

FINAL DRAINAGE REPORT FOR LAZY Y AND ROCKING J SUBDIVISION

September 2024

Prepared For: Scott Smith 1172 Greenland Forest Drive Monument, CO 80106 (719) 499-7764

Prepared By: JR Engineering, LLC 5475 Tech Center Drive, Suite 235 Colorado Springs, CO 80919 719-593-2593

Project No. 25228.00

PCD Filing No: PPR-2435

J'R ENGINEERING

FINAL DRAINAGE REPORT FOR LAZY Y AND ROCKING J SUBDIVISION

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage letter has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Bryan T. Law, Colorado P.E. # 25043 For and On Behalf of JR Engineering, LLC Date

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

Scott Smith

By:

Title: Address:

<u>1172 Greenland Forest Drive</u> Monument, CO 80106

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Joshua Palmer, P.E. County Engineer/ ECM Administrator Date

Conditions:

SEP 2024

FINAL DRAINAGE REPORT FOR LAZY Y AND ROCKING J SUBDIVISION

Table of Contents

Purpose1
General Site Description
General Location1
Description of Property1
Floodplain Statement1
Existing Drainage Conditions
Major Basin Descriptions
Existing Sub-basin Drainage2
Proposed Drainage Conditions
Proposed Drainage Conveyance
Proposed Sub-basin Drainage
Comparison of Flows
Drainage Design Criteria
Development Criteria Reference
Hydrologic Criteria
Hydraulic Criteria
Drainage Facility Design
General Concept
Specific Details
Four Step Process to Minimize Adverse Impacts of Urbanization7
Water Quality
Erosion Control Plan
Operation & Maintenance10
Drainage and Bridge Fees
Construction Cost Opinion
Summary10
References

APPENDICES

- Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map
- Appendix B Hydrologic Calculations
- Appendix C Hydraulic Calculations
- Appendix D Reference Material
- Appendix E Drainage Maps

PURPOSE

This document is the Final Drainage Report for Lazy Y and Rocking J Subdivision. The purpose of this report is to identify on-site and off-site drainage patterns, culverts, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities.

GENERAL SITE DESCRIPTION

GENERAL LOCATION

Lazy Y and Rocking J Subdivision (hereby referred to as the "site") is a proposed development with a total area of approximately 34 acres. The site presently is used as a commercial equipment building. The site is located in the south half of Section 7, Township 12 South, Range 63 West of the Sixth Principal Meridian in El Paso County, State of Colorado. The site is bounded by Peyton Highway to the east, Longhorn Acres Subdivision to the south, and unplatted land to the west and north. Refer to the vicinity map in Appendix A for additional information.

DESCRIPTION OF PROPERTY

The site has a split drainage pattern with a ridge running across the site. The site generally slope(s) as follows: to the north at 1 to 9% off-site to unplatted land, to the northeast at 1 to 15% to the existing roadside ditch along Peyton Highway, and to the south at 1 to 9% off-site to Longhorn Acres Subdivision. The site is currently comprised of gravel roads, a building, a shed, concrete pads, a cell tower, dry utilities, trees and vegetation. A wire fence wraps around the perimeter of the site along the west, north, and east sides.

The proposed site development proposes asphalt and gravel drive aisles, asphalt and gravel parking spaces, tent sites, buildings, concrete sidewalks, two full-spectrum Extended Detention Basins (EDBs) and associated utility infrastructure.

Soils located on the project site are Stapleton sandy loam. These soils are classified as Hydrologic Soil Group B. Group B soils exhibit moderate infiltration rates when thoroughly wet, and consist mainly of moderately deep, moderately well drained to well drained soils. Refer to the soil survey map in Appendix A for additional information.

There are no known irrigation facilities located on the project site.

FLOODPLAIN STATEMENT

Based on the FEMA FIRM Map number 08041C0375G, dated December 7, 2018, the entire site lies within Zone X. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. Refer to the FIRM Map in Appendix A for additional information.

EXISTING DRAINAGE CONDITIONS

MAJOR BASIN DESCRIPTIONS

Based on the map of the Drainage Basins for El Paso County, the site lies within both the Upper Bracket Creek and the La Vega Ranch Drainage Basins. Neither of these basins have been studied, and therefore no Drainage Basin Planning Studies are available. The site is split into two major basins, but the Upper Bracket Creek Basin is tributary to the La Vega Ranch Basin. The La Vega Ranch drainageway flows south about 10 miles where the Hook and Line Ranch Basin, La Vega Ranch Basin, and Baggett Basin combine just north of State Highway 94.

The site generally drains towards the north, northeast, and south from the middle of the site. Brackett Creek is located to the north and east of the site and runs from northwest to southeast. An unnamed tributary of Brackett Creek is located to the south of the site and runs from northwest to southeast. The proposed condition will send more of the site to the proposed full-spectrum extended detention basin to the north, and this will have no impact on the major basins. The additional area going to the Upper Bracket Creek basin is negligible in the overall major basin analysis.

EXISTING SUB-BASIN DRAINAGE

Refer to DCM 1.2.6 regarding Basin Transfer and include the amount of flows that will be transferred from the La Vega Ranch Basin to the Upper Bracket Creek basin.

The existing condition of the site was broken into three on-site sub-basins. The basin delineation is shown on the existing drainage map in Appendix E and is described as follows:

Basin EXA is 7.84 acres with a 2% percent impervious and is located on the northwestern portion of the site. This basin is comprised of existing vegetation and undeveloped area. Runoff from this basin ($Q_5=1.8$ cfs, $Q_{100}=12.3$ cfs) sheet flows overland northeast onto the unplatted adjacent property at design point (DP) 1. Runoff then follows historic drainage patterns off-site and eventually outfalls to Brackett Creek.

Basin EXB is 11.2 acres with a 5% percent impervious and is located on the northeastern portion of the site. This basin is comprised of part of gravel roads, buildings, shed, dry utilities, trees, existing vegetation, and undeveloped area. Runoff from this basin ($Q_5=3.7$ cfs, $Q_{100}=21.1$ cfs) sheet flows overland northeast to DP2 and along the existing Peyton Hwy roadside swale combining at DP2.1.

Basin OS1 is approximately 0.61 acres with a 42% percent impervious and is comprised of existing west half of Peyton Hwy roadway and swale. Runoff generated by this basin ($Q_5=0.9$ cfs, $Q_{100}=2.2$ cfs) flows within the existing swale to DPO1. Flows then combine within the existing Peyton Hwy swale at DP2.1 ($Q_5=4.5$ cfs, $Q_{100}=23.0$ cfs). Runoff then follows historic drainage patterns off-site and eventually outfalls to Brackett Creek.

Basin EXC is 14.9 acres with a 4% percent impervious and is located on the southern portion of the site. This basin is comprised of part of gravel roads, building, a cell tower, concrete pads, dry utilities, existing vegetation, and undeveloped area. Runoff from this basin ($Q_5=3.9$ cfs, $Q_{100}=23.2$ cfs) sheet flows overland south onto the adjacent Longhorn Acres Subdivision property at DP3. Runoff then follows historic drainage patterns off-site and eventually outfalls to the unnamed tributary of Brackett Creek.

PROPOSED DRAINAGE CONDITIONS

PROPOSED DRAINAGE CONVEYANCE

In general, developed flows are collected in proposed swales, which convey water to the proposed water quality and detention areas, Pond 1 and Pond 2. Proposed swale sections were designed to ensure they are stable and have required capacity to satisfy criteria. A swale is considered stable with a velocity of 5 ft/s of less. Erosion protection shall be provided where velocities exceed 5 ft/s. To ensure capacity, swales will have a minimum of 1 ft. of freeboard over the water surface for flows anticipated in a 100-year storm event. In addition to the swales, a proposed culvert also conveys flows under the access roadway. The culvert was sized to not overtop the roadways with flows from a 100-year storm event. Detailed swale calculations, sections, and culvert calculations are located in Appendix C.

PROPOSED SUB-BASIN DRAINAGE

The proposed basin delineation for the site as shown on the map within Appendix E is as follows:

Basin A is approximately 1.51 acres with a 21% percent impervious and is comprised of proposed gravel roadways, gravel parking areas, concrete sidewalks and RV parking spots. Runoff generated by this basin ($Q_5=1.3$ cfs, $Q_{100}=4.3$ cfs) sheet flows overland to the proposed swale at DP1. Flows enter Basin B and combine at DP2.1.

Basin B is approximately 2.51 acres with a 10% percent impervious and is comprised of proposed asphalt roadways, gravel parking areas, concrete sidewalk and RV hookup sites. Runoff generated by this basin (Q_5 =1.2 cfs, Q_{100} =5.5 cfs) sheet flows overland to the proposed swale at DP2. Flows then combine with DP1 at DP2.1 (Q_5 =2.3 cfs, Q_{100} =9.3 cfs) and enter into the proposed culvert. DP2.1 flows continue within a proposed swale to the combination at DP3.1.

Basin C is approximately 4.27 acres with a 20% percent impervious and is comprised of proposed gravel parking areas, concrete sidewalks and RV hookup sites. Runoff generated by this basin ($Q_5=3.4$ cfs, $Q_{100}=11.8$ cfs) sheet flows overland to the proposed swale at DP3. Flows then combine with DP2.1 at DP3.1 ($Q_5=5.1$ cfs, $Q_{100}=18.9$ cfs) and are captured by the proposed culvert at DP5.2.

Basin D is approximately 4.96 acres with a 24% percent impervious and is comprised of proposed asphalt and gravel roadways, parking areas, septic field, concrete sidewalk and RV hookup sites. Runoff generated by this basin (Q_5 =3.6 cfs, Q_{100} =11.8 cfs) sheet flows overland to the proposed swale at DP4. Flows then enter into the proposed culvert and combine at DP5.1.

Basin E is approximately 2.64 acres with a 20% percent impervious and is comprised of proposed asphalt roadways, concrete sidewalk and RV hookup sites. Runoff generated by this basin ($Q_5=1.9$ cfs, $Q_{100}=6.5$ cfs) sheet flows overland to the proposed swale at DP5. Flows then combine with DP4 at DP5.1 ($Q_5=4.9$ cfs, $Q_{100}=16.3$ cfs) and are captured by the proposed culvert. DP5.1 flows then combine with DP3.1 at DP5.2 ($Q_5=9.4$ cfs, $Q_{100}=32.9$ cfs) and are captured by the proposed inflow culvert. Flows then are combined within the proposed full-spectrum EDB (Pond 1) at DP6.1.

Basin F is approximately 0.84 acres with a 16% percent impervious and is comprised of proposed Pond 1 and associated infrastructure. Runoff generated by this basin ($Q_5=0.7$ cfs, $Q_{100}=2.5$ cfs) sheet flows to Pond 1 at DP6. Flow at DP6.1 ($Q_5=9.8$ cfs, $Q_{100}=34.6$ cfs) combines the flow of DP5.2 and DP6, representing the total inflow into Pond 1. Flows will be released through the outlet structure at DP6.2 ($Q_5=2.1$ cfs, $Q_{100}=11.9$ cfs). Flows will then enter Basin H and follow the drainage patterns of the basin as described below, combining at DP8.1.

Basin OS1 is approximately 0.43 acres with a 43% percent impervious and is comprised of existing west half of Peyton Hwy roadway and swale. Runoff generated by this basin ($Q_5=0.8$ cfs, $Q_{100}=2.0$ cfs) flows within the existing swale to DPO1. Flows combine at the proposed DP7.1 culvert.

Basin G is approximately 1.57 acres with a 2% percent impervious and is comprised of existing undeveloped land to remain undeveloped. Runoff generated by this basin ($Q_5=0.6$ cfs, $Q_{100}=4.3$ cfs) sheet flows overland to the proposed swale at DP7. Flows combine at the proposed DP7.1 culvert. DP7.1 flows ($Q_5=1.4$ cfs, $Q_{100}=6.3$ cfs) enter the culvert and continue within the existing Peyton Hwy swale combining at DP8.1.

Basin OS2 is approximately 0.18 acres with a 56% percent impervious and is comprised of existing west half of Peyton Hwy roadway and swale. Runoff generated by this basin ($Q_5=0.5$ cfs, $Q_{100}=1.0$ cfs) flows within the existing swale to DPO2. Flows combine at the existing Peyton Hwy swale at DP8.1.

Basin H is approximately 0.74 acres with a 24% percent impervious and is comprised of proposed riprap, part of the access roadway and undeveloped land. Runoff generated by this basin ($Q_5=0.6$ cfs, $Q_{100}=1.9$ cfs) sheet flows overland to the existing Peyton Hwy swale at DP8. DP6.2, DP7.1, DPO2 and DP8 flows combine at the existing Peyton Hwy swale at DP8.1 ($Q_5=4.1$ cfs, $Q_{100}=19.0$ cfs). Flows continue flowing north off-site per the historic conditions and eventually outfall to Brackett Creek.

Basin I is approximately 1.00 acres with a 2% percent impervious and is comprised of existing undeveloped land to remain undeveloped. Runoff generated by this basin ($Q_5=0.5$ cfs, $Q_{100}=3.1$ cfs) sheet flows overland north following the historic drainage patterns off-site and eventually outfalls to Brackett Creek.

Basin J is approximately 2.99 acres with a 24% percent impervious and is comprised of proposed gravel roadways, gravel parking areas, building and RV hookup sites. Runoff generated by this basin ($Q_5=2.6$ cfs, $Q_{100}=8.4$ cfs) sheet flows overland to the proposed swale at DP10. Flows then enter into the proposed culvert and combine at DP11.1.

Basin K is approximately 0.78 acres with a 35% percent impervious and is comprised of proposed gravel roadway and concrete sidewalks. Runoff generated by this basin ($Q_5=0.9$ cfs, $Q_{100}=2.5$ cfs) sheet flows overland to the proposed swale at DP11. Flows then enter into the proposed culvert and combine at DP12.1.

Basin L is approximately 0.45 acres with a 40% percent impervious and is comprised of proposed gravel roadway and concrete sidewalks. Runoff generated by this basin ($Q_5=0.6$ cfs, $Q_{100}=1.5$ cfs) sheet flows overland to the proposed swale at DP12 and are captured by the proposed sump inlet. In the case where this inlet becomes clogged, the emergency overflow path would overtop the maintenance trail and flow into Pond 2. DP12 flows then combine within proposed Pond 2 at DP14.1.

Basin M is approximately 2.01 acres with a 25% percent impervious and is comprised of proposed gravel roadways, concrete sidewalk and RV hookup sites. Runoff generated by this basin ($Q_5=1.5$ cfs, $Q_{100}=4.9$ cfs) sheet flows overland to the proposed swale at DP13. Flows then enter into the proposed culvert and combine within proposed Pond 2 at DP14.1.

Basin N is approximately 2.12 acres with a 26% percent impervious is comprised of proposed gravel roadways, concrete sidewalk, RV hookup sites, Pond 2 and associated infrastructure. Runoff generated by this basin ($Q_5=1.9$ cfs, $Q_{100}=6.1$ cfs) sheet flows to Pond 2 at DP14. Flow at DP14.1 ($Q_5=6.6$ cfs, $Q_{100}=20.6$ cfs) combines the flow of DP12.1, DP13 and DP14, representing the total inflow into Pond 2. Flows will be released through the outlet structure at DP14.2 ($Q_5=1.5$ cfs, $Q_{100}=7.8$ cfs). Flows will then enter Basin O and then flow off-site to the south following historic drainage patterns off-site and eventually outfalls to the unnamed tributary of Brackett Creek.

Basin O is approximately 5.56 acres with an 8% percent impervious located within Lot 2 and is comprised of a single-family residence and private driveway. Runoff generated by this basin ($Q_5=2.9$ cfs, $Q_{100}=14.6$ cfs) sheet flows overland to the basin boundary at DP15. Flows then continue off-site to the south following historic drainage patterns off-site and eventually outfalls to the unnamed tributary of Brackett Creek.

FINAL DRAINAGE REPORT FOR LAZY Y AND ROCKING J SUBDIVISION

COMPARISON OF FLOWS

There are several locations where the existing and proposed flows leave the site:

See

- comments on drainage maps and update flow comparisons once existing and proposed basins have been updated.
- Flows leave the northern part of the site at existing DP1 and proposed DP9. Existing DP1 flows ($Q_5=1.8$ cfs, $Q_{100}=12.3$ cfs) are greater than the proposed DP9 flows ($Q_5=0.5$ cfs, $Q_{100}=3.1$ cfs).
- Flows leave the north-eastern part of the site at existing DP2.1 and proposed DP8.1. Existing DP2.1 flows (Q_5 =4.5 cfs, Q_{100} =23.0 cfs) are greater than the proposed DP8.1 flows (Q_5 =4.1 cfs, Q_{100} =19.0 cfs).
- Flows leave the southern part of the site at existing DP3 and proposed DP14.2 & DP15. Existing DP3 flows (Q₅=3.9 cfs, Q₁₀₀=23.2 cfs) are greater in the major storm than the proposed DP14.2 flows (Q₅=1.5 cfs, Q₁₀₀=7.8 cfs) & DP15 (Q₅=2.9 cfs, Q₁₀₀=14.6 cfs) for a total proposed flow of Q₅=4.4 cfs, Q₁₀₀=22.4 cfs.

All proposed flows in the major storm leave the site at less than or equal to the historic flow rates. Therefore, there is no negative impact anticipated to downstream properties.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

Storm drainage analysis and design criteria for this project were taken from the "*City of Colorado Springs/El Paso County Drainage Criteria Manual*" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "*Urban Storm Drainage Criteria Manual*" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "*Colorado Springs Drainage Criteria Manual*" (CSDCM), dated May 2014, as adopted by El Paso County.

HYDROLOGIC CRITERIA

All hydrologic data was obtained from the "*El Paso Drainage Criteria Manual*" Volumes 1 and 2, and the "*Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual*" Volumes 1, 2, and 3. On-site drainage improvements were designed based on the 5-year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One-hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

	int Kannan Data
Storm	Rainfall (in.)
5-year	1.50
100-year	2.52

Table 1: 1-hr Point Rainfall Data

HYDRAULIC CRITERIA

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site. Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used to size the roadside ditches and drainage swales per criteria. Per Section 6.4.1 of the EPCDCM, culverts were sized as to not overtop the road in the 100-year storm. The MHFD-Detention_v4.06 spreadsheet was utilized for evaluating proposed detention and water quality for the five ponds. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. See Appendix C for hydraulic calculations. The hydraulic design will be finalized with the Final Drainage Report.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed stormwater conveyance system was designed to convey the developed site flows to one of two full-spectrum EDBs via swales, culverts, inlets and storm sewer infrastructure. The proposed full-spectrum EDBs will be designed to release flows at less than historic to minimize adverse impacts downstream. Due to this, there are no drainage problems anticipated downstream of the site.

SPECIFIC DETAILS

All full-spectrum EDBs will have proposed forebays at inflow points, concrete trickle channels, and outlet structures. The proposed pond forebays and weir contain the required percentage of the Water Quality Capture Volume (WQCV). The forebays weir will release 1% or 2% of the undetained peak 100-year inflow (depending on impervious acres per EDB-4) into the full-spectrum EDB to the proposed concrete trickle channel. The trickle channel will direct flows into the proposed full-spectrum EDB outlet structure, which will detain water per times specified by criteria. The WQCV will be released within 40 hours and the EURV will be released within 72 hours.

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

FINAL DRAINAGE REPORT FOR LAZY Y AND ROCKING J SUBDIVISION

Step 1: Reducing Runoff Volumes - The site development consists of gravel drive aisles and parking spaces with lawn areas interspersed within the development. This layout will allow for increased infiltration and reduce runoff volume.

Step 2: Treat the WQCV - Runoff from this development is treated through capture and slow release of the WQCV in the on-site permanent full-spectrum EDBs that are designed per current El Paso County drainage criteria. The 2.5-acre (minimum) residential house on Lot 2 will be limited to a maximum of 10% imperviousness to meet the requirements of Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure for water quality through a plat note. Should Lot 2 exceed 10% imperviousness, a lot specific drainage report addressing the increased imperviousness must be submitted.

Step 3: Stabilize Drainageways - The site lies within the Upper Bracket Creek Drainage Basin and the La Vega Ranch Drainage Basin. Both these basins are not studied and therefore no basin and bridge fees are due. The site does not discharge directly into the open drainageway of Brackett Creek, and developed flows leaving the site are limited to below existing rates, therefore no downstream stabilization will be required with this project.

Step 4: Implementing Long Term Source Controls - A site specific stormwater quality and erosion control plan and narrative shall be prepared in conjunction with the final drainage report. Site specific temporary source control BMPs as well as permanent BMP's will be detailed in that plan and narrative to protect receiving waters.

Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full-spectrum water quality and detention will be provided for all of the development site not meeting exclusions present in the ECM - Stormwater Quality Policy and Procedures Section I.7.1.B. As previously stated, the applicable exclusions for Basin O located within Lot 2 fall under Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure for areas with large single-family lots (2.5-acre min.). In addition, Basins G, H and I fall under the Section I.7.1.B.7 of the ECM Stormwater Quality Policy and Procedure for sites with land disturbance to undeveloped land that will remain undeveloped. A portion of Basins G and H are comprised of a portion of the asphalt roadway which are not able to be undetained or treated. This area is under the maximum allowable of 1.0 total acres. The remaining basins will be treated within the proposed full-spectrum EDBs (Pond 1 and Pond 2). Outlet structure release rates will be limited to less than historic rates to minimize adverse impacts to downstream stormwater facilities.

See Table 2 below for the water quality treatment summary table indicating which basins are treated and which are excluded.

Based on the below table and the maps, it seems that the roadway is entirely within H, verify and remove

PBN	/IP Summary	Table				
Basins	Tributary Area (acres)	PBMP				
A-F	16.73	POND 1				
G-I	3.18	EXCLUDED*				
Part of H	0.13	EXCLUDED***				
J-N	8.35 POND					
0	5.56	EXCLUDED**				
*EXCLUDED E UNDEVELC UNDEVI **EXCLUDE FAMIL ***L	BASED ON LAND DI DPED LAND THAT V ELOPED PER ECM A D BASED ON LARG (SITES PER ECM AF INTREATED/UNDE REA (< 1 TOTAL AC	STURBANCE TO VILL REMAIN .PP. I. 7. B. 7 ;E LOT SINGLE PP. I. 7. B. 5 FAINED :RE)				

Table 2 - Water quality treatment summary table.

SEP 2024

Proposed Full-Spectrum EDBs

Water quality is provided for the site by two private full-spectrum detention and water quality EDBs. Table 3 below shows the basin parameters for the two ponds. Refer to Appendix C for the MHFD-Detention design sheets that include the tributary basin parameters as well as the stage-storage table and outlet structure design. The outlet structure includes an orifice plate, overflow grate, and restrictor plate to release stormwater at the appropriate rates. The WQCV will be released within 40 hours, the EURV will be released within 72 hours, and the minor and major flows will be released at or below the pre-development flow rate. Table 4 below gives the designed results for Pond 1 and 2.

Table 3 - Watershed design parameters for both EDBs.

Name	Wa	atershed Area	Percent Impervious	Watershed Slope
Pond 1		17.0 ac	19.5%	0.030 ft/ft
Pond 2		\8.5 ac	26.5%	0.030 ft/ft

 Table 4- Full-spectrum EDB design for both EDBs.

Name	Required Volume (ac-ft)	Provided Volume (ac-ft)	WQCV (ac-ft)	EURV (ac-ft)	5-year Release (cfs)	100-year Release (cfs)
Pond 1	0.88	1.03	\0.16	0.33	2.1	11.9
Pond 2	0.52	0.54	Q .10	0.23	1.5	7.8

Calculations and pond design parameters are presented in Appendix C.

Discuss suitability of the ponds outfalls. Both ponds need suitable outfalls and it needs to be discussed/demonstrated that the discharges are not having an erosive or negative impact downstream. At Pond 2, the outfall is located at a point that previously was only sheet flow and it flows directly onto other properties. Address this change with the proposed pond and implement level spreader or other dispersement facility as needed.

- For Pond 1, a broad-crested weir lined with buried soil riprap is provided as an emergency spillway along the eastern embankment of the pond. Pond 1 emergency flows are conveyed overland to the existing Peyton Hwy roadside ditch before going off-site to the north, following the historic drainage patterns.
- Driveway culverts within County ROW are maintained by the property owner and not the County.
- For Pond 2, a broad-crested weir lined with concrete is provided as an emergency spillway along the southern embankment of the pond. Pond 2 emergency flows are conveyed overland before going off-site to the south, following the historic drainage patterns.

Erosion Control Plan

Since riprap lining is typical, please provide an explanation and riprap calcs to show why concrete was used instead.

We respectfully request that the Final Erosion Control Plan and associated Cost Estimate to be submitted in conjunction with the construction drawings and plat prior to obtaining a grading permit.

Operation & Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within any platted County R.O.W. (roadside ditches and local road culverts) will be owned and maintained by El Paso County. All proposed drainage structures within easements or tracts (full-spectrum water quality ponds, drainageway culverts and drainageway improvements) will be owned and maintained by the property owner unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. Inspection access for El Paso County will be provided through a maintenance easement.

Drainage and Bridge Fees

The site lies within the Upper Bracket Creek Drainage Basin and the La Vega Ranch Drainage Basin. Both these basins are not studied and therefore no basin and bridge fees are due.

Construction Cost Opinion

Please include Cost Information

SUMMARY

Include a cost estimate for each PBMP with line items for all components (ex: riprap, road base, forebay, trickle channel, outlet structure, outlet pipe, spillway, etc). Input the total value into the FAE form under "Permanent Pond/BMP (provide engineer's estimate)" in Section 1. The total should not include grading, which is a separate line item in Section 1: "Earthwork." The cost estimate should include labor costs (as a separate line item or added into the cost of each component).

The proposed Lazy Y and Rocking J Subdivision drainage improvements were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development will not adversely affect the off-site drainageways or surrounding development. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements for this site.

REFERENCES

- 1. Engineering Criteria Manual, El Paso County, October 14, 2020.
- <u>City of Colorado Springs Drainage Criteria Manual Volume 1</u>, City of Colorado Springs, CO, May 2014.
- 3. <u>Urban Storm Drainage Criteria Manual</u>, Urban Drainage and Flood Control District, Latest Revision.
- 4. Drainage Basins: El Paso County Colorado, El Paso County, 2005.

Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map

National Cooperative Soil Survey

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
84	Stapleton sandy loam, 8 to 15 percent slopes	В	47.7	100.0%
Totals for Area of Intere	st		47.7	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

USDA

Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of famili size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Sillivater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation in the FIR report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0" North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be ware that coastal flood elevations are also provided in the Summary of Sillivater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Sillivater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in mag features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Pass County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management National Oceanic and Artnospheric Administration, United States Geological Survey and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to confirm to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-677-FEMA MAP** (1-677-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Faso county ventical Da	
Flooding Source	Vertical Datum Offset (ft)
REFER TO SECTION 3.3 OF THE EL PASO CO FOR STREAM BY STREAM VERTICAL DAT	DUNTY FLOOD INSURANCE STUDY UM CONVERSION INFORMATION
Panel Location	Man

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

(T)

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

		LLOLIND								
	SPECIAL FLOO INUNDATION B	D HAZARD AREAS (SFHAS) SUBJECT TO Y THE 1% ANNUAL CHANCE FLOOD								
The 1% annu	ual chance flood (100	-year flood), also known as the base flood, is the flood								
Hazard Area Special Flood Elevation is th	is the area subject Hazard include Zone he water-surface eleva	Valet of Received in any given year. The special ruled to flooding by the 1% annual chance flood. Areas of s A, AE, AH, AO, AR, A99, V, and VE. The Base Flood ation of the 1% annual chance flood.								
ZONE A ZONE AE	No Base Flood Eleva Base Flood Elevatio	ations determined. ns determined.								
ZONE AN	Elevations determin Flood depths of 1 to	ed. o 3 feet (usually sheet flow on sloping terrain); average								
ZONE AR	depths determined determined. Special Flood Hazar flood by a flood co	Intermined. Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone Re indicates that the former flood control octation is hains extract to the indicates that the former flood control octation is hains extract to the indicates that the former flood control octation is hains extract to the indicates the second seco								
ZONE A99	AR indicates that i provide protection f Area to be protect	the former flood control system is being restored to rom the 1% annual chance or greater flood.								
	protection system determined.	under construction; no Base Flood Elevations								
ZONE V	Coastal flood zone Elevations determin	with velocity hazard (wave action); no Base Flood ed.								
ZONE VE	Coastal flood zon Elevations determin	e with velocity hazard (wave action); Base Flood ed.								
////	FLOODWAY ARE	EAS IN ZONE AE								
The floodway kept free of substantial in	is the channel of a second sec	stream plus any adjacent floodplain areas that must be at the 1% annual chance flood can be carried without tts.								
	OTHER FLOOD	AREAS								
ZONE X	Areas of 0.2% annu average depths of square mile; and ar	Jal chance flood; areas of 1% annual chance flood with less than 1 foot or with drainage areas less than 1 eas protected by levees from 1% annual chance flood.								
	OTHER AREAS									
ZONE X ZONE D	Areas determined to Areas in which floor	o be outside the 0.2% annual chance floodplain. I hazards are undetermined, but possible,								
[[]]	COASTAL BARR	IER RESOURCES SYSTEM (CBRS) AREAS								
CBRS areas a	Ind OPAs are normally	coracted within or adjacent to Special Flood Hazard Areas.								
	Floodp	lain boundary								
	Zone E) Boundary								
•••••	CBRS a	and OPA boundary								
	Flood	Elevations, flood depths or flood velocities.								
(EL 987	Base F alevati	Hood Elevation line and value; elevation in reet* Hood Elevation value where uniform within zone;								
* Referenced	to the North America	in Vertical Datum of 1988 (NAVD 88)								
A	- Cross	section line								
23	Transe	ect line								
97° 07' 30 32° 22' 30	.00" Geogra .00" Datum	aphic coordinates referenced to the North American of 1983 (NAD 83)								
4275000m	N 1000-r zone 1	neter Universal Transverse Mercator grid ticks, 3								
6000000	FT 5000-f system Lambe	foot grid ticks: Colorado State Plane coordinate η, central zone (FIPSZONE 0502), rt Conformal Conic Projection								
DX5510	X Bench	mark (see explanation in Notes to Users section of RM panel)								
● ^{M1.8}	5 River 1	Mile								
	Refer to	MAP REPOSITORIES Man Renositories list on Man Index								
	Refer to EFFE FLC	MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE DOD INSURANCE RATE MAP								
	Refer to EFFE FLC	MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE JOD INSURANCE RATE MAP MARCH 17, 1997 ATE(6) OF REVISION(S) TO THIS PANEL								
DECEMI Special Fi	Refer to EFFE FLC EFFECTIVE D/ BER 7, 2018 - to upda lood Hazard Areas, to incorporate pr	MAP REPOSITORIES MAP Repositories its on Map Index CTIVE DATE OF COUNTYWDE 2000 INSURANCE ARTE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate coparate limits, to change Base Flood Elevations and de coparate limits, to change Base Flood Elevations and ate coparate limits, to change Base Flood Elevations and the coparate limits, to change Base Flood Elevations and ate coparate limits, to change Base Flood Elevations and the coparate limits, to change Base Flood Elevations and the coparate limits, to change Base Flood Elevations and the coparate limits of the flood of the comparison of the coparate would lister of Map Revision.								
DECEMI Special Fl For communi Map History 1	Refer to EFFE FLC EFFECTIVE D/ BER 7, 2018 - to upda lood Hazard Areas, to incorporate pr ty map revision histor fable located in the FJ	MAP REPOSITIONES Mare Repositiones is to Map Index CTIVE DATE OF COUNTYWDE DOI INSURANCE TARTE MAP MARCH 17, 1997 MARCH 17, 1997 ESIS OF REVISION(5) TO THIS PANEL the corporate limits, to change Base Rood Elevations and update map format, to add roads and read names, and to eviously issued Latters of Map Revision. y prior to countywide mapping, refer to the Community out fury countywide mapping, refer to the Community								
DECEMI Special Fl For communi Map History 1 To determine agent or call	Refer to EFFECTIVE D BER 7, 2018 - to upda lood Hazard Areas, to incorporate pr ty map revision histor fable located in the Fi allole located in the Fi the National Flood Insurance is the National Flood Insurance is	MAP REPOSITORIES MAP Repositories its on Map Index CTIVE DATE OF COUNTYWDE 2000 INSURANCE ARTE MAP MARCH 17, 1997 ATE(S).OF REVISION(S) TO THIS PANEL the corporate limits, to change Base Flood Elevations and the corporate limits, to change Base Flood Elevations and the corporate limits, to change Base Flood Elevations and the corporate limits, to change Base Flood Elevations would be approximately and the second channes, and to avoid the second the second channes and the avoid limit of the second channes of the second channes would be in the second channes of the second channes of insurance Study report for this jurisdiction.								
DECEMI Special Fi For communi Map History 1 To determine agent or call	Refer to EFFE FLC EFFECTIVE DJ BER 7, 2018 - to upda in corporate pr ty map revision histor Table located in the fly ty map revision histor Table located in the fly if flood insurance in the Netional Flood Inst	MAP REPOSITIONES Mare Repositiones lation Map Index CTIVE DATE OF COUNTYWOE DO INSURVANCE CHATE MAP MARCH 17, 1997 KESIO OF REVISION(S) TO THIS PANEL the corporate limits, to change Base Rood Elevations and update map format, to add roads and read names, and to eviously issued Letters of May Revision: would insure the stand Revision. Service in this community, contact your insurance aurance Program at 1-800-635-6602.								
DECEMI Special Fi For communi Map History 1 To determine agent or call	Refer to EFFE FLU EFFECTIVE DJ BER 7, 2018 - to ugdo Incorporate pr y map revision histor Table located in the fl table located in the fl if flood insurance is the National Flood Ins	MAP REPOSITIONES MAR Repositiones lation Map Index LOTIVE DATE OF COUNTYWDE DOI NOURANCE ARE MAP MARCH 17, 1997 MARCH 17, 1997 KEGS OF REVISIONS) TO THIS PANEL the corporate limits, to change Base Rood Elevations and update map format, to add roads and end names, and to eviously issued Letters of Map Revision. Update map format, to add roads and the Community update map format, and the Community of into contrivide mapping, effet to the Community services to the Community, contact your insurance surance Program at Londy-Sector. MAP SCALE 1*= 2000* 2000 400								
DECEMI Special Fi For communi Map History 1 To determine agent or call	Refer to EFFE FLU EFFECTIVE DJ BER 7, 2019 - to ugdo local Hazard Areas, to incorporate pr ty map revision histor fable located in the fl able located in the fl if flood insurance is the National Flood Ins	MAP REPOSITIONES MAR Repositions lation Map Index LITIVE DATE OF COUNTYWDE DOI NOURAVEC ARE MAP MARCH 17, 1997 NATCH 17, 1997 NATCH 17, 1997 NATCH 17, 1997 NATCH 1997 MAP REGIONE REVIEWS AND EVENTS Widdam ang Norma, to add roads and end names, and to widualy supul clathers of Map Revision. Widdam ang Norma, to add roads and end names, and to widualy supul clathers of Map Revision. Widdam ang Norma, to add roads and end names, and to widualy supul clathers of Map Revision. 9 visit to contrywhole mapping, meth to the Community od Insurance Study report for this jurisdiction. as wellable in this community, contact your insurance surance Program at 1900-38-6620. 2000 400 400 400 400 400 400 40								
DECEMI Special Fi For communi Map History 1 To determine agent or call	Refer to EFFECTIVE D/ BEFFECTIVE D/ BEFFECTI	MAP REPOSITIONES MAP REPOSITIONES ING https://doi.org/10.1007/0000000000000000000000000000000								
DECEMI Special Fi For communi Map History To determine agent or call	Refer to EFFE EFFECTIVE DJ BER 7, 2018 - to updo Dester 7, 2018 - to updo Incorporate Di Rotoporate	MAP REPOSITIONES MAP Repositions bits on Map Index CTIVE DATE OF COUNTYWDE DOD INSURANCE OR ATE MAP MARCH 17, 1997 XESIO FERVISIONS) TO THIS PANEL the corporate limits, to charge Base Picod Elevations and update map forms, to add roads and read names, and to wrough stand Letters of Map Revision wrough reap forms, the standard forms of the Community out insurence Standard Proof for the jurisdiction. as exellable in this community, contact your insurance surance Program at 1-800-638-6602. MAP SCALE 1* = 2000' <u> 4000</u> 1200 PANEL 0375G								
DECEMI Special Fi For communi Map History 1 To determine agent or call	Refer to EFFECTIVE D/ BEFFECTIVE D/ BEFFECTI	MAP REPOSITIONES MAP Repositions fals on Map Index CITVE DATE OF COUNTYWDE DOD INSURANCE OR ATE MAP MARCH 17, 1997 MAP DATE MAP DATE LATE COMMAND A STATE MAP DATE MAP D								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFECTIVE D/ BEFFECTIVE D/ BEFFECTI	MAP REPOSITIONES MAP Repositions is to mAp index CITYE DATE OF COUNTYWDE DOD INSURANCE OR ATTE MAP MARCH 17, 1997 MARCH 1997 MARCH 17, 1997 M								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFECTIVE D/ BEFFECTIVE D/ BEFFECTI	MAP REPOSITIONES Map Reproductions (sto in Map Index ICTIVE DATE OF COUNTYWDE 3000 INSURVACE OF ARTE MAP MARCH 17, 1997 INSURVACE AND AND AND AND AND AND AND AND INSURVACE AND AND AND AND AND AND AND AND INSURVACE AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFECTIVE D/ BEFFECTIVE D	MAP REPOSITIONES IMAP Reproductions for Map Index ICTIVE DATE OF COUNTYWDE 3000 INSURVACE ARE ARE MARCH 17, 1997 INSURVACE ARE MAP MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 1997 M								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFECTIVE DJ EFFECTIVE DJ EFFECT	MAP REPOSITIONES Map Repositions faits on Map Index ICTIVE DATE OF COUNTYWDE 3000 HSURAVCE ARE MAP MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 1997								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFECTIVE DJ BEFFECTIVE D	MAP REPOSITIONES Map Repositions faits on Map Index ICTIVE DATE OF COUNTYWDE 3000 HSURAVCE ARE MAP MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 1997 MAR								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFECTIVE DJ EFFECTIVE DJ EFFECT	MAP REPOSITIONES Map Repositions for Map Index ICTIVE DATE OF COUNTYWDE 3000 HSURACE ARE ARE MAP MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MAP RESONANCE IN THIS PAREL the corporate limits, to change Base Pool Elevations and update map format, to data get a data of the anter, and to wrough yeard Letters of Map Revision. Sevelable in this cormunity, contact your insurance aurone Program 41 - 100-359 6600. PANEL 0375G FIRMM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 375 OF 1300								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFECTIVE DJ SEFFECTIVE D	MAP REPOSITIONES MAP Repositions for Map Index ICTIVE DATE OF COUNTYWDE 3000 FOURTACE OF COUNTYWDE 3000 FOURTACE OF ATTE MAP MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MARCH 17, 1997 MAP RESONANCE IN THIS PAREL the corporate limits, to change Base Pool Elevations and update map formal, to data get Base Pool Elevations would be used to deter angeling, refer to the Community ood Insurance Study report for this jurisdiction. a sealiBelie in this contraunty, contact your insurance aurace Program 4 1:00-359 6:00. PANEL 0375G FIRMM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 375 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS:								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFECTIVE DJ BEFECTIVE DJ BEFECTIVE DJ REFT, 2014 X0 aged total X0 aged X0 aged Total X0 aged Total X0 aged X0 aged Total X0 aged X0 aged Total X0 aged	MAP REPOSITIONES MAR PEpositions for Map Index ICTIVE DATE OF COUNTYWOE SOUTH OF COUNTYWOE MARCH 17, 1997 MARCH 1997 MAR								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFE PLC EFFECTIVE.DLC	MAP REPOSITIONES MAR PEpositions for Map Index CTIVE DATE OF COUNTYWED SOUTH OF COUNTYWED MARCON 17, 1997 MARCON 17, 199								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to FFF PLC EFFC 10 USA EFFC 10 USA	MAP REPOSITIONES MAR PEpositions for Map Index CTIVE DATE OF COUNTYWED SOUTH OF COUNTYWED MARCON 17, 1997 LEG) OF REVISION(5) TO THIS PANEL the corporate limits, ito change Base Picod Elevations and working with the community contact system working the county with mapping, refer to the community, contact your insurance autech regions at 1-800-035-6602 MARCON 2000 PANEL 0375G FIRMM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 375 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) COMMUNITY NUMBER PANEL SUFFIX PADOD UTS OF FIRM PANEL LAYOUT) COMMUNITY NUMBER PANEL SUFFIX RECOMMUNITY NUMBER PANEL SUFFIX RECOMMUNITY RECOM								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to FFF PLC EFF CT SUB A EFF CT SUB	MAP REPOSITIONES MAR PEpositions is in Map Index ICTVE DATE OF COUNTYWE SOUTH OF COUNTYWE MARCON 17, 1997 IES(S) OF REVISION(S) TO THIS PANEL the concents limits, in change Base Picod Elevations and worked with the community contact sour insurance and the community contact your insurance and the community contact								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFE PLC EFFECT 10 USA INTERPORT 10 USA INTERO 10 US	MAP REPOSITIONES IMAP Reproductions to Map Index ICTVE DATE OF COUNTYWED SOLUTIONES MARCH 17, 1997 MARCH 1997								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFE PLC EFFECT 10 USA INTERPORT 7, 2019 - 10 USA INTERO 1, 2019 - 10 USA INTER	MAP REPOSITIONES IMAP Reproductions (In Mup Index) CTVE DATE OF COUNTYWED SOUTH OF COUNTY WIDE MARCH 17, 1997 MARCH 1997								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to EFFE PLC EFFECT 10 USA INTERPT 10 USA INTERT 10 USA INTERT 10 USA INTERT 10 USA INTERT 10 USA	MAP REPOSITIONES MAR PEpositions is in Map Index ICTVE DATE OF COUNTYWED SOLUTIONES MARCH 17, 1997 MARCH								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to FFF PLC EFF 7.010 - to upoke lood Historic Areas the near revision historic the near revision histo	MAP REPOSITIONES MARE TREPOSITIONES MARE TRE								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to FFF PLC EFF 7:010 - to upoke lood Historic Areas ty map revision historic the Netional Flood Inter 1000	MAP REPOSITIONES MARE PErpositions for Map Index CTIVE DATE OF COUNTYWE MARE PErpositions for Map Reveals MARE PERPOSITIONES MARE PERPOSITIONES MARE PERPOSITIONES MARE PERPENDING PERPENDING PERPENDING PARE PERPENDING PARE PERPENDING								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to FFFE PLC EFFECT 10 Update Local Areas of the second	MAP REPOSITIONES MAP Repositions is in Map Index ICTVE DATE OF COUNTYWOE SOURCE OF COUNTYWOE MAP REPOSITIONES MAP RUMBERE BODD INSURANCE FASTE MAP REPOSITIONES MAP RUMPERES MAP RUMPERES MAP RUMPERES MAP RUMPERES MAP RUMPERES MAP RUMPERES MAP RUMPERES MAP RUMPERES MAP RUMBERE BODD INSURANCE FORMERES MAP RUMPERES MAP RUMPERES MA								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to FFE PLC EFF. 7518 - to upoke lood Historycate on the network of the PLC the National Flood Inter 1000 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MAP REPOSITIONES MAP Repositions into Map Index ICTVE DATE OF COUNTYWOE SOURCE OF COUNTYWOE MAP REPOSITIONES MAP REPOSITIONES MAP REVISED MAP NUMBER NUMBER DATE OF DATE MAP MAP NUMBER DATE OF COUNTY MAP REVISED MAP NUMBER DATE DATE OF COUNTY COLORADO AND INCORPORATED AREAS PANEL 375 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) COMMUNTY NUMBER PANEL STO FIND AND INCORPORATED AREAS PANEL 375 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) COMMUNTY NUMBER PANEL STO FIRM AND INCORPORATED AREAS PANEL 375 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) COMMUNTY NUMBER PANEL STO FIRM AND INCORPORATED AREAS PANEL 375 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) COMMUNTY NUMBER PANEL STO FIRM AND INCORPORATED AREAS PANEL 375 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) COMMUNTY NUMBER PANEL SUFFICIENT NUMBER RODOCITY SOURCE SUFFICIENT MAP NUMBER SOURCESSOURCE SUFFICIENT MAP NUMBER SOURCESSOUR								
DECEMI Special Fi Map History 1 To determine agent or call	Refer to FFE PTC EFF 7.2012 - To upple lood History Areas to the National Flood Inter FI is flood inte	MAP REPOSITIONES MAP Repositions is on Map index CTIVE DATE OF COUNTYWDE SOUTH OF COUNTYWDE MAP REPOSITIONES MAP REPOSITIONES MAP REPOSITIONES MAP NUMBER PANEL 0375G PANEL 0375G PANEL 0375G FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 375 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) COLORADO AND INCORPORATED AREAS PANEL 375 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) COLORADO AND INCORPORATED AREAS PANEL 375 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) COMMUNY NUMBER PANEL SUFFICIENT COMMUNY NUMBER PANEL SUFFICIENT COMMUNY NUMBER PANEL SUFFICIENT MAP NUMBER 08041C0375G MAP REVISED DECEMBER 7, 2018 MAP REVISED DECEMBER 7, 2018								

Appendix B Hydrologic Calculations

Please include tables for rainfall data and ECM 5-1 runoff coefficients

S JR ENGINEERING

COMPOSITE % IMPERVIOUS & COMPOSITE PRE-DEVELOPMENT RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location:

El Paso County

Project Name: Lazy Y and Rocking J Subdivision

Project No.: 25228.00 Calculated By: GAG

Checked By:

Date: 9/26/23

	Total		Drives (100%	and Wa Impervic	lks ous)		Roofs (90% Impervious)			Streets-Gravel (80% Impervious)				Historical Analysis (2% Impervious)				Basin: Weighted	Basins Total Weighted %	
Basin ID	Ai ca (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Imp.
EXA	7.84	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	7.84	2.0%	0.09	0.36	2.0%
EXB	11.20	0.90	0.96	0.00	0.0%	0.73	0.81	0.05	0.4%	0.59	0.70	0.42	3.0%	0.09	0.36	10.73	1.9%	0.11	0.37	5.3%
EXC	14.90	0.90	0.96	0.01	0.1%	0.73	0.81	0.11	0.7%	0.59	0.70	0.27	1.4%	0.09	0.36	14.51	1.9%	0.10	0.37	4.1%
OS1	0.61	0.90	0.96	0.25	41.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.36	1.2%	0.42	0.61	42.2%
TOTAL ON-SITE	33.94																			4.0%

PRE-DEVELOPMENT STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision:

Location: El Paso County

Project Name: Lazy Y and Rocking J Subdivision

Equation 6-3

Equation 6-5

Project No.: 25228.00

Calculated By: GAG

Checked By:

Date: 9/26/23

		SUB-E	BASIN			INITI	AL/OVERI	AND			TRAVEL TI	ME			tc CHECK		
		DA	ATA				(T _i)				(T _t)			(U	RBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
EXA	7.84	В	2%	0.09	0.36	300	1.5%	27.6	345	8.0%	7.0	2.0	2.9	30.5	645.0	27.9	27.9
EXB	11.20	В	5%	0.11	0.37	300	8.5%	15.3	570	5.0%	7.0	1.6	6.1	21.3	870.0	29.5	21.3
EXC	14.90	В	4%	0.10	0.37	300	1.0%	31.1	420	3.0%	7.0	1.2	5.8	36.9	720.0	29.5	29.5
OS1	0.61	В	42%	0.42	0.61	25	8.0%	3.1	865	3.5%	7.0	1.3	11.0	14.1	890.0	24.0	14.1

NOTES:

 $t_c = t_i + t_t$

Where:

te = computed time of concentration (minutes)

 $t_i = \text{overland (initial) flow time (minutes)}$

 t_t = channelized flow time (minutes).

 t_i = overland (initial) flow time (minutes) C_5 = runoff coefficient for 5-year frequency (from Table 6-4) L_i = length of overland flow (ft) S_{Φ} = average slope along the overland flow path (ft/ft).

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$

Where:

Equation 6-4 $t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$

Where:

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Equation 6-2

$$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$$

Where:

 $\begin{array}{l} t_t = \text{channelized flow time (travel time, min)} \\ L_t = \text{waterway length (ft)} \\ S_o = \text{waterway slope (ft/ft)} \\ V_t = \text{travel time velocity (ft/sec)} = K \sqrt{S_o} \\ K = \text{NRCS conveyance factor (see Table 6-2).} \end{array}$

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. L_r = length of channelized flow path (ft) i = imperviousness (expressed as a decimal) S_r = slope of the channelized flow path (ft/ft).

Table 6-2.	NRCS	Conveyance	factors,	K

Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

								ST	ANDA S	ARD TORN (RA	FORI A DRA TIONA	M SF- AINA(AL MET	3 - PF GE SYS HOD P	RE-DI STEM ROCED	EVEL DESI(URE)	OPM GN	1ENT						
Subdivision: Location: Design Storm:	Subdivision: Location: El Paso County ssign Storm: 5-Year DIRECT RUNOFF TOTAL RUNOFF STREET/SWALE PIPE TRAVEL TIME																						
				DIRE	CT RUI	NOFF			T	OTAL F	RUNO	F	STRE	et/sw	/ALE		PI	PE		TRAV	EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	EXA	7.84	0.09	27.9	0.71	2.59	1.8															Sheet flows overland to DP1 Flows off-site to the north
	2	EXB	11.20	0.11	21.3	1.25	2.99	3.7															Sheet flows overland to DP2 Combines at swale at DP2.1
	01	OS1	0.61	0.42	14.1	0.26	3.61	0.9															Flows in ex. roadside swale Combines at swale at DP2.1
	2.1	EV0	14.00	0.10	20.5	1	2.54		21.3	1.51	2.99	4.5											Combines DP2 and DP-O1 Flows off-site to the north in swale Sheet flows overland to DP3
Notes: Street and Pipe C	3 *A valu	es are d	determin	ed by C	29.5 ¢/i usir	i,55 ng the c	2.51 atchme	3.9 ent's inte	ensity v	alue.				<u> </u>							[riows on-site to the south

								ST	AND	ARD STORI (RA	FORN M DRA	Л SF- AINA(L MET	3 - PI GE SYS HOD P	RE-DE TEM D ROCEDU	VELC DESIGI JRE))PME N	INT						
Subdivision: Location: Design Storm:	El Pas 100-Y	o Coun 'ear	ity													P	Project N Projec Calculate Checke	lame: ct No.: ed By: ed By: Date:	Lazy 2522 GAG 9/26	Y and 8.00 /23	Rockir	ng J Su	Ibdivision
				DIR	ECT RU	UNOFF			T	OTAL F	RUNOFI	F	STR	EET/SW	ALE		PIP	E		TRAV	/EL TIN	ИE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street} /swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	FXA	7 84	0.36	27.9	2 82	4 35	123															Sheet flows overland to DP1 Flows off-site to the north
	2	EXB	11.20	0.37	21.3	4.20	5.02	21.1															Sheet flows overland to DP2 Combines at swale at DP2.1
	01	OS1	0.61	0.61	14.1	0.37	6.07	2.2															Flows in ex. roadside swale Combines at swale at DP2.1
	2.1								21.3	4.57	5.02	23.0											Combines DP2 and DP-O1 Flows off-site to the north in swale
	3	EXC	14.90	0.37	29.5	5.51	4.20	23.2															Sheet flows overland to DP3 Flows off-site to the south
Notes: Street and Pipe C	*A valu	es are d	etermine	ed by Q	/i using	g the cate	chment's	intensity	value.				_			_				-			-

COMPOSITE % IMPERVIOUS & COMPOSITE PROPOSED RUNOFF COEFFICIENT CALCULATIONS

Subdivision:

Lazy Y and Rocking J Subdivision

Location:

El Paso County

Project Name: Lazy Y and Rocking J Subdivision

Project No.: 25228.00 Calculated By: GAG

Checked By:

Date: 9/4/24

	Total		Stree Sic (100%	ets-Paveo lewalks Impervio	d us)		(90%	Roofs Impervio	ous)		Stree (80% li	ets-Grave mpervio	l JS)	ŀ	Historica (2% I	l Analysis/I mpervious	.awn)	Basin: Weighted	s Total d C Values	Basins Total Weighted %
Basin ID	Area (ac)	C₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C₅	C ₁₀₀	Imp.
А	1.51	0.90	0.96	0.07	4.6%	0.73	0.81	0.00	0.0%	0.59	0.70	0.28	14.8%	0.09	0.36	1.16	1.5%	0.22	0.45	21.0%
В	2.51	0.90	0.96	0.09	3.6%	0.73	0.81	0.00	0.0%	0.59	0.70	0.13	4.1%	0.09	0.36	2.29	1.8%	0.14	0.40	9.6%
С	4.27	0.90	0.96	0.43	10.1%	0.73	0.81	0.00	0.0%	0.59	0.70	0.42	7.9%	0.09	0.36	3.42	1.6%	0.22	0.45	19.5%
D	4.96	0.90	0.96	0.26	5.2%	0.73	0.81	0.01	0.2%	0.59	0.70	1.05	16.9%	0.09	0.36	3.64	1.5%	0.24	0.46	23.8%
E	2.64	0.90	0.96	0.19	7.2%	0.73	0.81	0.00	0.0%	0.59	0.70	0.38	11.5%	0.09	0.36	2.07	1.6%	0.22	0.45	20.3%
F	0.84	0.90	0.96	0.05	6.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.09	8.6%	0.09	0.36	0.70	1.7%	0.19	0.43	16.2%
G	1.57	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	1.57	2.0%	0.09	0.36	2.0%
н	0.74	0.90	0.96	0.13	17.6%	0.73	0.81	0.00	0.0%	0.59	0.70	0.05	5.4%	0.09	0.36	0.56	1.5%	0.27	0.49	24.5%
I	1.00	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	1.00	2.0%	0.09	0.36	2.0%
J	2.99	0.90	0.96	0.11	3.7%	0.73	0.81	0.11	3.3%	0.59	0.70	0.58	15.5%	0.09	0.36	2.19	1.5%	0.24	0.46	24.0%
К	0.78	0.90	0.96	0.05	6.4%	0.73	0.81	0.00	0.0%	0.59	0.70	0.27	27.7%	0.09	0.36	0.46	1.2%	0.32	0.52	35.3%
L	0.45	0.90	0.96	0.07	15.6%	0.73	0.81	0.00	0.0%	0.59	0.70	0.13	23.1%	0.09	0.36	0.25	1.1%	0.36	0.55	39.8%
М	2.01	0.90	0.96	0.07	3.5%	0.73	0.81	0.00	0.0%	0.59	0.70	0.50	19.9%	0.09	0.36	1.44	1.4%	0.24	0.47	24.8%
N	2.12	0.90	0.96	0.09	4.2%	0.73	0.81	0.00	0.0%	0.59	0.70	0.53	20.0%	0.09	0.36	1.50	1.4%	0.25	0.47	25.7%
0	5.56	0.90	0.96	0.01	0.2%	0.73	0.81	0.09	1.5%	0.59	0.70	0.29	4.2%	0.09	0.36	5.17	1.9%	0.13	0.39	7.7%
OS1	0.43	0.90	0.96	0.18	41.9%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.25	1.2%	0.43	0.61	43.0%
OS2	0.18	0.90	0.96	0.10	55.6%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.08	0.9%	0.54	0.69	56.4%
TOTAL (POND 1)	16.73																			19.4%
TOTAL (POND 2)	8.35																			26.5%

PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Lazy Y and Rocking J Subdivision

Location: El Paso County

Project Name: Lazy Y and Rocking J Subdivision

Project No.: 25228.00

Calculated By: GAG

Checked By:

Date: 9/4/24

		SUB-B	ASIN			INITI	AL/OVER	LAND			TRAVEL TI	ME		tc CHECK (URBANIZED BASINS) FI COMP.t TOTAL			
DATA							(T _i)				(T _t)			(ι	JRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C₅	C ₁₀₀	L	S _o	ti	L _t	S _t	к	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
А	1.51	А	21%	0.22	0.45	100	3.5%	10.5	310	3.0%	15.0	2.6	2.0	12.5	410.0	24.9	12.5
В	2.51	А	10%	0.14	0.40	100	2.0%	13.7	679	4.0%	15.0	3.0	3.8	17.5	779.0	29.8	17.5
С	4.27	А	20%	0.22	0.45	100	3.5%	10.5	575	3.3%	15.0	2.7	3.5	14.0	675.0	27.2	14.0
D	4.96	А	24%	0.24	0.46	100	1.5%	13.6	860	2.0%	15.0	2.1	6.8	20.3	960.0	30.2	20.3
E	2.64	А	20%	0.22	0.45	100	3.0%	11.1	750	1.5%	15.0	1.8	6.8	17.9	850.0	31.2	17.9
F	0.84	А	16%	0.19	0.43	100	15.0%	6.7	295	0.5%	20.0	1.4	3.5	10.2	395.0	29.4	10.2
G	1.57	А	2%	0.09	0.36	20	14.0%	3.4	450	3.0%	10.0	1.7	4.3	7.7	470.0	30.3	7.7
н	0.74	А	24%	0.27	0.49	100	1.5%	13.2	345	1.2%	10.0	1.1	5.2	18.4	445.0	26.1	18.4
I	1.00	А	2%	0.09	0.36	40	30.0%	3.8	0	0.0%	10.0	0.0	0.0	3.8	40.0	25.7	5.0
J	2.99	А	24%	0.24	0.46	85	3.0%	10.0	525	2.0%	15.0	2.1	4.1	14.1	610.0	26.9	14.1
К	0.78	А	35%	0.32	0.52	65	2.0%	9.1	355	1.0%	15.0	1.5	3.9	13.0	420.0	24.2	13.0
L	0.45	А	40%	0.36	0.55	100	1.5%	11.7	335	2.0%	15.0	2.1	2.6	14.3	435.0	21.9	14.3
М	2.01	А	25%	0.24	0.47	100	1.0%	15.5	455	1.2%	15.0	1.6	4.6	20.1	555.0	27.3	20.1
Ν	2.12	А	26%	0.25	0.47	100	3.0%	10.7	350	1.5%	15.0	1.8	3.2	13.9	450.0	25.4	13.9
0	5.56	А	8%	0.13	0.39	100	7.5%	9.0	375	6.5%	15.0	3.8	1.6	10.7	475.0	27.1	10.7
OS1	0.43	А	43%	0.43	0.61	25	8.0%	3.0	675	3.5%	15.0	2.8	4.0	7.1	700.0	22.7	7.1
OS2	0.18	А	56%	0.54	0.69	25	4.0%	3.2	270	3.5%	15.0	2.8	1.6	4.8	295.0	17.8	5.0

PROPOSED **STANDARD FORM SF-2** TIME OF CONCENTRATION

Subdivision: Lazy Y and Rocki Location: El Paso County	ng J Subdivision							Pro <u></u> F Calo C	ject I Proje culate hecke	Name ct No ed By ed By Date	: Lazy Y and R : 25228.00 : GAG : : 9/4/24	Rocking J S	Subdivision			
SUB-BASIN			INI	TIAL/O\	/ERLAND				TR	AVEL	TIME			tc CHECI	<	
DATA				(T _i)					(T _t)			(UF	RBANIZED B	ASINS)	FINAL
BASIN D.A. Hydrologic Imp	ervious C ₅	C ₁₀₀	L	S _o	t _i		L _t	S _t		К	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t _c	t _c
OTES: $t_c = t_i + t_t$ Where: $t_c = \text{computed time of concentration (minutes)}$ $t_i = \text{overland (initial) flow time (minutes)}$ $t_t = \text{channelized flow time (minutes)}.$	$t_c = t_i + t_t$ $t_c = \text{computed time of concentration (minutes)}$ $t_i = \text{overland (initial) flow time (minutes)}$ $t_t = \text{channelized flow time (minutes)}.$						$\overline{L_i}$ low time t for 5-yet I flow (ffi ng the ov	(minutes) ar frequency () erland flow pa	from T: ath (ft/ft	able 6-4) t).	Equa	tion 6-3				
Use a minimum t_t value of 5 minutes for urbanizet that are not considered urban. Use minimum value concentration. $t_t = \frac{L_t}{60K_t/S_t} = \frac{L_t}{60K_t}$	d areas and a minimum t _e es even when calculation	e value of 10 as result in a l Equation 6-4	minutes for the second	or areas of 17 <i>i</i>)+							Equation 6-5		Table 6-2. N Type of Land Surfac Heavy meadow	NRCS Conveyar	ce factors, K Conveyance Factor 2.5	r, K
Where:			Where	60($14i + 9)\sqrt{S_i}$							S	Tillage/field hort pasture and law	ns	5	
t_t = channelized flow time (travel time, min)			where.	= minimur	n time of con	centratio	for first	design point	when le	ace than	t from Equation 6.1		Nearly bare ground Grassed waterway		10	

 $\begin{array}{l} L_r = \text{waterway length (ft)} \\ S_0 = \text{waterway slope (ft/ft)} \\ V_i = \text{travel time velocity (ft/sec)} = K \sqrt{S_0} \\ K = \text{NRCS conveyance factor (see Table 6-2).} \end{array}$

sign po t when less than t_c from Equ $L_t =$ length of channelized flow path (ft)

i = imperviousness (expressed as a decimal)

 S_t = slope of the channelized flow path (ft/ft).

Paved areas and shallow paved swales 20

										ST	AND	ARD	FORM	Л SF	-3 - F	PROP	OSEI)					
											STOR	MDF	RAINA	GE SY	STEN	1 DES	IGN						
											(R.	AHON	AL ME I	HODI	PROCE	DURE)						
Cubdivision	. Lony V	and Day	ling I C	بالمطابية	alan											Pro	ject N	lame:	Lazy	Y and I	Rockir	ng J Su	Ibdivision
Location	: El Pas	o County	//	upuivi	SION											Ca	lculate	d Bv:	GAG	8.00			
Design Storm	: 5-Yea	<u>, , , , , , , , , , , , , , , , , , , </u>	1													(Checke	ed By:					
																		Date:	9/4/2	24			
	Γ			DIREC	CT RUN	OFF			TC	DTAL F	RUNOF	F	STRE	et/sv	VALE	1	PI	PE		TRAV	EL TIN	ЛE	
													((Si				
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inche	Length (ft)	Velocity (fps)	tt (min)	REMARKS
	1	Δ	1 51	0.22	12 5	0 33	3 80	13					1.3	0.33	2.0					275	2.8	1.6	Sheet flows overland to DP1 swale
			1.01	0.22	12.0	0.00	0.00	1.0															Sheet flows overland to DP2 swale
	2	В	2.51	0.14	17.5	0.36	3.29	1.2					2.2	0.40	2					410	2.2	2.2	Combines flow within swale at DP2.1
	2.1								17.5	0.69	3.29	2.3	2.3	0.69	2.5					410	3.2	2.2	Combines flow of DP1 and DP2 at DP2.1 culvert Flows along in swale to DP3 1
																							Sheet flows overland to DP3 at swale
	3	С	4.27	0.22	14.0	0.94	3.62	3.4															Combines flow within swale at DP3.1
	3.1								19.7	1.63	3.12	5.1											Combines flow of DP2.1 and DP3 Combines flow at DP5.2 inlet
	4	D	4.04	0.24	20.2	1 10	2.04	2.4					3.6	1.19	1.3					570	2.3	4.2	Sheet flows overland to DP4 culvert
	4	D	4.90	0.24	20.3	1.19	3.00	3.0															Sheet flows overland to DP5 swale
	5	Е	2.64	0.22	17.9	0.58	3.26	1.9					1.0	1 77	10.0					150	()	0.4	Combines flow within swale at DP5.1
	5.1								24.5	1.77	2.78	4.9	4.9	1.77	10.0					150	0.3	0.4	Flows along in swale to D5.2
																							Combines flow of DP3.1 and DP5.1 at DP5.2 culvert
	5.2								24.9	3.40	2.76	9.4											Flows into Pond 1 forebay and combines at DP6.1
	6	F	0.84	0.19	10.2	0.16	4.10	0.7															Combines flow at Pond 1 outlet structure at DP6.1
																							Combines flow of DP5.2 and DP6
	6.1								24.9	3.56	2.76	9.8									-	-	Released through Pond 1 outlet pipe at DP6.2
	6.2								-	-	-	2.1											Combines in existing roadside swale at DP8.1
	01	0\$1	0.43	0.43	71	0.18	4.65	0.8															Flows along Peyton Hwy ditch to DPO1
	-	001	0.43	0.40	7.1	0.10	4.00	0.0															Sheet flows to Peyton Hwy ditch and then to DP7
	/	G	1.57	0.09	1.1	0.14	4.51	0.6					1.4	0.32	1.5					190	2.4	1.3	Combines flow at DP7.1 culvert Combines flow of DPO1 and DP7 at culvert
	7.1								7.7	0.32	4.51	1.4											Continues along Peyton Hwy ditch to DP8.1
	02	OS2	0.18	0.54	5.0	0.10	5.17	0.5															Flows along Peyton Hwy ditch to DPO2 Combines flow at DP8 1 ditch
			0.74	0.07	10.4	0.00	2.11	0.0															Sheet flows to Peyton Hwy ditch and then to DP8
	8	Н	0.74	0.27	18.4	0.20	3.21	0.6										+					Combines flow at DP8.1 ditch Combines flow of DP6.2 DP7.1 DPO2 and DP8
	8.1								18.4	0.62	3.21	4.1											Continues along Peyton Hwy ditch off-site north

r										ст				1.05	<u>о</u> г			-					
										51	ANL		FOR		-3 - F	'ROF	'OSEI	J					
											STOP	RM DI	RAINA	GE SY	'STEN	1 DES	IGN						
											(R	RATION	IAL MET	FHOD I	PROCE	DURE)						
																Pro	oiect N	lame:	lazy	Y and	Rocki	na I Su	bdivision
Subdivision	: Lazy Y	and Roo	cking J S	ubdivi	sion												Projec	t No.:	2522	8.00			
Location	El Pas	o Count	у									-				Са	Iculate	ed By:	GAG				
Design Storm:	5-Yea	r										-					Checke	ed By:	0/4/	- 4			
																		Date:	9/4/2	24			
	I			DIREC	CT RUN	OFF			T	DTAL F	RUNO	FF	STRE	ET/SV	VALE	I	PI	PE		TRA	/EL TII	ME	
													()						(Sé				
	oint	0	$\overline{\Omega}$	eff.		$\overline{\Omega}$				-			(cfs		()	s)		()	iche	(ff	(sdj		
STREET	PC	u II	A.	Co	nin	(Ă	/hr	cfs)	min	(ac	/hr	cfs)	vale	(ac	e (9	, (cf	(ac	e (%	(ir	th (j	ty (j	nin	REMARKS
STREET	sigr	Bas	rea	Jof	1	×A	Ē	0 () 	A*C	(j.	Ő	set/s	A*C	lop	Dpipe	A*C	lop	Size	sng	oci	t (L	REWARKS
	De	-	4	Rur	-	0	-		4	\cup	_		Dstre	Ŭ	S	0		S	be	9	Vel	-	
																			Ā	<u> </u>			Chaot flours off site to DDO
	9		1 00	0.09	5.0	0.09	5 17	0.5															Sneet nows on-site to DP9 Follows historic path off-site
	ŕ		1.00	0.07	0.0	0.07	0.17	0.0															
													2.6	0.72	1.0					40	2.0	0.3	Sheet flows overland to DP10 culvert
	10	J	2.99	0.24	14.1	0.72	3.62	2.6															Combines flow at DP11.1 culvert
	11	ĸ	0.78	0.32	13.0	0.25	3 73	0.0															Combines flow at DP11 1 culvert
		ĸ	0.70	0.52	13.0	0.23	5.75	0.7					3.5	0.97	2.0					190	2.8	1.1	Combines flow of DP10 and DP11 at culvert
	11.1								14.4	0.97	3.58	3.5	0										Flows along in swale to D12.1 inlet
																							Sheet flows to swale at DP12
	12	L	0.45	0.36	14.3	0.16	3.59	0.6															Combines flow at DP12.1 inlet
	12.1								15 5	1 1 2	2 47	20											Combines flow of DP11.1 and DP12 at inlet
	12.1								15.5	1.13	3.47	3.7											Sheet flows to swale at DP13
	13	М	2.01	0.24	20.1	0.49	3.08	1.5															Flows into Pond 2 forebay and combines at DP14.1
																							Sheet flows overland to Pond 2 at DP14
	14	N	2.12	0.25	13.9	0.53	3.64	1.9															Combines flow at Pond 2 outlet structure at DP14.1
	14.1								20.1	2.15	2.00												Combines flow of DP12.1, DP13 and DP14
	14.1								20.1	2.15	3.08	0.0) 										Controlled released through Pond 2 outlet pipe at DP14.2
	14.2								-	-	-	1.5	j										Continues flowing off-site south
	15	0	F F /	0.12	10.7	0.71	4.00	2.0															Sheet flows overland to DP15
	15	U	5.56	0.13	10.7	0.71	4.03	2.9	——				<u> </u>							<u> </u>			Continues flowing off-site south
Notes:	-								•							-							-
Street and Pipe C	C*A valu	es are de	etermine	d by Q	/i using	the cat	tchmen	nt's inter	nsity valı	Je.													

										ST	AND	ARD	FORM	1 SF-3	- PR	OPOS	SED						
											STOR	M DR	AINAG	E SYS	EM [DESIG	N						
											(R	ATION	AL METH	HOD PR	OCED	URE)							
																Р	roiect N	lame [.]	lazv	Y and	Rockir	na I Su	ubdivision
Subdivision	: Lazy Y	and Rock	king J Su	ıbdivisi	on							_					Projec	ct No.:	2522	28.00	reen	.g 5 66	
Location:	El Pas	o County										-				С	alculate	ed By:	GAG				
Design Storm:	100-Y	ear										-					Спеске	Date	9/4/	24			
																		Dute.	77 47.	27			
			1	DIRE	ECT RU	INOFF			1	TOTAL I	RUNO	FF	STRE	ET/SW	ALE		PIP	E	1	TRAV	EL TIN	ЛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	Δ	1 5 1	0.45	12 5	0.68	6 37	43					4.3	0.68	2.0					275	2.8	1.6	Sheet flows overland to DP1 swale
	2	D	2 5 1	0.10	17.5	1.00	E E 2	E E															Sheet flows overland to DP2 swale
	2	D	2.01	0.40	17.5	1.00	0.02	5.5					9.3	1.68	2.5					410	3.2	2.2	Combines flow of DP1 and DP2 at DP2.1 culvert
	2.1								17.5	1.68	5.52	9.3											Flows along in swale to DP3.1
	2	c	4.07	0.45	14.0	1.04	4 00	11.0															Sheet flows overland to DP3 at swale
	3	C	4.27	0.43	14.0	1.94	0.00	11.0															Combines flow of DP2 1 and DP3
	3.1								19.7	3.62	5.23	18.9											Combines flow at DP5.2 inlet
	4	D	4.96	0.46	20.3	2.30	5.14	11.8					11.8	2.30	1.3					570	2.3	4.2	Sheet flows overland to DP4 culvert Combines flow within swale at DP5 1
	-	г	2.4	0.45	17.0	1 10	F 47																Sheet flows overland to DP5 swale
	5	E	2.64	0.45	17.9	1.19	5.47	0.5					16.3	3 4 9	10.0					150	63	04	Combines flow within swale at DP5.1 Combines flow of DP4 and DP5 at culvert
	5.1								24.5	3.49	4.67	16.3	1010	0.17	1010						0.0	0.1	Flows along in swale to D5.2
																							Combines flow of DP3.1 and DP5.1 at DP5.2 culvert
	5.2								24.9	7.11	4.63	32.9											Flows into Pond 1 forebay and combines at DP6.1
	6	F	0.84	0.43	10.2	0.36	6.89	2.5															Combines flow at Pond 1 outlet structure at DP6.1
																							Combines flow of DP5.2 and DP6
	6.1								24.9	7.47	4.63	34.6										-	Released through Pond 1 outlet pipe at DP6.2
	62									_		11 0											Controlled released through Pond 1 outlet pipe
	0.2											11.7								1			Flows along Peyton Hwy ditch to DPO1
	01	OS1	0.43	0.61	7.1	0.26	7.81	2.0															Combines flow at DP7.1 culvert
	7	G	1.57	0.36	7.7	0.57	7.58	4.3															Combines flow at DP7.1 culvert
	7 1									0.02	7.50	()	6.3	0.83	1.5					190	2.4	1.3	Combines flow of DPO1 and DP7 at culvert
	7.1								1.1	0.83	7.58	0.3											Flows along Peyton Hwy ditch to DP02
	02	OS2	0.18	0.69	5.0	0.12	8.68	1.0															Combines flow at DP8.1 ditch
	8	Н	0.74	0.49	18.4	0.36	5.39	1.9															Sneet flows to Peyton Hwy ditch and then to DP8 Combines flow at DP8.1 ditch
	0.1								10.4	1.04	F 22	10.0											Combines flow of DP6.2, DP7.1, DPO2 and DP8
	8.1								18.4	1.31	5.39	19.0		_									Continues along Peyton Hwy ditch off-site north

										ST	AND STOR	ARD M DR	FORM	1 SF-3 E SYST	- PR		SED N						
Subdivision: Location: Design Storm:	Lazy Y El Pas 100-Y	' and Roc o County ear	king J Su	ubdivis	ion						(К	ATION/ 	AL IVIE I F	10D PR	UCEDI	URE) P C	roject N Projec alculate Checke	Jame: ct No.: ed By: ed By: Dato:	Lazy ` 2522 GAG	Y and F 8.00	Rockir	ng J Su	bdivision
																		Date.	// 4/2				
				DIRE	CIRUN	NOFF				OTALI	RUNO	FF	STRE	E1/SW	ALE		PIP	'E		IRAV	EL IIN	ЛЕ	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Qstreet/swale (CfS)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
	0	1	1.00	0.26	5.0	0.26	0 60	2.1															Sheet flows off-site to DP9
	7	1	1.00	0.30	5.0	0.30	0.00	3.1															Follows historic path on-site
													84	1.39	10					40	2.0	0.3	Sheet flows overland to DP10 culvert
	10	J	2.99	0.46	14.1	1.39	6.07	8.4					0.1								2.0	0.0	Combines flow at DP11.1 culvert
	11	К	0.78	0.52	13.0	0.40	6.26	2.5															Sheet flows overland to DP10 culvert Combines flow at DP11 1 culvert
										1 70	(01	10.0	10.8	1.79	2.0					190	2.8	1.1	Combines flow of DP10 and DP11 at culvert
	11.1								14.4	1.79	6.01	10.8											Flows along in swale to D12.1 inlet Sheet flows to swale at DP12
	12	L	0.45	0.55	14.3	0.25	6.03	1.5															Combines flow at DP12.1 inlet
	121								15 5	2 04	5.82	11 9											Combines flow of DP11.1 and DP12 at inlet Flows into Pond 2 forebay and combines at DP14.1
	12.1								10.0	2.01	0.02												Sheet flows to swale at DP13
	13	М	2.01	0.47	20.1	0.94	5.17	4.9															Flows into Pond 2 forebay and combines at DP14.1
	14	N	2.12	0.47	13.9	1.00	6.11	6.1															Combines flow at Pond 2 outlet structure at DP14.1
	14.1								20.1	2.00	E 17	20.4											Combines flow of DP12.1, DP13 and DP14
	14.1								20.1	3.98	5.17	20.0											Controlled released through Pond 2 outlet pipe at DP14.2
	14.2								-	-	-	7.8											Continues flowing off-site south
	15	0	5.56	0.39	10.7	2.15	6.77	14.6															Sheet flows overland to DP15 Continues flowing off-site south
Notes: Street and Pipe C	*A valu	es are det	ermined	l by Q/i	using th	e catchr	nent's in	tensity v	alue.														

SEP 2024

Appendix C Hydraulic Calculations

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Aug 19 2024

Ex. DP2.1-Existing Roadside Swale

User-defined		Highlighted	
Invert Elev (ft)	= 6798.54	Depth (ft)	= 0.59
Slope (%)	= 3.30	Q (cfs)	= 23.00
N-Value	= 0.030	Area (sqft)	= 5.91
		Velocity (ft/s)	= 3.89
Calculations		Wetted Perim (ft)	= 20.08
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.65
Known Q (cfs)	= 23.00	Top Width (ft)	= 20.03
		EGL (ft)	= 0.83

(Sta, El, n)-(Sta, El, n)...

(0.00, 6800.36) - (20.58, 6799.62, 0.030) - (49.23, 6798.54, 0.030) - (58.38, 6799.77, 0.030) - (70.18, 6799.92, 0.030)

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 12 2024

DP1 Swale

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 0.61
Total Depth (ft)	= 1.75	Q (cfs)	= 4.500
		Area (sqft)	= 1.49
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.02
Slope (%)	= 2.00	Wetted Perim (ft)	= 5.03
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.61
		Top Width (ft)	= 4.88
Calculations		EGL (ft)	= 0.75
Compute by:	Known Q		
Known Q (cfs)	= 4.50		

Reach (ft)
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 12 2024

DP2.1 Swale

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 0.80
Total Depth (ft)	= 2.00	Q (cfs)	= 9.500
		Area (sqft)	= 2.56
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.71
Slope (%)	= 2.00	Wetted Perim (ft)	= 6.60
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.82
		Top Width (ft)	= 6.40
Calculations		EGL (ft)	= 1.01
Compute by:	Known Q		
Known Q (cfs)	= 9.50		

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP2.1 Culvert

Invert Elev Dn (ft)	= 6824.24	Calculations	
Pipe Length (ft)	= 32.00	Qmin (cfs)	= 9.50
Slope (%)	= 3.97	Qmax (cfs)	= 9.50
Invert Elev Up (ft)	= 6825.51	Tailwater Elev (ft)	= Normal
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 9.50
No. Barrels	= 1	Qpipe (cfs)	= 9.50
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 10.24
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 6.32
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6825.02
		HGL Up (ft)	= 6826.7
Embankment		Hw Elev (ft)	= 6827.43

Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft)

= 6828.00 = 5.00 = 100.00

Qmin (cfs)	= 9.50
Qmax (cfs)	= 9.50
ailwater Elev (ft)	= Normal

Qtotal (cfs)	= 9.50
Qpipe (cfs)	= 9.50
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 10.24
Veloc Up (ft/s)	= 6.32
HGL Dn (ft)	= 6825.02
HGL Up (ft)	= 6826.70
Hw Elev (ft)	= 6827.43
Hw/D (ft)	= 1.28
Flow Regime	= Inlet Control

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 12 2024

DP3.1 Swale

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP4 Swale

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 1.00
Total Depth (ft)	= 2.00	Q (cfs)	= 12.00
		Area (sqft)	= 4.00
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.00
Slope (%)	= 1.00	Wetted Perim (ft)	= 8.25
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.90
		Top Width (ft)	= 8.00
Calculations		EGL (ft)	= 1.14
Compute by:	Known Q		
Known Q (cfs)	= 12.00		

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP4 Culvert

- Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n-Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k
- = 6826.93 = 219.20 = 2.57 = 6832.56 = 24.0 = Circular = 24.0 = 1 = 0.013 = Circular Concrete = Groove end projecting (C) = 0.0045, 2, 0.0317, 0.69, 0.2

Embankment

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	6836.00
=	45.00
=	100.00

Calculations

Qmin (cfs)	= 12.00
Qmax (cfs)	= 12.00
Tailwater Elev (ft)	= Normal

Highlighted

Qtotal (cfs)	=	12.00
Qpipe (cfs)	=	12.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	10.30
Veloc Up (ft/s)	=	5.85
HGL Dn (ft)	=	6827.73
HGL Up (ft)	=	6833.80
Hw Elev (ft)	=	6834.38
Hw/D (ft)	=	0.91
Flow Regime	=	Inlet Control

Please fix diagram

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 5 2024

DP5.1 Swale

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 1.12
Total Depth (ft)	= 2.15	Q (cfs)	= 16.50
		Area (sqft)	= 5.02
Invert Elev (ft)	= 100.00	Velocity (ft/s)	_= 3.29
Slope (%)	= 1.00	Wetted Perim (ft)	7 = 9.24
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.02
		Top Width (ft)	= 8.96
Calculations		EGL (ft)	= 1.29
Compute by:	Known Q		/
Known Q (cfs)	= 16.50	For slopes greater than 3.1% the velocities exceed 5 ft/s and erosion protection shall be provided	

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP5.1 Culvert

Invert Elev Dn (ft)	= 6816.33	Calculations	
Pipe Length (ft)	= 48.00	Qmin (cfs)	= 16.50
Slope (%)	= 1.00	Qmax (cfs)	= 16.50
Invert Elev Up (ft)	= 6816.81	Tailwater Elev (ft)	= Normal
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 16.50
No. Barrels	= 1	Qpipe (cfs)	= 16.50
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 7.77
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 6.70
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6817.61
		HGL Up (ft)	= 6818.27
Embankment		Hw Elev (ft)	= 6819.09

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	6820.24
=	24.00
=	100.00

Qtotal (cfs)	=	16.50
Qpipe (cfs)	=	16.50
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	7.77
Veloc Up (ft/s)	=	6.70
HGL Dn (ft)	=	6817.61
HGL Up (ft)	=	6818.27
Hw Elev (ft)	=	6819.09
Hw/D (ft)	=	1.14
Flow Regime	=	Inlet Control

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 12 2024

DP5.2 Culvert - Pond 1 Inflow

Invert Elev Dn (ft)	= 6807.53	Calculations	
Pipe Length (ft)	= 39.30	Qmin (cfs)	= 33.00
Slope (%)	= 0.82	Qmax (cfs)	= 33.00
Invert Elev Up (ft)	= 6807.85	Tailwater Elev (ft)	= 6808.99
Rise (in)	= 30.0		
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 33.00
No. Barrels	= 1	Qpipe (cfs)	= 33.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	 Circular Concrete 	Veloc Dn (ft/s)	= 8.48
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 8.00
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6809.38
		HGL Up (ft)	= 6809.81
Embankment		Hw Elev (ft)	= 6811.00
Top Elevation (ft)	= 6811.50	Hw/D (ft)	= 1.26
Top Width (ft)	= 12.00	Flow Regime	= Inlet Cont
Crest Width (ft)	= 100.00		

= Inlet Control

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP7.1 Culvert

Invert Elev Dn (ft)	= 6802.27	Calculations	
Pipe Length (ft)	= 48.00	Qmin (cfs)	= 6.50
Slope (%)	= 1.00	Qmax (cfs)	= 6.50
Invert Elev Up (ft)	= 6802.75	Tailwater Elev (ft)	= Normal
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 6.50
No. Barrels	= 1	Qpipe (cfs)	= 6.50
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.22
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 5.28
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6803.13
		HGL Up (ft)	= 6803.74
Embankment		Hw Elev (ft)	= 6804.22

Ε Top Elevation (ft) Top Width (ft) Crest Width (ft)

= 6805.27 = 24.00 = 100.00

cfs) er Elev (ft)	= 6.50 = Normal
hted	
cfs)	= 6.50
cfs)	= 6.50
op (cfs)	= 0.00

Hw/D (ft) = 0.98 Flow Regime = Inlet Control

Thursday, Sep 5 2024

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 5 2024

DP8.1-Existing Roadside Swale

User-defined		Highlighted	
Invert Elev (ft)	= 6798.54	Depth (ft)	= 0.55
Slope (%)	= 3.30	Q (cfs)	= 19.00
N-Value	= 0.030	Area (sqft)	= 5.13
		Velocity (ft/s)	= 3.70
Calculations		Wetted Perim (ft)	= 18.72
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.61
Known Q (cfs)	= 19.00	Top Width (ft)	= 18.67
		EGL (ft)	= 0.76

(Sta, El, n)-(Sta, El, n)...

(0.00, 6800.36) - (20.58, 6799.62, 0.030) - (49.23, 6798.54, 0.030) - (58.38, 6799.77, 0.030) - (70.18, 6799.92, 0.030)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

= 0.66 = 4.000 = 1.74 = 2.30 = 5.44 = 0.58 = 5.28 = 0.74

DP10 (Half-Flows) Swale

Triangular		Highlighted
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)
Total Depth (ft)	= 1.00	Q (cfs)
		Area (sqft)
Invert Elev (ft)	= 100.00	Velocity (ft/s)
Slope (%)	= 1.00	Wetted Perim (ft)
N-Value	= 0.030	Crit Depth, Yc (ft)
		Top Width (ft)
Calculations		EGL (ft)
Compute by:	Known Q	
Known Q (cfs)	= 4.00	

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP10 (Half-Flows) Culvert

Invert Elev Dn (ft)	= 6840.53	Calculations	
Pipe Length (ft)	= 48.00	Qmin (cfs)	= 4.00
Slope (%)	= 1.00	Qmax (cfs)	= 4.00
Invert Elev Up (ft)	= 6841.01	Tailwater Elev (ft)	= Normal
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 4.00
No. Barrels	= 1	Qpipe (cfs)	= 4.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 5.51
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 4.42
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6841.17
		HGL Up (ft)	= 6841.77
Embankment		Hw Elev (ft)	= 6842.09
Top Elevation (ft)	= 6843.25	Hw/D (ft)	= 0.72

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	6843.25
=	24.00
_	100.00

= 100.00

Flow Regime

= Inlet Control

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP10 Swale

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 0.88
Total Depth (ft)	= 2.00	Q (cfs)	= 8.500
		Area (sqft)	= 3.10
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.74
Slope (%)	= 1.00	Wetted Perim (ft)	= 7.26
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.78
		Top Width (ft)	= 7.04
Calculations		EGL (ft)	= 1.00
Compute by:	Known Q		
Known Q (cfs)	= 8.50		

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP10 Culvert

Invert Elev Dn (ft)	= 6837.72	Calculations	
Pipe Length (ft)	= 61.50	Qmin (cfs)	= 8.5
Slope (%)	= 1.01	Qmax (cfs)	= 8.5
Invert Elev Up (ft)	= 6838.34	Tailwater Elev (ft)	= No
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 8.5
No. Barrels	= 1	Qpipe (cfs)	= 8.5
n-Value	= 0.013	Qovertop (cfs)	= 0.0
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.6
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 5.9
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 68
		HGL Up (ft)	= 68
Embankment		Hw Elev (ft)	= 68

Top Elevation (ft) Top Width (ft)

Crest Width (ft)

=	6840.40
=	24.00
	100.00

= 100.00

Qmin (cfs)	= 8.50
Qmax (cfs)	= 8.50
Tailwater Elev (ft)	= Normal

o = o
8.50
8.50
0.00
6.64
5.96
6838.74
6839.47
6840.12
1.18
Inlet Control

Thursday, Sep 5 2024

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP11 Swale

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 0.56
Total Depth (ft)	= 1.00	Q (cfs)	= 2.500
		Area (sqft)	= 1.25
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 1.99
Slope (%)	= 1.00	Wetted Perim (ft)	= 4.62
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.48
		Top Width (ft)	= 4.48
Calculations		EGL (ft)	= 0.62
Compute by:	Known Q		
Known Q (cfs)	= 2.50		

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP11.1 Swale

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 0.97
Total Depth (ft)	= 2.00	Q (cfs)	= 11.00
		Area (sqft)	= 3.76
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.92
Slope (%)	= 1.00	Wetted Perim (ft)	= 8.00
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.86
		Top Width (ft)	= 7.76
Calculations		EGL (ft)	= 1.10
Compute by:	Known Q		
Known Q (cfs)	= 11.00		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP11.1 Culvert

Invert Elev Dn (ft)	= 6836.92	Calculations	
Pipe Length (ft)	= 43.00	Qmin (cfs)	= 11.00
Slope (%)	= 1.00	Qmax (cfs)	= 11.00
Invert Elev Up (ft)	= 6837.35	Tailwater Elev (ft)	= Norma
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 11.00
No. Barrels	= 1	Qpipe (cfs)	= 11.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.74
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 6.89
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6838.2
		HGL Up (ft)	= 6838.6
Embankment		Hw Elev (ft)	= 6839.6

Ε Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	6840.40
=	13.50
=	100.00

	- 11.00
(cfs)	= 11.00
ater Elev (ft)	= Normal
ighted	
(cfs)	= 11.00
(cfs)	= 11.00
·	0.00

Qovertop (cis)	=	0.00
Veloc Dn (ft/s)	=	6.74
Veloc Up (ft/s)	=	6.89
HGL Dn (ft)	=	6838.23
HGL Up (ft)	=	6838.62
Hw Elev (ft)	=	6839.61
Hw/D (ft)	=	1.50
Flow Regime	=	Inlet Control

Thursday, Sep 5 2024

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP12.1 Swale

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 1.00
Total Depth (ft)	= 2.00	Q (cfs)	= 12.00
		Area (sqft)	= 4.00
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.00
Slope (%)	= 1.00	Wetted Perim (ft)	= 8.25
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.90
		Top Width (ft)	= 8.00
Calculations		EGL (ft)	= 1.14
Compute by:	Known Q		
Known Q (cfs)	= 12.00		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP12.1-Preliminary Pipe

Circular		Highlighted	
Diameter (ft)	= 1.50	Depth (ft)	= 1.30
		Q (cfs)	= 12.00
		Area (sqft)	= 1.63
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.37
Slope (%)	= 1.20	Wetted Perim (ft)	= 3.59
N-Value	= 0.013	Crit Depth, Yc (ft)	= 1.32
		Top Width (ft)	= 1.02
Calculations		EGL (ft)	= 2.15
Compute by:	Known Q		
Known Q (cfs)	= 12.00		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP13 Swale

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 0.72
Total Depth (ft)	= 1.75	Q (cfs)	= 5.000
		Area (sqft)	= 2.07
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.41
Slope (%)	= 1.00	Wetted Perim (ft)	= 5.94
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.63
		Top Width (ft)	= 5.76
Calculations		EGL (ft)	= 0.81
Compute by:	Known Q		
Known Q (cfs)	= 5.00		

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP13 Culvert

Invert Elev Dn (ft)	= 6829.09	Calculations	
Pipe Length (ft)	= 17.50	Qmin (cfs)	= 5.00
Slope (%)	= 3.60	Qmax (cfs)	= 5.00
Invert Elev Up (ft)	= 6829.72	Tailwater Elev (ft)	= 6830.17
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 5.00
No. Barrels	= 1	Qpipe (cfs)	= 5.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 3.67
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 4.77
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6830.17
		HGL Up (ft)	= 6830.58
Embankment		Hw Elev (ft)	= 6830.94

Top Elevation (ft)

Top Width (ft) Crest Width (ft)

=	6831.75
=	5.00
=	30.00

Qmin (cfs)	= 5.00
Qmax (cfs)	= 5.00
Tailwater Elev (ft)	= 6830.17

5 5	
Qtotal (cfs)	= 5.00
Qpipe (cfs)	= 5.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 3.67
Veloc Up (ft/s)	= 4.77
HGL Dn (ft)	= 6830.17
HGL Up (ft)	= 6830.58
Hw Elev (ft)	= 6830.94
Hw/D (ft)	= 0.82
Flow Regime	= Inlet Control
-	

MHFD-Inlet, Version 5.02 (August 2022)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>DP12.1</u>
Site Type (Urban or Rural)	RURAL
Inlet Application (Street or Area)	AREA
Hydraulic Condition	Swale
Inlet Type	CDOT Type C

USER-DEFINED INPUT

User-Defined Design Flows		
Minor Q _{Known} (cfs)	4.0	
Major Q _{Known} (cfs)	12.0	
Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from upstream	(le
Receive Bypass Flow from:	No Bypass Flow Received	
Minor Bypass Flow Received, Q _b (cfs)	0.0	
Major Bypass Flow Received, Q _b (cfs)	0.0	
Watershed Characteristics		
Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		
Watershed Profile		
Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		
Minor Storm Rainfall Input		
Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		
Major Storm Rainfall Input		
Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	4.0	
Major Total Design Peak Flow, Q (cfs)	12.0	
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	

MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

The pond spreadsheets will be reviewed once the construction details for th pond are provided.

adsheets will	Project:	Lazy Y and F	Rocking J S	Subdivision	Detention, Versio	5/1 4.00 (5	uly 2022)							
eviewed once	Basin ID: /ZONE 3	Pond 1												
		2 ONE 1												
construction		1					-							
alls for the		1 AND 2	ORIFICI	AR E	Depth Increment =	0.00	ft Optional	1		r	Optional		,	
d are	POOL Example Zon	e Configurat	ion (Reten	tion Pond)	Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft 2)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
vided	Watershed Information			6805	4 Top of Micropool		0.00		-		10	0.000		
	Selected BMP Type =	EDB			6806		0.60				335	0.008	103	0.002
	Watershed Area = Watershed Length =	2.220	acres ft		6808		2.60				5,216	0.120	2,879	0.066
	Watershed Length to Centroid =	1,610	ft		6809		3.60				16,478	0.378	27,257	0.626
	Watershed Slope = Watershed Imperviousness =	0.030	ft/ft percent		6810-Crest 6811		4.60				18,961 21,443	0.435	44,976 65.178	1.033
	Percentage Hydrologic Soil Group A =	0.0%	percent		6811.50-Top		6.10				23,000	0.528	76,289	1.751
	Percentage Hydrologic Soil Group B = Percentage Hydrologic Soil Groups C/D =	100.0%	percent											
	Target WQCV Drain Time =	40.0	hours											
	Location for 1-hr Rainfall Depths =	User Input											⊢	
	After providing required inputs above in depths, click 'Run CUHP' to generate rur	cluding 1-hour i off hydrograph	raintall s using											
	the embedded Colorado Urban Hydro	graph Procedu	re.	Optional User Overrides										
	Excess Urban Runoff Volume (EURV) =	0.329	acre-feet	acre-feet									l	
	2-yr Runoff Volume (P1 = 1.19 in.) =	0.365	acre-feet	1.19 inches										
	5-yr Runott Volume (P1 = 1.5 in.) = 10-yr Runoff Volume (P1 = 1.75 in.) =	0.670	acre-feet acre-feet	1.50 inches 1.75 inches										
	25-yr Runoff Volume (P1 = 2 in.) =	1.436	acre-feet	2.00 inches										
	50-yr Runoff Volume (P1 = 2.25 in.) = 100-yr Runoff Volume (P1 = 2.52 in.) =	1.776	acre-feet acre-feet	2.25 inches 2.52 inches										
	500-yr Runoff Volume (P1 = 3.14 in.) =	3.133	acre-feet	inches										
	Approximate 2-yr Detention Volume = Approximate 5-yr Detention Volume	0.225	acre-feet										T]
	Approximate 10-yr Detention Volume =	0.543	acre-feet							-				
	Approximate 25-yr Detention Volume =	0.676	acre-feet											
	Approximate 50-yr Detention Volume = Approximate 100-yr Detention Volume =	0.714	acre-feet acre-feet										l	
									-					
	Define Zones and Basin Geometry Zone 1 Volume (WQCV) =	0.161	acre-feet											
	Zone 2 Volume (EURV - Zone 1) =	0.168	acre-feet											
	Zone 3 Volume (100-year - Zones 1 & 2) = Total Detention Basin Volume =	0.550	acre-feet acre-feet											
	Initial Surcharge Volume (ISV) =	user	ft ³						-					
	Initial Surcharge Depth (ISD) =	user	ft A											
	Depth of Trickle Channel (H _{TC}) =	user	ft											
	Slope of Trickle Channel (S _{TC}) =	user	ft/ft											
	Slopes of Main Basin Sides (S_{main}) = Basin Length-to-Width Ratio ($R_{L/W}$) =	user	H:V											
		[-					
	Initial Surcharge Area (A _{ISV}) = Surcharge Volume Length (L _{ISV}) =	user	ft.											
	Surcharge Volume Width (WISV) =	user	ft											
	Length of Basin Floor (H _{FLOOR}) =	user	ft ft											
	Width of Basin Floor (W _{FLOOR}) =	user	ft											
	Area of Basin Floor (A _{FLOOR}) = Volume of Basin Floor (V _{FLOOR}) =	user	ft ² ft ³											
	Depth of Main Basin (H _{MAIN}) =	user	ft						-					
	Length of Main Basin (L _{MAIN}) = Width of Main Basin (Wuum) =	USER	ft ft											
	Area of Main Basin (A _{MAIN}) =	user	ft ²						-					
	Volume of Main Basin (V _{MAIN}) =	user	ft ³											
	calculated for a basin volume (violal) =	4301	acrester						-	-				
										-				
Provide calcu	lations for forebay	/ fore	hav											
		, 1010	illura											
outiet, trickle	channel, emerger	icy sp	SMIINS	iy										
riprap sizing														
									-					
										-				
										-				
							1				1			

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:	Lazy Y and Rockir	ig J Subdivision	nrb-belenilon, v	ersion 4.00 (July 2	2022)				
Basin ID:	Pond 1								
ZONE 3				Estimated	Estimated				
100.VB				Stage (ft)	Volume (ac-ft)	Outlet Type			
	T		Zone 1 (WQCV)	2.16	0.161	Orifice Plate	1		
	100-YEAR		Zone 2 (EURV)	2.76	0.168	Orifice Plate			
PERMANENT ORIFICES	ORIFICE		Zone 3 (100-year)	4.24	0.550	Weir&Pipe (Restrict)			
POOL Example Zone	Configuration (Re	tention Pond)		Total (all zones)	0.879	·····	1		
User Input: Orifice at Underdrain Outlet (typical	v used to drain WO	CV in a Filtration B	MP)	Total (all 20103)	0.077	1	Calculated Parame	ters for Underdrain	1
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Under	drain Orifice Area =	N/A	ft ²	•
Underdrain Orifice Diameter =	N/A	inches		,	Underdrair	n Orifice Centroid =	N/A	feet	
								1	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WQCV and	d/or EURV in a sedi	mentation BMP)		Calculated Parame	ters for Plate	
Centroid of Lowest Orifice =	0.00	ft (relative to basir	n bottom at Stage =	= 0 ft)	WQ Orifi	ice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	3.60	ft (relative to basir	n bottom at Stage =	= 0 ft)	EII	iptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches			Ellipt	tical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	sq. inches			E	Elliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to high	est)						1
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.10	1.80						
Orifice Area (sq. inches)	0.90	0.45	0.30						J
	Daw 0 (antional)	Dow 10 (antional)	Dow 11 (ontional)	Dow 12 (optional)	Dow 12 (antional)	Dow 14 (entional)	Dow 15 (entional)	Dow 1/ (optional)	1
Stage of Orifice Centroid (ft)	Row 9 (optional)	Row To (optional)	Row IT (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row to (optional)	
Office Area (34. inclus)									4
User Input: Vertical Orifice (Circular or Rectang	ular)						Calculated Parame	ters for Vertical Or	fice
	Not Selected	Not Selected	1				Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	bottom at Stage =	= 0 ft) Ver	rtical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basir	h bottom at Stage =	= 0 ft) Vertica	al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						-
	-		•						
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	al Weir and No Out	tlet Pipe)		Calculated Parame	ters for Overflow V	Veir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	2.85	N/A	ft (relative to basin I	bottom at Stage = 0 1	ft) Height of Grat	e Upper Edge, H _t =	2.85	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet		Overflow V	Veir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gra	ate Open Area / 10	00-yr Orifice Area =	9.26	N/A	2
Horiz. Length of Weir Sides =	4.00	N/A	feet	Ov	verflow Grate Open	Area w/o Debris =	12.66	N/A	ft ²
Overflow Grate Type =	Close Mesh Grate	N/A	o.	U	overflow Grate Ope	n Area w/ Debris =	6.33	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
User Input: Outlet Pipe w/ Flow Postriction Plate	(Circular Orifico P	ostrictor Plato, or F	loctangular Orifica)		C	loulated Parameter	s for Outlot Pipo w	Elow Postriction D	ato
User input. Outlet ripe w/ now Restriction riate	Zone 3 Pestrictor	Not Selected			<u></u>		Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below b	asin bottom at Stage	= 0 ft) 0	utlet Orifice Area =	1.37	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	9-	Outle	t Orifice Centroid =	0.60	N/A	feet
Restrictor Plate Height Above Pipe Invert =	13.00		inches	Half-Cent	ral Angle of Restric	ctor Plate on Pipe =	2.03	N/A	radians
					5				
User Input: Emergency Spillway (Rectangular or	Trapezoidal)						Calculated Parame	ters for Spillway	
Spillway Invert Stage=	4.60	ft (relative to basir	h bottom at Stage =	= 0 ft)	Spillway E	Design Flow Depth=	0.26	feet	
Spillway Crest Length =	40.00	feet			Stage at T	Top of Freeboard =	5.86	feet	
Spillway End Slopes =	4.00	H:V			Basin Area at	Top of Freeboard =	0.51	acres	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at	Top of Freeboard =	1.62	acre-ft	
Routed Hydrograph Results	The user can over	ride the default (1)	HP hydrographs and	d runoff volumes hu	v entering new valu	ies in the Inflow Hv	drographs table (Co	olumns W through A	IF)
Design Storm Return Period =	WOCV	FURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.161	0.329	0.365	0.670	0.961	1.436	1.776	2.249	3.133
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.365	0.670	0.961	1.436	1.776	2.249	3.133
CUHP Predevelopment Peak Q (Cfs) =	N/A N/A	N/A N/A	1.0	2.8	4.4	8.2	10.4	13.5	18.9
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.06	0.17	0.26	0.48	0.61	0.79	1.11
Peak Inflow Q (cfs) =	N/A	N/A	2.6	4.6	6.4	10.3	12.6	15.8	21.6
Peak Outflow Q (cfs) =	0.1	0.1	0.1	2.1	4.1	7.7	10.2	11.9	13.3
Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow -	N/A Plate	N/A Plate	N/A Plate	U.8 Overflow Weir 1	U.9 Overflow Weir 1	U.9 Overflow Weir 1	I.U Overflow Weir 1	U.9 Outlet Plate 1	U.7 Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.2	0.3	0.6	0.8	0.9	1.0
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	40	65	71	72	69	65	62	59	52
I ime to Drain 99% of Inflow Volume (hours) =	41	68 2 74	/4	2 02	/6	/4	/3	/1	69
iviaximum Ponding Depth (ft) = Area at Maximum Ponding Depth (acres) =	0,23	0.32	0.32	0.34	0,35	0,36	0.36	0,38	4.43
Maximum Volume Stored (acre-ft) -	0.163	0.332	0.338	0.421	0.455	0.508	0.541	0.626	0.959

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WOCV [cfs]	FURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00	0.00.00	0.00		2 1001 [015]			20 1001 [013]			
5.00 min	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.05.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02
	0.13.00	0.00	0.00	0.05	0.08	0.10	0.07	0.09	0.08	0.12
	0:25:00	0.00	0.00	0.19	1.94	2.99	0.20	1 15	1 44	2.97
	0:30:00	0.00	0.00	1.93	3.68	5.13	4.88	6.14	7.23	10.61
	0:35:00	0.00	0.00	2.39	4.40	5.98	7.78	9.61	11.70	16.32
	0:40:00	0.00	0.00	2.55	4.61	6.27	9.31	11.39	13.90	19.15
	0:45:00	0.00	0.00	2.56	4.62	6.36	9.96	12.17	15.10	20.72
	0:50:00	0.00	0.00	2.50	4.55	6.26	10.34	12.62	15.71	21.52
	0:55:00	0.00	0.00	2.42	4.38	6.05	10.24	12.52	15.80	21.62
	1:00:00	0.00	0.00	2.32	4.17	5.82	9.91	12.15	15.61	21.40
	1:05:00	0.00	0.00	2.23	4.00	5.64	9.54	11.73	15.36	21.10
	1.10.00	0.00	0.00	2.13	3.86	5.50	9.11	10.72	13.96	20.32
	1.15.00	0.00	0.00	1.02	3.70	5.14	0.00 9.10	10.72	13.90	19.39
	1:25:00	0.00	0.00	1.71	3 35	4.87	7.72	9.57	12.33	17.17
	1:30:00	0.00	0.00	1.71	3.18	4.61	7.24	8.98	11.53	16.07
	1:35:00	0.00	0.00	1.62	3.05	4.40	6.80	8.43	10.80	15.08
	1:40:00	0.00	0.00	1.55	2.90	4.20	6.42	7.97	10.18	14.22
	1:45:00	0.00	0.00	1.49	2.76	4.01	6.08	7.55	9.62	13.44
	1:50:00	0.00	0.00	1.42	2.61	3.82	5.75	7.15	9.08	12.69
	1:55:00	0.00	0.00	1.35	2.47	3.63	5.44	6.76	8.57	11.98
	2:00:00	0.00	0.00	1.27	2.33	3.42	5.13	6.38	8.07	11.29
	2:05:00	0.00	0.00	1.19	2.17	3.19	4.81	5.97	7.55	10.55
	2:10:00	0.00	0.00	1.10	2.01	2.96	4.47	5.50	7.02	9.81
	2:20:00	0.00	0.00	0.94	1.80	2.73	3.81	5.15 4.74	5.99	9.08
	2:25:00	0.00	0.00	0.85	1.55	2.29	3.48	4.33	5.48	7.65
	2:30:00	0.00	0.00	0.78	1.43	2.11	3.17	3.94	4.99	6.98
	2:35:00	0.00	0.00	0.73	1.33	1.98	2.92	3.64	4.61	6.46
	2:40:00	0.00	0.00	0.69	1.26	1.86	2.73	3.40	4.30	6.03
	2:45:00	0.00	0.00	0.65	1.19	1.75	2.56	3.20	4.03	5.65
	2:50:00	0.00	0.00	0.61	1.12	1.65	2.42	3.01	3.79	5.31
	2:55:00	0.00	0.00	0.58	1.06	1.55	2.28	2.84	3.56	4.99
	3:00:00	0.00	0.00	0.54	0.99	1.46	2.15	2.67	3.36	4.70
	3:10:00	0.00	0.00	0.51	0.93	1.37	2.03	2.52	3.16	4.42
	3:15:00	0.00	0.00	0.45	0.82	1.20	1.79	2.23	2.80	3.91
	3:20:00	0.00	0.00	0.42	0.76	1.12	1.68	2.08	2.63	3.66
	3:25:00	0.00	0.00	0.39	0.71	1.04	1.57	1.94	2.45	3.42
	3:30:00	0.00	0.00	0.36	0.66	0.96	1.45	1.80	2.28	3.17
	3:35:00	0.00	0.00	0.33	0.60	0.89	1.34	1.67	2.10	2.93
	3:40:00	0.00	0.00	0.31	0.55	0.81	1.23	1.53	1.93	2.68
	3:45:00	0.00	0.00	0.28	0.50	0.74	1.12	1.39	1.76	2.44
	3:50:00	0.00	0.00	0.25	0.45	0.66	1.01	1.26	1.59	2.20
	4:00:00	0.00	0.00	0.22	0.40	0.59	0.91	0.99	1.42	1.97
	4:05:00	0.00	0.00	0.17	0.30	0.45	0.69	0.86	1.08	1.49
	4:10:00	0.00	0.00	0.14	0.25	0.37	0.58	0.72	0.91	1.26
	4:15:00	0.00	0.00	0.12	0.20	0.30	0.48	0.59	0.74	1.02
	4:20:00	0.00	0.00	0.09	0.15	0.23	0.37	0.46	0.58	0.79
	4:30:00	0.00	0.00	0.06	0.08	0.17	0.27	0.33	0.42	0.57
	4:35:00	0.00	0.00	0.03	0.06	0.11	0.13	0.16	0.20	0.29
	4:40:00	0.00	0.00	0.03	0.05	0.09	0.09	0.12	0.14	0.21
	4:45:00	0.00	0.00	0.02	0.04	0.07	0.07	0.09	0.10	0.16
	4:55:00	0.00	0.00	0.02	0.03	0.05	0.04	0.05	0.05	0.08
	5:00:00	0.00	0.00	0.01	0.02	0.04	0.03	0.04	0.03	0.06
	5:05:00 5:10:00	0.00	0.00	0.01	0.02	0.03	0.02	0.03	0.03	0.04
	5:15:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.03
	5:20:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	5:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

		-					
Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
6805.4-Top of Micropool	0.00	10	0.000	0	0.000	0.00	For best results, include the
6806.00	0.60	335	0.008	103	0.002	0.02	stages of all grade slope
6807.00	1.60	5,216	0.120	2,879	0.066	0.05	changes (e.g. ISV and Floor)
6807.56-WQCV	2.16	9,872	0.227	7,104	0.163	0.07	from the S-A-V table on
6808.00	2.60	13,531	0.311	12,252	0.281	0.08	Sheet basin.
6808.16-EURV	2.76	14,003	0.321	14,455	0.332	0.08	Also include the inverts of all
6809.00	3.60	16,478	0.378	27,257	0.626	11.86	outlets (e.g. vertical orifice,
6809.01-100 year	3.61	16,503	0.379	27,422	0.630	11.88	overflow grate, and spillway,
6810.00-Spillway Crest	4.60	18,961	0.435	44,976	1.033	13.56	where applicable).
6811.00	5.60	21,443	0.492	65,178	1.496	144.67	
6811.50-Top of Pond	6.10	23,000	0.528	76,289	1.751	262.68	
							-
							-
							-
							-
							-
						+	4
						+	-
						-	-
						1	1
							-
							-
							-
							-
						-	-
						1	1
							1
							4
							-
						+	4
							1
							4
							-
							1
							-
							-
		1	1	1	1	1	1
							4
						+	-
						1	1

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Project: Lazy Y and Rocking J Subdivision
Basin ID: Pond 2
ZONE 3 ZONE 2 ZONE 1 JOD YEAR ONFICE

> Donth Inc 0.00 ZONE 1 AND 2 ORFICE Example Zone Configuration (Retention Pond)

Watershed Information

PERMAN

tersnea miornation					
Selected BMP Type =	EDB				
Watershed Area =	8.50	acres			
Watershed Length =	1,175	ft			
Watershed Length to Centroid =	750	ft			
Watershed Slope =	0.030	ft/ft			
Watershed Imperviousness =	26.50%	percent			
Percentage Hydrologic Soil Group A =	0.0%	percent			
Percentage Hydrologic Soil Group B =	100.0%	percent			
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			
Target WQCV Drain Time =	40.0	hours			
Location for 1-hr Rainfall Depths = User Input					

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

	3.1	
Water Quality Capture Volume (WQCV) =	0.099	acre-feet
Excess Urban Runoff Volume (EURV) =	0.229	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.236	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.397	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.547	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.778	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.950	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	1.183	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	1.627	acre-feet
Approximate 2-yr Detention Volume =	0.162	acre-feet
Approximate 5-yr Detention Volume =	0.234	acre-feet
Approximate 10-yr Detention Volume =	0.351	acre-feet
Approximate 25-yr Detention Volume =	0.415	acre-feet
Approximate 50-yr Detention Volume =	0.437	acre-feet
Approximate 100-yr Detention Volume =	0.524	acre-feet

Define Zones and Basin Geometry

efine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.099	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.130	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.295	acre-feet
Total Detention Basin Volume =	0.524	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (RL/W) =	user	

Initial Surcharge A	rea (A _{ISV}) =	user	ft 2
Surcharge Volume Ler	$gth(L_{ISV}) =$	user	ft
Surcharge Volume Wid	$ith (W_{ISV}) =$	user	ft
Depth of Basin Floo	$(H_{FLOOR}) =$	user	ft
Length of Basin Floo	$r(L_{FLOOR}) =$	user	ft
Width of Basin Floor	$(W_{FLOOR}) =$	user	ft
Area of Basin Floo	$(A_{FLOOR}) =$	user	ft 2
Volume of Basin Floo	$r (V_{FLOOR}) =$	user	ft ³
Depth of Main Bas	in (H _{MAIN}) =	user	ft
Length of Main Bas	in (L _{MAIN}) =	user	ft
Width of Main Basi	n (W _{MAIN}) =	user	ft
Area of Main Bas	in (A _{MAIN}) =	user	ft 2
Volume of Main Bas	in (V _{MAIN}) =	user	ft ³

Calculated Total Basin Volume (Vtotal) = user acre-feet

		Depth Increment =	0.00	n			r				r
an Banali		Store Storege	Stage	Optional	Longth	Midth	Aroa	Optional	Area	Volumo	Volumo
ion Fond)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
	6927.25	Top of Micropool		0.00				10	0.000		
	0027.23	(000		0.75				200	0.000	14/	0.000
		6828		0.75				380	0.009	140	0.003
		6829		1.75				7,331	0.168	4,002	0.092
		6830		2.75				15,259	0.350	15,297	0.351
		6830.50-Crest		3.25				16,723	0.384	23,292	0.535
		6831		3.75				17,785	0.408	31,919	0.733
		6831.75-Top		4.50				19,405	0.445	45,865	1.053
Optional User Ov	verrides										
acr	re-feet										
acr	re-feet										
1.19 inc	hes										
1.50 inc	hes										
1.75 inc	thes										
2.00 inc	hes										
2.00 ind	hos										
2.2.3 INC	thes										
2.52 INC	hoc				-						
inc	105										
				-				-		1	
										1	
						~					
									-	1	
				-				-		1	
											-
										1	

2522800_MHFD-Detention_v4-06_Pond 2.xlsm, Basin

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:	Lazy Y and Rockin	g J Subdivision	HFD-Detention, V	ersion 4.00 (July .	2022)				
Basin ID:	Pond 2								
ZONE 3				Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	-		
			Zone 1 (WQCV)	1.80	0.099	Orifice Plate			
T T	100-YEAR ORIFICE	24	Zone 2 (EURV)	2.37	0.130	Orifice Plate			
PERMANENT ORIFICES			Zone 3 (100-year)	3.23	0.295	Weir&Pipe (Restrict)			
Example Zone	Configuration (Re	tention Pond)		Total (all zones)	0.524		•		
User Input: Orifice at Underdrain Outlet (typical)	y used to drain WQ	CV in a Filtration BM	<u>MP)</u>				Calculated Parame	ters for Underdrain	<u>l</u>
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Underd	drain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrair	n Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orifice	es or Elliptical Slot	Meir (typically used	to drain WQCV and	d/or EURV in a sed	Imentation BMP)	a Araa par Dow	Calculated Parame	ters for Plate	
Depth at top of Zone using Orifice Plate -	3.60	ft (relative to basir	bottom at Stage =	= 0 II) - 0 ft)	WQ UIII	intical Half-Width -	N/A	11 feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	i bottom at stage -	- 0 11)	Fllipt	ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	sq. inches			E	Iliptical Slot Area =	= N/A ft ²		
								1	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to highe	est)						•
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.00	1.40						
Orifice Area (sq. inches)	0.56	0.38	0.30						
	Row 9 (ontional)	Row 10 (optional)	Row 11 (optional)	Row 12 (ontional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)	Row 9 (optional)	Row to (optional)	Row IT (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row To (optional)	
Orifice Area (sg. inches)									
(-4)			•		•	•	•	•	4
User Input: Vertical Orifice (Circular or Rectange	ular)						Calculated Parame	ters for Vertical Or	fice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin	n bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basir	bottom at Stage =	= 0 ft) Vertica	I Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	al Weir and No Out	tlet Pipe)		Calculated Parame	ters for Overflow V	Veir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	2.30	N/A	ft (relative to basin I	bottom at Stage = 0	ft) Height of Grat	e Upper Edge, H _t =	2.30	N/A	feet
Overflow Weir Front Edge Length =	3.00	N/A	feet		Overflow W	/eir Slope Length =	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gr	ate Open Area / 10	0-yr Orifice Area =	7.24	N/A	
Horiz. Length of Weir Sides =	3.00	N/A	feet	0\	verflow Grate Open	Area w/o Debris =	7.12	N/A	ft ²
Overflow Grate Type =	Close Mesh Grate	N/A	9/	Ĺ	overflow Grate Ope	n Area w/ Debris =	3.56	N/A	ft-
Debris clogging % =	50%	IN/A	70						
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, R	estrictor Plate, or R	ectangular Orifice)		Ca	Iculated Parameter	s for Outlet Pipe w/	Flow Restriction Pl	ate
	Zone 3 Restrictor	Not Selected	1				Zone 3 Restrictor Not Selected		
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below ba	asin bottom at Stage	= 0 ft) O	utlet Orifice Area =	0.98	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches		Outle	t Orifice Centroid =	0.47	N/A	feet
Restrictor Plate Height Above Pipe Invert =	9.80		inches	Half-Cent	tral Angle of Restric	tor Plate on Pipe =	1.66	N/A	radians
User Input: Emergency Spillway (Rectangular or	Irapezoidal)	ft (an lather to be	hattam at Ota a	0.64)	0	and an Electric David	Calculated Parame	ters for Spillway	
Spillway Invert Stage=	3.25	ft (relative to basir	n bottom at Stage =	= 0 ft)	Spillway L	esign Flow Depth=	0.25	feet	
Spillway End Slopes -	20.00	H-V			Basin Area at T	op of Freeboard =	4.50	acros	
Ereeboard above Max Water Surface =	1.00	feet			Basin Volume at 1	op of Freeboard =	1.05	acre-ft	
						-p			
									_
Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs and	d runoff volumes by	v entering new valu	es in the Inflow Hy	drographs table (Co	olumns W through A	<i>F).</i>
Design Storm Return Period = One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.099	0.229	0.236	0.397	0.547	0.778	0.950	1.183	1.627
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.236	0.397	0.547	0.778	0.950	1.183	1.627
CUHP Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	0.7	2.0	3.0	5.5	6.9	8.9	12.4
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.08	0.23	0.36	0.65	0.81	1.04	1.46
Peak Inflow Q (cfs) =	N/A	N/A	2.2	3.7	4.9	7.5	9.1	11.3	15.3
Peak Outflow Q (cfs) =	0.0 N/A	0.3	0.1	1.5	2.7	5.0	6.5	7.8	10.7
Structure Controlling Flow =	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	0.05	0.01	0.2	0.4	0.7	0.9	1.1	1.2
Max Velocity through Grate 2 (fps) =	N/A 28	N/A 66	N/A 68	N/A	N/A 63	N/A 60	N/A	N/A	N/A 50
Time to Drain 99% of Inflow Volume (hours) =	40	69	72	71	70	68	67	66	64
Maximum Ponding Depth (ft) =	1.80	2.37	2.33	2.47	2.56	2.69	2.77	2.92	3.34
Area at Maximum Ponding Depth (acres) =	0.18	0.28	0.27	0.30	0.32	0.34	0.35	0.36	0.39
waximum Volume Stored (acre-ft) =	U. IUT	0.231	0.217	U.26U	U.288	U.33U	U.355	U.412	0.569

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.03
	0:15:00	0.00	0.00	0.09	0.15	0.18	0.12	0.15	0.15	0.22
	0:25:00	0.00	0.00	0.33	2 20	3.21	0.32	0.39	0.46	0.78
	0:30:00	0.00	0.00	2.02	3.49	4.63	4.96	6.15	7.14	10.13
	0:35:00	0.00	0.00	2.22	3.75	4.93	6.67	8.12	9.87	13.61
	0:40:00	0.00	0.00	2.25	3.72	4.89	7.48	9.04	10.93	14.93
	0:45:00	0.00	0.00	2.11	3.51	4.67	7.52	9.08	11.25	15.29
	0:55:00	0.00	0.00	1.98	3.31	4.40	6.98	8.92	10.65	14.49
	1:00:00	0.00	0.00	1.76	2.92	3.94	6.59	8.00	10.28	14.00
	1:05:00	0.00	0.00	1.66	2.74	3.73	6.20	7.56	9.91	13.51
	1:10:00	0.00	0.00	1.54	2.59	3.58	5.71	6.98	9.11	12.49
	1:15:00	0.00	0.00	1.43	2.45	3.45	5.32	6.52	8.41	11.60
	1:25:00	0.00	0.00	1.34	2.29	3.25	4.91	5.54	7.69	9.65
	1:30:00	0.00	0.00	1.15	1.98	2.75	4.12	5.05	6.36	8.75
	1:35:00	0.00	0.00	1.05	1.82	2.51	3.74	4.58	5.74	7.88
	1:40:00	0.00	0.00	0.96	1.64	2.28	3.36	4.12	5.15	7.05
	1:45:00	0.00	0.00	0.88	1.49	2.09	3.00	3.68	4.58	6.28
	1:55:00	0.00	0.00	0.83	1.37	1.96	2./1	3.33	4.13	5.69
	2:00:00	0.00	0.00	0.72	1.19	1.71	2.30	2.84	3.48	4.81
	2:05:00	0.00	0.00	0.66	1.09	1.55	2.10	2.59	3.16	4.37
	2:10:00	0.00	0.00	0.60	0.99	1.41	1.91	2.35	2.86	3.95
	2:15:00	0.00	0.00	0.54	0.89	1.27	1.73	2.13	2.59	3.56
	2:25:00	0.00	0.00	0.48	0.80	1.13	1.30	1.92	2.33	2.85
	2:30:00	0.00	0.00	0.38	0.63	0.89	1.24	1.52	1.86	2.52
	2:35:00	0.00	0.00	0.34	0.55	0.77	1.09	1.34	1.63	2.20
	2:40:00	0.00	0.00	0.29	0.47	0.67	0.94	1.15	1.41	1.89
	2:45:00	0.00	0.00	0.24	0.39	0.56	0.80	0.98	1.19	1.58
	2:55:00	0.00	0.00	0.16	0.24	0.35	0.51	0.63	0.76	0.97
	3:00:00	0.00	0.00	0.12	0.18	0.26	0.38	0.46	0.56	0.70
	3:05:00	0.00	0.00	0.09	0.14	0.21	0.26	0.32	0.39	0.51
	3:15:00	0.00	0.00	0.07	0.11	0.17	0.19	0.24	0.28	0.37
	3:20:00	0.00	0.00	0.05	0.08	0.12	0.11	0.14	0.15	0.21
	3:25:00	0.00	0.00	0.04	0.06	0.10	0.08	0.11	0.11	0.16
	3:30:00	0.00	0.00	0.03	0.05	0.08	0.07	0.09	0.08	0.11
	3:40:00	0.00	0.00	0.03	0.04	0.06	0.05	0.07	0.06	0.08
	3:45:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.04	0.05
	3:50:00	0.00	0.00	0.01	0.02	0.03	0.03	0.03	0.03	0.04
	3:55:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	4:00:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	4:10:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	4:15:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

						Total	1
Stage - Storage	Stage	Area	Area	Volume	Volume	Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
(007.05 Tax of Misson and	0.00	10	0.000	0	0.000	0.00	
6827.25-Top of Micropool	0.00		0.000		0.000	0.00	For best results, include the
6828.00	0.75	380	0.009	146	0.003	0.02	stages of all grade slope
6829.00	1.75	7,331	0.168	4,002	0.092	0.04	from the S-A-V table on
6829.05-WQCV	1.80	7,727	0.177	4,378	0.101	0.04	Sheet 'Basin'
6829.62-EURV	2.37	12,246	0.281	10,071	0.231	0.42	Choot Babin
6830.00	2.75	15,259	0.350	15,297	0.351	6.08	Also include the inverts of all
6830 17 - 100 year	2.92	15,757	0.362	17,933	0.412	7.78	outlets (e.g. vertical orifice,
4920 EQ Spillway Croct	2.72	16 723	0.384	23 292	0.535	8 25	overflow grate, and spillway,
6830.50-Splitway Crest	3.25	17,705	0.304	23,272	0.333	0.25	where applicable).
6831.00	3.75	17,785	0.408	31,919	0.733	44.96	
6831.75-Top of Pond	4.50	19,405	0.445	45,865	1.053	202.66	-
							1
							-
							4
							-
							4
]
					1		1
					1	1	1
						†	1
							4
							-
							1
							-
							4
							-
					1		
							-
							-
							4
							-
					L		4
							1
					1		1
		1	1	1	ł	1	1
					 		1
							4
			{	{	ł	ł	4
			{	{	ł	ł	4
					<u> </u>		4
					<u> </u>		4
			{	{	ł	ł	4
					 		1
							1
					<u> </u>	1	1
		1	1	1	ł	1	1
		l	l	l	1		1
					1		1
]
]
]
					L	1	1
Appendix D Reference Materials

SEP 2024

Appendix E Drainage Maps

UNPLA TTED

early label Las Vega Ranch and pper Bracket Creek drainage basins nd use an obvious color like red to how the basin boundaries.

30.00' ROAD BOOK

1 PAGE

EXISTING PROPOSED SECTION LINE _ _ _ _ BOUNDARY LINE PROPERTY LINE EASEMENT LINE _ _ _ _ _ ____ RIGHT OF WAY CENTERLINE _____ _ _ _ STORM SEWER SWALE/WATERWAY FLOWLIN INDEX CONTOUR INTERMEDIATE CONTOUR DESIGN POINT DESIGNATION BASIN ID

⇒

FLOW DIRECTION SUB-BASIN DRAINAGE AREA

BASIN SUMMARY TABLE							
Tributary	Area	Percent			t _c	Q ₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
EXA	7.84	2%	0.09	0.36	27.9	1.8	12.3
EXB	11.20	5%	0.11	0.37	21.3	3.7	21.1
EXC	14.90	4%	0.10	0.37	29.5	3.9	23.2
OS1	0.61	42%	0.42	0.61	14.1	0.9	2.2

DESIGN POINT					
DD	Q₅	Q ₁₀₀			
DP	Total	Total			
1	1.8	12.3			
2	3.7	21.1			
01	0.9	2.2			
2.1	4.5	23.0			
3	3.9	23.2			

<u>_</u>+ОНИ——

EXISTING DRAINAGE MAP LAZY Y AND ROCKING J SUBDIVISION JOB NO. 25228.00 09/26/2023 SHEET 1 OF 1

J·R ENGINEERING A Westrian Company

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com

dd a swale to trans centrated flows to

e ditch.

DITCH (TYP.)

EX. ROADSIDE DITCH (TYP.)

BOOK

∔0HU—

60

BASIN SUMMARY TABLE							
Tributary Sub-basin	Area (acres)	Percent Impervious	C₅	C ₁₀₀	t _c (min)	Q₅ (cfs)	Q ₁₀₀ (cfs)
А	1.51	21%	0.22	0.45	12.5	1.3	4.3
В	2.51	10%	0.14	0.40	17.5	1.2	5.5
С	4.27	20%	0.22	0.45	14.0	3.4	11.8
D	4.96	24%	0.24	0.46	20.3	3.6	11.8
E	2.64	20%	0.22	0.45	17.9	1.9	6.5
F	0.84	16%	0.19	0.43	10.2	0.7	2.5
G	1.57	2%	0.09	0.36	7.7	0.6	4.3
Н	0.74	24%	0.27	0.49	18.4	0.6	1.9
I	1.00	2%	0.09	0.36	5.0	0.5	3.1
J	2.99	24%	0.24	0.46	14.1	2.6	8.4
К	0.78	35%	0.32	0.52	13.0	0.9	2.5
L	0.45	40%	0.36	0.55	14.3	0.6	1.5
М	2.01	25%	0.24	0.47	20.1	1.5	4.9
Ν	2.12	26%	0.25	0.47	13.9	1.9	6.1
0	5.56	8%	0.13	0.39	10.7	2.9	14.6
OS1	0.43	43%	0.43	0.61	7.1	0.8	2.0
OS2	0.18	56%	0.54	0.69	5.0	0.5	1.0

DESIGN POINT					
DP	Q₅	Q ₁₀₀			
DP	Total	Total			
1	1.3	4.3			
2	1.2	5.5			
2.1	2.3	9.3			
3	3.4	11.8			
3.1	5.1	<u>18.9</u>			
4	3.6	11.8			
5	1.9	6.5			
5.1	4.9	16.3			
5.2	9.4	32.9			
6	0.7	2.5			
6.1	9.8	3 <mark>4.</mark> 6			
6.2	2.1	11.9			
01	0.8	2.0			
7	0.6	4.3			
7.1	1.4	6.3			
02	0.5	1.0			
8	0.6	1.9			
8.1	4.1	19.0			
9	0.5	3.1			
10	2.6	8.4			
11	0.9	2.5			
11.1	3.5	10.8			
12	0.6	1.5			
12.1	3.9	11.9			
13	1.5	4.9			
14	1.9	6.1			
14.1	6.6	20.6			
14.2	1.5	7.8			
15	2.9	14.6			

LEGEND

		EXISTING	PROPOSED
	SECTION LINE		_
	BOUNDARY LINE		
	PROPERTY LINE		
	EASEMENT LINE		
	RIGHT OF WAY		
	CENTERLINE		
	STORM SEWER		
	SWALE/WATERWAY FLOWLINE		
	INDEX CONTOUR	6100	6100
	INTERMEDIATE CONTOUR		
	BASIN ID	DESIGN POINT DESIGNATION	Δ
			_
	FLOW DIRECTION		-
			DOSED DRAINAGE MAD
		LAZY JOB 09/1 SHEE	Y AND ROCKING J SUBDIVISION NO. 25228.00 2/2024 T 1 OF 1
30	0 60	120	J·R ENGINEERING A Westrian Company
		Centenni	al 303-740-9393 • Colorado Springs 719-593-2593
URI	GINAL SCALE: $I = 60$	Fort Colli	ns 970–491–9888 • www.jrengineering.com

