FINAL DRAINAGE REPORT
 FOR
 SADDLEHORN RANCH - FILING 4

Prepared For:
ROI Property Group, LLC
1280 S 800 E Suite 200
Orem, UT 84097
(707) 365-6891

September 15, 2023
Project No. 25142.06

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive
Colorado Springs, CO 80919
719-593-2593

El Paso County PCD File No.:
SF-23-006

Final Drainage Report
Filing 4-Saddlehom Ranch

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Bryan Law, Colorado P.E. \# 25043
Date
For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:
ROI Property Group, LLC

By:
Title:
Address:

$$
1280 \text { S } 800 \text { E Suite } 200
$$

Orem, UT 84097

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Conditions:

Final Drainage Report
Filing 4-Saddlehom Ranch
\section*{CONTENIS}

PURPOSE 1
GENERAL LOCATION AND DESCRIPTION 1
LOCATION. 1
DESCRIPTION OF PROPERTY 2
Floodplain Statement 2
DRAINAGE BASINS AND SUB-BASINS 2
Existing Major Basin Descriptions 2
Existing Sub-basin Drainage 4
Proposed Sub-basin Drainage 5
DRAINAGE DESIGN CRITERIA 6
Development Criteria Reference 6
Hydrologic Criteria. 6
Hydraulic Criteria 7
DRAINAGE FACILITY DESIGN 7
General Concept. 7
Specific Details 7
Four Step Process to Minimize Adverse Impacts of Urbanization 7
Water Quality 8
Erosion Control Plan 8
Operation \& Maintenance 8
Drainage and Bridge Fees 9
Construction Cost Opinion 9
SUMMARY 9
REFERENCES: 10

APPENDICES

A. Figures and Exhibits
B. Hydrologic Calculations
C. Hydraulic Calculations
D. Detention and Water Quality Calculations
E. Reference Materials
F. Drainage Maps

LIST OF TABLES:

1. Major Drainageway Naming Convention
2. Major Drainageway - Ex. 100 Year Flow Comparison

Purpose

This document is the Final Drainage Report for Filing 4 of Saddlehorn Ranch. The purpose of this report is to:

1. Identify on-site and off-site drainage patterns.
2. Recommend storm water facilities to collect and convey storm runoff from the proposed development to appropriate discharge and/or detention locations.
3. Recommend water quality and detention facilities to control discharge release rates to below historic.
4. Demonstrate compliance with surrounding major drainage basin planning studies, master development drainage plans and flood insurance studies.

General Location and Description

Location

The proposed Saddlehorn Ranch Filing 4, known as "Filing 4" from herein, is a parcel of land located in Section 3 and 10, Township 13 South, Range 64 West of the $6^{\text {th }}$ Principal Meridian in El Paso County, Colorado. Saddlehorn Ranch is an 824 acre, rural, single family-development. Filing 4 is 162.3 acres and is comprised of 42 lots of the overall Saddlehorn Ranch development. Saddlehorn Ranch is bound by Judge Orr Road to the North and Curtis Road to the West. To the East, Saddlehorn Ranch is bound by undeveloped land owned by Brent Houser Enterprises, LLC. To the south, Saddlehorn Ranch is bound by undeveloped properties owned by Carolyn Gudzunas and Faye Reynolds. Filing 4 is bound by undeveloped land owned by Brent Houser Enterprises, LLC to the east, future Saddlehorn Filing 5 to the south, Judge Orr Road to the north, and by Saddlehorn Filing 3 to the west. A vicinity map is presented in Appendix A.

Currently, there are two major drainageways that will receive flows from Filing 4: Gieck Ranch (WFR7A) and Haegler Ranch Main Stem 6 (MS-06). These drainageways were analyzed, both hydrologically and hydraulically, in the following reports:

- Haegler Ranch Basin Drainage Basin Planning Study (DBPS), May 2009.
- Santa Fe Springs - Haegler Ranch Drainage Basin Letter of Map Revision, June 2004.
- Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch, May 2020.
- Gieck Ranch Drainage Basin Planning Study (DBPS), October 2007
- Gieck Ranch Tributary West Fork Reach 7A Channel Analysis Report, March 2, 2022.

The impact of these drainageways and planning studies on the proposed development will be discussed later in the report.

Final Drainage Report

Filing 4-Saddlehom Ranch

Description of Property

Filing 4 is currently unoccupied and undeveloped. The existing ground cover is sparse vegetation and open space, typical of a Colorado rolling rangeland condition. In general, Filing 4 slopes from south to southeast and the existing drainageways follows this topography.

Per a NRCS web soil survey of the area, Filing 4 is made up of Type A and D soils. Type A soils cover roughly 68% of Filing 4 while Type D soils cover 32% of Filing 4. Group A soils have a high infiltration rate when thoroughly wet. Type D soils have a very slow infiltration when thoroughly wet. A NRCS soil survey map has been presented in Appendix A.

Unresolved from Submittal 1 - Filing 4 is located in Zone A and Zone X per the No Rise Letter. Discuss.
Floodplain Statement
Based on the FEMA FIRM Map number 08041C0558G, dated December 7, 2018, Filing 4 lies within Zone AE and Zone X . Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. All proposed residential development within Filing 4 will occur in Zone X. The FIRM Map has been presented in Appendix A.

Drainage Basins and Sub-basins

Existing Major Basin Descriptions

Filing 4 lies within Haegler Ranch Drainage Basin based on the "Haegler Ranch Drainage Basin Planning Study" prepared by URS Corporation in May 2009, and the Gieck Ranch Drainage basin based on the "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrell \& Co in October 2007 (Not adopted by El Paso County as of July 2019).

The Haegler Ranch Drainage Basin covers approximately 16.6 square miles in unincorporated El Paso County, CO. The Haegler Ranch Drainage Basin is tributary to Black Squirrel Creek. In its existing condition, the basin is comprised of rolling rangeland with poor vegetative cover associated with Colorado's semi-arid climate. The natural Drainageways within the basin are typically shallow and wide with poorly defined flow paths in most areas. Anticipated land use for the basin includes residential and commercial development. Residential developments will range from 0.125-5 acre lots with a mix of low, medium and high density developments.

As part of its drainage research, JR Engineering reviewed the following drainage studies, reports and LOMRs:

- Haegler Ranch Drainage Basin Planning Study prepared by URS Corporation in May 2009
- Santa Fe Springs - Haegler Ranch Drainage Basin Letter of Map Revision prepared by Tri-Core Engineering in June 2004.
- Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch, prepared by JR Engineering, May 2020.
- Gieck Ranch Drainage Basin Planning Study (DBPS), October 2007

Final Drainage Report
 Filing 4-Saddlehom Ranch

Based on flood impacts, stream stability and cost effectiveness, this study recommended a sub-regional detention approach. This allows future development anywhere in the basin with the construction of an associated sub-regional pond. However, based on the Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch, Filing 4 will utilize two on-site full spectrum water quality and detention ponds instead. These full spectrum detention ponds will limit developed discharge into the MS-06 and WF-R7A Drainageways to less than historic rates.

The Santa Fe Springs - Haegler Ranch Drainage Basin LOMR was executed on Haegler Ranch Tributary 2, 3, and 4. The LOMR revised the onsite effective flood zone from Zone A to Zone AE. See FIRM Map Panel 08041C0558G for limits of LOMR study and revised flood zones, presented in Appendix E.

The Gieck Ranch Drainage Basin covers approximately 22 square miles and begins approximately five miles northeast of the Town of Falcon and travels approximately 15 miles to the southeast. The Gieck Ranch Drainage Basin is tributary to Black Squirrel Creek which drains south to the Arkansas River near the city of Pueblo, Colorado. The majority of the area within the basin is undeveloped and is characterized as rolling rangeland typically associated with Colorado's semi-arid climates. Anticipated land use for the basin includes residential, industrial, agricultural and commercial development. Residential developments will range from 0.125 - 5 acre lots with a mix of low, medium and high density developments.

Based upon provided drainage maps and analysis, Gieck Ranch discharges a total of 1,017 cfs onto the site within Major Drainageway Gieck Ranch West Fork Reach 7A (WF-R7A). An existing 66" CMP and 36" CMP convey the offsite flow across Judge Orr Road onto the site. The existing culverts at Judge Orr Road are undersized for existing and future flows resulting in localized overtopping. The DBPS recommends the culvert be upsized to four -12^{\prime} x 5^{\prime} box culverts. The culvert will not be upsized within the context of this report and development. The culvert is owned by El Paso County and timing of the recommended improvements will be controlled by the County. The overtopping at the intersection of WFR7A is not contained within the 100-year floodplain. However, the existing topography directs these overtopping flows away from Lot 6 . The fill required for Pond D also ensures that no overtopping flows will encroach onto the site downstream. Thus, the lots near the culvert crossing at Judge Orr Road will be unaffected by overtopping flows. WF-R7A was recently analyzed by El Paso Cownty's Floodplain Administrator, The revised 100-year floodplain with corresponding BFE's from their study can be found on the proposed drainage maps in Appendix F. The revised floodplain fołows a more defined channel section instead of sprawling over the wetlands located on the site. None of the Saddlehorn Filing 4 Lots come in contact with the revised 100-year floodplain

the CWCB

See Table 2 for comparison of Drainageway identiffcation and the naming convention used within the context of this report. See Table 3 for a comparison of 100 -year flows as calculated in the aforementioned DBPS and LOMR. An existing conditions drainage map is presented in Appendix E.

State that the plat cannot be recorded until the CWCB LOMR is approved by FEMA.

Table 1: Major Drainageway Naming Convention

Major Drainageway Naming Conventions			
Saddlehorn Ranch MDDP/PDR:	Per Haegler Ranch DBPS:	Per Gieck Ranch DBPS:	Per Sante Fe Springs LOMR:
MS-06	Main Stem (MS- $06)$	N/A*	Haegler Ranch Tributary 3
WF-R7A	N/A*	West Fork (Middle)/WF-R7A	N/A*

Table 2: Major Drainageway - Ex. 100-Year Flow Comparison

Major Drainageways: 100-Year Flow Comparison				
Drainageway Name	Contributing Area (sq. mi.)	Q_{100} Per Haegler Ranch DBPS:	Q_{100} Per Gieck Ranch DBPS:	Q_{100} Per Sante Fe Springs LOMR:
MS-06 @ Curtis Road	1.05	590 cfs	N/A*	505 cfs
WF-R7A @ Judge Orr Road	1.50	N/A*	1,017 cfs	N/A*

*N/A: Flow regime outside limits of study add flows from CWCB study to table or note
The Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch proposed the overall drainage facility design for Saddlehorn Ranch. Within the context of this report, onsite drainage basins with associated full spectrum water quality ponds were established. As it pertains to Filing 4, two full spectrum water quality ponds are recommended. Roadside ditches and local street culverts will be utilized to capture and convey Filing 4's runoff to the water quality ponds. Three full spectrum water quality ponds were proposed with the Saddlehorn Filing 3 improvements PCD Filing No. SF234. Saddlehorn Filing 4 will utilize two of these three ponds. The ponds were sized for both the Filing 3 and Filing 4 improvements. Pond C and Pond E will discharge into Drainageway MS-06, while Pond D will release into Drainageway WF-R7A. All ponds are full spectrum and will release at less than historic rates. All pond calculations that were completed with the Filing 3 Drainage Report can be found in Appendix E.

Existing Sub-basin Drainage

On-site, existing sub-basin drainage patterns are generally from northwest to southeast by way of Drainageway MS-06 and Drainageway WF-R7A. On-site areas flow directly into these drainageways, which also bypass off-site flows through the site.

The existing condition Filing 4 basin delineation is as follows,

Final Drainage Report

Filing 4-Saddlehom Ranch

Basin C consists of Sub-basins C1 and C2 combining for a total of 106.6 acres. Sub-basin C1 consists of existing Filing 3 lots where runoff is directed to existing Pond C through swales and culverts. Basin C2 is rolling rangeland where runoff generally flows south to Pond C. Pond C releases flows to Drainageway MS-06 at less than historic rates.

Basin D consists of Sub-basins D1 and D2 combining for a total of 48.3 acres. Sub-basin D1 consists of existing Filing 3 lots where runoff is directed to existing Pond D through swales and culverts. Basin D2 is rolling rangeland where runoff generally flows east to Pond D and Drainageway WF-R7A. Pond D releases flows to Drainageway WF-R7A at less than historic rates.

Basin E consists of Filing 3 lots covering a total of 18.3 acres. Basin E flows are directed to existing Pond E through swales and culverts. Pond E releases flows to Drainageway MS-06 at less than historic rates.

Basin G consists of Sub-basins G1 and G2 combining for a total of 62.1 acres. Both basins G1 and G2 consists of rolling rangeland where runoff generally flows to Drainageway WF-R7A.

Basin H covers a total of 111.1 acres consisting of rolling rangeland where runoff generally flows west to Drainageway MS-06.

On-site, existing drainage basins were established based upon existing topography and the limits of the 100-year floodplain. These existing sub-basins were analyzed in the Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch. An existing drainage map and existing drainage calcs have been provided in Appendix E.

A Filing 4 Existing Conditions Drainage Map has been provided in Appendix F. Please provide calculations corresponding to this map and add discussion within report as well.

The proposed Filing 4 basin delineation is as follows;

Basin C consists of Sub-Basins C1-C8 combining for a total of 46.69 acres. In its existing condition, Basin C is rolling rangeland and runoff generally flows southeast towards Drainageway MS-06. In the proposed condition, Basin C will be rural 2.5 acre lots, paved roadway, and will include Pond C. Runoff from this basin will be collected in road side ditches and conveyed to Pond C located in the southeast corner of the Filing 4 development. Pond C will be a full spectrum water quality and detention pond, and will release at less than historic rates into Drainageway MS-06.

Basin D consists of Sub-basins D1-D9 combining for a total of 53.78 acres. In its existing condition, Basin D is rolling rangeland and runoff generally flows east to Drainageway WF-R7A. In the proposed condition, Basin D will be rural 2.5 acre lots, paved roadway, and will include Pond D. Runoff from this basin will be collected in road side ditches and conveyed west to Pond D located in the northeast corner of the Filing 4 development. Pond D is a full spectrum water quality and detention pond, and will release at less than historic rates into Drainageway WF-R7A.

Final Drainage Report
 Filing 4-Saddlehom Ranch

Basin UD consists of Sub-basins UD1-UD4 combining for a total of 65.86 acres. In their existing condition, these basins are rolling rangeland. Runoff from Basins UD1 \& UD3 generally flow south and east to Drainageway WF-R7A. Basin UD3 represents Drainageway WF-R7A and the runoff generated along the Filing 4 boundary. Basin UD4 flows south to Drainageway MS-06. In the proposed condition, Basins UD1, UD3, and UD4 will be rural 2.5 acre lots with an imperviousness $=6.2 \%$, and will be excluded from permanent stormwater quality management per Section I.7.1.B. 5 of the ECM Stormwater Quality Policy and Procedures.

Basin OS consists of Sub-basins OS1-OS2 combining for a total of 2.98 acres of offsite area. In their existing condition, these basins are paved roadway (Judge Orr Road) and undeveloped area. In the proposed condition, these basins will be improved with 8' of pavement width for the Judge Orr Road stretch. Basins OS1-OS2 will flow on-site prior to being captured in a roadside swale and conveyed to the Full Spectrum Detention Pond D prior to being released into Drainageway WF-R7A.

A summary table of proposed basin parameters and flow rates are presented in Appendix B.

Basin D and Basin OS runoff will be captured in roadside swales and conveyed to the proposed Pond D. This full spectrum pond will release treated flows at less than historic rates to minimize adverse impacts downstream. Basin C will be captured in roadside swales and conveyed to the proposed Pond C. Pond C discharges into Drainageway MS-06, and Pond D discharges into Drainageway WF-R7A.

All pond design parameters for Ponds $\mathrm{C} \& \mathrm{D}$ were completed with the Filing 3 report. These pond designs and parameters can be found in Appendix E. The proposed forebay calculations for the Filing 4 pond outfalls can be found in Appendix D.

Drainage Design Criteria

Development Criteria Reference

Storm drainage analysis and design criteria for the project were taken from the "City of Colorado Spring/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1-3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County.

Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Rational Method calculations were prepared, in accordance with Section 13.3.2.1. of the CCSDCM, for the sub-basins that directly impact the sizing of ditches and local street culverts.
Rational method calculations are presented in Appendix B.

Final Drainage Report
 Filing 4-Saddlehom Ranch

Urban Drainage and Flood Control District's UD-Detention, Version 4.04 workbook was used for pond sizing with the Filing 3 report. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. Pond sizing spreadsheets that were completed with the Filing 3 improvements are presented in Appendix E.

Hydraulic Criteria

Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used for roadside ditch design. Ditches were checked for velocity and capacity per the CCS/EPCDCM Section 12.3.2.2. In order to check both capacity and velocity, a cross section analysis was performed on the roadside swales using the basin's maximum runoff Q and the proposed uniform slope of the swale. Swale cross sections have been presented in Appendix C.

Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used for local road crossing culvert design. Culvert size was determined based on 100-year flows and hydraulic criteria from EPCDCM Chapter 9 -Culvert Design. All local road crossing culvert design reports are presented in Appendix C.

Drainage Facility Design

General Concept

The proposed stormwater conveyance system was designed to convey the developed Filing 4 runoff to one of two full spectrum detention ponds via roadside ditches and local street culverts. These full spectrum ponds were designed to release at less than historic rates to minimize adverse impacts downstream.

Improvements to Drainageway MS-06 within the Saddlehorn Filing 3 and Filing 4 improvements were completed with the Saddlehorn Filing 3 Drainage Report. A no rise study was conducted on the proposed Drainageway MS-06 improvements to ensure no rises to the floodplain occur as a result of the Filing 3 and 4 developments. All proposed drainageway improvements, including the San Isidro culvert crossing and channel sections were incorporated with the Saddlehorn Filing 3 improvements. FEMA approved Base Flood Elevations were received from El Paso County's Floodplain Administrator for Drainageway WF-R7A. These BFEs were ased as part of the Saddlehorn Filing 4 development to ensure that the proposed improvements were not impacted by the existing 100-year floodplain, and to ensure the improvements did not impact the drainageway. Qutfall protection from Pond D is the only improvement to Drainageway WF-R7A at this time. The remaining improvements to Drainageway MS-06 shall be implemented with the Filing 5 improvements. provide LOMR \# when available

Specific Details

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume (WQCV), and consider the need for Industrial Commercial BMP's.

Final Drainage Report
 Filing 4-Saddlehom Ranch

Step 1, Reducing Runoff Volumes: The development of the project site is proposed single family residential lots ($2.5 \mathrm{ac} . \mathrm{min}$.) with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. Roadways utilize soil riprap lined roadside ditches further disconnecting impervious areas. These practices will also allow for increased infiltration and reduce runoff volume.

Step 2, Stabilize Drainageways: Filing 4 utilizes roadside ditches with culvert crossings throughout. These roadside ditches direct the on-site development flows to the proposed detention ponds within the project that releases at or below historic rates into Drainageways MS-06 and WF-R7A. Based upon the proposed reduction in released flows compared to the pre-developed flows, no impacts to downstream Drainageway MS-06 or Drainageway WF-R7A are anticipated. Drainageway MS-06 was stabilized with the Filing 3 improvements.

Step 3, Provide WQCV: Runoff from this development is treated through capture and slow release of the WQCV in full spectrum water quality and detention ponds that are designed per current El Paso County drainage criteria. Three ponds were built with the Filing 3 improvements, two of which will be utilized to treat Filing 4 flows. Both Pond C and D will be fitted with an additional forebay with the Filing 4 improvements.

Step 4 Consider the need for Industrial and Commercial BMP's: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative are prepared in conjunction with this report. Site specific temporary source control BMPs as well as permanent BMP's are detailed in this plan and narrative to protect receiving waters.

Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention are provided for all developed basins. Outlet structure release rates are limited to less than historic rates to minimize adverse impacts to downstream stormwater facilities. Due to Pond D's proximity to the drainageway, a boring was conducted approximately 500 ' from the proposed Pond D to alleviate concerns of ground water interference. The groundwater table was observed at 8.5 ' at this location. Currently, the maximum cut for Pond D is approximately 5.00 ' below the existing surface. This minimal cut should allow the pond to function without groundwater interferencetate that groundwater depth will be studied \longrightarrow at the pond location prior to construction,

Erosion Control Plan

 what mitigation will be if neededThe El Paso County Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate must be submitted with each Final Drainage Report. The Erosion Control Plans for Filing 4 have been submitted concurrently with this report.

Operation \& Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within the any platted County ROW will be owned and maintained by El Paso County. All proposed drainage structures within easements or tracts will be owned and maintained by the Saddlehorn Ranch Metro District. An Inspection \& Maintenance Plan is submitted concurrently

Final Drainage Report

Filing 4-Saddlehom Ranch
with this drainage report that details the required maintenance activities and intervals to ensure proper function of all stormwater infrastructure in the future.

Drainage and Bridge Fees

Drainage and Bridge Fees are due at time of final platting. An estimate of basin fees for the proposed development within Haegler Ranch drainage basin is provided below. Fee reduction for low density lots are applied to the overall basin fees in the next section. Additionally, reimbursable expenses are detailed below.

Total Filing 4 Platted Acres: 162.3 ac
Total Filing 4 Impervious Acres $=16.2$ ac (162.3 ac x 10%)

Filing 4 Fee Totals (Prior to Reductions):

Bridge Fees
$\$ 1,916 / \mathrm{ac}$ x $16.2 \mathrm{ac}=\$ 31,039$

Drainage Fees

$\$ 12,985 / \mathrm{ac} \times 16.2 \mathrm{ac}=\$ 210,357$

Filing 4 Drainage Fee Reduction: 25% Reduction for Low Density Lots: $\$ 210,357 \times 25 \%=\$ 52,589$

Filing 4 Fee Totals (After Reductions):

Bridge Fees

\$ 1,916/ac x 16.2 ac $=\$ 31,039$

Drainage Fees

$\$ 210,357-\$ 52,589=\$ 157,768$

Construction Cost Opinion

Cost opinion has been presented in Appendix A.

SUMMARY

The proposed development remains consistent with pre-development drainage conditions with the construction of the recommended drainage improvements, including swales, culverts, detention ponds and drainage channel improvements. The proposed development will not adversely affect the offsite major drainageways or surrounding development. This report meets the latest El Paso County Drainage Criteria requirements for this site and is in accordance with the PDR/MDDP for Saddlehorn Ranch.

References:

1. City of Colorado Springs Drainage Criteria Manual Volume 1, City of Colorado Springs, CO, May 2014.
2. Urban Storm Drainage Criteria Manual, Urban Drainage and Flood Control District, Latest Revision.
3. Master Development Drainage Plan and Preliminary Drainage Report for Saddlehorn Ranch, JR Engineering, May 2020.
4. Haegler Ranch Drainage Basin Planning Study, URS Corporation, May 2009.
5. The Santa Fe Springs - Haegler Ranch Drainage Basin LOMR, Federal Emergency Management Agency, October 20, 2004.
6. Final Drainage Report for Saddlehorn Ranch - Filing 3, JR Engineering, February 4, 2022
7. Gieck Ranch Tributary West Fork Reach 7A Channel Analysis Report For Saddlehorn Filing No. 4, JR Engineering, February 21, 2022

Final Drainage Report
Filing 4-Saddlehom Ranch

APPENDIX A

FIGURES AND EXHIBITS

VICINITY MAP
SADDLEHORN RANCH FILING 4 25142.06

2/11/22
SHEET 1 OF 1

MAP LEGEND

Area of Interest (AOI)

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 16, Sep 10, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 22, 2016-Aug 17, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	388.3	44.6%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	307.3	35.3%
29	Fluvaquentic Haplaquolls, nearly level	D	150.0	17.2%
83	Stapleton sandy loam, 3 to 8 percent slopes	B	24.6	2.8%
95	Truckton loamy sand, 1 to 9 percent slopes	A	0.6	$\mathbf{8 7 0 . 8}$
Totals for Area of Interest		$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

	PROJ ECT INFORMATION	
Saddlehorn Filing 4	$\frac{9 / \mathbf{1 / 2 0 2 3}}{\text { Date }}$	$\frac{\text { PF-23-006 }}{\text { PCD File No. }}$
Project Name		

							(with Pr		onstruction)
Description	Quantity	Units	Cost			Total	\% Complete		Remaining
SECTI ON 1 - GRADI NG AND EROSI ON CONTROL (Construction and Permanent BMPs)									
Earthwork									
less than 1,000; $\$ 5,300 \mathrm{~min}$		CY	\$ 8.00	$=$	\$	-		\$	-
1,000-5,000; \$8,000 min		CY	\$ 6.00	=	\$	-		\$	-
5,001-20,000; \$30,000 min		CY	\$ 5.00	$=$	\$	-		\$	-
20,001-50,000; \$100,000 min		CY	\$ 3.50	$=$	\$	-		\$	-
50,001-200,000; \$175,000 min	100,006	CY	\$ 2.50	$=$	\$	250,015.00		\$	250,015.00
greater than 200,000; \$500,000 min		CY	\$ 2.00	$=$	\$	-		\$	-
Permanent Erosion Control Blanket		SY	\$ 8.00	$=$	\$	-		\$	-
Permanent Seeding (inc. noxious weed mgmnt.) \& Mulching	38.04	AC	\$ 1,875.00	$=$	\$	71,325.00		\$	71,325.00
Permanent Pond/BMP (provide engineer's estimate)	See Below	EA		$=$	\$	-		\$	-
Concrete Washout Basin	1	EA	\$ 1,089.00	$=$	\$	1,089.00		\$	1,089.00
Concrete/Riprap Forebay	2	EA	\$ 3,000.00	$=$	\$	6,000.00		\$	6,000.00
Inlet Protection	10	EA	\$ 202.00	$=$	\$	2,020.00		\$	2,020.00
Outlet Protection	11	EA	\$ 202.00	$=$	\$	2,222.00		\$	2,222.00
Rock Check Dam	49	EA	\$ 605.00	$=$	\$	29,645.00		\$	29,645.00
Rock Sock	4	EA	\$ 30.00	$=$	\$	120.00		\$	120.00
Safety Fence (Construction Marker)	14,001	LF	\$ 3.00	$=$	\$	42,002.90		\$	42,002.90
Sediment Basin	2	EA	\$ 2,132.00	$=$	\$	4,264.00		\$	4,264.00
Sediment Trap		EA	\$ 500.00	$=$	\$	-		\$	-
Silt Fence	9,778	LF	\$ 3.00	$=$	\$	29,332.77		\$	29,332.77
Slope Drain	96	LF	\$ 40.00	$=$	\$	3,834.80		\$	3,834.80
Straw Bale		EA	\$ 31.00	$=$	\$	-		\$	-
Straw Wattle/Erosion Logs		LF	\$ 7.00	=	\$	-		\$	-
Surface Roughening		AC	\$ 250.00	$=$	\$	-		\$	-
Temporary Erosion Control Blanket		SY	\$ 3.00	$=$	\$	-		\$	-
Temporary Seeding and Mulching		AC	\$ 1,666.00	$=$	\$	-		\$	-
Vehicle Tracking Control	3	EA	\$ 2,867.00	=	\$	8,601.00		\$	8,601.00
				$=$	\$	-		\$	-
[insert items not listed but part of construction plans]				=	\$	-		\$	-
MAI NTENANCE (35\% of Construction BMPs)				=	\$	42,714.87		\$	42,714.87
* - Subject to defect warranty financial assurance. A minimum of 20% shall be retained until final acceptance (MAXIMUM OF 80\% COMPLETE ALLOWED)		Section 1 Subtotal		=	\$	493,186.34			493,186.34
SECTION 2-PUBLIC IMPROVEMENTS *									
ROADWAY IMPROVEMENTS									
Construction Traffic Control	1	LS	\$ 50,000.00	$=$	\$	50,000.00		\$	50,000.00
Aggregate Base Course ($135 \mathrm{lbs} / \mathrm{cf}$) 10" Thick	18,027	Tons	\$ 34.00	$=$	\$	612,918.00		\$	612,918.00
Aggregate Base Course ($135 \mathrm{lbs} / \mathrm{cf}$)		CY	\$ 61.00		\$	-		\$	-
Asphalt Pavement (3" thick)		SY	\$ 17.00		\$	-		\$	-
Asphalt Pavement (4" thick)		SY	\$ 23.00		\$	-		\$	-
Asphalt Pavement (6" thick)		SY	\$ 35.00		\$	-		\$	-
Asphalt Pavement (147 lbs/cf) ${ }^{\text {7 }}$ " thick	12,754	Tons	\$ 106.00	$=$	\$	1,351,924.00		\$	1,351,924.00
Raised Median, Paved		SF	\$ 10.00	$=$	\$	-		\$	-
Regulatory Sign/Advisory Sign	22	EA	\$ 364.00	$=$	\$	8,008.00		\$	8,008.00
Guide/Street Name Sign	26	EA	\$ 250.00	=	\$	6,500.00		\$	6,500.00
Epoxy Pavement Marking	2,360	SF	\$ 16.00	$=$	\$	37,765.28		\$	37,765.28
Thermoplastic Pavement Marking	116	SF	\$ 28.00	=	\$	3,248.00		\$	3,248.00
Barricade - Type 3	4	EA	\$ 241.00	$=$	\$	964.00		\$	964.00
Delineator - Type I		EA	\$ 29.00	$=$	\$	-		\$	-
Curb and Gutter, Type A (6" Vertical)		LF	\$ 35.00	$=$	\$	-		\$	-
Curb and Gutter, Type B (Median)		LF	\$ 35.00	$=$	\$	-		\$	-
Curb and Gutter, Type C (Ramp)		LF	\$ 35.00	$=$	\$	-		\$	-
4" Sidewalk (common areas only)		SY	\$ 58.00	$=$	\$	-		\$	-
5" Sidewalk		SY	\$ 72.00	$=$	\$	-		\$	-
6" Sidewalk		SY	\$ 87.00	$=$	\$	-		\$	-
8" Sidewalk		SY	\$ 116.00		\$	-		\$	-
Pedestrian Ramp		EA	\$ 1,390.00	$=$	\$	-		\$	-
Cross Pan, local (8" thick, 6^{\prime} wide to include return)		LF	\$ 73.00	$=$	\$	-		\$	-
Cross Pan, collector (9" thick, 8 ' wide to include return)		LF	\$ 111.00		\$	-		\$	-
Curb Opening with Drainage Chase		EA	\$ 1,790.00	$=$	\$	-		\$	-
Guardrail Type 3 (W-Beam)		LF	\$ 60.00	$=$	\$	-		\$	-
Guardrail Type 7 (Concrete)		LF	\$ 87.00	=	\$	-		\$	-
Guardrail End Anchorage		EA	\$ 2,538.00	$=$	\$	-		\$	-
Guardrail Impact Attenuator		EA	\$ 4,556.00	$=$	\$	-		\$	-
Sound Barrier Fence (CMU block, 6' high)		LF	\$ 95.00		\$	-		\$	-
Sound Barrier Fence (panels, 6' high)		LF	\$ 97.00	$=$	\$	-		\$	-
$\begin{array}{ll}\text { Electrical Conduit, } & \text { Size }= \\ \text { Traffic Signal, (provide engineer's estimate) }\end{array}$		LF	\$ 20.00	=	\$	-		\$	-
		EA		=	\$			\$	-

PROJ ECT INFORMATION									
Saddlehorn Filing 4	9/1/2023						SF-23-006		
Project Name	Date				PCD File No.				
Description			Unit		Total		(with Pre-Plat Construction)		
	Quantity	Units	Cost				\% Complete		Remaining
[insert items not listed but part of construction plans]				$=$	\$	-		\$	-
				$=$	\$	-		\$	-
STORM DRAIN IMPROVEMENTS									
Concrete Box Culvert (M Standard), Size (W x H)		LF		$=$	\$	-		\$	-
18" Reinforced Concrete Pipe	49	LF	\$ 76.00	$=$	\$	3,724.00		\$	3,724.00
24" Reinforced Concrete Pipe	99	LF	\$ 91.00	$=$	\$	9,029.02		\$	9,029.02
30" Reinforced Concrete Pipe	94	LF	\$ 114.00	$=$	\$	10,750.20		\$	10,750.20
36" Reinforced Concrete Pipe		LF	\$ 140.00	$=$	\$	-		\$	-
42" Reinforced Concrete Pipe		LF	\$ 187.00	$=$	\$	-		\$	-
48" Reinforced Concrete Pipe		LF	\$ 228.00	$=$	\$	-		\$	-
54" Reinforced Concrete Pipe		LF	\$ 297.00	$=$	\$	-		\$	-
60" Reinforced Concrete Pipe		LF	\$ 348.00	$=$	\$	-		\$	-
66" Reinforced Concrete Pipe		LF	\$ 402.00	$=$	\$	-		\$	-
72" Reinforced Concrete Pipe		LF	\$ 460.00	$=$	\$	-		\$	-
18" Corrugated Steel Pipe		LF	\$ 98.00	$=$	\$	-		\$	-
24" Corrugated Steel Pipe		LF	\$ 112.00	$=$	\$	-		\$	-
30" Corrugated Steel Pipe		LF	\$ 143.00	$=$	\$	-		\$	-
36" Corrugated Steel Pipe	32	LF	\$ 171.00	$=$	\$	5,494.23		\$	5,494.23
42" Corrugated Steel Pipe		LF	\$ 197.00	=	\$	-		\$	-
48" Corrugated Steel Pipe		LF	\$ 207.00	$=$	\$	-		\$	-
54" Corrugated Steel Pipe		LF	\$ 304.00	$=$	\$	-		\$	-
60" Corrugated Steel Pipe		LF	\$ 328.00	$=$	\$	-		\$	-
66" Corrugated Steel Pipe	36	LF	\$ 397.00	$=$	\$	14,403.16		\$	14,403.16
72" Corrugated Steel Pipe		LF	\$ 467.00	$=$	\$	-		\$	-
78" Corrugated Steel Pipe		LF	\$ 537.00	$=$	\$	-		\$	-
84" Corrugated Steel Pipe		LF	\$ 642.00	$=$	\$	-		\$	-
Flared End Section (FES) RCP Size $=18$ RCP (unit cost $=6 \times$ pipe unit cost)	2	EA	\$ 402.00	=	\$	804.00		\$	804.00
Flared End Section (FES) RCP Size $=\quad$ 24" RCP (unit cost $=6 x$ pipe unit cost)	4	EA	\$ 486.00	=	\$	1,944.00		\$	1,944.00
Flared End Section (FES) RCP Size $=$ (unit cost $=6 \times$ pipe unit cost) \quad 30" RCP	4	EA	\$ 600.00	=	\$	2,400.00		\$	2,400.00
End Treatment- Headwall \& Wingwall		EA	\$ 10,000.00	$=$	\$	-		\$	-
End Treatment - Cutoff Wall		CY		$=$	\$	-		\$	-
Curb Inlet (Type R) L=5', \quad Depth $<5^{\prime}$		EA	\$ 6,703.00	$=$	\$	-		\$	-
Curb Inlet (Type R) L=5', $\quad 5^{\prime} \leq$ Depth $<10^{\prime}$		EA	\$ 8,715.00	$=$	\$	-		\$	-
Curb Inlet (Type R) L = 5', $10^{\prime} \leq$ Depth $<15^{\prime}$		EA	\$ 10,092.00	$=$	\$	-		\$	-
Curb Inlet (Type R) L=10', Depth < 5'		EA	\$ 9,224.00	$=$	\$	-		\$	-
Curb Inlet (Type R) L=10', $5^{\prime} \leq$ Depth $<10^{\prime}$		EA	\$ 9,507.00	$=$	\$	-		\$	-
Curb Inlet (Type R) L = 10', $10^{\prime} \leq$ Depth $<15^{\prime}$		EA	\$ 11,901.00	$=$	\$	-		\$	-
Grated Inlet (Type C), Depth < 5'		EA	\$ 5,611.00	$=$	\$	-		\$	-
Grated Inlet (Type D), Depth < 5'		EA	\$ 6,931.00	$=$	\$	-		\$	-
Storm Sewer Manhole, Box Base		EA	\$ 14,061.00	$=$	\$	-		\$	-
Storm Sewer Manhole, Slab Base		EA	\$ 7,734.00	$=$	\$	-		\$	-
Geotextile (Erosion Control)		SY	\$ 8.00	$=$	\$	-		\$	-
Rip Rap, d50 size from 6" to 24"	163	Tons	\$ 97.00	$=$	\$	15,779.96		\$	15,779.96
Rip Rap, Grouted		Tons	\$ 115.00	$=$	\$	-		\$	-
Drainage Channel Construction, Size (W x H)		LF	\$ -	$=$	\$	-		\$	-
Drainage Channel Lining, Concrete		CY	\$ 689.00	$=$	\$	-		\$	-
Drainage Channel Lining, Rip Rap		CY	\$ 135.00	$=$	\$	-		\$	-
Drainage Channel Lining, Grass	0.8	AC	\$ 1,776.00	=	\$	1,491.84		\$	1,491.84
Drainage Channel Lining, Other Stabilization				=	\$	-		\$	-
				$=$	\$	-		\$	-
[insert items not listed but part of construction plans]				$=$	\$	-		\$	-
* - Subject to defect warranty financial assurance. A minimum of 20% shall be retained until final acceptance (MAXIMUM OF 80\% COMPLETE ALLOWED)		Section 2 Subtotal		=	\$,147.69		\$	2,137,147.69

Approvals	
I hereby certify that this is an accurate and complete estimate of costs for the work as shown on the Grading and Erosion Control Plan and Construction Drawings associated with the Project.	
Engineer (P.E. Seal Required)	Date
Approved by Owner / Applicant	Date
Approved by El Paso County Engineer / ECM Administrator	

APPENDIX B

HYDROLOGIC CALCULATIONS

Provide existing conditions calculations

Subdivision: Saddlehorn Ranch Filing 4
Location: El Paso County

Project Name: Saddlehorn Ranch
Project No.: 25142.06
Calculated By: AAM
Checked By: TBD
Date: 3/1/22

		Paved Roads			2.5 Acre Rural Lots			Lawns			Basins Total Weighted \% Imp.
Basin ID	Total Area (ac)	\% Imp.	Area (ac)	Weighted \% Imp.	\% Imp.	Area (ac)	Weighted \% Imp.	\%Imp.	Area (ac)	Weighted \% Imp.	
C1	2.14	45\%	1.00	21.0\%	6.2\%	1.14	3.3\%	2\%	0.00	0.0\%	24.3\%
C2	22.55	45\%	2.21	4.4\%	6.2\%	20.34	5.6\%	2\%	0.00	0.0\%	10.0\%
C3	1.26	45\%	0.61	21.8\%	6.2\%	0.65	3.2\%	2\%	0.00	0.0\%	25.0\%
C4	1.36	45\%	1.36	45.0\%	6.2\%	0.00	0.0\%	2\%	0.00	0.0\%	45.0\%
C5	3.95	45\%	1.59	18.1\%	6.2\%	2.36	3.7\%	2\%	0.00	0.0\%	21.8\%
C6	4.19	45\%	0.93	10.0\%	6.2\%	3.26	4.8\%	2\%	0.00	0.0\%	14.8\%
C7	1.11	45\%	1.11	45.0\%	6.2\%	0.00	0.0\%	2\%	0.00	0.0\%	45.0\%
C8	10.13	45\%	0.00	0.0\%	6.2\%	8.07	4.9\%	2\%	2.06	0.4\%	5.3\%
D1	3.97	45\%	1.22	13.8\%	6.2\%	2.75	4.3\%	2\%	0.00	0.0\%	18.1\%
D2	5.58	45\%	1.55	12.5\%	6.2\%	4.03	4.5\%	2\%	0.00	0.0\%	17.0\%
D3	0.34	45\%	0.34	45.0\%	6.2\%	0.00	0.0\%	2\%	0.00	0.0\%	45.0\%
D4	10.01	45\%	0.35	1.6\%	6.2\%	8.21	5.1\%	2\%	1.45	0.3\%	6.9\%
D5	7.94	45\%	0.00	0.0\%	6.2\%	5.15	4.0\%	2\%	2.79	0.7\%	4.7\%
D6	17.08	45\%	2.29	6.0\%	6.2\%	14.79	5.4\%	2\%	0.00	0.0\%	11.4\%
D7	0.86	45\%	0.86	45.0\%	6.2\%	0.00	0.0\%	2\%	0.00	0.0\%	45.0\%
D8	6.00	45\%	1.96	14.7\%	6.2\%	4.04	4.2\%	2\%	0.00	0.0\%	18.9\%
D9	2.00	45\%	1.94	43.7\%	6.2\%	0.06	0.2\%	2\%	0.00	0.0\%	43.8\%
UD1	20.70	45\%	0.00	0.0\%	6.2\%	20.70	6.2\%	2\%	0.00	0.0\%	6.2\%
UD2	24.68	45\%	0.00	0.0\%	6.2\%	0.00	0.0\%	2\%	24.68	2.0\%	2.0\%
UD3	7.68	45\%	0.00	0.0\%	6.2\%	7.68	6.2\%	2\%	0.00	0.0\%	6.2\%
UD4	12.80	45\%	0.00	0.0\%	6.2\%	12.80	6.2\%	2\%	0.00	0.0\%	6.2\%
OS1	2.26	100\%	1.27	56.2\%	6.2\%	0.00	0.0\%	2\%	0.99	0.9\%	57.1\%
OS2	0.72	100\%	0.24	33.3\%	6.2\%	0.00	0.0\%	2\%	0.48	1.3\%	34.7\%
TOTAL	169.31										10.7\%

2.5 Acre Rural Lots - Comp. \% Impervious Calculation					
Total Area (ac)	Area (ac) - Roofs (90\%)	Area (ac)- Drives (100\%)	Area (ac) - Lawns (2\%)		
2.50	0.068	0.046	2.39		
Comp \% Imperviousness	6.20%				

Roads w/ Roadside Ditches - Comp. \% Impervious Calculation

Area* (ac)	Area - Ditch (5\%)	Area - Roads (100\%)
0.2124	0.1320	0.0804
Comp \% Imperviousness	$\mathbf{0 . 4 1}$	

*Area based on 250 LF roadway from CL to outside edge of roadside ditch The above conservatively rounded to 45%.

COM POSITE RUNOFF COEFFICIENT CALCULATIONS

bdivision: Saddlehorn Ranch Filing 4 Location: 1 Paso County

Project Name: Saddlehorn Ranch
Project No.: 25142.06
Calculated By: AAM
Checked By: TBD
Date: $3 / 1 / 22$

Basin ID	Total Area (ac)	Basins Total Weighted \% Imp.	Hydrologic Soil Group			Hydrologic Soil Group			Minor Coefficients			Major Coefficients			Basins Total Weighted C_{5}	Basins Total Weighted C_{100}
			Area A (ac)	Area B (ac)	Area C/D (ac)	$\begin{aligned} & \% \text { A } \\ & \text { (ac) } \end{aligned}$	$\begin{aligned} & \text { \% B } \\ & \text { (ac) } \end{aligned}$	$\begin{gathered} \text { \% C/ D } \\ \text { (ac) } \end{gathered}$	$C_{5, A}$	$\mathrm{C}_{5, \mathrm{~B}}$	$\mathrm{C}_{5, \mathrm{ClD}}$	$\mathrm{C}_{100, \mathrm{~A}}$	$\mathrm{C}_{100, \mathrm{~B}}$	$\mathrm{C}_{100, \mathrm{Cl} \text { D }}$		
Cl	2.14	24.3\%	1.55	0.00	0.59	72\%	0\%	28\%	0.14	0.19	0.23	0.30	0.54	0.58	0.17	0.38
Q	22.55	10.0\%	22.55	0.00	0.00	100\%	0\%	0\%	0.05	0.07	0.12	0.19	0.47	0.52	0.05	0.19
C3	1.26	25.0\%	1.26	0.00	0.00	100\%	0\%	0\%	0.15	0.19	0.24	0.31	0.54	0.59	0.15	0.31
C4	1.36	45.0\%	1.36	0.00	0.00	100\%	0\%	0\%	0.31	0.36	0.40	0.46	0.64	0.67	0.31	0.46
C5	3.95	21.8\%	3.95	0.00	0.00	100\%	0\%	0\%	0.12	0.16	0.21	0.28	0.53	0.57	0.12	0.28
C6	4.19	14.8\%	4.19	0.00	0.00	100\%	0\%	0\%	0.08	0.11	0.16	0.23	0.50	0.55	0.08	0.23
C7	1.11	45.0\%	1.11	0.00	0.00	100\%	0\%	0\%	0.31	0.36	0.40	0.46	0.64	0.67	0.31	0.46
C8	10.13	5.3\%	10.13	0.00	0.00	100\%	0\%	0\%	0.02	0.04	0.08	0.15	0.45	0.51	0.02	0.15
D1	3.97	18.1\%	0.11	0.00	3.86	3\%	0\%	97\%	0.10	0.13	0.18	0.25	0.51	0.56	0.18	0.55
D2	5.58	17.0\%	3.65	0.00	1.93	65\%	0\%	35\%	0.09	0.13	0.17	0.24	0.51	0.55	0.12	0.35
D3	0.34	45.0\%	0.17	0.00	0.17	50\%	0\%	50\%	0.31	0.36	0.40	0.46	0.64	0.67	0.36	0.57
D4	10.01	6.9\%	3.16	0.00	6.85	32\%	0\%	68\%	0.03	0.05	0.09	0.16	0.46	0.51	0.07	0.40
D5	7.94	4.7\%	2.43	0.00	5.51	31\%	0\%	69\%	0.02	0.03	0.07	0.15	0.45	0.50	0.06	0.39
D6	17.08	11.4\%	13.71	0.00	3.37	80\%	0\%	20\%	0.05	0.08	0.13	0.20	0.48	0.53	0.07	0.26
D7	0.86	45.0\%	0.82	0.00	0.04	95\%	0\%	5\%	0.31	0.36	0.40	0.46	0.64	0.67	0.31	0.47
D8	6.00	18.9\%	6.00	0.00	0.00	100\%	0\%	0\%	0.10	0.14	0.19	0.26	0.51	0.56	0.10	0.26
D9	2.00	43.8\%	1.97	0.00	0.03	98\%	0\%	2\%	0.30	0.35	0.39	0.45	0.63	0.66	0.30	0.46

UD1	20.70	6.2%	16.26	0.00	4.44	79%	0%	21%	0.03	0.04	0.09	0.16	0.46	0.51	0.04
UD2	24.68	2.0%	1.06	0.00	23.62	4%	0%	96%	0.01	0.01	0.05	0.13	0.44	0.49	0.05
UD3	7.68	6.2%	5.85	0.00	1.83	76%	0%	24%	0.03	0.04	0.09	0.16	0.46	0.51	0.04
UD4	12.80	6.2%	12.80	0.00	0.00	100%	0%	0%	0.03	0.04	0.09	0.16	0.46	0.51	0.03
OS1	2.26	57.1%	0.47	0.00	1.79	21%	0%	79%	0.42	0.47	0.50	0.56	0.69	0.72	0.49
OS2	0.72	34.7%	0.72	0.00	0.00	100%	0%	0%	0.22	0.27	0.32	0.38	0.59	0.63	0.22
TOTAL	$\mathbf{1 6 9 . 3 1}$	$\mathbf{1 0 . 7 \%}$	$\mathbf{1 1 5 . 2 8}$	$\mathbf{0 . 0 0}$	$\mathbf{5 4 . 0 4}$	$\mathbf{6 8 \%}$	$\mathbf{0} \%$	$\mathbf{3 2 \%}$	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	$\mathbf{-}$

Table 6-4. Runoff coefficient equations based on NRCS soil group and storm return period

NRCS		Storm Return Period					
Soil Group	2 -Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year
A	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.84 i^{1.302} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.86 i^{1.276} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.87 i^{1232} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.84 i^{1.24} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.85 i+0.025 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.788^{i+0.110} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{A}}= \\ & 0.65 i+0.254 \end{aligned}$
B	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.84 i^{1.60} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.86 i^{1.088} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.81 i+0.057 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.63 i+0.249 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.56 i+0.328 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.47 i+0.426 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{B}}= \\ & 0.37 i+0.536 \end{aligned}$
C/D	$\begin{aligned} & \mathrm{CCD}= \\ & 0.83 i^{1.122} \end{aligned}$	$\begin{aligned} & \mathrm{CCD}= \\ & 0.82 i+0.035 \end{aligned}$	$\begin{aligned} & \mathrm{CCD}= \\ & 0.74 i+0.132 \end{aligned}$	$\begin{aligned} & \mathrm{CCD}= \\ & 0.56 i+0.319 \end{aligned}$	$\begin{aligned} & \mathrm{CCD}= \\ & 0.49 i+0.393 \end{aligned}$	$\begin{aligned} & \mathrm{CCD}= \\ & 0.41 i+0.484 \end{aligned}$	$\begin{aligned} & \mathrm{CCD}= \\ & 0.32 i+0.588 \end{aligned}$

Where:
$i=\%$ imperviousness (expressed as a decimal)
$C_{A}=$ Runoff coefficient for Natural Resources Conservation Service (NRCS) HSG A soils
$C_{B}=$ Runoff coefficient for NRCS HSG B soils
$C_{C D}=$ Runoff coefficient for NRCS HSG C and D soils.

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Saddlehorn Ranch Filing 4
Location: El Paso County

Project Name: Saddlehorn Ranch
Project No.: 25142.06
Calculated By: AAM
Checked By: TBD
Date: $3 / 1 / 22$

SUB-BASIN						INITIAL/ OVERLAND			TRAVELTIME					tc CHECK			FINAL
DATA						$\left(\mathrm{T}_{\mathrm{i}}\right.$)			$\left(\mathrm{T}_{\mathrm{t}}\right.$)					(URBANIZED BASINS)			
$\begin{gathered} \hline \text { BASIN } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \hline \text { D.A. } \\ & \text { (ac) } \\ & \hline \end{aligned}$	Hydrologic Soils Group	Impervious (\%)	C5	C_{100}	$\begin{gathered} \mathbf{L} \\ \text { (ft) } \end{gathered}$	$\begin{aligned} & \hline \mathbf{S}_{\mathbf{o}} \\ & (\%) \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \\ \hline \end{gathered}$	Lt (ft)	$\begin{aligned} & \mathbf{S}_{\mathrm{t}} \\ & (\%) \\ & \hline \end{aligned}$	K	$\begin{aligned} & \hline \text { VEL. } \\ & (\mathrm{ft} / \mathrm{s}) \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{t}} \\ (\min) \\ \hline \end{gathered}$	COMP. t_{c} (min)	TOTAL LENGTH (ft)	$\begin{array}{\|c\|} \hline \text { Urbanized } \mathbf{t}_{\mathrm{c}} \\ (\mathrm{~min}) \end{array}$	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min) \\ \hline \end{gathered}$
Cl	2.14	A	24\%	0.17	0.38	52	7.5\%	6.2	689	1.0\%	15.0	1.5	7.7	13.9	741.0	31.1	13.9
Q	22.55	A	10\%	0.05	0.19	300	1.9\%	26.7	630	1.0\%	15.0	1.5	7.0	33.7	930.0	34.4	33.7
C3	1.26	A	25\%	0.15	0.31	143	2.4\%	15.4	184	1.0\%	15.0	1.5	2.0	17.5	327.0	24.2	17.5
C4	1.36	A	45\%	0.31	0.46	28	13.8\%	3.2	1210	1.6\%	15.0	1.9	10.6	13.8	1238.0	28.8	13.8
C5	3.95	A	22\%	0.12	0.28	97	1.4\%	15.5	997	1.0\%	15.0	1.5	11.1	26.6	1094.0	36.1	26.6
C6	4.19	A	15\%	0.08	0.23	154	3.0\%	16.0	455	1.0\%	15.0	1.5	5.1	21.0	609.0	30.3	21.0
C7	1.11	A	45\%	0.31	0.46	28	13.8\%	3.2	673	1.0\%	15.0	1.5	7.5	10.7	701.0	25.7	10.7
C8	10.13	A	5\%	0.02	0.15	300	3.0\%	23.5	557	1.0\%	15.0	1.5	6.2	29.7	857.0	34.6	29.7
D1	3.97	D	18\%	0.18	0.55	266	2.4\%	20.3	354	1.0\%	15.0	1.5	3.9	24.2	620.0	28.0	24.2
D2	5.58	A	17\%	0.12	0.35	83	3.0\%	11.2	1382	2.2\%	15.0	2.2	10.4	21.6	1465.0	36.8	21.6
D3	0.34	A	45\%	0.36	0.57	46	8.0\%	4.6	332	1.0\%	15.0	1.5	3.7	8.3	378.0	22.0	8.3
D4	10.01	D	7\%	0.07	0.40	300	1.8\%	26.5	1201	1.0\%	15.0	1.5	13.3	39.8	1501.0	44.9	39.8
D5	7.94	D	5\%	0.06	0.39	300	2.0\%	26.0	426	1.0\%	7.0	0.7	10.1	36.1	726.0	32.5	32.5
D6	17.08	A	11\%	0.07	0.26	300	4.0\%	20.4	904	1.4\%	15.0	1.8	8.4	28.8	1204.0	36.0	28.8
D7	0.86	A	45\%	0.31	0.47	40	8.0\%	4.5	857	1.0\%	15.0	1.5	9.5	14.0	897.0	27.7	14.0
D8	6.00	A	19\%	0.10	0.26	86	2.0\%	13.3	1027	1.0\%	15.0	1.5	11.4	24.7	1113.0	37.5	24.7
D9	2.00	A	44\%	0.30	0.46	110	3.0\%	10.5	1823	1.0\%	15.0	1.5	20.3	30.8	1933.0	38.6	30.8
UD1	20.70	A	6\%	0.04	0.23	300	3.0\%	23.1	546	3.0\%	7.0	1.2	7.5	30.6	846.0	30.3	30.3
UD2	24.68	D	2\%	0.05	0.48	300	2.3\%	25.0	1450	1.1\%	15.0	1.6	15.4	40.3	1750.0	50.5	40.3
UD3	7.68	A	6\%	0.04	0.24	300	2.5\%	24.5	818	1.5\%	7.0	0.9	15.9	40.4	1118.0	36.2	36.2
UD4	12.80	A	6\%	0.03	0.16	300	1.6\%	28.8	628	1.9\%	7.0	1.0	10.8	39.6	928.0	32.6	32.6

STANDARD FORM SF-2

TIME OF CONCENTRATION

Subdivision: Saddlehorn Ranch Filing 4 Location: El Paso County

Project Name: Saddlehorn Ranch
Project No.: 25142.06
Calculated By: AAM
Checked By: $\overline{\mathrm{TBD}}$
Date: $3 / 1 / 22$

SUB-BASIN						INITIAL/ OVERLAND			TRAVELTIME					tc CHECK			FINAL
DATA						$\left(\mathrm{T}_{\mathrm{i}}\right)$			(t_{t})					(URBANIZED BASINS)			
$\begin{gathered} \hline \text { BASIN } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \hline \text { D.A. } \\ & (\mathrm{ac}) \end{aligned}$	Hydrologic Soils Group	Impervious (\%)	C5	C_{100}	L (ft)	$\begin{aligned} & \mathbf{S}_{\mathbf{o}} \\ & (\%) \\ & \hline\left(\begin{array}{l} \end{array}\right. \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \end{gathered}$	$\overline{L_{t}}$ (ft)	$\begin{aligned} & \mathbf{S}_{\mathbf{t}} \\ & (\%) \end{aligned}$	K	$\begin{aligned} & \hline \mathrm{VEL} . \\ & (\mathrm{ft} / \mathrm{s}) \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{t}} \\ (\mathrm{min}) \end{gathered}$	$\begin{gathered} \text { COMP. } \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \end{gathered}$	TOTAL LENGTH (ft)	$\underset{(\min)}{\text { Urbanized } \mathbf{t}_{c}}$	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min) \end{gathered}$
OS1	2.26	D	57\%	0.49	0.68	41	2.5\%	5.2	45	1.1\%	7.0	0.7	1.0	6.3	86.0	16.7	6.3
OS2	0.72	A	35\%	0.22	0.38	41	2.5\%	7.5	43	1.0\%	7.0	0.7	1.0	8.5	84.0	20.6	8.5

NOTES:
$t_{c}=t_{i}+t_{t}$
Where:
$t_{c}=$ computed time of concentration (minutes)
$t_{i}=$ overland (initial) flow time (minutes)
$t_{t}=$ channelized flow time (minutes)
$t_{t}=\frac{L_{t}}{60 K \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}}$
Where:
$t_{t}=$ channelized flow time (travel time, min)
$L_{t}=$ waterway length (ff)
$\mathrm{S}_{\mathrm{o}}=$ waterway slope (ft/f)
$V_{t}=$ travel time velocity $(\mathrm{ft} / \mathrm{sec})=\mathrm{K}$
$t=$ NRCS conveyance factor (see Table $6-2$)

Equation 6-2 $\quad t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L_{i}}}{S_{o}^{0.33}}$
Where:
$t_{i}=$ overland (initial) flow time (minutes)
$C_{5}=$ runoff coefficient for 5 -year frequency (from Table 6-4)
$L_{i}=$ length of overland flow (ft)
$S_{0}=$ average slope
$t_{t}=(26-17 i)+\frac{L_{t}}{60(14 i+9) \sqrt{S_{t}}}$
Where:
$t_{c}=$ minimum time of concentration for first design point when less than t_{c} from Equation 6-1
$L_{t}=$ length of channelized flow path (ft)
$i=$ imperviousness (expressed as a decimal)
$S_{t}=$ slope of the channelized flow path (ftfit.

Equation 6-3

Equation 6-5

Table 6-2. NRCS Conveyance factors, K
Table 6-2. NRCS Conveyance factors, \mathbf{K}

Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

Use a minimum t_{c} value of 5 minutes for urbanized areas and a minimum t_{c} value of 10 minutes for areas
that are not considered urban. Use minimum values even when calculations result in a lesser time of
concentration.

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)

Subdivision: Saddlehorn Ranch Filing 4 Location: EIPaso County Design Storm: 5-Year												Project Name:Project No.: $\frac{\text { Saddlehorn Ran }}{25142.06}$Calculated By:Checked By:Date: $\frac{\text { TBD }}{3 / 1 / 22}$											
STREET		DIRECT RUNOFF							TOTAL RUNOFF				SWALE			PIPE				TRAVELTIME			REM ARKS
				$\begin{aligned} & 4.4 \\ & 8 \\ & 8 \\ & 4 \end{aligned}$	듴 U		들	$\begin{aligned} & \frac{\pi}{6} \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \substack{\tilde{y} \\ \hline \\ \hline} \end{array}$	$$		$\stackrel{\pi}{0}$			$\begin{aligned} & \text { O} \\ & \text { ö } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \frac{\sqrt{6}}{\underbrace{2}_{0}} \\ & \frac{0}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{U}{4} \\ & \hline \end{aligned}$	\circ 0 0 0 0 0				كِ	
	EX1								34.7	1.19	2.26	2.7	2.7	1.19	1.0					387	2.0	3.2	Existing flows from Saddlehorn Filing 3 Swale conveyance to DP 1.0
	1	D1	3.97	0.18	24.2	0.72	2.80	2.0					2.0	0.72	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 1.0
	1.0								37.9	1.91	2.13	4.1	4.1	1.91	1.7					1045	2.6	6.7	Sum of DP EX1 and DP 1 Swale conveyance to DP 1.1
	2	D2	5.58	0.12	21.6	0.66	2.97	2.0					2.0	0.66	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 1.1
	3	D3	0.34	0.36	8.3	0.12	4.41	0.5					0.5	0.12	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 1.1
	1.1								44.6	2.69	1.89	5.1	5.1	2.69	1.0					117	2.0	1.0	Sum of DP 1.0, DP 2, \& DP 3 Swale conveyance to DP 1.2
	EX2								27.2	1.62	2.63	4.3	4.3	1.62	1.9					894	2.7	5.5	Existing flows from Saddlehorn Filing 3 Swale conveyance to DP 1.2
	4	D4	10.01	0.07	39.8	0.72	2.06	1.5					1.5	0.72	1.9					0	2.7	0.0	Swale Swale conveyance to DP 1.2
	1.2								45.6	5.03	1.85	9.3	9.3	5.03	0.8					623	1.7	6.0	Sum of DP 1.1, DP EX2, and DP 4 Swale/ Pond conveyance to DP 1.6
	6	D6	17.08	0.07	28.8	1.17	2.54	3.0					3.0	1.17	1.1					430	2.1	3.4	Roadside Swale Swale conveyance to DP 1.3
	7	D7	0.86	0.31	14.0	0.27	3.62	1.0					1.0	0.27	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 1.3
	1.3								32.3	1.44	2.37	3.4	3.4	1.44	1.0					136	2.0	1.1	Sum of DP 6 and DP 7 Culvert conveyance to DP 1.5
	8	D8	6.00	0.10	24.7	0.61	2.77	1.7					1.7	0.61	1.1					442	2.1	3.5	Roadside Swale Swale conveyance to DP 1.4
	9	D9	2.00	0.30	30.8	0.60	2.44	1.5					1.5	0.60	1.1					0	2.1	0.0	Roadside Swale Swale conveyance to DP 1.4
	1.4								30.8	1.21	2.44	3.0	3.0	1.21	1.0					136	2.0	1.1	Sum of DP 8 and DP 9 conveyance to DP 1.5
	1.5								33.4	2.65	2.32	6.1	6.1	2.65	0.5					153	1.4	1.8	Sum of DP 1.3 and DP 1.4 Swale/ Pond conveyance to DP 1.6
	5	D5	7.94	0.06	32.5	0.45	2.36	1.1					1.1	0.45	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 1.6
	1.6								51.6	8.13	1.67	13.6	13.6	8.13	0.75					0	1.7	0.0	Sum of DP 1.2, DP 1.5, and DP 5 Outlet structure release into Drainageway MS-06
	11	Cl	2.14	0.17	13.9	0.36	3.64	1.3					1.3	0.36	1.0					1214	2.0	10.1	Roadside Swale Swale conveyance to DP 2.0
	12	C2	22.55	0.05	33.7	1.04	2.31	2.4					2.4	1.04	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 2.0

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)

Notes:
Street and Pipe $C^{*} \mathrm{~A}$ values are determined by Q / i using the catchment's intensity value.

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)

Subdivision: Saddlehorn Ranch Filing 4 Location: El Paso County

Project Name: Saddlehorn Ranch
Project No.: 25142.06
Calculated By: $\frac{\text { AAM }}{}$
Checked By: TBD
Date: 3/1/22

		DIRECT RUNOFF							TOTAL RUNOFF				SWALE			PIPE				TRAVEL TIME			
STREET	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \\ & .0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.4 \\ & 8 \\ & 8 \\ & 4 \end{aligned}$	है	$$	$\sum_{\substack{\sqrt{c}}}$	$\frac{\pi}{0}$		$$	$\begin{gathered} \widehat{\Sigma} \\ \stackrel{\rightharpoonup}{c} \end{gathered}$	$\begin{aligned} & \frac{\pi}{0} \\ & 0 \\ & \hline \end{aligned}$		$$	$\begin{aligned} & \text { ○ } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{gathered} \frac{\hat{\pi}}{6} \\ \underbrace{\frac{0}{2}}_{0} \\ \hline \end{gathered}$		$\begin{aligned} & \text { O} \\ & \text { ó } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbb{Y} \\ & \text { H } \\ & \stackrel{5}{9} \\ & \hline 9 \\ & \hline \hline \end{aligned}$	$$	$\widehat{\hat{\xi}}$	REM ARKS
	EXI								34.7	4.05	3.80	15.4	15.4	4.05	1.0					387	2.0	3.2	Existing flows from Saddlehorn Filing 3 Swale conveyance to DP 1.0
	1	D1	3.97	0.55	24.2	2.18	4.71	10.3					10.3	2.18	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 1.0
	1.0								37.9	6.23	3.57	22.3	22.3	6.23	1.7					1045	2.6	6.7	Sum of DP EX1 and DP 1 Swale conveyance to DP 1.1
	2	D2	5.58	0.35	21.6	1.95	4.99	9.7					9.7	1.95	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 1.1
	3	D3	0.34	0.57	8.3	0.19	7.41	1.4					1.4	0.19	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 1.1
	1.1								44.6	8.37	3.16	26.5	26.5	8.37	1.0					117	2.0	1.0	Sum of DP 1.0, DP 2, \& DP 3 Swale conveyance to DP 1.2
	EX2								27.2	2.56	4.41	11.3	11.3	2.56	1.9					894	2.7	5.5	Existing flows from Saddlehorn Filing 3 Swale conveyance to DP 1.2
	4	D4	10.01	0.40	39.8	4.03	3.45	13.9					13.9	4.03	1.9					0	2.7	0.0	Swale Swale conveyance to DP 1.2
	1.2								45.6	14.96	3.11	46.5	46.5	14.96	0.8					623	1.7	6.0	Sum of DP 1.1, DP EX2, and DP 4 Swale/ Pond conveyance to DP 1.6
	6	D6	17.08	0.26	28.8	4.52	4.26	19.3					19.3	4.52	1.1					430	2.1	3.4	Roadside Swale Swale conveyance to DP 1.3
	7	D7	0.86	0.47	14.0	0.40	6.08	2.4					2.4	0.40	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 1.3
	1.3								32.3	4.92	3.98	19.6	19.6	4.92	1.0					136	2.0	1.1	Sum of DP 6 and DP 7 Culvert conveyance to DP 1.5
	8	D8	6.00	0.26	24.7	1.54	4.65	7.2					7.2	1.54	1.1					442	2.1	3.5	Roadside Swale Swale conveyance to DP 1.4
	9	D9	2.00	0.46	30.8	0.91	4.10	3.7					3.7	0.91	1.1					0	2.1	0.0	Roadside Swale Swale conveyance to DP 1.4
	1.4								30.8	2.45	4.10	10.0	10.0	2.45	1.0					136	2.0	1.1	Sum of DP 8 and DP 9 conveyance to DP 1.5
	1.5								33.4	7.37	3.89	28.7	28.7	7.37	0.5					153	1.4	1.8	Sum of DP 1.3 and DP 1.4 Swale/ Pond conveyance to DP 1.6
	5	D5	7.94	0.39	32.5	3.13	3.96	12.4					12.4	3.13	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 1.6
	1.6								51.6	25.46	2.80	71.3	71.3	25.46	0.75					0	1.7	0.0	Sum of DP 1.2, DP 1.5, and DP 5 Outlet structure release into Drainageway MS-06
	11	C1	2.14	0.38	13.9	0.81	6.10	4.9					4.9	0.81	1.0					1214	2.0	10.1	Roadside Swale Swale conveyance to DP 2.0
	12	C2	22.55	0.19	33.7	4.24	3.87	16.4					16.4	4.24	1.0					0	2.0		Roadside Swale Swale conveyance to DP 2.0

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE

Subdivision: Saddlehorn Ranch Filing 4 Location: El Paso County Design Storm: $100-\mathrm{Year}$												$\begin{aligned} & \text { Project Name: } \text { Saddlehor } \\ & \text { Project No.: } \\ & \text { Calculated By: } \frac{25142.06}{\text { AAM }} \\ & \text { Checked By: } \\ & \text { Date: } \frac{\text { TBD }}{3 / 1 / 22} \end{aligned}$											
STREET		DIRECT RUNOFF							TOTAL RUNOFF				SWALE			PIPE				TRAVEL TIME			REM ARKS
		$\begin{array}{r} \text { Q } \\ \text { 苟 } \\ 0 \\ \hline \hline \end{array}$		$\begin{aligned} & \frac{4}{0} \\ & 8 \\ & \stackrel{4}{4} \\ & \frac{1}{7} \end{aligned}$	듣		$\sum_{!}^{\frac{1}{E}}$	$\stackrel{\tilde{\pi}}{0}$	$\begin{array}{\|c} \text { E. } \\ \hline \end{array}$	$$	厄	$\begin{aligned} & \frac{\pi}{0} \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{0}{6} \\ & \underset{U}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{\circ} \\ & \stackrel{0}{2} \end{aligned}$	${\underset{i}{\frac{0}{2}}}_{\substack{\frac{0}{2}}}$		O 0 0 0				$\widehat{\hat{G}}$	
	2.0								33.7	5.05	3.87	19.6	19.6	5.05	0.5					278	1.4	3.3	Sum of DP 11 \& DP 12 Swale conveyance to DP 2.2
	EX3								58.3	12.95	2.49	32.2	32.2	12.95	1.0					1147	2.0	9.6	Existing flows from Saddlehorn Filing 3 Swale conveyance to DP 2.1
	15	C5	3.95	0.28	26.6	1.11	4.46	5.0					5.0	1.11	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 2.1
	2.1								58.3	14.06	2.49	35.0				35.0	14.06	1.0	36	59	9.5	0.1	Sum of DP EX3 and DP 15 Culvert conveyance to DP 2.2
													2.1	0.38	1.5					1071	2.4	7.3	Roadside Swale
	13	C3	1.26	0.31	17.5	0.38	5.53	2.1															Swale conveyance to DP 2.2
	14	C4	1.36	0.46	13.8	0.63	6.12	3.9					3.9	0.63	1.0					0	2.0	0.0	Roadside Swale Swale conveyance to DP 2.2
	2.2								58.4	20.12	2.49	50.0	50.0	20.12	1.0					388	2.0	3.2	Sum of DP 13, DP 14, DP 2.0, \& DP 2.1 Swale/ Pond conveyance to DP 2.4
	16	C6	4.19	0.23	21.0	0.95	5.06	4.8					4.8	0.95	1.1					288	2.1	2.3	Roadside Swale Swale conveyance to DP 2.3
	17	C7	1.11	0.46	10.7	0.51	6.77	3.5					3.5	0.51	1.1					0	2.1	0.0	Roadside Swale Swale conveyance to DP 2.3
	2.3								23.3	1.46	4.80	7.0	7.0	1.46	1.0					649	2.0	5.4	Sum of DP 16 and DP 17 Swale conveyance to DP 2.4
	18	C8	10.13	0.15	29.7	1.54	4.19	6.5					6.5	1.54	1.0					0	2.0	0.0	Existing Pond C, Filing 4 Lots, and Filing 4 roadways Overland flow, swale, and pond conveyance to DP 2.4
	2.4								61.6	23.12	2.35	54.3	54.3	23.12	1.0					1147	2.0	9.6	Sum of DP 2.2, DP 2.3, and DP 18 Outlet structure release into Drainageway MS-06
	UD1	UD1	20.70	0.23	30.3	4.83	4.14	20.0															Overland Flow Sheet flow into Drainageway WF-R7A
	UD2	UD2	24.68	0.48	40.3	11.75	3.42	40.2															Overland Flow Sheet flow into Drainageway WF-R7A
	UD3	UD3	7.68	0.24	36.2	1.86	3.69	6.9															Overland Flow Sheet flow into Drainageway WF-RTA
	UD4	UD4	12.80	0.16	32.6	2.02	3.95	8.0															Overland Flow Sheet flow into Drainageway MS-06
	OS1	OS1	2.26	0.68	6.3	1.55	8.11	12.6															Overland Flow Sheet flow into Drainageway WF-R7A
	OS2	OS2	0.72	0.38	8.5	0.27	7.34	2.0															Overland Flow Sheet flow into Drainageway WF-R7A

[^0]Final Drainage Report
Filing 4-Saddlehom Ranch

APPENDIX C

HYDRAULIC CALCULATIONS

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.
Monday, Feb 282022

DP01 Design Point 1.0 (Q5=4.1cfs Q100=22.3 cfs)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=6729.74$
$=52.63$
$=0.76$
$=6730.14$
$=30.0$
= Circular
$=30.0$
= 1
$=0.012$
= Circular Concrete
= Groove end projecting (C)
$=0.0045,2,0.0317,0.69,0.2$
$=6734.00$
$=32.00$
$=20.00$

Calculations
Qmin (cfs) $\quad=4.10$
Qmax (cfs) $\quad=22.30$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $\quad=22.29$
Qpipe (cfs) $=22.29$
Qovertop (cfs)
$=0.00$
Veloc Dn (ft/s)
$=5.17$
Veloc Up (ft/s) $\quad=6.67$
HGL Dn (ft)
HGL Up (ft)
Hw Elev (ft)
Hw / D (ft)
Flow Regime
$=6731.79$
= 6731.75
$=6732.53$
$=0.95$
= Inlet Control

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP02 Design Point 6 (Q5=3.0cfs Q100=19.3 cfs)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=6718.05$
= 66.01
$=0.65$
$=6718.48$
= 30.0
= Circular
$=30.0$
$=1$
$=0.012$
= Circular Concrete
= Groove end projecting (C)
$=0.0045,2,0.0317,0.69,0.2$
$=6722.66$
$=32.00$
$=20.00$

Calculations
Qmin (cfs) $\quad=3.00$
Qmax (cfs) $\quad=19.30$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $\quad=19.30$
Qpipe (cfs) $\quad=19.30$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s)
$=4.60$
Veloc Up (ft/s) $=6.30$
HGL Dn (ft) $=6720.04$
HGL Up (ft) $=6719.98$
Hw Elev (ft)
$\mathrm{Hw} / \mathrm{D}(\mathrm{ft})$
Flow Regime
= 6720.65
$=0.87$
$=$ Inlet Control

Culvert Report

DP03 Design Point 8 (Q5=1.7cfs Q100=7.2 cfs)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=6718.10$
$=62.13$
$=0.58$
$=6718.46$
= 24.0
= Circular
$=24.0$
= 1
$=0.012$
= Circular Concrete
= Groove end projecting (C)
$=0.0045,2,0.0317,0.69,0.2$
$=6722.43$
$=32.00$
$=20.00$

Calculations
Qmin (cfs) $\quad=1.70$
Qmax (cfs) $\quad=7.20$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $\quad=7.20$
Qpipe (cfs) $\quad=7.20$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s) $=2.90$
Veloc Up (ft/s) $=4.88$
HGL Dn (ft) $=6719.58$
HGL Up (ft)
Hw Elev (ft)
$\mathrm{Hw} / \mathrm{D}(\mathrm{ft})$
Flow Regime
= 6719.41
$=6719.80$
$=0.67$
$=$ Inlet Control

Culvert Report

DP04 Design Point 13 (Q5=0.6cfs Q100=2.1 cfs)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=6730.66$
$=60.93$
$=1.03$
$=6731.29$
= 18.0
= Circular
$=18.0$
$=1$
$=0.012$
= Circular Concrete
= Groove end projecting (C)
$=0.0045,2,0.0317,0.69,0.2$
$=6734.58$
$=32.00$
$=20.00$

Calculations
Qmin (cfs)

$$
=0.60
$$

Qmax (cfs)
$=2.10$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $\quad=2.10$
Qpipe (cfs) $=2.10$
Qovertop (cfs) $=0.00$
Veloc Dn (ft/s)
$=1.63$
Veloc Up (ft/s) $=3.61$
HGL Dn (ft) $=6731.68$
HGL Up (ft)
Hw Elev (ft)
$\mathrm{Hw} / \mathrm{D}(\mathrm{ft})$
Flow Regime
$=6731.84$
$=6732.04$
$=0.50$
$=$ Inlet Control

Culvert Report

DP05 Design Point 16 (Q5=0.9 cfs Q100=4.8 cfs)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=6727.42$
$=61.54$
$=1.54$
$=6728.37$
= 18.0
= Circular
$=18.0$
$=1$
$=0.012$
= Circular Concrete
= Groove end projecting (C)
$=0.0045,2,0.0317,0.69,0.2$
$=6731.37$
$=32.00$
$=20.00$

Calculations
Qmin (cfs) $\quad=0.90$
Qmax (cfs) $\quad=4.80$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $=4.80$
Qpipe (cfs) $=4.80$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s) $\quad=3.24$
Veloc Up (ft/s) $=4.70$
HGL Dn (ft) $=6728.59$
HGL Up (ft) $=6729.21$
Hw Elev (ft)
Hw/D (ft)
Flow Regime
$=6729.58$
$=0.80$
$=$ Inlet Control

Channel Report

DP 1.0 Swale (5-Year)(FR:0.50)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.00$
$=0.030$

Known Q
$=4.10$

Highlighted
Depth (ft)
$=0.70$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft) $\quad=0.62$
Top Width (ft)
$=4.90$
EGL (ft) $=0.79$

Reach (ft)

DP 1.0 Swale (100-Year)(FR:0.55)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.00$
$=0.030$

Known Q
$=22.30$

Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft) $=1.21$
Top Width (ft) $=9.31$
EGL (ft) $=1.53$
$=1.33$
$=22.30$
$=6.19$
$=3.60$
$=9.69$

Reach (ft)

Channel Report

DP 1.1 Swale (5-Year)(FR:0.63)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.60$
$=0.030$

Known Q
$=5.10$

Highlighted
Depth (ft)
$=0.70$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=5.100$
$=1.71$
$=2.97$
$=5.10$
$=0.67$
$=4.90$
$=0.84$

Reach (ft)

DP 1.1 Swale (100-Year)(FR:.70)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.60$
$=0.030$

Known Q
$=26.50$

Highlighted
Depth (ft)
$=1.29$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=26.50$
$=5.82$
$=4.55$
$=9.40$
$=1.29$
$=9.03$
$=1.61$

Reach (ft)

Channel Report

DP 1.2 Swale (5-Year)(FR:0.70)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=4.00$
	$=10.00$
Invert Elev (ft)	$=1.85$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=9.30$

Highlighted
Depth (ft)
$=0.85$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=9.300$
$=2.53$
= 3.68
$=6.19$
$=0.85$
$=5.95$
$=1.06$

Channel Report

DP 1.2 Swale (100-Year)(FR:0.78)

Triangular
Side Slopes $(z: 1) \quad=4.00,3.00$
Total Depth $(\mathrm{ft}) \quad=4.00$
Invert Elev (ft)
Slope (\%)
N -Value

Calculations

Compute by:
Known Q (cfs)
$=10.00$
$=1.85$
$=0.030$

Known Q
$=46.50$

Highlighted
Depth (ft)
$=1.55$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=46.50$
$=8.41$
$=5.53$
$=11.29$
$=1.62$
$=10.85$
$=2.03$

Elev (ft)
15.00 Section

Reach (ft)

Channel Report

DP 1.3 Swale (5-Year)(FR:0.52)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
= 1.17
$=0.030$

Known Q $=3.40$

Highlighted
Depth (ft)
$=0.64$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=3.400$
$=1.43$
$=2.37$
$=4.66$
$=0.57$
$=4.48$
$=0.73$

Elev (ft)

Section

Depth (ft)

Reach (ft)

DP 1.3 Swale (100-Year)(FR:0.58)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.10$
$=0.030$

Known Q
$=19.60$

Highlighted

Depth (ft)	$=1.24$
Q (cfs)	$=19.60$
Area (sqft)	$=5.38$
Velocity (ft/s)	$=3.64$
Wetted Perim (ft)	$=9.03$
Crit Depth, Yc (ft)	$=1.15$
Top Width (ft)	$=8.68$
EGL (ft)	$=1.45$

Reach (ft)

Channel Report

DP 1.4 Swale (5-Year)(FR:0.52)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
= 1.17
$=0.030$

Known Q
$=3.00$

Highlighted
Depth (ft)
$=0.61$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=3.000$
$=1.30$
$=2.30$
$=4.44$
$=0.54$
$=4.27$
$=0.69$

Reach (ft)

DP 1.4 Swale (100-Year)(FR:0.57)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
= 1.17
$=0.030$

Known Q
$=10.00$

Highlighted
Depth (ft)
$=0.95$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=10.00$
$=3.16$
$=3.17$
$=6.92$
$=0.88$
$=6.65$
$=1.11$

Reach (ft)

Channel Report

DP 1.5 Swale (5-Year)(FR:0.44)

Triangular
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00,3.00$
$=3.00$
$=10.00$
$=0.72$
$=0.030$

Known Q
$=6.10$

Highlighted

Depth (ft)	$=0.92$
Q (cfs)	$=6.100$
Area (sqft)	$=2.54$
Velocity (ft/s)	$=2.40$
Wetted Perim (ft)	$=5.82$
Crit Depth, Yc (ft)	$=0.77$
Top Width (ft)	$=5.52$
EGL (ft)	$=1.01$

Elev (ft)

Section

Depth (ft)

Reach (ft)

DP 1.5 Swale (100-Year)(FR:0.48)

Triangular
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value

Calculations

Compute by:
Known Q (cfs)
$=3.00,3.00$
$=3.00$
$=10.00$
$=0.72$
$=0.030$

Known Q
$=28.70$

Highlighted

Depth (ft)	$=1.65$
Q (cfs)	$=28.70$
Area (sqft)	$=8.17$
Velocity (ft/s)	$=3.51$
Wetted Perim (ft)	$=10.44$
Crit Depth, Yc (ft)	$=1.42$
Top Width (ft)	$=9.90$
EGL (ft)	$=1.84$

Elev (ft)

Reach (ft)

Channel Report
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.
Friday, Jun 92023

DP 2.0 Swale (5-Year)(FR:0.62)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.74$
$=0.030$

Known Q
$=3.20$

Highlighted
Depth (ft)
$=0.58$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=3.200$
$=1.18$
$=2.72$
$=4.23$
$=0.56$
$=4.06$
$=0.69$

Elev (ft)

Section

Depth (ft)

Reach (ft)

DP 2.0 Swale (100-Year)(FR:0.71)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.74$
$=0.030$

Known Q
$=19.60$

Highlighted
Depth (ft)
$=1.14$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=19.60$
$=4.55$
$=4.31$
$=8.31$
$=1.15$
$=7.98$
$=1.43$

Elev (ft)
Depth (ft)

Reach (ft)

Channel Report

DP 2.1 Swale (5-Year)(FR:0.51)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.00$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=7.60$

Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.89$
$=7.600$
$=2.77$
$=2.74$
$=6.48$
$=0.79$
$=6.23$
$=1.01$

Elev (ft)
Depth (ft)

Reach (ft)

Channel Report

DP 2.1 Swale (100-Year)(FR:0.57)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.00$
$=0.030$

Known Q
$=35.00$

Highlighted
Depth (ft)
$=1.57$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
$=35.00$
$=8.63$

Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=4.06$
$=11.44$
$=1.45$
$=10.99$
$=1.83$

Elev (ft)
Depth (ft)

Reach (ft)

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP 2.2 Swale (5-Year)(FR:0.69)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.00$
$=0.030$

Known Q
$=10.50$

Highlighted
Depth (ft)
$=1.00$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=10.50$
$=3.50$
$=3.00$
$=7.29$
$=0.90$
$=7.00$
$=1.14$

Reach (ft)

Channel Report

DP 2.2 Swale (100-Year)(FR:0.59)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.00$
$=0.030$

Known Q
$=50.00$

Highlighted
Depth (ft)
$=1.79$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft) $\quad=1.67$
Top Width (ft) $=12.53$
EGL (ft)
$=50.00$
$=11.21$
$=4.46$
$=13.04$
$=2.10$

Elev (ft)
Depth (ft)

Reach (ft)

Channel Report

DP 2.3 Swale (5-Year)(FR:0.70)

Triangular

Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00,3.00$
$=3.00$
$=10.00$
$=2.22$
$=0.030$

Known Q
$=1.90$

Highlighted
Depth (ft)
$=0.48$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=1.900$
$=0.69$
$=2.75$
$=3.04$
$=0.48$
$=2.88$
$=0.60$

Elev (ft)
Section
Depth (ft)

Reach (ft)

Channel Report

DP 2.3 Swale (100-Year)(FR:0.74)

Triangular
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00,3.00$
$=3.00$
$=10.00$
$=2.22$
$=0.030$

Known Q
$=7.00$

Highlighted
Depth (ft)
$=0.79$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft) $\quad=0.81$
Top Width (ft)
EGL (ft)
$=4.74$
$=7.000$
$=1.87$
$=3.74$
$=5.00$
$=1.01$

Reach (ft)

DP 3 Swale (5-Year)(FR:0.56)

Triangular	
Side Slopes $(\mathrm{z}: 1)$	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.94$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=0.50$

Highlighted
Depth (ft)
$=0.29$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.500$
$=0.29$
$=1.70$
$=2.11$
$=0.27$
$=2.03$
$=0.33$

Elev (ft)

Section

Depth (ft)

Reach (ft)

DP 3 Swale (100-Year)(FR:0.62)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.94$
$=0.030$

Known Q
$=1.40$

Highlighted
Depth (ft)
$=0.42$
Q (cfs)
$=1.400$
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.62$
$=2.27$
$=3.06$
$=0.40$
$=2.94$
$=0.50$

Reach (ft)

DP 6 Swale (5-Year)(FR:0.56)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.42$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=3.00$

Highlighted
Depth (ft)
$=0.59$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft) $\quad=0.54$
Top Width (ft)
$=4.13$
EGL (ft) $=0.68$

Elev (ft)
Depth (ft)

Reach (ft)

DP 6 Swale (100-Year)(FR:0.64)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.42$
$=0.030$

Known Q
$=19.30$

Highlighted
Depth (ft)
$=1.18$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=19.30$
$=4.87$
$=3.96$
$=8.60$
$=1.14$
$=8.26$
$=1.42$

Reach (ft)

DP 8 Swale (5-Year)(FR:0.54)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.42$
Slope (\%)	$=0.030$
N-Value	
Calculations	
Compute by:	Known Q
Known Q (cfs)	$=1.70$

Highlighted
Depth (ft)
$=0.48$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=1.700$
$=0.81$
$=2.11$
$=3.50$
$=0.43$
$=3.36$
$=0.55$

Elev (ft)
Depth (ft)

Reach (ft)

DP 8 Swale (100-Year)(FR:0.61)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.42$
$=0.030$

Known Q
$=7.20$

Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft) $\quad=0.77$
Top Width (ft)
EGL (ft)
$=0.81$
$=7.200$
$=2.30$
$=3.14$
$=5.90$
$=5.67$
$=0.96$

Reach (ft)

DP 11 Swale (5-Year)(FR:0.46)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.00$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=1.30$

Highlighted
Depth (ft)
$=0.46$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=1.300$
$=0.74$
$=1.76$
$=3.35$
$=0.39$
$=3.22$
$=0.51$

Elev (ft)
Depth (ft)

Reach (ft)

DP 11 Swale (100-Year)(FR:0.72)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.00$
$=0.030$

Known Q
$=4.90$

Highlighted
Depth (ft)
$=0.75$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=4.900$
$=1.97$
$=2.49$
$=5.46$
$=0.66$
$=5.25$
$=0.85$

Reach (ft)

DP 13 Swale (5-Year)(FR:0.42)

Triangular
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00,4.00$
$=3.00$
$=10.00$
$=1.00$
$=0.030$

Known Q
$=0.60$

Highlighted
Depth (ft)
$=0.35$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.600$
$=0.43$
$=1.40$
$=2.55$
$=0.29$
$=2.45$
$=0.38$

Reach (ft)

DP 13 Swale (100-Year)(FR:0.47)

Triangular
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00,4.00$
$=3.00$
$=10.00$
$=1.00$
$=0.030$

Known Q
$=2.10$

Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.55$
$=2.100$
$=1.06$
$=1.98$
$=4.01$
$=0.47$
$=3.85$
$=0.61$

Reach (ft)

DP 16 Swale (5-Year)(FR:0.48)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=1.09$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=0.90$

Highlighted
Depth (ft)
$=0.39$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.900$
$=0.53$
= 1.69
$=2.84$
$=0.34$
$=2.73$
$=0.43$

Elev (ft)

Section

Depth (ft)

Reach (ft)

DP 16 Swale (100-Year)(FR:0.51)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=1.09$
$=0.030$

Known Q
$=4.80$

Highlighted
Depth (ft)
$=0.74$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft) $\quad=0.66$
Top Width (ft)
EGL (ft)
$=5.18$
$=4.800$
$=1.92$
$=2.50$
$=5.39$
$=0.84$

Reach (ft)

DP 17 Swale (5-Year)(FR:0.69)

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=3.00$
	$=10.00$
Invert Elev (ft)	$=2.33$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=1.40$

Highlighted
Depth (ft)
$=0.40$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=1.400$
$=0.56$
$=2.50$
$=2.91$
$=0.40$
$=2.80$
$=0.50$

Elev (ft)

Section

Depth (ft)

Reach (ft)

Channel Report

DP 17 Swale (100-Year)(FR:0.72)

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00$
$=10.00$
$=2.33$
$=0.030$

Known Q
$=3.50$

Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.57$
$=3.500$
$=1.14$
$=3.08$
$=4.15$
$=0.58$
$=3.99$
$=0.72$

Reach (ft)

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

Subdivision: Saddlehorn Ranch Filing 4 Location: EIPaso County

Project Name: Saddlehorn Ranch
Project No.: 25142.06
Calculated By: $\overline{A A M}$
Checked By: TBD
Date: 3/1/22

	STORM DRAIN SYSTEM			Notes
	Culvert DP01 DP 1	Culvert DP02 DP 6	Culvert DP03 DP 8	
$\mathrm{Q}_{100}(\mathrm{cfs})$:	10.3	19.3	7.2	Flows are the greater of proposed vs. future
Conduit	Pipe	Pipe	Pipe	
D_{c}, Pipe Diameter (in):	30	30	24	
W, Box Width (ft):	N/A	N/A	N/A	
H, Box Height (ft):	N/A	N/A	N/A	
Y_{t}, Tailwater Depth (ft):	1.95	1.95	1.55	If unknown, use $\mathrm{Y}_{\mathrm{t}} / \mathrm{D}_{\mathrm{c}}($ or H$)=0.4$
$\mathrm{Y}_{\mathrm{t}} / \mathrm{Dc}$ or $\mathrm{Y}_{\mathrm{t}} / \mathrm{H}$	0.78	0.78	0.78	
$\mathrm{Q} / \mathrm{D}^{2.5}$ or $\mathrm{Q} /\left(\mathrm{WH}^{3 / 2}\right)$	1.04	1.95	1.27	
Supercritical?	No	No	No	
Y_{n}, Normal Depth (ft) [Supercritical]:	0.00	0.00	0.00	
$\mathrm{D}_{\mathrm{a}}, \mathrm{H}_{\mathrm{a}}$ (in) [Supercritical]:	N/A	N/A	N/A	$D_{a}=\left(D_{c}+Y_{n}\right) / 2$
Riprap d_{50} (in) [Supercritical]:	N/A	N/A	N/A	
Riprap d_{50} (in) [Subcritical]:	0.97	1.82	0.95	
Required Riprap Size:	L	L	L	Fig. 9-38 or Fig. 9-36
d_{50} (in):	9	9	9	
Expansion Factor, $1 /(2 \tan \theta)$:	6.75	6.75	6.75	Read from Fig. 9-35 or 9-36
θ :	0.07	0.07	0.07	
Erosive Soils?	No	No	No	
Area of Flow, $\mathrm{A}_{\mathrm{t}}\left(\mathrm{ft}^{2}\right)$:	1.47	2.76	1.03	$A_{t}=Q / V$
Length of Protection, $\mathrm{L}_{\mathrm{p}}(\mathrm{ft})$:	-11.8	-7.3	-9.0	$\mathrm{L}=(1 /(2 \tan \theta))($ At/ Yt - D)
M in Length (ft)	7.5	7.5	6.0	M in L=3D or 3H
M ax Length (ft)	25.0	25.0	20.0	MaxL=10D or 10H
M in Bottom Width, T (ft):	0.8	1.4	0.7	$\mathrm{T}=2 *\left(\mathrm{~L}_{p}^{*} \tan \theta\right)+\mathrm{W}$
Design Length (ft)	7.5	7.5	6.0	
Design Width (ft)	0.8	1.4	0.7	
Riprap Depth (in)	18	18	18	Depth $=2\left(\mathrm{~d}_{50}\right)$
Type II Bedding Depth (in)*	6	6	6	*Not used if Soil Riprap
Cutoff Wall	No	No	No	
Cutoff Wall Depth (ft)				Depth of Riprap and Base
Cutoff Wall Width (ft)				

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

Subdivision: Saddlehorn Ranch Filing 4 Location: EIPaso County

Project Name: Saddlehorn Ranch
Project No.: 25142.06
Calculated By: $\overline{A A M}$
Checked By: TBD
Date: 3/1/22

	STORM DRAIN SYSTEM			Notes
	Culvert DP04 DP 13	Culvert DP05 DP 16	OS1 66" CMP	
$\mathrm{Q}_{100}(\mathrm{cfs})$:	2.1	4.8	6.6	Flows are the greater of proposed vs. future
Conduit	Pipe	Pipe	Pipe	
D_{c}, Pipe Diameter (in):	18	18	66	
W, Box Width (ft):	N/A	N/A	N/A	
H, Box Height (ft):	N/A	N/A	N/A	
Y_{t}, Tailwater Depth (ft):	1.05	1.20	0.68	If unknown, use $\mathrm{Y}_{\mathrm{t}} / \mathrm{D}_{\mathrm{c}}($ or H$)=0.4$
$\mathrm{Y}_{\mathrm{t}} / \mathrm{Dc}$ or $\mathrm{Y}_{\mathrm{t}} / \mathrm{H}$	0.70	0.80	0.12	
$\mathrm{Q} / \mathrm{D}^{2.5}$ or $\mathrm{Q} /\left(\mathrm{WH}^{3 / 2}\right)$	0.76	1.74	0.09	
Supercritical?	No	No	Yes	
Y_{n}, Normal Depth (ft) [Supercritical]:	0.00	0.00	0.67	
$\mathrm{D}_{\mathrm{a}}, \mathrm{H}_{\mathrm{a}}$ (in) [Supercritical]:	N/A	N/A	3.09	$D_{a}=\left(D_{c}+Y_{n}\right) / 2$
Riprap d_{50} (in) [Supercritical]:	N/A	N/A	2.06	
Riprap d_{50} (in) [Subcritical]:	0.48	0.94	N/A	
Required Riprap Size:	L	L	L	Fig. 9-38 or Fig. 9-36
d_{50} (in):	9	9	9	
Expansion Factor, $1 /(2 \tan \theta)$:	6.75	6.75	6.75	Read from Fig. 9-35 or 9-36
θ :	0.07	0.07	0.07	
Erosive Soils?	No	No	No	
Area of Flow, $\mathrm{A}_{\mathrm{t}}\left(\mathrm{ft}^{2}\right)$:	0.30	0.69	0.94	$A_{t}=Q / V$
Length of Protection, $\mathrm{L}_{\mathrm{p}}(\mathrm{ft})$:	-8.2	-6.3	-27.8	$\mathrm{L}=(1 /(2 \tan \theta))($ At/ Yt - D)
M in Length (ft)	4.5	4.5	16.5	M in L=3D or 3H
M ax Length (ft)	15.0	15.0	55.0	MaxL=10D or 10H
M in Bottom Width, T (ft):	0.3	0.6	1.4	$\mathrm{T}=2 *\left(\mathrm{~L}_{p}^{*} \tan \theta\right)+\mathrm{W}$
Design Length (ft)	4.5	4.5	16.5	
Design Width (ft)	0.3	0.6	1.4	
Riprap Depth (in)	18	18	18	Depth $=2\left(\mathrm{~d}_{50}\right)$
Type II Bedding Depth (in)*	6	6	6	*Not used if Soil Riprap
Cutoff Wall	No	No	No	
Cutoff Wall Depth (ft)				Depth of Riprap and Base
Cutoff Wall Width (ft)				

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

Subdivision: Saddlehorn Ranch Filing 4 Location: EIPaso County

Project Name: Saddlehorn Ranch
Project No.: 25142.06
Calculated By: AAM
Checked By: TBD
Date: 3/1/22

	STORM DRAIN SYSTEM			Notes
	OS1 36" CM P			
Q_{100} (cfs):	73.0			Flows are the greater of proposed vs. future
Conduit	Pipe	Pipe	Pipe	
D_{c}, Pipe Diameter (in):	36			
W, Box Width (ft):	N/A	N/A	N/A	
H, Box Height (ft):	N/A	N/A	N/A	
Y_{t}, Tailwater Depth (ft):	2.70	0.00	0.00	If unknown, use $\mathrm{Y}_{\mathrm{t}} / \mathrm{D}_{\mathrm{c}}($ or H$)=0.4$
$\mathrm{Y}_{\mathrm{t}} / \mathrm{Dc}$ or $\mathrm{Y}_{\mathrm{t}} / \mathrm{H}$	0.90			
$\mathrm{Q} / \mathrm{D}^{2.5}$ or $\mathrm{Q} /\left(\mathrm{WH}^{3 / 2}\right)$	4.68			
Supercritical?	Yes	No	No	
Y_{n}, Normal Depth (ft) [Supercritical]:	3.00	0.00		
$\mathrm{D}_{\mathrm{a}}, \mathrm{H}_{\mathrm{a}}$ (in) [Supercritical]:	3.00			$\mathrm{D}_{\mathrm{a}}=\left(\mathrm{D}_{\mathrm{c}}+\mathrm{Y}_{\mathrm{n}}\right) / 2$
Riprap d_{50} (in) [Supercritical]:	4.40			
Riprap d_{50} (in) [Subcritical]:	N/A			
Required Riprap Size:	L			Fig. 9-38 or Fig. 9-36
d_{50} (in):	9			
Expansion Factor, $1 /(2 \tan \theta)$:	6.75			Read from Fig. 9-35 or 9-36
θ :	0.07			
Erosive Soils?	No	No	No	
Area of Flow, $\mathrm{A}_{\mathrm{t}}\left(\mathrm{ft}^{2}\right)$:	10.43			$A_{t}=Q / V$
Length of Protection, $\mathrm{L}_{\mathrm{p}}(\mathrm{ft})$:	5.8			$\mathrm{L}=(1 /(2 \tan \theta))($ At/ Yt - D)
M in Length (ft)	9.0			M in L=3D or 3H
M ax Length (ft)	30.0			MaxL=10D or 10H
M in Bottom Width, T (ft):	3.9			$\mathrm{T}=2 *\left(\mathrm{~L}_{p}^{*} \tan \theta\right)+\mathrm{W}$
Design Length (ft)	9.0			
Design Width (ft)	3.9			
Riprap Depth (in)	18			Depth $=2\left(\mathrm{~d}_{50}\right)$
Type II Bedding Depth (in)*	6			*Not used if Soil Riprap
Cutoff Wall	No	No	No	
Cutoff Wall Depth (ft)				Depth of Riprap and Base
Cutoff Wall Width (ft)				

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).

Provide a table showing

driveway culvert sizes needed for each lot.

Figure 9-35. Expansion factor for circular conduits

Figure 9-36. Expansion factor for rectangular conduits

Figure 8-25. Swale stability chart: greater than 4 -foot bottom width and 10:1 (or flatter) side slopes
(Note: Riprap classifications refer to gradation for riprap used in soil riprap or void-filled riprap. See Figure 8-34 for gradations.) (Source: Muller Engineering Company)

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)

Final Drainage Report
Filing 4-Saddlehom Ranch

APPENDIX D

 WATER QUALITY AND DETENTION CALCULATIONS```
 POND C FOREBAY VOLUM E REQUIREM ENTS
 Equation 3-1 }\quad\textrm{WQCV}=\textrm{a}(0.91\mp@subsup{1}{}{3}-1.1912+0.781I
 a=l (40 hour drain time)
PROPOSED FOREBAY I=211 WQCV= 0.120148
 Equation 3-3 V=(WQCV/12)A
PROPOSED FOREBAY A=5.30 Acres V= 0.053
 3%OFWQCV
FOREBAY TOTAL VOLUM E= .03(V)
VOLUME REQUIRED FOR PROPOSED FOREBAY =
0.002 AC-FT
6 9 ~ C F ~
VOLUME PROVIDED FOR PROPOSED FOREBAY =
0.005 AC-FT 210 CF
Q Q100 DISCHARGES 2%OF Q 100
Q Q100 PROPOSED FOREBAY= .02*7.0 CFS=0.14 CFS
```


## Weir Report

## Pond C Forebay 1 Notch

| V-Notch Weir |  |
| :--- | :--- |
| Crest | $=$ Sharp |
| Angle (Deg) | $=10$ |
| Total Depth (ft) | $=2.50$ |
|  |  |
| Calculations | $=0.22$ |
| Weir Coeff. Cw | Known Q |
| Compute by: | $=0.14$ |

Highlighted
Depth (ft)
$=0.83$
Q (cfs)
Area (sqft)
Velocity (ft/s)
$=0.140$
$=0.06$
Top Width (ft)
$=2.30$
$=0.15$

Depth (ft)
Pond C Forebay 1 Notch
Depth (ft)


```
 POND D FOREBAY VOLUM E REQUIREM ENTS
 Equation 3-1 }\quad\textrm{WQCV}=\textrm{a}(0.91\mp@subsup{1}{}{3}-1.19\mp@subsup{1}{}{2}+0.7811
 a=l (40 hour drain time)
 Proposed Forebay I=167 WQCV= 0.10131
 Equation 3-3 V=(WQCV/12)A
Proposed Forebay A=25.94 Acres V= 0.219
 3%OFWQCV
 FOREBAY TOTAL VOLUME= .03(V)
VOLUME REQUIRED FOR PROPOSED FOREBAY= 0.007 AC-FT 286 CF
VOLUME PROVIDED FOR PROPOSED FOREBAY =
 0.014 AC-FT 615 CF
Q Q100 Discharges 2% OF Q Q100
Q Q100 Proposed Forebay 1= .02*28.7 CFS=.57 CFS
```


## Weir Report

## Pond D Forebay 1 Notch

| V-Notch Weir |  |
| :--- | :--- |
| Crest | $=$ Sharp |
| Angle (Deg) | $=10$ |
| Total Depth (ft) | $=2.50$ |
| Calculations |  |
| Weir Coeff. Cw | $=0.22$ |
| Compute by: | Known Q |
| Known Q (cfs) | $=0.57$ |

Highlighted
Depth (ft)
$=1.46$
Q (cfs)
$=0.570$
Area (sqft)
$=0.19$
Velocity (ft/s)
$=3.04$
Top Width (ft)
$=0.26$

Depth (ft)
Pond D Forebay 1 Notch
Depth (ft)


## APPENDIX E

## REFERENCE MATERIALS



This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2677 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional information about the NFIP is available on our website at http://hunv.fema.govinfip.


Kevin C. Long, CFM, Project Engineer
Hazard Identification Section
Mitigation Division
Entergency Preparedness and Response Directorate. 102929101104080587 1021AC

## CHANGES ARE MADE IN DETERMINATIONS OF BASE FLOOD ELEVATIONS FOR THE UNINCORPORATED AREAS OF EL PASO COUNTY, COLORADO, UNDER THE NATIONAL FLOOD INSURANCE PROGRAM

On March 17, 1997, the Department of Homeland Security's Federal Emergency Management Agency identified Special Flood Hazard Areas (SFHAs) in the unincorporated areas of El Paso County, Colorado, through issuance of a Flood Insurance Rate Map (FIRM). The Mitigation Division has determined that modification of the elevations of the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood) for certain locations in this community is appropriate. The modified Base Flood Elevations (BFEs) revise the FIRM for the community.

The changes are being made pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (Public Law 93-234) and are in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, Public Law 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65.

A hydraulic analysis was performed to incorporate new hydrologic, hydraulic, and topographic data for Haegler Ranch Tributary 2 from approximately 310 feet upstream to approximately 3,140 feet upstream of the confluence with Geick Ranch West Tributary; for Haegler Ranch Tributary 3 from approximately 8,100 feet downstream to approximately 400 feet upstream of Curtis Road; and for Haegler Ranch Tributary 4 from approximately 4,100 feet downstream to approximately 400 feet upstream of Curtis Road. This has resulted in increases and decreases in SFHA width and increased BFEs for the above-mentioned tributaries. The table below indicates existing and modified BFEs for selected locations along the affected lengths of the flooding source(s) cited above.

Location \begin{tabular}{ccc}
Existing BFE <br>
(feet)*

$\quad$

Modified BFE <br>
(feet)*
\end{tabular}

| Haegler Ranch Tributary 2: |  |  |
| :---: | :---: | :---: |
| Approximately 310 feet upstream of confluence with |  |  |
| Geick Ranch West Tributary | None | 6,735 |
| Approximately 3,140 feet upstream of confluence with |  |  |
| Geick Ranch West Tributary | None | 6,779 |
| Haegler Ranch Tributary 3: |  |  |
| Approximately 8,100 feet downstream of Curtis Road | None | 6,672 |
| Approximately 300 feet upstream of Curtis Road | None | 6,769 |
| Haegler Ranch Tributary 4: |  |  |
| Approximately 4,000 feet downstream of Curtis Road | None | 6,688 |
| Approximately 300 feet upstream of Curtis Road | None | 6,758 |

*National Geodetic Vertical Datum, rounded to nearest whole foot
Under the above-mentioned Acts of 1968 and 1973, the Mitigation Division must develop criteria for floodplain management. To participate in the National Flood Insurance Program (NFIP), the community must use the modified BFEs to administer the floodplain management measures of the NFIP. These modified BFEs will also be used to calculate the appropriate flood insurance premium rates for new buildings and their contents and for the second layer of insurance on existing buildings and contents.

Upon the second publication of notice of these changes in this newspaper, any person has 90 days in which he or she can request, through the Chief Executive Officer of the community, that the Mitigation Division reconsider the determination. Any request for reconsideration must be based on knowledge of changed conditions or new scientific or technical data. All interested parties are on notice that until the 90 -day period elapses, the Mitigation Division's determination to modify the BFEs may itself be changed.

Any person having knowledge or wishing to comment on these changes should immediately notify:
The Honorable Chuck Brown
Chairman, El Paso County
Board of Commissioners
27 Vermijo Avenue
Colorado Springs, CO 80903-2208

Table 3. Summary of Discharges

Drainage Area
(square miles)

Haegler Ranch Tributary 2 At the confluence with Geick
Ranch West Tributary
Haegler Ranch Tributary 3 At approximately 2,300 feet upstream of the confluence with Haegler Ranch Tributary 4

Haegler Ranch Tributary 4 At approximately 3,700 feet upstream of the confluence with Haegler Ranch Tributary 3
0.60
1.47

Peak Discharges (cubic feet per second)
10-Year $\quad 50$-Year 100 -Year
500-Year

1 Data Not Available



May 2009




Table 5-3 Existing Hydraulic Deficiencies

| Facility Number | Road Crossing , | Channel | Existing Size | Existing 100-yr Flow (cfs) | Deficiency |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 633 | Sagecreek Road | N/A | 24" CMP | N/A | N/A |
| 634 | Sagecreek Road | N/A | 24" CMP | N/A | N/A |
| 701 | Curtis Road | N/A | 18" CMP | N/A | N/A |
| 702 | Curtis Road | Tributary 6 (T6) | 36" CMP | 120 | Overtops |
| 703 | Curtis Road | Main Stem (MS-06) | 24" CMP | 590 | Overtops |
| 704 | Judge Orr Road | Main Stem (MS-06) | Blocked Culvert | 540 | Overtops |
| 705 | Judge Orr Road | N/A | 18" CMP | N/A | N/A |
| 706 | US 24 | N/A | 20" Steel Pipe | N/A | N/A |
| 707 | US 24 | N/A | 24" CMP | N/A | N/A |
| 801 | Pedestrain Bridge | Main Stem (MS-06) | Bridge | 350 | Meets Capacity |
| 802 | US24 | Main Stem (MS-06) | 2-66" CMPs | 350 | Meets Capacity |
| 803 | Eastonville Road | Main Stem (MS-07) | 27"X21" CMP | 25 | Overtops |
| 804 | Eastonville Road | Tributary 7 (T7) | 18" CMP | 99 | Overtops |

Note: 69 Structures were cataloged and located. N/A indicates that the structure was not analyzed because it was not on one of the main channels.

### 5.14. Results

Hydraulic conditions from the hydraulic model results are summarized in Table 5-4. This includes channel velocity, flow depth, and top width for existing conditions at key locations. Water surface profiles for Haegler Ranch Drainage Basin for the 100-year recurrence interval flood for the existing conditions are presented in Figure 5-4 the HEC-RAS model for Haegler Ranch Drainage Basin for the existing conditions is provided in Appendix B.

The approximate 100 -year floodplain as seen in Figure 5-4 varies from a contained floodplain with in a defined channel to a wide floodplain with shallow flooding. Three areas were designated as flooding: 1 the approximate 100 -year floodplain as delineated by HEC-RAS, 2) split flow flooding that was estimated from HEC-RAS elevation upstream and contours, and 3) shallow areas connected to the floodplain with less than 1 foot of flooding.

Table 5-4 Existing Conditions HEC-RAS Model

| Key Location | Reach and Station | HEC-RAS Result | Recurrence Intervals |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $2-\mathrm{yr}$ | $5-\mathrm{yr}$ | 10-yr | $100-\mathrm{yr}$ |
| Main stem at US 24 | $\begin{gathered} \text { MS-06 } \\ 72276 \end{gathered}$ | Channel velocity (f/sec) | 1.1 | 1.63 | 1.98 | 2.92 |
|  |  | Water surface depth in channel (ft) | 1.36 | 2.44 | 3.24 | 6.49 |
|  |  | Top width (ft) | 18.23 | 24.85 | 29.7 | 255.62 |
| Main stem at Judge Orr Road | $\begin{gathered} \text { MS-06 } \\ 67666 \end{gathered}$ | Channel velocity (ft/sec) | 3.33 | 4.09 | 1.76 | 3.48 |
|  |  | Water surface depth in channel (ft) | 0.52 | 1.04 | 1.05 | 1.35 |
|  |  | Top width (ft) | 174.53 | 534.34 | 535.52 | 569.34 |
| Main stem at Falcon Highway | $\begin{gathered} \text { MS-05 } \\ 52353 \end{gathered}$ | Channel velocity (ft/sec) | 1.05 | 1.6 | 2.04 | 3.59 |
|  |  | Water surface depth in channel (ft) | 1.79 | 3.69 | 4.96 | 5.74 |
|  |  | Top width (ft) | 31.42 | 83.76 | 556.41 | 592.33 |
| Main stem at Jones Road | $\begin{gathered} \text { MS-03 } \\ 33189 \end{gathered}$ | Channel velocity (ft/sec) | 2.45 | 3.7 | 1.27 | 2.51 |
|  |  | Water surfacc dcpth in channel (ft) | 3.2 | 5.83 | 9.25 | 10.46 |
|  |  | Top width (ft) | 47.98 | 105.51 | 580.28 | 667.17 |
| Main stcm at Pcyton Highway | $\begin{gathered} \text { MS-02 } \\ 18474 \end{gathered}$ | Channel velocity (ft/sec) | 0.16 | 0.4 | 0.59 | 1.43 |
|  |  | Water surface depth in channel (ft) | 4.14 | 4.35 | 4.51 | 5.15 |
|  |  | Top width (ft) | 813.21 | 871.68 | 882.22 | 925.27 |
| Southeast Tributary at Jones Road | $\begin{gathered} \text { T1 } \\ 22297 \end{gathered}$ | Channel velocity (ft/sec) | 0.62 | 1.02 | 1.47 | 3.2 |
|  |  | Water surface depth in channel (ft) | 2.45 | 3.52 | 3.59 | 3.82 |
|  |  | Top width (ft) | 197.35 | 345.68 | 351.74 | 372.17 |
| Southeast Tributary at Peyton Highway | $\begin{gathered} \text { T1 } \\ 16611 \end{gathered}$ | Channel velocity (ft/sec) | 1.67 | 2.25 | 2.65 | 4.05 |
|  |  | Water surface depth in channel (ft) | 0.08 | 0.17 | 0.24 | 0.51 |
|  |  | Top width ( ft ) | 239.82 | 241.36 | 242.51 | 247.41 |
| Southeast Tributary at Confluencc with Main stem | $\begin{gathered} \text { T1 } \\ 410 \end{gathered}$ | Channel velocity (ft/sec) | 3.44 | 0.11 | 0.18 | 0.67 |
|  |  | Water surface depth in channel (ft) | 1.69 | 2.01 | 2.01 | 2.01 |
|  |  | Top width (ft) | 31.89 | 1169.3 | 1169.3 | 1169.3 |
| At Conflucnce with Geick Basin | $\begin{gathered} \text { MS-01 } \\ 82 \end{gathered}$ | Channel velocity (ft/sec) | 2.68 | 3.85 | 19.89 | 17.33 |
|  |  | Water surface depth in channel (ft) | 1.45 | 2.17 | 1.11 | 2.36 |
|  |  | Top width (ft) | 75.88 | 255.32 | 60.67 | 262.84 |

Grass channels are designed for depths and velocities to be within the limits of allowable shear stress Grass lined channels are limited to 1.0 psf shear stress. If calculated shear stress is above this, drop structures must be added to flatten the natural slope of the channel.

Using these criteria, several channel sections were developed to accommodate a range of future flow rates from 100 cfs to 3500 cfs, as shown in Table 6-2. The approximate channel sections were used in the alternatives to accommodate future flows as necessary,

Table 6-2 Channel Dimensions based on Flow Rates

| Q | (cfs) | Sideslope <br> (h:v) | Bottom <br> (ft) |
| :--- | :---: | :---: | :---: |
| 300 | 4 | 6 | Depth <br> (ft) |
| 500 | 4 | 8 | 5 |
| 600 | 4 | 15 | 5 |
| 800 | 4 | 20 | 5 |
| 900 | 4 | 25 | 5 |
| 1000 | 4 | 30 | 5 |
| 1500 | 4 | 50 | 5 |
| 2000 | 4 | 80 | 5 |
| 3000 | 4 | 120 | 5 |
| 3500 | 4 | 140 | 5 |

### 6.2.2. Culvert Design

Culvert sizes for use in alternative evaluation were estimated based on full flow capacity of reinforced concrete pipe with a minimum slope of $0.50 \%$ and concrete end sections. For flows up to 300 cfs single RC pipe culverts with a maximum of 72 " diameter were used. For greater flows, multiple RC pipes or 6 -foot by 6 -foot concrete box culverts with headwalls and flared wingwalls were used. Proposed culverts sizes based on existing flow rates are listed in Table 6-3

| Facility <br> Number | Road Crossing | Channel | Existing Size | Existing $100-\mathrm{yr}$ Hlow (cfs) | Deficiency | Necessary Facility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N/A | Peyton Highway | Tributary 1 (T1) | No Culvert | 500 | Overtops | $\begin{array}{\|l\|} \hline 2-72^{\prime \prime} \\ \text { RCPs } \\ \hline \end{array}$ |
| N/A | Falcon Highway | Tributary 1 (T1) | No Culvert | 33 | Overtops | $36^{\prime \prime} \mathrm{RCP}$ |
| 301 | Peyton Highway | Main Stem (MS-02) | $\begin{aligned} & \hline 2-33^{\prime \prime} \mathrm{X} 48^{\prime \prime} \\ & \text { CMPs } \end{aligned}$ | 2,500 | Overtops | $\text { 7-6' }{ }^{\prime} 6^{\prime}$ <br> RCBs |
| 401 | Jones Road | Tributary 1 (T1) | $\begin{array}{\|l} \hline \text { 2-24" } \\ \text { CMPs } \\ \hline \end{array}$ | 370 | Overtops | 6' ${ }^{\prime} 6^{\prime} \mathrm{RCB}$ |
| 403 | Jones Road | $\begin{aligned} & \text { Main Stem } \\ & \text { (MS-03) } \end{aligned}$ | $\begin{aligned} & \text { 3-60" } \\ & \text { CMPs } \end{aligned}$ | 2,300 | Overtops | $\begin{array}{\|l} \hline 6-6^{\prime} \mathrm{X}^{\prime} \\ \text { RCBs } \end{array}$ |


| Facility <br> Number | $\begin{aligned} & \text { Road } \\ & \text { Crossing } \end{aligned}$ | Channel | Existing <br> Size | Existing $100-\mathrm{yr}$ Flow (cfs) | Deficiency | Necessary Facility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 405 | Murr Road | $\begin{aligned} & \text { Main Stem } \\ & \text { (MS-04) } \end{aligned}$ | 66" RCP | 1,700 | Overtops | $\begin{aligned} & 5-6^{\prime} \times 6^{\prime} \\ & \text { RCBs } \end{aligned}$ |
| 407 | Murr Road | Tributary 3 (T3-01) | 66' RCP | 670 | Overtops | $\begin{array}{\|l\|} \hline 2-6^{\prime} \times 6^{\prime} \\ \text { RCBs } \\ \hline \end{array}$ |
| 507 | Peerless <br> Farms <br> Road | Tributary 3 (T3-01) | 60' CMP | 600 | Overtops | $2-6^{\prime} \times 6^{\prime}$ <br> RCBs |
| 509 | Murr Road | Tributary 1 (T1) | $\begin{aligned} & \hline 2-15^{\prime \prime} \\ & \text { RCPs } \end{aligned}$ | 220 | Overtops | 66" RCP |
| 601 | Whiting Way | Tributary 1 (T1) | 24" CMP | 220 | Overtops | 66" RCP |
| 604 | Max Road | Tributary 1 (T1) | 18" CMP | 220 | Overtops | 66" RCP |
| 609 | Falcon Highway | Tributary 3 (T3-02) | 18" CMP | 180 | Overtops | 66" RCP |
| 610 | Falcon Highway | Tributary 4 (T4) | 24" CMP | 200 | Overtops | $66^{\prime \prime} \mathrm{RCP}$ |
| 612 | Falcon Highway | Tributary 5 (T5) | 24" CMP | 150 | Overtops | $60^{\prime \prime} \mathrm{RCP}$ |
| 628 | Falcon Highway | Main Stem (MS-05) | $\begin{aligned} & \text { 2-60" } \\ & \text { CMPs } \end{aligned}$ | 1,000 | Overtops | $\begin{array}{\|l\|} \hline 3-6^{\prime} \times 6^{\prime} \\ \text { RCBs } \\ \hline \end{array}$ |
| 702 | $\begin{aligned} & \text { Curtis } \\ & \text { Road } \end{aligned}$ | $\begin{aligned} & \text { Tributary } 6 \\ & \text { (T6) } \end{aligned}$ | 36" CMP | 120 | Overtops | $54^{\prime \prime} \mathrm{RCP}$ |
| 703 | Curtis <br> Road | Main Stem (MS-06) | 24" CMP | 590 | Overtops | $\begin{aligned} & \hline 2-6^{\prime} \times 6^{\prime} \\ & \text { RCBs } \end{aligned}$ |
| 704 | $\begin{array}{\|l} \text { Judge Orr } \\ \text { Road } \\ \hline \end{array}$ | $\begin{aligned} & \text { Main Stem } \\ & \text { (MS-06) } \end{aligned}$ | Blocked Culvert | 540 | Overtops | $\begin{aligned} & 2-72^{\prime \prime} \\ & \text { RCPs } \\ & \hline \end{aligned}$ |
| 801 | Pedestrain Bridge | Main Stem (MS-06) | Bridge | 350 | Meets Capacity | Existing Bridge |
| 802 | US24 | Main Stem (MS-06) | $\begin{aligned} & \text { 2-66' } \\ & \text { CMPs } \end{aligned}$ | 350 | Meets Capacity | Existing Culvert |
| 803 | Eastonville <br> Road | Main Stem (MS-07) | $\begin{aligned} & 27^{\prime \prime} \mathrm{X} 21^{\prime \prime} \\ & \text { CMP } \end{aligned}$ | 25 | Overtops | 30' RCP |
| 804 | Eastonville <br> Road | Tributary 7 (T7) | 18" CMP | 99 | Overtops | 48" RCP |

6.2.3. Detention Design

All detention pond design is based on Chapter 10, Storage, of the UDFCD SDCM. All ponds were assumed to be "full spectrum" per the SDCM. For final design to be performed later, some of the ponds may be separated into a water quality pond and an off-line major detention pond.

For the Regional Detention Alternative, either the simplified full spectrum sizing method or the hydrograph method was used to size the facility. If the contributing area is less than 160 acres and no


URS NO. 21711039






### 6.4.1. Channel \& Culvert Cost

Channel costs for each alternative are based on cubic yards of excavation, plus the cost of the channe lining and drop structures. These costs are presented in Table 6-13 and Table 6-14.

## Table 6-13 Regional Detention Alternative Channel Cost Estimates

| Channel | Design low (cfs) | Channel Length (ft) | Total Cost | Drop Structure Cosit |
| :---: | :---: | :---: | :---: | :---: |
| Main Stem (MS-04) | 3,500 | 7,140 | \$1,626,000 | none |
| Main Stem (MS-05) | 3,000 | 11,100 | \$2,216,000 | \$2,539,000 |
| Main Stem (MS-06) | 900 | 7,330 | \$482,000 | \$589,000 |
| Main Stem (MS-06) | 1,000 | 3,170 | \$231,000 | \$268,000 |
| Main Stem (MS-06) | 1,500 | 4,450 | \$450,000 | \$548,000 |
| Main Stem (MS-06) | 2,000 | 3,330 | \$477,000 | \$636,000 |
| Tributary 3 (T3-01) | 1,500 | 6,710 | \$1,082,000 | \$1,302,000 |
| Tributary 4 (T4) | 600 | 1,840 | \$96,000 | \$127,000 |
| Tributary 5 (T5) | 300 | 930 | \$37,000 | \$36,000 |
| Tributary 5 (T5) | 500 | 7,770 | \$325,000 | \$370,000 |
| Tributary 6 (T6) | 500 | 4,270 | \$179,000 | \$222,000 |
| Tributary 6 (T6) | 600 | 3,940 | \$204,000 | \$253,000 |
| Sub-Total |  |  | \$7,405,000 | \$6,888,000 |
| 30\% Construction Contingency |  |  | \$2,222,000 | \$2,066,000 |
| 15\% Engineering Contingency |  |  | \$1,110,000 | \$1,033,000 |
| Total |  |  | \$10,737,000 | \$9,988,000 |

(See Tables C6 and C7 in Appendix C for details)

| Channel | Besign Clow (cfs) | Chamel Length (fi) | Total Cost | Brop Structure Cost |
| :---: | :---: | :---: | :---: | :---: |
| Main Stem (MS-05) | 2,000 | 1,560 | \$224,000 | \$367,000 |
| Main Stem (MS-06) | 600 | 3,120 | \$162,000 | \$295,000 |
| Main Stem (MS-06) | 1,000 | 4,535 | \$331,000 | \$375,000 |
| Main Stem (MS-06) | 800 | 3,190 | \$188,000 | \$368,000 |
| Tributary 3 (T3-01) | 600 | 5,000 | \$259,000 | \$422,000 |
| Tributary 3 (T3-02) | 500 | 420 | \$18,000 | \$37,000 |
| Tributary 4 (T4) | 500 | 940 | \$40,000 | \$74.000 |
| Tributary 6 (T6) | 500 | 4,280 | \$179,000 | \$333.000 |
| Tributary 6 (T6) | 300 | 1,400 | \$55,000 | \$107,000 |
| Sub-Total |  |  | \$1,456,000 | \$2,374,000 |
| 30\% Construction Contingency |  |  | \$430,000 | \$712,000 |
| 15\% Engineering Contingency |  |  | \$218,000 | \$356,000 |
| Total |  |  | \$2,111,000 | \$3,442,000 |

(See Tables C 6 and C 8 in Appendix C for details)

May 2009

Culverts costs are based on a per linear foot of pipe with two flared end sections or two wing walls, as appropriate, complete-in-place. Culvert costs for each alternative are presented in Table 6-15 and Table 6-16.

| Facility <br> Number | Road Crossing | Channel | Existing Size | $\begin{aligned} & \text { Proposed } \\ & \text { 100-yr } \\ & \text { Flow (cfs) } \end{aligned}$ | Necessary Facility for Proposed 100 year Flow | Estimated Cost |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 405 | Murr Road | Main Stem (MS-04) | $66^{\prime \prime} \mathrm{RCP}$ | 3,400 | 9-6' ${ }^{\text {6 }}$ ' RCBs | \$256,000 |
| 507 | Peerless Farms Road | Tributary 3 (T3-01) | 60" CMP | 1200 | 4-6' ${ }^{\prime} 6^{\prime}$ RCBs | \$139,000 |
| 609 | Falcon Highway | Tributary 3 (T3-02) | 18" CMP | 460 | 2-66" RCPs | \$51,600 |
| 610 | Falcon Highway | Tributary 4 (T4) | $24^{\prime \prime}$ CMP | 570 | 2-72" RCPs | \$51,000 |
| 612 | Falcon Highway | Tributary 5 (T5) | 24 " CMP | 240 | 72 R RCP | \$26,000 |
| 628 | Falcon Highway | Main Stem (MS-05) | $\begin{aligned} & \text { 2-60" } \\ & \text { CMPs } \end{aligned}$ | 2,200 | 6-6 ${ }^{\text {X }}{ }^{\prime}{ }^{\prime}$ RCBs | \$243,000 |
| 702 | Curtis Road | Tributary 6 (T6) | $36^{\prime \prime} \mathrm{CMP}$ | 140 | $60^{\prime \prime} \mathrm{RCP}$ | \$29,000 |
| 703 | Curtis Road | Main Stem (MS-06) | 24" CMP | 890 | 3-6' ${ }^{\text {6' }}$ RCBs | \$142,000 |
| 704 | Judge Orr Road | Main Stem (MS-06) | Blocked <br> Culvert | 830 | 3-6'X6' RCBs | \$185,000 |
| 1001 | Futurc Pastura Street | Main Stem (MS-06) | N/A | 930 | 3-6' ${ }^{\prime} 6^{\prime}$ RCBs | \$99,000 |
| 1002 | Future Arroyo Hondo Blyd. N. | Main Stem (MS-06) | N/A | 930 | 3-6'X6' RCBs | \$99,000 |
| 1003 | Future Arroyo Hondo Blvd. N | Main Stem (MS-06) | N/A | 1500 | 4-6' ${ }^{6} 6^{\prime} \mathrm{RCBs}$ | \$143,000 |
| 1004 | Future Pastura Strect | Tributary 6 (T6) | N/A | 440 | 2-66" RCPs | \$43,000 |
| 1005 | Future El Vado Road | Tributary 6 (T6) | N/A | 440 | 2-66" RCPs | \$43,000 |
| 1006 | Future Socorro Trail | Tributary 6 (T6) | N/A | 440 | 2-66" RCPs | \$43,000 |
| Sub-Total |  |  |  |  |  | \$1,591,000 |
| 30\% Construction Contingency |  |  |  |  |  | \$477,000 |
| 15\% Engineering Contingency |  |  |  |  |  | \$239,000 |
| Total |  |  |  |  |  | \$2,307,000 |

(See Table C4 in Appendix C for details)

Table 6－16 Sub－Regional Detention Roadway Crossing Cost Estimate Summary

| Facility <br> Number | Road Crossing | Clannel， | Proposed $100-\mathrm{yr}$ Mlow（efs） | Necessary Facility for Proposed 100－year Flow | Estimated Cost |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 301 | Peyton Highway | Main Stem （MS－02） | 3，370 | 9－6＇${ }^{\prime} 6^{\prime}$ RCBs | \＄402，000 |
| 403 | Jones Road | $\begin{array}{\|l} \hline \text { Main Stem } \\ \text { (MS-03) } \end{array}$ | 2，970 | 8－6＇${ }^{\text {K6＇}}$ RCBs | \＄358，000 |
| 405 | Murr Road | $\begin{array}{\|l} \hline \begin{array}{l} \text { Main Stem } \\ \text { (MS-04) } \end{array} \\ \hline \end{array}$ | 2，870 | 8－6＇${ }^{\text {X6＇RCBs }}$ | \＄283，000 |
| 609 | Falcon Highway | Tributary 3 （T3－02） | 460 | 2－6＇${ }^{\prime} 6^{\prime}$ RCBs | \＄106，000 |
| N／A | Falcon Highway | Tributary 1 （T1） | 110 | 2－36＂RCP | \＄20，000 |
| 1001 | Future Pastura Street | Main Stem （MS－06） | 610 | 2－6＇${ }^{\prime} 6$＇RCBs | \＄107，000 |
| 1002 | Future Arroyo Hondo Blvd．N． | $\begin{aligned} & \hline \begin{array}{l} \text { Main Stem } \\ \text { (MS-06) } \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土 刂 \end{aligned}$ | 610 | 2－6＇${ }^{\text {K6＇}}$ RCBs | \＄87，000 |
| 1003 | Future Arroyo Hondo Blvd．N． | $\begin{array}{\|l} \hline \begin{array}{l} \text { Main Stem } \\ \text { (MS-06) } \end{array} \\ \hline \end{array}$ | 530 | 2－6＇${ }^{\prime} 6^{\prime}$ RCBs | \＄87，000 |
| 1004 | Future Pastura Street | $\begin{aligned} & \begin{array}{l} \text { Tributary } 6 \\ \text { (T6) } \end{array} \\ & \hline \end{aligned}$ | 440 | 2－66＂RCPs | \＄43，000 |
| 1005 | Future El Vado Road | Tributary 6 （T6） | 440 | 2－66＂RCPs | \＄43，000 |
| 1006 | Future Socorro Trail | Tributary 6 （T6） | $440^{\circ}$ | 2－66＂RCPs | \＄43，000 |
| Sub－Total |  |  |  |  | \＄1，582，000 |
| 30\％Construction Contingency |  |  |  |  | \＄475，000 |
| 15\％Engineering Contingency |  |  |  |  | \＄237，000 |
| Total |  |  |  |  | \＄2，294，000 |

（See Tables C5 in Appendix C for details）

## 642 Detention Pond Costs

The cost of detention ponds，both regional and subregional，is based on the cubic yards of excavation，an estimated outlet structure，and the cost of the land required for the facility．These costs are presented in Table 6－17 and Table 6－18．

| Table 6－17 Regional Detention Pond Cost Summary |  |
| :--- | :---: | :---: |
| Facility Storage（AF） Including Construction and Engineering Contingencies <br> RG－01 9.02 9.02 $\$ 542,000$ <br> RG－02 64.52 64.52 $\$ 4,053,000$ <br> RG－03 0.04 0.04 $\$ 146,000$ <br> RG－04 1.07 1.07 $\$ 160,000$ <br> RG－05 0.03 0.03 $\$ 146,000$ <br> Total $\$ 5,048,000$  |  |

（See Tables $\mathrm{C1}$ in Appendix C for details）

Table 6－18 Sub－Regional Detention Pond Cost Summary

| Facility | Storage（AF） | Total Cost |
| :--- | :---: | :---: |
|  |  | Including Construction and Engineering Contingencies |
| SR－01 | 10 | $\$ 899,000$ |
| SR－02 | 5 | $\$ 640,000$ |
| SR－03 | 16 | $\$ 868,000$ |
| SR－04 | 25 | $\$ 1,453,000$ |
| SR－05 | 24 | $\$ 1,557,000$ |
| SR－06 | 9 | $\$ 547,000$ |
| SR－07 | 5 | $\$ 524,000$ |
| SR－08 | 5 | $\$ 326,000$ |
| SR－09 | 20 | $\$ 861,000$ |
| SR－10 | 23 | $\$ 1,069,000$ |
| SR－11 | 2 | $\$ 182,000$ |
| SR－12 | 9 | $\$ 477,000$ |
| SR－13 | 3 | $\$ 376,000$ |
| Total |  | $\$ 9,780,000$ |

（See Table C1 in Appendix C for details）

6．4．3．Other Costs
Design Engineering costs are also included as $15 \%$ of the construction costs．Construction contingencies（ $30 \%$ ）include such items as utility relocations，mobilization，temporary erosion control， and construction engineering

## 6．4．4．Conceptual Alternative Cost

The total estimated capital costs for each alternative are based on the sum of the cost of the proposed facilities，plus costs for engineering and construction contingencies．These costs are listed in Table 6 19.

Table 6－19 Conceptual Alternative Costs

|  | Regional Alternative | Subregional Alternative |
| :--- | :---: | :---: |
| Detention Ponds | $\$ 5,048,000$ | $\$ 9,780,000$ |
| Channel Improvements | $\$ 10,737,000$ | $\$ 2,110,000$ |
| Drop Structures | $\$ 9,988,000$ | $\$ 3,442,000$ |
| Roadway Crossing Culverts | $\$ 2,307,000$ | $\$ 2,294,000$ |
| Total | $\$ 28,080,000$ | $\$ 17,627,000$ |

impacted by site development, utility, roadway and landscape construction activities have in some cases negatively affected downstream areas.

El Paso County has enacted an erosion control ordinance to address these problems. In general, it is the responsibility of the entity conducting any land disturbance activity to properly control surface runoff, erosion and sedimentation during and after the activity. Technical criteria identifying measures which help mitigate the impacts of erosion and sedimentation are available and being used throughout the region. Minimum requirements must be developed to properly control erosion.

Erosion control is necessary to prevent environmental degradation caused by wind or water-borne soil. The following minimum criteria and standards are intended to prevent excessive erosion. El Paso County as well as other affected agencies will enforce the Clean Water Act standards if the planned erosion control measures fail to perform satisfactorily. Proper installation and maintenance is necessary to achieve the desired function of erosion control measures. By paying attention to quality, reinstallation can be avoided. General requirements for erosion control are as follows:

1. Any land disturbing activity shall be conducted so as to effectively reduce unacceptable erosion and resulting sedimentation.
2. All land disturbing activities shall be designed, constructed, and completed in such a manner that the exposure time of disturbed land shall be limited to the shortest possible period of time.
3. Sediment caused by accelerated soil erosion and runoff shall be intercepted by erosion control measures such as hay bales, silt fences and / or sediment ponds, and contained within the site.
4. Any facility designed and constructed to convey storm runoff shall be designed to be non-erosive
5. Erosion control measures will be used prior to and during construction.

Temporary erosion control measures are required during construction, and permanent erosion control measures are required for all developments. Maintenance of erosion control measures is the responsibility of the property owner.

Various structures have been proposed in this plan to help control localized erosion and sedimentation problems. It is important that the erosion control plan for any land disturbing activity be strictly adhered to and maintained so that the above minimum criteria can be achieved in the Haegler Ranch Basin.

### 7.4. Operations and Maintenance

Maintenance of drainage way facilities is essential in preventing long term degradation of the creek and overbank areas. Along the drainageway, clearing of debris and dead vegetation should be considered within the low flow area of the creek and its tributaries. On the overbanks, limited maintenance of the existing vegetative cover is recommended. Semi-annual clearing of trash and debris at roadway crossings is also recommended to increase the effectiveness of the crossings. Sediments cleared from the channel or culvert should not be left on the overbank. This disturbs the native vegetation, creates a potential water quality concern if the dredgings are subsequently washed into the drainageway by natural erosion, and reduces the capacity of the overbank. In those reaches designated to be selectively
lined and the floodplain preserved, maintenance activities should be carried out with the least disturbances to native vegetation that is practical.

Similar practices should be employed when removing sediment from detention basins. Although some channels degrade and others agrade, all detention basins will collect sediment and agrade. The use of an easily accessible concrete lined forebay in the final design of a detention facility can make the cleaning of the larger debris and trash more easily accomplished with motorized equipment. If forebays are provided, they will need clearing semi-annually and after major storm events. More frequent routine maintenance may be required depending on the type of development upstream and the access provided to the public. Plan for annual removal of sediment and debris from the detention area of a facility with a forebay.

Deposition in drainage facilities of wind-blown trash and debris, should be expected in this region. This means that regular maintenance, even without rainfall events, should be performed.

### 7.5. Drainage and Bridge Fee Calculations

The cost estimates and basin fee calculation for the major drainageways, tributary drainageways, roadway culverts, regional detention basins, and related improvements for the Sub-Regional Detention Facilities are presented in Table 7-2. The sub-regional detention capital construction cost estimates include the cost for the construction of the embankment, water quality, and outlet structures. Bridges in the Sub-Regional Detention Alternative are presented in Table 7-3. The cost estimates include engineering and construction costs for the entire Haegler Ranch Basin as presented on the Conceptual Design Drawings in Appendix D. These estimates do not include costs for local or initial systems, and therefore no costs attributable to local or minor drainage systems have been computed in the estimation of the drainage basin fee. These systems are expected to be provided with proposed development. Costs associated with utility relocations have not been estimated but would be included in construction contingencies. A review of utility maps indicates that the majority of the potential relocations occur at the roadway crossings. Land acquisition costs for the detention facilities were not included for calculation of fees per Appendix L of the El Paso County Criteria Manual.

Unplatted acreage within Haegler Ranch was obtained from El Paso County, and is shown in Figure 7-I. A total of 8,953 acres is estimated to be currently unplatted and subject to future development. This unplatted land is projected to have an average imperviousness of approximately $15 \%$, corresponding to approximately 1,343 unplatted impervious acres. All drainage and bridge fees are calculated per impervious acre. (See Appendix D for an unplatted area breakdown by subbasin and average imperviousness calculations.)

Reimbursable costs calculated for the Haegler Ranch Basin are listed in Table 7-4. These costs are based on improvements required under existing conditions. The term "reimbursable costs" used on Table 7-4 means those costs that have been used in estimation of drainage basin fees. Costs considered "non-reimbursable" are costs for the replacement of existing undersized culverts or costs to rehabilitate or maintain an existing lined segment of drainageway. For the most part, all of the drainageway costs for Haegler Ranch Basin are considered reimbursable

The calculated drainage basin fee presented in Table 7-2 is \$7,633 per impervious acre, and the bridge fee is $\$ 1,126$ per impervious acre, as shown in Table 7-3

Table 7-2 Drainage Basin Fec Calculations

| Channel Improvements |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Channel | Basins | Channel Construction Cost | Drop Structure Construction Cost | Contingency Cost | Total Cost |
| Main Stem (MS-05) | HR0200 | \$224,000 | \$363,600 | \$264,420 | \$852,020 |
| Main Stem (MS-06) | HR0070 | \$162,000 | \$295,400 | \$205,830 | \$633,230 |
| Main Stem (MS-06) | HR0080 | \$331,000 | \$374,500 | \$317,475 | \$1,022,975 |
| Main Stem (MS-06) | HR0090 | \$188,000 | \$368,000 | \$250,200 | \$806,200 |
| Tributary 3 (T3-01) | HR0330 | \$259,000 | \$422,000 | \$306,450 | \$987,450 |
| Tributary 3 (T3-02) | HR0300 | \$18,000 | \$37,000 | \$24,750 | \$79,750 |
| Tributary 4 (T4) | HR0300 | \$40,000 | \$74.000 | \$51.300 | \$165.300 |
| Tributary 6 (T6) | HR0110 | \$179,000 | \$333,000 | \$230,400 | \$742,400 |
| Tributary 6 (16) | HRO120 | \$55,000 | \$106,500 | \$72,675 | \$234,175 |
| Subtotal Channel Costs . |  |  |  |  | \$5,553,500 |
| Culvert Improvements |  |  |  |  |  |
| Culvert | Road Crossing | Channel | Culvert Construction Cost | Contingency Cost | Total Cost |
| 609 | Falcon Highway | Tributary 3 (T3-02) | \$106,301 | \$47,836 | \$154,137 |
| N/A | Falcon Highway | Tributary 1 (T1) | \$19,500 | \$8,775 | \$28,275 |
| 1001 | Future Pastura Street | Main Stem (MS-06) | \$106,301 | \$47,836 | \$154,137 |
| 1002 | Future Arroyo Hondo Blyd. N. | Main Stem (MS-06) | \$87,301 | \$39,286 | \$126,587 |
| 1003 | Future Arroyo Hondo Blvd. N. | Main Stem (MS-06) | \$87,301 | \$39,286 | \$126,587 |
| 1004 | Future Pasture Street | Tributary 6 (T6) | \$51,000 | \$22,950 | \$73,950 |
| 1005 | Future El Vado Road | Tributary 6 (T6) | \$19,500 | \$8,775 | \$28,275 |
| 1006 | Future Socorro Trail | Tributary 6 (T6) | \$42,800 | \$19,260 | \$62,060 |
| Subtotal Culvert Costs |  |  |  |  | \$754,007 |
| Y, , - Detention Improvement |  |  |  |  |  |
| Facility | Storage (AF) | Construction Cost |  | Contingency Cost | Total Cost |
| SR-01 | $\frac{10}{10}$ | Conser ${ }_{\text {a }}$ 296,701 | Ster | \$133,516 | \$ ${ }^{\text {a }}$ /30,217 |
| SR-02 | 5 | \$207,949 |  | \$93,577 | \$301,525 |
| SR-03 | 16 | \$186,252 |  | \$83,814 | \$270,066 |
| SR-04 | 25 | \$390,182 |  | \$175,582 | \$565,764 |
| SR-05 | 24 | \$455,235 |  | \$204,856 | \$660,091 |
| SR-06 | 9 | \$140,670 |  | \$63,301 | \$203,971 |
| SR-07 | 5 | \$162,046 |  | \$72,921 | \$234,967 |
| SR-08 | 5 | \$87,489 |  | \$39,370 | \$126,860 |
| SR-09 | 20 | \$188,250 |  | \$84,713 | \$272,963 |
| SR-10 | 23 | \$331,635 |  | \$149,236 | \$480,871 |
| SR-11 | 2 | \$56,880 |  | \$25,596 | \$82,476 |
| SR-12 | 9 | \$108,987 |  | \$49,044 | \$158,031 |
| SR-13 | 3 | \$107,812 |  | \$48,515 | \$156,327 |
| Subtotal Detention Costs |  |  |  |  | \$3,944,129 |
| Total Cost |  |  |  |  | \$10,251,636 |
| Total Unplatted Impervious Acres |  |  |  |  | 1,343 |
| Fee Per Impervious Acre |  |  |  |  | \$7,633 |

Table 7-3 Bridge Fce Calculation

| 301 | Peyton Highway | Main Stem (MS-02) | 401,710 | \$180,770 | \$582,480 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 403 | Jones Road | Main Stem (MS-03) | 358,123 | \$161,155 | \$519,278 |
| 405 | Murr Road | Main Stem (MS-04) | 282,941 | \$127,323 | \$410,264 |
| Subtotal Bridge Costs |  |  |  |  | \$1,512,022 |
| Total Cost |  |  |  |  | \$1,512,022 |
| Total Unplatted Impervious Acres |  |  |  |  | 1,343 |
| Bridge Fec Per Impervious Acre |  |  |  |  | \$1,126 |

Table 7-4 Reimbursable Costs

| Reimbursable Culvert Improvements |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Culvert | R Road Crossing | Channel | Culvert Construction Cost | Contingency Cost | Total Cost |
| N/A | Peyton Highway | Tributary 1 (T1) | \$51,000 | \$22,950 | \$73,950 |
| N/A | Falcon Highway | Tributary 1 (T1) | \$9,7580 | \$4,388 | \$14,138 |
| 301 | Peyton Highway | Main Stem (MS-02) | \$314,535 | \$141,541 | \$456,076 |
| 401 | Jones Road | Tributary 1 (T1) | \$53,111 | \$23,900 | \$77,011 |
| 403 | Jones Road | Main Stem (MS-03) | \$270,947 | \$121,926 | \$392,874 |
| 405 | Murr Road | Main Stem (MS-04) | \$180,371 | \$81,167 | \$261,538 |
| 407 | Murr Road | Tributary 3 (T3-01) | \$77,801 | \$35,011 | \$112,812 |
| 507 | Peerless Farms Road | Tributary 3 (T3-01) | \$115,801 | \$52,111 | \$167,912 |
| 509 | Murr Road | Tributary 1 (T1) | \$19,300 | \$8,685 | \$27,985 |
| 601 | Whiting Way | Tributary 1 (T1) | \$23,500 | \$10,575 | \$34,075 |
| 604 | Max Road | Tributary 1 (T1) | \$19,300 | \$8,685 | \$27,985 |
| 609 | Falcon Highway | Tributary 3 (T3-02) | \$25,600 | \$11,520 | \$37,120 |
| 610 | Falcon Highway | Tributary 4 (T4) | \$23,500 | \$10,575 | \$34,075 |
| 612 | Falcon Highway | Tributary 5 (T5) | \$21,200 | \$9,540 | \$30,740 |
| 628 | Falcon Highway | Main Stem (MS-05) | \$154,741 | \$69,633 | \$224,375 |
| 702 | Curtis Road | Tributary 6 (T6) | \$23,150 | \$10,418 | \$33,568 |
| 703 | Curtis Road | Main Stem (MS-06) | \$125,301 | \$56,386 | \$181,687 |
| 704 | Judge Orr Road | Main Stem (MS-06) | \$83,200 | \$37,440 | \$120,640 |
| 803 | Eastonville Road | Main Stem ( $\mathrm{MS}^{\text {- }} 07$ ) | \$9,680 | \$4,356 | \$14,036 |
| 804 | Eastonville Road | Tributary 7 (T7) | \$14,980 | \$6,741 | \$21,721 |
| Subtotal Channel Costs |  |  |  |  | \$2,344,315 |
| Reimbursable Detention Improvements |  |  |  |  |  |
| Facility | Storase ( 1 F) | Construction Cost |  | Contingency | Total Cost |
| SR-01 | $\frac{10}{10}$ | - $\$ 296701$ |  | \$133,516 | $\frac{\text { Tocal Cost }}{\$ 430,217}$ |
| SR-02 | 5 | \$207,949 |  | \$93,577 | \$301,525 |
| SR-03 | 16 | \$186,252 |  | \$83,814 | \$270,066 |
| SR-04 | 25 | \$390,182 |  | \$175,582 | \$565,764 |
| SR-05 | 24 | \$455,235 |  | \$204,856 | \$660,091 |
| SR-06 | 9 | \$140,670 |  | \$63,301 | \$203,971 |
| SR-07 | 5 | \$162,046 |  | \$72,921 | \$234,967 |
| SR-08 | 5 | \$87,489 |  | \$39,370 | \$126,860 |
| SR-09 | 20 | \$188,250 |  | \$84,713 | \$272,963 |
| SR-10 | 23 | \$331,635 |  | \$149,236 | \$480,871 |
| SR-11 | 2 | \$56,880 |  | \$25,596 | \$82,476 |
| SR-12 | 9 | \$108,987 |  | \$49,044 | \$158,031 |
| SR-13 | 3 | \$107,812 |  | \$48,515 | \$156,327 |
| Subtotal Detention Costs |  |  |  |  | \$3,944,129 |
| Total Reimbursable Cost |  |  |  |  | \$6,288,444 |













LEGEND

- PROPOSED DROP STRUCTURE EXISTING THALWEG HYDRAULIC GRADE LIN

PROFILE MAIN STEM (MS-06 \& MS-05)
(8) $4^{\prime}$ DROPS

MS-05 HR0200
SLOPE $=0.40 \%$
(4) $4^{\prime}$ DROPS


LEGEND





LEGEND

- PROPOSED DROP STRUCTURE EXISTING THALWEG HYDRAULIC GRADE LINE
(9) $4^{\prime}$ OROPS

T6 HR0120
SLOPE $=0.90 \%$
(6) $4^{\prime}$ DROPS





# MASTER DEVELOPMENT DRAINAGE PLAN and PRELIMINARY DRAINAGE REPORT <br> FOR <br> SADDLEHORN RANCH 

Prepared For:<br>ROI Property Group, LLC<br>2495 Rigdon Street<br>Napa, CA 94558<br>(707) 365-6891

May 8, 2020
Project No. 25142.00

Prepared By:<br>JR Engineering, LLC<br>5475 Tech Center Drive<br>Colorado Springs, CO 80919<br>719-593-2593<br>El Paso County PCD File No.<br>SP-19-006

## ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. \# 32314
Date
For and On Behalf of JR Engineering, LLC

## DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: $\quad$ ROI Property Group, LLC

By:
Title:
Address:
2495 Rigdon Street
Napa, CA 94558

## El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Conditions:
PURPOSE ..... 1
GENERAL LOCATION AND DESCRIPTION. ..... 1
LOCATION ..... 1
Description of Property ..... 1
Floodplain Statement ..... 2
DRAINAGE BASINS AND SUBBASINS ..... 2
Major Basin Descriptions ..... 2
Existing Sub-basin Drainage ..... 5
Proposed Sub-basin Drainage ..... 8
DRAINAGE DESIGN CRITERIA ..... 12
Development Criteria Reference ..... 12
Hydrologic Criteria ..... 12
Hydraulic Criteria ..... 13
DRAINAGE FACILITY DESIGN ..... 13
General Concept ..... 13
Specific Details ..... 14
Four Step Process to Minimize Adverse Impacts of Urbanization ..... 14
Water Quality. ..... 15
Erosion Control Plan ..... 15
Operation \& Maintenance ..... 15
Drainage and Bridge Fees. ..... 15
Construction Cost Opinion ..... 17
SUMMARY ..... 17
REFERENCES: ..... 18

## APPENDICES

A. Figures and Exhibits
B. Hydrologic Calculations
C. Hydraulic Calculations
D. Detention and Water Quality Calculations
E. Reference Materials
F. Drainage Maps

## LIST OF TABLES:

1. Existing Drainage Basin Summary
2. Major Drainageway Naming Conventions
3. Major Drainageway Flow Comparison
4. Pond Summary
5. Site Composite Percent Imperviousness
6. Drainage \& Bridge Fees

## Purpose

This document is the Master Development Drainage Plan (MDDP)/Preliminary Drainage Report (PDR) for the proposed Saddlehorn Ranch. The purpose of this report is to:

1. Identify on-site and off-site drainage patterns.
2. Recommend preliminary storm water facilities to collect and convey storm runoff from the proposed development to appropriate discharge and/or detention locations.
3. Recommend preliminary water quality and detention facilities to control discharge release rates to below historic.
4. Demonstrate compliance with surrounding major drainage basin planning studies, master plan and flood insurance studies.

## General Location and Description

## Location

The proposed Saddlehorn Ranch, known as "the site" from herein, is a parcel of land located in Section 3 and 10, Township 13 South, Range 65 West of the $6^{\text {th }}$ Principal Meridian in El Paso County, Colorado. The proposed 824 acre, rural, single family-development is bound by Judge Orr Road to the North and Curtis Road to the West. To the East, the site is bound by undeveloped land owned by Brent Houser Enterprises, LLC. To the south, the site is bound by undeveloped properties owned by 7120 Sudiev, LLC and Faye Reyonlds. A vicinity map and property owner map is presented in Appendix A.

Currently, there are three major drainageways that run through the site: Haegler Ranch Main Stem 6 (MS-06), Haegler Ranch Tributary 6 (T-6), and Gieck Ranch West Fork - Reach 7A (WF-R7A). These drainageways were analyzed, both hydrologically and hydraulically, in the following reports:

1. Geick Ranch Drainage Basin Planning Study (DBPS), October 2007
2. Haegler Ranch Basin DBPS, May 2009
3. Sante Fe Springs - Haegler Ranch Drainage Basin Letter of Map Revision (LOMR), October 2004

The impact of these drainageways and planning studies on the proposed development will be discussed later in the report.

## Description of Property

The proposed development contains approximately 824 acres and will be comprised of 227 rural 2.5 -5 acre lots. The site is currently unoccupied and undeveloped. The existing ground cover is sparse vegetation and open space, typical of a Colorado rolling range land condition. In general, the site slopes from northwest to southeast and the existing drainageways follow this topography.

Per a NRCS web soil survey of the area, the site is made up of Type A, B and D soils. Type A soils cover roughly $80 \%$ of the site while Type B soils cover $3 \%$ and Type D cover the remaining $17 \%$ of the site. Group A soils have a high infiltration rate when thoroughly wet. Type B soils have a moderate infiltration when thoroughly wet. Type D soils have a very slow infiltration rate when thoroughly wet and have a high shrink-swell potential. A NRCS soil survey map has been presented in Appendix A.

Two existing wells are located in the southwest corner of the site. A 12" Cherokee Metropolitan District waterline runs through the site just south of the northern property line. Approximately a mile south of the Curtis Road and Judge Orr Road intersection, a two lane dirt road proceeds from Curtis Road east towards approximate center of the site. A water tank, pond and windmill are located within Major Drainageway MS-06 at the end of the dirt road.

## Floodplain Statement

Based on the FEMA FIRM Map number 08041C0558G, dated December 7, 2018, the site lies within Zone A, Zone AE, and Zone X. Zone A is defined as areas subject to inundation by the 1-percent-annual-chance flood determined using approximate methodologies because BFEs have not been established. Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. All proposed development within the site will occur in Zone X .

In the northeast corner of the site, proposed development borders the Zone A boundary of the Geick Ranch West Tributary (WF-R7). At time of Final Drainage Report for this future phase of the development, a LOMR will be presented to establish base flood elevations (BFEs) for all lots that border the current Zone A boundary. The current FIRM Map has been presented in Appendix A.

## Drainage Basins and Subbasins

## Major Basin Descriptions

The site lies within two major drainage basins: the Gieck Ranch Drainage Basin based on the "Gieck Ranch Drainage Basin Planning Study" (DBPS) prepared by Drexel, Barrell \& Co. in October, 2007 and revised in February 2010 and the Haegler Ranch Drainage Basin based on the "Haegler Ranch Drainage Basin Planning Study" prepared by URS Corporation in May 2009.

The Gieck Ranch Drainage Basin covers approximately 22 square miles and begins approximately five miles northeast of the Town of Falcon and travels approximately 15 miles to the southeast. The Gieck Ranch Drainage Basin is tributary to Black Squirrel Creek which drains south to the Arkansas River near the city of Pueblo, Colorado. The majority of the area within the basin is undeveloped and is characterized as rolling range land typically associated with Colorado's semi-arid climates.

## MDDP / Preliminary Drainage Report Saddlehom Ranch Preliminary Plan

Anticipated land use for the basin includes residential, industrial, agricultural and commercial development. Residential developments will range from $0.125-5$ acre lots with a mix of low, medium and high density developments.

The Haegler Ranch Drainage Basin covers approximately 16.6 square miles in unincorporated El Paso County, CO. The Haegler Ranch Drainage Basin is tributary to Black Squirrel Creek. In its existing condition, the basin is comprised of rolling rangeland with poor vegetative cover associated with Colorado's semi-arid climate. The natural drainageways within the basin are typically shallow and wide with poorly defined flow paths in most areas. Anticipated land use for the basin includes residential and commercial development. Residential developments will range from $0.125-5$ acre lots with a mix of low, medium and high density developments.

As part of its drainage research, JR Engineering reviewed the following drainage studies, reports and LOMRs:

- Gieck Ranch Drainage Basin Planning Study prepared by Drexel, Barrell \& Co. in October, 2007 and revised in February 2010. (Not adopted by El Paso County as of July 2019)
- Haegler Ranch Drainage Basin Planning Study prepared by URS Corporation in May 2009
- Santa Fe Springs - Haegler Ranch Drainage Basin Letter of Map Revision prepared by TriCore Engineering in June 2004.

Existing Gieck Ranch Drainage Basin
The "Gieck Ranch Drainage Basin Planning Study" evaluated existing and future drainage conditions, identified future improvements, and established basin and bridge fees for the Gieck Ranch Drainage Basin. It should be noted that as of today the "Gieck Ranch Drainage Basin Planning Study" has not yet been approved and adopted by the County. All referenced information from the aforementioned report is presented for information purposes only.

Based upon provided drainage maps and analysis, Gieck Ranch discharges a total of 1,017 cfs onto the site within Major Drainageway Gieck Ranch West Fork Reach 7A (WF-R7A). An existing 66" CMP and 36" CMP convey the offsite flow across Judge Orr Road onto the site. The existing culverts at Judge Orr Road are undersized for existing and future flows resulting in localized overtopping. The DBPS recommends the culvert be upsized to four $-12^{\prime} \times 5$ ' box culverts. The culvert will not be upsized within the context of this report and development. The culvert is owned by El Paso County and timing of the recommended improvements will be controlled by the County. The overtopping at the intersection of WF-R7A is not contained within the 100-year floodplain. Therefore, at time of Final Drainage Report, berming will be provided that will protect proposed lots from overtopping flows. An overtopping analysis is presented in Appendix D and the limits of overtopping are presented on the existing and proposed drainage maps in Appendix F.

Based on existing channel analysis, the Gieck Ranch DBPS recommends WF-R7A channel improvements approximately 200' upstream and 300' downstream of the culvert crossing at Judge Orr Road ( 50 ' bottom width, 10:1 side slopes and vegetative augmentation). The recommended

## MDDP / Preliminary Drainage Report Saddlehom Ranch Preliminary Plan

channel improvements result from upsizing the culvert at Judge Orr Road, requiring the channel to be lowered. The channel improvements were not recommended due to existing channel instability. Existing velocities in the channel were found to be $2.19 \mathrm{ft} / \mathrm{s}$, as presented in Appendix E. Per the MS4 permit requirements, the onsite reach of WF-R7A will be analyzed for channel stability with the corresponding Final Drainage Report for that phase of the development. At the time of Final Drainage Report, any necessary improvements to WF-R7A to satisfy the MS4 permit will be evaluated. It should be noted that the onsite reach of WF-R7A, where the aforementioned channel improvements were recommended, is comprised of jurisdictional wetlands which will limit the allowable improvements. Coordination with the Army Corps of Engineers will be required to grant permission to disturb the jurisdictional wetlands. Recommended channel improvements from the Gieck Ranch DBPS are presented in Appendix E.

## Existing Haegler Ranch Drainage Basin

The "Haegler Ranch Drainage Basin Planning Study" was used to establish a stormwater management plan for the existing and future stormwater infrastructure needs within the Haegler Ranch Drainage Basin. Based on provided drainage maps and analysis, in the existing condition Haegler Ranch contributes a total of 710 cfs onto the site. Of the 710 cfs, 590 cfs crosses Curtis Road in an existing 24" CMP onto the site. Major Drainageway MS-06 conveys the stormwater through the site and to its off-site confluence with Major Drainageway MS-05. The remaining 210 cfs crosses Curtis Road in an existing 36" CMP onto the site. Major Drainageway T-6 conveys the stormwater through the site and to its off-site confluence with Major Drainageway MS-05. Both Curtis Road culverts are undersized for existing and future flows and overtopping occurs locally near the culvert crossings. Overtopping at the intersection of Curtis Road and T-6 is contained within the 100-year floodplain and will not affect proposed lots. The overtopping at the intersection of MS-06 and Curtis Road is not contained within the 100-year floodplain limits. Therefore, at time of Final Drainage Report, berming will be provided that will protect proposed lots from overtopping flows. An overtopping analysis is presented in Appendix D and the limits of overtopping are presented on the existing and proposed drainage maps in Appendix F.

The culverts are not proposed to be upsized within the context of this report and development. The culverts are owned by El Paso County and timing of the recommended improvements will be controlled by the County.

Furthermore, the Haegler Ranch DBPS recommends channel improvements within drainageways MS-06 and T-6. Per the Haegler Ranch DBPS, all recommended channel sections are trapezoidal with side slopes of $4: 1$ and a maximum depth of five feet. Within the limits of the site, three (3) channel bottom widths are recommended for MS-06. The first reach, from station $0+00-31+34$, is proposed with a 15 ' bottom width, the second reach from $31+34$ to $74+61$, MS-06 is proposed with a 30' bottom width, and the last reach from station 74+61-103+62 is proposed with a 20 ' channel bottom. The Haegler Ranch DBPS recommends Major Drainageway T-6 be improved to a trapezoidal channel with an $8^{\prime}$ bottom width, $4: 1$ side slopes and depth of $5^{\prime}$. Drop structures have

## MDDP / Preliminary Drainage Report Saddlehom Ranch Preliminary Plan

also been recommended within MS-06 and T-6. These improvements will not occur within the context of this report or development. However, due to the addition of culvert crossings within MS06 and T-6, channel improvements are anticipated up and downstream of the proposed culverts. The extent of these channel improvements will be addressed with corresponding Final Drainage Reports for those phases of the development. At that time, channel stability will be evaluated and any necessary improvements will be proposed. Recommended channel improvements from the Haegler Ranch DBPS are presented in Appendix E.

Based on flood impacts, stream stability and cost effectiveness, this study recommended a subregional detention approach. This allows future development anywhere in the basin with the construction of an associated sub-regional pond. Within the boundary of Saddlehorn Ranch, the DBPS recommended a total of three (3) sub-regional ponds. Based on discussion with El Paso County, the site will utilize full spectrum water quality and detention ponds instead. These full spectrum detention ponds will limit developed discharge into the drainageways to less than historic rates. Future, upstream development will also require full spectrum detention in accordance with current El Paso County criteria, which is an effective alternative to the sub-regional pond approach.

The Santa Fe Springs - Haegler Ranch Drainage Basin LOMR was executed on Haegler Ranch Tributary 2, 3, and 4. The LOMR revised the onsite effective flood zones from Zone A to Zone AE for the three drainageways. Upstream stretches of Tributary 3 and 4 are classified Zone A but those channel reaches are off site. All stretches of Tributary 3 and 4 onsite are Zone AE. See FIRM Map Panel 080059-0575G for limits of LOMR study and revised flood zones, presented in Appendix E.

## Existing Sub-basin Drainage

On-site, existing drainage patterns are generally from northwest to southeast by way of existing, natural drainageways (MS-06, T-6, WF-R7A). On-site areas flow directly into these drainageways which also bypass off-site flows through the site. Offsite flows within the major drainageways that pass through the site will influence the on-site culvert designs and any channel improvements.

On-site, existing drainage basins were established based upon existing topography and the limits of 100 -year floodplain. The site was divided into eleven existing sub-basins. See Table 1 below for summary of existing drainage sub-basins and corresponding peak flows. An existing drainage map is provided in Appendix F.

MDDP / Preliminary Drainage Report Saddlehom Ranch Preliminary Plan

Table 1: Existing Drainage Basin Summary

| EXISTING BASIN SUM M ARY TABLE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Tributary <br> Sub-Basin | Area <br> (acres) | Percent <br> Impervious | $\mathbf{Q}_{\mathbf{5}}$ (cfs) | $\mathbf{Q}_{\mathbf{1 0 0}}$ (cfs) |
| G1 | 10.1 | $2.0 \%$ | 0.00 | 0.1 |
| G2 | 87.6 | $2.0 \%$ | 1.5 | 76.4 |
| H1 | 166.5 | $2.0 \%$ | 0.1 | 81.0 |
| H2 | 111.1 | $2.0 \%$ | 0.2 | 91.1 |
| H3 | 118.9 | $2.0 \%$ | 0.9 | 64.1 |
| H4 | 63.3 | $2.0 \%$ | 1.4 | 73.2 |
| H5 | 53.2 | $2.0 \%$ | 0.3 | 28.2 |
| H6 | 87.6 | $2.0 \%$ | 0.2 | 110.1 |
| CH1 | 23.9 | $2.0 \%$ | 5.4 | 21.0 |
| CH2 | 84.2 | $2.0 \%$ | 2.6 | 33.7 |
| CH3 | 19.1 | $2.0 \%$ | 0.1 | 6.5 |
| Total | 825.4 | N/A | 12.7 | 585.4 |

The existing condition of the three major drainageways are discussed below;

## Existing Geick Ranch West Fork Reach 7A (WF-R7A)

The first major drainageway is the Gieck Ranch West Fork Reach 7A (WF-R7A), per the Gieck Ranch DBPS. WF-R7A crosses onto the site along Judge Orr Road, approximately $1 / 4$ mile west of the intersection with Elbert Road. Discharge from the developed site into this drainageway will be limited to historic rates via a full spectrum detention pond prior to discharge. This drainageway includes jurisdictional wetlands and the entire drainageway onsite is classified Zone A. Access to the drainage way will be provided from internal roadways and along an equestrian trail will be constructed adjacent to the drainageway. The equestrian train can be utilized for maintenance equipment as well.

## Existing Haegler Ranch Main Stem (MS-06)

The second drainageway is the Haegler Ranch Main Stem (MS-06), per the Haegler Ranch DBPS, which crosses onto the site along Curtis Road, approximately 1,600 ' south of the intersection with Judge Orr Road. MS-06 flows south towards its offsite confluence with Black Squirrel Creek. MS-06 exits the site along the southern property line. Discharge from the developed site into this drainageway will be limited to historic rates via a full spectrum detention pond prior to discharge. This drainageway includes non-jurisdiction wetlands and the entire drainageway is classified Zone AE. Access to the channel will be provided at the culvert crossing of MS-06 and San Isidro Trail via

## MDDP / Preliminary Drainage Report Saddlehom Ranch Preliminary Plan

a 15' wide maintenance and access road that will proceed from San Isidro trail to the channel bottom. From here, access through the channel is achievable with existing grades within the channel.
Furthermore, an equestrian trail will be constructed adjacent to the drainageway that can be utilized for maintenance equipment as well. The road alignments are displayed on the proposed drainage map presented in Appendix F.

## Existing Haegler Ranch Tributary 6 (T-6)

The third drainageway is the Haegler Ranch Tributary 6 (T-6), per the Haegler Ranch DBPS, which crosses onto the site along Curtis Road, approximately $3 / 4$ mile south of the intersection with Judge Orr Road. T-6 conveys flows south through the site and towards its off-site confluence with Black Squirrel Creek. Discharge from the developed site into this drainageway will be limited to historic rates via a full spectrum detention pond prior to discharge. This drainageway is absent of any on-site wetlands and the entire drainageway is classified Zone AE. Access to the channel will be provided at the culvert crossing of T-6 and Del Cerro Trail via a 15’ wide maintenance and access road that will proceed from Del Cerro Trail to the channel bottom. From here, access through the channel is achievable with existing grades within the channel. Furthermore, an equestrian trail will be constructed adjacent to the drainageway that can be utilized for maintenance equipment as well. The road alignments are displayed on the proposed drainage map presented in Appendix F.

The Santa Fe Springs - Haegler Ranch Drainage Basin LOMR was executed on three Haegler Ranch basin drainageways. Two of the drainageways that were evaluated pass through the proposed development. These drainageways are the: Haegler Ranch Tributary 3 \& 4. Within the boundary of the proposed development, Haegler Ranch Tributary 3 and 4 are synonymous with Main Stem 6 and Tributary 6 from the Haegler Ranch DBPS. The purpose of the LOMR was to revise the flood hazard depicted in the current Flood Insurance Study. Additionally, the LOMR provided existing, 100-year velocities within the drainageways that will be utilized in the design of any potential channel improvements. A FIRM panel with the limits of the detailed study as well as BFEs has been presented in Appendix E.

See Table 2 for comparison of drainageway identification and the naming convention used within the context of this report. See Table 3 for a comparison of 100-year flows as calculated in the aforementioned DBPS' and LOMR. An existing conditions drainage map is presented in Appendix F.

Table 2: Major Drainageways

| Major Drainageway Naming Conventions |  |  |  |
| :---: | :---: | :---: | :---: |
| Saddlehorn <br> Ranch <br> MDDP/PDR: | Per Haegler <br> Ranch DBPS: | Per Geick Ranch DBPS: | Per Sante Fe Springs <br> LOMR: |
| WF-R7A | N/A* | West Fork (Middle)/WF- <br> R7A | N/A* |
| MS-06 | Main Stem (MS- <br> 06) | N/A* | Haegler Ranch Tributary 3 |
| T-6 | Tributary 6 (T-6) | N/A* | Haegler Ranch Tributary 4 |

Table 3: Major Drainageways - Ex. 100-Year Flow Comparison

| Major Drainageways: 100-Year Flow Comparison |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Drainageway Name | Contributing <br> Area (sq. <br> mi.) | Q 100 Per Haegler <br> Ranch DBPS: | Q $_{100}$ Per Geick <br> Ranch DBPS: | Q $_{100}$ Per Sante Fe <br> Springs LOMR: |
| WF-R7A @ Judge Orr <br> Road | 1.50 | N/A* | $1,017 \mathrm{cfs}$ | N/A* |
| MS-06 @ Curtis Road | 1.05 | 451 cfs | N/A* | 505 cfs |
| T-6 @ Curtis Road | 0.39 | 120 cfs | N/A* | 130 cfs |

*N/A: Flow regime outside limits of study.

## Proposed Sub-basin Drainage

The proposed basin delineation is as follows;
Basin A is approximately 9.2 acres and in its existing condition is rolling rangeland. Runoff generally flows southeast away from Drainageway MS-06. In the proposed condition, Basin A will be rural 2.5 acre lots and roadway. Runoff from this basin will be collected in road side swales and conveyed south along Barrosito Drive to Pond A. Pond A, while considered temporary in this MDDP, will need to meet Full Spectrum Detention Criteria unless deviations are approved in the Final Drainage Report for this future filing. It is anticipated that Barrosito Drive will be extended south as part of the development of the adjacent parcel to the south. The most logical place for a permanent Full Spectrum pond is located approximately 1,000 feet south at the future road crossing with MS-06. When that pond is constructed, the Saddlehorn Metropolitan District No. 1 will remove Pond A. The peak flow rate for Basin A in the 5 and 100-year storm are 9.5 cfs and 20.7 cfs , respectively. However, Pond A will discharge at less than historic rates.

## MDDP / Preliminary Drainage Report Saddlehom Ranch Preliminary Plan

Basin B is approximately 60.4 acres and in its existing condition is rolling rangeland. Runoff generally flows southwest across the basin towards Drainageway MS-06. In the proposed condition, Basin B will be rural 2.5 acre lots, paved roadway and will include Pond B. Runoff from this basin will be collected in road side swales and conveyed south along Barrosito Drive to Pond B. The peak flow rate for Basin B in the 5 and 100-year storm are 9.9 cfs and 46.3 cfs, respectively. However, Pond B will discharge at less than historic rates. A portion of Basin B is inundated by the existing 100-year floodplain, however; at time of final platting berming will be constructed to reduce the floodplain limits within the drainageway tract and a corresponding LOMR will be executed on this stretch of channel to establish the revised floodplain.

Basin C is approximately 102.5 acres and in its existing condition is rolling rangeland. Runoff generally flows southwest across the basin towards Drainageway MS-06. In the proposed condition, Basin C will be rural 2.5 acre lots, paved roadway and will include Pond C. Runoff from this basin will be collected in road side swales and conveyed south along Barrosito Drive and Del Cambre Drive to Pond C. The peak flow rate for Basin C in the 5 and 100-year storm are 15.8 cfs and 69.4 cfs, respectively. However, Pond C will discharge at less than historic rates.

Basin D is approximately 99.2 acres and in its existing condition is rolling rangeland. Runoff generally flows east across the basin towards Drainageway WF-R7A. In the proposed condition, Basin D will be rural 2.5 acre lots, paved roadway and will include Pond D. Runoff from this basin will be collected in road side swales and conveyed east along Barrosito drive to Pond D. The peak flow rate for Basin D in the 5 and 100-year storm are 29.4 cfs and 95.4 cfs, respectively. However, Pond D will discharge at less than historic rates. A portion of Basin D is inundated by the existing 100-year floodplain, however; at time of final platting berming will be constructed to reduce the floodplain limits within the drainageway tract and a corresponding LOMR will be executed on this stretch of channel to establish the base flood elevations.

Basin E is approximately 11.6 acres and in its existing condition is rolling rangeland. Runoff generally flows east across the basin towards Drainageway MS-06. In the proposed condition, Basin E will be rural 2.5 acre lots, paved roadway and will include Pond E. Runoff from this basin will be collected in road side swales and conveyed southwest along San Isidro Trail to Pond E. The peak flow rate for Basin E in the 5 and 100-year storm are 2.0 cfs and 9.9 cfs , respectively. However, Pond E will discharge at less than historic rates.

Basin $F$ is approximately 117.4 acres and in its existing condition is rolling rangeland. Runoff generally flows southeast across the basin towards Drainageway MS-06. In the proposed condition, Basin F will be rural 2.5 acre lots, paved roadway and will include Pond F. Runoff from this basin will be collected in road side swales and conveyed southwest along Benito Wells Trail to Pond F. The peak flow rate for Basin F in the 5 and 100-year storm are 17.0 cfs and 69.9 cfs , respectively. However, Pond F will discharge at less than historic rates.

## MDDP / Preliminary Drainage Report Saddlehom Ranch Preliminary Plan

Basin G is approximately 39.9 acres and in its existing condition is rolling rangeland. Runoff generally flows south across the basin towards Drainageway T-6. In the proposed condition, Basin G will be rural 2.5 acre lots, paved roadway and will include Pond G. Runoff from this basin will be collected in road side swales and conveyed southwest along El Raiceno Trail to Pond G. The peak flow rate for Basin G in the 5 and 100-year storm are 6.1 cfs and 25.3 , respectively. However, Pond G will discharge at less than historic rates.

Basin H is approximately 30.7 acres and in its existing condition is rolling rangeland. Runoff generally flows east across the basin towards Drainageway T-6. In the proposed condition, Basin H will be rural 2.5 acre lots, paved roadway and will include Pond H. Runoff from this basin will be collected in road side swales and conveyed north along Rosalia Place to Pond H. The peak flow rate for Basin H in the 5 and 100 -year storm are 3.7 cfs and 17.9 cfs , respectively. However, Pond H will discharge at less than historic rates.

Basin I is approximately 46.6 acres and in its existing condition is rolling rangeland. Runoff generally flows east across the basin towards Drainageway T-6. In the proposed condition, Basin I will be rural 2.5 acre lots, paved roadway and will include Pond I. Runoff from this basin will be collected in road side swales and conveyed south down Carrizo Springs Trail and east down Zaragoza Trail to Pond I. The peak flow rate for Basin I in the 5 and 100 -year storm are 15.9 cfs and 63.1 cfs, respectively. However, Pond I will discharge at less than historic rates.

Basin J is approximately 10.1 acres and in its existing condition is rolling rangeland. This basin will not be developed and will remain in its existing condition, per Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedures this basin will not be detained in a full spectrum water quality and detention pond. Runoff generally flows east across the basin towards Drainageway T-6. In the proposed condition, Basin J will be an undeveloped tract. Undeveloped runoff from this basin will follow existing drainage patterns and sheet flow into Drainageway WF-R7A. The peak flow rate for Basin J in the 5 and 100-year storm are 3.0 cfs and 10.5 cfs , respectively.

Basins CH1, CH2 and CH3 are existing drainageway basins that will remain undeveloped in the proposed condition. There will be no development within Basin CH1-CH3, however; Basin CH2 \& CH 3 will require channel grading to accommodate proposed culverts. The scope of this grading will leave the channels in an undeveloped condition per Section I.7.1.B. 7 and therefore will be excluded from permanent stormwater management. Basin CH1 contains jurisdictional wetlands. Basin CH2 contains non-jurisdictional wetlands. There are no wetlands located in Basin CH3. Peak flow rates for proposed undeveloped basins are presented in Appendix B.

Basins UD1-UD11 acre comprised of rural $2.5+$ acre residential lots and will follow existing drainage patterns in the proposed condition. Development in these basins will be limited to a maximum of $10 \%$ impervious development via a plat covenant. Therefore, these basins can be excluded from permanent stormwater detention per Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedures ( $2.5+$ acre lots with imperviousness less than $10 \%$ can be excluded from

## MDDP / Preliminary Drainage Report Saddlehom Ranch Preliminary Plan

permanent stormwater management practices). Therefore, Basins UD1-UD11 will not be included in the developments permanent stormwater management facilities. A Permanent BMP applicability form is presented in Appendix D to justify these exclusions. A map detailing each development site and any exclusion is presented in Appendix F. Basin UD1 flows directly into Major Drainageway WF-R7A. Basins UD2, UD2.1, UD2.2, UD3, UD4, UD5 and UD8 flow directly into Major Drainageway MS-06. Basins UD6, UD7, UD9, and UD9.1 flow directly into Major Drainageway T6. Basins UD8.1, UD10, and UD11 follow existing drainage patterns as well but flow directly off-site prior to being captured in major drainageways. A portion of Basin UD2.2 is inundated by the existing $100-\mathrm{yr}$ floodplain. However, at time of final drainage report, lot lines will be adjusted outside floodplain limits. Furthermore, a portion of Basin UD10 is inundated by the existing 100-year floodplain, however; at time of final platting berming will be constructed to reduce the floodplain limits within the drainageway tract and a corresponding LOMR will be executed on this stretch of channel to establish the revised floodplain.

In addition to undeveloped lot areas, a small portion of Del Cerro Trail (portion of Basins UD9 \& UD9.1) and San Isidro Trail (a portion of Basin UD5) will be allowed to directly discharge into Drainageway T-6 and MS-06, respectively, and excluded from the developments permanent stormwater management facilities. Per Section I.7.1.C.1, the County may exclude up to 20 percent, not to exceed 1 acre, of the applicable development site area from permanent stormwater management. Approximately, $16,240 \mathrm{ft}^{2}$ of Del Cerro Drive and $14,000 \mathrm{ft}^{2}$ square feet of San Isidro Trail, totaling $0.08 \%$ of the total development area, will be excluded from stormwater management, which is significantly less than the $20 \%$ limit.

A summary of all basin parameters has been presented in Appendix B.

Developed basin's runoff will be captured in roadside ditches and conveyed to a full spectrum water quality and detention pond per El Paso County DCM Volume 1. Each full spectrum pond will release treated flows at less than historic rates to minimize adverse impacts downstream. Pond D will discharge into Major Drainageway WF-7A, Pond B, C, E, and F will discharge into Major Drainageway MS-06 and Ponds G, H, and I will discharge into Major Drainageway T-6. Due to existing topography, Pond A will discharge into open space south of the site. Based on existing topography in the area, this flow will eventually be captured off-site by Major Drainageway MS-06.

See Table 4 for comparison of proposed pond parameters including a comparison of proposed basin discharge versus existing discharge.

MDDP / Preliminary Drainage Report Saddlehom Ranch Preliminary Plan

Table 4: Pond Summary

| POND SUMMARY TABLE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tributary <br> Sub- <br> Basin | Pond <br> Name | Tributary <br> Acres | WQ <br> Volume <br> (ac-ft) | 100-Year <br> Volume <br> (ac-ft) | Provided <br> Volume <br> (ac-ft) | 100-Year <br> Peak <br> Discharge <br> (cfs) | Ex. 100- <br> Year <br> Peak <br> Discharge <br> (cfs) |
| A | POND A | 9.2 | 0.20 | 1.14 | 1.14 | 2.5 | 2.8 |
| B | POND B | 60.4 | 0.35 | 1.46 | 2.17 | 18.9 | 21.0 |
| C | POND C | 102.5 | 0.64 | 2.69 | 2.77 | 26.0 | 28.9 |
| D | POND D | 99.2 | 0.59 | 2.86 | 2.97 | 47.7 | 53.0 |
| E | POND E | 11.6 | 0.05 | 0.23 | 0.39 | 4.7 | 5.2 |
| F | POND F | 117.4 | 0.65 | 3.20 | 3.35 | 50.7 | 56.3 |
| G | POND G | 39.9 | 0.34 | 1.36 | 1.62 | 10.1 | 11.2 |
| H | POND H | 30.7 | 0.16 | 0.70 | 1.18 | 10.5 | 11.7 |
| I | POND I | 46.6 | 0.25 | 1.09 | 1.41 | 26.8 | 29.8 |

## Drainage Design Criteria

## Development Criteria Reference

Storm drainage analysis and design criteria for the project were taken from the "City of Colorado Spring/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1-3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County, as well as the July 2019 El Paso County Engineering Criteria Manual update.

## Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using CUHP Version 2.0.0, developed by Urban Drainage and Flood Control District. The model utilizes the raingage classified as "a design storm by temporal distribution of one-hour rain depths with area correction factors". The following Colorado Springs rainfall depths were utilized in the model: 2.52 inches for 1-hour 100-year depth and 3.5 inches for 6 -hour 100-year depth. EPA SWMM 5.1 was utilized to route runoff flow rates for the sizing of stormwater storage facilities. The CUHP calculations and SWMM model are presented in Appendix B.

Urban Drainage and Flood Control District's UD-Detention, Version 3.07 workbook was used for preliminary pond sizing. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. Pond sizing spreadsheets are presented in Appendix D.

## Hydraulic Criteria

The Federal Highway Administration's HY-8 program (Volume 7.50) was used to analyze the proposed box culvert within Major Drainageways MS-06 and T-6. Per Section 14.3.2 of the CCS/EPCDCM, a maximum headwater-to-rise ratio of 1.5 was used for the sizing of box culverts. Furthermore, box culverts will be designed in conjunction with channel improvements to maintain the current floodplain and base flood elevations. Culvert sizing and corresponding channel improvements will be revised as roadway geometry becomes better defined. Preliminary culvert design sheets are presented in Appendix C.

Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used for preliminary roadside ditch design. For the purposes of this PDR/MDDP, the maximum roadside ditch size was determined based on peak 100-year flows and minimum roadway slopes within each basin. Swales were checked for velocity and Froude number per the EPC DCM Chapter 10, Section 10-7 and Table 10-4. Swale cross sections with a 100-year velocity greater than $5 \mathrm{ft} / \mathrm{s}$ or a Froude number greater than 0.9 will be lined with erosion control blanket and native grasses, or another approved method of stabilization, to limit erosive potential. Final swale designs and cross section details will be included with the Final Drainage Report. Preliminary swale design sheets are presented in Appendix C.

Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) will be used for final local road crossing culvert design with in the Final Drainage Report. All onsite, local road crossing culverts are assumed to be 18 " or $24^{\prime \prime}$ CMP based on preliminary calculations. Culvert size was determined based on 100-year flows and hydraulic criteria from EPCDCM Chapter 9 -Culvert Design. The Final Drainage Report will provide final local road crossing culvert designs.

## Drainage Facility Design

## General Concept

The proposed stormwater conveyance system was designed to convey the developed Saddlehorn Ranch flows to full spectrum water quality and detention ponds. Water quality and detention ponds will be designed to release at less than historic rates to minimize adverse impacts downstream. All full spectrum water quality and detention ponds have been sized such that State Engineer review or approval is not required. Undeveloped basins are allowed to follow existing drainage patterns and discharge directly into major drainageways or off-site.

The undeveloped portion of developed lots will be allowed to discharge directly into Drainageways MS-06, T-6 and WF-R7A. Per the "Jurisdictional Determination Request for the 824 Acres Curtis Road subdivision Project" completed by Ecosystem System Services in October 2018, MS-06 and T-

## MDDP / Preliminary Drainage Report Saddlehom Ranch Preliminary Plan

6 are not waters of the state and WF-R7A is a water of the state however, any direct discharge into this drainageway will be historic, undeveloped flows. The direct discharge into drainageway situation occurs anywhere a lot naturally drains toward a drainageway rather than the street. It was determined for these lots that all development (i.e. house and driveway) will occur in the first 200' of the lot, measured from the street into the lot. The 200' developed region of the lot will drain towards the road and be conveyed to a full spectrum water quality pond, however; the remainder of the lot (undeveloped) will be allowed to follow historic drainage patterns and flow directly into the drainageways. Furthermore, at time of platting, a covenant will be established for the development that will limit imperviousness to $10 \%$ for areas draining directly to the drainageways in order to satisfy Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedures.

A box culvert will be proposed within Major Drainageway MS-06 and T-6 to convey existing, off site and developed, on-site flows underneath proposed roadways and through the site, in accordance with the Haegler Ranch DBPS. Culverts will not be required in Major Drainageway WF-R7A to maintain the drainage patterns established in the Gieck Ranch DBPS.

Channel improvements will be proposed immediately up and downstream of culvert improvements in order to maintain the current floodplain. Further channel improvements may be required within the major drainageways and the need for these potential improvements will be evaluated in the Final Drainage Report for each Filing. Access roads will be provided from local roadways down into the drainageways to provide culvert and drainageway maintenance access. A proposed drainage map is presented in Appendix F showing locations of culvert improvements, approximate channel improvements and access roads.

## Specific Details

## Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual, Volume 2 this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes; stabilizing drainageways, treating the water quality capture volume (WQCV), and consider the need for Industrial Commercial BMP's.

Step 1, Reducing Runoff Volumes: The development of the project site is proposed as single family residential ( 2.5 ac . min.) with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. Roadways will utilize roadside ditches further disconnecting impervious areas. These practices will also allow for increased infiltration and reduce runoff volume.

Step 2, Stabilize Drainageways: This site will utilize roadside ditches with culvert crossings throughout the site. These roadside ditches will then direct the on-site development flows to the multiple detention ponds within the project that will be designed to release at or below historic rates in the natural channels. The natural channels will be stabilized in reaches with high velocity by the

## MDDP / Preliminary Drainage Report Saddlehom Ranch Preliminary Plan

use of drop structures incorporated at each roadway culvert crossing and isolated grade control structures where warranted. Based upon the proposed reduction in released flows compared to the pre-developed flows, no impact to downstream drainageways is anticipated.

Step 3, Provide WQCV: Runoff from this development will be treated through capture and slow release of the WQCV in multiple permanent detention basins that will be designed per current El Paso County drainage criteria.

Step 4 Consider the need for Industrial and Commercial BMP's: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative will be prepared for each future Filing. Site specific temporary source control BMPs as well as permanent BMP's will be detailed in this plan and narrative to protect receiving waters.

## Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention will be provided for all of the development site not meeting exclusions present in the ECM Stormwater Quality Policy and Procedures Section I.7.1.B and C. Any areas of the development site not being included in the site's permeant stormwater management are presented on the MS4 Development Site Map with their specific exclusion, presented in Appendix F. Outlet structure release rates will be limited to less than historic rates to minimize adverse impacts to downstream stormwater facilities. Complete pond and outlet structure designs will be provided with the Final Drainage Report. Preliminary pond design parameters are presented in Appendix D.

## Erosion Control Plan

The El Paso County Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate must be submitted with each Final Drainage Report. We respectfully request that the Erosion Control Plan and Cost Estimate be submitted in conjunction with the grading and erosion control plans and construction assurances posted prior to obtaining a grading permit.

## Operation \& Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within the any platted County ROW (roadside ditches and local road culverts) will be owned and maintained by El Paso County. All proposed drainage structures within easements or tracts (full spectrum water quality ponds, drainageway culverts and drainageway improvements) will be owned and maintained by the Saddlehorn Ranch Metropolitan District No.1. Inspection access for El Paso County will be provided through a maintenance easement.

## Drainage and Bridge Fees

An estimate of total basin fees for the proposed development within Haegler Ranch Drainage Basin is provided in Table 6. A portion of Saddlehorn Ranch (Basin J and CH1) is not within an approved
drainage basin, therefore; no drainage or bridge fees will be required for this area. Drainage and Bridge fees are for informational purposes only and do not include reductions for rural lots, permanent water quality facilities or reimbursable channel improvements. Final drainage reports for each phase of development will establish official drainage and bridge fees to be paid at time of platting.

Table 5: Site Composite Percent Imperviousness

| Total Site Composite \% Impervious for Basin Fees |  |  |  |
| :---: | :---: | :---: | :---: |
| Basin | Area <br> (ac) | \% <br> Imperviousness | (Area) <br> (\% Imp.) |
| A | 9.2 | $67 \%$ | 6.13 |
| B | 60.4 | $10 \%$ | 6.28 |
| C | 102.5 | $11 \%$ | 11.69 |
| D | 99.2 | $11 \%$ | 10.71 |
| E | 11.6 | $12 \%$ | 1.35 |
| F | 117.4 | $10 \%$ | 11.62 |
| G | 39.9 | $17 \%$ | 6.70 |
| H | 30.7 | $9 \%$ | 2.89 |
| I | 46.6 | $9 \%$ | 4.38 |
| J | 10.1 | $9 \%$ | 0.89 |
| UD1 | 12.4 | $2 \%$ | 0.25 |
| UD2 | 12.8 | $2 \%$ | 0.26 |
| UD2.1 | 14.8 | $2 \%$ | 0.30 |
| UD2.2 | 7.2 | $2 \%$ | 0.14 |
| UD3 | 13.4 | $2 \%$ | 0.27 |
| UD4 | 4.8 | $2 \%$ | 0.10 |
| UD5 | 36.4 | $2 \%$ | 0.73 |
| UD6 | 22.1 | $2 \%$ | 0.44 |
| UD7 | 9.3 | $2 \%$ | 0.19 |
| UD8 | 4.6 | $2 \%$ | 0.09 |
| UD8.1 | 5.3 | $2 \%$ | 0.11 |
| UD9 | 4.8 | $2 \%$ | 0.10 |
| UD9.1 | 6.4 | $2 \%$ | 0.13 |
| UD10 | 10.4 | $2 \%$ | 0.21 |
| UD11 | 6.0 | $2 \%$ | 0.12 |
| CH1 | 23.9 | $2 \%$ | 0.48 |
| CH2 | 84.2 | $2 \%$ | 1.68 |
| CH3 | 19.0 | $2 \%$ | 0.38 |
| Total | 825.4 | - | 68.59 |
| Comp. $\%$ Imp. $=68.59 \% * a c / 825.4 \mathrm{ac}$ | $=8.31 \%$ |  |  |
|  |  |  |  |

MDDP / Preliminary Drainage Report
Saddlehom Ranch Preliminary Plan
Table 6: Drainage Basin Fees

| El Paso County - Haegler Ranch Drainage Basin Fees |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Area <br> (acre) | Composite <br> $\%$ <br> Impervious | Total <br> Impervious <br> Acreage | 2019 Drainage <br> Fee <br> (per Impervious <br> Acre) | 2019 Bridge <br> Fee <br> (per Impervious <br> Acre) | Saddlehorn <br> Ranch Drainage <br> Fee | Saddlehorn <br> Ranch <br> Bridge Fee |  |
| 825.4 | $8.31 \%$ | 68.59 | $\$ 10,324$ | $\$ 1,524$ | $\$ 708,123$ | $\$ 104,531$ |  |

## Construction Cost Opinion

(For Information Only / Non-Reimbursable)
Cost opinion to be provided with Final Drainage Report.

## SUMMARY

The proposed development remains consistent with pre-development drainage conditions with the construction of the recommended drainage improvements, including ditches, culverts, detention ponds and drainage channel improvements. The proposed development will not adversely affect the offsite major drainageways or surrounding development. This report meets the latest El Paso County Drainage Criteria requirements for this site.

## References:

1. City of Colorado Springs Drainage Criteria Manual Volume 1, City of Colorado Springs, CO, May 2014.
2. Urban Storm Drainage Criteria Manual, Urban Drainage and Flood Control District, Latest Revision.
3. Gieck Ranch Drainage Basin Planning Study, Drexel, Barrell \& Co., October 2007 and revised in February 2010.
4. Haegler Ranch Drainage Basin Planning Study, URS Corporation, May 2009.
5. The Santa Fe Springs - Haegler Ranch Drainage Basin LOMR, Federal Emergency Management Agency, October 20, 2004.

MDDP / Preliminary Drainage Report
Saddlehom Ranch Preliminary Plan

## APPENDIX B

## HYDROLOGIC CALCULATIONS

## Colorado Uilban Hydrograph Procedure

# Version 20.0-Release Date: 9/9/2016 Urban Drainage and Food Control District Denver, Colorado <br> email: udfcd@udfcd.org 

| Purpose: | This program produces hydrographs using the Colorado Unit Hydrograph Procedure (CUHP) |
| :--- | :--- |
| Functions: |  |
| Edit Raingages | Add/Remove Raingages and change names |
| Edit Subcatchments | Edit subcatchment parameters |
| Edit Multiple Run Options | Edit the Multiple Run options (Advanced User Features) |
| Import CUHP 2005 File | Import an older CUHP 2005 workbook into this updated version of CUHP |
| Check Subcatchments | Check whether subcatchment inputs conform to UDFCD guidelines |
| Check SWMM Nodes | Check whether all subcatchment target nodes are included in the SWMM .inp file |
| Run CUHP | Calculate effective precipitation and generate hydrographs for each subcatchment |

Fill in the blue cellsto begin: Settings:

Project Title: Saddlehorn Ranch
Project Comment: Ex. Conditions Analysis
Time Step Between Computations: $\frac{5}{\square}$ Minute(s); typically 5 or 1 (peak flow rate will differ slightly).
Output Workbook Filename: X:\2510000.all 2514200\CUHP-SWMM M Existing CUHP 2002.xlsm.xlsx
CUHP/SWM M Interface Filename (Optional): $\overline{X: \backslash 2510000 . a l l \backslash 2514200 \backslash C U H P-S W M ~ M ~ \ E x i s t i n g \_C U H P \_2002 . x l s m . t x t ~}$
EPA SWM M 5 Input Filename (Optional): X:\2510000.all\2514200\CUHP-SWM M\Ex. Conditions M odel.inp EPA SWMM 5 Application File (Optional):
SWM M Hydrograph Start Time (Optional): $\qquad$
Acknowledgements:
Thanks to Ben Urbonas, P.E., D.WRE and James C.Y.Guo, PhD, P.E., for the development of the CUHP project.

## CUPSUBCATCHMENIS

|  |  | Columns with this color heading are for required user-input Columns with this color heading are for optional override values Columns with this color heading are for program-calculated values |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | Maximum Depression Storage <br> (Watershed inches) |  | Horton's InfiltrationParameters |  |  | DCIA |
| Subcatchment Name | EPA SWMM Target Node | Raingage |  | Area ( $\mathrm{mi}^{2}$ ) | Length to Centroid (mi) | Length (mi) | Slope (ft/t) | Percent Imperviousness | Pervious | Impervious | $\begin{array}{\|c\|} \hline \text { Initial } \\ \text { Rate } \\ \text { (in/hr) } \end{array}$ | Decay Coefficient (1/seconds) | $\begin{array}{\|c\|} \hline \text { Final } \\ \text { Rate } \\ \text { (in/hr) } \\ \hline \end{array}$ | $\left.\begin{array}{\|c\|} \hline \text { Level 0, } \\ 1, \\ 2 \end{array} \right\rvert\,$ |
| CH1 | CH1 |  | EPC | 0.0373438 | 0.210994318 | 0.4289773 | 0.01 | 2 | 0. | 0 | 0 | 0.0018 | 0.5 | 2 |
| CH2 | CH2 |  | EPC | 0.1318594 | 0.930530303 | 1.4477273 | 0.015 | 2 | 0. | 0 | - 4 | 0.0013 | 0.75 | 2 |
| CH3 | CH3 |  | EPC | 0.0329219 | 0.420583333 | 0.7320076 | 0.015 | 2 | 0. | 0 | 4.81 | 0.0011 | 0.85 | 2 |
| H1 | H1 |  | EPC | 0.2601406 | 0.229166666 | 0.821917 | 0.01 | 2 | 0. | 0 | - 5 | 0.0007 | 1 | 2 |
| H2 | H2 |  | EPC | 0.1735781 | 0.129545454 | 0.4912879 | 0.025 | 2 | 0. | 0 | 5 | 0.0007 |  | 2 |
| нз | н3 |  | EPC | 0.18325 | 0.490719697 | 0.932197 | 0.015 | 2 | 0. | 0 | 4.64 | 0.0009 | 0.73 | 2 |
| H4 | H4 |  | EPC | 0.0988906 | 0.085984848 | 0.5267045 | 0.0225 | 2 | 0. | 0 | 3.82 | 0.0008 | 0.74 | 2 |
| H5 | H5 |  | EPC | 0.0831875 | 0.236931818 | 0.7267045 | 0.02 | 2 | 0. | 0 | 4.93 | 0.0009 | 0.94 | 2 |
| H6 | H6 |  | EPC | 0.1367969 | 0.046022727 | 0.4 | 0.04 | 2 | 0. | 0 | - 5 | 0.0007 | 1 | 2 |
| G1 | G1 |  | EPC | 0.01575 | 0.210606061 | 0.3015152 | 0.018 | 2 | 0. | 0 | 5 | 0.00007 | 1 | 2 |
| G2 | G2 |  | EPC | 0.1368125 | 0.235606061 | 0.6857955 | 0.02 | 2 | 0. | 0 | 4.32 | 0.0011 | 0.83 | 2 |

## RUN MULTIPLE OHPANDSWMM SCENARIOS



| Comment | El Paso County P | Rainfall Depths |  |
| :---: | :---: | :---: | :---: |
| 1 Hr Depth | 2.52 | inches 2hr Depth | 2.86 inches |
| 6 Hr Depth |  | inches 3hr Depth | 3.11 inches |
| Correction Area |  | Sq. Mi. |  |
| Return Period | 100 | Years |  |
| Time | Adjusted Depth | Unadjusted Depth | NOAA Atlas 14 Point Precipitation Frequency |
| 0:05 | 0.0252 | 0.0252 |  |
| 0:10 | 0.0756 | 0.0756 |  |
| 0:15 | 0.1159 | 0.1159 |  |
| 0:20 | 0.2016 | 0.2016 |  |
| 0:25 | 0.3528 | 0.3528 |  |
| 0:30 | 0.6300 | 0.6300 |  |
| 0:35 | 0.3528 | 0.3528 |  |
| 0:40 | 0.2016 | 0.2016 |  |
| 0:45 | 0.1562 | 0.1562 |  |
| 0:50 | 0.1260 | 0.1260 |  |
| 0:55 | 0.1008 | 0.1008 |  |
| 1:00 | 0.1008 | 0.1008 |  |
| 1:05 | 0.1008 | 0.1008 |  |
| 1:10 | 0.0504 | 0.0504 |  |
| 1:15 | 0.0504 | 0.0504 |  |
| 1:20 | 0.0302 | 0.0302 |  |
| 1:25 | 0.0302 | 0.0302 |  |
| 1:30 | 0.0302 | 0.0302 |  |
| 1:35 | 0.0302 | 0.0302 |  |
| 1:40 | 0.0302 | 0.0302 |  |
| 1:45 | 0.0302 | 0.0302 |  |
| 1:50 | 0.0302 | 0.0302 |  |
| 1:55 | 0.0302 | 0.0302 |  |
| 2:00 | 0.0302 | 0.0302 |  |
| 2:05 | 0.0000 | 0.0000 |  |
| 2:10 | 0.0000 | 0.0000 |  |
| 2:15 | 0.0000 | 0.0000 |  |
| 2:20 | 0.0000 | 0.0000 |  |
| 2:25 | 0.0000 | 0.0000 |  |
| 2:30 | 0.0000 | 0.0000 |  |
| 2:35 | 0.0000 | 0.0000 |  |
| 2:40 | 0.0000 | 0.0000 |  |
| 2:45 | 0.0000 | 0.0000 |  |
| 2:50 | 0.0000 | 0.0000 |  |
| 2:55 | 0.0000 | 0.0000 |  |
| 3:00 | 0.0000 | 0.0000 |  |
| 3:05 | 0.0000 | 0.0000 |  |
| 3:10 | 0.0000 | 0.0000 |  |
| 3:15 | 0.0000 | 0.0000 |  |
| 3:20 | 0.0000 | 0.0000 |  |
| 3:25 | 0.0000 | 0.0000 |  |
| 3:30 | 0.0000 | 0.0000 |  |
| 3:35 | 0.0000 | 0.0000 |  |
| 3:40 | 0.0000 | 0.0000 |  |
| 3:45 | 0.0000 | 0.0000 |  |
| 3:50 | 0.0000 | 0.0000 |  |

## SADDLEHORN RANCH - EX. 5-YEAR FLOW RESULTS

Node Inflow Summary

| Node | Type | Maximum <br> Lateral <br> Inflow <br> CFS | Maximum Total Inflow CFS | Day of Maximum Inflow | Hour of Maximum Inflow | Lateral Inflow Volume $10^{\wedge} 6 \mathrm{gal}$ | Total <br> Inflow <br> Volume $10^{\wedge} 6 \mathrm{gal}$ | Flow Balance Error Percent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CH1 | JUNCTION | 5.40 | 5.40 | 0 | 00:50 | 0.232 | 0.232 | 0.000 |
| CH2 | JUNCTION | 2.58 | 2.58 | 0 | 01:00 | 0.176 | 0.176 | 0.000 |
| CH3 | JUNCTION | 0.11 | 0.11 | 0 | 00:45 | 0.00701 | 0.00701 | 0.000 |
| DP1 | JUNCTION | 0.00 | 6.79 | 0 | 00:46 | 0 | 0.268 | 0.000 |
| DP2 | JUNCTION | 0.00 | 1.46 | 0 | 00:40 | 0 | 0.0359 | 0.000 |
| DP3 | JUNCTION | 0.00 | 0.13 | 0 | 00:40 | 0 | 0.00379 | 0.000 |
| DP4 | JUNCTION | 0.00 | 0.16 | 0 | 00:35 | 0 | 0.00252 | 0.000 |
| DP5 | JUNCTION | 0.00 | 0.90 | 0 | 00:45 | 0 | 0.0334 | 0.000 |
| DP6 | JUNCTION | 0.00 | 1.35 | 0 | 00:35 | 0 | 0.0209 | 0.000 |
| DP7 | JUNCTION | 0.00 | 4.06 | 0 | 01:05 | 0 | 0.237 | 0.000 |
| DP8 | JUNCTION | 0.00 | 0.21 | 0 | 00:30 | 0 | 0.00194 | 0.000 |
| DP9 | JUNCTION | 0.00 | 0.43 | 0 | 00:40 | 0 | 0.0172 | 0.000 |
| G1 | JUNCTION | 0.00 | 0.00 | 0 | 00:00 | 0 | 0 | 0.000 |
| G2 | JUNCTION | 1.46 | 1.46 | 0 | 00:40 | 0.0359 | 0.0359 | 0.000 |
| H1 | JUNCTION | 0.13 | 0.13 | 0 | 00:40 | 0.00379 | 0.00379 | 0.000 |
| H2 | JUNCTION | 0.16 | 0.16 | 0 | 00:35 | 0.00252 | 0.00252 | 0.000 |
| H3 | JUNCTION | 0.90 | 0.90 | 0 | 00:45 | 0.0334 | 0.0334 | 0.000 |

## SADDLEHORN RANCH - EX. 5-YEAR FLOW RESULTS

| Node | Type | Maximum <br> Lateral Inflow CFS | Maximum Total Inflow CFS | Day of Maximum Inflow | Hour of Maximum Inflow | Lateral <br> Inflow <br> Volume $10^{\wedge} 6 \mathrm{gal}$ | Total <br> Inflow <br> Volume $10^{\wedge} 6 \mathrm{gal}$ | Flow Balance Error Percent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H4 | JUNCTION | 1.35 | 1.35 | 0 | 00:35 | 0.0209 | 0.0209 | 0.000 |
| H5 | JUNCTION | 0.33 | 0.33 | 0 | 00:40 | 0.0102 | 0.0102 | 0.000 |
| H6 | JUNCTION | 0.21 | 0.21 | 0 | 00:30 | 0.00194 | 0.00194 | 0.000 |
| J13 | JUNCTION | 0.00 | 0.07 | 0 | 01:50 | 0 | 0.00485 | 0.000 |
| J14 | JUNCTION | 0.00 | 0.06 | 0 | 02:28 | 0 | 0.00242 | 0.000 |
| J15 | JUNCTION | 0.00 | 0.83 | 0 | 01:03 | 0 | 0.0333 | 0.000 |
| J16 | JUNCTION | 0.00 | 0.09 | 0 | 00:49 | 0 | 0.00188 | 0.000 |

Node Inflow Summary

| Node | Type | Maximum Lateral Inflow CFS | Maximum <br> Total <br> Inflow CFS | Day of Maximum Inflow | Hour of Maximum Inflow | Lateral Inflow Volume $10^{\wedge} 6 \mathrm{gal}$ | Total Inflow Volume $10^{\wedge} 6 \mathrm{gal}$ | Flow <br> Balance Error Percent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CH1 | JUNCTION | 1038.04 | 1038.04 | 0 | 00:55 | 165 | 165 | 0.000 |
| CH2 | JUNCTION | 485.11 | 485.11 | 0 | 01:15 | 75.2 | 75.2 | 0.000 |
| CH3 | JUNCTION | 127.25 | 127.25 | 0 | 01:10 | 19.9 | 19.9 | 0.000 |
| DP1 | JUNCTION | 0.00 | 1114.02 | 0 | 00:51 | 0 | 167 | 0.000 |
| DP2 | JUNCTION | 0.00 | 76.38 | 0 | 00:50 | 0 | 2.23 | 0.000 |
| DP3 | JUNCTION | 0.00 | 80.97 | 0 | 00:45 | 0 | 2.08 | 0.000 |
| DP4 | JUNCTION | 0.00 | 91.06 | 0 | 00:40 | 0 | 1.38 | 0.000 |
| DP5 | JUNCTION | 0.00 | 64.08 | 0 | 01:00 | 0 | 2.67 | 0.000 |
| DP6 | JUNCTION | 0.00 | 73.15 | 0 | 00:40 | 0 | 1.47 | 0.000 |
| DP7 | JUNCTION | 0.00 | 704.90 | 0 | 01:08 | 0 | 83 | 0.000 |
| DP8 | JUNCTION | 0.00 | 110.05 | 0 | 00:35 | 0 | 1.06 | 0.000 |
| DP9 | JUNCTION | 0.00 | 248.10 | 0 | 00:45 | 0 | 21.9 | 0.000 |
| G1 | JUNCTION | 0.09 | 0.09 | 0 | 00:40 | 0.00364 | 0.00364 | 0.000 |
| G2 | JUNCTION | 76.38 | 76.38 | 0 | 00:50 | 2.23 | 2.23 | 0.000 |
| H1 | JUNCTION | 80.97 | 80.97 | 0 | 00:45 | 2.08 | 2.08 | 0.000 |
| H2 | JUNCTION | 91.06 | 91.06 | 0 | 00:40 | 1.38 | 1.38 | 0.000 |
| H3 | JUNCTION | 64.08 | 64.08 | 0 | 01:00 | 2.67 | 2.67 | 0.000 |
| H4 | JUNCTION | 73.15 | 73.15 | 0 | 00:40 | 1.47 | 1.47 | 0.000 |
| H5 | JUNCTION | 28.20 | 28.20 | 0 | 00:50 | 0.959 | 0.959 | 0.000 |
| H6 | JUNCTION | 110.05 | 110.05 | 0 | 00:35 | 1.06 | 1.06 | 0.000 |

SADDLEHORN RANCH - EX. 100-YR FLOW RESULTS

| Node | Type | Maximum Lateral Inflow CFS | Maximum Total Inflow CFS | Day of Maximum Inflow | Hour of Maximum Inflow | Lateral <br> Inflow <br> Volume $10^{\wedge} 6 \mathrm{gal}$ | Total <br> Inflow <br> Volume $10^{\wedge} 6 \mathrm{gal}$ | Flow Balance Error Percent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| J13 | JUNCTION | 0.00 | 69.43 | 0 | 01:03 | 0 | 2.18 | 0.000 |
| J14 | JUNCTION | 0.00 | 68.26 | 0 | 01:09 | 0 | 2.19 | 0.000 |
| J15 | JUNCTION | 0.00 | 63.63 | 0 | 01:07 | 0 | 2.68 | 0.000 |
| J16 | JUNCTION | 0.00 | 103.79 | 0 | 00:38 | 0 | 1.08 | 0.000 |

## SADDLEHORN RANCH - EX. CONDITIONS SWMM MODEL



MDDP / Preliminary Drainage Report
Saddlehom Ranch Preliminary Plan

## APPENDIX C

## HYDRAULIC CALCULATIONS

## APPENDIX D

MDDP / Preliminary Drainage Report
Saddlehom Ranch Preliminary Plan

## APPENDIX E

## REFERENCE MATERIALS

MDDP / Preliminary Drainage Report
Saddlehom Ranch Preliminary Plan

## APPENDIX F

## DRAINAGE MAPS

## 824 ACRE CURTIS ROAD SUBDIVISION EX. CONDITIONS DRAINAGE MAP



## SADDLEHORN RANCH SUBDIVISION

PROPOSED DRAINAGE MAP


## SADDLEHORN RANCH SUBDIVISION

PROPOSED DRAINAGE MAP


# JR ENGINEERING 

January 5, 2022

Keith Curtis, PE, CFM<br>Floodplain Administrator, PPRBD<br>2880 International Circle<br>Colorado Springs, CO 80910

## Re: Engineer's Certification of No Impact Case No.:

Dear Mr. Curtis,
This letter serves as Certification of No Impact to the Floodplain for the project entitled "Saddlehorn Ranch - Filing 3." The project is located in the unincorporated El Paso County and involves a proposed rural 2.5 acre lot subdivision.

The Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) shows the project area located on Panel No. 08041C0558G for El Paso County, Colorado dated December 7, 2018. The project area is located along Haegler Ranch MS-06 and is within a designated Zone AE Special Flood Hazard Area (SFHA)

JR Engineering has evaluated the effects of the proposed development on the Haegler Ranch floodplain using the effective modeling as a baseline. The HEC-RAS modeling was obtained in PDF format from the "Santa Fe Springs - Haegler Ranch Drainage Basin Letter of Map Revision (LOMR)" by Tri-Core Engineering, dated October 20, 2004, from the Federal Emergency Management Agency (FEMA). The effective model is the "Santa Fe Springs - Haegler DB. - Letter of Map Revision" prepared for FEMA by Tri-Core Engineering. The effective model was pared down to the stretch between Cross Sections 4 and 19 along Reach H8 (Haegler Ranch Tributary 3) for purposes of analysis within the context of this project.

JR Engineering utilized the calculated 100-year water surface from the aforementioned model to establish the existing 100-year floodplain. Proposed channel and culvert improvements were modeled utilizing the 100-year flow of 505 cfs established in the "Santa Fe Springs - Haegler Ranch Drainage Basin Letter of Map Revision (LOMR)". Cross sections located between cross sections 4 and 19 were modeled using AutoCAD Hydraflow Express, Version 2020.4. Cross Section 13 aligns with the front of the project's proposed dual 12’x4' RCBC. Therefore, the Federal Highway Authority's HY-8, Version 7.60, was used for modeling the backwater effect to establish an accurate base flood elevation. The computed water surface elevation at each cross section was compared to the effective model to ensure a no rise scenario.

Select results of the analysis are presented in Table 1, on the following page:

Table 1: Base Flood Elevation Comparison

|  | Base Flood <br> Elevation (ft) |  |
| :---: | :---: | :---: |
|  | Cross <br> Section | Ex. 100- <br> Year |
| 13 | Pr. 100- <br> Year |  |
| 14 | 6723.61 | 6721.71 |
| 14 | 6722.03 | 6720.43 |
| 15 | 6720.65 | 6719.28 |
| 16 | 6717.71 | 6717.59 |
| 17 | 6714.03 | 1714.03 |

Based on the results of the proposed cross section modeling and the HY-8 culvert analysis, no increase to either the floodplain width or water surface elevation will result from the proposed site development.

Sincerely,

Bryan Law PE
Colorado P.E. \#25043

## No Rise Certification

I certify that I am a duly qualified registered Professional Engineer in the State of Colorado.
I certify the proposed project, Saddlehorn Ranch Filing No. 3, as detailed on the following sheets and calculations will result in zero rise in the FEMA designated 100 year flood heights, and no increase in the 100-year discharge and no increase in the 100-year floodplain width, at published and unpublished cross sections of the current FEMA floodplain of Haegler Ranch M S-06 as shown on FEMA map 08041C0558G. This certification is intended as proof of meeting the requirements set forth in the Pikes Peak Regional Building Code RBC313.20.1.

I further certify that the design conditions needed to meet the zero rise, box culvert and wing walls, are detailed in sufficient nature to allow for field confirmation and included among the supporting documentation.

I further certify that the structure in question will be securely anchored to prevent flotation, collapse or lateral movement in order to withstand the velocity of floodwaters as required by RCB313.18.1 and RBC313.21.2.




## HY-8 Culvert Analysis Report

## Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 400 cfs
Design Flow: 505 cfs
Maximum Flow: 600 cfs

Table 1 - Summary of Culvert Flows at Crossing: San Isidro Crossing

| Headwater Elevation <br> (ft) | Total Discharge (cfs) | San Isidro Crossing <br> Discharge (cfs) | Roadway Discharge <br> (cfs) | Iterations |
| :---: | :---: | :---: | :---: | :---: |
| 6722.88 | 400.00 | 400.00 | 0.00 | 1 |
| 6722.99 | 420.00 | 420.00 | 0.00 | 1 |
| 6723.11 | 440.00 | 440.00 | 0.00 | 1 |
| 6723.22 | 460.00 | 460.00 | 0.00 | 1 |
| 6723.34 | 480.00 | 480.00 | 0.00 | 1 |
| 6723.48 | 505.00 | 505.00 | 0.00 | 1 |
| 6723.57 | 520.00 | 520.00 | 0.00 | 1 |
| 6723.68 | 540.00 | 540.00 | 0.00 | 1 |
| 6723.80 | 560.00 | 560.00 | 0.00 | 1 |
| 6723.91 | 580.00 | 580.00 | 0.00 | 1 |
| 6724.03 | 600.00 | 600.00 | 0.00 | 1 |
| 6728.59 | 1176.67 | 1176.67 | 0.00 | Overtopping |

Rating Curve Plot for Crossing: San Isidro Crossing

## Total Rating Curve

Crossing: San Isidro Crossing


Table 2 - Culvert Summary Table: San Isidro Crossing

| Total Discharge (cfs) | Culvert Discharge (cfs) | Headwater Elevation (ft) | Inlet Control Depth (ft) | Outlet <br> Control Depth (ft) | Flow Type | Normal Depth (ft) | Critical Depth (ft) | Outlet Depth <br> (ft) | Tailwater Depth (ft) | Outlet Velocity (ft/s) | Tailwater Velocity (ft/s) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 400.00 | 400.00 | 6722.88 | 3.460 | 2.468 | 1-S2n | 1.613 | 2.051 | 1.708 | 2.429 | 9.757 | 4.329 |
| 420.00 | 420.00 | 6722.99 | 3.575 | 2.556 | 1-S2n | 1.666 | 2.119 | 1.767 | 2.470 | 9.901 | 4.394 |
| 440.00 | 440.00 | 6723.11 | 3.689 | 2.646 | 1-S2n | 1.718 | 2.185 | 1.826 | 2.510 | 10.041 | 4.457 |
| 460.00 | 460.00 | 6723.22 | 3.803 | 2.737 | 1-S2n | 1.769 | 2.251 | 1.884 | 2.550 | 10.176 | 4.517 |
| 480.00 | 480.00 | 6723.34 | 3.917 | 2.829 | 1-S2n | 1.819 | 2.316 | 1.941 | 2.588 | 10.305 | 4.576 |
| 505.00 | 505.00 | 6723.48 | 4.060 | 2.947 | 5-S2n | 1.881 | 2.396 | 2.011 | 2.635 | 10.462 | 4.646 |
| 520.00 | 520.00 | 6723.57 | 4.146 | 3.019 | 5-S2n | 1.918 | 2.443 | 2.053 | 2.663 | 10.553 | 4.687 |
| 540.00 | 540.00 | 6723.68 | 4.261 | 3.116 | 5-S2n | 1.967 | 2.505 | 2.108 | 2.699 | 10.672 | 4.740 |
| 560.00 | 560.00 | 6723.80 | 4.377 | 3.214 | 5-S2n | 2.015 | 2.567 | 2.163 | 2.735 | 10.787 | 4.792 |
| 580.00 | 580.00 | 6723.91 | 4.494 | 3.315 | 5-S2n | 2.063 | 2.627 | 2.218 | 2.769 | 10.894 | 4.842 |
| 600.00 | 600.00 | 6724.03 | 4.612 | 3.417 | 5-S2n | 2.110 | 2.687 | 2.273 | 2.804 | 11.000 | 4.891 |

## Straight Culvert

Inlet Elevation (invert): 6719.42 ft , Outlet Elevation (invert): 6719.00 ft
Culvert Length: $83.50 \mathrm{ft}, \quad$ Culvert Slope: 0.0050


Culvert Performance Curve Plot: San Isidro Crossing
Performance Curve
Culvert: San Isidro Crossing


## Water Surface Profile Plot for Culvert: San Isidro Crossing

Crossing - San Isidro Crossing, Design Discharge - 505.0 cfs
Culvert - San Isidro Crossing, Culvert Discharge - 505.0 cfs


## Site Data - San Isidro Crossing

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 6719.42 ft
Outlet Station: 83.50 ft
Outlet Elevation: 6719.00 ft
Number of Barrels: 2

## Culvert Data Summary - San Isidro Crossing

Barrel Shape: Concrete Box
Barrel Span: 12.00 ft
Barrel Rise: 4.00 ft
Barrel Material: Concrete
Embedment: 0.00 in
Barrel Manning's n: 0.0120
Culvert Type: Straight
Inlet Configuration: Square Edge ( $90^{\circ}$ ) Headwall
Inlet Depression: None

Table 3 - Downstream Channel Rating Curve (Crossing: San Isidro Crossing)

| Flow (cfs) | Water Surface <br> Elev (ft) | Depth (ft) | Velocity (ft/s) | Shear (psf) | Froude Number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 400.00 | 6721.43 | 2.43 | 4.33 | 0.91 | 0.70 |
| 420.00 | 6721.47 | 2.47 | 4.39 | 0.92 | 0.70 |
| 440.00 | 6721.51 | 2.51 | 4.46 | 0.94 | 0.70 |
| 460.00 | 6721.55 | 2.55 | 4.52 | 0.95 | 0.70 |
| 480.00 | 6721.59 | 2.59 | 4.58 | 0.97 | 0.70 |
| 505.00 | 6721.64 | 2.64 | 4.65 | 0.99 | 0.71 |
| 520.00 | 6721.66 | 2.66 | 4.69 | 1.00 | 0.71 |
| 540.00 | 6721.70 | 2.70 | 4.74 | 1.01 | 0.71 |
| 560.00 | 6721.73 | 2.73 | 4.79 | 1.02 | 0.71 |
| 580.00 | 6721.77 | 2.77 | 4.84 | 1.04 | 0.71 |
| 600.00 | 6721.80 | 2.80 | 4.89 | 1.05 | 0.72 |

## Tailwater Channel Data - San Isidro Crossing

Tailwater Channel Option: Irregular Channel

## Roadway Data for Crossing: San Isidro Crossing

Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 6.00 ft
Crest Elevation: 6728.59 ft
Roadway Surface: Paved
Roadway Top Width: 32.00 ft

Channel Report

## Section 13

Trapezoidal
Bottom Width (ft)
$=42.00$
Side Slopes (z:1)
$=8.00,14.00$
$=3.50$
$=5720.17$
$=1.00$
$=0.030$

Calculations
Compute by:
Known Q (cfs)
Known Q
$=505.00$

Highlighted
Depth (ft)
$=1.54$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=505.00$
$=90.77$
$=5.56$
$=76.03$
$=1.45$
$=75.88$
$=2.02$

Elev (ft)
Section
Depth (ft)


Reach (ft)

## Channel Report

## Section 14

| User-defined |  |
| :--- | :--- |
| Invert Elev (ft) | $=6718.04$ |
| Slope (\%) | $=0.60$ |
| N-Value | $=0.030$ |
|  |  |
| Calculations |  |
| Compute by: | Known Q |
| Known Q (cfs) | $=505.00$ |

(Sta, EI, n)-(Sta, EI, n)...
$(0.00,6723.01)-(25.00,6719.38,0.030)-(59.00,6719.04,0.030)-(63.00,6718.04,0.030)-(67.00,6718.04,0.030)-(71.00,6719.04,0.030)-(105.00,6719.38,0.030)$ -(130.00, 6721.41, 0.030)

## Elev (ft)

Highlighted
Depth (ft)
$=2.39$
Q (cfs)
$=505.00$
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
= 118.25

Crit Depth, Yc (ft)
4.27

Top Width (ft)
EGL (ft)
$=100.53$
$=2.11$
$=100.17$
$=2.67$


## Channel Report

## Section 15

| User-defined |  |
| :--- | :--- |
| Invert Elev (ft) | $=6716.89$ |
| Slope (\%) | $=0.60$ |
| N-Value | $=0.030$ |
|  |  |
| Calculations |  |
| Compute by: | Known Q |
| Known Q (cfs) | $=505.00$ |

(Sta, EI, n)-(Sta, EI, n)...
$(0.00,6720.00)-(25.00,6718.23,0.030)-(59.00,6717.89,0.030)-(63.00,6716.89,0.030)-(67.00,6716.89,0.030)-(71.00,6717.89,0.030)-(105.00,6718.23,0.030)$ -(130.00, 6719.90, 0.030)

## Elev (ft)

Highlighted
Depth (ft)
$=2.39$
Q (cfs)
$=505.00$
Area (sqft)
= 123.70
Velocity (ft/s)
$=4.08$
Wetted Perim (ft) $=110.88$
Crit Depth, Yc (ft) $=2.11$
Top Width (ft)
EGL (ft)
$=110.56$
$=2.65$


Sta (ft)

## Channel Report

## Section 16

| User-defined | Highlighted <br> Invert Elev (ft) |  |  |
| :--- | :--- | :--- | :--- |
| Slope (\%) | $=6715.11$ | Depth (ft) | $=2.48$ |
| N-Value | $=0.60$ | Q (cfs) | $=505.00$ |
| Calculations | $=0.030$ | Area (sqft) | $=151.09$ |
| Compute by: |  | Velocity (ft/s) | $=3.34$ |
| Known Q (cfs) | Known Q | Wetted Perim (ft) | $=186.16$ |
|  | $=505.00$ | Crit Depth, Yc (ft) | $=2.10$ |
|  |  | Top Width (ft) | $=185.87$ |
|  | EGL (ft) | $=2.65$ |  |

(Sta, EI, n)-(Sta, EI, n)...
$(0.00,6717.72)-(85.00,6717.43,0.030)-(110.00,6716.45,0.030)-(144.00,6716.11,0.030)-(148.00,6715.11,0.030)-(152.00,6715.11,0.030)-(156.00,6716.11,0.0$ -(190.00, 6716.45, 0.030)-(215.00, 6717.47, 0.030)-(240.00, 6717.80, 0.030)


## SADDLEHORN RANCH

JUDGE ORR ROAD CULVERTS - $36^{\circ} \& 66^{\circ}$ CMP


JUDGE ORR ROAD WEST \& EAST CULVERT ROAD PROFILE PROFILE
STA 0+00.00 TO 13+25.72


# GIECK RANCH <br> DRAINAGE BASIN PLANNING STUDY <br> El Paso County, Colorado 

## Volume 1 - Final Report

October 1, 2007
Revised: February 10, 2010

PREPARED FOR:
975 Ford LP, LLP
118 North Tejon Street, Suite 213
Colorado Springs, CO 80903
(719) 491-4169

Contact: Neil McLeod

PREPARED BY:
Drexel, Barrell \& Co.
3 S. $7^{\text {th }}$ Street
Colorado Springs, CO 80905
(719) 260-0887

Contact: James A. Brzostowicz , P.E.
DBC Project Number: C-7706-2


| Design Point ID | Design Point Location | Hydrologic Element | $\begin{gathered} \text { Accumulative } \\ \text { Area } \\ \left(\mathrm{mi}^{2}\right) \\ \hline \end{gathered}$ | Existing Peak Flow (cfs) | Future Peak Flow (cfs) | \% <br> Difference <br> Peak Flow | Existing Volume (ac-ft) | Future Volume (ac-ft) | \% Difference Volume |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Haegler Diversion at Eastonville Road | HD-J2 | 0.8 | 431 | 1060 | 146\% | 77 | 96 | 25\% |
| 2 | West Fork at Eastonville Road | WF-J1 | 0.3 | 146 | 389 | 166\% | 29 | 39 | 33\% |
| 3 | Main Channel at Eastonville Road | MS-J4 | 1.3 | 730 | 1233 | 69\% | 112 | 135 | 20\% |
| 4 | Haegler Diversion at Highway 24 | HD-J4 | 1.3 | 521 | 1223 | 135\% | 97 | 121 | 24\% |
| 5 | West Fork at Highway 24 | WF-J3 | 0.4 | 224 | 605 | 170\% | 49 | 62 | 26\% |
| 6 | Main Channel at Highway 24 Contributing acreage to wr | MS-J6 | 2.5 | 997 | 1896 | 90\% | 194 | 225 | 16\% |
| 7 | East Fork at Highway 24. | EF-J4 | 1.2 | 1054 | 1113 | 6\% | 124 | 126 | 1\% |
| 8 | Main Channel at Elbert Road | MS-J7 | 3.0 | 1010 | 1896 | 88\% | 220 | 253 | 15\% |
| 9 | Fast Fork at Flhert Road | EF-I6 | 21 | 1120 | 1172 | 5\% | 183 | 187 | 2\% |
| 10 | West Fork at Judge Orr Road | WF-J6 | $\rightarrow 1.5$ | 1017 | 2213 | 117\% | 244 | 291 | 19\% |
| 11 | Confluence of East Fork and Main Channel | MS-J9 | 5.7 | 1817 | 3068 | 69\% | 429 | 467 | 9\% |
| 12 | Main Channel at Judge Orr Road | MS-J11 | 6.7 | 1968 | 3383 | 72\% | 487 | 564 | 16\% |
| 13 | Confluence of West Fork and Main Channel | MS-J12 | 11.2 | 2732 | 6104 | 123\% | 805 | 993 | 23\% |
| 14 | Main Channel at Falcon Highway | MS-J16 | 13.4 | 3045 | 6784 | 123\% | 936 | 1191 | 27\% |
| 15 | Main Channel at Peyton Highway | MS-J19 | 15.1 | 3200 | 6946 | 117\% | 1012 | 1269 | 25\% |
| 16 | Main Channel at Jones Road | MS-J20 | 15.6 | 3250 | 7056 | 117\% | 1040 | 1308 | 26\% |
| 17 | South Fork at Jones Road | SF-J4 | 1.3 | 454 | 454 | 0\% | 133 | 133 | 0\% |
| 18 | Confluence of South Fork and Main Channel | MS-J22 | 17.9 | 3650 | 7392 | 103\% | 1210 | 1489 | 23\% |
| 19 | Southeast Fork at McDaniels Road | SE-J3 | 2.4 | 547 | 546 | 0\% | 210 | 210 | 0\% |
| 20 | Main Channel at McDaniels Road | MS-J29 | 19.6 | 3791 | 7525 | 99\% | 1293 | 1597 | 23\% |
| 21 | Total Combined Outfall | $\begin{aligned} & \hline \text { SE-J3 plus } \\ & \text { MS-J29 } \end{aligned}$ | 22.0 | 4326 | 7687 | 78\% | 1503 | 1807 | 20\% |

The 100 -year storm event future undetained peak flow is estimated to increase by $78 \%$ over the existing peak flow while the future volume of runoff is estimated to increase by $20 \%$.


 improvements to increase the Black Squirrel Creek conveyance in this area or constructing berms on the east bank to prevent overflow.

| Table 8.0: Structure Inventory and Evaluation Summary (Cont.) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | Elbert Road south of structure 34 | 24" CMP | Good | 100\% | Y | --- |
| 36 | Elbert Road at Main Channel | 2-48" CMP | Good | 19\% | N | 3-12' x 4' ${ }^{\prime}$ CBC |
| 37 | Elbert Road south of structure 36 | 24" CMP | Poor | 55\% | Y | --- |
|  |  |  |  |  |  |  |
| 38 | Judge Orr Road at West Fork | CMP | Good | 20\% | N | $4-12^{\prime} \times 5^{\prime} \mathrm{CBC}$ |
| 39 | Judge Urr Road east of structure 38 | $36^{\prime \prime}$ CMP | Good | 100\% | Y | --- |
| 40 | Judge Orr Road west of structure 41 | 24" CMP | Poor | 90\% | Y | --- |
| 41 | Judge Orr Road at Main Channel | Bridge | Good | 100\% | Y | --- |
| 42 | Falcon Hwy at Main Channel | Bridge | Good | 57\% | N | 85' Span |
| 43 | Peyton Road at headwaters of South Fork | 24" CMP | Fair | 75\% | Y | --- |
| 44 | Peyton Road at Main Channel | 4-24" RCP | Good | 2\% | N | 5-12'x ${ }^{\prime}$ CBC |
| 45 | Peyton Road south of structure 44 | 36" CMP | Poor | 100\% | Y | --- |
| 46 | Peyton Road south of structure 45 | 24" CMP | Good | 100\% | Y | --- |
| 47 | East Garrett Road west of structure 48 | 24" CMP | Poor | 100\% | Y | --- |
| 48 | East Garrett Road at South Fork | 48" CMP | Good | 14\% | N | 2-5'x $4^{\prime} \mathrm{CBC}$ |
| 49 | J.D. Johnson Road at South Fork | 4-42" RCP | Good | 63\% | N | $2-12^{\prime} \times 4^{\prime} \mathrm{CBC}$ |
| 50 | J.D. Johnson Road south of structure 49 | $30^{\prime \prime} \mathrm{CMP}$ | Fair | 56\% | N | 36" CMP |
| 51 | J.D. Johnson Road south of structure 50 | 30" CMP | Fair | 100\% | Y | --- |
| 52 | Jones Road at Main Channel | 60 " CMP | Fair | 4\% | N | $6-12^{\prime} \times 7^{\prime} \mathrm{CBC}$ |
| 53 | J.D. Johnson Road at Jones Road | $30^{\prime \prime}$ CMP | Fair | 55\% | Y | --- |
| 54 | Jones Road east of J.D. Johnson Road | 30" CMP | Good | 73\% | Y | --- |
| 55 | Jones Road at South Fork | $36^{\prime \prime}$ CMP | Good | 6\% | N | 2-7'x 5 ${ }^{\prime}$ CBC |
| 56 | Jones Road east of structure 55 | 30" CMP | Fair | 67\% | Y | --- |
| 57 | J.D. Johnson Road at Main Channel US of structure 58 | 3-60" RCP | Good | 14\% | N | 85' Span |
| 58 | J.D. Johnson Road at Main Channel | 30" CMP | Good | 1\% | N | 120 ' Span |
| 59 | J.D. Johnson Road and Log Road | 24" CMP | Fair | 23\% | N | 2-6'x $3^{\prime}$ CBC |
| 60 | Main Channel at private driveway | $\begin{gathered} 48^{\prime \prime} \text { CMP } \\ \text { (est.) } \end{gathered}$ | Unknown | 2\% | N.E. | ---- |
| 61 | Log Road at Main Channel | Bridge | Good | 36\% | N | $120^{\prime}$ Span |
| 62 | McDaniel Road at Main Channel | $\begin{gathered} 30^{\prime \prime} \times 48^{\prime \prime} \\ \text { Oval CMP } \end{gathered}$ | Good | 1\% | N | 120 ' Span |
| 63 | Log Road and McDaniels Road | 24" CMP | Good | 2\% | N | $5-6{ }^{\prime} \times 3^{\prime} \mathrm{CBC}$ |

* Road over-topping not included
** Allowable road over-topping included in adequacy analysis
*** Based on proposed (with selected drainage basin plan) flows
N.E. Not Evaluated, not EPCDOT responsibility







## DETENTION BASIN OUTLET STRUCTURE DESIGN



| Stage of Orifice Centroid (ft) Orifice Area (sq. inches) | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) | Row 8 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.00 | 0.91 | 1.82 |  |  |  |  |  |
|  | 2.44 | 2.44 | 2.44 |  |  |  |  |  |
|  | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
| Stage of Orifice Centroid (ft) Orifice Area (sq. inches) |  |  |  |  |  |  |  |  |



User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

| Overflow Weir Front Edge Height, $\mathrm{Ho}=$ | Zone 3 Weir | Not Selected | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) feet |
| :---: | :---: | :---: | :---: |
|  | 3.17 | N/A |  |
| Overflow Weir Front Edge Length $=$ | 6.00 | N/A |  |
| Overflow Weir Grate Slope = | 0.00 | N/A | H:V |
| Horiz. Length of Weir Sides $=$ | 5.00 | N/A | feet |
| Overflow Grate Type = | Type C Grate | Type C Grate |  |
| Debris Clogging \% = | 0\% | N/A | \% |


| e) | Calculated Parameters for Overflow Weir |  |
| :---: | :---: | :---: |
|  | Zone 3 Weir | Not Selected |
| Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ | 3.17 | N/A |
| Overflow Weir Slope Length = | 5.00 | N/A |
| Grate Open Area / 100-yr Orifice Area $=$ | 4.25 | N/A |
| Overflow Grate Open Area w/o Debris = | 20.88 | N/A |
| Overflow Grate Open Area w/ Debris = | 20.88 | N/A |

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)


| Spillway Invert Stage= | 4.33 | ft (relative to basin bottom at St |
| :---: | :---: | :---: |
| Spillway Crest Length = | 60.00 | feet |
| Spillway End Slopes = | 4.00 | H:V |
| Freeboard above Max Water Surface $=$ | 1.00 | feet |


|  | Calculated Parameters for Spillway |  |
| :---: | :---: | :---: |
| Spillway Design Flow Depth= | 0.47 | feet |
| Stage at Top of Freeboard = | 5.80 | fee |
| Basin Area at Top of Freeboard = | 2.06 | acres |
| Basin Volume at Top of Freeboard $=$ | 5.25 | acre-ft |


| Routed Hydrograph Results | er can | default | graph | olumes b | ing new values in | e Inflow Hydrogra | s table (Columns | hrough AF). |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Design Storm Return Period $=$ | WQCV | EURV | 2 Year | 5 Year | 10 Year | 25 Year | 50 Year | 100 Year | 500 Year |
| One-Hour Rainfall Depth (in) | N/A | N/A | 1.19 | 1.50 | 1.75 | 2.00 | 2.25 | 2.52 | 3.14 |
| CUHP Runoff Volume (acre-ft) = | 0.737 | 1.159 | 0.711 | 1.074 | 1.450 | 3.279 | 4.653 | 6.705 | 11.187 |
| Inflow Hydrograph Volume (acre-ft) | N/A | N/A | 0.711 | 1.074 | 1.450 | 3.279 | 4.653 | 6.705 | 11.187 |
| CUHP Predevelopment Peak Q (cfs) = | N/A | N/A | 0.6 | 1.0 | 1.4 | 17.2 | 29.1 | 46.2 | 81.5 |
| OPTIoNAL Override Predevelopment Peak Q (cfs) = | N/A | N/A |  |  |  |  |  |  |  |
| Predevelopment Unit Peak Flow, q (cff/acre) = | N/A | N/A | 0.01 | 0.01 | 0.01 | 0.18 | 0.30 | 0.48 | 0.84 |
| Peak Inflow Q (cfs) | N/A | N/A | 5.7 | 8.8 | 11.5 | 29.2 | 41.8 | 60.2 | 97.1 |
| Peak Outflow Q (cfs) | 0.3 | 0.4 | 0.3 | 0.3 | 1.5 | 15.3 | 26.2 | 41.2 | 70.6 |
| Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$ | N/A | N/A | N/A | 0.3 | 1.1 | 0.9 | 0.9 | 0.9 | 0.9 |
| Structure Controlling Flow = | Plate | Plate | Plate | Plate | Overflow Weir 1 | Overflow Weir 1 | Overflow Weir 1 | Outlet Plate 1 | Spillway |
| Max Velocity through Grate 1 (fps) | N/A | N/A | N/A | N/A | 0.0 | 0.7 | 1.2 | 2.0 | 2.2 |
| Max Velocity through Grate 2 (fps) = | N/A |
| Time to Drain 97\% of Inflow Volume (hours) | 38 | 51 | 38 | 49 | 57 | 53 | 50 | 46 | 39 |
| Time to Drain 99\% of Inflow Volume (hours) | 40 | 54 | 40 | 52 | 60 | 58 | 57 | 55 | 52 |
| Maximum Ponding Depth (ft) | 2.73 | 3.14 | 2.59 | 2.97 | 3.23 | 3.52 | 3.68 | 3.90 | 4.60 |
| Area at Maximum Ponding Depth (acres) | 0.89 | 1.15 | 0.80 | 1.05 | 1.21 | 1.39 | 1.49 | 1.63 | 1.87 |
| Maximum Volume Stored (acre-ft) | 0.745 | 1.164 | 0.627 | 0.977 | 1.271 | 1.649 | 1.865 | 2.208 | 3.444 |



Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

|  | SOURCE | CUHP | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| Time Interval | TIME | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs] | 100 Year [cfs] | 500 Year [cfs] |
| 5.00 min | 0:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.04 |
|  | 0:15:00 | 0.00 | 0.00 | 0.10 | 0.17 | 0.21 | 0.14 | 0.19 | 0.18 | 0.30 |
|  | 0:20:00 | 0.00 | 0.00 | 0.49 | 0.68 | 0.82 | 0.53 | 0.64 | 0.66 | 0.91 |
|  | 0:25:00 | 0.00 | 0.00 | 1.97 | 3.17 | 4.25 | 1.80 | 2.42 | 2.78 | 4.35 |
|  | 0:30:00 | 0.00 | 0.00 | 4.09 | 6.54 | 8.67 | 8.92 | 13.39 | 17.00 | 28.89 |
|  | 0:35:00 | 0.00 | 0.00 | 5.34 | 8.37 | 10.93 | 19.40 | 28.58 | 38.34 | 63.01 |
|  | 0:40:00 | 0.00 | 0.00 | 5.67 | 8.81 | 11.51 | 26.43 | 38.22 | 52.58 | 84.28 |
|  | 0:45:00 | 0.00 | 0.00 | 5.63 | 8.71 | 11.43 | 28.97 | 41.67 | 58.62 | 93.78 |
|  | 0:50:00 | 0.00 | 0.00 | 5.41 | 8.36 | 10.97 | 29.22 | 41.84 | 60.17 | 97.06 |
|  | 0:55:00 | 0.00 | 0.00 | 5.09 | 7.81 | 10.24 | 28.29 | 40.33 | 58.73 | 95.68 |
|  | 1:00:00 | 0.00 | 0.00 | 4.78 | 7.31 | 9.62 | 26.48 | 37.63 | 55.34 | 91.22 |
|  | 1:05:00 | 0.00 | 0.00 | 4.53 | 6.90 | 9.18 | 24.70 | 35.08 | 52.05 | 87.27 |
|  | 1:10:00 | 0.00 | 0.00 | 4.30 | 6.53 | 8.80 | 23.10 | 32.81 | 48.89 | 82.89 |
|  | 1:15:00 | 0.00 | 0.00 | 4.05 | 6.16 | 8.46 | 21.54 | 30.61 | 45.46 | 77.40 |
|  | 1:20:00 | 0.00 | 0.00 | 3.80 | 5.77 | 8.05 | 19.95 | 28.35 | 41.94 | 71.50 |
|  | 1:25:00 | 0.00 | 0.00 | 3.60 | 5.48 | 7.67 | 18.40 | 26.11 | 38.52 | 65.69 |
|  | 1:30:00 | 0.00 | 0.00 | 3.45 | 5.23 | 7.28 | 17.12 | 24.29 | 35.66 | 60.79 |
|  | 1:35:00 | 0.00 | 0.00 | 3.29 | 4.98 | 6.89 | 16.01 | 22.68 | 33.19 | 56.44 |
|  | 1:40:00 | 0.00 | 0.00 | 3.14 | 4.72 | 6.50 | 14.98 | 21.19 | 30.91 | 52.44 |
|  | 1:45:00 | 0.00 | 0.00 | 2.98 | 4.45 | 6.11 | 13.97 | 19.72 | 28.72 | 48.62 |
|  | 1:50:00 | 0.00 | 0.00 | 2.83 | 4.16 | 5.72 | 12.98 | 18.28 | 26.58 | 44.92 |
|  | 1:55:00 | 0.00 | 0.00 | 2.66 | 3.88 | 5.34 | 12.00 | 16.85 | 24.45 | 41.27 |
|  | 2:00:00 | 0.00 | 0.00 | 2.46 | 3.59 | 4.94 | 11.02 | 15.43 | 22.36 | 37.68 |
|  | 2:05:00 | 0.00 | 0.00 | 2.25 | 3.28 | 4.51 | 10.01 | 13.99 | 20.25 | 34.12 |
|  | 2:10:00 | 0.00 | 0.00 | 2.04 | 2.97 | 4.09 | 8.98 | 12.52 | 18.13 | 30.57 |
|  | 2:15:00 | 0.00 | 0.00 | 1.88 | 2.75 | 3.78 | 8.07 | 11.25 | 16.28 | 27.54 |
|  | 2:20:00 | 0.00 | 0.00 | 1.75 | 2.56 | 3.53 | 7.40 | 10.34 | 14.92 | 25.29 |
|  | 2:25:00 | 0.00 | 0.00 | 1.63 | 2.39 | 3.28 | 6.89 | 9.63 | 13.86 | 23.44 |
|  | 2:30:00 | 0.00 | 0.00 | 1.52 | 2.22 | 3.05 | 6.43 | 9.00 | 12.92 | 21.80 |
|  | 2:35:00 | 0.00 | 0.00 | 1.41 | 2.06 | 2.83 | 6.01 | 8.41 | 12.06 | 20.29 |
|  | 2:40:00 | 0.00 | 0.00 | 1.30 | 1.91 | 2.62 | 5.60 | 7.83 | 11.24 | 18.86 |
|  | 2:45:00 | 0.00 | 0.00 | 1.20 | 1.77 | 2.41 | 5.20 | 7.27 | 10.44 | 17.49 |
|  | 2:50:00 | 0.00 | 0.00 | 1.11 | 1.62 | 2.21 | 4.81 | 6.73 | 9.67 | 16.20 |
|  | 2:55:00 | 0.00 | 0.00 | 1.02 | 1.49 | 2.03 | 4.44 | 6.20 | 8.92 | 14.95 |
|  | 3:00:00 | 0.00 | 0.00 | 0.93 | 1.36 | 1.85 | 4.07 | 5.67 | 8.18 | 13.71 |
|  | 3:05:00 | 0.00 | 0.00 | 0.84 | 1.23 | 1.67 | 3.70 | 5.16 | 7.44 | 12.48 |
|  | 3:10:00 | 0.00 | 0.00 | 0.75 | 1.10 | 1.50 | 3.33 | 4.64 | 6.71 | 11.26 |
|  | 3:15:00 | 0.00 | 0.00 | 0.67 | 0.97 | 1.33 | 2.97 | 4.13 | 5.97 | 10.03 |
|  | 3:20:00 | 0.00 | 0.00 | 0.59 | 0.85 | 1.17 | 2.61 | 3.62 | 5.24 | 8.81 |
|  | 3:25:00 | 0.00 | 0.00 | 0.51 | 0.73 | 1.00 | 2.25 | 3.11 | 4.51 | 7.60 |
|  | 3:30:00 | 0.00 | 0.00 | 0.43 | 0.61 | 0.84 | 1.89 | 2.61 | 3.79 | 6.38 |
|  | 3:35:00 | 0.00 | 0.00 | 0.35 | 0.49 | 0.68 | 1.54 | 2.10 | 3.06 | 5.17 |
|  | 3:40:00 | 0.00 | 0.00 | 0.27 | 0.38 | 0.53 | 1.19 | 1.60 | 2.34 | 3.96 |
|  | 3:45:00 | 0.00 | 0.00 | 0.20 | 0.27 | 0.39 | 0.85 | 1.12 | 1.63 | 2.78 |
|  | 3:50:00 | 0.00 | 0.00 | 0.16 | 0.21 | 0.30 | 0.53 | 0.66 | 0.96 | 1.70 |
|  | 3:55:00 | 0.00 | 0.00 | 0.13 | 0.17 | 0.25 | 0.33 | 0.41 | 0.58 | 1.10 |
|  | 4:00:00 | 0.00 | 0.00 | 0.11 | 0.15 | 0.21 | 0.23 | 0.29 | 0.39 | 0.75 |
|  | 4:05:00 | 0.00 | 0.00 | 0.10 | 0.13 | 0.18 | 0.18 | 0.22 | 0.27 | 0.52 |
|  | 4:10:00 | 0.00 | 0.00 | 0.08 | 0.11 | 0.16 | 0.14 | 0.17 | 0.20 | 0.35 |
|  | 4:15:00 | 0.00 | 0.00 | 0.07 | 0.09 | 0.13 | 0.11 | 0.14 | 0.14 | 0.24 |
|  | 4:20:00 | 0.00 | 0.00 | 0.06 | 0.08 | 0.11 | 0.09 | 0.11 | 0.10 | 0.15 |
|  | 4:25:00 | 0.00 | 0.00 | 0.05 | 0.06 | 0.08 | 0.07 | 0.08 | 0.07 | 0.10 |
|  | 4:30:00 | 0.00 | 0.00 | 0.04 | 0.05 | 0.07 | 0.06 | 0.07 | 0.06 | 0.08 |
|  | 4:35:00 | 0.00 | 0.00 | 0.03 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 |
|  | 4:40:00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 |
|  | 4:45:00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 |
|  | 4:50:00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 |
|  | 4:55:00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
|  | 5:00:00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 5:05:00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 5:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 6:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary $S-A-V-D$ by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.


## POND C FOREBAY VOLUM E REQUIREM ENTS

Equation 3-1
$W Q C V=a\left(0.911^{3}-1.191^{2}+0.781 I\right)$
$a=1$ (40 hour drain time)

$\mathrm{Q}_{100}$ DISCHARGES $\quad 2 \% \mathrm{OF}_{100}$
$Q_{100}$ PROPOSED FOREBAY $=\quad .02 * 50.0$ CFS $=1.00$ CFS
$\mathrm{Q}_{100}$ FUTURE FOREBAY $=\quad .02 * 14.3$ CFS $=0.29$ CFS

## Weir Report

## Pond C Forebay 1 Notch

| V-Notch Weir |  |
| :--- | :--- |
| Crest | $=$ Sharp |
| Angle (Deg) | $=15$ |
| Total Depth (ft) | $=2.50$ |
| Calculations |  |
| Weir Coeff. Cw | $=0.33$ |
| Compute by: | Known Q |
| Known Q (cfs) | $=1.00$ |

Highlighted
Depth (ft)
$=1.56$
Q (cfs)
Area (sqft)
$=1.000$
Velocity (ft/s)
$=0.32$
Top Width (ft)
$=3.13$
$=0.41$

Depth (ft)
Pond C Forebay 1 Notch
Depth (ft)


## Pond C Trickle Channel

## Rectangular

| Bottom Width (ft) | $=6.00$ |
| :--- | :--- |
| Total Depth (ft) | $=0.50$ |
|  |  |
| Invert Elev $(\mathrm{ft})$ | $=10.00$ |
| Slope $(\%)$ | $=0.50$ |
| N-Value | $=0.013$ |

## Calculations

Compute by:
Known Q (cfs)

Known Q
$=1.29$

Highlighted
Depth (ft)
$=0.12$
Q (cfs)
$=1.290$
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
$=0.72$

Crit Depth, Yc (ft)
Top Width (ft)
$=1.79$

EGL (ft)

- 6.24
$=0.12$
$=6.00$
$=0.17$



## Weir Report

## Pond C Spillway

| Trapezoidal Weir |  |
| :--- | :--- |
| Crest | $=$ Sharp |
| Bottom Length $(\mathrm{ft})$ | $=60.00$ |
| Total Depth $(\mathrm{ft})$ | $=1.50$ |
| Side Slope $(\mathrm{z}: 1)$ | $=4.00$ |
|  |  |
| Calculations | $=3.10$ |
| Weir Coeff. Cw | Known Q |
| Compute by: | $=60.20$ |

Highlighted
Depth (ft)
$=0.47$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Top Width (ft)
$=60.20$
$=29.08$
$=2.07$
$=63.76$

Depth (ft)
Pond C Spillway
Depth (ft)




## DETENTION BASIN OUTLET STRUCTURE DESIGN



|  | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) | Row 8 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stage of Orifice Centroid (ft) | 0.00 | 1.14 | 2.28 |  |  |  |  |  |
| Orifice Area (sq. inches) | 2.05 | 2.05 | 2.05 |  |  |  |  |  |
|  | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
| Stage of Orifice Centroid (ft) Orifice Area (sq. inches) |  |  |  |  |  |  |  |  |


| User Input: Vertical Orifice (Circular or Rectangular) |  |  | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) inches | Vertical Orifice Area = Vertical Orifice Centroid = | Calculated Parameters for Vertical Orifice |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Zone 2 Circular | Not Selected |  |  | Zone 2 Circular | Not Selected |
| Invert of Vertical Orifice $=$ | 2.98 | N/A |  |  | 0.00 | N/A |
| Depth at top of Zone using Vertical Orifice $=$ | 3.42 | N/A |  |  | 0.02 | N/A |
| Vertical Orifice Diameter $=$ | 0.38 | N/A |  |  |  |  |

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

| Overflow Weir Front Edge Height, Ho = | Zone 3 Weir | Not Selected | ft (relative to basin bottom at Stage $=0 \mathrm{f}$ ) feet |
| :---: | :---: | :---: | :---: |
|  | 3.42 | N/A |  |
| Overflow Weir Front Edge Length $=$ | 10.00 | N/A |  |
| Overflow Weir Grate Slope = | 0.00 | N/A | H:V |
| Horiz. Length of Weir Sides $=$ | 5.00 | N/A | feet |
| Overflow Grate Type = | Type C Grate | N/A |  |
| Debris Clogging \% = | 0\% | N/A | \% |


| e) | Calculated Parameters for Overflow Weir |  |
| :---: | :---: | :---: |
|  | Zone 3 Weir | Not Selected |
| Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ | 3.42 | N/A |
| Overflow Weir Slope Length = | 5.00 | N/A |
| Grate Open Area / 100-yr Orifice Area $=$ | 4.92 | N/A |
| Overflow Grate Open Area w/o Debris = | 34.80 | N/A |
| Overflow Grate Open Area w/ Debris $=$ | 34.80 | N/A |

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

| at Stage $=0 \mathrm{ft}$ ) | Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate |  |  | $\mathrm{ft}^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Zone 3 Restrictor | Not Selected |  |
|  | Outlet Orifice Area $=$ | 7.07 | N/A |  |
|  | Outlet Orifice Centroid = | 1.50 | N/A | feet |
| Half-Central | Restrictor Plate on Pipe $=$ | 3.14 | N/A | radians |


| Spillway Invert Stage= | 4.33 | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) |
| :---: | :---: | :---: |
| Spillway Crest Length = | 75.00 | feet |
| Spillway End Slopes = | 4.00 | $\mathrm{H}: \mathrm{V}$ |
| Freeboard above Max Water Surface = | 1.00 | feet |


| Calculated Parameters for Spillway |  |  |
| :---: | :---: | :---: |
| Spillway Design Flow Depth= | 0.49 | feet |
| Stage at Top of Freeboard $=$ | 5.82 | feet |
| Basin Area at Top of Freeboard $=$ | 2.25 | acres |
| Basin Volume at Top of Freeboard $=$ | 5.19 | acre-ft |


| Routed Hydrograph Results | The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Design Storm Return Period = | WQCV | EURV | 2 Year | 5 Year | 10 Year | 25 Year | 50 Year | 100 Year | 500 Year |
| One-Hour Rainfall Depth (in) = | N/A | N/A | 1.19 | 1.50 | 1.75 | 2.00 | 2.25 | 2.52 | 3.14 |
| CUHP Runoff Volume (acre-ft) $=$ | 0.619 | 1.007 | 0.755 | 1.188 | 2.116 | 3.929 | 5.225 | 7.358 | 11.183 |
| Inflow Hydrograph Volume (acre-ft) = | N/A | N/A | 0.755 | 1.188 | 2.116 | 3.929 | 5.225 | 7.358 | 11.183 |
| CUHP Predevelopment Peak Q (cfs) $=$ | N/A | N/A | 0.9 | 2.0 | 11.4 | 32.5 | 46.1 | 66.0 | 103.2 |
| OPTIONAL Override Predevelopment Peak Q (cfs) $=$ | N/A | N/A |  |  |  |  |  |  |  |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | N/A | N/A | 0.01 | 0.03 | 0.15 | 0.42 | 0.59 | 0.85 | 1.32 |
| Peak Inflow Q (cfs) = | N/A | N/A | 7.9 | 12.1 | 22.4 | 44.2 | 58.5 | 78.8 | 117.2 |
| Peak Outflow Q (cfs) = | 0.3 | 0.3 | 0.3 | 1.4 | 10.3 | 29.3 | 43.1 | 60.1 | 98.7 |
| Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$ | N/A | N/A | N/A | 0.7 | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 |
| Structure Controlling Flow $=$ | Plate | Overflow Weir 1 | Vertical Orifice 1 | Overflow Weir 1 | Overflow Weir 1 | Overflow Weir 1 | Overflow Weir 1 | Outlet Plate 1 | Spillway |
| Max Velocity through Grate 1 (fps) = | N/A | N/A | N/A | 0.0 | 0.3 | 0.8 | 1.2 | 1.7 | 1.8 |
| Max Velocity through Grate 2 (fps) = | N/A |
| Time to Drain 97\% of Inflow Volume (hours) = | 38 | 53 | 44 | 56 | 54 | 49 | 47 | 42 | 35 |
| Time to Drain 99\% of Inflow Volume (hours) = | 40 | 56 | 46 | 60 | 58 | 56 | 55 | 53 | 50 |
| Maximum Ponding Depth (ft) = | 2.98 | 3.42 | 3.07 | 3.47 | 3.64 | 3.87 | 4.00 | 4.22 | 4.62 |
| Area at Maximum Ponding Depth (acres) $=$ | 0.74 | 1.05 | 0.80 | 1.08 | 1.20 | 1.35 | 1.43 | 1.55 | 1.79 |
| Maximum Volume Stored (acre-ft) $=$ | 0.621 | 1.014 | 0.690 | 1.067 | 1.261 | 1.542 | 1.737 | 2.051 | 2.719 |



Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

|  | SOURCE | CUHP | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| Time Interval | TIME | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs] | 100 Year [cfs] | 500 Year [cfs] |
| 5.00 min | 0:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.07 |
|  | 0:15:00 | 0.00 | 0.00 | 0.18 | 0.30 | 0.38 | 0.25 | 0.33 | 0.31 | 0.49 |
|  | 0:20:00 | 0.00 | 0.00 | 0.78 | 1.07 | 1.80 | 0.81 | 0.96 | 1.01 | 1.78 |
|  | 0:25:00 | 0.00 | 0.00 | 3.62 | 5.77 | 9.24 | 3.35 | 4.42 | 5.02 | 8.89 |
|  | 0:30:00 | 0.00 | 0.00 | 6.66 | 10.45 | 18.82 | 18.82 | 26.04 | 32.56 | 52.15 |
|  | 0:35:00 | 0.00 | 0.00 | 7.84 | 12.08 | 22.42 | 34.80 | 46.75 | 61.06 | 93.07 |
|  | 0:40:00 | 0.00 | 0.00 | 7.93 | 12.12 | 22.20 | 42.88 | 56.63 | 74.53 | 111.26 |
|  | 0:45:00 | 0.00 | 0.00 | 7.48 | 11.45 | 20.90 | 44.25 | 58.54 | 78.84 | 117.15 |
|  | 0:50:00 | 0.00 | 0.00 | 6.83 | 10.62 | 19.13 | 42.61 | 56.69 | 77.56 | 115.33 |
|  | 0:55:00 | 0.00 | 0.00 | 6.26 | 9.86 | 17.62 | 39.50 | 52.70 | 73.29 | 109.78 |
|  | 1:00:00 | 0.00 | 0.00 | 5.76 | 9.14 | 16.34 | 36.17 | 48.27 | 68.97 | 104.24 |
|  | 1:05:00 | 0.00 | 0.00 | 5.28 | 8.47 | 15.15 | 33.11 | 44.11 | 65.06 | 99.07 |
|  | 1:10:00 | 0.00 | 0.00 | 4.89 | 7.99 | 14.25 | 30.04 | 39.97 | 59.68 | 91.26 |
|  | 1:15:00 | 0.00 | 0.00 | 4.55 | 7.50 | 13.58 | 27.49 | 36.59 | 54.41 | 83.33 |
|  | 1:20:00 | 0.00 | 0.00 | 4.22 | 6.95 | 12.74 | 25.14 | 33.49 | 49.45 | 75.69 |
|  | 1:25:00 | 0.00 | 0.00 | 3.89 | 6.38 | 11.68 | 22.87 | 30.48 | 44.61 | 68.20 |
|  | 1:30:00 | 0.00 | 0.00 | 3.56 | 5.81 | 10.53 | 20.61 | 27.48 | 40.05 | 61.16 |
|  | 1:35:00 | 0.00 | 0.00 | 3.24 | 5.25 | 9.39 | 18.42 | 24.52 | 35.69 | 54.45 |
|  | 1:40:00 | 0.00 | 0.00 | 2.93 | 4.70 | 8.31 | 16.26 | 21.61 | 31.44 | 47.94 |
|  | 1:45:00 | 0.00 | 0.00 | 2.69 | 4.26 | 7.48 | 14.20 | 18.83 | 27.41 | 41.84 |
|  | 1:50:00 | 0.00 | 0.00 | 2.54 | 3.96 | 6.91 | 12.64 | 16.78 | 24.37 | 37.36 |
|  | 1:55:00 | 0.00 | 0.00 | 2.39 | 3.70 | 6.44 | 11.50 | 15.25 | 22.06 | 33.85 |
|  | 2:00:00 | 0.00 | 0.00 | 2.23 | 3.45 | 5.96 | 10.59 | 13.99 | 20.09 | 30.81 |
|  | 2:05:00 | 0.00 | 0.00 | 2.04 | 3.15 | 5.44 | 9.68 | 12.77 | 18.25 | 27.94 |
|  | 2:10:00 | 0.00 | 0.00 | 1.84 | 2.84 | 4.90 | 8.78 | 11.58 | 16.49 | 25.21 |
|  | 2:15:00 | 0.00 | 0.00 | 1.65 | 2.54 | 4.37 | 7.91 | 10.44 | 14.82 | 22.61 |
|  | 2:20:00 | 0.00 | 0.00 | 1.46 | 2.24 | 3.86 | 7.07 | 9.32 | 13.24 | 20.17 |
|  | 2:25:00 | 0.00 | 0.00 | 1.28 | 1.96 | 3.37 | 6.25 | 8.23 | 11.74 | 17.88 |
|  | 2:30:00 | 0.00 | 0.00 | 1.11 | 1.70 | 2.90 | 5.45 | 7.17 | 10.28 | 15.64 |
|  | 2:35:00 | 0.00 | 0.00 | 0.94 | 1.44 | 2.45 | 4.66 | 6.12 | 8.83 | 13.43 |
|  | 2:40:00 | 0.00 | 0.00 | 0.78 | 1.19 | 2.02 | 3.88 | 5.09 | 7.40 | 11.24 |
|  | 2:45:00 | 0.00 | 0.00 | 0.62 | 0.95 | 1.60 | 3.12 | 4.07 | 5.97 | 9.05 |
|  | 2:50:00 | 0.00 | 0.00 | 0.47 | 0.72 | 1.19 | 2.36 | 3.06 | 4.55 | 6.89 |
|  | 2:55:00 | 0.00 | 0.00 | 0.33 | 0.50 | 0.82 | 1.62 | 2.08 | 3.16 | 4.80 |
|  | 3:00:00 | 0.00 | 0.00 | 0.25 | 0.39 | 0.60 | 0.98 | 1.26 | 2.00 | 3.10 |
|  | 3:05:00 | 0.00 | 0.00 | 0.20 | 0.32 | 0.50 | 0.63 | 0.81 | 1.31 | 2.10 |
|  | 3:10:00 | 0.00 | 0.00 | 0.17 | 0.26 | 0.41 | 0.43 | 0.56 | 0.89 | 1.46 |
|  | 3:15:00 | 0.00 | 0.00 | 0.15 | 0.22 | 0.34 | 0.32 | 0.41 | 0.61 | 1.00 |
|  | 3:20:00 | 0.00 | 0.00 | 0.12 | 0.18 | 0.28 | 0.24 | 0.30 | 0.41 | 0.67 |
|  | 3:25:00 | 0.00 | 0.00 | 0.11 | 0.15 | 0.22 | 0.19 | 0.23 | 0.28 | 0.44 |
|  | 3:30:00 | 0.00 | 0.00 | 0.09 | 0.12 | 0.17 | 0.15 | 0.18 | 0.18 | 0.28 |
|  | 3:35:00 | 0.00 | 0.00 | 0.07 | 0.09 | 0.13 | 0.11 | 0.14 | 0.12 | 0.19 |
|  | 3:40:00 | 0.00 | 0.00 | 0.06 | 0.07 | 0.10 | 0.09 | 0.10 | 0.09 | 0.14 |
|  | 3:45:00 | 0.00 | 0.00 | 0.05 | 0.06 | 0.08 | 0.07 | 0.08 | 0.07 | 0.11 |
|  | 3:50:00 | 0.00 | 0.00 | 0.04 | 0.05 | 0.06 | 0.05 | 0.06 | 0.06 | 0.09 |
|  | 3:55:00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.04 | 0.07 |
|  | 4:00:00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.05 |
|  | 4:05:00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 |
|  | 4:10:00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 |
|  | 4:15:00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 4:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
|  | 4:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 6:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.


```
POND D FOREBAY VOLUM E REQUIREM ENTS
 Equation 3-1 }\quad\textrm{WQCV}=\textrm{a}(0.91\mp@subsup{1}{}{3}-1.19\mp@subsup{1}{}{2}+0.7811
 a=l (40 hour drain time)
Proposed Forebay }\quad\textrm{I}=124\quadWQCV= 0.08015
 Future Forebay }\quad\textrm{I}=147\quadWQCV=\quad0.09183
 Equation 3-3 V=(WQCV/12)A
Proposed Forebay A=40.72 Acres V= 0.272
 Future Forebay A=33.94 Acres V= 0.260
 3%OFWQC
 FOREBAY TOTAL VOLUME= .03(V)
\begin{tabular}{lll}
VOLUM E REQUIRED FOR PROPOSED FOREBAY= & \(0.008 \mathrm{AC}-\mathrm{FT}\) & 355 CF \\
VOLUM E REQUIRED FOR FUTURE FOREBAY \(=\) & \(0.008 \mathrm{AC}-\mathrm{FT}\) & 339 CF \\
VOLUM E PROVIDED FOR PROPOSED FOREBAY = & & \\
V & \(0.015 \mathrm{AC}-\mathrm{FT}\) & 642 CF
\end{tabular}
Q Q100 Discharges 2% OF Q Q
Q Q100 Proposed Forebay 1= .02*51.7 CFS=1.03 CFS
Q Q100 Future Forebay= .02*37.3 CFS=0.75 CFS
```


## Weir Report

## Pond D Forebay 1 Notch

| V-Notch Weir |  |
| :--- | :--- |
| Crest | $=$ Sharp |
| Angle (Deg) | $=15$ |
| Total Depth (ft) | $=2.50$ |
|  |  |
| Calculations | $=0.33$ |
| Weir Coeff. Cw | Known Q |
| Compute by: | $=1.03$ |

Highlighted
Depth (ft)
$=1.58$
Q (cfs)
Area (sqft)
$=1.030$
Velocity (ft/s)
$=0.33$
Top Width (ft)
$=3.15$
$=0.42$

Depth (ft)
Pond D Forebay 1 Notch
Depth (ft)


## Pond D Trickle Channel

## Rectangular

| Bottom Width (ft) | $=4.00$ |
| :--- | :--- |
| Total Depth (ft) | $=0.50$ |
|  |  |
| Invert Elev (ft) | $=10.00$ |
| Slope $(\%)$ | $=0.50$ |
| N-Value | $=0.013$ |

## Calculations

Compute by:
Known Q (cfs)

Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.17$
$=1.520$
$=0.68$
$=2.24$
$=4.34$
$=0.17$
$=4.00$
$=0.25$


## Weir Report

## Pond D Spillway

| Trapezoidal Weir |  |
| :--- | :--- |
| Crest | $=$ Sharp |
| Bottom Length $(\mathrm{ft})$ | $=75.00$ |
| Total Depth $(\mathrm{ft})$ | $=1.50$ |
| Side Slope $(\mathrm{z}: 1)$ | $=4.00$ |
|  |  |
| Calculations | $=3.10$ |
| Weir Coeff. Cw | Known Q |
| Compute by: | $=78.80$ |

Highlighted
Depth (ft)
$=0.48$
Q (cfs)
$=78.80$
Area (sqft)
= 36.92
Velocity (ft/s)
$=2.13$
Top Width (ft)
$=78.84$

Depth (ft)

## Pond D Spillway

Depth (ft)




## DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)


| User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) |  |  | Calculated Parameters for Underdrain |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Underdrain Orifice Invert Depth $=$ | N/A | ft (distance below the filtration media surface) inches | $\begin{array}{r} \text { Underdrain Orifice Area }= \\ \text { Underdrain Orifice Centroid }= \end{array}$ | N/A | $f_{\text {fteet }}$ |
| Underdrain Orifice Diameter $=$ | N/A |  |  | N/A |  |



|  | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) | Row 8 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stage of Orifice Centroid (ft) | 0.00 | 0.60 | 1.20 |  |  |  |  |  |
| Orifice Area (sq. inches) | 0.31 | 0.31 | 0.31 |  |  |  |  |  |
|  | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
| Stage of Orifice Centroid (ft) |  |  |  |  |  |  |  |  |
| Orifice Area (sq. inches) |  |  |  |  |  |  |  |  |


| User Input: Vertical Orifice (Circular or Rectangular) |  |  | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) inches | Calculated Parameters for Vertical Orifice |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Not Selected | Not Selected |  | Vertical Orifice Area $=$ <br> Vertical Orifice Centroid = | Not Selected | Not Selected |  |
| Invert of Vertical Orifice $=$ | N/A | N/A |  |  | N/A | N/A | $\mathrm{ft}^{2}$ |
| Depth at top of Zone using Vertical Orifice $=$ | N/A | N/A |  |  | N/A | N/A | feet |
| Vertical Orifice Diameter $=$ | N/A | N/A |  |  |  |  |  |



User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

| Depth to Invert of Outlet Pipe = Outlet Pipe Diameter $=$ | Zone 3 Restrictor | Not Selected |  |
| :---: | :---: | :---: | :---: |
|  | 1.15 | N/A | ft ( distance below basin bottom at Stage $=0 \mathrm{ft}$ ) |
|  | 18.00 | N/A | inches |
|  | 18.00 |  | inches Half-Centr |

Half-Central Angle outlet Orifice Centroid $=$


User Input: Emergency Spillway (Rectangular or Trapezoidal)

| Spillway Invert Stage= | 3.33 | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) feet |
| :---: | :---: | :---: |
| Spillway Crest Length = | 15.00 |  |
| Spillway End Slopes = | 4.00 | H:V |
| Freeboard above Max Water Surface = | 1.00 | feet |


| Calculated Parameters for Spillway |  |  |
| :---: | :---: | :---: |
| Spillway Design Flow Depth= | 0.38 | feet |
| Stage at Top of Freeboard = | 4.71 | feet |
| Basin Area at Top of Freeboard $=$ | 0.43 | acres |
| Basin Volume at Top of Freeboard $=$ | 0.95 | acre-ft |


| $\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=}$ | The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WQCV | EURV | 2 Year | 5 Year | 10 Year | 25 Year | 50 Year | 100 Year | 500 Year |
| One-Hour Rainfall Depth (in) = | N/A | N/A | 1.19 | 1.50 | 1.75 | 2.00 | 2.25 | 2.52 | 3.14 |
| CUHP Runoff Volume (acre-ft) = | 0.086 | 0.106 | 0.065 | 0.106 | 0.204 | 0.592 | 0.859 | 1.292 | 2.174 |
| Inflow Hydrograph Volume (acre-ft) = | N/A | N/A | 0.065 | 0.106 | 0.204 | 0.592 | 0.859 | 1.292 | 2.174 |
| CUHP Predevelopment Peak Q (cfs) = | N/A | N/A | 0.1 | 0.2 | 0.9 | 4.6 | 7.0 | 10.5 | 17.7 |
| OPTIONAL Override Predevelopment Peak Q (cfs) $=$ | N/A | N/A |  |  |  |  |  |  |  |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | N/A | N/A | 0.01 | 0.01 | 0.05 | 0.25 | 0.38 | 0.57 | 0.96 |
| Peak Inflow Q (cfs) $=$ | N/A | N/A | 0.6 | 1.0 | 1.8 | 5.6 | 8.0 | 11.6 | 18.9 |
| Peak Outflow Q (cfs) $=$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 3.3 | 5.5 | 9.2 | 16.8 |
| Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$ | N/A | N/A | N/A | 0.2 | 0.4 | 0.7 | 0.8 | 0.9 | 0.9 |
| Structure Controlling Flow $=$ | Plate | Plate | Plate | Plate | Overflow Weir 1 | Overflow Weir 1 | Overflow Weir 1 | Overflow Weir 1 | Spillway |
| Max Velocity through Grate 1 (fps) = | N/A | N/A | N/A | N/A | 0.0 | 0.2 | 0.3 | 0.5 | 0.9 |
| Max Velocity through Grate 2 (fps) = | N/A |
| Time to Drain 97\% of Inflow Volume (hours) = | 38 | 44 | 32 | 44 | 58 | 51 | 47 | 42 | 32 |
| Time to Drain 99\% of Inflow Volume (hours) = | 40 | 46 | 34 | 47 | 62 | 59 | 57 | 54 | 49 |
| Maximum Ponding Depth ( ft ) $=$ | 2.00 | 2.12 | 1.78 | 2.06 | 2.40 | 2.74 | 2.90 | 3.09 | 3.38 |
| Area at Maximum Ponding Depth (acres) $=$ | 0.16 | 0.18 | 0.12 | 0.17 | 0.23 | 0.27 | 0.28 | 0.31 | 0.34 |
| Maximum Volume Stored (acre-ft) $=$ | 0.087 | 0.107 | 0.056 | 0.095 | 0.164 | 0.248 | 0.289 | 0.348 | 0.438 |

DETENTION BASIN OUTLET STRUCTURE DESIGN


Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

|  | SOURCE | CUHP | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| Time Interval | TIME | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs] | 100 Year [cfs] | 500 Year [cfs] |
| 5.00 min | 0:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:15:00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 |
|  | 0:20:00 | 0.00 | 0.00 | 0.04 | 0.06 | 0.07 | 0.04 | 0.05 | 0.06 | 0.07 |
|  | 0:25:00 | 0.00 | 0.00 | 0.27 | 0.50 | 0.72 | 0.23 | 0.34 | 0.41 | 0.72 |
|  | 0:30:00 | 0.00 | 0.00 | 0.51 | 0.86 | 1.57 | 2.46 | 3.79 | 4.91 | 8.73 |
|  | 0:35:00 | 0.00 | 0.00 | 0.57 | 0.95 | 1.81 | 4.55 | 6.58 | 9.03 | 14.87 |
|  | 0:40:00 | 0.00 | 0.00 | 0.57 | 0.95 | 1.81 | 5.53 | 7.89 | 10.87 | 17.53 |
|  | 0:45:00 | 0.00 | 0.00 | 0.55 | 0.91 | 1.75 | 5.64 | 8.05 | 11.57 | 18.66 |
|  | 0:50:00 | 0.00 | 0.00 | 0.52 | 0.85 | 1.64 | 5.48 | 7.92 | 11.61 | 18.87 |
|  | 0:55:00 | 0.00 | 0.00 | 0.48 | 0.78 | 1.52 | 5.14 | 7.46 | 11.09 | 18.24 |
|  | 1:00:00 | 0.00 | 0.00 | 0.45 | 0.73 | 1.42 | 4.75 | 6.90 | 10.46 | 17.47 |
|  | 1:05:00 | 0.00 | 0.00 | 0.42 | 0.69 | 1.35 | 4.42 | 6.43 | 9.97 | 16.90 |
|  | 1:10:00 | 0.00 | 0.00 | 0.39 | 0.64 | 1.28 | 4.11 | 5.98 | 9.32 | 15.88 |
|  | 1:15:00 | 0.00 | 0.00 | 0.37 | 0.60 | 1.21 | 3.80 | 5.54 | 8.62 | 14.71 |
|  | 1:20:00 | 0.00 | 0.00 | 0.34 | 0.56 | 1.14 | 3.49 | 5.08 | 7.92 | 13.52 |
|  | 1:25:00 | 0.00 | 0.00 | 0.32 | 0.53 | 1.06 | 3.22 | 4.69 | 7.30 | 12.46 |
|  | 1:30:00 | 0.00 | 0.00 | 0.31 | 0.50 | 1.00 | 2.99 | 4.36 | 6.76 | 11.55 |
|  | 1:35:00 | 0.00 | 0.00 | 0.29 | 0.47 | 0.93 | 2.79 | 4.06 | 6.28 | 10.72 |
|  | 1:40:00 | 0.00 | 0.00 | 0.27 | 0.44 | 0.87 | 2.60 | 3.77 | 5.83 | 9.94 |
|  | 1:45:00 | 0.00 | 0.00 | 0.26 | 0.41 | 0.81 | 2.41 | 3.49 | 5.40 | 9.19 |
|  | 1:50:00 | 0.00 | 0.00 | 0.24 | 0.38 | 0.74 | 2.22 | 3.22 | 4.97 | 8.45 |
|  | 1:55:00 | 0.00 | 0.00 | 0.22 | 0.35 | 0.68 | 2.03 | 2.94 | 4.54 | 7.72 |
|  | 2:00:00 | 0.00 | 0.00 | 0.20 | 0.31 | 0.62 | 1.84 | 2.66 | 4.12 | 7.01 |
|  | 2:05:00 | 0.00 | 0.00 | 0.18 | 0.28 | 0.55 | 1.65 | 2.38 | 3.70 | 6.31 |
|  | 2:10:00 | 0.00 | 0.00 | 0.16 | 0.26 | 0.50 | 1.46 | 2.11 | 3.29 | 5.61 |
|  | 2:15:00 | 0.00 | 0.00 | 0.15 | 0.24 | 0.47 | 1.32 | 1.92 | 2.99 | 5.12 |
|  | 2:20:00 | 0.00 | 0.00 | 0.14 | 0.22 | 0.44 | 1.23 | 1.78 | 2.77 | 4.73 |
|  | 2:25:00 | 0.00 | 0.00 | 0.13 | 0.21 | 0.41 | 1.15 | 1.67 | 2.57 | 4.40 |
|  | 2:30:00 | 0.00 | 0.00 | 0.12 | 0.20 | 0.38 | 1.08 | 1.56 | 2.40 | 4.09 |
|  | 2:35:00 | 0.00 | 0.00 | 0.12 | 0.18 | 0.35 | 1.01 | 1.46 | 2.24 | 3.81 |
|  | 2:40:00 | 0.00 | 0.00 | 0.11 | 0.17 | 0.33 | 0.94 | 1.36 | 2.09 | 3.54 |
|  | 2:45:00 | 0.00 | 0.00 | 0.10 | 0.16 | 0.30 | 0.87 | 1.27 | 1.94 | 3.28 |
|  | 2:50:00 | 0.00 | 0.00 | 0.09 | 0.14 | 0.28 | 0.81 | 1.17 | 1.80 | 3.04 |
|  | 2:55:00 | 0.00 | 0.00 | 0.08 | 0.13 | 0.25 | 0.74 | 1.07 | 1.65 | 2.80 |
|  | 3:00:00 | 0.00 | 0.00 | 0.08 | 0.12 | 0.23 | 0.68 | 0.98 | 1.51 | 2.57 |
|  | 3:05:00 | 0.00 | 0.00 | 0.07 | 0.11 | 0.21 | 0.61 | 0.89 | 1.37 | 2.33 |
|  | 3:10:00 | 0.00 | 0.00 | 0.06 | 0.09 | 0.18 | 0.55 | 0.79 | 1.23 | 2.09 |
|  | 3:15:00 | 0.00 | 0.00 | 0.05 | 0.08 | 0.16 | 0.48 | 0.70 | 1.09 | 1.85 |
|  | 3:20:00 | 0.00 | 0.00 | 0.04 | 0.07 | 0.14 | 0.42 | 0.60 | 0.95 | 1.62 |
|  | 3:25:00 | 0.00 | 0.00 | 0.04 | 0.06 | 0.11 | 0.35 | 0.51 | 0.81 | 1.38 |
|  | 3:30:00 | 0.00 | 0.00 | 0.03 | 0.05 | 0.09 | 0.29 | 0.42 | 0.67 | 1.14 |
|  | 3:35:00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.07 | 0.22 | 0.32 | 0.53 | 0.91 |
|  | 3:40:00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.05 | 0.16 | 0.23 | 0.39 | 0.67 |
|  | 3:45:00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.03 | 0.10 | 0.14 | 0.25 | 0.44 |
|  | 3:50:00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.05 | 0.07 | 0.14 | 0.27 |
|  | 3:55:00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.03 | 0.04 | 0.08 | 0.17 |
|  | 4:00:00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.05 | 0.11 |
|  | 4:05:00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 0.07 |
|  | 4:10:00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 |
|  | 4:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 |
|  | 4:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|  | 4:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
|  | 4:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 6:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.


| POND E FOREBAY VOLUM E REQUIREM ENTS |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{array}{cc} \text { Equation 3-1 } \quad \begin{array}{c} \text { WQCV }=a\left(0.911^{3}-1.191^{2}+0.7811\right) \\ a=1(40 \text { hour drain time }) \end{array} \end{array}$ |  |  |  |
| Forebay 1 | $\mathrm{I}=082 \quad \mathrm{WQCV}=$ | 0.05646 |  |
| $\begin{array}{ll}\begin{array}{ll}\text { Equation 3-3 } \\ \text { Forebay } 1\end{array} & \mathrm{~V}=17.69 \text { Acres }\end{array} \quad \mathrm{V}=0.083$ |  |  |  |
|  |  |  |  |
| 3\%OFWQC |  |  |  |
| FOREBAY TOTAL VOLUM E= .03(V) |  |  |  |
| VOLUM E REQUIRED FOR FOREBAY 1 = |  | 0.002 AC-FT | 109 CF |
| VOLUM E PROVIDED FOR FOREBAY 1 = |  | 0.005 AC-FT | 230 CF |
| $\mathrm{Q}_{100}$ Discharges | $2 \% \mathrm{OF} \mathrm{Q}_{100}$ |  |  |
| $\mathrm{Q}_{100}$ Forebay 1= | .02*12.6 CFS $=0.25$ CFS |  |  |

## Weir Report

## Pond E Forebay Notch

| V-Notch Weir |  |
| :--- | :--- |
| Crest | $=$ Sharp |
| Angle (Deg) | $=10$ |
| Total Depth (ft) | $=2.50$ |
| Calculations |  |
| Weir Coeff. Cw | $=0.22$ |
| Compute by: | Known Q |
| Known Q (cfs) | $=0.25$ |

Highlighted
Depth (ft)
$=1.05$
Q (cfs)
Area (sqft)
Velocity (ft/s)
$=0.10$
Top Width (ft)
$=2.58$
$=0.18$

Depth (ft)
Pond E Forebay Notch
Depth (ft)


## Pond E Trickle Channel

## Rectangular

| Bottom Width (ft) | $=2.00$ |
| :--- | :--- |
| Total Depth (ft) | $=0.50$ |
|  |  |
| Invert Elev $(\mathrm{ft})$ | $=10.00$ |
| Slope $(\%)$ | $=0.50$ |
| N-Value | $=0.013$ |

## Calculations

Compute by:
Known Q (cfs)

Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.09$
$=0.250$
$=0.18$
$=1.39$
$=2.18$
$=0.08$
$=2.00$
$=0.12$


## Weir Report

## Pond E Spillway

| Trapezoidal Weir |  |
| :--- | :--- |
| Crest | $=$ Sharp |
| Bottom Length $(\mathrm{ft})$ | $=15.00$ |
| Total Depth $(\mathrm{ft})$ | $=1.50$ |
| Side Slope $(\mathrm{z}: 1)$ | $=4.00$ |
|  |  |
| Calculations | $=3.10$ |
| Weir Coeff. Cw | Known Q |
| Compute by: | $=11.60$ |

Highlighted
Depth (ft)
$=0.38$
Q (cfs)
$=11.60$
Area (sqft)
Velocity (ft/s)
$=6.28$
Top Width (ft)
= 1.85
$=18.04$

Depth (ft)

## Pond E Spillway

Depth (ft)


## Stormwater Detention and Infiltration Design Data Sheet

## Stormwater Facility Name: Saddlehorn Filing 3 - Pond C

Facility Location \& Jurisdiction: El Paso County - Saddlehorn Ranch Metropolitan District

| User Input: Watershed Characteristics |  |  |
| :---: | :---: | :---: |
| Watershed Slope = | 0.012 | $\mathrm{ft} / \mathrm{ft}$ |
| Watershed Length = | 5370 | ft |
| Watershed Area = | 96.84 | acres |
| Watershed Imperviousness = | 14.6\% | percent |
| Percentage Hydrologic Soil Group A = | 93.0\% | percent |
| Percentage Hydrologic Soil Group B = | 0.0\% | percent |
| Percentage Hydrologic Soil Groups C/D $=$ | 7.0\% | percent |
| Location for 1-hr Rainfall Depths (use | dropdow |  |
| User Input |  |  |

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

| User Defined Stage [ft] | User Defined Area [ft^2] | User Defined Stage [ft] | User Defined Discharge [cfs] |
| :---: | :---: | :---: | :---: |
| 0.00 | 32 | 0.00 | 0.00 |
| 0.33 | 50 | 0.33 | 0.05 |
| 1.00 | 3,260 | 1.00 | 0.11 |
| 2.00 | 17,980 | 2.00 | 0.24 |
| 3.00 | 46,439 | 3.00 | 0.35 |
| 4.00 | 73,964 | 4.00 | 41.88 |
| 5.00 | 86,681 | 5.00 | 237.69 |
| 5.50 | 89,520 | 5.50 | 408.05 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |


| Routed Hydrograph Results |  |  |  |  |  |  | |
|---|---|---|---|---|---|---|---|
| $\begin{array}{r} \text { Design Storm Return Period }= \\ \text { One-Hour Rainfall Depth }=\\| \end{array}$ | WQCV | 2 Year | 5 Year | 10 Year | 50 Year | 100 Year |
|  | 0.53 | 1.19 | 1.50 | 1.75 | 2.25 | 2.52 |
| Calculated Runoff Volume = | 0.737 | 0.780 | 1.110 | 1.513 | 3.577 | 5.724 |
| OPTIONAL Override Runoff Volume = |  |  |  |  |  |  |
| Inflow Hydrograph Volume = | 0.736 | 0.779 | 1.109 | 1.513 | 3.577 | 5.722 |
| Time to Drain 97\% of Inflow Volume = | 37.4 | 38.9 | 49.0 | 48.1 | 43.7 | 39.8 |
| Time to Drain 99\% of Inflow Volume = | 39.3 | 40.9 | 51.6 | 51.2 | 49.4 | 47.7 |
| Maximum Ponding Depth $=$ | 2.64 | 2.69 | 3.01 | 3.11 | 3.51 | 3.88 |
| Maximum Ponded Area = | 0.83 | 0.86 | 1.07 | 1.13 | 1.38 | 1.62 |
| Maximum Volume Stored $=$ | 0.662 | 0.702 | 1.014 | 1.127 | 1.624 | 2.180 |

Stormwater Detention and Infiltration Design Data Sheet


## Stormwater Detention and Infiltration Design Data Sheet

## Stormwater Facility Name: Saddlehorn Ranch Filing 3 - Pond D

Facility Location \& Jurisdiction: El Paso County - Saddlehorn Ranch Metropolitan District

| User Input: Watershed Characteristics |  |  |
| :---: | :---: | :---: |
| Watershed Slope = | 0.012 | $\mathrm{ft} / \mathrm{ft}$ |
| Watershed Length $=$ | 3473 | ft |
| Watershed Area = | 78.02 | acres |
| Watershed Imperviousness $=$ | 15.4\% | percent |
| Percentage Hydrologic Soil Group A = | 70.0\% | percent |
| Percentage Hydrologic Soil Group B = | 0.0\% | percent |
| Percentage Hydrologic Soil Groups C/D $=$ | 30.0\% | percent | Location for 1-hr Rainfall Depths (use dropdown): User Input

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

| User Defined Stage [ft] | User Defined Area [ft^2] | User Defined Stage [ft] | User Defined Discharge [cfs] |
| :---: | :---: | :---: | :---: |
| 0.00 | 32 | 0.00 | 0.00 |
| 0.33 | 50 | 0.33 | 0.04 |
| 0.83 | 699 | 0.83 | 0.06 |
| 1.83 | 8,089 | 1.83 | 0.15 |
| 2.83 | 27,770 | 2.83 | 0.26 |
| 3.83 | 58,037 | 3.83 | 25.71 |
| 4.33 | 70,791 | 4.33 | 61.17 |
| 4.83 | 83,546 | 4.83 | 146.98 |
| 5.83 | 98,172 | 5.83 | 513.83 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |


| Routed Hydrograph Results |  |  |  |  |  |  | |
|---|---|---|---|---|---|---|---|
| $\begin{array}{r} \text { Design Storm Return Period }= \\ \text { One-Hour Rainfall Depth }=\\| \end{array}$ | WQCV | 2 Year | 5 Year | 10 Year | 50 Year | 100 Year |
|  | 0.53 | 1.19 | 1.50 | 1.75 | 2.25 | 2.52 |
| Calculated Runoff Volume = | 0.619 | 0.733 | 1.170 | 1.758 | 4.226 | 6.144 |
| OPTIONAL Override Runoff Volume = |  |  |  |  |  |  |
| Inflow Hydrograph Volume = | 0.619 | 0.733 | 1.170 | 1.758 | 4.226 | 6.142 |
| Time to Drain 97\% of Inflow Volume = | 36.5 | 36.0 | 34.5 | 32.7 | 26.5 | 22.5 |
| Time to Drain 99\% of Inflow Volume = | 38.5 | 38.3 | 37.8 | 37.0 | 34.2 | 32.4 |
| Maximum Ponding Depth $=$ | 2.86 | 2.92 | 3.09 | 3.28 | 3.93 | 4.22 |
| Maximum Ponded Area = | 0.65 | 0.70 | 0.81 | 0.95 | 1.39 | 1.56 |
| Maximum Volume Stored $=$ | 0.533 | 0.573 | 0.701 | 0.872 | 1.637 | 2.055 |

Stormwater Detention and Infiltration Design Data Sheet


## Stormwater Detention and Infiltration Design Data Sheet

## Stormwater Facility Name: Saddlehorn Ranch Filing 3 - Pond E

Facility Location \& Jurisdiction: El Paso County - Saddlehorn Ranch Metropolitan District

| User Input: Watershed Characteristics |  |  |
| :---: | :---: | :---: |
| Watershed Slope = | 0.012 | $\mathrm{ft} / \mathrm{ft}$ |
| Watershed Length $=$ | 1810 | ft |
| Watershed Area = | 18.37 | acres |
| Watershed Imperviousness = | 8.1\% | percent |
| Percentage Hydrologic Soil Group A = | 83.0\% | percent |
| Percentage Hydrologic Soil Group B = | 0.0\% | percent |
| Percentage Hydrologic Soil Groups C/D = | 17.0\% | percent |

Location for 1-hr Rainfall Depths (use dropdown):
User Input

| User Defined Stage [ft] | User Defined Area [ft^2] | User Defined Stage [ft] | User Defined Discharge [cfs] |
| :---: | :---: | :---: | :---: |
| 0.00 | 32 | 0.00 | 0.00 |
| 0.33 | 50 | 0.33 | 0.01 |
| 0.83 | 887 | 0.83 | 0.01 |
| 1.33 | 1,723 | 1.33 | 0.02 |
| 2.33 | 9,446 | 2.33 | 0.09 |
| 3.33 | 14,566 | 3.33 | 14.90 |
| 3.83 | 16,083 | 3.83 | 35.11 |
| 4.33 | 17,600 | 4.33 | 73.11 |
| 4.83 | 19,121 | 4.83 | 128.58 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

Routed Hydrograph Results

| Routed Hydrograph Results |  |  |  |  |  |  | | |
|---|---|---|---|---|---|---|---|---|
| $\begin{array}{r} \text { Design Storm Return Period }=\\| \\ \text { One-Hour Rainfall Depth }=\\| \end{array}$ | WQCV | 2 Year | 5 Year | 10 Year | 50 Year | 100 Year |
|  | 0.53 | 1.19 | 1.50 | 1.75 | 2.25 | 2.52 |
| Calculated Runoff Volume = | 0.086 | 0.073 | 0.121 | 0.199 | 0.596 | 1.019 |
| OPTIONAL Override Runoff Volume = |  |  |  |  |  |  |
| Inflow Hydrograph Volume = | 0.085 | 0.072 | 0.120 | 0.199 | 0.596 | 1.019 |
| Time to Drain 97\% of Inflow Volume = | 35.7 | 33.6 | 40.3 | 43.9 | 34.3 | 28.1 |
| Time to Drain 99\% of Inflow Volume = | 38.3 | 35.9 | 43.8 | 49.1 | 44.3 | 40.2 |
| Maximum Ponding Depth $=$ | 1.92 | 1.84 | 2.12 | 2.37 | 2.67 | 2.95 |
| Maximum Ponded Area = | 0.14 | 0.13 | 0.18 | 0.22 | 0.26 | 0.29 |
| Maximum Volume Stored $=$ | 0.075 | 0.063 | 0.107 | 0.157 | 0.228 | 0.305 |

Stormwater Detention and Infiltration Design Data Sheet



Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)


Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)


Figure 8-25. Swale stability chart: greater than 4 -foot bottom width and 10:1 (or flatter) side slopes
(Note: Riprap classifications refer to gradation for riprap used in soil riprap or void-filled riprap. See Figure 8-34 for gradations.) (Source: Muller Engineering Company)


## SADDLEHORN RANCH - FILING 3



## SADDLEHORN RANCH - FILING 3



## SADDLEHORN RANCH - FILING 3



## Culvert Report

## DP09 Design Point 1.4 (Q5=7.6 cfs Q100=35.0 cfs)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

## Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=6715.25$
$=59.38$
$=0.99$
$=6715.84$
= 19.0
= Elliptical
$=30.0$
$=2$
$=0.012$
= Horizontal Ellipse Concrete
= Square edge w/headwall (H)
$=0.01,2,0.0398,0.67,0.5$
$=6718.90$
$=32.00$
$=20.00$

Calculations
Qmin (cfs) $\quad=7.60$
Qmax (cfs) $\quad=35.00$
Tailwater Elev (ft) $\quad=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $\quad=35.00$
Qpipe (cfs) $\quad=35.00$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s)
Veloc Up (ft/s)
HGL Dn (ft)
HGL Up (ft)
Hw Elev (ft)
Hw/D (ft)
Flow Regime
$=6.02$
$=7.51$
$=6716.58$
$=6716.92$
$=6718.15$
$=1.46$
$=$ Inlet Control


## Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

## DP08 Design Point 1.5 (Q5=3.2 cfs Q100=19.6 cfs)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

## Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=6717.33$
$=55.50$
$=0.65$
$=6717.69$
$=24.0$
= Circular
$=24.0$
= 1
$=0.012$
= Circular Concrete
= Groove end projecting (C)
$=0.0045,2,0.0317,0.69,0.2$
$=6721.10$
$=32.00$
$=20.00$

Calculations
Qmin (cfs) $\quad=3.20$
Qmax (cfs) $\quad=19.60$
Tailwater Elev (ft) $\quad=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $\quad=19.60$
Qpipe (cfs) $\quad=19.60$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s)
Veloc Up (ft/s) $=7.30$
HGL Dn (ft)
HGL Up (ft)
Hw Elev (ft)
$\mathrm{Hw} / \mathrm{D}$ (ft)
Flow Regime
$=6.59$
= 6719.13
$=6719.28$
$=6720.30$
$=1.30$
$=$ Inlet Control



Figure 9-29. Flared end section (FES) headwall concept


| Reach | River Sta | Profile | Q Total | Min Ch El | W.S. Elev | Crit W.s. | E.G. Elev | E.G. Slope | Vel Chnl | Flow Area | Top Width | Froude \# Chl | Shear Chan | Hydr Depth |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (cfs) | (ft) | (t) | (ft) | (ft) | (tutit) | (tt/s) | (sq ft) | (tt) |  | ( $\mathrm{lb} / \mathrm{sq} \mathrm{ft)}$ | (t) |
| Main Channel-0 | 1014 | 100 yr | 505.00 | 6721.50 | 6723.80 |  | 6724.00 | 0.002891 | 3.61 | 139.94 | 116.54 | 0.58 | 0.22 | 1.20 |
| Main Channel-0 | 1013 | 100 yr | 505.00 | 6721.00 | 6722.98 | 6722.31 | 6723.07 | 0.007902 | 2.32 | 217.55 | 200.88 | 0.39 | 0.53 | 1.08 |
| Main Channel-0 | 1012 | 100 yr | 505.00 | 6720.30 | 6721.52 | 6721.18 | 6721.61 | 0.011583 | 2.34 | 221.16 | 303.86 | 0.45 | 0.59 | 0.73 |
| Main Channel-0 | 1011 | 100 yr | 505.00 | 6719.00 | 6720.18 | 6719.78 | 6720.23 | 0.007171 | 1.86 | 280.35 | 393.62 | 0.36 | 0.37 | 0.71 |
| Main Channel-0 | 1010 | 100 yr | 505.00 | 6718.00 | 6718.96 |  | 6719.02 | 0.008246 | 2.00 | 256.25 | 332.21 | 0.39 | 0.43 | 0.77 |
| Main Channel-0 | 1009.5 |  | Lat Struct |  |  |  |  |  |  |  |  |  |  |  |
| Main Channel-0 | 1009 | 100 yr | 505.00 | 6716.50 | 6717.80 | 6717.34 | 6717.86 | 0.007267 | 1.92 | 266.02 | 329.30 | 0.36 | 0.39 | 0.81 |
| Main Channel-0 | 1008 | 100 yr | 505.00 | 6714.70 | 6715.24 | 6715.22 | 6715.45 | 0.054239 | 3.64 | 139.41 | 304.56 | 0.91 | 1.69 | 0.46 |
| Main Channel-0 | 1007 | 100 yr | 505.00 | 6712.50 | 6713.54 |  | 6713.58 | 0.005047 | 1.68 | 306.71 | 366.97 | 0.31 | 0.29 | 0.84 |
| Main Channel-0 | 1006 | 100 yr | 505.00 | 6710.60 | 6711.39 | 6711.39 | 6711.67 | 0.063578 | 4.24 | 119.11 | 214.06 | 1.00 | 2.22 | 0.56 |
| Main Channel-0 | 1005 | 100 yr | 505.00 | 6708.40 | 6710.42 |  | 6710.45 | 0.002217 | 1.32 | 382.27 | 353.43 | 0.21 | 0.17 | 1.08 |
| Main Channel-0 | 1004 | 100 yr | 505.00 | 6706.70 | 6709.72 |  | 6709.81 | 0.009820 | 2.41 | 209.21 | 214.32 | 0.43 | 0.60 | 0.98 |
| Main Channel-0 | 1003 | 100 yr | 505.00 | 6704.90 | 6708.41 |  | 6708.53 | 0.007229 | 2.78 | 181.66 | 119.49 | 0.40 | 0.68 | 1.52 |
| Main Channel-0 | 1002 | 100 yr | 505.00 | 6704.10 | 6707.56 |  | 6707.66 | 0.004579 | 2.47 | 204.77 | 114.46 | 0.33 | 0.51 | 1.79 |
| Main Channel-0 | 1001 | 100 yr | 505.00 | 6704.10 | 6706.82 |  | 6706.89 | 0.005420 | 2.05 | 246.08 | 205.82 | 0.33 | 0.40 | 1.20 |
| Main Channel-0 | 1000 | 100 yr | 505.00 | 6702.50 | 6704.41 | 6704.41 | 6704.88 | 0.056085 | 5.49 | 92.02 | 101.57 | 1.02 | 3.17 | 0.91 |
| Overflow 3 | 1007 | 100 yr | 0.01 | 6717.70 | 6717.73 | 6717.73 | 6717.73 | 0.000010 | 0.01 | 1.62 | 70.54 | 0.01 | 0.00 | 0.02 |
| Overflow 3 | 1006 | 100 yr | 0.01 | 6716.00 | 6716.02 | 6716.02 | 6716.02 | 0.000282 | 0.03 | 0.32 | 15.35 | 0.04 | 0.00 | 0.02 |
| Overflow 3 | 1005 | 100 yr | 0.01 | 6714.70 | 6714.73 | 6714.73 | 6714.73 | 0.000072 | 0.02 | 0.67 | 35.03 | 0.02 | 0.00 | 0.02 |
| Overflow 3 | 1004 | 100 yr | 0.01 | 6712.70 | 6712.72 | 6712.72 | 6712.72 | 0.000015 | 0.01 | 1.44 | 74.63 | 0.01 | 0.00 | 0.02 |
| Overflow 3 | 1003 | 100 yr | 0.01 | 6709.00 | 6709.02 | 6709.02 | 6709.02 | 0.000026 | 0.01 | 1.07 | 53.13 | 0.01 | 0.00 | 0.02 |
| Overflow 3 | 1001 | 100 yr | 0.01 | 6705.00 | 6705.03 | 6705.03 | 6705.03 | 0.000103 | 0.02 | 0.47 | 19.16 | 0.02 | 0.00 | 0.02 |
| Overflow 3 | 1000 | 100 yr | 0.01 | 6702.90 | 6703.06 |  | 6703.06 | 0.000002 | 0.01 | 1.35 | 14.20 | 0.00 | 0.00 | 0.10 |
| Main Channel-0-1 | 1019 | 100 yr | 505.00 | 6700.60 | 6702.94 |  | 6703.05 | 0.007686 | 2.71 | 186.12 | 133.11 | 0.40 | 0.67 | 1.40 |
| Main Channel-0-1 | 1018 | 100 yr | 505.00 | 6699.00 | 6701.61 |  | 6701.75 | 0.009469 | 3.00 | 168.56 | 121.49 | 0.45 | 0.82 | 1.39 |
| Main Channel-0-1 | 1017 | 100 yr | 505.00 | 6697.80 | 6700.67 | 6699.70 | 6700.74 | 0.004788 | 2.09 | 241.29 | 178.67 | 0.32 | 0.40 | 1.35 |
| Main Channel-0-1 | 1016 | 100 yr | 505.00 | 6696.40 | 6699.67 | 6698.65 | 6699.80 | 0.008234 | 2.89 | 174.95 | 119.90 | 0.42 | 0.75 | 1.46 |
| Main Channel-0-1 | 1015 | 100 yr | 505.00 | 6694.20 | 6697.08 |  | 6697.56 | 0.032246 | 5.55 | 90.95 | 64.93 | 0.83 | 2.81 | 1.40 |
| Main Channel-0-1 | 1014 | 100 yr | 505.00 | 6692.20 | 6695.42 | 6694.26 | 6695.56 | 0.006596 | 3.09 | 163.60 | 85.75 | 0.39 | 0.78 | 1.91 |
| Main Channel-0-1 | 1013 | 100 yr | 505.00 | 6691.00 | 6692.71 | 6692.71 | 6693.37 | 0.048628 | 6.50 | 77.64 | 59.48 | 1.00 | 3.95 | 1.31 |
| Main Channel-0-1 | 1012 | 100 yr | 505.00 | 6687.30 | 6690.62 |  | 6690.70 | 0.003297 | 2.35 | 215.12 | 101.03 | 0.28 | 0.44 | 2.13 |
| Main Channel-0-1 | 1011 | 100 yr | 505.00 | 6685.40 | 6689.22 |  | 6689.66 | 0.019635 | 5.33 | 94.80 | 49.06 | 0.68 | 2.33 | 1.93 |
| Main Channel-0-1 | 1010 | 100 yr | 505.00 | 6683.40 | 6687.46 |  | 6687.68 | 0.008729 | 3.72 | 135.84 | 66.04 | 0.46 | 1.11 | 2.06 |
| Main Channel-0-1 | 1009 | 100 yr | 505.00 | 6683.00 | 6686.20 |  | 6686.29 | 0.009054 | 2.42 | 214.68 | 238.49 | 0.42 | 0.59 | 0.90 |
| Main Channel-0-1 | 1008 | 100 yr | 505.00 | 6683.00 | 6685.19 |  | 6685.25 | 0.005416 | 1.97 | 258.32 | 242.87 | 0.33 | 0.38 | 1.06 |
| Main Channel-0-1 | 1007.5 |  | Lat Struct |  |  |  |  |  |  |  |  |  |  |  |
| Main Channel-0-1 | 1007 | 100 yr | 495.52 | 6682.30 | 6683.83 |  | 6683.96 | 0.015299 | 2.90 | 170.62 | 184.08 | 0.53 | 0.88 | 0.93 |
| Main Channel-0-1 | 1006 | 100 yr | 437.50 | 6681.00 | 6682.15 |  | 6682.23 | 0.008346 | 2.23 | 196.24 | 199.56 | 0.40 | 0.51 | 0.98 |
| Main Channel-0-1 | 1005 | 100 yr | 364.06 | 6679.50 | 6680.71 |  | 6680.80 | 0.011063 | 2.41 | 151.00 | 168.54 | 0.45 | 0.62 | 0.90 |
| Main Channel-0-1 | 1004 | 100 yr | 307.49 | 6678.00 | 6679.33 |  | 6679.39 | 0.007656 | 2.04 | 151.03 | 164.90 | 0.38 | 0.44 | 0.92 |
| Main Channel-0-1 | 1003 | 100 yr | 282.02 | 6676.30 | 6677.25 |  | 6677.40 | 0.029386 | 3.04 | 92.71 | 152.48 | 0.69 | 1.11 | 0.61 |
| Main Channel-0-1 | 1002 | 100 yr | 253.89 | 6674.30 | 6675.34 | 6674.89 | 6675.39 | 0.006976 | 1.77 | 143.71 | 181.22 | 0.35 | 0.34 | 0.79 |
| Main Channel-0-1 | 1001 | 100 yr | 228.65 | 6672.30 | 6672.84 | 6672.84 | 6673.03 | 0.072944 | 3.42 | 66.87 | 182.58 | 1.00 | 1.66 | 0.37 |
| Main Channel-0-1 | 1000 | 100 yr | 212.32 | 6670.00 | 6670.46 | 6670.46 | 6670.46 | 0.000021 | 0.04 | 848.73 | 536.15 | 0.02 | 0.00 | 1.58 |
| Downstream Ov | 1009 | 100 yr | 0.01 | 6682.70 | 6682.73 | 6682.73 | 6682.73 | 0.001427 | 0.06 | 0.16 | 9.47 | 0.08 | 0.00 | 0.02 |
| Downstream Ov | 1008 | 100 yr | 0.01 | 6682.10 | 6682.60 | 6682.12 | 6682.60 | 0.000000 | 0.00 | 36.84 | 116.11 | 0.00 | 0.00 | 0.32 |
| Downstream Ov | 1007 | 100 yr | 80.42 | 6680.20 | 6680.52 | 6680.52 | 6680.62 | 0.083611 | 2.47 | 32.52 | 160.20 | 0.97 | 1.06 | 0.20 |
| Downstream Ov | 1006 | 100 yr | 196.17 | 6677.40 | 6678.05 |  | 6678.12 | 0.025914 | 2.07 | 94.87 | 253.99 | 0.60 | 0.60 | 0.37 |
| Downstream Ov | 1005 | 100 yr | 224.28 | 6674.60 | 6675.42 | 6675.14 | 6675.48 | 0.013081 | 1.89 | 118.53 | 217.09 | 0.45 | 0.45 | 0.55 |
| Downstream Ov | 1004 | 100 yr | 225.25 | 6672.20 | 6672.80 | 6672.65 | 6672.88 | 0.023526 | 2.26 | 100.02 | 224.82 | 0.59 | 0.68 | 0.44 |
| Downstream Ov | 1003 | 100 yr | 236.39 | 6669.60 | 6670.57 | 6670.25 | 6670.62 | 0.010463 | 1.78 | 133.13 | 228.33 | 0.41 | 0.38 | 0.58 |
| Downstream Ov | 1002 | 100 yr | 284.43 | 6667.30 | 6668.16 | 6667.98 | 6668.26 | 0.023487 | 2.51 | 113.35 | 210.84 | 0.60 | 0.79 | 0.54 |
| Downstream Ov | 1001 | 100 yr | 292.70 | 6665.50 | 6666.30 |  | 6666.34 | 0.007891 | 1.58 | 187.58 | 345.81 | 0.36 | 0.30 | 0.54 |
| Downstream Ov | 1000 | 100 yr | 292.70 | 6663.80 | 6664.73 | 6664.48 | 6664.79 | 0.013917 | 2.07 | 142.83 | 254.26 | 0.47 | 0.52 | 0.56 |

- Highlighted cross sections shall be further analyzed in the Saddlehorn Filing No. 3 Final Drainage Report and CDs.


## APPENDIX F

## DRAINAGE MAPS \& PLANS

Replace the floodplain map, with CWCB data and cross-sections and HEC-RAS table showing Froude Nos, velocities, depths, etc. Include shear stresses or separate table with those values.


## SADDLEHORN RANCH - FILING 4



## SADDLEHORN RANCH- FILING 4





## SADDLEHORN RANCH - FILING 4




[^0]:    Notes
    Street and Pipe $\mathrm{C}^{*}$ A values are determined by $\mathrm{Q} / \mathrm{i}$ using the catchment's intensity value.

