FINAL DRAINAGE REPORT FOR STERLING RANCH FILING NO. 2

Prepared For: SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

May 2021 Project No. 25188.01

Prepared By: JR Engineering, LLC 5475 Tech Center Drive Colorado Springs, CO 80919 719-593-2593

Engineering Review

06/17/2021 4:32:01 PM dsdrice JeffRice@elpasoco.com (719) 520-7877 EPC Planning & Community Development Department

PCD File No. SF-20-015

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. # 32314 For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

By:

Title: Address:

<u>SR L</u>	and, LLC		
5	1	. 1	
Xth	Int	Novi	1
170		mul	
0		C	
20 Bo	ulder Cress	cent, Suite 21	0
		s, CO 80903	

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E. County Engineer/ ECM Administrator Date

Conditions:

Is the City signing this report?

Page i

CONTENTS

PURPOSE	1
GENERAL LOCATION AND DESCRIPTION	1
LOCATION DESCRIPTION OF PROPERTY FLOODPLAIN STATEMENT	1
DRAINAGE BASINS AND SUB-BASINS	2
Existing Major Basin Descriptions Existing Sub-basin Drainage Proposed Sub-basin Drainage	3
DRAINAGE DESIGN CRITERIA	11
DEVELOPMENT CRITERIA REFERENCE Hydrologic Criteria Hydraulic Criteria	11
DRAINAGE FACILITY DESIGN	13
GENERAL CONCEPT SPECIFIC DETAILS Four Step Process to Minimize Adverse Impacts of Urbanization Water Quality Erosion Control Plan Operation & Maintenance	13 13 14 15 15
Sand Creek Drainageway Improvements Drainage & Bridge Fees	
Construction Cost Opinion	
SUMMARY	17
REFERENCES:	18

APPENDICES

- A. Figures and Exhibits
- B. Hydrologic/Hydraulic CalculationsC. Detention and Water Quality Calculations
- D. Reference Materials
- E. Drainage Maps

Purpose

This document is the Final Drainage Report for Sterling Ranch Filing No.2. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual. The following report is an analysis of the drainage for the entire development and surrounding areas.

GENERAL LOCATION AND DESCRIPTION

Location

Sterling Ranch Filing No. 2 is located in Section 32, Township 12 South, Range 65 West of the 6th Principal Meridian, Section 33, Township 12 South, Range 65 West of the 6th Principal Meridian and Section 4, Township 13 South, Range 65 West of the 6th Principal Meridian within unincorporated El Paso County, Colorado. The site is bound on the west by existing Vollmer Road. The site is bound on the north by the Barbarick Subdivision. The property is bound to the east by the Sterling Ranch Phase 2 and Vollmer Road to the west. The site is bound on the south by Sterling Ranch Road and Marksheffel Road. Sterling Ranch lies within the Sand Creek Drainage Basin. Flows from this site are tributary to Sand Creek.

Description of Property

— verify with updated plat

Sterling Ranch Filing No. 2 consists of 49.5387 acres and is presently undeveloped. Vegetation is sparse, consisting of native grasses. Existing site terrain generally slopes from north to south at grade rates that vary between 2% and 8%.

Sterling Ranch Filing No. 2 is currently zoned "RS-5000" for residential single family development. Improvements proposed for the site include paved, streets, trails, utilities, and storm drainage improvements, drainage swales, and detention ponds as normally constructed for a residential development. Two full spectrum detention facilities are proposed to be constructed to provide water quality treatment and detain stormwater for the development. The proposed water quality and detention facilities will also be designed to incorporate the Sterling Ranch Phase 2 and Copper Chase at Sterling Ranch developments as well as other offsite areas. Approximately 174 acres are tributary to Pond W5 which includes all 49 acres of Sterling Ranch Filing No. 2. Approximately 350.74 acres of offsite area are tributary to Pond W-4.

Soils for this project are classified as Blakeland Loamy Sand (8), Flakeland-Fluvaquentic Haplaquolis (9) and Columbine Gravelly Sandy Loam (19). These soils are characterized as Hydrologic Soil Types "A". Group A soils exhibit high infiltration rates when thoroughly wet, and consist mainly of deep, well drained to excessively drained sands or gravelly sands. Pring Coarse Sandy Loam (71) is characterized as Hydrologic Soil Types "B". Group B soils exhibit moderate infiltration rate when thoroughly wet, and consist primarily of deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. A soil map of the site can be found in Appendix A.

Wetlands

Sterling Ranch was authorized under Section 404 of the Clean Water Act to discharge dredged and fill materials into waters of the United States to conduct work associated with construction of Sterling Ranch Residential Development in accordance with Action Number SPA-2015-00428-SCO. A copy of the permit is within the Appendix of this report. For the construction of Sterling Ranch Filing 2, ~17,582 square feet of wetlands will be displaced and will be mitigated. Wetlands that overlap with Sterling Ranch Filing 2 are located in Basin A8, A9, A22, and A13. The disturbance areas are located within the general area of Pond W5, which outfall into the Sand Creek Channel. A mitigation area is designated on the Sterling Ranch filing No. 2 construction drawings by JR Engineering. Coordination with the wetlands consultant and the Army Corp of Engineers will be in conformance with the wetland permit. The memo and map from Core Consultants showing intent to have wetlands delineated in the Filing No. 2 areas of wetland disturbance and mitigation can be found in the appendix.

Floodplain Statement

Based on the FEMA FIRM Maps number 08041C0533G, dated December 7, 2018, all of the proposed development lies within Zone X. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. No grading operations are proposed within the Zone AE at this time. FIRM Maps have been presented in Appendix A.

DRAINAGE BASINS AND SUB-BASINS

Existing Major Basin Descriptions

The Sterling Ranch Filing No. 2 site consists of 49.5387 acres and is located in the Sand Creek Drainage Basin, but limits of this report consist of 538 acres. The site area was previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996. More recently the area was studied in the "Preliminary Drainage Report for Sterling Ranch-Phase 1", dated May 2015, by M&S Civil Consultants, Inc. The Sterling Ranch Area has recently been studies in the "Master Development Drainage Plan for Sterling Ranch" (MDDP), dated October 2018, by M&S Civil Consultants, Inc.

The Sand Creek DBPS assumed the Sterling Ranch property to have a "large lot residential" use for the majority of the site. However, the proposed master plan is a mix of; school, multi-family, single-family, and commercial land uses, resulting in higher runoff. The site generally drains from north to south consisting of rolling hills. Currently, the site is used as pasture land for cattle. Sand Creek is located east of the site running north to south. This reach of drainage conveyance is not currently improved. There are a few stock ponds within the creek channel used for cattle watering.

An existing subdivision to the north of the proposed site known as Barbarick Subdivision generates runoff that is collected by detention ponds and are released at the north property line of the proposed Sterling Ranch Filing No. 2 Phase 2 site. See "Final Drainage Report for Barbarick Subdivision, Portions of Lots 1, 2 and Lots 3 & 4, by Matrix Design Group, June 2016". These offsite flows have been accounted for in order to ensure the proposed storm sewer infrastructure will have adequate capacity. If future offsite development occurs upstream of Sterling Ranch from the west, the properties will be required to detain to historic/ existing conditions per the County / City drainage criteria. A proposed drainage map showing these offsite basins can be found in Appendix E.

The following drainage basin narratives are based on information derived from field visits, USGS topographic mapping, aerial topography, field surveys and information provided by others familiar with the site. A "sheet flow" verses "concentrated ditch flow" designation was determined as best as possible from the available source topography, actual conditions may vary. A summary of peak runoff for the basins and designated design points are depicted on the Existing Conditions Drainage Map in the appendix.

Existing Sub-basin Drainage

Basin EXA1 ($Q_5=7.2$ cfs, $Q_{100}=12.1$ cfs) is 17.68 acres and is primarily open space and the existing Vollmer road. Runoff from this basin drains to the south east to DP 1 where it ultimately outfalls into the Sand Creek Drainageway.

Basin EXA2 ($Q_5=5.4$ cfs, $Q_{100}=9.0$ cfs) is 19.59 acres and is primarily open space and the existing Vollmer Road. Runoff from this basin drains to the south east to DP 2. Runoff is captured by an existing swale at DP 4.1 where it is conveyed to the Sand Creek Drainageway(See Sand Creek Drainage Basin Planning Study, Segment 159, page 47-48, anticipated flows=950 cfs).

Basin EXA3 ($Q_5=1.4$ cfs, $Q_{100}=2.3$ cfs) is 5.66 acres and is primarily open space. Runoff from this basin drains south to DP 3 where it ultimately outfalls into the Sand Creek Drainageway.

Basin EXA4 ($Q_5=10.6$ cfs, $Q_{100}=17.8$ cfs) is 50.72 and is primarily open space. Runoff from this basin drains to the south to DP 4. Runoff is then captured by an existing swale at DP 4.1 where it is conveyed to the Sand Creek Drainageway.

Basin EXB ($Q_5=3.0$ cfs, $Q_{100}=5.0$ cfs) is 11.78 acres and is comprised of open space and a portion of Sand Creek along the eastern most portion of the Sterling Ranch Filing No. 2 site. Runoff from this basin drains into Sand Creek.

Basin EXC1 ($Q_5=3.3$ cfs, $Q_{100}=5.5$ cfs) is 12.36 acres and is comprised of open space and a portion of Vollmer Road. Runoff from this basin drains south and does not flow onto the site.

Basin EXC2 ($Q_5=1.4$ cfs, $Q_{100}=2.3$ cfs) is 5.06 acres and is comprised of open space. Runoff from this basin drains south and does not flow onto the site.

Basin OS1 ($Q_5=23.9$ cfs, $Q_{100}=40.1$ cfs) is 23.82 acres and is located just north of the site. Flows from this sub-basin flow directly onto basin EXA4. Runoff from this sub-basin eventually flow to the existing swale at DP 4.1 where it is conveyed into Sand Creek.

Basin OS2 ($Q_5=37.3$ cfs, $Q_{100}=62.6$ cfs) is comprised of 85.59 acres. Flows from this sub-basin flow directly onto basin A4. Runoff from this sub-basin eventually flow to the existing swale at DP 4.1 where it is conveyed into Sand Creek.

Basin OS3 ($Q_5=1.8$ cfs, $Q_{100}=3.1$ cfs) is 6.66 acres and is located just north of the site. Flows from this sub-basin flow directly onto basin A4. Runoff from this sub-basin eventually flow to the existing swale at DP 4.1 where it is conveyed into Sand Creek.

Basin OS4 ($Q_5=0.5$ cfs, $Q_{100}=0.9$ cfs) is 2.19 acres is comprised of open space just north of the site. Runoff from this basin drains south directly onto Basin B1 where it outfalls directly into Sand Creek.

Basin OS5 ($Q_5=7.5$ cfs, $Q_{100}=23.4$ cfs) is 9.27 acres and is comprised of existing single family residential. Runoff from this site drains southwest onto basin A4 where it eventually flows to the existing swale at DP 4.1. From here, it is conveyed south into Sand Creek.

Basin OS20 ($Q_5=61$ cfs, $Q_{100}=310$ cfs) is 308 acres and is comprised primarily of developed and undeveloped land with lots ranging from 2.5 to 90 acres in size. The ground cover is comprised of mainly native grasses. Runoff from this site drains southwest into basin via sheetflow and an existing drainage ditch along the west side of Volmer Road to OS21A.

Basin OS21B ($Q_5=2.1$ cfs, $Q_{100}=14.5$ cfs) is 8.71 acres and is comprised of undeveloped land covered with mainly native grasses. Runoff from this site sheet flows southeast onto basin OS21A.

Basin OS21A ($Q_5=2.8$ cfs, $Q_{100}=18.7$ cfs) is 20.26 acres and is comprised primarily of developed land with lots ranging from 2.5 to 5 acres in size. The ground cover is comprised of mainly native grasses. Runoff from this site drains southwest into basin via sheetflow and an existing drainage ditch along the west side of Volmer Road. Flows from basins OS21A combines with OS21B and OS20 where the combined flow generally sheet flows to the southeast where it eventually reaches Sand Creek. Offsite Basins OS20, OS21B and OS21A correspond to Basins SC3-8 ($Q_5=42.1$ cfs, $Q_{100}=166.2$ cfs) and SC3-9($Q_5=71.5$ cfs, $Q_{100}=254.0$ cfs) from the MDDP

Proposed Sub-basin Drainage

The following is a description of the offsite and onsite basins, offsite bypass flows and the overall future drainage characteristics for the development of Sterling Ranch Filing No. 2. Ponds W4 and W5 are sized for the ultimate development, therefore, future developments have been included. As the future sites develop, final drainage reports will be completed to confirm the assumptions made in this report. Calculations have been provided to show the proposed storm infrastructure will adequately convey flows in the ultimate condition. The following basins parameters and developed runoff were determined using the Rational Method. Surface flow is designated as design points with whole numbers (1) and storm sewer routing as design points with decimals (1.0). See Appendix B for all Rational Method calculations and storm water routing.

Basin A consists of Sub-Basins A1-A22 combining for a total of 123.19 acres. This basin represents all 49.5387 acres of the proposed Sterling Ranch Filing 2 development. This basin is primarily single-family residential, roadway and minor open space. This basin also contains future commercial sites, the future Sterling Ranch Phase 2 development, the proposed Copper Chase at Sterling Ranch Development and a proposed school site. Stormwater runoff is conveyed via public streets where it is captured via a series of on-grade and sump inlets. Runoff is then piped to a proposed onsite Full Spectrum Detention Pond W5. From the detention pond, the treated flows are then released directly into the Sand Creek Drainageway at below historic rates.

Off-Site Conveyance

The existing drainage patterns on the west side of Vollmer Road will not change due to the development of Sterling Ranch. Vollmer Road construction will address the roadside ditch flows along the west side of the road and will install drainage culverts where indicated in this report. The majority of the flows from the west side of Vollmer Road are to be routed in the historical direction to the southwest along the roadway to proposed Pond W-4. Runoff produced from the remaining offsite watershed located along the west edge of the existing development will be routed along the west side of Vollmer Road to the southwest corner of the existing development and a proposed Pond W-4. At the northwest corner of Tahiti Drive and Vollmer Road a 66" RCP will be installed to collect and convey runoff under proposed Marksheffel Road before ultimately discharging into Sand Creek. Runoff reaching the development along the south boundary line of the Barbarick Subdivision will be conveyed through and around the proposed site by proposed temporary swales and proposed storm sewer until it ultimately reaches Pond W-5. At the time of final for Sterling Ranch Filing No. 2 Phase 2, JR will coordinate with Barbarick to determine a more specific design solution for conveying the flows from their site. In general, the sand filter and double barrel 24" RCP will discharge onto the Sterling Ranch Phase 2 site where it will be picked up in a sump inlet structure and conveyed through a 48" RCP through the Sterling Ranch Storm system to Pond W5. The eastern Barbarick EDB discharge pipe will be connected into a structure and into a 36" RCP where the flows will be routed to Pond W5. Specific design details can be found within the Sterling Ranch Phase 2 drainage report. Runoff reaching the northern boundary of Phase I at proposed Briargate Parkway will be redirected around the site via a temporary swale to Sand Creek. BMP's will be installed to prevent erosion of the temporary swale. The intention of the drainage design for Sterling Ranch is to not adversely affect any adjacent property within the developed flows from Sterling Ranch.

Sub-basin A1 (Q_5 =4.4 cfs, Q_{100} =9.4 cfs) consists of approximately 2.06 acres and is the northern most portion of the Sterling Ranch Filing No. 2 Phase 1 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter then captured by a 10' on-grade inlet at DP 1. From here, the flow is piped to Pond W5.

Sub-basin A2 ($Q_5=1.9$ cfs, $Q_{100}=3.9$ cfs) consists of approximately 0.82 acres and is the north eastern most portion of the Sterling Ranch Filing No. 2 Phase 1 development. This basin is primarily singlefamily residential and minor open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter then captured by a 10' Type R on-grade inlet at DP 2. From here, the flow is piped to Pond W5.

Sub-basin A3 ($Q_5=11.1$ cfs, $Q_{100}=24.7$ cfs) consists of approximately 6.76 acres and is the north western most portion of the Sterling Ranch Filing No. 2 Phase 1 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type-R on-grade inlet at DP 3. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1 & A2.

Sub-basin A4 ($Q_5=3.7$ cfs, $Q_{100}=7.4$ cfs) consists of approximately 1.51 acres and is the southern portion of Alzada Drive and this basin is primarily single-family residential(Copper Chase at Sterling Ranch) and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 10' Type-R on-grade inlet at DP 4. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A3.

Sub-basin A5 (Q_5 =4.1 cfs, Q_{100} =8.3 cfs) consists of approximately 1.70 acres and is the western portion of Bynum Drive. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 5. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A4.

Sub-basin A6A ($Q_5=2.2$ cfs, $Q_{100}=4.1$ cfs) consists of approximately 0.53 acres. This basin will serve as a tract including mail kiosks, parking, landscaping and sidewalks. Runoff from this sub-basin will sheet flow to DP 6A where it flows via curb and gutter to the 15' Type R inlet at DP6. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A5.

Sub-basin A6 ($Q_5=3.3$ cfs, $Q_{100}=6.6$ cfs) consists of approximately 1.37 acres and is the eastern portion of Bynum Drive. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R inlet on-grade inlet at DP 6. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A6A.

Sub-basin A7 ($Q_5=27.5$ cfs, $Q_{100}=60.6$ cfs) represents the future Copper Chase at Sterling Ranch development and consists of approximately 19.00 acres. This basin is primarily single-family residential and open space. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 36" RCP storm sewer stub at DP 7 with sediment control structure. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A6. Prior to being developed, storm runoff from this sub-basin will overland flow to temporary swales, where the flows will be captured by an interim 36" FES and piped to Pond W5.

Sub-basin A8 ($Q_5=3.0$ cfs, $Q_{100}=6.3$ cfs) consists of approximately 1.48 acres and is the south western portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 8. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A7.

Sub-basin A9 ($Q_5=1.9$ cfs, $Q_{100}=3.7$ cfs) consists of approximately 0.61 acres and is the south eastern portion of Sterling Ranch Road. This basin is comprised primarily of the proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 9. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A8.

Sub-basin A10 ($Q_5=9.2$ cfs, $Q_{100}=17.3$ cfs) consists of approximately 2.61 acres and is the south eastern portion of Marksheffel Road. This basin is comprised primarily of the proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 10. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A9.

Sub-basin A11 ($Q_5=9.5$ cfs, $Q_{100}=18.1$ cfs) consists of approximately 2.89 acres and is the north portion of Marksheffel Road. This basin is comprised primarily of the proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 11. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A10.

Sub-basin A12 ($Q_5=1.9$ cfs, $Q_{100}=9.5$ cfs) consists of approximately 3.87 acres and represents the open space area between the Sterling Ranch Filing No. 2 Phases 1 & 2 developments. This basin is primarily open space. This basin also contains a 50' and 30' gas easement that contain 3 major gas lines. Runoff from this sub-basin will be conveyed via sheet flow and earthen swale to an area inlet at DP 12. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A11.

Sub-basin A13 ($Q_5=15.7$ cfs, $Q_{100}=34.6$ cfs) consists of approximately 9.65 acres and is the northern portion of the future Sterling Ranch Phase 2 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be captured by a storm sewer stub at DP 13. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A12. Prior to being developed, storm runoff from this sub-basin will overland flow to temporary swales, where the flows will be captured by an interim 36" FES and piped to Pond W5.

Sub-basin A14 ($Q_5=16.0$ cfs, $Q_{100}=37.9$ cfs) consists of approximately 11.76 acres and is the proposed future school site on the northern side of Sterling Ranch Road. Runoff from this sub-basin will be routed to a 36" RCP storm sewer stub at DP 14. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A13. Prior to being developed, storm runoff from this sub-basin will overland flow to temporary swales, where the flows will be captured by an interim 36" FES and piped to Pond W5.

Sub-basin A15 ($Q_5=5.4$ cfs, $Q_{100}=11.7$ cfs) consists of approximately 2.91 acres and is the north eastern portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 15. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A14.

Sub-basin A16 (Q_5 =4.4 cfs, Q_{100} =9.6 cfs) consists of approximately 2.34 acres and is the south eastern portion of Sterling Ranch Road. This basin is primarily single-family residential and proposed roadway. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 16. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A15.

Sub-basin A17 ($Q_5=1.4$ cfs, $Q_{100}=4.7$ cfs) consists of approximately 1.76 acres and is the open space located along the western portion of the sterling Ranch Phase 2 development south of Sterling Ranch Road. This basin is primarily single-family open space with a small amount of lot runoff. Runoff from this sub-basin will be captured by a future Type C inlet at DP 17 and coveyed via sheet flow

and a drainage swale. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A16.

Sub-basin A18 (Q_5 =4.3 cfs, Q_{100} =14.0 cfs) consists of approximately 5.27 acres and is anticipated to be a commercial site and open space located at the corner of Sterling Ranch Road and Marksheffel Road. This basin is primarily open space and a future commercial lot. Runoff from this sub-basin will sheetflow to a 24" RCP storm sewer stub located at DP 18. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A17.

Sub-basin A19 ($Q_5=38.8$ cfs, $Q_{100}=85.4$ cfs) consists of approximately 31.85 acres and is the southern portion of the future Sterling Ranch Phase 2 development. This basin is primarily single-family residential and minor open space. Runoff from this sub-basin will be routed to a 42" storm sewer stub at DP 19 via curb and gutter and storm sewer. From here, the flow is piped to Pond W5 along with the flows from Sub-basin A1-A18. Prior to being developed, stormwater runoff from this sub-basin will overland flow directly into Pond W5.

Sub-basin A20 ($Q_5=6.6$ cfs, $Q_{100}=12.2$ cfs) consists of approximately 1.83 acres and is the south western portion of Marksheffel Road. This basin is primarily proposed roadway and landscaping. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a future 15' Type R on-grade inlet at DP 20. From here, the flow is piped directly to Pond W5 along with the flows from Sub-basin A21.

Sub-basin A21 ($Q_5=6.8$ cfs, $Q_{100}=12.6$ cfs) consists of approximately 1.93 acres and is the south eastern portion of Marksheffel Road. This basin is primarily proposed roadway and landscaping. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a future 15' Type R on-grade inlet at DP 21. From here, the flow is piped directly to Pond W5 along with the flows from Sub-basin A20.

Sub-basin A22 ($Q_5=2.7$ cfs, $Q_{100}=15.4$ cfs) consists of approximately 8.68 acres and represents Pond W5. This basin is primarily singlefamily residential and open space. Runoff from this sub-basin will sheet flow directly into Pond W5 and be conveyed to DP 22. From here, the flow will combine with the runoff from Basin A. An outlet structure will release the treated flows directly into the Sand Creek Drainageway.

Basin B consists of Sub-Basins B1-B5 combining for a total of 13.77 acres. This basin represents Vollmer Road and Pond W4. This basin is primarily proposed roadway. Stormwater runoff is conveyed via Vollmer Road where it is captured via a series of on-grade and sump inlets. Runoff is then piped to a proposed roadside swale where it will ultimately outfall into the onsite Pond W4. From the detention pond, the treated flows are then released into a storm sewer system that conveys them directly into the Sand Creek Drainageway at below historic rates along with the treated flows from Pond W5.

Sub-basin B1 (Q_5 =8.8 cfs, Q_{100} =15.8 cfs) consists of approximately 2.98 acres and is the north eastern portion of Vollmer Road located north of Lochwinnoch Lane. This basin is primarily proposed roadway and landscaping. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter to a 15' Type R on-grade inlet at DP 23. From here, the flow is piped to a proposed roadside swale. This swale will convey the runoff from Sub-basin B1 to Pond W4.

Sub-basin B2 ($Q_5=11.5$ cfs, $Q_{100}=20.6$ cfs) consists of approximately 3.89 acres and is the north western portion of Vollmer Road north of Lochwinnoch Lane. This basin is primarily proposed roadway and landscaping. Runoff from this sub-basin will be conveyed via curb and gutter and sheet flow then captured by a 15' Typr R on-grade inlet at DP 24. From here, the flow is piped to a proposed roadside swale. This swale will convey the runoff from Sub-basin B1 and Sub-basin B2 to Pond W4.

Sub-basin B3 ($Q_5=7.8$ cfs, $Q_{100}=14.0$ cfs) consists of approximately 1.53 acres and is the south eastern portion of Vollmer Road located north of Marksheffel Road and south of Lochwinnoch Lane. This basin is primarily proposed of roadway and landscaping. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter then captured by a 20' Type R sump inlet at DP 27. From here, the flow is piped directly to Pond W4.

Sub-basin B4 ($Q_5=7.4$ cfs, $Q_{100}=13.2$ cfs) consists of approximately 1.50 acres and is the western portion of Vollmer Road located north of Marksheffel Road and south of Lochwinnoch Lane. This basin is primarily proposed roadway and landscaping. Runoff from this sub-basin will be conveyed via sheet flow and curb and gutter then captured by a 20' Type R sump inlet at DP 28. From here, the flow is piped directly to Pond W4.

Sub-basin B5 ($Q_5=0.9$ cfs, $Q_{100}=6.4$ cfs) consists of approximately 2.91 acres and represents Pond W4. This basin is primarily open space. Runoff from this sub-basin will sheet flow directly into Pond W4 and be conveyed to DP 30. From here, the flow will combine with the runoff from Basin B, and Basins OS20 & OS21. An outlet structure will release the treated flows directly into the Sand Creek Drainageway via 1070 linear foot of 66" RCP and 1610 linear foot of 72" RCP running southeast along the west side of Marksheffel road along with treated flows from Pond W5.

Basin C consists of Sub-Basins C1-C2 combining for a total of 13.07 acres. This basin represents the future commercial sites located along Marksheffel Road. This basin is primarily proposed roadway and future commercial developments. Stormwater runoff is conveyed via a drainage swale to a 66" RCP where it combines with treated flows from Pond W5 and is released into Sand Creek.

Sub-basin C1 ($Q_5=2.0$ cfs, $Q_{100}=15.0$ cfs) consists of approximately 8.01 acres and is the commercial lot located at the corner of Vollmer Road and Marksheffel Road. Runoff from this sub-basin will ultimately be captured by a future onsite full-spectrum pond, where it will release to a storm sewer stub located at DP 31. From here, the flow is piped directly to the Sand Creek Drainageway along with treated flows from Pond W5 and Pond W4. In the interim condition, flows will enter an earthen swale at DP 31 and will be routed through Sub-basin C2 to DP 32.

Sub-basin C2 ($Q_5=1.4$ cfs, $Q_{100}=10.0$ cfs) consists of approximately 5.06 acres located in the southwest corner of the development and has the already developed Sanitary Sewer Lift Station for Sterling Ranch as well as additional land to be developed as commercial in the future. A stub into the stormwater system has been provided to collect the flows from this site. The future commercial areas will be required to provide full-spectrum detention ponds but can use the storm sewer stub provided in this report. From here, the flow is piped directly to the Sand Creek Drainageway along with treated flows from Pond W4 and Pond W5. In the interim condition, flows generated within this basin combine with the flows from sub-basin C1 in an earthen swale where they will enter a 72" RCP where the flow is piped directly to the Sand Creek Drainageway along with treated flows from Pond W5.

Sub-basin D1 ($Q_5=1.7$ cfs, $Q_{100}=3.1$ cfs) consists of 0.45 Acres and is located at the intersection of Vollmer and Marksheffel. Runoff from this goes directly into a 10' type R sump inlet and then goes to design point 4.5. This basin receives 1.4 cfs of by-pass runoff from basin D1.

Sub-basin D2 ($Q_5=1.6$ cfs, $Q_{100}=3.0$ cfs) consists of 0.43 Acres and is located at the intersection of Vollmer and Marksheffel. Runoff from this goes directly into a 5' type R sump inlet and then goes to design point 4.5. This basin receives 0.7 cfs of by-pass runoff from basin D2.

Basin OS consists of Sub-Basins OS2-OS4, OS20, OS21A, and OS21B combining for a total of 387.75 acres. This basin represents the offsite flows that have been incorporated in the storm sewer and pond design. Sub basins OS20, OS21A, and OS21B represent the low density residential land located to the west of the site along Vollmer Road. Sub-basins OS2 and OS3 represent the Barbarick Subdivision directly north of the site. Sub-basin OS4 represents the existing residential lots located just east of the Pond W5 location. Flows from these sub-basins enter the site or are captured directly by one of the proposed detention ponds. Each sub-basin is discussed in more detail below.

Sub-basin OS20 ($Q_5=33.7$ cfs, $Q_{100}=310$ cfs from MDDP) consists of approximately 308.0 acres and represents the offsite basin to the northwest of the site. This basin is comprised of partially developed low density residential. Runoff from this basin overland flows to a roadside swale along Vollmer Road. Flows in the swale will be routed through an existing 3.5' x 5.5' HECMP at DP 25 where it will outfall into Pond W4. A riprap apron will be constructed to dissipate energy and prevent local scour at the outlet. Offsite Basins OS20, OS21B and OS21A correspond to Basins SC3-8 ($Q_5=42.1$ cfs, $Q_{100}=166.2$ cfs) and SC3-9($Q_5=71.5$ cfs, $Q_{100}=254.0$ cfs) from the MDDP.

Sub-basin OS21A (Q₅=4.2 cfs, Q₁₀₀=21.9 cfs) consists of approximately 20.26 acres and represents the offsite basin to the west of the site. This basin is comprised of partially developed low density residential. Runoff from this basin overland flows to a roadside swale along Vollmer Road at DP 26. Flows in the swale will outfall directly into Pond W4. A riprap apron will be constructed to dissipate energy and prevent local scour at the outlet. Offsite Basins OS20, OS21B and OS21A correspond to Basins SC3-8 (Q₅=42.1 cfs, Q₁₀₀=166.2 cfs) and SC3-9(Q₅=71.5 cfs, Q₁₀₀=254.0 cfs) from the MDDP.

Sub-basin OS21B ($Q_5=3.1$ cfs, $Q_{100}=16.3$ cfs) consists of approximately 8.71 acres and represents the offsite basin to the west of the site. This basin is comprised of partially developed low density residential. Runoff from this basin will overland flow to a propose Type D inlet at DP 29. Flows will then outfall directly into Pond W4 and will utilize a forebay to dissipate energy. From here, the flows will be treated and outfall into the Sand Creek Drainageway. Offsite Basins OS20, OS21B and OS21A correspond to Basins SC3-8 ($Q_5=42.1$ cfs, $Q_{100}=166.2$ cfs) and SC3-9($Q_5=71.5$ cfs, $Q_{100}=254.0$ cfs) from the MDDP.

Sub-basin OS2 ($Q_5=13.8$ cfs, $Q_{100}=39.1$ cfs) consists of approximately 17.0 acres and represents the western portion of the Barbarick Subdivision. Developed flows from this basin will be captured by an onsite sand filter and released directly onto the Sterling Ranch Phase 2 Site. A drainage swale and storm sewer grated inlet are being proposed as a part of Sterling Ranch Filing No. 2 Phase 2 to receive the discharge from the Barbarick sand filter as well as the 2 24" RCPs that are bypassing offsite flows through the Barbarick property. Sterling Ranch has provided the pond Outfalls for the Barbarick Subdivision. The specific emergency overflow path will be designed and described in more detail within the Sterling Ranch Phase 2 Drainage Report. In general the overflow path will be to the south parallel to the existing gas line to Sterling Ranch Road. Sterling Ranch Road will carry

the flows to Marksheffel to the west where the flow will then travel south until entering Sand Creek. 5-year and 100-year flows have been taken from the Approved Final Drainage Report for Barbarick Subdivision which can be found in Appendix D.

Sub-basin OS3 (Q_5 =0.30 cfs, Q_{100} =45.9 cfs) consists of approximately 28.7 acres and represents the eastern portion of the Barbarick Subdivision. Developed flows from this basin are captured by an onsite EDB and released directly onto the Sterling Ranch Phase 2 site. A structure will be connected to the outfall pipe from the EDB and convey the pipe releases through the Sterling Ranch storm system conveying flows to Pond W5. Sterling Ranch has provided the pond Outfalls for the Barbarick Subdivision. At the time of final platting for Phase 2, Sterling Ranch will coordinate with the owners of Barbarick. The specific emergency overflow path will be designed and described in more detail within the Sterling Ranch Phase 2 Final Drainage Report. In general the overflow path will be to the south into Sterling Ranch Road along an earthen swale. Sterling Ranch Road will carry the flows to Marksheffel to the west where the flow will then travel south until entering Sand Creek. 5-year and 100-year flows have been taken from the Approved Final Drainage Report for Barbarick Subdivision which can be found in Appendix D. The 100 year emergency overflow is 84.4 cfs and will be conveyed via drainage swale along the Phase 2 north property line to the east, then south where it can be safely conveyed via storm sewer. The detailed emergency overflow calculations are provided in the Phase 2 drainage report.

Sub-basin OS4 ($Q_5=2.6$ cfs, $Q_{100}=8.8$ cfs) consists of approximately 5.08 acres and represents the existing residential lots to the east of the proposed Pond W5. Existing flows from this basin will overland flow directly onto the Sterling Ranch Filing No. 2 Site into Pond W5. From here, the treated flows will outfall into the Sand Creek Drainage way.

There will be bank stabilization improvements to the Sand Creek Drainage Channel with the development of the Sterling Ranch Filing No. 2 site to maintain the integrity of Pond W5. However, channel improvements for Sand Creek (checks, drops, etc.) will be installed in accordance with the analysis performed by Kiowa Engineering.

DRAINAGE DESIGN CRITERIA

Development Criteria Reference

Storm drainage analysis and design criteria for the project were taken from the "*City of Colorado Spring/El Paso County Drainage Criteria Manual*" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "*Urban Storm Drainage Criteria Manual*" Volumes 1 - 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County.

Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. One hour point rainfall data for the storm events is identified in the

table below. Rational Method calculations were prepared, in accordance with Section 3.0 of the EPCDCM, for the sub-basins that directly impact the sizing of the proposed storm sewer outfalls. Rational method calculations are presented in Appendix B. Sub-basin OS20 was evaluated using the MDDP flows for the sizing of the pond and the rational method for a more conservative sizing of the storm pipe infrastructure.

Storm	Rainfall (in.)
5-year	1.50
100-year	2.52

Table 1: 1-hr Point Rainfall Data

Hydraulic Criteria

Mile High Flood District's MHFD-Detention, Version 4.03 workbook was used for pond sizing. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. Pond sizing spreadsheets are presented in Appendix C. The Mile High Flood District's spreadsheet UD_Inlet v4.05, released March 2017, was also utilized to determine street and inlet capacities of the development. Using Storm StormCAD V8i, a modeling program for stormwater drainage, the hydraulic grade lines and energy grade lines were determined for the storm sewer network. Manhole and pipe losses for the model were obtained from the <u>Modeling Hydraulic and Energy Gradients in Storm Sewers: A Comparison of Computation Methods</u>, by AMEC Earth & Environmental, Inc. The manhole loss coefficients used in the model can be seen in Table 2. StormCAD results along with street and inlet capacities are presented in Appendix B.

Table 2 - StormCAD	Standard I	Method	Conversions
--------------------	------------	--------	-------------

StormCAD Conversion Table									
	Bend Angle	K coefficient Conversion							
ŝso	0	0 0.05							
٩٢	22.5	0.1							
Bend Loss	45	0.4							
•	60	0.64	1						
	90	1.32	2						
	1 Latera	al K coefficient Conversion							
	Bend	Non							
	Angle	Surcharged	Surcharged						
SS	45	0.27	0.47						
Ľ	60	0.52	0.9						
eral	90	1.02	1.77						
-ateral Loss	2 Latera	Is K coefficient C	onversion						
_	45	0.96							
	60	1.10	6						
	90	1.52							

DRAINAGE FACILITY DESIGN

General Concept

The proposed stormwater conveyance system was designed to convey the developed Sterling Ranch Filing No. 2 runoff to the proposed full spectrum water quality and detention pond W5 via storm sewer. Pond W4 will be utilized to detain and treat large portions of offsite area. The proposed ponds were designed to release at less than historic rates to minimize adverse impacts downstream. Treated water will outfall directly into the Sand Creek Drainageway, where it will eventually outfall into Fountain Creek. All Ponds will be owned and maintained by Sterling Ranch Metro District. A proposed drainage map is presented in Appendix E showing locations of the pond and channel outfall locations.

To maintain the integrity of Pond W5, there will be bank stabilization improvements to the Sand Creek Drainage Channel with the development of the Sterling Ranch Filing No. 2 site. The pond release location will be protected with riprap. However, channel improvements for Sand Creek (checks, drops, etc.) will be installed in accordance with the construction plans performed by Matrix Design Group. JR Engineering is coordinating with Matrix Design Group. The flows discharged from Pond W5 will outfall into the reach of Sand Creek designed by Matrix. The discharge point from Sterling Ranch Filing No. 2 into Sand Creek is shown on the Matrix Design Plans in Appendix D. The rerouting of flows to ponds W4 and W5 outfall location should cause no negative impacts to downstream reaches of Sand Creek. Per the DBPS, Reach SC-9, the recommended improvements to the channel include selective rip rap linings, grade control check structures, and drop structure improvements that are anticipated to stabilize the channel to prevent further degradation, scour and meandering. Full Spectrum Detention in ponds W4 and W5 will reduce peak flows within the channel there-by adding to the integrity of the Sand Creek Channel.

The report is in compliance with the M&S 2018 MDDP. The total net outflow of the site into Sand Creek is 320.3 cfs at design point 4.8, as shown in the proposed drainage map in Appendix E. The diversion outfall for pond W5/W4 is in continuity with the approved MDDP. W4 and W5 correspond to pond FSD9 and FSD6 within the approved M&S 2018 MDDP. The MDDP shows the total net allowable release rate of these ponds to be 441.6 cfs at the junction structure and outfalls into Sand Creek.

Pond W4 and pond W5 350.74 acres and 173.97 acre have 524.71 acre tributary area. The existing drainage basins have a total net area of 569.9 acres. The total net existing runoff for the site is 473.2 cfs. In the proposed condition, the site will release a total of 320.3 cfs. No adverse downstream impacts are anticipated, with the proposed runoff being less than the existing runoff.

Specific Details

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume (WQCV), and consider the need for Industrial Commercial BMP's.

Step 1, Reducing Runoff Volumes: The development of the project site is a proposed single-family development with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes.

Step 2, Stabilize Drainageways: Sterling Ranch Filing No. 2 utilizes storm sewer throughout the project site. This storm sewer directs the on-site development flows to the full spectrum detention Pond W5 that releases at or below historic rates into the Sand Creek Drainageway. Measures shall be implemented to prevent any negative impacts to the drainageway. Riprap at the outfall locations will be utilized to prevent any erosion. An emergency overflow spillway rundown has been designed from Pond W5 down into the Sand Creek Drainageway. The overflow channel will help protect and stabilize the drainageway by reducing channel degradation and erosion. The channel utilizes 4 foot deep "VH Soil Riprap" base with a minimum 4 inch overlay of topsoil, seed and mulch. A detailed analysis of the Sand Creek Drainageway is currently being conducted by Matrix Design Group. This report will cover stabilization measures and channel improvements needed for this reach of the Sand Creek Drainageway. The portions of Sand Creek to the south of the historic confluence point are to be stabilized per the Sand Creek Stabilization at Aspen Meadows Subdivision Filing No. 1 plans by Matrix Design Group, April 2020.

Step 3, Treat the WQCV: Water Quality treatment is provided in two proposed full spectrum water quality detention ponds: Pond W4 and Pond W5. Pond W5 will receive all runoff generated within Sterling Ranch Filing No. 2 as well as future Sterling Ranch Phase 2 and Copper Chase at Sterling Ranch, a school site and a small portion of offsite areas. Pond W4 will receive runoff generated from portions of Vollmer Road and a large portion of offsite areas to the north and west of Vollmer road. In general, the runoff from this site will be collected within inlets and conveyed to the proposed ponds via storm sewer. Upon entrance to the ponds, flows will be captured in a forebay designed to promote settlement of suspended solids. A trickle channel is also incorporated into the ponds to minimize the amount of standing water. The outlet structures have been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for 72 hours. All flows released from the ponds will be reduced to less than historic rates into the Sand Creek Drainageway.

Step 4, Consider the need for Industrial and Commercial BMP's: future commercial sites are proposed within this development. Site specific storm water quality and erosion control plans will be required for each commercial tract prior to development. A site specific storm water quality and erosion control plan and narrative have also been prepared in conjunction with this final drainage report. Site specific temporary source control BMPs as well as permanent BMP's will be detailed in this plan and narrative to protect receiving waters.

Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention are provided for all developed basins. For this site, two detention ponds have been proposed. The WQCV for each pond shall be released within 40 hours and the EURV shall be released within 72 hours. The table below provides the volumes required for each pond, along with their respective release rates for the 5-year and 100-year storm. Both ponds will utilize forebays, trickle channels, and outlet structures to dissipate energy and treat flows. The outlet structure for these ponds shall

reduce the release rates for all storm events to less than historic rates to minimize adverse impacts to downstream stormwater facilities. A broad crested weir is provided as an emergency spillway for each pond. The emergency spillway provided for Pond W5 will convey flows directly into the Sand Creek Drainageway. The emergency spillway provided for Pond W4 shall convey flows to the existing roadside swale along Vollmer Road. Both spillways will utilize riprap aprons to prevent scour at the outlets. Pond and outlet structure calculations and sizing can be found in Appendix C. The detention ponds will be private and shall be maintained by the Sterling Ranch Metropolitan District. Access shall be granted to the owner and El Paso County for access and maintenance of the private detention pond. Pond W5 corresponds to pond FSD6 from the MMDP ($Q_5=7.6$ cfs, $Q_{100}=149.7$ cfs) and is releasing less than the MDDP values in the proposed design.

	Tuble 5. Toha Volumes & Release Rates										
	REQUIRED VOLUME (AC-FT)	VOLUME PROVIDED (AC-FT)	WQCV (AC-FT)	EURV (AC-FT)	5-YEAR RELEASE (CFS)	100-YEAR RELEASE (CFS)					
POND W5	18.376	18.441	3.32	11.843	3.40	139.3					
INTERIM POND W4	7.506	7.506	2.220	3.714	20.7	285.0					

Table 3. Pond Volumes & Release Rates

Per the MDDP, Pond W4 is sized to maximize the area on the site & could be potentially enlarged in the future if more land is purchased. A preliminary design for the ultimate configuration of Pond W4 has been used to calculate potential volume. Upon future development, an expansion of Pond W4 will need to be finalized. The pond is designed to treat approximately 352.2 acres and provide approximately 2.281 ac-ft of water quality storage. Modifications will be required to ensure the outlet structure complies with local and El Paso County criteria. A preliminary pond sizing for the ultimate condition can be found in the appendix. Pond W4 corresponds to pond FSD9 from the MMDP ($Q_5=24.9$ cfs, $Q_{100}=290$ cfs) and is releasing less than the MDDP values in the proposed design. The emergency overflow path will be through Marksheffel and a section can be found within Appendix B demonstrating the ability to pass 319.2 cfs. Overflow inlet and Vollmer ditch in

Erosion Control Plan

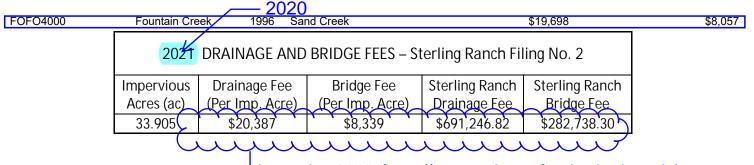
overflow inlet and Vollmer ditch in interim, crossing Marksheffel in future?

The El Paso County Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate must be submitted with each Final Drainage Report. The Erosion Control Plan for Sterling Ranch Filing No. 2 has been submitted with this report.

Operation & Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within the any platted County ROW will be owned and maintained by El Paso County. All proposed drainage structures within the property or tracts will be owned and maintained by the Sterling Ranch Metro District. Vegetation in the natural and improved portions of Sand Creek Drainageway is the responsibility of Sterling Ranch Metro District. This includes all mowing, seeding and weed control activities. An Inspection & Maintenance Plan has been submitted concurrently with this final drainage report that details the required maintenance activities and intervals to ensure proper function of all stormwater infrastructures in the future. The full spectrum detention ponds will be owned & maintained by Sterling Ranch Metro District.

Sand Creek Drainageway Improvements


Per the Sand Creek DBPS, Sand Creek and connected tributaries in the area of the site will require improvements. The east tributary reaches within the site boundary (DBPS SEG: 169, 186, 164, 159) will not require improvements because they will no longer be present, as development in the areas will eliminate them, and replace them with, a storm sewer system to discharge into Sand Creek. Sand Creek itself will continue to be routed through the development. Per the DBPS, selective rip rap linings, grade control check structures, and drop structure improvements are required to stabilize the channel to prevent further degradation, scour and meandering. Full spectrum detention will also be used on its benefits to the integrity of the Sand Creek Drainageway. A separate analysis with detailed alternative sections, HEC-RAS analyses, and proposed improvements is currently being conducted by Kiowa Engineering. This analysis will outline the channel improvements that will be necessary for the section of Sand Creek Drainageway that is adjacent to the site.

Per the DBPS, the recommended improvements to reach SC-9 are selective rip rap linings, grade control check structures, and drop structure improvements. The peak flows to the channel are reduced due to the Full Spectrum Detention adding to the integrity of the channel. The total net existing runoff for the site is 473.2 cfs. In the proposed condition, the site will release a total of 320.3 cfs. No adverse downstream impacts are anticipated, with the proposed runoff being less than the existing runoff. The portions of Sand Creek to the south of the historic confluence point are to be stabilized per the Sand Creek Stabilization at Aspen Meadows Subdivision Filing No. 1 plans by Matrix Design Group, April 2020. These plans propose improvements to Sand Creek from where Pond W5 outfalls all the way past the historic confluence. The Matrix Plans propose channel stabilization, stable slopes, drop structures, and cross vanes to ensure the quality of Sand Creek. The latest set of plans have been included within Appendix D for reference.

Drainage & Bridge Fees

What about the

The site lies within the Sand Creek Drainage Basin. An approximate estimate is presented below, exact fees to be determined at time of final plat. See full Drainage and Bridge fee worksheet in Appendix D for the fee calculation spreadsheet.

keep the 2020 fees (fees at time of submittal apply)

Construction Cost Opinion

The City of Colorado Springs Drainage Criteria Manual specifies a Cost Estimate of proposed drainage facility improvements be submitted with the Final Drainage Report. A construction cost opinion has been provided below. The below cost opinion is only an estimate of facility and drainage infrastructure cost and may vary. Swapping of DBPS improvements for proposed improvements is

being proposed for this project. A map demonstrating the DBPS improvements costs are being swapped for can be found in Appendix D.

Per LDC section 8.5.5.C.3.b(ii) Fee Reductions, Credits or Reimbursement for Facilities, this development requests that no cash drainage fees are due at platting as the value of reimbursable DBPS improvements for the Sand Creek Tributary segment 159 and 164 shown in the below table exceed the drainage fee estimate shown above.

Item	Description	Quantity	Unit	Unit Price		Cost	
1	18" RCP	731	L.F.	\$	65	\$	47,515.00
2	24" RCP	464	L.F.	\$	78	\$	36, 192.00
3	30" RCP	492	L.F.	\$	97	\$	47,724.00
4	36" RCP	651	L.F.	\$	120	\$	78,120.00
5	42" RCP	606	L.F.	\$	160	\$	96,960.00
6	48" RCP	1080	L.F.	\$	195	\$	210,600.00
7	18" FES	1	Ea.	\$	390	\$	390.00
8	24" FES	1	Ea.	\$	468	\$	468.00
9	30" FES	2	Ea.	\$	582	\$	1,164.00
10	36" FES	2	Ea.	\$	720	\$	1,440.00
11	42" FES	2	Ea.	\$	960	\$	1,920.00
12	15' CDOT Type R At-Grade	6	Ea.	\$	10,633	\$	63,798.00
13	10' CDOT Type R At-Grade	10	Ea.	\$	7,861	\$	78,610.00
14	2.9'x5.5' CDOT TYPE D	1	Ea.	\$	5,731	\$	5,731.00
15	Storm Sewer MH, box base < 15 feet	11	Ea.	\$	11,627	\$	127,897.00
		· · · · · · · · · · · · · · · · · · ·		Su	b-Total	\$	798,529.00

Sterling Ranch Filing No. 2 (Public Non-Reimbursable)

Sterling Ranch Filing No. 2 (Public - Reimbursable) (Subject to Drainage Board meeting of 6/3/21)

	5 5 1				5		J ,		
Item		Description	Quantity	Unit	Ur	nit Price	Cost	Rei	mbursable Cost
1	48" RCP		750	L.F.	\$	195	\$ 146,250.00	\$	146,250.00
2	66" RCP		1919	L.F.	\$	332	\$ 637,108.00	\$	637,108.00
3	72" RCP		2658	L.F.	\$	380	\$ 1,010,040.00	\$	1,010,040.00
4	84" RCP		329	L.F.	\$	520	\$ 171,080.00	\$	171,080.00
5	66" FES (Temp	D.)	1	Ea.	\$	1,992	\$ 1,992.00	\$	1,992.00
6	84" Headwal		2	Ea.	\$	10,000	\$ 20,000.00	\$	20,000.00
7	Storm Sewer	MH, box base < 15 feet	13	Ea.	\$	11,627	\$ 151,151.00	\$	151,151.00
8	Storm Sewer	MH,slab base ~ 15 feet-20 feet	2	Ea.	\$	16,395	\$ 32,790.00	\$	32,790.00
9	Storm Sewer	MH, box base > 20 feet	1	Ea.	\$	20,000	\$ 20,000.00	\$	20,000.00
10	*Detention Po	ond W5 (29% reimb)	1	Ea.	\$	105,000	\$ 105,000.00	\$	30,450.00
11	*Detention Po	nd W4 (100% reimb)	1	Ea.	\$	80,000	\$ 80,000.00	\$	80,000.00
					Su	ub-Total	\$ 2,375,411.00	\$	2,300,861.00

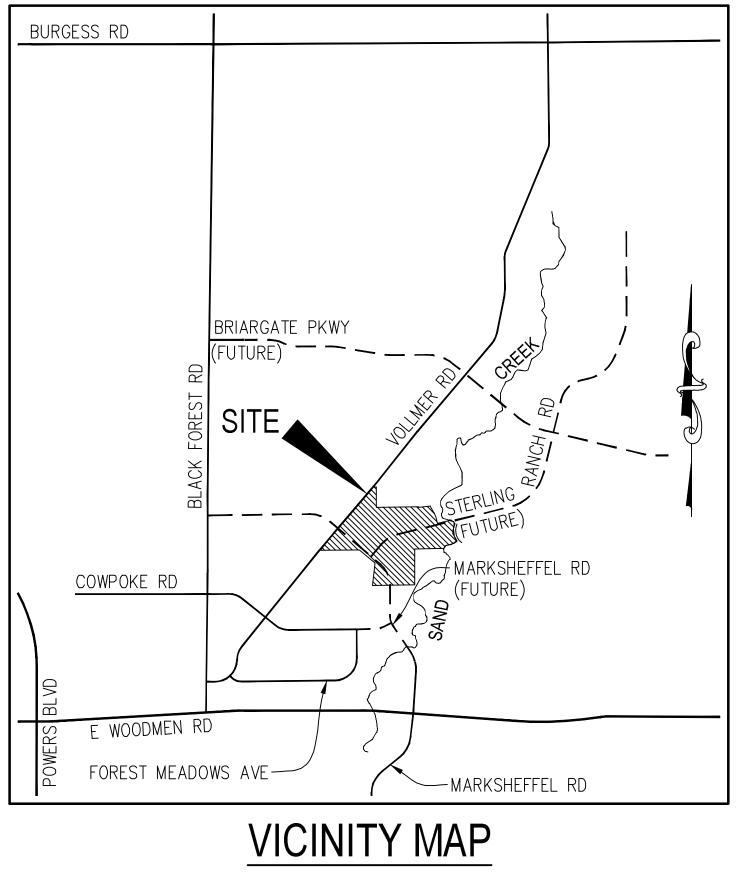
\$ 3,173,940.00 \$ Grand Total

2,300,861.00

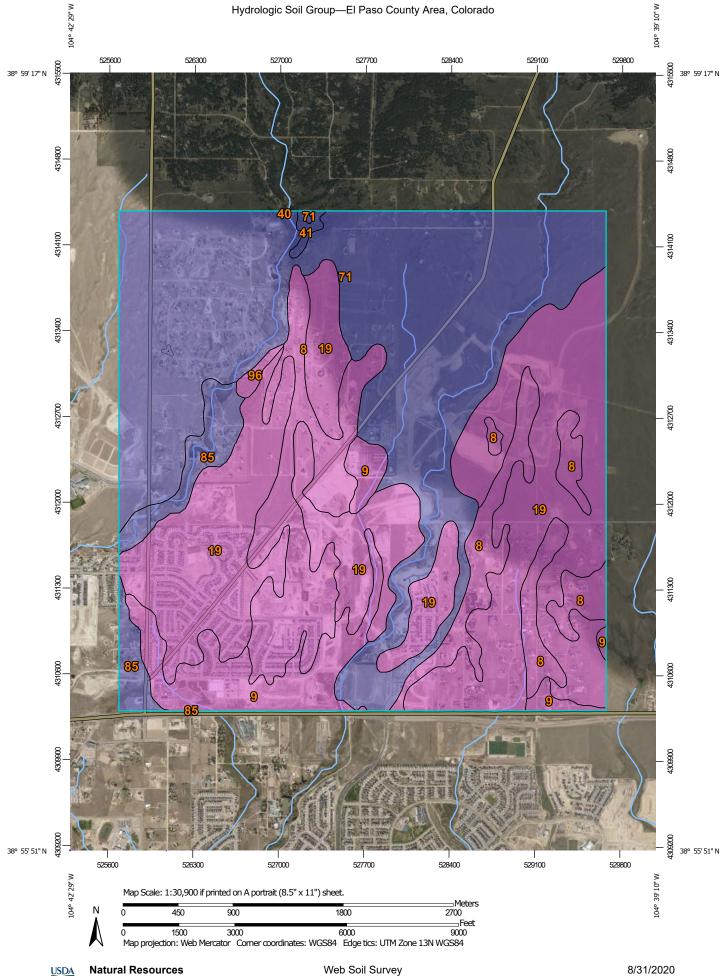
SUMMARY

temp. is not reimbursable. If pipe along Marksheffel is included for construction and is in the FAE it can be included.

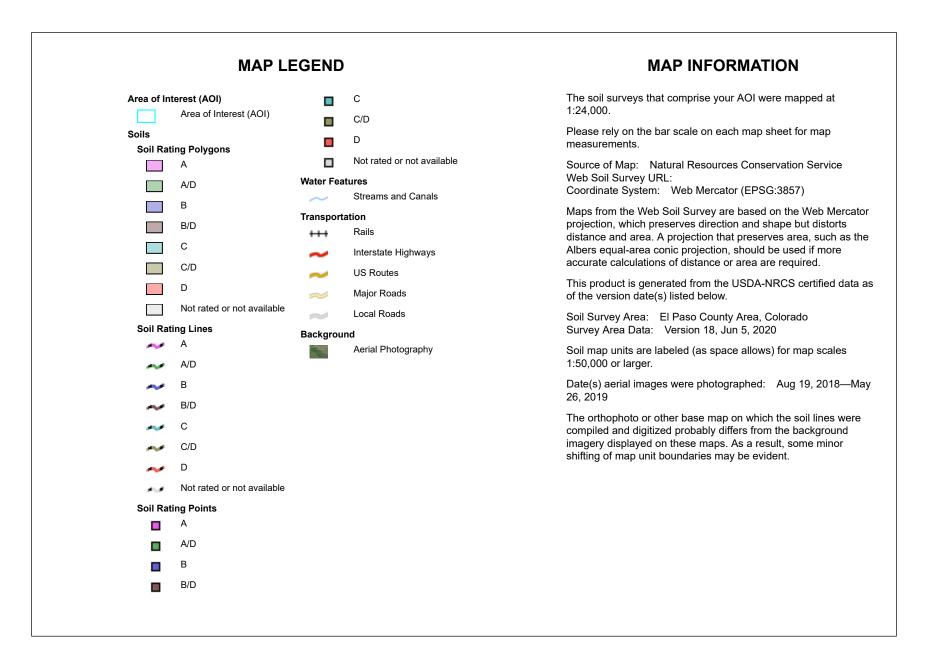
Development of this site will not adversely affect the surrounding development per this final drainage report and will have no negative impact of the neighboring developments. Assumptions were made for the offsite future developments that utilize the drainage infrastructure within this report. As the future sites develop, final drainage reports will be completed to confirm the


assumptions made in this report. The proposed drainage facilities will adequately convey, detain and route runoff from the tributary and onsite flows to the Sand Creek Drainage channel. Full spectrum detention and water quality ponds W4 and W5 will be used to discharge developed flows into Sand Creek per the Urban Drainage criteria flow rates, which are at or less than the historic flow. Care will be taken during construction to accommodate overland flow routes onsite and temporary drainage conditions. The development of the Sterling Filing No. 2 project shall not adversely affect adjacent or downstream property.

REFERENCES:


- 1. City of Colorado Springs Drainage Criteria Manual, Volume 1 & 2, Colorado Springs, CO, 2014.
- 2. <u>El Paso County Drainage Criteria Manual Volume 1</u>, El Paso County, CO, 1990.
- 3. <u>El Paso County Drainage Criteria Manual Update (City Chapter 6)</u>, El Paso County, CO, 2015.
- 4. <u>El Paso County Engineering Criteria Manual Revision 6</u>, El Paso County, CO, 2016.
- 5. <u>Final Drainage Report for Barbarick Subdivision, Portions of Lots 1, 2 and Lots 3 & 4</u>, by Matrix Design Group, dated June 2016.
- 6. <u>Final Drainage Report for Sterling Ranch Filing No. 2</u>, by M&S Civil Consultants, dated March 2018.
- Master Development Drainage Plan For Sterling Ranch, by M&S Civil Consultants, Inc., dated October 2018.
- 8. Sand Creek Drainage Basin Planning Study, Kiowa Engineering, January 1993.
- 9. <u>Urban Storm Drainage Criteria Manual</u>, Urban Drainage and Flood Control District, Latest Revision.

APPENDIX A


FIGURES AND EXHIBITS

N.T.S.

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	601.8	14.9%
9	Blakeland-Fluvaquentic Haplaquolls	A	267.7	6.6%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	1,430.7	35.4%
40	Kettle gravelly loamy sand, 3 to 8 percent slopes	В	0.5	0.0%
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	В	11.1	0.3%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	1,577.2	39.1%
85	Stapleton-Bernal sandy loams, 3 to 20 percent slopes	В	136.3	3.4%
96	Truckton sandy loam, 0 to 3 percent slopes	А	12.4	0.3%
Totals for Area of Inter	rest		4,037.6	100.0%

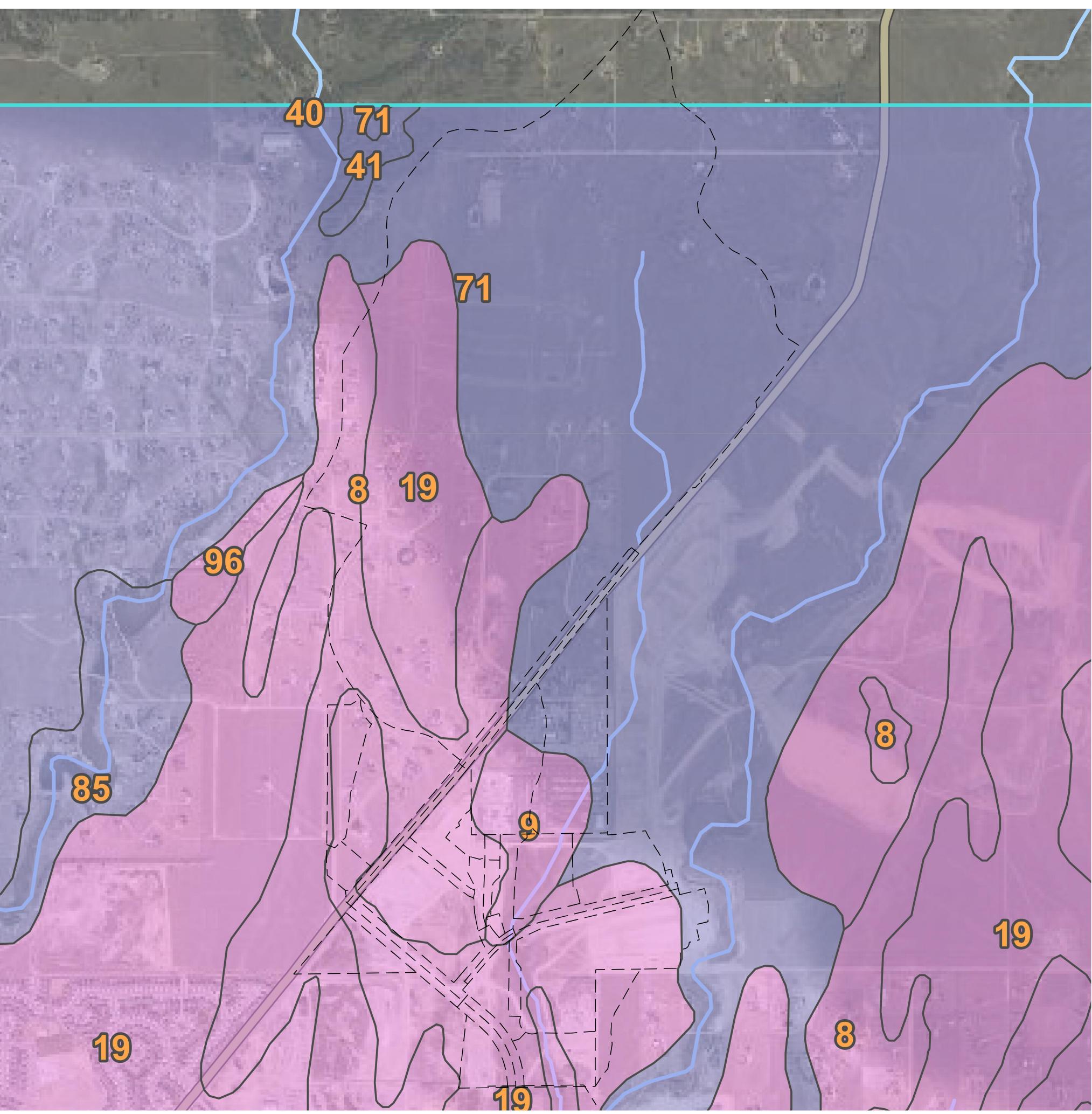
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

STERLING RANCH FILING NO. 2

SOIL DELINEATION STERLING RANCH FILING NO.2 JOB NO. 25188.01 9/1/20 SHEET 1 OF 1

J·R ENGINEERING

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com

NOTES TO USERS

This map is for use in administring the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage curces of small size. The community map repository should be consulted for ossible updated or additional flood hazard information.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0° North Amarican Vertical Datum of 1989 (NAVD89), Users of this FIRM Hould be aware that coastal flood develosms are aired provided in the Summary of Sillwate Elevations table in the Flood Insurance Study report for this jurisdicion. Elevations shown in the Summary of Sillwate Elevations table should be used for construction and/or floodpian maragement purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway width and other partinent floodway data are provided in the Flood Insurance Study report for this jurisdicture.

Certain areas not in Special Flood Hazard Areas may be protected by **flood contrn** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insuranc Study report for information on flood control structures for this jurisdiction.

The projection used in the properties of this may was Universel Transverse Meanser (UTM) are 13. The hothcast attain was NARDS, GR585 spheroid. Differences in datum, spheroid, projection or UTM screes zones used in the production of FRMNs for adjacent juncticions may require uit, in slight positional differences in mag features across jurisdiction boundaries. These differences do not affect the accuracy of this FRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD68), Thesis flood elevations must be compared to structure and conversion between the National Geodetic Vertical Datum of 1928 and the North American Vertical Datum of 1988, visit the National Geodetic Survey at the Hotiver Regimmers and ange vior constat the National Geodetic Survey at the Hotiver Regimmers and server of the National Geodetic Survey at the Hotiver Regimmers and server of the National Geodetic Survey at the Hotiver Regimmers and server of the National Geodetic Survey at the Hotiver Regimmers and server of the National Geodetic Survey at the Hotiver Regimmers and server of the National Geodetic Survey at the Hotiver Regimmers and server of the National Geodetic Survey at the Hotiver Regimmers and Survey at the Hotiver Regimmers and the Regimmers and the National Geodetic Survey at the Hotiver Regimmers and Survey at the Hotiver Regimmers and the Regimmers and th

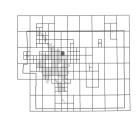
NGS Information Services NOAA, NINGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the information Services Branch of the National Seodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.ncaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map infects more detailed and up-to-date stream channel configurations and modplain delineations than those shown on the previous FRM for this jurisdice, this way to be adjudged to confirm to these more stream channel configurations. As sets the besing disudder to confirm to these more stream channel configurations. As a sets the besing disudder to confirm to these more stream channel configurations. As a sets the besing disudder the stream channel configuration way approximation of the transmission of the integration of the stream channel disances that offer from what is shown on the integration of the provided the disances that offer from what is shown on the integration of the disances that offer from what is shown on the integration of and Foodows Data tables is spacelable, the FSI Foroch. As a result, the profile baselines designificantly from the new base map channel representation and may appear counted of the foodpain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, may users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed Map Index for an overview map of the county howing the layout of map panels; community map repository addresses; and a siting of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is coted.

Contact ERUA Mag Service Center (MSC) via the FEMA Mag information at/change FHMV 1 5477-032827 for information on savalable products associated with the FIRM. Available products may include previously issued Latters of Map Change, a FiRM. Available product organization of the MSC may also be reached by Fax at 1-800-358-8620 and its websile at http://www.msc.fema.gov/.

f you have **questions about this map** or questions concerning the National Flood nsurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Water Conservation Board

tional Flood Hazaro Information and resource lable from local communities and the Col-

3235000 FT JOINS PANEL 0535 1047 307 33 607 104" 41" 15.00" 381 581 7 501 38" 58' 7 50" Sand Creek ZONEAE Ø EL PASO COUNTY UNINCORPORATED AREAS 080059 474 2000 mail (DC) VOLLMER F 33 32 34 (C) (cx) -CX 4312000mN SITE LOCATION 1410000 F (cv) T. 12 S T. 13 S MOJAVE DR T. 12 S. T. 13 S. EL PASO COUNTY UNINCORPORATED AREAS 080059 ZONEAE 070 C/p in. ZONE AE KENOSHA DR EL PASO COUNTY CITY OF COLORADO SPRINGS PONCA RD 3 4 5 EL PASO COUNTY NINCORPORATED AREAS 080059 CITY OF COLORADO SPRINGS 1405000 F 6886 WOODMEN FRONTAGE RD E WOODMEN RD Bridge E WOODMEN D co AREAS (000159 10 ZONE AE 8 43-10.000mN Sand Creek 381 561 15 00 381 561 15.001 104° 41' 15.00" JOINS PANEL 0545 104" 39' 22.50' \$-000mp NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 12 SOUTH, RANGE 65 WEST, AND TOWNSHIP 13 SOUTH, RANGE 65 WEST.

DEPARTMENT OF THE ARMY ALBUQUERQUE DISTRICT, CORPS OF ENGINEERS 200 SOUTH SANTA FE AVENUE, SUITE 301 PUEBLO, COLORADO \$1003-4270

SIGNED

February 29, 2016

Regulatory Division

SUBJECT: Action No. SPA-2015-00428-SCO, Sterling Ranch Residential Development Project, El Paso County, Colorado

Jim Morley SR Land, LLC 20 Boulder Crescent Suite 201 Colorado Springs, CO 80903

Mr. Morley:

1

You are hereby authorized under Section 404 of the Clean Water Act to discharge dged and fill material it to waters of the U ted States to conduct work in associated with construction of the Sterling Ranch Residential Development of a accordance with Action Number SPA-2015-00428-SCO. A copy of the permit is enclosed.

To use this permit, you make ensure that the work is conducted in accordance with the terris and co pris of the permit. You must submit revised drawings to us for approve prior to construction should any changes be found necessary in either the Iccation or plans in the work. Approval of revised plans may be gr nted if they a e found not contrary to the public interest.

This permit is not an approval of the project design features, nor does it the construction is ade te for its intended purpose. This permit does not any injury to property or bly that asion of rights or a laws or regulations. You must possess the auto rity, including property right horize) or local . to

Enclosed is a compliance certification form. Up sign and date the fore and return it to this office. completion of the project, please

If you have any questions concerning our regulatory pogram, please contact me at 719-543-6915 or by e-mail at van.a.truan@usace.army.n... At your convenience,

please complete a Customer Service Survey at http://per2.nwp.usace.army.mil/survey.html.

Sincerely,

Car G

Van Truan Chief, Southern Colorado Regulatory Branch Enclosure(s)

September 23, 2016

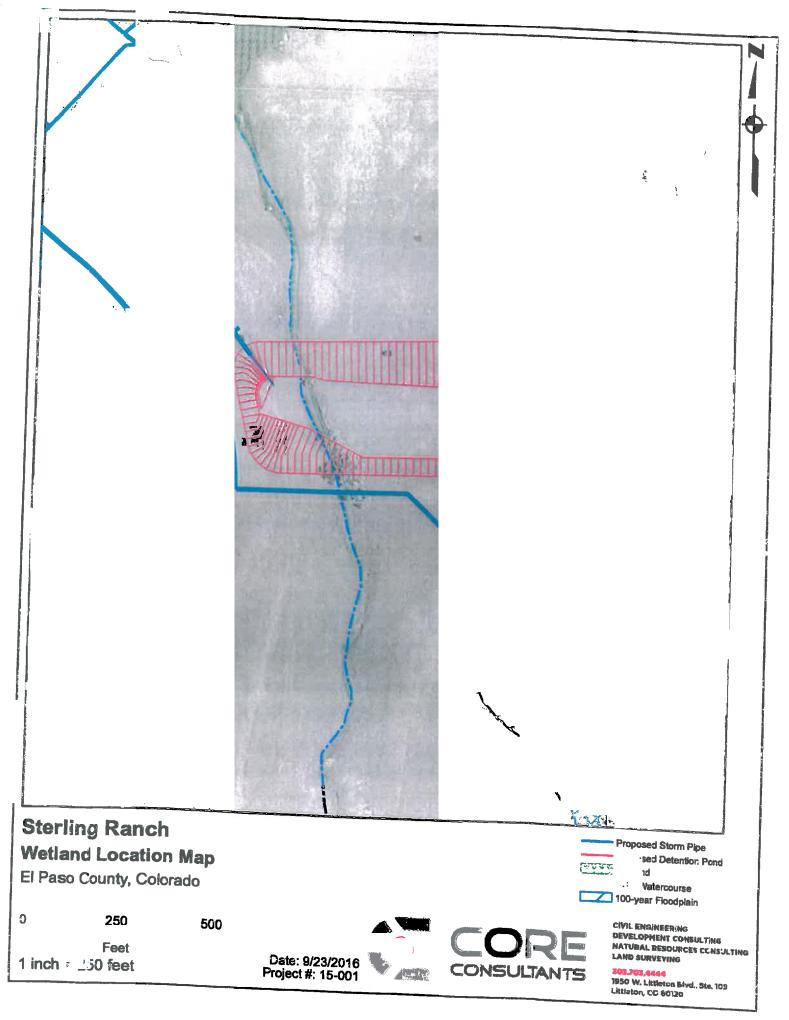
Mr. Virgil Sanchez MS Civil Consultants, Inc. 20 Boulder Crescent, Suite 110 Colorad Springs, CO 80903

RE

and Create that Hand Memo Ster ne P e ential Development Project El Paso County, Colorado

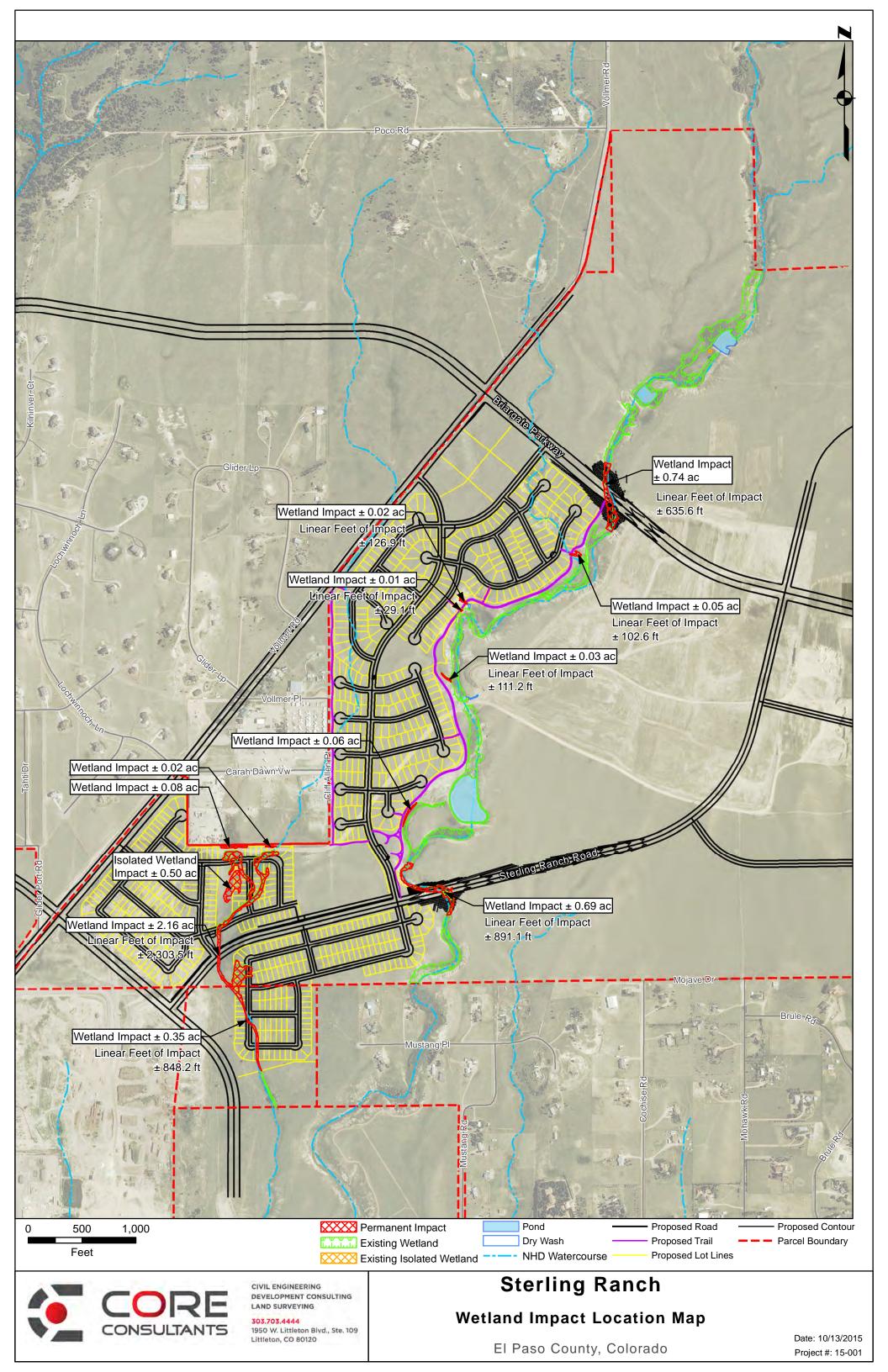
Dear Mr. Sanchez:

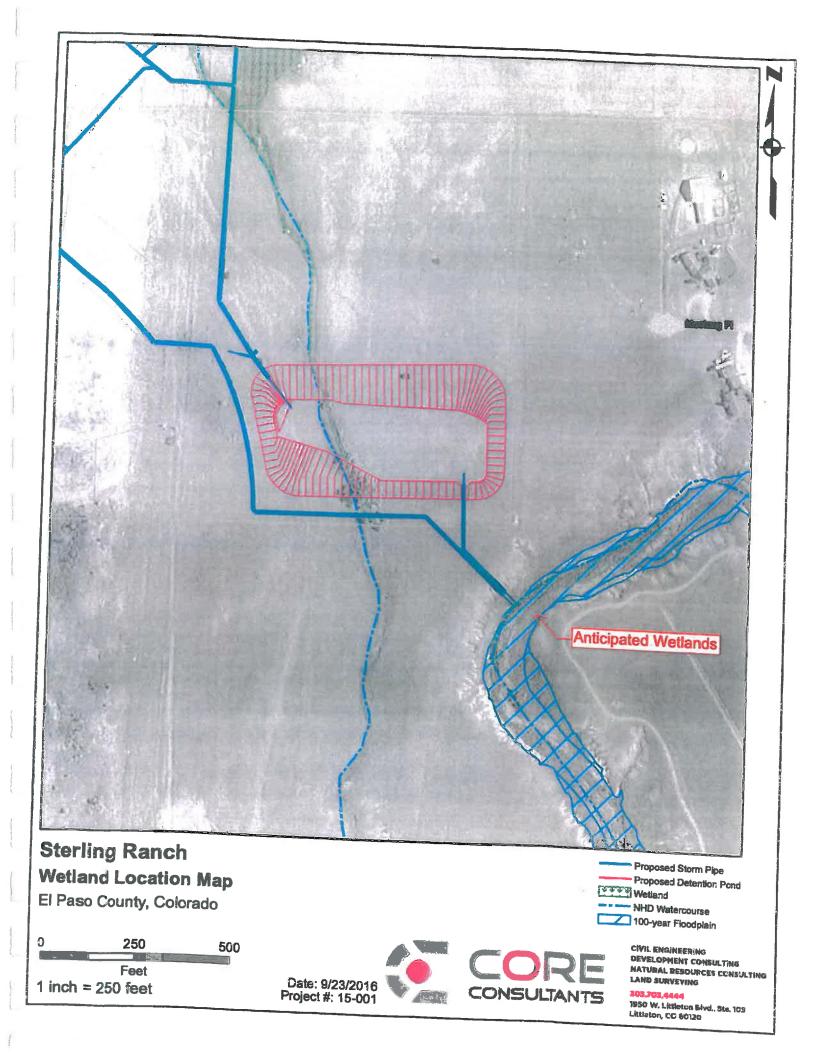
CORE Consultants, Inc. (CORE) was remained by MS Civil Consultants, he we complete a wetland ing Ranch Residential Development Pref t ("Project"). The Project is located on approvimately 1,50(res in unir corporated El Paso County and encompasses a portion of the perennial stream Sand Creek, its western tributies, and adjacent Jplands. CORE submitted a formal wetland delineation report to the U.S. Army pros of Engineers (USACE) as component of a Section 404 permit application for the Prose dermit sumber SPA-2015-00428-SCO), which was approved by the USAC _ in February, 2016.


At the time of 404 permit issuance, CORE had performed wetland surveys in all covered by the permit. However, at the time of this writing vetland surveys covering future phases of developme thave not been performed. Prior to development of future phases root covered under SPA-2015-0042 CO, a formal wetland delineation will lactor ormed in those areas and any necessary 404 Ermitting webbe obtained. Based on CORE's finding CORE expects that wetlands may occur throughout ghout Sand Creek in the current partial area, development areas further downstream (achment Location Map). odplain in portions of Sand Creek in future

If you should have any questions, concerns, or require additional information, please feel free to contact

Sincerely, CORE Consultants, Inc.


Tom Mayour


Daniel Maynard 5. or Ecologist

1

ł

APPENDIX B

HYDROLOGIC/ HYDRAULIC CALCULATIONS

COMPOSITE % IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location: Sterling Ranch Filing No. 2 El Paso County Project Name: Sterling Ranch Subdivision (Existing) Project No.: 25188.01

Calculated By: CJD Checked By:

Date: 5/15/20

	Total	Str	eets (10	0% Impe				Area (70	npervious))% Impervious)			ercial (80	(20% Impervious) 0% Impervious)	Lawns ((0% Imp (55% I	mpervio	,	Basins Weigł Val	nted C	Basins Total Weighted %
Basin ID	Area (ac)	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Imp.
EXA1	17.68	0.90	0.96	1.31	7.4%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	16.37	1.9%	0.15	0.40	9.3%
EXA2	19.59	0.90	0.96	0.59	3.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	19.00	1.9%	0.11	0.38	5.0%
EXA3	5.66	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	5.66	2.0%	0.09	0.36	2.0%
EXA4	50.72	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	50.72	2.0%	0.09	0.36	2.0%
EXB	11.78	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	11.78	2.0%	0.09	0.36	2.0%
EXC1	12.36	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	12.36	2.0%	0.09	0.36	2.0%
EXC2	5.06	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	5.06	2.0%	0.09	0.36	2.0%
OS1	23.82	0.90	0.96	0.00	0.0%	0.45	0.59	11.03	30.1%	0.59	0.70	4.15	13.9%	0.09	0.36	8.64	0.7%	0.34	0.53	44.8%
OS2	85.59	0.90	0.96	0.09	0.1%	0.45	0.59	5.09	3.9%	0.59	0.70	13.37	12.5%	0.09	0.36	67.04	1.6%	0.19	0.43	18.0%
OS3	6.66	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	6.66	2.0%	0.09	0.36	2.0%
OS4	2.19	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	2.19	2.0%	0.09	0.36	2.0%
OS5	9.27	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	3.49	7.5%	0.09	0.36	5.78	1.2%	0.28	0.49	8.8%
B5	2.91	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	3.49	24.0%	0.08	0.35	2.91	2.0%	0.79	1.19	26.0%
OS20	308.00	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	308.00	9.0%	0.13	0.40	9.0%
OS21A	20.26	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	20.26	12.0%	0.13	0.40	12.0%
OS21B	8.71	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	8.71	12.0%	0.13	0.40	12.0%
TOTAL (A1-B1)	105.43																			3.8%
TOTAL (OS1-OS5,OS20,OS21A,OS21B)	464.5																			12.5%
TOTAL	569.93																			5.5%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Filing No. 2 Location: El Paso County

Project Name: <u>Sterling Ranch Subdivision (Existing)</u> Project No.: <u>25188.01</u> Calculated By: CJD Checked By: Date: 5/15/20

		SUB-	BASIN			INITI	AL/OVER	LAND			TRAVEL TI	ME			tc CHECK		
		DA	ATA				(T _i)				(T _t)			(L	JRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
EXA1	17.68	А	9%	0.15	0.40	225	3.5%	17.0	1417	2.0%	20.0	2.8	8.4	25.4	1642.0	40.7	25.4
EXA2	19.59	А	5%	0.11	0.38	300	2.3%	23.5	1568	2.7%	20.0	3.3	8.0	31.5	1868.0	41.6	31.5
EXA3	5.66	А	2%	0.09	0.36	300	2.5%	23.3	581	2.5%	20.0	3.1	3.1	26.4	881.0	32.3	26.4
EXA4	50.72	А	2%	0.09	0.36	221	4.1%	17.1	2510	1.7%	20.0	2.6	16.2	33.2	2731.0	60.5	33.2
EXB	11.78	А	2%	0.09	0.36	277	2.4%	22.7	326	7.0%	20.0	5.3	1.0	23.8	603.0	27.9	23.8
EXC1	12.36	А	2%	0.09	0.36	275	3.0%	21.0	115	1.0%	20.0	2.0	1.0	22.0	390.0	27.7	22.0
EXC2	5.06	A	2%	0.09	0.36	261	3.5%	19.5	195	2.0%	20.0	2.8	1.1	20.6	456.0	28.1	20.6
OS1	23.82	А	45%	0.34	0.53	300	3.0%	16.5	1197	2.8%	20.0	3.3	6.0	22.4	1497.0	26.2	22.4
OS2	85.59	А	18%	0.19	0.43	229	4.0%	15.7	3294	2.2%	20.0	3.0	18.3	34.1	3523.0	54.8	34.1
OS3	6.66	A	2%	0.09	0.36	197	2.9%	18.0	444	2.6%	20.0	3.2	2.3	20.3	641.0	30.6	20.3
OS4	2.19	А	2%	0.09	0.36	290	1.4%	27.9	72	1.8%	20.0	2.7	0.5	28.4	362.0	26.6	26.6
OS5	9.27	А	9%	0.28	0.49	300	2.7%	18.6	784	2.4%	20.0	3.1	4.2	22.8	1084.0	32.7	22.8
B5	2.91	А	26%	0.79	1.19	0	2.7%	0.0	300	2.4%	15.0	2.3	2.1	2.1	300.0	24.1	5.0
OS20	308.00	А	9%	0.13	0.40	300	4.0%	19.2	6670	5.0%	10.0	2.2	49.7	68.9	6970.0	72.9	68.9
OS21A	20.26	А	12%	0.13	0.40	300	2.0%	24.1	2673	2.0%	10.0	1.4	31.5	55.6	2973.0	53.5	53.5
OS21B	8.71	А	12%	0.13	0.40	100	2.0%	13.9	1167	1.5%	15.0	1.8	10.6	24.5	1267.0	38.8	24.5

NOTES. $t_c = t_i + t_t$

Where:

 $t_e =$ computed time of concentration (minutes) tt = overland (initial) flow time (minutes) t_t = channelized flow time (minutes).

 $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$

Where $\begin{array}{l} t_r = \mathrm{channelized \ flow \ time \ (travel \ time, \ min)} \\ L_r = \mathrm{waterway \ length \ }(\mathfrak{fl}) \\ S_n = \mathrm{waterway \ slope \ }(\mathfrak{h}'\mathfrak{fl}) \\ V_r = \mathrm{travel \ time \ velocity \ }(\mathfrak{h}'sec) = \mathrm{K}\sqrt{S_n} \\ K = \mathrm{NRCS \ conveyance \ factor \ (sec \ Table \ 6-2)}. \end{array}$

 $t_c = \min \min unimum time of concentration for first design point when less than t_c from Equation 6-1.$ $<math>L_r = \operatorname{length} of channelized flow path (ft)$ i = imperviousness (expressed as a decimal) $<math>S_r = slope of the channelized flow path (ft/ft).$

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Equation 6-2

Where

Equation 6-4 $t = (26 - 17i) + \frac{L_{\gamma}}{60(14i + 9)\sqrt{S_{\tau}}}$

Where:

$t_t = \frac{0.395(1.1 - C_5)\sqrt{L_t}}{S_o^{0.33}}$ $t_l = \text{overland (initial) flow time (minutes)}$ $C_5 = \text{runoff coefficient for 5-year frequency (from Table 6-4)}$ $L_i = \text{length of overland flow (ft)}$ $S_0 = \text{average slope along the overland flow path (ft/ft).}$

Table 6-2. NRCS Conveyance factors, K Type of Land Surface Conveyance Factor, K Heavy meadow 2.5 Tillage/field 5 Short pasture and lawns 7 Nearly bare ground 10 Grassed waterway 15 Paved areas and shallow paved swales 20

Equation 6-5

Equation 6-3

Subdivision: Location: Design Storm:	El Pas	County	Filing N	lo. 2												Cal	Project culate hecke	t No.: d By:	25188 CJD	3.01	nch Su	bdivis	sion (Existing)
				DIREC	T RUN	IOFF			TC	OTAL F	RUNOF	F	STRE	ET/SW	ALE		PIF	ΡĒ		TRAV	'EL TIN	ΛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street/swale} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	EXA1	17.68	0.15	25.4	2.65	2.73	7.2															Existing Topography
	2	EXA2				2.24							5.4	2.24	1.7					1529	1.3	19.8	Existing Topography Swale conveyance to DP 4.1
																							Existing Topography
	3	EXA3	5.66	0.09	26.4	0.51	2.67	1.4															Existing Topography
	4	EXA4	50.72	0.09	33.2	4.56	2.33	10.6															Overland flow to DP 4.1
		EXC1	12.36	0.09	22.0	1.11	2.95	3.3															
		EXC2	5.06	0.09	20.6	0.46	3.04	1.4															
	10	OS1	23.82	0.34	22.4	8.19	2.92	23.9					23.9	8.19	1.9					2779	1.4	33.3	Existing Topography Overland flow to DP 4.1
													37.3	16.29	1.9					2577	1.4	30.8	Existing Topography
	9	OS2				16.29							1.8	0.60	2.4					1785	1.5	19.3	Overland flow to DP 4.1 Existing Topography
	8	OS3	6.66	0.09	20.3	0.60	3.07	1.8					7.5	2.58	2.4					399	1.5	4.3	Overland flow to DP 4.1 Existing Topography
	5	OS5	9.27	0.28	22.8	2.58	2.90	7.5					-										Overland flow to DP 4.1
	4.1								64.9	34.46	1.32	45.6											Sum of DP 2, DP 4, DP 5, DP8, DP 9, & DP 10, Overland flow to the Sand Creek Drainageway
	7	OS4	2.19	0.09	26.6	0.20	2.66	0.5					0.5	0.20	4.5					660	2.1	5.2	Existing Topography Overland flow to DP 6.1
	6	EXB	11 79	0.09	23.8	1.06	2.82	3.0															Existing Topography Overland flow to DP 6.1
	6.1	2,00		0.07	20.0	1.00	2.00	5.0	21.0	1.26	2.20	3.0											Sum of DP 6 & DP 7, Overland flow to the Sand Creek Drainageway
	0.1								31.8	1.20	2.39	3.0											Sum of DF 6 & DF 7, Overland now to the Sand Greek brainageWdy
																							FLOW TAKEN FROM MDDP
		OS20	308.00	0.13	68.9	40.04	1.23	61.0															Overland flow to DP 11 Existing Topography
		OS21A	20.26	0.13	53.5	2.63	1.61	4.2															Overland flow to DP 11
		OS21B	8.71	0.13	24.5	1.13	2.78	3.1															Existing Topography Overland flow to DP 11
	11	B5	2.91	0.79	5.0	2.29	5.17	11.8	24.5	46.09	2.78	128.3											Tributary basins OS20,OS21A,OS21B, and basin B5 Existing Pond W4 area flows southwest into drainage ditch along Vollmer offsite
				1						L													

Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

: Steri : El Pa : 100-	ing Ranch so Count Year	n Filing I Y	No. 2												C	Projec alculate Checke	t No.: d By: d By:	25188	3.01	nch Su	bdivis	ion (Existing)
1	1		DIR	ECT RU	NOFF			T	OTAL F	RUNOF	F	STRE	ET/SW/	ALE .		PIPI			TRAV	EL TIN	ΛE	
Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
1	EXA1	17.68	0.15	25.4	2.65	4.58	12.1															Existing Topography
												9.0	2.24	1.7					1529	1.3		Existing Topography
2	EXA2	19.59	0.11	31.5	2.24	4.04	9.0															Swale conveyance to DP 4.1 Existing Topography
3	EXA3	5.66	0.09	26.4	0.51	4.49	2.3															
4	EXA4	50.72	0.09	33.2	4.56	3.91	17.8															Existing Topography Overland flow to DP 4.1
	EXC1	12.36	0.09	22.0	1.11	4.95	5.5															
	EXC2	5.06	0.09	20.6	0.46	5.11	2.3					40.1	8.19	1.9					2779	1.4	33.3	Existing Topography
10	OS1	23.82	0.34	22.4	8.19	4.89	40.1					62.6	16.29	1.9					2577	1.4		Overland flow to DP 4.1 Existing Topography
9	OS2	85.59	0.19	34.1	16.29	3.84	62.6					02.0										Overland flow to DP 4.1
8	OS3	6.66	0.09	20.3	0.60	5.15	3.1					3.1	0.60	2.4					1785	1.5		Existing Topography Overland flow to DP 4.1
												23.4	2.58	2.4					399	1.5	4.3	Existing Topography
5	OS5	9.27	0.28	4.3	2.58	9.05	23.4															Overland flow to DP 4.1
4.1								64.9	34.46	2.22	76.5	0.9	0.20	4.5					660	2.1		Sum of DP 2, DP 4, DP 5, DP8, DP 9, & DP 10, Overland flow to the Sand Creek Drainageway Existing Topography
7	OS4	2.19	0.09	26.6	0.20	4.46	0.9					0.9	0.20	4.0					000	2.1		Overland flow to DP 6.1
6	EXB	11.78	0.09	23.8	1.06	4.75	5.0]	T											Existing Topography Overland flow to DP 6.1
	2/10		2.07	20.0			0.0		1.07	4.00	F 4											
6.1	-							31.8	1.26	4.02	5.1											Sum of DP 6 & DP 7, Overland flow to the Sand Creek Drainageway
<u> </u>																						FLOW TAKEN FROM MDDP
	OS20	308.00	0.13	68.9	40.04	2.07	310.0															Overland flow to DP 11
	OS21A	20.26	0.13	53.5	2.63	2.71	7.1															Existing Topography Overland flow to DP 11
1	OS21B			24.5																		Existing Topography Overland flow to DP 11
11						8.68			46.00	4 67	215.2											Tributary basins OS20,OS21A,OS21B, and basin B5 Fixiting Pond W4 area flows southwest into drainage ditch along Vollmer offsite

Existing Pond W4 area flows southwest into drainage ditch along Vollmer offsite

Subdivision: St

Description

Location: El Design Storm: 10

Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

2.91 0.79

5.0 2.29 24.5 46.09 4.67 215.3

8.68 19.9

11 B5

COMPOSITE % IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location: Sterling Ranch Filing No. 2 El Paso County Project Name: Sterling Ranch Subdivision

Project No.: 25188.01 Calculated By: AAM

Checked By:

Date: 1/5/21

	Total	Str	reets (10	0% Impe	rvious)			•	pervious) % Impervious)	5		•	npervious) pervious)		0% Impe nperviou (School pen Space	Weigl	s Total hted C ues	Basins Total Weighted %
Basin ID	Area (ac)	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighte d % Imp.	C ₅	ues C ₁₀₀	Imp.
A1	2.06	0.90	0.96	0.48	23.3%	0.45	0.59	1.34	42.3%	0.59	0.70	0.00	0.0%	0.08	0.35	0.24	0.0%	0.51	0.65	65.6%
A2	0.82	0.90	0.96	0.20	24.4%	0.45	0.59	0.56	44.4%	0.59	0.70	0.00	0.0%	0.08	0.35	0.06	0.0%	0.53	0.66	68.8%
A3	6.76	0.90	0.96	1.32	19.5%	0.45	0.59	4.16	40.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.28	0.0%	0.47	0.62	59.5%
A4	1.51	0.90	0.96	0.51	33.8%	0.45	0.59	1.00	43.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.60	0.71	76.8%
A5	1.70	0.90	0.96	0.51	30.0%	0.45	0.59	1.19	45.5%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.59	0.70	75.5%
A6	1.37	0.90	0.96	0.39	28.5%	0.45	0.59	0.98	46.5%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.58	0.70	75.0%
A6A	0.53	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.53	95.0%	0.08	0.35	0.00	0.0%	0.81	0.88	95.0%
A7	19.00	0.90	0.96	0.00	0.0%	0.45	0.59	19.00	65.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.45	0.59	65.0%
A8	1.48	0.90	0.96	0.74	50.0%	0.45	0.59	0.29	12.7%	0.59	0.70	0.00	0.0%	0.08	0.35	0.45	0.0%	0.56	0.70	62.7%
А9	0.61	0.90	0.96	0.48	78.7%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.13	0.0%	0.73	0.83	78.7%
A10	2.61	0.90	0.96	2.25	86.2%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.36	0.0%	0.79	0.88	86.2%
A11	2.89	0.90	0.96	2.40	83.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.49	0.0%	0.76	0.86	83.0%
A12	3.87	0.90	0.96	0.00	0.0%	0.45	0.59	0.50	8.4%	0.59	0.70	0.00	0.0%	0.08	0.35	3.37	0.0%	0.13	0.38	8.4%
A13	9.65	0.90	0.96	0.00	0.0%	0.45	0.59	9.65	65.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.45	0.59	65.0%
A14	11.76	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.00	0.0%	0.39	0.55	11.76	55.0%	0.39	0.55	55.0%
A15	2.91	0.90	0.96	1.57	54.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.34	0.0%	0.52	0.68	54.0%
A16	2.34	0.90	0.96	1.30	55.6%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.04	0.0%	0.54	0.69	55.6%
A17	1.76	0.90	0.96	0.00	0.0%	0.45	0.59	0.64	23.6%	0.59	0.70	0.00	0.0%	0.08	0.35	1.12	0.0%	0.21	0.44	23.6%
A18	5.27	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	1.18	21.3%	0.08	0.35	4.09	0.0%	0.24	0.47	21.3%
A19	31.85	0.90	0.96	0.00	0.0%	0.45	0.59	31.85	67.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.45	0.59	67.0%
A20	1.83	0.90	0.96	1.63	89.1%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.20	0.0%	0.81	0.89	89.1%
A21	1.93	0.90	0.96	1.73	89.6%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.20	0.0%	0.82	0.90	89.6%
A22	8.68	0.90	0.96	0.00	0.0%	0.45	0.59	0.70	5.2%	0.59	0.70	0.00	0.0%	0.08	0.35	7.98	0.0%	0.11	0.37	5.2%
B1	2.98	0.90	0.96	2.98	100.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
B2	3.89	0.90	0.96	3.89	100.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
B3	1.53	0.90	0.96	1.53	100.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
B4	1.50	0.90	0.96	1.50	100.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
B5	2.91	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	2.91	5.0%	0.08	0.35	5.0%

	Total Area (ac)	Str	reets (10	0% Impe	rvious)			•	pervious) % Impervious)	0		ıl (80% In (95% Imp	npervious) pervious)	Lawns ((55% In	nperviou		School pen Space	Weigl	s Total hted C ues	Basins Total Weighted %
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighte d % Imp.	C ₅	сс <u>з</u> С ₁₀₀	Imp.
C1	8.01	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	8.01	95.0%	0.08	0.35	0.00	0.0%	0.81	0.88	95.0%
C2	5.06	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.81	0.88	5.06	95.0%	0.08	0.35	0.00	0.0%	0.81	0.88	95.0%
D1	0.45	0.90	0.96	0.45	100.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
D2	0.43	0.90	0.96	0.43	100.0%	0.45	0.59	0.00	0.0%	0.81	0.88	0.00	0.0%	0.08	0.35	0.00	0.0%	0.90	0.96	100.0%
OS20	308.00	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	308.00	9.0%	0.13	0.40	9.0%
OS21A	20.26	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	20.26	12.0%	0.13	0.40	12.0%
OS21B	8.71	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	8.71	12.0%	0.13	0.40	12.0%
OS2	17.00	0.90	0.96	0.00	0.0%	0.49	0.62	17.00	70.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.00	0.0%	0.49	0.62	70.0%
OS3	28.70	0.90	0.96	0.00	0.0%	0.49	0.62	28.70	70.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.00	0.0%	0.49	0.62	70.0%
OS4	5.08	0.90	0.96	0.00	0.0%	0.20	0.40	5.08	15.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.00	0.0%	0.20	0.40	15.0%
TOTAL (A1-A22,OS2-4)	173.97																			57.6%
TOTAL (B1-B5, OS20-21B)	349.78																			11.8%
TOTAL (C1-C2)	13.07																			95.0%
TOTAL	537.70																			29.4%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Filing No. 2

Location: El Paso County

Project Name: Sterling Ranch Subdivision

Project No.: 25188.01

Calculated By: AAM Checked By:

Date: 1/5/21

		SUB-E	BASIN			INITIA	AL/OVER	LAND			TRAVEL TI	ME			tc CHECK		
		DA	TA				(T _i)				(T _t)			(L	JRBANIZED BA	(SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	Κ	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t _c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
A1	2.06	А	66%	0.51	0.65	100	2.5%	7.8	388	3.0%	20.0	3.5	1.9	9.7	488.0	16.9	9.7
A2	0.82	А	69%	0.53	0.66	100	2.5%	7.6	183	1.0%	20.0	2.0	1.5	9.1	283.0	15.9	9.1
A3	6.76	А	60%	0.47	0.62	100	2.5%	8.4	1186	2.3%	20.0	3.0	6.5	15.0	1286.0	23.4	15.0
A4	1.51	А	77%	0.60	0.71	78	2.0%	6.3	795	2.9%	20.0	3.4	3.9	10.2	873.0	16.9	10.2
A5	1.70	А	76%	0.59	0.70	100	2.5%	6.9	645	3.1%	20.0	3.5	3.1	9.9	745.0	16.3	9.9
A6	1.37	А	75%	0.58	0.70	100	2.5%	7.0	632	3.1%	20.0	3.5	3.0	10.0	732.0	16.3	10.0
A6A	0.53	А	95%	0.81	0.88	100	2.0%	4.2	30	2.0%	20.0	2.8	0.2	4.3	130.0	10.0	5.0
A7	19.00	А	65%	0.45	0.59	100	2.5%	8.7	1419	1.5%	20.0	2.4	9.7	18.3	1519.0	25.6	18.3
A8	1.48	А	63%	0.56	0.70	80	2.0%	6.9	646	0.6%	20.0	1.5	7.0	13.9	726.0	23.2	13.9
A9	0.61	А	79%	0.73	0.83	15	2.0%	2.1	661	0.7%	20.0	1.7	6.6	8.7	676.0	19.2	8.7
A10	2.61	А	86%	0.79	0.88	15	2.0%	1.7	1357	3.4%	20.0	3.7	6.1	7.9	1372.0	17.2	7.9
A11	2.89	А	83%	0.76	0.86	16	2.0%	1.9	1357	2.8%	20.0	3.3	6.8	8.7	1373.0	18.4	8.7
A12	3.87	А	8%	0.13	0.38	100	5.0%	10.3	267	3.4%	15.0	2.8	1.6	11.9	367.0	26.9	11.9
A13	9.65	А	65%	0.45	0.59	100	2.5%	8.7	934	2.1%	20.0	2.9	5.4	14.0	1033.6	20.9	14.0
A14	11.76	А	55%	0.39	0.55	100	2.0%	10.2	867	2.0%	20.0	2.8	5.1	15.3	967.0	22.8	15.3
A15	2.91	А	54%	0.52	0.68	34	2.0%	4.8	1621	1.8%	20.0	2.7	10.1	14.9	1655.0	29.0	14.9
A16	2.34	А	56%	0.54	0.69	35	2.0%	4.8	1594	1.8%	20.0	2.7	9.9	14.7	1629.0	28.4	14.7
A17	1.76	А	24%	0.21	0.44	100	5.0%	9.4	403	1.1%	15.0	1.6	4.3	13.7	503.0	27.2	13.7
A18	5.27	А	21%	0.24	0.47	100	2.0%	12.3	703	2.0%	20.0	2.8	4.1	16.4	803.0	29.3	16.4
A19	31.85	А	67%	0.45	0.59	100	2.5%	8.7	2675	1.7%	20.0	2.6	17.1	25.8	2775.0	33.2	25.8
A20	1.83	А	89%	0.81	0.89	15	2.0%	1.6	936	1.5%	20.0	2.4	6.4	8.0	951.0	16.8	8.0
A21	1.93	А	90%	0.82	0.90	15	2.0%	1.6	1049	1.5%	20.0	2.4	7.1	8.7	1064.0	17.4	8.7
A22	8.68	А	5%	0.11	0.37	185	3.0%	16.9	540	0.5%	20.0	1.4	6.4	23.3	725.0	38.2	23.3
B1	2.98	А	100%	0.90	0.96	17	2.0%	1.2	2561	1.7%	20.0	2.6	16.4	17.6	2578.0		17.6
B2	3.89	А	100%	0.90	0.96	17	2.0%	1.2	2561	1.7%	20.0	2.6	16.4	17.6	2578.0	23.2	17.6
B3	1.53	А	100%	0.90	0.96	17	2.0%	1.2	1394	2.0%	20.0	2.8	8.2	9.4	1411.0	16.1	9.4
B4	1.50	А	100%	0.90	0.96	17	2.0%	1.2	1394	2.0%	20.0	2.8	8.2	9.4	1411.0	16.1	9.4

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Filing No. 2

Location: El Paso County

Project Name: Sterling Ranch Subdivision

Project No.: 25188.01

Calculated By: AAM Checked By:

Date: 1/5/21

		SUB-I	BASIN			INITI	AL/OVER	LAND			TRAVEL TI	ME			tc CHECK		
		DA	ATA				(T _i)				(T _t)			(U	IRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	К	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
B5	2.91	А	5%	0.08	0.35	170	14.0%	10.1	259	0.5%	20.0	1.4	3.1	13.1	429.0	31.4	13.1
C1	8.01	А	95%	0.81	0.88	100	2.0%	4.2	965	2.0%	20.0	2.8	5.7	9.9	1065.0	14.9	9.9
C2	5.06	А	95%	0.81	0.88	100	2.0%	4.2	627	2.0%	20.0	2.8	3.7	7.9	727.0	13.2	7.9
D1	0.45	А	95%	0.81	0.88	17	2.0%	1.7	180	0.1%	20.0	0.6	5.3	7.0	197.0	14.6	7.0
D2	0.43	А	95%	0.81	0.88	17	2.0%	1.7	180	0.1%	20.0	0.6	5.3	7.0	197.0	14.6	7.0
OS20	308.00	А	9%	0.13	0.40	300	4.0%	19.2	6670	5.0%	10.0	2.2	49.7	68.9	6970.0	72.9	68.9
OS21A	20.26	А	12%	0.13	0.40	300	2.0%	24.1	2673	2.0%	10.0	1.4	31.5	55.6	2973.0	53.5	53.5
OS21B	8.71	А	12%	0.13	0.40	100	2.0%	13.9	1167	1.5%	15.0	1.8	10.6	24.5	1267.0	38.8	24.5
OS2	17.00	А	70%	0.49	0.62	300	1.0%	19.1	3020	1.5%	15.0	1.8	27.4	46.5	3320.0	36.0	36.0
OS3	28.70	А	70%	0.49	0.62	300	1.0%	19.1	4340	1.0%	15.0	1.5	48.2	67.3	4640.0	52.6	52.6
OS4	5.08	А	15%	0.20	0.40	300	1.0%	28.1	900	5.0%	10.0	2.2	6.7	34.9	1200.0	29.5	29.5

NOTES:

$t_c = t_i + t_t$	Equation ($t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{c_5^{0.33}}$	Equation 6-3	Table 6-2. NRCS Convey	ance factors, K
Where:		$t_i = \frac{S_e^{0.33}}{S_e^{0.33}}$	Equation 0-3	Type of Land Surface	Conveyance Factor, K
where:				Heavy meadow	2.5
te = computed time of concentration (minutes)		Where:		Tillage/field	5
t_i = overland (initial) flow time (minutes)		t_i = overland (initial) flow time (minutes)		Short pasture and lawns	7
		C_5 = runoff coefficient for 5-year frequency (from Table 6-4) L_i = length of overland flow (ft)		Nearly bare ground	10
t_t = channelized flow time (minutes).		$S_o =$ average slope along the overland flow path (ft/ft).		Grassed waterway	15
L. L.		L.		Paved areas and shallow paved swales	20
$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$	Equation 6-4	$t_{\rm c} = (26 - 17i) + \frac{L_{\rm r}}{60(14i + 9)\sqrt{S_{\rm r}}}$	Equation 6-5		
Where:		Where:			
t_t = channelized flow time (travel time, min) L_t = waterway length (ft) S_0 = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = K $\sqrt{S_0}$ K = NRCS conveyance factor (see Table 6-2).		t_c = minimum time of concentration for first design point when less tha L_t = length of channelized flow path (ft) i = imperviousness (expressed as a decimal) S_t = slope of the channelized flow path (ft/ft).	n t _c from Equation 6-1.		

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Subdivision: Location: Design Storm:	El Paso Cou		ng No. 2	2												Pi Calci	roject ulatec ieckec	ame: No.: d By: d By: d By: Date:	25188 AAM	3.01	nch Su	Ibdivis	sion
				DIRE	CT RUI	NOFF			TO	TAL R		F	STRF	et/swal	F		PIP	-			EL TIN	MF.	
				DIKL					10									-		110/11			
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)		(w) adnic	Upipe (CTS)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1	2.06	0.51	9.7	1.05	4.17	4.4					0.2	0.04	3.3	4.2	1.01	2.0	18	652 5	3.6 7.2	3.0 0.0	On-grade inlet, carryover flow to DP 5 D Piped to DP 1.0
	2	A2	0.82	0.53	9.1	0.44	4.27	1.9								1.9	0.44	2.0	18	27	5.8		On-grade inlet 1 Piped to DP 1.0
	1.0								97	1.45	4 17	6.0				ľ	1.45			335			6 Sum of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.47	15.0	3.16	3.53	11.1	7.7	1.40	4.17	0.0	1.6	0.47	2.9		2.69		18	426		2.1	Dr-grade inlet, carryover flow to DP 5 D Piped to DP 1.1
	4	A4	1.51	0.60				3.7					0.1	0.03	2.9		0.88		18	395 0	3.4	1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
		A4	1.51	0.00	10.2	0.91	4.10	3.7	45.0	0.57	0.50	10.4											
	1.1									3.57		12.6					3.57			74			2 Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.2	5.02	3.50	17.6			1	7.6	5.02	3.3	24	319	12.5	0.4	4 Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.81				2.2							_								Overland Flow to DP1.3A On-grade inlet
	6	A6	1.37	0.58	10.0	0.79	4.14	3.3							-	3.3	0.79	2.0	18	0	6.7		0 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0	1.22	4.14	5.0			_	5.0	1.22	1.0	24	36	5.7	0.1	1 Sum of DP 6 & DP 6A, piped to DP 1.3 On-grade inlet
	5	A5	1.70	0.59	9.9	0.99	4.14	4.1	17.0	1.53	3.33	5.1			_	5.1	1.53	2.0	18	0	7.6	0.0	D Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	7.77	3.33	25.9			2	25.9	7.77	1.1	36	620	9.2	1.1	Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4 Future storm infrastructure from Copper Chase Subdivision
	7	A7	19.00	0.45	18.3	8.55	3.22	27.5							2	7.5	8.55	1.5	42	20	10.3	0.0	Piped to DP 1.4
	1.4								18.4	16.32	3.22	52.5			5	52.5 ⁻	16.32	0.5	48	26	8.2	0.1	1 Sum of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1.48	0.56	13.9	0.83	3.63	3.0								3.0	0.83	2.0	18	20	6.6	0.1	On-grade inlet, carryover flow to DP 11 Piped to DP 1.5
	1.5								18.4	17.15	3.21	55.1			5	5.1 ⁻	17.15	0.5	48	91	8.3	0.2	2 Sum of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.73	8.7	0.44	4.34	1.9	8.7	0.48	4.34	2.1				2.1	0.48	2.0	18	13	5.8	0.0	On-grade inlet D Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								18.6	17.63	3.20	56.4			5	i6.4	17.63	0.5	48	95	8.3	0.2	2 Sum of DP 1.5 & DP 9, piped to DP 1.8
	10	A10	2.61	0.79	7.9	2.05	4.49	9.2					0.5	0.11	1.5	8.7	1.94	2.5	18	955 118			On-grade inlet, carryover flow to DP 20 2 Piped to DP 1.7
	11	A11	2.89	0.76	8.7	2.20	4.34	9.5					0.6	0.15	1.5	8.9	2.05	2.5	18	1049 0		7.1	1 On-grade inlet, carryover flow to DP 21 D Piped to DP 1.7
	1.7								87	3.99	4 34	17.3					3.99			8			, D Sum of DP 10 & DP 11, piped to DP 1.8
	1.8									21.63		68.8					21.63				14.4		6 Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	0\$2	OS2	17.00	0.49	14.0	6.25	2.20	13.8	10.0	21.00	5.15	00.0					6.25			787			Future flow released from Barbarick Subdivision Piped to DP 2.0
	12	A12	3.87		11.9		3.86	1.9									0.25				5.6		Type C inlet Piped to DP 2.0
		MIZ	3.07	0.13	11.9	0.49	J.00	1.9	15 7	6.74	2 10	23.2								52			I Sum of DP OS2 & DP 12, Piped to DP 2.1
	2.0		0.45	0.45				45 -	15.7	0.74	3.45	23.2					6.74	1.0					Future storm infrastructure from Sterling Ranch Phase 2
	13	A13	9.65	0.45	14.0	4.34	3.62	15.7							1	5.7	4.34	1.5	30	200	9.1	0.4	4 Piped to DP 2.1

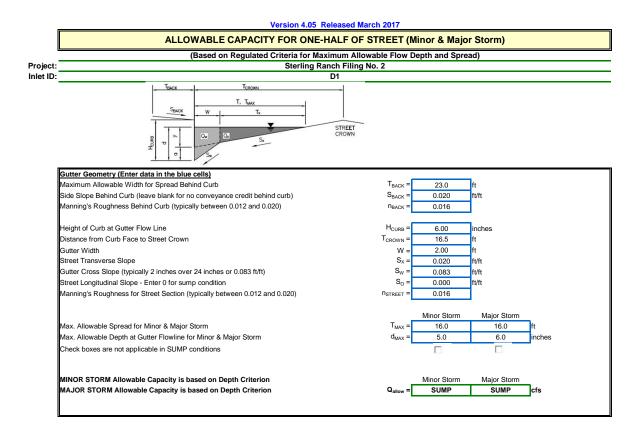
Subdivision: Location: esign Storm:	El Paso Co		ing No. 2	2												Ca	oject N Projec Iculate Checke	t No.: d By:	25188	3.01	nch Su	bdivis	sion
sign storm.	<u> </u>																		1/5/2	1			
				DIRE	CT RU	NOFF			TC) TAL F	RUNOF	F	STRE	et/sw	/ALE		PI	PE	1	TRA∖	EL TIN	ΛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	2.1								15.9	11.08	3.44	38.1				38.1	11.08		48	65	11.4	0.1	1 Sum of DP 2.0 & DP 13, piped to DP 2.5
	OS3	OS3	28.70	0.49	19.0	14.06	1.25	17.6								17.6	14.06	1.0	30	719	8.0	1.5	Future flow released from Barbarick Subdivision 5 Piped to DP 2.2
	14	A14	11.76	0.39	15.3	4.59	3.49	16.0								16.0	4.59	1.0	30	20	7.8	0.0	Future flow released from School Site D Piped to DP 2.2
	2.2								20.5	18.65	3.05	56.9				56.9	18.65	1.5	48	773	12.4	1.0	D Sum of DP OS3 & DP 14, piped to DP 2.3
	15	A15	2.91	0.52	14.9	1.52	3.53	5.4								5.4	1.52	1.3	18				On-grade inlet 1 Piped to DP 2.3
	16	A16	2.34	0.54	14.7	1.25	3.55	4.4					0.1	0.04	0.8	4.3	1.21	2.0	18	697 12		6.5 0.0	5 On-grade inlet, carryover flow to DP 9 D Piped to DP 2.3
	2.3								15.0	2.73	3.52	9.6				9.6	2.73	1.6	48	51	7.6	0.1	1 Sum of DP 15 & DP 16, piped to DP 2.4
	2.4								21.5	21.38	2.98	63.7				63.7	21.38	1.6	48	19	13.1	0.0	9 Sum of DP 2.2 & DP 2.3, piped to DP 2.5
	2.5								21.6	32.46	2.98	96.6				96.6	32.46	2.0	60	839	15.8	0.9	Sum of DP 2.1 & DP 2.4 piped to DP 2.6
	17	A17	1.76	0.21	13.7	0.38	3.66	1.4								1.4	0.38	1.0	18	24	4.1	0.1	Type C inlet I Piped to DP 2.6
	2.6								21.6	32.84	2.98	97.8				97.8	32.84	2.0	60	32	15.8	0.0	Sum of DP 2.5 & DP 17, piped to DP 2.7
	2.7								21.6	54.47	2.97	162.0				162.0	54.47	0.6	78	220	11.5	0.3	3 Sum of DP1.8 & DP 2.6, piped to DP 2.8
	18	A18	5.27	0.24	16.4	1.28	3.38	4.3								4.3	1.28	1.0	18	24	5.6	0.1	Area inlet I Piped to DP 2.6
	19	A19	31.85	0.45	25.8	14.33	2.71	38.8								38.8	14.33	1.0	18	24	22.0	0.0	Area inlet D Piped to DP 2.6
	2.8								25.8	70.08	2.71	189.8	100.0	70.00	0.5	189.8	70.08	0.6	78				2 Sum of DP 2.7, DP 18 & DP 19, piped to DP 3.0.
	3.0								25.8	70.08	2.71	189.8	189.8	70.08	0.5					584	1.4	6.9	9 Detention Pond Trickle channel conveyance to DP 3.2
	20	A20	1.83	0.81	8.0	1.48	4.47	6.6	8.0	1.59	4.47	7.1		0.00	4.5	7.1	1.59	1.0	24	105	6.4	0.3	On-grade inlet 3 Sum of Sub-basin A20 & carryover flow from DP 10, piped to DP 3.0
	21	A21	1.93	0.82	8.7	1.57	4.33	6.8	8.7	1.72	4.33	7.4	0.1	0.03	1.5	7.3	1.68	2.5	18	0	9.0	0.0	On-grade inlet D Sum of Sub-basin A21 & carryover flow from DP 11, piped to DP 2.9
	2.9								8.7	3.27	4.33	14.2	11.0	0.07	0.5	14.2	3.27	2.0	24				1 Sum of DP 20 & DP 21,piped to DP 3.1
	3.1								8.7	3.27	4.33	14.2	14.2	3.27	0.5					568	1.4	6.7	7 Detention Pond Trickle channel conveyance to DP 3.2
	22	A22	8.68	0.11	23.3	0.95	2.86	2.7						1.00	10.5								Detention Pond Overland flow to DP 3.2
	OS4	OS4	5.08	0.20	29.5	1.02	2.51	2.6					2.6	1.02	13.0					113	5.4	0.3	3 Existing topography Overland flow to DP 4.1
	3.2								29.8	75.32	2.49	187.5											Outlet Structure Sum of DP 3.0, DP 3.1, DP 22 & DP OS4, outlet structure release to DP 4.8
	Pond W5								29.8	1.45	2.49	3.6				3.6	1.45	2.0	48				2 Outlet structure release to DP 4.8
	23	B1	2.98	0.90	17.6	2.68	3.29	8.8					0.4	0.12	2.0	8.4	2.56	0.5	30	1399 88			0 On-grade inlet 3 Piped to DP 4.0

Subdivision: S Location: E esign Storm: 3	El Paso Cou		ng No. 2	2												F Calo	Project culated hecked	ime: <u>9</u> No.: 2 1 By: 7 1 By: 7 1 By: 7 0 ate: 1	25188 AAM	.01	ch Suk	odivis	lon
				DIRE	CT RUI	NOFF			T	OTAL R	UNOF	F	STREE	ET/SW	/ALE		PIP	E		TRAVE	EL TIM	IE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	24	B2	3.89	0.90	17.6	3.50	3.29	11.5					1.4	0.43	2.0	10.1	3.07	2.0	30	1399 0		12.0 0.0	On-grade inlet Piped to DP 4.0
	4.0								17.8	5.63	3.26	18.4				18.4	5.63	3.0	30	40	12.1	0.1	Sum of DP 23 & DP 24, piped to DP 4.1
	25	0\$20	308.00	0.13	68.9	40.04	1.23	61.0					61.0	40.04	2.0								Existing topography (Flow Taken from MDDP) Overland flow to DP 4.1
	4.1								691	45.67	1 23	56.2	56.2	45.67	1.0					1263	1.5	14.0	
		OS21A	20.26	0.13	53.5	2.63	1.61	4.2	07.1	10.07	1120	00.2	4.2	2.63	1.0					0	2.0	0.0	Existing topography Overland flow to DP 4.3
	27	B3	1.53				4.22		9.4	1.50	4 22	6.3				6.3	1.50	1.0	30	70	6.0	0.2	Sump inter Piped to DP 4.2
	28	B4		0.90			4.22			1.78		6.9					1.78		30				Sump inlet Piped to DP 4.2
	4.2	04	1.50	0.70	7.4	1.55	7.22	5.7		3.28		12.7					3.28	1.0					Sum of DP 27 & DP 28, piped to DP 4.3
	4.2									51.58		49.1	49.1	51.58	0.5	12.7	3.20	1.0	30	192			
	4.3 29	OS21B	8.71	0.12	24.5	1 1 2	2.78	3.1	03.1	51.56	0.95	49.1				2.1	1.13	1.0	30	719	4.0	2.4	Type D Inlet Piped to DP 4.4
	4.4	03210	0.71	0.13	24.0	1.15	2.70	3.1	24.5	1.13	2 70	3.1	3.1	1.13	0.5	3.1	1.13	1.0	30	289	1.4		Detention Pond Trickle channel conveyance to DP 4.5
		DE	2.01	0.00	10.1	0.00	2 70	0.0	24.5	1.13	2.78	3.1											Detention Pond
	30	B5	2.91		13.1							-											Overland flow to DP 4.5
	d2	D2	0.43	0.81																			
	d1	D1	0.45	0.81	7.0	0.36	4.66	1.7		0.71		3.3											Outlet Structure
	4.5									53.65		51.1				51.1							Sum of DP 4.3, DP 4.4, & DP 30, outlet structure release to DP 4.6
	Pond W4								83.1	10.09	0.95	9.6					10.09	1.7					Poutlet structure release to DP 4.6 Future Commercial Site, Full spectrum pond release
	31	C1	8.01	0.81	9.9	6.49	0.32	2.0								2.0		2.0	36				Piped to DP 4.6
	4.6								83.8	60.14	0.94	56.5				56.5	60.14	2.5					Sum of Pond B & DP 31, piped to DP 4.7 Future Commercial Site, Full spectrum pond release
	32	C2	5.06	0.81	7.9	2.00	0.70	1.4								1.4	2.00	2.0	36				Piped to DP 4.7
ľ	4.7								83.8	62.14	0.94	58.4				58.4	62.14	0.5	66	1004	8.3	2.0	Sum of DP 4.6 & DP 32, piped to DP 4.8
	4.8								83.8	63.59	0.94	59.8				59.8	63.59	0.5	72				Sum of DP DP 4.7 & Pond A, Outfall to Sandcreek Drainageway

Notes:

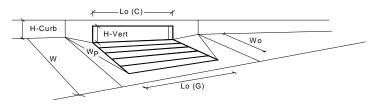
Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

Subdivision:	Sterling Ranch Filing No. 2
Location:	El Paso County

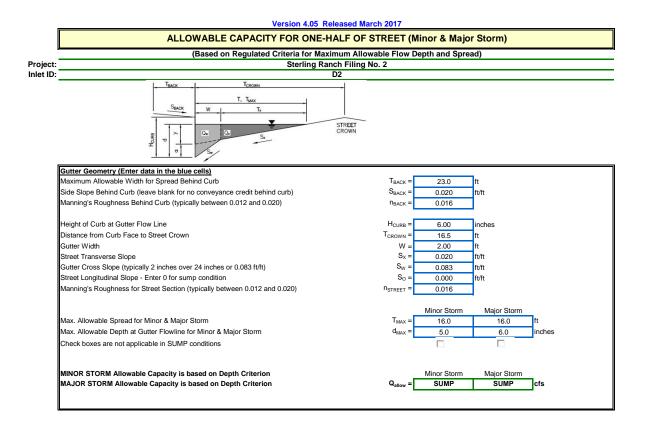

Project Name: <u>Sterling Ranch Subdivision</u> Project No.: <u>25188.01</u> Calculated By: <u>AAM</u>

ign Storm: 1																	Checke	Date:	1/5/2	21			
				DIR	RECT RU	JNOFF			T	OTAL I	RUNOF	F	STRE	ET/SW	ALE		PIP	E	_	TRAVEL	TIM	1E	
escription	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	velocity (rps)	t _t (min)	REMARKS
	1	A1	2.06	0.65	9.7	1.34	7.01	9.4					2.8	0.40	3.3	6.6	0.94	2.0	18		3.6 8.2	3.0 0.0	On-grade inlet, carryover flow to DP 5 Piped to DP 1.0
	2	A2	0.82	0.66	9.1	0.54	7.17	3.9					0.1	0.01	3.3	3.8	0.53	2.0	18		3.6 7.0	2.9 0.1	On-grade inlet, carryover flow to DP 6 Piped to DP 1.0
	1.0								97	1 47	7.00	10.3				10.3	1.47		18				Sum of DP 1 & DP 2, piped to DP 1.2
	3	A3	6.76	0.62	15.0	4.17	5.92	24.7	,		7.00	10.0	10.0	1.69	2.9		2.48		18	426	3.4	2.1	Piped to DP 1.1
	4	A4		0.71		1.08		7.4					1.6	0.24	2.9	5.8	0.84		18	395	3.4	1.9	On-grade inlet, carryover flow to DP 5 Piped to DP 1.1
	1.1		1.01	0.71	10.2	1.00	0.00		15.0	3.33	5.91	19.7				19.7	3.33		24				Sum of DP 3 & DP 4, piped to DP 1.2
	1.2								15.1		5.89					28.2	4.80						Sum of DP 1.0 & DP 1.1, piped to DP 1.3
	6A	A6A	0.53	0.88	5.0	0.47	8.68	4.1															Overland Flow to DP1.3A
	6	A6	1.37			0.95		6.6	10.0	0.96	6.94	6.7	1.3	0.18	0.7	5.4	0.78	2.0	18	696 0	1.7 7.7	7.0	On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A6 & Carryover flow from DP 2, Piped to DP 1.3A
	1.3A								10.0		6.94					8.7	1.25	1.0	24		67	01	Sum of DP 6 & DP 6A pined to DP 1 3
	5	A5	1.70	0.70	9.9	1.19	6.95	8.3	17.0	3.51	5.59	19.6	6.5	1.17	0.7	13.1	2.34	2.0	18	664 0	1.7 9.4	6.6	On-grade inlet, carryover flow to DP 8 Sum of Sub-basin A5 & Carryover flows from DP 1, P 3 & DP 4. Piped to DP 1.3
	1.3								17.0	8.39	5.59	46.9				46.9	8.39	1.1	36	620 1	0.7	1.0	Sum of DP 1.2, 1.3A & DP 5, piped to DP 1.4
	7	A7	19.00	0.59	18.3	11.21	5.41	60.6								60.6	11.21	1.5	42				Future storm infrastructure from Copper Chase Subdivision Piped to DP 1.4
	1.4								18.4	19.60	5.40	105.9				105.9	19.60	0.5	48	26	9.2	0.0	Sum of DP 1.3 & DP 7, piped to DP 1.5
	8	A8	1.48	0.70	13.9	1.04	6.10	6.3	23.7	2.63	4.76	12.5	1.9	0.41	0.7	10.6	2.23	2.0	18	195 20	1.7	1.9	On-grade inlet, carryover flow to DP 11 Sum of Sub-basin A8 & Carryover flows from DP5, DP 6 & DP 15, Piped to DP 1.5
	1.5										4.76					103.9	21.83		48	91	9.2	0.2	Sum of DP 1.4 & DP 8, piped to DP 1.6
	9	A9	0.61	0.83	8.7	0.51	7.29	3.7	21.2		5.04		0.3	0.05	0.7	4.5	0.89		18	140	1.7	1.4	On-grade inlet, carryover flow to DP 11 Sum of Sub-basin A9 & carryover flows from DP 16, piped to DP 1.6
	1.6								23.9		4.74					107.7	22.72	0.5	48	95			Sum of DP 1.5 & DP 9, piped to DP 1.8
	10	A10	2.61	0.88	7.9	2.29	7.53	17.3					4.5	0.59	1.5	12.8	1.70		18		2.4 0.3	6.5 0.2	On-grade inlet, carryover flow to DP 20 Piped to DP 1.7
	11	A11	2.89	0.86	8.7	2.48	7.28	18.1	10.6	2.94	6.77	19.9	6.1	0.90	1.5	13.8	2.04	2.5	18	1049	2.4	7.1	D-grade inlet, carryover flow to DP 21 Sum of Sub-basin A11 & carryover flows from DP 8 & DP 9, piped to DP 1.7
	1.7								10.6	3.74	6.77	25.3				25.3	3.74	1.0	24	8	8.1	0.0	Sum of DP 10 & DP 11, piped to DP 1.8
	1.8								24.0	26.45	4.72	125.0				125.0	26.45	2.0	54	517 1			Sum of DP 1.6 & DP 1.7, piped to DP 2.7
	OS2	OS2	17.00	0.62	12.0	10.54	3.71	39.1								39.1	10.54	1.0	30	787	9.5	1.4	Future flow released from Barbarick Subdivision Piped to DP 2.0
	12	A12	3.87	0.38	11.9	1.47	6.49	9.5								9.5	1.47	2.0	18	17	8.9	0.0	Type C inlet Piped to DP 2.0
	2.0								13.4	12.01	6.20	74.5				74.5	12.01		48				Sum of DP OS2 & DP 12, Piped to DP 2.1
	13	A13	9.65	0.59	14.0	5.69	6.08	34.6								34.6	5.69		30				Future storm infrastructure from Sterling Ranch Phase 2 Piped to DP 2.1

ubdivision: Location: sign Storm:	Sterling Rand El Paso Coun 100-Year	ch Filing Ity	g No. 2													Ca	oject Na Project alculated Checked	No.: By:	2518 AAM	8.01	inch Si	ubdivi	sion
				DIRECT	RUN	NOFF			Τ	OTAL F	RUNO	FF	STRE	ET/SW	ALE		PIPE			TRA	/EL TI	ME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff. t. (min)			l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	2.1 OS3	OS3	28.70	0.62 15	5.0 1	17.79	2.75	48.9	14.3	17.70	6.02	106.6				106.6 48.9	17.70 17.79	1.6	48		15.1		Sum of DP 2.0 & DP 13, piped to DP 2.5 Future flow released from Barbarick Subdivision Piped to DP 2.2
	14	A14	11.76			6.47	5.86	37.9								37.9	6.47	1.0			1		Future flow released from School Site Piped to DP 2.2
	2.2								16.2	24.26	5.72	138.7				138.7	24.26		48		15.5	0.8	Sum of DP OS3 & DP 14, piped to DP 2.3
	15	A15	2.91	0.68 14	1.9	1.98	5.93	11.7					1.4			10.3	1.74	1.3	18	724	7.6	0.1	On-grade inlet, carryover flow to DP 8 Piped to DP 2.3
	16	A16	2.34	0.69 14	1.7	1.61	5.96	9.6					2.6	0.44	0.8	7.0	1.17	2.0	18	697 12			On-grade inlet, carryover flow to DP 9 Piped to DP 2.3
	2.3								15.0	2.91	5.91	17.2				17.2	2.91	1.6	48	15	9.0	0.0	Sum of DP 15 & DP 16, piped to DP 2.4
	2.4								17.0	27.17	5.59	151.9				151.9	27.17	1.6	48	19	16.2	0.0	Sum of DP 2.2 & DP 2.3, piped to DP 2.5
	2.5								17.1	44.87	5.59	250.7				250.7	44.87	2.0			20.1		Sum of DP 2.1 & DP 2.4 piped to DP 2.6 Type C inlet
	17	A17	1.76	0.44 13	3.7	0.77	6.14	4.7	477	45.74	F 40	050.4				4.7	0.77				1		Piped to DP 2.6
	2.6									45.64 72.10						250.4 336.8	45.64 72.10	2.0 0.6	60 78		20.2		Sum of DP 2.5 & DP 17, piped to DP 2.7 Sum of DP1.8 & DP 2.6, piped to DP 2.8
	18	A18	5.27	0.47 16	5.4	2.47	5.68	14.0	24.0	72.10	4.07	330.0				14.0	2.47	1.0					Area inlet Piped to DP 2.6
	19			0.59 25			4.55	85.4								85.4	18.79				48.4		Area inlet Piped to DP 2.6
	2.8								25.8	93.36	4.55	424.4				424.4	93.36	0.6	78				Sum of DP 2.7, DP 18 & DP 19, piped to DP 3.0.
	3.0								25.8	93.36	4.55	424.4		93.36						564	1.4	6.6	Detention Pond Trickle channel conveyance to DP 3.2
	20	A20	1.83	0.89 8	3.0	1.63	7.50	12.2	14.4	2.22	6.02	13.4	2.3			11.1	1.84	1.0	24	105	7.2	0.2	On-grade inlet Sum of Sub-basin A20 & carryover flow from DP 10, piped to DP 3.0 On-grade inlet
	21	A21	1.93	0.90 8	3.7	1.73	7.28	12.6	15.8	2.63	5.77	15.2	3.3	0.57	1.5	11.9	2.06	2.5	18	0	10.2	0.0	Sum of Sub-basin A21 & carryover flow from DP 11, piped to DP 2.9
	2.9								15.8	3.91	5.77	22.5	22.5	3.91	0.5	22.5	3.91	2.0	24	58 568	11.0		Sum of DP 20 & DP 21,piped to DP 3.1 Detention Pond
	3.1				_				15.8	3.91	5.77	22.5											Trickle channel conveyance to DP 3.2 Detention Pond
	22	A22	8.68			3.21	4.80	15.4					8.5	2.03	13.0					113	5.4	0.3	Overland flow to DP 3.2 Existing topography
	OS4	OS4	5.08	0.40 29	9.5	2.03	4.21	8.5	20.0	102.50	4 10	420.2											Overland flow to DP 3.2 Outlet Structure Sum of DP 2.0 DP 2.1 DP 32.8 DP OS4, outlet ctructure release to DP 4.8
	3.2 Pond W5									34.84						145.5	34.84	2.0	48	58	175	01	Sum of DP 3.0, DP 3.1, DP 22 & DP OS4, outlet structure release to DP 4.8 Outlet structure release to DP 4.8
	23	B1	2.98	0.96 17	7.6	2.86	5.51	15.8	27.0	0 7.04		5.5	3.6	0.65	2.0	12.2	2.21	0.5	30		2.1	11.0	On-grade inlet Piped to DP 4.0
	24	B2		0.96 17		3.73	5.51	20.6					6.5	1.17	2.0	14.1				1394	2.1	11.0	On-grade inlet Piped to DP 4.0

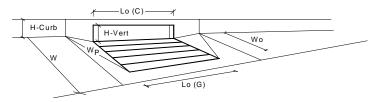

Subdivision: Location: sign Storm:	El Paso Cour		g No. 2													Ca	oject N Projec alculate Checke	t No.: d By:	2518	8.01	inch Su	ubdivis	sion
5																		Date:	1/5/2	21			
			1	DIR	ECT RI	JNOFF	T		1	OTAL I	RUNO	F	STRE	ET/SW	ALE	PIPE				TRAV	/EL TIN	ME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	4.0								17.8	4.77	5.48	26.1				26.1	4.77	3.0	30	40	13.4		Sum of DP 23 & DP 24, piped to DP 4.1
	25	0\$20	308.00	0.40	68.9	123.20	2.07	310.0					310.0	123.20	2.0					24	2.1		FLOW TAKEN FROM MDDP Overland flow to DP 4.1
	4.1									127.97	2.07	264.7	264.7	127.97	1.0					1263	1.5	14.0	Sum of DP 4.0 & DP 25, piped to DP 4.3
	26	05214	20.26	0.40	52.5	8.10	2.71	21.9		127.77	2.07	204.7	21.9	8.10	1.0					0	2.0	0.0	Existing topography Overland flow to DP 4.3
	20	B3		0.40		1.47	7.09			2.12	5 5 1	11.7				11.7	2 1 2	1.0	20	70	71		Piped to DP 4.2
																							inlet
	28	B4	1.50	0.96	9.4	1.44	7.09	10.2	17.6		5.51					14.4	2.61				7.6		Piped to DP 4.2
	4.2									4.73			291.2	140.80	0.5	26.0	4.73	1.0	30	110 192		3.0	
	4.3								68.9	140.80	2.07	291.2											Sum of DP 4.1, DP 4.2, & DP 26, piped to DP 4.5 Type D Inlet
	29	OS21B	8.71	0.40	24.5	3.48	4.67	16.3					16.3	3.48	0.5	16.3	3.48	1.0	30	719 289		1.5	Piped to DP 4.4 Detention Pond
	4.4								24.5	3.48	4.67	16.3											Trickle channel conveyance to DP 4.5 Detention Pond
	30	B5	2.91	0.35	13.1	1.02	6.25	6.4															Overland flow to DP 4.5
	d2	D2	0.43	0.88	7.0	0.38	7.82	3.0					0.7										by pass runoff from basin B3 Inlet runoff to piped DP 4.5
	d1	D1	0.45	0.88	7.0	0.40	7.82	3.1	7.0	0.78	7.82	8.2	1.4										by pass runoff from basin B4 Inlet runoff to piped DP 4.5
	4.5								68.9	146.08	2.07	302.1				302.1	146.08						Outlet Structure Sum of DP 4.3, DP 4.4, & DP 30, outlet structure release to DP 4.6
	Pond W4								68.9	112.40	2.07	232.5				232.5	112.40	1.7	66	311	18.7	0.3	Outlet structure release to DP 4.6
	31	C1	8.01	0.88	9.9	7.05	2.13	15.0								15.0	7.05	2.0	36	52	9.8		Future Commercial Site, Full spectrum pond release Piped to DP 4.6
	4.6									119.45	2.06	245.8					119.45						Sum of Pond B & DP 31, piped to DP 4.7
	32	C2	5.06	0.88	7.9	1.32	7.54	10.0								10.0	1.32						Future Commercial Site, Full spectrum pond release Piped to DP 4.7
	4.7								69.2	120.77	2.06	248.6				248.6	120.77						' Sum of DP 4.6 & DP 32, piped to DP 4.8
	4.8									155.61							155.61						Sum of DP DP 4.7 & Pond A, Outfall to Sandcreek Drainageway

Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

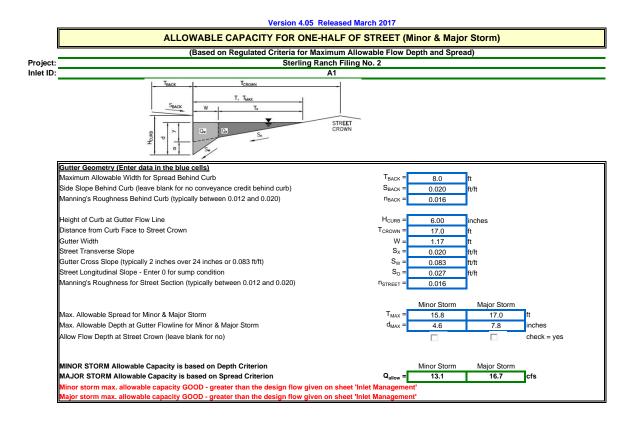


INLET IN A SUMP OR SAG LOCATION

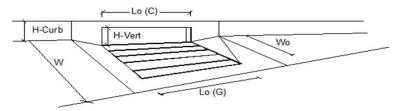
Version 4.05 Released March 2017

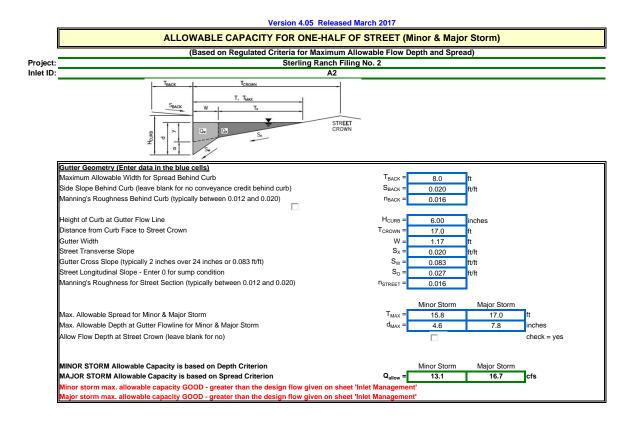


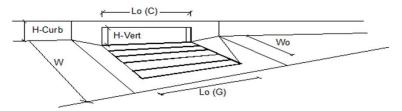
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	5.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.28	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.47	0.50	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.87	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.3	7.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.7	4.5	cfs

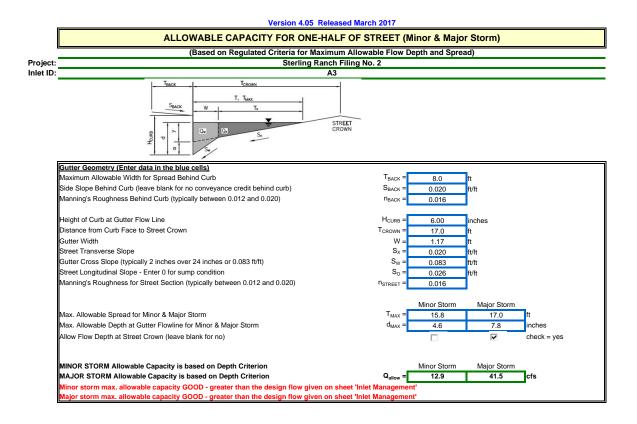


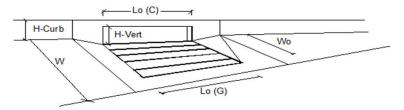
INLET IN A SUMP OR SAG LOCATION

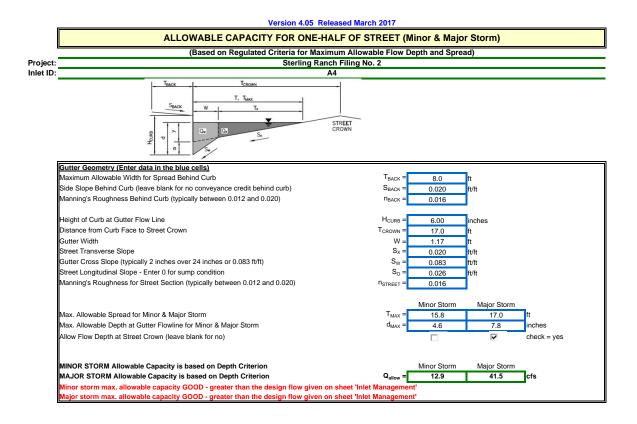

Version 4.05 Released March 2017

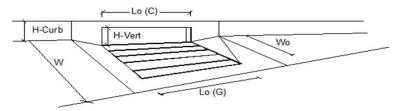

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	5.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.28	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.64	0.69	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	4.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.6	3.7	cfs

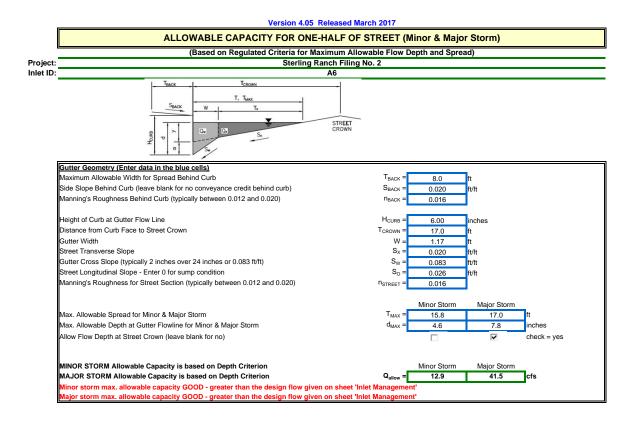

Version 4.05 Released March 2017

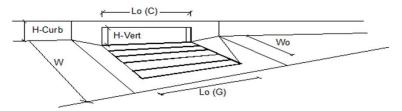

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.2	6.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.2	2.8	cfs
Capture Percentage = Q _a /Q _o =	C% =	95	70	%

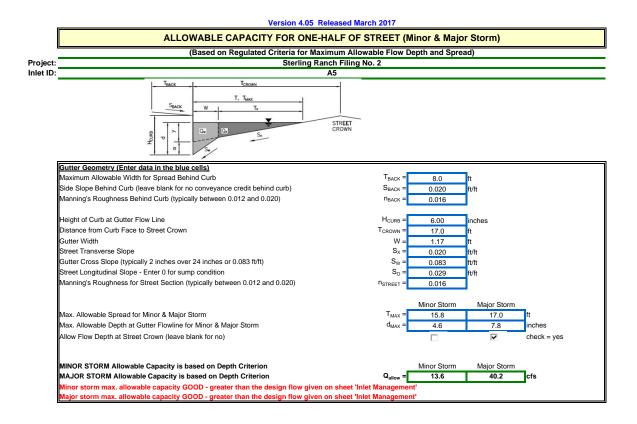

Version 4.05 Released March 2017

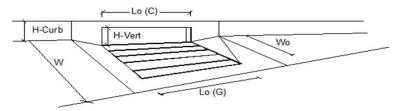

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.9	3.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	97	%

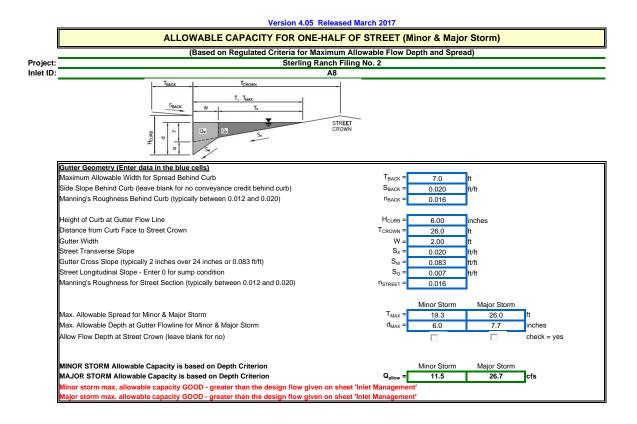

Version 4.05 Released March 2017

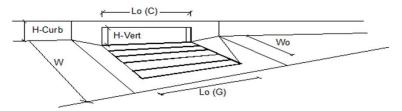

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	9.5	14.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.6	10.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	86	60	%

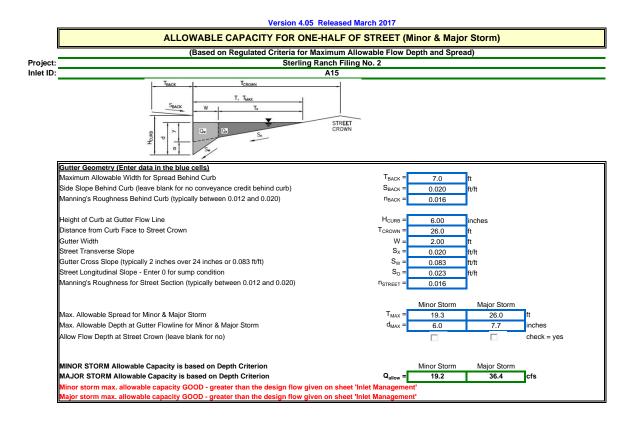

Version 4.05 Released March 2017

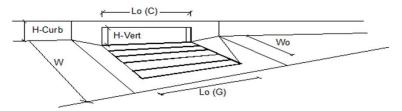

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.6	5.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	1.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	98	78	%

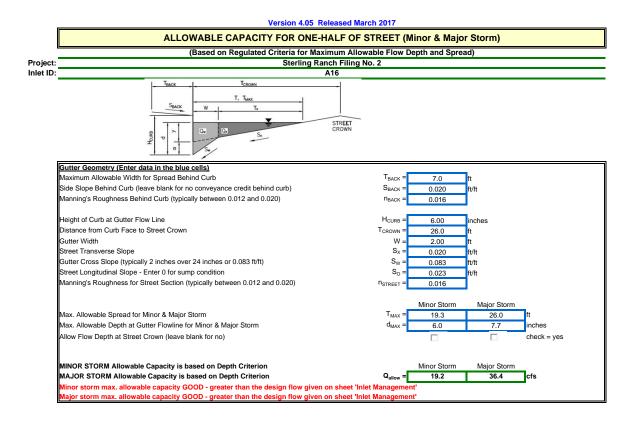

Version 4.05 Released March 2017

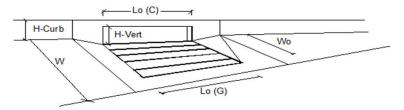

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.3	5.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	81	%

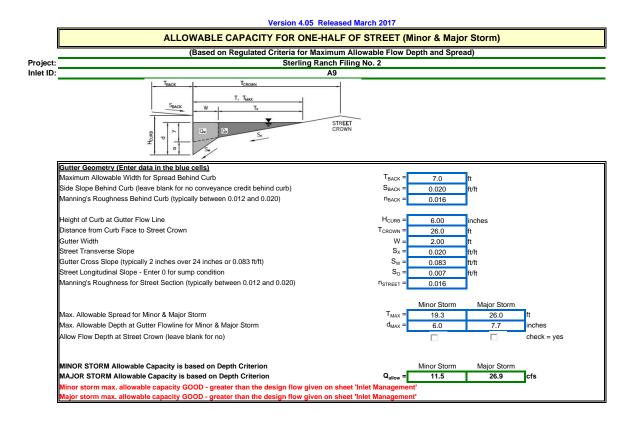

Version 4.05 Released March 2017

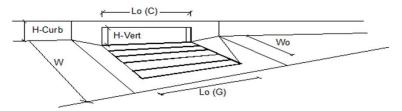

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.1	13.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	6.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	67	%

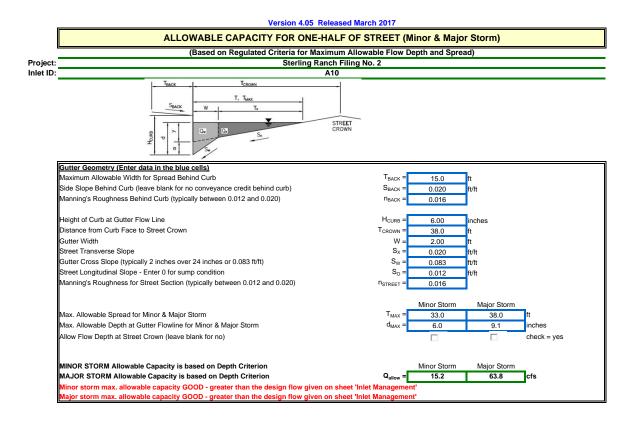

Version 4.05 Released March 2017

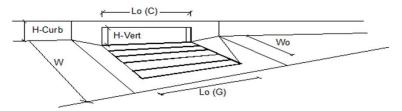

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening]
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	3.0	10.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	85	%

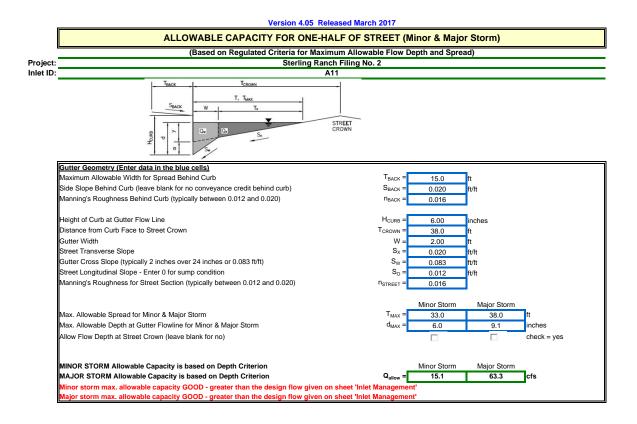

Version 4.05 Released March 2017

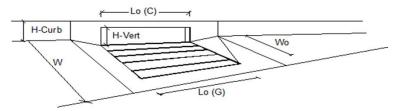

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening]
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.4	10.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	88	%

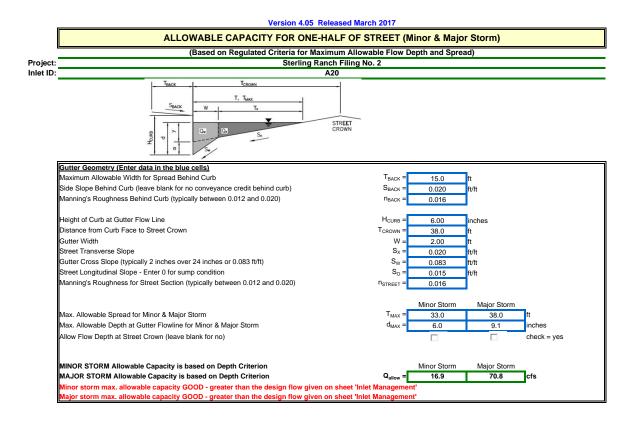

Version 4.05 Released March 2017

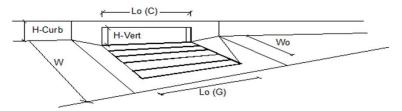

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type = CDOT Type R Curb Opening			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 =$	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	4.3	7.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	2.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	97	73	%

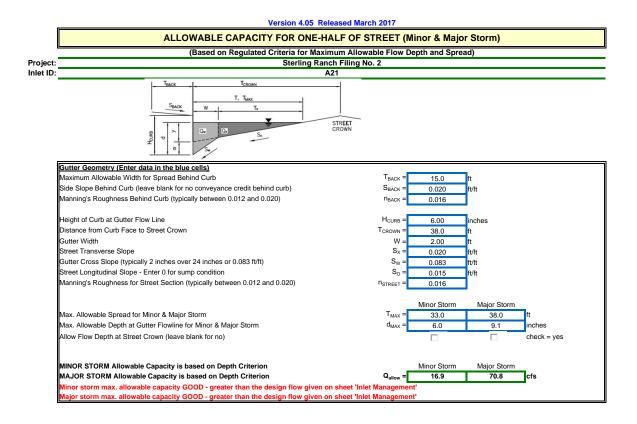

Version 4.05 Released March 2017

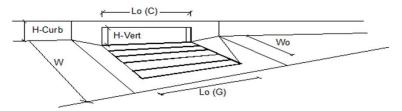

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.1	4.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	94	%

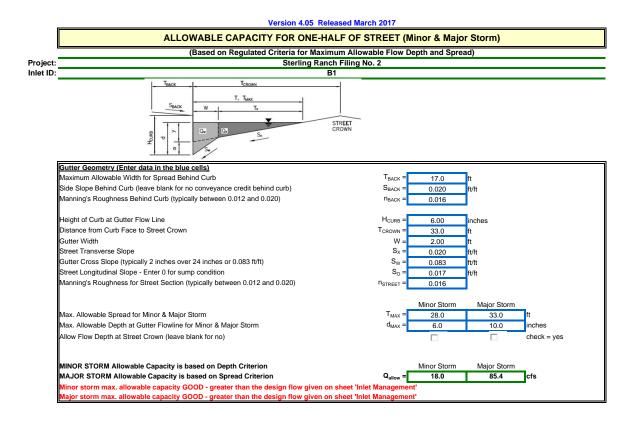

Version 4.05 Released March 2017

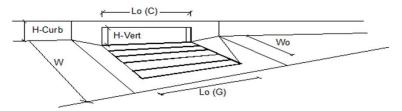

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.7	12.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.5	4.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	94	74	%

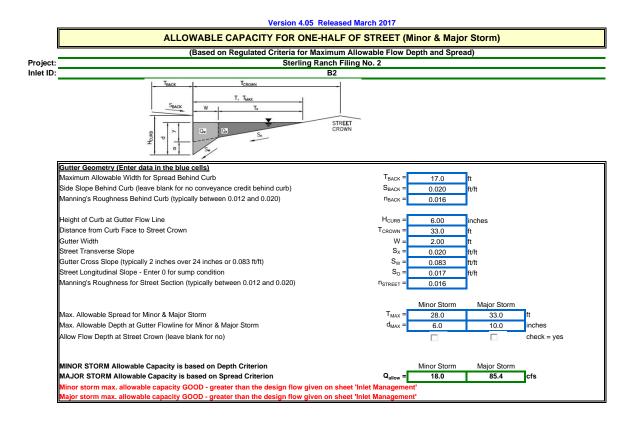

Version 4.05 Released March 2017

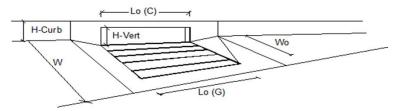

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.9	13.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.6	6.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	93	69	%

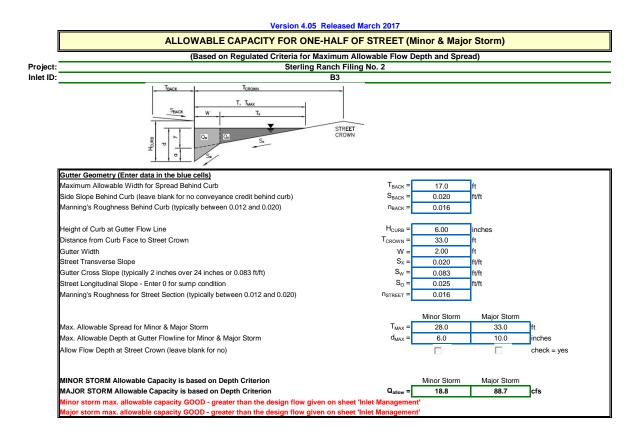

Version 4.05 Released March 2017

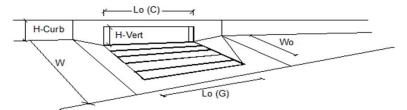

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	7.1	11.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	83	%

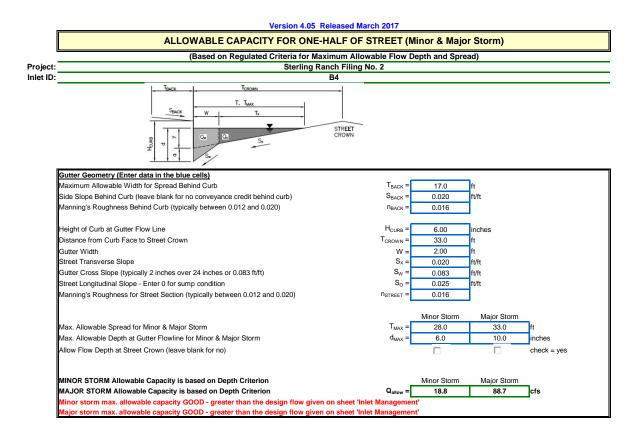

Version 4.05 Released March 2017

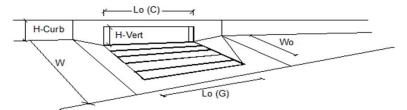

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.3	11.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	3.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	99	79	%

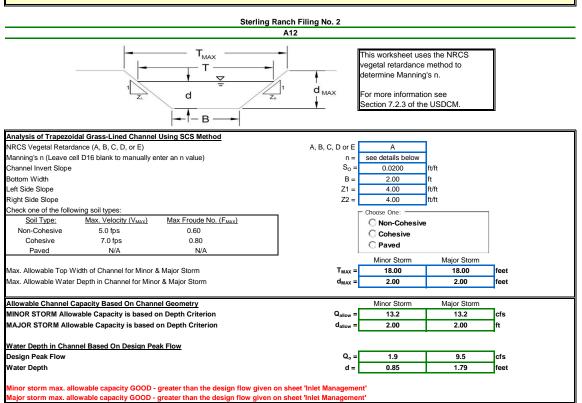

Version 4.05 Released March 2017

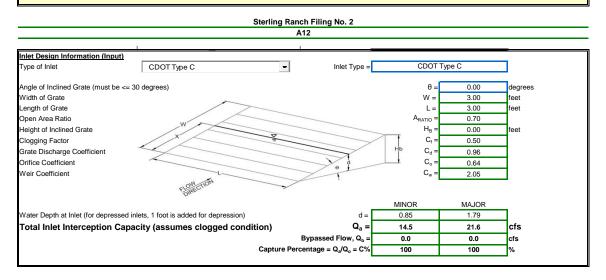

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.4	12.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.4	3.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	96	77	%

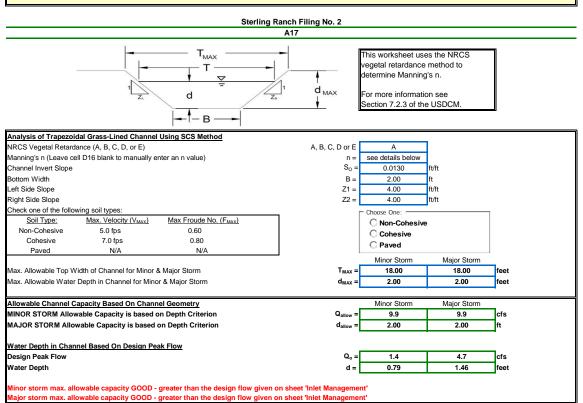

Version 4.05 Released March 2017

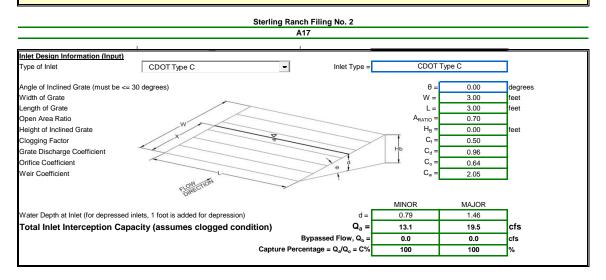

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	10.1	14.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.4	6.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	88	68	%

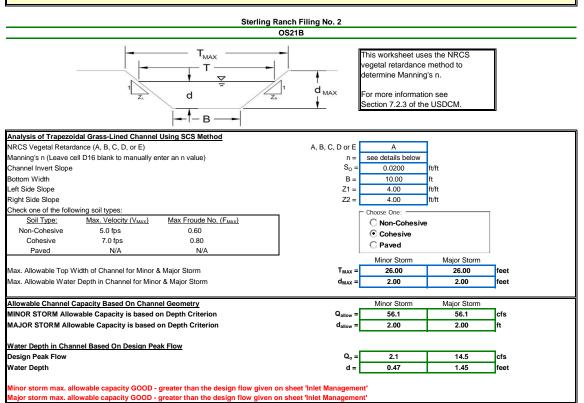


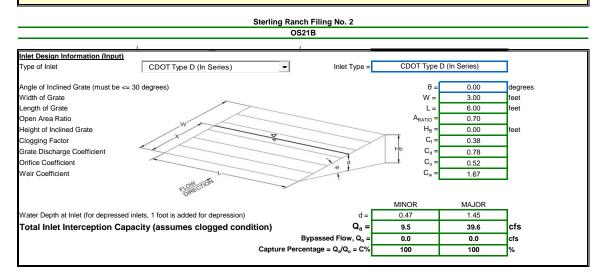

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	4	4	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.3	13.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	95	%

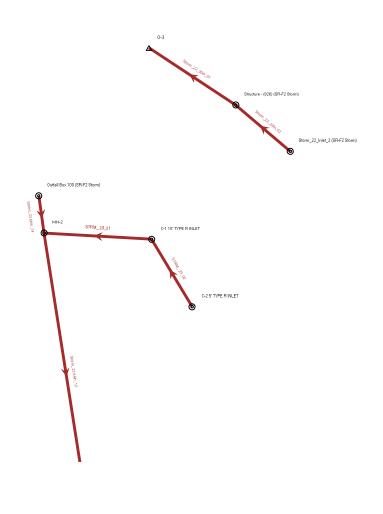


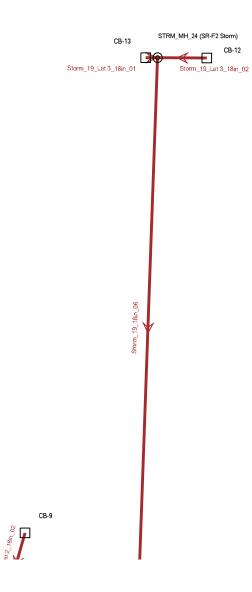


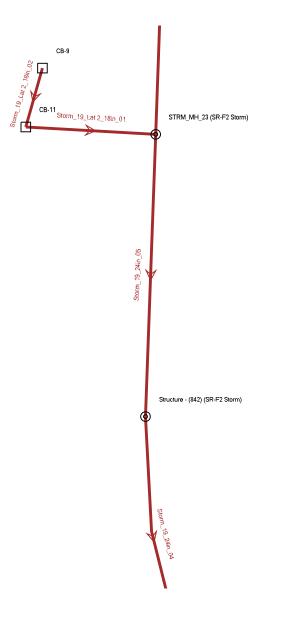


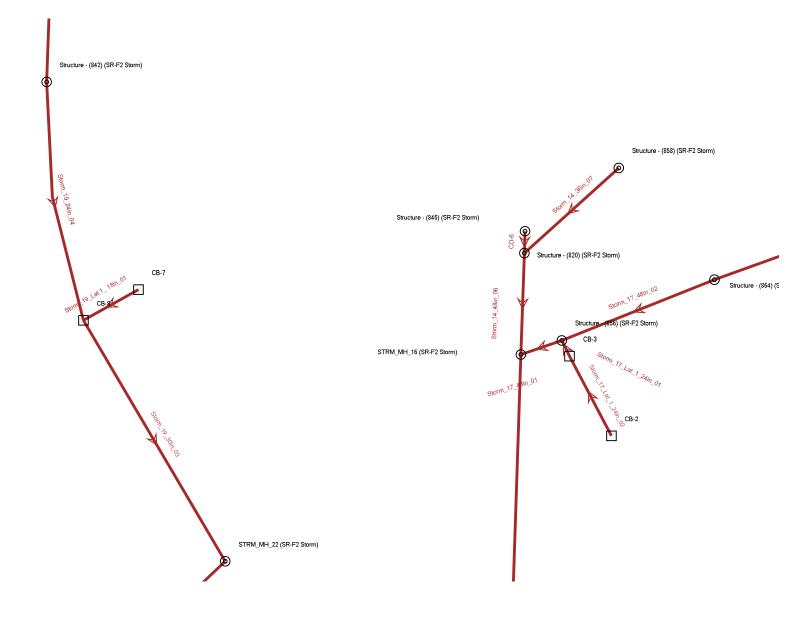

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	4	4	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.4	15.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	91	%

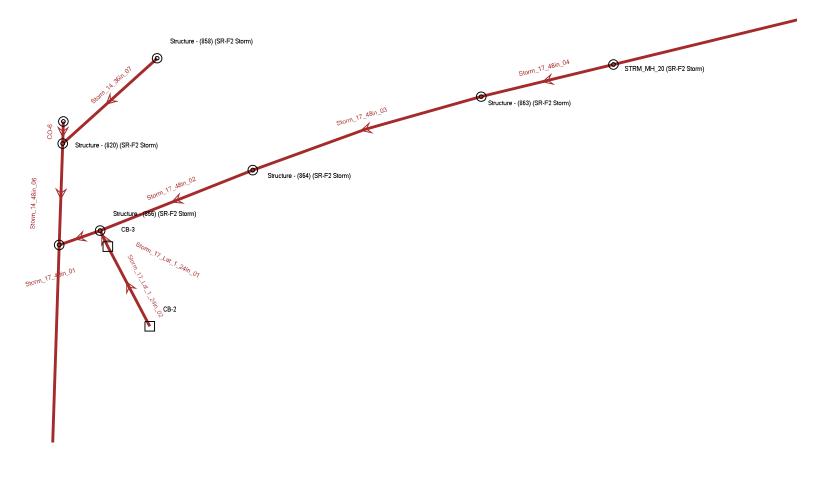


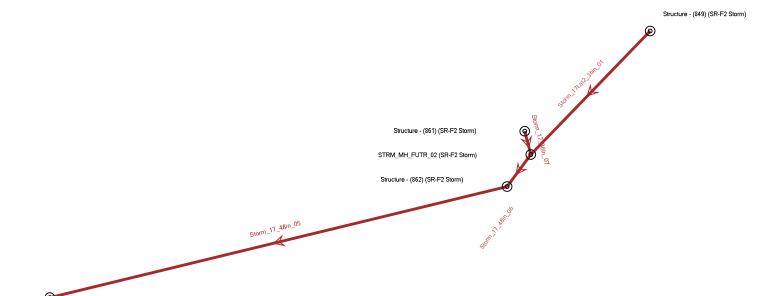


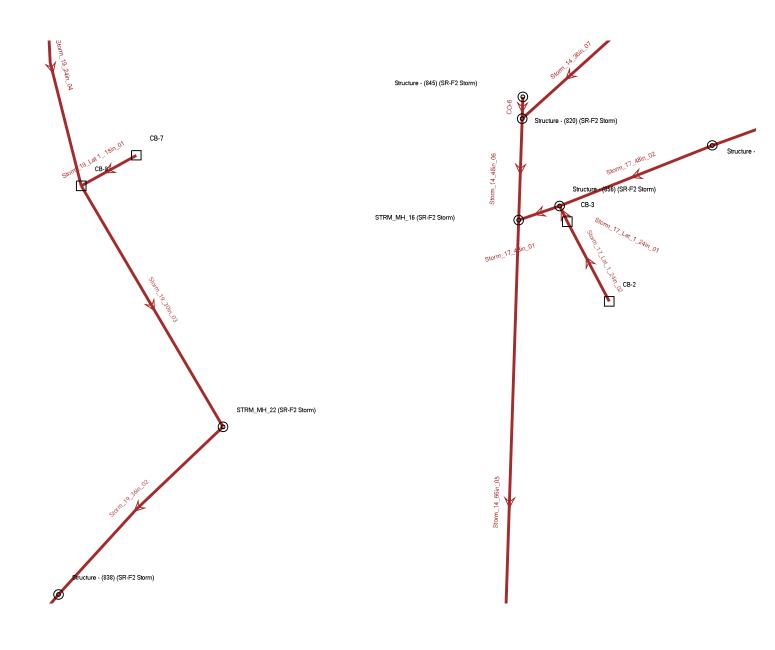


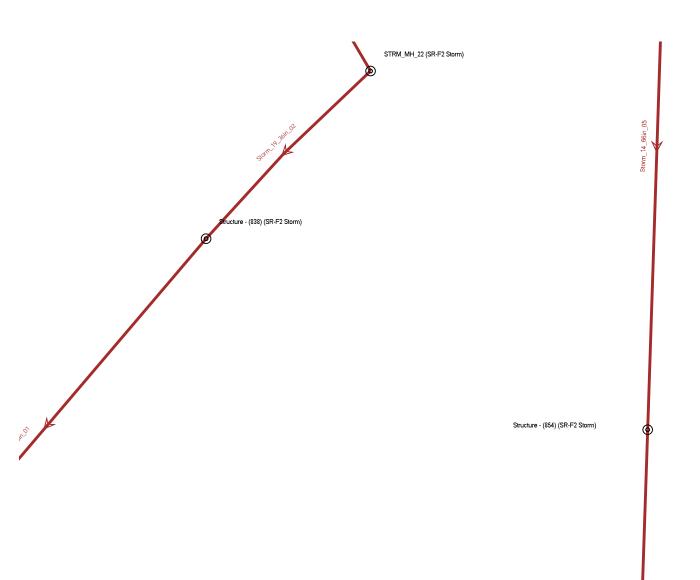


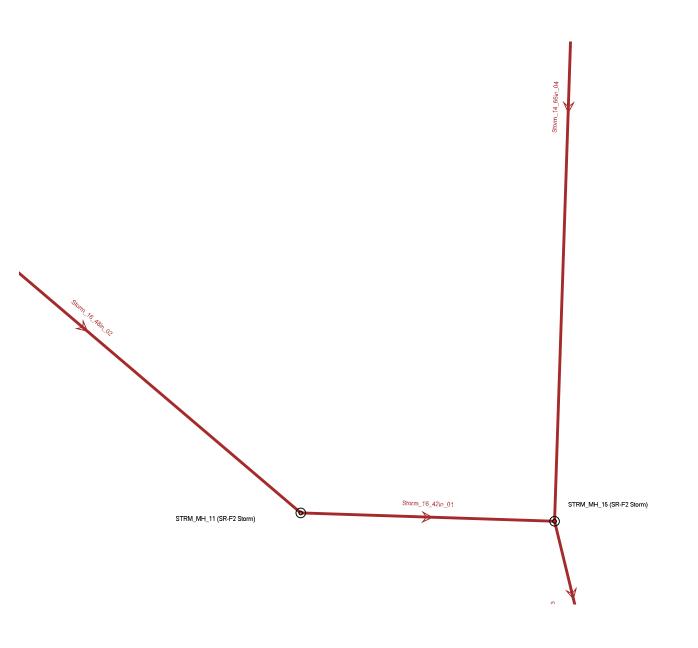

2518801 StormCAD Model.stsw 5/21/2021

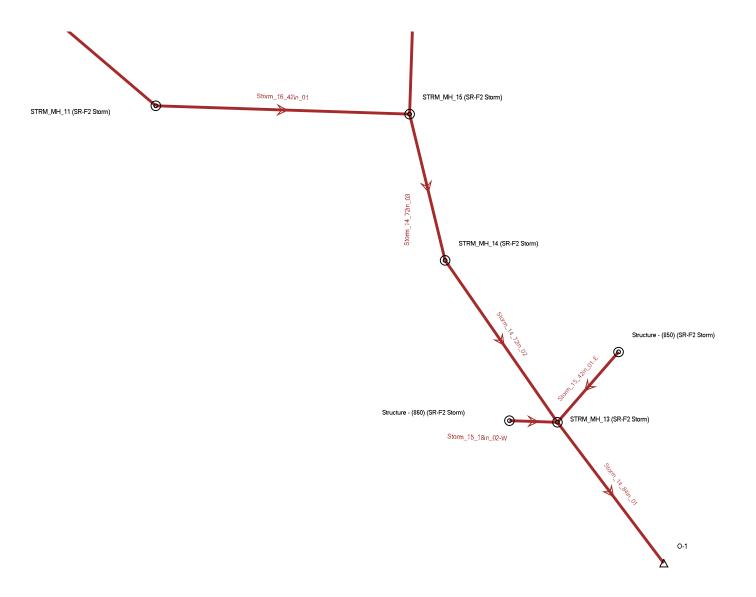

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 StormCAD [10.03.02.04] Page 1 of 1



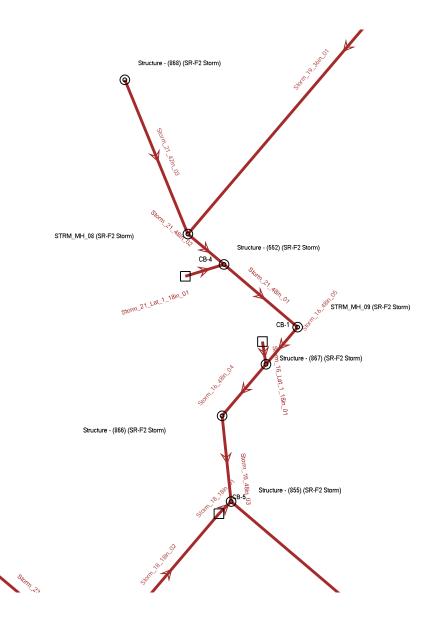

Structure - (845) (SR-F2 Storm)

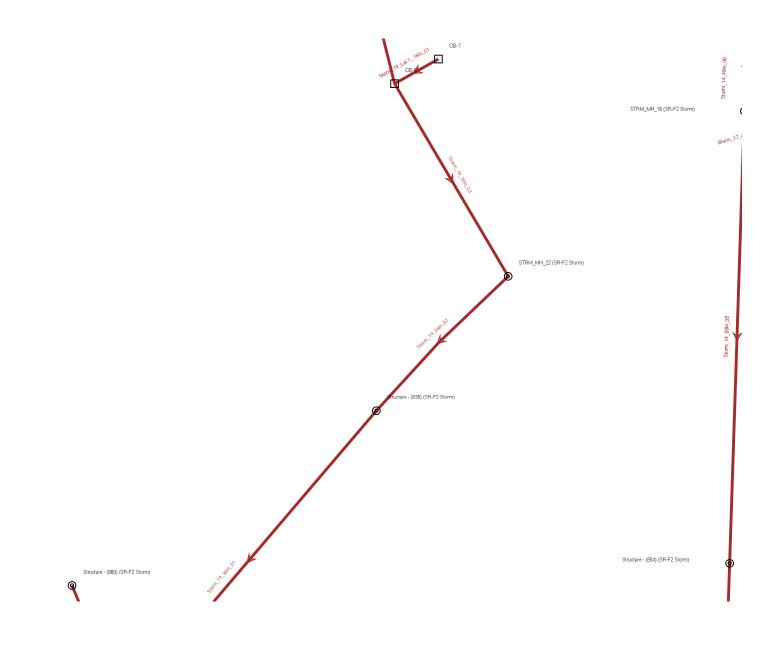


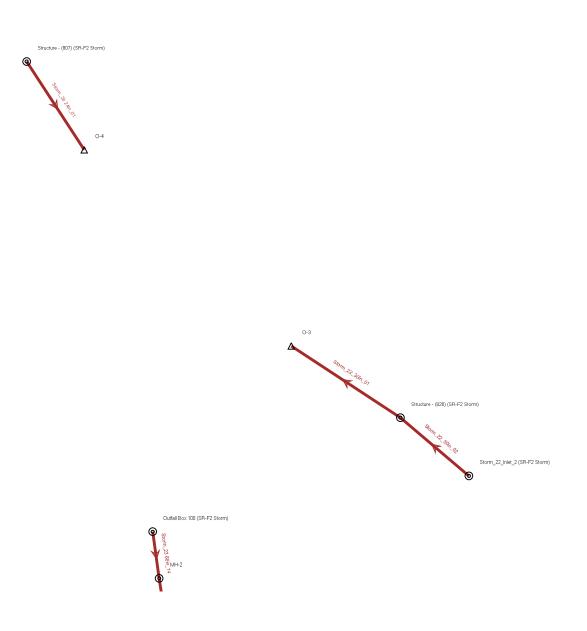


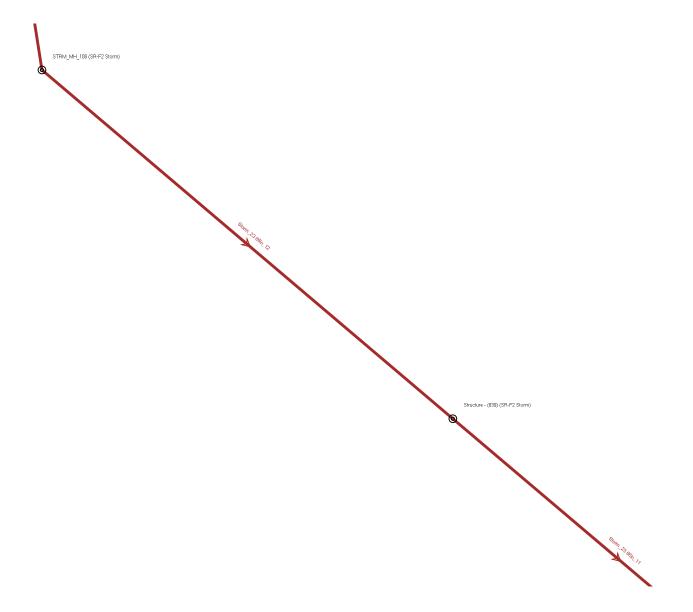

STRM_MH_20 (SR-F2 Storm)

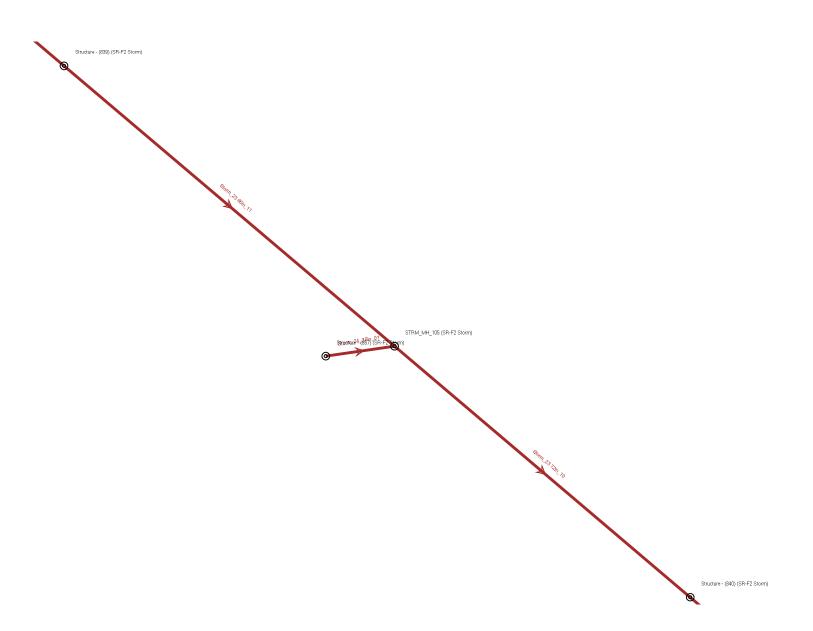


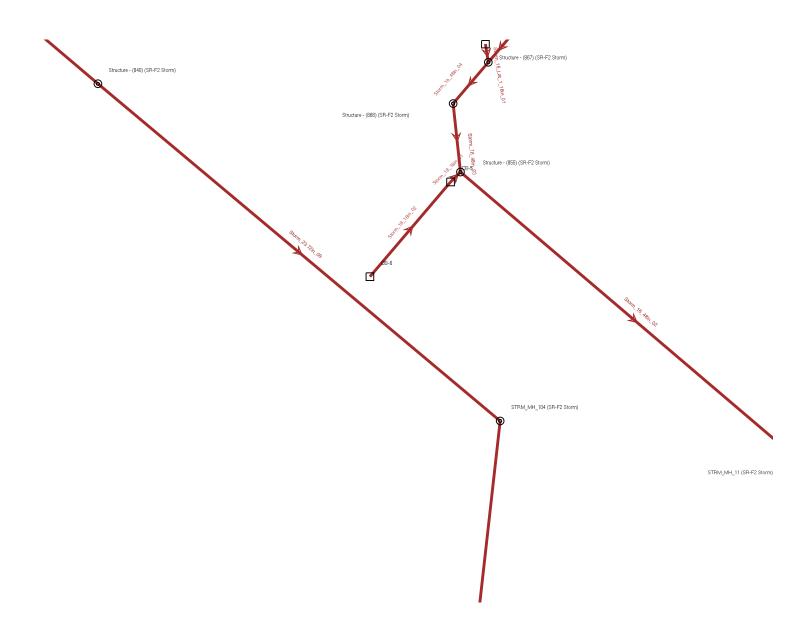


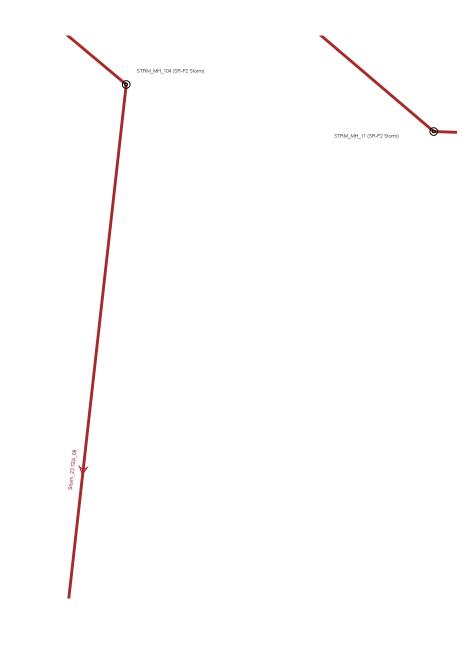


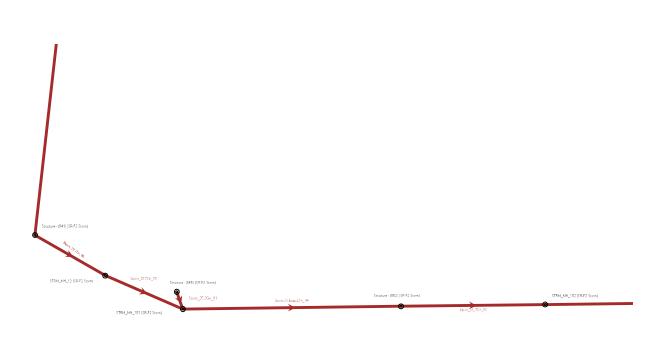


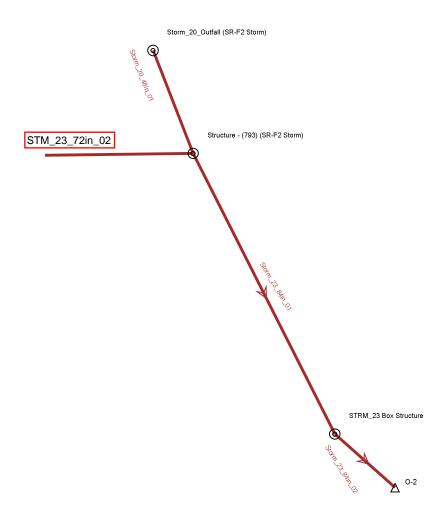












2518801 StormCAD Model.stsw 5/19/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 StormCAD [10.03.02.04] Page 1 of 1

Structure - (872) (SR-F2 Storm)	Storm_23_72in_04	Structure - (852) (SR-F2 Storm)		STRM_MH_102 (SR-F2 Storm)	
	Storm_23_12in_04	O	Storm_23_72in_03	0	
Storm 22, 72in 05					

Storm_23_72in_05

2518801 StormCAD Model.stsw 4/21/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 StormCAD [10.03.02.04] Page 1 of 1

			Length	Slope			Capacity	Hydraulic	Hydraulic
Label	Flow (cfs)	Diameter (in)	(User Defined)	(Calculated)	Manning's n	Velocity (ft/s)	(Full Flow)	Grade Line (In)	Grade Line (Out)
	(013)	("')	(ft)	(ft/ft)		(103)	(cfs)	(ft)	(ft)
Storm_28 30in_01	18.40	30.0	35.4	-0.004	0.013	5.71	25.78	7,044.15	7,043.91
Storm_26 24in_01	2.10	24.0	80.7	-0.010	0.013	4.51	22.68	7,017.31	7,016.41
Storm_22_30in_02 Storm_22_30in_01	8.30 16.00	30.0 30.0	68.8 100.7	-0.010 -0.009	0.013 0.013	6.55 7.60	41.06 39.35	7,016.95 7,016.45	7,016.72 7,015.28
Storm_19_Lat 3_18in_02	1.90	18.0	29.3	-0.020	0.013	5.79	14.90	7,016.36	7,016.40
Storm_19_Lat 3_18in_01	4.20	18.0	6.0	-0.020	0.013	7.22	14.84	7,016.37	7,016.40
Storm_19_18in_06	6.00	18.0	339.5	-0.040	0.013	10.23	20.95	7,016.00	7,002.92
Storm_23 66in_12 Storm_17_48in_06	41.10 56.90	66.0 48.0	409.4 22.6	-0.014 -0.020	0.013 0.013	10.80 13.82	397.26 202.28	7,002.24 7.000.88	6,995.96 7,000.89
Storm 17 36in 07	17.60	36.0	9.8	-0.020	0.013	10.21	94.31	7,000.88	7,000.89
Storm_19_Lat 2_18in_01	12.60	18.0	76.7	-0.049	0.013	13.39	23.16	7,006.61	7,002.92
Storm_19_24in_05	17.60	24.0	177.0	-0.030	0.013	12.14	39.18	7,002.55	6,996.67
Storm_23 66in_11	41.10	66.0	333.0	-0.014	0.013	10.80	397.25	6,994.31	6,989.10
Storm_17_48in_05 Storm_17_48in_04	56.90 56.90	48.0 48.0	292.3 82.9	-0.020 -0.016	0.013 0.013	13.87 12.80	203.11 181.90	7,000.43 6,994.39	6,994.62 6,993.29
Storm_24_36in_01	2.00	36.0	50.2	-0.020	0.013	5.39	94.58	6,991.86	6,990.71
Storm_23 72in_10	43.30	72.0	295.1	-0.004	0.013	7.25	283.22	6,980.74	6,979.48
Storm_19_Lat 1_ 18in_01	5.00	18.0	36.4	-0.030	0.013	8.78	18.18	6,993.84	6,993.02
Storm_19_24in_04 Storm_19_30in_03	0.50 25.90	24.0 30.0	144.7 165.0	-0.030 -0.024	0.013 0.013	4.31 12.37	39.18 64.17	6,995.97 6,992.63	6,993.02 6,988.66
Storm_17_48in_03	25.90 56.90	48.0	150.3	-0.024	0.013	12.37	182.25	6,993.06	6,990.87
Storm_17_48in_02	56.90	48.0	102.0	-0.016	0.013	12.70	179.90	6,990.64	6,989.23
Storm_17_48in_01	63.70	48.0	23.0	-0.005	0.013	8.38	99.25	6,988.98	6,988.80
Storm_17_Lat_1_24in_01 Storm_17_Lat_1_24in_02	9.60 4.30	24.0 24.0	8.8 53.4	-0.006 -0.007	0.013 0.013	5.58 4.76	17.03 18.29	6,989.73 6,989.80	6,989.65 6,989.84
Storm_14_48in_06	38.10	48.0	59.3	-0.017	0.013	11.72	187.87	6,989.32	6,987.79
Storm_14_66in_05	96.60	66.0	354.4	-0.014	0.013	13.79	397.24	6,984.12	6,978.30
Storm_19_36in_02	25.90	36.0	144.5	-0.006	0.013	7.26	51.15	6,987.99	6,987.48
Storm_14_36in_07 Storm_23 72in_09	15.70 43.30	36.0 72.0	76.3 402.6	-0.020 -0.014	0.013 0.013	9.89 10.85	94.31 500.84	6,991.27 6.979.32	6,989.33 6,973.14
Storm_21_48in_01	55.10	48.0	402.0	-0.014	0.013	10.85	248.76	6,984.23	6,981.75
Storm_16_48in_05	55.10	48.0	26.8	-0.020	0.013	13.74	203.11	6,981.54	6,981.49
Storm_21_42in_03	27.50	42.0	101.2	-0.005	0.013	6.92	71.15	6,985.78	6,985.83
Storm_19_36in_01	25.90 52.50	36.0 48.0	302.2 25.8	-0.006 -0.030	0.013 0.013	7.25 15.69	51.04 248.66	6,987.14 6,984.95	6,985.83 6,984.69
Storm_21_48in_02 Storm_21_Lat_1_18in_01	3.00	18.0	25.8 19.4	-0.030	0.013	3.87	7.16	6,985.26	6,985.15
Storm_16_Lat_1_18in_01	2.10	18.0	13.2	-0.020	0.013	5.99	15.01	6,982.08	6,981.67
Storm_16_48in_02	68.80	48.0	348.6	-0.024	0.013	15.49	220.31	6,979.03	6,972.39
Storm_16_48in_03 Storm_18_18in_02	56.40 8.70	48.0 18.0	50.4 94.4	-0.020 -0.048	0.013 0.013	13.85 12.12	203.42 23.01	6,980.18 6,985.92	6,979.56 6,980.89
Storm_14_66in_04	96.60	66.0	512.4	-0.048	0.013	13.02	366.67	6,976.96	6,972.10
Storm_23 72in_08	43.30	72.0	602.8	-0.013	0.013	10.64	487.25	6,970.97	6,962.46
Storm_16_42in_01	68.80	42.0	158.3	-0.002	0.013	3.58	90.47	6,972.29	6,972.10
Storm_16_48in_04 Storm_14_72in_03	56.40 162.00	48.0 72.0	42.5 74.5	-0.020 -0.005	0.013 0.013	13.83 10.99	203.12 306.40	6,981.03 6,971.03	6,980.64 6,971.00
Storm_14_72in_03	162.00	72.0	127.9	-0.005	0.013	10.99	299.58	6,970.64	6,970.48
Storm_15_18in_02-W	4.30	18.0	25.5	-0.049	0.013	10.08	23.36	6,973.60	6,972.01
Storm_14_84in_01	189.80	84.0	107.3	-0.005	0.013	11.25	453.09	6,970.13	6,969.23
Storm_20_48in_01 Storm_23_72in_02	0.00 45.20	48.0 72.0	57.9 549.0	-0.014 -0.002	0.013 0.013	0.00 5.28	167.77 178.92	6,949.67 6,950.69	6,948.88 6,949.43
Storm_23 72in_02	43.20	72.0	120.0	-0.002	0.013	11.13	518.77	6,957.83	6,955.50
Storm_25 30in_01	1.40	30.0	23.6	0.105	0.013	8.85	133.22	6,955.55	6,954.30
Storm_23_72in_03	45.20	72.0	167.7	-0.002	0.013	5.22	176.09	6,951.09	6,950.79
Storm_15_42in_01-E Storm_18_18in_01	38.80 17.30	42.0 18.0	-	-0.009 -0.021	0.013 0.013	9.46 9.79	96.21 15.27	6,971.71 6,980.02	6,970.85 6,979.69
Storm_17Lat2_36in_01	16.00	36.0	-	-0.021	0.013	9.79 12.82	134.76	7,005.28	7,001.34
Storm_19_Lat 2_18in_02	9.50	18.0	-	-0.014	0.013	7.71	12.35	7,007.49	7,007.05
CO-6	23.20	48.0	9.5	-0.021	0.013	10.94	208.41	6,989.62	6,989.67
Storm_28 30in_01 Storm_23 66in_13	8.40 41.10	30.0 66.0	- 261.0	-0.007 -0.005	0.013 0.013	5.77 7.48	34.28 237.00	7,044.20 7,010.83	7,044.15 7,009.34
Storm 23 66in 14	37.80	66.0	43.2	-0.005	0.013	7.46	237.00	7,010.83	7,009.34 7,010.99
Storm 23 three 42in_04	45.20	42.0	258.8	-0.005	0.013	6.02	221.20	6,954.19	6,952.69
Storm_23 72in_06	43.30	72.0	93.0	-0.015	0.013	11.11	517.87	6,959.22	6,958.15
Storm_23_84in_02 Storm_23_84in_01	46.50 46.50	84.0 84.0	27.0 200.4	-0.003 -0.002	0.013 0.013	6.29 5.79	347.91 309.34	6,947.81 6,948.48	6,947.73 6,948.12
STRM 29 01	46.50	18.0	200.4 56.8	-0.002	0.013	5.79 7.47	309.34 17.07	6,948.48 7,015.19	6,946.12 7,013.45
STRM_ 29_02	1.60	18.0	79.6	-0.012	0.013	4.56	11.42	7,016.66	7,015.62

X:\2510000.all\2518801\StormCAD\2518801 StormCAD Model.stsw

			Length				Capacity	Hydraulic	Hydraulic
Label	Flow	Diameter	(User	Slope (Calculated)	Manning's	Velocity	(Full	Grade	Grade
Laber	(cfs)	(in)	Defined)	(ft/ft)	n	(ft/s)	Flow)	Line (In)	Line (Out)
			(ft)	. ,			(cfs)	(ft)	(ft)
Storm_28 30in_01 Storm 26 24in 01	26.10 14.50	30.0 24.0	35.4 80.7	-0.004 -0.010	0.013 0.013	5.99 4.62	25.78 22.68	7,044.53 7,022.00	7,044.20 7,021.67
Storm_22_30in_02	14.30	30.0	68.8	-0.010	0.013	2.93	41.06	7,022.60	7,021.07
Storm_22_30in_01	31.00	30.0	100.7	-0.009	0.013	6.32	39.35	7,022.25	7,021.67
Storm_19_Lat 3_18in_02	3.80	18.0	29.3	-0.020	0.013	7.05	14.90	7,016.96	7,016.97
Storm_19_Lat 3_18in_01	6.60	18.0	6.0	-0.020	0.013	3.73	14.84	7,016.99	7,016.97
Storm_19_18in_06 Storm 23 66in 12	10.30 278.90	18.0 66.0	339.5 409.4	-0.040 -0.014	0.013 0.013	11.81 18.10	20.95 397.26	7,016.29 7,005.13	7,003.66 6,998.22
Storm_17_48in_06	138.70	48.0	22.6	-0.020	0.013	11.04	202.28	7,003.13	7.002.76
Storm 17 36in 07	48.90	36.0	9.8	-0.020	0.013	6.92	94.31	7,003.97	7,003.91
Storm_19_Lat 2_18in_01	19.70	18.0	76.7	-0.049	0.013	14.72	23.16	7,006.74	7,003.66
Storm_19_24in_05	30.00	24.0	177.0	-0.030	0.013	13.74	39.18	7,002.90	6,997.04
Storm_23 66in_11 Storm_17_48in_05	278.90 138.70	66.0 48.0	333.0 292.3	-0.014 -0.020	0.013 0.013	18.10 17.39	397.25 203.11	6,997.20 7,001.66	6,991.39 6,996.17
Storm_17_48in_04	138.70	48.0	82.9	-0.020	0.013	17.39	181.90	6,995.62	6,994.84
Storm_24_36in_01	15.00	36.0	50.2	-0.020	0.013	9.78	94.58	6,992.65	6,991.27
Storm_23 72in_10	242.40	72.0	295.1	-0.004	0.013	11.26	283.22	6,983.27	6,982.34
Storm_19_Lat 1_ 18in_01	8.70	18.0	36.4	-0.030	0.013	10.18	18.18	6,994.36	6,994.14
Storm_19_24in_04 Storm_19_30in_03	30.00 46.90	24.0 30.0	144.7 165.0	-0.030 -0.024	0.013 0.013	13.74 9.55	39.18 64.17	6,997.59 6,993.43	6,994.14 6,991.28
Storm_17_48in_03	46.90	48.0	150.3	-0.024 -0.016	0.013	9.55 15.96	182.25	6,993.43	6,991.28
Storm_17_48in_02	138.70	48.0	102.0	-0.016	0.013	15.79	179.90	6,991.87	6,991.11
Storm_17_48in_01	151.90	48.0	23.0	-0.005	0.013	12.09	99.25	6,990.54	6,990.07
Storm_17_Lat_1_24in_01	17.20	24.0	8.8	-0.006	0.013	5.47	17.03	6,991.16	6,991.11
Storm_17_Lat_1_24in_02 Storm_14_48in_06	7.00 106.60	24.0 48.0	53.4 59.3	-0.007 -0.017	0.013 0.013	2.23 15.42	18.29 187.87	6,991.33 6,990.60	6,991.27 6,988.91
Storm_14_48in_00	250.70	46.0 66.0	354.4	-0.017	0.013	17.68	397.24	6,985.83	6,982.04
Storm_19_36in_02	46.90	36.0	144.5	-0.006	0.013	6.63	51.15	6,990.59	6,989.88
Storm_14_36in_07	34.60	36.0	76.3	-0.020	0.013	12.31	94.31	6,991.91	6,991.40
Storm_23 72in_09	242.40	72.0	402.6	-0.014	0.013	17.57	500.84	6,981.85	6,974.94
Storm_21_48in_01	103.90 103.90	48.0 48.0	57.3 26.8	-0.030 -0.020	0.013 0.013	8.27 8.27	248.76 203.11	6,986.27 6,984.90	6,985.97 6,984.76
Storm_16_48in_05 Storm_21_42in_03	60.60	40.0	101.2	-0.020	0.013	6.30	71.15	6,988.41	6,988.04
Storm_19_36in_01	46.90	36.0	302.2	-0.006	0.013	6.63	51.04	6,989.53	6,988.04
Storm_21_48in_02	105.90	48.0	25.8	-0.030	0.013	8.43	248.66	6,986.94	6,986.80
Storm_21_Lat_1_18in_01	10.60	18.0	19.4	-0.005	0.013	6.00	7.16	6,986.99	6,986.80
Storm_16_Lat_1_18in_01 Storm_16_48in_02	4.50 125.00	18.0 48.0	13.2 348.6	-0.020 -0.024	0.013 0.013	2.55 9.95	15.01 220.31	6,984.79 6,982.33	6,984.76 6,979.69
Storm_16_48in_03	123.00	48.0	50.4	-0.024	0.013	9.93 8.57	203.42	6,983.38	6,983.10
Storm_18_18in_02	12.80	18.0	94.4	-0.048	0.013	7.24	23.01	6,986.73	6,985.32
Storm_14_66in_04	250.70	66.0	512.4	-0.012	0.013	10.55	366.67	6,981.61	6,978.75
Storm_23 72in_08	242.40	72.0	602.8	-0.013	0.013	17.21	487.25	6,973.50	6,964.24
Storm_16_42in_01 Storm 16 48in 04	125.00 107.70	42.0 48.0	158.3 42.5	-0.002 -0.020	0.013 0.013	6.50 8.57	90.47 203.12	6,979.36 6,984.19	6,978.75 6,983.95
Storm_14_72in_03	336.80	72.0	74.5	-0.005	0.013	11.91	306.40	6,977.10	6,976.63
Storm_14_72in_02	336.80	72.0	127.9	-0.005	0.013	11.91	299.58	6,976.08	6,975.27
Storm_15_18in_02-W	14.00	18.0	25.5	-0.049	0.013	7.92	23.36	6,975.72	6,975.27
Storm_14_84in_01 Storm_20_48in_01	424.40 149.20	84.0 48.0	107.3 57.9	-0.005 -0.014	0.013 0.013	11.03 11.87	453.09 167.77	6,974.79 6,953.77	6,974.32 6,953.14
Storm_23_72in_02	245.10	72.0	549.0	-0.014	0.013	8.67	178.92	6,954.95	6,953.14
Storm_23 72in_05	242.40	72.0	120.0	-0.015	0.013	18.04	518.77	6,960.35	6,957.50
Storm_25 30in_01	10.00	30.0	23.6	0.105	0.013	2.04	133.22	6,958.10	6,958.09
Storm_23_72in_03	245.10	72.0	167.7	-0.002	0.013	8.67	176.09	6,955.81	6,955.25
Storm_15_42in_01-E Storm_18_18in_01	85.40 25.30	42.0 18.0		-0.009 -0.021	0.013 0.013	8.88 14.32	96.21 15.27	6,975.69 6,983.73	6,975.27 6,983.10
Storm 17Lat2 36in 01	37.90	36.0	-	-0.021	0.013	16.37	134.76	7,006.00	7,003.91
Storm_19_Lat 2_18in_02	14.70	18.0	-	-0.014	0.013	8.32	12.35	7,008.46	7,007.71
CO-6	74.50	48.0	9.5	-0.021	0.013	15.20	208.41	6,991.39	6,991.40
Storm_28 30in_01	12.20	30.0	-	-0.007	0.013	6.39	34.28	7,044.41	7,044.53
Storm_23 66in_13 Storm 23 66in_14	278.90 270.70	66.0 66.0	261.0 43.2	-0.005 -0.005	0.013 0.013	11.74 11.39	237.00 240.17	7,014.50 7,015.32	7,012.42 7,015.04
Storm 23 three 42in 04	245.10	42.0	258.8	-0.005	0.013	8.49	240.17	6,957.81	6,956.10
Storm_23 72in_06	242.40	72.0	93.0	-0.015	0.013	18.01	517.87	6,961.75	6,961.34
Storm_23_84in_02	315.80	84.0	27.0	-0.003	0.013	10.24	347.91	6,951.12	6,951.00
Storm_23_84in_01	315.80	84.0	200.4	-0.002	0.013	9.15	309.34	6,952.48	6,952.00
STRM_ 29_01 STRM_ 29_02	8.20 3.00	18.0 18.0	56.8 79.6	-0.026 -0.012	0.013 0.013	9.57 5.50	17.07 11.42	7,015.61 7,016.84	7,015.04 7,015.76
	0.00	10.0	10.0	0.012	0.010	0.00		.,	.,

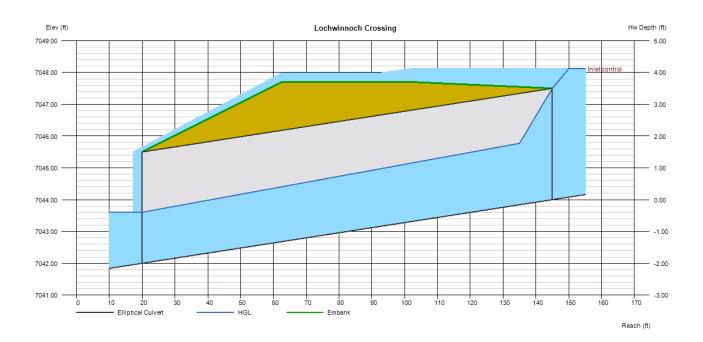
X:\2510000.all\2518801\StormCAD\2518801 StormCAD Model.stsw

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Tuesday, May 12 2020

Lochwinnoch Crossing


Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7042.00 = 125.00 = 1.60	Calculations Qmin (cfs) Qmax (cfs)	= 235.90 = 235.90
Invert Elev Up (ft)	= 7044.00	Tailwater Elev (ft)	= Normal
Rise (in)	= 42.0		
Shape	= Elliptical	Highlighted	
Span (in)	= 66.0	Qtotal (cfs)	= 235.90
No. Barrels	= 1	Qpipe (cfs)	= 105.79
n-Value	= 0.012	Qovertop (cfs)	= 130.11
Culvert Type	 Horizontal Ellipse Concrete 	Veloc Dn (ft/s)	= 14.58
Culvert Entrance	 Groove end projecting (H) 	Veloc Up (ft/s)	= 11.96
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 7043.60
		HGL Up (ft)	= 7045.96
Embankment		Hw Elev (ft)	= 7048.12
Ton Elevation (ft)	= 7047 70	Hw/D (ft)	= 1 18

Top Elevation (ft) Top Width (ft)

Crest Width (ft)

=	7047.70
=	40.00
=	150.00

0 0		
Qtotal (cfs)	=	235.90
Qpipe (cfs)	=	105.79
Qovertop (cfs)	=	130.11
Veloc Dn (ft/s)	=	14.58
Veloc Up (ft/s)	=	11.96
HGL Dn (ft)	=	7043.60
HGL Up (ft)	=	7045.96
Hw Elev (ft)	=	7048.12
Hw/D (ft)	=	1.18
Flow Regime	=	Inlet Control

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jan 27 2021

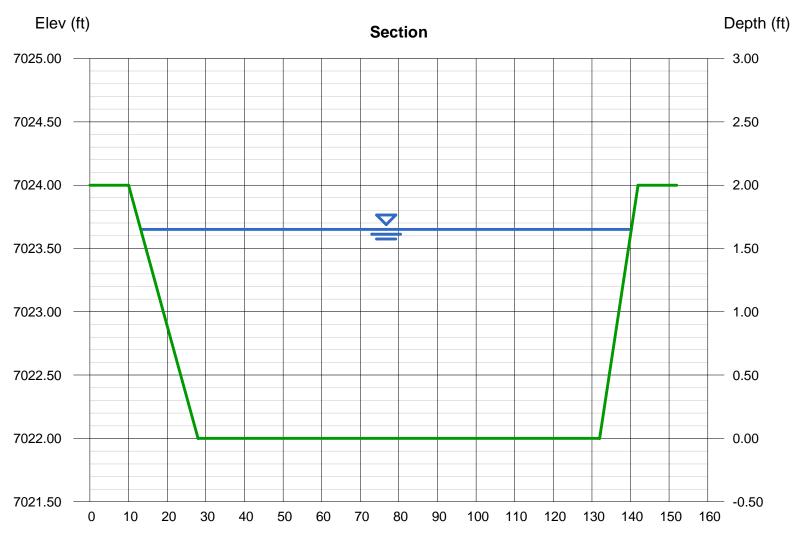
Vollmer Roadside Swale

Trapezoidal Bottom Width (ft)	= 25.00	Highlighted Depth (ft)	= 1.46
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 310.00
Total Depth (ft)	= 5.00	Area (sqft)	= 45.03
Invert Elev (ft)	= 7042.00	Velocity (ft/s)	= 6.88
Slope (%)	= 1.50	Wetted Perim (ft)	= 37.04
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.55
		Top Width (ft)	= 36.68
Calculations		EGL (ft)	= 2.20
Compute by: Known Q (cfs)	Known Q = 310.00	Froude No.	= 1.12

Reach (ft)

MARKSHEFFEL HALF SECTION EMERGENCY OVERFLOW CAPACITY

Worksheet : Half Sect						Cross Section			heffel			
niform Flow Gradually	/aried Flow 🕕 M	essages				Q Print Preview	🔂 Opti	ions				
Solve For: Discharge		~ 0	Friction Method: Ma	nning Formula	~	0.80		1				1
Roughness Coefficient: Channel Slope: Elevation: Elevation Range: Discharge:	0.013 0.020 0.15 -0.8 to 0.6 ft 159.60	ft/ft	Flow Area: Wetted Perimeter: Hydraulic Radius: Top Width: Normal Depth: Critical Depth: Critical Slope: Velocity: Velocity Head: Specific Energy: Froude Number: Flow Type:	19.8 56.5 4.2 56.25 10.9 14.3 0.003 8.05 1.01 1.92 2.389 Supercritical	ft ² ft in ft in ft in ft/ft ft/s ft ft	0.70 0.70 0.60 0.50 0.40 0.30 0.20 0.10 5 0.00 5 0.00 5 0.00 -0.10 -0.30 -0.30 -0.40 -0.30 -0.40 -0.50 -0.60 -0.50 -0.60 -0.50 -0.60 -0.50 -0.60 -0.50 -0.10 -0.30 -0.40 -0.50 -0.10 -0.30 -0.30 -0.40 -0.5	0+00	0+10	0+20	0+30	0+40	0+50
📑 Edit Section	Options								Static	n		
Calculation Successfu	l.											


IF AN EMERGENCY OVERFLOW SITUATION WERE TO OCCUR, UPSTREAM BASIN'S (A6A, A7, A8, A9 A11, A15, A16, AND A21) 100 YEAR RUNOFF WOULD TRAVEL DOWN MARKSHEFFEL ROAD AND SHEET FLOW INTO SAND CREEK. THE TOTAL 100 YEAR RUNOFF OF THESE BASINS IS 126.7 CFS.

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Pond W4 Spillway

Trapezoidal		Highlighted	
Bottom Width (ft)	= 104.00	Depth (ft)	= 1.65
Side Slopes (z:1)	= 9.00, 5.00	Q (cfs)	= 308.10
Total Depth (ft)	= 2.00	Area (sqft)	= 190.66
Invert Elev (ft)	= 7022.00	Velocity (ft/s)	= 1.62
Slope (%)	= 0.01	Wetted Perim (ft)	= 127.35
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.64
		Top Width (ft)	= 127.10
Calculations		EGL (ft)	= 1.69
Compute by:	Known Q		
Known Q (cfs)	= 308.10		

Thursday, Jan 28 2021

Reach (ft)

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

 Subdivision:
 Sterling Ranch Filing No. 2

 Location:
 El Paso County

Sterling Ranch Subdivision
25188.01
AJH
8/31/20

Pond W4 Release - Outfall release to DP 4.6

		STORM DRAIN SYSTEM	N			
	DESIGN POINT	DESIGN POINT	DESIGN POINT	Notes		
Q ₁₀₀ (cfs):	232.5			Flows are the greater of proposed		
Conduit	Pipe			vs. future		
<i>D_c</i> , Pipe Diameter (in):	· · · · · · · · · · · · · · · · · · ·					
	66					
W, Box Width (ft):	N/A					
H, Box Height (ft):	N/A 2.20			If unknown, use Y_t/D_c (or H)=0.4		
Y_t , Tailwater Depth (ft):				In unknown, use T_t/D_c (or T_t)=0.4		
$Y_t/Dc \text{ or } Y_t/H$	0.40					
$Q/D^{2.5}$ or $Q/(WH^{3/2})$	3.28					
Supercritical?	No					
Y _n , Normal Depth (ft) [Supercritical]:	N/A					
D_a , H_a (in) [Supercritical]:	N/A			$D_{a} = (D_{c} + Y_{n})/2$		
Riprap <i>d</i> 50 (in) [Supercritical]:	N/A					
Riprap <i>d</i> 50 (in) [Subcritical]:	14.94					
Required Riprap Size:	н			Fig. 9-38 or Fig. 9-36		
<i>d ₅₀</i> (in):	15					
Expansion Factor, $1/(2 \tan \theta)$:	4.20			Read from Fig. 9-35 or 9-36		
θ:	0.12					
Erosive Soils?	No					
Area of Flow, A_t (ft ²):	33.21			$A_t = Q/V$		
Length of Protection, L_p (ft):	40.3			L=(1/(2 tan θ))(At/Yt - D)		
Min Length (ft)	16.5			Min L=3D or 3H		
Max Length (ft)	55.0			Max L=10D or 10H		
Min Bottom Width,7 (ft):	15.1			$T=2*(L_p*tan\theta)+W$		
Design Length (ft)	41.0					
Design Width (ft)	15.1					
Riprap Depth (in)	30			Depth=2(d ₅₀)		
Type II Bedding Depth (in)*	8			*Not used if Soil Riprap		
Cutoff Wall	No					
Cutoff Wall Depth (ft)				Depth of Riprap and Base		
Cutoff Wall Width (ft)						

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).

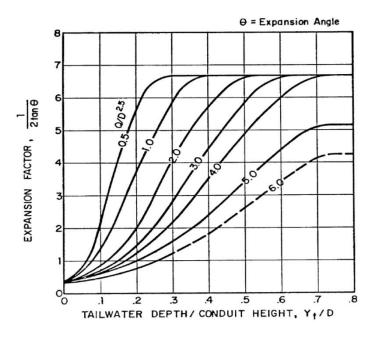


Figure 9-35. Expansion factor for circular conduits

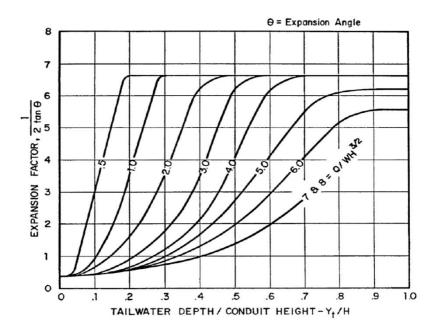


Figure 9-36. Expansion factor for rectangular conduits

Worksheet : Temporan						Cross Sectio	COLORADO AND A COLORADO A VALUES	Contrast of the Contrast of th	Ditch Sectior	nA 🗍	- •
Solve For: Normal Dept			Friction Method: Ma	nning Formula	~			1 1	1 1		1 1
Roughness Coefficient: Channel Slope: Elevation: Elevation Range: Discharge:	0.030 0.017 0.20 0.0 to 5.1 ft 245.10	tt/ft ft cfs	Flow Area: Wetted Perimeter: Hydraulic Radius: Top Width: Normal Depth: Critical Depth: Critical Slope: Velocity: Velocity Head: Specific Energy: Froude Number: Flow Type:	134.3 873.3 1.8 873.33 2.4 2.2 0.026 1.83 0.05 0.25 0.821 Subcritical	ft² ft in ft in ft in ft/ft ft/s ft ft	5.00 4.50 4.00 3.50 3.00 50 2.50 2.00 1.50 1.00 0.50 0.00 0+0	0 5+00	10+00 15+0		25+00 30+0	0° 35+00
🛃 Edit Section 🛛 🙀	Options								Station		
Calculation Successfu	l.						_				

Final Drainage Report Sterling Ranch Filing No. 2

APPENDIX C

WATER QUALITY AND DETENTION CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

ORIFICE ZONE 1 AND 2 ORIFICES PERM Example Zone Configuration (Retention Pond)

Watershed Information

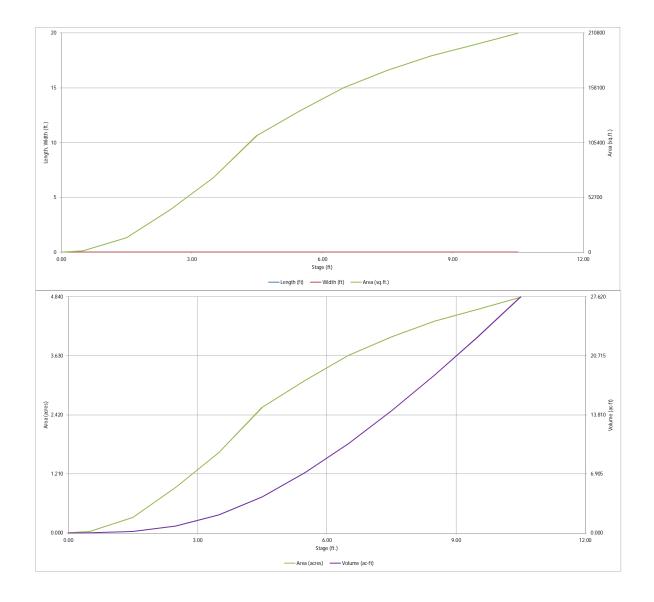
Selected BMP Type =	EDB	
Watershed Area =	173.97	acres
Watershed Length =	3,888	ft
Watershed Length to Centroid =	1,814	ft
Watershed Slope =	0.025	ft/ft
Watershed Imperviousness =	57.10%	percent
Percentage Hydrologic Soil Group A =	85.0%	percent
Percentage Hydrologic Soil Group B =	15.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblerado orban njare	gruphi i loccuu	
Water Quality Capture Volume (WQCV) =	3.288	acre-feet
Excess Urban Runoff Volume (EURV) =	11.714	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	9.031	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	11.873	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	14.194	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	18.106	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	21.364	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	25.580	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	34.562	acre-feet
Approximate 2-yr Detention Volume =	7.768	acre-feet
Approximate 5-yr Detention Volume =	10.244	acre-feet
Approximate 10-yr Detention Volume =	12.566	acre-feet
Approximate 25-yr Detention Volume =	14.965	acre-feet
Approximate 50-yr Detention Volume =	16.434	acre-feet
Approximate 100-yr Detention Volume =	18.217	acre-feet

Define	Zones	and	Basin	Geome	etry
		i	Zone 1	Volume	(W

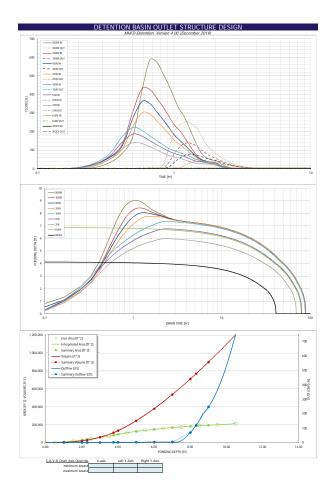
Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	3 288	acre-feet
Zone 2 Volume (EURV - Zone 1) =	8.426	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	6.502	acre-feet
Total Detention Basin Volume =	18.217	acre-feet
Initial Surcharge Volume (ISV) =		ft ³
Initial Surcharge Depth (ISD) =		ft
Total Available Detention Depth (H _{total}) =		ft
Depth of Trickle Channel (Hrr) =	user	ft
Slope of Trickle Channel (STC) =		ft/ft
Slopes of Main Basin Sides (Smain) =		H:V
Basin Length-to-Width Ratio (RIAW) =	user	
		I


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³

Calculated Total Basin Volume (Vtotal) = user acre-feet

			_							
1	Depth Increment =		ft							
			Optional				Optional			
tion Pond)	Stage - Storage	Stage	Override Store (ft)	Length	Width	Area (ft 2)	Override Area (ft ²)	Area	Volume (ft 3)	Volume (ac-ft)
	Description	(ft)	Stage (ft)	(ft)	(ft)	(π -)		(acre)	(π-)	(ac-π)
	Top of Micropool		0.00				20	0.000		
	ELEV:6962		0.50				1,328	0.030	337	0.008
	ELEV:6963		1.50				13,823	0.317	7,912	0.182
	ELEV:6964		2.50				40,724	0.935	35,186	0.808
	ELEV:6965		3.50				71,720	1.646	91,408	2.098
	ELEV:6966		4.50				112,095	2.573	183,315	4.208
	ELEV:6967		5.50				136,106	3.125	307,416	7.057
	ELEV:6968		6.50				158,377	3.636	454,657	10.437
	ELEV:6969		7.50				174,976	4.017	621,334	14.264
	ELEV:6970		8.50				188,903	4.337	803,273	18.441
	ELEV:6971		9.50				199,637	4.583	997,543	22.900
	ELEV:6972		10.50				210,510	4.833	1,202,617	27.608
Optional User Overrides										
acre-feet										
acre-feet										
1.19 inches										
1.75 inches										
2.00 inches										
2.25 inches										
2.52 inches										
inches										
									1	
									1	
									I	
								-		
				-				-		
									1	
									1	
									1	
									1	
				: :						
				: :						

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


MHFD-Detention, Version 4.03 (May 2020)

DETENTION BASIN OUTLET STRUCTURE DESIGN Project: STERLING RANCH FILING NO. 2 Basin ID: POND W5 4E 3 -20NE 2 Estimated Stage (ft) Volume (ac-ft) Outlet Type VOLUME EURY WOCY Zone 1 (WOCV ifice Plate Zone 2 (EURV) 6.88 ZOME 1 AND 2 lectanoular Orifice Zone 3 (100-year) leir&Pine (Restrict Example Zone Conf (Patention Pa User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP) Underdrain Outer Underdrain Outer alculated Parameters for Underdrain N/A Underdrain Orifice Area N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter -N/A rhes Underdrain Orifice Centroid User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WOCV and/or EURV in a sedimentation BMP) lated Paran Invert of Lowest Orifice -(relative to basin bottom at Stage = 0 ft) WO Orifice Area per Row Depth at top of Zone using Orifice Plate ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width Orifice Plate: Orifice Vertical Spacing Elliptical Slot Centroid ct ches Orifice Plate: Orifice Area per Row -Elliptical Slot Area User Input: Stage and Total Area of Each Orifice R Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (Orifice Area (sq. inches Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (coti Row 9 (optional) Row 10 (optional) Row 16 (optional Stage of Orifice Centroid () Orifice Area (sg. inches User Input: Vertical Orifice (Circular or Rectangular Calculated Parameter rs for Vertical O Zone 2 Rectano Zone 2 Rectangula Invert of Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area Depth at top of Zone using Vertical Orifice N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid Vertical Orifice Height Vertical Orifice Width er Input: Overflow Weir (Dropbox with Flat or Sloped Grate and O roidal Weir (and No Outlet Pine) et Pipe OR Rectan sted Param for Overflow W Not Sele Zone 3 W Zone 3 Wei Not Selected Overflow Weir Front Edge Height, Ho t (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H, 7.30 Overflow Weir Front Edge Length Overflow Weir Slope Lepath Overflow Weir Grate Slope H:V Grate Open Area / 100-yr Orifice Area N/A 0.00 6.48 Horiz. Length of Weir Sides Overflow Grate Open Area w/o Debris et Overflow Grate Open Area % %, grate open area/total area Overflow Grate Open Area w/ Debris -Debris Clogging % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor N/A Depth to Invert of Outlet Pipe (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area Outlet Pipe Diameter inches Outlet Orifice Centroid feet Restrictor Plate Height Above Pipe Invert Half-Central Angle of Restrictor Plate on Pipe inches User Input: Emergency Spillway (Rectangular or T for Spilway Spillway Invert Stageft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth-1.74 fect Spillway Crest Length 48.00 Stage at Top of Freeboard ect cl Spillway End Slopes Basin Area at Top of Freeboard Freeboard above Max Water Surface Basin Volume at Top of Freeboard cre.ft Design Storm Return Period One-Hour Rainfall Depth (in) CUHP Runoff Volume (acre-ft) 21.510 34.734 11.843 Inflow Hydrograph Volume (acre-ft) CLIHP Predevelopment Peak () (cfs) N/A N/A N/A OPTIONAL Override Predevelopment Peak Q (cfs) Predevelopment Unit Peak Flow, q (cfs/acre) Peak Inflow Q (cfs) N/A N/A 140.5 186.5 222.1 361.5 586.0 Peak Outflow O (cfs) Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow Max Velocity through Grate 1 (fps) Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours)

Time to Drain 99% of Inflow Volume (hours) Maximum Ponding Depth (ft)

Area at Maximum Ponding Depth (acres) Maximum Volume Stored (acre-ft) 4 13

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

	Inflow Hydrographs									
			lated inflow hydr					n a separate prog	ram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year (cfs)	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	1.37	0.14	4.42
	0:15:00	0.00	0.00	12.01	19.62	24.38	16.41	21.13	20.11	30.88
	0:20:00	0.00	0.00	48.30	65.33	77.56	49.45	58.16	61.60	81.16
	0:25:00	0.00	0.00	105.72	142.54	171.74	104.07	121.39 272.80	131.21 308.13	174.25 422.01
	0:35:00	0.00	0.00	135.46	175.22	206.03	301.61	361.54	431.24	585.96
	0:40:00	0.00	0.00	133.40	150.07	175.68	293.61	350.26	431.24	573.28
	0:45:00	0.00	0.00	100.92	128.44	150.65	256.40	304.92	378.98	510.45
	0:50:00	0.00	0.00	84.87	110.40	128.43	222.14	263.81	332.30	449.36
	0:55:00	0.00	0.00	72.36	94.33	109.32	187.66	222.42	282.99	384.40
	1:00:00	0.00	0.00	64.06	83.13	97.59	154.96	182.98	238.59	325.88
	1:05:00	0.00	0.00	58.14	75.08	88.94	134.19	158.26	211.50	290.49
	1:10:00	0.00	0.00	50.72 42.71	67.68 59.08	80.67 72.45	115.60 97.95	135.72 114.30	179.70	246.12 197.99
	1:20:00	0.00	0.00	42.71	50.04	63.10	97.95	93.20	143.50	153.88
	1:25:00	0.00	0.00	33.76	42.87	53.10	64.63	74.31	85.95	114.90
	1:30:00	0.00	0.00	27.71	39.21	46.68	51.11	58.33	64.24	85.13
	1:35:00	0.00	0.00	26.36	37.32	42.89	42.74	48.57	51.51	67.73
	1:40:00	0.00	0.00	25.60	34.28	40.22	37.77	42.78	44.23	57.57
	1:45:00	0.00	0.00	25.13	31.06	38.26	34.61	39.11	39.26	50.51
	1:50:00	0.00	0.00	24.76	28.74	36.93	32.45	36.59	35.99	45.78
	1:55:00	0.00	0.00	22.48 19.58	27.05 25.23	35.35 32.57	31.03 30.03	34.94 33.77	33.68 32.06	42.43
	2:05:00	0.00	0.00	19.58	25.23	32.57 25.90	24.54	27.57	32.06	40.11 32.36
	2:10:00	0.00	0.00	13.52	14.69	18.66	17.66	19.83	18.68	23.23
	2:15:00	0.00	0.00	8.25	10.65	13.46	12.75	14.30	13.52	16.79
	2:20:00	0.00	0.00	5.94	7.66	9.70	9.23	10.34	9.85	12.22
	2:25:00	0.00	0.00	4.23	5.34	6.86	6.50	7.28	6.96	8.63
	2:30:00	0.00	0.00	2.91	3.63	4.77	4.51	5.04	4.82	5.97
	2:35:00	0.00	0.00	1.96	2.50	3.30	3.19	3.57	3.40	4.20
	2:40:00 2:45:00	0.00	0.00	1.21	1.65	2.12	2.10	2.34	2.23	2.75
	2:45:00	0.00	0.00	0.65	0.97	0.55	0.60	1.38	1.31	1.60
	2:55:00	0.00	0.00	0.28	0.47	0.16	0.19	0.86	0.83	0.76
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00 3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00 4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)

MMPD-Detention, Version 4.02 (May 2020) <u>Summary Stage-Area Volume-Discharge Belationships</u> The user can create a summary 5-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should application groups the humany 5-A-V-D table is the full 5-A-V-D blain in the chart to confirm I captures all key transition paties.

he user should graphically co	mpare the summa	ary S-A-V-D table	e to the full S-A-	V-D table in the	chart to confirm		y transition points.
Stage - Storage Description	Stago	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft2]	[acres]	[ft ²]	[ac-ft]	[cfs]	
	1.00	7,576	0.174	2,563	0.059	0.42	For best results, include th
	2.00	27,274	0.626	18,186	0.418	0.59	For best results, include th stages of all grade slope
WQCV	2.00	35,075	0.805	27,227	0.625	0.79	changes (e.g. ISV and Flor
WUCV	3.00	56,222	1.291	59,422	1.364	1.11	from the S-A-V table on
EURV	3.00	81,410	1.869	109,783	2.520	1.34	Sheet 'Basin'.
EURV	4.00	91,907	2.110	132,314	3.038	1.41	Also include the inverts of
	5.00	124,100	2.849	242,364	5.564	2.48	outlets (e.g. vertical orifice
	6.00	147,241	3.380	378,252	8.683	3.03	overflow grate, and spillwa
	7.00	166,676	3.826	535,920	12.303	3.48	where applicable).
	8.00	181,939	4.177	710,562	16.312	69.54	
100-YR	8.32	186,396	4.279	769,496	17.665	119.49	
	9.00	194,270	4.460	899,066	20.640	246.08	
					-		
					-		
					-		
	1		1	1	1		
					-		
	1		1	1	1		
							1
	+						1
	1						
	1						1
]
							1
	1		1				1

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

ZONE 1 AND 2 ORIFICES

ORIFICE

PERM Example Zone Configuration (Retention Pond) Wate

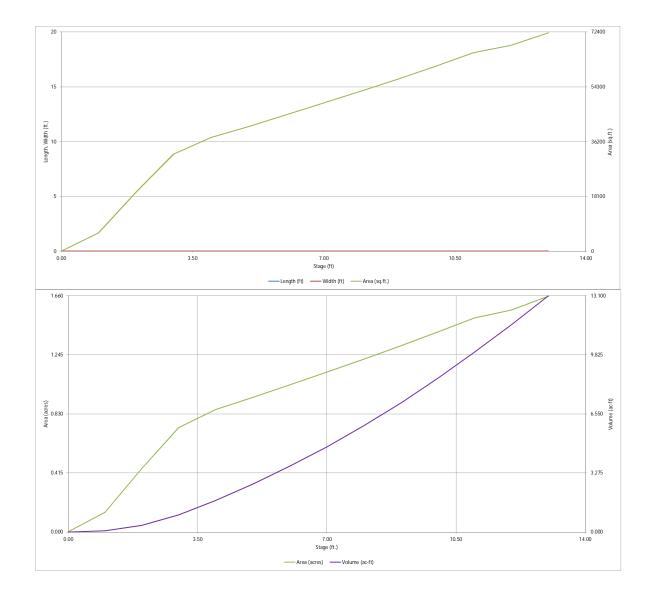
ershed Information		
Selected BMP Type =	EDB	
Watershed Area =	350.74	acres
Watershed Length =	9,241	ft
Watershed Length to Centroid =	4,488	ft
Watershed Slope =	0.060	ft/ft
Watershed Imperviousness =	12.00%	percent
Percentage Hydrologic Soil Group A =	40.0%	percent
Percentage Hydrologic Soil Group B =	60.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblarddo orban nyare	gruphi i loccuu	
Water Quality Capture Volume (WQCV) =	2.281	acre-feet
Excess Urban Runoff Volume (EURV) =	3.710	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	2.802	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	6.573	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	10.859	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	20.281	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	26.707	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	36.815	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	54.041	acre-feet
Approximate 2-yr Detention Volume =	2.353	acre-feet
Approximate 5-yr Detention Volume =	3.495	acre-feet
Approximate 10-yr Detention Volume =	6.059	acre-feet
Approximate 25-yr Detention Volume =	8.184	acre-feet
Approximate 50-yr Detention Volume =	9.066	acre-feet
Approximate 100-yr Detention Volume =	12.211	acre-feet

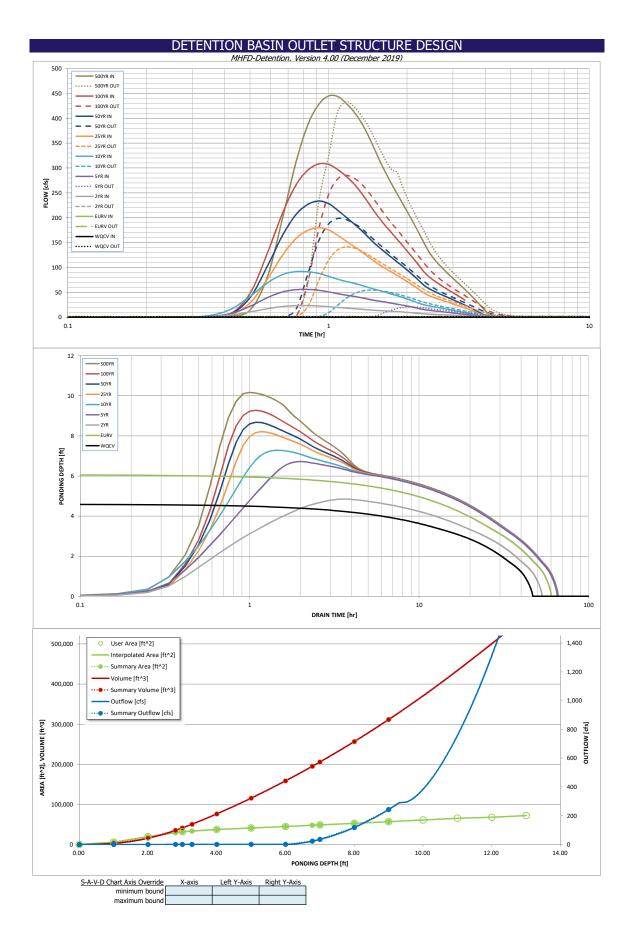
Define	Zones	and	Basin	Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	2.281	acre-feet
Zone 2 Volume (EURV - Zone 1) =	1.429	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	8.500	acre-feet
Total Detention Basin Volume =	12.211	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =		ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =		ft
Area of Main Basin $(A_{MAIN}) =$		ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³

Calculated Total Basin Volume (Vtotal) = user acre-feet

		Depth Increment =		ft							-
tion Pond)		Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
		Top of Micropool		0.00				20	0.000		
		ELEV:7014 ELEV:7015		1.00				5,983	0.137	3,001	0.069
				3.00				19,453 31,989	0.447	15,719	0.361
		ELEV:7016 ELEV:7017		3.00				31,989 37,508	0.734	41,440 76,189	1.749
		ELEV:7018		5.00				41,177	0.945	115,531	2.652
		ELEV:7019		6.00				45,017	1.033	158,628	3.642
		ELEV:7020		7.00				48,960	1.124	205,617	4.720
		ELEV:7021		8.00				52,863	1.214	256,528	5.889
		ELEV:7022		9.00				56,926	1.307	311,423	7.149
		ELEV:7023		10.00				61,139	1.404	370,455	8.504
		ELEV:7024		11.00				65,528	1.504	433,789	9.958
				12.00				67,956	1.560	500,531	11.491
				13.00				72,155	1.656	570,586	13.099
Optional Use	-										
	acre-feet										
1.10	acre-feet										
1.19	inches										
1.50	inches inches										
2.00	inches										
2.00	inches										-
2.52	inches										
	inches										
						~					


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

DETENTION BASIN OUTLET STRUCTURE DESIGN									
Project	STERLING RANCH		IHFD-Detention, V	ersion 4.03 (May J	2020)				
Basin ID:	POND W4 Interim								
ZONE 3 ZONE 2 ZONE 1				Estimated	Estimated				
100-YB	-			Stage (ft)	Volume (ac-ft)	Outlet Type	1		
			Zone 1 (WQCV)		2.281	Orifice Plate			
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)		1.429	Orifice Plate			
PERMANENT ORIFICES	Configuration (Re		Zone 3 (100-year)		8.500	Weir&Pipe (Restrict)			
				Total (all zones)	12.211			· · · · · · · · · · · · · · · · · · ·	
User Input: Orifice at Underdrain Outlet (typically Underdrain Orifice Invert Depth =			<u>1P)</u> the filtration media	surface)	Underd	rain Orifice Area =	Calculated Parame	ters for Underdrain	
Underdrain Orifice Diameter =		inches	the model mean	Surrace		Orifice Centroid =		feet	
								_	
User Input: Orifice Plate with one or more orifice	· · · · · · · · · · · · · · · · · · ·					A second and David	Calculated Parame		
Invert of Lowest Orifice = Depth at top of Zone using Orifice Plate =			bottom at Stage = bottom at Stage =		•	ce Area per Row = ptical Half-Width =	4.722E-02 N/A	ft ² feet	
Orifice Plate: Orifice Vertical Spacing =		inches	Dottom at Stage	010		cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =			tangular openings)			lliptical Slot Area =	N/A	ft ²	
								-	
	5	· · · · · · · · · · · · · · · · · · ·	-						
User Input: Stage and Total Area of Each Orifice	Row (numbered fr Row 1 (required)	om lowest to highe Row 2 (optional)	st) Row 3 (optional)	Row 4 (optional)	Bow E (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)	0.00	1.66	3.33	KOW 4 (Optional)	Row 5 (optional)	KOW 6 (Optional)	KOW / (Optional)	ROW o (Optionar)	
Orifice Area (sq. inches)	6.80	6.80	6.80						
	· · · · · · · · · · · · · · · · · · ·								, ,
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									l
User Input: Vertical Orifice (Circular or Rectangu	ılar <u>)</u>						Calculated Parame	ters for Vertical Ori	fice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A			bottom at Stage =	-	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice = Vertical Orifice Diameter =	N/A N/A		ft (relative to basin inches	h bottom at Stage =	0 ft) vertical	Orifice Centroid =	N/A	N/A	feet
Vertical office Diameter	11/1	in r	Inches						
User Input: Overflow Weir (Dropbox with Flat or	· · · · · · · · · · · · · · · · · · ·		angular/Trapezoida	Weir (and No Out	let Pine)		Calculated Parame	ters for Overflow W	loir
		••••••••••••••••••••••••••••••••••••••	1	· · · · · ·			r		1
Overflow Weir Front Edge Height Ho =	Zone 3 Weir	Not Selected	4 (relative to bacin t	-		llopor Edge H. =	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir 6.07 20.00	N/A	ft (relative to basin b feet	bottom at Stage = 0 f	t) Height of Grate	e Upper Edge, H _t = 'eir Slope Length =	r		feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	6.07	N/A		bottom at Stage = 0 f	t) Height of Grate	eir Slope Length =	Zone 3 Weir 8.57	Not Selected N/A	feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	6.07 20.00 4.00 10.00	N/A N/A N/A N/A	feet H:V feet	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 8.57 10.31 6.46 144.31	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	6.07 20.00 4.00 10.00 70%	N/A N/A N/A N/A N/A	feet H:V feet %, grate open area	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W rate Open Area / 10	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 8.57 10.31 6.46	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	6.07 20.00 4.00 10.00	N/A N/A N/A N/A	feet H:V feet	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 8.57 10.31 6.46 144.31	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	6.07 20.00 4.00 10.00 70% 50%	N/A N/A N/A N/A N/A N/A	feet H:V feet %, grate open area %	bottom at Stage = 0 f Gr Ov	t) Height of Grati Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	6.07 20.00 4.00 10.00 70% 50%	N/A N/A N/A N/A N/A N/A	feet H:V feet %, grate open area %	bottom at Stage = 0 f Gr Ov	t) Height of Grati Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15	Not Selected N/A N/A N/A N/A N/A Selected N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected	feet H:V feet %, grate open area % ectangular Orifice)	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W vate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Selected N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00	N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage	t) Height of Grat. Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ot Outlet	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>alculated Parameter</u> utlet Orifice Area = 0 Orifice Centroid =	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60	Not Selected N/A N/A N/A N/A N/A / Flow Restriction Pl Not Selected N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	6.07 20.00 4.00 70% 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor 0.58	N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage	t) Height of Grat Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ou	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>alculated Parameter</u> utlet Orifice Area = 0 Orifice Centroid =	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35	Not Selected N/A N/A N/A N/A Flow Restriction Pi Not Selected N/A	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	6.07 20.00 4.00 10.00 70% 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor 0.58 66.00 58.80	N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage	t) Height of Grat. Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ot Outlet	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>alculated Parameter</u> utlet Orifice Area = 0 Orifice Centroid =	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47	Not Selected N/A N/A N/A N/A N/A N/A / Flow Restriction Pl Not Selected N/A N/A N/A N/A	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal)	N/A N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches	bottom at Stage = 0 f Gr O\ a/total area C asin bottom at Stage Half-Cent	t) Height of Grate Overflow W verate Open Area / 10 verflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) Or Outlet tral Angle of Restric	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>alculated Parameter</u> utlet Orifice Area = 0 Orifice Centroid =	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60	Not Selected N/A N/A N/A N/A N/A N/A / Flow Restriction Pl Not Selected N/A N/A N/A N/A	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00	N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin feet	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr O\ a/total area C asin bottom at Stage Half-Cent	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) Or Outlet tral Angle of Restric Spillway D Stage at 1	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = elculated Parameter utlet Orifice Area = 0 Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard =	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame	Not Selected N/A N/A N/A N/A N/A N/A 'Flow Restriction Pl Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00	N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A ft (relative to basin feet H:V	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr O\ a/total area C asin bottom at Stage Half-Cent	t) Height of Grate Overflow W verdeo Poen Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) Or Outlet tral Angle of Restric Spillway D Stage at T Basin Area at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameter utlet Orifice Area = 0 Orifice Centroid = tor Plate on Pipe = esign Flow Depth = Top of Freeboard = Top of Freeboard =	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 5 for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.20 1.58	Not Selected N/A N/A N/A N/A N/A N/A V/A V/A V/A V/A V/A N/A N/A ters for Spillway feet feet acres	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00	N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin feet	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr O\ a/total area C asin bottom at Stage Half-Cent	t) Height of Grate Overflow W verdeo Poen Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) Or Outlet tral Angle of Restric Spillway D Stage at T Basin Area at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = elculated Parameter utlet Orifice Area = 0 Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard =	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 <u>Calculated Parame</u> 1.20 12.20	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A CFlow Restriction Pl Not Selected N/A N/A N/A N/A Cters for Spillway feet feet	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50	N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 f Gr Ox a/total area C asin bottom at Stage Half-Cent	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) Or Outlet tral Angle of Restric Spillway D Stage at T Basin Volume at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameter utlet Orifice Area = 0 Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 <u>Calculated Parame</u> 1.20 1.28 11.80	Not Selected N/A N/A N/A N/A N/A N/A N/A VFlow Restriction Pi Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can over	N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches bottom at Stage =	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent 0 ft)	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) Or Outlet tral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/o Debris = ilculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= : Top of Freeboard = : Top of Fre	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.58 11.80	Not Selected N/A N/A N/A N/A N/A N/A VFlow Restriction Pi Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft lumns W through A	feet feet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 1.50 The user can overr WQCV	N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A fet feet H:V feet H:V feet EURV	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches bottom at Stage = 1P hydrographs and 2 Year	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent 0 ft) <u>1 runoff volumes by</u> 5 Year	t) Height of Grat Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Ca ca = 0 ft) Or Outlet tral Angle of Restric Spillway D Stage at T Basin Volume at T Basin Volume at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = ilculated Parameter: utlet Orifice Area = 0 Orifice Centroid = tor Plate on Pipe = esign Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = top of Freeboard = sin the Inflow Hytop 25 Year	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.58 1.58 1.58 1.58 1.58 1.58	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A N/A N/A Vers for Spillway feet feet feet acres acre-ft fumns W through A 100 Year	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acreft) =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can overri WOCV N/A 2.281	N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 3.710	feet H:V feet 9%, grate open area 9% ectangular Orifice) ft (distance below be inches inches bottom at Stage = 4/P hydrographs and 2 Year 1.19 2.802	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent 0 ft) 5 Year 1.50 6.573	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) Or United tral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T entering new value 10 Year 1.75 10.859	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/o Debris = ilculated Parameter utlet Orifice Area = 0 Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 10 of Freeboar	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 5 for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.20 1.58 11.80 Frographs table (Con 50 Year 2.25 2.6.707	Not Selected N/A N/A N/A N/A N/A N/A N/A NA NA NA NA NA NA N/A Ideation Ideation Ideation Ideatreet </td <td>feet feet ft² ft² ft² feet radians</td>	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CuHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can overr WQCV N/A 2.281 N/A	N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 3.710 N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> <u>1.19</u> <u>2.802</u> 2.802	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent 1 runoff volumes by 5 Year 1.50 6.573 6.573	t) Height of Grat Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Ca ca e 0 ft) On Outlet Tral Angle of Restric Spillway D Stage at T Basin Volume at T Basin Volume at T entering new value 10 Year 1.75 10.859	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = ilculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = : Orifice Centroid = tor Plate on Pipe = : Op of Freeboard = : Op o	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.58 1.58 1.80 trographs table (Co. 50 Year 2.25 2.6.707 2.6.707	Not Selected N/A N/A N/A N/A N/A N/A Plow Restriction Pl Not Selected N/A N/A N/A N/A Vers for Spillway feet feet feet acres acre-ft umns W through A 100 Year 2.52 36.815 36.815	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Source = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Peak Q (cfs) =	6.07 20.00 4.00 10.00 70% 50% (Gircular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can overn WOCV N/A 2.281 N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A t (relative to basin feet H:V feet H:V feet H:V feet N/A N/A N/A N/A N/A	feet H:V feet 9%, grate open area 9% ectangular Orifice) ft (distance below be inches inches bottom at Stage = 4/P hydrographs and 2 Year 1.19 2.802	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent 0 ft) 5 Year 1.50 6.573	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) Or United tral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T entering new value 10 Year 1.75 10.859	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/o Debris = ilculated Parameter utlet Orifice Area = 0 Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 10 of Freeboar	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 5 for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.20 1.58 11.80 Frographs table (Con 50 Year 2.25 2.6.707	Not Selected N/A N/A N/A N/A N/A N/A N/A NA NA NA NA NA NA N/A Ideation Ideation Ideation Ideatreet </td <td>feet feet ft² ft² ft² feet radians</td>	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OPTIONAL Override Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Veak Q (cfs) =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can overr WQCV N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 3.710 N/A N/A N/A N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches the bottom at Stage = 1/P hydrographs and 2 Year 1.19 2.802 2.802 3.7 0.01	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent 1.50 6.573 6.573 30.4 0.09	t) Height of Grat Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Ca = 0 ft) Or Stage at 1 Basin Area at 1 Basin Volume at 1 entering new value 10 Year 1.75 10.859 64.6 0.18	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = : Orifice Centroid = tor pof Freeboard = : Op of	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.58 1.80 1.80 1.80 S0 Year 2.25 2.6.707 2.6.707 2.6.707 2.0.35 0.58	Not Selected N/A N/A N/A N/A N/A N/A N/A Plow Restriction Pl Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft feet acres 36.815 36.815 280.5 0.80	feet feet ft ² ft ² feet radians 500 Year 3.14 54.041 54.041 416.0 1.19
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reouted Hydrograph Nesults Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (are: ft) = Inflow Hydrograph Noume (are: ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) =	6.07 20.00 4.00 10.00 70% 50% (Gircular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can overn WQCV N/A 2.281 N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = <u>HP hydrographs and</u> 2.802 2.802 3.7 - - - - - - - - - - - - - - - - - - -	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 6.573 6.573 3.0.4 0.09 55.7	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Deverflow Grate Open Car = 0 ft) Or Outlet tral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 entering new value 10 Year 1.75 10.859 64.6 0.18 91.6	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = 0 orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 20.281 20.281 20.281 150.7 - 0.43 179.7	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.58 11.80 frographs table (Co. 50 Year 2.25 26.707 26.707 20.35 0.58 233.5	Not Selected N/A	feet feet ft ² ft ² feet radians 500 Year 3.14 54.041 416.0 1.19 444.7
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OPTIONAL Override Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Veak Q (cfs) =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can overr WQCV N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 3.710 N/A N/A N/A N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches the bottom at Stage = 1/P hydrographs and 2 Year 1.19 2.802 2.802 3.7 0.01	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent 1.50 6.573 6.573 30.4 0.09	t) Height of Grat Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Ca = 0 ft) Or Stage at 1 Basin Area at 1 Basin Volume at 1 entering new value 10 Year 1.75 10.859 64.6 0.18	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = : Orifice Centroid = tor pof Freeboard = : Op of	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.58 1.80 1.80 1.80 S0 Year 2.25 2.6.707 2.6.707 2.6.707 2.0.35 0.58	Not Selected N/A N/A N/A N/A N/A N/A N/A Plow Restriction Pl Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft feet acres 36.815 36.815 280.5 0.80	feet feet ft ² ft ² feet radians 500 Year 3.14 54.041 54.041 416.0 1.19
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (are: h) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) = Peak Inflow (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Ratio Peak Outflow to Predevelopment Q = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	6.07 20.00 4.00 10.00 70% 50% (Gircular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can overn WQCV N/A 2.281 N/A N/A N/A N/A N/A N/A N/A Plate	N/A N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = <u>HP hydrographs and</u> 2.802 2.802 2.802 3.7 0.01 23.4 1.2 N/A Plate	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent 0 ft) 5 Year 1.50 6.573 6.573 3.0.4 0.09 55.7 0.7 0.7 Overflow Weir 1	t) Height of Grat Overflow Wi ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Car Car Car Car Car Car Car Car Car Car	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/o Debris = ilculated Parameter: utlet Orifice Area = corifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = rop of Freeboard = rop of Freeboard = is in the Inflow Hydo 20.281 20.281 150.7 0.43 179.7 141.3 0.9 Overflow Weir 1	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.58 11.80 fographs table (Co. 50 Year 2.25 2.6.707 2.6.707 2.6.707 2.0.58 2.3.5 198.4 1.0 Overflow Weir 1	Not Selected N/A	feet feet feet ft ² ft ² feet radians 500 Year 3.14 54.041 416.0 1.19 444.7 433.1 1.0 Spillway
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (arce-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arce) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can over WQCV N/A 2.281 N/A N/A N/A N/A 1.1 N/A Plate N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A	feet H:V feet 9%, grate open area 9% ectangular Orifice) ft (distance below be inches inches bottom at Stage = 4P hydrographs and 2 Year 1.19 2.802 2.802 3.7 0.01 23.4 1.2 N/A Plate N/A	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent 0 ft) 1.50 6.573 6.573 6.573 30.4 0.09 55.7 20.7 0.7 0.r 0.1	t) Height of Grate Overflow Wate Open Area / 10 verflow Grate Open overflow Grate Open overflow Grate Open overflow Grate Open overflow Grate Open overflow Grate Open Outlet tral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T Basin Volume at T Basin Volume at T 0 Year 1.75 10.859 10.859 10.859 10.859 64.6 0.18 91.6 54.4 0.8 Overflow Weir 1 0.4	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/o Debris = ilculated Parameter utlet Orifice Area = 0-rifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 10-00 freeboard = 10-00 freeboard = 10-00 freeboard = 10-00 freeboard = 10-00 freeboard = 0-00 freeboard = 10-00 freeboard = 0-00 freeboard = 0-00 freeboard = 0-00 freeboard = 10-00 freeboard = 0-00 freeb	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 <u>Calculated Parame</u> 1.20 12.20 1.58 11.80 trographs table (Con 50 Year 2.25 2.6.707 2.75 1.98.4 1.0 Overflow Weir 1 1.4	Not Selected N/A	feet feet ft ² ft ² feet radians 500 Year 3.14 54.041 54.041 54.041 54.041 9.10 1.19 444.7 416.0 1.0 Spillway 2.1
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Predevelopment Peak Q (cfs) = Predevelopment Unit Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Peat Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	6.07 20.00 4.00 10.00 70% 50% (Gircular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can overn WOCV N/A 2.281 N/A N/A N/A N/A N/A N/A N/A N/A	N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = h bottom at Stage = 2.802 2.802 2.802 3.7 0.01 23.4 1.2 N/A Plate N/A N/A 48	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent = 0 ft) = 0 ft) = 1.50 6.573 3.0.4 = 0.09 55.7 2.0.7 0.7 Overfilow Weir 1 0.1 N/A 55	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Area of D Basin Area at 1 Basin Volume at 1 Basin Volume at 1 Centering new value 10 Year 1.75 10.859 64.6 0.18 91.6 54.4 0.8 Overflow Weir 1 0.4 N/A 51	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = 0 orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 20.281 20.281 20.281 150.7 - 0.43 179.7 141.3 0.9 Overflow Weir 1 1.0 N/A 44	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.58 11.80 fographs table (Co. 50 Year 2.25 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 20.3.5 198.4 1.0 Overflow Weir 1 1.4 N/A 40	Not Selected N/A	feet feet feet ft ² ft ² feet radians 500 Year 3.14 54.041 416.0 1.19 444.7 433.1 1.0 Spillway 2.1 N/A 27
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Punoff Volume (acre-ft) = CUHP Punoff Volume (acre-ft) = CUHP Punoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs)acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) =	6.07 20.00 4.00 10.00 70% 50% (Circular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can overr WQCV N/A 2.281 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 3.710 N/A 3.710 N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below be inches inches bottom at Stage = HP hydrographs and 2 Year 2.802 2.802 2.802 2.802 2.802 2.802 3.7 0.01 23.4 1.2 N/A Plate N/A N/A 48 51	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent talf-Cent talf-Cent 0 ft) 1.50 6.573 6.573 30.4 0.09 55.7 20.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	t) Height of Grat. Overflow Wate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Doutlet tral Angle of Restrice Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T entering new value 10 Year 10.859 10.859 10.859 10.859 10.859 10.859 10.859 10.859 10.859 10.859 10.859 10.859 10.859 10.859 10.859 10.859 10.6 54.4 0.8 Overflow Weir 1 0.4 N/A 51 59	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/o Debris = h Area w/ Debris = liculated Parameter utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2 Year 2 Outlet 100 2 0.281 150.7 0.43 179.7 141.3 0.9 Overflow Weir 1 1.0 N/A 44 55	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w// Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 12.20 1.58 11.80 frographs table (Co. 50 Year 2.25 26.707 27.5 27	Not Selected N/A	feet feet feet ft ² ft ² feet radians 54.041 54.041 54.041 54.041 416.0
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Predevelopment Peak Q (cfs) = Predevelopment Unit Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Peat Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	6.07 20.00 4.00 10.00 70% 50% (Gircular Orifice, Re Zone 3 Restrictor 0.58 66.00 58.80 Trapezoidal) 9.50 74.00 4.00 1.50 The user can overn WOCV N/A 2.281 N/A N/A N/A N/A N/A N/A N/A N/A	N/A	feet H:V feet %, grate open area % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = h bottom at Stage = 2.802 2.802 2.802 3.7 0.01 23.4 1.2 N/A Plate N/A N/A 48	bottom at Stage = 0 f Gr Ov a/total area C asin bottom at Stage Half-Cent = 0 ft) = 0 ft) = 1.50 6.573 3.0.4 = 0.09 55.7 2.0.7 0.7 Overfilow Weir 1 0.1 N/A 55	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Area of D Basin Area at 1 Basin Volume at 1 Basin Volume at 1 Centering new value 10 Year 1.75 10.859 64.6 0.18 91.6 54.4 0.8 Overflow Weir 1 0.4 N/A 51	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = 0 orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 20.281 20.281 20.281 150.7 - 0.43 179.7 141.3 0.9 Overflow Weir 1 1.0 N/A 44	Zone 3 Weir 8.57 10.31 6.46 144.31 72.15 s for Outlet Pipe w/ Zone 3 Restrictor 22.35 2.60 2.47 Calculated Parame 1.20 1.58 11.80 fographs table (Co. 50 Year 2.25 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 26.707 20.3.5 198.4 1.0 Overflow Weir 1 1.4 N/A 40	Not Selected N/A	feet feet feet ft ² ft ² feet radians 500 Year <u>3.14</u> 54.041 416.0 <u>1.19</u> 444.7 433.1 1.0 Spillway 2.1 N/A 27

Area at Maximum Ponding Depth (acres) = Maximum Volume Stored (acre-ft) =

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user an ------rride the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

Time Interval 5.00 min	SOURCE TIME 0:00:00 0:05:00 0:10:00 0:25:00 0:25:00 0:35:00 0:40:00 0:45:00 0:50:00 0:55:00 1:00:00 1:15:00 1:25:00 1:35:00 1:40:00 1:45:00 1:55:00	CUHP WQCV [cfs] 0.00	CUHP EURV [cfs] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	CUHP 2 Year [cfs] 0.00 0.00 0.01 0.03 0.70 4.05 10.59 17.09 21.42 23.26 23.43 22.60 21.09 19.58 18.33 17.16 16.00 14.87	CUHP 5 Year [cfs] 0.00 0.00 0.22 1.03 6.62 21.88 39.51 50.84 55.39 55.73 54.20 50.99 47.22 44.40 41.96 39.30 36.45	0.00 0.00 0.27 1.91 14.64 41.83 69.21 85.74 91.58 91.37 87.99 82.12 76.30 71.93 68.16	CUHP 25 Year [cfs] 0.00 0.00 0.19 0.80 3.93 28.88 76.76 124.91 158.09 174.59 179.69 175.52 164.74 153.13 142.50	CUHP 50 Year [cfs] 0.00 0.02 0.26 0.98 5.22 39.54 103.22 164.83 206.35 226.89 233.50 228.49 233.50 228.49 215.25 201.32 188.13	CUHP 100 Year [cfs] 0.00 0.00 0.23 0.99 5.86 48.08 129.56 209.85 265.79 295.75 308.15 307.36 296.89 283.81 268.44	CUHP 500 Year [cfs] 0.00 0.05 0.41 1.99 14.30 81.91 199.96 311.38 387.19 427.74 444.73 443.68 430.21 413.28 331.95
	0:00:00 0:05:00 0:10:00 0:15:00 0:25:00 0:30:00 0:35:00 0:40:00 0:55:00 1:00:00 1:05:00 1:105:00 1:25:00 1:30:00 1:35:00 1:40:00 1:45:00	0.00 0.00	0.00 0.00	0.00 0.00 0.13 0.70 4.05 10.59 17.09 21.42 23.26 23.43 22.60 21.09 19.58 18.33 17.16 16.00 14.87	0.00 0.00 0.22 1.03 6.62 21.88 39.51 50.84 55.39 55.73 54.20 50.99 47.22 44.40 41.96 39.30	0.00 0.00 0.27 1.91 14.64 41.83 69.21 85.74 91.58 91.37 87.99 82.12 76.30 71.93 68.16	0.00 0.00 0.19 0.80 3.93 28.88 76.76 124.91 158.09 174.59 179.69 175.52 164.74 153.13	0.00 0.02 0.26 0.98 5.22 39.54 103.22 164.83 206.35 226.89 233.50 238.49 215.25 201.32	0.00 0.00 0.23 0.99 5.86 48.08 129.56 209.85 265.79 295.75 308.15 307.36 296.89 283.81 268.44	0.00 0.05 0.41 1.99 14.30 81.91 199.96 311.38 387.19 427.74 444.73 443.68 430.21 413.28
5.00 min	0:05:00 0:10:00 0:15:00 0:20:00 0:35:00 0:35:00 0:40:00 0:45:00 0:55:00 1:00:00 1:10:00 1:25:00 1:25:00 1:30:00 1:45:00 1:45:00	0.00 0.00	0.00 0.00	0.00 0.00 0.13 0.70 4.05 10.59 17.09 21.42 23.26 23.43 22.60 21.09 19.58 18.33 17.16 16.00 14.87	0.00 0.02 1.03 6.62 21.88 39.51 50.84 55.39 55.73 54.20 50.99 47.22 44.40 41.96 39.30	0.00 0.027 1.91 14.64 41.83 69.21 85.74 91.58 91.37 87.99 82.12 76.30 71.93 68.16	0.00 0.09 0.19 0.80 3.93 28.88 76.76 124.91 158.09 174.59 179.69 175.52 164.74 153.13	0.00 0.02 0.26 0.98 5.22 39.54 103.22 164.83 206.35 226.89 233.50 228.49 215.25 201.32	0.00 0.23 0.99 5.86 48.08 129.56 209.85 265.79 295.75 308.15 307.36 296.89 283.81 268.44	0.00 0.05 0.41 1.99 14.30 81.91 199.96 311.38 387.19 427.74 444.73 443.68 430.21 413.28
	0:10:00 0:15:00 0:20:00 0:35:00 0:35:00 0:40:00 0:45:00 0:55:00 1:00:00 1:10:00 1:15:00 1:25:00 1:35:00 1:40:00 1:45:00	0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.13 0.70 4.05 10.59 17.09 21.42 23.26 23.43 22.60 21.09 19.58 18.33 17.16 16.00 14.87	0.00 0.22 1.03 6.62 21.88 39.51 50.84 55.39 55.73 54.20 50.99 47.22 44.40 41.96 39.30	0.00 0.27 1.91 14.64 41.83 69.21 85.74 91.58 91.37 87.99 82.12 76.30 71.93 68.16	0.00 0.19 0.80 3.93 28.88 76.76 124.91 158.09 174.59 179.69 175.52 164.74 153.13	0.02 0.26 0.98 5.22 39.54 103.22 164.83 206.35 226.89 233.50 228.49 215.25 201.32	0.00 0.23 0.99 5.86 48.08 129.56 209.85 265.79 295.75 308.15 307.36 296.89 283.81 268.44	0.05 0.41 1.99 14.30 81.91 199.96 311.38 387.19 427.74 444.73 443.68 430.21 413.28
	0:15:00 0:20:00 0:25:00 0:35:00 0:45:00 0:55:00 1:00:00 1:05:00 1:10:00 1:15:00 1:20:00 1:35:00 1:40:00 1:45:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.13 0.70 4.05 10.59 17.09 21.42 23.26 23.43 22.60 21.09 19.58 18.33 17.16 16.00 14.87	0.22 1.03 6.62 21.88 39.51 50.84 55.39 55.73 54.20 50.99 47.22 44.40 41.96 39.30	0.27 1.91 14.64 41.83 69.21 85.74 91.58 91.37 87.99 82.12 76.30 71.93 68.16	0.19 0.80 3.93 28.88 76.76 124.91 158.09 174.59 179.69 175.52 164.74 153.13	0.26 0.98 5.22 39.54 103.22 164.83 206.35 226.89 233.50 233.50 228.49 215.25 201.32	0.23 0.99 5.86 48.08 129.56 209.85 265.79 295.75 308.15 307.36 296.89 283.81 268.44	0.41 1.99 14.30 81.91 199.96 311.38 387.19 427.74 447.73 443.68 430.21 413.28
	0:20:00 0:25:00 0:30:00 0:40:00 0:55:00 1:00:00 1:00:00 1:15:00 1:25:00 1:25:00 1:35:00 1:40:00 1:45:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.70 4.05 10.59 21.42 23.26 23.43 22.60 21.09 19.58 18.33 17.16 16.00 14.87	1.03 6.62 21.88 39.51 50.84 55.39 55.73 54.20 50.99 47.22 44.40 41.96 39.30	1.91 14.64 41.83 69.21 85.74 91.58 91.37 87.99 82.12 76.30 71.93 68.16	0.80 3.93 28.88 76.76 124.91 158.09 174.59 179.69 175.52 164.74 153.13	0.98 5.22 39.54 103.22 164.83 206.35 226.89 233.50 228.49 215.25 201.32	0.99 5.86 48.08 129.56 209.85 265.79 295.75 308.15 307.36 296.89 283.81 268.44	1.99 14.30 81.91 199.96 311.38 387.19 427.74 444.73 443.68 430.21 413.28
- - - - - - - - - - - - - - - - - - -	0:25:00 0:30:00 0:35:00 0:40:00 0:55:00 1:00:00 1:00:00 1:10:00 1:15:00 1:25:00 1:35:00 1:40:00 1:45:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.05 10.59 17.09 21.42 23.26 23.43 22.60 21.09 19.58 18.33 17.16 16.00 14.87	6.62 21.88 39.51 50.84 55.39 55.73 54.20 50.99 47.22 44.40 41.96 39.30	14.64 41.83 69.21 85.74 91.58 91.37 87.99 82.12 76.30 71.93 68.16	3.93 28.88 76.76 124.91 158.09 174.59 179.69 175.52 164.74 153.13	5.22 39.54 103.22 164.83 206.35 226.89 233.50 228.49 215.25 201.32	5.86 48.08 129.56 209.85 265.79 295.75 308.15 307.36 296.89 283.81 268.44	14.30 81.91 199.96 311.38 387.19 427.74 444.73 443.68 430.21 413.28
	0:30:00 0:35:00 0:45:00 0:55:00 1:00:00 1:10:00 1:10:00 1:15:00 1:25:00 1:30:00 1:35:00 1:40:00 1:45:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	10.59 17.09 21.42 23.26 23.43 22.60 21.09 19.58 18.33 17.16 16.00 14.87	21.88 39.51 50.84 55.39 55.73 54.20 50.99 47.22 44.40 41.96 39.30	41.83 69.21 85.74 91.58 91.37 87.99 82.12 76.30 71.93 68.16	28.88 76.76 124.91 158.09 174.59 179.69 175.52 164.74 153.13	39.54 103.22 164.83 206.35 226.89 233.50 228.49 215.25 201.32	48.08 129.56 209.85 265.79 295.75 308.15 307.36 296.89 283.81 268.44	81.91 199.96 311.38 387.19 427.74 444.73 443.68 430.21 413.28
	0:35:00 0:40:00 0:55:00 0:55:00 1:00:00 1:05:00 1:10:00 1:15:00 1:25:00 1:30:00 1:35:00 1:40:00 1:45:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	17.09 21.42 23.26 23.43 22.60 21.09 19.58 18.33 17.16 16.00 14.87	39.51 50.84 55.39 55.73 54.20 50.99 47.22 44.40 41.96 39.30	69.21 85.74 91.58 91.37 87.99 82.12 76.30 71.93 68.16	76.76 124.91 158.09 174.59 179.69 175.52 164.74 153.13	103.22 164.83 206.35 226.89 233.50 228.49 215.25 201.32	129.56 209.85 265.79 295.75 308.15 307.36 296.89 283.81 268.44	199.96 311.38 387.19 427.74 444.73 443.68 430.21 413.28
	0:40:00 0:45:00 0:55:00 1:00:00 1:10:00 1:15:00 1:20:00 1:25:00 1:35:00 1:40:00 1:45:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	21.42 23.26 23.43 22.60 21.09 19.58 18.33 17.16 16.00 14.87	50.84 55.39 55.73 54.20 50.99 47.22 44.40 41.96 39.30	85.74 91.58 91.37 87.99 82.12 76.30 71.93 68.16	124.91 158.09 174.59 179.69 175.52 164.74 153.13	164.83 206.35 226.89 233.50 228.49 215.25 201.32	209.85 265.79 295.75 308.15 307.36 296.89 283.81 268.44	311.38 387.19 427.74 444.73 443.68 430.21 413.28
	0:50:00 0:55:00 1:00:00 1:10:00 1:15:00 1:25:00 1:30:00 1:35:00 1:40:00 1:45:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	23.26 23.43 22.60 21.09 19.58 18.33 17.16 16.00 14.87	55.39 55.73 54.20 50.99 47.22 44.40 41.96 39.30	91.58 91.37 87.99 82.12 76.30 71.93 68.16	158.09 174.59 179.69 175.52 164.74 153.13	206.35 226.89 233.50 228.49 215.25 201.32	265.79 295.75 308.15 307.36 296.89 283.81 268.44	387.19 427.74 444.73 443.68 430.21 413.28
	0:55:00 1:00:00 1:05:00 1:10:00 1:15:00 1:25:00 1:30:00 1:35:00 1:40:00 1:45:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	22.60 21.09 19.58 18.33 17.16 16.00 14.87	54.20 50.99 47.22 44.40 41.96 39.30	87.99 82.12 76.30 71.93 68.16	179.69 175.52 164.74 153.13	233.50 228.49 215.25 201.32	308.15 307.36 296.89 283.81 268.44	444.73 443.68 430.21 413.28
	1:00:00 1:05:00 1:10:00 1:15:00 1:20:00 1:25:00 1:30:00 1:35:00 1:40:00 1:50:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	21.09 19.58 18.33 17.16 16.00 14.87	50.99 47.22 44.40 41.96 39.30	82.12 76.30 71.93 68.16	175.52 164.74 153.13	228.49 215.25 201.32	307.36 296.89 283.81 268.44	443.68 430.21 413.28
- - - - - - - - - - - - - - - - - - -	1:05:00 1:10:00 1:15:00 1:20:00 1:25:00 1:30:00 1:35:00 1:40:00 1:50:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00	19.58 18.33 17.16 16.00 14.87	47.22 44.40 41.96 39.30	76.30 71.93 68.16	164.74 153.13	215.25 201.32	296.89 283.81 268.44	430.21 413.28
- - - - - - - - - - - - - - - - - - -	1:10:00 1:15:00 1:20:00 1:25:00 1:35:00 1:35:00 1:40:00 1:45:00 1:50:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	18.33 17.16 16.00 14.87	44.40 41.96 39.30	71.93 68.16	153.13	201.32	283.81 268.44	413.28
	1:15:00 1:20:00 1:25:00 1:30:00 1:35:00 1:40:00 1:45:00 1:50:00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	17.16 16.00 14.87	41.96 39.30	68.16			268.44	
	1:20:00 1:25:00 1:30:00 1:35:00 1:40:00 1:45:00 1:50:00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00	16.00 14.87	39.30		142.50	188 13		391.95
	1:25:00 1:30:00 1:35:00 1:40:00 1:45:00 1:50:00	0.00 0.00 0.00 0.00	0.00	14.87						
	1:30:00 1:35:00 1:40:00 1:45:00 1:50:00	0.00 0.00 0.00	0.00		36.45	64.26	132.29	174.98	250.51	366.18
-	1:35:00 1:40:00 1:45:00 1:50:00	0.00		12.00		60.01	122.00	161.53	231.17	338.13
-	1:40:00 1:45:00 1:50:00	0.00	0.00	13.96	33.90	56.25	112.10 104.00	148.57	212.08 195.94	310.76 287.45
	1:45:00 1:50:00		0.00	13.21 12.50	31.96 30.03	52.94 49.64	104.00 96.86	137.94 128.39	195.94 181.69	287.45
-	1:50:00	0.00	0.00	12.50	28.10	49.64	90.29	128.39	168.78	200.05
-		0.00	0.00	11.16	26.19	43.06	83.95	111.08	156.61	230.01
Г		0.00	0.00	10.46	24.30	39.85	77.88	102.92	144.90	212.87
	2:00:00	0.00	0.00	9.73	22.42	36.66	71.85	94.85	133.46	196.17
	2:05:00	0.00	0.00	8.94	20.50	33.43	65.81	86.82	122.23	179.75
	2:10:00	0.00	0.00	8.12	18.55	30.15	59.74	78.80	111.18	163.53
L	2:15:00	0.00	0.00	7.29	16.62	27.00	53.67	70.78	100.15	147.40
L	2:20:00	0.00	0.00	6.67	15.07	24.72	47.94	63.30	89.82	132.66
-	2:25:00	0.00	0.00	6.21	14.10	23.11	43.84	58.01	82.20	121.64
-	2:30:00	0.00	0.00	5.79	13.19	21.64	40.65	53.80	76.06	112.54
-	2:35:00	0.00	0.00	5.42	12.32	20.22	37.96	50.19	70.67	104.47
-	2:40:00 2:45:00	0.00	0.00	5.06	11.50	18.86	35.48	46.87	65.80	97.17
-	2:50:00	0.00	0.00	4.71	10.71 9.94	17.53 16.25	33.22	43.83	61.30	90.40
-	2:55:00	0.00	0.00	4.37	9.19	15.00	31.01 28.84	40.87 37.99	57.03 53.02	84.03 78.06
-	3:00:00	0.00	0.00	3.72	8.47	13.79	26.71	35.19	49.23	72.44
F	3:05:00	0.00	0.00	3.41	7.76	12.62	24.62	32.42	45.47	66.87
	3:10:00	0.00	0.00	3.10	7.07	11.48	22.54	29.69	41.74	61.34
	3:15:00	0.00	0.00	2.80	6.38	10.35	20.48	26.97	38.01	55.82
L	3:20:00	0.00	0.00	2.50	5.70	9.23	18.42	24.26	34.28	50.31
L	3:25:00	0.00	0.00	2.20	5.03	8.12	16.37	21.55	30.56	44.81
-	3:30:00	0.00	0.00	1.91	4.36	7.01	14.32	18.86	26.85	39.32
-	3:35:00	0.00	0.00	1.62	3.69	5.91	12.27	16.16	23.14	33.84
-	3:40:00 3:45:00	0.00	0.00	1.34	3.02	4.81	10.23	13.47	19.43	28.38
-	3:45:00	0.00	0.00	1.06 0.78	2.36	3.72 2.65	8.20 6.18	10.79 8 13	15.74 12.05	22.93 17.51
F	3:55:00	0.00	0.00	0.78	1.72	1.69	4.19	8.13 5.51	8.43	17.51
F	4:00:00	0.00	0.00	0.32	0.70	1.15	2.44	3.26	5.30	7.97
F	4:05:00	0.00	0.00	0.30	0.56	0.93	1.47	2.05	3.46	5.40
Ľ	4:10:00	0.00	0.00	0.25	0.46	0.76	0.94	1.34	2.31	3.71
-	4:15:00	0.00	0.00	0.22	0.37	0.62	0.64	0.91	1.52	2.50
-	4:20:00 4:25:00	0.00	0.00	0.18	0.30	0.50	0.44	0.62	0.97	1.64
F	4:25:00	0.00	0.00	0.15 0.13	0.24 0.19	0.39 0.30	0.33 0.25	0.45	0.58 0.32	1.03 0.61
Ľ	4:35:00	0.00	0.00	0.11	0.14	0.22	0.18	0.22	0.18	0.38
F	4:40:00	0.00	0.00	0.09	0.11	0.16	0.14	0.16	0.13	0.30
	4:45:00 4:50:00	0.00	0.00	0.07	0.09	0.12 0.09	0.10 0.08	0.12	0.10 0.08	0.23 0.19
F	4:55:00	0.00	0.00	0.03	0.05	0.09	0.08	0.09	0.06	0.19
Ľ	5:00:00	0.00	0.00	0.03	0.04	0.05	0.04	0.05	0.05	0.11
-	5:05:00	0.00	0.00	0.02	0.03	0.03	0.03	0.04	0.03	0.07
-	5:10:00 5:15:00	0.00	0.00	0.01 0.01	0.02 0.01	0.02 0.01	0.02	0.02	0.02 0.01	0.05
F	5:20:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.03
Ľ	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:30:00 E:2E:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ľ	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
	0.00	20	0.000	0	0.000	0.00	For best results, include the
		5,983	0.137	3,001	0.069	0.23	stages of all grade slope
	2.00	19,453	0.447	15,719	0.361	0.45	changes (e.g. ISV and Floor)
WQCV	2.80	29,482	0.677	35,293	0.810	0.62	from the S-A-V table on Sheet 'Basin'.
EURV	3.00	31,989	0.734	41,440	0.951	0.66	Sileet Dasiii.
	3.28	33,534	0.770	50,614	1.162	0.70	Also include the inverts of al
	4.00	37,508	0.861	76,189	1.749	0.99	outlets (e.g. vertical orifice,
	5.00	41,177	0.945	115,531	2.652	1.22	overflow grate, and spillway where applicable).
100-YR	6.00	45,017 48,093	1.033 1.104	158,628 194,941	3.642 4.475	1.40 23.63	
100-TK	7.00	48,960	1.124	205,617	4.720	35.75	-
	8.00	52,863	1.214	256,528	5.889	118.13	1
	9.00	56,926	1.307	311,423	7.149	243.29	
							_
							-
							-
							-
							-
							-
							_
							-
							-
							-
							-
							-
							_
							-
							-
							-
							-
							1
							_
							-
							-
							-
							-
]
							_
							_
							-
							1
							-
							-
							-
							-
]
							4
							1
]
							4
							-
							1
							4

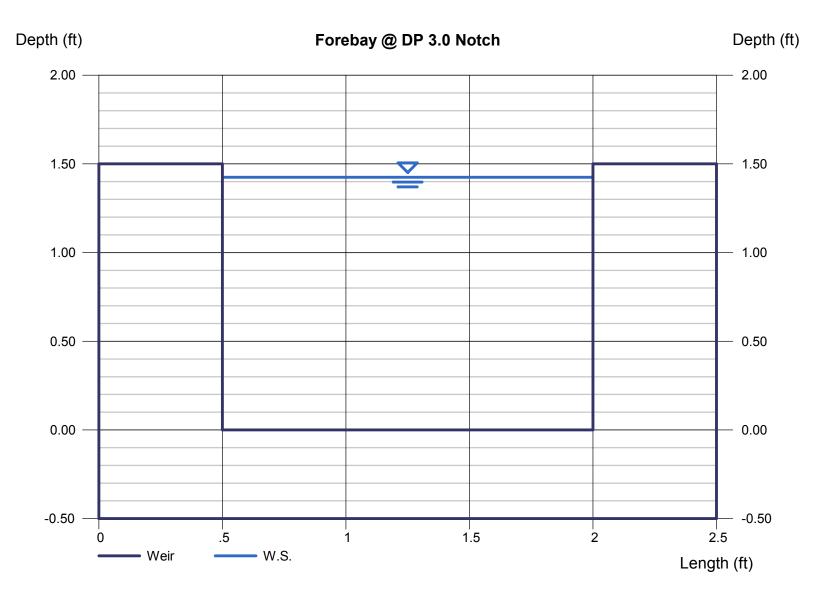
FOREBAY VOLUME REQUIREMENTS

Equation 3-1 WQCV= $a(0.91/^{3}-1.19/^{2}+0.781/)$ a=1 (40 hour drain time)

WQCV= 0.22013
<i>WQCV</i> = 0.39644
<i>WQCV</i> = 0.046558
=(WQCV/12)A
0.21 Acres V= 3.122
6 Acres V=0.124
.10 Acres V= 1.378

3% OF WQCV FOREBAY TOTAL VOLUME= .03(V)

Volume Required for Forebay @ DP 3.0 =	0.094	AC-FT	4080 CF
Volume Required for Future Forebay @ DP 3.1 =	0.004	AC-FT	162 CF
Volume Required for Forebay @ DP 4.3 =	0.041	AC-FT	1801 CF

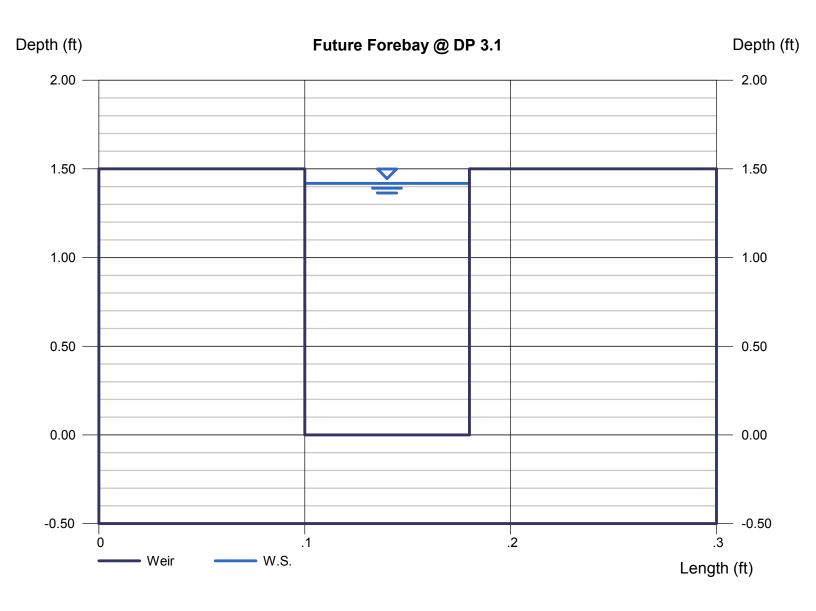

Q ₁₀₀ Discharges	2% OF Q ₁₀₀
Q ₁₀₀ Forebay @ DP 3.0=	.02*424.4 CFS= 8.49 CFS
Q ₁₀₀ Future Forebay @ DP 3.1 =	.02*22.5 CFS= 0.45 CFS
Q ₁₀₀ Forebay @ DP 4.3=	.02*262.3 CFS= 5.25 CFS

Weir Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Forebay @ DP 3.0 Notch

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.42
Bottom Length (ft)	= 1.50	Q (cfs)	= 8.490
Total Depth (ft)	= 1.50	Area (sqft)	= 2.14
		Velocity (ft/s)	= 3.97
Calculations		Top Width (ft)	= 1.50
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 8.49		

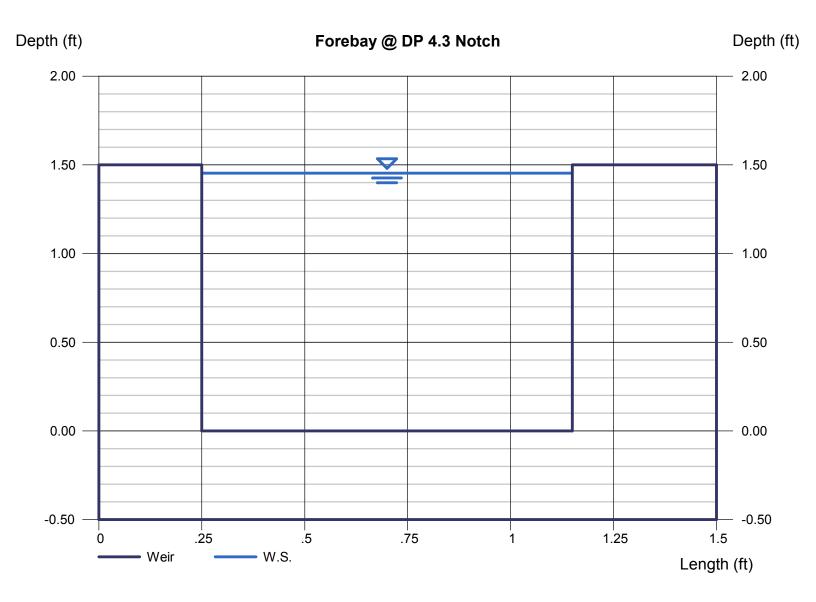


Weir Report

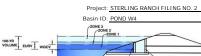
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Future Forebay @ DP 3.1

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.42
Bottom Length (ft)	= 0.08	Q (cfs)	= 0.450
Total Depth (ft)	= 1.50	Area (sqft)	= 0.11
		Velocity (ft/s)	= 3.97
Calculations		Top Width (ft)	= 0.08
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 0.45		



Weir Report


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Forebay @ DP 4.3 Notch

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.45
Bottom Length (ft)	= 0.90	Q (cfs)	= 5.250
Total Depth (ft)	= 1.50	Area (sqft)	= 1.31
		Velocity (ft/s)	= 4.01
Calculations		Top Width (ft)	= 0.90
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 5.25		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

ZONE 1 AND 2 ORIFICES

100-YEAR Depth Increment = Stage - Storage Stage Override Length Example Zone Configuration (Retention Pond)

acre-feet

acre-feet

acre-feet acre-feet

н·v user

user ft ³

Watershed Information

PERM

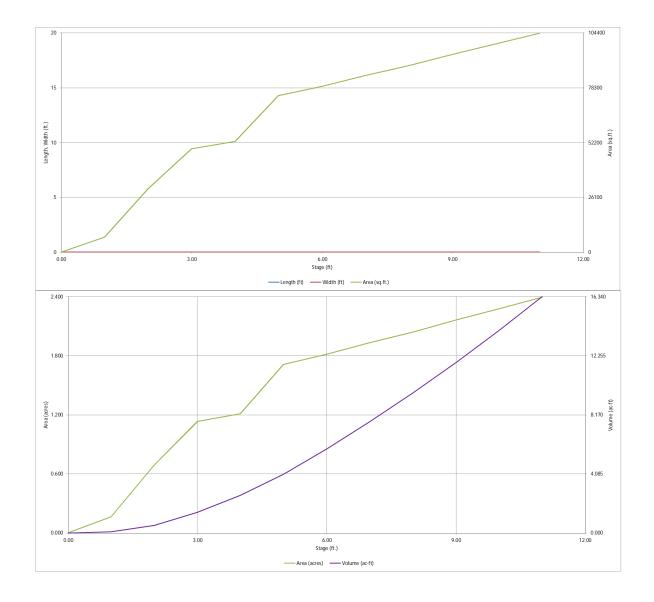
Selected BMP Type =	EDB	
Watershed Area =	350.74	acres
Watershed Length =	9,241	ft
Watershed Length to Centroid =	4,488	ft
Watershed Slope =	0.060	ft/ft
Watershed Imperviousness =	12.00%	percent
Percentage Hydrologic Soil Group A =	40.0%	percent
Percentage Hydrologic Soil Group B =	60.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblerado orban njare	gruphi i loccuu	
Water Quality Capture Volume (WQCV) =	2.281	acre-feet
Excess Urban Runoff Volume (EURV) =	3.710	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	2.802	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	6.573	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	10.859	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	20.281	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	26.707	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	36.815	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	54.041	acre-feet
Approximate 2-yr Detention Volume =	2.353	acre-feet
Approximate 5-yr Detention Volume =	3.495	acre-feet
Approximate 10-yr Detention Volume =	6.059	acre-feet
Approximate 25-yr Detention Volume =	8.184	acre-feet
Approximate 50-yr Detention Volume =	9.066	acre-feet
Approximate 100-yr Detention Volume =	12.211	acre-feet

Define Zones and Basin Geometry
Select Zone 1 Storage Volume (Requ
Select Zone 2 Storage Volume (Opti

	Select Zone 1 Storage Volume (Required) =
	Select Zone 2 Storage Volume (Optional) =
	Select Zone 3 Storage Volume (Optional) =
	Total Detention Basin Volume =
user	Initial Surcharge Volume (ISV) =
user	Initial Surcharge Depth (ISD) =
user	Total Available Detention Depth (H _{total}) =
user	Depth of Trickle Channel $(H_{TC}) =$
user	Slope of Trickle Channel (STC) =
user	Slopes of Main Basin Sides (S _{main}) =
user	Basin Length-to-Width Ratio (R) =


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (WISV) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

tion Pond)		Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
		Top of Micropool		0.00				20	0.000		
				1.00				7,181	0.165	3,600	0.083
				2.00				30,115	0.691	22,248	0.511
				3.00				49,313	1.132	61,962	1.422
				4.00				52,785	1.212	113,011	2.594
				5.00				74,559	1.712	176,683	4.056
				6.00				79,051	1.815	253,488	5.819
				7.00				84,185	1.933	335,106	7.693
				8.00				88,917	2.041	421,657	9.680
				9.00				94,245	2.164	513,238	11.782
				10.00				99,228	2.278	609,975	14.003
				11.00				104,318	2.395	711,748	16.339
										,	
Optional Use	er Overrides										
optional 030	acre-feet										
	acre-feet										
1.19	inches										
1.50	+										
1.50	inches inches										
	+										
2.00	inches										
2.25	inches										
2.52	inches										
	inches										
					-						
					-					-	
					-						
						~~					
											<u> </u>
										L	
										L	
											<u> </u>
					-						
											<u> </u>
						1 1					
										L	
											<u> </u>
					-						

 Width Area Override Area Volume Volume

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

El Paso County MS4 Post Construction Detention / Water Quality Facility Documentation Form

This document must be completed and submitted with required attachments to the County for projects requiring a detention and/or a water quality facility. A separate completed form must be submitted for each facility.

Project name:	Sterling Ranch Ponc	I W-4						
Owner name:	SR Land LLC							
Location Addre	ess:							
9206 Ben Tirra	n Ct. Colorado Spring	s, CO 80920						
Latitude and Lo	ongitude:							
38.957933, -104	4.686318							
Assessor's Pare	cel #: 5232401018		Section: 32	т	ownship: 12S	Rar	nge: 65W	
Expected Com	pletion date: Fall 2	021						
Project acreag	e: 350.74	Design	Ponding Acres	: 1.6	Design	Storm: 100y	r 💌	
Design Enginee	er Email Address:	nbramlett@jrer	ngineering.com					
Detention and https://maper	pliance with C.R.S. Infiltration Design I ture.digitaldataserv	Data Sheet m ices.com/gvh	ust be attached /?viewer=cswd	d . The form (lif# (click on	can be found l Download SE		a Sheet)	
List all perman	ent water quality co	ontrol measu	re(s) (EDBs, rair	n gardens, et	:c):			_
	ntion basin, pond W-4							
For all projects	s for which the cons	trained redev	elopment sites	standard is	applied, prov	ide an explar	nation of why it i	5
not practicable	e to meet the full de	esign standard	ds.					
long-term obso maintenance a	tions and Maintena ervation, maintenar activities. If multiple t be provided for ea	nce, and operate, different wa	ation of contro	l measure(s)	, including roι	utine inspect	ion frequencies a	and
	e Detention Basin / ressing maintenanc		•	•		•		
Attachments:					Review En	gineer		
Stormwater De	etention and Infiltra	tion Design D	ata Sheet		EPC Project Fi	ile No.		

El Paso County MS4 Post Construction Detention / Water Quality Facility Documentation Form

This document must be completed and submitted with required attachments to the County for projects requiring a detention and/or a water quality facility. A separate completed form must be submitted for each facility.

Project name: Sterling Ranch Pond W-5	
Owner name: SR Land LLC Location Address:	
8292 Sterling Access PT	
Latitude and Longitude:	
38.952400,-104.678595	
Assessor's Parcel #: 5300000173 Section: 4	Township: 13S Range: 65W
Expected Completion date: Fall 2021	nunge.
Project acreage: 173.97 Design Ponding Acres:	5 Design Storm: 100yr
Design Engineer Email Address: mbramlett@jrengineering.com	
To ensure compliance with C.R.S. 37-92-602(8), the completed S Detention and Infiltration Design Data Sheet must be attached . <u>https://maperture.digitaldataservices.com/gvh/?viewer=cswdiff</u>	The form can be found here:
List all permanent water quality control measure(s) (EDBs, rain g	ardens, etc):
extended detention basin, pond W-5	
For all projects for which the constrained redevelopment sites st	andard is applied, provide an explanation of why it is
not practicable to meet the full design standards.	
Attach Operations and Maintenance (O&M) Plan describing the long-term observation, maintenance, and operation of control m maintenance activities. If multiple, different water quality control & M Plan must be provided for each facility.	neasure(s), including routine inspection frequencies and
Attach Private Detention Basin / Stormwater Quality Best Man	agement Practice Maintenance Agreement and
Easement addressing maintenance of BMPs that shall be binding	on all subsequent owners of the permanent BMPs.
Attachments:	Review Engineer
Stormwater Detention and Infiltration Design Data Sheet O & M Plan	EPC Project File No.

Maintenance and Access Agreement

Project Description		
	Manning	
Friction Method	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.078	
Channel Slope	0.100 ft/ft	
Left Side Slope	3.000 H:V	
Right Side Slope	3.000 H:V	
Bottom Width	20.00 ft	
Discharge	427.10 cfs	
Results		
Normal Depth	24.0 in	
Flow Area	52.0 ft ²	
Wetted Perimeter	32.6 ft	
Hydraulic Radius	19.1 in	
Top Width	32.00 ft	
Critical Depth	25.9 in	
Critical Slope	0.076 ft/ft	
Velocity	8.21 ft/s	
Velocity Head	1.05 ft	
Specific Energy	3.05 ft	
Froude Number	1.136	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	24.0 in	
Critical Depth	25.9 in	
Channel Slope	0.100 ft/ft	
Critical Slope	0.076 ft/ft	

Worksheet for Pond W5 Emergency Outfall

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Worksheet for Pond W5 Emergency Outfall with Stilling Basin

Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.005 ft/ft	

Station Elevation (ft) (ft) 0+00 6,956.50 0+01 6,946.00 0+19 6,944.00 0+26 6,944.00 0+35 6,946.50 0+40 6,945.98 0+60 6,945.98 0+82 6,952.00

Section Definitions

Roughness Segment Definitions

Start Station (0+00, 6,956.50)	Ending Station I (0+82, 6,952.00)	Roughness Coefficient	0.078
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth	62.7 in		
Roughness Coefficient	0.078		
Elevation	6,949.22 ft		
Elevation Range	6,944.0 to 6,956.5 ft		
Flow Area	248.3 ft ²		
Wetted Perimeter	75.0 ft		
Hydraulic Radius	39.7 in		
Top Width	71.16 ft		
Normal Depth	62.7 in		
Critical Depth	36.6 in		
Critical Slope	0.078 ft/ft		
Velocity	2.99 ft/s		
Velocity Head	0.14 ft		
Roadside Ditch.fm8 9/10/2020	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	[1	FlowMaster 0.03.00.03 Page 1 of 2

This document was created by an application that isn't licensed to use <u>novaPDF</u>. Purchase a license to generate PDF files without this notice.

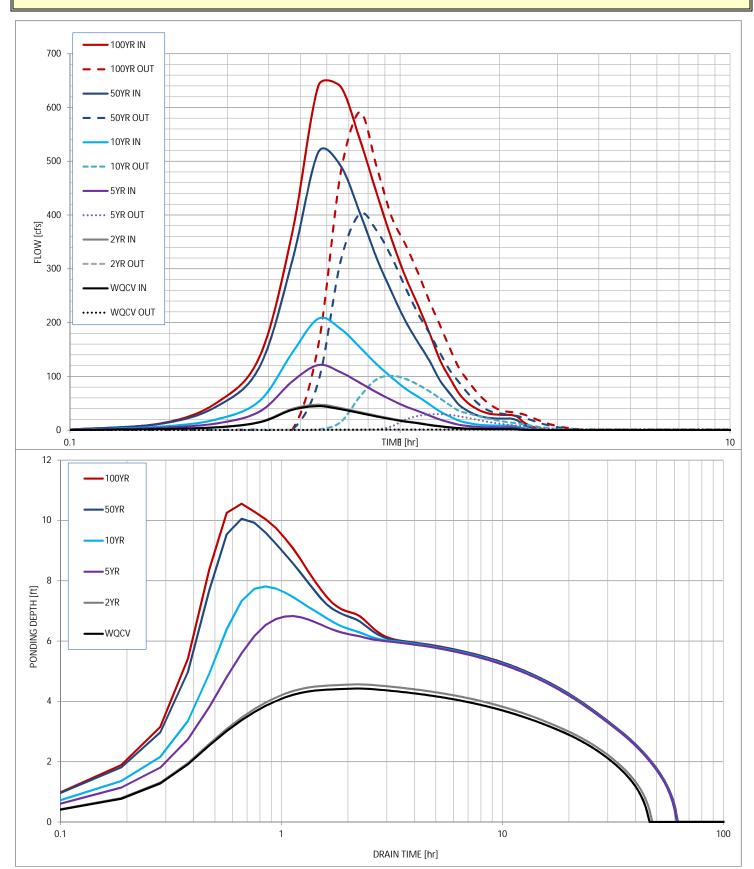
Results		
Specific Energy	5.36 ft	
Froude Number	0.282	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	62.7 in	
Critical Depth	36.6 in	
Channel Slope	0.005 ft/ft	

Worksheet for Pond W5 Emergency Outfall with Stilling Basin

Roadside Ditch.fm8 9/10/2020 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

This document was created by an application that isn't licensed to use <u>novaPDF</u>. Purchase a license to generate PDF files without this notice.

Workbook Protected


Worksheet Protected

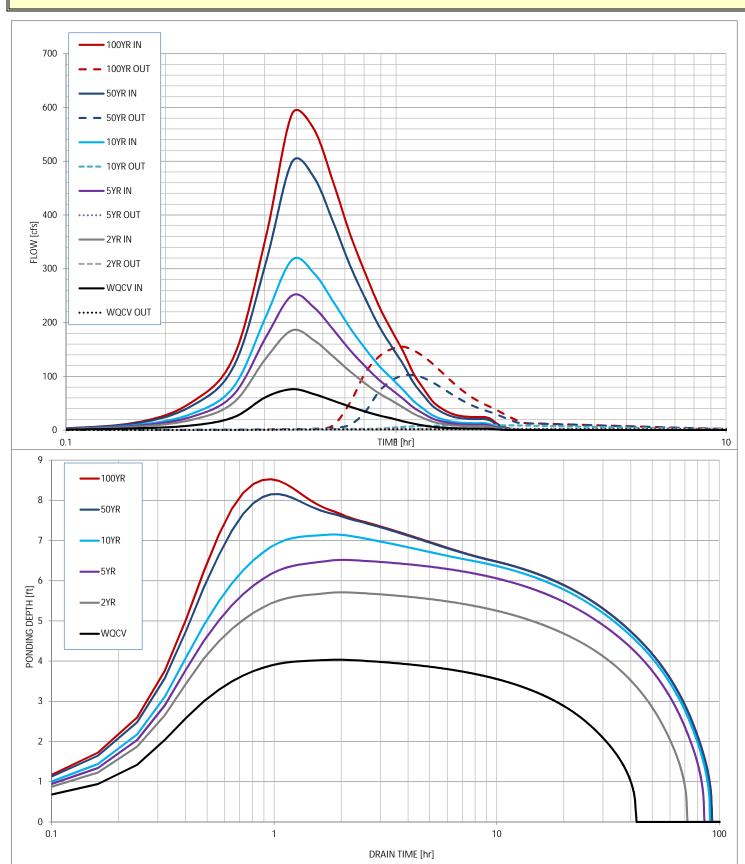
Stormwater Facility Name: Pond W-4

Facility Location & Jurisdiction: Sterling Ranch Sudivision, Vollmer Road, El Paso County / El Paso County

User Input: Watershed Ch	aractoristics		User Defined	User Defined	User Defined	User Defined
Watershed Slope =	0.060	ft/ft	Stage [ft]	Area [ft^2]	Stage [ft]	Discharge [cfs]
Watershed Length =	9241	ft	0.00	20	0.00	0.00
Watershed Area =	350.74	acres	0.37	1,795	0.37	0.00
Watershed Imperviousness =	12.0%	percent	1.00	5,983	1.00	0.14
Percentage Hydrologic Soil Group A =	40.0%	percent	2.00	19,453	2.00	0.25
Percentage Hydrologic Soil Group R =	60.0%	percent	3.00	31,989	3.00	0.66
Percentage Hydrologic Soil Groups C/D =	0.0%	percent	4.00	37,508	4.00	0.99
Location for 1-hr Rainfall Depths (us			5.00	41,177	5.00	1.22
User Input	• al op a of inj.		6.00	45,017	6.00	1.40
			7.00	48,960	7.00	35.75
			8.00	52,863	8.00	116.69
			9.00	56,926	9.00	231.32
WQCV Treatment Method = E	xtended Detentio	on		61,139	10.00	384.24
			11.00	65,528	11.00	756.84
After completing and printing this worksheet t						
https://maperture.digitaldataservices.com/gv	n/ :viewer=cs	<u>swait</u>				
create a new stormwater facility, and						
attach the pdf of this worksheet to that record	l.					
R	outed Hydro	ograph Resu	lts			

	Routed Hydro	ograph Results					_
Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	0.53	1.19	1.50	1.75	2.25	2.52	in
Calculated Runoff Volume =	2.281	2.411	6.136	10.513	26.573	35.001	acre-ft
OPTIONAL Override Runoff Volume =							acre-ft
Inflow Hydrograph Volume =	2.281	2.410	6.128	10.504	26.566	34.997	acre-ft
Time to Drain 97% of Inflow Volume =	41.2	42.4	51.8	47.9	37.2	32.5	hours
Time to Drain 99% of Inflow Volume =	44.0	45.2	56.9	55.0	49.7	47.4	hours
Maximum Ponding Depth =	4.43	4.56	6.83	7.81	10.05	10.55	ft
Maximum Ponded Area =	0.90	0.91	1.11	1.20	1.41	1.46	acres
Maximum Volume Stored =	2.109	2.236	4.512	5.647	8.552	9.279	acre-ft

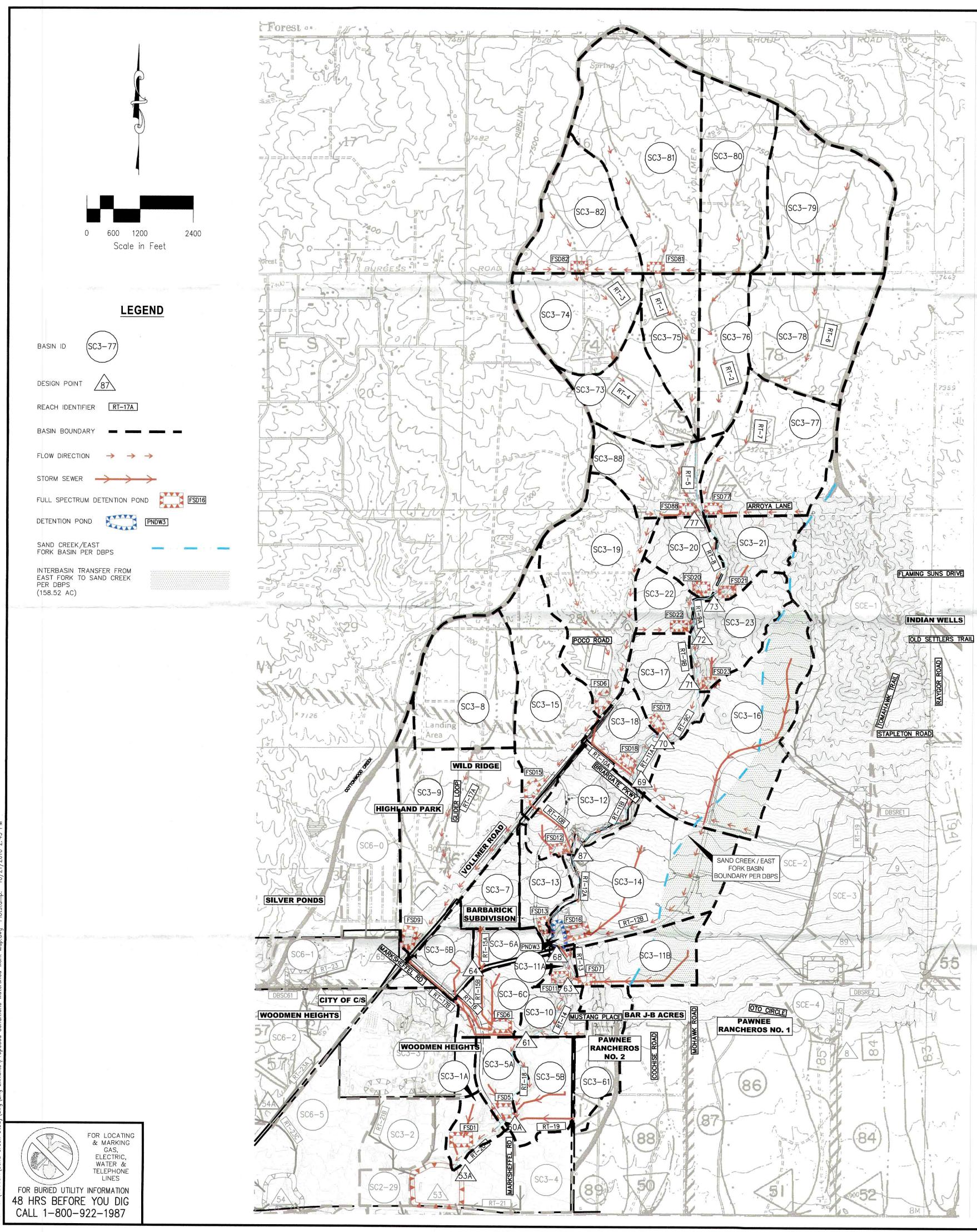
Workbook Protected


Worksheet Protected

Stormwater Facility Name: Pond W-5

Facility Location & Jurisdiction: Sterling Ranch Sudivision, Marksheffel Road, El Paso County / El Paso County

User Input: Watershed Characteris		User Defined	User Defined	User Defined	User Defined
Watershed Slope = 0.025	ft/ft	Stage [ft]	Area [ft^2]	Stage [ft]	Discharge [cfs]
Watershed Length = 3888	ft	0.00	20	0.00	0.00
Watershed Area = 173.97	acres	0.50	1,328	0.50	0.30
Watershed Imperviousness = 57.6%	percent	1.50	13,823	1.50	0.42
Percentage Hydrologic Soil Group A = 85.0%	percent	2.50	40,724	2.50	0.91
Percentage Hydrologic Soil Group B = 15.0%	percent	3.50	71,720	3.50	1.27
Percentage Hydrologic Soil Groups C/D = 0.0%	percent	4.50	112,095	4.50	1.72
Location for 1-hr Rainfall Depths (use dropdov	vn):	5.50	136,106	5.50	2.21
User Input	•	6.50	158,377	6.50	2.57
		7.50	174,976	7.50	12.90
		8.50	188,903	8.50	150.53
		9.50	199,637	9.50	363.96
WQCV Treatment Method = Extended Det	ention 🔻	10.50	210,510	10.50	748.70
After completing and printing this worksheet to a pdf, g	a to:				
https://maperture.digitaldataservices.com/qvh/?viewe					
create a new stormwater facility, and	<u>-6377011</u>				
5					
attach the pdf of this worksheet to that record.					


	Routed Hydro	ograph Results	5				
Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	0.53	1.19	1.50	1.75	2.25	2.52	in
Calculated Runoff Volume =	3.311	8.045	10.858	13.768	21.831	25.847	acre-ft
OPTIONAL Override Runoff Volume =							acre-ft
Inflow Hydrograph Volume =	3.310	8.037	10.852	13.759	21.823	25.841	acre-ft
Time to Drain 97% of Inflow Volume =	38.7	64.2	76.0	79.7	77.6	76.0	hours
Time to Drain 99% of Inflow Volume =	40.9	68.8	81.7	86.0	85.6	84.8	hours
Maximum Ponding Depth =	4.04	5.71	6.52	7.15	8.15	8.52	ft
Maximum Ponded Area =	2.13	3.23	3.64	3.88	4.22	4.34	acres
Maximum Volume Stored =	3.093	7.699	10.469	12.826	16.933	18.507	acre-ft

Final Drainage Report Sterling Ranch Filing No. 2

APPENDIX D

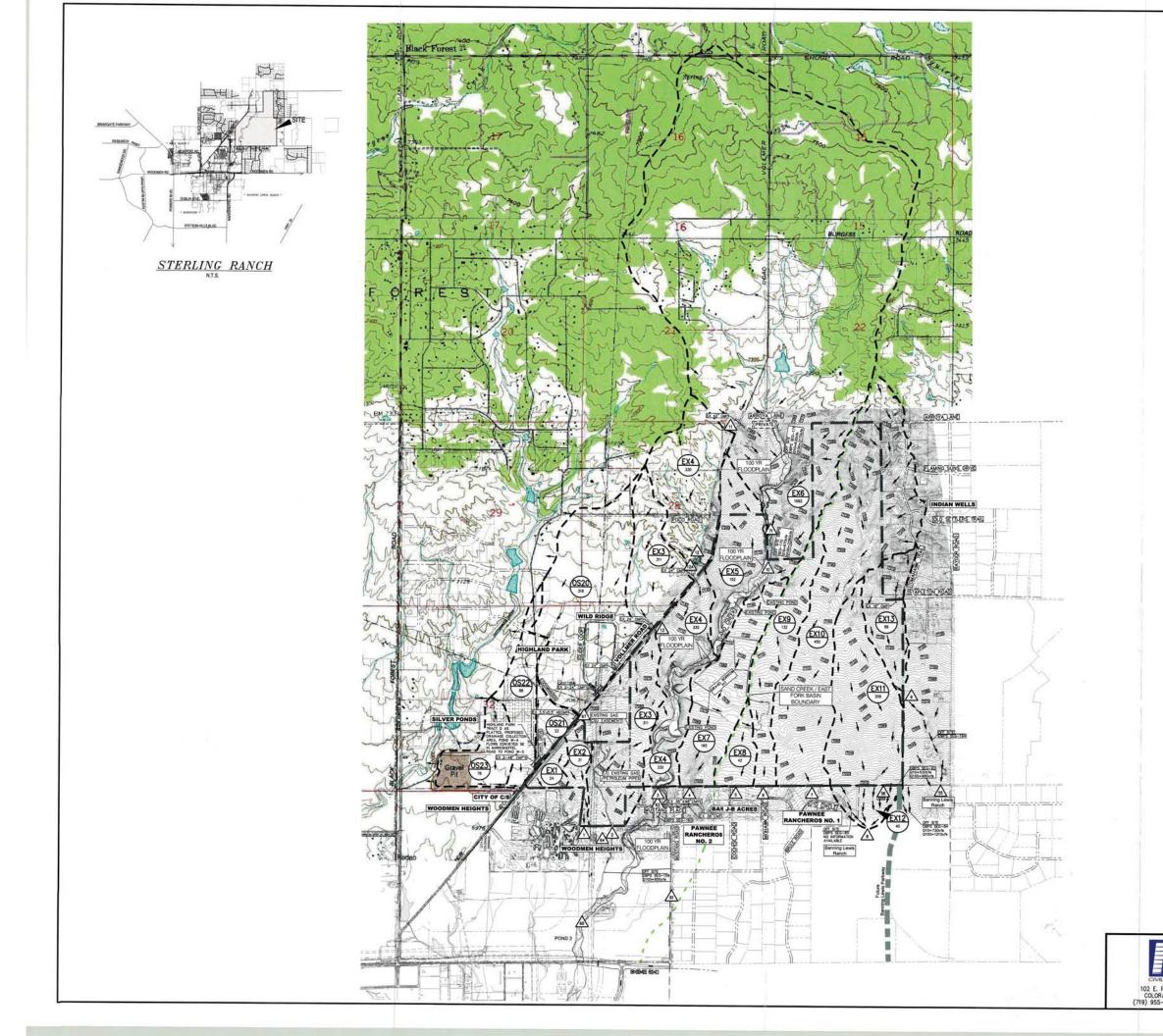
REFERENCE MATERIALS

ASIN CN 3–1A 73		RΔ	SIN S	UMMAR	v			W	ATER QUAL	ח צ עדו	ETENT		
	AREA (ACRES)		Q ₂ (CFS)		Q10 (GFS)	Q25 Q50 (CFS) (CFS)	Q50 (CFS)	FSD13					אם או
	27.8	0.085	31.4	45.0	63.8	88.5 110.3	133.1	STORM EVEN PEAK INFLO		2 43.9	5 57.8	10 76.0	25 98.5
3-5A 84 3-5B 81	<u> </u>	0.061	40.6 53.8	53.7 73.0		92.4 110.6 130.8 158.6	129.1 187.0	ALLOWABLE	RELEASE (CFS)	0.4	6.1	12.3	28,6
3–6A 88	49.3	0.077	61.4	79.3	102.2	130.1 153.6	177.1		ELEASE (CFS) LUME (AC-FT)	0.4	4.2	12.3 3.3	28.6 3.8
3-6B 85 3-6C 82	<u> </u>	0.048	32.9 53.9	43.4	and the second se	73.988.2128.0154.5	102.7 181.5			_	4	- L	1
3-7 88	45.7	0.071	54.0	69.9	90.3	115.2 136.2	157.2	FSD15 STORM EVEN	NT (YR)	2	5	10	25
3-8 63 3-9 66	143.4	0.224	28.0 49.2	45.5 76.2		106.4 138.9 168.1 217.1	173.8 269.5	PEAK INFLO		32.8	51.8	79.4	117.0
3-10 63	36.0	0.056	7.6	12.3	19.4	29.1 38.0	47.7		RELEASE (CFS) ELEASE (CFS)	1.2	17.5	35.7 35.7	85.4 85.4
<u>-11A 70</u> -11B 80	10.7 76.6	0.017	5.3 59.4	7.8 81.3		15.920.0148.1180.5	24.3 213.7		LUME (AC-FT)	3.3	3.3	3.6	4.0
3-12 81	88.2	0.138	77.8	105.6	142.5	189.1 229.1	270.0	FSD16					
3-13 <u>85</u> 3-14 80	41.0	0.064	43.9	57.8 221.4		98.5117.6401.5488.6	136.9 577.7	STORM EVEN		2	5	10	25
3-15 65	147.6	0.231	32.8	51.8		117.0 151.5	188.3	PEAK INFLO	W (CFS) RELEASE (CFS)	248.6	362.6 21.5	503.9	692.0
3–16 79 3–17 71	224.1	0.350	150.7	208.5		386.6 473.7	563.4		ELEASE (CFS)	1.5 1.5	21.5	41.9 41.8	143.4
-17 71 -18 81	70.6	0.110	37.2 49.3	53.9 67.1		109.9138.8121.2147.3	169.2 174.0	STORED VOL	LUME (AC-FT)	25.5	26.0	29.7	34.2
-19 63	191.5	0.299	37.2	60.5	94.6	141.6 184.9	231.4	FSD17					
-20 63 -21 63	50.3 62.6	0.079	12.2 14.3	19.6 23.1	the second se	45.258.953.970.3	73.5 87.9	STORM EVEN		2	5	10	25
-22 63	40.6	0.063	9.2	14.9	23.2	34.6 45.2	56.5	PEAK INFLO	W (CFS) RELEASE (CFS)	37.2 0.7	53.9	77.7	109.9 52.0
-23 64 -61 63	81.3 65.5	0.127	19.5 13.7	31.2 22.0		71.6 93.0	116.0	MODELED RE	ELEASE (CFS)	0.7	7.3	22.4	52.0
73 63	90.0	0.102	13.7	22.0 26.4		51.667.662.181.3	84.8 102.0		_UME (AC-FT)	2.3	2.3	2.5	3.0
4 63	119.7	0.187	22.3	36.5	57.3	85.9 112.3	140.7	FSD18					
75 63 76 63	79.3	0.124	13.6	22.1 23.1		51.967.854.671.4	84.9 89.6	STORM EVEN		2	5	10	25
77 63	163.8	0.256	33.0	53.4		54.6 71.4 124.1 161.9	202.4	PEAK INFLO	W (CFS) RELEASE (CFS)	49.3	67.1	91.0	121.2
'8 63	155.6	0.243	28.1	45.3	70.6 1	106.2 139.1	174.5	and the second se	RELEASE (CFS) Elease (CFS)	0.6 0.6	9.2 6.6	18.4	42.2
	189.0	0.295	34.9 27.3	57.0 44.3	the second se	134.3175.6104.5136.8	220.1		LUME (AC-FT)	3.2	3.2	3.4	4,0
63	262.9	0.411	48.3	78.3	123.1 1	104.5 136.8 184.9 242.0	303.4	FSD19					
63	117.8	0.184	25.0	40.6	63.7	95.5 125.0	156.6	STORM EVEN	IT (YR)	2	5	10	25
63	87.2	0.136	18.3	29.4	46.2	69.4 90.9	113.9	PEAK INFLO	W (CFS)	37.2	60.5	94.6	141.6
									RELEASE (CFS)	1.7 1.7	24.6 18.6	50.3 50.3	118.4 118.1
		DESIGN	POIN	T SUMM	ARY		12		LUME (AC-FT)	3.4	3.4	3.7	4.1
Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q ₂₅ (CFS)	Q 50 (CFS)	Q100 (CFS)	LOC	ATION						
22.3	36.5	61.8	136.5	192.8	249.7	44.		FSD20 STORM EVEN	IT (YR)	2	5	10	25
2.4	139.5		521.6	the state of the s	928.7			PEAK INFLO	W (CFS)	12.2	19.6	30.4	45.2
9.3	231.4 98.4		793.5 232.6		486.8 385.3	ARROYA L	ANE X-ING		RELEASE (CFS)	0.6	8.4	16.8	38.8
7.4	236.9	446.0	806.4	1145.0 1	1521.9				LEASE (CFS) LUME (AC-FT)	0.6 0.8	<u>8.4</u> 0.8	16.6 0.9	38.8 1.0
34.9 35.1	236.2	and the second se	793.7 803.1		1501.6 1523.3 ST		AD X-ING NORTHERN BNDRY			•I	1	I	
134.4	246.1	462.4	808.9	1177.6 1	543.2	LING RANCH	NONTHEININ DINUKT	FSD21 STORM EVEN	IT (YR)	2	5	10	25
134.3 133.9	256.6 255.6	and the second sec	864.2	the second se	673.2	BRIARGATE P	ARKWAY X—ING	PEAK INFLOW	W (CFS)	14.3	23.1	36.1	53.9
105.0	255.6		922.7 914.3		836.4	STERILNG RAN	CH ROAD X-ING		RELEASE (CFS) LEASE (CFS)	0.7	10.1	20.3	47.0
114.5	148.0	191.1	243.7	288.0	332.4		····		LLEASE (CFS) LUME (AC-FT)	0.7 1.0	<u>8.8</u> 1.0	20.3	46.9
05.1 06.6	203.2 206.3	and the second se	932.6 1051.2				SOUTHERN BNDRY S/EL PASO BNDRY					•	
111.0	212.4	543.2	1073.9	1558.5 2	2001.4	MARKSHE	FEL X-ING	FSD22 STORM EVEN	IT (YR)	2	5	10	25
110.4	212.3	546.2 2	1078.2	1567.6 2	2017.3	SAND CREEK	AND POND 3	PEAK INFLOW	W (CFS)	9.2	14.9	23.2	34.6
galide philoso	nger (s. 24ad <u>) og er s</u> joner sen	n versi i su fongelikeringen	ner en treken vel					ALLOWABLE MODELED RE	RELEASE (CFS)	0.4	6.6 2.1	13.2 13.3	30.5 29.9
WA	ATER QU	JALITY 8		NTION F	POND SI	UMMARY		STORED VOL	UME (AC-FT)	0.4	0.8	0.8	0.9
							100	FSD23					
	NT (YR) W (CFS)	2 31.		5 10 5.0 63.8			100 33.1	STORM EVEN		2	5	10	25
BLE	RELEASE (CFS) 0.1	1 1.	7 3.3	5 10.9	17.5	25.5	PEAK INFLOW		19.5	31.2	48.2	71.6
	LEASE (CF						25.5 4.9	MODELED RE	RELEASE (CFS) LEASE (CFS)	0.9 0.9	13.0 13.1	26.2 26.0	60.6 60.4
	_ (//0 1	2.~		- 0.0					UME (AC-FT)	1.4	1.5	1.6	1.7
-\/F-N						E0	100	FSD77					
	NT (YR) W (CFS)	40.					100 29.1	STORM EVEN		2	5	10	25
	RELEASE (and the second s	1 1.	4 2.6	11.3	19.8	30.2	PEAK INFLOW	V (CFS)	33.0	53.4	83.2	124.1
LOV LE	the second s		1 1.			19.7	30.1		RELEASE (CFS) LEASE (CFS)	1.6	23.7 23.5	48.1	
LOV E RE	ELEASE (CFS	S) 0.1		0		4.7	5.2		LENSE IVES!	16		100	112.2
LOV E RE	the second s	S) 0.1		2 3.8	4.1				UME (AC-FT)	1.6 2.8	23.5	48.0 3.0	
FLOV BLE D RE VOL	LEASE (CFS LUME (AC-F	S) 0.1 -T) 3.0) 3.					STORED VOL					112.2 110.0
FLOV BLE RE VOL	LEASE (CFS LUME (AC-F	S) 0.1 -T) 3.0	5 3.	5 10	25	50	100	STORED VOL	UME (AC-FT)	2.8	2.8	3.0	112.2 110.0 3.3
LOV LE RE VOL VEN	LEASE (CFS LUME (AC-F	S) 0.1 -T) 3.0) 3. 5 .6 258	5 10 B.6 339.	25 2 438.9	50 523.4 6	100 08.8 51.7	STORED VOL FSD81 STORM EVEN PEAK INFLOW	UME (AC-FT) T (YR) V (CFS)	2.8 2 48.3	2.8 5 78.3	3.0 10 123.1	112.2 110.0 3.3 25 184.9
VOL VEN LE RE LOV	LEASE (CFS UME (AC-F NT (YR) W (CFS) RELEASE (CFS	S) 0.1 FT) 3.0 2 196. CFS) 0.6 S) 0.6	0 3. 5.6 258 5 8. 5 8.	5 10 3.6 339. 3 15.9 3 15.9	25 2 438.9 9 60.5 9 60.4	50 523.4 6 101.7 1 101.4 1	08.8 51.7 51.6	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS)	2.8 2 48.3 2.4	2.8 5 78.3 36.7	3.0 10 123.1 74.5	112.2 110.0 3.3 25 184.9 174.3
VEN FLOV	LEASE (CFS LUME (AC-F NT (YR) W (CFS) RELEASE ((S) 0.1 FT) 3.0 2 196. CFS) 0.6 S) 0.6	0 3. 5.6 258 5 8. 5 8.	5 10 3.6 339. 3 15.9 3 15.9	25 2 438.9 9 60.5 9 60.4	50 523.4 6 101.7 1 101.4 1	08.8 51.7	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS)	2.8 2 48.3 2.4 2.4	2.8 5 78.3 36.7 36.0	3.0 10 123.1 74.5 74.5	112.2 110.0 3.3 25 184.9 174.3 174.3
FLOV BLE VOL EVEN FLOV BLE D RE	LEASE (CFS UME (AC-F NT (YR) W (CFS) RELEASE (CFS	S) 0.1 FT) 3.0 2 196. CFS) 0.6 S) 0.6	0 3. 5.6 258 5 8. 5 8.	5 10 3.6 339. 3 15.9 3 15.9	25 2 438.9 9 60.5 9 60.4	50 523.4 6 101.7 1 101.4 1	08.8 51.7 51.6	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOL	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS)	2.8 2 48.3 2.4	2.8 5 78.3 36.7	3.0 10 123.1 74.5	112.2 110.0 3.3 25 184.9 174.3
FLOV RE VOL VEN RE VOL	LEASE (CFS UME (AC-F NT (YR) W (CFS) RELEASE (CFS UME (AC-F	S) 0.1 FT) 3.0 196. CFS) 0.6 S) 0.6 T) 15.4	0 3. 5.6 258 5 8. 5 8. 4 16	5 10 3.6 339. 3 15.9 3 15.9 .1 18.3 5 10	25 2438.9 60.5 60.4 320.6 25	50 523.4 6 101.7 1 101.4 1 23.2 2 50	08.8 51.7 51.6 6.2	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOL	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT)	2.8 2 48.3 2.4 2.4 4.6	2.8 5 78.3 36.7 36.0 4.7	3.0 10 123.1 74.5 74.5 4.9	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2
LOV _E RE /OL /EN /EN _E	LEASE (CFS LUME (AC-F NT (YR) W (CFS) RELEASE (CFS LEASE (CFS LUME (AC-F NT (YR) W (CFS)	S) 0.1 FT) 3.0 196. CFS) 0.6 S) 0.6 T) 15.4 2 67.9	0 3. 5 6 258 6 8. 6 8. 6 8. 6 8. 6 8. 7 9 112	5 10 3.6 339. 3 15.9 3 15.9 .1 18.3 5 10 2.8 174.2	25 2 438.9 9 60.5 9 60.4 3 20.6 25 2 259.1	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 4	08.8 51.7 51.6 :6.2 00 29.4	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLI FSD82 STORM EVEN	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR)	2.8 2 48.3 2.4 2.4 4.6 2	2.8 5 78.3 36.7 36.0 4.7	3.0 10 123.1 74.5 74.5 4.9 10	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25
FLOV BLE ORE VOL EVEN FLOV BLE VOL VOL	LEASE (CFS UME (AC-F NT (YR) W (CFS) RELEASE (CFS UME (AC-F	S) 0.1 T) 3.0 (196. CFS) 0.6 S) 0.6 T) 15.4 (17)	5 3. .6 258 5 8. 6 8. 7 112 7 24	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 5 10 2.8 174.2 .9 49.8	25 2438.9 60.5 60.4 320.6 25 25 259.1 3141.1	50 523.4 101.7 1 101.4 23.2 2 50 342.0 4 207.2 2	08.8 51.7 51.6 6.2	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOL FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS)	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1.
E RE (OL E (OL (OL E (OL E (OL E E RE (OL E RE	LEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS LUME (AC-F IT (YR) N (CFS) RELEASE (CFS)	S) 0.1 T) 3.0 2 196. CFS) 0.6 S) 0.6 T) 15.4 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 3 1.7	5 3. .6 258 5 8. 6 8. 7 112 7 24 7 20	5 10 3.6 339. 3 15.9 3 15.9 .1 18.3 5 10 2.8 174.2 .9 49.8 .8 49.4	25 2438.9 60.5 60.4 320.6 25 2259.1 3141.1 4141.2	50 523.4 101.7 1 101.4 23.2 2 50 342.0 4 207.2 2 206.9 2	08.8 51.7 51.6 6.2 00 29.4 90.0	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOL FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS)	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1. 78.2
LOV E RE VOL VEN LOV LOV LOV LOV LOV RE RE	LEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS) RELEASE (CFS	S) 0.1 T) 3.0 2 196. CFS) 0.6 S) 0.6 T) 15.4 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 3 1.7	5 3. .6 258 5 8. 6 8. 7 112 7 24 7 20	5 10 3.6 339. 3 15.9 3 15.9 .1 18.3 5 10 2.8 174.2 .9 49.8 .8 49.4	25 2438.9 60.5 60.4 320.6 25 2259.1 3141.1 4141.2	50 523.4 101.7 1 101.4 23.2 2 50 342.0 4 207.2 2 206.9 2	08.8 51.7 51.6 6.2 00 29.4 90.0 39.4	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOL FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS)	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1.
LOV LE RE VOL LOV LE VOL LOV LE LOV LE LOV LOV LOV	LEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS) RELEASE (CFS	S) 0.1 T) 3.0 2 196. CFS) 0.6 S) 0.6 T) 15.4 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 2 67.9 3 1.7	5 .6 258 5 8. 6 8. 7 24 7 20 9 9.	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 .1 18.3 5 10 2.8 174.3 .9 49.8 .8 49.4 0 10.0	25 2 438.9 60.5 60.4 3 20.6 25 2 259.1 3 141.1 4 141.2 11.3	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 4 207.2 2 206.9 2 13.0 1	08.8 51.7 51.6 6.2 00 29.4 90.0 39.4	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOL FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOL	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT)	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1. 78.2 2.5
NFLOV ABLE D RE D VOL EVEN NFLOV ABLE D RE D VOL EVEN NFLOW ABLE I D REI D VOL D REI D VOL D REI D VOL	LEASE (CFS UME (AC-F NT (YR) W (CFS) RELEASE (CFS UME (AC-F N (CFS) RELEASE (CFS) RELEASE (CFS UME (AC-F UME (AC-F IT (YR) W (CFS)	S) 0.1 -T) 3.0 2 196. CFS) 0.6 S) 0.6 T) 15.4 2 67.9 CFS) 1.7 S) 1.7 S) 1.7 T) 9.0 2 5.3	5 .6 258 .6 258 .6 8. .6 8. .6 8. .6 8. .6 9. .7 24 .7 24 .9 112 .9 12 .9 5 .6 5 .7 24 .7 24 .7 5 .7 5 .7 7	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 .1 18.3 5 10 2.8 174.2 .9 49.8 .8 49.4 0 10.0 5 10 8 11.3	25 2 438.9 6 60.5 6 60.4 3 20.6 25 2 259.1 3 141.1 4 141.2 11.3 25 5 15.9	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 50 2 200.0 2	08.8 51.7 51.6 6.2 00 29.4 90.0 39.4 4.5 00 4.3	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLI FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLI FSD88 STORM EVEN	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR)	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1 2	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1. 78.2 2.5 25
INFLOV ABLE ED RE D VOL EVEN INFLOV ABLE D VOL EVEN INFLOW ABLE F EVEN NFLOW ABLE F	LEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS) RELEASE (CFS)	S) 0.1 T) 3.0 2 196. 2FS) 0.6 S) 0.6 S) 0.6 S) 0.6 S) 0.6 S) 0.6 S) 0.7 S) 1.7 S) 0.1	5 .6 258 .6 258 .6 8. .6 8. .6 8. .6 8. .6 9 .7 24 .7 24 .9 112 .7 24 .9 9. .5 7. .5 7. .1.4	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3.1 18.3 5 10 2.8 174.2 .9 49.8 .8 49.4 0 10.0 5 10 8 11.3 6 3.2	25 2 438.9 60.5 60.4 3 20.6 25 2 259.1 3 141.1 4 141.2 0 11.3 25 5 15.9 7.5	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 50 2 9.7 1	08.8 51.7 51.6 6.2 00 29.4 90.0 39.4 4.5 00 4.3 2.4	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLI FSD82 STORM EVEN PEAK INFLOW FSD88 STORM EVEN PEAK INFLOW	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR)	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1 78.2 2.5
FLOV BLE VOL EVEN FLOV BLE VOL EVEN FLOW BLE FLOW BLE FLOW BLE FLOW	LEASE (CFS UME (AC-F NT (YR) W (CFS) RELEASE (CFS UME (AC-F N (CFS) RELEASE (CFS) RELEASE (CFS UME (AC-F UME (AC-F IT (YR) W (CFS)	S) 0.1 -T) 3.0 -T) 3.0 196. 196. CFS) 0.6 S) 0.6 T) 15.4 2 67.9 CFS) 1.7 S) 0.1 S) 0.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3 15.9 3 174.3 5 10 2.8 174.3 .9 49.8 .8 49.4 0 10.0 5 10 8 11.3 6 3.2 9 3.0	25 2438.9 60.5 60.4 320.6 25 2259.1 3141.1 4141.2 11.3 25 515.9 7.5 7.6	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 50 2 9.7 1 9.6 1	08.8 51.7 51.6 6.2 00 29.4 90.0 39.4 4.5 00 4.3	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE MODELED REI STORED VOL FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) RELEASE (CFS) LEASE (CFS)	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1 2 18.3 0.8 0.8	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1 5 29.4 12.6 9.2	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3 10 46.2 25.6 25.2	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1 78.2 2.5 25 69.4 59.7 59.6
VEN VEN VOL VEN VOL VEN VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL	LEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS) RELEASE (CFS) RELEASE (CFS)	S) 0.1 -T) 3.0 -T) 3.0 196. 196. CFS) 0.6 S) 0.6 T) 15.4 2 67.9 CFS) 1.7 S) 0.1 S) 0.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3 15.9 3 174.3 5 10 2.8 174.3 .9 49.8 .8 49.4 0 10.0 5 10 8 11.3 6 3.2 9 3.0	25 2 438.9 60.5 60.4 3 20.6 25 2 259.1 3 141.1 4 141.2 11.3 25 5 15.9 7.5 7.6	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 50 2 9.7 1 9.6 1	08.8 51.7 51.6 6.2 00 29.4 90.0 39.4 4.5 00 4.5 00 2.4 2.2	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLI FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F STORED VOLI STORED VOLI STORED VOLI STORED VOLI STORED VOLI STORED VOLI STORED VOLI	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) RELEASE (CFS) LEASE (CFS)	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1 2 18.3 0.8	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1 5 29.4 12.6	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3 10 46.2 25.6	112.2 110.0 3.3 25 184.9 174.3 174.3 174.3 5.2 25 95.5 78.1. 78.2 2.5 25 69.4 59.7
VEN VEN VEN VOL VEN VOL VEN VOL VEN VOL VEN VOL VEN VOL VEN REI VOL	LEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS) RELEASE (CFS) RELEASE (CFS)	S) 0.1 -T) 3.0 -T) 3.0 196. 196. CFS) 0.6 S) 0.6 T) 15.4 2 67.9 CFS) 1.7 S) 0.1 S) 0.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3.1 18.3 5 10 2.8 174.2 .9 49.8 .8 49.4 0 10.0 5 10 8 11.3 6 3.2 9 3.0 3 0.4	25 2438.9 60.5 60.4 320.6 25 2259.1 3141.1 411.2 11.3 25 515.9 7.5 7.6 0.4	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 50 2 9.7 1 9.6 1 0.5 0.5	08.8 51.7 51.6 6.2 00 29.4 90.0 39.4 4.5 00 4.5 00 2.4 2.2 0.6	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLI FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLI FSD88 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLI PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLI	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) UME (AC-FT)	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1 2 18.3 0.8 0.8	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1 5 29.4 12.6 9.2	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3 10 46.2 25.6 25.2	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1 78.2 2.5 25 69.4 59.7 59.6
E REI OUL E REI OUL E REI OUL E REI OUL	LEASE (CFS LUME (AC-F W (CFS) RELEASE (CFS LEASE (CFS LUME (AC-F IT (YR) N (CFS) RELEASE (CFS LUME (AC-F IT (YR) N (CFS) RELEASE (CFS LEASE (CFS LEASE (CFS) RELEASE (CFS LEASE (CFS) RELEASE (CFS) RELEASE (CFS) V (CFS)	S) 0.1 CT) 3.0 196. CFS) 0.6 S) 0.6 S) 0.6 T) 15.4 2 67.9 CFS) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 0.1 CFS) 1.7 S) 0.2 T) 0.3 2 5.3 CFS) 0.1 S) 0.2 T) 0.3 2 59.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 174.2 9 49.8 0 10.0 8 49.4 0 10.0 8 11.3 6 3.2 9 3.0 3 0.4 10 .3	25 2 438.9 60.5 60.4 3 20.6 25 2 259.1 3 141.1 4 141.2 11.3 25 5 15.9 7.6 0.4 25 3 148.1	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 50 2 9.7 1 9.6 1 0.5 50 50 2 180.5 2	08.8 51.7 51.6 6.2 00 29.4 90.0 39.4 4.5 00 4.3 2.4 2.2 0.6 00 13.7	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLU FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLU FSD88 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLU	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) CFS) CFS) CFS CFS CFS CFS CFS CFS CFS CFS	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1 2 18.3 0.8 0.8 1.5 2 2	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1 5 29.4 12.6 9.2 1.5 5	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3 10 46.2 25.6 25.2 1.7	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1 78.2 2.5 25 69.4 59.7 59.6 1.8 25
N N N FEILL	LEASE (CFS LUME (AC-F IT (YR) W (CFS) RELEASE (CFS LEASE (CFS) UME (AC-F IT (YR) W (CFS) RELEASE (CFS) LEASE (CFS) RELEASE (CFS) RELEASE (CFS) LEASE (CFS) RELEASE (CFS) IT (YR) V (CFS) RELEASE (CFS) RELEASE (CFS) RELEASE (CFS) RELEASE (CFS)	S) 0.1 -T) 3.0 -T) 3.0 196. CFS) 0.6 S) 0.6 S) 0.6 T) 15.4 2 67.9 CFS) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 0.1 CFS) 0.1 S) 0.2 T) 0.3 2 59.4 CFS) 0.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 174.2 9 49.8 8 49.4 0 10.0 5 10 3 0.4 10 3 3 0.4	25 2 438.9 6 60.5 6 60.4 3 20.6 25 2 259.1 3 141.1 4 141.2 11.3 25 5 15.9 7.5 7.6 0.4 25 3 148.1 29.6	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 50 2 9.7 1 9.6 1 0.5 50 47.7 6	08.8 51.7 51.6 56.2 00 29.4 90.0 39.4 4.5 00 4.5 00 4.3 2.4 2.2 0.6 00 13.7 9.6	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLI FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLI FSD88 STORM EVEN PEAK INFLOW	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) T	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1 2 18.3 0.8 0.8 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1 5 29.4 12.6 9.2 1.5 5 254.8	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3 10 46.2 25.6 25.2 1.7 10 579.5	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1. 78.2 2.5 25 69.4 59.7 59.6 1.8 25 1064.4
	LEASE (CFS LUME (AC-F W (CFS) RELEASE (CFS LEASE (CFS LUME (AC-F IT (YR) W (CFS) RELEASE (CFS LUME (AC-F IT (YR) W (CFS) RELEASE (CFS LEASE (CFS LEASE (CFS) RELEASE (CFS LEASE (CFS) RELEASE (CFS) LEASE (CFS) WE (AC-F	S) 0.1 -T) 3.0 -T) 3.0 196. CFS) 0.6 S) 0.6 S) 0.6 T) 15.4 2 67.9 CFS) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 0.1 CFS) 0.17 S) 0.2 T) 0.3 2 59.4 CFS) 0.3 S) 0.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 174.2 9 49.8 .8 49.4 0 10.0 5 10 3 0.4 10 3 3 0.4	25 2438.9 60.5 60.4 20.6 25 2259.1 3141.1 411.2 11.3 25 515.9 7.5 7.6 0.4 25 3148.1 29.6 29.5	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 9.7 1 9.6 1 0.5 50 47.7 6 47.7 6	08.8 51.7 51.6 6.2 00 29.4 90.0 39.4 4.5 00 4.3 2.4 2.2 0.6 00 13.7	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLI FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLI STORED VOLI	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) T	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1 2 18.3 0.8 0.8 1.5 2 2	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1 5 29.4 12.6 9.2 1.5 5	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3 10 46.2 25.6 25.2 1.7 10 579.5	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1. 78.2 2.5 25 69.4 59.7 59.6 1.8 25
	LEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS) REL	S) 0.1 -T) 3.0 -T) 3.0 196. CFS) 0.6 S) 0.6 S) 0.6 T) 15.4 2 67.9 CFS) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 0.1 CFS) 0.1 S) 0.2 T) 0.3 2 59.4 CFS) 0.3 S) 0.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 174.2 9 49.8 .8 49.4 0 10.0 5 10 3 0.4 10 3 3 0.4 10 3 3 110.8 5 8.7 5 8.6	25 2438.9 60.5 60.4 20.6 25 2259.1 3141.1 411.2 11.3 25 515.9 7.5 7.6 0.4 25 3148.1 29.6 29.5	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 9.7 1 9.6 1 0.5 50 47.7 6 47.7 6	08.8 51.7 51.6 56.2 00 29.4 90.0 39.4 4.5 00 4.5 00 4.3 2.4 2.2 0.6 00 13.7 9.6 9.0	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLI FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLI STORED VOLI	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) LEASE (CFS) LEASE (CFS) CFS) LEASE (CFS) LEASE (CFS) CFS) LEASE (CFS) CFS CFS) CFS CFS) CFS CFS) CFS CFS CFS CFS CFS CFS CFS CFS	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1 2 18.3 0.8 0.8 1.5 2 131.6 105.0	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1 5 29.4 12.6 9.2 1.5 5 254.8 202.9	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3 10 46.2 25.6 25.2 1.7 10 579.5 462.9	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1. 78.2 2.5 25 69.4 59.7 59.6 1.8 25 1064.4 914.3
	LEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) V (CFS) RELEASE (CFS UME (AC-F IT (YR) V (CFS) RELEASE (CFS UME (AC-F	S) 0.1 -T) 3.0 -T) 3.0 196. CFS) 0.6 S) 0.6 S) 0.6 S) 0.6 T) 15.4 2 67.9 CFS) 1.7 S) 0.1 CFS) 0.1 S) 0.2 T) 0.3 CFS) 0.3 S) 0.3 S) 0.3 S) 0.3 T) 4.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 174.2 9 49.8 .8 49.4 0 10.0 5 10 8 11.3 6 3.2 9 3.0 3 0.4 10 3 5 8.7 5 8.6 9 5.5	25 2 438.9 6 60.5 6 60.4 3 20.6 25 2 259.1 3 141.1 4 141.2 11.3 25 5 15.9 7.5 7.6 0.4 25 8 148.1 29.6 29.5 6.4	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 50 2 9.7 1 9.6 1 0.5 50 47.7 6 7.3 7.3	$ \begin{array}{c} 08.8\\ 51.7\\ 51.6\\ 6.2\\ 00\\ 29.4\\ 90.0\\ 39.4\\ 4.5\\ 00\\ 4.3\\ 2.4\\ 2.2\\ 0.6\\ 00\\ 13.7\\ 9.6\\ 9.0\\ 3.2\\ \end{array} $	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLI FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLI STORED VOLI	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) LEASE (CFS) LEASE (CFS) CFS) LEASE (CFS) LEASE (CFS) CFS) LEASE (CFS) CFS CFS) CFS CFS) CFS CFS) CFS CFS CFS CFS CFS CFS CFS CFS	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1 2 18.3 0.8 0.8 1.5 2 131.6 105.0	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1 5 29.4 12.6 9.2 1.5 5 254.8 202.9	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3 10 46.2 25.6 25.2 1.7 10 579.5 462.9	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1 78.2 2.5 25 69.4 59.7 59.6 1.8 25 1064.4 914.3
	LEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS UME (AC-F IT (YR) N (CFS) RELEASE (CFS) REL	S) 0.1 T) 3.0 2 196. CFS) 0.6 S) 0.7 S) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 0.1 Z 5.3 CFS) 0.1 Z 5.3 Q 2 S) 0.2 T) 0.3 Z 59.4 S) 0.3 S) 0.3 S) 0.3	5 .6 258 5 8. 5 8. 4 16 9 112 224 20 9 112 224 20 9 112 24 20 9 112 24 20 9 112 24 20 9 112 24 20 9 10 9 0. 5 7. 1.4 0. 5 7. 1.4 0. 5 7. 1.4 4.1 4 81. 4 4.1 4 4.1 4 4.1	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3 15.9 3 174.2 9 49.8 .8 49.4 0 10.0 5 10 8 11.3 6 3.2 9 3.0 3 0.4 10 3 5 8.7 5 8.6 9 5.5 10 10	25 2438.9 60.5 60.4 20.6 25 2259.1 3141.1 411.2 11.3 25 515.9 7.5 7.6 0.4 25 3148.1 29.6 29.5 6.4	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 9.7 1 9.6 1 0.5 50 50 2 47.7 6 47.7 6 50 7.3	08.8 51.7 51.6 56.2 00 29.4 90.0 39.4 4.5 00 4.5 00 4.3 2.4 2.2 0.6 00 13.7 9.6 9.0	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLI FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLI STORED VOLI	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) LEASE (CFS) LEASE (CFS) CFS) LEASE (CFS) LEASE (CFS) CFS) LEASE (CFS) CFS CFS) CFS CFS) CFS CFS) CFS CFS CFS CFS CFS CFS CFS CFS	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1 2 18.3 0.8 0.8 1.5 2 131.6 105.0	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1 5 29.4 12.6 9.2 1.5 5 254.8 202.9	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3 10 46.2 25.6 25.2 1.7 10 579.5 462.9	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1. 78.2 2.5 25 69.4 59.7 59.6 1.8 25 1064.4 914.3
NFLOV ABLE ED RE D VOL EVEN NFLOV ABLE D RE D VOL EVEN NFLOW ABLE F C VOL EVEN NFLOW ABLE F C VOL EVEN NFLOW ABLE F C VOL EVEN NFLOW ABLE F	LEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) W (CFS) RELEASE (CFS UME (AC-F IT (YR) V (CFS) RELEASE (CFS UME (AC-F IT (YR) V (CFS) RELEASE (CFS UME (AC-F IT (YR) V (CFS) RELEASE (CFS UME (AC-F IT (YR) V (CFS) RELEASE (CFS UME (AC-F IT (YR)	S) 0.1 CFS) 0.1 196. CFS) 0.6 S) 0.6 S) 0.6 S) 0.6 S) 0.6 S) 0.6 CFS) 0.6 S) 0.7 S) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 1.7 S) 0.1 CFS) 0.1 S) 0.2 T) 0.3 CFS) 0.3 S) 0.3 S) 0.3 S) 0.3 S) 0.3 S) 0.3 S) 0.9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 10 3.6 339. 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 15.9 3 10 2 26.7	25 2 438.9 6 60.5 6 60.4 3 20.6 25 2 259.1 3 141.1 4 141.2 11.3 25 5 15.9 7.5 7.6 0.4 25 3 148.1 29.6 29.5 6.4 25 5 189.1 25 5 189.1 5 189.	50 523.4 6 101.7 1 101.4 1 23.2 2 50 342.0 207.2 2 206.9 2 13.0 1 50 2 9.7 1 9.6 1 0.5 1 9.6 1 0.5 2 47.7 6 47.7 6 7.3 3 50 2 20.2 10	$ \begin{array}{c} 08.8\\ 51.7\\ 51.6\\ 6.2\\ 00\\ 29.4\\ 90.0\\ 39.4\\ 4.5\\ 00\\ 4.3\\ 2.4\\ 2.2\\ 0.6\\ 00\\ 13.7\\ 9.6\\ 9.0\\ 3.2\\ 00\\ 00\\ \end{array} $	STORED VOL FSD81 STORM EVEN PEAK INFLOW ALLOWABLE I MODELED REI STORED VOLI FSD82 STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORM EVEN PEAK INFLOW ALLOWABLE F MODELED REI STORED VOLI STORED VOLI	UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) LEASE (CFS) UME (AC-FT) T (YR) V (CFS) RELEASE (CFS) UME (AC-FT) T (YR) V (CFS) LEASE (CFS) LEASE (CFS) CFS) LEASE (CFS) LEASE (CFS) CFS) LEASE (CFS) CFS CFS) CFS CFS) CFS CFS) CFS CFS CFS CFS CFS CFS CFS CFS	2.8 2 48.3 2.4 2.4 4.6 2 25.0 1.1 1.1 2.1 2 18.3 0.8 0.8 1.5 2 131.6 105.0	2.8 5 78.3 36.7 36.0 4.7 5 40.6 16.4 13.2 2.1 5 29.4 12.6 9.2 1.5 5 254.8 202.9	3.0 10 123.1 74.5 74.5 4.9 10 63.7 33.4 33.3 2.3 10 46.2 25.6 25.2 1.7 10 579.5 462.9	112.2 110.0 3.3 25 184.9 174.3 174.3 5.2 25 95.5 78.1 78.2 2.5 25 69.4 59.7 59.6 1.8 25 1064.4 914.3

			SIN SU				
I A	CN AREA (ACRES)	AREA (sq mi)	Q2 (CFS)		10 Q 25 FS) (CFS)	Q 50 (CFS)	Q 50 (CFS)
73 84		0.085	31.4 40.6	and the second se	3.888.5.092.4	110.3 110.6	133.1 129.1
81	63.0	0.098	53.8	73.0 98	3.5 130.8	158.6	187.0
88 85	Contraction of the local data and the local data an	0.077	61.4 32.9		2.2130.17.073.9	153.6 88.2	177.1
82 88	58.0 45.7	0.091	53.9	72.5 9	7.1 128.0	154.5	181.5
63		0.224	54.0 28.0	69.99045.57	0.3115.21.1106.4	136.2 138.9	157.2 173.8
	66 217.4 63 36.0	0.340	49.2 7.6	76.2 11 12.3 19	5.0 168.1 .4 29.1	217.1 38.0	269.5 47.7
70	10.7	0.017	5.3	7.8 11	.3 15.9	20.0	24.3
80 81	76.6	0.120	59.4 77.8	81.3 11 105.6 14		180.5 229.1	213.7 270.0
85	41.0	0.064	43.9	57.8 76	.0 98.5	117.6	136.9
-	80199.465147.6	0.311	162.1 32.8	221.4 30 51.8 79			577.7 188.3
_	79 224.1	0.350	150.7	208.5 28	6.6 386.6	473.7	563.4
	71 70.6 81 53.7	0.110	37.2 49.3	53.9 77 67.1 91		138.8	169.2 174.0
	63 191.5	0.299	37.2	60.5 94	.6 141.6	184.9	231.4
-	6350.36362.6	0.079	12.2 14.3	19.63023.130		58.9 70.3	73.5 87.9
	63 40.6 64 81.3	0.063	9.2 19.5	14.9 23 31.2 48	.2 34.6	45.2	56.5
1.1	63 65.5	0.102	13.7	22.0 34	.4 51.6	93.0 67.6	116.0 84.8
	63 90.0 53 119.7	0.141 0.187	16.4 22.3	26.4 41 36.5 57		81.3	102.0 140.7
63	3 79.3	0.124	13.6	22.1 34	.6 51.9	67.8	84.9
	63 86.4 63 163.8	0.135	14.2 33.0	23.1 36 53.4 83		71.4	89.6 202.4
	63 155.6	0.243	28.1	45.3 70	.6 106.2	139.1	174.5
	63189.063147.7	0.295	34.9 27.3	57.0 89 44.3 69	the second s	175.6 136.8	220.1 171.4
-	63 262.9	0.411	48.3	78.3 12	3.1 184.9	242.0	303.4
	63117.86387.2	0.184	25.0 18.3	40.6 63 29.4 46		125.0 90.9	156.6 113.9
-		DESIGN	POINT	SUMMAR	Y		
	Q ₂ Q ₅ GFS) (CFS)		Q ₂₅ (CFS)			LOCA	TION
_	2.3 36.5	61.8 1	136.5 1	92.8 249	.7		
	2.4139.539.3231.4			24.3 928 118.3 1486		ARROYA LA	
8	9.7 98.4	154.0 2	232.6 3	06.2 385	.3	ANNO TA LA	
	37.4 236.9 34.9 236.2			145.0 152 [°] 156.5 150 [°]	the second se	POCO RO	
	35.1 242.0	452.4 8	803.1 1	154.4 152	3.3 STERLIN	G RANCH	
	54.4 246.1 54.3 256.6	and the second se	the second se	177.6 1543 262.7 1673		ARGATE PA	RWAY X-
72 *	33.9 255.6	541.2 9	922.7 1	371.3 1836	5.4		
	05.0202.94.5148.0			302.7 165. 88.0 332		ILNG RANC	I ROAD X
-	05.1 203.2	471.7 9	932.6 1.	327.0 1693	5.4 STERLIN	G RANCH	
-	06.6206.31.0212.4	and the second se		523.3 1955 558.5 2001		00 SPRINGS MARKSHEFF	-
7 1	0.4 212.3	546.2 10	078.2 15	567.6 2017	.3 SAI	ND CREEK	AND POND
	her foll en genere filmt <u>e op er d</u> aherste	an ya canadan ka sa	er _n scholjeger stadio				Balline
1	WATER QU	JALITY &	DETEN	TION PO	ND SUMN	IARY	
RM	EVENT (YR)	2	5	10	the second se	50 1	00
AK	IFLOW (CFS)	31.4 CES) 0.1	45.0	63.8	88.5 1	10.3 13	3.1
DEL	BLE RELEASE (D RELEASE (CF	S) 0.2		<u> </u>			5.5 5.5
	VOLUME (AC-			3.0			.9
					6		
M	EVENT (YR)	2 40.6	5 53.7	10			00
IA	IFLOW (CFS) BLE RELEASE (CFS) 0.1		71.0 2.6			9.1
EL	D RELEASE (CF	S) 0.1	1.4	2.6	11.2	19.7 3	0.1
RE	VOLUME (AC-	FT) 3.0	3.2	3.8	4.1	4.7 5	.2
10			T -	10		<u> </u>	
	EVENT (YR) IFLOW (CFS)	2	5 5 258.6	10 5 339.2	25 438.9 5		00 8.8
.OW	BLE RELEASE (CFS) 0.6	8.3	15.9	60.5 1	01.7 15	1.7
	D RELEASE (CF VOLUME (AC-			15.9 18.3			1.6
)	1			1 10.0	20.0 2	20	
	EVENT (YR)	2	5	10	25	50 10	00
AK I	FLOW (CFS)	67.9	112.8	174.2	259.1 3	42.0 42	9.4
	BLE RELEASE (D RELEASE (CF		24.9 20.8				0.0 9.4
	VOLUME (AC-			10.0	the second s		.5
D11A							
RM	EVENT (YR)	2	5	10	the second se		0
A	FLOW (CFS) BLE RELEASE (7.8	11.3 3.2			.3
DELI	O RELEASE (CF VOLUME (AC-I	S) 0.2	0.9	3.0	7.6		.2
	-	<u> </u>	0.3	1 0.4	0,4	0.0 0	<u> </u>
D11E	EVENT (YR)	2	5	10	25	50 10	
EAK I	FLOW (CFS)	59.4	81.3	110.8	148.1 18	80.5 21.	
	BLE RELEASE (0 RELEASE (CF		4.5	8.7 8.6		7.7 69	
	VOLUME (AC-I		4.5	5.5			2
	l .						
T EVEN		2	5	10	the second se	50 10	
E	VENT (YR) FLOW (CFS) BLE RELEASE ((77.8			189.1 2	50 10 29.1 27 0.2 10	0.0

	B	ASIN	SUMMA	RY					WATER QUAL	TY & I)ETFN1			MMAR	Y
	AREA	Q ₂ (CFS)	Q5 (OFS)	Q10 (CFS)	Q ₂₅ (CFS)	Q 50 (CFS)	Q 50 (CFS)	FSD1	3						•
3 27.8	0.085	31.4	45.0	63.8	88.5	110.3	133.1	and the second se	RM EVENT (YR) K INFLOW (CFS)	2 43.9	5	10 76.0	25	50	T
4 39.1	0.061	40.6	53.7	71.0	92.4	110.6	129.1	ALLC	WABLE RELEASE (CFS		6.1	12.3	98.5 28,6	117.6 37.0	+
1 63.0 8 49.3		53.8 61.4	73.0	98.5	130.8 130.1	158.6 153.6	187.0 177.1	MOD	ELED RELEASE (CFS)	0.4	4.2	12.3	28.6	36.9	1
5 30.9	0.048	32.9	43.4	57.0	73.9	88.2	102.7	STOP	RED VOLUME (AC-FT)	3.1	3.1	3.3	3.8	4.4	
2 58.0 8 45.7		53.9	72.5	97.1	128.0	154.5	181.5	FSD1	5						
8 45.7 3 143.4		54.0 28.0	69.9 45.5	90.3	115.2 106.4	136.2 138.9	157.2 173.8		RM EVENT (YR)	2	5	10	25	50	
6 217.4	0.340	49.2	76.2	115.0	168.1	217.1	269.5		(INFLOW (CFS) WABLE RELEASE (CFS)	32.8	51.8	79.4	117.0	151.5	_
3 36.0		7.6	12.3	19.4	29.1	38.0	47.7	the second s	ELED RELEASE (CFS)	1.2	17.5	35.7 35.7	85.4 85.4	111.7	+
0 10.7		5.3 59.4	7.8	11.3 110.8	15.9 148.1	20.0 180.5	24.3 213.7		RED VOLUME (AC-FT)	3.3	3.3	3.6	4.0	4.5	1
1 88.2		77.8	105.6	142.5	189.1	229.1	270.0	FSD1	6						
5 41.0	0.064	43.9	57.8	76.0	98.5	117.6	136.9	and the second sec	M EVENT (YR)	2	5	10	25	50	Т
199.4 5 147.6		162.1	221.4 51.8	300.7 79.4	401.5 117.0	488.6 151.5	577.7 188.3		(INFLOW (CFS)	248.6	362.6	503.9	692.0	852.3	\uparrow
224.1		150.7	208.5	286.6	386.6	473.7	563.4		WABLE RELEASE (CFS)		21.5	41.9	143.4	231.0	
70.6		37.2	53.9	77.7	109.9	138.8	169.2		LED RELEASE (CFS) RED VOLUME (AC-FT)	1.5	21.5	41.8	143.2	230.8 39.0	+-
53.7	0.084	49.3	67.1	91.0	121.2	147.3	174.0		`		20.0	20.7			_
50.3		37.2	60.5 19.6	94.6 30.4	141.6 45.2	184.9 58.9	231.4 73.5	FSD1							
62.6	0.098	14.3	23.1	36.1	53.9	70.3	87.9		M EVENT (YR) (INFLOW (CFS)	2 37.2	5 53.9	10	25	50 138.8	+-
40.6	0.063	9.2	14.9	23.2	34.6	45.2	56.5	ALLO	WABLE RELEASE (CFS)		11.1	22.5	52.0	67.2	+
81.3 65.5	0.127	19.5	31.2	48.2	71.6 51.6	93.0 67.6	116.0 84.8		LED RELEASE (CFS)	0.7	7.3	22.4	52.0	67.3	1
90.0	0.141	16.4	26.4	41.3	62.1	81.3	102.0	STOP	RED VOLUME (AC-FT)	2.3	2.3	2.5	3.0	3.6	in the second
119.7		22.3	36.5	57.3	85.9	112.3	140.7	FSD1	8						
79.3	0.124	13.6	22.1	34.6 36.4	51.9 54.6	67.8 71.4	84.9 89.6	STOR	M EVENT (YR)	2	5	10	25	50	Γ
163.8		33.0	53.4	83.2	124.1	161.9	202.4	And an	INFLOW (CFS)	49.3	67.1	91.0	121.2	147.3	
155.6	0.243	28.1	45.3	70.6	106.2	139.1	174.5		WABLE RELEASE (CFS) LED RELEASE (CFS)	0.6	9.2	18.4	42.2	54.6 54.6	+
189.0		34.9 27.3	57.0 44.3	89.5 69.6	134.3 104.5	175.6 136.8	220.1 171.4		RED VOLUME (AC-FT)	3.2	3.2	3.4	4.0	4.7	+
262.9		48.3	78.3	123.1	104.5	242.0	303.4	F 60	0		1				
117.8	0.184	25.0	40.6	63.7	95.5	125.0	156.6	FSD1 STOR	9 M EVENT (YR)	2	5	10	25	50	Т
87.2	0.136	18.3	29.4	46.2	69.4	90.9	113.9	PEAK	INFLOW (CFS)	37.2	60.5	94.6	141.6	184.9	+
								ALLO	WABLE RELEASE (CFS)	1.7	24.6	50.3	118.4	153.3	+
	DESIG		NT SUM	MARY					LED RELEASE (CFS) ED VOLUME (AC-FT)	1.7	18.6	50.3	118.1	153.2	\downarrow
Q5 (CFS)	Q10 (CFS)	Q ₂₅ (CFS)	Q 50 (CFS)	Q100 (CFS)	1993 - 1998 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	10047	ΊΩN		LU VOLUNIL (AU-FI)		3.4	3.7	4.1	4.5	1_
(öřš) 36.5	61.8	(öřš) 136.5				LOCAT		FSD2							
139.5	230.2	521.6	192.8 724.3	249.7 928.7				the second se	M EVENT (YR)	2	5	10	25	50	F
231.4	430.3	793.5	1118.3	1486.8	AR	ROYA LA	NE X-ING		INFLOW (CFS) WABLE RELEASE (CFS)	12.2 0.6	19.6 8.4	30.4 16.8	45.2 38.8	58.9 50.1	+
98.4	154.0	232.6	306.2	385.3				MODE	LED RELEASE (CFS)	0.6	8.4	16.6	38.8	50.0	+
236.9	446.0	806.4	1145.0 1156.5	1521.9 1501.6		OCO ROA			ED VOLUME (AC-FT)	0.8	0.8	0.9	1.0	1.1	
242.0	452.4	803.1	1154.4				ORTHERN BNDR	FSD2	1						
242.0	462.4	808.9	1177.6	1543.2			n na haran an haran a	and the second sec	M EVENT (YR)	2	5	10	25	50	Т
256.6 255.6	<u>499.1</u> 541.2	864.2 922.7	1262.7 1371.3	1673.2 1836.4	BRIAR	GATE PAR	KWAY X-ING	PEAK	INFLOW (CFS)	14.3	23.1	36.1	53.9	70.3	T
202.9	462.9	922.7	1302.7	1653.2	STERIL	IG RANCH	ROAD X-ING		WABLE RELEASE (CFS) LED RELEASE (CFS)	0.7	10.1	20.3	47.0	60.7	_
148.0	191.1	243.7	288.0	332.4					ED VOLUME (AC-FT)	0.7	8.8	20.3	46.9	60.6 1.4	+
203.2	471.7 531.1	932.6 1051.2	1327.0				OUTHERN BNDR				4			· · · ·	J.,
206.3	543.2	1051.2	1523.3 1558.5	1955.5 (2001.4		RKSHEFFI	/EL PASO BNDR EL X—ING	FSD2	2 M EVENT (YR)			10	05		Т
212.3	546.2	1078.2	1567.6	2017.3			ND POND 3	and the second se	INFLOW (CFS)	9.2	5 14.9	10 23.2	25 34.6	50 45.2	+
n og en ster Mart sog er sjøder.	and the statements of	ing the second second					later and	ALLO	WABLE RELEASE (CFS)	0.4	6.6	13.2	30.5	39.4	t
ATER O	UALITY	& DFT		POND	SUMMA	RY			LED RELEASE (CFS) ED VOLUME (AC-FT)	0.4	2.1 0.8	13.3 0.8	29.9 0.9	39.3 0.9	and and a
										<u> </u>		1	L	0.9	1
ENT (YR)	and the second s	2		0 2				FSD2			-	10	05		1
OW (CFS) RELEASE				3.8 88 5.3 10		(1972) - Harrison - 1972 - 1972	and the state of the		M EVENT (YR) INFLOW (CFS)	19.5	5 31.2	10 48.2	25 71.6	50 93.0	-
ELEASE (C	CFS) (5.3 10 5.3 10		the second s	and the second se	ALLO	WABLE RELEASE (CFS)	0.9	13.0	26.2	60.6	78.4	
UME (AC				5.0 3.			and the second diversion of th		LED RELEASE (CFS) ED VOLUME (AC-FT)	0.9	13.1	26.0	60.4	78.3	
										1.4	1.5	1.6	1.7	1.9	L
IT (YR)		2		0 2				FSD7				1			
W (CFS)				1.0 92					M ÉVENT (YR) INFLOW (CFS)	2 33.0	5 53.4	10	25	50	
RELEASE							And and a second second		NABLE RELEASE (CFS)	1.6	23.7	83.2 48.1	124.1 112.2	161.9 145.1	2
UME (AC-				.8 4.	and the second se			MODE	LED RELEASE (CFS)	1.6	23.5	48.0	110.0	144.9	
								STOR	ED VOLUME (AC-FT)	2.8	2.8	3.0	3.3	3.6	
NT (YR)		2	5 1 4	0 1 0	5 1			FSD8	1						
W (CFS)	10	2 96.6 2		0 2. 9.2 438				STOR	M EVENT (YR)	2	5	10	25	50	
RELEASE	(CFS) (D.6	8.3 15	5.9 60	.5 101	.7 151	.7	PEAK	INFLOW (CFS)	48.3	78.3	123.1	184.9	242.0	
LEASE (C				5.9 60					VABLE RELEASE (CFS) LED RELEASE (CFS)	2.4	36.7 36.0	74.5 74.5	174.3 174.3	225.5	
UME (AC-	-ri) 1	5.4	16.1 18	3.3 20	.6 23.	2 26	2		D VOLUME (AC-FT)	4.6	4.7	4.9	5.2	225.3 5.5	
		W								-					
NT (YR)	and the second se	2		0 2				FSD82	2 1 EVENT (YR)		E	10		50	
W (CFS) RELEASE				4.2 259 9.8 141					INFLOW (CFS)	2 25.0	5 40.6	10 63.7	25 95.5	50 125.0	
ELEASE (C	FS) 1			9.4 141				ALLOV	VABLE RELEASE (CFS)	1.1	16.4	33.4	78.1.	101.1	1
UME (AC-	-FT) 9).0 11.					ED RELEASE (CFS)	1.1	13.2	33.3	78.2	101.2	1
								STUR	U VULUME (AC-FI)	2.1	2.1	2.3	2.5	2.8	
T (YR)		2	5 1	0 25	5 50) 10	0	FSD88							_
V (CFS)	Ę	5.3	7.8 11	.3 15.	9 20.	0 24.	3		I EVENT (YR)	2	5	10	25	50	
RELEASE LEASE (C				.2 7.					INFLOW (CFS) VABLE RELEASE (CFS)	18.3 0.8	<u>29.4</u> 12.6	46.2 25.6	69.4 59.7	<u>90.9</u> 77.3	hind
UME (AC-		and the second se		.0 7.				MODEL	ED RELEASE (CFS)	0.8	9.2	25.2	59.7	77.2	
		L		0.1		0.0	/		ED VOLUME (AC-FT)	1.5	1.5	1.7	1.8	2.0	
		<u>, I</u>	<u> </u>	0 -				PNDW	3						
T (YR) / (CFS)		2 9.4 8	<u>5</u> 1 31.3 110					STORM	I EVENT (YR)	2	5	10	25	50	
RELEASE			4.5 8.	and the second se				PEAK	INFLOW (CFS)	131.6	254.8	579.5	1064.4	1597.5	2
EASE (C	FS) C).3	4.5 8.	.6 29.	5 47.	7 69.	0	the second se	ED RELEASE (CFS)	105.0	202.9	462.9	914.3	1302.7	1
ME (AC-	-+1) 4	1.8	4.9 5.	.5 6.4	4 7.3	8.2	2	LSTORE	U VULUME (AU-FI)	1.3	3.2	9.1	19.6	30.5	
		Magazara													
(YR)		2	5 1												
(CFS)	7	7.8 10		2.5 189	0.1 229	.1 270									
RELEASE	(CEC) -).9 1	3.2 26	.7 62.	0 80.1	2 103	0								

17			B	ASIN S	SUMMAF	RY						WATER QUAL	ו א אדן	DETENT			MMAD	,]
BASIN	CN	AREA (ACRES)	AREA (sq mi)	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q 25 (CFS)	Q50 (CFS)	Q 50 (CFS)		FSD13				·····			<i></i>
SC3-1A SC3-5A	73 84	27.8 39.1	0.085 0.061	31.4 40.6	45.0 53.7	63.8 71.0	88.5 92.4	110.3 110.6	133.1 129.1		PEAK INF	VENT (YR) LOW (CFS) LE RELEASE (CFS)	2 43.9) 0.4	5 57.8 6.1	10 76.0 12.3	25 98.5	50	100 136.9
SC3-5B SC3-6A	81 88	63.0 49.3	0.098 0.077	53.8 61.4	73.0 79.3	98.5 102.2	130.8 130.1	158.6 153.6	187.0		MODELED	RELEASE (CFS) VOLUME (AC-FT)	0.4	4.2	12.3	28,6 28.6	37.0 36.9	47.6
SC3-6B SC3-6C	85 82	30.9 58.0	0.048	32.9 53.9	43.4 72.5	57.0 97.1	73.9 128.0	88.2 154.5	102.7		FSD15	VOLUME (AC-FT)	3.1	3.1	3.3	3.8	4.4	5.0
SC3-7 SC3-8	88 63	45.7 143.4	0.071 0.224	54.0 28.0	69.9 45.5	90.3 71.1	115.2 106.4	136.2 138.9	157.2		STORM E	VENT (YR)	2	5	10	25	50	100
SC3-9 SC3-10	66 63	217.4 36.0	0.340	49.2 7.6	76.2	115.0 19.4	168.1 29.1	217.1 38.0	269.5 47.7		ALLOWABI	LOW (CFS) LE RELEASE (CFS)		51.8	79.4	117.0 85.4	151.5	188.3 145.8
SC3-11A	70 80	10.7 76.6	0.017	5.3 59.4	7.8 81.3	11.3 110.8	15.9 148.1	20.0 180.5	24.3 213.7			RELEASE (CFS) VOLUME (AC-FT)	1.2 3.3	13.1 3.3	35.7 3.6	85.4 4.0	4.5	145.7 5.0
SC3-12 SC3-13	81 85	88.2 41.0	0.138	77.8 43.9	105.6 57.8	142.5 76.0	189.1 98.5	229.1 117.6	270.0		FSD16					1		
SC3-14 SC3-15	80 65	199.4 147.6	0.311 0.231	162.1 32.8	221.4 51.8	300.7 79.4	401.5 117.0	488.6 151.5	577.7		PEAK INF	VENT (YR) LOW (CFS)	248.6	5 362.6	10 503.9	25 692.0	50 852.3	100 1016.5
SC3-16 SC3-17	79 71	224.1 70.6	0.350	150.7 37.2	208.5 53.9	286.6 77.7	386.6 109.9	473.7 138.8	563.4 169.2		MODELED	LE RELEASE (CFS) RELEASE (CFS)	1.5	21.5	41.9	143.4 143.2	231.0 230.8	338.7 338.7
SC3-18 SC3-19	81 63	53.7 191.5	0.084	49.3 37.2	67.1 60.5	91.0 94.6	121.2 141.6	147.3 184.9	174.0			VOLUME (AC-FT)	25.5	26.0	29.7	34.2	39.0	43.9
SC3-20 SC3-21	63 63	50.3 62.6	0.079	12.2 14.3	19.6 23.1	30.4 36.1	45.2 53.9	58.9 70.3	73.5 87.9	-	FSD17 STORM EV		2	5	10	25	50	100
SC3-22 SC3-23	63 64	40.6 81.3	0.063	9.2 19.5	14.9 31.2	23.2 48.2	34.6 71.6	45.2 93.0	56.5 116.0		ALLOWABL	LOW (CFS) LE RELEASE (CFS)		53.9	77.7	109.9 52.0	138.8	169.2 86.3
SC3-61 SC3-73	63 63	65.5 90.0	0.102	13.7 16.4	22.0 26.4	34.4 41.3	51.6 62.1	67.6 81.3	84.8 102.0			RELEASE (CFS) VOLUME (AC-FT)	0.7	7.3	22.4 2.5	52.0 3.0	67.3 3.6	86.3 4.2
SC3-74 SC3-75	63 63	119.7 79.3	0.187 0.124	22.3 13.6	36.5 22.1	57.3 34.6	85.9 51.9	112.3 67.8	140.7 84.9		FSD18 STORM EV				10	0.5	50	100
SC3-76 SC3-77	63 63	86.4 163.8	0.135 0.256	14.2 33.0	23.1 53.4	36.4 83.2	54.6 124.1	71.4 161.9	89.6 202.4		PEAK INF	· · · · · · · · · · · · · · · · · · ·	2 49.3	5 67.1	10 91.0	25 121.2	50 147.3	100
SC3-78 SC3-79	63 63	155.6 189.0	0.243 0.295	28.1 34.9	45.3 57.0	70.6 89.5	106.2 134.3	139.1 175.6	174.5		MODELED	RELEASE (CFS) RELEASE (CFS) VOLUME (AC-FT)	0.6	9.2	18.4	42.2	54.6	69.9 69.6
SC3-80 SC3-81	63 63	147.7 262.9	0.231 0.411	27.3 48.3	44.3 78.3	69.6 123.1	104.5 184.9	136.8 242.0	171.4 303.4		FSD19	VOLUME (AC-FT)	3.2	3.2	3.4	4.0	4.7	5.3
SC3-82 SC3-88	63 63	117.8 87.2	0.184 0.136	25.0 18.3	40.6 29.4	63.7 46.2	95.5 69.4	125.0 90.9	156.6 113.9		STORM EV	VENT (YR) LOW (CFS)	2	5	10	25	50	100
											ALLOWABL	LOW (CFS) LE RELEASE (CFS) RELEASE (CFS)	37.2 1.7 1.7	60.5 24.6 18.6	94.6 50.3 50.3	141.6 118.4 118.1	184.9 153.3 153.2	231.4 198.4 198.2
AREA	0	0-	T									VOLUME (AC-FT)	3.4	3.4	3.7	4.1	4.5	5.1
(SQ MI)	Q2 (CFS) 22.3	Q₅ (¢F\$) 36.5	Q10 (CFS) 61.8	Q25 (CFS) 136.5	Q50 (CFS) 192.8	Q100 (CFS) 249.7		LOCA	ATION	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	FSD20 STORM EV	/ENT (YP)	2	5	10	25	50	100
	82.4 139.3	139.5 231.4	230.2 430.3	521.6 793.5	724.3 1118.3	928.7 1486.8	AF	ROYA LA	ane X-In	IG	PEAK INFL		12.2	19.6 8.4	30.4 16.8	45.2 38.8	58.9 50.1	73.5
and the second sec	59.7 137.4	98.4 236.9	154.0 446.0	232.6 806.4	306.2 1145.0	385.3 1521.9					MODELED	RELEASE (CFS) /OLUME (AC-FT)	0.6	8.4	16.6 0.9	<u>38.8</u> 1.0	50.0	63.8 1.3
	134.9 135.1	236.2 242.0	443.8 452.4	793.7 803.1		1501.6 1523.3 S		OCO ROA		G N BNDRY	FSD21			0.0	0.0	1.0	1.1	1.0
	134.4 134.3	246.1 256.6	462.4 499.1	808.9 864.2	and an owner of the second	1543.2 1673.2	BRIAR	GATE PA	RKWAY	(–ING	STORM EV PEAK INFL		2	5 23.1	10 36.1	25 53.9	50 70.3	100 87.9
	133.9 105.0	255.6 202.9	541.2 462.9	922.7 914.3		1836.4 1653.2	STERIL	NG RANC	H ROAD	X—ING	ALLOWABL	E RELEASE (CFS) RELEASE (CFS)		10.1	20.3	47.0	60.7 60.6	77.9
	114.5 105.1	148.0 203.2	191.1 471.7	243.7 932.6	288.0 1327.0	332.4 1693.4 S	STERLING	RANCH S	SOUTHER	N BNDRY		OLUME (AC-FT)	1.0	1.0	1.1	1.2	1.4	1.5
	106.6 111.0	206.3 212.4		1051.2 1073.9		1955.5 C 2001.4		SPRINGS ARKSHEFF	and the second s	SO BNDRY IG	FSD22 STORM EV	/FNT (YR)	2	5	10	25	50	100
5.687	110.4	212.3	546.2	1078.2	1567.6	2017.3	SAND	CREEK	AND POI	ND 3	PEAK INFL		9.2	14.9 6.6	23.2	34.6 30.5	45.2	56.5
[WA	TER QU	ALITY	& DETI	ENTION	PONDS	SUMMA	RY				RELEASE (CFS) /OLUME (AC-FT)	0.4	2.1 0.8	13.3 0.8	29.9 0.9	39.3 0.9	49.9
FSD1 STORM	I EVENT	(YR)		2	5 10	25	5	0 1	00		FSD23		2					
	INFLOW	(CFS) ELEASE ((31 CFS) 0		5.0 63 .7 3.	.8 88. 3 10.			33.1 5.5		STORM EV PEAK INFL	_OW (CFS)	2 19.5	5 31.2	10 48.2	25 71.6	50 93.0	100 116.0
and an		EASE (CFS JME (AC-F			.7 <u>3</u> . 2.6 <u>3</u> .	and the second se			5.5 4.9		MODELED	E RELEASE (CFS) RELEASE (CFS)	0.9	13.0 13.1	26.2 26.0	60.6 60.4	78.4 78.3	100.6 100.1
FSD5						-	/					OLUME (AC-FT)	1.4	1.5	1.6	1.7	1.9	2.1
PEAK	I EVENT	(CFS)	40).6 5.	5 10 3.7 71.	.0 92.	4 110).6 12	00 29.1		FSD77 STORM EV		2	5	10	25	50	100
MODEL	ED REL	ELEASE (CFS	S) 0	.1 1	.4 2. .4 2.	6 11.:		.7 3	0.2			E RELEASE (CFS)	33.0 1.6	53.4 23.7	83.2 48.1	124.1 112.2	161.9 145.1	202.4 186.9
	D VOLL	IME (AC-F	T) 3.	.0 3	.2 3.	8 4.1	4.	7 5	5.2			RELEASE (CFS) OLUME (AC-FT)	1.6 2.8	23.5 2.8	48.0 3.0	110.0 3.3	144.9 3.6	186.7 3.9
	I EVENT		2		5 10				00		FSD81 STORM EV				40 1		P C 1	
ALLOW	Contract of the local division of the local	ELEASE (C		.6 8	8.6 339 .3 15.	.9 60.	5 101	.7 15	08.8		PEAK INFL		2 48.3	5 78.3 36.7	10 123.1 74.5	25 184.9	50 242.0	100 303.4
		EASE (CFS ME (AC-F			.3 15. 6.1 18.				6.2		MODELED	E RELEASE (CFS) RELEASE (CFS) OLUME (AC-FT)	2.4	36.7 36.0	74.5	174.3 174.3	225.5 225.3	290.9 290.9
FSD9						<u></u>					FSD82	OLUME (AC-FT)	4.6	4.7	4.9	5.2	5.5	5.9
PEAK	EVENT INFLOW	(CFS)	67	.9 11:		.2 259	.1 342	2.0 42	00		STORM EV		2 25.0	5	10 63.7	25	50	100
MODEL	ED REL	ELEASE (CES	5) 1.	7 20	4.9 49. 0.8 49.	4 141.	2 206	5.9 28	9.4		ALLOWABLE	E RELEASE (CFS) RELEASE (CFS)	25.0 1.1 1.1	40.6 16.4 13.2	33.4	95.5 78.1	125.0 101.1	156.6
		ME (AC-F	T) 9.	0 9	.0 10.	0 11.3	3 13.	U 14	4.5			OLUME (AC-FT)	2.1	2.1	33.3 2.3	78.2 2.5	101.2 2.8	130.2 3.2
	EVENT		2		5 1C .8 11.				00		FSD88 STORM EVE	ENT (YR)	2	5	10	25	50	100
ALLOW	ABLE R	ELEASE (CESE)	(FS) 0.	.1 1.	.8 11. .6 3.2 .9 3.0	2 7.5	9.	7 12	4.3 2.4 2.2		PEAK INFL		18.3 0.8	29.4 12.6	46.2	69.4 59.7	90.9 77.3	113.9 99.5
		ME (AC-F	2		.3 0.4				0.6		MODELED F	RELEASE (CFS) OLUME (AC-FT)	0.8	9.2	25.2 1.7	59.6 1.8	77.2	99.3 2.2
FSD11E STORM	EVENT	(YR)	2		5 10	25	50) 10	00		PNDW3			<i>u</i>	ľ			
PEAK I	INFLOW		59.	.4 81	.3 110.	.8 148.	1 180	.5 21	3.7 9.6		STORM EVE PEAK INFL	OW (CFS)	2 131.6	5 254.8	10 579.5	25 1064.4	50 1597.5	100 2152.4
MODEL	ED RELE	EASE (CFS ME (AC-F	5) 0.	3 4.	.5 8.6 .9 5.5	5 29.5	5 47.	7 69	9.0		MODELED F	RELEASE (CFS) OLUME (AC-FT)	105.0 1.3	202.9 3.2	462.9 9.1	914.3 19.6	1302.7 30.5	1653.2 43.9
FSD12						<u>, , , , , , , , , , , , , , , , , </u>												
PEAK I		(CFS)	2 77.	.8 105			50 1 229		0.0									
MODELE	ED RELE	ELEASE (C EASE (CFS) 0.9	9 9.	0 26.	7 61.9	80.	.1 10	3.2 3.1							8		
STORE	U VOLU	ME (AC-F	T) 5.1	2 5.	5 5.8	3 6.7	7.8	3 8.	.9									
							i in the Parameter					SA	AND C	CREEK	СНА	NNEL	STU	DΥ
										20 BOULDER CRESCEN COLORADO SPRINGS		FUTUR	E HY			CONF		S MAE
		61 <u>1</u> 20 111								PHONE: 719.955.5485								



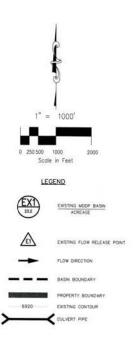
FUTURE HYDROLOGIC CONDITIONS MAP DESIGNED BY: DLM

PROJECT NO. 08-035 FILE: \dwg\Eng Exhibits\Proposed Conditions Watershed Work Map.dwg DATE: 10-21-16 SCALE

DM2

DRAWN BY: DLM HORIZ: NTS CHECKED BY: VAS VERT: NTS

HISTORIC CONDITION


B	ASIN SI	JMMAR	Y
BASIN	AREA (ADRES)	Qa (Dis)	Q 100 (0PS)
EX-1	24	3	40
EX-2	31	3	45
EX-3	311	49	341
EX-4	330	71	353
EX-5	152	14	209
EX-6	1692	118	2168
EX-7	165	12	197
EX-8	42	4	64
EX-9	132	11	149
EX-10	450	48	474
EX-11	209	17	261
EX-12	40	5	65
EX-13	89	6	114
0S-20	318	61	310
OS-21	33	8	38
0S-22	88	18	91
OS-23	78	34	84

NOTE: BASINS OS-22 & OS-23 <u>NOT</u> PART OF THIS REPORT. FLOWS FOLLOW HISTORIC PATTERNS ON THE WESTSIDE OF VOLLMER ROAD.

HISTORIC CONDITION

POINT	SQ. MI.	Qa (Oti)	Q100 (275)	SQ. MI.		DBPS
1	0.09	5	84			-
2	0.49	55	465	0,74	465	64
3	0.52	139	2610	4.33	2552	63
4	0.26	12	197			
5	0.07	4	64			
6	0.21	11	149			
7	0.70	48	474			
8	0.39	18	305			
9	0.14	6	114			
10	2.64	122	2245	3.27	2245	71
11	0.09	5	83			
12A	0.01	3	16			
12	0.27	10	200			
13	0.17	6	126			
NOTE:				0.48	#	55
CONSIST				0.53	1210	56
DESIGN	POINT	UP-D	Bh2	5.38	2629	60
NOTE:			S ARE	0.38	76	61
OR THE	EXIST	ING		0.49	115	67

NO DATA GIVEN IN DEPS

MS
CIVIL CONSULTANTS, INC.
E. PIKES PEAK AVE. STE 306 DLORADO SPRINGS, CO 80903 955-5485, FAX (719) 444-8427

	STER	LING RAN	CH MDDP	
HI	STOR	IC - DRA	INAGE MAP	
PROJECT NO. 09	-001	FILE: *\dwg\D	ev Plan \09001-MDDP H	HISTORIC
DESIGNED BY:	VAS	SCALE	DATE: 03/16/15	
DRAWN BY: CHECKED BY:	10.1157.01	HORIZ: 1*=500' VERT: N/A	SHEET 1 OF 1	D1

FINAL DRAINAGE REPORT

BARBARICK SUBDIVISION, PORTIONS OF LOTS 1, 2 and LOTS 3 & 4 El Paso County, Colorado

Sand Creek Drainage Basin

Prepared for: El Paso County Development Services Engineering Division

On Behalf of: Wykota Construction 430 Beacon Light Road, Suite 130 Monument, CO 80132

Colorado Springs, CO 80920 (719) 575-0100 Fax (719) 572-0208

June 6, 2016

15.789.001

June 2016

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said reports in conformity with the master plan of the drainage basin.

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

	Wykota Construction	
ву:	Business Name	
	Justin Ballard	
Title:	President	
Address:	430 Beacon Light Road, Suite 130	

Monument, CO 80132

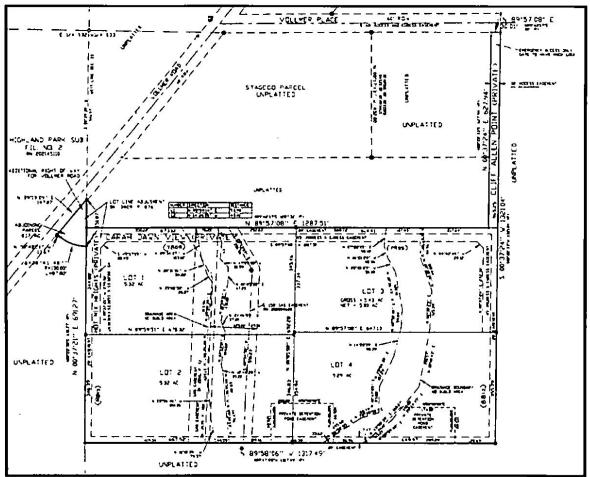
El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

JUNE 2014 Print Name - CERECTENNIFELE IPVILLE

County Engineer / ECM Administrator

Barbarick Subdivision -	Lots 1, 2, 3 and 4 -	Final Drainage Report
-------------------------	----------------------	-----------------------

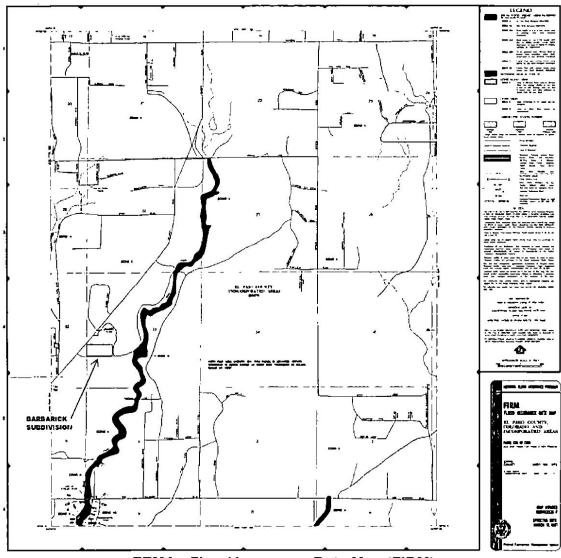

TABLE OF CONTENTS	
GENERAL LOCATION AND DESCRIPTION	
Background	1
Location	1
Property Description	3
Soil Description	
HYDROLOGIC AND HYDRAULIC ANALYSIS	6
Basin Description	6
Design Criteria	6
EXISTING DRAINAGE DISCUSSION	10
EXISTING DRAINAGE DISCUSSION (continued)	15
PROPOSED DRAINAGE DISCUSSION	16
RECOMMENDED DESIGN	18
DRAINAGE, BRIDGE, AND POND FEES	22
MAINTENANCE	22
EROSION CONTROL	22
Cost Estimate	24
REFERENCES	24

<u>Surrounding Developments.</u> The following are the existing or planned general land uses adjacent to the property.

<u>North:</u> Un-platted parcels that contain commercial/industrial uses. Carah Dawn View is on the north side of the property.

<u>East and South</u>: Although this adjacent area is currently undeveloped, the Sterling Ranch Master Planned area is in the process of developing this area (future single family development).

<u>West:</u> This is an undeveloped, un-platted lot. Across Vollmer Road is a low density single family development (Highland Park, Fil 2).



Barbarick Subdivision Plat

Property Description

- <u>Major Drainage Way</u>: The entire site is located within the Sand Creek Drainage Basin. The Main Fork of Sand Creek is located about 1500 feet to the east. The site currently drains to the south into natural drainage ways that direct runoff to Sand Creek. The Sand Creek Drainage Basin is located in the northeastern portion of the City of Colorado Springs and El Paso County. The general drainage pattern of this larger basin flows to the southwest and ultimately feeds into Fountain Creek.
- 2. Project Site Area: This site is approximately 21.37 acres in area.
- 3. Ground Cover: This site is covered with native grasses.
- 4. <u>General Topography:</u> The site drains from north to the south with average grades ranging from 1% to 5%. There are two natural drainage ways that drain through these lots.
- 5. <u>Irrigation Facilities</u>: No known functioning irrigation facilities are located on the site. A small detention pond does exist to the northeast of the property; however, the outfall of this pond will be re-routed in order to direct runoff around the perimeter of the proposed development.
- 6. <u>Utilities:</u> Utilities in the project area include; but are not limited to, telephone, high pressure gas/petroleum and electrical lines. Water & wastewater service is provided through wells & individual septic systems. These utilities will be examined on a case-by-case basis and avoided where feasible, or they will be relocated. Any relocation of these utilities will be coordinated with the respective utility contact. Utility services will be extended into the site as necessary. There are large gas easements that run north-south through these lots. These easements contain one 6 inch and two 20 inch high pressure gas/petroleum pipelines. These Utility Easements will be no-build zones and grading will be fill only.
- 7. <u>On-Site Drainage Ways:</u> The plat shows two "Drainage Boundary No Build Area(s)" draining through the subdivision. These are not regulated FEMA floodplains. The site development will include the installation of pass through culverts for offsite flows, and regraded. An amended plat has been completed for the removal of the no build areas, identification of new drainage easements, and relocation of water quality ponds.

 Floodplain Statement: Review of the Flood Insurance Rate Map (FIRM) 535 (08041C0535 F), effective date March 17, 1997, published by the Federal Emergency Management Agency (FEMA) reveals that no portion of Barbaric Subdivision lie within any designated 100-year floodplain.

FEMA - Flood Insurance Rate Map (FIRM)

HYDROLOGIC AND HYDRAULIC ANALYSIS

Basin Description

The Barbarick Subdivision is located within the Sand Creek Drainage Basin. The tributary area that drains through the Barbarick Subdivision is developed, which includes large lot single-family parcels and some commercial/industrial land uses. Subbasins were delineated using surveyed information, proposed contours and field observations. See the Drainage Basin Maps in the Appendix.

This study is in conformance with the following two approved Drainage Reports:

- 1. Preliminary Drainage Report for Sterling Ranch-Phase 1, Sand Creek Drainage Basin, M & S Civil Consultants, Inc., May 2015 AKA: "SR-PDR"
- Woodmen Storage Final Drainage Report, El Paso County, Calibre Engineering, Inc., July 2004; Revised February, 2010; Revised May, 2010; Revised July, 2010
 AKA: "WS-FDR"

This study is *not* in conformance with the following approved Drainage Report due to changes from the approved recent reports cited above that supercede the original report:

 Preliminary and Final Drainage Plan and Report, Barbarick Subdivision a Replat of Lot "D", McClintock Subdivision, El Paso County, Oliver E. Watts, Consulting Engineer, Inc., August 15, 2007
 AKA: "BS-FDR"

Design Criteria

This report has been prepared in accordance to the criteria set forth in the *City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II*, dated November 1991 including subsequent updates. El Paso County has also adopted Chapter 6 and Section 3.2.1 of Chapter 13 in the *City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II*, dated May 2014 (Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008). In addition to the ECM, the *Urban Storm Drainage Criteria Manuals, Volumes 1-3*, published by the Urban Drainage and Flood Control District, (Volumes 1 & 2 dated January 2016, Volume 3 dated November 2010 with some sections update November 2015), has also been used to supplement the ECM.

Hydrologic Criteria

Where:

١

Hydrologic analyses for the site have been completed using the Rational Method for onsite basins. The SCS Method was used in the referenced studies for the larger off-site basins (greater than 100 acres). The design storms for each method are:

Initial Storm = 5-Year Storm

Major Storm = 100-Year Storm

Rational Method: The Rational Method will be utilized to evaluate smaller basins (under 100 acres). This methodology is used for the design of localized facilities such as inlets, storm drain, drainage swales and detention:

Rational Method peak flow rate equation (cfs): Q=C*I*A

Q = Maximum runoff rate in cubic feet per second (cfs)

C = Runoff coefficient

I = Average rainfall intensity in inches per hour

A = Area of drainage sub-basin in acres

Runoff Coefficient

Rational Method coefficients are derived from UDFCD Vol 1 (Chapter 6 – Runoff, 2016-01 Rev) for the various land uses, including parking areas, drives, walks, roofs, lawns and open space areas. The Runoff Coefficients associated with these land uses also have a corresponding impervious value that is used in the detention calculations. The Rational Method Coefficients used in this study include:

Land Use or Surface Type	<u>% Impervious</u>	Runoff Coefficient (B Soils)	Runoff Coefficient (B So	
		(5-Year) (100-Year)	(5-Year)	
Greenbelts/Agricultural	2%	.03 .46	.03	
Gravel (packed)	40%	.37 .65	.37	
Drives & Walks	90%	.84 .90	.84	

•

.

Land Use or	Percentage Imperviousness	
Surface Characteristics	(%)	
Business:	· · •	
Downtown Areas	95	
Suburban Areas	75	
Residential:		
Single-family		
2.5 acres or larger	12	
0.75 – 2.5 acres	20	
0.25 - 0.75 acres	30	
0.25 acres or less	45	
Apartments	75	
Industrial:		
Light areas	80	
Heavy areas	90	
Parks, cemeteries	10	
Playgrounds	25	
Schools	55	
Railroad yard areas	50	
Undeveloped Areas:		
Historic flow analysis	2	
Greenbelts, agricultural	2	
Off-site flow analysis (when land use not defined)	45	
Streets:		
Paved	100	
Gravel (packed)	40	
Drive and walks	90	
Roofs	90	
Lawns, sandy soil	2	
Lawns, clayey soil	2	

Table 6-3. Recommended percentage imperviousness values

,

Total or Effective % Imperviousness	NRCS Hydrologic Soil Group A					
					100-yr	
2%	0.02	0.02	0.02	0.02	0.02	0.17
5%	0.04	0.05	0.05	0.05	0.05	0.19
10%	0.09	0.09	0.09	0.09	0.1	0.23
15%	0.13	0.14	0.14	0.14	0.14	0.28
20%	0.18	0.19	0.19	0.19	0.19	0.32
25%	0.22	0.23	0.24	0.24	0.24	0.36
30%	0.27	0.28	0.28	0.28	0.29	0.4
35%	0.31	0.33	0.33	0.33	0.33	0.44
40%	0.36	0.37	0.38	0.38	0.38	0.48
45%	0.4	0.42	0.42	0.42	0.43	0.52
50%	0.45	0.47	0.47	0.47	0.48	0.56
55%	0.49	0.51	0.52	0.52	0.52	0.6
60%	0.53	0.56	0.56	0.57	0.57	0.64
65%	0.58	0.6	0.61	0.61	0.62	0.68
70%	0.62	0.65	0,66	0.66	0.67	0.72
75%	0.67	0.7	0.71	0.71	0.71	0.76
80%	0.71	0.74	0.75	0.76	0.76	0.8
85%	0.76	0.79	0.8	0.8	0.81	0.84
90%	0.8	0.84	0.85	0.85	0.86	0.88
95%	0.85	0.88	0.89	0.9	0.9	0.92
100%	0,89	0.93	0.94	0.94	0.95	0.96
Total or Effective % Imperviousness		NRCS	Hydrolog	gic Soil G	roup B	
2%	0.02	0.02	0.14	0.24	0.38	0.46
5%	0.04	0.05	0.17	0.27	0.39	0,48
10%	0.09	0.09	0.21	0.3	0.42	0.5
15%	0.13	0.14	0.25	0.34	0.45	0.53
20%	0.18	0.19	0.29	0.37	0.48	0.55
25%	0.22	0.23	0.33	0.41	0.51	0.58
30%	0.27	0.28	0.37	0.44	0.54	0.6
35%	0.31	0,33	0.41	0.48	0.57	0.63
40%	0.36	0.37	0.45	0.51	0.6	0.65
45%	0.4	0.42	0.49	0.55	0.63	0.67
50%	0.45	0.47	0.53	0.58	0.66	0.7
55%	0.49	0.51	0.57	0.62	0.69	0.72
60%	0.53	0.56	0.61	0.65	0.72	0.75
65%	0.58	0.6	0.65	0.69	0.75	0.77
70%	0.62	0.65	0.69	0.72	0.78	0.8
75%	0.67	0.7	0.73	0.76	0.81	0.82
80%	0.71	0.74	0.77	0.79	0.84	0.85
85%	0.76	0,79	0.81	0.83	0.87	0.87
90%	0.8	0.84	0.85	0.86	0.89	0.9
95%	0.85	0.88	0.89	0.9	0.92	0.92
100%	0.89	0.93	0.94	0.94	0.95	0.94

Table 6-5. Runoff coefficients, c

Time of Concentration

The time of concentration (T_c) for the Rational Method was calculated by methods derived from the UDFCD. The time of concentration consists of an initial time or overland flow time (t_i) plus the travel time (t_t) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an initial time or overland flow time (t_i)

plus the time of travel (t_t) in concentrated form, such as a swale or drainageway. A minimum T_c of 5 minutes and 10 minutes were used for the final calculations in developed and undeveloped conditions, respectively.

Storm Drain Systems

All proposed storm drain infrastructure will be located within private property and will be owned and maintained by the property owner.

The storm drain hydraulics is analyzed using *Bentley's* <u>FlowMaster</u>, CulvertMaster & <u>StormCAD</u> design software. Colorado Department of Transportation (CDOT) type inlets will be used where necessary.

The designated outfall locations for the proposed on-site storm drains are the natural drainage ways at the south end of the property. The proposed storm drain infrastructure will be discussed in more detail below.

EXISTING DRAINAGE REPORT DISCUSSION

The approved Barbarick Subdivision Final Drainage Report (BS-FDR) and the approved Woodmen Storage Final Drainage Report (WS-FDR) both apply to the existing general drainage conditions for this site. The off-site basins and general flow patterns in the BS-FDR and WS-FDR still apply. Excerpts from these reports are provided below for reference.

On-site and Off-Site Basin Descriptions from the BS-FDR and WS-FDR:

The following summary is taken from the Barbarick Subdivision Final Drainage Report (BS-FDR):

Off-site:

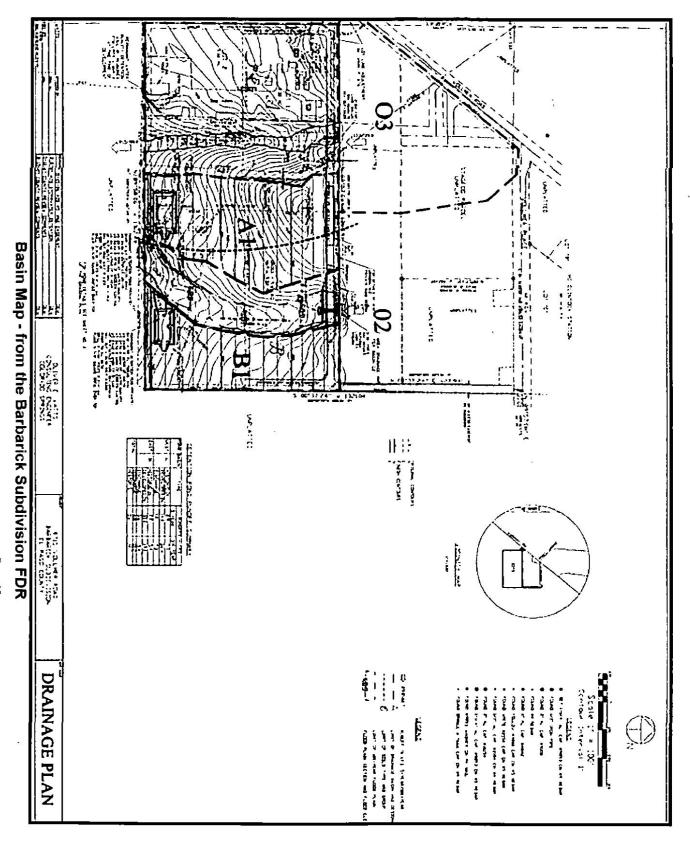
Off-site Basin O3 This basin encompasses approximately 7.03 acres and represents the area north and northwest of Lot 1. This basin drains into Lot 1 through a series of (2) 24" CMP pipes which control the flow of 14/36 cfs in the 5/100 year storm events.

Lots 1 & 2 – these lots are considered fully developed lots and drain north to south collecting at the existing concrete settling pond on Lot 2. This developed flow (20.8 cfs /57.2 cfs) combines with Off-site Basin O3 to total 30.5 cfs / 80.8 cfs in the greenbelt offsite south of Lot 2. At the time of development permit for these developed lots, a detention pond for water quality will be required, probably in the area of the existing concrete settling pond, that will accommodate Lots 1 and 2 west of the gas easement and flood plain area.

On-site:

On-site Basins A1 and B1 (for portions of Lots 1 and 2, and Lots 3 & 4) These basins encompass approximately 5.3 & 3.8 acres and represent the buildable portions of the property as described in the BS-FDR (see Basin Map from BS-FDR below). These basins were slated (in the BS-FDR) to drain into small detention ponds that would release to historic rates. These discharge rates were calculated to be 2.9/7.3 and 2.2/5.4 cfs (5/100 year). The BS-FDR does not include the drainage ways in any hydrology calculations due to the fact that this no-build drainage area was not planed on being developed. This drainage way allowed off-site flows from O1+O2 to pass-through Lots 3 & 4. The drainage way to the west of A1 passes through flows from offsite O3. Since the approval of this report, offsite tributary basins O1+O2 have been changed, and the development of the property encompasses the whole property, including the previously determined no-build area.

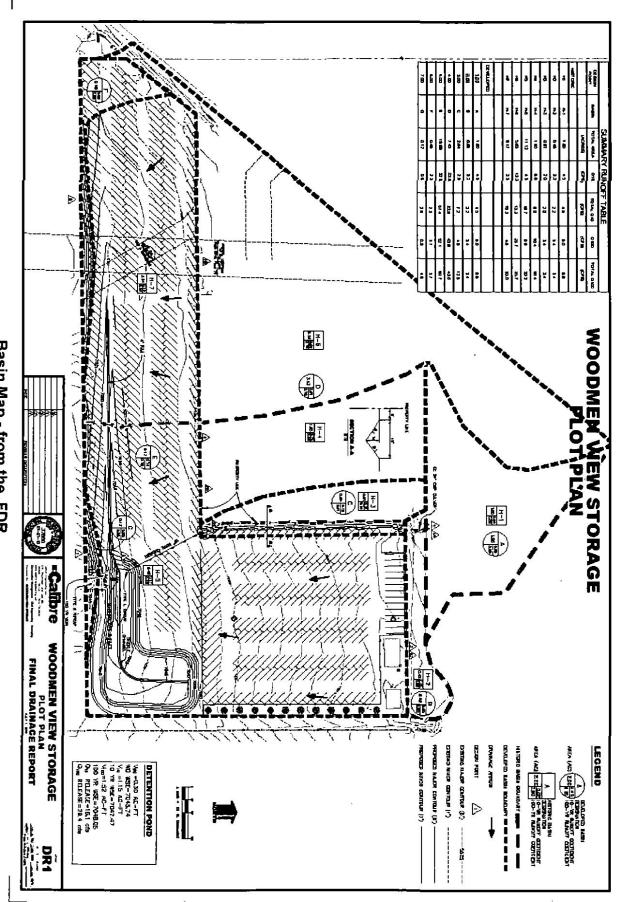
The following summary is taken from the Woodmen Storage Final Drainage Report (WS-FDR):


Off-site:

Design Point 5 - This design point encompasses approximately 19.69 acres and represents the tributary area north of the project site. This basin drains into a proposed detention pond near the northeast corner of the property and generates 57.4/92.7 cfs in the 10/100 year storm events, historic flows are 16.7/30.3 cfs. The releases rates from this pond are lower than historic 16.1 cfs/29.4 cfs in the 10/100-year storm events. These flows are conveyed along the east property line of the site and into the eastern natural drainage way that leaves the property to the south.

Review of the Sterling Ranch Preliminary Drainage Report (SR-PDR):

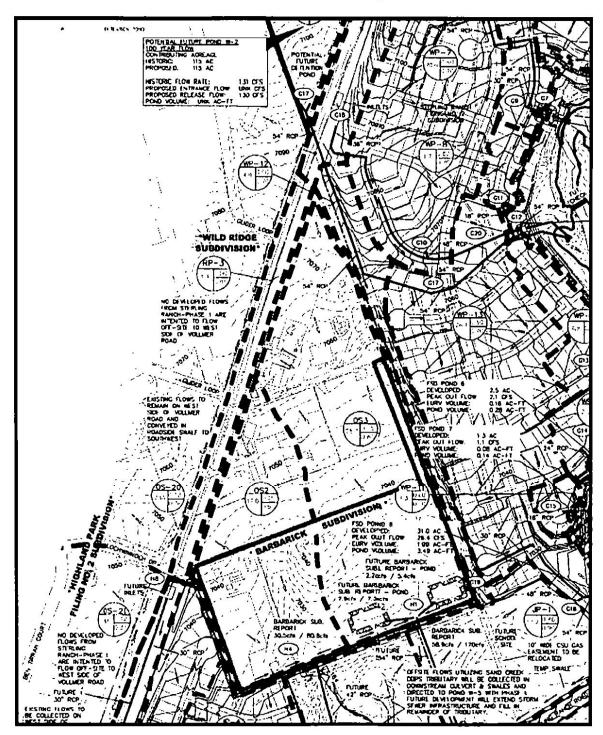
The Barbarick Subdivision is surrounded on three sides by the planned Sterling Ranch Development. The approved Sterling Ranch PDR was prepared by M&S Civil Consultants in May of 2015. This Sterling Ranch PDR re-analyzes runoff from Barbarick Subdivision and plans for storm drain improvements to convey this runoff to a full spectrum detention and water quality pond to be located down stream of Barbarick Subdivision as part of Sterling Ranch Phase One.


In summary; the Sterling Ranch PDR is planning on receiving 73.3/139.2 cfs (5/100 year) from Basin OS3. A 54" RCP is planned to convey this flow through Sterling Ranch. The Sterling Ranch PDR is planning on receiving 45/86 cfs (5/100 year) from OS2, encompasses Lots 1 & 2 and OS3 encompasses Lots 3 & 4 and the Basin north of Lot 3. A 48" RCP is planned to convey this flow through Sterling Ranch. The cumulative runoff from the northerly property and Lots 1 through 4 does not exceed the anticipated rates in the SR-PDR.

,

Page 12

Page 12


Basin Map - from the FDR

Page 13

Page 13

	STERLING RANCH PHASE 1			
	PROPOSED - DRAINAGE MAP ()VERALL			
CIVIL CONSULTANTS, INC.	PROJECT NO. 09-001 SCALE DATE: S/DITS			
102 L. PIKES PEAK AVE, STE 306 COLORADO SPRINCS, CO 80903 (719) 955-5485, FAX (719) 448-8427	DRAWN BY: DLW CHECKED BY: VAS	VERT: N/A	SHEET 1 (F)	D2

Basin Map from the Sterling Ranch PDR

Matrix Design Group, Inc., 2016@

STORM SEW	ER ROUTING	SUMMARY
DE SIGN POINT	Q. (65)	0.00 (01)
G4A		1584
<u>G4A</u> C5	640 78	1584
66	32	
G6 C7		66 157
	82	
G8	20	42
C9	14	29
G10	47	97
G11	4	9
G12	72	144
G13	12	25
G14	7	14
G15	3	7
Ç16	60	125
G17	8C	130
G18	29	54
C19	11	23
G20	69	138
G21	1044	1767
G22	5	10
G23	64	133
G25	1056	1795
H1	73	139
H2	46	92
НЗ	103	200
H4	45	80
H5	30	61
H6	68	134
HB	16	29
H11	22	
H12	<u> </u>	62
H12	57	118
H15 H14	196	382
1116	31	. 65
H17		54
H18	224	441

Flow Summary from the Sterling Ranch PDR

EXISTING SITE DRAINAGE DISCUSSION:

On-Site (Existing Conditions):

On-site Basin H1 This basin covers approximately 10.7 acres and represents the majority of Lots 3 & 4. This basin is modeled as good condition undeveloped rangeland. This drains to the south and generates 2.6/23.7 cfs in the 5/100 year storm events.

On-site Basin H2 This existing basin covers approximately 3.70 acres and represents the eastern half of Lots 1 & 2.This basin is modeled as good condition rangeland and generates 0.9/8.2 cfs in the 5/100 year storm events.

On-site Basin H3 This existing basin covers 1.1 acres and represents the a small portion of lots 3 & 4 that drains south easterly. This basin is modeled as good

condition rangeland and generates 0.3/2.7 cfs in the 5/100 year storm events. This basin sheet flows offsite where it is captured in a small swale between the site and existing roadway and conveyed westerly to the low point south of the outfall of Basin H1.

These existing basins encompass the previously unmodelled drainage area from the BS-FDR. The total historic flow from the site is 3.8/34.6 cfs in the 5/100 year storm events. The following design point table is for combined allowable discharge rates from the property at respective locations including historic flows from the tributary upstream basins:

Design Point	5/100 Release	Comments
DP H1	16.7*/30.3 cfs	DP H5 WS-FDR - * is 10year
DP H2	13.7/35.5 cfs	O3 BS-FDR
DP H3	56.7 cfs	DPH1+H1+H3 (100-year)
DP H4	14.6/43.7 cfs	DPH2 + H2

Design Point H3 will release a flow lower than previously anticipated within the BS-FDR (52.9/170 cfs). It is the introduction of development within the Sterling Ranch site that has eliminated offsite flows from BS-FDR Basin O1 that significantly changed the drainage pattern. The historic release is now contained solely to the historic flows from WS-FDR design point H5 and the proposed onsite historic flows.

Design Point H4 will combine with the western half of Lots 1&2. Per the BS-FDR the combined portions of Lots 1&2 and O3 to release a combined flow of 30.5/80.8 cfs downstream. The flow anticipated in the BS-FDR appears consistent with the smaller basin analysis of this report and should be used for downstream analysis.

PROPOSED DRAINAGE DISCUSSION

Introduction

The proposed site will be developed differently than anticipated in the previous BS-FDR. The previous plan for this site maintained the existing native drainage way down the middle of Lots 1 & 2 and 3 & 4, thereby splitting the buildable area into the outer thirds of these lots. The native drainage way and "Drainage Boundary – No Build Area" (as shown on the Plat & FDR) will be eliminated with the proposed development. The proposed site and proposed drainage improvements will allow this native drainage way to be eliminated while maintaining the pass through of major flows. These modifications to the site and to the drainage patterns will allow a larger buildable area.

The existing retention pond, located just north of Lot 3, will be modified by others to become a water quality/detention pond pursuant to the WS-FDR. A new outlet works and a storm drain pipe will convey runoff from this detention pond (16.1/29.4 cfs in the 10/100 year storm events) discharging at the property line. This development is proposing a CDOT Type D inlet to capture the discharged flow and pipe it downstream along the east side of Lots 3 & 4 to discharge into the proposed Full Spectrum Extended

Detention Basin (EDB) in Lot 4. The EDB is designed to pass through, and not treat or detain, these offsite flows.

A new EDB will be provided in Lot 4. This detention basin will provide water quality treatment for portions of Lots 1 & 2, and Lots 3 & 4. In the approved Barbarick FDR there were to be two separate ponds. The new site development has been planned for a single pond to treat the developed flows. Tributary water sheet flow across the site to shallow swales that will direct runoff to the proposed EDB. The EDB will have a forebay at the confluence of the two pipe outfalls, a concrete trickle channel that terminates at a micropool structure, and is designed to treat the WQCV, EURV and 100-year detention.

A second SFB water quality with detention catchment basin will be provided at the south east/downstream end of Lot 2. This SFB will not have an outlet structure to release flows due to requirements from the gas main utility ownership of no structure to be built within the existing easements. There will be a small spillway to allow the release of large storm events. Runoff will be directed to the proposed SFB where possible.

Flow from the area north of Lot 1 (Basin O3) will pass through the site via two 24" culverts and will be discharged at the southern boundary of Lot 2, as historically done. An earthen channel will run north-south along the east side of the existing Lot 1 and Lot 2 developments. The channel is approximately 1-ft deep with 4:1 side slopes and will capture and convey any westerly flowing nuisance runoff from the proposed improvements to the sand filter detention pond as discussed in the original Barbarick Subdivision FDR, instead of the existing Lot 1 and 2 improved areas.

Runoff from the property is at historic flows and will not exceed the anticipated runoff as determined in the Sterling Ranch PDR. This is described in more detail below. The Sterling Ranch PDR includes an analysis of future drainage conditions and includes recommended infrastructure to convey this runoff. Since the Sterling Ranch surrounds the Barbarick Subdivision, it is appropriate to include the recommendations from the SR-PDR in this Proposed Drainage Discussion.

Proposed On-Site Basin Descriptions: (See Basin Map in the pocket)

On-site Basin D1 (D for Developed condition) - This developed basin encompasses approximately 11.4 acres - the majority of Lots 3 & 4 and small portions of Lots 1 & 2. This basin generates 19.7/56.0 cfs in the 5/100 year storm events and sheet flows into shallow swales that direct the runoff into the proposed EDB to be located in Lot 4. Lot 3 is based on Owner provided information for a gravel parking/vehicle storage area, and Lot 4 has been based on proposed building site improvements as identified in the rezoning application. Any changes to the land use will require an update to the Final Drainage Report; much like the original Barbarick Subdivision Final Drainage Report is being updated with the grading and Lot 4 development application.

On-site Basin D2 This undeveloped basin encompasses 1.2 acres and represents the south portion of Lot 4, below and south of the two detention ponds. This basin is historic in nature and generates 0.8/3.0 cfs and drains directly into a road side ditch within the Sterling Ranch development.

On-site Basin D3 This developed basin encompasses approximately 3.13 acres - the remaining proposed infill portions of Lots 1 and 2 (east of the currently built out Lots 1&2). As discussed in the original Barbarick Subdivision FDR, development of these areas will require a detention water quality pond. This basin generates 4.1/11.6 cfs in the 5/100 year storm events and sheet flows southerly to the proposed SFB located at the southern-most portion of Lot 2.

The following design point table is for combined allowable discharge rates from the property at respective locations including historic flows from the tributary upstream basins:

Design Point	5/100 Year	Comments
DP D1	85.4 cfs (100)	D1+O2 Pass Through
DP D2	48.9 cfs (100)	Pond Release+D2
DP D3	4.1/11.6 cfs	D3
DP D4	13.8/39.1 cfs	Pond Release +03 Pass Through

All release flows downstream are at or below historic levels.

RECOMMENDED DESIGN

Off-site Detention Facility:

This shallow pond will be modified for the proposed development to the north as part of the WS-FDR. This will eliminate the retention properties in this pond, will provide detention for off-site flows, will provide a suitable outlet structure, and will remove accumulated sediment. The modified pond will store up to 1.52 acft (66,211 cuft) to the principal spillway (elevation = 7048.05). A summary of flows into and out of this pond:

Off-site Pond Flow Summary (cfs)	<u>5 year</u>	<u>100 year</u>
Proposed Flow into offsite pond (Basin G/DP 5)	<u>57.4</u>	<u>92.7</u>
Increase in peak flow due to development	46.2	51.3
Proposed flow out of modified pond	<u>16.1</u>	29.4
Reduction in peak flow	41.3	63.3

For complete pond design, refer to the WS-FDR.

Proposed 30" HDPE Storm Drain from Modified Off-site Detention Pond:

This storm drain will capture flows from the discharged offsite pond and route them along the perimeter of the property daylighting into the EDB in Lot 4. 4' precast concrete manholes will be used for maintenance access at all bends and grade breaks. A grouted riprap forebay will help dissipate energy at the outlet of the pipe, and allow for settling prior to entering the pond. See the Appendix for the hydraulic analysis of this storm drain (StormCAD).

In the event of an emergency and the offsite pond fails, developed flow (Q100=93.0 cfs) will overtop the pond and be collected between the proposed roadway and pond berm.. Flow not captured by the proposed inlet will bypass easterly to the proposed offsite swale between this property and the Sterling Ranch property and conveyed southerly.

Proposed 18" HDPE Storm Drain Culvert:

A 18" HDPE culvert will convey collected runoff from Lot 3 (Developed Q100 = 15.90cfs) through Lot 4 to the FSD Pond and join sheet flow from Lot 4 and the 30" piped bypass flow from basin O2. This culvert will be privately owned and maintained by the property owners. See the Appendix for open channel calculations.

On-site FSD - EDB Pond in Lot 4 (Basin D1):

This On-site Full Spectrum Extended Detention Basin Pond provides water quality, EURV and 100-year detention. Onsite flows will combine with the 30-inch bypass flows from the north and pass through the EDB. The pond has been sized for the release of historic flows from Basin D1, as well as provides capacity for pass through conveyance of historic flows from the north.

The following table outlines the onsite existing and developed flow, required detention, and modifications to required detention utilizing the upstream over detention.

On-site Basin Flow Summary (cfs)	<u>5 year</u>	<u>100 year</u>
Existing On-site Flow at Pond	2.2	16.5
Developed On-site Flow (Basin D1)	1 <u>9.7</u>	<u>56.0</u>
Increase in peak flow due to development	17.5	39.5
Proposed Pass Through Flow from Off-Site Pond	<u>16.1*</u>	<u>29.4</u>
Proposed total flow out of EDB pond	<u>0.3</u>	<u>45.9**</u>

*Includes 10 year from WS-FDR **Includes Pass Through flow of 29.4 cfs

Water Quality Benefits:

Stormwater from Lots 3 & 4, and portions of 1 &2 will drain directly to the proposed Full Spectrum Extended Detention Pond. This pond will be privately maintained and provide water quality treatment to approximately 11.4 acres of developed land.

The proposed Water Quality facility is sized using the methods derived from the UDFCD Stormwater FSD Design Workbook (UD-FSD 1.11) (see Appendix). The Water Quality Capture Volume (WQCV) will be provided in this EDB, where the "initial flush" of storm water will be drained over a 40-hour time period.

The impervious area ratio is used in the UDFCD workbook to calculate the WQCV. An adjusted impervious ratio of 57% to correlate with the land use charts and Runoff Coefficients (provided above) is being utilized for the sizing of the facility.

The EDB Pond will have a a forebay, concrete trickle channel and micro-pool within the outlet structure (per UDFCD). This outlet structure will have a bar screen and an orifice plate containing 3 rows outlets (1.55 sq in orifices for the first two, and 3.8 sq in for the last row). The EURV has been designed to an elevation of 7021.50. The top of the inlet will have a grate to allow flows that exceed the WQCV and EURV to drain through the outlet works without overtopping the spillway, with an internal orifice plate of 2.37-ft diameter constricting flows to historic release rates (Q100 _{Onsite} = 16.5 cfs + Q100_{bypass} = 29.4 Total Release = 45.9 cfs).

The EDB pond can store up to 64,904 cuft (1.49 acft) to the principal spillway (7023.20). The pond bottom elevation will be at 7018.50 and the top of the embankment will be at elevation 7025.10. Should the outlet works become fully blocked; the 36' spillway will have the capacity to pass the combined 100 year peak developed runoff and northerly bypass with a flow depth = 0.90' (55.0 + 29.4 = 84.4 cfs) maintaining 1-ft of freeboard.

Summary results include:

- WQCV Volume = 0.203 ac-ft depth 1.53-ft (40 hour release)
- EURV Volume Stored = 0.677 ac-ft at depth 2.98 ft (72 hour release)
- 5 Year Volume Stored = 0.673 ac-ft at depth 2.98 ft (72 hour release)
- 100 Year Volume Stored = 1.261 ac-ft depth 4.26-ft (77 hour release)
- Emergency Spilllway Volume at Crest = 1.49 ac-ft at depth 4.7ft.

A 30" HDPE pipe will drain this outlet structure. A Low-Tailwater basin will be provided at the outlet for energy dissipation. This storm drain will daylight into the open channel just south of Lot 4 near the entrance of an existing 12" CMP. This existing 12" CMP drains under a dirt road. This dirt road will be eliminated upon development of the Sterling Ranch. Due to the limited capacity of this existing 12" CMP, runoff in excess of 5.7 cfs will overtop this dirt road, creating tail water to 7018.0. See the Appendix for the calculation results (CulvertMaster).

On-site Sand Filter Basin w/ Detention in Lot 2 (Basin D3):

A sand filter basin detention pond is being proposed to treat runoff from the proposed gravel parking portions of Lots 1 and 2 prior to discharging from the site. Due to the high pressure gas mains within this basin, grading is limited to fill only and no structures are allowed within the gas easement, so this pond will have underdrain design with partial infiltration and a controlled overflow design for the 100-year event.

The following table outlines the onsite existing and developed flow, required detention, and modifications to required detention utilizing the upstream over detention.

On-site Basin Flow Summary (cfs)	<u>5 year</u>	<u>100 year</u>
Existing On-site Flow at Pond	0.5	4.2
Developed On-site Flow (Basin D3)	<u>4.1</u>	<u>11.6</u>
Increase in peak flow due to development	3.6	7.4
Proposed total flow out of Sand Filter pond	<u>0.1</u>	<u>3.6</u>

Water Quality Benefits:

Stormwater from portions of 1 &2 will drain directly to the proposed Sand Filter Pond. This pond will be privately maintained and provide water quality treatment to approximately 3.13 acres of developed land.

The proposed Water Quality facility is sized using the methods derived from the UDFCD Stormwater Detention Design Workbook (UD-Detention 3.04) (see Appendix). The Water Quality Capture Volume (WQCV) will be provided in this SFB, where the "initial flush" of storm water will be drained over a 12-hour time period.

The impervious area ratio is used in the UDFCD workbook to calculate the WQCV. An adjusted impervious ratio of 57% to correlate with the land use charts and Runoff Coefficients (provided above) is being utilized for the sizing of the facility.

The sand filter will contain a 4" underdrain beneath 18" of CDOT Class C material. The underdrain will contain a 1.27" diameter orifice to control the outflow time in accordance with UDFCD.

The SFB pond can store up to 16,247 cu ft (0.373 acft) to the principal spillway (7025.50). The pond bottom elevation will be at 7023.00 and the top of the embankment will be at elevation 7027.37. Because the spillway acts as the 100-year control structure and notched weir design is proposed. The spillway is 5-ft wide for a depth of 10-inches for the release of the 100-year flow (3.6 cfs which is less than the 4.2 historic) then the spillway widens to 10ft for a depth of 18-inches which will have the capacity to pass the combined 100 year peak developed runoff (11.6cfs) with a flow depth = 0.5' maintaining 1-ft of freeboard.

Summary results include:

- WQCV Volume =0.039 ac-ft depth 0.37-ft (12 hour release)
- EURV Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 5 Year Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 100 Year Volume Stored = 0.394 ac-ft depth 2.83-ft (68 hour release)

Proposed (2) 24" HDPE Storm Drain Culvert:

Two 24" pipes will convey offsite flows through Lots 1 and 2 discharging to the south. The culverts will connect to a pair of existing 24" culverts entering the property and will discharge to a riprap settling basing prior to the released downstream. These culverts will be privately owned and maintained by the property owners. See the Appendix for the hydraulic analysis of this storm drain (CulvertMaster). Flow from these pipes will join the flow from the Sand Filter and discharge at Design Point 4 (combined 39.4 cfs in the 100-year event). Per the BS-FDR this flow combines with the westerly portions of Lots 1 & 2 offsite for a total release of 30.5/80.8 cfs in the 5/100 year events.

As stated above in the summary from the Sterling Ranch PDR, the anticipated runoff from this proposed discharge point (aka: SR-PDR Basin H4) is 30.5/80.8 cfs (5/100 year) due to the large pass through flow. A 42" RCP is planned to convey this flow through Sterling Ranch.

DRAINAGE, BRIDGE, AND POND FEES

This subdivision has already been platted. No additional Drainage, Bridge or Pond fees are required.

MAINTENANCE

All proposed storm drain infrastructure will be located within private property and will be owned and maintained by the property owner. The detention pond will be owned and maintained by the property owner and will require maintenance consisting of routine inspections, removal of debris from the detention area, and bi-annual inspections for hydraulic performance of the basin. Refer to the DCM for exact maintenance criteria and for other Best Management Practices (BMP).

EROSION CONTROL

Best Management Practices (BMPs) will be utilized to minimize erosion during construction and will be shown on the construction drawings. These will be in accordance with will be utilized as deemed necessary by the contractor and/or engineer. The contractor shall minimize the amount of area disturbed during all construction activities.

In general, the following shall be applied in developing the sequence of major activities;

- 1. Install down slope and side slope perimeter BMPs <u>before</u> the land disturbing activity occurs.
- 2. Do not disturb area until it is necessary for the construction activity to proceed.
- 3. Cover or stabilize exposed areas as soon as possible.
- 4. Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- 5. The construction of permanent filtration BMPs should wait until the end of the construction project when drainage areas have been stabilized.
- 6. Do not remove the temporary erosion controls until after all areas are stabilized.

Slopes

Erosion control soil retention blankets shall be installed where noted on slopes 3:1 or steeper. At a minimum, coconut/straw blend fiber material blankets should be used. The silt fence or erosion logs shall be installed at the toe of fill slopes where noted on a level contour. Erosion logs shall also be installed on slopes greater than ten feet in height where noted to reduce runoff length. The erosion logs shall be installed on a level contour. Disturbed surfaces shall be left in a roughened condition at all times when horizontal depressions approximately 2" to 4" deep, spaced 4" to 6" apart. Silt fence and erosion logs shall remain in place until all construction is complete and/or "finally stabilized", after which the silt fence and erosion logs shall be removed from the slopes. All material shall be installed per manufacturer's installation instructions.

Stockpiles/Mobilization/Winter Shutdown

Soils stockpiled for more than 30 days shall be mulched with mulch tackifier and native seeding within 14 days of stockpile construction. After mobilization and prior to winter shutdown, all disturbed slopes not completed shall be mulched with mulch tackifier and native seeding.

Inlet and Outlet Protection

Storm Drain Inlet Protection shall be provided at all storm inlets. Outlet protection shall be provided at all pipe outlet and runoff / rundown treatment locations. All materials shall be installed per manufacturer's installation instructions.

Concrete Washout

Concrete washout structures shall be installed for cleaning concrete trucks. The concrete washout structure shall be constructed such that water can only evaporate or infiltrate from the structure. Residue and concrete from the washout structure shall be periodically cleaned out and properly disposed.

Erosion Control Supervisor and Maintenance

The erosion control supervisor shall be a person other than the superintendent. The erosion control supervisor shall inspect at least every 14 days and after any precipitation or snowmelt event that causes surface erosion. At sites where construction has been completed but a vegetative cover has not been established, these inspections must occur at least once per month.

All erosion control measures shall remain in place until all construction is complete and final stabilization has been achieved. "Final stabilization" is where all disturbed areas

have been built on, paved, or germinated with a uniform vegetative cover with a density of at least 70% of pre-disturbance levels. Equivalent permanent, physical erosion reduction methods may also be employed. Any areas not meeting this standard shall be repaired according to the BMP guidelines. Accumulated sediment and debris shall be removed when the sediment level reaches one half the height of the BMP or when the sediment/debris adversely impacts the functionality of the BMP. The Contractor shall remove all sediment, mud, and construction debris that may accumulate in public right of ways not designated before-hand as a result of this construction project. All repairs, removals, and replacements stated above shall be conducted in a timely manner.

Cost Estimate

The proposed drainage system to be constructed will be privately owned and maintained. The developer will be responsible for constructing the proposed improvements.

An engineer's estimate of probable construction costs has been provided for the proposed improvements. The storm sewer systems will be located in the Sand Creek Drainage Basin. The construction cost for the improvements are not eligible for reimbursement.

Engineer's Estimate of Probable Construction Costs Tri-Lakes Construction - Sand Creek Drainage Basin Non-Reimbursable Private Improvements

Item	Unit	Quantity	Unit Cost	Total Cost
Precast Manhole	EA	4	\$2,500	\$10,000
18" HDPE Pipe	LF	231	\$45	\$10,395
24" HDPE Pipe	LF	1212	\$60	\$72,720
30" HDPE Pipe	LF	1128	\$72	\$81,216
18" Flared End	EA	2	\$225	\$450
24" Flared End	EA	2	\$250	\$500
24" CMP-HDPE	EA	2	\$200	\$400
30" Flared End	EA	1	\$350	\$350
CDOT Type D Inlet	EA	1	\$4,000	\$4,000
EDB Pond Outlet	EA	1	\$35,000	\$35,000
			SubTotal	\$215,031.00
			15% Contingency	\$32,254.65
			Total Estimate	\$247,285.65

REFERENCES

- 1. City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II, dated May 2014 including subsequent updates
- 2. City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II, dated November 1991 including subsequent updates
- 3. Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008).
- Urban Storm Drainage Criteria Manuals, Volumes 1-3, published by the Urban Drainage and Flood Control District, (Volumes 1 & 2 dated 2016, Volume 3 dated 2015)
- 5. Preliminary Drainage Report for Sterling Ranch-Phase 1, Sand Creek Drainage Basin, M & S Civil Consultants, Inc., May 2015
- Woodmen Storage Final Drainage Report, El Paso County, Calibre Engineering, Inc., July 2004; Revised February, 2010; Revised May, 2010; Revised July, 2010
- Preliminary and Final Drainage Plan and Report for Barbarick Subdivision, El Paso County, Oliver E. Watts Consulting Engineer Inc., January 2005; Revised October 2005; Revised December 2006; Revised May 2007; Revised August 15, 2007
- 8. **NOAA Atlas 14, Volume 8 Version 2** U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Hydrometeorological Design Studies Center.
- 9. FEMA Map Service Center: <u>http://msc.fema.gov</u>
- 10. NRCS Web Soil Survey. http://websoilsurvey.nrcs.usda.gov

×.

.

APPENDIX A

HYDROLOGIC AND HYDRAULIC CALCULATIONS

Project Title	1		Rarh	arick Subdiv	vision		
Catchment II			Carb	H-1 5 Year		<u> </u>	
I. Catchment Hyd	rologic Data						
Catchment ID	= <u>H1</u>						
Area Percent Imperviousness		Acres %					
NRCS Soil Type		A, B, C, or [D				
II. Rainfall Informa	ition I (inch/l	hr) = C1 • P1	1 /(C2 + Td) [,]	^C3			
Design Storm Return Period, Tr		years	and the second se	n period for d	esign storm)		
C1 C2			(input the va (input the va				
C3			(input the va				
P1	= 1.23	inches	(input one-h	r precipitatio	nsee Shee	t "Design Info	ס")
III. Analysis of Flow	w Time (Time	of Concent	ration) for a	Catchment	l		
Runoff Coefficient, C	=0.08						
Overide Runoff Coefficient, C	=	(enter an ov	eride C value	e if desired, c	or leave blan	k to accept ca	alculated C.)
5-yr. Runoff Coefficient, C-5							
eride 5-yr. Runoff Coefficient, C	=	(enter an ov			, or leave bla	ink to accept	calculated (
			Illustration	-			
							-
			Rea	221 22	verland		1
		Reach 2	Rea	221 22	low) Beginning	
		Reach 2	Ren	221 22	low	~	
		Reach 2	Ret	221 22	low) Beginning	
k	Reach 3	Reach 2	Rea	221 22		Beginning	
NRCS Land	Reach 3	Reach 2 Tillage/	Rea	221 22		Beginning Flow Direction	n
NRCS Land Type	<u></u>		Short Pasture/	Nearly Bare	Grassed Swales/	Beginning Flow Direction Catchment Boundary Paved A Shallow Par	n Areas & ved Swales
Desiring serve memory of	Heavy		Short	Nearly	Grassed	Beginning Flow Direction Catchment Boundary Paved A	n Areas & ved Swales : Flow)
Type Conveyance	Heavy Meadow 2.5	Tillage/ Field	Short Pasture/ Lawns	Nearly Bare Ground	Grassed Swales/ Waterways 15	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet	n Areas & ved Swales : Flow)
Туре	Heavy Meadow 2.5 Reach	Tillage/ Field 5	Short Pasture/ Lawns 7	Nearly Bare Ground 10 5-yr	Grassed Swales/ Waterways 15 NRCS	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 20 Flow	Areas & ved Swales Flow) 0
Type Conveyance	Heavy Meadow 2.5	Tillage/ Field	Short Pasture/ Lawns 7	Nearly Bare Ground	Grassed Swales/ Waterways 15 NRCS Convey-	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 20	Areas & ved Swales Flow) 0 Flow Time
Type Conveyance	Heavy Meadow 2.5 Reach	Tillage/ Field 5	Short Pasture/ Lawns 7	Nearly Bare Ground 10 5-yr Runoff	Grassed Swales/ Waterways 15 NRCS	Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 20 Flow Velocity	Areas & ved Swales Flow) 0
Type Conveyance	Heavy Meadow 2.5 Reach ID	Tillage/ Field 5 Slope S ft/ft input	Short Pasture/ Lawns 7 Length L ft input	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V fps output	Areas & ved Swales Flow) 0 Flow Time Tf minutes output
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland	Tillage/ Field 5 Slope S ft/ft input 0.0300	Short Pasture/ Lawns 7 Length L ft input 300	Nearly Bare Ground 10 5-yr Runoff Coeff C-5	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 20 Flow Velocity V fps output 0.23	Areas & ved Swales Flow) 0 Flow Time Tf minutes output 22.16
Type Conveyance	Heavy Meadow 2.5 Reach ID	Tillage/ Field 5 Slope S ft/ft input	Short Pasture/ Lawns 7 Length L ft input	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V fps output	Areas & ved Swales Flow) 0 Flow Time Tf minutes output
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Tillage/ Field 5 Slope S ft/ft input 0.0300	Short Pasture/ Lawns 7 Length L ft input 300	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 20 Flow Velocity V fps output 0.23	Areas & ved Swales Flow) 0 Flow Time Tf minutes output 22.16
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Tillage/ Field 5 Slope S ft/ft input 0.0300	Short Pasture/ Lawns 7 Length L ft input 300	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 20 Flow Velocity V fps output 0.23	Areas & ved Swales Flow) 0 Flow Time Tf minutes output 22.16
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Tillage/ Field 5 Slope S ft/ft input 0.0300 0.0300	Short Pasture/ Lawns 7 Length L ft input 300 338	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V fps output 0.23 1.73	Areas & ved Swales Flow) 0 Flow Time Tf minutes output 22.16 3.25
Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Tillage/ Field 5 Slope S ft/ft input 0.0300	Short Pasture/ Lawns 7 Length L ft input 300	Nearly Bare Ground 10 5-yr Runoff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	Beginning Flow Direction Catchment Boundary Paved A Shallow Paved (Sheet 20 Flow Velocity V fps output 0.23	Areas & ved Swales Flow) 0 Flow Time Tf minutes output 22.16

а.

•

CALC	ULATION	OF A PEA		F USING	RATIONA	L METHO	D
Project Title: Catchment ID:				arick Subdiv H-1 100 Yea			
I. Catchment Hydro	ologic Data						
Catchment ID = Area = Percent Imperviousness = NRCS Soil Type =	10.70		D				
II. Rainfall Informat	ion I (inch/i	hr) = C1 • P	1 /(C2 + Td)	^C3			
Design Storm Return Period, Tr = C1 = C2= C3= P1=	28.50 10.00 0.786	years inches	(input the va (input the va (input the va	alue of C2)			5")
III. Analysis of Flow Runoff Coefficient, C = Overide Runoff Coefficient, C = 5-yr. Runoff Coefficient, C-5 = Overide 5-yr. Runoff Coefficient, C ≠	0.36	(enter an ov	eride C value	e if desired, c lue if desired	or leave blanl	ongenetes - tentories tense and tense	alculated C.) calculated C-5.
Ĺ	Reach 3	Reach 2	Re	2 2		EGEND Beginning Flow Direction Catchment Boundary	
NRCS Land Type	Heavy Meadow	Tillage/ Field	Short Pasture/ Lawns	Nearly Bare Ground	Grassed Swales/ Waterways	Paved A Shallow Pa (Sheet	ved Swales
Conveyance	2.5	5	7	10	15	2	
Calculations:	Reach ID	Slope S ft/ft input	Length L ft input	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input	Flow Velocity V fps output	Flow Time Tf minutes output
	Overland 1	0.0300	300 338	0.08	N/A 10,00	0.23	22.16 3.25
	2 3 4 5	Sum				nputed Tc =	25.42
IV. Peak Runoff Pred	liction					egional Tc = Entered Tc =	13.54 13.54
Rainfall Intensity at Com Rainfall Intensity at Re Rainfall Intensity at User-De	puted Tc, I = gional Tc, I =	6.12	inch/hr inch/hr inch/hr		Peak Flo	owrate, Qp = owrate, Qp = owrate, Qp =	17.20 cfs 23.71 cfs 23.71 cfs

	Project Title: Catchment ID:			Barba	H-2 5 Year	vision		
I. Ca	atchment Hydro	ologic Data						
	Catchment ID =	H2						
	Area =		Acres					
	nperviousness =			~				
N	RCS Soil Type =	B	A, B, C, or I	ر				
II. Ra	ainfall Informat	ion I (inch/t	nr) = C1 * P	1 /(C2 + Td) [,]	°C3			
Design Storm Ret			years			esign storm)		
	C1 = C2=			(input the va (input the va				
	C3=			(input the va				
	P1=		inches			nsee Shee	t "Design Info	")
III. AI	nalysis of Flow	Time (Time	of Concent	ration) for a	Catchment	:		
Runoff	Coefficient, C =	0.08						
Overide Runoff	Coefficient, C =		(enter an ov	eride C value	e if desired, d	or leave blank	to accept ca	lculated C.)
5-yr. Runoff C	oefficient, C-5 =	0.08						
eride 5-yr. Runoff	Coefficient, C =		(enter an ov	veride C-5 val	ue if desired	, or leave bla	ink to accept	calculated C
				Illustration				
					~	>		
						verland XI	LEGEND	1
		/		Rez	ưhl <u>f</u>	low	Beginning	
•			Reach 2	5			Flow Direction	
		0			-			1
		Reach 3	4				Catchment	
	K K K					ا	Boundary	J
	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	
	Туре	Meadow	Field	Pasture/	Bare	Swales/	Shallow Pav	
	Conveyance	2.5		Lawns	Ground	Waterways 15	(Sheet	
			5	7	10	13)
L.	· · · · ·	<u>ا</u>	5	7	10	13]
L. Ca	alculations:	Reach	Slope	Length	5-уг	NRCS	Flow	Flow
C:	alculations:	· · · · · · · · · · · · · · · · · · ·			5-yr Runoff	NRCS Convey-	Flow Velocity	Flow Time
L. Ci	alculations:	Reach	Slope S	Length	5-yr Runoff Coeff	NRCS	Flow Velocity V	Flow Time Tf
L. Ci	alculations:	Reach	Slope	Length	5-yr Runoff	NRCS Convey-	Flow Velocity	Flow Time
L. Ci	alculations:	Reach ID Overland	Slope S ft/ft input 0.0380	Length L ft input 155	5-yr Runoff Coeff C-5	NRCS Convey- ance input N/A	Flow Velocity V fps output 0.18	Flow Time Tf minutes output 14.74
C.	alculations:	Reach ID Overland	Slope S ft/ft input	Length L ft input	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input	Flow Velocity V fps output	Flow Time Tf minutes output
C.	alculations:	Reach ID Overland 1 2	Slope S ft/ft input 0.0380	Length L ft input 155	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input N/A	Flow Velocity V fps output 0.18	Flow Time Tf minutes output 14.74
C,	alculations:	Reach ID Overland	Slope S ft/ft input 0.0380	Length L ft input 155	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input N/A	Flow Velocity V fps output 0.18	Flow Time Tf minutes output 14.74
C.	alculations:	Reach ID Overland 1 2 3	Stope S ft/ft input 0.0380 0.0350	Length L ft input 155 515	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input N/A 10.00	Flow Velocity V fps output 0.18 1.87	Flow Time Tf minutes output 14.74 4,59
Ľ. Ci	alculations:	Reach ID Overland 1 2 3 4	Slope S ft/ft input 0.0380	Length L ft input 155 515	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input N/A 10.00	Flow Velocity V fps output 0.18 1.87	Flow Time Tf minutes output 14.74 4.59
Ľ. Ci	alculations:	Reach ID Overland 1 2 3 4	Stope S ft/ft input 0.0380 0.0350	Length L ft input 155 515	5-yr Runoff Coeff C-5 output 0.08	NRCS Convey- ance input N/A 10.00 Cor R	Flow Velocity V fps output 0.18 1.87 nputed Tc = egional Tc =	Flow Time Tf minutes output 14.74 4.59 19.32 13.72
L. Ci	alculations:	Reach ID Overland 1 2 3 4	Stope S ft/ft input 0.0380 0.0350	Length L ft input 155 515	5-yr Runoff Coeff C-5 output	NRCS Convey- ance input N/A 10.00 Cor R	Flow Velocity V fps output 0.18 1.87	Flow Time Tf minutes output 14.74 4.59
	alculations: eak Runoff Prec	Reach ID Overland 1 2 3 4 5	Stope S ft/ft input 0.0380 0.0350	Length L ft input 155 515	5-yr Runoff Coeff C-5 output 0.08	NRCS Convey- ance input N/A 10.00 Cor R	Flow Velocity V fps output 0.18 1.87 nputed Tc = egional Tc =	Flow Time Tf minutes output 14.74 4.59 19.32 13.72
IV. Pe Rainfall		Reach ID 0verland 1 2 3 4 5 diction puted Tc, =	Slope S ft/ft 0.0380 0.0350 Sum	Length L ft input 155 515	5-yr Runoff Coeff C-5 output 0.08	NRCS Convey- ance input N/A 10.00 Cor Cor R User-E	Flow Velocity V fps output 0.18 1.87 nputed Tc = egional Tc =	Flow Time Tf minutes output 14.74 4.59 19.32 13.72

Peak Flowrate, Qp = 0.88 cfs Peak Flowrate, Qp = 0.88 cfs

•

٠

2

•

×

	<u> </u>				F USING			D
	Project Title			Barb	arick Subdiv	vision		
	Catchment ID				H-2 100 Yea	r		
1	. Catchment Hydro	ologic Data						
	Catchment ID =							
Davas	Area =		Acres					
Percer	nt Imperviousness = NRCS Soil Type =		[™] A, B, C, or [D				
II	. Rainfall Informat	ion I (inch/I	hr) = C1 * P1	1 /(C2 + Td) [,]	^C3			
Design Storm	Return Period, Tr =	100	years	(input return	n period for d	esign storm)	R	
	C1 =			(input the va				
	C2= C3=			(input the va (input the va				
	P1=		inches			nsee Shee	t "Design Info)")
01	. Analysis of Flow	Time (Time	of Concent	ration) for a	Catchment			
	noff Coefficient, C =							
	noff Coefficient, C =	·	(enter an ov	eride C value	e if desired, c	or leave blan	k to accept ca	liculated (
	ff Coefficient, C-5 =							
veride 5-yr. Rur	noff Coefficient, C =		(enter an ov			, or leave bla	ank to accept	calculated
				Illustration				
			/		O*	P		-
		-		Rea		verland	LEGEND	
			Reach 2	¥) Beginning	
		1~		2			Flow Direction	
		~ 5				/	LINA DITECTO	n
	(/					~	n.
	k	Reach 3					Catchment Boundary	n
		Reach 3 Heavy	Tillage/	Short	Nearly		(
	NRCS Land Type		Tillage/ Field	Pasture/	Bare	Grassed Swales/	Catchment Boundary Paved A Shallow Par	veas & ved Swales
	Туре	Heavy Meadow	Field	Pasture/ Lawns	Bare Ground	Grassed Swales/ Waterways	Catchment Boundary Paved A Shallow Pa (Sheet	Areas & ved Swales Flow)
		Heavy		Pasture/	Bare	Grassed Swales/	Catchment Boundary Paved A Shallow Par	ved Swales Flow)
	Туре	Heavy Meadow	Field	Pasture/ Lawns	Bare Ground	Grassed Swales/ Waterways	Catchment Boundary Paved A Shallow Pa (Sheet	ved Swales Flow)
	Type Conveyance	Heavy Meadow 2.5	Field	Pasture/ Lawns 7	Bare Ground 10 5-yr Runoff	Grassed Swales/ Waterways 15 NRCS Convey-	Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity	vreas & ved Swales Flow) D Flow Time
	Type Conveyance	Heavy Meadow 2.5 Reach	Field 5 Slope S	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff	Grassed Swales/ Waterways 15 NRCS	Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V	vreas & ved Swales Flow) D Flow Time Tf
	Type Conveyance	Heavy Meadow 2.5 Reach	Field 5 Slope S ft/ft	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff C-5	Grassed Swales/ Waterways 15 NRCS Convey- ance	Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V fps	Flow) Flow) Flow Flow Time Tf minutes
	Type Conveyance	Heavy Meadow 2.5 Reach	Field 5 Slope S	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff	Grassed Swales/ Waterways 15 NRCS Convey-	Catchment Boundary Paved A Shallow Par (Sheet 20 Flow Velocity V	vreas & ved Swales Flow) D Flow Time Tf
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland	Field 5 Slope S fuft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	Catchment Boundary Paved A Shallow Par (Sheet 2) Flow Velocity V fps output	Vreas & ved Swales Flow) 5 Flow Time Tf minutes output
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1	Field 5 Slope S ft/ft input 0.0380	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Catchment Boundary Paved A Shallow Par (Sheet 2) Flow Velocity V fps output 0.18	vreas & ved Swales Flow) D Flow Time Tf minutes output 14.74
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Field 5 Slope S ft/ft input 0.0380	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Catchment Boundary Paved A Shallow Par (Sheet 2) Flow Velocity V fps output 0.18	vreas & ved Swales Flow) D Flow Time Tf minutes output 14.74
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1	Field 5 Slope S ft/ft input 0.0380	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	Catchment Boundary Paved A Shallow Par (Sheet 2) Flow Velocity V fps output 0.18	Flow) Flow) Flow Flow Time Tf minutes output 14.74
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S ft/ft input 0.0380	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	Catchment Boundary Paved A Shallow Par (Sheet 2) Flow Velocity V fps output 0.18	Flow) Flow) Flow Flow Time Tf minutes output 14.74

IV. Peak Runoff Prediction			
Rainfall Intensity at Computed Tc, I =	5.15 inch/hr	Peak Flowrate, Qp =	6.90 cfs
Rainfall Intensity at Regional Tc, I =	6.08 inch/hr	Peak Flowrate, Qp =	8.15 cfs
Rainfall Intensity at User-Defined Tc, I =	6.08 inch/hr	Peak Flowrate, Qp =	8.15 cfs

.

L Catchment ID = H3 Area =		Project Title:			Barba	arick Subdiv	vision		
$\begin{array}{c} \label{eq:constraint} \begin{array}{c} \label{eq:constraint} \end{tabular} \\ t$		Catchment ID:				H-3 5 year			20 20
$Area = \frac{111}{200} Area = \frac{200}{200} %$ $NRCS Soil Type = \frac{1}{100} A, B, C, or D$ I. Rainfall Information 1 (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input the value of C1) C2 = 10.00 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.22 inches (input on except calculated S-yr, Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.00 III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.00 Overide S-yr, Runoff Coefficient, C = 0.00 Inde S-yr, Runoff Coefficient, C = 0.00 Inde S-yr, Runoff Coefficient, C = 0.00 INRCS Land Heavy Field Pasure/ Bare Swates/ Shallow Paved Xeas & Shallow Paved Xeas	I.	Catchment Hydro	ologic Data						
Percent Imperviousness = 2.00 % NRCS Soil Type = B A B, C, or D II. Rainfail Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input the value of C1) C1 = 28.50 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.23 inches (input the value of C3) P1 = 0.08 (input the value of C4 value if desired, or leave blank to accept calculater S-yr. Runoff Coefficient, C = 0.08 (inter an overide C-5 value if desired, or leave blank to accept calculater Illustration NRCS Land Heavy Trillage Pshort Reach I Reach 2 NRCS Land Heavy Field Pasture/ Bare Swatery Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length S-yr INRCS Flow Thom The Value Swatery Convey Velocity Tim input input input output									
NRCS Soil Type = E A, B, C, or D II. Rainfall Information 1 (inch/hr) = C1 ' P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input the value of C1) (input the value of C2) C3 = C2 = 10.00 (input the value of C2) C3 = C3 = 0.786 (input the value of C3) P1 = P1 = 1.23 inches (input the value of C3) P1 = Output the value of C3 (input the value of C3) P1 = P1 = 0.08 (input the value of C3) P1 = Output the value of C3 (input the value of Cost (input the value of C3) P1 = Output the value of C3 (input the value of C3) P1 = Output the value of C3 (input the value of C3) P1 = Output the value of C3 (input the value of Cost (input the value of C3) P1 = Output the value of C3 (input the value of C3) P1 = Output the value of C3 (input the value of C3) Output the value of Cast (input the value of Cast (input the value of C3) Output the value of C3 (input the value of Cast (Percen								
Design Storm Return Period, Tr = <u>5 years</u> (input the value of C1) C1 = <u>28.50</u> (input the value of C1) C2 = <u>10.00</u> (input the value of C2) C3 = <u>0.786</u> (input the value of C3) P1 = <u>1.23</u> inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = <u>0.08</u> Overide Runoff Coefficient, C = <u>0.08</u> (enter an overide C value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = <u>0.08</u> (enter an overide C-5 value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = <u>0.08</u> (enter an overide C-5 value if desired, or leave blank to accept calculated 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 					D				
C1 = 28.50 (input the value of C1) C2 = 10.00 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.23 inches (input one-hr precipitationsee Sheet "Design Info") II. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 enter an overide C value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = 0.08 ride 5-yr. Runoff Coefficient, C = 0.08 Reach 2 (enter an overide C-5 value if desired, or leave blank to accept calculated Illustration Reach 1 (Bow) Reach 1 (Bow) Reach 2 (Correspondence) NRCS Land Heavy Tillage/ Field Pasture/ Bare Svales/ Corresponde 25 5 7 10 15 20 Calculations: Reach Sope Length S-yr NRCS Flow Flow Sheet Flow) Corresponde 25 S 7 10 15 20 Calculations: Reach Sope Length S-yr NRCS Flow Flow Time Soundary Sheet Sheet Soundary Shee	R.	Rainfall Informat	ion I (inch/I	hr) = C1 * P	1 /(C2 + Td)'	°C3			
C2= 10.00 C3= (input the value of C2) (input the value of C3) P1= (input the value of C3) P1= P1= 1.23 inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C-5 0.08 Overide Runoff Coefficient, C-5 0.08 S-yr. Runoff Coefficient, C-5 0.08 Illustration (enter an overide C-5 value if desired, or leave blank to accept calculated in the value of C3 Illustration (enter an overide C-5 value if desired, or leave blank to accept calculated in the value of C3 Interster (enter an overide C-5 value if desired, or leave blank to accept calculated in the value of C3 Interster (enter an overide C-5 value if desired, or leave blank to accept calculated in the value of C3 Interster (enter an overide C-5 value if desired, or leave blank to accept calculated in the value of C3 Interster (for the value of C3 Reach 2 (for the value of C3 Interster (for the value of C3 Inte	Design Storm			years			esign storm)		
C3= 0.786 P1= (input the value of C3) (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 (enter an overide C value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = Overide Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = Water and the street of th									
P1= 123 inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 (enter an overide C value if desired, or leave blank to accept calculated 5-yr. Runoff Coefficient, C = 0.08 ander 5-yr. Runoff Coefficient, C = 0.08 Mill State in overide C-5 value if desired, or leave blank to accept calculated 1000000000000000000000000000000000000									
Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 s-yr. Runoff Coefficient, C = 0.08 eride 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calculated integration Illustration Reach 1 Bow Reach 3 Breide S-yr. NRCS Land Heavy Tillage/ Short Pasture/ Bare Ground Shallow Paved Areas & Shallow Paved Swales/ Conveyance 2.5 5 7 10 15 20 Conveyance Calculations: Reach Stope Length 1 Convey- 1				inches	A set of a		nsee Shee	t "Design Info	")
Overide Runoff Coefficient, C =	Ш.	Analysis of Flow	Time (Time	of Concent	tration) for a	Catchment			
5-yr. Runoff Coefficient, C-5 = 0.08 eride 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calcular Illustration Reach 1 flow Urertiand Reach 1 flow Direction Cetchment Boundary NRCS Land Heavy Tillage/ Type Meadow Field Pasture/ Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Corvey- Velocity Tim Coeff ance V Tf hyph input output out	Run	off Coefficient, C =	0.08						
aride 5-yr. Runoff Coefficient, C =	Overide Run	off Coefficient, C =		(enter an ov	veride C value	e if desired, c	or leave blan	k to accept ca	Iculated C
Illustration overhand flow LEGEND Beginning Flow Direction Catchment Boundary NRCS Land Type Heavy Meadow Tillage/ Field Short Pasture/ Lawns Nearly Bare Ground Grassed Swales/ Vaterways Paved Areas & Shallow Paved Swa (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Tim ninut Output output output 0verland 0.0250 338 0.08 N/A 0.23 24.9 1	5-yr. Runof	f Coefficient, C-5 =	0.08						
WRCS Land LEGEND Reach 2 overland LEGEND NRCS Land Heavy Tillage/ Short Nearly Grassed Pawed Areas & NRCS Land Heavy Tillage/ Short Lawns Ground Swales/ Shallow Paved Swa Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim Overland 0.0250 338 0.08 N/A 0.23 24.9 1	eride 5-yr. Run	off Coefficient, C =		(enter an ov			, or leave bla	ink to accept	calculated
Reach 2 Reach 1 flow Deginning Reach 3 Beginning Flow Direction NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim 0.0250 338 0.08 N/A 0.23 24.9 1					Illustration				
Reach 2 Reach 1 flow Deginning Reach 3 Beginning Flow Direction NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & NRCS Land Heavy Field Pasture/ Bare Swales/ Shallow Paved Swales/ Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Corvey- Velocity Tim ID S L Runoff Corvey- Velocity Tim </td <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>~</td> <td></td> <td></td>					_		~		
Reach 2 Reach 1 flow Deginning Reach 3 Paw Direction Catchment NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & NRCS Land Heavy Field Pasture/ Bare Swales/ Shallow Paved Swales/ Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Corvey- Velocity Tim ID S L Runoff Corvey- Velocity Inout <				-		-0-	·····ò		
Reach 2 Beginning Reach 3 NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swa Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Tim 10 S L Runoff Convey- Velocity Tim 10 triput input output output output output 0.0250 338 0.08 N/A 0.23 24.9 1					Rez	22 - 22 - 22 - 22 - 22 - 22 - 22 - 22		LEGEND	7
Catchment Boundary NRCS Land Heavy Tillage/ Shot Nearly Grassed Paved Areas & Shallow Paved Swa (Sheet Flow) Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swa Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Timut ID S L Runoff Convey- Velocity Timut Overland 0.0250 338 0.08 N/A 0.23 24.9 1				Reach 2	*) Beginning	
Rearh 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swa Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow ID S L Runoff Convey- Velocity Tim Overland 0.0250 338 0.08 N/A 0.23 24.9 1 2 3 4 33 4 <td></td> <td></td> <td>/</td> <td></td> <td>)</td> <td></td> <td></td> <td>Flow Direction</td> <td></td>			/)			Flow Direction	
Rearh 3 Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Type Meadow Field Pasture/ Bare Swales/ Shallow Paved Swa Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow ID S L Runoff Convey- Velocity Tim Overland 0.0250 338 0.08 N/A 0.23 24.9 1 2 3 4 33 4 <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td>			0					<u> </u>	
TypeMeadowFieldPasture/ LawnsBare GroundSwales/ WaterwaysShallow Paved Swa (Sheet Flow)Conveyance2.557101520Calculations:Reach IDSlope SLength Flow5-yr RunoffNRCS Convey- VelocityFlow VelocityFlow Tim Tim CoeffFlow VelocityOvertand0.02503380.08N/A0.2324.91		K	Reach 3						
Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim Overland 0.0250 338 0.08 N/A 0.23 24.9 1 2 3 3	1	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	reas &
Conveyance 2.5 5 7 10 15 20 Calculations: Reach ID Slope ID Length S 5-yr L NRCS Runoff Flow Velocity Flow Tim Tim output 000000000000000000000000000000000000		Туре	Meadow	Field		1000 CONTRACTOR 201	The second		
Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Tim ID S L Runoff Convey- Velocity Tim ft/ft ft C-5 fps minut output output Overland 0.0250 338 0.08 N/A 0.23 24.9 1		Conveyance							
ID S L Runoff Convey- Coeff Velocity Tim fv/ft ft fc-5 fps minut input input output input output Overtand 0.0250 338 0.08 N/A 0.23 24.9 1		Conveyance	<u>. 2.3</u>	J	<u> </u>	10	13		,
ft/ft ft Coeff ance V Tf ft/ft ft C-5 input output output output Overland 0.0250 338 0.08 N/A 0.23 24.9 1		Calculations:				5-yr	NRCS	Flow	Flow
ft/ft ft C-5 fps minut Overland 0.0250 338 0.08 N/A 0.23 24.9 1				S			2010 C.		Time
input input output input output output <td></td> <td></td> <td></td> <td>ft/ft</td> <td>ft</td> <td>a dependence of the</td> <td>ançe</td> <td></td> <td>minutes</td>				ft/ft	ft	a dependence of the	ançe		minutes
1 2 3 3 4 5 Sum 338 Computed Tc = 24.9 Regional Tc = 11.8							input	2003	output
2 3 4 5 Sum 338 Computed Tc = 24.9 Regional Tc = 11.8			Overland	0.0250	338	0.08	N/A	0.23	24.98
3				0					
5 Sum 338 Computed Tc = 24.9 Regional Tc = 11.8									
Sum 338 Computed Tc = 24.9 Regional Tc = 11.8	8								
Regional Tc = 11.8			5						
				Sum	338				
								-	11.88
								L	
Raintal Intensity at Computed LC 1 = 2.14 ince/br		Peak Runoff Pred		314	inch/hr		Deak Cl-	wrate On -	0.1
	Rainf	all Intensity at Com	puted Tc, I =						0.1

	CALC		OF A PEA	K RUNOF	F USING	RATIONA		2
	Project Title: Catchment ID:				arick Subdiv H-3 100 yea			
L	Catchment Hydro	logic Data				.42	Martin Albert Constants	
	Catchment iD =	H3						
Percen	Area = t Imperviousness =		Acres					
	NRCS Soil Type =		A, B, C, or E	0				
n.	Rainfall Informati	ion I (inch/I	nr) = C1 * P1	l /(C2 + Td)/	°C3			
Design Storm I	Return Period, Tr =	100	years			esign storm)		
	C1 =			(input the va				
	C2= C3=	0.786		(input the va (input the va				
	P1=	2.67	inches			nsee Sheel	"Design Info	")
10.	Analysis of Flow	Time (Time	of Concent	ration) for a	Catchment	t		
Run	off Coefficient, C =	0.36						
Overide Run	off Coefficient, C =		(enter an ov	eride C value	e if desired, o	or leave blank	to accept ca	Iculated C.)
ALCONT.	f Coefficient, C-5 =							
eride 5-yr. Run	off Coefficient, C =		(enter an ov		ue if desired	, or leave bla	nk to accept	calculated C-
				Illustration				
					O·-	verland		1
				Rea		low	EGEND	
			Reach 2	5) Beginning	
		1 or		-			Flow Direction	4
		\sim					Cetrhment	1
	K	Reach 3			ō.		Boundary	
	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	veas &
	Туре	Meadow	Field	Pasture/	Bare	Swales/	Shallow Pay	
	Conveyance	2.5	5	Lawns 7	Ground 10	Waterways 15	(Sheet	
	Canaganaa	<u> </u>	<u> </u>					
	Calculations:	Reach	Slope	Length	5-yr	NRCS	Flow	Flow
		۱D	S	Ľ	Runoff Coeff	Convey- ance	Velocity V	Time Tf
			ft/ft	ft	C-5		fps	minutes
		222 27	input	input	output	input	output	output
		Overland	0.0250	338	0.08	N/A	0.23	24.98
		2						
		3						
		4 5						
			Sum	338		Coi	nputed Tc =	24.98
		L				R	egional Tc =	11.88
						User-E	ntered Tc =	11.88
IV.	Peak Runoff Pred	liction		2				
Rainf	all Intensity at Com	puted Tc, I =		inch/hr			wrate, Op =	1,87 (
	nfall Intensity at Re-			inch/hr			wrate, Qp =	2.71
Raintali	Intensity at User-De	ained IC, I =	6./3	inch/hr		Peak Flo	wrate, Qp =	2.71

	Project Title: Catchment ID:			Barba	D-2 5 Year			
1.	Catchment Hydro	ologic Data						a.
	Catchment ID =							
Percer	= Area = t Imperviousness		Acres					
	NRCS Soil Type =		A, B, C, or	D				
n	. Rainfall Informat	ion I (inch/	hr) = C1 * P	1 /(C2 + Td)*	°C3			
Design Storm	Return Period, Tr = C1 =		years		period for d	esign storm)		
	C2=			(input the va (input the va				
	C3=			(input the va				
	P1=		inches				t "Design Info)")
113.	. Analysis of Flow	Time (Time	of Concent	tration) for a	Catchment	l		
	noff Coefficient, C =							_
	noff Coefficient, C = ff Coefficient, C-5 =		(enter an ov	veride C value	e if desired, c	or leave blan	k to accept ca	lculated C.
(2) Sample Description 1	noff Coefficient, C =	2002-02010-010	(enter an o	veride C-5 val	ue if desired	or leave bla	ank to accept	calculated
			(Illustration			and to deather	
					0	·····		
				Par	10.00	verland I	LEGEND	
			Reach 2	× nee	401 L	lov /	🔵 Beginning	
		/ ~	A	5			Flow Direction	n
		15						
	Ĺ	0					Catchment	
	k	Reach 3					Catchment Boundary	
	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Boundary Paved A	
	NRCS Land Type	<u></u>	Tillage/ Field	Pasture/	Bare	Swales/	Boundary Paved A Shallow Pav	ved Swales
		Heavy			22 Mar	a state and a state of the stat	Boundary Paved A	ved Swales Flow)
	Type Conveyance	Heavy Meadow 2.5	Field	Pasture/ Lawns 7	Bare Ground 10	Swales/ Waterways	Boundary Paved A Shallow Pav (Sheet 20	ved Swales Flow) 0
	Туре	Heavy Meadow	Field	Pasture/ Lawns	Bare Ground	Swales/ Waterways	Boundary Paved A Shallow Pav (Sheet	ved Swales Flow)
	Type Conveyance	Heavy Meadow 2.5 Reach	Field 5 Slope S	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff	Swales/ Waterways 15 NRCS	Paved A Shallow Paved A (Sheet 24 Flow Velocity V	ved Swales Flow) 0 Flow Flow Time Tf
	Type Conveyance	Heavy Meadow 2.5 Reach	Field 5 Slope S ft/ft	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff C-5	Swales/ Waterways 15 NRCS Convey- ance	Paved A Shallow Paved A Shallow Pave (Sheet 20 Flow Velocity V fps	ved Swales Flow) 0 Flow Time Tf minutes
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland	Field 5 Slope S	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff	Swales/ Waterways 15 NRCS Convey-	Paved A Shallow Paved A (Sheet 24 Flow Velocity V	ved Swales Flow) 0 Flow Flow Time Tf
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Paved A Shallow Paved A Shallow Paved A (Sheet 21 Flow Velocity V fps output	ved Swales Flow) 0 Flow Time Tf minutes output
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Paved A Shallow Paved A Shallow Paved A (Sheet 21 Flow Velocity V fps output	ved Swales Flow) 0 Flow Time Tf minutes output
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Paved A Shallow Paved A Shallow Paved A (Sheet 21 Flow Velocity V fps output	ved Swales Flow) 0 Flow Time Tf minutes output
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3	Field 5 Slope S ft/ft input	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A	Boundary Paved A Shallow Pave (Sheet 20 Flow Velocity V fps output 0.14	ved Swales Flow) 0 Flow Time Tf minutes output
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S fvft input 0.0200	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A V/A Co R	Paved A Shallow Par (Sheet 21 Flow Velocity V fps output 0.14 0.14 mputed Tc = egional Tc =	ved Swales Flow) 0 Flow Time Tf minutes output 18.21 18.21 10.86
	Type Conveyance	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S fvft input 0.0200	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A V/A Co R	Boundary Paved A Shallow Pave (Sheet 20 Flow Velocity V fps output 0.14 0.14	ved Swales Flow) 0 Flow Time Tf minutes output 18.21 18.21
	Type Conveyance Calculations:	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4 5 5	Field 5 Slope 5 ft/ft input 0.0200	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A N/A Co R User-f	Paved A Shallow Par (Sheet 20 Flow Velocity V fps output 0.14 0.14 mputed Tc = egional Tc =	ved Swales Flow) 0 Flow Time Tf minutes output 18.21 18.21 10.86 10.86
Rain	Type Conveyance Calculations:	Heavy Meadow 2.5 Reach ID Overland 1 2 3 4 5 5	Field 5 Slope S ft/ft input 0.0200 Sum	Pasture/ Lawns 7 Length L ft input 155	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A V/A Co R User-f Peak Fic	Paved A Shallow Par (Sheet 21 Flow Velocity V fps output 0.14 0.14 mputed Tc = egional Tc =	ved Swales Flow) 0 Flow Time Tf minutes output 18.21 18.21 10.86

\$

1

Project Title	e:		Barb	rick Subdiv	vision		
Catchment I			DaiDi	D2 - 100yr			
I. Catchment Hyd	rologic Data						
Catchment ID	= D2						
Area Percent Imperviousness		Acres					
NRCS Soil Type		A, B, C, or I	D				
							5
II. Rainfall Informa	ition I (inch/	hr) = C1 * P	1 /(C2 + Td)/	°C3			
Design Storm Return Period, Tr C1		years			esign storm)		
C2			(input the va (input the va	(COS) - 12			
C3			(input the va		~		
P1	= 2.57	inches	(input one-h	r precipitatio	nsee Shee	t "Design Info	Ľ)
III. Analysis of Flow	w Time (Time	of Concent	tration) for a	Catchment			
Runoff Coefficient, C	=0.36	-					
Overide Runoff Coefficient, C		(enter an ov	veride C value	e if desired, c	or leave blani	to accept ca	lculated C.)
5-yr. Runoff Coefficient, C-5 ride 5-yr. Runoff Coefficient, C		/enter an ov	veride C_5 val	ue if desired	or leave bla	ink to accept	calculated (
nde styr. Nanon Oberndent, o		Tenter an or	Illustration		, or reave ble	ink to accept	
		_		-0	·····		
	1.2		Rez		verland	EGEND	1
		Reach 2	*	-) Beginning	
	1 m					Flow Direction	•
					19	Catchment	
r K	Reach 3				Ŀ	Boundary]
NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	a an
Туре	Meadow	Field	Pasture/	Bare Ground	Swales/ Waterways	Shallow Pav (Sheet	Charles and the summon set of a
Conveyance	2.5	5	7	10	15	20	o ²
Calculations:	Reach	Slope	Length	5-ут	NRCS	Flow	Flow
Calculations:	Reach ID	Slope S	Length L	Runoff	Convey-	Velocity	Time
Calculations:		S	Ľ	Runoff Coeff	and the second	Velocity V	Time Tf
Calculations:			L ft input	Runoff	Convey-	Velocity	Time
Calculations:	ID Overland	5 ft/ft	L ft	Runoff Coeff C-5	Convey- ance	Velocity V fps	Time Tf minutes
Calculations:	ID Overland 1	S ft/ft input	L ft input	Runoff Coeff C-5 output	Convey- ance input	Velocity V fps output	Time Tf minutes output
Calculations:	ID Overland	S ft/ft input	L ft input	Runoff Coeff C-5 output	Convey- ance input	Velocity V fps output	Time Tf minutes output
Calculations:	ID Overland 1 2 3 4	S ft/ft input	L ft input	Runoff Coeff C-5 output	Convey- ance input	Velocity V fps output	Time Tf minutes output
Calculations:	ID Overland 1 2 3	S ft/ft input 0.0200	L ft input 85	Runoff Coeff C-5 output	Convey- ance input N/A	Velocity V fps output 0.11	Time Tf minutes output 13.49
Calculations:	ID Overland 1 2 3 4	S ft/ft input	L ft input 85	Runoff Coeff C-5 output	Convey- ance input N/A	Velocity V fps output 0.11	Time Tf minutes output 13.49
Calculations:	ID Overland 1 2 3 4	S ft/ft input 0.0200	L ft input 85	Runoff Coeff C-5 output	Convey- ance input N/A Col R	Velocity V fps output 0.11	Time Tf minutes output 13.49
	ID Overland 1 2 3 4 5	S ft/ft input 0.0200	L ft input 85	Runoff Coeff C-5 output	Convey- ance input N/A Col R	Velocity V fps output 0.11 	Time Tf minutes output 13.49 13.49 10.47
IV. Peak Runoff Pro	ID Overland 1 2 3 4 5 5	S ft/ft input 0.0200	L ft input 85 	Runoff Coeff C-5 output	Convey- ance N/A N/A Col Col R User-E	Velocity V fps output 0.11 	Time Tf minutes output 13.49 13.49 10.47 10.47
	ID Overland 1 2 3 4 5 ediction mputed Tc, I = egional Tc, I =	S ft/ft input 0.0200 Sum 6.13 6.83	L ft input 85	Runoff Coeff C-5 output	Convey- ance N/A N/A Cou R User-E Peak Flo	Velocity V fps output 0.11 	Time Tf minutes output 13.49 13.49 10.47

,

•

n_1			Decks	atali Bukati			
Project Title Catchment IE			2010 B-000	rick Subdi 3-Culvert 1			-
I. Catchment Hydr	rologic Data						
Catchment ID	= Lot 3						
Area		Acres					
Percent Imperviousness NRCS Soil Type		‰ A, B, C, or I	D				
II. Rainfall Informa	ntion I (inch/f	nr) = C1 * P	1 /(C2 + Td)/	°C3			
Design Storm Return Period, Tr		years		10 J	lesign storm)		
C1 C2			(input the va (input the va				
C3			(input the va				
P1	= 2.57	inches	(input one-h	r precipitatio	nsee Sheet	"Design Info	")
III. Analysis of Flow	w Time (Time	of Concent	tration) for a	Catchmen	t		
Runoff Coefficient, C	= 0.55						
Overide Runoff Coefficient, C		(enter an ov	veride C value	e if desired, o	or leave blank	to accept ca	Iculated C.)
5-yr. Runoff Coefficient, C-5	= 0.39						
eride 5-yr. Runoff Coefficient, C	=	(enter an ov	veride C-5 val	ue if desired	i, or leave bla	nk to accept	calculated C
	8		<u>Illustration</u>				
					~		
		/			` Q		_
			Rea		overland	EGEND	
		Reach 2	×		J) Beginning	
	1~~		9			Flow Direction	•
/			VC24			Catchment	
	Reach 3	100				Boundary	
K							-
NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	reas &
NRCS Land Type	Heavy Meadow	Tillage/ Field	Pasture/	Bare	Swales/	Shallow Pav	ed Swales
Туре	Meadow	Field	Contraction of the Contraction o	1	A REAL PROPERTY OF THE REAL PR	and the second se	ed Swales Flow)
			Pasture/ Lawns	Bare Ground	Swales/ Waterways	Shallow Pav (Sheet	ed Swales Flow)
Туре	Meadow 2.5 Reach	Field 5 Slop e	Pasture/ Lawns 7 Length	Bare Ground 10 5-yr	Swales/ Waterways 15 NRCS	Shallow Pav (Sheet 20 Flow	red Swales Flow) Flow
Туре	Meadow	Field	Pasture/ Lawns 7	Bare Ground 10 5-yr Runoff	Swales/ Waterways 15 NRCS Convey-	Shallow Pav (Sheet 20	red Swales Flow)
Туре	Meadow 2.5 Reach	Field 5 Slop e	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff C-5	Swales/ Waterways 15 NRCS Convey- ance	Shallow Pav (Sheet 20 Flow Velocity V fps	ed Swales Flow) Flow Time Tf minutes
Туре	Meadow 2.5 Reach ID	Field 5 Slope S fvft input	Pasture/ Lawns 7 Length L ft input	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input	Shallow Pav (Sheet 20 Flow Velocity V fps output	ed Swales Flow) Flow Time Tf minutes output
Type	Meadow 2.5 Reach	Field 5 Slop e S fvft	Pasture/ Lawns 7 Length L	Bare Ground 10 5-yr Runoff Coeff C-5	Swales/ Waterways 15 NRCS Convey- ance input	Shallow Pav (Sheet 20 Flow Velocity V fps	ed Swales Flow) Flow Time Tf minutes
Type	Meadow 2.5 Reach ID Overland 1 2	Field 5 Slope S fvft input 0.0300	Pasture/ Lawns 7 Length L ft input 300	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32	ed Swales Flow) Flow Time Tf minutes output 15.41
Type	Meadow 2.5 Reach ID Overland 1 2 3	Field 5 Slope S fvft input 0.0300	Pasture/ Lawns 7 Length L ft input 300	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32	ed Swales Flow) Flow Time Tf minutes output 15.41
Туре	Meadow 2.5 Reach ID Overland 1 2	Field 5 Slope S fvft input 0.0300	Pasture/ Lawns 7 Length L ft input 300	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32 1.00	ed Swales Flow) 5 Flow Time Tf minutes output 15.41 8.33
Туре	Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S fvft input 0.0300	Pasture/ Lawns 7 Length L ft input 300 500	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32 1.00 	ed Swales Flow) 5 Flow Time Tf minutes output 15.41 8.33 23.74
Туре	Meadow 2.5 Reach ID Overland 1 2 3 4	Field 5 Slope S fvft input 0.0300 0.0100	Pasture/ Lawns 7 Length L ft input 300 500	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00 Cor R	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32 1.00 	red Swales Flow) Flow Time Tf minutes output 15.41 8.33 23.74 14.44
Type Conveyance Calculations:	Meadow 2.5 Reach ID Overland 1 2 3 4 5 -	Field 5 Slope S fvft input 0.0300 0.0100	Pasture/ Lawns 7 Length L ft input 300 500	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00 Cor R	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32 1.00	ed Swales Flow) 5 Flow Time Tf minutes output 15.41 8.33 23.74
Type Conveyance Calculations: IV. Peak Runoff Pro	Meadow 2.5 Reach ID Overland 1 2 3 4 5 - - - - - - - - - - - - -	Field 5 Slope S ft/ft input 0.0300 0.0100 Sum	Pasture/ Lawns 7 Length L ft input 300 500 500	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00 Cor R User-E	Shallow Pay (Sheet 20 Flow Velocity V fps output 0.32 1.00 	red Swales Flow) Time Tf minutes output 15.41 8.33 23.74 14.44 14.44
Type Conveyance Calculations:	Meadow 2.5 Reach ID Overland 1 2 3 4 5 ediction mputed Tc, I =	Field 5 Slope S fvft input 0.0300 0.0100 Sum	Pasture/ Lawns 7 Length L ft input 300 500	Bare Ground 10 5-yr Runoff Coeff C-5 output	Swales/ Waterways 15 NRCS Convey- ance input N/A 10.00 Con R User-E	Shallow Pav (Sheet 20 Flow Velocity V fps output 0.32 1.00 	red Swales Flow) Flow Time Tf minutes output 15.41 8.33 23.74 14.44

5/31/2016, 11:30 AM

User Defined

Volume [sc-ft]

0 00

0.03

D.19

0 49

0 68

0 89

1.38

1 4 9

1.97

2 64

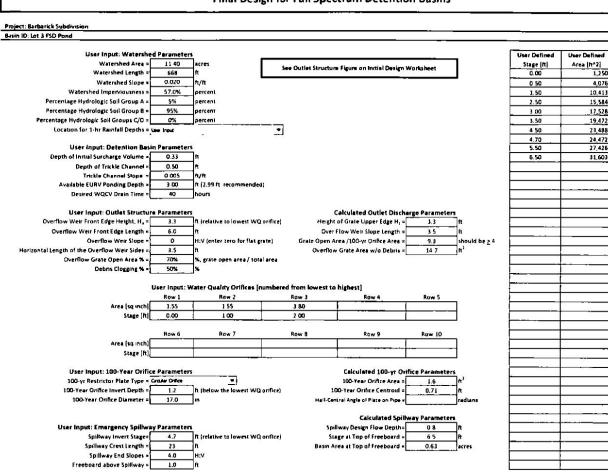
4,076

10,413

15,584

17,52B

19,472


21,488

24,472

27.426

31,603

Final Design for Full Spectrum Detention Basins

.

,

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

	947 - 975		
Project	Barbarick 1	4	
Qanin (D	Da		
,	3		
	·	-	-
	1992	<u> </u>	
	7	~ ~ ~ ~	
Example Zone	Contigurat	on (Reten	bon Pond)
Required Volume Calculation			
Saturd Bull Type +	8F	٦	
Watershell Arm •	3 13	-	
Watershed Langth +	648	4	
Watershed Size -	0 000		
Watershed Imperviculations all	57 00%	percent	
Percentage Hydrologic Sol Group A •	5.0%	percent	
Percentage Hydrologic Sol Group B -	95 0%	percent	
Percentage Hydrologic Sol Groups C/D +	0.0%	percent	
Desend WOCV Dram Time +	12 0	hours	
Location for 1-te Flamial Depths -	Uner Input		
Water Queity Capture Volume (WQCV) +	0 047	acre-feet	Optional Liter Input
Excess Lines Runof Volume (EURV) =	0184	Acre-legi	1 to Precipitation
2-yr Runoff Volume (P1 = 0.95 m.) =	0 125	acre-feet	0 95 Inches
5-yr Ruhaff Volume (P1 + 1 23 et.) +	0 194	acre-test	123
10-yr Runoff Volume (P1 + 148 m) =	0 253	acro-lost	1.48 mchm
25-yr Runoff Volume (P1 = 1.00 =) =	0.363		165 mchai
SD-yr Runolf Volume (P1 + 2 21 et.) +	0452	acre-last	2 21 mohe
100-yr Runoff Volume (P1 + 2 57 m.) +	0 554		2 57 mohim
500-yr Runoff Volume (P1 = 0 m) =	0.000	1070-4mi	TEN
Approximate 2-pr Detendion Volume #	0 122	acro-last	
Approximate 5-yr Owanian Volume =	0 179	mile-led	
Approximate 10-yr Ostention Volume =	0 204	acre-leal	
Approximate 25-yi Deleniton Volume *	0 2 3 7	acre-leet	
Approximate 50-yr Detention Volume =	0 273	mite-last	
Approximate 100-yr Defention Volume •	0.336	acra-feel	
Stage-Storage Calculation	2 2 2 2	-	
Zone 1 Volume (WOCV) +	0 047	ACTE-FOOI	
Zone 2 Volume (100-year - Zone 1) *	0 289	acro-last	
Seieci Zone 3 Storage Volume (Optional) =	0 336	IC re-leef	
Total Detention Baun Volume +	NA NA	acre-last	
indiai Sunt narga Voluma (15V) * Indiai Suntharga Calpin (15O) *	NA	10	
Total Available Description Couply (50.7) *	2 50	-*	
Depth of Tracks Charmel (Hyr.) =	NA	-1	
Slope of Truthe Chartral (Sr.) -	NA	an .	
Stopes of Main Basin States (5., .) =	4	HV	
Basen Langth-to-Width Ratio (R) =	15	- T *	
inimi Surcharge Area (A) =	D	172	
Sutchings Volume Length (Ly.) *	0.0	1	
Surcharge Volume Wath (W.,)	00		
Depth of Sames Floor (Harran) v	0.00	÷.	
Longith of Beesin Floor (Louise) +	#1 G	1	
Width of Basen Floor (Wiscow) =	540		

Depts Increment + Steps - Blorage	Stage	Optunal Oriende	Lungth	Width	-	Optional Originale	Arca	Volume	Valume
Description	(T)	Stage (ft)	<u>m</u>	(T)	(77)	Ares (17)	(1004)	03)	(=-47)
Media Burtaca	0.00		81.0	540	4 370		0 100	<u> </u>	
	0 10	1	81.6	54.8	4 471		0 103	402	0 D10
	0.20	1	825	50.5	4 577		0 105	850	0 020
	0.30		603	56.3	* 584	1	0 108	1 1 21 2	0 030
	640		64 1	571	4 601		D 110	1,768	D GA1
Zone 1 (WQCV)	0.45		B4 5	57.6	4 559		0 112	2 078	0.046
<u></u>	0.50		64.9	57.8	4 914		0 1 13	2 273	0 052
	0 70		85 7 85 5	587	5 00 9		0 115	2,770	0 084
	0.80		673	60.3	5 263		0 118	3 279	0 075
0	0.60		861	51 1	5 361		0 124	4 332	0 099
	100		66.9	61.0	5 501		0 126	4 876	0 112
	1 10		597	627	5 677		0 129	5 437	0 125
	1 20		80 5	63.5	8 745		0132	8 000	0 138
	1.30		813	64.3	3 80.9		0 135	8 361	0 151
	140		BZ 1	6 .,	5 854	1	0 132	7,174	0 165
	1 50		82.9	859	6120		0 141	7,780	Q 179
	160	1	86.7	41.7	\$ 248		0140	8 396	C 193
	170		945	67.5	6.377		0.146	9 030	0 207
	1 80		95.3	68.)	6.501	!	0 149	9 674	0 222
	1 90		90 1	a 1	6 639		0 152	10.331	0 237
	200	}	98.9	699	6 771		0 155	11 001	
	2 10		97.8	70 8	0 910		0 159	11 754	
1	2 20		98.6	714	7 054	├ • • •	0 152	12 453	0 286
	2 30	<u> </u>	99.4 100.2	73 2	7,191		0 155	13 185	0 302
Cone 2 (100-year)	2 50		100 2	73 2	7,129		0 155	13 891	0 319
	2 50		101 6	74.8	7 609		0 175	15 385	0 353
	2 70		102.5	756	1,751		0 178	16 153	0 353
	2 60		103.4	78 4	7 694		0 181	18 805	0 389
	2 80		104 2	77 2	4 0.39		0 185	17.72	D 407
	3 00		105.0	78.0	8 184		D 152	18 543	0 428
	D) C		105.8	78.8	8 331		D 191	19 369	D 445
	3 20		1051	796	0.480		0 195	70.709	0 454
	3.30		107.4	30 4	0 629		0 198	21 085	0444
	3 40		106.2	412	4 780		0 202	21935	0 504
10	3 50		1090	82 0	6 832		0 205	22 621	0 524
	7.60		109.8	82.6	9 085		0 209	23 722	0548
100	370		BOIL	818	9 240		0 212	24 638	0 566
	3 #3 3 90		111.4	84 4 85 7	9 398		0.218	25 570	0.587
	400		1122	68 D	9 712		0 219	27 480	0 609
	4 10		113.8	80.6	P 872		0.227	28 460	0 653
	4 20		1148	878	10 000		0 230	29 455	0 678
	4.30	- 1	115 4	684	10 195		0 234	30 466	0 609
	1.40		115 2	89 7	10.354		0 238	31 494	0 723
	4 50		1170	90 0	10 573	-	0 242	32 538	0 747
	4 60		1178	90 8	10 690		0245	33 550	0 771
127	4 70		1588	91.6	10 857		0 740	34 878	0 799
	4 80		1194	924	11.028	<u> </u>	0.253	15 770	0 821
	4 90		120.2	937	11,196		0 257	36 (66)	0 647
	5 00		121.0	940	11.367		0 261	38 009	0 \$73
2025	5 10		1218	94.6	11,540		0 265	39 155 40 317	0 899
	5.30		123.4		11,889		0 273	41 497	
	5.40		124 2	964	12,096		0 277	42 605	0.040
	5 60		125.8	96 8 96 8 99 6	12.422			41 911	1006
	5 70		1258 1266 1274	996	12,422		0 255	45 395	1036
	5 90		128 2	101 2	12,967		0 293		1 1 2 4
	6 00 6 10		129.0	102 0 102 8	13,151		0 302	50 2% 51 562	1 154
	6 20		1006	103 6	13,523		0310	52,0.1	1715
5	6.0		131.4	104 4	12,711		0 315	54,267	1246
	6 50		1330	108.0	14 040		0 223	57 047	1310
	6.60 6.70		1218	101 8	14,282	1	0 128	56 495 56 923	134
	6 80		1154	_ 908.4	14,670		0 337	81,380	1429
0.000	700	i	1329	109 2	14 846		0.341	62,667	1443
	7 10	·	137.0	1100	19,200		0.350	61 875	1512
	7 20		138.6	1118	15,480		0 355	67,404	1547
	7 30		1402	112 4	15,663		0360	64 Pt.2 TO_514	1543
	7 60		1410	1148	10,271		0 374	72,134	16%6
	7 70		142 8	1148	10 476		0 376	73 751 75 365	1 31
	7.90		442	1172	10 802		0 365	78 775	1700
	8 00		1410	1180	17,102		0 393	80 425	1 844
	# 20		148.6	1196	17.625		0 402	81,847	1 926
100 C	8 40		147.4	120.4	17.736		0 407	85,674	1 900
	8 50		1410	1220	18 169		0417	89 241	2 049
	8 60 8 70		149.8	122 0 122 6 123 8 123 8 124 4	18.387		0 422	91,066 92,919 94 790	2 091
1	8 80		151.4	124.4	18 805		D 432	94 790	2 133
	8 90		152 Z 153 C 153 B	125.2 126 D	19.047		0 437 D 442	94.684	1 2 20
	9 10		153.8	124.0	10 601		0 447	98,548	2 204
	9.70		154.6	127 6	19,715		D 453 D 468	102 498	2 351
	9.40		154 2	170 2 170 0 130 6	20,172 20,401 20,631		0463	106 487 108 516 110 567	2 300 7 445 2 401 2 5 30 2 5 30

s

	0.00	Depth of Banes Floor (Harran) v
1	81 G	Longith of Beesin Floor (Leuran) -
7	540	With a Been Floor (Witten) -
**2	4.370	Area of Basin Floor (Aura)
	0	Volume of Basin Floor (V _{russ}) =
	2 50	Depth of Man Basin (Hand -
.	101 0	Langth of Main Basin (Las.) -
.*	74 0	Width of Mann Basin (W] +
+7	7 469	Area of New Beam (A _{rea}) =
10	14 6216	Volume at Man Base (V] =
acre los	0 3 36	Calculated Total Basin Volume (V) +

16

Detention Basin Outlet Structure Design									
Project	Barbarick Subdivisi	0 1	<u>.</u>	<u> </u>				<u>. </u>	
Basin ID:	D3				24. 12				
(ZOHI 3	····								
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type	_		
VOLUME UNT WOOD			Zone 1 (WQCV)	0 45	0.047	Filtration Media			
		· · · · · · · · · · · · · · · · · · ·	Zone 2 (100-year)	2.50	0.289	Not Utilized			
PERMANENT - OWNERS	/ OW ACE		Zone 3						
POOL Example Zone C	orfiguration (Rete	ntion Pond)			0 336	Total	J		
User Input: Orifice at Underdrain Outlet (typically us	ed to drain WQCV in a	Filtration 8MP)					ed Parameters for Ur	nderdrain	
Underdrain Orifice Invert Depth =		ft (distance below th	e filtration media suri	(ace)	Und	erdrain Orilice Area +	0.0]n²	
Underdrain Onlice Diameter =	1.27	inches			Underdr	ain Orfice Centroid +	0 05	feer	
						1		- -	
Jser Input: Orifice Plate with one or more orifices o					IMP	Calcu	lated Parameters for		
invert of Lowest Onlice =		ft (relative to basin b				Infice Area per Row =	N/A	tt²	
Depth at top of Zone using Onlice Plate =	N/A	ft (relati ve to basin b	ottom at Stage = 0 (1)			Elliptical Half-Width #	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =		inches			Ell	ptical Slot Centroid +	N/A	teel	
Ordice Plate Ordice Area per Row -	N/A	inches				Elliptical Siot Area =	N/A	h,	
Jeer Input: Stage and Total Area of Each Orifice R	ow (numbered from	lowest to highest)							
	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (1)		N/A	N/A	N/A	N/A	N/A	N/A	N/A	1
Onfice Area (sq. inches)	· · · · ·	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1
to constant 10 100					······································			-	
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]
Stage of Onlice Centroid (II)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Onlice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ļ
									A
User Input: Vertical Orifice (Cl			1			Calculated	Parameters for Ver		1
	Not Selected	Not Selected					Not Selected	Not Selected	.,
Invert of Vertical Ordice a		·		oottom at Stage = 0 ft oottom at Stage = 0 ft		/ertical Ordice Area = ical Orifice Centroid =			ft" leet
Depth at top of Zone using Vertical Orifice = Vertical Orifice Diameter =			inches	iottom at stage - u K	Vert	icas Office Centrold =	L		liest
Venical Office Dameter	· · ·	•• • ••	Jucies						
	L	l.							
User Input: Overflow Weir (Dropbox) and									
	Grate (Flat or Sloped)					Calculater	Parameters for Ove	rflow Weir	
	Grate (Flat or Sloped) Not Selected	Not Selected	1			Calculater	d Parameters for Ove Not Selected	rflow Weir Not Selected	1
	Not Selected	Not Selected	fl (relative to basin bo	ttom al Stage = 0 (1)	Height of G	Calculater		1	ieeı
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length a	Not Selected	Not Selected	ft (relative to basin bo' feet	ttom at Stage = 0 (t)				1	ieei ieei
Overflow Weir Front Edge Height, Ho	Not Selected	Not Selected			Over Flow	rate Upper Edge, H, ■		1	
Overflow Weir Front Edge Height, Ho - Overflow Weir Front Edge Length -	Not Selected	Not Selected	feet H V (enter zero for f) feet	la1 grate)	Over Flov Grate Open Area /	rate Upper Edge, H, = • Weir Slope Length =		1	leet
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length a Overflow Weir Slope a	Not Selected	Not Selected	feet H V (enter zero for fl	la1 grate)	Over Flov Grate Open Area / Overflow Grate Op	rate Upper Edge, H, = v Weir Slope Length = 100-yr Orifice Area =		1	leet
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope • Horiz, Length of Weir Sides •	Not Selected	Not Selected	feet H V (enter zero for f) feet	la1 grate)	Over Flov Grate Open Area / Overflow Grate Op	rate Upper Edge, H, = v Weir Slope Length = 100-yr Orifice Area = ien Area w/o Debris =		1	leet
Overflow Weir Front Edge Height, Ho Dverflow Weir Front Edge Length Overflow Weir Slope Horiz, Length of Weir Slodes Overflow Grate Open Area % t Debris Clogging % +	Not Selected	Not Selectad	feet H V (enter zero for fl feet %, grate open area/t %	la1 grate)	Over Flov Grate Open Area / Overflow Grate Op Overflow Grate D	rate Upper Edge, H, = v Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ³
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope Horiz, Length of Weir Slodes Overflow Grate Open Area % t Debris Clogging % +	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t %	la1 grate)	Over Flov Grate Open Area / Overflow Grate Op Overflow Grate D	rate Upper Edge, H, = v Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ³
Overflow Weir Front Edge Height, Ho Dverflow Weir Front Edge Length Overflow Weir Slope – Horiz, Length of Weir Slobe Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci	Not Selected	Not Selectad	feel H V (enirr zero for f) feel %, grate open area/t % Mar Orifice)	lat grote) iotal area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	rate Upper Edge, H, = v Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Paramete	Not Selected	Not Selected	teet should be <u>></u> 4 ft ³ ft ³
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope a Horz. Length of Weir Sides a Overflow Grate Open Area % a Debris Clogging % a Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to invert of Outlet Pipe a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % far Orifice) ft (distance below bass	la1 grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orlice Length • en Area v/o Debris • ipen Area w/ Debris • Calculated Paramete Outlet Orlice Area •	Not Selected	Not Selected	teet should be ≥ 4 ft ³ ft ³
Overflow Weir Front Edge Height, Ho Dverflow Weir Front Edge Length Overflow Weir Slope – Horiz, Length of Weir Slobe Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci	Not Selected	Not Selected	feel H V (enirr zero for f) feel %, grate open area/t % Mar Orifice)	la1 grate) :otal area in bottom at Slage « O f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O to	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orifice Area • en Area v/o Debris • pen Area w/ Debris • Calculated Paramete Outlet Orifice Area • tlet Orifice Centroid =	Not Selected	Not Selected	leet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope a Horiz. Length of Weir Slodes Overflow Grate Open Area % a Debris Clogging % a Juer Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % far Orifice) ft (distance below bass	la1 grate) :otal area in bottom at Slage « O f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orifice Area • en Area v/o Debris • pen Area w/ Debris • Calculated Paramete Outlet Orifice Area • tlet Orifice Centroid =	Not Selected	Not Selected	teet should be ≥ 4 ft ³ ft ³
Overflow Weir Front Edge Height, Ho a Dverflow Weir Front Edge Length a Overflow Weir Slope a Horiz, Length of Weir Slope Overflow Grate Open Area % a Debris Clogging % a Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe a Circular Onfice Diameter a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % far Orifice) ft (distance below bass	la1 grate) :otal area in bottom at Slage « O f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O to	rate Upper Edge, H, = v Wer Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Outlet Orifice Area = Outlet Orifice Centroid = rinctor Plate on Pipe =	Not Selected	Not Selected	leet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope a Horz. Length of Weir Sides a Overflow Grate Open Area % a Debris Clogging % a Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to invert of Outlet Pipe a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % far Orifice) ft (distance below bass	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (verflow Grate O (verflow Grate O (verflow Grate O (verflow Grate O (verflow Grate O)	rate Upper Edge, H, = v Wer Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Outlet Orifice Area = Outlet Orifice Centroid = rinctor Plate on Pipe =	Not Selected	Not Selected	feet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope Horiz, Length of Weir Slobe Overflow Grate Open Area % a Debris Clogging % - Debris Clogging % - Diser Input: Dutlet Pipe - Circular Orthce Diameter - User Input: Emergency Spillway (Rectar	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % Mar Orifice) ft (distance below basis inches	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Spillwa Spillwa	rate Upper Edge, H, = v Wer Slope Length = 100-yr Orthce Area = en Area w/o Debris = pen Area w/o Debris = Calculated Paramete Outlet Orthce Area = Cutlet Orthce Area = tiet Orthce Centroid = tractor Plate on Pipe = Celcula	Not Selected	Not Selected	feet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope a Horz. Length of Weir Slobe Overflow Grate Open Area % a Debris Clogging % a Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to invert of Outlet Pipe a Circular Onlice Diameter a User Input: Emergency Spillway (Rectai	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % Mar Orifice) ft (distance below basis inches	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Souther State Spillwa State : State :	rate Upper Edge, H, • VWer Slobe Length • 100-yr Orlice Area • en Area v/ Debris = Calculated Paramete Outlet Orlice Area = tiet Orlice Centroid = tractor Plate on Pipe = Calcula y Design Flow Depth-	Not Selected rs for Qutlet Pipe w/ Not Selected N/A sted Parameters for S 0 66	Not Selected	feet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length Overflow Weir Slope a Horz. Length of Weir Slope a Overflow Grate Open Area % a Debris Clogging % a Jser Input: Dutlet Pipe w/ Flow Restriction Plate (Ci Depth to Inverr of Outlet Pipe a Circular Onfice Diameter a User Input: Emergency Spillway (Rectai Spillway Invert Stage:	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % Mar Orifice) ft (distance below basis inches	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Souther State Spillwa State : State :	rate Upper Edge, H, • VWer Slope Length • 100-yr Orifice Area • en Area v/o Debris = pen Area w/ Debris • Calculated Paramete Outlet Orifice Centroid = trictor Plate on Pipe = Calcula y Design Flow Depth- st Top of Freeboard =	Not Selected	Not Selected	leet should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Duerflow Weir Front Edge Height, Ho a Overflow Weir Slope a Horz. Length of Weir Sides a Overflow Grate Open Area % a Debris Clogging % a Debris Clogging % a Suber Input: Outlet Pipe a Circular Orifice Diameter a Circular Orifice Diameter a Spillway Invest Stage Spillway Crest Length Spillway End Slopes a Freeboard above Max Water Surface a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % Mar Orifice) ft (distance below basis inches	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Souther State Spillwa State : State :	rate Upper Edge, H, • VWer Slope Length • 100-yr Orifice Area • en Area v/o Debris = pen Area w/ Debris • Calculated Paramete Outlet Orifice Centroid = trictor Plate on Pipe = Calcula y Design Flow Depth- st Top of Freeboard =	Not Selected	Not Selected	leet should be <u>≥</u> 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length a Overflow Weir Stope a Norz. Length of Weir Sides a Overflow Grate Open Area % a Debris Clogging % a Debris Clogging % a Debris Clogging % a Depth to invert of Outlet Pipe a Circular Onflice Diameter a Circular Onflice Diameter a Spillway Invert Stage Spillway Crest Length a Spillway End Slopes a Freeboard above Max Water Surface a	Not Selected	Not Selected	feet H V (enter zero for f) feet %, grate open area/t % far Orifice) ft (distance below basi inches hottom at Stage = 0 ft)	lat grate) :otal area in bottom at Stage + D f Hall	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Secontral Angle of Resi Spillwa Stage i Basm Area ;	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orlfice Area • en Area v/ Debris = pen Area w/ Debris = Calculated Paramete Outlet Orlfice Centroid = thet Orlfice Centroid = Calcula y Design Flow Depth- at Top of Freeboard =	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length - Overflow Weir Stope - Horz. Length of Weir Sides - Overflow Grate Open Area % = Debris Clogging % - Debris Clogging % - Depth to Invert of Dutlet Pipe + Circular Onfice Diameter = Circular Onfice Diameter = Spillway Invert Stager Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % Mar Orifice) ft (distance below basis inches	lat grate) iotal area in bottom at Stage « O f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Souther State Spillwa State : State :	rate Upper Edge, H, • VWer Slope Length • 100-yr Orifice Area • en Area v/o Debris = pen Area w/ Debris • Calculated Paramete Outlet Orifice Centroid = trictor Plate on Pipe = Calcula y Design Flow Depth- st Top of Freeboard =	Not Selected	Not Selected	leet should be <u>≥</u> 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length a Overflow Weir Slope a Horr. Length of Weir Sides a Overflow Grate Open Area % a Debris Clogging % a User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe a Circular Onflice Diameter a Circular Onflice Diameter a Spillway Invert Staged Spillway Crest Length a Spillway Crest Length a Spillway Crest Length a Spillway End Slopes a Freeboard above Max Water Surface a	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % flar Orifice) ft (distance below basi inches bottom at Stage = 0 ft) 2 Year	lat grate) lotal area in bottom at Slage « D f Hafi	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillwa Stage : Basm Area a 10 Year	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orifice Area • en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Outlet Orifice Area • tier Orifice Centroid = trictor Plate on Pipe • Calcula y Design Flow Depth- at Top of Freeboard = 25 Year	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ² ft ⁷ freet freet fredians
Overflow Weir Front Edge Height, Ho s Overflow Weir Front Edge Length - Overflow Weir Stope - Horz. Length of Weir Slope - Overflow Grate Open Area % - Debris Clogging % - Debris Clogging % - Debris Clogging % - Carcular Onfice Diameter - Circular Onfice Diameter - Circular Onfice Diameter - Spillway Invert Stager Spillway Crest Length - Spillway Crest Length - Sp	Not Selected	Not Selected Or Plate, or Rectangu Not Selected It (relative to basin b feet H V feet EURV 107 0.194	feet H V (enter zero for fl feet %, grate open area/t % ft (distance below basi inches bottom at Stage = 0 ft) 2 Year 0.95 0.128	lat grate) total area in bottom at Slage « D f Hali) 5 Year 1.23 0.194	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Ou Central Angle of Resi Spillwa Stage i Basm Area i 0.253	rate Upper Edge, H, • VWer Slope Length • 100-yr Orthce Area • en Area w/o Debris • pen Area w/ Debris • Calculated Paramete Outlet Orthce Area • tier Orthce Centroid • tructor Plate on Pipe • Calcula y Design Flow Depth• at Top of Freeboard • 1.88 0.163	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 0.00 0.000
Overflow Weir Front Edge Height, Ho o Duerflow Weir Front Edge Height, Ho o Overflow Weir Slope t Overflow Weir Slope t Horiz. (ength of Weir Sides s Overflow Grate Open Area % o Debris Clogging % o Circular Orifice Diameter s Circular Orifice Diameter s Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway Crest Length & Spillway Crest Length & Spillway Crest Length & Spillway End Slopes s Freeboard above Max Water Surface s One-Hour Rainfal Debrin (o) Calculated Runoff Volume (care.h) s OPTIONAL Override Runoff Volume (care.h) s	Not Selected	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % tar Orifice) ft (distance below basi inches outtom at Stage = 0 ft) 2 Year 0.95 0.128 0.127	lat grate) iotal area in bottom at Stage « 0 f Ha(i) S Year 1.23 0.194 0.194	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Central Angle of Resi Spillwas Stage a Basm Area a 0.253 0.253	rate Upper Edge, H, • V Wer Slope Length • 100-yr Orlice Area • in Area w/ Debris = pen Area w/ Debris = Calculated Paramete Outlet Orlice Centroid = tiet Orlice Centroid = tiet Orlice Centroid = tiet Orlice Centroid = Calcula y Design Flow Depth- at Top of Freeboard = 25 Year 1.88 0.363	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ¹ ft ² feet radians 500 Year 0.00 0.000 0.000 0.000 0.000
Overflow Weir Front Edge Height, Ho a Deerflow Weir Front Edge Length i Overflow Weir Stope i Overflow Weir Stope i Horr. Length of Weir Sides i Overflow Grate Open Area % i Debris Clogging % i Debris Clogging % i Depth to Invert of Outlet Pipe i Circular Onlice Diameter i Circular Onlice Diameter i Spillway Invert Stage Spillway Invert Stage Spillway Crest Length i Spillway End Slope s Freeboard above Max Water Surface i One-Hour Rantall Depth (n) a Calculated Runoff Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i	Not Selected	Not Selected Or Plate, or Rectangu Not Selected It (relative to basin b feet H V feet EURV 107 0.194	feet H V (enter zero for fl feet %, grate open area/t % ft (distance below basi inches bottom at Stage = 0 ft) 2 Year 0.95 0.128	lat grate) total area in bottom at Slage « D f Hali) S Year 1.23 0.194	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Ou Central Angle of Resi Spillwa Stage i Basm Area i 0.253	rate Upper Edge, H, • VWer Slope Length • 100-yr Orthce Area • en Area w/o Debris • pen Area w/ Debris • Calculated Paramete Outlet Orthce Area • tier Orthce Centroid • tructor Plate on Pipe • Calcula y Design Flow Depth• at Top of Freeboard • 1.88 0.163	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 0.00 0.000
Overflow Weir Front Edge Height, Ho o Duerflow Weir Front Edge Height, Ho o Overflow Weir Slope t Overflow Weir Slope t Horiz. (ength of Weir Sides s Overflow Grate Open Area % o Debris Clogging % o Circular Orifice Diameter s Circular Orifice Diameter s Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway Crest Length & Spillway Crest Length & Spillway Crest Length & Spillway End Slopes s Freeboard above Max Water Surface s One-Hour Rainfal Debrin (o) Calculated Runoff Volume (care.h) s OPTIONAL Override Runoff Volume (care.h) s	Not Selected	Not Selected very Selected r Plate, or Rectangu Not Selected r (relative to basin b feet H V feet EURV 107 0.194 0.194 0.00	feet H V (enter zero for f) feet %, grate open area/t % ft (distance below bas) inches bottom at Stage = 0 ft) 2 Year 0.95 0.127 0.01	lat grate) iotal area in bottom at Slage « D f Ha(i) 5 Year 1.23 0.194 0.17 0.5 4.3	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Central Angle of Resi Spillwas Sage : Basm Area : 0.253 0.34 1.1 5.3	rate Upper Edge, H, • V Wer Slope Length • 100-yr Orlice Area • en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Calculated Parameter Calculated Parameter Cal	Not Selected rs for Outlet Pipe w/ Not Selected N/A sted Parameters for S 0 66 4.16 0 23 SO Year 2.21 0.452 0.451 1.04	Not Selected	teet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 0.00 0.0000 0.00000 0.00000 0.0000
Overflow Weir Front Edge Height, Ho o Deerflow Weir Front Edge Length i Overflow Weir Slope i Horr. Length of Weir Slope i Horr. Length of Weir Slope i Debris Clogging % i Debris Clogging % i Debris Clogging % i Depth to Invert of Outlet Pipe i Circular Orifice Diameter i Circular Orifice Diameter i Spillway Invert Stager Spillway Crest Length i Spillway Crest Length i Calculated Runoff Volume (acre.h) i OPTIONAL Overrate Runoff Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i Predevelopment Dink Peak Flow, q (cfa/acre) i Predevelopment Pieck Q (cfa) i Peak Unflow Q (cfa) i	Not Selected	Not Selected Very Selected In (relative to basin b feet V feet V feet EURV 107 0.194 0.00 0 4.1 0.1	feet H V (enter zero for f) feet %, grate open area/t % ft (distance below basis inches bottom at Stage = 0 ft) 2 Year 0.95 0.127 0.01 0.0	lat grate) (otal area in bottom at Stage + D f Hall 0.123 0.194 0.17 0.19 0.17 0.12 0.12 0.12	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Central Angle of Resi Central Angle of Resi Spillwa- Stage i Basm Area i 0.253 0.34 1.1 5.3 0.1	rate Upper Edge, H, • VWer Slope Length • 100-yr Orlice Area • pen Area w/ Debris • Calculated Paramete Outlet Orlice Centroid = tiet Orlice Centroid = trictor Plate on Pipe • Calcula y Design Flow Depth- at Top of Freeboard • 1.88 0.363 0.80 2.5 7.6 0.2	Not Selected	Not Selected Flow Restriction Platt Not Selected N/A ipillway leet leet leet log Year 2.57 0.554 0.553 1.33 4 2 11 6 3 6	teet should be ≥ 4 ft ² tt ² ftet radians 500 Year 0.00 0.0000 0.000000 0.00000 0.000000 0.00000
Overflow Weir Front Edge Height, Ho a Devrflow Weir Front Edge Length i Overflow Weir Slope i Horr. Length of Weir Sides i Overflow Grate Open Area % i Debris Clogging % i Debris Clogging % i User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe i Circular Onlice Diameter i Circular Onlice Diameter i Spillway Invert Stage: Spillway Crest Length i Spillway Crest Length i Spillway Crest Length i Spillway Crest Length i Calculated Runoff Volume (acre.h) i OPTIONAL, Override Runoff Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i Predevelopment Unf Pack Flow, (Cifavare) Predevelopment Deak Flow, (Cifavare) Peak Inflow Q (cfs) i Rabo Peak Outflow to Predevelopment Q (cfs) i	Not Selected	Not Selected or Plate, or Rectangu Not Selected ft (relative to basin b feet H V feet EURV 107 0.194 0.194 0.194 0.10 0.1 N/A	feet H V (enter zero for fl feet X, graft open area/t X ft (distance below basis inches tt (distance below basis inches 0.055 0.128 0.01 0.01 0.01 0.0 2.7 0.1 0.1 N/A	lat grate) in bottom at Slage + D F Hall 0.194 0.17 0.3 0.1 0.1 0.1 0.1 0.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Spillwas Stage & Bosen Area (0.253 0.34 1.1 5.3 0.1	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orlfice Area • en Area w/o Debris • pen Area w/o Debris • Calculated Paramete Outlet Orifice Area • tilet Orifice Centroid = trictor Plate on Pipe • Celcula y Design Flow Depth- at Top of Freeboard • 1.88 0.363 0.80 2.5 7.6 0.2 0.1	Not Selected	Not Selected	teet should be ≥ 4 ft ² tt ¹ ft ¹ feet radians 500 Year 0.00 0.000 ■N/A 1.189 5.9 ■N/A ■N/A ■N/A
Overflow Weir Front Edge Height, Ho o Overflow Weir Front Edge Height, Ho o Overflow Weir Stope t Overflow Weir Stope t Horr. (ength of Weir Stope t Overflow Grate Open Area % 3 Debris Clogging % 1 Debris C	Not Selected	Not Selected	feet H V (enter zero for fi feet %, grate open area/t % tor Orifice) ft (distance below basis inches entition at Stage = 0 ft) 2 Year 0.95 0.128 	lat grate) iotal area in bottom at Stage « D f Ha(i)) 	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Central Angle of Resi Spillwas Stage 4 Basm Area 6 0.253 0.253 0.34 1.1 5.3 0.1 5.3 0.1 5.1 0.1 5.1 0.1	rate Upper Edge, H, • V Wer Slope Length • 100-yr Orlice Area • en Area w/ Debris = pen Area w/ Debris = Calculated Paramete Cutlet Orlice Centroid = trictor Plate on Pipe = Celcula y Design Flow Depth- at Top of Freeboard = at Top of Freeboard = 0.163 0.363 0.80 2.5 7.6 0.1 Spillway	Not Selected	Not Selected Flow Restriction Platting Not Selected N/A spillway leet fert acres 0.553 1.33 4 2 116 3 6 0.9 Spillway	teet should be ≥ 4 ft ² tt ¹ ft ² feet radians
Overflow Weir Front Edge Height, Ho a Devrflow Weir Front Edge Length i Overflow Weir Slope i Horr. Length of Weir Slope i Overflow Grate Open Area % i Debris Clogging % i Debris Clogging % i User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe i Circular Onlice Diameter i Circular Onlice Diameter i Spillway Invert Stage: Spillway Crest Length i Spillway Crest Length i Spillway Crest Length i Spillway Crest Length i Calculated Bunoff Volume (acre.h) i OPFIONAL Override Runoff Volume (acre.h) i Inflow Hydrograph Volume (acre.h) i Pradevelopment Unf Pack Flow, (Cifyare) Predevelopment Deak Flow, (Cifyare) Peak Outflow Q (cfs) i Rato Peak Outflow to Predevelopment Q (cfs) i	Not Selected rcular Orifice, Restrict Not Selected Not Selected 2.50 5.00 4.00 1.00 WQCV 0.53 0.047 0.047 0.00 0.0<	Not Selected Or Plate, or Rectangu Not Selected It (relative to basin b feet H V feet EURV 107 0.194 0.194 0.194 0.10 0.0 1.1 N/A	feet H V (enter zero for fi feet X, graft open area/t X tar Orifice) ft (distance below basis inches tt (distance below basis inches 0.055 0.128 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	Iat grate) Iotal area In bottom at Slage + D P Hall 0.194 0.17 0.5 4.3 0.194 0.17 0.5 4.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillwa Stage : Basen Area : 0.253 0.34 1.1 5.3 0.34 1.1 5.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	rate Upper Edge, H, • v Weir Slope Length • 100-yr Orlfice Area • en Area w/o Debris • pen Area w/o Debris • Calculated Paramete Outlet Orifice Area • tilet Orifice Centroid = trictor Plate on Pipe • Celcula y Design Flow Depth- at Top of Freeboard • 1.88 0.363 0.80 2.5 7.6 0.2 0.1	Not Selected	Not Selected	teet should be ≥ 4 ft ² ft ¹ ft ² feet radians 500 Year 0.00 0.0000 0.000000 0.00000 0.0000
Overflow Weir Front Edge Height, Ho o Devrflow Weir Front Edge Height, Ho o Overflow Weir Stope 1 Overflow Weir Stope 1 Horr. Length of Weir Stope 1 Overflow Grate Open Area % 3 Debris Clogging % 1 Debris Clogging % 1 Debris Clogging % 1 Depth to invert of Dutlet Pipe 4 Circular Orifice Diameter 3 Circular Orifice Diameter 3 Spillway Invert Stage Spillway Invert Stage Spillway Crest Length 4 Spillway Crest Length 4 Calculated Runoff Volume (care.ft) 3 Inflow Hydrograph Volume (care.ft) 3 Predevelopment Lunk Peak Flow, a (cfa) 7 Predevelopment J Pack (cfa) 7 Peak Inflow 0 (cfa) 7 Peak Inflow 0 (cfa) 7 Rato Peak Outflow to Predevelopment 3 Sucure Controling Flow Max Velocity through Grate 1 (pis) 7 Max Velocity through Grate 1 (pis) 7 Max Velocity through Grate 1 (pis) 7 Max Velocity through Grate 2 (pis) 7 Time to Dran 97% of Inflow Volume (hours) 7	Not Selected roular Orffice, Restrict Not Selected Not Selected 2.50 5.00 4.00 2.50 5.00 4.00 0.047 0.047 0.047 0.00 1.0 0.047 0.00 1.0 0.047 0.00 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1	Not Selected	feet H V (enter zero for fi feet X, grate open area/t X tar Orifice) ft (distance below basis inches hottom at Stage = 0 ft) 2 Year 0.128 	lat grate) iotal area in bottom at Stage « D f Hali 0.194 0.194 0.17 0.5 4.1 0.1 0.1 5.4 1.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Ou Central Angle of Resi Spillwa Spillwa Spillwa Spillwa Sage 4 Basm Area 6 0.253 0.253 0.34 1.1 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 0.1 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	rate Upper Edge, H, • V Wer Slope Length • 100-yr Orlice Area • en Area w/ Debris = pen Area w/ Debris = Calculated Paramete Calculated Parameter Calculated Parameter Calc	Not Selected	Not Selected Flow Restriction Platt Not Selected N/A spillway leet fert acres 0.553 1.33 4 2 116 3 6 0.9 Spillway N/A	teet should be ≥ 4 ft ³ tt ³ tt ⁷ feet redians
Overflow Weir Front Edge Height, Ho a Overflow Weir Front Edge Length i Overflow Weir Front Edge Length i Overflow Weir Slope i Horz. Length of Weir Slope i Debris Clogging % - Debris Clogging % - Debris Clogging % - Debris Clogging % - Carcular Onlice Diameter - Cricular Onlice Diameter - Cricular Onlice Diameter - Spillway Invert Stage Spillway Invert Stage Spillway Crest Length i Spillway Crest Length i Creeboard above Max Water Surface - Created Hydrograph Plesuit One-Hour Ranital Debrief (1) OPTIONAL Override Runoff Volume (acce-R) i OPTIONAL Override Runoff Volume (acce-R) i Predevelopment Unit Peak Flow, q (ch/acce) i Predevelopment Into Approaph Volume (acce) Predevelopment Peak Q (cfg) = Pask Inflow Q (cfg) = Rauo Peak Outflow D (cfd) = Rauo Peak Outflow D (cfat 1 (ps)) Max Velocity through Grate 1 (ps) ; Max Velocity through Grate 1 (ps) ; Time to Dran 97% of Inflow Volume (hours)	Not Selected rcular Orifice, Restrict Not Selected Not Selected 2.50 5.00 4.00 1.00 0.047 0.047 0.047 0.047 1.0 0.047 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.3	Not Selected	feet H V (enter zero for fl feet %, grate open area/t % ft (distance below basis inches bottom at Stage = 0 ft) 2 Year 0.05 0.127 0.01 0.02 2.7 0.1 N/A Fshtratoon M/A N/A 29 30	Lat grate) (otal area in bottom at Stage + D f Hall 5 Year 1.23 0.194 0.194 0.17 0.194 0.17 0.194 0.17 0.194 0.17 0.194 0.17 0.194 0.17 0.194 0.17 0.194 0.17 0.1 4.1 0.14 0.17 0.14 0.14 0.17 0.14 0.17 0.14 0.17 0.14 0.17 0.14 0.14 0.17 0.14 0.14 0.17 0.14 0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillwa- Stage i Basm Area i Basm Area i 0.253 0.34 1.1 5.3 0.34 1.1 5.3 0.1 0.1 5.3 0.1 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	rate Upper Edge, H, • VWer Slope Length • 100-yr Orlice Area • en Area w/o Debris = pen Area w/ Debris = Calculated Paramete Calculated Parameter Calculated Parameter Calc	Not Selected	Not Selected Flow Restriction Platt Not Selected N/A spillway leet fept acres 0.553 1.33 4 2 0.553 1.33 4 2 0.9 Spillway N/A N/A 0.553 1.33 4 2 0.9 Spillway N/A N/A N/A	teet should be 2.4 ft ² ft ² ft ¹ feet radians 500 Year radians 500 Year 0.00 0.000 9N/A 1.89 .5.9 N/A 8N/A 8N/A 8N/A 8N/A 8N/A 8N/A 8N/A 8N/A
Overflow Weir Front Edge Height, Ho o Overflow Weir Front Edge Height, Ho o Overflow Weir Slope i Horz. Length of Weir Slope i Overflow Grate Open Area % i Debris Clogging % i User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to invert of Outlet Pipe i Circular Orifice Diameter i Spillway Invert Stage Spillway Crest Length i Spillway Crest Length i Calculated Runoff Volume (care.ft) i Inflow Hydrograph Volume (care.ft) i Predevelopment Date A (Cfa) i Peak Inflow Q (cfa) i Peak Nutflow D Predevelopment Q - Studure Controlling Flow Max Velocity through Grate 1 (ps) i Max Velocity through Grate 2 (ps) i	Not Selected	Not Selected	feet H V (enter zero for fi feet X, grate open area/t X tar Orifice) ft (distance below basis inches hottom at Stage = 0 ft) 2 Year 0.128 	lat grate) iotal area in bottom at Stage « D f Hali 0.194 0.194 0.17 0.5 4.1 0.1 0.1 5.4 1.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Ou Central Angle of Resi Spillwa Spillwa Spillwa Spillwa Sage 4 Basm Area 6 0.253 0.253 0.34 1.1 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 0.1 5.3 0.1 5.3 5.3 0.1 5.3 5.3 0.1 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	rate Upper Edge, H, • V Wer Slope Length • 100-yr Orlice Area • en Area w/ Debris = pen Area w/ Debris = Calculated Paramete Calculated Parameter Calculated Parameter Calculat	Not Selected	Not Selected Flow Restriction Platt Not Selected N/A spillway leet fert acres 0.553 1.33 4 2 116 3 6 0.9 Spillway N/A	teet should be <u>2</u> .4 ft ² tt ² feet redians 500 Year 0.00 0.0000 0.00000 0.0000

ł

APPENDIX B

۲

STORMCAD INFORMATION

Culvert Calculator Report Twin 24" Culvert

Solve For: Headwater Elevation

Ň

Culvert Summary					
Allowable HW Elevation	2.00	ft	Headwater Depth/Heig	ht 1.32	
Computed Headwater Elev	7,038.15	ft	Discharge	35.50	cfs
Inlet Control HW Elev.	7,038.10	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	7,038.15	ft	Control Type	Entrance Control	
Grades					
Upstream Invert	7,035.51	ft	Downstream Invert	7,020.00	ft
Length	606.00	ft	Constructed Slope	0.025594	ft/ft
Hydraulic Profile				Э	-
Profile	S2		Depth, Downstream	0.94	ft
Slope Type	Steep		Normal Depth	0.94	ft
Flow Regime	Supercritical		Critical Depth	1.52	ft
Velocity Downstream	12.17	ft/s	Critical Slope	0.006140	ft/ft
Section				-	
Section Shape	Circular	ŝ	Mannings Coefficient	0.012	
Section Material	Concrete		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	2				
Outlet Control Properties				<u>.</u>	
Outlet Control HW Elev.	7,038.15	ft	Upstream Velocity Hea	d 0.75	ft
Ке	0.50		Entrance Loss	0.37	ft
Inlet Control Properties					
Inlet Control HW Elev.	7,038.10	ft	Flow Control	Transition	
Inlet Type Square edge	e w/headwall		Area Full	6.3	ft²
к	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	

Culvert Calculator Report Outlet Pipe

•

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	7,023.10	ft	Headwater Depth/Height	2.07	
Computed Headwater Eleva	7,023.10	ft	Discharge	55.60	cfs
Inlet Control HW Elev.	7,023.10	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	7,022.97	ft	Control Type	Inlet Control	
Grades		50 (8 , s			
Upstream Invert	7 017 92	ft	Downstream Invert	7,017.52	ft
Length	40.00	ft	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile CompositeM2Pres	ssureProfile		Depth, Downstream	2.36	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	2.36	ft
Velocity Downstream	11.58	ft/s	Critical Slope	0.013538	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Section Material	Concrete		Span	2.50	100.0
Section Size	30 inch		Rise	2.50	ft
Number Sections	1				<i>80</i>
Outlet Control Properties		2			
Outlet Control HW Elev.	7,022.97	ft	Upstream Velocity Head	1.99	ft
Ке	0.20		Entrance Loss	0.40	ft
Inlet Control Properties		<u>-</u>			
Inlet Control HW Elev.	7,023.10	ft	Flow Control	Submerged	
Inlet Type Beveled ring, 3	3.7° bevels		Area Full	4.9	ft²
ĸ	0.00180		HDS 5 Chart	3	
M	2.50000		HDS 5 Scale	в	
с	0.02430		Equation Form	1	

x

Project Description	02-Overflow Channel
Project Description	"小果是我认知是,我们的人们不可能的学校"等的问题,并且没有是认识性学校,在"我不是这些可能学校"。
Friction Method	Manning Formula
Solve For	Discharge
Input Data	
Roughness Coefficient	0.050
Channel Slope	0.02000 ft/ft
Normal Depth	2.00 ft
Left Side Slope	3.00 ft/ft (H:V)
Right Side Slope	3.00 ft/ft (H:V)
Bottom Width	4.00 ft
Results	
Discharge	94.99 ft³/s
Flow Area	20.00 ft²
Netted Perimeter	16.65 ft
Hydraulic Radius	1.20 ft
Top Width	16.00 ft
Critical Depth	1.73 ft
Critical Slope	0.03707 t/ft
Velocity	4.75 ft/s
/elocity Head	0.35 ft
Specific Energy	2.35 ft
Froude Number	0.75
Flow Type	Subcritical
GVF Input Data	
Downstream Depth	0.00 ft
_ength	0.00 ft
Number Of Steps	0
GVF Output Data	
Jpstream Depth	0.00 ft
Profile Description	
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Jpstream Velocity	Infinity ft/s
Normal Depth	2.00 ft
Critical Depth	1.73 ft
Channel Slope	0.02000 ft/ft

Bentley Systems, Inc. Haestad Methods SolutiontiOpefitoryMaster VBI (SELECTseries 1) [08.11.01.03] M 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1656 Page 1 of 2

5/31/2016 10:27:58 AM

02-Overflow Channel

GVF Output Data

Critical Slope

0.03707 ft/ft

Wa	orksheet for Open Channel Cuivert Lot 3
Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Roughness Coefficient	0.012
Channel Slope	0. 03000 ft/ft
Diameter	1.50 ft
Discharge	15.90 ft³/s
Results	. A MARINA AND AND AND AND AND AND AND AND AND A
Normal Depth	1.02 ft
Flow Area	1.28 ft ²
Wetted Perimeter	2.91 ft
Hydraulic Radius	0.44 ft
Top Width	1.40 ft
Critical Depth	1. 42 ft
Percent Full	68.1 %
Critical Slope	0.01690 ft/ft
Velocity	12.41 ft/s
Velocity Head	2.39 ft
Specific Energy	3.41 ft
Froude Number	2.29
Maximum Discharge	21.20 ft ³ /s
Discharge Full	19.71 ft³/s
Slope Full	0.01952 ft/ft
Flow Type	SuperCritical
GVF Input Data	
Downstream Depth	0.00 ft
Length	0.00 ft
Number Of Steps	D
GVF Output Data	
Upstream Depth	0.00 ft
Profile Description	
Profile Headloss	0.00 ft
Average End Depth Over Rise	0.00 %
Normal Depth Over Rise	68.08 %
Downstream Velocity	Infinity fl/s

Bentley Systems, Inc. Haestad Methods Sol@iontl@efilowMaster V8I (SELECTserics 1) [08.11.01.03] 5/31/2018 11:49:32 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

•-

Worksheet for Open Channel Culvert Lot 3

.....

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	1.02	ft
Critical Depth	1.42	ft
Channel Slope	0.03000	ft/ft
Critical Slope	0.01690	ft/ft

Worksheet for Outlet with Passthrough-Weir

Project Description Solve For Discharge Input Data Headwater Elevation 1.40 ft **Crest Elevation** 0.00 ft Tailwater Elevation 0.00 ft Weir Coefficient 3.00 US **Crest Length** 32.00 ft Number Of Contractions 0 Results 159.02 ft³/s Discharge Headwater Height Above Crest 1.40 ft Tailwater Height Above Crest 0.00 ft Flow Area 44 80 ft2 3.55 Velocity ft/s Wetted Perimeter 34.80 ft 32.00 ft Top Width he than Onifice Weit is more restrict 159.02 LSs TOP GREE-50% Cloging = 55.66 cfs > 45.9 tributary -> Instell outrice Restrictor on outlet ppe.

Worksheet for Outlet wPass - Orifice

١ **Project Description** Solve For Input Data Hondwater Fr

Headwater Elevation	1.40	ft
Centroid Elevation	0.00	ft
Tailwater Elevation	0.00	ft
Discharge Coefficient	0.60	
Opening Width	4.00	ft
Opening Height	12.00	ft
Results		
Discharge	273.35	ft³/s
Headwater Height Above Centroid	1.40	ft
Tailwater Height Above Centroid	0.00	ft
Flow Area	48.00	ft²
Velocity	5.69	fl/s
Top Box Weir is more Use Weir Celauka	Rostrictuz	×.

Discharge

Bentley Systems, Inc. Haestad Methods Sol@imtl@efiteevMaster V8i (SELECTseries 1) [08.11.01.03] Page 1 of 1 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for FSD Outlet Orifice Plate

١

Project Description			
Solve For	Diameter		
Input Data	7		
Discharge		45.90	Hys (16.5 His + 29.4 Acc)
Headwater Elevation	4	4.70	ft
Centroid Elevation		0.00	ft
Tailwater Elevation		0.00	ft .
Discharge Coefficient		0.60	
Results			
Diameter		2.37	ft
Headwater Height Above Centroid		4.70	ft
Tailwater Height Above Centroid		0.00	ft .
Flow Area		4.40	ft²
Velocity		10.43	ft/s

•

	Worksheet for	FSD Over	flov	v - Pass
Project Description				
Solve For	Discharge			
Input Data				
Headwater Elevation		0.90	ft	
Crest Elevation		0.00	ft	
Tailwater Elevation		0.00	ft	
Crest Surface Type	Gravel			
Crest Breadth		12.00	ft	
Crest Length		36.00	ft	
Results				
Discharge		86.22	ft³/s	(55Dul+29.4) pues = 44.4
leadwater Height Above Crest		0.90	ft	/
ailwater Height Above Crest		0.00	ft	
Veir Coefficient		2.80	US	
Submergence Factor		1.00		
Adjusted Weir Coefficient		2.80	US	
Flow Area		32.40	ft²	
/elocity		2.66	ft/s	
Wetted Perimeter		37.80	ft	
Top Width		36.00	ft	

,

Worksheet for SFB Overflow Developed

Project Description

Solve For	Discharge			
Input Data			i Madalariya di sa sa Pun Mala a Sa Sa Sa Sa Sa	
Headwater Elevation		0.45	ft	
Crest Elevation		0.00	ft	
Tailwater Elevation		0.00	ft	
Crest Surface Type	Gravel			
Crest Breadth		6.00	ft	
Crest Length		10.00	ft	
🚊 televit filmente 🗥 A magnetica (1990) (kandas	a ang sing the second	alender och värige	·····································	2. 小菜小菜、菜菜、麦油菜菜品、糖蜜瓜等的品品。

Results

Discharge	8.08	ft"/s	
Headwater Height Above Crest	0.45	ft	
Tailwater Height Above Crest	0.00	ft	
Weir Coefficient	2.68	US	
Submergence Factor	1.00		
Adjusted Weir Coefficient	2.68	US	
Flow Area	4.50	ft²	
Velocity	1.80	ft/s	
Wetted Perimeter	10.90	ft	
Top Width	10.00	ft	

Worksheet for Type D Inlet - Weir

Project Description

Solve For	Discharge		
Input Data			
Headwater Elevation		1.50	ft
Crest Elevation		0.00	ft
Weir Coefficient		3.00	US
Crest Length		17.17	ft
Results			
Discharge		94.61	ft³/s
Headwater Height Above Crest		1.50	ft
Flow Area		25.75	ft²
Velocity		3.67	ft/s
Wetted Perimeter		20.17	ft
Top Width		17.17	ft

Type D Weir is most restrictive 94.610Gs 70% Grate Opening 50% Glogging = 3311 chs > 29.4 chs tributury

5/27/2016 1:31:01 PM

Worksheet for Type D Inlet - Orifice

Project Description

Solve For	Discharge	
Input Data		
Headwater Elevation	1.50	ft
Centroid Elevation	0.00	ft
Tailwater Elevation	0.00	ft
Discharge Coefficient	0.60	
Opening Width	2.92	ft
Opening Height	5.67	ft
Results	r.	
Discharge	97.50	ft³/s
Headwater Height Above Centroid	1.50	ft
Tailwater Height Above Centroid	0.00	ft
Flow Area	16.54	ft²
Velocity	5.89	ft/s

Type D Weir is more restrictive -> Use Weir Calculations

Project Description		
Friction Method	Manning Formula	na na katalon na katalon na katalon na katalon katalon katalon katalon katalon katalon katalon katalon katalon Katalon
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.030	n na na na sina si si si si si na na na na na si
Channel Slope	0.02000	ft/ft
Normal Depth	1.00	ft
Left Side Slope	4.00	ft/ft (H:V)
Right Side Slope	4.00	ft/ft (H:V)
Results	an a	
Discharge	17.30	ft³/s
Flow Area	4.00	ft²
Welted Perimeter	8.25	ft
Hydraulic Radius	0.49	ñ
Top Width	8.00	ft
Critical Depth	1.03	ft
Critical Slope	0.01703	ft/ft
Velocity	4.32	ft/s
Velocity Head	0.29	ft
Specific Energy	1.29	ft
Froude Number	1.08	
	Supercritical	
GVF Input Data	กราไปที่มีการที่สุดที่มี เป็นหมัดได้ การที่ได้เสียงที่ได้ได้ได้ได้ได้ได้ได้ได้ได้ได้ได้ได้ได้ไ	
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps		ander volgen ander ander ander andere and
	0.00	
Upstream Depth Profile Description	0.00	R
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.00	ft
Critical Depth	1.03	ft
Channel Slope	0.02000	ft/ft
	0.01703	ft/ft

	0.017	7022.88	7023.63	11.77	57.43	30	29.4	0	6 <u>4</u>
	0.008	7023.93	7026.2	8.72	38.97	30	29.4	0	CO-3
	0.01	7026.4	7029.35	9.67	44.43	30	29.4	0	CO-2
	0.01	7029.65	7032.21	9.68	44.49	30	29.4	0	CO-1
	Slope (ft/ft)) (ft)	m) (ft)	(ft/s)	Flow) (ft^3/s)	(in)	(ft³/s)	(ft³/s)	
		(Upstrea (Downstream	(Upstrea	(Average)	Capacity (Full	(Unified)	Total Flow	Rational Flow Total Flow (Unified) Capacity (Full	
		Invert	Invert	Velocity		Rise		System	
								-	
8	8 (N/A)	00	(N/A)	198.3 (N/A)	5	1	OF-1	MH-4	CO-5
8	8 (N/A)	8	(N/A)	44.9 (N/A)	4	1	MH-4	MH-3	CO-4
80	8 (N/A)	8	(N/A)	295.1 (N/A)	з	1	MH-3	MH-2	CO-3
8	8 (N/A)	8	(N/A)	295.1 (N/A)	2	1	MH-2	MH-1	CO-2
80	8 (N/A)	8	(N/A)	255.4 (N/A)	1	1	MH-1	CB-1	CO-1
(in/h)	Area (acres)	(in/h)	Inlet C	(Unified) (ft)	Element ID		Stop Node Branch ID	Start Node	Label
Intensity	Upstream Inlet Intensity	Intensity	Upstream	Length	Branch				
System		Upstream							

.

CO-5

0

29.4

30

44.4

9.67 7022.88

7020.9

•

APPENDIX C

STANDARD DESIGN CHARTS AND TABLES

Precipitation Frequency Data Server

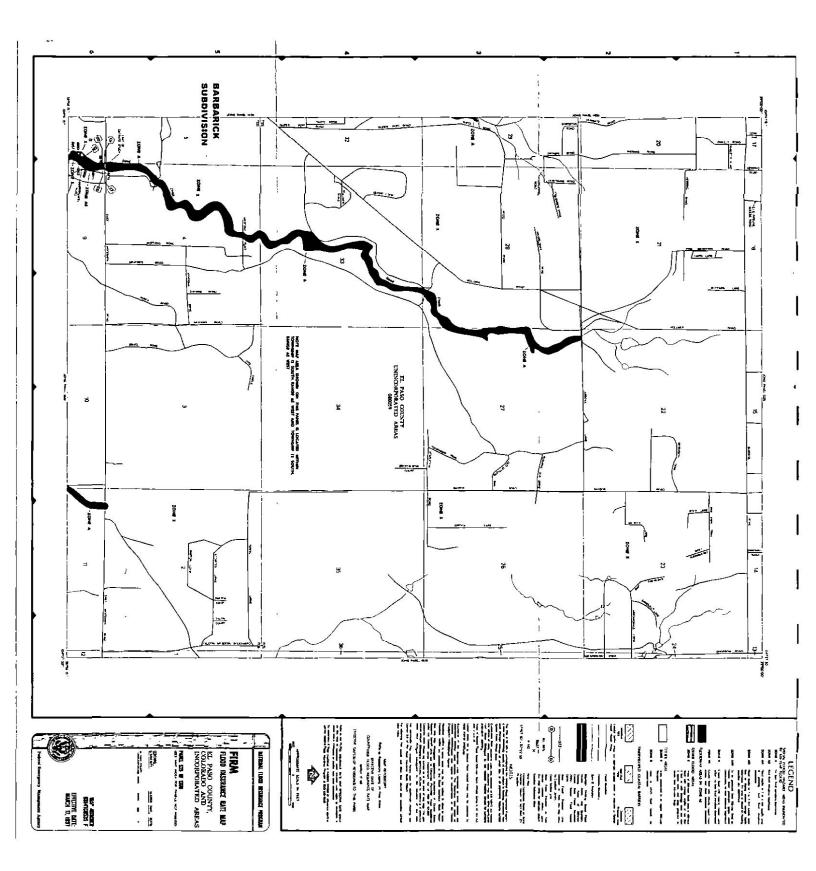
NOAA Atlas 14, Volume 8, Version 2 Location name: Colorado Springs, Colorado, US* Latitude: 38.9514°, Longitude: -104.6905° Elevation: 6984 ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Penca, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Date Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials


PF tabular

PDS	based po	int precip	itation fre	quency e	stimates v	with 90% (confiden	ce interv	als (in in	ches) ¹
Duration				Average	recurrence	interval (ye	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.237 (0.195-0.290)	0.289 (0.238-0.355)	0.380 (0.311-0.467)	0.460 (0.374-0.568)	0.577 (0.456-0.746)	0.674 (0.517-0 880)	0.775 (0 573-1.04)	0.883 (0 625-1.21)	1.03 (0.701-1.46)	1.15 (0.759-1.65)
10-min	0.347 (0.285-0.425)	0.424 (0.348-0.520)	0.556 (0.455-0.684)	0.673 (0.548-0.832)	0.846 (0.667-1.09)	0.987 (0.757-1.29)	1.14 (0.839-1.52)	1.29 (0.914-1.78)	1.51 (1.03-2.14)	1.69 (1.11-2.41)
15-min	0.423 (0.348-0.519)	0.516 (0.424-0.634)	0.678 (0.555-0.834)	0.821 (0.668-1.01)	1.03 (0.814-1.33)	1.20 (0.924-1.57)	1.38 (1.02-1.85)	1.58 (1.11-2.17)	1.84 (1.25-2.61)	2.06 (1.35-2.94)
30-min	0.613 (0.504-0.751)	0.747 (0.614-0.917)	0.980 (0.802-1.21)	1.19 (0.965-1.47)	1.49 (1.17-1.92)	1.74 (1.33-2.27)	2.00 (1.48-2.67)	2.27 (1.61-3 13)	2.66 (1.80-3.76)	2.97 (1.95-4.24)
60-min	0.795 (0.654-0.974)	0.948 (0.779-1.16)	1.23 (1.00-1.51)	1.48 (1.21-1.83)	1.88 (1.49-2.44)	2.21 (1.70-2.90)	2.57 (1.91-3.46)	2.96 (2.10-4.09)	3.52 (2.39-4.99)	3.97 (2.61-5.67)
2-hr	0.977 (0.809-1.19)	1.15 (0.951-1.40)	1.47 (1.22-1.80)	1.78 (1.46-2.19)	2.27 (1.82-2.94)	2.68 (2.09-3.51)	3.14 (2.35-4.21)	3.65 (2.61-5.02)	4.38 (3.00-6.18)	4.98 (3.30-7.06)
3-hr	1.08 (0.897-1.31)	1.25 (1.04-1.51)	1.58 (1.31-1.93)	1.92 (1.57-2.34)	2.45 (1.98-3.19)	2.92 (2.29-3.83)	3.45 (2.60-4.62)	4.04 (2.91-5.55)	4.90 (3.39-6.92)	5.62 (3.75-7.95)
6-hr	1.26 (1.05·1.51)	1.44 (1.20-1.73)	1.81 (1.51-2.18)	2.19 (1.81-2.65)	2.81 (2.30·3.64)	3.37 (2.66-4.39)	4.00 (3.04-5.34)	4.71 (3.43-6.45)	5.77 (4.02-8.09)	6.65 (4.46-9.33)
12-hr	1.45 (1.23-1.74)	1.68 (1.41-2.00)	2.12 (1.78-2.54)	2.55 (2.13-3.07)	3.26 (2.68-4.19)	3.89 (3.10-5.03)	4.59 (3.52-6 08)	5.38 (3.94-7.31)	6.54 (4.59-9.11)	7.51 (5.08-10.5)
24-hr	1.68 (1.43-1.99)	1.97 (1.67·2.33)	2.50 (2.12-2.98)	3.01 (2.53-3.60)	3.80 (3.13-4.80)	4.48 (3.58-5.72)	5.23 (4.02-6.83)	6.04 (4.45-8.11)	7.23 (5.09-9.96)	8.20 (5.58-11.4)
2-day	1.95 (1.67-2.29)	2.31 (1.97-2.72)	2.95 (2.51-3.48)	3.53 (2.99-4.18)	4.39 (3.62-5.46)	5.11 (4.10-6.44)	5.88 (4.55-7.59)	6.71 (4.96-8.91)	7.89 (5.59-10.8)	8.83 (6 07-12.2)
3-day	2.15 (1.85-2.51)	2.54 (2.18-2.97)	3.22 (2.75-3.78)	3.83 (3 26-4.52)	4.74 (3.92-5.87)	5.50 (4.42·6.88)	6.30 (4.89-8.09)	7.16 (5.31-9.45)	8.37 (5.96-11.4)	9.34 (6 45-12.8)
4-day	2.31 (2.00-2.70)	2.72 (2.34-3.17)	3.42 (2.94-4.01)	4.06 (3 46-4.78)	5.00 (4.15-6.16)	5.78 (4.67-7.21)	6.61 (5.14-8.46)	7.50 (5.58-9.87)	8.75 (6.25-11.8)	9.76 (6.75-13.3)
7-day	2.74 (2.38-3.18)	3.17 (2.75-3.68)	3.92 (3.39-4.57)	4.60 (3.95-5.38)	5.60 (4.67-6.86)	6.43 (5.23-7.97)	7.32 (5.73-9.30)	8.27 (6.19-10.8)	9.60 (6.90-12.9)	10.7 (7.44-14.5)
10-day	3.11 (2.71-3.60)	3.58 (3.11-4.14)	4.39 (3.80-5.09)	5.11 (4 40-5.95)	6.17 (5.17·7.51)	7.05 (5.75-8.69)	7.98 (6.27-10.1)	8.97 (6.75-11.7)	10.4 (7.47-13.9)	11.5 (8.03-15.5)
20-day	4.18 (3.67-4.79)	4.79 (4.20-5.50)	5.83 (5.09-6.71)	6.72 (5.84-7.77)	7.99 (6.71-9.59)	9.01 (7.38·11.0)	10.0 (7.94-12.6)	11.1 (8.42·14.3)	12.6 (9.17-16.7)	13.8 (9.73-18.6)
30-day	5.05 (4.46-5.77)	5.80 (5.11-6.63)	7.04 (6.18-8.07)	8.08 (7.05-9.30)	9.51 (8.01-11.3)	10.6 (8.73-12.8)	11.8 (9.32-14.6)	12.9 (9.79-16.5)	14.4 (10.5-19.0)	15.6 (11.1-20.9)
45-day	6.14 (5.44-6.98)	7.06 (6.25-8.03)	8.54 (7.53-9.74)	9.75 (8.55-11.2)	11.4 (9.60-13.4)	12.6 (10.4-15.1)	13.8 (11.0-17.0)	15.0 (11.4-19.1)	16.6 (12.1-21.7)	17.7 (12.6-23.7)
60-day	7.05 (6.27-7.99)	8.12 (7.20-9.20)	9.80 (8.66-11.1)	11.1 (9.80-12.7)	12.9 (10.9-15.2)	14.2 (11.8-17.0)	15.5 (12.4-19.0)	16.7 (12.8-21.1)	18.3 (13.4-23.8)	19.4 (13.9-25.8)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

Map Unit Legend

El Paso County Area, Colorado (CO625)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
9	Blakeland-Fluvaquentic Haplaquolis	12.5	76.4%		
71	Pring coarse sandy loam, 3 to 8 percent slopes	3.9	23.6%		
Totals for Area of Interest		16.4	100.0%		

۰.

El Paso County Area, Colorado

9—Blakeland-Fluvaquentic Haplaquolls

Map Unit Setting

National map unit symbol: 36b6 Elevation: 3,500 to 5,800 feet Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 46 to 55 degrees F Frost-free period: 110 to 165 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 60 percent Fluvaquentic haplaquolls and similar soils: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Flats, hills Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose and/or eolian deposits derived from arkose

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: Sandy Foothill (R049BY210CO)

USD.

Description of Fluvaquentic Haplaquolls

Setting

Landform: Swales Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

H1 - 0 to 12 inches: variable

Properties and qualities

Slope: 1 to 2 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Poorly drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr) Depth to water table: About 0 to 24 inches Frequency of flooding: Occasional Frequency of ponding: None Salinity, maximum in profile: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)

Interpretive groups

Land capability classification (irrigated): 6w Land capability classification (nonirrigated): 6w Hydrologic Soil Group: D

Minor Components

Other soils

Percent of map unit:

Pleasant

Percent of map unit: Landform: Depressions

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 13, Sep 22, 2015

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Loamy Park (R048AY222CO)

Minor Components

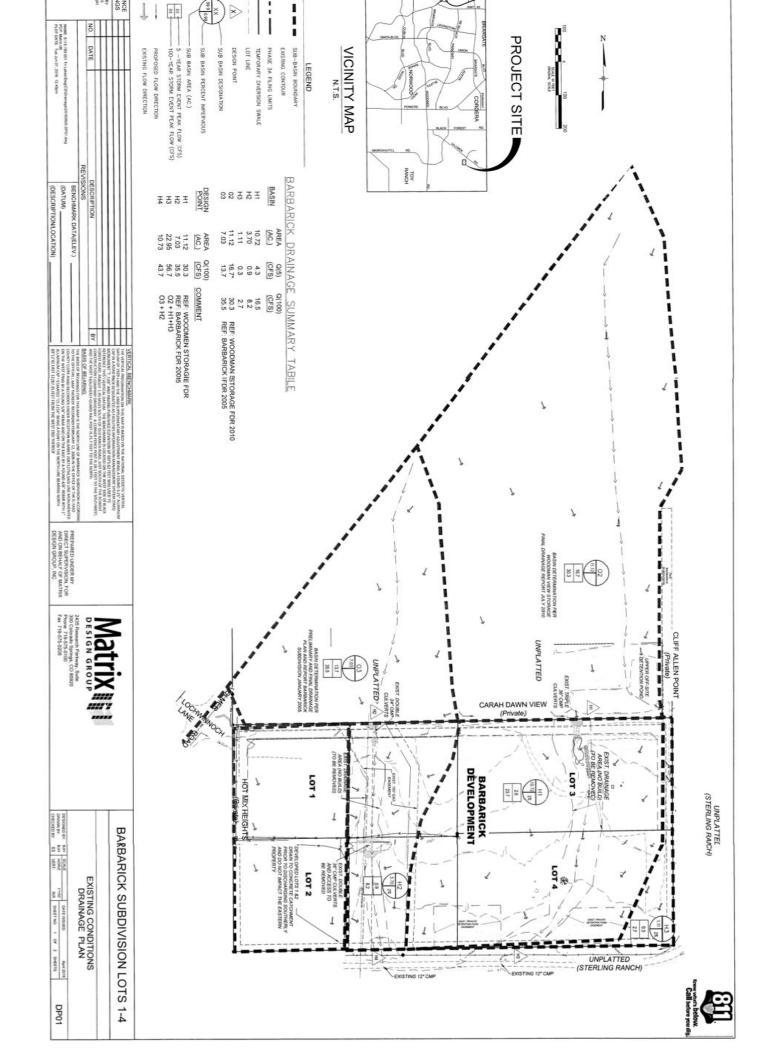
Other soils

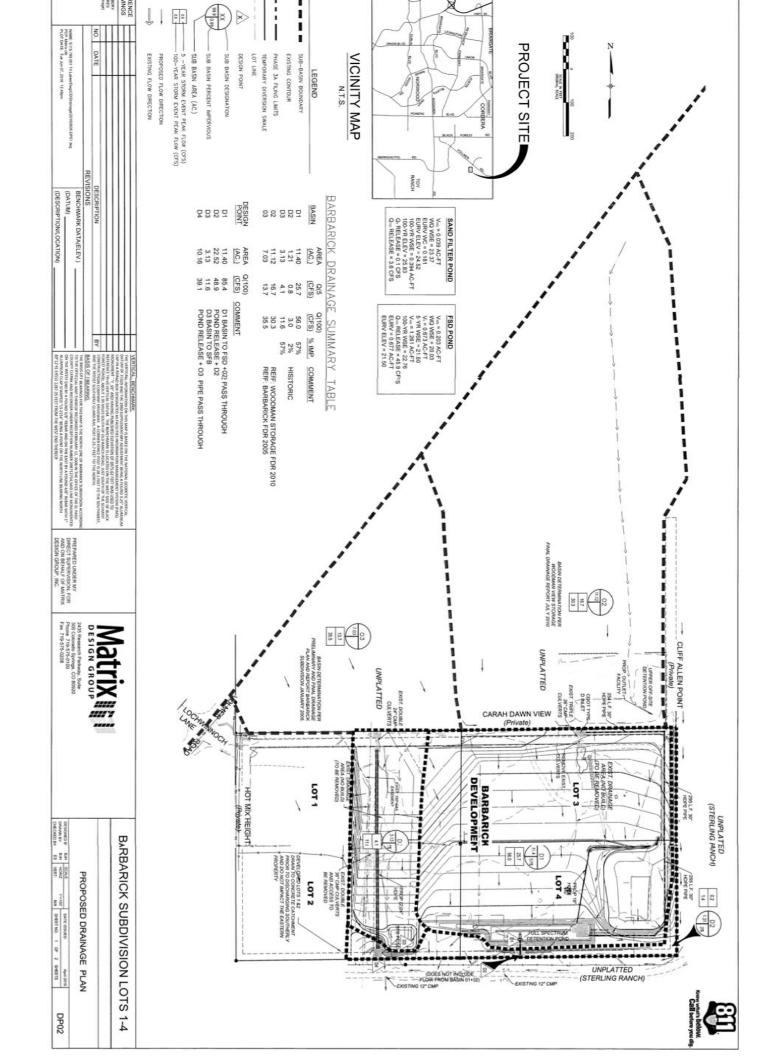
Percent of map unit:

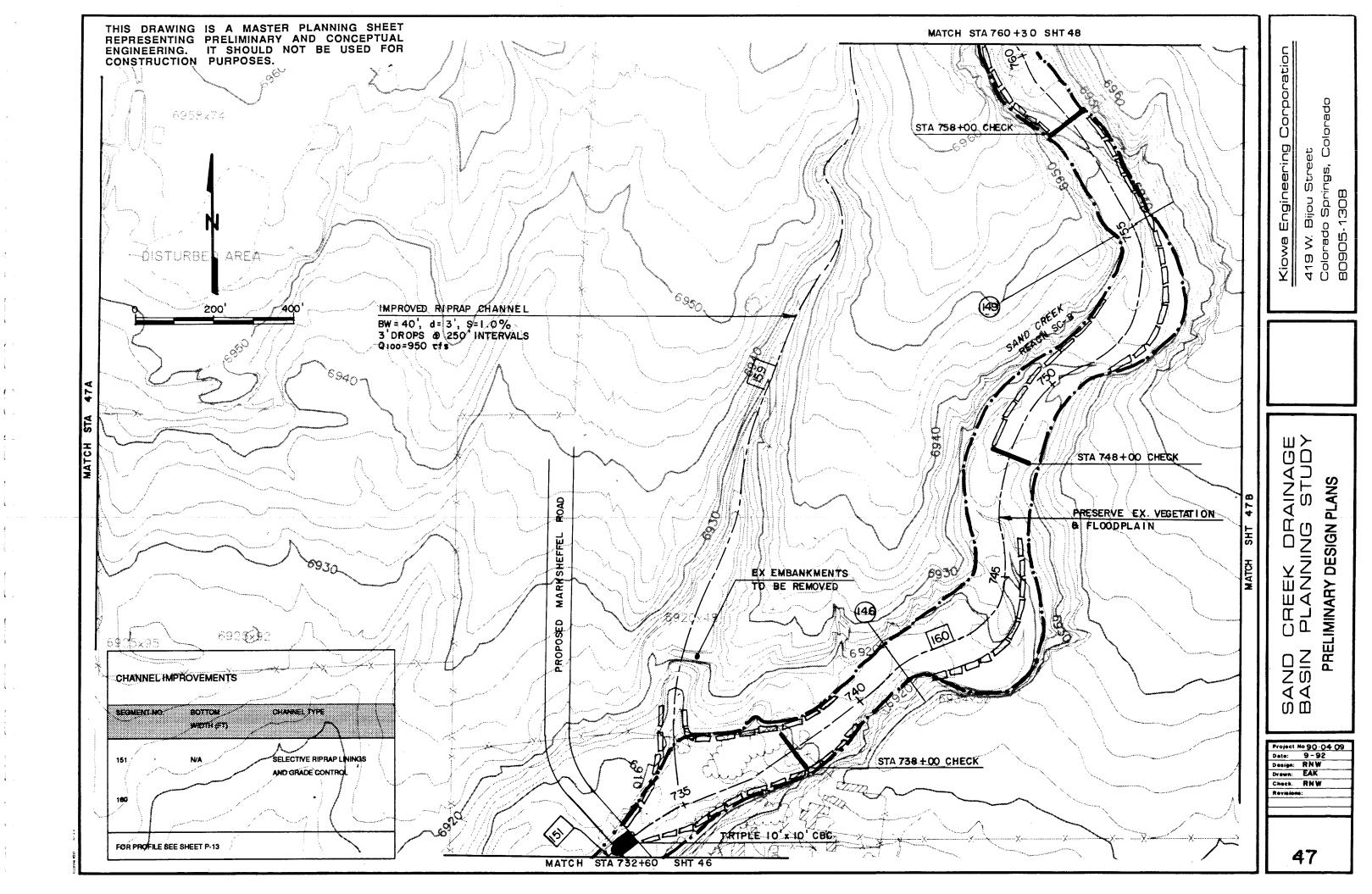
Pleasant

Percent of map unit:

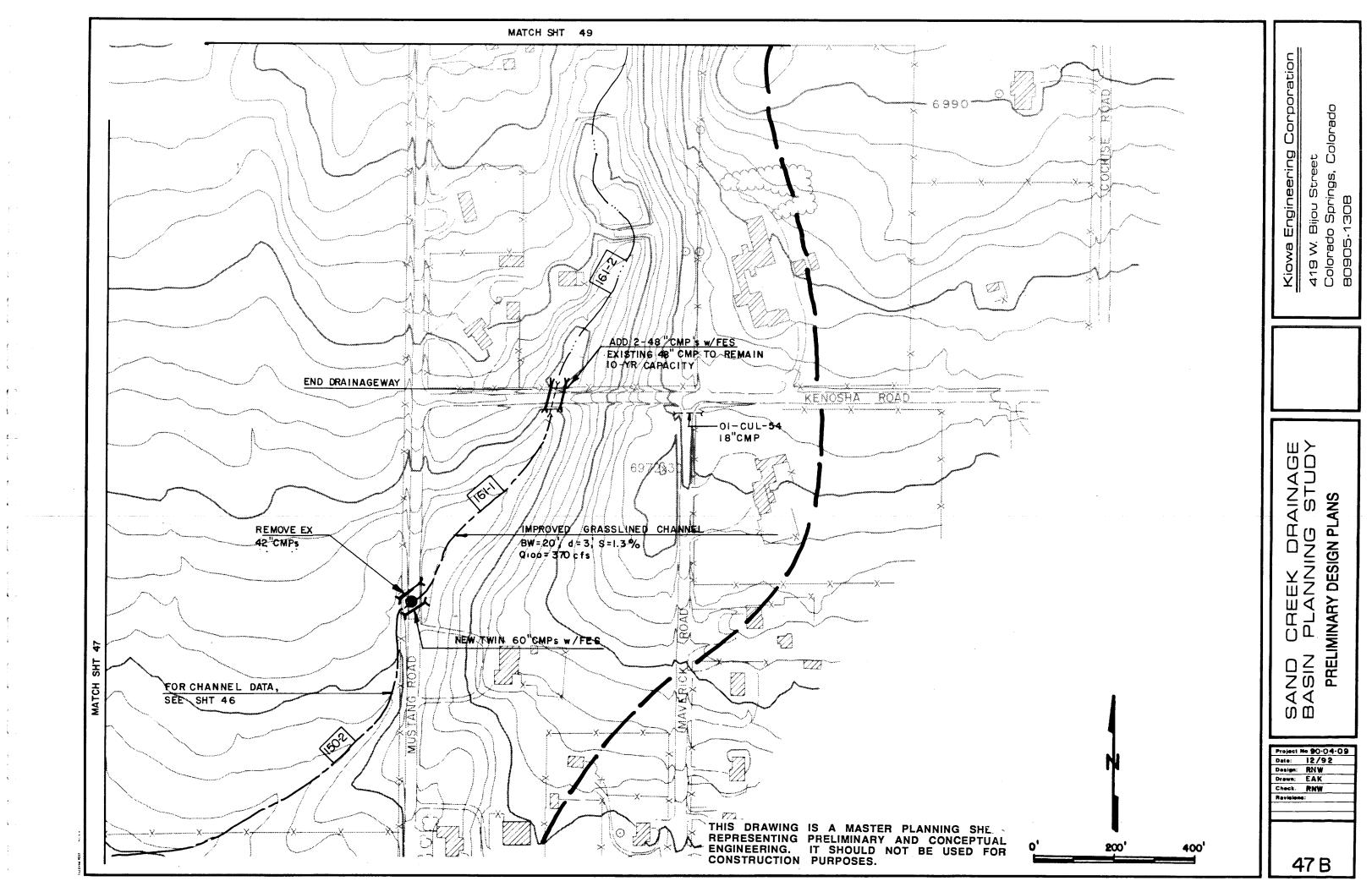
Landform: Depressions

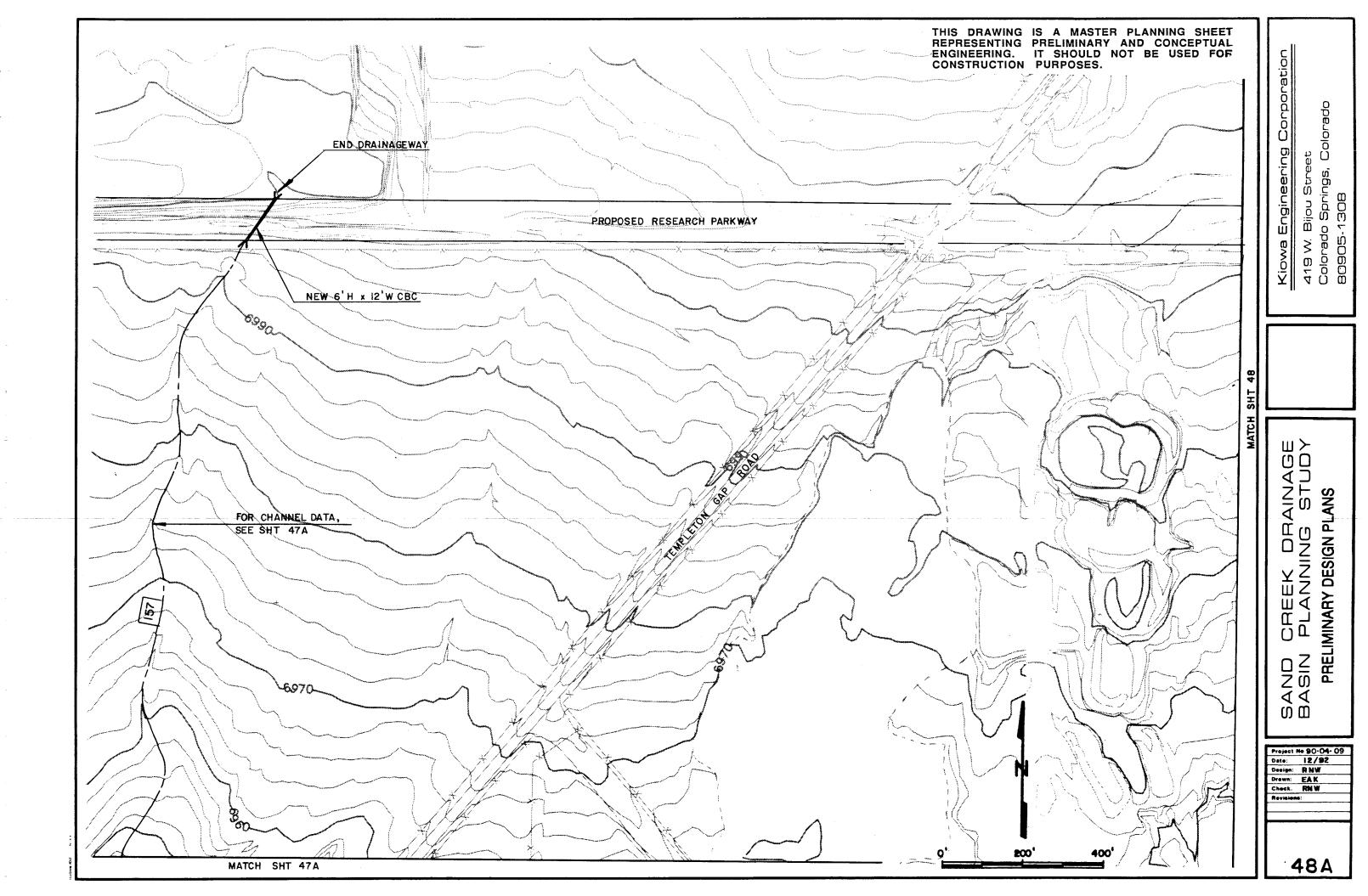

Data Source Information

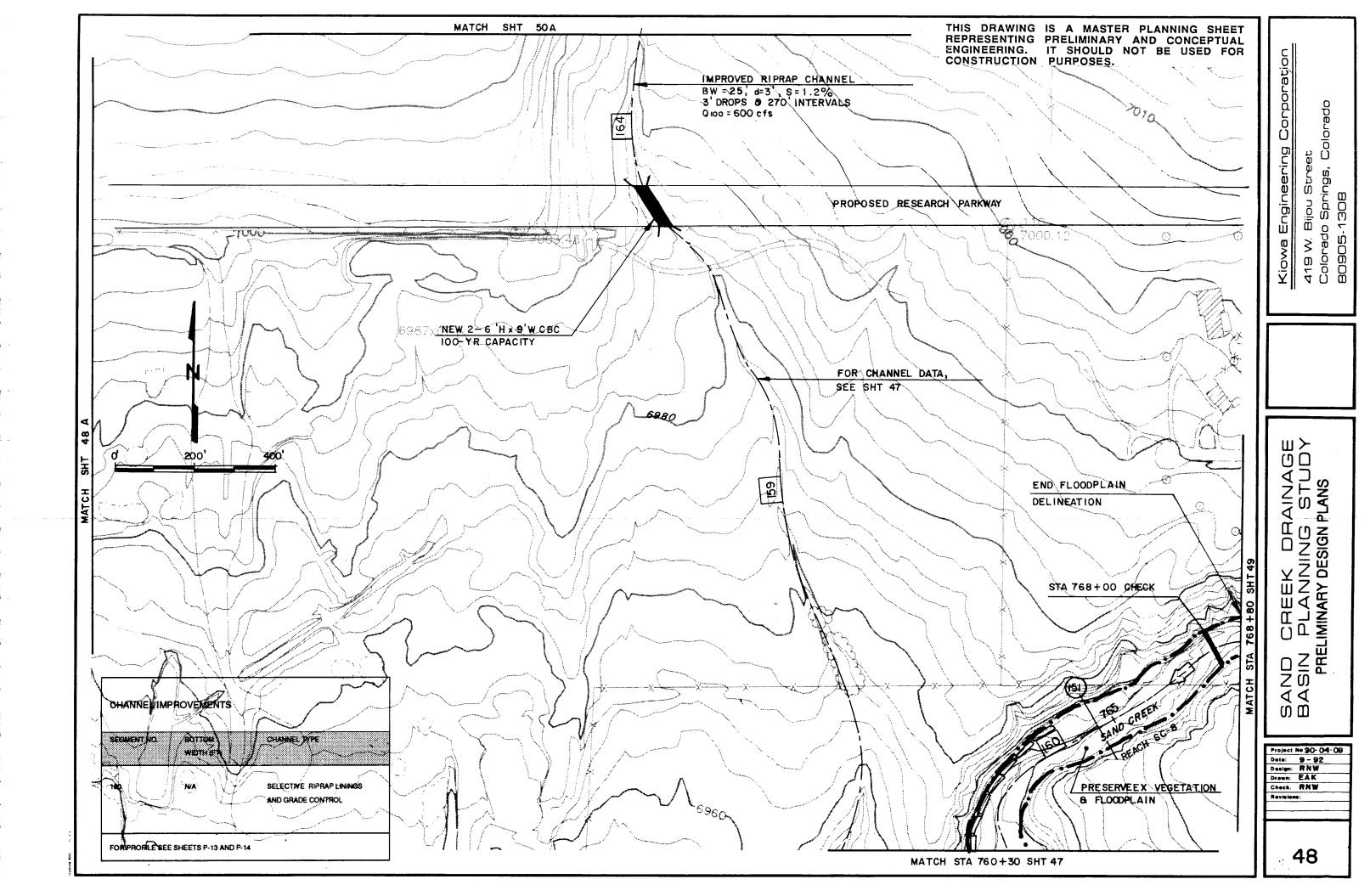

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 13, Sep 22, 2015

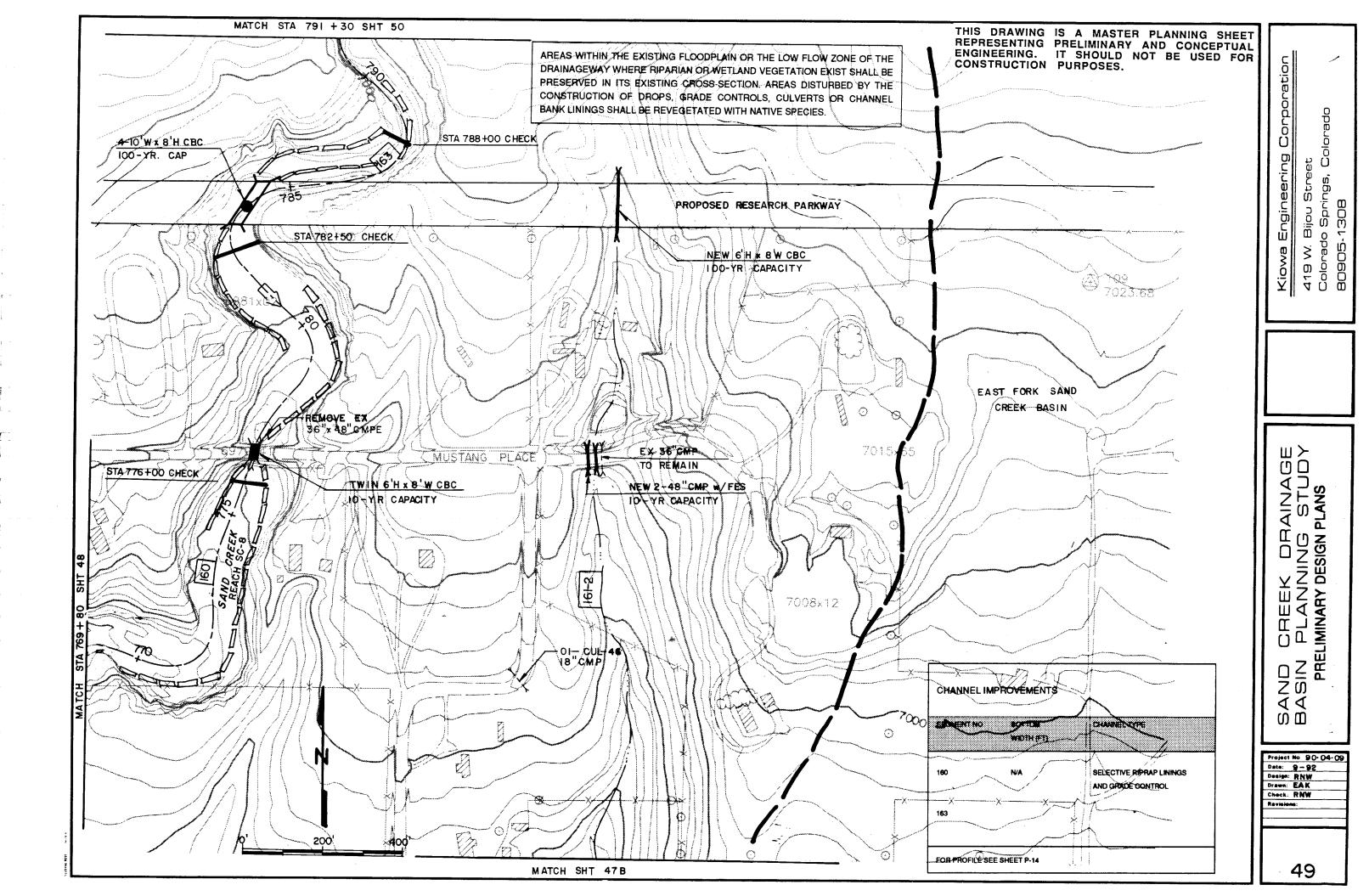

,

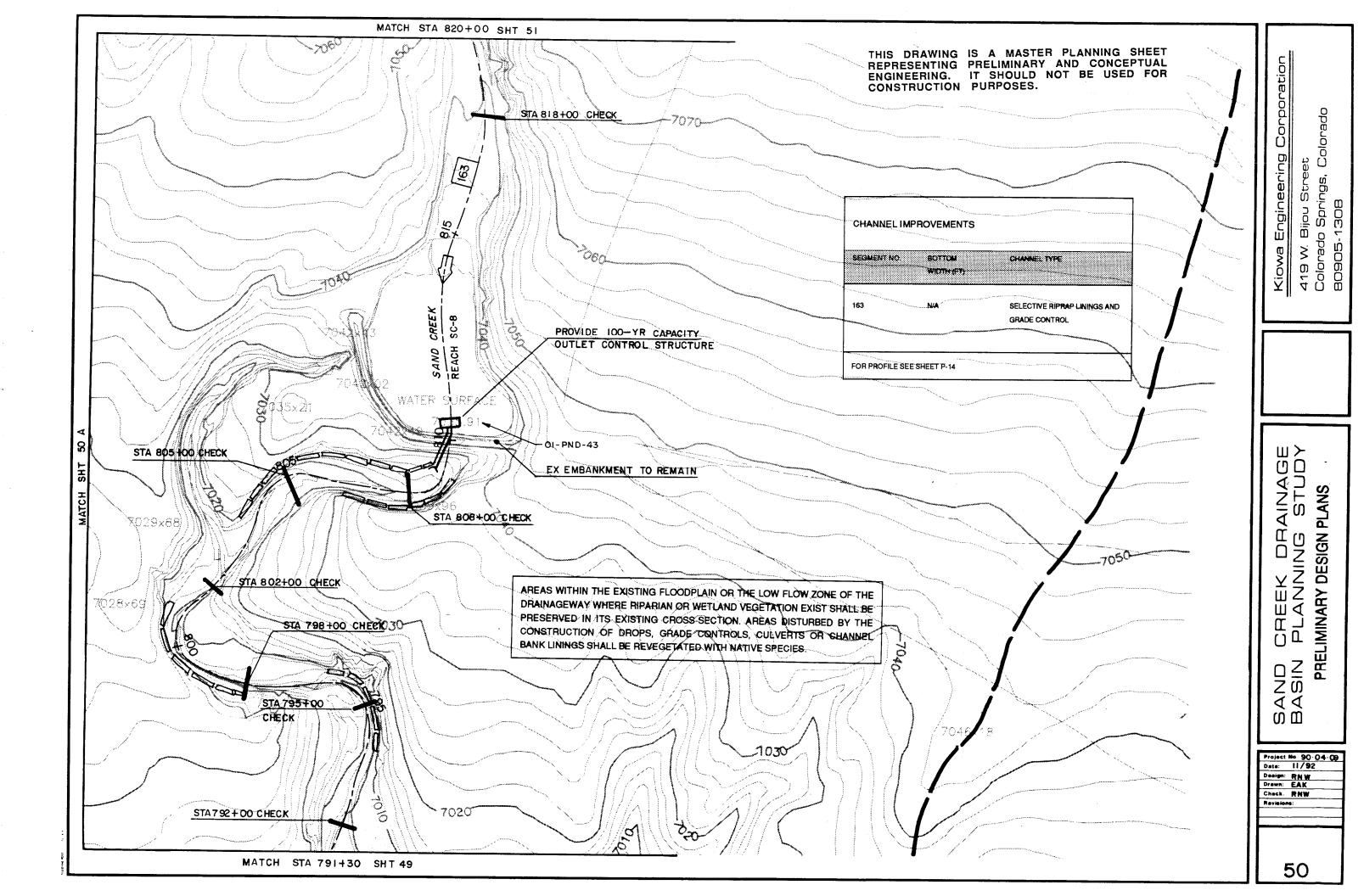
APPENDIX D

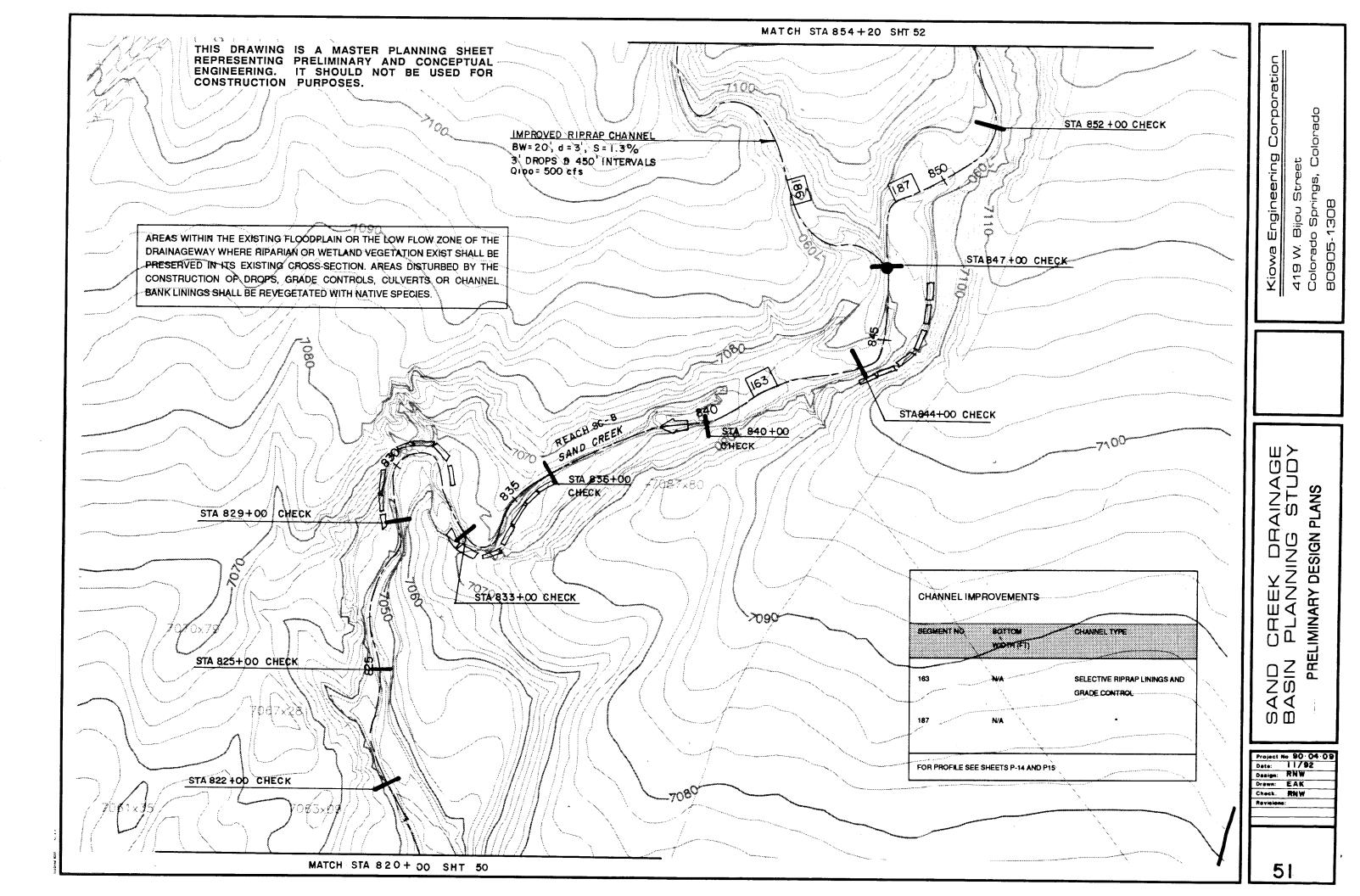

MAPS

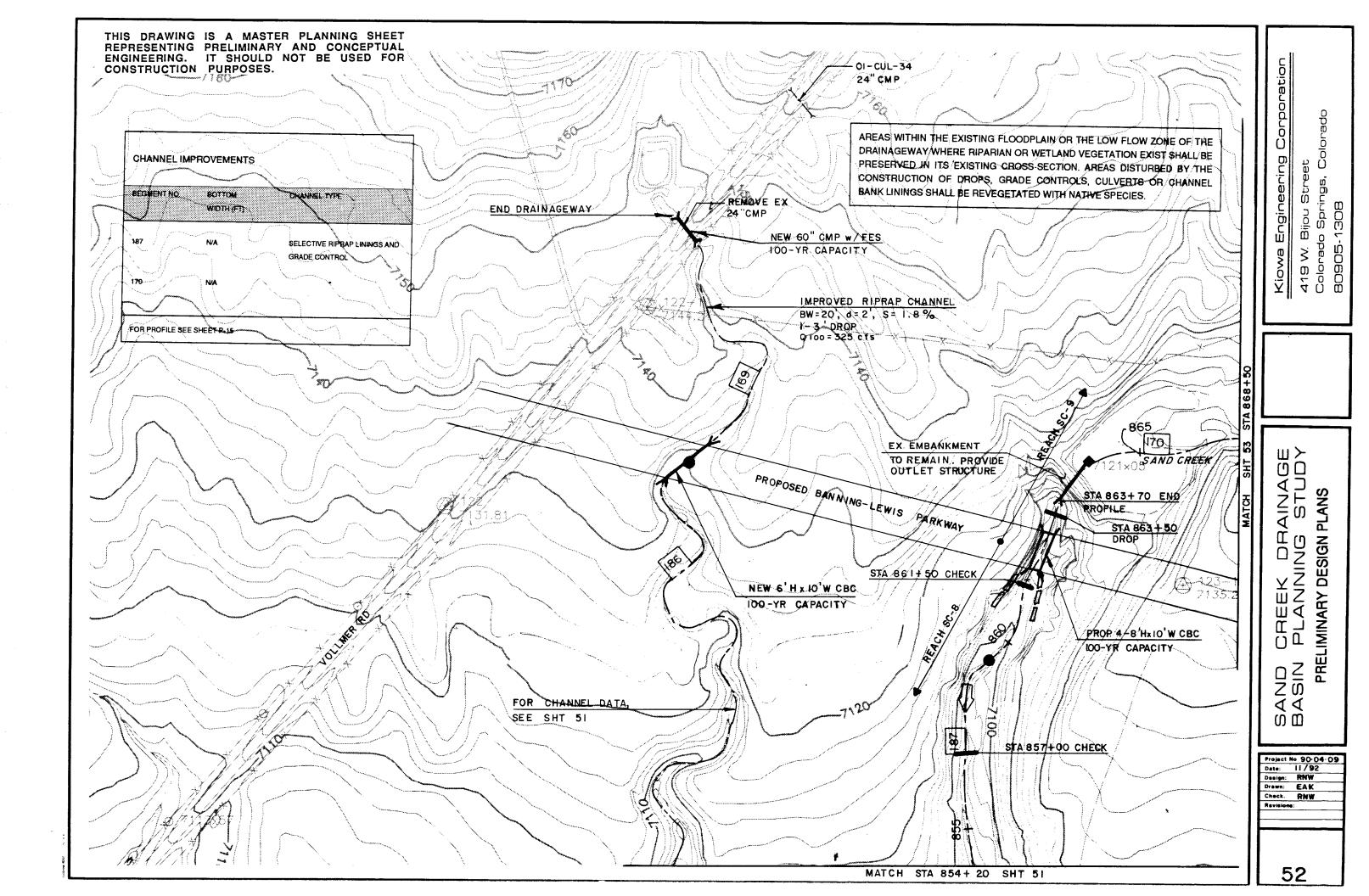


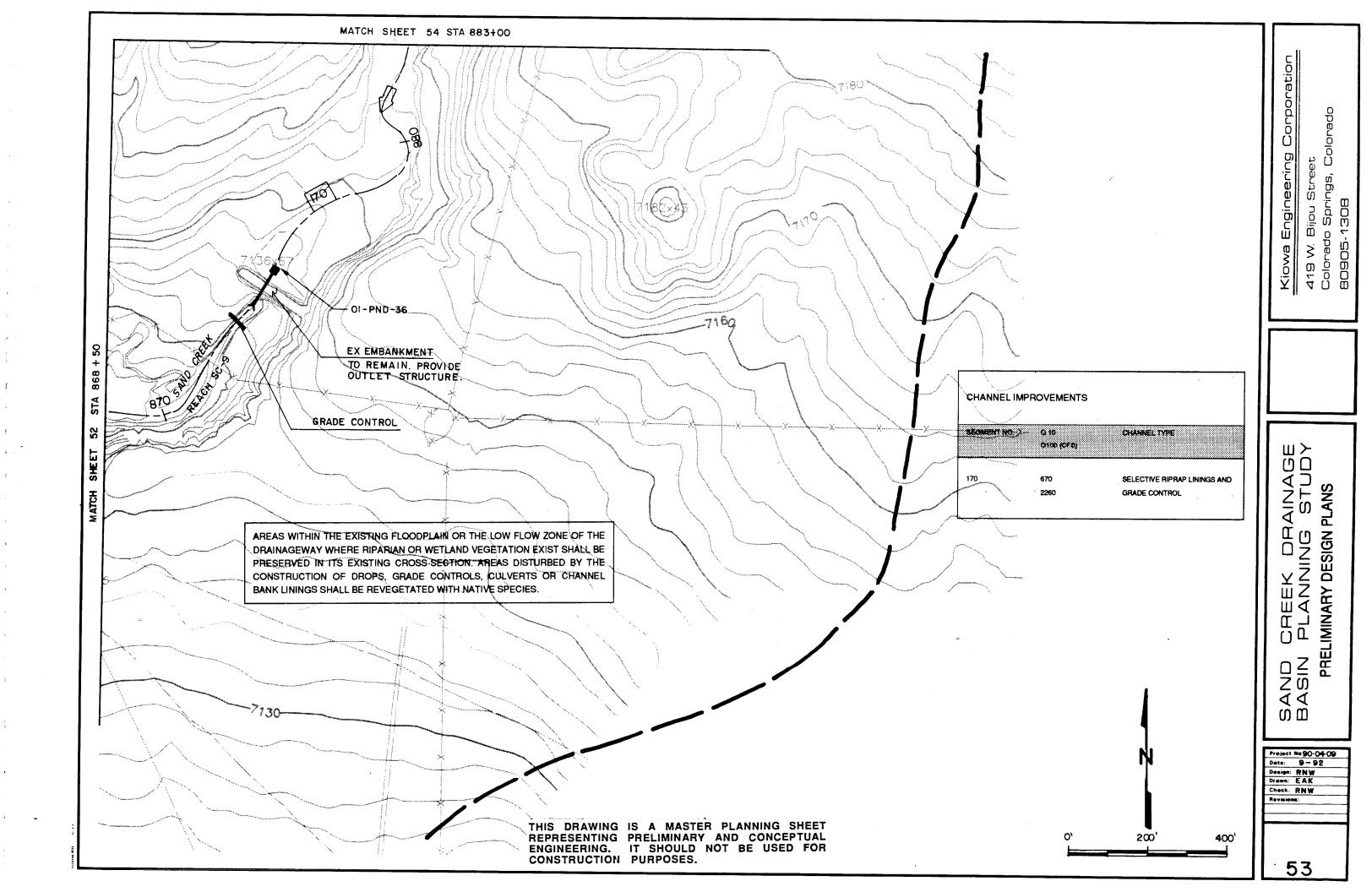


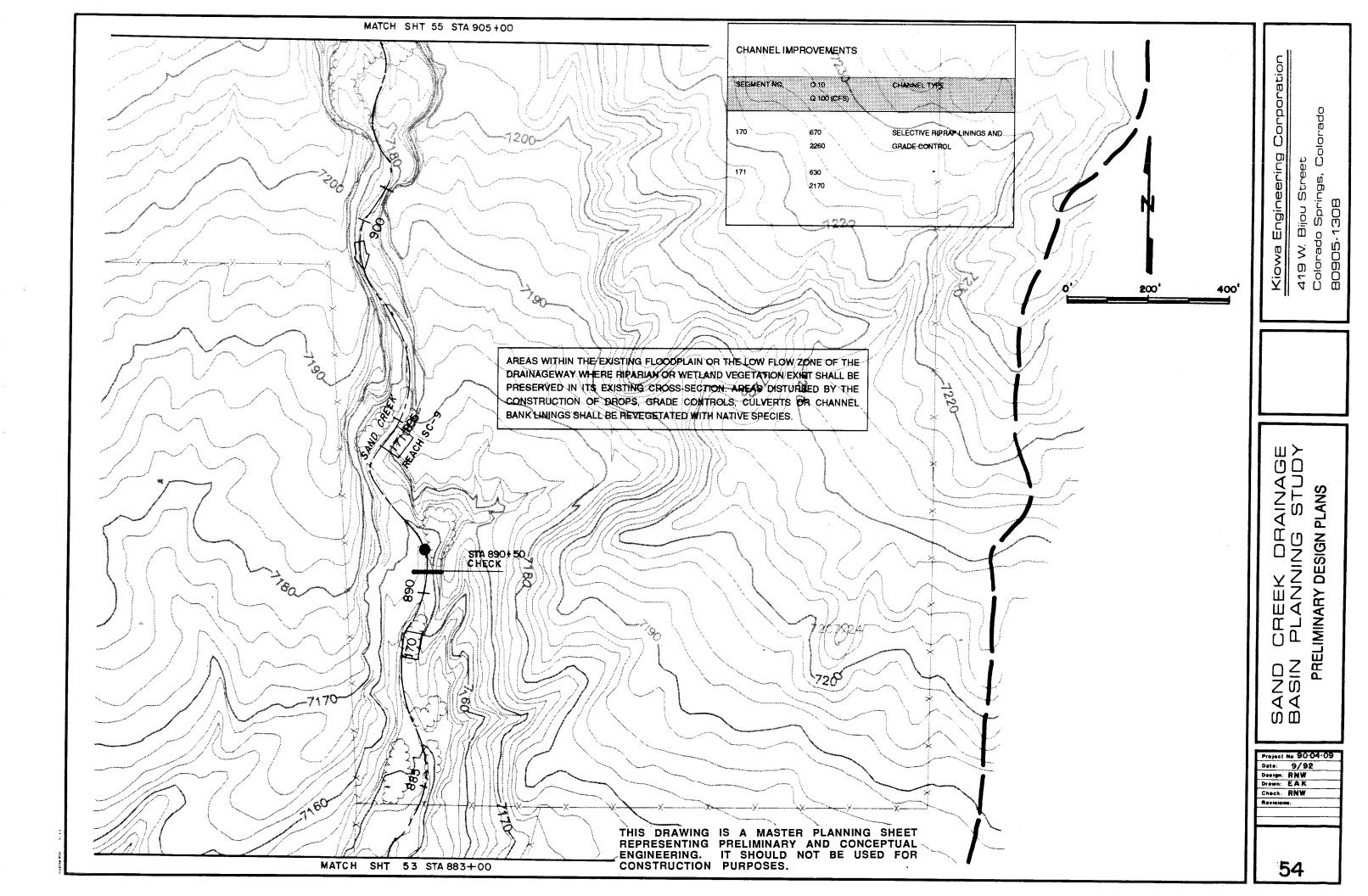












	STERLING RANCH FILING NO. 2 - TRACTS AND RIGHT-OF-WAY - DRAINAGE & BRIDGE FEES (2020)												
TRACT/ROW	SIZE/ACRE	USE	MAINTENANCE	OWNERSHIP	% Impervious	DRAI	NAGE FEE	FEE		BRI	DGE FEE	FEE	
А	0.391	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	29.0%	\$	19,698	\$	2,233.56	\$	8,057	\$	913.58
В	0.658	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	29.0%	\$	19,698	\$	3,758.77	\$	8,057	\$	1,537.44
С	0.845	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	24.0%	\$	19,698	\$	3,994.75	\$	8,057	\$	1,633.96
D	2.159	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	13.0%	\$	19,698	\$	5,528.64	\$	8,057	\$	2,261.36
E	19.674	ZERO LOT LINE FUTURE SINGLE FAMILY RESIDENTIAL LOTS	SR LAND, LLC	SR LAND, LLC	70.0%	\$	19,698	\$	271,276.92	\$	8,057	\$	110,959.39
F	1.231	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	4.0%	\$	19,698	\$	969.93	\$	8,057	\$	396.73
G	0.249	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	2.0%	\$	19,698	\$	98.10	\$	8,057	\$	40.12
н	0.062	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	2.0%	\$	19,698	\$	24.43	\$	8,057	\$	9.99
I	0.5	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY/MAIL KIOSK	SRMD #1	SRMD #1	15.0%	\$	19,698	\$	1,477.35	\$	8,057	\$	604.28
J	0.379	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	30.0%	\$	19,698	\$	2,239.66	\$	8,057	\$	916.08
К	0.387	LANDSCAPE/PUBLIC IMPROVEMENTS/PUBLIC UTILITY	SRMD #1	SRMD #1	30.0%	\$	19,698	\$	2,286.94	\$	8,057	\$	935.42
49 LOTS	11.871	SINGLE FAMILY RESIDENTIAL LOTS	SRMD #1	SRMD #1	70.0%	\$	19,698	\$	163,684.47	\$	8,057	\$	66,951.25
ROW	4.734	ROAD RIGHTS OF WAY (STERLING RANCH ROAD)	EPC	EPC	95.0%	\$	19,698	\$	88,587.82	\$	8,057	\$	36,234.75
ROW	3.525	ROAD RIGHTS OF WAY (MARKSHEFFEL ROAD)	EPC	EPC	95.0%	\$	19,698	\$	65,963.68	\$	8,057	\$	26,980.88
ROW	2.979	ROAD RIGHTS OF WAY (VOLLMER ROAD, ULTIMATE)	EPC	EPC	95.0%	\$	19,698	\$	55,746.32	\$	8,057	\$	22,801.71
								D	RAINAGE FEE				BRIDGE FEE
	49.644	TOTAL AREA				TOTA	L FEES	\$	667,871.33		-	\$	273,176.94

*SRMD#1 = STERLING RANCH METROPOLITAN DISTRICT NO. 1

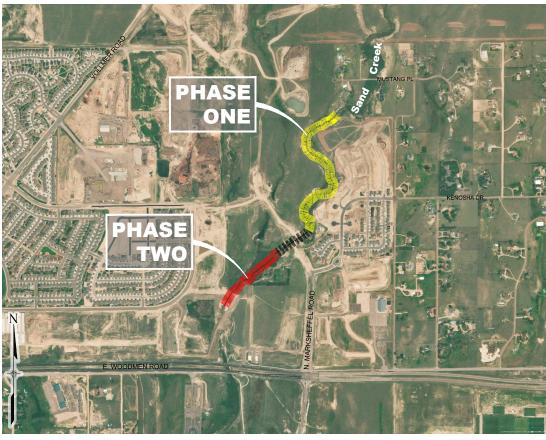
See plat — comments for added tracts

SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1

COLORADO LAND ACQUISITION

100% DESIGN PLANS **APRIL 2020**

MATRIX PROJECT No. 19.886.017



N.T.S.

ENGINEER'S STATEMENT:

SIGNED

THESE DETAILED PLANS AND SPECIFICATIONS WERE PREPARED UNDER MY DIRECTION AND SUPERVISION. SAID DETAILED PLANS AND SPECIFICATIONS HAVE BEEN PREPARED ACCORDING TO THE ESTABLISHED CRITERIA FOR DETAILED DRAINAGE PLANS AND SPECIFICATIONS, AND SAID DETAILED PLANS AND SPECIFICATIONS ARE IN CONFORMITY WITH THE MASTER PLAN OF THE DRAINAGE BASIN. SAID DETAILED DRAINAGE PLANS AND SPECIFICATIONS MEET THE PURPOSES FOR WHICH THE PARTICULAR DRAINAGE FACILITY(S) IS DESIGNED. I ACCEPT RESPONSIBILITY FOR ANY LIABILITY CAUSED BY ANY NEGLIGENT ACTS, ERRORS OR OMISSIONS ON MY PART IN PREPARATION OF THE DETAILED DRAINAGE PLANS AND SPECIFICATIONS.

LOCATION MAP SCALE: 1" = 1500'

PLAN REVIEW BY CITY OF COLORADO SPRINGS IS PROVIDED ONLY FOR GENERAL CONFORMANCE WITH DESIGN CRITERIA. THE CITY OF COLORADO SPRINGS IS NOT RESPONSIBLE FOR THE ACCURACY AND ADEQUACY OF THE DESIGN, DIMENSIONS, AND/OR ELEVATIONS WHICH SHALL BE CONFIRMED AT THE JOB SITE. THE CITY OF COLORADO SPRINGS, THROUGH THE APPROVAL OF THIS DOCUMENT, ASSUMES NO RESPONSIBILITY FOR COMPLETENESS AND/OR ACCURACY OF THIS DOCUMENT.

TS0 GN0 EX0 DR0 HZ0 PP0 PP0 RV0 DT0 DT0 DT2 DT2 DT2

COLORADO LAND ACQUISITION, LLC TIM BUSCHAR 7910 GATEWAY BOULEVARD, STE 102 EL PASO, TX 79915

REFERENCE DRAWINGS					CITY OF COLORADO SPRINGS ONLY: FILED IN ACCORDANCE WITH SECTION 7.7.906 OF THE CODE
X-886-MDG22x34					OF THE CITY OF COLORADO SPRINGS, 2001, AS AMENDED.
					1
	No.	DATE	DESCRIPTION	BY	FOR CITY ENGINEER
			REVISIONS		
					DATE
	CON	1PUTER FIL	E MANAGEMENT		
	FILE N	AME: S:\19.88	6.017 Sand Creek Stabilization at Forest Meadows P2\Dwg\Design Plans\886-TS01.dwg		CONDITIONS:
		ILE: Matrix(bl			
		DATE: 5/21/202			
	THIS DR/	AWING IS CURRENT A	S OF PLOT DATE AND MAY BE SUBJECT TO CHANGE.		

DATE:

SHEET INDEX

1	TITLE SHEET	01
)1	LEGEND AND NOTES	02
1	EXISTING CONDITIONS MAP	03
)1	OVERALL DRAINAGE PLAN	04
1	HORIZONTAL CONTROL PLAN	05
1	PLAN AND PROFILE OVERVIEW MAP	06
2-04	PLAN AND PROFILES	07-09
)1-04	REVEGETATION PLAN, NOTES AND DETAILS	10-13
1	TYPICAL SECTIONS	14
2-20	GROUTED BOULDER STRUCTURE DETAILS	15-33
!1	SHEET PILE DETAILS	34
2-24	TYPICAL GRADE CONTROL DETAILS	35-37
25	EROSION CONTROL FABRIC DETAILS	38

VERTICAL DATUM: THE ELEVATIONS ON THIS PROJECT ARE REFERENCED TO THE NATIONAL GEODETIC VERTICAL DATUM OF 1929.

AERIAL PHOTO: PROVIDED BY AERIAL MAPPING SERVICES.

BENCHMARK STATEMENT: BENCHMARK: THE BENCHMARK USED FOR THIS SURVEY IS A FACILITIES INFORMATION MANAGEMENT SYSTEM (FIMS) SURVEY CONTROL MONUMNET NUMBER "F 69" BEING A FOUND 3-1/4" ÁLUMINUM CAP IN A RANGE BOX, LOCATED ON THE WEST SIDE OF BLACK FOREST ROAD, JUST SOUTH OF THE SCHMIDT CONSTRUCTION COMPANY DRIVEWAY. THE VERTICAL CONTROL VALUES ARE BASED ON NATIONAL GEODETIC VERTICAL DATUM (NGVD 29), 1929 AND THE 1960 SUPPLEMENTARY ADJUSTMENT. 6975.62 U.S. SURVEY FEET.

OWNER / DEVELOPER:

	COLORADO LAND ACQUISITION						
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND		SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS					
IS SUBJECT TO CHANGE		TI.	TLE SHEET	-			
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB DRAWN BY: RAF CHECKED BY: AJS	SCALE HORIZ. N/A VERT. N/A	DATE ISSUED: SHEET	February 2020 01 OF 38	drawing no. TS01		

DATE

GENERAL NOTES:

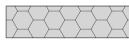
- 1. THE LOCATIONS OF EXISTING ABOVE GROUND AND UNDERGROUND UTILITIES ARE SHOWN IN THEIR APPROXIMATE LOCATIONS ONLY. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK. CONTRACTOR TO CALL FOR UTILITY LOCATOR AT LEAST 3 CALENDAR DAYS BEFORE EARTHWORK. THE CONTRACTOR SHALL BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE CAUSED BY THEIR FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL ABOVE GROUND AND UNDERGROUND UTILITIES. IN THE EVENT THAT THE CONTRACTOR UTILITY VERIFICATION RESULTS IN EXISTING STRUCTURES OR UTILITIES BEING IN CONFLICT WITH THE PROPOSED WORK OF THIS CONTRACT, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY UTILITIES AND COORDINATE ANY NEEDED MODIFICATIONS TO THE PROPOSED WORK AS DIRECTED BY AFFECTED AGENCY OR UTILITY.
- 2. THE CONTRACTOR SHALL COORDINATE WITH ALL AFFECTED UTILITY OWNERS TO ESTABLISH THE REQUIREMENTS AND METHODS TO ACCOMMODATE THE PROTECTION, TEMPORARY SUPPORT, ADJUSTMENT OR RELOCATION OF UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- 3. OVERHEAD UTILITIES ARE NOT INDICATED ON PROFILE OR SECTION DRAWINGS.
- 4. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING AND MAINTAINING IN CONTINUOUS OPERATION. ALL EXISTING STRUCTURES. NOT ALL POTENTIALLY IMPACTED STRUCTURES MAY BE SHOWN ON THE DRAWINGS AND IT IS THE CONTRACTOR'S RESPONSIBILITY TO IDENTIFY AND PROTECT ALL STRUCTURES INCLUDING BUT NOT LIMITED TO STREETS, CURB AND GUTTER, BRIDGE PIERS AND ABUTMENTS, CREEK BANK PROTECTION OF VARIOUS TYPES, CREEK DROP STRUCTURES, SIGNS, PEDESTRIAN WALKS, RETAINING WALLS AND FENCING. IN THE EVENT THAT A STRUCTURE OR UTILITY IS DAMAGED DURING CONSTRUCTION THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE OWNER OF THE FACILITY IN WRITING AND COORDINATE AND COOPERATE WITH NEEDED REPAIRS PER THE APPROPRIATE SPECIFICATIONS ACCORDING TO THE OWNER'S DIRECTION.
- 5. THE CONTRACTOR SHALL CONFIRM THE RECEIPT OF ALL NECESSARY PERMITS AND APPROVALS BEFORE THE START OF CONSTRUCTION.
- 6. ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE STANDARDS OF THE CITY OF COLORADO SPRINGS UNLESS SPECIFICALLY DETAILED OTHERWISE ON THESE PLANS AND ASSOCIATED SPECIFICATIONS.
- 7. THE CONTRACTOR SHALL MAINTAIN AT THE SITE AT ALL TIMES ONE SIGNED COPY OF THE PROJECT DRAWINGS AND SPECIFICATIONS, ONE COPY OF THE STORMWATER MANAGEMENT PLAN AND ONE COPY OF ALL REQUIRED PERMITS.
- 8. THE CONTRACTOR SHALL CONDUCT THEIR OPERATIONS IN SUCH A WAY THAT THE AREA OF DISTURBANCE IS MINIMIZED. ALL EXISTING TREES, SHRUBS AND VEGETATION SHALL BE PROTECTED UNLESS OTHERWISE NOTED ON THE DRAWINGS. NO TREES SHALL BE REMOVED WITHOUT APPROVAL. DESIGNATED ACCESS SHALL BE MINIMAL AND AGREED UPON WITH THE ENGINEER PRIOR TO CONSTRUCTION ACTIVITIES
- 9. FOR ALL SITE GRADING, SMOOTH, PARABOLIC TRANSITIONS SHALL BE MADE BETWEEN CHANGES IN SLOPE.
- 10. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR PROVIDING STABLE EXCAVATIONS AND TEMPORARY SLOPES AND FOR SATISFYING ALL APPLICABLE FEDERAL, STATE AND LOCAL REGULATIONS.
- 11. CONSTRUCTION OF THE PROPOSED WORK WILL TAKE PLACE WITHIN THE CHANNEL AND WATER CONTROL MEASURES WILL BE REQUIRED. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE ACCEPTANCE AND CONTROL OF DRAINAGE WATER FROM AREAS ADJACENT TO SAND CREEK AND FOR FLOW WITHIN SAND CREEK AND ITS TRIBUTARIES INCLUDING STORMWATER OUTFALLS. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ESTABLISHING MEANS AND METHODS OF GROUND AND SURFACE WATER CONTROL APPROPRIATE FOR CONSTRUCTION IN ACCORDANCE WITH THE REQUIREMENTS OF THE PROJECT DRAWINGS AND SPECIFICATIONS AND ALL APPLICABLE FEDERAL. STATE AND LOCAL REGULATIONS AND PERMITS.
- 12. THE CONTRACTOR SHALL PREPARE AND MAINTAIN THE STORMWATER MANAGEMENT PLAN AND OBTAIN THE NATIONAL. POLLUTION DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT THROUGH THE COLORADO DEPARTMENT OF PUBLIC HEALTH (CDPHE) AND ALL OTHER APPROPRIATE FEDERAL, STATE AND LOCAL PERMITS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT DRAWINGS TO BE MAINTAINED AND SUBMITTED TO THE CITY OF COLORADO SPRINGS
- 14. THE CONTRACTOR SHALL PROVIDE AND MAINTAIN ON-SITE SURVEY CONTROL AND CONSTRUCTION STAKING.
- 15. CONTRACTOR SHALL FENCE OFF CRITICAL AREAS TO BE PROTECTED AT THE DISCRETION OF THE CITY OF COLORADO SPRINGS.
- 16. THE CONTRACTOR SHALL DEVELOP A TRAFFIC CONTROL PLAN FOR PLANNED ACCESS TO THE SITE AND FOR EXITING AND ENTERING PUBLIC ROADS
- 17. THE CONTRACTOR SHALL BE RESPONSIBLE FOR IDENTIFYING AND MAINTAINING PHYSICAL AND LEGAL ACCESS TO THE PROJECT SITE AND SHALL LIMIT TRANSPORTATION TO AND FROM THE SITE TO THOSE APPROVED BY THE CITY OF COLORADO SPRINGS
- 18. THE CONTRACTOR SHALL TAKE MEASURES TO PREVENT AND MANAGE SPILLS OF TOXIC MATERIALS, SUCH AS EQUIPMENT FUELS
- 19. ALL MATERIALS USED SHALL BE NEW AND WITHOUT FLAWS OR DEFECTS OF ANY TYPE AND SHALL BE THE BEST OF THEIR CLASS AND KIND.
- 20. WORK INCLUDES FURNISHING OF LABOR, MATERIALS, TOOLS, AND EQUIPMENT TO COMPLETE THE CONSTRUCTION OF ALL ELEMENTS OF THE DESIGN PLANS.

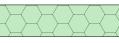
CENTER LINE
HORIZONTAL CONTROL LINE
DIAMETER
EXISTING
ELEVATION
FFFT

EL./ELEV	ELEVATION
FT.	FEET
INV.	INVERT
LF	LINEAR FEET
LT	LEFT
N,S,E,W	NORTH, SOUTH, EAST, WEST
ዊ	PROPERTY LINE
ROW	RIGHT-OF-WAY
RT	RIGHT
SF	SQUARE FEET
STA.	STATION

ф HCL

DIA


EX/EXIST


STANDARD SYMBOLS

 CENTER L
 EXISTING
PROPOSE
 L.O.C.
CONSTRU
 ROW
RAILROAD
PROTECT

LEGEND

REFERENCE DRAWINGS					CITY OF COLORADO SPRINGS ONLY: FILED IN ACCORDANCE WITH SECTION 7.7.906 OF THE CODE
X-886-MDG22x34					OF THE CITY OF COLORADO SPRINGS, 2001, AS AMENDED.
					1
	No.	DATE	DESCRIPTION	BY	FOR CITY ENGINEER
			REVISIONS		
					DATE
	CON	IPUTER FIL	E MANAGEMENT		
	FILE N	AME: S:\19.88	6.017 Sand Creek Stabilization at Forest Meadows P2\Dwg\Design Plans\886-GN01-02.dwg		CONDITIONS:
	CTB F	ILE: Matrix(bl	ack) ctb		
	PLOT I	DATE: 5/21/202	20 3:29 PM		
1	THIS DRA	WING IS CURRENT A	IS OF PLOT DATE AND MAY BE SUBJECT TO CHANGE.		1 1

ABBREVIATIONS

APPROX.	APPROXIMATE
MIN.	MINIMUM
MAX.	MAXIMUM
HORIZ	HORIZONTAL
VERT.	VERTICAL
DIST.	DISTANCE
NTS	NOT TO SCALE
TYP	TYPICAL
O.C.	ON CENTER
L.O.C.	LIMITS OF CONSTRUCTION
RR	RAILROAD
BCL	BANKFULL CONTROL LINE
TCL	THALWEG CONTROL LINE

LINE

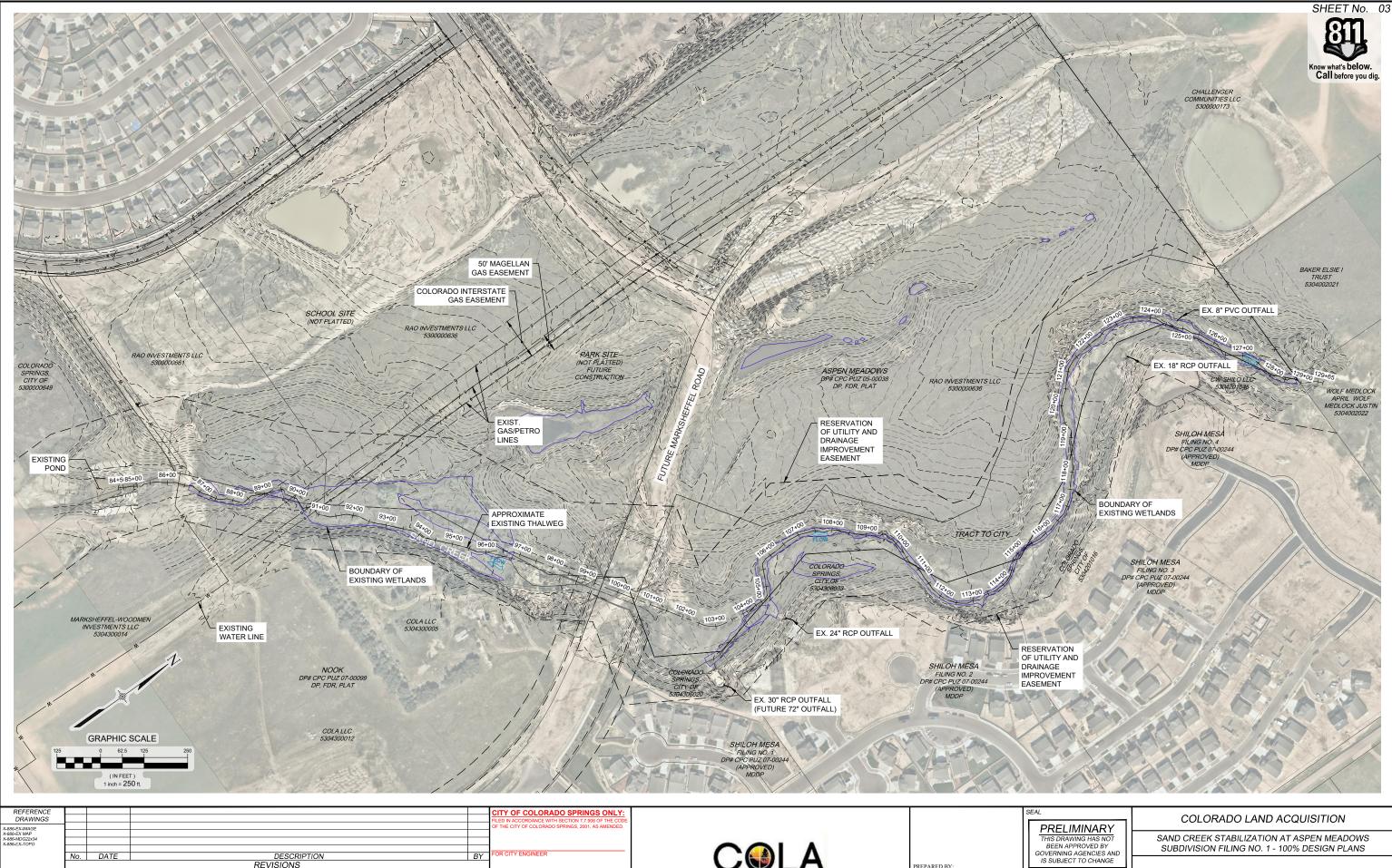
CONTOURS

ED CONTOURS

UCTION ACCESS

AD ROW

EXISTING VEGETATION

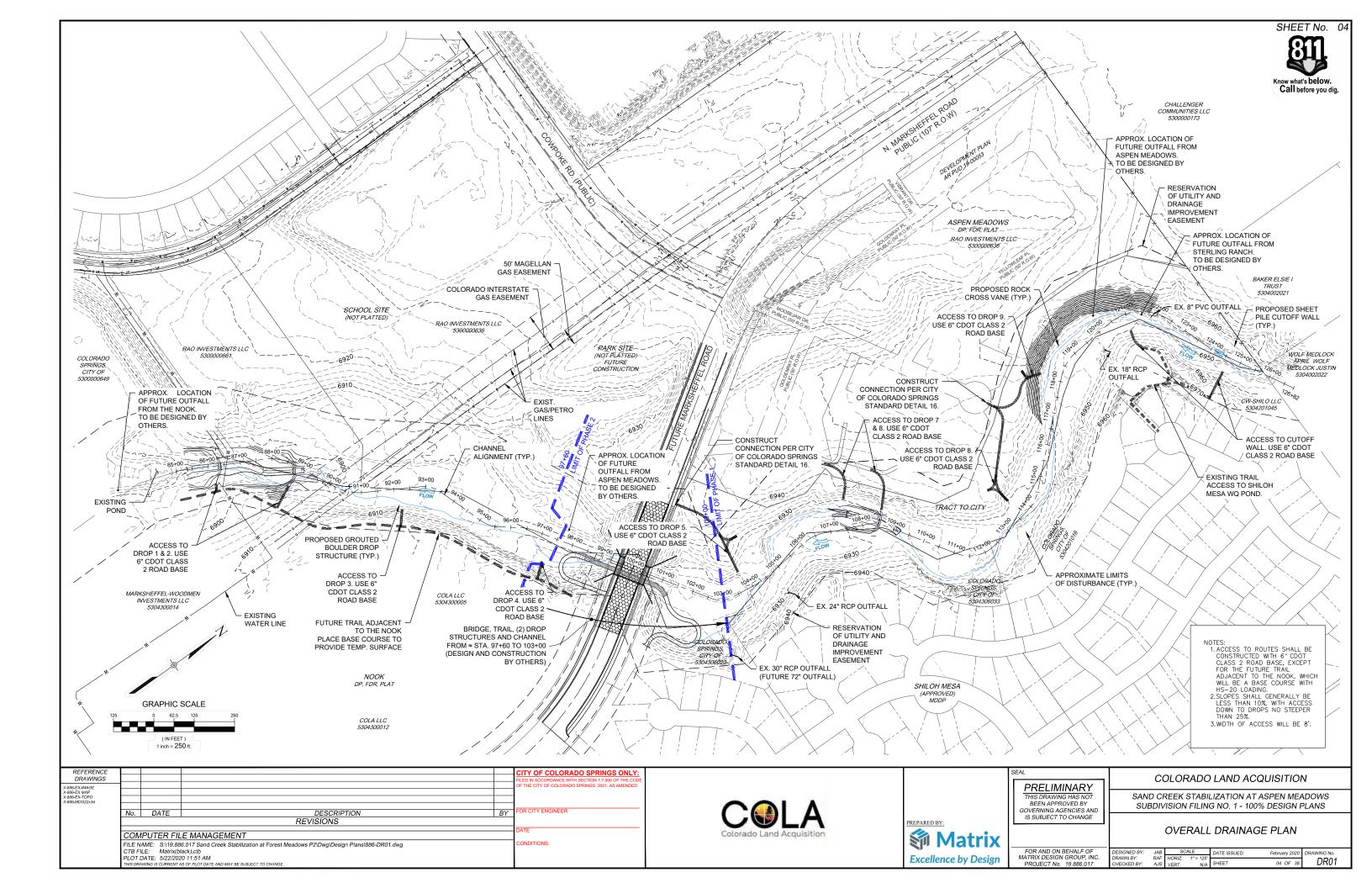

PROPOSED GROUTED BOULDER DROP STRUCTURE

PROPOSED GROUTED BOULDER DROP STRUCTURE **BURIED WITH TOPSOIL & REVEGETATION**

PROPOSED SOIL RIPRAP

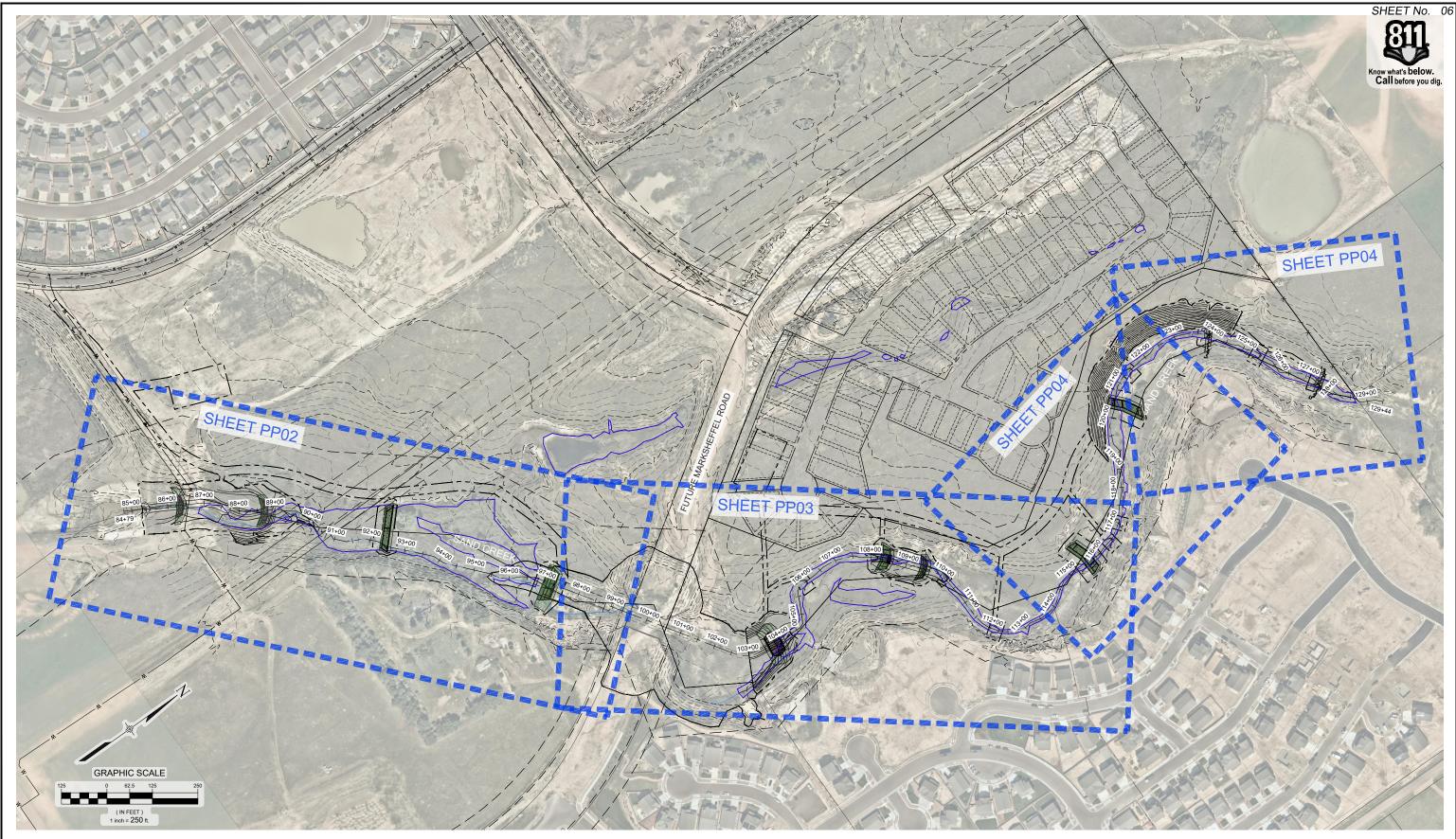
PROPOSED SOIL RIPRAP - BURIED WITH TOPSOIL & REVEGETATION

Ι	SEAL PRELIMINARY	COLORADO LAND ACQUISITION					
	THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS					
	IS SUBJECT TO CHANGE	LEGEND AND GENERAL NOTES					
	FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB <u>SCALE</u> DATE ISSUED: February 2020 DRAWIN BY: RAF HORIZ N/A CHECKED BY: AJS VERT. N/A SHEET 02 OF 38 GN01					


REFERENCE					CITY OF COLORADO SPRINGS ONLY:
DRAWINGS					FILED IN ACCORDANCE WITH SECTION 7.7.906 OF THE COE
X-886-EX-IMAGE					OF THE CITY OF COLORADO SPRINGS, 2001, AS AMENDED
X-886-EX MAP X-886-MDG22x34 X-886-EX-TOPO					-
	No.	DATE	DESCRIPTION	BY	FOR CITY ENGINEER
		<i>D</i> /112	REVISIONS]
					DATE
	COM	IPUTER FIL	LE MANAGEMENT		
	FILE N	AME: S:\19.88	6.017 Sand Creek Stabilization at Forest Meadows P2\Dwg\Design Plans\886-EX01.dwg		CONDITIONS:
	CTB FI				
	PLOT	DATE: 5/20/202			
			AS OF PLOT DATE AND MAY BE SUBJECT TO CHANGE.		

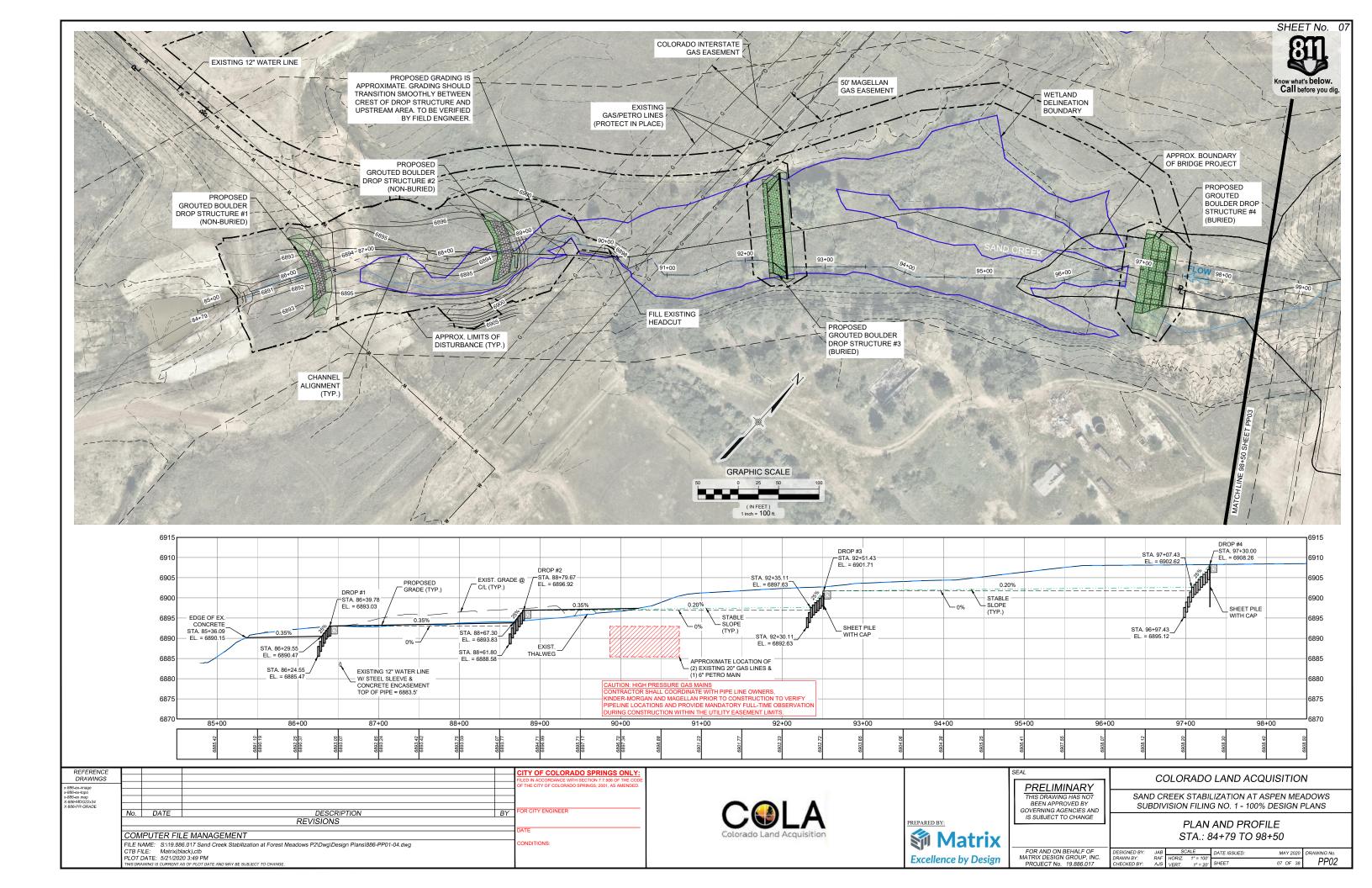
	COLORADO LAND ACQUISITION
RELIMINARY	
HIS DRAWING HAS NOT BEEN APPROVED BY VERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS
SUBJECT TO CHANGE	EXISTING CONDITIONS MAP

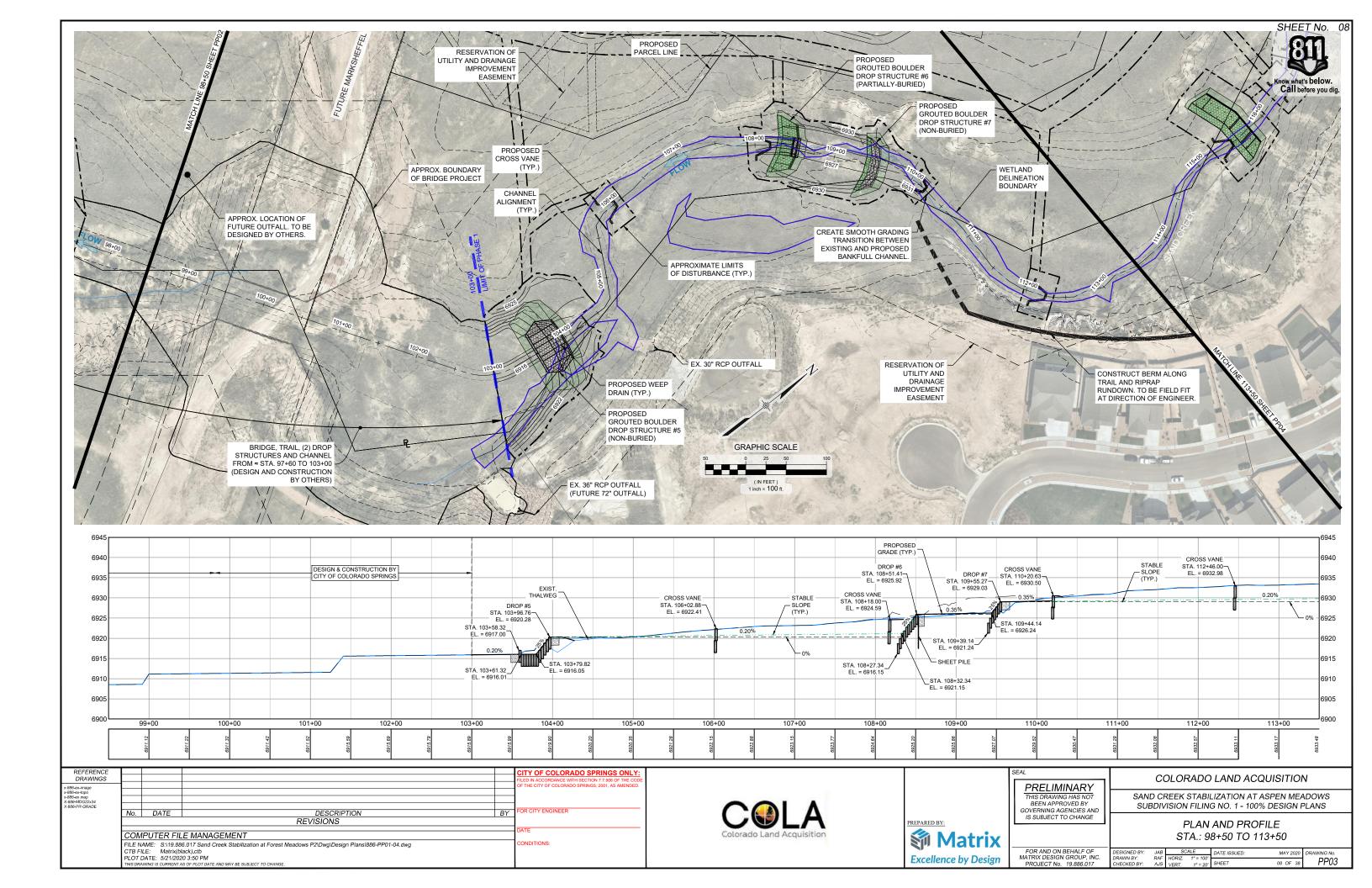
FOR AND ON BEHALF OF	DESIGNED BY:	JAB		ALE	DATE ISSUED:	MAY 2020	DRAWING No.
MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DRAWN BY: CHECKED BY:	RAF AJS	HORIZ. VERT.	1" = 250' N/A	SHEET	03 OF 38	EX01
			TEIT.	14/1			

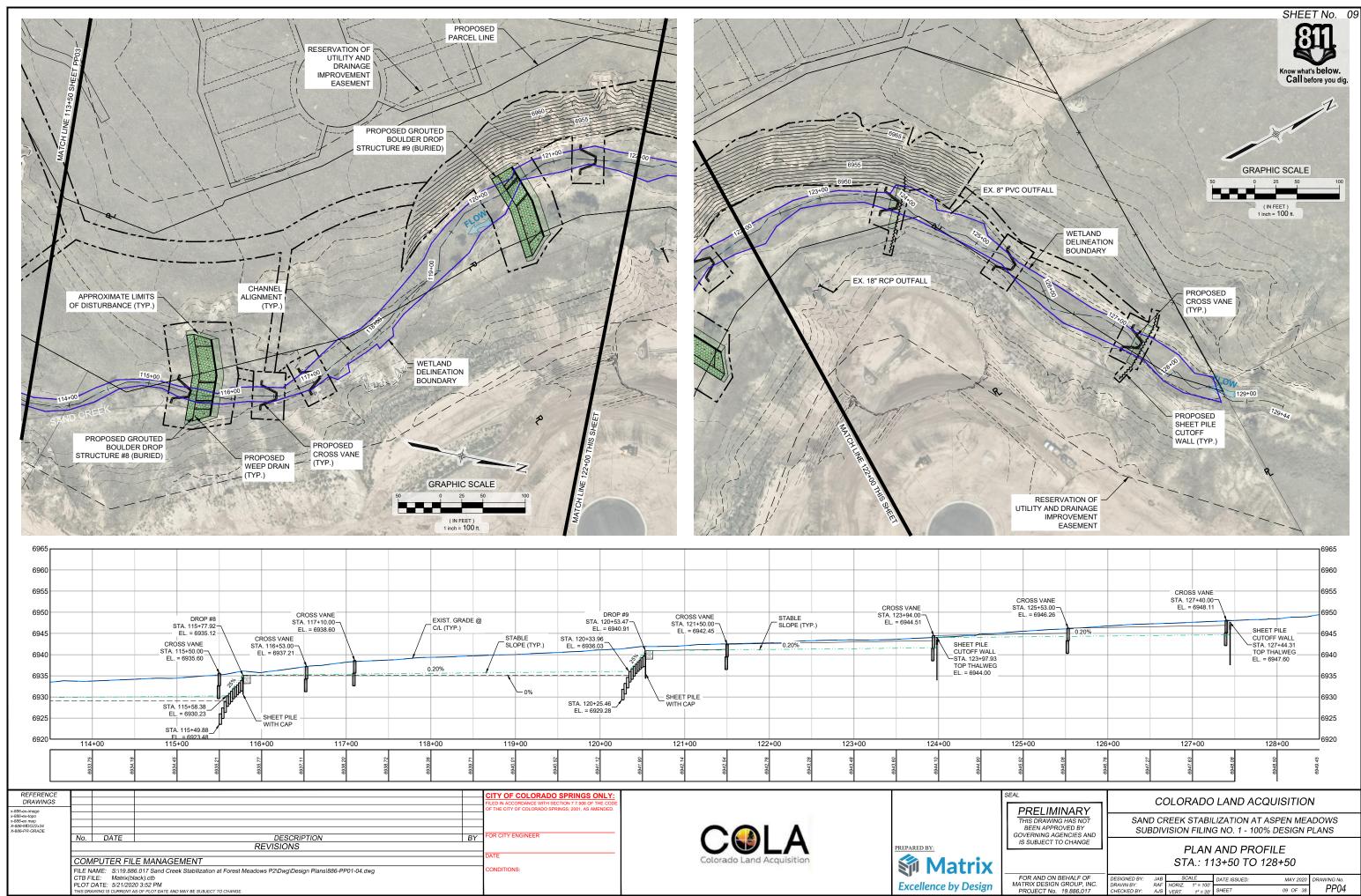


REFERENCE DRAWINGS					CITY OF COLORADO SPRINGS ONLY: FILED IN ACCORDANCE WITH SECTION 7.7.906 OF THE CODE
X-886-EX-IMAGE	1				OF THE CITY OF COLORADO SPRINGS, 2001, AS AMENDED.
X-886-EX MAP X-886-MDG22x34					-
					·
	No.	DATE	DESCRIPTION	BY	FOR CITY ENGINEER
			REVISIONS		
					DATE
	COM	IPUTER FIL	E MANAGEMENT		
	FILE N	AME: S:\19.88	5.017 Sand Creek Stabilization at Forest Meadows P2\Dwg\Design Plans\886-HZ01.dwg		CONDITIONS:
	CTB FI	LE: Matrix(bl	ack) ctb		
	PLOT I	DATE: 5/20/202	0 4:04 PM		
I	THIS DRA	WING IS CURRENT A	S OF PLOT DATE AND MAY BE SUBJECT TO CHANGE.		

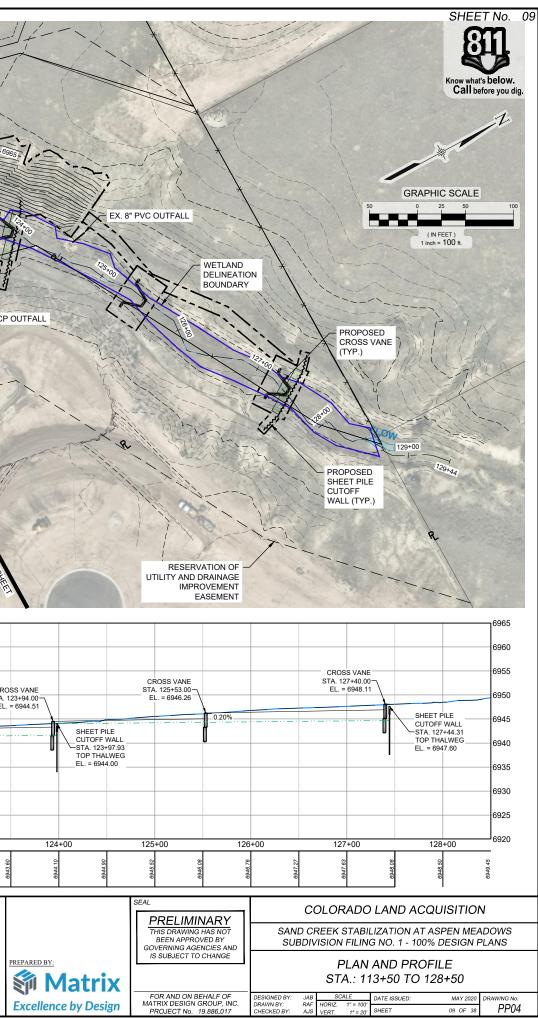
	COLORADO LAND ACQUISITION							
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS							
IS SUBJECT TO CHANGE	HORIZONTAL CONTROL PLAN							
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING NO. DRAWN BY: RAF HORIZ. 1*=250' CHECKED BY: AJS VERT. N/A SHEET 05 OF 38 HZO1							

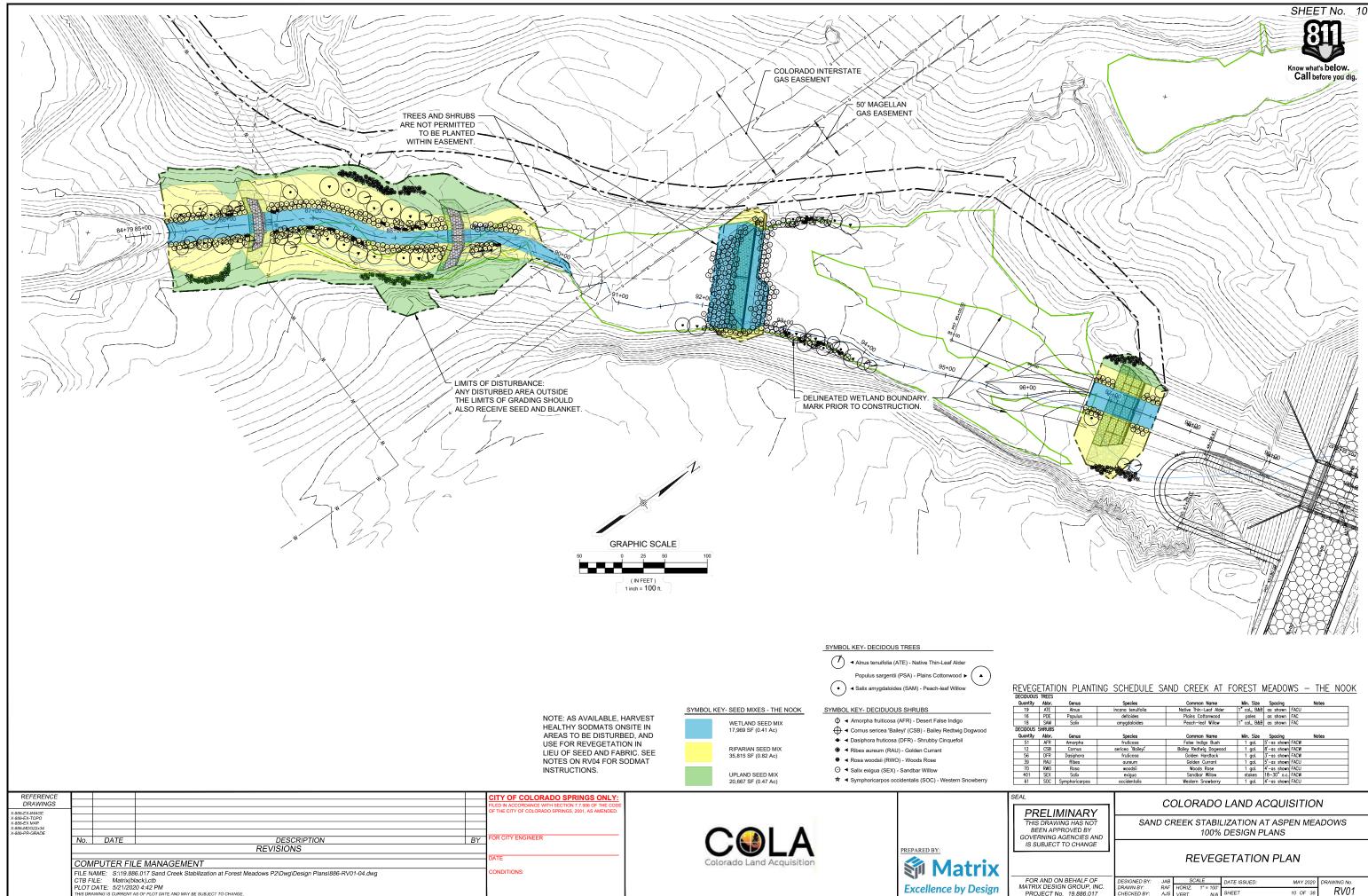


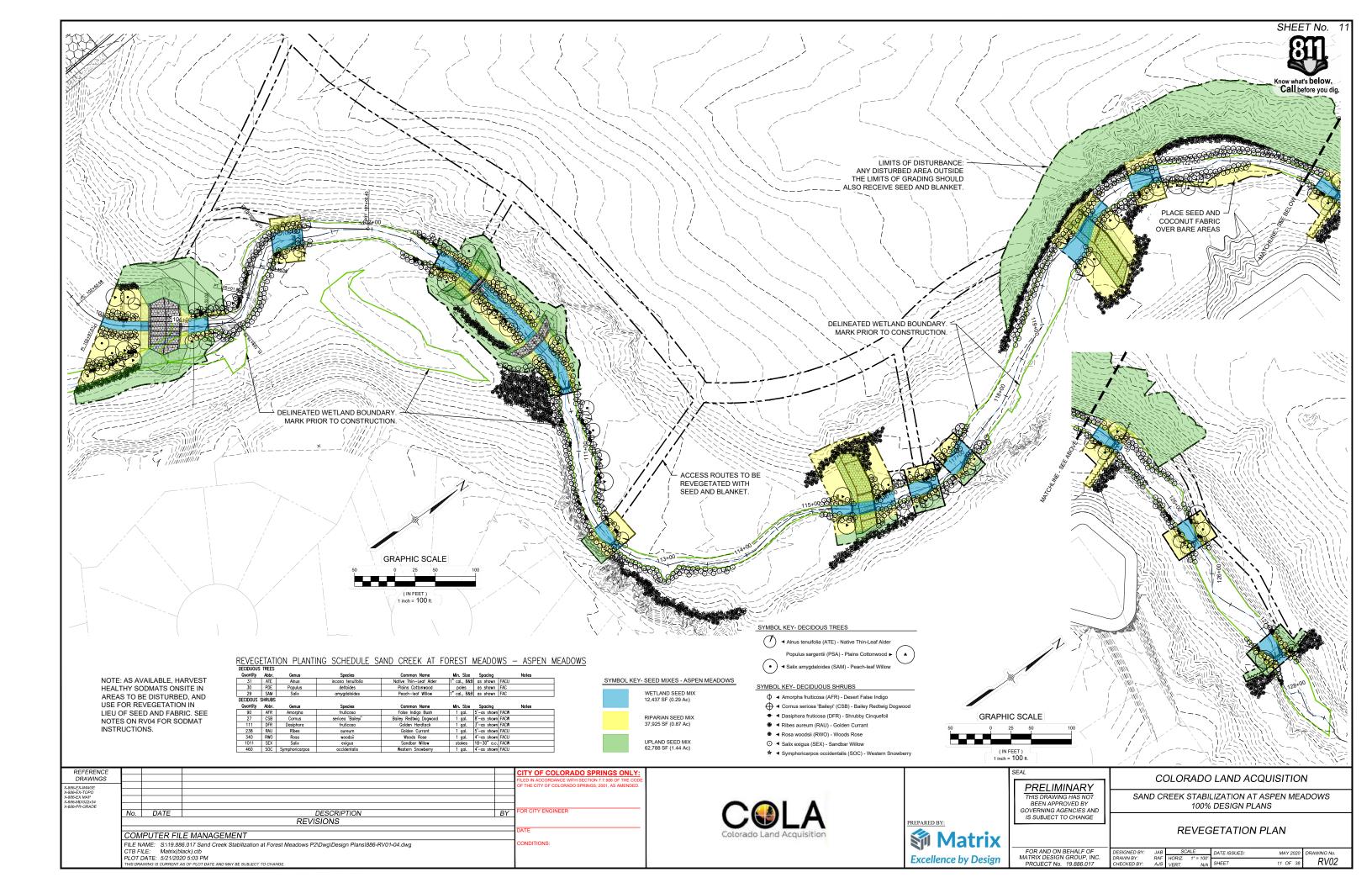

REFERENCE DRAWINGS					CITY OF COLORADO SPRINGS ONLY: FILED IN ACCORDANCE WITH SECTION 7.7.906 OF THE CODE
x-886-ex-image					OF THE CITY OF COLORADO SPRINGS, 2001, AS AMENDED.
x-886-ex-topo x-886-ex map					-
X-886-MDG22x34 X-886-PR-GRADE					1
	No.	DATE	DESCRIPTION	BY	FOR CITY ENGINEER
			REVISIONS		
					DATE
	COM	IPUTER FIL	E MANAGEMENT		
	FILE N	AME: S:\19.88	6.017 Sand Creek Stabilization at Forest Meadows P2\Dwg\Design Plans\886-PP01-04.dwg		CONDITIONS:
	CTB FI	LE: Matrix(bl	ack).ctb		
	PLOT I	DATE: 5/21/202	20 3:48 PM		
	THIS DR/	WING IS CURRENT A	IS OF PLOT DATE AND MAY BE SUBJECT TO CHANGE.		



			COLORADO LAND ACQUISITION						
THIS DRAWI BEEN APP GOVERNING A	NG HAS NOT ROVED BY		SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS						
IS SUBJECT	IS SUBJECT TO CHANGE					AND PRC RVIEW M			
FOR AND ON MATRIX DESIG PROJECT No	N GROUP, INC.	DESIGNED BY: DRAWN BY: CHECKED BY:		SCAL IORIZ. 1 /ERT.	E 1" = 250' N/A	DATE ISSUED: SHEET	MAY 2020 06 OF 38	drawing no. PP01	






-ex map -MDG22x34					
-PR-GRADE					
	No.	DATE	DESCRIPTION	BY	FOR CITY ENGINEER
			REVISIONS		
	COMF	PUTER FIL	E MANAGEMENT		DATE
		ME: S:\19.88 .E: Matrix(bl	6.017 Sand Creek Stabilization at Forest Meadows P2∖Dwg\Design Plans\886-PP01-04.dwg ack).ctb		CONDITIONS:
		ATE: 5/21/202 WING IS CURRENT A	0.3:52 PM s of plot date and may be subject to change.		

	16	PDE	Populus	deltoides			Plains Cottonwood		poles	as shown	FAC		
	18	SAM	Salix	amygdaloides			Peach-leaf Willow		1 col., B&B	as shown	FAC		
	DECIDOUS	SHRUBS											
	Quantity	Abbr.	Genus		Species		Common Name		Min. Size	Spacing	No	ites	
	51	AFR	Amorpha		fruticosa		False Indigo Bush		1 gal.	5'-as shown	FACW		
	12	CSB	Cornus		sericea 'Baileyi'		Bailey Redtwig Dogwo	od	1 gal.	8'-as shown	FACW		
	56	DFR	Dasiphora		fruticosa		Golden Hardtack		1 gal.	3'-as shown	FACW		
	39	RAU	Ribes		aureum		Golden Currant		1 gal.	5'-as shown	FACU		
	70	RWO	Rosa		woodsii		Woods Rose		1 gal.	4'-as shown	FACU		
	401	SEX	Salix		exigua		Sandbar Willow		stakes	18-30° o.c.	FACW		
	61	SOC	Symphoricarpos		occidentalis		Western Snowberry		1 gal.	4'-as shown	FACU		
	SEAL PRELIMINARY THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND				SAN		DLORADO REEK STABIL 100%	IZA		TASP		-	
	IS SUBJECT TO CHANGE						REVEG	εT.	ΑΤΙΟΙ	N PLA	٩N		
ľ			ON BEHALF OF IGN GROUP, INC		DESIGNED BY: DRAWN BY:	JAB RAF	SCALE HORIZ. 1" = 100'	DATE	ISSUED:		MAY 2020	DRAWING No	
L	PRO	JECT	No. 19.886.017		CHECKED BY:	AJS	VERT. N/A	SHEE	Т		10 OF 38	RV0	1

REVEGETATION NOTES:

- 1. MATERIALS PLANTED PRIOR TO INSPECTION AND ACCEPTANCE OF PLANTS DELIVERED TO THE SITE ARE SUBJECT TO REJECTION.
- 2. CONTRACTOR IS RESPONSIBLE FOR DETERMINING SOURCE LOCATIONS (ON- OR OFF-SITE) FOR ALL HARVESTED MATERIALS. OFF-SITE PLANT MATERIALS SHALL ONLY BE USED UPON APPROVAL
- 3. SEEDING OR PLANTING SHALL NOT OCCUR WHEN THE GROUND IS FROZEN, WHEN FREEZING TEMPERATURES ARE FORECASTED WITHIN 24 HOURS, OR WHEN CONDITIONS ARE OTHERWISE UNSUITABLE.
- 4. CONTRACTOR SHALL CONDUCT A SOIL TEST FOR TOP SOIL STOCKPILED ON THE SITE PRIOR TO APPLICATION OF SOIL CONDITIONER, SEEDING OR PLANTING. SOIL TEST SAMPLES SHALL ALSO BE TAKEN APPROXIMATELY EVERY 1,000 FEET ALONG THE GRADED CHANNEL FOR THE SUBGRADE SOILS AND TESTED. A RECOMMENDED SOIL CONDITIONING AMENDMENT AND APPLICATION RATE SHALL BE DETERMINED BASED ON THE SOIL TEST RESULTS. NO SOIL CONDITIONING, SEEDING, OR PLANTING SHALL OCCUR PRIOR TO SOIL TEST AND UNTIL A SOIL CONDITIONING AMENDMENT IS ACCEPTED.
- 5. CONTRACTOR SHALL BE REQUIRED TO SUBMIT SIGNED STATEMENTS OF GUARANTEE AND/OR CERTIFICATIONS FROM VENDORS WHO SUPPLY SEED AND SOIL CONDITIONER STATING THAT THE SEED FURNISHED IS FROM A LOT THAT HAS BEEN TESTED BY A RECOGNIZED LABORATORY FOR SEED TESTING WITHIN TWELVE (12) MONTHS PRIOR TO THE DATE OF SEEDING.
- 6. CONTRACTOR SHALL SUBMIT A LAB TEST OF COMPOST SAMPLE TO BE USED FOR APPROVAL. LAB TEST OF COMPOST SHALL BE TAKEN FROM THE SAME SOURCE THAT IS TO BE USED ON THIS PROJECT. LAB TEST SHALL BE TAKEN A MAXIMUM OF SIX (6) MONTHS PRIOR TO APPLICATION. THE COMPOST SHALL BE TESTED IN ACCORDANCE WITH THE U.S. COMPOSTING COUNCIL'S TEST METHODS FOR EXAMINING OF COMPOSTING AND COMPOST (TMECC) MANUAL.
- ALL MATERIALS SHALL BE FURNISHED IN ORIGINAL MANUFACTURER'S SHIPPING BAGS OR CONTAINERS AND REMAIN IN THESE BAGS OR CONTAINERS UNTIL THEY ARE USED. ALL MATERIALS SHALL BE STORED IN A MANNER THAT WILL PREVENT THEM FROM COMING INTO CONTACT WITH PRECIPITATION, SURFACE WATER, OR ANY OTHER CONTAMINATING SUBSTANCE. ANY MATERIALS THAT HAVE BECOME WET, MOLDY, OR OTHERWISE DAMAGED IN TRANSIT OR IN STORAGE SHALL NOT BE USED
- ALL MATERIALS AND EQUIPMENT FURNISHED SHALL BE FREE OF NOXIOUS WEEDS INCLUDING BUT NOT LIMITED TO RUSSIAN KNAPWEED, DIFFUSE KNAPWEED, CANADA THISTLE, FIELD BINDWEED, JOHNSONGRASS, LEAFY SPURGE, KOCHIA, OR ANY STATE OR DISTRICT CRITERIA MANUAL-LISTED NOXIOUS WEED SPECIES

SOIL AMENDMENTS

9. COMPOST: COMPOST SHALL BE CLASS A AS DEFINED BY CFR TITLE 40, PART 503 OR CLASS 1 AS DESCRIBED IN THE TABLE BELOW. THE AMOUNT OF COMPOST ADDED TO THE SOIL MAY VARY DEPENDING ON SOIL TEST RESULTS.

Compost Parameters	Reported As	Requirements	Test Method
pН	pH units	6.0 - 8.4	TMECC 04.11-A
Soluble Salts (Electrical Conductivity)	dS m ⁻¹ or mmhos cm ⁻¹	0-5 mmhos/cm	TMECC 04.11-A
Moisture Content	%, wet weight basis	35 - 60%	TMECC 03.09-A
Organic Matter Content	%, dry weight basis	30 - 70%	TMECC 05.07-A
Particle Size (Sieve Sizes)	%, dry weight basis for each sieve fraction	P <u>assing</u> 1 inch - 100% 1/2 inch - 95%	TMECC 02.02-B
Man-made Inert Contamination	%, dry weight basis	< 1%	TMECC 03.08-A
Stability (Respirometry)	mg CO₂ - C per g TS per day mg CO₂ - C per g OM per day	8 or below	TMECC 05.08-B
Select Pathogens	(PASS/FAIL) Limits: Salmonella < 3 MPN/4grams of TS, or Coliform Bacteria <1000 MPN/gram	Pass	TMECC 07.01-B Fecal Coliforms, or 07.02 Samonella
Trace Metals	(PASS/FAIL) Limits (mg kg ^{1.} dw basis): As 41, Cd 39, Cu 1500, Pb 300, Hg 17, Ni 420, Se 100, Zn 2800	Pass	TMECC 04.06
Maturity (Bioassay) Percent Emergency Relative	%, (average)	> 80%	TMECC 05.05-A
Seedling Vigor	%, (average)	> 80%	

Notes: The Contractor shall provide a CTR in accordance with subsection 106.13 of CDOT standard specifications confirming that the material has been tested in accordance with TMECC.

10. OTHER SOIL AMENDMENTS

- . BIOSOL ORGANIC SLOW-RELEASE FERTILIZER AND HUMATE SOIL CONDITIONERS CAN BE SUBSTITUTED FOR COMPOST AMENDMENTS IF APPROVED AFTER REVIEW OF SOIL TEST RESULTS. BIOSOL ORGANIC FERTILIZER SHOULD HAVE THE FOLLOWING CHARACTERISTICS:
 - 6% N, 1% P AS P2O5, 1% K AS K2O
 - 95% FUNGAL BIOMASS
- APPLICATION RATE IS 1200 LBS/ACRE IN A UNIFORM MANNER, PRIOR TO TILLING SOILS FOR SEED, AND MUST BE THOROUGHLY MIXED INTO SOIL TO INCREASE NUTRIENTS. PLANT SPECIES SHOULD ALSO BE TAKEN INTO CONSIDERATION WHEN CONSIDERING THEIR USE. C. HUMATE SOIL CONDITIONER NATURAL MINERAL CARBON AND HUMIC ACID-BASED SOIL
- CONDITIONER SHOULD HAVE THE FOLLOWING CHARACTERISTICS:
- HUMIC ACIDS >50%
- ORGANIC MATTER >85%
- 1%N, <0.1% AS P2O5, <0.10%K AS K2O
- PH 3.4
- APPLICATION RATE IS BETWEEN 250-500 LBS/ACRE DEPENDENT ON SOIL TEST RESULTS. HUMATE WORKS BEST WHEN MINIMUM DAILY SOIL TEMPERATURES REACH 55DEGREES F HUMATE CONDITIONERS MUST BE THOROUGHLY MIXED INTO SOIL.

11. SEEDING:

- a. ALL SEED SHALL BE FURNISHED IN BAGS OR CONTAINERS CLEARLY AND PROPERLY LABELED TO SHOW THE NAME AND ADDRESS OF THE SUPPLIER. THE SEED NAME, THE LOT NUMBER, NET WEIGHT, ORIGIN, THE PERCENT OF WEED SEED CONTENT, THE GUARANTEED PERCENTAGE OF PURITY AND GERMINATION. POUNDS OF PURE LIVE SEED (PLS) OF EACH SEED SPECIES, AND THE TOTAL POUNDS OF PLS IN THE CONTAINER. ALL SEED SHALL BE GUARANTEED FOR PURITY AND GERMINATION, FREE OF NOXIOUS WEED SEED AND SUPPLIED ON A PURE LIVE SEED (PLS) BASIS.
- b. ANY SUBSTITUTIONS OF SEED SPECIES MUST BE APPROVED PRIOR TO DELIVERY OF SEED TO CONSTRUCTION SITE.
- c. MYCORRHIZAE, ENDO AND ECTO, GRANULAR INOCULUM IS TO BE INCORPORATED INTO ALL SOIL PRIOR TO SEEDING. MYCORRHIZAE SHALL HAVE THE FOLLOWING CHARACTERISTICS:
 - 16 SPECIES OF ENDO- AND ECTO-MYCORRHIZAE FUNGI SPORES COMPATIBLE WITH 90% OF THE WORLD'S PLANT SPECIES
 - 5 BACTERIAL SPECIES
 - GRANULAR FORM APPLICATION RATE IS 60LBS/ACRE FOR BROADCAST APPLICATION
- 12. EROSION CONTROL FABRIC: CONTRACTOR SHALL SUBMIT SAMPLES OF THE LAYERED COIR MAT. GROUND ANCHORING DEVICES, AND METHOD OF ANCHORING TWO (2) WEEKS PRIOR TO INSTALLATION FOR APPROVAL

13. SITE PREPARATION:

- a. ALL DISTURBED AREAS SHALL BE RIPPED TO A MINIMUM DEPTH OF EIGHT (8) INCHES, WITH NO MORE THAN A TEN (10) INCH INTERVAL BETWEEN FURROWS. SLOPES FLATTER THAN 2:1 SHALL HAVE A WELL SETTLED SEEDBED EIGHT (8) INCHES DEEP. SLOPES 2:1 OR STEEPER SHALL BE LEFT IN A ROUGHENED CONDITION.
- b. SLOPES SHALL BE FREE OF SOIL CLODS, STICKS, STONES, AND DEBRIS IN EXCESS OF FOUR (4) INCHES IN ANY DIMENSION, AND BE BROUGHT TO THE DESIRED GRADE AND LINE. SOIL PREPARATION FOR SEEDING SHALL NOT OCCUR WHEN SOIL IS FROZEN OR IN AN EXTREME WET OR DRY CONDITION.

14. SEEDING:

- a. SEEDING SHALL BE RESTRICTED TO BETWEEN SPRING THAW AND JUNE 1 AND BETWEEN SEPTEMBER 1 UNTIL CONSISTENT GROUND FREEZE AND SHALL NOT BE APPLIED DURING INCLEMENT WEATHER INCLUDING RAIN AND HIGH WINDS. OR WHEN SOIL MOISTURE IS TOO HIGH TO EVENLY DISTRIBUTE SEED.
- b. SEEDING SHALL BE ACCOMPLISHED WITHIN 24 HOURS OF PREPARING THE SEEDING SURFACE c. DRILL SEEDING OR BROADCAST SEEDING SHALL BE USED FOR REVEGETATION. AS OUTLINED BELOW, THE SIZE AND SLOPE OF THE DISTURBED AREA SHALL DETERMINE WHICH SEEDING METHOD(S) IS APPROPRIATE AND ACCEPTABLE. WHERE FEASIBLE, DRILL SEEDING IS THE REQUIRED METHOD. IF BROADCAST SEEDING IS EMPLOYED, EITHER BY HAND, SPREADER, OR OTHER APPROVED MEANS, THE SEEDING RATE (PLS LBS/ACRE) SHALL BE DOUBLED AS SHOWN ON THE DESIGN PLAN. HYDROMULCHING, HYDRAULIC SEEDING AND STRAW MULCHING WILL NOT BE ACCEPTED
- d. FOR SLOPES EQUAL TO OR LESS THAN 3:1, SEED SHALL BE PLANTED USING A RANGELAND DRILL WITH A SMALL SEED/LEGUME BOX AND AN AGITATOR BOX FOR FLUFFY OR BULKY SEED. SEED ROWS SHALL BE SPACED SEVEN (7) TO TEN (10) INCHES APART, AND PLANTED ½ INCH TO ¾ INCH DEEP. THE DRILL SHALL HAVE DOUBLE-DISK FURROW OPENERS WITH DEPTH BANDS AND PACKER WHEELS. SEEDING SHALL BE ACCOMPLISHED USING BI-DIRECTIONAL DRILLING AND WITH THE SECOND DIRECTION FOLLOWING THE SLOPE CONTOUR. THE DRILL EQUIPMENT SHALL BE CALIBRATED EACH DAY OR WHENEVER THERE IS A CHANGE IN THE SEED MIX TO ENSURE PROPER SEED DISTRIBUTION AND RATE
- e. FOR SLOPES GREATER THAN 3:1, SEED SHALL BE BROADCAST BY HAND OR MECHANICAL SPREADER. ALL SEED SOWN BY BROADCAST-TYPE SEEDERS SHALL BE "RAKED IN" OR COVERED WITH SOIL TO A DEPTH OF AT LEAST 1/4 INCH, BROADCAST SEEDING SHALL PROCEED ON FRESHLY DISTURBED (RAKED OR HARROWED) SOIL SURFACE AND BROADCAST SEED SHALL BE IMMEDIATELY RAKED OR HARROWED INTO THE SURFACE. RAKING SHALL BE ACCOMPLISHED USING METAL-TINED GARDEN OR LANDSCAPE RAKES: NO PLASTIC LEAF RAKES SHALL BE ALLOWED. IF HARROWING IS USED, AN ENGLISH HARROW OR ITS EQUIVALENT SHALL BE REQUIRED. BROADCAST SEEDING SHALL BE AVOIDED WHEN WIND SPEED EXCEEDS 15 MILES-PER-HOUR.
- FOLLOWING SEEDING, ALL SEEDED AREAS SHALL BE WATERED SUFFICIENTLY AS TO SATURATE THE SOILS

- SITE

- WILLOW CUTTINGS.
- - AND THIRAM
- WITH THE WATER TABLE AT TIME OF PLANTING.
- IMMEDIATELY FOLLOWING PLANTING.

17. ACCESS ROUTES SHALL BE REVEGATATED AFTER CONSTRUCTION. SEED AND BLANKET ALONG ACCESS SHOULD MATCH HYDROLOGIC ZONES AS SHOWN IN REVEGETATION PLANS AND AS DIRECTED BY THE ENGINEER.

TOPSOIL NOTES:

- STRIPPED AND STOCKPILED FOR REUSE.

FABRIC NOTES:

- APPROVED BY THE ENGINEER.

REFERENCE DRAWINGS						CITY OF COLORADO SPRINGS ONLY: FILED IN ACCORDANCE WITH SECTION 7.7.906 OF THE CODE	
X-886-EX-IMAGE X-886-EX-TOPO X-886-EX MAP X-886-MDG22x34 X-886-PR-GRADE					_	OF THE CITY OF COLORADO SPRINGS, 2001, AS AMENDED.	
	No.	DATE	DESCRIPTION REVISIONS	B	3Y	FOR CITY ENGINEER	C
	сом	PUTER FIL	E MANAGEMENT			DATE	Colorado Land Acquisition
	CTB FI PLOT D	LE: Matrix(bl DATE: 5/21/202				CONDITIONS:	

15. WILLOW CUTTINGS: WILLOW CUTTINGS SHALL BE COLLECTED IN AREAS WITHIN 1.000 VERTICAL FEET OF ELEVATION AND OF SIMILAR HYDROLOGY TO THOSE EXISTING AT THE PLANTING SITE. IF A SUFFICIENT NUMBER OF WILLOW CUTTINGS ARE NOT AVAILABLE AT OR NEAR THE PLANTING SITE, THE CONTRACTOR WILL COLLECT THE REQUIRED WILLOW CUTTINGS AT AN ACCEPTABLE SITE WITH APPROVAL OF THE PROPERTY OWNER (AS APPLICABLE) AND TRANSPORT THEM TO THE PLANTING

a. WILLOW COLLECTION SITES SHALL BE A MINIMUM OF ONE-QUARTER ACRE IN SIZE, WITH MATURE WILLOW STANDS NO MORE THAN TWENTY (20) PERCENT OF MIDDLE AGE PLANT MATERIAL SHALL BE TAKEN FROM THE SITE UNLESS THE PLANT WILL BE REMOVED OR TRANSPLANTED DURING EXCAVATION AND GRADING, WRITTEN CONSENT FROM THE PROPERTY OWNER MUST BE RECEIVED IN AREAS WHERE HARVESTING WILL OCCUR, AND WILL SPECIFY IF IT IS BENEFICIAL TO TAKE MORE THAN TWENTY (20) PERCENT OF THE PLANT MATERIAL

 b. CUTTINGS SHALL BE MAINTAINED IN A SHADED, MOIST, AND COOL CONDITION FROM THE TIME OF HARVEST THROUGH THE TIME OF INSTALLATION, INCLUDING DURING TRANSPORTATION AND UPON DELIVERY TO THE SITE. THE CUTTINGS WILL BE KEPT WET UNTIL PLACED INTO THE GROUND AND WILL NOT BE ALLOWED OUT OF WATER FOR MORE THAN TEN MINUTES DURING PLANTING. c. WILLOW CUTTINGS SHALL BE PLANTED IN AREAS SHOWN ON THE DESIGN PLAN. FINAL LOCATIONS AND ELEVATIONS FOR WILLOW CUTTINGS SHALL BE APPROVED PRIOR TO INSTALLATION. 16. COTTONWOOD POLES: COTTONWOOD POLES SHALL BE COLLECTED WITHIN 1,000 VERTICAL FEET OF ELEVATION AND OF SIMILAR HYDROLOGY TO THOSE EXISTING AT THE PLANTING SITE. POLES THAT ARE COLLECTED SHALL BE HARVESTED IN A MANNER CONFORMING TO LOCAL, STATE, AND FEDERAL LAW, COTTONWOOD POLES MAY BE COLLECTED FROM THE SAME LOCATION AS WILLOW CUTTINGS AND AT THE SAME TIME WITH APPROPRIATE PROPERTY OWNER APPROVAL.

a. COTTONWOOD POLES SHALL BE COLLECTED AND TRANSPORTED IN A MANNER CONSISTENT WITH b. LOCATIONS DESIGNATED ON DESIGN PLAN SHALL BE PLANTED WITH COTTONWOOD POLES.

c. ALL COTTONWOOD PLANTINGS WILL BE PERFORMED USING POPULUS ANGUSTIFOLIA (NARROWLEAF COTTONWOOD) OR POPULUS DELTOIDES (PLAINS COTTONWOOD) POLES WITH ONE-HALF OF THE REQUIRED POLES FROM EACH SPECIES.

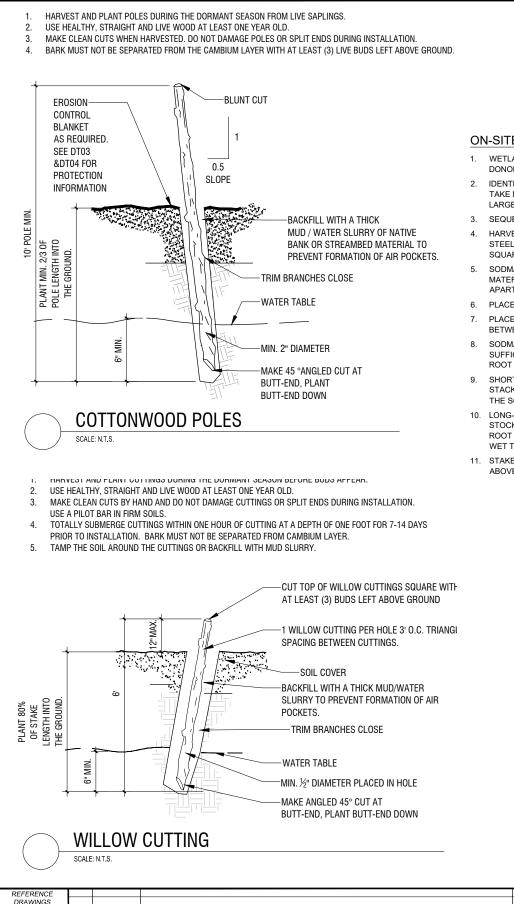
d. COTTONWOOD POLES SHALL BE STORED IN WATER, FLAT CUTS UP. AT LEAST 2/3 OF THE TOTAL CUTTING LENGTH SHALL BE COVERED WITH WATER. POLES SHALL BE TREATED WITH ROOTONE F ROOTING HORMONE OR AN APPROVED EQUAL AT THE RATE OF ONE (1) POUND PER 35 GALLONS OF WATER. ROOTING HORMONE SHALL BE APPLIED, HANDLED, STORED AND CLEANED IN ACCORDANCE WITH MANUFACTURER RECOMMENDATIONS. COTTONWOOD POLES SHALL BE SOAKED FOR A MINIMUM OF 48 HOURS AND A MAXIMUM OF 14 DAYS. ROOTONE F SHALL NOT BE PAID FOR SEPARATELY, BUT SHALL BE INCLUDED IN THE PRICE OF THE WORK. ROOTONE F (OR APPROVED EQUAL) SHALL CONTAIN UP TO 5% ACTIVE INGREDIENTS OF NAPHTHALENEACETAMIDE

CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT COTTONWOOD POLES ARE IN CONTACT

COTTONWOOD POLES SHALL BE WATERED SO THAT THE GROUND IS THOROUGHLY SATURATED

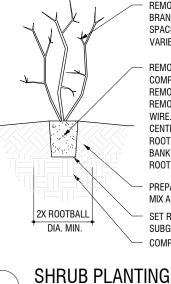
1. WITHIN THE PROJECT AREA, ANY AREAS WITH ADEQUATE TOPSOIL (IN PLACES WHERE NOT HARVESTING SOD) SHALL BE

ALL AREAS OF SEEDING WILL RECEIVE 4" OF TOPSOIL. IF ONSITE CONDITIONS DO NOT YIELD ADEQUATE TOPSOIL, SOIL CONDITIONER SHALL BE APPLIED. IMPORTED SOIL CONDITIONER WILL BE AT A RATE OF 5 CUBIC YARDS PER 1,000 SQUARE FEET. SOIL CONDITIONER SHALL BE EVENLY DISTRIBUTED AND TILLED TO A DEPTH OF 8" MINIMUM.


1. USE COIR FABRIC WITHIN THE BANKFULL CHANNEL AS SHOWN ON DT01. AT DROP #3, COIR FABRIC SHOULD EXTEND TO LIMITS OF WETLAND SEEDING. COIR FABRIC SHALL SHALL BE NEDIA KOIRWRAP 1200. AN EQUIVALENT FABRIC MAY BE USED IF

AREAS OUTSIDE THE BANKFULL CHANNEL SHALL RECEIVE COCONUT FABRIC. COCONUT FABRIC SHALL BE NEDIA C400B. AN EQUIVALENT FABRIC MAY BE USED IF APPROVED BY THE ENGINEER. 3. SEE DT25 FOR DETAILS ON TRENCHING AND STAKING.

4. FABRIC AND SEEDING ARE NOT REQUIRED WHERE SOD MATS ARE PLACED.


	COLORADO LAND ACQUISITION								
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS 100% DESIGN PLANS								
IS SUBJECT TO CHANGE	REVEGETATION NOTES								
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC.	DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING No.								
PROJECT No. 19.886.017	CHECKED BY: AJS VERT. N/A SHEET 12 OF 38 RVU3								

ON-SITE SALVAGE OF WETLAND SODMATS

- 1. WETLAND SODMATS ARE LARGE PIECES OF INTACT WETLAND SOIL AND VEGETATION REMOVED FROM THE DONOR SITE WHERE DISTURBANCE IS EXPECTED TO OCCUR.
- 2. IDENTIFY AREAS WHERE WETLAND SODMATS MIGHT BE SALVAGED FROM WITHIN THE CONSTRUCTION SITE. TAKE NOTE OF THE HYDROLOGICAL ZONE AND CONDITIONS FROM WITH THE SODMATS ARE HARVESTED. THE LARGER AREAS OF DISTURBANCE SHOULD RECEIVE SALVAGED SODMATS AS A PRIORITY.
- 3. SEQUENCING CONSTRUCTION TO ALLOW IMMEDIATE TRANSPLANT OF SOD MATS IS PREFERABLE.
- 4. HARVEST SODMATS WITH SHOVELS, BACKHOE OR FRONT-END LOADER MODIFIED WITH A SHARP-EDGED STEEL PLATE THAT UNDERCUTS THE SOD FOR REMOVAL. THE FRONT-END LOADER HARVEST UNIFORM SOD SQUARES. THE BACKHOE WITH A LARGE BUCKET AND THUMB CAN BE USED FOR QUICK REMOVAL.
- SODMATS CAN BE UP TO 8 FEET SQUARE DEPENDING ON THE EQUIPMENT USED TO HARVEST. HARVESTED MATERIAL SHOULD BE 6-8" THICK. THICKER MATERIAL WILL BE HARDER TO HANDLE AND MOVE AND MAY FALL APART MORE EASILY.
- 6. PLACE THE SODMATS IN A MATCHING HYDROLOGICAL ZONE TO WHAT THE DONOR MATS WERE HARVESTED.
- 7. PLACE THE SODMATS TIGHTLY TOGETHER, SIMILAR TO SOD PLACEMENT FOR LAWNS. DO NOT LEAVE GAPS BETWEEN THE SODMATS, INVADING WEEDS MAY COLONIZE THE AREAS AND THE GAPS CAN BE DANGEROUS.
- SODMATS AND PLUGS FROM NATURAL WETLANDS CAN BE TRANSPLANTED AT ANY TIME PROVIDED SUFFICIENT MOISTURE IS AVAILABLE AT THE RECIPIENT WETLAND SITE TO ALLOW FOR CONTINUED GROWTH, ROOT ESTABLISHMENT AND DEVELOPMENT.
- SHORT-TERM STORAGE OF SODMATS CAN OCCUR FOR TWO TO THREE DAYS. MATS SHOULD BE LAID OUT OR STACKED ON EACH OTHER. DUMPING OF SODMATS IS NOT PERMITTED. MAINTAIN ADEQUATE MOISTURE TO THE SODMATS DURING STORAGE.
- 10. LONG-TERM STORAGE CAN OCCUR UP TO THREE MONTHS PROVIDED THE SODMATS ARE KEPT WET. DO NOT STOCKPILE MATS FOR LONG-TERM STORAGE AND PLACE THEM ON AN IMPENETRABLE SURFACE TO PROHIBIT ROOT GROWTH INTO THEIR STORAGE LOCATION. DURING PERIODS OF HIGH TEMPERATURES PERIODICALLY WET THE MATS TO KEEP THEM COOL, ALIVE AND RETARD HEAT BUILD-UP.
- 11. STAKE SODMATS AT 18" O.C.; USE SAME WOOD STAKES AS SPECIFIED FOR COIR FABRIC. LEAVE 2-3" OF STAKE ABOVE GROUND.

SCALE: N.T.S

REMOVE ONLY INJURED OR DEAD BRANCHES FROM SHRUBS. SHRUB SPACING AS PER PLANS, LAYOUT VARIES.

 REMOVE CONTAINER OR COMPLETELY /PEEL BACK, CUT AND REMOVE 1/3rd OF THE BURLAP.
 REMOVE ALL ROPE, TWINE AND WIRE. SET ROOTBALL PLUMB IN CENTER OF PIT WITH TOP OF ROOTBALL 2" ABOVE FINISH GRADE.
 BANK SOIL TO TOP OF THE ROOTBALL.

- PREPARE AND PLACE PLANTING SOIL MIX AS PER SPEC.

 SET ROOTBALL ON UNDISTURBED SUBGRADE
 COMPACTED SUBGRADE

Sand Creek at Aspen Meadows

Wetland Seed Mix	
Beckmannia syzigachne	
Carex nebrakensis	
Dechampsia cespitosa	
Eleocharis palustris	
Panicum virgatum 'Blackwell'	
Pascopyrum smithii 'Arriba'	
Schoenoplectus acutus	
Scirpus maritimus	
Spartina pectinata	

Riparian Seed Mix

Andropogon hallii Calamagrostis canadensis Dechampsia cespitosa Elymus canadensis Elymus lanceolatus spp. psammophilu Glyceria striata Nassella viridula 'Cucharas' Panicum virgatum 'Blackwell' Pascopyrum smithii 'Arriba' Spartina pectinata Sporobolus airoides 'Salado'

Forbes and Shrubs Asclepias incarnata Asclepias speciosa Coreopsis tinctoria Alnus incana tenuifolia Rosa woodsii Sambucus racemosa Symphoricarpos albus

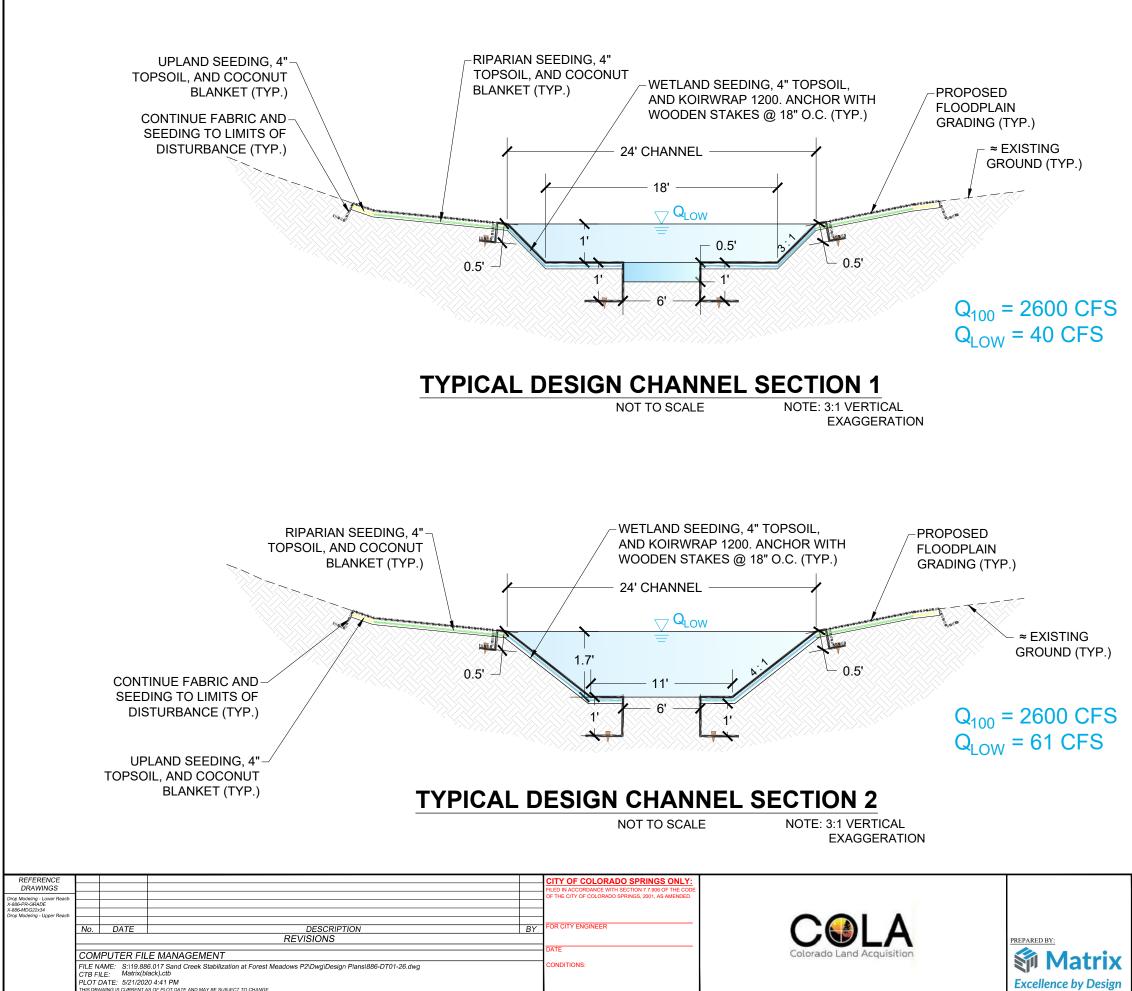
Upland Seed Mix

Achnatherum hymenoides Bouteloua curtipendula 'Vaughn' Bouteloua gracilis 'Bad River' Buchloe dactyloides 'Texoka' Hesperostipa comata ssp. Comata Koeleria macrantha Nassella viridula 'Cucharas' Pascopyrum smithii 'Arriba' Schizachyrum scoparium 'Pastura' Sporobolus cryptandrus Avena sativa 'Monida'

Forbes and Shrubs

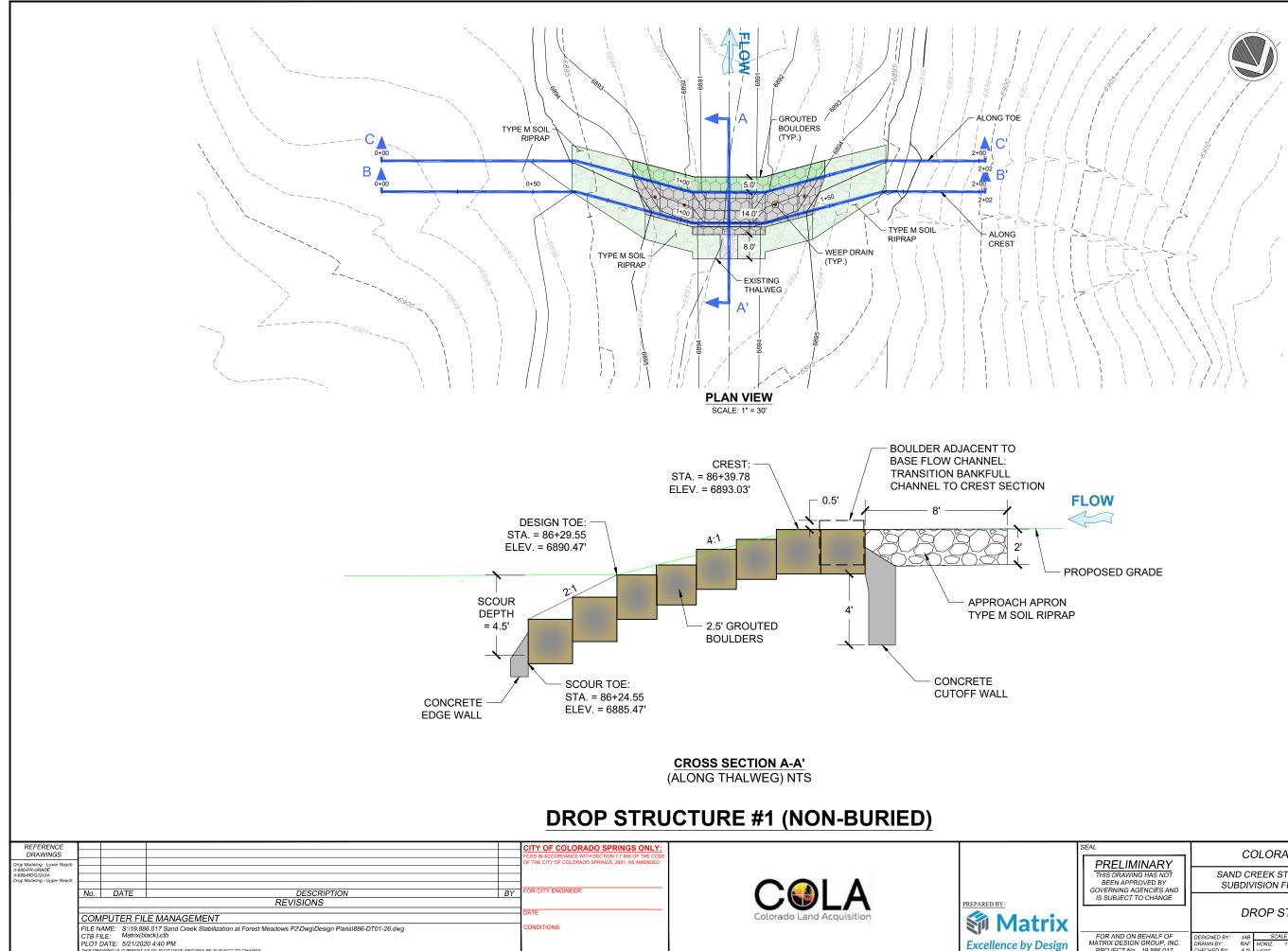
Achillea millefolium Amemaria parvifolia Artensisa frigida Astragalus adsur gens Cleone servulata Fallugia paradoxa Philadelphus microphyllus Ptelea trifoliata Pushia tridentata

REFERENCE DRAWINGS					CITY OF COLORADO SPRINGS ONLY:
X-886-EX-IMAGE					FILED IN ACCORDANCE WITH SECTION 7.7.906 OF THE CODE OF THE CITY OF COLORADO SPRINGS, 2001, AS AMENDED.
X-886-EX-TOPO X-886-EX MAP					
X-886-MDG22x34 X-886-PR-GRADE					-
A-000-FR-GRADE	No.	DATE	DESCRIPTION	BY	FOR CITY ENGINEER
l				DATE	
1	LOW	PUTER FIL	E MANAGEMENT		
	FILE N		CONDITIONS:		
	CTB FI				
	PLOT D	DATE: 5/21/202			
	THIS DRA	WING IS CURRENT A			

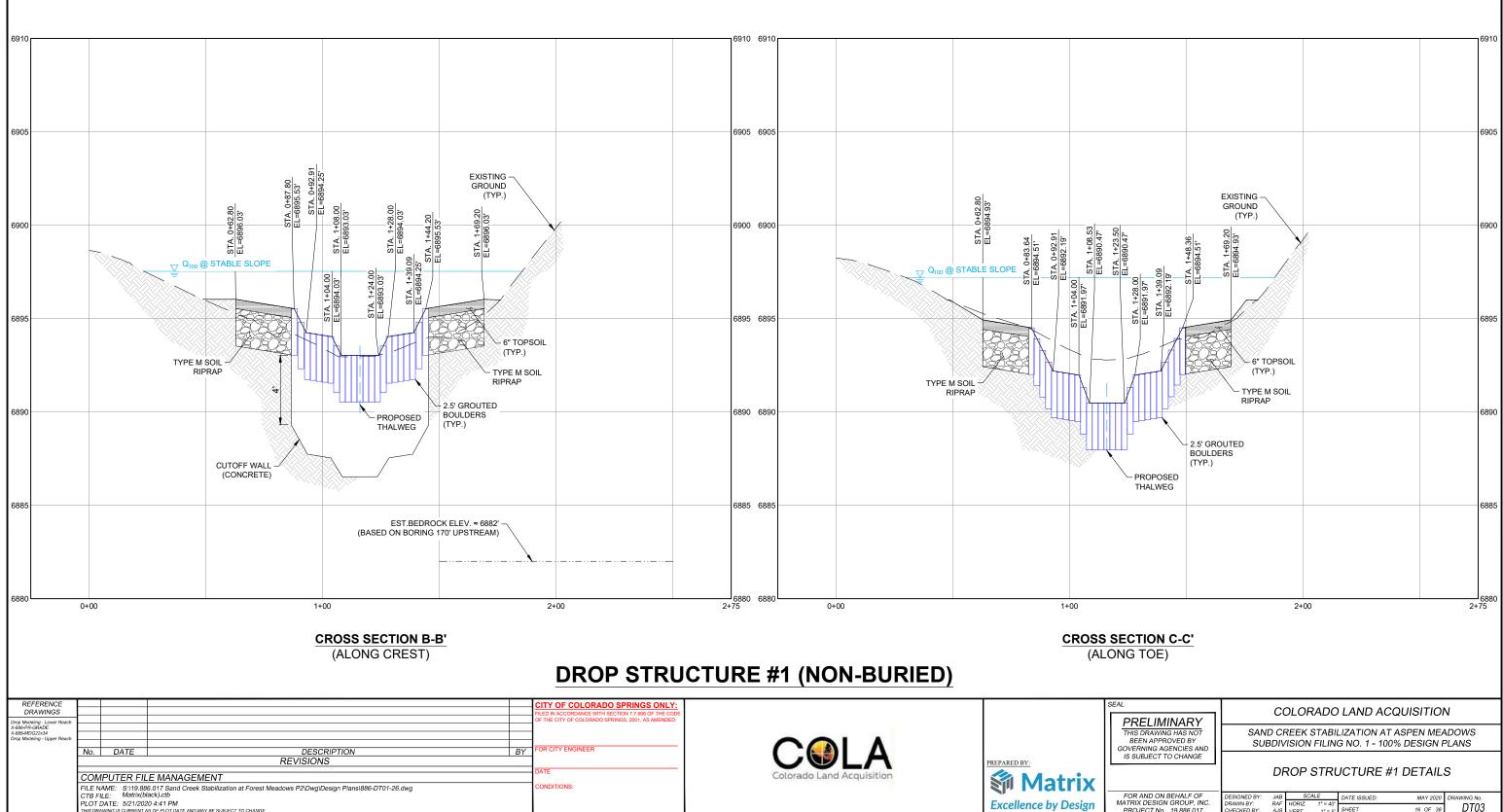


American Stoughgrass 0.4 3.08 1,150,000 460,000 Nebraska Sedge 1 7.69 534,100 533,100 Creeping Spikensih 0.8 6.15 620,000 496,000 Swichgrass, Bickwell 2 15.38 259,000 518,000 Western Wheatgrass, Arrba 2.5 19.23 115,000 490,880 Akai Bahnsh 2 15.38 250,000 4512,200 Prairie Cordgrass 2.6 20.00 490,880 Akai Bahnsh 2 Sand Bhestern 3.3 16.41 99,640 315,912 Bha-joint Reedgrass 0.16 0.80 2,270,000 363,200 Tuided Hairgrass 0.25 1.24 1,500,000 374,400 Stearbank wheatgrass, Sodar 2.4 11.93 156,000 362,600 Western wheatgrass, Arriba 3.5 17.40 115,000 402,500 Prairie cordgrass 2.5 12.43 197,000 452,000 Swizhgrass, Backwell 1.4 <t< th=""><th></th><th></th><th></th><th></th></t<>				
Nebraka Sedge 1 7.69 534,100 534,100 Tutled Hargrass 0.4 3.08 1,500,000 600,000 Swichgrass, Blackwell 2 15.38 259,000 518,000 Western Wheatgrass, Arrba 225 19.23 115,000 489,500 Hardstem Buhush 1.3 10.00 377,600 490,880 Akai Buhush 2 15.38 230,000 4,908,800 Parite Cordgrass 2.6 20.00 197,000 512,000 Parite Cordgrass 1.6 0.00 4,952,700 4,358,680 Due-joint Reedgrass 0.16 0.82 2,2000 4,358,080 Tutled Hargrass 0.25 1.24 1,500,000 375,000 Tutled Hargrass 0.25 1.24 1,500,00 375,000 Tutled Hargrass 0.45 118 15,000 374,400 Fow Mamagrass, Blackwell 1.4 6.96 259,000 366,600 Western Wheatgrass, Arnba 3.5 17.40 115,000			lb/ac (PLS)	
Tufled Flärgness 0.4 3.08 1,500,000 600,000 Creeping Spikerush 0.8 6.15 620,000 496,000 Western Whatgrass, Arnba 2.5 19.23 115,000 287,500 Hardsten Buhush 2 15.38 230,000 460,000 Prairie Cordgrass 2.6 20.00 197,000 512,200 Parite Cordgrass 2.6 20.00 460,000 4389,680 Sand Bhuestern 3.3 16.41 96,640 318,912 Blae-joint Reedgrass 0.16 0.80 2,270,000 363,200 Tuffed Härgrass 0.25 1.24 1,500,000 375,600 Granda Wärkye 2.6 12.93 114,000 296,400 Stearnbark wheatgrass, Sodar 2.4 11.93 156,000 374,400 Forwl Maranggrass 3.5 17.40 135,680 390,600 Swichgrass, Blackwell 1.4 6.56 259,000 362,600 Western wheatgrass, Aruba 3.5 17.00 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Creeping Spikensh 0.8 6.15 620,000 496,000 Switchgrass, Blackwell 2 15.38 259,000 518,000 Western Wheatgrass, Arriba 2.5 19.23 115,000 237,500 490,880 Akali Buhush 2 13.8 20,000 490,880 Akali Buhush 2 13.8 20,000 490,880 Akali Buhush 2 13.8 100.00 4,982,700 4,558,680 Drait Cordgrass 2.6 20.00 197,000 512,200 Band Bhastern 3.3 16.41 96,640 318,912 Bhe-joint Reedgrass 0.16 0.80 2,270,000 363,200 Carada Widrye 2.6 12.93 114,000 296,400 Stranzhank wheatgrass, Cucharas 2 9.95 1167,840 335,680 Green Needligrass, Cucharas 2 9.95 107,840 356,800 Western wheatgrass, Amiba 3.5 17.40 115,000 322,500 Neatern wheatgrass, Cucharas 2				
Switchgrass, Blackwell 2 15.38 259.000 518.000 Western Wheatgrass, Arrba 2.5 19.23 115,000 287,500 Akal Buhush 2 15.38 230,000 460,000 Prairie Cordgrass 2.6 20.00 197,000 512,200 IB 100.00 4,982,700 4,358,680 Drace (PLS) % PLS/ac seeds/ac 500,00 Sand Blaestern 3.3 16.41 96,640 318,912 Bhe-joit Reedgrass 0.16 0.80 2,270,000 363,200 Canada Widrye 2.6 12.93 114,000 296,400 Streambark whatgrass, Sodar 2.4 11.93 156,000 374,400 Streambark whatgrass, Colars 2 9.95 167,840 335,680 Switchgrass, Blackwell 1.4 6.96 259,000 362,600 Western wheatgrass, Armba 3.5 17.40 115,000 492,500 Parile cordgrass 2.5 12.43 197,000 525,000				
Western Wheatgrass, Arriba 2.5 19.23 115,000 287,500 Hard stem Buhush 1.3 10.00 377,600 490,880 Akali Buhush 2 13.38 230,000 460,000 Prairie Cordgrass 2.6 20.00 197,000 512,200 13 100.00 4,982,700 4,358,680 Bue-joint Reedgrass 0.16 0.80 2,270,000 363,200 Canada Wildrye 2.6 12.93 114,000 296,400 Steambank wheatgrass, Sodar 2.4 11.93 106,000 375,000 Canada Wildrye 2.6 12.93 114,000 296,400 Steambank wheatgrass, Cucharas 2 9.95 107,840 335,680 Green Needlegrass, Cucharas 2.5 12.43 197,000 402,500 Paritic cordgrass 2.5 12.43 197,000 525,000 Swamp Mikweed 2 20.30 58,000 116,000 Showy Mikweed 2 20.30 58,000 116,000 <td></td> <td></td> <td></td> <td></td>				
Hardstem Buhush 1.3 10.00 377,600 490,880 A ha ii Buhush 2 15.38 230,000 460,000 Prairie Cordgrass 2.6 20.00 197,000 5512,200 13 100.00 4,982,700 4,358,680 Bue-joint Reedgrass 0.16 0.80 2,270,000 363,200 Canada Wikiye 2.6 12.93 114,000 296,400 Stearbank whatgrass, Sodar 2.4 11.93 156,000 374,400 Cowl Mamagrass 1.7 8.45 180,000 306,000 Green Needlegrass, Cuchanss 2 9.95 167,840 335,680 Switchgrass, Backwell 1.4 6.96 259,000 362,600 Parite cordgrass 2.5 12.43 197,000 525,000 Alkali sacaton, Saludo 0.3 1.49 1,750,000 525,000 Alkali sacaton, Saludo 0.3 1.49 1,750,000 525,000 Showy Mikweed 2 0.30 68,100 136,200				U
Alkali Bulvah 2 15.38 230,000 460,000 Prairie Cordgrass 2.6 20.00 197,000 512,200 13 100.00 4,982,700 4,358,680 Band Bhuestem 3.3 16.41 96.640 318,912 Bhae-joint Reedgrass 0.16 0.80 2,270,000 363,200 Utide Hargrass 0.25 1.24 1,500,000 375,000 Carada Wähye 2.6 12.93 114,000 296,400 Steambank wheatgrass, Sodar 2.4 11.93 156,000 374,400 Foren Needlegrass, Cucharas 1.7 8.45 180,000 362,600 Western wheatgrass, Amiba 3.5 17.40 115,000 402,500 Paritic cordgrass 2.5 12.43 197,000 422,500 Akai sacaton, Salado 0.3 1.49 1.75,000 525,000 Swarp Mikweed 2 20.30 68,100 136,200 Showy Mikweed 2 2.30 76,000 126,200				
Prairie Cordgrass 2.6 20.00 197,000 512,200 13 100.00 4,982,700 4,358,680 Image: Stress of the second stress o				
13 100.00 4,982,700 4,358,680 Bias joint Reedgrass 0.16 0.80 2,270,000 363,200 Sand Bhuestem 3.3 16.41 96,640 318,912 Bhe-joint Reedgrass 0.16 0.80 2,270,000 363,200 Funde Hargrass 0.25 1.24 1,500,000 375,000 Steambark wheatgrass, Sodar 2.4 11.93 156,000 374,400 Fowl Mamagrass 1.7 8.45 180,000 306,600 Green Needlegrass, Cucharas 2 9.95 167,844 335,680 Switchgrass, Blackwell 1.4 6.96 259,000 362,600 Westem wheatgrass, Arniba 3.5 17.40 115,000 492,500 Parine contgrass 2.5 12.43 197,000 525,000 Showy Mikweed 2 20.30 68,100 136,200 Showy Mikweed 2 20.30 58,000 116,000 Phins Corcogsis 0.1 1.02 3,200,000 132,000	The second			
Dr/ac (PLS) % PLS/ac seeds/ac Sand Bhuestern 3.3 16.41 96,640 318,912 Bhe-joint Reedgrass 0.16 0.80 2,270,000 363,200 Urded Hairgrass 0.25 1.24 1,500,000 375,000 Canada Wikirye 2.6 12.93 114,000 296,400 Steambark wheatgrass, Sodar 2.4 11.93 155,000 363,000 Green Needlegrass, Oucharas 2 9.95 167,840 335,680 Switchgrass, Blackwell 1.4 6.96 259,000 362,600 Western wheatgrass, Amba 3.5 17.40 115,000 492,500 Paritie condgras 2.5 12.43 197,000 525,000 Akai sacaton, Salado 0.3 1.49 1,750,000 525,000 Swamp Milkweed 2 20.30 68,100 136,200 Showy Malkweed 2 20.30 58,000 116,000 Phins Corcogoris 0.1 10.00 32,00,000 143,000				Prairie Cordgrass
Sand Bhestem 3.3 16.41 96,640 318,912 She-joit Reedgrass 0.16 0.80 2,270,000 363,200 Unded Hargrass 0.25 1.24 1,500,000 375,000 Canada Wiltye 2.6 12.93 114,000 296,400 Streambank wheatgrass, Sodar 2.4 11.93 156,000 376,400 Foren Needlegrass, Cucharas 2 9.95 167,840 335,560 Switchgrass, Blackwell 1.4 6.96 259,000 362,600 Westem wheatgrass, Arniba 3.5 17.40 115,000 492,500 Alkal isacaton, Salado 0.3 1.49 1,750,000 525,000 Paritic cordgrass 0.11 100.00 68,000 116,000 Pains Coreopsis 0.1 1.02 3,200,000 168,750 Showy Milkweed 0.25 2.54 675,000 168,750 Wood's Rose 3 3.0.46 49,000 147,000 Steleoats Grama, Vaughn 2 6.87	13 100.00 4,982,700 4,358,680 100.06	100.00	13	
Bhe-joint Reedgrass 0.16 0.80 2,270,000 363,200 utted Hargrass 0.25 1.24 1,500,000 375,000 anada Wikiye 2.6 12.93 114,000 226,400 itreambank wheatgrass, Sodar 2.4 11.93 156,000 374,400 iverambank wheatgrass, Sodar 2.4 11.93 156,000 335,680 wirchgrass, Blackwell 1.4 6.96 259,000 362,600 Vestem wheatgrass, Arriba 3.5 17.40 115,000 492,500 ikali sacaton, Salado 0.3 1.44 1,750,000 525,000 ikali sacaton, Salado 0.3 1.44 1,750,000 525,000 ikali sacaton, Salado 0.25 2.5.4 675,000 168,750 wamp Mikweed 2 20.30 58,000 116,000 ikans Coreopsis 0.1 1.02 3,200,000 143,000 ideotas Rose 3 30.46 49,000 147,000 cel Eklerberry 0.5 5.08) % PLS/ac seeds/lb seeds/ac seeds/ft	% PLS/ac	Ib/ac (PLS)	
uited Hairgrass 0.25 1.24 1,500,000 375,000 aranda Widrye 2.6 12.93 114,000 296,400 treambank wheatgrass, Sodar 2.4 11.93 156,000 374,400 torow Mamagrass 1.7 8.45 180,000 306,000 preen Needlegrass, Cucharas 2 9.95 167,840 335,680 wikthgrass, Blackwell 1.4 6.96 259,000 362,600 Vestern wheatgrass, Arriba 3.5 17.40 115,000 402,500 traire condgrass 2.5 12.43 197,000 492,500 tkali sacaton, Salado 0.3 1.49 1,750,000 322,000 wamp Mikweed 2 20.30 68,100 116,000 thins Corcopsis 0.1 1.02 3,200,000 320,000 thine After 0.25 2.54 675,000 168,750 vood's Rose 3 30.46 49,000 147,000 cel Elderberry 0.5 5.08 286,000 <	3.3 16.41 96.640 318.912 7.32	16.41	3.3	and Bluestern
uited Hairgrass 0.25 1.24 1,500,000 375,000 aranda Widrye 2.6 12.93 114,000 296,400 treambank wheatgrass, Sodar 2.4 11.93 156,000 374,400 torow Mamagrass 1.7 8.45 180,000 306,000 preen Needlegrass, Cucharas 2 9.95 167,840 335,680 wikthgrass, Blackwell 1.4 6.96 259,000 362,600 Vestern wheatgrass, Arriba 3.5 17.40 115,000 402,500 traire condgrass 2.5 12.43 197,000 492,500 tkali sacaton, Salado 0.3 1.49 1,750,000 322,000 wamp Mikweed 2 20.30 68,100 116,000 thins Corcopsis 0.1 1.02 3,200,000 320,000 thine After 0.25 2.54 675,000 168,750 vood's Rose 3 30.46 49,000 147,000 cel Elderberry 0.5 5.08 286,000 <	16 0.80 2.270.000 363.200 8.34	0.80	0.16	Blue-ioint Reedgrass
banada Widrye 2.6 12.93 114,000 296,400 treambank wheatgrass, Sodar 2.4 11.93 156,000 374,400 owl Mamagrass 1.7 8.45 180,000 306,000 irren Needlegrass, Cucharas 2 9.95 167,840 335,580 witchgrass, Blackwell 1.4 6.96 259,000 362,600 Vestern wheatgrass, Arriba 3.5 17.40 115,000 492,500 iaki sacaton, Salado 0.3 1.49 1,750,000 525,000 iaki sacaton, Salado 0.3 1.49 1,750,000 525,000 wamp Mikweed 2 20.30 68,100 136,200 howy Mikweed 2 20.30 58,000 116,000 kins Coreopsis 0.1 1.02 3,20,000 143,000 codd's Rose 3 30.46 49,000 147,000 cod Skose 3 30.46 49,000 143,000 coreopsis 10.10 1,182,000 382,000				
treambank wheatgrass, Sodar 2.4 11.93 156,000 374,400 owl Mamagrass 1.7 8.45 180,000 306,000 ireen Needlegrass, Cucharas 2 9.95 167,840 335,680 wichgrass, Blackwell 1.4 6.56 259,000 362,600 Vestem wheatgrass, Arriba 3.5 17.40 115,000 402,500 lkali sacaton, Salado 0.3 1.49 1,750,000 525,000 kali sacaton, Salado 0.3 1.49 1,750,000 525,000 wamp Milkweed 2 20.30 68,100 136,200 hinker Corcepsis 0.1 1.02 3,20,000 320,000 hinker Alder 0.25 2.54 675,000 168,750 Vood's Rose 3 30.46 49,000 147,000 ted Elderberry 0.5 5.08 286,000 143,000 common Snowberny 2 6.87 191,000 382,000 ideoats Gram, Vaugin 2 6.87 191,000				
owl Mamagrass 1.7 8.45 180,000 306,000 ireen Needlegrass, Cucharas 2 9.95 167,840 335,580 wikchgrass, Blackwell 1.4 6.96 259,000 462,500 twater Margrass, Ariba 3.5 12.43 197,000 492,500 tarie cordgrass 2.5 12.43 197,000 525,000 uang Milkweed 2 20.30 68,100 136,200 hows Milkweed 2 20.30 58,000 116,000 hins Corcepsis 0.1 1.02 3,20,000 320,000 this Corcepsis 0.1 1.02 3,20,000 147,000 ted Eldrerny 0.5 5.08 286,000 147,000 ted Eldrerny 0.5 5.08 286,000 142,000 condian Ricegrass 2 6.87 161,920 323,840 idecats Gram, Vaugin 2 6.87 191,000 382,000 tade Grama, Bad River 0.4 1.37 825,000 330,000 </td <td></td> <td></td> <td></td> <td></td>				
breen Needlegrass, Cucharas 2 9.95 167,840 335,680 witchgrass, Blackwell 1.4 6.96 259,000 362,600 Vestem wheatgrass, Amiba 3.5 17.40 115,000 402,500 Likali sacaton, Salado 0.3 1.49 1,750,000 525,000 Quality 1,150,000 6,805,480 4,152,192 wamp Milkweed 2 20.30 68,100 136,200 howy Milkweed 2 20.30 58,000 116,000 lains Corcopsis 0.1 1.02 3,20,000 320,000 laine Alder 0.25 2.54 675,000 168,750 Vood's Rose 3 30.46 49,000 147,000 ted Elderberry 0.5 5.08 286,000 143,000 common Snowberry 2 20.30 76,000 152,000 uifa Drass, Evoka 6 20.62 45,000 270,000 kee Grama, Bad River 0.4 1.37 825,000 323,840				
witchgrass, Blackwell 1.4 6.96 259,000 362,600 Vestern wheatgrass, Amba 3.5 17.40 115,000 402,500 varie cordgrass 2.5 12.43 197,000 492,500 ikla is acaton, Salado 0.3 1.49 1,750,000 525,000 wamp Milkweed 2 20.30 68,100 136,200 ihowy Milkweed 2 20.30 58,000 116,000 Vains Coreopsis 0.1 1.02 3,200,000 320,000 Ihileaf Aller 0.25 2.54 675,000 168,750 Vood's Rose 3 30.46 49,000 147,000 Cel Elderberry 0.5 5.08 286,000 143,000 Common Snowberry 2 20.30 76,000 152,000 Common Snowberry 2 6.87 161,920 323,840 Cideoats Grama, Vaugin 2 6.87 161,920 323,840 Cideoats Grama, Vaugin 2 6.87 191,000 382,000				
Uvestem wheatgrass, Arriba 3.5 17.40 115,000 402,500 trairie cordgrass 2.5 12.43 197,000 492,500 ikali sacaton, Salado 0.3 1.49 1,750,000 525,000 wamp Milkweed 2 20.30 68,100 136,200 howy Milkweed 2 20.30 58,000 116,000 vamp Milkweed 2 20.30 58,000 116,000 vains Coreopsis 0.1 1.02 3,200,000 320,000 vains Coreopsis 0.1 1.02 3,200,000 147,000 etel Eklerberry 0.5 5.08 286,000 143,000 contron Snowbery 2 20.30 76,000 152,000 9.85 100.00 4,412,100 1,182,950 148 uke Grama, Bad River 0.4 1.37 825,000 330,000 taifa lograss, Texoka 6 20.62 45,000 270,000 taideoats Grama, Vaughn 2.5 8.59 115,000 287,500 <td></td> <td></td> <td>4.5</td> <td></td>			4.5	
harie cordgrass 2.5 12.43 197,000 492,500 Lkali sacaton, Salado 0.3 1.49 1,750,000 525,000 Quant Quant 100.00 6,805,480 4,152,192 wamp Milkweed 2 20.30 68,100 136,200 howy Milkweed 2 20.30 58,000 116,000 lains Coreopsis 0.1 1.02 3,200,000 320,000 Vood's Rose 3 30.46 49,000 147,000 tel Elderberry 0.5 5.08 286,000 143,000 controns Snowbery 2 20.30 76,000 152,000 9.85 100.00 4,412,100 1,182,950 143,000 contrang Rad River 0.4 1.37 825,000 330,000 uha Grama, Bad River 0.4 1.37 825,000 346,500 ideoats Grama, Vaughn 2 6.87 115,000 328,750 tarize Junegrass 0.15 0.52 2,310,000 346,500 <				
Jkali sacaton, Salado 0.3 1.49 1,750,000 525,000 20.11 100.00 6,805,480 4,152,192 wamp Milkweed 2 20.30 68,100 136,200 howy Milkweed 2 20.30 58,000 116,000 lains Coreopsis 0.1 1.02 3,200,000 320,000 lains Alder 0.25 2.54 675,000 143,000 vood's Rose 3 0.46 49,000 147,000 ted Elderberry 0.5 5.08 286,000 143,000 common Snowberry 2 20.30 76,000 152,000 seeds/ac 9.85 100.00 4,412,100 1,182,950 dian Ricegrass 2 6.87 161,920 323,840 ideoats Grama, Vaughn 2 6.87 191,000 382,000 late Grama, Bad River 0.4 1.37 825,000 270,000 late Grama, Sudghrass, Cucharas 1.7 5.84 167,840 285,328 Veste				
20.11 100.00 6,805,480 4,152,192 iwamp Milkweed 2 20.30 68,100 136,200 ihowy Milkweed 2 20.30 58,000 116,000 ihins Coreopsis 0.1 1.02 3,200,000 320,000 ihinelaf Alder 0.25 2.54 675,000 168,750 Vood's Rose 3 30.46 49,000 147,000 ted Elderberry 0.5 5.08 286,000 143,000 Common Snowberry 2 0.30 76,000 152,000 sciecoast Grama, Vaugim 2 6.87 161,920 323,840 ideoats Grama, Vaugim 2 6.87 191,000 382,000 steedstard Thread 2.5 8.59 115,000 287,500 prairie Junegrass 0.15 0.52 2,310,000 345,000 irdie Albestern, Pastura 1.3 4.47 240,670 312,871 rize Nicedlegrass, Cucharas 1.7 5.84 167,840 285,328				
iwamp Milkweed 2 20.30 68,100 136,200 ihowy Milkweed 2 20.30 58,000 116,000 Pains Coreopsis 0.1 1.02 3,200,000 320,000 Pains Coreopsis 0.1 1.02 3,200,000 320,000 Nood's Rose 3 30.46 49,000 147,000 Eed Eklerberry 0.5 5.08 286,000 143,000 Common Snowbery 2 20.30 76,000 152,000 Sommon Snowbery 2 6.87 161,920 323,840 ideoats Grama, Vaughn 2 6.87 161,920 322,840 ideoats Grama, Vaughn 2 6.87 161,920 332,000 Buhe Grama, Bad River 0.4 1.37 825,000 330,000 Parie Junegrass, Texoka 6 20.62 45,000 270,000 Veedle and Thread 2.5 8.59 115,000 345,000 346,500 Preen Needlegrass, Cucharas 1.7 5.54 167,840				inan sacaton, sando
thowy Milkweed 2 20.30 55,000 116,000 Vains Coreopsis 0.1 1.02 3,200,000 320,000 Thinleaf Alder 0.25 2.54 675,000 168,750 Vood's Rose 3 3.04 49,000 147,000 ted Elderberry 0.5 5.08 286,000 143,000 common Snowberry 2 20.30 76,000 152,000 seeds.rds 9.85 100.00 4,412,100 1,182,950 mdian Ricegrass 2 6.87 161,920 323,840 ideoats Grama, Vaughn 2 6.87 191,000 382,000 Bhe Grama, Bad River 0.4 1.37 825,000 370,000 Vaina Jorgas, Stexka 6 20.62 45,000 270,000 Vestem Wheatgrass, Arrba 3 10.31 115,000 287,500 Graven Needlegrass, Cucharas 1.7 5.84 167,840 285,328 Vestem Wheatgrass, Arrba 3 10.31 115,000 346,500				
Hains Coreopsis 0.1 1.02 3,20,000 320,000 hinleaf Alder 0.25 2.54 675,000 168,750 Vood's Rose 3 30.46 49,000 147,000 ted Elderberry 0.5 5.08 286,000 143,000 common Snowberry 2 20.30 76,000 152,000 9.85 100.00 4,412,100 1,182,950 main Ricegrass 2 6.87 161,920 323,840 idecats Grama, Vaughn 2 6.87 191,000 382,000 the Grama, Bad River 0.4 1.37 825,000 330,000 traite Junegrass 0.15 0.52 2,310,000 346,500 treen Needlegrass, Cucharas 1.7 5.84 167,840 285,328 Vestern Wheatgrass, Arriba 3 10.31 115,000 346,500 ifte Buesten, Pastura 1.3 4.47 240,670 312,871 and Dropseed 0.05 0.76 2,700,000 135,000	2 20.30 68,100 136,200 3.13	20.30	2	wamp Milkweed
hinleaf Alder 0.25 2.54 675,000 168,750 Vood's Rose 3 30.46 49,000 147,000 ced Eklerberry 0.5 5.08 286,000 143,000 common Snowbeny 2 20.30 76,000 152,000 9.85 100.00 4,412,100 1,182,950 ndian Ricegrass 2 6.87 161,920 323,840 ideoats Grama, Vaughn 2 6.87 191,900 382,000 hafte Grama, Bad River 0.4 1.37 825,000 330,000 bufac Grama, Stacka 6 20.62 45,000 270,000 ieeda In Tread 2.5 8.59 115,000 382,500 trairie Junegrass 0.15 5.22 2,310,000 346,500 reen Needlegrass, Cucharas 1.7 5.84 167,840 285,328 Vestern Wheatgrass, Arriba 3 10.31 115,000 345,000 jats-Monida 10 34.36 14,000 140,000 <t< td=""><td>2 20.30 58,000 116,000 2.66</td><td>20.30</td><td>2</td><td>howy Milkweed</td></t<>	2 20.30 58,000 116,000 2.66	20.30	2	howy Milkweed
Wood's Rose 3 30.46 49,000 147,000 ted Eklerberry 0.5 5.08 286,000 143,000 common Snowbery 2 20.30 76,000 152,000 9.85 100.00 4,412,100 1,182,950 mdian Ricegrass 2 6.87 161,920 323,840 ideoats Grama, Vaugin 2 6.87 191,000 382,000 teke Grama, Bad River 0.4 1.37 825,000 330,000 teke Grama, Bad River 0.4 1.37 825,000 346,500 teade and Thread 2.5 8.59 115,000 287,500 teade and Thread 2.5 8.59 115,000 245,000 tereen Needlegrass, Cucharas 1.7 5.84 167,840 285,328 Vestern Wheatgrass, Arrba 3 10.31 115,000 246,000 and Dropseed 0.05 0.17 5,600,000 280,000 otas-Monida 10 34.36 14,0000 140,000	0.1 1.02 3,200,000 320,000 7.35	1.02	0.1	lains Coreopsis
ted Elderberry 0.5 5.08 286,000 143,000 common Snowberry 2 20.30 76,000 152,000 9.85 100.00 4,412,100 1,182,950 mdian Ricegrass 2 6.87 161,920 323,840 ideoats Grama, Vaughn 2 6.87 191,000 382,000 hae Grama, Bad River 0.4 1.37 825,000 330,000 huffalograss, Feoka 6 20.62 45,000 270,000 reache and Thread 2.5 8.59 115,000 287,500 reache Needlegrass, Cucharas 1.7 5.84 167,840 285,328 Vestern Wheatgrass, Arrba 3 10.31 115,000 280,000 iftle Bluestern, Pastura 1.3 4.47 240,670 312,871 and Dropseed 0.05 0.17 5,600,000 280,000 Dats-Monida 10 34.36 14,000 140,000 vussytoes 0.12 1.82 1,135,000 135,000	25 2.54 675,000 168,750 3.87	2.54	0.25	hinleaf Alder
Common Snowberry 2 20.30 76,000 152,000 9.85 100.00 4,412,100 1,182,950 mdian Ricegrass 2 6.87 161,920 323,840 ideoats Grann, Vaughn 2 6.87 191,000 382,000 the Grann, Bad River 0.4 1.37 825,000 330,000 tuffalograss, Texoka 6 20.62 45,000 270,000 Reedle and Thread 2.5 8.59 115,000 287,500 tarie Junegrass 0.15 0.52 2,310,000 345,000 tarie Junegrass 0.15 0.52 2,310,000 345,000 titte Buestern, Pastura 1.3 4.47 240,670 312,871 and Dropseed 0.05 0.17 5,600,000 280,000 140,000 tussytoes 0.12 1.82 1,135,000 136,200 136,000 traiged Sage 0.03 0.46 4,500,000 135,000 136,000 tussytoes 0.12 1.82	3 30.46 49,000 147,000 3.37	30.46	3	Vood's Rose
9.85 100.00 4,412,100 1,182,950 Ib/ac (PLS) % PLS/ac seeds/lb seeds/ac ndian Ricegrass 2 6.87 161,920 323,840 dicoats Grama, Vaughn 2 6.87 161,920 323,840 dicoats Grama, Bad River 0.4 1.37 825,000 382,000 Bulke Grama, Bad River 0.4 1.37 825,000 380,000 buffalograss, Texoka 6 20.62 45,000 270,000 vested and Thread 2.5 8.59 115,000 346,500 brairie Junegrass 0.15 0.52 2,310,000 346,500 breen Needlegrass, Cucharas 1.7 5.84 167,840 285,328 Vestem Wheatgrass, Arriba 3 10.31 115,000 345,000 and Dropseed 0.05 17 5,600,000 280,000 Dats-Monida 10 34.36 14,000 140,000 vussytoses 0.12 1.82 1,135,000 135,000 <t< td=""><td>0.5 5.08 286,000 143,000 3.28</td><td>5.08</td><td>0.5</td><td>Red Elderberry</td></t<>	0.5 5.08 286,000 143,000 3.28	5.08	0.5	Red Elderberry
Ib/ac (PLS) % PLS/ac seeds/lb seeds/ac ndian Ricegrass 2 6.87 161,920 323,840 ideoats Grama, Vaugim 2 6.87 191,000 382,000 blue Grama, Bad River 0.4 1.37 825,000 330,000 Buffalograss, Texoka 6 20.62 45,000 270,000 Needle and Thread 2.5 8.59 115,000 287,500 brairie Junegrass, Texoka 6 20.62 45,000 287,500 brairie Junegrass, Cucharas 1.7 5.54 167,840 285,328 Vestem Wheatgrass, Arriba 3 10.31 115,000 345,000 and Dropseed 0.05 0.17 5,600,000 280,000 Dats-Monida 10 34.36 14,000 140,000 Vhite Yarrow 0.05 0.76 2,700,000 135,000 Pussytoes 0.12 1.35,000 135,000 135,000 Jpright Milkvetch 2 30.40 70,000 140,000 <td>2 20.30 76,000 152,000 3.49</td> <td>20.30</td> <td>2</td> <td>Common Snowberry</td>	2 20.30 76,000 152,000 3.49	20.30	2	Common Snowberry
ndian Ricegrass 2 6.87 161,920 323,840 ideoats Grama, Vaugin 2 6.87 191,000 382,000 blae Grama, Bad River 0.4 1.37 825,000 330,000 Buffalograss, Texoka 6 20.62 45,000 270,000 Veedle and Thread 2.5 8.59 115,000 287,500 brairie Junegrass 0.15 0.52 2,310,000 346,500 brairie Junegrass 0.15 0.52 2,310,000 346,500 braine Meadgrass, Cucharas 1.7 5.84 167,840 285,328 Vestern Wheatgrass, Arriba 3 10.31 115,000 345,000 and Dropseed 0.05 0.17 5,600,000 280,000 Dats-Monida 10 34.36 14,000 140,000 Dats-Monida 10 34.36 14,000 136,200 Ussystoes 0.12 1.82 1,135,000 135,000 Ussystoes 0.12 1.82 1,135,000 136,200 </td <td>85 100.00 4,412,100 1,182,950 27.16</td> <td>100.00</td> <td>9.85</td> <td></td>	85 100.00 4,412,100 1,182,950 27.16	100.00	9.85	
ndian Ricegrass 2 6.87 161,920 323,840 ideoats Grama, Vaugin 2 6.87 191,000 382,000 blae Grama, Bad River 0.4 1.37 825,000 330,000 Buffalograss, Texoka 6 20.62 45,000 270,000 Veedle and Thread 2.5 8.59 115,000 287,500 brairie Junegrass 0.15 0.52 2,310,000 346,500 brairie Junegrass 0.15 0.52 2,310,000 346,500 braine Meadgrass, Cucharas 1.7 5.84 167,840 285,328 Vestern Wheatgrass, Arriba 3 10.31 115,000 345,000 and Dropseed 0.05 0.17 5,600,000 280,000 Dats-Monida 10 34.36 14,000 140,000 Dats-Monida 10 34.36 14,000 136,200 Ussystoes 0.12 1.82 1,135,000 135,000 Ussystoes 0.12 1.82 1,135,000 136,200 </td <td>) % PLS/ac seeds/lb seeds/ac seeds/ft</td> <td>% PI S/ac</td> <td>Ib/ac (PLS)</td> <td></td>) % PLS/ac seeds/lb seeds/ac seeds/ft	% PI S/ac	Ib/ac (PLS)	
ideoats Grama, Vaughn 2 6.87 191,000 382,000 the Grama, Bad River 0.4 1.37 825,000 330,000 utfidograss, Texoka 6 20.62 45,000 270,000 Reedle and Thread 2.5 8.59 115,000 287,500 ratire Jungrass 0.15 0.52 2,310,000 346,500 irreen Needlegrass, Cucharas 1.7 5.84 167,840 285,328 Vestem Wheatgrass, Arriba 3 10.31 115,000 345,000 ittle Buesten, Pastura 1.3 4.47 240,670 312,871 and Dropseed 0.05 0.17 5,600,000 280,000 ats-Monida 10 34.36 14,000 140,000 vestem 0.05 0.76 2,700,000 135,000 ussytoes 0.12 1.82 1,135,000 136,200 ussytoes 0.12 1.82 1,135,000 136,200 ussytoes 0.12 1.82 113,500 136,200 <	,			ndian Riceorass
Ahe Grama, Bad River 0.4 1.37 825,000 330,000 unfalograss, Texoka 6 20.62 45,000 270,000 leedle and Thread 2.5 8.59 115,000 287,500 rairie Junegrass 0.15 0.52 2,310,000 346,500 rreen Needlegrass, Cucharas 1.7 5.84 167,840 285,328 Vestem Wheatgrass, Arriba 3 10.31 115,000 345,000 iftle Bluesten, Pastura 1.3 4.47 240,670 312,871 and Dropseed 0.05 0.17 5,600,000 280,000 vats-Monida 10 34.36 14,000 140,000 vestoes 0.12 1.82 1,135,000 136,200 ringed Sage 0.03 0.46 4,500,000 135,000 ringed Sage 0.03 0.46 4,500,000 135,000 ringed Sage 0.03 0.46 4,500,000 135,000 ringed Sage 0.03 0.46 4,000,00 16,000 <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td>	· · · · · · · · · · · · · · · · · · ·			
huffalograss, Texoka 6 20.62 45,000 270,000 leedle and Thread 2.5 8.59 115,000 287,500 traire Junegrass 0.15 0.52 2,310,000 346,500 traire Junegrass, Cucharas 1.7 5.84 167,840 285,328 Vestern Wheatgrass, Arriba 3 10.31 115,000 345,000 iftle Bhestern, Pastura 1.3 4.47 240,670 312,871 and Dropseed 0.05 0.17 5,600,000 280,000 Dats-Monida 10 34.36 14,000 140,000 vussytoes 0.12 1.82 1,135,000 135,000 tringed Sage 0.03 0.46 4,500,000 135,000 tringed Sage 0.03 0.46 4,500,000 135,000 tringed Sage 0.35 5.32 420,000 140,000 tringed Sage 0.03 0.46 4,500,000 135,000 tringed Sage 0.03 0.42 42,0000 140,000 <td></td> <td></td> <td></td> <td></td>				
Reedle and Thread 2.5 8.59 115,000 287,500 trairie Junegrass 0.15 0.52 2,310,000 346,500 irren Needlegrass, Cucharas 1.7 5.84 167,840 285,328 Vestem Wheatgrass, Arrba 3 10.31 115,000 346,500 ittle Bhestem, Pastura 1.3 4.47 240,670 312,871 and Dropseed 0.05 0.17 5,600,000 280,000 Dats-Monida 10 34.36 14,000 140,000 Vinte Yarrow 0.05 0.76 2,700,000 135,000 vussytoes 0.12 1.82 1,135,000 135,000 irriged Sage 0.03 0.46 4,500,000 135,000 irriged Sage 0.35 0.30 140,000 140,000 irriged Sage 0.03 0.46 4,500,000 135,000 irriged Sage 0.35 5.32 420,000 140,000 irright Mikvetch 2 30.40 70,000 140,000				
nařie Junegrass 0.15 0.52 2,310,000 346,500 irreen Needlegrass, Cucharas 1.7 5.84 167,840 285,328 Vestern Wheatgrass, Arrba 3 10.31 115,000 345,000 ittle Bhesten, Pastura 1.3 4.47 240,670 312,871 and Dropseed 0.05 0.17 5,600,000 280,000 Dats-Monida 10 34.36 140,000 140,000 Dats-Monida 0.05 0.76 2,700,000 135,000 Uvite Yarrow 0.05 0.76 2,700,000 135,000 ussytoes 0.12 1.82 1,135,000 136,200 ringed Sage 0.03 0.46 4,500,000 135,000 pache Planne 0.35 5.2 420,000 140,000 cock y Mountain Bee Plant 1.4 21.28 113,500 138,900 opache Planne 0.35 5.2 420,000 140,000 tock y Mountain Bee Plant 1.4 21.28 113,500 <t< td=""><td></td><td></td><td>-</td><td></td></t<>			-	
irreen Needlegrass, Cucharas 1.7 5.84 167,840 285,328 Vestem Wheatgrass, Arriba 3 10.31 115,000 345,000 ittle Bluesten, Pastura 1.3 4.47 240,670 312,871 and Dropseed 0.05 0.17 5,600,000 280,0000 ats-Monida 10 34.36 14,000 140,000 29.1 100.00 9,785,430 3,303,039 vilke Yarrow 0.05 0.76 2,700,000 135,000 ussytoes 0.12 1.82 1,135,000 136,200 ringed Sage 0.03 0.46 4,500,000 135,000 pache Plant 1.4 21.28 113,500 138,900 opache Planme 0.35 23.24 420,000 140,000 vestern Hop Tree 0.3 0.46 4,500,000 135,000				
Vestem Wheatgrass, Arriba 3 10.31 115,000 345,000 iftle Bhestem, Pastura 1.3 4.47 240,670 312,871 and Dropseed 0.05 0.17 5,600,000 280,000 Dats-Monida 10 34.36 14,000 140,000 Valse 0.05 0.76 2,700,000 135,000 vusystoes 0.12 1.82 1,135,000 135,000 ringed Sage 0.03 0.46 4,500,000 135,000 pright Milkvetch 2 30.40 70,000 140,000 cocky Mountain Bee Plant 1.4 21.28 113,500 135,000 tidbelar Mock Orange 0.03 0.46 42,0000 146,000 vestern Hop Tree 1.5 22.80 9,000 145,000				
ittle Bhestem, Pastura 1.3 4.47 240,670 312,871 and Dropseed 0.05 0.17 5,600,000 280,000 Dats-Monida 10 34.36 14,000 140,000 Valie Yarrow 0.05 0.76 2,700,000 135,000 Vhite Yarrow 0.05 0.76 2,700,000 135,000 ringed Sage 0.03 0.46 4,500,000 135,000 pright Mikvetch 2 30.40 70,000 140,000 cocky Mountain Bee Plant 1.4 21.28 113,500 158,900 titlebalf Mock Orange 0.03 0.46 5,400,000 140,000 vestern Hop Tree 0.35 5.32 420,000 145,000				
and Dropseed 0.05 0.17 5,600,000 280,000 Dats-Monida 10 34.36 14,000 140,000 29.1 100.00 9,785,430 3,303,039 White Yarrow 0.05 0.76 2,700,000 135,000 ussytoes 0.12 1.82 1,135,000 136,200 ringed Sage 0.03 0.46 4,500,000 135,000 pright Milkvetch 2 30.40 70,000 140,000 cocky Mountain Bee Plant 1.4 21.28 113,500 158,900 upache Plame 0.35 5.32 420,000 147,000 Wetern Hop Tree 1.5 22.80 9,000 13,500				
Dats-Monida 10 34.36 14,000 140,000 29.1 100.00 9,785,430 3,303,039 White Yarrow 0.05 0.76 2,700,000 135,000 ussytoes 0.12 1.82 1,135,000 136,200 pringed Sage 0.03 0.46 4,500,000 135,000 pringht Milkvetch 2 30.40 70,000 140,000 tocky Mountain Bee Plant 1.4 21.28 113,500 158,900 upache Planne 0.35 5.23 420,000 147,000 Western Hop Tree 1.5 22.80 9,000 13,500				•
29.1 100.00 9,785,430 3,303,039 White Yarrow 0.05 0.76 2,700,000 135,000 ussytoes 0.12 1.82 1,135,000 136,200 pringed Sage 0.03 0.46 4,500,000 135,000 pright Milkvetch 2 30.40 70,000 140,000 tocky Mountain Bee Plant 1.4 21.28 113,500 158,900 upache Plame 0.35 5.32 420,000 147,000 Western Hop Tree 1.5 22.80 9,000 13,500				
Vhite Yarrow 0.05 0.76 2,700,000 135,000 Pussytoes 0.12 1.82 1,135,000 136,200 ringed Sage 0.03 0.46 4,500,000 135,000 Jpright Milkvetch 2 30.40 70,000 140,000 tocky Mountain Bee Plant 1.4 21.28 113,500 158,900 typich Milkvetch 0.35 5.32 420,000 146,000 totke Planne 0.03 0.43 4,0000 146,200 Vestem Hop Tree 1.5 22.80 9,000 13,500				
ussytoes 0.12 1.82 1,135,000 136,200 ringed Sage 0.03 0.46 4,500,000 135,000 pright Milkvetch 2 30.40 70,000 140,000 Locky Mountain Bee Plant 1.4 21.28 113,500 158,900 upache Plame 0.35 5.32 420,000 147,000 Hitebart Mock Orange 0.03 0.46 5,400,000 162,000 Vestern Hop Tree 1.5 22.80 9,000 13,500				A Min walk states
ringed Sage 0.03 0.46 4,500,000 135,000 pright Milkvetch 2 30.40 70,000 140,000 cocky Mountain Bee Plant 1.4 21.28 113,500 158,900 upache Planne 0.35 5.32 420,000 147,000 titebeat Mock Orange 0.03 0.46 5,400,000 162,000 Vestern Hop Tree 1.5 22.80 9,000 13,500				
Jprepht Milkvetch 2 30.40 70,000 140,000 Locky Mountain Bee Plant 1.4 21.28 113,500 158,900 Lpache Planne 0.35 5.32 420,000 146,000 Hidbear Mock Orange 0.03 0.46 5,400,000 146,200 Vestern Hop Tree 1.5 22.80 9,000 13,500				
Jocky Mountain Bee Plant 1.4 21.28 113,500 158,900 spache Plane 0.35 5.32 420,000 147,000 ittlekaf Mock Orange 0.03 0.46 5,400,000 162,000 Vestern Hop Tree 1.5 22.80 9,000 13,500				
pache Phrme 0.35 5.32 420,000 147,000 ittlekaf Mock Orange 0.03 0.46 5,400,000 162,000 Vestern Hop Tree 1.5 22.80 9,000 13,500				
ittlekaf Mock Orange 0.03 0.46 5,400,000 162,000 Vestem Hop Tree 1.5 22.80 9,000 13,500				
Vestem Hop Tree 1.5 22.80 9,000 13,500				
itterbrush 11 16 72 13 400 14 740			201904 C	
6.58 100.00 14,360,900 1,042,340			1.1	Bitterbrush

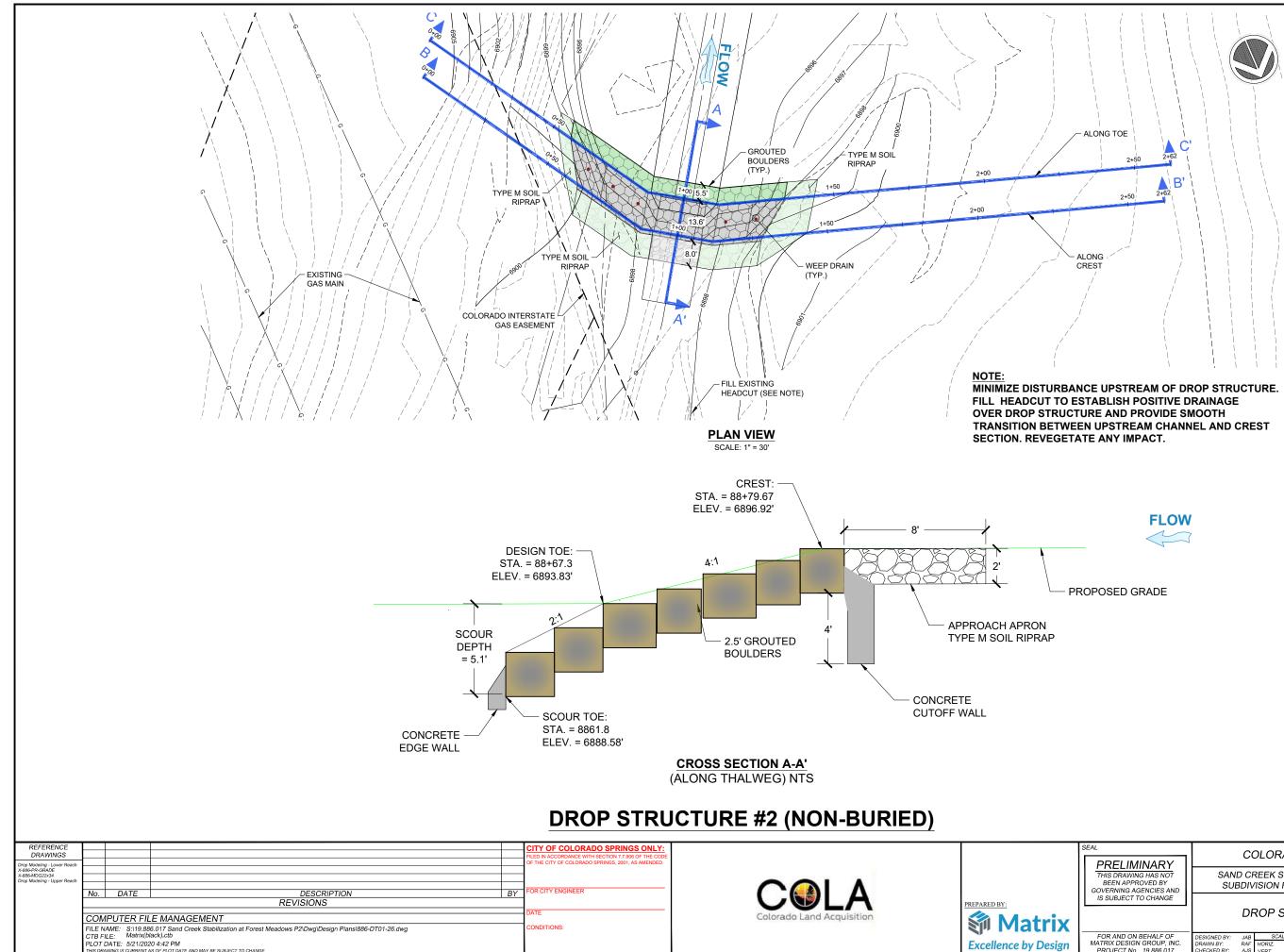
PRELIMINARY	COLORADO LAND ACQUISITION				
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS 100% DESIGN PLANS				
IS SUBJECT TO CHANGE		REVEGE	TATION DE	ETAILS	
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB DRAWN BY: RAF CHECKED BY: AJS	HORIZ. N/A	DATE ISSUED: SHEET	MAY 2020 13 OF 38	drawing no. RV04



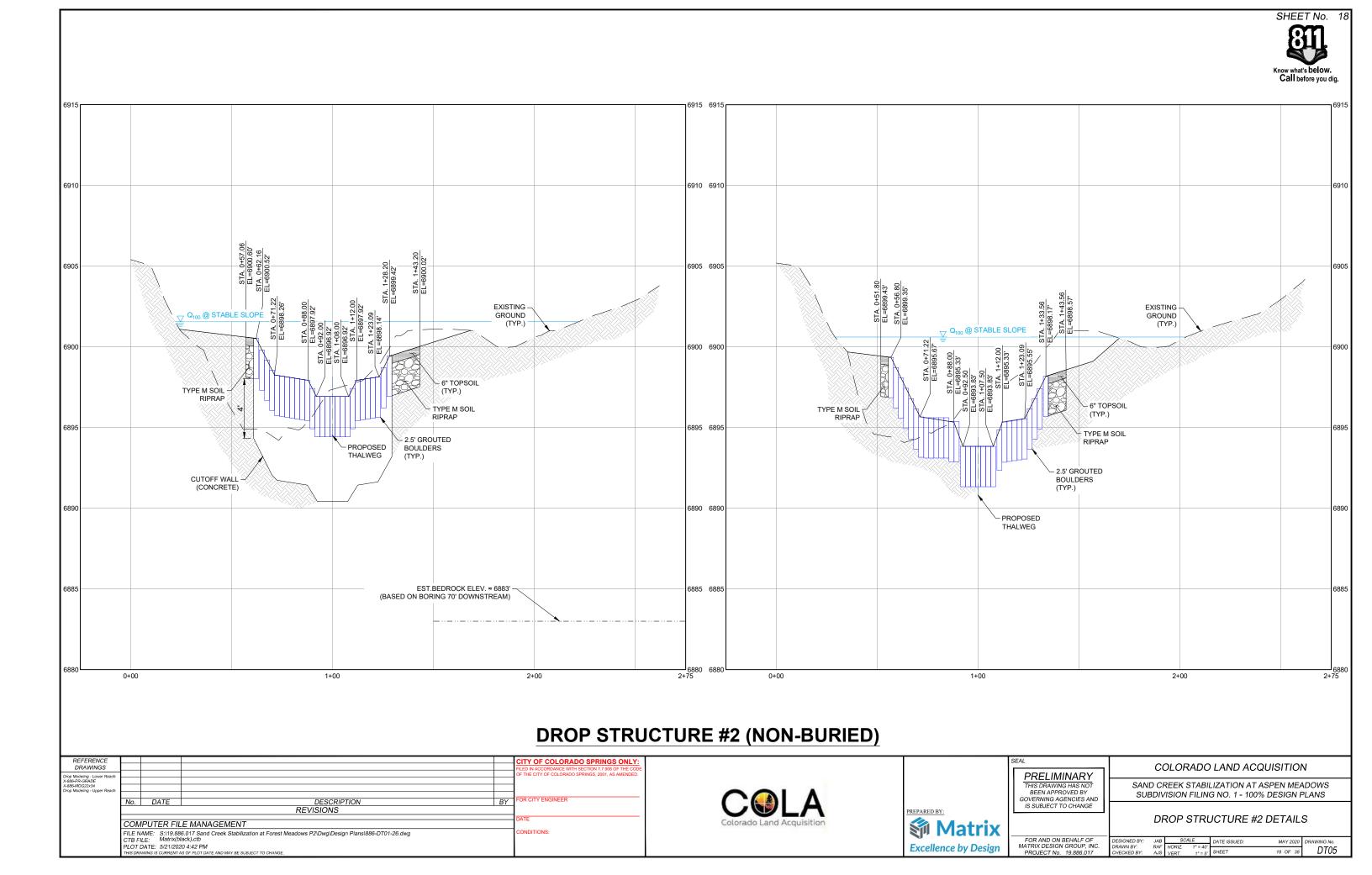
NOTES:

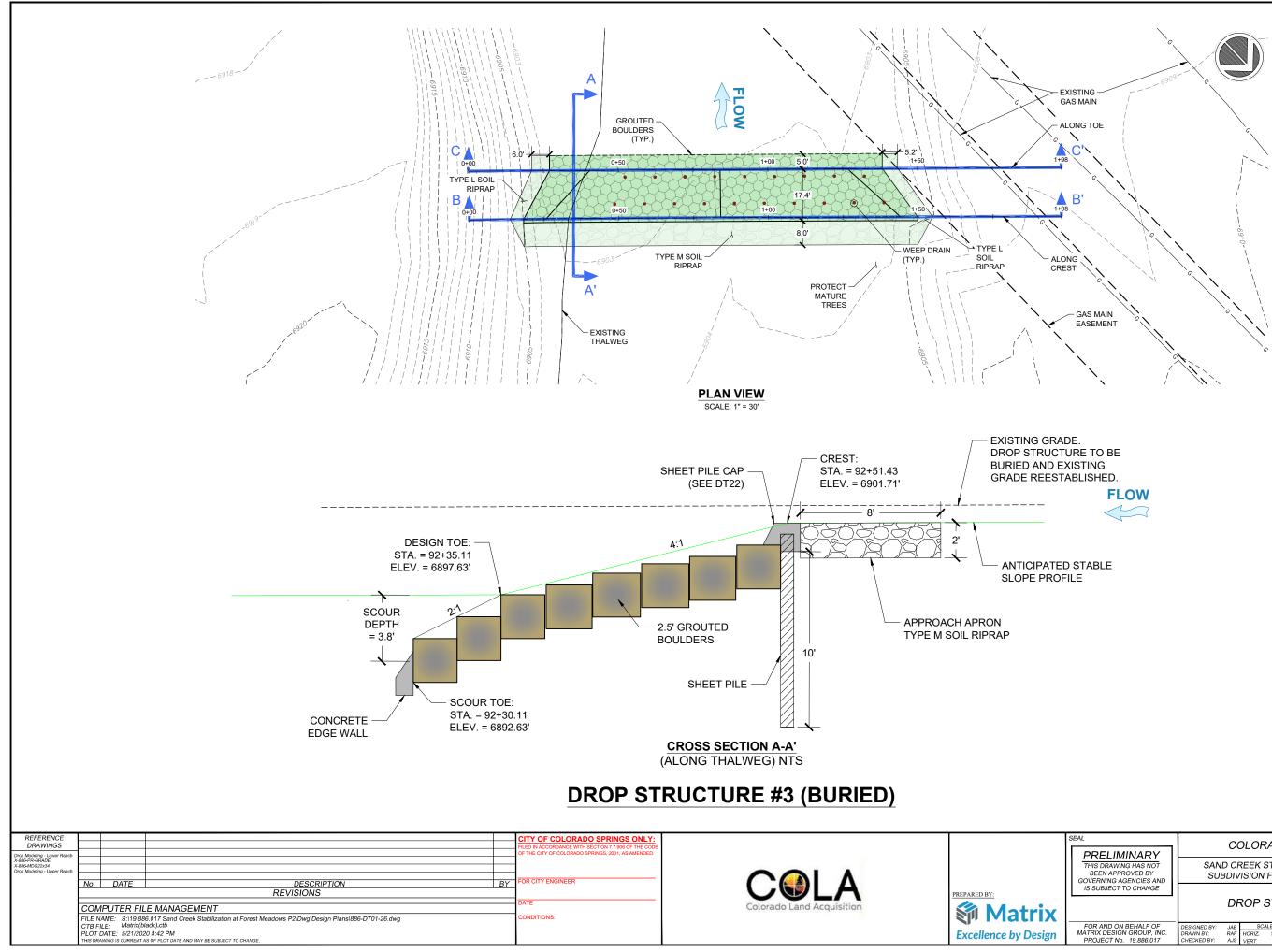

- 1. TYPICAL SECTION 1 APPLIES FROM APPROXIMATELY STATION 85+52 TO 88+67 AND 108+20 TO 110+20, EXCLUDING THE DROP STRUCTURES.
- 2. TYPICAL SECTION 2 CONNECTS THE DOWNSTREAM END OF DROP 5 TO THE BRIDGE PROJECT (APPROXIMATELY STATION 103+00 TO 103+58).
- 3. BASED UPON ONSITE AVAILABILITY, SOD MATS SHOULD BE HARVESTED AND PLACED IN LIEU OF SEEDING AND BLANKET. SEE REVEGETATION DETAILS FOR FURTHER INSTRUCTIONS.

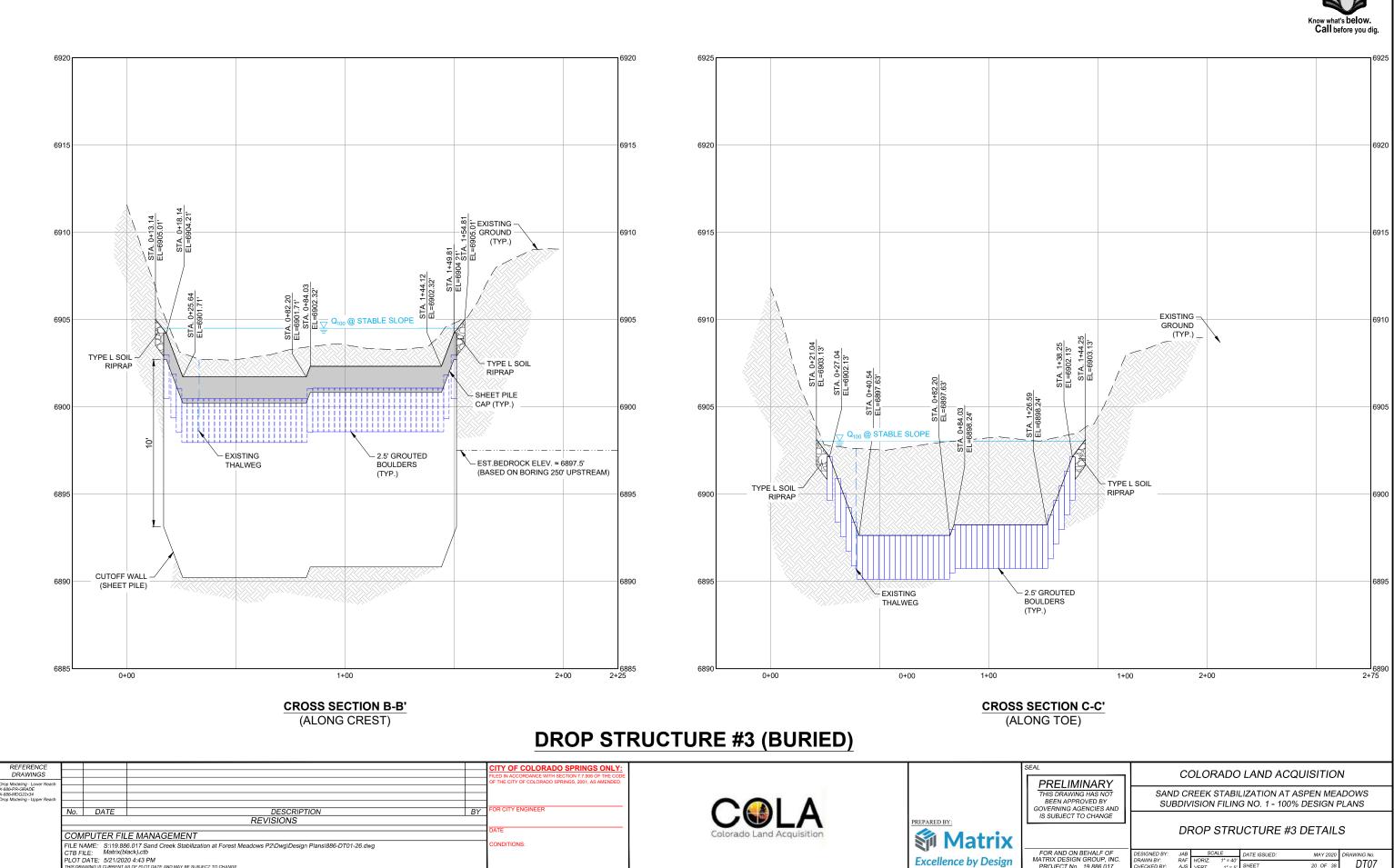
SEAL PRELIMINARY	COLORADO LAND ACQUISITION				
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS				
IS SUBJECT TO CHANGE	TYPICAL SECTIONS				
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWN BY: RAF HORIZ. N/A CHECKED BY: AJS VERT. N/A SHEET 14 OF 38 DT01				

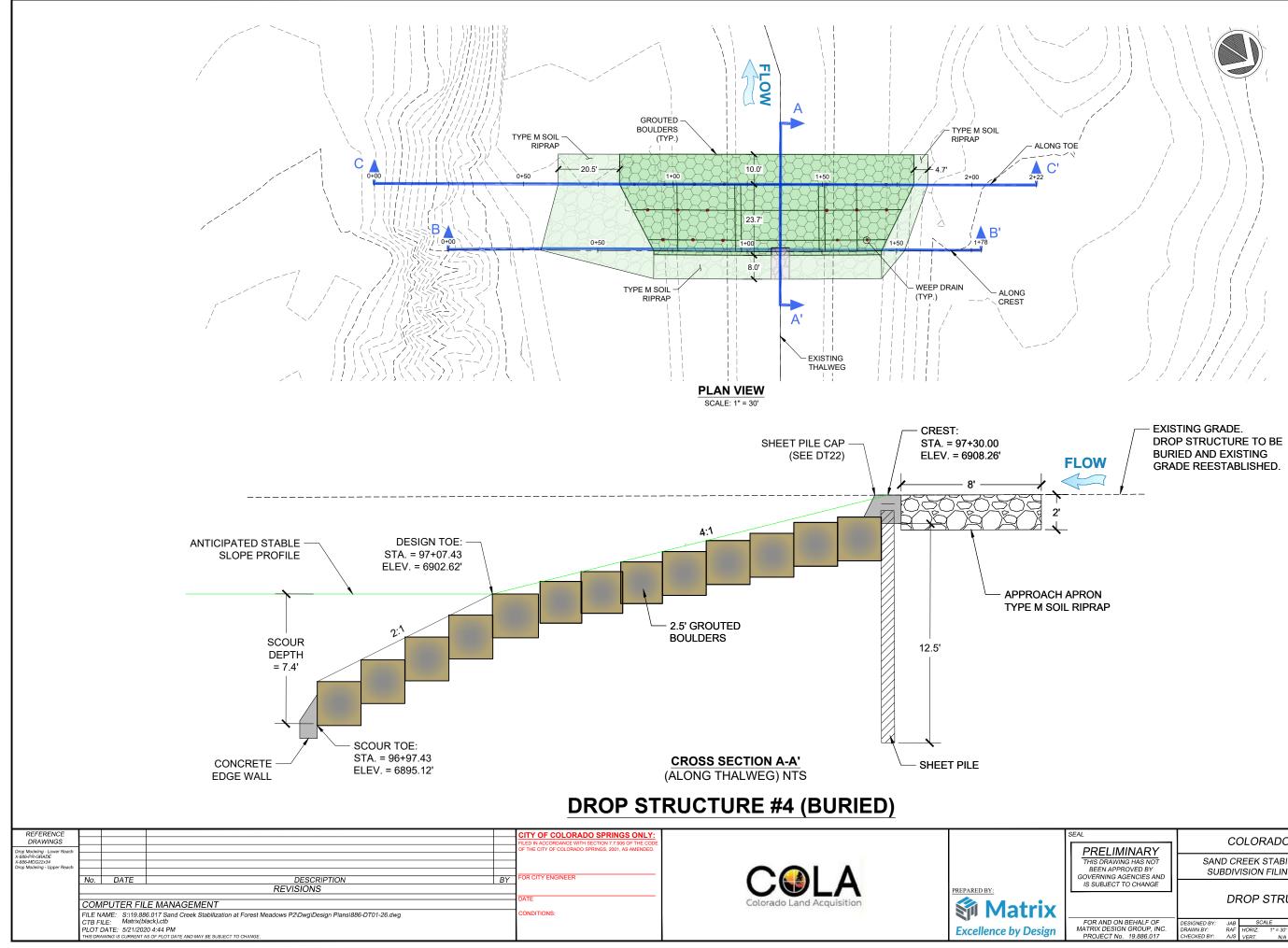


COLORADO LAND ACQUISITION SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS DROP STRUCTURE #1 DETAILS FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017 rawing №. DT02 SIGNED B' AWN BY: DATE ISSUED MAY 2020 JAB RAF AJS HORIZ. 15 OF 38 SHEET



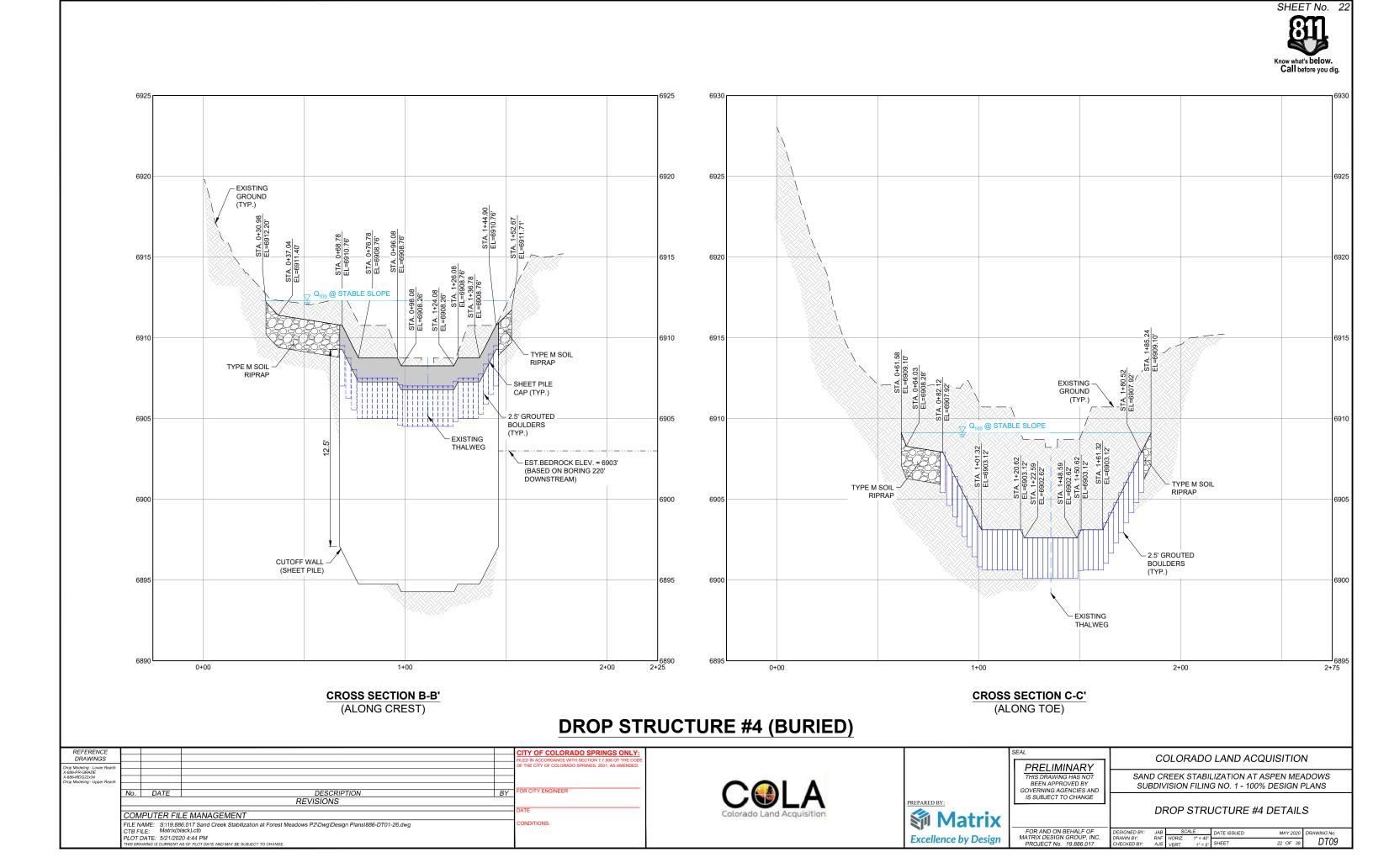

PRELIMINARY	COLORADO LAND ACQUISITION					
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS					
IS SUBJECT TO CHANGE	DROP STRUCTURE #1 DETAILS					
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB SCALE DRAWN BY: RAF. HORIZ. 1"=40" CHECKED BY: AJS VERT. 1"=6" SHEET 16 OF 38 DT03					

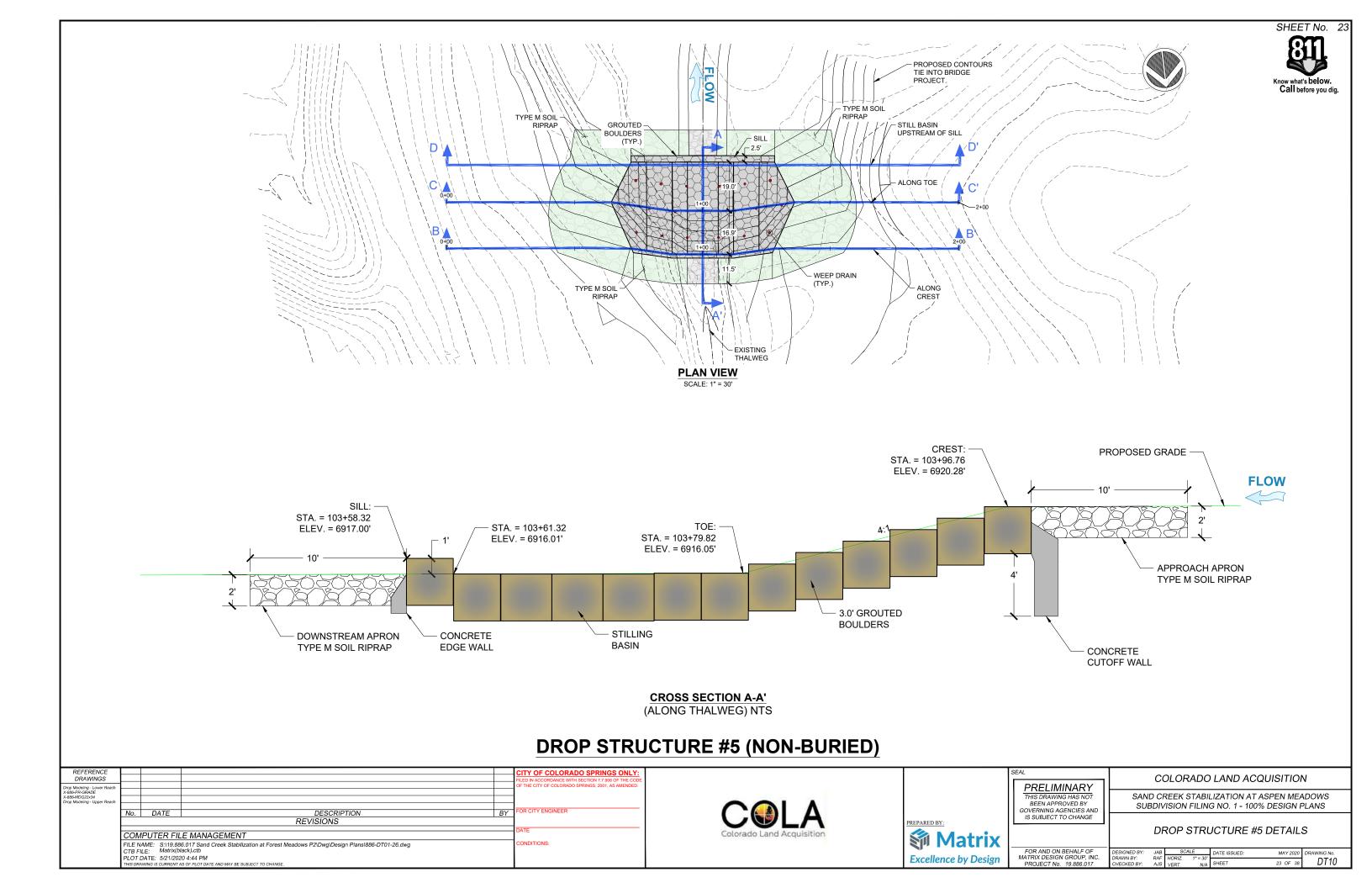

PRELIMINARY	COLORADO LAND ACQUISITION					
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS					
IS SUBJECT TO CHANGE	DROP STRUCTURE #2 DETAILS					
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING No. HORIZ 1°=30' CHECKED BY: AS VERT, N/A SHEET 17 OF 38 DT04					

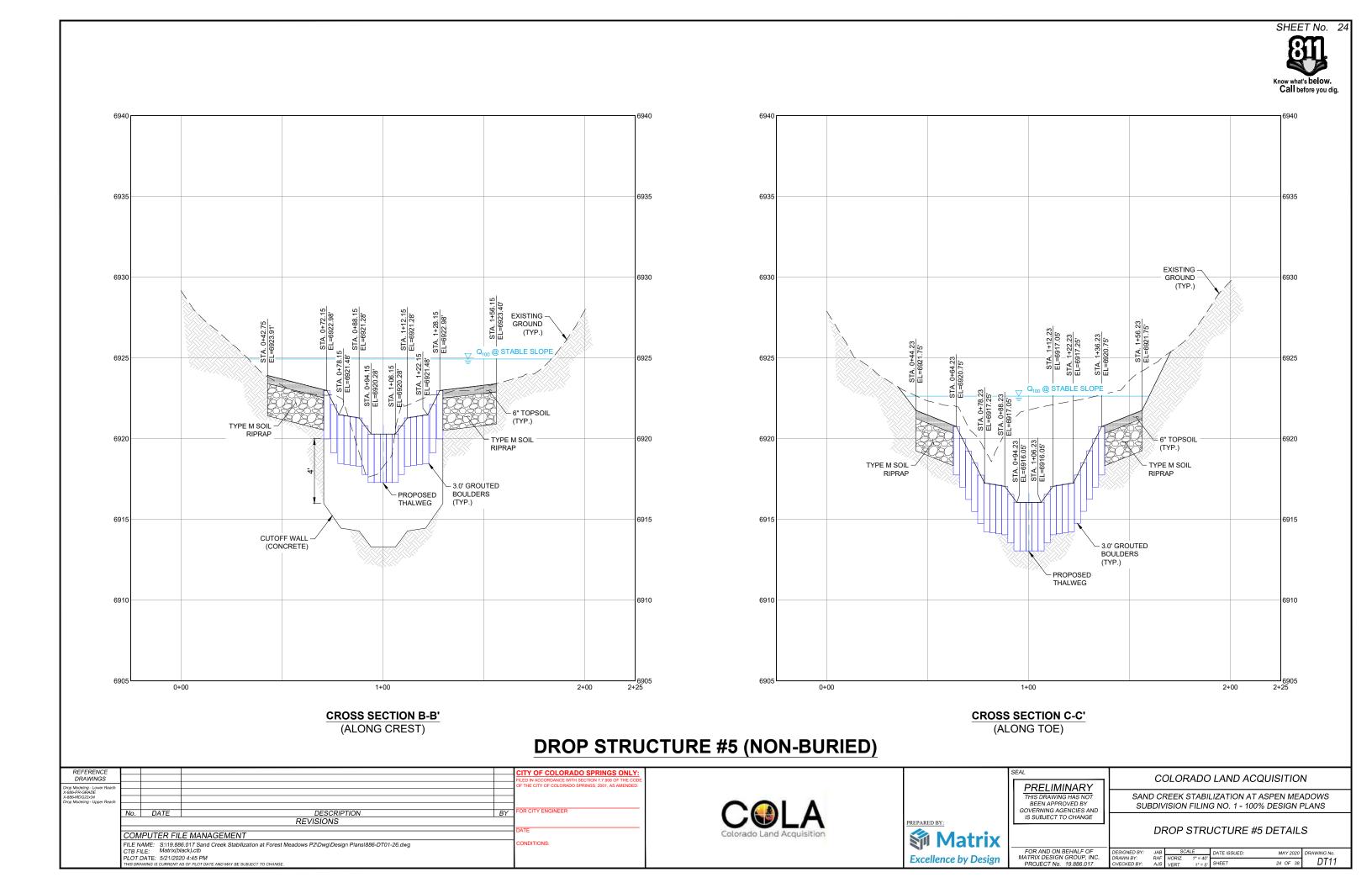

	COLORADO LAND ACQUISITION
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AN	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS
IS SUBJECT TO CHANGE	DROP STRUCTURE #3 DETAILS
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, IN PROJECT No. 19.886.017	C. DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING No. DRAWN BY: RAF HORIZ 1"=30" CHECKED BY: AJS VERT NIA SHEET 19 OF 38 DT06

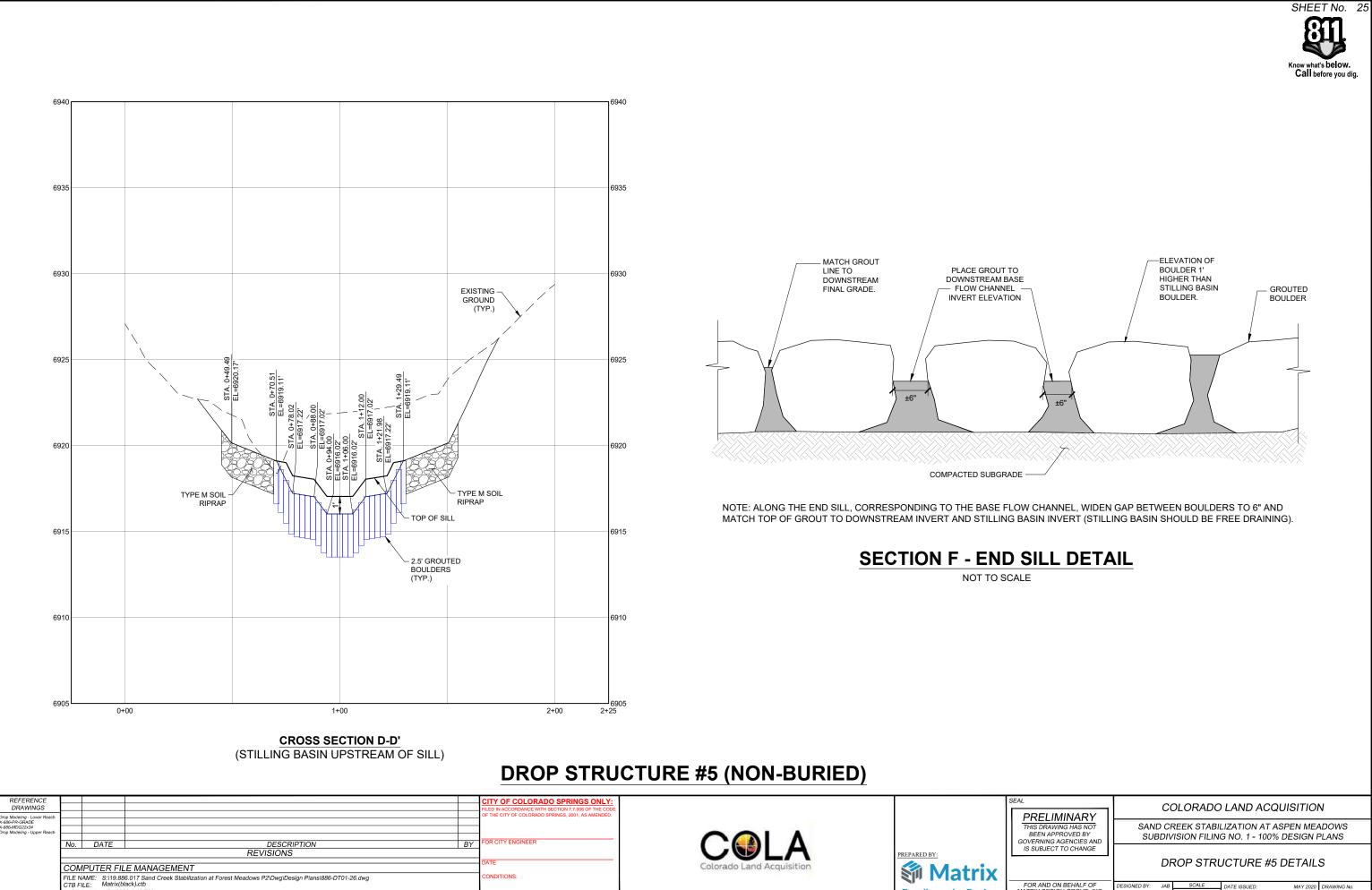
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017 rawing no. DT07 JAB RAF AJS HORIZ. 20 OF 38 SHEET

SHEET No. 20

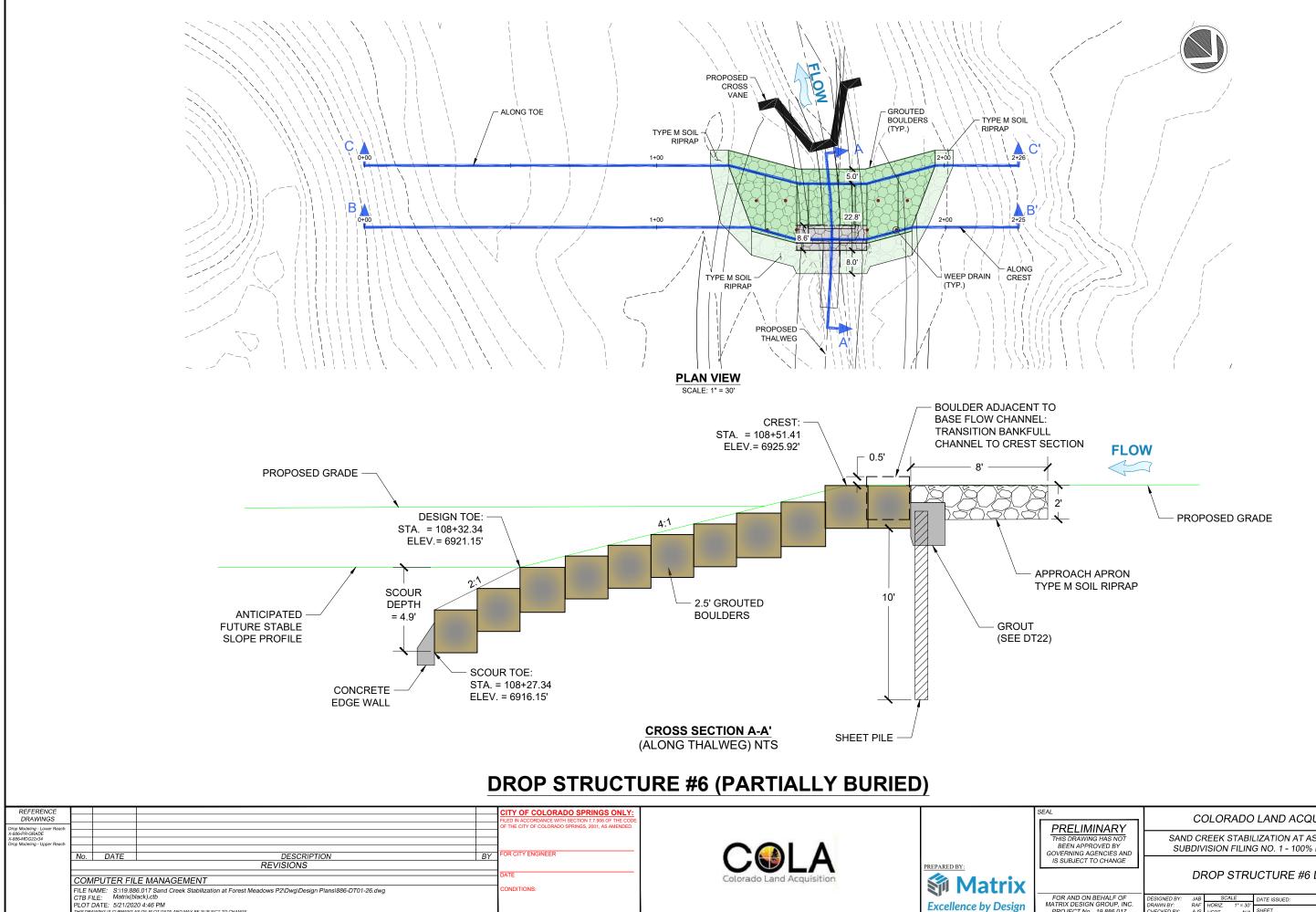

81



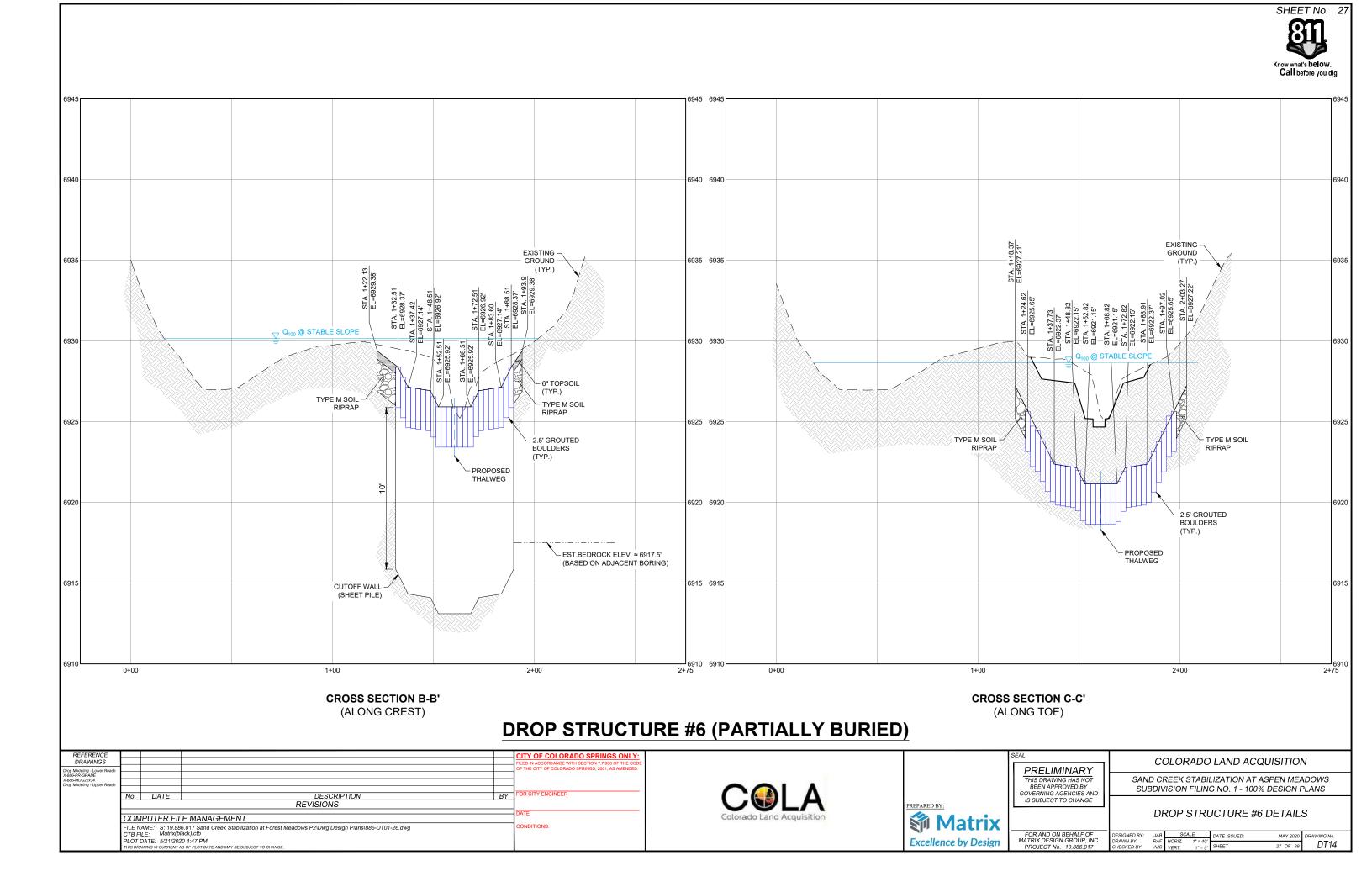


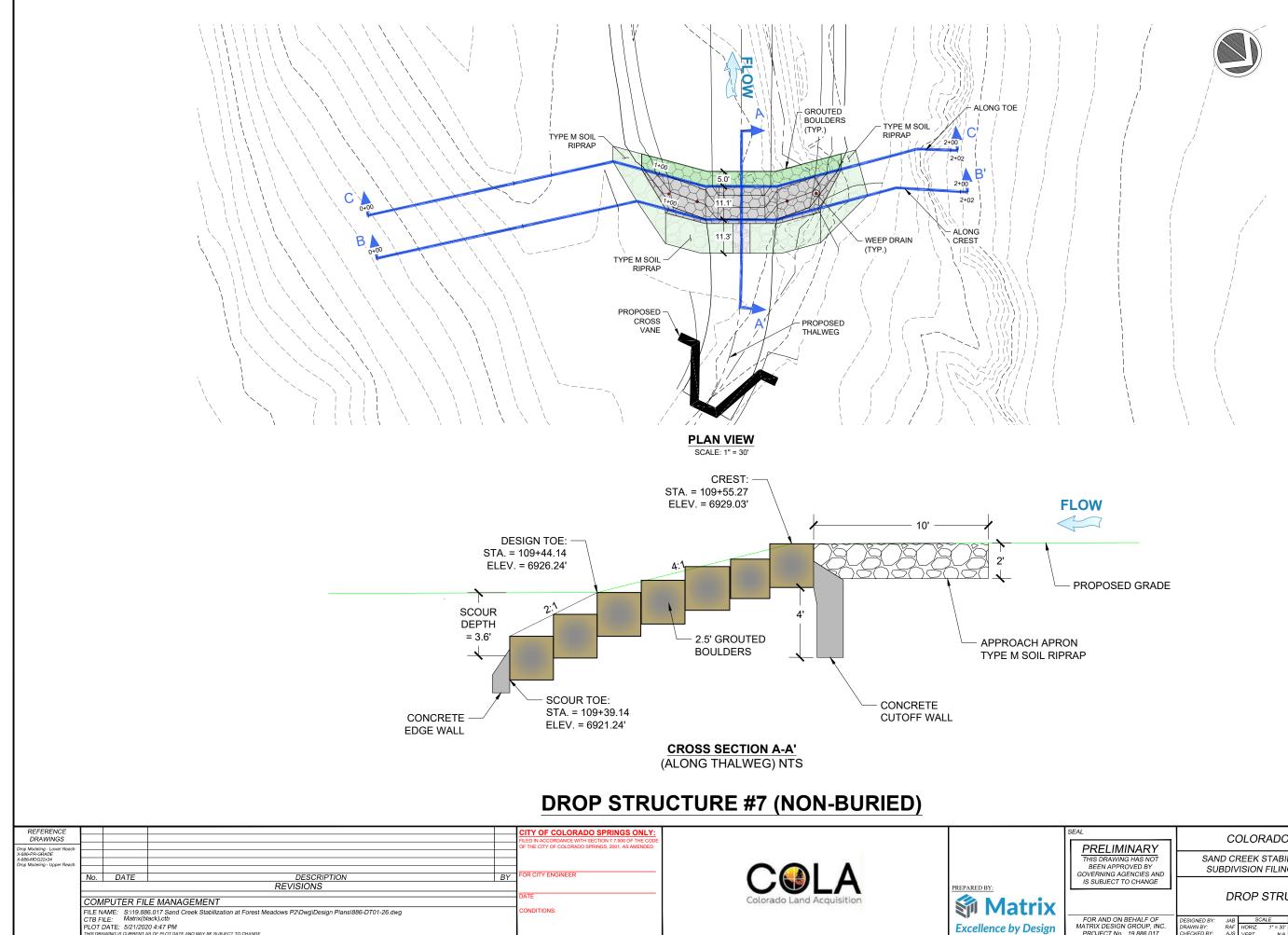

GRADE REESTABLISHED.

PRELIMINARY	COLORADO LAND ACQUISITION					
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS					
IS SUBJECT TO CHANGE	DROP STRUCTURE #4 DETAILS					
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB SCALE DRAWN BY: RAF HORIZ. 1°=30' CHECKED BY: AJS VERT. N/A SHEET 21 OF 38 DT08					

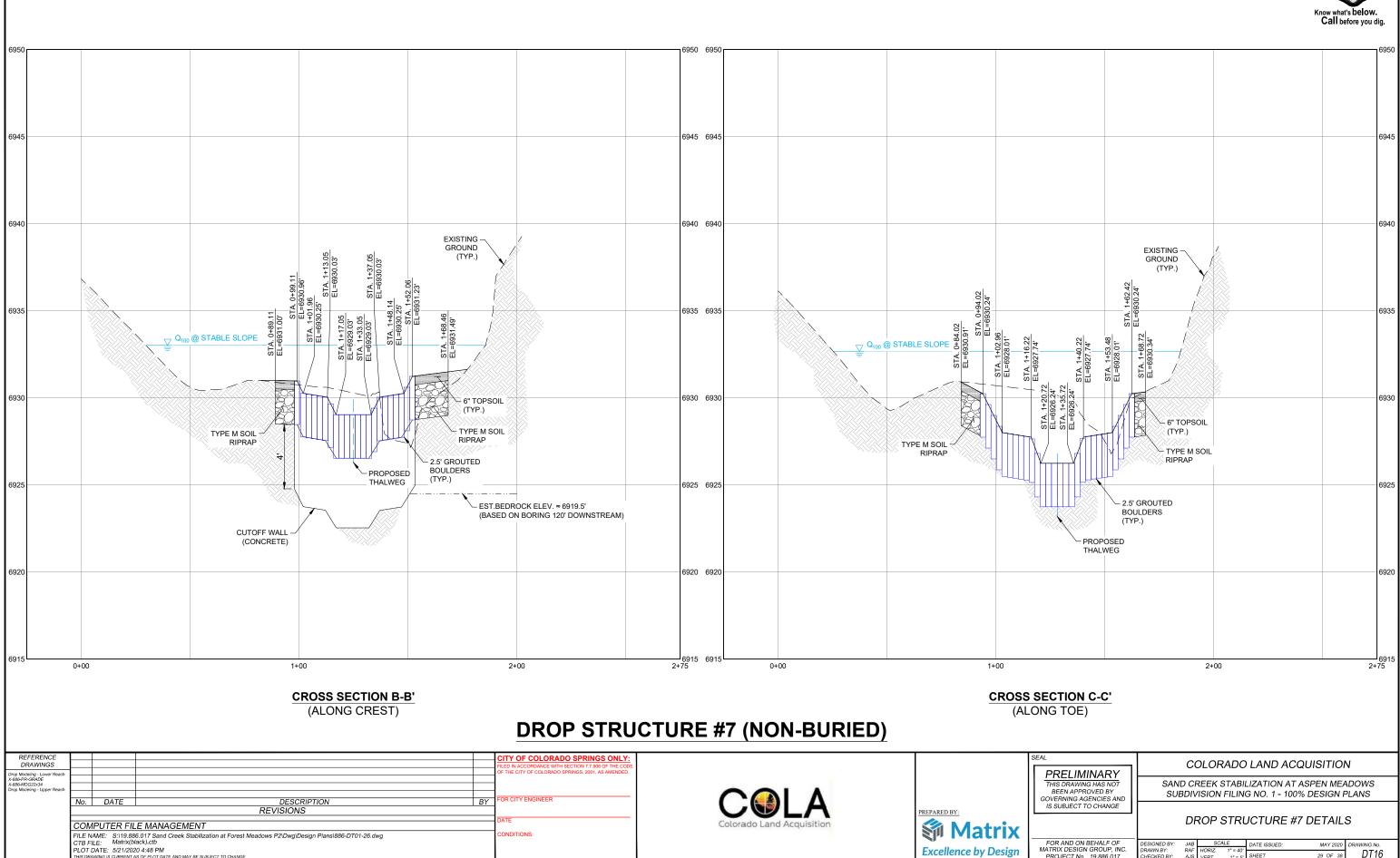


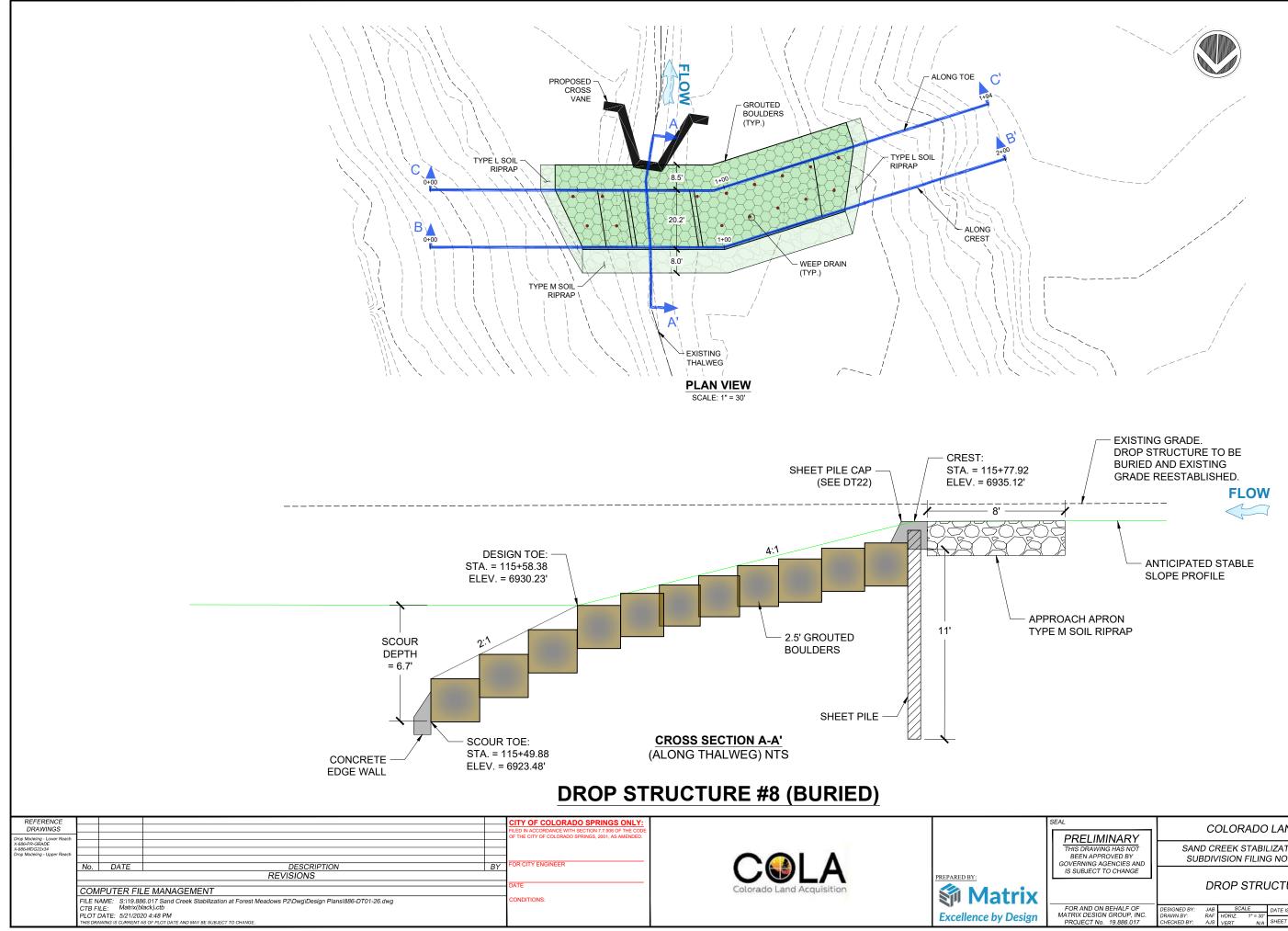
PLOT DATE: 5/21/2020 4:46 PM


Excellence by Design

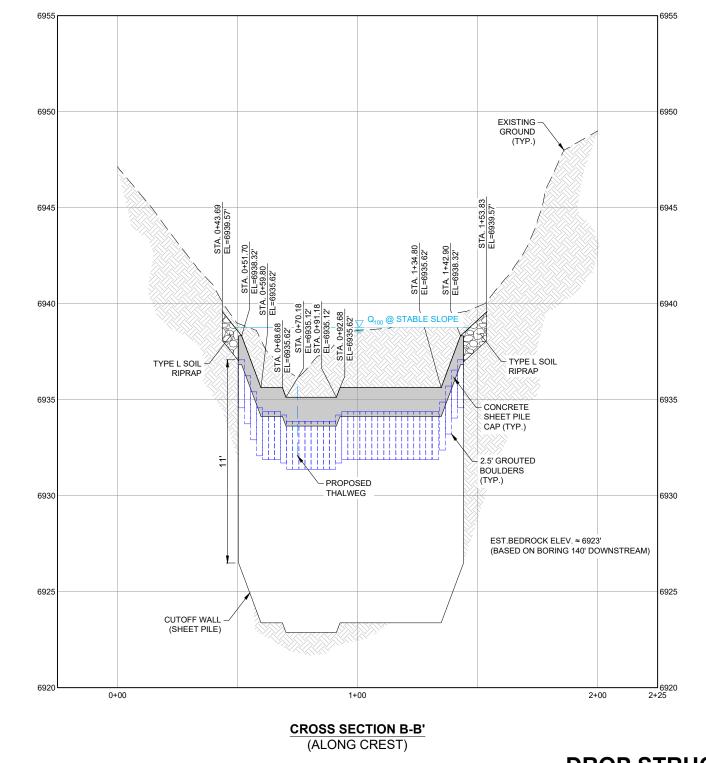

	COLORADO LAND ACQUISITION						
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS						
IS SUBJECT TO CHANGE	DROP STRUCTURE #5 DETAILS						
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING NO. DRAWN BY: RAF HORIZ. 1°=40' CHECKED BY: AJS VERT. 1°=5' SHEET 25 OF 38 DT12						

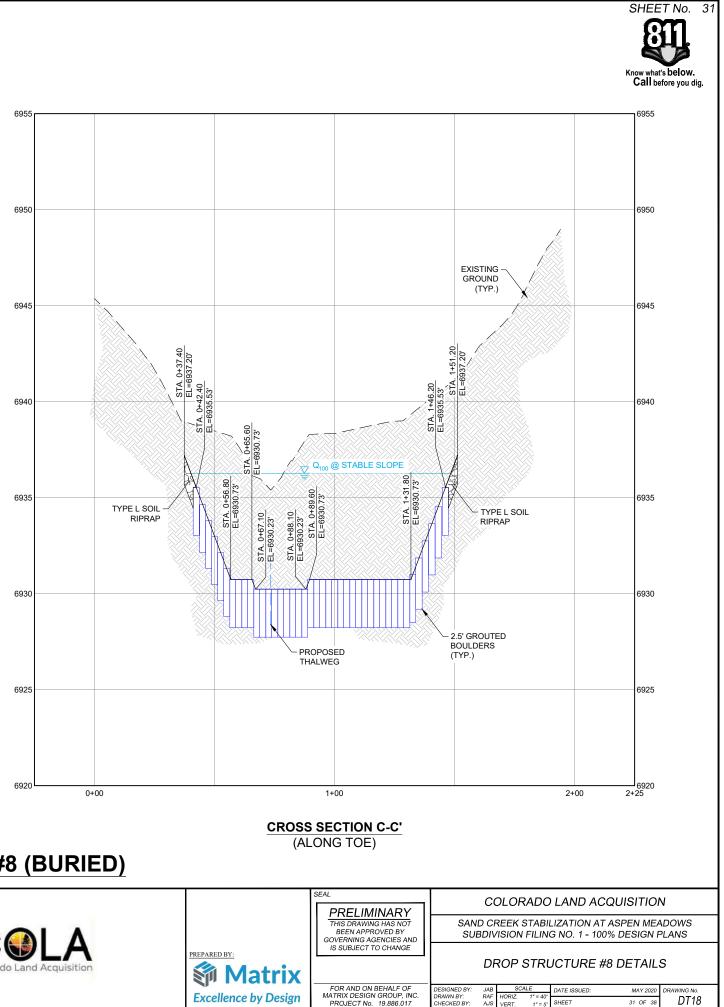
	COLORADO LAND ACQUISITION					
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS					
IS SUBJECT TO CHANGE	DROP STRUCTURE #6 DETAILS					
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING NO. DRAWN BY: RAF HORIZ. 1° = 30' CHECKED BY: AJS VERT. NA SHEET 26 OF 38 DT13					



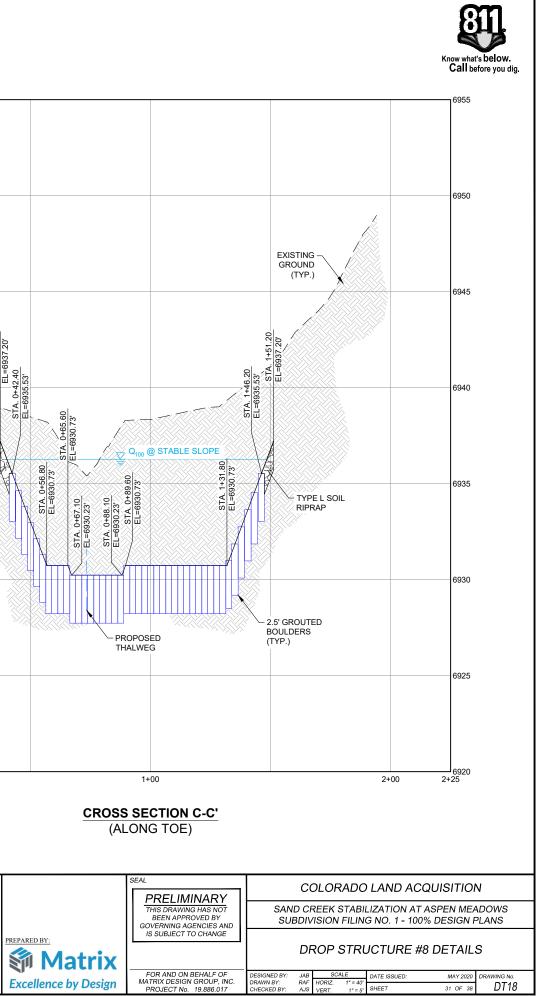


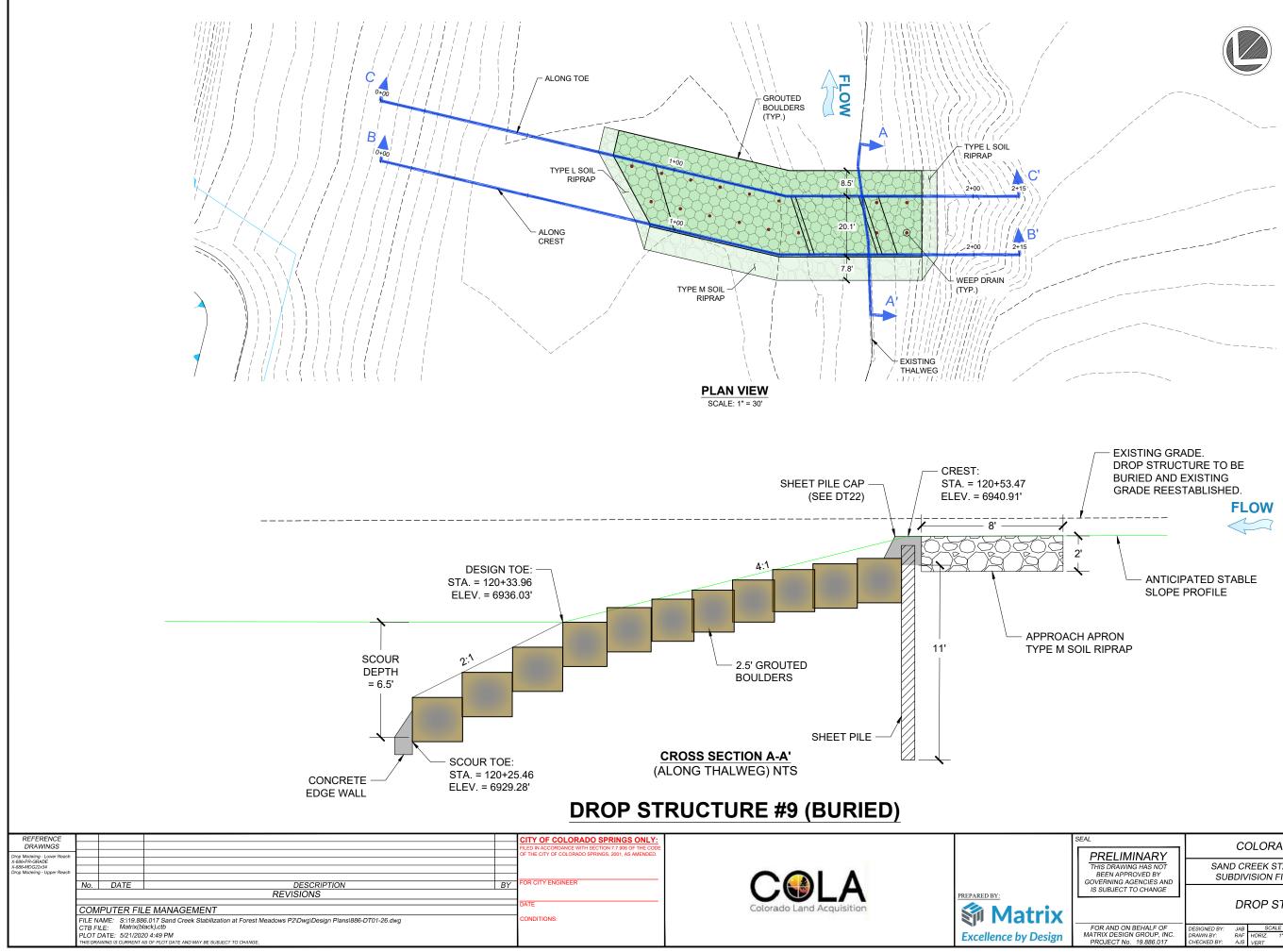
PRELIMINARY	COLORADO LAND ACQUISITION				
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS				
IS SUBJECT TO CHANGE	DROP STRUCTURE #7 DETAILS				
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING NO. DRAWN BY: RAF HORIZ. 1° = 30' CHECKED BY: AJS VERT. NJA SHEET 28 OF 38 DT15				


FOR AND ON BEHALF OF	DESIGNED BY:	JAB		ALE	DATE ISSUED:	MAY 2020	DRAWING No.
MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DRAWN BY: CHECKED BY:	RAF AJS	HORIZ. VERT.	1" = 40' 1" = 5'	SHEET	29 OF 38	DT16


SHEET No. 29

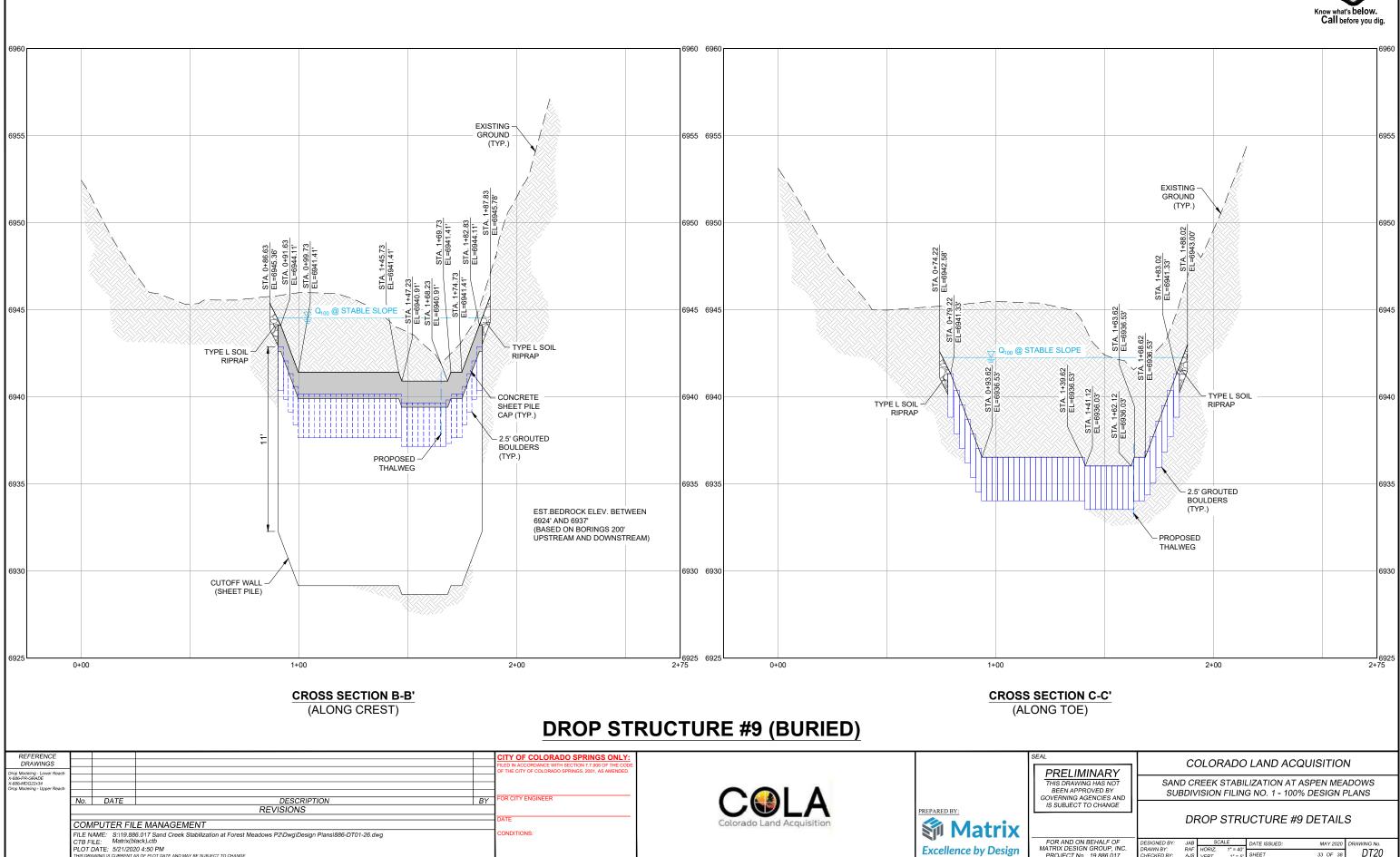
SEAL COLORADO LAND ACQUISITION PRELIMINARY THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND IS SUBJECT TO CHANGE SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS DROP STRUCTURE #8 DETAILS FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. DESIGNED BY: JAB SCALE DRAWN BY: MAY 2020 PRAVINE OF DRAWN BY:								
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNIG AGENCIES AND IS SUBJECT TO CHANGE SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS DROP STRUCTURE #8 DETAILS FOR AND ON BEHALF OF DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING NO.	ľ		С	OLORADC	LAND ACG	QUISITIO	N	
FOR AND ON BEHALF OF DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING NO.		THIS DRAWING HAS NOT BEEN APPROVED BY						
		IS SUBJECT TO CHANGE	D	ROP STRI	JCTURE #8	DETAIL	S	
PROJECT No. 19.886.017 CHECKED BY: AJS VERT N/A SHEET 30 OF 38 UI17		MATRIX DESIGN GROUP, INC.	DRAWN BY: RAF	HORIZ. 1" = 30'			DRAWING №. DT17	



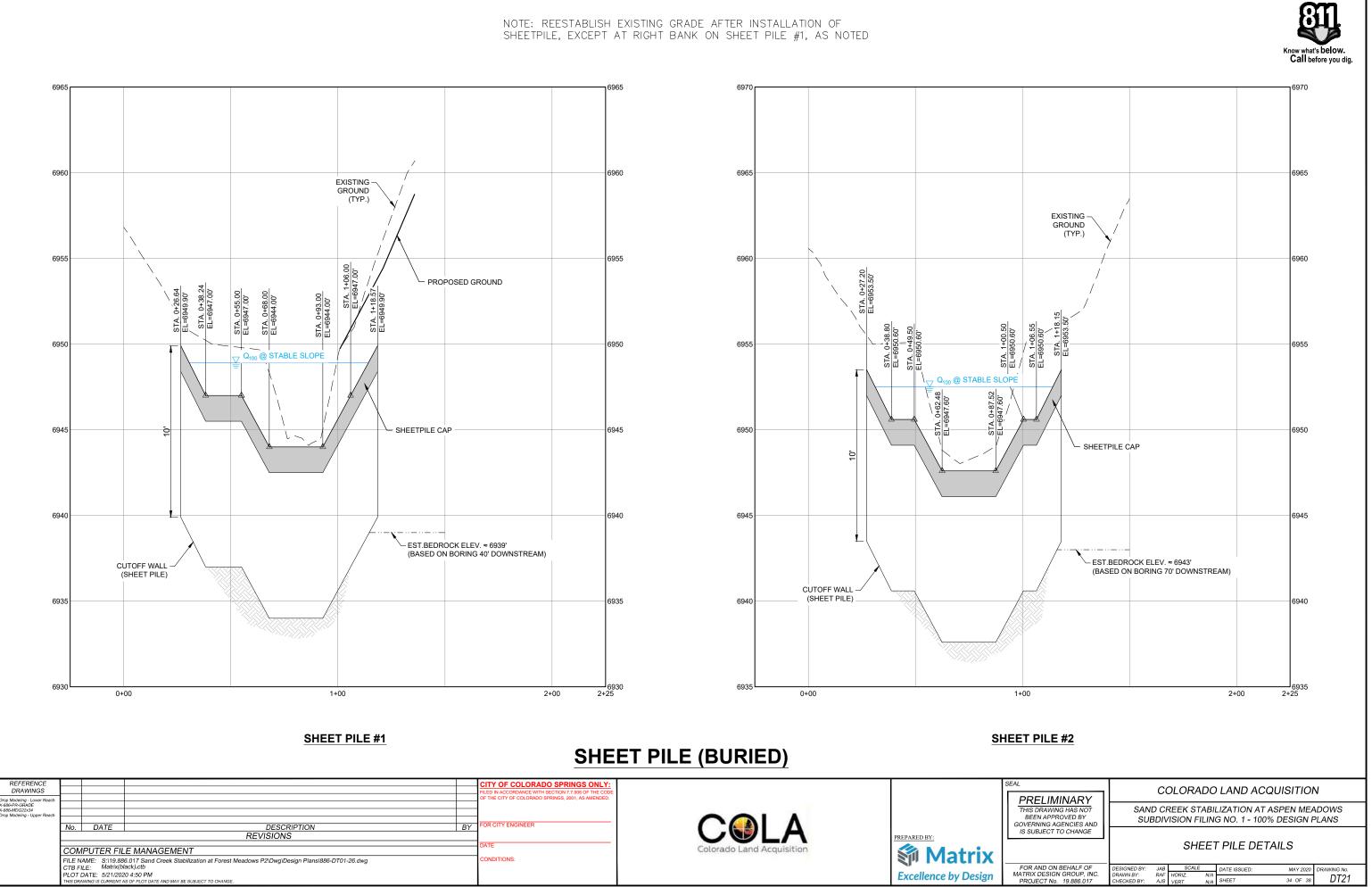


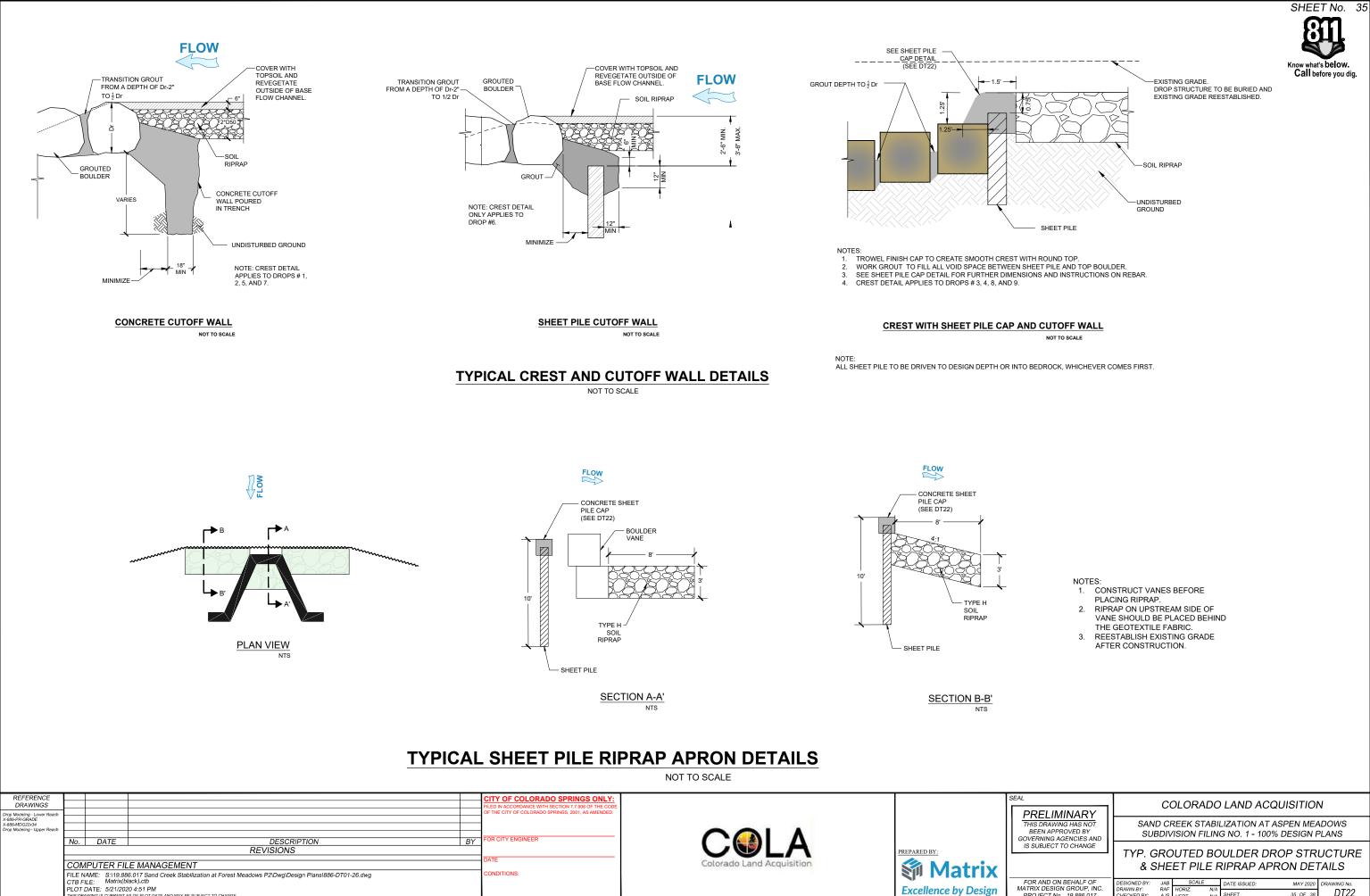
DROP STRUCTURE #8 (BURIED)

REFERENCE DRAWINGS ITY OF COLORADO SPRINGS ONLY Drop Modeling - Lower Re X-886-PR-GRADE X-886-MDG22x34 Drop Modeling - Upper Re THE CITY OF COL OR CITY ENGINEER DESCRIPTION REVISIONS No. DATE COMPUTER FILE MANAGEMENT FILE NAME: S:119.886.017 Sand Creek Stabilization at Forest Meadows P2\Dwg\Design Plans\886-DT01-26.dwg CTB FILE: Matrix(black).ctb ONDITIONS PLOT DATE: 5/21/2020 4:49 PM

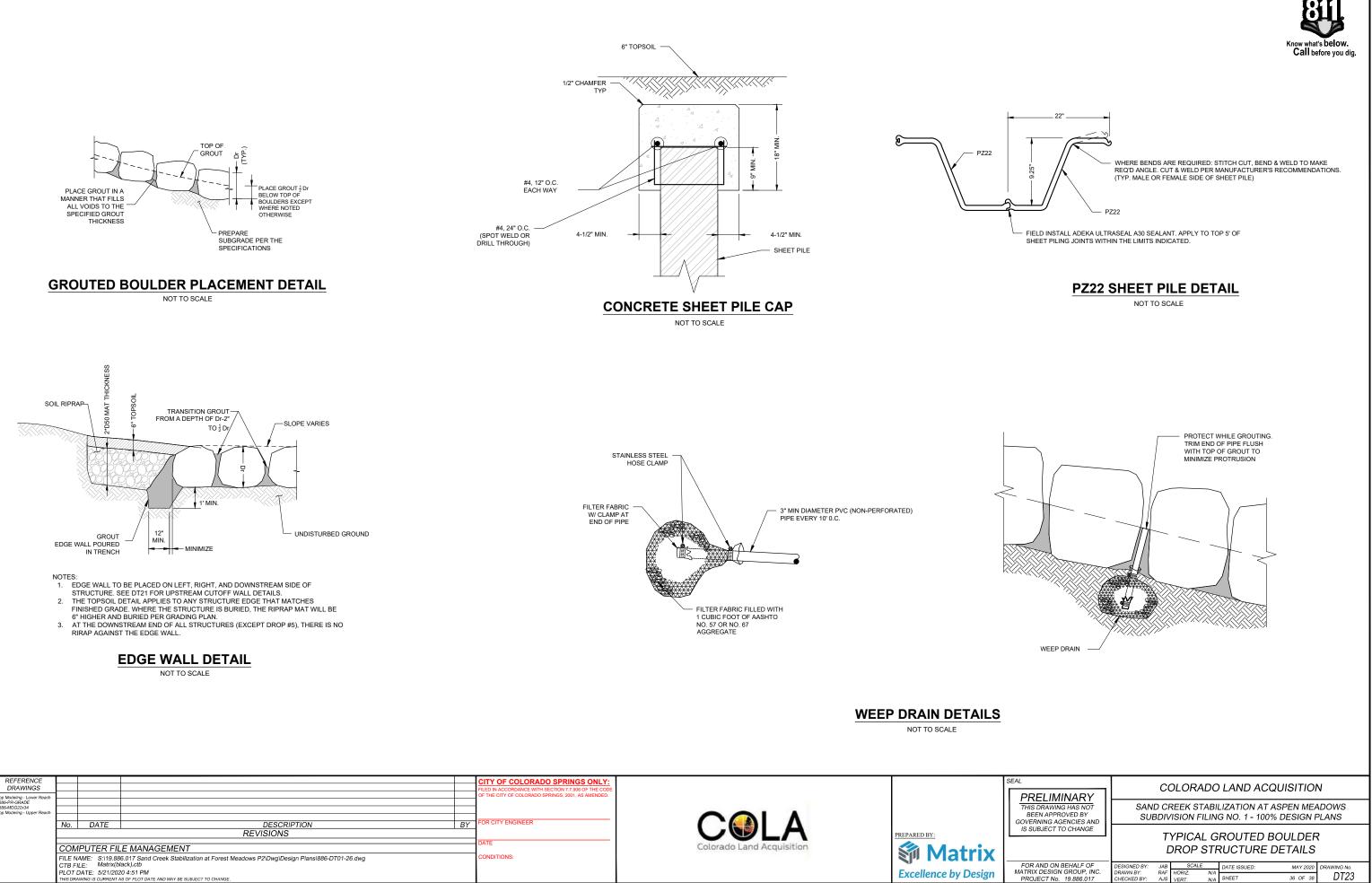


т	SEAL						
	PRELIMINARY	COLORADO LAND ACQUISITION					
	THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS					
	IS SUBJECT TO CHANGE	DROP STRUCTURE #9 DETAILS					
	FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC.	DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING No. DRAWN BY: RAF HORIZ. 1" = 30" DT10 DT10					
	PROJECT No. 19.886.017	CHECKED BY: AJS VERT. N/A SHEET 32 OF 38 DT19					




FOR AND ON BEHALF OF	DESIGNED BY:	JAB		ALE	DATE ISSUED:	MAY 2020	DRAWING No.
MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DRAWN BY: CHECKED BY:	RAF AJS	HORIZ. VERT.	1" = 40' 1" = 5'	SHEET	33 OF 38	DT20

SHEET No. 33


81

SHEET No. 34

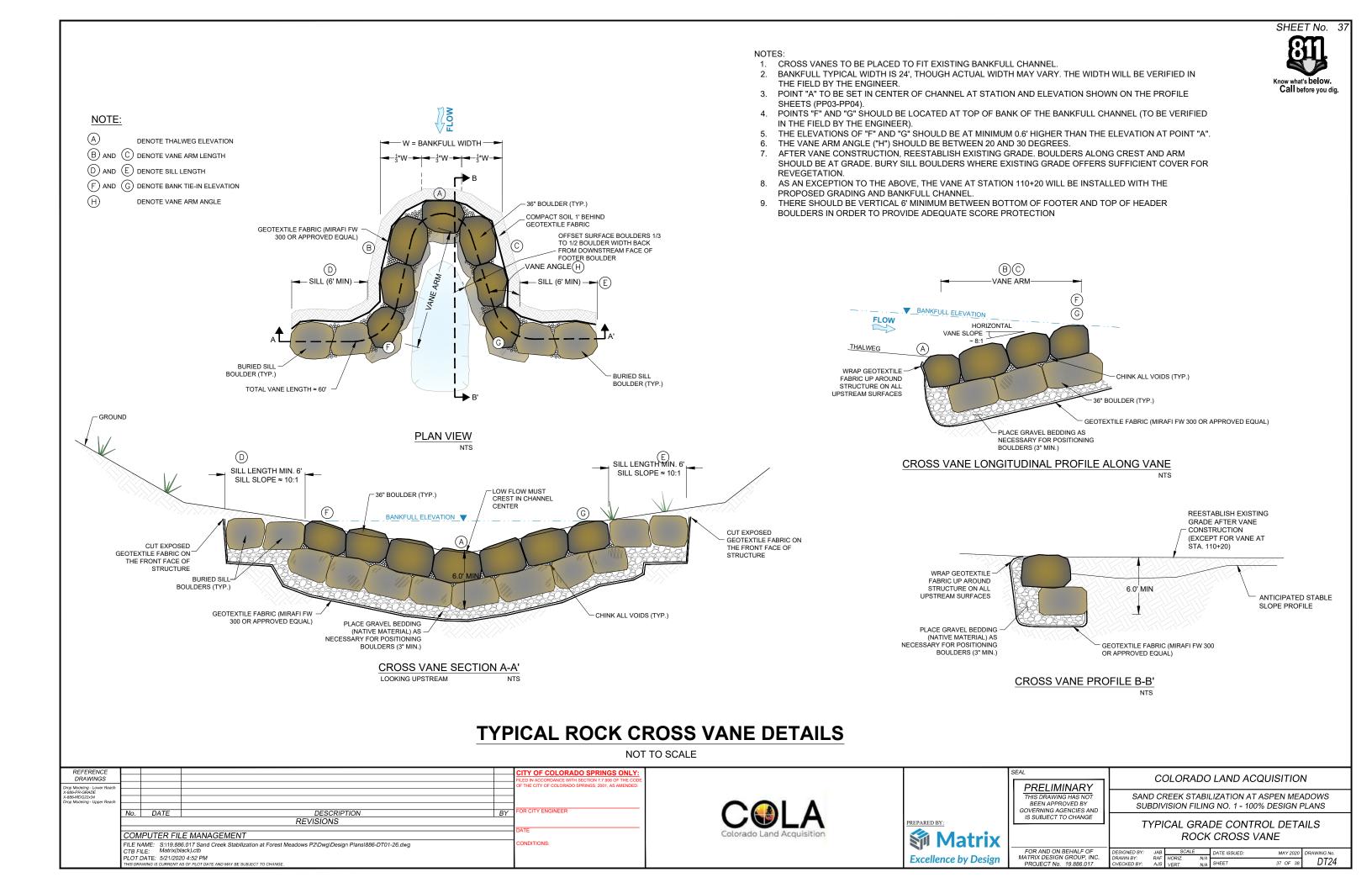
SEAL PRELIMINARY	COLORADO LAND ACQUISITION
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS
IS SUBJECT TO CHANGE	TYP. GROUTED BOULDER DROP STRUCTURE & SHEET PILE RIPRAP APRON DETAILS
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING NO. DRAWN BY: RAF HORIZ. NA CHECKED BY: AJS VERT. NA SHEET 35 OF 38 DT22

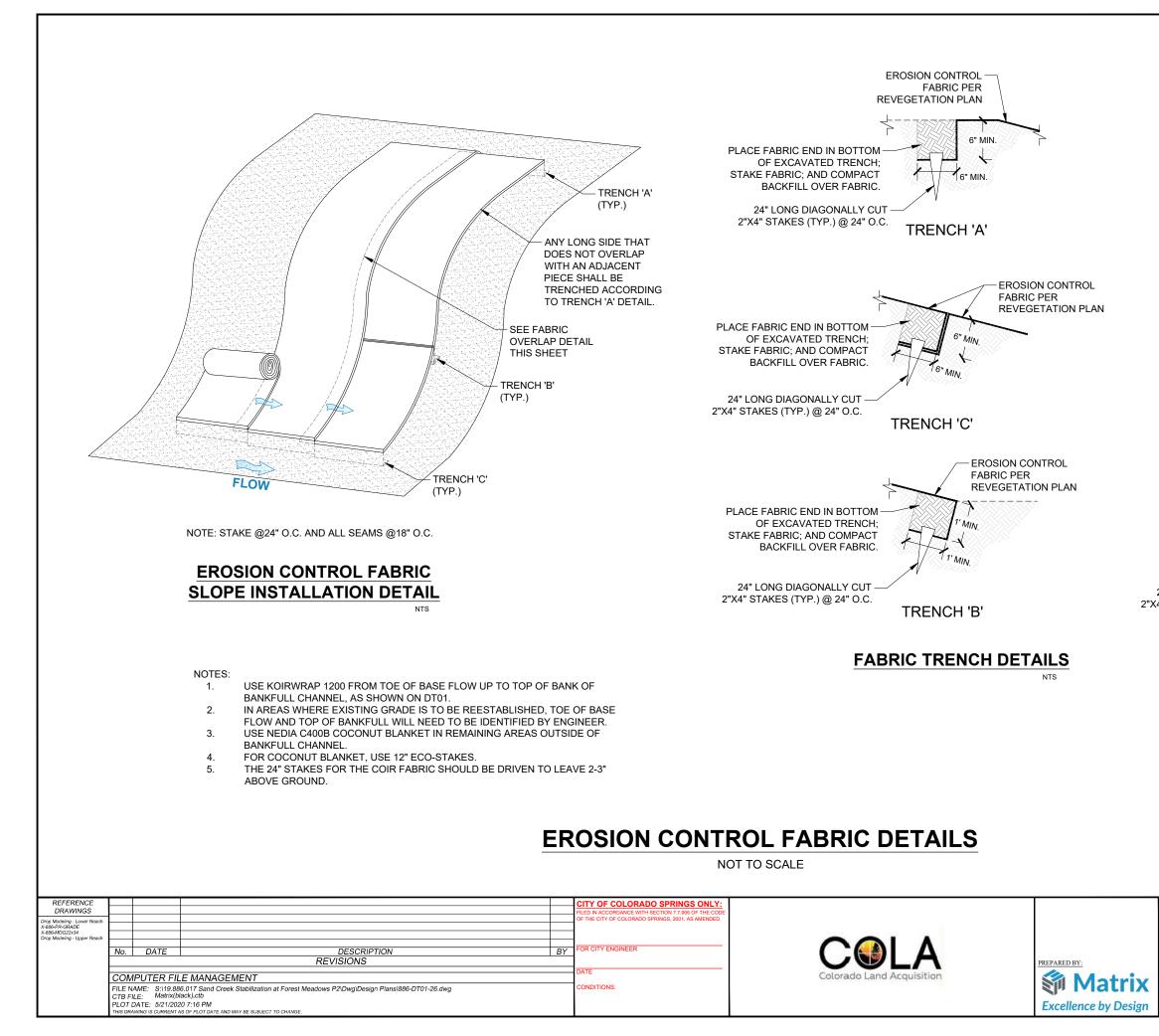
REFERENCE DRAWINGS					CITY OF COLORADO SPRINGS ONLY: FILED IN ACCORDANCE WITH SECTION 7.7.906 OF THE CODE			s
Drop Modeling - Lower Reach X-886-PR-GRADE X-886-MDG22x34 Drop Modeling - Upper Reach					OF THE CITY OF COLORADO SPRINGS, 2001, AS AMENDED.			
	No. D,	DATE	DESCRIPTION REVISIONS	BY	FOR CITY ENGINEER		PREPARED BY:	
	COMPUTER FILE MANAGEMENT				DATE	Colorado Land Acquisition	🖄 Matrix	
	FILE NAME: CTB FILE:	S:\19.886.017 Sand Matrix(black).ctb	I Creek Stabilization at Forest Meadows P2\Dwg\Design Plans\886-DT01-26.dwg		CONDITIONS:			-
	PLOT DATE:	5/21/2020 4:51 PM	TE AND MAY BE SUBJECT TO CHANGE.				Excellence by Design	I

MAY 2020

36 OF 38

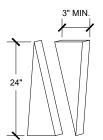
WING No

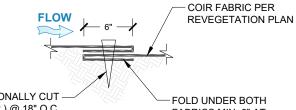

DT23


JAB RAF

HORIZ.

SHEET


GNED



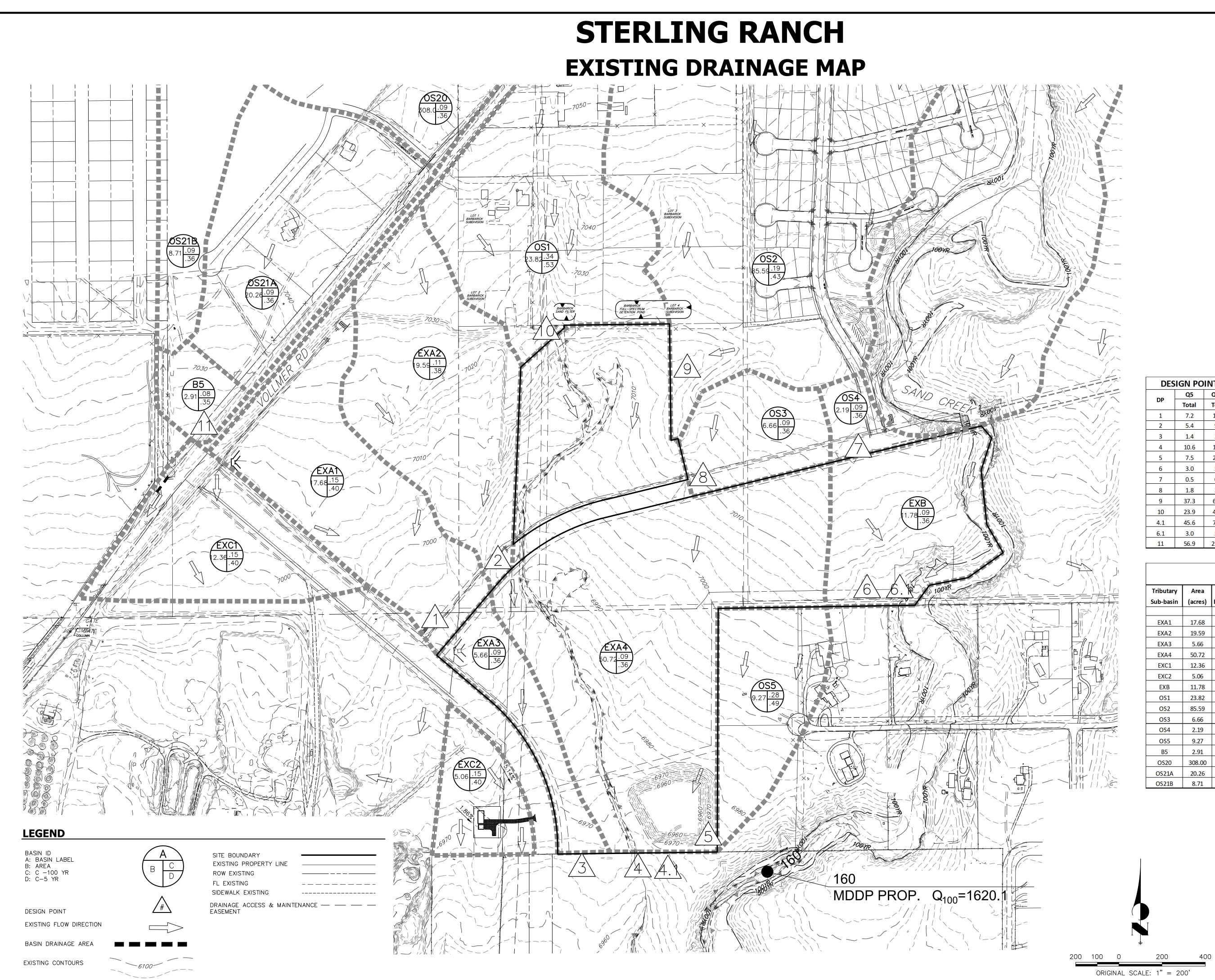
SAW 2"X4" LUMBER ON DIAGONAL

24" LONG DIAGONALLY CUT 2"X4" STAKES (TYP.) @ 18" O.C.

- FOLD UNDER BOTH FABRICS MIN. 6" AT OVERLAP

OVERLAP DETAIL

NTS


SEAL PRELIMINARY	COLORADO LAND ACQUISITION					
THIS DRAWING HAS NOT BEEN APPROVED BY GOVERNING AGENCIES AND	SAND CREEK STABILIZATION AT ASPEN MEADOWS SUBDIVISION FILING NO. 1 - 100% DESIGN PLANS					
IS SUBJECT TO CHANGE	EROSION CONTROL FABRIC DETAILS					
FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC. PROJECT No. 19.886.017	DESIGNED BY: JAB SCALE DATE ISSUED: MAY 2020 DRAWING No. DRAWN BY: RAF HORIZ. N/A CHECKED BY: AJS VERT. N/A SHEET 38 OF 38 DT25					

Final Drainage Report Sterling Ranch Filing No. 2

APPENDIX E

DRAINAGE MAPS & PLANS

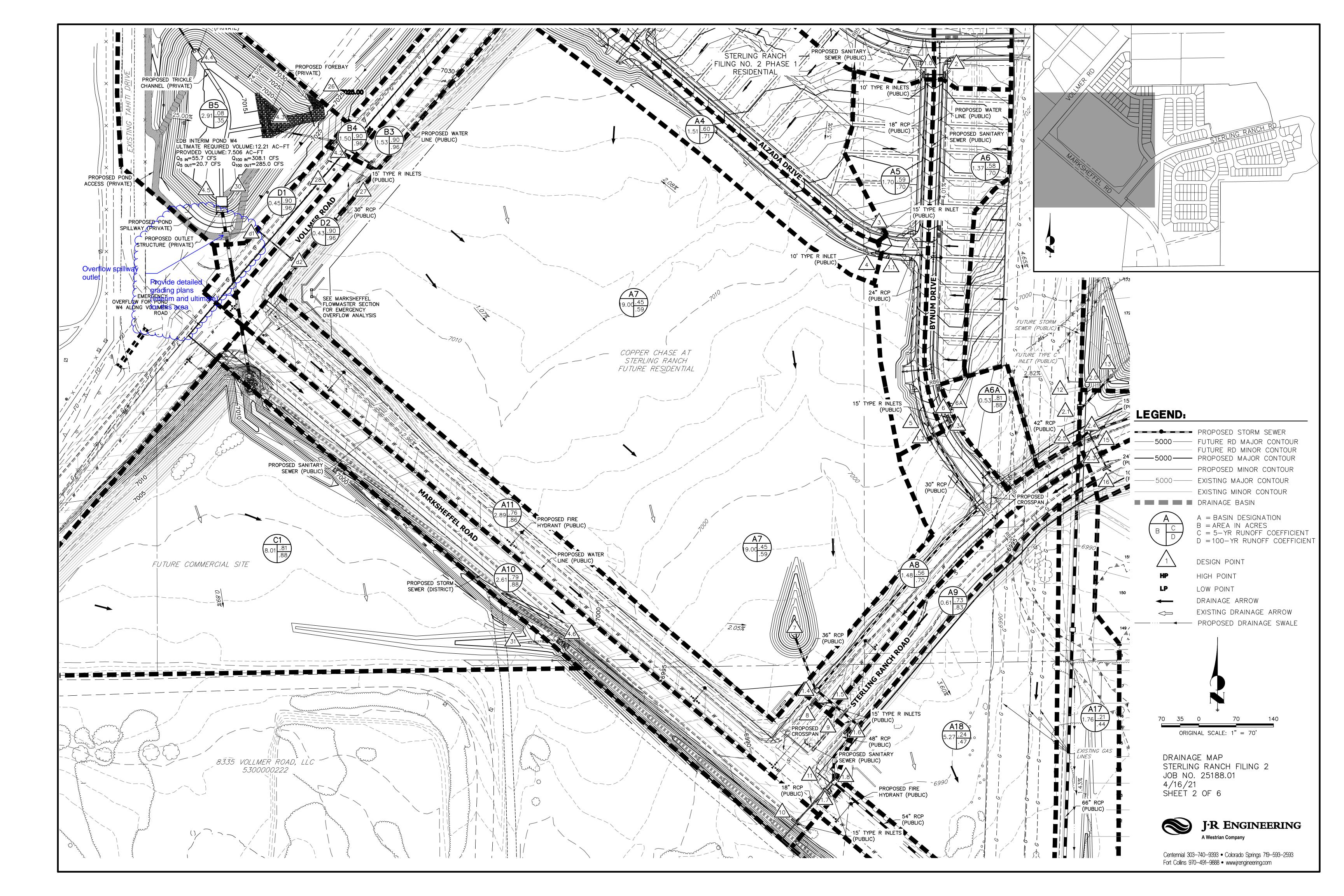
replace Sand Creek DBPS Improvements plan and add proposed improvements plan(s) from Drainage Board presentation (at least pages 18, 20, and 23).

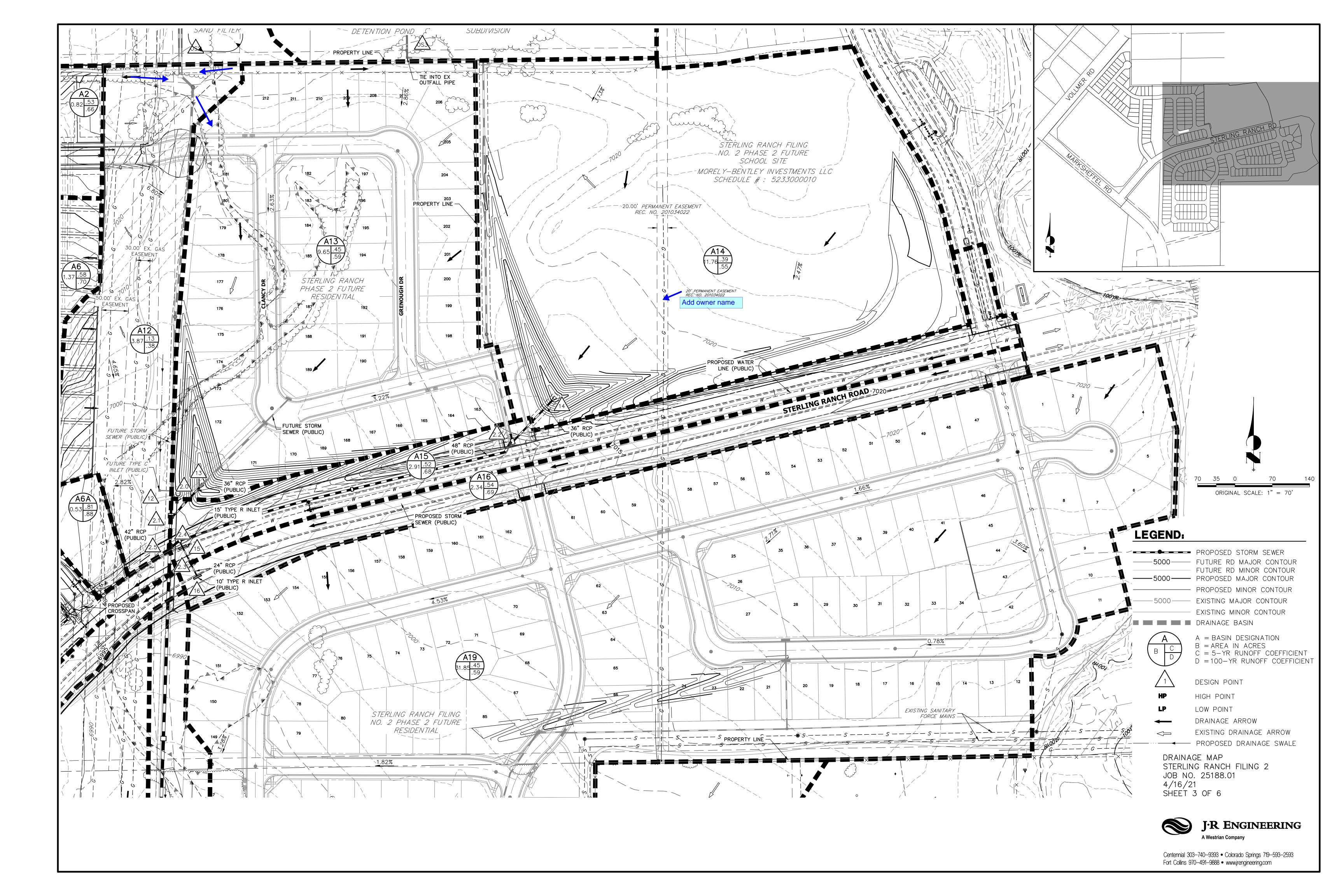
DESIGN POINT					
	Q5	Q100			
DP	Total	Total			
1	7.2	12.1			
2	5.4	9.0			
3	1.4	2.3			
4	10.6	17.8			
5	7.5	23.4			
6	3.0	5.0			
7	0.5	0.9			
8	1.8	3.1			
9	37.3	62.6			
10	23.9	40.1			
4.1	45.6	76.5			
6.1	3.0	5.1			
11	56.9	215.3			

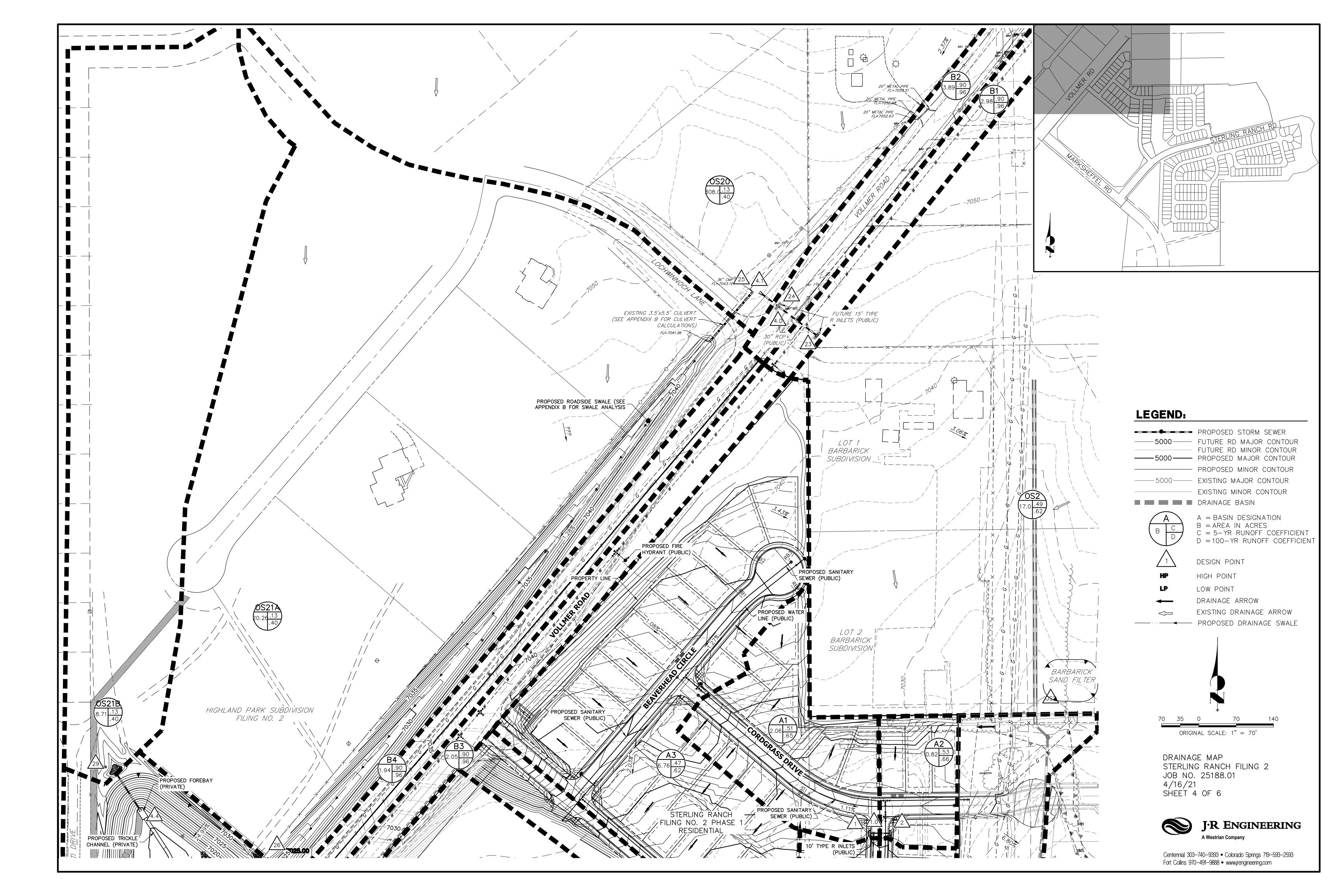

BASIN SUMMARY TABLE								
Tributary	Itary Area Percent			t _c	Q₅	Q ₁₀₀		
Sub-basin	(acres)	Impervious	C 5	C ₁₀₀	(min)	(cfs)	(cfs)	
EXA1	17.68	9%	0.15	0.40	25.4	7.2	12.1	
EXA2	19.59	5%	0.11	0.38	31.5	5.4	9.0	
EXA3	5.66	2%	0.09	0.36	26.4	1.4	2.3	
EXA4	50.72	2%	0.09	0.36	33.2	10.6	17.8	
EXC1	12.36	2%	0.09	0.36	22.0	3.3	5.5	
EXC2	5.06	2%	0.09	0.36	20.6	1.4	2.3	
EXB	11.78	2%	0.09	0.36	23.8	3.0	5.0	
OS1	23.82	45%	0.34	0.53	22.4	23.9	40.1	
OS2	85.59	18%	0.19	0.43	34.1	37.3	62.6	
OS3	6.66	2%	0.09	0.36	20.3	1.8	3.1	
OS4	2.19	2%	0.09	0.36	26.6	0.5	0.9	
OS5	9.27	9%	0.28	0.49	22.8	7.5	23.4	
B5	2.91	26%	0.79	1.19	5.0	11.8	19.9	
OS20	308.00	9%	0.13	0.40	<mark>68.9</mark>	61.0	310.0	
OS21A	20.26	12%	0.13	0.40	<mark>53.5</mark>	4.2	7.1	
OS21B	8.71	12%	0.13	0.40	24.5	3.1	5.3	

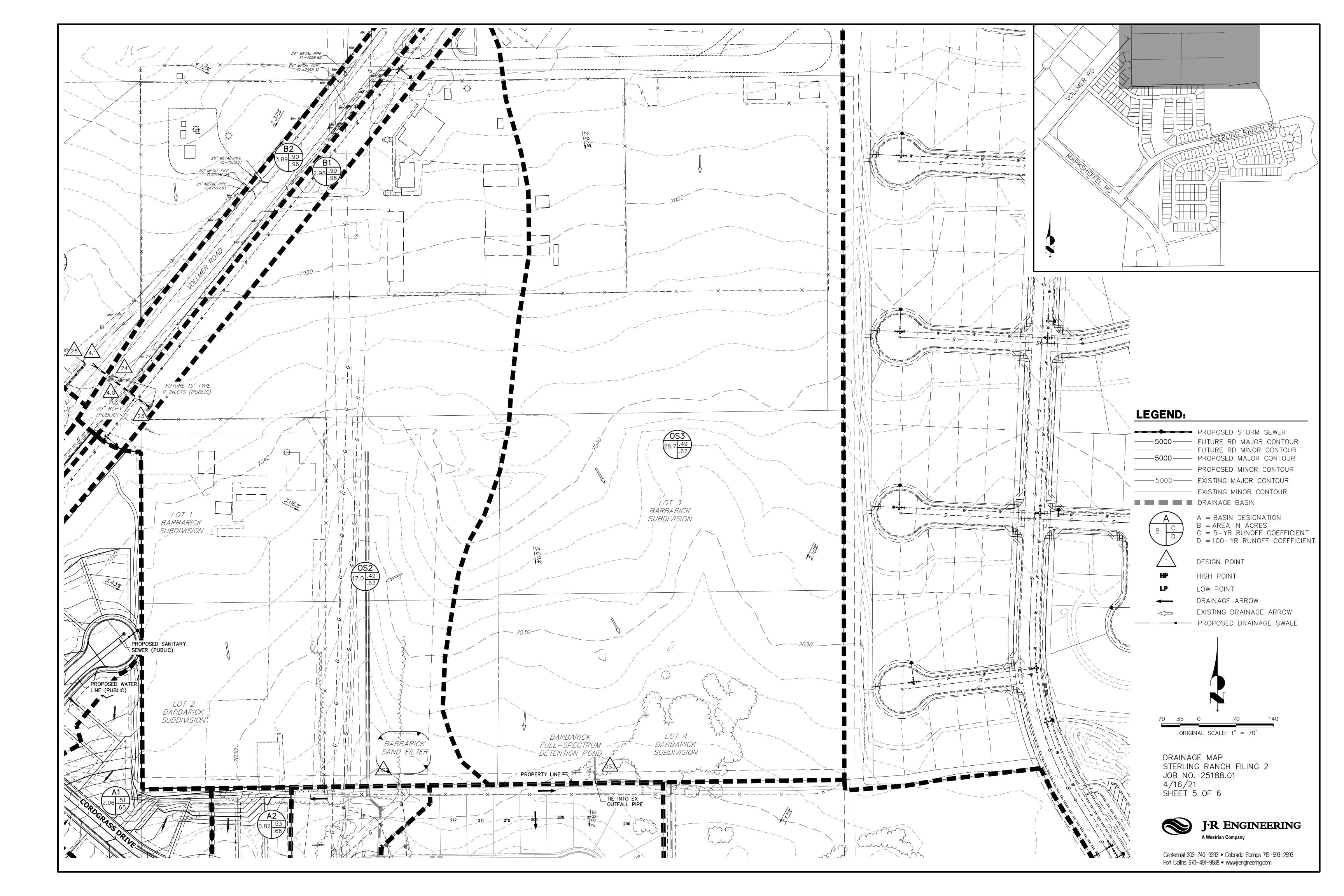
STERLING RANCH FILING 2 EXISTING DRAINAGE MAP JOB NO. 25188.00 04/19/21 SHEET 1 OF 1

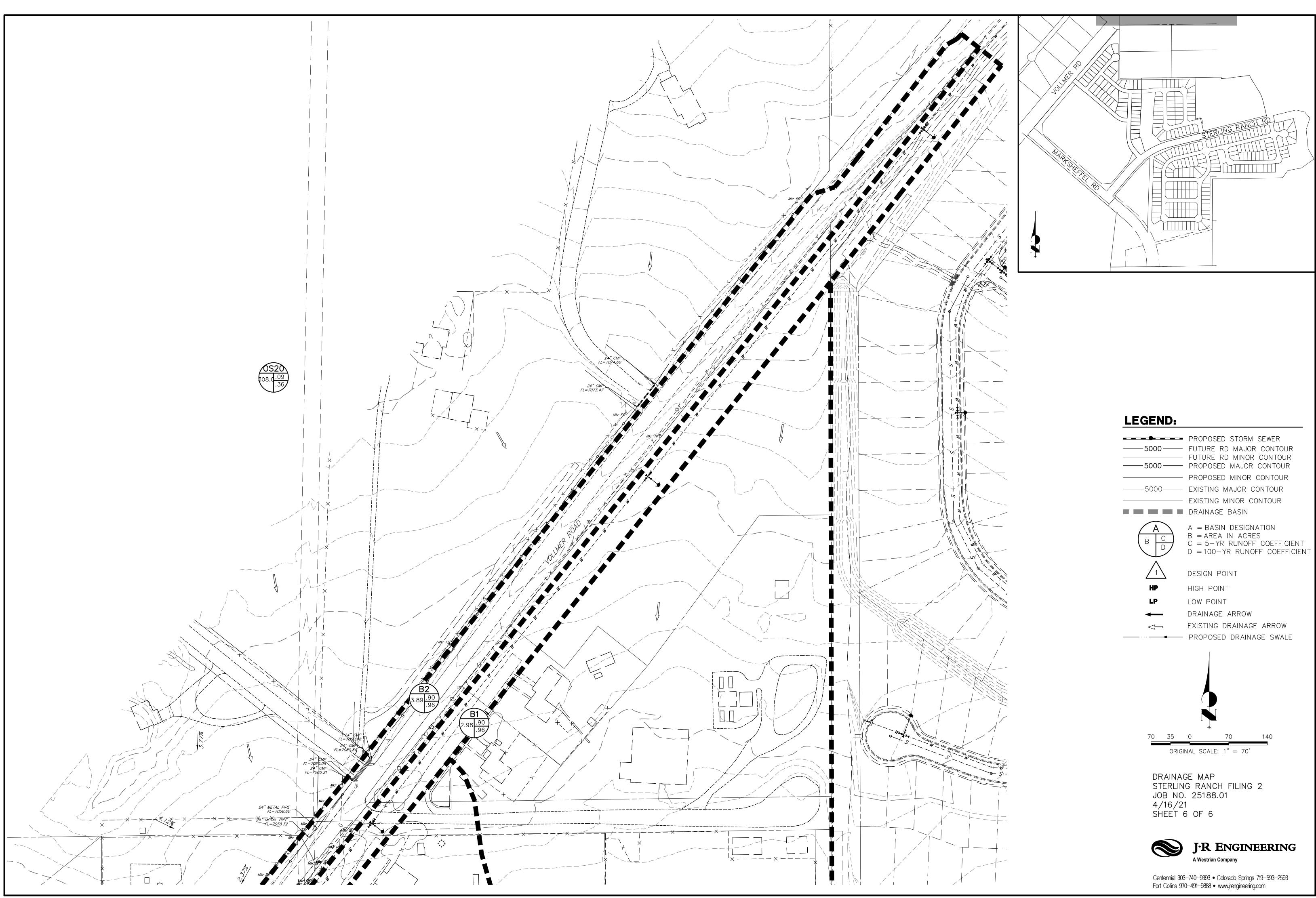
J·R ENGINEERING A Westrian Company


Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com




DES	SIGN PO	
DP	Q5	Q100
1	Total 4.4	Total 9.4
2	1.9	3.9
3	11.1	24.7
4	3.7	7.4
5	4.1	19.6
6	3.3	6.7
6A	2.2	4.1
7 8	27.5	60.6
9	3.0 1.9	12.5 4.8
10	9.2	17.3
11	9.5	19.9
12	1.9	9.5
13	15.7	34.6
14	16.0	37.9
15	5.4	11.7
16	4.4	9.6
17	1.4	4.7
18 19	4.3 38.8	14.0 85.4
20	7.1	13.4
20	7.4	15.2
22	2.7	15.4
23	8.8	15.8
24	11.5	20.6
25	61.0	310.0
26	4.2	21.9
27	6.3	11.7
28 29	6.9 3.1	14.4 16.3
30	0.9	6.4
31	2.0	15.0
32	1.4	10.0
1.0	6.0	10.3
1.1	12.6	19.7
1.2	17.6	28.2
1.3	25.9	46.9
1.3A 1.4	5.0 52.5	8.7
1.4	52.5	105.9 103.9
1.6	56.4	103.3
1.7	17.3	25.3
1.8	68.8	125.0
2.0	23.2	74.5
2.1	38.1	106.6
2.2	56.9	138.7
2.3	9.6 63.7	17.2 151.9
2.4	96.6	250.7
2.6	97.8	250.4
2.7	162.0	336.8
2.8	189.8	424.4
2.9	14.2	22.5
3.0	189.8	424.4
3.1 3.2	14.2	22.5
4.0	187.5 18.4	428.2
4.1	56.2	26.1
4.2	12.7	26.0
4.3	49.1	291.2
4.4	3.1	3.1
4.5	51.1	51.1
4.6	56.5	245.8
4.7	58.4	248.6
4.8 OS2	59.8 13.8	320.3 39.1
OS2 OS3	13.8	48.9
OS4	2.6	8.5
		0.0


Tributary	Area	Percent	ercent		t _c	Q ₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
A1	A1 2.06 66%		0.51	0.65	9.7	4.4	9.4
A2	A2 0.82 69%		0.53	0.66	9.1	1.9	3.9
A3			0.47	0.62	15.0	11.1	24.7
A4			0.60	0.71	10.2	3.7	7.4
A5			0.59	0.70	9.9	4.1	8.3
A6	1.37	75%	0.58	0.70	10.0	3.3	6.6
A6A	0.53	95%	0.81	0.88	5.0	2.2	4.1
A7	19.00	65%	0.45	0.59	18.3	27.5	60.6
A8	1.48	63%	0.56	0.70	13.9	3.0	6.3
A9	0.61	79%	0.73	0.83	8.7	1.9	3.7
A10	2.61	86%	0.79	0.88	7.9	9.2	17.3
A11	2.89	83%	0.76	0.86	8.7	9.5	18.1
A12	3.87	8%	0.13	0.38	11.9	1.9	9.5
A13	9.65	65%	0.45	0.59	14.0	15.7	34.6
A14	11.76	55%	0.39	0.55	15.3	16.0	37.9
A15	2.91	54%	0.52	0.68	14.9	5.4	11.7
A16	2.34	56%	0.54	0.69	14.7	4.4	9.6
A17	1.76	24%	0.21	0.44	13.7	1.4	4.7
A18	5.27	21%	0.24	0.47	16.4	4.3	14.0
A19	31.85	67%	0.45	0.59	25.8	38.8	85.4
A20	1.83	89%	0.81	0.89	8.0	6.6	12.2
A21	1.93	90%	0.82	0.90	8.7	6.8	12.6
A22	8.68	5%	0.11	0.37	23.3	2.7	15.4
B1	2.98	100%	0.90	0.96	17.6	8.8	15.8
B2	3.89	100%	0.90	0.96	17.6	11.5	20.6
B3	1.53	100%	0.90	0.96	9.4	5.8	10.4
B4	1.50	100%	0.90	0.96	9.4	5.7	10.2
B5	2.91	5%	0.08	0.35	13.1	0.9	6.4
C1	8.01	95%	0.81	0.88	9.9	2.0	15.0
C2	5.06	95%	0.81	0.88	7.9	1.4	10.0
OS20	308.00	9%	0.13	0.40	68.9	61.0	310.0
OS21A	20.26	12%	0.13	0.40	53.5	4.2	21.9
OS21B	8.71	12%	0.13	0.40	24.5	3.1	16.3
OS2	17.00	70%	0.49	0.62	36.0	13.8	39.1
OS3	28.70	70%	0.49	0.62	52.6	17.6	48.9
OS4	5.08	15%	0.20	0.40	29.5	2.6	8.5
D1	0.45	95%	0.81	0.88	7.0	1.7	3.1
D2	0.43	95%	0.81	0.88	7.0	1.6	3.0


5000

