## Galloway

# PRELIMINARY DRAINAGE REPORT 

## GRANDVIEW RESERVE

El Paso County, Colorado

## Engineering Review

10/28/2021 11:58:43 AM
dsdrice
JeffRice@elpasoco.com
(719) 520-7877

PREPARED FOR:
EPC Planning \& Community
D.R. Horton

9555 S. Kingston Court
Englewood, CO

Development Department
Cursory comments - see comment letter also.

PREPARED BY:
Galloway \& Company, Inc.
1155 Kelly Johnson Blvd., Suite 305
Colorado Springs, CO 80920
DATE:
August 11, 2021

| Add text: |
| :--- |
| PCD Filing No.: |
| PUDSP2110 |

## ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

## Charlene Durham, PE \#36727

Date
For and on behalf of Galloway \& Company, Inc.

## DEVELOPER'S CERTIFICATION

I, The developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By: $\qquad$
Date

| Address: | D.R. Horton |
| :--- | :--- |
|  | 9555 S. Kingston Court |
|  | Englewood, CO |

## EL PASO COUNTY CERTIFICATION

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E.
County Engineer/ECM Administrator
Conditions:

## TABLE OF CONTENTS

I. Purpose ..... 4
II. General Description ..... 4
III. Drainage Criteria ..... 4
IV. Existing Drainage Conditions ..... 5
V. Four Step Process ..... 6

1. Employ Runoff Reduction Practices ..... 6
2. Stabilize Channels ..... 6
3. Provide Water Quality Capture Volume (WQCV) ..... 6
4. Consider Need for Industrial and Commercial BMPs ..... 6
VI. Proposed Drainage Conditions ..... 6
VII. Storm Sewer System ..... 10
VIII. Proposed Water Quality Detention Ponds ..... 11
IX. Proposed Channel Improvements ..... 11
X. Maintenance ..... 12
XI. Wetlands Mitigation ..... 12
XII. Floodplain Statement ..... 12
XIII. Drainage Fees \& Maintenance ..... 12
XIV. Conclusion ..... 12
XV. References ..... 12
Appendices:
A. Exhibits and Figures
B. MDDP \& DBPS Sheet References
C. Hydrologic Computations
D. Hydraulic Computations
E. Water Quality Computations
F. Drainage Maps \& Water Quality Plan

## I. Purpose

The purpose of this Preliminary Drainage Report is to identify on and offsite drainage patterns, locate and identify tributary or downstream drainage features and facilities that impact the site, and to identify which types of drainage facilities will be needed and where they will be located. This report will remain in general compliance with the approved MDDP prepared by HR Green, dated November 2020.

## II. General Description

the proposed
extension of
The project is a single-family residential development located in the Falcon area of El Paso County, Colorado. The site is located in a portion of the South half of Section 21, the North half of Section 28, Township 12 South, Range 64 West of the $6^{\text {th }}$ Principal Meridian, County of El Paso, State of Colorado. The subject property is bounded by Eastonville Road to the west, Kex Road to the north, undeveloped land proposed as future development to the east, and undeveloped land to the south. A Vicinity Map is included in Appendix A.

This preliminary drainage report was the basis for the drainage facility design contained within the previously approved MDDP for the site prepared by HR Green. The site consists of approximately 182.61 acres and includes 568 dwelling units.

The existing soil types within the proposed site as determined by the NRCS Web Soil Survey for El Paso County Area consist of Columbine gravelly sandy loam (hydrologic soil group A) and Stapleton sandy loam (hydrologic soil group B). See the soils map included in Appendix A.

## III. Drainage Criteria

Hydrology calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2 .1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.

The drainage calculations were based on the criteria manual Figure 6-5 and IDF equations to determine the intensity and are listed in Table 1 below.

Table 1 - Precipitation Data

| Return Period | One Hour Depth (in). | Intensity (in/hr) |
| :---: | :---: | :---: |
| 5-year | 1.50 | 5.17 |
| 100-year | 2.52 | 8.68 |

The rational method was used to calculate peak flows as the tributary areas are less than 100 acres. The rational method has been proven to be accurate for basins of this size and is based on the following formula:
$Q=C I A$

Where:

```
Q = Peak Discharge (cfs)
C = Runoff Coefficient
I = Runoff intensity (inches/hour)
A = Drainage area (acres)
```

The runoff coefficients are calculated based on land use, percent imperviousness, and design storm for each basin, as shown in the drainage criteria manual (Table 6-6). Composite percent impervious and C values were calculated using the residential, streets, roofs, and lawns coefficients found in Table 6-6 of the manual.

The 100-year event was used as the major storm event. The 5 -year event was used as the minor event. The UD-Inlets v5.01 spreadsheet was utilized for the sizing of the proposed sump inlets.

The UD-Detention v4.04 spreadsheet was utilized for the design of the proposed on-site water quality ponds, Ponds A, B, C, D, E.

## IV. Existing Drainage Conditions

The site is contained fully within one major drainage basin; the Gieck Ranch Drainzge Basin and is tributary to Black Squirrel Creek. The site generally drains from north to south with an average slope of $2 \%$ outside of the channel. The rational method was used to analyze the indiy dual basins within the site because their size permits it.

There are two (2) major drainage ways the currently convey existing or \& off-site flows through the site these are the Main Stem (MS) and Main Stem Tributary Number 2 (I/ST). Both drainageways generally flow to the southeast to Highway 24, before crossing via existing drainage structures. Currently, these channels receive flows from two off-site basins, one from the west and the other from the north and are routed under Eastonville Road via existing pipe culverts.

An existing basin map has been prepared for this site to analyze the existing basins as well as the offsite basins contributing to the site. The existing map is included in Appendix F and basins are describ below.
not found?
Basin EX-1 (105.72 AC, Q5 = 22.3 cfs, Q100 = 159.1 cfs): Located on the southwest portion of the site, this basin consists of un-developed land. Runoff from this basin will sheet flow to the southeast before channelizing and eventually out falling into Main Stem channel (DP 1).

Basin EX-2 (57.68 AC, Q5 = 13.1 cfs, Q100 = 93.4 cfs): Located on the northeast portion of the site, this basin consists of un-developed land. Runoff from this basin will sheet flow to the southeast before channelizing and eventually out falling into Main Stem Tributary \#2 channel (DP 2).

Basin EX-3 (23.35 AC, Q5 = 6.8 cfs, Q100 $=48.4 \mathrm{cfs}$ ): Located on the southeast portion of the site, this basin consists of un-developed land. Runoff from this basin will sheet flow to the southeast before channelizing and eventually out falling into Main Stem Tributary \#2 channel (DP 3).


Based on the MDDP there should be at least 7 onsite

## V. Four Step Process

The Four Step Process is used to minimize the adverse impacts of urbanization and is a vital component of developing a balanced, sustainable project. Below identifies the approach to the four-step process:

## 1. Employ Runoff Reduction Practices

This step uses low impact development (LID) practices to reduce runoff at the source. Generally, rather than creating point discharges that are directly connected to impervious areas runoff is routed through pervious areas to promote infiltration. The Impervious Reduction Factor (IRF) method was used and calculations can be found in Appendix E.

## 2. Stabilize Channels

This step implements stabilization to channels to accommodate developed flows while protecting infrastructure and controlling sediment loading from erosion in the drainageways. Erosion protection in the form of riprap pads at all outfall points to the channel to prevent scouring of the channel from point discharges. The existing channel analysis and design is to be completed by others and a separate report for the major channels will be submitted for review. provide when

## 3. Provide Water Quality Capture Volume (WQCV)

This step utilizes formalized water quality capture volume to slow the release of runoff from the site. The EURV volume will release in 72 hours, while the WQCV will release in no less than 40 hours. Onsite water quality control volume detention ponds will provide water quality treatment for all of the developed areas, prior to the runoff being released into either of the major drainage ways. Refer to WQCV Plan in Appendix F.

## 4. Consider Need for Industrial and Commercial BMPs

As this project is all residential development and no commercial or industrial development is proposed, there will be no need for any specialized BMPs which would be associated with an industrial or commercial site.

## VI. Proposed Drainage Conditions

MDDP? (There is
no adopted DBPS)
The proposed development lies completely within the Gieck Drainage Basin and consists of six (6) basins. Site runoff will be collected via inlets \& pipes and diverted to one of the five proposed full spectrum detention ponds. All necessary calculations can be found within the appendices of the report.

According to the DBPG, there are two major channels that run through the site. As was discussed within the Existing Conditions portion of the report both the Main Stem (MS) and Main Stem Tributary Number 2 (MST) run through the site ${ }^{\text {There }}$ are no proposed major channel improvements for MS -however, MST is proposed to be re-routed. The analysis for both channels and design of MST were done by others and a separate report will be submitted for review for all channel improvements.

The site will provide five (5) WQCV Detention Ponds, Pond A, B, C, D, \& E, to provide water quality treatment prior to discharg ng the runoff directly into either the MS or MST Channel.

As has been mentioned previously, the site is proposed to be single family residential. The site will consist primarily of $1 / 8$ Acre lots, with some $1 / 4$ Acre and $1 / 3$ Acre lots, public roadways, along with dedicated Tracts for amen ity and/or institutional uses.

Basin-1 (1.40 AC, Q5 = 4.8 cfs, Q100 = 9.7 cfs ): Located on the northwestborder of the site, Basin-1 contains the proposed Phase 1 improvements to Rex Rd. This drainage basin consists entirely of off-site areas tributary to the project site. Runoff from this basin will sheet flow to the proposed curb \& gutler along Rex F.d. The flows will then be routed to the east where they will discharge directly into main stem tributary \#2. channel. It is anticipated that these flows will be chftured and treated further downstream when the hext segment of Rex Rd. is constructed.

Rex Road is part of the site
Basin A-1 (11.23 AC, Q5 = $3.9 \mathrm{cfs}, \mathrm{Q} 100=27.5 \mathrm{cfs}$ ): Located on the northwest corner of the site, East of Eastonville Rd. \& south of Rex Rd. This drainage basin is proposed future development to include an institutional site. Runoff from this basin will sheet flow from the northwest to the southeast, to a proposed CDOT Type ' $C$ ' inlet on the west side of Road $V$ (DP 1). Flows will then be routed under Road $V$, via 24 " RCP, to the updated Main Stem Tributary 2 channel. ___ provide developed design assumptions and preliminary pond sizing and location
Basin A-2 (6.94 AC, Q5 = 13.2 cfs, Q100 $=29.7$ cfs): Located on the north portion of the site, this basin consists of residential lots, Road G, Road V, and a portion of the north half of Road F. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located on the northeast side of the intersection of Road $V$ and Road $F$ (DP 2).

Basin A-3 (0.34 AC, Q5 = $1.6 \mathrm{cfs}, \mathrm{Q} 100=3.0 \mathrm{cfs})$ : Located on the north portion of the site, this basin consists of a portion of the south half of Road F. Flows will be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located on the southeast side of the intersection of Road V and Road F (DP 3).

Basin A-4 (10.15 AC, Q5 = $19.8 \mathrm{cfs}, ~ Q 100=45.1 \mathrm{cfs}$ ): Located on the north portion of the site, this basin consists of residential lots, Road H, Road I, and a portion of the west half of Road F. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type 'R' inlet in sump conditions, located on the west side of Road F (DP 4), between Road H and Road I.

Basin A-5 (0.34 AC, Q5 $=1.6 \mathrm{cfs}, ~ Q 100=3.0 \mathrm{cfs})$ : Located on the north portion of the site, this basin consists of a portion of the east half of Road F . Flows will be routed, via curb \& gutter, to a proposed (public) CDOT Type 'R' inlet in sump conditions, located on the east side of Road F (DP 5), Just north of the intersection of Road M and Road F.

Basin A-6 (2.67 AC, Q5 = 4.7 cfs, Q100 = 11.5 cfs): Located centrally on the site, this basin consists of residential lots, Road $N$, and a portion of the south half of Road M. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type 'R' inlet in sump conditions, located on the south side of Road M (DP 6), Just southeast of the intersection of Road $N \&$ Road $M$.

Basin A-7 (2.91 AC, Q5 = 2.3 cfs, Q100 = 8.4 cfs): Located centrally on the site, this basin consists of residential lots and a portion of the north half of Road $M$. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located on the north side of Road M (DP 7), Just northeast of the intersection of Road N \& Road M. Address where overflows will go
Basin A-8 (6.31 AC, Q5 = $1.9 \mathrm{cfs}, \mathrm{Q} 100=13.5 \mathrm{cfs}$ ): Located on the eastern limits of the site, adjacent to the proposed Main Stem Tributary \#2 drainageway. This basin consists of a portion of an open area amenity and the proposed (private) Full Spectrum Detention Pond A. Runoff from this basin will sheet flow directly to the northwest corner of Pond A. Flows will then be routed to the outlet structure (DP 8), via a concrete trickle channel, where it will eventually discharge, at a controlled rate, into the adjacent Main Stem Tributary \#2 channel.

## Address overflow spillway size and location

Basin B-1 (4.02 AC, Q5 = 6.6 cfs, Q100 = 16.0 cfs): Located on the western limits of the site, adjacent to Eastonville Road. This basin consists of residential lots and the southwest portion of Road J. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located at the end of the Cul-De-Sac of Road J (DP 9).

Basin B-2 (7.58 AC, Q5 = 13.1 cfs, Q100 = 29.3 cfs): Located on the western limits of the site, partially adjacent to Eastonville Road. This basin consists of residential lots, the northwest portion of Road J, the southwestern portion of Road F, and western portion of Road K. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located south of Road $K$ on the northwest side of Road $F$ (DP 10).

Basin B-3 ( $0.76 \mathrm{AC}, \mathrm{Q} 5=3.1 \mathrm{cfs}, \mathrm{Q} 100=6.0 \mathrm{cfs}$ ): Located on the western portion of the site, this basin consists of the south \& east halfportions of Road F. Flows will be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located on the north side of Road O (DP 11), between Road K \& Road I. « address overflow routes

Basin B-4 (9.17 AC, Q5 = 16.0 cfs , Q100 $=35.5$ cfs): Located centrally on the site. This basin consists of residential lots, the northwest portion of Road J, western portion of Road K, and north half of a portion of road I \& south half of Road O. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located east of Road $P$ on the northwest side of Road L (DP 12).

Basin B-5 (2.57 AC, Q5 = 4.7 cfs, Q100 = 10.4 cfs): Located centrally on the site, adjacent to the north side of Main Stem channel. This basin consists of residential lots and the south portion of Road L. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located on the south side of Road $L$ (DP 13), southeast of Road P.

Basin B-6 (2.06 AC, Q5 = 3.9 cfs, Q100 = 8.8 cfs): Located centrally on the site. This basin consists of residential lots and the northwest portion of Road P. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type 'R' inlet in sump conditions, located on the northwest side of Road P (DP 14)

# This basin needs to be split up with more design points 

Basin B-7 ( $0.99 \mathrm{AC}, \mathrm{Q} 5=2.4 \mathrm{cfs}, \mathrm{Q} 100=5.3 \mathrm{cfs}$ ): Located centrally on the site. This basin consists of residential lots and the southeast portion of Road P. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located on the southeast side of Road P (DP 15).

Basin B-8 (0.87 AC, Q5 = 0.4 cfs, Q100 $=2.6$ cfs): Located centrally on the site, adjacent to the Main Stem channel. This basin consists of the proposed (pr/vate) Full Spectrum Detention Pond B. Runoff from this basin will sheet flow directly to Pond B. Flows wil then be routed to the outlet structure (DP 16), via a concrete trickle channel, where it will eventually discharge, at a controlled rate, into the adjacent Main Stem channel.

Basin C-1 (34.69 AC, Q5 = 40.3 cfs, Q100 = 89.9 cfs): Located on the east portion of the site, this basin consists of residential lots, Road S, Road T, Road R and portions of Roads; J, O, M, \& Q. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located on the northeast side of Road Q (DP 17), northeast from Road $U$ and Road $Q$ intersection.

Basin C-2 (9.90 AC, Q5 = $12.9 \mathrm{cfs}, ~ Q 100=29.8 \mathrm{cfs}$ ): Located centrally on the site, this basin consists of residential lots and portions of Roads L \& Q. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located on the southeast side of Road Q (DP 18), north from Road U and Road Q intersection.

Basin C-3 ( $0.50 \mathrm{AC}, \mathrm{Q} 5=0.9 \mathrm{cfs}, \mathrm{Q} 100=2.5 \mathrm{cfs}$ ): Located on the southeast portion of the site, this basin consists of landscape and half of Road U. Runoff from this basin will sheet flgw to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located on the west side of Road U (DP 19).

Basin C-4 (1.61 AC, Q5 = 3.0 cfs , Q100 = 6.8 cfs ): Located on the outheast portion of the site, this basin consists of residential lots and the south half of Road $U$. Runoff from this basin will shleet flow to the adjacent road. Flows will then be routed, via curb \& gutter, to qoroposed (public) CD $\phi$ T Type ' $R$ ' inlet in sump conditions, located on the east side of Road U (DP 20).

Basin C-5 (3.99 AC, Q5 = 1.3 cfs, Q100 = 9.4 cfs): Located on the southeast corner of the site, adjacent to the Main Stem channel. This basin consists of the proposed (private) Full Spectrum Detention Pond C. Runoff from this basin will sheet flow directly to Pond C. Flows will then be routed to the outlet structure (DP 21), via a concrete trickle channel, where it will eventually discharge, at a controlled rate, into the adjacent Main Stem channel. $\_$Expand on the description - most of the area drains into a channel?
Basin D-1 (2.46 AC, Q5 = $5.0 \mathrm{cfs}, \mathrm{Q} 100=12.3 \mathrm{cfs}$ ): Located on the southwest portion of the site, adjacent to Eastonville Road. This basin consists of residential lots, a portion Road B, and the north half of Road $A$. Runoff from this basin will sheet flow to the adjacent road. Flows will then be rquted, via curb \& gutter, to a proposed (public) CDOT Type ' R ' inlet in sump conditions, located on the west side of Road $B$ (DP 22), just north of the intersection of Road B \& Road C.

Basin D-2 (0.75 AC, Q5 = 2.4 cfs, Q100 = 4.9 cfs): Located on the southwest portion of the site, this basin consists of residential lots and a portion of Road B. Runoff from this basin will sheet flqw to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT TyRe, 'R' inlet in
sump conditions, located on the east side of Road B (DP 23), just north $\beta \mathrm{f} /$ the intersection of Road $B$ \& Road C.

Basin D-3 (4.76 AC, Q5 = $9.1 \mathrm{cfs}, \mathrm{Q} 100=21.5 \mathrm{cfs}$ ): Located on the soquthwest portion of the site, this basin consists of residential lots and a portion of Road $B$ \& Road C. Rundff from this basin will sheet flow to the adjacent road. Flows will then be routed, via curb \& gutter, oo aprqposed (public) CDOT Type 'R' inlet in sump conditions, located on the west side of Road C (DP 24 )

Basin D-4 (4.74 AC, Q5 = 9.2 cfs, Q100 = 21.1 cfs ): Located on the soluthwest portion of the site, this basin consists of residential lots and the east half of Road C. Rundff from this basin will sheet flow to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type 'R' inlet in sump conditions, located on the east side of Road C (DP 25).

Basin D-5 (1.71 AC, Q5 = $0.7 \mathrm{cfs}, ~ Q 100=4.8 \mathrm{cfs}$ ): Located on the sputhwest portion of the site, adjacent to the Main Sterichannel. This basin consists of the proposed (private) Full Spectrum Detention Pond D. Runoff from this basin will street flow directly to Pond $D$. Flows will then be routed to the outlet structure (DP 26), via a concrete trickle channet, where it will eventually discharge, at a controlled rate, into the adjacent Main Stem channel.

Basin E-1 ( 6.86 AC, Q5 $=8.0 \mathrm{cfs}, ~ Q 100=21.0 \mathrm{cfs}$ ): Located on the southern portion of the site, this basin consists of residential lots and a portion $\sigma$ Road $D$. Runofffrom this basin will sheet flow to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) CDOT Type ' $R$ ' inlet in sump conditions, located on the east side of Road D (DP 27), j j\&st north of the cul-de-sac.

Basin E-2 (11.66 AC, Q5 = 15.4 ধfs, Q100 = 38.2 cfs ): Located on the southern portion of the site, this basin consists of residential lots, all of Road E, the south half of Road A, and a portion of Roads; B, D \& E. Runoff from this basin will sheet flow to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) COOT Type ' $R$ ' inlet in sump conditions, located on the west side of Road $D$ (DP 28), just north of the Cul-De-Sac.

Basin E-3 (1.74AC, Q5 = $0.6 \mathrm{cfs}, \mathrm{Q} 100=4.6 \mathrm{cfs}$ ): Located on the southern portion of the site, adjacent to the south side of the Main Stem channel. This basin consists of the proposed (private) Full Spectrum Detention Pond E. Runoff from this basin will sheet flow directly to Pond E. Flows will then be routed to the outlet structure (DP 29), via a concrete trickle channel, where it will eventually discharge, at a controlled rate, into the adjacent Main Stem channel.

## VII. Storm Sewer System

All development is anticipated to be urban and will include storm sewer \& street inlets. Storm sewers collect storm water runoff and convey the water to the water quality facilities prior to discharging. Storm sewer systems will be designed to the 100-year storm and checked with the 5 -year storm. Inlets will be placed at sump areas and intersections where street flow is larger than street capacity. UDFCD Inlet spreadsheet has been used to determine the size of all sump inlets.

There will be a minimum of 5 proposed storm systems within the site. Each of the five storm sewer systems will discharge storm water into its correlated WQCV pond. Each system will consist of reinforced concrete pipe (RCP), CDOT Type ' $R$ ' inlets, and storm sewer manholes.

The Final drainage report will include details concerning at-grade inlet locations, street capacity, storm sewer sizing, outlet protection and location. Preliminary sump inlets have been sized and the calculations can be found in Appendix D. As mentoned, these sump inlets sizes are preliminary and are currently oversized. It is anticipated that the inlets will reduce in size with the addition of at-grade inlets at the time of the Final Drainage Report.

## VIII. Proposed Water Quality Detention Ponds

Fik (5) Water Quality Capture Volume Detention Ponds will be provided for the proposed site. All of the proposed ponds are private and will be maintained by the HOA, once established. These detention ponds are proposed to be full spectrum and will provide water quality and detention. The WQCV and EURV release will be controlled with an orifice plate. The release rates for the WQCV and EURV will be 40hours and 72-hours, respectively. The 100-year volume will be controlled by orifice and/or restrictor plate and will be designed to release at or below the pre-development flow rate. Outlet structures, forebays, trickle channels, etc. will be designed with the final drainage report during final plat. The required FSD pond volumes are as described below:

Pond A: Located to the north of the site, just west of the newly routed Main Stem Tributary \#2 channel. This pond will discharge into the Main Stem Tributary \#2, ultimately merging with Main Stem to the south, off-site. The required volume WQCV and EURV are 0.49 Ac-Ft \& 1.090 Ac-Ft, respectively. The total required detention basin volume is $2.55 \mathrm{Ac}-\mathrm{Ft}$.

Pond B: Located centrally on the site, just east of the Main Stem drainage way. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are 0.52 Ac-Ft \& 1.47 Ac-Ft, respectively. The total required detention basin volume is $2.95 \mathrm{Ac}-\mathrm{Ft}$.

Pond C: Located on the southeast portion of the site, between the Main Stem \& Main Stem Tributary \#2 channels. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are 0.26 Ac-Ft \& 0.57 Ac-Ft, respectively. The total required detention basin volume is $1.35 \mathrm{Ac}-\mathrm{Ft}$.

Pond D: Located centrally on the site, just west of the Main Stem channel. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are $0.22 \mathrm{Ac}-\mathrm{Ft} \& 0.55 \mathrm{Ac}-\mathrm{Ft}$, respectively. The total required detention basin volume is $1.23 \mathrm{Ac}-\mathrm{Ft}$.

Pond E: Located on the south side of the site, just west of the Main Stem channel. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are 0.22 Ac-Ft \& 0.48 AcFt , respectively. The total required detention basin volume is $1.17 \mathrm{Ac}-\mathrm{Ft}$.

## IX. Proposed Channel Improvements

Provide Pond F for

According to the DPPS, there are two major drainage ways that run through the site. As was discussed within the Existing Conditions portion of the report, both the Main Stem channel (MS) and Main Stem Tributary \#2 channel (MST) run through the site. There are no proposed major channel improvements for MS -however, MST is proposed to be rerouted. The analysis for both drainage ways and design of MST were done by others and a separate report will be submitted for review.

$\qquad$

## X. Maintenance

After completion of construction and upon the Board of Colnty Commissioners acceptance, it is anticipated all drainage facilities within the public Right- $\sigma$-Way are to be owned and maintained by El Paso County

All private detention ponds are to be owned and maintained by the HOA, once established, unless an agreement is reached stating otherwise


## XI. Wetlands Mitigation

 Address maintenance access roads for the ponds and channels
There are two existing wetlands on site associated yuith the two major channels, MS and MST. The wetlands are both contained within the existing channels with the wetland in MS being classified as jurisdictional and the wetland in MST classifiedas non-jurisdictional. The wetlands will be analyzed with the channel report by others.
 provide final USACE

## XII. Floodplain Statement

 determinationA portion of the project sit lies with Zone A Special Flood Hazard Area as defined by the FIRM Map number 08041C0552Geffective December 7, 2018. A copy of the FIRM Panel is included in Appendix
A.
and
.....556G

## XIII. Drainage Fees \& Maintenance

Gieck Ranch Basin is not listed as part of the El Paso County drainage basin fee program. Unless otherwise instructed, no drainage fees will be assessed. If it is found drainage basin fees are required, these will be included in the Final Drainage Report.

## XIV. Conclusion

The Grandview Reserve residential subdivision lies within the Gieck Ranch Drainage Basin. Water quality for the site is provided in five on-site Full Spectrum Detention Ponds; Ponds A, B, C, D, \& E. All drainage facilities within this report were sized according to the El Paso County Drainage Criteria Manuals. There are two major channels passing through the site Main Stem and Main Stem Tributary \#2, which will be addressed by others in a channel improvement report. The five (5) WQCV ponds will be maintained by a newly established HOA. A Final Drainage Report will be submitted along with the final plat and construction drawings.

## XV. References

1. El Paso County Drainage Criteria Manual, 201每.
2. Drainage Criteria Manual, Volume 2, City of Colorado Springs, 2014.
3. Urban Storm Drainage Criteria Manual, Urban Drainage and Flood Control District, January 2016 (with current revisions).
4. Gieck Ranch Drainage Basin Study (DBPS), Drexel Barrell, October 2010 (Not/adopted by County).
5. Grandview Reserve Master Development Drainage Plan (MDDP), HR Green, November 2020.

## APPENDIX A

## Exhibits and Figures





 onter
 oneme




AN PANEL 0556G el paso county, svazv aaivaodaonianv
oavzotoo






FIRM Flood insurance rate map

FLOOD INSURANCE RATE M


Show the
boundary of this PUDSP

$\qquad$






## MAP LEGEND

| Area of Interest (AOI) | $\square$ | C |
| :---: | :---: | :---: |
| Area of Interest (AOI) | $\square$ | C/D |
| Soils |  |  |
| Soil Rating Polygons |  |  |
| A | $\square$ | Not rated or not available |
| A/D | Water F | res |
|  | $\sim$ | Streams and Canals |
| B |  |  |
|  | Transpo | ion |
| B/D | + + | Rails |
| C | $\sim$ | Interstate Highways |
| C/D | (2) | US Routes |
| D | $\approx$ | Major Roads |
| Not rated or not available | $\cdots$ | Local Roads |
| Soil Rating Lines | Backgro |  |
| $\cdots \mathrm{A}$ |  | Aerial Photography |
| $\cdots$ A/D |  |  |
| $\cdots$ B |  |  |
| $\cdots 3 / D$ |  |  |
| $\cdots \mathrm{C}$ |  |  |
| $\cdots \mathrm{C} / \mathrm{D}$ |  |  |
| $\cdots$ D |  |  |
| * Not rated or not available |  |  |
| Soil Rating Points |  |  |
| $\square \quad \mathrm{A}$ |  |  |
| $\square \mathrm{A} / \mathrm{D}$ |  |  |
| $\square \quad \mathrm{B}$ |  |  |
| - B/D |  |  |

## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 17, Sep 13, 2019

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 8, 2018-May 26, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

# Hydrologic Soil Group 

| Map unit symbol | Map unit name | Rating | Acres in AOI | Percent of AOI |
| :---: | :---: | :---: | :---: | :---: |
| 8 | Blakeland loamy sand, 1 to 9 percent slopes | A | 22.4 | 2.6\% |
| 19 | Columbine gravelly sandy loam, 0 to 3 percent slopes | A | 450.7 | 52.5\% |
| 83 | Stapleton sandy loam, 3 to 8 percent slopes | B | 385.4 | 44.9\% |
| Totals for Area of Interest |  |  | 858.5 | 100.0\% |

## Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or $C / D$ ), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group $D$ are assigned to dual classes.

# Rating Options 

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

## APPENDIX B

MDDP \& DBPS Sheet References





## APPENDIX C

## Hydrologic Computations



NOTES:
Impervir

| Basin ID | Total Area (ac) | Paved/Gravel Roads |  |  | $\frac{7}{\text { LawnsUndeveloped }}$ |  |  | $\frac{10}{\text { Roofs }}$ |  |  | ${ }^{12}{ }_{\text {Residential - }-1 / 8 \text { Acre }}^{14}$ |  |  | ${ }^{5} \frac{16}{\text { Residential - } 1 / 4 \text { Acre }}$ |  |  | ${ }^{18}{ }_{\text {Residential - } 19 / 3 \text { Acre }}{ }^{20}$ |  |  | Residential - $1 / 2$ Acre |  |  |  | 25 | ${ }^{26}$ | $27 \quad 28$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | ential - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) |  |  |  | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) |  |  |  | $\mathrm{c}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | rea (ac) | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) | $\mathrm{c}_{5}$ | $\mathrm{C}_{100}$ | ea (ac) | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | rea (ac) | Composite $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ |
| EXISTING |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EX-1 | 105.72 | 0.90 | 0.96 | 0.00 | 0.09 | 0.36 | 105.72 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.09 | 0.36 |
| EX-2 | 57.68 | 0.90 | 0.96 | 0.00 | 0.09 | 0.36 | 57.68 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.09 | 0.36 |
| EX-3 | 23.35 | 0.90 | 0.96 | 0.00 | 0.09 | 0.36 | 23.35 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.09 | 0.36 |
| PROPOSED |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Basin-1 | 1.40 | 0.90 | 0.96 | 1.13 | 0.09 | 0.36 | 0.27 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.74 | 0.84 |
| A-1 | 11.23 | 0.90 | 0.96 | 0.00 | 0.09 | 0.36 | 11.23 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.09 | 0.36 |
| A-2 | 6.94 | 0.90 | 0.96 | 2.47 | 0.09 | 0.36 | 1.37 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 2.88 | 0.30 | 0.50 | 0.22 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.53 | 0.67 |
| A.3 | 0.34 | 0.90 | 0.96 | 0.34 | 0.09 | 0.36 | 0.00 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.90 | 0.96 |
| A-4 | 10.15 | 0.90 | 0.96 | 1.85 | 0.09 | 0.36 | 0.77 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 7.44 | 0.30 | 0.50 | 0.09 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.50 | 0.64 |
| A-5 | 0.34 | 0.90 | 0.96 | 0.34 | 0.09 | 0.36 | 0.00 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.90 | 0.96 |
| A.6 | 2.67 | 0.90 | 0.96 | 0.72 | 0.09 | 0.36 | 0.67 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.45 | 0.30 | 0.50 | 0.73 | 0.25 | 0.47 | 0.10 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.43 | 0.60 |
| A-7 | 2.91 | 0.90 | 0.96 | 0.28 | 0.09 | 0.36 | 2.23 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.40 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.22 | 0.45 |
| A-8 | 6.31 | 0.90 | 0.96 | 0.00 | 0.09 | 0.36 | 6.31 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.09 | 0.36 |
| B-1 | 4.02 | 0.90 | 0.96 | 0.74 | 0.09 | 0.36 | 1.09 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 2.19 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.44 | 0.60 |
| B-2 | 7.58 | 0.90 | 0.96 | 1.57 | 0.09 | 0.36 | 0.74 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 5.14 | 0.30 | 0.50 | 0.13 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.51 | 0.64 |
| B-3 | 0.76 | 0.90 | 0.96 | 0.76 | 0.09 | 0.36 | 0.00 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.90 | 0.96 |
| B-4 | 9.17 | 0.90 | 0.96 | 2.03 | 0.09 | 0.36 | 0.73 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 6.41 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.52 | 0.65 |
| B-5 | 2.57 | 0.90 | 0.96 | 0.51 | 0.09 | 0.36 | 0.13 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 1.93 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.52 | 0.65 |
| B-6 | 2.06 | 0.90 | 0.96 | 0.27 | 0.09 | 0.36 | 0.00 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 1.79 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.51 | 0.64 |
| B-7 | 0.99 | 0.90 | 0.96 | 0.27 | 0.09 | 0.36 | 0.00 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.72 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.57 | 0.69 |
| B-8 | 0.87 | 0.90 | 0.96 | 0.00 | 0.09 | 0.36 | 0.87 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.09 | 0.36 |
| C-1 | 34.69 | 0.90 | 0.96 | 6.81 | 0.09 | 0.36 | 2.05 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 24.10 | 0.30 | 0.50 | 1.51 | 0.25 | 0.47 | 0.22 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.51 | 0.64 |
| C-2 | 9.90 | 0.90 | 0.96 | 1.59 | 0.09 | 0.36 | 1.34 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 6.58 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.39 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.47 | 0.61 |
| C-3 | 0.50 | 0.90 | 0.96 | 0.19 | 0.09 | 0.36 | 0.31 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.40 | 0.59 |
| C-4 | 1.61 | 0.90 | 0.96 | 0.23 | 0.09 | 0.36 | 0.11 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 1.27 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.49 | 0.63 |
| C.5 | 3.99 | 0.90 | 0.96 | 0.00 | 0.09 | 0.36 | 3.99 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.09 | 0.36 |
| D-1 | 2.46 | 0.90 | 0.96 | 0.43 | 0.09 | 0.36 | 0.59 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 1.44 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.44 | 0.60 |
| D-2 | 0.75 | 0.90 | 0.96 | 0.36 | 0.09 | 0.36 | 0.00 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.39 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.67 | 0.77 |
| D-3 | 4.76 | 0.90 | 0.96 | 0.91 | 0.09 | 0.36 | 0.61 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 3.01 | 0.30 | 0.50 | 0.23 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.48 | 0.63 |
| D.4 | 4.74 | 0.90 | 0.96 | 0.67 | 0.09 | 0.36 | 0.34 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 3.73 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.49 | 0.63 |
| D.5 | 1.71 | 0.90 | 0.96 | 0.00 | 0.09 | 0.36 | 1.71 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.09 | 0.36 |
| E-1 | 6.86 | 0.90 | 0.96 | 0.87 | 0.09 | 0.36 | 1.63 | 0.73 | 0.81 | 0.00 | 0.45 | 0.59 | 2.32 | 0.30 | 0.50 | 2.04 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 | 0.00 | 0.20 | 0.44 | 0.00 | 0.38 | 0.56 |
| $\frac{\mathrm{E}-2}{\mathrm{E}-3}$ | ${ }_{11.66}^{1.71}$ | $\stackrel{0.90}{0.90}$ | ${ }_{0}^{0.96}$ | $\frac{2.42}{0.00}$ | $\stackrel{0}{0.09}$ | 0.36 0.36 | 1.85 1.71 | $\frac{0.73}{0.73}$ | ${ }_{0}^{0.81} 0$ | 0 | 0.45 0.45 | 0.59 | 3.40 0.00 | $\stackrel{0}{0.30}$ | 0.50 0.50 | 3.99 0.00 | 0.25 0.25 | 0.47 0.47 | 0.000 | $\frac{0.22}{0.22}$ | 0.46 | 0.000 | 0.20 0.20 | $\frac{0.44}{0.44}$ | 0.000 | 0.43 0.09 | 0.60 |
| E-3 |  |  | 0.96 |  |  |  | 1.71 |  | 0.81 | 0.00 | 0.45 | 0.59 | 0.00 | 0.30 | 0.50 | 0.00 | 0.25 | 0.47 | 0.00 | 0.22 | 0.46 |  |  |  |  |  |  |


| Lot TYpe Identification: |  |
| :---: | :---: |
| Loostie (SF) | Loo Siee facre) |
| 0-8,167 | </=1/8 Acre |
| ${ }_{8}^{8,168-12,704}$ | $1 / 4$ Acre |
| 12,705-18,149 | 1/3 Acre |
| 18,150-32,670 | $1 / 2$ Acre |

[^0]

## notes:

$\mathrm{T}_{\mathrm{i}}=\left(0.395^{*}\left(1.1-\mathrm{C}_{5}\right)^{*}(\mathrm{~L})^{\wedge} 0.5\right) /\left((\mathrm{S})^{\wedge} 0.33\right)$, S in $\mathrm{ft} / \mathrm{ft}$
$\mathrm{T}_{\mathrm{t}}=\mathrm{L} / 60 \mathrm{~V}$ (Velocity From Fig. 501)
Velocity $\mathrm{V}=\mathrm{Cv}^{*} \mathrm{~S}^{\wedge} 0.5$, S in $\mathrm{ft} / \mathrm{ft}$
c Check $=10+\mathrm{L} / 180$
For Urbanized basins a minimum $T_{c}$ of 5.0 minutes is required.
For non-urbanized basins a minimum $T_{c}$ of 10.0 minutes is required

Not checked on first review


Subdivision：Grandview Reserve Location：CO，El Paso County
Design Storm：5－Year

Project Name：Grandview Subdivision PDR
Project No．：HRG01
Calculated By：NJA
Checked By：CMD
Date： $8 / 11 / 21$

| STREET | DIRECT RUNOFF |  |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET |  | PIPE |  |  | TRAVEL TIME |  |  | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { 左 } \\ & \text { 曹 } \\ & \hline \end{aligned}$ |  |  |  |  | $\frac{\hat{E}}{E}$ | $\frac{\stackrel{3}{3}}{0}$ | $\begin{aligned} & \text { 首 } \\ & \\ & \hline \end{aligned}$ |  | 気 | $\frac{\stackrel{3}{0}}{0}$ | $\begin{aligned} & \text { 厄 } \\ & \stackrel{\circ}{0} \\ & \stackrel{0}{6} \\ & \hline \bar{\omega} \end{aligned}$ |  |  | $\begin{aligned} & \text { 厄i } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \text { E } \\ & \text { E. } \\ & \text { E. } \\ & \hline \end{aligned}$ |  | $\stackrel{T}{E}$ |  |
|  | 25 | D－4 | 4.74 | 0.49 | 10.9 | 2.32 | 3.97 | 9.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 26 | D－5 | 1.71 | 0.09 | 8.3 | 0.15 | 4.39 | 0.7 | 10.9 | 6.33 | 3.97 | 25.1 |  |  |  |  |  |  |  |  | Total of flows to Pond D |
|  | 27 | E－1 | 6.86 | 0.38 | 19.2 | 2.61 | 3.08 | 8.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 28 | E－2 | 11.66 | 0.43 | 19.3 | 5.01 | 3.07 | 15.4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 29 | E－3 | 1.71 | 0.09 | 9.8 | 0.15 | 4.14 | 0.6 | 19.3 | 7.77 | 3.07 | 23.9 |  |  |  |  |  |  |  |  | Total of flows to Pond E |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Subdivision: Grandview Reserve Location: CO, El Paso County |  |
| :---: | :---: |
|  |  |
| Design Storm: 100 -Year |  |

Project Name: Grandview Subdivision PDR
Project No.: HRG0
Calculated By: NJA
Checked By: CMD



Subdivision：Grandview Reserve Location：CO，El Paso County Design Storm：100－Year

Project Name：Grandview Subdivision PDR
Project No．：HRG0
Calculated By：NJA
Checked By：CMD
Date： $8 / 11 / 21$

| STREET |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET |  | PIPE |  |  | TRAVEL TIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { 气 } \\ & \text { 者 } \\ & \text { n } \end{aligned}$ | $\begin{aligned} & \frac{9}{4} \\ & \text { 皆 } \end{aligned}$ |  |  |  | $\frac{E}{E}$ | $\frac{\sqrt[\pi]{2}}{0}$ | $\begin{aligned} & \hat{H} \\ & \stackrel{H}{E} \\ & \\ & \hline \end{aligned}$ |  | $\frac{\cong}{y}$ | $\begin{aligned} & \frac{8}{2} \\ & 0 \\ & \hline \end{aligned}$ |  |  |  | $\begin{array}{r} \text { e. } \\ \stackrel{0}{0} \\ \stackrel{0}{6} \\ \hline \end{array}$ |  | $\begin{aligned} & \mathbb{E} \\ & \text { E. } \\ & \text { E. } \\ & \hline \end{aligned}$ |  | $\begin{gathered} \text { O} \\ \underset{y}{E} \\ \hline \end{gathered}$ | REMARKS |
|  | 25 | D－4 | 4.74 | 0.63 | 10.9 | 2.99 | 7.07 | 21.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 26 | D－5 | 1.71 | 0.36 | 8.3 | 0.62 | 7.81 | 4.8 | 10.9 | 8.67 | 7.07 | 61.3 |  |  |  |  |  |  |  |  | Total of flows to Pond D |
|  | 27 | E－1 | 6.86 | 0.56 | 19.2 | 3.84 | 5.48 | 21.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 28 | E－2 | 11.66 | 0.60 | 19.3 | 7.00 | 5.46 | 38.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 29 | E－3 | 1.71 | 0.36 | 9.8 | 0.62 | 7.37 | 4.6 | 19.3 | 11.46 | 5.46 | 62.6 |  |  |  |  |  |  |  |  | Total of flows to Pond E |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## APPENDIX D

## Hydraulic Computations

## Inlets not checked with first

 review.MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 1 (DP 2)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) Type of Inlet $\square$ | $\begin{aligned} \hline \hline \text { Type } & = \\ \mathrm{a}_{\text {local }} & = \\ \mathrm{No} & = \\ \text { Ponding Depth } & = \end{aligned}$ | CDOT Type R Curb Opening |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) |  | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) |  | 3 | 3 |  |
| Water Depth at Flowline (outside of local depression) |  | 6.0 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.57 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 0.79 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 13.5 | 39.1 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 13.2 | 29.7 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 2 (DP 3)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 1.6 | 3.0 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 3 (DP4)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Type R Curb Opening | Type $=$ | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 5 | 5 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | nches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {Curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.57 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {curb }}=$ | 0.79 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 22.9 | 66.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 19.8 | 45.1 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 4 (DP 5)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 1.6 | 3.0 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 5 (DP 6)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | " MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 4.7 | 11.5 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 6 (DP 7)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | " MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | nches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {curb }}=$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 2.3 | 8.4 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 7 (DP 9)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) Type of Inlet $\square$ | $\begin{aligned} \hline \hline \text { Type } & = \\ \mathrm{a}_{\text {local }} & = \\ \mathrm{No} & = \\ \text { Ponding Depth } & = \end{aligned}$ | MINOR | $\begin{aligned} & \hline \hline \text { MAJOR } \\ & \hline \text { b Opening } \end{aligned}$ | ches |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) |  | 3.00 | 3.00 |  |
| Number of Unit Inlets (Grate or Curb Opening) |  | 2 | 2 |  |
| Water Depth at Flowline (outside of local depression) |  | 6.0 | 12.0 |  |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.57 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 0.93 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 10.5 | 25.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 6.6 | 16.0 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 8 (DP 10)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Type R Curb Opening | Type $=$ | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 3 | 3 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {Curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.57 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {curb }}=$ | 0.79 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 13.5 | 39.1 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 13.1 | 29.3 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 9 (DP 11)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | " MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | nches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 3.1 | 6.0 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 10 (DP 12)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) Type of Inlet $\square$ | $\begin{aligned} \hline \hline \text { Type } & = \\ \mathrm{a}_{\text {local }} & = \\ \mathrm{No} & = \\ \text { Ponding Depth } & = \end{aligned}$ | CDOT Type R Curb Opening |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) |  | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) |  | 4 | 4 |  |
| Water Depth at Flowline (outside of local depression) |  | 6.0 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.57 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 0.79 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 18.2 | 52.7 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 16.0 | 35.5 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 11 (DP 13)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\text { Design Information (Input) }}$ Type of Inlet CDOT Type R Curb Opening | $\begin{aligned} \hline \hline \text { Type } & = \\ \mathrm{a}_{\text {local }} & = \\ \mathrm{No} & = \\ \text { Ponding Depth } & = \end{aligned}$ | CDOT Type R Curb Opening |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) |  | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) |  | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) |  | 6.0 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms( $>$ Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 4.7 | 10.4 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 12 (DP 14)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | " MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | nches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 3.9 | 8.8 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 13 (DP 15)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | " MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | nches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 2.4 | 5.3 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 14 (DP 17)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\text { Design Information (Input) }}$ Type of Inlet CDOT Type R Curb Opening | $\begin{aligned} \hline \hline \text { Type } & = \\ \mathrm{a}_{\text {local }} & = \\ \mathrm{No} & = \\ \text { Ponding Depth } & = \end{aligned}$ | CDOT Type R Curb Opening |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) |  | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) |  | 9 | 9 |  |
| Water Depth at Flowline (outside of local depression) |  | 6.0 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.57 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 0.79 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 41.7 | 120.8 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms( $>$ Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 40.3 | 89.9 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 15 (DP 18)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) Type of Inlet $\square$ | $\begin{aligned} \hline \hline \text { Type } & = \\ \mathrm{a}_{\text {local }} & = \\ \mathrm{No} & = \\ \text { Ponding Depth } & = \end{aligned}$ | CDOT Type R Curb Opening |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) |  | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) |  | 3 | 3 |  |
| Water Depth at Flowline (outside of local depression) |  | 6.0 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.57 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 0.79 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 13.5 | 39.1 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 12.9 | 29.8 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 16 (DP 19)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | " MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 0.9 | 2.5 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 17 (DP 20)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | " MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | nches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {curb }}=$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 3.0 | 6.8 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 18 (DP 22)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | " MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | nches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| WARNING: Inlet Capacity less than Q Peak for Major Storm | $\mathrm{Q}_{\text {Peak required }}=$ | 5.1 | 12.3 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 19 (DP 23)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | " MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | nches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.77 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $^{\text {a }}$ | 1.00 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 5.4 | 12.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 2.4 | 4.9 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 20 (DP 24)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) Type of Inlet $\square$ | $\begin{aligned} \hline \hline \text { Type } & = \\ \mathrm{a}_{\text {local }} & = \\ \mathrm{No} & = \\ \text { Ponding Depth } & = \end{aligned}$ | CDOT Type R Curb Opening |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) |  | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) |  | 2 | 2 |  |
| Water Depth at Flowline (outside of local depression) |  | 6.0 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.57 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 0.93 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 10.5 | 25.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 9.1 | 21.5 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 21 (DP 25)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) Type of Inlet $\square$ | $\begin{aligned} \hline \hline \text { Type } & = \\ \mathrm{a}_{\text {local }} & = \\ \mathrm{No} & = \\ \text { Ponding Depth } & = \end{aligned}$ | MINOR | $\begin{aligned} & \hline \hline \text { MAJOR } \\ & \hline \text { b Opening } \end{aligned}$ | ches |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) |  | 3.00 | 3.00 |  |
| Number of Unit Inlets (Grate or Curb Opening) |  | 2 | 2 |  |
| Water Depth at Flowline (outside of local depression) |  | 6.0 | 12.0 |  |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.57 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF curb $=$ | 0.93 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 10.5 | 25.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 9.2 | 21.1 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 22 (DP 27)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| Design Information (Input) CDOT Type R Curb Opening | Type $=$ | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 2 | 2 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | nches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {Curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.57 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {curb }}=$ | 0.93 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 10.5 | 25.5 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 8.0 | 21.0 | cfs |

MHFD-Inlet, Version 5.01 (April 2021)

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Inlet 23 (DP 28)


Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion


## INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)


| $\sqrt{\left\lvert\, \frac{\text { Design Information (Input) }}{\text { Tvpe of Inlet }} \sqrt{\text { CDOT Type R Curb Opening }}\right.}$ | Type | " MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {local }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 4 | 4 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 6.0 | 12.0 | nches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}=$ | N/A | N/A | feet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {ratio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value $0.60-0.80$ ) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 5.00 | 5.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {vert }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {throat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{C}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $\mathrm{d}_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.33 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {combination }}=$ | 0.57 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {curb }}=$ | 0.79 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 18.2 | 52.7 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $\mathrm{Q}_{\text {Peak required }}=$ | 15.4 | 38.2 | cfs |

## Provide box culvert and channel calculations.

## APPENDIX E

## Water Quality Computations

## Detention Pond Tributary Areas

Subdivision: Grandview Reserve Location: CO, El Paso County

Project Name: Grandview Reserve
Project No.: HRG01
Calculated By: NJA
Checked By: CMD
Date: 8/11/21

Pond A

| Basin | Area | \% Imp |
| :---: | :---: | :---: |
| A-2 | 6.94 | 64.3 |
| A-3 | 0.34 | 100 |
| A-4 | 10.15 | 66.4 |
| A-5 | 0.34 | 100 |
| A-6 | 2.67 | 50.5 |
| A-7 | 2.91 | 20 |
| A-8 | 6.31 | 2 |
| Total | $\mathbf{2 9 . 6 6}$ | $\mathbf{4 7 . 0}$ |

Pond B

| Basin | Area | \% Imp |
| :---: | :---: | :---: |
| B-1 | 4.02 | 54.3 |
| B-2 | 7.58 | 65.7 |
| B-3 | 0.76 | 100 |
| B-4 | 9.17 | 67.7 |
| B-5 | 2.57 | 68.7 |
| B-6 | 2.06 | 69.6 |
| B-7 | 0.99 | 74.6 |
| B-8 | 0.87 | 2 |
| Total | $\mathbf{2 4} \mathbf{0 0}$ | $\mathbf{6 6 . 3}$ |


| Basin | Area | \% Imp |
| :---: | :---: | :---: |
| C-1 | 34.69 | 66.8 |
| C-2 | 9.90 | 60.8 |
| C-3 | 0.50 | 39.2 |
| C-4 | 1.61 | 65.7 |
| C-5 | 3.99 | 2 |
| Total | $\mathbf{1 6 . 0 R}$ | $\mathbf{4 6 . 0}$ |

Pond D

| Basin | Area | \% Imp |
| :---: | :---: | :---: |
| D-1 | 2.46 | 56 |
| D-2 | 0.75 | 81.8 |
| D-3 | 4.76 | 62.4 |
| D-4 | 4.74 | 65.3 |
| D-5 | 1.71 | 2 |
| Total | $\mathbf{1 1 . 9}$ | $\mathbf{5 6 . 1}$ |


| Basin | Area | \% Imp |
| :---: | :---: | :---: |
| E-1 | 6.86 | 47.1 |
| E-2 | 11.66 | 53.8 |
| E-3 | 1.71 | 2 |
| Total | $\mathbf{1 3 , 3 7}$ | $\mathbf{4 7 . 2}$ |
|  |  |  |
|  |  |  |
| 20.23? |  |  |

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator UD Credit by Impervious Reduction Factor (IRF) Method


## UD-BMP (Version 3.06 , November 2016)

HTE Information (USER-INPUT)

| Stie Information (USER-INPUT) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sub-asasin Identifier | A-2 | A-3 | A-4 | A.5 | A. 6 | A-7 | A.8 |  |  |  |  |  |
| Receiving Perious Area Soil Type | Sandy Loam |  |  |  |  |  |
| Total Area (ac, Sum of DCII, U1A, RPA, \& SPA) | 6.940 | 0.340 | 10.150 | 0.340 | 2.670 | 2.910 | 6.310 |  |  |  |  |  |
| Directly Connected Imperious Area (DCCIA, acres) | 4.462 | 0.340 | 6.740 | 0.340 | 1.348 | 0.582 | 0.126 |  |  |  |  |  |
| Uncornected IImpenious Area (UA, a cres) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |  |  |  |  |
| Receiving Perrious frea (RPA, acres) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |  |  |  |  |
| Separate Pervious Area (SPA, acres) | 2.478 | 0.000 | 3.410 | 0.000 | 1.322 | 2.328 | 6.184 |  |  |  |  |  |
| RPA Treatment Type: Conveyance (C) Volume (V), or Permeable Pavement (PP) | c | c | c | c | c | c | c |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Calculated Result (OUTPUT) |  |  |  |  |  |  |  |  |  |  |  |  |
| Total Calculated Area (ac, check against input) | 6.940 | 0.340 | 10.150 | 0.340 | 2.670 | 2.910 | 6.310 |  |  |  |  |  |
| Directly Connected Imperious frea (OCIA, \%) | 64.3\% | 100.0\% | 66.4\% | 100.0\% | 50.5\% | 20.0\% | 2.0\% |  |  |  |  |  |
| Unconnected Imperius Area (UAA, \%) | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |  |  |  |  |  |
| Receiving Pervious Area (RPA, \%) | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |  |  |  |  |  |
| Separate Pervious Area (SPA, \%) | 35.7\% | 0.0\% | 33.6\% | 0.0\% | 49.5\% | 80.0\% | 98.0\% |  |  |  |  |  |
| $\mathrm{A}_{\mathrm{r}}$ (RPA/UAA) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |  |  |  |  |
| $1{ }_{1}$ Check | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |  |  |  |  |
| $f / /$ for wacvevent: | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 |  |  |  |  |  |
| f/ for 5 --ear Event: | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |  |  |  |  |  |
| $\mathrm{f} / \mathrm{for} 100$-vear Event: | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |  |  |  |  |  |
| $f /$ / for Optional User Defined Storm CUHP: |  |  |  |  |  |  |  |  |  |  |  |  |
| IRF for wacvevent: | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |  |  |  |  |
| IRF for 5-vear Event: | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |  |  |  |  |
| IRF for 100-vear Event: | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |  |  |  |  |
| IRF for Optional User Defined Storm CuHP: |  |  |  |  |  |  |  |  |  |  |  |  |
| Total Site Imperiousness: loas | 64.3\% | 100.0\% | 66.4\% | 100.0\% | 50.5\% | 20.0\% | 2.0\% |  |  |  |  |  |
| Effective Imperiousness for wacv Event: | 64.3\% | 100.0\% | 66.4\% | 100.0\% | 50.5\% | 20.0\% | 2.0\% |  |  |  |  |  |
|  | 64.3\% | 100.0\% | 66.4\% | 100.0\% | 50.5\% | 20.0\% | 2.0\% |  |  |  |  |  |
| Effective Imperiousness for 100 -vear Event: | 64.3\% | 100.0\% | 66.4\% | 100.0\% | 50.5\% | 20.0\% | 2.0\% |  |  |  |  |  |
| Effective Imperviousness for Optional User Defined Storm CUHP: |  |  |  |  |  |  |  |  |  |  |  |  |

LD /Effective IMPERVIOUSNESS CREDTS
WaCvev
Ser Defined CUHP CREDT: Reduce Detention By:
Total Site Imperiousness:
47.0\%
47.0\%

Total Stite Effective Imperviousness for WQCV Event:

|  |  |
| :--- | :--- | :--- | :--- |

Notes:
Use Green-Ampt average infiltration rate values from Table 3-3
"Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM.
$\cdots$ Method assumes that 1 -hour rainfall depth is equivalent too 1 -hour intensity for calculation purposed
Total Site Fffe drial
Company: Galloway \& Co.
Project: Guandviewe Reserv
Location: Pond A









Provide the outlet design sheets for each pond





| Watershed Information |  |
| :---: | :---: |
| Selected BMP Type = |  |
|  |  |
| Watershed Length $=$ | 2,800 |
| Watershed Length to Centroid $=$ | 1,400 |
| Watershed Slope $=$ | $0.020 /$ |
| Watershed Imperviousness = | 46.00\% |
| Percentage Hydrologic Soil Group A = | 100.0\% |
| Percentage Hydrologic Soil Group B $=$ | 0.0\% |
| Percentage Hydrologic Soil Groups C/D $=$ | 0.0\% |
| Target WQCV Drain Time $=$ | 40.0 |
| Location for 1-hr Rainfall Depths = | er Input |
| After providing required inputs above inc depths, click 'Run CUHP' to generate run the embedded Colorado Urban Hydro | g 1 -ho drogra h Proce |
| Water Quality Capture Volume (WQCV) $=$ | 0.261 |
| Excess Urban Runoff Volume (EURV) $=$ | 0.829 |
| $2-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=1.19 \mathrm{in}$.) = | 0.628 |
| 5 -yr Runoff Volume ( $\mathrm{P} 1=1.5 \mathrm{in}$.) $=$ | 0.838 |
| $10-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=1.75 \mathrm{in}$.) $=$ | 1.006 |
| $25-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=2 \mathrm{in}$.) $=$ | 1.289 |
| $50-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=2.25 \mathrm{in}$.) $=$ | 1.565 |
| $100-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=2.52 \mathrm{in}$.) $=$ | 1.920 |
| $500-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=3.68$ in.) $=$ | 3.400 |
| Approximate 2-yr Detention Volume $=$ | 0.531 |
| Approximate 5 -yr Detention Volume $=$ | 0.701 |
| Approximate $10-\mathrm{yr}$ Detention Volume $=$ | 0.859 |
| Approximate $25-\mathrm{yr}$ Detention Volume $=$ | 1.056 |
| Approximate 50-yr Detention Volume $=$ | 1.184 |
| Approximate 100-yr Detention Volume $=$ | 1.348 | 49.7?

Note: L / W Ratio > $\mathrm{L} / \mathrm{W}$ Ratio $=\mathbf{1 1 . 2 5}$ 60?








| tershed Information |  |  |
| :---: | :---: | :---: |
| Selected BMP Type = Watershed Area $=$ |  |  |
|  |  |  |
| Watershed Length $=$ | 1,800 |  |
| Watershed Length to Centroid = | 900 |  |
| Watershed Slope | 0.020 | $\mathrm{ft} / \mathrm{ft}$ |
| Watershed Imperviousness = | 47.20\% | percent |
| Percentage Hydrologic Soil Group A = | 90.0\% |  |
| Percentage Hydrologic Soil Group B = | 10.0\% | percent |
| Percentage Hydrologic Soil Groups C/D $=$ | 0.0\% | percent |
| Target WQCV Drain Time $=$ | 40.0 | hours |
| Location for 1-hr Rainfall Depths = | er Input |  |
| After providing required inputs above inc depths, click 'Run CUHP' to generate run the embedded Colorado Urban Hydro | ing 1-hou hydrograp ph Proce | rainfall hs using dure. |
| Water Quality Capture Volume (WQCV) = | 0.221 | e-feet |
| Excess Urban Runoff Volume (EURV) = | 0.712 |  |
| $2-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=1.19 \mathrm{in}$. ) = | 0.548 | re-feet |
| $5-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=1.5 \mathrm{in}$.) $=$ | 0.728 | feet |
| $10-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=1.75 \mathrm{in}$.) $=$ | 0.873 | -feet |
| $25-\mathrm{yr}$ Runoff Volume (P1 = 2 in .) $=$ | 1.157 | -feet |
| $50-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=2.25 \mathrm{in}$.) $=$ | 1.391 | acre-feet |
| 100-yr Runoff Volume ( $\mathrm{P} 1=2.52 \mathrm{in}$.) = | 1.704 |  |
| $500-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=3.68 \mathrm{in}$.) = | 2.971 | -feet |
| Approximate 2-yr Detention Volume $=$ | 0.464 |  |
| Approximate 5 -yr Detention Volume $=$ | 0.614 | -feet |
| Approximate 10-yr Detention Volume $=$ | 0.760 |  |
| Approximate 25 -yr Detention Volume $=$ | 0.921 |  |
| Approximate 50-yr Detention Volume $=$ | 1.023 | -feet |
| Approximate 100 -yr Detention Volume $=$ | 1.160 | acre-feet |

20.23?


| Zone 1 Volume ( WQCV ) $=$ | 0.221 |
| :---: | :---: |
| Zone 2 Volume (EURV - Zone 1) = | 0.490 |
| Zone 3 Volume ( 100 -year - Zones 1 \& 2) $=$ | 0.449 |
| Total Detention Basin Volume = | 1.160 |
| Initial Surcharge Volume (ISV) = | user |
| Initial Surcharge Depth (ISD) = | user |
| Total Available Detention Depth ( $\mathrm{H}_{\text {total }}$ ) $=$ | user |
| Depth of Trickle Channel ( $\mathrm{H}_{\text {TC }}$ ) = | user |
| Slope of Trickle Channel ( $\mathrm{S}_{\text {TC }}$ ) $=$ | user |
| Slopes of Main Basin Sides ( $\mathrm{S}_{\text {main }}$ ) $=$ | user |
| Basin Length-to-Width Ratio ( $\mathrm{R}_{\text {L/w }}$ ) $=$ | user |





## APPENDIX F

## Drainage Maps

Provide detailed existing conditions plan(s) for the PUDSP area.





## Galloway

=

(i)

|  |
| :---: |
| ……o. |
| = |
| \% ${ }_{\text {mowe }}$ |
| DR-4 |


[^0]:    NOTES
    Coeffici in taken directly from Table $6-6$ in the Colorado Springs DCM Vol. 1. CH. 6 (Referencing UDFCD 2001
    Coefficients use HSG A\&B Boils-Refer to "Appendix A. Ev"

