## FINAL DRAINAGE REPORT FOR STERLING RANCH EAST FILING NO. 1

November 2022

Prepared for:<br>CLASSIC SRJ LAND, LLC<br>2138 Flying Horse Club Dr.<br>COLORADO SPRINGS CO 80921

(719) 592-9333

Prepared by:
CLASSIC CONSULTING ENGINEERS \& SURVEYORS
619 N. CASCADE AVENUE, SUITE 200
COLORADO SPRINGS CO 80903
(719) 785-0790

Job no. 2183.30
PCD File \# SF2235

## ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Kyle R Campbell, Colorado P.E. \#29794

## DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: Classic SRJ Land, LLC

By:

Title:

## Address:

2138 Flying Horse Club Dr.

Colorado Springs, CO 80921

## EL PASO COUNTY ONLY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

For County Engineer / ECM Administrator
Date
Conditions:

FINAL DRAINAGE REPORT FOR STERLING RANCH EAST FILING NO. 1

## TABLE OF CONTENTS:

PURPOSE Page 4
PROJECT DESCRIPTION Page 4
PREVIOUS REPORTS Page 5
SOILS \& GEOLOGY Page 5
DRAINAGE CRITERIA ..... Page 5
FLOODPLAIN STATEMENT ..... Page 6
EXISTING DRAINAGE CONDITIONS Page 6
PROPOSED DRAINAGE CONDITIONS ..... Page 7
STORMWATER QUALITY (FOUR STEP PROCESS) ..... Page 33
DRAINAGE AND BRIDGE FEES ..... Page 34
CONSTRUCTION COST OPINION ..... Page 35
SUMMARY ..... Page 36
REFERENCES ..... Page 37
APPENDICES

VICINITY MAP
SOILS MAP (S.C.S. SURVEY)
F.E.M.A. MAP

DEVELOPED CONDITIONS CALCULATIONS
DETENTION POND '14A'
HYDRUALIC GRADE LINE (HGL) CALCULATIONS
DRAINAGE MAPS

## FINAL DRAINAGE REPORT FOR STERLING RANCH EAST FILING NO. 1

## PURPOSE

This document is the Final Drainage Repot for Sterling Ranch East Filing No. 1. The purpose of this report is to identify onsite and offsite drainage patterns, define areas tributary to the proposed full spectrum detention and water quality facility (Pond 14A), and to safely route developed storm water runoff via a proposed storm sewer system. The proposed Sterling Ranch East Filing No. 1 development shall be in adherence to the El Paso County approved Master Development Drainage Plan and MDDP Amendment for Sterling Ranch as well as current County Drainage Criteria.

## PROJECT DESCRIPTION

The Sterling Ranch East Filing No. 1 development is 161.52 acres of the 321.37 total acres of Sterling Ranch East, a phased master planned community located in northern El Paso County, Colorado. The Filing 1 limits contains the adjacent Sand Creek Reach SC-8 channel improvements, Tract A - 28.52 acres to the west of the proposed home lots. Filing 1 also contains a large neighborhood park and further open space along the adjacent channel - Tract B, 27.43 acres. Tract J is 38.55 acres of a future school site, located northeast of the proposed single-family home lots. Tract C is 5.86 acres of the proposed detention and water quality facility, Pond 14A. The remaining 61.16 acres of Filing 1 consists of interior open space tracts, public residential roadways, and 294 single family home lots. The property lies to the east of the aforementioned Sand Creek Reach SC-8 and the existing subdivisions Branding Iron @ Sterling Ranch No. 2 and Homestead at Sterling Ranch Filings 1 \& 2. A future D20 school site is located directly northeast of the Filing boundary and southwest of the intersection of Briargate Parkway and Sterling Ranch Road. North of the Filing 1 boundary is future Briargate Parkway and to the east and south is future Sterling Ranch Road. Beyond these future roadways is unplatted and future Sterling Ranch subdivisions. The site is in the upper portion of both the Sand Creek and Sand Creek East Fork Drainage Basins. Sterling Ranch East Filing No. 1 is located in portions of Sections 28 \& 33, Township 12 South, Range 65 West of the Sixth Principal Meridian.

## PREVIOUS REPORTS

The latest and most applicable previously approved drainage studies are the following:

1. "Sterling Ranch MDDP Amendment No. 2 \& Preliminary Drainage Report for Sterling Ranch East Preliminary Plan No. 1," by Classic Consulting Engineers \& Surveyors, LLC approval pending.
2. "Master Development Drainage Plan Amendment for Sterling Ranch," by JR Engineering, LLC, dated September 2022.
3. "2018 Sterling Ranch MDDP," by M\&S Civil Consultants, Inc. June 2018.
4. "Drainage Letter for Sterling Ranch Road and Briargate Pkwy. Interim Plan," by JR Engineering, LLC dated September 2022.
5. "Final Drainage Report for Sand Creek Restoration," by JR Engineering, LLC, dated September 2022.

## SOILS AND GEOLOGY

The soils within the Sterling Ranch East Filing No. 1 site and tributary area are Hydrologic Soil Group A, Blakeland loamy sand and Columbine gravelly sandy loam (See Appendix for Soil Map). Per the El Paso County DCM, Chapter 6, Section 4.3, to recognize that soils within a development project are usually disturbed and covered with top soil, sod or landscaping and irrigated, Type A soils must be represented as Type B soils for post development runoff coefficients. Therefore, Type B soils are used in the developed runoff calculations and sizing the proposed storm sewer infrastructure, however Type A soils are used in the MHFD-Detention and full spectrum detention/water quality facility (Pond 14A).

## DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the DCM as revised in May 2014. Full Spectrum Detention and Stormwater quality analysis, Extended Detention Basin (EDB) design, are per the Mile High Flood District Manual and MHFD-Detention version 4.06 and UD-BMP version 3.07 spreadsheet. The Rational Method was used
to estimate stormwater runoff from the developed project and tributary to the proposed full spectrum detention/water quality pond. The UDFCD UD-Inlet excel workbook was used to verify street capacities, size sump inlets, and calculate interception and flow-by rates of at-grade inlets. The UD-Sewer computer program was used to calculate the hydraulic grade line (HGL) within the storm sewer system. An overall tributary area exhibit is included to show the various types of pervious and impervious areas established to determine the overall imperviousness of the 156.85 acres tributary to the proposed full spectrum detention/water quality facility (Pond 14A).

## FLOODPLAIN STATEMENT

Portions of the Sterling Ranch East Filing No. 1 are located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Numbers 08041C 0535G, effective date, December 7, 2018 and a LOMR 08-08-0541P with an effective date of July 23, 2009 (See Appendix). The portion within the floodplain is entirely within Tract A - Sand Creek Reach SC-8 channel improvements and not within the park/open space (Tract B) or the development area of Filing No. 1. The adjacent channel improvements within the floodplain are detailed within the "Final Drainage Report for Sand Creek Restoration," by JR Engineering, LLC, dated September 2022 and appropriate permitting will be completed with the channel construction.

## EXISTING DRAINAGE CONDITIONS

The "Sterling Ranch MDDP Amendment No. 2 \& Preliminary Drainage Report for Sterling Ranch East Preliminary Plan No. 1," by Classic Consulting Engineers \& Surveyors, LLC is currently under review and approval process with El Paso County Development Services and in full detail describes the Existing Conditions of the proposed development area. Please see this report for the full descriptions. The PreDeveloped (Existing) Conditions Maps are included in the Appendix of this Report and include the Sterling Ranch East Filing No. 1 boundary and adjacent existing floodplain limits.

The proposed site is located within Basins EX-4A, EX-7, and EX-9 of the Preliminary Drainage Report study and drains north to south, including the Sand Creek Channel (Reach SC-8). The site has been previously
disturbed with mass grading operations and vegetation is sparse and of natural grassland consistency (no trees or shrubs). See previous reports for additional details on the Existing Conditions.

The adjacent Briargate Parkway and Sterling Ranch Road drainage and roadway design was completed by JR Engineering, "Drainage Letter for Sterling Ranch Road and Briargate Parkway Interim Plan," May 2022. These roadways and storm system will be constructed prior to and in conjunction with the proposed Filing No. 1 development. Therefore, the storm system described within this JR Engineering Letter and Construction Drawings is shown as 'Existing' with proposed storm sewer extensions into the storm system for Sterling Ranch East Filing No. 1. Re-routing of the runoff and storm system within Briargate Parkway is necessary as final design prohibited the storm pipe from getting into the northly Pond FSD-16, north of Briargate Parkway, and must drain south into the proposed Pond 14A. The following Proposed Drainage Conditions section describes these basins and 'existing' storm system in detail.

## PROPOSED DRAINAGE CONDITIONS

Developed runoff from Sterling Ranch East Filing No. 1 will be collected in a public (within County R.O.W.) and private (within Private Tracts) storm system and piped into the Privately owned and maintained full spectrum detention/water quality facility (Pond 14A) that will detain and treat the developed runoff prior to releasing at or below historic rates to the downstream channel (Sand Creek Reach SC-8). As previously mentioned, the rational method was used to estimate developed runoff values. All storm sewer inlets and pipes collecting runoff within the County right-of-way will be 'Public'. All storm sewer outside of right-of-way, including the pond outfall pipe, is 'Private' as is the proposed full spectrum detention facility. Private facilities will be owned and maintained by the Sterling Ranch Metropolitan District \#3. HGL grade line calculations are included in the Appendix in support of the construction drawings for the proposed Public and Private storm systems.

Per the current El Paso County Drainage Criteria for stormwater capacity within street sections, the following summaries of Figures 7-7 applies: all proposed roads are Residential.

| Street Type | Allowable - Initial Storm (5 yr) | Allowable - Major <br> yr) $)$ |
| :--- | :--- | :--- |
| Residential w/Ramp Curb (100 |  |  |
|  | $1.5 \%$ street slope $=10 \mathrm{cfs}$ | $1.5 \%$ street slope $=46 \mathrm{cfs}$ |
|  | $2 \%$ street slope $=12 \mathrm{cfs}$ | $2 \%$ street slope $=44 \mathrm{cfs}$ |
|  | $4 \%$ street slope $=16.5 \mathrm{cfs}$ | $4 \%$ street slope $=36 \mathrm{cfs}$ |
|  | $6 \%$ street slope $=19.5 \mathrm{cfs}$ | $6 \%$ street slope $=32 \mathrm{cfs}$ |
|  | $8 \%$ street slope $=17.8 \mathrm{cfs}$ | $8 \%$ street slope $=29 \mathrm{cfs}$ |
|  | $10 \%$ street slope $=16.5 \mathrm{cfs}$ | $10 \%$ street slope $=27.5 \mathrm{cfs}$ |
|  | No curb overtopping. | $12 "$ maximum depth at flowline. |
| Residential w/Vertical Curb | $1.5 \%$ street slope $=13 \mathrm{cfs}$ | $1.5 \%$ street slope $=45 \mathrm{cfs}$ |
|  | $2 \%$ street slope $=15 \mathrm{cfs}$ | $2 \%$ street slope $=43 \mathrm{cfs}$ |
|  | $4 \%$ street slope $=20.5 \mathrm{cfs}$ | $4 \%$ street slope $=35 \mathrm{cfs}$ |
|  | $6 \%$ street slope $=18 \mathrm{cfs}$ | $6 \%$ street slope $=31 \mathrm{cfs}$ |
|  | $8 \%$ street slope $=16.8 \mathrm{cfs}$ | $8 \%$ street slope $=28 \mathrm{cfs}$ |
|  | $10 \%$ street slope $=15.7 \mathrm{cfs}$ | $10 \%$ street slope $=26.5 \mathrm{cfs}$ |
|  | No curb overtopping. | $12 "$ maximum depth at flowline. |

At-grade inlets and sump (low-points) were designed in a way that street capacity is not an issue anywhere within the proposed Filing or surrounding and future roadways. Homes near sump inlets shall be constructed at least 1 foot above the 100-year water surface ponding elevation. Street capacity has also been verified at each design point by using the UD-Inlet Excel workbook (located in Appendix) from Urban Drainage Flood Control District (UDFCD). Inlet sizing is also per the UD-Inlet Excel workbook. Drainage from individual lots shall travel in side-lot swales to the street. One Site-Level Low Impact Development form (IRF form) is included in the Appendix of this report, for the basins that discharge to the proposed full spectrum detention and water quality Pond 14A. A detailed description of the developed flows for Sterling Ranch East Filing No. 1 is as follows:

DESIGN POINT 1 ( $\mathbf{Q}_{\mathbf{5}}=\mathbf{1 0 . 2} \mathbf{c f s}$ and $\mathrm{Q}_{\mathbf{1 0 0}}=\mathbf{2 0 . 3} \mathbf{c f s}$ ) is the developed runoff from Basin P1-A1, 4.45 acres of existing Briargate Parkway located north of the Filing 1 boundary and starting at the Vollmer Road/Briargate Pkwy. intersection. This matches the JR Engineering Drainage Letter basins and design
point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing $20^{\prime}$ CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $Q_{5}=10.2 \mathrm{cfs}, \mathrm{Q}_{100}=16.9 \mathrm{cfs}$ ) while the remaining runoff ( $\mathrm{Q}_{5}=0 \mathrm{cfs}, \mathrm{Q}_{100}=3.4 \mathrm{cfs}$ ) continues east along Briargate Parkway to the at-grade inlet at Design Point 3. Pipe 2 (Existing Public $30 \prime$ RCP, $Q_{5}=23.4$ cfs and $Q_{100}=36.6$ cfs) conveys this intercepted runoff, and that from Pipe 1 (intercepted DP-2 runoff), to the east within Briargate Parkway toward Design Points 3 \& 4 .

DESIGN POINT $2\left(\mathrm{Q}_{\mathbf{5}}=\mathbf{1 4 . 4} \mathbf{c f s}\right.$ and $\left.\mathrm{Q}_{\mathbf{1 0 0}}=\mathbf{2 9 . 1} \mathbf{c f s}\right)$ is the developed runoff from Basin P1-A2, 6.59 acres of existing Briargate Parkway located north of the Filing 1 boundary and starting at the Vollmer Road/Briargate Pkwy. intersection and the adjacent tributary landscaped area to Briargate Parkway. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing 20' CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $\mathrm{Q}_{5}=13.2 \mathrm{cfs}, \mathrm{Q}_{100}=$ 19.7 cfs) while the remaining runoff ( $\mathrm{Q}_{5}=1.2 \mathrm{cfs}, \mathrm{Q}_{100}=9.4 \mathrm{cfs}$ ) continues east along Briargate Parkway to the at-grade inlet at Design Point 4. Pipe 1 (Existing Public $30^{\prime \prime}$ RCP, $Q_{5}=13.2$ cfs and $Q_{100}=19.7 \mathrm{cfs}$ ) conveys this intercepted runoff to the south into the existing inlet at Design Point 1.

DESIGN POINT $3\left(Q_{5}=\mathbf{5 . 2} \mathbf{~ c f s}\right.$ and $Q_{100}=\mathbf{1 4 . 7} \mathbf{~ c f s )}$ ) is the developed runoff from Basin P1-A4, 1.64 acres of existing Briargate Parkway located north of the Filing 1 boundary and ending at the Sterling Ranch Rd./Briargate Pkwy. intersection, and the flow-by runoff from Design Point 1. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing $15^{\prime}$ CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $\mathrm{Q}_{5}=5.2 \mathrm{cfs}, \mathrm{Q}_{100}=11.7 \mathrm{cfs}$ ) while the remaining runoff ( $\mathrm{Q}_{5}=0 \mathrm{cfs}, \mathrm{Q}_{100}=3.0 \mathrm{cfs}$ ) continues east then south onto Sterling Ranch Road and to the at-grade inlet at Design Point 9. Pipe 4 (Existing Public $18{ }^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=5.2 \mathrm{cfs}$ and $\mathrm{Q}_{100}=11.7 \mathrm{cfs}$ ) conveys this intercepted runoff to the north to a junction manhole with Pipes $2 \& 3$ within Briargate Parkway.

DESIGN POINT 4 ( $Q_{\mathbf{5}}=\mathbf{5 . 6} \mathbf{c f s}$ and $\mathrm{Q}_{\mathbf{1 0 0}}=\mathbf{1 8 . 1} \mathbf{~ c f s}$ ) is the developed runoff from Basin P1-A3, 1.83 acres of existing Briargate Parkway located north of the Filing 1 boundary and ending at the Sterling Ranch

Page 9

Rd./Briargate Pkwy. intersection and the adjacent tributary landscaped area to Briargate Parkway. This design point also contains the flow-by from Design Point 2. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing 15' CDOT Type R AtGrade inlet intercepts the majority of this runoff ( $Q_{5}=5.6 \mathrm{cfs}, Q_{100}=13.1 \mathrm{cfs}$ ) while the remaining runoff ( $Q_{5}=0.0 \mathrm{cfs}, Q_{100}=5.0 \mathrm{cfs}$ ) continues east along Briargate Parkway, across Sterling Ranch Rd., and to the sump inlet at Design Point 6. Pipe 3 (Proposed Public $24^{\prime \prime}$ RCP, $Q_{5}=5.6$ cfs and $Q_{100}=13.1 \mathrm{cfs}$ ) conveys this intercepted runoff to the south to a junction manhole with Pipes 2 \& 4. Pipe 3 differentiates from the JR Engineering Drainage Letter and design in that this runoff no longer drains north to the interim 16B pond, but drains into the proposed Filing No. 1 storm system and to the proposed Pond 14A (matching the latest Preliminary Drainage Report for the Preliminary Plan and MDDP Amendment No. 2.). Pipe 5 (Proposed Public $36^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=33.0$ cfs and $\mathrm{Q}_{100}=58.6 \mathrm{cfs}$ ) conveys the existing Briargate Parkway and tributary area runoff (Pipes 2, 3, \& 4) to the east and into another junction manhole with Pipe 9 coming from the east.

DESIGN POINT $5\left(Q_{5}=\mathbf{7 . 0} \mathbf{c f s}\right.$ and $\left.Q_{100}=\mathbf{1 5 . 7} \mathbf{c f s}\right)$ is the developed runoff from Basin P1-A7, 3.11 acres of future Briargate Parkway located east of the Sterling Ranch Rd./Briargate Pkwy. intersection. The basin limits are estimated based upon preliminary lot and roadway layouts for the future development to the north and in order to properly size the downstream storm system. A future 15' CDOT Type R AtGrade inlet intercepts the majority of this runoff ( $Q_{5}=7.0 \mathrm{cfs}, Q_{100}=12.1 \mathrm{cfs}$ ) while the remaining runoff ( $Q_{5}=0 \mathrm{cfs}, Q_{100}=3.6 \mathrm{cfs}$ ) continues west along future Briargate Parkway to the proposed sump inlet at Design Point 6. Pipe 6 (Future Public $24^{\prime \prime}$ RCP, $Q_{5}=7.0 \mathrm{cfs}$ and $Q_{100}=12.1 \mathrm{cfs}$ ) conveys the intercepted runoff to the west within Briargate Parkway to a junction manhole with Pipes $6 \& 7$. A future drainage report will be completed at this time of development within this basin that will discuss compliance with this estimation or any differences with final design.

DESIGN POINT $6\left(Q_{\mathbf{5}}=\mathbf{1 0 . 3} \mathbf{c f s}\right.$ and $\left.\mathrm{Q}_{100}=\mathbf{3 1 . 6} \mathbf{c f s}\right)$ is the developed runoff from Basin P1-A5, 1.86 acres of future Briargate Parkway located east of the Sterling Ranch Rd./Briargate Pkwy. intersection, and Basin P1-C2, 1.73 acres of future Sterling Ranch Road located north of the intersection. This design point also receives the by-pass (flow-by) runoff from Design Points $4 \& 5$. A proposed 20' CDOT Type R sump

Page 10
inlet intercepts the entirety of this runoff. Pipe 7 (Proposed Public 30 " RCP) conveys the runoff to the south and into a junction manhole combining with Pipes $6 \& 8$. The emergency overflow path for this sump inlet is to overtop the crown in the roadway and the southeast curb return of Briargate/Sterling Ranch Rd. intersection and continue south along Sterling Ranch Rd. to downstream facilities. A future drainage report will be completed at this time of development within this basin that will discuss compliance with this estimation or any differences with final design of the adjacent tributary area.

DESIGN POINT $7\left(Q_{5}=\mathbf{8 . 0} \mathbf{c f s}\right.$ and $\left.Q_{100}=\mathbf{1 7 . 3} \mathbf{c f s}\right)$ is the developed runoff from Basin P1-A6, 3.55 acres of future Briargate Parkway located east of the Sterling Ranch Rd./Briargate Pkwy. A proposed 15' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 8 (Proposed Public 24" RCP) conveys the runoff to the north and into a junction manhole combining with Pipes 7 \& 8. Pipe 9 (Proposed Public 36" $\mathrm{RCP}, \mathrm{Q}_{5}=23.3 \mathrm{cfs}$ and $\mathrm{Q}_{100}=56.0 \mathrm{cfs}$ ) conveys the intercepted runoff to the west within Briargate Parkway to a junction manhole with Pipe 5 from the opposite side of the roadway intersection. Pipe 10 (Proposed Public 42" RCP, $\mathrm{Q}_{5}=52.3 \mathrm{cfs}$ and $\mathrm{Q}_{100}=105.0 \mathrm{cfs}$ ) then conveys this combined runoff to the south within Sterling Ranch Road and ultimately takes this roadway and tributary area into the proposed Full Spectrum Detention Pond 14A. The emergency overflow path for this sump inlet is to overtop the high point at the southeast curb return of Briargate/Sterling Ranch Rd. intersection and continue south along Sterling Ranch Rd. to downstream facilities. A future drainage report will be completed at this time of development within this basin that will discuss compliance with this estimation or any differences with final design of the adjacent tributary area.

DESIGN POINT $8\left(Q_{5}=\mathbf{5 . 2} \mathbf{~ c f s}\right.$ and $\left.Q_{100}=\mathbf{1 0 . 7} \mathbf{~ c f s}\right)$ is the developed runoff from Basin P2-B2, 1.87 acres of existing Sterling Ranch Rd. located south of Briargate Parkway. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing 10' CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $Q_{5}=4.8 \mathrm{cfs}, Q_{100}=7.3 \mathrm{cfs}$ ) while the remaining runoff ( $Q_{5}=0.4 \mathrm{cfs}, \mathrm{Q}_{100}=3.4 \mathrm{cfs}$ ) continues south on Sterling Ranch Road and to the at-grade inlet at Design Point 15. Pipe 11 (Existing Public 18" RCP, $Q_{5}=4.8 \mathrm{cfs}$ and $Q_{100}=7.3 \mathrm{cfs}$ ) conveys this intercepted runoff to the west to the existing inlet at Design Point 9, on the opposite side of Sterling Ranch Road.

ENGINEERS \& SURVEYORS
Page 11

DESIGN POINT $9\left(Q_{5}=\mathbf{5 . 2} \mathbf{~ c f s}\right.$ and $\left.Q_{100}=\mathbf{1 3 . 7} \mathbf{c f s}\right)$ is the developed runoff from Basin P2-B1, 1.82 acres of existing Sterling Ranch Rd. located south of Briargate Parkway, and the flow-by from the at-grade inlet at Design Point 3. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing $10^{\prime}$ CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $\mathrm{Q}_{5}=4.8 \mathrm{cfs}, \mathrm{Q}_{100}=8.3 \mathrm{cfs}$ ) while the remaining runoff $\left(\mathrm{Q}_{5}=0.4 \mathrm{cfs}, \mathrm{Q}_{100}=5.4 \mathrm{cfs}\right)$ continues south on Sterling Ranch Road and to the at-grade inlet at Design Point 16. Pipe 12 (Existing Public 18" RCP, $\mathrm{Q}_{5}=$ 9.6 cfs and $Q_{100}=15.6 \mathrm{cfs}$ ) conveys this intercepted runoff and that from existing Pipe 11, to the west into a proposed storm manhole, combining with the proposed $42^{\prime \prime}$ RCP storm main (Pipe 10) from the north. Pipe 13 (Proposed Public $48^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=57.2$ cfs and $\mathrm{Q}_{100}=112.2 \mathrm{cfs}$ ) then conveys this combined runoff south, on the outside of the pavement section of Sterling Ranch Rd., to another junction manhole east of Design Point 50. The proposed Public storm main is located within the County Right-of-way, but outside of the pavement section as the existing utilities within Sterling Ranch Road, including an existing 48" RCP Storm Main (Bypass System), does not allow for adequate horizontal separation to each other. A Public Improvement (Storm Sewer) Easement is included on the proposed Plat at $15^{\prime}$ from centerline of the storm main into the proposed lots and future school parcel.

DESIGN POINT 10 ( $Q_{\mathbf{5}}=\mathbf{6 . 0} \mathbf{c f s}$ and $Q_{100}=\mathbf{1 2 . 5} \mathbf{c f s}$ ) is the developed runoff from Basin $X, 2.93$ acres of proposed Filing No. 1 home lots and residential roadway Newport Beach Drive. A proposed 15' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 16 (Proposed Public $24^{\prime \prime}$ RCP) conveys the runoff to the south and into a junction manhole combining with Pipe 17 from the sump inlet across the road (Newport Beach Drive). The emergency overflow path for this sump inlet is to overtop the crown in the roadway and the southwest curb return of the Newport Beach/Palo Alto intersection and continue south along Palo Alto Trail to downstream facilities.

DESIGN POINT $11\left(Q_{5}=\mathbf{4 . 2} \mathbf{c f s}\right.$ and $\left.Q_{100}=8.5 \mathrm{cfs}\right)$ is the developed runoff from Basin $\mathrm{Y}, 1.67$ acres of proposed Filing No. 1 home lots and residential roadway Newport Beach Drive. A proposed 10' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 17 (Proposed Public 18" RCP) conveys the runoff to the north and into a junction manhole combining with Pipe 16 from the sump inlet across the road (Newport Beach Drive). Pipe 18 (Proposed Public $24^{\prime \prime}$ RCP, $Q_{5}=9.7 \mathrm{cfs}$ and $Q_{100}=20.0 \mathrm{cfs}$ ) conveys

Page 12
this combined runoff east then south within Palo Alto Trail to the next set of sump inlets at DP 13 \& 14 . The emergency overflow path for this sump inlet is to overtop the southwest curb return of the Newport Beach/Palo Alto intersection and continue south along Palo Alto Trail to downstream facilities.

DESIGN POINT 12 ( $Q_{5}=\mathbf{6 . 4} \mathbf{c f s}$ and $Q_{100}=\mathbf{1 3 . 4} \mathbf{c f s}$ ) is the developed runoff from Basin $Z, 3.22$ acres of proposed Filing No. 1 home lots and residential roadway, Long Beach Terrace. A proposed 15' CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $Q_{5}=6.4 \mathrm{cfs}, \mathrm{Q}_{100}=11.1 \mathrm{cfs}$ ) while the remaining runoff ( $\mathrm{Q}_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=2.3 \mathrm{cfs}$ ) continues east onto Palo Alto Trail and to the sump inlet at Design Point 13. Pipe 23 (Proposed Public 18" RCP, $\mathrm{Q}_{5}=6.4 \mathrm{cfs}$ and $\mathrm{Q}_{100}=11.1 \mathrm{cfs}$ ) conveys this intercepted runoff to the east within Long Beach Terrace and to a junction manhole with Pipe 18, main within Palo Alto Trail. Pipe 19 (Proposed Public $30^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=15.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=30.4 \mathrm{cfs}$ ) conveys this combined runoff south, within Palo Alto Trail, to another junction manhole between Design Points 13 \& 14.

DESIGN POINT 13 ( $Q_{5}=6.1 \mathbf{c f s}$ and $Q_{100}=14.7 \mathbf{c f s}$ ) is the developed runoff from Basin FF, 2.84 acres of proposed Filing No. 1 home lots and residential roadway Long Beach Terrace and the flow-by runoff from the at-grade inlet at DP-12. A proposed 15' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 24 (Proposed Public 24" RCP) conveys the runoff to the south and into an adjacent junction manhole combining with Pipes 19 \& 25. The emergency overflow path for this sump inlet is to overtop the high point to the south within Palo Alto Trail and continue south along the roadway to downstream facilities.

DESIGN POINT 14 ( $Q_{5}=\mathbf{3 . 7} \mathbf{~ c f s}$ and $Q_{100}=7.5 \mathbf{c f s}$ ) is the developed runoff from Basin AA, 1.66 acres of proposed Filing No. 1 home lots and residential roadway Palo Alto Drive. A proposed 10’ CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 25 (Proposed Public 18" RCP) conveys the runoff to the north and into an adjacent junction manhole combining with Pipes 19 \& 24. Pipe 26 (Proposed Public $36^{\prime \prime}$ RCP, $Q_{5}=25.2$ cfs and $Q_{100}=52.0 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southwest within Palo Alto Trail to another set of inlets/manholes at the next intersection. The emergency overflow path for this sump inlet is to overtop the high point to the south within Palo Alto Trail and continue south along the roadway to downstream facilities.

ENGINEERS \& SURVEYORS
Page 13

DESIGN POINT 15 ( $\mathrm{Q}_{\mathbf{5}}=4.8 \mathrm{cfs}$ and $\mathrm{Q}_{100}=12.6 \mathrm{cfs}$ ) is the developed runoff from Basin P2-B4, 1.64 acres of existing Sterling Ranch Rd. located south of Briargate Parkway, and the flow-by runoff from the existing at-grade inlet at DP-8. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing 15' CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $Q_{5}=4.8 \mathrm{cfs}, \mathrm{Q}_{100}=10.7 \mathrm{cfs}$ ) while the remaining runoff ( $\mathrm{Q}_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=1.9 \mathrm{cfs}$ ) continues southwest on Sterling Ranch Road and to the at-grade inlet at Design Point 23. Pipe 20 (Existing Public $18{ }^{\prime \prime}$ RCP, $Q_{5}=4.8$ cfs and $Q_{100}=10.7 \mathrm{cfs}$ ) conveys this intercepted runoff to the north to the existing inlet at Design Point 16, on the opposite side of Sterling Ranch Road.

DESIGN POINT 16 ( $\mathrm{Q}_{\mathbf{5}}=4.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=14.3 \mathrm{cfs}$ ) is the developed runoff from Basin P2-B3, 1.55 acres of existing Sterling Ranch Rd. located south of Briargate Parkway, and the flow-by from the at-grade inlet at Design Point 9. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing 15' CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $\mathrm{Q}_{5}=4.7 \mathrm{cfs}, \mathrm{Q}_{100}=11.5 \mathrm{cfs}$ ) while the remaining runoff ( $\mathrm{Q}_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=2.8 \mathrm{cfs}$ ) continues southwest on Sterling Ranch Road and to the at-grade inlet at Design Point 24. Pipe 21 (Existing Public 18 " RCP, $\mathrm{Q}_{5}$ $=9.5 \mathrm{cfs}$ and $\mathrm{Q}_{100}=22.2 \mathrm{cfs}$ ) conveys this intercepted runoff and that from existing Pipe 20 , to the west into a proposed storm manhole, combining with the proposed 60" RCP storm main (Pipe 15) from the north. Pipe 22 (Proposed Public 60" RCP, $\mathrm{Q}_{5}=112.8 \mathrm{cfs}$ and $\mathrm{Q}_{100}=247.8 \mathrm{cfs}$ ) then conveys this combined runoff southwest, on the outside of the pavement section of Sterling Ranch Rd., to another junction manhole north of Design Point 24. The proposed Public storm main is located within the County Right-of-way, but outside of the pavement section as the existing utilities within Sterling Ranch Road, including an existing 48" RCP Storm Main (Bypass System), does not allow for adequate horizontal separation to each other. A Public Improvement (Storm Sewer) Easement is included on the proposed Plat at $15^{\prime}$ from centerline of the storm main into the proposed lots and future school parcel.

DESIGN POINT $17\left(Q_{\mathbf{5}}=\mathbf{6} .2 \mathbf{c f s}\right.$ and $\left.\mathrm{Q}_{100}=\mathbf{1 3 . 0} \mathbf{c f s}\right)$ is the developed runoff from Basin $\mathrm{BB}, 3.13$ acres of proposed Filing No. 1 home lots and residential roadway, San Diego Way. A proposed 10’ CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $Q_{5}=5.4 \mathrm{cfs}, \mathrm{Q}_{100}=8.1 \mathrm{cfs}$ ) while the remaining

Page 14
runoff ( $Q_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=4.9 \mathrm{cfs}$ ) continues southeast onto Palo Alto Trail and to the sump inlet at Design Point 18. Pipe 28 (Proposed Public $18{ }^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=5.4 \mathrm{cfs}$ and $\mathrm{Q}_{100}=8.1 \mathrm{cfs}$ ) conveys this intercepted runoff to the south within San Diego Way and to a junction manhole with Pipe 26, main within Palo Alto Trail. Pipe 27 (Proposed Public $36^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=29.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=58.8 \mathrm{cfs}$ ) conveys this combined runoff west, within Palo Alto Trail, to another junction manhole between Design Points 18 \& 19.

DESIGN POINT 18 ( $\mathrm{Q}_{\mathbf{5}}=\mathbf{5 . 6} \mathbf{c f s}$ and $\left.\mathrm{Q}_{100}=\mathbf{1 4 . 5} \mathbf{c f s}\right)$ is the developed runoff from Basin $\mathrm{GG}, 2.14$ acres of proposed Filing No. 1 home lots and residential roadway San Diego Way and the flow-by runoff from the at-grade inlet at DP-17. A proposed $15^{\prime}$ CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 29 (Proposed Public 24" RCP) conveys the runoff to the south and into an adjacent junction manhole combining with Pipes 27 \& 30. The emergency overflow path for this sump inlet is to overtop the high point to the west within Palo Alto Trail and continue west along the roadway to downstream facilities.

DESIGN POINT 19 ( $Q_{5}=\mathbf{3 . 5} \mathbf{c f s}$ and $\left.Q_{100}=7.1 \mathbf{c f s}\right)$ is the developed runoff from Basin CC, 1.50 acres of proposed Filing No. 1 home lots and residential roadway Palo Alto Trail. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 30 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff to the north and into an adjacent junction manhole combining with Pipes 27 \& 29. Pipe 31 (Proposed Public $42^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=38.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=79.4 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the west within Palo Alto Trail to another set of inlets/manholes at the next intersection. The emergency overflow path for this sump inlet is to overtop the high point to the west within Palo Alto Trail and continue west along the roadway to downstream facilities.

DESIGN POINT $20\left(Q_{5}=\mathbf{6} .2 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=\mathbf{1 3 . 2} \mathbf{c f s}\right)$ is the developed runoff from Basin DD, 3.19 acres of proposed Filing No. 1 home lots and residential roadway, Westmont Drive. A proposed 10’ CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $Q_{5}=5.4 \mathrm{cfs}, \mathrm{Q}_{100}=8.1 \mathrm{cfs}$ ) while the remaining runoff ( $Q_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=5.1 \mathrm{cfs}$ ) continues south along Westmont Drive, across Palo Alto Trail and to the sump inlet at Design Point 21. Pipe 32 (Proposed Public $18{ }^{\prime \prime}$ RCP, $Q_{5}=5.4$ cfs and $Q_{100}=8.1 \mathrm{cfs}$ ) conveys this intercepted runoff to the south within Westmont Drive to a junction manhole with Pipes 31 \& 33 .

ENGINEERS \& SURVEYORS
Page 15

DESIGN POINT 21 ( $\mathbf{Q}_{\mathbf{5}}=\mathbf{3 . 8} \mathbf{c f s}$ and $\mathrm{Q}_{\mathbf{1 0 0}}=\mathbf{1 1 . 2} \mathbf{c f s}$ ) is the developed runoff from Basin $\mathrm{HH}, 1.33$ acres of proposed Filing No. 1 home lots and residential roadway Westmont Drive and the flow-by runoff from the at-grade inlet at DP-20. A proposed 10' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 34 (Proposed Public 24" RCP) conveys the runoff to the west to an adjacent junction manhole combining with Pipe 35 from Design Point 22. The emergency overflow path for this sump inlet is to overtop the high point to the south within Westmont Drive and continue south onto Sterling Ranch Road and to downstream facilities.

DESIGN POINT 22 ( $Q_{5}=2.4$ cfs and $Q_{100}=4.9$ cfs) is the developed runoff from Basin EE, 0.92 acres of proposed Filing No. 1 home lots and residential roadway Westmont Drive. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 35 (Proposed Public 18 " RCP) conveys the runoff to the east to an adjacent junction manhole combining with Pipe 34. Pipe 33 (Proposed Public 24 " RCP, $Q_{5}=6.0 \mathrm{cfs}$ and $Q_{100}=15.6 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the north within Westmont Drive to another junction manhole at the intersection of Westmont and Palo Alto. At this junction, Pipes 31, 32, \& 33 converge at Pipe 36A (Proposed Public 48" RCP, $Q_{5}=48.6$ cfs and $Q_{100}=$ 100.4 cfs) conveying the combined runoff to the southwest into Tract B and continuing toward Pond 14A. The emergency overflow for this low point is to overtop the high point to the south within Westmont Drive and continue south onto Sterling Ranch Road and to downstream facilities.

DESIGN POINT 23 ( $Q_{5}=3.1$ cfs and $Q_{100}=8.6 \mathbf{c f s}$ ) is the developed runoff from Basin P2-B6, 1.07 acres of existing Sterling Ranch Rd. located south of the proposed Filing 1 home lots, and the flow-by runoff from the existing at-grade inlet at DP-15. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing 15' CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $Q_{5}=3.1 \mathrm{cfs}, \mathrm{Q}_{100}=8.3 \mathrm{cfs}$ ) while the remaining runoff ( $\mathrm{Q}_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=0.3$ cfs) continues southwest on Sterling Ranch Road and to the at-grade inlet at Design Point 25. Pipe 37 (Existing Public $18^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=3.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=8.3 \mathrm{cfs}$ ) conveys this intercepted runoff to the north to the existing inlet at Design Point 24, on the opposite side of Sterling Ranch Road.

ENGINEERS \& SURVEYORS
Page 16

DESIGN POINT 24 ( $Q_{5}=\mathbf{3 . 1} \mathbf{~ c f s}$ and $Q_{100}=9.1 \mathbf{c f s}$ ) is the developed runoff from Basin P2-B5, 0.97 acres of existing Sterling Ranch Rd. located south of the proposed Filing No. 1 home lots, and the flow-by from the at-grade inlet at Design Point 16. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing $15^{\prime}$ CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $Q_{5}=3.1 \mathrm{cfs}, \mathrm{Q}_{100}=8.6 \mathrm{cfs}$ ) while the remaining runoff ( $\mathrm{Q}_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=0.5 \mathrm{cfs}$ ) continues southwest on Sterling Ranch Road and to the at-grade inlet at Design Point 26. Pipe 38 (Existing Public $18^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=6.2 \mathrm{cfs}$ and $\mathrm{Q}_{100}=16.9 \mathrm{cfs}$ ) conveys this intercepted runoff and that from existing Pipe 37, to the west into a proposed storm manhole, combining with the proposed $60^{\prime \prime}$ RCP storm main (Pipe 22) from the northeast. Pipe 39A (Proposed Public 60" RCP, $\mathrm{Q}_{5}=114.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=$ 254.6 cfs ) then conveys this combined runoff southwest, on the outside of the pavement section of Sterling Ranch Rd., to another junction manhole to the west, combining with the lot development storm main (Pipe 36B).

DESIGN POINT 25 ( $Q_{5}=\mathbf{3 . 7}$ cfs and $Q_{100}=7.7$ cfs) is the developed runoff from Basin P2-B8, 1.21 acres of existing Sterling Ranch Rd. located south of the proposed Filing 1 home lots, and the flow-by runoff from the existing at-grade inlet at DP-23. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing 15' CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $Q_{5}=3.7 \mathrm{cfs}, \mathrm{Q}_{100}=7.6 \mathrm{cfs}$ ) while the remaining runoff ( $\mathrm{Q}_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=0.1$ cfs) continues southwest on Sterling Ranch Road and to the sump inlet at Design Point 27. Pipe 40 (Existing Public $18^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=3.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=7.6 \mathrm{cfs}$ ) conveys this intercepted runoff to the north to the existing inlet at Design Point 26, on the opposite side of Sterling Ranch Road.

DESIGN POINT 26 ( $Q_{5}=3.8$ cfs and $Q_{100}=9.1 \mathrm{cfs}$ ) is the developed runoff from Basin P2-B7, 1.62 acres of existing Sterling Ranch Rd. located south of the proposed Filing No. 1 home lots, and the flow-by from the at-grade inlet at Design Point 24. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction and was completed in order to model the interception and pipe runoff rates. An existing $15^{\prime}$ CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $Q_{5}=3.1 \mathrm{cfs}, \mathrm{Q}_{100}=8.6 \mathrm{cfs}$ ) while the remaining runoff ( $\mathrm{Q}_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=0.5 \mathrm{cfs}$ )

Page 17
continues southwest on Sterling Ranch Road and to the sump inlet at Design Point 28. Pipe 41 (Existing Public $18^{\prime \prime}$ RCP, $Q_{5}=7.5 \mathrm{cfs}$ and $\mathrm{Q}_{100}=16.2 \mathrm{cfs}$ ) conveys this intercepted runoff and that from existing Pipe 40 , to the west into a proposed storm manhole, combining with the proposed $72^{\prime \prime}$ RCP storm main (Pipe 39B) from the east and Pipe 96 from Design Point 59. Pipe 42 (Proposed Public 72" RCP, $\mathrm{Q}_{5}=166.2$ cfs and $Q_{100}=364.8 \mathrm{cfs}$ ) then conveys this combined runoff west, directly into the proposed Full Spectrum Detention and Water Quality Facility - Pond 14A (Design Point 60).

DESIGN POINT $27\left(Q_{5}=7.5\right.$ cfs and $\left.Q_{100}=\mathbf{1 5 . 1} \mathbf{c f s}\right)$ is the developed runoff from Basin P2-B10, 2.31 acres of existing Sterling Ranch Rd. located southeast of the proposed Filing 1 home lots, and the flow-by runoff from the existing at-grade inlet at DP-25. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction, however due to the final elevations of Pond 14A, this design point/basin/pipe run does not drain into Pond 14A and must drain to the south into a separate FSD facility. An existing 15' CDOT Type R Sump inlet intercepts the entirety of this runoff. Pipe 44 (Existing Public $24^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=14.8 \mathrm{cfs}$ and $\mathrm{Q}_{100}=29.7 \mathrm{cfs}$ ) conveys this combined runoff from this Design Point and that from Pipe 43 (DP-28) to the south into a separate existing temporary detention and storm water quality facility. This existing separate temporary facility will be detailed and designed by JR Engineering prior to the installation of Sterling Ranch Road. The emergency overflow for this low point is to overtop the adjacent curb and drain south into the adjacent Sand Creek drainage channel.

DESIGN POINT 28 ( $\mathrm{Q}_{\mathbf{5}}=\mathbf{7 . 3} \mathbf{c f s}$ and $\mathrm{Q}_{100}=\mathbf{1 4 . 6} \mathbf{c f s}$ ) is the developed runoff from Basin P2-B9, 2.08 acres of existing Sterling Ranch Rd. located southeast of the proposed Filing 1 home lots, and the flow-by runoff from the existing at-grade inlet at DP-26. This matches the JR Engineering Drainage Letter basins and design point location for Briargate Pkwy./Sterling Ranch Road construction, however due to the final elevations of Pond 14A, this design point/basin/pipe run does not drain into Pond 14A and must drain to the south into a separate FSD facility. An existing $15^{\prime}$ CDOT Type R Sump inlet intercepts the entirety of this runoff. Pipe 43 (Existing Public 24 " RCP, $\mathrm{Q}_{5}=7.3$ cfs and $\mathrm{Q}_{100}=14.6 \mathrm{cfs}$ ) conveys this runoff to the sump inlet across Sterling Ranch Road (Design Point 27). The emergency overflow for this low point is to overtop the roadway crown then the southerly adjacent curb and drain south into the adjacent Sand Creek drainage channel.

Page 18

DESIGN POINT 29A ( $Q_{5}=5.9$ cfs and $Q_{100}=14.0$ cfs) is the developed runoff from Basin $A 1,3.78$ acres of proposed Filing No. 1 home lots and residential roadway, Pocatello Trail at the north end of the Filing No. 1 home lots. A proposed 10' CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $\mathrm{Q}_{5}=$ $5.2 \mathrm{cfs}, \mathrm{Q}_{100}=8.4 \mathrm{cfs}$ ) while the remaining runoff ( $\mathrm{Q}_{5}=0.7 \mathrm{cfs}, \mathrm{Q}_{100}=5.6 \mathrm{cfs}$ ) continues southwest along Pocatello Trail to the sump inlet at Design Point 29B. Pipe 45 (Proposed Public 18" RCP, $Q_{5}=5.2 \mathrm{cfs}$ and $\left.\mathrm{Q}_{100}=8.4 \mathrm{cfs}\right)$ conveys this intercepted runoff to the southwest within Pocatello Trail to a junction manhole with Pipe 46 from DP-30A.

DESIGN POINT 29B ( $\mathrm{Q}_{\mathbf{5}}=\mathbf{2 . 1} \mathbf{c f s}$ and $\left.\mathrm{Q}_{100}=\mathbf{8 . 7} \mathbf{c f s}\right)$ is the developed runoff from Basin $\mathrm{A} 2,0.72$ acres of proposed Filing No. 1 home lots and residential roadway Pocatello Trail and the flow-by runoff from the at-grade inlet at DP-29A. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 48 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff to the south to an adjacent junction manhole combining with Pipes 47 and 49. The emergency overflow path for this sump inlet is to overtop the high point to the southeast within Pocatello Trail and continue southeast along the roadway to downstream facilities.

DESIGN POINT 30A ( $Q_{5}=\mathbf{8 . 3} \mathbf{c f s}$ and $Q_{100}=\mathbf{1 8 . 6} \mathbf{c f s}$ ) is the developed runoff from Basin $B 1,4.72$ acres of proposed Filing No. 1 home lots and residential roadway, Pocatello Trail at the north end of the Filing No. 1 home lots. A proposed 10' CDOT Type R At-Grade inlet intercepts the majority of this runoff ( $\mathrm{Q}_{5}=$ $6.4 \mathrm{cfs}, Q_{100}=9.6 \mathrm{cfs}$ ) while the remaining runoff ( $\mathrm{Q}_{5}=1.9 \mathrm{cfs}, \mathrm{Q}_{100}=9.0 \mathrm{cfs}$ ) continues southwest along Pocatello Trail to the sump inlet at Design Point 30B. Pipe 46 (Proposed Public $18{ }^{\prime \prime}$ RCP, $Q_{5}=6.4 \mathrm{cfs}$ and $\left.\mathrm{Q}_{100}=9.6 \mathrm{cfs}\right)$ conveys this intercepted runoff to the north within Pocatello Trail to a junction manhole with Pipe 45 from DP-29A. Pipe 47 (Proposed Public $24^{\prime \prime}$ RCP, $Q_{5}=11.6$ cfs and $Q_{100}=18.0$ cfs) conveys the combined runoff from this manhole to the southwest within Pocatello Trail to another junction manhole between the sump inlets at Design Points 29 \& 30B.

DESIGN POINT 30B ( $Q_{5}=2.4 \mathrm{cfs}$ and $Q_{100}=9.9 \mathrm{cfs}$ ) is the developed runoff from Basin $B 2$ ( $\mathrm{Q}_{5}=0.7 \mathrm{cfs}$, $\left.Q_{100}=1.2 \mathrm{cfs}\right), 0.18$ acres of proposed Filing No. 1 home lots and residential roadway Pocatello Trail, and the flow-by from the at-grade inlet at Design Point 30A ( $\mathrm{Q}_{5}=1.9 \mathrm{cfs}, \mathrm{Q}_{100}=9.0 \mathrm{cfs}$ ). A proposed 10' CDOT

Page 19

Type R sump inlet intercepts the entirety of this runoff. Pipe 49 (Proposed Public 18" RCP) conveys the runoff to the north to an adjacent junction manhole combining with Pipes 47 \& 48. Pipe 50 (Proposed Public $30^{\prime \prime}$ RCP, $Q_{5}=16.1$ cfs and $Q_{100}=36.5 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southwest within Pocatello Trail toward the next sump inlets at Design Points $37 \& 38$. The emergency overflow path for this sump inlet is to overtop the high point to the southeast within Pocatello Trail and continue southeast along the roadway to downstream facilities.

DESIGN POINT 31 ( $Q_{\mathbf{5}}=\mathbf{5 . 1} \mathbf{c f s}$ and $Q_{100}=\mathbf{1 0 . 6} \mathbf{c f s}$ ) is the developed runoff from Basin $L, 2.40$ acres of proposed Filing No. 1 home lots and residential roadway Newport Beach Drive. A proposed 10' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 68 (Proposed Public 18" RCP) conveys the runoff to the south to an adjacent junction manhole combining with Pipe 69. The emergency overflow path for this sump inlet is to overtop the roadway crown and then high point at the southwest curb return of the Newport Beach Drive/Santa Clara Place intersection and continue southwest along Santa Clara Place to downstream facilities.

DESIGN POINT 32 ( $Q_{5}=\mathbf{3 . 5} \mathbf{c f s}$ and $\left.Q_{100}=\mathbf{7 . 2} \mathbf{c f s}\right)$ is the developed runoff from Basin $M, 1.40$ acres of proposed Filing No. 1 home lots and residential roadway Newport Beach Drive. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 69 (Proposed Public 18" RCP) conveys the runoff to the north to an adjacent junction manhole combining with Pipe 68. Pipe 70 (Proposed Public $24^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=8.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=16.8 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southeast within Newport Beach Drive and then south down Santa Clara Place. The emergency overflow path for this sump inlet is to overtop the high point at the southwest curb return of the Newport Beach Drive/Santa Clara Place intersection and continue southwest along Santa Clara Place to downstream facilities.

DESIGN POINT 33 ( $Q_{5}=\mathbf{5 . 3} \mathbf{c f s}$ and $Q_{100}=\mathbf{1 1 . 0} \mathbf{c f s}$ ) is the developed runoff from Basin $N, 2.46$ acres of proposed Filing No. 1 home lots and residential roadway Long Beach Terrace. A proposed 10' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 71 (Proposed Public 18" RCP) conveys the runoff to the southwest to an adjacent junction manhole combining with Pipe 72. The emergency overflow path for this sump inlet is to overtop the roadway crown and then high point at the southwest curb

Page 20
return of the Long Beach Terrace/Santa Clara Place intersection and continue southwest along Santa Clara Place to downstream facilities.

DESIGN POINT 34 ( $Q_{5}=\mathbf{4 . 0} \mathbf{c f s}$ and $Q_{100}=\mathbf{8 . 2} \mathbf{c f s}$ ) is the developed runoff from Basin $P, 1.59$ acres of proposed Filing No. 1 home lots and residential roadway Newport Beach Drive. A proposed 10' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 72 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff to the north to an adjacent junction manhole combining with Pipe 71. Pipe 73 (Proposed Public $24^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=8.8 \mathrm{cfs}$ and $\mathrm{Q}_{100}=18.1 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southeast within Long Beach Terrace to a junction manhole at Santa Clara Place with Pipe 70. Pipe 74 (Proposed Public $30^{\prime \prime}$ RCP, $Q_{5}=16.5$ cfs and $Q_{100}=34.1 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southwest within Santa Clara Place to the next set of inlets/manholes at the San Diego Way intersection. The emergency overflow path for this sump inlet is to overtop the high point at the southwest curb return of the Long Beach Terrace/Santa Clara Place intersection and continue southwest along Santa Clara Place to downstream facilities.

DESIGN POINT $35\left(Q_{5}=2.8\right.$ cfs and $\left.Q_{100}=5.6 \mathbf{c f s}\right)$ is the developed runoff from Basin $R, 1.18$ acres of proposed Filing No. 1 home lots and residential roadway San Diego Way. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 77 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff to the southwest to an adjacent junction manhole combining with Pipes $56 \& 78$. The emergency overflow path for this sump inlet is to overtop the roadway crown and then high point at the southwest curb return of the San Diego Way/Santa Clara Place intersection and continue southwest along Santa Clara Place to downstream facilities.

DESIGN POINT $36\left(Q_{5}=2.2 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=\mathbf{4 . 6} \mathbf{c f s}\right)$ is the developed runoff from Basin $\mathrm{S}, 1.02$ acres of proposed Filing No. 1 home lots and residential roadway San Diego Way. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 78 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff to the north to an adjacent junction manhole combining with Pipes 56 \& 77. Pipe 79 (Proposed Public $24^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=11.2 \mathrm{cfs}$ and $\mathrm{Q}_{100}=23.3 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southeast within San Diego Way to a junction manhole at Santa Clara Place with Pipe 76. See Design Point 47A for continued pipe network discussion. The emergency overflow path for this sump inlet is to
overtop the high point at the southwest curb return of the San Diego Way/Santa Clara Place intersection and continue southwest along Santa Clara Place to downstream facilities.

DESIGN POINT $37\left(Q_{5}=\mathbf{3 . 5} \mathbf{c f s}\right.$ and $\left.Q_{100}=\mathbf{7 . 0} \mathbf{c f s}\right)$ is the developed runoff from Basin $\mathrm{D}, 1.50$ acres of proposed Filing No. 1 home lots and residential roadways Pocatello Trail and San Diego Way. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 51 (Proposed Public 18" RCP) conveys the runoff to the west to an adjacent junction manhole combining with Pipes 50 and 52. The emergency overflow path for this sump inlet is to overtop the high point to the south within San Diego Way and continue south along the roadway to downstream facilities.

DESIGN POINT 38 ( $Q_{5}=4.7$ cfs and $Q_{100}=9.9 \mathrm{cfs}$ ) is the developed runoff from Basin $C, 2.31$ acres of proposed Filing No. 1 home lots and residential roadways Pocatello Trail and San Diego Way. A proposed $10^{\prime}$ CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 52 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff to the east to an adjacent junction manhole combining with Pipes 50 \& 51. Pipe 53 (Proposed Public $36^{\prime \prime}$ RCP, $Q_{5}=23.3 \mathrm{cfs}$ and $Q_{100}=51.1 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southeast within San Diego Way and then southwest within Clearlake Way and Pipe 57 (Proposed Public 36" RCP, $Q_{5}=23.0 \mathrm{cfs}$ and $Q_{100}=50.5 \mathrm{cfs}$ ). The emergency overflow path for this sump inlet is to overtop the high point to the south within San Diego Way and continue south along the roadway to downstream facilities.

DESIGN POINT 39 ( $Q_{5}=\mathbf{3 . 9}$ cfs and $Q_{100}=\mathbf{8 . 3} \mathbf{c f s}$ ) is the developed runoff from Basin $G, 1.89$ acres of proposed Filing No. 1 home lots and residential roadway San Diego Way. A proposed 10' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 54 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff to the southwest to an adjacent junction manhole combining with Pipe 55. The emergency overflow path for this sump inlet is to overtop the high point to the south within San Diego Way and continue south along the roadway to downstream facilities.

DESIGN POINT $40\left(Q_{5}=2.4\right.$ cfs and $\left.Q_{100}=4.9 \mathrm{cfs}\right)$ is the developed runoff from Basin $\mathrm{H}, 1.08$ acres of proposed Filing No. 1 home lots and residential roadway San Diego Way. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 55 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff

Page 22
to the east to an adjacent junction manhole combining with Pipe 54. Pipe 56 (Proposed Public 24 " RCP, $Q_{5}=6.3 \mathrm{cfs}$ and $Q_{100}=13.1 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southeast within San Diego Way toward the storm main within Santa Clara Place. The emergency overflow path for this sump inlet is to overtop the high point to the south within San Diego Way and continue south along the roadway to downstream facilities.

DESIGN POINT $41\left(Q_{5}=\mathbf{3 . 2} \mathbf{~ c f s}\right.$ and $\left.Q_{100}=6.4 \mathrm{cfs}\right)$ is the developed runoff from Basin $E, 1.07$ acres of proposed Filing No. 1 home lots and residential roadways Clearlake Way and Westmont Drive. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 60 (Proposed Public 18" RCP) conveys the runoff to the south to an adjacent junction manhole combining with Pipe 59. Pipe 61 (Proposed Public 42" RCP, $Q_{5}=26.1$ cfs and $Q_{100}=56.6 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southeast within Westmont Drive to another manhole between Design Points 43 \& 44 . The emergency overflow path for this sump inlet is to overtop the high point to the south within Westmont Drive and continue south along the roadway to downstream facilities.

DESIGN POINT $42\left(Q_{5}=1.5\right.$ cfs and $\left.Q_{100}=\mathbf{3 . 0} \mathbf{c f s}\right)$ is the developed runoff from Basin $F, 0.46$ acres of proposed Filing No. 1 home lots and residential roadways Clearlake Way and Westmont Drive. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 58 (Proposed Public 18" RCP) conveys the runoff to the north into an adjacent junction manhole combining with Pipe 57. Pipe 59 (Proposed Public $36^{\prime \prime}$ RCP, $Q_{5}=23.8 \mathrm{cfs}$ and $Q_{100}=52.1 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southwest within Clearlake Way to another manhole combining with Pipe 60. The emergency overflow path for this sump inlet is to overtop the high point to the south within Westmont Drive and continue south along the roadway to downstream facilities.

DESIGN POINT $43\left(Q_{5}=2.0\right.$ cfs and $\left.Q_{100}=4.2 \mathbf{c f s}\right)$ is the developed runoff from Basin J, 0.93 acres of proposed Filing No. 1 home lots and residential roadway Westmont Drive. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 62 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff to the southwest to an adjacent junction manhole combining with Pipes $61 \& 63$. The emergency overflow path for this sump inlet is to overtop the high point to the south within Westmont Drive and continue south along the roadway to downstream facilities.

Page 23

DESIGN POINT 44 ( $Q_{5}=\mathbf{1 . 3} \mathbf{c f s}$ and $Q_{100}=\mathbf{2 . 5} \mathbf{c f s}$ ) is the developed runoff from Basin $K, 0.44$ acres of proposed Filing No. 1 home lots and residential roadway Westmont Drive. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 63 (Proposed Public 18" RCP) conveys the runoff to the north into an adjacent junction manhole combining with Pipes 61 \& 62. Pipe 64 (Proposed Public $42^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=28.3 \mathrm{cfs}$ and $\mathrm{Q}_{100}=61.1 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southeast within Westmont Drive to another manhole between the sump inlets at Design Points 45 \& 46. The emergency overflow path for this sump inlet is to overtop the high point to the south within Westmont Drive and continue south along the roadway to downstream facilities.

DESIGN POINT 45 ( $Q_{5}=\mathbf{2 . 2} \mathbf{~ c f s}$ and $Q_{100}=\mathbf{4 . 6} \mathbf{c f s}$ ) is the developed runoff from Basin $\mathrm{V}, 1.02$ acres of proposed Filing No. 1 home lots and residential roadway Westmont Drive. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 65 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff to the southwest to an adjacent junction manhole combining with Pipes $64 \& 66$. The emergency overflow path for this sump inlet is to overtop the high point to the south within Westmont Drive and continue south along the roadway to downstream facilities.

DESIGN POINT $46\left(Q_{5}=\mathbf{1 . 4}\right.$ cfs and $\left.Q_{100}=\mathbf{2 . 7} \mathbf{c f s}\right)$ is the developed runoff from Basin $U, 0.46$ acres of proposed Filing No. 1 home lots and residential roadway Westmont Drive. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 66 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff to the north into an adjacent junction manhole combining with Pipes 64 \& 65. Pipe 67 (Proposed Public $42^{\prime \prime}$ RCP, $Q_{5}=30.7 \mathrm{cfs}$ and $Q_{100}=65.8 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southeast within Westmont Drive to another manhole about 150' south, combining with Pipe 84 from the southeast. See DP-48 for continued pipe network discussion. The emergency overflow path for this sump inlet is to overtop the high point to the south within Westmont Drive and continue south along the roadway to downstream facilities.

DESIGN POINT 47A ( $Q_{5}=5.1 \mathbf{c f s}$ and $\left.Q_{100}=10.3 \mathbf{c f s}\right)$ is the developed runoff from Basin $Q, 2.28$ acres of proposed Filing No. 1 home lots and residential roadways, Santa Clara Place, Newport Beach Drive, and Long Beach Terrace. A proposed 10' CDOT Type R At-Grade inlet intercepts the majority of this runoff

Page 24
( $Q_{5}=4.6 \mathrm{cfs}, Q_{100}=6.9 \mathrm{cfs}$ ) while the remaining runoff ( $Q_{5}=0.5 \mathrm{cfs}, Q_{100}=3.4 \mathrm{cfs}$ ) continues southwest along Santa Clara Place all the way to the sump inlet at Design Point 47B. Pipe 75 (Proposed Public 18" RCP, $Q_{5}=4.6$ cfs and $Q_{100}=6.9$ cfs) conveys this intercepted runoff to an adjacent manhole combining with Pipe 74 from the north. Pipe 76 (Proposed Public 30 " RCP, $Q_{5}=20.9$ cfs and $Q_{100}=40.4 \mathrm{cfs}$ ) conveys this combined runoff southwest within Santa Clara Place to another junction manhole at the intersection of San Diego Way \& Santa Clara Place where Pipe 79 (from DP-35 \& 36) connects. Pipe 80 (Proposed Public $42^{\prime \prime}$ RCP, $Q_{5}=31.4$ cfs and $Q_{100}=62.3 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the southwest within Santa Clara Place to Westmont Drive.

DESIGN POINT 47B ( $Q_{5}=5.3 \mathrm{cfs}$ and $\mathrm{Q}_{100}=\mathbf{1 3 . 0} \mathbf{~ c f s}$ ) is the developed runoff from Basin $T\left(Q_{5}=4.9 \mathrm{cfs}\right.$, $\left.\mathrm{Q}_{100}=9.9 \mathrm{cfs}\right), 2.10$ acres of proposed Filing No. 1 home lots and residential roadways Santa Clara Place, San Diego Way, \& Westmont Drive and the flow-by from the at-grade inlet at DP-47A ( $\mathrm{Q}_{5}=0.5 \mathrm{cfs}, \mathrm{Q}_{100}$ $=3.4 \mathrm{cfs})$. A proposed $10^{\prime}$ CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 81 (Proposed Public 24" RCP) conveys the runoff to the south into an adjacent junction manhole combining with Pipe 82. The emergency overflow path for this sump inlet is to overtop the high point to the south within Westmont Drive and continue south along the roadway to downstream facilities.

DESIGN POINT $48\left(Q_{5}=1.1\right.$ cfs and $\left.Q_{100}=2.1 \mathbf{c f s}\right)$ is the developed runoff from Basin $W, 0.36$ acres of proposed Filing No. 1 home lots and residential roadway Westmont Drive. A proposed 5' CDOT Type R sump inlet intercepts the entirety of this runoff. Pipe 82 (Proposed Public $18^{\prime \prime}$ RCP) conveys the runoff to the north into an adjacent junction manhole combining with Pipe 81. Pipe 83 (Proposed Public 24" RCP, $Q_{5}=6.2 \mathrm{cfs}$ and $Q_{100}=14.7 \mathrm{cfs}$ ) conveys the combined runoff from this manhole to the northwest within Westmont Drive to another manhole about 100' north, combining with Pipe 80 within Santa Clara Place. Pipe 84 (Proposed Public $42^{\prime \prime}$ RCP, $Q_{5}=36.9$ cfs and $Q_{100}=75.7 \mathrm{cfs}$ ) conveys the combined runoff (Pipes 80 \& 83) from this junction manhole to the northwest within Westmont Drive to another manhole about $60^{\prime}$ north, combining with Pipe 67 coming from the northwest within Westmont Drive. Pipe 85 (Proposed Public 48" RCP, $\mathrm{Q}_{5}=64.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=135.3 \mathrm{cfs}$ ) conveys the combined runoff (Pipes 67 \& 84) from this junction manhole to the southwest into Tract $B$ and the proposed community park. The emergency overflow path for this sump inlet is to overtop the high point to the south within Westmont Drive and continue south along the roadway to downstream facilities.

Page 25

DESIGN POINT 50 ( $\mathrm{Q}_{\mathbf{5}}=\mathbf{5 1 . 9}$ cfs and $\mathrm{Q}_{100}=\mathbf{1 2 6 . 6} \mathbf{c f s}$ ) is the developed runoff from Basin P2-S1, 36.59 acres of a future D20 Middle School site located directly adjacent to the proposed Filing 1 home lots with future access off both Sterling Ranch Road and Briargate Parkway. A site layout has not been completed at this time and therefore an estimated $42.2 \%$ composite imperviousness value for Basin P2-S1 (Developed) has been assumed based off similar sized middle school sites completed in the past. Corresponding ' C ' value runoff coefficients were applied to estimate this developed flow rate and therefore properly size the 48 " Private RCP stub (Pipe 14) and downstream storm system. Pipe 14 connects to the proposed storm main running along the outside of the Sterling Ranch Road pavement section (Pipe 13, Public 48" RCP). Pipe 15 (Proposed Public 60" RCP, $\mathrm{Q}_{5}=108.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=236.5 \mathrm{cfs}$ ) conveys the combined runoff from the future school development and that from Pipe 13 , to the south within a public storm easement and continuing outside of the Sterling Ranch Road pavement section to the inlets at Design Points 15 \& 16 .

The school site is not required to contain its own onsite water quality and detention facility and therefore the estimated developed flow rate and imperviousness was also utilized in sizing the proposed Full Spectrum Detention and Storm Water Quality Pond 14A. A separate Final Drainage Report for the school site will be completed at the time of Development Plan and will extend the private storm system throughout the school campus as needed and also confirm the estimated runoff rates and imperviousness value. If drastically different than this Final Drainage Report, modifications may be required to the downstream facilities or onsite detention/water quality may need to be implemented. Appropriate drainage fees will be assessed at the time of school site development and new final plat for the parcel.

The following Design Points 50B \& 50C were completed to collect the Undeveloped runoff from Basin P2-S1 prior to the development of the Middle School.

DESIGN POINT 50B ( $Q_{5}=\mathbf{3 . 6} \mathrm{cfs}$ and $\mathrm{Q}_{100}=\mathbf{2 6 . 6} \mathrm{cfs}$ ) is the undeveloped runoff from half of Basin P2-S1, 36.59 acres of the future school site parcel. A proposed CDOT Type D grated inlet (in-series, depressed) intercepts the entirety of this runoff. Pipe 14B (Proposed Private $30^{\prime \prime}$ RCP) conveys the runoff to the east

Page 26
into the inlet at DP-50C and ultimately connects to the 48 " storm lateral (Pipe 14) for the school site runoff.

DESIGN POINT 50C ( $\mathrm{Q}_{5}=\mathbf{3 . 6} \mathbf{c f s}$ and $\left.\mathrm{Q}_{100}=\mathbf{2 6 . 6} \mathrm{cfs}\right)$ is the undeveloped runoff from half of Basin P2-S1, 36.59 acres of the future school site parcel. A proposed CDOT Type D grated inlet (in-series, depressed) intercepts the entirety of this runoff. Pipe 14C (Proposed Private 36 " RCP, $\mathrm{Q}_{5}=7.2 \mathrm{cfs}$ and $\mathrm{Q}_{100}=53.2$ cfs) conveys the combined runoff from the undeveloped school parcel to the east into the $48^{\prime \prime}$ storm lateral (Pipe 14, 48" RCP for the developed school site runoff). The inlets and storm system within this parcel are Private and will be owned and maintained by the school once the property is dedicated as such.

DESIGN POINT 51 ( $Q_{5}=7.9$ cfs and $Q_{100}=16.1 \mathbf{c f s}$ ) is the developed runoff from Basin JJ, 2.63 acres of a future neighborhood park, future parking lot, and future small recreation center, located south of the proposed Filing 1 home lots and north of existing Sterling Ranch Road. A preliminary site layout is shown and was used in estimated this developed condition runoff rate. A future Final Drainage Report will be completed with this parking lot and building development. This future report will detail the private storm sewer collection and connection to the proposed Pipe 100 (Private 24" RCP stub). This Pipe 100 connects to the proposed storm main (Pipe 36A) coming from Palo Alto Trail and Design Points 20-22. Pipe 36B (Proposed Public $48^{\prime \prime}$ RCP, $Q_{5}=54.7$ cfs and $Q_{100}=112.7$ cfs) conveys the combined runoff from the future recreation center/parking and that from Pipe 36A, to the southwest within a public storm easement and continuing through Tract B where it connects with the main outside of the Sterling Ranch Road pavement section (Pipe 39A). Pipe 39B (Proposed Public 72" RCP, $Q_{5}=162.0$ cfs and $Q_{100}=351.4$ cfs) conveys the combined runoff from this junction manhole (Pipes 39A \& 36B) to the west directly toward the proposed Full Spectrum Pond 14A.

The recreation center/park/parking site is not required to contain its own onsite water quality and detention facility and therefore the estimated developed flow rate and imperviousness was also utilized in sizing the proposed Full Spectrum Detention and Storm Water Quality Pond 14A. A separate Final Drainage Report for the recreation center development will be completed at the time of Development Plan and will extend the private storm system as needed and also confirm the estimated runoff rates

Page 27
and imperviousness value. If drastically different than this Final Drainage Report, modifications may be required to the downstream facilities.

DESIGN POINT $52\left(Q_{5}=1.8 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=4.7 \mathrm{cfs}\right)$ is the developed runoff from Basin $\mathrm{MM}, 1.05$ acres of open space and the back of a few proposed Filing 1 home lots located southwest of Clearlake Way. A proposed CDOT Type C grated (depressed) inlet intercepts the entirety of this runoff. Pipe 86 (Proposed Private $18^{\prime \prime}$ RCP) conveys the runoff to the south into the grated inlet at Design Point 53. The inlets and storm system within the Park parcel are Private and will be owned and maintained by the Sterling Ranch East Metro District.

DESIGN POINT 53 ( $Q_{5}=1.1$ cfs and $\left.Q_{100}=3.1 \mathbf{c f s}\right)$ is the developed runoff from Basin NN, 0.73 acres of park area and the back of a few proposed Filing 1 home lots located off Westmont Drive. A proposed CDOT Type C grated (depressed) inlet intercepts the entirety of this runoff. Pipe 87 (Proposed Private $18^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=2.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=7.3 \mathrm{cfs}$ ) conveys the combined runoff from Pipe 86 and this design point, to the southeast into the next Type C inlet at Design Point 54.

DESIGN POINT 54 ( $Q_{5}=1.4$ cfs and $Q_{100}=3.7 \mathrm{cfs}$ ) is the developed runoff from Basin SS, 0.84 acres of park area and the back of a few proposed Filing 1 home lots located off Westmont Drive. A proposed CDOT Type C grated (depressed) inlet intercepts the entirety of this runoff. Pipe 88 (Proposed Private $18^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=3.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=10.5 \mathrm{cfs}$ ) conveys the combined runoff from Pipe 87 and this design point, to the southeast into a junction manhole with Pipe 85 (48" RCP) from the north. Pipe 89 (Proposed Public 54" RCP, $Q_{5}=67.0 \mathrm{cfs}$ and $Q_{100}=142.1 \mathrm{cfs}$ ) conveys the combined runoff (Pipes 85 \& 88) from this junction manhole to the south within Tract B and the proposed community park.

DESIGN POINT 55A ( $Q_{5}=1.1 \mathbf{c f s}$ and $\left.Q_{100}=3.2 \mathrm{cfs}\right)$ is the developed runoff from Basin LL1, 0.79 acres of park area and the back of a few proposed Filing 1 home lots located off Westmont Drive. A proposed CDOT Type C grated (depressed) inlet will intercept the entirety of this runoff. Pipe 89B (Proposed Private $18^{\prime \prime}$ RCP, $Q_{5}=1.1 \mathrm{cfs}$ and $Q_{100}=3.2 \mathrm{cfs}$ ) conveys the runoff to the west into a junction manhole with Pipe 89A ( 54 " RCP) from the north. Pipe 89C (Proposed Public 54 " RCP, $\mathrm{Q}_{5}=67.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=$

ENGINEERS \& SURVEYORS
Page 28
144.2 cfs) conveys the combined runoff (Pipes 89A \& 89B) from this junction manhole to the southwest within Tract B and the future community park.

DESIGN POINT 55B ( $Q_{5}=\mathbf{2 . 2} \mathbf{c f s}$ and $Q_{100}=7.0 \mathbf{c f s}$ ) is the developed runoff from Basin LL2, 1.75 acres of park area and the back of a few proposed Filing 1 home lots located off Westmont Drive. Pipe 90 (Proposed Private $18^{\prime \prime}$ RCP, $\mathrm{Q}_{5}=2.2$ cfs and $\mathrm{Q}_{100}=7.0 \mathrm{cfs}$ ) conveys the runoff to the west into a junction manhole with Pipe 89C (54" RCP) from the north. Pipe 91 (Proposed Public 54" RCP, $\mathrm{Q}_{5}=67.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=145.4 \mathrm{cfs}$ ) conveys the combined runoff (Pipes 89C \& 90) from this junction manhole to the southwest within Tract B and the future community park.

DESIGN POINT $56\left(Q_{5}=0.8 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=4.3 \mathrm{cfs}\right)$ is the future developed runoff from Basin $T T, 1.63$ acres of park and open space within Tract B. A future inlet/storm system will intercept this runoff and route to the proposed storm main. Pipe 92A (Future Private 18" RCP) will convey this runoff south to a future storm system and ultimately to the stub provided off Pipes 95/91. A future Final Drainage Report will be completed with the park development and will detail the extension of the private storm system.

DESIGN POINT $57\left(Q_{5}=\mathbf{2 . 1} \mathbf{c f s}\right.$ and $\left.Q_{100}=\mathbf{1 1 . 0} \mathbf{c f s}\right)$ is the future developed runoff from Basin PP, 4.21 acres of park and open space within Tract B. A future inlet/storm system will intercept this runoff and route to the proposed storm main. Pipe 92B (Future Private $24^{\prime \prime} \mathrm{RCP}, \mathrm{Q}_{5}=2.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=15.2 \mathrm{cfs}$ ) will convey this design point's runoff, and that from Future Pipe 92A, to the south to a future storm system and ultimately to the stub provided off Pipes 95/91. A future Final Drainage Report will be completed with the park development and will detail the extension of the private storm system.

DESIGN POINT $58\left(Q_{5}=3.0 \mathrm{cfs}\right.$ and $\left.Q_{100}=5.6 \mathrm{cfs}\right)$ is the future developed runoff from Basin $Q Q, 0.74$ acres of park and planned amphitheater (outside seating/stairs) within Tract B. A future inlet/storm system will intercept this runoff and route to the proposed storm main. Pipe 93 (Future Private $18{ }^{\prime \prime}$ RCP) will convey this runoff to the south to a future storm system combining with Future Pipe 92B. Pipe 94 (Proposed Private $24^{\prime \prime}$ RCP, $Q_{5}=5.4 \mathrm{cfs}$ and $\mathrm{Q}_{100}=20.0 \mathrm{cfs}$ ) conveys the combined runoff (Pipes 92B \& 93) fr申m this junction manhole to the southeast within Tract $B$ to the proposed pipe stub provided with the Fillng 1 storm construction. A future Final Drainage Report will be completed with the park

Page 29
development and will detail the extension of the private storm system. Pipe 95 (Proposed Public 54" $R C P, Q_{5}=71.1 \mathrm{cfs}$ and $Q_{100}=159.8 \mathrm{cfs}$ ) conveys the combined runoff (Pipes $91 \& 94$ ) from this junction manhole to the southwest, directly into the proposed Full Spectrum Detention and Storm Water Quality Facility Pond 14A (Design Point 60). A concrete impact structure per Mile High Flood District/City DCM Criteria will be installed at the entry point of this 54 " RCP into Pond 14A and prior to the concrete forebay required. A separate UD-BMP spreadsheet was completed and included in the Appendix for Pipe 95 (54" RCP) in order to accurately size the concrete forebay larger than the required 0.023 forebay volume. This spreadsheet also sized the 9.9 " wide notch needed at the end of the 18 " tall concrete forebay wall which will drain into the pond concrete trickle channel.

DESIGN POINT $59\left(Q_{5}=1.5 \mathrm{cfs}\right.$ and $\left.Q_{100}=9.2 \mathrm{cfs}\right)$ is the future developed runoff from Basin $K K, 3.51$ acres of the future park/fields within Tract B, west of the future recreation center and parking lot. A future inlet/storm system will intercept this runoff and route to the proposed storm main. Pipe 96 (Future Private $18^{\prime \prime}$ RCP) will convey this runoff to the south to a proposed manhole along the 72 " RCP Public main coming from the east. Pipe 42 (Proposed Public $72^{\prime \prime}$ RCP, $Q_{5}=166.2 \mathrm{cfs}$ and $Q_{100}=364.8 \mathrm{cfs}$ ) conveys the combined runoff (Pipes 39B, 41, \& 96) from this junction manhole to the west, directly into the proposed Full Spectrum Detention and Storm Water Quality Facility Pond 14A (Design Point 60). A concrete impact structure per Mile High Flood District/City DCM Criteria will be installed at the entry point of this 72" RCP into Pond 14A and prior to the concrete forebay required. A separate UD-BMP spreadsheet was completed and included in the Appendix for Pipe 42 ( $72^{\prime \prime}$ RCP) in order to accurately size the concrete forebay larger than the required 0.044 forebay volume. This spreadsheet also sized the $18^{\prime \prime}$ wide notch needed at the end of the $18^{\prime \prime}$ tall concrete forebay wall which will drain into the pond concrete trickle channel.

## DESIGN POINT 60 - FULL SPECTRUM DETENTION AND STORM WATER QUALITY FACILITY 'POND 14A'

( $Q_{5}=232.0 \mathrm{cfs}, Q_{100}=520.5 \mathrm{cfs}$ ) is the overall developed runoff into the proposed Full Spectrum Detention/Storm Water Quality Facility 'Pond 14A', including Basin RR and Pipes 42 \& 95. Basin RR is 5.99 acres of the detention facility and surrounding slope area. This facility is a Private Full Spectrum Extended Detention Basin per the El Paso County \& City of Colorado Springs and Mile High Flood District (MHFD), formally Urban Drainage Flood Control District, drainage criteria. The proposed facility was

Page 30
sized utilizing two excel workbooks from MHFD, UD-BMP version 3.07 and MHFD-Detention version 4.06. The composite impervious value was determined using Site-Level Low Impact Development (LID) Design Effective Impervious Calculator (IRF Form) located in the Appendix of this report. Also, an exhibit of the tributary area to the pond and the assumed impervious/pervious types is included in the Appendix.

A total of 156.85 acres of Sterling Ranch East Filing No. 1, future D20 middle school, and adjacent arterial and collector roadways is tributary to this facility at a calculated imperviousness of 48.8\%. The required EURV (Excess Urban Runoff Volume) is 8.766 acre-feet and the proposed top of outlet box at an elevation of 7023.80 (micropool w.s.e./start of $S W Q=7017.00$ ) provides a volume of 8.98 acre-feet. A 7' wide low flow concrete trickle channel will be installed from the proposed forebays at Pipe 42 \& Pipe 95 to the proposed pond outlet box at a $0.50 \%$ minimum slope. Per MHFD spreadsheet, 2nd orifice has 20 sq in opening and 3rd orifice has 24 sq in opening
A $30^{\prime}$ wide outlet box ( 4 ' deep opening) is proposed with a cup ur nux at iuzo.ov erevation. For a Full Spectrum facility, the outlet box orifice hole within the front plate is to drain the EURV in less than 72 hours. Per the MHFD-Detention version 4.06/spreadsheet from Mile High Flood District a total of (3) orifice holes are to be installed in the front plate of the outlet box with the bottom orifice hole of $2^{\prime \prime}$ wide $\times 3$ " high, and middle orifice of $4^{\prime \prime}$ wide $\times 4^{\prime \prime}$ high, and upper orifice of $5^{\prime \prime}$ wide $\times 4^{\prime \prime}$ high. A $2.5^{\prime}$ deep concrete bottom micropool is to be installed within the wing walls of the outlet structure, with a surface area of 1,070 square feet. An initial surcharge depth of 6 " will be provided within the micropool outlet structure. A removable trash screen of $24^{\prime \prime}$ in width opening (per UD-BMP) will be placed in front of the orifice plate to help prevent the orifice holes from clogging. A Private $48^{\prime \prime}$ RCP outlet pipe (Pipe 98 ) will convey the detained release ( $\mathrm{Q}_{5}=3.0 \mathrm{cfs}, \mathrm{Q}_{100}=54.2 \mathrm{cfs}, 100-\mathrm{yr}$ water surface elevation of $7025.88, \mathrm{MH}-$ Detention) to the existing Sand Creek corridor (Reach SC-8) located directly west of Filing 1. A concrete impact structure per Mile High Flood District will be installed at the end of this 48 " outfall pipe, followed by riprap pad protection (D50 $=9 \prime \prime$, Width $=7^{\prime} \mathrm{min}$. ( $14^{\prime}$ used), Length $=19^{\prime} \mathrm{min}$. ( $20^{\prime}$ used), Depth $1.5^{\prime}$ min.) sized using the UD-Culvert spreadsheet located in the appendix. The use of both types of energy dissipation will ensure adequate protection against erosion at the downstream channel. This facility restricts the release to below pre-development (historic levels) per the MHFD-Detention spreadsheet and is in conformance with the Preliminary Drainage Report and MDDP Amendment.

Page 31

A 180 ' length riprap emergency spillway located at elevation 7026.00 will pass the entire incoming 100year storm event ( $Q_{100}=520.5 \mathrm{cfs}$ ) at a flood depth of $0.80^{\prime}$ in case of complete outlet box and pipe failure. Per the Drainage Criteria Manual (DCM), the top of the pond berm shall be minimum 2.0 ' higher than the flood depth water surface elevation. The proposed 12 ' wide top of berm elevation is at 7029.00. This emergency spillway will only be utilized in the case of a complete outlet box failure, and will drain directly into the Sand Creek channel improvements to the west. A $12^{\prime}$ wide maintenance access road at $15 \%$ max. grade will be installed to the bottom of the facility and to each concrete structure per the DCM.

This facility adequately treats all 156.85 tributary acres of Sterling Ranch East developed flows for storm water quality and detains the release to below historic rates $\left(Q_{5}=3.0 \mathrm{cfs}, \mathrm{Q}_{100}=124.7\right.$ cfs per MHFDDetention). Per the Code of Colorado Regulations 4.2.5.1 a Jurisdictional Size Dam height is measured, either from the invert of the outlet pipe at the longitudinal centerline of the embankment (spillway elevation $=7026.00 \& 48^{\prime \prime}$ invert at centerline of dam is 7016.47 , $9.53^{\prime}$ ) or the spillway elevation compared to the existing ground at the centerline (spillway elevation $=7026.00$ \& existing ground (prior to any land disturbance, including the JR temporary pond) $=7036.69$, height $=10.69^{\prime}$. The existing ground elevation as shown on the construction drawings and drainage maps (JR Engineering temporary pond and roadway ditch $)=7010.00$, for a dam height $=16.00^{\prime}$. As the natural grades at this pond, prior to any land disturbance are higher than the proposed top of dam (excavated conditions), a dam height of 10.69 ' is established. A dam height of higher than 10 ' is considered a 'Jurisdictional' facility with the State of Colorado. Additional documentation/coordination with the State Engineer is required and in process for the proposed facility. Maintenance and ownership of the Private detention/water quality facility and the pond outfall pipe is by the Sterling Ranch Metropolitan District \#3. An El Paso County Detention Pond Maintenance Agreement will be required indicating these Facilities are to be owned and maintained by the Metro District.

BASIN CH-1 ( $Q_{5}=\mathbf{6 . 9} \mathbf{c f s}$ and $\left.Q_{100}=\mathbf{5 1 . 0} \mathbf{c f s}\right)$ is 27.11 acres of the open space and adjacent existing Sand Creek (Reach SC-8) and future channel improvements (by JR Engineering) that are within the boundary of Sterling Ranch East Filing No. 1. No Development is located within this basin as it's only open space

Page 32
and channel work including FEMA floodplain limits. There is no proposed grading with the Filing No. 1 development within the Floodplain Limits and all channel work is completed per the "Final Drainage Report for Sand Creek Restoration," by JR Engineering, LLC, dated September 2022.

BASIN CH-2 ( $Q_{5}=\mathbf{3 . 6} \mathbf{c f s}$ and $Q_{100}=\mathbf{2 6 . 2} \mathbf{~ c f s )}$ ) is 10.62 acres of the open space and adjacent Sand Creek (Reach SC-8) channel improvements that are within the boundary of Sterling Ranch East Filing No. 1. No Development is located within this basin as it's only open space and channel work including FEMA floodplain limits. There is no proposed grading with the Filing No. 1 development within the Floodplain Limits and all channel work is completed per the "Final Drainage Report for Sand Creek Restoration," by JR Engineering, LLC, dated September 2022.

## STORMWATER QUALITY (FOUR STEP PROCESS)

El Paso County requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps to achieve stormwater permit requirements is required. The site adheres to this Four Step Process as follows:

1. Individual home roof downspouts will be directed onto pervious landscape areas. The additional grass buffer BMP provides the following: 1) Minimize directly connected impervious areas. 2) Provides initial pollutant and sediment removal before entering the storm system. Rear yard flows of those proposed lots adjacent to public streets will be directed over a grass buffer area (both landscaped and native grasses) to provide treatment of these small rear year areas.
2. The proposed Pond 14A provides Detention and Stormwater Quality Treatment for the entirety of the proposed development and surrounding arterial and collector roadways. The facility in conjunction with Step 1 implementation above will address all required Water Quality Capture Volume and Slow Release Requirements.

ENGINEERS \& SURVEYORS
Page 33
3. The recipient of the drainage flows from the site is Sand Creek (Reach SC-8), with an estimated 100-year storm runoff rate along Filing No. 1 between 1,487 cfs to $1,904 \mathrm{cfs}$. This portion of the creek contains 100-year FEMA floodplain, but no jurisdictional wetlands or Preble's Jumping Mouse habitat. As such the downstream corridor is very well established and as the detained developed release rate is far less than historic, theoretically no additional erosion will occur. The adjacent Sand Creek Channel Improvements accounted for the restricted runoff from Pond 14A.
4. Does not apply to this Residential subdivision as this step is to 'consider the need for Industrial and Commercial BMPs'. Temporary construction BMPs will be installed per the approved grading and erosion control plans.

## DRAINAGE AND BRIDGE FEES

Sterling Ranch East Filing No. 1 is within the Sand Creek Drainage Basin and is a total of 161.524 acres. Per the year 2022 El Paso County Basin Fees, the Sand Creek Drainage Fee is $\$ 21,814$ per impervious acre of development and the Bridge Fee is $\$ 8,923$ per impervious acre. Filing 1 consists of 47.444 acres of typical home lots, 12.934 acres of public right-of-way (roads), and 101.146 acres of open space/undeveloped area (including a future school site in Tract J, and a future park \& recreation center in Tract B). Future Final Drainage Reports will be completed at the time of park and school developments that will detail those site imperviousness and basin fees. Using Table 6-6 of the DCM, specifically 65\% imperviousness for typical home lots, $100 \%$ imperviousness for pavement/right-of-way, and $0 \%$ imperviousness for open space/undeveloped area; an overall Filing No. 1 impervious area is calculated at 43.773 acres. (See below of breakdown)
47.444 acres @ 65\%=30.839 acres of imperviousness
12.934 acres @ 100\% = 12.934 acres of imperviousness
101.146 acres @ $0 \%=0.00$ acres of imperviousness
$\underline{\text { TOTAL IMPERVIOUSNESS }=43.773 \text { ACRES }}$

FILING No. 1 (43.773 Impervious acres)
DRAINAGE FEE:
$\$ 21,814 /$ acre $\times 43.773$ acres
$\$ 954,864.22$

BRIDGE FEE:
\$8,923/acre x 43.773 acres
$\$ 390,586.48$

Basin fees will be required to be paid prior to plat recordation.

## CONSTRUCTION COST OPINION

The following is a construction cost opinion for the public facilities, located within the public right-ofway and accepting runoff from the public roadways, and the private facilities, intercepting the runoff from the adjacent school and park sites, and routing to the downstream natural channel:

Public Drainage Facilities Non-reimbursable (FILING NO. 1)

| ITEM | DESCRIPTION | QUANTITY | UNIT COST | COST |
| :---: | :---: | :---: | :---: | :---: |
| 1. | 5' Type-R Inlet | 15 EACH | \$7,981/EA | \$ 119,715.00 |
| 2. | 10' Type-R Inlet | 16 EACH | \$8,706/EA | \$139,296.00 |
| 3. | 15' D-10-R Inlet | 5 EACH | \$11,775/EA | \$ 58,875.00 |
| 4. | $18^{\prime \prime}$ RCP Storm Drain | 1,102 LF | \$70/LF | \$ 77,140.00 |
| 5. | 24" RCP Storm Drain | 1,450 LF | \$83/LF | \$120,350.00 |
| 6. | 30" RCP Storm Drain | 920 LF | \$104/LF | \$ 95,680.00 |
| 7. | 36" RCP Storm Drain | 1,130 LF | \$128/LF | \$ 144,640.00 |
| 8. | 42" RCP Storm Drain | 2,541 LF | \$171/LF | \$ 434,511.00 |
| 9. | $48^{\prime \prime}$ RCP Storm Drain | 629 LF | \$209/LF | \$ 131,461.00 |
| 10. | 54 " RCP Storm Drain | 565 LF | \$272/LF | \$ 153,680.00 |
| 11. | 60" RCP Storm Drain | 1,713 LF | \$319/LF | \$546,447.00 |
| 12. | 72" RCP Storm Drain | 609 LF | \$421/LF | \$ 256,389.00 |
| 13. | Type II Storm MH | 18 EACH | \$7,082/EA | \$ 127,476.00 |
| 14. | Type I Storm MH | 33 EACH | \$12,876/EA | \$ 424,908.00 |

SUB-TOTAL
10\% ENGINEERING
5\% CONTINGENCIES

## TOTAL

\$ 2,830,568.00
\$ 283,056.80
$\$ 141,528.40$
$\$ \mathbf{\$ 3 , 2 5 5 , 1 5 3 . 2 0}$

Page 35

Private Drainage Facilities Non-reimbursable (FILING NO. 1)

| ITEM | DESCRIPTION | QUANTITY | UNIT COST | COST |
| :---: | :---: | :---: | :---: | :---: |
| 1. | Geotextile (under riprap) | 3,079 SY | \$7.00/SY | \$ 21,553.00 |
| 2. | Riprap (spillway) | 1,775 TONS | \$89/TON | \$ 157,975.00 |
| 3. | 18" RCP Storm Drain | 1,021 LF | \$70/LF | \$ 71,470.00 |
| 4. | $24^{\prime \prime}$ RCP Storm Drain | 24 LF | \$83/LF | \$ 1,992.00 |
| 5. | $30^{\prime \prime}$ RCP Storm Drain | 870 LF | \$104/LF | \$ 90,480.00 |
| 6. | 36 " RCP Storm Drain | 247 LF | \$128/LF | \$ 31,616.00 |
| 7. | $48^{\prime \prime}$ RCP Storm Drain | 98 LF | \$209/LF | \$ 20,482.00 |
| 8. | CDOT Type C \& D Inlets | 7 EA | \$5,138/EA | \$ 35,966.00 |
| 9. | Type II Storm MH | 1 EA | \$7,082/EA | \$ 7,082.00 |
| 10. | Type I Storm MH | 1 EA | \$12,876/EA | \$ 12,876.00 |
| 11. | Permanent Pond ' $14 \mathrm{~A}^{\prime}$ * | 1 EA | \$200,000/EA | \$ 200,000.00 |
| SUB-T | TAL |  |  | \$651,492.00 |
| 10\% E | NGINEERING |  |  | \$ 65,149.20 |
| 5\% CO | NTINGENCIES |  |  | \$ 32,574.60 |
| TOTAL |  |  |  | \$ 749,215.80 |

*Includes cost of impact structures, forebays, trickle channel, road, and outlet box.

## SUMMARY

Developed runoff from the proposed Sterling Ranch East Filing No. 1 development and the surrounding tributary arterial (Briargate Parkway) and collector (Sterling Ranch Road) roadways is proposed to outfall to one proposed private Full Spectrum Detention (EDB) and Storm Water Quality Facility (owned and maintained by the Sterling Ranch Metropolitan District \#3) prior to discharging to downstream facilities. The proposed Full Spectrum detention \& water quality pond was sized using the current and applicable drainage criteria and provides release rates below existing allowable release rates. Therefore, the developed site runoff and proposed storm sewer facilities will not adversely affect the downstream facilities or surrounding developments.

PREPARED BY:

Matthew Larson
Project Manager

Page 36

## REFERENCES

1. City of Colorado Springs/County of El Paso Drainage Criteria Manual Volume 1, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
2. "Urban Storm Drainage Criteria Manual Volume 1, 2 \& 3," Urban Drainage and Flood Control District, dated January 2016.
3. "Sand Creek Drainage Basin Planning Study," by Kiowa Engineering Corporation, dated March 1996.
4. "2018 Sterling Ranch MDDP," by M\&S Consultants, Inc., June 2018.
5. "Final Drainage Report for Retreat at TimberRidge Filing No. 1", Classic Consulting, approved November, 2020.
6. "Final Drainage Report for Retreat at TimberRidge Filing No. 2", Classic Consulting, dated March, 2022
7. "Final Design Report for Sand Creek Restoration", JR Engineering, LLC, dated September 2022
8. "Drainage Letter for Sterling Ranch Road and Briargate Pkwy. Interim Plan", prepared by JR Engineering, LLC, dated September 2022
9. "Master Development Drainage Plan Amendment for Sterling Ranch", prepared by JR Engineering, LLC, dated September 2022


## APPENDIX

## VICINITY MAP



SOILS MAP (S.C.S. SURVEY)

$38^{\circ} 56^{\prime} 49^{\prime \prime} \mathrm{N}$


## MAP LEGEND

| Area of Interest (AOI) |  |
| :--- | :--- |
|  | Area of Interest (AOI) |
| Soils |  |
| $\square$ | Soil Map Unit Polygons |
| $\square$ | Soil Map Unit Lines |
| $\square$ |  |

Special Point Features
(0) Blowout

B Borrow Pit
澊 Clay Spot
$\diamond$ Closed Depression
Gravel Pit
$\therefore$ Gravelly Spot
(8) Landfill
A. Lava Flow

Marsh or swamp
会 Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
$\uparrow$ Saline Spot
$\therefore$ Sandy Spot
Severely Eroded Spot
- Sinkhole

3) Slide or Slip
4) Sodic Spot

## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 19, 2018—May 26, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

## Map Unit Legend

| Map Unit Symbol |  | Map Unit Name | Acres in AOI |
| :--- | :--- | ---: | ---: |
| 8 | Blakeland loamy sand, 1 to 9 <br> percent slopes | 171.3 | Percent of AOI |
| 9 | Blakeland-Fluvaquentic <br> Haplaquolls | 1.0 | $5.8 \%$ |
| 19 | Columbine gravelly sandy <br> loam, 0 to 3 percent slopes | 982.6 | $0.0 \%$ |
| 40 | Kettle gravelly loamy sand, 3 <br> to 8 percent slopes | 33.7 | $33.5 \%$ |
| 41 | Kettle gravelly loamy sand, 8 <br> to 40 percent slopes | 135.2 | $1.2 \%$ |
| 71 | Pring coarse sandy loam, 3 to <br> 8 percent slopes | $\mathbf{1 , 6 0 5 . 2}$ | $4.6 \%$ |
| Totals for Area of Interest |  | $\mathbf{2 , 9 2 9 . 0}$ | $54.8 \%$ |

## El Paso County Area, Colorado

## 8-Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting<br>National map unit symbol: 369v<br>Elevation: 4,600 to 5,800 feet<br>Mean annual precipitation: 14 to 16 inches<br>Mean annual air temperature: 46 to 48 degrees F<br>Frost-free period: 125 to 145 days<br>Farmland classification: Not prime farmland<br>\section*{Map Unit Composition}<br>Blakeland and similar soils: 98 percent<br>Minor components: 2 percent<br>Estimates are based on observations, descriptions, and transects of the mapunit.<br>\section*{Description of Blakeland}<br>\section*{Setting}<br>Landform: Hills, flats<br>Landform position (three-dimensional): Side slope, talf<br>Down-slope shape: Linear<br>Across-slope shape: Linear<br>Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock<br>\section*{Typical profile}<br>A - 0 to 11 inches: loamy sand<br>AC - 11 to 27 inches: loamy sand<br>C-27 to 60 inches: sand<br>\section*{Properties and qualities}<br>Slope: 1 to 9 percent<br>Depth to restrictive feature: More than 80 inches<br>Drainage class: Somewhat excessively drained<br>Runoff class: Low<br>Capacity of the most limiting layer to transmit water (Ksat): High to very high ( 5.95 to $19.98 \mathrm{in} / \mathrm{hr}$ )<br>Depth to water table: More than 80 inches<br>Frequency of flooding: None<br>Frequency of ponding: None<br>Calcium carbonate, maximum content: 5 percent<br>Available water supply, 0 to 60 inches: Low (about 4.5 inches)<br>\section*{Interpretive groups}<br>Land capability classification (irrigated): 3e<br>Land capability classification (nonirrigated): 6 e<br>Hydrologic Soil Group: A<br>Ecological site: R049XB210CO - Sandy Foothill<br>Hydric soil rating: No

## Minor Components

## Other soils

Percent of map unit: 1 percent
Hydric soil rating: No

## Pleasant

Percent of map unit: 1 percent
Landform: Depressions
Hydric soil rating: Yes

## Data Source Information

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 19, Aug 31, 2021

## El Paso County Area, Colorado

## 19-Columbine gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting<br>National map unit symbol: 367p<br>Elevation: 6,500 to 7,300 feet<br>Mean annual precipitation: 14 to 16 inches<br>Mean annual air temperature: 46 to 50 degrees F<br>Frost-free period: 125 to 145 days<br>Farmland classification: Not prime farmland<br>\section*{Map Unit Composition}<br>Columbine and similar soils: 97 percent<br>Minor components: 3 percent<br>Estimates are based on observations, descriptions, and transects of the mapunit.<br>\section*{Description of Columbine}<br>\section*{Setting}<br>Landform: Flood plains, fan terraces, fans<br>Down-slope shape: Linear<br>Across-slope shape: Linear<br>Parent material: Alluvium<br>\section*{Typical profile}<br>A - 0 to 14 inches: gravelly sandy loam<br>C-14 to 60 inches: very gravelly loamy sand<br>\section*{Properties and qualities}<br>Slope: 0 to 3 percent<br>Depth to restrictive feature: More than 80 inches<br>Drainage class: Well drained<br>Runoff class: Very low<br>Capacity of the most limiting layer to transmit water (Ksat): High to very high ( 5.95 to $19.98 \mathrm{in} / \mathrm{hr}$ )<br>Depth to water table: More than 80 inches<br>Frequency of flooding: None<br>Frequency of ponding: None<br>Available water supply, 0 to 60 inches: Very low (about 2.5 inches)<br>Interpretive groups<br>Land capability classification (irrigated): 4e<br>Land capability classification (nonirrigated): 6e<br>Hydrologic Soil Group: A<br>Ecological site: R049XY214CO - Gravelly Foothill<br>Hydric soil rating: No<br>\section*{Minor Components}<br>\section*{Fluvaquentic haplaquolls}<br>Percent of map unit: 1 percent

Landform: Swales
Hydric soil rating: Yes
Other soils
Percent of map unit: 1 percent
Hydric soil rating: No

## Pleasant

Percent of map unit: 1 percent
Landform: Depressions
Hydric soil rating: Yes

## Data Source Information

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 19, Aug 31, 2021

## F.E.M.A. MAP




# LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED) 

## COMMUNITY INFORMATION

## APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NFIP regulations.

## COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.


David N. Bascom, Program Specialist

## Federal Emergency Management Agency

## LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Ms. Jeanine D. Petterson<br>Director, Mitigation Division<br>Federal Emergency Management Agency, Region VIII<br>Denver Federal Center, Building 710<br>P.O. Box 25267<br>Denver, CO 80225-0267<br>(303) 235-4830

## STATUS OF THE COMMUNITY NFIP MAPS

We will not physically revise and republish the FIRM and FIS report for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM panels) and FIS report warrant physical revision and republication in the future, we will incorporate the modifications made by this LOMR at that time.


| Page 4 of 4 | Issue Date: March 6, 2 |
| :--- | :--- |

## Federal Emergency Management Agency

Washington, D.C. 20472

## LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)



Within 90 days of the second publication in the local newspaper, a citizen may request that we reconsider this determination. Any request for reconsideration must be based on scientific or technical data. Therefore, this letter will be effective only after the 90 -day appeal period has elapsed and we have resolved any appeals that we receive during this appeal period. Until this LOMR is effective, the revised BEs presented in this LOMR may be changed.

A notice of changes will be published in the Federal Register. A short notice also will be published in your local newspaper on or about the dates listed below. Please refer to FEMA's website at https://www.floodmaps.fema.gov/fhm/Scripts/bfe_main.asp for a more detailed description of proposed BFE changes, which will be posted within a week of the date of this letter.

Name: El Paso County News
Dates: 03/18/09 03/25/09


David N. Bascom, Program Specialist


## DEVELOPED CONDITIONS CALCULATIONS



| JOB NAME: |  |
| :--- | :--- |
| JOB NUMBER: | $\frac{\text { Sterling Ranch East Filing No. } 1}{1183.30}$ |
| DAIE: | $\underline{08 / 04 / 22}$ |
| CALCULATED BY: | $\frac{\text { MAL }}{}$ |

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY (DEVELOPED CONDITIONS)

| BASIN | TOTAL AREA (AC) | IMPERVIOUS AREA / STREETS |  |  | LOTS/LANDSCAPE/UNDEV. AREAS (NOT PAVEMENT) |  |  |  | WEIGHTED |  | WEIGHTED CA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AREA (AC) | C(5) | C(100) | AREA (AC) | LAND USE | C(5) | C(100) | C(5) | C(100) | CA(5) | CA(100) |
| A1 | 3.78 | 0.46 | 0.90 | 0.96 | 2.24 | S/F | 0.45 | 0.59 | 0.40 | 0.57 | 1.51 | 2.14 |
|  |  |  |  |  | 1.08 | OPEN | 0.08 | 0.35 |  |  |  |  |
| A2 | 0.72 | 0.12 | 0.90 | 0.96 | 0.60 | S/F | 0.45 | 0.59 | 0.53 | 0.65 | 0.38 | 0.47 |
| B1 | 4.72 | 0.71 | 0.90 | 0.96 | 0.78 | OPEN | 0.08 | 0.35 | 0.46 | 0.61 | 2.15 | 2.86 |
|  |  |  |  |  | 3.23 | S/F | 0.45 | 0.59 |  |  |  |  |
| B2 | 0.18 | 0.10 | 0.90 | 0.96 | 0.08 | S/F | 0.45 | 0.59 | 0.70 | 0.80 | 0.13 | 0.14 |
| C | 2.31 | 0.33 | 0.90 | 0.96 | 1.98 | S/F | 0.45 | 0.59 | 0.51 | 0.64 | 1.19 | 1.49 |
| D | 1.50 | 0.44 | 0.90 | 0.96 | 1.06 | S/F | 0.45 | 0.59 | 0.58 | 0.70 | 0.87 | 1.05 |
| E | 1.07 | 0.29 | 0.90 | 0.96 | 0.78 | S/F | 0.45 | 0.59 | 0.57 | 0.69 | 0.61 | 0.74 |
| F | 0.46 | 0.20 | 0.90 | 0.96 | 0.26 | S/F | 0.45 | 0.59 | 0.65 | 0.75 | 0.30 | 0.35 |
| G | 1.89 | 0.24 | 0.90 | 0.96 | 1.65 | S/F | 0.45 | 0.59 | 0.51 | 0.64 | 0.96 | 1.20 |
| H | 1.08 | 0.20 | 0.90 | 0.96 | 0.88 | S/F | 0.45 | 0.59 | 0.53 | 0.66 | 0.58 | 0.71 |
| J | 0.93 | 0.16 | 0.90 | 0.96 | 0.77 | S/F | 0.45 | 0.59 | 0.53 | 0.65 | 0.49 | 0.61 |
| K | 0.44 | 0.16 | 0.90 | 0.96 | 0.28 | S/F | 0.45 | 0.59 | 0.61 | 0.72 | 0.27 | 0.32 |
| L | 2.40 | 0.43 | 0.90 | 0.96 | 1.97 | S/F | 0.45 | 0.59 | 0.53 | 0.66 | 1.27 | 1.58 |
| M | 1.40 | 0.29 | 0.90 | 0.96 | 1.11 | S/F | 0.45 | 0.59 | 0.54 | 0.67 | 0.76 | 0.93 |
| N | 2.46 | 0.52 | 0.90 | 0.96 | 1.94 | S/F | 0.45 | 0.59 | 0.55 | 0.67 | 1.34 | 1.64 |
| P | 1.59 | 0.37 | 0.90 | 0.96 | 1.22 | S/F | 0.45 | 0.59 | 0.55 | 0.68 | 0.88 | 1.08 |
| Q | 2.28 | 0.65 | 0.90 | 0.96 | 1.63 | S/F | 0.45 | 0.59 | 0.58 | 0.70 | 1.32 | 1.59 |
| R | 1.18 | 0.33 | 0.90 | 0.96 | 0.85 | S/F | 0.45 | 0.59 | 0.58 | 0.69 | 0.68 | 0.82 |
| S | 1.02 | 0.18 | 0.90 | 0.96 | 0.84 | S/F | 0.45 | 0.59 | 0.53 | 0.66 | 0.54 | 0.67 |
| T | 2.10 | 0.67 | 0.90 | 0.96 | 1.43 | S/F | 0.45 | 0.59 | 0.59 | 0.71 | 1.25 | 1.49 |


| JOB NAME: Sterling Ranch East Filing No. 1 <br> JOB NUMBER: 1183.30 <br> DAIE: $\mathbf{0 8 / 0 4 / 2 2}$ <br> CALCULATED BY: $\boldsymbol{M A L}$ |  |  |  | BASIN | RUNOFF | COEFFIC | NT | MARY | VELO | D CO | IONS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASIN | TOTAL AREA (AC) | IMPERVIOUS AREA / STREETS |  |  | LOTS/LANDSCAPE/UNDEV. AREAS (NOT PAVEMENT) |  |  |  | WEIGHTED |  | WEIGHTED CA |  |
|  |  | AREA (AC) | C(5) | C(100) | AREA (AC) | LAND USE | C(5) | C(100) | C(5) | C(100) | CA(5) | CA(100) |
| U | 0.46 | 0.18 | 0.90 | 0.96 | 0.28 | S/F | 0.45 | 0.59 | 0.63 | 0.73 | 0.29 | 0.34 |
| V | 1.02 | 0.18 | 0.90 | 0.96 | 0.84 | S/F | 0.45 | 0.59 | 0.53 | 0.66 | 0.54 | 0.67 |
| W | 0.36 | 0.14 | 0.90 | 0.96 | 0.22 | S/F | 0.45 | 0.59 | 0.63 | 0.73 | 0.23 | 0.26 |
| X | 2.93 | 0.50 | 0.90 | 0.96 | 2.43 | S/F | 0.45 | 0.59 | 0.53 | 0.65 | 1.54 | 1.91 |
| Y | 1.67 | 0.42 | 0.90 | 0.96 | 1.25 | S/F | 0.45 | 0.59 | 0.56 | 0.68 | 0.94 | 1.14 |
| Z | 3.22 | 0.43 | 0.90 | 0.96 | 2.79 | S/F | 0.45 | 0.59 | 0.51 | 0.64 | 1.64 | 2.06 |
| AA | 1.66 | 0.33 | 0.90 | 0.96 | 1.33 | S/F | 0.45 | 0.59 | 0.54 | 0.66 | 0.90 | 1.10 |
| BB | 3.13 | 0.40 | 0.90 | 0.96 | 2.73 | S/F | 0.45 | 0.59 | 0.51 | 0.64 | 1.59 | 1.99 |
| CC | 1.50 | 0.38 | 0.90 | 0.96 | 1.12 | S/F | 0.45 | 0.59 | 0.56 | 0.68 | 0.85 | 1.03 |
| DD | 3.19 | 0.33 | 0.90 | 0.96 | 2.86 | S/F | 0.45 | 0.59 | 0.50 | 0.63 | 1.58 | 2.00 |
| EE | 0.92 | 0.45 | 0.90 | 0.96 | 0.31 | S/F | 0.45 | 0.59 | 0.61 | 0.73 | 0.56 | 0.67 |
|  |  |  |  |  | 0.16 | OPEN | 0.08 | 0.35 |  |  |  |  |
| FF | 2.84 | 0.77 | 0.90 | 0.96 | 2.07 | S/F | 0.45 | 0.59 | 0.57 | 0.69 | 1.62 | 1.96 |
| GG | 2.14 | 0.72 | 0.90 | 0.96 | 1.42 | S/F | 0.45 | 0.59 | 0.60 | 0.71 | 1.29 | 1.53 |
| HH | 1.33 | 0.36 | 0.90 | 0.96 | 0.97 | S/F | 0.45 | 0.59 | 0.57 | 0.69 | 0.76 | 0.92 |
| JJ | 2.63 | 1.76 | 0.90 | 0.96 | 0.87 | OPEN | 0.08 | 0.35 | 0.63 | 0.76 | 1.65 | 1.99 |
| KK | 3.51 | 0.09 | 0.90 | 0.96 | 3.42 | OPEN | 0.08 | 0.35 | 0.10 | 0.37 | 0.35 | 1.28 |
| LL1 | 0.79 | 0.00 | 0.90 | 0.96 | 0.41 | OPEN | 0.08 | 0.35 | 0.26 | 0.47 | 0.20 | 0.37 |
|  |  |  |  |  | 0.38 | S/F | 0.45 | 0.59 |  |  |  |  |
| LL2 | 1.75 | 0.06 | 0.90 | 0.96 | 1.03 | OPEN | 0.08 | 0.35 | 0.25 | 0.46 | 0.43 | 0.81 |
|  |  |  |  |  | 0.66 | S/F | 0.45 | 0.59 |  |  |  |  |
| MM | 1.05 | 0.01 | 0.90 | 0.96 | 0.36 | OPEN | 0.08 | 0.35 | 0.33 | 0.51 | 0.34 | 0.54 |
|  |  |  |  |  | 0.68 | S/F | 0.45 | 0.59 |  |  |  |  |
| NN | 0.73 | 0.01 | 0.90 | 0.96 | 0.33 | OPEN | 0.08 | 0.35 | 0.29 | 0.49 | 0.21 | 0.36 |
|  |  |  |  |  | 0.39 | S/F | 0.45 | 0.59 |  |  |  |  |
| PP | 4.21 | 0.23 | 0.90 | 0.96 | 3.98 | OPEN | 0.08 | 0.35 | 0.12 | 0.38 | 0.53 | 1.61 |
| QQ | 0.74 | 0.63 | 0.90 | 0.96 | 0.11 | OPEN | 0.08 | 0.35 | 0.78 | 0.87 | 0.58 | 0.64 |
| RR | 5.99 | 0.00 | 0.90 | 0.96 | 5.99 | OPEN | 0.08 | 0.35 | 0.08 | 0.35 | 0.48 | 2.10 |
| SS | 0.84 | 0.01 | 0.90 | 0.96 | 0.30 | OPEN | 0.08 | 0.35 | 0.32 | 0.51 | 0.27 | 0.43 |
|  |  |  |  |  | 0.53 | S/F | 0.45 | 0.59 |  |  |  |  |


| JOB NAME: <br> JOB NUMBER: <br> DAIE: <br> CALCULATED BY: | Sterling Ranch East Filing No. 1 <br> 1183.30 <br> $08 / 04 / 22$ <br> MAL |  |  | BASIN RUNOFF COEFFICIENT SUMMARY (DEVELOPED CONDITIONS) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TOTAL AREA (AC) | IMPERVIOUS AREA / STREETS |  |  | LOTS/LANDSCAPE/UNDEV. AREAS (NOT PAVEMENT) |  |  |  | WEIGHTED |  | WEIGHTED CA |  |
| BASIN |  | AREA (AC) | C(5) | C(100) | AREA (AC) | LAND USE | C(5) | C(100) | C(5) | C(100) | CA(5) | CA(100) |
| TT | 1.63 | 0.08 | 0.90 | 0.96 | 1.55 | OPEN | 0.08 | 0.35 | 0.12 | 0.38 | 0.20 | 0.62 |
| $\mathrm{CH}-1$ | 27.11 | 0.00 | 0.90 | 0.96 | 27.11 | OPEN | 0.08 | 0.35 | 0.08 | 0.35 | 2.17 | 9.49 |
| CH-2 | 10.62 | 0.00 | 0.90 | 0.96 | 10.62 | OPEN | 0.08 | 0.35 | 0.08 | 0.35 | 0.85 | 3.72 |
| P1-A1 | 4.45 | 3.12 | 0.90 | 0.96 | 1.33 | OPEN | 0.08 | 0.35 | 0.65 | 0.78 | 2.91 | 3.46 |
| P1-A2 | 6.59 | 4.20 | 0.90 | 0.96 | 2.01 | OPEN | 0.08 | 0.35 | 0.62 | 0.75 | 4.11 | 4.96 |
|  |  |  |  |  | 0.38 | S/F | 0.45 | 0.59 |  |  |  |  |
| P1-A3 | 1.83 | 1.37 | 0.90 | 0.96 | 0.46 | OPEN | 0.08 | 0.35 | 0.69 | 0.81 | 1.27 | 1.48 |
| P1-A4 | 1.64 | 1.22 | 0.90 | 0.96 | 0.42 | OPEN | 0.08 | 0.35 | 0.69 | 0.80 | 1.13 | 1.32 |
| P1-A5 | 1.86 | 1.01 | 0.90 | 0.96 | 0.85 | OPEN | 0.08 | 0.35 | 0.53 | 0.68 | 0.98 | 1.27 |
|  |  |  |  |  | 0.00 | S/F | 0.45 | 0.59 |  |  |  |  |
| P1-A6 | 3.55 | 1.97 | 0.90 | 0.96 | 1.58 | OPEN | 0.08 | 0.35 | 0.54 | 0.69 | 1.90 | 2.44 |
| P1-A7 | 3.11 | 1.06 | 0.90 | 0.96 | 1.11 | OPEN | 0.08 | 0.35 | 0.47 | 0.63 | 1.47 | 1.96 |
|  |  |  |  |  | 0.94 | S/F | 0.45 | 0.59 |  |  |  |  |
| P2-B1 | 1.82 | 1.19 | 0.90 | 0.96 | 0.63 | OPEN | 0.08 | 0.35 | 0.62 | 0.75 | 1.12 | 1.36 |
| P2-B2 | 1.87 | 1.17 | 0.90 | 0.96 | 0.70 | OPEN | 0.08 | 0.35 | 0.59 | 0.73 | 1.11 | 1.37 |
| P2-B3 | 1.55 | 0.98 | 0.90 | 0.96 | 0.57 | OPEN | 0.08 | 0.35 | 0.60 | 0.74 | 0.93 | 1.14 |
| P2-B4 | 1.64 | 1.00 | 0.90 | 0.96 | 0.64 | OPEN | 0.08 | 0.35 | 0.58 | 0.72 | 0.95 | 1.18 |
| P2-B5 | 0.97 | 0.66 | 0.90 | 0.96 | 0.31 | OPEN | 0.08 | 0.35 | 0.64 | 0.77 | 0.62 | 0.74 |
| P2-B6 | 1.07 | 0.67 | 0.90 | 0.96 | 0.40 | OPEN | 0.08 | 0.35 | 0.59 | 0.73 | 0.64 | 0.78 |
| P2-B7 | 1.62 | 0.80 | 0.90 | 0.96 | 0.82 | OPEN | 0.08 | 0.35 | 0.48 | 0.65 | 0.79 | 1.06 |
| P2-B8 | 1.21 | 0.80 | 0.90 | 0.96 | 0.41 | OPEN | 0.08 | 0.35 | 0.62 | 0.75 | 0.75 | 0.91 |
| P2-B9 | 2.08 | 1.60 | 0.90 | 0.96 | 0.48 | OPEN | 0.08 | 0.35 | 0.71 | 0.82 | 1.48 | 1.70 |
| P2-B10 | 2.31 | 1.64 | 0.90 | 0.96 | 0.67 | OPEN | 0.08 | 0.35 | 0.66 | 0.78 | 1.53 | 1.81 |
| P2-C2 | 1.73 | 1.26 | 0.90 | 0.96 | 0.47 | OPEN | 0.08 | 0.35 | 0.68 | 0.79 | 1.17 | 1.37 |
| P2-S1 | 36.59 | 0.00 | 0.90 | 0.96 | 36.59 | SCHOOL | 0.42 | 0.61 | 0.42 | 0.61 | 15.37 | 22.32 |
| P2-S1 (UNDEV) | 36.59 | 0.00 | 0.90 | 0.96 | 36.59 | OPEN | 0.08 | 0.35 | 0.08 | 0.35 | 2.93 | 12.81 |


| JOB NAME: JOB NUMBER: DATE: CALC'D BY: | $\begin{aligned} & \text { Sterling Ranch East Filing No. } 1 \\ & \hline 1183.30 \\ & \text { 8/4/2022 } \\ & \text { MAL } \end{aligned}$ |  |  | ORT | BAS |  |  |  |  |  | ELOPI |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASIN | CA(5) | $\begin{aligned} & \text { TED } \\ & \text { CA(100) } \end{aligned}$ | C(5) | OVER Length <br> (ft) | AND <br> Height <br> (ft) | $\begin{gathered} \text { Tc } \\ (\mathrm{min}) \end{gathered}$ | STRE <br> Length <br> (ft) | T / C Slope (\%) | ANNEL <br> Velocity <br> (fps) | $\begin{gathered} \text { LOW } \\ \text { Tc } \\ (\min ) \end{gathered}$ | Tc TOTAL (min) | $\begin{gathered} \text { INTE } \\ \text { I(5) } \\ \text { (in/hr) } \end{gathered}$ | $\begin{aligned} & \text { VSITY } \\ & \text { I(100) } \\ & \text { (in/hr) } \end{aligned}$ | $\begin{array}{r} \text { QOTAL } \\ \text { Q(5) } \\ \text { (cfs) } \end{array}$ | FLOWS <br> $Q(100)$ <br> (cfs) |
| A1 | 1.51 | 2.14 | 0.45 | 100 | 2 | 9.3 | 670 | 1.8\% | 4.7 | 2.4 | 11.7 | 3.89 | 6.53 | 5.9 | 14.0 |
| A2 | 0.38 | 0.47 | 0.45 | 100 | 2 | 9.3 | 140 | 1.5\% | 4.3 | 0.5 | 9.9 | 4.15 | 6.96 | 1.6 | 3.3 |
| B1 | 2.15 | 2.86 | 0.45 | 100 | 2 | 9.3 | 720 | 1.8\% | 4.7 | 2.6 | 11.9 | 3.87 | 6.50 | 8.3 | 18.6 |
| B2 | 0.13 | 0.14 | 0.45 | 20 | 6 | 1.7 | 100 | 1.5\% | 4.3 | 0.4 | 5.0 | 5.17 | 8.68 | 0.7 | 1.2 |
| C | 1.19 | 1.49 | 0.45 | 100 | 2 | 9.3 | 420 | 1.5\% | 4.3 | 1.6 | 11.0 | 3.99 | 6.70 | 4.7 | 9.9 |
| D | 0.87 | 1.05 | 0.45 | 100 | 2 | 9.3 | 460 | 1.5\% | 4.3 | 1.8 | 11.1 | 3.97 | 6.66 | 3.5 | 7.0 |
| E | 0.61 | 0.74 | 0.45 | 20 | 1 | 3.1 | 210 | 1.5\% | 4.3 | 0.8 | 5.0 | 5.17 | 8.68 | 3.2 | 6.4 |
| F | 0.30 | 0.35 | 0.45 | 20 | 1 | 3.1 | 210 | 1.5\% | 4.3 | 0.8 | 5.0 | 5.17 | 8.68 | 1.5 | 3.0 |
| G | 0.96 | 1.20 | 0.45 | 100 | 2 | 9.3 | 250 | 1.5\% | 4.3 | 1.0 | 10.3 | 4.08 | 6.86 | 3.9 | 8.3 |
| H | 0.58 | 0.71 | 0.45 | 100 | 2 | 9.3 | 200 | 1.5\% | 4.3 | 0.8 | 10.1 | 4.11 | 6.90 | 2.4 | 4.9 |
| J | 0.49 | 0.61 | 0.45 | 100 | 2 | 9.3 | 180 | 1.5\% | 4.3 | 0.7 | 10.0 | 4.12 | 6.92 | 2.0 | 4.2 |
| K | 0.27 | 0.32 | 0.45 | 40 | 0.8 | 5.9 | 180 | 1.5\% | 4.3 | 0.7 | 6.6 | 4.75 | 7.98 | 1.3 | 2.5 |


| JOB NAME: JOB NUMBER: DATE: CALC'D BY: | Sterling Ranch East Filing No. 1 <br> 1183.30 <br> 8/4/2022 <br> MAL |  |  |  | BAS |  | NOFF | SUM | MARY |  | ELOPE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASIN |  | $\begin{aligned} & \text { TED } \\ & \text { CA(100) } \end{aligned}$ | C(5) | OVER <br> Length <br> (ft) | LAND <br> Height <br> (ft) | Tc $(\min )$ | STRE Length <br> (ft) | T / C Slope (\%) | ANNEL <br> Velocity (fps) | $\begin{gathered} \text { LOW } \\ \text { Tc } \\ (\mathrm{min}) \\ \hline \end{gathered}$ | Tc TOTAL (min) | $\begin{gathered} \text { INTE } \\ \text { I }(5) \\ (\mathrm{in} / \mathrm{hr}) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { NSITY } \\ & \text { I(100) } \\ & \text { (in/hr) } \end{aligned}$ | $\begin{aligned} & \text { OTAL } \\ & \text { Q(5) } \\ & \text { (cfs) } \end{aligned}$ | FLOWS <br> $Q(100)$ <br> (cfs) |
| L | 1.27 | 1.58 | 0.45 | 100 | 2 | 9.3 | 400 | 1.5\% | 4.3 | 1.6 | 10.9 | 4.00 | 6.72 | 5.1 | 10.6 |
| M | 0.76 | 0.93 | 0.45 | 40 | 0.8 | 5.9 | 340 | 1.5\% | 4.3 | 1.3 | 7.2 | 4.62 | 7.75 | 3.5 | 7.2 |
| N | 1.34 | 1.64 | 0.45 | 100 | 2 | 9.3 | 450 | 1.5\% | 4.3 | 1.7 | 11.1 | 3.97 | 6.67 | 5.3 | 11.0 |
| P | 0.88 | 1.08 | 0.45 | 40 | 0.8 | 5.9 | 450 | 1.5\% | 4.3 | 1.7 | 7.7 | 4.53 | 7.61 | 4.0 | 8.2 |
| Q | 1.32 | 1.59 | 0.45 | 100 | 2 | 9.3 | 670 | 1.5\% | 4.3 | 2.6 | 11.9 | 3.86 | 6.49 | 5.1 | 10.3 |
| R | 0.68 | 0.82 | 0.45 | 100 | 2 | 9.3 | 200 | 1.5\% | 4.3 | 0.8 | 10.1 | 4.11 | 6.90 | 2.8 | 5.6 |
| S | 0.54 | 0.67 | 0.45 | 100 | 2 | 9.3 | 200 | 1.5\% | 4.3 | 0.8 | 10.1 | 4.11 | 6.90 | 2.2 | 4.6 |
| T | 1.25 | 1.49 | 0.45 | 100 | 2 | 9.3 | 500 | 1.5\% | 4.3 | 1.9 | 11.3 | 3.95 | 6.63 | 4.9 | 9.9 |
| U | 0.29 | 0.34 | 0.45 | 40 | 0.8 | 5.9 | 200 | 1.5\% | 4.3 | 0.8 | 6.7 | 4.73 | 7.95 | 1.4 | 2.7 |
| V | 0.54 | 0.67 | 0.45 | 100 | 2 | 9.3 | 200 | 1.5\% | 4.3 | 0.8 | 10.1 | 4.11 | 6.90 | 2.2 | 4.6 |
| W | 0.23 | 0.26 | 0.45 | 40 | 0.8 | 5.9 | 150 | 1.5\% | 4.3 | 0.6 | 6.5 | 4.78 | 8.02 | 1.1 | 2.1 |
| X | 1.54 | 1.91 | 0.45 | 100 | 2 | 9.3 | 600 | 1.5\% | 4.3 | 2.3 | 11.7 | 3.90 | 6.54 | 6.0 | 12.5 |
| Y | 0.94 | 1.14 | 0.45 | 40 | 0.8 | 5.9 | 600 | 1.5\% | 4.3 | 2.3 | 8.2 | 4.42 | 7.42 | 4.2 | 8.5 |
| Z | 1.64 | 2.06 | 0.45 | 100 | 2 | 9.3 | 650 | 1.5\% | 4.3 | 2.5 | 11.9 | 3.87 | 6.50 | 6.4 | 13.4 |


| JOB NAME: JOB NUMBER: DATE: CALC'D BY: | Sterling Ranch East Filing No. 1 <br> 1183.30 <br> $8 / 4 / 2022$ <br> MAL |  |  | RUNOFF SUMMARY (DEVELOPED CONDITIONS) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASIN | WE <br> CA(5) | TED $C A(100)$ | $C(5)$ | OVER <br> Length <br> (ft) | LAND <br> Height <br> (ft) | Tc (min) | STRE <br> Length <br> (ft) | ET / C Slope <br> (\%) | ANNEL <br> Velocity (fps) | $\begin{gathered} \mathrm{LOW} \\ \mathrm{Tc} \\ (\min ) \\ \hline \end{gathered}$ | Tc TOTAL (min) | INTEN $\begin{gathered} \mathrm{I}(5) \\ \text { (in/hr) } \end{gathered}$ | NSITY <br> I(100) <br> (in/hr) | TOTAL <br> Q(5) <br> (cfs) | FLOWS <br> $Q(100)$ <br> (cfs) |
| AA | 0.90 | 1.10 | 0.45 | 100 | 2 | 9.3 | 340 | 2.6\% | 5.6 | 1.0 | 10.3 | 4.08 | 6.85 | 3.7 | 7.5 |
| BB | 1.59 | 1.99 | 0.45 | 100 | 2 | 9.3 | 650 | 1.5\% | 4.3 | 2.5 | 11.9 | 3.87 | 6.50 | 6.2 | 13.0 |
| CC | 0.85 | 1.03 | 0.45 | 100 | 2 | 9.3 | 210 | 1.5\% | 4.3 | 0.8 | 10.2 | 4.11 | 6.89 | 3.5 | 7.1 |
| DD | 1.58 | 2.00 | 0.45 | 100 | 2 | 9.3 | 530 | 1.5\% | 4.3 | 2.1 | 11.4 | 3.93 | 6.60 | 6.2 | 13.2 |
| EE | 0.56 | 0.67 | 0.45 | 40 | 0.8 | 5.9 | 670 | 1.5\% | 4.3 | 2.6 | 8.5 | 4.37 | 7.34 | 2.4 | 4.9 |
| FF | 1.62 | 1.96 | 0.45 | 100 | 2 | 9.3 | 850 | 1.5\% | 4.3 | 3.3 | 12.6 | 3.78 | 6.34 | 6.1 | 12.4 |
| GG | 1.29 | 1.53 | 0.45 | 100 | 2 | 9.3 | 830 | 1.5\% | 4.3 | 3.2 | 12.6 | 3.79 | 6.36 | 4.9 | 9.7 |
| HH | 0.76 | 0.92 | 0.45 | 100 | 2 | 9.3 | 230 | 1.5\% | 4.3 | 0.9 | 10.2 | 4.09 | 6.88 | 3.1 | 6.3 |
| JJ | 1.65 | 1.99 | 0.08 | 30 | 2 | 5.4 | 250 | 1.5\% | 4.3 | 1.0 | 6.4 | 4.81 | 8.07 | 7.9 | 16.1 |
| KK | 0.35 | 1.28 | 0.08 | 60 | 4 | 7.6 | 340 | 1.0\% | 3.5 | 1.6 | 9.2 | 4.25 | 7.13 | 1.5 | 9.2 |
| LL1 | 0.20 | 0.37 | 0.45 | 60 | 7 | 4.0 | 100 | 2.0\% | 4.9 | 0.3 | 5.0 | 5.17 | 8.68 | 1.1 | 3.2 |
| LL2 | 0.43 | 0.81 | 0.45 | 60 | 7 | 4.0 | 200 | 2.0\% | 4.9 | 0.7 | 5.0 | 5.17 | 8.68 | 2.2 | 7.0 |
| MM | 0.34 | 0.54 | 0.45 | 60 | 8 | 3.9 | 250 | 2.0\% | 4.9 | 0.8 | 5.0 | 5.17 | 8.68 | 1.8 | 4.7 |
| NN | 0.21 | 0.36 | 0.45 | 60 | 7 | 4.0 | 180 | 2.0\% | 4.9 | 0.6 | 5.0 | 5.17 | 8.68 | 1.1 | 3.1 |
| PP | 0.53 | 1.61 | 0.08 | 60 | 2 | 9.6 | 250 | 2.0\% | 4.9 | 0.8 | 10.4 | 4.07 | 6.83 | 2.1 | 11.0 |
| QQ | 0.58 | 0.64 | 0.08 | 10 | 1 | 2.7 | 180 | 1.0\% | 3.5 | 0.9 | 5.0 | 5.17 | 8.68 | 3.0 | 5.6 |


| JOB NAME: JOB NUMBER: DATE: CALC'D BY: | $\begin{aligned} & \text { Sterling Ranch East Filing No. } 1 \\ & \hline 1183.30 \\ & \text { 8/4/2022 } \\ & \text { MAL } \end{aligned}$ |  |  | ORT | BAS | N R |  |  |  |  | ELOPI |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASIN |  | $\begin{aligned} & \text { TED } \\ & \text { CA(100) } \end{aligned}$ | C(5) | OVER <br> Length <br> (ft) | LAND <br> Height <br> (ft) | Tc (min) | STRE <br> Length <br> (ft) | T / C Slope (\%) | ANNEL <br> Velocity <br> (fps) | $\begin{gathered} \text { LOW } \\ \text { Tc } \\ (\min ) \end{gathered}$ | Tc TOTAL (min) | $\begin{gathered} \text { INTE } \\ \text { I(5) } \\ \text { (in/hr) } \end{gathered}$ | $\begin{aligned} & \text { VSITY } \\ & \text { I(100) } \\ & \text { (in/hr) } \end{aligned}$ | $\begin{array}{r} \text { QOTAL } \\ \text { Q(5) } \\ \text { (cfs) } \end{array}$ | FLOWS <br> $Q(100)$ <br> (cfs) |
| RR | 0.48 | 2.10 | 0.08 | 100 | 25 | 6.4 | 360 | 1.0\% | 3.5 | 1.7 | 8.1 | 4.45 | 7.47 | 2.1 | 15.7 |
| SS | 0.27 | 0.43 | 0.45 | 60 | 7 | 4.0 | 150 | 2.0\% | 4.9 | 0.5 | 5.0 | 5.17 | 8.68 | 1.4 | 3.7 |
| TT | 0.20 | 0.62 | 0.08 | 40 | 1 | 8.6 | 400 | 2.0\% | 4.9 | 1.3 | 10.0 | 4.14 | 6.94 | 0.8 | 4.3 |
| $\mathrm{CH}-1$ | 2.17 | 9.49 | 0.08 | 100 | 18 | 7.1 | 3050 | 1.6\% | 4.4 | 11.5 | 18.6 | 3.20 | 5.37 | 6.9 | 51.0 |
| $\mathrm{CH}-2$ | 0.85 | 3.72 | 0.08 | 100 | 25 | 6.4 | 475 | 0.5\% | 2.5 | 3.2 | 9.6 | 4.20 | 7.04 | 3.6 | 26.2 |
| P1-A1 | 2.91 | 3.46 | 0.08 | 10 | 0.5 | 3.4 | 2350 | 0.9\% | 3.3 | 11.8 | 15.2 | 3.50 | 5.87 | 10.2 | 20.3 |
| P1-A2 | 4.11 | 4.96 | 0.08 | 10 | 0.5 | 3.4 | 2350 | 0.9\% | 3.3 | 11.8 | 15.2 | 3.50 | 5.87 | 14.4 | 29.1 |
| P1-A3 | 1.27 | 1.48 | 0.08 | 10 | 0.5 | 3.4 | 780 | 0.9\% | 3.3 | 3.9 | 7.3 | 4.59 | 7.71 | 5.8 | 11.4 |
| P1-A4 | 1.13 | 1.32 | 0.08 | 10 | 0.5 | 3.4 | 780 | 0.9\% | 3.3 | 3.9 | 7.3 | 4.59 | 7.71 | 5.2 | 10.2 |
| P1-A5 | 0.98 | 1.27 | 0.08 | 10 | 0.5 | 3.4 | 600 | 1.0\% | 3.5 | 2.9 | 6.3 | 4.83 | 8.10 | 4.7 | 10.3 |
| P1-A6 | 1.90 | 2.44 | 0.08 | 10 | 0.5 | 3.4 | 1250 | 1.0\% | 3.5 | 6.0 | 9.4 | 4.23 | 7.09 | 8.0 | 17.3 |
| P1-A7 | 1.47 | 1.96 | 0.08 | 10 | 0.5 | 3.4 | 650 | 1.0\% | 3.5 | 3.1 | 6.5 | 4.77 | 8.01 | 7.0 | 15.7 |
| P2-B1 | 1.12 | 1.36 | 0.08 | 10 | 0.5 | 3.4 | 1100 | 2.2\% | 5.2 | 3.5 | 7.0 | 4.67 | 7.85 | 5.2 | 10.7 |
| P2-B2 | 1.11 | 1.37 | 0.08 | 10 | 0.5 | 3.4 | 1100 | 2.2\% | 5.2 | 3.5 | 7.0 | 4.67 | 7.85 | 5.2 | 10.7 |



| JOB NAME: JOB NUMBER: DATE: CALCULATED BY: | Sterling Ranch East Filing No. 1 <br> 1183.30 <br> $\mathbf{0 8 / 0 4 / 2 2}$ <br>  <br> $\quad$ FINAL DRAINAGE REPORT | ~ SURFAC | E ROUTING | G SUMMAR | DEV | PED C | DITIO |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Design <br> Point(s) | Contributing Basins | Equivalent CA(5) | Equivalent CA(100) | Maximum Tc | I(5) | $\mathrm{l}(100)$ | $Q(5)$ | Q(100) | Inlet Size |
| 1 | BASIN P1-A1 | 2.91 | 3.46 | 15.2 | 3.50 | 5.87 | 10.2 | 20.3 | EX. 20' AT-GRADE |
| 2 | BASIN P1-A2 | 4.11 | 4.96 | 15.2 | 3.50 | 5.87 | 14.4 | 29.1 | EX. 20' AT-GRADE |
| 3 | BASIN P1-A4 + Flow-By DP-1 | 1.13 | 1.90 | 7.3 | 4.59 | 7.71 | 5.2 | 14.7 | EX. 15' AT-GRADE |
| 4 | BASIN P1-A3 + Flow-By DP-2 | 1.61 | 3.08 | 15.2 | 3.50 | 5.87 | 5.6 | 18.1 | EX. 15' AT-GRADE |
| 5 | BASIN P1-A7 | 1.47 | 1.96 | 6.5 | 4.77 | 8.01 | 7.0 | 15.7 | FUT. 15' AT-GRADE |
| 6 | $\begin{aligned} & \text { BASIN P1-A5 + BASIN P1-C2 + Flow-By DP-4 + Flow- } \\ & \text { By DP-5 } \end{aligned}$ | 2.15 | 3.94 | 6.5 | 4.77 | 8.01 | 10.3 | 31.6 | 20' SUMP |
| 7 | BASIN P1-A6 | 1.90 | 2.44 | 9.4 | 4.23 | 7.09 | 8.0 | 17.3 | 15' SUMP |
| 8 | BASIN P2-B2 | 1.11 | 1.37 | 7.0 | 4.67 | 7.85 | 5.2 | 10.7 | EX. 10' AT-GRADE |
| 9 | BASIN P2-B1 + Flow-By DP-3 | 1.12 | 1.75 | 7.0 | 4.67 | 7.85 | 5.2 | 13.7 | EX. 10' AT-GRADE |
| 10 | BASIN X | 1.54 | 1.91 | 11.7 | 3.90 | 6.54 | 6.0 | 12.5 | 15' SUMP |



| JOB NAME: JOB NUMBER: DATE: CALCULATED BY: | Sterling Ranch East Filing No. 1  <br> 1183.30  <br> $08 / 04 / 22$  <br> $M A L$  <br>   <br>   <br>   <br>   | SURFA | ROUTIN | SUMMA |  | ED | DIT |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Design <br> Point(s) | Contributing Basins | $\begin{gathered} \text { Equivalent } \\ \text { CA(5) } \end{gathered}$ | $\begin{aligned} & \text { Equivalent } \\ & \text { CA(100) } \end{aligned}$ | Maximum Tc | I(5) | I(100) | Q(5) | $Q(100)$ | Inlet Size |
| 23 | BASIN P2-B6 + Flow-By DP-15 | 0.63 | 1.03 | 5.7 | 4.96 | 8.33 | 3.1 | 8.6 | EX. 15' AT-GRADE |
| 24 | BASIN P2-B5 + Flow-By DP-16 | 0.63 | 1.10 | 5.7 | 4.96 | 8.33 | 3.1 | 9.1 | EX. 15' AT-GRADE |
| 25 | BASIN P2-B8 + Flow-By DP-23 | 0.76 | 0.95 | 6.3 | 4.83 | 8.10 | 3.7 | 7.7 | EX. 15' AT-GRADE |
| 26 | BASIN P2-B7 + Flow-By DP-24 | 0.79 | 1.12 | 6.3 | 4.83 | 8.10 | 3.8 | 9.1 | EX. 15' AT-GRADE |
| 27 | BASIN P2-B10 + Flow-By DP-25 | 1.52 | 1.82 | 5.8 | 4.94 | 8.29 | 7.5 | 15.1 | EX. 15' SUMP |
| 28 | BASIN P2-B9 + Flow-By DP-26 | 1.48 | 1.76 | 5.8 | 4.94 | 8.29 | 7.3 | 14.6 | EX. 15' SUMP |
| 29A | BASIN A1 | 1.51 | 2.14 | 11.7 | 3.89 | 6.53 | 5.9 | 14.0 | 10' AT-GRADE |
| 29B | BASIN A2 + Flow-By DP-29A | 0.55 | 1.32 | 11.7 | 3.89 | 6.53 | 2.1 | 8.7 | 5 S SUMP |
| 30A | BASIN B1 | 2.15 | 2.86 | 11.9 | 3.87 | 6.50 | 8.3 | 18.6 | 10' AT-GRADE |
| 30B | BASIN B2 + Flow-By DP-30A | 0.63 | 1.53 | 11.9 | 3.87 | 6.50 | 2.4 | 9.9 | 10' SUMP |
| 31 | BASIN L | 1.27 | 1.58 | 10.9 | 4.00 | 6.72 | 5.1 | 10.6 | 10' SUMP |
| 32 | BASIN M | 0.76 | 0.93 | 7.2 | 4.62 | 7.75 | 3.5 | 7.2 | 5' SUMP |
| 33 | BASIN N | 1.34 | 1.64 | 11.1 | 3.97 | 6.67 | 5.3 | 11.0 | 10' SUMP |
| 34 | BASIN P | 0.88 | 1.08 | 7.7 | 4.53 | 7.61 | 4.0 | 8.2 | 10' SUMP |


| JOB NAME: JOB NUMBER: DATE: CALCULATED BY: | Sterling Ranch East Filing No. 1 <br> 1183.30 <br> $08 / 04 / 22$ <br> $M A L$ | SURFA | R ROUTIN | SUMMA |  | ED | IT |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Design Point(s) | Contributing Basins | Equivalent CA(5) | $\begin{gathered} \text { Equivalent } \\ \text { CA(100) } \end{gathered}$ | Maximum Tc | I(5) | I(100) | Q(5) | Q(100) | Inlet Size |
| 35 | BASIN R | 0.68 | 0.82 | 10.1 | 4.11 | 6.90 | 2.8 | 5.6 | 5' SUMP |
| 36 | BASIN S | 0.54 | 0.67 | 10.1 | 4.11 | 6.90 | 2.2 | 4.6 | 5' SUMP |
| 37 | BASIN D | 0.87 | 1.05 | 11.1 | 3.97 | 6.66 | 3.5 | 7.0 | 5' SUMP |
| 38 | BASIN C | 1.19 | 1.49 | 11.0 | 3.99 | 6.70 | 4.7 | 9.9 | 10' SUMP |
| 39 | BASIN G | 0.96 | 1.20 | 10.3 | 4.08 | 6.86 | 3.9 | 8.3 | 10' SUMP |
| 40 | BASIN H | 0.58 | 0.71 | 10.1 | 4.11 | 6.90 | 2.4 | 4.9 | 5' SUMP |
| 41 | BASIN E | 0.61 | 0.74 | 5.0 | 5.17 | 8.68 | 3.2 | 6.4 | 5' SUMP |
| 42 | BASIN F | 0.30 | 0.35 | 5.0 | 5.17 | 8.68 | 1.5 | 3.0 | 5' SUMP |
| 43 | BASIN J | 0.49 | 0.61 | 10.0 | 4.12 | 6.92 | 2.0 | 4.2 | 5' SUMP |
| 44 | BASIN K | 0.27 | 0.32 | 6.6 | 4.75 | 7.98 | 1.3 | 2.5 | 5' SUMP |
| 45 | BASIN V | 0.54 | 0.67 | 10.1 | 4.11 | 6.90 | 2.2 | 4.6 | 5 S SUMP |
| 46 | BASIN U | 0.29 | 0.34 | 6.7 | 4.73 | 7.95 | 1.4 | 2.7 | 5' SUMP |
| 47A | BASIN Q | 1.32 | 1.59 | 11.9 | 3.86 | 6.49 | 5.1 | 10.3 | 10' AT-GRADE |


| JOB NAME: JOB NUMBER: DATE: CALCULATED BY: | Sterling Ranch East Filing No. 1 <br> 1183.30 <br> $08 / 04 / 22$  <br> $M A L$  <br>   <br>   <br>   <br>   FINAL DRAINAGE | SURFA | R ROUTIN | SUMMAR |  | ED | DIT |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Design Point(s) | Contributing Basins | Equivalent CA(5) | $\begin{gathered} \text { Equivalent } \\ \text { CA(100) } \end{gathered}$ | Maximum Tc | I(5) | I(100) | $Q(5)$ | $Q(100)$ | Inlet Size |
| 47B | BASIN T + Flow-By DP-47A | 1.37 | 2.01 | 11.9 | 3.86 | 6.49 | 5.3 | 13.0 | 10' SUMP |
| 48 | BASIN W | 0.23 | 0.26 | 6.5 | 4.78 | 8.02 | 1.1 | 2.1 | 5' SUMP |
| 50 | BASIN P2-S1 | 15.37 | 22.32 | 16.5 | 3.38 | 5.67 | 51.9 | 126.6 | FUT. STORM |
| 50B | 1/2 BASIN P2-S1 (UNDEV) | 1.46 | 6.40 | 30.2 | 2.47 | 4.15 | 3.6 | 26.6 | TYPE D INLET (IN- SERIES, DEPRESSED) |
| 50C | 1/2 BASIN P2-S1 (UNDEV) | 1.46 | 6.40 | 30.2 | 2.47 | 4.15 | 3.6 | 26.6 | TYPE D INLET (IN- <br> SERIES, DEPRESSED) |
| 51 | BASIN JJ | 1.65 | 1.99 | 6.4 | 4.81 | 8.07 | 7.9 | 16.1 | FUT. STORM |
| 52 | BASIN MM | 0.34 | 0.54 | 5.0 | 5.17 | 8.68 | 1.8 | 4.7 | TYPE C INLET |
| 53 | BASIN NN | 0.21 | 0.36 | 5.0 | 5.17 | 8.68 | 1.1 | 3.1 | TYPE C INLET |
| 54 | BASIN SS | 0.27 | 0.43 | 5.0 | 5.17 | 8.68 | 1.4 | 3.7 | TYPE C INLET |
| 55A | BASIN LL1 | 0.20 | 0.37 | 5.0 | 5.17 | 8.68 | 1.1 | 3.2 | TYPE C INLET |
| 55B | BASIN LL2 | 0.43 | 0.81 | 5.0 | 5.17 | 8.68 | 2.2 | 7.0 | $\begin{aligned} & \text { TYPE C INLET } \\ & \text { (DEPRESSED) } \end{aligned}$ |
| 56 | BASIN TT | 0.20 | 0.62 | 10.0 | 4.14 | 6.94 | 0.8 | 4.3 | FUT. STORM |
| 57 | BASIN PP | 0.53 | 1.61 | 10.4 | 4.07 | 6.83 | 2.1 | 11.0 | FUT. STORM |
| 58 | BASIN QQ | 0.58 | 0.64 | 5.0 | 5.17 | 8.68 | 3.0 | 5.6 | FUT. STORM |
| 59 | BASIN KK | 0.35 | 1.28 | 9.2 | 4.25 | 7.13 | 1.5 | 9.2 | FUT. STORM |
| 60 | BASIN RR + PIPE 42 + PIPE 95 | 74.26 | 99.25 | 19.5 | 3.12 | 5.24 | 232.0 | 520.5 | POND 14A |


| JOB NAME: JOB NUMBER: DATE: CALCULATED BY: | Sterling Ranch East Filing $\boldsymbol{N}$ <br> $\mathbf{1 1 8 3 . 3 0}$ <br> $\mathbf{0 8 / \mathbf { M A L } / \mathbf { 2 2 }}$ <br>  <br> PIPES ARE LISTED AT MAXIMU <br> REFER TO INDIVIDUAL PIPE SH <br> FINAL DRAINAGE | ZE REQUIRED S FOR HYDRA EPORT ~PII | O ACCOMMOD LIC INFORMA <br> E ROUTIN | ATE Q100 ION. <br> G SUMMA | T MIN <br> (DEV | GRADE <br> OPED |  | S) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Pipe Run | Contributing Basins | Equivalent CA(5) | Equivalent CA(100) | Maximum Tc | I(5) | I(100) | Q(5) | $Q(100)$ | Pipe Size* |
| 1 | DP-2 (Intercepted) | 3.77 | 3.35 | 15.2 | 3.50 | 5.87 | 13.2 | 19.7 | EX. 30" |
| 2 | PIPE 1 + DP-1 (Intercepted) | 6.68 | 6.23 | 15.2 | 3.50 | 5.87 | 23.4 | 36.6 | EX. 30" |
| 3 | DP-4 (Intercepted) | 1.61 | 2.23 | 15.2 | 3.50 | 5.87 | 5.6 | 13.1 | 24" |
| 4 | DP-3 (Intercepted) | 1.13 | 1.52 | 7.3 | 4.59 | 7.71 | 5.2 | 11.7 | EX. 18" |
| 5 | PIPE 2 + PIPE 3 + PIPE 4 | 9.42 | 9.98 | 15.2 | 3.50 | 5.87 | 33.0 | 58.6 | 36" |
| 6 | DP-5 (Intercepted) | 1.47 | 1.51 | 6.5 | 4.77 | 8.01 | 7.0 | 12.1 | 24" |
| 7 | DP-6 | 2.15 | 3.94 | 6.5 | 4.77 | 8.01 | 10.3 | 31.6 | 30" |
| 8 | DP-7 | 1.90 | 2.44 | 9.4 | 4.23 | 7.09 | 8.0 | 17.3 | 24" |
| 9 | PIPE 6 + PIPE 7 + PIPE 8 | 5.52 | 7.90 | 9.4 | 4.23 | 7.09 | 23.3 | 56.0 | 36" |
| 10 | PIPE 5 + PIPE 9 | 14.94 | 17.88 | 15.2 | 3.50 | 5.87 | 52.3 | 105.0 | 42" |
| 11 | DP-8 (Intercepted) | 1.03 | 0.93 | 7.0 | 4.67 | 7.85 | 4.8 | 7.3 | EX. 18" |
| 12 | PIPE 11 + DP-9 (Intercepted) | 2.05 | 1.99 | 7.0 | 4.67 | 7.85 | 9.6 | 15.6 | EX. 18" |


| JOB NAME: <br> JOB NUMBER: <br> DATE: <br> CALCULATED BY: | Sterling Ranch East Filing <br> $\mathbf{1 1 8 3 . 3 0}$ <br> $\mathbf{0 8 / 0 4 / 2 2}$ <br> $\boldsymbol{M A L}$ <br>  <br> PIPES ARE LISTED AT MAXIM <br> REFER TO INDIVIDUAL PIPE S <br> FINAL DRAINAGE | ZE REQUIRED S FOR HYDRA PORT ~ PI | O ACCOMMO LIC INFORMA <br> E ROUTIN | ATE Q100 ION. <br> G SUMMA | T MIN (DE) | GRADE <br> PPED |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Pipe Run | Contributing Basins | Equivalent CA(5) | Equivalent CA(100) | Maximum Tc | I(5) | I(100) | Q(5) | $Q(100)$ | Pipe Size* |
| 13 | PIPE 10 + PIPE 12 | 16.99 | 19.86 | 16.6 | 3.36 | 5.65 | 57.2 | 112.2 | 48" |
| 14 | DP-50 | 15.37 | 22.32 | 16.5 | 3.38 | 5.67 | 51.9 | 126.6 | 48" |
| 14B | DP-50B | 1.46 | 6.40 | 30.2 | 2.47 | 4.15 | 3.6 | 26.6 | 30" |
| 14C | PIPE 14B + DP-50C | 2.93 | 12.81 | 30.2 | 2.47 | 4.15 | 7.2 | 53.2 | $36 "$ |
| 15 | PIPE 13 + PIPE 14 | 32.36 | 42.18 | 16.9 | 3.34 | 5.61 | 108.1 | 236.5 | 60" |
| 16 | DP-10 | 1.54 | 1.91 | 11.7 | 3.90 | 6.54 | 6.0 | 12.5 | 24" |
| 17 | DP-11 | 0.94 | 1.14 | 8.2 | 4.42 | 7.42 | 4.2 | 8.5 | 18" |
| 18 | PIPE 16 + PIPE 17 | 2.48 | 3.05 | 11.7 | 3.90 | 6.54 | 9.7 | 20.0 | $24 "$ |
| 19 | PIPE 18 + PIPE 23 | 4.13 | 4.76 | 12.4 | 3.81 | 6.39 | 15.7 | 30.4 | $30 "$ |
| 20 | DP-15 (Intercepted) | 1.03 | 1.37 | 7.1 | 4.64 | 7.79 | 4.8 | 10.7 | EX. 18" |


| JOB NAME: JOB NUMBER: <br> DATE: <br> CALCULATED BY: | Sterling Ranch East Filing N <br> $\mathbf{1 1 8 3 . 3 0}$ <br> $\mathbf{0 8 / 0 4 / 2 2}$ <br> $\boldsymbol{M A L}$ <br> PIPES ARE LISTED AT MAXIMU <br> REFER TO INDIVIDUAL PIPE SH <br> FINAL DRAINAGE | ZE REQUIRED S FOR HYDRA PORT ~ PI | O ACCOMMOD LIC INFORMA | ATE Q100 ION. <br> G SUMMA | (DE) | GRADE <br> OPED |  | IS) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Pipe Run | Contributing Basins | Equivalent CA(5) | Equivalent CA(100) | Maximum Tc | I(5) | I(100) | Q(5) | $Q(100)$ | Pipe Size* |
| 21 | PIPE 20 + DP-16 (Intercepted) | 2.05 | 2.85 | 7.1 | 4.64 | 7.79 | 9.5 | 22.2 | 18" |
| 22 | PIPE 15 + PIPE 21 | 34.41 | 45.03 | 17.6 | 3.28 | 5.50 | 112.8 | 247.8 | $60 "$ |
| 23 | DP-12 (Intercepted) | 1.65 | 1.71 | 11.9 | 3.87 | 6.50 | 6.4 | 11.1 | 18" |
| 24 | DP-13 | 1.62 | 2.31 | 12.6 | 3.78 | 6.34 | 6.1 | 14.7 | $24 "$ |
| 25 | DP-14 | 0.90 | 1.10 | 10.3 | 4.08 | 6.85 | 3.7 | 7.5 | 18" |
| 26 | PIPE 19 + PIPE 24 + PIPE 25 | 6.65 | 8.18 | 12.6 | 3.79 | 6.36 | 25.2 | 52.0 | 36" |
| 27 | PIPE 26 + PIPE 28 | 8.04 | 9.42 | 13.1 | 3.72 | 6.24 | 29.9 | 58.8 | 36" |
| 28 | DP-17 (Intercepted) | 1.39 | 1.25 | 11.9 | 3.87 | 6.50 | 5.4 | 8.1 | 18" |
| 29 | DP-18 | 1.48 | 2.28 | 12.6 | 3.79 | 6.36 | 5.6 | 14.5 | 24" |
| 30 | DP-19 | 0.85 | 1.03 | 10.2 | 4.11 | 6.89 | 3.5 | 7.1 | 18" |


| JOB NAME: <br> JOB NUMBER: <br> DATE: <br> CALCULATED BY: | Sterling Ranch East Filing <br> $\mathbf{1 1 8 3 . 3 0}$ <br> $\mathbf{0 8 / 0 4 / 2 2}$ <br> $\boldsymbol{M A L}$ <br>  <br> PIPES ARE LISTED AT MAXIMU <br> REFER TO INDIVIDUAL PIPE S <br> FINAL DRAINAGE | ZE REQUIRED S FOR HYDRA PORT ~ PI | O ACCOMMOD LIC INFORMA <br> E ROUTIN | ATE Q100 FL ION. <br> G SUMMA | TT MIN (DE | GRADE <br> OPED |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Pipe Run | Contributing Basins | Equivalent CA(5) | Equivalent CA(100) | Maximum Tc | I(5) | I(100) | $Q(5)$ | $Q(100)$ | Pipe Size* |
| 31 | PIPE 27 + PIPE 29 + PIPE 30 | 10.37 | 12.72 | 13.1 | 3.72 | 6.24 | 38.6 | 79.4 | 42" |
| 32 | DP-20 (Intercepted) | 1.37 | 1.23 | 11.4 | 3.93 | 6.60 | 5.4 | 8.1 | 18" |
| 33 | PIPE 34 + PIPE 35 | 1.53 | 2.37 | 11.4 | 3.93 | 6.60 | 6.0 | 15.6 | $24 "$ |
| 34 | DP-21 | 0.97 | 1.70 | 11.4 | 3.93 | 6.60 | 3.8 | 11.2 | $24 "$ |
| 35 | DP-22 | 0.56 | 0.67 | 8.5 | 4.37 | 7.34 | 2.4 | 4.9 | 18" |
| 36A | PIPE 31 + PIPE 32 + PIPE 33 | 13.27 | 16.32 | 13.6 | 3.67 | 6.15 | 48.6 | 100.4 | 48" |
| 36B | PIPE 36A + PIPE 100 | 14.92 | 18.31 | 13.6 | 3.67 | 6.15 | 54.7 | 112.7 | 48" |
| 37 | DP-23 (Intercepted) | 0.63 | 1.00 | 5.7 | 4.96 | 8.33 | 3.1 | 8.3 | EX. 18" |
| 38 | PIPE 37 + DP-24 (Intercepted) | 1.25 | 2.03 | 5.7 | 4.96 | 8.33 | 6.2 | 16.9 | EX. 18" |
| 39A | PIPE 22 + PIPE 38 | 35.67 | 47.06 | 18.3 | 3.22 | 5.41 | 114.9 | 254.6 | 60" |


| JOB NAME: <br> JOB NUMBER: <br> DATE: <br> CALCULATED BY: | Sterling Ranch East Filing N <br> $\mathbf{1 1 8 3 . 3 0}$ <br> $\mathbf{0 8 / 0 4 / 2 2}$ <br> $\boldsymbol{M A L}$ <br> PIPES ARE LISTED AT MAXIMU <br> REFER TO INDIVIDUAL PIPE SH <br> FINAL DRAINAGE | ZE REQUIRED S FOR HYDRA PORT ~ PI | O ACCOMMO LIC INFORMA <br> E ROUTIN | ATE Q100 ION. <br> G SUMMA | T MIN (DE) | GRADE <br> PPED |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Pipe Run | Contributing Basins | Equivalent CA(5) | Equivalent CA(100) | Maximum Tc | I(5) | I(100) | Q(5) | $Q(100)$ | Pipe Size* |
| 39B | PIPE 39A + PIPE 36B | 50.59 | 65.37 | 18.6 | 3.20 | 5.38 | 162.0 | 351.4 | 72" |
| 40 | DP-25 (Intercepted) | 0.76 | 0.94 | 6.3 | 4.83 | 8.10 | 3.7 | 7.6 | EX. 18" |
| 41 | PIPE 40 + DP-26 (Intercepted) | 1.55 | 2.00 | 6.3 | 4.83 | 8.10 | 7.5 | 16.2 | EX. 18" |
| 42 | PIPE 39B + PIPE 41 + PIPE 96 | 52.49 | 68.66 | 19.0 | 3.17 | 5.31 | 166.2 | 364.8 | 72" |
| 43 | DP-28 | 1.48 | 1.76 | 5.8 | 4.94 | 8.29 | 7.3 | 14.6 | EX. 24" |
| 44 | PIPE 43 + DP-27 | 3.00 | 3.58 | 5.8 | 4.94 | 8.29 | 14.8 | 29.7 | EX. 24" |
| 45 | DP-29A (Intercepted) | 1.34 | 1.29 | 11.7 | 3.89 | 6.53 | 5.2 | 8.4 | 18" |
| 46 | DP-30A (Intercepted) | 1.65 | 1.48 | 11.9 | 3.87 | 6.50 | 6.4 | 9.6 | 18" |
| 47 | PIPE 45 + PIPE 46 | 2.99 | 2.76 | 11.9 | 3.87 | 6.50 | 11.6 | 18.0 | 24" |
| 48 | DP-29B | 0.55 | 1.32 | 11.7 | 3.89 | 6.53 | 2.1 | 8.7 | 18" |


| JOB NAME: JOB NUMBER: <br> DATE: <br> CALCULATED BY: | Sterling Ranch East Filing N <br> $\mathbf{1 1 8 3 . 3 0}$ <br> $\mathbf{0 8 / 0 4 / 2 2}$ <br> $\boldsymbol{M A L}$ <br> PIPES ARE LISTED AT MAXIMU <br> REFER TO INDIVIDUAL PIPE SH <br> FINAL DRAINAGE | ZE REQUIRED S FOR HYDRA <br> PORT ~ PI | O ACCOMMOD LIC INFORMA | ATE Q100 ION. <br> G SUMMA | (DE) | GRADE <br> OPED |  | IS) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Contributing Basins | Equivalent CA(5) | Equivalent CA(100) | Maximum Tc | Intensity |  | Flow |  |  |
| Pipe Run |  |  |  |  | I(5) | I(100) | Q(5) | $Q(100)$ | Pipe Size* |
| 49 | DP-30B | 0.63 | 1.53 | 11.9 | 3.87 | 6.50 | 2.4 | 9.9 | 18" |
| 50 | PIPE 47 + PIPE 48 + PIPE 49 | 4.17 | 5.61 | 11.9 | 3.87 | 6.50 | 16.1 | 36.5 | 30" |
| 51 | DP-37 | 0.87 | 1.05 | 11.1 | 3.97 | 6.66 | 3.5 | 7.0 | 18" |
| 52 | DP-38 | 1.19 | 1.49 | 11.0 | 3.99 | 6.70 | 4.7 | 9.9 | 18" |
| 53 | PIPE 50 + PIPE 51 + PIPE 52 | 6.23 | 8.15 | 13.0 | 3.74 | 6.27 | 23.3 | 51.1 | 36" |
| 54 | DP-39 | 0.96 | 1.20 | 10.3 | 4.08 | 6.86 | 3.9 | 8.3 | 18" |
| 55 | DP-40 | 0.58 | 0.71 | 10.1 | 4.11 | 6.90 | 2.4 | 4.9 | 18" |
| 56 | PIPE 54 + PIPE 55 | 1.53 | 1.92 | 10.3 | 4.08 | 6.86 | 6.3 | 13.1 | $24 "$ |
| 57 | PIPE 53 | 6.23 | 8.15 | 13.4 | 3.70 | 6.20 | 23.0 | 50.5 | 36" |
| 58 | DP-42 | 0.30 | 0.35 | 5.0 | 5.17 | 8.68 | 1.5 | 3.0 | 18" |


| JOB NAME: JOB NUMBER: <br> DATE: <br> CALCULATED BY: | Sterling Ranch East Filing N <br> $\mathbf{1 1 8 3 . 3 0}$ <br> $\mathbf{0 8 / 0 4 / 2 2}$ <br> $\boldsymbol{M A L}$ <br> PIPES ARE LISTED AT MAXIMU <br> REFER TO INDIVIDUAL PIPE SH <br> FINAL DRAINAGE | ZE REQUIRED S FOR HYDRA <br> PORT ~ PI | O ACCOMMOD LIC INFORMA | ATE Q100 ION. <br> G SUMMA | (DE) | GRADE <br> OPED |  | (S) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Contributing Basins | Equivalent CA(5) | Equivalent CA(100) | Maximum Tc | Intensity |  | Flow |  |  |
| Pipe Run |  |  |  |  | I(5) | I(100) | Q(5) | $Q(100)$ | Pipe Size* |
| 59 | PIPE 57 + PIPE 58 | 6.53 | 8.49 | 13.7 | 3.65 | 6.13 | 23.8 | 52.1 | 36" |
| 60 | DP-41 | 0.61 | 0.74 | 5.0 | 5.17 | 8.68 | 3.2 | 6.4 | 18" |
| 61 | PIPE 59 + PIPE 60 | 7.14 | 9.23 | 13.7 | 3.65 | 6.13 | 26.1 | 56.6 | 42 |
| 62 | DP-43 | 0.49 | 0.61 | 10.0 | 4.12 | 6.92 | 2.0 | 4.2 | 18" |
| 63 | DP-44 | 0.27 | 0.32 | 6.6 | 4.75 | 7.98 | 1.3 | 2.5 | 18" |
| 64 | PIPE 61 + PIPE 62 + PIPE 63 | 7.90 | 10.16 | 14.4 | 3.58 | 6.01 | 28.3 | 61.1 | 42" |
| 65 | DP-45 | 0.54 | 0.67 | 10.1 | 4.11 | 6.90 | 2.2 | 4.6 | 18" |
| 66 | DP-46 | 0.29 | 0.34 | 6.7 | 4.73 | 7.95 | 1.4 | 2.7 | 18" |
| 67 | PIPE 64 + PIPE 65 + PIPE 66 | 8.73 | 11.16 | 15.1 | 3.51 | 5.90 | 30.7 | 65.8 | 42" |
| 68 | DP-31 | 1.27 | 1.58 | 10.9 | 4.00 | 6.72 | 5.1 | 10.6 | 18" |


| JOB NAME: JOB NUMBER: <br> DATE: <br> CALCULATED BY: | Sterling Ranch East Filing N <br> $\mathbf{1 1 8 3 . 3 0}$ <br> $\mathbf{0 8 / 0 4 / 2 2}$ <br> $\boldsymbol{M A L}$ <br> PIPES ARE LISTED AT MAXIMU <br> REFER TO INDIVIDUAL PIPE SH <br> FINAL DRAINAGE | ZE REQUIRED S FOR HYDRA <br> PORT ~ PI | O ACCOMMOD LIC INFORMA | ATE Q100 ION. <br> G SUMMA | (DE) | GRADE <br> OPED |  | IS) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Contributing Basins | Equivalent CA(5) | Equivalent CA(100) | Maximum Tc | Intensity |  | Flow |  |  |
| Pipe Run |  |  |  |  | I(5) | I(100) | Q(5) | $Q(100)$ | Pipe Size* |
| 69 | DP-32 | 0.76 | 0.93 | 7.2 | 4.62 | 7.75 | 3.5 | 7.2 | 18" |
| 70 | PIPE 68 + PIPE 69 | 2.03 | 2.51 | 10.9 | 4.00 | 6.72 | 8.1 | 16.8 | $24 "$ |
| 71 | DP-33 | 1.34 | 1.64 | 11.1 | 3.97 | 6.67 | 5.3 | 11.0 | 18" |
| 72 | DP-34 | 0.88 | 1.08 | 7.7 | 4.53 | 7.61 | 4.0 | 8.2 | 18" |
| 73 | PIPE 71 + PIPE 72 | 2.22 | 2.72 | 11.1 | 3.97 | 6.67 | 8.8 | 18.1 | $24 "$ |
| 74 | PIPE 70 + PIPE 73 | 4.26 | 5.23 | 11.8 | 3.88 | 6.52 | 16.5 | 34.1 | 30" |
| 75 | DP-47A (Intercepted) | 1.19 | 1.06 | 11.9 | 3.86 | 6.49 | 4.6 | 6.9 | 18" |
| 76 | PIPE 74 + PIPE 75 | 5.45 | 6.29 | 12.2 | 3.83 | 6.43 | 20.9 | 40.4 | $30 "$ |
| 77 | DP-35 | 0.68 | 0.82 | 10.1 | 4.11 | 6.90 | 2.8 | 5.6 | 18" |
| 78 | DP-36 | 0.54 | 0.67 | 10.1 | 4.11 | 6.90 | 2.2 | 4.6 | 18" |


| JOB NAME: JOB NUMBER: <br> DATE: <br> CALCULATED BY: | Sterling Ranch East Filing N <br> $\mathbf{1 1 8 3 . 3 0}$ <br> $\mathbf{0 8 / 0 4 / 2 2}$ <br> $\boldsymbol{M A L}$ <br> PIPES ARE LISTED AT MAXIMU <br> REFER TO INDIVIDUAL PIPE SH <br> FINAL DRAINAGE | ZE REQUIRED S FOR HYDRA | O ACCOMMOD LIC INFORMA | ATE Q100 ION. <br> G SUMMA | (DE) | GRADE <br> OPED |  | IS) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Pipe Run | Contributing Basins | Equivalent CA(5) | Equivalent CA(100) | Maximum Tc | I(5) | I(100) | Q(5) | $Q(100)$ | Pipe Size* |
| 79 | PIPE 56 + PIPE 77 + PIPE 78 | 2.75 | 3.40 | 10.3 | 4.08 | 6.86 | 11.2 | 23.3 | 24" |
| 80 | PIPE 76 + PIPE 79 | 8.20 | 9.69 | 12.2 | 3.83 | 6.43 | 31.4 | 62.3 | 42" |
| 81 | DP-47B | 1.37 | 2.01 | 11.9 | 3.86 | 6.49 | 5.3 | 13.0 | $24 "$ |
| 82 | DP-48 | 0.23 | 0.26 | 6.5 | 4.78 | 8.02 | 1.1 | 2.1 | 18" |
| 83 | PIPE 81 + PIPE 82 | 1.60 | 2.27 | 11.9 | 3.86 | 6.49 | 6.2 | 14.7 | $24 "$ |
| 84 | PIPE 80 + PIPE 83 | 9.80 | 11.97 | 12.7 | 3.77 | 6.33 | 36.9 | 75.7 | 42" |
| 85 | PIPE 67 + PIPE 84 | 18.53 | 23.13 | 15.4 | 3.48 | 5.85 | 64.6 | 135.3 | 48" |
| 86 | DP-52 | 0.34 | 0.54 | 5.0 | 5.17 | 8.68 | 1.8 | 4.7 | 18" |
| 87 | PIPE 86 + DP-53 | 0.55 | 0.89 | 6.0 | 4.90 | 8.23 | 2.7 | 7.3 | 18" |
| 88 | PIPE 87 + DP-54 | 0.83 | 1.32 | 6.7 | 4.73 | 7.95 | 3.9 | 10.5 | 18" |


| JOB NAME: <br> JOB NUMBER: <br> DATE: <br> CALCULATED BY: | Sterling Ranch East Filing N <br> $\mathbf{1 1 8 3 . 3 0}$ <br> $\mathbf{0 8 / 0 4 / 2 2}$ <br> $\boldsymbol{M A L}$ <br> PIPES ARE LISTED AT MAXIMU <br> REFER TO INDIVIDUAL PIPE SH <br> FINAL DRAINAGE | ZE REQUIRED S FOR HYDRA PORT ~ PI | O ACCOMMOD LIC INFORMA <br> E ROUTIN | ATE Q100 ION. <br> G SUMMA | T MIN (DE) | GRADE <br> OPED |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Pipe Run | Contributing Basins | Equivalent CA(5) | Equivalent CA(100) | Maximum Tc | I(5) | I(100) | Q(5) | $Q(100)$ | Pipe Size* |
| 89A | PIPE 85 + PIPE 88 | 19.35 | 24.45 | 15.6 | 3.46 | 5.81 | 67.0 | 142.1 | 54" |
| 89B | DP-55A | 0.20 | 0.37 | 5.0 | 5.17 | 8.68 | 1.1 | 3.2 | 18" |
| 89C | PIPE 89A + PIPE 89B | 19.56 | 24.82 | 15.6 | 3.46 | 5.81 | 67.7 | 144.2 | 54" |
| 90 | DP-55B | 0.43 | 0.81 | 5.0 | 5.17 | 8.68 | 2.2 | 7.0 | 18" |
| 91 | PIPE 89C + PIPE 90 | 19.99 | 25.62 | 16.5 | 3.38 | 5.67 | 67.6 | 145.4 | 54" |
| 92A | DP-56 | 0.20 | 0.62 | 10.0 | 4.14 | 6.94 | 0.8 | 4.3 | 18" |
| 92B | PIPE 92A + DP-57 | 0.72 | 2.23 | 10.4 | 4.07 | 6.83 | 2.9 | 15.2 | 24" |
| 93 | DP-58 | 0.58 | 0.64 | 5.0 | 5.17 | 8.68 | 3.0 | 5.6 | 18" |
| 94 | PIPE 92B + PIPE 93 | 1.30 | 2.88 | 10.0 | 4.14 | 6.94 | 5.4 | 20.0 | 24" |
| 95 | PIPE 91 + PIPE 94 | 21.29 | 28.50 | 16.9 | 3.34 | 5.61 | 71.1 | 159.8 | $54 "$ |


| JOB NAME: <br> JOB NUMBER: <br> DATE: <br> CALCULATED BY: | Sterling Ranch East Filing No. <br> $\mathbf{1 1 8 3 . 3 0}$ <br> $\mathbf{0 8 / 0 4 / 2 2}$ <br> $\boldsymbol{M A L}$ <br>  <br> PIPES ARE LISTED AT MAXIMUM <br> REFER TO INDIVIDUAL PIPE SHE <br> FINAL DRAINAGE R |  | O ACCOMMO LIC INFORMA | ATE Q100 FL ON. <br> G SUMMA | AT MIN | GRADE <br> OPED | NDI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| Pipe Run | Contributing Basins | $\begin{gathered} \text { Equivalent } \\ \mathrm{CA}(5) \\ \hline \end{gathered}$ | Equivalent CA(100) | Maximum Tc | I(5) | I(100) | Q(5) | Q(100) | Pipe Size* |
| 96 | DP-59 | 0.35 | 1.28 | 9.2 | 4.25 | 7.13 | 1.5 | 9.2 | $18^{\prime \prime}$ |
| 97 | DP/PIPE 26A From JR Engineering Letter - Sterling Ranch \& Briargate | 3.66 | 30.21 | 18.6 | 3.20 | 5.36 | 11.7 | 162.0 | EX. 54" |
| 98 | POND A OUTFALL | 0.96 | 10.34 | 19.5 | 3.12 | 5.24 | 3.0 | 54.2 | $48 "$ |
| 100 | DP-51 | 1.65 | 1.99 | 6.4 | 4.81 | 8.07 | 7.9 | 16.1 | $24 "$ |



| JOB NAME: | Sterling Ranch East Filing No. 1 |
| :--- | :--- |
| JOB NUMBER: | $\underline{1183.30}$ |
| DATE: | $\underline{08 / 04 / 22}$ |
| CALCULATED BY: | $\underline{M A L}$ |

FINAL DRAINAGE REPORT ~ PIPE TRAVEL TIMES

| PIPE RUN | STREET / CHANNEL FLOW |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pipe Diameter (ft) | Length <br> (ft) | Slope <br> (\%) | Velocity <br> (fps) | $\begin{gathered} \mathrm{Tc} \\ (\mathrm{~min}) \end{gathered}$ |
| 10 | 4.0 | 1200 | 1.5\% | 14.0 | 1.4 |
| 13 | 4.0 | 240 | 1.5\% | 14.0 | 0.3 |
| 15 | 5.5 | 740 | 1.5\% | 17.4 | 0.7 |
| 18 | 2.0 | 320 | 1.0\% | 7.2 | 0.7 |
| 19 | 2.5 | 80 | 1.0\% | 8.4 | 0.2 |
| 26 | 3.0 | 330 | 1.0\% | 9.5 | 0.6 |
| 31 | 3.5 | 300 | 1.0\% | 10.5 | 0.5 |
| 33 | 3.0 | 60 | 0.5\% | 6.7 | 0.1 |
| 22 | 5.0 | 650 | 1.5\% | 16.3 | 0.7 |
| 39A | 5.0 | 240 | 1.5\% | 16.3 | 0.2 |
| 39B | 6.0 | 510 | 1.5\% | 18.4 | 0.5 |
| 50 | 2.5 | 500 | 0.8\% | 7.5 | 1.1 |
| 53 | 3.0 | 140 | 0.5\% | 6.7 | 0.3 |
| 57 | 3.5 | 250 | 1.0\% | 10.5 | 0.4 |
| 61 | 3.5 | 290 | 0.5\% | 7.4 | 0.7 |
| 64 | 3.5 | 300 | 0.5\% | 7.4 | 0.7 |
| 70 | 2.0 | 380 | 1.0\% | 7.2 | 0.9 |
| 74 | 2.5 | 230 | 1.0\% | 8.4 | 0.5 |
| 80 | 3.0 | 280 | 1.0\% | 9.5 | 0.5 |
| 67 | 3.5 | 130 | 0.5\% | 7.4 | 0.3 |
| 86 | 1.5 | 350 | 1.0\% | 6.0 | 1.0 |
| 87 | 1.5 | 250 | 1.0\% | 6.0 | 0.7 |
| 85 | 4.0 | 160 | 1.0\% | 11.5 | 0.2 |
| 89 | 4.5 | 650 | 1.0\% | 12.4 | 0.9 |
| 91 | 4.5 | 340 | 1.0\% | 12.4 | 0.5 |
| 42 | 6.0 | 400 | 0.7\% | 12.6 | 0.5 |

## Determination of Culvert Headwater and Outlet Protection

Project: STERLING RANCH EAST FILING NO. 1
Basin ID: POND 14A OUTFALL


Supercritical Flow! Using Da to calculate protection type.


MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-1 | DP-2 | DP-3 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | On Grade | On Grade |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {known }}$ (cfs) | 10.2 | 14.4 | 5.2 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 20.3 | 29.1 | 11.3 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 3.4 |

Watershed Characteristics

| Subcatchment Area (acres) |  |  |  |
| :--- | :--- | :--- | :---: |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |

Watershed Profile

| Overland Slope (ft/ft) |  |  |  |
| :--- | :--- | :--- | :--- |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length $(\mathrm{ft})$ |  |  |  |

Minor Storm Rainfall Input

| Design Storm Return Period, $T_{r}$ (years) |  |  |  |
| :--- | :--- | :--- | :--- |
| One-Hour Precipitation, $P_{1}$ (inches) |  |  |  |



CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{1 0 . 2}$ | $\mathbf{1 4 . 4}$ | $\mathbf{5 . 2}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{2 0 . 3}$ | $\mathbf{2 9 . 1}$ | $\mathbf{1 4}$ |
| Minor Flow Bypassed Downstream, Q $(\mathrm{cfs})$ | 0.0 | 1.2 |  |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | 3.4 | 9.4 |  |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-4 | DP-5 | DP-6 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | On Grade | On Grade | In Sump |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening | CDOT Type R Curb Opening |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 4.4 | 7.0 | 10.3 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 8.7 | 15.7 | 23.0 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | User-Defined | User-Defined | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 1.2 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 9.4 | 0.0 | 8.6 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{5 . 6}$ | $\mathbf{7 . 0}$ | $\mathbf{1 5 . 7}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{1 8 . 1}$ | 0.0 | $\mathbf{3 1 . 6}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (fs) | 0.0 | N |  |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 5.0 | 3.6 | $\mathrm{~N} / \mathrm{A}$ |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-7 | DP-8 | DP-9 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | On Grade |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 8.0 | 5.2 | 5.2 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 17.3 | 10.7 | 10.7 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 3.0 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{8 . 0}$ | $\mathbf{5 . 2}$ | $\mathbf{5 . 2}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{1 7 . 3}$ | $\mathbf{1 0 . 7}$ | $\mathbf{1 3 . 7}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (ffs) | $\mathrm{N} / \mathrm{A}$ | 0.4 | 0.4 |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | $\mathrm{N} / \mathrm{A}$ | 3.4 | 5.4 |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-10 | DP-11 | DP-12 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | In Sump | On Grade |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening | CDOT Type R Curb Opening |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 6.0 | 4.2 | 6.4 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 12.5 | 8.5 | 13.4 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | 6.0 | 4.2 | 6.4 |
| :---: | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | 12.5 | 8.5 | 13.4 |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | N/A | N/A | 0.0 |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | N/A | N/A | 2.3 |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-13 | DP-14 | DP-15 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | In Sump |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 6.1 | 3.7 | 4.4 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 12.4 | 7.5 | 9.2 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | User-Defined |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.4 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 2.3 | 0.0 | 3.4 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | 6.1 | 3.7 | 4.8 |
| :---: | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | 14.7 | 7.5 | 12.6 |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | N/A | N/A | 0.0 |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | N/A | N/A | 1.9 |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-16 | DP-17 | DP-18 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | On Grade | On Grade |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 4.3 | 6.2 | 4.8 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 8.9 | 13.0 | 9.6 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | User-Defined | No Bypass Flow Received | User-Defined |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.4 | 0.0 | 0.8 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 5.4 | 0.0 | 4.9 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{4 . 7}$ | $\mathbf{6 . 2}$ | $\mathbf{5 . 6}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{1 4 . 3}$ | $\mathbf{1 3 . 0}$ | $\mathbf{1 4 . 5}$ |
| Minor Flow yypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.8 | N |
| Major Flow yypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 2.8 | 4.9 | $\mathrm{~N} / \mathrm{A}$ |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-19 | DP-20 | DP-21 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | On Grade |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 3.5 | 6.2 | 3.0 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 7.1 | 13.2 | 6.1 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | User-Defined |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.8 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 5.1 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{3 . 5}$ | $\mathbf{6 . 2}$ | $\mathbf{3 . 8}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{7 . 1}$ | $\mathbf{1 3 . 2}$ | $\mathbf{1 1 . 2}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (fs) | $\mathrm{N} / \mathrm{A}$ | N | $\mathrm{N} / \mathrm{A}$ |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | $\mathrm{N} / \mathrm{A}$ | 5.1 | $\mathrm{~N} / \mathrm{A}$ |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-22 | DP-23 | DP-24 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | On Grade |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 2.4 | 3.1 | 3.1 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 4.9 | 6.7 | 6.3 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 1.9 | 2.8 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{2 . 4}$ | $\mathbf{3 . 1}$ | $\mathbf{3 . 1}$ |
| :--- | :--- | :--- | :--- |
| Major Total Design Peak Flow, Q (fs) | $\mathbf{4 . 9}$ | $\mathbf{8 . 6}$ | $\mathbf{9 . 1}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | $\mathrm{N} / \mathrm{A}$ | 0.0 | 0.0 |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | $\mathrm{N} / \mathrm{A}$ | 0.3 | 0.5 |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-25 | DP-26 | DP-27 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | On Grade | On Grade |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 3.7 | 3.8 | 7.5 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 7.4 | 8.5 | 15.0 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | User-Defined | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.3 | 0.6 | 0.1 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{3 . 7}$ | $\mathbf{3 . 8}$ | $\mathbf{9 . 5}$ |
| :--- | :--- | :--- | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{7 . 7}$ | $\mathbf{9 . 1}$ | $\mathbf{1 5 . 1}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (fs) | 0.0 | 0.0 | $\mathrm{~N} / \mathrm{A}$ |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.1 | 0.5 | $\mathrm{~N} / \mathrm{A}$ |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-28 | DP-29A | DP-29B |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | On Grade |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {known }}$ (cfs) | 7.3 | 5.9 | 1.4 |
| Major $\mathrm{Q}_{\text {known }}$ (cfs) | 13.9 | 14.0 | 3.1 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | User-Defined | No Bypass Flow Received | User-Defined |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.7 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.7 | 0.0 | 5.6 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{7 . 3}$ | $\mathbf{5 . 9}$ | $\mathbf{2 . 9}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{1 4 . 6}$ | $\mathbf{1 4 . 0}$ | $\mathbf{8 . 7}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | $\mathrm{N} / \mathrm{A}$ | 0.7 | $\mathrm{~N} / \mathrm{A}$ |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | $\mathrm{N} / \mathrm{A}$ | 5.6 | $\mathrm{~N} / \mathrm{A}$ |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-30A | DP-30B | DP-31 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | On Grade | In Sump | In Sump |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 8.3 | 0.5 | 5.1 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 18.6 | 0.9 | 10.6 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | User-Defined | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 1.9 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 9.0 | 0.0 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{8 . 3}$ | $\mathbf{2 . 4}$ | $\mathbf{5 . 4}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{1 8 . 6}$ | $\mathbf{9 . 9}$ | $\mathbf{1 0 . 6}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (fs) | 1.9 | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | 9.0 | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-32 | DP-33 | DP-34 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | In Sump |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 3.5 | 5.3 | 4.0 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 7.2 | 11.0 | 8.2 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{3 . 5}$ | $\mathbf{5 . 3}$ | $\mathbf{4 . 0}$ |
| :--- | :--- | :--- | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{7 . 2}$ | $\mathbf{1 1 . 0}$ | $\mathbf{8 . 2}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | N |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | N/A | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-35 | DP-36 | DP-37 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | In Sump |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 2.8 | 2.2 | 3.5 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 5.6 | 4.6 | 7.0 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope ( $\mathrm{ft} / \mathrm{ft}$ ) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{2 . 8}$ | $\mathbf{2 . 2}$ | $\mathbf{3 . 5}$ |
| :--- | :--- | :--- | :---: |
| Major Total Design Peak Flow, Q(cfs) | $\mathbf{5 . 6}$ | $\mathbf{4 . 6}$ | $\mathbf{7 . 0}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs}$ (cs) | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-38 | DP-39 | DP-40 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | In Sump |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 4.7 | 3.9 | 2.4 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 9.9 | 8.3 | 4.9 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{4 . 7}$ | $\mathbf{3 . 9}$ | $\mathbf{2 . 4}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{9 . 9}$ | $\mathbf{8 . 3}$ | $\mathbf{4 . 9}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-41 | DP-42 | DP-43 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | In Sump |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 3.2 | 1.5 | 2.0 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 6.4 | 3.0 | 4.2 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{3 . 2}$ | $\mathbf{1 . 5}$ | $\mathbf{2 . 0}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{6 . 4}$ | $\mathbf{3 . 0}$ | $\mathbf{4 . 2}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-44 | DP-45 | DP-46 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | In Sump |  |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 1.3 | 2.2 | 1.4 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 2.5 | 4.6 | 2.7 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{1 . 3}$ | $\mathbf{2 . 2}$ | $\mathbf{1 . 4}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{2 . 5}$ | $\mathbf{4 . 6}$ | $\mathbf{2 . 7}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-47B | DP-48 | DP-47A |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | In Sump | On Grade |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening | CDOT Type R Curb Opening |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 4.8 | 1.1 | 5.1 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 9.6 | 2.1 | 10.3 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | User-Defined | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.5 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 3.4 | 0.0 | 0.0 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{5 . 3}$ | $\mathbf{1 . 1}$ | $\mathbf{2 . 1}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{1 3 . 0}$ | $\mathrm{N} / \mathrm{A}$ | $\mathbf{1 0 . 3}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (fs) | $\mathrm{N} / \mathrm{A}$ | A | $\mathrm{N} / \mathrm{A}$ |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | $\mathrm{N} / \mathrm{A}$ | 3.4 |  |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-50B | DP-50C | DP-52 |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | AREA | AREA | AREA |
| Hydraulic Condition | Swale | Swale | Swale |
| Inlet Type | CDOT Type D (In Series \& Depressed) | CDOT Type D (In Series \& Depressed) |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {known }}$ (cfs) | 4.5 | 3.6 | 1.8 |
| Major $\mathrm{Q}_{\text {known }}$ (cfs) | 32.8 | 26.6 | 4.7 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{4 . 5}$ | $\mathbf{3 . 6}$ | $\mathbf{1 . 8}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{3 2 . 8}$ | $\mathbf{2 6 . 6}$ | $\mathbf{4 . 7}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | 0.0 | 0.0 | 0.0 |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | 0.0 | 0.0 | 0.1 |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-53 | DP-54 | DP-55A |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | AREA | AREA | AREA |
| Hydraulic Condition | Swale | Swale | Swale |
| Inlet Type | CDOT Type C | CDOT Type C |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 1.1 | 1.4 | 1.1 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 3.1 | 3.7 | 3.2 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Watershed Characteristics |  |  |  |
| Subcatchment Area (acres) |  |  |  |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |
| Watershed Profile |  |  |  |
| Overland Slope (ft/ft) |  |  |  |
| Overland Length (ft) |  |  |  |
| Channel Slope (ft/ft) |  |  |  |
| Channel Length (ft) |  |  |  |
| Minor Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |
| Major Storm Rainfall Input |  |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{1 . 1}$ | $\mathbf{1 . 4}$ | $\mathbf{1 . 4}$ |
| :--- | :--- | :--- | :---: |
| Major Total Design Peak Flow, Q(cfs) | $\mathbf{3 . 1}$ | $\mathbf{3 . 7}$ | $\mathbf{3 . 2}$ |
| Minor Flow Bypassed Downstream, Q (cfs) | 0.0 | 0.0 |  |
| Major Flow Bypassed Downstream, $Q_{b}$ (cfs) | 0.0 | 0.0 | 0.0 |

MHFD-Inlet, Version 5.01 (April 2021)
INLET MANAGEMENT

| INLET NAME | DP-55B |
| :--- | :---: |
| Site Type (Urban or Rural) | URBAN |
| Inlet Application (Street or Area) | AREA |
| Hydraulic Condition | Swale |
| Inlet Type | CDOT Type C (Depressed) |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |
| :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 2.2 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 7.0 |
| Bypass (Carry-Over) Flow from Upstream |  |
| Receive Bypass Flow from: | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 |

## Watershed Characteristics



## Watershed Profile

Overland Slope (ft/ft)
Overland Length (ft)
Channel Slope (ft/ft)
Channel Length (ft)

## Minor Storm Rainfall Input

Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years)
One-Hour Precipitation, $\mathrm{P}_{1}$ (inches)


## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{2 . 2}$ |
| :--- | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{7 . 0}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | 0.0 |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | 0.0 |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: $\overline{\mathbf{D P}-1}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

$\mathbf{Q}_{\text {allow }}=$|  | Minor Storm |
| :---: | :---: |
| $\mathbf{1 3 . 1}$ | Major Storm |



Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 20.00 | 20.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{4}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 10.2 | 16.9 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 3.4 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 100 | 83 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: $\overline{\mathbf{D P}-2}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

$\mathbf{Q}_{\text {allow }}=$| Minor Storm | Major Storm |
| :---: | :---: |
| $\mathbf{1 6 . 2}$ | $\mathbf{6 3 . 6}$ |



Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)



## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-3


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

$\mathbf{Q}_{\text {allow }}=$|  | Minor Storm |
| :---: | :---: |
| $\mathbf{1 3 . 1}$ | Major Storm |



Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{4}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 5.2 | 11.7 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 3.0 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 100 | 79 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: $\overline{\text { DP-4 }}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

$\mathbf{Q}_{\text {allow }}=$|  | Minor Storm |
| :---: | :---: |
| $\mathbf{1 3 . 1}$ | Major Storm |



Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{-}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 5.6 | 13.1 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 5.0 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 100 | 72 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-5


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

$\mathbf{Q}_{\text {allow }}=$|  | Minor Storm |
| :---: | :---: |
| 13.8 | Major Storm |
|  | $\mathbf{5 5 . 5}$ |

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{-}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 7.0 | 12.1 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 3.6 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 100 | 77 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-6


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 9.1 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value $0.50-0.70$ ) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 20.00 | 20.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.59 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.57 | 0.86 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 0.79 | 0.94 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 12.5 | 35.1 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 10.3 | 31.6 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-7


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 9.1 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value $0.50-0.70$ ) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 15.00 | 15.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.59 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.57 | 0.86 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 0.79 | 0.94 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 9.7 | 27.4 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 8.0 | 17.3 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-8


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

$\mathbf{Q}_{\text {allow }}=$|  | Minor Storm |
| :---: | :---: |
| $\mathbf{1 7 . 4}$ | Major Storm |

Qallow $=\frac{17.4}{}$
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 10.00 | 10.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{-}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 4.8 | 7.3 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.4 | 3.4 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 93 | 69 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: $\overline{\text { DP-9 }}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

$\mathbf{Q}_{\text {allow }}=$|  | Minor Storm |
| :---: | :---: |
| $\mathbf{1 7 . 4}$ | Major Storm |

Qallow $=\frac{17.4}{}$
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| $\|$Design Information (Input)  <br> Type of Inlet CDOT Tvpe R Curb Openina | Type $=$ | MINOR MAJOR |  | inches |
| :---: | :---: | :---: | :---: | :---: |
|  |  | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a') | $\begin{array}{r} \mathrm{a}_{\mathrm{LOCAL}}= \\ \text { No }= \end{array}$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) |  | 1 | 1 | $f_{\mathrm{ft}}$ |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 10.00 | 10.00 |  |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 4.8 | 8.3 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.4 | 5.4 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | C\% | 93 | 61 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: $\overline{\text { DP-10 }}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 15.00 | 15.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.73 | 0.88 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 6.1 | 19.1 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 6.0 | 12.5 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: $\overline{\text { DP-11 }}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb Opening - | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 10.00 | 10.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {Curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.88 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 5.3 | 15.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 4.2 | 8.5 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-12


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{-}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 6.4 | 11.1 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 2.3 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 100 | 83 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-13


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 15.00 | 15.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.73 | 0.88 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 6.1 | 19.1 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 6.1 | 14.7 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-14


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb Opening - | Type $=$ | CDOT Typ | Opening |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\sqrt{ }$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 10.00 | 10.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {curb }}=$ | 0.88 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.3 | 15.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {peak required }}=$ | 3.7 | 7.5 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: $\overline{\text { DP-15 }}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

$\mathbf{Q}_{\text {allow }}=$| Minor Storm | Major Storm |
| :---: | :---: |
| $\mathbf{1 7 . 4}$ | $\mathbf{2 3 . 4}$ |

Qallow $=\frac{17.4}{}$
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvpe R Curb Openina ${ }^{\text {Type of Inlet }}$ | Type $=$ | MINOR MAJOR |  | inches |
| :---: | :---: | :---: | :---: | :---: |
|  |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{-}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 4.8 | 10.7 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 1.9 | cfs |
| Capture Percentage $=\mathrm{Q}_{a} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 100 | 85 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: $\overline{\text { DP-16 }}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

$\mathbf{Q}_{\text {allow }}=$| Minor Storm | Major Storm |
| :---: | :---: |
| $\mathbf{1 7 . 4}$ | $\mathbf{2 3 . 4}$ |

Qallow $=\frac{17.4}{}$
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{-}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 4.7 | 11.5 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 2.8 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 100 | 81 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: $\overline{\text { DP-17 }}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) Type of Inlet $^{\text {D }}$ CDOT Tvpe R Curb Openina | Type $=$ | MINOR MAJOR |  | inches |
| :---: | :---: | :---: | :---: | :---: |
|  |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 10.00 | 10.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{4}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 5.4 | 8.1 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.8 | 4.9 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 87 | 62 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-18


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 15.00 | 15.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.73 | 0.88 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 6.1 | 19.1 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 5.6 | 14.5 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-19


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 3.5 | 7.1 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

Project:
Inlet ID: $\overline{\text { DP-20 }}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 10.00 | 10.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{4}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 5.4 | 8.1 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.8 | 5.1 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 87 | 62 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-21


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Ty | Opening |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 10.00 | 10.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.88 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 5.3 | 15.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 3.8 | 11.2 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-22


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {peak required }}=$ | 2.4 | 4.9 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-23


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

|  | Minor Storm |
| :--- | :--- |
| $\mathbf{Q}_{\text {allow }}$ | Major Storm |
| $\mathbf{1 6 . 9}$ | $\mathbf{2 2 . 7}$ |
| cfs |  |

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{-}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 3.1 | 8.3 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 0.3 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 100 | 96 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-24


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

|  | Minor Storm |
| :--- | :--- |
| $\mathbf{Q}_{\text {allow }}$ | Major Storm |
| $\mathbf{1 6 . 9}$ | $\mathbf{2 2 . 7}$ |
| cfs |  |

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{4}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 3.1 | 8.6 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 0.5 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 100 | 95 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

Project:
Inlet ID: $\overline{\text { DP-25 }}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion

|  | Minor Storm |
| :--- | :--- |
| $\mathbf{Q}_{\text {allow }}$ | Major Storm |
| $\mathbf{1 6 . 9}$ | $\mathbf{2 2 . 7}$ |
| cfs |  |

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{4}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 3.7 | 7.6 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 0.1 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 100 | 98 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: $\overline{\text { DP-26 }}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{4}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 3.8 | 8.6 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 0.5 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 100 | 95 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-27


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 8.9 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 15.00 | 15.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.58 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.57 | 0.84 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.79 | 0.93 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 9.7 | 26.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 7.5 | 15.1 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-28


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 8.9 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 15.00 | 15.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.57 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.57 | 0.84 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.79 | 0.93 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 9.7 | 25.9 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 7.3 | 14.6 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-29A


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 10.00 | 10.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{4}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 5.2 | 8.4 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.7 | 5.6 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 89 | 60 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-29B


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value $0.50-0.70$ ) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 2.1 | 8.7 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-30A


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 10.00 | 10.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{4}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 6.4 | 9.6 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 1.9 | 9.0 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 77 | 51 | \% |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-30B


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 10.00 | 10.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.88 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 5.3 | 15.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 2.4 | 9.9 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-31


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 10.00 | 10.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.88 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 5.3 | 15.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 5.1 | 10.6 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-32


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 3.5 | 7.2 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-33


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 10.00 | 10.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.88 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 5.3 | 15.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 5.3 | 11.0 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-34


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb Opening - | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 10.00 | 10.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {Curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.88 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 5.3 | 15.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 4.0 | 8.2 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-35


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb O | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 2.8 | 5.6 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-36


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb O | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 2.2 | 4.6 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-37


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb O | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 3.5 | 7.0 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-38


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb Opening - | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 10.00 | 10.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {Curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.88 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 5.3 | 15.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 4.7 | 9.9 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-39


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 10.00 | 10.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.88 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 5.3 | 15.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 3.9 | 8.3 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-40


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {peak required }}=$ | 2.4 | 4.9 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-41


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 3.2 | 6.4 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-42


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb O | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 1.5 | 3.0 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-43


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {peak required }}=$ | 2.0 | 4.2 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-44


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb O | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 1.3 | 2.5 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: $\overline{\text { DP-45 }}$


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb O | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 2.2 | 4.6 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-46


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value $0.50-0.70$ ) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 1.4 | 2.7 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-47B


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb | Type = | CDOT Ty | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{\mathrm{o}}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 10.00 | 10.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.48 | 0.74 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 0.88 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 5.3 | 15.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 5.3 | 13.0 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-48


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R | Type = | CDOT Typ | Openin |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.1 | 7.8 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value $0.50-0.70$ ) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.26 | 0.48 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | RF $\mathrm{Combination}=$ | 0.65 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 3.7 | 9.0 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 1.1 | 2.1 | cfs |

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project:
Inlet ID: DP-47A


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE
MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Tvoe R Curb Oneni | Type $=$ | MINOR | MAJOR | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Tvpe R Curb Openi |  | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') | $\mathrm{a}_{\text {LOCAL }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $\mathrm{L}_{0}=$ | 10.00 | 10.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{C}_{-}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity | Q = | 4.6 | 6.9 | cfs |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 0.5 | 3.4 | cfs |
| Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$ | $\mathrm{C} \%=$ | 90 | 67 | \% |



| This worksheet uses the NRCS vegeta |
| :--- |
| retardance method to determine |
| Manning's n . |
|  |
| For more information see |
| Section 7.2 .3 of the USDCM. |

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe
Check one of the following soil types:

| Soil Type: | Max. Velocity $\left(V_{\text {Max }}\right)$ | Max Froude No. ( $\left.F_{\text {max }}\right)$ |
| :---: | :---: | :---: |
| Non-Cohesive | 5.0 fps | 0.60 |
| Cohesive | 7.0 fps | 0.80 |
| Paved | N/A | N/A |

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, or $\mathrm{E}=$


Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm

| Alllowable Channel Capacity Based On Channel Geometry |
| :--- |
| MINOR STORM Allowable Capacity is based on Top Width Criterion |

MAJOR STORM Allowable Capacity is based on Top Width Criterion


Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Inlet Design Information (Input)
Type of Inlet $\quad$ CDOT Type D (In Series \& Depressed) - Inlet Type = CDOT Type D (In Series \& Depressed)

Angle of Inclined Grate (must be $<=30$ degrees) Width of Grate Length of Grate Open Area Ratio Height of Inclined Grate Clogging Factor Grate Discharge Coefficient Orifice Coefficient Weir Coefficient


Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) Total Inlet Interception Capacity (assumes clogged condition) Bypassed Flow
Capture Percentage $=$ Qa/Qo


Warning 04: Froude No. exceeds USDCM Volume I recommendation.


Provide explanation and mitigation for high FR \#


| This worksheet uses the NRCS vegeta |
| :--- | :--- |
| retardance method to determine |
| Manning's n . |
|  |
| For more information see |
| Section 7.2 .3 of the USDCM. |

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's $n$ (Leave cell D16 blank to manually enter an $n$ value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe
Check one of the following soil types:

| Soil Type: | Max. Velocity $\left(\mathrm{V}_{\text {max }}\right)$ | Max Froude No. ( $\left.\mathrm{F}_{\text {max }}\right)$ |
| :---: | :---: | :---: |
| Non-Cohesive | 5.0 fps | 0.60 |
| Cohesive | 7.0 fps | 0.80 |
| Paved | N/A | N/A |

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, or $\mathrm{E}=$


Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm


Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Criterion


Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

DP-50C

| Inlet Design Information (Input) |  |
| :--- | :--- |
| Type of Inlet |  |
| CDOT Type D (In Series \& Depressed) -1 | Inlet Type $=$ CDOT Type D (In Series \& Depressed) |

Angle of Inclined Grate (must be <= 30 degrees)
Width of Grate
Length of Grate
Open Area Ratio Height of Inclined Grate Clogging Factor Grate Discharge Coefficient Orifice Coefficient Weir Coefficient


Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) Total Inlet Interception Capacity (assumes clogged condition) Bypassed Flow
Capture Percentage $=$ Qa/Qo


Warning 04: Froude No. exceeds USDCM Volume I recommendation.

Provide explanation and mitigation for high FR \#


| This worksheet uses the NRCS vegeta |
| :--- | :--- |
| retardance method to determine |
| Manning's n . |
|  |
| For more information see |
| Section 7.2 .3 of the USDCM. |

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's $n$ (Leave cell D16 blank to manually enter an $n$ value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe
Check one of the following soil types:

| Soil Type: | Max. Velocity $\left(V_{\text {Max }}\right)$ | Max Froude No. ( $\left.F_{\text {max }}\right)$ |
| :---: | :---: | :---: |
| Non-Cohesive | 5.0 fps | 0.60 |
| Cohesive | 7.0 fps | 0.80 |
| Paved | N/A | N/A |

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, or $\mathrm{E}=$


Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm


Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Criterion


Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## AREA INLET IN A SWALE

DP-52

| Inlet Design Information (Input) |  |  |  | degrees |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet $\quad$ CDOT Type C | Inlet Type $=$ | CDOT Type C |  |  |
| Angle of Inclined Grate (must be <= 30 degrees) |  | $\theta=$ | 0.00 |  |
| Width of Grate |  | W = | 3.00 | $\mathrm{ft}_{\mathrm{ft}}$ |
| Length of Grate |  | L | 3.00 | ft |
| Open Area Ratio |  | $\mathrm{A}_{\text {RAtIO }}=$ | 0.70 |  |
| Height of Inclined GrateClogging Factor |  | $\mathrm{H}_{\mathrm{B}}=$ | 0.00 | ft |
|  |  | $\mathrm{C}_{\mathrm{f}}=$ | 0.50 |  |
| Grate Discharge Coefficient |  | $\mathrm{C}_{\mathrm{d}}=$ | 0.96 |  |
| Orifice Coefficient Weir Coefficient |  | $\mathrm{C}_{0}=$ | 0.64 |  |
|  |  | $\mathrm{C}_{\mathrm{w}}=$ | 2.05 |  |
|  |  | MINOR | MAJOR |  |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) | $\mathrm{d}=$ | 0.25 | 0.39 |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 2.4 | 4.6 | cfs |
| Bypassed Flow | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 0.1 | cfs |
| Capture Percentage = Qa/Qo | $\mathrm{C} \%=$ | 100 | 97 | \% |




| This worksheet uses the NRCS vegeta |
| :--- |
| retardance method to determine |
| Manning's $n$. |
|  |
| For more information see |
| Section 7.2 .3 of the USDCM. |

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe
Check one of the following soil types:

| Soil Type: | Max. Velocity $\left(\mathrm{V}_{\text {MAX }}\right)$ | Max Froude No. ( $\left.\mathrm{F}_{\text {MAX }}\right)$ |
| :---: | :---: | :---: |
| Non-Cohesive | 5.0 fps | 0.60 |
| Cohesive | 7.0 fps | 0.80 |
| Paved | N/A | N/A |

$A, B, C, D$, or $E=$


Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm

Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Criterion
Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## AREA INLET IN A SWALE

DP-53

| Inlet Design Information (Input) | Inlet Type $=$ | CDOT Type C |  | degrees |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type C |  |  |  |  |
| Angle of Inclined Grate (must be <= 30 degrees) |  | $\theta=$ | 0.00 |  |
| Width of Grate |  | W = | 3.00 | ft |
| Length of Grate |  | L | 3.00 | ft |
| Open Area Ratio |  | $\mathrm{A}_{\text {RAtIO }}=$ | 0.70 |  |
| Height of Inclined GrateClogging Factor |  | $\mathrm{H}_{\mathrm{B}}=$ | 0.00 | ft |
|  |  | $\mathrm{C}_{\mathrm{f}}=$ | 0.50 |  |
| Grate Discharge Coefficient |  | $\mathrm{C}_{\mathrm{d}}=$ | 0.96 |  |
| Orifice CoefficientWeir Coefficient |  | $\mathrm{C}_{0}=$ | 0.64 |  |
|  |  | $\mathrm{C}_{\mathrm{w}}=$ | 2.05 |  |
|  |  | MINOR | MAJOR |  |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) | $\mathrm{d}=$ | 0.20 | 0.33 |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 1.7 | 3.4 | cfs |
| Bypassed Flow | $\mathbf{Q}_{\mathrm{b}}=$ | 0.0 | 0.0 | cfs |
| Capture Percentage $=$ Qa/Qo | C\% = | 100 | 100 | \% |

Warning 04: Froude No. exceeds USDCM Volume I recommendation.


Provide explanation and mitigation for high FR \#


| This worksheet uses the NRCS vegeta |
| :--- |
| retardance method to determine |
| Manning's n . |
|  |
| For more information see |
| Section 7.2 .3 of the USDCM. |

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe
Check one of the following soil types:

| Soil Type: | Max. Velocity $\left(V_{\text {Max }}\right)$ | Max Froude No. ( $\left.F_{\text {max }}\right)$ |
| :---: | :---: | :---: |
| Non-Cohesive | 5.0 fps | 0.60 |
| Cohesive | 7.0 fps | 0.80 |
| Paved | N/A | N/A |

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, or $\mathrm{E}=$


Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm

Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Criterion
Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## AREA INLET IN A SWALE

DP-54

| Inlet Design Information (Input) |  |  |  | degrees |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet $\quad$ CDOT Type C | Inlet Type $=$ | CDOT Type C |  |  |
| Angle of Inclined Grate (must be <= 30 degrees) |  | $\theta=$ | 0.00 |  |
| Width of Grate |  | W = | 3.00 |  |
|  |  | L = | 3.00 | ft |
| Open Area Ratio |  | $\mathrm{A}_{\text {RATIO }}=$ | 0.70 |  |
| Height of Inclined GrateClogging Factor |  | $\mathrm{H}_{\mathrm{B}}=$ | 0.00 | ft |
|  |  | $\mathrm{C}_{\mathrm{f}}=$ | 0.50 |  |
| Grate Discharge Coefficient |  | $\mathrm{C}_{\mathrm{d}}=$ | 0.96 |  |
|  |  | $\mathrm{C}_{0}=$ | 0.64 |  |
|  |  | $\mathrm{C}_{\mathrm{w}}=$ | 2.05 |  |
|  |  | MINOR | MAJOR |  |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) | $\mathrm{d}=$ | 0.22 | 0.35 |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 2.0 | 3.9 | cfs |
| Bypassed Flow | $\mathbf{Q}_{\mathrm{b}}=$ | 0.0 | 0.0 | cfs |
| Capture Percentage = Qa/Qo | C\% = | 100 | 100 | \% |

Warning 04: Froude No. exceeds USRCM Volume I recommendation.
 mitigation for high FR \#


| This worksheet uses the NRCS vegeta |
| :--- |
| retardance method to determine |
| Manning's n . |
|  |
| For more information see |
| Section 7.2 .3 of the USDCM. |

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe
Check one of the following soil types:

| Soil Type: | Max. Velocity $\left(V_{\text {Max }}\right)$ | Max Froude No. ( $\left.F_{\text {max }}\right)$ |
| :---: | :---: | :---: |
| Non-Cohesive | 5.0 fps | 0.60 |
| Cohesive | 7.0 fps | 0.80 |
| Paved | N/A | N/A |

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, or $\mathrm{E}=$


Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm

Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Criterion
Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'


Angle of Inclined Grate (must be <= 30 degrees) Width of Grate Length of Grate Open Area Ratio Height of Inclined Grate Clogging Factor Grate Discharge Coefficient Orifice Coefficient Weir Coefficient


Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) Total Inlet Interception Capacity (assumes clogged condition) Bypassed Flow
Capture Percentage $=$ Qa/Qo


Warning 04: Froude No. exceeds USDCM Volume I recommendation.


Provide explanation and mitigation for high FR \#


| This worksheet uses the NRCS vegeta |
| :--- | :--- |
| retardance method to determine |
| Manning's n . |
|  |
| For more information see |
| Section 7.2 .3 of the USDCM. |

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's $n$ (Leave cell D16 blank to manually enter an $n$ value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe
Check one of the following soil types:

| Soil Type: | Max. Velocity $\left(V_{\text {Max }}\right)$ | Max Froude No. ( $\left.F_{\text {max }}\right)$ |
| :---: | :---: | :---: |
| Non-Cohesive | 5.0 fps | 0.60 |
| Cohesive | 7.0 fps | 0.80 |
| Paved | N/A | N/A |

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, or $\mathrm{E}=$


Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm


Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Criterion


Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'


Angle of Inclined Grate (must be $<=30$ degrees) Width of Grate Length of Grate Open Area Ratio Height of Inclined Grate Clogging Factor Grate Discharge Coefficient Orifice Coefficient Weir Coefficient


Warning 04: Froude No. exceeds USDCM Volume I recommendation.

Provide explanation and mitigation for high FR \#

## DETENTION \& STORMWATER

 QUALITY POND '14A'Site-Level Low Impact Development (LID) Design Effective Impervious Calculator LID Credit by Impervious Reduction Factor (IRF) Method


UO-BMP (Version 3.06, November 2016)

| Designer: | Matt Larson |
| ---: | :--- |
| Company: | Classic Consulting Engineers \& Surveyors, LLC |
| Date: | August 17, 2020 |
| Projet: | STERLNG ANCH FILING NO. 1 |
| Location: | POND 14A |
|  |  |


| Stit information (USER-INPUT) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sub-basin Identifier | PIPE 42 | PIPE 95 | BASIIN RR |  |  |  |  |  |  |  |  |  |  |  |
| Receiving Pervious Area Soil Type | Sandy Loam | Sandy Loam | Sandy Loam |  |  |  |  |  |  |  |  |  |  |  |
| Total Area (ac, Sum of DCIA, U1A, RPA, \& SPA) | 103.770 | 47.090 | 5.990 |  |  |  |  |  |  |  |  |  |  |  |
| Directly Connected Impervious Area (OC1A, acres) | 51.152 | 19.265 | 0.000 |  |  |  |  |  |  |  |  |  |  |  |
| Unconnected Impervious Area (UAA, acres) | 3.454 | 2.720 | 0.000 |  |  |  |  |  |  |  |  |  |  |  |
| Receiving Perrious Area (RPA, acres) | 14.320 | 15.175 | 2.320 |  |  |  |  |  |  |  |  |  |  |  |
| Separate Pervious Area (SPA, acres) | 34.844 | 9.930 | 3.670 |  |  |  |  |  |  |  |  |  |  |  |
| RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP) | c | c | c |  |  |  |  |  |  |  |  |  |  |  |



LI / EFFECTIVE IMPERVIIOUSNESS CREDITS

| $\begin{array}{r} \text { WQCV Event CREDIT: Reduce Detention By: } \\ \text { This Sine only Cor 10-Year Event } \\ \text { 100-Year Event CREDIT*: Reduce Detention By: } \\ \text { User Defined CUHP CREDIT: Reduce Detention By: } \end{array}$ | 2.5\% | 5.1\% | N/A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N/A |
|  | 1.0\% | 4.1\% | N/A |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Total Site Imperviouness: | 48.8\% | Notes: |
| :---: | :---: | :---: |
| Total Site Effective Imperviousness for wacv Event: | 46.4\% | - Use Green-Ampt average infiltration rate values from Table 3 -3. |
|  | 47.8\% | "Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM |
| Total Site Effective Imperviousness for 100-Year Event: | 47.9\% | *** Method assumes that 1-hour rainfall depth is equivalent to 1 -hour intensity for calculation purposed |


|  | UD-BMP (Version 3.07, March 2018) | Sheet 1 of 3 |
| :---: | :---: | :---: |
| Designer: | Matt Larson |  |
| Company: | Classic Consulting Engineers \& Surveyors, LLC |  |
| Date: | March 31, 2023 |  |
| Project: | STERLING RANCH EAST FILING NO. 1 |  |
| Location: | POND 14A |  |

## 1. Basin Storage Volume

A) Effective Imperviousness of Tributary Area, $I_{a}$
B) Tributary Area's Imperviousness Ratio $\left(i=I_{a} / 100\right)$
C) Contributing Watershed Area
D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm
E) Design Concept
(Select EURV when also designing for flood control)
F) Design Volume (WQCV) Based on 40-hour Drain Time $\left(V_{\text {DESIGN }}=\left(1.0 *\left(0.91 * i^{3}-1.19 * i^{2}+0.78 * i\right) / 12 *\right.\right.$ Area $)$
G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume $\left(\mathrm{V}_{\text {WQCV OTHER }}=\left(\mathrm{d}_{6}^{*}\left(\mathrm{~V}_{\text {DESIGN }} / 0.43\right)\right)\right.$
H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired)
I) NRCS Hydrologic Soil Groups of Tributary Watershed i) Percentage of Watershed consisting of Type A Soils ii) Percentage of Watershed consisting of Type B Soils iii) Percentage of Watershed consisting of Type C/D Soils
J) Excess Urban Runoff Volume (EURV) Design Volume

For HSG A: EURV ${ }_{A}=1.68 * i^{1.28}$
For HSG B: EURV ${ }_{B}=1.36 * i^{1.08}$
For HSG C/D: EURV $V_{C / D}=1.20 * 1^{1.08}$
K) User Input of Excess Urban Runoff Volume (EURV) Design Volume (Only if a different EURV Design Volume is desired)
2. Basin Shape: Length to Width Ratio
(A basin length to width ratio of at least 2:1 will improve TSS reduction.)
3. Basin Side Slopes
A) Basin Maximum Side Slopes
(Horizontal distance per unit vertical, 4:1 or flatter preferred)
4. Inlet
A) Describe means of providing energy dissipation at concentrated inflow locations:
5. Forebay
A) Minimum Forebay Volume
$\left(\mathrm{V}_{\text {FMIN }}=3 \%\right.$ of the WQCV)
B) Actual Forebay Volume
C) Forebay Depth
( $\mathrm{D}_{\mathrm{F}}=$ $\qquad$ inch maximum)
D) Forebay Discharge
i) Undetained 100-year Peak Discharge
ii) Forebay Discharge Design Flow ( $\mathrm{Q}_{\mathrm{F}}=0.02$ * $\mathrm{Q}_{100}$ )
E) Forebay Discharge Design
F) Discharge Pipe Size (minimum 8-inches)
G) Rectangular Notch Width


$Q_{F}$ $\qquad$ cfs

THESE INPUTS LEFT BLANK AS THERE ARE (2) FOREBAYS. SEE ADDITIONAL CALCS FOR EACH FOREBAY



Site-Level Low Impact Development (LID) Design Effective Impervious Calculator LID Credit by Impervious Reduction Factor (IRF) Method


## n

STIE INFORMATION (USER-NPUT)

| Designer: | Matt Larson |
| :---: | :--- |
| Company: | Classic Consulting Engineers \& Surveyors, LLC |
| Date: | August 17, 2020 |
| Project: | STERLNG RANCH FLING NO. 1 |
| Location: | FOREBAY 54" RCP |



CalCULATED RESULTS (OUTPUT)



LI / EFFECTIVE IMPERVIOUSNESS CREDITS


| Designer: | Matt Larson | UD-BMP (Version 3.06, November 2016) |
| :--- | :--- | :--- |
| Company: | Classic Consulting Engineers \& Surveyors, LLC |  |
| Date: | September 6, 2022 |  |
| Project: | STERLING RANCH FILING 1 |  |
| Location: |  |  |
|  |  |  |




Site-Level Low Impact Development (LID) Design Effective Impervious Calculator LID Credit by Impervious Reduction Factor (IRF) Method


## n

STIE INFORMATION (USER-NPUT)


| SITE Information (USER-INPUT) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sub-asin Identifier | PIPE 42 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Receiving Pervious Area Soil Type | Sandy Loam |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total Area (ac, Sum of DCIA, U1A, RPA, \& SPA) | 103.770 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Directly Conneted Impervious Area ( (CCIA, acres) | 37.211 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Unconnected Impervious Area (UAA, acres) | 1.947 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Receiving Pervious Area (RPA, acres) | 10.862 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Separate Pervious Area (SPA, acres) | 53.750 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP) | c |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

CALCULATED RESULTS (OUTPUT)


LID/EFFECTIVE IMPERVIOUSNESS CREDTTS

|  | 2.0\% | N/A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N/A |
|  | 1.7\% | N/A |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Total Site Imperviousness: | 37.7\% | Notes: |
| :---: | :---: | :---: |
| Total Site Effective Imperviousness for wacv Event: | 36.5 | - Use Green-Ampt average infiltration rate values from Table 3 -3. |
| Total Site Effective Imperviousness for 5 -vear Event: | 37.0\% | "Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM |
| Total Site Effective Imperiousness for 10--vear Event: | 37.1\% | ethod assumes that 1 -hour rainfall depth is equivalent to 1 -hour intensity for calculation purposed |




Worksheet for 54 release Trickle

| Project Description |  |  |
| :---: | :---: | :---: |
|  | Manning Formula |  |
| Solve For | Normal Depth |  |
| Input Data |  |  |
| Roughness Coefficient <br> Channel Slope <br> Bottom Width <br> Discharge | $\begin{aligned} & 0.013 \\ & 0.005 \mathrm{ft} / \mathrm{ft} \\ & 7.00 \mathrm{ft} \\ & 6.40 \mathrm{cfs} \end{aligned}$ | FLOW IS 2X FOREBAY RELEASE RATE |
| Results |  |  |
| Normal Depth <br> Flow Area <br> Wetted Perimeter <br> Hydraulic Radius <br> Top Width <br> Critical Depth <br> Critical Slope <br> Velocity <br> Velocity Head <br> Specific Energy <br> Froude Number <br> Flow Type | 3.3 in $2.0 \mathrm{ft}{ }^{2}$ 7.6 ft 3.1 in 7.00 ft 3.6 in $0.004 \mathrm{ft} / \mathrm{ft}$ $3.28 \mathrm{ft} / \mathrm{s}$ 0.17 ft 0.45 ft 1.094 <br> Supercritical |  |
| GVF Input Data |  |  |
| Downstream Depth Length <br> Number Of Steps | $\begin{gathered} 0.0 \mathrm{in} \\ 0.0 \mathrm{ft} \\ 0 \end{gathered}$ |  |
| GVF Output Data |  |  |
| Upstream Depth <br> Profile Description <br> Profile Headloss <br> Downstream Velocity <br> Upstream Velocity <br> Normal Depth <br> Critical Depth <br> Channel Slope <br> Critical Slope | 0.0 in $\mathrm{N} / \mathrm{A}$ 0.00 ft Infinity $\mathrm{ft} / \mathrm{s}$ Infinity $\mathrm{ft} / \mathrm{s}$ 3.3 in 3.6 in $0.005 \mathrm{ft} / \mathrm{ft}$ $0.004 \mathrm{ft} / \mathrm{ft}$ | NORMAL DEPTH IS LESS THAN 6" CURB HEAD, THEREFORE TRICKLE CHANNEL DESIGN IS ACCEPTABLE. |

Worksheet for 72 release Trickle


JOB NAME: STERLING RANCH EAST FIL. 1
JOB NUMBER: 1183.30
DATE: 04/03/23
CALCULATED BY: MAL
POND 14A - SPILLWAY

POND SIZING WITH PONDPACK EQUATION:
INSERT POND DESIGN SIZE INFO: (RED)

| POND ELEVATION: (from lowest to highest) |  | AREA (BTM to TOP): |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 7017.00 |  | - | acres |
|  | 7017.00 | 1,070 | 0.02 | acres |
|  | 7017.50 | 1,070 | 0.02 | acres |
|  | 7018.00 | 1,835 | 0.04 | acres |
|  | 7019.00 | 15,728 | 0.36 | acres |
|  | 7020.00 | 47,089 | 1.08 | acres |
|  | 7022.00 | 103,984 | 2.39 | acres |
|  | 7024.00 | 129,654 | 2.98 | acres |
|  | 7026.00 | 144,608 | 3.32 | acres |
|  |  |  | - | acres |
|  |  |  | - | acres |
|  |  |  | - | acres |

PRELIMINARY SIZE:
VOLUME $=1 / 3\left\{(E L 2-E L 1)^{*}\left(\mathrm{~A} 1+\mathrm{A} 2+\left(\left(\mathrm{A} 1^{*} \mathrm{~A} 2\right)^{\wedge} .5\right)\right)\right\}$

| - | AC-FT | from | 7,017 | to | 7,017 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.01 | AC-FT | from | 7,017 | to | 7,018 | 0.01 |
| 0.02 | AC-FT | from | 7,018 | to | 7,018 | 0.03 |
| 0.17 | AC-FT | from | 7,018 | to | 7,019 | 0.20 |
| 0.68 | AC-FT | from | 7,019 | to | 7,020 | 0.88 |
| 3.35 | AC-FT | from | 7,020 | to | 7,022 | 4.23 |
| 5.30 | AC-FT | from | 7,022 | to | 7,024 | 9.53 |
| 6.23 | AC-FT | from | 7,024 | to | 7,026 | 15.76 |
| - | AC-FT | from | 7,026 | to | - | 15.76 |
| - | AC-FT | from | - | to | - | 15.76 |
| - | AC-FT | from | - | to | - | 15.76 |

*SIZING IS FOR PRELIMINARY PURPOSES ONLY.
VOLUME = 15.76 AC-FT

APPROXIMATE SURFACE AREA REQUIREMENT

| POND DEPTH <br> (FT) | POND VOLUME |  |  | SURFACE AREA |
| :---: | ---: | :--- | ---: | ---: |
| (SF) |  |  |  |  |

JOB NAME: STERLING RANCH EAST FIL. 1
JOB NUMBER: 1183.30
DATE: 04/03/23
CALCULATED BY: MAL

POND 14A - TOTAL

POND SIZING WITH PONDPACK EQUATION:
INSERT POND DESIGN SIZE INFO: (RED)

*SIZING IS FOR PRELIMINARY PURPOSES ONLY.
VOLUME = $\square$ 26.42 AC-FT

## APPROXIMATE SURFACE AREA REQUIREMENT

| POND DEPTH | POND VOLUME |  |  | SURFACE AREA |
| :---: | ---: | :--- | :---: | :---: |
| (FT) | AC-FT | (SF) |  |  |
| 4 | 26.42 | $=$ | $1,150,941$ | 287,735 |
| 6 | 26.42 | $=$ | $1,150,941$ | 191,823 |
| 8 | 26.42 | $=$ | $1,150,941$ | 143,868 |
| 10 | 26.42 | $=$ | $1,150,941$ | 115,094 |

JOB NAME: STERLING RANCH EAST FIL. 1
JOB NUMBER: 1183.30
DATE: 04/03/23
CALCULATED BY: MAL

POND 14A - EURV
POND SIZING WITH PONDPACK EQUATION:
INSERT POND DESIGN SIZE INFO: (RED)

| POND ELEVATION : (from lowest to highest) |  | AREA (BTM to TOP): |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 7017.00 |  | - | acres |
|  | 7017.00 | 1,070 | 0.02 | acres |
|  | 7017.50 | 1,070 | 0.02 | acres |
|  | 7018.00 | 1,835 | 0.04 | acres |
|  | 7019.00 | 15,728 | 0.36 | acres |
|  | 7020.00 | 47,089 | 1.08 | acres |
|  | 7022.00 | 103,984 | 2.39 | acres |
|  | 7023.80 | 128,444 | 2.95 | acres |
|  |  |  | - | acres |

PRELIMINARY SIZE:
VOLUME $=1 / 3\left\{(E L 2-E L 1)^{*}\left(\mathrm{~A} 1+\mathrm{A} 2+\left(\left(\mathrm{A} 1^{*} \mathrm{~A} 2\right)^{\wedge} .5\right)\right)\right\}$
CUMMULATIVE VOLUME:

| - | AC-FT | from | 7,017 | to | 7,017 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.01 | AC-FT | from | 7,017 | to | 7,018 | 0.01 |
| 0.02 | AC-FT | from | 7,018 | to | 7,018 | 0.03 |
| 0.17 | AC-FT | from | 7,018 | to | 7,019 | 0.20 |
| 0.68 | AC-FT | from | 7,019 | to | 7,020 | 0.88 |
| 3.35 | AC-FT | from | 7,020 | to | 7,022 | 4.23 |
| 4.75 | AC-FT | from | 7,022 | to | 7,024 | 8.98 |
| - | AC-FT | from | 7,024 | to | - | 8.98 |
| - | AC-FT | from | - | to | - | 8.98 |
| - | AC-FT | from | - | to | - | 8.98 |
| - | AC-FT | from | - | to | - | 8.98 |

*SIZING IS FOR PRELIMINARY PURPOSES ONLY.
VOLUME = $\square$
APPROXIMATE SURFACE AREA REQUIREMENT

| POND DEPTH |  |  |  |  |
| :---: | ---: | :---: | :---: | :---: |
| (FT) | POND VOLUME |  |  | SURFACE AREA |
| (SF) |  |  |  |  |

Project: STERLING RANCH EAST FILING NO. 1


Watershed Information


After providing required inputs above including 1-hour rainfall
depths, click 'Run CUHP' to generate runoff hydrographs using depths, click 'Run CUHP' to generate runoff hydrographs using
the embedded Colorado Urban Hydrograph Procedure. Water Quality Capture Volume (WQCV) $=2.653$ acre-feet Excess Urban Runoff Volume (EURV) = 2 -yr Runoff Volume ( $\mathrm{P} 1=1.19$ in.) $=$ 5 -yr Runoff Volume ( $\mathrm{P} 1=1.5 \mathrm{in}$.) $10-$ yr Runoff Volume ( $\mathrm{P} 1=1.75 \mathrm{in}$.) $=$ $25-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=2 \mathrm{in}$.) $=$ $50-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=2.25 \mathrm{in}$.) $=$ 100 -yr Runoff Volume ( $\mathrm{P} 1=2.52 \mathrm{in}$. ) 500 -yr Runoff Volume ( $\mathrm{P} 1=3.52 \mathrm{in}$.) Approximate 2 -yr Detention Volume $=$ Approximate 5 -yr Detention Volume $=$ Approximate $10-\mathrm{yr}$ Detention Volume $=$ Approximate 25 -yr Detention Volume $=$ Approximate $50-\mathrm{yr}$ Detention Volume $=$ Approximate 100 -yr Detention Volume $=$

| 2.653 |
| :--- |
| 8.766 |
| 6.608 |
| 8.791 |
|  |
| $=10.519$ |
| 13.327 |
| 16.062 |
| 19.552 |
| 31.496 |
| 5.631 |
|  |
| $=$ |
| $=9.417$ |
| 9.062 |
| 11.103 |
| 12.408 |
| 14.024 |

Define Zones and Basin Geometry
Zone 1 Volume (WQCV)

| Zone 1 Volume (WQCV) = | 2.653 | feet |
| :---: | :---: | :---: |
| Zone 2 Volume (EURV - Zone 1) = | 6.112 | cre-feet |
| Zone 3 Volume ( 100 -year - Zones 1 \& 2 ) $=$ | 5.258 | re-feet |
| Total Detention Basin Volume $=$ | 14.024 | e-fee |
| Initial Surcharge Volume (ISV) $=$ | user | $\mathrm{ft}^{3}$ |
| Initial Surcharge Depth (ISD) $=$ | user | f |
| Total Available Detention Depth ( $\mathrm{H}_{\text {totala }}$ ) $=$ | user | ft |
| Depth of Trickle Channel ( $\mathrm{H}_{\mathrm{T} \mathrm{C}}$ ) $=$ | user | ft |
| Slope of Trickle Channel ( $\mathrm{S}_{\text {TC }}$ ) $=$ | user | t/ft |
| Slopes of Main Basin Sides $\left(\mathrm{S}_{\text {main }}\right)=$ | user | $\mathrm{H}: \mathrm{V}$ |
| Basin Length-to-Width Ratio ( $\mathrm{R}_{L / W}$ ) | user |  |


Verify/adj?
Length, c
and slope $0_{2020}^{720} 0$
obtain flowis
approximåting
calculated flows



## DETENTION BASIN OUTLET STRUCTURE DESIGN

Project: STERLING RANCH EAST FILING NO. 1


| User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) |  |  |  | Calculated Parameters for Underdrain |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Underdrain Orifice Invert Depth $=$ | N/A | ft (distance below the filtration media surface) inches | Underdrain Orifice Area = Underdrain Orifice Centroid = | N/A | $\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$ |
| Underdrain Orifice Diameter $=$ | N/A |  |  | N/A |  |



User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

|  | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional) 1


|  | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |

User Input: Vertical Orifice (Circular or Rectangular)

| Invert of Vertical Orifice $=$ <br> Depth at top of Zone using Vertical Orifice $=$ <br> Vertical Orifice Diameter = | Not Selected | Not Selected | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) <br> ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) inches |
| :---: | :---: | :---: | :---: |
|  | N/A | N/A |  |
|  | N/A | N/A |  |
|  | N/A | N/A |  |


|  | Calculated Parameters for Vertical Orifice |  |
| :---: | :---: | :---: |
|  | Not Selected | Not Selected |
| Vertical Orifice Area $=$ | N/A | N/A |
| Vertical Orifice Centroid $=$ | N/A | N/A |

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)

| Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = | Zone 3 Weir | Not Selected |
| :---: | :---: | :---: |
|  | 6.80 | N/A |
|  | 30.00 | N/A |
| Overflow Weir Grate Slope $=$ | 3.00 | N/A |
| Horiz. Length of Weir Sides $=$ | 4.00 | N/A |
| Overflow Grate Type = | Type C Grate | N/A |
| Debris Clogging \% = | 50\% | N/A |


| No Outlet Pipe) | Calculated Parameters for Overflow Weir |  |  |
| :---: | :---: | :---: | :---: |
|  | Zone 3 Weir | Not Selected |  |
| $\mathrm{e}=0 \mathrm{ft}) \quad$ Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ | 8.13 | N/A |  |
| Overflow Weir Slope Length = | 4.22 | N/A |  |
| Grate Open Area / 100-yr Orifice Area $=$ | 7.01 | N/A |  |
| Overflow Grate Open Area w/o Debris = | 88.04 | N/A | $\mathrm{ft}^{2}$ |
| Overflow Grate Open Area w/ Debris = | 44.02 | N/A | $\mathrm{ft}^{2}$ |

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

| om at Stage $=0 \mathrm{ft}$ ) | Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Zone 3 Restrictor | Not Selected |  |
|  | Outlet Orifice Area $=$ | 12.57 | N/A | $\mathrm{ft}^{2}$ |
|  | Outlet Orifice Centroid = | 2.00 | N/A | feet |
| Half-Central Ang | Restrictor Plate on Pipe $=$ | 3.14 | N/A | dians |

User Input: Emergency Spillway (Rectangular or Trapezoidal)

| Spillway Invert Stage= | 9.00 | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) |
| :---: | :---: | :---: |
| Spillway Crest Length = | 180.00 | feet |
| Spillway End Slopes = | 4.00 | H:V |
| Freeboard above Max Water Surface = | 1.00 | feet |


|  | Calculated Parameters for Spillway |  |
| :---: | :---: | :---: |
| Spillway Design Flow Depth= | 0.80 | feet |
| Stage at Top of Freeboard = | 10.80 | feet |
| Basin Area at Top of Freeboard = | 3.64 | acres |
| Basin Volume at Top of Freeboard = | 22.35 | acre-ft |


| Routed Hydrograph Results |  |
| ---: | :--- |
| Design Storm Return Period | $=$ |
| One-Hour Rainfall Depth (in) | $=$ |
| CUHP Runoff Volume (acre-ft) |  |$=$


| WQCV | EURV | 2 Year | 5 Year | 10 Year | 25 Year | 50 Year | 100 Year | 500 Year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N/A | N/A | 1.19 | 1.50 | 1.75 | 2.00 | 2.25 | 2.52 | 3.48 |
| 2.653 | 8.766 | 6.608 | 8.791 | 10.519 | 13.327 | 16.062 | 19.552 | 31.496 |
| N/A | N/A | 6.608 | 8.791 | 10.519 | 13.327 | 16.062 | 19.552 | 31.496 |
| N/A | N/A | 1.5 | 3.0 | 4.2 | 38.6 | 76.4 | 124.7 | 281.6 |
| N/A | N/A |  |  |  |  |  |  |  |
| N/A | N/A | 0.01 | 0.02 | 0.03 | 0.25 | 0.49 | 0.80 | 1.80 |
| N/A | N/A | 117.5 | 158.2 | 187.5 | 255.0 | 316.7 | 395.2 | 639.9 |
| 1.3 | 3.1 | 2.6 | 3.0 \ | 5.2 | 16.4 | 29.3 | 754.2 | 339.1 |
| N/A | N/A | N/A | 1.0 | 1.2 | 0.4 | 0.4 | 0.4 | 1.2 |
| Plate | Plate | Plate | Plate | Querflow Weir 1 | Overflow Weir 1 | Overflow Werr 1 | Overflow Weir 1 | Spillway |
| N/A | N/A | N/A | N/A | 0.0 | 0.1 | 2.3 | 0.6 | 0.9 |
| N/A | N/A | N/A | N/A | NX | N/A | N/A | N/A | N/A |
| 40 | 65 | 60 | 66 | 70 | 69 | 68 | 66 | 61 |
| 43 | 73 | 66 | 74 | 79 | 80 | 79 | 78 | 73 |
| 4.17 | 6.66 | 5.72 | 6.50 | 7.05 | 786 | 8.16 | 8.88 | 9.60 |
| 1.85 | 2.88 | 2.60 | 2.83 | 2.99 | 3.09 | 3.17 | 3.30 | 3.43 |
| 2.663 | 8.788 | 6.215 | 8.304 | 9.932 | 1.816 | 13.320 | 15.649 | 18.104 |





Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

|  | SOURCE | CUHP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval | TIME | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs] | 100 Year [cfs] | 500 Year [cfs] |
| 5.00 min | 0:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.50 | 0.15 | 7.43 |
|  | 0:15:00 | 0.00 | 0.00 | 12.98 | 21.09 | 26.48 | 17.87 | 22.49 | 21.92 | 37.49 |
|  | 0:20:00 | 0.00 | 0.00 | 47.71 | 63.00 | 74.33 | 47.13 | 55.01 | 59.00 | 86.67 |
|  | 0:25:00 | 0.00 | 0.00 | 97.60 | 133.60 | 163.41 | 96.30 | 111.77 | 122.02 | 190.19 |
|  | 0:30:00 | 0.00 | 0.00 | 117.50 | 158.21 | 187.49 | 214.78 | 268.03 | 311.84 | 518.20 |
|  | 0:35:00 | 0.00 | 0.00 | 104.35 | 136.69 | 159.74 | 255.04 | 316.70 | 395.22 | 639.90 |
|  | 0:40:00 | 0.00 | 0.00 | 86.99 | 111.26 | 129.92 | 230.45 | 285.20 | 359.20 | 577.50 |
|  | 0:45:00 | 0.00 | 0.00 | 70.08 | 90.74 | 106.43 | 190.08 | 234.15 | 302.73 | 491.41 |
|  | 0:50:00 | 0.00 | 0.00 | 56.84 | 75.34 | 87.08 | 157.49 | 192.05 | 247.53 | 405.83 |
|  | 0:55:00 | 0.00 | 0.00 | 48.30 | 63.98 | 74.38 | 125.76 | 151.69 | 198.22 | 326.18 |
|  | 1:00:00 | 0.00 | 0.00 | 41.71 | 54.62 | 64.25 | 102.54 | 122.72 | 165.09 | 273.35 |
|  | 1:05:00 | 0.00 | 0.00 | 35.75 | 46.38 | 55.04 | 85.34 | 101.52 | 140.94 | 235.39 |
|  | 1:10:00 | 0.00 | 0.00 | 28.80 | 39.67 | 47.52 | 67.98 | 79.89 | 107.65 | 177.06 |
|  | 1:15:00 | 0.00 | 0.00 | 23.69 | 34.31 | 43.36 | 53.16 | 61.27 | 77.90 | 124.89 |
|  | 1:20:00 | 0.00 | 0.00 | 21.10 | 30.65 | 39.73 | 42.14 | 48.08 | 56.06 | 88.86 |
|  | 1:25:00 | 0.00 | 0.00 | 19.71 | 28.41 | 35.16 | 35.60 | 40.34 | 42.58 | 66.04 |
|  | 1:30:00 | 0.00 | 0.00 | 18.89 | 26.98 | 31.63 | 30.50 | 34.43 | 34.70 | 52.31 |
|  | 1:35:00 | 0.00 | 0.00 | 18.43 | 26.02 | 29.27 | 26.84 | 30.24 | 29.91 | 43.87 |
|  | 1:40:00 | 0.00 | 0.00 | 18.07 | 23.51 | 27.63 | 24.54 | 27.62 | 26.70 | 38.23 |
|  | 1:45:00 | 0.00 | 0.00 | 17.81 | 21.18 | 26.52 | 23.04 | 25.91 | 24.55 | 34.43 |
|  | 1:50:00 | 0.00 | 0.00 | 17.66 | 19.62 | 25.74 | 22.01 | 24.73 | 23.18 | 32.06 |
|  | 1:55:00 | 0.00 | 0.00 | 15.45 | 18.52 | 24.51 | 21.40 | 24.04 | 22.61 | 31.21 |
|  | 2:00:00 | 0.00 | 0.00 | 13.27 | 17.25 | 22.21 | 21.01 | 23.62 | 22.37 | 30.86 |
|  | 2:05:00 | 0.00 | 0.00 | 9.67 | 12.73 | 16.14 | 15.59 | 17.50 | 16.65 | 22.89 |
|  | 2:10:00 | 0.00 | 0.00 | 6.46 | 8.48 | 10.86 | 10.43 | 11.69 | 11.16 | 15.28 |
|  | 2:15:00 | 0.00 | 0.00 | 4.31 | 5.64 | 7.31 | 7.04 | 7.87 | 7.52 | 10.26 |
|  | 2:20:00 | 0.00 | 0.00 | 2.82 | 3.64 | 4.78 | 4.62 | 5.15 | 4.91 | 6.66 |
|  | 2:25:00 | 0.00 | 0.00 | 1.74 | 2.31 | 3.04 | 2.95 | 3.28 | 3.12 | 4.22 |
|  | 2:30:00 | 0.00 | 0.00 | 1.02 | 1.45 | 1.86 | 1.86 | 2.06 | 1.95 | 2.60 |
|  | 2:35:00 | 0.00 | 0.00 | 0.50 | 0.80 | 0.98 | 1.02 | 1.11 | 1.05 | 1.37 |
|  | 2:40:00 | 0.00 | 0.00 | 0.20 | 0.34 | 0.39 | 0.43 | 0.46 | 0.42 | 0.52 |
|  | 2:45:00 | 0.00 | 0.00 | 0.05 | 0.08 | 0.08 | 0.09 | 0.09 | 0.07 | 0.07 |
|  | 2:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 2:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 6:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically, The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

| Stage - Storage Description | Stage <br> [ft] | Area $\left[\mathrm{ft}^{2}\right]$ | Area <br> [acres] | Volume <br> [ft ${ }^{3}$ ] | $\begin{gathered} \hline \text { Volume } \\ \text { [ac-ft] } \end{gathered}$ | $\begin{aligned} & \text { Total } \\ & \text { Outflow } \\ & \text { [cfs] } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'. <br> Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable). |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

Figure 13-12c. Emergency Spillway Protection


Figure 13-12d. Riprap Types for Emergency Spillway Protection

520.5 cfs/ 240 LF = 2.17 cfs/ft


Update with currrent flow
$\overline{\text { May } 2014}$ and spillway width
City of Colorado Springs
TYPE L
RIPRAP

# HYDRAULIC GRADE LINE (HGL) CALCULATIONS 



MAIN A \& B
100-YR HGL PIPE
SCHEMATIC


N

## Rainfall Parameters

Rainfall Return Period: 100
Rainfall Calculation Method: Formula
One Hour Depth (in):
Rainfall Constant "A": 28.5
Rainfall Constant "B": 10
Rainfall Constant "C": 0.786
Rational Method Constraints
Minimum Urban Runoff Coeff.: 0.20
Maximum Rural Overland Len. (ft): 500
Maximum Urban Overland Len. (ft): 300
Used UDFCD Tc. Maximum: Yes
Sizer Constraints
Minimum Sewer Size (in): 18.00
Maximum Depth to Rise Ratio: 0.90
Maximum Flow Velocity (fps): 18.1
Minimum Flow Velocity (fps): 2.0
Backwater Calculations:
Tailwater Elevation (ft): 0.00

## Manhole Input Summary:

|  |  | Given Flow |  | Sub Basin Information |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element <br> Name | Ground Elevation (ft) | Total Known Flow (cfs) | Local Contribution (cfs) | $\begin{gathered} \text { Drainage } \\ \text { Area } \\ \text { (Ac.) } \end{gathered}$ | Runoff Coefficient | 5 yr Coefficient | Overland Length (ft) | Overland Slope (\%) | Gutter Length (ft) | Gutter Velocity (fps) |
| OUTFALL 1 | 7020.55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 42-1 | 7039.00 | 364.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 42-2 | 7039.75 | 364.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 96 | 7040.00 | 9.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 39B | 7047.37 | 351.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 39A | 7052.99 | 254.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 22-1 | 7058.39 | 247.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 22-2 | 7061.20 | 247.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 15-1 | 7070.33 | 236.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 15-2 | 7074.76 | 236.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 14 | 7072.50 | 126.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 14C | 7068.00 | 53.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 14B-2 | 7075.77 | 26.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 14B-1 | 7073.00 | 26.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 13 | 7077.94 | 112.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| EX. PIPE 12 | 7077.00 | 15.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 10-1 | 7086.20 | 105.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 10-2 | 7096.28 | 105.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |


| PIPE 10-3 | 7102.85 | 105.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 9-1 | 7102.00 | 56.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 9-2 | 7102.00 | 56.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 9-3 | 7102.63 | 56.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 6 | 7106.00 | 12.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 7 | 7101.93 | 31.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 8 | 7101.93 | 17.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 5 | 7103.50 | 58.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 3 | 7103.29 | 13.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 21-1 | 7060.80 | 22.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| EX. PIPE 21-2 | 7061.00 | 22.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 38-1 | 7050.68 | 16.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| EX. PIPE 38-2 | 7050.50 | 16.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 36B | 7050.58 | 112.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 100 | 7050.00 | 16.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 36A-1 | 7052.00 | 100.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 36A-2 | 7051.13 | 100.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 31 | 7055.22 | 79.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 29 | 7055.40 | 14.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 30 | 7055.40 | 7.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 27 | 7056.42 | 58.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 26 | 7059.38 | 52.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 19 | 7060.13 | 30.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 23-1 | 7061.09 | 11.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 23-2 | 7061.86 | 11.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |


| PIPE 18-1 | 7068.99 | 20.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 18-2 | 7068.20 | 20.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 17 | 7068.39 | 8.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 16 | 7068.39 | 12.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 24 | 7059.58 | 14.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 25 | 7059.58 | 7.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 28-1 | 7057.45 | 8.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 28-2 | 7058.14 | 8.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 33 | 7050.36 | 15.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 34 | 7050.60 | 11.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 35 | 7050.60 | 4.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 32-1 | 7052.02 | 8.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 32-2 | 7052.38 | 8.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| EX. PIPE 41 | 7038.00 | 16.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## Manhole Output Summary:

|  | Local Contribution |  |  |  |  | Total Design Flow |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Overland Time (min) | Gutter Time (min) | $\begin{gathered} \text { Basin } \\ \text { Tc } \\ \text { (min) } \end{gathered}$ | Intensity (in/hr) | Local Contrib (cfs) | Coeff. <br> Area | Intensity (in/hr) | $\begin{gathered} \text { Manhole } \\ \text { Tc } \\ (\mathrm{min}) \end{gathered}$ | Peak Flow (cfs) | Comment |
| OUTFALL 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |
| PIPE 42-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 364.80 | Surface Water Present (Downstream) |
| PIPE 42-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 364.80 |  |


| PIPE 96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.20 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 39B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 351.40 |  |
| PIPE 39A | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 254.60 |  |
| PIPE 22-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 247.80 |  |
| PIPE 22-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 247.80 |  |
| PIPE 15-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 236.50 |  |
| PIPE 15-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 236.50 |  |
| PIPE 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 126.20 |  |
| PIPE 14C | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 53.20 |  |
| PIPE 14B-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 26.60 |  |
| PIPE 14B-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 26.60 |  |
| PIPE 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 112.20 |  |
| EX. PIPE 12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 15.60 |  |
| PIPE 10-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 105.00 |  |
| PIPE 10-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 105.00 |  |
| PIPE 10-3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 105.00 |  |
| PIPE 9-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 56.00 |  |
| PIPE 9-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 56.00 |  |
| PIPE 9-3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 56.00 |  |
| PIPE 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 12.10 |  |
| PIPE 7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 31.60 |  |
| PIPE 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 17.30 |  |
| PPIPE 5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 58.60 |  |
| PIPE 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 13.10 |  |
| PIPE 21-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 22.20 |  |


| EX. PIPE 21- <br> 2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 22.20 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 38-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16.90 |  |
| EX. PIPE 38- <br> 2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16.90 |  |
| PIPE 36B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 112.70 |  |
| PIPE 100 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16.10 |  |
| PIPE 36A-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.40 |  |
| PIPE 36A-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.40 |  |
| PIPE 31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 79.40 |  |
| PIPE 29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 14.50 |  |
| PIPE 30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.10 |  |
| PIPE 27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 58.80 |  |
| PIPE 26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 52.00 |  |
| PIPE 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 30.40 |  |
| PIPE 23-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.10 |  |
| PIPE 23-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.10 |  |
| PIPE 18-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.00 |  |
| PIPE 18-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.00 |  |
| PIPE 17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.50 |  |
| PIPE 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 12.50 |  |
| PIPE 24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 14.70 |  |
| PIPE 25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.50 |  |
| PIPE 28-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.10 |  |
| PIPE 28-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.10 |  |


| PIPE 33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 15.60 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.20 |  |
| PIPE 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.90 |  |
| PIPE 32-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.10 |  |
| PIPE 32-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.10 |  |
| EX. PIPE 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16.20 |  |

## Sewer Input Summary:

|  |  | Elevation |  |  | Loss Coefficients |  |  | Given Dimensions |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Sewer Length (ft) | Downstream Invert <br> (ft) | Slope <br> (\%) | Upstream Invert (ft) | Mannings $\mathrm{n}$ | $\begin{aligned} & \text { Bend } \\ & \text { Loss } \end{aligned}$ | $\begin{aligned} & \text { Lateral } \\ & \text { Loss } \end{aligned}$ | Cross Section | Rise (ft or in) | Span (ft or in) |
| PIPE 42-1 | 50.36 | 7023.83 | 1.0 | 7024.33 | 0.013 | 0.03 | 1.00 | CIRCULAR | 72.00 in | 72.00 in |
| PIPE 42-2 | 31.36 | 7024.34 | 1.0 | 7024.65 | 0.013 | 0.38 | 0.44 | CIRCULAR | 72.00 in | 72.00 in |
| PIPE 96 | 32.00 | 7029.45 | 2.0 | 7030.09 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 39B | 499.00 | 7025.19 | 1.5 | 7032.67 | 0.013 | 0.05 | 1.00 | CIRCULAR | 72.00 in | 72.00 in |
| PIPE 39A | 274.91 | 7033.67 | 1.5 | 7037.79 | 0.013 | 0.05 | 1.00 | CIRCULAR | 60.00 in | 60.00 in |
| PIPE 22-1 | 340.26 | 7038.13 | 0.8 | 7040.85 | 0.013 | 0.05 | 1.00 | CIRCULAR | 0.00 in | 0.00 in |
| PIPE 22-2 | 301.60 | 7041.15 | 1.5 | 7045.67 | 0.013 | 0.05 | 1.00 | CIRCULAR | 60.00 in | 60.00 in |
| PIPE 15-1 | 550.00 | 7045.97 | 1.5 | 7054.22 | 0.013 | 0.05 | 0.00 | CIRCULAR | 60.00 in | 60.00 in |
| PIPE 15-2 | 171.67 | 7054.57 | 0.8 | 7055.94 | 0.013 | 0.05 | 1.00 | CIRCULAR | 60.00 in | 60.00 in |
| PIPE 14 | 24.00 | 7056.94 | 0.5 | 7057.06 | 0.013 | 0.94 | 0.00 | CIRCULAR | 48.00 in | 48.00 in |
| PIPE 14C | 254.48 | 7058.10 | 0.5 | 7059.37 | 0.013 | 0.05 | 1.00 | CIRCULAR | 36.00 in | 36.00 in |
| PIPE 14B-2 | 435.48 | 7059.96 | 0.6 | 7062.57 | 0.013 | 0.05 | 0.92 | CIRCULAR | 30.00 in | 30.00 in |


| PIPE 14B-1 | 435.48 | 7062.90 | 0.6 | 7065.51 | 0.013 | 0.05 | 1.00 | CIRCULAR | 30.00 in | 30.00 in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 13 | 264.07 | 7057.18 | 2.5 | 7063.78 | 0.013 | 0.05 | 1.00 | CIRCULAR | 48.00 in | 48.00 in |
| EX. PIPE 12 | 24.23 | 7070.36 | 3.1 | 7071.11 | 0.013 | 0.83 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 10-1 | 400.00 | 7064.34 | 2.1 | 7072.74 | 0.013 | 0.05 | 1.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 10-2 | 400.00 | 7073.14 | 2.1 | 7081.54 | 0.013 | 0.05 | 1.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 10-3 | 391.34 | 7081.96 | 1.5 | 7087.92 | 0.013 | 0.05 | 1.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 9-1 | 16.11 | 7088.72 | 0.5 | 7088.80 | 0.013 | 0.05 | 1.00 | CIRCULAR | 36.00 in | 36.00 in |
| PIPE 9-2 | 24.00 | 7088.80 | 0.5 | 7088.92 | 0.013 | 0.38 | 0.44 | CIRCULAR | 36.00 in | 36.00 in |
| PIPE 9-3 | 234.95 | 7088.93 | 0.5 | 7090.10 | 0.013 | 0.38 | 0.44 | CIRCULAR | 36.00 in | 36.00 in |
| PIPE 6 | 32.00 | 7091.09 | 2.8 | 7091.99 | 0.013 | 0.05 | 1.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 7 | 57.67 | 7090.39 | 0.5 | 7090.68 | 0.013 | 1.32 | 0.00 | CIRCULAR | 30.00 in | 30.00 in |
| PIPE 8 | 57.67 | 7090.87 | 7.0 | 7094.91 | 0.013 | 1.32 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 5 | 22.08 | 7088.22 | 1.3 | 7088.50 | 0.013 | 1.32 | 0.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 3 | 92.36 | 7091.38 | 1.0 | 7092.30 | 0.013 | 1.32 | 0.25 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 21-1 | 10.90 | 7049.47 | 6.7 | 7050.20 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| EX. PIPE 21-2 | 12.02 | 7054.76 | 5.0 | 7055.36 | 0.013 | 0.87 | 0.28 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 38-1 | 11.57 | 7041.59 | 8.0 | 7042.52 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| EX. PIPE 38-2 | 10.06 | 7044.14 | 7.0 | 7044.84 | 0.013 | 0.87 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 36B | 71.50 | 7034.67 | 1.0 | 7035.38 | 0.013 | 0.38 | 0.00 | CIRCULAR | 48.00 in | 48.00 in |
| PIPE 100 | 24.00 | 7037.68 | 1.0 | 7037.92 | 0.013 | 1.32 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 36A-1 | 150.46 | 7035.74 | 1.3 | 7037.70 | 0.013 | 0.05 | 1.00 | CIRCULAR | 48.00 in | 48.00 in |
| PIPE 36A-2 | 68.51 | 7037.73 | 1.3 | 7038.62 | 0.013 | 0.38 | 0.44 | CIRCULAR | 48.00 in | 48.00 in |
| PIPE 31 | 303.64 | 7038.97 | 1.6 | 7043.83 | 0.013 | 0.05 | 1.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 29 | 5.69 | 7045.33 | 9.8 | 7045.89 | 0.013 | 1.32 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 30 | 24.67 | 7045.82 | 1.0 | 7046.07 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |


| PIPE 27 | 97.53 | 7044.30 | 0.8 | 7045.08 | 0.013 | 0.05 | 1.00 | CIRCULAR | 36.00 in | 36.00 in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 26 | 317.33 | 7045.42 | 1.0 | 7048.59 | 0.013 | 0.05 | 1.00 | CIRCULAR | 36.00 in | 36.00 in |
| PIPE 19 | 66.87 | 7049.08 | 0.9 | 7049.68 | 0.013 | 0.05 | 1.00 | CIRCULAR | 30.00 in | 30.00 in |
| PIPE 23-1 | 55.51 | 7050.70 | 1.7 | 7051.64 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 23-2 | 36.88 | 7051.94 | 1.0 | 7052.31 | 0.013 | 0.38 | 0.44 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 18-1 | 310.23 | 7050.27 | 2.3 | 7057.41 | 0.013 | 0.05 | 1.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 18-2 | 60.33 | 7057.71 | 0.5 | 7058.01 | 0.013 | 1.32 | 0.25 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 17 | 16.14 | 7058.81 | 8.1 | 7060.12 | 0.013 | 0.38 | 0.44 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 16 | 24.67 | 7058.31 | 1.0 | 7058.56 | 0.013 | 1.32 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 24 | 5.67 | 7049.59 | 9.9 | 7050.15 | 0.013 | 1.32 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 25 | 24.66 | 7050.08 | 1.0 | 7050.33 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 28-1 | 57.60 | 7046.87 | 1.4 | 7047.68 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 28-2 | 32.89 | 7047.97 | 1.8 | 7048.56 | 0.013 | 0.38 | 0.44 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 33 | 56.20 | 7040.62 | 0.5 | 7040.90 | 0.013 | 1.32 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 34 | 25.87 | 7041.19 | 10.0 | 7043.78 | 0.013 | 0.90 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 35 | 9.05 | 7041.70 | 5.0 | 7042.15 | 0.013 | 0.38 | 0.44 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 32-1 | 51.83 | 7041.11 | 2.0 | 7042.15 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 32-2 | 29.44 | 7042.46 | 1.0 | 7042.75 | 0.013 | 0.38 | 0.44 | CIRCULAR | 18.00 in | 18.00 in |
| EX. PIPE 41 | 21.55 | 7025.62 | 5.0 | 7026.70 | 0.013 | 1.21 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |

## Sewer Flow Summary:

|  | Full Flow <br> Capacity | Critical Flow | Normal Flow |
| :--- | :--- | :--- | :--- |


| Element Name | Flow (cfs) | Velocity (fps) | Depth <br> (in) | Velocity (fps) | Depth <br> (in) | Velocity (fps) | Froude <br> Number | Flow Condition | Flow (cfs) | Surcharged Length (ft) | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 42-1 | 424.65 | 15.02 | 61.85 | 14.12 | 51.42 | 16.89 | 1.49 | Supercritical | 364.80 | 0.00 |  |
| PIPE 42-2 | 424.65 | 15.02 | 61.85 | 14.12 | 51.42 | 16.89 | 1.49 | Pressurized | 364.80 | 31.36 |  |
| PIPE 96 | 14.90 | 8.43 | 14.07 | 6.21 | 10.23 | 8.87 | 1.87 | Pressurized | 9.20 | 32.00 |  |
| PIPE 39B | 520.09 | 18.39 | 60.92 | 13.77 | 43.36 | 19.75 | 2.00 | Supercritical Jump | 351.40 | 240.69 | Velocity is Too High |
| PIPE 39A | 319.83 | 16.29 | 53.41 | 13.79 | 40.45 | 18.08 | 1.84 | Supercritical | 254.60 | 0.00 |  |
| PIPE 22-1 | 301.17 | 12.68 | 52.70 | 12.18 | 45.59 | 14.15 | 1.34 | Pressurized | 247.80 | 340.26 |  |
| PIPE 22-2 | 319.83 | 16.29 | 52.91 | 13.52 | 39.67 | 17.99 | 1.86 | Supercritical Jump | 247.80 | 55.24 |  |
| PIPE 15-1 | 319.83 | 16.29 | 51.99 | 13.08 | 38.39 | 17.83 | 1.89 | Supercritical | 236.50 | 0.00 |  |
| PIPE 15-2 | 233.57 | 11.90 | 60.00 | 12.04 | 60.00 | 12.04 | 0.00 | Pressurized | 236.50 | 171.67 |  |
| PIPE 14 | 101.84 | 8.10 | 48.00 | 10.04 | 48.00 | 10.04 | 0.00 | Pressurized | 126.20 | 24.00 |  |
| PIPE 14C | 47.29 | 6.69 | 36.00 | 7.53 | 36.00 | 7.53 | 0.00 | Pressurized | 53.20 | 254.48 |  |
| PIPE 14B-2 | 31.86 | 6.49 | 21.10 | 7.21 | 20.96 | 7.26 | 1.01 | Pressurized | 26.60 | 435.48 |  |
| PIPE 14B-1 | 31.86 | 6.49 | 21.10 | 7.21 | 20.96 | 7.26 | 1.01 | Pressurized | 26.60 | 435.48 |  |
| PIPE 13 | 227.73 | 18.12 | 38.40 | 10.41 | 23.79 | 18.06 | 2.55 | Supercritical Jump | 112.20 | 99.73 |  |
| EX. PIPE 12 | 18.54 | 10.49 | 17.01 | 9.02 | 12.65 | 11.76 | 2.11 | Supercritical | 15.60 | 0.00 |  |
| PIPE 10-1 | 146.19 | 15.19 | 37.46 | 11.59 | 26.34 | 16.53 | 2.13 | Supercritical | 105.00 | 0.00 |  |
| PIPE 10-2 | 146.19 | 15.19 | 37.46 | 11.59 | 26.34 | 16.53 | 2.13 | Supercritical | 105.00 | 0.00 |  |
| PIPE 10-3 | 124.50 | 12.94 | 37.46 | 11.59 | 29.57 | 14.51 | 1.70 | Supercritical | 105.00 | 0.00 |  |
| PIPE 9-1 | 47.29 | 6.69 | 36.00 | 7.92 | 36.00 | 7.92 | 0.00 | Pressurized | 56.00 | 16.11 |  |
| PIPE 9-2 | 47.29 | 6.69 | 36.00 | 7.92 | 36.00 | 7.92 | 0.00 | Pressurized | 56.00 | 24.00 |  |


| PIPE 9-3 | 47.29 | 6.69 | 36.00 | 7.92 | 36.00 | 7.92 | 0.00 | Pressurized | 56.00 | 234.95 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 6 | 37.96 | 12.08 | 15.00 | 5.86 | 9.31 | 10.74 | 2.49 | Pressurized | 12.10 | 32.00 |  |
| PIPE 7 | 29.08 | 5.92 | 30.00 | 6.44 | 30.00 | 6.44 | 0.00 | Pressurized | 31.60 | 57.67 |  |
| PIPE 8 | 60.01 | 19.10 | 17.99 | 6.85 | 8.82 | 16.52 | 3.95 | Pressurized | 17.30 | 57.67 |  |
| PIPE 5 | 113.56 | 11.80 | 28.77 | 8.34 | 21.40 | 11.90 | 1.77 | Pressurized | 58.60 | 22.08 |  |
| PIPE 3 | 22.68 | 7.22 | 15.63 | 6.05 | 13.09 | 7.48 | 1.41 | Pressurized | 13.10 | 92.36 |  |
| PIPE 21-1 | 27.26 | 15.43 | 17.74 | 12.60 | 12.34 | 17.19 | 3.15 | Pressurized | 22.20 | 10.90 |  |
| $\begin{gathered} \text { EX. PIPE 21- } \\ 2 \end{gathered}$ | 23.55 | 13.33 | 17.74 | 12.60 | 13.90 | 15.16 | 2.48 | Pressurized | 22.20 | 12.02 |  |
| PIPE 38-1 | 29.79 | 16.86 | 17.26 | 9.70 | 9.71 | 17.39 | 3.80 | Pressurized | 16.90 | 11.57 |  |
| $\begin{gathered} \text { EX. PIPE 38- } \\ 2 \end{gathered}$ | 27.87 | 15.77 | 17.26 | 9.70 | 10.12 | 16.52 | 3.51 | Pressurized | 16.90 | 10.06 |  |
| PIPE 36B | 144.03 | 11.46 | 38.47 | 10.44 | 31.96 | 12.68 | 1.46 | Pressurized | 112.70 | 71.50 |  |
| PIPE 100 | 22.68 | 7.22 | 17.36 | 6.62 | 14.93 | 7.84 | 1.34 | Pressurized | 16.10 | 24.00 |  |
| PIPE 36A-1 | 164.22 | 13.07 | 36.43 | 9.81 | 27.11 | 13.72 | 1.78 | Supercritical Jump | 100.40 | 144.53 |  |
| PIPE 36A-2 | 164.22 | 13.07 | 36.43 | 9.81 | 27.11 | 13.72 | 1.78 | Pressurized | 100.40 | 68.51 |  |
| PIPE 31 | 127.60 | 13.26 | 33.41 | 9.67 | 23.99 | 13.98 | 1.92 | Supercritical Jump | 79.40 | 47.80 |  |
| PIPE 29 | 71.01 | 22.60 | 16.46 | 6.31 | 7.36 | 17.75 | 4.70 | Supercritical | 14.50 | 0.00 |  |
| PIPE 30 | 10.53 | 5.96 | 12.38 | 5.48 | 10.82 | 6.40 | 1.30 | Pressurized | 7.10 | 24.67 |  |
| PIPE 27 | 59.82 | 8.46 | 29.76 | 9.41 | 28.97 | 9.65 | 1.06 | Supercritical | 58.80 | 0.00 |  |
| PIPE 26 | 66.88 | 9.46 | 28.13 | 8.77 | 23.86 | 10.46 | 1.39 | Supercritical | 52.00 | 0.00 |  |
| PIPE 19 | 39.02 | 7.95 | 22.55 | 7.68 | 19.91 | 8.79 | 1.28 | Supercritical Jump | 30.40 | 65.23 |  |
| PIPE 23-1 | 13.73 | 7.77 | 15.30 | 6.93 | 12.27 | 8.65 | 1.59 | Pressurized | 11.10 | 55.51 |  |



- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.


## Sewer Sizing Summary:

|  | Existing | Calculated | Used |  |
| :--- | :--- | :--- | :--- | :--- |


| Element Name | Peak Flow (cfs) | Cross Section | Rise | Span | Rise | Span | Rise | Span | $\begin{gathered} \text { Area } \\ \left(\mathbf{f t}^{\wedge} \mathbf{2}\right) \end{gathered}$ | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 42-1 | 364.80 | CIRCULAR | 72.00 in | 28.27 |  |
| PIPE 42-2 | 364.80 | CIRCULAR | 72.00 in | 28.27 |  |
| PIPE 96 | 9.20 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 39B | 351.40 | CIRCULAR | 72.00 in | 72.00 in | 66.00 in | 66.00 in | 72.00 in | 72.00 in | 28.27 |  |
| PIPE 39A | 254.60 | CIRCULAR | 60.00 in | 19.63 |  |
| PIPE 22-1 | 247.80 | CIRCULAR | 0.00 in | 0.00 in | 66.00 in | 66.00 in | 66.00 in | 66.00 in | 23.76 |  |
| PIPE 22-2 | 247.80 | CIRCULAR | 60.00 in | 19.63 |  |
| PIPE 15-1 | 236.50 | CIRCULAR | 60.00 in | 60.00 in | 54.00 in | 54.00 in | 60.00 in | 60.00 in | 19.63 |  |
| PIPE 15-2 | 236.50 | CIRCULAR | 60.00 in | 60.00 in | 66.00 in | 66.00 in | 60.00 in | 60.00 in | 19.63 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 14 | 126.20 | CIRCULAR | 48.00 in | 48.00 in | 54.00 in | 54.00 in | 48.00 in | 48.00 in | 12.57 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 14C | 53.20 | CIRCULAR | 36.00 in | 36.00 in | 42.00 in | 42.00 in | 36.00 in | 36.00 in | 7.07 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 14B-2 | 26.60 | CIRCULAR | 30.00 in | 4.91 |  |
| PIPE 14B-1 | 26.60 | CIRCULAR | 30.00 in | 4.91 |  |


| PIPE 13 | 112.20 | CIRCULAR | 48.00 in | 48.00 in | 42.00 in | 42.00 in | 48.00 in | 48.00 in | 12.57 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EX. PIPE 12 | 15.60 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 10-1 | 105.00 | CIRCULAR | 42.00 in | 9.62 |  |
| PIPE 10-2 | 105.00 | CIRCULAR | 42.00 in | 9.62 |  |
| PIPE 10-3 | 105.00 | CIRCULAR | 42.00 in | 9.62 |  |
| PIPE 9-1 | 56.00 | CIRCULAR | 36.00 in | 36.00 in | 42.00 in | 42.00 in | 36.00 in | 36.00 in | 7.07 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 9-2 | 56.00 | CIRCULAR | 36.00 in | 36.00 in | 42.00 in | 42.00 in | 36.00 in | 36.00 in | 7.07 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 9-3 | 56.00 | CIRCULAR | 36.00 in | 36.00 in | 42.00 in | 42.00 in | 36.00 in | 36.00 in | 7.07 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 6 | 12.10 | CIRCULAR | 24.00 in | 24.00 in | 18.00 in | 18.00 in | 24.00 in | 24.00 in | 3.14 |  |
| PIPE 7 | 31.60 | CIRCULAR | 30.00 in | 30.00 in | 33.00 in | 33.00 in | 30.00 in | 30.00 in | 4.91 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 8 | 17.30 | CIRCULAR | 24.00 in | 24.00 in | 18.00 in | 18.00 in | 24.00 in | 24.00 in | 3.14 |  |
| PIPE 5 | 58.60 | CIRCULAR | 42.00 in | 42.00 in | 33.00 in | 33.00 in | 42.00 in | 42.00 in | 9.62 |  |
| PIPE 3 | 13.10 | CIRCULAR | 24.00 in | 24.00 in | 21.00 in | 21.00 in | 24.00 in | 24.00 in | 3.14 |  |


| PIPE 21-1 | 22.20 | CIRCULAR | 18.00 in | 1.77 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EX. PIPE 21-2 | 22.20 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 38-1 | 16.90 | CIRCULAR | 18.00 in | 1.77 |  |
| EX. PIPE 38-2 | 16.90 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 36B | 112.70 | CIRCULAR | 48.00 in | 12.57 |  |
| PIPE 100 | 16.10 | CIRCULAR | 24.00 in | 3.14 |  |
| PIPE 36A-1 | 100.40 | CIRCULAR | 48.00 in | 48.00 in | 42.00 in | 42.00 in | 48.00 in | 48.00 in | 12.57 |  |
| PIPE 36A-2 | 100.40 | CIRCULAR | 48.00 in | 48.00 in | 42.00 in | 42.00 in | 48.00 in | 48.00 in | 12.57 |  |
| PIPE 31 | 79.40 | CIRCULAR | 42.00 in | 42.00 in | 36.00 in | 36.00 in | 42.00 in | 42.00 in | 9.62 |  |
| PIPE 29 | 14.50 | CIRCULAR | 24.00 in | 24.00 in | 18.00 in | 18.00 in | 24.00 in | 24.00 in | 3.14 |  |
| PIPE 30 | 7.10 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 27 | 58.80 | CIRCULAR | 36.00 in | 7.07 |  |
| PIPE 26 | 52.00 | CIRCULAR | 36.00 in | 36.00 in | 33.00 in | 33.00 in | 36.00 in | 36.00 in | 7.07 |  |
| PIPE 19 | 30.40 | CIRCULAR | 30.00 in | 4.91 |  |
| PIPE 23-1 | 11.10 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 23-2 | 11.10 | CIRCULAR | 18.00 in | 18.00 in | 21.00 in | 21.00 in | 18.00 in | 18.00 in | 1.77 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 18-1 | 20.00 | CIRCULAR | 24.00 in | 24.00 in | 21.00 in | 21.00 in | 24.00 in | 24.00 in | 3.14 |  |
| PIPE 18-2 | 20.00 | CIRCULAR | 24.00 in | 24.00 in | 27.00 in | 27.00 in | 24.00 in | 24.00 in | 3.14 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 17 | 8.50 | CIRCULAR | 18.00 in | 1.77 |  |



- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.


## Grade Line Summary:

Tailwater Elevation (ft): 0.00

|  | Invert Elev. |  | Downstream Manhole Losses |  | HGL |  | EGL |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Downstream (ft) | Upstream <br> (ft) | Bend Loss <br> (ft) | Lateral Loss (ft) | Downstream (ft) | Upstream <br> (ft) | Downstream <br> (ft) | Friction Loss (ft) | Upstream <br> (ft) |


| PIPE 42-1 | 7023.83 | 7024.33 | 0.00 | 0.00 | 7028.11 | 7029.48 | 7032.54 | 0.04 | 7032.58 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 42-2 | 7024.34 | 7024.65 | 0.98 | 1.45 | 7032.42 | 7032.65 | 7035.01 | 0.23 | 7035.24 |
| PIPE 96 | 7029.45 | 7030.09 | 0.56 | 0.00 | 7035.37 | 7035.62 | 7035.79 | 0.24 | 7036.04 |
| PIPE 39B | 7025.19 | 7032.67 | 0.12 | 0.19 | 7033.15 | 7037.75 | 7035.55 | 5.15 | 7040.69 |
| PIPE 39A | 7033.67 | 7037.79 | 0.13 | 0.00 | 7037.88 | 7042.24 | 7042.11 | 3.08 | 7045.19 |
| PIPE 22-1 | 7038.13 | 7040.85 | 0.08 | 0.92 | 7044.51 | 7046.35 | 7046.20 | 1.84 | 7048.04 |
| PIPE 22-2 | 7041.15 | 7045.67 | 0.12 | 0.00 | 7046.48 | 7050.08 | 7048.62 | 4.30 | 7052.92 |
| PIPE 15-1 | 7045.97 | 7054.22 | 0.11 | 0.00 | 7050.19 | 7058.55 | 7054.10 | 7.11 | 7061.21 |
| PIPE 15-2 | 7054.57 | 7055.94 | 0.11 | 0.00 | 7059.57 | 7060.97 | 7061.82 | 1.41 | 7063.23 |
| PIPE 14 | 7056.94 | 7057.06 | 1.47 | 0.00 | 7063.13 | 7063.32 | 7064.70 | 0.18 | 7064.88 |
| PIPE 14C | 7058.10 | 7059.37 | 0.04 | 0.69 | 7064.73 | 7066.35 | 7065.61 | 1.61 | 7067.22 |
| PIPE 14B-2 | 7059.96 | 7062.57 | 0.02 | 0.46 | 7067.25 | 7069.07 | 7067.71 | 1.82 | 7069.53 |
| PIPE 14B-1 | 7062.90 | 7065.51 | 0.02 | 0.00 | 7069.10 | 7070.92 | 7069.55 | 1.82 | 7071.37 |
| PIPE 13 | 7057.18 | 7063.78 | 0.06 | 1.01 | 7063.07 | 7066.98 | 7064.30 | 4.36 | 7068.66 |
| EX. PIPE 12 | 7070.36 | 7071.11 | 1.00 | 0.00 | 7071.41 | 7072.53 | 7073.56 | 0.23 | 7073.79 |
| PIPE 10-1 | 7064.34 | 7072.74 | 0.09 | 0.00 | 7067.07 | 7075.86 | 7070.78 | 7.17 | 7077.95 |
| PIPE 10-2 | 7073.14 | 7081.54 | 0.09 | 0.00 | 7075.95 | 7084.66 | 7079.58 | 7.17 | 7086.75 |
| PIPE 10-3 | 7081.96 | 7087.92 | 0.09 | 0.00 | 7084.75 | 7091.04 | 7087.69 | 5.44 | 7093.13 |
| PIPE 9-1 | 7088.72 | 7088.80 | 0.05 | 0.87 | 7093.08 | 7093.19 | 7094.05 | 0.11 | 7094.16 |
| PIPE 9-2 | 7088.80 | 7088.92 | 0.37 | 0.55 | 7094.11 | 7094.27 | 7095.08 | 0.17 | 7095.25 |
| PIPE 9-3 | 7088.93 | 7090.10 | 0.37 | 0.55 | 7095.19 | 7096.84 | 7096.16 | 1.65 | 7097.81 |
| PIPE 6 | 7091.09 | 7091.99 | 0.01 | 0.74 | 7098.34 | 7098.43 | 7098.57 | 0.09 | 7098.66 |
| PIPE 7 | 7090.39 | 7090.68 | 0.85 | 0.00 | 7098.02 | 7098.36 | 7098.66 | 0.34 | 7099.00 |
| PIPE 8 | 7090.87 | 7094.91 | 0.62 | 0.00 | 7097.96 | 7098.30 | 7098.43 | 0.34 | 7098.77 |
| PIPE 5 | 7088.22 | 7088.50 | 0.76 | 0.00 | 7093.31 | 7093.39 | 7093.89 | 0.07 | 7093.96 |


| PIPE 3 | 7091.38 | 7092.30 | 0.36 | 0.51 | 7094.56 | 7094.87 | 7094.83 | 0.31 | 7095.14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 21-1 | 7049.47 | 7050.20 | 3.23 | 0.00 | 7053.70 | 7054.19 | 7056.15 | 0.48 | 7056.64 |
| EX. PIPE 21-2 | 7054.76 | 7055.36 | 2.13 | 1.76 | 7058.08 | 7058.62 | 7060.53 | 0.53 | 7061.07 |
| PIPE 38-1 | 7041.59 | 7042.52 | 1.87 | 0.00 | 7045.65 | 7045.95 | 7047.07 | 0.30 | 7047.37 |
| EX. PIPE 38-2 | 7044.14 | 7044.84 | 1.24 | 0.00 | 7047.18 | 7047.44 | 7048.60 | 0.26 | 7048.86 |
| PIPE 36B | 7034.67 | 7035.38 | 0.47 | 0.00 | 7039.92 | 7040.36 | 7041.17 | 0.44 | 7041.60 |
| PIPE 100 | 7037.68 | 7037.92 | 0.54 | 0.00 | 7041.73 | 7041.86 | 7042.14 | 0.12 | 7042.26 |
| PIPE 36A-1 | 7035.74 | 7037.70 | 0.05 | 0.26 | 7040.92 | 7041.61 | 7041.91 | 0.70 | 7042.61 |
| PIPE 36A-2 | 7037.73 | 7038.62 | 0.38 | 0.56 | 7042.55 | 7042.89 | 7043.55 | 0.33 | 7043.88 |
| PIPE 31 | 7038.97 | 7043.83 | 0.05 | 0.00 | 7042.94 | 7046.61 | 7044.00 | 4.07 | 7048.07 |
| PIPE 29 | 7045.33 | 7045.89 | 0.44 | 0.00 | 7047.05 | 7050.51 | 7050.84 | 0.00 | 7050.84 |
| PIPE 30 | 7045.82 | 7046.07 | 0.33 | 0.00 | 7048.15 | 7048.26 | 7048.40 | 0.11 | 7048.51 |
| PIPE 27 | 7044.30 | 7045.08 | 0.05 | 0.00 | 7046.71 | 7047.56 | 7048.16 | 0.78 | 7048.93 |
| PIPE 26 | 7045.42 | 7048.59 | 0.04 | 0.23 | 7048.36 | 7050.93 | 7049.21 | 2.92 | 7052.13 |
| PIPE 19 | 7049.08 | 7049.68 | 0.03 | 0.24 | 7051.81 | 7052.16 | 7052.40 | 0.36 | 7052.76 |
| PIPE 23-1 | 7050.70 | 7051.64 | 0.81 | 0.00 | 7052.97 | 7053.59 | 7053.59 | 0.62 | 7054.20 |
| PIPE 23-2 | 7051.94 | 7052.31 | 0.23 | 0.34 | 7054.17 | 7054.58 | 7054.78 | 0.41 | 7055.19 |
| PIPE 18-1 | 7050.27 | 7057.41 | 0.03 | 0.00 | 7052.20 | 7059.02 | 7053.37 | 6.49 | 7059.87 |
| PIPE 18-2 | 7057.71 | 7058.01 | 0.83 | 0.47 | 7060.54 | 7061.01 | 7061.17 | 0.47 | 7061.64 |
| PIPE 17 | 7058.81 | 7060.12 | 0.14 | 0.47 | 7061.89 | 7061.99 | 7062.25 | 0.11 | 7062.35 |
| PIPE 16 | 7058.31 | 7058.56 | 0.32 | 0.00 | 7061.72 | 7061.79 | 7061.96 | 0.07 | 7062.04 |
| PIPE 24 | 7049.59 | 7050.15 | 0.45 | 0.00 | 7051.38 | 7054.83 | 7055.17 | 0.00 | 7055.17 |
| PIPE 25 | 7050.08 | 7050.33 | 0.37 | 0.00 | 7052.22 | 7052.34 | 7052.50 | 0.13 | 7052.62 |
| PIPE 28-1 | 7046.87 | 7047.68 | 0.43 | 0.00 | 7049.04 | 7049.38 | 7049.37 | 0.34 | 7049.71 |
| PIPE 28-2 | 7047.97 | 7048.56 | 0.12 | 0.18 | 7049.69 | 7049.69 | 7050.01 | 0.18 | 7050.19 |


| PIPE 33 | 7040.62 | 7040.90 | 0.51 | 0.00 | 7044.00 | 7044.27 | 7044.38 | 0.27 | 7044.65 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 34 | 7041.19 | 7043.78 | 0.18 | 0.00 | 7044.63 | 7044.98 | 7044.83 | 0.66 | 7045.48 |
| PIPE 35 | 7041.70 | 7042.15 | 0.05 | 0.33 | 7044.91 | 7044.93 | 7045.03 | 0.02 | 7045.05 |
| PIPE 32-1 | 7041.11 | 7042.15 | 0.43 | 0.00 | 7043.98 | 7044.29 | 7044.31 | 0.31 | 7044.62 |
| PIPE 32-2 | 7042.46 | 7042.75 | 0.12 | 0.18 | 7044.60 | 7044.77 | 7044.92 | 0.17 | 7045.10 |
| EX. PIPE 41 | 7025.62 | 7026.70 | 1.58 | 0.00 | 7035.51 | 7036.02 | 7036.82 | 0.51 | 7037.33 |

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer $\# 0$, is not considered a sewer.
- Bend loss $=$ Bend $K^{*} V_{\text {_fi }} \wedge 2 /(2 * g)$
- Lateral loss $=\mathrm{V}_{-}$fo ${ }^{\wedge} 2 /\left(2^{*} \mathrm{~g}\right)-$ Junction Loss $\mathrm{K}^{*} \mathrm{~V}_{-} \mathrm{fi} \wedge 2 /(2 * \mathrm{~g})$.
- Friction loss is always Upstream EGL - Downstream EGL.


## Excavation Estimate:

The trench side slope is $1.0 \mathrm{ft} / \mathrm{ft}$
The minimum trench width is 2.00 ft

|  |  |  |  |  |  |  |  |  | Downstream |  |  | Upstream |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| PIPE 39A | 274.91 | 6.00 | 8.00 | 9.00 | 23.41 | 14.87 | 8.20 | 26.40 | 16.37 | 9.70 | 2080.74 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 22-1 | 340.26 | 6.50 | 8.00 | 9.58 | 25.22 | 16.07 | 8.82 | 30.58 | 18.75 | 11.50 | 3182.40 |  |
| PIPE 22-2 | 301.60 | 6.00 | 8.00 | 9.00 | 30.49 | 18.41 | 11.74 | 27.06 | 16.70 | 10.03 | 2864.87 |  |
| PIPE 15-1 | 550.00 | 6.00 | 8.00 | 9.00 | 26.46 | 16.40 | 9.73 | 28.22 | 17.28 | 10.61 | 4803.59 |  |
| PIPE 15-2 | 171.67 | 6.00 | 8.00 | 9.00 | 27.53 | 16.93 | 10.26 | 33.64 | 19.99 | 13.32 | 1811.57 |  |
| PIPE 14 | 24.00 | 5.00 | 6.00 | 7.83 | 32.64 | 18.74 | 13.40 | 27.88 | 16.36 | 11.02 | 235.20 |  |
| PIPE 14C | 254.48 | 4.00 | 6.00 | 6.67 | 26.80 | 15.24 | 11.07 | 15.26 | 9.46 | 5.30 | 1340.77 |  |
| PIPE 14B-2 | 435.48 | 3.50 | 6.00 | 6.08 | 14.59 | 8.83 | 5.25 | 24.90 | 13.99 | 10.41 | 1979.41 |  |
| PIPE 14B-1 | 435.48 | 3.50 | 6.00 | 6.08 | 24.25 | 13.66 | 10.08 | 13.48 | 8.28 | 4.70 | 1852.02 |  |
| PIPE 13 | 264.07 | 5.00 | 6.00 | 7.83 | 32.16 | 18.50 | 13.17 | 25.32 | 15.08 | 9.74 | 2383.67 |  |
| EX. PIPE 12 | 24.23 | 2.50 | 4.00 | 4.92 | 14.66 | 8.12 | 5.87 | 11.28 | 6.43 | 4.18 | 47.31 |  |
| PIPE 10-1 | 400.00 | 4.50 | 6.00 | 7.25 | 24.70 | 14.48 | 9.73 | 24.42 | 14.34 | 9.59 | 2657.04 |  |
| PIPE 10-2 | 400.00 | 4.50 | 6.00 | 7.25 | 23.62 | 13.94 | 9.19 | 26.98 | 15.62 | 10.87 | 2804.07 |  |
| PIPE 10-3 | 391.34 | 4.50 | 6.00 | 7.25 | 26.14 | 15.19 | 10.44 | 27.36 | 15.81 | 11.06 | 3007.96 |  |
| PIPE 9-1 | 16.11 | 4.00 | 6.00 | 6.67 | 26.26 | 14.96 | 10.80 | 24.40 | 14.03 | 9.87 | 109.76 |  |
| PIPE 9-2 | 24.00 | 4.00 | 6.00 | 6.67 | 24.40 | 14.03 | 9.87 | 24.16 | 13.91 | 9.75 | 151.75 |  |
| PIPE 9-3 | 234.95 | 4.00 | 6.00 | 6.67 | 24.15 | 13.91 | 9.74 | 23.06 | 13.36 | 9.20 | 1415.82 |  |
| PIPE 6 | 32.00 | 3.00 | 4.00 | 5.50 | 22.07 | 12.12 | 9.29 | 27.02 | 14.59 | 11.76 | 196.36 |  |
| PIPE 7 | 57.67 | 3.50 | 6.00 | 6.08 | 22.98 | 13.03 | 9.45 | 21.00 | 12.04 | 8.46 | 298.49 |  |
| PIPE 8 | 57.67 | 3.00 | 4.00 | 5.50 | 22.51 | 12.34 | 9.51 | 13.04 | 7.60 | 4.77 | 209.61 |  |
| PIPE 5 | 22.08 | 4.50 | 6.00 | 7.25 | 26.76 | 15.50 | 10.75 | 27.50 | 15.88 | 11.13 | 173.85 |  |
| PIPE 3 | 92.36 | 3.00 | 4.00 | 5.50 | 23.25 | 12.71 | 9.87 | 20.98 | 11.57 | 8.74 | 465.55 |  |
| PIPE 21-1 | 10.90 | 2.50 | 4.00 | 4.92 | 22.96 | 12.27 | 10.02 | 20.70 | 11.14 | 8.89 | 52.24 |  |
| EX. PIPE 21-2 | 12.02 | 2.50 | 4.00 | 4.92 | 11.58 | 6.58 | 4.33 | 10.78 | 6.18 | 3.93 | 18.35 |  |
| PIPE 38-1 | 11.57 | 2.50 | 4.00 | 4.92 | 22.29 | 11.94 | 9.69 | 15.82 | 8.70 | 6.45 | 44.28 |  |


| EX. PIPE 38-2 | 10.06 | 2.50 | 4.00 | 4.92 | 12.59 | 7.09 | 4.84 | 10.82 | 6.20 | 3.95 | 16.54 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 36B | 71.50 | 5.00 | 6.00 | 7.83 | 22.41 | 13.62 | 8.29 | 27.40 | 16.12 | 10.78 | 505.51 |  |
| PIPE 100 | 24.00 | 3.00 | 4.00 | 5.50 | 24.80 | 13.48 | 10.65 | 23.16 | 12.66 | 9.83 | 139.95 |  |
| PIPE 36A-1 | 150.46 | 5.00 | 6.00 | 7.83 | 26.67 | 15.75 | 10.42 | 25.60 | 15.22 | 9.88 | 1143.02 |  |
| PIPE 36A-2 | 68.51 | 5.00 | 6.00 | 7.83 | 25.54 | 15.19 | 9.85 | 22.02 | 13.43 | 8.09 | 447.66 |  |
| PIPE 31 | 303.64 | 4.50 | 6.00 | 7.25 | 21.82 | 13.03 | 8.28 | 20.28 | 12.27 | 7.52 | 1568.26 |  |
| PIPE 29 | 5.69 | 3.00 | 4.00 | 5.50 | 18.78 | 10.47 | 7.64 | 18.02 | 10.09 | 7.26 | 20.69 |  |
| PIPE 30 | 24.67 | 2.50 | 4.00 | 4.92 | 18.29 | 9.94 | 7.69 | 18.16 | 9.87 | 7.62 | 84.97 |  |
| PIPE 27 | 97.53 | 4.00 | 6.00 | 6.67 | 19.84 | 11.75 | 7.59 | 20.68 | 12.17 | 8.01 | 455.13 |  |
| PIPE 26 | 317.33 | 4.00 | 6.00 | 6.67 | 20.01 | 11.84 | 7.67 | 19.58 | 11.62 | 7.46 | 1425.50 |  |
| PIPE 19 | 66.87 | 3.50 | 6.00 | 6.08 | 19.10 | 11.09 | 7.51 | 19.40 | 11.24 | 7.66 | 275.64 |  |
| PIPE 23-1 | 55.51 | 2.50 | 4.00 | 4.92 | 18.37 | 9.98 | 7.73 | 18.40 | 9.99 | 7.74 | 194.13 |  |
| PIPE 23-2 | 36.88 | 2.50 | 4.00 | 4.92 | 17.80 | 9.69 | 7.44 | 18.60 | 10.09 | 7.84 | 126.72 |  |
| PIPE 18-1 | 310.23 | 3.00 | 4.00 | 5.50 | 18.71 | 10.44 | 7.61 | 22.16 | 12.16 | 9.33 | 1363.46 |  |
| PIPE 18-2 | 60.33 | 3.00 | 4.00 | 5.50 | 21.56 | 11.86 | 9.03 | 19.38 | 10.77 | 7.94 | 264.98 |  |
| PIPE 17 | 16.14 | 2.50 | 4.00 | 4.92 | 18.27 | 9.93 | 7.68 | 16.04 | 8.81 | 6.56 | 50.12 |  |
| PIPE 16 | 24.67 | 3.00 | 4.00 | 5.50 | 18.77 | 10.47 | 7.64 | 18.66 | 10.41 | 7.58 | 92.38 |  |
| PIPE 24 | 5.67 | 3.00 | 4.00 | 5.50 | 18.58 | 10.37 | 7.54 | 17.86 | 10.01 | 7.18 | 20.28 |  |
| PIPE 25 | 24.66 | 2.50 | 4.00 | 4.92 | 18.09 | 9.84 | 7.59 | 18.00 | 9.79 | 7.54 | 83.44 |  |
| PIPE 28-1 | 57.60 | 2.50 | 4.00 | 4.92 | 18.59 | 10.09 | 7.84 | 19.04 | 10.31 | 8.06 | 210.05 |  |
| PIPE 28-2 | 32.89 | 2.50 | 4.00 | 4.92 | 18.46 | 10.02 | 7.77 | 18.66 | 10.12 | 7.87 | 117.03 |  |
| PIPE 33 | 56.20 | 3.00 | 4.00 | 5.50 | 20.02 | 11.09 | 8.26 | 17.92 | 10.04 | 7.21 | 216.00 |  |
| PIPE 34 | 25.87 | 3.00 | 4.00 | 5.50 | 17.33 | 9.75 | 6.92 | 12.64 | 7.40 | 4.57 | 68.08 |  |
| PIPE 35 | 9.05 | 2.50 | 4.00 | 4.92 | 16.83 | 9.20 | 6.95 | 16.40 | 8.99 | 6.74 | 26.46 |  |
| PIPE 32-1 | 51.83 | 2.50 | 4.00 | 4.92 | 19.53 | 10.56 | 8.31 | 19.24 | 10.41 | 8.16 | 199.45 |  |


| PIPE 32-2 | 29.44 | 2.50 | 4.00 | 4.92 | 18.63 | 10.11 | 7.86 | 18.76 | 10.17 | 7.92 | 106.10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EX. PIPE 41 | 21.55 | 2.50 | 4.00 | 4.92 | 27.76 | 14.67 | 12.42 | 22.10 | 11.84 | 9.59 | 133.51 |  |

Total earth volume for sewer trenches $=48022$ cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
- Four inches for pipes less than 33 inches.
- Six inches for pipes less than 60 inches.
- Eight inches for all larger sizes.


## System Input Summary

## Rainfall Parameters

## Rainfall Return Period: 5

Rainfall Calculation Method: Formula
One Hour Depth (in):
Rainfall Constant "A": 28.5
Rainfall Constant "B": 10
Rainfall Constant "C": 0.786

## Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20
Maximum Rural Overland Len. (ft): 500
Maximum Urban Overland Len. (ft): 300
Used UDFCD Tc. Maximum: Yes
Sizer Constraints
Minimum Sewer Size (in): 18.00
Maximum Depth to Rise Ratio: 0.90
Maximum Flow Velocity (fps): 18.1
Minimum Flow Velocity (fps): 2.0
Backwater Calculations:
Tailwater Elevation (ft): 0.00

## Manhole Input Summary:

|  |  | Given Flow |  | Sub Basin Information |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element <br> Name | Ground Elevation (ft) | Total Known Flow (cfs) | Local <br> Contribution <br> (cfs) <br> 0.00 | Drainage Area (Ac.) | Runoff Coefficient | $5 y r$ Coefficient | Overland Length (ft) | Overland Slope (\%) | Gutter <br> Length <br> (ft) | Gutter Velocity (fps) |
| OUTFALL 1 | 7016.96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 42-1 | 7039.00 | 166.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 42-2 | 7039.75 | 166.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 39B | 7047.37 | 162.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 39A | 7052.99 | 114.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 22-1 | 7058.39 | 112.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 22-2 | 7061.20 | 112.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 15-1 | 7070.33 | 108.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 15-2 | 7074.76 | 108.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 14 | 7072.50 | 51.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 14C | 7068.00 | 7.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 14B-2 | 7075.77 | 3.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 14B-1 | 7073.00 | 3.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 13 | 7077.94 | 57.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| EX. PIPE 12 | 7077.00 | 9.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 10-1 | 7086.20 | 52.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 10-2 | 7096.28 | 52.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 10-3 | 7102.85 | 52.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |


| PIPE 9-1 | 7102.00 | 23.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 9-2 | 7102.00 | 23.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 9-3 | 7102.63 | 23.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 6 | 7106.00 | 7.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 7 | 7101.93 | 10.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 8 | 7101.93 | 8.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 5 | 7103.50 | 33.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 3 | 7103.29 | 5.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 21-1 | 7060.80 | 9.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| EX. PIPE 21-2 | 7061.00 | 9.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 36B | 7050.58 | 54.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## Manhole Output Summary:

|  | Local Contribution |  |  |  |  | Total Design Flow |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element <br> Name | Overland <br> Time <br> (min) | Gutter <br> Time <br> (min) | Basin <br> Tc <br> (min) | Intensity <br> (in/hr) | Local <br> Contrib <br> (cfs) | Coeff. <br> Area | Intensity <br> (in/hr) | Manhole <br> Tc <br> (min) | Peak <br> Flow <br> (cfs) | C\|c|c|c|c|c|c|c|c|c| $\mid$ |
| OUTFALL 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |
| PIPE 42-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 166.20 | Surface Water Present <br> (Downstream) |
| PIPE 42-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 166.20 |  |
| PIPE 39B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 162.00 |  |
| PIPE 39A | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 114.90 |  |
| PIPE 22-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 112.80 |  |


| PIPE 22-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 112.80 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 15-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 108.10 |  |
| PIPE 15-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 108.10 |  |
| PIPE 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 51.90 |  |
| PIPE 14C | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.20 |  |
| PIPE 14B-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.60 |  |
| PIPE 14B-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.60 |  |
| PIPE 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 57.20 |  |
| EX. PIPE 12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.60 |  |
| PIPE 10-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 52.30 |  |
| PIPE 10-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 52.30 |  |
| PIPE 10-3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 52.30 |  |
| PIPE 9-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 23.30 |  |
| PIPE 9-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 23.30 |  |
| PIPE 9-3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 23.30 |  |
| PIPE 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.00 |  |
| PIPE 7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.30 |  |
| PIPE 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.00 |  |
| PIPE 5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 33.00 |  |
| PIPE 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.60 |  |
| PIPE 21-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.50 |  |
| $\begin{aligned} & \text { EX. PIPE 21- } \\ & 2 \end{aligned}$ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.50 |  |
| PIPE 36B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 54.70 |  |

## Sewer Input Summary:

|  |  | Elevation |  |  | Loss Coefficients |  |  | Given Dimensions |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Sewer Length <br> (ft) | Downstream Invert <br> (ft) | Slope <br> (\%) | Upstream Invert (ft) | $\underset{\mathrm{n}}{\text { Mannings }}$ | Bend Loss | Lateral Loss | Cross Section | Rise (ft or in) | $\underset{\text { (ft or in) }}{\text { Span }}$ |
| PIPE 42-1 | 78.16 | 7019.79 | 1.0 | 7020.57 | 0.013 | 0.03 | 1.00 | CIRCULAR | 72.00 in | 72.00 in |
| PIPE 42-2 | 31.36 | 7020.58 | 1.0 | 7020.89 | 0.013 | 0.38 | 0.44 | CIRCULAR | 72.00 in | 72.00 in |
| PIPE 39B | 499.00 | 7022.69 | 2.0 | 7032.67 | 0.013 | 0.05 | 1.00 | CIRCULAR | 72.00 in | 72.00 in |
| PIPE 39A | 274.91 | 7033.67 | 1.5 | 7037.79 | 0.013 | 0.05 | 1.00 | CIRCULAR | 60.00 in | 60.00 in |
| PIPE 22-1 | 340.26 | 7038.13 | 0.8 | 7040.85 | 0.013 | 0.05 | 1.00 | CIRCULAR | 0.00 in | 0.00 in |
| PIPE 22-2 | 301.60 | 7041.15 | 1.5 | 7045.67 | 0.013 | 0.05 | 1.00 | CIRCULAR | 60.00 in | 60.00 in |
| PIPE 15-1 | 550.00 | 7045.97 | 1.5 | 7054.22 | 0.013 | 0.05 | 0.00 | CIRCULAR | 60.00 in | 60.00 in |
| PIPE 15-2 | 171.67 | 7054.52 | 0.8 | 7055.94 | 0.013 | 0.05 | 1.00 | CIRCULAR | 60.00 in | 60.00 in |
| PIPE 14 | 24.00 | 7056.94 | 0.5 | 7057.06 | 0.013 | 1.32 | 0.00 | CIRCULAR | 48.00 in | 48.00 in |
| PIPE 14C | 254.48 | 7058.10 | 0.5 | 7059.37 | 0.013 | 0.05 | 1.00 | CIRCULAR | 36.00 in | 36.00 in |
| PIPE 14B-2 | 435.48 | 7059.87 | 0.6 | 7062.57 | 0.013 | 0.08 | 0.77 | CIRCULAR | 30.00 in | 30.00 in |
| PIPE 14B-1 | 435.48 | 7062.85 | 0.6 | 7065.51 | 0.013 | 0.05 | 1.00 | CIRCULAR | 30.00 in | 30.00 in |
| PIPE 13 | 264.07 | 7057.27 | 2.5 | 7063.78 | 0.013 | 0.05 | 1.00 | CIRCULAR | 48.00 in | 48.00 in |
| EX. PIPE 12 | 24.23 | 7070.36 | 3.1 | 7071.11 | 0.013 | 0.83 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 10-1 | 400.00 | 7064.34 | 2.1 | 7072.74 | 0.013 | 0.05 | 1.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 10-2 | 400.00 | 7073.14 | 2.1 | 7081.54 | 0.013 | 0.05 | 1.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 10-3 | 391.34 | 7081.96 | 1.5 | 7087.92 | 0.013 | 0.05 | 1.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 9-1 | 16.11 | 7088.72 | 0.5 | 7088.80 | 0.013 | 0.05 | 1.00 | CIRCULAR | 36.00 in | 36.00 in |
| PIPE 9-2 | 24.00 | 7088.80 | 0.5 | 7088.92 | 0.013 | 0.38 | 0.44 | CIRCULAR | 36.00 in | 36.00 in |
| PIPE 9-3 | 234.95 | 7088.93 | 0.5 | 7090.10 | 0.013 | 0.38 | 0.44 | CIRCULAR | 36.00 in | 36.00 in |


| PIPE 6 | 32.00 | 7091.09 | 2.8 | 7091.99 | 0.013 | 0.05 | 1.00 | CIRCULAR | 24.00 in | 24.00 in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 7 | 57.67 | 7090.39 | 0.5 | 7090.68 | 0.013 | 1.32 | 0.00 | CIRCULAR | 30.00 in | 30.00 in |
| PIPE 8 | 57.67 | 7090.87 | 7.0 | 7094.91 | 0.013 | 1.32 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 5 | 22.08 | 7088.22 | 1.3 | 7088.50 | 0.013 | 1.32 | 0.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 3 | 92.36 | 7091.38 | 1.0 | 7092.30 | 0.013 | 1.32 | 0.25 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 21-1 | 10.90 | 7049.47 | 6.7 | 7050.20 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| EX. PIPE 21-2 | 12.02 | 7054.76 | 5.0 | 7055.36 | 0.013 | 0.87 | 0.28 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 36B | 71.50 | 7034.67 | 1.0 | 7035.38 | 0.013 | 0.38 | 0.00 | CIRCULAR | 48.00 in | 48.00 in |

## Sewer Flow Summary:

|  | Full Flow Capacity |  | Critical Flow |  | Normal Flow |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Flow (cfs) | Velocity (fps) | Depth (in) | Velocity (fps) | Depth <br> (in) | Velocity (fps) | Froude <br> Number | Flow Condition | Flow (cfs) | Surcharged Length (ft) | Comment |
| PIPE 42-1 | 424.65 | 15.02 | 42.12 | 9.67 | 31.28 | 14.10 | 1.77 | Supercritical | 166.20 | 0.00 |  |
| PIPE 42-2 | 424.65 | 15.02 | 42.12 | 9.67 | 31.28 | 14.10 | 1.77 | Supercritical | 166.20 | 0.00 |  |
| PIPE 39B | 600.54 | 21.24 | 41.56 | 9.58 | 25.54 | 18.03 | 2.54 | Supercritical | 162.00 | 0.00 |  |
| PIPE 39A | 319.83 | 16.29 | 36.72 | 9.12 | 24.86 | 14.95 | 2.11 | Supercritical | 114.90 | 0.00 |  |
| PIPE 22-1 | 128.82 | 10.25 | 38.49 | 10.44 | 34.80 | 11.56 | 1.23 | Supercritical | 112.80 | 0.00 |  |
| PIPE 22-2 | 319.83 | 16.29 | 36.37 | 9.06 | 24.61 | 14.88 | 2.11 | Supercritical | 112.80 | 0.00 |  |
| PIPE 15-1 | 319.83 | 16.29 | 35.57 | 8.91 | 24.04 | 14.71 | 2.12 | Supercritical | 108.10 | 0.00 |  |
| PIPE 15-2 | 237.50 | 12.10 | 35.57 | 8.91 | 28.40 | 11.81 | 1.54 | Supercritical | 108.10 | 0.00 |  |
| PIPE 14 | 101.89 | 8.11 | 25.96 | 7.48 | 24.26 | 8.15 | 1.14 | Supercritical | 51.90 | 0.00 |  |
| PIPE 14C | 47.25 | 6.68 | 10.13 | 4.41 | 9.50 | 4.83 | 1.13 | Supercritical | 7.20 | 0.00 |  |



- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.


## Sewer Sizing Summary:

|  |  |  | Existing |  | Calculated |  | Used |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Peak Flow (cfs) | Cross Section | Rise | Span | Rise | Span | Rise | Span | $\begin{gathered} \text { Area } \\ \left(\mathbf{f t}^{\wedge} \mathbf{2}\right) \end{gathered}$ | Comment |
| PIPE 42-1 | 166.20 | CIRCULAR | 72.00 in | 72.00 in | 54.00 in | 54.00 in | 72.00 in | 72.00 in | 28.27 |  |
| PIPE 42-2 | 166.20 | CIRCULAR | 72.00 in | 72.00 in | 54.00 in | 54.00 in | 72.00 in | 72.00 in | 28.27 |  |
| PIPE 39B | 162.00 | CIRCULAR | 72.00 in | 72.00 in | 48.00 in | 48.00 in | 72.00 in | 72.00 in | 28.27 |  |
| PIPE 39A | 114.90 | CIRCULAR | 60.00 in | 60.00 in | 42.00 in | 42.00 in | 60.00 in | 60.00 in | 19.63 |  |
| PIPE 22-1 | 112.80 | CIRCULAR | 0.00 in | 0.00 in | 48.00 in | 48.00 in | 48.00 in | 48.00 in | 12.57 |  |
| PIPE 22-2 | 112.80 | CIRCULAR | 60.00 in | 60.00 in | 42.00 in | 42.00 in | 60.00 in | 60.00 in | 19.63 |  |
| PIPE 15-1 | 108.10 | CIRCULAR | 60.00 in | 60.00 in | 42.00 in | 42.00 in | 60.00 in | 60.00 in | 19.63 |  |
| PIPE 15-2 | 108.10 | CIRCULAR | 60.00 in | 60.00 in | 48.00 in | 48.00 in | 60.00 in | 60.00 in | 19.63 |  |
| PIPE 14 | 51.90 | CIRCULAR | 48.00 in | 48.00 in | 42.00 in | 42.00 in | 48.00 in | 48.00 in | 12.57 |  |
| PIPE 14C | 7.20 | CIRCULAR | 36.00 in | 36.00 in | 18.00 in | 18.00 in | 36.00 in | 36.00 in | 7.07 |  |
| PIPE 14B-2 | 3.60 | CIRCULAR | 30.00 in | 30.00 in | 18.00 in | 18.00 in | 30.00 in | 30.00 in | 4.91 |  |
| PIPE 14B-1 | 3.60 | CIRCULAR | 30.00 in | 30.00 in | 18.00 in | 18.00 in | 30.00 in | 30.00 in | 4.91 |  |
| PIPE 13 | 57.20 | CIRCULAR | 48.00 in | 48.00 in | 30.00 in | 30.00 in | 48.00 in | 48.00 in | 12.57 |  |
| EX. PIPE 12 | 9.60 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 10-1 | 52.30 | CIRCULAR | 42.00 in | 42.00 in | 30.00 in | 30.00 in | 42.00 in | 42.00 in | 9.62 |  |
| PIPE 10-2 | 52.30 | CIRCULAR | 42.00 in | 42.00 in | 30.00 in | 30.00 in | 42.00 in | 42.00 in | 9.62 |  |
| PIPE 10-3 | 52.30 | CIRCULAR | 42.00 in | 42.00 in | 33.00 in | 33.00 in | 42.00 in | 42.00 in | 9.62 |  |
| PIPE 9-1 | 23.30 | CIRCULAR | 36.00 in | 36.00 in | 30.00 in | 30.00 in | 36.00 in | 36.00 in | 7.07 |  |
| PIPE 9-2 | 23.30 | CIRCULAR | 36.00 in | 36.00 in | 30.00 in | 30.00 in | 36.00 in | 36.00 in | 7.07 |  |
| PIPE 9-3 | 23.30 | CIRCULAR | 36.00 in | 36.00 in | 30.00 in | 30.00 in | 36.00 in | 36.00 in | 7.07 |  |
| PIPE 6 | 7.00 | CIRCULAR | 24.00 in | 24.00 in | 18.00 in | 18.00 in | 24.00 in | 24.00 in | 3.14 |  |


| PIPE 7 | 10.30 | CIRCULAR | 30.00 in | 30.00 in | 21.00 in | 21.00 in | 30.00 in | 30.00 in | 4.91 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 8 | 8.00 | CIRCULAR | 24.00 in | 24.00 in | 18.00 in | 18.00 in | 24.00 in | 24.00 in | 3.14 |  |  |
| PIPE 5 | 33.00 | CIRCULAR | 42.00 in | 42.00 in | 27.00 in | 27.00 in | 42.00 in | 42.00 in | 9.62 |  |  |
| PIPE 3 | 5.60 | CIRCULAR | 24.00 in | 24.00 in | 18.00 in | 18.00 in | 24.00 in | 24.00 in | 3.14 |  |  |
| PIPE 21-1 | 9.50 | CIRCULAR | 18.00 in | 1.77 |  |  |
| EX. PIPE 21-2 | 9.50 | CIRCULAR | 18.00 in | 1.77 |  |  |
| PIPE 36B | 54.70 | CIRCULAR | 48.00 in | 48.00 in | 36.00 in | 36.00 in | 48.00 in | 48.00 in | 12.57 |  |  |

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.


## Grade Line Summary:

Tailwater Elevation (ft): 0.00

|  | Invert Elev. |  | Downstream Manhole Losses |  | HGL |  | EGL |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element <br> Name | Downstream <br> (ft) | Upstream <br> (ft) | Bend Loss <br> (ft) | Lateral Loss (ft) | Downstream (ft) | Upstream <br> (ft) | Downstream <br> (ft) | Friction Loss (ft) | Upstream <br> (ft) |
| PIPE 42-1 | 7019.79 | 7020.57 | 0.00 | 0.00 | 7022.40 | 7024.08 | 7025.48 | 0.05 | 7025.53 |
| PIPE 42-2 | 7020.58 | 7020.89 | 0.20 | 0.30 | 7024.58 | 7025.47 | 7026.27 | 0.00 | 7026.27 |
| PIPE 39B | 7022.69 | 7032.67 | 0.03 | 0.03 | 7025.52 | 7036.13 | 7029.87 | 7.69 | 7037.56 |
| PIPE 39A | 7033.67 | 7037.79 | 0.03 | 0.00 | 7036.16 | 7040.85 | 7039.21 | 2.93 | 7042.14 |


| PIPE 22-1 | 7038.13 | 7040.85 | 0.06 | 0.00 | 7041.03 | 7044.06 | 7043.10 | 2.65 | 7045.75 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 22-2 | 7041.15 | 7045.67 | 0.03 | 0.74 | 7044.82 | 7048.70 | 7046.63 | 3.34 | 7049.98 |
| PIPE 15-1 | 7045.97 | 7054.22 | 0.02 | 0.00 | 7048.72 | 7057.18 | 7051.33 | 7.09 | 7058.42 |
| PIPE 15-2 | 7054.52 | 7055.94 | 0.02 | 0.00 | 7057.21 | 7058.90 | 7059.05 | 1.09 | 7060.14 |
| PIPE 14 | 7056.94 | 7057.06 | 0.35 | 0.00 | 7060.12 | 7060.12 | 7060.49 | 0.03 | 7060.52 |
| PIPE 14C | 7058.10 | 7059.37 | 0.00 | 0.25 | 7060.75 | 7060.75 | 7060.77 | 0.06 | 7060.83 |
| PIPE 14B-2 | 7059.87 | 7062.57 | 0.00 | 0.01 | 7060.76 | 7063.19 | 7060.84 | 2.57 | 7063.41 |
| PIPE 14B-1 | 7062.85 | 7065.51 | 0.00 | 0.00 | 7063.42 | 7066.13 | 7063.71 | 2.65 | 7066.35 |
| PIPE 13 | 7057.27 | 7063.78 | 0.02 | 0.15 | 7059.07 | 7066.06 | 7062.14 | 4.85 | 7066.99 |
| EX. PIPE 12 | 7070.36 | 7071.11 | 0.38 | 0.00 | 7071.12 | 7072.31 | 7072.86 | 0.07 | 7072.93 |
| PIPE 10-1 | 7064.34 | 7072.74 | 0.02 | 0.00 | 7066.08 | 7075.00 | 7068.80 | 7.18 | 7075.98 |
| PIPE 10-2 | 7073.14 | 7081.54 | 0.02 | 0.00 | 7075.02 | 7083.80 | 7077.60 | 7.18 | 7084.78 |
| PIPE 10-3 | 7081.96 | 7087.92 | 0.02 | 0.00 | 7083.82 | 7090.18 | 7085.92 | 5.24 | 7091.16 |
| PIPE 9-1 | 7088.72 | 7088.80 | 0.01 | 0.29 | 7091.25 | 7091.25 | 7091.46 | 0.01 | 7091.47 |
| PIPE 9-2 | 7088.80 | 7088.92 | 0.06 | 0.09 | 7091.44 | 7091.44 | 7091.63 | 0.02 | 7091.65 |
| PIPE 9-3 | 7088.93 | 7090.10 | 0.06 | 0.09 | 7091.62 | 7091.65 | 7091.81 | 0.46 | 7092.27 |
| PIPE 6 | 7091.09 | 7091.99 | 0.00 | 0.09 | 7091.75 | 7092.93 | 7093.00 | 0.30 | 7093.29 |
| PIPE 7 | 7090.39 | 7090.68 | 0.09 | 0.00 | 7092.25 | 7092.25 | 7092.36 | 0.05 | 7092.41 |
| PIPE 8 | 7090.87 | 7094.91 | 0.13 | 0.00 | 7091.79 | 7095.92 | 7094.10 | 2.21 | 7096.31 |
| PIPE 5 | 7088.22 | 7088.50 | 0.24 | 0.00 | 7091.18 | 7091.18 | 7091.41 | 0.05 | 7091.45 |
| PIPE 3 | 7091.38 | 7092.30 | 0.07 | 0.17 | 7092.05 | 7093.14 | 7092.61 | 0.84 | 7093.45 |
| PIPE 21-1 | 7049.47 | 7050.20 | 0.59 | 0.00 | 7050.27 | 7051.39 | 7051.80 | 0.21 | 7052.01 |
| EX. PIPE 21-2 | 7054.76 | 7055.36 | 0.39 | 0.32 | 7055.59 | 7056.55 | 7056.96 | 0.21 | 7057.17 |
| PIPE 36B | 7034.67 | 7035.38 | 0.11 | 0.00 | 7036.37 | 7037.60 | 7038.14 | 0.36 | 7038.51 |

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer \#0, is not considered a sewer.
- Bend loss = Bend K * V_fi ^ $2 /(2 * \mathrm{~g})$
- Lateral loss = V_fo ^ $2 /\left(2^{*} \mathrm{~g}\right)$ - Junction Loss K * V_fi ${ }^{\wedge} 2 /\left(2^{*} \mathrm{~g}\right)$.
- Friction loss is always Upstream EGL - Downstream EGL.


## Excavation Estimate:

The trench side slope is $1.0 \mathrm{ft} / \mathrm{ft}$
The minimum trench width is 2.00 ft

|  |  |  |  |  | Downstream |  |  | Upstream |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Length (ft) | Wall (in) | Bedding (in) | Bottom Width (ft) | Top Width (ft) | Trench Depth (ft) | Cover <br> (ft) | Top Width (ft) | Trench Depth (ft) | Cover <br> (ft) | Volume (cu. yd) | Comment |
| PIPE 42-1 | 78.16 | 7.00 | 8.00 | 10.17 | 0.00 | 0.00 | 0.00 | 31.86 | 19.68 | 11.85 | 459.89 | Sewer Too Shallow |
| PIPE 42-2 | 31.36 | 7.00 | 8.00 | 10.17 | 31.85 | 19.67 | 11.84 | 32.72 | 20.11 | 12.28 | 376.98 |  |
| PIPE 39B | 499.00 | 7.00 | 8.00 | 10.17 | 29.12 | 18.31 | 10.48 | 24.40 | 15.95 | 8.12 | 4516.54 |  |
| PIPE 39A | 274.91 | 6.00 | 8.00 | 9.00 | 23.41 | 14.87 | 8.20 | 26.40 | 16.37 | 9.70 | 2080.74 |  |
| PIPE 22-1 | 340.26 | 5.00 | 6.00 | 7.83 | 26.72 | 15.78 | 10.45 | 32.08 | 18.46 | 13.12 | 3178.08 |  |
| PIPE 22-2 | 301.60 | 6.00 | 8.00 | 9.00 | 30.49 | 18.41 | 11.74 | 27.06 | 16.70 | 10.03 | 2864.87 |  |
| PIPE 15-1 | 550.00 | 6.00 | 8.00 | 9.00 | 26.46 | 16.40 | 9.73 | 28.22 | 17.28 | 10.61 | 4803.59 |  |
| PIPE 15-2 | 171.67 | 6.00 | 8.00 | 9.00 | 27.62 | 16.98 | 10.31 | 33.64 | 19.99 | 13.32 | 1815.65 |  |
| PIPE 14 | 24.00 | 5.00 | 6.00 | 7.83 | 32.64 | 18.74 | 13.40 | 27.88 | 16.36 | 11.02 | 235.21 |  |
| PIPE 14C | 254.48 | 4.00 | 6.00 | 6.67 | 26.80 | 15.23 | 11.07 | 15.26 | 9.46 | 5.30 | 1340.47 |  |


| PIPE 14B-2 | 435.48 | 3.50 | 6.00 | 6.08 | 14.76 | 8.92 | 5.34 | 24.90 | 13.99 | 10.41 | 1989.68 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 14B-1 | 435.48 | 3.50 | 6.00 | 6.08 | 24.34 | 13.71 | 10.13 | 13.48 | 8.28 | 4.70 | 1861.18 |  |  |
| PIPE 13 | 264.07 | 5.00 | 6.00 | 7.83 | 31.98 | 18.41 | 13.07 | 25.32 | 15.08 | 9.74 | 2369.25 |  |  |
| EX. PIPE 12 | 24.23 | 2.50 | 4.00 | 4.92 | 14.66 | 8.12 | 5.87 | 11.28 | 6.43 | 4.18 | 47.31 |  |  |
| PIPE 10-1 | 400.00 | 4.50 | 6.00 | 7.25 | 24.70 | 14.48 | 9.73 | 24.42 | 14.34 | 9.59 | 2657.04 |  |  |
| PIPE 10-2 | 400.00 | 4.50 | 6.00 | 7.25 | 23.62 | 13.94 | 9.19 | 26.98 | 15.62 | 10.87 | 2804.07 |  |  |
| PIPE 10-3 | 391.34 | 4.50 | 6.00 | 7.25 | 26.14 | 15.19 | 10.44 | 27.36 | 15.81 | 11.06 | 3007.96 |  |  |
| PIPE 9-1 | 16.11 | 4.00 | 6.00 | 6.67 | 26.26 | 14.96 | 10.80 | 24.40 | 14.03 | 9.87 | 109.76 |  |  |
| PIPE 9-2 | 24.00 | 4.00 | 6.00 | 6.67 | 24.40 | 14.03 | 9.87 | 24.16 | 13.91 | 9.75 | 151.75 |  |  |
| PIPE 9-3 | 234.95 | 4.00 | 6.00 | 6.67 | 24.15 | 13.91 | 9.74 | 23.06 | 13.36 | 9.20 | 1415.82 |  |  |
| PIPE 6 | 32.00 | 3.00 | 4.00 | 5.50 | 22.07 | 12.12 | 9.29 | 27.02 | 14.59 | 11.76 | 196.36 |  |  |
| PIPE 7 | 57.67 | 3.50 | 6.00 | 6.08 | 22.98 | 13.03 | 9.45 | 21.00 | 12.04 | 8.46 | 298.49 |  |  |
| PIPE 8 | 57.67 | 3.00 | 4.00 | 5.50 | 22.51 | 12.34 | 9.51 | 13.04 | 7.60 | 4.77 | 209.61 |  |  |
| PIPE 5 | 22.08 | 4.50 | 6.00 | 7.25 | 26.76 | 15.50 | 10.75 | 27.50 | 15.88 | 11.13 | 173.85 |  |  |
| PIPE 3 | 92.36 | 3.00 | 4.00 | 5.50 | 23.25 | 12.71 | 9.87 | 20.98 | 11.57 | 8.74 | 465.55 |  |  |
| PIPE 21-1 | 10.90 | 2.50 | 4.00 | 4.92 | 22.96 | 12.27 | 10.02 | 20.70 | 11.14 | 8.89 | 52.24 |  |  |
| EX. PIPE 21-2 | 12.02 | 2.50 | 4.00 | 4.92 | 11.58 | 6.58 | 4.33 | 10.78 | 6.18 | 3.93 | 18.35 |  |  |
| PIPE 36B | 71.50 | 5.00 | 6.00 | 7.83 | 22.41 | 13.62 | 8.29 | 27.40 | 16.12 | 10.78 | 505.51 |  |  |

Total earth volume for sewer trenches $=40006$ cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
- Four inches for pipes less than 33 inches.

Six inches for pipes less than 60 inches.

- Eight inches for all larger sizes.


MAINS C - G
100-YR HGL PIPE SCHEMATIC

## System Input Summary MAINS C THRU G - 100 YR HGL

## Rainfall Parameters

Rainfall Return Period: 100<br>Rainfall Calculation Method: Formula<br>One Hour Depth (in):<br>Rainfall Constant "A": 28.5<br>Rainfall Constant "B": 10<br>Rainfall Constant "C": 0.786<br>Rational Method Constraints<br>Minimum Urban Runoff Coeff.: 0.20<br>Maximum Rural Overland Len. (ft): 500<br>Maximum Urban Overland Len. (ft): 300<br>Used UDFCD Tc. Maximum: Yes

Sizer Constraints
Minimum Sewer Size (in): 18.00
Maximum Depth to Rise Ratio: 0.90
Maximum Flow Velocity (fps): 18.1
Minimum Flow Velocity (fps): 2.0
Backwater Calculations:
Tailwater Elevation (ft): 0.00

## Manhole Input Summary:

|  |  | Given Flow |  | Sub Basin Information |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Ground Elevation (ft) | Total <br> Known <br> Flow (cfs) | Local <br> Contribution <br> (cfs) | Drainage Area (Ac.) | Runoff Coefficient | 5 yr <br> Coefficient | Overland <br> Length <br> (ft) | Overland Slope (\%) | Gutter <br> Length <br> (ft) | Gutter <br> Velocity <br> (fps) |
| OUTFALL 1 | 7020.54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 95 | 7041.30 | 159.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 94 | 7039.50 | 20.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 91 | 7049.80 | 145.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 90 | 7049.00 | 10.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 89C | 7051.49 | 144.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 89A | 7053.00 | 142.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 85 | 7061.70 | 135.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 84 | 7060.95 | 75.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 80 | 7065.16 | 62.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 79 | 7064.25 | 23.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 77 | 7064.44 | 5.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 78 | 7064.44 | 4.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 56 | 7065.90 | 13.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 55 | 7066.09 | 4.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 54 | 7066.09 | 8.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 76 | 7066.15 | 40.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 74 | 7069.53 | 34.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |


| PIPE 70-1 | 7074.34 | 16.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 70-2 | 7073.19 | 16.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 69 | 7073.39 | 7.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 68 | 7073.39 | 10.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 73 | 7068.60 | 18.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 72 | 7068.79 | 8.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 71 | 7068.82 | 11.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 75 | 7066.27 | 6.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 83 | 7059.97 | 14.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 82 | 7060.17 | 2.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 81 | 7060.17 | 13.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 67 | 7061.15 | 65.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 65 | 7061.33 | 4.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 64 | 7063.05 | 61.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 61 | 7064.41 | 56.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 59 | 7064.80 | 52.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 58 | 7064.90 | 3.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 57 | 7068.80 | 50.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 53 | 7068.95 | 51.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 51 | 7069.14 | 7.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 50-1 | 7069.60 | 36.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 50-2 | 7074.20 | 36.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 48 | 7074.40 | 8.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 47 | 7075.38 | 18.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 45 | 7076.24 | 8.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |


| PIPE 46 | 7075.52 | 9.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 49 | 7074.40 | 9.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 52 | 7069.14 | 9.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 60 | 7064.39 | 6.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 62 | 7063.24 | 4.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 63 | 7063.24 | 2.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 66 | 7061.33 | 2.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 88 | 7052.00 | 10.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 87 | 7053.50 | 7.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 86 | 7052.40 | 4.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 89B | 7050.30 | 3.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## Manhole Output Summary:

|  | Local Contribution |  |  |  | Total Design Flow |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element <br> Name | Overland <br> Time <br> (min) | Gutter <br> Time <br> (min) | Basin <br> Tc <br> (min) | Intensity <br> (in/hr) | Local <br> Contrib <br> (cfs) | Coeff. <br> Area | Intensity <br> (in/hr) | Manhole <br> Tc <br> (min) | Peak <br> Flow <br> (cfs) | Comment |
| OUTFALL <br> 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |
| PIPE 95 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 159.80 | Surface Water Present <br> (Downstream) |
| PIPE 94 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.00 |  |
| PIPE 91 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 145.40 |  |
| PIPE 90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.20 |  |


| PIPE 89C | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 144.20 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| PIPE 89A | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 142.10 |  |
| PIPE 85 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 135.30 |  |
| PIPE 84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 75.70 |  |
| PIPE 80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 62.30 |  |
| PIPE 79 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 23.30 |  |
| PIPE 77 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.60 |  |
| PIPE 78 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.60 |  |
| PIPE 56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 13.10 |  |
| PIPE 55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.90 |  |
| PIPE 54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.30 |  |
| PIPE 76 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 40.40 |  |
| PIPE 74 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 34.10 |  |
| PIPE 70-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16.80 |  |
| PIPE 70-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16.80 |  |
| PIPE 69 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.20 |  |
| PIPE 68 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.60 |  |
| PIPE 73 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 18.10 |  |
| PIPE 72 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.20 |  |
| PIPE 71 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.00 |  |
| PIPE 75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6.90 |  |
| PIPE 83 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 14.70 |  |
| PIPE 82 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.10 |  |
| PIPE 81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 13.00 |  |
| PIPE 67 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 65.80 |  |


| PIPE 65 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.60 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PIPE 64 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 61.10 |  |
| PIPE 61 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 56.60 |  |
| PIPE 59 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 52.10 |  |
| PIPE 58 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.00 |  |
| PIPE 57 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 50.50 |  |
| PIPE 53 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 51.10 |  |
| PIPE 51 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.00 |  |
| PIPE 50-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 36.50 |  |
| PIPE 50-2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 36.50 |  |
| PIPE 48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.70 |  |
| PIPE 47 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 18.00 |  |
| PIPE 45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.40 |  |
| PIPE 46 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.60 |  |
| PIPE 49 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.90 |  |
| PIPE 52 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.90 |  |
| PIPE 60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6.40 |  |
| PIPE 62 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.20 |  |
| PIPE 63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.50 |  |
| PIPE 66 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.70 |  |
| PIPE 88 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.50 |  |
| PIPE 87 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.30 |  |
| PIPE 86 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.70 |  |
| PIPE 89B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.20 |  |

## Sewer Input Summary:

|  |  | Elevation |  |  | Loss Coefficients |  |  | Given Dimensions |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element <br> Name | Sewer <br> Length <br> (ft) | Downstream Invert <br> (ft) | Slope <br> (\%) | Upstream Invert (ft) | $\underset{\mathrm{n}}{\text { Mannings }}$ | $\begin{aligned} & \text { Bend } \\ & \text { Loss } \end{aligned}$ | Lateral Loss | Cross Section | Rise (ft or in) | Span (ft or in) |
| PIPE 95 | 50.36 | 7022.54 | 1.0 | 7023.04 | 0.013 | 0.03 | 1.00 | CIRCULAR | 54.00 in | 54.00 in |
| PIPE 94 | 32.00 | 7026.45 | 2.0 | 7027.09 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 91 | 206.32 | 7023.45 | 3.0 | 7029.66 | 0.013 | 0.05 | 1.00 | CIRCULAR | 54.00 in | 54.00 in |
| PIPE 90 | 278.14 | 7036.78 | 2.5 | 7043.73 | 0.013 | 0.38 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 89C | 165.53 | 7033.65 | 1.0 | 7035.31 | 0.013 | 0.57 | 0.35 | CIRCULAR | 54.00 in | 54.00 in |
| PIPE 89A | 120.91 | 7035.61 | 1.0 | 7036.82 | 0.013 | 0.05 | 1.00 | CIRCULAR | 54.00 in | 54.00 in |
| PIPE 85 | 149.23 | 7040.76 | 4.2 | 7047.03 | 0.013 | 0.57 | 0.35 | CIRCULAR | 48.00 in | 48.00 in |
| PIPE 84 | 46.29 | 7047.53 | 0.5 | 7047.76 | 0.013 | 1.32 | 0.25 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 80 | 287.05 | 7048.18 | 1.4 | 7052.20 | 0.013 | 1.32 | 0.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 79 | 109.86 | 7053.70 | 0.5 | 7054.25 | 0.013 | 1.32 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 77 | 26.48 | 7055.06 | 1.1 | 7055.35 | 0.013 | 0.83 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 78 | 5.71 | 7055.05 | 10.0 | 7055.62 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 56 | 330.45 | 7054.55 | 0.5 | 7056.20 | 0.013 | 0.05 | 1.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 55 | 9.15 | 7056.70 | 10.1 | 7057.62 | 0.013 | 0.38 | 0.44 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 54 | 25.89 | 7056.70 | 0.5 | 7056.83 | 0.013 | 0.92 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 76 | 50.48 | 7053.19 | 1.4 | 7053.90 | 0.013 | 0.05 | 1.00 | CIRCULAR | 30.00 in | 30.00 in |
| PIPE 74 | 231.49 | 7054.19 | 1.5 | 7057.66 | 0.013 | 0.05 | 1.00 | CIRCULAR | 30.00 in | 30.00 in |
| PIPE 70-1 | 287.50 | 7058.14 | 1.5 | 7062.45 | 0.013 | 0.05 | 1.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 70-2 | 84.73 | 7062.75 | 0.5 | 7063.17 | 0.013 | 1.32 | 0.25 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 69 | 9.59 | 7063.67 | 10.0 | 7064.63 | 0.013 | 0.38 | 0.44 | CIRCULAR | 18.00 in | 18.00 in |


| PIPE 68 | 26.35 | 7063.68 | 0.5 | 7063.81 | 0.013 | 0.92 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 73 | 106.44 | 7058.16 | 0.5 | 7058.69 | 0.013 | 1.32 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 72 | 9.58 | 7059.19 | 10.0 | 7060.15 | 0.013 | 0.38 | 0.44 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 71 | 30.38 | 7059.19 | 0.5 | 7059.34 | 0.013 | 0.83 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 75 | 5.67 | 7055.20 | 10.0 | 7055.77 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 83 | 70.19 | 7049.56 | 0.5 | 7049.91 | 0.013 | 0.05 | 1.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 82 | 9.05 | 7050.71 | 10.1 | 7051.62 | 0.013 | 0.38 | 0.44 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 81 | 25.87 | 7050.21 | 0.5 | 7050.34 | 0.013 | 0.92 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 67 | 123.01 | 7047.59 | 0.7 | 7048.45 | 0.013 | 1.32 | 0.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 65 | 24.68 | 7050.76 | 8.4 | 7052.83 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 64 | 301.80 | 7048.62 | 0.7 | 7050.73 | 0.013 | 0.05 | 1.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 61 | 287.48 | 7050.90 | 0.7 | 7052.91 | 0.013 | 0.05 | 1.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 59 | 33.15 | 7053.41 | 0.5 | 7053.58 | 0.013 | 1.32 | 0.25 | CIRCULAR | 36.00 in | 36.00 in |
| PIPE 58 | 14.04 | 7055.38 | 10.0 | 7056.78 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 57 | 247.75 | 7053.90 | 1.2 | 7056.87 | 0.013 | 0.05 | 1.00 | CIRCULAR | 36.00 in | 36.00 in |
| PIPE 53 | 136.50 | 7057.17 | 0.5 | 7057.85 | 0.013 | 1.32 | 0.25 | CIRCULAR | 36.00 in | 36.00 in |
| PIPE 51 | 24.66 | 7059.35 | 3.6 | 7060.24 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 50-1 | 68.62 | 7058.35 | 0.5 | 7058.69 | 0.013 | 0.05 | 1.00 | CIRCULAR | 30.00 in | 30.00 in |
| PIPE 50-2 | 444.33 | 7059.10 | 1.1 | 7063.99 | 0.013 | 1.32 | 0.25 | CIRCULAR | 30.00 in | 30.00 in |
| PIPE 48 | 24.67 | 7064.99 | 0.5 | 7065.11 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 47 | 94.00 | 7064.51 | 1.2 | 7065.64 | 0.013 | 0.05 | 1.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 45 | 55.09 | 7066.13 | 1.1 | 7066.74 | 0.013 | 0.18 | 0.61 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 46 | 6.17 | 7066.14 | 9.7 | 7066.74 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 49 | 5.66 | 7064.99 | 10.1 | 7065.56 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 52 | 5.67 | 7059.35 | 9.9 | 7059.91 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |


| PIPE 60 | 23.77 | 7054.91 | 10.0 | 7057.29 | 0.013 | 0.05 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 62 | 24.67 | 7053.03 | 4.8 | 7054.21 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 63 | 5.66 | 7053.03 | 9.9 | 7053.59 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 66 | 5.66 | 7050.75 | 9.9 | 7051.31 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 88 | 89.60 | 7040.12 | 1.0 | 7041.02 | 0.013 | 0.23 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 87 | 257.14 | 7041.32 | 1.0 | 7043.89 | 0.013 | 0.05 | 1.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 86 | 298.71 | 7044.19 | 1.0 | 7047.18 | 0.013 | 0.10 | 0.73 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 89B | 65.78 | 7038.61 | 10.0 | 7045.19 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |

## Sewer Flow Summary:

|  | Full Flow Capacity |  | Critical Flow |  | Normal Flow |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Flow (cfs) | Velocity (fps) | Depth <br> (in) | Velocity (fps) | Depth (in) | Velocity (fps) | Froude <br> Number | Flow Condition | Flow (cfs) | Surcharged Length (ft) | Comment |
| PIPE 95 | 196.47 | 12.35 | 44.36 | 11.43 | 36.98 | 13.77 | 1.46 | Supercritical | 159.80 | 0.00 |  |
| PIPE 94 | 14.89 | 8.43 | 18.00 | 11.32 | 18.00 | 11.32 | 0.00 | Pressurized | 20.00 | 32.00 |  |
| PIPE 91 | 342.08 | 21.51 | 42.49 | 10.83 | 24.58 | 20.64 | 2.90 | Supercritical | 145.40 | 0.00 | Velocity is Too High |
| PIPE 90 | 16.65 | 9.42 | 14.75 | 6.58 | 10.18 | 9.90 | 2.10 | Supercritical | 10.20 | 0.00 |  |
| PIPE 89C | 197.18 | 12.40 | 42.33 | 10.78 | 34.29 | 13.54 | 1.52 | Supercritical | 144.20 | 0.00 |  |
| PIPE 89A | 197.18 | 12.40 | 42.03 | 10.70 | 33.95 | 13.50 | 1.53 | Supercritical | 142.10 | 0.00 |  |
| PIPE 85 | 295.17 | 23.49 | 41.59 | 11.70 | 22.81 | 22.98 | 3.34 | Supercritical | 135.30 | 0.00 | Velocity is Too High |
| PIPE 84 | 71.33 | 7.41 | 42.00 | 7.87 | 42.00 | 7.87 | 0.00 | Pressurized | 75.70 | 46.29 |  |
| PIPE 80 | 119.36 | 12.41 | 29.68 | 8.57 | 21.54 | 12.54 | 1.85 | Pressurized | 62.30 | 287.05 |  |
| PIPE 79 | 16.04 | 5.11 | 24.00 | 7.42 | 24.00 | 7.42 | 0.00 | Pressurized | 23.30 | 109.86 |  |


| PIPE 77 | 11.05 | 6.25 | 10.95 | 4.98 | 9.07 | 6.27 | 1.43 | Pressurized | 5.60 | 26.48 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 78 | 33.31 | 18.85 | 9.88 | 4.63 | 4.52 | 13.24 | 4.51 | Pressurized | 4.60 | 5.71 |  |
| PIPE 56 | 16.04 | 5.11 | 15.63 | 6.05 | 16.49 | 5.69 | 0.90 | Pressurized | 13.10 | 330.45 |  |
| PIPE 55 | 33.47 | 18.94 | 10.21 | 4.73 | 4.65 | 13.53 | 4.54 | Pressurized | 4.90 | 9.15 |  |
| PIPE 54 | 7.45 | 4.21 | 18.00 | 4.70 | 18.00 | 4.70 | 0.00 | Pressurized | 8.30 | 25.89 |  |
| PIPE 76 | 48.66 | 9.91 | 25.65 | 9.04 | 20.87 | 11.09 | 1.55 | Pressurized | 40.40 | 50.48 |  |
| PIPE 74 | 50.37 | 10.26 | 23.82 | 8.16 | 18.09 | 11.02 | 1.73 | Supercritical Jump | 34.10 | 185.46 |  |
| PIPE 70-1 | 27.78 | 8.84 | 17.73 | 6.75 | 13.46 | 9.26 | 1.71 | Supercritical Jump | 16.80 | 44.62 |  |
| PIPE 70-2 | 16.04 | 5.11 | 24.00 | 5.35 | 24.00 | 5.35 | 0.00 | Pressurized | 16.80 | 84.73 |  |
| PIPE 69 | 33.31 | 18.85 | 12.47 | 5.51 | 5.68 | 15.04 | 4.52 | Pressurized | 7.20 | 9.59 |  |
| PIPE 68 | 7.45 | 4.21 | 18.00 | 6.00 | 18.00 | 6.00 | 0.00 | Pressurized | 10.60 | 26.35 |  |
| PIPE 73 | 16.04 | 5.11 | 24.00 | 5.76 | 24.00 | 5.76 | 0.00 | Pressurized | 18.10 | 106.44 |  |
| PIPE 72 | 33.31 | 18.85 | 13.31 | 5.85 | 6.08 | 15.60 | 4.52 | Pressurized | 8.20 | 9.58 |  |
| PIPE 71 | 7.45 | 4.21 | 18.00 | 6.22 | 18.00 | 6.22 | 0.00 | Pressurized | 11.00 | 30.38 |  |
| PIPE 75 | 33.31 | 18.85 | 12.20 | 5.41 | 5.56 | 14.86 | 4.53 | Pressurized | 6.90 | 5.67 |  |
| PIPE 83 | 16.04 | 5.11 | 16.58 | 6.35 | 18.08 | 5.79 | 0.84 | Pressurized | 14.70 | 70.19 |  |
| PIPE 82 | 33.47 | 18.94 | 6.56 | 3.60 | 3.06 | 10.56 | 4.43 | Pressurized | 2.10 | 9.05 |  |
| PIPE 81 | 16.04 | 5.11 | 15.56 | 6.03 | 16.39 | 5.69 | 0.90 | Pressurized | 13.00 | 25.87 |  |
| PIPE 67 | 84.40 | 8.77 | 30.51 | 8.79 | 27.89 | 9.70 | 1.19 | Pressurized | 65.80 | 123.01 |  |
| PIPE 65 | 30.53 | 17.27 | 9.88 | 4.63 | 4.72 | 12.44 | 4.14 | Supercritical Jump | 4.60 | 22.89 |  |
| PIPE 64 | 84.40 | 8.77 | 29.39 | 8.50 | 26.49 | 9.56 | 1.22 | Pressurized | 61.10 | 301.80 |  |
| PIPE 61 | 84.40 | 8.77 | 28.27 | 8.22 | 25.17 | 9.40 | 1.25 | Supercritical Jump | 56.60 | 135.32 |  |


| PIPE 59 | 47.29 | 6.69 | 36.00 | 7.37 | 36.00 | 7.37 | 0.00 | Pressurized | 52.10 | 33.15 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 58 | 33.31 | 18.85 | 7.90 | 4.02 | 3.65 | 11.69 | 4.47 | Supercritical <br> Jump | 3.00 | 11.03 |  |
| PIPE 57 | 73.26 | 10.36 | 27.75 | 8.64 | 21.97 | 11.18 | 1.59 | Supercritical <br> Jump | 50.50 | 56.63 |  |
| PIPE 53 | 47.29 | 6.69 | 36.00 | 7.23 | 36.00 | 7.23 | 0.00 | Pressurized | 51.10 | 136.50 |  |
| PIPE 51 | 19.98 | 11.31 | 12.29 | 5.45 | 7.35 | 10.31 | 2.68 | Pressurized | 7.00 | 24.66 |  |
| PIPE 50-1 | 29.08 | 5.92 | 30.00 | 7.44 | 30.00 | 7.44 | 0.00 | Pressurized | 36.50 | 68.62 |  |
| PIPE 50-2 | 43.13 | 8.79 | 24.57 | 8.48 | 21.17 | 9.86 | 1.36 | Pressurized | 36.50 | 444.33 |  |
| PIPE 48 | 7.45 | 4.21 | 18.00 | 4.92 | 18.00 | 4.92 | 0.00 | Pressurized | 8.70 | 24.67 |  |
| PIPE 47 | 24.85 | 7.91 | 18.34 | 6.99 | 15.14 | 8.62 | 1.46 | Pressurized | 18.00 | 94.00 |  |
| PIPE 45 | 11.05 | 6.25 | 13.47 | 5.92 | 11.74 | 6.88 | 1.31 | Pressurized | 8.40 | 55.09 |  |
| PIPE 46 | 32.80 | 18.56 | 14.36 | 6.35 | 6.67 | 16.12 | 4.43 | Pressurized | 9.60 | 6.17 |  |
| PIPE 49 | 33.47 | 18.94 | 14.56 | 6.47 | 6.71 | 16.49 | 4.52 | Pressurized | 9.90 | 5.66 |  |
| PIPE 52 | 33.14 | 18.75 | 14.56 | 6.47 | 6.74 | 16.37 | 4.47 | Pressurized | 9.90 | 5.67 |  |
| PIPE 60 | 33.31 | 18.85 | 11.74 | 5.24 | 5.35 | 14.55 | 4.53 | Supercritical | 6.40 | 0.00 |  |
| PIPE 62 | 23.08 | 13.06 | 9.42 | 4.49 | 5.20 | 9.93 | 3.14 | Supercritical | 4.20 | 18.16 |  |

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.


## Sewer Sizing Summary:

|  |  |  | Existing |  | Calculated |  | Used |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Peak Flow (cfs) | Cross Section | Rise | Span | Rise | Span | Rise | Span | $\begin{gathered} \text { Area } \\ \left(\mathrm{ft}^{\wedge} 2\right) \end{gathered}$ |  |
| PIPE 95 | 159.80 | CIRCULAR | 54.00 in | 15.90 |  |
| PIPE 94 | 20.00 | CIRCULAR | 18.00 in | 18.00 in | 21.00 in | 21.00 in | 18.00 in | 18.00 in | 1.77 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 91 | 145.40 | CIRCULAR | 54.00 in | 54.00 in | 42.00 in | 42.00 in | 54.00 in | 54.00 in | 15.90 |  |
| PIPE 90 | 10.20 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 89C | 144.20 | CIRCULAR | 54.00 in | 15.90 |  |
| PIPE 89A | 142.10 | CIRCULAR | 54.00 in | 54.00 in | 48.00 in | 48.00 in | 54.00 in | 54.00 in | 15.90 |  |
| PIPE 85 | 135.30 | CIRCULAR | 48.00 in | 48.00 in | 36.00 in | 36.00 in | 48.00 in | 48.00 in | 12.57 |  |
| PIPE 84 | 75.70 | CIRCULAR | 42.00 in | 42.00 in | 48.00 in | 48.00 in | 42.00 in | 42.00 in | 9.62 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 80 | 62.30 | CIRCULAR | 42.00 in | 42.00 in | 33.00 in | 33.00 in | 42.00 in | 42.00 in | 9.62 |  |


| PIPE 79 | 23.30 | CIRCULAR | 24.00 in | 24.00 in | 30.00 in | 30.00 in | 24.00 in | 24.00 in | 3.14 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 77 | 5.60 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 78 | 4.60 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 56 | 13.10 | CIRCULAR | 24.00 in | 3.14 |  |
| PIPE 55 | 4.90 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 54 | 8.30 | CIRCULAR | 18.00 in | 18.00 in | 21.00 in | 21.00 in | 18.00 in | 18.00 in | 1.77 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 76 | 40.40 | CIRCULAR | 30.00 in | 4.91 |  |
| PIPE 74 | 34.10 | CIRCULAR | 30.00 in | 30.00 in | 27.00 in | 27.00 in | 30.00 in | 30.00 in | 4.91 |  |
| PIPE 70-1 | 16.80 | CIRCULAR | 24.00 in | 24.00 in | 21.00 in | 21.00 in | 24.00 in | 24.00 in | 3.14 |  |
| PIPE 70-2 | 16.80 | CIRCULAR | 24.00 in | 24.00 in | 27.00 in | 27.00 in | 24.00 in | 24.00 in | 3.14 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 69 | 7.20 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 68 | 10.60 | CIRCULAR | 18.00 in | 18.00 in | 21.00 in | 21.00 in | 18.00 in | 18.00 in | 1.77 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |


| PIPE 73 | 18.10 | CIRCULAR | 24.00 in | 24.00 in | 27.00 in | 27.00 in | 24.00 in | 24.00 in | 3.14 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 72 | 8.20 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 71 | 11.00 | CIRCULAR | 18.00 in | 18.00 in | 21.00 in | 21.00 in | 18.00 in | 18.00 in | 1.77 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 75 | 6.90 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 83 | 14.70 | CIRCULAR | 24.00 in | 3.14 |  |
| PIPE 82 | 2.10 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 81 | 13.00 | CIRCULAR | 24.00 in | 3.14 |  |
| PIPE 67 | 65.80 | CIRCULAR | 42.00 in | 9.62 |  |
| PIPE 65 | 4.60 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 64 | 61.10 | CIRCULAR | 42.00 in | 9.62 |  |
| PIPE 61 | 56.60 | CIRCULAR | 42.00 in | 9.62 |  |
| PIPE 59 | 52.10 | CIRCULAR | 36.00 in | 36.00 in | 42.00 in | 42.00 in | 36.00 in | 36.00 in | 7.07 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 58 | 3.00 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 57 | 50.50 | CIRCULAR | 36.00 in | 36.00 in | 33.00 in | 33.00 in | 36.00 in | 36.00 in | 7.07 |  |
| PIPE 53 | 51.10 | CIRCULAR | 36.00 in | 36.00 in | 42.00 in | 42.00 in | 36.00 in | 36.00 in | 7.07 | Existing height is smaller than the suggested height. |


|  |  |  |  |  |  |  |  |  |  | Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 51 | 7.00 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 50-1 | 36.50 | CIRCULAR | 30.00 in | 30.00 in | 33.00 in | 33.00 in | 30.00 in | 30.00 in | 4.91 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 50-2 | 36.50 | CIRCULAR | 30.00 in | 4.91 |  |
| PIPE 48 | 8.70 | CIRCULAR | 18.00 in | 18.00 in | 21.00 in | 21.00 in | 18.00 in | 18.00 in | 1.77 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise |
| PIPE 47 | 18.00 | CIRCULAR | 24.00 in | 3.14 |  |
| PIPE 45 | 8.40 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 46 | 9.60 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 49 | 9.90 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 52 | 9.90 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 60 | 6.40 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 62 | 4.20 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 63 | 2.50 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 66 | 2.70 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 88 | 10.50 | CIRCULAR | 18.00 in | 18.00 in | 21.00 in | 21.00 in | 18.00 in | 18.00 in | 1.77 | Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. |


| PIPE 87 | 7.30 | CIRCULAR | 18.00 in | 1.77 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 86 | 4.70 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 89B | 3.20 | CIRCULAR | 18.00 in | 1.77 |  |

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.


## Grade Line Summary:

Tailwater Elevation (ft): 0.00

|  | Invert Elev. |  | Downstream Manhole Losses |  | HGL |  | EGL |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Downstream <br> (ft) | Upstream <br> (ft) | Bend Loss <br> (ft) | Lateral Loss (ft) | Downstream <br> (ft) | Upstream <br> (ft) | Downstream <br> (ft) | Friction Loss <br> (ft) | Upstream <br> (ft) |
| PIPE 95 | 7022.54 | 7023.04 | 0.00 | 0.00 | 7025.62 | 7026.74 | 7028.56 | 0.20 | 7028.77 |
| PIPE 94 | 7026.45 | 7027.09 | 2.63 | 0.00 | 7029.40 | 7030.56 | 7031.39 | 1.15 | 7032.54 |
| PIPE 91 | 7023.45 | 7029.66 | 0.06 | 0.27 | 7027.07 | 7033.20 | 7032.11 | 2.91 | 7035.02 |
| PIPE 90 | 7036.78 | 7043.73 | 0.20 | 0.00 | 7037.62 | 7044.96 | 7039.15 | 6.49 | 7045.63 |
| PIPE 89C | 7033.65 | 7035.31 | 0.73 | 0.85 | 7036.51 | 7038.84 | 7039.36 | 1.28 | 7040.64 |
| PIPE 89A | 7035.61 | 7036.82 | 0.06 | 0.04 | 7038.94 | 7040.32 | 7041.27 | 0.83 | 7042.10 |
| PIPE 85 | 7040.76 | 7047.03 | 1.03 | 0.61 | 7042.66 | 7050.50 | 7050.86 | 1.76 | 7052.62 |
| PIPE 84 | 7047.53 | 7047.76 | 1.27 | 1.56 | 7054.49 | 7054.75 | 7055.45 | 0.26 | 7055.71 |


| PIPE 80 | 7048.18 | 7052.20 | 0.86 | 0.00 | 7055.92 | 7057.01 | 7056.57 | 1.09 | 7057.66 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 79 | 7053.70 | 7054.25 | 1.13 | 0.00 | 7058.14 | 7059.30 | 7058.99 | 1.16 | 7060.15 |
| PIPE 77 | 7055.06 | 7055.35 | 0.13 | 0.00 | 7060.13 | 7060.20 | 7060.28 | 0.07 | 7060.36 |
| PIPE 78 | 7055.05 | 7055.62 | 0.14 | 0.00 | 7060.19 | 7060.20 | 7060.29 | 0.01 | 7060.30 |
| PIPE 56 | 7054.55 | 7056.20 | 0.01 | 0.58 | 7060.48 | 7061.58 | 7060.75 | 1.10 | 7061.85 |
| PIPE 55 | 7056.70 | 7057.62 | 0.05 | 0.22 | 7062.00 | 7062.02 | 7062.12 | 0.02 | 7062.14 |
| PIPE 54 | 7056.70 | 7056.83 | 0.32 | 0.00 | 7061.90 | 7062.06 | 7062.24 | 0.16 | 7062.40 |
| PIPE 76 | 7053.19 | 7053.90 | 0.05 | 0.00 | 7057.07 | 7057.55 | 7058.12 | 0.49 | 7058.60 |
| PIPE 74 | 7054.19 | 7057.66 | 0.04 | 0.30 | 7058.19 | 7059.65 | 7058.94 | 1.73 | 7060.68 |
| PIPE 70-1 | 7058.14 | 7062.45 | 0.02 | 0.31 | 7060.56 | 7063.93 | 7061.01 | 3.63 | 7064.64 |
| PIPE 70-2 | 7062.75 | 7063.17 | 0.59 | 0.33 | 7065.11 | 7065.58 | 7065.55 | 0.46 | 7066.02 |
| PIPE 69 | 7063.67 | 7064.63 | 0.10 | 0.33 | 7066.19 | 7066.24 | 7066.45 | 0.04 | 7066.49 |
| PIPE 68 | 7063.68 | 7063.81 | 0.51 | 0.00 | 7066.09 | 7066.36 | 7066.65 | 0.27 | 7066.91 |
| PIPE 73 | 7058.16 | 7058.69 | 0.68 | 0.00 | 7060.84 | 7061.52 | 7061.36 | 0.68 | 7062.04 |
| PIPE 72 | 7059.19 | 7060.15 | 0.13 | 0.37 | 7062.20 | 7062.26 | 7062.53 | 0.06 | 7062.59 |
| PIPE 71 | 7059.19 | 7059.34 | 0.50 | 0.00 | 7062.02 | 7062.35 | 7062.62 | 0.33 | 7062.95 |
| PIPE 75 | 7055.20 | 7055.77 | 0.31 | 0.00 | 7058.68 | 7058.70 | 7058.92 | 0.02 | 7058.94 |
| PIPE 83 | 7049.56 | 7049.91 | 0.02 | 0.62 | 7056.01 | 7056.30 | 7056.35 | 0.29 | 7056.64 |
| PIPE 82 | 7050.71 | 7051.62 | 0.01 | 0.33 | 7056.96 | 7056.96 | 7056.98 | 0.00 | 7056.98 |
| PIPE 81 | 7050.21 | 7050.34 | 0.24 | 0.00 | 7056.62 | 7056.71 | 7056.89 | 0.08 | 7056.97 |
| PIPE 67 | 7047.59 | 7048.45 | 0.96 | 0.00 | 7052.85 | 7053.38 | 7053.58 | 0.52 | 7054.10 |
| PIPE 65 | 7050.76 | 7052.83 | 0.14 | 0.00 | 7054.14 | 7054.17 | 7054.24 | 0.04 | 7054.28 |
| PIPE 64 | 7048.62 | 7050.73 | 0.03 | 0.10 | 7053.61 | 7054.71 | 7054.23 | 1.11 | 7055.34 |
| PIPE 61 | 7050.90 | 7052.91 | 0.03 | 0.09 | 7054.92 | 7055.27 | 7055.46 | 0.86 | 7056.31 |
| PIPE 59 | 7053.41 | 7053.58 | 1.11 | 0.33 | 7056.91 | 7057.11 | 7057.75 | 0.20 | 7057.96 |


| PIPE 58 | 7055.38 | 7056.78 | 0.06 | 0.00 | 7057.97 | 7057.97 | 7058.01 | 0.02 | 7058.03 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 57 | 7053.90 | 7056.87 | 0.04 | 0.05 | 7057.25 | 7059.18 | 7058.05 | 2.29 | 7060.34 |
| PIPE 53 | 7057.17 | 7057.85 | 1.07 | 0.59 | 7061.19 | 7061.99 | 7062.00 | 0.80 | 7062.80 |
| PIPE 51 | 7059.35 | 7060.24 | 0.32 | 0.00 | 7062.88 | 7062.99 | 7063.12 | 0.11 | 7063.23 |
| PIPE 50-1 | 7058.35 | 7058.69 | 0.04 | 0.00 | 7062.03 | 7062.57 | 7062.89 | 0.54 | 7063.43 |
| PIPE 50-2 | 7059.10 | 7063.99 | 1.13 | 0.64 | 7064.35 | 7067.85 | 7065.21 | 3.50 | 7068.71 |
| PIPE 48 | 7064.99 | 7065.11 | 0.50 | 0.00 | 7068.83 | 7068.99 | 7069.20 | 0.17 | 7069.37 |
| PIPE 47 | 7064.51 | 7065.64 | 0.03 | 0.35 | 7068.57 | 7069.16 | 7069.08 | 0.59 | 7069.67 |
| PIPE 45 | 7066.13 | 7066.74 | 0.06 | 0.30 | 7069.68 | 7070.03 | 7070.03 | 0.35 | 7070.38 |
| PIPE 46 | 7066.14 | 7066.74 | 0.60 | 0.00 | 7069.82 | 7069.87 | 7070.28 | 0.05 | 7070.33 |
| PIPE 49 | 7064.99 | 7065.56 | 0.64 | 0.00 | 7068.86 | 7068.91 | 7069.35 | 0.05 | 7069.40 |
| PIPE 52 | 7059.35 | 7059.91 | 0.64 | 0.00 | 7062.95 | 7063.00 | 7063.44 | 0.05 | 7063.49 |
| PIPE 60 | 7054.91 | 7057.29 | 0.01 | 0.00 | 7055.36 | 7058.27 | 7058.65 | 0.05 | 7058.70 |
| PIPE 62 | 7053.03 | 7054.21 | 0.12 | 0.00 | 7055.37 | 7055.37 | 7055.46 | 0.04 | 7055.50 |
| PIPE 63 | 7053.03 | 7053.59 | 0.04 | 0.00 | 7055.35 | 7055.35 | 7055.38 | 0.00 | 7055.38 |
| PIPE 66 | 7050.75 | 7051.31 | 0.05 | 0.00 | 7054.11 | 7054.12 | 7054.15 | 0.00 | 7054.15 |
| PIPE 88 | 7040.12 | 7041.02 | 0.13 | 0.00 | 7041.12 | 7042.27 | 7042.23 | 0.74 | 7042.96 |
| PIPE 87 | 7041.32 | 7043.89 | 0.01 | 0.28 | 7042.99 | 7044.94 | 7043.26 | 2.16 | 7045.41 |
| PIPE 86 | 7044.19 | 7047.18 | 0.01 | 0.18 | 7045.48 | 7048.01 | 7045.61 | 2.74 | 7048.35 |
| PIPE 89B | 7038.61 | 7045.19 | 0.07 | 0.00 | 7038.93 | 7045.87 | 7041.13 | 5.00 | 7046.13 |

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer \#0, is not considered a sewer.
- Bend loss $=$ Bend $K * V \_f i \wedge 2 /(2 * g)$
- Lateral loss $=\mathrm{V}$ _fo ${ }^{\wedge} 2 /(2 * \mathrm{~g})$ - Junction Loss $\mathrm{K} * \mathrm{~V}_{-} \mathrm{fi} \wedge 2 /(2 * \mathrm{~g})$.
- Friction loss is always Upstream EGL - Downstream EGL.


## Excavation Estimate:

The trench side slope is $1.0 \mathrm{ft} / \mathrm{ft}$
The minimum trench width is 2.00 ft

|  |  |  |  |  | Downstream |  |  | Upstream |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Length <br> (ft) | Wall <br> (in) | Bedding (in) | Bottom Width <br> (ft) | Top Width <br> (ft) | Trench Depth <br> (ft) | Cover <br> (ft) | Top Width (ft) | Trench Depth <br> (ft) | Cover <br> (ft) | Volume (cu. yd) | Comment |
| PIPE 95 | 50.36 | 5.50 | 8.00 | 8.42 | 0.00 | 0.00 | 0.00 | 33.02 | 19.39 | 13.30 | 293.29 | Sewer Too Shallow |
| PIPE 94 | 32.00 | 2.50 | 4.00 | 4.92 | 29.20 | 15.39 | 13.14 | 24.32 | 12.95 | 10.70 | 225.71 |  |
| PIPE 91 | 206.32 | 5.50 | 8.00 | 8.42 | 32.20 | 18.97 | 12.89 | 36.78 | 21.27 | 15.18 | 2602.75 |  |
| PIPE 90 | 278.14 | 2.50 | 4.00 | 4.92 | 25.55 | 13.57 | 11.32 | 10.04 | 5.81 | 3.56 | 1072.56 |  |
| PIPE 89C | 165.53 | 5.50 | 8.00 | 8.42 | 28.79 | 17.27 | 11.19 | 28.86 | 17.31 | 11.22 | 1530.43 |  |
| PIPE 89A | 120.91 | 5.50 | 8.00 | 8.42 | 28.26 | 17.00 | 10.92 | 28.86 | 17.31 | 11.22 | 1100.89 |  |
| PIPE 85 | 149.23 | 5.00 | 6.00 | 7.83 | 21.48 | 13.15 | 7.82 | 26.34 | 15.59 | 10.25 | 987.37 |  |
| PIPE 84 | 46.29 | 4.50 | 6.00 | 7.25 | 25.84 | 15.05 | 10.30 | 23.88 | 14.07 | 9.32 | 314.28 |  |
| PIPE 80 | 287.05 | 4.50 | 6.00 | 7.25 | 23.04 | 13.64 | 8.89 | 23.42 | 13.84 | 9.09 | 1737.71 |  |
| PIPE 79 | 109.86 | 3.00 | 4.00 | 5.50 | 21.92 | 12.04 | 9.21 | 19.00 | 10.58 | 7.75 | 482.97 |  |
| PIPE 77 | 26.48 | 2.50 | 4.00 | 4.92 | 17.88 | 9.73 | 7.48 | 17.68 | 9.63 | 7.38 | 87.27 |  |
| PIPE 78 | 5.71 | 2.50 | 4.00 | 4.92 | 17.90 | 9.74 | 7.49 | 17.14 | 9.36 | 7.11 | 18.34 |  |
| PIPE 56 | 330.45 | 3.00 | 4.00 | 5.50 | 18.40 | 10.29 | 7.45 | 18.40 | 10.28 | 7.45 | 1201.63 |  |
| PIPE 55 | 9.15 | 2.50 | 4.00 | 4.92 | 17.91 | 9.75 | 7.50 | 16.44 | 9.01 | 6.76 | 28.40 |  |
| PIPE 54 | 25.89 | 2.50 | 4.00 | 4.92 | 17.90 | 9.74 | 7.49 | 18.02 | 9.80 | 7.55 | 86.85 |  |


| PIPE 76 | 50.48 | 3.50 | 6.00 | 6.08 | 22.43 | 12.76 | 9.18 | 23.00 | 13.04 | 9.46 | 276.07 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 74 | 231.49 | 3.50 | 6.00 | 6.08 | 22.42 | 12.75 | 9.17 | 22.24 | 12.66 | 9.08 | 1228.75 |  |
| PIPE 70-1 | 287.50 | 3.00 | 4.00 | 5.50 | 21.79 | 11.98 | 9.14 | 22.78 | 12.47 | 9.64 | 1466.36 |  |
| PIPE 70-2 | 84.73 | 3.00 | 4.00 | 5.50 | 22.19 | 12.18 | 9.34 | 19.04 | 10.60 | 7.77 | 377.74 |  |
| PIPE 69 | 9.59 | 2.50 | 4.00 | 4.92 | 18.54 | 10.06 | 7.81 | 17.02 | 9.30 | 7.05 | 31.65 |  |
| PIPE 68 | 26.35 | 2.50 | 4.00 | 4.92 | 18.52 | 10.05 | 7.80 | 18.66 | 10.12 | 7.87 | 94.03 |  |
| PIPE 73 | 106.44 | 3.00 | 4.00 | 5.50 | 21.74 | 11.96 | 9.12 | 18.82 | 10.49 | 7.66 | 460.83 |  |
| PIPE 72 | 9.58 | 2.50 | 4.00 | 4.92 | 18.32 | 9.95 | 7.70 | 16.78 | 9.18 | 6.93 | 30.89 |  |
| PIPE 71 | 30.38 | 2.50 | 4.00 | 4.92 | 18.32 | 9.95 | 7.70 | 18.46 | 10.02 | 7.77 | 106.33 |  |
| PIPE 75 | 5.67 | 2.50 | 4.00 | 4.92 | 21.39 | 11.49 | 9.24 | 20.50 | 11.04 | 8.79 | 25.13 |  |
| PIPE 83 | 70.19 | 3.00 | 4.00 | 5.50 | 21.78 | 11.97 | 9.14 | 19.12 | 10.64 | 7.81 | 308.12 |  |
| PIPE 82 | 9.05 | 2.50 | 4.00 | 4.92 | 18.03 | 9.81 | 7.56 | 16.60 | 9.09 | 6.84 | 28.49 |  |
| PIPE 81 | 25.87 | 3.00 | 4.00 | 5.50 | 18.52 | 10.34 | 7.51 | 18.66 | 10.41 | 7.58 | 95.73 |  |
| PIPE 67 | 123.01 | 4.50 | 6.00 | 7.25 | 25.72 | 14.99 | 10.24 | 22.90 | 13.58 | 8.83 | 805.50 |  |
| PIPE 65 | 24.68 | 2.50 | 4.00 | 4.92 | 20.29 | 10.93 | 8.68 | 16.50 | 9.04 | 6.79 | 87.21 |  |
| PIPE 64 | 301.80 | 4.50 | 6.00 | 7.25 | 22.57 | 13.41 | 8.66 | 22.14 | 13.20 | 8.45 | 1715.43 |  |
| PIPE 61 | 287.48 | 4.50 | 6.00 | 7.25 | 21.80 | 13.03 | 8.28 | 20.50 | 12.38 | 7.63 | 1496.05 |  |
| PIPE 59 | 33.15 | 4.00 | 6.00 | 6.67 | 19.99 | 11.83 | 7.66 | 20.44 | 12.05 | 7.89 | 154.10 |  |
| PIPE 58 | 14.04 | 2.50 | 4.00 | 4.92 | 18.35 | 9.97 | 7.72 | 15.74 | 8.66 | 6.41 | 43.15 |  |
| PIPE 57 | 247.75 | 4.00 | 6.00 | 6.67 | 19.81 | 11.74 | 7.57 | 21.86 | 12.76 | 8.60 | 1212.14 |  |
| PIPE 53 | 136.50 | 4.00 | 6.00 | 6.67 | 21.27 | 12.47 | 8.30 | 20.20 | 11.93 | 7.77 | 661.59 |  |
| PIPE 51 | 24.66 | 2.50 | 4.00 | 4.92 | 18.70 | 10.14 | 7.89 | 17.30 | 9.44 | 7.19 | 83.15 |  |
| PIPE 50-1 | 68.62 | 3.50 | 6.00 | 6.08 | 19.71 | 11.39 | 7.81 | 20.32 | 11.70 | 8.12 | 301.89 |  |
| PIPE 50-2 | 444.33 | 3.50 | 6.00 | 6.08 | 19.50 | 11.29 | 7.71 | 18.92 | 11.00 | 7.42 | 1824.78 |  |
| PIPE 48 | 24.67 | 2.50 | 4.00 | 4.92 | 17.93 | 9.76 | 7.51 | 18.08 | 9.83 | 7.58 | 83.12 |  |


| PIPE 47 | 94.00 | 3.00 | 4.00 | 5.50 | 18.38 | 10.27 | 7.44 | 18.48 | 10.32 | 7.49 | 342.64 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 45 | 55.09 | 2.50 | 4.00 | 4.92 | 17.99 | 9.79 | 7.54 | 18.50 | 10.04 | 7.79 | 190.12 |  |
| PIPE 46 | 6.17 | 2.50 | 4.00 | 4.92 | 17.98 | 9.78 | 7.53 | 17.06 | 9.32 | 7.07 | 19.82 |  |
| PIPE 49 | 5.66 | 2.50 | 4.00 | 4.92 | 17.92 | 9.75 | 7.50 | 17.18 | 9.38 | 7.13 | 18.23 |  |
| PIPE 52 | 5.67 | 2.50 | 4.00 | 4.92 | 18.70 | 10.14 | 7.89 | 17.96 | 9.77 | 7.52 | 19.74 |  |
| PIPE 60 | 23.77 | 2.50 | 4.00 | 4.92 | 18.49 | 10.04 | 7.79 | 13.70 | 7.64 | 5.39 | 67.04 |  |
| PIPE 62 | 24.67 | 2.50 | 4.00 | 4.92 | 19.55 | 10.57 | 8.32 | 17.56 | 9.57 | 7.32 | 87.94 |  |
| PIPE 63 | 5.66 | 2.50 | 4.00 | 4.92 | 19.54 | 10.56 | 8.31 | 18.80 | 10.19 | 7.94 | 21.35 |  |
| PIPE 66 | 5.66 | 2.50 | 4.00 | 4.92 | 20.30 | 10.94 | 8.69 | 19.54 | 10.56 | 8.31 | 22.89 |  |
| PIPE 88 | 89.60 | 2.50 | 4.00 | 4.92 | 25.25 | 13.42 | 11.17 | 21.46 | 11.52 | 9.27 | 488.52 |  |
| PIPE 87 | 257.14 | 2.50 | 4.00 | 4.92 | 20.86 | 11.22 | 8.97 | 18.72 | 10.15 | 7.90 | 1029.97 |  |
| PIPE 86 | 298.71 | 2.50 | 4.00 | 4.92 | 18.11 | 9.85 | 7.60 | 9.94 | 5.76 | 3.51 | 700.33 |  |
| PIPE 89B | 65.78 | 2.50 | 4.00 | 4.92 | 25.26 | 13.42 | 11.17 | 9.72 | 5.65 | 3.40 | 247.23 |  |

Total earth volume for sewer trenches $=28025$ cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
- Four inches for pipes less than 33 inches.
- Six inches for pipes less than 60 inches.
- Eight inches for all larger sizes.


## Rainfall Parameters

## Rainfall Return Period: 5

Rainfall Calculation Method: Formula
One Hour Depth (in):
Rainfall Constant "A": 28.5
Rainfall Constant "B": 10
Rainfall Constant "C": 0.786
Rational Method Constraints
Minimum Urban Runoff Coeff.: 0.20
Maximum Rural Overland Len. (ft): 500
Maximum Urban Overland Len. (ft): 300
Used UDFCD Tc. Maximum: Yes
Sizer Constraints
Minimum Sewer Size (in): 18.00
Maximum Depth to Rise Ratio: 0.90
Maximum Flow Velocity (fps): 18.1
Minimum Flow Velocity (fps): 2.0
Backwater Calculations:
Tailwater Elevation (ft): 0.00

## Manhole Input Summary:

|  |  | Given Flow |  | Sub Basin Information |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Ground Elevation (ft) | Total <br> Known <br> Flow (cfs) | Local <br> Contribution <br> (cfs) | Drainage Area (Ac.) | Runoff Coefficient | 5 yr <br> Coefficient | Overland <br> Length <br> (ft) | Overland Slope (\%) | Gutter <br> Length <br> (ft) | Gutter <br> Velocity <br> (fps) |
| OUTFALL 1 | 7020.54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 95 | 7041.30 | 71.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 94 | 7039.50 | 5.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 91 | 7049.80 | 67.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 90 | 7049.00 | 3.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 89C | 7051.49 | 67.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 89A | 7053.00 | 67.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 85 | 7061.70 | 64.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 67 | 7061.15 | 30.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 64 | 7063.05 | 28.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 61 | 7064.41 | 26.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 84 | 7060.95 | 36.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 83 | 7059.97 | 6.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 81 | 7060.17 | 5.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 82 | 7060.17 | 1.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 80 | 7065.16 | 31.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 79 | 7064.25 | 11.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 78 | 7064.44 | 2.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |


| PIPE 56 | 7065.90 | 6.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 55 | 7066.09 | 2.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 54 | 7066.09 | 3.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 77 | 7064.44 | 2.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 76 | 7066.15 | 20.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 89B | 7050.30 | 1.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## Manhole Output Summary:

|  | Local Contribution |  |  |  |  | Total Design Flow |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Overland Time (min) | Gutter Time (min) | $\begin{gathered} \text { Basin } \\ \text { Tc } \\ (\mathrm{min}) \end{gathered}$ | Intensity (in/hr) | Local Contrib (cfs) | Coeff. Area | Intensity (in/hr) | $\begin{gathered} \text { Manhole } \\ \text { Tc } \\ \text { (min) } \end{gathered}$ | Peak Flow <br> (cfs) | Comment |
| OUTFALL $1$ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |
| PIPE 95 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 71.10 | Surface Water Present (Downstream) |
| PIPE 94 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.40 |  |
| PIPE 91 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 67.60 |  |
| PIPE 90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.30 |  |
| PIPE 89C | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 67.70 |  |
| PIPE 89A | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 67.00 |  |
| PIPE 85 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 64.60 |  |
| PIPE 67 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 30.70 |  |
| PIPE 64 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 28.30 |  |


| PIPE 61 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 26.10 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 36.90 |  |  |
| PIPE 83 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6.20 |  |  |
| PIPE 81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.30 |  |  |
| PIPE 82 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.10 |  |  |
| PIPE 80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 31.40 |  |  |
| PIPE 79 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.20 |  |  |
| PIPE 78 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.20 |  |  |
| PIPE 56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6.30 |  |  |
| PIPE 55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.40 |  |  |
| PIPE 54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.90 |  |  |
| PIPE 77 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.80 |  |  |
| PIPE 76 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.90 |  |  |
| PIPE 89B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.10 |  |  |

## Sewer Input Summary:

|  |  | Elevation |  |  | Loss Coefficients |  |  | Given Dimensions |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Sewer <br> Length <br> (ft) | Downstream Invert (ft) | Slope (\%) | Upstream Invert (ft) | Mannings $\mathbf{n}$ | $\begin{array}{\|l} \text { Bend } \\ \text { Loss } \end{array}$ | Lateral <br> Loss | Cross Section | Rise (ft or in) | Span (ft or in) |
| PIPE 95 | 50.36 | 7022.54 | 1.0 | 7023.04 | 0.013 | 0.03 | 1.00 | CIRCULAR | 54.00 in | 54.00 in |
| PIPE 94 | 32.00 | 7026.45 | 2.0 | 7027.09 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 91 | 206.32 | 7023.45 | 3.0 | 7029.66 | 0.013 | 0.05 | 1.00 | CIRCULAR | 54.00 in | 54.00 in |
| PIPE 90 | 278.14 | 7036.78 | 2.5 | 7043.73 | 0.013 | 0.38 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |


| PIPE 89C | 165.53 | 7033.65 | 1.0 | 7035.31 | 0.013 | 0.57 | 0.35 | CIRCULAR | 54.00 in | 54.00 in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 89A | 120.91 | 7035.61 | 1.0 | 7036.82 | 0.013 | 0.05 | 1.00 | CIRCULAR | 54.00 in | 54.00 in |
| PIPE 85 | 149.23 | 7040.76 | 4.2 | 7047.03 | 0.013 | 0.57 | 0.35 | CIRCULAR | 48.00 in | 48.00 in |
| PIPE 67 | 123.01 | 7047.59 | 0.7 | 7048.45 | 0.013 | 1.32 | 0.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 64 | 301.80 | 7048.62 | 0.7 | 7050.73 | 0.013 | 0.05 | 1.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 61 | 287.48 | 7050.90 | 0.7 | 7052.91 | 0.013 | 0.05 | 1.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 84 | 46.29 | 7047.53 | 0.5 | 7047.76 | 0.013 | 1.32 | 0.25 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 83 | 70.19 | 7049.56 | 0.5 | 7049.91 | 0.013 | 0.05 | 1.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 81 | 25.87 | 7050.21 | 0.5 | 7050.34 | 0.013 | 0.92 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 82 | 9.05 | 7050.71 | 10.1 | 7051.62 | 0.013 | 0.38 | 0.44 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 80 | 287.05 | 7048.18 | 1.4 | 7052.20 | 0.013 | 1.32 | 0.00 | CIRCULAR | 42.00 in | 42.00 in |
| PIPE 79 | 109.86 | 7053.70 | 0.5 | 7054.25 | 0.013 | 1.32 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 78 | 5.71 | 7055.05 | 10.0 | 7055.62 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 56 | 330.45 | 7054.55 | 0.5 | 7056.20 | 0.013 | 0.05 | 1.00 | CIRCULAR | 24.00 in | 24.00 in |
| PIPE 55 | 9.15 | 7056.70 | 10.1 | 7057.62 | 0.013 | 0.38 | 0.44 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 54 | 25.89 | 7056.70 | 0.5 | 7056.83 | 0.013 | 0.83 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 77 | 26.48 | 7055.06 | 1.1 | 7055.35 | 0.013 | 0.83 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| PIPE 76 | 50.48 | 7053.19 | 1.4 | 7053.90 | 0.013 | 0.05 | 1.00 | CIRCULAR | 30.00 in | 30.00 in |
| PIPE 89B | 65.78 | 7038.61 | 10.0 | 7045.19 | 0.013 | 1.32 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |

Sewer Flow Summary:
Full Flow Capacity Critical Flow $\quad$ Normal Flow

| Element <br> Name | Flow <br> (cfs) | Velocity <br> (fps) | Depth <br> (in) | Velocity <br> (fps) | Depth <br> (in) | Velocity <br> (fps) | Froude <br> Number | Flow <br> Condition | Flow <br> (cfs) | Surcharged <br> Length <br> (ft) | Comment |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 95 | 196.47 | 12.35 | 29.51 | 7.99 | 22.46 | 11.36 | 1.69 | Supercritical | 71.10 | 0.00 |  |  |
| PIPE 94 | 14.89 | 8.43 | 10.75 | 4.91 | 7.50 | 7.75 | 1.99 | Supercritical | 5.40 | 0.00 |  |  |
| PIPE 91 | 342.08 | 21.51 | 28.74 | 7.86 | 16.28 | 16.74 | 2.98 | Supercritical | 67.60 | 0.00 |  |  |
| PIPE 90 | 16.65 | 9.42 | 8.30 | 4.14 | 5.43 | 7.34 | 2.26 | Supercritical | 3.30 | 0.00 |  |  |
| PIPE 89C | 197.18 | 12.40 | 28.77 | 7.86 | 21.82 | 11.24 | 1.70 | Supercritical | 67.70 | 0.00 |  |  |
| PIPE 89A | 197.18 | 12.40 | 28.61 | 7.83 | 21.70 | 11.21 | 1.70 | Supercritical | 67.00 | 0.00 |  |  |
| PIPE 85 | 295.17 | 23.49 | 29.10 | 8.10 | 15.25 | 18.81 | 3.45 | Supercritical | 64.60 | 0.00 | Velocity is Too High |  |
| PIPE 67 | 84.40 | 8.77 | 20.55 | 6.56 | 17.52 | 8.08 | 1.36 | Supercritical | 30.70 | 0.00 |  |  |
| PIPE 64 | 84.40 | 8.77 | 19.69 | 6.39 | 16.75 | 7.90 | 1.36 | Supercritical | 28.30 | 0.00 |  |  |
| PIPE 61 | 84.40 | 8.77 | 18.88 | 6.23 | 16.03 | 7.73 | 1.37 | Supercritical | 26.10 | 0.00 |  |  |
| PIPE 84 | 71.33 | 7.41 | 22.63 | 6.98 | 21.43 | 7.48 | 1.11 | Supercritical | 36.90 | 0.00 |  |  |
| PIPE 83 | 16.04 | 5.11 | 10.57 | 4.65 | 10.36 | 4.78 | 1.04 | Supercritical | 6.20 | 0.00 |  |  |
| PIPE 81 | 16.04 | 5.11 | 9.74 | 4.43 | 9.50 |  |  | 4.58 | 1.05 | Supercritical | 5.30 | 0.00 |



- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.


## Sewer Sizing Summary:

|  |  |  | Existing |  | Calculated |  | Used |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Peak Flow (cfs) | Cross Section | Rise | Span | Rise | Span | Rise | Span | $\begin{gathered} \text { Area } \\ \left(\mathrm{ft} \wedge^{\wedge} 2\right) \end{gathered}$ | Comment |
| PIPE 95 | 71.10 | CIRCULAR | 54.00 in | 54.00 in | 42.00 in | 42.00 in | 54.00 in | 54.00 in | 15.90 |  |
| PIPE 94 | 5.40 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 91 | 67.60 | CIRCULAR | 54.00 in | 54.00 in | 30.00 in | 30.00 in | 54.00 in | 54.00 in | 15.90 |  |
| PIPE 90 | 3.30 | CIRCULAR | 18.00 in | 1.77 |  |
| PIPE 89C | 67.70 | CIRCULAR | 54.00 in | 54.00 in | 42.00 in | 42.00 in | 54.00 in | 54.00 in | 15.90 |  |
| PIPE 89A | 67.00 | CIRCULAR | 54.00 in | 54.00 in | 42.00 in | 42.00 in | 54.00 in | 54.00 in | 15.90 |  |
| PIPE 85 | 64.60 | CIRCULAR | 48.00 in | 48.00 in | 30.00 in | 30.00 in | 48.00 in | 48.00 in | 12.57 |  |
| PIPE 67 | 30.70 | CIRCULAR | 42.00 in | 42.00 in | 30.00 in | 30.00 in | 42.00 in | 42.00 in | 9.62 |  |
| PIPE 64 | 28.30 | CIRCULAR | 42.00 in | 42.00 in | 30.00 in | 30.00 in | 42.00 in | 42.00 in | 9.62 |  |
| PIPE 61 | 26.10 | CIRCULAR | 42.00 in | 42.00 in | 30.00 in | 30.00 in | 42.00 in | 42.00 in | 9.62 |  |
| PIPE 84 | 36.90 | CIRCULAR | 42.00 in | 42.00 in | 33.00 in | 33.00 in | 42.00 in | 42.00 in | 9.62 |  |
| PIPE 83 | 6.20 | CIRCULAR | 24.00 in | 24.00 in | 18.00 in | 18.00 in | 24.00 in | 24.00 in | 3.14 |  |
| PIPE 81 | 5.30 | CIRCULAR | 24.00 in | 24.00 in | 18.00 in | 18.00 in | 24.00 in | 24.00 in | 3.14 |  |


| PIPE 82 | 1.10 | CIRCULAR | 18.00 in | 1.77 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 80 | 31.40 | CIRCULAR | 42.00 in | 42.00 in | 27.00 in | 27.00 in | 42.00 in | 42.00 in | 9.62 |  |  |
| PIPE 79 | 11.20 | CIRCULAR | 24.00 in | 3.14 |  |  |
| PIPE 78 | 2.20 | CIRCULAR | 18.00 in | 1.77 |  |  |
| PIPE 56 | 6.30 | CIRCULAR | 24.00 in | 24.00 in | 18.00 in | 18.00 in | 24.00 in | 24.00 in | 3.14 |  |  |
| PIPE 55 | 2.40 | CIRCULAR | 18.00 in | 1.77 |  |  |
| PIPE 54 | 3.90 | CIRCULAR | 18.00 in | 1.77 |  |  |
| PIPE 77 | 2.80 | CIRCULAR | 18.00 in | 1.77 |  |  |
| PIPE 76 | 20.90 | CIRCULAR | 30.00 in | 30.00 in | 24.00 in | 24.00 in | 30.00 in | 30.00 in | 4.91 |  |  |
| PIPE 89B | 1.10 | CIRCULAR | 18.00 in | 1.77 |  |  |

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.


## Grade Line Summary:

Tailwater Elevation (ft): 0.00

|  | Invert Elev. |  | Downstream Manhole Losses |  | HGL |  | EGL |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Downstream <br> (ft) | Upstream <br> (ft) | Bend Loss <br> (ft) | Lateral Loss (ft) | Downstream <br> (ft) | Upstream <br> (ft) | Downstream <br> (ft) | Friction Loss (ft) | Upstream <br> (ft) |
| PIPE 95 | 7022.54 | 7023.04 | 0.00 | 0.00 | 7024.41 | 7025.50 | 7026.42 | 0.08 | 7026.49 |


| PIPE 94 | 7026.45 | 7027.09 | 0.19 | 0.00 | 7027.08 | 7027.99 | 7028.01 | 0.35 | 7028.36 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 91 | 7023.45 | 7029.66 | 0.01 | 0.03 | 7025.54 | 7032.06 | 7029.16 | 3.86 | 7033.01 |
| PIPE 90 | 7036.78 | 7043.73 | 0.02 | 0.00 | 7037.23 | 7044.42 | 7038.07 | 6.62 | 7044.69 |
| PIPE 89C | 7033.65 | 7035.31 | 0.16 | 0.18 | 7035.47 | 7037.71 | 7037.44 | 1.23 | 7038.67 |
| PIPE 89A | 7035.61 | 7036.82 | 0.01 | 0.01 | 7037.73 | 7039.20 | 7039.37 | 0.79 | 7040.16 |
| PIPE 85 | 7040.76 | 7047.03 | 0.23 | 0.13 | 7042.03 | 7049.46 | 7047.53 | 2.95 | 7050.48 |
| PIPE 67 | 7047.59 | 7048.45 | 0.21 | 0.00 | 7050.48 | 7050.48 | 7050.68 | 0.23 | 7050.92 |
| PIPE 64 | 7048.62 | 7050.73 | 0.01 | 0.02 | 7050.51 | 7052.37 | 7050.98 | 2.02 | 7053.00 |
| PIPE 61 | 7050.90 | 7052.91 | 0.01 | 0.02 | 7052.40 | 7054.48 | 7053.16 | 1.92 | 7055.08 |
| PIPE 84 | 7047.53 | 7047.76 | 0.30 | 0.35 | 7050.90 | 7050.90 | 7051.13 | 0.02 | 7051.15 |
| PIPE 83 | 7049.56 | 7049.91 | 0.00 | 0.17 | 7051.25 | 7051.25 | 7051.32 | 0.05 | 7051.37 |
| PIPE 81 | 7050.21 | 7050.34 | 0.04 | 0.00 | 7051.29 | 7051.29 | 7051.43 | 0.06 | 7051.49 |
| PIPE 82 | 7050.71 | 7051.62 | 0.00 | 0.06 | 7051.31 | 7052.01 | 7052.07 | 0.08 | 7052.15 |
| PIPE 80 | 7048.18 | 7052.20 | 0.22 | 0.00 | 7051.17 | 7053.93 | 7051.37 | 3.24 | 7054.61 |
| PIPE 79 | 7053.70 | 7054.25 | 0.26 | 0.00 | 7054.90 | 7055.51 | 7055.40 | 0.55 | 7055.96 |
| PIPE 78 | 7055.05 | 7055.62 | 0.03 | 0.00 | 7055.54 | 7057.05 | 7057.08 | 0.00 | 7057.08 |
| PIPE 56 | 7054.55 | 7056.20 | 0.00 | 0.13 | 7055.99 | 7057.09 | 7056.10 | 1.33 | 7057.43 |
| PIPE 55 | 7056.70 | 7057.62 | 0.01 | 0.05 | 7057.15 | 7058.80 | 7058.84 | 0.00 | 7058.84 |
| PIPE 54 | 7056.70 | 7056.83 | 0.06 | 0.00 | 7057.46 | 7057.61 | 7057.75 | 0.13 | 7057.88 |
| PIPE 77 | 7055.06 | 7055.35 | 0.03 | 0.00 | 7055.57 | 7055.99 | 7056.00 | 0.23 | 7056.23 |
| PIPE 76 | 7053.19 | 7053.90 | 0.01 | 0.00 | 7054.34 | 7055.45 | 7055.75 | 0.36 | 7056.11 |
| PIPE 89B | 7038.61 | 7045.19 | 0.01 | 0.00 | 7038.80 | 7045.58 | 7039.97 | 5.75 | 7045.72 |

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer \#0, is not considered a sewer.
- Bend loss $=$ Bend $\mathrm{K} * \mathrm{~V}_{-} \mathrm{fi}^{\wedge} 2 /(2 * \mathrm{~g})$
- Lateral loss $=$ V_fo ${ }^{\wedge} 2 /(2 * \mathrm{~g})-$ Junction Loss $\mathrm{K} * \mathrm{~V}_{-} \mathrm{fi}{ }^{\wedge} 2 /(2 * \mathrm{~g})$.
- Friction loss is always Upstream EGL - Downstream EGL.


## Excavation Estimate:

The trench side slope is $1.0 \mathrm{ft} / \mathrm{ft}$
The minimum trench width is 2.00 ft

|  |  |  |  |  | Downstream |  |  | Upstream |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Length (ft) | Wall <br> (in) | Bedding (in) | Bottom Width (ft) | Top Width (ft) | Trench Depth (ft) | Cover <br> (ft) | Top Width (ft) | Trench Depth (ft) | Cover (ft) | Volume (cu. yd) | Comment |
| PIPE 95 | 50.36 | 5.50 | 8.00 | 8.42 | 0.00 | 0.00 | 0.00 | 33.02 | 19.39 | 13.30 | 293.29 | Sewer Too Shallow |
| PIPE 94 | 32.00 | 2.50 | 4.00 | 4.92 | 29.20 | 15.39 | 13.14 | 24.32 | 12.95 | 10.70 | 225.71 |  |
| PIPE 91 | 206.32 | 5.50 | 8.00 | 8.42 | 32.20 | 18.97 | 12.89 | 36.78 | 21.27 | 15.18 | 2602.75 |  |
| PIPE 90 | 278.14 | 2.50 | 4.00 | 4.92 | 25.55 | 13.57 | 11.32 | 10.04 | 5.81 | 3.56 | 1072.56 |  |
| PIPE 89C | 165.53 | 5.50 | 8.00 | 8.42 | 28.79 | 17.27 | 11.19 | 28.86 | 17.31 | 11.22 | 1530.43 |  |
| PIPE 89A | 120.91 | 5.50 | 8.00 | 8.42 | 28.26 | 17.00 | 10.92 | 28.86 | 17.31 | 11.22 | 1100.89 |  |
| PIPE 85 | 149.23 | 5.00 | 6.00 | 7.83 | 21.48 | 13.15 | 7.82 | 26.34 | 15.59 | 10.25 | 987.37 |  |
| PIPE 67 | 123.01 | 4.50 | 6.00 | 7.25 | 25.72 | 14.99 | 10.24 | 22.90 | 13.58 | 8.83 | 805.50 |  |
| PIPE 64 | 301.80 | 4.50 | 6.00 | 7.25 | 22.57 | 13.41 | 8.66 | 22.14 | 13.20 | 8.45 | 1715.43 |  |
| PIPE 61 | 287.48 | 4.50 | 6.00 | 7.25 | 21.80 | 13.03 | 8.28 | 20.50 | 12.38 | 7.63 | 1496.05 |  |
| PIPE 84 | 46.29 | 4.50 | 6.00 | 7.25 | 25.84 | 15.05 | 10.30 | 23.88 | 14.07 | 9.32 | 314.28 |  |
| PIPE 83 | 70.19 | 3.00 | 4.00 | 5.50 | 21.78 | 11.97 | 9.14 | 19.12 | 10.64 | 7.81 | 308.12 |  |
| PIPE 81 | 25.87 | 3.00 | 4.00 | 5.50 | 18.52 | 10.34 | 7.51 | 18.66 | 10.41 | 7.58 | 95.73 |  |


| PIPE 82 | 9.05 | 2.50 | 4.00 | 4.92 | 18.03 | 9.81 | 7.56 | 16.60 | 9.09 | 6.84 | 28.49 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 80 | 287.05 | 4.50 | 6.00 | 7.25 | 23.04 | 13.64 | 8.89 | 23.42 | 13.84 | 9.09 | 1737.71 |  |
| PIPE 79 | 109.86 | 3.00 | 4.00 | 5.50 | 21.92 | 12.04 | 9.21 | 19.00 | 10.58 | 7.75 | 482.97 |  |
| PIPE 78 | 5.71 | 2.50 | 4.00 | 4.92 | 17.90 | 9.74 | 7.49 | 17.14 | 9.36 | 7.11 | 18.34 |  |
| PIPE 56 | 330.45 | 3.00 | 4.00 | 5.50 | 18.40 | 10.29 | 7.45 | 18.40 | 10.28 | 7.45 | 1201.63 |  |
| PIPE 55 | 9.15 | 2.50 | 4.00 | 4.92 | 17.91 | 9.75 | 7.50 | 16.44 | 9.01 | 6.76 | 28.40 |  |
| PIPE 54 | 25.89 | 2.50 | 4.00 | 4.92 | 17.90 | 9.74 | 7.49 | 18.02 | 9.80 | 7.55 | 86.85 |  |
| PIPE 77 | 26.48 | 2.50 | 4.00 | 4.92 | 17.88 | 9.73 | 7.48 | 17.68 | 9.63 | 7.38 | 87.27 |  |
| PIPE 76 | 50.48 | 3.50 | 6.00 | 6.08 | 22.43 | 12.76 | 9.18 | 23.00 | 13.04 | 9.46 | 276.07 |  |
| PIPE 89B | 65.78 | 2.50 | 4.00 | 4.92 | 25.26 | 13.42 | 11.17 | 9.72 | 5.65 | 3.40 | 247.23 |  |

Total earth volume for sewer trenches $=16743$ cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
- Four inches for pipes less than 33 inches.
- Six inches for pipes less than 60 inches.
- Eight inches for all larger sizes.


## $\gtrless_{\text {OUTFALL } 1}$ PIPE 98

## System Input Summary

## Rainfall Parameters

Rainfall Return Period: 100
Rainfall Calculation Method: Formula
One Hour Depth (in):
Rainfall Constant "A": 28.5
Rainfall Constant "B": 10
Rainfall Constant "C": 0.786
Rational Method Constraints
Minimum Urban Runoff Coeff.: 0.20
Maximum Rural Overland Len. (ft): 500
Maximum Urban Overland Len. (ft): 300
Used UDFCD Tc. Maximum: Yes
Sizer Constraints
Minimum Sewer Size (in): 18.00
Maximum Depth to Rise Ratio: 0.90
Maximum Flow Velocity (fps): 18.1
Minimum Flow Velocity (fps): 2.0
Backwater Calculations:
Tailwater Elevation (ft): 0.00

## Manhole Input Summary:

|  |  | Given Flow |  | Sub Basin Information |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element <br> Name | Ground Elevation (ft) | Total Known Flow (cfs) | Local Contribution (cfs) | Drainage Area (Ac.) | Runoff Coefficient | $5 y r$ <br> Coefficient | Overland <br> Length <br> (ft) | Overland Slope (\%) | Gutter Length (ft) | Gutter Velocity (fps) |
| OUTFALL 1 | 7015.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PIPE 98 | 7023.50 | 54.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## Manhole Output Summary:

|  | Local Contribution |  |  |  | Total Design Flow |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element <br> Name | Overland <br> Time <br> (min) | Gutter <br> Time <br> (min) | Basin <br> Tc <br> (min) | Intensity <br> (in/hr) | Local <br> Contrib <br> (cfs) | Coeff. <br> Area | Intensity <br> (in/hr) | Manhole <br> Tc <br> (min) | Peak <br> Flow <br> (cfs) | Comment |
| OUTFALL <br> 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |
| PIPE 98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 54.20 | Surface Water Present <br> (Downstream) |

## Sewer Input Summary:

| Element Name | Sewer <br> Length <br> (ft) | Downstream Invert <br> (ft) | Slope <br> (\%) | Upstream Invert (ft) | $\begin{gathered} \text { Mannings } \\ n \end{gathered}$ | Bend Loss | Lateral Loss | Cross Section | Rise (ft or in) | Span (ft or in) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE 98 | 58.94 | 7016.04 | 1.2 | 7016.75 | 0.013 | 0.03 | 1.00 | CIRCULAR | 48.00 in | 48.00 in |

## Sewer Flow Summary:

|  | Full Flow Capacity |  | Critical Flow |  |  |  |  |  |  |  | Normal Flow |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element <br> Name | Flow <br> (cfs) | Velocity <br> (fps) | Depth <br> (in) | Velocity <br> (fps) | Depth <br> (in) | Velocity <br> (fps) | Froude <br> Number | Flow <br> Condition | Flow <br> (cfs) | Surcharged <br> Length <br> (ft) | Comment |  |  |  |  |  |
| PIPE 98 | 157.78 | 12.56 | 26.55 | 7.60 | 19.40 | 11.39 | 1.82 | Supercritical | 54.20 | 0.00 |  |  |  |  |  |  |

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.


## Sewer Sizing Summary:

|  |  | Existing |  | Calculated |  | Used |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element <br> Name | Peak <br> Flow <br> (cfs) | Cross <br> Section | Rise | Span | Rise | Span | Rise | Span | Area <br> (ft^2) | Comment |
| PIPE 98 | 54.20 | CIRCULAR | 48.00 in | 48.00 in | 33.00 in | 33.00 in | 48.00 in | 48.00 in | 12.57 |  |

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.


## Grade Line Summary:

Tailwater Elevation (ft): 0.00

|  | Invert Elev. |  | Downstream Manhole Losses |  | HGL |  | EGL |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element Name | Downstream <br> (ft) | Upstream <br> (ft) | Bend Loss <br> (ft) | Lateral Loss (ft) | Downstream <br> (ft) | Upstream <br> (ft) | Downstream <br> (ft) | Friction Loss (ft) | Upstream <br> (ft) |
| PIPE 98 | 7016.04 | 7016.75 | 0.00 | 0.00 | 7017.66 | 7018.96 | 7019.67 | 0.19 | 7019.86 |

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer $\# 0$, is not considered a sewer.
- Bend loss = Bend K * V_fi ^ $2 /(2 * \mathrm{~g})$
- Lateral loss = V_fo ^ $2 /\left(2^{*} \mathrm{~g}\right)-$ Junction Loss K $* V_{-} \mathrm{fi}^{\wedge} 2 /\left(2^{*} \mathrm{~g}\right)$.
- Friction loss is always Upstream EGL - Downstream EGL.


## Excavation Estimate:

The trench side slope is $1.0 \mathrm{ft} / \mathrm{ft}$
The minimum trench width is 2.00 ft

|  |  |  |  |  | Downstream |  |  | Upstream |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element <br> Name | Length <br> (ft) | Wall (in) | Bedding (in) | Bottom Width (ft) | Top Width (ft) | Trench Depth (ft) | Cover (ft) | Top Width (ft) | Trench Depth (ft) | Cover <br> (ft) | Volume (cu. yd) | Comment |
| PIPE 98 | 58.94 | 5.00 | 6.00 | 7.83 | 0.00 | 0.37 | 0.00 | 10.50 | 7.67 | 2.33 | 70.69 | Sewer Too Shallow |

Total earth volume for sewer trenches $=71$ cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12) +1 inches
- The sewer bedding thickness is equal to:
- Four inches for pipes less than 33 inches.
- Six inches for pipes less than 60 inches.
- Eight inches for all larger sizes.


## DRAINAGE MAPS




WATER QUALITY TREATMENT PLAN MAP









