

FINAL DRAINAGE STUDY

APRIL 2019

By:

For: Steel Structures America Inc. 3635 E. Covington Ave. Post Falls, ID 83854

	Terra Forma Solutions
include contact information: address, phone number	

Add PCD File No. PPR1919

MONUMENT STEEL STRUCTURES FINAL DRAINAGE STUDY

Page 1 of 11

ENGINEER'S CERTIFICATION:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Todd Johnson, P.E. #37660

Date

Owner/Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

Justin Sternberg Steel Structures America Inc. 3635 E. Covington Ave. Post Falls, ID 83854 Date

El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator Date

Conditions:

FINAL DRAINAGE STUDY

Page 2 of 11

TABLE OF CONTENTS

SCOP	E	
I	GENE	RAL LOCATION AND DESCRIPTION
	A.	Site Location
	В.	Description of Property4
п. –	DRAIN	IAGE BASINS AND SUB-BASINS4
	A.	Major Drainage Basins4
	В.	Minor Drainage Basins4
ш.	DRAIN	IAGE DESIGN CRITERIA7
	A.	Regulations7
	В.	Drainage Studies, Outfall Systems Plans, Site Constraints7
	C.	Hydrology7
	D.	Hydraulics7
IV.	STOR	MWATER MANAGEMENT FACILITY DESIGN8
	A.	Proposed Stormwater Conveyance Facilities
	В.	Proposed Stormwater Storage Facilities9
	C.	Water Quality Enhancement Best Management Practices9
	D.	Floodplain Modification9
	E.	Additional Permitting Requirements10
V .	CONC	LUSIONS
	A.	Compliance with Standards10
	В.	Variances10
	C.	Drainage Concept10
VI.	LIST C	DF REFERENCES
		– Hydrologic Computations

- **APPENDIX B** Hydraulic Computations
- **APPENDIX C** Detention/Water Quality Enhancement BMPs
- **APPENDIX D** Referenced Information
- **APPENDIX E** Drainage Maps

FINAL DRAINAGE STUDY

Page 3 of 11

SCOPE

The purpose of this report is to present the drainage plan for the proposed Monument Steel Structures development. The following includes final analysis and design information for the proposed drainage systems in general conformance with the standards and specifications established by El Paso County, Colorado Springs and the Urban Drainage and Flood Control District (UDFCD).

I. GENERAL LOCATION AND DESCRIPTION

A. Site Location

- The Monument Steel Structures development is located at 18910 Base Camp Road in Section 11, Township 11 South, Range 67 West of the 6th Principal Meridian in El Paso County, State of Colorado.
- Approximate geodetic coordinates for the site are: 39°6'21"N, 104°51'48"W
- The site is bordered to the north by the Greater Europe Missions, to the east by Base Camp Road, to the west by Monument Hill Road and to the south by Deer Creek Road.
- See Site Location Map below for overall site location:

Provide a vicinity map or revise the site location to show a wider area.

FINAL DRAINAGE STUDY

Page 4 of 11

B. <u>Description of Property</u>

- The site is approximately 4.0 acres in size. The site is currently vacant and is covered by native grasses and weeds. Topography generally slopes from northeast to southwest towards a roadside ditch along Monument Hill Road with grades generally varying from 1% to 10%.
- The site is not located within a flooplain as shown on the FEMA FIRM Map No. 08041C0276G dated December 7, 2018.
- The site lies within Zone X which is described as follows: Areas of 0.2% annual chance flood; areas of 1% annual chance of a flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. See Appendix D for a FEMA Firm panel exhibit.
- The proposed Monument Steel Structures development is proposing a sales office with display structures and Mini Warehouse and RV Boat Storage.
- Soil types on site as identified by the Natural Resources Conservation Service (NRCS) are as follows:

	Hydrologic Soil Group			
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
92	Tomah – Crowfoot Loamy sands, 3 to 8 percent slopes	В	4.7	80.6%
93	Tomah – Crowfoot complex, 8 to 15 percent slopes	В	1.1	19.4%

- See Appendix D for soils map.
- There are no known irrigation canals or ditches within the project boundaries.

II. DRAINAGE BASINS AND SUB-BASINS

A. Major Drainage Basins

Provide an existing condition drainage map and narrative.

- The site is tributary to the Crystal Creek basin within Monument Creek watershed. There are no major drainageways crossing or adjacent to the site. Runoff from the proposed site will release from the on-site extended detention basin at the southwest corner of the site and will enter the proposed 30" RCP flared end section (which is to be constructed with the Monument Hill widening project), matching existing drainage patterns.
- Off-site flow patterns will not be influenced by the development of this site.
- B. <u>Minor Drainage Basins</u>
 - **Basin OS-1:** Consists of vacant land in between the north boundary of the site and the southern parking lot of the Greater Europe Missions property.
 - Runoff generated in this basin will sheet flow overland from north to south entering the site along the northern property boundary and combine flows with Basin A-4 (See Below)

FINAL DRAINAGE STUDY

Page 5 of 11

- **Basin OS-2:** Consists of vacant land in between the north boundary of the site and the southern parking lot of the Greater Europe Missions property.
 - Runoff generated in this basin will sheet flow overland from north to south entering the site along the northern property boundary and combine flows with Basin A-3.
- **Basin OS-3:** Consists of vacant land between the north boundary of the site and the southern parking lot of the Greater Europe Missions property. This basin also consists of the western half of Base Camp Road from the middle of the eastern property boundary north to the southern access of Greater Europe Missions property.
 - Runoff generated in this basin will sheet flow overland from north to south and east to west entering the site along the northern and eastern property boundary and combine flows with Basin A-2
- **Basin OS-4:** Consists of the western half of Base Camp Road and landscaping from the middle of the eastern property boundary south to the intersection of Base Camp Road and Deer Creek Road.
 - Runoff generated in this basin will sheet flow overland from east to west entering the site along the eastern property boundary and combine flows with Basin A-1.
- **Basin OS-5:** Consists of the north half of the landscaping berm separating the northern roadside ditch of Deer Creek Road and the southern curb and gutter.
 - Runoff generated in this basin will sheet flow overland from south to north entering the site along the southern boundary and combine flows with Basin A-1.
- **Basin OS-6:** Consists of vacant land in between the north boundary of the site and the southern parking lot of the Greater Europe Missions property.
 - Runoff generated in this basin will sheet flow overland from the north to the south entering the site along the northern boundary and be directed west to the Monument Hill Road roadside ditch via a rip-rap rundown.

Basin OS-7: Consists of rooftops and landscaping at the western portion of the site.

- Runoff generated within this boundary will be released from the rooftops via downspouts and be directed west to the Monument Hill Road roadside ditch. Low Impact Development is being achieved within this basin as impervious and pervious areas are being disconnected along with implementing infiltration and water quality as the flows runs along the earth lined roadside ditch. The 100-year allowable release for the EDB has been reduced by the derived 100-yr runoff of this basin.
- **Basin OS-8:** Consists of the Monument Hill roadside ditch and landscaping behind the proposed buildings along the western boundary.
 - Runoff generated in this basin will combine with the flows entering the basin from the Monument Hill roadside ditch to the north and the flows from Basin OS-6 and OS-7 described above. The combined flows will travel south along the earth lined roadside ditch to the 30" FES transporting the flows under Deer Creek Road and off site.

Revise. Water quality capture volume is not provided by the roadside ditch

FINAL DRAINAGE STUDY

Page 6 of 11

- **Basin A-1:** Consist of rooftops, pavement and landscaping at the southeastern corner of the site.
 - Runoff generated in this basin will combine with the flows entering the site from the east (Basin OS-4) and the flows entering the site from the south (Basin OS-5). The flows will travel along the southern curb and gutter from the northeast to the southwest being captured by the proposed on-grade 10' Type R inlet (IN-1) at Design Point 1 where it will combine with flows from Basin A-2. This inlet has been sized to capture the 5-year flows and most of the 100-yr flows
 - Captured flows will be transported to the proposed EDB via concrete pipe.
 - Bypassing flows will travel west to Design Point 3 and be captured by a proposed Double Type 13 Combo inlet (IN-2) before entering the proposed EDB via concrete pipe.
- **Basin A-2:** Consists of rooftops, pavement and landscaping stretching from the northern boundary to the southern boundary encompassing the eastern-middle portion of the site.
 - Runoff generated in this basin will combine with the flows entering the site from the north (Basin OS-3). The flows will be directed towards and transported south via a 4-foot drainage pan being captured by the proposed on-grade 10' Type R inlet (IN-1) at Design Point 1 where it will combine with flows from Basin A-1 (See basin description above).
- **Basin A-3:** Consists of rooftops, pavement, and landscaping stretching from the northern boundary to the southern boundary encompassing the middle portion of the site.
 - Runoff generated in this basin will combine with the flows entering the site from the north (Basin OS-2). The flows will be directed towards and transported south vie a modified 2-foot curb and gutter running along the east side of the 48-foot storage building.
 - The said curb is proposed to be modified by having a 1-foot vertical height instead of the typical 0.5-foot vertical height for added capacity and building protection.
 - The flows will flow from the 2-curb and gutter to a 4-foot drainage pan at the south end of the 48-foot storage building directing flows south to Design Point 3. Here the flows will be combined with any bypass flows bypassing the on-grade IN-1 and be captured by a proposed Double Type 13 Combo inlet (IN-2) in sump and be transported to the EDB via concrete pipe.
- **Basin A-4:** Consists of rooftops, pavement, sidewalk and landscaping stretching from the northern boundary to the southern boundary encompassing the western-middle portion of the site.
 - Runoff generated in this basin will combine with the flows entering the site from the north (Basin OS-1). The flows will be directed towards and transported south via a 4-foot drainage pan towards Design Point 4 being captured by a proposed

FINAL DRAINAGE STUDY

Page 7 of 11

Triple Type 13 Combo inlet (IN-3) in sump and be transported to the EDB via concrete pipe.

- Basin A-5: Consists of the onsite EDB.
 - Runoff generated in this basin will combine with all flows tributary to the EDB and will be captured and released by a controlled outlet structure.

III. DRAINAGE DESIGN CRITERIA

A. <u>Regulations</u>

 The site has been designed in accordance with the El Paso County Drainage Design Criteria Manual, adopted portions of the City of Colorado Springs Drainage Criteria Manual Volume 1, dated May 2014, and the Urban Storm Drainage Criteria Manual, Volumes 1, 2, and 3 (UDFCD), Urban Drainage and Flood Control District, latest revisions. The portions of the City of Colorado Springs Drainage Criteria Manual adopted by the County are Chapter 6 (Hydrology) and Chapter 13 Section 3.2.1 (Full Spectrum Detention).

B. Drainage Studies, Outfall Systems Plans, Site Constraints

• The site is included within the limits of the Dirty Woman Creek and Crystal Creek Drainage Basin Planning Study prepared by Kiowa Engineering in September of 1993. There are no drainage way facilities proposed in the study that are located within the limits of the site.

C. <u>Hydrology</u>

 \mathcal{I}

7

Replace reference to

City DCM

• Peak storm runoff was determined using the Rational Formula: Q=CIA

Design storm recurrence intervals are the 5-year storm for the minor event and the 100year storm for the major event.

In accordance with the City of Colorado Springs Drainage Criteria Manual Volumes 1 and 2, dated May 2014, the following 1-hour point rainfall values (in.) were used: 5-yr = 1.50, 100-year = 2.52.

Runoff coefficients have been determined using the equations in UDFCD Volume 1's Table 6-4.

Time of Concentration has been calculated using the equations in UDFCD Volume 1, Chapter 6, Section 2.4.

Rainfall intensities were calculated using UDFCD Volume 1's Equation 5-1.

- See Appendix A for all hydrologic calculations.
- D. <u>Hydraulics</u>
 - The calculation methods for private improvements are based upon the Manning's Equation and the City of Colorado Springs Drainage Criteria Manual Volumes 1 and 2, dated May 2014.
 - On-Site storm drainage improvements are designed for the 5-year and 100-year events.

FINAL DRAINAGE STUDY

Page 8 of 11

• See Appendix B for all hydraulic calculations.

IV. FSTORMWATER MANAGEMENT FACILITY DESIGN

A. Existing Stormwater Drainage

- The existing stormwater runoff for the proposed site flows overland from the northeast corner of the site towards the southwest corner with a fairly uniform grade of 3.5%.
- Historically the runoff from the vacant land between the north boundary of the site and the southern parking lot of the Greater Europe Missions property flows onto the site along the northern boundary of the site.
- Historically the runoff from the western half of Base Camp Road flows onto the site along the eastern boundary of the site.
- The eastern half of the proposed site flows into the roadside ditch north of Deer Creek Road and flows to the southwest corner of the site where it will be captured by the proposed 30" RCP flared end section (which is to be constructed with the Monument Hill widening project).
- The western half of the proposed site flows into the reconstructed roadside ditch east of Monument Hill Road (reconstructed with the Monument Hill widening project) and flows to the southwest corner of the site where it will be captured by the proposed 30" RCP flared end section (which is to be constructed with the Monument Hill widening project).

Proposed Stormwater Conveyance Facilities

- The proposed drainage patterns will follow historic flow patterns as closely as possible.
- The general concept for the site drainage will be for storm runoff to surface flow from the building roofs and pavement generally flowing from the north side of the site to the south side of the site via 4-foot v-channel drainage pans and curb and gutter. Runoff will be captured by a series of inlets south of the on-site drive isles and piped to the proposed Extended Detention Basin designed in accordance with City of Colorado Springs criteria.
- The proposed Extended Detention Basin will drain through a modified CDOT Type C outlet structure. The outlet structures released flow will be piped to the roadside ditch east of Monument Hill Road and be captured by the 30" RCP flared end section (which is to be constructed with the Monument Hill widening project.)
- The on-site storm sewers and EDB will be private and will be maintained by the property owner.
- Conveyance of off-site runoff is generated from Basin OS-7. Low Impact Development is being achieved within this basin as impervious and pervious areas are being disconnected along with implementing infiltration and water quality as the flows runs along the earth lined roadside ditch. The 100-year allowable release for the EDB has been reduced by the derived 100-yr runoff of this basin.

Provide the expected construction date. What is the expected construction date for this project? If the site is to be constructed prior to the Monument Hill widening project, analyze whether the existing condition of the Monument Hill Road/Deer Creek Road intersection provide for a suitable outfall and drainage?

FINAL DRAINAGE STUDY

Page 9 of 11

C. <u>Proposed Stormwater Storage Facilities</u>

- An Extended Detention Basin is proposed at the southwest corner of the site to treat storm runoff and attenuate peak flows in accordance with the City of Colorado Springs criteria and UDFCD.
- The Extended Detention Basin and outlet structure have been sized and designed with the UDFCD UD-Detention v3.07 spreadsheet to control the Water Quality Capture Volume (WQCV) and 100-year Revise. The fourth step is "Consider
- The pond will include a trickle including a 2.5-ft deep micrope protection.
 Need for Industrial and Commercial BMPs. See ECM Appendix I Section 1.7.2.
- See Appendix C for Detention and Water Quality Calculations
- D. Water Quality Enhancement Best Management Practices
 - El Paso County requires the Four Step Process be followed for the selection and siting of structural BMPs for new development to provide water quality for stormwater runoff being discharged into State Waters. The Four Steps are; employ runoff reduction practices, stabilize drainageways, provide water quality capture volume (WQCV) and implement permanent BMPs.
 - The design of the site has followed this process as much as possible. Pavement
 has been minimized to meet only the parking spaces as required by the county
 and landscaped areas are included to assist in reducing runoff. There are no
 major drainageways on site. The drainageways adjacent to the site are being
 improved with riprap protection where concentrated flows may cause erosion.
 The WQCV is being provided in the permanent BMP which is an Extended
 Detention Basin designed in accordance with county regulations
 - Discharge will be controlled by a standard outlet structure with a flow control plate designed to release the WQCV over 40 hours and release 97% of the 5-year storm in less than 72 hours.
 - The 100-year discharge will be limited to be at or below 2.95 cfs (0.85 cfs/acre for Type B soils minus the 100-yr peak runoff from Basin OS-7 which will bypass the EDB) and will be controlled by a circular orifice plate located at the discharge side of the outlet structure prior to the flow entering an 18" RCP flowing to the proposed drainage swale adjacent to Monument Hill Road. This swale flows to the south and will be captured by the 30" FES to be constructed as part of the Monument Hill Road widening Improvements. In the event the outlet structure should become clogged with debris, and emergency overflow weir and swale will be a notched 15' wide by 1' deep cavity in the proposed EDB upper wall. Overflow will go to the proposed drainage swale along Monument Hill Road flowing to the south to the existing 30" FES and will be routed off site.

E. <u>Floodplain Modification</u>

• A floodplain modification is not anticipated for the construction of the Monument Steel Structures development.

FINAL DRAINAGE STUDY

Page 10 of 11

F. Additional Permitting Requirements

• No additional permitting is anticipated for the construction of the Monument Steel Structures development.

V. CONCLUSIONS

A. <u>Compliance with Standards</u>

• The drainage design for the Monument Steel Structures site detailed within this report is in general compliance with the El Paso County, Colorado Springs and UDFCD criteria.

B. <u>Variances</u>

• There are no variances requested for this project at this time.

C. Drainage Concept

- The proposed drainage patterns will follow historic flow patterns as closely as possible. The majority of the site will sheet flow to the southwest into the proposed Extended Detention Basin.
- With the development of the proposed site; there should be no adverse impact to downstream facilities, adjacent properties, channel depths, velocities, or erosion rates, due to release flows being below historic rates.

VI. LIST OF REFERENCES

- Expaso County's Engineering Criteria Manual, Revised 07/29/2015 Revision 5.
- City of Colorado Springs Drainage Criteria Manual Volumes 1 and 2, dated May 2014.
- Urban Storm Drainage Criteria Manual, Volumes 1, 2, and 3, Urban Drainage and Flood Control District, latest editions.
- Federal Emergency Management Agency Flood Insurance Rate Map Panel Number 08041C0276G, effective December 7, 2018.
- Dirty Woman Creek and Crystal Creek Drainage Basin Planning Study prepared by Kiowa Engineering Dated September, 1993.

Provide a section for drainage and bridge fees and calculate the required drainage and bridge fee. See Note 9 of the subdivision plat below. Attached to the right is the subdivision plat.

(9) DRAINAGE FEES FOR LOT 2 SHALL BE PAID PRIOR TO THE ISSUANCE OF A BUILDING PERMIT AND THOSE FEES ARE TO BE CALCULATED ON THE BASIS OF THE FEE STRUCTURE IN EFFECT AT THE TIME OF BUILDING PERMIT APPLICATION.

FINAL DRAINAGE STUDY Page 11 of 11

APPENDICES

- **APPENDIX A** Hydrologic Computations
- **APPENDIX B** Hydraulic Computations
- **APPENDIX C** Detention/Water Quality Enhancement BMPs
- **APPENDIX D** Referenced Information
- **APPENDIX E** Drainage Maps

APPENDIX A - HYDROLOGIC COMPUTATIONS

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Monument, Colorado, USA* Latitude: 39.1061°, Longitude: -104.8634° Elevation: 7139.11 ft** * source: ESRI Maps ** source: USGS

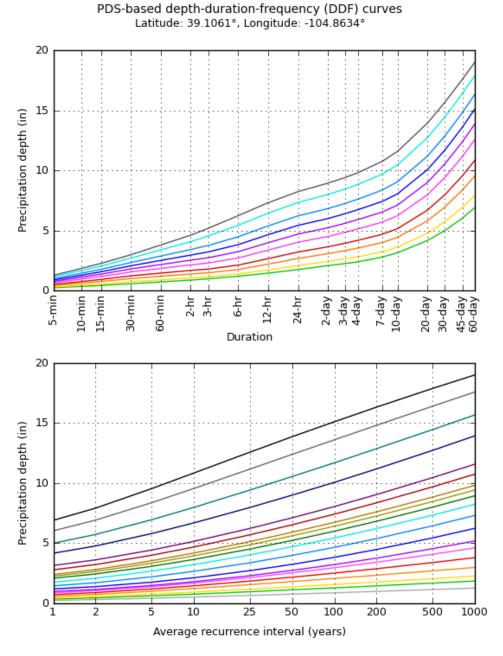
POINT PRECIPITATION FREQUENCY ESTIMATES

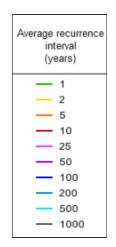
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

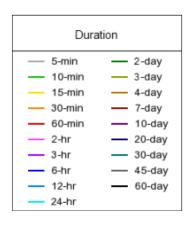
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


PDS	-based po	int precip	itation fre	quency e	stimates v	vith 90% c	onfidenc	e interva	ls (in inc	hes) ¹
Duration				Average	recurrence	interval (ye	ars)			
Baration	1	2	5	10	25	50	100	200	500	1000
5-min	0.244 (0.200-0.297)	0.312 (0.256-0.379)	0.426 (0.348-0.518)	0.523 (0.424-0.638)	0.659 (0.517-0.830)	0.768 (0.587-0.974)	0.878 (0.648-1.14)	0.993 (0.702-1.31)	1.15 (0.780-1.55)	1.27 (0.839-1.73)
10-min	0.358 (0.293-0.434)	0.457 (0.375-0.555)	0.624 (0.509-0.759)	0.765 (0.621-0.934)	0.966 (0.757-1.22)	1.12 (0.859-1.43)	1.29 (0.949-1.66)	1.45 (1.03-1.92)	1.68 (1.14-2.27)	1.86 (1.23-2.53)
15-min	0.436 (0.358-0.530)	0.558 (0.457-0.677)	0.761 (0.621-0.926)	0.933 (0.757-1.14)	1.18 (0.923-1.48)	1.37 (1.05-1.74)	1.57 (1.16-2.03)	1.77 (1.25-2.34)	2.05 (1.39-2.77)	2.27 (1.50-3.09)
30-min	0.575 (0.471-0.698)	0.736 (0.603-0.894)	1.00 (0.820-1.22)	1.23 (1.00-1.51)	1.56 (1.22-1.96)	1.81 (1.38-2.30)	2.07 (1.53-2.68)	2.34 (1.65-3.09)	2.70 (1.84-3.64)	2.99 (1.97-4.07)
60-min	0.727 (0.596-0.882)	0.897 (0.735-1.09)	1.20 (0.975-1.45)	1.46 (1.18-1.78)	1.85 (1.46-2.35)	2.17 (1.67-2.78)	2.52 (1.86-3.27)	2.88 (2.04-3.82)	3.39 (2.31-4.59)	3.80 (2.51-5.17)
2-hr	0.878 (0.725-1.06)	1.06 (0.872-1.27)	1.38 (1.14-1.67)	1.69 (1.38-2.04)	2.15 (1.71-2.72)	2.54 (1.97-3.23)	2.96 (2.21-3.84)	3.42 (2.45-4.52)	4.08 (2.80-5.50)	4.61 (3.07-6.24)
3-hr	0.987 (0.818-1.18)	1.16 (0.958-1.39)	1.49 (1.22-1.78)	1.80 (1.48-2.17)	2.30 (1.85-2.92)	2.74 (2.14-3.49)	3.22 (2.42-4.18)	3.76 (2.71-4.97)	4.54 (3.14-6.12)	5.19 (3.46-6.99)
6-hr	1.20 (1.00-1.43)	1.39 (1.16-1.65)	1.76 (1.46-2.09)	2.13 (1.75-2.54)	2.72 (2.21-3.43)	3.24 (2.55-4.10)	3.83 (2.90-4.93)	4.48 (3.25-5.89)	5.44 (3.79-7.29)	6.24 (4.19-8.35)
12-hr	1.46 (1.22-1.71)	1.72 (1.44-2.02)	2.20 (1.84-2.60)	2.66 (2.21-3.15)	3.37 (2.74-4.19)	3.99 (3.15-4.98)	4.65 (3.54-5.92)	5.39 (3.92-7.00)	6.44 (4.50-8.55)	7.31 (4.94-9.72)
24-hr	1.76 (1.48-2.05)	2.09 (1.76-2.44)	2.68 (2.25-3.13)	3.22 (2.69-3.77)	4.03 (3.28-4.93)	4.70 (3.73-5.80)	5.43 (4.15-6.83)	6.22 (4.55-8.00)	7.33 (5.15-9.64)	8.23 (5.61-10.9)
2-day	2.09 (1.77-2.41)	2.44 (2.07-2.82)	3.08 (2.60-3.56)	3.65 (3.07-4.24)	4.51 (3.69-5.47)	5.23 (4.17-6.39)	6.00 (4.61-7.48)	6.83 (5.03-8.70)	8.00 (5.65-10.4)	8.94 (6.13-11.7)
3-day	2.26 (1.92-2.59)	2.65 (2.26-3.05)	3.34 (2.83-3.85)	3.95 (3.33-4.57)	4.86 (3.99-5.85)	5.61 (4.49-6.82)	6.41 (4.94-7.95)	7.26 (5.36-9.21)	8.46 (6.00-11.0)	9.42 (6.48-12.3)
4-day	2.39 (2.05-2.74)	2.81 (2.40-3.22)	3.54 (3.01-4.06)	4.18 (3.54-4.82)	5.13 (4.22-6.15)	5.91 (4.74-7.15)	6.73 (5.20-8.31)	7.61 (5.63-9.61)	8.83 (6.28-11.4)	9.81 (6.77-12.8)
7-day	2.79 (2.40-3.17)	3.23 (2.77-3.67)	4.00 (3.42-4.56)	4.68 (3.98-5.36)	5.70 (4.71-6.77)	6.53 (5.26-7.84)	7.42 (5.76-9.10)	8.36 (6.22-10.5)	9.68 (6.92-12.5)	10.7 (7.45-13.9)
10-day	3.15 (2.72-3.56)	3.62 (3.11-4.09)	4.43 (3.80-5.03)	5.15 (4.40-5.87)	6.23 (5.17-7.37)	7.11 (5.75-8.50)	8.05 (6.28-9.83)	9.05 (6.76-11.3)	10.5 (7.50-13.4)	11.6 (8.06-15.0)
20-day	4.17 (3.62-4.67)	4.77 (4.14-5.35)	5.80 (5.01-6.52)	6.69 (5.75-7.55)	7.97 (6.63-9.30)	8.99 (7.31-10.6)	10.1 (7.89-12.1)	11.2 (8.39-13.8)	12.7 (9.17-16.1)	13.9 (9.76-17.9)
30-day	5.00 (4.35-5.57)	5.73 (4.99-6.39)	6.95 (6.03-7.77)	7.98 (6.88-8.96)	9.41 (7.85-10.9)	10.5 (8.58-12.3)	11.7 (9.18-14.0)	12.9 (9.68-15.8)	14.4 (10.4-18.2)	15.7 (11.0-20.0)
45-day	6.03 (5.28-6.69)	6.92 (6.05-7.68)	8.37 (7.29-9.30)	9.55 (8.27-10.7)	11.2 (9.31-12.8)	12.4 (10.1-14.4)	13.6 (10.7-16.2)	14.8 (11.2-18.0)	16.4 (11.9-20.5)	17.6 (12.4-22.4)
60-day	6.90 (6.06-7.62)	7.92 (6.94-8.75)	9.54 (8.33-10.6)	10.8 (9.41-12.1)	12.6 (10.5-14.3)	13.9 (11.3-16.0)	15.1 (11.9-17.8)	16.3 (12.3-19.8)	17.9 (13.0-22.2)	19.0 (13.5-24.1)

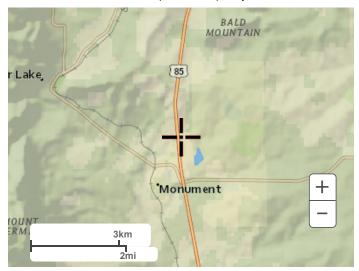

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

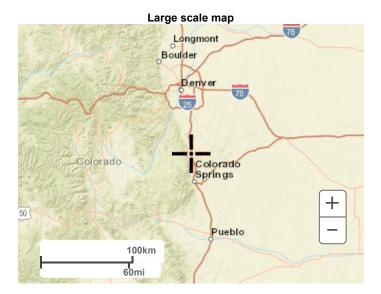
PF graphical

NOAA Atlas 14, Volume 8, Version 2


Created (GMT): Mon Apr 8 04:04:51 2019

Back to Top

Maps & aerials


Small scale terrain

Precipitation Frequency Data Server

Large scale terrain

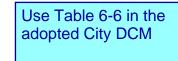
Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer


 Project:
 Monument Steel Structures

 Location:
 Monument, CO

 Designer:
 TAJ

 Date:
 4/7/2019

 Latest Revision:
 4/7/2019

¹From Table 6-3 in UDFCD Volume 1 ²From Table 6-4 in UDFCD Volume 1

IMPERVIOUSNESS AND RUNOFF COEFFICIENT CALCULATIONS

		_		Roofs	Lawn	Pavement	Sidewalk	Pond HWL	Misc						
			Impervious % ¹	90%	2%	100%	90%	100%	0%						
Basin Designation	NRCS Hydrologic	Total Area	Total Area	Roofs	Lawn	Pavement	Sidewalk (sf)	Pond HWL	Misc	Percent	Impervious	R	unoff Coeff	icients, C ²	
Basin Designation	Soil Group	(ac)	(sf)	(sf)	(sf)	(sf)	Sidewalk (SI)	(sf)	(sf)	Impervious	Area (ac)	C ₂	C ₅	C ₁₀	C ₁₀₀
OS-1	В	0.45	19,479		19,479			0	0	2.00%	0.01	0.01	0.01	0.07	0.44
OS-2	В	0.22	9,459		9,459			0	0	2.00%	0.00	0.01	0.01	0.07	0.44
OS-3	В	0.42	18,281		13,642	4,639		0	0	26.87%	0.11	0.18	0.21	0.27	0.55
OS-4	В	0.15	6,407		4,225	2,182		0	0	35.38%	0.05	0.25	0.28	0.34	0.59
OS-5	В	0.02	1,061		1,061			0	0	2.00%	0.00	0.01	0.01	0.07	0.44
OS-6	В	0.12	5,280		5,280			0	0	2.00%	0.00	0.01	0.01	0.07	0.44
OS-7	В	0.15	6,508	6,113	395			0	0	84.66%	0.13	0.69	0.72	0.74	0.82
OS-8	В	0.40	17,418		17,418			0	0	2.00%	0.01	0.01	0.01	0.07	0.44
A-1	В	0.43	18,530	3,272	4,867	10,392		0	0	72.49%	0.31	0.58	0.61	0.64	0.77
A-2	В	0.90	39,189	9,409	6,191	23,589		0	0	82.12%	0.74	0.67	0.69	0.72	0.81
A-3	В	0.79	34,223	10,340	819	23,064				94.63%	0.74	0.79	0.81	0.82	0.87
A-4	В	1.11	48,547	20,538	825	26,369	815	0	0	93.94%	1.05	0.78	0.80	0.82	0.87
A-5	В	0.23	9,864		9,064	800		0	0	9.95%	0.02	0.06	0.07	0.14	0.47
								0	0						
Area Treated by EDB	В	4.71	205,040	Basins (OS-1,	OS-2 OS-3, 0	OS-4, OS-5, A-1	l, A-2, A-3, A-4, A-5)	0	0	64.55%	3.04	0.50	0.53	0.58	0.73
Area Not Treated by EDB	В	0.27	11,788		Basins (C	DS-6, OS-7, OS	-8)	0	0	50.59%	0.14	0.38	0.41	0.47	0.66
								0	0						
Overall		5.38	234,246					0	0	59.05%	3.18				

Label or remove

Project:	Monument Steel Structures	
Location:	Monument, CO	
Designer:	TAJ	
Date:	4/7/2019	
Latest Revision:	4/7/2019	

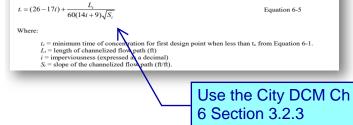
NRCS Conveyance Fa	Footno	e adopted City DCM ote 1: 100' urban,
Type of Land Surface	300' ru	ural.
Heavy Meadow	Footno	ote 2: Table 6-7
Tillage/Field	5	
Short Pasture/Lawns	7	
Nearly Bare Ground	10	
Grassed Waterway	15	
Paved Areas	20	

Max 300 ft in Urban areas and 500 ft in rural areas ²From Table 6-2 in UDFCD Volume 1

Equation 6-2

TIME OF CONCENTRATION CALCULATIONS

			Initial/	Overland Flo	w Time, T _i		Channelized Flow/Travel Time, T _t Time of Concentration, T _c (Check)							
Basin Designation	Imperviousness (%)	C ₅	Length (ft) ¹	Slope (%)	T _i (min)	Land Surface	Length (ft)	Slope (%)	Velocity (ft/sec)	T _t (min)	Computed T _c (min)	First Design Point T _c (min)	Minimum T _c (min)	Selected T _c (min)
OS-1	2.00%	0.01	25	5.00	5.77	Short Pasture/Lawns	175	5.00	1.57	1.86	7.64	27.07	5.00	7.64
OS-2	2.00%	0.01	25	5.00	5.77	Short Pasture/Lawns	110	5.00	1.57	1.17	6.95	26.54	5.00	6.95
OS-3	26.87%	0.21	25	2.00	6.42	Short Pasture/Lawns	130	5.00	1.57	1.38	7.81	22.19	5.00	7.81
OS-4	35.38%	0.28	15	2.00	4.57	Short Pasture/Lawns	20	16.00	2.80	0.12	4.69	20.05	5.00	5.00
OS-5	2.00%	0.01	5	15.00	1.80	Short Pasture/Lawns	5	20.00	3.13	0.03	1.82	25.68	5.00	5.00
OS-6	2.00%	0.01	25	5.00	5.77	Short Pasture/Lawns	163	5.00	1.57	1.74	7.51	26.97	5.00	7.51
OS-7	84.66%	0.72	10	2.00	1.74	Grassed Waterway	25	2.00	2.12	0.20	1.93	11.75	5.00	5.00
OS-8	2.00%	0.01	25	25.00	3.39	Grassed Waterway	392	2.80	2.51	2.60	6.00	29.87	5.00	6.00
A-1	72.49%	0.61	45	3.05	4.14	Paved Areas	292	1.37	2.34	2.08	6.22	15.85	5.00	6.22
A-2	82.12%	0.69	45	4.80	2.93	Paved Areas	412	2.18	2.96	2.32	5.25	14.31	5.00	5.25
A-3	94.63%	0.81	45	2.50	2.60	Paved Areas	433	1.73	2.63	2.74	5.34	12.38	5.00	5.34
A-4	93.94%	0.80	65	1.65	3.66	Paved Areas	365	2.19	2.96	2.05	5.71	11.89	5.00	5.71
A-5	9.95%	0.07	25	10.00	4.35	Paved Areas	140	0.50	1.41	1.65	6.00	27.48	5.00	6.00
								1						


2.4.1 Initial or Overland Flow Time

The initial or overland flow time, t_i, may be calculated using Equation 6-3:

$t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.03}}$	Equation 6-3
Where:	
t_i = overland (initial) flow time (minutes) C_3 = runoff coefficient for 5-year frequency (from Table 6-4) L_i = length of overland flow (ft) S_v = average slope along the overland flow path (ft/ft).	

2.4.3 First Design Point Time of Concentration in Urban Catchments

Equation 6-4 was solely determined by the waterway characteristics and using a set of empirical formulas. A calibration study between the Rational Method and the Colorado Urban Hydrograph Procedure (CUHP) suggests that the time of concentration shall be the lesser of the values calculated by Equation 6-2 and Equation 6-5 (Guo and Urbonas 2013).

2.4.2 Channelized Flow Time

The channelized flow time (travel time) is calculated using the hydraulic properties of the conveyance element. The channelized flow time, *i*, *i*, estimated by dividing the length of conveyance by the velocity. The following equation, Equation 6-4 (Guo 2013), can be used to determine the flow velocity in conjunction with Table 6-2 for the conveyance factor.

 $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$

Where:

 $t_c = t_i + t_t$

 t_c = computed time of concentration (minutes)

- t_i = overland (initial) flow time (minutes)
- t_t = channelized flow time (minutes).

Where:

t_i = channelized flow time (travel time, min) L_i = waterway length (ft) S_0 = waterway slope (ft/ft) V_i = travel time velocity (ft/sec) = K $\sqrt{S_0}$ K = NRCS conveyance factor (see Table 6-2).

2.4.4 Minimum Time of Concentration

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Equation 6-4

	Use the adopted City of Colorado Spring Drainage Criteria Manual Chapter 6. Figure 6-5 provides IDF		
TERRA FORMA solutions Project: Monument		Design Storm: 5-Yr	
Location: Monument,	The design point rainfall used is per the City DCM vs	Design Point Rainfall (in): 1.50	
Designer: TAJ	the NOAA Point Precipitation provided at the		
Date: 4/7/2019	beginning of Appendix A. What is the NOAA		
Latest Revision: 4/7/2019	information being used for? Remove if not being		
	used.		

Basin Designation	Design Point	Basin Outfall	Area (ac)	C₅	C X A	T _c (min)	Intensity (in/hr)	Peak Flow, Q (cfs)
OS-1	4	Basin A-4	0.45	0.01	0.01	7.64	4.48	0.02
OS-2	3	Basin A-3	0.22	0.01	0.00	6.95	4.62	0.01
OS-3	2	Basin A-2	0.42	0.21	0.09	7.81	4.45	0.38
OS-4	1	Basin A-1	0.15	0.28	0.04	5.00	5.09	0.21
OS-5	1	IN-1 (10' Type R)	0.02	0.01	0.00	5.00	5.09	0.00
OS-6		Basin OS-7	0.12	0.01	0.00	7.51	4.51	0.01
OS-7		Ex 30" RCP	0.15	0.72	0.11	5.00	5.09	0.55
OS-8		Ex 30" RCP	0.40	0.01	0.00	6.00	4.84	0.02
A-1	1	IN-1 (10' Type R)	0.43	0.61	0.26	6.22	4.78	1.23
A-2	2	IN-1 (10' Type R)	0.90	0.69	0.62	5.25	5.02	3.14
A-3	3	IN-2 (Double Type 13)	0.79	0.81	0.64	5.34	5.00	3.18
A-4	4	IN-3 (Triple Type 13)	1.11	0.80	0.90	5.71	4.91	4.39
A-5	5	EDB Outlet Structure	0.23	0.07	0.02	6.00	4.84	0.08

NS	Project:	Monument Steel Structures
	Location:	Monument, CO
	Designer:	TAJ
	Date:	4/7/2019
Latest	Revision:	4/7/2019

100-YEAR PEAK RUNOFF CALCULATIONS

Design Storm:

1-hr Design Point Rainfall (in):

100-Yr

2.52

Basin Designation	Design Point	Basin Outfall	Area (ac)	C ₁₀₀	СХА	T _c (min)	Intensity (in/hr)	Peak Flow, Q (cfs)
OS-1	4	Basin A-4	0.45	0.44	0.19	7.64	7.53	1.47
OS-2	3	Basin A-3	0.22	0.44	0.09	6.95	7.77	0.73
OS-3	2	Basin A-2	0.42	0.55	0.23	7.81	7.47	1.73
OS-4	1	Basin A-1	0.15	0.59	0.09	5.00	8.55	0.74
OS-5	1	IN-1 (10' Type R)	0.02	0.44	0.01	5.00	8.55	0.09
OS-6		Basin OS-7	0.12	0.44	0.05	7.51	7.57	0.40
OS-7		Ex 30" RCP	0.15	0.82	0.12	5.00	8.55	1.05
OS-8		Ex 30" RCP	0.40	0.44	0.17	6.00	8.13	1.41
A-1	1	IN-1 (10' Type R)	0.43	0.77	0.33	6.22	8.04	2.62
A-2	2	IN-1 (10' Type R)	0.90	0.81	0.73	5.25	8.44	6.16
A-3	3	IN-2 (Double Type 13)	0.79	0.87	0.68	5.34	8.40	5.75
A-4	4	IN-3 (Triple Type 13)	1.11	0.87	0.97	5.71	8.24	7.97
A-5	5	EDB Outlet Structure	0.23	0.47	0.11	6.00	8.12	0.87

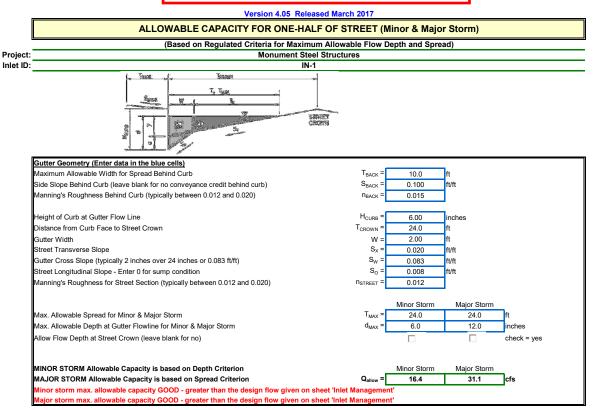
Monument Steel Structures
Monument, CO
TAJ
4/7/2019
4/7/2019

MINOR STORM ROUTING CALCULATIONS

_						Direct F	Runoff				Total	Runoff		Str	eet		Trave	Time		
Design Point Contrib	Contributing Basins	Basin Outfall	Basin Designation	Area (ac)	C₅	СХА	T _c (min)	Intensity (in/hr)	Peak Flow, Q (cfs)	T _c (min)	Sum Area (C X A)	Intensity (in/hr)	Q (cfs)	Slope (%)	Street Q (cfs)	Length (ft)	Velocity (ft/sec)	T _t (min)	Carry Over CA	Remarks
			OS-4	0.15	0.28	0.04	5.00	5.09	0.21											
			OS-5	0.02	0.01	0.00	5.00	5.09	0.00											
			A-1	0.43	0.61	0.26	6.22	4.78	1.23											
1	A-1, OS-4, OS-5	C&G to IN-1								6.22	0.30	4.78	1.43							Used to check Gutter Capacity
			OS-3	0.42	0.21	0.09	7.81	4.45	0.38					1.80%	0.38	422	2.68	2.62	0.09	Flows from OS-3 to DP 2
			A-2	0.90	0.69	0.62	5.25	5.02	3.14											
2	A-2, OS-3	Drainage Pan to IN-1								10.43	0.71	3.99	2.84							Used to Check Drainage Pan Capacity
	A-1, A-2, OS-3, OS-4, OS-5	IN-1								10.43	1.01	3.99	4.03							Inlet Overflows to DP 3
			OS-2	0.22	0.01	0.00	6.95	4.62	0.01					2.00%	0.01	415	2.83	2.45	0.00	Flows from OS-2 to DP 3
			A-3	0.79	0.81	0.64	5.34	5.00	3.18											
3	A-3, OS-2	IN-2								9.39	0.64	4.16	2.66							Inlet Overflows to DP 5 (EDB)
			OS-1	0.45	0.01	0.01	7.64	4.48	0.02					2.00%	0.02	358	2.83	2.11	0.01	
			A-4	1.11	0.80	0.90	5.71	4.91	4.39											
4	A-4, OS-1	IN-3								9.75	0.90	4.10	3.69							Inlet Overflows to DP 5 (EDB)
5	A-1 - A-4, OS-1 - OS-5	EDB								10.43	2.55	3.99	10.18							
			OS-6	0.12	0.01	0.00	7.51	4.51	0.01											Used to check swale capacity
			OS-7	0.15	0.72	0.11	5.00	5.09	0.55											
			OS-8	0.40	0.01	0.00	6.00	4.84	0.02											

Design Storm:	5-Yr	
int Rainfall (in):	1.50	

Project:	Monument Steel Structures
Location:	Monument, CO
Designer:	TAJ
Date:	4/7/2019
t Revision:	4/7/2019

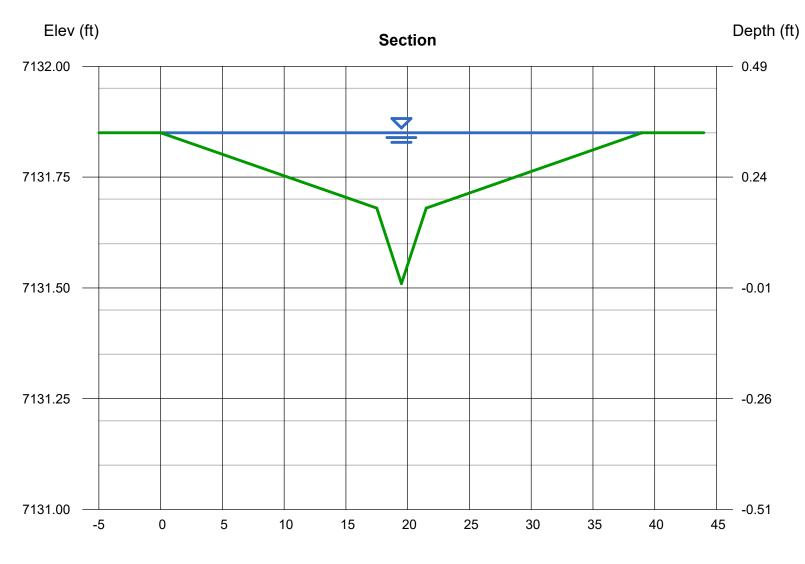

MAJOR STORM ROUTING CALCULATIONS

					Di	irect Runoff						Runoff		Str	eet	٦	Fravel Time	5		
Design Point	Contributing Basins	Basin Oufall	Basin Designation	Area (ac)	C ₁₀₀	СХА	T _c (min)	Intensity (in/hr)	Peak Flow, Q (cfs)	T _c (min)	Sum Area (C X A)	Intensity (in/hr)	Q (cfs)	Slope (%)	Street Q (cfs)	Length (ft)	Velocity (ft/sec)	T _t (min)	Carry Over CA	Remarks
			OS-4	0.15	0.59	0.09	5.00	8.55	0.74											
			OS-5	0.02	0.44	0.01	5.00	8.55	0.09											
			A-1	0.43	0.77	0.33	6.22	8.04	2.62											
1	A-1, OS-4, OS-5	C&G to IN-1								6.22	0.42	8.04	3.41							Used to check Gutter Capacity
			OS-3	0.42	0.55	0.23	7.81	7.47	1.73					1.80%	1.73	422	2.68	2.62	0.23	Flows from OS-3 to DP 2
			A-2	0.90	0.81	0.73	5.25	8.44	6.16											
2	A-2, OS-3	Drainage Pan to IN-1								10.43		6.71	6.45							Used to Check Drainage Pan Capacity
	A-1, A-2, OS-3, OS-4, OS-5	IN-1								10.43	1.39	6.71	9.29							Inlet Overflows to DP 3
			OS-2	0.22	0.44	0.09	6.95	7.77	0.73					2.00%	0.73	415	2.83	2.45	0.09	Flows from OS-2 to DP 3
			A-3	0.79	0.87	0.68	5.34	8.40	5.75											
3	A-3, OS-2	IN-2								9.39	0.78	6.99	5.44							Inlet Overflows to DP 5 (EDB)
			OS-1	0.45	0.44	0.19	7.64	7.53	1.47					2.00%	1.47	358	2.83	2.11	0.19	
			A-4	1.11	0.87	0.97	5.71	8.24	7.97											
4	A-4, OS-1	IN-3								9.75		6.89	8.00							Inlet Overflows to DP 5 (EDB)
5	A-1 - A-4, OS-1 - OS-5	EDB								10.43	3.33	6.71	22.30							
			OS-6	0.12	0.44	0.05	7.51	7.57	0.40											
			OS-7	0.15	0.82	0.12	5.00	8.55	1.05											
			OS-8	0.40	0.44	0.17	6.00	8.13	1.41											

Design Storm:	100-Yr	
oint Rainfall (in):	2.52	

APPENDIX B - HYDRAULIC COMPUTATIONS

2ft Catch Curb and 24' Drive Isle Capacity

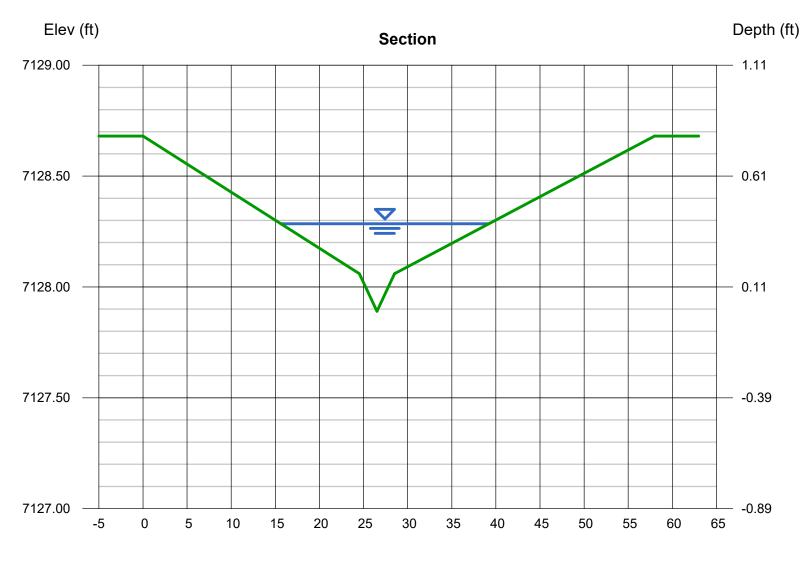

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

40 Foot Drainage Pan Capacity

User-defined Invert Elev (ft)	= 7131.51	Highlighted Depth (ft)	= 0.34
Slope (%)	= 1.80	Q (cfs)	= 14.54
N-Value ´	= Composite	Area (sqft)	= 3.99
	- 1	Velocity (ft/s)	= 3.64
Calculations		Wetted Perim (ft)	= 39.00
Compute by:	Q vs Depth	Crit Depth, Yc (ft)	= 0.34
No. Increments	= 10	Top Width (ft)	= 38.98
		EĠL (ft)	= 0.55

(Sta, El, n)-(Sta, El, n)... (0.00, 7131.85)-(17.50, 7131.68, 0.012)-(19.50, 7131.51, 0.012)-(21.50, 7131.68, 0.012)-(38.98, 7131.85, 0.012)

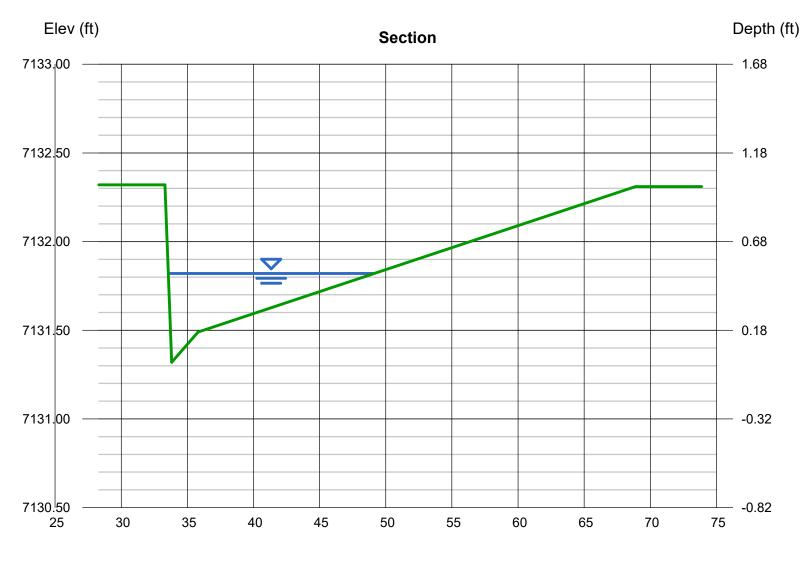

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

60 Foot Drainage Pan Capacity

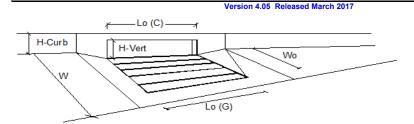
User-defined Invert Elev (ft) Slope (%) N-Value	= 7127.89 = 2.00 = Composite	Highlighted Depth (ft) <mark>Q (cfs)</mark> Area (sqft)	= 0.40 = 16.75 = 3.45
Calculations Compute by:	Q vs Depth	Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft)	= 4.86 = 23.61 = 0.51
No. Increments	= 10	Top Width (ft) EGL (ft)	= 23.59 = 0.76

(Sta, El, n)-(Sta, El, n)... (0.00, 7128.68)-(24.52, 7128.06, 0.012)-(26.52, 7127.89, 0.012)-(28.52, 7128.06, 0.012)-(57.98, 7128.68, 0.012)


Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

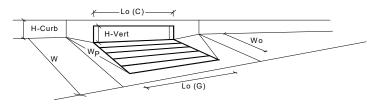
12 IN Vertical Curb Alley Capacity


User-defined Invert Elev (ft)	= 7131.32	Highlighted Depth (ft)	= 0.50
Slope (%)	= 2.00	Q (cfs)	= 18.14
N-Value	= Composite	Area (sqft)	= 3.08
	•	Velocity (ft/s)	= 5.89
Calculations		Wetted Perim (ft)	= 15.87
Compute by:	Q vs Depth	Crit Depth, Yc (ft)	= 0.66
No. Increments	= 10	Top Width (ft)	= 15.54
		EGL (ft)	= 1.04

(Sta, El, n)-(Sta, El, n)... (33.31, 7132.32)-(33.81, 7131.32, 0.012)-(35.81, 7131.49, 0.012)-(68.88, 7132.31, 0.012)

IN - 1 Capacity

INLET ON A CONTINUOUS GRADE

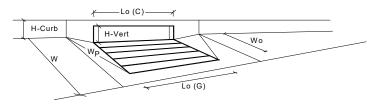


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.9	6.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.2	2.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	96	69	%

IN - 2 Capacity

INLET IN A SUMP OR SAG LOCATION

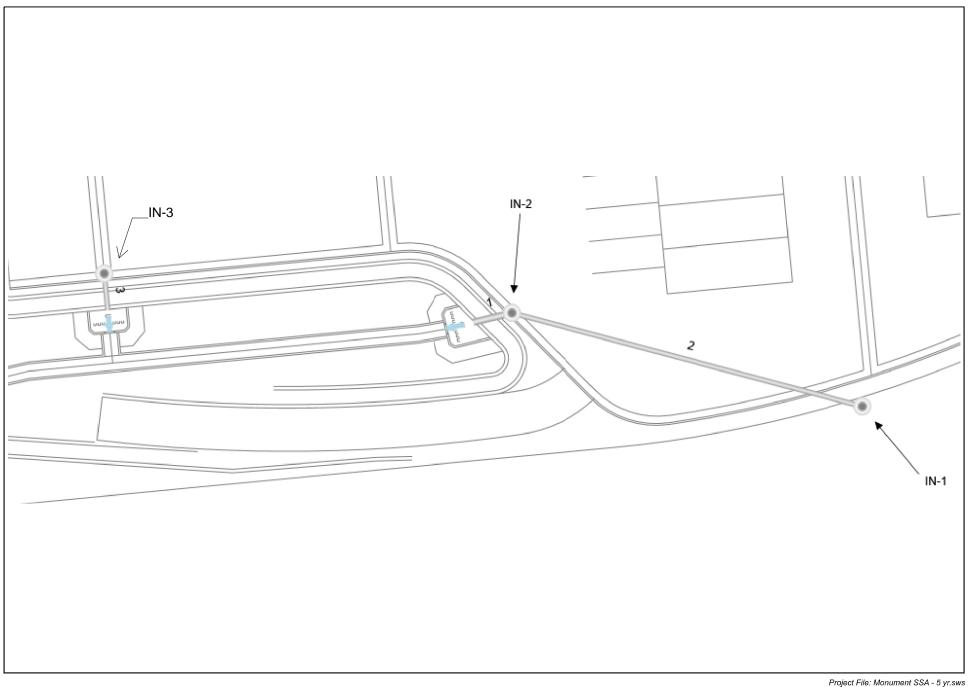
Version 4.05 Released March 2017



Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT/Denver 13 Combination	Type =	CDOT/Denver	13 Combination	7
Local Depression (additional to conti	inuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb	Opening)	No =	2	2	
Water Depth at Flowline (outside of	local depression)	Ponding Depth =	6.0	7.3	inches
Grate Information			MINOR	MAJOR	Override Depths
Length of a Unit Grate		L _o (G) =	3.00	3.00	feet
Width of a Unit Grate		W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typi	cal values 0.15-0.90)	A _{ratio} =	0.43	0.43	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value	2.15 - 3.60)	C _w (G) =	3.30	3.30	
Grate Orifice Coefficient (typical value	ue 0.60 - 0.80)	C _o (G) =	0.60	0.60	
Curb Opening Information			MINOR	MAJOR	
Length of a Unit Curb Opening		L _o (C) =	3.00	3.00	feet
Height of Vertical Curb Opening in I	nches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inch	es	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure	9 ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typi	cally the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb O	pening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typi	cal value 2.3-3.7)	C _w (C) =	3.70	3.70	
Curb Opening Orifice Coefficient (ty	pical value 0.60 - 0.70)	C _o (C) =	0.66	0.66]
Low Head Performance Reduction	n (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth		d _{Grate} =	0.523	0.629	ft
Depth for Curb Opening Weir Equat	ion	d _{Curb} =	0.33	0.44	ft
Combination Inlet Performance Red	uction Factor for Long Inlets	RF _{Combination} =	0.71	0.86	1
Curb Opening Performance Reducti	on Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction	Factor for Long Inlets	RF _{Grate} =	0.71	0.86]
			MINOR	MAJOR	
Total Inlet Interception Cap	acity (assumes clogged condition)	Q _a =	5.3	9.0	cfs
Inlet Capacity IS GOOD for Minor	and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.8	8.3	cfs

IN - 3 Capacity

INLET IN A SUMP OR SAG LOCATION


Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		13 Combination	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	6.0	7.3	inches	
Grate Information	Ponding Depth =	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	3.00	3.00	feet
Width of a Unit Grate	W., =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.43	0.43	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.30	3.30	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.60	0.60	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.70	3.70	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	0.629	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.69	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.97	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.57	0.69]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.4	11.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.2	8.8	cfs

Plan View

Stormwater Studio 2019 v 3.0.0.7

Report Report*

Stormwater Studio 2019 v 3.0.0.7

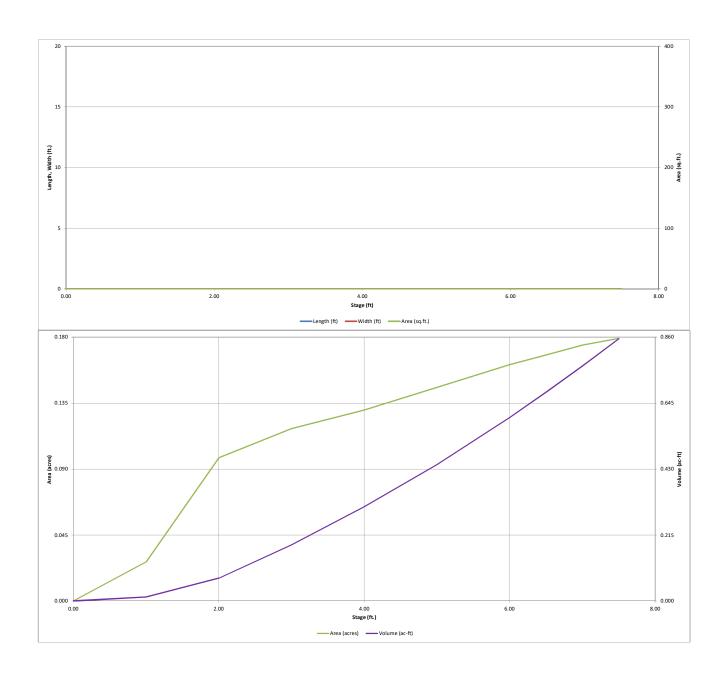
04-10-2019

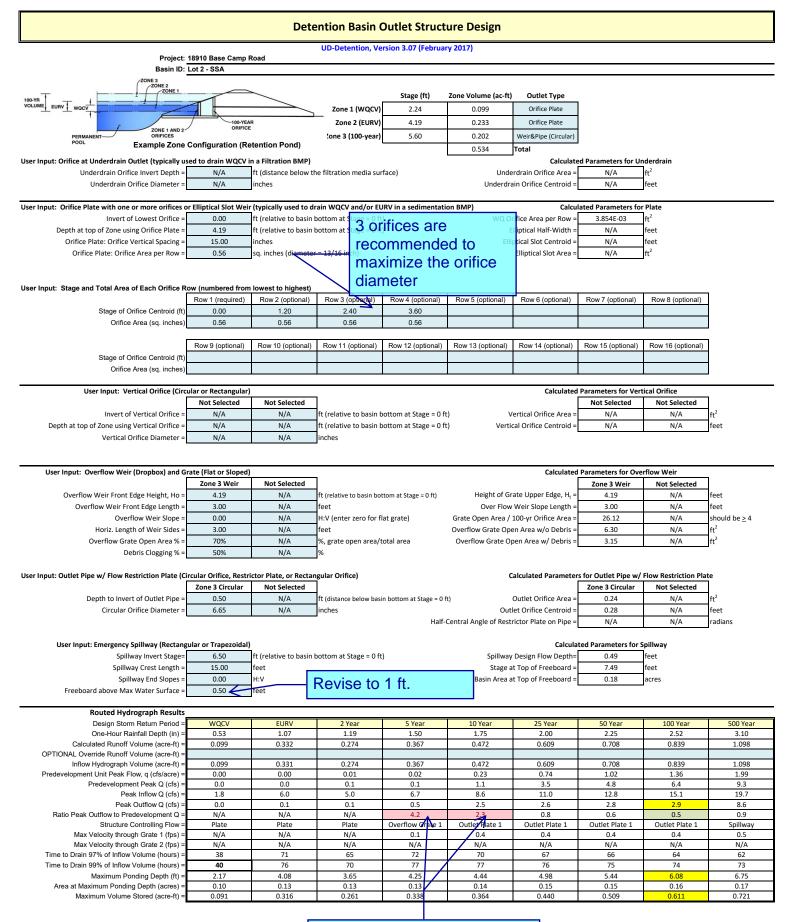
Line No.	Line ID	Inlet ID	Flow Rate	Line Length	Line Size	Line Slope	n-value Pipe	Capac. Full	Vel Ave	Invert Up	Invert Dn	Grnd/Rim Elev Up	Grnd/Rim Elev Dn	HGL Up	HGL Dn	
			(cfs)	(ft)	(in)	(ft/ft)		(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	P-1	IN-2	9.20	10.71	24	0.05	0.013	50.58	6.38	7119.76	7119.22	7128.42	0.00	7120.83	7120.05	
2	P-2	IN-1	3.90	100.98	18	0.0325	0.013	18.93	6.09	7124.54	7121.26	7129.32	7128.42	7125.29	7121.74	
3	P-3	IN-3	6.40	9.97	18	0.0501	0.013	23.49	6.36		7119.05		0.00	7120.51		

* Results are not current with inputs.

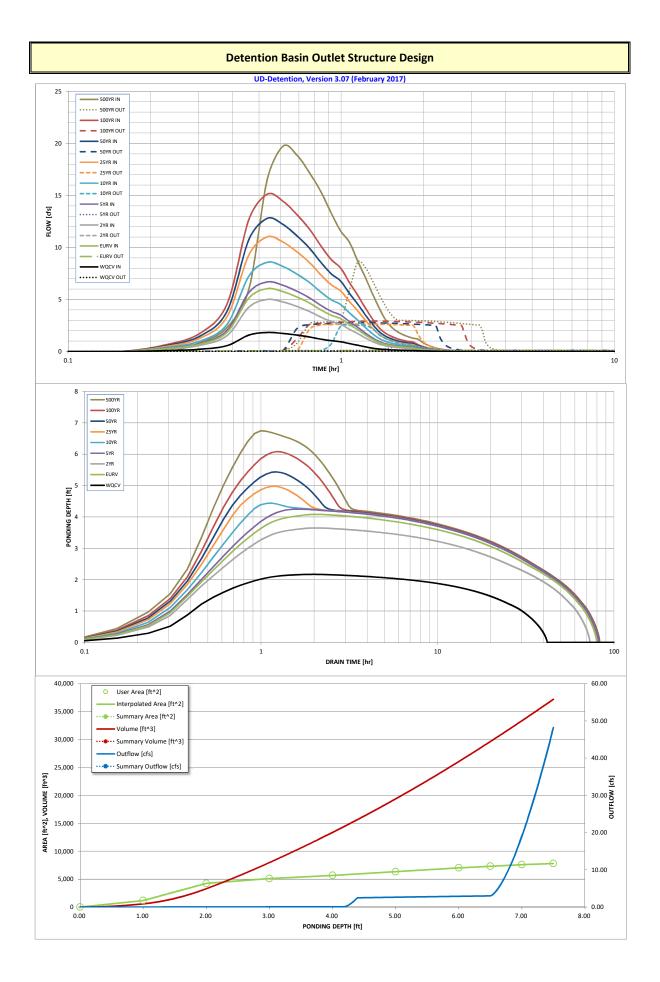
Report Report

Stormwater Studio 2019 v 3.0.0.7

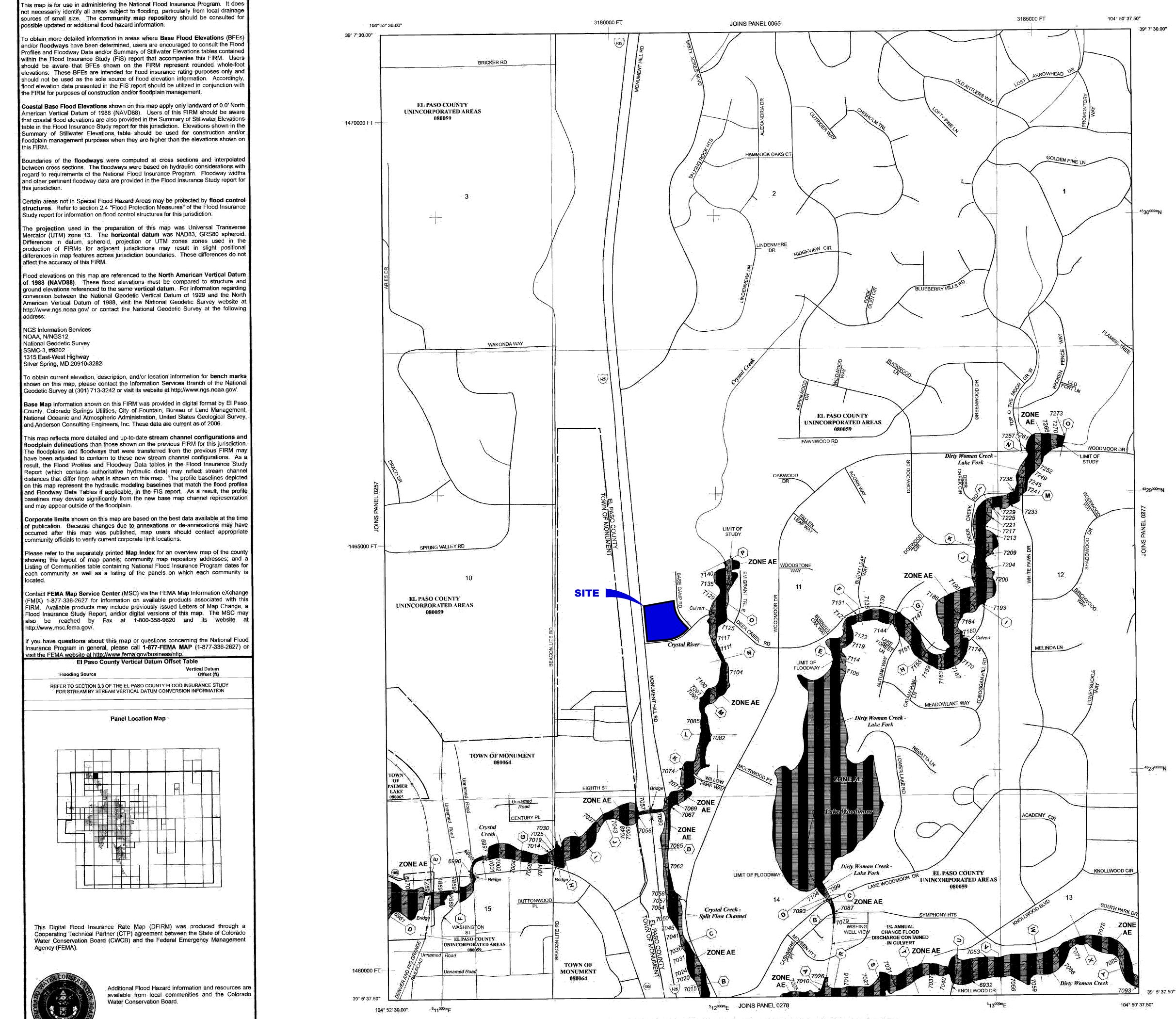

Line No.	Line ID	Inlet ID	Flow Rate	Line Length	Line Size	Line Slope	n-value Pipe	Capac. Full	Vel Ave	Invert Up	Invert Dn	Grnd/Rim Elev Up	Grnd/Rim Elev Dn	HGL Up	HGL Dn	
			(cfs)	(ft)	(in)	(ft/ft)		(cfs)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	P-1	IN-2	15.40	10.71	24	0.05	0.013	50.58	7.63	7119.76	7119.22	7128.42	0.00	7121.15	7120.32	
2	P-2	IN-1	6.40	100.98	18	0.0325	0.013	18.93	7.10	7124.54	7121.26	7129.32	7128.42	7125.50	7121.90	
	P-2 P-3	IN-1 IN-3	6.40	9.97	18	0.0325	0.013	18.93	7.10	7124.54 7119.55			0.00		7121.90	


APPENDIX C - DETENTION/WATER QUALITY ENHANCEMENT BMPs

DETENTION BASIN STAGE-STORAGE TABLE BUILDER														
UD-Detention, Version 3.07 (February 2017)														
Project: 18910 Base Camp Road														
Basin ID: Lot 2 - SSA														
7ZONE 3 7ZONE 2 7 ZONE 1														
100-YR URV WOCY														
I ZONE	ZONE 1 AND 2 ORIFICE ORIFICE ORIFICE OPIONAL O													·
PERMANENT ORIFIC	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume				
Example Echo	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)				
Required Volume Calculation		-			Top of Micropool		0.00				0	0.000		
Selected BMP Type =	EDB				7118		1.00				1,165	0.027	571	0.013
Watershed Area =	4.71	acres			7119		2.00	-			4,249	0.098	3,247	0.075
Watershed Length =	630	ft			7120		3.00				5,112	0.117	7,970	0.183
Watershed Slope =	0.034	ft/ft			7121		4.00				5,665	0.130	13,358	0.307
Watershed Imperviousness =	64.55%	percent			7122		5.00				6,345	0.146	19,363	0.445
Percentage Hydrologic Soil Group A =	0.0%	percent			7123		6.00				7,019	0.161	26,045	0.598
Percentage Hydrologic Soil Group B =	100.0%	percent			7123.5		6.50				7,304	0.168	29,626	0.680
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			7124		7.00				7,598	0.174	33,351	0.766
Desired WQCV Drain Time =	40.0	hours			7124.5		7.50				7,799	0.179	37,201	0.854
Location for 1-hr Rainfall Depths =		т.												
Water Quality Capture Volume (WQCV) =	0.099	acre-feet	Optional Use					-						
Excess Urban Runoff Volume (EURV) =	0.332	acre-feet	1-hr Precipit	-										
2-yr Runoff Volume (P1 = 1.19 in.) =	0.274	acre-feet	1.19 1.50	inches				-						
5-yr Runoff Volume (P1 = 1.5 in.) =		acre-feet		inches										
10-yr Runoff Volume (P1 = 1.75 in.) = 25-yr Runoff Volume (P1 = 2 in.) =	0.472	acre-feet acre-feet	1.75 2.00	inches inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	0.708	acre-feet	2.00	inches		-		-		-				
100-yr Runoff Volume (P1 = 2.22 in.) =	0.839	acre-feet	2.52	inches				-						
500-yr Runoff Volume (P1 = 3.1 in.) =	1.098	acre-feet	3.10	inches		-		-		-				
Approximate 2-yr Detention Volume =	0.257	acre-feet	0.10	Inditoo										
Approximate 5-yr Detention Volume =	0.345	acre-feet												
Approximate 10-yr Detention Volume =	0.440	acre-feet												
Approximate 25-yr Detention Volume =	0.474	acre-feet												
Approximate 50-yr Detention Volume =	0.493	acre-feet												
Approximate 100-yr Detention Volume =	0.534	acre-feet												
Stage-Storage Calculation		_						-						
Zone 1 Volume (WQCV) =	0.099	acre-feet												
Zone 2 Volume (EURV - Zone 1) =	0.233	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) =	0.202	acre-feet												
Total Detention Basin Volume =	0.534	acre-feet												
Initial Surcharge Volume (ISV) =	user	ft^3												
Initial Surcharge Depth (ISD) =	user	ft												
Total Available Detention Depth (H _{total}) =	user	ft												
Depth of Trickle Channel (H _{TC}) =	user	ft						-		-				
Slope of Trickle Channel (S_{TC}) = Slopes of Main Basin Sides (S_{main}) =	user	ft/ft						-						
Slopes of Main Basin Sides $(S_{main}) =$ Basin Length-to-Width Ratio $(R_{L/W}) =$	user	H:V						-						
Subil Longuito-Widel (R _{L/W}) =	4361	4												
Initial Surcharge Area (A _{ISV}) =	user	ft^2				-		-		-				
Surcharge Volume Length (L _{ISV}) =	user	ft						-						
Surcharge Volume Width (W _{ISV}) =	user	ft												
Depth of Basin Floor (H _{FLOOR}) =	user	ft												
Length of Basin Floor (L _{FLOOR}) =	user	ft												
Width of Basin Floor (W _{FLOOR}) =	user	ft												
Area of Basin Floor (A _{FLOOR}) =	user	ft^2												
Volume of Basin Floor (V_{FLOOR}) =	user	ft^3												
Depth of Main Basin (H _{MAIN}) =	user	ft						-		-				
Length of Main Basin (L _{MAIN}) =	user	ft												
Width of Main Basin (W _{MAIN}) =	user	ft												
Area of Main Basin (A _{MAIN}) =	user	ft^2						-						
Volume of Main Basin (V _{MAIN}) =	user	ft^3												
Calculated Total Basin Volume (V _{total}) =	user	acre-feet												
								-						
								-						
										-				

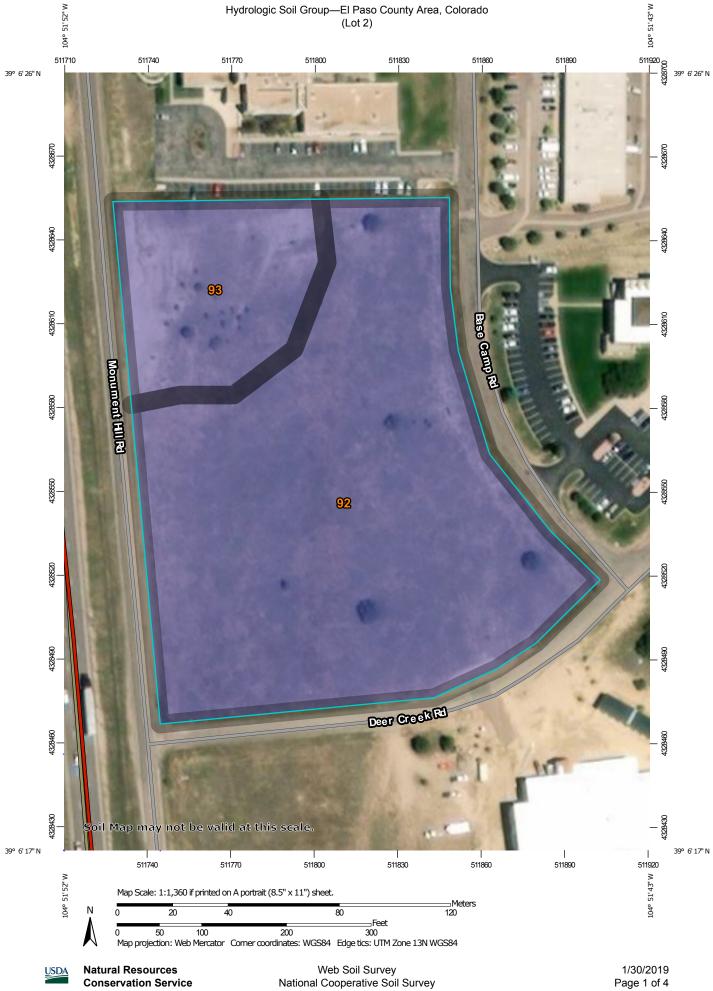

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

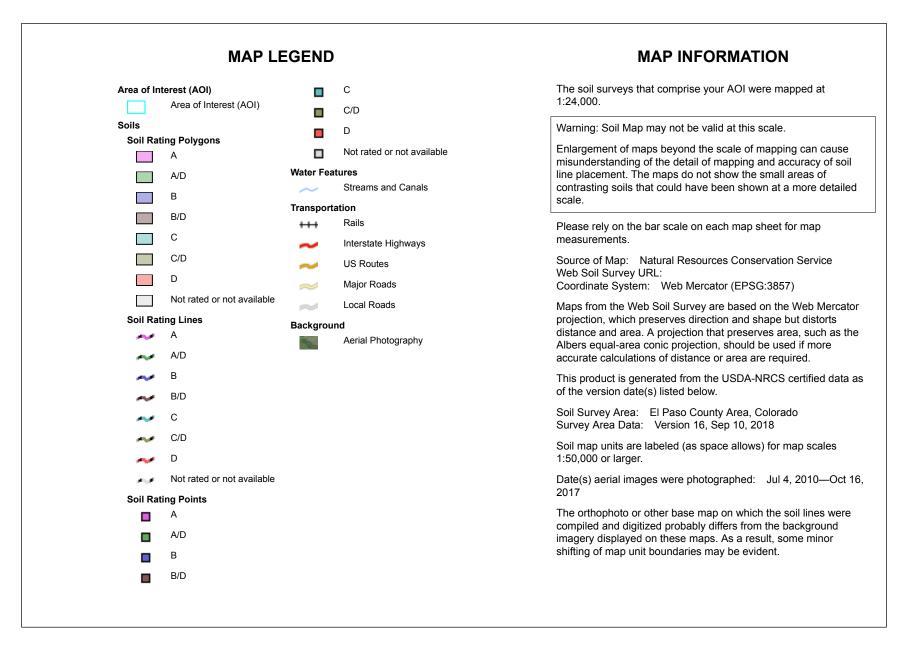


Revise the outlet structure to release at or less than historic.

APPENDIX D - REFERENCED INFORMATION



NOTES TO USERS


NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 11 SOUTH, RANGE 67 WEST.

	LEGEND				
	SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD				
hat has a 1% Hazard Area it Special Flood I	al chance flood (100-year flood), also known as the base flood, is the flood chance of being equaled or exceeded in any given year. The Special Flood is the area subject to flooding by the 1% annual chance flood. Areas of Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood				
ZONE A	is the water-surface elevation of the 1% annual chance flood. No Base Flood Elevations determined.				
ZONE AH	Base Flood Elevations determined. Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.				
ZONE AO	Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined.				
ZONE AR					
ZONE A99	Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations determined.				
ZONE V	Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.				
ZONE VE	Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined.				
The floodway	FLOODWAY AREAS IN ZONE AE is the channel of a stream plus any adjacent floodplain areas that must be				
kept free of a	encroachment so that the 1% annual chance flood can be carried without creases in flood heights.				
ZONE X	OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.				
	OTHER AREAS				
ZONE X ZONE D	Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible.				
	COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS				
	OTHERWISE PROTECTED AREAS (OPAs)				
CBRS areas a	nd OPAs are normally located within or adjacent to Special Flood Hazard Areas.				
	— — Floodway boundary				
	Zone D Boundary CBRS and OPA boundary				
	Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.				
~~ 513 (EL 987	7) Base Flood Elevation value where uniform within zone;				
* Referenced	elevation in feet* I to the North American Vertical Datum of 1988 (NAVD 88)				
	- Cross section line				
23	23 Transect line				
97° 07' 30 32° 22' 30	0.00" Datum of 1983 (NAD 83)				
4275 ⁰⁰⁰ⁿ	zone 13 5000-foot grid ticks: Colorado State Plane coordinate.				
	system, central zone (FIPSZONE 0502), Lambert Conformal Conic Projection				
DX551	• X this FIRM panel)				
	Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE				
	FLOOD INSURANCE RATE MAP MARCH 17, 1997 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL				
DECEM Special F	EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL IBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision.				
For commun	ity map revision history prior to countywide mapping, refer to the Community Table located in the Flood Insurance Study report for this jurisdiction.				
To determin	table located in the Hood Insurance study report for this junisdiction. e if flood insurance is available in this community, contact your insurance the National Flood Insurance Program at 1-800-638-6620.				
	MAP SCALE 1" = 500'				
	250 0 500 1000 ETHE				
	150 0 150 300				
	PANEL 0276G				
-					
	FIRM				
	FLOOD INSURANCE RATE MAP				
	EL PASO COUNTY,				
	COLORADO AND INCORPORATED AREAS				
	(SEE MAP INDEX FOR FIRM PANEL LAYOUT)				
	<u>CONTAINS:</u>				
	COMMUNITY NUMBER PANEL SUFFIX EL PASO COUNTY 080059 0276 G				
	MONUMENT, TOWN OF 080064 0276 G PALMER LAKE, TOWN OF 080065 0276 G				
	Notice to User. The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the subject				
	08041C0276G				
	MAP REVISED				
	DECEMBER 7, 2018 Federal Emergency Management Agency				

Hydrologic Soil Group-El Paso County Area, Colorado (Lot 2)

Conservation Service

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	В	4.7	80.6%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	В	1.1	19.4%
Totals for Area of Interest			5.9	100.0%

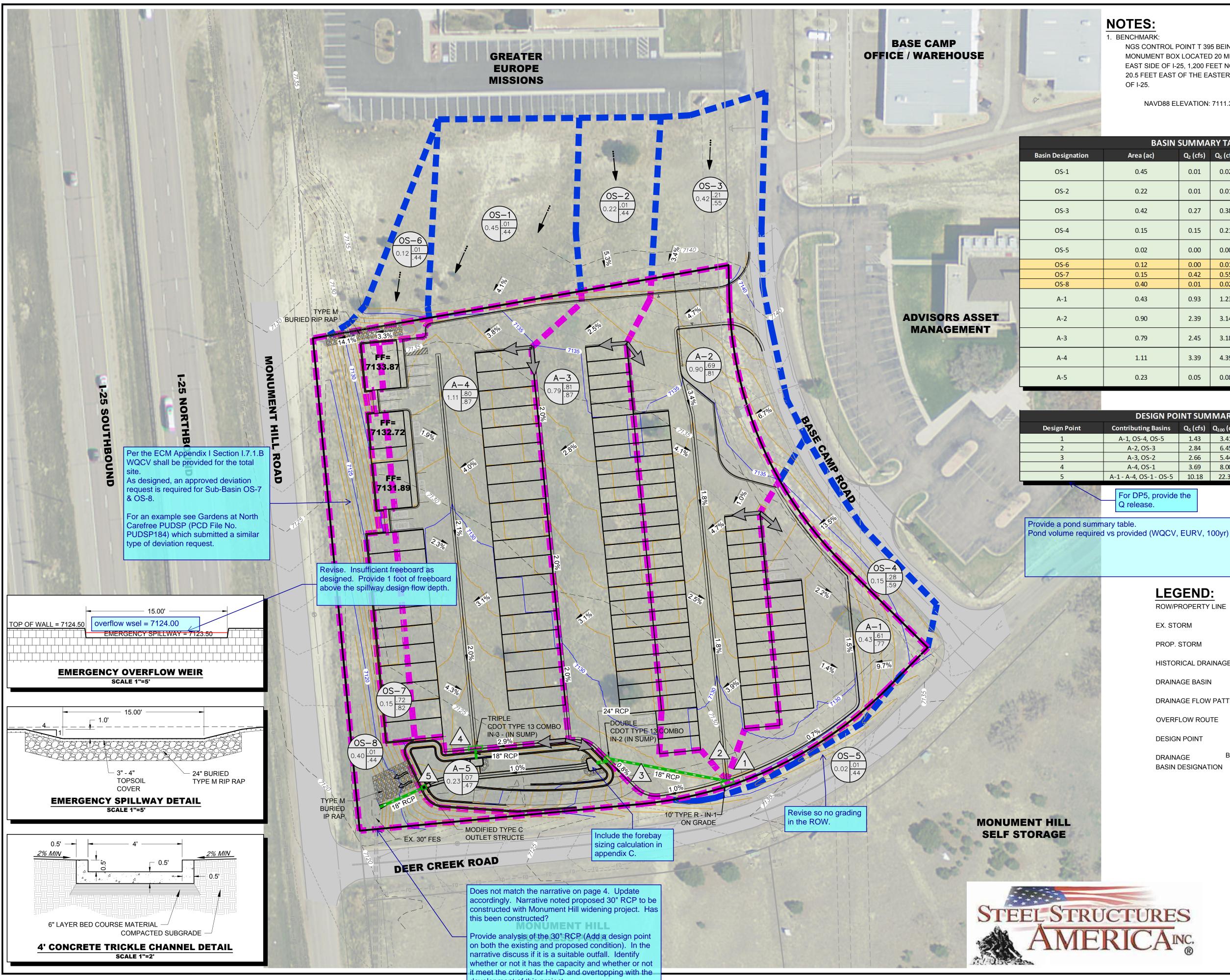
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

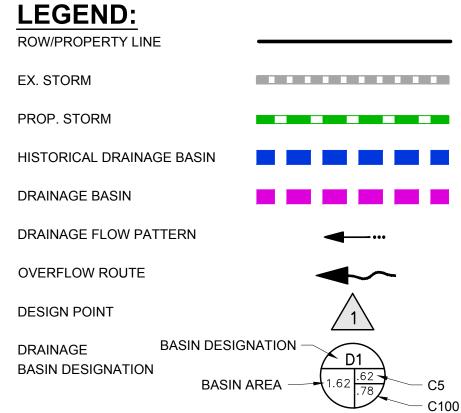

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

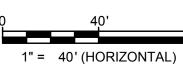
Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

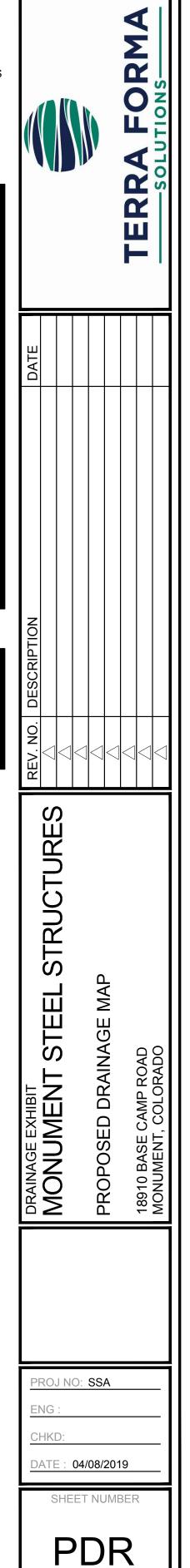
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

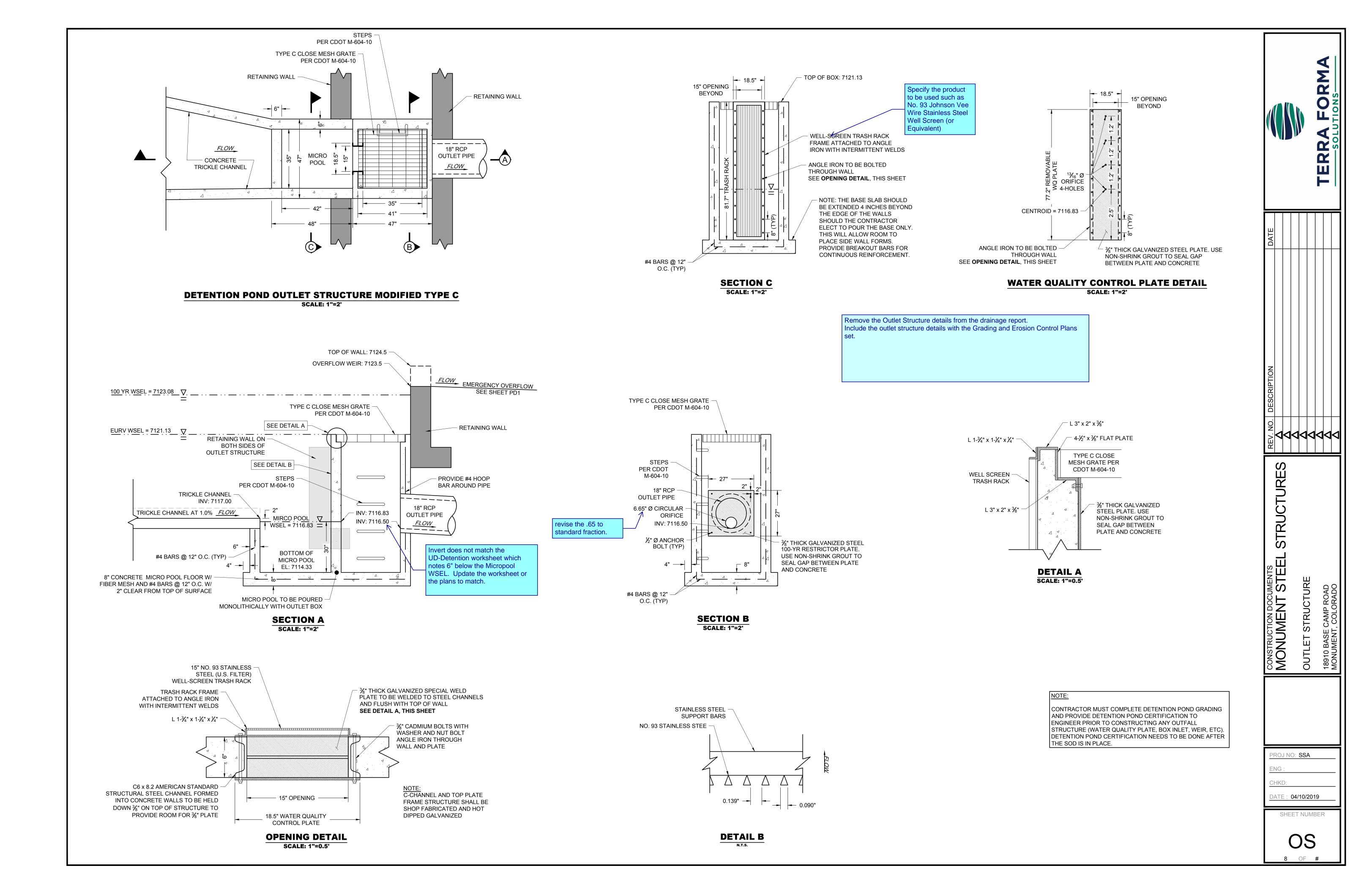
Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher **APPENDIX E - DRAINAGE MAPS**


development of this project.


NGS CONTROL POINT T 395 BEING A STANDARD NGS STEEL ROD IN A LOGO MONUMENT BOX LOCATED 20 MILES NORTH OF COLORADO SPRINGS ON THE EAST SIDE OF I-25, 1,200 FEET NORTH OF THE WEIGH STATION BUILDING, AND 20.5 FEET EAST OF THE EASTERLY EDGE OF OIL OF THE NORTHBOUND LANES


NAVD88 ELEVATION: 7111.32'

BASIN SUMMARY TABLE					
Area (ac)	Q ₂ (cfs)	Q₅ (cfs)	Q ₁₀₀ (cfs)	TREATED OR UNTREATED	
0.45	0.01	0.02	1.47	Treated with Proposed WQ and Detention Facilities	
0.22	0.01	0.01	0.73	Treated with Proposed WQ and Detention Facilities	
0.42	0.27	0.38	1.73	Treated with Proposed WQ and Detention Facilities	
0.15	0.15	0.21	0.74	Treated with Proposed WQ and Detention Facilities	
0.02	0.00	0.00	0.09	Treated with Proposed WQ and Detention Facilities	
0.12	0.00	0.01	0.40	Bypasses the site.	
0.15	0.42	0.55	1.05	Bypasses the site.	
0.40	0.01	0.02	1.41	Bypasses the site.	
0.43	0.93	1.23	2.62	Treated with Proposed WQ and Detention Facilities	
0.90	2.39	3.14	6.16	Treated with Proposed WQ and Detention Facilities	
0.79	2.45	3.18	5.75	Treated with Proposed WQ and Detention Facilities	
1.11	3.39	4.39	7.97	Treated with Proposed WQ and Detention Facilities	
0.23	0.05	0.08	0.87	Treated with Proposed WQ and Detention Facilities	


DESIGN POINT SUMMARY TABLE				
	Contributing Basins	Q₅ (cfs)	Q ₁₀₀ (cfs)	Structure
	A-1, OS-4, OS-5	1.43	3.41	IN-1 (10' CDOT Type R Inlet)
	A-2, OS-3	2.84	6.45	
	A-3, OS-2	2.66	5.44	IN-2 (Double CDOT Type 13 Combo Inlet)
	A-4, OS-1	3.69	8.00	IN-3 (Triple CDOT Type 13 Combo Inlet)
	A-1 - A-4, OS-1 - OS-5	10.18	22.30	Extended Detention Basin (EDB)
7,53				

1 OF 1

Drainage Report_v1-redline.pdf Markup Summary

3 orifices are recommended to maximize the orifice diameter (1)

Subject: Callout Page Label: 38 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 2:05:33 PM Status: Color: Layer: Space:

3 orifices are recommended to maximize the orifice diameter

Add PCD File No. PPR1919 (1)

Add PCD File No. PPR1919

Subject: Text Box Page Label: 1 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 9:33:42 AM Status: Color: Layer: Space:

Add PCD File No. PPR1919

Does not match the narrative on page 4. Update accordingly. Narrative noted proposed 30" RCP to be constructed with Monumer

Subject: Callout Page Label: 47 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 5:33:00 PM Status: Color: Layer: Space:

Does not match the narrative on page 4. Update accordingly. Narrative noted proposed 30" RCP to be constructed with Monument Hill widening project. Has this been constructed?

Provide analysis of the 30" RCP (Add a design point on both the existing and proposed condition). In the narrative discuss if it is a suitable outfall. Identify whether or not it has the capacity and whether or not it meet the criteria for Hw/D and overtopping with the development of this project.

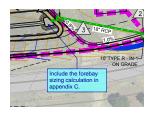
For DP5, provide the Q release. (1)

Subject: Callout Page Label: 47 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 5:28:45 PM Status: Color: Layer: Space:

For DP5, provide the Q release.

implement permanent BMPs (1)

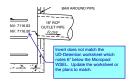
- <list-item><list-item><list-item><list-item><list-item><list-item><list-item>
- Subject: Highlight Page Label: 10 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 3:15:18 PM Status: Color: Layer: Space:


implement permanent BMPs

include contact information: address, phone number (1)

Include contact Information: address, phone number

Subject: Callout Page Label: 1 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 9:34:12 AM Status: Color: Layer: Space:


Include the forebay sizing calculation in appendix C. (1)

Subject: Callout Page Label: 47 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 2:42:20 PM Status: Color: Layer: Space: include contact information: address, phone number

Include the forebay sizing calculation in appendix C.

Invert does not match the UD-Detention worksheet which notes 6" below the Micropool WSEL. Update the worksheet or the plans

Subject: Callout Page Label: 48 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 3:12:27 PM Status: Color: Layer: Space:

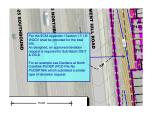
Invert does not match the UD-Detention worksheet which notes 6" below the Micropool WSEL. Update the worksheet or the plans to match.

Label or remove (1)

Subject: Callout Page Label: 18 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 12:50:15 PM Status: Color: Layer: Space:

Label or remove

overflow wsel = 7124.00(1)



ERGENCY OVERFLOW WEIR

Subject: Text Box Page Label: 47 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 2:27:05 PM Status: Color: Layer: Space:

overflow wsel = 7124.00

Per the ECM Appendix I Section I.7.1.B WQCV shall be provided for the total site. As designed, an approved deviation request is r

Subject: Callout Page Label: 47 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 11:47:47 AM Status: Color: Layer: Space:

Per the ECM Appendix I Section I.7.1.B WQCV shall be provided for the total site. As designed, an approved deviation request is required for Sub-Basin OS-7 & OS-8.

For an example see Gardens at North Carefree PUDSP (PCD File No. PUDSP184) which submitted a similar type of deviation request.

Provide a pond summary table. Pond volume required vs provided (WQCV, EURV, 100yr) (1)

Subject: Text Box Page Label: 47 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 5:28:06 PM Status: Color: Layer: Space:

Provide a pond summary table. Pond volume required vs provided (WQCV, EURV, 100yr)

Provide a section for drainage and bridge fees and calculate the required drainage and bridge fee. See Note 9 of the subdivision p

- Summarian and the standard standa
- Subject: Callout Page Label: 11 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 3:47:02 PM Status: Color: Layer: Space:

Provide a section for drainage and bridge fees and calculate the required drainage and bridge fee. See Note 9 of the subdivision plat below. Attached to the right is the subdivision plat.

Provide a vicinity map or revise the site location to show a wider area. (1)

Subject: Text Box Page Label: 4 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 9:36:39 AM Status: Color: Layer: Space:

Provide a vicinity map or revise the site location to show a wider area.

Provide an existing condition drainage map and narrative. (1)

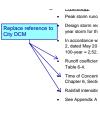
- I. DRAINAGE BASING AND SUB-BASI Model and the second se
- Subject: Callout Page Label: 5 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 12:58:28 PM Status: Color: Layer: Space:

Provide an existing condition drainage map and narrative.

Provide the expected construction date. What is the expected construction date for this project? If the site is to be constructed private and the expected constructed private and the expected construction date for this project?

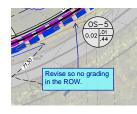
- A <u>Excito Journal of Topics</u>
 A <u>Annotation of Topics</u>
 Annotation of topics
 Annotation
 Annotation of topics
 Annotation
 Ann
- Subject: Callout Page Label: 9 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 1:29:31 PM Status: Color: Layer: Space:

Provide the expected construction date. What is the expected construction date for this project? If the site is to be constructed prior to the Monument Hill widening project, analyze whether the existing condition of the Monument Hill Road/Deer Creek Road intersection provide for a suitable outfall and drainage?


Remove the Outlet Structure details from the drainage report. Include the outlet structure details with the Grading and Erosion Con

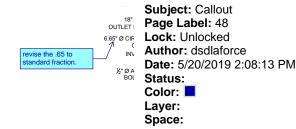
Subject: Text Box Page Label: 48 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 11:22:28 AM Status: Color: Layer: Space:

Remove the Outlet Structure details from the drainage report. Include the outlet structure details with the Grading and Erosion Control Plans set.


Replace reference to City DCM (1)

Subject: Callout Page Label: 8 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 1:18:27 PM Status: Color: Layer: Space:

Replace reference to City DCM


Revise so no grading in the ROW. (1)

Subject: Callout Page Label: 47 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 11:36:15 AM Status: Color: Layer: Space:

Revise so no grading in the ROW.

revise the .65 to standard fraction. (1)

Revise the outlet structure to release at or less than historic. (1)

Subject: Callout Page Label: 38 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 2:10:02 PM Status: Color: Layer: Space:

Revise to 1 ft. (1)

Subject: Callout Page Label: 38 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 2:23:47 PM Status: Color: Layer: Space:

Revise to 1 ft.

less than historic.

Revise. Insufficient freeboard as designed. Provide 1 foot of freeboard above the spillway design flow depth. (1)

Subject: Callout Page Label: 47 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 2:25:52 PM Status: Color: Layer: Space:

Revise. Insufficient freeboard as designed. Provide 1 foot of freeboard above the spillway design flow depth.

Revise. The fourth step is "Consider Need for Industrial and Commercial BMPs. See ECM Appendix I Section I.7.2. (1)


Subject: Callout Page Label: 10 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 3:16:35 PM Status: Color: Layer: Space:

Revise. The fourth step is "Consider Need for Industrial and Commercial BMPs. See ECM Appendix I Section 1.7.2.

revise the .65 to standard fraction.

Revise the outlet structure to release at or

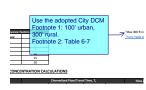
Revise. Water quality capture volume is not provided by the roadside ditch (1)

Revise. Water quality capture volume is not provided by the roadside ditch

Specify the product to be used such as No. 93 Johnson Vee Wire Stainless Steel Well Screen (or Equivalent) (1)

Subject: Callout Page Label: 48 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 2:34:41 PM Status: Color: Layer: Space:

Specify the product to be used such as No. 93 Johnson Vee Wire Stainless Steel Well Screen (or Equivalent)


Use Table 6-6 in the adopted City DCM (1)

Subject: Callout Page Label: 18 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 12:52:17 PM Status: Color: Layer: Space:

Use Table 6-6 in the adopted City DCM

Use the adopted City DCM Footnote 1: 100' urban, 300' rural. Footnote 2: Table 6-7 (1)

Subject: Callout Page Label: 19 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 1:00:56 PM Status: Color: Layer: Space:

Use the adopted City DCM Footnote 1: 100' urban, 300' rural. Footnote 2: Table 6-7

Use the adopted City of Colorado Spring Drainage Criteria Manual Chapter 6. Figure 6-5 provides IDF chart and/or equation. The

Subject: Callout Page Label: 20 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 1:17:19 PM Status: Color: Layer: Space:

Use the adopted City of Colorado Spring Drainage Criteria Manual Chapter 6. Figure 6-5 provides IDF chart and/or equation.

The design point rainfall used is per the City DCM vs the NOAA Point Precipitation provided at the beginning of Appendix A. What is the NOAA information being used for? Remove if not being used.

Use the City DCM Ch 6 Section 3.2.3 (1)

A le The d'Accordination for Marcha Cardination (Cardination of Cardination of Cardinationo of Cardinationo of	Subject: Callout Page Label: 19 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 1:03:06 PM Status: Color: Layer: Space:	Use the City DCM Ch 6 Section 3.2.3
(7)		
-773550 -773550 	Subject: Line Page Label: 47 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 2:26:12 PM Status: Color: Layer: Space:	
<section-header><section-header><section-header><section-header><section-header><text><text><text></text></text></text></section-header></section-header></section-header></section-header></section-header>	Subject: Rectangle Page Label: 14 Lock: Unlocked Author: epearson Date: 4/7/2019 10:07:27 PM Status: Color: Layer: Space:	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Subject: Rectangle Page Label: 26 Lock: Unlocked Author: epearson Date: 4/8/2019 11:40:58 PM Status: Color: Layer: Space:	
Highlighted Depth (ft) = 0.50 ○ (cfs) = 18.14 Area (sqft) = 3.08 Velocity (fts) = 5.89 Wetted Perim (ft) = 15.87 Crit Depth, 1% (ft) = 0.56 Top Width (ft) = 15.54 EGL (ft) = 1.04	Subject: Rectangle Page Label: 28 Lock: Unlocked Author: epearson Date: 4/8/2019 11:46:32 PM Status: Color: Layer: Space:	
c. Monday, Apr 8 2015 $\begin{array}{rrrr} \mbox{Highlighted} \\ \mbox{Depth}(ft) & = 0.40 \\ \hline 0 \ (cfs) & = 16.75 \\ \hline Area (sqft) & = 3.45 \\ \hline Velocity(ft/s) & = 4.86 \\ \hline Wetted Perim (ft) & = 23.61 \\ \hline Crit Depth, Yc (ft) & = 0.51 \\ \hline Top Width (ft) & = 23.59 \\ \hline EGL (ft) & = 0.76 \\ \end{array}$	Subject: Rectangle Page Label: 27 Lock: Unlocked Author: epearson Date: 4/8/2019 11:52:25 PM Status: Color: Layer: Space:	

 in an annu score superang-same standa, Annaes in Annae Annaes.
 in an annaes and a superang-same and annaes annae annaes annaes annaes annaes annaes annaes annaes annaes annae

(8) ONMARE NEE FOR LET 3 SHALL BE FROM PROFINE TO BE DELARGE OF A BUILDED REPORT AND THOSE PRESLARE TO BE GAUGANED ON THE BASIS OF THE REE STRUCTURE IN DIRECT AT THE THE OF BALEND FROME APPLICATION. Subject: Image Page Label: 11 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 3:27:00 PM Status: Color: Layer: Space:

Subject: File Attachment Page Label: 11 Lock: Unlocked Author: dsdlaforce Date: 5/20/2019 3:30:37 PM Status: Color: Layer: Space: