April 8, 2022 Revised August 23, 2022 Revised September 7, 2022

ENTECH ENGINEERING, INC.

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

* APPROVED
Engineering Department

09/19/2022 11:13:44 AM
dsdnijkamp

EPC Planning & Community
Development Department

Development Department

*note changes on sheet 3 and figure C-2 and

C-3.

SR Land, LLC 20 Boulder Crescent, 2nd Floor Colorado Springs, CO 80903

Attn: Chaz Collins

Re:

Pavement Recommendations - Revised

Sterling Ranch, Filing No. 2

Sterling Ranch Road (Marksheffel Road to Dines Boulevard)

El Paso County, Colorado Entech Job No. 220394

Dear Mr. Collins:

As requested, Entech Engineering, Inc. has obtained samples of the pavement subgrade soils from portions of Marksheffel Road and Sterling Ranch Road in the Sterling Ranch Filing No. 2 subdivision. This letter presents the results of the laboratory testing and pavement recommendations for the roadway sections.

Project Description

The roadways for this project consist of a section of Sterling Ranch Road from Marksheffel Road to Dines Boulevard in northeast Colorado Springs, Colorado. Subsurface Soil Investigation and laboratory testing was performed in order to determine the pavement support characteristics of the soils. The limits of this investigation and the approximate locations of the test borings are presented in the Site/Test Boring Location Map, Figure 1.

Subgrade Conditions

Five test borings were drilled along the above referenced roadway to depths of approximately 5 and 10 feet below the existing subgrade surface. The borings were placed at approximately 500-foot spacings. The Test Boring Logs are presented in Appendix A. Sieve Analyses and Atterberg Limit testing were performed on the soil samples obtained from the test borings for the purpose of classification. The percent passing the No. 200 sieve for the Type 1 soils at subgrade depth ranged from approximately 8 to 35 percent. The Type 2 soils ranged from 36 to 38 percent, and 19 to 39 percent for the Type 3 soils. The soils at the subgrade depth consisted of Type 1 native slightly silty to silty sand and Type 2 clayey sand fill. The subgrade soils are generally underlain with silty sand and very clayey sandstone. The underlying Type 3 soils were encountered at depths below the subgrade influence zone. Based on the results of the laboratory testing, two general subgrade soil types were determined for the roadway sections at subgrade depths; silty to slightly silty sand (Soil Type 1) and clayey sand fill (Soil Type 2). The Type 1 soils classify as A-1-b and A-2-6, and the Type 2 soils classify as A-6, based on the AASHTO Classification System. Groundwater was not encountered in any of the test borings. Water soluble sulfate testing indicates a negligible potential for sulfate attack.

Swell/Consolidation tests were performed on the A-6 soils. The Swell tests resulted in volume changes ranging from 0.3 to 1.9 percent. The results are below the level in which mitigation is required (above 2 percent). Mitigation of the subgrade is not required in this site.

SR Land, LLC
Pavement Recommendations – Revised
Sterling Ranch, Filing No. 2
Sterling Ranch Road (Marksheffel Road to Dines Boulevard)
El Paso County, Colorado
Entech Job No. 220394
Page 2

Unified Soils Classification

California Bearing Ratio (CBR) testing was performed on representative samples of the Type 1 and Type 2 subgrade soils. The results of the CBR and classification testing are presented as follows and in Appendix B and on Table 1, attached. Based on the results of the classification and CBR testing, the soils on this site exhibit poor to good pavement support characteristics. The results of the CBR testing, classification testing, and Swell/Consolidation testing are presented in Appendix B and are summarized as follows:

<u>CBR 1</u>	<u>CBR 2</u>			
Soil Type 1 - Silty Sand	*	Soil Type 1 - Clayey Sand	d Fill	
R @ 90% = 1.0		R @ 90% = 14.0	3/6	
R @ 95% = 37.0		R @ 95% = 37.0		
Use $R = 35.0$ for design	1	Use $R = 35.0$ for desig	n	
Classification Testing		Classification Testing		
Liquid Limit	NV	Liquid Limit	34	
Plasticity Index	NP	Plasticity Index	16	
Percent Passing 200	24.1	Percent Passing 200	34.6	
AASHTO Classification	A-1-b	AASHTO Classification	A-2-6	
Group Index	0	Group Index	1	

Unified Soils Classification

SC

SM

CBR 3 Soil Type 2 - Very Clayey Sand Fill R @ 90% = 7.5 R @ 95% = 14.0 Use R = 14.0 for design

Classification Testing

Liquid Limit	33
•	
Plasticity Index	15
Percent Passing 200	35.6
AASHTO Classification	A-6
Group Index	1
Unified Soils Classification	SC

Pavement Design

CBR testing was used to determine pavement sections for the roadway sections. Pavement sections were determined utilizing Pavement Design Criteria for El Paso County. Sterling Ranch Road classifies as an urban nonresidential collector, which used a 18K ESAL value of 821,000 for design. Pavement sections were determined for asphalt supported on aggregate base course and on recycled concrete. County approval is required if recycled concrete is to be utilized. El Paso County does not allow full depth asphalt sections. The approval report and

^{*} CBR Results taken from testing performed on Marksheffel Road, directly adjacent to this site. See Appendix E.

SR Land, LLC
Pavement Recommendations – Revised
Sterling Ranch, Filing No. 2
Sterling Ranch Road (Marksheffel Road to Dines Boulevard)
El Paso County, Colorado
Entech Job No. 220394
Page 3

laboratory testing performed for the recycled concrete is attached in Appendix D. The source and locations are provided in the report.

Design parameters used in the pavement analysis for the roadway section are as follows:

Reliability	85%
Standard Deviation	0.45
Resilient Modulus	
Soil Type 1 & 2	8,065 psi
Soil Type 2 (A-6)	4,060 psi
Δpsi	
Collector	2.5
"R" Value Subgrade	
Soil Type 1 & 2	35
Soil Type 2 (A-6)	14
Structural Coefficients:	
Hot Bituminous Asphalt	0.44
Aggregate Basecourse	0.11
Recycled Concrete	0.09

The pavement design calculations are presented in Appendix C. Pavement section alternatives for the roadway sections are presented below. Additional grading may result in subgrade soils with different support characteristics. The following pavement sections should be re-evaluated if additional grading is performed.

<u>Sterling Ranch Road – Urban Non-Residential Collector</u>

		<u>Soil Type 1</u>			
	Composite Section	Asphalt (in)	(in)	Recycled Conc (in)*	<u>rete</u>
	1. Asphalt Over Basecourse	4.5	9.5	-	
	2. Asphalt Over Recycled Concrete	4.5		11.0	11.5
Soil Type 2 (A-6)					

Composite Section	Asphalt (in)	Basecourse (in)	Recycled Concrete (in)*
 Asphalt Over Basecourse 	6.0	10.0	-
2. Asphalt Over Recycled Concrete	6.0	-	13.0

^{*}County approval pending.

SR Land, LLC
Pavement Recommendations – Revised
Sterling Ranch, Filing No. 2
Sterling Ranch Road (Marksheffel Road to Dines Boulevard)
El Paso County, Colorado
Entech Job No. 220394
Page 4

Roadway Construction

Prior to placement of the asphalt, the subgrade should be scarified, moisture-conditioned, compacted to a minimum of 95% of its maximum Modified Proctor Dry Density, ASTM D-1557 at \pm 2 percent of optimum moisture content and proofrolled after properly compacted. Any loose or soft areas should be removed and replaced with suitable materials approved by Entech. Basecourse and recycled concrete materials should be compacted to a minimum of 95% of its maximum Modified Proctor Dry Density, ASTM D-1557 at \pm 2% of optimum moisture content. Special attention should be given to areas adjacent to manholes, inlet structures and valves.

Based on the soils encountered, subgrade soil problem areas, if any, will be identified at proof roll. We do not anticipate issues with the subgrade in regards to shallow water, frost susceptible soils, groundwater or drainage conditions, soluble sulfates, or cold weather construction.

In addition to the above guidance the asphalt, subgrade conditions, compaction of materials and roadway construction methods shall meet the El Paso County specifications.

We trust that this report contains the information you require. If you have questions or need additional information, please contact us.

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Daniel P. Stegman

Encl.

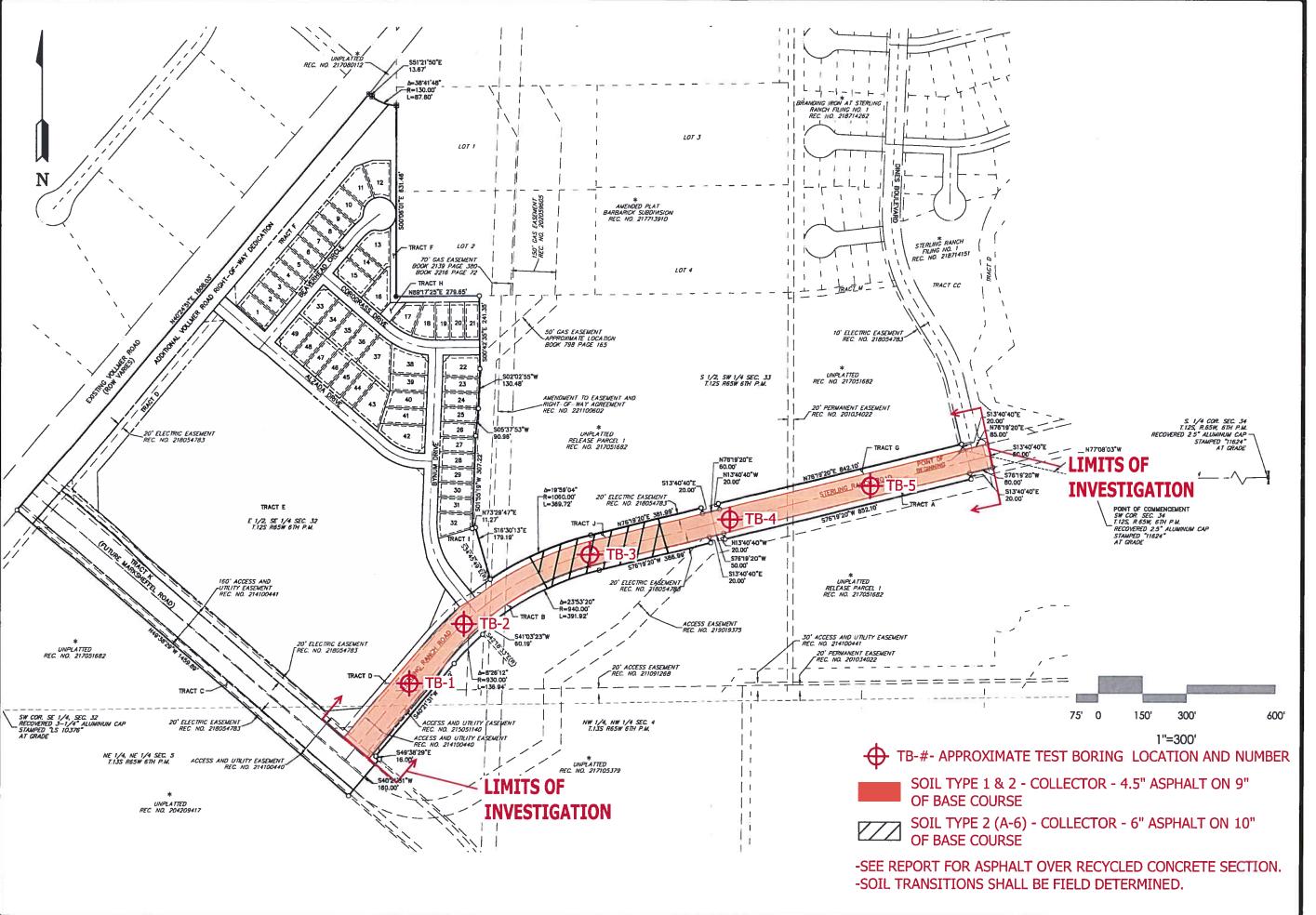
DPS/Iu AAprojects/2022/220394/220394 pr- Fil2 – Rev3 Reviewed by:

Joseph C. Goode, Jr., P.E.

President

TABLE

TABLE 1
SUMMARY OF LABORATORY TEST RESULTS

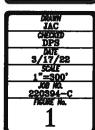

CLIENT SR LAND

PROJECT STERLING RANCH, F-2

JOB NO. 220394

SOIL TYPE	TEST BORING NO.	DEPTH (FT)	WATER (%)	DRY DENSITY (PCF)	PASSING NO. 200 SIEVE (%)	LIQUID LIMIT (%)	PLASTIC INDEX (%)	SULFATE (WT %)	AASHTO CLASS.	SWELL/ CONSOL (%)	UNIFIED CLASSIFICATION	SOIL DESCRIPTION
1, CBR #1	1	0-3			24.1	NV	NP		A-1-b		SM	SAND, SILTY
1	1	1-2			8.0	NV	NP	<0.01	A-1-b		SM	SAND, SLIGHTLY SILTY
1	2	1-2			19.8	NV	NP		A-1-b		SM	SAND, SILTY
1, CBR #2	4	0-3			34.6	34	16		A-2-6		SC	FILL, SAND, CLAYEY
1	5	1-2			21.2	NV	NP		A-1-b		SM	FILL, SAND, SLIGHTLY SILTY
2, CBR #3	3	0-3	12.5	109.2	35.6	33	15		A-6	1.9	SC	FILL, SAND, VERY CLAYEY
2	3	1-2	11.9	102.9	37.3	42	32		A-6	0.4	SC	FILL, SAND, VERY CLAYEY
2	4	1-2			38.2	33	13	<0.01	A-2-6		SC	FILL, SAND, VERY CLAYEY
3	1	10	19.8	92.1	39.0	36	13		A-6	0.3	SC	SANDSTONE, VERY CLAYEY
3	5	10			18.6	NV	NP	<0.01	A-2-4		SM	SAND, SILTY

FIGURE



REVISION BY

ENGINEERING, INC. SAGE EXTENDED SPECIFICAL BROWN OF 189907

MAP

SITE/TEST BORING LOCATION STERLING RANCH ROAD COLORADO SPRINGS, CO. FOR: SR LAND LLC

APPENDIX A: Test Boring Logs

TEST BORING NO. TEST BORING NO. DATE DRILLED 2/21/2022 DATE DRILLED 2/21/2022 Job# CLIENT 220394 SR LAND LOCATION STERLING RANCH, F-2 REMARKS REMARKS Blows per foot Blows per foot Natercontent Watercontent Depth (ft) Soil Type Samples Samples Symbol Symbol DRY TO 10', 2/21/22 DRY TO 5', 2/21/22 SAND, SLIGHTLY SILTY, FINE SAND, SILTY, FINE TO COARSE TO COARSE GRAINED, TAN, 6 6.0 GRAINED, TAN, MEDIUM DENSE, 11 7.4 1 LOOSE TO MEDIUM DENSE, MOIST MOIST 5 10 7.6 1 5 11 6.5 1 SANDSTONE, VERY CLAYEY, FINE TO MEDIUM GRAINED, GRAY BROWN, VERY DENSE. MOIST 10 10 ገ∷∷ <u>50</u> 9.2 3 9" 15 15 20 20

<>	ENTECH
	ENGINEERING, INC.
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

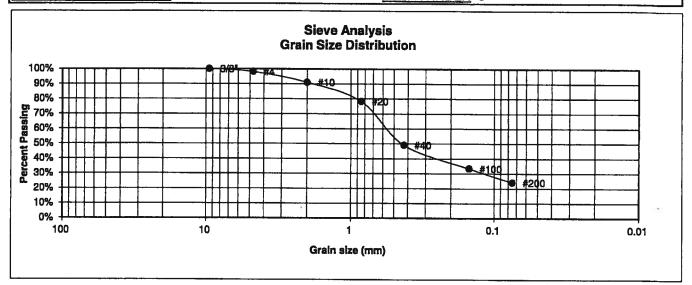
	TEST BORING LOG				
DRAWN:	DATE:	CHECKED:	9/1/22		

JOB NO.: 220394

A- 1

TEST BORING NO. TEST BORING NO. DATE DRILLED 8/4/2022 DATE DRILLED 8/4/2022 Job# 220394 CLIENT **SR LAND** LOCATION STERLING RANCH, F-2 REMARKS REMARKS Watercontent % Watercontent % Blows per foot Blows per foot Soil Type Depth (ft) Samples Samples \.\\Symbol Symbol DRY TO 5', 8/4/22 DRY TO 5', 8/4/22 FILL O-5', SAND, VERY CLAYEY, FILL O-5', SAND, VERY CLAYEY, 12 16.3 FINE TO MEDIUM GRAINED, 2 FINE TO MEDIUM GRAINED, 16 17.5 BROWN, MEDIUM DENSE, MOIST BROWN, MEDIUM DENSE TO DENSE, MOIST 5 27 12.3 2 5 38 7.9 2 10 10 15 15

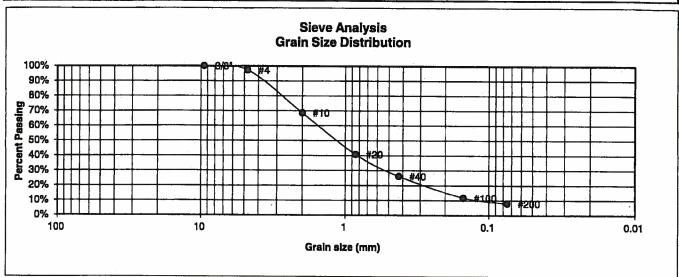
	EST BORING LO	G	
DRAWN:	DATE:	CHECKED:	19/1/2e


TEST BORING NO. TEST BORING NO. 8/4/2022 DATE DRILLED DATE DRILLED Job# 220394 CLIENT **SR LAND** LOCATION STERLING RANCH, F-2 REMARKS REMARKS Watercontent % Watercontent % Blows per foot Blows per foot Depth (ft) Samples Soil Type Samples Symbol Symbol DRY TO 10', 8/4/22 FILL O-8', SAND, SLIGHTLY 18 7.0 SILTY, FINE TO COARSE GRAINED, 1 BROWN, MEDIUM DENSE, MOIST 17 11.5 1 SAND, SILTY, FINE TO COARSE 10 12 9.2 GRAINED, TAN, MEDIUM DENSE, 3 MOIST 15 15

	TE	ST BORING L	og
DRAWN:	DATE:	CHECKED:	Chile

APPENDIX B: Laboratory Test Results

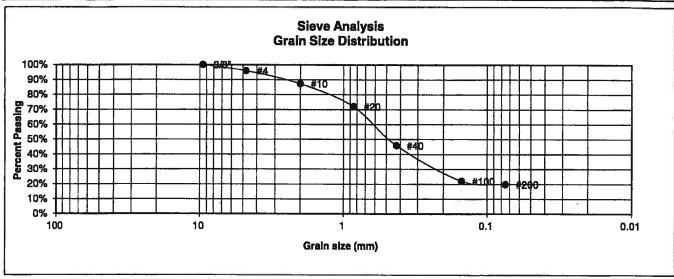
UNIFIED CLASSIFICATION	SM	CLIENT	SR LAND
SOIL TYPE #	1, CBR #1	PROJECT	STERLING RANCH, F-2
TEST BORING #	1	JOB NO.	220394
DEPTH (FT)	0-3	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0



U.S. Sieve # 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
3/8"	100.0%	
4	98.1%	<u>Swell</u>
10	91.0%	Moisture at start
20	78.3%	Moisture at finish
40	49.0%	Moisture increase
100	33.3%	Initial dry density (pcf)
200	24.1%	Swell (psf)

	LABOF RESUL	RATORY TES .TS	Т
DRAWN:	DATE:	CHECKED:	4 (4) 22

UNIFIED CLASSIFICATION	SM	CLIENT	SR LAND
SOIL TYPE #	1	PROJECT	STERLING RANCH, F-2
TEST BORING #	1	JOB NO.	220394
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0

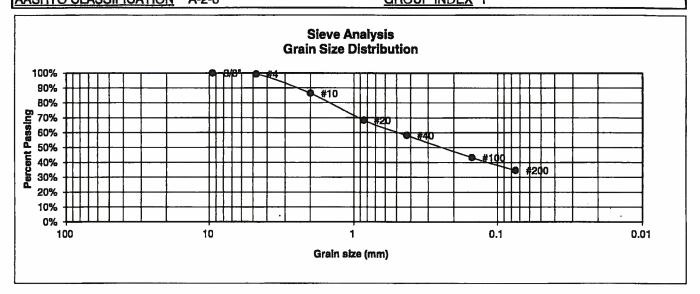


U.S. <u>Sieve #</u> 3"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP
1 1/2"		Liquid Limit NV
3/4"		Plastic Index NP
1/2"		
3/8"	100.0%	
4	97.3%	<u>Swell</u>
10	68.6%	Moisture at start
20	40.8%	Moisture at finish
40	26.1%	Moisture increase
100	11.7%	Initial dry density (pcf)
200	8.0%	Swell (psf)

�	ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907
----------	---

	LABOI	RATORY TEST	
DRAWN:	DATE:	CHECKED:	DATE: 4 (4/22

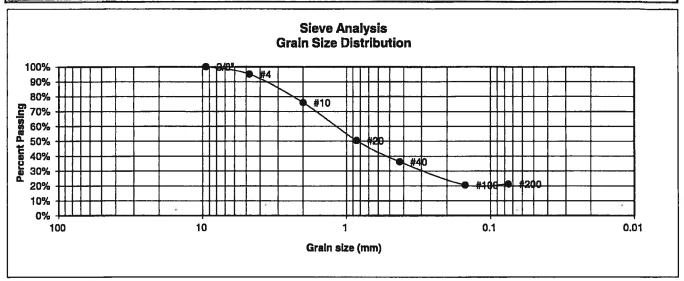
UNIFIED CLASSIFICATION	SM	CLIENT	SR LAND
SOIL TYPE #	1	PROJECT	STERLING RANCH, F-2
TEST BORING #	2	JOB NO.	220394
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0


U.S.	Percent	Atterberg
Sieve #	<u>Finer</u>	<u>Limits</u>
3"		Plastic Limit NP
1 1/2"		Liquid Limit NV
3/4"		Plastic Index NP
1/2"		
3/8"	100.0%	
4	96.0%	<u>Swell</u>
10	87.3%	Moisture at start
20	72.0%	Moisture at finish
40	45.9%	Moisture increase
100	22.0%	Initial dry density (pcf)
200	19.8%	Swell (psf)

	LABOI RESU	RATORY TEST LTS	
DRAWN:	DATE;	CHECKED:	DATE 22

JOB NO.:

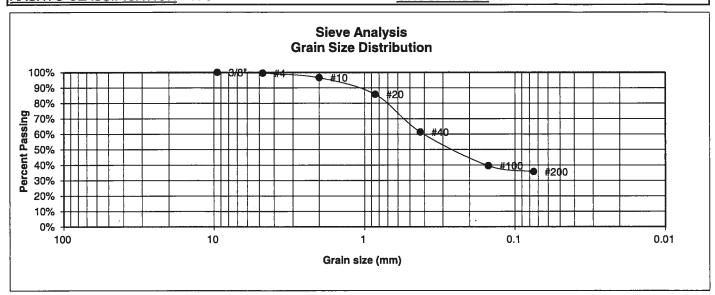
220394 FIG NO.: 8-3 UNIFIED CLASSIFICATION CLIENT SR LAND SOIL TYPE # **PROJECT** 1, CBR #2 STERLING RANCH, F-2 TEST BORING # JOB NO. 4 220394 DEPTH (FT) 0-3 **TEST BY** BL AASHTO CLASSIFICATION A-2-6 **GROUP INDEX** 1



U.S. <u>Sieve #</u> 3" 1 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit 18 Liquid Limit 34
3/4"		Plastic Index 16
1/2"		
3/8"	100.0%	
4	99.3%	<u>Swell</u>
10	86.4%	Moisture at start
20	68.3%	Moisture at finish
40	58.1%	Moisture increase
100	43.2%	Initial dry density (pcf)
200	34.6%	Swell (psf)

	LABORATORY TEST RESULTS			
DRAWN:	DATE:	CHECKED:	DATE: 4/4/22	

UNIFIED CLASSIFICATION	SM	CLIENT	SR LAND
SOIL TYPE #	1	PROJECT	STERLING RANCH, F-2
TEST BORING #	5	JOB NO.	220394
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-1-b	GROUP INDEX	0



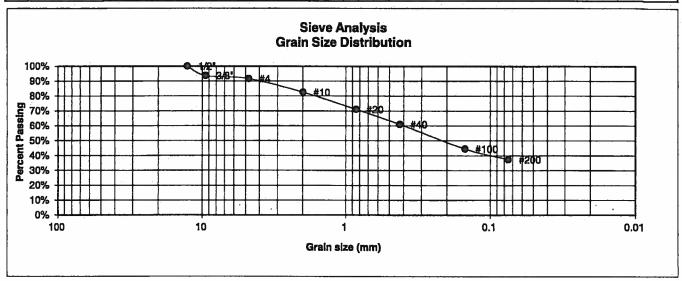
U.S. Sieve #	Percent <u>Finer</u>	Atterberg <u>Limits</u>
3"		Plastic Limit NP
1 1/2"		Liquid Limit NV
3/4"		Plastic Index NP
1/2"		
3/8"	100.0%	
4	95.1%	<u>Swell</u>
10	76.0%	Moisture at start
20	50.4%	Moisture at finish
40	36.2%	Moisture increase
100	20.5%	Initial dry density (pcf)
200	21.2%	Swell (psf)

LABORATORY TEST RESULTS					
DRAWN: DATE: CHECKED: SDATE: 22					

CLIENT UNIFIED CLASSIFICATION SR LAND SC STERLING RANCH, F-2 SOIL TYPE # **PROJECT** 2, CBR #3 3 JOB NO. 220394 TEST BORING # DEPTH (FT) 0-3 TEST BY BLAASHTO CLASSIFICATION GROUP INDEX 1 A-6

U.S. Sieve # 3" 1 1/2" 3/4"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit 18 Liquid Limit 33 Plastic Index 15
1/2" 3/8"	100.0%	
4	99.5%	<u>Swell</u>
10	96.6%	Moisture at start
20	85.8%	Moisture at finish
40	61.3%	Moisture increase
100	39.5%	Initial dry density (pcf)
200	35.6%	Swell (psf)

DRAWN:

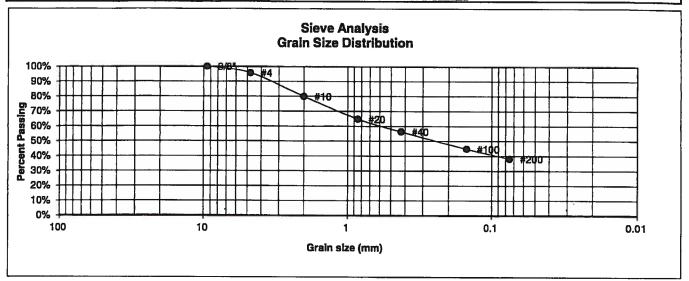


LABORATORY TEST RESULTS		,
DATE:	CHECKED:	9/7/22

JOB NO.: 220394

FIG NO.:

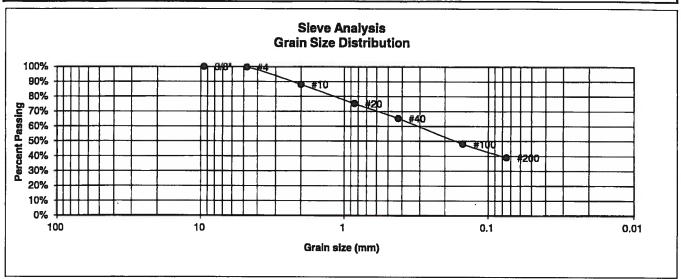
UNIFIED CLASSIFICATION	SC	CLIENT	SR LAND
SOIL TYPE #	2	PROJECT	STERLING RANCH, F-2
TEST BORING #	3	JOB NO.	220394
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-6	GROUP INDEX	5


U.S.	Percent	Atterberg
Sieve #	<u>Finer</u>	<u>Limits</u>
3"		Plastic Limit
1 1/2"		Liquid Limit
3/4"		Plastic Index
1/2"	100.0%	
3/8"	93.7%	
4	91.6%	<u>Swell</u>
10	82.5%	Moisture at start
20	71.1%	Moisture at finish
40	61.0%	Moisture increase
100	44.5%	Initial dry density (pcf)
200	37.3%	Swell (psf)

LABORATORY TEST RESULTS				
DRAWN:	DATE:	CHECKED:	8/23/22	

10 42 32

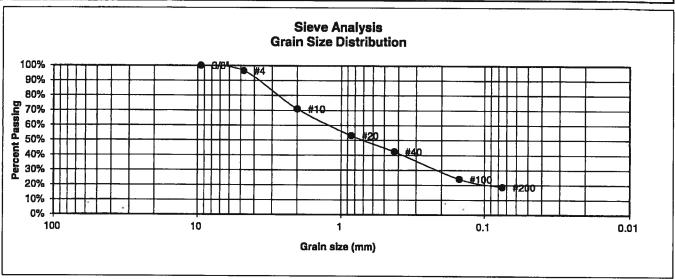
UNIFIED CLASSIFICATION	SC	CLIENT	SR LAND
SOIL TYPE #	2	PROJECT	STERLING RANCH, F-2
TEST BORING #	4	JOB NO.	220394
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICATION	A-2-6	GROUP INDEX	0


U.S.	Percent	Atterberg
Sieve #	<u>Finer</u>	<u>Limits</u>
3"		Plastic Limit
1 1/2"		Liquid Limit
3/4"		Plastic Index
1/2"		
3/8"	100.0%	
4	95.7%	<u>Swell</u>
10	79.9%	Moisture at start
20	64.7%	Moisture at finish
40	56.3%	Moisture increase
100	44.8%	Initial dry density (pcf)
200	38.2%	Swell (psf)

	LABOF RESUL	RATORY TES .TS	Т
DRAWN:	DATE:	CHECKED:	B/23/22

20 33 13

UNIFIED CLASSIFICATION	SC	CLIENT	SR LAND
SOIL TYPE #	3	PROJECT	STERLING RANCH, F-2
TEST BORING #	1	JOB NO.	220394
DEPTH (FT)	10	TEST BY	BL
AASHTO CLASSIFICATION	A-6	GROUP INDEX	1

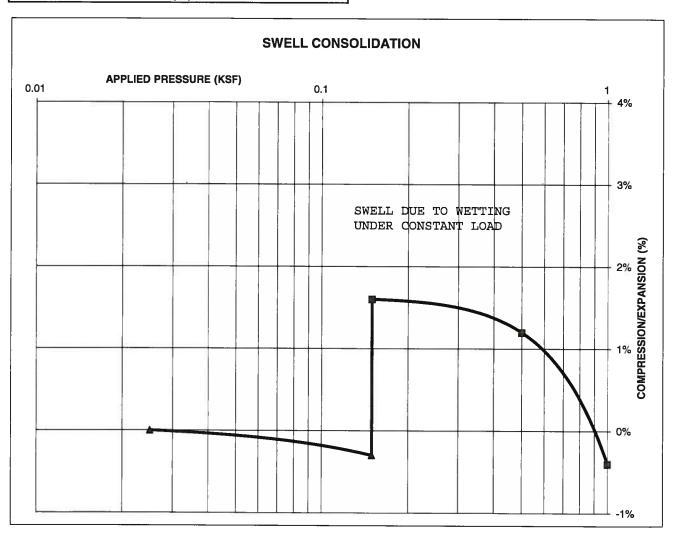


U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg Limits Plastic Limit 23 Liquid Limit 36 Plastic Index 13
3/8" 4 10	100.0% 99.6% 88.0%	<u>Swell</u> Moisture at start
20 40 100	75.2% 65.3% 48.1%	Moisture at finish Moisture increase Initial dry density (pcf)
200	39.0%	Swell (psf)

	LABOR	RATORY TEST LTS	
DRAWN:	DATE:	CHECKED:	474 22

UNIFIED CLASSIFICATION	SM	CLIENT	SR LAND
SOIL TYPE #	3	PROJECT	STERLING RANCH, F-2
TEST BORING #	5	JOB NO.	220394
DEPTH (FT)	10	TEST BY	BL
AASHTO CLASSIFICATION	A-2-4	GROUP INDEX	0

U.S. Sieve # 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
3/8"	100.0%	
4	96.5%	<u>Swell</u>
10	70.9%	Moisture at start
20	53.1%	Moisture at finish
40	42.4%	Moisture increase
100	24.0%	Initial dry density (pcf)
200	18.6%	Swell (psf)

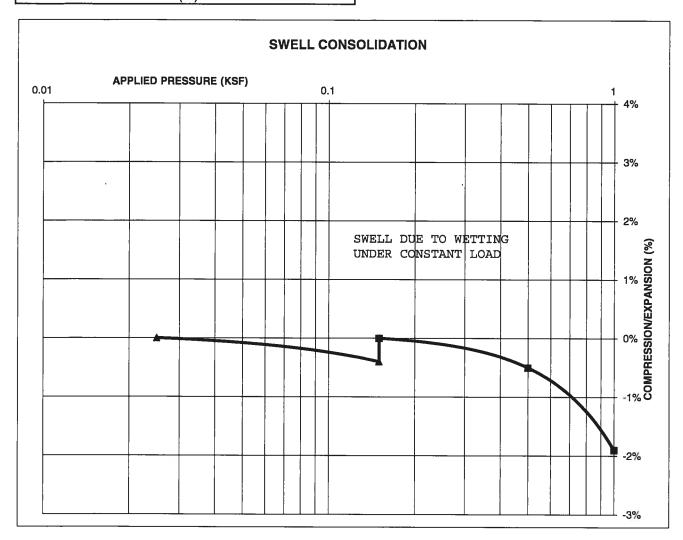


LABORATORY TEST RESULTS				
DRAWN:	DATE	CHECKED:	E/23/22	

CONSOLIDATION TEST RESULTS

TEST BORING # 3 DEPTH(ft) 0-3
DESCRIPTION SC SOIL TYPE 2, CBR #3
NATURAL UNIT DRY WEIGHT (PCF) 109
NATURAL MOISTURE CONTENT 12.5%
SWELL/CONSOLIDATION (%) 1.9%

JOB NO. 220394
CLIENT SR LAND
PROJECT STERLING RANCH, F-2



	SWELL TEST R	CONSOLIDA ESULTS	TION		
DRAWN:	DRAWN: DATE: CHECKED: 917121				

CONSOLIDATION TEST RESULTS

TEST BORING # 3 DEPTH(ft) 1-2
DESCRIPTION SC SOIL TYPE 2
NATURAL UNIT DRY WEIGHT (PCF) 103
NATURAL MOISTURE CONTENT 11.9%
SWELL/CONSOLIDATION (%) 0.4%

JOB NO. 220394
CLIENT SR LAND
PROJECT STERLING RANCH, F-2

SWELL CONSOLIDATION
TEST RESULTS

DRAWN: DATE: CHECKED: DATE:

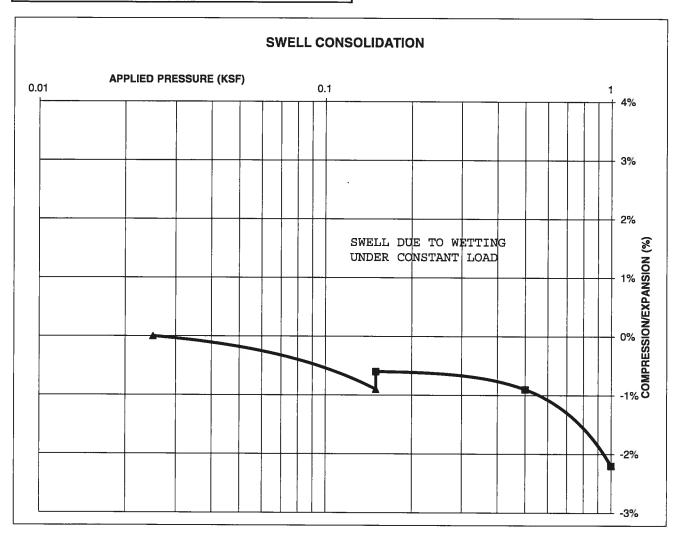

JOB NO.: 220394

FIG NO.:

CONSOLIDATION TEST RESULTS

TEST BORING #	1	DEPTH(ft)	10
DESCRIPTION	SC		3
NATURAL UNIT DRY	WEIGI	HT (PCF)	92
NATURAL MOISTURI	E CON	TENT	19.8%
SWELL/CONSOLIDA			0.3%

JOB NO. 220394
CLIENT SR LAND
PROJECT STERLING RANCH, F-2

SV	VELL CON	SOLIDATION
TE	ST RESU	LTS

DRAWN: DATE: CHECKED: 9 PATE:

JOB NO.: 220394

FIG NO.

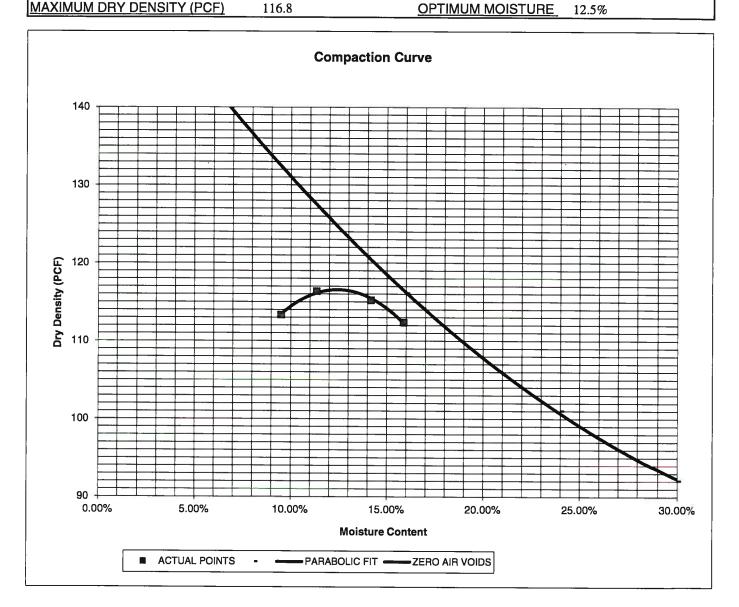
CLIENT SR LAND JOB NO. 220394

PROJECT STERLING RANCH, F-2 DATE 8/23/2022

LOCATION STERLING RANCH, F-2 TEST BY BL

BORING NUMBER	DEPTH, (ft)	SOIL TYPE NUMBER	UNIFIED CLASSIFICATION	WATER SOLUBLE SULFATE, (wt%)
TB-4	1-2	1	SC	<0.01
TB-5	10	2	SM	<0.01
TB-1	1-2	1	SM	<0.01
			1	
	<u> </u>			

QC BLANK PASS


		RATORY TEST ATE RESULTS	
DRAWN:	DATE:	CHECKED:	P/23/22

PROJECTSTERLING RANCH, F-2CLIENTSR LANDSAMPLE LOCATIONTB-4 @ 0-3'JOB NO.220394SOIL DESCRIPTIONFILL, SAND, V. CLAYEY, BROWNDATE08/04/22

 IDENTIFICATION
 SC
 COMPACTION TEST # 3, SOIL TYPE #2

 TEST DESIGNATION / METHOD
 ASTM D-698-A
 TEST BY BL

 MAXIMUM DRY DENSITY (PCF)
 116.8
 OPTIMUM MOISTURE 12.5%

	MOISTURE	DENSITY	RELATION
_			

DRAWN: DATE: CHECKED: 9/6/22

JOB NO.: 220394

B-1,5

CBR TEST LOAD DATA

JOB NO:

220394

PROJECT: STERLING RANCH, F-2

CLIENT: SR LAND

SOIL TYPE: 2, CBR #3

PISTON	PISTON
DIAMETER (cm)	AREA (in²)
4.958	2.993

10 BLOWS		25 BLOWS	_	56 BLOWS	
MOLD #	1	MOLD #	2	MOLD #	3
LOAD(LBS)	STRESS	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS
(LBS)	(PSI)	(LBS)	(PSI)	(LBS)	(PSI)
0	0.00	0	0.00	0	0.00
25	8.35	43	14.37	121	40.43
30	10.03	63	21.05	156	52.13
35	11.70	76	25.40	206	68.84
40	13.37	83	27.74	231	77.19
45	15.04	95	31.75	274	91.56
50	16.71	106	35.42	337	112.61
55	18.38	115	38.43	371	123.98
60	20.05	121	40.43	401	134.00
65	21.72	126	42.11	495	165.41
70	23.39	143	47.79	575	192.15
75	25.06	156	52.13	652	217.88
	MOLD # LOAD(LBS) (LBS) 0 25 30 35 40 45 50 55 60 65 70	MOLD # 1 LOAD(LBS) STRESS (LBS) (PSI) 0 0.00 25 8.35 30 10.03 35 11.70 40 13.37 45 15.04 50 16.71 55 18.38 60 20.05 65 21.72 70 23.39	MOLD # 1 MOLD # LOAD(LBS) STRESS LOAD(LBS) (LBS) (PSI) (LBS) 0 0.00 0 25 8.35 43 30 10.03 63 35 11.70 76 40 13.37 83 45 15.04 95 50 16.71 106 55 18.38 115 60 20.05 121 65 21.72 126 70 23.39 143	MOLD # 1 MOLD # 2 LOAD(LBS) STRESS (PSI) LOAD(LBS) STRESS (PSI) 0 0.00 0 0.00 25 8.35 43 14.37 30 10.03 63 21.05 35 11.70 76 25.40 40 13.37 83 27.74 45 15.04 95 31.75 50 16.71 106 35.42 55 18.38 115 38.43 60 20.05 121 40.43 65 21.72 126 42.11 70 23.39 143 47.79	MOLD # 1 MOLD # 2 MOLD # 2 LOAD(LBS) STRESS (LOAD(LBS) STRESS (LOAD(LBS) LOAD(LBS) 0 0.00 0 0.00 0 25 8.35 43 14.37 121 30 10.03 63 21.05 156 35 11.70 76 25.40 206 40 13.37 83 27.74 231 45 15.04 95 31.75 274 50 16.71 106 35.42 337 55 18.38 115 38.43 371 60 20.05 121 40.43 401 65 21.72 126 42.11 495 70 23.39 143 47.79 575

FINAL MOISTURE CONTENT

	MOLD #	1	MOLD #	2	MOLD #	3
CAN #		303		352		106
<u>WT. CAN</u>		8.36		6.68		9.37
WT. CAN+WET		167.83		195.32		187.5
WT. CAN+DRY		142.15	ĺ	165.2		162.85
<u>WT. H20</u>		25.68		30.12		24.65
WT. DRY SOIL		133.79		158.52		153.48
MOISTURE CONTENT		19.19%		19.00%	<u> </u>	16.06%

WET DENSITY (PCF)	114.6	117.3	127.5
DRY DENSITY (PCF)	101.9	104.2	113.3
	·		

BEARING RATIO 1.34 2.77 7.72

90% OF DRY DENSITY 105.1 95% OF DRY DENSITY 111.0

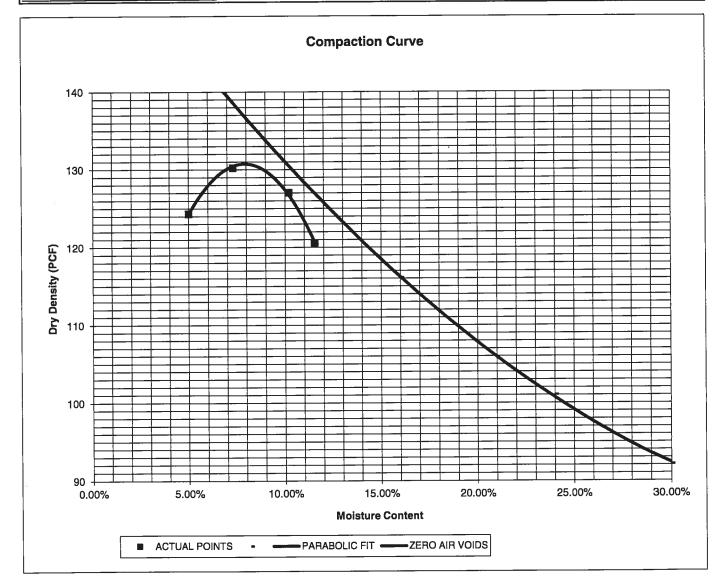

BEARING RATIO AT 90% OF MAX	3.26 ~ R VALUE	7.5
BEARING RATIO AT 95% OF MAX	6.43 ~ R VALUE	14

	CE	BR TEST DATA	
DRAWN:	DATE:	CHECKED:	9/6/22

JOB NO.: 220394

 BEARING RATIO AT 90% OF MAX
 3.26 ~ R VALUE
 7.50

 BEARING RATIO AT 95% OF MAX
 6.43 ~ R VALUE
 14.00


JOB NO: 220394 SOIL TYPE: 2, CBR #3

	CALIFOR	INIA BEARING	RATIO
DRAWN:	DATE:	CHECKED:	altin

JOB NO.: 220394 PROJECTSTERLING RANCH, F-2CLIENTSR LANDSAMPLE LOCATIONTB-4 @ 0-3'JOB NO.220394SOIL DESCRIPTIONFILL, SAND, CLAYEY, BROWNDATE08/04/22

IDENTIFICATIONSCCOMPACTION TEST # 2, SOIL TYPE #1TEST DESIGNATION / METHODASTM D-1557-ATEST BY FVMAXIMUM DRY DENSITY (PCF)129.1OPTIMUM MOISTURE 8.0%

MOISTURE	DENSITY	RELATION
----------	----------------	----------

DRAWN: DATE: CHECKED: DATE:

JOB NO.:

220394

FIG NO.:

CBR TEST LOAD DATA

JOB NO:

220394

PISTON DIAMETER (cm) PISTON AREA (in²) 2.993 CLIENT: SR LAND
PROJECT: STERLING RANCH, F-2

SOIL TYPE: 1, CBR #2

4.958	2.993			·		
	10 BLOWS		25 BLOWS		56 BLOWS	
PENETRATION	MOLD #	1	MOLD #	2	MOLD #	3
DEPTH	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS
(INCHES)	(LBS)	(PSI)	(LBS)	(PSI)	(LBS)	(PSI)
0.000	0	0.00	0	0.00	0	0.00
0.025	76	25.40	189	63.16	325	108.60
0.050	96	32.08	297	99.25	583	194.82
0.075	108	36.09	357	119.30	748	249.96
0.100	134	44.78	438	146.37	965	322.47
0.125	158	52.80	540	180.45	1015	339.18
0.150	163	54.47	613	204.84	1118	373.60
0.175	179	59.82	670	223.89	1299	434.08
0.200	196	65.50	718	239.93	1449	484.21
0.300	222	74.19	817	273.02	1839	614.53
0.400	245	81.87	919	307.10	2076	693.73
0.500	279	93.23	1035	345.86	2363	789.64

FINAL MOISTURE CONTENT

	MOLD #	1	MOLD #	2	MOLD #	3
CAN #		341		357		340
WT. CAN		8.355		7.85		8.59
WT. CAN+WET		167.83		180.68		222.45
WT. CAN+DRY		142.15		157.57		178.69
<u>WT. H20</u>		25.68		23.11		43.76
WT. DRY SOIL		133.795		149.72	1	170.1
MOISTURE CONTENT		19.19%		15.44%		25.73%

WET DENSITY (PCF)	123.4	134.7	141.1
DRY DENSITY (PCF)	114.3	124.7	130.6

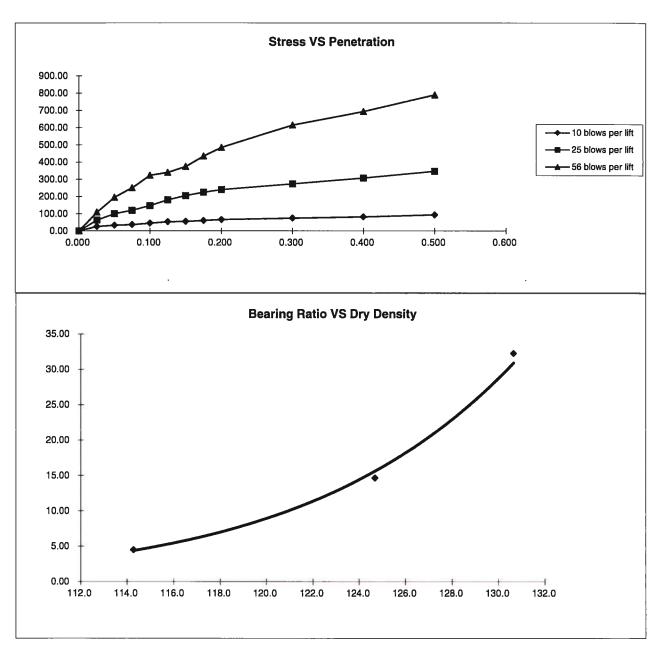
BEARING RATIO 4.48 14.64 32.25

DRAWN:

 90% OF DRY DENSITY
 116.2

 95% OF DRY DENSITY
 122.6

 BEARING RATIO AT 90% OF MAX
 6.34 ~ R VALUE
 14


 BEARING RATIO AT 95% OF MAX
 12.65 ~ R VALUE
 37

Ci	BR TEST DATA	
DATE:	CHECKED:	911124

JOB NO.: 220394
FIG NO.:

B-19

 BEARING RATIO AT 90% OF MAX
 6.34 ~ R VALUE
 14.00

 BEARING RATIO AT 95% OF MAX
 12.65 ~ R VALUE
 37.00

JOB NO: 220394 SOIL TYPE: 1, CBR #2

	RATIO		
DRAWN:	DATE:	CHECKED:	DATE: 122
	•		47 (SS)

APPENDIX C: Pavement Design Calculations

FLEXIBLE PAVEMENT DESIGN

DESIGN DATA

SR LAND, LLC - SOIL TYPE 1 COLLECTORS

Equivalent (18 kip) Single Axle Load Applications (ESAL): $ESAL(W_{18}) =$ 821,000 Hveem Stabilometer (R Value) Results: R =35 Standard Deviation $S_0 =$ 0.45 Loss in Serviceability $\Delta psi =$ 2.5 Reliability Reliability = 85 Reliability (z-statistic) $Z_R =$ -1.04 Soil Resilient Modulus 8065

Weighted Structural Number (WSN):

WSN =

2.98

DESIGN TABLES AND EQUATIONS

 $S_1 = [(R - 5) / 11.29] + 3$ $M_R = 10^{[(S_1 + 18.72)/6.24]}$

 $k = M_R/19.4$

Where:

M_R = resilient modulus (psi)

 S_1 = the soil support value

R = R-value obtained from the Hveem stabilometer

CBR = California Bearing Ratio

Reliability (%)	Z _R (z-statistic)
80	-0.84
85	-1.04
90	-1.28
93	-1.48
94	-1.56
95	-1.65
96	-1.75
97	-1.88
98	-2.05
99	-2.33
99.9	-3.09
99.99	-3.75

$$\log_{10}W_{18} = Z_{R}^{*} S_{O}^{+} 9.36^{*}\log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32^{*}\log_{10}M_{R}^{-} 8.07$$

Left	Right	Difference
5.91	5.91	0.0

Job No. 220394

Fig. No. C-1

DESIGN CALCULATIONS

AGGRGATE BASE COURSE

DESIGN DATA

SR LAND, LLC - SOIL TYPE 1 URBAN NON-RESIDENTIAL COLLECTOR -

Equivalent (18 kip) Single Axle Load Applications (ESAL):

Hveem Stabilometer (R Value) Results:

Weighted Structural Number (WSN):

ESAL = 821,000R =35

WSN = 2.98

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

C₁ = 0.44 Strength Coefficient - Hot Bituminous Asphalt

 $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

 $D_1 = Depth of Asphalt (inches)$

 D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 6.8$ inches of Full Depth Asphalt Use 7.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 4.5 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 9.1$ inches of Aggregate Base Course, use 9.0 inches

RECOMMENDED ALTERNATIVES 9.5

1. 4.5 inches of Asphalt + 9.0 inches of Aggregate Base Course, or

9.5

3. 7.0 inches of Asphalt

Job No. 220394

Fig. No. C-2

DESIGN CALCULATIONS

RECYCLED CONCRETE

DESIGN DATA

SR LAND, LLC - SOIL TYPE 1 COLLECTORS

Equivalent (18 kip) Single Axle Load Applications (ESAL):

ESAL = 821,000

Hveem Stabilometer (R Value) Results:

R = 35

Weighted Structural Number (WSN):

WSN = 2.98

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt

 $C_2 = 0.09$ Strength Coefficient - Recycled Concrete

 $D_1 = Depth of Asphalt (inches)$

 D_2 = Depth of Recycled Concrete (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 6.8$ inches of Full Depth Asphalt Use 7.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = $\boxed{4.5}$ inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 11.1 \text{ inches of Recycled Concrete}$ Recycled Concrete, use 11.0 inches 11.5

RECOMMENDED ALTERNATIVES

11.5

- 1. 4.5 inches of Asphalt + 11.0 inches of Recycled Concrete, or
- 2. 7.0 inches of Asphalt

Job No. 220394

Figure No. C-3

FLEXIBLE PAVEMENT DESIGN

DESIGN DATA

SR LAND, LLC - SOIL TYPE 2 (A-6) URBAN NON-RESIDENTIAL COLLECTOR

Equivalent (18 kip) Single Axle Load Applications (ESAL):

Hveem Stabilometer (R Value) Results:

Standard Deviation

Loss in Serviceability

Reliability

Reliability (z-statistic)

Soil Resilient Modulus

ESAL (W₁₈) = 821,000 R = 14 $S_o = 0.45$ $\Delta psi = 2.5$ Reliability = 85 $Z_R = -1.04$

 $Z_R = -1.04$ $M_R = 4060$

Weighted Structural Number (WSN):

WSN = 3.74

DESIGN TABLES AND EQUATIONS

$$S_1 = [(R - 5) / 11.29] + 3$$

 $M_R = 10^{[(S_1 + 18.72)/6.24]}$

 $k = M_R/19.4$

Where:

M_R = resilient modulus (psi)

 S_1 = the soil support value

R = R-value obtained from the Hveem stabilometer

CBR = California Bearing Ratio

Z_{R} (z-statistic)
-0.84
-1.04
-1.28
-1.48
-1.56
-1.65
-1.75
-1.88
-2.05
-2.33
-3.09
-3.75

$$\log_{10}W_{18} = Z_{R}^{*} S_{O}^{+} 9.36^{*} \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32^{*} \log_{10}M_{R}^{-} 8.07$$

Left	Right	Difference
5.91	5.91	0.0

Job No. 220394

Fig. No. C-4

DESIGN CALCULATIONS

AGGRGATE BASE COURSE

DESIGN DATA

SR LAND, LLC - SOIL TYPE 2 (A-6) URBAN NON-RESIDENTIAL COLLECTOR -

Equivalent (18 kip) Single Axle Load Applications (ESAL):

Hveem Stabilometer (R Value) Results:

Weighted Structural Number (WSN):

ESAL = 821,000

R =14

WSN = 3.74

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt

 $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

 $D_1 = Depth of Asphalt (inches)$

 D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 8.5$ inches of Full Depth Asphalt

Use 8.5 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 6 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 10.0$ inches of Aggregate Base Course, use 10.0 inches

RECOMMENDED ALTERNATIVES

- 1. 6.0 inches of Asphalt + 10.0 inches of Aggregate Base Course, or
- 3. 8.5 inches of Asphalt

Job No. 220394

Fig. No. C-5

DESIGN CALCULATIONS

RECYCLED CONCRETE

DESIGN DATA

SR LAND, LLC - SOIL TYPE 2 (A-6) URBAN NON-RESIDENTIAL COLLECTOR

Equivalent (18 kip) Single Axle Load Applications (ESAL):

Hveem Stabilometer (R Value) Results:

Weighted Structural Number (WSN):

ESAL = 821.000

R = 14

WSN = 3.74

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt

 $C_2 = 0.09$ Strength Coefficient - Recycled Concrete

 $D_1 = Depth of Asphalt (inches)$

 D_2 = Depth of Recycled Concrete (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 8.5$ inches of Full Depth Asphalt

Use 8.5 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 6 inches

 $D_2 = ((WSN) - (t)(C_1))/C_2 = 12.2$ inches of Recycled Concrete

Recycled Concrete, use 13.0 inches

RECOMMENDED ALTERNATIVES

- 1. 6.0 inches of Asphalt + 13.0 inches of Recycled Concrete, or
- 2. 8.5 inches of Asphalt

Job No. 220394

Figure No. C-6

APPENDIX D: Laboratory Test Results – Recycled Concrete Report by Entech Engineering Inc. dated September 1, 2022, Entech Job No. 220394.

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

April 15, 2022 Revised September 1, 2022

SR Land, LLC 20 Boulder Crescent, 2nd Floor Colorado Springs, CO 80903

Attn: Chaz Collins

Re: Laboratory Test Results – Recycled Concrete

Sterling Ranch Stockpiles Sterling Ranch – Filing No. 2 Colorado Concrete Crushing El Paso County, Colorado Entech Job No. 220394

Dear Mr. Collins:

As requested, Entech Engineering, Inc. have performed laboratory testing on representative samples of recycled concrete obtained from the stockpile at Colorado Crushing at Sterling Ranch. The sampling of the stockpile was performed by personnel of Entech Engineering, Inc. This letter presents the results of the laboratory testing.

The stockpile was located southwest of the future Dines Boulevard and Sterling Ranch Road Intersection. This is the only source location for the reclaimed concrete on the subject site. The pile appears to be of uniform material based on visual observations during sampling.

Sieve analyses and Atterberg Limits testing were performed on the samples. Testing was performed to determine the support characteristic of the crushed concrete for use in the Filing No. 2 roadways. In addition, LA Abrasion (ASTM C-131) testing was performed on the sample

The recycled concrete is non-plastic and meets the gradation for Class 5 and 6 basecourse.

The results of the laboratory testing are summarized below and are presented in Figures 1 and 2.

Soil Properties	Recycled Concrete
Liquid Limit	NV
Plastic lindex	NP
%200	7.9
LA Abrasion Loss (%)	44

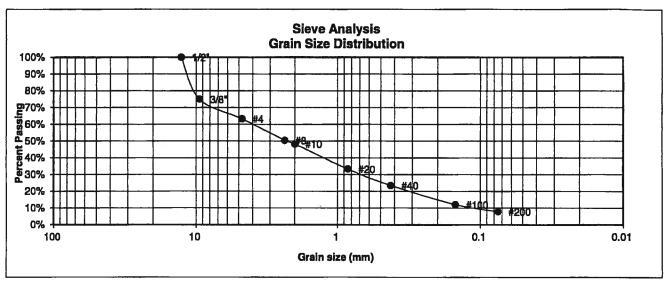
SR Land, LLC Laboratory Test Results – Recycled Concrete Sterling Ranch Stockpiles Sterling Ranch – Filing No. 2 El Paso County, Colorado Entech Job No. 220394

We trust that this report contains the information you require. If you have questions or need additional information, please contact us.

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Daniel P. Stegman


DPS/am

AAprojects/2022/220394Recconc- rev

Reviewed By:

Joseph C. Goode, Jr., P.E.

President

U.S.	SAMPLE Percent	CLASS 2			
Sieve #	Finer		ase Aggrega	tes	
3"		95-100	100		
1 1/2"			100		
1"			95-100		
3/4"				100	
1/2"	100.0%				
3/8"	75.0%				
4	63.3%		30-70	30-65	
8	50.4%			25-55	
10	48.3%				
20	33.3%				
40	23.5%				
100	12.0%				
200	7.9%	3-15	3-15	3-12	
Atterberg <u>Limits</u> Plastic Limit	NP				FHA Swell Moisture at start Moisture at finish Moisture increase

35 max

6 max

30 max

6 max

30 max

6 max

A	ENTECH
77	ENGINEERING, INC.
	505 ELKTON DRIVE
	COLORADO SPRINGS, COLORADO 80907

NV

NP

Liquid Limit

Plastic Index

LABORATORY TEST RESULTS					
DRAWN: DATE: CHECKED: DATE:					

Initial dry density (pcf)

Swell (psf)

JOB NO.:
220394
FIG NO.:
1

Laboratory Test Report

Entech Engineering, Inc.

Project: 20220641.001A

08-000L - Entech Lab

Report No.:

22-DEN-00237 Rev. 0

Issued: 4/13/2022

Sampled by: Submitted by: Entech Lab Entech Lab

Date: Date:

4/1/2022 4/1/2022

Aggregate Test Report: Los Angeles Abrasion

Tested on

4/6/2022

by MJ Landrus

Material Description:

Light Gray, Reconstituted Concrete

Test Method:

ASTM C131 Grading B

Loss after 500 revolutions:

44

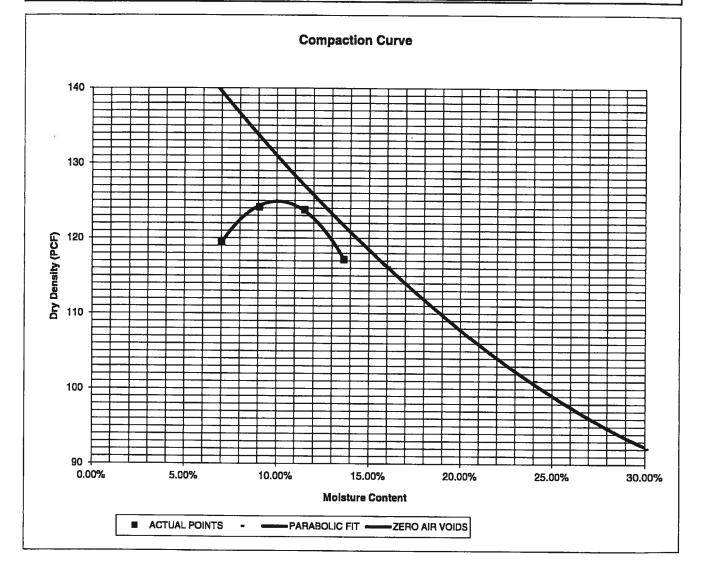
Remarks:

Reviewed on 4/13/2022 by Tim Ryan, **Project Manager**

Limitations: Pursuant to applicable building codes the results presented in this report are for the exclusive use of the ckent and the registered design professional in responsible charge. The results apply only to the samples tested if changes to the specifications were made and not communicated to Kleinfelder. Kleinfelder assumes no responsibility for pass/fail statements (meets/did not meet), if provided. This report may not be reproduced, except in full, without written approval of Kleinfelder.

Kleinfelder Denver Lab | 130 Capital Drive, Suite C & D | Golden, CO 80401 | (303) 237-6601

Page 2 of 2 PIG. 2


APPENDIX E: Laboratory Testing Results
CBR Test No. 1 – from Pavement Recommendations
Report by EEI, dated August 23, 2022 (revised)
Entech Job No. 220394

PROJECTSTERLING RANCH, F-2CLIENTSR LANDSAMPLE LOCATIONTB-1 @ 0-3'JOB NO.220394SOIL DESCRIPTIONSAND, SILTY, BROWNDATE08/27/16

 IDENTIFICATION
 SM
 COMPACTION TEST # 1

 TEST DESIGNATION / METHOD
 ASTM D-1557-A
 TEST BY
 DC

 MAXIMUM DRY DENSITY (PCF)
 125
 OPTIMUM MOISTURE
 10.1%

DRAWN:

MOISTURE	DENSITY RE	LATION
DATE:	CHECKED:	DATE:

JOB NO.:
220394
FIG NO

CBR TEST LOAD DATA

JOB NO:

220394

 PISTON
 PISTON

 DIAMETER (cm)
 AREA (in²)

 4.958
 2.993

CLIENT: SR LAND

PROJECT: STERLING RANCH, F-2

SOIL TYPE: 1, CBR #1

4.830	2,550					
	10 BLOWS		25 BLOWS		56 BLOWS	
PENETRATION	MOLD #	1	MOLD #	2	MOLD #	3
DEPTH	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS
(INCHES)	(LBS)	(PSI)	(LBS)	(PSI)	(LBS)	(PSI)
0.000	0	0.00	0	0.00	0	0.00
0.025	86	28.74	108	36.09	211	70.51
0.050	120	40.10	316	105.60	336	112.28
0.075	165	55.14	452	151.04	500	167.08
0.100	226	75.52	480	160.40	645	215.54
0.125	291	97.24	678	226.57	827	276.36
0.150	371	123.98	823	275.02	1110	370.93
0.175	425	142.02	939	313.78	1420	474.52
0.200	691	230.91	1070	357.56	1663	555.72
0.300	1319	440.77	1450	484.54	2657	887.88
0.400	1806	603.51	2012	672.35	3506	1171.59
0.500	2093	699.41	2911	972.76	4311	1440.60

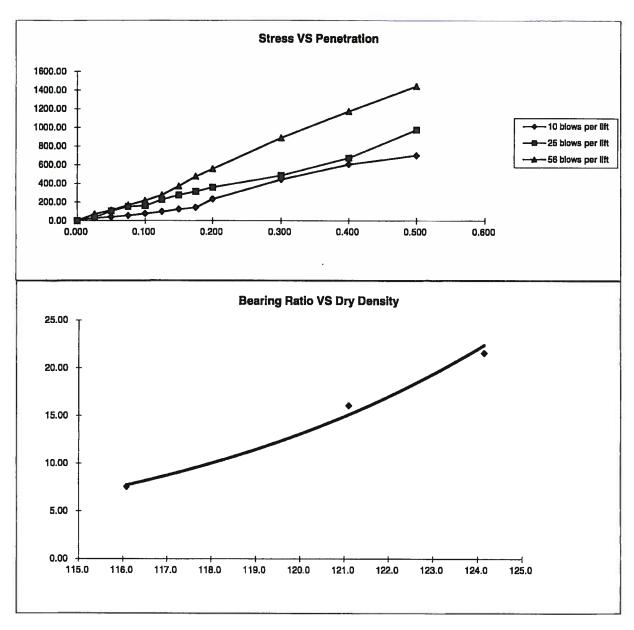
FINAL MOISTURE CONTENT

	MOLD #	1	MOLD#	2	MOLD #	3
CAN#		346		351		98
WT. CAN		6.89		6.84		6.98
WT. CAN+WET		116.98	1	121.64	[82.66
WT. CAN+DRY		103.63		110.19		75.27
<u>WT. H20</u>		13.35		11.45		7.39
WT. DRY SOIL		96.74	1	103.35	į	68.29
MOISTURE CONTENT		13.80%		11.08%		10.82%

WET DENSITY (PCF) DRY DENSITY (PCF)	127.8	133.3	136.7
	116.1	121.1	124.1
BEARING RATIO	7.55	16.04	21.55

DRAWN:

 90% OF DRY DENSITY
 112.5


 95% OF DRY DENSITY
 118.8

BEARING RATIO AT 90% OF MAX	1.49 ~ R VALUE	11
BEARING RATIO AT 95% OF MAX	12.06 ~ R VALUE	37

CBR TEST DATA				
DATE:	CHECKED:	A PATE:		

JOB NO.: 220394 FIG NO.:

 BEARING RATIO AT 90% OF MAX
 1.49 ~ R VALUE
 1.00

 BEARING RATIO AT 95% OF MAX
 12.06 ~ R VALUE
 37.00

JOB NO: 220394 SOIL TYPE: 1, CBR #1

CALIFORNIA BEARING RATIO					
DRAWN	DATE:	CHECKED:	DATE 4/22		

