing = 8.30 inches

Orifice Plate: Orifice Area per Row = 0.37 sq. inches (diameter = 11/16 inch)

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 0.76 1.51 Orifice Area (sq. inches) 0.37 0.37 0.37

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	ı
of Orifice Centroid (ft)									ı
ifice Area (ca. inches)									

User Input: Vertical Orifice (Circular or Rectangular)

Stage of

	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	2.27	N/A	ft (relat
Depth at top of Zone using Vertical Orifice =	3.69	N/A	ft (relat
Vertical Orifice Height =	1.00	N/A	inches
Vertical Orifice Width =	12.00		inches

 $\frac{\text{Calculated Parameters for Vertical Orifice}}{\text{Zone 2 Rectangular}} \frac{\text{Not Selected}}{\text{Not Selected}}$ ft (relative to basin bottom at Stage = 0 ft) $\text{Vertical Orifice Area} = \frac{0.08}{0.04} \frac{\text{N/A}}{\text{N/A}} \text{ feet}$ ft (relative to basin bottom at Stage = 0 ft) $\text{Vertical Orifice Centroid} = \frac{0.04}{0.04} \frac{\text{N/A}}{\text{N/A}} \text{ feet}$

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.23	N/A	ft
Overflow Weir Front Edge Length =	3.00	N/A	fe
Overflow Weir Grate Slope =	0.00	N/A	Н
Horiz. Length of Weir Sides =	6.00	N/A	fe
Overflow Grate Open Area % =	50%	N/A	%
Debris Clogging % =	50%	N/A	%

	Calculated Paramet	ers for Overflow we	<u> </u>
	Zone 3 Weir	Not Selected	
l _t =	3.23	N/A	feet
n =	6.00	N/A	feet
a =	5.09	N/A	
s =	9.00	N/A	ft²
s =	4.50	N/A	ft²

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Input. Outlet ripe w/ riow kestriction riate	<u>Çcircular Orinice, Re</u>	strictor Plate, or Re	ctariguia
	Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distar
Outlet Pipe Diameter =	18.00	N/A	inches
Restrictor Plate Height Above Pipe Invert =	18.00		inches

ft (distance below basin bottom at Stage = 0 ft) inches

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate	Zone 3 Restrictor	Not Selected		
at Stage = 0 ft)	Outlet Orifice Area =	1.77	N/A	ft²
Outlet Orifice Centroid =	0.75	N/A	feet	
Half-Central Angle of Restrictor Plate on Pipe =	3.14	N/A	radians	

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage= 4.23 ft (relative to basin bottom at Stage = 0 ft)

Spillway Crest Length = 10.00 feet

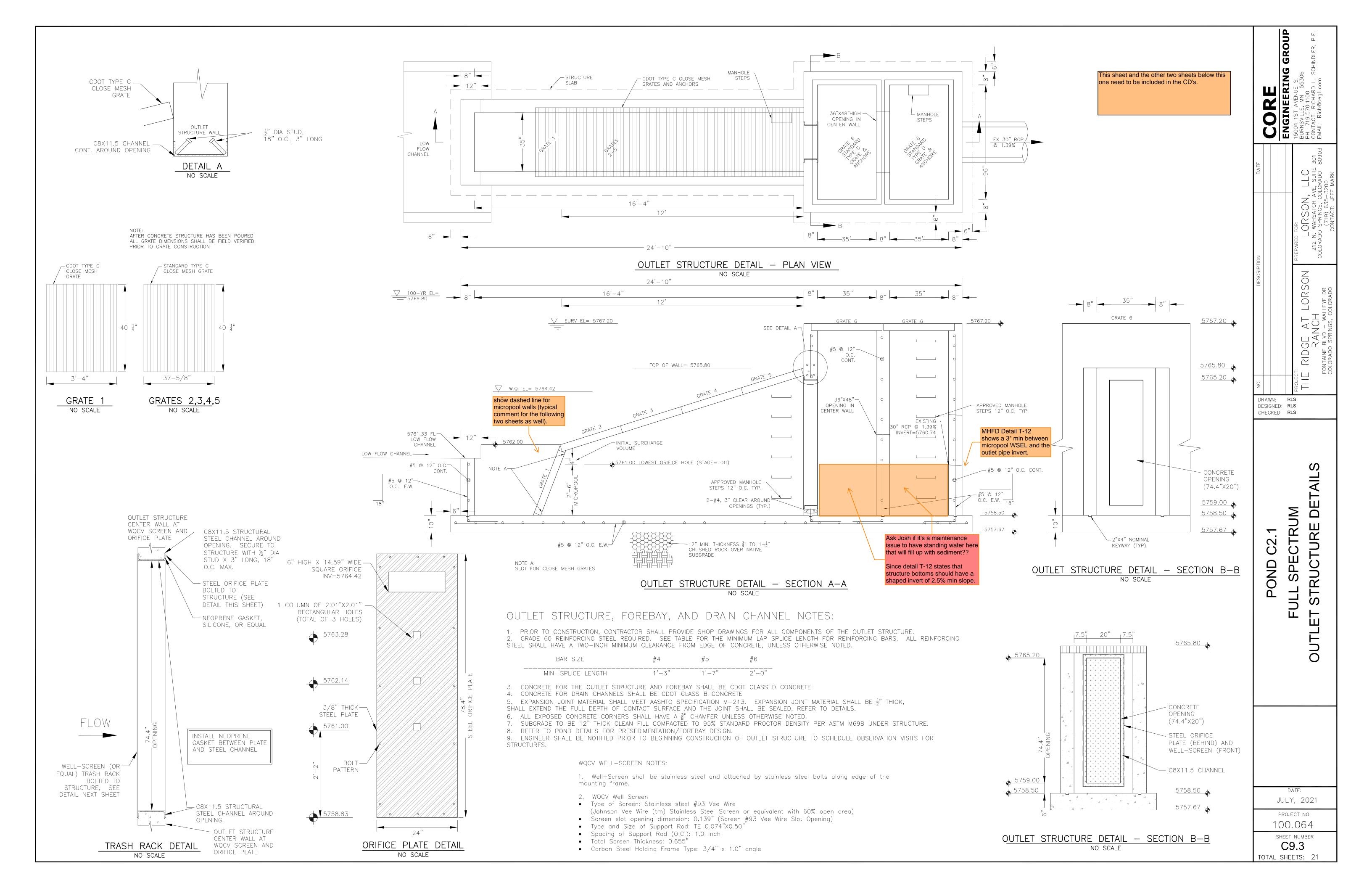
Spillway End Slopes = 4.00 H:V

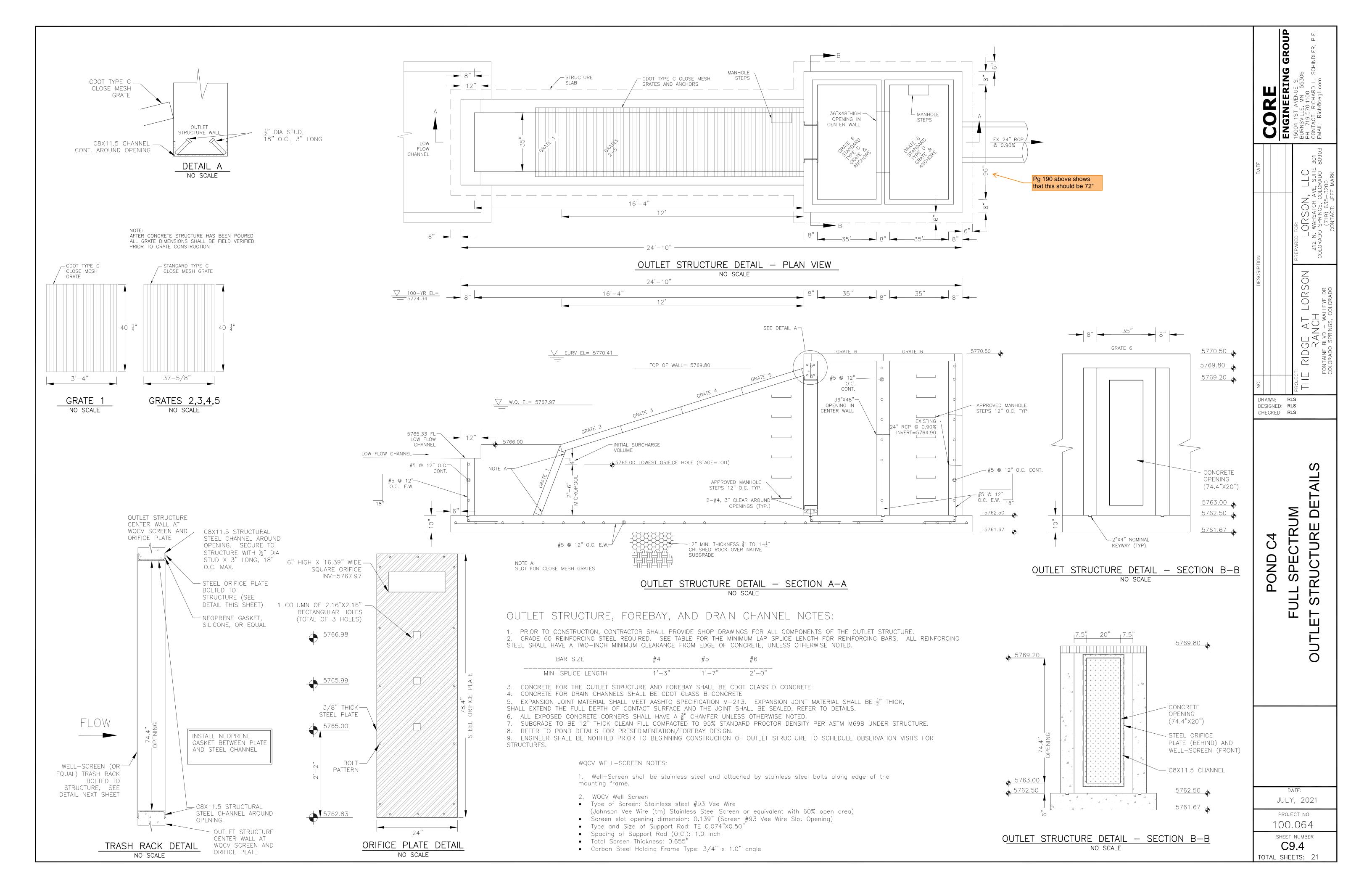
Freeboard above Max Water Surface = 0.50 feet

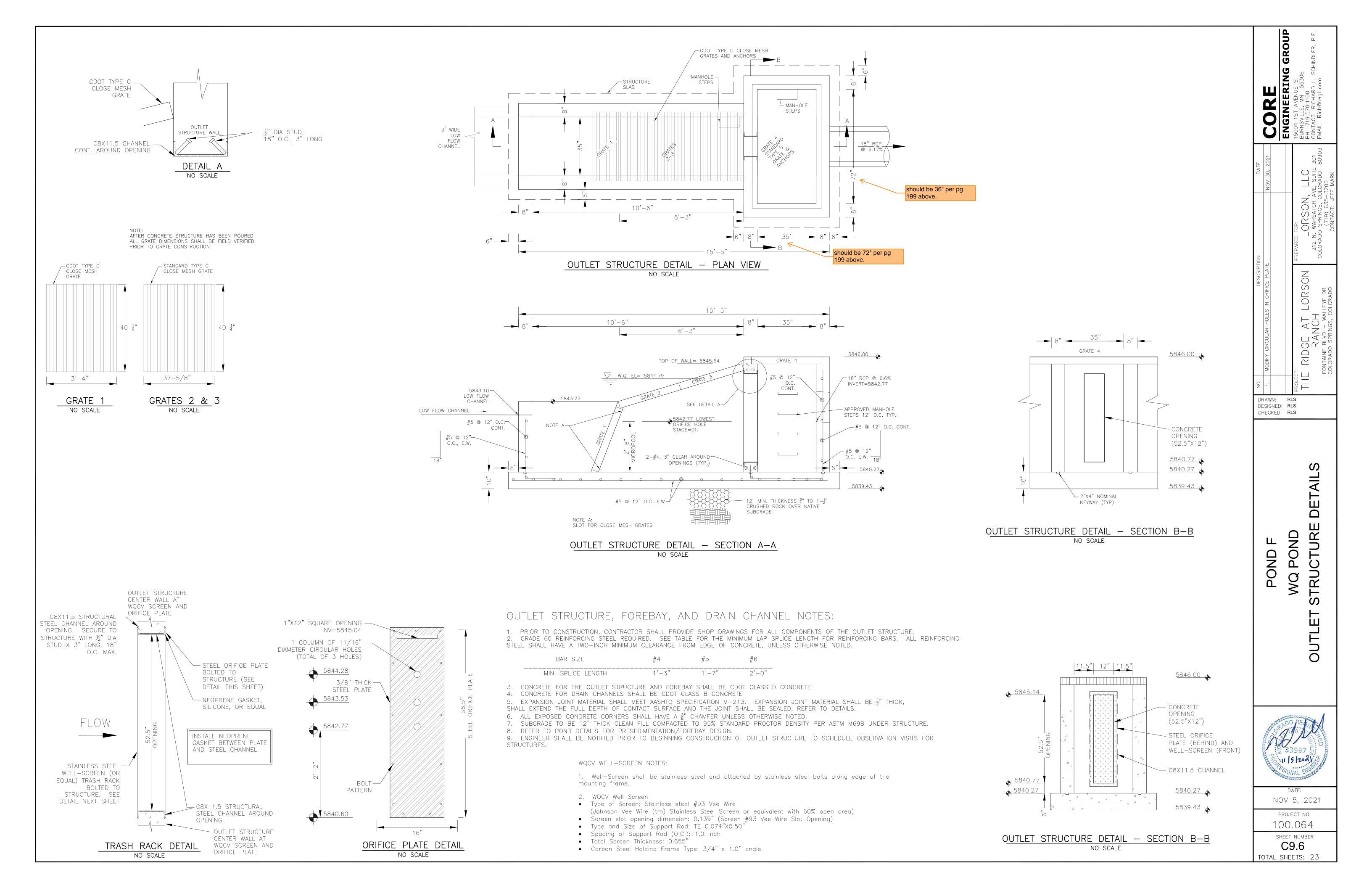
top micropool = 5842.77 = stage 0

Routed Hydrograph Results	The user can over	ide the default CUH	IP hydrographs and	runoff volumes by	entering new values	in the Inflow Hydro	ographs table (Colui	mns W through AF)	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.090	0.290	0.270	0.379	0.474	0.597	0.699	0.827	1.089
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.270	0.379	0.474	0.597	0.699	0.827	1.089
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.3	1.0	1.5	2.8	3.5	4.5	6.3
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.07	0.20	0.31	0.57	0.72	0.92	1.29
Peak Inflow Q (cfs) =	N/A	N/A	3.2	4.5	5.5	7.4	8.6	10.2	13.3
Peak Outflow Q (cfs) =	0.0	5.8	0.4	1.9	2.9	5.1	6.5	8.4	11.7
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.9	2.0	1.8	1.9	1.9	1.9
Structure Controlling Flow =	Vertical Orifice 1	Overflow Weir 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow We
Max Velocity through Grate 1 (fps) =	N/A	0.96	N/A	0.2	0.3	0.5	0.7	0.9	1.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	37	38	40	38	36	34	33	31	28
Time to Drain 99% of Inflow Volume (hours) =	40	45	46	45	44	43	42	40	39
Maximum Ponding Depth (ft) =	2.27	3.69	3.20	3.37	3.43	3.53	3.59	3.66	3.77
Area at Maximum Ponding Depth (acres) =	0.11	0.17	0.15	0.16	0.16	0.16	0.16	0.17	0.17
Maximum Volume Stored (acre-ft) =	0.091	0.291	0.213	0.238	0.247	0.265	0.275	0.286	0.305

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company:	Core Engineering Group July 17, 2021	
Date: Project:	The ridge at Lorson Ranch	
Location:	Pond F	
1. Basin Storage V	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	I _a = 55.0 %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.550
C) Contributing	Watershed Area	Area = 4.900 ac
Runoff Prod	neds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in
E) Design Cond	cept	Choose One
	V when also designing for flood control)	Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
		C Excess ordan runon volume (EURV)
F) Design Volui	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = ac-ft
	1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
	neds Outside of the Denver Region,	V _{DESIGN} OTHER= ac-ft
	ty Capture Volume (WQCV) Design Volume $_{R} = (d_{6}^{*}(V_{DESIGN}/0.43))$	
	f Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} ≠ 0.120 ac-ft
	ferent WQCV Design Volume is desired)	- DEGIGN USEK USER GUTT
	logic Soil Groups of Tributary Watershed	I
	ge of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$HSG_B =$ W W
	age of Watershed consisting of Type C/D Soils	HSG _{CID} = %
	ın Runoff Volume (EURV) Design Volume	
	: EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} = ac-f t
	/D: EURV _{C/D} = 1.20 * i ^{1.08}	
	f Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} = ac-f t
(Only if a dif	ferent EURV Design Volume is desired)	
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L:W= 2.0 : 1
Basin Side Slop	es	
A) Basin Maxim		Z = 4.00 ft / ft
	distance per unit vertical, 4:1 or flatter preferred)	2- 4.00 10710
4. Inlet		
A) Describe me inflow location	eans of providing energy dissipation at concentrated	
iniow locatio	uio.	
5. Forebay		
A) Minimum Fo	rehav Volume	V _{FMIN} = 0.002 ac-ft
	= <u>2%</u> of the WQCV)	*FMIN = 0.002 dC-10
B) Actual Foreb	pay Volume	$V_F = 0.004$ ac-ft
C) Forebay Dep	·	
	= 18 inch maximum)	D _F = 18.0 in
D) Forebay Disc	charge	
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 17.60 cfs
	Discharge Design Flow	Q _F = 0.35 cfs
(Q _F = 0.02		wt
E) Forebay Disc	charge Design	Choose One
-		O Berm With Pipe Flow too small for berm w/ pipe
		Wall with Next Notch Wall with V-Notch Wair
		Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangular	Notch Width	Calculated W _N = 4.3 in

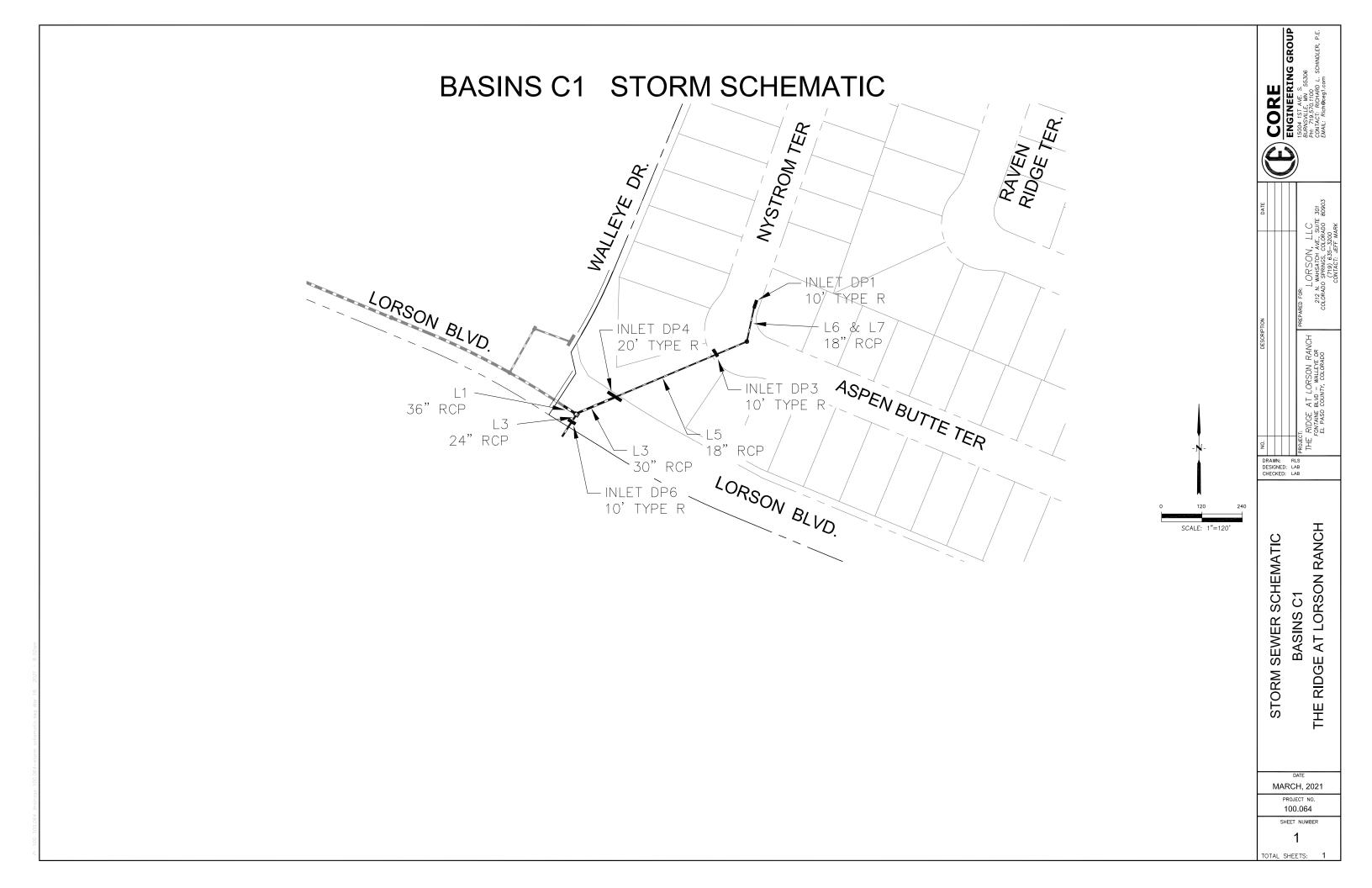

pond F, EDB 7/17/2021, 9:33 AM


	Design Procedure Form: Ex	tended Detention Basin (EDB)
Designer: Richard Schindler Company: Core Engineering Group Date: July 17, 2021 Project: The ridge at Lorson Ranch Location: Pond F		Sheet 2 of 3
Trickle Channel A) Type of Trickle Channel F) Slope of Trickle Channel		Choose One Concrete Soft Bottom S = 0.0050 ft / ft
7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type		$D_{M} = 2.5$ ft $A_{M} = 50$ sq ft $Choose One$ $Orifice Plate$ $Other (Describe):$
D) Smallest Dimension of Orifice Opening Based on H (Use UD-Detention) E) Total Outlet Area	Hydrograph Routing	$D_{\text{orifice}} = $
8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool		$D_{IS} =$ in $V_{IS} =$ cu ft $V_{9} =$ 16.7 cu ft
9. Trash Rack A) Water Quality Screen Open Area: A _t = A _{ot} * 38.5*(6 B) Type of Screen (If specifying an alternative to the m in the USDCM, indicate "other" and enter the ratio of the total screen are for the material specified.) Other (Y/N): C) Ratio of Total Open Area to Total Area (only for type) D) Total Water Quality Screen Area (based on screen) E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) F) Height of Water Quality Screen (H _{TR}) G) Width of Water Quality Screen Opening (W _{opening}) (Minimum of 12 inches is recommended)	naterials recommended ne total open are to the	At = 401 square inches Other (Please describe below) wellscreen stainless User Ratio = 0.6 Atotal = 668 sq. in. Based on type 'Other' screen ratio H = 2.14 feet H _{TR} = 53.68 inches W _{opening} = 12.4 inches


pond F, EDB 7/17/2021, 9:33 AM

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	R. Schindler Core Engineering Group November 5, 2021 The Ridge at Lorson Ranch Pond F - WQ pond only	Sheet 3 of 3
B) Slope of ((Horizont	bankment embankment protection for 100-year and greater overtopping: Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	TRM added to emergency overflow. All of 100-year flows will enter outlet structure before entering emergency overflow. Ze = 4.00 ft / ft
11. Vegetation		O Irrigated O Not Irrigated
	Sediment Removal Procedures	
Notes:		1

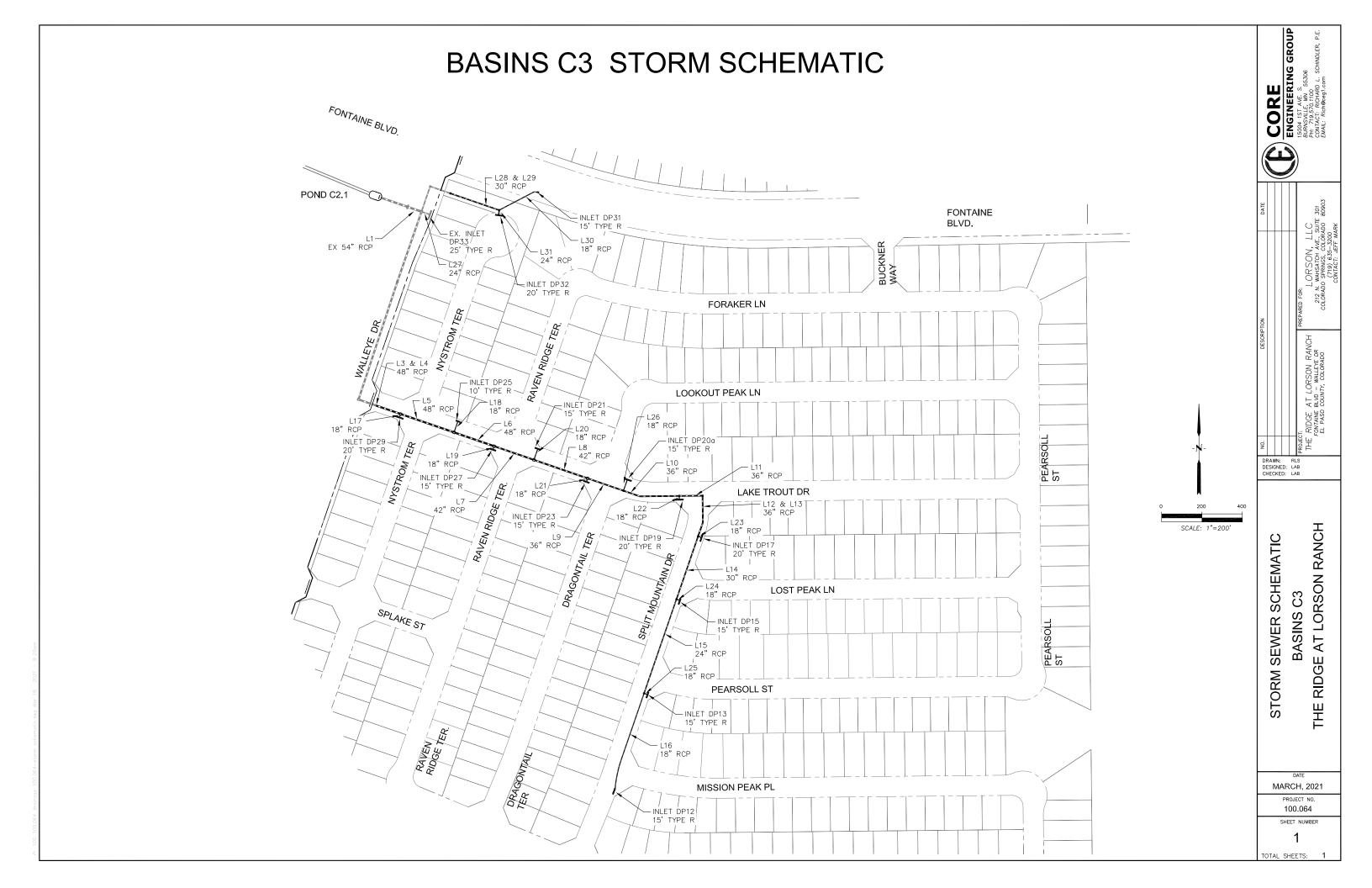
Pond F-UD-BMP_v3.07, EDB 11/5/2021, 12:01 PM



APPENDIX E- STORM SEWER SCHEMATIC AND HYDRAFLOW STORM SEWER CALCS

Update storm sewer calculations as flows at proposed inlets may have changed

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn: line No.
1	1	36.80	36 c	20.5	5798.38	5798.69	1.509	5800.33	5800.62	0.91	5800.62	End
2	2	15.00	24 c	8.0	5799.69	5799.81	1.525	5801.18	5801.18	n/a	5801.18	1
3	3	12.00	24 c	25.2	5799.91	5800.16	0.992	5801.62	5801.58	0.39	5801.97	2
4	4	21.80	30 c	51.4	5799.19	5799.70	0.993	5801.23	5801.26	n/a	5801.26 j	1
5	5	8.30	18 c	149.1	5800.70	5811.21	7.049	5801.63	5812.31	n/a	5812.31	4
6	6	5.60	18 c	39.8	5811.71	5812.09	0.953	5812.71	5812.99	n/a	5812.99 j	5
7	7	5.60	18 c	46.3	5812.49	5812.95	0.993	5813.27	5813.86	0.39	5814.25	6
		1			1	l		1	1	1	1	


NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs.; j - Line contains hyd. jump.

Hydraflow Storm Sewers 2005

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	65.80	36 c	20.5	5798.38	5798.69	1.509	5801.00	5801.29	1.59	5801.29	End
2	2	25.70	24 c	8.0	5799.69	5799.81	1.512	5801.84*	5801.94*	0.52	5802.46	1
3	3	20.00	24 c	25.2	5800.00	5800.25	0.992	5802.87*	5803.07*	0.63	5803.70	2
4	4	40.10	30 c	51.4	5799.19	5799.70	0.993	5801.84*	5802.33*	0.52	5802.85	1
5	5	18.10	18 c	149.1	5801.20	5811.71	7.049	5802.85	5813.16	n/a	5813.16 j	4
6	6	12.20	18 c	39.8	5811.71	5812.11	1.001	5814.08*	5814.62*	0.64	5815.26	5
7	7	12.20	18 c	46.3	5812.49	5812.96	1.014	5815.26*	5815.89*	0.74	5816.63	6

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs.; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

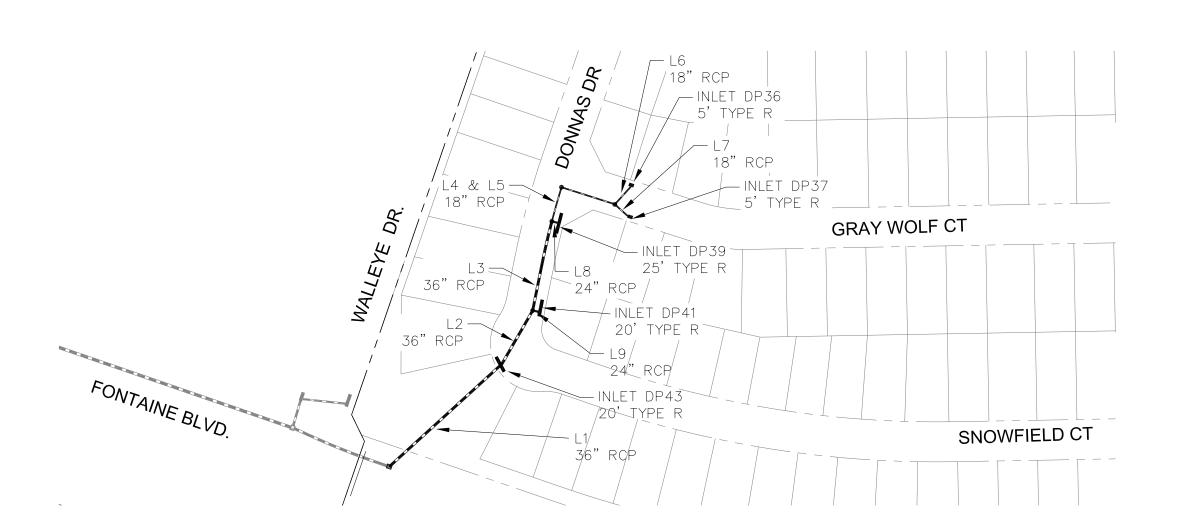
Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
1	65.80	36	Cir	5798.38	5798.69	1.51	5801.00	5801.29	1.59	5801.29	2.60**	10.05
2	25.70	24	Cir	5799.69	5799.81	1.51	5801.84	5801.94	0.52	5802.46	2.00	8.18
3	20.00	24	Cir	5800.00	5800.25	0.99	5802.87	5803.07	0.63	5803.70	2.00	6.37
4	40.10	30	Cir	5799.19	5799.70	0.99	5801.84	5802.33	0.52	5802.85	2.50	8.17
5	18.10	18	Cir	5801.20	5811.71	7.05	5802.85	5813.16 j	n/a	5813.16	1.45**	10.24
6	12.20	18	Cir	5811.71	5812.11	1.00	5814.08	5814.62	0.64	5815.26	1.50	6.91
7	12.20	18	Cir	5812.49	5812.96	1.01	5815.26	5815.89	0.74	5816.63	1.50	6.91
C1 ba	sins 100	yr storm	า									
NOTE	S: ** Cri	tical dep	th									

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
		(0.0)	()	(,	(1-4)	(,	(70)	(1.5)	(,	(,	(,	
1	1	115.0	54 c	38.4	5775.60	5776.70	2.869	5779.89	5779.78	1.53	5779.78	End
2	2	89.80	48 c	183.5	5777.70	5780.82	1.700	5780.51	5783.62	n/a	5783.62	1
3	3	89.80	48 c	307.6	5781.12	5790.01	2.890	5784.25	5792.81	n/a	5792.81	2
4	4	89.80	48 c	110.3	5790.30	5791.62	1.197	5793.44	5794.42	n/a	5794.42	3
5	5	80.60	48 c	102.4	5791.82	5793.05	1.201	5795.20	5795.71	n/a	5795.71	4
6	6	73.40	48 c	142.7	5793.05	5794.76	1.198	5796.46	5797.29	0.12	5797.29	5
7	7	65.00	42 c	104.4	5795.36	5796.61	1.197	5797.77	5799.08	n/a	5799.08	6
8	8	57.80	42 c	141.7	5796.92	5801.92	3.530	5799.77	5804.25	0.22	5804.25	7
9	9	49.40	36 c	135.8	5802.38	5805.38	2.209	5804.61	5807.62	n/a	5807.62	8
10	10	43.80	36 c	98.2	5805.58	5809.02	3.502	5808.21	5811.13	n/a	5811.13 j	9
11	11	33.50	36 c	57.5	5809.32	5810.48	2.016	5811.84	5812.33	n/a	5812.33 j	10
12	12	33.50	36 c	66.7	5810.69	5812.02	1.996	5812.82	5813.87	n/a	5813.87 j	11
13	13	33.50	36 c	35.9	5812.02	5812.74	2.005	5814.36	5814.59	n/a	5814.59 j	12
14	14	26.00	30 с	165.8	5813.24	5817.72	2.702	5814.99	5819.42	n/a	5819.42 j	13
15	15	17.60	24 c	245.7	5818.20	5822.14	1.604	5819.76	5823.63	n/a	5823.63 j	14
16	16	9.30	18 c	245.6	5822.64	5830.50	3.201	5823.96	5831.66	n/a	5831.66 j	15
17	17	9.20	18 c	7.9	5794.12	5794.44	4.057	5795.42	5795.60	n/a	5795.60	4
18	18	7.20	18 c	27.3	5795.76	5796.03	0.990	5796.73	5797.05	0.20	5797.05	5
19	19	8.40	18 c	8.0	5797.26	5797.58	4.003	5798.13	5798.69	0.56	5798.69	6
20	20	7.20	18 c	27.3	5798.78	5799.05	0.991	5800.07	5800.08	n/a	5800.27 j	7
21	21	8.40	18 c	8.0	5803.88	5804.20	4.020	5805.02	5805.31	0.00	5805.31	8
22	22	10.30	18 c	7.4	5810.82	5811.52	9.416	5811.66	5812.75	0.34	5813.09	10
23	23	7.50	18 c	7.5	5814.24	5814.54	4.004	5815.14	5815.59	0.51	5815.59	13
24	24	8.40	18 c	7.6	5818.70	5818.78	1.046	5819.90	5819.89	0.56	5820.45	14
25	25	8.30	18 c	10.1	5822.64	5822.74	0.996	5823.84	5823.84	0.55	5824.40	15
26	26	5.60	18 c	28.0	5807.28	5807.54	0.933	5808.65	5808.65	0.02	5808.68	9
27	27	7.00	24 c	17.8	5779.20	5779.94	4.149	5781.08	5780.88	0.14	5781.03	1
28	28	18.20	30 c	64.4	5778.80	5779.44	0.994	5781.10	5781.02	0.10	5781.12	1
29	29	18.20	30 c	172.1	5780.00	5786.88	3.997	5781.38	5788.31	n/a	5788.31	28
30	30	9.70	18 c	123.9	5787.88	5791.52	2.939	5788.66	5792.71	0.26	5792.71	29
31	31	8.50	24 c	15.9	5787.98	5788.30	2.005	5788.81	5789.33	0.17	5789.33	29
	sins 5yr storm						Nium	hber of line	0: 21	Divin	⊥ Date: 03-18	

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.

			illai y									
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	225.4	54 c	38.4	5775.60	5776.70	2.869	5779.89	5780.88	n/a	5780.88	End
2	2	153.9	48 c	183.5	5777.70	5780.82	1.700	5781.88	5784.45	0.38	5784.45	1
3	3	153.9	48 c	307.6	5781.12	5790.01	2.890	5784.68	5793.64	1.28	5793.64	2
4	4	153.9	48 c	110.3	5790.30	5791.62	1.197	5793.87	5795.25	0.26	5795.25	3
5	5	133.4	48 c	102.4	5791.82	5793.05	1.201	5796.06	5796.78	0.19	5796.97	4
6	6	132.7	48 c	142.7	5793.05	5794.76	1.198	5797.09	5798.21	n/a	5798.21	5
7	7	118.6	42 c	104.4	5795.36	5796.61	1.197	5798.86*	5800.31*	0.24	5800.55	6
8	8	115.5	42 c	141.7	5796.92	5801.92	3.530	5800.67	5805.14	n/a	5805.14	7
9	9	99.20	36 c	135.8	5802.38	5805.38	2.209	5805.14	5808.28	0.63	5808.28	8
10	10	88.50	36 c	98.2	5805.58	5809.02	3.502	5808.97	5811.86	0.76	5811.86	9
11	11	67.30	36 c	57.5	5809.32	5810.48	2.016	5812.99*	5813.58*	1.41	5814.99	10
12	12	67.30	36 c	66.7	5810.69	5812.02	1.996	5814.99*	5815.67*	0.21	5815.88	11
13	13	67.30	36 c	35.9	5812.02	5812.74	2.005	5815.88*	5816.24*	0.70	5816.95	12
14	14	46.90	30 c	165.8	5813.24	5817.72	2.702	5816.95	5819.98	n/a	5819.98	13
15	15	30.40	24 c	245.7	5818.20	5822.14	1.604	5820.09	5824.12	0.73	5824.85	14
16	16	14.80	18 c	245.6	5822.64	5830.50	3.201	5825.22	5831.90	n/a	5831.90 j	15
17	17	20.50	18 c	7.9	5794.12	5794.44	4.057	5795.72*	5796.02*	2.09	5798.12	4
18	18	11.30	18 c	27.3	5795.76	5796.03	0.990	5798.19*	5798.51*	0.25	5798.76	5
19	19	20.70	18 c	8.0	5797.26	5797.58	4.003	5798.47*	5799.51*	2.13	5801.64	6
20	20	13.10	18 c	27.3	5798.78	5799.05	0.991	5802.06*	5802.48*	0.34	5802.82	7
21	21	16.30	18 c	8.0	5803.88	5804.20	4.020	5806.24*	5806.43*	0.00	5806.43	8
22	22	21.20	18 c	7.4	5810.82	5811.12	4.033	5812.16*	5812.72*	2.24	5814.96	10
23	23	20.40	18 c	7.5	5814.24	5814.54	4.004	5816.95*	5817.23*	2.07	5819.30	13
24	24	16.50	18 c	7.6	5818.70	5818.78	1.046	5820.20*	5820.39*	1.36	5821.74	14
25	25	15.60	18 c	10.1	5822.64	5822.74	0.996	5825.10*	5825.32*	1.21	5826.53	15
26	26	10.70	18 c	28.0	5806.88	5807.14	0.929	5810.84*	5811.13*	0.06	5811.18	9
27	27	28.70	24 c	17.8	5779.20	5779.94	4.149	5782.91*	5783.20*	0.52	5783.72	1
28	28	42.80	30 c	64.4	5778.80	5779.44	0.994	5783.03*	5783.73*	0.24	5783.97	1
29	29	42.80	30 c	172.1	5780.00	5786.88	3.997	5783.97	5789.07	0.14	5789.07	28
30	30	15.30	18 c	123.9	5787.88	5791.52	2.939	5789.27	5792.93	0.49	5792.93	29
31	31	27.50	24 c	15.9	5787.98	5788.30	2.005	5789.41*	5790.54*	0.48	5791.01	29
C3 ba	sins 100yr storm						Nun	nber of line	s: 31	Run	Date: 03-18	-202

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs.; *Surcharged (HGL above crown).; j - Line contains hyd. jump.


Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn	_	
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)		
1	225.40	54	Cir	5775.60	5776.70	2.87	5779.89	5780.88	n/a	5780.88	4.18**	14.42	Ť	
2	153.90	48	Cir	5777.70	5780.82	1.70	5781.88	5784.45	0.38	5784.45	3.63**	12.25		
3	153.90	48	Cir	5781.12	5790.01	2.89	5784.68	5793.64	1.28	5793.64	3.63**	13.02		
4	153.90	48	Cir	5790.30	5791.62	1.20	5793.87	5795.25	0.26	5795.25	3.63**	13.00		
5	133.40	48	Cir	5791.82	5793.05	1.20	5796.06	5796.78	0.19	5796.97	3.73	10.62		
6	132.70	48	Cir	5793.05	5794.76	1.20	5797.09	5798.21	n/a	5798.21	3.45**	10.56		
7	118.60	42	Cir	5795.36	5796.61	1.20	5798.86	5800.31	0.24	5800.55	3.50	12.33		
8	115.50	42	Cir	5796.92	5801.92	3.53	5800.67	5805.14	n/a	5805.14	3.22**	12.01		
9	99.20	36	Cir	5802.38	5805.38	2.21	5805.14	5808.28	0.63	5808.28	2.90**	14.57		
10	88.50	36	Cir	5805.58	5809.02	3.50	5808.97	5811.86	0.76	5811.86	2.84**	12.52		
11	67.30	36	Cir	5809.32	5810.48	2.02	5812.99	5813.58	1.41	5814.99	3.00	9.52		
12	67.30	36	Cir	5810.69	5812.02	2.00	5814.99	5815.67	0.21	5815.88	3.00	9.52		
13	67.30	36	Cir	5812.02	5812.74	2.00	5815.88	5816.24	0.70	5816.95	3.00	9.52		
14	46.90	30	Cir	5813.24	5817.72	2.70	5816.95	5819.98	n/a	5819.98	2.26**	9.56		
15	30.40	24	Cir	5818.20	5822.14	1.60	5820.09	5824.12	0.73	5824.85	1.98	9.88		
16	14.80	18	Cir	5822.64	5830.50	3.20	5825.22	5831.90 j	n/a	5831.90	1.40**	8.38		
17	20.50			5794.12	5794.44	4.06	5795.72	5796.02	2.09	5798.12	1.50	11.60		
		18	Cir											
18	11.30	18	Cir	5795.76	5796.03	0.99	5798.19	5798.51	0.25	5798.76	1.50	6.40		
19	20.70	18	Cir	5797.26	5797.58	4.00	5798.47	5799.51	2.13	5801.64	1.50	13.55		
20	13.10	18	Cir	5798.78	5799.05	0.99	5802.06	5802.48	0.34	5802.82	1.50	7.41		
21	16.30	18	Cir	5803.88	5804.20	4.02	5806.24	5806.43	0.00	5806.43	1.50	9.23		
C3 ba	sins 100y	r storm											1	Number of lines: 31

NOTES: ** Critical depth

Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
22	21.20	18	Cir	5810.82	5811.12	4.03	5812.16	5812.72	2.24	5814.96	1.50	12.71
23	20.40	18	Cir	5814.24	5814.54	4.00	5816.95	5817.23	2.07	5819.30	1.50	11.55
24	16.50	18	Cir	5818.70	5818.78	1.05	5820.20	5820.39	1.36	5821.74	1.50	9.34
25	15.60	18	Cir	5822.64	5822.74	1.00	5825.10	5825.32	1.21	5826.53	1.50	8.83
26	10.70	18	Cir	5806.88	5807.14	0.93	5810.84	5811.13	0.06	5811.18	1.50	6.06
27	28.70	24	Cir	5779.20	5779.94	4.15	5782.91	5783.20	0.52	5783.72	2.00	9.14
28	42.80	30	Cir	5778.80	5779.44	0.99	5783.03	5783.73	0.24	5783.97	2.50	8.72
29	42.80	30	Cir	5780.00	5786.88	4.00	5783.97	5789.07	0.14	5789.07	2.19**	8.72
30	15.30	18	Cir	5787.88	5791.52	2.94	5789.27	5792.93	0.49	5792.93	1.41**	8.93
31	27.50	24	Cir	5787.98	5788.30	2.01	5789.41	5790.54	0.48	5791.01	2.00	11.46
C3 ba	sins 100y	r storm										

NOTES: ** Critical depth

BASINS C5 STORM SCHEMATIC

STORM SEWER SCHEMATIC BASINS C5 THE RIDGE AT LORSON RANCH

SCALE: 1"=120'

DATE MARCH, 2021

PROJECT NO.
100.064
SHEET NUMBER

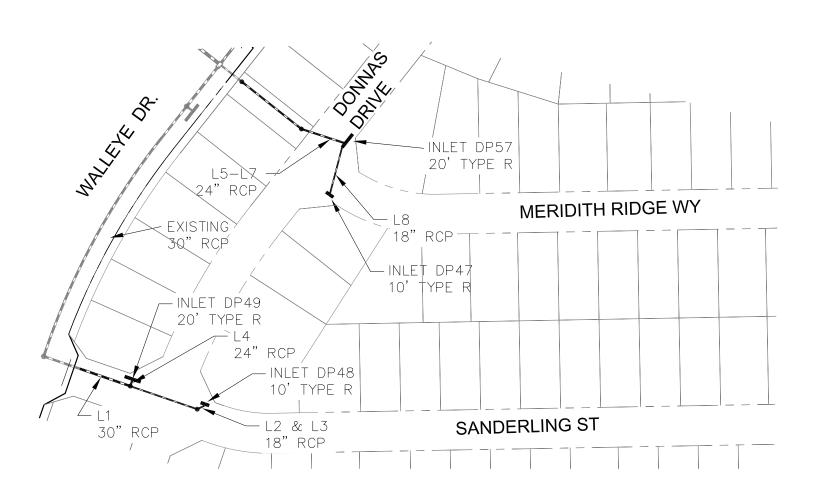
1

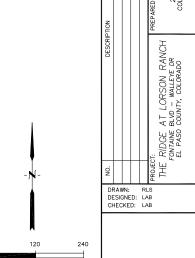
OTAL SHEETS:

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1		42.30	36 c	190.8	5782.00	5788.40	3.354	5784.83	5790.47	n/a	5790.47 j	End
2		32.30	36 c	77.0	5789.50	5790.37	1.130	5791.17	5792.18	0.80	5792.18	1
3		23.00	36 c	121.5	5790.47	5791.49	0.839	5792.83	5793.02	n/a	5793.02 j	2
4		7.50	18 c	38.1	5793.00	5793.38	0.998	5793.94	5794.43	0.50	5794.93	3
5		7.50	18 c	70.0	5793.58	5794.28	1.000	5795.15	5795.39	0.41	5795.80	4
6		4.10	18 c	30.4	5794.48	5794.82	1.119	5796.14	5796.17	0.09	5796.27	5
7		3.40	18 c	23.5	5794.48	5794.81	1.406	5796.17	5796.19	0.06	5796.25	5
8		15.50	24 c	10.8	5792.50	5792.62	1.109	5793.68	5794.30	0.47	5794.77	3
9		9.30	24 c	14.0	5791.37	5791.65	2.002	5792.86	5792.73	n/a	5792.73 j	2
C5 bas	sins 5yr storm						Nun	nber of line	s: 9	Run	Date: 03-18	 -2021

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.

1	Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
3 37.00 36 c 121.5 5790.47 5791.44 0.797 5793.75 5794.03 0.50 5794.54 2 4 10.50 18 c 38.1 5793.00 5793.38 0.998 5794.54 5794.87 0.55 5795.42 3 5 10.50 18 c 70.0 5793.58 5794.28 1.000 5795.42* 5796.12* 0.50 5796.63 4 6 5.70 18 c 30.4 5794.48 5794.82 1.119 5797.02* 5797.10* 0.16 5797.27 5 7 4.80 18 c 23.5 5794.48 5794.81 1.406 5797.06* 5797.11* 0.11 5797.23 5 8 26.50 24 c 10.8 5792.50 5792.72 2.034 5794.65 1.13 5795.78 3	1		87.10	36 c	190.8	5782.00	5787.80	3.039	5784.83	5790.63	1.38	5790.63	End
4 10.50 18 c 38.1 5793.00 5793.38 0.998 5794.54 5794.87 0.55 5795.42 3 5 10.50 18 c 70.0 5793.58 5794.28 1.000 5795.42* 5796.12* 0.50 5796.63 4 6 5.70 18 c 30.4 5794.48 5794.82 1.119 5797.02* 5797.10* 0.16 5797.27 5 7 4.80 18 c 23.5 5794.48 5794.81 1.406 5797.06* 5797.11* 0.11 5797.23 5 8 26.50 24 c 10.8 5792.50 5792.72 2.034 5794.54 5794.65 1.13 5795.78 3	2		62.10	36 c	77.0	5788.70	5790.37	2.169	5791.90	5792.88	n/a	5792.88	1
5 10.50 18 c 70.0 5793.58 5794.28 1.000 5795.42* 5796.12* 0.50 5796.63 4 6 5.70 18 c 30.4 5794.48 5794.82 1.119 5797.02* 5797.10* 0.16 5797.27 5 7 4.80 18 c 23.5 5794.48 5794.81 1.406 5797.06* 5797.11* 0.11 5797.23 5 8 26.50 24 c 10.8 5792.50 5792.72 2.034 5794.54 5794.65 1.13 5795.78 3	3		37.00	36 c	121.5	5790.47	5791.44	0.797	5793.75	5794.03	0.50	5794.54	2
6 5.70 18 c 30.4 5794.48 5794.82 1.119 5797.02* 5797.10* 0.16 5797.27 5 7 4.80 18 c 23.5 5794.48 5794.81 1.406 5797.06* 5797.11* 0.11 5797.23 5 8 26.50 24 c 10.8 5792.50 5792.72 2.034 5794.54 5794.65 1.13 5795.78 3	4		10.50	18 c	38.1	5793.00	5793.38	0.998	5794.54	5794.87	0.55	5795.42	3
4.80 18 c 23.5 5794.48 5794.81 1.406 5797.06* 5797.11* 0.11 5797.23 5 3 26.50 24 c 10.8 5792.50 5792.72 2.034 5794.54 5794.65 1.13 5795.78 3	5		10.50	18 c	70.0	5793.58	5794.28	1.000	5795.42*	5796.12*	0.50	5796.63	4
3 26.50 24 c 10.8 5792.50 5792.72 2.034 5794.54 5794.65 1.13 5795.78 3	3		5.70	18 c	30.4	5794.48	5794.82	1.119	5797.02*	5797.10*	0.16	5797.27	5
	7		4.80	18 c	23.5	5794.48	5794.81	1.406	5797.06*	5797.11*	0.11	5797.23	5
25.10 24 c 14.0 5791.37 5791.65 2.002 5793.39 5793.42 1.13 5794.55 2	3		26.50	24 c	10.8	5792.50	5792.72	2.034	5794.54	5794.65	1.13	5795.78	3
)		25.10	24 c	14.0	5791.37	5791.65	2.002	5793.39	5793.42	1.13	5794.55	2


NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs.; *Surcharged (HGL above crown).


Hydraflow Storm Sewers 2005

Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
1	87.10	36	Cir	5782.00	5787.80	3.04	5784.83	5790.63	1.38	5790.63	2.83**	12.61
2	62.10	36	Cir	5788.70	5790.37	2.17	5791.90	5792.88	n/a	5792.88	2.51**	8.79
3	37.00	36	Cir	5790.47	5791.44	0.80	5793.75	5794.03	0.50	5794.54	2.59	5.24
4	10.50	18	Cir	5793.00	5793.38	1.00	5794.54	5794.87	0.55	5795.42	1.49	5.94
5	10.50	18	Cir	5793.58	5794.28	1.00	5795.42	5796.12	0.50	5796.63	1.50	5.94
6	5.70	18	Cir	5794.48	5794.82	1.12	5797.02	5797.10	0.16	5797.27	1.50	3.23
7	4.80	18	Cir	5794.48	5794.81	1.41	5797.06	5797.11	0.11	5797.23	1.50	2.72
8	26.50	24	Cir	5792.50	5792.72	2.03	5794.54	5794.65	1.13	5795.78	1.93	8.44
9	25.10	24	Cir	5791.37	5791.65	2.00	5793.39	5793.42	1.13	5794.55	1.77**	7.99
C5 ba	sins 100	yr storm	1									
NOTE	S: ** Cri	tical dep	th									

Hydraflow Storm Sewers 2005

BASINS C8.1 & C8.4 STORM SCHEMATIC

CORE

ENGINEERING GROUP

15004 1ST AVE. S.
BURNSVILE, MW. 55306

STORM SEWER SCHEMATIC BASINS C8.1 & C8.4 THE RIDGE AT LORSON RANCH

DATE MARCH, 2021

> PROJECT NO. 100.064

SHEET NUMBER

TAL SHEETS:

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn: line No.
1		11.10	30 c	67.8	5796.22	5796.92	1.032	5798.38	5798.33	0.24	5798.56	End
2		3.40	18 c	70.9	5798.90	5800.32	2.003	5799.39	5801.02	n/a	5801.02	1
3		3.40	18 c	14.9	5800.52	5800.82	2.012	5801.24	5801.52	n/a	5801.52 j	2
4		7.70	24 c	9.5	5798.10	5798.48	3.987	5798.71	5800.16	0.12	5800.27	1
5		17.10	24 c	36.5	5792.52	5793.43	2.492	5794.44	5794.90	n/a	5794.90 j	En
6		17.10	24 c	94.9	5793.88	5801.00	7.504	5795.18	5802.47	0.31	5802.47	5
7		17.10	24 c	55.5	5801.30	5802.13	1.496	5802.75	5803.60	1.12	5803.60	6
8		6.10	18 c	68.5	5803.23	5803.92	1.007	5804.16	5804.86	0.42	5804.86	7
				1		i .		i .	6			

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn: line No.
1		27.00	30 c	67.8	5796.22	5796.92	1.032	5798.38	5798.66	n/a	5798.66 j	End
2		6.20	18 c	70.9	5798.90	5800.32	2.003	5799.58	5801.27	n/a	5801.27	1
3		6.20	18 c	14.9	5800.52	5800.82	2.012	5801.51	5801.77	n/a	5801.77 j	2
4		20.80	24 c	9.5	5798.40	5798.78	3.997	5799.35*	5801.99*	0.68	5802.67	1
5		28.10	24 c	36.5	5792.52	5793.43	2.492	5794.44	5795.26	n/a	5795.26 j	En
3		28.10	24 c	94.9	5793.88	5801.00	7.504	5795.37	5802.83	0.57	5802.83	5
7		28.10	24 c	55.5	5801.30	5802.13	1.496	5802.97	5804.02	1.95	5805.97	6
3		9.10	18 c	68.5	5803.23	5803.92	1.007	5806.86*	5807.37*	0.41	5807.79	7

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs.; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

Hydroflow Stor

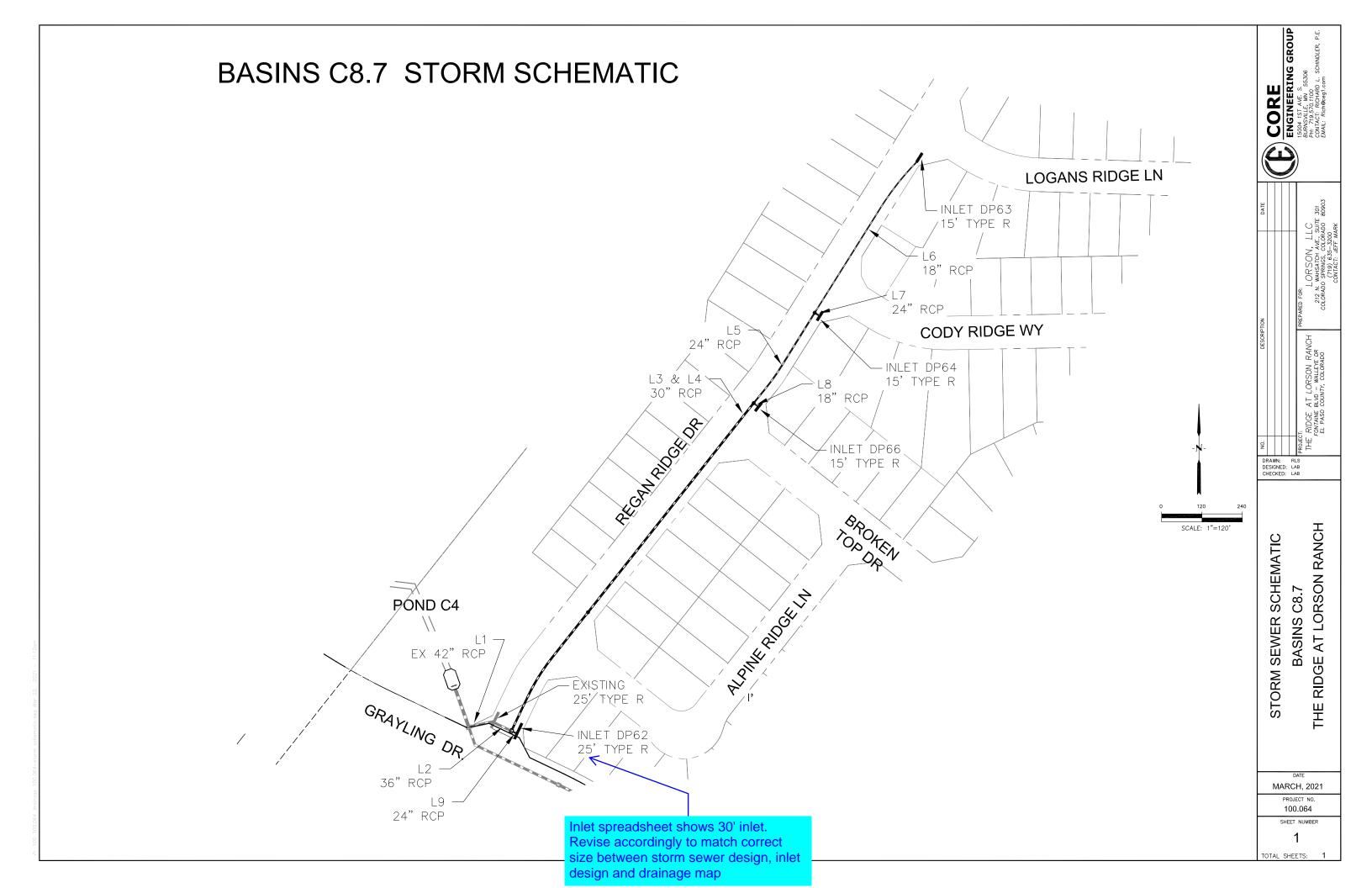
Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
1	27.00	30	Cir	5796.22	5796.92	1.03	5798.38	5798.66 j	n/a	5798.66	1.74**	5.99
2	6.20	18	Cir	5798.90	5800.32	2.00	5799.58	5801.27	n/a	5801.27	0.95**	8.03
3	6.20	18	Cir	5800.52	5800.82	2.01	5801.51	5801.77 j	n/a	5801.77	0.95**	5.03
4	20.80	24	Cir	5798.40	5798.78	4.00	5799.35	5801.99	0.68	5802.67	2.00	14.09
5	28.10	24	Cir	5792.52	5793.43	2.49	5794.44	5795.26 j	n/a	5795.26	1.83**	9.07
6	28.10	24	Cir	5793.88	5801.00	7.50	5795.37	5802.83	0.57	5802.83	1.83**	11.20
7	28.10	24	Cir	5801.30	5802.13	1.50	5802.97	5804.02	1.95	5805.97	1.89	10.03
8	9.10	18	Cir	5803.23	5803.92	1.01	5806.86	5807.37	0.41	5807.79	1.50	5.15
C8.1 ł	basins 100	yr storr	n									

NOTES: ** Critical depth

ENGINEERING GROUP 1504 1ST AVE. 8 BURNSVILE, MN 55306 PHI 7719-570-1000 I SCHINDI FR. P.E. BASINS C8.3 STORM SCHEMATIC \prec ,6ر R <u>ت</u> WALLEYE DR PONEN L3-L5 18" RCP -INLET DP54 20' TYPE R -INLET DP53 15' TYPE R L2 30" RCP DRAWN: RLS DESIGNED: LAB CHECKED: LAB DANIS DR 24" RCP INLET DP59 10' TYPE R THE RIDGE AT LORSON RANCH SCALE: 1"=120' STORM SEWER SCHEMATIC -INLET DP56 20' TYPE R WELL OF ONNESOR **BASINS C8.3** CRALING OR JASONS RIDGE WY MARCH, 2021 100.064 SHEET NUMBER

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn: line No.
1		32.70	36 c	388.3	5792.00	5797.44	1.401	5794.98	5799.26	n/a	5799.26 j	End
2		21.40	30 c	218.5	5797.94	5800.62	1.227	5799.79	5802.17	n/a	5802.17 j	1
3		9.70	18 c	212.9	5801.62	5809.62	3.758	5802.40	5810.81	0.38	5810.81	2
4		9.70	18 c	213.7	5809.82	5817.64	3.660	5810.99	5818.83	0.65	5818.83	3
5		9.70	18 c	61.5	5817.95	5818.86	1.480	5819.01	5820.05	0.65	5820.05	4
6		11.70	24 c	8.0	5801.50	5801.74	3.003	5802.65	5802.95	n/a	5802.95	2
7		9.00	24 c	9.9	5798.44	5798.64	2.028	5799.96	5799.87	0.31	5800.18	1
8		5.90	18 c	25.1	5798.94	5799.19	0.997	5799.91	5800.12	0.41	5800.12	1
		1										

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.


Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1		73.30	36 c	388.3	5792.00	5797.44	1.401	5794.98	5800.15	n/a	5800.15	End
2		40.20	30 c	218.5	5797.94	5800.62	1.227	5800.96	5802.78	1.24	5804.02	1
3		16.20	18 c	212.9	5801.62	5809.62	3.758	5804.02	5811.05	n/a	5811.05 j	2
4		16.20	18 c	213.7	5809.82	5817.64	3.660	5811.10	5819.07	1.35	5819.07	3
5		16.20	18 c	61.5	5817.95	5818.86	1.480	5819.45*	5820.91*	1.31	5822.22	4
6		24.00	24 c	8.0	5801.50	5801.74	3.003	5804.35*	5804.44*	0.91	5805.34	2
7		32.80	24 c	9.9	5798.44	5798.64	2.028	5800.31	5800.55	1.75	5802.30	1
8		8.90	18 c	25.1	5798.94	5799.19	0.997	5801.61*	5801.79*	0.39	5802.18	1
	asins 100yr storm					1		hber of lines		Τ_	│ Date: 03-18	

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs.; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

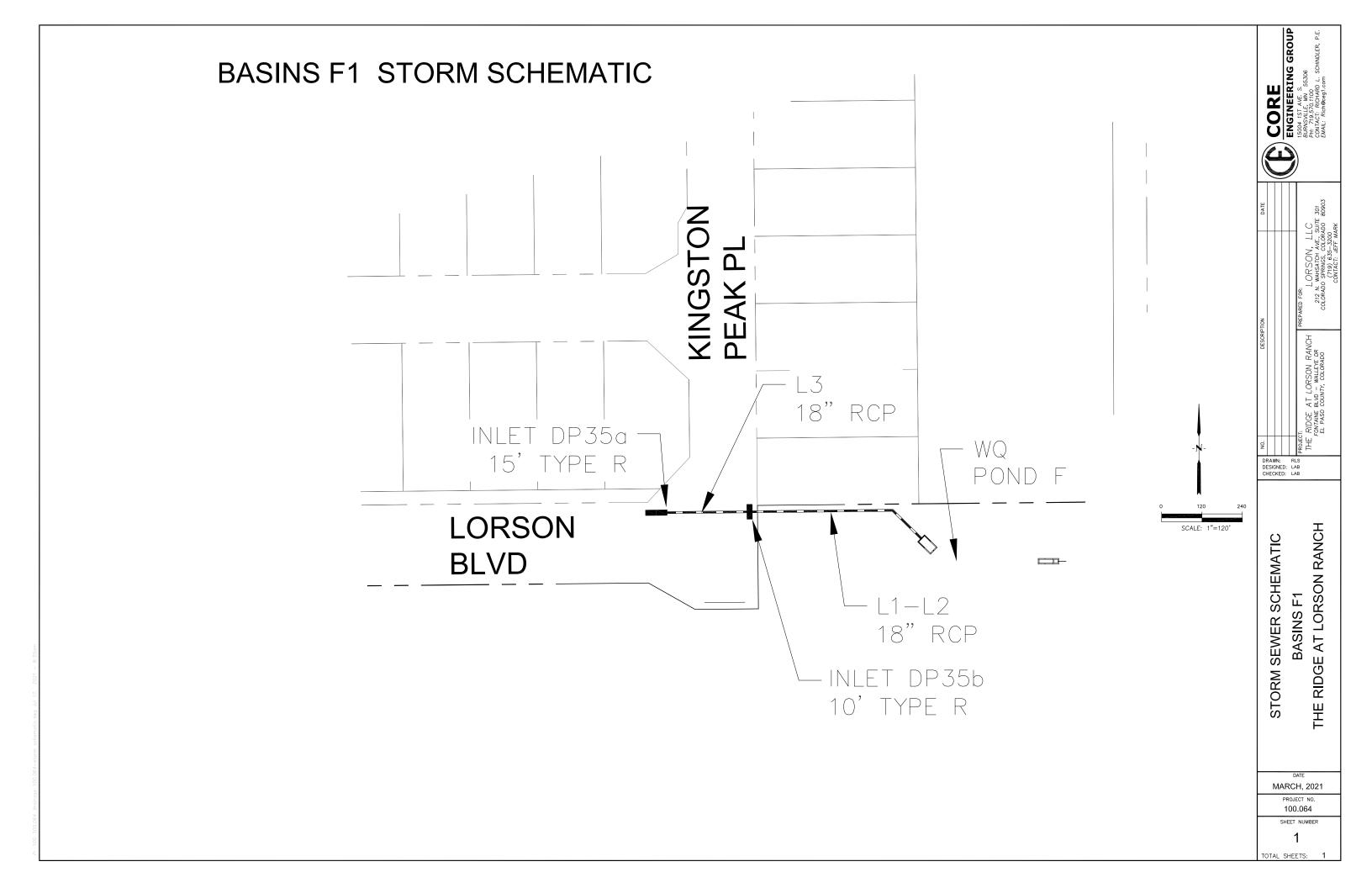
NOTES: ** Critical depth

Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn	_	
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)		
1	73.30	36	Cir	5792.00	5797.44	1.40	5794.98	5800.15	n/a	5800.15	2.71**	10.38		
2	40.20	30	Cir	5797.94	5800.62	1.23	5800.96	5802.78	1.24	5804.02	2.16	8.19		
3	16.20	18	Cir	5801.62	5809.62	3.76	5804.02	5811.05 j	n/a	5811.05	1.43**	9.17		
4	16.20	18	Cir	5809.82	5817.64	3.66	5811.10	5819.07	1.35	5819.07	1.43**	10.12		
5	16.20	18	Cir	5817.95	5818.86	1.48	5819.45	5820.91	1.31	5822.22	1.50	9.17		
6	24.00	24	Cir	5801.50	5801.74	3.00	5804.35	5804.44	0.91	5805.34	2.00	7.64		
7	32.80	24	Cir	5798.44	5798.64	2.03	5800.31	5800.55	1.75	5802.30	1.91**	10.75		
8	8.90	18	Cir	5798.94	5799.19	1.00	5801.61	5801.79	0.39	5802.18	1.50	5.04		
C8.3	pasins 10	Oyr storr	n										1	Number of lines: 8

Hydraflow Storm Sewers 2005

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1		34.50	42 c	36.0	5778.08	5779.02	2.611	5781.58	5781.47	0.28	5781.75	End
2		33.00	36 c	31.0	5779.52	5779.89	1.194	5781.77	5781.72	0.33	5781.72	1
3		21.50	30 c	211.2	5780.39	5784.82	2.098	5782.25	5786.37	n/a	5786.37 j	2
4		21.50	30 c	394.6	5785.15	5798.76	3.449	5786.78	5800.31	n/a	5800.31 j	3
5		20.00	24 c	168.5	5799.30	5806.04	3.999	5800.38	5807.62	0.87	5807.62	4
6		10.20	18 c	269.2	5807.50	5816.38	3.298	5808.28	5817.60	0.68	5817.60	5
7		9.80	24 c	11.2	5807.10	5807.32	1.968	5808.35	5808.43	0.47	5808.43	5
8		1.50	18 c	10.7	5799.80	5800.01	1.956	5800.98	5800.97	0.02	5801.00	4
9		14.30	24 c	7.3	5780.39	5780.46	0.955	5782.14	5782.14	0.40	5782.54	2
00 = 1	pasins 5yr storm							nber of line	0		Date: 03-18	

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.


Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1		86.30	42 c	36.0	5778.08	5779.02	2.611	5781.58	5781.87	1.30	5781.87	End
2		76.50	36 c	31.0	5779.52	5779.89	1.194	5782.14	5782.70	0.77	5783.47	1
3		45.20	30 c	211.2	5780.39	5784.82	2.098	5784.07	5787.05	n/a	5787.05	2
4		45.20	30 c	394.6	5785.15	5798.76	3.449	5787.22	5800.99	n/a	5800.99	3
5		33.40	24 c	168.5	5799.30	5806.04	3.999	5800.99	5807.95	n/a	5807.95	4
6		15.90	18 c	269.2	5807.50	5816.38	3.298	5808.55	5817.81	n/a	5817.81	5
7		17.50	24 c	11.2	5807.10	5807.32	1.968	5809.27	5809.32	0.48	5809.80	5
8		11.80	18 c	10.7	5799.80	5800.01	1.956	5801.78*	5801.92*	0.69	5802.61	4
9		37.40	24 c	7.3	5780.39	5780.46	0.955	5783.47*	5783.67*	2.20	5785.87	2
C8.7 b	pasins 100yr storm						Nun	nber of line	s: 9	Run	Date: 03-18	3-202 ⁻

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs.; *Surcharged (HGL above crown).

NOTES: ** Critical depth

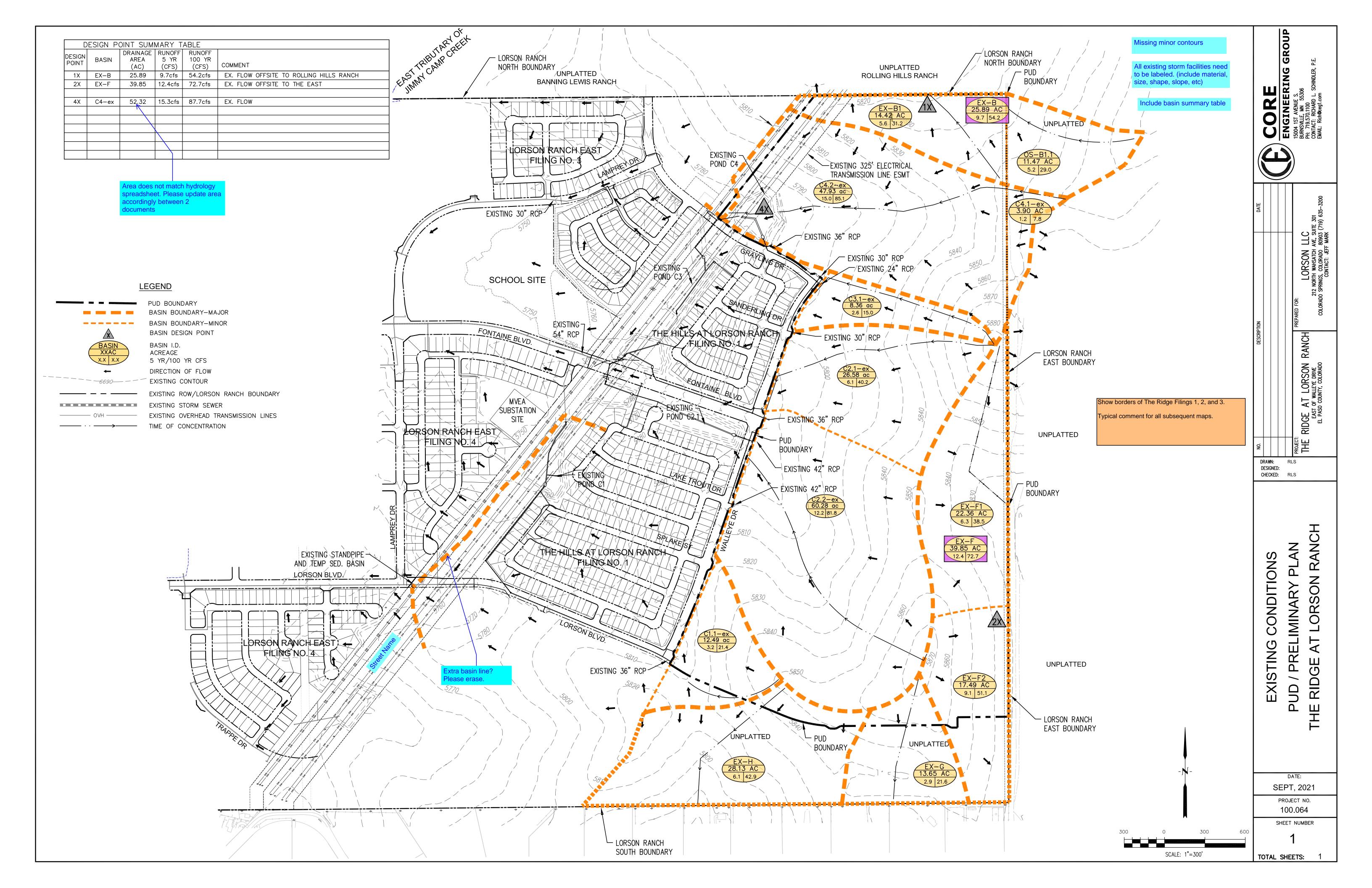
Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
1	86.30	42	Cir	5778.08	5779.02	2.61	5781.58	5781.87	1.30	5781.87	2.84**	8.97
2	76.50	36	Cir	5779.52	5779.89	1.19	5782.14	5782.70	0.77	5783.47	2.81	11.68
3	45.20	30	Cir	5780.39	5784.82	2.10	5784.07	5787.05	n/a	5787.05	2.23**	9.21
4	45.20	30	Cir	5785.15	5798.76	3.45	5787.22	5800.99	n/a	5800.99	2.23**	10.41
5	33.40	24	Cir	5799.30	5806.04	4.00	5800.99	5807.95	n/a	5807.95	1.91**	11.78
6	15.90	18	Cir	5807.50	5816.38	3.30	5808.55	5817.81	n/a	5817.81	1.42**	12.07
7	17.50	24	Cir	5807.10	5807.32	1.97	5809.27	5809.32	0.48	5809.80	2.00	5.57
8	11.80	18	Cir	5799.80	5800.01	1.96	5801.78	5801.92	0.69	5802.61	1.50	6.68
9	37.40	24	Cir	5780.39	5780.46	0.95	5783.47	5783.67	2.20	5785.87	2.00	11.91
C8.7 I	pasins 100	Oyr storr	n	l	I					l		

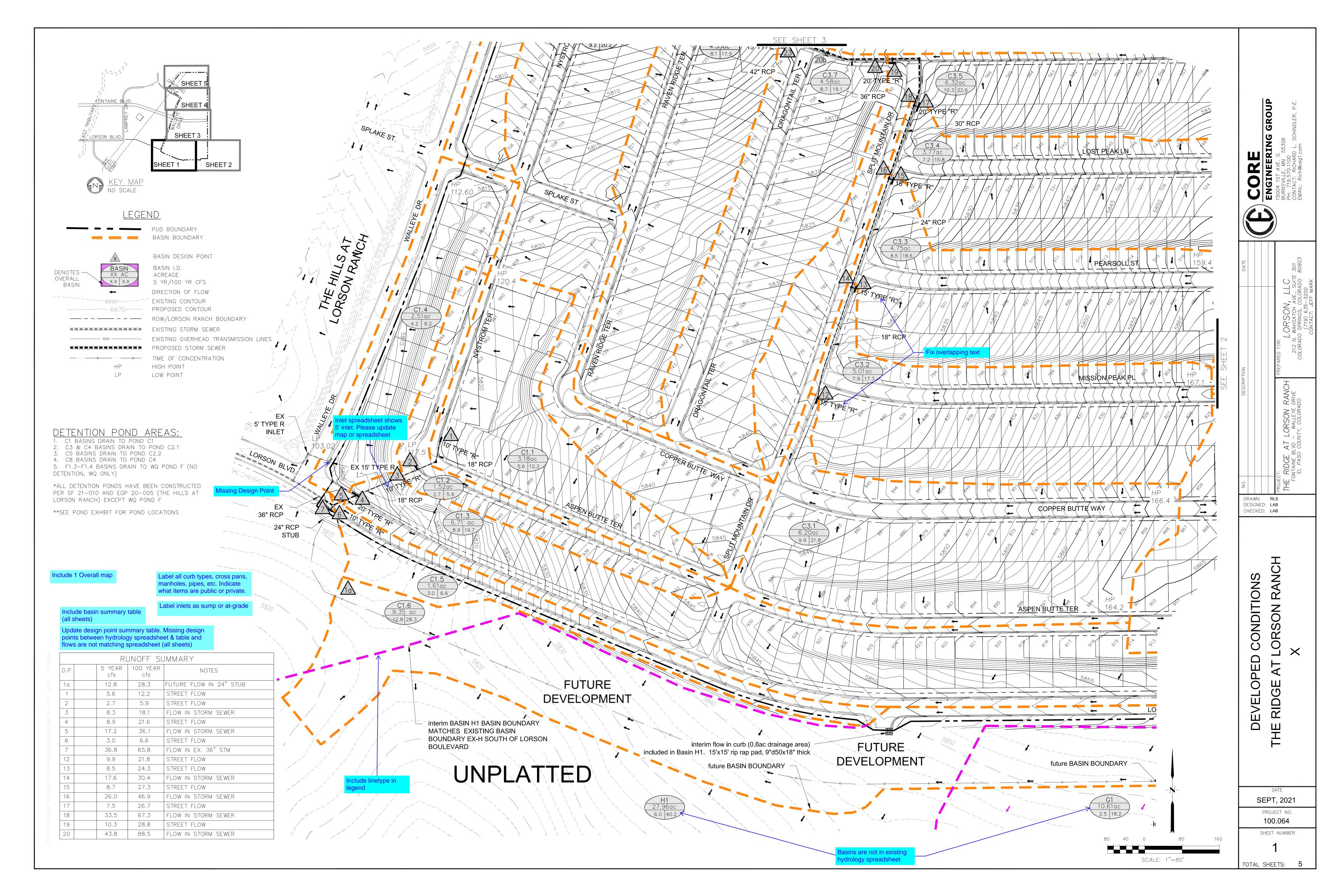
Hydraflow Storm Sewers 2005

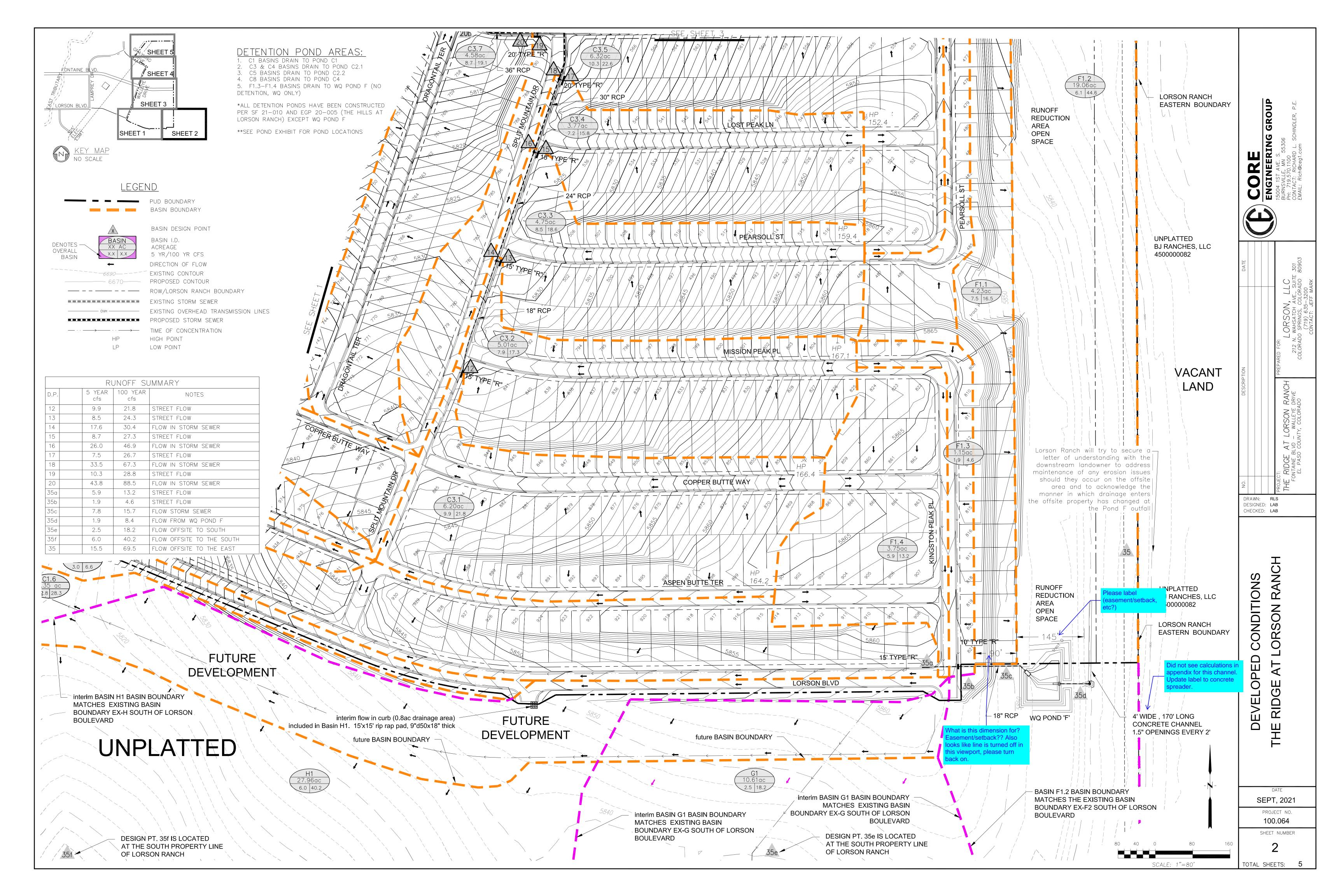
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	3	7.80	18 c	51.1	5844.50	5845.52	1.997	5845.57	5846.59	n/a	5846.59 j	End
2		7.80	18 c	106.7	5845.52	5854.05	7.998	5846.81	5855.12	n/a	5855.12 j	1
3		5.90	18 c	82.6	5854.38	5855.21	1.006	5855.47	5856.14	n/a	5856.14 j	2
	sins 5yr storm							nber of line	0		Date: 07-17	. 000

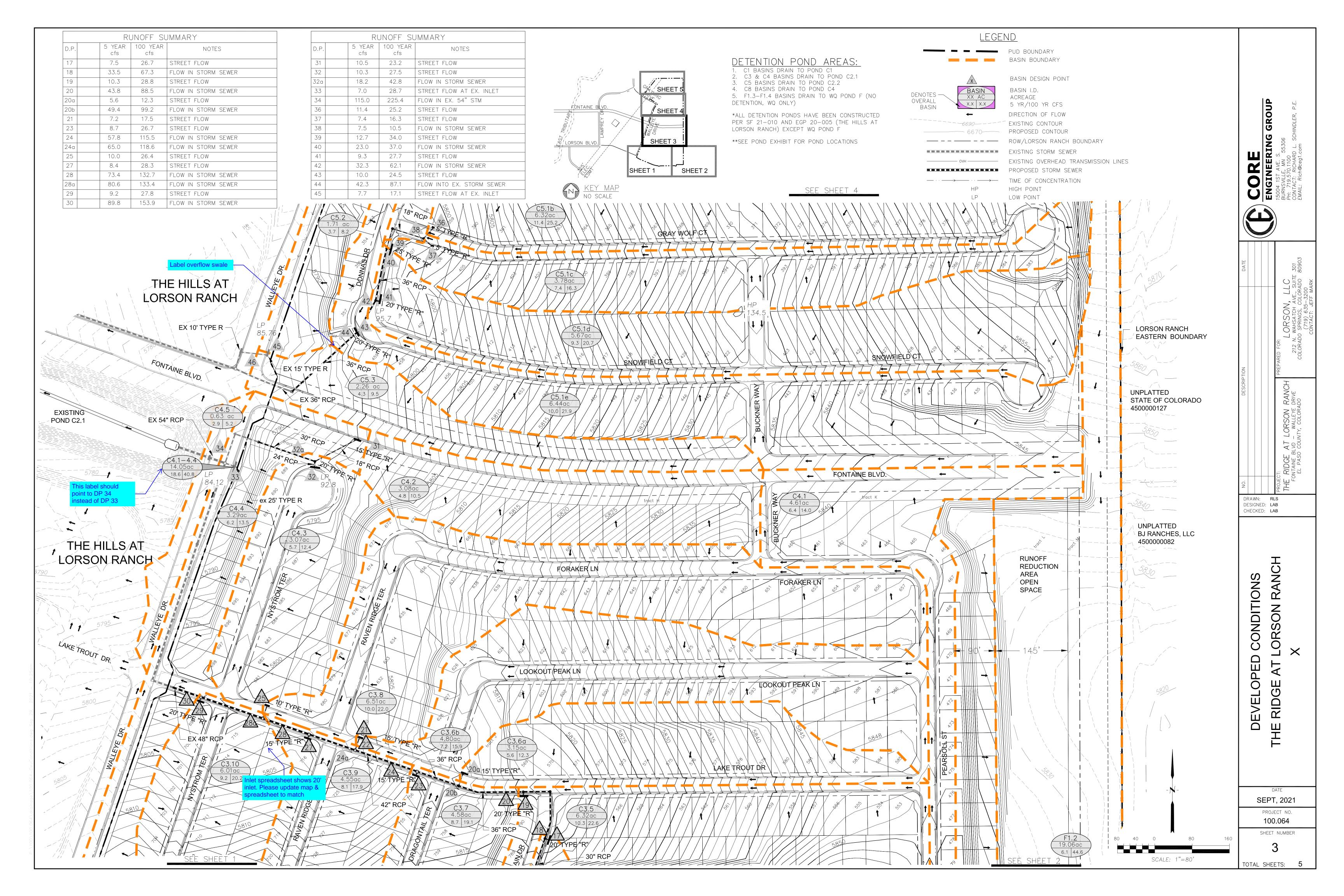
NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.

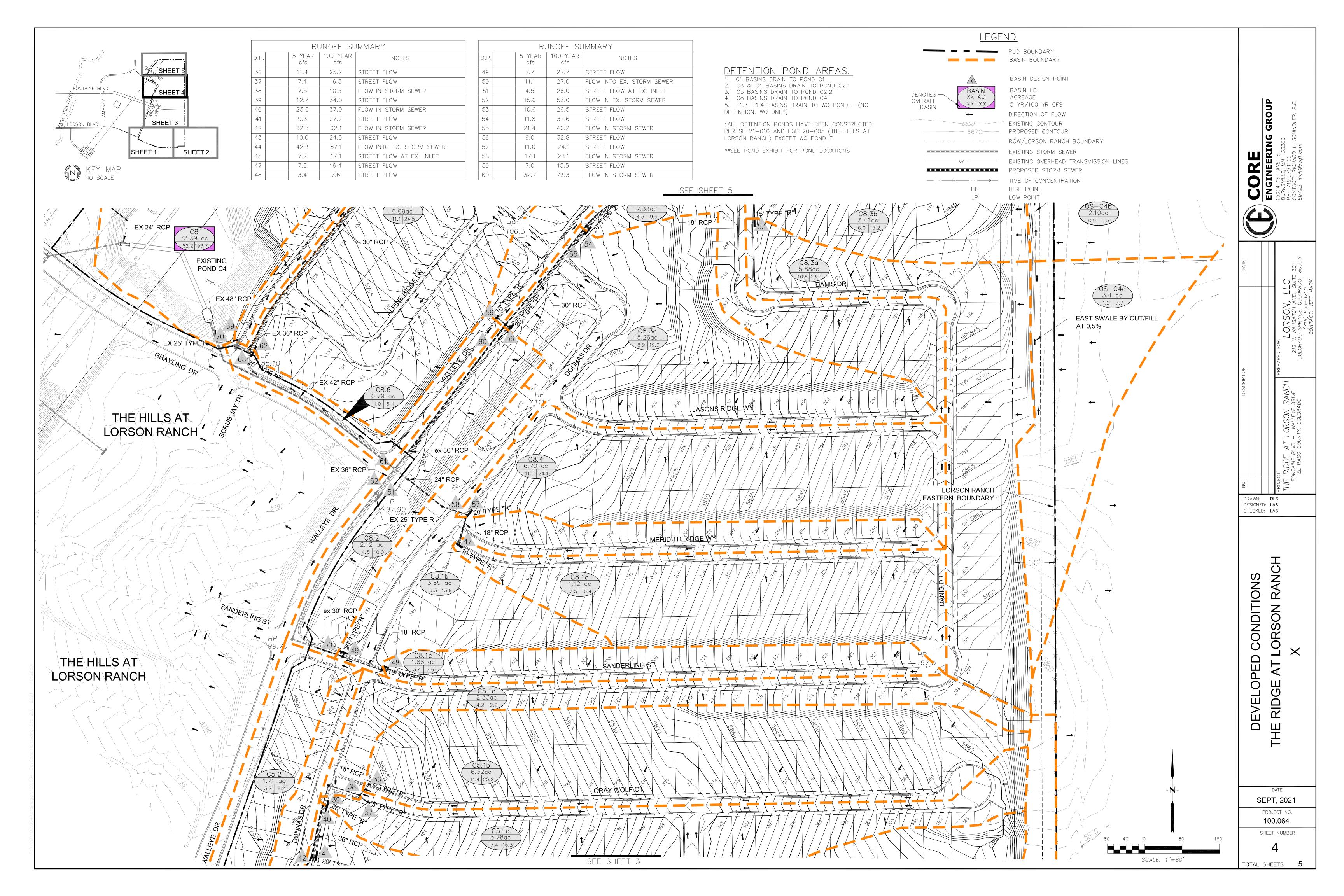
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	3	15.70	18 c	51.1	5844.50	5845.52	1.997	5845.95	5847.01	0.85	5847.86	End
2		15.70	18 c	106.7	5845.52	5854.05	7.998	5847.86	5855.47	n/a	5855.47 j	1
3		11.30	18 c	82.6	5854.38	5855.21	1.006	5856.11*	5857.07*	0.64	5857.71	2
F1 ba	sins 100yr storm						Nur	nber of line	s: 3	Run	Date: 09-29)-2

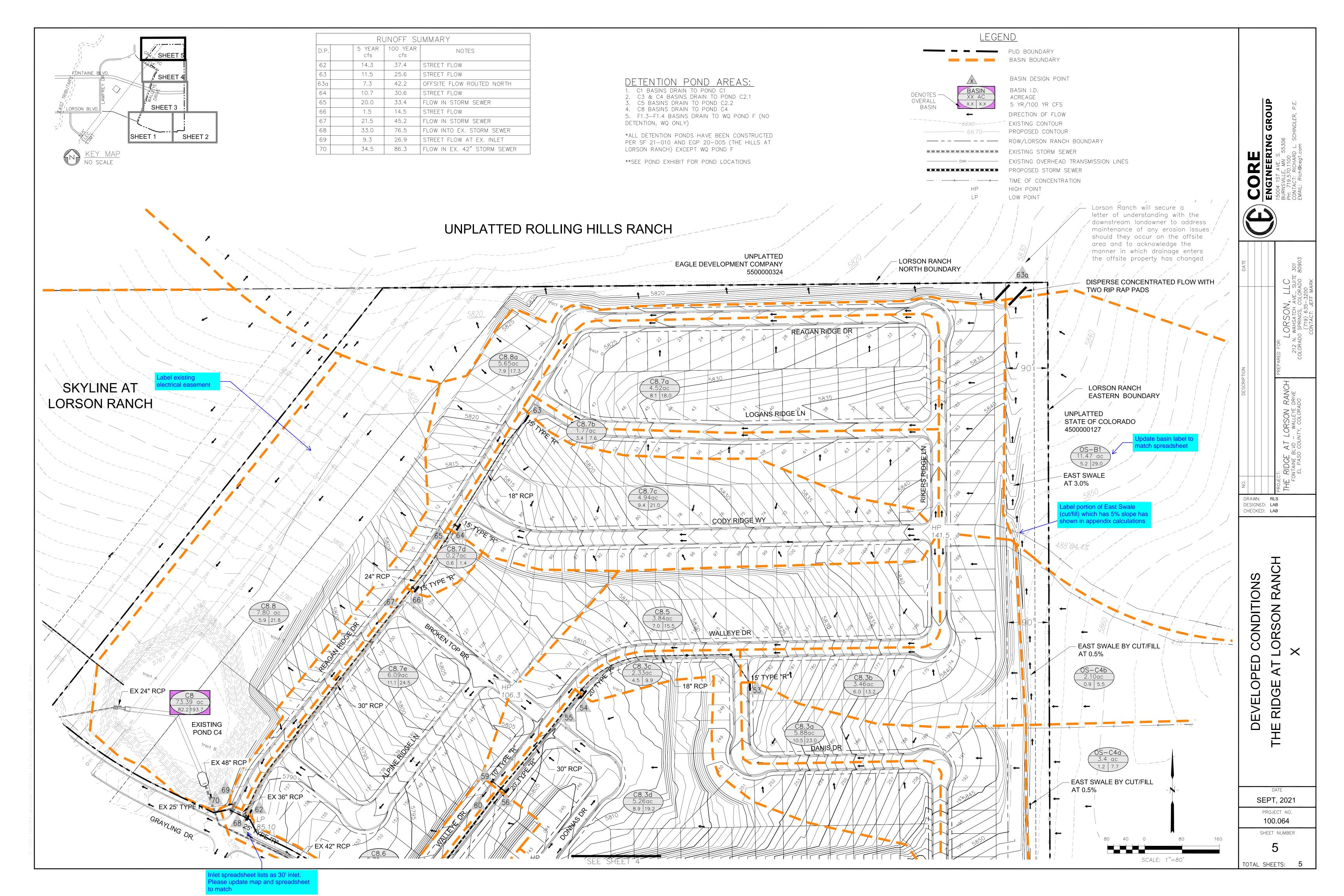

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs.; *Surcharged (HGL above crown).; j - Line contains hyd. jump.


Hudroflow Ct

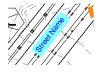

Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
1	15.70	18	Cir	5844.50	5845.52	2.00	5845.95	5847.01	0.85	5847.86	1.49	8.98
2	15.70	18	Cir	5845.52	5854.05	8.00	5847.86	5855.47 j	n/a	5855.47	1.42**	8.89
3	11.30	18	Cir	5854.38	5855.21	1.01	5856.11	5857.07	0.64	5857.71	1.50	6.40
F1 bas	sins 100y	r storm										


NOTES: ** Critical depth


MAP POCKET



ENG-SF22004-R1-FDR.pdf Markup Summary


CDurham (158)

Subject: Text Box Page Label: 237 Author: CDurham

Date: 2/16/2022 3:56:34 PM

Status: Color: Layer: Space: Missing minor contours

Subject: Text Box Page Label: 237

Author: CDurham

Date: 2/16/2022 3:58:31 PM

Status: Color: Layer: Space: Street Name

Subject: Text Box Page Label: 237

Author: CDurham

Date: 2/16/2022 4:00:26 PM

Status: Color: Layer: Space: All existing storm facilities need to be labeled. (include material, size, shape, slope, etc)

Subject: Callout Page Label: 237 Author: CDurham

Date: 2/16/2022 4:01:23 PM

Status: Color: Layer: Space: Extra basin line? Please erase.

Subject: Callout **Page Label**: 237 **Author**: CDurham

Date: 2/16/2022 4:03:17 PM

Status: Color: Layer: Space: Area does not match hydrology spreadsheet. Please update area accordingly between 2

documents

Subject: Callout Page Label: 53 Author: CDurham

Date: 2/16/2022 4:03:55 PM

Status: Color: Layer: Space: Area does not match hydrology spreadsheet. Please update area accordingly between 2

documents

Subject: Text Box

Page Label: 237
Author: CDurham

Date: 2/16/2022 4:14:42 PM

Status: Color: Layer: Space:

Include basin summary table

Update label to C4.1 to match plan

Basins EX-G & H1 not shown on map. Please

include on map or remove from spreadsheet

C1.1-ex 12.49 0

C2.1-ex 26.58 0

Update label to C4.1
(to match plan 28 0

C3.1-ex 8.36 0

OS-C4.1 3.90 0

Subject: Callout Page Label: 53 Author: CDurham

Date: 2/16/2022 4:28:34 PM

Status: Color: Layer: Space:

Subject: Callout Page Label: 53 Author: CDurham

Date: 2/16/2022 4:29:18 PM

Status: Color: Layer: Space:

.....

Subject: Text Box Page Label: 238 Author: CDurham

Date: 2/16/2022 4:43:59 PM

Status: Color: Layer: Space:

Subject: Callout Page Label: 238 Author: CDurham

Date: 2/16/2022 4:50:48 PM

Status: Color: Layer: Space:

......

C8.8 7.80 0.22 1
C8 73.39 0.43 2
Missing basins H1 & G1

Subject: Text Box Page Label: 57 Author: CDurham

Date: 2/16/2022 5:01:12 PM

Status: Color: Layer: Space: Missing basins H1 & G1

Include 1 Overall map

Fix overlapping text

Subject: Callout Inlet spreadsheet has 10' inlet Page Label: 25 Author: CDurham Date: 2/17/2022 1:01:32 PM Status: Color: Layer: Space: Subject: Text Box Design point not in spreadsheet Page Label: 25 Author: CDurham Date: 2/17/2022 1:02:15 PM Status: Color: Layer: Space: Subject: Text Box e flow is Pond F 100-year Flows do not match the hydrology spreadsheet Page Label: 25 Author: CDurham Date: 2/17/2022 1:02:57 PM Status: Color: Layer: Space: Subject: Highlight 15.5cfs/69.5 Page Label: 25 Basins F1.1, F1.2, and d) is 15.5cfs/69.5cfs in flowing east offsite is Author: CDurham Date: 2/17/2022 1:03:03 PM ain sheet flow into the Status: Color: Layer: Space: Subject: Text Box Include Grass buffer worksheet in appendix Page Label: 25 Author: CDurham Date: 2/17/2022 1:05:16 PM Status: Color: Layer: Space: Subject: Text Box DP 35e & 35f missing from spreadsheet Page Label: 26 Author: CDurham Date: 2/17/2022 1:06:32 PM Status: Color: Layer: Space:

Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 28 Author: CDurham Date: 2/17/2022 1:08:03 PM Status: Color: Layer: Space: Subject: Text Box Design point is not in spreadsheet Page Label: 28 Design Point 40 Design Point 40 is the storm sewer pipe flow from D 23.0cfs/37.0cfs in the 5/100-year storm events in the stor Author: CDurham Date: 2/17/2022 1:10:00 PM Status: Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 29 Author: CDurham Date: 2/17/2022 1:11:07 PM Status: Color: Layer: Space: Subject: Text Box 43 Page Label: 29 Author: CDurham Date: 2/17/2022 1:11:50 PM Status: Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 30 Author: CDurham Date: 2/17/2022 1:12:41 PM Status: Color: Layer: Space: Subject: Highlight Design Point 44 42.3cfs/87. Page Label: 30 Design Point 4 42.3cfs/87.1cfs Author: CDurham Point 16a) was Date: 2/17/2022 1:12:47 PM This design poi Status: Color: Layer: Space:

Subject: Text Box Page Label: 30 Author: CDurham

Date: 2/17/2022 1:15:20 PM

Status: Color: Layer: Space:

Subject: Text Box Page Label: 32 Author: CDurham

Date: 2/17/2022 1:18:09 PM

Status: Color: Layer: Space:

Subject: Text Box Page Label: 33 Author: CDurham

Date: 2/17/2022 1:19:03 PM

Status: Color: Layer: Space:

Subject: Text Box Page Label: 34 Author: CDurham

Date: 2/17/2022 1:21:57 PM

Status: Color: Multiple DP-54's in spreadsheet. Please clarify what flows are used for inlet analysis

Include calculations for overflow swale in appendix

Design point not in spreadsheet

Design point not in spreadsheet

Layer: Space:

Subject: Callout Flow does not match spreadsheet

Page Label: 35 Author: CDurham

Date: 2/17/2022 1:23:17 PM

Status: Color: Layer: Space:

Subject: Text Box Page Label: 35 Author: CDurham

Date: 2/17/2022 1:24:05 PM

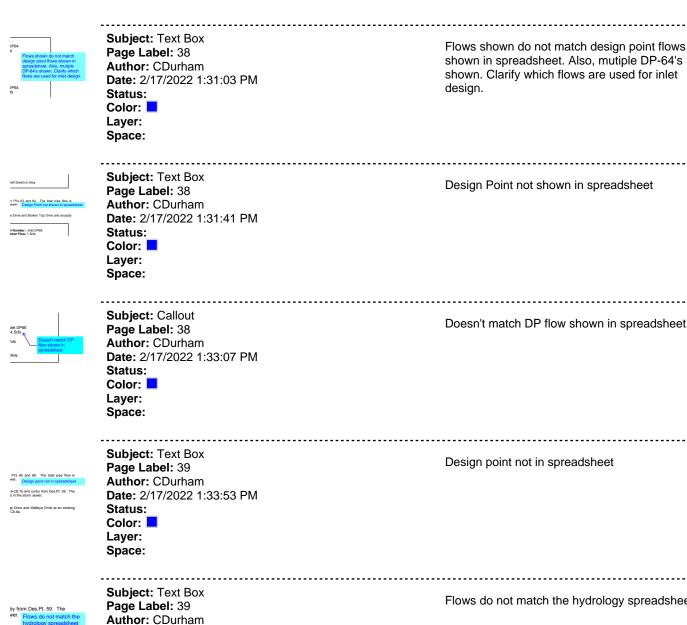
Status: Color: Layer: Space:

Design point not in spreadsheet

Subject: Text Box Please provide inlet design spreadsheet for this Page Label: 36 design point Author: CDurham Date: 2/17/2022 1:25:04 PM Status: Color: Layer: Space: Subject: Text Box Cesion Point 60 is the storm sever pipe flow from Design Pris 55, 54 32.7cfs/73.3cfs in the 5/100-year storm events in the storm sever. Both Design points (60 & 61) missing in Page Label: 36 f is the storm sewer pipe flow from Design Pris 52, 58 a m. The total pipe flow is 44.5cfs/154 ticts in the S100 FDR for CDR20-007 (Design Point 22) designed in the available of PDR before sewer in Wellium Prise. spreadsheet Author: CDurham Date: 2/17/2022 1:25:54 PM Status: Color: Layer: Space: Subject: Callout Inlet spreadsheet shows 30' inlet. Please verify Page Label: 37 correct size Author: CDurham Date: 2/17/2022 1:26:59 PM Status: Color: Layer: Space: Subject: Text Box Flows shown do not match design point flows in Page Label: 37 spreadsheet Author: CDurham Date: 2/17/2022 1:28:05 PM Status: Color: Layer: Space: property at Design Point ions). Two rip rap pads entrated flow as it flows Subject: Text Box Provide calculations for sizing riprap Page Label: 37

Author: CDurham

Date: 2/17/2022 1:28:48 PM


Status: Color: Layer: Space:

Subject: Text Box Page Label: 37 Author: CDurham

Date: 2/17/2022 1:29:12 PM

Status: Color: Layer: Space:

Design point not shown in spreadsheet

leve Drive at an existing

nr: Inlet DP69 w: 7.9cfs

w: 17.3cfs

Flows do not match the hydrology spreadsheet

Date: 2/17/2022 1:34:04 PM Status: Color: Layer:

> Subject: Text Box Page Label: 39 Author: CDurham

Date: 2/17/2022 1:34:49 PM

Status: Color: Layer: Space:

Space:

Flows shown do not match DP flows shown in spreadsheet

Subject: Highlight 34.5cfs/86.3cfs Page Label: 39 flow from the offsite basin ow is 34.5cfs/86.3cfs in the alculations. The FDR for xfs/84.5cfs in the existing Author: CDurham Date: 2/17/2022 1:35:01 PM ese basins. Status: Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 39 Author: CDurham Date: 2/17/2022 1:35:15 PM Status: Color: Layer: Space: Subject: Text Box .658ac-ft, WSEL: 5749.17, Top w/18" restrictor plate WSEL: 5760.88, 2.7cfs 3.67ac-ft. WSEL: 5752.75, 42.9cfs CP__w/18" restrictor plate Page Label: 41 Author: CDurham CP w/18" restrictor plate 20' wide bottom, elevation=5754 Date: 2/17/2022 1:53:00 PM n: 5744.00 Status: Color: Layer: Space: Subject: Callout 5.031 per spreadsheet Page Label: 42 Author: CDurham Date: 2/17/2022 1:57:27 PM Status: Color: Layer: Space: Subject: Text Box Please include spreadsheet/table listing Page Label: 157 contributing basins and % impervious to each Author: CDurham pond. Date: 2/17/2022 10:16:24 AM Status: Color: Layer: Space: Subject: Text Box Update storm sewer calculations as flows at

Page Label: 206 Author: CDurham

Date: 2/17/2022 10:36:46 AM

Status: Color: Layer: Space:

proposed inlets may have changed

Subject: Text Box Page Label: 238 Author: CDurham

Date: 2/17/2022 10:54:11 AM

Status: Color: Layer: Space: Update design point summary table. Missing design points between hydrology spreadsheet & table and flows are not matching spreadsheet (all

sheets)

Subject: Text Box Page Label: 238 Author: CDurham

Date: 2/17/2022 10:55:23 AM

Status: Color: Layer: Space: Label all curb types, cross pans, manholes, pipes, etc. Indicate what items are public or private.

Label inlets as sump or at-grade &

Subject: Text Box Page Label: 238 Author: CDurham

Date: 2/17/2022 10:55:37 AM

Status: Color: Layer: Space: Label inlets as sump or at-grade

Subject: Callout Page Label: 238 Author: CDurham

Date: 2/17/2022 10:56:02 AM

Status: Color: Layer: Space: Include linetype in legend

Subject: Callout Page Label: 238 Author: CDurham

Date: 2/17/2022 10:56:38 AM

Status:
Color: Layer:
Space:

Basins are not in existing hydrology spreadsheet

Include basin summary table (all sheets)

Subject: Text Box Page Label: 238 Author: CDurham

Date: 2/17/2022 10:57:12 AM

Status: Color: Layer: Space: Include basin summary table (all sheets)

Subject: Callout Page Label: 239 Author: CDurham

Date: 2/17/2022 11:00:22 AM

Status: Color: Layer: Space: What is this dimension for? Easement/setback?? Also looks like line is turned off in this viewport,

please turn back on.

Subject: Callout Page Label: 239 Author: CDurham

Date: 2/17/2022 11:00:40 AM

Status: Color: Layer: Space: Please label (easement/setback, etc?)

Subject: Callout Page Label: 238 Author: CDurham

Date: 2/17/2022 11:02:22 AM

Status: Color: Layer: Space: Inlet spreadsheet shows 5' inlet. Please update

map or spreadsheet

Subject: Callout **Page Label:** 240 **Author:** CDurham

Date: 2/17/2022 11:04:34 AM

Status: Color: Layer: Space: Inlet spreadsheet shows 20' inlet. Please update

map & spreadsheet to match

Subject: Callout Page Label: 240 Author: CDurham

Date: 2/17/2022 11:05:06 AM

Status: Color: Layer: Space: This label should point to DP 34 instead of DP 33

Subject: Callout Page Label: 242 Author: CDurham

Date: 2/17/2022 11:06:41 AM

Status: Color: Layer: Space: Inlet spreadsheet lists as 30' inlet. Please update

map and spreadsheet to match

Subject: Callout Page Label: 242 Author: CDurham

Date: 2/17/2022 11:07:35 AM

Status: Color: Layer: Space: Label portion of East Swale (cut/fill) which has 5% slope has shown in appendix calculations

COLORADO

Ligodale bear ideal to maich spreadheel

Ligodale bear ideal to maich spreadheel

Subject: Callout

Page Label: 242 Author: CDurham

Date: 2/17/2022 11:08:01 AM

Status: Color: Layer: Space: Update basin label to match spreadsheet

Subject: Callout Page Label: 228 Author: CDurham

Date: 2/17/2022 11:10:11 AM

Status: Color: Layer: Space: Inlet spreadsheet shows 30' inlet. Revise accordingly to match correct size between storm sewer design, inlet design and drainage map

Conform
Core Ei
PDR co
to be co
Pond F
of The i
project.
this de

Date: 2/17/2022 11:15:29 AM

Status: Color: Layer: Space: Final Drainage Report

Subject: Callout Page Label: 4 Author: CDurham

Date: 2/17/2022 11:15:57 AM

Status: Color: Layer: Space: Reference Preliminary Drainage Report which was also completed.

Subject: Callout Page Label: 4 Author: CDurham

Date: 2/17/2022 11:16:52 AM

Status: Color: Layer: Space: Ponds C2.1 & C4

Subject: Callout Label existing electrical easement Page Label: 242 Author: CDurham Date: 2/17/2022 11:19:35 AM Status: Color: Layer: Space: no to the west and Subject: Callout 21.4 is 3.2cfs and 21cfs Page Label: 6 Author: CDurham Date: 2/17/2022 11:22:32 AM Status: developed areas Color: Layer: Space: Subject: Callout Update flow to match hydrology spreadsheet Page Label: 6 Author: CDurham Date: 2/17/2022 11:25:06 AM Status: Color: Layer: Space: Subject: Text Box Include discussion for Basins Ex-G and Ex-H, Page Label: 7 shown on existing drainage map Author: CDurham Date: 2/17/2022 11:26:54 AM Status: Color: Layer: Space: Subject: Callout Update flows to match hydrology spreadsheet Page Label: 8 Author: CDurham Date: 2/17/2022 11:31:15 AM Status: Color: Layer: Space: Subject: Callout

sists of runoff from residential developme of Aspen Butte Terrace. Runoff will be collected by a Type R inlet. The develope storm event. See'ting appendix for detailer

Page Label: 7
Author: CDurham

Date: 2/17/2022 11:35:03 AM

Status: Color: Layer: Space: Label all inlets as either sump or at-grade

Subject: Callout west side of Pearsoll St Page Label: 9 Author: CDurham Date: 2/17/2022 11:39:05 AM Status: Color: Layer: Space: Subject: Callout north side of Foraker Lane Page Label: 9 Author: CDurham Date: 2/17/2022 11:43:02 AM Status: Color: Layer: Space: Subject: Callout open space, Buckner Ct and north half of Fontaine Page Label: 10 Blvd Author: CDurham Date: 2/17/2022 11:50:48 AM Status: Color: Layer: Space: Subject: Callout westside of Danis Dr Page Label: 11 Author: CDurham Date: 2/17/2022 11:52:38 AM Status: Color: Layer: Space: yed north to Design Pt Subject: Callout ear storm event. See Page Label: 11 & south Page Label: 11 Author: CDurham Date: 2/17/2022 11:57:49 AM nent and the east side Status: Color: Layer: Space: Subject: Text Box east Page Label: 11 Author: CDurham east Date: 2/17/2022 11:59:17 AM e west sic status: Color: Layer:

Space:

Subject: Callout This is final plat. Please update statement to Page Label: 11 address maintenance agreement with offsite Author: CDurham property owner Date: 2/17/2022 12:01:53 PM Status: Color: Layer: Space: Subject: Text Box Walleye Dr Page Label: 12 Author: CDurham Walleye Dr Rikers Ridge Lane Date: 2/17/2022 12:03:27 PM ; it will be collected Status: Color: Layer: Space: Subject: Callout west side of Danis Dr Page Label: 12 Author: CDurham Date: 2/17/2022 12:06:10 PM Status: Color: Layer: Space: Subject: Callout Portion of Broken Top Terr Page Label: 12 Author: CDurham Date: 2/17/2022 12:08:24 PM Status: Color: Layer: Space: Subject: Callout west side of Rikers Ridge Ln Page Label: 12 Author: CDurham Date: 2/17/2022 12:12:47 PM Status: Color: Layer: Space: Subject: Callout Broken Top Terr Page Label: 13 Author: CDurham Date: 2/17/2022 12:14:48 PM Status: Color: Layer: Space:

Subject: Callout arb/gutter where it will be nd 24.5cfs for the 5/100-Update flows to match hydrology spreadsheet Page Label: 13 Ranch. Runoff will be sin is 5.2cfs and 29.0cf Author: CDurham Date: 2/17/2022 12:16:09 PM t of Reagan Ridge Drive. t will be collected by an 7.3cfs for the 5/100-year Status: Color: Layer: Space: Subject: Line Page Label: 13 ıst/north-sid Author: CDurham Date: 2/17/2022 12:19:23 PM vhere it will Status: Color: Layer: Space: Subject: Callout north side of Mission Peak PI Page Label: 13 Author: CDurham Date: 2/17/2022 12:19:54 PM Status: Color: Layer: Space: Subject: Line Page Label: 13 st/south-sic Author: CDurham Date: 2/17/2022 12:20:27 PM vhere it will Status: Color: Layer: Space: Subject: Callout portions of Copper Butte Way, Aspen Butte Terr & Page Label: 13 South half of Mission Peak PI Author: CDurham Date: 2/17/2022 12:21:20 PM

Status: Color: Layer:

Space:

in consists of existing runoff from undeveloped land. Runoff if on the south property line of Lorson Ranch. This basin was a foce and after development flowing could in the Upper William Ranch south property lane. See Design Point Side for this array I Soft out of the first his Soft Soft South as any state and

The sizing of the hydraulic structures and detentions ponds were prepared. Hydrographs computer software programs developed by Intellimethods outsited in the "City of Colorado Springskii Plaso County Dra coapolities and History were since the Therman Intelligence." it is the intent of this drainage report to use the proposed curtiligater as convey runoff to detention and water quality ponds then to the East Ti-linies size and location are preliminary only as shown on the storm see

Subject: Text Box Page Label: 14 Author: CDurham

Date: 2/17/2022 12:25:10 PM

Status: Color: Layer: Space:

Missing discussion on Basin C 4.5 & Interim Basin

H1

Subject: Callout Sizes need to be final Page Label: 14 Author: CDurham Date: 2/17/2022 12:25:51 PM Status: Color: Layer: Space: Subject: Callout Inlet spreadsheet has 5' inlet. Please coordinate Page Label: 15 inlet size between 2 locations. Author: CDurham Date: 2/17/2022 12:29:51 PM (100-year storm) Tributary Basins: C1 Status: Color: Layer: Space: Subject: Callout Inlet spreadsheet shows no by pass flow from this Page Label: 16 inlett Author: CDurham Date: 2/17/2022 12:32:10 PM Status: Color: Layer: Space: Subject: Callout How is flow intercepted greater that flow at DP? Page Label: 16 Author: CDurham Date: 2/17/2022 12:33:05 PM Status: Color: Layer: Space: Subject: Callout Where is flowby coming from? Page Label: 16 Author: CDurham Date: 2/17/2022 12:33:36 PM Status: Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 16 Author: CDurham Date: 2/17/2022 12:36:32 PM Status: Color: Layer: Space:

Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 17 Author: CDurham Date: 2/17/2022 12:38:14 PM Status: H Number: Inlet DP12 treet Flow: 9.9cfs Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 18 Author: CDurham Date: 2/17/2022 12:40:24 PM MH Number: Inlet DP1: Street Flow: 8.7cfs Status: Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 18 sign Pf's 14 and 15. The total pipe flow is n sewer. Flows do not match the hydrology Author: CDurham Date: 2/17/2022 12:41:34 PM MH Number: Inlet DP17 Street Flow: 7.5cfs Status: Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 19 Author: CDurham Date: 2/17/2022 12:44:50 PM MH Number: Inlet DP19 Street Flow: 10 3cfs Status: Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 19 Author: CDurham Date: 2/17/2022 12:45:42 PM Status: Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 20 Author: CDurham t Peak Lane and Lake Trout Dr and accepts Date: 2/17/2022 12:48:19 PM Status: Color: Layer: Space:

Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 21 Author: CDurham gn Pt's 21 and 24. The total pipe flow is ewer. Date: 2/17/2022 12:50:53 PM Status: Color: Layer: Space: Subject: Text Box Design point not in table Page Label: 21 Pt's 21 and 24. The total pipe flow is Author: CDurham and Lake Trout Dr and accepts flows from Date: 2/17/2022 12:51:26 PM Status: Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 22 Author: CDurham n Prix 28 and 25. The total pipe flow is sewer. Date: 2/17/2022 12:53:06 PM Status: Color: Layer: Space: Subject: Text Box s 27 and 24a. The total pipe flow is Design point not in spreadsheet Page Label: 22 Author: CDurham and Lake Trout Dr and accepts flows Date: 2/17/2022 12:53:28 PM Status: mber: Inlet DP29 Color: Layer: Space: Subject: Callout 9.5 DP29 Page Label: 22 Author: CDurham Date: 2/17/2022 12:54:18 PM n curb downstream Status: Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 22 Author: CDurham Date: 2/17/2022 12:54:58 PM Status: Color: Layer: Space:

Subject: Text Box Design point is not in spreadsheet Page Label: 23 Author: CDurham Date: 2/17/2022 12:57:53 PM Status: Color: Layer: Space: Subject: Text Box Flows do not match the hydrology spreadsheet Page Label: 24 Author: CDurham Date: 2/17/2022 12:59:53 PM Status: Color: Layer: Space: Subject: Text Box Please include calculation for low flow channel in Page Label: 198 Pond & riprap sizing for spillway Author: CDurham Date: 2/17/2022 2:27:33 PM Status: Color: Layer: Space: Subject: Text Box Include design for overflow swale in Tract G for Page Label: 80 DP-44. Author: CDurham Date: 2/17/2022 2:32:22 PM Status: Color: Layer: Space: Subject: Text Box Page Label: 159 not the whole basin. Author: CDurham Date: 2/17/2022 2:34:02 PM

Make note that is representative for a single lot,

Status: Color: Layer: Space:

Subject: Callout

Page Label: 238

Author: CDurham Date: 2/17/2022 2:35:32 PM

Status: Color: Layer: Space:

Missing Design Point

Subject: Callout Page Label: 239 Author: CDurham

Date: 2/17/2022 2:36:32 PM

Status: Color: Layer: Space:

Did not see calculations in appendix for this

channel. Update label to concrete spreader.

Subject: Callout Page Label: 240 Author: CDurham

Date: 2/17/2022 2:37:04 PM

Status: Color: Layer: Space:

Label overflow swale

Subject: Text Box Page Label: 77

Author: CDurham

Date: 2/17/2022 8:36:39 AM Status:

Color: Layer: Space:

Include design information for TRM

Subject: Text Box Page Label: 79 Author: CDurham

Date: 2/17/2022 8:40:55 AM

Status: Color: Layer: Space:

Include design information for TRM

Subject: Text Box Page Label: 80 Author: CDurham

Date: 2/17/2022 8:41:31 AM

Status: Color: Layer: Space:

Include calculation to size riprap for spreader.

MAJOR 18.0

3.6

Subject: Highlight Page Label: 86 Author: CDurham

Date: 2/17/2022 8:53:39 AM

Status: Color: Layer: Space:

18.0

Subject: Callout Hydrology spreadsheet has Q100 = 19.7 at DP-4 Page Label: 86 Author: CDurham Date: 2/17/2022 8:54:14 AM Status: Color: Layer: Space: Subject: Highlight **MAJOR** 5.7 Page Label: 88 Author: CDurham 5.7 Date: 2/17/2022 8:55:59 AM 0.9 Status: Color: Layer: Space: Subject: Callout Hydrology spreadsheet has Q100 = 6.6 at DP-6 Page Label: 88 Author: CDurham Date: 2/17/2022 8:56:25 AM Status: Color: Layer: Space: Subject: Highlight **MINOR** 9.3 Page Label: 90 9.3 Author: CDurham Date: 2/17/2022 8:57:32 AM 0.6 Status: Color: Layer: Space: Subject: Highlight **MAJOR** 14.8 Page Label: 90 14.8 Author: CDurham Date: 2/17/2022 8:57:34 AM 7.0 Status: Color: Layer: Space: Subject: Callout Hydrology spreadsheet has flows of 9.9 & 21.8 at Page Label: 90 DP-12

Author: CDurham

Status: Color: Layer: Space:

Date: 2/17/2022 8:58:01 AM

MINOR	Subject: Highlight Page Label: 92	8.3
8.3	Author: CDurham Date: 2/17/2022 8:58:38 AM	
0.2	Status:	
	Color: Color: Layer:	
	Space:	
MAJOR	Subject: Highlight Page Label: 92	15.6
<mark>15.6</mark>	Author: CDurham	
8.7	Date: 2/17/2022 8:58:40 AM Status:	
	Color:	
	Layer: Space:	
14.00 11.00 M 10.00 11.00 M 10.10 11.00 M 10.10 11.00 M 10.10 11.00 M	Subject: Callout	Hydrology spreadsheet has flows of 7.9 & 17.3 at
Hydrology spreadsheet	Page Label: 92 Author: CDurham	DP-13
has flows of 7.9 & 17.3 at DP-13	Date: 2/17/2022 8:59:18 AM Status:	
	Color:	
	Layer: Space:	
	·	
MAJOR	Subject: Highlight	16.5
16.5	Page Label: 94 Author: CDurham	10.0
10.8	Date: 2/17/2022 9:00:21 AM Status:	
.0.0	Color:	
	Layer: Space:	
	орасс.	
=	Subject: Callout	The dealers are a sea debased base O400 40 0 at DD 45
Hydrology spreadsheet	Page Label: 94 Author: CDurham	Hydrology spreadsheet has Q100 = 18.6 at DP-15
has Q100 = 18.6 at DP-15	Date: 2/17/2022 9:00:52 AM	
	Status: Color:	
	Layer:	
	Space:	
NA SE	Subject: Callout	
233 Je 15 Je	Page Label: 98	Hydrology spreadsheet has Q100=22.6 at DP-19
Hydrology spreadsheet has Q100=22.6 at DP-19	Author: CDurham Date: 2/17/2022 9:02:39 AM	
	Status: Color:	
	Layer:	
	Space:	

Subject: Callout Page Label: 100

Author: CDurham Date: 2/17/2022 9:06:59 AM

Status: Color: Layer: Space:

Hydrology spreadsheet has Q100=12.3 at DP-20a

Subject: Callout Page Label: 102 Author: CDurham

Date: 2/17/2022 9:07:55 AM

Status: Color: Layer: Space:

Hydrology spreadsheet has Q100=15.9 at DP-21

Subject: Callout Page Label: 104 Author: CDurham

Date: 2/17/2022 9:08:47 AM

Status: Color: Layer: Space:

Hydrology spreadsheet has Q100=19.1 at DP-23

Subject: Callout Page Label: 106 Author: CDurham

Date: 2/17/2022 9:09:48 AM

Status: Color: Layer: Space:

Hydrology spreadsheet has flows of 10.0 & 22.0 at

DP-25

Subject: Callout Page Label: 112 Author: CDurham

Date: 2/17/2022 9:14:15 AM

Status: Color: Layer: Space:

Hydrology spreadsheet has Q100=23.2 at DP-31

Subject: Text Box Page Label: 114 Author: CDurham

Date: 2/17/2022 9:15:26 AM

Status: Color: Layer: Space:

Please include DP-32 on hydrology spreadsheet to verify inlet flows

Subject: Text Box Page Label: 116 Author: CDurham

Date: 2/17/2022 9:16:56 AM

Status: Color: Layer: Space: Please include DP-33 on hydrology spreadsheet to verify inlet flows

Include DP-35a on

Subject: Text Box Page Label: 118 Author: CDurham

Date: 2/17/2022 9:18:06 AM

Status: Color: Layer: Space: Include DP-35a on hydrology spreadsheet to verify inlet flows

Subject: Text Box Page Label: 120 Author: CDurham

Date: 2/17/2022 9:19:00 AM

Status: Color: Layer: Space: Include DP-35b on hydrology spreadsheet to verify inlet flows

Hydrology spreadsheet has fives of 11.4 & 25.2 at DP-36

Subject: Callout Page Label: 122 Author: CDurham

Date: 2/17/2022 9:20:45 AM

Status: Color: Layer: Space: Hydrology spreadsheet has flows of 11.4 & 25.2 at

DP-36

Subject: Callout Page Label: 124 Author: CDurham

Date: 2/17/2022 9:21:27 AM

Status:
Color: Layer:
Space:

Hydrology spreadsheet has flows of 7.4 & 16.3 at DP-37

o 37 229 sa s 70 sa cs. 198 n s Subject: Text Box Page Label: 126 Author: CDurham

Date: 2/17/2022 9:22:44 AM

Status: Color: Layer: Space: Include DP-39 on hydrology spreadsheet to verify inlet flows

Subject: Text Box

Page Label: 136 Author: CDurham

Date: 2/17/2022 9:27:44 AM

Status: Color: Layer: Space: There are two DP-49's listed in hydrology spreadsheet. Please clarify which set of flows is

used for inlet flow.

Subject: Callout Page Label: 140 Author: CDurham

Date: 2/17/2022 9:29:54 AM

Status: Color: Layer: Space: Hydrology spreadsheet has Q100=23 at DP-53

Subject: Callout Page Label: 142 Author: CDurham

Date: 2/17/2022 9:31:52 AM

Status: Color: Layer: Space: Hydrology spreadsheet has Q100=26.5 at DP-54

Subject: Text Box Page Label: 144 Author: CDurham

Date: 2/17/2022 9:33:39 AM

Status: Color: Layer: Space: There are two DP-56's listed in hydrology spreadsheet. Please clarify which set of flows is

used for inlet flow.

Subject: Callout Page Label: 146 Author: CDurham

Date: 2/17/2022 9:34:55 AM

Status: Color: Layer: Space: Hydrology spreadsheet has Q100=24.1 at DP-57

Subject: Callout Page Label: 148 Author: CDurham

Date: 2/17/2022 9:36:38 AM

Status: Color: Layer: Space: Inlet labeled as existing 25' inlet on map. Please verify correct length and update spreadsheet/map

accordingly.

Subject: Text Box Page Label: 150

Author: CDurham **Date:** 2/17/2022 9:39:01 AM

Status: Color: Layer: Space: There are two DP-63's listed on hydrology spreadsheet. Please clarify which set of flows are

used for inlet flows

Subject: Text Box Page Label: 152 Author: CDurham

Date: 2/17/2022 9:39:49 AM

Status:
Color: Layer:
Space:

There are two DP-64's listed on hydrology spreadsheet. Please clarify which set of flows are

used for inlet flows

Subject: Callout Page Label: 154 Author: CDurham

Date: 2/17/2022 9:41:35 AM

Status: Color: Layer: Space: Hydrology spreadsheet has Q100 = 44.1 cfs at

DP-66

Subject: Text Box Page Label: 158 Author: CDurham

Date: 2/17/2022 9:43:30 AM

Status: Color: Layer: Space: Include release rates from each pond

Subject: Text Box Page Label: 160 Author: CDurham

Date: 2/17/2022 9:51:13 AM

Status:
Color: Layer:
Space:

Please label as existing

Subject: Text Box Page Label: 169 Author: CDurham

Date: 2/17/2022 9:51:48 AM

Status: Color: Layer: Space: Please label as existing

Subject: Text Box Please label as existing Page Label: 179 Author: CDurham Date: 2/17/2022 9:52:36 AM Status: Color: Layer: Space: Subject: Text Box Please label as existing Page Label: 189 Author: CDurham Date: 2/17/2022 9:54:06 AM Status: Color: Layer: Space: dsdrice (5) Subject: Snapshot Page Label: 43 Author: dsdrice Date: 2/17/2022 12:47:47 PM Status: Color: Layer: Space: Subject: Callout See snippet to the left. Revise fee calculations Page Label: 43 accordingly. Author: dsdrice Date: 2/17/2022 12:49:38 PM Status: Color: Layer: Space: Subject: 2021 Page Label: 43 Author: dsdrice Date: 2/17/2022 12:50:08 PM Status: Color: Layer: Space: Subject: 2021 Page Label: 43 2 2021 Dr Author: dsdrice Date: 2/17/2022 12:50:21 PM **I** Area Status: Color: Layer: Space:

Subject: Page Label: 43 3 **2021** Dr

Author: dsdrice

Date: 2/17/2022 12:50:23 PM

Status: Color: Layer: Space:

2021

Glenn Reese - EPC Stormwater (17)

RANCH JNDARY

Subject: SW - Textbox Page Label: 237

Author: Glenn Reese - EPC Stormwater

Date: 2/14/2022 4:03:59 PM

Status: Color: ■ Layer: Space:

Show borders of The Ridge Filings 1, 2, and 3.

Typical comment for all subsequent maps.

ANCH X ← SF224

X

Subject: SW - Textbox with Arrow

Page Label: 1

Author: Glenn Reese - EPC Stormwater

Date: 2/14/2022 4:04:48 PM

Status: Color: Layer: Space:

SF224

X

X

Subject: SW - Textbox with Arrow

Page Label: 1

Author: Glenn Reese - EPC Stormwater

Date: 2/14/2022 4:04:57 PM Status:

Color: Layer: Space:

SF225

X

Subject: SW - Textbox with Arrow

Page Label: 1

Author: Glenn Reese - EPC Stormwater

Date: 2/14/2022 4:11:55 PM

Status: Color: Layer: Space:

SF227

Subject: Rectangle Page Label: 203

Author: Glenn Reese - EPC Stormwater

Date: 2/22/2022 6:50:23 PM

Status: Color: Layer: Space:

Subject: SW - Textbox with Arrow

Page Label: 204

Author: Glenn Reese - EPC Stormwater

Date: 2/22/2022 6:55:03 PM

Status: Color: Layer: Space:

Pg 190 above shows that this should be 72"

Subject: SW - Textbox with Arrow

Page Label: 205

Author: Glenn Reese - EPC Stormwater

Date: 2/22/2022 6:58:33 PM

Status: Color: Layer: Space:

should be 36" per pg 199 above.

Subject: SW - Textbox with Arrow

Page Label: 205

Author: Glenn Reese - EPC Stormwater

Date: 2/22/2022 6:58:46 PM

Status: Color: Layer: Space:

should be 72" per pg 199 above.

tfall storm sewer Page Label: 40 posed. Per the Date: 2/22/2022 7:01:53 PM

v flow channels. Subject: SW - Highlight

tlet structure for Author: Glenn Reese - EPC Stormwater

.....

outary) are part (Status:

Color: Layer:

Space:

structure

Subject: SW - Textbox with Arrow

Page Label: 40

Author: Glenn Reese - EPC Stormwater

Date: 2/22/2022 7:02:08 PM

Status: Color: Layer: Space:

revise to "structures" (plural)

Subject: SW - Highlight

Page Label: 40

Author: Glenn Reese - EPC Stormwater

Date: 2/22/2022 7:02:49 PM

Status: Color: Layer: Space:

In addition to the four detention ponds Lorson Ranch is required to discharge the same runoff

eastward into the Upper Williams which will require

one WQ Pond to be constructed

Subject: SW - Textbox with Arrow

Page Label: 40

Author: Glenn Reese - EPC Stormwater

Date: 2/22/2022 7:05:14 PM

Status: Color: ■ Layer: Space: Re-phrase to clarify that all applicable runoff must be treated unless excluded per ECM App I.7.1.

The state of the s

Subject: SW - Textbox with Arrow

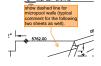
Page Label: 42

Author: Glenn Reese - EPC Stormwater

Date: 2/22/2022 7:06:22 PM

Status: Color: ■ Layer: Space: Note that all RPA areas will need to be within a no build/drainage easement and discussed in the maintenance agreement and O&M manual. Also

show easement on GEC Plan.


Subject: SW - Textbox

Page Label: 203

Author: Glenn Reese - EPC Stormwater

Date: 2/22/2022 7:07:18 PM

Status: Color: ■ Layer: Space: This sheet and the other two sheets below this one need to be included in the CD's.

Subject: SW - Textbox with Arrow

Page Label: 203

Author: Glenn Reese - EPC Stormwater

Date: 2/22/2022 7:08:48 PM

Status: Color: ■ Layer: Space: show dashed line for micropool walls (typical comment for the following two sheets as well).

Subject: SW - Textbox with Arrow

Page Label: 203

Author: Glenn Reese - EPC Stormwater

Date: 2/23/2022 1:21:09 PM

Status: Color: ■ Layer: Space: Ask Josh if it's a maintenance issue to have standing water here that will fill up with sediment??

Since detail T-12 states that structure bottoms should have a shaped invert of 2.5% min slope.

Subject: SW - Textbox with Arrow

Page Label: 203

Author: Glenn Reese - EPC Stormwater

Date: 2/23/2022 1:23:48 PM

Status: Color: ■ Layer: Space: MHFD Detail T-12 shows a 3" min between micropool WSEL and the outlet pipe invert.