FINAL DRAINAGE REPORT FOR STERLING RANCH FILING NO. 2

Prepared For: SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

Engineering Review

07/31/2020 12:20:53 PM dsdrice JeffRice@elpasoco.com (719) 520-7877

EPC Planning & Community Development Department

See comment letter also.

May 2020 Project No. 25188.01

Prepared By: JR Engineering, LLC 5475 Tech Center Drive Colorado Springs, CO 80919 719-593-2593

SF-20-015 PCD File No. SF-1820

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. # 32314	
For and On Behalf of JR Engineering, LLC	

Date

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

SR Land, LLC

By:

Title: Address:

20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E. County Engineer/ ECM Administrator Date

Conditions:

CONTENTS

PURPOSE	1
GENERAL LOCATION AND DESCRIPTION	1
LOCATION DESCRIPTION OF PROPERTY FLOODPLAIN STATEMENT	1
DRAINAGE BASINS AND SUB-BASINS	2
Existing Major Basin Descriptions Existing Sub-basin Drainage Proposed Sub-basin Drainage	3
DRAINAGE DESIGN CRITERIA	10
Development Criteria Reference Hydrologic Criteria Hydraulic Criteria	10
DRAINAGE FACILITY DESIGN	11
GENERAL CONCEPT SPECIFIC DETAILS Four Step Process to Minimize Adverse Impacts of Urbanization Water Quality Erosion Control Plan Operation & Maintenance Sand Creek Drainageway Improvements Drainage & Bridge Fees	11 12 13 13 13 13 14
Construction Cost Opinion	
SUMMARY	15
REFERENCES:	16

APPENDICES

- A. Figures and Exhibits
- B. Hydrologic/Hydraulic CalculationsC. Detention and Water Quality Calculations
- D. Reference Materials
- E. Drainage Maps

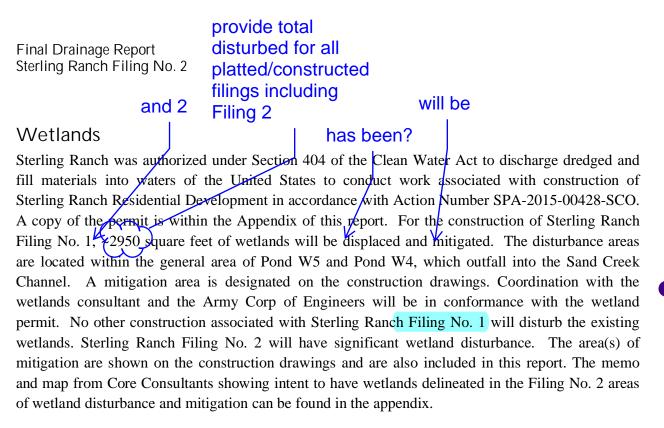
Purpose

This document is the Final Drainage Report for Sterling Ranch Filing No.2. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual. The following report is an analysis of the drainage for the entire development and surrounding areas.

GENERAL LOCATION AND DESCRIPTION

Location

Sterling Ranch Filing No. 2 is located in Section 32, Township 12 South, Range 65 West of the 6th Principal Meridian, Section 33, Township 12 South, Range 65 West of the 6th Principal Meridian and Section 4, Township 13 South, Range 65 West of the 6th Principal Meridian within unincorporated El Paso County, Colorado. The site is bound on the west by existing Vollmer Road. The site is bound on the north by the Barbarick Subdivision. The property is bound to the east by the Sterling Ranch Phase 2 and Vollmer Road to the west. The site is bound on the south by Sterling Ranch Road and Marksheffel Road. Sterling Ranch lies within the Sand Creek Drainage Basin. Flows from this site are tributary to Sand Creek.


Description of Property

— verify with updated plat

Sterling Ranch Filing No. 2 consists of 49.643 acres and is presently undeveloped. Vegetation is sparse, consisting of native grasses. Existing site terrain generally slopes from north to south at grade rates that vary between 2% and 8%.

Sterling Ranch Filing No. 2 is currently zoned "RS-5000" for residential single family development. Improvements proposed for the site include paved, streets, trails, utilities, and storm drainage improvements, drainage swales, and detention ponds as normally constructed for a residential development. Two full spectrum detention facilities are proposed to be constructed to provide water quality treatment and detain stormwater for the development. The proposed water quality and detention facilities will also be designed to incorporate the Sterling Ranch Phase 2 and Copper Chase at Sterling Ranch developments as well as other offsite areas. Approximately 174 acres are tributary to Pond W5 which includes all 49 acres of Sterling Ranch Filing No. 2. Approximately 350.74 acres of offsite area are tributary to Pond W-4.

Soils for this project are classified as Blakeland Loamy Sand (8), Flakeland-Fluvaquentic Haplaquolis (9) and Columbine Gravelly Sandy Loam (19). These soils are characterized as Hydrologic Soil Types "A". Group A soils exhibit high infiltration rates when thoroughly wet, and consist mainly of deep, well drained to excessively drained sands or gravelly sands. Pring Coarse Sandy Loam (71) is characterized as Hydrologic Soil Types "B". Group B soils exhibit moderate infiltration rate when thoroughly wet, and consist primarily of deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. A soil map of the site can be found in Appendix A.

Floodplain Statement

Based on the FEMA FIRM Maps number 08041C0533G, dated December 7, 2018, a portion of the project site that is adjacent to the existing drainageway lies within Zone AE. Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event. The majority of the proposed development lies within Zone X. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. No grading operations are proposed within the Zone AE at this time. FIRM Maps have been presented in Appendix A.

DRAINAGE BASINS AND SUB-BASINS

Existing Major Basin Descriptions

The Sterling Ranch Filing No. 2 site consists of 49.643 acres and is located in the Sand Creek Drainage Basin. This area was previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996. More recently the area was studied in the "Preliminary Drainage Report for Sterling Ranch-Phase 1", dated May 2015, by M&S Civil Consultants, Inc. Address MDDP

The Sand Creek DBPS assumed the Sterling Ranch property to have a "large lot residential" use for the majority of the site. However, the proposed master plan is a mix of; school, multi-family, single-family, and commercial land uses, resulting in higher runoff. The site generally drains from north to south consisting of rolling hills. Currently, the site is used as pasture land for cattle. Sand Creek is located east of the site running north to south. This reach of drainage conveyance is not currently improved. There are a few stock ponds within the creek channel used for cattle watering.

— Phase 2?

— existing

A planned subdivision to the north of the proposed site known as Barbarick Subdivision will release flows onto the Sterling Ranch Filing No. 2 site. These flows are collected by detention ponds and are released at the north property line of the proposed Sterling Ranch Filing No. 2 site. See "Final Drainage Report for Barbarick Subdivision, Portions of Lots 1, 2 and Lots 3 & 4, by Matrix Design Group, June 2016". These offsite flows have been accounted for in order to ensure the proposed storm sewer infrastructure will have adequate capacity. If future offsite development occurs upstream of Sterling Ranch from the west, the properties will be required to detain to historic/ existing conditions per the County / City drainage criteria. A proposed drainage map showing these offsite basins can be found in Appendix E.

The following drainage basin narratives are based on information derived from field visits, USGS topographic mapping, aerial topography, field surveys and information provided by others familiar with the site. A "sheet flow" verses "concentrated ditch flow" designation was determined as best as possible from the available source topography, actual conditions may vary. A summary of peak runoff for the basins and designated design points are depicted on the Existing Conditions Drainage Map in the appendix.

Existing Sub-basin Drainage

Basin EXA1 ($Q_5=7.2$ cfs, $Q_{100}=12.1$ cfs) is 17.68 acres and is primarily open space and the existing Vollmer road. Runoff from this basin drains to the south east to DP 1 where it ultimately outfalls into the Sand Creek Drainageway.

Basin EXA2 ($Q_5=5.4$ cfs, $Q_{100}=9.0$ cfs) is 19.59 acres and is primarily open space and the existing Vollmer Road. Runoff from this basin drains to the south east to DP 2. Runoff is captured by an existing swale at DP 4.1 where it is conveyed to the Sand Creek Drainageway. (Sand Creek tributary reach 159?)

Basin EXA3 ($Q_5=1.4$ cfs, $Q_{100}=2.3$ cfs) is 5.66 acres and is primarily open space. Runoff from this basin drains south to DP 3 where it ultimately outfalls into the Sand Creek Drainageway.

Basin EXA4 ($Q_5=10.6$ cfs, $Q_{100}=17.8$ cfs) is 50.72 and is primarily open space. Runoff from this basin drains to the south to DP 4. Runoff is then captured by an existing swale at DP 4.1 where it is conveyed to the Sand Creek Drainageway.

Basin EXB ($Q_5=3.0$ cfs, $Q_{100}=5.0$ cfs) is 11.78 acres and is comprised of open space and a portion of Sand Creek along the eastern most portion of the Sterling Ranch Filing No. 2 site. Runoff from this basin drains into Sand Creek.

Basin OS1 ($Q_5=23.9$ cfs, $Q_{100}=40.1$ cfs) is 23.82 acres and is located just north of the site. Flows from this sub-basin flow directly onto basin A4. Runoff from this sub-basin eventually flow to the existing swale at DP 4.1 where it is conveyed into Sand Creek.

Basin OS2 ($Q_5=37.3$ cfs, $Q_{100}=62.6$ cfs) is comprised of 85.59 acres. Flows from this sub-basin flow directly onto basin A4. Runoff from this sub-basin eventually flow to the existing swale at DP 4.1 where it is conveyed into Sand Creek.

Basin OS3 ($Q_5=1.8$ cfs, $Q_{100}=3.1$ cfs) is 6.66 acres and is located just north of the site. Flows from this sub-basin flow directly onto basin A4. Runoff from this sub-basin eventually flow to the existing swale at DP 4.1 where it is conveyed into Sand Creek.

Basin OS4 ($Q_5=0.5$ cfs, $Q_{100}=0.9$ cfs) is 2.19 acres is comprised of open space just north of the site. Runoff from this basin drains south directly onto Basin B1 where it outfalls directly into Sand Creek.

Basin OS5 ($Q_5=7.5$ cfs, $Q_{100}=23.4$ cfs) is 9.27 acres and is comprised of existing single family residential. Runoff from this site drains southwest onto basin A4 where it eventually flows to the existing swale at DP 4.1. From here, it is conveyed south into Sand Creek.

Proposed Sub-basin Drainage

Address OS20, OS21A and OS21B and address DPBS and MDDP flows.

The following is a description of the offsite and onsite basins, offsite bypass flows and the overall future drainage characteristics for the development of Sterling Ranch Filing No. 2. Ponds W4 and W5 are sized for the ultimate development, therefore, future developments have been included. As the future sites develop, final drainage reports will be completed to confirm the assumptions made in this report. Calculations have been provided to show the proposed storm infrastructure will adequately convey flows in the ultimate condition. The following basins parameters and developed runoff were determined using the Rational Method. Surface flow is designated as design points with whole numbers (1) and storm sewer routing as design points with decimals (1.0). See Appendix B for all Rational Method calculations and storm water routing.

Basin A consists of Sub-Basins A1-A22 combining for a total of 123.19 acres. This basin represents all 49.643 acres of the proposed Sterling Ranch Filing 2 development. This basin is primarily single-family residential, roadway and minor open space. This basin also contains future commercial sites, the future Sterling Ranch Phase 2 development, the proposed Copper Chase at Sterling Ranch Development and a proposed school site. Stormwater runoff is conveyed via public streets where it is captured via a series of on-grade and sump inlets. Runoff is then piped to a proposed onsite Full Spectrum Detention Pond W5. From the detention pond, the treated flows are then released directly into the Sand Creek Drainageway at below historic rates.

Sub-basin A1 (Q_5 =4.4 cfs, Q_{100} =9.4 cfs) consists of approximately 2.06 acres and is the northern most portion of the Sterling Ranch Filing No. 2 Phase 1 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter then captured by a 10' on-grade inlet at DP 1. From here, the flow is piped to Pond W5.

Sub-basin A2 ($Q_5=1.9$ cfs, $Q_{100}=3.9$ cfs) consists of approximately 0.82 acres and is the north eastern most portion of the Sterling Ranch Filing No. 2 Phase 1 development. This basin is primarily multifamily residential and minor open space. Runoff from this sub-basin will be conveyed via sheet

flow and curb and gutter then captured by a 10' Type R on-grade inlet at DP 2. From here, the flow is piped to Pond W5.

Sub-basin A3 ($Q_5=11.1$ cfs, $Q_{100}=24.7$ cfs) consists of approximately 6.76 acres and is the north western most portion of the Sterling Ranch Filing No. 2 Phase 1 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type-R on-grade inlet at DP 3. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1 & A2.

Sub-basin A4 ($Q_5=3.7$ cfs, $Q_{100}=7.4$ cfs) consists of approximately 1.51 acres and is the southern portion of Alzada Drive and this basin is primarily single-family residential(Copper Chase at Sterling Ranch) and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 10' Type-R on-grade inlet at DP 4. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A3.

Sub-basin A5 (Q_5 =4.1 cfs, Q_{100} =8.3 cfs) consists of approximately 1.70 acres and is the western portion of Bynum Drive. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 5. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A4.

— mail kiosks, parking, landscaping, sidewalks

Sub-basin A6A ($Q_5=2.2$ cfs, $Q_{100}=4.1$ cfs) consists of approximately 0.53 acres. This basin will serve as a commercial tract. Runoff from this sub-basin will sheet flow to DP 6A where it flows via curb and gutter to the 15' Type R inlet at DP6. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A5.

Sub-basin A6 ($Q_5=3.3$ cfs, $Q_{100}=6.6$ cfs) consists of approximately 1.37 acres and is the eastern portion of Bynum Drive. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R inlet on-grade inlet at DP 6. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A6A.

Sub-basin A7 ($Q_5=27.5$ cfs, $Q_{100}=60.6$ cfs) represents the future Copper Chase at Sterling Ranch development and consists of approximately 19.00 acres. This basin is primarily single-family residential and open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 36" RCP storm sewer stub at DP 7. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A6. Prior to being developed, storm runoff from this sub-basin will overland flow to temporary swales, where the flows will be captured by an interim 36" FES and piped to Pond W5.

Sub-basin A8 ($Q_5=3.0$ cfs, $Q_{100}=6.3$ cfs) consists of approximately 1.48 acres and is the south western portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 8. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A7.

Sub-basin A9 ($Q_5=1.9$ cfs, $Q_{100}=3.7$ cfs) consists of approximately 0.61 acres and is the south eastern portion of Sterling Ranch Road. This basin is comprised primarily of the proposed roadway. Runoff

from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 9. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A8.

Sub-basin A10 ($Q_5=9.2$ cfs, $Q_{100}=17.3$ cfs) consists of approximately 2.61 acres and is the south western portion of Marksheffel Road. This basin is comprised primarily of the proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 10. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A9.

Sub-basin A11 ($Q_5=9.5$ cfs, $Q_{100}=18.1$ cfs) consists of approximately 2.89 acres and is the north western portion of Marksheffel Road. This basin is comprised primarily of the proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 11. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A10.

Sub-basin A12 ($Q_5=1.9$ cfs, $Q_{100}=9.5$ cfs) consists of approximately 3.87 acres and represents the open space area between the Sterling Ranch Filing No. 2 Phases 1 & 2 developments. This basin is primarily open space. This basin also contains a 50' and 30' gas easement that contain 3 major gas lines. Runoff from this sub-basin will be conveyed via sheet flow and earthen swale to an area inlet at DP 12. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A11.

Sub-basin A13 ($Q_5=15.7$ cfs, $Q_{100}=34.6$ cfs) consists of approximately 9.65 acres and is the northern portion of the future Sterling Ranch Phase 2 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be captured by a storm sewer stub at DP 13. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A12. Prior to being developed, storm runoff from this sub-basin will overland flow to temporary swales, where the flows will be captured by an interim 36" FES and piped to Pond W5.

Sub-basin A14 ($Q_5=16.0$ cfs, $Q_{100}=37.9$ cfs) consists of approximately 11.76 acres and is the proposed future school site on the northern side of Sterling Ranch Road. Runoff from this sub-basin will be routed to a 36" RCP storm sewer stub at DP 14. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A13. Prior to being developed, storm runoff from this sub-basin will overland flow to temporary swales, where the flows will be captured by an interim 36" FES and piped to Pond W5.

Sub-basin A15 ($Q_5=5.4$ cfs, $Q_{100}=11.7$ cfs) consists of approximately 2.91 acres and is the north eastern portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 15. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A14.

Sub-basin A16 (Q_5 =4.4 cfs, Q_{100} =9.6 cfs) consists of approximately 2.34 acres and is the south eastern portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 16. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A15.

Sub-basin A17 ($Q_5=1.4$ cfs, $Q_{100}=4.7$ cfs) consists of approximately 1.76 acres and is the open space located along the western portion of the sterling Ranch Phase 2 development south of Sterling Ranch

future –

Road. This basin is primarily single-family open space with a small amount of lot runoff. Runoff from this sub-basin will be captured by a future Type C inlet at DP 17 and coveyed via sheet flow and a drainage swale. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A16.

anticipated to be

Sub-basin A18 (Q_5 =4.3 cfs, Q_{100} =14.0 cfs) consists of approximately 5.27 acres and is the commercial site and open space located at the corner of Sterling Ranch Road and Marksheffel Road. This basin is primarily open space and a commercial lot. Runoff from this sub-basin will sheetflow to a 24" RCP storm sewer stub located at DP 18. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A17.

Sub-basin A19 ($Q_5=38.8$ cfs, $Q_{100}=85.4$ cfs) consists of approximately 31.85 acres and is the southern portion of the future Sterling Ranch Phase 2 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be routed to a 42" storm sewer stub at DP 19 via curb and gutter and storm sewer. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A18. Prior to being developed, stormwater runoff from this sub-basin will overland flow directly into Pond W5.

Sub-basin A20 ($Q_5=6.6$ cfs, $Q_{100}=12.2$ cfs) consists of approximately 1.83 acres and is the south western portion of Marksheffel Road. This basin is primarily proposed roadway and landscaping. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a future 15' Type R on-grade inlet at DP 20. From here, the flow is piped directly to Pond W5 along with the flows from Sub-basin A21.

Sub-basin A21 ($Q_5=6.8$ cfs, $Q_{100}=12.6$ cfs) consists of approximately 1.93 acres and is the south eastern portion of Marksheffel Road. This basin is primarily proposed roadway and landscaping. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a future 15' Type R on-grade inlet at DP 21. From here, the flow is piped directly to Pond W5 along with the flows from Sub-basin A20.

Sub-basin A22 ($Q_5=2.7$ cfs, $Q_{100}=15.4$ cfs) consists of approximately 8.68 acres and represents Pond W5. This basin is primarily multifamily residential and open space. Runoff from this sub-basin will sheet flow directly into Pond W5 and be conveyed to DP 22. From here, the flow will combine with the runoff from Basin A. An outlet structure will release the treated flows directly into the Sand Creek Drainageway.

Basin B consists of Sub-Basins B1-B5 combining for a total of 13.77 acres. This basin represents Vollmer Road and Pond W4. This basin is primarily proposed roadway. Stormwater runoff is conveyed via Vollmer Road where it is captured via a series of on-grade and sump inlets. Runoff is then piped to a proposed roadside swale where it will ultimately outfall into the onsite Pond W4. From the detention pond, the treated flows are then released into a storm sewer system that conveys them directly into the Sand Creek Drainageway at below historic rates along with the treated flows from Pond W5.

— north of ...

Sub-basin B1 ($Q_5=8.8$ cfs, $Q_{100}=15.8$ cfs) consists of approximately 2.98 acres and is the north eastern portion of Vollmer Road. This basin is primarily proposed roadway and landscaping. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 23. From here, the flow is piped to a proposed roadside swale. This swale will convey the runoff from Sub-basin B1 to Pond W4.

Vollmer Road plans are needed.

clarify locations

Sub-basin B2 ($Q_5=11.5$ cfs, $Q_{100}=20.6$ cfs) consists of approximately 3.89 acres and is the north western portion of Vollmer Road. This basin is primarily proposed roadway and landscaping. Runoff from this sub-basin will be conveyed via curb and gutter and sheet flow then captured by a 15' Typr R on-grade inlet at DP 24. From here, the flow is piped to a proposed roadside swale. This swale will convey the runoff from Sub-basin B1 and Sub-basin B2 to Pond W4.

Sub-basin B3 ($Q_5=7.8$ cfs, $Q_{100}=14.0$ cfs) consists of approximately 2.05 acres and is the south eastern portion of Vollmer Road. This basin is primarily proposed of roadway and landscaping. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter then captured by a 15' Type R sump inlet at DP 27. From here, the flow is piped directly to Pond W4.

Sub-basin B4 ($Q_5=7.4$ cfs, $Q_{100}=13.2$ cfs) consists of approximately 1.94 acres and is the south eastern portion of Vollmer Road. This basin is primarily proposed roadway and landscaping. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter then captured by a 15' Type R sump inlet at DP 28. From here, the flow is piped directly to Pond W4.

Sub-basin B5 ($Q_5=0.9$ cfs, $Q_{100}=6.4$ cfs) consists of approximately 2.91 acres and represents Pond W4. This basin is primarily open space. Runoff from this sub-basin will sheet flow directly into Pond W4 and be conveyed to DP 30. From here, the flow will combine with the runoff from Basin B, and Basins OS20 & OS21. An outlet structure will release the treated flows directly into the Sand Creek Drainageway along with treated flows from Pond W5Via ___ LF of ___ " RCP running southeast along the west side of Marksheffel road

Basin C consists of Sub-Basins C1-C2 combining for a total of 13.07 acres. This basin represents the future commercial sites located along Marksheffel Road. This basin is primarily proposed roadway and future commercial developments. Stormwater runoff is conveyed via a drainage swale to a 66" RCP where it combines with treated flows from Pond W5 and is released into Sand Creek.

Sub-basin C1 ($Q_5=2.0$ cfs, $Q_{100}=15.0$ cfs) consists of approximately 8.01 acres and is the commercial lot located at the corner of Vollmer Road and Marksheffel Road. Runoff from this sub-basin will be captured by a future onsite water quality pond, where it will release to a storm sewer stub located at DP 31. From here, the flow is piped directly to the Sand Creek Drainageway along with treated flows from Pond W5 and Pond W4. In the interim condition, flows will enter an earthen swale at DP 31 and will be routed through Sub-basin C2 to DP 32 Address culvert entry design to

capture all flows at this point

Sub-basin C2 ($Q_5=1.4$ cfs, $Q_{100}=10.0$ cfs) consists of approximately 5.06 acres located in the southwest corner of the development and has the Sanitary Sewer Lift Station for Sterling Ranch. Runoff from this sub-basin will be captured by a future onsite water quality pond, where it will release to a storm sewer stub located at DP 32. From here, the flow is piped directly to the Sand Creek Drainageway along with treated flows from Pond W4 and Pond W5. In the interim condition, flows generated within this basin combine with the flows from sub-basin C1 in an earthen swale where they will enter a 66" RCP where the flow is piped directly to the Sand Creek Drainageway along with treated flows from Pond W5.

Basin OS consists of Sub-Basins OS2-OS4, OS20, OS21A, and OS21B combining for a total of 387.75 acres. This basin represents the offsite flows that have been incorporated in the storm sewer and pond design. Sub basins OS20, OS21A, and OS21B represent the low density residential land located to the west of the site along Vollmer Road. Sub-basins OS2 and OS3 represent the future Barbarick Subdivision directly north of the site. Sub-basin OS4 represents the existing residential

Address culvert entry design to capture flows at OS2 and OS3, and how any overflows will be conveyed 8

lots located just east of the Pond W5 location. Flows from these sub-basins enter the site or are captured directly by one of the proposed detention ponds. Each sub-basin is discussed in more detail below.

below. how calculated? provide MDDP values also Sub-basin OS20 (Q_5 =33.7 cfs, Q_{100} =226.1 cfs) consists of approximately 308.0 acres and represents the offsite basin to the northwest of the site. This basin is comprised of partially developed low density residential. Runoff from this basin overland flows to a roadside swale along Vollmer Road. Flows in the swale will be routed through an existing 3.5' x 5.5' HECMP at DP 25 where it will outfall into Pond W4. A riprap apron will be constructed to dissipate energy and prevent local scour at the outlet.

Sub-basin OS21A ($Q_5=2.8$ cfs, $Q_{100}=18.7$ cfs) consists of approximately 20.26 acres and represents the offsite basin to the west of the site. This basin is comprised of partially developed low density residential. Runoff from this basin overland flows to a roadside swale along Vollmer Road at DP 26. Flows in the swale will outfall directly into Pond W4. A riprap apron will be constructed to dissipate energy and prevent local scour at the outlet.

Sub-basin OS21B ($Q_5=2.1$ cfs, $Q_{100}=14.5$ cfs) consists of approximately 8.71 acres and represents the offsite basin to the west of the site. This basin is comprised of partially developed low density residential. Runoff from this basin will overland flow to a propose Type D inlet at DP 29. Flows will then outfall directly into Pond W4 and will utilize a forebay to dissipate energy. From here, the flows will be treated and outfall into the Sand Creek Drainageway.

Sub-basin OS2 ($Q_5=13.8$ cfs, $Q_{100}=39.1$ cfs) consists of approximately 17.0 acres and represents the western portion of the Barbarick Subdivision. Developed flows from this basin will be captured by a future onsite detention pond and released directly onto the Sterling Ranch Filing No. 2 Site. A storm sewer stup has been proposed to capture these flows at DP OS2. From here, the treated flows will be piped to Pond W5 where it will ultimately outfall into the Sand Creek Drainageway.

Sub-basin OS3 ($Q_5=17.6$ cfs, $Q_{100}=48.9$ cfs) consists of approximately 28.7 acres and represents the eastern portion of the Barbarick Subdivision. Developed flows from this basin will be captured by a future onsite detention pond and released directly onto the Sterling Ranch Filing No. 2 Site. A storm sewer stub has been proposed to capture these flows at DP OS3. From here, the treated flows will be piped to Pond W5 where it will ultimately outfall into the Sand Creek Drainageway.

Sub-basin OS4 ($Q_5=2.6$ cfs, $Q_{100}=8.8$ cfs) consists of approximately 5.08 acres and represents the existing residential lots to the east of the proposed Pond W5. Existing flows from this basin will overland flow directly onto the Sterling Ranch Filing No. 2 Site into Pond W5. From here, the treated flows will outfall into the Sand Creek Drainageway.

There will be bank stabilization improvements to the Sand Creek Drainage Channel with the development of the Sterling Ranch Filing No. 2 site to maintain the integrity of Pond W5. However, channel improvements for Sand Creek (checks, drops, etc.) will be installed in accordance with the analysis performed by Kiowa Engineering

(awaiting resubmittal)

DRAINAGE DESIGN CRITERIA

Development Criteria Reference

Storm drainage analysis and design criteria for the project were taken from the "*City of Colorado Spring/El Paso County Drainage Criteria Manual*" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "*Urban Storm Drainage Criteria Manual*" Volumes 1 - 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County.

Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. One hour point rainfall data for the storm events is identified in the table below. Rational Method calculations were prepared, in accordance with Section 3.0 of the EPCDCM, for the sub-basins that directly impact the sizing of the proposed storm sewer outfalls. Rational method calculations are presented in Appendix B.

K

Storm	Rainfall (in.)
5-year	1.50
100-year	2.52

Hydraulic Criteria

Mile High Flood District's MHFD-Detention, Version 4.03 workbook was used for pond sizing. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. Pond sizing spreadsheets are presented in Appendix C. The Mile High Flood District's spreadsheet UD_Inlet v4.05, released March 2017, was also utilized to determine street and inlet capacities of the development. Using Storm StormCAD V8i, a modeling program for stormwater drainage, the hydraulic grade lines and energy grade lines were determined for the storm sewer network. Manhole and pipe losses for the model were obtained from the <u>Modeling Hydraulic</u> and <u>Energy Gradients in Storm Sewers: A Comparison of Computation Methods</u>, by AMEC Earth & Environmental, Inc. The manhole loss coefficients used in the model can be seen in Table 2. StormCAD results along with street and inlet capacities are presented in Appendix B.

	StormCA	D Conversion Ta	ble							
	Bend Angle	Bend								
SSC	7 (ligic)	0.05								
Bend Loss	22.5	0.1								
enc	45	0.4								
B	60	0.64	1							
	90	1.32								
	1 Lateral K coefficient Conversion									
	Bend Angle	Non Surcharged	Surcharged							
SS	45	0.27	0.47							
Lateral Loss	60	0.52	0.9							
eral	90	1.02	1.77							
ate	2 Latera	Is K coefficient C	onversion							
_	45	0.96	6							
	60	1.10	6							
	90	1.52	2							

Table 2 - StormCAD Standard Method Conversions

DRAINAGE FACILITY DESIGN

General Concept

The proposed stormwater conveyance system was designed to convey the developed Sterling Ranch Filing No. 2 runoff to the proposed full spectrum water quality and detention pond W5 via storm sewer. Pond W4 will be utilized to detain and treat large portions of offsite area. The proposed ponds were designed to release at less than historic rates to minimize adverse impacts downstream. Treated water will outfall directly into the Sand Creek Drainageway, where it will eventually outfall into Fountain Creek. All Ponds will be owned and maintained by Sterling Ranch Metro District. A proposed drainage map is presented in Appendix E showing locations of the pond and channel outfall locations.

Address the impacts to Sand Creek from re-routing flows specific Details to the Pond W5/PondW4 diversion outfall.

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume (WQCV), and consider the need for Industrial Commercial BMP's.

Step 1, Reducing Runoff Volumes: The development of the project site is a proposed fingle-family development with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes.

This is not the case for the channel and properties upstream of the historic confluence with re-routed flows

Step 2, Stabilize Drainageways: Sterling Ranch Filing No. 2 utilizes storm sewer throughout the project site. This storm sewer directs the on-site development flows to the full spectrum detention Pond W5 that releases at or below historic rates into the Sand Creek Drainageway. Measures shall be implemented to prevent any negative impacts to the drainageway. Riprap at the outfall locations will be utilized to prevent any erosion. An emergency overflow spillway rundown has been designed from Pond W5 down into the Sand Creek Drainageway. The overflow channel will help protect and stabilize the drainageway by reducing channel degradation and erosion. The channel utilizes 4 foot deep "VH Soil Riprap" base with a minimum 4 inch overlay of topsoil, seed and mulch. The proposed reduction in released flows compared to the pre-developed flows, will also prevent any negative impacts to developments downstream. A detailed analysis of the Sand Creek Drainageway is currently being conducted by Kiowa Engineering. This report will cover stabilization measures and channel improvements needed for this reach of the Sand Creek Drainageway.

Step 3, Treat the WQCV: Water Quality treatment is provided in two proposed full spectrum water quality detention ponds: Pond W4 and Pond W5. Pond W5 will receive all runoff generated within Sterling Ranch Filing No. 2 as well as future Sterling Ranch Phase 2 and Copper Chase at Sterling Ranch, a school site and a small portion of offsite areas. Pond W4 will receive runoff generated from portions of Vollmer Road and a large portion of offsite areas to the north and west of Vollmer road. In general, the runoff from this site will be collected within inlets and conveyed to the proposed ponds via storm sewer. Upon entrance to the ponds, flows will be captured in a forebay designed to promote settlement of suspended solids. A trickle channel is also incorporated into the ponds to minimize the amount of standing water. The outlet structures have been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for 72 hours. All flows released from the ponds will be reduced to less than historic rates into the Sand Creek Drainageway.

Step 4, Consider the need for Industrial and Commercial BMP's: future commercial sites are proposed within this development. Site specific storm water quality and erosion control plans will be required for each commercial tract prior to development. A site specific storm water quality and erosion control plan and narrative have also been prepared in conjunction with this final drainage report. Site specific temporary source control BMPs as well as permanent BMP's will be detailed in this plan and narrative to protect receiving waters.

Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention are provided for all developed basins. For this site, two detention ponds have been proposed. The WQCV for each pond shall be released within 40 hours and the EURV shall be released within 72 hours. The table below provides the volumes required for each pond, along with their respective release rates for the 5-year and 100-year storm. Both ponds will utilize forebays, trickle channels, and outlet structures to dissipate energy and treat flows. The outlet structure for these ponds shall reduce the release rates for all storm events to less than historic rates to minimize adverse impacts to downstream stormwater facilities. A broad crested weir is provided as an emergency spillway for each pond. The emergency spillway provided for Pond W5 will convey flows directly into the Sand Creek Drainageway. The emergency spillway provided for Pond W4 shall convey flows to the existing roadside swale along Vollmer Road. Both spillways will utilize riprap aprons to prevent scour at the outlets. Pond and outlet structure calculations and sizing can be found in Appendix C.

		radie 5.1 dila 1 di		corease re	ares	
	REQUIRED VOLUME (AC-FT)	VOLUME PROVIDED (AC-FT)	WQCV (AC-FT)	EURV (AC-FT)	5-YEAR RELEASE (CFS)	100-YEAR RELEASE (CFS)
POND W5	17.992	18.079	3.231	11.150	3.7	149.2
POND W4	8.317	8.437	1.330	1.730	9.5	229.2

Table 3 Pond Volumes & Release Rates

A preliminary design for the ultimate configuration of Pond W4 has been used to calculate potential volume. Upon future upstream development, an expansion of Pond W4 will need to be finalized. The pond is designed to treat approximately 352.2 acres and provide approximately 2.294 ac-ft of water quality storage. Modifications will be required to ensure the outlet structure complies with local and Mile High Flood District criteria. A preliminary pond sizing for the ultimate condition can be found in the appendix.

Erosion Control Plan

The El Paso County Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate must be submitted with each Final Drainage Report. The Erosion Control Plan for Sterling Ranch Filing No. 2 has been submitted with this report. SRMD?

Operation & Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within the any platted County ROW will be owned and maintained by El Paso County. All proposed drainage structures within the property or tracts will be owned and maintained by the property owner. Vegetation in the natural and improved portions of Sand Creek Drainageway is the responsibility of El Paso County. This includes all mowing, seeding and weed control activities. An Inspection & Maintenance Plan has been submitted concurrently with this final drainage report that details the required maintenance activities and intervals to ensure proper function of all stormwater infrastructure in the future. The full spectrum detention ponds will be owned & maintained by the property owner.

Sand Creek Drainageway Improvements

Per the Sand Creek DBPS, Sand Creek and connected tributaries in the area of the site will require improvements. The east tributary reaches within the site boundary (DBPS SEG: 169, 186, 164, 159) will not require improvements because they will no longer be present, as development in the areas will eliminate them, and replace them with, a storm sewer system to discharge into Sand Creek. Sand Creek itself will continue to be routed through the development. Per the DBPS, selective rip rap linings, grade control check structures, and drop structure improvements are required to stabilize the channel to prevent further degradation, scour and meandering. Full spectrum detention will also be used on its benefits to the integrity of the Sand Creek Drainageway. A separate analysis with detailed alternative sections, HEC-RAS analyses, and proposed improvements is currently being conducted by Kiowa Engineering. This analysis will outline the channel improvements that will be necessary for the Address improvements needed from section of Sand Creek Drainageway that is adjacent to the site. W5 outfall to historic confluence.

If any "swapping" of DBPS improvements for proposed improvements is intended to offset drainage fees it needs to be addressed here and go to the drainage board. The Filing 1 improvements credits also need to be finalized.

comment letter.

No - see

SRMD?

Drainage & Bridge Fees

The site lies within the Sand Creek Drainage Basin. An approximate estimate is presented below, exact fees to be determined at time of final plat. See full Drainage and Bridge fee worksheet in Appendix D for the fee calculation spreadsheet.

2020	2020 DRAINAGE AND BRIDGE FEES – Sterling Ranch Filing No. 2												
Impervious	Drainage Fee	Bridge Fee	Sterling Ranch	Sterling Ranch									
Acres (ac)													
33.905	\$19,698	\$8,057	\$667,871.33	\$273,176.94									

Construction Cost Opinion

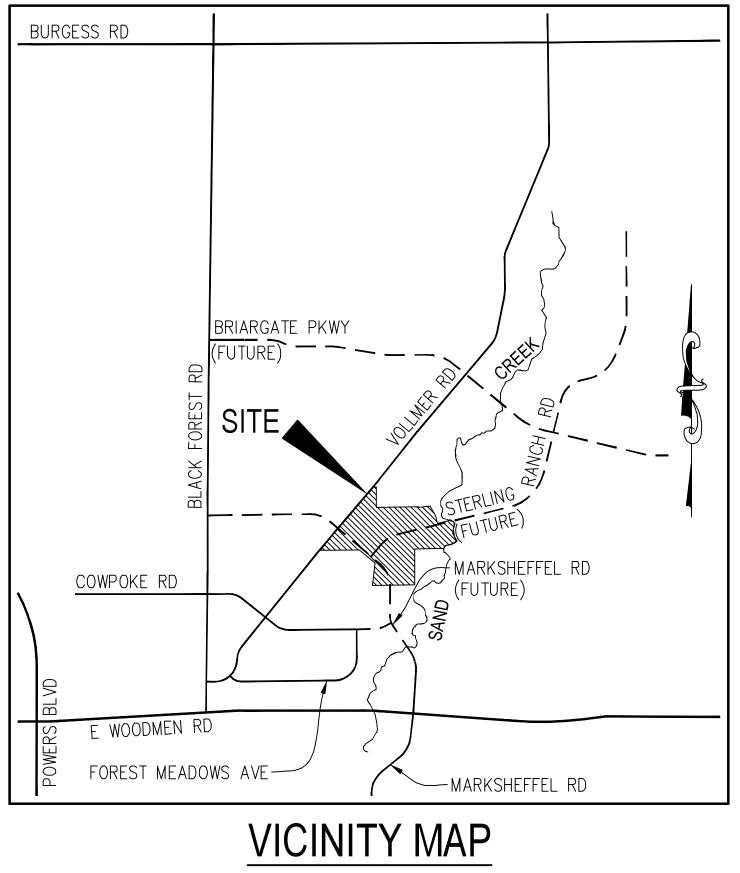
The City of Colorado Springs Drainage Criteria Manual specifies a Cost Estimate of proposed drainage facility improvements be submitted with the Final Drainage Report. A construction cost opinion has been provided below. The below cost opinion is only an estimate of facility and drainage infrastructure cost and may vary.

Item	Description	Quantity	Unit Cost			Cost
1	18"RCP	731	\$65	/LF	\$ \$	47,515.00
2	24" RCP	464	\$78	/LF	\$	36,192.00
3	30" RCP	492	\$97	/LF	\$	47,724.00
4	36" RCP	651	\$120	/LF	\$	78,120.00
5	42" RCP	598	\$160	/LF	\$	95,680.00
6	48" RCP	1266	\$195	/LF	\$	246,870.00
7	66" RCP	1915	\$332	/LF	\$	635,780.00
8	72" RCP	2738	\$380	/LF	\$	1,040,440.00
9	84" RCP	329	\$520	/LF	\$	171,080.00
10	18"FES	1	\$390	/LF	\$	390.00
11	24" FES	1	\$468	/EA	\$	468.00
12	30" FES	2	\$582	/EA	\$	1,164.00
13	36" FES	2	\$720	/EA	\$	1,440.00
14	42" FES	2	\$960	/EA	\$	1,920.00
15	66" FES (Temp.)	1	\$1992	/EA	\$	1,992.00
16	84" Headwall	2	\$10000	/EA	\$	20,000.00
17	15' CDOT Type R At-Grade	6	\$10633	/EA	\$	63,798.00
18	10' CDOT Type R At-Grade	10	\$7861	/EA	\$	78,610.00
19	2.9'x5.5' CDOT TYPE D	1	\$5731	/EA	\$	5,731.00
20	Storm Sewer MH, box base < 15 feet	24	\$11627	/EA	\$	279,048.00
21	Storm Sewer MH,slab base ~ 15 feet-20 feet	2	\$6395	/EA	\$	12,790.00

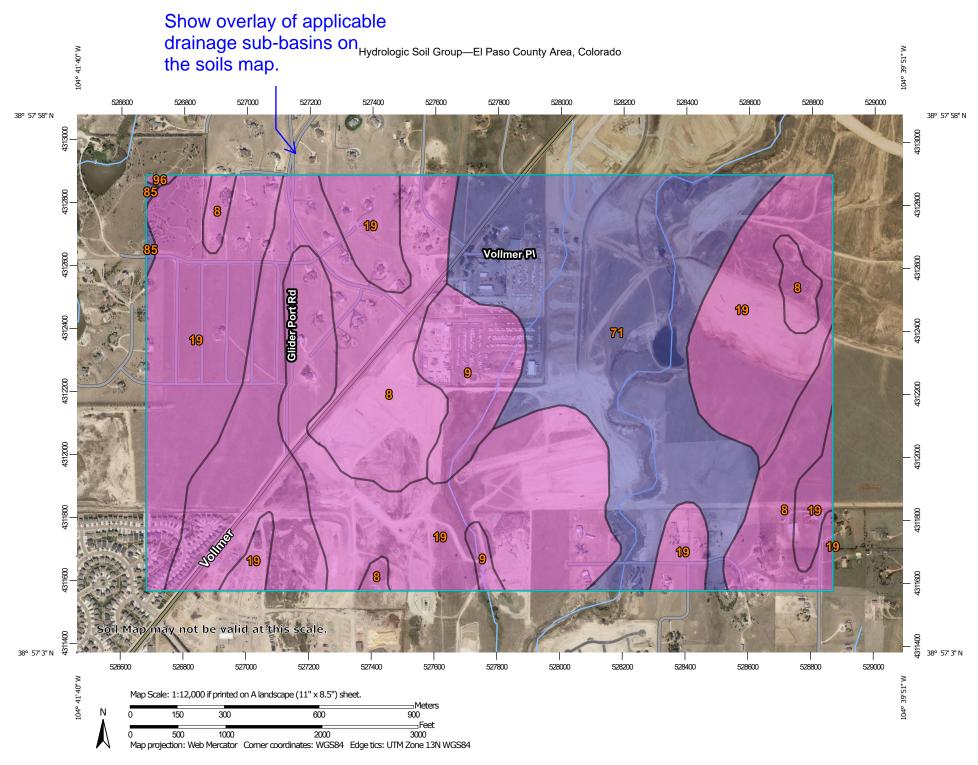
26	Mod CDOT Outlet Structure	2	\$15000 Total	/EA	<u>\$</u>	<u>30,000.00</u> 3,071,752.00
25 26	Forebay Structure Mod CDOT Outlet Structure	1 2	\$15000 \$15000	/EA /EA	\$ <u>\$</u>	15,000.00 30,000.00
24	*Detention Pond W4	1	\$65000	/EA	\$	65,000.00
23	20 feet *Detention Pond W5	1	\$75000	/EA	\$	75,000.00
22	Storm Sewer MH, box base >	1	\$20000	/EA	\$	20,000.00

SUMMARY

Development of this site will not adversely affect the surrounding development per this final drainage report and will have no negative impact of the neighboring developments. Assumptions were made for the offsite future developments that utilize the drainage infrastructure within this report. As the future sites develop, final drainage reports will be completed to confirm the assumptions made in this report. The proposed drainage facilities will adequately convey, detain and route runoff from the tributary and onsite flows to the Sand Creek Drainage channel. Full spectrum detention and water quality ponds W4 and W5 will be used to discharge developed flows into Sand Creek per the Urban Drainage criteria flow rates, which are at or less than the historic flow. Care will be taken during construction to accommodate overland flow routes onsite and temporary drainage conditions. The development of the Sterling Filing No. 2 project shall not adversely affect adjacent or downstream property.

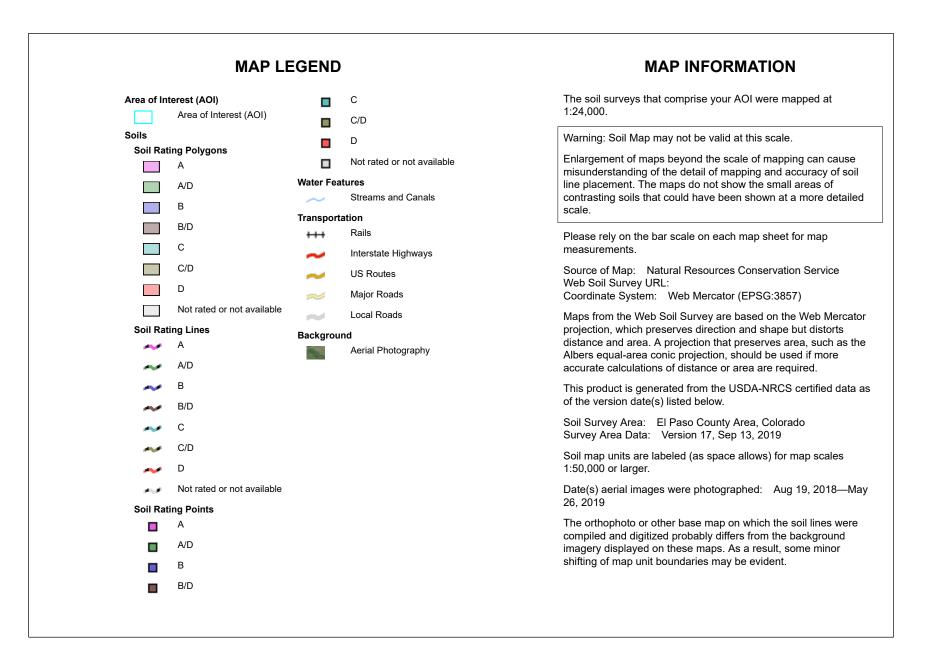

REFERENCES:

- 1. <u>El Paso County Drainage Criteria Manual Volume 1</u>, El Paso County, CO, 1994.
- 2. <u>Urban Storm Drainage Criteria Manual</u>, Urban Drainage and Flood Control District, Latest Revision.
- 3. <u>Sand Creek Drainage Basin Planning Study</u>, Kiowa Engineering, January 1993.
- 4. <u>Final Drainage Report for Barbarick Subdivision, Portions of Lots 1, 2 and Lots 3 & 4</u>, by Matrix Design Group, dated June 2016
- <u>Final Drainage Report for Sterling Ranch Filing No. 2</u>, by M&S Civil Consultants, dated March 2018


Add DCM Volume 2, ECM, DCM update (City Chapter 6), Sterling Ranch MDDP

APPENDIX A

FIGURES AND EXHIBITS



N.T.S.

USDA Natural Resources

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI								
8	Blakeland loamy sand, 1 to 9 percent slopes	A	182.3	25.4%								
9	Blakeland-Fluvaquentic Haplaquolls	A	36.8	5.1%								
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	307.5	42.9%								
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	188.4	26.3%								
85	Stapleton-Bernal sandy loams, 3 to 20 percent slopes	В	1.2	0.2%								
96	Truckton sandy loam, 0 to 3 percent slopes	A	0.6	0.1%								
Totals for Area of Inter	rest		716.9	100.0%								

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administring the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage curces of small size. The community map repository should be consulted for ossible updated or additional flood hazard information.

Location or detailed information in answershere Base Flood Elevations (RFEs) and/or Boodways have been determined, users are excuranged to consult for Flood within the Flood travelse and the second second second second second within the Flood travelse Budy (FIS) period that accompanies the FIRM. Users about a second second second second second second second second about a second to FIRM to purpose of construction and for flood severation interaction. Accordingly, flood devices of construction and for flood services in termination. Accordingly, flood devices of construction and for construction with the FIRM to purpose of construction and for flood services in termination. Accordingly

Coastal Base Flood Elevations shown on this map apply only landward of 0.0° North Amarican Vertical Datum of 1989 (NAVD89), Users of this FIRM Hould be aware that coastal flood develosms are aired provided in the Summary of Sillwate Elevations table in the Flood Insurance Study report for this jurisdicion. Elevations shown in the Summary of Sillwate Elevations table should be used for construction and/or floodpian maragement purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolate between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway width and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdicture.

Certain areas not in Special Flood Hazard Areas may be protected by **flood contrn** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insuranc Study report for information on flood control structures for this jurisdiction.

The projection used in the propagation of this may use Universal Transverse Mendor (UTIN) can 13. The horizontal adatam with MARS. GR500 gathead. Differences in datum, spheroid, projection or UTM zones zones used in the production of FTMRs for adjacent jurisdictions may result in alight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FTRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD68), Thesis flood elevations must be compared to structure are compared to structure and the structure of the structure and conversion between the National Geodelic Vertical Datum of 1528 and the North American Vertical Datum of 1988, visit the National Geodelic Survey at the Holm/ American Service and Service and Service and the Islaming Service and Service and

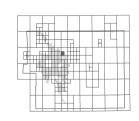
NGS Information Services NOAA, NINGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the information Services Branch of the National Seodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.ncaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FRM for this jurisdice, they have been adjusted to confirm to these more stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Sludy Report (which contrains submitter) buyblic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines diplated distances that differ from what is shown on this map. The profile baselines diplated tables are stream to the stream the stream channel in the Flood Insurance and Floodway Data tables is specialed. In the Flore the stream channel tables that the stream the stream the stream the stream the more tables and the stream the stream the stream the stream the more tables and may appear contrained on the flore map. The stream the stream the stream the stream the stream the main may appear contrained on the nontioned on the stream the stream the stream the stream the main may appear contrained on the nontraine stream contrained on the nontraine stream contrained on the nontrained on the stream the stream the stream the nontrained on the stream the stream the stream the nontrained on the stream the stream the nontrained on the stream the stream the stream the nontrained on the stream the stream the stream the nontrained on the stream the stream the stream the nontrained on the stream the stream the stream the nontrained on the non-trained on

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, may users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed Map Index for an overview map of the county howing the layout of map panels; community map repository addresses; and a siting of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is coted.

Context ERUA Mag Service Center (MSC) via the FEMA Mag Information at/change (FMIV) 1477-032827 for information on savaliable products sexociated with this FIRM. Available products may include previously issued Latters of Mag Change, a Flood Insurance Study Report, and/or ofglaia versions of this mag. The MSC may also be reached by Fax at 1-800-358-8620 and its websile at http://www.msc.fema.gov/.

f you have **questions about this map** or questions concerning the National Flood nsurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Water Conservation Board

tional Flood Hazaro Information and resource lable from local communities and the Col-

3235000 FT JOINS PANEL 0535 1047 307 33 607 104" 41" 15.00" 381 581 7 501 38" 58' 7 50" Sand Creek ZONEAE Ø EL PASO COUNTY UNINCORPORATED AREAS 080059 474 2000 mail (DC) VOLLMER F 33 32 34 (C) (cx) -CX 4312000mN SITE LOCATION 1410000 F (cv) T. 12 S T. 13 S MOJAVE DR T. 12 S. T. 13 S. EL PASO COUNTY UNINCORPORATED AREAS 080059 ZONEAE 070 C/p in. ZONE AE KENOSHA DR EL PASO COUNTY CITY OF COLORADO SPRINGS PONCA RD 3 4 5 EL PASO COUNTY NINCORPORATED AREAS 080059 CITY OF COLORADO SPRINGS 1405000 F 6886 WOODMEN FRONTAGE RD E WOODMEN RD Bridge E WOODMEN DE co AREAS (000159 10 ZONE AE 8 43-10.000mN Sand Creek 381 561 15 00 381 561 15.001 104° 41' 15.00" JOINS PANEL 0545 104" 39' 22.50' \$-000mp NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 12 SOUTH, RANGE 65 WEST, AND TOWNSHIP 13 SOUTH, RANGE 65 WEST.

DEPARTMENT OF THE ARMY ALBUQUERQUE DISTRICT, CORPS OF ENGINEERS 200 SOUTH SANTA FE AVENUE, SUITE 301 PUEBLO, COLORADO \$1003-4270

SIGNED

February 29, 2016

Regulatory Division

SUBJECT: Action No. SPA-2015-00428-SCO, Sterling Ranch Residential Development Project, El Paso County, Colorado

Jim Morley SR Land, LLC 20 Boulder Crescent Suite 201 Colorado Springs, CO 80903

Mr. Morley:

1

You are hereby authorized under Section 404 of the Clean Water Act to discharge dged and fill material it to waters of the U ted States to conduct work in associated with construction of the Sterling Ranch Residential Development of a accordance with Action Number SPA-2015-00428-SCO. A copy of the permit is enclosed.

To use this permit, you make ensure that the work is conducted in accordance with the terris and co pris of the permit. You must submit revised drawings to us for approve prior to construction should any changes be found necessary in either the Iccation or plans in the work. Approval of revised plans may be gr nted if they a e found not contrary to the public interest.

This permit is not an approval of the project design features, nor does it the construction is ade te for its intended purpose. This permit does not any injury to property or bly that asion of rights or a laws or regulations. You must possess the auto rity, including property right horize) or local . to

Enclosed is a compliance certification form. Up sign and date the fore and return it to this office. completion of the project, please

If you have any questions concerning our regulatory pogram, please contact me at 719-543-6915 or by e-mail at van.a.truan@usace.army.n... At your convenience,

please complete a Customer Service Survey at http://per2.nwp.usace.army.mil/survey.html.

Sincerely,

Car G

Van Truan Chief, Southern Colorado Regulatory Branch 1944 9. May 14 6 5. au

Enclosure(s)

September 23, 2016

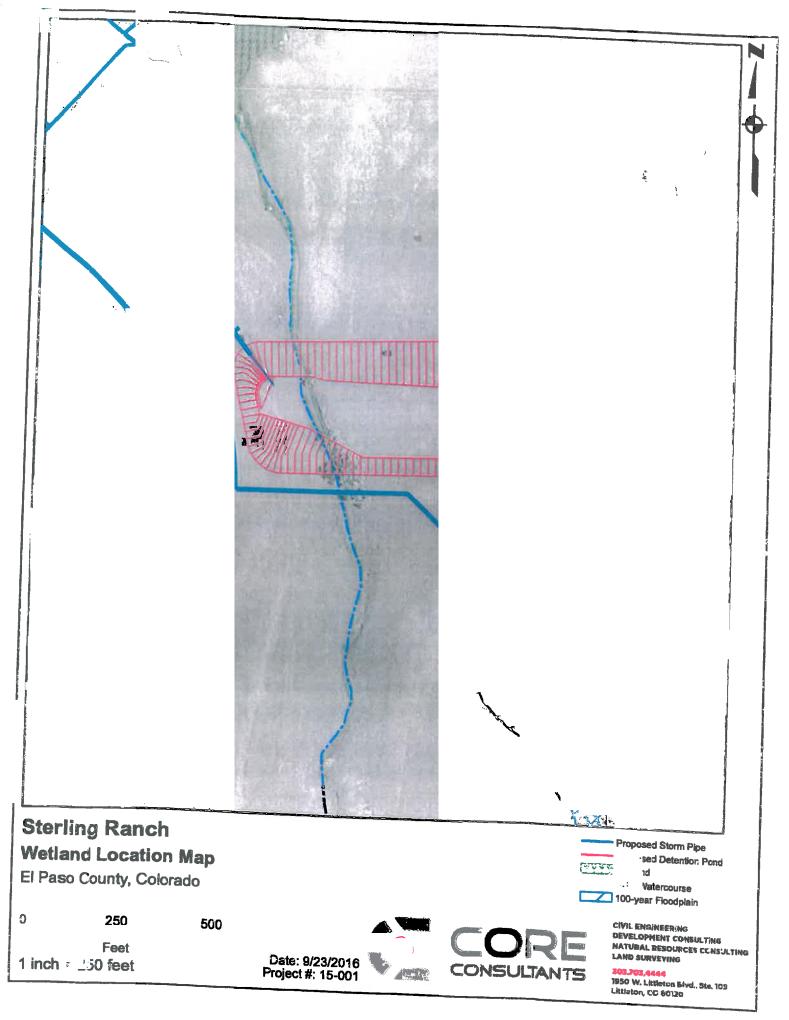
Mr. Virgil Sanchez MS Civil Consultants, Inc. 20 Boulder Crescent, Suite 110 Colorad Springs, CO 80903

RE

and Create that Hand Memo Ster ne P e ential Development Project El Paso County, Colorado

Dear Mr. Sanchez:

CORE Consultants, Inc. (CORE) was remained by MS Civil Consultants, he we complete a wetland ing Ranch Residential Development Pref t ("Project"). The Project is located on approvimately 1,50(res in unir corporated El Paso County and encompasses a portion of the perennial stream Sand Creek, its western tributies, and adjacent Jplands. CORE submitted a formal wetland delineation report to the U.S. Army pros of Engineers (USACE) as component of a Section 404 permit application for the Prose dermit sumber SPA-2015-00428-SCO), which was approved by the USAC _ in February, 2016.


At the time of 404 permit issuance, CORE had performed wetland surveys in all covered by the permit. However, at the time of this writing vetland surveys covering future phases of developme thave not been performed. Prior to development of future phases root covered under SPA-2015-0042 CO, a formal wetland delineation will lactor ormed in those areas and any necessary 404 Ermitting webbe obtained. Based on CORE's finding CORE expects that wetlands may occur throughout ghout Sand Creek in the current partial area, development areas further downstream (achment Location Map). odplain in portions of Sand Creek in future

If you should have any questions, concerns, or require additional information, please feel free to contact

Sincerely, CORE Consultants, Inc.

Tom Mayour

Daniel Maynard 5. or Ecologist

1

ł

APPENDIX B

HYDROLOGIC/ HYDRAULIC CALCULATIONS

COMPOSITE % IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location:

Sterling Ranch Filing No. 2

Project Name: Sterling Ranch Subdivision (Existing)

El Paso County

Project No.: 25188.01 Calculated By: CJD

Checked By:

Date: 5/15/20

	Total	Str	reets (10	10% Impe	ervious)			•	npervious) 1% Impervious)				(20% Impervious) 0% Impervious)	Lawns	(0% Imp (55% I	ervious) mperviou	School us)	Weigh	s Total hted C	Basins Total Weighted %
Basin ID	Area (ac)	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	Val C ₅	ues C ₁₀₀	Imp.
EXA1	17.68	0.90	0.96	1.31	7.4%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	16.37	1.9%	0.15	0.40	9.3%
EXA2	19.59	0.90	0.96	0.59	3.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	19.00	1.9%	0.11	0.38	5.0%
EXA3	5.66	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	5.66	2.0%	0.09	0.36	2.0%
EXA4	50.72	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	50.72	2.0%	0.09	0.36	2.0%
EXB	11.78	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	11.78	2.0%	0.09	0.36	2.0%
OS1	23.82	0.90	0.96	0.00	0.0%	0.45	0.59	11.03	30.1%	0.59	0.70	4.15	13.9%	0.09	0.36	8.64	0.7%	0.34	0.53	44.8%
OS2	85.59	0.90	0.96	0.09	0.1%	0.45	0.59	5.09	3.9%	0.59	0.70	13.37	12.5%	0.09	0.36	67.04	1.6%	0.19	0.43	18.0%
OS3	6.66	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	6.66	2.0%	0.09	0.36	2.0%
OS4	2.19	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	2.19	2.0%	0.09	0.36	2.0%
OS5	9.27	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	3.49	7.5%	0.09	0.36	5.78	1.2%	0.28	0.49	8.8%
TOTAL (A1-B1)	105.43																			3.8%
TOTAL (OS1-OS5)	127.53																			21.2%
TOTAL	232.96																			13.3%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Filing No. 2

Location: El Paso County

Project Name: Sterling Ranch Subdivision (Existing)

Project No.: 25188.01

Calculated By: CJD Checked By:

Date: 5/15/20

		SUB-I	BASIN			INITI	AL/OVER	LAND			TRAVEL TI	ME			tc CHECK					
		DA	ATA				(T _i)				(T _t)			(L	IRBANIZED BA	(SINS)	FINAL			
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c			
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)			
EXA1	17.68	А	9%	0.15	0.40	225	3.5%	17.0	1417	2.0%	20.0	2.8	8.4	25.4	1642.0	40.7	25.4			
EXA2	19.59	А	5%	0.11	0.38	300	2.3%	23.5	1568	2.7%	20.0	3.3	8.0	31.5	1868.0	41.6	31.5			
EXA3	5.66	А	2%	0.09	0.36	300	2.5%	23.3	581	2.5%	20.0	3.1	3.1	26.4	881.0	32.3	26.4			
EXA4	50.72	А	2%	0.09	0.36	221	4.1%	17.1	2510	1.7%	20.0	2.6	16.2	33.2	2731.0	60.5	33.2			
EXB	11.78	А	2%	0.09	0.36	277	2.4%	22.7	326	7.0%	20.0	5.3	1.0	23.8	603.0	27.9	23.8			
OS1	23.82	А	45%	0.34	0.53	300	3.0%	16.5	1197	2.8%	20.0	3.3	6.0	22.4	1497.0	26.2	22.4			
OS2	85.59	А	18%	0.19	0.43	229	4.0%	15.7	3294	2.2%	20.0	3.0	18.3	34.1	3523.0	54.8	34.1			
OS3	6.66	А	2%	0.09	0.36	197	2.9%	18.0	444	2.6%	20.0	3.2	2.3	20.3	641.0	30.6	20.3			
OS4	2.19	А	2%	0.09	0.36	290	1.4%	27.9	72	1.8%	20.0	2.7	0.5	28.4	362.0	26.6	26.6			
OS5	9.27	А	9%	0.28	0.49	300	2.7%	18.6	784	2.4%	20.0	3.1	4.2	22.8	1084.0	32.7	22.8			

NOTEC.

$t_c = t_i + t_t$	Equation 6	$6-2$ 0.395(1.1 - C_c) $\sqrt{L_i}$		Table 6-2. NRCS Conve	yance factors, K
Where:		$t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_0^{0.33}}$	Equation 6-3	Type of Land Surface	Conveyance Factor, K
				Heavy meadow	2.5
t_e = computed time of concentration (minutes)		Where:		Tillage/field	5
t_i = overland (initial) flow time (minutes)		t_i = overland (initial) flow time (minutes)		Short pasture and lawns	7
t_t = channelized flow time (minutes).		C_5 = runoff coefficient for 5-year frequency (from T L_i = length of overland flow (ft)	Table 6-4)	Nearly bare ground	10
n = channelized now time (minutes).		$S_o =$ average slope along the overland flow path (ft/	ft).	Grassed waterway	15
				Paved areas and shallow paved swales	20
$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$	Equation 6-4	$t_{\rm r} = (26 - 17i) + \frac{L_{\rm r}}{60(14i + 9)\sqrt{S_{\rm r}}}$	Equation 6-5		
Where:		Where:			
t_i = channelized flow time (travel time, min) L_i = waterway length (ft) S_0 = waterway slope (ft)ft) V_i = travel time velocity (ft/sec) = K $\sqrt{S_0}$ K = NRCS conveyance factor (see Table 6-2).		t_c = minimum time of concentration for first design p L_t = length of channelized flow path (ft) t = imperviousness (expressed as a decimal) S_t = slope of the channelized flow path (ft/ft).	oint when less than t _c from Equation 6-1.		

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Sterling Ranch Subdivision (Existing) Project No.: 25188.01 Calculated By: CJD

Subdivision: Sterling Ranch Filing No. 2 Location: El Paso County

Location: Design Storm:			ty													Cald	ulated hecked D	I By: I By: ate:	5/15/2	20			
	I			DIRE	CT RU	INOFF			Т	OTAL F	RUNOF	F	STRE	et/swa	LE		PIP			TRAVE	EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t, (min)	REMARKS
	1	EXA1	17.68	0.15	25.4	1 2.65	5 2.73	3 7.2															Existing Topography
	2	EXA2	19.59	0.11	31.5	5 2.24	2.41	5.4					5.4	2.24	1.7					1529	1.3	19.8	Existing Topography Swale conveyance to DP 4.1
	3	EXA3	5.66	0.09	26.4	1 0.51	2.67	7 1.4															Existing Topography
			50.72																				Existing Topography Overland flow to DP 4.1
		OS1			1								23.9	8.19	1.9					2779	1.4	33.3	Existing Topography Overland flow to DP 4.1
													37.3	16.29	1.9					2577	1.4	30.8	Existing Topography
	9		85.59										1.8	0.60	2.4					1785	1.5	19.3	Overland flow to DP 4.1 Existing Topography Overland flow to DP 4.1
		OS3			1	3 0.60							7.5	2.58	2.4								Existing Topography
	5	OS5	9.27	0.28	22.8	3 2.58	3 2.90	/.5							_								Overland flow to DP 4.1
	4.1									34.46	1.32	45.6	0.5	0.20	4.5					660	2.1	5.2	Sum of DP 2, DP 4, DP 5, DP8, DP 9, & DP 10, Overland flow to the Sand Creek Drainageway Existing Topography
	7	OS4				5 0.20				-					-								Overland flow to DP 6.1 Existing Topography
	6	EXB	11.78	0.09	23.8	3 1.06	2.83	3 3.0)						_								Overland flow to DP 6.1
	6.1								31.8	3 1.26	2.39	3.0			_								Sum of DP 6 & DP 7, Overland flow to the Sand Creek Drainageway
								<u> </u>	<u> </u>														

Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Checked By:

Project Name:	Sterling Ranch Subdivision (Existing)
Project No.:	25188.01
Calculated By:	CJD

Subdivision: Sterling Ranch Filing No. 2 Location: El Paso County Design Storm: 100-Year

				DIR	ECT RI	JNOFF			T	OTAL R	RUNOF	F	STRE	ET/SW	ALE		PIP	E		TRAV	EL TIN	ЛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	EXA1	17.68	0.15	25.4	2.65	4.58	12.1															Existing Topography
	2	EXA2	19.59	0.11	31.5	2.24	4.04	9.0					9.0	2.24	1.7					1529	1.3	19.8	Existing Topography Swale conveyance to DP 4.1
	3	EXA3	5.66	0.09	26.4	0.51	4.49	2.3															Existing Topography
	4	EXA4	50.72	0.09	33.2	4.56	3.91	17.8															Existing Topography Overland flow to DP 4.1
	10	OS1	23.82	0.34	22.4	8.19	4.89	40.1					40.1	8.19	1.9					2779	1.4		Existing Topography Overland flow to DP 4.1
	9	OS2	85.59	0.19	34.1	16.29	3.84	62.6					62.6	16.29						2577			Existing Topography Overland flow to DP 4.1
	8	OS3	6.66	0.09	20.3	0.60	5.15	3.1					3.1		2.4								Existing Topography Overland flow to DP 4.1
	5	OS5	9.27	0.28	4.3	2.58	9.05	23.4					23.4	2.58	2.4					399	1.5	4.3	Existing Topography Overland flow to DP 4.1
	4.1								64.9	34.46	2.22	76.5											Sum of DP 2, DP 4, DP 5, DP8, DP 9, & DP 10, Overland flow to the Sand Creek Drainageway
	7	OS4	2.19	0.09	26.6	0.20	4.46	0.9					0.9	0.20	4.5					660	2.1	5.2	Existing Topography Overland flow to DP 6.1
	6	EXB	11.78	0.09	23.8	1.06	4.75	5.0															Existing Topography Overland flow to DP 6.1
	6.1								31.8	1.26	4.02	5.1											Sum of DP 6 & DP 7, Overland flow to the Sand Creek Drainageway
	l																						

Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

COMPOSITE % IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location: Sterling Ranch Filing No. 2 El Paso County Project Name: <u>Sterling Ranch Subdivision</u> Project No.: 25188.01

Calculated By: AAM

Checked By:

Date: 5/15/20

	Total	Str	eets (10	0% Impe	rvious)			•	pervious) % Impervious)	5		•	npervious) pervious)	Lawns (0% Impe (55% In	ervious) nperviou	School s)	Basins Weigl		Basins Total Weighted %
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighte d % Imp.	Val C ₅	ues C ₁₀₀	Imp.
A1	2.06	0.90	0.96	0.48	23.3%	0.45	0.59	1.34	42.3%	0.59	0.70	0.00	0.0%	0.08	0.35	0.24	0.0%	0.51	0.65	65.6%
A2	0.82	0.90	0.96	0.20	24.4%	0.45	0.59	0.56	44.4%	0.59	0.70	0.00	0.0%	0.08	0.35	0.06	0.0%	0.53	0.66	68.8%
A3	6.76	0.90	0.96	1.32	19.5%	0.45	0.59	4.16	40.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.28	0.0%	0.47	0.62	59.5%
A4	1.51	0.90	0.96	0.51	33.8%	0.45	0.59	1.00	43.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.60	0.71	76.8%
A5	1.70	0.90	0.96	0.51	30.0%	0.45	0.59	1.19	45.5%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.59	0.70	75.5%
A6	1.37	0.90	0.96	0.39	28.5%	0.45	0.59	0.98	46.5%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.58	0.70	75.0%
A6A	0.53	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.53	95.0%	0.08	0.35	0.00	0.0%	0.81	0.88	95.0%
A7	19.00	0.90	0.96	0.00	0.0%	0.45	0.59	19.00	65.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.45	0.59	65.0%
A8	1.48	0.90	0.96	0.74	50.0%	0.45	0.59	0.29	12.7%	0.59	0.70	0.00	0.0%	0.08	0.35	0.45	0.0%	0.56	0.70	62.7%
A9	0.61	0.90	0.96	0.48	78.7%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.13	0.0%	0.73	0.83	78.7%
A10	2.61	0.90	0.96	2.25	86.2%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.36	0.0%	0.79	0.88	86.2%
A11	2.89	0.90	0.96	2.40	83.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.49	0.0%	0.76	0.86	83.0%
A12	3.87	0.90	0.96	0.00	0.0%	0.45	0.59	0.50	8.4%	0.59	0.70	0.00	0.0%	0.08	0.35	3.37	0.0%	0.13	0.38	8.4%
A13	9.65	0.90	0.96	0.00	0.0%	0.45	0.59	9.65	65.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.45	0.59	65.0%
A14	11.76	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.00	0.0%	0.39	0.55	11.76	0.0%	0.39	0.55	0.0%
A15	2.91	0.90	0.96	1.57	54.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.34	0.0%	0.52	0.68	54.0%
A16	2.34	0.90	0.96	1.30	55.6%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.04	0.0%	0.54	0.69	55.6%
A17	1.76	0.90	0.96	0.00	0.0%	0.45	0.59	0.64	23.6%	0.59	0.70	0.00	0.0%	0.08	0.35	1.12	0.0%	0.21	0.44	23.6%
A18	5.27	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	1.18	21.3%	0.08	0.35	4.09	0.0%	0.24	0.47	21.3%
A19	31.85	0.90	0.96	0.00	0.0%	0.45	0.59	31.85	65.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.45	0.59	65.0%
A20	1.83	0.90	0.96	1.63	89.1%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.20	0.0%	0.81	0.89	89.1%
A21	1.93	0.90	0.96	1.73	89.6%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.20	0.0%	0.82	0.90	89.6%
A22	8.68	0.90	0.96	0.00	0.0%	0.45	0.59	0.70	5.2%	0.59	0.70	0.00	0.0%	0.08	0.35	7.98	0.0%	0.11	0.37	5.2%
B1	2.98	0.90	0.96	2.98	100.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
B2	3.89	0.90	0.96	3.89	100.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
B3	2.05	0.90	0.96	2.05	100.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
B4	1.94	0.90	0.96	1.94	100.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
B5	2.91	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	2.91	0.0%	0.08	0.35	0.0%

	Total	Str	eets (10	0% Impe	rvious)			•	pervious) % Impervious)	0			npervious) pervious)	Lawns (0% Impe (55% Ir	ervious) nperviou	School is)	5	nted C	Basins Total Weighted %
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighte d % Imp.	Val C ₅	ues C ₁₀₀	Imp.
C1	8.01	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	8.01	95.0%	0.08	0.35	0.00	0.0%	0.81	0.88	95.0%
C2	5.06	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	5.06	95.0%	0.08	0.35	0.00	0.0%	0.81	0.88	95.0%
O\$20	308.00	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	308.00	0.0%	0.09	0.36	0.0%
OS21A	20.26	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	20.26	0.0%	0.09	0.36	0.0%
OS21B	8.71	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	8.71	0.0%	0.09	0.36	0.0%
OS2	17.00	0.90	0.96	0.00	0.0%	0.49	0.62	17.00	70.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.00	0.0%	0.49	0.62	70.0%
OS3	28.70	0.90	0.96	0.00	0.0%	0.49	0.62	28.70	70.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.00	0.0%	0.49	0.62	70.0%
OS4	5.08	0.90	0.96	0.00	0.0%	0.20	0.40	5.08	20.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.00	0.0%	0.20	0.40	20.0%
TOTAL (A1-C2)	150.03																			58.1%
TOTAL (OS20-OS4)	387.75																			8.5%
TOTAL	537.78																			22.3%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Filing No. 2

Location: El Paso County

Project Name: Sterling Ranch Subdivision

Project No.: 25188.01

Calculated By: AAM Checked By:

Date: 5/15/20

		SUB-E	BASIN			INITIA	AL/OVERI	AND			TRAVEL TI	ME			tc CHECK		
		DA	TA				(T _i)				(T _t)			(U	JRBANIZED BA	(SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
A1	2.06	А	66%	0.51	0.65	100	2.5%	7.8	388	3.0%	20.0	3.5	1.9	9.7	488.0	16.9	9.7
A2	0.82	А	69%	0.53	0.66	100	2.5%	7.6	183	1.0%	20.0	2.0	1.5	9.1	283.0	15.9	9.1
A3	6.76	А	60%	0.47	0.62	100	2.5%	8.4	1186	2.3%	20.0	3.0	6.5	15.0	1286.0	23.4	15.0
A4	1.51	А	77%	0.60	0.71	78	2.0%	6.3	795	2.9%	20.0	3.4	3.9	10.2	873.0	16.9	10.2
A5	1.70	А	76%	0.59	0.70	100	2.5%	6.9	645	3.1%	20.0	3.5	3.1	9.9	745.0	16.3	9.9
A6	1.37	А	75%	0.58	0.70	100	2.5%	7.0	632	3.1%	20.0	3.5	3.0	10.0	732.0	16.3	10.0
A6A	0.53	А	95%	0.81	0.88	100	2.0%	4.2	30	2.0%	20.0	2.8	0.2	4.3	130.0	10.0	5.0
A7	19.00	А	65%	0.45	0.59	100	2.5%	8.7	1419	1.5%	20.0	2.4	9.7	18.3	1519.0	25.6	18.3
A8	1.48	А	63%	0.56	0.70	80	2.0%	6.9	646	0.6%	20.0	1.5	7.0	13.9	726.0	23.2	13.9
A9	0.61	А	79%	0.73	0.83	15	2.0%	2.1	661	0.7%	20.0	1.7	6.6	8.7	676.0	19.2	8.7
A10	2.61	А	86%	0.79	0.88	15	2.0%	1.7	1357	3.4%	20.0	3.7	6.1	7.9	1372.0	17.2	7.9
A11	2.89	А	83%	0.76	0.86	16	2.0%	1.9	1357	2.8%	20.0	3.3	6.8	8.7	1373.0	18.4	8.7
A12	3.87	А	8%	0.13	0.38	100	5.0%	10.3	267	3.4%	15.0	2.8	1.6	11.9	367.0	26.9	11.9
A13	9.65	А	65%	0.45	0.59	100	2.5%	8.7	934	2.1%	20.0	2.9	5.4	14.0	1033.6	20.9	14.0
A14	11.76	А	0%	0.39	0.55	100	2.0%	10.2	867	2.0%	20.0	2.8	5.1	15.3	967.0	37.4	15.3
A15	2.91	А	54%	0.52	0.68	34	2.0%	4.8	1621	1.8%	20.0	2.7	10.1	14.9	1655.0	29.0	14.9
A16	2.34	А	56%	0.54	0.69	35	2.0%	4.8	1594	1.8%	20.0	2.7	9.9	14.7	1629.0	28.4	14.7
A17	1.76	А	24%	0.21	0.44	100	5.0%	9.4	403	1.1%	15.0	1.6	4.3	13.7	503.0	27.2	13.7
A18	5.27	А	21%	0.24	0.47	100	2.0%	12.3	703	2.0%	20.0	2.8	4.1	16.4	803.0	29.3	16.4
A19	31.85	А	65%	0.45	0.59	100	2.5%	8.7	2675	1.7%	20.0	2.6	17.1	25.8	2775.0	33.8	25.8
A20	1.83	А	89%	0.81	0.89	15	2.0%	1.6	936	1.5%	20.0	2.4	6.4	8.0	951.0	16.8	8.0
A21	1.93	А	90%	0.82	0.90	15	2.0%	1.6	1049	1.5%	20.0	2.4	7.1	8.7	1064.0	17.4	8.7
A22	8.68	А	5%	0.11	0.37	185	3.0%	16.9	540	0.5%	20.0	1.4	6.4	23.3	725.0	38.2	23.3
B1	2.98	А	100%	0.90	0.96	17	2.0%	1.2	2561	1.7%	20.0	2.6	16.4	17.6	2578.0	23.2	17.6
B2	3.89	А	100%	0.90	0.96	17	2.0%	1.2	2561	1.7%	20.0	2.6	16.4	17.6	2578.0	23.2	17.6
B3	2.05	А	100%	0.90	0.96	17	2.0%	1.2	1394	2.0%	20.0	2.8	8.2	9.4	1411.0	16.1	9.4
B4	1.94	А	100%	0.90	0.96	17	2.0%	1.2	1394	2.0%	20.0	2.8	8.2	9.4	1411.0	16.1	9.4

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Filing No. 2

Location: El Paso County

Project Name: Sterling Ranch Subdivision

Project No.: 25188.01

Calculated By: AAM Checked By:

Date: 5/15/20

		SUB-I	BASIN			INITI	AL/OVERI	LAND			TRAVEL TI	ME			tc CHECK		
		DA	ATA				(T _i)				(T _t)			(L	IRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
B5	2.91	А	0%	0.08	0.35	170	14.0%	10.1	259	0.5%	20.0	1.4	3.1	13.1	429.0	32.8	13.1
C1	8.01	А	95%	0.81	0.88	100	2.0%	4.2	965	2.0%	20.0	2.8	5.7	9.9	1065.0	14.9	9.9
C2	5.06	А	95%	0.81	0.88	100	2.0%	4.2	627	2.0%	20.0	2.8	3.7	7.9	727.0	13.2	7.9
OS20	308.00	А	0%	0.09	0.36	300	4.0%	20.0	6670	5.0%	10.0	2.2	49.7	69.7	6970.0	81.2	69.7
OS21A	20.26	А	0%	0.09	0.36	300	2.0%	25.1	2673	2.0%	10.0	1.4	31.5	56.6	2973.0	61.0	56.6
OS21B	8.71	А	0%	0.09	0.36	100	2.0%	14.5	1167	1.5%	15.0	1.8	10.6	25.1	1267.0	43.6	25.1
OS2	17.00	А	70%	0.49	0.62	300	1.0%	19.1	3020	1.5%	15.0	1.8	27.4	46.5	3320.0	36.0	36.0
OS3	28.70	А	70%	0.49	0.62	300	1.0%	19.1	4340	1.0%	15.0	1.5	48.2	67.3	4640.0	52.6	52.6
OS4	5.08	А	20%	0.20	0.40	300	1.0%	28.1	900	5.0%	10.0	2.2	6.7	34.9	1200.0	28.3	28.3

NOTES:

$t_c = t_i + t_t$	Equation	$t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{c_5^{0.033}}$		Table 6-2. NRCS Convey	yance factors, K
Where:		$t_i = \frac{S_0^{0.033}}{S_0^{0.033}}$	Equation 6-3	Type of Land Surface	Conveyance F
where:		The second se		Heavy meadow	2.5
t_c = computed time of concentration (minutes)		Where:		Tillage/field	5
t_i = overland (initial) flow time (minutes)		t_i = overland (initial) flow time (minutes)		Short pasture and lawns	7
		C_5 = runoff coefficient for 5-year frequency (from Tabl L_i = length of overland flow (ft)	le 0-4)	Nearly bare ground	10
t_t = channelized flow time (minutes).		S_o = average slope along the overland flow path (ft/ft).		Grassed waterway	15
$t_t = \frac{L_t}{60K_s/S_s} = \frac{L_t}{60V_t}$	Equation 6-4	$t_r = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$	Equation 6-5	Paved areas and shallow paved swales	20
Where:		Where:			
t_r = channelized flow time (travel time, min) L_r = waterway length (ft) S_{ϕ} = waterway slope (ft/ft) V_r = travel time velocity (ft/sec) = K $\sqrt{S_{\phi}}$ K = NRCS conveyance factor (see Table 6-2).		t_c = minimum time of concentration for first design point L_t = length of channelized flow path (ft) t = imperviousness (expressed as a decimal) S_t = slope of the channelized flow path (ft/ft).	t when less than t_c from Equation 6-1.		

Use a minimum te value of 5 minutes for urbanized areas and a minimum te value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Conveyance Factor, K 2.5 5 7 10 15 20

Subdivision: Location: Design Storm:	El Paso			0. 2							_				P Calc	Project ulated necked	: No.: d By: d By:	2518 AAM	3.01	nch Su	bdivis	sion
																	Date:	5/15/				
				DIRE	CT RU	NOFF	1	1	TC	OTAL RUN	DFF	STRE	ET/SV	/ALE		PIF	ΡE		TRAV	/EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac) I (in/hr)	Q (cfs)	Q _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1	2.06	0.51	9.7	1.05	4.17					0.2	0.04	3.3		1.01	2.0	18	652 5	3.6 7.2	3.0	On-grade inlet, carryover flow to DP 5 D Piped to DP 1.0
	2	A2	0.82				4.27									0.44			27			On-grade inlet 1 Piped to DP 1.0
	1.0	712	0.02	0.00	7.1	0.44	4.27	1.7	0.7	1.45 4.1	7 6.0					1.45	3.0		335			6 Sum of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.47	15.0	3.16	3.53	11.1	7.7	1.45 4.1	7 0.0		0.47	2.9		2.69			426		2.1	On-grade inlet, carryover flow to DP 5 Diped to DP 1.1
	4	A3	1.51									0.1	0.03	2.9		0.88	4.7		395 0	3.4	1.9	Piped to DP 1.1 9 On-grade inlet, carryover flow to DP 5 9 Piped to DP 1.1
		A4	1.51	0.60	10.2	0.91	4.10	3.7														
	1.1									3.57 3.5					12.6							2 Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.2	5.02 3.5	0 17.6				17.6	5.02	3.3	24	319	12.5	0.4	4 Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53																			Overland Flow to DP1.3A On-grade inlet
	6	A6	1.37	0.58	10.0	0.79	4.14	3.3							3.3	0.79	2.0	18	0			0 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.22 4.1	4 5.0				5.0	1.22	1.0	24	36	5.7	0.1	1 Sum of DP 6 & DP 6A, piped to DP 1.3 On-grade inlet
	5	A5	1.70	0.59	9.9	0.99	4.14	4.1	17.0	1.53 3.3	3 5.1				5.1	1.53	2.0	18	0	7.6	0.0	0 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	7.77 3.3	3 25.9				25.9	7.77	1.1	36	620	9.2	1.1	1 Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4 Future storm infrastructure from Copper Chase Subdivision
	7	A7	19.00	0.45	18.3	8.55	3.22	27.5							27.5	8.55	1.5	42	20	10.3	0.0	Piped to DP 1.4
	1.4								18.4	16.32 3.2	2 52.5				52.5	16.32	0.5	48	26	8.2	0.1	1 Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade inlet, carryover flow to DP 11
	8	A8	1.48	0.56	13.9	0.83	3.63	3.0							3.0	0.83	2.0	18	20	6.6	0.1	Piped to DP 1.5
	1.5								18.4	17.15 3.2	1 55.1				55.1	17.15	0.5	48	91	8.3	0.2	2 Sum of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.73	8.7	0.44	4.34	1.9	8.7	0.48 4.3	4 2.1				2.1	0.48	2.0	18	13	5.8	0.0	On-grade inlet D Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								18.6	17.63 3.2	0 56.4				56.4	17.63	0.5	48	95		0.2	2 Sum of DP 1.5 & DP 9, piped to DP 1.8
	10	A10	2.61	0.79	7.9	2.05	4.49	9.2					0.11		8.7	1.94	2.5	18	955 118	9.5	0.2	On-grade inlet, carryover flow to DP 20 2 Piped to DP 1.7
	11	A11	2.89	0.76	8.7	2.20	4.34	9.5				0.6	0.15	1.5	8.9	2.05	2.5	18	1049 0		7.1 0.0	On-grade inlet, carryover flow to DP 21 D Piped to DP 1.7
	1.7								8.7	3.99 4.3	4 17.3				17.3	3.99	1.0	24	8	7.9	0.0	0 Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								18.8	21.63 3.1	8 68.8				68.8	21.63	2.0	54	517	14.4	0.6	6 Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	OS2	OS2	17.00	0.49	14.0	6.25	2.20	13.8							13.8	6.25	1.0	30	787	7.5		Future flow released from Barbarick Subdivision 7 Piped to DP 2.0
	12	A12			11.9											0.49			17			Type C inlet 1 Piped to DP 2.0
	2.0								15.7	6.74 3.4	5 23.2					6.74	1.0					1 Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	9.65	0.45	14.0	4.34	3.62	15.7			20.2				15.7							Enture storm infrastructure from Sterling Ranch Phase 2 4 Piped to DP 2.1

Subdivision: Location: Design Storm:	El Paso (0. 2												Project I Proje Calculat Check	ct No. ed By: ed By:	: 2518 AAM	8.01	nch Su	Ibdivi	vision
				DIRE	CT RUI	NOFF			T	OTAL F	RUNOI	FF	STREET/	SWAL	Ξ	Р	IPE		TRA	/EL TIM	ЛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (CfS)	Slone (%)	orope (10) O. (rfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	2.1								15.9	11.08	3.44	38.1			38	3.1 11.0	8 1.0	6 48	65	11.4	0.	0.1 Sum of DP 2.0 & DP 13, piped to DP 2.5 Future flow released from Barbarick Subdivision
	OS3	OS3	28.70	0.49	19.0	14.06	1.25	17.6			-				1	7.6 14.0	6 1.0	0 30	719	8.0	1.	1.5 Piped to DP 2.2
	14	A14	11.76	0.39	15.3	4.59	3.49	16.0							10	6.0 4.5	9 1.(0 30	20	7.8	0.	Future flow released from School Site 0.0 Piped to DP 2.2
	2.2								20.5	18.65	3.05	56.9			50	5.9 18.6	5 1.5	5 48	773	12.4	1.	1.0 Sum of DP OS3 & DP 14, piped to DP 2.3
	15	A15	2.91	0.52	14.9	1.52	3.53	5.4							Į	5.4 1.5	2 1.3	3 18				On-grade inlet 0.1 Piped to DP 2.3
	16	A16	2.34	0.54	14.7	1.25	3.55	4.4					0.1 0.	04 C		4.3 1.2	1 2.0	0 18	697 12			6.5 On-grade inlet, carryover flow to DP 9 0.0 Piped to DP 2.3
	2.3								15.0	2.73	3.52	9.6				9.6 2.7	3 1.0	6 48	51	7.6	0.	0.1 Sum of DP 15 & DP 16, piped to DP 2.4
	2.4								21.5	21.38	2.98	63.7			63	3.7 21.3	8 1.6	6 48	19	13.1	0.	0.0 Sum of DP 2.2 & DP 2.3, piped to DP 2.5
	2.5								21.6	32.46	2.98	96.6			90	5.6 32.4	6 2.0	0 60	839	15.8	0.	0.9 Sum of DP 2.1 & DP 2.4 piped to DP 2.6
	17	A17	1.76	0.21	13.7	0.38	3.66	1.4								1.4 0.3	8 1.(0 18	24	4.1	0.	Type C inlet 0.1 Piped to DP 2.6
	2.6								21.6	32.84	2.98	97.8			9	7.8 32.8	4 2.0	0 60	32	15.8	0.	0.0 Sum of DP 2.5 & DP 17, piped to DP 2.7
	2.7								21.6	54.47	2.97	162.0			16	2.0 54.4	7 0.6	6 78	220	11.5	0.	0.3 Sum of DP1.8 & DP 2.6, piped to DP 2.8
	18	A18	5.27	0.24	16.4	1.28	3.38	4.3								4.3 1.2	8 1.0	0 18	24	5.6	0.	Area inlet 0.1 Piped to DP 2.6
	19	A19	31.85	0.45	25.8	14.33	2.71	38.8							38	3.8 14.3	3 1.0	0 18	24	22.0	0.	Area inlet 0.0 Piped to DP 2.6
	2.8								25.8	70.08	2.71	189.8			189	9.8 70.0	8 0.0	6 78	145	12.1	0.	0.2 Sum of DP 2.7, DP 18 & DP 19, piped to DP 3.0.
	3.0								25.8	70.08	2.71	189.8	189.8 70.	08 0).5				584	1.4	6.	6.9 Detention Pond Trickle channel conveyance to DP 3.2
	20	A20	1.83	0.81	8.0	1.48	4.47	6.6	8.0	1.59	4.47	7.1				7.1 1.5	9 1.0	0 24	105	6.4	0.	On-grade inlet 0.3 Sum of Sub-basin A20 & carryover flow from DP 10, piped to DP 3.0
	21	A21	1.93	0.82	8.7	1.57	4.33	6.8	8.7	1.72	4.33	7.4	0.1 0.	03 1		7.3 1.6	8 2.5	5 18	0	9.0	0.	On-grade inlet 0.0 Sum of Sub-basin A21 & carryover flow from DP 11, piped to DP 2.9
	2.9								8.7	3.27	4.33	14.2			14	4.2 3.2	7 2.0	0 24				0.1 Sum of DP 20 & DP 21,piped to DP 3.1
	3.1								8.7	3.27	4.33	14.2	14.2 3.	27 ().5				568	1.4	6.	6.7 Detention Pond Trickle channel conveyance to DP 3.2
	22	A22	8.68	0.11	23.3	0.95	2.86	2.7														Detention Pond Overland flow to DP 3.2
	OS4	OS4	5.08	0.20	28.3	1.02	2.57	2.6					2.6 1.	02 13	3.0				113	5.4	0.	0.3 Existing topography Overland flow to DP 4.1
	3.2								28.6	75.32	2.55	192.2										Outlet Structure Sum of DP 3.0, DP 3.1, DP 22 & DP OS4, outlet structure release to DP 4.8
	Pond A								28.6	1.45	2.55	3.7			:	3.7 1.4	5 2.0	0 48				0.2 Outlet structure release to DP 4.8
	23	B1	2.98	0.90	17.6	2.68	3.29	8.8					0.4 0.	12 2		3.4 2.5	6 0.5	5 30	1399 88		12. 0.	2.0 On-grade inlet 0.3 Piped to DP 4.0

X:\2510000.all\2518801\Excel\Drainage\2518801_Proposed Conditions.xlsm

SCS calculation

for this basin?

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

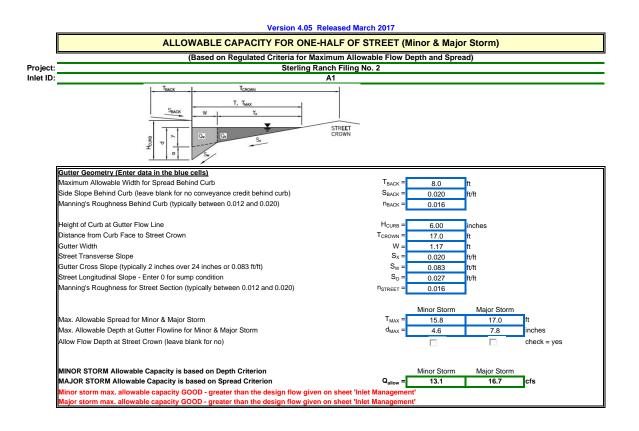
ubdivision: Location: sign Storm:	El Paso			o. 2												F Calo	ject Na Project culated hecked E	t No.: d By: d By:	25188	3.01		UCIVISI	
				DIREC	T RUN	IOFF			TC)TAL R	UNOF	-	STRE	T/SW/	ALE		PIP	ΡE		TRAV	EL TIN	1E	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	u (crs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)		Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	24	B2	3 89	0.90	17.6	3.50	3.29	11.5					1.4	0.43	2.0	10.1	3.07	2.0	30	1399 0	2.0 8.8	12.0	On-grade inlet Piped to DP 4.0
									17.0	E / 2	3.26	10.4					5.63				12.1		
	40	•		`	•	•	•	<u> </u>	7.8	5.03	3.20	18.4	33.7	27.72		18.4	5.63	3.0	30	24	2.1	0.2	Sum of DP 23 & DP 24, piped to DP 4.1 Existing topography
	28	OS20	308.00	0.09	69.7	27.72	1.22	33.7	4				40.4	33.35	1.0					1263	1.5		Overland flow to DP 4.1
	4.1	\sim	\searrow	ᄉ	\sim	\sim	\sim		69.9	33.35	1.21	40.4		1.82						0	2.0	0.0	Sum of DP 4.0 & DP 25, piped to DP 4.3 Existing topography
	26	OS21A	20.26	0.09	56.6	1.82	1.53	2.8					2.0	1.02	1.0					0	2.0	0.0	Overland flow to DP 4.3
	27	B3	2.05	0.90	9.4	1.85	4.22	7.8	9.4	1.97	4.22	8.3				8.3	1.97	1.0	30	70	6.5	0.2	Sump inlet Piped to DP 4.2
	28	B4	1 94	0.90	9.4	1 75	4.22	7.4	12.0	2 18	3.86	8.4				84	2.18	10	30	0	65	0.0	Sump inlet Piped to DP 4.2
	4.2										3.86						4.15						Sum of DP 27 & DP 28, piped to DP 4.3
													36.9	39.32		10.0	4.13	1.0	30	192	1.1	3.0	
	4.3								83.9	39.32	0.94	36.9											Sum of DP 4.1, DP 4.2, & DP 26, piped to DP 4.5 Type D Inlet
	29	OS21B	8.71	0.09	25.1	0.78	2.75	2.1					2.1	0.78	0.5	2.1	0.78	1.0	30	719 289	4.4	2.7	Piped to DP 4.4 Detention Pond
	4.4								25.1	0.78	2.75	2.1	2.1	0.70	0.5					207	1.4	3.4	Trickle channel conveyance to DP 4.5
	30	B5	2.91	0.08	13.1	0.23	3.72	0.9															Detention Pond Overland flow to DP 4.5
	4.5								83.9	40.33	0.94	37.8				37.8	40.33						Outlet Structure Sum of DP 4.3, DP 4.4, & DP 30, outlet structure release to DP 4.6
	Pond B										0.94	9.5					10.09	17	44	211	7 5	0.7	
									03.9	10.09	0.94	7.0											Poutlet structure release to DP 4.6 Future Commercial Site, Full spectrum pond release
	31	C1	8.01	0.81	9.9	6.49	0.32	2.0								2.0	6.49						Piped to DP 4.6
	4.6								84.6	46.82	0.93	43.3			-+	43.3	46.82	2.5	60	1598	13.5		Sum of Pond B & DP 31, piped to DP 4.7 Future Commercial Site, Full spectrum pond release
	32	C2	5.06	0.81	7.9	2.00	0.70	1.4								1.4	2.00	2.0	36	52	4.7		Piped to DP 4.7
	4.7								84.6	48.82	0.93	45.2				45.2	48.82	0.5	66	1004	7.7	2.2	Sum of DP 4.6 & DP 32, piped to DP 4.8
	4.8								84.6	50.27	0.93	46.5				46.5	50.27	0.5	72				Sum of DP DP 4.7 & Pond A, Outfall to Sandcreek Drainageway

Notes:

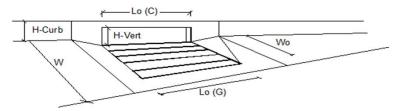
Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

anch bunty	Filing N	No. 2												Ca	oject Na Project alculateo Checkeo [t No.: d By:	25188 AAM	3.01	nch Su	ıbdivi	sion
		DIR	ECT RU	JNOFF			T	OTAL F	RUNOF	F	STRE	ET/SW/	ALE		PIPE			TRAV	'EL TIN	ЛE	
Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
A1	2.06	0.65	9.7	1.34	7.01	9.4					2.8	0.40	3.3	6.6	0.94	2.0	18	652 5	3.6 8.2		On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
											0.1	0.01	3.3					639	3.6	2.9	On-grade inlet, carryover flow to DP 6
A2	0.82	0.66	9.1	0.54	7.17	3.9								3.8	0.53	2.0	18	27	7.0	0.1	Piped to DP 1.0
							9.7	1.47	7.00	10.3	10.0	1.69	2.9	10.3	1.47	3.0	18	335 426	10.6 3.4		Sum of DP 1 & DP 2, piped to DP 1.2 On-grade inlet, carryover flow to DP 5
A3	6.76	0.62	15.0	4.17	5.92	24.7					10.0	1.09	2.9	14.7	2.48	4.7	18	36	13.6	0.0	Piped to DP 1.1
A4	1.51	0.71	10.2	1.08	6.88	7.4					1.6	0.24	2.9	5.8	0.84	4.7	18	395 0			On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
							15.0	3.33	5.91	19.7				19.7							Sum of DP 3 & DP 4, piped to DP 1.2
							15.1		5.89					28.2	4.80						Sum of DP 1.0 & DP 1.1, piped to DP 1.3
A6A	0.53	0.88	5.0	0.47	8.68	4.1															Overland Flow to DP1.3A
						4.1					1.3	0.18	0.7								On-grade inlet, carryover flow to DP 8
A6	1.37	0.70	10.0	0.95	6.94	6.6	10.0	0.96	6.94	6.7				5.4	0.78	2.0	18	0	7.7	0.0	Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
							10.0	1.25	6.94	8.7		=		8.7	1.25	1.0	24			0.1	Sum of DP 6 & DP 6A, piped to DP 1.3
A5	1.70	0.70	9.9	1.19	6.95	8.3	17.0	3.51	5.59	19.6	6.5	1.17	0.7	13.1	2.34	2.0	18	664 0	1.7 9.4		On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
							17.0	8.39	5.59	46.9				46.9	8.39	1.1	36	620	10.7		Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
A7	10.00	0.50	18.3	11.21	5.41	60.6		5.07	2.07					60.6	11.21				12.7		Piped to DP 1.4
AI.	17.00	0.09	10.5	11.21	0.41	00.0															
							18.4	19.60	5.40	105.9	1.9	0.41	0.7	105.9	19.60	0.5	48	26 195	9.2 1.7	0.0	Sum of DP 1.3 & DP 7, piped to DP 1.5 On-grade inlet, carryover flow to DP 11
A8	1.48	0.70	13.9	1.04	6.10	6.3	23.7	2.63	4.76	12.5	1.7	0.71	0.7	10.6	2.23	2.0	18				Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5

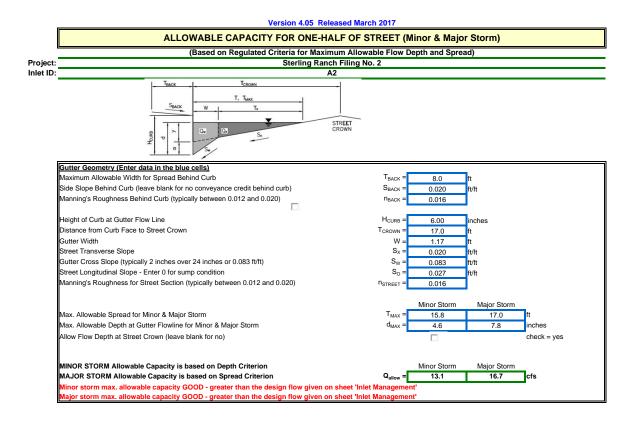
Subdivision: Sterling Rand Location: El Paso Coun sign Storm: 100-Year

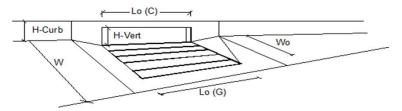

				DIR	ECT R	UNOFF			T	OTAL F	RUNO	FF	STRE	ET/SW	ALE		PIPE			TRAV	EL TI	IME	
Description	Design Point	3asin ID	Area (ac)	Runoff Coeff.	c (min)	C* A (ac)	(in/hr)	Q (cfs)	ic (min)	C* A (ac)	(in/hr)	Q (cfs)	Q _{street/swale} (cfs)	C* A (ac)	Slope (%)	O _{pipe} (cfs)	C* A (ac)	Slope (%)	Pipe Size (inches)	ength (ft)	Velocity (fps)	t (min)	REMARKS
	1	A1	2.06		9.7		7.01			0		0	2.8	0.40		6.6	0.94			652 5	3.0	5 3. 2 0	.0 On-grade inlet, carryover flow to DP 5 .0 Piped to DP 1.0
	2	A2	0.82	0.66	9.1	0.54	7.17	3.9					0.1	0.01	3.3	3.8	0.53	2.0	18	639 27	3.0	5 2.	9 On-grade inlet, carryover flow to DP 6 1 Piped to DP 1.0
	1.0								9.7	1.47	7.00	10.3				10.3	1.47	3.0	18	335	10.0	6 0.	.5 Sum of DP 1 & DP 2, piped to DP 1.2 .1 On-grade inlet, carryover flow to DP 5
	3	A3	6.76	0.62	15.0	4.17	5.92	24.7					10.0	1.69	2.9	14.7	2.48	4.7	18	36	13.6	5 0.	.0 Piped to DP 1.1
	4	A4	1.51	0.71	10.2	1.08	6.88	7.4					1.6	0.24	2.9	5.8	0.84	4.7	18	395 0	3.4 10.1	4 1. 7 0.	.9 On-grade inlet, carryover flow to DP 5 .0 Piped to DP 1.1
	1.1								15.0	3.33	5.91	19.7				19.7	3.33	1.0	24	74	8.1	1 0.	.2 Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.1	4.80	5.89	28.2				28.2	4.80	3.3	24	319	13.9	9 0.	.4 Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.88	5.0	0.47	8.68	4.1															Overland Flow to DP1.3A
	6	A6	1.37	0.70	10.0	0.95	6.94	6.6	10.0	0.96	6.94	6.7	1.3	0.18	0.7	5.4	0.78	2.0	18	696 0	1.1 7.1	7 7. 7 0.	.0 On-grade inlet, carryover flow to DP 8 .0 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.25	6.94	8.7				8.7	1.25	1.0	24	36	6.	7 0.	.1 Sum of DP 6 & DP 6A, piped to DP 1.3 .6 [On-grade inlet, carryover flow to DP 8
	5	A5	1.70	0.70	9.9	1.19	6.95	8.3	17.0	3.51	5.59	19.6	6.5	1.17	0.7	13.1	2.34	2.0	18	664 0	1.1 9.4	7 6. 4 0.	.6 On-grade inlet, carryover flow to DP 8 .0 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	8.39	5.59	46.9				46.9	8.39	1.1	36	620	10.7	7 1.	.0 Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.59	18.3	11.21	5.41	60.6								60.6	11.21	1.5	42	20	12.7	7 0.	Future storm infrastructure from Copper Chase Subdivision .0 Piped to DP 1.4
	1.4								18.4	19.60	5.40	105.9				105.9	19.60	0.5	48	26	9.2	2 0.	.0 Sum of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1.48	0.70	13.9	1.04	6.10	6.3	23.7	2.63	4.76	12.5	1.9	0.41	0.7	10.6	2.23	2.0	18	195 20	1.1 9.1	7 1. 1 0.	.9 On-grade inlet, carryover flow to DP 11 .0 Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
	1.5								23.7	21.83	4.76	103.9				103.9	21.83	0.5	48	91	9.2	2 0.	.2 Sum of DP 1.4 & DP 8, piped to DP 1.6 .4 On-grade inlet, carryover flow to DP 11
	9	A9	0.61	0.83	8.7	0.51	7.29	3.7	21.2	0.95	5.04	4.8	0.3	0.05	0.7	4.5	0.89	2.0	18	140 13	1.1 7.3	7 1. 3 0.	.4 On-grade inlet, carryover flow to DP 11 .0 Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6									22.72						107.7	22.72	0.5	48				.2 Sum of DP 1.5 & DP 9, piped to DP 1.8 .5 On-grade inlet, carryover flow to DP 20
	10	A10	2.61	0.88	7.9	2.29	7.53	17.3					4.5			12.8	1.70	2.5	18	118	10.3	3 0.	.2 Piped to DP 1.7
	11	A11	2.89	0.86	8.7	2.48	7.28	18.1	10.6	2.94	6.77	19.9	6.1	0.90	1.5	13.8	2.04	2.5	18	1049	2.4	4 7.	.1 On-grade inlet, carryover flow to DP 21 .0 Sum of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7
_	1.7								10.6			25.3				25.3	3.74	1.0	24				.0 Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								24.0	26.45	4.72	125.0				125.0	26.45	2.0	54	517	17.0	0 0	.5 Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	OS2	OS2	17.00	0.62	12.0	10.54	3.71	39.1								39.1	10.54	1.0	30	787	9.5	5 1.	Future flow released from Barbarick Subdivision .4 Piped to DP 2.0
	12	A12	3.87	0.38	11.9	1.47	6.49	9.5								9.5	1.47	2.0	18	17	8.9	9 0.	Type C inlet .0 Piped to DP 2.0
	2.0								13.4	12.01	6.20	74.5				74.5	12.01	1.0	48	52	11.0	6 0.	.1 Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	9.65	0.59	14 0	5.69	6.08	34.6								34.6	5.69	1.5	30				Future storm infrastructure from Sterling Ranch Phase 2 3 Piped to DP 2.1

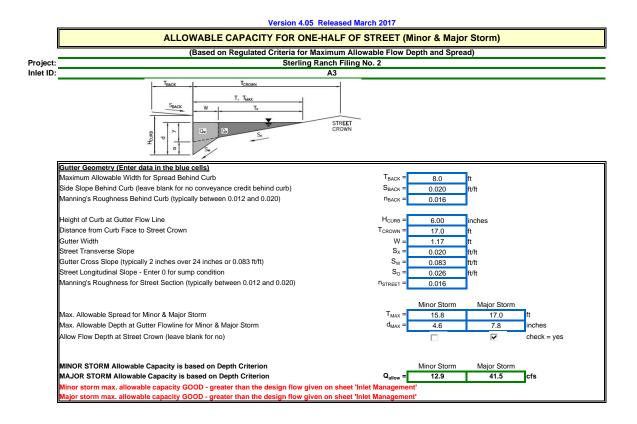
Subdivision: Location: sign Storm:	El Paso	County		lo. 2													oject Na Project alculateo Checkeo [t No.: d By:	2518 AAM	8.01	inch Su	ubdivi	sion
				DIR	ECT RI	UNOFF			T(otal r	UNOF	F	STRE	et/sw	ALE		PIPE			TRAV	/EL TIN	ME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	2.1								14.3	17.70	6.02	106.6				106.6	17.70	1.6	48	65	15.1	0.1	Sum of DP 2.0 & DP 13, piped to DP 2.5
	OS3	OS3	28.70	0.62	15.0	17.79	2.75	48.9								48.9	17.79	1.0	30	719	10.0	1.2	Future flow released from Barbarick Subdivision Piped to DP 2.2
	14	A14	11.76	0.55	15.3	6.47	5.86	37.9								37.9	6.47	1.0	30	20	9.5	0.0	Future flow released from School Site Piped to DP 2.2
	2.2									24.26	5 72	138.7				138.7	24.26		48				Sum of DP OS3 & DP 14, piped to DP 2.3
	15	A15	2.91	0.49	14.9	1.98	5.93	11.7		24.20	5.72	130.7	1.4	0.24	0.7	10.3	1.74			724	1.7	7.2	On-grade inlet, carryover flow to DP 8 Piped to DP 2.3
													2.6	0.44	0.8					697	1.8	6.5	On-grade inlet, carryover flow to DP 9
	16	A16	2.34	0.69	14.7	1.61	5.96	9.6								7.0	1.17		18				Piped to DP 2.3
	2.3								15.0		5.91					17.2	2.91		48				Sum of DP 15 & DP 16, piped to DP 2.4
	2.4									27.17						151.9	27.17		48				Sum of DP 2.2 & DP 2.3, piped to DP 2.5
	2.5								17.1	44.87	5.59	250.7				250.7	44.87	2.0	60	839	20.1	0.7	Sum of DP 2.1 & DP 2.4 piped to DP 2.6 Type C inlet
	17	A17	1.76	0.44	13.7	0.77	6.14	4.7								4.7	0.77	1.0	18	24	5.7	0.1	Piped to DP 2.6
	2.6								17.7	45.64	5.49	250.4				250.4	45.64	2.0	60	32	20.2	0.0	Sum of DP 2.5 & DP 17, piped to DP 2.7
	2.7								24.5	72.10	4.67	336.8				336.8	72.10	0.6	78	220	13.7	0.3	Sum of DP1.8 & DP 2.6, piped to DP 2.8
	18	A18	5.27	0.47	16.4	2.47	5.68	14.0								14.0	2.47	1.0	18	24	7.9	0.1	Area inlet Piped to DP 2.6
	19	A19	31.85	0.59	25.8	18.79	4.55	85.4								85.4	18.79	1.0	18	24	48.4	0.0	Area inlet Piped to DP 2.6
	2.8								25.8	93.36	4.55	424.4				424.4	93.36	0.6	78	145	13.9	0.2	Sum of DP 2.7, DP 18 & DP 19, piped to DP 3.0.
	3.0								25.8	93.36	4.55	424.4	424.4	93.36	0.5					564	1.4	6.6	Detention Pond Trickle channel conveyance to DP 3.2
	20	A20	1.83	0.89	8.0	1.63	7.50	12.2			6.02		2.3	0.38	1.5	11.1	1.84	1.0	24	105	7.2	0.2	On-grade inlet Sum of Sub-basin A20 & carryover flow from DP 10, piped to DP 3.0
	21	A21	1.93	0.90			7.28	12.6			5.77		3.3	0.57	1.5	11.9	2.06		18		10.2		On-grade inlet Sum of Sub-basin A21 & carryover flow from DP 11, piped to DP 2.9
	2.9	/121	1.75	0.70	0.7	1.75	,.20	12.0	15.8	3.91	5.77	22.5				22.5	3.91		24		11.0		Sum of DP 20 & DP 21, piped to DP 3.1
													22.5	3.91	0.5	22.0	3.71	2.0	24	568			Detention Pond
	3.1								15.8	3.91	5.77	22.5											Trickle channel conveyance to DP 3.2 Detention Pond
	22	A22	8.68		23.3		4.80	15.4					8.8	2.03	13.0					113	5.4	0.3	Overland flow to DP 3.2 Existing topography
	OS4	OS4	5.08	0.40	28.3	2.03	4.31	8.8															Overland flow to DP 3.2 Outlet Structure
	3.2								28.6	102.50	4.28	438.9											Sum of DP 3.0, DP 3.1, DP 22 & DP OS4, outlet structure release to DP 4.8
	Pond A								28.6	34.84	4.28	149.2	3.6	0.65	2.0	149.2	34.84	2.0	48	58 1394			Outlet structure release to DP 4.8 On-grade inlet
	23	B1	2.98	0.96	17.6	2.86	5.51	15.8					6.5	1.17		12.2	2.21	0.5	30		5.7	0.3	Piped to DP 4.0 On-grade inlet
	24	B2	3.89	0.96	17.6	3.73	5.51	20.6					0.5	1.17	2.0	14.1	2.56	2.0	30				Piped to DP 4.0

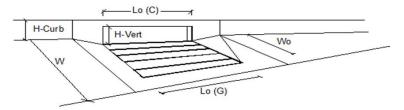

Subdivision: Location: sign Storm:	El Paso	County		lo. 2											Ca	oject Na Project alculateo Checkeo E	t No.: d By:	2518 AAM	8.01	ch Su	Ibdivis	Sion
				DIR	ECT RI	UNOFF			TOT	AL RU	NOFF	STR	ET/SW	ALE		PIPE			TRAVE	EL TIN	ЛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr) Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	tt (min)	REMARKS
	4.0								17.8	4.77	5.48 26.7	1			26.1	4.77	3.0	30	40	13.4	0.0	Sum of DP 23 & DP 24, piped to DP 4.1
	25	0\$20	308.00	0.36	69.7	110.88	2.04	226.1					110.88	2.0					24	2.1	0.2	Existing topography Overland flow to DP 4.1
	4.1	0020	000.00	0.00	07.17	110.00	2.01	220.1	60 7 11	5 65	2.04 235.9		115.65	1.0					1263	1.5	14.0	Sum of DP 4.0 & DP 25, piped to DP 4.3
		05214	20.26	0.36	E4 4	7.29	2.56	18.7	07.7 11	3.03	2.04 233.	18.7	7.29	1.0					0	2.0	0.0	Existing topography Overland flow to DP 4.3
									17 (a (a						0.40	1.0	20	70	7.		Sump inlet
	27	B3	2.05			1.97					5.51 14.4				14.4				70			Piped to DP 4.2 Sump inlet
	28	B4	1.94	0.96	9.4	1.86	7.09	13.2			5.51 16.7				16.7	3.03						Piped to DP 4.2
	4.2								17.7	5.65	5.49 31.0		128.59	0.5	31.0	5.65	1.0	30	110 192	9.2 1.1	0.2	Sum of DP 27 & DP 28, piped to DP 4.3
	4.3								69.7 12	8.59	2.04 262.3	3										Sum of DP 4.1, DP 4.2, & DP 26, piped to DP 4.5 Type D Inlet
	29	OS21B	8.71	0.36	25.1	3.14	4.61	14.5				14.5	3.14	0.5	14.5	3.14	1.0	30	719 289	7.6		Piped to DP 4.4 Detention Pond
	4.4								25.1	3.14	4.61 14.5	5							-			Trickle channel conveyance to DP 4.5 Detention Pond
	30	B5	2.91	0.35	13.1	1.02	6.25	6.4														Overland flow to DP 4.5 Outlet Structure
	4.5								69.7 13	2.75	2.04 270.7	7			270.7	132.75						Sum of DP 4.3, DP 4.4, & DP 30, outlet structure release to DP 4.6
	Pond B								69.7 11	2.40	2.04 229.2	2			229.2	112.40	1.7	66	311	18.6		Outlet structure release to DP 4.6
	31	C1	8.01	0.88	9.9	7.05	2.13	15.0							15.0	7.05	2.0	36	52	9.8		Future Commercial Site, Full spectrum pond release Piped to DP 4.6
	4.6							•	70.0 11	9.45	2.03 242.4	1			242.4	119.45	2.5	60	1598	21.8	1.2	Sum of Pond B & DP 31, piped to DP 4.7
	32	C2	5.06	0.88	7.9	1.32	7.54	10.0							10.0		2.0					Future Commercial Site, Full spectrum pond release Piped to DP 4.7
	4.7									0.77	2.03 245.7	1				120.77						' Sum of DP 4.6 & DP 32, piped to DP 4.8
	4.8								70.0 15	5.61	2.03 315.8	3				155.61						Sum of DP DP 4.7 & Pond A, Outfall to Sandcreek Drainageway
														1								

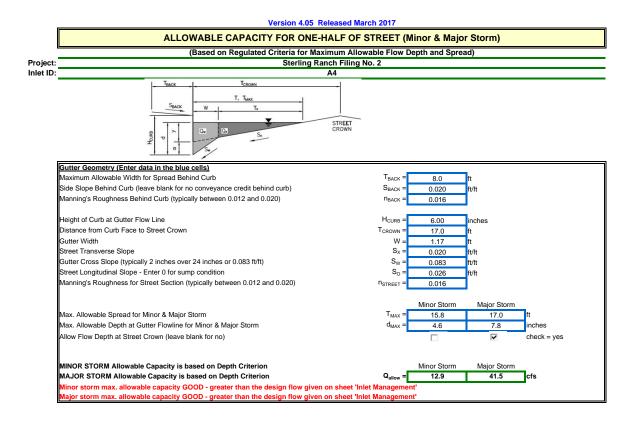
Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

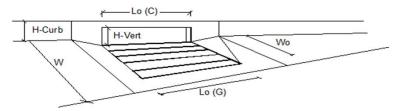

(Inlet calculations not checked on this review.)

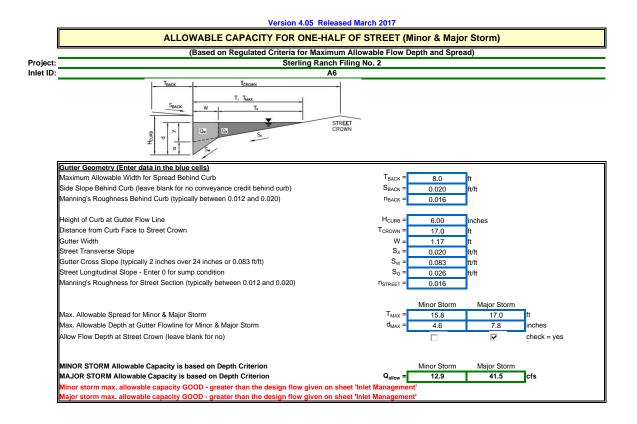

Version 4.05 Released March 2017

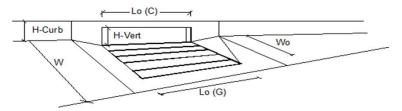

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.2	6.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.2	2.8	cfs
Capture Percentage = Q _a /Q _o =	C% =	95	70	%

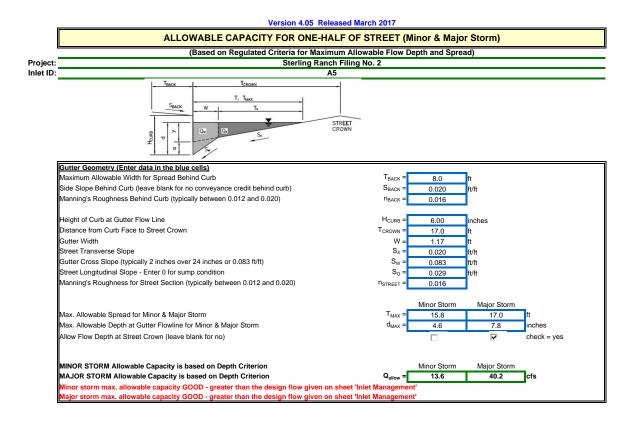

Version 4.05 Released March 2017

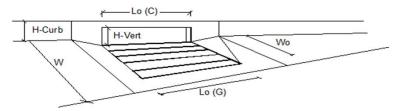

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.9	3.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	97	%

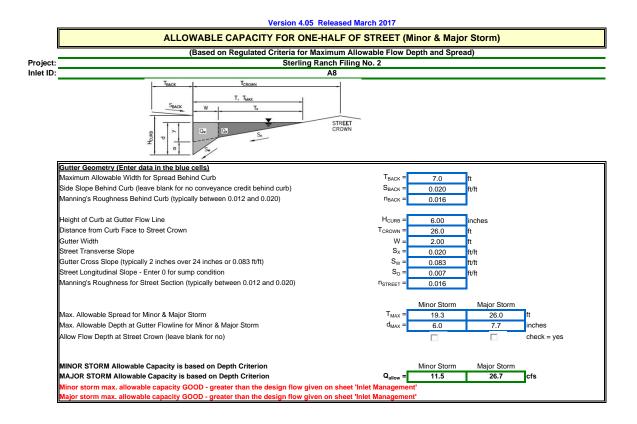

Version 4.05 Released March 2017

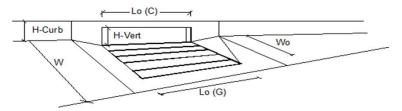

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	9.5	14.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.6	10.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	86	60	%

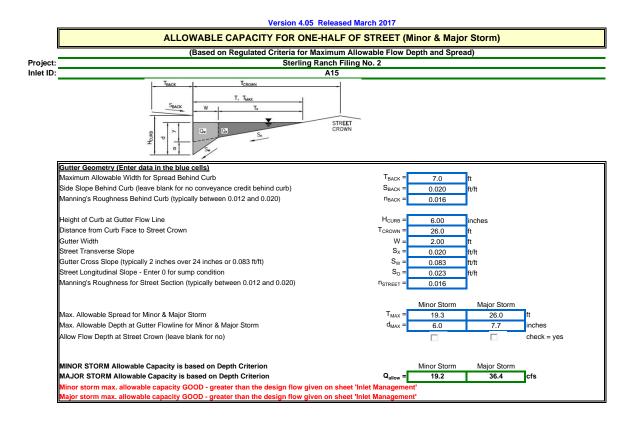

Version 4.05 Released March 2017

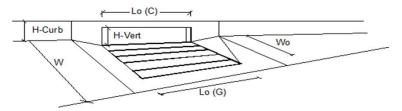

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.6	5.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	1.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	98	78	%

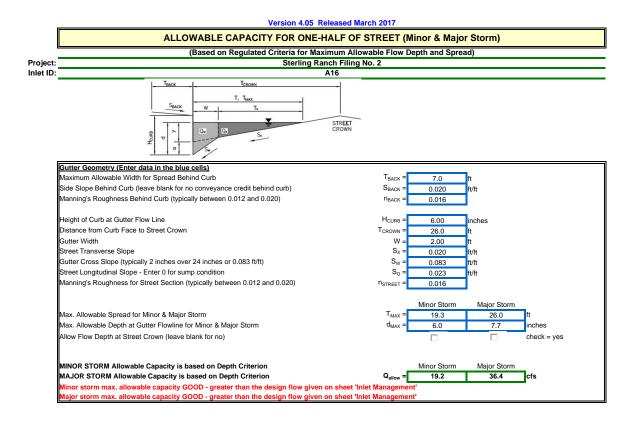

Version 4.05 Released March 2017

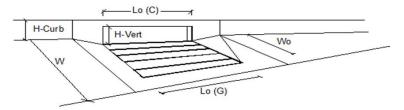

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.3	5.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	81	%

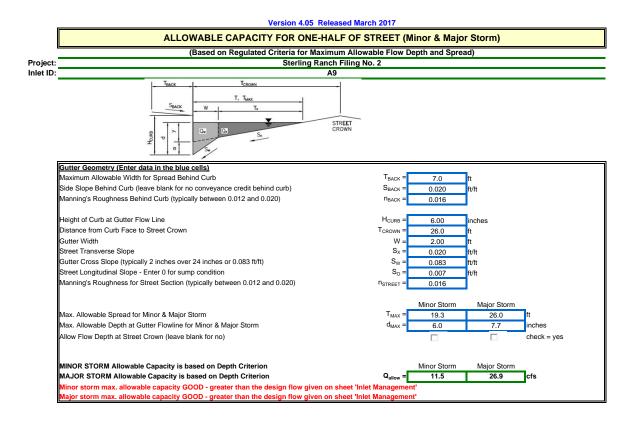

Version 4.05 Released March 2017

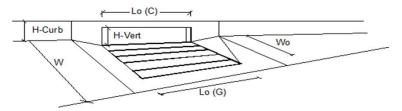

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.1	13.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	6.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	67	%

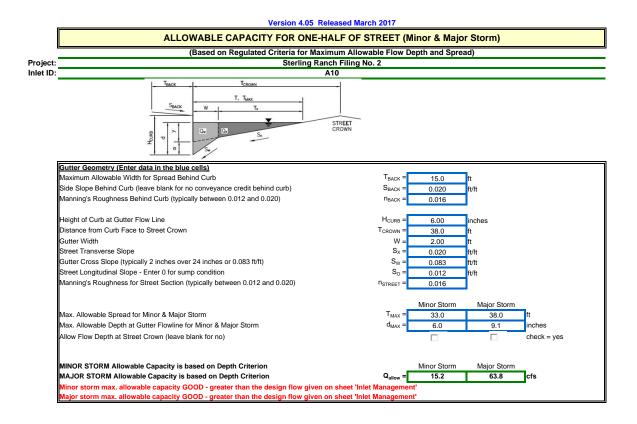

Version 4.05 Released March 2017

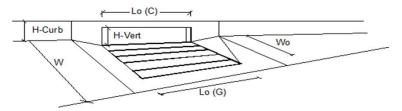

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.0	10.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	85	%

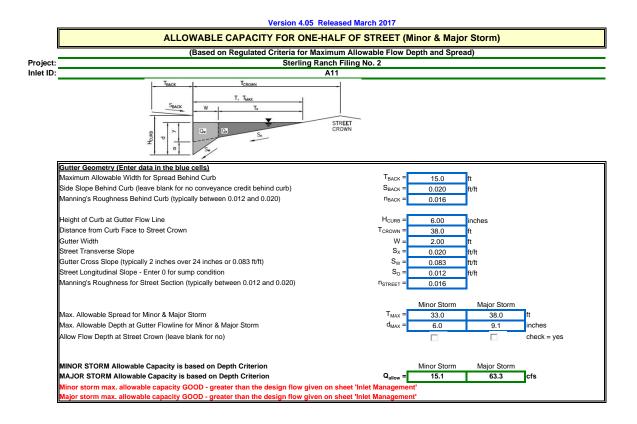

Version 4.05 Released March 2017

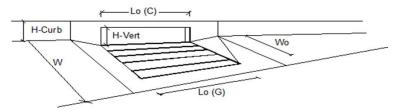

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	5.4	10.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	88	%

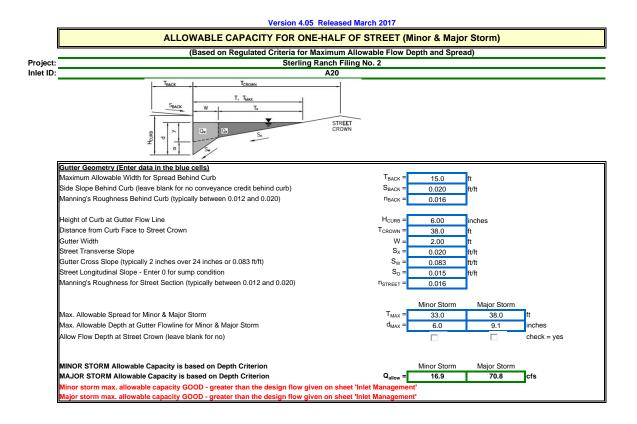

Version 4.05 Released March 2017

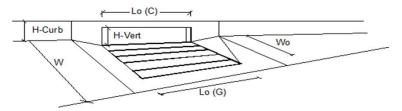

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	4.3	7.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	2.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	97	73	%

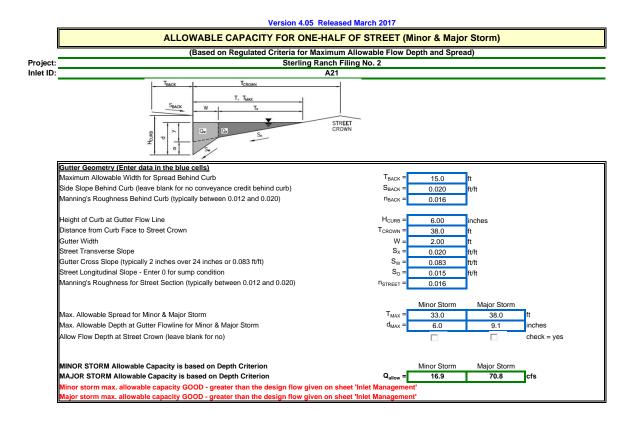

Version 4.05 Released March 2017


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.1	4.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	94	%

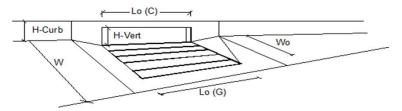

Version 4.05 Released March 2017


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.7	12.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.5	4.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	94	74	%

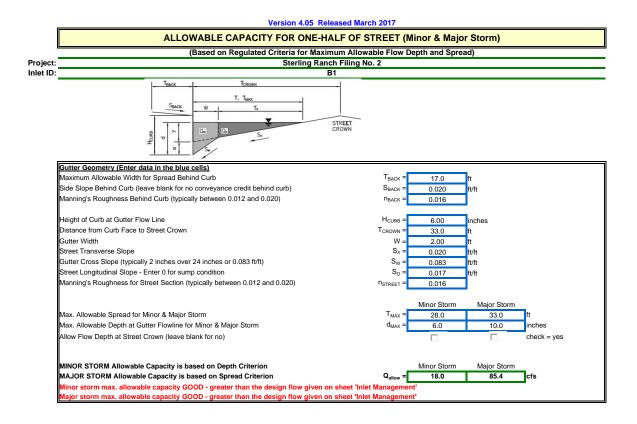

Version 4.05 Released March 2017


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.9	13.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.6	6.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	93	69	%

Version 4.05 Released March 2017

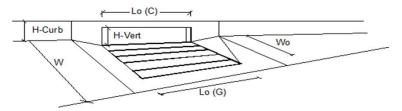


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.1	11.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	83	%

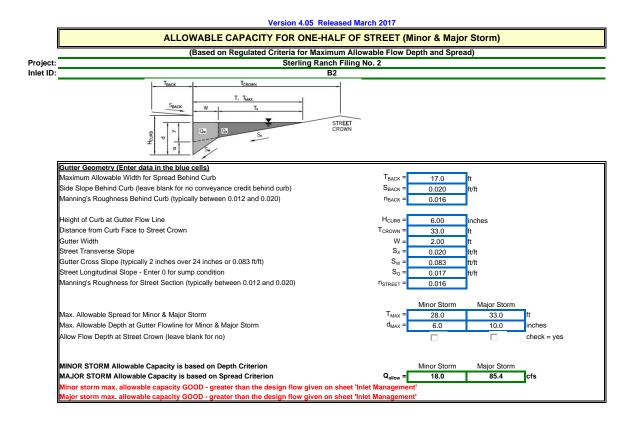


INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

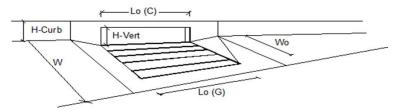


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.3	11.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	3.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	99	79	%



INLET ON A CONTINUOUS GRADE

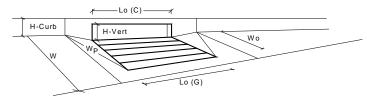
Version 4.05 Released March 2017



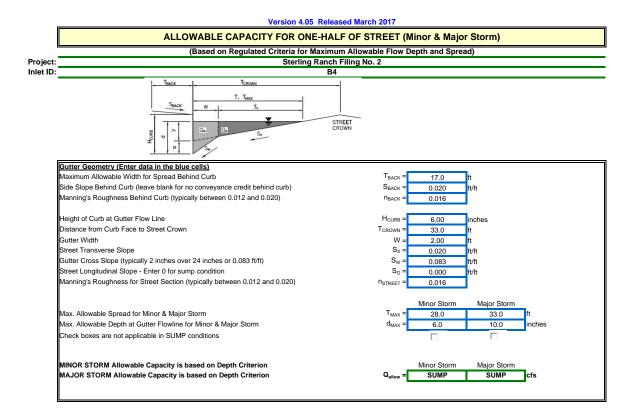
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.4	12.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.4	3.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	96	77	%

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

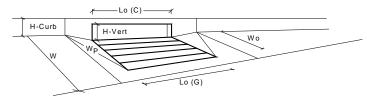


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	10.1	14.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.4	6.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	88	68	%

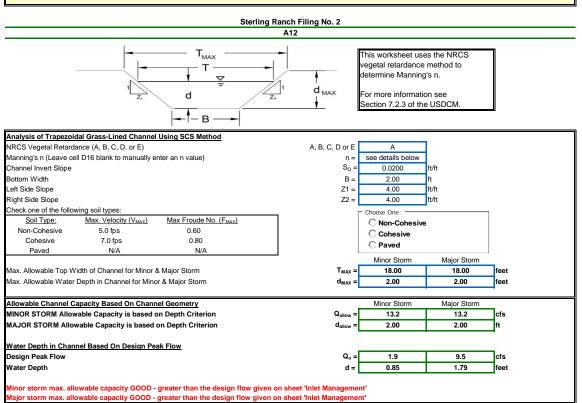


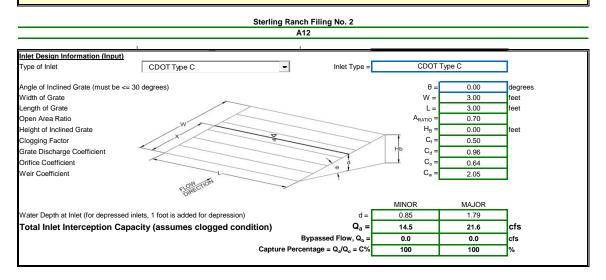
INLET IN A SUMP OR SAG LOCATION

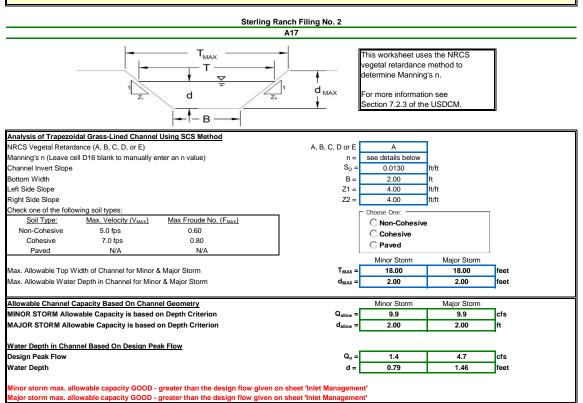
Version 4.05 Released March 2017

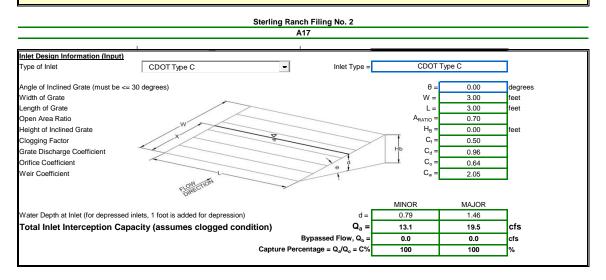


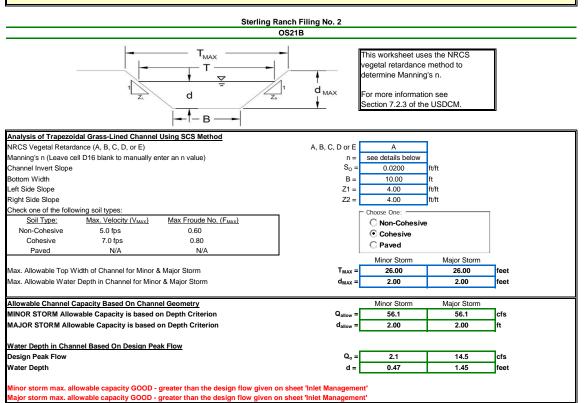
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.34	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.94	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.4	16.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	8.3	14.4	cfs

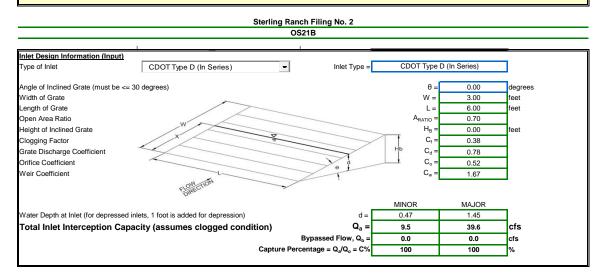



INLET IN A SUMP OR SAG LOCATION


Version 4.05 Released March 2017

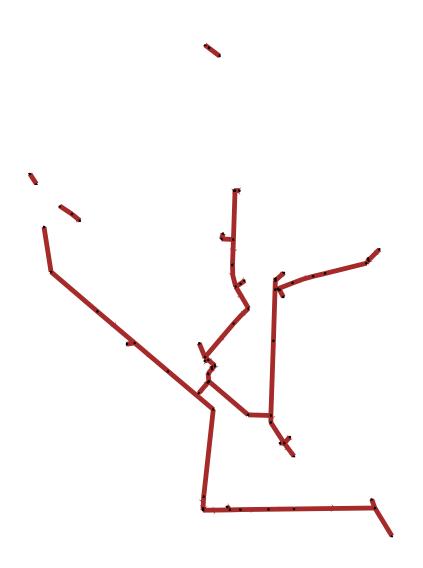



Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	9.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.34	0.62	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.89	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.94	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.5	21.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	8.4	16.7	cfs



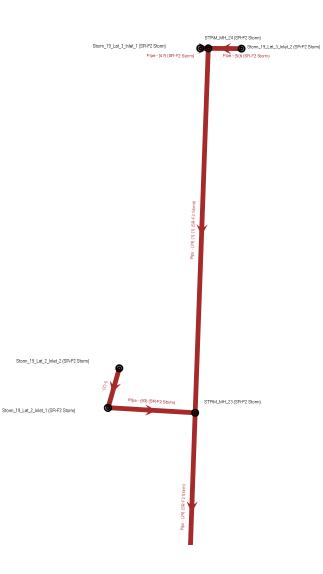
Scenario: 5-YEAR Current Time Step: 0.000Hr Conduit FlexTable: Combined Pipe/Node Report

Some velocities are too high.

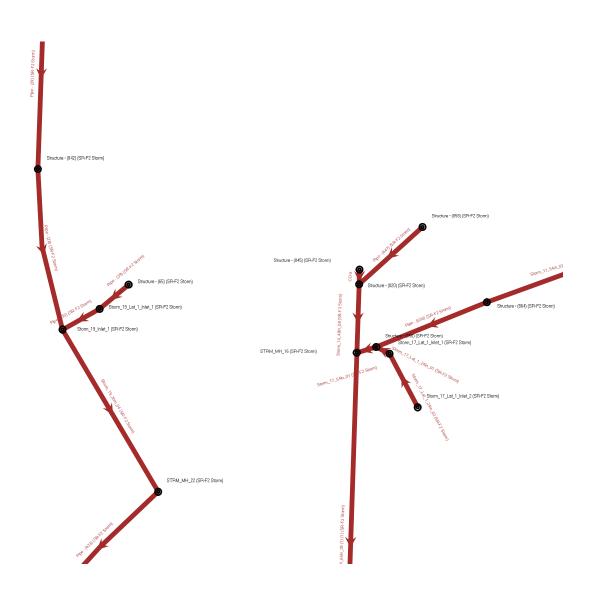

						1		1	1						
		Flow	Diameter	Slope	Invert	Invert	Elevation Ground	Elevation Ground	HGL	HGL	Energy Grade	Energy Grade	Velocity	Upstream Structure	Length (User
Upstream Structure	Label	(cfs)	(in)	(Calculated)	(Start)	(Stop)	(Start)	(Stop)	(Up) (ft)	(Down)	Line (In)	Line	(ft/s)	Headloss	Defined)
		(0.0)	(,	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(0))(1)	(ft)	(ft)	(Out) (ft)	(Coefficient	(ft)
Structure - (850) (SR-F2 Storm)	CO-1	38.80	42.0	-0.009	6,969.24	6,969.77	6.978.85	6.973.34	6,971.70	6,970.85	6,972.49	6.972.10	9.45	0.000	-
Storm 18 Inlet 1 (SR-F2 Storm)	CO-2	17.30	30.0	-0.013	6.977.52	6.977.65	6.987.83	6,988.08	6.979.52	6.979.43	6.979.78	6.979.76	3.52	0.500	-
Structure - (849) (SR-F2 Storm)	CO-3	16.00	36.0	-0.029	7,000.88	7,004.00	7,010.52	7,007.35	7,005.28	7,001.65	7,005.76	7,003.61	11.35	0.000	-
Storm_19_Lat_2_Inlet_2 (SR-F2 Storm)	CO-5	9.50	18.0	-0.014	7,005.77	7,006.30	7,010.20	7,010.21	7,007.49	7,006.78	7,008.11	7,007.66	7.71	0.000	-
Structure - (845) (SR-F2 Storm)	CO-6	23.20	48.0	-0.092	6,987.11	6,988.38	6,994.13	6,993.12	6,989.80	6,989.67	6,990.32	6,989.79	18.42	0.000	-
VT2_Inlet_2 (SR-F2 Storm) Structure - (842) (SR-F2 Storm)	CO-7 Pipe - (28) (SR-F2 Storm)	8.40 0.50	30.0 24.0	-0.007	7,042.60 6,991.05	7,043.24 6,995.39	7,046.08	7,049.26 7,002.50	7,044.40 6,995.63	7,044.46 6,992.68	7,044.62 6,995.71	7,044.53 6,992.68	5.75	0.000 0.000	- 144.7
STRM MH 24 (SR-F2 Storm)	Pipe - (29) (1) (1) (SR-F2 Storm)	6.00	18.0	-0.030 -0.030	7,000.89	7,011.08	6,998.83 7,008.01	7,002.50	7,012.02	7,002.58	7,012.43	7,002.76	4.31 9.23	1.000	339.5
STRM_MH_23 (SR-F2 Storm)	Pipe - (29) (SR-F2 Storm)	17.60	24.0	-0.030	6,995.39	7,000.69	7,002.50	7,008.01	7,002.21	6,996.33	7,002.95	6,998.62	12.14	0.500	177.0
Storm 19 Lat 1 Inlet 1 (SR-F2 Storm)	Pipe - (35) (SR-F2 Storm)	5.00	24.0	-0.030	6,991.56	6,992.65	6,998.83	6,999.02	6,993.44	6,992.68	6,993.73	6,992.80	8.56	0.500	36.4
Structure - (65) (SR-F2 Storm)	Pipe - (39) (SR-F2 Storm)	2.20	18.0	-0.030	6,992.84	6,993.85	6,999.02	6,995.57	6,994.41	6,993.59	6,994.61	6,993.68	6.96	0.000	33.7
Storm_19_Lat_3_Inlet_1 (SR-F2 Storm)	Pipe - (47) (SR-F2 Storm)	4.20	18.0	0.030	7,011.47	7,011.29	7,020.35	7,020.06	7,012.32	7,012.43	7,012.58	7,012.56	8.38	0.000	6.0
Storm_19_Lat_3_Inlet_2 (SR-F2 Storm)	Pipe - (50) (SR-F2 Storm)	1.90	18.0	-0.030	7,011.29	7,012.17	7,020.06	7,020.45	7,012.69	7,012.43	7,012.88	7,012.45	6.67	0.000	29.3
Storm_19_Lat_2_Inlet_1 (SR-F2 Storm) STRM MH 12 (SR-F2 Storm)	Pipe - (53) (SR-F2 Storm) Pipe - (602) (SR-F2 Storm)	12.60 43.30	24.0 72.0	-0.040 -0.020	7,001.71 6,952.66	7,004.77 6,956.17	7,008.01 6,969.77	7,010.20 6,969.86	7,006.05 6,957.91	7,002.45 6,953.76	7,006.60 6,958.54	7,004.66 6,956.07	12.33 12.31	0.500	76.7 175.7
STRM_MH_12 (SR-F2 Storm) STRM_MH_104 (SR-F2 Storm)	Pipe - (602) (SR-F2 Storm)	43.30	72.0	-0.020	6,958.93	6,970.99	6,970.00	6,985.32	6,972.73	6,960.85	6,973.35	6,961.33	12.31	0.250	602.8
Structure - (855) (SR-F2 Storm)	Pipe - (615) (SR-F2 Storm)	68.80	54.0	-0.025	6,967.81	6,976.52	6,983.21	6,988.08	6,978.94	6,972.04	6,979.91	6,972.35	15.70	0.500	348.6
Structure - (866) (SR-F2 Storm)	Pipe - (618) (SR-F2 Storm)	56.40	48.0	-0.020	6,976.91	6,977.92	6,988.08	6,982.35	6,980.18	6,979.43	6,981.10	6,980.14	13.85	0.500	50.4
Structure - (867) (SR-F2 Storm)	Pipe - (619) (SR-F2 Storm)	56.40	48.0	-0.020	6,977.92	6,978.77	6,982.35	6,983.20	6,981.03	6,980.64	6,981.95	6,981.24	13.83	0.500	42.5
STRM_MH_09 (SR-F2 Storm)	Pipe - (620) (SR-F2 Storm)	55.10	48.0	-0.020	6,978.77	6,979.31	6,983.20	6,991.38	6,981.54	6,981.49	6,982.45	6,982.06	13.74	1.000	26.8
Structure - (552) (SR-F2 Storm) STRM MH 08 (SR-F2 Storm)	Pipe - (623) (SR-F2 Storm) Pipe - (624) (SR-F2 Storm)	55.10 52.50	48.0 48.0	-0.030 -0.030	6,980.28 6,982.00	6,982.00 6,982.77	6,991.38 6,986.43	6,986.43 6,990.70	6,984.23 6,984.95	6,981.75 6,984.69	6,985.14 6,985.83	6,984.44 6,985.22	15.91 15.69	0.500	57.3 25.8
STRM_MH_08 (SR-F2 Storm) Structure - (868) (SR-F2 Storm)	Pipe - (624) (SR-F2 Storm) Pipe - (627) (SR-F2 Storm)	52.50 27.50	48.0	-0.030	6,982.00	6,982.77	6,986.43	6,990.70	6,984.95	6,984.69	6,985.83	6,985.22	6.92	0.000	25.8
Structure - (838) (SR-F2 Storm)	Pipe - (632) (SR-F2 Storm)	25.90	36.0	-0.007	6,983.00	6,985.27	6,990.70	6,992.50	6,986.91	6,985.83	6,987.57	6,986.05	7.95	0.500	302.2
STRM_MH_22 (SR-F2 Storm)	Pipe - (633) (SR-F2 Storm)	25.90	36.0	-0.008	6,985.27	6,986.35	6,992.50	6,994.17	6,987.99	6,987.24	6,988.66	6,987.67	7.95	1.000	144.5
Structure - (841) (SR-F2 Storm)	Pipe - (634) (SR-F2 Storm)	43.30	72.0	0.020	6,958.95	6,957.33	6,970.00	6,970.00	6,960.69	6,959.23	6,961.32	6,959.72	12.31	0.250	81.0
Structure - (851) (SR-F2 Storm)	Pipe - (635) (SR-F2 Storm)	43.30	72.0	0.020	6,957.33	6,957.18	6,970.00	6,969.86	6,959.07	6,958.65	6,959.70	6,959.66	12.31	0.250	7.2
Structure - (865) (SR-F2 Storm)	Pipe - (638) (SR-F2 Storm)	1.40	30.0	0.050	6,953.86	6,952.68	6,956.65	6,969.77	6,954.25	6,953.62	6,954.38	6,953.63	6.81	0.000	23.6
Structure - (807) (SR-F2 Storm) Structure - (858) (SR-F2 Storm)	Pipe - (642) (SR-F2 Storm) Pipe - (647) (SR-F2 Storm)	2.10 15.70	24.0 36.0	-0.010 -0.020	7,016.00 6.988.48	7,016.81 6,990.00	7,018.26 6,994.13	7,029.97 6.993.35	7,017.31 6.991.27	7,016.41 6,989.33	7,017.49 6.991.74	7,016.73 6.990.73	4.50 9.89	0.500 0.000	80.7 76.3
Structure - (864) (SR-F2 Storm)	Pipe - (656) (SR-F2 Storm)	56.90	48.0	-0.020	6,985.24	6,987.46	6,994.75	6,998.89	6,989.73	6,988.37	6,990.65	6,988.82	13.87	0.250	111.1
STRM_MH_11 (SR-F2 Storm)	Pipe - (658) (SR-F2 Storm)	68.80	42.0	0.010	6,968.08	6,966.58	6,983.21	6,981.55	6,971.94	6,971.77	6,972.14	6,971.97	3.58	0.500	149.4
Structure - (820) (SR-F2 Storm)	Storm_14_48in_08 (SR-F2 Storm)	38.10	48.0	-0.005	6,987.18	6,987.48	6,994.41	6,994.13	6,989.32	6,988.88	6,990.02	6,989.75	7.51	0.500	59.3
STRM_MH_16 (SR-F2 Storm)	Storm_14_66in_05 (1) (1) (SR-F2 Storm)	96.60	66.0	-0.030	6,974.45	6,984.96	6,985.88	6,994.41	6,987.67	6,977.23	6,988.73	6,978.23	18.13	0.500	350.2
Structure - (854) (SR-F2 Storm) STRM_MH_14 (SR-F2 Storm)	Storm_14_66in_05 (1) (SR-F2 Storm)	96.60 162.00	66.0	-0.015	6,966.57	6,974.25	6,981.55	6,985.88	6,976.97 6,971.00	6,971.77	6,978.03	6,972.03	14.14	0.250 0.250	512.4
STRM_MH_14 (SR-F2 Storm)	Storm_14_78in_03 (SR-F2 Storm) Storm_14_78in_04 (SR-F2 Storm)	162.00	72.0 72.0	0.000 0.000	6,966.31 6,966.36	6,966.36 6,966.37	6,978.85 6,980.19	6,980.19 6,981.55	6,971.00	6,970.55 6,971.19	6,971.74 6,971.93	6,971.44 6,971.87	5.73 5.73	0.250	166.0 39.7
STRM_MH_13 (SR-F2 Storm)	Storm_14_76in_04 (SR-F2 Storm)	189.80	84.0	-0.001	6,966.00	6,966.09	6,973.74	6,978.85	6,970.31	6,969.59	6,971.26	6,971.01	5.50	0.250	107.3
Structure - (860) (SR-F2 Storm)	Storm 15 24in 02-W (SR-F2 Storm)	4.30	24.0	-0.050	6,970.74	6,972.01	6,978.85	6,974.27	6,972.74	6,971.16	6,973.01	6,972.38	9.81	0.000	25.5
Structure - (861) (SR-F2 Storm)	Storm_17_48in_05 (SR-F2 Storm)	17.60	36.0	-0.020	6,999.61	6,999.81	7,010.52	7,003.15	7,001.15	7,001.34	7,001.66	7,001.61	10.21	0.000	9.8
Structure - (856) (SR-F2 Storm)	Storm_17_54in_01 (SR-F2 Storm)	63.70	48.0	-0.005	6,985.16	6,985.23	6,994.41	6,994.75	6,988.21	6,988.20	6,988.83	6,988.80	8.40	0.250	14.0
Structure - (863) (SR-F2 Storm)	Storm_17_54in_02 (SR-F2 Storm)	56.90 56.90	48.0 48.0	-0.020 -0.020	6,987.46 6,990.46	6,990.46 6,992.12	6,998.89 6.998.89	6,998.89 7.001.05	6,992.73 6,994.39	6,989.96 6,992.96	6,993.66 6.995.32	6,990.69 6,993.70	13.87	0.250 0.250	150.3 82.9
STRM_MH_20 (SR-F2 Storm) Structure - (862) (SR-F2 Storm)	Storm_17_54in_03 (SR-F2 Storm) Storm 17 54in 04 (SR-F2 Storm)	56.90	48.0	-0.020	6.990.46	6,992.12	7,001.05	7,001.05	7,000.43	6,992.96	7.001.36	6,995.51	13.87 13.87	0.250	292.3
STRM MH FUTR 02 (SR-F2 Storm)	Storm_17_54in_05 (SR-F2 Storm)	56.90	48.0	-0.020	6,998.16	6,998.61	7,002.59	7,010.52	7,000.88	7,000.89	7,001.81	7,001.49	13.86	0.500	22.6
Storm_17_Lat_1_Inlet_1 (SR-F2 Storm)	Storm_17_Lat_1_24in_01 (SR-F2 Storm)	9.60	24.0	-0.050	6,986.23	6,986.87	6,994.75	6,994.51	6,988.28	6,988.37	6,988.54	6,988.51	12.40	0.250	12.7
Storm_17_Lat_1_Inlet_2 (SR-F2 Storm)	Storm_17_Lat_1_24in_02 (SR-F2 Storm)	4.30	24.0	-0.030	6,987.37	6,988.97	6,994.51	6,994.24	6,989.70	6,988.35	6,989.97	6,988.47	8.20	0.000	53.4
Storm_18_Inlet_2 (SR-F2 Storm)	Storm_18_18in_05 (SR-F2 Storm)	8.70	18.0	-0.030	6,978.65	6,981.48	6,987.83	6,987.96	6,982.63	6,979.38	6,983.19	6,981.00	10.18	0.000	94.4
Storm_21_Lat_1_Inlet_1 (SR-F2 Storm)	Storm_18_Lat_1_18in_02 (SR-F2 Storm)	3.00	18.0	-0.050	6,983.25	6,984.22	6,986.43	6,989.81	6,984.88	6,984.69	6,985.13	6,984.73	9.12	0.000	19.4
Storm_16_Lat_1_Inlet_1 (SR-F2 Storm) Storm 19 Inlet 1 (SR-F2 Storm)	Storm_18_Lat_1_24in_01 (SR-F2 Storm) Storm 19 36in 04 (SR-F2 Storm)	2.10 25.90	18.0 30.0	-0.050 -0.020	6,980.32 6,987.25	6,980.98 6,990.55	6,983.20 6,994.17	6,989.41 6.998.83	6,981.53 6,992.28	6,981.49 6.988.42	6,981.73 6.993.07	6,981.52 6,990.47	8.22 11.48	0.000 0.500	13.2 165.0
Storm 20 Outfall (SR-F2 Storm)	Storm_20_54in_02 (SR-F2 Storm)	0.00	48.0	-0.050	6.946.78	6,949.67	6,971.24	6,966.01	6.949.67	6.947.95	6,949.67	6,947.95	0.00	0.000	57.9
Storm_22_Inlet_2 (SR-F2 Storm)	Storm_22_24in_04 (SR-F2 Storm)	8.30	30.0	0.010	7,015.99	7,015.30	7,023.12	7,023.34	7,016.95	7,016.71	7,017.30	7,016.84	6.55	0.000	68.8
Structure - (826) (SR-F2 Storm)	Storm_22_30in_02 (SR-F2 Storm)	16.00	30.0	-0.009	7,014.17	7,015.09	7,016.98	7,023.34	7,016.44	7,015.29	7,016.98	7,016.18	7.56	0.500	100.7
Structure - (793) (SR-F2 Storm)	Storm_23_78in_01 (1) (SR-F2 Storm)	46.50	84.0	-0.003	6,945.31	6,945.88	6,953.05	6,971.24	6,947.67	6,947.04	6,948.23	6,947.65	5.98	0.500	222.1
STRM_MH_101 (SR-F2 Storm)	Storm_23_78in_02 (1) (1) (1) (SR-F2 Storm)	45.20	72.0	-0.015	6,950.65	6,951.67	6,965.00	6,969.77	6,953.46 6,952.43	6,952.59 6.950.08	6,954.10	6,953.10	11.27	0.250 0.250	68.3
Structure - (872) (SR-F2 Storm) Structure - (852) (SR-F2 Storm)	Storm_23_78in_02 (1) (1) (3) (SR-F2 Storm) Storm 23 78in 02 (1) (1) (SR-F2 Storm)	45.20 45.20	72.0 72.0	-0.015 -0.001	6,947.80 6,947.43	6,950.65 6,947.60	6,966.24 6,965.15	6,965.00 6,966.24	6,952.43	6,950.08 6.949.84	6,953.07 6.950.29	6,950.40 6,950.12	11.27 4.28	0.250	190.2 167.7
STRM MH 102 (SR-F2 Storm)	Storm 23 78in 02 (SR-F2 Storm)	45.20	72.0	-0.001	6.946.88	6.947.43	6.971.24	6.965.15	6.949.76	6,948.66	6.950.29	6.949.30	4.20	0.250	549.0
Structure - (840) (SR-F2 Storm)	Storm_23_78in_06 (SR-F2 Storm)	43.30	72.0	-0.020	6,971.95	6,979.99	6,985.32	6,992.18	6,981.73	6,973.04	6,982.36	6,975.40	12.31	0.250	402.6
STRM_MH_105 (SR-F2 Storm)	Storm_23_78in_07 (SR-F2 Storm)	43.30	72.0	-0.020	6,981.00	6,986.90	6,992.18	7,000.17	6,988.64	6,982.09	6,989.27	6,984.45	12.31	0.250	295.1
Structure - (839) (SR-F2 Storm)	Storm_23_78in_08 (SR-F2 Storm)	37.80	66.0	-0.020	6,987.91	6,994.57	7,000.17	7,004.67	6,996.24	6,988.96	6,996.84	6,991.18	11.95	0.250	333.0
STRM_MH_106 (SR-F2 Storm)	Storm_23_78in_09 (SR-F2 Storm)	37.80	66.0	-0.030	6,994.57	7,006.85	7,004.67	7,018.17	7,008.51	6,996.39	7,009.12	6,996.86	13.78	0.250	409.4
Outfall Box 100 (SR-F2 Storm)	Storm_23_78in_11 (SR-F2 Storm)	37.80	66.0	-0.005	7,007.78 6.987.90	7,009.34 6.990.41	7,018.17	7,018.01	7,011.01 6.990.85	7,009.26 6.988.80	7,011.61 6.991.00	7,010.10 6.988.82	7.33 7.40	0.000	310.6
Structure - (857) (SR-F2 Storm) VT2 Inlet 3 (SR-F2 Storm)	Storm_24_36in_01 (SR-F2 Storm) Storm_VT2_30in_02 (SR-F2 Storm)	2.00 18.40	36.0 30.0	-0.050 0.004	6,987.90 7,042.60	6,990.41 7.042.47	7,000.17 0.00	6,993.75 7,046.08	6,990.85 7,044.46	6,988.80 7,044.06	6,991.00 7,044.76	6,988.82 7,044.66	3.75	0.000	50.2 35.4
v12_mild_0 (01-12 0t0mi)	0.0111_012_0011_02 (01.1 2 0.0111)	10.40	0.0	0.004	1,042.00	1,042.47	0.00	7,040.00	7,044.40	7,044.00	1,044.70	1,044.00	0.70	0.000	55.4

X:\2510000.all\2518801\StormCAD\2518801 StormCAD Model.stsw

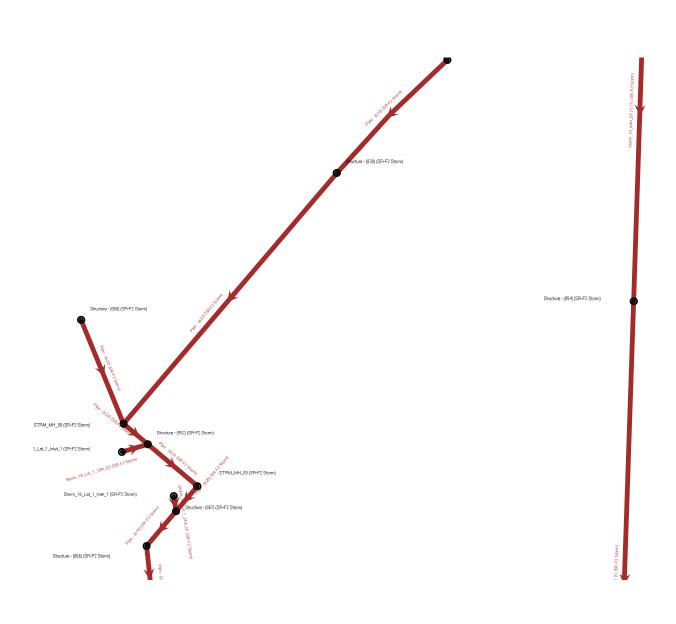
Scenario: 100-YEAR Current Time Step: 0.000Hr Conduit FlexTable: Combined Pipe/Node Report


Label Flow (rfs) Diameter (n) Slope (n) Invert (Start) Invert (Start) Invert (Start) Invert (Start) Elevation (Grade (th) Elevation (Start) Elevation (Grade (Up) (th) Elevation (Up) (th) HGL (Up) (th) Energy (Brade (Dwm) Energy (Grade (Dwm) Energy (Grade (Dwm) Energy (Grade (Dwm) Energy (Grade (Dwm) Energy (Grade (Dwm) Energy (Grade (Dwm) Structure - (850) (SR-F2 Storm) CO-1 85.40 42.0 -0.009 6,969.24 6,969.77 6,977.85 6,973.34 6,973.30 6,973.30 6,973.36 6,973.35 7,006.00 7,007.35 7,006.00 7,007.35 7,006.00 7,007.37 7,006.00 7,007.37 7,007.17 7,009.05 7,004.35 7,004.00 7,010.21 7,007.97 7,007.17 7,009.05 7,004.35 7,004.00 7,010.21 7,007.97 7,007.17 7,009.05 7,004.35 5,000.05 7,004.24 7,046.08 7,042.24 7,046.08 7,042.24 7,044.05 7,044.81 7,044.81 7,044.81 7,044.81 7,044.81 7,044.81 7,044.81 7,044.81	Velocity (ft/s)) 0 8.88 1 5.15 1 14.46 1 8.32 1 25.90 3 6.37 1 13.74 4 10.61	Headloss Coefficient 0.000 0.500 0.000 0.000 0.000 0.000	Length (User Defined) (ft) - - - - -
Upstream Structure Label Prow (cfs) Diameter (m) (Calculated) (th/ft) (Start) (ft) (Stop) (ft) (Gton) (ft)	(ft/s))) 0 8.88 1 5.15 1 14.46 1 8.32 1 25.90 3 6.37 1 13.74 4 10.61 3 13.74	Headloss Coefficient 0.000 0.500 0.000 0.000 0.000 0.000	Defined) (ft) -
Chr (cfs) (in) (in) <th< td=""><td>) 0 8.88 1 5.15 1 14.46 1 8.32 1 25.90 3 6.37 1 13.74 4 10.61 3 13.74</td><td>Coefficient 0.000 0.500 0.000 0.000 0.000 0.000</td><td>(ft)</td></th<>) 0 8.88 1 5.15 1 14.46 1 8.32 1 25.90 3 6.37 1 13.74 4 10.61 3 13.74	Coefficient 0.000 0.500 0.000 0.000 0.000 0.000	(ft)
Structure - (850) (SR-F2 Storm) CO-1 85.40 42.0 -0.009 6.969.24 6.969.27 6.973.85 6.973.34 6.973.36 6.973.69 6.974.69 6.971.69 6.971.69 6.971.69 6.971.69 6.971.69 6.971.69 6.971.69 6.973.34 6.973.34 6.973.34 6.973.34 6.973.34 6.973.34 6.973.59 6.971.69 6.981.05 <td>0 8.88 1 5.15 1 14.46 1 8.32 1 25.90 3 6.37 1 13.74 4 10.61 3 13.74</td> <td>0.000 0.500 0.000 0.000 0.000 0.000</td> <td>-</td>	0 8.88 1 5.15 1 14.46 1 8.32 1 25.90 3 6.37 1 13.74 4 10.61 3 13.74	0.000 0.500 0.000 0.000 0.000 0.000	-
Storm_18_inter_1 (SR-F2 Storm) CO-2 25.30 30.0 -0.013 6.977.62 6.997.83 6.980.84 6.980.57 7.006.00 7.001.52 7.007.01 7.007.77 7.007.77 7.007.77 7.007.77 7.007.77 7.007.77 7.007.77 7.007.77 7.007.77 7.007.77 7.007.77 7.004.83 6.994.13 6.994.13 6.991.56 6.992.14 <td>1 5.15 1 14.46 1 8.32 1 25.90 3 6.37 1 13.74 4 10.61 3 13.74</td> <td>0.500 0.000 0.000 0.000 0.000</td> <td></td>	1 5.15 1 14.46 1 8.32 1 25.90 3 6.37 1 13.74 4 10.61 3 13.74	0.500 0.000 0.000 0.000 0.000	
Structure - [849] (SR-F2 Storm) CO-3 37.90 36.0 -0.029 7.000.80 7.001.52 7.006.00 7.000.75 7.006.80 7.000.75 7.006.80 7.000.75 7.006.80 7.000.75 7.006.80 7.000.75 7.006.70 7.000.75 7.006.80 7.002.75 7.006.70 7.000.77 7.006.70 7.007.35 7.006.80 7.002.75 7.006.70 7.007.70 7.007.75 7.006.70 7.007.75 7.006.70 7.007.75 7.006.70 7.007.75 7.007.75 7.006.70 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 7.007.75 <td>1 14.46 1 8.32 1 25.90 3 6.37 1 13.74 4 10.61 3 13.74</td> <td>0.000 0.000 0.000 0.000</td> <td>- - -</td>	1 14.46 1 8.32 1 25.90 3 6.37 1 13.74 4 10.61 3 13.74	0.000 0.000 0.000 0.000	- - -
Storm.19_Lat_2 [Inlet_2 (SR-F2 Storm) CO-5 14.70 18.0 -0.014 7.005.77 7.006.30 7.010.21 7.007.77 7.007.17 7.009.05 7.004.30 Structure (845) (SR-F2 Storm) CO-6 74.50 48.0 -0.012 6.987.11 6.983.38 6.994.13 6.993.12 6.991.11 6.991.56 6.992.14 7.042.50 6.993.12 6.993.59 6.998.28 7.002.50 6.991.25 6.998.28 7.002.50 6.991.25 6.998.28 7.002.50 7.012.13 7.003.31 7.012.91 7.003.31 7.012.91 7.012.91 7.003.35 7.002.50 7.008.01 7.002.50 7.093.58 6.999.20 6.99	1 8.32 1 25.90 3 6.37 1 13.74 4 10.61 3 13.74	0.000 0.000 0.000	- -
Structure - (845) (SR-F2 Storm) CO-6 74.50 48.0 -0.092 6.887.11 6.993.12 6.991.11 6.991.56 6.992.14 6.991.57 VT2_Inlet_2 (SR-F2 Storm) Dip<-(28) (SR-F2 Storm)	1 25.90 3 6.37 1 13.74 4 10.61 3 13.74	0.000 0.000	-
VT2_Inlet_2 (SF-F2 Storm) CO-7 12.20 30.0 -0.007 7,042.60 7,043.24 7,046.08 7,044.81 7,003.81 7,002.50 6,998.83 7,002.60 7,021.81 7,003.81 7,002.50 7,002.50 7,002.50 7,002.50 7,002.50 7,002.50 7,002.50 6,998.70 6,999.42	3 6.37 1 13.74 4 10.61 3 13.74	0.000	· ·
Structure - [442] (SR-F2 Storm) Pipe - (28) (SR-F2 Storm) 30.00 24.0 -0.030 6.991.05 6.998.83 7.002.50 6.997.25 6.993.59 6.998.76 6.995.7 STRM_MH_24 (SR-F2 Storm) Pipe - (29) (11) (1) (SR-F2 Storm) 10.30 18.0 -0.030 6.991.05 6.998.83 7.002.50 6.993.725 6.993.59 6.998.76 7.003.6 STRM_MH_23 (SR-F2 Storm) Pipe - (29) (11) (1) (SR-F2 Storm) 30.00 24.0 -0.030 6.991.56 6.992.65 7.002.60 7.012.31 7.003.61 7.002.56 6.996.70 7.004.66 6.999.02 Storm_19_Lat_1_Inite_1 (SR-F2 Storm) Pipe - (39) (SR-F2 Storm) 8.70 24.0 -0.030 6.992.65 6.998.83 6.999.02 6.993.70 6.993.59 6.994.62 6.993.70	1 13.74 4 10.61 3 13.74		
STRM_MH_23 (SR-F2 Storm) Pipe - (29) (5R+72 Storm) 10.30 18.0 -0.030 7,000.89 7,011.08 7,002.06 7,012.31 7,003.31 7,012.99 7,003.31 7,013.20 7,003.31 7,013.20 7,003.31 7,013.20 7,003.31 7,013.20 7,003.31 7,013.20 7,013.20 7,013.20 7,013.20 7,013.20 7,013.20 7,013.20 7,013.20 7,013.21 7,013.21 7,013.21 7,013.21 7,013.21 7,013.21 7,013.21 <	4 10.61 3 13.74		- 144.7
STRM_MH_23 (SR-F2 Storm) Pipe - (29) (SR-F2 Storm) 30.00 24.0 -0.030 6,995.39 7,002.50 7,002.50 7,002.50 6,996.70 7,004.06 6,999.70 6,997.70 7,012.91 <	3 13.74		339.5
Storm_19_Lat_inlet_1 (SR-F2 Storm) Pipe - (35) (SR-F2 Storm) 8.70 24.0 -0.030 6.991.26 6.998.83 6.999.02 6.993.70 6.993.59 6.994.12 6.993.70 Structure - (65) (SR-F2 Storm) Pipe - (39) (SR-F2 Storm) 4.10 18.0 -0.030 6.992.84 6.998.83 6.999.02 6.993.70 6.993.59 6.994.12 6.993.70 Storm_19_Lat_3_Inlet_1 (SR-F2 Storm) Pipe - (47) (SR-F2 Storm) 6.60 18.0 -0.030 7.011.29 7.020.35 7.020.06 7.013.02 7.012.99 7.013.23 7.013.23 7.013.23 7.013.23 7.013.21			177.0
Storm_19_Lat_3_Inlet_1 (SR-F2 Storm) Pipe - (47) (SR-F2 Storm) 6.60 18.0 0.030 7.011.47 7.012.97 7.012.99 7.012.99 7.013.02 7.012.99 7.013.02 7.012.99 7.013.02 7.012.99 7.013.21 7.013.01 Storm_19_Lat_3_Inlet_2 (SR-F2 Storm) Pipe - (50) (SR-F2 Storm) 3.80 18.0 -0.030 7.011.29 7.012.91 7.012.99 7.013.21 7.013.01 Storm_19_Lat_2_Inlet_1 (SR-F2 Storm) Pipe - (50) (SR-F2 Storm) 19.70 24.0 -0.040 7.011.27 7.008.01 7.010.20 7.003.31 7.007.21 7.004.17 STRM_MH_120 (SR-F2 Storm) Pipe - (605) (SR-F2 Storm) 242.40 72.0 -0.020 6.952.66 6.966.17 6.969.87 6.969.48 6.965.57 6.965.27 6.965.32 6.975.25 6.963.51 6.965.57 6.965.241 6.965.26 STRM_MH_104 (SR-F2 Storm) Pipe - (605) (SR-F2 Storm) 242.40 72.0 -0.020 6.955.83 6.970.00 6.985.82 6.975.57 6.965.27 6.965.35 6.965.57 6.965.241 6.965.26	1 10.03		36.4
Storm_19_Lat_3_Inlet_2 (SR-F2 Storm) Pipe - (50) (SR-F2 Storm) 3.80 18.0 -0.030 7,011.29 7,012.17 7,020.06 7,012.91 7,012.99 7,013.21 7,013.21 7,013.01 Storm_19_Lat_2_Inlet_1 (SR-F2 Storm) Pipe - (53) (SR-F2 Storm) 19.70 24.0 -0.040 7,001.71 7,004.77 7,008.01 7,010.20 7,003.31 7,007.20 7,004.77 STRM_MH_12 (SR-F2 Storm) Pipe - (602) (SR-F2 Storm) 242.40 72.0 -0.020 6,952.66 6,956.17 6,969.86 6,960.44 6,955.57 6,962.41 6,966.25 STRM_MH_104 (SR-F2 Storm) Pipe - (605) (SR-F2 Storm) 242.40 72.0 -0.020 6,952.89 6,970.09 6,970.00 6,985.32 6,975.25 6,963.37 6,965.27 6,965.37 6,965.27 6,965.32 6,975.25 6,965.32 6,975.25 6,965.32 6,975.25 6,965.32 6,975.25 6,965.37 6,965.27 6,965.27 6,965.27 6,965.27 6,965.32 6,975.25 6,965.37 6,965.27 6,965.27 6,965.27 6,965.27	5 8.31	0.000	33.7
Strm Dipe (53) (54) <th< td=""><td></td><td></td><td>6.0</td></th<>			6.0
STRM_MH_12 (SR-F2 Storm) Pipe - (602) (SR-F2 Storm) 242.40 72.0 -0.020 6,952.66 6,956.17 6,969.77 6,969.84 6,960.44 6,952.57 6,962.41 6,960.42 STRM_MH_104 (SR-F2 Storm) Pipe - (605) (SR-F2 Storm) 242.40 72.0 -0.020 6,958.93 6,970.09 6,970.00 6,985.32 6,977.23 6,965.27 6,965.77 6,963.71 6,977.23 6,965.23			29.3
STRM_MH_104 (SR-F2 Storm) Pipe - (605) (SR-F2 Storm) 242.40 72.0 -0.020 6,958.93 6,970.99 6,970.00 6,985.32 6,975.25 6,963.71 6,977.23 6,965.2			76.7
			175.7
			602.8 348.6
Structure - (866) (SR-F2 Storm) Pipe - (618) (SR-F2 Storm) 107.70 48.0 -0.020 6.976.91 6.977.92 6.988.08 6.982.35 6.981.06 6.982.67 6.981.6			348.6 50.4
Structure - (667) (SR-F2 Storm) Pipe - (619) (SR-F2 Storm) 107.70 48.0 -0.020 6,97.92 6,978.77 6,982.35 6,983.20 6,981.01 6,981.87 6,983.25 6,983.20 6,981.01 6,981.87 6,983.25 6,983.20 6,981.01 6,981.87 6,983.25 6,983.20 6,983.2			42.5
STRM HU 09 (SR-12 Storm) Pipe (02) (SR-12 Storm) 103.90 48.0 -0.020 6,978.77 6,979.31 6,983.20 6,901.38 6,982.39 6,982.72 6,983.34 6,983.7			26.8
Structure - (552) (SR-F2 Storm) Pipe - (623) (SR-F2 Storm) 103.90 48.0 -0.030 6,980.28 6,982.00 6,991.38 6,986.43 6,985.09 6,983.94 6,986.64 6,985.1			57.3
STRM_MH_08 (SR-F2 Storm) Pipe - (624) (SR-F2 Storm) 105.90 48.0 -0.030 6,982.00 6,982.77 6,986.43 6,990.70 6,985.89 6,985.86 6,987.47 6,986.92	9 18.99	1.000	25.8
Structure - (868) (SR-F2 Storm) Pipe - (627) (SR-F2 Storm) 60.60 42.0 -0.005 6,983.49 6,984.00 6,990.70 6,987.89 6,987.84 6,987.47 6,988.45 6,988.45 6,988.45			101.2
Structure - (838) (SR-F2 Storm) Pipe - (632) (SR-F2 Storm) 46.90 36.0 -0.007 6,983.00 6,985.27 6,990.70 6,992.50 6,988.96 6,987.47 6,989.65 6,988.16 6,987.47 6,989.65 6,988.16 6,987.47 6,989.65 6,988.16 6,987.47 6,989.65 6,988.16 6,987.47 6,989.65 6,988.16 6,987.47 6,989.65 6,988.16 6,987.47 6,989.65 6,987.47 6,987.4			302.2
STRM_MH_22 (SR-F2 Storm) Pipe (633) (SR-F2 Storm) 46.90 36.0 -0.008 6,985.27 6,986.35 6,992.50 6,994.17 6,990.02 6,983.31 6,990.70 6,989.51			144.5
Structure - (841) (SR-F2 Storm) Pipe - (634) (SR-F2 Storm) 242.40 72.0 0.020 6.958.95 6.957.33 6.970.00 6.963.21 6.962.69 6.965.1			81.0
Structure - (851) (SR-F2 Storm) Pipe - (635) (SR-F2 Storm) 242.40 72.0 0.020 6,957.33 6,970.00 6,969.86 6,962.33 6,962.41 6,963.77 6,963.77 6,963.77 6,963.77 6,956.48 6,956.48 6,956.48 6,956.48 6,956.44 6,956.44 6,956.44 6,956.44 6,956.44 6,956.45 6,956.45 6,956.44 6,956.45			7.2
Structure - (867) (SR-F2 Storm) Pipe - (638) (SR-F2 Storm) 10.00 30.0 0.050 6,953.86 6,952.68 6,956.65 6,969.77 6,956.48 6,956.54 6,956.54 6,956.54 5,056.54 6,956.54 6,956.54 7,018.55			23.6 80.7
Structure - (68) (SR-F2 Storm) Pipe - (047) (SR-F2 Storm) 34.60 36.0 - 0.020 6, 988.48 6, 990.00 6, 994.13 6, 993.35 6, 991.91 6, 991.91 6, 991.50			76.3
Structure - (864) (SR-F2 Storm) Pipe - (656) (SR-F2 Storm) 138.70 48.0 -0.020 6.985.24 6.997.16 6.998.39 6.992.30 6.991.27 6.998.40 6.992.31			111.1
STRM MH 11 (SR-F2 Storm) Pipe - (658) (SR-F2 Storm) 125.00 42.0 0.010 6,968.08 6,966.58 6,983.21 6,981.55 6,977.16 6,976.58 6,977.82 6,977.2			149.4
Structure - (820) (SR-F2 Storm) Storm_14_48in_08 (SR-F2 Storm) 106.60 48.0 -0.005 6,987.18 6,987.48 6,994.41 6,994.43 6,994.84 6,994.43 6,990.54 6,992.24 6,991.5		0.500	59.3
STRM_MH_16 (SR-F2 Storm) Storm_14_66in_05 (1) (1) (SR-F2 Storm) 250.70 66.0 -0.030 6,974.45 6,984.96 6,984.96 6,985.88 6,994.41 6,989.37 6,979.73 6,991.71 6,981.55 6,984.95 6			350.2
Structure - (854) (SR-F2 Storm) Storm_14_66in_05 (1) (SR-F2 Storm) 250.70 66.0 -0.015 6,966.57 6,974.25 6,981.55 6,985.88 6,979.26 6,976.58 6,981.15 6,978.3			512.4
Storm_14_78in_03 (SR-F2 Storm) Storm_14_78in_03 (SR-F2 Storm) 336.80 72.0 0.000 6,966.31 6,966.36 6,978.85 6,980.19 6,974.13 6,973.08 6,976.33 6,975.2			166.0
STRM_MH_15 (SR-F2 Storm) Storm_14_78in_04 (SR-F2 Storm) 336.80 72.0 0.000 6,966.36 6,966.37 6,980.19 6,981.55 6,974.93 6,974.68 6,977.14 6,976.85 5,974.93 6,974.93 6,974.68 6,977.14 6,976.85 6,972.57 6,971.42 6,974.93 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.93 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.93 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,976.85 6,972.57 6,971.42 6,974.59 6,974.14 6,975.57 6,971.42 6,974.59 6,974.14 6,975.57 6,971.42 6,974.59 6,974.14 6,975.57 6,971.42 6,974.59 6,974.14 6,975.57 6,975.57 6			39.7 107.3
STRM_MH_13 (SR-F2 Storm) Storm_14_84in_02 (SR-F2 Storm) 424.40 84.0 -0.001 6,966.00 6,966.09 6,973.74 6,978.85 6,972.57 6,974.59			25.5
Structure - (861) (SR-F2 Storm) Storm 17 48in 05 (SR-F2 Storm) 44.90 36.0 -0.020 6.999.61 6.999.61 7.010.52 7.03.15 7.03.15 7.03.80 7.03.30 7.03.45 7.			9.8
Structure - (856) (SR-F2 Storm) Storm_17_54ii_0 (ISR-F2 Storm) 151.90 48.0 -0.005 6,985.16 6,985.23 6,994.41 6,994.475 6,990.70 6,990.76 4,992.67			14.0
Structure - (863) (SR-F2 Storm) Storm 17_54in_02 (SR-F2 Storm) 138.70 48.0 -0.020 6,987.46 6,990.46 6,998.89 6,998.89 6,993.96 6,992.78 6,996.16 6,994.6			150.3
STRM MH 20 (SR-F2 Storm) Storm 17 54in 03 (SR-F2 Storm) 138.70 48.0 -0.020 6,990.46 6,992.12 6,998.89 7,001.05 6,995.62 6,994.51 6,997.82 6,996.4			82.9
Structure - (862) (SR-F2 Storm) Storm_17_54in_04 (SR-F2 Storm) 138.70 48.0 -0.020 6,992.31 6,998.16 7,001.05 7,002.59 7,001.66 6,996.17 7,003.86 6,998.1			292.3
STRM_MH_FUTR_02 (SR-F2 Storm) Storm_17_54in_05 (SR-F2 Storm) 138.70 48.0 -0.020 6,998.16 6,998.61 7,002.59 7,010.52 7,002.80 7,002.59 7,004.69 7,00			22.6
Storm_17_Lat_1_Inlet_1 (SR-F2 Storm) Storm_17_Lat_1_24in_01 (SR-F2 Storm) 17.20 24.0 -0.050 6,986.23 6,966.87 6,994.75 6,994.51 6,991.34 6,991.27 6,991.81 6,991.81 6,991.81 6,991.81 6,991.81 6,991.81 6,991.81 6,991.81 6,991.81 6,991.81 6,991.81 6			12.7
Storm_17_Lat_1_lnlet_2(SR-F2 Storm) Storm_17_Lat_1_24in_02(SR-F2 Storm) 7.00 24.0 -0.030 6,987.37 6,988.97 6,994.51 6,994.54 6,991.51 6,991.46 6,991.58 6,991.5			53.4
Storm_18_Inlet_2 (SR-F2 Storm) Storm_18_18in_05 (SR-F2 Storm) 12.80 18.0 -0.030 6,978.65 6,981.48 6,987.83 6,987.96 6,982.83 6,980.84 6,983.74 6,981.74 6,981.45 5,000 6,982.83 6,980.84 6,985.86 6,986.42 6,986.42 6,986.43 6,989.81 6,986.06 6,985.86 6,986.62 6,986.42 6,986.42 6,986.43 6,989.81 6,986.06 6,985.86 6,986.62 6,986.42 6,986.42 6,986.43 6,989.81 6,980.44 6,985.86 6,986.42 6,986.42 6,986.43 6,989.81 6,980.44 6,985.86 6,986.42 6,986.42 6,986.43 6,980.44 6,980.4			94.4 19.4
Storm_21_Lat_1_Inlet_1 (SR-F2 Storm) Storm_18_Lat_1_18in_02 (SR-F2 Storm) 10.60 18.0 -0.050 6,983.25 6,984.22 6,986.43 6,989.81 6,986.06 6,985.86 6,986.62 6,986.42 6,986.43 6,989.81 6,986.06 6,985.86 6,986.62 6,986.42 6,986.43 6,986.43 6,989.41 6,982.74 6,982.72 6,982.84 6			19.4 13.2
Storm 19 Inlet 1 (SR-F2 Storm) Storm 19 36in 04 (SR-F2 Storm) 4-30 10.0 -0.020 6,987.25 6,950.55 6,953.20 0,553.41 0,562.74 0,592.72 0,592.74 0,592			165.0
Storm_20_Outfail (SR-F2 Storm) Storm_20_54in_20 (SR-F2 Storm) 438.90 48.0 -0.050 6,949.67 6,949.67 6,949.67 6,949.67 6,949.67 6,951.24 6,965.01 6,957.37 6,951.96 6,976.32 6,970.55			57.9
Storm 22 Inlet 2 (SR-F2 Storm) Storm 22 Alin 04 (SR-F2 Storm) 14.40 30.0 0.010 7.015.90 7.015.30 7.023.12 7.023.34 7.007.45 7.017.77 7.017.77			68.8
Structure - (826) (SR-F2 Storm) Storm_22_30in_02 (SR-F2 Storm) 31.00 30.0 -0.009 7,014.17 7,015.09 7,016.98 7,023.34 7,016.99 7,015.86 7,017.92 7,017.02 7,0			100.7
Structure - (793) (SR-F2 Storm) Storm_23_78in_01 (1) (SR-F2 Storm) 315.80 84.0 -0.003 6,945.31 6,945.88 6,953.05 6,971.24 6,951.16 6,949.99 6,952.76 6,952.76 6,952.76			222.1
STRM_MH_101 (SR-F2 Storm) Storm_23_78in_02 (1) (1) (1) (SR-F2 Storm) 245.10 72.0 -0.015 6,950.65 6,951.67 6,965.00 6,969.77 6,955.96 6,955.44 6,957.96 6,957.40 6,957.40 6,957			68.3
Storm 23 78in 02 (1) (1) (3) (SR-F2 Storm) 245.10 72.0 -0.015 6,947.80 6,956.62 6,966.24 6,965.00 6,954.94 6,955.10 6,956.93 6,956.25 6,966.24 6,965.00 6,954.94 6,955.10 6,956.93 6,956.25 6,966.24 6,965.00 6,954.94 6,955.10 6,956.93 6,956.25 6,966.24 6,965.00 6,954.94 6,955.10 6,956.93 6,956.25 6,966.24 6,965.10 6,956.10 6,95			190.2
Storm_23_78in_02(1)(1)(SR-F2 Storm) 245.10 72.0 0.001 6,947.43 6,947.60 6,965.15 6,966.24 6,954.81 6,954.24 6,955.97 6,955.57 6,955.57 6,9			167.7
STRM_MH_102 (SR-F2 Storm) Storm_23_78in_02 (SR-F2 Storm) 245.10 72.0 -0.001 6.946.88 6.947.43 6.971.24 6.965.15 6.953.95 6.961.96 6.955.12 6.980.6 Structure (340) (SR-F2 Storm) Storm_23 78in_06 (SR-F2 Storm) 242.40 72.0 -0.020 6.971.95 6.972.18 6.984.26 6.974.66 6.985.12 6.980.6			549.0 402.6
Structure (840) (5k+2 50m) Storm_23 / 78in_0 (5k+2 50m) 242.40 / 2.0 -0.020 6,9/1.95 6,9/9.99 6,965.32 6,992.18 7,000.17 6,991.17 6,983.77 6,993.14 6,989.3			402.6 295.1
STRUCTING (38) (SR-F2 Storm) Storm 23 78in 08 (SR-F2 Storm) 270.70 66.0 -0.020 6,981.91 6,994.57 7,000.17 7,04.67 6,991.4 6,990.91 7,001.77 6,991.4 6,990.91 6,997.0			333.0
STRM MH 106 (SR-F2 Storm) Storm 23 78in 09 (SR-F2 Storm) 270.70 66.0 -0.030 6.994.57 7.006.85 7.006.467 7.018.17 7.011.42 6.999.78 7.013.98			409.4
Outfall Box 100 (SRF2 Storm) Storm_2378in_11 (SRF2 Storm) 270.70 66.0 -0.005 7,007.78 7,009.34 7,018.17 7,018.01 7,014.60 7,012.35 7,016.65 7,014.5			310.6
Structure - (857) (SR-F2 Storm) Storm 24 36in 01 (SR-F2 Storm) 15.00 36.0 -0.050 6.987.90 6.990.41 7.000.17 6.993.75 6.991.64 6.991.66 6.992.11 6.991.			50.2
VT2_Inlet_3 (SR-F2 Storm) Storm_VT2_30in_02 (SR-F2 Storm) 26.10 30.0 0.004 7,042.60 7,042.47 0.00 7,046.08 7,044.82 7,044.35 7,045.28 7,045.1			35.4

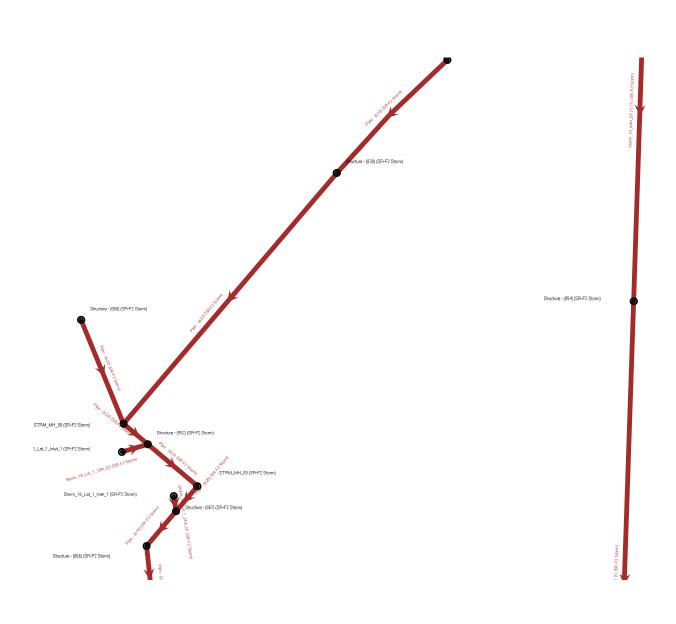
X:\2510000.all\2518801\StormCAD\2518801 StormCAD Model.stsw


2518801 StormCAD Model.stsw 5/15/2020

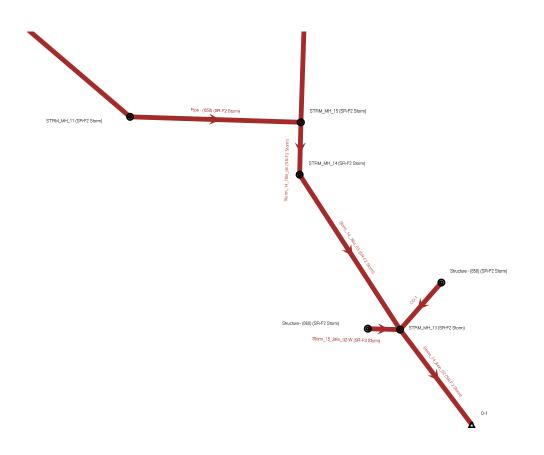
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


2518801 StormCAD Model.stsw 5/15/2020

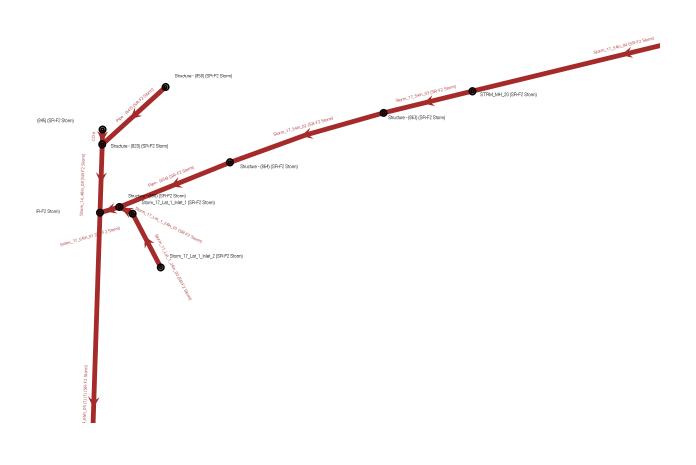
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


2518801 StormCAD Model.stsw 5/15/2020

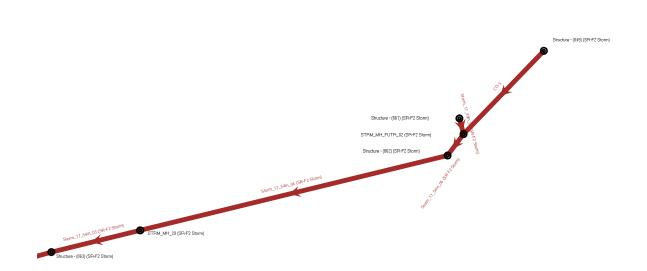
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


2518801 StormCAD Model.stsw 5/15/2020

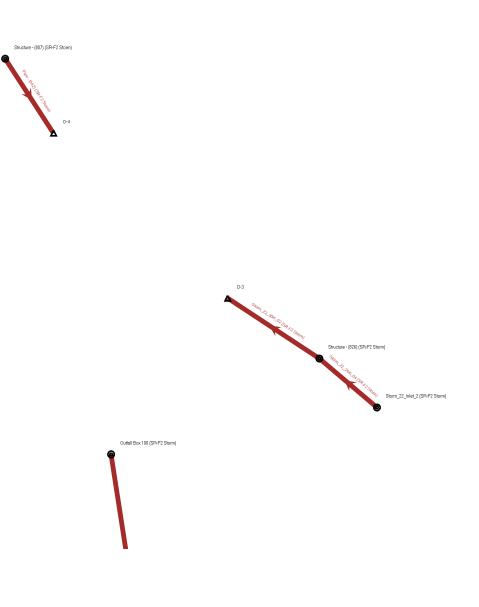
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


2518801 StormCAD Model.stsw 5/15/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


2518801 StormCAD Model.stsw 5/15/2020

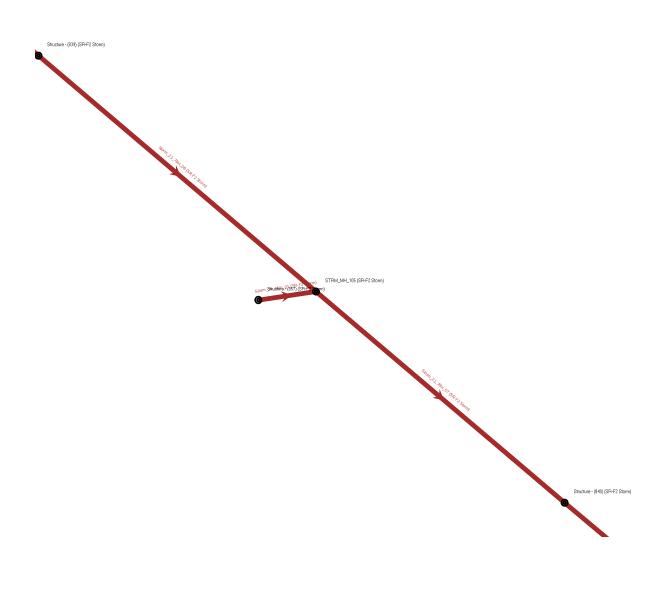
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


2518801 StormCAD Model.stsw 5/15/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

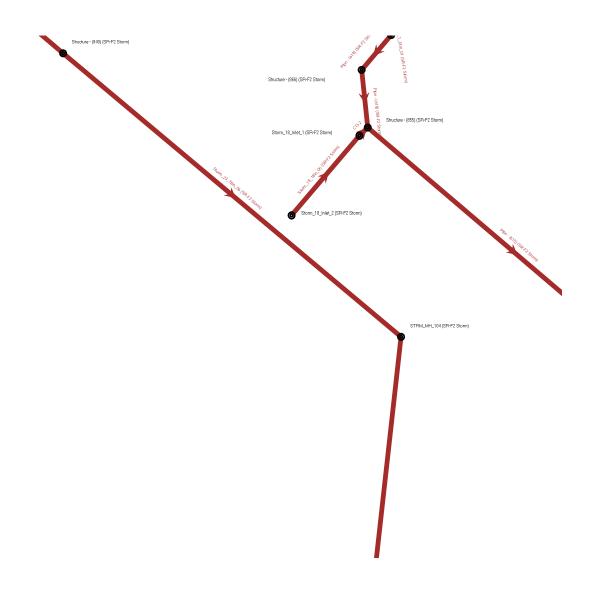
2518801 StormCAD Model.stsw 5/15/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

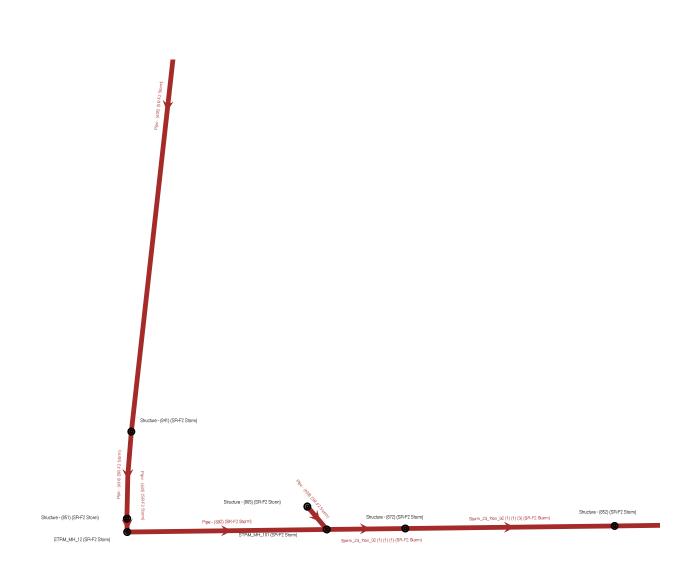

2518801 StormCAD Model.stsw 5/15/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

STRM_MH_106 (SR-F2 Storm)


2518801 StormCAD Model.stsw 5/15/2020

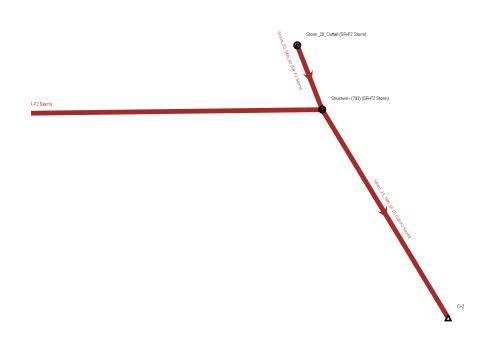
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


2518801 StormCAD Model.stsw 5/15/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

2518801 StormCAD Model.stsw 5/15/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


2518801 StormCAD Model.stsw 5/15/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

2518801 StormCAD Model.stsw 5/15/2020

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

2518801 StormCAD Model.stsw 5/15/2020

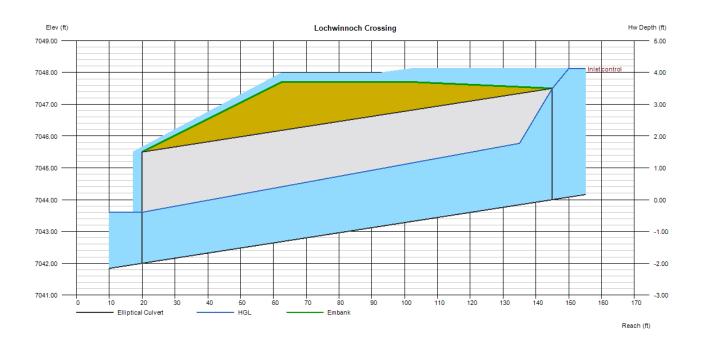
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Tuesday, May 12 2020

Lochwinnoch Crossing

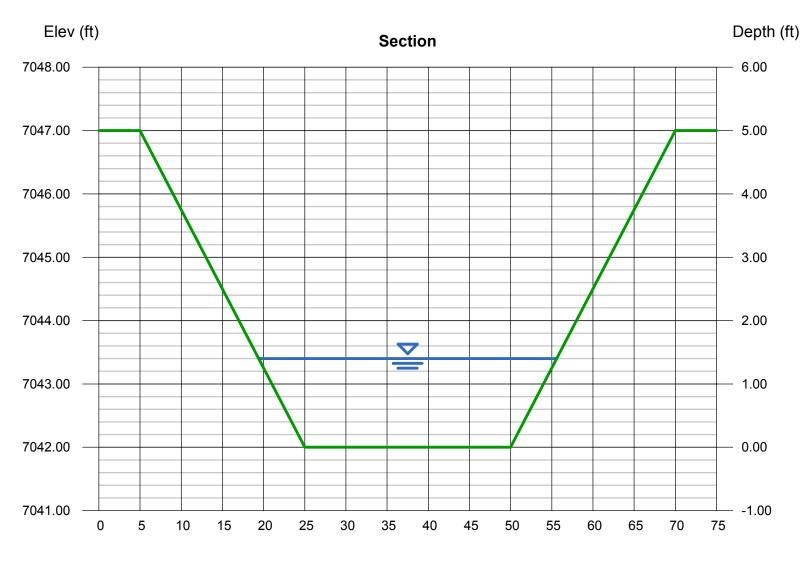

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7042.00 = 125.00 = 1.60	Calculations Qmin (cfs) Qmax (cfs)	= 235.90 = 235.90
Invert Elev Up (ft)	= 7044.00	Tailwater Elev (ft)	= Normal
Rise (in)	= 42.0		
Shape	= Elliptical	Highlighted	
Span (in)	= 66.0	Qtotal (cfs)	= 235.90
No. Barrels	= 1	Qpipe (cfs)	= 105.79
n-Value	= 0.012	Qovertop (cfs)	= 130.11
Culvert Type	= Horizontal Ellipse Concrete	Veloc Dn (ft/s)	= 14.58
Culvert Entrance	 Groove end projecting (H) 	Veloc Up (ft/s)	= 11.96
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 7043.60
		HGL Up (ft)	= 7045.96
Embankment		Hw Elev (ft)	= 7048.12
Ton Elevation (ft)	= 7047 70	Hw/D (ft)	= 1 18

Top Elevation (ft) Top Width (ft)

Crest Width (ft)

=	7047.70
=	40.00
=	150.00

0 0		
Qtotal (cfs)	=	235.90
Qpipe (cfs)	=	105.79
Qovertop (cfs)	=	130.11
Veloc Dn (ft/s)	=	14.58
Veloc Up (ft/s)	=	11.96
HGL Dn (ft)	=	7043.60
HGL Up (ft)	=	7045.96
Hw Elev (ft)	=	7048.12
Hw/D (ft)	=	1.18
Flow Regime	=	Inlet Control

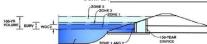

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Tuesday, May 12 2020

Vollmer Roadside Swale

Trapezoidal		Highlighted	
Bottom Width (ft)	= 25.00	Depth (ft)	= 1.40
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 235.90
Total Depth (ft)	= 5.00	Area (sqft)	= 42.84
Invert Elev (ft)	= 7042.00	Velocity (ft/s)	= 5.51
Slope (%)	= 1.00	Wetted Perim (ft)	= 36.54
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.31
		Top Width (ft)	= 36.20
Calculations		EGL (ft)	= 1.87
Compute by:	Known Q		
Known Q (cfs)	= 235.90		



Reach (ft)

APPENDIX C

WATER QUALITY AND DETENTION CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

ZONE 1 AND 2 ORIFICES PERMA Example Zone Configuration (Retention Pond)

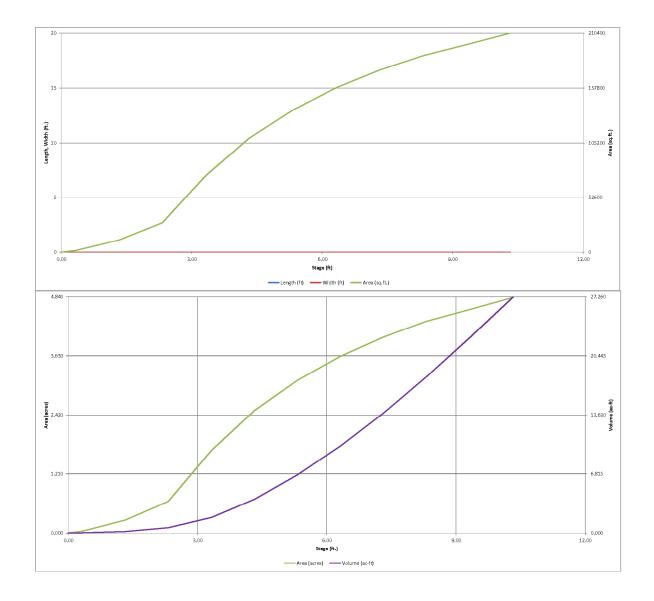
Watershed Information

Selected BMP Type =	EDB				
Watershed Area =	173.97	acres			
Watershed Length =	3,888	ft			
Watershed Length to Centroid =	1,814	ft			
Watershed Slope =	0.025	ft/ft			
Watershed Imperviousness =	55.70%	percent			
Percentage Hydrologic Soil Group A =	63.0%	percent			
Percentage Hydrologic Soil Group B =	37.0%	percent			
Percentage Hydrologic Soil Groups C/D -	0.0%	percent			
Target WQCV Drain Time =	40.0	hours			
Location for 1-hr Rainfall Depths = User Input					

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydrograph Procedure.							
Water Quality Capture Volume (WQCV) =	3.226	acre-feet					
Excess Urban Runoff Volume (EURV) =	11.121	acre-feet					
2-yr Runoff Volume (P1 = 1.19 in.) =	8.950	acre-feet					
5-yr Runoff Volume (P1 = 1.5 in.) =	11.771	acre-feet					
10-yr Runoff Volume (P1 = 1.75 in.) =	14.714	acre-feet					
25-yr Runoff Volume (P1 = 2 in.) =	18.886	acre-feet					
50-yr Runoff Volume (P1 = 2.25 in.) =	22.262	acre-feet					
100-yr Runoff Volume (P1 = 2.52 in.) =	26.815	acre-feet					
500-yr Runoff Volume (P1 = 3.14 in.) =	35.869	acre-feet					
Approximate 2-yr Detention Volume =	7.638	acre-feet					
Approximate 5-yr Detention Volume =	10.161	acre-feet					
Approximate 10-yr Detention Volume =	12.692	acre-feet					
Approximate 25-yr Detention Volume =	14.749	acre-feet					
Approximate 50-yr Detention Volume =	15.993	acre-feet					
Approximate 100-yr Detention Volume =	17.734	acre-feet					

Define Zones and Basin Geometry


chile zones and basin ocomedy		
Zone 1 Volume (WQCV) =	3.226	acre-feet
Zone 2 Volume (EURV - Zone 1) =	7.895	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	6.613	acre-feet
Total Detention Basin Volume =	17.734	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{tDtal}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length to Width Ratio (R _{L/W}) =	user	1
Initial Surcharge Area (A _{ISV}) =	user	ft²
Surcharge Volume Longth (L) =	LIEOF	e le

Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

TEAR	Depth Increment =		ft							
ention Pond)	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
enuon Ponaj	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
	Top of Micropool		0.00	-			20	0.000		
	ELEV:6962		0.33				1,477	0.034	247	0.006
	ELEV:6963		1.33				11,555	0.265	6,763	0.155
	ELEV:6964		2.33				28,165	0.647	26,623	0.611
	ELEV:6965		3.33				73,513	1.688	77,462	1.778
	ELEV:6966		4.33				109,652	2.517	169,044	3.881
	ELEV:6967		5.33				136,350	3.130	292,045	6.704
	ELEV:6968		6.33				157,922	3.625	439,181	10.082
	ELEV:6969		7.33				174,937	4.016	605,610	13.903
	ELEV:6970		8.33				188,866	4.336	787,512	18.079
	ELEV:6971		9.33				199,528	4.581	981,709	22.537
	ELEV:6972		10.33				210,400	4.830	1,186,673	27.242
Optional User Overrides										
acre-feet										
acre-feet										
1.19 inches										
1.50 inches										
1.75 inches										
2.00 inches										
2.25 inches										
2.52 inches										
inches										
				-						
				-						
				-						
				-						
				-						
		-								
				-						
		-		-						
]
				-						

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.03 (May 202 Project: STERLING RANCH FILING NO. 2 Basin ID: POND W5 Estimated Estimated Stage (ft) Volume (ac-ft) Outlet Type EURV W Orifice Plate Zone 1 (WQCV 4.06 3.226 Zone 2 (EURV 100-YEAR 6.62 7.895 Rectangular Orifice ZONE 1 AND 2 Zone 3 (100-year) 8.26 6.613 Weir&Pipe (Restrict) PERM Example Zone Configuration (Retention Pond) Total (all zones) 17.734 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = N/A Underdrain Orifice Area N/A Underdrain Orifice Diameter : N/A nches Underdrain Orifice Centroid : N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WOCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row 6.472E-02 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width : Depth at top of Zone using Orifice Plate 4.06 N/A feet Orifice Plate: Orifice Vertical Spacing Elliptical Slot Centroid feet 16.20 inches N/A Elliptical Slot Area ft^2 Orifice Plate: Orifice Area per Row = 9.32 sq. inches (use rectangular openings) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (fi 0.00 1.35 2.71 9.32 9.32 9.32 Orifice Area (sq. inches) Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice : 4.06 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.20 N/A ft Depth at top of Zone using Vertical Orifice = 6.62 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = 0.13 N/A feet Vertical Orifice Height = 3.00 N/A inches Vertical Orifice Width = , inches 9.75 User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Wei Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho = N/A Height of Grate Upper Edge, Ht 6.62 t (relative to basin bottom at Stage = 0 ft) 9.12 N/A feet Overflow Weir Front Edge Length : 36.00 N/A feet Overflow Weir Slope Length 10.31 N/A feet Overflow Weir Grate Slope = 4.00 N/A H:V Grate Open Area / 100-yr Orifice Area = 25.51 N/A Horiz. Length of Weir Sides = 10.00 N/A eet Overflow Grate Open Area w/o Debris : 259.76 N/A Overflow Grate Open Area % : N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 129.88 ft 70% N/A Debris Clogging % = 50% N/A User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 2.50 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area 10.18 N/A Outlet Orifice Centroid Outlet Pipe Diameter 54.00 N/A inches 1.56 N/A feet Restrictor Plate Height Above Pipe Invert = 33.00 Half-Central Angle of Restrictor Plate on Pipe = 1.79 N/A radians inches Calculated Parameters for Spillway User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage= 8.33 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.01 feet Stage at Top of Freeboard : 10.34 Spillway Crest Length : 140.00 feet feet Basin Area at Top of Freeboard Spillway End Slopes = 4.00 H:V 4.83 acres Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = 27.24 acre-ft Routed Hydrograph Results The user can override the default CUHP ographs and runoff volumes by entering new values in the Inflow Hydrographs table (Colum s W through AF Design Storm Return Period FURV 2 Yea 5 Year 10 Year 25 Yea 50 Year 100 Year 500 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 2.00 3.14 2.25 2.52CUHP Runoff Volume (acre-ft) 3.226 11.12 8.950 11.771 14.714 22.262 26.815 35.869 Inflow Hydrograph Volume (acre-ft) N/A 8.950 11.771 14.714 18.886 22.262 26.815 35.869 N/A CUHP Predevelopment Peak O (cfs) N/A N/A 2.2 4.2 28.0 81.3 114.3 162.9 254.2 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A Predevelopment Unit Peak Flow, q (cfs/acre) N/A N/A 0.01 0.02 0.16 0.47 0.66 0.94 1.46 594.1 305.2 Peak Inflow Q (cfs) N/A N/A 137.8 182.8 230.1 309.9 368.9 440.5 Peak Outflow O (cfs) 95.6 1.5 3.2 23.8 59.8 149.2 N/A 0.9 0.9 Ratio Peak Outflow to Predevelopment Q N/A N/A 0.7 0.8 0.9 1.2 Structure Controlling How Vertical Orifice 1 Overflow Weir 1 Vertical Orifice 1 Overflow Weir 1 Overflow Weir 1 Overflow Weir 1 Overflow Weir 1 Outlet Plate Spillway Max Velocity through Grate 1 (fps) N/A N/A N/A 0.0 0.1 0.2 0.4 0.6 0.6 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) 61 66 68 69 66 64 60 Time to Drain 99% of Inflow Volume (hours) 40 72 66 74 75 74 74 73 71 7.09 7.53 Maximum Ponding Depth (ft) 4.06 6.62 5.86 6.63 7.86 8.32 8.83

3.39

3.74

11.150

3.92

12.91

Area at Maximum Ponding Depth (acres)

Maximum Volume Stored (acre-ft) =

2.29

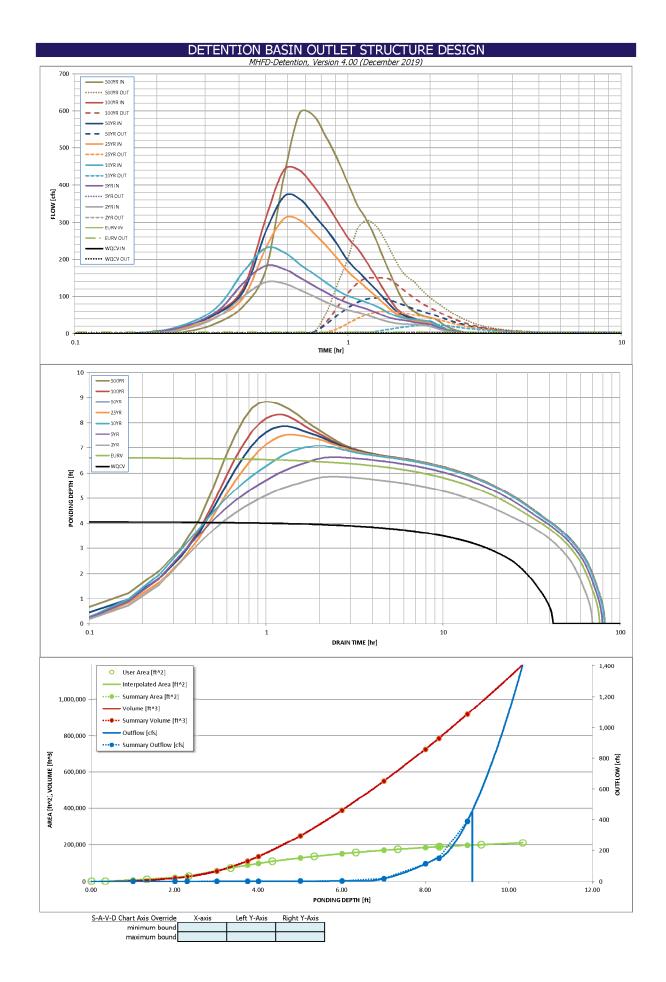
3.74

11.150

4.46

20.27

4.08


14.672

4.18

16.034

4.33

17.992

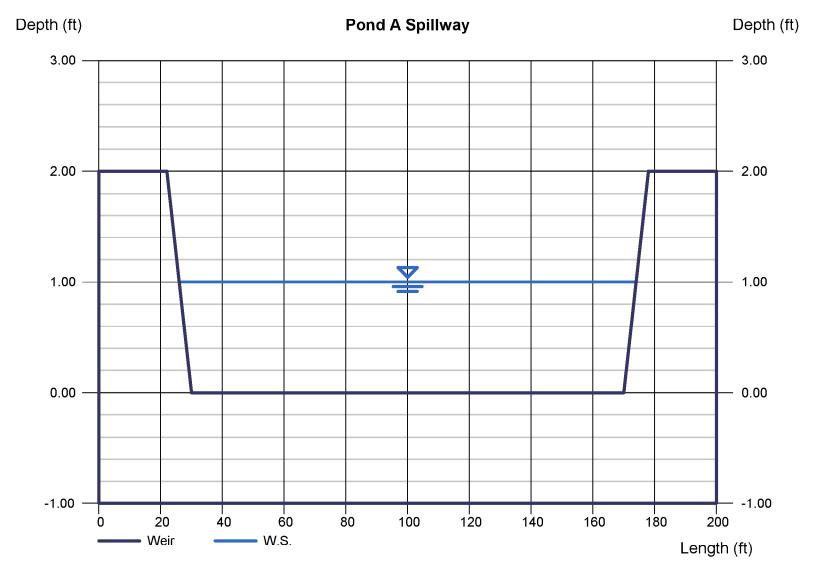
DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

]	SOURCE	CUHP	CUHP	CUHP	is workbook with CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]		500 Year [cfs]
	0:00:00									
5.00 min	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	11.12	18.28	22.70	15.27	1.28 19.68	18.71	28.76
	0:20:00	0.00	0.00	44.92	61.14	72.44	46.18	54.32	57.50	75.80
	0:25:00	0.00	0.00	101.80	137.35	168.30	99.39	116.95	126.25	169.69
	0:30:00	0.00	0.00	137.76	182.82	230.07	229.09	273.86	310.69	424.28
	0:35:00	0.00	0.00	133.67	173.55	218.60	309.87	368.94	440.49	594.11
	0:40:00	0.00	0.00	116.98	149.43	186.35	305.89	362.10	438.97	586.07
	0:45:00	0.00	0.00	99.89	127.87	159.50	270.29	320.18	395.68	527.57
	0:50:00	0.00	0.00	84.25	109.84	135.77	236.03	280.41	350.40	468.04
	0:55:00	0.00	0.00	71.80	93.75	115.08	200.72	238.14	301.98	404.26
	1:05:00	0.00	0.00	63.18 57.20	82.10 73.94	101.47 92.29	166.09 142.92	196.29 168.55	257.46 228.66	345.61 308.38
	1:10:00	0.00	0.00	50.16	66.76	92.29 84.10	172.52	144.38	194.46	262.20
	1:15:00	0.00	0.00	42.58	58.50	75.90	103.70	121.89	157.81	212.23
	1:20:00	0.00	0.00	35.87	49.63	65.80	85.22	99.70	124.27	166.21
ĺ	1:25:00	0.00	0.00	30.48	42.26	54.46	68.34	79.33	94.22	124.82
[1:30:00	0.00	0.00	27.14	38.07	46.69	53.22	61.23	69.50	91.05
	1:35:00	0.00	0.00	25.48	35.95	42.35	43.40	49.77	54.39	70.98
	1:40:00	0.00	0.00	24.65	33.00	39.45	37.63	42.94	45.67	59.22
	1:45:00	0.00	0.00	24.14	29.90	37.34	34.06	38.68	39.81	51.13
	1:50:00	0.00	0.00	23.78 21.64	27.68	35.89 34.27	31.62	35.78	35.86 33.12	45.64 41.78
	2:00:00	0.00	0.00	18.91	26.04 24.30	34.27	30.06 28.98	33.96 32.67	31.16	39.03
	2:05:00	0.00	0.00	15.08	19.62	25.21	23.76	26.75	25.15	31.35
	2:10:00	0.00	0.00	11.12	19.32	18.32	17.26	19.39	18.22	22.66
	2:15:00	0.00	0.00	8.17	10.46	13.30	12.56	14.09	13.28	16.47
	2:20:00	0.00	0.00	5.94	7.58	9.64	9.15	10.25	9.73	12.06
	2:25:00	0.00	0.00	4.27	5.34	6.89	6.52	7.30	6.97	8.62
	2:30:00	0.00	0.00	2.98	3.67	4.84	4.57	5.11	4.88	6.02
	2:35:00	0.00	0.00	2.04	2.53	3.38	3.24	3.62	3.46	4.26
	2:40:00	0.00	0.00	1.31	1.69	2.23	2.19	2.44	2.32	2.85
	2:45:00	0.00	0.00	0.75	1.03	1.32	1.34	1.49	1.41	1.72
-	2:50:00	0.00	0.00	0.36	0.53	0.66	0.70	0.77	0.72	0.87
	3:00:00	0.00	0.00	0.14	0.20	0.23	0.26	0.28	0.26	0.30
	3:05:00	0.00	0.00	0.03	0.03	0.03	0.00	0.02	0.02	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00 3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)


Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
	1.00	8,229	0.189	3,498	0.080	0.31	
	2.00	22,684	0.521	18,233	0.419	0.69	For best results, include the stages of all grade slope
WQCV	2.00	27,501	0.631	25,509	0.586	0.77	changes (e.g. ISV and Floor)
nger	3.00	58,548	1.344	55,672	1.278	1.11	from the S-A-V table on
EURV	3.74	88,330	2.028	110,639	2.540	1.40	Sheet 'Basin'.
	4.00	97,726	2.243	134,827	3.095	1.48	Also include the inverts of all
	5.00	127,540	2.928	248,503	5.705	2.65	outlets (e.g. vertical orifice,
	6.00	150,803	3.462	388,241	8.913	3.32	overflow grate, and spillway, where applicable).
	7.00	169,322	3.887	548,808	12.599	18.31	where applicable).
	8.00	184,269	4.230	725,945	16.665	113.00	-
100-YR	8.32	188,727	4.333	785,624	18.035	149.22	-
	9.00	196,010	4.500	916,445	21.039	388.46	-
							-
							-
							-
							-
							1
							1
							1
							1
							-
							-
							-
							-
	_						
							-
							-
	_						-
							-
							1
							1
							1
							1
							1
							1
							_
							-
							-
							-
							-
							-
							-
							-
							-
							4
							1
							1
							-
							4
							4
							1
							1
							4
							-
		I		L	L	L	1

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

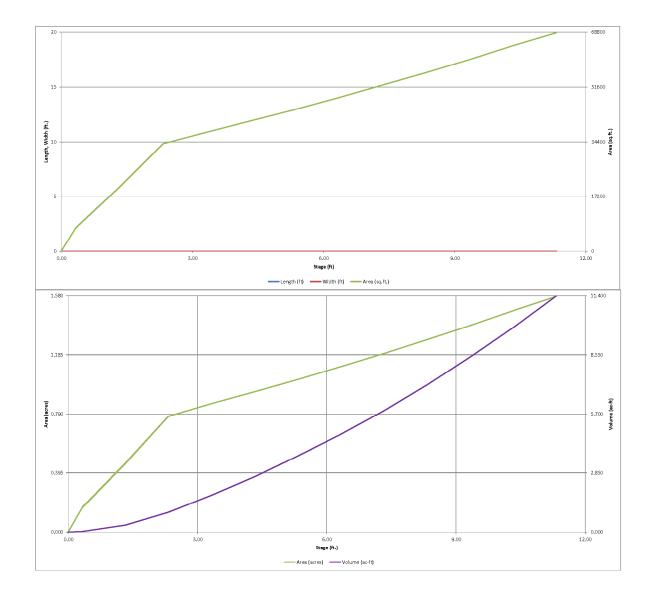
Pond W5 Spillway

Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.00
Bottom Length (ft)	= 140.00	Q (cfs)	= 440.50
Total Depth (ft)	= 2.00	Area (sqft)	= 144.00
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 3.06
		Top Width (ft)	= 148.00
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Known Q		
Known Q (cfs)	= 440.50		

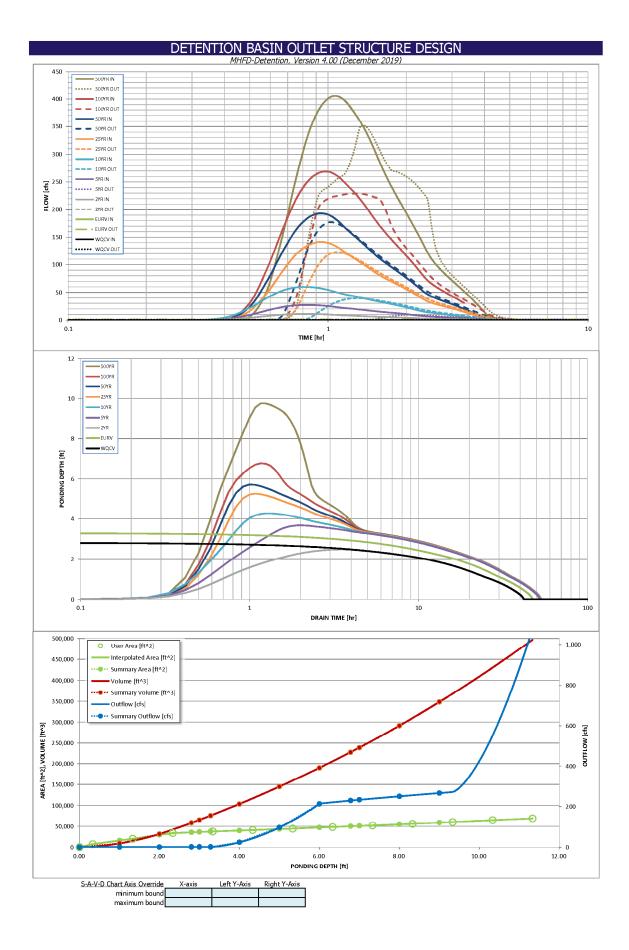
DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)										
Project: STERLING	Project: STERLING RANCH FILING NO. 2									
Basin ID: POND W4 IN	ITERIM									
ZONE 2										
100-YR	T									
VOLUME EUNY WOCY										
	100-YE	AR E	Depth Increment =		ft			16		
PERMANENT ZONE I AND 2 ORIFICES POOL EXample Zone Configures				Change	Optional	Langth	Width	Area	Optional Override	
Example Zone Configure	tion (Reter	ntion Pond)	Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	(ft)	(ft ²)	Area (ft ²)	
Verify - soil Watershed Information			Top of Micropool		0.00	-			20	Γ
Selected BMP ype = FDB	1		ELEV:7014		0.33				7,181	t
conditions need to	acres		ELEV:7015		1.33	-			20,018	t
Watershed Length = 9,241	ft		ELEV:7016		2.33				33,734	t
	ft		ELEV:7017		3.33				37,421	t
match soils map Watershed Length to Centrol = 4,488 Watershed Slope = 0.060	ft/ft		ELEV:7018		4.33				40,860	t
Watershed Imperviousness = 6.40%	percent		ELEV:7019		5.33				44,458	F
Percentage Hydrologic Soil Group A = 54.0%	percent		ELEV:7020		6.33				48,169	Γ
Percentage Hydrologic Soil Group 8 = 46.0%	percent		ELEV:7021		7.33				52,029	Γ
Percentage Hydrologic Soil Groups CLD – 🔥 0.0%	pergent		ELEV:7022		8.33				55,983	
Target WQCV Drain Time = 40.0	nours		ELEV:7023		9.33				60,114	
Location for 1-hr Rainfall Depths = User Input			ELEV:7024		10.33				64,495	
After providing required inputs above including 1-hour			ELEV:7025		11.33	-			68,666	
depths, click 'Run CUHP' to generate runoff hydrograph						-				
the embedded Colorado Urban Hydrograph Proced	-	Optional User Overrides								H
Water Quality Capture Volume (WQCV) = 1.329	acre-feet	acre-feet				-				⊢
Excess Urban Runoff Volume (EURV) = 1.730	acre-feet	acre-feet								┝
2-yr Runoff Volume (P1 = 1.19 in.) = 1.236 5-yr Runoff Volume (P1 = 1.5 in.) = 3.089	acre-feet acre-feet	1.19 inches 1.50 inches								H
10-yr Runoff Volume (P1 = 1.75 in.) = 6.774	acre-feet	1.75 inches				-				ł
25-yr Runoff Volume (P1 = 2 in.) = 15.616	acre-feet	2.00 inches								ł
50-yr Runoff Volume (P1 = 2.25 in.) = 21.451	acre-feet	2.25 inches								t
100-yr Runoff Volume (P1 = 2.52 in.) = 31.594	acre-feet	2.52 inches								t
500-yr Runoff Volume (P1 = 3.14 in.) = 48.570	acre-feet	inches								t
Approximate 2-yr Detention Volume = 1.037	acre-feet									t
Approximate 5-yr Detention Volume = 1.577	acre-feet									F
Approximate 10-yr Detention Volume = 3.279	acre-feet									F
Approximate 25-yr Detention Volume = 4.795	acre-feet									Γ
Approximate 50-yr Detention Volume = 5.509	acre-feet									
Approximate 100-yr Detention Volume = 8.317	acre-feet									
Define Zones and Basin Geometry	-									
Zone 1 Volume (WQCV) = 1.329	acre-feet					-				
Zone 2 Volume (EURV - Zone 1) = 0.401	acre-feet									L
Zone 3 Volume (100-year - Zones 1 & 2) = 6.587	acre-feet									L
Total Detention Basin Volume = 8.317	acre-feet									ŀ
Initial Surcharge Volume (ISV) = user	ft ³					-				ł
Initial Surcharge Depth (ISD) = user Total Available Detention Depth (H _{total}) = user	ft									⊢
Depth of Trickle Channel (H_{TC}) = user	ft					-				┝
Slope of Trickle Channel (S_{TC}) = user	ft/ft					-				ł
Slopes of Main Basin Sides (S _{main}) = user	H:V									t
Basin Length to Width Ratio (R _{L/W}) – user	-									t
	-									Γ
Initial Surcharge Area (A _{ISV}) = user	ft²									Γ
Surcharge Volume Length (L _{ISV}) = user	ft									Γ
Surcharge Volume Width (W _{ISV}) = user	ft									Г
Depth of Basin Floor (H _{FLOOR}) = user	ft									ſ
Length of Basin Floor (L _{FLOOR}) = user	ft									
Width of Basin Floor (W _{FLOOR}) = user	ft									L
Area of Basin Floor (A_{FLOOR}) = user	ft ²									L
Volume of Basin Floor (V _{FLOOR}) = user	ft ³									L
Depth of Main Basin (H _{MAIN}) = user	ft									ŀ
Length of Main Basin (L_{MAIN}) = user	ft									ł
Width of Main Basin (W _{MAIN}) = user Area of Main Basin (A _{MAIN}) = user	ft ft ²									┝
Volume of Main Basin (x_{MAIN}) = User	π- ft ³									⊢
$\begin{array}{l} \text{Volume of Main Basin (V_{MAIN}) = 1 \text{ Iser}}\\ \text{Calculated Total Basin Volume (V_{total}) = user} \end{array}$	acre-feet					-				ł
										t
										F
										ł
										F
										+
										Γ
						-				┝
										t
										f
										t
										F
						-				t
										F
										t

ExeronsAABBBDDD </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>20</th> <th></th> <th></th> <th></th>						20			
LUNDOM <th< th=""><th>ELEV:7014</th><th></th><th>0.33</th><th></th><th> </th><th>7,181</th><th>0.165</th><th>1,188</th><th>0.027</th></th<>	ELEV:7014		0.33		 	7,181	0.165	1,188	0.027
IntIn	ELEV:7015		1.33		 	20,018	0.460	14,787	0.339
IntIn	ELEV:7016		2.33		 	33,734	0.774	41,663	0.956
IDE.YODE·· </th <th></th> <th></th> <th></th> <th></th> <th> </th> <th></th> <th></th> <th></th> <th></th>					 				
Exercise									
Lev.7020									
Let.void·· </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
LUCY020···LUCY024··· <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>									
ENCY022II9.31II9.37 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>1.194</th><th></th><th>5.864</th></t<>							1.194		5.864
Lex/024·· <th>ELEV:7022</th> <th></th> <th>8.33</th> <th></th> <th> </th> <th>55,983</th> <th>1.285</th> <th>309,459</th> <th>7.104</th>	ELEV:7022		8.33		 	55,983	1.285	309,459	7.104
LEXC005·· <th>ELEV:7023</th> <th></th> <th>9.33</th> <th></th> <th> </th> <th>60,114</th> <th>1.380</th> <th>367,507</th> <th>8.437</th>	ELEV:7023		9.33		 	60,114	1.380	367,507	8.437
LEXC005·· <th>ELEV:7024</th> <th></th> <th>10.33</th> <th></th> <th> </th> <th>64,495</th> <th>1.481</th> <th>429,812</th> <th>9,867</th>	ELEV:7024		10.33		 	64,495	1.481	429,812	9,867
	LLL U. J UZJ		11.55			00,000	1.570	490,092	11.550
NNN <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
111<									
No.<									
No					 				
No					 				
NNN <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
NNN<					 				
NNN <t< th=""><th></th><th></th><th></th><th></th><th> </th><th></th><th></th><th></th><th></th></t<>					 				
NNN									
NNN <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>									
NNN <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>									
NNN									
Image					 				
Image Image Image Image Image Image Image Image					 				
NormN					 				
NoNoNoNoNoNoNoNo100					 				
NoteNo					 				
NoteNo					 				
Image: Sector of the sector									
Image: Sector of the sector									
Image: Section of the section of t					 				
Image: Section of the section of t					 				
No <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
Image: Sector of the sector					 				
Image: Section of the section of t					 				
Image: Section of the section of t					 				
Image: Sector of the sector					 				
Image: Sector of the sector					 				
Image: sector of the sector									
Image									
Image: Sector of the sector									
Image: sector of the sector									
Image: sector of the sector									
Image: Section of the section of t					 				
Image Image <th< th=""><th></th><th></th><th></th><th></th><th> </th><th></th><th></th><th></th><th></th></th<>					 				
Image: Section of the section of t				-	 				
n n					 				
n n					 				
Image Image <th< th=""><th></th><th></th><th></th><th></th><th> </th><th></th><th></th><th></th><th></th></th<>					 				
n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									
Image					 				
Image					 				
Image Image <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>									
Image: sector of the sector					 				
M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th> </th> <th></th>									
Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image									
Image: sector of the sector									
Image: sector of the sector					 				
Image: sector of the sector					 				
indication indiditation indication indication<					 				
Image					 				
ind ind ind ind ind ind ind ind in					 				
ind ind ind ind ind ind ind ind in					 				
ind ind ind ind ind ind ind ind in					 				
ind ind ind ind ind ind ind ind in					 				
ind ind ind ind ind ind ind ind ind ind ind ind <t< th=""><th></th><th></th><th></th><th></th><th> </th><th></th><th></th><th></th><th></th></t<>					 				
ind ind ind ind ind ind ind ind ind ind ind ind <t< th=""><th></th><th>-</th><th></th><th></th><th> </th><th></th><th></th><th></th><th></th></t<>		-			 				
nu nu<					 				
nu nu<					 				
nu nu<					 				
nu nu<					 				
Arr Arr <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
n n n n n n n n 100<							-		
n n n n n n n n 100<				-	 				
Image:									
Image: second					 				
AT AT<					 				
AT AT<					 				
iii iii iii iii iii iii iii iii iii iii iii iii					 				


Area (acre) 0.000

Volume (ft³)


Volume (ac-ft)

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

	DETENTION BASIN OUTLET STRUCTURE DESIGN								
Project:	STERLING RANCH		HFD-Detention, V	ersion 4.03 (May 2	2020)				
Basin ID:	POND W4 INTERIM	111110 110. 2							
ZONE 3 ZONE 2 ZONE 1	\frown			Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type	1		
VOLUMET EURA T MOCA			Zone 1 (WQCV)			Orifice Plate			
ZONE 1 AND 2	0RIFICE		Zone 2 (EURV)			Orifice Plate			
PERMANENT ORIFICES	Configuration (Re	t-stion Bond)	Zone 3 (100-year)		6.587	Weir&Pipe (Restrict)			
Example Zone			5.2-027044	Total (all zones)	8.317	I			
User Input: Orifice at Underdrain Outlet (typicall					Lindova		Calculated Parame		
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =		ft (distance below I inches	the filtration media	surface)		Irain Orifice Area = Orifice Centroid =	N/A N/A	ft² feet	
	N/A	Inches			Unueruram		N/A	Teel	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot V	Veir (typically used	to drain WQCV and	1/or EURV in a sedir	nentation BMP)		Calculated Parame	ters for Plate	
Invert of Lowest Orifice =			bottom at Stage =			ice Area per Row =	4.618E-02	ft ²	
Depth at top of Zone using Orifice Plate =		ft (relative to basin	n bottom at Stage =	0 ft)	Elli	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =		inches				ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	6.65	sq. inches (use rec	tangular openings)		E	lliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orifice	Bow (numbered fr	om lowest to highe							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)		1.09	2.19	Non r (opasna.)	Non 5 (optional)	Non o (op some,	Non / (opena.)	Non o (openia,	
Orifice Area (sq. inches)		6.65	6.65						
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectange	ular)						Calculated Barama	ters for Vertical Ori	fico
ose input. Vertical office (circular of Rectangi	Not Selected	Not Selected	1			ŗ	Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A		ft (relative to basin	n bottom at Stage =	∩ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A		•	n bottom at Stage =	,	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches		, ,		.,		
				-	-				
User Input: Overflow Weir (Dropbox with Flat or			angular/Trapezoida	l Weir (and No Out	let Pipe)		Calculated Parame		<u>/eir</u>
· · · ·	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 3.28	Not Selected N/A	ft (relative to basin b	al Weir (and No Out bottom at Stage = 0 f	ft) Height of Grate	e Upper Edge, H $_{t}$ =	Zone 3 Weir 5.78	Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir	Not Selected N/A N/A		bottom at Stage = 0 f	ft) Height of Grate Overflow W	e Upper Edge, H _t = 'eir Slope Length =	Zone 3 Weir 5.78 10.31	Not Selected N/A N/A	
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 3.28 20.00	Not Selected N/A N/A	ft (relative to basin b feet	bottom at Stage = 0 f Gr	ft) Height of Grate	e Upper Edge, H _t = 'eir Slope Length = 0-yr Orifice Area =	Zone 3 Weir 5.78	Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	Zone 3 Weir 3.28 20.00 4.00	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area	bottom at Stage = 0 f Gr Ov	ft) Height of Grate Overflow W rate Open Area / 10	e Upper Edge, H _t = 'eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 5.78 10.31 7.65	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 3.28 20.00 4.00 10.00	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet	bottom at Stage = 0 f Gr Ov	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open	e Upper Edge, H _t = 'eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 5.78 10.31 7.65 144.31	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area %	bottom at Stage = 0 f Gr Ov	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Oper	e Upper Edge, H _t = 'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or Ro	ft (relative to basin b feet H:V feet %, grate open area %	bottom at Stage = 0 f Gr Ov	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Oper	e Upper Edge, H _t = 'eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice)	bottom at Stage = 0 f Gr Ov a/total area C	ft) Height of Grate Overflow W vrate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open <u>Ca</u>	e Upper Edge, H _t = leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00	Not Selected N/A N/A N/A N/A N/A N/A setrictor Plate, or Re Not Selected N/A	ft (relative to basin b feet H:V feet %, grate open area % <u>ectangular Orifice)</u> ft (distance below ba	bottom at Stage = 0 f Gr Ov	ft) Height of Gratw Overflow Grate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ou	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A	feet feet ft ² ft ² ate ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Ro Not Selected N/A N/A	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches	bottom at Stage = 0 f Gr O a/total area C	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ot Outlet	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41	Not Selected N/A N/A N/A N/A N/A Flow Restriction PI Not Selected N/A N/A	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Ro Not Selected N/A N/A	ft (relative to basin b feet H:V feet %, grate open area % <u>ectangular Orifice)</u> ft (distance below ba	bottom at Stage = 0 f Gr O a/total area C	ft) Height of Gratw Overflow Grate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ou	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A	feet feet ft ² ft ² ate ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% <u>(Circular Orifice, Re</u> <u>Zone 3 Restrictor</u> 2.00 60.00 55.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Ro Not Selected N/A N/A	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches	bottom at Stage = 0 f Gr O a/total area C	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ot Outlet	e Upper Edge, H _t = eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameters</u> <u>lculated Parameters</u> utlet Orifice Area = corifice Centroid = tor Plate on Pipe =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A N/A N/A	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal)	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	ft) Height of Grate Overflow V verflow Grate Open Overflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) Ot Outlet tral Angle of Restrict	e Upper Edge, H _t = eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameters</u> <u>lculated Parameters</u> utlet Orifice Area = corifice Centroid = tor Plate on Pipe =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 5 for Outlet Pipe W/ Zone 3 Restrictor 18.85 2.41 2.56	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A N/A N/A	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open C Ca = 0 ft) Ot Outlet tral Angle of Restrict Spillway D Stage at T	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters lculated Parameters corifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 <u>Calculated Parame</u> 1.00 11.33	Not Selected N/A N/A N/A N/A N/A How Restriction Pl Not Selected N/A N/A N/A N/A	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway End Slopes =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00	Not Selected N/A N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ot Outlet tral Angle of Restrict Spillway D Stage at T Basin Area at T	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 5 for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet feet acres	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ot Outlet tral Angle of Restrict Spillway D Stage at T Basin Area at T	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters lculated Parameters corifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 <u>Calculated Parame</u> 1.00 11.33	Not Selected N/A N/A N/A N/A N/A NA NA NA N/A N/A N/	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway End Slopes =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00	Not Selected N/A N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ot Outlet tral Angle of Restrict Spillway D Stage at T Basin Area at T	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 5 for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet feet acres	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway End Slopes =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin feet H:V feet	ft (relative to basin b feet H:V feet %, grate open area % <u>ectangular Orifice</u>) ft (distance below ba inches inches nches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ot Outlet tral Angle of Restrict Spillway D Stage at T Basin Area at T	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters lutlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = lesign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 <u>Calculated Parame</u> 1.00 11.33 1.58 11.40	Not Selected N/A N/A N/A N/A N/A NA NA N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin feet H:V feet	ft (relative to basin b feet H:V feet %, grate open area % <u>ectangular Orifice</u>) ft (distance below ba inches inches nches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open C Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca C	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters lutlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = lesign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard =	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 <u>Calculated Parame</u> 1.00 11.33 1.58 11.40	Not Selected N/A N/A N/A N/A N/A NA NA N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Ra Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can over WQCV N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Setrictor Plate, or Ro Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = <u>1P hydrographs and</u> <u>2 Year</u> 1.19	bottom at Stage = 0 f Gr O a/total area C asin bottom at Stage Half-Cent : 0 ft) 1 runoff volumes by 5 Year 1.50	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open C Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca C	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = In Area w/ Debris = liculated Parameters liculated Parameters liculated Parameters confice Centroid = tor Plate on Pipe = log of Freeboard = Fop of Freeboard = Fop of Freeboard = log of Freeboa	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 <u>Calculated Parame</u> 1.00 11.33 1.58 11.40 <i>lographs table (Co.</i>) 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A NA NA NA NA N/A N/A	feet feet ft ² ft ² feet radians 500 Year 3.14
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can overn WQCV N/A 1.329	Not Selected N/A N/A N/A N/A N/A N/A NA NA Selected N/A N/A ft (relative to basin feet H:V feet EURV N/A 1.730	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = <u>AP hydrographs and</u> <u>2 Year</u> 1.19 1.236	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent 0 ft) 5 Year 1.50 3.089	 Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> 0 ft) Ot Outlet tral Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T 10 Year 1.75 6.774 	e Upper Edge, H _t = leir Slope Length = 0-yr Orifice Area = A rea w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = s in the Inflow Hyd 25 Year 2.00 15.616	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 5 for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58 11.40 Fographs table (Con 50 Year 2.25 2.1451	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Surface = CuHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, R Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can overr WQCV N/A 1.329 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A ft (relative to basin feet H:V feet EURV N/A 1.730 N/A	ft (relative to basin the feet H:V feet %, grate open area % ectangular Orifice) ft (distance below basinches inches inches hobttom at Stage = Phydrographs and 2 Year 1.19 1.236 1.236	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent 0 ft) 5 Year 1.50 3.089 3.089	ft) Height of Gratu Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) Ou Outlet tral Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T <u>entering new value</u> 10 Year 1.75 6.774	e Upper Edge, H _t = leir Slope Length = O-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = is in the Inflow Hydd 25 Year 2.00 15.616	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58 1.40 11.40 so Year 2.25 21.451 21.451	Not Selected N/A N/A N/A N/A N/A NA NA NA NA NA NA NA ters for Spillway feet feet acres acre-ft 100 Year 2.52 31.594 31.594	feet feet ft ² ft ² feet radians <i>5</i> 00 Year 3.14 48.570 48.570
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can over WQCV N/A 1.329 N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet EURV N/A 1.730 N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = <u>AP hydrographs and 2 Year 1.19 1.236 1.236 3.3</u>	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent : 0 ft) 5 Year 1.50 3.089 3.089	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open C Ca = 0 ft) Ot Outlet tral Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T entering new value 10 Year 1.75 6.774 6.774 47.9	e Upper Edge, H _t = Pieir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = fop of Freeboard = is in the Inflow Hyd 25 Year 2.00 15.616 15.616 15.616	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 5 for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58 11.40 Fographs table (Con 50 Year 2.25 2.1.451 21.451 179.4	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians <i>5</i> 00 Year 3.14 48.570 48.570 393.3
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Results OPTIONAL Override Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Dir Reak Row, q (cfs/acre) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can overr WQCV N/A 1.329 N/A N/A N/A N/A	Not Selected N/A	ft (relative to basin the feet H:V feet %, grate open area % ectangular Orifice) ft (distance below basinches inches inches inches bottom at Stage = P hydrographs and 2 Year 1.19 1.236 1.236 3.3 0.01	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent 5 0 ft) 5 Year 1.50 3.089 3.089 16.2 0.05	ft) Height of Gratu Overflow Wrate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Called Calle	e Upper Edge, H _t = leir Slope Length = 0-yr Orifice Area = Area w/0 Debris = n Area w/ Debris = lculated Parameters utilet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = is in the Inflow Hydd 25 Year 2.00 15.616 15.616 127.8 0.36	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58 1.40 11.40 so Year 2.25 21.451 21.451 1.79.4 0.51	Not Selected N/A N/A N/A N/A N/A N/A NA NA NA NA N/A N/	feet feet ft ² ft ² feet radians <i>5</i> 00 Year 3.14 48.570 48.570 393.3 1.12
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = NeeHour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Unit Peak How, q (cfs/acre) = Peak Inflow Q (cfs) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Ra Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can overn WQCV N/A 1.329 N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Ro Not Selected N/A N/A N/A N/A ft (relative to basin feet H:V feet ide the default CUI- EURV N/A 1.730 N/A	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = 1/P hydrographs and 2 Year 1.19 1.236 1.236 3.3 0.01 10.9	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent to ft) 5 Year 1.50 3.089 3.089 1.6.2 0.05 2.7.1	ft) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open C C a = 0 ft) Ot Outlet tral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T C C C C C C C C C C C C C C C C C C C	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/o Debris = in Area w/ Debris = in Area w/ Debris = liculated Parameters liculated Parameters in Area w/ Debris = corifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = For of Freeboard = 15.616 15.616 12.7.8 0.36 141.0	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58 11.40 Mographs table (Con 50 Year 2.25 21.451 21.451 179.4 0.51 192.9	Not Selected N/A N/A N/A N/A N/A NA NA NA NA NA NA NA NA ters for Spillway feet feet acres acre-ft 100 Year 2.52 31.594 31.594 2.56.3 0.73 268.3	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 48.570 393.3
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Results OPTIONAL Override Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Dir Reak Row, q (cfs/acre) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can overr WQCV N/A 1.329 N/A N/A N/A N/A	Not Selected N/A	ft (relative to basin the feet H:V feet %, grate open area % ectangular Orifice) ft (distance below basinches inches inches inches bottom at Stage = P hydrographs and 2 Year 1.19 1.236 1.236 3.3 0.01	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent 5 0 ft) 5 Year 1.50 3.089 3.089 16.2 0.05	ft) Height of Gratu Overflow Wrate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Called Calle	e Upper Edge, H _t = leir Slope Length = 0-yr Orifice Area = Area w/0 Debris = n Area w/ Debris = lculated Parameters utilet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = is in the Inflow Hydd 25 Year 2.00 15.616 15.616 127.8 0.36	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58 1.40 11.40 so Year 2.25 21.451 21.451 1.79.4 0.51	Not Selected N/A N/A N/A N/A N/A N/A NA NA NA NA N/A N/	feet feet ft ² ft ² feet radians <i>5</i> 00 Year 3.14 48.570 48.570 393.3 1.12
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Noure (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Unit Peak flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can overn WQCV N/A 1.329 N/A N/A N/A N/A N/A Plate	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A ft (relative to basin feet H:V feet H:V feet URV N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = 1.19 1.236 1.236 3.3 0.01 10.9 0.7 N/A Plate	bottom at Stage = 0 f Gr Ova/total area C asin bottom at Stage Half-Cent to ft) 5 Year 1.50 3.089 1.6.2 0.05 27.1 9.5 0.6 Overflow Weir 1	ft) Height of Grate Overflow Wr rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called Call	e Upper Edge, H _t = Peir Slope Length = 0-yr Orifice Area = Area w/o Debris = in Area w/	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58 11.40 rographs table (Con 50 Year 2.25 21.451 1.79.4 0.51 192.9 1.76.2 1.0 Overflow Weir 1	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 48.570 393.3 1.12 405.4 350.0 0.9 Spillway
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Needend above Max Water Surface = CONE-Hour Rainfall Depth (in) = CUHP Runoff Volume (area-ft) = CUHP Runoff Volume (area-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Ratio Peak Outflow to Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can over WQCV N/A 1.329 N/A N/A N/A N/A N/A Plate N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 1.730 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches hottom at Stage = Phydrographs and 2 Year 1.19 1.236 1.236 3.3 0.01 10.9 0.7 N/A Plate N/A	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent to ft) 5 Year 1.50 3.089 3.089 16.2 0.05 27.1 9.5 0.6 Overflow Weir 1 0.1	ft) Height of Grate Overflow Weir 1 Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	e Upper Edge, H _t = Pieir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = in Area w/ Debris = corifice Centroid = tor Plate on Pipe = corifice Centroid = corific	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 <u>Calculated Parame</u> 1.00 11.33 1.58 11.40 rographs table (Con 50 Year 2.25 21.451 21.451 21.451 1.79.4 0.51 192.9 176.2 1.0 Overflow Weir 1 1.2	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians 500 Year 3.14 48.570 48.570 48.570 48.570 393.3
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Results OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Pick Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Qeak Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, R Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can overr WQCV N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 1.730 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches inches bottom at Stage = P hydrographs and 2 Year 1.19 1.236 3.3 0.01 10.9 0.7 N/A Plate N/A N/A	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent to ft) 150 3.089 3.089 16.2 0.05 2.7.1 9.5 0.05 2.7.1 9.5 0.05 2.7.1 9.5 0.05 2.7.1 9.5 0.05 2.7.1 9.5 0.1 N/A	ft) Height of Grate Overflow Wrate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called	e Upper Edge, H _t = l'eir Slope Length = 0-yr Orifice Area = Area w/0 Debris = in Area w/ Debris = lculated Parameters utilet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = is in the Inflow Hydd 25 Year 2.00 15.616 15.616 15.616 15.616 15.636 127.8 0.36 1.41.0 122.6 1.0 Overflow Weir 1 0.8 N/A	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58 1.00 11.40 S0 Year 2.25 21.451 1.451 1.79.4 0.51 192.9 176.2 1.0 Overflow Weir 1 1.2 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 48.570 48.570 393.3 1.12 405.4 350.0 0.9 Spillway 1.9 N/A
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Needend above Max Water Surface = CONE-Hour Rainfall Depth (in) = CUHP Runoff Volume (area-ft) = CUHP Runoff Volume (area-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Ratio Peak Outflow to Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can over WQCV N/A 1.329 N/A N/A N/A N/A N/A Plate N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 1.730 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches hottom at Stage = Phydrographs and 2 Year 1.19 1.236 1.236 3.3 0.01 10.9 0.7 N/A Plate N/A	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent to ft) 5 Year 1.50 3.089 3.089 16.2 0.05 27.1 9.5 0.6 Overflow Weir 1 0.1	ft) Height of Grate Overflow Weir 1 Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	e Upper Edge, H _t = Pieir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = in Area w/ Debris = corifice Centroid = tor Plate on Pipe = corifice Centroid = corific	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 <u>Calculated Parame</u> 1.00 11.33 1.58 11.40 rographs table (Con 50 Year 2.25 21.451 21.451 21.451 1.79.4 0.51 192.9 176.2 1.0 Overflow Weir 1 1.2	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians 500 Year 3.14 48.570 48.570 48.570 48.570 393.3
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Neunet Reare ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Piek Q (cfs) = Predevelopment Piek Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Max Velocity through Grate 1 (fbs) = Max Velocity through Grate 1 (fbs) = Max Wolcity through Grate 1 (fbs) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, R Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 Trapezoidal) 9.33 85.00 4.00 1.00 Trapezoidal) 9.33 85.00 4.00 1.00 Trapezoidal) 9.33 85.00 4.00 1.00 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin the feet H:V feet %, grate open area % ectangular Orifice) ft (distance below basinches inches inches inches bottom at Stage = <i>IP hydrographs and</i> 2 Year 1.19 1.236 1.236 3.3 0.01 10.9 0.7 N/A Plate N/A N/A 38 40 2.48	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent asin bottom at Stage Half-Cent 0 ft) 5 Year 1.50 3.089 3.089 16.2 0.05 2.7.1 9.5 0.6 Overflow Weir 1 0.1 N/A 48 3.67	ft) Height of Gratu Overflow Wrate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called	e Upper Edge, H _t = l'eir Slope Length = Area W/O Debris = Area W/O Debris = in Area W/Debris = liculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = is in the Inflow Hydd 25 Year 2.00 15.616 127.8 0.36 141.0 0.26 1.0 Overflow Weir 1 0.8 N/A 28 40 5.26	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58 1.40 1.58 2.1.451 2.75 21.451 2.451 1.79.4 0.51 192.9 176.2 1.0 Overflow Weir 1 1.2 N/A 24 37 5.71	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians 500 Year 3.14 48.570 48.570 48.570 393.3 1.12 405.4 350.0 0.9 Spillway 1.9 N/A 9 28 9.76
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Results ONE-HOUR Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, Q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Ratio Peak Outflow D (redevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 3.28 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 55.00 Trapezoidal) 9.33 85.00 4.00 1.00 The user can over WQCV N/A 1.329 N/A 1.329 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches hottom at Stage = 1 bottom at Stage = 1 bottom at Stage = 1 2 Year 1 .19 1 .236 1 .237 1 .2377 1 .2377 1 .2377 1 .2377 1 .23777 1 .23777777777777777777777777777777777777	bottom at Stage = 0 f Gr Ova/total area C asin bottom at Stage Half-Cent to ft) 1 runoff volumes by 5 Year 1.50 3.089 3.089 1.6.2 0.05 2.7.1 9.5 0.6 Overflow Weir 1 0.1 N/A 44 48	ft) Height of Grate Overflow Weir 1 Overflow Grate Open Overflow Grate Open Dverflow Grate Open Dverflow Grate Open Overflow Grate Open Outlet Tral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Area at T Basin Volume at T Overflow Weir 1 0.3 N/A 37 46	e Upper Edge, H _t = Peir Slope Length = O-yr Orifice Area = Area w/o Debris = Iculated Parameters lutlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Con 15.616 15.616 127.8 0.36 141.0 122.6 1.0 Overflow Weir 1 0.8 N/A 28 40	Zone 3 Weir 5.78 10.31 7.65 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 18.85 2.41 2.56 Calculated Parame 1.00 11.33 1.58 11.40 logr aphs table (Con 50 Year 2.25 21.451 21.451 21.451 1.79.4 0.51 192.9 1.76.2 1.0 Overflow Weir 1 1.2 N/A 24 37	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians 500 Year 3.14 48.570 48.570 393.3 - 1.12 405.4 350.0 0.9 \$pillway 1.9 N/A 9 28

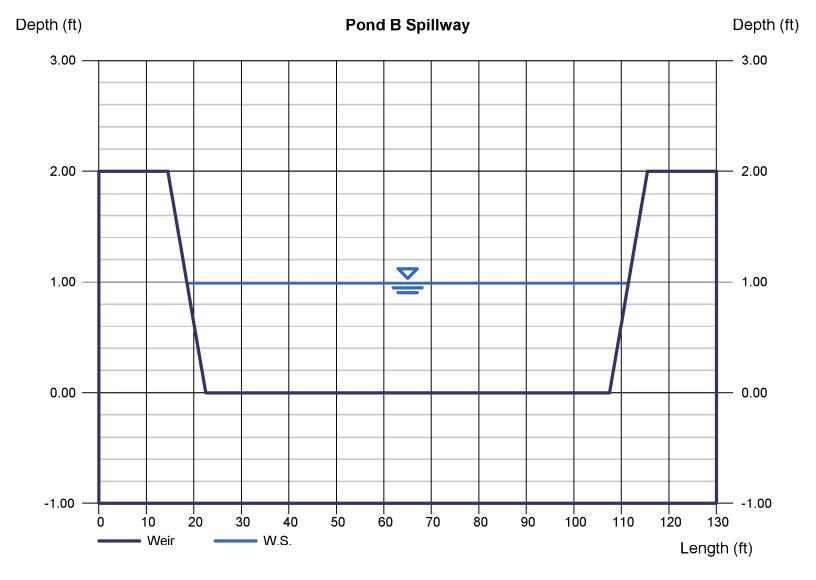
DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can o									CLIUD
Torre Textured	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]		100 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	0:15:00 0:20:00	0.00	0.00	0.03	0.05	0.06	0.04	0.06	0.05	0.10
	0:25:00	0.00	0.00	0.17	0.24 2.44	0.46	0.19 1.27	0.24	0.24 2.07	0.45 5.87
	0:30:00	0.00	0.00	4.15	8.99	21.97	16.31	24.05	30.73	54.50
	0:35:00	0.00	0.00	7.19	17.20	40.18	49.45	70.89	93.08	150.94
	0:40:00	0.00	0.00	9.46	23.32	52.99	87.46	122.19	162.18	252.83
	0:45:00	0.00	0.00	10.61	26.41	58.87	117.53	161.96	217.28	331.85
	0:50:00	0.00	0.00	10.86	27.12	59.70	134.51	184.25	250.33	378.56
	0:55:00	0.00	0.00	10.58	26.60	57.99	140.96	192.92	265.70	400.90
	1:00:00	0.00	0.00	9.92	25.17	54.43	139.46	190.85	268.30	405.37
	1:05:00	0.00	0.00	9.06	23.15	49.82	132.12	180.62	261.08	395.99
	1:10:00	0.00	0.00	8.35	21.35	46.04	121.60	166.25	247.44	377.74
	1:15:00 1:20:00	0.00	0.00	7.76	20.07	43.38	112.17	153.69	233.22	357.95
	1:25:00	0.00	0.00	7.19 6.64	18.72 17.30	40.67 37.76	103.65 95.47	142.08 130.84	217.89 201.37	335.22 310.07
	1:30:00	0.00	0.00	6.17	17.30	35.03	87.38	130.84	184.67	284.56
	1:35:00	0.00	0.00	5.79	15.97	35.03	87.38	119.77	169.87	264.56
	1:40:00	0.00	0.00	5.46	14.00	30.73	74.69	102.61	157.18	242.44
	1:45:00	0.00	0.00	5.15	13.10	28.67	69.58	95.55	145.88	224.92
	1:50:00	0.00	0.00	4.83	12.20	26.62	64.76	88.88	135.54	208.86
	1:55:00	0.00	0.00	4.52	11.31	24.60	60.11	82.47	125.61	193.46
	2:00:00	0.00	0.00	4.19	10.43	22.61	55.55	76.17	115.94	178.50
	2:05:00	0.00	0.00	3.84	9.55	20.62	51.00	69.89	106.47	163.89
	2:10:00	0.00	0.00	3.49	8.65	18.62	46.45	63.62	97.19	149.60
	2:15:00	0.00	0.00	3.13	7.75	16.64	41.90	57.36	87.98	135.43
	2:20:00 2:25:00	0.00	0.00	2.83	6.96	14.97 13.87	37.40 33.69	51.17	78.86	121.56
	2:30:00	0.00	0.00	2.61 2.44	6.42 6.02	13.87	33.09	46.18 42.59	71.30 65.64	110.23 101.59
	2:35:00	0.00	0.00	2.29	5.65	13.04	28.95	39.73	60.97	94.31
	2:40:00	0.00	0.00	2.15	5.29	11.47	27.13	37.22	56.84	87.81
	2:45:00	0.00	0.00	2.01	4.94	10.71	25.46	34.92	53.06	81.86
	2:50:00	0.00	0.00	1.87	4.61	9.97	23.87	32.73	49.51	76.29
	2:55:00	0.00	0.00	1.74	4.28	9.24	22.29	30.56	46.14	71.05
	3:00:00	0.00	0.00	1.60	3.95	8.53	20.73	28.42	42.96	66.13
	3:05:00	0.00	0.00	1.47	3.64	7.84	19.19	26.30	39.87	61.36
	3:10:00	0.00	0.00	1.35	3.33	7.16	17.66	24.19	36.78	56.61
	3:15:00	0.00	0.00	1.22	3.02	6.48	16.14	22.09	33.70	51.86
	3:20:00 3:25:00	0.00	0.00	1.09	2.71	5.82	14.61	20.00	30.62	47.12
	3:30:00	0.00	0.00	0.97 0.84	2.40 2.10	5.15 4.49	13.09 11.57	17.91	27.55 24.47	42.39
	3:35:00	0.00	0.00	0.84	1.79	3.82	11.57	15.82 13.73	24.4/ 21.40	37.65 32.92
	3:40:00	0.00	0.00	0.60	1.79	3.16	8.53	11.64	18.32	28.19
	3:45:00	0.00	0.00	0.48	1.19	2.50	7.01	9.56	15.25	23.46
	3:50:00	0.00	0.00	0.36	0.89	1.85	5.49	7.47	12.18	18.74
	3:55:00	0.00	0.00	0.24	0.59	1.20	3.98	5.39	9.12	14.03
	4:00:00	0.00	0.00	0.14	0.34	0.67	2.49	3.35	6.09	9.44
	4:05:00	0.00	0.00	0.10	0.20	0.41	1.31	1.77	3.68	5.89
	4:10:00 4:15:00	0.00	0.00	0.08	0.16 0.13	0.33 0.27	0.68	0.95 0.54	2.29 1.46	3.82 2.49
	4:20:00	0.00	0.00	0.06	0.13	0.27	0.38	0.34	0.90	1.57
	4:25:00	0.00	0.00	0.05	0.08	0.17	0.14	0.19	0.53	0.93
	4:30:00	0.00	0.00	0.04	0.06	0.12	0.10	0.14	0.28	0.49
	4:35:00 4:40:00	0.00	0.00	0.03	0.05	0.09	0.07	0.09	0.12 0.05	0.21 0.10
	4:45:00	0.00	0.00	0.03	0.04	0.06	0.03	0.06	0.05	0.10
	4:50:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.05
	4:55:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.04
	5:00:00 5:05:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.03
	5:10:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	5:15:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00								

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.03 (May 2020)


Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
	0.00	20	0.000	0	0.000	0.00	For best results, include the
	1.00	15,782	0.362	8,880	0.204	0.22	stages of all grade slope
	2.00	29,208	0.671	31,278	0.718	0.53	changes (e.g. ISV and Floor) from the S-A-V table on
WQCV	2.80	35,467	0.814	57,925	1.330	0.84	Sheet 'Basin'.
EURV	3.00	36,204	0.831	65,092	1.494	0.89	Sheet Basin.
	3.28	37,237	0.855	75,374	1.730	0.96	Also include the inverts of all
	4.00	39,725	0.912	103,085	2.366	23.73	outlets (e.g. vertical orifice,
	5.00	43,271	0.993	144,565	3.319	96.75	overflow grate, and spillway,
	6.00	46,944	1.078	189,660	4.354	213.03	where applicable).
100-YR	6.78	49,906	1.146	227,420	5.221	229.18	
	7.00	50,755	1.165	238,493	5.475	233.10	-
	8.00	54,678 58,751	1.255	291,199 347,894	6.685	250.15	-
	9.00	56,751	1.349	347,894	7.987	266.11	-
	-	<u> </u>					-
							-
							-
							1
							1
]
]
							1
							-
							-
	_						-
	-						-
							-
							-
							-
							-
							1
							-
							1
							_
							-
		ļ					4
	-	l					-
							-
							-
							1
							-
							-
							-
							-
							1
							1
							4
							4
							1
		1		1			1
							1
]
	-						4
	+						4
				1	L	L	1

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Pond W4 Spillway

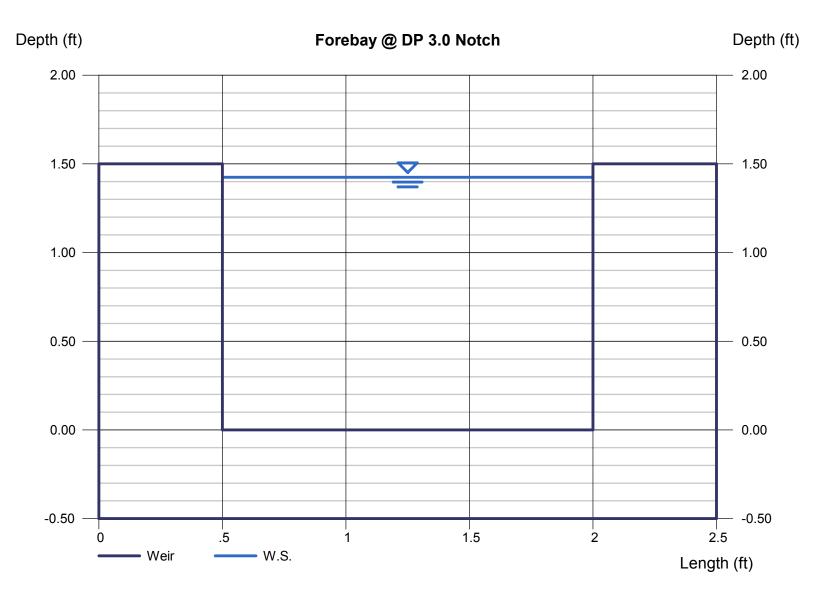
Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.99
Bottom Length (ft)	= 85.00	Q (cfs)	= 268.30
Total Depth (ft)	= 2.00	Area (sqft)	= 88.07
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 3.05
		Top Width (ft)	= 92.92
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Known Q		
Known Q (cfs)	= 268.30		

FOREBAY VOLUME REQUIREMENTS

Equation 3-1 WQCV= $a(0.91/^{3}-1.19/^{2}+0.781/)$ a=1 (40 hour drain time)

0.22013
0.39644
0.046558
.122
.124
.378
0

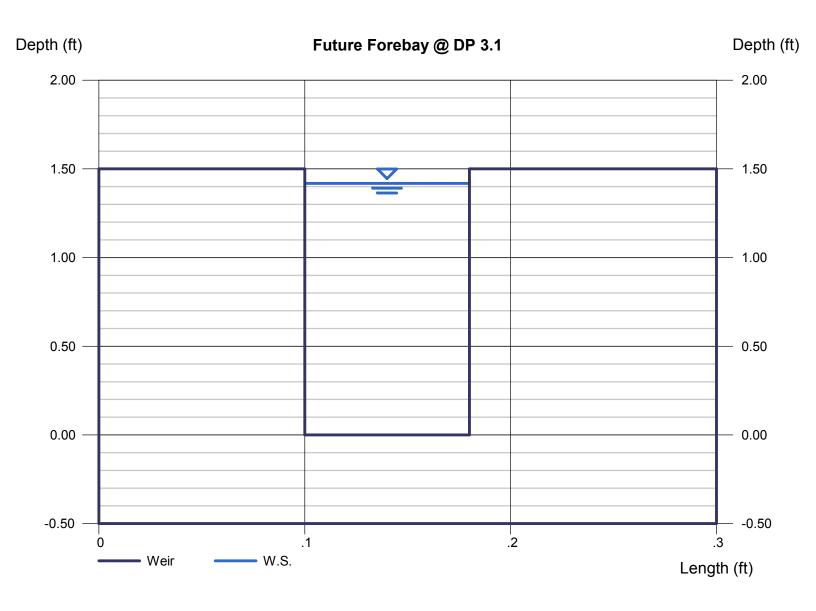
3% OF WQCV FOREBAY TOTAL VOLUME= .03(V)


Volume Required for Forebay @ DP 3.0 =	0.094	AC-FT	4080 CF
Volume Required for Future Forebay @ DP 3.1 =	0.004	AC-FT	162 CF
Volume Required for Forebay @ DP 4.3 =	0.041	AC-FT	1801 CF

Q ₁₀₀ Discharges	2% OF Q ₁₀₀
Q ₁₀₀ Forebay @ DP 3.0=	.02*424.4 CFS= 8.49 CFS
Q ₁₀₀ Future Forebay @ DP 3.1 =	.02*22.5 CFS= 0.45 CFS
Q ₁₀₀ Forebay @ DP 4.3=	.02*262.3 CFS= 5.25 CFS

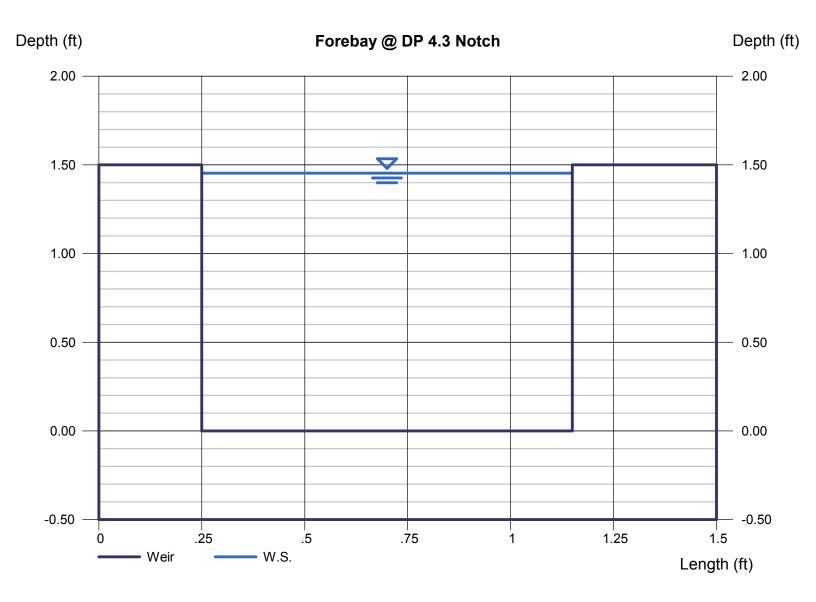
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Forebay @ DP 3.0 Notch


Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.42
Bottom Length (ft)	= 1.50	Q (cfs)	= 8.490
Total Depth (ft)	= 1.50	Area (sqft)	= 2.14
		Velocity (ft/s)	= 3.97
Calculations		Top Width (ft)	= 1.50
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 8.49		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Future Forebay @ DP 3.1


Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.42
Bottom Length (ft)	= 0.08	Q (cfs)	= 0.450
Total Depth (ft)	= 1.50	Area (sqft)	= 0.11
		Velocity (ft/s)	= 3.97
Calculations		Top Width (ft)	= 0.08
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 0.45		

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Forebay @ DP 4.3 Notch

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.45
Bottom Length (ft)	= 0.90	Q (cfs)	= 5.250
Total Depth (ft)	= 1.50	Area (sqft)	= 1.31
		Velocity (ft/s)	= 4.01
Calculations		Top Width (ft)	= 0.90
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 5.25		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Volume

(ft³)

3,600

22,248

61,962

113,011

176.683

253,488

335,106

421,657

513,238

609,975

711,748

Volume (ac-ft)

0.083

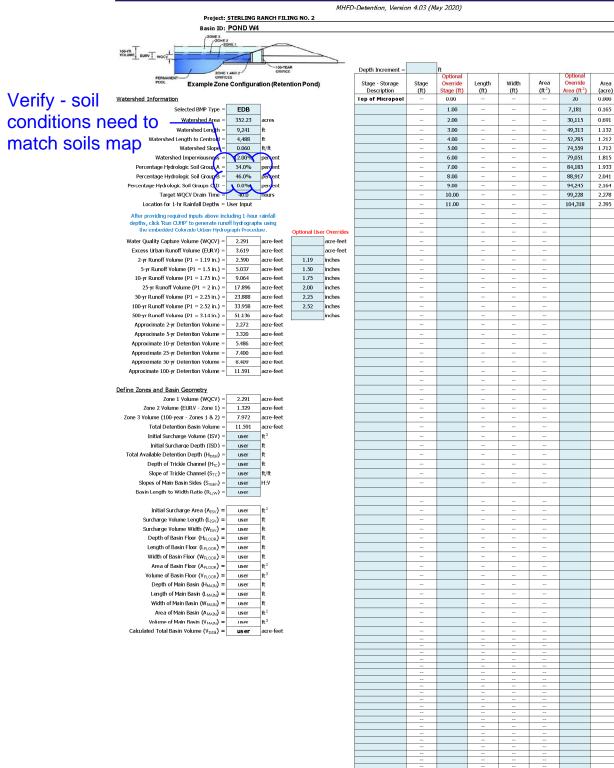
0.511

1.422

2.594

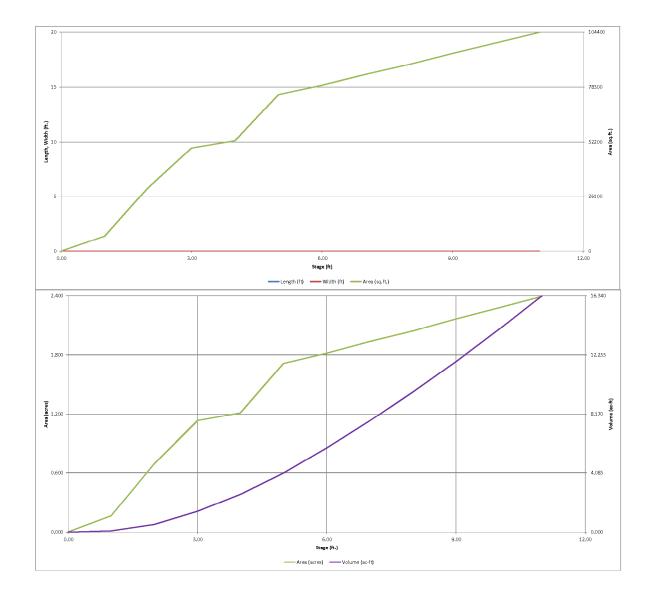
4.056

5.819

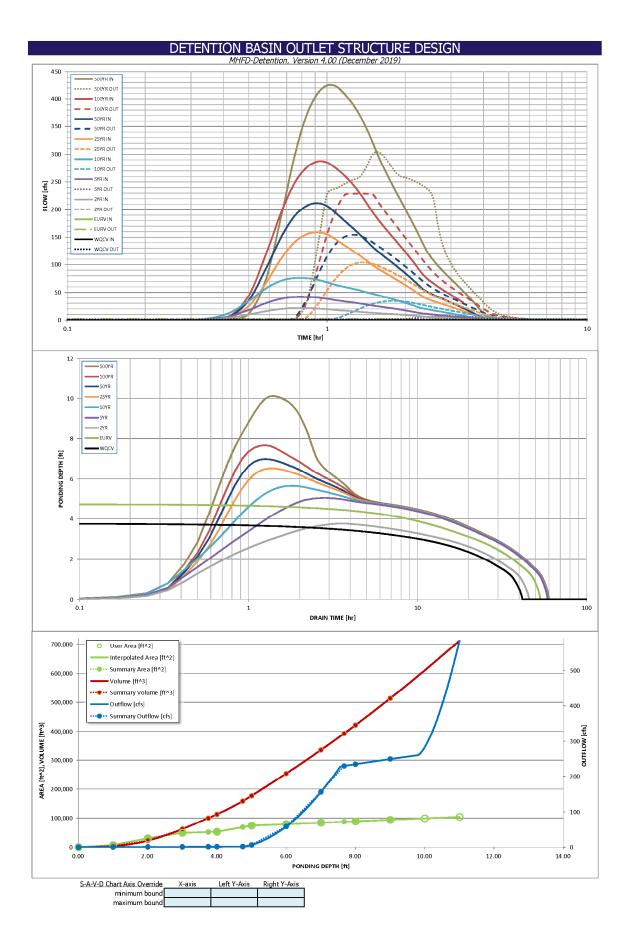

7.693

9.680

11.782


14.003

16.339



DETENTION BASIN STAGE-STORAGE TABLE BUILDER

	DE		BASIN OUT			<u>SIGN</u>			
Project:	STERLING RANCH		HFD-Detention, V	ersion 4.03 (May 2	2020)				
Basin ID:	POND W4	TILING NO. 2							
(20NE 3 (20NE 2 -ZDNE 1				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type	1		
VOLUMET EURAT WOCK			Zone 1 (WQCV)		2.291	Orifice Plate			
ZONE 1 AND 2	0RIFICE		Zone 2 (EURV)		1.329	Orifice Plate			
PERMANENT ORIFICES POOL Example Zone	Configuration (Re	tention Pond)	Zone 3 (100-year)		7.972	Weir&Pipe (Restrict)	J		
			453	Total (all zones)	11.591		C-levisted Barama	to a fee Undordrain	
User Input: Orifice at Underdrain Outlet (typical) Underdrain Orifice Invert Depth =			(IP) the filtration media	curfaca)	Underc	rain Orifice Area =	N/A	ters for Underdrain ft ²	!
Underdrain Orifice Diameter =		inches	the mulation means	Surrace		orifice Centroid =	N/A N/A	feet	
User Input: Orifice Plate with one or more orifice							Calculated Parame		
Invert of Lowest Orifice =			bottom at Stage =		-	ce Area per Row =	6.104E-02	ft ²	
Depth at top of Zone using Orifice Plate =			n bottom at Stage =	0 ft)		ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =		inches sq. inches (use rec	tangular openings)			ical Slot Centroid = Iliptical Slot Area =	N/A N/A	feet ft ²	
Office Fider Office Area per field	0.75	Sq. mones (ase i as	taliguiai operinige,		-		1975	Inc	
User Input: Stage and Total Area of Each Orifice	Row (numbered fr	om lowest to highe							_
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.58	3.16						-
Orifice Area (sq. inches)	8.79	8.79	8.79						J
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)		Non 20 (,	No. 12 (,	10000 and (Non 20 (100 21 (Noti 20 (-p ,		
Orifice Area (sq. inches)]
User Input: Vertical Orifice (Circular or Rectange	ular) Not Selected	Not Colocted	I					ters for Vertical Ori Not Selected	fice T
Invert of Vertical Orifice =	Not Selected N/A	Not Selected N/A	ft (relative to basir	n bottom at Stage =	∩ft) Ver	tical Orifice Area =	Not Selected N/A	Not Selected N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A N/A		•	n bottom at Stage =	,	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A		inches		01.,			• • •],e
			I						
User Input: Overflow Weir (Dropbox with Flat or			angular/Trapezoida	al Weir (and No Out	let Pipe)			ters for Overflow W	/eir
	Zone 3 Weir	Not Selected				e linner Edge, H⊦=	Zone 3 Weir	Not Selected]
User Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =		Not Selected N/A		al Weir (and No Out bottom at Stage = 0 f	t) Height of Grat	e Upper Edge, Ht = 'eir Slope Length =	Zone 3 Weir		<u>/eir</u> feet feet
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 4.74	Not Selected N/A N/A	ft (relative to basin b	bottom at Stage = 0 f	t) Height of Grat	eir Slope Length =	Zone 3 Weir 7.24	Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 4.74 20.00 4.00 10.00	Not Selected N/A N/A N/A N/A	ft (relative to basin b feet H:V feet	bottom at Stage = 0 f Gr Ov	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open	'eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 7.24 10.31 8.25 144.31	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 4.74 20.00 4.00 10.00 70%	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area	bottom at Stage = 0 f Gr Ov	t) Height of Grat Overflow W rate Open Area / 10	'eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 7.24 10.31 8.25	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 4.74 20.00 4.00 10.00	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet	bottom at Stage = 0 f Gr Ov	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open	'eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 7.24 10.31 8.25 144.31	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area %	bottom at Stage = 0 f Gr Ov	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Ope	feir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area %	bottom at Stage = 0 f Gr Ov	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Ope	feir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15	Not Selected N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Ro Not Selected	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice)	bottom at Stage = 0 f Gr Ov	t) Height of Grat Overflow W vate Open Area / 10 verflow Grate Open Overflow Grate Ope <u>Ca</u>	feir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Elow Restriction Pl	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u>	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice)	bottom at Stage = 0 f Gr Ov a/total area C	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameters	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A How Restriction PI Not Selected	feet feet ft ² ft ² <u>ate</u>
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Rr Zone 3 Restrictor 2.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Ro Not Selected N/A N/A	ft (relative to basin t feet H:V feet %, grate open area % <u>ectangular Orifice)</u> ft (distance below ba	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>Iculated Parameter</u> utlet Orifice Area = c Orifice Centroid =	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 17.49	Not Selected N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A	feet feet ft ² ft ² ate
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor 2.00 60.00 50.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Ro Not Selected N/A N/A	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Ope <u>Ca</u> = 0 ft) Or Outled	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>Iculated Parameter</u> utlet Orifice Area = c Orifice Centroid =	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 17.49 2.25 2.30	Not Selected N/A N/A N/A N/A N/A How Restriction Pl Not Selected N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal)	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	t) Height of Grat Overflow W verate Open Area / 10 verflow Grate Open Dverflow Grate Ope <u>Ca</u> = 0 ft) Oi Outlet tral Angle of Restric	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe =	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 17.49 2.25 2.30 <u>Calculated Parame</u>	Not Selected N/A N/A N/A N/A N/A How Restriction Pl Not Selected N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Ope <u>Ca</u> = 0 ft) Or Outlet tral Angle of Restric Spillway D	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth=	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 17.49 2.25 2.30	Not Selected N/A N/A N/A N/A N/A How Restriction Pl Not Selected N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00	Not Selected N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca Dverflow Grate Open Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe =	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 17.49 2.25 2.30 Calculated Parame 1.14	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Ope <u>Ca</u> = 0 ft) Or Uutlet tral Angle of Restrict Spillway D Stage at T Basin Area at T	eir Slope Length = 0-yr Orlfice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orlfice Area = : Orlfice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard =	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 17.49 2.25 2.30 <u>Calculated Parame</u> 1.14 12.44	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway End Slopes =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00	Not Selected N/A N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Ope <u>Ca</u> = 0 ft) Or Uutlet tral Angle of Restrict Spillway D Stage at T Basin Area at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard =	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 5 for Outlet Pipe w/ Zone 3 Restrictor 17.49 2.25 2.30 Calculated Parame 1.14 12.44 2.39	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway End Slopes =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 1.50	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Ro Not Selected N/A N/A N/A ft (relative to basin feet H:V feet	ft (relative to basin t feet H:V feet %, grate open area % <u>ectangular Orifice)</u> ft (distance below be inches inches inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	eir Slope Length = O-yr Orlfice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orlfice Area = : Orlfice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Top of Freeboard =	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 17.49 2.25 2.30 <u>Calculated Parame</u> 1.14 12.44 2.39 16.34	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 1.50	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Ro Not Selected N/A N/A N/A ft (relative to basin feet H:V feet	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	eir Slope Length = O-yr Orlfice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orlfice Area = : Orlfice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Top of Freeboard =	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 17.49 2.25 2.30 <u>Calculated Parame</u> 1.14 12.44 2.39 16.34	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Ra Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00 1.50 The user can over WQCV N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches h bottom at Stage = <u>1P hydrographs and</u> <u>2 Year</u> 1.19	bottom at Stage = 0 f Gr O a/total area C asin bottom at Stage Half-Cent : 0 ft) 1 runoff volumes by 5 Year 1.50	t) Height of Grat Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Called Control (Called Control) Called Control (Called Contr	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = Iculated Parameter: utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Fop of Freeboard = Fop of Freeboard = is in the Inflow Hya 25 Year 2.00	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 17.49 2.25 2.30 <u>Calculated Parame</u> 1.14 12.44 2.39 16.34 <i>Irographs table (Co.</i> 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (aree ft) =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 1.50 The user can overn W/QCV N/A 2.291	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A t (relative to basin feet H:V feet EURV N/A 3.619	ft (relative to basin to feet H:V feet %, grate open area % ectangular Orifice) ft (distance below basinches inches inches hottom at Stage = <u>AP hydrographs and 2 Year</u> 1.19 2.590	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent 0 ft) 5 Year 1.50 5.037	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Ca ca ca ca ca ca ca ca ca ca ca ca ca ca	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ o Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = is in the Inflow Hyto 25 Year 2.00 17.896	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 5 for Outlet Pipe w/ Zone 3 Restrictor 17.49 2.25 2.30 Calculated Parame 1.14 12.44 2.39 16.34 Fographs table (Con 50 Year 2.25 2.388	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Ra Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00 1.50 The user can over WQCV N/A 2.291 N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or Re Not Selected N/A N/A trictor Plate, or Re N/A N/A N/A N/A trictor Plate, or Re EURV N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches h bottom at Stage = <u>1P hydrographs and</u> <u>2 Year</u> 1.19	bottom at Stage = 0 f Gr O a/total area C asin bottom at Stage Half-Cent : 0 ft) 1 runoff volumes by 5 Year 1.50	t) Height of Grat Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Called Control (Called Control) Called Control (Called Contr	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = Iculated Parameter: utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Fop of Freeboard = Fop of Freeboard = is in the Inflow Hya 25 Year 2.00	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 17.49 2.25 2.30 <u>Calculated Parame</u> 1.14 12.44 2.39 16.34 <i>Irographs table (Co.</i> 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neeign Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (are-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 1.50 The user can over WQCV N/A 2.291 N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet EURV N/A 3.619 N/A N/A N/A N/A	ft (relative to basin to feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches hottom at Stage = <u>AP hydrographs and</u> <u>2 Year 1.19 2.590 2.590 3.3</u>	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent : 0 ft) : 0 ft) : 5 Year 1.50 5.037 5.037 16.2	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Dverflow Grate Open Called Called Overflow Grate Open Called Overflow Grate Open Called Grate Open Called Overflow Grate Overflow	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ o Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Fop of Freeboard = Cop of Freeboard = 10 of Freebo	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 17.49 2.25 2.30 <u>Calculated Parame</u> 1.14 12.44 2.39 16.34 trographs table (Con 50 Year 2.25 2.3.888 2.3.888 2.3.888 179.4	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians <i>F).</i> 500 Year 3.14 51.136 51.136 393.3
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Ra Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00 1.50 The user can over WQCV N/A 2.291 N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or Re Not Selected N/A N/A trictor Plate, or Re N/A N/A N/A N/A trictor Plate, or Re EURV N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches inches bottom at Stage = Phydrographs and 2 Year 1.19 2.590	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent 5 0 ft) 5 Year 1.50 5.037 5.037	t) Height of Grat Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Call Call Call Call Call Call Call Cal	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Cop of Freeboard = is in the Inflow Hyo 25 Year 2.00 17.896 17.896	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 17.49 2.25 2.30 Calculated Parame 1.14 12.44 2.39 16.34 trographs table (Co. 50 Year 2.25 2.3.888 23.888	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grier Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (arer-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00 1.50 The user can over WQCV N/A 2.291 N/A N/A N/A N/A N/A 1.2	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet EURV N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin to feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches hottom at Stage = Phydrographs and 2 Year 1.19 2.590 2.590 3.3 0.01 21.6 1.2	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent 0 ft) 5 Year 1.50 5.037 5.037 16.2 	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = iculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = icon of Freeboard = icon of Freeboard = 10 of Freeboard = 10 of Freeboard = 10 of Freeboard = 0 of Freeboard = 0 of Treeboard = 10 of Treeboard = 0 of Tre	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe w// Zone 3 Restrictor 17.49 2.25 2.30 <u>Calculated Parame</u> 1.14 12.44 2.39 16.34 trographs table (Con 50 Year 2.25 2.3.888	Not Selected N/A	F). 500 Year 3.14 51.136 51.136 393.3 1.12 4224.6 303.5
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak fundow Q (cfs) = Peak fundow Q (cfs) = Ratio Peak Outflow to Predevelopment Peak Q (cfs) =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, R Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00 1.50 The user can overr WQCV N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches inches bottom at Stage = P hydrographs and 2 Year 1.19 2.590 3.3 0.01 21.6 1.2 N/A	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent to ft) 5 Year 1.50 5.037 16.2 0.05 41.9 7.3 0.5	t) Height of Grat Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Car Car Car Car Car Car Car Car Car Car	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ o Debris = Iculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = : Orifice Centroid = tor pof Freeboard = Fop of Freeboard = Fop of Freeboard = : Freeboard = : Freeboard = : Or of Freeboard = :	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 17.49 2.25 2.30 Calculated Parame 1.14 12.44 2.39 16.34 trographs table (Co. 50 Year 2.25 23.888 179.4 0.51 211.8 154.1 0.9	Not Selected N/A	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 51.136 51.136 51.136 393.3 1.12 424.6 303.5 0.8
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (are-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00 1.50 The user can over WQCV N/A 2.291 N/A N/A N/A N/A N/A Plate N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 3.619 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin to feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches hottom at Stage = <u>P hydrographs and 2 Year</u> 1.19 2.590 2.590 3.3 0.01 21.6 1.2 N/A Plate N/A	bottom at Stage = 0 f Gr a/total area C asin bottom at Stage Half-Cent to ft) 5 Year 1.50 5.037 5.037 16.2 0.05 41.9 7.3 0.5 Overflow Weir 1 0.0	t) Height of Grat Overflow Wi rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Outled tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at Basin Volume at 10 Year 1.75 9.064 9.064 9.064 47.9 0.14 0.14 75.8 34.4 0.7 0verflow Weir 1 0.2	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = in Area w/ Debris = iculated Parameter: utilet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 10 of Freeboard = 10 of Freeboard = 10 of Freeboard = 10 of Freeboard = 0 of Freeboard = 0 of Freeboard = 10 of Freeboard = 0 of	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe w// Zone 3 Restrictor 17.49 2.25 2.30 <u>Calculated Parame</u> 1.14 12.44 2.39 16.34 trographs table (Construction) 50 Year 2.25 23.888 24.10 0.51 0.9 0.51 211.8 154.1 0.9 0.9 0.9 0.9 0.9 0.9 1.1	Not Selected N/A	F). 500 Year 3.14 51.136 50.8 50.
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Peak Inflow Hydrograph Volume (acre) Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Surdow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, R Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00 1.50 The user can overr WQCV N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches inches bottom at Stage = P hydrographs and 2 Year 1.19 2.590 3.3 0.01 2.590 3.3 0.01 2.2.60 1.2 N/A Plate N/A N/A	bottom at Stage = 0 f Gr ov a/total area C asin bottom at Stage Half-Cent to ft) trunoff volumes by 5 Year 1.50 5.037 5.037 1.6.2 0.05 4.1.9 7.3 0.5 0.4 1.9 7.3 0.5 0.9 Veriflow Weir 1 0.0 N/A	t) Height of Grat Overflow Wiate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called Ca	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ o Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = ion of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = : Freeboard = : Freeboard = : Orifice Area = : Orifice Centroid = tor Plate on Pipe = : Orifice Centroid = : Orifice Ce	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 17.49 2.25 2.30 Calculated Parame 1.14 12.44 2.39 1.14 12.44 2.39 1.6.34 trographs table (Co. 50 Year 2.25 23.888 179.4 0.51 211.8 154.1 0.9 Overflow Weir 1 1.1 N/A	Not Selected N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (arer-ft) = Infow Hydrograph Valume (arer) = CUHP Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, R: Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00 1.50 The user can over(n WQCV N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A	ft (relative to basin the feet H:V feet %, grate open area % ectangular Orifice) ft (distance below basinches inches inches h bottom at Stage = 1.19 2.590 3.3 0.01 21.6 1.2 N/A Plate N/A N/A 41	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent to ft) 5 Year 1.50 5.037 1.6.2 0.05 41.9 7.3 0.5 Overflow Weir 1 0.0 N/A 52	t) Height of Grat Overflow (rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called C	eir Slope Length = O-yr Orlfice Area = Area W/o Debris = in Area W/o Debris = in Are	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 17.49 2.25 2.30 Calculated Parame 1.14 12.44 2.39 16.34 <i>lographs table (Coo</i> 50 Year 2.25 2.3.888 179.4 0.51 211.8 154.1 0.9 Overflow Weir 1 1.1 N/A 39	Not Selected N/A	feet feet ft ² ft ² feet radians 500 Year 3.14 51.136 393.3 1.12 424.6 303.5 0.8 Spillway 1.8 N/A 27
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Peak Inflow Hydrograph Volume (acre) Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Surdow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, R Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00 1.50 The user can overr WQCV N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A	ft (relative to basin t feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches inches bottom at Stage = P hydrographs and 2 Year 1.19 2.590 3.3 0.01 2.590 3.3 0.01 2.2.60 1.2 N/A Plate N/A N/A	bottom at Stage = 0 f Gr ov a/total area C asin bottom at Stage Half-Cent to ft) trunoff volumes by 5 Year 1.50 5.037 5.037 1.6.2 0.05 4.1.9 7.3 0.5 0.4 1.9 7.3 0.5 0.9 Veriflow Weir 1 0.0 N/A	t) Height of Grat Overflow Wiate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Called Ca	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ o Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = ion of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = : Freeboard = : Freeboard = : Orifice Area = : Orifice Centroid = tor Plate on Pipe = : Orifice Centroid = : Orifice Ce	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 17.49 2.25 2.30 Calculated Parame 1.14 12.44 2.39 1.14 12.44 2.39 1.6.34 trographs table (Co. 50 Year 2.25 23.888 179.4 0.51 211.8 154.1 0.9 Overflow Weir 1 1.1 N/A	Not Selected N/A	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 51.136 51.136 393.3 1.12 424.6 303.5 0.8 Spillway 1.8 N/A
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Punoff Volume (are-ft) = Inflow Hydrograph Volume (are-ft) = OLH Predevelopment Peak Q (cfs) = Predevelopment Unit Peak How, q (cfs/aree) = Peak Inflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours)	Zone 3 Weir 4.74 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 2.00 60.00 50.00 Trapezoidal) 9.80 74.00 4.00 1.50 The user can over WQCV N/A 2.291 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A t (relative to basin feet H:V feet EURV N/A 3.619 N/A 3.619 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin the feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches the bottom at Stage = 10 bottom at Stage = 119 2.590 2.590 3.3 0.01 21.6 1.2 N/A N/A N/A N/A N/A 41 44	bottom at Stage = 0 f Gr Overflow Weir 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	t) Height of Grat Overflow Wi rate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Dverflow Grate Open Ca = 0 ft) Ou Outled tral Angle of Restrice Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T entering new value 10 Year 1.75 9.064 9.064 9.064 9.064 447.9 0.14 75.8 34.4 0.7 Overflow Weir 1 0.2 N/A 48 55	reir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = in Area w/ Debris = iculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Fop of Freeboard = iculated Parameters iculated Parameters esign Flow Depth= Top of Freeboard = Top of Freeboard = 100 of Freeboard	Zone 3 Weir 7.24 10.31 8.25 144.31 72.15 s for Outlet Pipe W/ Zone 3 Restrictor 17.49 2.25 2.30 <u>Calculated Parame</u> 1.14 12.44 2.39 16.34 <i>lographs table (Co.</i> 50 Year 2.25 23.888 23.888 23.888 179.4 0.51 211.8 154.1 0.9 Overflow Weir 1 1.1 N/A 39 50	Not Selected N/A	F). 500 Year 3.14 51.136 5

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

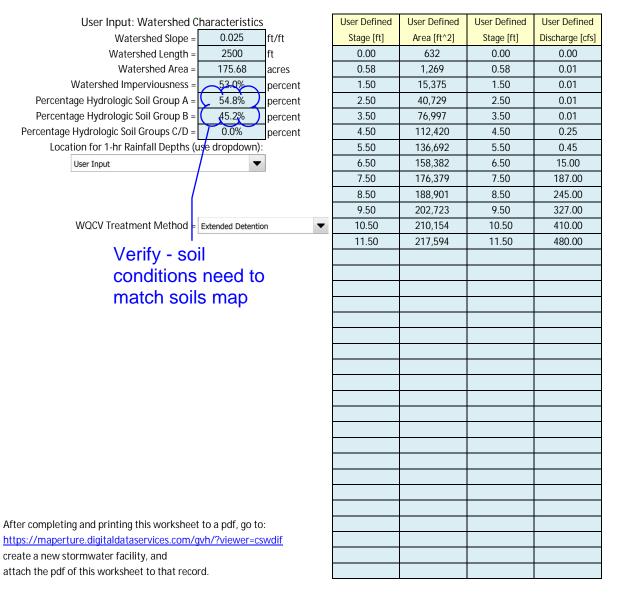
Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

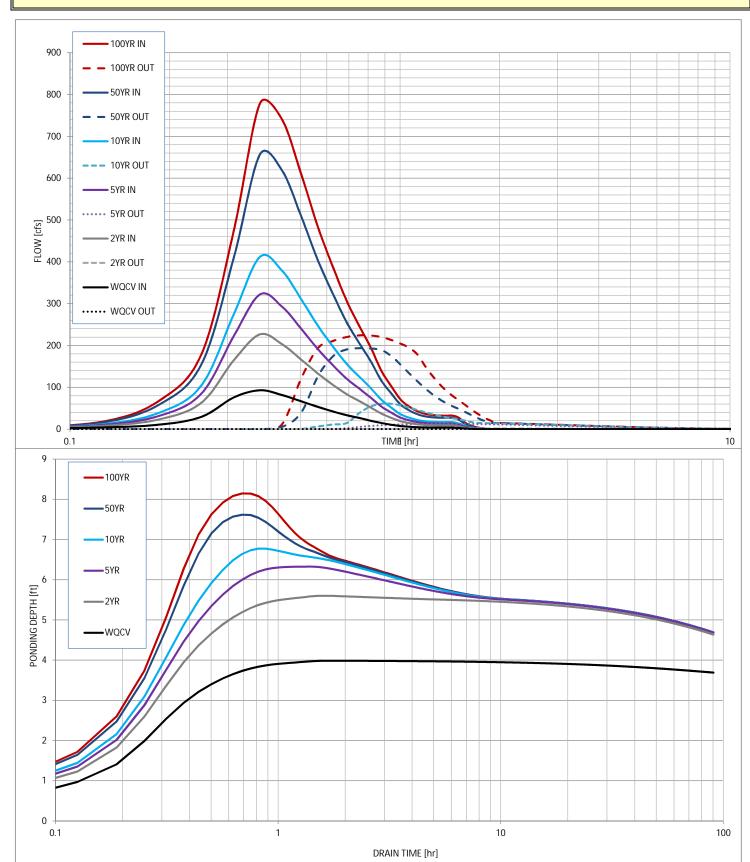
		verride the calcu								CLUUD.
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]		100 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.05
	0:15:00	0.00	0.00	0.13	0.22	0.27	0.19	0.26	0.23	0.42
	0:20:00	0.00	0.00	0.70	1.01	1.66	0.80	0.98	0.99	1.74
	0:25:00	0.00	0.00	3.81 9.87	6.22	11.90	3.67	4.87	5.51	11.55 74.68
	0:35:00	0.00	0.00	9.87	18.06 30.57	34.49 57.41	25.41 67.74	35.76 93.64	44.31 120.05	188.47
	0:40:00	0.00	0.00	19.86	38.49	71.03	110.97	150.23	195.40	296.59
	0:45:00	0.00	0.00	21.49	41.60	75.79	140.69	188.27	247.95	370.05
	0:50:00	0.00	0.00	21.60	41.87	75.55	154.95	206.59	275.74	408.77
	0:55:00	0.00	0.00	20.83	40.69	72.83	158.88	211.84	286.63	424.55
	1:00:00	0.00	0.00	19.43	38.24	68.04	154.88	206.37	285.02	422.88
	1:05:00	0.00	0.00	17.99	35.58	63.23	145.28	193.27	274.37	408.91
	1:10:00	0.00	0.00	16.81	33.56	59.75	134.91	179.63	261.43	392.01
	1:15:00	0.00	0.00	15.73	31.74	56.77	125.49	167.21	246.82	371.40
	1:20:00	0.00	0.00	14.67	29.76	53.63	116.53	155.25	230.14	346.80
	1:25:00	0.00	0.00	13.64	27.65	50.17	107.44	143.17	212.30	320.08
	1:30:00 1:35:00	0.00	0.00	12.82 12.16	25.85 24.42	47.05 44.36	98.65 91.46	131.60 122.19	194.76 179.95	293.93 271.77
	1:40:00	0.00	0.00	12.16	24.42	44.36 41.61	91.46 85.21	122.19	1/9.95	2/1.// 252.02
	1:45:00	0.00	0.00	10.93	23.00	38.87	79.48	113.82	155.11	232.02
	1:50:00	0.00	0.00	10.33	20.14	36.15	73.93	98.59	143.98	217.21
	1:55:00	0.00	0.00	9.70	18.74	33.49	68.60	91.39	133.23	200.92
	2:00:00	0.00	0.00	9.03	17.33	30.85	63.31	84.25	122.72	185.02
	2:05:00	0.00	0.00	8.31	15.88	28.16	58.00	77.11	112.38	169.41
	2:10:00	0.00	0.00	7.55	14.39	25.43	52.65	69.93	102.18	154.02
	2:15:00	0.00	0.00	6.79	12.92	22.79	47.29	62.77	92.00	138.72
	2:20:00	0.00	0.00	6.21	11.79	20.86	42.25	56.09	82.48	124.72
	2:25:00	0.00	0.00	5.78	11.01	19.53	38.62	51.39	75.46	114.35
	2:30:00 2:35:00	0.00	0.00	5.39	10.29	18.27	35.83	47.69	69.86	105.84
	2:40:00	0.00	0.00	5.04 4.70	9.60 8.95	17.06 15.90	33.48 31.31	44.55 41.65	64.95 60.51	98.30 91.46
	2:45:00	0.00	0.00	4.38	8.33	14.78	29.31	38.98	56.39	85.12
	2:50:00	0.00	0.00	4.06	7.72	13.69	27.34	36.36	52.48	79.14
	2:55:00	0.00	0.00	3.76	7.14	12.63	25.43	33.80	48.78	73.52
	3:00:00	0.00	0.00	3.46	6.57	11.61	23.55	31.29	45.28	68.22
	3:05:00	0.00	0.00	3.17	6.02	10.62	21.70	28.81	41.81	62.96
	3:10:00	0.00	0.00	2.88	5.48	9.66	19.86	26.36	38.35	57.74
	3:15:00	0.00	0.00	2.60	4.95	8.72	18.04	23.92	34.91	52.52
	3:20:00	0.00	0.00	2.32	4.42	7.78	16.21	21.49	31.46	47.31
	3:25:00	0.00	0.00	2.05	3.90	6.85	14.40	19.07	28.02	42.11
	3:30:00 3:35:00	0.00	0.00	1.77	3.38	5.92	12.59	16.65	24.59 21.16	36.92
	3:40:00	0.00	0.00	1.51 1.24	2.86 2.35	4.99 4.08	10.78 8.97	14.23 11.83	17.74	31.73 26.56
	3:45:00	0.00	0.00	0.98	1.84	3.16	7.18	9.42	14.32	21.40
	3:50:00	0.00	0.00	0.73	1.35	2.27	5.39	7.04	10.92	16.27
	3:55:00	0.00	0.00	0.49	0.89	1.47	3.64	4.70	7.58	11.28
	4:00:00	0.00	0.00	0.35	0.61	1.02	2.11	2.72	4.73	7.23
	4:05:00	0.00	0.00	0.29	0.50	0.84	1.26	1.66	3.05	4.84
	4:10:00	0.00	0.00	0.24	0.41	0.69	0.81	1.07	2.03	3.29
	4:15:00 4:20:00	0.00	0.00	0.21	0.34	0.57	0.57	0.73	1.34 0.86	2.19 1.42
	4:25:00	0.00	0.00	0.15	0.27	0.36	0.30	0.31	0.53	0.87
	4:30:00	0.00	0.00	0.13	0.18	0.28	0.23	0.28	0.30	0.49
	4:35:00	0.00	0.00	0.11	0.14	0.21	0.17	0.21	0.18	0.30
	4:40:00 4:45:00	0.00	0.00	0.09	0.11 0.09	0.15 0.11	0.13 0.10	0.16 0.12	0.13 0.10	0.23
	4:50:00	0.00	0.00	0.05	0.07	0.08	0.08	0.09	0.08	0.14
	4:55:00	0.00	0.00	0.04	0.05	0.06	0.06	0.07	0.06	0.11
	5:00:00 5:05:00	0.00	0.00	0.03	0.04	0.05	0.04	0.05	0.05	0.08
	5:10:00	0.00	0.00	0.02	0.03	0.03	0.03	0.03	0.03	0.08
	5:15:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	5:20:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.03 (May 2020)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.


Stage - Storage Description	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
	0.00	20	0.000	0	0.000	0.00	For best results, include the
	1.00	7,181	0.165	3,600	0.083	0.29	stages of all grade slope
	2.00	30,115	0.691	22,248	0.511	0.61	changes (e.g. ISV and Floor)
	3.00	49,313	1.132	61,962	1.422	0.86	from the S-A-V table on Sheet 'Basin'.
WQCV	3.75	51,917	1.192	99,923	2.294	1.23	Sheet Dashi.
	4.00	52,785	1.212	113,011	2.594	1.31	Also include the inverts of all
EURV	4.74	68,898	1.582	158,034	3.628	1.53	outlets (e.g. vertical orifice,
	5.00	74,559	1.712	176,683	4.056	6.18	overflow grate, and spillway,
	6.00	79,051	1.815	253,488	5.819	58.22	where applicable).
	7.00	84,185	1.933	335,106	7.693	155.52	
100-YR	7.67	87,355	2.005	392,572	9.012	229.28	1
	8.00	88,917	2.041	421,657	9.680	234.33	
	9.00	94,245	2.164	513,238	11.782	248.99	
							1
							1
							1
							4
	_						-
							-
							-
							-
							-
							-
							-
	-						-
							-
							-
							-
							-
]
							-
							-
							4
							1
							1
]
							1
							4
							4
							1
						l	1
]

Workbook Protected

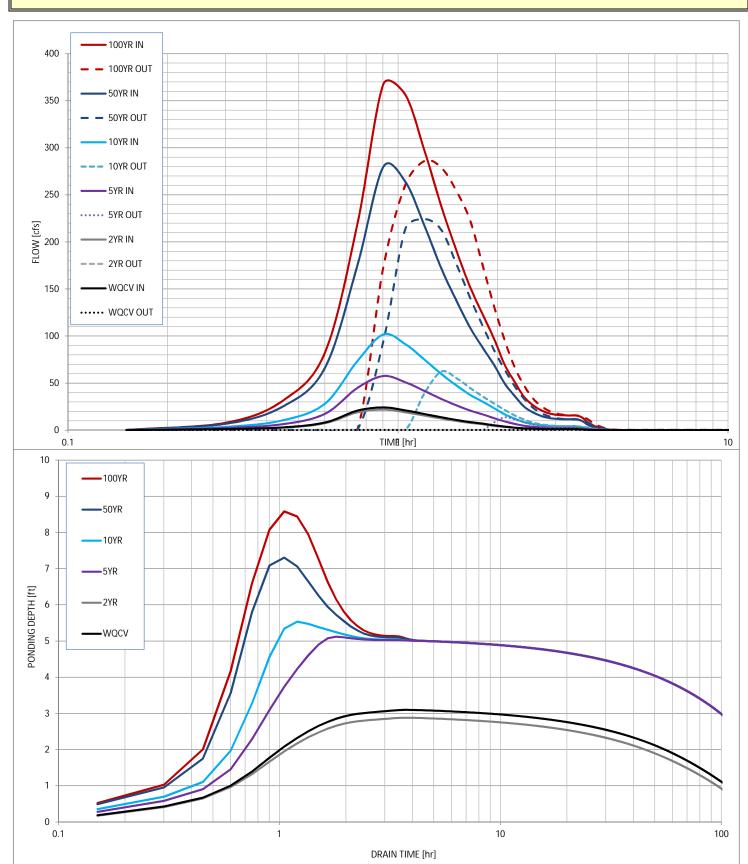

orksheet Protected

Stormwater Facility Name: Pond W-5

Facility Location & Jurisdiction: Sterling Ranch Sudivision, Marksheffel Road, El Paso County / El Paso County

_	Routed Hydro	graph Results					_
Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	0.53	1.19	1.50	1.75	2.25	2.52	in
Calculated Runoff Volume =	3.142	7.627	10.843	13.906	22.334	26.591	acre-ft
OPTIONAL Override Runoff Volume =							acre-ft
Inflow Hydrograph Volume =	3.141	7.619	10.842	13.899	22.331	26.586	acre-ft
Time to Drain 97% of Inflow Volume =	>90	>90	>90	>90	>90	>90	hours
Time to Drain 99% of Inflow Volume =	>90	>90	>90	>90	>90	>90	hours
Maximum Ponding Depth =	3.98	5.60	6.33	6.77	7.62	8.15	ft
Maximum Ponded Area =	2.16	3.18	3.54	3.75	4.08	4.23	acres
Maximum Volume Stored =	3.128	7.501	9.943	11.590	14.896	17.099	acre-ft

Workbook Protected

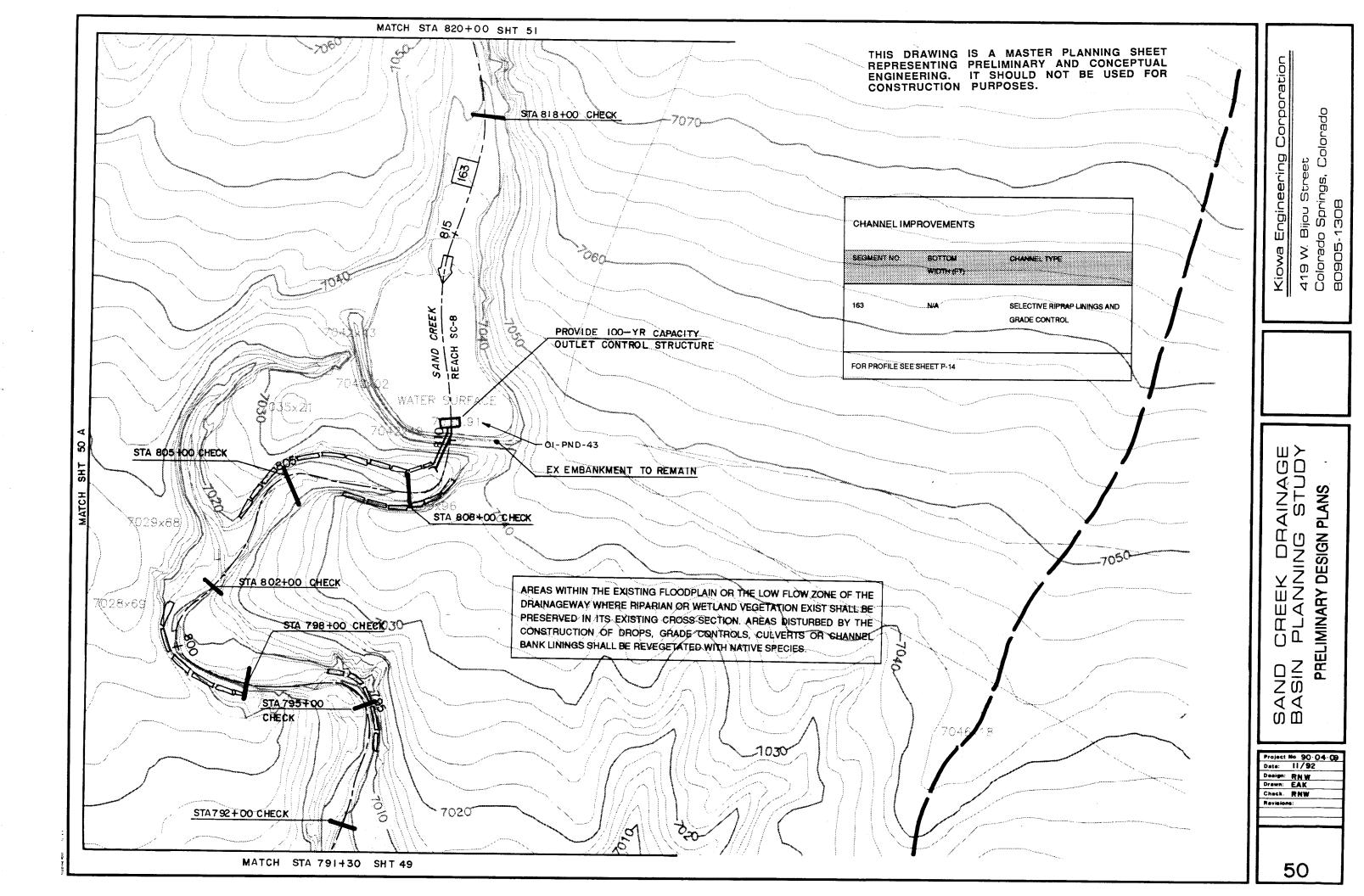

Worksheet Protected

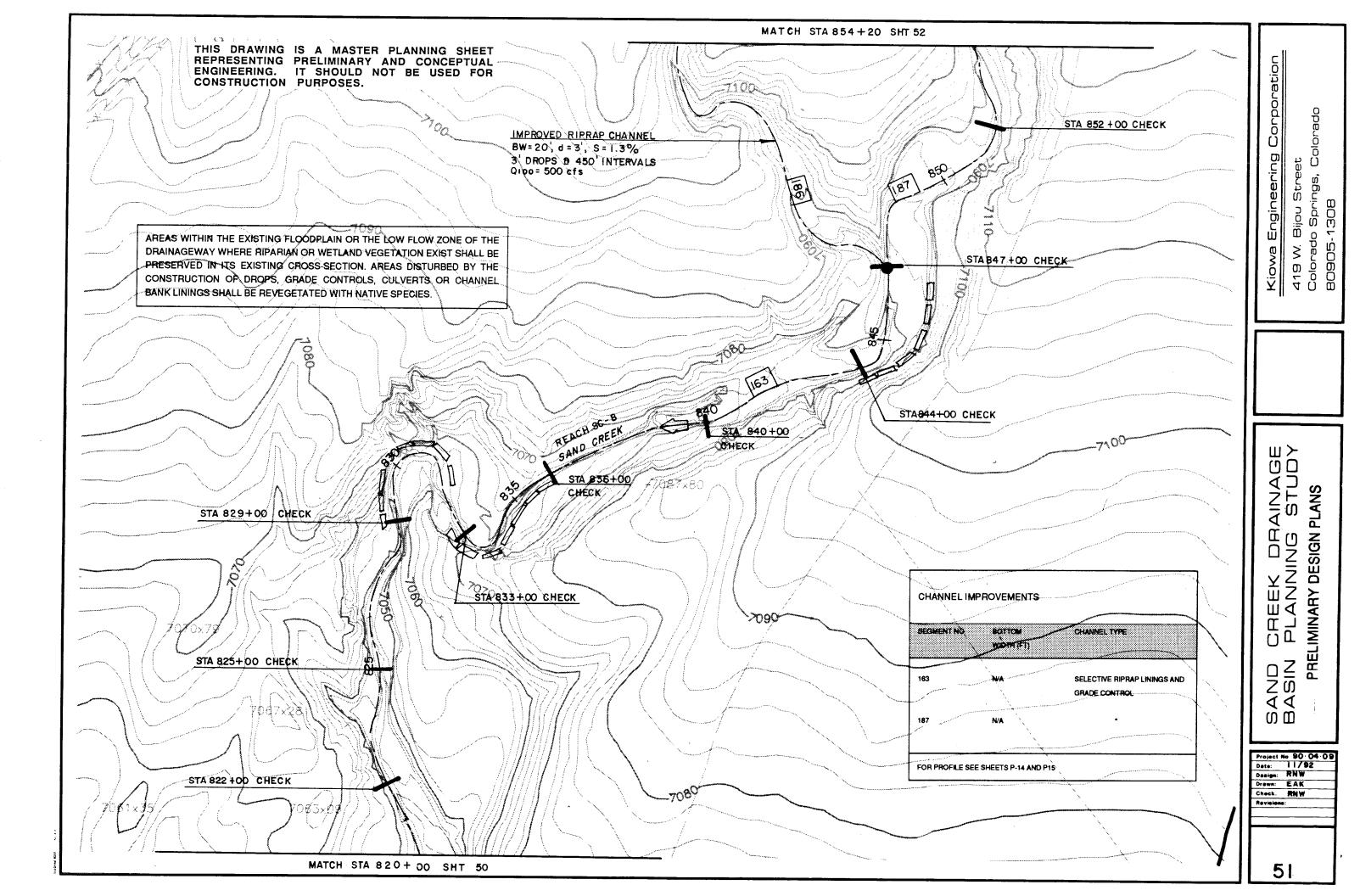
Stormwater Facility Name: Pond W-4

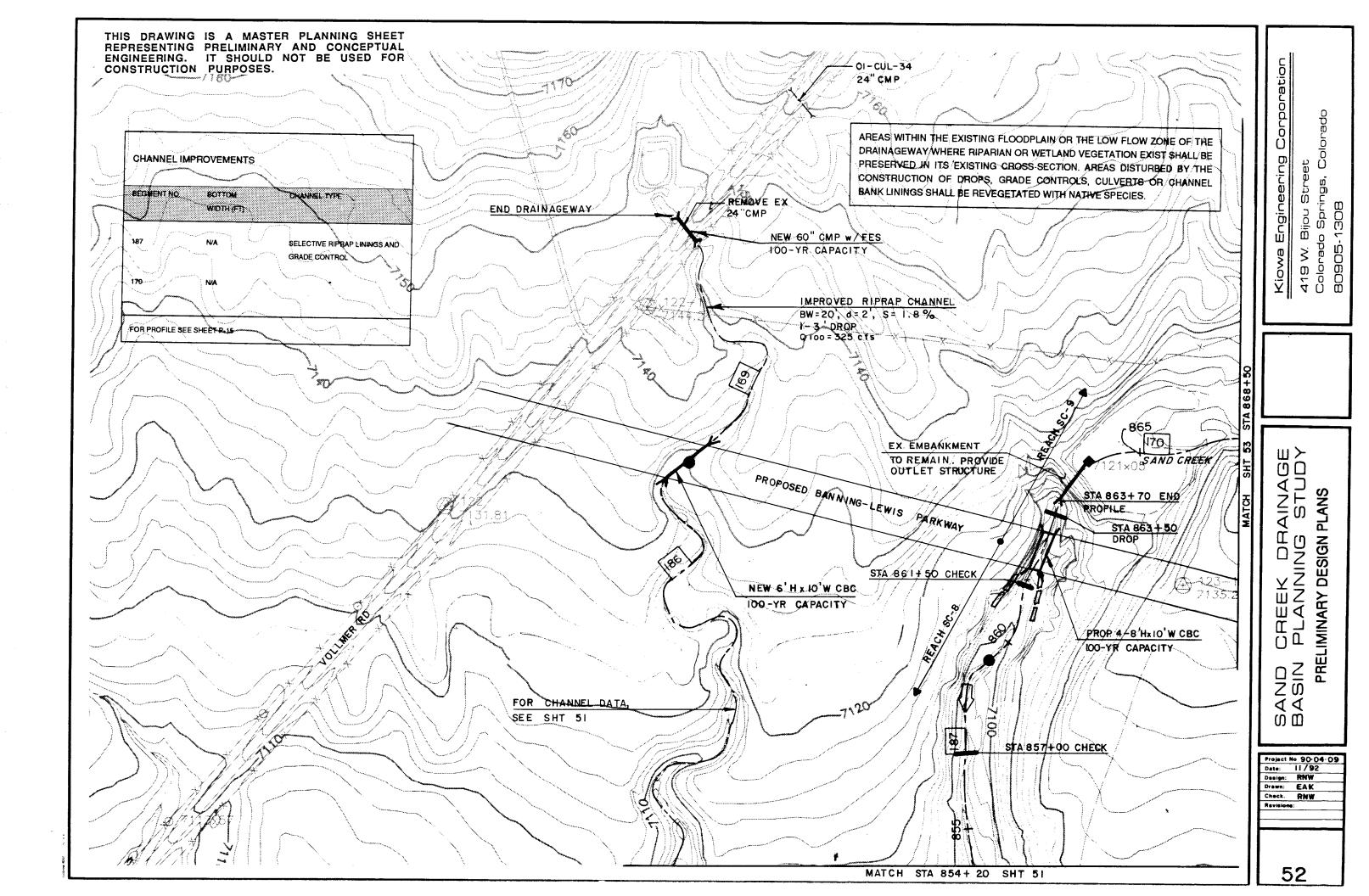
Facility Location & Jurisdiction: Sterling Ranch Sudivision, Vollmer Road, El Paso County / El Paso County

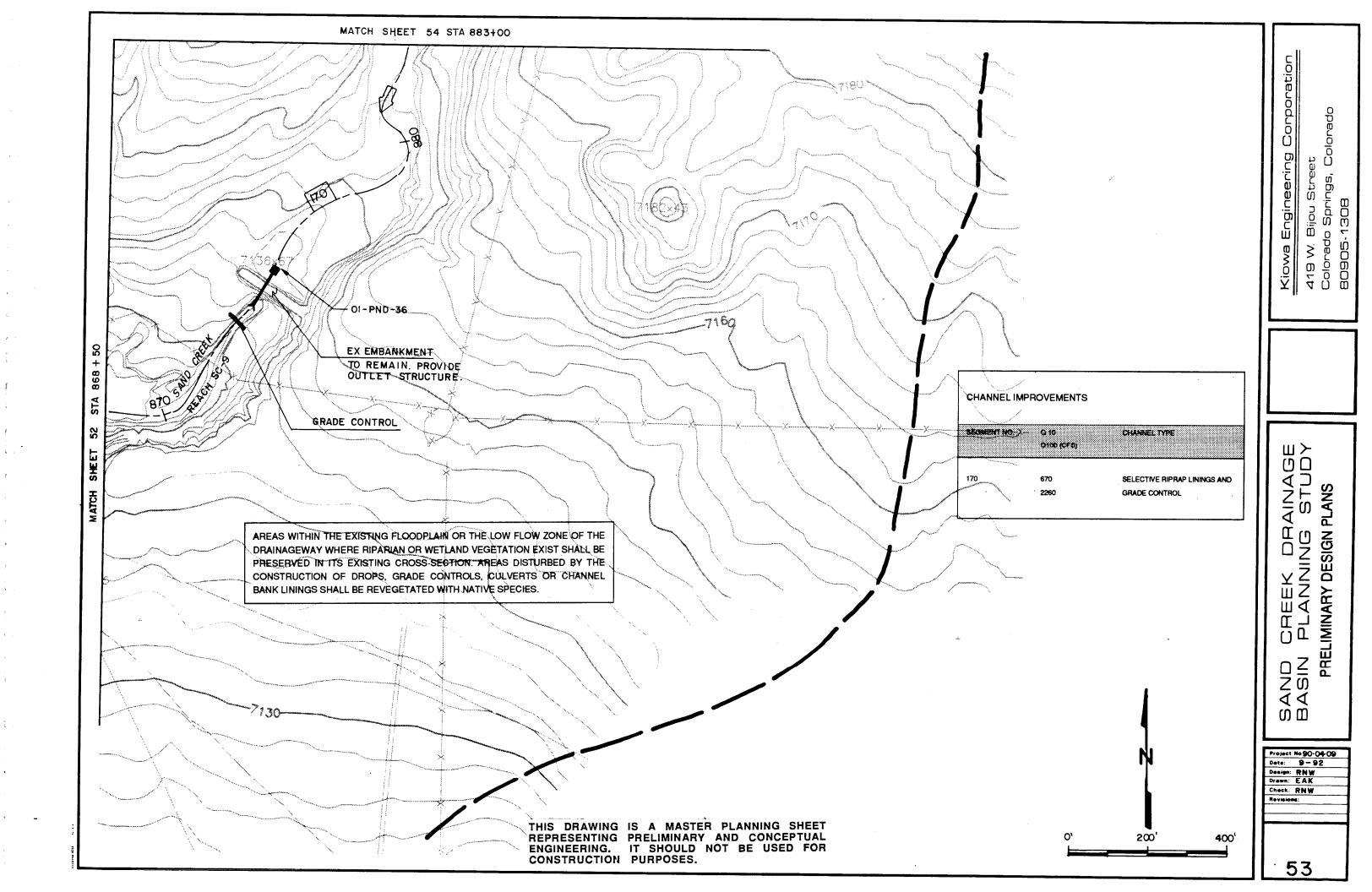
Licer Input: Watershed C	horostoristic		User Defined	User Defined	User Defined	User Defined
User Input: Watershed Cl	0.022	, ft/ft				Discharge [cfs]
Watershed Slope =			Stage [ft] 0.00	Area [ft^2] 632	Stage [ft] 0.00	0
Watershed Length = Watershed Area =	16051 352.23	ft	0.00	5,106	0.00	0.00
	10.0%	acres	1.00	30,156	1.00	0.10 0.15
Watershed Imperviousness =		percent				
Percentage Hydrologic Soil Group A =	54.0%	percent	2.00	33,323	2.00	0.20
Percentage Hydrologic Soil Group B =	46.0%	percent	3.00	37,601	3.00	0.22
Percentage Hydrologic Soil Groups C/D =	0.0%	percent	4.00	40,867	4.00	0.24
Location for 1-hr Rainfall Depths (u	se aropaown)	:	5.00	44,238	5.00	0.26
User Input	•		6.00	48,178	6.00	117.00
			7.00	51,797	7.00	210.00
			8.00	55,999	8.00	257.00
			9.00	59,878	9.00	307.00
WQCV Treatment Method =	Extended Detention	on 🔻	10.00	63,364	10.00	389.00
			11.00	67,955	11.00	543.00
			12.00	72,155	12.00	668.00
After completing and printing this worksheet	to a pdf, go to).				
https://maperture.digitaldataservices.com/g						
create a new stormwater facility, and						
attach the pdf of this worksheet to that recor	ď					
attach the part of this worksheet to that recor	u.					
	Routed Hydr	ograph Results				
Design Channe Determ Design I			= >/	1011	50.14	400.14

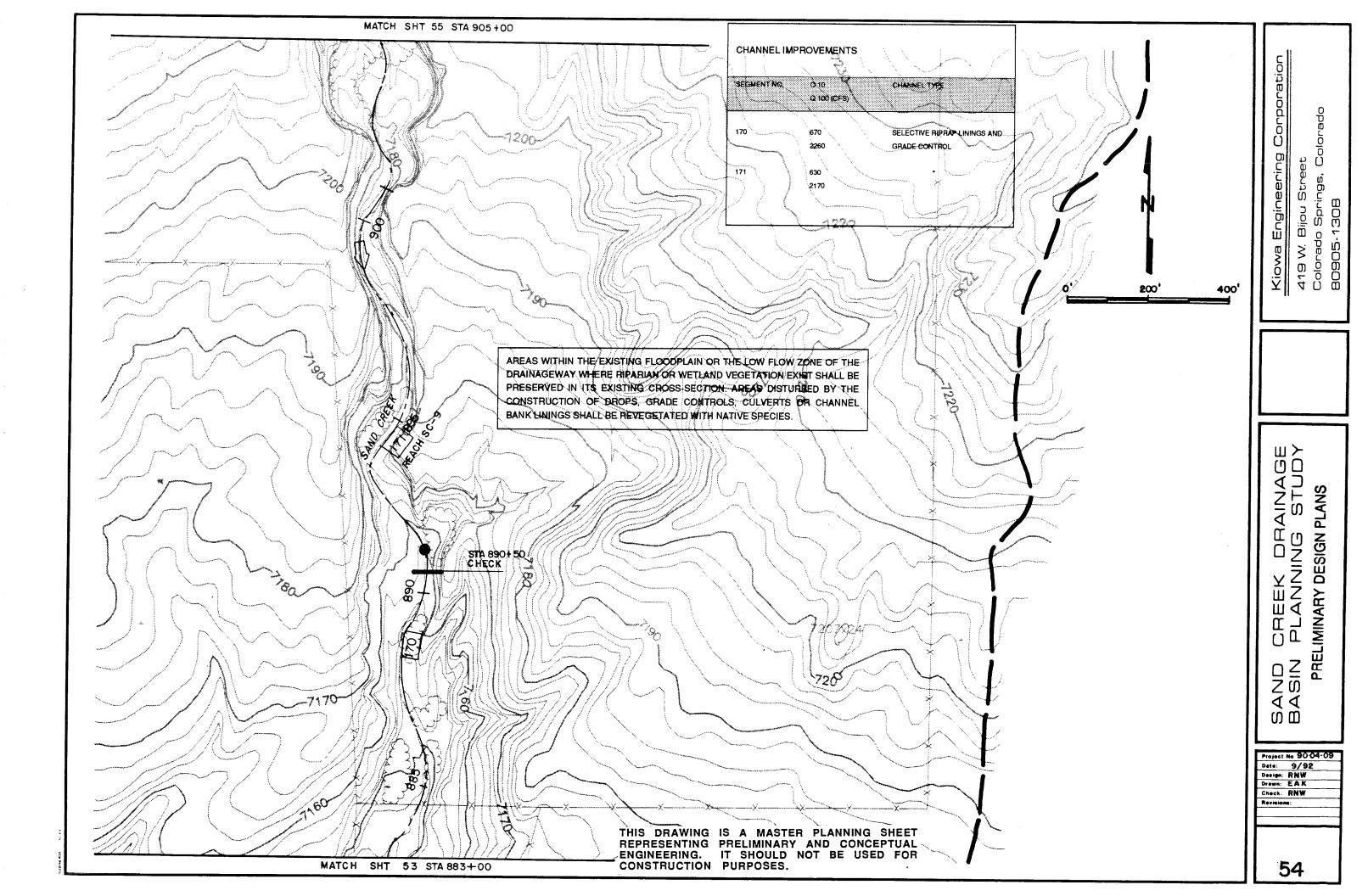
Routeu Hydrograph Results								
Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year]	
One-Hour Rainfall Depth =	0.53	1.19	1.50	1.75	2.25	2.52	in	
Calculated Runoff Volume =	1.967	1.778	4.643	8.198	22.829	30.818	acre-ft	
OPTIONAL Override Runoff Volume =							acre-ft	
Inflow Hydrograph Volume =	1.966	1.777	4.643	8.196	22.820	30.809	acre-ft	
Time to Drain 97% of Inflow Volume =	125.9	116.1	208.4	199.2	166.8	151.3	hours	
Time to Drain 99% of Inflow Volume =	130.4	120.3	0.0	214.1	200.9	194.4	hours	
Maximum Ponding Depth =	3.10	2.88	5.12	5.53	7.31	8.58	ft	
Maximum Ponded Area =	0.87	0.85	1.03	1.06	1.22	1.34	acres	
Maximum Volume Stored =	1.897	1.712	3.816	4.244	6.264	7.900	acre-ft	

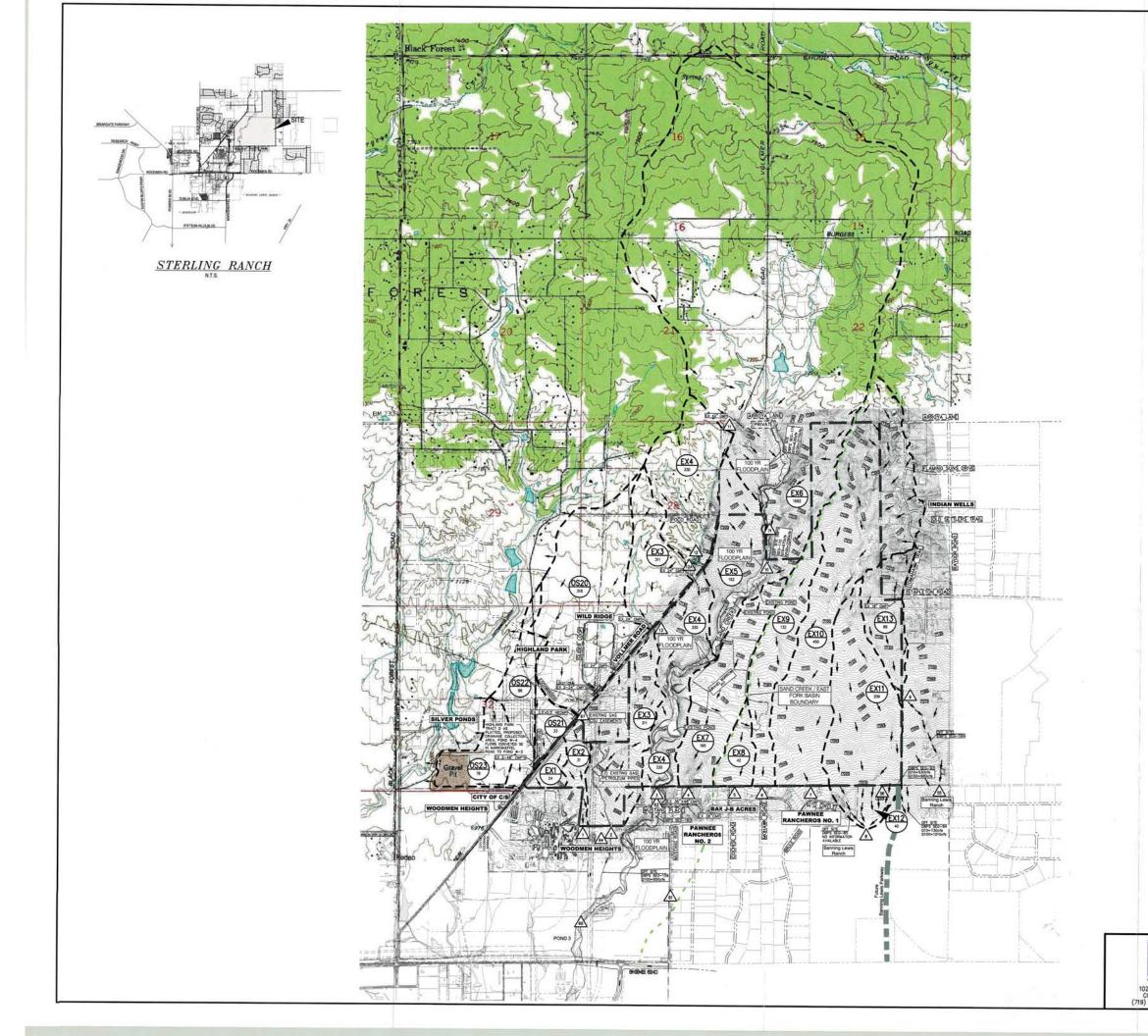



Final Drainage Report Sterling Ranch Filing No. 2


APPENDIX D


REFERENCE MATERIALS


Include DBPS plan sheets 48 and 47

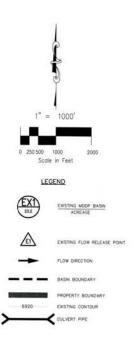


		STERLING RANCH FILING NO. 2 - TRA	CTS AND RIG	HT-OF-WAY	- DRAINAG	Ε&	BRIDGI	E FEE	ES (2020)				
TRACT/ROW	SIZE/ACRE	USE	MAINTENANCE	OWNERSHIP	% Impervious	DRAI	NAGE FEE	FEE		BRI	DGE FEE	FEE	
А	0.391	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	29.0%	\$	19,698	\$	2,233.56	\$	8,057	\$	913.58
В	0.658	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	29.0%	\$	19,698	\$	3,758.77	\$	8,057	\$	1,537.44
С	0.845	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	24.0%	\$	19,698	\$	3,994.75	\$	8,057	\$	1,633.96
D	2.159	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	13.0%	\$	19,698	\$	5,528.64	\$	8,057	\$	2,261.36
E	19.674	ZERO LOT LINE FUTURE SINGLE FAMILY RESIDENTIAL LOTS	SR LAND, LLC	SR LAND, LLC	70.0%	\$	19,698	\$	271,276.92	\$	8,057	\$	110,959.39
F	1.231	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	4.0%	\$	19,698	\$	969.93	\$	8,057	\$	396.73
G	0.249	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	2.0%	\$	19,698	\$	98.10	\$	8,057	\$	40.12
н	0.062	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	2.0%	\$	19,698	\$	24.43	\$	8,057	\$	9.99
I	0.5	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY/MAIL KIOSK	SRMD #1	SRMD #1	15.0%	\$	19,698	\$	1,477.35	\$	8,057	\$	604.28
J	0.379	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	30.0%	\$	19,698	\$	2,239.66	\$	8,057	\$	916.08
К	0.387	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	30.0%	\$	19,698	\$	2,286.94	\$	8,057	\$	935.42
49 LOTS	11.871	SINGLE FAMILY RESIDENTIAL LOTS	SRMD #1	SRMD #1	70.0%	\$	19,698	\$	163,684.47	\$	8,057	\$	66,951.25
ROW	4.734	ROAD RIGHTS OF WAY (STERLING RANCH ROAD)	EPC	EPC	95.0%	\$	19,698	\$	88,587.82	\$	8,057	\$	36,234.75
ROW	3.525	ROAD RIGHTS OF WAY (MARKSHEFFEL ROAD)	EPC	EPC	95.0%	\$	19,698	\$	65,963.68	\$	8,057	\$	26,980.88
ROW	2.979	ROAD RIGHTS OF WAY (VOLLMER ROAD, ULTIMATE)	EPC	EPC	95.0%	\$	19,698	\$	55,746.32	\$	8,057	\$	22,801.71
8								D	RAINAGE FEE				BRIDGE FEE
	49.644	TOTAL AREA				TOTA	L FEES	\$	667,871.33			\$	273,176.94

*SRMD#1 = STERLING RANCH METROPOLITAN DISTRICT NO. 1

See plat — comments for added tracts

HISTORIC CONDITION


B	ASIN SI	JMMAR	Y
BASIN	AREA (ADRES)	Qa (Dis)	Q 100 (0PS)
EX-1	24	3	40
EX-2	31	3	45
EX-3	311	49	341
EX-4	330	71	353
EX-5	152	14	209
EX-6	1692	118	2168
EX-7	165	12	197
EX-8	42	4	64
EX-9	132	11	149
EX-10	450	48	474
EX-11	209	17	261
EX-12	40	5	65
EX-13	89	6	114
0S-20	318	61	310
OS-21	33	8	38
0S-22	88	18	91
OS-23	78	34	84

NOTE: BASINS OS-22 & OS-23 <u>NOT</u> PART OF THIS REPORT. FLOWS FOLLOW HISTORIC PATTERNS ON THE WESTSIDE OF VOLLMER ROAD.

HISTORIC CONDITION

POINT	SQ. ML	Qa (Oti)	Q100 (275)	SQ. MI.		DBPS
1	0.09	5	84			-
2	0.49	55	465	0,74	465	64
3	0.52	139	2610	4.33	2552	63
4	0.26	12	197			
5	0.07	4	64			
6	0.21	11	149			
7	0.70	48	474			
8	0.39	18	305			
9	0.14	6	114			
10	2.64	122	2245	3.27	2245	71
11	0.09	5	83			
12A	0.01	3	16			
12	0.27	10	200			
13	0.17	6	126			
NOTE:				0.48	#	55
CONSIST				0.53	1210	56
DESIGN	POINT	UP-D	Bh2	5.38	2629	60
NOTE:			S ARE	0.38	76	61
OR THE	EXIST	ING		0.49	115	67

NO DATA GIVEN IN DEPS

CIVIL CONSULTANTS, INC. 102 E. PIKES PEAK AVE. STE 306 COLORADO SPRINGS, CO 80903
(719) 955-5485, FAX (719) 444-8427

STE	RLING RAN	ICH MDDP	
IISTO	RIC - DRA	AINAGE MAP	
9-001	FILE: *\dwg\Dev Plan\09001-MDDP HISTORIC		
VAS	SCALE	DATE: 03/16/15	
VAS VAS	HORIZ: 1"=500' VERT: N/A	SHEET 1 OF 1	D1
	HSTO 19-001 VAS VAS	HSTORIC - DRA 19-001 FILE: *\dwg\D VAS SCALE VAS HORIZ: 1*=500'	VAS SCALE DATE: 03/16/15 VAS HORIZ: 1"=500"

FINAL DRAINAGE REPORT

BARBARICK SUBDIVISION, PORTIONS OF LOTS 1, 2 and LOTS 3 & 4 El Paso County, Colorado

Sand Creek Drainage Basin

Prepared for: El Paso County Development Services Engineering Division

On Behalf of: Wykota Construction 430 Beacon Light Road, Suite 130 Monument, CO 80132

Colorado Springs, CO 80920 (719) 575-0100 Fax (719) 572-0208

June 6, 2016

15.789.001

June 2016

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said reports in conformity with the master plan of the drainage basin.

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

	Wykota Construction	
ву:	Business Name	
	Justin Ballard	
Title:	President	
Address:	430 Beacon Light Road, Suite 130	

Monument, CO 80132

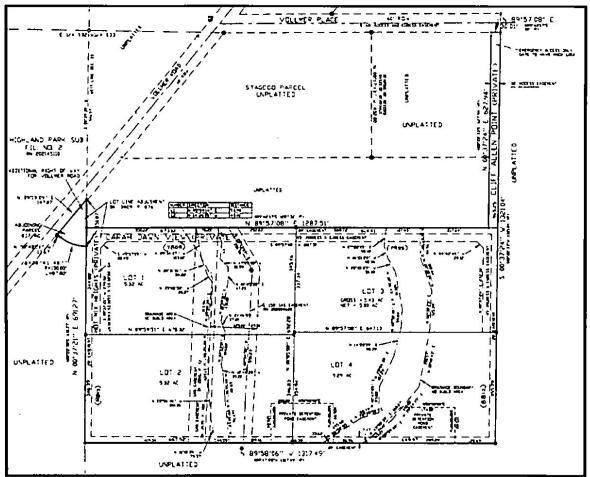
El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

JUNE 2014 Print Name - CERECTENNIFELE IPVILLE

County Engineer / ECM Administrator

Barbarick Subdivision -	Lots 1, 2, 3 and 4 -	Final Drainage Report
-------------------------	----------------------	-----------------------

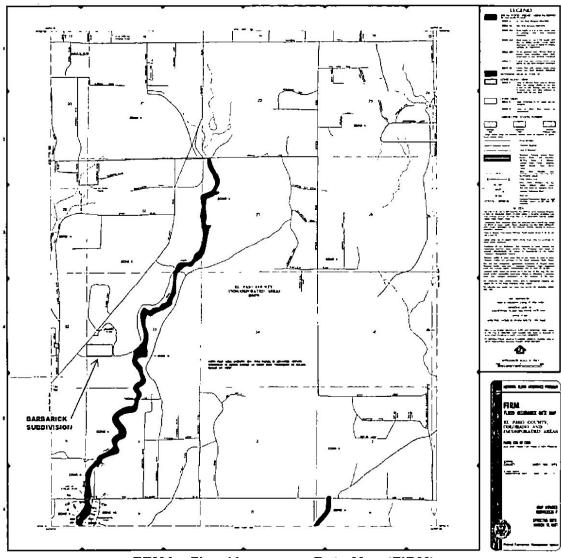

TABLE OF CONTENTS	
GENERAL LOCATION AND DESCRIPTION	
Background	1
Location	1
Property Description	3
Soil Description	
HYDROLOGIC AND HYDRAULIC ANALYSIS	6
Basin Description	6
Design Criteria	6
EXISTING DRAINAGE DISCUSSION	10
EXISTING DRAINAGE DISCUSSION (continued)	15
PROPOSED DRAINAGE DISCUSSION	16
RECOMMENDED DESIGN	18
DRAINAGE, BRIDGE, AND POND FEES	22
MAINTENANCE	22
EROSION CONTROL	22
Cost Estimate	24
REFERENCES	24

<u>Surrounding Developments.</u> The following are the existing or planned general land uses adjacent to the property.

<u>North:</u> Un-platted parcels that contain commercial/industrial uses. Carah Dawn View is on the north side of the property.

<u>East and South</u>: Although this adjacent area is currently undeveloped, the Sterling Ranch Master Planned area is in the process of developing this area (future single family development).

<u>West:</u> This is an undeveloped, un-platted lot. Across Vollmer Road is a low density single family development (Highland Park, Fil 2).



Barbarick Subdivision Plat

Property Description

- <u>Major Drainage Way</u>: The entire site is located within the Sand Creek Drainage Basin. The Main Fork of Sand Creek is located about 1500 feet to the east. The site currently drains to the south into natural drainage ways that direct runoff to Sand Creek. The Sand Creek Drainage Basin is located in the northeastern portion of the City of Colorado Springs and El Paso County. The general drainage pattern of this larger basin flows to the southwest and ultimately feeds into Fountain Creek.
- 2. Project Site Area: This site is approximately 21.37 acres in area.
- 3. Ground Cover: This site is covered with native grasses.
- 4. <u>General Topography:</u> The site drains from north to the south with average grades ranging from 1% to 5%. There are two natural drainage ways that drain through these lots.
- 5. <u>Irrigation Facilities</u>: No known functioning irrigation facilities are located on the site. A small detention pond does exist to the northeast of the property; however, the outfall of this pond will be re-routed in order to direct runoff around the perimeter of the proposed development.
- 6. <u>Utilities:</u> Utilities in the project area include; but are not limited to, telephone, high pressure gas/petroleum and electrical lines. Water & wastewater service is provided through wells & individual septic systems. These utilities will be examined on a case-by-case basis and avoided where feasible, or they will be relocated. Any relocation of these utilities will be coordinated with the respective utility contact. Utility services will be extended into the site as necessary. There are large gas easements that run north-south through these lots. These easements contain one 6 inch and two 20 inch high pressure gas/petroleum pipelines. These Utility Easements will be no-build zones and grading will be fill only.
- 7. <u>On-Site Drainage Ways:</u> The plat shows two "Drainage Boundary No Build Area(s)" draining through the subdivision. These are not regulated FEMA floodplains. The site development will include the installation of pass through culverts for offsite flows, and regraded. An amended plat has been completed for the removal of the no build areas, identification of new drainage easements, and relocation of water quality ponds.

 Floodplain Statement: Review of the Flood Insurance Rate Map (FIRM) 535 (08041C0535 F), effective date March 17, 1997, published by the Federal Emergency Management Agency (FEMA) reveals that no portion of Barbaric Subdivision lie within any designated 100-year floodplain.

FEMA - Flood Insurance Rate Map (FIRM)

HYDROLOGIC AND HYDRAULIC ANALYSIS

Basin Description

The Barbarick Subdivision is located within the Sand Creek Drainage Basin. The tributary area that drains through the Barbarick Subdivision is developed, which includes large lot single-family parcels and some commercial/industrial land uses. Subbasins were delineated using surveyed information, proposed contours and field observations. See the Drainage Basin Maps in the Appendix.

This study is in conformance with the following two approved Drainage Reports:

- 1. Preliminary Drainage Report for Sterling Ranch-Phase 1, Sand Creek Drainage Basin, M & S Civil Consultants, Inc., May 2015 AKA: "SR-PDR"
- Woodmen Storage Final Drainage Report, El Paso County, Calibre Engineering, Inc., July 2004; Revised February, 2010; Revised May, 2010; Revised July, 2010
 AKA: "WS-FDR"

This study is *not* in conformance with the following approved Drainage Report due to changes from the approved recent reports cited above that supercede the original report:

 Preliminary and Final Drainage Plan and Report, Barbarick Subdivision a Replat of Lot "D", McClintock Subdivision, El Paso County, Oliver E. Watts, Consulting Engineer, Inc., August 15, 2007 AKA: "BS-FDR"

Design Criteria

This report has been prepared in accordance to the criteria set forth in the *City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II*, dated November 1991 including subsequent updates. El Paso County has also adopted Chapter 6 and Section 3.2.1 of Chapter 13 in the *City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II*, dated May 2014 (Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008). In addition to the ECM, the *Urban Storm Drainage Criteria Manuals, Volumes 1-3*, published by the Urban Drainage and Flood Control District, (Volumes 1 & 2 dated January 2016, Volume 3 dated November 2010 with some sections update November 2015), has also been used to supplement the ECM.

Hydrologic Criteria

Where:

١

Hydrologic analyses for the site have been completed using the Rational Method for onsite basins. The SCS Method was used in the referenced studies for the larger off-site basins (greater than 100 acres). The design storms for each method are:

Initial Storm = 5-Year Storm

Major Storm = 100-Year Storm

Rational Method: The Rational Method will be utilized to evaluate smaller basins (under 100 acres). This methodology is used for the design of localized facilities such as inlets, storm drain, drainage swales and detention:

Rational Method peak flow rate equation (cfs): Q=C*I*A

Q = Maximum runoff rate in cubic feet per second (cfs)

C = Runoff coefficient

I = Average rainfall intensity in inches per hour

A = Area of drainage sub-basin in acres

Runoff Coefficient

Rational Method coefficients are derived from UDFCD Vol 1 (Chapter 6 – Runoff, 2016-01 Rev) for the various land uses, including parking areas, drives, walks, roofs, lawns and open space areas. The Runoff Coefficients associated with these land uses also have a corresponding impervious value that is used in the detention calculations. The Rational Method Coefficients used in this study include:

Land Use or Surface Type	<u>% Impervious</u>	Runoff Coefficient (B Soils)	ls)	
		(5-Year) (100-Year)	(5-Year)	
Greenbelts/Agricultural	2%	.03 .46	.03	
Gravel (packed)	40%	.37 .65	.37	
Drives & Walks	90%	.84 .90	.84	

•

Land Use or	Percentage Imperviousness
Surface Characteristics	(%)
Business:	· · •
Downtown Areas	95
Suburban Areas	75
Residential:	
Single-family	
2.5 acres or larger	12
0.75 – 2.5 acres	20
0.25 - 0.75 acres	30
0.25 acres or less	45
Apartments	75
Industrial:	
Light areas	80
Heavy areas	90
Parks, cemeteries	10
Playgrounds	25
Schools	55
Railroad yard areas	50
Undeveloped Areas:	
Historic flow analysis	2
Greenbelts, agricultural	2
Off-site flow analysis (when land use not defined)	45
Streets:	
Paved	100
Gravel (packed)	40
Drive and walks	90
Roofs	90
Lawns, sandy soil	2
Lawns, clayey soil	2

Table 6-3. Recommended percentage imperviousness values

,

Total or Effective % Imperviousness	NRCS Hydrologic Soil Group A					
	2-vr	5-vr	10-vr	25-yt	50-yr	100-yr
2%	0.02	0.02	0.02	0.02	0.02	0.17
5%	0.04	0.05	0.05	0.05	0.05	0.19
10%	0.09	0.09	0.09	0.09	0.1	0.23
15%	0.13	0.14	0.14	0.14	0.14	0.28
20%	0.18	0.19	0.19	0.19	0.19	0.32
25%	0.22	0.23	0.24	0.24	0.24	0.36
30%	0.27	0.28	0.28	0.28	0.29	0.4
35%	0.31	0.33	0.33	0.33	0.33	0.44
40%	0.36	0.37	0.38	0.38	0.38	0.48
45%	0.4	0.42	0.42	0.42	0.43	0.52
50%	0.45	0.47	0.47	0.47	0.48	0.56
55%	0.49	0.51	0.52	0.52	0.52	0.6
60%	0.53	0.56	0.56	0.57	0.57	0.64
65%	0.58	0.6	0.61	0.61	0.62	0.68
70%	0.62	0.65	0,66	0.66	0.67	0.72
75%	0.67	0.7	0.71	0.71	0.71	0.76
80%	0.71	0.74	0.75	0.76	0.76	0.8
85%	0.76	0.79	0.8	0.8	0.81	0.84
90%	0.8	0.84	0.85	0.85	0.86	0.88
95%	0.85	0.88	0.89	0.9	0.9	0.92
100%	0,89	0.93	0.94	0.94	0.95	0.96
Total or Effective % Imperviousness		NRCS	Hydrolog	gic Soil G	roup B	
2%	0.02	0.02	0.14	0.24	0.38	0.46
5%	0.04	0.05	0.17	0.27	0.39	0,48
10%	0.09	0.09	0.21	0.3	0.42	0.5
15%	0.13	0.14	0.25	0.34	0.45	0.53
20%	0.18	0.19	0.29	0.37	0.48	0.55
25%	0.22	0.23	0.33	0.41	0.51	0.58
30%	0.27	0.28	0.37	0.44	0.54	0.6
35%	0.31	0,33	0.41	0.48	0.57	0.63
40%	0.36	0.37	0.45	0.51	0.6	0.65
45%	0.4	0.42	0.49	0.55	0.63	0.67
50%	0.45	0.47	0.53	0.58	0.66	0.7
55%	0.49	0.51	0.57	0.62	0.69	0.72
60%	0.53	0.56	0.61	0.65	0.72	0.75
65%	0.58	0.6	0.65	0.69	0.75	0.77
70%	0.62	0.65	0.69	0.72	0.78	0.8
75%	0.67	0.7	0.73	0.76	0.81	0.82
80%	0.71	0.74	0.77	0.79	0.84	0.85
85%	0.76	0,79	0.81	0.83	0.87	0.87
90%	0.8	0.84	0.85	0.86	0.89	0.9
95%	0.85	0.88	0.89	0.9	0.92	0.92
100%	0.89	0.93	0.94	0.94	0.95	0.94

Table 6-5. Runoff coefficients, c

Time of Concentration

The time of concentration (T_c) for the Rational Method was calculated by methods derived from the UDFCD. The time of concentration consists of an initial time or overland flow time (t_i) plus the travel time (t_t) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an initial time or overland flow time (t_i)

plus the time of travel (t_t) in concentrated form, such as a swale or drainageway. A minimum T_c of 5 minutes and 10 minutes were used for the final calculations in developed and undeveloped conditions, respectively.

Storm Drain Systems

All proposed storm drain infrastructure will be located within private property and will be owned and maintained by the property owner.

The storm drain hydraulics is analyzed using *Bentley's* <u>FlowMaster</u>, CulvertMaster & <u>StormCAD</u> design software. Colorado Department of Transportation (CDOT) type inlets will be used where necessary.

The designated outfall locations for the proposed on-site storm drains are the natural drainage ways at the south end of the property. The proposed storm drain infrastructure will be discussed in more detail below.

EXISTING DRAINAGE REPORT DISCUSSION

The approved Barbarick Subdivision Final Drainage Report (BS-FDR) and the approved Woodmen Storage Final Drainage Report (WS-FDR) both apply to the existing general drainage conditions for this site. The off-site basins and general flow patterns in the BS-FDR and WS-FDR still apply. Excerpts from these reports are provided below for reference.

On-site and Off-Site Basin Descriptions from the BS-FDR and WS-FDR:

The following summary is taken from the Barbarick Subdivision Final Drainage Report (BS-FDR):

Off-site:

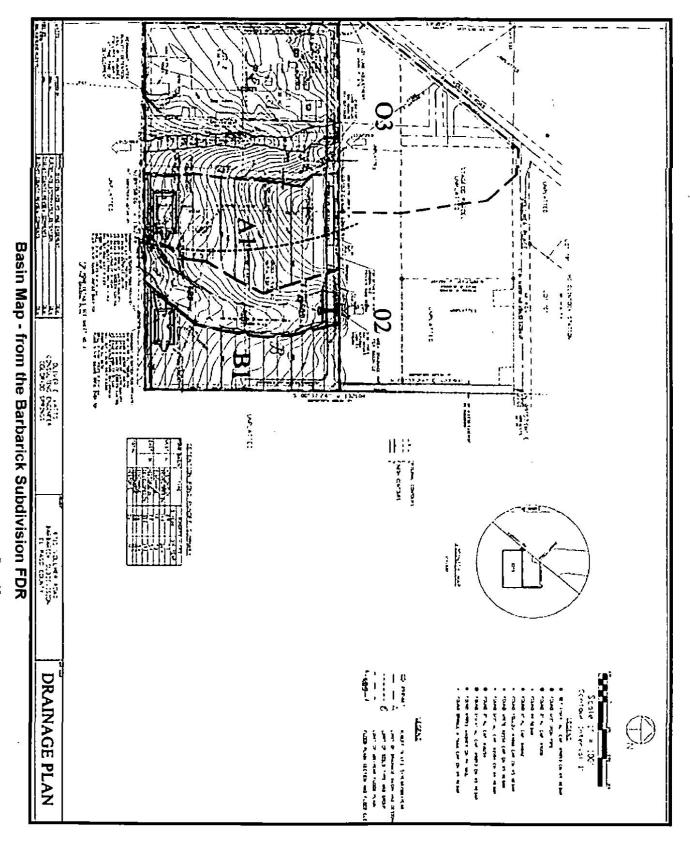
Off-site Basin O3 This basin encompasses approximately 7.03 acres and represents the area north and northwest of Lot 1. This basin drains into Lot 1 through a series of (2) 24" CMP pipes which control the flow of 14/36 cfs in the 5/100 year storm events.

Lots 1 & 2 – these lots are considered fully developed lots and drain north to south collecting at the existing concrete settling pond on Lot 2. This developed flow (20.8 cfs /57.2 cfs) combines with Off-site Basin O3 to total 30.5 cfs / 80.8 cfs in the greenbelt offsite south of Lot 2. At the time of development permit for these developed lots, a detention pond for water quality will be required, probably in the area of the existing concrete settling pond, that will accommodate Lots 1 and 2 west of the gas easement and flood plain area.

On-site:

On-site Basins A1 and B1 (for portions of Lots 1 and 2, and Lots 3 & 4) These basins encompass approximately 5.3 & 3.8 acres and represent the buildable portions of the property as described in the BS-FDR (see Basin Map from BS-FDR below). These basins were slated (in the BS-FDR) to drain into small detention ponds that would release to historic rates. These discharge rates were calculated to be 2.9/7.3 and 2.2/5.4 cfs (5/100 year). The BS-FDR does not include the drainage ways in any hydrology calculations due to the fact that this no-build drainage area was not planed on being developed. This drainage way allowed off-site flows from O1+O2 to pass-through Lots 3 & 4. The drainage way to the west of A1 passes through flows from offsite O3. Since the approval of this report, offsite tributary basins O1+O2 have been changed, and the development of the property encompasses the whole property, including the previously determined no-build area.

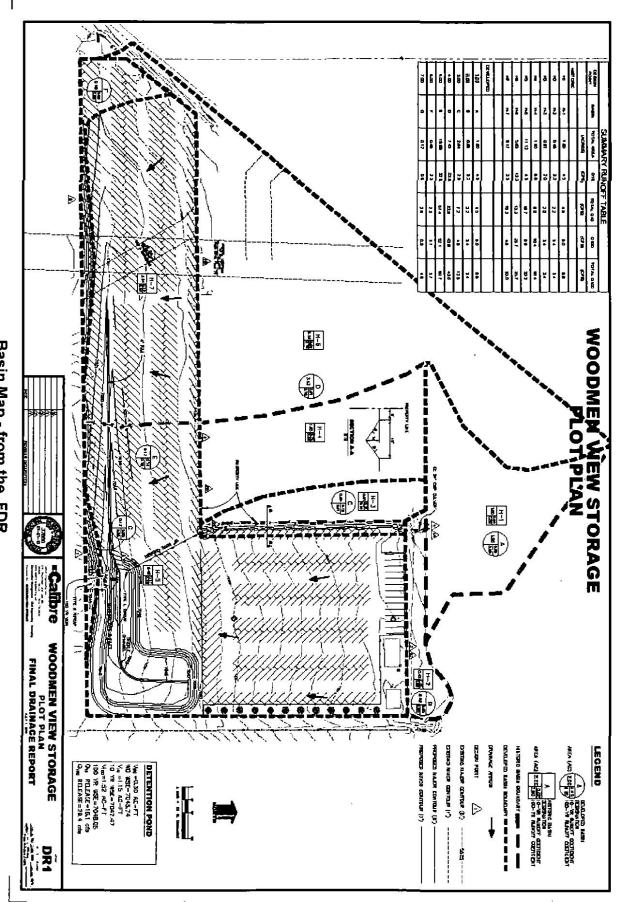
The following summary is taken from the Woodmen Storage Final Drainage Report (WS-FDR):


Off-site:

Design Point 5 - This design point encompasses approximately 19.69 acres and represents the tributary area north of the project site. This basin drains into a proposed detention pond near the northeast corner of the property and generates 57.4/92.7 cfs in the 10/100 year storm events, historic flows are 16.7/30.3 cfs. The releases rates from this pond are lower than historic 16.1 cfs/29.4 cfs in the 10/100-year storm events. These flows are conveyed along the east property line of the site and into the eastern natural drainage way that leaves the property to the south.

Review of the Sterling Ranch Preliminary Drainage Report (SR-PDR):

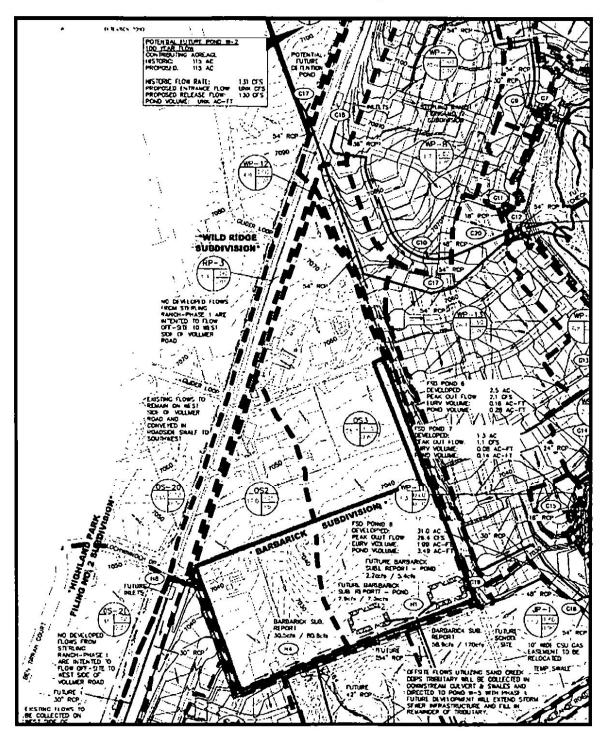
The Barbarick Subdivision is surrounded on three sides by the planned Sterling Ranch Development. The approved Sterling Ranch PDR was prepared by M&S Civil Consultants in May of 2015. This Sterling Ranch PDR re-analyzes runoff from Barbarick Subdivision and plans for storm drain improvements to convey this runoff to a full spectrum detention and water quality pond to be located down stream of Barbarick Subdivision as part of Sterling Ranch Phase One.


In summary; the Sterling Ranch PDR is planning on receiving 73.3/139.2 cfs (5/100 year) from Basin OS3. A 54" RCP is planned to convey this flow through Sterling Ranch. The Sterling Ranch PDR is planning on receiving 45/86 cfs (5/100 year) from OS2, encompasses Lots 1 & 2 and OS3 encompasses Lots 3 & 4 and the Basin north of Lot 3. A 48" RCP is planned to convey this flow through Sterling Ranch. The cumulative runoff from the northerly property and Lots 1 through 4 does not exceed the anticipated rates in the SR-PDR.

,

Page 12

Page 12


Basin Map - from the FDR

Page 13

Page 13

	STER	LING RANC	H PHASE 1	0. 00.00000	
	PROPOSED - DRAINAGE MAP (VERALL)				
CIVIL CONSULTANTS, INC.	PROJECT NO. 09-001 DESIGNED BY. DLM	SCALE HORIZ: 1"= 200"	00' DATE: 5/00'5		
102 L. PIKES PEAK AVE, STE 306 COLORADO SPRINCS, CO 80903 (719) 955-5485, FAX (719) 448-8427	DRAWN BY: DLW CHECKED BY: VAS	VERT: N/A	SHEET 1 (F)	D2	

Basin Map from the Sterling Ranch PDR

Matrix Design Group, Inc., 2016@

STORM SEW	ER ROUTING	SUMMARY
DE SIGN POINT	Q. (65)	0.00 (01)
G4A		1584
<u>G4A</u> C5	640 78	1584
66	32	
G6 C7		66 157
	82	
G8	20	42
C9	14	29
G10	47	97
G11	4	9
G12	72	144
G13	12	25
G14	7	14
G15	3	7
Ç16	60	125
G17	8C	130
G18	29	54
C19	11	23
G20	69	138
G21	1044	1767
G22	5	10
G23	64	133
G25	1056	1795
H1	73	139
H2	46	92
НЗ	103	200
H4	45	80
H5	30	61
H6	68	134
HB	16	29
H11	22	
H12	<u> </u>	62
H12	57	118
H15 H14	196	382
1116	31	. 65
H17		54
H18	224	441

Flow Summary from the Sterling Ranch PDR

EXISTING SITE DRAINAGE DISCUSSION:

On-Site (Existing Conditions):

On-site Basin H1 This basin covers approximately 10.7 acres and represents the majority of Lots 3 & 4. This basin is modeled as good condition undeveloped rangeland. This drains to the south and generates 2.6/23.7 cfs in the 5/100 year storm events.

On-site Basin H2 This existing basin covers approximately 3.70 acres and represents the eastern half of Lots 1 & 2.This basin is modeled as good condition rangeland and generates 0.9/8.2 cfs in the 5/100 year storm events.

On-site Basin H3 This existing basin covers 1.1 acres and represents the a small portion of lots 3 & 4 that drains south easterly. This basin is modeled as good

condition rangeland and generates 0.3/2.7 cfs in the 5/100 year storm events. This basin sheet flows offsite where it is captured in a small swale between the site and existing roadway and conveyed westerly to the low point south of the outfall of Basin H1.

These existing basins encompass the previously unmodelled drainage area from the BS-FDR. The total historic flow from the site is 3.8/34.6 cfs in the 5/100 year storm events. The following design point table is for combined allowable discharge rates from the property at respective locations including historic flows from the tributary upstream basins:

Design Point	5/100 Release	Comments
DP H1	16.7*/30.3 cfs	DP H5 WS-FDR - * is 10year
DP H2	13.7/35.5 cfs	O3 BS-FDR
DP H3	56.7 cfs	DPH1+H1+H3 (100-year)
DP H4	14.6/43.7 cfs	DPH2 + H2

Design Point H3 will release a flow lower than previously anticipated within the BS-FDR (52.9/170 cfs). It is the introduction of development within the Sterling Ranch site that has eliminated offsite flows from BS-FDR Basin O1 that significantly changed the drainage pattern. The historic release is now contained solely to the historic flows from WS-FDR design point H5 and the proposed onsite historic flows.

Design Point H4 will combine with the western half of Lots 1&2. Per the BS-FDR the combined portions of Lots 1&2 and O3 to release a combined flow of 30.5/80.8 cfs downstream. The flow anticipated in the BS-FDR appears consistent with the smaller basin analysis of this report and should be used for downstream analysis.

PROPOSED DRAINAGE DISCUSSION

Introduction

The proposed site will be developed differently than anticipated in the previous BS-FDR. The previous plan for this site maintained the existing native drainage way down the middle of Lots 1 & 2 and 3 & 4, thereby splitting the buildable area into the outer thirds of these lots. The native drainage way and "Drainage Boundary – No Build Area" (as shown on the Plat & FDR) will be eliminated with the proposed development. The proposed site and proposed drainage improvements will allow this native drainage way to be eliminated while maintaining the pass through of major flows. These modifications to the site and to the drainage patterns will allow a larger buildable area.

The existing retention pond, located just north of Lot 3, will be modified by others to become a water quality/detention pond pursuant to the WS-FDR. A new outlet works and a storm drain pipe will convey runoff from this detention pond (16.1/29.4 cfs in the 10/100 year storm events) discharging at the property line. This development is proposing a CDOT Type D inlet to capture the discharged flow and pipe it downstream along the east side of Lots 3 & 4 to discharge into the proposed Full Spectrum Extended

Detention Basin (EDB) in Lot 4. The EDB is designed to pass through, and not treat or detain, these offsite flows.

A new EDB will be provided in Lot 4. This detention basin will provide water quality treatment for portions of Lots 1 & 2, and Lots 3 & 4. In the approved Barbarick FDR there were to be two separate ponds. The new site development has been planned for a single pond to treat the developed flows. Tributary water sheet flow across the site to shallow swales that will direct runoff to the proposed EDB. The EDB will have a forebay at the confluence of the two pipe outfalls, a concrete trickle channel that terminates at a micropool structure, and is designed to treat the WQCV, EURV and 100-year detention.

A second SFB water quality with detention catchment basin will be provided at the south east/downstream end of Lot 2. This SFB will not have an outlet structure to release flows due to requirements from the gas main utility ownership of no structure to be built within the existing easements. There will be a small spillway to allow the release of large storm events. Runoff will be directed to the proposed SFB where possible.

Flow from the area north of Lot 1 (Basin O3) will pass through the site via two 24" culverts and will be discharged at the southern boundary of Lot 2, as historically done. An earthen channel will run north-south along the east side of the existing Lot 1 and Lot 2 developments. The channel is approximately 1-ft deep with 4:1 side slopes and will capture and convey any westerly flowing nuisance runoff from the proposed improvements to the sand filter detention pond as discussed in the original Barbarick Subdivision FDR, instead of the existing Lot 1 and 2 improved areas.

Runoff from the property is at historic flows and will not exceed the anticipated runoff as determined in the Sterling Ranch PDR. This is described in more detail below. The Sterling Ranch PDR includes an analysis of future drainage conditions and includes recommended infrastructure to convey this runoff. Since the Sterling Ranch surrounds the Barbarick Subdivision, it is appropriate to include the recommendations from the SR-PDR in this Proposed Drainage Discussion.

Proposed On-Site Basin Descriptions: (See Basin Map in the pocket)

On-site Basin D1 (D for Developed condition) - This developed basin encompasses approximately 11.4 acres - the majority of Lots 3 & 4 and small portions of Lots 1 & 2. This basin generates 19.7/56.0 cfs in the 5/100 year storm events and sheet flows into shallow swales that direct the runoff into the proposed EDB to be located in Lot 4. Lot 3 is based on Owner provided information for a gravel parking/vehicle storage area, and Lot 4 has been based on proposed building site improvements as identified in the rezoning application. Any changes to the land use will require an update to the Final Drainage Report; much like the original Barbarick Subdivision Final Drainage Report is being updated with the grading and Lot 4 development application.

On-site Basin D2 This undeveloped basin encompasses 1.2 acres and represents the south portion of Lot 4, below and south of the two detention ponds. This basin is historic in nature and generates 0.8/3.0 cfs and drains directly into a road side ditch within the Sterling Ranch development.

On-site Basin D3 This developed basin encompasses approximately 3.13 acres - the remaining proposed infill portions of Lots 1 and 2 (east of the currently built out Lots 1&2). As discussed in the original Barbarick Subdivision FDR, development of these areas will require a detention water quality pond. This basin generates 4.1/11.6 cfs in the 5/100 year storm events and sheet flows southerly to the proposed SFB located at the southern-most portion of Lot 2.

The following design point table is for combined allowable discharge rates from the property at respective locations including historic flows from the tributary upstream basins:

Design Point	5/100 Year	Comments
DP D1	85.4 cfs (100)	D1+O2 Pass Through
DP D2	48.9 cfs (100)	Pond Release+D2
DP D3	4.1/11.6 cfs	D3
DP D4	13.8/39.1 cfs	Pond Release +03 Pass Through

All release flows downstream are at or below historic levels.

RECOMMENDED DESIGN

Off-site Detention Facility:

This shallow pond will be modified for the proposed development to the north as part of the WS-FDR. This will eliminate the retention properties in this pond, will provide detention for off-site flows, will provide a suitable outlet structure, and will remove accumulated sediment. The modified pond will store up to 1.52 acft (66,211 cuft) to the principal spillway (elevation = 7048.05). A summary of flows into and out of this pond:

Off-site Pond Flow Summary (cfs)	<u>5 year</u>	<u>100 year</u>
Proposed Flow into offsite pond (Basin G/DP 5)	<u>57.4</u>	<u>92.7</u>
Increase in peak flow due to development	46.2	51.3
Proposed flow out of modified pond	<u>16.1</u>	29.4
Reduction in peak flow	41.3	63.3

For complete pond design, refer to the WS-FDR.

Proposed 30" HDPE Storm Drain from Modified Off-site Detention Pond:

This storm drain will capture flows from the discharged offsite pond and route them along the perimeter of the property daylighting into the EDB in Lot 4. 4' precast concrete manholes will be used for maintenance access at all bends and grade breaks. A grouted riprap forebay will help dissipate energy at the outlet of the pipe, and allow for settling prior to entering the pond. See the Appendix for the hydraulic analysis of this storm drain (StormCAD).

In the event of an emergency and the offsite pond fails, developed flow (Q100=93.0 cfs) will overtop the pond and be collected between the proposed roadway and pond berm.. Flow not captured by the proposed inlet will bypass easterly to the proposed offsite swale between this property and the Sterling Ranch property and conveyed southerly.

Proposed 18" HDPE Storm Drain Culvert:

A 18" HDPE culvert will convey collected runoff from Lot 3 (Developed Q100 = 15.90cfs) through Lot 4 to the FSD Pond and join sheet flow from Lot 4 and the 30" piped bypass flow from basin O2. This culvert will be privately owned and maintained by the property owners. See the Appendix for open channel calculations.

On-site FSD - EDB Pond in Lot 4 (Basin D1):

This On-site Full Spectrum Extended Detention Basin Pond provides water quality, EURV and 100-year detention. Onsite flows will combine with the 30-inch bypass flows from the north and pass through the EDB. The pond has been sized for the release of historic flows from Basin D1, as well as provides capacity for pass through conveyance of historic flows from the north.

The following table outlines the onsite existing and developed flow, required detention, and modifications to required detention utilizing the upstream over detention.

On-site Basin Flow Summary (cfs)	<u>5 year</u>	<u>100 year</u>
Existing On-site Flow at Pond	2.2	16.5
Developed On-site Flow (Basin D1)	<u>19.7</u>	<u>56.0</u>
Increase in peak flow due to development	17.5	39.5
Proposed Pass Through Flow from Off-Site Pond	<u>16.1*</u>	<u>29.4</u>
Proposed total flow out of EDB pond	<u>0.3</u>	<u>45.9**</u>

*Includes 10 year from WS-FDR **Includes Pass Through flow of 29.4 cfs

Water Quality Benefits:

Stormwater from Lots 3 & 4, and portions of 1 &2 will drain directly to the proposed Full Spectrum Extended Detention Pond. This pond will be privately maintained and provide water quality treatment to approximately 11.4 acres of developed land.

The proposed Water Quality facility is sized using the methods derived from the UDFCD Stormwater FSD Design Workbook (UD-FSD 1.11) (see Appendix). The Water Quality Capture Volume (WQCV) will be provided in this EDB, where the "initial flush" of storm water will be drained over a 40-hour time period.

The impervious area ratio is used in the UDFCD workbook to calculate the WQCV. An adjusted impervious ratio of 57% to correlate with the land use charts and Runoff Coefficients (provided above) is being utilized for the sizing of the facility.

The EDB Pond will have a a forebay, concrete trickle channel and micro-pool within the outlet structure (per UDFCD). This outlet structure will have a bar screen and an orifice plate containing 3 rows outlets (1.55 sq in orifices for the first two, and 3.8 sq in for the last row). The EURV has been designed to an elevation of 7021.50. The top of the inlet will have a grate to allow flows that exceed the WQCV and EURV to drain through the outlet works without overtopping the spillway, with an internal orifice plate of 2.37-ft diameter constricting flows to historic release rates (Q100 _{Onsite} = 16.5 cfs + Q100_{bypass} = 29.4 Total Release = 45.9 cfs).

The EDB pond can store up to 64,904 cuft (1.49 acft) to the principal spillway (7023.20). The pond bottom elevation will be at 7018.50 and the top of the embankment will be at elevation 7025.10. Should the outlet works become fully blocked; the 36' spillway will have the capacity to pass the combined 100 year peak developed runoff and northerly bypass with a flow depth = 0.90' (55.0 + 29.4 = 84.4 cfs) maintaining 1-ft of freeboard.

Summary results include:

- WQCV Volume = 0.203 ac-ft depth 1.53-ft (40 hour release)
- EURV Volume Stored = 0.677 ac-ft at depth 2.98 ft (72 hour release)
- 5 Year Volume Stored = 0.673 ac-ft at depth 2.98 ft (72 hour release)
- 100 Year Volume Stored = 1.261 ac-ft depth 4.26-ft (77 hour release)
- Emergency Spilllway Volume at Crest = 1.49 ac-ft at depth 4.7ft.

A 30" HDPE pipe will drain this outlet structure. A Low-Tailwater basin will be provided at the outlet for energy dissipation. This storm drain will daylight into the open channel just south of Lot 4 near the entrance of an existing 12" CMP. This existing 12" CMP drains under a dirt road. This dirt road will be eliminated upon development of the Sterling Ranch. Due to the limited capacity of this existing 12" CMP, runoff in excess of 5.7 cfs will overtop this dirt road, creating tail water to 7018.0. See the Appendix for the calculation results (CulvertMaster).

On-site Sand Filter Basin w/ Detention in Lot 2 (Basin D3):

A sand filter basin detention pond is being proposed to treat runoff from the proposed gravel parking portions of Lots 1 and 2 prior to discharging from the site. Due to the high pressure gas mains within this basin, grading is limited to fill only and no structures are allowed within the gas easement, so this pond will have underdrain design with partial infiltration and a controlled overflow design for the 100-year event.

The following table outlines the onsite existing and developed flow, required detention, and modifications to required detention utilizing the upstream over detention.

On-site Basin Flow Summary (cfs)	<u>5 year</u>	<u>100 year</u>
Existing On-site Flow at Pond	0.5	4.2
Developed On-site Flow (Basin D3)	<u>4.1</u>	<u>11.6</u>
Increase in peak flow due to development	3.6	7.4
Proposed total flow out of Sand Filter pond	<u>0.1</u>	<u>3.6</u>

Water Quality Benefits:

Stormwater from portions of 1 &2 will drain directly to the proposed Sand Filter Pond. This pond will be privately maintained and provide water quality treatment to approximately 3.13 acres of developed land.

The proposed Water Quality facility is sized using the methods derived from the UDFCD Stormwater Detention Design Workbook (UD-Detention 3.04) (see Appendix). The Water Quality Capture Volume (WQCV) will be provided in this SFB, where the "initial flush" of storm water will be drained over a 12-hour time period.

The impervious area ratio is used in the UDFCD workbook to calculate the WQCV. An adjusted impervious ratio of 57% to correlate with the land use charts and Runoff Coefficients (provided above) is being utilized for the sizing of the facility.

The sand filter will contain a 4" underdrain beneath 18" of CDOT Class C material. The underdrain will contain a 1.27" diameter orifice to control the outflow time in accordance with UDFCD.

The SFB pond can store up to 16,247 cu ft (0.373 acft) to the principal spillway (7025.50). The pond bottom elevation will be at 7023.00 and the top of the embankment will be at elevation 7027.37. Because the spillway acts as the 100-year control structure and notched weir design is proposed. The spillway is 5-ft wide for a depth of 10-inches for the release of the 100-year flow (3.6 cfs which is less than the 4.2 historic) then the spillway widens to 10ft for a depth of 18-inches which will have the capacity to pass the combined 100 year peak developed runoff (11.6cfs) with a flow depth = 0.5' maintaining 1-ft of freeboard.

Summary results include:

- WQCV Volume =0.039 ac-ft depth 0.37-ft (12 hour release)
- EURV Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 5 Year Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 100 Year Volume Stored = 0.394 ac-ft depth 2.83-ft (68 hour release)

Proposed (2) 24" HDPE Storm Drain Culvert:

Two 24" pipes will convey offsite flows through Lots 1 and 2 discharging to the south. The culverts will connect to a pair of existing 24" culverts entering the property and will discharge to a riprap settling basing prior to the released downstream. These culverts will be privately owned and maintained by the property owners. See the Appendix for the hydraulic analysis of this storm drain (CulvertMaster). Flow from these pipes will join the flow from the Sand Filter and discharge at Design Point 4 (combined 39.4 cfs in the 100-year event). Per the BS-FDR this flow combines with the westerly portions of Lots 1 & 2 offsite for a total release of 30.5/80.8 cfs in the 5/100 year events.

As stated above in the summary from the Sterling Ranch PDR, the anticipated runoff from this proposed discharge point (aka: SR-PDR Basin H4) is 30.5/80.8 cfs (5/100 year) due to the large pass through flow. A 42" RCP is planned to convey this flow through Sterling Ranch.

DRAINAGE, BRIDGE, AND POND FEES

This subdivision has already been platted. No additional Drainage, Bridge or Pond fees are required.

MAINTENANCE

All proposed storm drain infrastructure will be located within private property and will be owned and maintained by the property owner. The detention pond will be owned and maintained by the property owner and will require maintenance consisting of routine inspections, removal of debris from the detention area, and bi-annual inspections for hydraulic performance of the basin. Refer to the DCM for exact maintenance criteria and for other Best Management Practices (BMP).

EROSION CONTROL

Best Management Practices (BMPs) will be utilized to minimize erosion during construction and will be shown on the construction drawings. These will be in accordance with will be utilized as deemed necessary by the contractor and/or engineer. The contractor shall minimize the amount of area disturbed during all construction activities.

In general, the following shall be applied in developing the sequence of major activities;

- 1. Install down slope and side slope perimeter BMPs <u>before</u> the land disturbing activity occurs.
- 2. Do not disturb area until it is necessary for the construction activity to proceed.
- 3. Cover or stabilize exposed areas as soon as possible.
- 4. Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- 5. The construction of permanent filtration BMPs should wait until the end of the construction project when drainage areas have been stabilized.
- 6. Do not remove the temporary erosion controls until after all areas are stabilized.

Slopes

Erosion control soil retention blankets shall be installed where noted on slopes 3:1 or steeper. At a minimum, coconut/straw blend fiber material blankets should be used. The silt fence or erosion logs shall be installed at the toe of fill slopes where noted on a level contour. Erosion logs shall also be installed on slopes greater than ten feet in height where noted to reduce runoff length. The erosion logs shall be installed on a level contour. Disturbed surfaces shall be left in a roughened condition at all times when horizontal depressions approximately 2" to 4" deep, spaced 4" to 6" apart. Silt fence and erosion logs shall remain in place until all construction is complete and/or "finally stabilized", after which the silt fence and erosion logs shall be removed from the slopes. All material shall be installed per manufacturer's installation instructions.

Stockpiles/Mobilization/Winter Shutdown

Soils stockpiled for more than 30 days shall be mulched with mulch tackifier and native seeding within 14 days of stockpile construction. After mobilization and prior to winter shutdown, all disturbed slopes not completed shall be mulched with mulch tackifier and native seeding.

Inlet and Outlet Protection

Storm Drain Inlet Protection shall be provided at all storm inlets. Outlet protection shall be provided at all pipe outlet and runoff / rundown treatment locations. All materials shall be installed per manufacturer's installation instructions.

Concrete Washout

Concrete washout structures shall be installed for cleaning concrete trucks. The concrete washout structure shall be constructed such that water can only evaporate or infiltrate from the structure. Residue and concrete from the washout structure shall be periodically cleaned out and properly disposed.

Erosion Control Supervisor and Maintenance

The erosion control supervisor shall be a person other than the superintendent. The erosion control supervisor shall inspect at least every 14 days and after any precipitation or snowmelt event that causes surface erosion. At sites where construction has been completed but a vegetative cover has not been established, these inspections must occur at least once per month.

All erosion control measures shall remain in place until all construction is complete and final stabilization has been achieved. "Final stabilization" is where all disturbed areas

have been built on, paved, or germinated with a uniform vegetative cover with a density of at least 70% of pre-disturbance levels. Equivalent permanent, physical erosion reduction methods may also be employed. Any areas not meeting this standard shall be repaired according to the BMP guidelines. Accumulated sediment and debris shall be removed when the sediment level reaches one half the height of the BMP or when the sediment/debris adversely impacts the functionality of the BMP. The Contractor shall remove all sediment, mud, and construction debris that may accumulate in public right of ways not designated before-hand as a result of this construction project. All repairs, removals, and replacements stated above shall be conducted in a timely manner.

Cost Estimate

The proposed drainage system to be constructed will be privately owned and maintained. The developer will be responsible for constructing the proposed improvements.

An engineer's estimate of probable construction costs has been provided for the proposed improvements. The storm sewer systems will be located in the Sand Creek Drainage Basin. The construction cost for the improvements are not eligible for reimbursement.

Engineer's Estimate of Probable Construction Costs Tri-Lakes Construction - Sand Creek Drainage Basin Non-Reimbursable Private Improvements

Item	Unit	Quantity	Unit Cost	Total Cost
Precast Manhole	EA	4	\$2,500	\$10,000
18" HDPE Pipe	LF	231	\$45	\$10,395
24" HDPE Pipe	LF	1212	\$60	\$72,720
30" HDPE Pipe	LF	1128	\$72	\$81,216
18" Flared End	EA	2	\$225	\$450
24" Flared End	EA	2	\$250	\$500
24" CMP-HDPE	EA	2	\$200	\$400
30" Flared End	EA	1	\$350	\$350
CDOT Type D Inlet	EA	1	\$4,000	\$4,000
EDB Pond Outlet	EA	1	\$35,000	\$35,000
			SubTotal	\$215,031.00
			15% Contingency	\$32,254.65
			Total Estimate	\$247,285.65

REFERENCES

- 1. City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II, dated May 2014 including subsequent updates
- 2. City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II, dated November 1991 including subsequent updates
- 3. Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008).
- Urban Storm Drainage Criteria Manuals, Volumes 1-3, published by the Urban Drainage and Flood Control District, (Volumes 1 & 2 dated 2016, Volume 3 dated 2015)
- 5. Preliminary Drainage Report for Sterling Ranch-Phase 1, Sand Creek Drainage Basin, M & S Civil Consultants, Inc., May 2015
- Woodmen Storage Final Drainage Report, El Paso County, Calibre Engineering, Inc., July 2004; Revised February, 2010; Revised May, 2010; Revised July, 2010
- Preliminary and Final Drainage Plan and Report for Barbarick Subdivision, El Paso County, Oliver E. Watts Consulting Engineer Inc., January 2005; Revised October 2005; Revised December 2006; Revised May 2007; Revised August 15, 2007
- 8. **NOAA Atlas 14, Volume 8 Version 2** U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Hydrometeorological Design Studies Center.
- 9. FEMA Map Service Center: <u>http://msc.fema.gov</u>
- 10. NRCS Web Soil Survey. http://websoilsurvey.nrcs.usda.gov

×.

.

APPENDIX A

HYDROLOGIC AND HYDRAULIC CALCULATIONS

Project Title	1		Rarh	arick Subdiv	vision		
Catchment II			Carb	H-1 5 Year		<u> </u>	
I. Catchment Hyd	rologic Data						
Catchment ID	= <u>H1</u>						
Area Percent Imperviousness		Acres %					
NRCS Soil Type		A, B, C, or [D				
II. Rainfall Informa	ition I (inch/l	hr) = C1 • P1	1 /(C2 + Td) [,]	^C3			
Design Storm Return Period, Tr		years	and the second se	n period for d	esign storm)		
C1 C2			(input the va (input the va				
C3			(input the va				
P1	= 1.23	inches	(input one-h	r precipitatio	nsee Shee	t "Design Info	ס")
III. Analysis of Flow	w Time (Time	of Concent	ration) for a	Catchment	l		
Runoff Coefficient, C	=0.08						
Overide Runoff Coefficient, C	=	(enter an ov	eride C value	e if desired, c	or leave blan	k to accept ca	alculated C.)
5-yr. Runoff Coefficient, C-5							
eride 5-yr. Runoff Coefficient, C	=	(enter an ov			, or leave bla	ink to accept	calculated (
			Illustration	-			
							-
			Rea	221 22	verland		1
		Reach 2	Rea	221 22	low) Beginning	
		Reach 2	Ren	221 22	low	~	
		Reach 2	Ret	221 22	low) Beginning	
k	Reach 3	Reach 2	Rea	221 22		Beginning	
NRCS Land	Reach 3	Reach 2 Tillage/	Short	221 22		Beginning Flow Direction	n
NRCS Land Type	<u></u>		Short Pasture/	Nearly Bare	Grassed Swales/	Beginning Flow Direction Catchment Boundary Paved A Shallow Par	n Areas & ved Swales
personal and the second s	Heavy		Short	Nearly	Grassed	Beginning Flow Direction Catchment Boundary Paved A	n Areas & ved Swales : Flow)
Type Conveyance	Heavy Meadow 2.5	Tillage/ Field	Short Pasture/ Lawns	Nearly Bare Ground	Grassed Swales/ Waterways 15	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet	n Areas & ved Swales : Flow)
Туре	Heavy Meadow 2.5 Reach	Tillage/ Field 5	Short Pasture/ Lawns 7	Nearly Bare Ground 10 5-yr	Grassed Swales/ Waterways 15 NRCS	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 20 Flow	Areas & ved Swales Flow) 0
Type Conveyance	Heavy Meadow 2.5	Tillage/ Field	Short Pasture/ Lawns 7	Nearly Bare Ground	Grassed Swales/ Waterways 15 NRCS Convey-	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 20	Areas & ved Swales Flow) 0 Flow Time
Type Conveyance	Heavy Meadow 2.5 Reach	Tillage/ Field 5	Short Pasture/ Lawns 7	Nearly Bare Ground 10 5-yr Runoff	Grassed Swales/ Waterways 15 NRCS	Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 20 Flow Velocity	Areas & ved Swales Flow) 0
Type Conveyance	Heavy Meadow 2.5 Reach ID	Tillage/ Field 5 Slope S ft/ft input	Short Pasture/ Lawns 7 Length L ft input	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V fps output	Areas & ved Swales Flow) 0 Flow Time Tf minutes output
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland	Tillage/ Field 5 Slope S ft/ft input 0.0300	Short Pasture/ Lawns 7 Length L ft input 300	Nearly Bare Ground 10 5-yr Runoff Coeff C-5	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 20 Flow Velocity V fps output 0.23	Areas & ved Swales Flow) 0 Flow Time Tf minutes output 22.16
Type Conveyance	Heavy Meadow 2.5 Reach ID	Tillage/ Field 5 Slope S ft/ft input	Short Pasture/ Lawns 7 Length L ft input	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V fps output	Areas & ved Swales Flow) 0 Flow Time Tf minutes output
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Tillage/ Field 5 Slope S ft/ft input 0.0300	Short Pasture/ Lawns 7 Length L ft input 300	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 20 Flow Velocity V fps output 0.23	Areas & ved Swales Flow) 0 Flow Time Tf minutes output 22.16
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Tillage/ Field 5 Slope S ft/ft input 0.0300	Short Pasture/ Lawns 7 Length L ft input 300	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 20 Flow Velocity V fps output 0.23	Areas & ved Swales Flow) 0 Flow Time Tf minutes output 22.16
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Tillage/ Field 5 Slope S ft/ft input 0.0300 0.0300	Short Pasture/ Lawns 7 Length L ft input 300 338	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V fps output 0.23 1.73	Areas & ved Swales Flow) 0 Flow Time Tf minutes output 22.16 3.25
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Tillage/ Field 5 Slope S ft/ft input 0.0300	Short Pasture/ Lawns 7 Length L ft input 300	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 20 Flow Velocity V fps output 0.23	Areas & ved Swales Flow) 0 Flow Time Tf minutes output 22.16

а.

•

CALC	ULATION	OF A PEA		F USING	RATIONA	L METHO	D
Project Title: Catchment ID:				arick Subdiv H-1 100 Yea			
I. Catchment Hydro	ologic Data						
Catchment ID = Area = Percent Imperviousness = NRCS Soil Type =	10.70		D				
II. Rainfall Informat	ion I (inch/i	hr) = C1 • P	1 /(C2 + Td)	^C3			
Design Storm Return Period, Tr = C1 = C2= C3= P1=	28.50 10.00 0.786	years inches	(input the va (input the va (input the va	alue of C2)			5")
III. Analysis of Flow Runoff Coefficient, C = Overide Runoff Coefficient, C = 5-yr. Runoff Coefficient, C-5 = Overide 5-yr. Runoff Coefficient, C ≠	0.36	(enter an ov	eride C value	e if desired, c lue if desired	or leave blanl	on and the second second second second	alculated C.) calculated C-5.
Ĺ	Reach 3	Reach 2	Re	2 2		EGEND Beginning Flow Direction Catchment Boundary	
NRCS Land Type	Heavy Meadow	Tillage/ Field	Short Pasture/ Lawns	Nearly Bare Ground	Grassed Swales/ Waterways	Paved A Shallow Pa (Sheet	ved Swales
Conveyance	2.5	5	7	10	15	2	
Calculations:	Reach ID	Slope S ft/ft input	Length L ft input	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input	Flow Velocity V fps output	Flow Time Tf minutes output
	Overland 1	0.0300	300 338	0.08	N/A 10,00	0.23	22.16 3.25
	2 3 4 5	Sum				nputed Tc =	25.42
IV. Peak Runoff Pred	liction					egional Tc = Entered Tc =	13.54 13.54
Rainfall Intensity at Com Rainfall Intensity at Re Rainfall Intensity at User-De	puted Tc, I = gional Tc, I =	6.12	inch/hr inch/hr inch/hr		Peak Flo	owrate, Qp = owrate, Qp = owrate, Qp =	17.20 cfs 23.71 cfs 23.71 cfs

	Project Title: Catchment ID:			Barba	H-2 5 Year	vision		
I. Ca	atchment Hydro	ologic Data						
	Catchment ID =	H2						
	Area =		Acres					
	nperviousness =			~				
N	RCS Soil Type =	B	A, B, C, or I	ر				
II. Ra	ainfall Informat	ion I (inch/t	nr) = C1 * P	1 /(C2 + Td) [,]	°C3			
Design Storm Ret			years			esign storm)		
	C1 = C2=			(input the va (input the va				
	C3=			(input the va				
	P1=		inches			nsee Shee	t "Design Info	")
III. AI	nalysis of Flow	Time (Time	of Concent	ration) for a	Catchment	:		
Runoff	Coefficient, C =	0.08						
Overide Runoff	Coefficient, C =		(enter an ov	eride C value	e if desired, d	or leave blank	to accept ca	lculated C.)
5-yr. Runoff C	oefficient, C-5 =	0.08						
eride 5-yr. Runoff	Coefficient, C =		(enter an ov	veride C-5 val	ue if desired	, or leave bla	ink to accept	calculated C
				Illustration				
				- 100				
					~	>		
						verland XI	LEGEND	1
		/		Rez	ưhl <u>f</u>	low	Beginning	
•			Reach 2	5			Flow Direction	
		0			-			1
		Reach 3	4				Catchment	
	K K K					ا	Boundary	J
	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	
	Туре	Meadow	Field	Pasture/	Bare	Swales/	Shallow Pav	
	Conveyance	2.5		Lawns	Ground	Waterways 15	(Sheet	
			5	7	10	13)
L.	· · · · ·	<u>ا</u>	5	7	10	13]
L. Ca	alculations:	Reach	Slope	Length	5-уг	NRCS	Flow	Flow
C:	alculations:	· · · · · · · · · · · · · · · · · · ·			5-yr Runoff	NRCS Convey-	Flow Velocity	Flow Time
L. Ci	alculations:	Reach	Slope S	Length	5-yr Runoff Coeff	NRCS	Flow Velocity V	Flow Time Tf
L. Ci	alculations:	Reach	Slope	Length	5-yr Runoff	NRCS Convey-	Flow Velocity	Flow Time
L. Ci	alculations:	Reach ID Overland	Slope S ft/ft input 0.0380	Length L ft input 155	5-yr Runoff Coeff C-5	NRCS Convey- ance input N/A	Flow Velocity V fps output 0.18	Flow Time Tf minutes output 14.74
C.	alculations:	Reach ID Overland	Slope S ft/ft input	Length L ft input	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input	Flow Velocity V fps output	Flow Time Tf minutes output
C.	alculations:	Reach ID Overland 1 2	Slope S ft/ft input 0.0380	Length L ft input 155	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input N/A	Flow Velocity V fps output 0.18	Flow Time Tf minutes output 14.74
C,	alculations:	Reach ID Overland	Slope S ft/ft input 0.0380	Length L ft input 155	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input N/A	Flow Velocity V fps output 0.18	Flow Time Tf minutes output 14.74
C.	alculations:	Reach ID Overland 1 2 3	Stope S ft/ft input 0.0380 0.0350	Length L ft input 155 515	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input N/A 10.00	Flow Velocity V fps output 0.18 1.87	Flow Time Tf minutes output 14.74 4,59
Ľ. Ci	alculations:	Reach ID Overland 1 2 3 4	Slope S ft/ft input 0.0380	Length L ft input 155 515	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input N/A 10.00	Flow Velocity V fps output 0.18 1.87	Flow Time Tf minutes output 14.74 4.59
Ľ. Ci	alculations:	Reach ID Overland 1 2 3 4	Stope S ft/ft input 0.0380 0.0350	Length L ft input 155 515	5-yr Runoff Coeff C-5 output 0.08	NRCS Convey- ance input N/A 10.00 Cor R	Flow Velocity V fps output 0.18 1.87 nputed Tc = egional Tc =	Flow Time Tf minutes output 14.74 4.59 19.32 13.72
L. Ci	alculations:	Reach ID Overland 1 2 3 4	Stope S ft/ft input 0.0380 0.0350	Length L ft input 155 515	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input N/A 10.00 Cor R	Flow Velocity V fps output 0.18 1.87	Flow Time Tf minutes output 14.74 4.59
	alculations: eak Runoff Prec	Reach ID Overland 1 2 3 4 5	Stope S ft/ft input 0.0380 0.0350	Length L ft input 155 515	5-yr Runoff Coeff C-5 output 0.08	NRCS Convey- ance input N/A 10.00 Cor R	Flow Velocity V fps output 0.18 1.87 nputed Tc = egional Tc =	Flow Time Tf minutes output 14.74 4.59 19.32 13.72
IV. Pe Rainfall		Reach ID 0verland 1 2 3 4 5 diction puted Tc, =	Slope S ft/ft 0.0380 0.0350 Sum	Length L ft input 155 515	5-yr Runoff Coeff C-5 output 0.08	NRCS Convey- ance input N/A 10.00 Cor Cor R User-E	Flow Velocity V fps output 0.18 1.87 nputed Tc = egional Tc =	Flow Time Tf minutes output 14.74 4.59 19.32 13.72

Peak Flowrate, Qp = 0.88 cfs Peak Flowrate, Qp = 0.88 cfs

•

٠

2

•

×

	<u> </u>				F USING			D
	Project Title			Barb	arick Subdiv	vision		
	Catchment ID				H-2 100 Yea	r		
1	. Catchment Hydro	ologic Data						
	Catchment ID =							
Davas	Area =		Acres					
Percer	nt Imperviousness = NRCS Soil Type =		[™] A, B, C, or [D				
II	. Rainfall Informat	ion I (inch/I	hr) = C1 * P1	1 /(C2 + Td) [,]	^C3			
Design Storm	Return Period, Tr =	100	years	(input return	n period for d	esign storm)	R	
	C1 =			(input the va				
	C2= C3=			(input the va (input the va				
	P1=		inches			nsee Shee	t "Design Info)")
01	. Analysis of Flow	Time (Time	of Concent	ration) for a	Catchment			
	noff Coefficient, C =							
	noff Coefficient, C =	·	(enter an ov	eride C value	e if desired, c	or leave blan	k to accept ca	liculated (
· · · · · · · · · · · · · · · · · · ·	ff Coefficient, C-5 =							
veride 5-yr. Rur	noff Coefficient, C =		(enter an ov			, or leave bla	ank to accept	calculated
				Illustration				
			/		O*	P		-
		-		Rea		verland	LEGEND	
			Reach 2	¥) Beginning	
		1~		2			Flow Direction	
		~ 5				/	LINA DITECTO	n
	(/					~	n.
	k	Reach 3					Catchment Boundary	n
		Reach 3 Heavy	Tillage/	Short	Nearly		(
	NRCS Land Type		Tillage/ Field	Pasture/	Bare	Grassed Swales/	Catchment Boundary Paved A Shallow Par	veas & ved Swales
	Туре	Heavy Meadow	Field	Pasture/ Lawns	Bare Ground	Grassed Swales/ Waterways	Catchment Boundary Paved A Shallow Pa (Sheet	Areas & ved Swales Flow)
		Heavy		Pasture/	Bare	Grassed Swales/	Catchment Boundary Paved A Shallow Par	ved Swales Flow)
	Туре	Heavy Meadow	Field	Pasture/ Lawns	Bare Ground	Grassed Swales/ Waterways	Catchment Boundary Paved A Shallow Pa (Sheet	ved Swales Flow)
	Type Conveyance	Heavy Meadow 2.5	Field	Pasture/ Lawns 7	Bare Ground 10 5-yr Runoff	Grassed Swales/ Waterways 15 NRCS Convey-	Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity	vreas & ved Swales Flow) D Flow Time
	Type Conveyance	Heavy Meadow 2.5 Reach	Field 5 Slope S	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff	Grassed Swales/ Waterways 15 NRCS	Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V	vreas & ved Swales Flow) D Flow Time Tf
	Type Conveyance	Heavy Meadow 2.5 Reach	Field 5 Slope S ft/ft	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff C-5	Grassed Swales/ Waterways 15 NRCS Convey- ance	Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V fps	Flow) Flow) Flow Flow Time Tf minutes
	Type Conveyance	Heavy Meadow 2.5 Reach	Field 5 Slope S	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff	Grassed Swales/ Waterways 15 NRCS Convey-	Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V	vreas & ved Swales Flow) D Flow Time Tf
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland	Field 5 Slope S fuft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	Catchment Boundary Paved A Shallow Par (Sheet 2) Flow Velocity V fps output	Vreas & ved Swales Flow) 5 Flow Time Tf minutes output
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1	Field 5 Slope S ft/ft input 0.0380	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Catchment Boundary Paved A Shallow Par (Sheet 2) Flow Velocity V fps output 0.18	vreas & ved Swales Flow) D Flow Time Tf minutes output 14.74
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Field 5 Slope S ft/ft input 0.0380	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Catchment Boundary Paved A Shallow Par (Sheet 2) Flow Velocity V fps output 0.18	vreas & ved Swales Flow) D Flow Time Tf minutes output 14.74
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1	Field 5 Slope S ft/ft input 0.0380	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Catchment Boundary Paved A Shallow Par (Sheet 2) Flow Velocity V fps output 0.18	Flow) Flow) Flow Flow Time Tf minutes output 14.74
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S ft/ft input 0.0380	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	Catchment Boundary Paved A Shallow Par (Sheet 2) Flow Velocity V fps output 0.18	Flow) Flow) Flow Flow Time Tf minutes output 14.74

IV. Peak Runoff Prediction			
Rainfall Intensity at Computed Tc, I =	5.15 inch/hr	Peak Flowrate, Qp =	6.90 cfs
Rainfall Intensity at Regional Tc, I =	6.08 inch/hr	Peak Flowrate, Qp =	8.15 cfs
Rainfall Intensity at User-Defined Tc, I =	6.08 inch/hr	Peak Flowrate, Qp =	8.15 cfs

.

L Catchment ID = H3 Area =		Project Title:			Barba	arick Subdiv	vision				
$\begin{array}{c} \label{eq:constraint} \begin{array}{c} \label{eq:constraint} \end{tabular} \\ t$		Catchment ID:				H-3 5 year			20 20		
$Area = \frac{111}{200} Area = \frac{200}{200} %$ $NRCS Soil Type = \frac{1}{100} A, B, C, or D$ I. Rainfall Information 1 (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input the value of C1) C2 = 10.00 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.22 inches (input on except calculated S-yr, Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.00 III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.00 Overide S-yr, Runoff Coefficient, C = 0.00 Inde S-yr, Runoff Coefficient, C = 0.00 Inde S-yr, Runoff Coefficient, C = 0.00 INRCS Land Heavy Field Pasure/ Bare Swates/ Shallow Paved Xreas & Shallow Paved	I.	Catchment Hydro	ologic Data								
Percent Imperviousness = 2.00 % NRCS Soil Type = B A B, C, or D II. Rainfail Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input the value of C1) C1 = 28.50 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.23 inches (input the value of C3) P1 = 0.08 (input the value of C4 value if desired, or leave blank to accept calculater S-yr. Runoff Coefficient, C = 0.08 (inter an overide C-5 value if desired, or leave blank to accept calculater Illustration NRCS Land Heavy Trillage Pshort Reach I Reach 2 NRCS Land Heavy Field Pasture/ Bare Swatery Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length S-yr INRCS Flow Thom The Value Swatery Convey Velocity Tim input input input output											
NRCS Soil Type = E A, B, C, or D II. Rainfall Information 1 (inch/hr) = C1 ' P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input the value of C1) (input the value of C2) C3 = C2 = 10.00 (input the value of C2) C3 = C3 = 0.786 (input the value of C3) P1 = P1 = 1.23 inches (input the value of C3) P1 = Output the value of C3 (input the value of C3) P1 = P1 = 0.08 (input the value of C3) P1 = Output the value of C3 (input the value of Cost (input the value of C3) P1 = Output the value of C3 (input the value of C3) P1 = Output the value of C3 (input the value of C3) P1 = Output the value of C3 (input the value of Cost (input the value of C3) P1 = Output the value of C3 (input the value of C3) P1 = Output the value of C3 (input the value of C3) Output the value of Cast (input the value of Cast (input the value of C3) Output the value of C3 (input the value of Cast (Percen										
Design Storm Return Period, Tr = <u>5 years</u> (input return period for design storm) C1 = <u>28.50</u> (input the value of C1) C2 = <u>10.00</u> (input the value of C2) C3 = <u>0.786</u> (input the value of C3) P1 = <u>1.23</u> inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = <u>0.08</u> Overide Runoff Coefficient, C = <u>0.08</u> (enter an overide C value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = <u>0.08</u> (enter an overide C-5 value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = <u>0.08</u> (enter an overide C-5 value if desired, or leave blank to accept calculated Brow Direction Calculations: <u>Reach 2</u> NRCS Land <u>Heavy</u> <u>Tillage/</u> <u>Pasture/</u> <u>Bare</u> <u>Swales/</u> <u>Shallow Paved Swa</u> (Sheet Ficv) Conveyance 2.5 5 7 10 15 20 Calculations: <u>Reach Stope Length</u> <u>5-yr</u> <u>NRCS</u> <u>Flow</u> <u>Flow</u> D NRCS Land <u>Heav</u> <u>V</u> D Stope Length <u>5-yr</u> <u>NRCS</u> <u>Flow</u> <u>Flow</u> Conveyting <u>Conveyting</u> <u>Conveyti</u>					D						
C1 = 28.50 (input the value of C1) C2 = 10.00 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.23 inches (input one-hr precipitationsee Sheet "Design Info") II. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 enter an overide C value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = 0.08 ride 5-yr. Runoff Coefficient, C = 0.08 Reach 2 (enter an overide C-5 value if desired, or leave blank to accept calculated Illustration Reach 1 (Bow) Reach 1 (Bow) Reach 2 (Correspondence) NRCS Land Heavy Tillage/ Field Pasture/ Bare Svales/ Corresponde 25 5 7 10 15 20 Calculations: Reach Sope Length S-yr NRCS Flow Flow Sheet Flow) Corresponde 25 S 7 10 15 20 Calculations: Reach Sope Length S-yr NRCS Flow Flow Time Soundary Sheet Sheet Soundary Shee	R.	Rainfall Informat	ion I (inch/I	hr) = C1 * P	1 /(C2 + Td)'	°C3					
C2= 10.00 C3= (input the value of C2) (input the value of C3) P1= (input the value of C3) P1= P1= 1.23 inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C-5 0.08 Overide Runoff Coefficient, C-5 0.08 S-yr. Runoff Coefficient, C-5 0.08 Illustration (enter an overide C-5 value if desired, or leave blank to accept calculated in the value of C5. Illustration (enter an overide C-5 value if desired, or leave blank to accept calculated in the value of C5. Illustration (enter an overide C-5 value if desired, or leave blank to accept calculated in the value of C5. NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Shallow Paved Swales/ NRCS Land Heavy Field Short Nearly Shallow Paved Swales/ Shallow Paved Swales/ Conveyance 2.5 5 7 10 15 20 Calculations: Reach Siope Length S-yr NRCS Flow Flow 10 S	Design Storm			years			esign storm)				
C3= 0.786 P1= (input the value of C3) (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 (enter an overide C value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = Overide Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = Image: Source in the state of th											
P1= 123 inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 (enter an overide C value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = 0.08 ander 5-yr. Runoff Coefficient, C = 0.08 Mill State 1 werland Reach 2 NRCS Land Heave Areas & Type Meadow Field Pasture/ Bare Swaies/ Short NRCS Land Pawed Areas & Type Meadow Field Sort Swaies/ Shallow Paved Swai Convey-or colspan= 2:5 5 7 10 <td <<="" colspan="2" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 s-yr. Runoff Coefficient, C = 0.08 eride 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calculated integration Illustration Reach 1 Bow Reach 3 Breide S-yr. NRCS Land Heavy Tillage/ Short Pasture/ Bare Ground Shallow Paved Areas & Shallow Paved Swales/ Conveyance 2.5 5 7 10 15 20 Conveyance Calculations: Reach Stope Length Stope Length Stope Length Vetority Tim Overland 0.0250 3 0.08 N/A 0 0.23 24 1 2 1 2 1 2 1 2 1 2 1 2 1				inches	A set of a		nsee Shee	t "Design Info	")		
Overide Runoff Coefficient, C =	Ш.	Analysis of Flow	Time (Time	of Concent	tration) for a	Catchment					
5-yr. Runoff Coefficient, C-5 = 0.08 eride 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calcular Illustration Reach 1 flow Urertiand Reach 1 flow Direction Cetchment Boundary NRCS Land Heavy Tillage/ Type Meadow Field Pasture/ Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Corvey- Velocity Tim Coeff ance V Tf hyph input output out	Run	off Coefficient, C =	0.08								
aride 5-yr. Runoff Coefficient, C =	Overide Run	off Coefficient, C =		(enter an ov	veride C value	e if desired, c	or leave blan	k to accept ca	Iculated C		
Illustration overhand flow LEGEND Beginning Flow Direction Catchment Boundary NRCS Land Type Heavy Meadow Tillage/ Field Short Pasture/ Lawns Nearly Bare Ground Grassed Swales/ Vaterways Paved Areas & Shallow Paved Swa (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Tim ninut Output output output 0verland 0.0250 338 0.08 N/A 0.23 24.9 1	5-yr. Runof	f Coefficient, C-5 =	0.08								
WRCS Land LEGEND Reach 2 overland LEGEND NRCS Land Heavy Tillage/ Short Nearly Grassed Pawed Areas & NRCS Land Heavy Tillage/ Short Lawns Ground Swales/ Shallow Paved Swa Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim Overland 0.0250 338 0.08 N/A 0.23 24.9 1	eride 5-yr. Run	off Coefficient, C =		(enter an ov			, or leave bla	ink to accept	calculated		
Reach 2 Reach 1 flow Deginning Reach 3 Beginning Flow Direction NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim 0.0250 338 0.08 N/A 0.23 24.9 1					Illustration						
Reach 2 Reach 1 flow Deginning Reach 3 Beginning Flow Direction NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & NRCS Land Heavy Field Pasture/ Bare Swales/ Shallow Paved Swales/ Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Corvey- Velocity Tim ID S L Runoff Corvey- Velocity Tim </td <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>~</td> <td></td> <td></td>					_		~				
Reach 2 Reach 1 flow Deginning Reach 3 Paw Direction Catchment NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & NRCS Land Heavy Field Pasture/ Bare Swales/ Shallow Paved Swales/ Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Corvey- Velocity Tim ID S L Runoff Corvey- Velocity Inout <				-		-0-	·····ò				
Reach 2 Beginning Reach 3 NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swa Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Tim 10 S L Runoff Convey- Velocity Tim 10 triput input output output output output 0.0250 338 0.08 N/A 0.23 24.9 1					Rez	22 - 22 - 22 - 22 - 22 - 22 - 22 - 22		LEGEND	7		
Catchment Boundary NRCS Land Heavy Tillage/ Shot Nearly Grassed Paved Areas & Shallow Paved Swa (Sheet Flow) Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swa Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Timut ID S L Runoff Convey- Velocity Timut Overland 0.0250 338 0.08 N/A 0.23 24.9 1				Reach 2	*) Beginning			
Rearh 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swa Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow ID S L Runoff Convey- Velocity Tim Overland 0.0250 338 0.08 N/A 0.23 24.9 1 2 3 4 338 Computed Tc = 24.9 Regional Tc = 11.8 11.8			/)			Flow Direction			
Rearh 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swa Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow ID S L Runoff Convey- Velocity Tim Overland 0.0250 338 0.08 N/A 0.23 24.9 1 2 3 4 338 Computed Tc = 24.9 Regional Tc = 11.8 11.8			0					<u> </u>			
TypeMeadowFieldPasture/ LawnsBare GroundSwales/ WaterwaysShallow Paved Swa (Sheet Flow)Conveyance2.557101520Calculations:Reach IDSlope SLength Flow5-yr RunoffNRCS Convey- VelocityFlow VelocityFlow Tim Tim CoeffFlow VelocityOvertand0.02503380.08N/A0.2324.91		K	Reach 3								
Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim Overland 0.0250 338 0.08 N/A 0.23 24.9 1 2 3 4	1	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	reas &		
Conveyance 2.5 5 7 10 15 20 Calculations: Reach ID Slope ID Length S 5-yr L NRCS Runoff Flow Velocity Flow Tim Tim output 000000000000000000000000000000000000		Туре	Meadow	Field		1000 CONTRACTOR 201	1000 000 000 000 000 000 000 000 000 00				
Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim ft/ft ft C-5 fps minut output output Overland 0.0250 338 0.08 N/A 0.23 24.9 1		Conveyance									
ID S L Runoff Convey- Coeff Velocity Tim fv/ft ft fc-5 fps minut input input output input output Overtand 0.0250 338 0.08 N/A 0.23 24.9 1		Conveyance	<u>. 2.3</u>	J	<u> </u>	10	13		,		
ft/ft ft Coeff ance V Tf ft/ft ft C-5 input output output output Overland 0.0250 338 0.08 N/A 0.23 24.9 1		Calculations:				5-yr	NRCS	Flow	Flow		
ft/ft ft C-5 fps minut Overland 0.0250 338 0.08 N/A 0.23 24.9 1				S			2010 C.		Time		
input input output input output output <td></td> <td></td> <td></td> <td>ft/ft</td> <td>ft</td> <td>a dependence of the</td> <td>ançe</td> <td></td> <td>minutes</td>				ft/ft	ft	a dependence of the	ançe		minutes		
1 2 3 3 4 5 Sum 338 Computed Tc = 24.9 Regional Tc = 11.8							input	2003	output		
2 3 4 5 Sum 338 Computed Tc = 24.9 Regional Tc = 11.8			Overland	0.0250	338	0.08	N/A	0.23	24.98		
3				0							
5 Sum 338 Computed Tc = 24.9 Regional Tc = 11.8											
Sum 338 Computed Tc = 24.9 Regional Tc = 11.8	8										
Regional Tc = 11.8			5								
				Sum	338						
								-	11.88		
								·- L			
Raintal Intensity at Computed LC 1 = 2.14 ince/br		Peak Runoff Pred		314	inch/hr		Deak Cl-	wrate On -	0.1		
	Rainf	all Intensity at Com	puted Tc, I =						0.1		

	CALC		OF A PEA	K RUNOF	F USING	RATIONA		2
	Project Title: Catchment ID:				arick Subdiv H-3 100 yea			
L	Catchment Hydro	logic Data				.42	Martin Albert Constants	
	Catchment iD =	H3						
Percen	Area = t Imperviousness =		Acres					
	NRCS Soil Type =		A, B, C, or E	0				
n.	Rainfall Informati	ion I (inch/I	nr) = C1 * P1	l /(C2 + Td)/	°C3			
Design Storm I	Return Period, Tr =	100	years			esign storm)		
	C1 =			(input the va				
	C2= C3=	0.786		(input the va (input the va				
	P1=	2.67	inches			nsee Sheel	"Design Info	")
10.	Analysis of Flow	Time (Time	of Concent	ration) for a	Catchment	t		
Run	off Coefficient, C =	0.36						
Overide Run	off Coefficient, C =		(enter an ov	eride C value	e if desired, o	or leave blank	to accept ca	Iculated C.)
A. 194 (************************************	f Coefficient, C-5 =							
eride 5-yr. Run	off Coefficient, C =		(enter an ov		ue if desired	, or leave bla	nk to accept	calculated C-
				Illustration				
					O·-	verland		1
				Rea		low	EGEND	
			Reach 2	5) Beginning	
		1 or		-			Flow Direction	4
		\sim					Cetrhment	1
	K	Reach 3			ō.		Boundary	
	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	veas &
	Туре	Meadow	Field	Pasture/	Bare	Swales/	Shallow Pay	
	Conveyance	2.5	5	Lawns 7	Ground 10	Waterways 15	(Sheet	
	Canaganaa	<u> </u>	<u> </u>					
	Calculations:	Reach	Slope	Length	5-yr	NRCS	Flow	Flow
		۱D	S	Ľ	Runoff Coeff	Convey- ance	Velocity V	Time Tf
			ft/ft	ft	C-5		fps	minutes
		222 27	input	input	output	input	output	output
		Overland	0.0250	338	0.08	N/A	0.23	24.98
		2						
		3						
		4 5						
			Sum	338		Coi	nputed Tc =	24.98
		L				R	egional Tc =	11.88
						User-E	ntered Tc =	11.88
IV.	Peak Runoff Pred	liction		2				
Rainf	all Intensity at Com	puted Tc, I =		inch/hr			wrate, Op =	1,87 (
	nfall Intensity at Re-			inch/hr			wrate, Qp =	2.71
Raintall	Intensity at User-De	ained IC, I =	6./3	inch/hr		Peak Flo	wrate, Qp =	2.71

	Project Title: Catchment ID:			Barba	D-2 5 Year			
1.	Catchment Hydro	ologic Data						a.
	Catchment ID =							
Percer	= Area = t Imperviousness		Acres					
1 0100	NRCS Soil Type =		A, B, C, or	D				
n	. Rainfall Informat	ion I (inch/	hr) = C1 * P	1 /(C2 + Td)*	°C3			
Design Storm	Return Period, Tr = C1 =		years		period for d	esign storm)		
	C2=			(input the va (input the va				
	C3=			(input the va				
	P1=		inches				t "Design Info)")
113.	. Analysis of Flow	Time (Time	of Concent	tration) for a	Catchment	l		
	noff Coefficient, C =							_
	noff Coefficient, C = ff Coefficient, C-5 =		(enter an ov	veride C value	e if desired, c	or leave blan	k to accept ca	lculated C.
(2) Sample Description 1	noff Coefficient, C =	2002-02010-0	(enter an o	veride C-5 val	ue if desired	or leave bla	ank to accept	calculated
			(Illustration			and to deather	
					0	·····		
				Par	10.00	verland I	LEGEND	1
			Reach 2	× nee	401 L	lov /	🔵 Beginning	
		/ ~	A	5			Flow Direction	n
		15						
	Ĺ	0					Catchment	
	k	Reach 3					Catchment Boundary	
	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Boundary Paved A	
	NRCS Land Type	<u></u>	Tillage/ Field	Pasture/	Bare	Swales/	Boundary Paved A Shallow Pav	ved Swales
		Heavy			22 Mar	a state and a state of the stat	Boundary Paved A	ved Swates Flow)
	Type Conveyance	Heavy Meadow 2.5	Field	Pasture/ Lawns 7	Bare Ground 10	Swales/ Waterways	Boundary Paved A Shallow Pav (Sheet 20	ved Swales Flow) 0
	Туре	Heavy Meadow	Field	Pasture/ Lawns	Bare Ground	Swales/ Waterways	Boundary Paved A Shallow Pav (Sheet	ved Swates Flow)
	Type Conveyance	Heavy Meadow 2.5 Reach	Field 5 Slope S	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff	Swales/ Waterways 15 NRCS	Paved A Shallow Paved A (Sheet 24 Flow Velocity V	ved Swales Flow) 0 Flow Flow Time Tf
	Type Conveyance	Heavy Meadow 2.5 Reach	Field 5 Slope S ft/ft	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff C-5	Swales/ Waterways 15 NRCS Convey- ance	Paved A Shallow Paved A Shallow Pave (Sheet 20 Flow Velocity V fps	ved Swales Flow) 0 Flow Time Tf minutes
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland	Field 5 Slope S	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff	Swales/ Waterways 15 NRCS Convey-	Paved A Shallow Paved A (Sheet 24 Flow Velocity V	ved Swales Flow) 0 Flow Flow Time Tf
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Paved A Shallow Par (Sheet 2) Flow Velocity V fps output	ved Swales Flow) 0 Flow Time Tf minutes output
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Paved A Shallow Par (Sheet 2) Flow Velocity V fps output	ved Swales Flow) 0 Flow Time Tf minutes output
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Paved A Shallow Par (Sheet 2) Flow Velocity V fps output	ved Swales Flow) 0 Flow Time Tf minutes output
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A	Boundary Paved A Shallow Pave (Sheet 20 Flow Velocity V fps output 0.14	ved Swales Flow) 0 Flow Time Tf minutes output
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S fvft input 0.0200	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A N/A Co R	Paved A Shallow Par (Sheet 2) Flow Velocity V fps output 0.14 0.14 mputed Tc = egional Tc =	ved Swales Flow) 0 Flow Time Tf minutes output 18.21 18.21 10.86
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S fvft input 0.0200	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A N/A Co R	Boundary Paved A Shallow Pave (Sheet 20 Flow Velocity V fps output 0.14 0.14	ved Swales Flow) 0 Flow Time Tf minutes output 18.21 18.21
	Type Conveyance Calculations:	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4 5 5	Field 5 Slope 5 ft/ft input 0.0200	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A N/A Co R User-f	Paved A Shallow Par (Sheet 20 Flow Velocity V fps output 0.14 0.14 mputed Tc = egional Tc =	ved Swales Flow) 0 Flow Time Tf minutes output 18.21 18.21 10.86 10.86
Rain	Type Conveyance Calculations:	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4 5 5	Field 5 Slope 5 ft/ft input 0.0200 Sum 2.54	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A V/A Co R User-f Peak Fic	Paved A Shallow Par (Sheet 2) Flow Velocity V fps output 0.14 0.14 mputed Tc = egional Tc =	ved Swales Flow) 0 Flow Time Tf minutes output 18.21 18.21 10.86

\$

1

Project Title	e:		Barb	rick Subdiv	vision		
Catchment I			DaiDi	D2 - 100yr			
I. Catchment Hyd	rologic Data						
Catchment ID	= D2						
Area Percent Imperviousness		Acres					
NRCS Soil Type		A, B, C, or I	D				
							5
II. Rainfall Informa	ition I (inch/	hr) = C1 * P	1 /(C2 + Td)/	°C3			
Design Storm Return Period, Tr C1		years			esign storm)		
C2			(input the va (input the va	(COS) - 12			
C3			(input the va		~		
P1	= 2.57	inches	(input one-h	r precipitatio	nsee Shee	t "Design Info	Ë)
III. Analysis of Flow	w Time (Time	of Concent	tration) for a	Catchment			
Runoff Coefficient, C	=0.36	_					
Overide Runoff Coefficient, C	· · · · · · · · · · · · · · · · · · ·	(enter an ov	veride C value	e if desired, c	or leave blani	to accept ca	lculated C.)
5-yr. Runoff Coefficient, C-5 ride 5-yr. Runoff Coefficient, C		/enter an ov	veride C_5 val	ue if desired	or leave bla	ink to accept	calculated (
nde styr. Nanon Oberndent, o		Tenter an or	Illustration		, or reave ble	ink to accept	
		_		-0	·····		
	1.2		Rez		verland	EGEND	1
		Reach 2	*	-) Beginning	
	1 m					Flow Direction	•
					19	Catchment	
r K	Reach 3				Ŀ	Boundary]
NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	a an
Туре	Meadow	Field	Pasture/	Bare Ground	Swales/ Waterways	Shallow Pav (Sheet	Charles and the summon set of a
Conveyance	2.5	5	7	10	15	20	o - ²
Calculations:	Reach	Slope	Length	5-ут	NRCS	Flow	Flow
Calculations:	Reach ID	Slope S	Length L	Runoff	Convey-	Velocity	Time
Calculations:		S	Ľ	Runoff Coeff	and the second	Velocity V	Time Tf
Calculations:			L ft input	Runoff	Convey-	Velocity	Time
Calculations:	ID Overland	5 ft/ft	L ft	Runoff Coeff C-5	Convey- ance	Velocity V fps	Time Tf minutes
Calculations:	ID Overland 1	S ft/ft input	L ft input	Runoff Coeff C-5 output	Convey- ance input	Velocity V fps output	Time Tf minutes output
Calculations:	ID Overland	S ft/ft input	L ft input	Runoff Coeff C-5 output	Convey- ance input	Velocity V fps output	Time Tf minutes output
Calculations:	ID Overland 1 2 3 4	S ft/ft input	L ft input	Runoff Coeff C-5 output	Convey- ance input	Velocity V fps output	Time Tf minutes output
Calculations:	ID Overland 1 2 3	S ft/ft input 0.0200	L ft input 85	Runoff Coeff C-5 output	Convey- ance input N/A	Velocity V fps output 0.11	Time Tf minutes output 13.49
Calculations:	ID Overland 1 2 3 4	S ft/ft input	L ft input 85	Runoff Coeff C-5 output	Convey- ance input N/A	Velocity V fps output 0.11	Time Tf minutes output 13.49
Calculations:	ID Overland 1 2 3 4	S ft/ft input 0.0200	L ft input 85	Runoff Coeff C-5 output	Convey- ance input N/A Col R	Velocity V fps output 0.11	Time Tf minutes output 13.49
	ID Overland 1 2 3 4 5	S ft/ft input 0.0200	L ft input 85	Runoff Coeff C-5 output	Convey- ance input N/A Col R	Velocity V fps output 0.11 	Time Tf minutes output 13.49 13.49 10.47
IV. Peak Runoff Pro	ID Overland 1 2 3 4 5 5	S ft/ft input 0.0200	L ft input 85 	Runoff Coeff C-5 output	Convey- ance N/A N/A Col Col R User-E	Velocity V fps output 0.11 	Time Tf minutes output 13.49 13.49 10.47 10.47
	Overland 1 2 3 4 5 ediction mputed Tc, I = egional Tc, I =	S ft/ft input 0.0200 Sum 6.13 6.83	L ft input 85	Runoff Coeff C-5 output	Convey- ance N/A N/A Cou R User-E Peak Flo	Velocity V fps output 0.11 	Time Tf minutes output 13.49 13.49 10.47

,

•

n_1			Decks	atali Bukati			
Project Title Catchment IE			2010 B-000	rick Subdi 3-Culvert 1			-
I. Catchment Hydr	rologic Data						
Catchment ID	= Lot 3						
Area		Acres					
Percent Imperviousness NRCS Soil Type		‰ A, B, C, or I	D				
II. Rainfall Informa	ntion I (inch/f	nr) = C1 * P	1 /(C2 + Td)/	°C3			
Design Storm Return Period, Tr		years		10 J	lesign storm)		
C1 C2			(input the va (input the va				
C3			(input the va				
P1	= 2.57	inches	(input one-h	r precipitatio	nsee Sheet	"Design Info	")
III. Analysis of Flow	w Time (Time	of Concent	tration) for a	Catchmen	t		
Runoff Coefficient, C	= 0.55						
Overide Runoff Coefficient, C		(enter an ov	veride C value	e if desired, o	or leave blank	to accept ca	Iculated C.)
5-yr. Runoff Coefficient, C-5	= 0.39						
eride 5-yr. Runoff Coefficient, C	=	(enter an ov	veride C-5 val	ue if desired	i, or leave bla	nk to accept	calculated C
	8		<u>Illustration</u>				
					~		
		/			` Q		_
			Rea		overland	EGEND	
		Reach 2	*		J) Beginning	
	1~~		9			Flow Direction	•
/			HC23			Catchment	
	Reach 3	100				Boundary	
K							-
NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	reas &
NRCS Land Type	Heavy Meadow	Tillage/ Field	Pasture/	Bare	Swales/	Shallow Pav	ed Swales
Туре	Meadow	Field	Contraction of the Contraction o	1	Contraction of the second second second	and the second se	ed Swales Flow)
			Pasture/ Lawns	Bare Ground	Swales/ Waterways	Shallow Pav (Sheet	ed Swales Flow)
Туре	Meadow 2.5 Reach	Field 5 Slop e	Pasture/ Lawns 7 Length	Bare Ground 10 5-yr	Swales/ Waterways 15 NRCS	Shallow Pav (Sheet 20 Flow	red Swales Flow) Flow
Туре	Meadow	Field	Pasture/ Lawns 7	Bare Ground 10 5-yr Runoff	Swales/ Waterways 15 NRCS Convey-	Shallow Pav (Sheet 20	red Swales Flow)
Туре	Meadow 2.5 Reach	Field 5 Slop e	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff C-5	Swales/ Waterways 15 NRCS Convey- ance	Shallow Pav (Sheet 20 Flow Velocity V fps	ed Swales Flow) Flow Time Tf minutes
Туре	Meadow 2.5 Reach ID	Field 5 Slope S fvft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Shallow Pav (Sheet 20 Flow Velocity V fps output	ed Swales Flow) Flow Time Tf minutes output
Type	Meadow 2.5 Reach	Field 5 Slop e S fvft	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff C-5	Swales/ Waterways 15 NRCS Convey- ance input	Shallow Pav (Sheet 20 Flow Velocity V fps	ed Swales Flow) Flow Time Tf minutes
Type	Meadow 2.5 Reach ID Overland 1 2	Field 5 Slope S fvft input 0.0300	Pasture/ Lawns 7 Length L ft input 300	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32	ed Swales Flow) Flow Time Tf minutes output 15.41
Type	Meadow 2.5 Reach ID Overland 1 2 3	Field 5 Slope S fvft input 0.0300	Pasture/ Lawns 7 Length L ft input 300	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32	ed Swales Flow) Flow Time Tf minutes output 15.41
Туре	Meadow 2.5 Reach ID Overland 1 2	Field 5 Slope S fvft input 0.0300	Pasture/ Lawns 7 Length L ft input 300	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32 1.00	ed Swales Flow) 5 Flow Time Tf minutes output 15.41 8.33
Туре	Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S fvft input 0.0300	Pasture/ Lawns 7 Length L ft input 300 500	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32 1.00 	ed Swales Flow) 5 Flow Time Tf minutes output 15.41 8.33 23.74
Туре	Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S fvft input 0.0300 0.0100	Pasture/ Lawns 7 Length L ft input 300 500	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00 Cor R	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32 1.00 	red Swales Flow) Flow Time Tf minutes output 15.41 8.33 23.74 14.44
Type Conveyance Calculations:	Meadow 2.5 Reach ID Overland 1 2 3 4 5 -	Field 5 Slope S fvft input 0.0300 0.0100	Pasture/ Lawns 7 Length L ft input 300 500	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00 Cor R	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32 1.00 	ed Swales Flow) 5 Flow Time Tf minutes output 15.41 8.33 23.74
Type Conveyance Calculations: IV. Peak Runoff Pro	Meadow 2.5 Reach ID Overland 1 2 3 4 5 - - - - - - - - - - - - -	Field 5 Slope S ft/ft input 0.0300 0.0100 	Pasture/ Lawns 7 Length L ft input 300 500 500	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00 Cor R User-E	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32 1.00 mputed Tc = egional Tc =	red Swales Flow) Time Tf minutes output 15.41 8.33 23.74 14.44 14.44
Type Conveyance Calculations:	Meadow 2.5 Reach ID Overland 1 2 3 4 5 ediction mputed Tc, I =	Field 5 Slope S fvft input 0.0300 0.0100 Sum	Pasture/ Lawns 7 Length L ft input 300 500	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00 Con R User-E	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32 1.00 	red Swales Flow) Flow Time Tf minutes output 15.41 8.33 23.74 14.44

5/31/2016, 11:30 AM

User Defined

Volume [sc-ft]

0 00

0.03

D.19

0 49

0 68

0 89

1.38

1 4 9

1.97

2 64

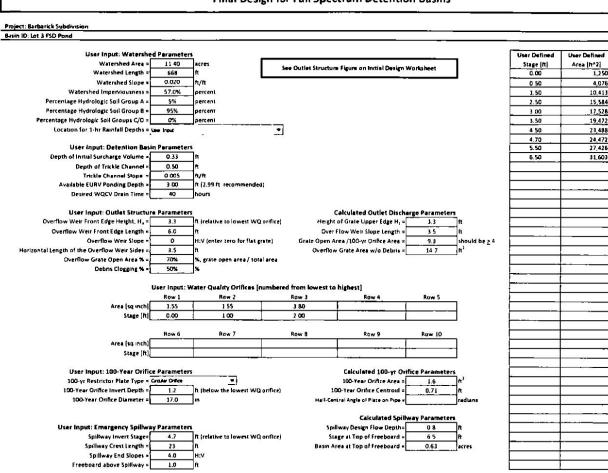
4,076

10,413

15,584

17,52B

19,472


21,488

24,472

27.426

31,603

Final Design for Full Spectrum Detention Basins

.

,

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

	947 - 975		
Project	Barbarick 1	4	
Qanin (D	Da		
,	3		
	·	-	-
	1992	<u> </u>	
	7	~ ~ ~ ~	
Example Zone	Contigurat	on (Reten	bon Pond)
Required Volume Calculation			
Saturd Bull Type +	8F	٦	
Watershell Arm •	3 13	-	
Watershed Langth +	648	4	
Watershed Size -	0 000		
Watershed Imperviculations all	57 00%	percent	
Percentage Hydrologic Sol Group A •	5.0%	percent	
Percentage Hydrologic Sol Group B -	95 0%	percent	
Percentage Hydrologic Sol Groups C/D +	0.0%	percent	
Desend WOCV Dram Time +	12 0	hours	
Location for 1-te Flamial Depths -	Uner Input		
Water Queilty Capture Volume (WQCV) +	0 047	acre-feet	Optional Liter Input
Excess Lines Runof Volume (EURV) =	0184	Acre-legi	1 to Precipitation
2-yr Runoff Volume (P1 = 0.95 m.) =	0 125	acre-feet	0 95 Inches
5-yr Ruhaff Volume (P1 + 1 23 et.) +	0 194	acre-test	123
10-yr Runoff Volume (P1 + 148 m) =	0 253	acto-lost	1.48 mchm
25-yr Runoff Volume (P1 = 1.00 =) =	0.363	-	165 mchai
SD-yr Runolf Volume (P1 + 2 21 et.) +	0452	acre-last	2 21 mohe
100-yr Runoff Volume (P1 + 2 57 m.) +	0 554		2 57 mohim
500-yr Runoff Volume (P1 = 0 m) =	0.000	1070-4mi	TEN
Approximate 2-pr Detendion Volume #	0 122	acro-last	
Approximate 5-yr Owanian Volume =	0 179	mile-led	
Approximate 10-yr Ostention Volume =	0 204	acre-leal	
Approximate 25-yi Deleniton Volume *	0 2 3 7	acre-leet	
Approximate 50-yr Detention Volume =	0 273	mite-last	
Approximate 100-yr Defention Volume •	0.336	acra-feel	
Stage-Storage Calculation	2 2 2 2	-	
Zone 1 Volume (WOCV) +	0 047	ACTE-FOOI	
Zone 2 Volume (100-year - Zone 1) *	0 289	acro-last	
Seieci Zone 3 Storage Volume (Optional) =	0 336	IC re-leef	
Total Detention Baue Volume +	NA NA	acre-last	
indiai Sunt narga Voluma (15V) * Indiai Suntharga Calpin (15O) *	NA	10	
Total Available Description Couply (50.7) *	2 50	-*	
Depth of Tracks Charmel (Hyr.) =	NA	-1	
Slope of Truthe Chartral (Sr.) -	NA	an .	
Stopes of Main Basin States (5., .) =	4	HV	
Basen Langth-to-Width Ratio (R) =	15	- T *	
inimi Surcharge Area (A) =	D	172	
Sutchings Volume Length (Ly.) *	0.0	1	
Surcharge Volume Wath (W.,)	00		
Depth of Sames Floor (Harran) v	0.00	÷.	
Longith of Beesin Floor (Louise) +	#1 G	1	
Width of Basen Floor (Wiscow) =	540		

Depts Increment + Steps - Blorage	Stage	Optunal Oriende	Lungth	Width	-	Optional Originale	Arca	Volume	Valume
Description	(T)	Stage (ft)	<u>m</u>	(T)	(77)	Ares (17)	(1004)	03)	(=-4)
Media Burtaca	0.00		81.0	540	4 370		0 100	<u> </u>	
	0 10	1	81.6	54.8	4 471		0 103	402	0 D10
	0.20	1	825	50.5	4 577		0 105	850	0 020
	0.30		603	56.3	* 584	1	0 108	1 1 21 2	0 030
	640		64 1	571	4 601		D 110	1,768	D GA1
Zone 1 (WQCV)	0.45		B4 5	57.6	4 559		0 112	2 078	0046
<u></u>	0.50		64.9	57.8	4 914		0 1 13	2 273	0 052
	0 70		85 7 85 5	587	5 00 9		0 115	2,770	0 084
~	0.80		673	50 5	5 263		0 118	3 279	0 075
0	0.60		861	51 1	5 361		0 124	4 332	0 099
	100		66.9	61.0	5 501		0 126	4 876	0 112
	1 10		597	627	5 677		0 129	5 437	0 125
	1 20		80 5	63.5	8 745		0132	8 000	0 138
	1.30		813	64.3	3 80.9		0 135	8 361	0 151
	140		BZ 1	6 .,	5 854	1	0 132	7,174	0 165
	1 50		82.9	859	6120		0 141	7,780	Q 179
	160	1	86.7	41 7	\$ 248		0140	8 396	C 193
	170		945	67.5	6.377		0.146	9 030	0 207
	1 80		95.3	68.)	6.501	!	0 149	9 674	0 222
	1 90		90 1	a 1	6 639		0 152	10.331	0 237
	200	}	98.9	699	6 771		0 155	11 001	
	2 10		97.8	70 8	0 910		0 159	11 754	
1	2 20		98.6	714	7 054	├ • • •	0 152	12 453	0 286
	2 30	<u> </u>	100 2	73 2	7,191		0 155	13 185	0 302
Cone 2 (100-year)	2 50		100 2	73 2	7,129		0 155	13 891	0 319
	2 50		101 6	74.8	7 609		0 175	15 385	0 353
	2 70		102.5	756	1,751		0 178	16 153	0 353
	2 60		103.4	78 4	7 694		0 181	18 805	0 389
	2 80		104 2	77 2	4 0.39		0 185	17.72	D 407
	3 00		105.0	78.0	8 184		D 152	18 543	0 428
	D) C		105.8	78.8	8 331		D 191	19 369	D 445
	3 20		1051	796	0.480		0 195	70.709	0 454
	3.30		107.4	30 4	0 629		0 198	21 085	0444
	3 40		106.2	412	4 780		0 202	21935	0 504
10	3 50		1090	82 0	6 832		0 205	22 621	0 524
	7.60		109.8	82.6	9 085		0 209	23 722	0548
100	370		BOIL	818	9 240		0 212	24 638	0 566
	3 #3 3 90		111.4	84 4 85 7	9 398		0.218	25 570	0.587
	400		1122	68 Q	9 712		0 219	27 480	0 609
	4 10		113.8	80.6	P 872		0.227	28 460	0 653
	4 20		1148	878	10 000		0 230	29 455	0 678
	4.30	- 1	115 4	68 4	10 195		0 234	30 466	0 609
	1.40		115 2	89 7	10.354		0 238	31 494	0 723
	4 50		1170	90 0	10 573	-	0 242	32 538	0 747
	4 60		117 8	90 8	10 690		0245	33 550	0 771
127	4 70		1588	91.6	10 857		0 740	34 878	0 799
	4 80		1194	924	11.028	<u> </u>	0.253	15 770	0 821
	4 90		120.2	937	11,196		0 257	36 (66)	0 647
	5 00		121.0	940	11.367		0 261	38 009	0 \$73
2025	5 10		1218	94.6	11,540		0 265	39 155 40 317	0 899
	5.30		123.4		11,889		0 273	41 497	
	5.40		124 2	964	12,096		0 277	42 605	0 94.0
	5 60		125.8	96 8 96 8 99 6	12.422			41 911	1006
	5 70		1258 1266 1274	996	12,422		0 255	45 395	1036
	5 90		128 2	101 2	12,967		0 293		1 124
	6 00 6 10		129.0	102 0 102 8	13,151		0 302	50 2% 51 562	1 154
	6 20		1006	103 6	13,523		0310	52,0.1	1715
5	6.0		131.4	104 4	12,711		0 315	54,267	1246
	6 50		1330	108.0	14 040		0 223	57 047	1310
	6.60 6.70		1218	101 8	14,282	1	0 128	56 495 56 923	134
	6 80		1154	_ 908.4	14,670		0 337	81,380	1429
0.000	700	I	1329	109 2	14 846		0341	62,667	1443
	7 10	·	137.0	1100	19,200		0.350	61 875	1512
	7 20		138.6	1118	15,480		0 355	67,404	1547
	7 30		1402	112 4	15,663		0360	64 Pt.2 TO_514	1543
	7 60		1410	1148	10,271		0 374	72,134	16%6
	7 70		142 8	1148	10 476		0 376	73 751 75 365	1 31
	7.90		442	1172	10 802		0 365	78 775	1700
	8 00		1410	1180	17,102		0 393	80 425	1 844
	# 20		148.6	1196	17.625		0 402	81,847	1 926
100 C	8 40		147.4	120.4	17 736		0 407	85,674	1 900
	8 50		1410	1220	18 169		0417	89 241	2 049
	8 60 8 70		149.8	122 0 122 6 123 8 124 4	18.387		0 422	91,066 92,919 94 790	2 091
1	8 80		151.4	124.4	18 805		D 432	94 790	2 133
	8 90		152 Z 153 C 153 B	125.2 126 D	19.047		0 437 D 442	94.684	1 2 20
	9 10		153.8	124.0	10 601		0 447	98,548	2 204
	9.70		154.6	127 6	19,715		D 453 D 468	102 498	2 351
	9.40		154 2	170 2 170 0 130 6	20,172 20,401 20,631		0463	106 487 108 516 110 567	2 300 7 445 2 401 2 5 30 2 5 30

s

	0.00	Depth of Banes Floor (Harran) v
1	81 G	Longith of Beesin Floor (Leuran) -
7	540	With a Been Floor (Witten) -
**2	4.370	Area of Basin Floor (Aura)
	0	Volume of Basin Floor (V _{russ}) =
	2 50	Depth of Man Basin (Hand -
.	101 0	Langth of Main Basin (Las.) -
.*	74 0	Width of Mann Basin (W] +
+7	7 469	Area of New Beam (A _{rea}) =
10	14 6216	Volume at Man Base (V] =
acre los	0 3 36	Calculated Total Basin Volume (V) +

16

Detention Basin Outlet Structure Design									
Project	Barbarick Subdivisi	0 1	<u>.</u>	<u>.</u>				<u>. </u>	
Basin ID:	D3				24. 12				
(ZOHI 3	····								
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type	_		
VOLUME UNT WOOD			Zone 1 (WQCV)	0 45	0.047	Filtration Media			
		· · · · · · · · · · · · · · · · · · ·	Zone 2 (100-year)	2.50	0.289	Not Utilized			
PERMANENT - OWNERS	/ OW ACE		Zone 3						
POOL Example Zone C	orfiguration (Rete	ntion Pond)			0 336	Total	J		
User Input: Orifice at Underdrain Outlet (typically us	ed to drain WQCV in a	Filtration 8MP)					ed Parameters for Ur	nderdrain	
Underdrain Orifice Invert Depth =		ft (distance below th	e filtration media suri	(ace)	Und	erdrain Orilice Area +	0.0]n²	
Underdrain Onlice Diameter =	1.27	inches			Underdr	ain Orfice Centroid +	0 05	feer	
						1			
Jser Input: Orifice Plate with one or more orifices o					IMP	Calcu	lated Parameters for		
invert of Lowest Onlice =		ft (relative to basin b				Infice Area per Row =	N/A	tt²	
Depth at top of Zone using Onlice Plate =	N/A	ft (relati ve to basin b	ottom at Stage = 0 (1)			Elliptical Half-Width #	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =		inches			Ell	ptical Slot Centroid +	N/A	teel	
Ordice Plate Ordice Area per Row -	N/A	inches				Elliptical Siot Area =	N/A	h,	
Jeer Input: Stage and Total Area of Each Orifice R	ow (numbered from	lowest to highest)							
	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (1)		N/A	N/A	N/A	N/A	N/A	N/A	N/A	1
Onfice Area (sq. inches)	· · · · ·	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1
to constant 10 100					······································			-	
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]
Stage of Onlice Centroid (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Onlice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ļ
									A
User Input: Vertical Orifice (Cl			1			Calculated	Parameters for Ver		1
	Not Selected	Not Selected					Not Selected	Not Selected	.,
Invert of Vertical Ordice a		·		oottom at Stage = 0 ft oottom at Stage = 0 ft		/ertical Ordice Area = ical Orifice Centroid =			ft" leet
Depth at top of Zone using Vertical Orifice = Vertical Orifice Diameter =			inches	iottom at stage - u K	Vert	icas Office Centrold =	L		liest
Venical Office Dameter	· · ·	•• • ••	Jucies						
	L	l.							
User Input: Overflow Weir (Dropbox) and									
	Grate (Flat or Sloped)					Calculater	Parameters for Ove	rflow Weir	
	Grate (Flat or Sloped) Not Selected	Not Selected	1			Calculater	d Parameters for Ove Not Selected	rflow Weir Not Selected	1
	Not Selected	Not Selected	fl (relative to basin bo	ttom al Stage = 0 (1)	Height of G	Calculater		1	ieeı
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length a	Not Selected	Not Selected	ft (relative to basin bo' feet	ttom at Stage = 0 (t)				1	ieei ieei
Overflow Weir Front Edge Height, Ho	Not Selected	Not Selected			Over Flow	rate Upper Edge, H, ■		1	
Overflow Weir Front Edge Height, Ho - Overflow Weir Front Edge Length -	Not Selected	Not Selected	feet H V (enter zero for f) feet	la1 grate)	Over Flov Grate Open Area /	rate Upper Edge, H, = • Weir Slope Length =		1	leet
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length a Overflow Weir Slope a	Not Selected	Not Selected	feet H V (enter zero for fl	la1 grate)	Over Flov Grate Open Area / Overflow Grate Op	rate Upper Edge, H, = v Weir Slope Length = 100-yr Orifice Area =		1	leet
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope • Horiz, Length of Weir Sides •	Not Selected	Not Selected	feet H V (enter zero for f) feet	la1 grate)	Over Flov Grate Open Area / Overflow Grate Op	rate Upper Edge, H, = v Weir Slope Length = 100-yr Orifice Area = ien Area w/o Debris =		1	leet
Overflow Weir Front Edge Height, Ho Dverflow Weir Front Edge Length Overflow Weir Slope Horiz, Length of Weir Slodes Overflow Grate Open Area % t Debris Clogging % +	Not Selected	Not Selectad	feet H V (enter zero for fl feet %, grate open area/t %	la1 grate)	Over Flov Grate Open Area / Overflow Grate Op Overflow Grate D	rate Upper Edge, H, = v Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ³
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope Horiz, Length of Weir Slodes Overflow Grate Open Area % t Debris Clogging % +	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t %	la1 grate)	Over Flov Grate Open Area / Overflow Grate Op Overflow Grate D	rate Upper Edge, H, = v Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ³
Overflow Weir Front Edge Height, Ho Dverflow Weir Front Edge Length Overflow Weir Slope – Horiz, Length of Weir Slobe Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci	Not Selected	Not Selectad	feel H V (enirr zero for f) feel %, grate open area/t % Mar Orifice)	lat grote) iotal area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	rate Upper Edge, H, = v Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Paramete	Not Selected	Not Selected	teet should be <u>></u> 4 ft ³ ft ³
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope a Horz. Length of Weir Sides a Overflow Grate Open Area % a Debris Clogging % a Juer Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to invert of Outlet Pipe a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % far Orifice) ft (distance below bass	la1 grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orlice Length • en Area v/o Debris • ipen Area w/ Debris • Calculated Paramete Outlet Orlice Area •	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho Dverflow Weir Front Edge Length Overflow Weir Slope – Horiz, Length of Weir Slobe Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci	Not Selected	Not Selected	feel H V (enirr zero for f) feel %, grate open area/t % Mar Orifice)	la1 grate) :otal area in bottom at Slage « O f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O to	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orifice Area • en Area v/o Debris • pen Area w/ Debris • Calculated Paramete Outlet Orifice Area • tlet Orifice Centroid =	Not Selected	Not Selected	leet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope a Horiz. Length of Weir Sides a Overflow Grate Open Area % a Debris Clogging % a Juer Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % far Orifice) ft (distance below bass	la1 grate) :otal area in bottom at Slage « O f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orifice Area • en Area v/o Debris • pen Area w/ Debris • Calculated Paramete Outlet Orifice Area • tlet Orifice Centroid =	Not Selected	Not Selected	teet should be ≥ 4 ft ³ ft ³
Overflow Weir Front Edge Height, Ho a Dverflow Weir Front Edge Length a Overflow Weir Slope a Horiz, Length of Weir Slope Overflow Grate Open Area % a Debris Clogging % a Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe a Circular Onfice Diameter a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % far Orifice) ft (distance below bass	la1 grate) :otal area in bottom at Slage « O f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O to	rate Upper Edge, H, = v Wer Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Outlet Orifice Area = Outlet Orifice Centroid = rinctor Plate on Pipe =	Not Selected	Not Selected	leet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope a Horz. Length of Weir Sides a Overflow Grate Open Area % a Debris Clogging % a Juer Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to invert of Outlet Pipe a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % far Orifice) ft (distance below bass	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (verflow Grate O Overflow Grate O (verflow Grate O (verflow Grate O (verflow Grate O)	rate Upper Edge, H, = v Wer Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Outlet Orifice Area = Outlet Orifice Centroid = rinctor Plate on Pipe =	Not Selected	Not Selected	feet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope Horiz, Length of Weir Slobe Overflow Grate Open Area % a Debris Clogging % - Debris Clogging % - Diser Input: Dutlet Pipe - Circular Orthce Diameter - User Input: Emergency Spillway (Rectar	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % Mar Orifice) ft (distance below basis inches	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Spillwa Spillwa	rate Upper Edge, H, = v Wer Slope Length = 100-yr Orthce Area = en Area w/o Debris = pen Area w/o Debris = Calculated Paramete Outlet Orthce Area = Cutlet Orthce Area = tiet Orthce Centroid = tractor Plate on Pipe = Celcula	Not Selected	Not Selected	feet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope a Horz. Length of Weir Slobe Overflow Grate Open Area % a Debris Clogging % a Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to invert of Outlet Pipe a Circular Onlice Diameter a User Input: Emergency Spillway (Rectai	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % Mar Orifice) ft (distance below basis inches	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Souther State Spillwa State : State :	rate Upper Edge, H, • VWer Slobe Length • 100-yr Orlice Area • en Area v/ Debris = Calculated Paramete Outlet Orlice Area = tiet Orlice Centroid = tractor Plate on Pipe = Calcula y Design Flow Depth-	Not Selected rs for Qutlet Pipe w/ Not Selected N/A sted Parameters for S 0 66	Not Selected	feet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope a Horz. Length of Weir Slope a Overflow Grate Open Area % a Debris Clogging % a Jser Input: Dutlet Pipe w/ Flow Restriction Plate (Ci Depth to Inverr of Outlet Pipe a Circular Onfice Diameter a User Input: Emergency Spillway (Rectai Spillway Invert Stage:	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % Mar Orifice) ft (distance below basis inches	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Souther State Spillwa State : State :	rate Upper Edge, H, • VWer Slope Length • 100-yr Orifice Area • en Area v/o Debris = pen Area w/ Debris • Calculated Paramete Outlet Orifice Centroid = trictor Plate on Pipe = Celcula y Design Flow Depth- st Top of Freeboard =	Not Selected	Not Selected	leet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Duerflow Weir Front Edge Height, Ho a Overflow Weir Slope a Horz. Length of Weir Sides a Overflow Grate Open Area % a Debris Clogging % a Debris Clogging % a Suber Input: Outlet Pipe a Circular Orifice Diameter a Circular Orifice Diameter a Spillway Invest Stage Spillway Crest Length Spillway End Slopes a Freeboard above Max Water Surface a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % Mar Orifice) ft (distance below basis inches	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Souther State Spillwa State : State :	rate Upper Edge, H, • VWer Slope Length • 100-yr Orifice Area • en Area v/o Debris = pen Area w/ Debris • Calculated Paramete Outlet Orifice Centroid = trictor Plate on Pipe = Celcula y Design Flow Depth- st Top of Freeboard =	Not Selected	Not Selected	leet should be <u>≥</u> 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length a Overflow Weir Stope a Norz. Length of Weir Sides a Overflow Grate Open Area % a Debris Clogging % a Debris Clogging % a Debris Clogging % a Depth to invert of Outlet Pipe a Circular Onflice Diameter a Circular Onflice Diameter a Spillway Invert Stage Spillway Crest Length a Spillway End Slopes a Freeboard above Max Water Surface a	Not Selected	Not Selected	feet H V (enter zero for f) feet % , grate open area/t % far Orifice) ft (distance below basi inches bottom at Stage = 0 ft)	lat grate) (otal area In Dottom at Stage + D f Hall	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Secontral Angle of Resi Spillwa Stage i Basm Area ;	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orlfice Area • en Area v/ Debris = pen Area w/ Debris = Calculated Paramete Outlet Orlfice Centroid = thet Orlfice Centroid = Calcula y Design Flow Depth- at Top of Freeboard =	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length - Overflow Weir Stope - Horz. Length of Weir Sides - Overflow Grate Open Area % = Debris Clogging % - Debris Clogging % - Depth to Invert of Dutlet Pipe + Circular Onfice Diameter = Circular Onfice Diameter = Spillway Invert Stager Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % Mar Orifice) ft (distance below basi inches	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Souther State Spillwa State : State :	rate Upper Edge, H, • VWer Slope Length • 100-yr Orifice Area • en Area v/o Debris = pen Area w/ Debris • Calculated Paramete Outlet Orifice Centroid = trictor Plate on Pipe = Celcula y Design Flow Depth- st Top of Freeboard =	Not Selected	Not Selected	leet should be <u>≥</u> 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length a Overflow Weir Slope a Horr. Length of Weir Sides a Overflow Grate Open Area % a Debris Clogging % a User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe a Circular Onflice Diameter a Circular Onflice Diameter a Spillway Invert Staged Spillway Crest Length a Spillway Crest Length a Spillway Crest Length a Spillway End Slopes a Freeboard above Max Water Surface a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % far Orifice) ft (distance below basi inches bottom at Stage = 0 ft) 2 Year	lat grate) lotal area in bottom at Stage « D f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillwa Stage : Basm Area a 10 Year	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orifice Area • en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Outlet Orifice Area • tier Orifice Centroid = trictor Plate on Pipe • Calcula y Design Flow Depth- at Top of Freeboard = 25 Year	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ² ft ⁷ freet freet fredians
Overflow Weir Front Edge Height, Ho s Overflow Weir Front Edge Length - Overflow Weir Stope - Horz. Length of Weir Slope - Overflow Grate Open Area % - Debris Clogging % - Debris Clogging % - Debris Clogging % - Carcular Onfice Diameter - Circular Onfice Diameter - Circular Onfice Diameter - Spillway Invert Stager Spillway Crest Length - Spillway Crest Length - Sp	Not Selected	Not Selected Or Plate, or Rectangu Not Selected It (relative to basin b feet H V feet EURV 107 0.194	feet H V (enter zero for fl feet %, grate open area/t % ft (distance below basi inches bottom at Stage = 0 ft) 2 Year 0.95 0.128	lat grate) total area in bottom at Slage « D f Hali) 5 Year 1.23 0.194	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Ou Central Angle of Resi Spillwa Stage i Basm Area i 0.253	rate Upper Edge, H, • VWer Slope Length • 100-yr Orthce Area • en Area w/o Debris • pen Area w/ Debris • Calculated Paramete Outlet Orthce Area • tier Orthce Centroid • tructor Plate on Pipe • Calcula y Design Flow Depth• at Top of Freeboard • 1.88 0.163	Not Selected	Not Selected	teet should be <u>></u> 4 ft ² ft ² ft ² feet radians 500 Year 0.00 0 DD0
Overflow Weir Front Edge Height, Ho o Duerflow Weir Front Edge Height, Ho o Overflow Weir Slope t Overflow Weir Slope t Horiz. (ength of Weir Sides s Overflow Grate Open Area % o Debris Clogging % o Circular Orifice Diameter s Circular Orifice Diameter s Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway Crest Length & Spillway Crest Length & Spillway End Slopes Freeboard above Max Water Surface s One-Hour Rainfal Debrin (1) Calculared Runoff Volume (care.h) s OPTIONAL Override Runoff Volume (care.h) s	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % tar Orifice) ft (distance below basi inches hottom at Stage = 0 ft) 2 Year 0.95 0.128 0.127	lat grate) iotal area in bottom at Stage « 0 f Ha(i) 5 Year 1.23 0.194 0.194	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Central Angle of Resi Spillwas Stage a Basm Area a 0.253 0.253	rate Upper Edge, H, • V Wer Slope Length • 100-yr Orlice Area • in Area w/ Debris = pen Area w/ Debris = Calculated Paramete Outlet Orlice Centroid = tiet Orlice Centroid = tiet Orlice Centroid = tiet Orlice Centroid = Calcula y Design Flow Depth- at Top of Freeboard = 25 Year 1.88 0.363	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ¹ ft ² feet radians 500 Year 0.00 0.000 0.000 0.000 0.000
Overflow Weir Front Edge Height, Ho a Deerflow Weir Front Edge Length i Overflow Weir Stope i Overflow Weir Stope i Horr. Length of Weir Sides i Overflow Grate Open Area % i Debris Clogging % i Debris Clogging % i Depth to Invert of Outlet Pipe i Circular Onlice Diameter i Circular Onlice Diameter i Spillway Invert Stage Spillway Invert Stage Spillway Crest Length i Spillway End Slope s Freeboard above Max Water Surface i One-Hour Rantall Depth (n) a Calculated Runoff Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i	Not Selected	Not Selected Or Plate, or Rectangu Not Selected It (relative to basin b feet H V feet EURV 107 0.194	feet H V (enter zero for fl feet %, grate open area/t % ft (distance below basi inches bottom at Stage = 0 ft) 2 Year 0.95 0.128	lat grate) total area in bottom at Slage « D f Hali) S Year 1.23 0.194	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Ou Central Angle of Resi Spillwa Stage i Basm Area i 0.253	rate Upper Edge, H, • VWer Slope Length • 100-yr Orthce Area • en Area w/o Debris • pen Area w/ Debris • Calculated Paramete Outlet Orthce Area • tier Orthce Centroid • tructor Plate on Pipe • Calcula y Design Flow Depth• at Top of Freeboard • 1.88 0.163	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 0.00 0.000
Overflow Weir Front Edge Height, Ho o Duerflow Weir Front Edge Height, Ho o Overflow Weir Slope t Overflow Weir Slope t Horiz. (ength of Weir Sides s Overflow Grate Open Area % o Debris Clogging % o Circular Orifice Diameter s Circular Orifice Diameter s Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway Crest Length & Spillway Crest Length & Spillway Crest Length & Spillway End Slopes Freeboard above Max Water Surface s One-Hour Rainfal Depth (e) a OPTIONAL Override Runoff Volume (acre.ft) a Inflow Hydrograph Volume (acre.ft) a	Not Selected	Not Selected very Selected r Plate, or Rectangu Not Selected r (relative to basin b feet H V feet EURV 107 0.194 0.194 0.00	feet H V (enter zero for f) feet %, grate open area/t % ft (distance below bas) inches bottom at Stage = 0 ft) 2 Year 0.95 0.127 0.01	lat grate) iotal area in bottom at Slage « D f Ha(i) 5 Year 1.23 0.194 0.17 0.5 4.3	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Central Angle of Resi Spillwas Sage : Basm Area : 0.253 0.34 1.1 5.3	rate Upper Edge, H, • V Wer Slope Length • 100-yr Orlice Area • en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Calculated Parameter Calculated Parameter Cal	Not Selected rs for Outlet Pipe w/ Not Selected N/A sted Parameters for S 0 66 4.16 0 23 SO Year 2.21 0.452 0.451 1.04	Not Selected Flow Restriction Plate Not Selected N/A spillway leet feet acres 0.553 1.33 4 2 116	teet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 0.00 0.0000 0.00000 0.00000 0.0000
Overflow Weir Front Edge Height, Ho o Deerflow Weir Front Edge Length i Overflow Weir Slope i Horr. Length of Weir Slope i Horr. Length of Weir Slope i Debris Clogging % i Debris Clogging % i Debris Clogging % i Depth to Invert of Outlet Pipe i Circular Orifice Diameter i Circular Orifice Diameter i Spillway Invert Stager Spillway Crest Length i Spillway Crest Length i Calculated Runoff Volume (acre.h) i OPTIONAL Overrate Runoff Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i Predevelopment Unif Peak Flow, q (cfa/acre) i Predevelopment Pieck Q (cfa) i Peak Unifiow Q (cfa) i	Not Selected	Not Selected Very Selected In (relative to basin b feet V feet V feet EURV 107 0.194 0.00 0 4.1 0.1	feet H V (enter zero for f) feet %, grate open area/t % ft (distance below basis inches bottom at Stage = 0 ft) 2 Year 0.95 0.127 0.01 0.0	lat grate) (otal area in bottom at Stage + D f Hall 0.123 0.194 0.17 0.19 0.17 0.12 0.12 0.12	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Central Angle of Resi Central Angle of Resi Spillwa- Stage i Basm Area i 0.253 0.34 1.1 5.3 0.1	rate Upper Edge, H, • VWer Slope Length • 100-yr Orlice Area • pen Area w/ Debris • Calculated Paramete Outlet Orlice Centroid = tiet Orlice Centroid = trictor Plate on Pipe • Calcula y Design Flow Depth- at Top of Freeboard • 1.88 0.363 0.80 2.5 7.6 0.2	Not Selected	Not Selected Flow Restriction Platt Not Selected N/A ipillway leet leet leet log Year 2.57 0.554 0.553 1.33 4 2 11 6 3 6	teet should be ≥ 4 ft ² tt ² ftet radians 500 Year 0.00 0.0000 0.000000 0.00000 0.000000 0.00000
Overflow Weir Front Edge Height, Ho a Devrflow Weir Front Edge Length i Overflow Weir Slope i Horr. Length of Weir Sides i Overflow Grate Open Area % i Debris Clogging % i Debris Clogging % i User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe i Circular Onlice Diameter i Circular Onlice Diameter i Spillway Invert Stage: Spillway Crest Length i Spillway Crest Length i Spillway Crest Length i Spillway Crest Length i Calculated Runoff Volume (acre.h) i OPTIONAL, Override Runoff Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i Predevelopment Unf Pack Flow, (Cifavare) Predevelopment Deak Flow, (Cifavare) Peak Inflow Q (cfs) i Rabo Peak Outflow to Predevelopment Q (cfs) i	Not Selected	Not Selected or Plate, or Rectangu Not Selected ft (relative to basin b feet H V feet EURV 107 0.194 0.194 0.194 0.10 0.1 N/A	feet H V (enter zero for f1 feet %, graft open area/t % ft (distance below basis inches tt (distance below basis inches 0.055 0.128 0.01 0.01 0.01 0.0 2.7 0.01 0.0 0.1 0.1 0.1 0.1 0.1	lat grate) in bottom at Slage + D F Hall 0.194 0.17 0.3 0.1 0.1 0.1 0.1 0.1 0.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Spillwa Stage - Basen Area - Basen Area - 0.253 0.34 1.1 5.3 0.1 0.1	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orlfice Area • en Area w/o Debris • pen Area w/o Debris • Calculated Paramete Outlet Orifice Area • tilet Orifice Centroid = trictor Plate on Pipe • Celcula y Design Flow Depth- at Top of Freeboard • 1.88 0.363 0.80 2.5 7.6 0.2 0.1	Not Selected	Not Selected	teet should be ≥ 4 ft ² tt ¹ ft ¹ feet radians 500 Year 0.00 0.000 ■N/A 1.189 5.9 ■N/A ■N/A ■N/A
Overflow Weir Front Edge Height, Ho o Overflow Weir Front Edge Height, Ho o Overflow Weir Stope t Overflow Weir Stope t Horr. (ength of Weir Stope t Overflow Grate Open Area % 3 Debris Clogging % 1 Debris C	Not Selected	Not Selected	feet H V (enter zero for fi feet %, grate open area/t % tar Orifice) ft (distance below bass inches entition at Stage = 0 ft) 2 Year 0.95 0.128 	lat grate) iotal area in bottom at Stage « D f Ha(i)) 	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Central Angle of Resi Spillwas Stage 4 Basm Area 6 0.253 0.253 0.34 1.1 5.3 0.1 5.3 0.1 5.1 0.1 5.1 0.1	rate Upper Edge, H, • V Wer Slope Length • 100-yr Orfice Area • en Area w/ Debris = pen Area w/ Debris = Calculated Paramete Cutlet Orfice Centroid = trictor Plate on Pipe = Celcula y Design Flow Depth- at Top of Freeboard = at Top of Freeboard = 0.163 0.363 0.80 2.5 7.6 0.1 Spillway	Not Selected	Not Selected Flow Restriction Platting Not Selected N/A spillway leet fert acres 0.553 1.33 4 2 116 3 6 0.9 Spillway	teet should be ≥ 4 ft ² tt ¹ ft ² feet radians
Overflow Weir Front Edge Height, Ho a Devrflow Weir Front Edge Length i Overflow Weir Slope i Horr. Length of Weir Slope i Overflow Grate Open Area % i Debris Clogging % i Debris Clogging % i User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe i Circular Onlice Diameter i Circular Onlice Diameter i Spillway Invert Stage: Spillway Crest Length i Spillway Crest Length i Spillway Crest Length i Spillway Crest Length i Calculated Bunoff Volume (acre.h) i OPFIONAL Override Runoff Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i Pradevelopment Unf Pack Flow, (Cifyare) Peak Outflow Q (cfs) i Peak Outflow Q (cfs) i Rato Peak Outflow to Predevelopment Q (cfs) i	Not Selected rcular Orifice, Restrict Not Selected Not Selected 2.50 5.00 4.00 1.00 WQCV 0.53 0.047 0.047 0.00 0.0 N/A Filtration Media N/A	Not Selected or Plate, or Rectangu Not Selected ft (relative to basin b feet H V feet EURV 107 0.194 0.194 0.194 0.10 0.1 N/A	feet H V (enter zero for fi feet X, grate open area/t X tar Orifice) ft (distance below basis inches tt (distance below basis inches 0.055 0.128 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	Iat grate) Iotal area In bottom at Slage + D P Hall 0.194 0.17 0.5 4.3 0.194 0.17 0.5 4.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillwa Stage : Basen Area : 0.253 0.34 1.1 5.3 0.34 1.1 5.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orlfice Area • en Area w/o Debris • pen Area w/o Debris • Calculated Paramete Outlet Orifice Area • tilet Orifice Centroid = trictor Plate on Pipe • Celcula y Design Flow Depth- at Top of Freeboard • 1.88 0.363 0.80 2.5 7.6 0.2 0.1	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ¹ ft ² feet radians 500 Year 0.00 0.0000 0.00000 0.00000 0.0000
Overflow Weir Front Edge Height, Ho o Devrflow Weir Front Edge Height, Ho o Overflow Weir Stope 1 Overflow Weir Stope 1 Horr. Length of Weir Stope 1 Overflow Grate Open Area % 3 Debris Clogging % 1 Debris Clogging % 1 Debris Clogging % 1 Depth to invert of Dutlet Pipe 4 Circular Orifice Diameter 3 Circular Orifice Diameter 3 Spillway Invert Stage Spillway Invert Stage Spillway Crest Length 4 Spillway Crest Length 4 Calculated Runoff Volume (care.ft) 3 Inflow Hydrograph Volume (care.ft) 3 Predevelopment Lunk Peak Flow, a (cfa) 7 Predevelopment J Pack (cfa) 7 Peak Inflow 0 (cfa) 7 Peak Inflow 0 (cfa) 7 Rato Peak Outflow to Predevelopment 3 Sucure Controling Flow Max Velocity through Grate 1 (pis) 7 Max Velocity through Grate 1 (pis) 7 Max Velocity through Grate 1 (pis) 7 Max Velocity through Grate 2 (pis) 7 Time to Dran 97% of Inflow Volume (hours) 7	Not Selected roular Orffice, Restrict Not Selected Not Selected 2.50 5.00 4.00 2.50 5.00 4.00 0.047 0.047 0.047 0.00 1.0 0.047 0.00 1.0 0.047 0.00 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1	Not Selected	feet H V (enter zero for fi feet X, grate open area/t X tar Orifice) ft (distance below basis inches hottom at Stage = 0 ft) 2 Year 0.128 	lat grate) iotal area in bottom at Stage « D f Hali 0.194 0.194 0.17 0.5 4.1 0.1 0.1 0.1 5 4.1 0.1 0.1 0.1 0.1 5 4.1 0.1 0.1 4.1 0.1 0.1 4.1 0.1 0.1 4.1 0.1 4.1 0.1 4.1 0.1 4.1 0.1 4.1 0.1 4.1 0.1 4.1 0.1 4.1 0.1 4.1 0.1 0.1 4.1 0.1 0.1 4.1 0.1 0.1 4.1 0.1 0.1 4.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Ourflow Grate O Ourflow Grate O Central Angle of Resi Spillwas Stage 4 Basm Area 6 0.253 0.253 0.34 1.1 5.3 0.3 0.1 5.3 5.3 0.1 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	rate Upper Edge, H, • V Wer Slope Length • 100-yr Orlice Area • en Area w/ Debris = pen Area w/ Debris = Calculated Paramete Calculated Parameter Calculated Parameter Calc	Not Selected	Not Selected Flow Restriction Platt Not Selected N/A spillway leet fert acres 0.551 1.33 4 2 116 3 6 0.9 Spillway N/A	teet should be ≥ 4 ft ³ tt ³ tt ⁷ feet redians
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length i Overflow Weir Front Edge Length i Overflow Weir Slope i Horz. Length of Weir Slope i Debris Clogging % - Debris Clogging % - Debris Clogging % - Debris Clogging % - Carcular Onlice Diameter - Cricular Onlice Diameter - Cricular Onlice Diameter - Spillway Invert Stage Spillway Invert Stage Spillway Crest Length i Spillway Crest Length i Creeboard above Max Water Surface - Created Hydrograph Plesuit One-Hour Ranital Debrief (1) OPTIONAL Override Runoff Volume (acre.h) i OPTIONAL Override Runoff Volume (acre.h) Predevelopment Unit Peak Flow, q (ch/acre) i Predevelopment Peak Q (cfg) = Peak Notico Q (cfg) = Rauo Peak Outflow D (cfg) = Rauo Peak Outflow D (cfg) = Max Velocity through Grate 1 (ps) i Max Velocity through Grate 1 (ps) i Time to Dran 97% of Inflow Volume (hours)	Not Selected rcular Orifice, Restrict Not Selected Not Selected 2.50 5.00 4.00 1.00 0.047 0.047 0.047 0.047 1.0 0.047 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.3	Not Selected or Plate, or Rectangu Not Selected t (relative to basin b feet H V feet EURV 107 0.194 0.00 0.194 0.00 0.0 4.1 0.1 N/A Filu axion Media N/A N/A 41 42	feet H V (enter zero for fl feet %, grate open area/t % ft (distance below basis inches bottom at Stage = 0 ft) 2 Year 0.05 0.127 0.01 0.02 2.7 0.1 N/A Fshtratoon M/A N/A 29 30	Lat grate) Intotal area Intotion at Stage + D f Hall 5 Year 1.23 0.194 0.194 0.17 0.194 0.17 0.194 0.17 0.194 0.17 0.194 0.17 0.194 0.17 0.194 0.17 0.194 0.17 0.1 4.1 0.14 0.17 0.14 0.14 0.17 0.14 0.14 0.17 0.14 0.14 0.17 0.14	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillwa- Stage i Basm Area i Basm Area i 0.253 0.34 1.1 5.3 0.34 1.1 5.3 0.1 0.1 5.3 0.1 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	rate Upper Edge, H, • VWer Slope Length • 100-yr Orlice Area • en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Calculated Parameter Calculated Parameter Cal	Not Selected	Not Selected Flow Restriction Platt Not Selected N/A spillway leet fept acres 0.553 1.33 4 2 0.553 1.33 4 2 N/A N/A 0.6553 1.36 3 6 0.9 Spilway N/A N/A N/A 65 63	teet should be 2.4 ft ² ft ² ft ¹ feet radians 500 Year radians 500 Year 0.00 0.000 9N/A 1.89 .5.9 N/A 8N/A 8N/A 8N/A 8N/A 8N/A 8N/A 8N/A 8N/A
Overflow Weir Front Edge Height, Ho o Overflow Weir Front Edge Height, Ho o Overflow Weir Slope i Horz. Length of Weir Slope i Overflow Grate Open Area % i Debris Clogging % i User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to invert of Outlet Pipe i Circular Orifice Diameter i Spillway Invert Stage Spillway Crest Length i Spillway Crest Length i Calculated Runoff Volume (care.ft) i Inflow Hydrograph Volume (care.ft) i Predevelopment Date A (Cfa) i Peak Inflow Q (cfa) i Peak Nutflow D Predevelopment Q - Studure Controlling Flow Max Velocity through Grate 1 (ps) i Max Velocity through Grate 2 (ps) i	Not Selected	Not Selected	feet H V (enter zero for fi feet X, grate open area/t X tar Orifice) ft (distance below basis inches hottom at Stage = 0 ft) 2 Year 0.128 	lat grate) iotal area in bottom at Stage « D f Hali 0.194 0.194 0.17 0.5 4.1 0.1 0.1 5.4 1.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Ou Central Angle of Resi Spillwa Spillwa Spillwa Spillwa Sage 4 Basm Area 6 0.253 0.253 0.34 1.1 5.3 0.1 1.1 5.3 0.1 1.1 5.3 0.1 1.1 5.3 0.1 5.1	rate Upper Edge, H, • V Wer Slope Length • 100-yr Orlice Area • en Area w/ Debris = pen Area w/ Debris = Calculated Paramete Calculated Parameter Calculated Parameter Calculat	Not Selected	Not Selected Flow Restriction Platt Not Selected N/A spillway leet fert acres 0.553 1.33 4 2 116 3 6 0.9 Spillway N/A	teet should be <u>2</u> .4 ft ² tt ² feet redians 500 Year 0.00 0.0000 0.00000 0.0000

ł

APPENDIX B

۲

STORMCAD INFORMATION

Culvert Calculator Report Twin 24" Culvert

Solve For: Headwater Elevation

Ň

Culvert Summary					
Allowable HW Elevation	2.00	ft	Headwater Depth/Heig	ht 1.32	
Computed Headwater Elev	7,038.15	ft	Discharge	35.50	cfs
Inlet Control HW Elev.	7,038.10	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	7,038.15	ft	Control Type	Entrance Control	
Grades					
Upstream Invert	7,035.51	ft	Downstream Invert	7,020.00	ft
Length	606.00	ft	Constructed Slope	0.025594	ft/ft
Hydraulic Profile				С	-
Profile	S2		Depth, Downstream	0.94	ft
Slope Type	Steep		Normal Depth	0.94	ft
Flow Regime	Supercritical		Critical Depth	1.52	ft
Velocity Downstream	12.17	ft/s	Critical Slope	0.006140	ft/ft
Section				-	
Section Shape	Circular	ŝ	Mannings Coefficient	0.012	
Section Material	Concrete		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	2				
Outlet Control Properties				<u>.</u>	
Outlet Control HW Elev.	7,038.15	ft	Upstream Velocity Hea	d 0.75	ft
Ке	0.50		Entrance Loss	0.37	ft
Inlet Control Properties					
Inlet Control HW Elev.	7,038.10	ft	Flow Control	Transition	
Inlet Type Square edge	e w/headwall		Area Full	6.3	ft²
к	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	

Culvert Calculator Report Outlet Pipe

•

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	7,023.10	ft	Headwater Depth/Height	2.07	
Computed Headwater Eleva	7,023.10	ft	Discharge	55.60	cfs
Inlet Control HW Elev.	7,023.10	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	7,022.97	ft	Control Type	Inlet Control	
Grades		50 (8 , s			
Upstream Invert	7 017 92	ft	Downstream Invert	7,017.52	ft
Length	40.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile CompositeM2Pres	ssureProfile		Depth, Downstream	2.36	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	2.36	ft
Velocity Downstream	11.58	ft/s	Critical Slope	0.013538	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Section Material	Concrete		Span	2.50	100.0
Section Size	30 inch		Rise	2.50	ft
Number Sections	1				<i>80</i>
Outlet Control Properties		2			
Outlet Control HW Elev.	7,022.97	ft	Upstream Velocity Head	1.99	ft
Ке	0.20		Entrance Loss	0.40	ft
Inlet Control Properties		<u>-</u>			
Inlet Control HW Elev.	7,023.10	ft	Flow Control	Submerged	
Inlet Type Beveled ring, 3	3.7° bevels		Area Full	4.9	ft²
ĸ	0.00180		HDS 5 Chart	3	
M	2.50000		HDS 5 Scale	в	
с	0.02430		Equation Form	1	

x

Project Description	02-Overflow Channel
Project Description	"小果是我认知是,我们的人们不可能的学校"等的问题,并且没有是认识性学校,在"我不是这些可能学校"。
Friction Method	Manning Formula
Solve For	Discharge
Input Data	
Roughness Coefficient	0.050
Channel Slope	0.02000 ft/ft
Normal Depth	2.00 ft
Left Side Slope	3.00 ft/ft (H:V)
Right Side Slope	3.00 ft/ft (H:V)
Bottom Width	4.00 ft
Results	
Discharge	94.99 ft³/s
Flow Area	20.00 ft²
Netted Perimeter	16.65 ft
Hydraulic Radius	1.20 ft
Top Width	16.00 ft
Critical Depth	1.73 ft
Critical Slope	0.03707 t/ft
Velocity	4.75 ft/s
/elocity Head	0.35 ft
Specific Energy	2.35 ft
Froude Number	0.75
Flow Type	Subcritical
GVF Input Data	
Downstream Depth	0.00 ft
_ength	0.00 ft
Number Of Steps	0
GVF Output Data	
Jpstream Depth	0.00 ft
Profile Description	
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Jpstream Velocity	Infinity ft/s
Normal Depth	2.00 ft
Critical Depth	1.73 ft
Channel Slope	0.02000 ft/ft

Bentley Systems, Inc. Haestad Methods SolutiontiOpefitoryMaster VBI (SELECTseries 1) [08.11.01.03] M 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1656 Page 1 of 2

5/31/2016 10:27:58 AM

02-Overflow Channel

GVF Output Data

Critical Slope

0.03707 ft/ft

Wa	orksheet for Open Channel Cuivert Lot 3
Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Roughness Coefficient	0.012
Channel Slope	0. 03000 ft/ft
Diameter	1.50 ft
Discharge	15.90 ft³/s
Results	. A MARINA AND AND AND AND AND AND AND AND AND A
Normal Depth	1.02 ft
Flow Area	1.28 ft ²
Wetted Perimeter	2.91 ft
Hydraulic Radius	0.44 ft
Top Width	1.40 ft
Critical Depth	1. 42 ft
Percent Full	68.1 %
Critical Slope	0.01690 ft/ft
Velocity	12.41 ft/s
Velocity Head	2.39 ft
Specific Energy	3.41 ft
Froude Number	2.29
Maximum Discharge	21.20 ft ³ /s
Discharge Full	19.71 ft³/s
Slope Full	0.01952 ft/ft
Flow Type	SuperCritical
GVF Input Data	
Downstream Depth	0.00 ft
Length	0.00 ft
Number Of Steps	D
GVF Output Data	
Upstream Depth	0.00 ft
Profile Description	
Profile Headloss	0.00 ft
Average End Depth Over Rise	0.00 %
Normal Depth Over Rise	68.08 %
Downstream Velocity	Infinity fl/s

Bentley Systems, Inc. Haestad Methods Sol@iontl@efilowMaster V8I (SELECTserics 1) [08.11.01.03] 5/31/2018 11:49:32 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

•-

Worksheet for Open Channel Culvert Lot 3

.....

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	1.02	ft
Critical Depth	1.42	ft
Channel Slope	0.03000	ft/ft
Critical Slope	0.01690	ft/ft

Worksheet for Outlet with Passthrough-Weir

Project Description Solve For Discharge Input Data **Headwater Elevation** 1.40 ft **Crest Elevation** 0.00 ft Tailwater Elevation 0.00 ft Weir Coefficient 3.00 US **Crest Length** 32.00 ft Number Of Contractions 0 Results 159.02 ft³/s Discharge Headwater Height Above Crest 1.40 ft Tailwater Height Above Crest 0.00 ft Flow Area 44 80 ft2 3.55 Velocity ft/s Wetted Perimeter 34.80 ft 32.00 ft Top Width he than Onifice Weit is more restrict 159.02 LSs TOP GREE-50% Cloging = 55.66 cfs > 45.9 tributary -> Instell outrice Restrictor on outlet ppe.

Worksheet for Outlet wPass - Orifice

١ **Project Description** Solve For Input Data Hondwater Fr

Headwater Elevation	1.40	ft
Centroid Elevation	0.00	ft
Tailwater Elevation	0.00	ft
Discharge Coefficient	0.60	
Opening Width	4.00	ft
Opening Height	12.00	ft
Results		
Discharge	273.35	ft³/s
Headwater Height Above Centroid	1.40	ft
Tailwater Height Above Centroid	0.00	ft
Flow Area	48.00	ft²
Velocity	5.69	fl/s
Top Box Weir is more Use Weir Celauka	Rostrictuz	×.

Discharge

Bentley Systems, Inc. Haestad Methods Sol@imtl@efiteevMaster V8i (SELECTseries 1) [08.11.01.03] Page 1 of 1 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for FSD Outlet Orifice Plate

١

Project Description			
Solve For	Diameter		
Input Data	7		
Discharge		45.90	Hys (16.5 His + 29.4 Acc)
Headwater Elevation	4	4.70	ft
Centroid Elevation		0.00	ft
Tailwater Elevation		0.00	ft .
Discharge Coefficient		0.60	
Results			
Diameter		2.37	ft
Headwater Height Above Centroid		4.70	ft
Tailwater Height Above Centroid		0.00	ft .
Flow Area		4.40	ft²
Velocity		10.43	ft/s

•

	Worksheet for	FSD Over	flov	v - Pass
Project Description				
Solve For	Discharge			
Input Data				
Headwater Elevation		0.90	ft	
Crest Elevation		0.00	ft	
Tailwater Elevation		0.00	ft	
Crest Surface Type	Gravel			
Crest Breadth		12.00	ft	
Crest Length		36.00	ft	
Results				
Discharge		86.22	ft³/s	(55Dul+29.4) pues = 44.4
leadwater Height Above Crest		0.90	ft	/
ailwater Height Above Crest		0.00	ft	
Veir Coefficient		2.80	US	
Submergence Factor		1.00		
Adjusted Weir Coefficient		2.80	US	
Flow Area		32.40	ft²	
/elocity		2.66	ft/s	
Wetted Perimeter		37.80	ft	
Top Width		36.00	ft	

,

Worksheet for SFB Overflow Developed

Project Description

Solve For	Discharge			
Input Data			i den de la companya de la companya Para de la companya d	
Headwater Elevation		0.45	ft	•
Crest Elevation		0.00	ft	
Tailwater Elevation		0.00	ft	•5
Crest Surface Type	Gravel			
Crest Breadth		6.00	ft	
Crest Length		10.00	ft	
🚊 televit filmente 🗥 A magnetica (1990) (kandas	a ang sing the second	alender och värige	· · · · · · · · · · · · · · · · · · ·	1. 注意的现在分词 化氨基苯酚 计字段分子的

Results

Discharge	8.08	ft"/s	
Headwater Height Above Crest	0.45	ft	
Tailwater Height Above Crest	0.00	ft	
Weir Coefficient	2.68	US	
Submergence Factor	1.00		
Adjusted Weir Coefficient	2.68	US	
Flow Area	4.50	ft²	
Velocity	1.80	ft/s	
Wetted Perimeter	10.90	ft	
Top Width	10.00	ft	

Worksheet for Type D Inlet - Weir

Project Description

Solve For	Discharge		
Input Data			
Headwater Elevation		1.50	ft
Crest Elevation		0.00	ft
Weir Coefficient		3.00	US
Crest Length		17.17	ft
Results			
Discharge		94.61	ft³/s
Headwater Height Above Crest		1.50	ft
Flow Area		25.75	ft²
Velocity		3.67	ft/s
Wetted Perimeter		20.17	ft
Top Width		17.17	ft

Type D Weir is most restrictive 94.610Gs 70% Grate Opening 50% Glogging = 3311 chs > 29.4 chs tributury

5/27/2016 1:31:01 PM

Worksheet for Type D Inlet - Orifice

Project Description

Solve For	Discharge	
Input Data		
Headwater Elevation	1.50	ft
Centroid Elevation	0.00	ft
Tailwater Elevation	0.00	ft
Discharge Coefficient	0.60	
Opening Width	2.92	ft
Opening Height	5.67	ft
Results	r.	
Discharge	97.50	ft³/s
Headwater Height Above Centroid	1.50	ft
Tailwater Height Above Centroid	0.00	ft
Flow Area	16.54	ft²
Velocity	5.89	ft/s

Type D Weir is more restrictive -> Use Weir Calculations

Project Description		
Friction Method	Manning Formula	na na bilan na ku inaka kan na kuka na su na nini kuka kuka kuka kuka na si
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.030	an na manan na 1979, ang mangang sa sa na sa
Channel Slope	0.02000	ft/ft
Normal Depth	1.00	ft
Left Side Slope	4.00	ft/ft (H:V)
Right Side Slope	4.00	ft/ft (H:V)
Results	an a	
Discharge	17.30	ft³/s
Flow Area	4.00	ft²
Welted Perimeter	8.25	ft
Hydraulic Radius	0.49	ñ
Top Width	8.00	ft
Critical Depth	1.03	ft
Critical Slope	0.01703	ft/ft
Velocity	4.32	ft/s
Velocity Head	0.29	ft
Specific Energy	1.29	ft
Froude Number	1.08	
	Supercritical	
GVF Input Data	an landar san a sharada a ta bahan kan falkan a san sa	
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0 A server all all server was server as a server all server as a server server as a server server server server s	konservationens arverasis der Masawarenarvenar
	0.00	
Upstream Depth Profile Description	0.00	R .
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.00	ft
Critical Depth	1.03	ft
Channel Slope	0.02000	ft/ft
onanner orope	0.01703	ft/ft

	0.017	7022.88	7023.63	11.77	57.43	30	29.4	0	6 <u>4</u>
	0.008	7023.93	7026.2	8.72	38.97	30	29.4	0	CO-3
	0.01	7026.4	7029.35	9.67	44.43	30	29.4	0	CO-2
	0.01	7029.65	7032.21	9.68	44.49	30	29.4	0	CO-1
	Slope (ft/ft)) (ft)	m) (ft)	(ft/s)	Flow) (ft^3/s)	(in)	(ft³/s)	(ft³/s)	
		(Upstrea (Downstream	(Upstrea	(Average)	Capacity (Full	(Unified)	Total Flow	Rational Flow Total Flow (Unified) Capacity (Full	
		Invert	Invert	Velocity		Rise		System	
								-	
8	8 (N/A)	00	(N/A)	198.3 (N/A)	5	1	OF-1	MH-4	CO-5
8	8 (N/A)	8	(N/A)	44.9 (N/A)	4	1	MH-4	MH-3	CO-4
80	8 (N/A)	8	(N/A)	295.1 (N/A)	з	1	MH-3	MH-2	CO-3
8	8 (N/A)	8	(N/A)	295.1 (N/A)	2	1	MH-2	MH-1	CO-2
80	8 (N/A)	8	(N/A)	255.4 (N/A)	1	1	MH-1	CB-1	CO-1
(in/h)	Area (acres)	(in/h)	Inlet C	(Unified) (ft)	Element ID		Stop Node Branch ID	Start Node	Label
Intensity	Upstream Inlet Intensity	Intensity	Upstream	Length	Branch				
System		Upstream							

.

CO-5

0

29.4

30

44.4

9.67 7022.88

7020.9

•

APPENDIX C

STANDARD DESIGN CHARTS AND TABLES

Precipitation Frequency Data Server

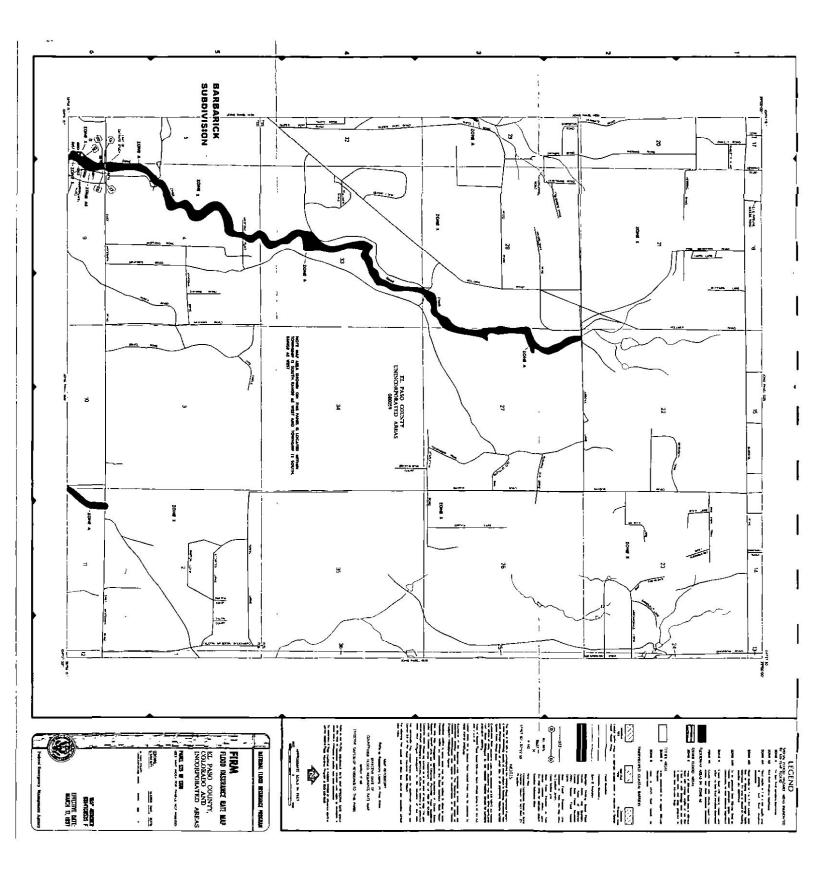
NOAA Atlas 14, Volume 8, Version 2 Location name: Colorado Springs, Colorado, US* Latitude: 38.9514°, Longitude: -104.6905° Elevation: 6984 ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Penca, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Date Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials


PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹ Average recurrence interval (years)											
Duration				Average	recurrence	interval (ye	ars)				
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	0.237 (0.195-0.290)	0.289 (0.238-0.355)	0.380 (0.311-0.467)	0.460 (0.374-0.568)	0.577 (0.456-0.746)	0.674 (0.517-0 880)	0.775 (0 573-1.04)	0.883 (0 625-1.21)	1.03 (0.701-1.46)	1.15 (0.759-1.65)	
10-min	0.347 (0.285-0.425)	0.424 (0.348-0.520)	0.556 (0.455-0.684)	0.673 (0.548-0.832)	0.846 (0.667-1.09)	0.987 (0.757-1.29)	1.14 (0.839-1.52)	1.29 (0.914-1.78)	1.51 (1.03-2.14)	1.69 (1.11-2.41)	
15-min	0.423 (0.348-0.519)	0.516 (0.424-0.634)	0.678 (0.555-0.834)	0.821 (0.668-1.01)	1.03 (0.814-1.33)	1.20 (0.924-1.57)	1.38 (1.02-1.85)	1.58 (1.11-2.17)	1.84 (1.25-2.61)	2.06 (1.35-2.94)	
30-min	0.613 (0.504-0.751)	0.747 (0.614-0.917)	0.980 (0.802-1.21)	1.19 (0.965-1.47)	1.49 (1.17-1.92)	1.74 (1.33-2.27)	2.00 (1.48-2.67)	2.27 (1.61-3 13)	2.66 (1.80-3.76)	2.97 (1.95-4.24)	
60-min	0.795 (0.654-0.974)	0.948 (0.779-1.16)	1.23 (1.00-1.51)	1.48 (1.21-1.83)	1.88 (1.49-2.44)	2.21 (1.70-2.90)	2.57 (1.91-3.46)	2.96 (2.10-4.09)	3.52 (2.39-4.99)	3.97 (2.61-5.67)	
2-hr	0.977 (0.809-1.19)	1.15 (0.951-1.40)	1.47 (1.22-1.80)	1.78 (1.46-2.19)	2.27 (1.82-2.94)	2.68 (2.09-3.51)	3.14 (2.35-4.21)	3.65 (2.61-5.02)	4.38 (3.00-6.18)	4.98 (3.30-7.06)	
3-hr	1.08 (0.897-1.31)	1.25 (1.04-1.51)	1.58 (1.31-1.93)	1.92 (1.57-2.34)	2.45 (1.98-3.19)	2.92 (2.29-3.83)	3.45 (2.60-4.62)	4.04 (2.91-5.55)	4.90 (3.39-6.92)	5.62 (3.75-7.95)	
6-hr	1.26 (1.05·1.51)	1.44 (1.20-1.73)	1.81 (1.51-2.18)	2.19 (1.81-2.65)	2.81 (2.30·3.64)	3.37 (2.66-4.39)	4.00 (3.04-5.34)	4.71 (3.43-6.45)	5.77 (4.02-8.09)	6.65 (4.46-9.33)	
12-hr	1.45 (1.23-1.74)	1.68 (1.41-2.00)	2.12 (1.78-2.54)	2.55 (2.13-3.07)	3.26 (2.68-4.19)	3.89 (3.10-5.03)	4.59 (3.52-6 08)	5.38 (3.94-7.31)	6.54 (4.59-9.11)	7.51 (5.08-10.5)	
24-hr	1.68 (1.43-1.99)	1.97 (1.67·2.33)	2.50 (2.12-2.98)	3.01 (2.53-3.60)	3.80 (3.13-4.80)	4.48 (3.58-5.72)	5.23 (4.02-6.83)	6.04 (4.45-8.11)	7.23 (5.09-9.96)	8.20 (5.58-11.4)	
2-day	1.95 (1.67-2.29)	2.31 (1.97-2.72)	2.95 (2.51-3.48)	3.53 (2.99-4.18)	4.39 (3.62-5.46)	5.11 (4.10-6.44)	5.88 (4.55-7.59)	6.71 (4.96-8.91)	7.89 (5.59-10.8)	8.83 (6 07-12.2)	
3-day	2.15 (1.85-2.51)	2.54 (2.18-2.97)	3.22 (2.75-3.78)	3.83 (3 26-4.52)	4.74 (3.92-5.87)	5.50 (4.42·6.88)	6.30 (4.89-8.09)	7.16 (5.31-9.45)	8.37 (5.96-11.4)	9.34 (6 45-12.8)	
4-day	2.31 (2.00-2.70)	2.72 (2.34-3.17)	3.42 (2.94-4.01)	4.06 (3 46-4.78)	5.00 (4.15-6.16)	5.78 (4.67-7.21)	6.61 (5.14-8.46)	7.50 (5.58-9.87)	8.75 (6.25-11.8)	9.76 (6.75-13.3)	
7-day	2.74 (2.38-3.18)	3.17 (2.75-3.68)	3.92 (3.39-4.57)	4.60 (3.95-5.38)	5.60 (4.67-6.86)	6.43 (5.23-7.97)	7.32 (5.73-9.30)	8.27 (6.19-10.8)	9.60 (6.90-12.9)	10.7 (7.44-14.5)	
10-day	3.11 (2.71-3.60)	3.58 (3.11-4.14)	4.39 (3.80-5.09)	5.11 (4 40-5.95)	6.17 (5.17·7.51)	7.05 (5.75-8.69)	7.98 (6.27-10.1)	8.97 (6.75-11.7)	10.4 (7.47-13.9)	11.5 (8.03-15.5)	
20-day	4.18 (3.67-4.79)	4.79 (4.20-5.50)	5.83 (5.09-6.71)	6.72 (5.84-7.77)	7.99 (6.71-9.59)	9.01 (7.38·11.0)	10.0 (7.94-12.6)	11.1 (8.42·14.3)	12.6 (9.17-16.7)	13.8 (9.73-18.6)	
30-day	5.05 (4.46-5.77)	5.80 (5.11-6.63)	7.04 (6.18-8.07)	8.08 (7.05-9.30)	9.51 (8.01-11.3)	10.6 (8.73-12.8)	11.8 (9.32-14.6)	12.9 (9.79-16.5)	14.4 (10.5-19.0)	15.6 (11.1-20.9)	
45-day	6.14 (5.44-6.98)	7.06 (6.25-8.03)	8.54 (7.53-9.74)	9.75 (8.55-11.2)	11.4 (9.60-13.4)	12.6 (10.4-15.1)	13.8 (11.0-17.0)	15.0 (11.4-19.1)	16.6 (12.1-21.7)	17.7 (12.6-23.7)	
60-day	7.05 (6.27-7.99)	8.12 (7.20-9.20)	9.80 (8.66-11.1)	11.1 (9.80-12.7)	12.9 (10.9-15.2)	14.2 (11.8-17.0)	15.5 (12.4-19.0)	16.7 (12.8-21.1)	18.3 (13.4-23.8)	19.4 (13.9-25.8)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

Map Unit Legend

	El Paso County Area, C	olorado (CO625)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
9	Blakeland-Fluvaquentic Haplaquolis	12.5	76.4%
71	Pring coarse sandy loam, 3 to 8 percent slopes	3.9	23.6%
Totals for Area of Interest		16.4	100.0%

El Paso County Area, Colorado

9—Blakeland-Fluvaquentic Haplaquolls

Map Unit Setting

National map unit symbol: 36b6 Elevation: 3,500 to 5,800 feet Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 46 to 55 degrees F Frost-free period: 110 to 165 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 60 percent Fluvaquentic haplaquolls and similar soils: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Flats, hills Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose and/or eolian deposits derived from arkose

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: Sandy Foothill (R049BY210CO)

USD.

Description of Fluvaquentic Haplaquolls

Setting

Landform: Swales Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

H1 - 0 to 12 inches: variable

Properties and qualities

Slope: 1 to 2 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Poorly drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr) Depth to water table: About 0 to 24 inches Frequency of flooding: Occasional Frequency of ponding: None Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)

Interpretive groups

Land capability classification (irrigated): 6w Land capability classification (nonirrigated): 6w Hydrologic Soil Group: D

Minor Components

Other soils

Percent of map unit:

Pleasant

Percent of map unit: Landform: Depressions

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 13, Sep 22, 2015

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Loamy Park (R048AY222CO)

Minor Components

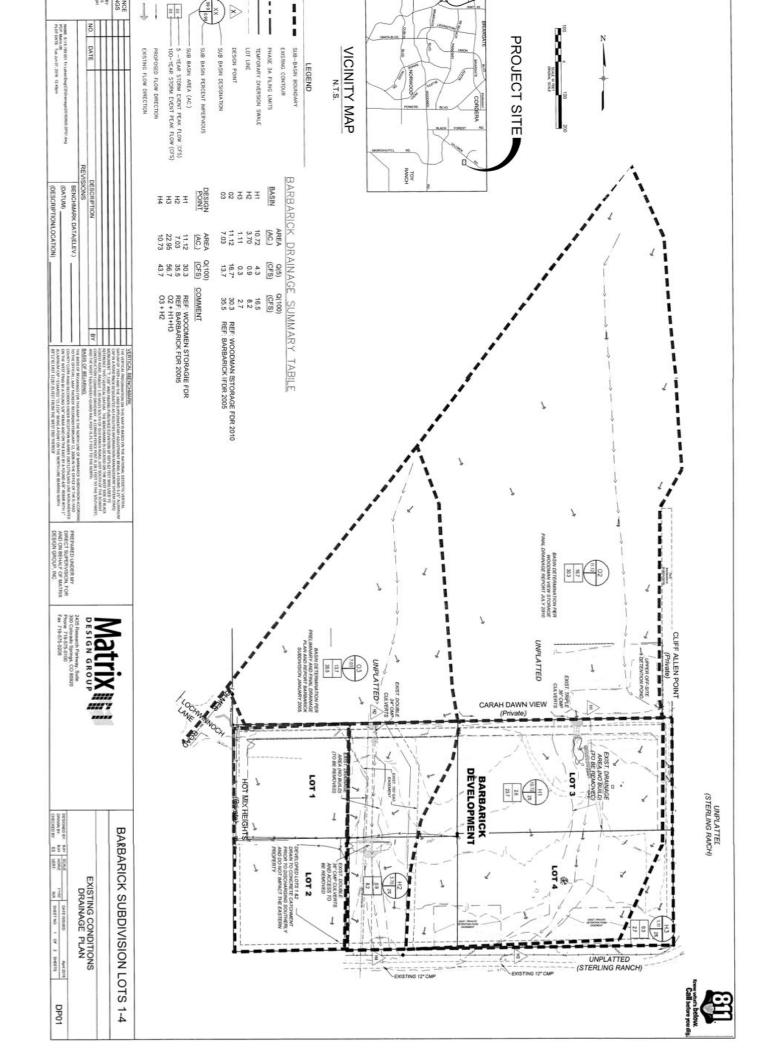
Other soils

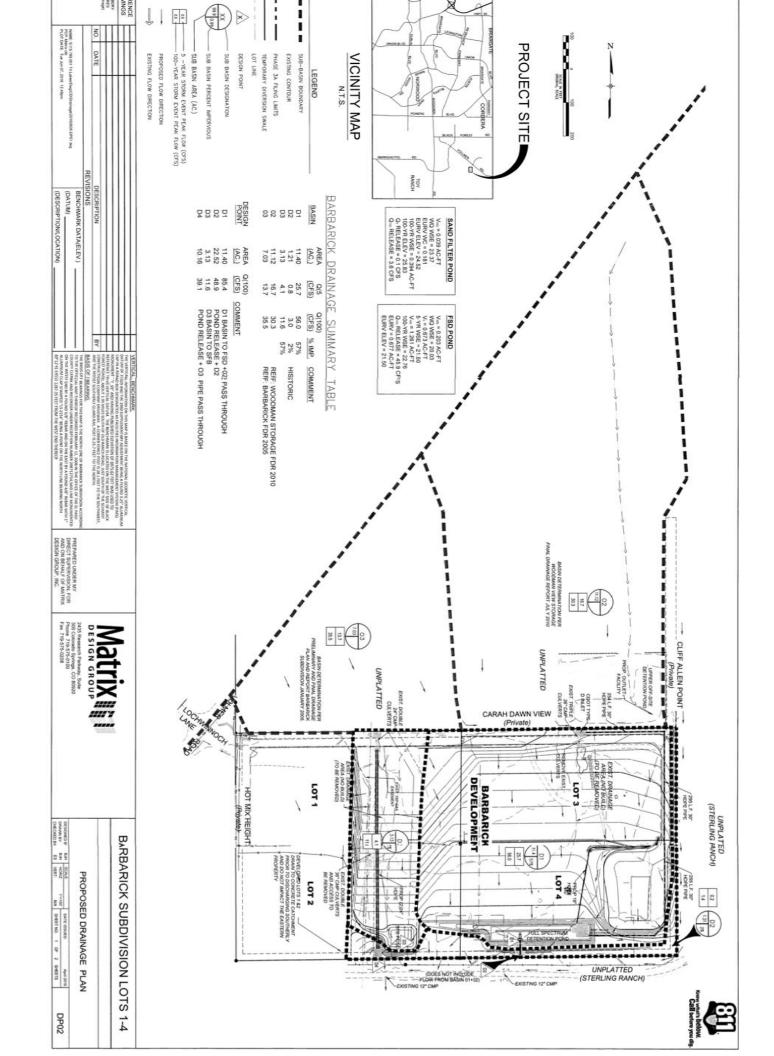
Percent of map unit:

Pleasant

Percent of map unit:

Landform: Depressions

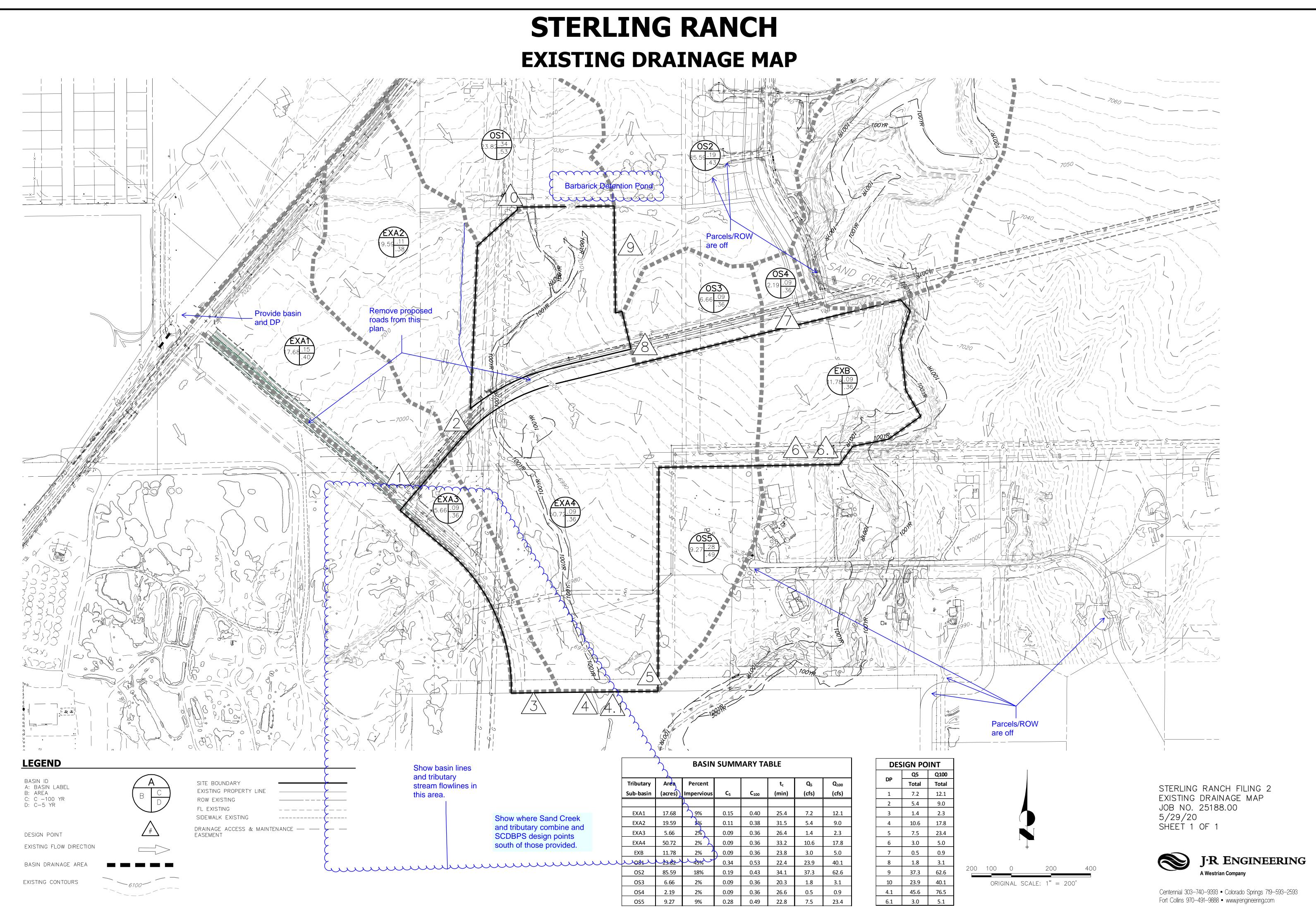

Data Source Information

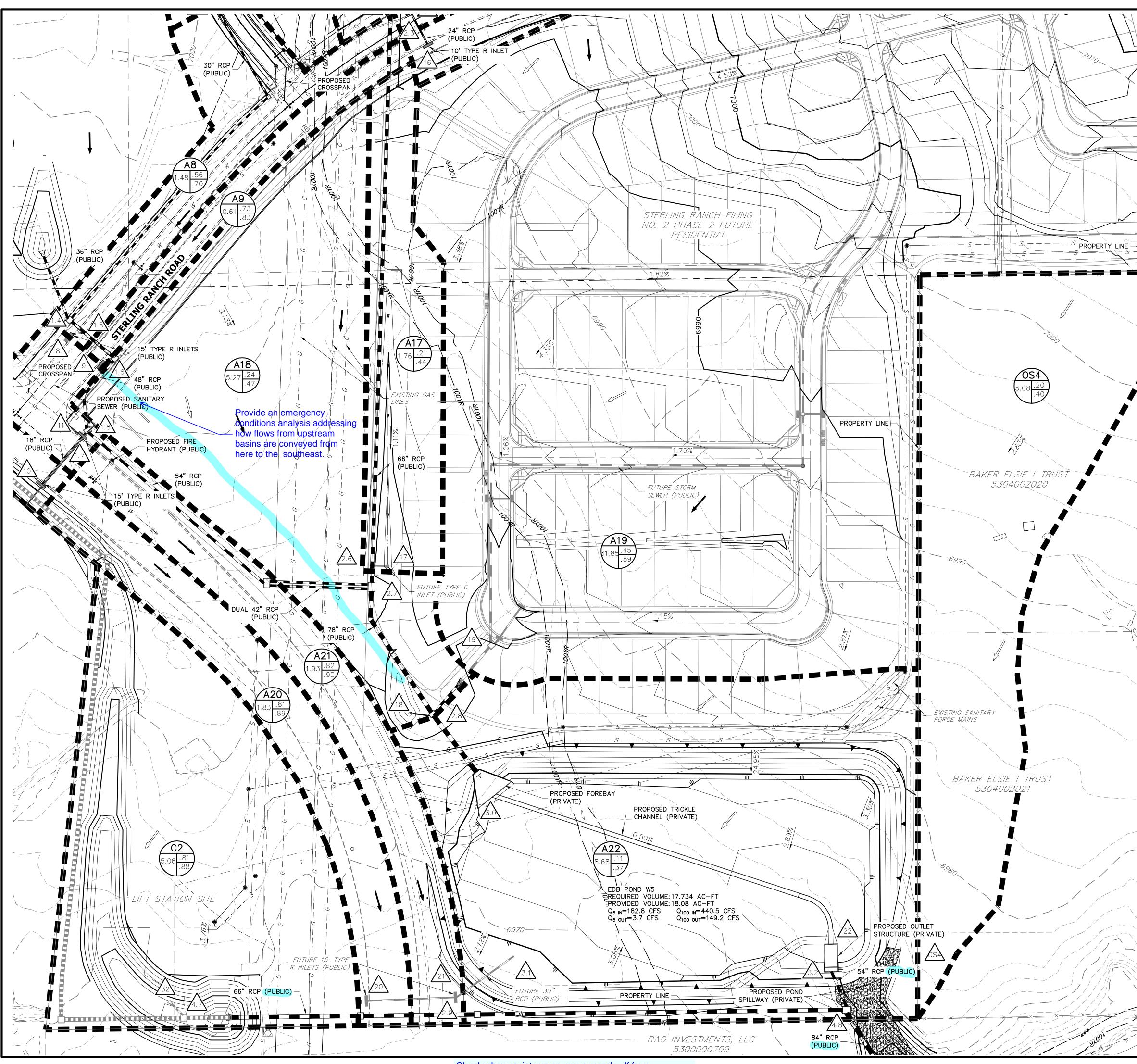

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 13, Sep 22, 2015

,

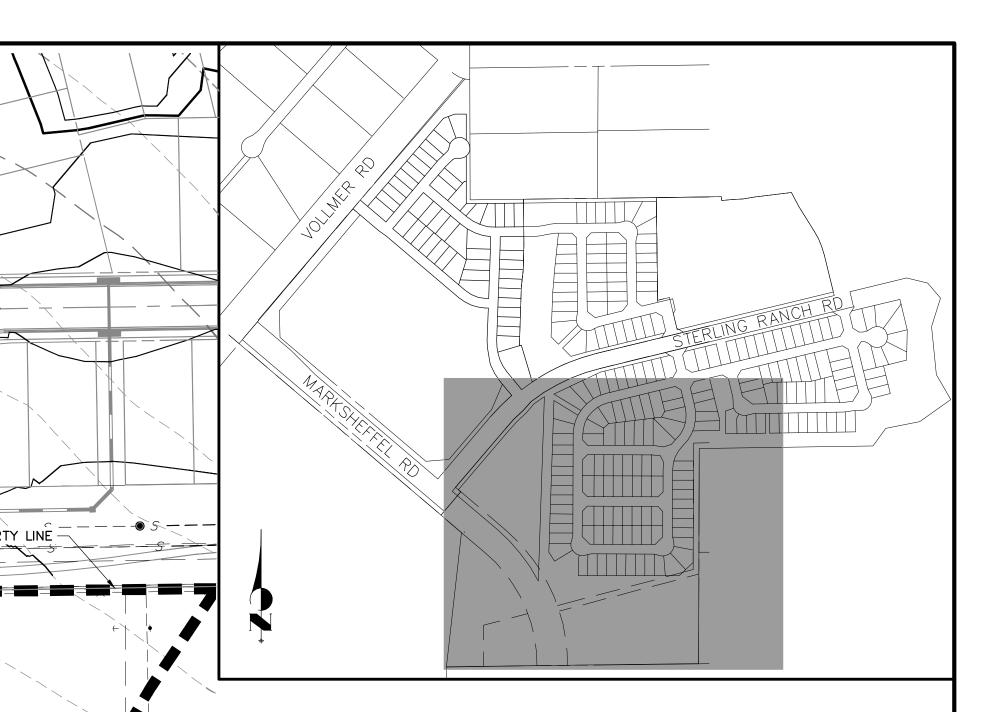
APPENDIX D

MAPS




Final Drainage Report Sterling Ranch Filing No. 2

APPENDIX E

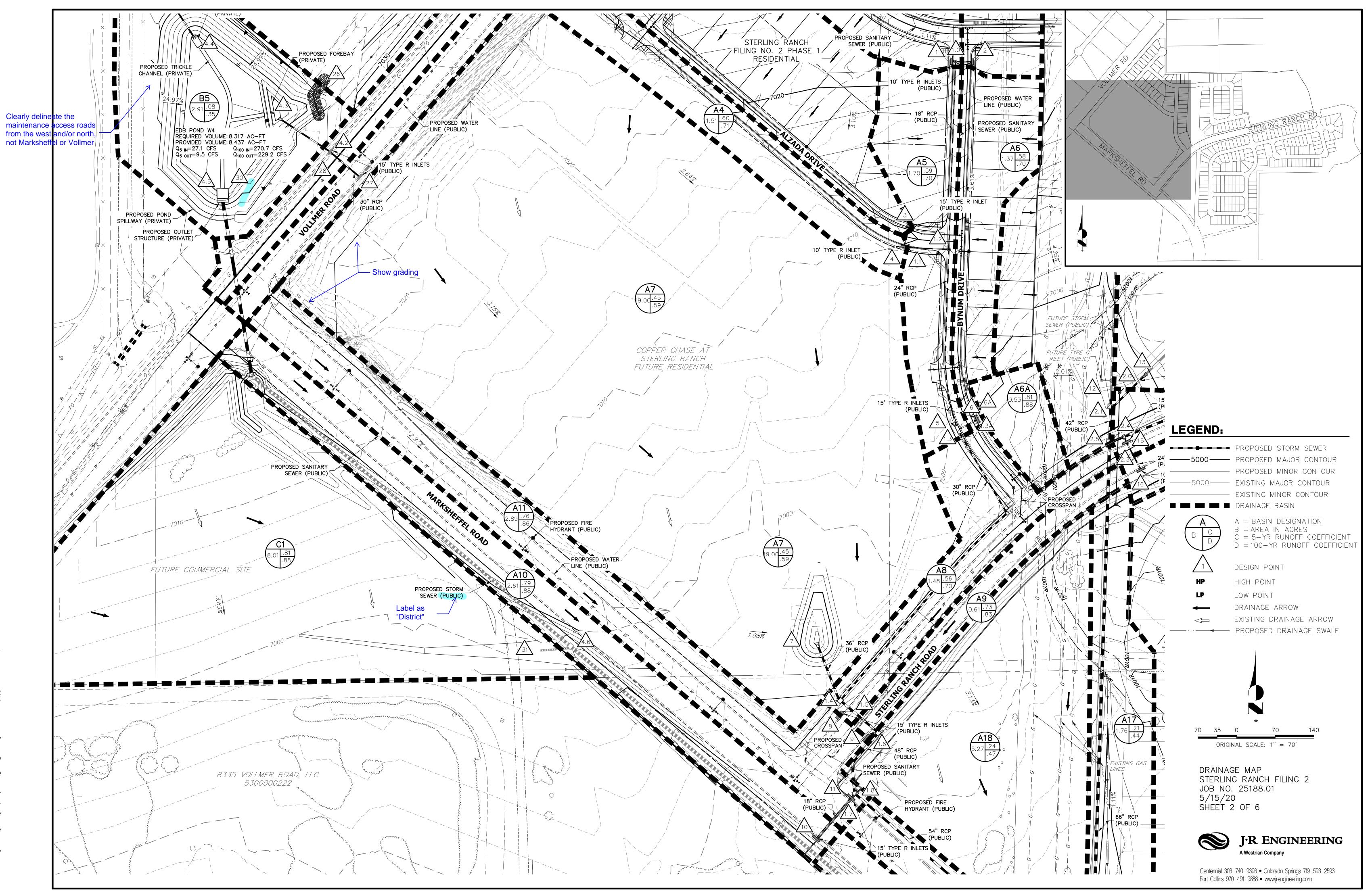

DRAINAGE MAPS & PLANS

Show basin lines			5	BASIN		IARY TA	BLE				DE
and tributary stream flowlines in		Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀		DP
this area.		Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)		1
				Z							2
	Ohannuthana Canad Oraali	EXA1	17.68	59%	0.15	0.40	25.4	7.2	12.1		3
	Show where Sand Creek	EXA2	19.59	5%	0.11	0.38	31.5	5.4	9.0		4
	and tributary combine and SCDBPS design points	EXA3	5.66	2%	0.09	0.36	26.4	1.4	2.3		5
	south of those provided.	EXA4	50.72	2%	0.09	0.36	33.2	10.6	17.8		6
		EXB	11.78	2%	0.09	0.36	23.8	3.0	5.0		7
	mmmm	12051	23.82	45%	0.34	0.53	22.4	23.9	40.1		8
		OS2	85.59	18%	0.19	0.43	34.1	37.3	62.6		9
		OS3	6.66	2%	0.09	0.36	20.3	1.8	3.1	1	10
		OS4	2.19	2%	0.09	0.36	26.6	0.5	0.9	1	4.1
			1			1				1	

Clearly show maintenance access roads. If from Marksheffel Road instead of the north, obtain City approval

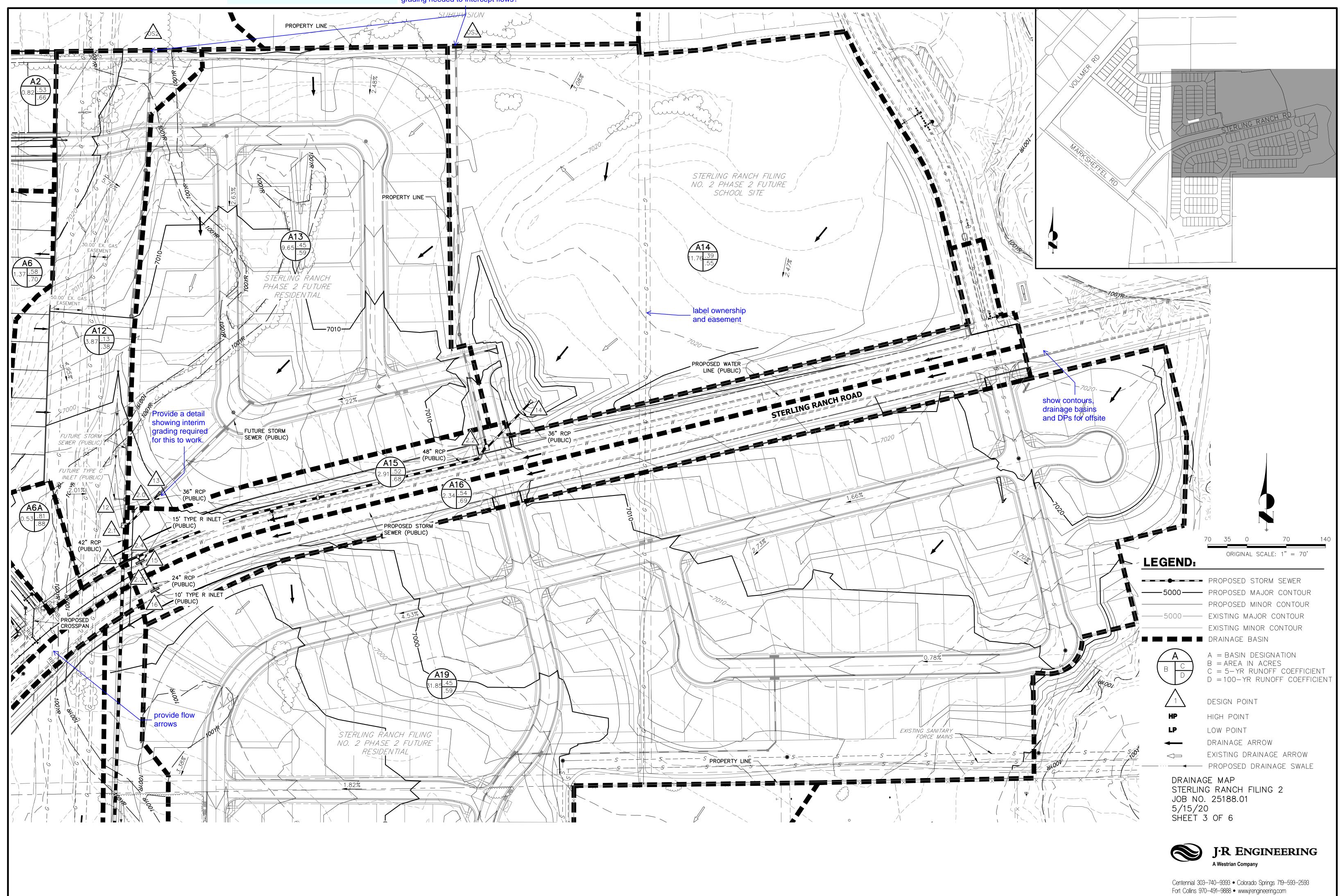
L	DES	SIGN PO	
	DP	Q5	Q100
		Total	Total
	1	4.4	9.4
	2	1.9	3.9
	3	11.1	24.7
	4	3.7	7.4
	5	4.1	19.6
	6	3.3	6.7
	6A	2.2	4.1
	7	27.5	60.6
	8	3.0	12.5
	9	1.9	4.8
	10	9.2	17.3
_	11	9.5	19.9
-	12	1.9	9.5
	13		34.6
	13	15.7	
	14	16.0	37.9
		5.4	11.7
	16	4.4	9.6
	17	1.4	4.7
	18	4.3	14.0
	19	38.8	85.4
	20	7.1	13.4
L	21	7.4	15.2
	22	2.7	15.4
	23	8.8	15.8
	24	11.5	20.6
	25	33.7	226.1
	26	2.8	18.7
	27	8.3	14.4
	28	8.4	16.7
	29	2.1	14.5
	30	0.9	6.4
	31	2.0	15.0
-	32	1.4	10.0
	1.0	6.0	10.0
-	1.1	12.6	19.7
-	1.2		28.2
	1.3	17.6	
-	1.5	25.9	46.9
	1.3A 1.4	5.0	8.7
		52.5	105.9
	1.5	55.1	103.9
	1.6	56.4	107.7
	1.7	17.3	25.3
	1.8	68.8	125.0
	2.0	23.2	74.5
_	2.1	38.1	106.6
	2.2	56.9	138.7
	2.3	9.6	17.2
	2.4	63.7	151.9
	2.5	96.6	250.7
	2.6	97.8	250.4
	2.7	162.0	336.8
	2.8	189.8	424.4
	2.9	14.2	22.5
	3.0	189.8	424.4
	3.1	14.2	22.5
	3.2	192.2	438.9
	4.0	18.4	26.1
	4.1	40.4	235.9
	4.2	16.0	31.0
	4.3	36.9	262.3
	4.4	2.1	2.1
	4.5	37.8	37.8
	4.6	43.3	242.4
	4.7	45.2	245.1
F	OS4		
	4.8 OS2 OS3	46.5 13.8 17.6 2.6	315.8 39.1 48.9 8.8
			T
	35	0	70

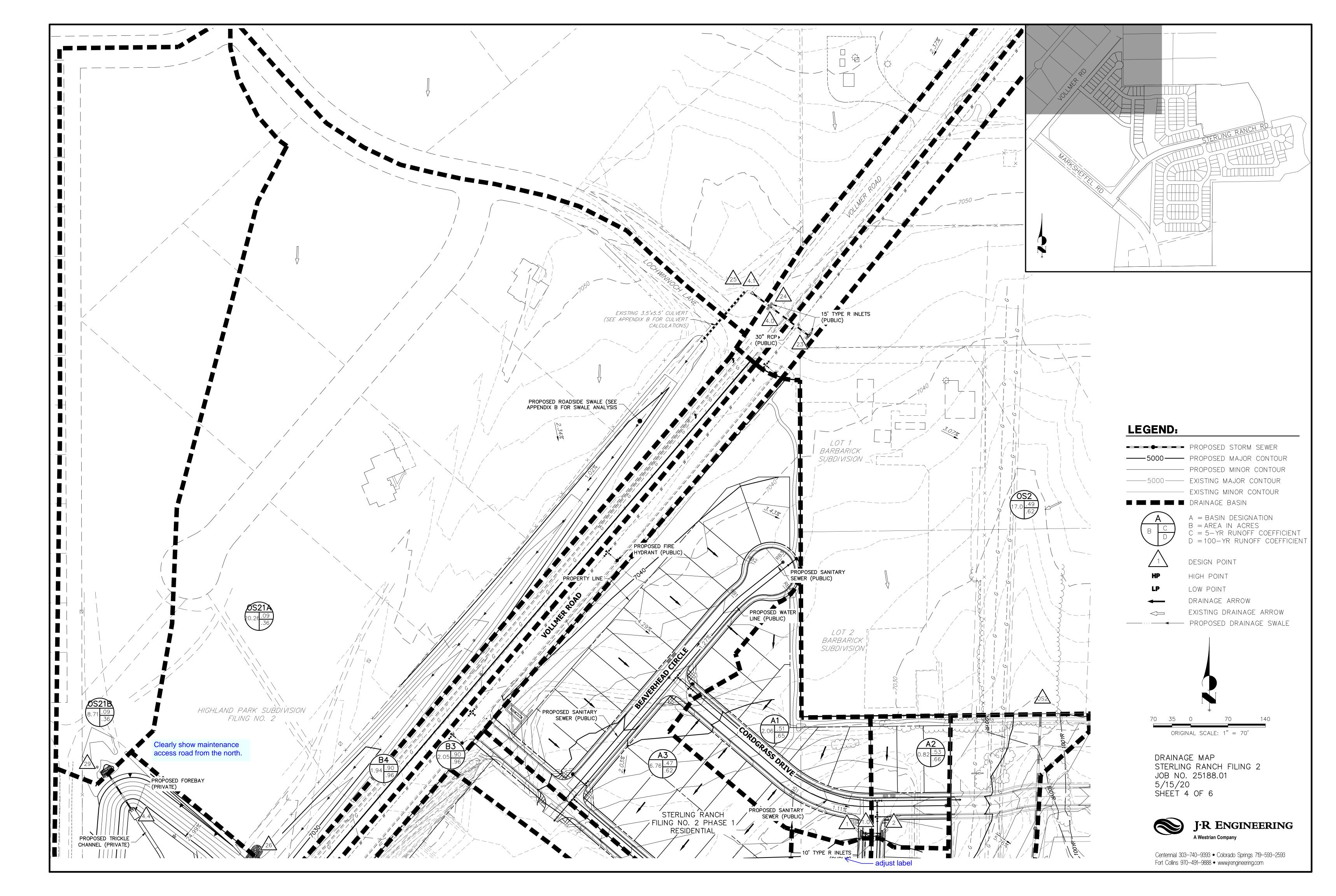
ORIGINAL SCALE: 1" = 70'


 $\times \bullet$

Tributary	Area	Percent			t _c	Q ₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
A1	2.06	66%	0.51	0.65	9.7	4.4	9.4
A2	0.82	69%	0.53	0.66	9.1	1.9	3.9
A3	6.76	60%	0.47	0.62	15.0	11.1	24.7
A4	1.51	77%	0.60	0.71	10.2	3.7	7.4
A5	1.70	76%	0.59	0.70	9.9	4.1	8.3
A6	1.37	75%	0.58	0.70	10.0	3.3	6.6
A6A	0.53	95%	0.81	0.88	5.0	2.2	4.1
A7	19.00	65%	0.45	0.59	18.3	27.5	60.6
A8	1.48	63%	0.56	0.70	13.9	3.0	6.3
A9	0.61	79%	0.73	0.83	8.7	1.9	3.7
A10	2.61	86%	0.79	0.88	7.9	9.2	17.3
A11	2.89	83%	0.76	0.86	8.7	9.5	18.1
A12	3.87	8%	0.13	0.38	11.9	1.9	9.5
A13	9.65	65%	0.45	0.59	14.0	15.7	34.6
A14	11.76	0%	0.39	0.55	15.3	16.0	37.9
A15	2.91	54%	0.52	0.68	14.9	5.4	11.7
A16	2.34	56%	0.54	0.69	14.7	4.4	9.6
A17	1.76	24%	0.21	0.44	13.7	1.4	4.7
A18	5.27	21%	0.24	0.47	16.4	4.3	14.0
A19	31.85	65%	0.45	0.59	25.8	38.8	85.4
A20	1.83	89%	0.81	0.89	8.0	6.6	12.2
A21	1.93	90%	0.82	0.90	8.7	6.8	12.6
A22	8.68	5%	0.11	0.37	23.3	2.7	15.4
B1	2.98	100%	0.90	0.96	17.6	8.8	15.8
B2	3.89	100%	0.90	0.96	17.6	11.5	20.6
B3	2.05	100%	0.90	0.96	9.4	7.8	14.0
B4	1.94	100%	0.90	0.96	9.4	7.4	13.2
B5	2.91	0%	0.08	0.35	13.1	0.9	6.4
C1	8.01	95%	0.81	0.88	9.9	2.0	15.0
C2	5.06	95%	0.81	0.88	7.9	1.4	10.0
OS20	308.00	0%	0.09	0.36	69.7	33.7	226.1
OS21A	20.26	0%	0.09	0.36	56.6	2.8	18.7
OS21B	8.71	0%	0.09	0.36	25.1	2.1	14.5
OS2	17.00	70%	0.49	0.62	36.0	13.8	39.1
OS3	28.70	70%	0.49	0.62	52.6	17.6	48.9
OS4	5.08	20%	0.20	0.40	28.3	2.6	8.8

Barbarick pond outfalls?


LEGEND: PROPOSED STORM SEWER ----- PROPOSED MINOR CONTOUR EXISTING MINOR CONTOUR DRAINAGE BASIN A = BASIN DESIGNATION B = AREA IN ACRES C = 5-YR RUNOFF COEFFICIENT D = 100-YR RUNOFF COEFFICIENT Α DESIGN POINT HIGH POINT LOW POINT DRAINAGE ARROW EXISTING DRAINAGE ARROW \leq DRAINAGE MAP STERLING RANCH FILING 2 JOB NO. 25188.01 5/15/20 SHEET 1 OF 6 J·R ENGINEERING A Westrian Company


140 Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com

