March 18, 2022

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

SR Land, LLC 20 Boulder Crescent, 2nd Floor Colorado Springs, CO 80903

Attn: Chaz Collins

Re: Pavement Recommendations Sterling Ranch, Filing No. 2 El Paso County, Colorado

Dear Mr. Collins:

As requested, Entech Engineering, Inc. has obtained samples of the pavement subgrade soils from the interior roadways in the Sterling Ranch Filing No. 2 subdivision. This letter presents the results of the laboratory testing and pavement recommendations for the roadway sections.

Project Description

The roadways for this project consist of sections of Bynum Drive, Cordgrass Drive, Beaverhead Circle, and Alzada Drive in northeast Colorado Springs, Colorado. Subsurface Soil Investigation and laboratory testing was performed in order to determine the pavement support characteristics of the soils. The limits of this investigation and the approximate locations of the test borings are presented in the Site/Test Boring Location Map, Figure 1.

Subgrade Conditions

Eight test borings were drilled along the above referenced roadways to depths of approximately 5 and 10 feet below the existing subgrade surface. The Test Boring Logs are presented in Appendix A. Sieve Analyses and Atterberg Limit testing were performed on the soil samples obtained from the test borings for the purpose of classification. The percent passing the No. 200 sieve for the soils at subgrade depth ranged from approximately 7 to 31 percent. The soils at the subgrade depth consisted of silty to slightly silty sand fill, native silty sand, and silty sandstone. The subgrade soils are generally underlain with silty to very clayey sandstone. The underlying Type 3 soils were encountered at depths below the subgrade influence zone. Based on the results of the laboratory testing, two general subgrade soil types were determined for the roadway sections at subgrade depths; silty to slightly silty sand fill (Soil Type 1), and silty sandstone (Soil Type 2). The soils classify as A-2-4 and A-1-b soils, based on the AASHTO Classification System. Based on the similar characteristics, Soil Types 1 and 2 were grouped together for laboratory testing. Groundwater was not encountered in any of the test borings.

Based on the subgrade soil characteristics, mitigation of the expansive potential of the subgrade soils will not be required for this site.

California Bearing Ratio (CBR) testing was performed on a representative sample of the Type 1 and 2 subgrade soils. The results of the CBR and classification testing are presented as follows and in Appendix B and on Table 1, attached. Based on the results of the classification and CBR testing, the soils on this site exhibit good pavement support characteristics. The results of the CBR testing and classification testing are presented in Appendix B and are summarized as follows:

SR Land, LLC **Pavement Recommendations** Sterling Ranch, Filing No. 2 El Paso County, Colorado Page 2

Soil Type 1 – Silty Sand Fill

R @ 90% = 35.0 R @ 95% = 74.0 Use R = 50.0 for design*

Classification Testing

Liquid Limit	32
Plasticity Index	8
Percent Passing 200	30.8
AASHTO Classification	A-2-4
Group Index	0
Unified Soils Classification	SM

* The Type 1 slightly silty to silty sand fill and the Type 2 sandstone will be grouped together into one category due to the similarity of the soils.

Pavement Design

CBR testing was used to determine pavement sections for the roadway sections. Pavement sections were determined utilizing Pavement Design Criteria for the El Paso County. The culde-sac portion of Beaverhead Circle classifies as a local low-volume road, which used an 18k ESAL value of 36,500 for design. Bynum Drive, Cordgrass Drive, and Beaverhead Circle from Alzada Drive to Cordgrass Drive classify as local roads, which used an 18k ESAL volume of 292,000 for design. Alzada Drive classifies as a residential collector, which used on 18K ESAL value of 821,000 for design. Pavement sections were determined for asphalt supported on aggregate base course, asphalt millings, and on recycled concrete. County approval is required if asphalt millings or recycled concrete are to be utilized. *asphalt millings and full depth are

Design parameters used in the pavement analysis for the roadway section are as follows:

Reliability	
Local (Low-Volume)/Local	80%
Collector	85%
Standard Deviation	0.45
Resilient Modulus	13,168 psi
Δpsi –	
Local (Low-Volume)/Local	2.0
Collector	2.5
"R" Value Subgrade	50
Structural Coefficients	
Hot Bituminous Pavement	0.44
Aggregate Base Course	0.11
Asphalt Millings	0.07
Recycled Concrete	0.09

The pavement design calculations are presented in Appendix C. Pavement section alternatives for the roadway sections are presented below. Any additional grading may result in subgrade SR Land, LLC Pavement Recommendations Sterling Ranch, Filing No. 2 El Paso County, Colorado Page 3

soils with different support characteristics. The following pavement sections should be reevaluated if additional grading is performed.

<u>Cul-de-sac on Beaverhead Circle – Local (Low-Volume)</u>					
	Soil Types	s 1 and 2			
Composite Section	<u>Asphalt</u>	<u>Basecourse</u>	<u>Asphalt</u>	Recycled	
<u>Composite Cection</u>	<u>(in)</u>	<u>(in)</u>	<u>Millings (in)*</u>	Concrete (in)*	
1. Asphalt Over Basecourse	3.0 ¹	4.0 ¹	-	-	
2. Asphalt Over Asphalt Millings	3.0	-	4.0	-	
3. Asphalt Over Recycled Concrete	3.0	-	-	4.0	

Bynum Drive, Cordgrass Drive, and Beaverhead Circle (not cul-de-sac) – Local Roadways Soil Types 1 and 2

	00111100			
Composite Section	<u>Asphalt</u> (in)	Basecourse (in)	<u>Asphalt</u> Millings (in)*	<u>Recycled</u> Concrete (in)*
1. Asphalt Over Basecourse	3.5	8.0		-
2. Asphalt Over Asphalt Millings	3.5		8.0	-
3. Asphalt Over Recycled Concrete	3.5	-	-	8.0

<u> Alzada Drive – Residential Collector</u>					
	Soil Type	s 1 and 2			
Composite Section	<u>Asphalt</u>	Basecourse	<u>Asphalt</u>	<u>Recycled</u>	
Oumposite Section	<u>(in)</u>	<u>(in)</u>	<u>Millings (in)*</u>	Concrete (in)*	
1. Asphalt Over Basecourse	4.0 ¹	8.0 ¹	-	-	
2. Asphalt Over Asphalt Millings	5.0	-	8.0	-	
3. Asphalt Over Recycled Concrete	4.5	-	-	8.0	

¹Minimum sections required per the El Paso County specifications. *County approval pending.

Roadway Construction

Prior to placement of the asphalt, the subgrade should be scarified, moisture-conditioned, compacted to a minimum of 95% of its maximum Modified Proctor Dry Density, ASTM D-1557 at \pm 2 percent of optimum moisture content and proofrolled after properly compacted. Any loose or soft areas should be removed and replaced with suitable materials approved by Entech. Basecourse materials should be compacted to a minimum of 95% of its maximum Modified Proctor Dry Density, ASTM D-1557 at \pm 2% of optimum moisture content. Special attention should be given to areas adjacent to manholes, inlet structures and valves.

In addition to the above guidance the asphalt, subgrade conditions, compaction of materials and roadway construction methods shall meet the El Paso County specifications.

SR Land, LLC Pavement Recommendations Sterling Ranch, Filing No. 2 El Paso County, Colorado Page 4

We trust that this report contains the information you require. If you have questions or need additional information, please contact us.

Respectfully Submitted,

ENTECH ENGINEERING, INC.

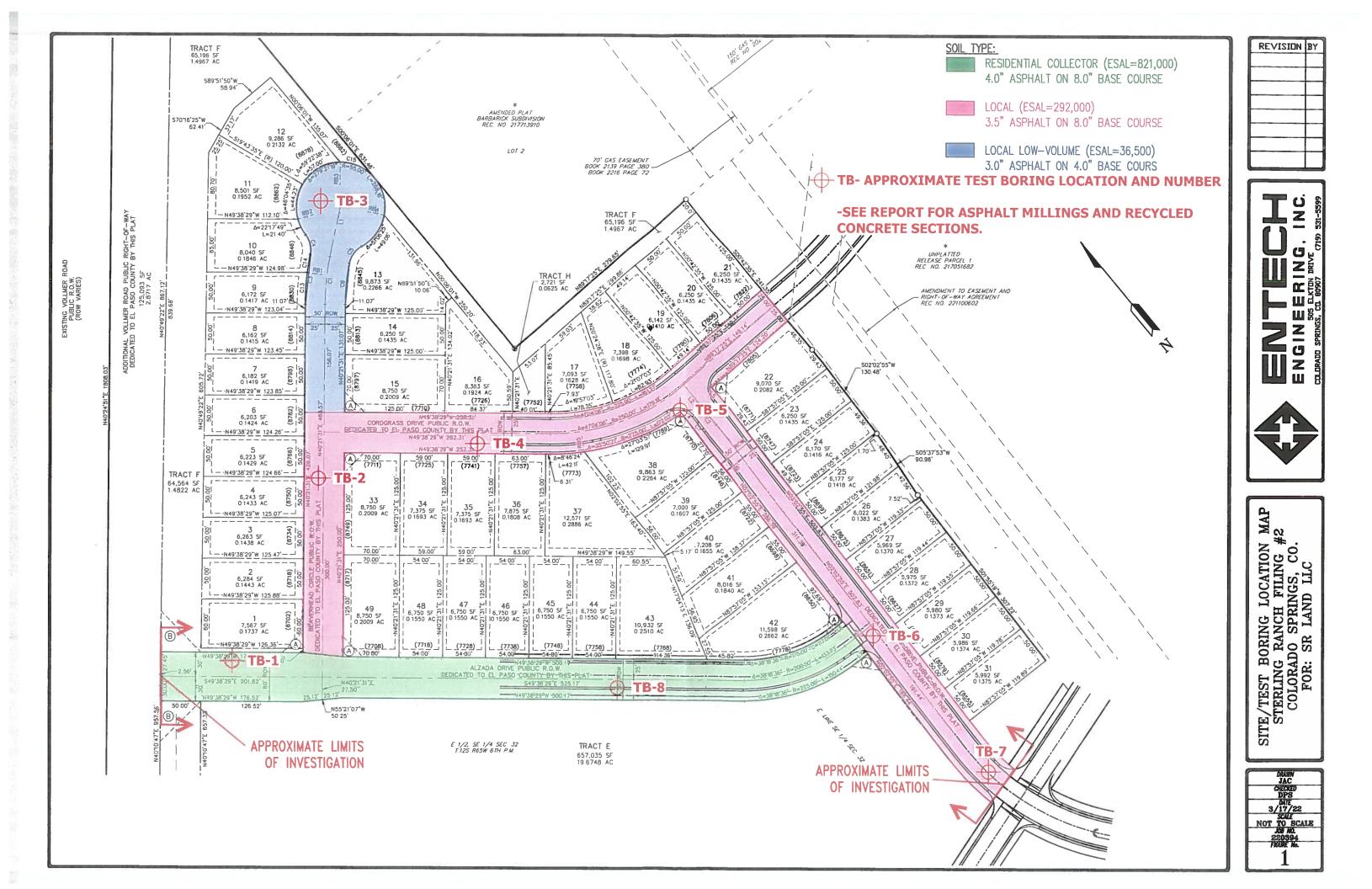
Daniel P. Stegman

DPS/el

Entech Job No. 220394 AAprojects/2022/220397/220394 pr-int

TABLE

Carden Constant and Constant


TABLE 1

SUMMARY OF LABORATORY TEST RESULTS

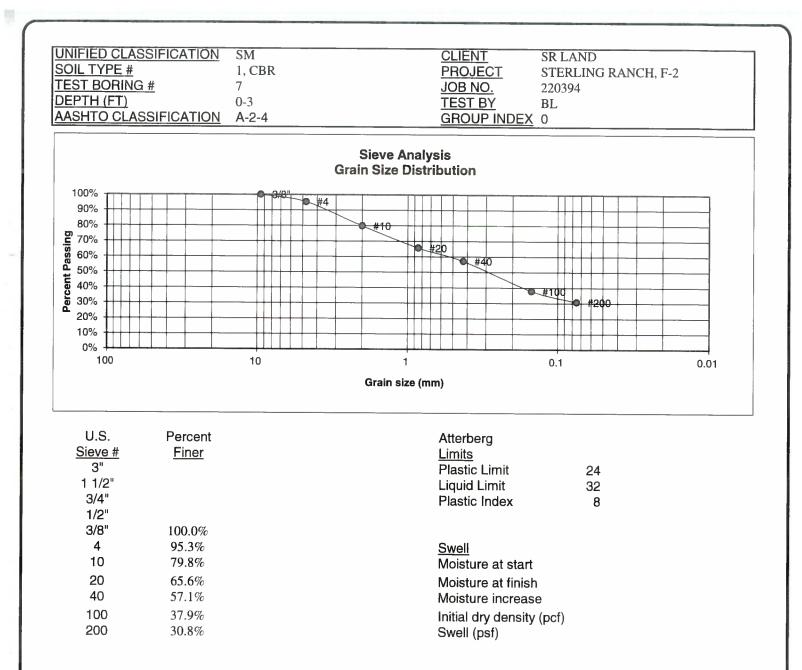
<u>CLIENT</u> SR LAND <u>PROJECT</u> STERLING RANCH, F-2 <u>JOB NO.</u> 220394

	_	_	_		_				_	_	_
SOIL DESCRIPTION	FILL, SAND, SILTY	FILL, SAND, SLIGHTLY SILTY	FILL, SAND, SILTY	FILL, SAND, SILTY	SANDSTONE, SILTY	SANDSTONE, SILTY	SANDSTONE, VERY CLAYEY				
UNIFIED	SM	SM-SW	SM-SW	SM-SW	SM-SW	SM-SW	SM	SM	SM	SM	sc
SWELL/ SWELL/ (%)											
AASHTO CLASS.	A-2-4	A-1-b	A-1-b	A-1-b	A-1-b	A-1-b	A-1-b	A-2-4	A-2-4	A-1-b	A-6
SULFATE AASHTO (WT %) CLASS.			<0.01			<0.01					<0.01
PLASTIC INDEX (%)	80	NP	NP	NP	NP	NP	NP	NP	NP	NP	18
LIQUID LIMIT (%)	32	NV	NV	N	N	٨٧	N	N	N	۸۷	36
DRY PASSING DENSITY NO. 200 SIEVE (PCF) (%)	30.8	9,1	10.5	5.9	8.4	6.6	18.3	23.9	15.3	15.6	42.9
DRY DENSITY (PCF)											
WATER (%)											
DEPTH (FT)	0-3	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	10	10
TEST BORING NO.	7	ţ	2	3	4	5	9	7	8	7	4
SOIL	1, CBR	-	-	-	-	-	-	-	2	5	e

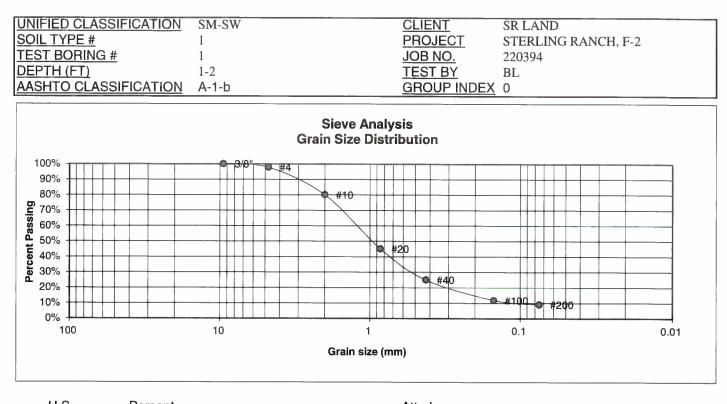
FIGURE

APPENDIX A: Test Boring Logs

B

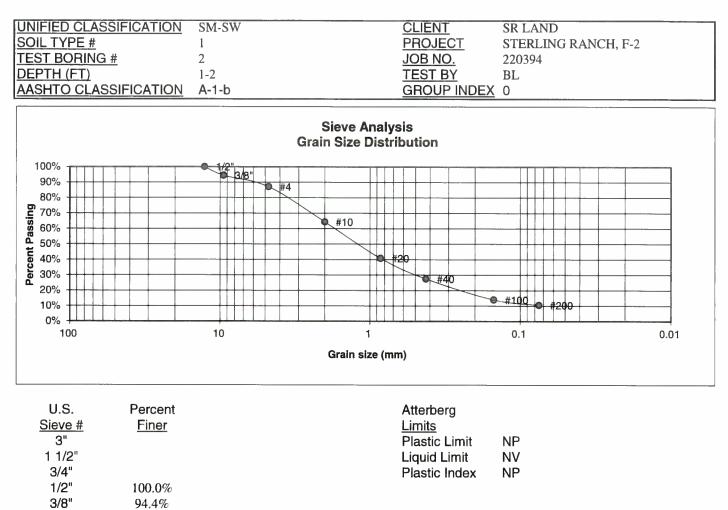

TEST BORING NO. DATE DRILLED Job #	1 2/21/2022 220394				TEST BORING NO. DATE DRILLED CLIENT LOCATION	2 2/21/202 SR LANE STERLIN	2)	NCH	ł, F-2		
REMARKS	(ft) r	ool oles	Blows per foot Watercontent %	ype	REMARKS		ו (ft)	ol	Samples Blows per foot	Watercontent %	ype
DRY TO 10', 2/21/22 FILL 0-10', SAND, SLIGH FINE TO COARSE GRAI BROWN, MEDIUM DENS	HTLY SILTY, NED,		Mate N 19 6.4		DRY TO 5', 2/21/22 FILL 0-5', SAND, SLIGHT FINE TO COARSE GRAIN BROWN, MEDIUM DENSE	VED,	Depth (ft)	Symbol	Blows per		L Soil Type
	5		23 4.4	1	LOOSE, MOIST		5	• . •	9	8.7	1
	10		20 5.7	1			10				
	15						15				
	20						20				
			_							_	
	ECH ERING, INC DRIVE SPRINGS, COLORAL	1	DRAW	/N:				E/22		22	B NO.: 20394 G NO.: A- 1

TEST BORING NO. 3 DATE DRILLED 2/21/202 Job # 220394	2		TEST BORING NO. DATE DRILLED CLIENT LOCATION	2/21/2022 SR LAND	2	
DRY TO 5', 2/21/22 FILL O-5', SAND, SLIGHTLY SILTY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, MOIST	Depth (ft)	15 4.3		STERLIN 2 TTLY SILTY, INED, 5E, MOIST Y, FINE GRAY T CLAYEY. ERY		5 5.0 1 9 7.2 1A
ENTECH ENGINEERING, 505 ELKTON DRIVE COLORADO SPRINGS, COL		DRAWN:			G DATE: 22	JOB NO.: 220394 FIG NO.: A- 2


TEST BORING NO. 5 DATE DRILLED 2/21/202 Job # 220394	2		TEST BORING NO. DATE DRILLED CLIENT LOCATION	2/21/2022 SR LAND	G RANCH, F-	2	
REMARKS	Depth (ft) Symbol Samples Blows per foot	Watercontent % Soil Type	REMARKS DRY TO 5', 2/21/22				Watercontent % Soil Type
DRY TO 5', 2/21/22 FILL O-5', SAND, SLIGHTLY SILTY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, MOIST		4 5.6 1	DRY TO 5', 2/21/22 FILL O-5', SAND, SILTY, COARSE GRAINED, BRO MEDIUM DENSE TO LOO MOIST	FINE TO DWN, DSE,		15 8	<u>8.2</u> 1 7.0 1
ENTECH ENGINEERING, I 505 ELKTON DRIVE COLORADO SPRINGS, COL		DRAWN:	TEST BC		PATE: Stelze		JOB NO.: 220394 FIG NO.: A- 3

TEST BORING NO. 7 DATE DRILLED 2/21/202 Job # 220394	2						TEST BORING NO. DATE DRILLED CLIENT LOCATION	2/21/2022 SR LAND	2		
REMARKS DRY TO 10', 2/21/22	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	REMARKS DRY TO 5', 2/21/22		Depth (ft) Symbol Samples Blows per foot	Watercontent %	- Soil Type
FILL 0-10', SAND, SLIGHTLY SILTY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, MOIST	5			17 17	16.5 8.0	1	SAND, SILTY, TAN WEATHERED TO FORM SANDSTONE, SILTY, FI COARSE GRAINED, TAI TO VERY DENSE, MOIS	INE TO N, DENSE	·11.	8 10.9 0 7.2	
SANDSTONE, SILTY, FINE TO COARSE GRAINED, GRAY BROWN, VERY DENSE, MOIST	10 			<u>50</u> 11"	13.8	2			10 - - - 15 - -		
	20								20		
ENTECH ENGINEERING, IN 505 ELKTON DRIVE COLORADO SPRINGS, COLO		80907			DRAW	/N:	TEST B		G B B IB 2 2	22	108 NO.: 20394 FIG NO.: A-4

APPENDIX B: Laboratory Test Results



ENTECH ENGINEERING, INC.		LABOF RESUL	ATORY TEST		JOB NO.: 220394
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE:	FIG NO.: B-1

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
3/8"	100.0%	
4	97.8%	Swell
10	80.0%	Moisture at start
20	45.1%	Moisture at finish
40	25.1%	Moisture increase
100	11.8%	Initial dry density (pcf)
200	9.1%	Swell (psf)

	ENTECH ENGINEERING, INC.	LABORATORY TEST RESULTS					JOB NO.: 220394 FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:		DATE: 3/16/22		8-2

<u>Swell</u> Moisture at start Moisture at finish Moisture increase Initial dry density (pcf) Swell (psf)

4

10

20

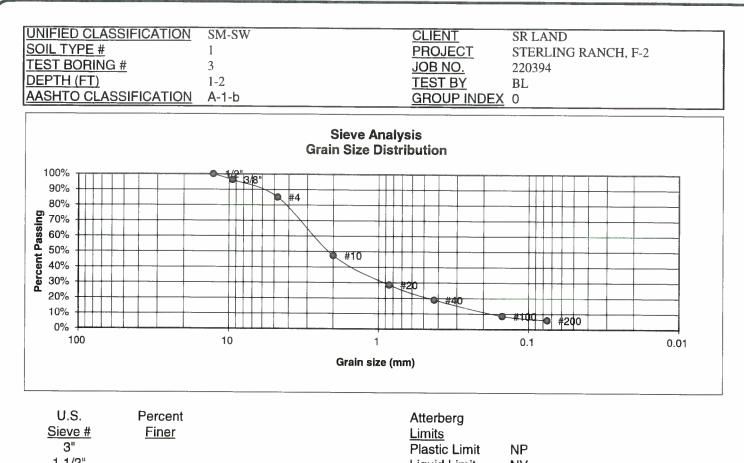
40

100

200

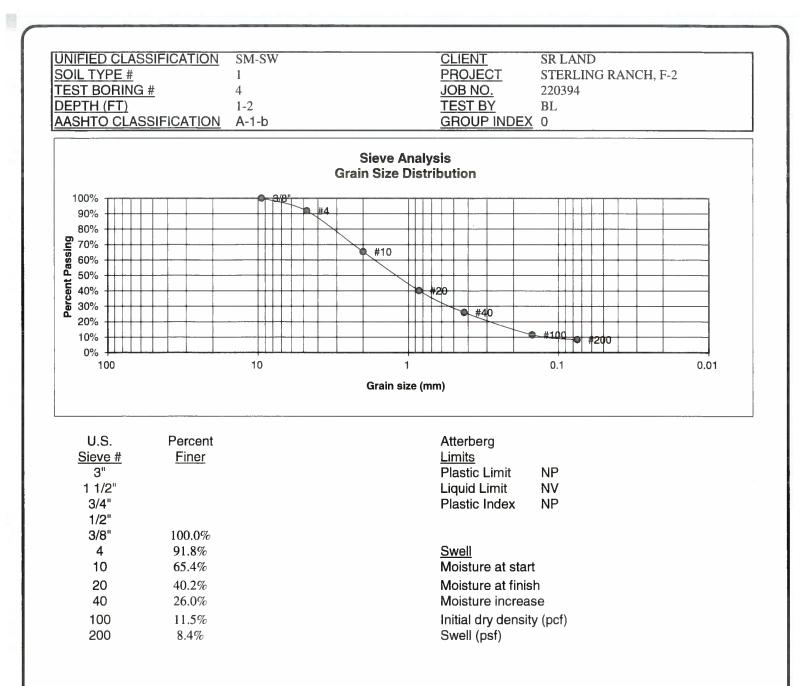
87.1%

64.3%

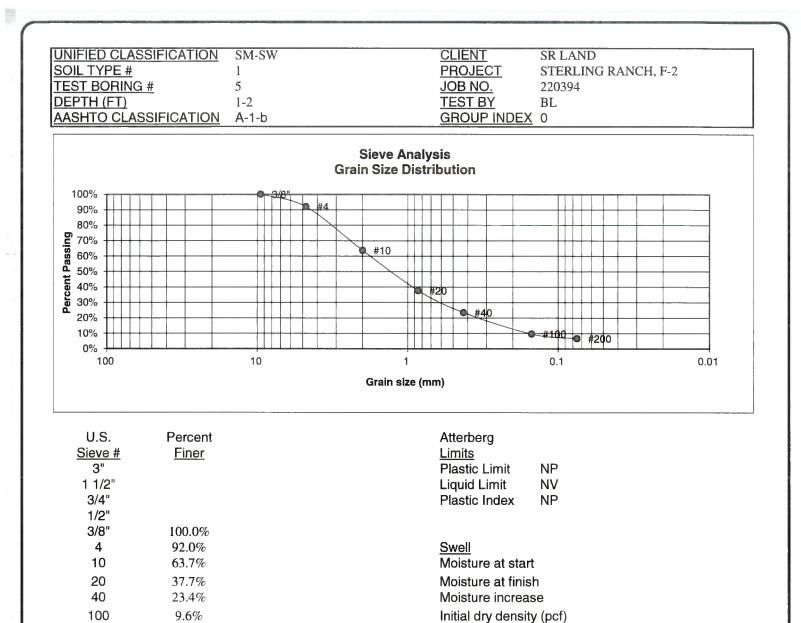

40.8%

27.5%

13.9%


10.5%

ENTECH ENGINEERING, INC.		LABORATORY TEST RESULTS				
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE:	FIG NO.: 8-3	



1 1/2" 3/4"		Liquid Limit NV Plastic Index NP
1/2"	100.0%	
3/8"	96.2%	
4	85.1%	Swell
10	47.4%	Moisture at start
20	28.5%	Moisture at finish
40	18.9%	Moisture increase
100	8.5%	Initial dry density (pcf)
200	5.9%	Swell (psf)

	ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	LABORATORY TEST RESULTS					JOB NO.: 220394 FIG NO.:
		DRAWN:	DATE:	CHECKED:	DATE: 22		B-H

			LABORAT RESULTS	ORY TEST		JOB NO.: 220394 FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE: 122	BS

Swell (psf)

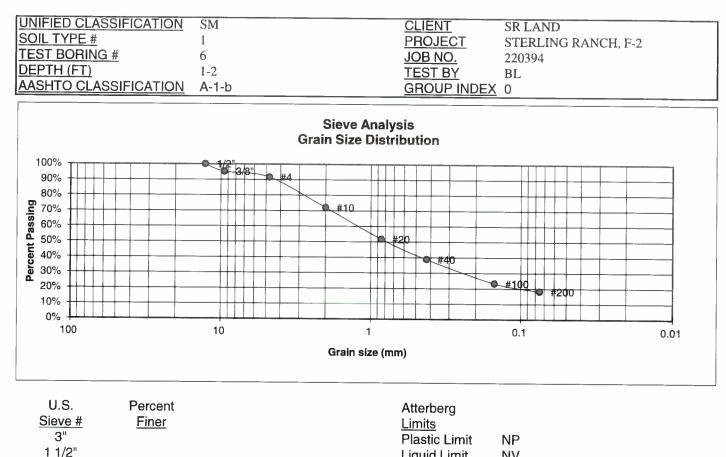
|--|

200

6.6%

ENTECH

505 ELKTON DRIVE

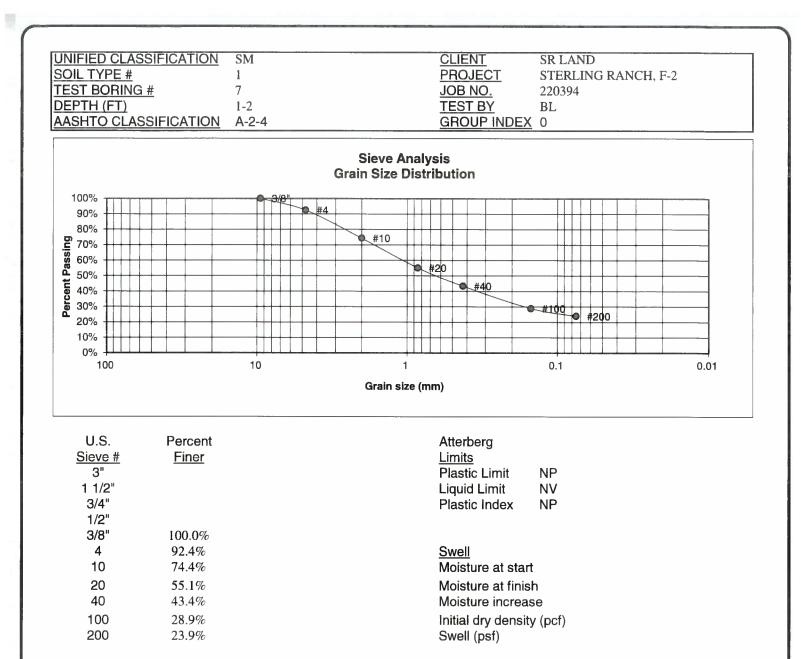

ENGINEERING, INC.

COLORADO SPRINGS, COLORADO 80907

DRAWN:

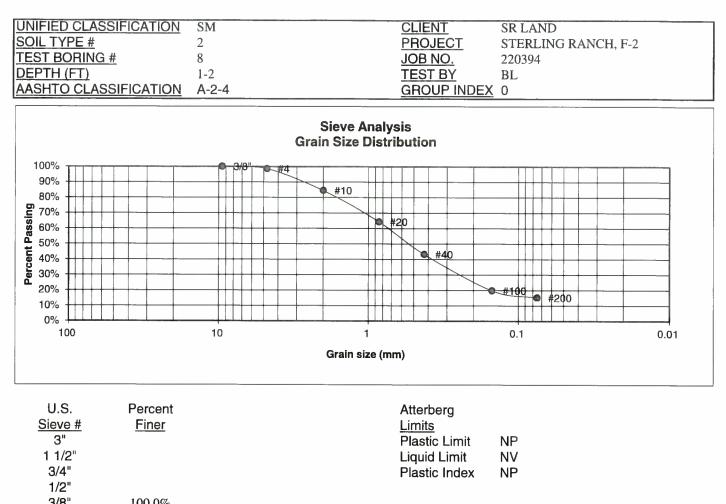
LABORATORY TEST RESULTS					
	DATE:		DATE: 3/ 14/22	U	FI

JOB NO. 220394 FIG NO. B -6

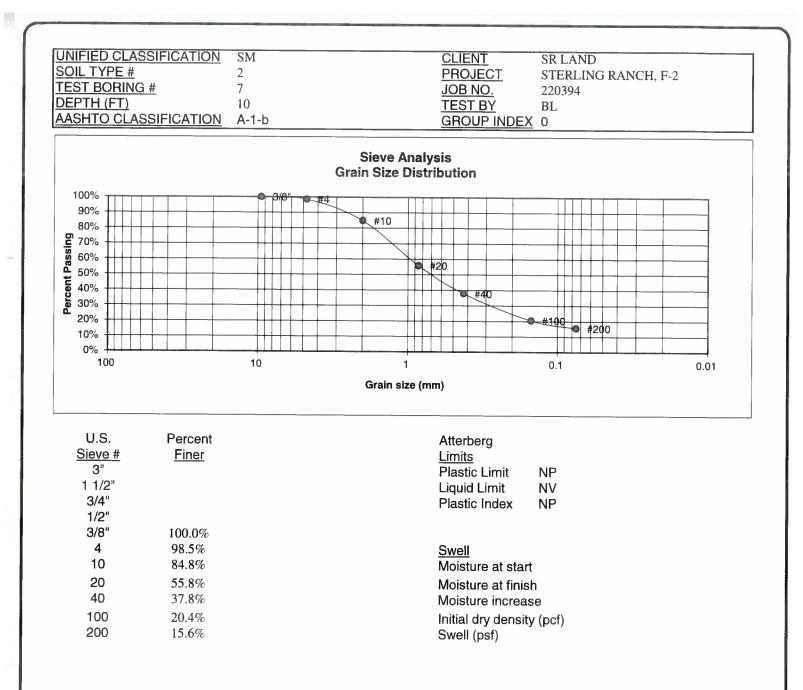

3/4"		Liquid Limit NV Plastic Index NP
1/2"	100.0%	
3/8"	95.2%	
4	91.5%	Swell
10	72.0%	Moisture at start
20	51.8%	Moisture at finish
40	38.8%	Moisture increase
100	23.3%	Initial dry density (pcf)
200	18.3%	Swell (psf)

DRAWN:

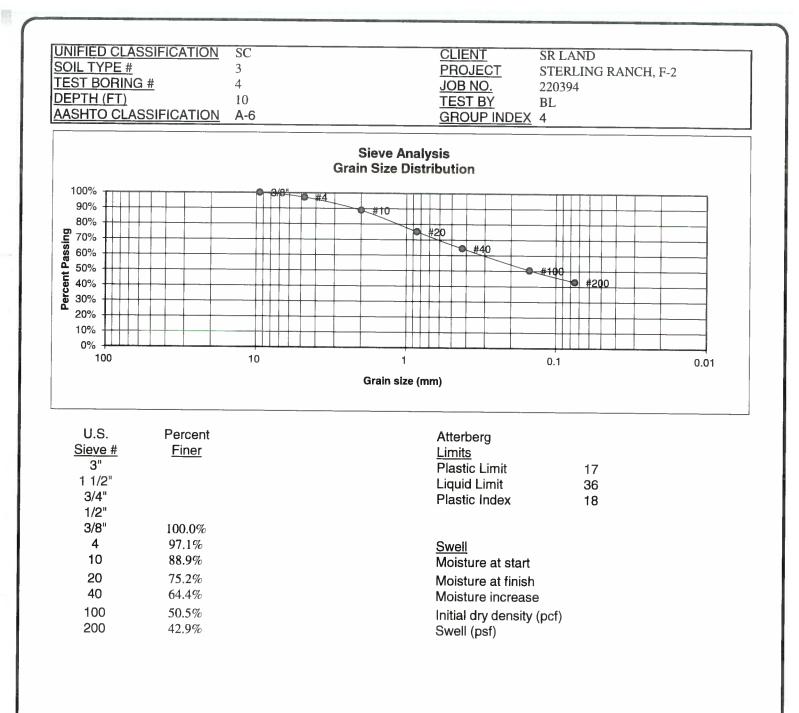
ENTECH
ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907


LABOF RESUL	RATORY TEST	
DATE:	CHECKED:	DATE:

JOB NO .: 220394 FIG NO.: B-7


ENTECH ENGINEERING, INC.		LABORAT RESULTS	ORY TEST			
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:		DATE: 3/16/22	I	

JOB NO.: 220394 FIG NO.: 8-8



3/8"	100.0%	
4	98.6%	Swell
10	84.5%	Moisture at start
20	64.3%	Moisture at finish
40	43.2%	Moisture increase
100	19.8%	Initial dry density (pcf)
200	15.3%	Swell (psf)

ENTECH ENGINEERING, INC.			LABORATORY TEST RESULTS				
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:		DATE: 3116 (22		FIG NO.: B-9

ENTECH ENGINEERING, INC.	LABORAT			BORATORY TEST		JOB NO.: 220394
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907] [DRAWN:	DATE:		DATE:	FIG NO.: 8-16

E
Ξ
50 C (
CC

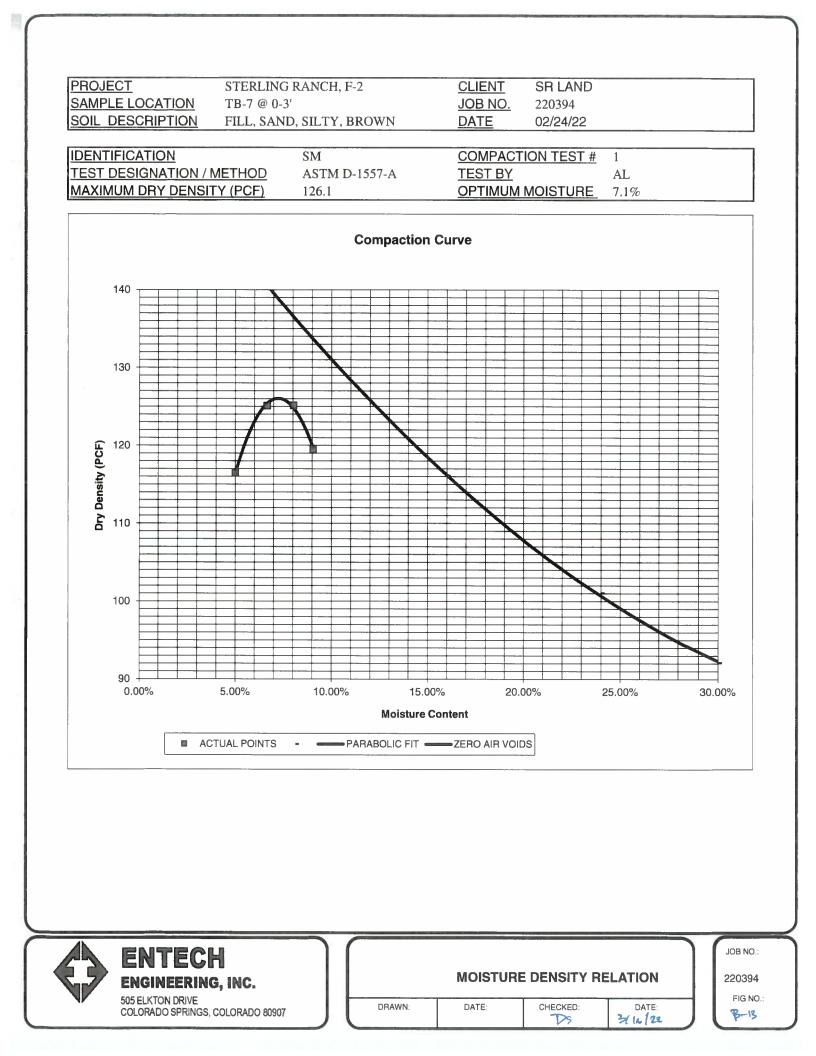
ENTECH	
ENGINEERING, INC.	
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	

DRAWN:

LABOF RESUL	RATORY TEST	
DATE:		DATE: 3/16/22

JOB NO.;
220394
FIG NO.:
B-11

CLIENT	SR LAND	JOB NO.	220394
PROJECT	STERLING RANCH, F-2	DATE	2/25/2022
LOCATION	STERLING RANCH, F-2	TEST BY	BL


BORING NUMBER	DEPTH, (ft)	SOIL TYPE NUMBER	UNIFIED CLASSIFICATION	WATER SOLUBLE SULFATE, (wt%)
TB-2	1-2	1	SM-SW	<0.01
TB-5	1-2	1	SM-SW	<0.01
TB-4	10	2	SC	<0.01

QC BLANK PASS

ENGINEERING, INC. COLORADO SPRINGS, COLORADO 80907

		ATORY TEST		JOB NO.: 220394 FIG NO.:
DRAWN:	DATE:		DATE: Sulze	B-12

CBR TEST LOAD DATA

PISTON

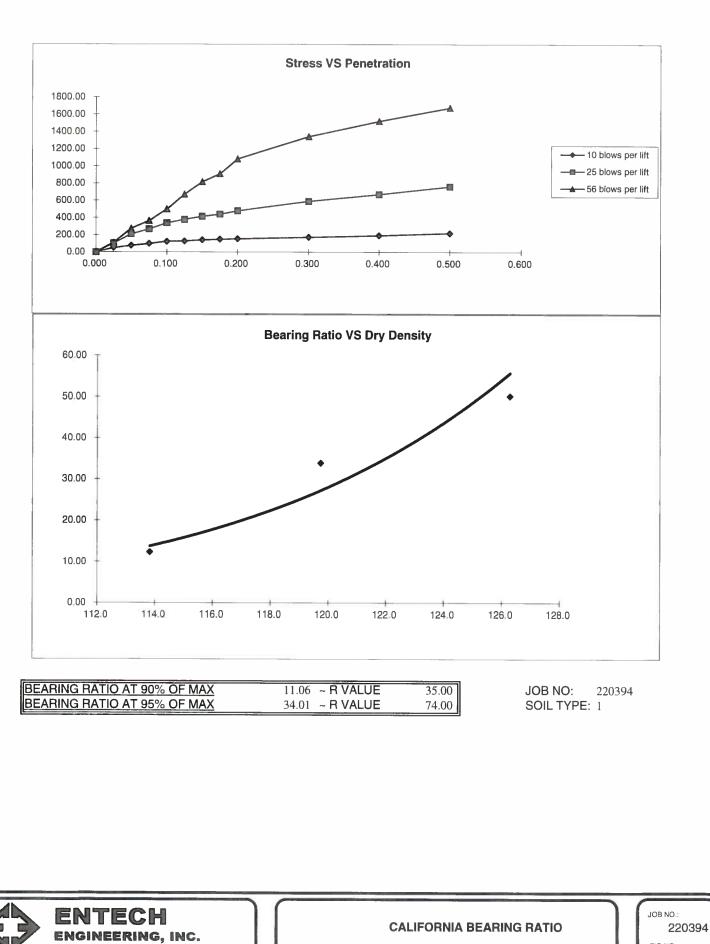
Ł

PISTON

JOB NO: 220394 CLIENT: SR LAND PROJECT: STERLING RANCH, F-2 SOIL TYPE: 1

DIAMETER (cm)	AREA (in ²)		SOIL TYPE:	1		
4.958	2.993					
	10 BLOWS		25 BLOWS		56 BLOWS	
PENETRATION	MOLD #	1	MOLD #	2	MOLD #	3
DEPTH	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS
(INCHES)	(LBS)	(PSI)	(LBS)	(PSI)	(LBS)	(PSI)
0.000	0	0.00	0	0.00	0	0.00
0.025	151	50.46	310	103.59	330	110.28
0.050	226	75.52	628	209.86	824	275.35
0.075	294	98.25	802	268.00	1088	363.57
0.100	370	123.64	1014	338.85	1498	500.58
0.125	380	126.98	1132	378.28	2008	671.01
0.150	422	141.02	1241	414.70	2441	815.70
0.175	443	148.04	1319	440.77	2720	908.94
0.200	463	154.72	1434	479.20	3238	1082.04
0.300	518	173.10	1766	590.14	4017	1342.35
0.400	576	192.48	2010	671.68	4553	1521.47
0.500	659	220.22	2279	761.57	5018	1676.85

FINAL MOISTURE CONTENT


	MOLD #	1	MOLD #	2	MOLD #	3
CAN #		345		348		340
WT. CAN		8.51		6.9		8.56
WT. CAN+WET		283.37		247.82		210.63
WT. CAN+DRY		252.67		22.68		192.34
<u>WT. H20</u>		30.7		225.14		18.29
WT. DRY SOIL		244.16		15.78		183.78
MOISTURE CONTENT		12.57%		1426.74%		9.95%
WET DENSITY (PCF)		121.9		128.2		135.2
DRY DENSITY (PCF)		113.8		119.7		126.3
BEARING RATIO		12.36		33.88		50.06
90% OF DRY DENSITY	113.5					
95% OF DRY DENSITY	115.5					
35 /8 OF DITT DENSITY	119.0					
BEARING RATIO AT 90% OF MAX		11.06	~ R VALUE	35	1	
BEARING RATIO AT 95% OF MAX			~ R VALUE	74		

ENTECH		CBR TEST DATA			
ENGINEERING, INC.					
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:		DATE: 2/14/22	

JOB NO. 220394 FIG NO .: B-14

1

DRAWN:

505 ELKTON DRIVE	
COLORADO SPRINGS.	COLORADO 80907

DATE:	DATE 16/22

APPENDIX C: Pavement Design Calculations

FLEXIBLE PAVEMENT DESIGN

DESIGN DATA

SR LAND, LLC - SOIL TYPE 1 - LOCAL (LOW-VOLUME) BEAVERHEAD CIRCLE CUL-DE-SAC

Equivalent (18 kip) Single Axle Load Applications (ESAL):	ESAL $(W_{18}) =$	36,500
Hveem Stabilometer (R Value) Results:	R =	50
Standard Deviation	$S_{o} = $	0.45
Loss in Serviceability	∆psi =	2.0
Reliability	Reliability =	80
Reliability (z-statistic)	$Z_R =$	-0.84
Soil Resilient Modulus	$M_R =$	13168

Weighted Structural Number (WSN):

DESIGN TABLES AND EQUATIONS

$S_1 = [(R - 5)]$	5) / 11.29] + 3
$M_{\rm R} = 10^{[(S]_{\rm T}]}$	+ 18 72) / 6 24]

k = M_R/19.4 Where:

M_R = resilient modulus (psi)

S1 = the soil support value

R = R-value obtained from the Hveem stabilometer

CBR = California Bearing Ratio

Reliability (%)	Z_R (z-statistic)
80	-0.84
85	-1.04
90	-1.28
93	-1.48
94	-1.56
95	-1.65
96	-1.75
97	-1.88
98	-2.05
99	-2.33
99.9	-3.09
99.99	-3.75

$$\log_{10} \left[\frac{\Delta PSI}{4.2 - 1.5} \right]
 0.40 + \frac{1094}{(SN+1)^{5.19}}$$

+ 2.32*log₁₀M_R- 8.07

WSN =

1.46

Left	Right	Difference
4.56	4.56	0.0

DESIGN CALCULATIONS AGGREGATE BASE COURSE

DESIGN DATA

SR LAND, LLC - SOIL TYPE 1 - LOCAL (LOW-VOLUME)
BEAVERHEAD CIRCLE CUL-DE-SACEquivalent (18 kip) Single Axle Load Applications (ESAL):ESAL = 36,500
R = 50Hveem Stabilometer (R Value) Results:R = 50
WSN = 1.46

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

 D_1 = Depth of Asphalt (inches) D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION

 $D_1 = (WSN)/C_1 = 3.3$ inches of Full Depth Asphalt Use 3.5 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 3 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 1.3$ inches of Aggregate Base Course, use 4.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.0 inches of Asphalt + 4.0 inches of Aggregate Base Course, or
- 3. 3.5 inches of Asphalt

DESIGN CALCULATIONS ASPHALT MILLINGS

DESIGN DATA

SR LAND, LLC - SOIL TYPES 1 AND 2 - LOCAL (LOW-VOLUME)BEAVERHEAD CIRCLE CUL-DE-SACEquivalent (18 kip) Single Axle Load Applications (ESAL):ESAL = 36,500

Hveem Stabilometer (R Value) Results:	R =	50
Weighted Structural Number (WSN):	WSN =	1.46

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.07$ Strength Coefficient - Asphalt Millings

D₁ = Depth of Asphalt (inches) D₂ = Depth of Asphalt Millings (inches)

FOR FULL DEPTH ASPHALT SECTION

 $D_1 = (WSN)/C_1 = 3.3$ inches of Full Depth Asphalt Use 3.5 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 3 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 2.0$ inches of Asphalt Millings Asphalt Millings, use 4.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.0 inches of Asphalt + 4.0 inches of Asphalt Millings, or
- 2. 3.5 inches of Asphalt

DESIGN CALCULATIONS RECYCLED CONCRETE

DESIGN DATA

SR LAND, LLC - SOIL TYPE 1 AND 2 - LOCAL (LOW-VOLUME) BEAVERHEAD CIRCLE CUL-DE-SAC Equivalent (18 kip) Single Axle Load Applications (ESAL): ESAL = 36,500

	×	1/	Ų	11	×		,
Hveem	Stabilo	meter	(R Val	ue) Results:		R =	50
Weighte	ed Struc	ctural I	Numbe	r (WSN):		WSN =	1.46

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.09$ Strength Coefficient - Recycled Concrete

D₁ = Depth of Asphalt (inches)D₂ = Depth of Recycled Concrete (inches)

FOR FULL DEPTH ASPHALT SECTION

 $D_1 = (WSN)/C_1 = 3.3$ inches of Full Depth Asphalt Use 3.5 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 3 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 1.6$ inches of Recycled Concrete Recycled Concrete, use 4.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.0 inches of Asphalt + 4.0 inches of Recycled Concrete, or
- 2. 3.5 inches of Asphalt

FLEXIBLE PAVEMENT DESIGN

DESIGN DATA

SR LAND, LLC - SOIL TYPE 1 AND 2 - LOCAL
BEAVERHEAD CIRCLE, CORDGRASS DRIVE AND BYNUM DRIVEEquivalent (18 kip) Single Axle Load Applications (ESAL):ESAL (W_{18}) = 292,000
ESAL (W_{18}) = 292,000
Hveem Stabilometer (R Value) Results:R= 50

Standard Deviation	$S_{o} = 0.45$
Loss in Serviceability	$\Delta psi = 2.0$
Reliability	Reliability = 80
Reliability (z-statistic)	$Z_{R} = -0.84$
Soil Resilient Modulus	$M_{R} = 13168$

Weighted Structural Number (WSN):

DESIGN TABLES AND EQUATIONS

$S_1 = [(R - 5)$	/ 11.29] + 3
$M_{\rm R} = 10^{[(S_1^+)]}$	18.72) / 6.24]

 $k = M_R / 19.4$

Where:

M_R = resilient modulus (psi)

S₁ = the soil support value

R = R-value obtained from the Hveem stabilometer

CBR = California Bearing Ratio

Reliability (%)	Z _R (z-statistic)
80	-0.84
85	-1.04
90	-1.28
93	-1.48
94	-1.56
95	-1.65
96	-1.75
97	-1.88
98	-2.05
99	-2.33
99.9	-3.09
99.99	-3.75

$$\log_{10}W_{18} = Z_{R} * S_{O} + 9.36*\log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32*\log_{10}M_{R} - 8.07$$

Left	Right	Difference
5.47	5.46	0.0

Job No. 220394 Fig. No. C-5

WSN =

2.09

DESIGN CALCULATIONS AGGREGATE BASE COURSE

DESIGN DATA

SR LAND, LLC - SOIL TYPE 1 - LOCAL

BEAVERHEAD CIRCLE, CORDGRASS DRIVE, AND BYNUM DRIVEEquivalent (18 kip) Single Axle Load Applications (ESAL):ESAL = 292,000Hveem Stabilometer (R Value) Results:R = 50Weighted Structural Number (WSN):WSN = 2.09

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

D₁ = Depth of Asphalt (inches) D₂ = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION

 $D_1 = (WSN)/C_1 = 4.8$ inches of Full Depth Asphalt Use 5.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 3.5 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 5.0$ inches of Aggregate Base Course, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.5 inches of Asphalt + 8.0 inches of Aggregate Base Course, or
- 3. 5.0 inches of Asphalt

DESIGN CALCULATIONS ASPHALT MILLINGS

DESIGN DATA

SR LAND, LLC - SOIL TYPES 1 AND 2 - LOCAL
BEAVERHEAD CIRCLE, CORDGRASS DRIVEAND BYNUM DRIVEEquivalent (18 kip) Single Axle Load Applications (ESAL):ESAL = 292,000Hveem Stabilometer (R Value) Results:R = 50Weighted Structural Number (WSN):WSN = 2.09

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.07$ Strength Coefficient - Asphalt Millings

D₁ = Depth of Asphalt (inches)D₂ = Depth of Asphalt Millings (inches)

FOR FULL DEPTH ASPHALT SECTION

 $D_1 = (WSN)/C_1 = 4.8$ inches of Full Depth Asphalt Use 5.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 3.5 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 7.9$ inches of Asphalt Millings Asphalt Millings, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.5 inches of Asphalt + 8.0 inches of Asphalt Millings, or
- 2. 5.0 inches of Asphalt

DESIGN CALCULATIONS RECYCLED CONCRETE

DESIGN DATA

SR LAND, LLC - SOIL TYPE 1 AND 2 - LOCAL
BEAVERHEAD CIRCLE, CORDGRASS DRIVE AND BYNUM DRIVEEquivalent (18 kip) Single Axle Load Applications (ESAL):ESAL = 292,000Hveem Stabilometer (R Value) Results:R = 50Weighted Structural Number (WSN):WSN = 2.09

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.09$ Strength Coefficient - Recycled Concrete

D₁ = Depth of Asphalt (inches) D₂ = Depth of Recycled Concrete (inches)

FOR FULL DEPTH ASPHALT SECTION

 $D_1 = (WSN)/C_1 = 4.8$ inches of Full Depth Asphalt Use 5.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 3.5 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 6.2$ inches of Recycled Concrete Recycled Concrete, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.5 inches of Asphalt + 8.0 inches of Recycled Concrete, or
- 2. 5.0 inches of Asphalt

FLEXIBLE PAVEMENT DESIGN

DESIGN DATA

SR LAND, LLC - SOIL TYPES 1 AND 2 - RESIDENTIAL COLLECTOR

ALZADA DRIVE

Equivalent (18 kip) Single Axle Load Applications (ESAL):	$ESAL(W_{18}) =$	821,000	
Hveem Stabilometer (R Value) Results:	R =	50	
Standard Deviation	$S_o =$	0.45	
Loss in Serviceability	∆psi =	2.5	
Reliability	Reliability =	85	
Reliability (z-statistic)	$Z_R =$	-1.04	
Soil Resilient Modulus	$M_R =$	13168	
Weighted Structural Number (WSN):		WSN =	2.52

DESIGN TABLES AND EQUATIONS

 $S_1 = [(R - 5) / 11.29] + 3$ $M_R = 10^{[(S_1 + 1872) / 624]}$

 $k = M_R/19.4$ Where: M_R = resilient modulus (psi) S_1 = the soil support value R = R-value obtained from the Hveem stabilometer CBR = California Bearing Ratio

Reliability (%)	Z_R (z-statistic)	
80	-0.84	
85	-1.04	
90	-1.28	
93	-1.48	
94	-1.56	
95	-1.65	
96	-1.75	
97	-1.88	
98	-2.05	
99	-2.33	
99.9	-3.09	
99.99	-3.75	

$$\log_{10}W_{18} = Z_R^* S_O^+ 9.36^* \log_{10}(SN+1) - 0.20 +$$

$$\log_{10} \left[\frac{\Delta PSI}{4.2 - 1.5} \right]$$

$$0.40 + \frac{1094}{(SN+1)^{5.19}}$$

+ $2.32*\log_{10}M_{R}$ - 8.07

Left	Right	Difference
5.91	5.91	0.0

DESIGN CALCULATIONS AGGREGATE BASE COURSE

DESIGN DATA

SR LAND, LLC - SOIL TYPES 1 AND 2 RESIDENTIAL COLLECTOR ALZADA DRIVE Equivalent (18 kip) Single Axle Load Applications (ESAL): ESAL = 821,000 Hyeem Stabilometer (R Value) Results: R = 50

Treen Stabhometer (R value) Results.	K =	50
Weighted Structural Number (WSN):	WSN =	2.52

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

 D_1 = Depth of Asphalt (inches) D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION

 $D_1 = (WSN)/C_1 = 5.7$ inches of Full Depth Asphalt Use 6.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 6.9$ inches of Aggregate Base Course, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 4.0 inches of Asphalt + 8.0 inches of Aggregate Base Course, or
- 3. 6.0 inches of Asphalt

DESIGN CALCULATIONS ASPHALT MILLINGS

DESIGN DATA

SR LAND, LLC - SOIL TYPE 1 AND 2 - RESIDENTIAL COLLECTOR
ALZADA DRIVEEquivalent (18 kip) Single Axle Load Applications (ESAL):ESAL = 821,000Hveem Stabilometer (R Value) Results:R = 50Weighted Structural Number (WSN):WSN = 2.52

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.07$ Strength Coefficient - Asphalt Millings

 D_1 = Depth of Asphalt (inches) D_2 = Depth of Asphalt Millings (inches)

FOR FULL DEPTH ASPHALT SECTION

 $D_1 = (WSN)/C_1 = 5.7$ inches of Full Depth Asphalt Use 6.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 5 inches 4.5 inches of Asphalt Millings Asphalt Millings, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 5.0 inches of Asphalt + 8.0 inches of Asphalt Millings, or
- 2. 6.0 inches of Asphalt

DESIGN CALCULATIONS RECYCLED CONCRETE

DESIGN DATA

SR LAND, LLC - SOIL TYPE 1 AND 2 - RESIDENTIAL COLLECTOR
ALZADA SRIVEEquivalent (18 kip) Single Axle Load Applications (ESAL):ESAL = 821,000Hveem Stabilometer (R Value) Results:R = 50Weighted Structural Number (WSN):WSN = 2.52

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.09$ Strength Coefficient - Recycled Concrete

D₁ = Depth of Asphalt (inches)D₂ = Depth of Recycled Concrete (inches)

FOR FULL DEPTH ASPHALT SECTION

 $D_1 = (WSN)/C_1 = 5.7$ inches of Full Depth Asphalt Use 6.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 4.5 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 6.0$ inches of Recycled Concrete Recycled Concrete, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 4.5 inches of Asphalt + 8.0 inches of Recycled Concrete, or
- 2. 6.0 inches of Asphalt