Traffic Impact Study

Mayberry Communities
Filing 5 Traffic Impact Study
El Paso County, Colorado
February 16, 2023

Add PCD File No. PUDSP233

Traffic Impact Study

Mayberry Communities - Filing 5

El Paso County, Colorado
February 16, 2023

Prepared for

Mayberry Communities
Prepared by
HDR Engineering, Inc.
1670 Broadway Suite 3400
Denver, Colorado 80202 USA
Telephone 303-764-3300
Website: hdrinc.com

Contents

Introduction 0
Analysis Assumptions 2
Directional Distribution 2
Filing 3 Roadway Improvements 2
Existing Thoroughfare System 5
SH 94 5
Peyton Highway 5
Ellicott Highway 5
Site and Access Characteristics 5
Traffic Analysis. 8
2024 Forecasted Traffic Conditions 8
2024 Existing plus Previous Filing Background Traffic Conditions 11
Previous Filing Site-Generated Traffic. 11
2024 Conditions with Filing 5 Site-Generated Traffic 14
Filing 5 Site Generated Traffic 14
Summary of Findings 18
References 19
Appendix A: Highway Capacity Manual Description 20
Appendix B: Synchro Outputs 21
Tables
Table 1: Forecasted Overall Directional Distribution Site-Oriented Traffic 2
Table 2: 2024 Existing Forecasted Level of Service Summary 9
Table 3: Summary of Unadjusted Daily and Peak Hour Trip Generation from Previous Filings 11
Table 4: Filing 1, 2 and 3 Level of Service Summary 12
Table 5: Summary of Unadjusted Daily and Peak Hour Trip Generation from Filing 5 14
Table 6: Filing 5 Level of Service Summary 15
Table 7: Level of Service Summary 18

Figures

Figure 1: Area Location Map 1
Figure 2: Generated Traffic Trip Distribution 4
Figure 3: Filing 5 Conceptual Site Plan 6
Figure 4: Filing 5 Access Concept. 7
Figure 5: Adjusted 2024 Existing TMC Volumes 10
Figure 6: Background + Previous Development Volumes. 13
Figure 7: Filing 5 Generated Volumes 16
Figure 8: Background + Previous Development + Filing 5 Volumes 17

Introduction

Mayberry Communities have retained HDR Engineering, Inc. to perform a Traffic Impact Study (TIS) for the proposed Filing 5 (Tract K) development located in the southeast quadrant of New Log Road and SH 94, as shown in Figure 1. The development is anticipated to consist of the following proposed land uses:

- 38 dwelling units of single-family detached housing
- 108 dwelling units of mid-rise, multi-family housing

The project site is currently vacant, and the development is expected to be complete by 2024. This study serves as part of an update to the approved 2020 - June - Ellicott Town Center Commercial Rezone TIS Report (LSC 194060) (Ref 1) and uses assumptions and traffic data from the 2022 - September - Mayberry Filing No. 3 (Ref 2) TIS. Filing 5 is part of the broader proposed Mayberry Communities Development just west of Ellicott between Peyton Highway and Log Road. Khis community is being developed in phases, and this report details the traffic impacts only dre to the Filing 5 phase of development.
please include Filing 4 TIS in the list of the referenced reports.
the filing 3 TIS is dated October 2022. revise. (see PCD file No. SF2219)
please provide information as to what time period is the ADT that is
shown. Are these existing values?

Analysis Assumptions

The commercial rezone TIS listed above is the study that has these assumptions as the filing 3 study was a memo that referenced the commercial rezone TIS. PLease reference the commercial rezone study.

This traffic impact study uses the Highway Capacity Manual 6 (HCM) (seef Appendix A for a brief description of level of service) as a basis for the capacity analysis as well as primary data and engineering judgment, which is required to estimate background traffic, pass-by capture, and internal capture reductions, further described in the following paragraphs.

Directional Distribution

Existing traffic projections are based on data collected for the development of the 2022 September - Mayberry Filing No. 3. Turning movement counts were collected for the Peyton Highway/SH 94 intersection (west of Mayberry Communities) and the Ellicott Highway/SH 94 intersection (east of Mayberry Communities).

This study follows the assumption established in the 2022 - SepteMber - Mayberry Filing No. 3 that 90% of vehicle trips go to and come from points west of the development, while 10% go to and come from points east of the development. Following the 90/10 assumption, future traffic is then assumed to be proportionally distributed according to the turning movement counts collected at Peyton Highway and Ellicott Highway intersections. These counts provide the basis for the overall directional distribution of traffic approaching and departing the project site, as summarized in Table 1.

Table 1: Forecasted Overall Directional Distribution Site-Oriented Traffic

Direction/Roadway	AM \% Overall Distribution	PM \% Overall Distribution
SH 94 W	82.4%	76.6%
SH 94 E	5.3%	6.0%
Peyton Hwy S	2.3%	5.9%
Peyton Hwy N	5.3%	7.5%
Ellicott Hwy S	4.0%	2.3%
Ellicott Hwy N	0.6%	1.7%

HDR has not found other studies in the area. Based on current land use at the site, this study does not use pass-by, internal capture, pedestrian, and bicycle reductions.

Filing 3 Roadway Improvements

The LOS analysis is based on the proposed improvements from 2022 - September Mayberry Filing No. 3. The roadway network proposed in Filing 3 is assumed to be in place at the time of completion for Filing 5.

New Log Road and SH 94 will be an unsignalized intersection with stop control on the northbound approach. The approaches will be constructed according to the following parameters:

- One left-turn lane and one right-turn lane for the northbound approach on New Log Road
- A through lane and a dedicated right-turn turn lane on the eastbound approach of SH 94
- A dedicated left-turn lane and one through lane on the westbound approach of SH 94

The ability of the roadway network to accommodate the generated traffic of Filing 5 is contingent upon the completion of an internal roadway network comprised of Village Main, Mayberry Drive, and the construction of New Log Road and Springs Road.
a left turn acceleration lane
(northbound to westbound) is identified
to be installed with filing 3 . See Filing 3 TIS table 12 and update the narrative accordingly.

Existing Thoroughfare System

 be no more than 1 yr old.As indicated on the area location map (Figure 1) and the conceptual site plan (Figure 2), the project is located in the southeast quadrant of New Log Road and SH 94, near Ellicott, CO.

Average daily traffic estimates 5 SH 94 were obtained from the Colorado Department of Transportation (CDOT) Quline Transportation Information System (OTIS) (Ref. 3) and turning movement counts provided in the previous TIS dated September 2022. To adequately describe these roadways, further characterization is provided for each adjacent major roadway to the development.

SH 94

CDOT classifies SH 94 as a functional type Minor Arterial and an access control type as a Non-Rural Rrincipal Highway (NR-A) west of County Road 493 and a Regional Highway (R-A) east of County Road 493. The posted speed limit is 65 miles per hour near the development. An OTIS straight-line diagram of SH 94 near the project site is provided in Appendx A. According to CDOT's traffic volume database, the existing daily traffic volume on SH 94 is listed below:

- 4,000 vpd between Peyton Highway and Ellicott Highway
- 3,000 vpd east of Ellicott Highway

Peyton Highway

The El Paso County 2040 Major Transportation Corridor Plan (MTCP)(Ref. 4) classifies Peyton Highway as a Minor Arterial and has a speed limit of 55 mph .

Ellicott Highway

The El Paso County MTCP classifies Ellicott Highway as a Minor Arterial and has a speed limit of 55 mph .

Site and Access Characteristics

As shown in Figure 3, access to Filing 5 will be provided via two full-movement driveways along Marketplace Drive.

> please also identify that the El Paso
County 2040 Major transportation

Corridors Plan

(MTCP)indicates that this roadway as a 2 lane principal arterial

To assess the traffic impacts of the proposed development, two (2) time periods (AM Peak Hour and PM Peak Hour) and three (3) travel conditions were evaluated:

- 2024 Forecasted Traffic Conditions
- 2024 Forecasted plus Previous Filing 3 Background Traffic Conditions
- 2024 Background plus Site-Generated Traffic Conditions

Intersections in the vicinity of the site are considered the locations of principal concern because they are the locations of the highest traffic conflict and delay. The standard used to evaluate traffic conditions at intersections is level of service (LOS), which is a qualitative measure of the effect of a number of factors such as speed, the volume of traffic, geometric features, traffic interruptions, freedom to maneuver, safety, driving comfort, convenience, and operating cost.

2024 Forecasted Traffic Conditions

The analysis of existing traffic required the collection of data on the major roadways and intersections. Traffic counts for the following study area intersections were collected in March and August 2022 while schools were in session unless otherwise noted:

- Peyton Highway and SH 94
- Ellicott Highway and SH 94

The existing TMC values were grown by the growth rate provided by OTIS to reach a 2024 forecast year. This process used trends established by prior data for the major roadways and intersections near the project site. The adjusted 2024 existing turning movement counts are provided in Figure 4. Descriptions of existing study intersections are discussed in the following sections as well as the forecasted LOS for the Year 2024. Table 2 provides the summary of both LOS and delay.

Peyton Highway and SH 94

Peyton Highway and SH 94 is currently an unsignalized intersection with stop controls on the northbound and southbound approaches. The northbound and southbound approaches of Peyton Highway provide one left-turn/through/right-turn shared lane. The eastbound and westbound approaches of SH 94 provide one left-turn lane and a through/right-turn shared lane. The northbound leg of the intersection currently operates at LOS B under the existing traffic conditions during both the AM and PM peak periods.

Ellicott Highway and SH 94

Ellicott Highway and SH 94 is currently an unsignalized intersection with stop controls on the northbound and southbound approaches. The northbound and southbound approaches of Ellicott Highway provide one left-turn/through/right-turn shared lane. The eastbound and westbound approaches of SH 94 provide one left-turn lane and a
through/right-turn shared lane. The northbound leg of the intersection currently operates at LOS C under the existing traffic conditions during both the AM and PM peak periods.

Table 2: 2024 Existing Forecasted Level of Service Summary

Intersection	2024 Existing			
	AM	PM		
Peyton Highway and SH 94	B			
	(14.1)		$]$	B
:---:				
(13.5)				

please also include ADT in all the figures
for study area roadways.

2024 Existing plus Previous Filing Background Traffic Conditions

The generated traffic from the previous Filings 1, 2, and 3 are assumed background traffic. The proposed access roads that will accommodate t studied for the background traffic and the development traffic to follow. intersections that will be built as part of Mayberry Filing 3 are listed belo

- New Log Road and SH 94
- Spring Road and SH 94 application for filing 4 currently in review ahead of this project and the assumption is that it would gain approval prior to filing 5. Please include filing 4 traffic in your analysis. Filing 4 is listed in the table below but not mentioned in the narrative.

Previous Filing Site-Generated Traffic

Determining the site-generated traffic, or the traffic generated due to the development of the previous Filings, is a major element of this analysis. Unadjusted daily trips and the peak hour traffic associated with these Filings were estimated using recommendations and data contained in the Institute of Transportation Engineers Trip Generation, 11th Edition (Ref. 6).

These previous Filings generate approximately 2,801 unadjusted daily trips upon buildout. Table 3 provides a detailed traffic generation summary related to the assumed land use plan.

Table 3: Summary of Unadjusted Daily and Peak Hour Trip Generation from Previous Filings

Site	Land Use	Land Use Cod e	Size	Trip Generatio n Method ${ }^{1}$	24-Hour Two-Way Volume	AM Peak Hour		PM Peak Hour	
						Enter	Exit	Enter	Exit
$\begin{gathered} \text { Filing } \\ 1 / 1 \mathrm{~A} / \\ 3 \end{gathered}$	Single Family Detache d Housing	210	$\begin{aligned} & 240 \\ & \text { DU } \end{aligned}$	Fitted Curve	2,257	43	123	143	84
$\begin{gathered} \text { Filing } \\ 2 \end{gathered}$	General Light Industria \|	110	$\begin{gathered} 30 \\ \text { KSF } \end{gathered}$	Fitted Curve	163	21	3	2	15
$\begin{gathered} \text { Filing } \\ 4 \end{gathered}$	General Light Industrial	110	$\begin{gathered} 88 \\ \text { KS } \\ \mathrm{F} \end{gathered}$	Fitted Curve	381	56	8	5	32
Total					2,801	120	134	150	131

${ }^{1}$ Trip Generation is based on the higher of the ITE's average rate and fitted curve method for all land uses.

The LOS summary for the trips generated from the previous Filings are discussed below. Table 4 provides the summary of both LOS and delay. Background plus the previous Filings volumes are shown in Figure 5.

Peyton Highway and SH 94

The intersection will operate at LOS C under 2024 Forecasted plus Previous Filing Background Traffic Conditions during the AM and PM peak periods.

New Log Road and SH 94

New Log Road and SH 94 will be an unsignalized intersection with stop controls on the northbound approach. The northbound approach of New Log Road will provide one left-turn lane and one right-turn lane. The eastbound approach of SH 94 will provide a through lane and a dedicated right-turn turn lane. The westbound approach of SH 94 will provide a dedicated left-turn lane and one through lane. These improvements will be built concurrently with these Filings and will be in place by the time they are occupied. The intersection will operate at LOS C under 2024 Forecasted plus Previous Filing traffic conditions during the AM and PM peak periods.

Springs Road and SH 94

The intersection will operate at LOS A and B under 2024 Forecasted plus Previous Filing conditions during the AM and PM peak periods, respectively. Assuming the connections at both New Log Road and Springs Road are provided

Ellicott Highway and SH 94

The intersection will operate at LOS C under 2024 Forecasted plus Previous Filing traffic conditions during the AM and PM peak periods.

Table 4: Filing 1, 2 and 3 Level of Service Summary

Intersection	2024 Background + Previous Filings	
	AM	PM
Peyton Highway and SH 94	$\begin{gathered} C \\ (16.7) \end{gathered}$	$\begin{gathered} C \\ (19.8) \end{gathered}$
New Log Road and SH 94	$\begin{gathered} \text { C } \\ (15.2) \end{gathered}$	$\begin{gathered} C \\ (16.4) \end{gathered}$
Springs Road and SH 94	$\begin{gathered} \text { A } \\ (9.2) \end{gathered}$	$\begin{gathered} B \\ (10.2) \end{gathered}$
Ellicott Highway and SH 94	$\begin{gathered} \text { C } \\ (16.9) \end{gathered}$	$\begin{gathered} C \\ (16.5) \end{gathered}$

Please clarify which improvements are assumed. The filing 3 TIS identified that beyond filing 3 the full urban minor arterial (full couplet segments) is to be constructed (>3000 ADT). Is the full configuration for New Log road assumed therefore filing 4 is installing the improvements?

onditions with Filing 5 Siteated Traffic

Filing 5 is anticipated to be completed in 2024. The forecasted traffic was g available information and was used to assess the major roadway impacts potential improvements. All analysis assumes the completion of New Log Road and Springs Road improvements upon which previous filings are contingent.

Filing 5 Site Generated Traffic

Unadjusted total trips per day and the peak hour traffic associated with the project were estimated using recommendations and data contained in the Institute of Transportation Engineers Trip Generation, 11th Edition.

The proposed project will generate approximately 1,489 unadjusted daily trips upon build-out. Table 5 provides a detailed traffic production summary directly related to the assumed land use plan.

Table 5: Summary of Unadjusted Daily and Peak Hour Trip Generation from Filing 5

Site	Land Use	Land Use Code	Size	Trip Generation Method ${ }^{1}$	24-Hour TwoWay Volume	AM Peak Hour		PM Peak Hour	
						Enter	Exit	Enter	Exit
$\begin{aligned} & \text { Filing } \\ & 5 \end{aligned}$	Multifamily Housing (Low-Rise)	220	108 DU	Fitted Curve	1,075	17	54	55	32
	Single Family Attached	215	38 DU	Fitted Curve	239	4	10	11	8
Total					1,314	21	64	66	40

${ }^{1}$ Trip Generation is based on the higher of the ITE's average rate and fitted curve method for all land uses.
${ }^{2}$ Trips to and from the proposed clubhouse development are assumed to be internal and included in ITE trip generation values and assumed to include a small clubhouse office that has negligible impact on trip generation

The LOS summary for the trips generated from Filing 5 are discussed below. Table 6 provides the summary of both LOS and delay. Filing 5 generated volumes are shown in Figure 6, and Background + Filing 3 + Filing 5 volumes are shown in Figure 7.

Peyton Highway and SH 94

 see comment above about filing 4 and adjust as necessary.The intersection will operate at LOS C under 2024 site plus forecasted traffic conditions during the AM and PM peak periods. There are no improvements recommended at this intersection as part of this TIS.

New Log Road and SH 94

The intersection will operate at LOS C under 2024 site plus forecasted traffic conditions during the AM and PM peak periods with the improvements identified in the previous
section. Assuming the connections at both New Log Road and Springs Road are provided, there are no improvements recommended at this intersection as part of this TIS.

Springs Road and SH 94

The intersection will operate at LOS A and B under 2024 site plus forecasted traffic conditions during the AM and PM peak periods, respectively. Assuming the connections at both New Log Road and Springs Road are provided, there are no improvements recommended at this intersection as part of this TIS.

Ellicott Highway and SH 94

The intersection will operate at LOS C under 2024 site plus forecasted traffic conditions during the AM and PM peak periods. There are no improvements recommended at this intersection as part of this TIS.

Table 6: Filing 5 Level of Service Summary

| Intersection | 2024 Background + Previous Filings + |
| :--- | :---: | :---: |
| | |

See comments regarding filing 4 above and include filing 4 traffic in your analysis.

Summary of Findings

Intersections adjacent to the development on SH 94 will operate at LOS C or better for all scenarios analyzed in this JIA. Therefore, the infrastructure that is anticipated to be in place by the time Filing 3 and Filing 5 are developed and occupied will have the capacity to handle the generated traffic. No improvements are needed for the addition of Filing 5 to the Mayberry Communities Development. Intersection LOS and delay results are presented in Table 7.

Table 7: Level of Service Summary

Intersection	2024 Existing		2024 Background + Previous Filings		2024 Background + Previous Filings + Filing 5	
	AM	PM	AM	PM	AM	PM
Highest delay minor street approach is reported for all unsignalized intersections.						
Peyton Highway and SH 94	$\begin{gathered} B \\ (14.1) \end{gathered}$	$\begin{gathered} B \\ (13.5) \end{gathered}$	$\begin{gathered} C \\ (16.7) \end{gathered}$	$\begin{gathered} C \\ (19.8) \end{gathered}$	$\begin{gathered} C \\ (17.8) \end{gathered}$	$\begin{gathered} C \\ (23.1) \end{gathered}$
New Log Road and SH 94	-	-	$\underset{(15.2)}{C}$	$\begin{gathered} \text { C } \\ (16.4) \end{gathered}$	$\underset{(17.2)}{C}$	$\begin{gathered} C \\ (18.6) \end{gathered}$
Springs Road and SH 94	-	-	$\begin{gathered} A \\ (9.2) \end{gathered}$	$\begin{gathered} B \\ (10.2) \end{gathered}$	$\begin{gathered} \text { A } \\ (9.3) \end{gathered}$	$\begin{gathered} B \\ (10.2) \end{gathered}$

-please discuss escrow requirements for intersection improvements at Hwy 94/Peyton Hwy \& Hwy 94/Ellicott hwy. Each previous filing has indicated its fair share amount.) Contact and coordinate with CDOT as it is anticipated that updated CDOT access permits at New Log Rd and Springs Rd will be needed.
-please address the full roadway section of New log Rd. per filing 3 TIS it identified that beyond filing 3 (ADT above 3000) required the full construction of New Log Rd. Per previous traffic studies it appears that this development will trigger the construction of the full roadway cross section identified in the previous PUDSP plan. Please provide a table of the required/recommended improvements as done in the previous traffic studies.
-please analyze the intersection of Village Main St and Market Place Dr. Identify whether any improvements (i.e. turn lanes) are needed due to this developments traffic. Identify whether the current classification of the roadways (non residential collector for Village Main \& Urban Local for Marketplace Dr) are adequate due to this developments traffic impacts or do they need to be upgraded. Identify any turn lanes that may be needed on Marketplace Dr into the site access points due to this developments traffic.

- Analyze the sites access points per ECM 2.4. State whether the proposed access points meet ECM criteria.
-Please address/analyze the construction of the full section of Mayberry Drive (east/west roadway). Previous TIS identified that this was to be determined with future PUD applications. Analyze and state whether this will be triggered due to this developments traffic.
-Please analyze the westbound left turn deceleration lane at New Log and Hwy 94. Indicate whether it needs lengthening. The previous TIS identified that this may be needed with future development.
-Please analyze and indicate if an eastbound right turn acceleration lane is required at New Log/Hwy 94 due to this developments impacts.
-Please identify the road classification of any proposed internal private roadway(s).
Per ECM Appendix B. 8 traffic report standards, please provide the following:
- clearly state in the text and supporting documentation what the ADT is at all accesses currently, at full development, and long term.
-State whether or not any improvements affected by the project are reimbursable under the current Major Transportation Corridors Plan (MTCP).
-State whether the MTCP or other approved corridor study calls for the construction of improvements in the immediate area.
-State what the current applicable Transportation Impact Fees are and what option the developer will be selecting for payment. If the site is in special district, so state and summarize the applicable fees. -Include LOS for all affected intersections.
-Include an engineer's certification page with the engineer's stamp, signature, and date. The statement must read as follows:
- "The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports."
- Include a developer's statement on the certification page. The statement must read as follows:
"I, the Developer, have read and will comply with all commitments made on my behalf within this report." Include a printed or typed developer name and address as well as a signature block.

Appendix A: Highway Capacity Manual Description

HCM Unsignalized Intersection Level of Service

Unsignalized intersections were analyzed for this study. Unsignalized intersection LOS is defined in terms of average control delay and, in some cases, volume to capacity (v / c) ratio. Control delay is that portion of total delay attributed to traffic control measures, either traffic signals or stop signs. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

For two-way stop-controlled intersections, the analysis method assumes that major street-through traffic is not affected by minor street flows. Major street left-turning traffic and the traffic on the minor approaches will be affected by opposing movements. Stop or yield signs are used to assign the right-of-way to the major street, and this designation forces drivers on the controlled street to judgmentally select gaps in the major street flow through which to execute crossing or turning maneuvers. Thus, the capacity of the controlled legs is based on two factors:

- The distribution of gaps in the major street traffic stream.
- Driver judgment in selecting gaps through which to execute their desired maneuvers.

The LOS procedure computes a capacity for each movement based on the critical time gap required to complete the maneuver and the volume of traffic that is opposing the movement. The average control delay for any particular movement is calculated as a function of the capacity of the approach and the degree of saturation (v / c ratio). The degree of saturation is defined as the volume for a movement, expressed as an hourly flow rate, divided by the movement's capacity, expressed as an hourly flow rate. With the HCM 6 methodology (Ref. 5), overall intersection LOS is best quantified based on minor street movement average control delay. The HCM 6 methodology adjusts individual movement delay to account for a degree of saturation (v / c ratio) that is greater than 1.0. Those movements are assigned a LOS of F, regardless of the average control delay. Engineering judgment must be used to determine which minor street movement controls for overall intersection LOS and whether unacceptable LOS on minor street movements appropriately reflects unacceptable LOS for the overall intersection.
Table 2 shows the relationship between the average control delay and the LOS. The LOS range for unsignalized intersections is different than that for signalized intersections, and this difference is because drivers expect different levels of performance from other kinds of transportation facilities. Unsignalized intersections carry less traffic volume than signalized intersections, and delays at unsignalized intersections are variable. For these reasons, control delay would be less for an unsignalized intersection than for a signalized intersection. The overall approach LOS is computed as a weighted average of the vehicle delay for each movement; therefore, an approach may have an overall LOS of C or D and have individual movements, which are LOS E or F .

Analysis was performed using the microcomputer program "Synchro 11" (Ref. 6), based on the procedures contained in the Highway Capacity Manual.

Table 1: Unsignalized Intersection: Level of Service Measurement

Level of Service	Control Delay Per Vehicle (sec)
A	<10
B	>10 and <15
C	>15 and <25
D	>25 and <35
E	>35 and <50
F	>50

Appendix B: Synchro Outputs

Intersection						
Int Delay, s/veh	3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	$\mathbf{7}$		4	l	$\mathbf{7}$
Traffic Vol, veh/h	183	86	15	293	129	8
Future Vol, veh/h	183	86	15	293	129	8
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	570	570	-	0	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	199	93	16	318	140	9

Intersection						

Intersection													
Int Delay, s/veh	2.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{7}$	$\hat{\beta}$		${ }^{*}$	\uparrow			\uparrow			\uparrow		
Traffic Vol, veh/h	7	230	12	13	379	30	28	16	18	20	7	35	
Future Vol, veh/h	7	230	12	13	379	30	28	16	18	20	7	35	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	532	-	-	532	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	8	250	13	14	412	33	30	17	20	22	8	38	

Intersection						

Intersection													
Int Delay, s/veh	2.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{*}$	$\hat{\beta}$		${ }^{*}$	\uparrow			\uparrow			\uparrow		
Traffic Vol, veh/h	7	244	12	14	421	32	28	16	20	22	7	35	
Future Vol, veh/h	7	244	12	14	421	32	28	16	20	22	7	35	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	532	-	-	532	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	8	265	13	15	458	35	30	17	22	24	8	38	

Intersection						
Int Delay, s/veh	3.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	个	$\mathbf{7}$		个	$\mathbf{1}$	$\mathbf{7}$
Traffic Vol, veh/h	339	117	20	209	154	11
Future Vol, veh/h	339	117	20	209	154	11
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	570	570	-	0	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	368	127	22	227	167	12

Intersection						

V1_Traffic Impact Study.pdf Markup Summary 11-7-2023

Daniel Torres (19)		
	Author: Daniel Torres Subject: Text Box Page Label: 1 Date: 11/2/2023 10:08:06 AM Status: Color: Layer: Space:	Add PCD File No. PUDSP233
	Author: Daniel Torres Subject: Callout Page Label: 5 Date: 11/2/2023 11:12:31 AM Status: Color: Layer: Space:	the filing 3 TIS is dated October 2022. revise. (see PCD file No. SF2219)
please include Filing 4 TIS in the list of the referenced reports.	Author: Daniel Torres Subject: Text Box Page Label: 5 Date: 11/6/2023 4:20:28 PM Status: Color: Layer: Space:	please include Filing 4 TIS in the list of the referenced reports.
	Author: Daniel Torres Subject: Text Box Page Label: 6 Date: 11/2/2023 10:29:14 AM Status: Color: Layer: Space:	please provide information as to what time period is the ADT that is shown. Are these existing values?
	Author: Daniel Torres Subject: Callout Page Label: 7 Date: 11/2/2023 11:14:19 AM Status: Color: Layer: Space:	The commercial rezone TIS listed above is the study that has these assumptions as the filing 3 study was a memo that referenced the commercial rezone TIS. PLease reference the commercial rezone study.
	Author: Daniel Torres Subject: Callout Page Label: 8 Date: 11/2/2023 11:08:52 AM Status: Color: Layer: Space:	a left turn acceleration lane (northbound to westbound) is identified to be installed with filing 3. See Filing 3 TIS table 12 and update the narrative accordingly.

n the Colorado Department n System (OTIS) (Ref. 3) al ated September 2022. To ation is provided for each	Author: Daniel Torres Subject: Highlight Page Label: 10 Date: 11/2/2023 11:14:38 AM Status: Color: Layer: Space:	September 2022.
	Author: Daniel Torres Subject: Callout Page Label: 10 Date: 11/6/2023 1:09:29 PM Status: Color: Layer: Space:	new counts are required at the study area intersections. Per ECM App. B.3.1.A counts shall be no more than 1 yr old.
	Author: Daniel Torres Subject: Callout Page Label: 10 Date: 11/2/2023 11:23:29 AM Status: Color: Layer: Space:	please also identify that the El Paso County 2040 Major transportation Corridors Plan (MTCP)indicates that this roadway as a 2 lane principal arterial an
	Author: Daniel Torres Subject: Callout Page Label: 10 Date: 11/6/2023 4:04:25 PM Status: Color: Layer: Space:	please also include the roadways Village mainstreet, Market Place Dr, and Mayberry Dr (east west roadway) and their classifications.
	Author: Daniel Torres Subject: Callout Page Label: 13 Date: 11/6/2023 4:10:33 PM Status: Color: Layer: Space:	please also include long term analysis as required per ECM appendix B.
	Author: Daniel Torres Subject: Text Box Page Label: 15 Date: 11/6/2023 2:41:38 PM Status: Color: Layer: Space:	please also include ADT in all the figures for study area roadways.

$\square=\square$	Author: Daniel Torres Subject: Text Box Page Label: 23 Date: 11/6/2023 3:55:10 PM Status: Color: Layer: Space:

Subject: Text Box
Page Label: 23
Status:
Color:
Space:
-please discuss escrow requirements for intersection improvements at Hwy 94/Peyton Hwy \& Hwy 94/Ellicott hwy. Each previous filing has indicated its fair share amount. Contact and coordinate with CDOT as it is anticipated that updated CDOT access permits at New Log Rd and Springs Rd will be needed.
-please address the full roadway section of New log Rd. per filing 3 TIS it identified that beyond filing 3 (ADT above 3000) required the full construction of New Log Rd. Per previous traffic studies it appears that this development will trigger the construction of the full roadway cross section identified in the previous PUDSP plan. Please provide a table of the required/recommended improvements as done in the previous traffic studies.
-please analyze the intersection of Village Main St and Market Place Dr. Identify whether any improvements (i.e. turn lanes) are needed due to this developments traffic. Identify whether the current classification of the roadways (non residential collector for Village Main \& Urban Local for Marketplace Dr) are adequate due to this developments traffic impacts or do they need to be upgraded. Identify any turn lanes that may be needed on Marketplace Dr into the site access points due to this developments traffic.

- Analyze the sites access points per ECM 2.4. State whether the proposed access points meet ECM criteria.
-Please address/analyze the construction of the full section of Mayberry Drive (east/west roadway). Previous TIS identified that this was to be determined with future PUD applications. Analyze and state whether this will be triggered due to this developments traffic.
-Please analyze the westbound left turn deceleration lane at New Log and Hwy 94. Indicate whether it needs lengthening. The previous TIS identified that this may be needed with future development.

