PRELIMINARY/FINAL

DRAINAGE REPORT

FOR

WALKER RESERVE

Prepared For:
G3 Investments, Inc
3980 Walker Road
Colorado Springs, CO 80908

Prepared By:
Associated Design Professionals, Inc.
3520 Austin Bluffs Parkway, Suite 102
Colorado Springs, CO 80918
719.266-5212

ADP Project No. 180404
July 23, 2019

ADPcivil

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports, and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in prepasingethis report.

Michael A. Bartusek, P.E. \#23329

DEVELOPER'S STATEMENT:

I, the Developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Address: G3 Investments, Inc.
3980 Walker Road
Colorado Springs, CO 80908

Filed in accordance with the El Paso County Land Development Code, the Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Jennifer Irvine, COUNTY ENGINEER/ECM Administrator
Date

Conditions:

Walker Reserve
 Preliminary/Final
 Drainage Report

GENERAL

This project is for the platting of a 40.77-acre site into three (3) individual lots. The project is located east of SH 83 and north of Walker Road. The project is further described as being in the western quarter of Section 11, Township 11 South, Range 66 West of the $6^{\text {th }}$ Principal Meridian in El Paso County, Colorado.

Drainage from the site is tributary to West Cherry Creek. No portion of this subdivision is contained within a FEMA 100-year floodplain as delineated on the Flood Insurance Rate Map (FIRM) No. 08041C0305G and No. 08041C0285G, dated December 7, 2018. The soil on the site is classified as Kettle gravelly loamy sand and Tomah-Crowfoot loamy sand by the Soil Survey of El Paso County Area, Colorado, prepared by the Soil Conservation Service. The soils are classified as Hydrologic Soil Group B.

METHOD OF COMPUTATION

The methodology utilized for this report is in accordance with County Drainage Criteria Manual. The Rational Method for computation of runoff was used for areas of 20 acres or less.
$Q=c i a$
Where $\quad Q=$ maximum rate of runoff in cubic feet per second
$\mathrm{c}=$ runoff coefficient representing drainage area characteristics
$\mathrm{i}=$ average rainfall intensity, in inches per hour, for the duration required for the runoff to become established
$a=$ drainage basin size in acres
The overall drainage for the area including off-site flows was calculated using TR-20 Program for Project Formulated Hydrology, developed by the Soil Conservation Service (NRCS).

Times of concentration were estimated using the SCS procedures described in the DCM, based upon the hydrologic soil type, the natural conditions found in the basins and the runoff curve numbers (CN) chart from Table 5-4 of the DCM.

The 100-year, 24-hour storm precipitation selected from the NOAA isopluvial map in Figure 54 e from the DCM was 4.6 inches. The ten-year, 24 -hour storm precipitation selected from the rainfall depth-duration relationship chart in Figure 5-6 from the DCM was 3.1 inches. The fiveyear, 24-hour storm precipitation was derived from Figure 5-6 of the County Drainage Criteria Manual. The calculated rainfall amount was 2.6 inches. These numbers, along with SCS information, were used as input.

EXISTING AND DEVELOPED DRAINAGE CHARACTERISTICS

The proposed site is located within Black Forest and is comprised mostly of meadows. The 40.77-acre area contains a residence and some outbuildings. Several broad swales traverse the area along with a broad drainageway. The site has been divided into two (2) drainage basins which flow southwesterly. They are tributary to West Cherry Creek, which flows into Douglas County.

The southeastern portion of the site receives runoff from Sub-Basin A. This sub-basin produces runoff of 4.7 cfs for the five-year storm and 33.4 cfs for the 100 -year storm. The runoff continues west along Walker Road to the channel.

Sub-Basin B is tributary to the southwestern part of the site. The sub-basin produces runoff amounts of 1.9 cfs for the five-year storm and 13.9 cfs for the 100 -year storm. The storm runoff flows east through a broad swale into the channel. Storm runoff from the two basins combine at DP1 and produce total runoff of 6.0 cfs and 43.2 cfs for the five- and 100 -year storms, respectively.

Sub-Basin C drains the remainder of the site and produces runoff amounts of 4.2 cfs for the fiveyear storm and 30.3 cfs for the 100-year storm. The combined runoff of the three sub-basins at DP2 is 9.7 cfs and 69.2 cfs for the five- and 100-year storms, respectively.

The drainageway which flows through the site drains approximately 850 acres of mostly rangeland with a few homes and ranches scattered through the basin. The estimated flows through the proposed site are 137 cfs for the five-year storm and 600 cfs for the 100 -year storm. Based on these flows the estimated flow depth within the drainageway is 3.2 ft . with a 100 -year velocity of 3.7 fps .

The estimated existing and developed on-site runoff produced by these basins is shown in Table 1 below.

Table 1		
Sub-Basin	5-Year Storm Runoff (cfs)	100-Year Storm Runoff (cfs)
A	4.7	33.4
B	1.9	13.9
C	4.2	30.3
DP1(A+B)	6.0	43.2
DP2(DP1+C)	9.7	69.2
OVERALL BASIN	137	600

BASIN FEE DETERMINATION

The unplatted site consists of 40.77 acres in northern El Paso County. The project is tributary to West Cherry Creek, which is an unstudied basin that flows into Douglas County. There are no drainage basin fees associated with the project.

CONCLUSION

The platting of the 40.77 acres into three (3) individual lots has no impact on the downstream facilities. Only a minor increase in the imperviousness of the area - less than one percent (1\%) is expected. Consequently, no drainage improvements are required at this time.

REFERENCES

1. City of Colorado Springs and El Paso County (1994). Drainage Criteria Manual Volume 1 (DCM)
2. City of Colorado Springs and El Paso County (1994). Drainage Criteria Manual Volume II (DCM)
3. Soil Survey of El Paso County Area, Colorado by USDA, NRCS.
4. El Paso County (January 2006) Engineering Criteria Manual.
5. Urban Drainage and Flood Control District (June 2011). Urban Storm Drainage Criteria Manual, Volume 1-3.

APPENDIX A

MAPS

VICINITY MAP
N.T.S.

ADPcivil

3520 Austin Bluffs Pkwy, Suite 102
Colorado Springs, CO 80918
(719) 266-5212
fax: (719) 266-5341

1
$-N_{-}$
1

SOILS MAP

N.T.S.

ADPcivil
3520 Austin Bluffs Pkwy, Suite 102
Colorado Springs, CO 80918
(719) 266-5212
fax: (719) 266-5341

This map complies with FEMA's standards for the use of
digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap The flood hazard information is derived directly from the
authoritative NFHL web services provided by FEMA. This map was exported on 3/22/2019 at 1:09:22 PM and does not eflect changes or amendments subsequent to this date and
ime. The NFHL and effective information may change or ime. The NFHL and effective informatione.

This map image is void if the one or more of the following map
elements do not appear: basemap imagery, flood zone labels, elements do not appear: basemap imagery, flood zone labels, $10\rfloor$ səßิew! dew 'ąep an! unmapped and unmodernized areas cannot be used for

APPENDIX B

CALCULATIONS

	［閣	TEELS					
	－	83					
	$3 \rightarrow-$	8					
	－	3^{3}					
	${ }^{\text {B }}$						
	3 ${ }^{\text {E }}$						
	3						
	${ }^{\circ}$	8888\％					
	－${ }^{-1}$						
	－	哏为					
	－${ }^{-1}$	$8^{8} 8$					
	榒	88					
	8	8^{3}					
	－	湤気					
		8^{83}					
	－	${ }^{8}{ }^{8}$					
	年						
	${ }^{8}$						
	厚						
	8	x^{288}		＊			

WALKER.OUT

EXECUTIVE CONTROL OPERATION INCREM
RECORD ID
$+$

EXECUTIVE CONTROL OPERATION COMPUT
RECORD ID
$+\quad$ FROM XSECTION 10 TO XSECTION 5
FROM XSECTION 10 STARTING TIME $=.00$ RAIN DEPTH $=3.00 \quad$ RAIN DURATION $=1.00 \quad$ RAIN TABLE NO. $=7$ ANT. MOIST. COND $=2$

ALTERNATE NO. $=1$ STORM NO. $=1$ MAIN TIME INCREMENT $=\quad .10$ HOURS

[^0]Page 1

TR20 XEQ 04-27-18 07:20
REV PC 09/83(.2)

WALKER.OUT
3980 WALKER RD - TR20 RUN 24 HR. $5 \& 100 \mathrm{YR}$. STORM JOB $\underset{\text { DEVELOPED CONDITIONS }}{1}$ INPUT : walker

$\begin{aligned} & .60 \\ & 25.00 \\ & .01 \end{aligned}$	$\begin{aligned} & .43 \\ & \text { DISCHG } \\ & .01 \end{aligned}$	$\begin{array}{r} .30 \\ .00 \end{array}$	$15 \quad .22$	WALK $\text { . } 11$	KER. OUT .08	. 05		. 04		. 02
EXECUTIVE	CONTROL	OPERATION	ENDCMP RECORD							
+					COMPUTATIONS	COMPLETED	FOR	PASS	1	

EXECUTIVE CONTROL. OPERATION COMPUT
RECORD ID

```
FROM XSECTION 10
+
+ TO XSECTION 5
```

STARTING TIME $=.00 \quad$ RAIN DEPTH $=4.60 \quad$ RAIN DURATION $=1.00 \quad$ RAIN
TABLE NO. $=7$ ANT. MOIST. COND $=2$
ALTERNATE NO. $=1$ STORM NO. $=2$ MAIN TIME INCREMENT $=\quad .10$ HOURS 1

N RUNOFF CROSS SECTION 10							
ELEVATION(PEAK TIM (FEET)	ME(HRS)		discharge (CFs)		PEAK	
	FEET) 6.35			598.18		(RUNOFF)	
	10.46			38.72		(RUNOFF)	
	11.71			33.64			(RUNOFF)
	12.71			33.77		(RUNOFF) (RUNOFF)	
	14.23			33.56			
	18.91			21.2617.57			(RUNOFF)
	20.77						(RUNOFF)
	21.70			$\begin{aligned} & 16.08 \\ & 15.12 \end{aligned}$			
	23.59						(RUNOFF)
TIME(HRS)	FIRST HYDROGRAPH POINT $=$. 00 hours		TIME INCREMENT $=.10$	
HoURS	DRAINAGE	AREA $=1.30$	SQ.MI.				
5.00	DISCHG	17.00 .00	. 00	. 00	. 00	. 00	. 00
. 00	1.82	$17.60{ }^{69 .}$					
$438.87^{6.00}$	${ }_{348.26}$	279.186 .22	346.21	503.09	587.86	587.11	527.54
438.87 .00	348.26 DISCHG	$279.46{ }^{192} .24{ }^{229}$	164.01	141.74	126.43	115.75	108.29
102.72	98.13	93.86	77				
8.00	DISCHG	85.85.81	81.66	76.81	71.07	64.86	58.79
53.30 9.00	48.84 DISCHG	$45.58{ }_{41.74}{ }^{43}$.					38.69
38.54 .00	38.46CHG	$38.422^{41.74} 38$.		39.83	39.29	38.93	
10.00	DISCHG	. 38.44	38.48	38.53	38.59	38.66	38.70
38.44	37.52	$35.61{ }_{30.05} 32$.					
32.71 .00	33.64 ${ }^{\text {DISCHG }}$	$32.97^{30.05}$	27.68	26.44	26.87	28.60	30.83
12.00	DISCHG	23.9728.84	26.94	26.06	26.73	28.60	30.90
32.84	33.76	33.17 31.					

13.00	DISCHG	29.17	WALK 26.94	WALKER.OUT			22.08
21.99	22.73	24.53 27.15 22.08					
14.00	DISCHG	29.98	32.32	33.50	33.15	31.57	29.41
27.23	25.36	23.9923 .03					
15.00	DISCHG	22.36	21.87	21.53	21.29	21.13	21.01
20.94	20.89	$20.85 \quad 20.83$					
16.00	DISCHG	20.82	20.81	20.81	20.82	20.84	20.85
20.87	20.89	20.90 20.92					
17.00	DISCHG	20.94	20.96	20.97	20.99	21.01	21.02
21.04	21.06	$21.08 \quad 21.09$					
18.00	DISCHG	21.11	21.13	21.14	21.16	21.18	21.19
21.21	21.23	21.24					
19.00	DISCHG	21.25	21.10	20.66	19.82	18.67	17.40
16.15	14.97	13.8312 .76					
20.00	DISCHG	11.82	211.24	11.26	12.06	13.47	15.10
16.53	17.41	17.55 17.07					
21.00	DISCHG	16.31	15.57	15.09	14.99	15.22	15.60
15.93	16.08	$15.91 \quad 15.50$					
22.00	DISCHG	14.99	14.49	14.07	13.77	13.56	13.40
13.30	13.22	13.17 13.14					
23.00	DISCHG	13.12	13.17	13.36	13.76	14.31	14.87
15.12	14.71	13.36 11.28 13.17 13.31 13.86					
24.00	DISCHG	8.96	$6 \quad 6.78$	4.96	3.60	2.62	1.90
1.37	. 98	. 69	. 49				
25.00	DISCHG	. 35	- . 25	. 17	. 12	. 08	. 05
. 03	. 02	. 01	. 00				
***	WARNING	$\underset{\text { REACH }}{\text { RNCREMENT }} \underset{* * *}{\text { ATT-KIN }}$ COEFF. (C) GREATER THAN 0.667 , CONSIDER INCREMENT ***					
REDUCING	MAIN TIME						

OPERATION REACH CROSS SECTION 5

TR20 XEQ 04-27-18 07:20
REV PC 09/83(.2)

3980 WALKER RD - TR20 RUN 24 HR. 5\&100YR. STORM JOB 1 PASS 2 DEVELOPED CONDITIONS INPUT : walker

PEAK TIME (HRS)
ELEVATION(FEET)

PEAK DISCHARGE (CFS) PEAK
6.35
10.46
11.71
12.71
14.23
18.91
20.77
21.70
23.59
598.18
38.72
33.64
33.77
33.56
21.26
17.57
16.08
15.12
7333.18
7330.44
7330.38
7330.38
7330.38
7330.24
7330.20
7330.18
7330.17

TIME (HRS))	FIRST		. 00 HOURS		TIME INCREMENT $=.10$	
HOURS	DRAINAGE	AREA $=1$	1.30 SQ.MI.				
5.00	DISCHG	. 00	- 00	. 00	. 00	. 00	. 00
. 00	1.82	17.60	69.84				
6.00	DISCHG	185.22	246.21	503.09	587.86	587.11	527.54
438.87	348.26	279.46	229.84				
7.00	DISCHG	192.24	$4 \quad 163.01$	141.74	126.43	115.75	108.29
102.72	98.13	93.86	89.77				

Page 5

EXECUTIVE CONTROL OPERATION ENDCMP

COMPUTATIONS COMPLETED FOR PASS 2

EXECUTIVE CONTROL OPERATION ENDJOB
 RECORD ID

1

TR20 XEQ 04-27-18 07:20
REV PC 09/83(.2)

3980 WALKER RD - TR20 RUN 24 HR. 5\&100YR. STORM JOB 1 SUMMARY

DEVELOPED
PAGE
4

SUMMARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED
(A STAR (*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH

A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST
Page 6

SUMMARY TABLE 2 - SELECTED MODIFIED ATT-KIN REACH ROUTINGS IN ORDER OF STANDARD EXECUTIVE CONTROL INSTRUCTIONS
(A STAR (*) AFTER VOLUME ABOVE BASE (IN) INDICATES A HYDROGRAPH TRUNCATED AT A VALUE EXCEEDING BASE $+10 \%$ OF PEAK

A QUESTION MARK (?) AFTER COEFF.(C) INDICATES PARAMETERS OUTSIDE ACCEPTABLE LIMITS, SEE PREVIOUS WARNINGS)

HYDROGRAPH INFORMATION
ROUTING PARAMETERS PEAK

ALTERNATE 1 STORM 1
$+$

Page 7

APPENDIX C

DESIGN CHARTS

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Charateristics	Percent lmpervous	Punoff Coeflidents											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSEARA	HSGEtip	HSginte	HSGCED	H5gats	Hisces	H5GAEB	HSECED	H5GAES	HECCRD	H5TAA텹	H5G CRD
Buriness													
Commercid Areas	95	0.79	0.80	0.81	0.82	0.8	0.84	085	0.87	0.87	0.88	088	089
Netghbohood Aroas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	065	0.62	0.68
Residential													
1/8Atre orless	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4Acre	40	0.23	0.28	0.90	0.35	036	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	DSP0	0.32	0.38	099	094		0.52	0.7	0.57
1/2Acre	75	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.42	0.51	0.46	0.56
1Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.95	0.44	0.40	050	0.44	0.55
Indutrial													
IfhtArety	80	Q 5 ?	0.60	0.59	0.63	0.63	0.66	0.65	0.70	Q68	072	070	0.74
Heawy Arear	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0,80	0.80	0.82	081	0.83
Parks and temeteries	7	0.05	0.09	0.12	0.19	0.20	0.39	080	D. 40	034	0.45	039	0.52
Playprounds	13	0.07	0.13	0.16	0.23	0.24	031	032	042	037	D 08	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	035	0.36	0.42	0.42	050	0.46	0.54	0.50	0.58
Uadeyeloned Areas													
Historic Flow AnalysisGreenbelte Agrieulture	2	0.03	005	0.09	0.16	0.17	0.26	026	038	031	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	015	0.25	025	0.97	0.30	0.44	0.95	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	035	025	0.37	090	0.44	0.35	0.50
Exposed Rock	100	0.89	089	0.90	090	0.92	0.92	094	094	0.95	0.95	096	0.96
Offste Flow Analyss (when lendure is undefined)	45	026	031	032	$\underline{037}$	Q. 38	0.44	0.44	0.51	0.48	0.55	0.1	059
5treets													
Paved	300	0.89	0.89	0.90	0.90	092	0.92	0.94	0.94	0.95	0.55	0.96	0.96
Gravel	80	0.5	0.60	- 0.59	063	0.63	0.56	0.66	0.70	0.58	0.72	070	0.74
\cdots													
Drive and Walks	100	0.89		3 0,90	0.90	0.92	20.92	2094	4094	40.98	- 0.5	- 096	- 0.95
Roofs	50	0.71	1 0.73	0.73	0.75	0.75	- 0.7	70.78) 0.80	- 0.80	- ast	- 181	1085
Lawns	0	0.02	20.04	4 0.08	- 0.15	0.15	5 Q25	5. 0.25	F\|0.97	- 0.30	0 0.44	4. 0.35	50.50

TABLE 5-4
RUNOFF CURVE NUMBERS FOR HYDROLOGIC NOTE: THIS TABLE TO SOIL-COVER COMPLEXES--RURAL CONDITIONS
(Antecedent Moisture Condition II, and $\mathrm{I}_{\mathrm{a}}=0.2 \mathrm{~S}$) STORM ONLY. (From: U.S. Dept. of Agriculture, Soil Conservation Service, 1977)

Land Use	Cover Treatment or Practice	Hydrologic Condition	Runoff curve number by Hydrologic soil group				
			A	B	C	D	
Fallow	Straight Row	----	77	86	91	94	
Row crops	Straight Row	Poor	72	81	88	91	
	Straight Row	Good	67	78	85	89	
	Contoured	Poor	70	79	84	88	
	Contoured	Good	65	75	82	86	
	Cont. and terraced	Poor	66	74	80	82	
	Cont. and terraced	Good	62	71	78	81	
Small grain	Straight Row	Poor	65	76	84	88	$(i$
		Good	63	75	83	87	
	Contoured	Poor	63	74	82	85	
		Good	61	73	81	84	
	Cont. and terraced	Poor	61	72	79	82	
		Good	59	70	78	81	
Close-seeded legumes 1/ or rotation meadow	Straight Row	Poor	66	77	85	89	
	Straight Row	Good	58	72	81	85	
	Contoured	Poor	64	75	83	85	
	Contoured	Good	55	69	78	83	
	Cont. and terraced	Poor	63	73	80	83	
	Cont. and terraced	Good	51	67	76	80	
Pasture or ra		Poor	68	79	86	89	
		Fair	49	69	79	84	
		Good	39	61	74	80	
	Contoured	Poor	47	67	81	88	
	Contoured	Fair	25	59	75	83	
	Contoured	Good	6	35	70°	79	
Meadow		Good	30	58	71	78	
Woods		Poor	45	66.	77	83	
		Fair	36	60	73	79	
		Good	25	55	70	77	
Farmsteads		----	59	74	82	86	
$\begin{aligned} & \text { Roads (dirt) } \underline{2 /} \\ & \text { (hard surface) } 2 / \end{aligned}$		-	72	82	87	89	
		----	74	84	90	92	
1/ Close-drilled or broadcast 2/ Including right-of-way					.		C

Figure 6－25．Estimate of Average Concentrated Shallow Flow

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

DF Equations
$\mathrm{I}_{100}=-2.52 \ln (\mathrm{D})+12.735$
$\mathrm{I}_{50}=-2.25 \ln (\mathrm{D})+11.375$
$\mathrm{I}_{25}=-2.00 \ln (\mathrm{D})+10.111$
$\mathrm{I}_{10}=-1.75 \ln (\mathrm{D})+8.847$
$\mathrm{I}_{5}=-1.50 \ln (\mathrm{D})+7.583$
$\mathrm{I}_{2}=-1.19 \ln (\mathrm{D})+6.035$
Note: Values calculated by equations may not precisely dupplicate values read from figure.

[^0]: OPERATION RUNOFF CROSS SECTION 10

